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Chapter 9
LOGARITHMS AND EXPONENTS

9-0. Introduction. In this chapter our purposes are:

(1) To define the logarithm functions ¥y = log.Xx,

y = loglox, and y = logax;' to establish the properties
of these functions and their graphs, and to explain how
logarithms are used to make computations.

(2) To define the exponential functions ¥y = 10%, y = eX,
and ¥y = ax, and to establish the properties of these
functions and their graphs.

(3) To establish the laws of exponents.

) To give modern definitions throughout, and to give
developments and proofs which are within the understand-

ing of the Eleventh Grade student.

In seeking to achieve these purposes, a treatment of
logarithms and exponents is given which 1s mathematically new and
different from any presented in high school heretofore. The
treatment given is contained in books such as G. B. Thomas'
Calculus and Analytic Geometry, published by Addison-Wesley, and
G. H. Hardy's Pure Mathematics, published by Cambridge University
Press. This treatment of the subject normally uses the technique
of calculus in an essential way, but calculus is not used in the

’ exposition given her=s.

A time schedule which allows four weeks for Chapter 9 should
lead to good results. The chapter contains a considerable amount
of solid mathematics, and time should be available to teach 1it.

Every class must learn the Laws of Exponents, and 1t 1s desir~
able that students understand the theory that leads up to them.
The treatment of exponents has been unsatisfactory and incomplete

- in the past, and a real effort has been made to give a treatment

in Chapter 9 which is satisfactory, complete, and understandable
' to Eleventh Grade students.




546
‘ The treatment of logarithms and exponents presented here 1s
completely different from the one which has been taught in high
school in the past. The traditional treatment has started with

" the theory of exponents from which in turn the theory of loga-
rithms was derived. The present treatment begins with the theory
of logarithms and derives from it the theory of exponential
functions and the theory of exponents. An abstract of the chapter
may help in understanding the nature of the treatment.

In explaining the mathematics in the chapter, 1t seems best
to start with Section 9-3. Assume that there exlsts a functilon
y = log x with the following properties:

(a) y = log x 1is defined and continuous for x > O;

(b) y = log x 1is a function that always increases as X

increases;

(¢) logl =0, log 10 = 1;

(d) for every two positive numbers a and b

log ab = log a + log b.

The entire theory of common logarithms and their applications
to numerical computation follow from these four properties of log
X. The "functional equation” for the logarithm function in (d) is
the central feature of Chapter 9. '

The fact that there 1s a function having properties (a) - (d)
1s established in Sections 9-1 and 9-2 by simple geometric consider-
ations. 'Indeed, we find a whole class of similar functions for
‘which (e¢) 1s replaced by

(¢') log 1 = 0, loga = 1.

This logarithm function is the one usuaily described as the
logarithm functions with the base a; 1t 1s denoted by the equation
y = logax. A study of the properties of logarithm functions having
various bases is given in Sectlon 9-T.

Sections g-1 and 9-2 serve only to prove the existence of a
function with properties (a), (b), (c¢') and (d). Additional
properties of this function and 1ts graph are derived from these
four properties without any further reference to Section 9-1 or
Section 9-2; the detalls are carried out in Sectlons 9-3 and 9-4,

10
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Section 9-5 explains the use of tables of common logarithms;
there is nothing new here. Section 9-6 shows how common log-
arithms are used for numerical calculation; there is nothing new
in thils section either. It 1s noteworthy that the theory of
logarithms has been developed and applied to numerical calculations
without any reference to exponents. Since the general theory of
exponents has not yet been developed the calculations in 9-6
involve only simple radicals and integral exponents.

Section 9-7 develops the notion of the logarithm function
with an arbitrary positive base different from one. The treatment
of thils cannot be the usual one since the exponential functilon,
through which the base of a logarithm is usually defined, 1is not
available to use at this point. On the other hand, 1t is introduced
in such a simple fashion as any one of several equal ratios, that
it makes the usual change of base computation almost a trivial
matter. The reason for this'section, however, 1is not to develop
extreme facllity with change of base problems, but rather to glve
us a direct method to define the exponential function given by
y a® aé the inverse function to the function-given by
Y o= logax. You will note again that this 1is precisely the reverse

procedure to the usual high school presentation.

- In Section 9-8 the exponential function E, with base a

is defined as the inverse of the logarithm function loga with

base a. This definition provides the basis for deducing the laws
of exponents for all real exponents from the already well establish-
ed properties of the logarithm function.

9-1. A New Function: ¥y =Alog X.

The first thing for the teacher to realize 1is that é%e
definition and treatment of logarithms given in this chapter are
completely different from those which have been given in h;gh s
school in the, past.. The teacher should observe that general ex-
ponents do not enter in this chapter until Section 9;8, where a
complete treatment 1s provided. The teacher-must be prepared for
a new approach to an old and familiar subject.

[pages 453—464]
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The teacher will find the definition of y = log‘x new and
strange and will undoubtedly as:t why it has been given in prefer-
ence to the traditional definition in terms of exponents. There
are several reasons for choosing the new definition

First, 1t 1s exceptionally difficult to present. a satisfactory
treatment of exponents, and the usual high school courses in matbe—
matics glve only a small fragment of the theory. What 1s the mean-

ing of 3””5: 10", ..., and how do we Pprove that the usual laws
of exponents hold for rational and irrational exponents? It 1is

not poSsible to gilve satisfactory answers to these questions in

the usual treatment of exponents. If logarithms are defined in
terms of exponents, the theory of logarithms is left in unsatis-
factory condition also. The definition of logarithms used in this
course places the theory of logarithms on a solid foundation.
Furthermore, the definition of ¥y = log x wused here enables us to
give a satisfactory treatment of exponents also, but 1t comes after
the treatment of logarithms.

Second, the definition of logarithms given here leads to a
succinect treatment of logarithms and exponents; and one that is
mathematically much more interesting and elegaﬁt than the tradition-
al treatment.

Third, the defihition of log x as the area under the curve

= %- from 1 to x Iintroduces the student to an important new -
mathematical concept. Later on, the process of approximating the
area under a curve by inscribed and cilrcumscribed rectangles will
be developed into the most fundamental procedure of the integral
calculus.

Fourth, the method used here makes i% possible to define and
treat all of the logarithm functions simultaneously. The common
logarithm function and the natural logarithm function are only two
speclal cases of the general logarithm function.

Fifth, the treatment given here makes 1t possible to define

. the number e in a simple and concrete fashion. The definition.
does not 1nclude any mysterious limits.

12
[pages U453-46U4]
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Sixth, logarithms have ceased to be very important for compu-
tation, but the logarithm and exponential functions have become
more important than ever. Logarithms are no longer very important
. for computing because of the wide availabllity of desk calculators
and electronic digital computation machines. The logarithm and
exponential functions, however, are important in meo &
in many fields of application outside mathematlcs
treatment' 'given in this chapter seeks to minimiz: SR RN
logarithms for computation and to emphasize the theory of the
logarithm and exponential functions and the theory of exponents.

The logarithm of X, denoted by ¥y = log x, -is defined in
Section 9-1 as the area under the curve y = ; from 1 to X.
Area under a curve is a complicated mathematical concept, but
students have a good intuitive understanding of 1t. As a teacher,
you must take full advantage of this .intuitive understanding of
area. .
Area under a curve is a subject which is treated in the
calculus. The area under a curve 1s given by an integral, and an
integral involves the complicated notion of limit. The treatment
in the text has carefully avoided any mention of "calculus",
"yntegral”, and "1imit", and the teacher should do likewise. From
the intuitive point of view, the approximate value of the area
under a curve is found by counting squares as explained in the
text. If a better approximation is desired, a larger graph of
the curve with more squares should be drawn.

Some students may find it difficult to estimate the fractlon
of a square that lies below the graph of ¥ = ;. One rule that
can be used is the following: If half of a square or more lies
below the curve, count it as a whole square; 1if less than half of
a square lies below the curve, omit 1t from the count entirely.
From the point of view of the mathematical procedures that willl
be employed later, 1t would be better to approximate the area from
below by finding the sum of the areas of inscribed rectangles, and
from above by finding the areas of circumscribed rectangles.
Furthermore, this procedure gives an estimate of the accuracy of
the appioximations. An amplified discussion of these ideas is

[pages 453-464]
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glven 1n Section 9-2 of this commentary. This should provide
valuable background material for the discussion of Eqﬁation 9-2a
in the text. ’

' Finally, suggestions are made about how to teach Section 9-1.

First, explain the example based on Figure 9-~1la.

Second, explain the example based on Figure 9-lc.

Third, proceed immediately to a discussion of the function
& = in X . which 1s obtained from the graph of y = % in Pilguis
9-1g and 9-1h. This concrete numerical case can be used to ~vplain
how area under a curve can be obtained by counting squares, and
also how corresponding values of x and y for the function
¥y = In x are obtained. ’

Fourth, present the example based on Figure 9-1k. The desire
to obtain a logarithm function whose value i 1 for x = 10

" should make 1t easy to explaln why the hyperbola y =‘¥ is
selected from the family y = % for special consideration.

Fifth, present the general definition of ¥ = log x given in
Definition 9-1. After the logarithm functions based on the two
speclal hyperbolas y = % and y = %- have been presented,
students should find it easy to understand the definition of the
general logarithm function ¥y = log x derived from the hyperbola
y =k

Sixth, the definition of the logarithm function y = log x
and the procedure for finding pairs of corresponding values of x
and ¥y can be emphasized as follows: Have the students read the
graph of y = or y ='¥ and find values of 1n x (the natural

logarithm) or log, oX (the common logarithm) by counting squares.
This suggestion can be carried out by assigning appropriately

selected exercises from those given at tile end of the section.

]

L

14
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ExXercises 9-1. - Answers

1.

Following is an illustration of the method that can be
employed to obtain the entry for "Estimated 1n x" when

X = 0.70. Note that what is sought is the value of 1ln 0.70.
To proceed, first estimate the number of squares enclosed in
the region bounded by the curves y = %, the x-axis, and
the ordinates erected at x =1 and x = 0.70. An estimate
of the number of squares enclosed in this region, obtalned by

actually counting the whole squarr ' estimating those which
are partially enclosed, is 357 Re iing that each square
represents 0.0001 units of areu, 3573 squares

' represent 0.3573 units of area. Since x = 0.70 < 1, 1n x

is the negative of the area. Thus, 1ln 0.70 = -0.3573 i1is an
entry for "Estimated ‘ln 0.70". The remaining entries can be
obtained in the same way.

This exercise is similar to Exercise 1 above. To find a value
of "Estimated loglox" for x = 1.12, first estimate the
number of squares enclosed in the region bounded by the curve
y = %, the x-axis, and the ordinates at x = 1.00 and

x = 1.12. By actual count, the number of squares, estimated
to the nearest vhole square, is U492. Recalling that each
square represents 0.0001 units of area, the 492 squares
represent 0.0492 units of area. Since x = 1.12 > 1,
103101.12 = 0.0492, which is the area under the curve. The
entry estimated for log101.12 is accurate to four decimal
places this time.

156 |

[pages 465-466]
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Graph of ¥y =‘%,
To complete the graph of this curve the student will find it
convenient to make use of a table of reciprocals found in
books of mathematical tables. PFollowing is a brief set of

pairs (x,y) obtained with the aid of such a table.

0.1 < x < 10.

b
<
]
|

=
(@

.00
.00
.33
.50
.00
67
.43
.25
.11
.00
.50
.33
.25
.20
A7
c1lh
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.11
.10
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5. To obtain ordinates for points on the graph of y = %, where
M= 0.43; multiply the ordinates for the entries glven in
the table of Exercise 4 by 0.43. Tre third column in the
following table has been obtained in this way.

x y=% | v=L us o3
0.1 10.00 4.30
0.2 5.00 2.15
0.3 3.33 1.43
0.4 2.50 1.08
0.5 2.00 0.86
0.6 1.67 0.72
0.7 1.43 0.61
0.8 1.25 0.54
0.9 1.11 0.48
1.0 1.00 0.43
2.0 0.50 0.22
3.0 0.73 0.14
4.0 0. 5 0.11
5.0 0.20 0.09
6.0 0.17 0.07
7.0 0.14 0.06
8.0 |, o0.12 1 0.05
9.0 0.11 0.05

10.0 0.10 0.04

19

[page 4671
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6. In Exercise 5 the ordinates of the curve y = %, M® 0,43,
for the values of x 1listed in the table, were obtalned by
multiplying the ordinates of y = % by M. This procedure
really amounts to reducing each ordinate of the region bounded
by the curve y = %u the x-axls, and the ordinates erected
at x =1 and the given x, and leaving the "base" of this
reglon unchanged. Thus, the proceduré of multiplying each
ordinate by M ® 0.43 has the effect of multiplying the aren
whose upper boundary is y = % by M. But this gilves the
ares whose upper boundary is the curve y = log10 . There-
fore, -

M.ln x = loglox,
and we can use thls relztion to obtain the common logarithm
for any number X when we know what the natural logarithm'of
x Is,

T. For each k > O the curve = % determines a logarithm
function 1log x. The value of this function at x = 2 (area
under the curve from x =1 to X = 2) depends on k. Iif
we adjust k so that the logarithm function has the value
one at x = 2, we denote the logarithm function thus determin-
ed by the symbol logz. Thus, 10322 =1, If kl 1s the
required value of Kk, then according to {(9-1)

logzx = kl In x.
Let x = 2 1n this system 1 = kl In 2. .°' ) kl =157
Reading the graph in Figure 9-11 we find that 0.69 1is an
approximate value of 1n 2. '
.ok N -:é-gwl.us.
"o logox ™ 1.45 1n x.

20

[page 46T7]
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Thus log,l = 1.45Inl =145 %x0=0

1og23 N 1.451n3 ® 1.45 x 1.10 ® 1.60

1og24 ~ 1.45 1In 4 & 1.45 x1.38 x 2.00
3.

log28 ~# 1l.45 1n8 = 1.45 x 2.07T = 00

log, % ~ 1.145 In3 ~ 1.45 x (-0.69)% -1.00

log, § & 1.45 In

u
]

45 x (-1.40)s -2.03.

9-2. An Important Formula for log Xx.

Trhe fundamental formula 1log ab = log'a + log b is the basic
mathem=:ical fact in the entire chapter. As stated in the
Abstratz,the entire treatment of logarithms 1s derived from the
following properties:

(i y = log x 1s defined and continuous for x > 0;

() y = log x 1s a function that always increases as x

increases;

(c') log 1 =0, loga=1;

(d) rfor every two positive numbers a and b

log ab = log a + log b.
The first three properties are either stated in the definition
given in Section 9-1, or they follow easily from the definition.
Properties (a), (b), and (c¢') are listed and emphasized for the
first time in Section 9-3; the purpose of Section 9-2 1s to prove
the important formula in (d). Since, up to this point, nothing
is known about y = log x except its definition, 1t 1s‘clear'that
the proof of the formula must rest on the definition.

The proof 'of the formula 1log ab = log a + log b 1s a simple
exercise 1f the tools of the calculus are available, but calculus
1s not available in this course. Section 9-2 does not glve all
details of a complete proof, but i1t does two things to convince
the student that the formula 1s true.

First, Table 9-2a compares log ab with the sum (log a +log b)
for 2 number of special values of a and b. The values of the
logarithms are taken from a table.

[pages 467, 468-471]
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Second, it is shown in a specin™ ~~eao that the formula ‘1lows
from the properties of the area . curve y = % fron to
X. The areas under the curve are ap .>»ilws -d by the areas of
circumscribed rectangles. It is shown that the area under the
hyperbolas y = %- from x =1 % x =6 (= log 6) is equal to

"log 2 + log 3. ‘The methods that are used in the proof of this
special case can be developed into a complete proof in the general
case.

The complete proof inevitably involves limits; so, it 1is
merely stated in the text that the area under a curve can be
approximated as closely as desired by the areas of inscribed and
circumscribed rectangles.

The following may be used to prove this statement:

Consider the graph of ¥y ='§ in Figﬁre 1 and let 8 and t
be two points cn the x-axis, such that 0 < s < £. Call R the
shaded regiop, namely those points

such that
0<y<F y
A
s<x<K¢t
and denote its area by A(s,t).
If we had to compute the area y=k/x

A(s,%), we could get an approxi-
mation in the manner of the

previous section, namely count T ———
the squares contained wholly : 53 21>x
in the region R. Better

Figure 1.

approximations - and, in fact,
approximations . with any degree
of accuracy could be obtained by making the coordinate squares
sufficiently small. This square counting procedure can become
tedious.; éo, in desperation, you may notices that you might actually
compute an approximate value for the area by Inscribing rectangles
in R as in Figure 1, getting the areas of each of the rectangles
and then adding these areas to give the desired approximate value

of A(s,t).
22
[pages 468-471]
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For example, let 8 =1 and t =2, and k = 1. Then, if
we incribe four rectangles in R, determined by ordinates erected
at x =1, X = %, X =-g, X = %, and x = 2, counting from
left to right the areas of
the respective rectangles

are
1.1 1
T % -5
4
' 5
1 1 1 - 4
T 6 °F e
T U R
'\ 7 ——
.:ll'r --—7—-1 = %’, anu e 2
'1;' i::;: B it ;:::‘2
1 01 _1
Tz g Figure 2.

Therefore the approximate value .
for A(1,2) is % +-% + % + %-m .6346. However, if we had taken
8 1inscribed rectangles with ordinates erected at x =1, x = %,
X = %?, e+v+y X =2, the inscribed rectangles would have areas

'%, f%u s T% respectively. The sum of their areas 1is .6629

which is a better approximation to A(1,2). Incidentally you may
notice that 1f we would take circumscribed rectangles, instead of
inscribed rectangles (Figure 2) we would always get an approximate
area which would be larger than A(1,2). Indeed, in the first
example with four rectangles the value would bpe .7596, and in
the second case with eilght rectangles the value would be .7254.
The differences between the inscribed and circumscribed areas are
then .1250 and .0625 respectively. Since, clearly A(1,2) ”
is greater than the lnscribed rectangular area and less than the
circumscribed rectangular area, we may use the difference of the
circumscribed area and the inscribed area as an estimate of the
goodness of our approximation o A(1l,2) when we use the inscribed
area as 1lts value. '

It is easy to show that if we approximate A(1,2) by 1000
inscribed rectangles with bases of equal lengths, the error in
computing A(1,2) is less than 0.0005. For,1f we divide the

[pages 468-471]
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interval 1 < x < 2 into 1000 equal parts, then each base has

length = g = 0-001. Starting from the left,we note that each
inscribed rectangle is congruent to the succeeding circumscribed
rectangle. Therefore,the difference between the c.rcumscribed area
and the inscribed area is equal to the area of the first circumscrib-
ed rectangle minus the area of the 1000th inscribed rectangle,
i.e., 0.001 X 1 - 0.001 X% = 0.0005.

These computations furnish us with excellent evidence that the
area A(s,t) can be computed to whatever degree of accuracy we wish
by mercly taking a sufficlently fine (either inscribed or circum-
scribed) rectangular approximation. :

Indeed, we may even prove this. Divide the interval
s <x<t into N equal parts, where N 1s a natural number.

Then the length of the base of any rectangle.is 19 ﬁ 2. From the
observation made above, the difference of the areas of the circum-
scribed and the inscribed rectangular approximations is egual to
the area of the first rectangle in the circumscribed approximation
minus the area of the last or Nth rectangle in the inscribed

approximation; i.e.,
2
t -8 k _ t-8 k_k(t-s)" 1
Error S =—x— s~ "% ‘T~ 8 N °

Thus, since k, t, s are given numbers, say k = 1, s =1,

t = 3, ’'the error S_g--%. If the desired degree of accuracy 1is

that A(s,t) should be accurate to U4 places, we need only to

choose the natural number N so that ~§-~%'g .0001 or %»5_.0000075.
For example, if N = 200,000, this inequality will certainly be ‘
satlsfied.

24
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Another Discussion of the Fundamental Formula.

In this discussion of Equation 9-2a, we shall rely upon a
principle which tells us what happens to the areas of reglons when
these regions are stretched or shrunk in certaln ways. We now
describe and illustrate this principle. Followlng the illustrat;ons.
we shall state it in general terms. B o

Suppose we have a coordinate system painted on the wall and
that some elastic, transparent material i1s stretched over it. The
elastic quality of the covering material means that 1t can 'stretch
or shrink horizontally or vertically (or in any other direction)
and the transparent quality means that the underlying coordinate
system is always visible. On this covering we draw a rectangle R
with vertices at (5,2), (7,2) (7,9) and (5,9) as shown 1in
Figure 3. The area of R 1is (7-5):(9-2) = 14 square units. Now
we stretch this materilal
horizontally so that the
abscissa of each point in
R 1s doubled while its
ordinate.remains the same.
(This could be done by
applying a horizontal
pull while holding all
points on the y-axis
fixed). This stretching
process can be regarded

y
D(59) C(79) D0'(10,9) . Cc14,9) -~

as a transformation which
transforms rectangle R
into rectangle R!'.
Clearly the width of R
has been doubled while its A(5,2)  B(72) A'(10.2) Bia,2)
height remained the same. X
This indicates that the
area of R' 1is double the Figure 3.

area of R and a computa- ) o

tion of thé area of R!' elther by the formula .A = lw or by an
actual counting of squares verifies this conclusilon.

25
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Now let us apply this same transformation to any region R
bounded by a closed curve and having area measure A. (See Figure by,
The result is a region R!' having area A'.

We observe that any horizontal line that intersects the boundary
of R 1in points P(a,b) and @Q(c,b) also intersects the boundary
of R' in points P!'(2a,b) and Q'(2c,b). Therefore,

a(P'Q') = |2¢ -~ 2a| = 2|e - a| = 24(PQ). If we think of a horizontal
dimension of R as a horizontal line segment that Jolns two points

on its boundary we see that our stretching process multiplies every
.horizontal dimension by the factor 2, and leaves vertical dimensions
unchanged. This is exactly what happened to thevrectangle R in our
first example where we were ablé to verify the féct that the area had
been dcubled. The principle we are illustrating requires that we

'“égain accept the conclusion that the area has been doubled, 1.e.,

that A' = 2A. This time having no formulas for the areas of R
and. R', we cannot verify this conclusion by computation although
_estimates based on the counting of squares would make 1t seem
reasonable. )

s 1411 IIIILV | I
; EEEN EEEEE
H o R T,
Y P(a,b)1Z \Qlc,b) I Q'2c,b)
>
R \ i q
N
N
v 4 \ R'
/
/
‘V 4
g
—F
e 1 X
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In these examples we call 2 the multiplier of our trans-
formation. If our multiplier is one-half, each point (a,b) in
our original regilon is carried into a point having coordinates
(%a,b). In this case,our region shrinks because each horizontal
dimension becomes one-half its original length (as 1s the case if
we interchange the roles of R and R' in our example) and the
new area is, of course, one-half the original area. We now state
our principle S for any multiplier m > O.

Principle S. If a reglon R havirng area measure A 1s
transformed (stretched or shrunk) in such a way that each horizon-
'tal dimension is multiplied by m while each vertical dimension
remains unchanged, the area measure of the resulting region R!'
is mA (m > 0). _

Another version of this principle can be obtained by inter-
changing the words "vertical" and "horizontal" in the above state-
ment.

Consider now what happens when two such transformations are
applied in succession to a region R having area A. If the first
transformation produces a region R!' by multiplying each horizon-
tal dimension of R by m and the second transformation produces
a region R'' by multiplying each vertical dimension of R' by
n, we conclude from Principle S that the original area has been
multiplied first by m and then by n, so that the area of R'!
is mnA.

If it happens that n = %, we must conclude that the area
_measure of R'' 1is the same as the area measure of R. Evidently
each stretching transformation with multiplier m has an inverse
with multiplier % which undoes its effect insofar as area 1ls
concerned. This idea turns out to be important in our discussion
of Equation 9-2a. .

We illustrate the meaning of the Principle S with examples.
Example 1. Consider a rectangle R whose vertices are
A(3,1), B(8,1), ¢(8,5)--and D(3,5). Apply a horizontal stretch

transformation to R which carries every point P(x,y) into a
new point P!'(x,3y) in a new rectangle R'. Find the vertices of
R!' and compare its area to that of R.

2



564 .

Solution: The new
vertices are A'(3,3),

B'(8,3), ¢'(8,15) and y
D'(3,15), (see figure). D(345) _ DY6,I5) c'(16,15)
Clearly the area of R! c(8,15)
is 60 square units or
3 times the area of R. : R' R R
D(35) c(8,5)
MBI pieE TEES B"(16,3)
a@,1) L—e—B(8,1) ‘
X

Flgure 5.

Example 2. Apply a stretch transformation to rectangle R'
in Example 1 which carries every point P!'(x,y) into a point
P''(2x,y) 1in a new rectangle R''!'. Find the vertices of R'!
and compare its area with that of R.

Solution: The new vertices of R'' are A''(6,3), B!''(16,3),
€'1(16,15) and D''(6,15). The area of R!'!' 1is 120 square
units or 6 times the area of R.

Example 3. We are given a triangle with vertices A(a,b),
B(c,b) and C(d,e). Suppose that ¢ >a and e > b. Apply a
stretching transformation which carries every point P(x,y) of
triangle ABC into P!'(mk,my) of triangle A!'B'C', (m > 0).

Give the coordinates of A', B', and €' and compute the area
of both triangles. :

Solution: We note that segment AB has length ¢ - a and 1is
parallel to the x-axis. If we regard AB as the base of triangle
ABC, the altitude is equal to (ordinate of C - ordinate of A or
B) = e - b. The area of A ABC is (c - a)(e - b). The new
vertices are A'(am,bm), B!'(em,bm) and C'(dm,em).
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Base of A A'B'C' =cm - am = m(c - a).
Altitude of A A'B'C' = em - bm = m(e - b). ’
Area of A A'B'C' = %m(c - a)m(e - b).

= me .%(c - a)(e - b) = m® . area of A AEC.

Are these triangles similar?

Teachers who present this alternate discussion of the funda-
mental formula may wish to assign some of the following exercilses.

1. Let the rectangle R with vertices 0(0,0), A(a,0),
B(a,b) and C(0,b) be subjected to a,stretch which
multiplies the abscissa of every point by m. Give the
coordinates of the new vertices 0', B', C', D' and
compare the area of the new rectangle R' with that of
R. ' '

2. Apply to 'R' 1n Exercise 1 a stretch tranéforﬁation
which multiplies every ordinate by n. Give the co-
ordinates of the vertices of the resulting rectangle
AMB1ICtID!Y and find its’ area.

3. Is the Principle S still valid if we allow stretches
which neither are vertical nor horizontal?

L, Suppose region R 1is transformed into feéion R!' by a
horizontal stretch with multiplier 3 and the R' is
then transformed into R'' by a stretch which is
neither horizontal nor vertical having a factor 4. Is
the area of R'!' twelve times the area of R?

5. Let us adopt this notation: pS,, for a horizontal
stretch with multiplier m and vSn for a vertical
stretch with multiplier n.

Then hSm -VSn means that hSm is applied to R
to produce R' and then vSn is applied to R! to
produce R!'', thus:

S
R > R' — Y o R,

29
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If we consider efTzz:= in area only, 1s it true that

pSm v®n = vSn =1 T h°mn = vSma?
6. Let Sm represe: = a transformat. nn “hat imultipi:es any
¢ weasion (herizesmz , 7ertilecal, v .z . =¥ angle with

~=2 horizontal) > =,
.a, Consider:ng :_'Y ffects on area, —ow would you
write the io-= of Sm?

(b) What does Sy wwzan? What effect does it have on

region R hivi :z area A?
]

(¢) What does S, -:ean?

(d) Write the rela: .on between S, 3, and §,.
m
T. If
S S . )
Re—Bm o g - YM  opr
is R'' ~ R?
8. Consider a three-dimensional situation with stretches

taking place in directions which are respectively parallél
to the length, width, and height of this room. We denote
these by’e Sp, qu and hSr respectively. We will now
deal with a three-dimensional reglon R whose volume 1is
V cubic units. We have:

S S
R ‘f P > R! qu R!! h™r > R'11,

What is the volume of R'!'!'?

9. If in Example 8 p=qg=1r 18 R'!'' A R? What do we
mean by similarity in this case?

10. Given an ellipse having semi axes a and b. Can you
use Principle S +to obtain a formula for 1ts area?

*11. Glven an ellipsoid whose seml axes are a, b, and ¢,
can you use Principle S to obtain a formula for its

volume?

30°




567

Consider now the prcof ¢f ©  ~~iorm.3-2a. Filgare 6 shows *he
graph of y = £(k > 0) for ti ¢ e ¥hor 1< a < b. Polnts
B, ¢ and D having abscissas ", , - and ab respectively
are chosen on the x-axis. P, |, * +.»2 3 are corresponding
points on the hyperbola having c¢:: +iinz:~° - as shown in the flgure

Note that the product of the coor....:ate:. . each of these points

is equal to k so that the equat:! .. ¢. s hyperbola 1s satisfied.
Let Rl, R2, and R3 be the rep  n2 —“2r arcs Fa, QR and

RS respectively and denote their -Tond..3Uures by Al, A2, and
A3. According to our definltion:

v

log a = Ay (Area unde

log b= Ay + A, (Arez &~ ar: PR)

log ab = Ay + A,y + Ay { =i ..Zar arc DPS).

We wish to prove that’
log ab = log a + log b.
To do this we must show that
Ay + Ay + Ag = Ay + (Al .
This follows if we can show that A? Ay We will show this by
showing that there 1s a region R (skaded in the figure) having

W

area A such that
1 ,
(1) A=gA, and (2) A; = bA.

First we must describe this regicti E more precisely; Select
any point T on arc PQ and draw a wzwlcal line through T
intersecting the x-axis at E. If = _: the akbscissa of T
then the ordinate of T 1s %- beczwr: T 1s on the hyperbola and
l1<{x<a because E 1s somewhere o segment AB. Select F on
ET so that 1ts ordinate 1s % pd % or %%. As T traverses arc
PQ, F willl traverse arc P'Q' whose every ordinate 1is % times
the corresponding ordinate of arc PQ. Let R be the area under
~arc P'Q' and let A denote its area. ZEvidently every vertical
dimension of R' 1is % times the correiponding'vertical dimension
of R. According to Principie S, A =ASHVA1. This establishes

Equation (1).
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In order to establism Equation (2),we first observe that the
ordinates of P! and Q' are respectively %- and s% so that
P! is at the same height as R and Q' at the same height as S.
Next, we will show that every horizontal dimension of R3 is
b times the corresponding horizontal dimension of RK. To do this,
we draw SQ' (which we kave seen 1s parallel to the x-axis)
intersecting CR at H and AP' at G. The wldth CD of

y
ok
YEx
P(l, k)
T(x,5)
Q(a,—t—) ‘
R
. R(b, )
J\ K k
o a‘(ob,'aT)
R, R, )
bt \-——
) E | X
B(g,0) D{ab,0)
A(1,0) c(b,o0)
Figure 6.
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rectangle - CDSH is :» - a = b(a - 1) =b+Ac . b times che width
of rectangle ABQ'G. Tc show that the horizor 1 dimensiczs of
GP'Q!' and HSR are re_=ted in that same way.ws draw = Zine through
F intersecting GP' a- I, =R at J and t:2 hyperbola at K.

IF = x - 1. T2 or~mate of K 18 :nze sam= a= the
ordinate of F, or p=. Sizs= K 1s on the nyperbclz ize

K 1s evide=ily ux. Therefore,

|abscissz of K - abscissa of J| = |bx - b
blx - 1| = b - IF.

It is now clear that ev=ry horizontal dimension =¥ R3 is b
times the corresponding norizental dimension of R. Again applying
our Principle S, we have A, = bA which establishes (2).

From (1) and (2) we conclude that A; = A; and our proof 1is
complete for this case. A similar proof applies when elther a
“or b or both a and b 1lie in the interval between O and 1.

abscissz of
JK

Exercises 9-2. - AnsweTs
1. a b ab 1ogloab logloa + ioglob
3.00 | 3.00 | 9.00 | 0.9542 |O.4771 + 0.4771 = 0.9542
.3.00 | 2.00 | 6.00 | 0.7782 |0.4771 + 0.3010 = 0.7781
5.00 | 2.50 |10.00 | 1.0000 |0.6021 + 0.3979 = 1.0000
5.00 | 4.00 | 20.00 | 1.3010 |0.6990 + 0.6021 = 1.2011
5.00 | 7.00 |35.00 | 1.5441 |0.6990 + 0.8451 = 1.5%41
3.00 | 6.00 ]18.00 | 1.23553 |0.4771 + 0.7782 = 1.2553
6.00 | 5.00 |30.00 | 1.54771 |0.7782 + 0.6990 = 1.X772
5.00 | 8.00 |40.00 | 1.6021 |0.699C - 0.9031 = 1.€021
5.00 [10.00 |[50.00 | 1.6990 |o0.6==x + 1.2000 = 1.6390
n.00 | 3.50 {14.00 | 1.2461 [0.6021 + 0.5441 = 1.1462
5.00 | 9.00 [45.00 | =.€532 |0.6990 + 0.3342 = 1.£532
[page 472]
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2. (=)
(=)

(1)
(k)
(1)
(m)
(n)
(o)
(p)

(a)

(r)
(s)
(t)
(u)
(v)

loglﬁﬁl =

Since factoriz=tir-= is not unique, this exercise can be

worke: in three &i ferent ways. Iniy one solution will

1c :j:lof‘j'

+ 1logy T = 0.477L + U.8451 = 1.3222

be given for the =maining exerclre:s .

loglcju = lez *
log1024 =.lqgt:m
logloet = loz,,

1031022 = log:::ﬁ;—_~
.1031026 = log 42
1031027 = loglOB
1031028 = log104
1031032 = logloe
loglo33 = loglo3
log1034,=’10g102
log1036 = log;,2
loglo38 = logy42
log1042 =.lﬁ2106
log, ottt = Z=g, oyt
‘1031048 = 128,43
logq 49 = log, 47
108, ;9= = 2873
10g. 7 = Hy
1oz oo° = -SF= g"
1e2) 57 = 1223
18,063 = By’
log) gl25= o745
log, yl44= log,,9

- loglOG = 0.6021 -« J.7782
~ logyyl2= 0.3010— 1.0792
- log108 = 0.4771— 0.9031
+ log,,11= 0.3010~ 1.0414
+ log,;,13= 0.301C - 1.1139
- logy 9 = 0.4771— 0.9542
+ logy T = 0.6021 - 0.8451

iogyy16= 0.3010 + 1.2041

logyyll= O.47T1 + 1.0414

log, ;17= 0.3010 + 1.2304
~ logyy18= 0.3010 — 1.2553
+ log;419= 0.3010 + 1.2788
+ logyf = 0.7782 + 0.8451
+ log - 11= 0.G01 + 1.0414
+ 1og2:16= 0 71+ 1.204
+ logy 7 = T.8451 + 0.8451
+ log J17= O + 1.2304
+ log1018=~L.4771 + 1.2553
+ log, 4= 05021 ~ 1.1461
+ log; 19= O.UTTL + 1.2788
+ log; 9 =0.845. + 0.9542
+ logﬁ325=-0,6990-§-1.3979
+ log1016= 0.9542 = 1.2041
[page +72]

(I T O T T R S L T R T ™ e e I = I T — T I N N T R =

.3803
.3802
.3802
.32k
RS
L4313
Jur2
.5051
.5185
.5314
.5563
.5798
.6233
L6435
.6812
.6902.
.7075
L7324
.T482
. 7559
.7993
.0969
.1583



(w log-4250 = logy 5 + 10g 450 = 0.699C — 1.6990
= log,y10 + log,,25= 1.000C — 2.3979
(x) 10g,,1000= 108,20 + log,50= 1.301C + 2..5990
Proof thzt log a2 = 2 log a:
log a® = log (a -a)
= log a + log a
= 2 log a
Q.E.T.
1 1 -
(2) log),v2 =5 1og;42 = 5(0.3010) = 0.1505
1 1 o
(b) lc;do«/B = 5 log|3 =-§(o.u771) = 0.27036
1 .
(¢) logy,v = % 1cg 05 = 5(0.6990) = 0.3495
1 —
(&) 1og10¢ =<% logy o7 =-§(O.8451) = 0.4=26
- 1 1
(e) 1oglo~/1o = 5 log, 410 ='§(1.oooo) = 0.5000
(£) log),2.25 = log,(1.50)% = 2 1=z j1.50 = 2(0.
(g) log,,6.25 = long(E;SO)ﬁ = 2 1z%,42.50 = 2(0.
(h) 1oglo6u = 1oglo(8)° = 2 log; 8- 2(0.8031) =
(1) log, 81 = logy (912 = 2 log o9 - 2(C.9542) =
(3) 1log,,169 = log, 4(13)° = 2 28 gl F = 2(1.1139)
(k) log,,256 = 1og)o(25)% = Z “2g),75 = 2(1.2041)
. ‘ N2 .
(1) 1og10441 = loglo(El) = 2 12gy,21 =
- 2(1.3222)
= 2.6444
35
Imemes F7R-473]

571
2.3980

2.3979
3.0000

1761) = 0.3522

#

3979) = 0.7958

]

1.806é2
1.9084

2.2778

2.4082

2(logyy3 + logyy7)

2(0.4771 + 0.8451)
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(m) log,,196 = 1oglo(1u)2 2 log, 14 = 2(1.14€1) = 2.2922

2(1.2304) = 2.4608

(n) 1log,y289 = log o(17)% = 2 log, 17

2 - -
(o) 1og10576 = 1oglo(2u) 2 log, 24 = 2(1logy o7 + log, »8)

= 2(0.4771 + 0.9031)

= 2(1.380z;
= 2.7604
4, Proof that 1log abc = log a + log b + log ¢
log abe = log(ab)-c
= log(ab) + log ¢ (9-2a)
= log a + log b + lcg = (9-2a)
Proof that log a°b = 2 log a + 1lag b

log 2% = log(a X a » &)

= log a + log 2 + log b
= 2 log a + log b

or by using results of Exercilse 3 &bowe:

log a2b log.a? + log ®

2 log 2 + log b

Proof that log a3 3 log a

log ad = logla x a x a)
= log a + log a + =% a
= 3 log a
or log ad = 1og(a2 X a)

log a2 + log a
2 log a + log =
= 3 log 2

(a) 1logpqhe =.loglo(7 x 6) = log...7 + Logyyb = C.BESL + 0. 778
= _.6233

36
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(c)

(a)

(e)

(h)
(1)

573

log,,1001 = log10(7 x11 x13) = log, o7 + logyo11 + 1log,,13
= 0.8451 + 1.041% + 1.1139 = 3.0004
log, 255 = loglo(S:KS xX17) = 108,45 + log, 3 + log,,17

= 0.6990 + 0.4771 + 1.2304 = 2.4065
log1026.25 = 1og10(25 x 15 x 7 x .01)

log1025 + 1081015 + loglo7 + log10.01
1.3979 + 1.1761 + 0.8451 4+ (-2)
= 1.4191

log10(3.5)2 x 7

2 logy43.5 + log, 47
2(0.5441) + 0.8451
1.0882 + 0.8451 = 1.9333

log, o147 = 198,4(72 x 3)

2 log107 + log103
2(0.8451) + 0.4771
1.6902 + 0.4771 = 2.1673

log, ,126.75 = 1og, (25 x 13° x 3 x .01)

2 loglos + 2 log1013 + log103 + loglo.OI
2(0.6990) + 2(1.1139) + 0.4771 + (-2)

1.3980 + 2.2278 + 0.4771 - 2 = 2.1029

log; 343 = 10, ,7° = 3 logyo7 = 3(0.8451) = 2.5353
log, ,1728 = log, (43 x 3%)
= 3(0.6021) + 3(0.4771) = 1.8063 + 1.4313

= 3.2376

=3 log104 + 3 log, 43

37

[page 473]



. BT4

(j) Let a = 3/5. Then log( ¥5)3 =3 1lg Y5,
and log %f% =~% log 5. In general, log 3% = % log b.

log,, V5 = % 108,05 = 5(0.6990) = 0.2330.

3 1 1
(k) logyq Y1 = 7 10g,10 =~§(1) = 0.3333.

(1) logyy ¥YI5 = 5 10g1o(9.5) = £(0.9777) = 0.3259.
(m) logy, V20 = % log),20 = 3(1.3010) = 0.433T.
(n) 1log,, §fi666'=~% log,,(10%) = 3 x % log, 410
=3 X %-x 1=1.
(0) logy, ¥110.25 = Flog, ,(5° x 72 x 32 x .o1)
= Flogy (5 x 7 x 3 X .1)°

._T-.....e 10510(5 X7 X3 X .1)

- %(0.6990 + 0.8451 + 0.4771 - 1)

- &(1.0212) = 0.6808.

5. Shaded area 1s log x y
by definition. Shaded ‘///’
area 1s greater than
smaller rectangle and smaller
than the larger. Area
of smaller rectangle is
(x - 1) x {y at x)

k
Y=

k
or (x - 1)(3) . s
or 51521—11 . Area of

larger rectangle is (x - 1) x (y at x = 1) or
(x - 1)(%) or k(x - 1). Thus, Eﬁiiz_ll < log x < k(x - 1)
where k > 0, x> 1. For 0 << Xx <

the negatlve of the area under Yy =
Thus the identity continues to hold.

log x 18 defined as

1,
% between x and 1.

[page 473]
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9-3. Properties of log x

This section contains statements and proofs of all the
fundamental properties of the function defined by y = log x.
These proofs follow from the basic formula log ab = log a + log b
whlch was established in Section 9-2,

It 1s possible to take the four basic properties listed in
Section 9-2 as postulates and to derive the entire theory of
logarithms and exponents from them. Thus Sections 9-1 and 9-2
serve merely to prove the existence of the logarithm function
which has these four properties. It should be emphaslzed once
more that the proofs of these properties cannot be made to depend
on the laws of exponents, because exponents have not so far even
been defined except for positive integers. (Later in Section 5
integral exponents are introduced.) No connection what ever has

been established between exponents and logarithms. This connection .

1s established for the first time in Section 9-8, where the complete

theory of exponents appears.

Exercises 9-3. (Solutions)

1. (a) 1og, ; = log; 5 - log),7 = 0.6990 - 0.8451 = -0.1461

(v) 1og10(u X 7.5) = logy ol + logy 7.5 = 0.6021 + 0.8751

14772

(c) log (g x 17) = log) ol - log) 4 + log, 17
: =0 - 0.6021 + 1.2304% = 0.6283
or 10g1025 + 10g10.01 + 1031017
= 1.3979 - 2 + 1.230% = 0.6283
(d) 1og101°5°?§58°5° 10g) (1.50 + 10g)(3.50) - log, 2.50
| 0.1761 + 0.5441 - 0.3979 = 0.3223
(e) 1og10(13)6 =6 logy 513 = 6(1.1139) = 6.683k

[pages 474-480]
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(£) logyy(—2=) =

1 1
= - & log;;13 = 0.6990 - %(1.1139)

[
)
o}

1]
=t
(@]

w

= 0.6990 - 0.557C = 0.1420
(2.5)3 (3.5)° _
vT

1
(g) 1logy 4 3 logyn2.5 + 5 10gy53.5 - 7 1og, o7

— 3(0.3979; + 5(0.5441) - 3(0.8451)
= 3.4916
(n) log,,( ¥ )4 - Wz loz-,12) =-—§.(1.o792) = 1.4389

5 —3
(1) logy, /3°5)4§ (5.50° _ (2 log, ;3.5 +3 108, (5.5 - 108, o45)

= 2[2(0.5441) +3(0.7h0k) - 1.6532]
= %[1.0.882+ 2.2212 - 1.6532]
~ 5(1.6562) = 0.8281

| o , .
(3) 1oglo(—%]—7) - - log T T = -3 logy 7 = - 5(0.8451)

= -0.2817
Note: 1log %/"'= %;lcg'T‘ by (9-3f) by setting p =1

(k) log,,(3% + 4%) = log4(9 + 16) = log; 25 = 1.3979

- 3 4 1
(1) 1°310'?3_}T_ = = imgy3° VT = -(3 logy 3+ 1ogy7)

= -[3(0.4771) + 3(0.8451)]
= -[1.4313 + 0.2113] = -1.6426

. 1 1 1
(m) Tog)g—x——3 = B Erar = 80 I
= -:.3&1035 = —1.51“4-1

2. (Shown in text.)

490
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_ 2.50 x 18.00

3. let x 50

Then log,,x = 10g;42.50 + log1018.00 - logloh.SO

= 0.3979 + 1.2553 - 0.6532
= 1.0000 ,
. x = 10,
L"o N = _‘—_315 x_8 )
logyoN = log,,15 + 103108 - logyo3 = 1.1761 + 0.9031 -~ 0.4771

1.6021,

N = 40,
5. (a) log PQR = log P + log Q + log R.

3 2
(v) logﬂ—@L=logP+-§logQ-logR.

(c) 1og;29§3--1ogQ-2logP-3logR.
or log @ -~ (2 log P + 3 log R).

(d) 1og~----"§"’2 = %(log P + log Q) - log R.

(e) 1log -RQ-' = %(log P + log Q - log R).

2
(£f) 1log 3-25-9'-=%'-(210gP+10gQ-510gR).
R

(g) log k: - log P/ Q = -(log P + % log Q).

P

(h) log %,\/%-3- = ~log 2 + log,\/—ﬁ'-s- = -log 2 + %(log Q -~ 3 log R).

41
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6. (a) logyox = 3 1og, o7

loglox = loglo"{3

3

x=7 =3L|-3

(v) 1og) g% + log, 13 = log10182

logy oX = log10182 - log,,13
18
= loglo —Is-e
X =14

(e¢) 2 log,,X - log, 47 = log, 4112
2 loglox = loglolla + loglo7
log, X = %( log,, 112 X 7)
= loglo W
= log, /42 x 72
= loglo b %7

= log1028
x =28
(a) loglo(x -2) + log,,5 = 2

1oglo(x -2) =2 - log, 45
= 1og10100 - 1og105
1
= logy, 52
= logloeo
X -2=20
X = 22
42
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(£)

(g)

(a)

579
log, X + loglo(x +3) =1

log, opx(x + 3) = log,,10

. x(x +3) =10 .
x2+ 3% 10 = 0
(x+ 5)(x~-2) =0
X ==5 or x =2

Since 1log x 1s defined for x > O, the solution 1s
limited to x = 2.

% logy X = —1031064
1 1
3 10g) X = logy4 BT
1
logyox = 2 1084 BF
1,2
log)ox = log,(7y)
. 1,2 1
e x = (g = e

log,o(x - 2) + logyy(x + 3) = log, Lk

logol(x ~ 2) - (x + 3)] = log,,14

. (x - 2)(x+ 3) = 14
x° +x - 6=14
x> +x-20=0
(x+5)(x-4) =0

x = 4 (See comment in (e) above.)

log, oV = log104 + log T + 3 logyar - log, 33

<
it {
"{ =
[e)
15
}_l
o

43
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_ 1
(v) log, P = 7 log,t + 5 1og,,8
1
= §(1°glot + 1oglog)

1
7 1og;ote

= 1og10 vtg
P = Jtg
. . - v
(c) 1og, oS ='§[1°8108'*1°310(s -a)-+loglo(8-b)4-10810(5-‘0)]

= %[loglos(s -a)(s - b)(s - ¢)]

= log, vs(s - a)(s - b)(s - ¢)

. «/s(s-a)(s—b)(S-c)
8. (a) q«/ = ( Y=a)P

Proof':
a/p _ 1 p
(1) 10g aP = 3 1og a (9-3f)
(2) 1og .YaP = -é—(p log a) (9-3e)
- p
o 5 10€ 2
(3) 1og( Ya)P= % log a (9-3f)
(4) log IaP = 10g( ¥a)P (2) and (3)
(5) JaP = ( Y=)P (9-3h)
(v) Y = Ym
Proof
(1) 10g “Ya" - BlTi log a® ) ' (9-3r)
(2)~ log n\‘}' al = --(n log a) (9-~3e)
= -ﬁa— log a
= zloga
[page 482]
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(3) 1og Y& =.c11_1oga (9-3f)
(1) 1og "Ya® = log Uz (2) and (3)
(5) "4/" = Y= (9-3h)
9. (a) log FE
x + 3
(b) logyg X —3
t1¥
() 1080 55
8
(d) 1logy, x_
3/y2
N
(e) log,,2x -(%)3 = log,, 253
4 n
(x - 2) ~§/x‘
(£) 1log,, X
, : »3x°
*10, Properties of log x which s04 ,///,y
are also true for "lug" x:

lug x = 0 when x =1 40

lug x > 0 when x > 1 304

lug x < 0 when x < 1.
However, Property 9-~3b 1is
not true for "lug" x; i.e., 10+
lug ab # lug a + lug b. ]
This can be shown by making X -
comparison tables as was ‘done for log x 1in Tables 9-2b
and 9-2¢, using a =2 and b = 3:

20 lug.x

I 2 345

45
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y /
Rectangle Base Altitude Area
1 1 3x® =27 27
2 1 48 18 y=3x°
3 1 75 75
h 1 108 108
| 2 34 5 6 %
a ab
Rectangle Base Altitude Area
1 27 27 '
1 ) T B y
2 % 12 6
y=3x*
1 5 7
3 3 7 Iz
i 1 o 27
3 Tz 1 1 R
I 2 3 4 5 ¢ X
b

Since, in this example, the approximate area from a to ab
is not equal to the apmroximate area from 1 to b, we can
see that 1lug ab # Jlug a + lug b.

Since (9-3b) is not true for "lug" x, it follows that
9-3c, 3d, 3e and 3f are also not true. Properties 9-3g,
3h, 31 are true for "lug" x, however. : '

9-4. The Graph of ¥y = log x.

This section does not present any new properties of
¥y = log Xx. It relates the properties of vy =“log X which were
established in Section 9-3 to the graph of y = log x. The dis-
cussion emphasizes two lmportant properties of y = log x. The
iogarithm function 1s a monotonically increasing function. The
term "monotonically increasing" is not used in the chapter; it
1s stated instead tﬁat "y increéses as {x increases on the
graph of ¥y = log x". This property should be stressed because
[pages 483-485]
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it has an important consequence; a monotonically increasing
function has an inverse function. It will be shown in Section 9-8
that vy ='logax has an inverse function; the inverse function of
Yy = logax is the exponential function y = a¥.
The logarithm function has a second important property; its
" graph is a continuous curve. The study of continuous functions
is an advanced topic in mathematics, .and its study should not be
undertaken in the eleventh grade. The fact that the graph of
¥y = log X 18 continuous should be explalined intuitively; the

graph has no gaps or breaks in it.

Exercises 9-4. - Answers

1. (a) A1l that is asked for is that the student identify ane
point. Dne moint which satizsfies the condition thai:
its ordizate be greater than 100 1is (10101,101).
To £ind ‘the coordinates of all points whose
ordinates are greater than 100 1t is necessary to
determin= 31l values of X which satisfy the inequality;

loglox > 100.
Since loglolo =1,
and 1og1010n = n log,,10 = n,

it can be seen that
100

1081019 = 100.
Therefore, x must satisfy the inequality
100
loglox > loglolo s
or x> 10100.

47
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()

(c)

All that is asked for is that the student identify one
point. One point which satisfiles the condition that
its ordinate be less than -5 is (0.000001,-6).

To find the coordinates of all points whose
ordinates are less than -5 1t is necessary to determine
all values of x which satisfy the inequality

loglox < -5.

N 1__ = -
Sinze logm ISH = -n loglolo = -n,

it can be seen that

1l
log = =5,
10 195
Thus, X must satisfy the inemguality
1
log, X < log,n —=
10 | 10 162

or
X < 0.00001.

But log,,Xx is undefined for x < O.
Therefore X must satisfy the inequality
0 < x < 0.00001.

All that is asked for i1s that the student ldentify one
point. One point which satisfies the condition that its
ordinate be greater than 1 and less than 2 1s
(11,1.0414). (See Table 8~1n for other possibilities.)

To find the coordinates of all points whose
ordinates are greater than 1 and less than 2, 1t is
necessary to determine all values of x which satisfy
the lnequallty

1< log, % < 2.

But 1log;yl0 = 1, and log,,10° = 2.
Therefore X must satisfy the inequality
2
loglolo < loglox < loglolo ’

or
10 < x < 100.

[page 486]
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585
Draw a graph of y = loglox such as appears in the

accompanying figure. Then draw the graph of the line

¥y = .5. Measure the abscissa of the point at which the
straight line crosses the zurve. This abscissa 1s the
value of x which satisfies the equation log10 = .5;

The graph shows that this value of x 18 approximately
3. From Table 8-1 we see that 1ogy 3 = JA771 5, -

J) Follow the procedure outlined for Exercise 2(a)
above.

49
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(a)

(b)

(a)

()
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y = logtx is a function which passes through the point

(t,1). The value of k 1in the equation of the hyperbola
. 1l .,

which yilelds this function is TwE ¢

y = log x =k 1In x (9-1)
1=11nt '
K = 1
“Int
lugttn =n log,t for n a positive integer (9-3e)
loggt =1
logttn =n-1 definition
=n

y = log X passes through the point (t,s).
Thus, 8 = log t

log t" = n log t (9-3e)
log t" = n(s)
y = log x = k 1n x (9-1)
k=%

For the graph to pass through the point (t,s)
)

k = ™

The line ¥y = T crosses the graph of y = loglox in exactly
one point by (9-i4f).

Since 3T < 3%

log 1000 < loglox < log 1000./10

1000 < x < 1000 +/10 .

51
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(0,0)

9-le:

9-4qd:

(1)

On the graph of y = E(x) the ordinate ¥
always increases as the abscissa x increases.

The graph of ¥y = E(x) crosses the y-axis at
y =1 and at no other point.

The gfaph of y = E(x) 1is a continuous
curve.

As x 1increases without 1limit, y decreases
toward zero as a limit,
True:
log x E(x)
Domain positive reals all reals
Range all realsé/’//§*<::positive reals.
True: ‘

The line y = x reflects the point (a,b) into
the point (b,a) and the point (b,a) into the
point (a,b). (See graph). .

52
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9-5. Tables of Common Logarithms: Interpolaﬁion

The subject matter of this sectilion is thoroughly familiar
to eleventh grade teachers, and it does not seem necessary to add
Ny detailed comments. One comment will be made about inter-
polation, however. 1In an earlier chapter of this book, the
equation of the straight line through two glven points has been
derived. Interpolation is explained in the usual way first by
means of similar triangles. Then 1t 1s explained that 1nterpolation
can be carried out quite simply by means of the equation of a
stralght line through two points on the graph of ¥y =.log x. This
explanaﬁion of interpolation cannot be presented if the course has
not 1ncluded the equation of the line through two points,

Of the two treatments of interpolation, the one which uses
the equation of the straight line through two points on the curve
1s to be preferred on mathematical grounds. There are other types
of 1nterpblation; for example, it 1s possible to approximate the
graph of y = log x by the parabola through three points on the
graph. In general, the graph of ¥y = log x can be approximated
by the graph of a polynomial of degree n.

For ease in the use of tables, the student will probably wish
t0 learn the usual rules for interpolation. It 1is not the purpose
of this chapter, however, to develop skillful computers with
logarithms. The primary emphasis has been placed on an understand-
ing of the mathematics. For this reason also the negative
characteristics of logarithms are not written in the form that
employs -10.

ItIW1ll be noted that the pupll's previous work on integral
exponents (zero and negative exponents) is briefly reviewed in
this section. This 1s done for the purpose of giving the rule
for finding the characteristic of the common logarithm of a number
a much simpler form than it would have if only positive integral
powers of 10 were avallable.

03
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Exercises 9-5a. - Answers
Characteristic Mantissa

1. 3 ) .8383

2. 0 .5332

3. -1 . .5569

b, -3 . 7864

5. -5 .0000

6. -2 .6834

7. 4 . 4605

8. -3 .2009

g. -1 L9074
10. -2 L6667
11. -2 .6153
12. 0 $7719
13. Yes: log;ya =n+ m where n 1s an integer and

0{m<1l., For O=n+m, m=-n which 1s an integer
since n 1is an integer. If m 1s an integer, i1t must be O.

b, (a) Let logna = np + My where n,, n, are 1nt§gers
and loglob n, + my and m, = my, = m.

Then log,,a -.loglob = (ny + m) - (n, + m) =n; - n,.

Since the integers are closed under subtraction,
n, - np, and thus, logloa - loglob, is an integer.

54
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(b) Let loglob =n, +m n, and n, are integers,

n, + m, 0<m <1 and 0 ¢ my, < 1.

logloa
We know that

(1) log)gb - 10g,4a = ng where n; is

* int .
(11) .o (nl + ml) —(n2 + m2) = n, an integer
(iii) ml - m2 = n3 - nl + n2.

The right member of (1ii) is an integer because
the system of integers i1s closed under addition
and subtraction.

(iv) By hypothesis (a) 0 S'ml <1
and (b) o0 <my < 1.
If we multiply all terms of (iv) (b) by -1
we obtain
(v) -1 < -m, < O.
Adding (iv) (a) and (v) we can write
(vi) -1 <m -m, < 1.
Therefore m, - m, is an integer between -1 and
+1. Hence

(vii) m -m, =0 or m =m,.

Exercise 9-5b. - Answers

1. (a) 1 (£) -8
(b) 5 | (g) 6
(¢) O (h) o
(@) -1 (1) -4
(e) -5 () 6
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2. (a) 771130. (d) 0.0000005331
(v) 6.3192 ) (e) 290.03
(¢) 0.002083

3. Let N be a number in decimal form and let k be the number

' of diglts between the decimal point in the decimal repre-
sentation of N and the standard positlon of the decimal
point as described in this exercise. Then the characteristic
of logloN is k or -k according as the decimal point 1in
the decimal representation of N 1s to the right or left of
the standard position. (Note that k can be zero.)

4, (a) 5 . (e) -3
(b) -3 . (£) 3
(¢) -3 (g) o
(d) -7

Exercises 9-5c.- Answers

1. (a) 2+ .5340 (1) -3 + .8351
(b) 1+ .5843 (3) 5+ .8657
(¢) -1 + .8663 (k) 3+ .9754
(a) -2 + .9754 (1) 1+ .8645
(e) 4 + .TT01 (m) -4 + .8156
(f)_ 1 + .330% (n) o0 + .8854
(g) 2+ .5428 (o) O+ .9355

(h) -1+ .7396

56
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2. (a)
(b)
(c)
(a)
(e)
(£)
3. (a)
(b)
(c)
(d)
(e)
k., (a)
(p)
(c)
(a)

(e)

]
o
+ + + + + o+

277.0
277.0

.8352
9770 -
.7962
.8650
4340
.2167

0.06720

0.001920

46,200.

282.2
.8234

: 13’5500

215,200

.02984

(8)
(h)
(1)
(J)
(k)
(1)
(£)
(8)
(h)
(1)
(3)
(£)
(8)
(h)
(1)
(3)

5. To be done on graph paper.
Draw graph of y = loglox. (ﬁéé a four place table.)

593

1 + .5881

5+ .6950 or 5.6951
-2 + .7693

=4 + .79v0

8 + .8969

O + .9339

2.25

17.1

.00483

0.0005100

5170.
0.003352

NoLye!
70.58

L4294

2679

9-6. Computation with Common Logarithms.

This section is also thoroughly familiar to eleventh grade
teachers. The procedures involved in computation with logarithms
are explained through a series of examples.

57 .
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Exercises 9-6. - Answers

1., 39.84 A - 13. 0.4199
2. 12.35 14, 0.2615
3. 0.3880 15. 321.0 .
4, 1,505,000 16. 0.9818
5. 0.03156 | 17. 0.09563
6. 3.67 x 107 | 18. 0.9338
7. 17.31 19. 11.97
8. 3.125 x 1072 20. 39,420
9. 6.493 x 1072 21. 705.1
10. 1,451,000 22. 0.02559
11. 0.2888 23. 135.7
12. 5.319 ok, (a) 2.421
(b) 0.028
(¢) 2.793

9-7. Logarithms with an Arbitrary Base.

This section introduces what is usually called a logarithm
with a base. In the usual treatment Of logarithms this 1s done
via the exponential function; e.g., "“the logarithm of N base a
is that exponent x such that a* = N". However, in our present
treatment we do not know about the exponential function - indeed -

- we can only know about it via the logarithm functlions. Of course,
one could arrive at something which actually turns out to be the
logarithm function with base a, if we determine that value of k
such that thé log function determined by that k (namely that
logarithm function which is assoclated with the area under y = %)
has the property that log a = 1. However, in this way it is
clear that a must be greater than one - so that only bases
greater than one are obtainable. Nevertheless, there is an easy

[pages 508-510]
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way out. It has already been observed that the logarithm
function determined by the positive number k satisfies

log x = k 1n x,
where 1ln x 1s the natural logarithm of x (k = l). From this
it 1s imme:’iately evident that the ratio of the logarithms (with
the same kL) of two positive numbers x and a # 1 does not
depend on k; 1l.e., '

log x _ kn x
loga  1In a°

depends only on x and a and it 1s this

log x
log a

ratio thaf we call logax. I{ certainly has the property that, if

Thus the ratio

n 1s an integer, logaxn =1 logax and logaa = 1, Moreover, it
satisfies the fundamental Equation (8.2) that
logaxlx2 = logaxl + logaxz.

Furthermore, it has all the graphical properties of y = log x.
Indeed, the graphs of y = logax are obtailnable just by multiply-

ing the ordinate for log x by the constant Note that it

—L
log a°
makes no difference what logarithm function 1s taken, for the
multiplying constant 1s adjusted to the particular logarithm
functlon used. Since loga < 0 1f 0 < a <1 the monotonicity
properties of the graph are the reverse of those of the graph of
y = log x.

The fact, which 1s of prime importance for the definition of
the‘exponential functions, that the equation logax =8 has a

upique positive solution ior each real s, follows from the same
property for the natural or common logarithm function. The solu-
tion of logax = 8 1s the same as that of 1n x = s 1ln a.

Finally, it 1s to be remembered that this section is not
designed for the usual drill on "change of base"; it is merely a
backgiround which provided an economical means fdr defining the
exponential function in the next section.
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~Exerclses

1.

(a)

9-Ta. - Answers
2
_log 81 log 9 2 log 9 _
logg8l = 1535~ = Tob 5~ = “Tom g - 2
1
1 log
to L_XBT "% 15592  p10g 0 _
832 T = Tcg 32 log 22  log 2° 5 log 2 ~
_log 32 log?2?  S51log2_ 5
logl 32 = o T N - = - e D~ "%
T g1 og :
or, by use of 9-Te on Problem (b)
1
1og132=l I=%="%
¥ °632 T -3
1
1 log
log 1_l°g§'= FB—E log 372 .2 log 3 _
27 -g IOg 2; 1og‘?3ﬁ3— log 33 3 log 3
2
9 log% log (%) 2 log% 2 log %
logz‘lr —lo lo 2 B lo 2~ -lo 3
3 &3 &3 &3 &3
1 log (8)° 3 1og (2
. 8 °g 5y log (3) 3 log (3) 5
€1.5 27 = Tog 1.5 log 3 -log (g)-‘ N
_log 1 o _
lOgvrl T log T log w 0
1
108 155 10 -2
_ _log 107° _ -2 log 10 _ _
log100.01 ~ Tog 10 T log 10 og B 2
3 .
log 8=1032=3logz=3=6
vz 1" 190¢ 2 T
log o2 2 2
- 5 5 .
Log, (+/7)5 = Lo J7)° _ log 7= 5 log 7 5
Eyg log &9 log 7’2 2 log 1 ~ 2
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() log5 = %, %g—g—-g = —é-, log b = 2 log 5;
log b = log 52; b = 52 =, 25
. o
. log 9 _ _. _log 3= 2 log 3 _ 2
(b) logy9 = x5 oE57 = x5 x_;_z.?_ﬂag.g_g
1
p 1 1 1
fa) loggN = 3; T%g—g =5; log N = % log 9 = log 9§;
log N = log 3; N =23
{d) 1log N=-4; 208N _ 4. 10 N= -4 log /5;
V'5 1og V5
i
log N = log 5—? = log 5"2 = log glg'
N = 3=
, log 64 log 43 3 log U -
(e} 1log, 64 = x; =x; x ==& = ;
%—;— log § log 4~ TTB%T
X = -3
(£) 10g9v3T =5 LEI¥T .5 10gp - 1089V,
1 51 1
log b = —]5‘- log 32- 3§ = log (3-2.)3 = log 3§;
b= V3.
(g) log; N = -0.75; log N _ %; log N = - % log 2'45
'1—6 log-l-a
log N = log(2-u)- ¥ log 23
- N =28
61
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(b)

log '
27 . 8 _ 3. _2 27,
log, g = 1.5 15 =% log b = x log g5
2
3 2
log b = los[(%)'ig = 1og(3)
b= 3

108,517 1 .2304
logzl7 = 1553~ = 0.577L

€10
log 1.2304 = 1.0899 - 1
log O.4771 = .6786 - 1
log $:59¢ = 0.4113
logylT = %f%%%% = 2.579

log, ~200
_ 29810°°Y  2.3010
lo S7200 = —Wlolr— =

log 2.3010 = 1.3619 - 1

log 0.8451 = 0.9270 - 1

- 2.3010

log m = 0.4349

. _ 2.3010 _ :

;Og7200 = m = 2.722

lom. 10 = 2810%° 1 B S B

©€0.4™" ~ Tog,,0.% ~ 0.6021 - 1 ~ -0.3979 0.3979
" log 0.3979 = 0.5998 - 1

log 57§§7§ =0 - (0.5998 - 1) = 0.4002

log, 10 = ’(67%§7§) = -2.513

62
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log,45
(@) 208,55 - 10202, - 9:6000
log 0.6990 = 0.8445 - 1
log 1.1139 = 0.0469
0.6990 _ _
lOgT.—ﬁ—é——O.7976 1
log135 = %—g%%g 0.6274 or approx. 0.627
log o10 3
(¢) 108510 = 1557 = 573010
1og.6T§5T6 -~ 0 - log 0.3010 = 0 - (0.4786 - 1)

1 - 0.4786 = 0.5214

: 1 _
log210 = 53010 ~ 3.322

108)50-086 ¢ g3y5 - 2 _ -l. 0655 1. o6
log 1.0655 = 0.0277 =1.0277 - 1
log 0.6990 = 0.8445 - 1 = 0.8445 - 1
log %L%ggg = 0.1832
10g.0.086 = -(1 0655) = -1.525
- l = bad
4, (a) 10352 X log,5 = logg2 X I3§g§ =1 (9-Te)
() logg2 + logy 2 = logg2 - Iog52 =0 (9-7£)

63
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5. (a) loggx = 1.17

loglox 11

logy X = 1.17 log105

log 1.17 = 0.0682
= 1.17(0.6990) log 0.6990 = 0.8445 - 1
0.8445 - 1
logy oX = 0.8178 log 1.17(0.6990)= 0.9127 - 1
x = 6.573 1.17(0.6990)= 0.8178
(b) logy x = ~0.301
'5 .
— 1 togx = - 10T _ 4 301
- ogl X = = g5 = -]—-gél—og = .
5
loglox = 0.301 X loglo5
logy % = 0.301(0.6990) log 0.301 = 0.4786 - 1
log, ,x = 0.210k log 0.6990 = 0.8445 - 1
x = 1.623 log 0.301(0.6990)= 1.3231 - 2
= 0.3231 - 1
0.301(0.6990)= 0.2104
log 1
6. (a) log,l = I3§7§ | . (9-7b)
0
- Tog a
= 0

(v) log,a

log a | |
Too— (9-7b)
L |

64
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n
ny _ log a -
(¢) log,(a") = 3oB-2- (9-7b)
_nlog a
- og a
= n
log x:x
1l
(d) log, xx, = —IBE_E—E (9-7b)
_ log X, + log Xy
- log a
_ log Xq . log x2
- log a log a
= logaxl + logax2
Glven: long =8, find long.
logxb =t
log N
logN = 3325 (9-70)
- log N - -
s = T5px °F log N = 8 log x (9-7p)
= dogh = -
t = Togx ©F log b = t log x (9~7b)
8 log X S
long = o8 % or long_= E
N|1|2| 3 |ul s | 6 | 7 |8|j-| 10
'1052N 01 }1.5904| 2 [2.330 | 2.5904{ 2.818] 3 |3.1809 3.330
log. AN log. N
107 _ 10
1ogN = 1og, 2 = 0.3010

65
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9. Let logyx be the logarithm function determined by the area
under the hyperbola y = 5. Then

X
(1) log,x = 5 1n x (9-1)
(11) logyx = 5 logX | (9-Te)
Let x =b in (1i)
1
(111) 1 =5 log,d or logb =% (9-Th)
(1v) b = ?/Te" ‘ (9-3f and 9-3h)

10. The proof is the same as for Exercise 9, except that
we write k for 5.
11. The second equation
logbx = 8 logba is equivalent tothelsgrit equation becausg
dividing each member by logya we have IEE%E = 8 where

in the left member is log x by (9-7d).

Exercises 9-7b. - Answers

1. y = l°g~/T6 b4 3

l°g~/f6 x =k 1In x L]
=k log_x
e
1

<

P 7
_ log fig % _ longlO | .
- B 1

1ogex

N

logxe N

x

log e - 10g10e - [
log +/10 1°310*/1° B N
10g102.718 , AN s

z—l_————_- [ - 144
5 loglolo

]

Ty
V4
N
1
1
H
]
(&)
: |
o0
!
-
}
@
I
©
1
2

.
i

014343
04343

2

~ 0.87 66'
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each ordinate of y = log~/be will be approximately
0.87 times that of ¥ = 1ln x as shown in Figure 9-11,

To plot y = log 1 X, we make use of (9-7f£):

/10
log~/ia X = -log 1 X and reflect y = 1°g~fT6 x about the
JI0
x-axis.
log X = lQEL£H - (9-Tb)
a log &
log X
log X = __T&___ n a natural no. (9-3e)
o n log a
log X = (%) logax (9-7b)
a

(a) If 1<a then G < log a.

~

If a<b then log a < log b. Dividing both
members of this last lnequality by the positive number
log a we obtain:

b

1o
1< o6 & or 1K 1ogab.

(b) I O0<a<l thenby a< O and the division
performed in (a) has the effect of reversing the
inequality sign 1s ‘

log b
1> Tog & or logab < 1.

67
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4. (1) log,x = %gg{g

If a>1l, loga>0 (9-3a)
If x<1, logx<O (9-3a)
log X
logax = Tog 2 <0
If a>1l, loga>0 (9-3a) .
If x>1, logx>0 (9-3a) ’
log x
log x = oF & >0
(11) If a< 1, loga<o (9-3a)
If x<1, logx<O (9-3a)
. _log x
. logax = Tog a >0
If a<l, loga<?o (9-3a)
If x>1, logx>0 (9-3a)
_log x
logax = 1og a <O
log X
(111) log, Xy = Tog o
log Xo -
log, %5 = 1555
If a>1l, loga>0 . (9-3a)
x, < X, iff, log x, <. log x (9-3g) ("iff" denotes .
1~7e ’ 1 2 if'and only 1£%.)

log x4 log X5

x1,< x2 irfe, Division of inequall-
ties by a constant

> 0 does not alter

the order of inequal-

ity.

log a log a

Xy f x, 1ff, log, xy < log, X, (9-7p)

[page 519]
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(iv) If a<l1l, loga<o (9-3a)

x, < %X, iff, log x; < log x, (9-3g and 9-3g!')
log X, log Xo

x, <x, 1iff, . Division of inequali-
ties by a constant
< O reverses the

order of inequality.

log a > log a

X, < x, 1iff, log, x; > log X, ' (3-7Dp)
5. (a) Consider the case when x > 1:
XxX>1l—>logx>0 ' (9-3a)
l1<a<b—>»0< logac<logh (9-3g)
log a log b
O<E'§'—x<ro'§—x 'If ¢ <d and

0
e > 0 then
c d
0<'€<-é-.
0
1

< c¢c <d then

1
>4
ivg,x > logyx (Definition 9-7b)
(b) Consider the case when 0 < x < 1:
0<x<1l->1logx<0 (9-3a)
l1<a<b—>»0< logac<logh (9-3g)
o>i0&a ., loghd | If 0<c<d and

og x log x
e < then

0

0

c d
0>%2> %
log x log X
Tog a < Tog ® ff 8

¢ <3

log,x < log,x (Definition 9-7b)

>c¢c >d then

69
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9-8. Exponential Functions - Laws of Exponents.

The notion of inverse function learned in Chapter 3 1s to be
put to an important use in thils section.

The central ldea on which this sectlion rests is the statement:
The equation log x = s has a unique positive solution for each
real number s. Since 1t is this solution which is to be used in
the definition of as, we try to motivate this notation by
temporarily giving the solution x a notatlon: Ea(s). This
notation also emphaslizes the functional character of Ea‘ Immedi-~
ately 1t 1is verified that for integral n Ea(n), l.e., the
positive solution of logax =n, 1s precisely al. A word of
caution: a® 1s about to be defined and has no meaning at all at
this point if s 1s not an integer; however, al is an old
friend when n 1s an Integer, 1.e., a’ = a-a ce.a for n > 0,
gm=—— for n<0, and 1 for n=0. Indeed it is this
fact that Ea(n) = a® that leads to define the symbol a° as

E_(s). This should be made clear. The only meaning that 2" 2
has 1s that it is that positive number whose logarithm with base

2 1s /2. Summing up, we are using an old symbol in a new
setting with the necessary provision that 1t agrees with its old
meaning wherever the o0ld meaning 1s applicable.

It may happen that some students might have studied rational
exponents before this - but it is extremely doubtful that they
ever proved the laws of exponents for rational exponents. What

they probably know 1s that Q/ a, a >» 0, 4 a natural number, is
that unique real number x such that x% = a. Indeed, this was

mentioned and used in Section 3. In thils section 1t is shown that
1

a9 defined as the poslitive root of logax = % 1s the same as
%/ a. Hence our new meaning of as is also consistent here.

70
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The remainder of the section is devoted to a straightforward
proof of the laws of exponents for our newly defined exponential
function. Incidentally, these proofs also take care of the case
of integral exponents when the base is positive. There is a

- 8lightly inelegant feature that a® must be given a separate
definition when a = 1, since 1 cannot be the base of a

logarithm system. But this should cause no trouble. Remember
]

0 or b° where b < 0 are not defined,
Exercises 9-8a. - Answers
1. (a) 53 is the unique solution of the equation,
logex = 3 (Definition 9-8a)
log, ~x
10
= -Th
W 3 (9-7b)
log)ox = 3 log,,5 = 3(0.699)
= 2.097
'é' x = 125 (9-Tk)
(b) dﬁ is the unique solution of the equation, .
log,x = % (Definition 9-8a)
log, X
10" _ 3 -
IBEISE =% (9-7b)
3 L3 2 _
loglox =35 log10 b =5 log102 = 3 log102
= 3(.301) = .903
x =28 (9-Tk)

71
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(c) logyx = - % (Definition 9-8a)
loglox 3
log g% = - & log,oh = -.9030 = .0970 - 1
x = .125 (9-Tk)
or, making use of preceding exercise
logyox = =-.9030
log, & = -9030 (9-3c)
1 -
3= 8 (9-7k)
or x=¢g=.125 e
(a) 1log gX = -3 (Definition)
log.AX
10
= - -Tb
Tog, ;T8 3 (9-70)
log ox = -3 108y4l.5 = -3(.1761)
= .5283 = 4717 - 1
x = 0.2963

(e) log) X = 2.4163
x = 260.8

(£) logy % = 0.2718 - 3
x = 0.00187

(g) logpx = -2.,1871 = 0.8129 -~ 3
x = 0.0065

1. 4444 = 0.5556 - 2
T2

[page 526]
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(h) logyyx
0.3594

"
]




4,1623

(1) log, 410 = 14,1623 (é—Bg)
(J) loz_r,-{'lz')+3 = 2.43
(k) 78008 s ‘ o (ei8p) -
(1) 5 B 510g532 (9-711)
=3%=9 (9-8¢)

2. " (a) 1log 3%°7% = 1.72 1og 3
1.72(0.4771)

= 0.8206

3172 _ 6.616
(b) 1.945 (j) 8.037
(¢) 2.664 - (k) 25.95
(a) .06415 (1) .8984
(e) 4.727 (m) 1385.
(£) 3.322 - (n) 34.68
(g) 16.27 (o) .3802
(h) o0.211% (p) .03928
(1) 1.632

73
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The functions

E3(x) = 3% and
logax are inverses
of each other.
Therefore, we can
obtain the graph

Yy = 3x by first
graphing y = logax

and then reflecting
this graph in the
line y = x. That
is, y = 3* and

y = logax are re-
lated by symmetry
with respect to

¥y = X. The table
for y = logax
follows:

—-—

=log

x| | 3] 3[a]a]o]e

y 1 -3 | -2 | 1o | 1 | 2| 3

From the graph, 3+''~ 8 and log,1.7 % 0.5.

T4
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3.
xxxxxx

‘4.  The graph for N R
¥ = Log 5 x B :

has been plotted
before in

meree Exepoises”9-Tb, |

o Pfoblem 1. To ‘ s
obtain the in- n r.aRr.an y= /o
verse, y =+10 X, :
reflect this graph
in the line y = x. ;

e

[ty

5. (a) The graph for
y=1log ; X

—

/1o ERREN
has been plotted .
before in A <A\ y=
Exercises 9-Tb, : /TG
Problem 1. To o N
obtain the in- 1T

verse, )
y = (" : 1Y

= s ,
reflect this

graph in the

dri

T

line y = X.

75

[page 527]




612

The graph for

) p.s
y= (& can EEees
)

be obtained
from the table
for y = log,x y=log x 1

constructed in 9
Exercises 9-Ta, , ]
Problem 8 and
making use of
(9-7£), u
logl x = -log x, y=|ogi_x
a ! T
to establish a
new table for

log1 X as
2
follows:

x Jal el 3 | |l 5 | 6 | 7|8

log, X l ) ' -1 ’ -1.59 ’ -2 l -2.33 l ~2.59 | -2.8 | -3
2

x
The graph for y = (%) is then obtained by re-

flecting' Yy = log1 X in the line y = x. The graph of
2
its inverse 1s precisely the graph of y = log1 x which
: K
was plotted.
The figure drawn shows a slight variation. The graph
for y = logzx was plotted, reflected in ¥y = 0, then

reflected in y = x. (The two reflections may be
accomplished by a single 90o rotation.)

70
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6. When C; 1s reflected in the line x =0, ¥ = (%)—x = a*.

So f‘2 is y=ax. ‘f3 :Ls x = a¥ which 1s precisely

y=logax.
Exercises 9-8b. - Answers S
1. (a) 3 (k) 729
(b) 1 (1) V3
(c) -% (m) 1
(a) 27 (n) 23
(e) -22‘7- (o) 25
(r) 28 (p) 125
(g) 0.3 (q) 343
(h) 0.1 (r) 1225
(1) 32 (s) 1
() 2
. 3%y 2
2. (a) X (£) 7%
6
(v) 25 (8) 7L
2 _,° v2 - Xy + X°
) e "R
a) a’ (1) ____T_?xu
( 1 (1 + x%)
2
(e) (LF)

7 : I
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o cvd
(@) 11 3/ 11 (1) _géi_
.‘/ X
(e) 2/ a° *(J) JETT
4. (a) 0.00006554 (d) 0.001558 |
(v) 0.3249 (e} 1.950
(c¢) 2.37% (£) 0.06967
5. x°>=y% 1ff 1og x° = log y° (9-3h and 9-351)
| iff s logx =38 logy (9-3e)
iff log x = log y ‘
iff x=y" (9-3h and 9-3n')
6 (a) -1 (a) 6,-2
12 2 1
(b) —5-' or 2—5- (e) -3,-2-
c) -3,-1 (£) 1

(c)

(a) 2.3168

(b) o0.9242

(e) -9.32

(d) (x+2) log5=(x-2) log7

=

=
%

I
+
n

X - g5 "

+ 2 .84

:]x
]
]
olo
Ne/
ol

£1.138
[pages 538-539]
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(e) x log 1.03 = log 2.500

_ log 2.500 , o
x = og 1. ‘

x = 31.086
(£) 0,0 |
(g) 0,—’4
(n) 3,4
(1) -2 1

8. Let f£(x) =x° and g(x) = x>, x >0, 8 real.
1
Then flg(x)] = (x°)° = x (9-84)
1
5 .

and glf(x)] = (x°) = x (9-83)

.. flg(x)] = glf(x)] = x, hence £ and g are inverse

functions by the definition glven in Chapter 3.

- 3
The graph of y = X SRR NI va
1 : I X V.8
and y = ig are 4
symmetrical with I Hf m:
respect to the line T =saalin
y=Xxs

¥ = X as shown in
the drawing. &

[pages 539-540]
79




616

9. Direct application of Theorem 9-8b.

— oX IS R
0. (1) y-a Ty=a XTI To%
b'd /)
—— (2) v = blog bx /
- bx = a a . f W,
y
A
by (9-8n). . (1,4) A (2.4)
Hence,every 14 D4
abscissa of (1) P4 =
is logya ‘times = -
the corresponding ' 2 : .
abscissa of (2).
11, (a) x>0
a<hb Given
log a < log b (9-3h')
X loga <x logh
log a¥* < log pX
aX < b* " (9-3h)
(b) x =0
0]
a® =1 (9-87)
p° = 1 9-84)
a¥ - bx, for x =0
(c) x <O
From (a), loga < logb
X loga>x logh an inequality multiplied
by a negative number.
a® > v¥ (9-3h)

Let Xy and Xs be values of x for which curves (1)'
and (2) respectively have(the s?me ordinate ie, for which
x X X log_b)x
1 _ 2 1 _ a 2 . _
a~ =b Then a ~ = a A S (logab)xz._
We conclude that each abscissa of (1) is logab times
the corresponding abscissa of (2).

[page 540]
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| log (&)
12. (a) n ='10g X
1 a 1 u
(b) V=-b-ln-a’=— ln-é-
| log [1 -2 (2 -r)]
(¢) n= Tog r
(d) y=5%
(&) n = 1081{8-1,1%& vl
(£) 7,-6
(8) x=20,y=5 or x=5, y=20.
13. (a) 0,0 ' (b) 0.881
14, Let m = % my, ¢ =2 in the formula to get
moe'at = %-mo
o-2t _%
-2t Ine = -2t = 1n%—
1 1
t = - ? 1n '-é'
1
..? l
= 1n (%) = 1n 2°
= 0.346
15. (a) $3204
(b) 15.6 years
(e) 3.7%
81
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Miscellaneous Exerclses - Answers

1. (a) -3 (@) 2
(v) % {e) -%%
() 32 (£) -2
2. (a) x =14 (f£) x = -3
(0) x =5 (8) x =y
(¢) x=14 (h) x=5
(d) x=-1 (1) x = 36
() x=vT (3) x=-1
3 '(a) £ a>0,afl (@) 1
(b) x a>0,a#l () y=2a* and y = log,x
(¢) logax are lnverses
) (a) x =125 (d) x =100
(b) Xx =3 (e) X =2
(¢) x=9
b 1
5. (a) 3 (£) 75
Kk .
(b) SE | (g) 213
(c) =% . (n) LEx
(a) ﬁ-:—; (1) {ptaed . bed 4 acd
2 .2
(&) % (9 s
82
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6 (a) x = %%g-—l: (¢) x = alt
) x= &N
7. (a) x=¢ (d) x = -1
(b) x = -5 (e) x =175
(¢) x = -4 (£) x =%
8. (a) x = 1.6194 (h) x = 3.367
(b) x = 6.006 (1) x  0.ulT18
(¢) x = 0.5975 (3) x = -1.546
(d) x = 54.29 (k) x = 5.059
(e) x = 3.555 (1) x = -4.203
(f) x = 2.101 (m) x = -6.129
(g) x = 106.7 1
)
9. (a) x =12 (£) x=(&) -2
1
Y log A
(b) x = b2 (g) x = log 3%1 + r)
_ AP 1og,~ C
(c) x=a (h) x = 12 c op o %010810 _

. m
log 5
log r

log m - log a
“log

or

83
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2x

*¥10. y = 105102x and y = 10 are not inverses since substitution

of 102x for x in y = log102x does not yileld x:
vy = log]OQX
2x
v = loglOQ(lo ) # x.

Note also that y = 102(103102x) # x. In other words,
the functlon g defined by y = 102x is not the lnverse
of the function f defined by y = log102x because

fle(x)] # x.
Graphlcally, we can see . ;!jjAﬂ{:TLTTT'i “+ +
that these functions are 1 y'““y=|°g[" T ]
not inverses since the i:;i::ﬁ“""éﬁgtﬁg*” FEEEAT
point (1,.3010) which y .4
' O O B ) ™y X
lies on y = log102x is 1 -_"_ﬂl,mp,t[“_Mjﬁ_ |
o 0 0 T O 7
reflected by the line + ~ _((3moqnéf -
Y
¥ = x into the point M 1-log 2x1
™ . iy . ._‘ '_ JUNN Roug B S
(.3010,1) which does , \ -
- AN Y Elogx
not l1ie on y = 10°%, 0.1)- aiﬁﬁh'”'#**ﬁﬁ
Indeed, (.3010,4) 1lies { s - . >
on y = 10°%. FE A O T e

*ll.’"(a) Yes, a slide rule can be made. By placing the two

scales so that the addition of distances (representing
the approximate logs of the numbers to be multiplied} can
be done, the product 1s found (see property 9-7j). The
inverse process of division 1s done by subtraction of
segment lengths representing the approximate logs of
quotient and dilvisor.

(b) See p. 621

(¢) BSee p. 622

84
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1
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T

X
it tHlilet X = log x, Y = log ¥
! Then ¥ = 2

= R R R Y log y = 2 log x

& HE T 1t In other words, this is a

ot HHHH Hitlinear function in terms | A

ttof X and Y or 1logx L

O N4 © W O

T s —]

EEEpzanEas - + 2 Hrand  log y.

SERAES -1

5 n=s FE HATHH 4 "C H 41

HIAT gass H _E]:t : 1 1
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loglox y=x

]
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1
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.60 16
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Then Y = xk..-

his 1s a linear function in

-~ N =+ O WO
- ™

64
2
i

1

i
f

i

;.

Since

|

J
1
7

i
1l
|
|

log 2

X log 2

iis a constant,

let k

et ¥ = log y.

“log ¥

!
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Suggested Test Items

Part I: Multiple Choice.

Directions: Select the response which best completes the
statement or answers the question. Cross out
the letter of your cholice on the answer sheet.

1. The area of the shaded region can be obtalned by
evaluating the expression

(a) log,x R
(b) 1n x
(e) k(x - 1)

(d) k(x + 1)

(e) k(1 - x)

2. Based on the graph.at the right, which one of the
following is the best approximation for 1n 2°?

(a) -0.7 V"_

(b) -0.5 \ y o

(¢) 0.5 ik

(d) o.7 —!

(e) 1.0 = 1 T -
i | !

3. If the area of the reglon bounded by the curve = =
the x-axis, and the ordinates at x =1 and x = 10
is equal to 1, then the value of k 1is

(a) 1 (d) jﬁija y
(b) 2.3 (e) 10
(¢c) 1n 10
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b, Which of the followlng statements expresses a correct
relation between common logarithms and natural logarithms?

1
(a) logioX = T 1p 1n X

1
(b) 1n x = 1575 logy X

(¢) 1n x> logigx, %x >0
1

(d) T In x = logyyX

() 1n x - 1n 10 = log, 5%

5. If Ina=12.28 ¢nd 1In o = 1.4%4, then 1n a+/b equals

(a) 3.0 (d) 1.86
(b) 3.48 (e) 5.16
(¢c) 2.58

6. The value of log 410 1is

(a) © | (a) .4343
(b) 1 (e) 2.3
(¢) 10

7. Which one of the following does not describe a property
of log x? (Assume that m, n, r and s are positive
integers.)

(a) 1log %-: - log x (d) 1og ™/ x™ = log x.
(b) log x™ = n log x (e) 1log i/ x =~% log x

(¢) log (-x) =0

8. If log x = logm - 3 log n, then

() x=m - n3 (d) x=m - 3n
(b) X = fg (e) §'= %
(C) X=—£l'

3n 88




10.

11.

12.
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Which of the following is not equal to log §?

(a) -3 log 2 + log 3
(b
(e
(
(

g

log 3 + log 1 - log 8

N

log 3 + log %
d) og 3 - log 8

e) log 3 - 2 log U

Which of the following is equal to log ( 3y 8)2?

(a) 2 log 2 (d) % log 4
(v) 31088 (e) 108 (VB
(c) % log 23

1
loglo 75 is equal to
1

{a) %5 log 45 (d) logyy25 - log,,l
(b) 2 log,,5 (e) :
€10 1oglo§5

(C) -2 10g105

If d4d = > , then log d equals

(a) 11log 5 + j log x - log ¥
(b) log 5 + % (log x - log y)
(¢) 1og 5+ % (log x° - 1og ¥)

2

(a) 5(% 108 x° - 5 log ¥)

(e) log 5 + 3 log x> - 1log ¥

89
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13. Which of the following 1s a true statement?
(a) log (xy) = (log x)(log y)
(b) log (x + y) = log x + log ¥y
(¢) 10g % = (log x) + (log )
(d) log x™ = n log x

(e) log “/ X = (log x) =+ (log n)

14, If QJ X =k, where n 1s a positive integer and
x > 0, then

log k

(a) n log x =

(p) n log k = log x

(¢) log k + log n = log x
(d) log x + log n = log k

(e) % log x - logk =1

15. If 0<x<1l and loglox is written in the form

a+ b where a 1s the characteristic and b 1s the
mantissa, which of the following statements is true?
(a) a=09
(b) b<O

(c) a 1s a negative integer

(d) a +b >0

(e) a < 0, Dbut not necessarily an integer

16. If 108 427.5 =1 + .4393, then log,y-275 equals

(a) -2 + .4393 (4) -1 + .4393
(b) 3 + .4393 (e) 2 + .4393
(¢c) O + .4393
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17. Given that log103.62 = 0.5587 and log103.63 = 0.5599,

which of the following represents the best approximation
to the value of log103.624?

(a) 0.5589 (d) 0.5594
(b) ©.5592 (e) 0.5599
(e) 0.5593

18. Given that log10355 = 2 + .5502 and that loglox

= -3 + .5502, what is the value of x?

(a) 0.355 (d) 35.5
(b) 0.000355 (e) None of the above is correct
(e) 0.00355
19. For what values of X 1s log x < 0?
(a) o0<x<1 (d) -1<x<0
(b) x<O (e) No values

(e) 1<x<10
20. The graph of ¥y = 1ln X

(a) crosses the line y = k once and only once (k 1is
any real number).

(b) is a continuous curve for all values of X.
(¢) crosses the y-axis at the point (0,1).

(d) has a negative ordinate y if x < O.
(

e) shows that the ordinate' y increases proportionally
with Xx.

21. Which of the following ordered pairs of real numbers does
not correspond to a point on the graph of y = log x?

(a) (9,2 log 3) (a) (ErlT’"“ log 2)

(p) (1,0) ' (e) (-ag,—e log 5)
(e) (3,-10g 2)

91
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22. Which of the following 1s not a true statement about the
ordinate y on the graph of y = log x°?

(a) 1t is undefined
ir x < 0. y A

(b) 1t 1s zero if

X = 1. y
(¢) 1t 1is negative

if 0<x<1. 0 ]“-0) X
(d) 1t is double
the ordinate FPigure 1.
corresponding
x A
to 3 if . y

2
x> 1.
(e) 1t is equal to
the area of the
shaded region

in Figure 2 if
x> 1. Figure 2.

0|

23. Which of the following statements 1s true of the function
y = 10%2
(a) its domain is the set of positive real numbers.
) 1its range consists of all non-negative real numbers.
(¢) 1t has the same domain as the function ¥y = log, X .-
)

its graph 1s symmetric with the graph of y = loglox
with respect to the line y = x,

(e) 1ts graph is symmetric with the graph of
with respect to the origin.

<
[

= loglox

92
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24, The curve in the figure

at the right could be :
the graph of which of 4 v,
the following functions? 3
I X = logzy 2
, X
II = 2X
y -4 -3-2 "I! 2 3 4
III ¥ = logyx L | ]
(a) I only (d) I and II only
(b) II only (e} II and IIT only

(¢) III only
25, Which of the following statements about the graph of
Yy = e* is not true?

(a) 1t crosses the line x = ¢ once and only once
(where c¢ 1s any real number). '

(b) 1t rises as x increases.

(¢) it crosses the y-axis at the point (0O,e).

(d) 1t is asymptotic tc the negative x-axis.

(e) it has points only in the firs% and second- quadrant.
26. Which of the following 1is equal to the constant e?

(a) 1n 10.

(b) the solution of the equat: Iny = 1.

(¢c) the positive number k such that the area bounded

by the curve y = %, the " x-axis, the the lines
X =1 and x=k 1s 1.

(d) the solution of the equation 1log,yx = 1n Xx.

(e) the ordinate of the point of intersection of the
graphs of y = loglox and y = 1ln Xx.
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27.

28.

29.

30.

The solution of the equatlon logloy = 5.2 is the number

(a) (10)°°2 (d) .52
(b) 10(5.2) (e) (5.2)1°
(¢) 5.2

The relation which exists between e* and ax, (a > l),
is given by

X X a X 1 X
(a) a~ =¢e"-e (a) a* = Togs " @
(b) a* = &* in a (e) a* = (1n a)e*
X logae

(c) a* =e
Which of the following equations 1s satisfied by the
pair of values (e2,2)?

(a) y=¢€" (d) y=1nx
(v) ¥° =‘g§ x (e) v = ln/X
e

Which of the following is not a true statement?

(a) 1n e® = x for every real number x

(b) e™ X . x for x >0

(c) &% > &P

(a) e*-e¥ = & for all real numbers x and ¥y

if a>b

(e) e* > 0 for every real number x



31.

32.

33.

34,

35.
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If >0, and if n, p, and q are positive integers

-2 n
then (b %) 1is equal to n
gn an
) 1,
(a) b : (@ &)
ng - p ' ng - p
(b) b P (e) (3) ™
pn
1. 4
(c) (%
If x 1s any positive real number, then
(a) log % < log,x (d) log,x = log,yx * log,10
(b) logx < logyoX (e) loggl0 - log,X = logo%

(¢) logx = X logyge

The product eln 3. e1n 3 is equal to
(a) 6 (d) 23
(®) 9 (e) 2¢°
(¢) 2 1n3

log28 is equal :o

(a) 16 (d) 3

(b) 2° (e) 4

(c) 64

in eV@? equals

(a) v 2e \ () 1ne
() V2 (e) 2

() V2
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36. 1If log,3 = 2, then
(a) c? =3 (d) c = 23
(b) ¢ = 3° (e) 2¢ =3
(e) 3 -2
2
37. 6l 3 is equal to
1 1
(2) 515 (@) 15
(b) - 5% (e) -16
(c) -5l2
38. b *-c¥ 1s equal to
x/¢
(a) be (d) v/ %
X
c
(p) 1 (e) 3
(c) (be)?*
-1
b0+-—ﬂ-:_c,
39. : is equal to
‘“"‘;FT
{a) a® (a) a® + b
a2
(b} o (e) None of the above is correct
(e) 1+ a?
x° + Ix —3K oy
ho. If 3 =3 "7, then x 1is equal to
(a) -1 only (d) -3 or 3
(b) -3 only (e} -3 or -1
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Part II: Matching.

Directions: In the diagram at
the right, the letters W,
R and T refer to the
areas of three different A
regions under the curve

y = %w The expressions

in Column One reprasent
various combinations of
these areas.
Make use of the
definition of 1log x
and the fundamental
property of logarithms 5
to determine which term
from Column Two best
matches each expression

in Column One. .

Cross out the letter of your choice on the answer
sheet. Any choice may be used once, several times, or
not at all.

Column One Column Two
1. W+ R A, log a
42, w B, log 5
43. 2W + R C. 2 1logh
by, W+ R+ T D. log ab
45, R+ T E. log 1
46. W - W

97
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Directions: Make use of the Laws of Exponents to determine
which term from Column Two best matches each expression
in Column One. Cross out the letter of your choice on
the answer sheet. Any choice may be used once, several
times, or not at all.

~ Column One Column Two
b, 2”ﬁ5- 3Vq? A. 6”75
48, (2”ﬁ%l‘ B. 2 b2
ng, 62V2 - 6V c. 6°
50. 3““45 D. 9“75
51, ——a— E. —i
(3~ V32 ov'2

Part III: Problems.

Directions: For Problems 29 through 36, use the following
information to calculate the values of the required

logarithms:
loglo2 = 0.3010
logyo3 = 0.4771
loglolo = 1.0000
52. loglo6
53. 1og 5
54, log, 36

55. 1og102/ 3
56. log,-009

57. logldé.7
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3=
58. log ——329

59. If log),175 = 2.2430 and log, 174 = 2.2406, and
log, % = 2.2416, find x.

60. If log,.63.4% = 1.8021 and 1log,~63.5 = 1.8028, find
10 10

loglo63.43
61. What is the value of log,,l + log, 410 + 10310100?
62. The capacity of a tank which has the shape of a cube is

400 cubic feet. What is the logarithm of the length of
an edge of the tank?

Directions: Solve the following equations for X.

63. e =3

X + 1 1
ph, 2 = g

no

e

65. 4= -2

1t
n

66. logyx = - =
67. log,,(x + 97) - log,y(x - 2) = 2

NCE

68. Find an approximate value of 1og;43" (correct to
three decimal places), given that + 2 =1.414 and
loglOB = 0.4771.

69. If x 1is any positive real number, which of the follow-
ing functions are equivalent to the function ¥y = x?
Give reasons for your answers.

log. ~X
10 ln e
(a) vy =x

1n X
e

(a) y =10
(v) v

x
10g, 310 (e) ¥

(¢) v =x .10t 1

99
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ggested Test Items

Answers to Su

Multiple Choice

Part I:
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Part II: Matching

41, B ' 47, A
b2, A 48. B
43, D 49, A
44, D 50. D
45. B 51. D
46, B
Part III: Problems
52. 0.7781 61. 3.0000
53. 0.6990 62. 5 log 400
54, 1.5562 63. x=%1n3=1nv3
‘ 55. 0.0954 64, x = -4
56. -3 + .9542 65. x =2 or x =1
57. 0.4313 66. x =g
56. -1 4 .T347 67. 3
59. 1T7h4.4 68. 0.675

60. 1.8023

69. All parts (a) through (e) are equivalent to y =X
since the domain 1is restricted to any real positive
number and

loglox

(a) y =10
logloy = (loglox)(loglolo)
= loglox
j=x

101
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¥y =X loglolo =X
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Chapter 10
INTRODUCTION TO TRIGONOMETRY

10-0. Introduction.

This chapter is an introduction to trigonometry; it 1s not a-
'semester course, However. the student who masters this chajter
~knows all the trigonometry he needs to study calculus.

10-1. Ares and Paths.

Path length is a generalization of the idea of arc length.
The analcgy with coordinates of points on a line might be helpful
in putting the idea across that path lengths can be negatlve as
well as positive. When we discussed the line we gave positive
coordinates to points to the right of the origin and negative
coordinates to the left of the origin. The geometric distance
gives only the absolute value of the coordinate, the correct sign
has to be determined by considering direction as well as distance.
'Similarly, the geometric concept of arc length can only supply
the absolute value of a path length. The correct sign must be
found by referring to clockwise and counter-clockwise directions.

Suggestions for 10-1.

The problems in this section are'designed to glve students a
_feeling for a directed arc on a circle. Distinction should be
made between equivalent and equal paths. Since the problems
involve a considerable amount of figure sketching, the teacher
may wish to use these exercises as oral discussion and classroom
demonstration problems. Incidentally,not all of these are sketch-.
~ed in the answer sectilon.
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Exerclses

10-1. - Answers

l'

ERIC

Full Tt Provided by ERIC.

(Pp,2E) + (Py,3L)

(a)  (P,2) + (Pp,3f) (b)
(a) and (b)
(¢) eand (a)
(e) and (f)

are equivalent.
are equivalent.

are equivalent.

104
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10-2. Angles and Signed Angles.

In presenting the material of this Section, it will be help-
ful if the student knows what it means to say that two geometric
angles are congruent. It may be necessary for the teacher to
review this topic. Two signed angles are defined to be 2Juivalent
1f and only if they are determined by equivalent paths. If the '
angles (Al,Pl,el) and (A2,P2,92) are equivalent, then the
geometric angles PlAlQl and P2A2Q2 are congruent.

Figure 10-2a shows two
equivalént angles; the
corresponding geometric
angles PlAlQI B 2 Ve S
P2A2Q2 are congruent.
Figure 10-2b shows two
angles PlAlQl and
P2A2Q2 that are con- N
gruent, but the signed Figure 10-2a. Equivalent angles.
angles that are indicated
are not equivalent.

Addition of signed
angles furnishes a non-
trivial example of the
kind of addition operation
the student met in Chapter 1.

The teacher must declde for Flgure 10-2b. ggﬁisg%igi.are not
himself how much to emphasize

this aspect of the subject.

In any case, it 1is important

not to identify addition of angles with addition of measures of
ahgles. Addition of angle measures is an operaticn of ordinary
arithmetic involving real numbers, whereas; the sum of angles is

) Q

A P

an angle.

105

[pages 550-5541]



642

Exercises 10-2..- Answers
3 Vv

(a) (a,B,m) () (a,P,- 370)

f
N
/o™

() (0,X,- 3T) (4) (0,X,21T

(£) (0,%,3T

[page 555]
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(b}

(c)

(O,X,% + onw
(0,X,7 + enmw
(O:X:-%‘TL _’f‘_ entr

y

—_

Vo
N

lim

(b) ‘16r:"' —6"

™

643
(a) (0%, 2L + 2nr
(e) (O’X’-%Ir.:t 2nT -

(£r) (0,X, 2T + onr

&

107
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_ A Negative A Negative

N Angle Co-ngTénal Angle Co-KigTénal
(a) o ~er (5 I 3L
(0) % =t ()) B3
0 F | F W F | F
(@) % T m F E
@ % | ¥ | oo F |3
(e) & G (o) IF ki
(g) 3T 3T (p) T 3
(n) E (@) or -er
(1) T (r) T £

10-3. Radian Measure. .

The purpose of this Sectlon is to introduce measures for
angles. 'The unit angle 1s the angle subtended by an arc one unit
long on the unit circle. Q

It is important to observe
that there is an important relation
between the addition of angles and A P
the addition of their measures.

Let m[(0,X,0)] denote the measure
(a2 real number) of the angie
(0,X,0). Then the addition of
measures corresponds to the addition of zngles as indicated in the

Figure 10-3. One radian.

following diagram.
I (0,x,8,) D (0,%,8;).

o ;

v .
m{(0,X,0;)] + m[(0,X,8,)]

(0,X,0, + 65)

m[{(0,X,0, + 85) 1.

[pages 555, 556-55T]
1038




645

The symbol EE)has been used to indicate the addition of angles to
emphasize that we are dealing with an operation (called "addition™)
on geometric objects called signed angles. The relations indicated
in the diagram are a characteristic feature of measures. The .
equality in the second line of the diagram is true since

m[(0,X,8,)] = &,

]
(4]

I
(o]

m[(oxx:ez)] =
m[(o,x,el + 92)] = 8 + 6,.

Although this Section considers only the radian measure of angles,
the diagram is correct in every system of angle measure.

Suggestions for 10-3.

The problems in this list are simple, but it might be worth
while to use part of them at least as written work.

Exercises 10-3. - Answers

1. (a) ;g-radians (e) % radians
(b) 2 radians (f) %; radians
(c) ~% radians (g) %g radians
(d) T radians (h) T radians

2. (a) s =1 (e) S =27
(b) s =3F (£) s =23
(c) 8§ =10 (g) s = 32
(@) s ==F (n) s=5T

109
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3. (a) 16 inches ' y, (a) 15 inches
(b) Z%E inches (b) %; inches
(¢) 95 inches (¢) 5 inches

10-4. Other Angle Measures.

Most of the student's work with angle measure will involve
degrees and radians. However, the student ought to be aware .aat,
with the exceptlon of the zero angle, any angle can be used as a
unit angle. The right angle is occasionally used as a unit angle.

Suggestions for 10-U4.

These problems are sultable for classroom discussion and it
would not be necessary to sketch all of the angles involved. It
should be pointed out in Problem 3 that there are many negative
angles co~terminal with any given angle.

Exercises 10-4. ~ Answers

1. (a) 1080° . (e) u5°
(b) -270° (£) 300°
(c) 225° (&) -5h0°
(a) -300° | ~ (n) -900°

2. (a) g (e) 1
(b) " (£) 33
() & (8) -
(4) " (n) 1

110
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3. () F (8) -3%RT
(b) - 2F (n) - T
() - & CON
() 3F (5 3F
(e) = (k) -3
(£) 32T (1) 4T

b, (a) 30° (g) -2 7
(o) 45° . (n)  12°
(¢) -150° (1) -204°
(a) 126° (3) suo®
() -75° (k) (39
(£) 840 (1) (&8

5. 5

10-5. Definitions of the Trigonometric Functions.

In the Examples 10-5a and 10-5b, which illustrate the
definitions of the trigonometric functions, no explanation is
glven as to just how the coordinates YC;,-%) and (—%,Ygg
were obtained. They were obtained by referring to the 30°-60°-90°
triangle. If the teacher finds he must give elaborate explanations
of this point he should try to make it a separate topic. The point
of the examples 1s to show how these coordinates are used to
determine the sine, cosine and tangent of" the angle in question.

111
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10-5. -

112

Exercises Answers
1. sin 6 cos © tan 6
@3 | -5 | ¢
®) - 5 5 - %
(c) -”/—:52_ —{-g- 1
(a 3 2. 3
) V13 V13 2
(e)] == S -2
V5
24 fl ol
()] - 55 - 75 T
2 _3_ -
7 Ve 3
L 1
(h) L —
J17 JI7 ¥
2. (a) tan @ = 3 (b) cos & =3
y
5 3 y
3]
< YT\
4 \J
sin © = _g. 2
cos © =%
3in 0 = -[—%-
tan 0 = —~/§-
[page 5671



(c) sinG:--%
©
R
N 2
5
| cos e=—-—'21
: 5
2
tan 6 = - ~————
<21
(e) cos 6=-$r
2) y
4 /1IN,
7 .
sin ©
tan 6
M
(a) tang = =
cos*:-u-
T =z
c =5
(p) a =

[pages 557-56¢]
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i b3

(d) ’cane=--g-
y
X
5
A
3 X
sine=—i
3
CO8 O = = ——Zw
/34
(£) sin e =g
i y
M~
5 3 WB
ST =or 6 = - g2
=_r~/33 o 3
GAD O = = e——
v/55
(e b =4vE
46
x:os(r=—n-_—
ha/6
tan/& = =
sin(t=-15I
ral ¢ = 193
sind—lzgéa
124193
’:OSﬂ=—1—9-§9-
7?;‘&!1((:-}72—
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(b)

(c)

(a)

b 3
c = 15 02=lllll+b2
2 2
tang = % 283— = 144 + b
sina=-%- -19§-b2=1hh
P =9
¢c =15
10
C=9‘\/-§ (E) b=-9—
24106
a =6/5 c. = 5—
5 - 2
cos,é=§ sinﬂm
tancc=-?—%-l-§_ coscc=ﬁ_§—6_
a =445 (£) a=1?5-
2
b = 8v5 ¢ =22
+/ 3
cos « =-2—5—5 sinc(=§
L
sina=L§_ ’can,é=-3-
20
a=—3—
b - 411
=73
cos,&=-g
5
tan o€ = =
~/ 11

114
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10-6. Some Basic Properties of the Sine and Cosine.

The relation sin2 o + cos2 @ =1 1s one of the most import-
ant relations in trigonometry. Theorem 10-5b states 1lts converse.
This is a good item to use for general education in the art of
proof. The details are not difficult but the proof does involve
a few logical subtleties which the student should learn to handle.
The principal one is that to prove that there is "one and only one"

object of a certain kind it suffices to show (a) that there is at
least one such obje:t, (2) that there is at most one.

Suggestions for Exercises 10-6.

Attention 1is called to the ldentity sin2 0 + cos2 o = 1.

The students and teacher can expect more on this relation in later
sections. ©Note that the auxiliary identities, 1 + tan2 e = sec2 <]

and 1 + cot2 0 = csc2 6 are presented in Problem 5.

Exercises 10-6, - 1swers
Quad. © sin © cos © tan ©
25 25 T
1. . (a)
IT 24 - L 24
25 25 T
3 4 3
I 5 -5 -
(2) 3 b 3
Il -3 -5 7
g -2 " -2
(c) Vo Vo
Iv .._2.. _l - 2
v 5 v'5

115
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tan ©

gl bl ok ok e o = o e e

cos ©

REANE S R O

sin ©

s gl ok e g B o oJE 5P 4P

Quad. ©

= ! =] — — — - —

- - ! [ [ [ [ !
P ~~ P Py ~~
ko] o G &) o
A o N | — N

P T S N e

N’ e Nt N

[pap= 572]
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3. Terminal side of angle must lie in Quadrant II if

tan 6 = - and the cos 6 is negative. Therefore,

il

cos ©

U&= Hw

_3 2 0 g2 42 342
and 8in 6 = E. cos 8 - sin“ 6 = ( 3) - (3)

~ 16 9
7
75"

4, Terminal side of angle must lie in Quadrant III 1if

cos O = - % and tan © 1s positive. Therefore,
2410 2 tan 6 3
tan 6 = -——3—— and — =
1l -~ tan™ © 2v1
1 - ( )
uf‘ (1 - %0
- - )
- A10 (L 3
a I 31
_ _ 12410
5. tan 6 = ﬁ. (Definition)
L
tan 6 =——
X
r
sin 6
hence, tan 6 = 505 ©°
‘6. (a) sin® 0 + cos® @ = 1
sin® 6 L cos® @ _ 1
- L S -
cos™ © cos” © cos” ©

1 + tan® © = sec® 0.

() sin® o + cos® 6 = 1
sin2 e . 0052 e _ 1
2 - 2]

sin o sin o sin® ©

1l + co’c2 0 = 0502 0.

[page 57¢]
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Q(l,r)

‘7. Let r be any real number. e
We must show that there <
exlsts an angle 6 such /
that tan 6 = r. Plot the / .
voint Q(l,r) as shown in 0 : X ~X

the figure, and consider
any signed angle 6 whose
initial side i1s O0OX and
whose terminal side is 0Q.
By Theorem 10-5a

tan 6 = % = I,

Thus, the range of the tangent function contains every real
number r.

10-7. Trigonometric Functions of Special Angles.

The student should not be asked to memorize Table 10-7a. He
should be required to be able to derive each of its entries. He
will need the 3°-60°%90° triangte and the isosceles right triangle.

Figure 10-Ta

The difference between coordinates and lengths of segments should
be maintained strictly. Thus, in finding functions of 1200, for
instance, the dlagram might look like the Figure 10-T7b.

118
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i 3

P(-'a—"-_z_) y
30
L1 N .
2 120
60 )
QL |o X
2

Figure 10-Tb

The length 0Q 1is '%, whereas the x-coordinate of F is - %.
It is the coordinates of P which are used to find the function,
not the length of 0Q or FPQ.

Suggestions' for Exercises 10-7.

The exercises are sultable for oral discussion‘as very little
computation is required. Notice that the exerclses are designed
to anticipate some ideas that will occur in later sections.

Exercises 10-7. =~ Answers‘

1. (a) _2i/.3_.i'z§_@-

(b) 1 ++/3
(¢) -1

2. (a) -% -3V% 3V (¢) -3v/2 52 -1
) -ivF -LE 1 (@ W -EE 2

[pages 573-577]
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5. (@) B+ -1 @ &)+ -1
2+ 7 -2 ~ F o+ 3 =1
2 . 2 2
) D%+ ) =1 () )+ -1
$ r3 =1 2 +2 <
2 2 2
) ) +H =1 (1) 65+ -1
2 o+ 3 =1 F o+ 32 =n
v B33 (@ o04-B- 3
@ A3 () o04-83-8
© Br B ,
5. () 1- - 3 (e) 73:/1_2..2
V3 V31,1 _
R A A (r) 22.¥2.,
eE T -
. T-g-
1 1
@ B-]=E
G5
é. (a) Not true, because the range of the cosine function 18

1<t <.
(b) True, definition of tangent function.

Bt

3 -‘Z-—g)2= 1.

(d) True, because (“H)+(

(c) Not true, because %-}-

[pages 577-578]
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(e) Not true, because %— "Z-g;é %—(0)
(f) True, because g@: %(1)
2 1
¥TT2

(g) True, because %: %-(1)
11
7572

‘(h) True, because (

(1) True, because 1 =;é-
e )

(J) Not true, because

10-8. Table of Trigonometric Functions.

The student may not see why he is asked to deal with angles
like 1000°, or -1l4 radians since they don't occur in triangles.
He may also wonder why people take the trouble to make tables which
go up to 90° but no further. The first question, about big
measures and negative measures, héa to do with applications of
trigonometry in fields other thanngebmetry. The reason for relying
on tables which only go up to 90o is strictly one of economics.
It would be expensive as well as redundant to use more extensive
tables.

121
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Exercises 10-8. - Answers
1. (a) 307 (£) 82°.

(v) 80° (g) 55°

(c) % radians (n) ~g radians

(@) se° (1) 5 vadians

(e) T75° (3) % radians
2 (a) sin 15° (k) sin 15°

(v) tan 10° (1) -sin 55°

(¢) -cos 32° (m) -tan 18°

2w 2w

(d) sin = (n) sin =

(e) cos % (o) cos'%g

(f£) tan O (p) tan g

(g) -sin 20° (q) -sin 25°

(n) sin 82° (r) -cos O

(1) -tan 78° (s) -sin 60°

(§) -cos 20° (t) tan %
3. uy.u° 10.. 264.2 feet
y, 188 yards 11, 4788 feet
5. 732 feet 12, 136 feet
6. 480 feet 13. 117.2°
7. 281 yards 14, 181.5 square inches
8. 12.9 inches 15. 13.7 inches; 10.9 inches;

6.1 inches
9. 14,000 feet approximately 16, 5.6 inches
122
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17. Approximately one minute and 54 seconds after 2 o'clock

18, Let h divide a into segments
x and (a - x). h=x tan/&

and h = (a - %) tan 77
X = h cotsZ
h = tany? (a - h cot & )
h =a tan7? - h tan 7° cot &

h(l + tan? cot &) = a tan ' h \
h=tanpa ggl‘g;+l ﬁ n —a_;a
h =

a

cot@ + cot 77
19. g,6 inches

20. 94 feet

10-9. Graphs of the Trigonometric Function.

The student should learn whgt the graphs of y = sin X,
y =cos x and y = tan x 1look like, since they 1lllustrate basic
facts about the trigonometric functions. He should be able to
sketch them from memory, locating maximum points, minimum points
and intercepts for ¥y = sin x, ¥y = cos x, and asymptotes and
intercepts for y = tan Xx.

123
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Exercises 10-9. - Answers

l'

(a)

124

AL y= sin x L] L
| p = 4 y=sin.2x
/I \ 5
\ AN N
Yy N
5 /A h \‘\\ VI
= Ix. a 2’ -1 8% 7N - 4 -3 8 T
& S N Y e Ao s L2 s o, 3
; s T I
\\ » 4
N M
pas b /
-l o [~ - o
I [
l x %
(v)
L i
2
y 4 N: 2 COS. X
4 N
A
I \ 4
[y pot
\\ A
ANA '
N
NT 3
fo) 28—+ v - 71+ 41 8 1
¥ s vy e
N L Lo
1 T
\ ]F T »
\ - Y=CO0S. X A
=
A
A
4
) af
L
[page 594]
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(c)

-

P

pd

X

-
2

tan,

y

3N

R JU UP 0N Y NS B

2w

7

If

JR S Y T B O

PSR

3

-4

)

"6

(d)

h Wi “ w‘r
WT
\
N N,
N L
o, )
o|" s
: T
Y
1
{
WT
1 N
il 4
14 71\
o
e \
H 3
11 il
o ?
e Vd N
5 4 Ma
1o ! p.
L }
> :
\._N o, 1
£ HH T A< 5
T 1 Ll |_2 “
ApmarInE
L €101
(i O mw
; i >
\ 1T
__ 7_..
4o
N, I !
p. [
/ 1
/ .n.u_.r.
Ji
I
\
N
AN
.

[page 5941
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-y

—

Quadrant

I

(£)

i h i
! !
i
i ! !
M N
i K 7
! !
: 1 W_.a i/
N2
X
!
m v /
i [ \
i [
R I
o T
1 [ i §
g”_ox_ [ E ! T
e’ V<0 i 1
AWQ W AR [ i
H (I N
Pl I — A
™7 I XY 4
A [ i 7 B
\.\m_ C g ] )4 B
iy 4 1 il 1 »
8 At
T 1 1o T
(o st
i b 7 4 1
17117 — = 0 T
[ A >T
il 7 i
it /' i1
N : mm.o :
NAL ] : |
LR ; i
VARN
VAR
: L3
[ i “ :
IENEN O it
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]
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O~

A

L

(G

1

i)

PSSV

(b)

3

N

(a)

y=8inx

y 4

(h)

(Y

¥ = 8in 3x
sin

(e)
(a)

y = 8in x
y = 8in 2x

(a)
(o)
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) o

hl

!

1
i

!

EERRE

LI B S

T
. X

T

y=sin

AN

kN

y=sin(x+-3

\
B
N
N N\
N
Y~
N
TN
AT
ARBN
[t
o \
|
= 3
g
o
>
Y
i AT
o H;W_Z _
+ L[]
> 1]
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T [0
[1]
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ge
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T
T
T
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10-10. The Law of Ccsinas.

The proof of the lasr of cosines covers th. acute.=s28=. the
obtuse case and the rigi— angle case simultanecusly. I: might be
helpful to show by exam: .es tiz=t geomeimically +these zre three
different cases, but thz- the ne trigonometric formuls a=d ‘the
one proof applies to each.

Exercises 10-10. -~ Answ=rs

1. (a) a = 8.9
(b) 77 = 34°
() €= 10 @ =1, 7 =5,
2. Largest angle 1s oppésite 12 side and = 117°.

3. (a) a = 5.8
(b) ¢ =15
. (¢) bu= b2
4. (a) a=734°, & =60° 5, =66°
(b) «=0v1° & =153.3°, 7 =65.7°
(¢) a=117.3° g =26.3°, 77 = 36.4°
(d) «= 22.3°, & =111.9°, ,» = 45.8°

5. Diagonal = 25 _ (approx.)

10-11. The Law of Sines.

One way of developing ths law of sines is to discuss first
the relative sizes of sid=s and angles ir a triangle. It 1is true
that if a < b <c¢c, then a« <3 <77 . %=t Zz not true for sides
and angles 1s that they =re proportionm=Z. For instance, in the
3R260°90° triangles the sides zre not in the ratio 1 - 2 - 3.

The law of sines shows th=t —x using sines of z=gies razher than
the angles themselves, number= are obtalned whkiech are pr-oortional

~ to the sides of the trianzle.

- [pages 594-597, 598-602]
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Exerciszs 10-11. - Answ:s

1. () a =624 (d) a = 5.6
(b¥ e =17 3 (e) b =£.8
(¢ b=262 (f) a= F&
. sina _ sin<&

2- Q‘GA a ad b

sin 27° _ sin 1T

a o~
a = 24 s ZT7C
szn 111°
similarly,
six(‘:;” _ sig/ﬁ’
_ 24 sin 42°
sin 111°
(a) @ = 111°, a=1..7, ¢ = 17.2
(b) @« = 122°, a = 15.7, b=12.8
(c) @ = 24°, b = Th, c = Th
(@) @ = T3°% b =7.24, ¢ =6.35
(e) 7 = 31°, a = 85.8, b = 58.5
(£) @ = 63.7°. a =240, o="FT
3. Solutions
(a) One
(b) One
(¢) Neoz=
(a) | Or=
(e) Two
(f) Ome

[pages 602-603]
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(a 5.2 - 6.2
sin 59° sin <
or sin/& = 6‘25_‘934

sin& = 1.11

but since 0 < sin&F <1
this 1s impossible and
there is no solution.

(b) « = 33.7°, 77 = 133°, ¢ = 28
(¢) & = 15.7°, 77 = 22.3°, c = 5.2
(d) « = 65.4°, 3 = 55°, b = 35.2

x o= 114.6°, 3'= 5.8°, L= b.Z
(e) « = ;.u°, 3= '172.8°w,w p = I32

(a) Area =»% be sina

Area =-%(12)(11¥) sin 42°

Area = 56.2
(b) 31.3
(¢) 1279.1
(d) 21.4

Sides of parallelogram zre 17.8 ané I2.1.

Width of road is 55.6 fest.
AC = 1558.5 or 1600 wyerds; 32 = 1¢-7.2 cr 1100 yards.

X 5280
o840t = elevation of the clilY above the Tezd.
Toazes 623-604]
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10. Height of tower is 48.4 feet.
11. Area of lot is 5791.5 square feet.
12. sSide, 252 ft.; area of lot is 29,376 sguare feet.

10-12. The Addition Formulas.

All the formulas of this Section are based on the fcrmula
for cos(4 -a ). Since this formula is “mportant the suudent
could be expected to learn its derivation =ven though 1t Z= not
especlally easy.

Exercises 10-12. - Answers

1. (a) sin(a + &)

sina cos,& + cvs @ sin&

DA + (DD
20

36
= 558
_ 16
- 55
O (e) &
(c) 22 (r) 2
(@) 22

2. (a) sin 75 = sin(30 + 45)
sin 30 cos U5 + cos 30 sim 45

_}.@ +‘/§‘/___2.
=2 72 2 T2

_ V2 +6
; 3 — —_
(b) \/-6——‘\/-2— (e) - -!-'\I'b
V6 +V2 V2 -6
(e) = m (f) =7
(d) ‘/—6_—’;,,—@ 132
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(a)‘

(e)
(d)
(a)

(b)

(¢)

669

cos(m - %) = coS T coSs %+ sin T sin-%r

= (1) -3+ 0B

1

=72

sin(vr--g-) = %—

cos(1r+-73r-) = -%
sin(3+ 7y = -2
cos( o -% = sinc

for o = 45°

cos(-g- - %) = cos -g- cos _12r_ + sin -71% sin -g

= 3in -g-

cos( a -g-) = sing

for « = 2107

cos(-'-%z»- %) = cos ZBE cos % + sin g sin %
= 8in _761r_

cos( o - 12£ = sina

for « = 180°

cos(m - %) cos T cos -g 4+ 8in 7 sin %

sin 7
cos(a - %) = sin

for « =-%

cos(~73r- - g—) cos -g- cos -g+ sin -g- sin-g

8in %

133
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(e) cos(ax - -g-) = sina

for « =§l-:£

‘cos(%—:I - -g) cos %7-': cos -g + sin %’I sin.:'gr

I
)
e
o]

.;:1

(f) cos(a - g-) = siu«

for « -%"-

]

cos(- %’I - %) cos(~ %'[) cos % + sin(- %E) sin g-

]

sin(- %)

5. (a) sin(a - %) = ‘-coso:

for « = 60°

s'in(% - -725) = sin -g- cos % - cos -g- sin%
T
= -cos =7
(b) for a = 150°
sin(,%'—r- - g-) = sin _561_1'_ cos % - cos '561r' sin g
= -co8 -5575 |

(¢) for « = 300°
s:Ln(%"—r - %) = sin %E cos % - cos -%E'sin -g-

= -CO0S8 —5'311

(d) for « .= ST

sin(%'i - %) = sin %E cos % - cos _231[ sin .12',;. :
= -co8 %[
134
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(e)

cos 2

cos{a + o« )

cos 2«
2 cos“ o
Let «
2 cos

cos

cos

R o o o

cos 2

cos 2
2 sin2 «

sin™ «

671

-%I cOo8

. -CcO8 -SII.I

T S5

-2-—COST LS

z

sin sin

cos L cos

0052(

0052(

2cos2 «

- 8lna sing

- sinztx

2

- (1 - cos®a )

-1

1l + cos 2
o

2
1l + cos ©

1l + cos ©
——

/1l + cos ©
2

0052 o - sin2<I

2«

2a

t

2

1 - sin - 8ln"«

2 sin

- coS 2«

1
1
1 cos 2«

. 135
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(a)

(a)

L=t

sin

sin

sin

-CO8

tan

sin

cos

tan

sin

cos

tan

sin

cos

tan

sin

cos

« =3
e 1l - cos B
T =T
£ ‘ /1l - cos 8
T SEINVTT
2a =23 = &
2 2
3 e 7
2d=(-5') -(5) = -3z
2(‘[:——217-)-£
= il
2q = 2(- B (-3 = -5
2 2
2a=(-2) -3 =%
2(‘[:——2.—71i
2q - 2( 2V 1S5

2 =2(-DE - - 5L
2 2
2a=@ - Lh =2

2a = -3/7
1
1'—'2'
$ -t =3
« _,[**3__s3
2 == z 2
1
« 2. ___31
T A V3
3
136
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(b) sin i‘é_.;\%:J%
cos %; = f% - 1@%§
tan -%-=-3

(¢c) sin %:@-:J:‘%
cos %§.= \/gg-=~£§%
tan %:%

(d) sin _g_=\/_2%;=\/5%_
cos é§.= N/ggnévﬁgf
tan %—=.3§ "

(o}
10. (a) cos 150 = \/1 + cos 30

cos 15° =

-
cos 15° = «/@

(b) cos %lo = @
2250 o= /v /2

(¢) sin 2

(d) sin 70301 =‘/2 - J2 + /3

2

137
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10-13. Identities and Equations.

The teacher should insist that the student learn the differ-
ence between solving an equation and proving an identity.

Some students enjoy proving identities. Except for this
feature, the enterprise of working with ldentities does not have
much to recommend it at this stage.

Exercises 10-13a. - Answers

1. tan © cos & = sin ©

sin O cos 0O =
cos © 1

sin © =

2. (1 - cos ©8)(1 + cos 8)
2

sin™ ©

l -cos™ © =

s:Ln2 2]

3 cos 6 _ 1 ~s8in ©
: 1l +8ino6 ~ cos ©

cos2 ©

cos © (1 + sin 0)
1-sin2.6@1
cos B (1 + s8ln 9)

(1 - sin 8)(1 + sin ©) _
cos © (1 + sin 0) ~

l - sin ©
cos ©

sin 2 &
1l 4+ cos 2«

4, tan &

2 silna cos «

1l + cosem - singm

2 sin &« cos«
sin2m + cdgzm + cos2
2 sln &€ cosa

2 coseq

-~
« - sin“q

= tan &
[pages 612-619]
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5 2 -1 1
ese” X Sec X
= - —1
cos 2X
= 1 - cos 2x
1 - (1 - 2 sin®k)
= 2 sin2x
_ 2
cscéx
6. o ¢csc 2 8 = sec 6 csc ©
——2__ =
sin 2 6
2 —
T sin 6 cos ©
1 —
sin 6 cos &
sec 6 csc O =
7. tan © sin 2 6 = 2 sin2 e
%%g—g «+2 8in 6 cos 6 =
| 2 sin® 6 =
8. 1 -2 sin2 @ + sin’ 6 = cosu =)
(1 - sin? 6)(1 - sin® @) =
cos2 o -cos2 e =
cosu 6 =
2 2
2 cos® 6 - sin” 6 + 1 _
9. 505 © =3 cos O
2 0052 8 + 1 - sin2 o _
cos © -
2 cos2 6 + cos2 6 _
cos © -
3 cos® 6 _
cos -
3 cos 8 =
[page 619]
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10. sin 6 tan © + cos ©

cos ©
2
sin © cos” 6 _
8in 8- 3555 * ~cos @ =

sin2 0 + cos2 <)

cos ©

1
cos ®

1 2 ’ 2
11. —s + tan® 6 + 1 = —
cos~ 6 ’

1 sin2 © cos2 o

- B 5+ >
cos— © cos® © cos”™ 6
1l + sin2 0 + cos2

0052 <] '

1+ 1

L 2 2

12, _sin © - sin
2

© cos“ 6 -~ 2 cosu <]

(sin® © + cos® e)(sin2 6 - 2 cos® @)

1 '(sin2‘e - 2 cos® )
sin2 0 -2 0052 <]
13 cosu 6 - sinu 6 _
. L‘_ -
1- tan™ 6
-cosu 0 - sinu o -
cos4 e _ sin4 <)
cos4 <] cosl‘L <]
cosu 0 - s:LnlL o -
cos4 0 - sin4 o
cos4 <]
(cosu o - sin* e) - 4005 © — =
cos 6 - sin’ 6
cosu 0 =
[page 619]
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14, sec2 e - csc2

® = (tan 6 + cot 6)(tan © - cot ©)
L S e tanZ @ - cot® @
cos™ 6 sin™ © -
sin? e - cos® © - sin® o - cos® o
cosg o sinzie cos2 o sin2 2]
sinu 0 - cosu 2]

2

coseie sin~ ©

- (sin® 6 + cos? e)(sin2 0 - cos® 8)
c052 ] sinee
_ sin2 0 - cos2

2]
c052 2] sing 2]

15. tan x - tan y = sec x sec y sin(x ~ ¥)

_8in XxX'cos y - co8 X sin ¥y
- cOS X cos ¥
_ 8in _8siny

X
cosS X cos ¥y
= tan x - tan y
16. " sin 4 6 = % sin © cos © cos 2 O
2 8in 2 6 cos 2 6 =
22 ¢cn 0 cos 6 ¢cos 206 =
4 sin © cos © cos 2 © =

17. sin(a +8 )+ sin(a -3 ) = sin® ¢ - sinz,e
(sinacos@ + cosa 8in@) (sing cosF - cosq sind) =
sin2cc ‘cosgd, - coszcx sinzﬂ =
2 2 2 2
sin“a (1 - sin%@ ) - (1 - sin“« )sin“, @ =
sin2 o« - sin20: Sin2,é‘ - sine,é + sinzc( sinzﬂ =

sn@m -snﬁe

141
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18. cos(a +@) cos(x -@) = cos?a - sineﬁ‘
(cose cos,@- sina sing) (cosa cos, g+ sina sin/3)

cosea 0062,6 - s:Ln2

« s inz,a

cos®a (1 - sineﬂ) - (1 - cosza) sineﬂ

cosecz - cosetx sine,g - sine/,f + Sin2,€ coszcz

cosea - sineﬂ =

19. sin(¢ +,5) +sin(a -& ) =2 sina cos &
sin« cos, + cosd sin & + sin« cos? - cos« sin & =

2 sina cos.F =

20. sin(¢ +,6 ) - sin(a - ) =2 cos« sine
sind cos, 7 + cosd sing - sina cos,w + cosda sing =

2 cos« sing =

21, cos(ax +& ) + cos(a -@ ) =2 cosa cosA
cos X cos? - sina sin& + cos« cos @ + sindsin,Z =

2 cos « cos,m =

22. - cos(x +43 ) -cos(x -4 ) =-2sinda sing
cos X cos,# - sind sin & - cosX cos g - sinX sing =

-2 8ina sin® =

03 sin ©

2]
+ cos tan %

2 sin g cos-g

1+2 coseg-l
2 sin,% cos -g—

2 c052 g -

sin%

:

142
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4 sin

T oon, " 3 8in © - sin 3 O 0

3 8in © - sin(2 © + 6)

38in 6 - [8in 2 © cos © + cos 2 © sin O]

3 8in 6 -2 sin 6 cos 6 cos O ~sin & (1- 2 sin® @) ="

2 3

3 8in ©® - 2 8sin © cos“ © + 2 8in

2 8in © - 2 sin @ cos® O + 2 sin° O

© - 81in 0 =

2 sin 6 (1 - cos® @) + 2 sind ©

2 sin 6 (sin® @) + 2 sind O

2 8in° © + 2 sind 0

3

L sin” o

25. (&) cos(® -,&) = cos &« - cos/ S
Not true Iy caunter example
60°

cos 90° - cos 60°

Let « =30° and, &
Then cos(R0° - 60°)

]

cos 30° = cos 90° - cos 60°

*_/.53_ #0 - % (False)

() ~ cos(a +3)
cos (60° + 30°)

cos € + cos/

cos 60° + cos 30°

o £ 3+

(c) sin(« -«9) = sin« - sin3
sin(90° - 60°) = sin 90° - sin 60°

% £ 1 _“/——g (False)

(False)

(a) sin(¢.+3) = sing + sin@&
s1n(60° + 30°) = sin 60° + sin 30°
V3,1
1 # S t3 . (False)

143
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cos 2«

(e)

=2 cosd
cos 2(45°) = 2 cos 45°
0 # 2-"/—% (False)
(£) sin 2« = 2 sing
sin 2(45°) = 2 sin 45°
1 £ 2 "/75. (False)
sin(a +&8) _ .;
26. 505 « Sosg = tan @ + tans
sin « cosﬁ+ sin/Z cos &
cos L cosS, @ COS.(L cO8 F
sin« ., sin/d
COS & = COCS 7
tan @ —+ tan & =
27 sin 2 © 1l -cos 26
: 1+ cos 26 sin 2 ©
sin 2 6 ,__8in 2 © _ |
sin 26 1 + cos 2 8
sin2 20 _
sin 2 6(1 + cos 2 8)
1l - cos2 2 © o
-~ 8In 2 6(1 + cos 2 ©)
(L - cos 20)(1 + cos 20) _
sin 2 6{1 + cos 2 6)
l -cos 260
sin 2 ©
o8 csec © -1  cot ©
. cot © csc © + 1
1 -1 cos ©
sin © - sin ©
cos -8 '~_f1'~'+’l '
sin © sin ©
1l -38in©® sin © cos 6 sin ©
sin © cos ® s8ino© 1+ sin ©
1l - sin2 0 = cos2 <]
1l = sin2 e + cos2 <]
[page 620]
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29. (a) sin A = sin(B + C)
B+C =180 - A
sin A =sin 7T - A
= gin m cos A - sin A Zos W
= 0+ cos A - sin A(-1)
= 8in A
(b) cos A = -cos(B + C)

B+C=m7-~-A

-(cos T cos A + sin 7 sin A)
-(-1-+ cos A)

cos A

' Exercises 10-13b. - Answers

1. 2s8ine -1=0
sin 6 = %

(30°, 150°)

145
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2.. 4 cos®® -3 =0
cos2 © = %
cos © = j;igg
(30°, 150°, 210°, 330°)
3. 3tan®@-1=0 '
tanG:_—_i-_./%—_ or. {g-

(30°, 150°, 210°, 330°)

2 294+1=0

4, : sin“ 6 - cos
2 2
sin© ® - (1 - sin© 8),+1 =0
sin2 =20
sin © =20
{0°, 180°)
5. 2 cos® @ -4/F cos 6 = 0
cos 6(2 cos & - ¥3) =0
" 2cos@-+3 =0
cos © =ﬁ£§
6 = 30°, 330°
cos © =0
e = 90°, 270°
- (30°, .9c°, 330°,. 270°)
i 6. sec2 0 -U4secO+4=0
: (sec ® - 2)(sec ® - 2) =0
oy (60°, 300°}
T 3 s8ec 8 -cos ®©+2=0
Sos -cos O+ 2=0
-cosa‘6+-2 cos ©+3 =0
cos2 6~-2cos 8 -3=0
(cos 8-3)(cos © + 1)= 0
{180°)
B [page 621]
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8. 4 sin® © - sin © = O
29 -1)
sin 6(2 sin © - 1)(2 sin © + 1)

sin 6(4 sin

i i
o O

{0°, 30°, 150°, 180°, 210°, 330°}

9. 28in° @ - 551 0 4 2

(2 sin © - 1)(sin & - 2)
{30°, 150°)

il

0
o .

10. 2 8in © cos © + sin © 0]
sin 6(2 cos 8+ 1) =0
(0°, 30°, 120°, 180°, 2u40°)}

il

1l. ~f§ c502 © + 2 csc © 0

cse e(vﬁi cse 8+ 2} =0

(240°, 300°} |

"2, 2 5in° @ + 3 cos © - 3 = 0
2(1 - cos® @) +3cos 8 -3=0
-2 cos® @+ 3cos 8 -1=0
2 0052 © -3cos®©+1=0
(2 cos ® - 1)(cos © - 1) =0
{0°, 60°, 300°}
13. cos 26 =0
1-2sin°6=0
sin® 0 = 3
_ sin 6 = + Y%g
(45°, 135°, 225°, 315°)
[page 621]
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14, i ’can2 e -3 sec2 e

1l
I+ w o o ©

4 tan® @ - 3(1 + tan® ©)
4 tan® @ - 3 - 3 tan® ©
tan® © =
tan 0 =
(60°, 120°, 240°, 300°)
15. cos 20 - 8in ©

o O O O

1-28in° 0 - sin 0 =
2 sin2 ©+8in© -1 =

(2 sin ©® - 1)(sin © + 1)
{30°, 150°, 270°) |

16. 2 cos® o + 2 cos 28
2(1 - sinZ @) + 2(1 < 2 sin® )

2 -28in? 0+ 2 - 4 sin® ©

6 sinZ ©

I+ w = =

o8]

sin O

(45°, 135°, 225°, 315°)
_&7f cos 2 © + 2 cos® %

cos® @ - sin® @ + 2(2—1—%95—9)

cos2 e - sin2 ©+ 1+ cos ©
cos? @ - (1 - cos®8) + 1 + cos @
2 0052 © +cos 6 -1
(2 cos o - 1)(cos © + 1)
(60°, 180°, 300°)

143

[page 621]

]
o O =



18. sec2 6 - 2 tan ©

1+ tan° © - 2 tan ©

tan2 9 -2 tan 6 + 1
(tan & - l)2

]
= O O O O

tan ©

(45°, 225°)

19. sin 2 ©& - cos2 5]
2 sin 6 cos 6 - cos2 5]
—cos2 ®@ + 2 sin 6 cos ©
cos2 ©@ - 2 sin 6 cos 6

(cos & - 3 sin 6)(cos

20. cos 2 6

0052 e - sin2 o

cos® 6 - (1 - cos? 0)

0052 e -1 + 0052 e -

2 cos2 6 - cos

(2 cos © + 1)(cos 6 - 1) =

{0°, 120°, 2u0°)}

+
+ w W w w

cOSs
cOo8
cos
co8

e -

sin™ ©

sin™ ©

sin™ ©

N DN

sin‘ o
sin ©)
cos

tan

sin
e
e
0 =
e
1

149
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18.5°, 198.5° (approx.)



686

21, éos 2 ©cos B + 8in 2 Q sin 6 =
(cos® 6 - sin° ©)cos © + 2 sin © cos 6 sin 6=
cos © (cos2 6 - sin® @ + 2 sinZ 8) =
cos 8 =
{0°%)
22. 0032 e - sin2 © = =in ©
1l - sin2 e - sinE‘G = =In ©
1-sine-2sin®6 =0
2sin® 9 +sine-1=0
(2 sin® - 1)(sin® + 1) =0
(30°, 150°, 270°)
23. 2 s1n° © - 3 cos O - 3=0
2(1 - cos? @) -3cos ®-3=0
2 - 2 cos? @ -3cos8-3=0
é cos? @+ 3cos®+1=0
(2 cos 8 + 1)(cos 8 + 1) =0

{120°, 180°, 240°)
2

_ 1 + cos™ 8
o, - cos O = 5
1l - 2 cos 6 + cos2 0=0
(1 - s 6)2 =0
{0°}
[page 621]
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25. cot © +'2 8in © = csc O
%%%—% + 2 8in 6 = ET%—g

cos 6 + 2 8in° © = 1

cos & + 2(1 - cos?,e) =1

22 cosQ © ~-cos ©-1=0

(2 cos ©® + 1)(cos @ - 1) =0

{0°, 120°, 240°)

26. cos 9 +8ln6 =0

]

tan 6 = <1
{(135°, 315°)

27. 38in© + 4 cos 8 =0

tan 6 = - %

o = 126.9°, 306.9° (approx.)

28. If sin x = k cos x, k any real number.

sin x _
cos X k
tan x = k

Since the range of the tangent function is all real numbers,
there is an angle x whose tangent is k.

29. tan 9 = ©

8 = .105 radilans
(Hint: Scan the tables)
30. w7 sin e = 26
_ 20
sine——.,-r—
g8in 6 = 1 radlan
0 = g radians

[page 622]
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Exercises 10-14. - Answers

1. (a) 0 radian (h) 731 radians
() % radians (1) 7281 radians
{c) % radians (3) %3 radian
() %F radians (k) ﬁ%_radians
(e) l%E radians = (1) 1 radian

o : 2
(£) ég" radians (m) ?—g;sg- radians
1c0
(g) Tgﬁ radians
2. (a) 0° (h) 114.6°
)
(b)  180° (1) ’—1-8;r99-
(e)  90° | (1) 75°
o] 20
(d) 30 180
(k) (5=
(e) 1800° o
. (1) 1
(f) 57.3 o
. o (m) 16200
(g) -57.3 T

3. Revolutions: radius is %;

)
Mils: radius is é%%Q or g%gg.

b,  (a) %% revolutions (r) 288°
(b) 1920 mils (g) g revolution
(o) 2230° (n) L
(a) f% revolution (1) &% radians
(e) 2 mizs ()  § revolution
152
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(c)

sin

sin

sin

sin

sin

sin

cos

tan

cos

sin

tan

tan

sin

co3

(o)}
[0}
\0

® = %: cos © = 7%, tan 6 = _%
e = %'= 0, cos O = 1% = -1, tan 6 = g-= 0
5 2429 5
8 = —2, cos 6 = £XEZ, tan © =
© /29 29 : F]
-2 3/13 2 2
e=“"‘~, COSG=- ’ tan 6 = =
3 13 377
6 = 1§$§§E, cos .0 = ééégg, tan 6 = - g
4 y
0= =
5. -3,4) < 3,4)
0.3 3 5
=5 or - g
X
6=%— or "g’ kj
e=--§(-
/15 5 3aviolf
o - 2410 -2/10 3,219
-———-7——- or —.r(——— Y4
o - 2¥3% . -24/10 h X
= =3 =3
=2'\/T6 . 7L/
3 (-3 -24/™ :
y
°=-3 (2, \
6. - 2vY5 2v5 \_
= 75 °f T .-1)
153
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7. (a) -cos 10° (f) cos 55°
(b) sin 20° (g) -cos 80°
_ (¢) -cos 50° (h) sin —g T
(d) -sin 80° (1) cos g7
(e) -tan 45° (J) tan %‘- T
8. Given singa = % and sine =%F then cosg = -?—3-——‘/5,
coS =7 x

D
w
s
=2
R
+
Q
]

sina cos,& + sin.& cos«

1 J/15 . 1 2.3 1 2./2
Tt T3 =51’e”/—

8in « cos, & ~ cos « sin <&
1 /15 1 2/2 /15 - 2./2
T*F TTTEFF 512 L2

o
~—
4]
[
o]
R
)

il

(¢) cos(a +,) = cos « cos /&~ sina sin, &

_24/2 /15 1 1 2./30 -1
b R SR RL Rl

(d) cos(x -, ) = cos« cos,@ + sin« sin &
242 ¥15 1 1 _ 2430+ 1
3T =12

(e) sin 2« = 2 sin « cos «

_ 1 22 4.2
—2.}.2fZ 42
(£) cos 2,3 =1 - 2 sin°@

- D
=l-2-15=3

VIaNE T
(b) - =g

() 3

[page 624 ]
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11.

l2l

13.

14,

15.

6.

(a) c = 2.65
(b) & = 57°7"
(¢) a = 13.2

(d) No solution
(e) c¢ =29

From Theorem 10-12e
sin(-6) = -sin ©
cos(-6) = cos ©

hence, tan(-8) =

cos(% -~ 9)

sin ©

_ sin
cosS\~

~0

- ~8in © -

cos

T

cos(g - 0) = cos % cos © + sin » sin
= O¢cos © + 1*8in ©
= s8in ©

sin(2r - 8) = -sin ©

il

sin ©

O-+cos O -~ 1*sin ©

sin 2r cos © ~ cos 27

Pfove: cos © cos 2 8 ~ s8in © sin 2 €

cos(©® + 2 0)

cos 3 O

cos 2 0 cos © +8in 2 6 sin § =

2(

1l + cos O

cos(2 © -~ 8) =

2 cos2 % - COS
5 ) - cos

1l + cos 6 - co8

(60

1

W

=

-
=

1

1

1l
1l

cos O =

cos ©

[péges.624-625]
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9.66 =c
50°201
8.82

90
84

tan ©

sin ©

cos 3 ©

or

940!
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17.

18.

19.

20.

2 sin © + sin 2 ©
2 8in 8 + 2 8in & cos ©
1l - cos O)

2 sin 6(1 + cos ©) -1l o6

2 sin 8(1 ~ cos® o)

l - cos @
2 sin © sin® ©
l ~ cos 8
2 sind o
- CO0S8

(cos & ~ sin e)2

cos2 ® - 2 cos 6 sin 6 + sin2

1 - 2 cos © sin
l ~ s8in 2

2 2

4 sin“ 6 cos

2 8In © cos ©°2 sin © cos
sin 2 6 +-sin 2
sin® 2

1l - 0052 2

—0082

= ©®© OO © ¢ ¢ © OO O @

sin2 6 -

2
4 sin“~ © ( 2
————5—+(s1n" © - 1)
4 sin“ ©

2 4

& + 4 sin” ©

-4 sin
y siﬂgre

M

294+ 4sint e -1

1 - 4 sin

4 sin® 6
(1 - 2 sin® 0)% - 1

1 hsmge

cos® 29 -1

y sin2 6
[page 625]
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cos 2x
cos X - 8in x

5‘M21., cos X + 8in X =

(cos x -~ sin x)(cos x + sin x) _
CoS X - 8in X -

0052 X - s:Ln2 X

cos X - s8in x

cos 2x
cos X -.81In x

T sin x - tan x = 0"
%%%—%- sin x - %%2—% =0
cos x .240 xéggsxx =31) _ 0. cos x
, sin x(cos x - i) =0
{0°, 180°)
23. l - s:Ln2 X = cos X
cos2 X ~-cos x =0
cos x(cos x - 1) =0
{0°, 90°, 270°)
24, cos X = l_:QEQE_E
2cos X =1~ cos X
3cosx=1
—cos x =}
x = 70°34! or 289°26! (approx.)
25. sin 2 8 - sin 6 =0 |
2 sin ® cos © - sin é =0
sin (2 cos 8 - 1) =0

(0°, 60°, 30d°, 180°}

157
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2 -2 0082 g

o . (2(1 +2cos 9))

1 - 2(1 - cos® 8) =2 -1 - cos ©

26. cos 2 ©

l -2 sin2 o

2 c052 © +cos O ~-2=20

cos © =-3;2;;;;;t:52
cos 6 = -1+ 4.123
cos 6 = -1.281 or .781

No solution for cos ©

= 38938 or 321°%221

[¢0)
i

27. . cos 3 6 - cos ©
cos 2 8 cos © - sin 2 6 sin'® - cos ©
(L -2 sin? 8)cos © - 2 sin 6 cos O - cos ©
cos 6(1 - 2 sin® @ - 2 sin e - 1)
cos © sin 6(-2 sin e'- 2)
(0°, 90°, 180°, 270°)
28. 2 cos® 26 -2sin° 26
2(1 - 2 sin® 6)2 - 2(2 sin © cos 9)2

M

2-8 sin® 6+8 sin 0 ~-2(4 sin® o cos® 9)

M

2-8 sin® ©+8 sin® © -8 sin® 9(1-sin2 0)

M

2-8sm?9+8sn&

6-8 sin® 6 +8 sin" o

16 s:LnLl e - 16 sin2 o+ 1
sin2 o
sin2 o
sin ©
(75°, 14°s3', 105°, 165°7', 194%531,
345971
[page 625]
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-1.281 and for cos 6 = .781

]
O O o o o

il
O H H = = P

16 + /256 - 6
32

= .934, .066

= + .966, + .257
255°, 285°,
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2

29. 2 cos“0®~8ind-1=0
2(1 - sin® @) - sin 6 - 1 =0
2-251n28-sin6-l=0
28in° 0+ sin 6 - 1 = 0
(2 sin 6 - 1)(sin ® + 1) = 0O
(30°, 150°, 270°}
30. —1-—;:[%2%—6=s1ne
1 -cos & - sin® @ = 0
l-cose-(l-cosee)=0
cos® © - cos 8 = 0
cos 6(cos ® - 1) =0
“ {90°, 270°)
31. c;ot2 X +cscx=1
| cosex+ 1 -1
sin2x sin x
l—sin2x+sinx=sin2x
2sin®x -sinx-1=0
(2 sin x + 1)(sin x - 1) =0
{90°, 210°, 330°)
32. To Prove: a cos © + b sin 6 = a? + b° cos(6 -a)
a2+b2 ———-a'———cose+#-sine)=acose+bsine.
a2+b.2 af">+b2

By Theorem 10-5a, there is an angle o« such that

—_

a2 + b2

and sin « = g

" A/ a? + b°

A/ a2 + b2 (cos o« cos 8 + sina« sin O) =»\/a12 + b2 cos (6 -a).

[pages 625-626]
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]

]

33. %% T
34, % T
35.  « = 29°, g =46320, 77 = 104°28
36. A' =39, ¢ = 156°, a' = 18
37. 169!
38. 54.9!
39. AB = 20 D
AD = 15
BD = 1 ,
/ BDA = T7°T'
/ DAB = 34°4 A
/ ABC = 111°11!
02 = a2 + b2 - 2ab cos?”
—2 =2 . %2 _ ofF - B 0
AC2 = AB® + BC® - 2AB - BC: (-cos T8 4gr)
RG? o 225 + 400 + 117
AC o 27.2
4o. x=69°, « = 76°
tan x = %. tan ¢ = &+ 20
a _a+ 20
P = tanx b = Tan «
a+ 20 _ __a
tan ¢  tan X
tan x(a + 20) = a tan «
a tan x + 20 tan x = a tan ©
A
a(tan x - tan @ )= -20 tan x
, fe— b

20 tan x
tana - tan X

a =
a o 37.1 feet
160
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A
. ¥
B, fx=21° /y=35, find h b
tan x = % tan y = 9—# —I-
a =Db tan x a+h=D>btany y J
b Y 2 |
Then b tan X + h =Db tan y b= 310 c
h = b(tan y - tan x)
h n 310 (.316)
h » 98.0!
ko, (a) 99" (b) approx. 32" (¢) / BAO = 18°
161
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Illustrative Test Questions

. 1. . Change from radians to degrees.
(a) %% radians  (p) f% radians
2. Changs from radians to degrees.
(a) %E radians | (v) ‘% radians
3. Change from degrees to radians.
(a) 165° ' (v) ‘% degrees
by, Change from degrees to radians.
(a) 2° - (b) % degrees
5. If x is in the second quadrant and cos x = «-%,

¥y 1is in the third quadrant and tan y = f%, find
cos(x + y)

¥6, If sinx = % and sin(x + y) = ig, where .x 1s in

the first quadrant and (x + y) 1is in the third
quadrant, find

(a) siny (b) tan(x + y)

7. 1r 320° = nrw radians, then n is equal to which of
the following? '

(2) "% (a) 22
(v) 3 () 3
() 7%
8. Express in the form + sin x or + cos X
(a) sin(x + %F) . (b) cos(%g - X)
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9. Express in the form 4+ sin x or + cos x.
(a) sin(x - 3w) (b) cos(5T - x)
10. If sin © = %, find sin(® - )

11,  If lzr<e<-3§7£ and sinG:%, find tan ©.

12. If cos x = %, £find cos 2x.

13, If ’canx:%—, find tan 2x.

14, Solve for values of x such that 0 < x < 27.

2 X+ 4cosx-1=0

(a) U4 sin
(b) tan® 3x = 3

15. Prove the following:

1l + cos™ x - sin™ x

(b) csc® x tan® x = tan® x + 1

16. Draw the graph of the following pair using the same
set of axes.

(a) y = sin x,
() ¥

17. Draw the graph of the following palr using the same
set of axes. '

sin 2x.

(a) y = cos x.
(b) vy = 2 cos x.
18. cos(-210°) has the same value as which of the followiﬁg?
(a) cos 30° (d) sin 60°
(b) -cos 210° (e) cos(-120°)

(¢) -cos 30°
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19.

20.

2l.

e2.

23.

0052 5]
T-sin 6 is equal to which
(a) sin © (d)
(b) sin 6 + 1 (e)

(¢) tan © cos ©
The sides of a triangle ABC

a=5 b=3, c=6. Find

of the followling?

ain ©
sec ©

1

have the following lengths:

cos « .

The height of a water tower 18 120 feet. An observer

" or. the ground finds that the

top is 30°. How far is the
the tower?

Use the law of sines

to write a formula for
computing,the length

of side b in the tri-
angle shown in the '
figure.

In the parallelogram
shown in the figure

‘AB = 8 inches,

BC = 6 inches, and

o = 120°. What is

the area of the parallelo-
gram?

164
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10-15.- Answers to the Illustrative Test Questions
1. (a) 105° (b) 7.63°
2. (a) 180° "~ (p) 36.4°
3. (a) 2.9 radians (b) glaradians
4, (a) .035 radians (b) .027 radians
5.
5 .
4 " y
_ \5 -2 /7 N
-3
-5
13

cos(x +y) =cos xcos y ~sin xsiny

=-HC-8 - @

= %€-+ %% = %g (x +y) 4in III Quadrant.
6 (a)
5
3 (x+y)
X , -2 //a\\, ’
a
-5
13

*sin y = sin[(x + y) ~ x]
sin y = sin(x + y) cos x -~ cos(x + y) sin y
siny = (- g@) - (- DR
sin & = - T% + %g
siny='20+36=%g

(b) tan(x + y) = Egg = f%
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8. (a) sin(x + —5275) = sin(x + —E) = CcOS X

3T

(b) cos(-E- - x)

-sin x

9. (a) sin(x - 37) = -sin x
(b) cos(5T - x) = -cos x

10. sin(® - 7) = -sin ©

If sin 6 =3, then sin(® - 7) = - o
5 5
L
11. ’can6=--3-
12. cosax=2cosex—l
2
cos2x=2(::73v) —1=-%
13. tan 2x = —=2 tan X
1l - tan™ x
1
25 4
- tan2x=-————1-§=-3-
1-(3)
14, (a) b sin® x + b cos x -1 =0
Ur-llcosex—i-llcosx-l:O
1 cosex-h cos x-3 =0
0]

(2 cos x+1)(2 cos x~-3)

It

{120°, 240°)
(b) tan® 3x = 3
+ V3
3x = 60°, 120°, 240°, 300°
20°, 10°, 80°, 100°

tan 3x

It

X

It

1649
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15. (a) s%n 2x s— = tan x
l +cos™ xXx - sin™ x...

2 s8in k cos X _
2 0032 X

sin x _
cos X
tan x =

(v) csc® x tan® x = tan® x + 1

sin2 X _

1
sin® x d052 X

7]
)
]
]
i

ct
2y}
o]
"
+
)
L]

16.

g

( = Y=sin, x - y=sin2x T

AN
N~
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163

17. . |
2 T
“ \g=2 cos. X | :
NC 0 e o O R
‘r
I , »
\\ ]
N
™
N
N LS
2 2
0 Y e e v e 1y
8 117 3 3 1| 6 RN ST 1T 3 / 8
N
I
4 P
T_ .‘i\" y-COS. t
-l A U Lt
-4 ‘ ] 1
N i V.4
g N e \\\,_Zf;zf
' o BEEERE AT
18. cos(-120°) (e)
19. 1+ sin © ﬁb)
20. 52 =324 6% -2:3.6cosa
36 cosx = 45 - 25
cos € = %%
cos o = g
21, 208 reet
o0 sin 100° _ s8in 30° _ 8in 50°
: b - a - C
o o
b= 2 sin 100~ _ ¢ sin 100
sin 30° sin 30°
23. Area = 41.6 square inches.




Commentary for Teachers

Chapter 11

THE SYSTEM OF VECTORS

"11-0. Introduction.

Vectors have both a geometric and algebraic aspect. The
.fArst part of the text, 11l-1 and 11l-2, is primarily geometric..
The algebra of directed line segments 1s considered to be a
pleasant device for solving geometric problems. In Sections 11-3
and 11-4 the algebra of vectors is worked out more carefully.,
‘Section 11-5 is about applications of vectors to physics. While
this kind of discussion helped form the whole subJect originally,
it no longer is the central topic in vector studies. Section 11-6
18 concerned with the system of vectors as a whole, Instead of
examining individual vectors the student 18 exposed here to
statements about all vectors. '

11l-.1l. Directed Line Segments,.

Tite main ideas of this section are equlvalence of directed
lineé segments, addition of directed line segments, and multiplica-
tion of directed line segments by real numbers. The student 18
required to translate statements of geometric relation 1n£o
algebralc language,

Exercises ll-l. Answers.

— emedn e e

1. AA, AB, BA, BB .

T . R e T - N

— — — va—
2, AA,AB, AC,BB, BA, BC, CC, CB, CA .

This 18 true whether the points are collinear or not.
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3. AA & BB 2 CC & DD
—— — — —
AB £ DC , BA & CD
—y — — —
‘ADéBC,DAéCB o o
—— — e

AC , CA , BD ‘DB are also included in the list- of “directed-
line segments. From plane geomeiry the dlagonals of a
p4rallelogram have equal measure, This might lead one to

say AC and BD are equivalent. One needs to turn again

to the Definition 1l-la for equivalent directed line segments.
The same consideration can be invoked to convince one that

w4

AC and CA are not equivalent. B
——
4, (a) AC
(b) AC
o—
(c) AC A c
(d) BA
—— — — — — — —
(e)i\i, (AB+BC)+CA=AC+_(_:£—AA.
() BB, for BA+(AC+CB) BA 4+ AB = BB .
(g) cB + ch . _Consider what must be added to AC to give CB.
+ AC = OB
— ——— ——

CB + CA + AC = CB .

— —— —— —
5. (a) A X BAX=71‘5A,BX=-]§BA,I'=-]§,
s =% .
—_— —_— —_
(b) A B X AX=2AB,BX=-1BA, r=2,s8=-1
—— — PRGN .
(¢) B A X AX=-1AB, BX=2BA, r=-1, 8a=2.,
— PRI Su— m——
@) A, X QAx=-§AB,Bx=%BA,r=§,
S::%.
(e) A X AX=33B,BX=--3Ba 3
& : B . =5 AB, BA=-5BA, T=13,
S.—.-.--]é.
—— ——
(f) B, A X AX=-%AB,BX=3Bb, r=-%,
_ 3
S 7 -

[pages 634-635]
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VI TR (&) 3
() 2 (0 3
(¢) cX (g) 2

'11-2. Applications to Geometry.

This section has two main topics. The first is that vectors
can be mahipulatéd according to some of the usual rules of
-algebra. The second is that certaln problems of elementary
. geometry can be solved by such manipulations.

Each of the examples 1s worked out as an 1solated problem.
No niiit 1s given about a general approach to all of them. There
is such a general approach which the teacher may want to discuss.
Each problem can be solved by

(1) Choosing two directed line segments on non-parallel
lines.

(2) Expressing each of the other directed 1line segments in
terms of the ones originally selected.

. Exerclses 11-2, Answers.
) a— —

1. (a) DB =DC + DA , by Definition 11-1b and equivalent
directed line segments.
(b) EE = DC + CI CB .

— — er—
(c) DB = DC + CB = AB + (-BC) = AB - BC [additive inverse].
(d) DB = DA + AB = - AD AD_+ AB .

(¢) TB=CB + AB = - BC - BA .

171
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2. (a) The ray AB .
(b) The segment AB .
(¢) The ray opposite to the ray BA . : :
(d) The segment whose midpoint is A and which has B as:
an endpoint.

" "3. Hint: :Note the development from the case where elther r- or -~ -
s 1s zero and the other varies to.the.case where both
are varilable.

(2) The line ac .
(b) The line -
(¢) Any point on AC or Bx or between AC and BX where BX |
(d) Any point on ‘B or TY or between BB and CY where CY |
(e) Any point inside the parallelogram ABCD where D 1s
the intersection of Eﬁ and E? or on 1ts perimeter.
(f) Any point on B (line through B || Q).
(g) Any point on & (1ine through c || §3).
*(h) Any point on B¢ .
*(1) Any point on 53t where C' ison R and A is
the midpoint of segment cie .
*(J) Any point on ?ﬁ where P 1is located on IB so that
" AP =2AB and Q is located on KE so that 5Q = 3AC .
k) Any point on EF where AE 3 B and AP = g Ac
(E on AB and F on AC)

12
el

=<

s} — — c —
*(1) Any point on GH where AG = - = AB and AH = - g AC.
b, P ¢
A B
— —
(a) AB - AC
—
-AB
—— —
AC - AB
AN
‘4}\ >

[pages 642-643]
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—_ = {C Q

A8 -(AC-AD) {AC-AD) <
— — ~
AB (AC-AD)

Let AH = rAD and AE = sAB. Then HD = (1-r)AD and
— —_—

EB = (1-s)DC. Note that the opposite sides of a
parallelogram are equal.

——

Let V) = AH + #HF and V, = AE + mEG. We rust show that
these are values for £ and m for which V; ='V;' and that,
for theii vg}ges,_iither V1 or V2 is equal some constant
times ég. V1 = Vz_éimpliig
(1) AH + £(HD + DF) = AE + m(EO + 0G).
Substituting for Kﬁ, KE etc, in terms of Kﬁ and
56 and collecting on Kﬁ and BE we obtain
(2) (r+ 4 -Ar)iD + &DC = (s + m - ms)DC + mnAD
This equality (2) is satisfied if ’
(1) r + L_-02s=mr and (11) .Is =g+ m - ms,
Solving (1) and (ii) for £ and m in terms of r
and s we obtain

. _ S
() fegedoy 5 megyEoT -

[ N —.
For these values of I and m , V1 = V2. Moreover

—

— — — r — —
(4) Vi = AH + LHF = rAD + 55 —=7[({-r)AD + sDC]
_ rs L BAY rs . A
_—-——————r+s_1(AD+DC)———-—r+S_]:_\AC.
S:ane"?1 equals a constant times AC the intersection
— —
of HF and EG 1ies on AC. QE.D

Question: What happens when r + 8 = 1%

a) OB = 0q + Ob.

—

e) DB =20 + 2 0P .
(pages 643-644]
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(b) OC = 0 - OF .
(C) 613:—66"0-—‘0
(d) OA = -0Q + 0P .
(
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(f) K =2 0Q - 2 OP .
(g) TA =-200 +20F .
—— —
(h) BD=-20Q - 2 0P .
7.
3 D
l
|
|
\\ // :
N/ !
H 5 . c
F \';*———'—%\-\-——-—;AG
T~ I -7\
P \
AT~ < e
- ~ - \
// \\\\\ .
A )

Let O Dbe the midpoint of &b,

P the midpoint of EE,

Q the midpoint of . HG.
AO = 5 AD = 5(AG + D) 5(AB + BG + GD) = -Q-(AB+AF'+AH)
AP = KB + %-EE = BB + %(EF + FE) = AB + %-—Z + AF + TE)
=AB—'§'AB+§AF+§AH g( + AP + AH).
AQ—AH+-2-HG=M{+-§(HA+AG)—AH+-§( HA + AB + BG)
= I —-% M + % AB + % AF = %(Eﬁ”+ AB + AF)
‘. Ka = K? = Kﬁ and points 0O, P and @ coilncide.
11-3. Vectors and Scalars; Components.

The main topic of this section is the algebra of vectors
which is given in the component form [p,q] The transition
from coordinates (of points) to components (of vectors) is a
little subtle. Once the change-over is made, the algebraic
properties of vectors are easily established.

174
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Exercises 11-3. Answeprs.

1 ty
e B(4,3)
e A(l,2)
.C(G,l)
K1
(a) Let (a,b) be X .
Then AB is [(4 -1), (3-2)].
Then CX is [(a - 6), (b -1)] .
Since AB = CX ,
a-6=4-1,b-1=3-2
a=9 ’ b =2,
The coordinates of X are (9,2) .
(b) a-1=4.6,bp-2=3-1
a = =1 b=4
’ X(-1,4)
(C)l—a=u~—6,2—b=3—l
a = 3 b =0
X(3,0)
(d) l-a=6-4,2-b=1-3>
a = =1 b=4
| X(-1,4)
2. (a) 2l-—(—l):a.—(—6),-"3'-2=b--(—1)
a = -1 b = -6
x(-1,-6)
y
Al-1,2) o

[page 65%]
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(b) a - (-1) =% - (-6) ,b-2=-3-(-1)
a=9 , b=20
x(9,0)
(¢) -1 -a=14_-(-6) ,2-b=23-(-1)
a = =11 s b=1U4
x(-11,4)

(d) x(9,0) .
3. (a) [3,2] + [4,1] = [(3+ 4) + (2+ 1)} =1(7,3], by
Theorem 11-3b.
(b) [1,-17 .
(¢) 4[5,6] = [4% -5, 4 - 6] =[20,24] , by Theorem 11-3c.
(d) [-20,-24], by Theorem 11-3c. _
(e) [-5,-6] , by Corollary of Theorem 1ll-3c.

(f) ["‘5,"6], hd
(g) 3[%,1) + 2[-1,3) = [12,3] + [-2,6] = [12 + (-2) , 3 + 6]
= [10,9] . '
(h) [14,-3] .
4, (a) x[3,-1] + y[3,1] = [5,6]
[3x,_x] + [3y,y] = [5:6]

[(3x + 3y) , (-x +¥)] = [5,6]

33X + 3y = 5
X+ y=26 »
The solutlion set of the System is [('%?;E?)} i

That is, x = ‘%9 and y = %% .

(b) The resulting system is,

X + 2y =1 whose solution set is ((- %y%)] .
2 + 3y = 2 _
1 l
That is, X = = —5- and y = /—5- .

176

[page 654]




713

(d) The solution set of the system

3 + 6y = -3
2x + 4y = -2 1is [(a,ZEZf-lQ] for all real a .

For instance, one element of the solution set 1s

(3,=25%), or (3,-2) . Ask students tc find other

palirs of. numbers which belong to the solution set,

‘There will be an infinite number of such palrs.
5. (a) [3,1]

(3,1}

af1,0] + b[0,1]
[a,0] + [O,Db]

"

[3,1] = [(2 + 0) , (O + Db)]
a4+ 0=3 and O+ b =1
a =3 and b=1
(b) i: 1 and b = -3 .

(¢) 1 =a[-3,1] + b[1,-3]
[1:0] = a[“3:1] + b[l:-3]
[1,0] ["38':8-] + [b:"‘3b]
[1,0] = [(-32 + b) , (a ~ 3b)] .

"

"

Hence a and b satisfy
=332 + b =1
{a-3b=0.

3 1
We conclude that a = - g and b = - g -
(d) J =2a[-3,1] + b[1,-3]

{0,1] = a[-3,1] + b[1,-3] .

Hence a and b satisfy

-3 4+ b=20
{ a-3b =1

We conclude that a = - % and b = - % .

‘ 177
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6. 3L - 23.= a(3; + 43) + b(ui + 33)
31+ (—2-“= (3ai + uaj) + (ubi + 3bJ)
3T+ (-2)7 = (32 + ub)l + (ka + 3b)J
Hence a and b satisfy
(3 + 4b = 3
{ ba + 3b = -2 , ‘ : e
Ve conclude that a = - -1-,71 and b= S

Xl
)J

11-4., Inner Product.

The system of vectors before the inner product 1s introduced
1s not adequate to handle all of geometry. Only a few problems
relating to angles and distance can be covered. The introduction
of the inner product enriches vector algebra to the polnt that 1t
_1s capable of being a completely adeduate substitute for Euclidean
Geometry.

The student is not likely to see these implications of the
introduction of inner product. He should only be expected to
compute them and to use them in the simple applications 1lndicated.

.-

Exercises 11-4, Ansvers.

-

1. Given I =[1,0] and J = [0, 1]
(a) X -¥=101,0] + [0,1] =1-0+0+1=0.
(b) [1,0] - [1,0] =1 -1 +0+0=1.
(C) [0,1] [1,0] = O .

(a) 1

(e) O.

(£) -7 .

(g) -7 .

(h) ac'+ bd .
(1) 4a“ + Wb
(3) ® a® + 807

[pages 654~-66L4]
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—— -— i
2. X .« Y= |X]||Yjcos o
(a) 2.3 cose =0 ; therefore,® = 90° .
£y 81.4°
() 109.5° .
(a) 60° .
(e) 131,8° (g) O
(£) 33.6° (n) 180°

3. If ?_L—)? then —)?—Y;= o .
(a) [3,4][a,4] = O

. 16
iz+l6=0}a=——3—.
(b) = . '
(¢) 3.
(a) & .

k., (a) \/12 + 02 \/62 + 1°cos @ =0

cos © =0; 8 =90°.
(p) o.
(c) 90° .
(a) o .
(e) 90° .
(f) 1107.6" .
(g) 107'60 . ac + bd
(h) cos e

" /8% 4 0 (el + dO) |
(1) \/QQ + be\/i6(a2 + b2) cos 6 = f-‘:(a2 + b2)

cos © 1

e =0° .

(3) ©0°. ‘
- — — -
5. Note that (el + dj) + (-di + c{l 129 +cd =0 .
Therefore since c2 + d2 #£0, cil +dj 1is perpendicular to
- -
-dl + ¢j . A non-zero vector is perpendicuiar to one of
these 1f and only if 1t is parallel to the other,

[page 664]
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}

— —
6. (a) Component of Y in the direction of X 1is |Y] cos 6.

IFY‘I = V32 + 42 =

—

of X +¥. (1)

5. To find © we note two expressions
XY= If]-lYI cos ® and

- — -

(11) X - ¥ = XYy + XY, Wheve X = x)1 4 x,]

—

and Y = yli + ygj.
— e
From (i) and (ii) we have XYy + Xp¥p = 1X11Y] cos ®

1:3 + 04 = Y12 + 0% . V32 + 42 cos 0

3=5c¢0868 ~——> cos 6 = %

Desired component = 5~% = 3.

(b) Using same plan as in part (a) we obtain 4 = 5 cos 6.

.. Component of Y in direction X = 4

(¢) 3°1 + 4.0 = 5.1 cos . cos 0 = % )
|§n cos 6 =1 - % = %-.

(d) 3:0 + 41 = 5°1 cos 6. cos O = % .
|3?| cos 6 = %

(e) 3:3 + 4.4 = 5:5 cos 6. cos 6 = 1
component =65 « 1 =5 ,

(£) 15 +8 =5 V29 cos e. cos 6 = Si?§§
Y cos © = Wf§§ --5;%23 = %g.= 4.6

(g) 3a + 4p =5 - \[;§-+ b2 - cos ©

. ZZ : :2 = cos ©
Ii?l cos O = éé_g_ih = desired component.
- . [page 664]
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(n) pa +ab = sz +q° Va2 + b2 cos ©

Desired component = Va2 + b2 cos O = _pa + qb
Yp- + q

11-5. Applications of Vectors in Physics.

The main topic of this section is the use of vectors in
solving certain problems of physics. The student does not have
to know much in the way of physlcs to handle the material, but
there are a few bits of information which '‘are taken for granted
in the problems (for instance, that the direction of a force
transmitted by a cord must be along the line of the cord).
Primarily the student should come to this work knowing about
addition of vectors, scalar multiplication and inner products.
He should see how this knowledge can help him to learn substantlal
amounts of physics easily. For instance, forces in equilibrium
can be discussed readily in vector language.

Two extreme points of view should be avoided.

(1) The student could get thelimpression that hls knowledge
of vectors makes him an expert physicist. This 1s not so. He. . ..
needs to learn a little physics as well as vector algebra to
solve these problems,

181
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(2) The student could get the impression that in spite of
his knowledge of vectors he 1s unable to solve the simple problems
given here without a lot of supplementary study of physics. This
1s not so. He is given a few observations on forces, resultant
of forces, forces in equilibrium, work, velocity. These should
not be made to appear so formidable as to dlscourage him,

Exercises 1l1l-5a. Answers.

1. 5.2 1b.
2. 5 o o o -~
R = (|R|cos 120° , |R|sin 1207) R
A ——
1 R| /7
= (" 3 IRI ’ "“) . ';
- . —
S = (|S]cos 30° , [S|sin 30°)
S| 1 = ° °
-2l L E)D . 60 30
— -—
T = (0, - 1000) . {T] = 1000
A !
— — —— —
R+S+T=0. _
1= S &l Nt

(- 3irl + 4818 IRLYS ) 275) - 1000) = (0,0) .
—

|IR| = 500./3 X 866 .

—

|s| = 500 .

The force of wire AC on C 1s approximately 866 pounds;
the force of wire BC on € 1s 500 pounds; for equally
'strong wires, CW is more likely to break since the
greatest force is on 1t and BC 18 least 1likely to break.

[pages 665-668]
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An alternate solution can be gained using "free" vectors,
right triangles, and the resultant of ?; and '§ as shown in
the sketch. Using the parallelogram law for the addition of
the vectors, ?ﬁ mist be the
hypotenuse of a 30° - 60° right
triangle and have a length of
1000 units. Hence, PN which
lies opposite the 30° angle has a
length of 6500 units. Similarly
in right triangle LMP, TP 1ies
opposite the 60° angle; it has a
length of 500V3 units. ‘

Force in AC 1is 10000//3 ® 5770 .
Force in BC is 5000/7V3 = 2885 .
Force in CW 41is 5000 pounds.

— —
OP‘E“(|6§| cos 23°, |0P| sin 23°)
— — fo) — fo) —
0Q = (]|0Q] cos 113°, |0Q| sin 113%) ow = (0,-300)
—n — i
OP + 00 + OW = 0 ie. (|O0P| cos 23° + [0Q| cos 113°,
— o —-— o
|oP| sin 23° + |0Q| sin 113° - 300) = (0,0)
— —
Solving |OP| ® 117 and |OQ| ® 276 .

From the Law of Cosines,

2 2 2
cos B = 7 g 6 =2
=Sk~ o.m .
Angle B % 14° = angle BCD .
2 2 2
Also, cos C = 2t g -7 - % & - 0.3750, and C = 112° .

Angle ACE % 180° - (12° + 112°) =
Forming a vector dlagram in a
coordinate system with a vector
unit of 1 pound of forcé, the
componenfs of the vectors are:

[pages 668-670]
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it

([Rlcos 54° , [R|sin 54°) ¥ (-0.588 |R| , 0.809 |R|) ;

({Sleos 14° , [S]sin 14°) % (0.970 [8] , 0.242 [8]) ;
= (0,-20)

N
R
—
S
-
T

iy

Since '??-+ S +'$'='6', adding the left member vectors gives
the equal vectors

—

(-0.588 ﬁ?l + 0.970 |s] , 0.809 l'f?l + 0.242 |S| - 20)
= (0’0)

Equating corresponding components, we have

-0.588 [R| « 0.970 S| = 0 ,

e —
and 0.809 |R| + 0.242 |S| 20 .

Solving these equations simultaneously, we have

IRl = 3=2%g sl .

0.809 (—8—:%5%) Is| + 0.242 8] = 20 .

(1.33% + 0.242) [S]| = 20 .
vy 20  ~
Is| = 575 © 12.7 .

0.970 ~
6‘.‘%88 (12.7) ~ 21.0 .

The force on wire AC i3 approximately 21 pounds; on

wire BC , approximately 12.7 pounds. Wire AC 1is the
one which is most likely to break. '

it

—
IR|

The force on wire BC at C 1is 500 /3 ~ 866 pounds; on
AC at €, it i1s 1000 pounds; and on CW at C , 1t is
500 pounds.

184

[page 670]



721

7. R = ([Rlcos 210° , |R|sin 210°) 0
— l — =
- - &R’ , -3 RD .- y
— — o —_— o o
S = (|S|cos 45° , |S|sin 45°) 45 »
L]
N 1 - 30
= (#‘ISI » 757181 . = [T|= 2000
—
T = (0, -2000) ‘

.

— . .
Since R+ S + T = 0, addition gives two equal vectors; thus
(- -l + - [S] , - 3 Rl + 7[R - 2000) < (0,0) .

Equating corresponding components glves the following pair of
simultaneous equations: ’

- l—-&
..~f§—lal + 75 lsl =0,
— —
- 3 IR +7J§"ls| - 2000 = O .

In the first equation,

Using this value in the second equatlon, we obtain

—

) Is| = 2000 .

| %ll
N

"C\J}L _-—)——2\3%0 X 6750

185
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8. The vectors are placed in a coordinate system using 1,000
pounds of force as a convenlent vector unit. The vector
components are as follows:

Fept = [|Fept|cos 30° , |Fept|sin 307]
PUOEEENNS. FENOR..

Er*‘ _ lFeg?' Vﬁ; , IFeptI } ; - -
ept 2 Fu Fept
— — fo) — (o] i
F = [IFlcos 120° , [F |sin 120°] 90

— —_ 30°
- m IFLIf??] | I
= 2 » 2 3 1 —
. IRL
F = (0,-6) . :
:

Since the airplane 1s moving in a straight line at constant

speed,
——— —— — —_—
Fept + FL + Fg =0 ,
Adding the vectors in the left member we obtain
———— |_.__A. ——— — |
|Feo | V3 Fp i Pe el 1Pl /T
L t L .
Spe -+ 0, —RE 4+ -6 | = (0,0)

Equating corresponding components and solving the equations
simultaneously, we obtain

———

|Fept| = 3.000 , and |FL| =3 /3 % 5,196 .

Hence, the ef_active propeller thrust is 3000 pounds and
the 1ift force 1s approximately 5196 pounds.

136
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FL
—
F
ept
90’
15°
 J Fg
— — o — o
Fp, = (|FL|cos 105" , |FL|sin 105°)
— —
= (-0.26 |F | , 0.97 |Fyl)
— PR
Fept = (IF eptlcos 15° | eptIsin 15°)
_ = (o.o7 |Pq tl » 0.26 IFeptI)
Fg = (0,-10,000)
Since FL + Fept + Fg = 0 , we have the two simultaneous

equations:

— o———
(1) -0.26 |Fp| + 0.97 IFeptl =0,
— —
(2) 0.97 |F| + 0.26 IFeptl = 1o,ooq .

Solving this system of equations, we get

IF | = 3.7 IFeptI
——
and lFeptl = 2,600 pounds
—
|FL| = 9,500 pounds

187
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— [RSSIeL. ar——tn ——n —
10. Fp = (IFlcos 100° , |Fplsin 100°) X (-0.174 |F |, 0.985 |F.|) .
— — — — —n
Fqy = (IFglcos 10° , |Fylsin 10%) X (0.985 |F4l , 0.174 |F4l) .
———
Fy = (0,-500) .
0.17% |F | + 0.985 |_§;1| -0 .
——— — —t
0.985 IFLI + 0.174 IFdI - 500 =0 . FL
—— 0' 8 JRSINIE.
|Fy | =_%‘Eo. = IFql - =
—— —— d
(0.985) (8:15735 |F 1) + 0.174 |F4l = 500 ‘:" 4=
I?I — 500 ~ 87 3 ng|=500
al = 5.5 + o.175 ~ ©°F-° - '
— y

IFyl % 3982 (87.3) % 4ot .

Exercises 11-5b. Answers.

1. —

—_— s
Febb = Fp cos ©
W=a - F
(a) F_, = 10 cos 10° % 10x .985 = 9.85 1b.
Work = d » F_ . % 10 x 9.85 = 98.5 ft. 1b.

[pages 672-673]
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it

b) W = 100 - 10 + cos 20° & 1000 :.940 = 940 ft. 1b.

(
(¢) W = 8660 ft. 1b.
(

d) W=4d + 10 cos 10°
1000 & d - 10 - ,985

it

d = %Qg% = 101.5 ft.
(e) d=n 35%999——ﬂ— ig? - 10.6 ft.
1000

(£) d

)]

700 . cos 0° = 10 ft.

(8) 4= 55880 gor = 150 or7s = To98 ¥ 57TL.4 1t

2. / between P and Fb

= 6 since sides of /S
are mutually perpendilcular, S

(a) le|=|P|cos(% -8

—
IFd|=|P|sin o
W=F, -d
d P sin & (Note that this is ¢ ...alent to 1ift-
P in a vertical direction from R to

S )

W

10 + 10 * sin 10°
W% 100 - .174 = 17.4 ft. 1b.

=
il

(b) W 342 ft. 1b.

[pages 673-6T4]
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500 ft. 1b,

—_
Q
~
=
il

U
P sin ©

575 ft.
292 ft.

il

il

il

571 ft.

(o TR o T o THE o ]

10 ft.

Fxercises 11-5¢. Answers,

1.
2.

~ 1.8 miles

From fig. (a) we determine the
angle which the path of the boat
makes with the shore line (/o¢)
and the speed of the boat along 0Q.
Let length of 0Q = d.

2.1.3% +0.5°

d
d="V1.94 = 1.39 = distance traveled.

The boat covers the distance d 1in
25 minutes. Hence 1f s 1is the
speed of the ooat along 0Q

. D
S ﬁ—l.39

8 = 3,34

Figure (b) 1s our force diagram.
We have
— — ——
OT + TR = OR
-—
|OT| = & |OR| = 3.34
and / TOR = 21° ., 190

[pages 674-676]
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By the Cosine Law

ITR|Z = 42 + (3.34)2 - 2.4.3.34 cos 21°
|TR|] & 1.52
By the Sine Law applied to A RTO

3.34 - 1.52
sin © sin 210

8 & 51°

J37T % 6.08 miies per hour.

Since the veloclty 1s constant, in one second the body wili
reach the point (2,1.5) . Thus, the veloclty vector is

éI + 1.53;. The veloclty of the body 1s 200 feet per
second"to the right, and 150 feet per second ugward, Its
speed 1s 250 feet per second,

At t = 15 the body 1s at the e=13
point (130,131) . Thus, it has 300
moved 1300 miles to the right,
and 1310 miles upward.
. 504 .-
v=2
0 50 100 150
Since shlp B does not cross the :
vwake of ship A until after
T = 2, the ships will not
collide.
t=0

_—Path of Ship A

t=1 t=2
Path of ship B

[page 676]

191



728

7. Since both ships are at the polnt
(14,-1) when t = 4 , the ships
wlll collide,

t=1

) NG
t=1 Z? t=2 t=3 TN
P

ath of ship B
8. We compute the displacements that would result from one hour

of travel. Thus,

R = 47 | -
L ’ ! BR
— — —
Bp = -3(cos © )1 + 3(sin6 )y . “\\\\7h\\\\
Consequently, ' ©
B, = Ry, + By

— —
= (-3 cese)i + (3 sine - 4)3 .
——
The scalar components of BL are both negative. This means
that the boat will actually be carried downstream. The

sltuatlon 1s illustrated by the dlagram below.

B
L

In order to drift downstream as little as possible @ must
be determlined so that tan « is minimum:

-3 8in €6 + 4

tan & = =55 CcOS @

[page 676]
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This problem can be handled easily by using calculus, However,
by making use of a table or graph we can obtaln an approximate
solution without using calculus. Thus, the smallest value of

tan « occurs for '

sin ¢ =-131',
2] xu9o-

For this value of ¢ |,

— —

B, = -3(.66)1 4+ (3x £ - W)J
= -1.98% - 1.757 .

The corresponding value of « 18 glven by

tan o -3 (@) + ! 0.88
n -4 e e I— = ] .
34 32}“7
~ n°

Travelling in this direction, the boat will land at € ., Thus

B A

AB = -Emile »
BC = 7z tan « =3 x (.88) = 0.44 miles.

Therefore, the boat must be carried at least O0.44 miles
downstream. Another way of saylng the same thing ls that ¢
1s the farthest point upstream at which the man can land the
boat. ‘

The intultive meaning of thils problem 1s quite subtle. Let
us consider the effect of different values of ¢ . Evidently if
® <. 0, then the man 1is using a component of his rowing to help
the current sweep him downstream. This is the very opposite of
what he wishes to do.

[page 676]
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Hence, a wise choice of 6 requires that O < o < ?

Tt might seem sensible to head straight for the opposite
shore; i.e., to choose ® = 0 . Let us examine this possibility
carefully.

— — — ontra—— ——

A

It 6 1is chosen so that it is about 49° , then the man will
have sacrificed a component Eﬁ' which would carry him to the
opposite shore, but he will have gained a much larger component
BC which is keeping him from being swept downstream For

& ~ 49° he is crossing almost as fast as he would be for
@ = 0 , but he i1s not being swept downstream so rapidly. It is
a good bargain.

What would happen if the man sacrificed even more of the
crossing component in order to gain a larger component working
against the current? Suppose he chooses 2] 70 . In doing so
he sacrifices a crossing component of BA in order to gain the
component BC which opposes the current. The price is too great,

however.
c

e

———— — -

|
A B °

Even though the man is not being swept downstream so rapidly, he
will actually be swept farther downstream. This is true because

191
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the crossing component 6§ is now very small; consSequently, it
takes him a long time to cross. During this time, he 1s swept,
slowly but surely, a long way down the stream.

Finding the optimum value of © 1s, therefore, a matter of
compromlise; it 1s motivated by a desire to oppose the current as
much as possible, without slowing pfogress toward the opposite
shore more than a little. '

Exerclses 1l-5d. Answers.

z
1. (a)
Lk
j y
i
X
31 + 83-+ sk
(b) z
* L

_.V“-
~

37 + 3k

[pages 676-67T]
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Since the graphs for each of the remaining parts of thils
problem are similar to (a) and (b), they have been omitted.

2. (a) 16 (d) o
(p) 10 (e) o©
(¢) O
3. (a) 16
3755
(b) 10 .
¥/25 /12
(c)
(@) o
(e) ©
4, o

#5.  We shall give two solutions to this problem.
First solution: Let us first find vectors having the
directions of the suspending cords. By orienting axes
appropriately we obtain the top view represented in the
following dlagram. Y

cable (2)

30°

cable (3)

—

Let A be a vector which is parallel to 'cable (1) . Then

the vector -1 makes an angle of 30° with.4£ , an angle of
—

60° with k , and an angle of 90° with J .

— —_— e

-
Let A = axi + ayJ + azk .

196
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If we "dot" 3> into both sides of this eguation, we get
J

P Y — —
J - A= (ax1+ay1+ak)
———ia —— e — . a— —
=a, (J-1)+a, (3-J)+a, (J k)
=a, (0) + ay(l) + a,(0)
=ay . '
Now, if we choose |A] =1, we get
a,=J * A 3] x |Alcos 90
= 0 .
Proceedirg similarly, we have
1 A= a, = CoS 1507 = - cos 30
— — 1
'k - A=a, = cos 60° =% .

Hence,

3 = - 15%—1 + 2k

We now seek a vector B which is parallel to cable (2).
Let us first find a vector Y of length one, which liles
in the xy-plane directly under cable (2) (i.e., T points
along the noon-day shadow of cable (2)).

'Evidently,

—a‘='§ '*“Q§ﬂ
‘Now, B lies in the plane of ¥ and W . Hence, we can
use k and u "as"basis vectors. Thus,

B = blk + b2u .

To find b1 and b2 , we proceed as before.

Let |B| =1 .
— e
kX - B=1by = cos 60° =-% .
- =5 o] A
u B = b2 = c0os 30 = . : e

[page 677]
197




T34 -

Consequently,

=-%]:-+¢%;{%fi'+'zg:3>
¢§§4.+ ﬂ-J + ? k .

—— '
By symmetry, we can sSee that C , the unit vector parallel
to cable (3), must be

?:4—?— %?4"]2.—1‘?

The forces are equal in each cable, Let one unit of length
of vector represent one pound of force. Then, since the
cables are flexible and can transmit only forces parallel
to ygsmse;xfs, we have

Fl = CA s

F2 = CB ’
. — —

F3 = ¢C

We can now find the scalar c¢ . The total upward component is
1= i - -
c(-§k+-gk+-§k)=0-§k .
But the total upward component must balance the downward
force of gravity. Consequently,

%C=l5,
¢c =10 .
—_— —
Thus, F; = 10 A
—_—

-—
Since |A| =1 , it follows that |Fl| = 10 . Therefore,
there 1s a tension of 10 pounds in egch cable.

198
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Second Solution: Begin exactly as you did in the flrst
solution, but notice that once we have

— — l-—}
A"’%‘“ﬂé“

ve know that

)

—n - - 1 —
B=bl+bJ+pk,
C — - 1 -
C=Cxi+cyj+-2'k

We do not need to find x ,and y components. It suffices
to work only wlth vertical components.

As before,

Fl = CA ,
Fy,=c¢cB,
F3 = ¢C ;

and we get
3ec=15,
e =10 s
|7yl =10 .

Hence, we agaln find that each cord exerts a force of 10
pounds on the lighting fixture.

Let us choose axes so that the xy-plane is horizontal, with
3¥ pointing north and ff' pointing east. The three vectors

we need to conslder are as follows:
—

Ag (representing the velocity of the alrplane
with respect to the ground) ;

K; (representing the velocity of the alrplane

__ With respect to the air) ; and

W (representing the velocity of the wind with
respect to the ground) '

199
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We know from physics that
— A —
: AG = Aw + wG .
Now, Ay, = 100 [(cvs 307)3 + (cos 607 )k]

—— —

50/3°J + 50 k ;
—— —
also,wG =30 1 .

Consequently,
— — — N
Ap=301+5./33+5k.
—
The upward component 60 k does nct appear in the ground
speed, 1In fact, the ground speed is

——— C — .
|Ag - 50 k| =4/30° + (50./3)°
= ./BH00
Q92 miles per hour,
7. Evidently, the pilot will achleve the fastest ground speed

if his heading 1s with the wind. Using the notation
employed in Problem 6, we have .

— Ay =50/31+50%,
Bg = (30 +50/3) T + 50k ,
.

—
2
|AG - 50 k| =\/(30 + 5_o-f§)
£ 117 m.p.h.
Similarly, the smallest ground speed will be achieved if
the pilot heads into the wind; in this case the ground speed ..
will be
—— —— . 2
Ag - 50 k| =+/(50 /7 - 30)
| % 57 m.p.h.
8. The proof 1s analogous to the one for two dimensions.
— —— —
9. 7T1-3J+5k
1

210,

11.

o5

[page 678]
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11-6. Vectors as a Formal Mathematical System.

The main topic of this section is the solution of a problem.
To teach this section successfully the teacher must do more than
solve the problem. He must help the student understand what the
prouiem is and also help him understand that®@hich is olf'ered as a
solution of the problem really solves the problem.

First, let us consider what the problem is. We learned that
vectors obey certain rules. We ask whether vectors are the only
objects which obey these rules. The answer is certainly "no" ,
since forces and velocities also obey them. The question which
we propose is whether any system of objects which obeys these rules
can be correctly treated as a system of vectors-~whether it is
"essentially the same" as our system of vectors. We answer this
question by proving that any system which obeys Rules 1-11 1is
isomorphic to our system of vectors. The question as to whether
systems which are "isomorphic" are really "essentially the same"
systems 1s a philosophical one. It should not be completely by-
passed but it cannot be answered beyond a shadou of doubt.

Exercises 11-6. Answers,

1. Yes. 1In this case Rules 1-11 are .restatements of Rules C,-C,
of Chapter V, Section 1. _
2. The system obeys the rules 1, 2, 3, 4, 5 6, 8, 9, 11, but
nott 7 and not 10 .
The left member of Rule 7 becomes

r@ (s O (a,0) = r O (&%)
r(32) r(%3)
(—— , ——)
rsa rsb

(0, -1)
and the right member of Rule 7 becomes

(rs) O (a,b) = (o , Tb)
" These are not equal.
[pages 678-682]

201



738

The left member of Rule 10 becomes

10(,0) = (5, B

The right member of Rule 10 becomes (a,b) . These are not
equal. o

3. This system obeys rules 1,2,5,6,7,9,10,11, but not 3 , not
4 , and not 8 .
The left member of Rule 3 becomes

o]
(2,0) @ ((,d) @ (e,1)) = (a,0) @ (=52, L48)
(Ea + Cc 4 € 2b + d + f)
. - ’ I
The right member of Rule 3 becomes

((2,0) @ (c,d) + (e,f) = B%C, L d)yG(e,r)

a + c + 2e b+ d+ 2f
Ergt e xS+ 5

These are not equal.
The left member of Rule 4 becomes

(2,0) @ (x,5) = BFE, 25T .
The right member of Rule 4 is (a,b) .

These two are equal if and only iIf x=a and y =Db .
Therefore there is no single (x,y) such that for all (a,b) ,

(a:b)®(x:y) = (a:b) .
The left member of Rule 8 becomes

(r +8)®(a,b) = ((r +8)a, (r +s)b) .
The right member of Rule 8 becomes

(r® (2,5)) @ (s O (2,b)) = (ra,rd) @ (sa,sb)
_ (ra 4+ sa rb + sb)
£ " - 2 ’ 2
These™dre not equal.
[page 682]
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Illustrative Test Questions.

1.

If ABCD is a parallelogram which of the following are pairs
of parallel rays?
-

(a)
(p)
(c)
(a)

AB , CD .

g
g

BS -
BD .

AB .

Which of the following are true statements?

(a)
(b)
(c)

(d)

If AB ,
paraltel
—>
If AB ,
parallel
—>
If AB,
parallel
—>
If AB ,

not parallel rays,

—>

CD are parallel rays and AB , EF are
rays, then T3, EF are parallel rays.
—> — —>

CD are parallel rays, then BA , DC are
rays.

—> - =

CD are parallel rays, then AC , BD are

rays.

—9—9

— .
CD are not parglgol rays and AB , EF are

—>
then CD , EF are not parallel rays.

If ABCD 1is a parallelogram which of the following are pairs
of equivalent directed line segments?

(a)
(v)
(c)
(d)
(e)
()
(8)

'AB ,

—

DC

—

AB ,
—
BA ,
—
BA ,
BD ,
BD ,
BD ,

—

DC
AC

—

DB

CD .

CD .

CA .

Which of the following are true statements?

(2)

(b)

If AB,

CD are equivalent directed line segments and

if AB . EF are equivalent directed line segments,
then CD , EF are equivalent directed line segments.

—
If AB ,
—— —
BA , DC

—

CD are equivalent directed line segments,
are equivalent directed line segments.

then
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(c) 1rf Kg. D are equivalent directed line segments, then .
KE., BD are equivalent directed line segments.

(a) 1f AB , CD are not equivalent directed line segments
and if AB R EF are not equivalent directed line
segments, then CD EF are not equivalent directed
line segments,

ABCD is a parallelogramand P, Q , R, S are the mid-

points of its sides. (See Figure 11-Ta.) Show that each of

the directed line segments Bﬁ ’

OC , OD R OA is equivalent to a

A P 8
sum of two of the directed line
segments OP PO s OQ s QO . ////
Points A, B, C, D on the S S —/Q
number line have respective //// //// A////
R c

coordinates -2, -1, 0, 1

‘D
Find t so that Fig. 11-Ta.
(a) AB =t CD . (d) BA = t DC .
—— — —— —
(b) AB =t DC . (e) AC =t AD .
—— — — —
{(c) BA =t CD. (f) AC =t CcB .

ABCD is a parallelogram and P , Q , R, S are the mid-

points of its sides.

For each of the following directed line segments, find an
equivalent directed line segment of the form r OQ + 8 OP .

(2) o8 (e) R
() R (£) B
(e) X (8) BB

() ho (h) CA
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8. P, Q, R are the midpolnts of the sides of triangle ABC .
c

0]

A R 8

For each of the following directed line segments, find an
equivalent directed line segment of the form r AB + 8 AC .

—

(a) =BC (e) EE
(b) ©B (£) 0Q
(c) B0 (g) o€
(d) PC (h) OP

9. If A, B, C are respectively (2,1) , (3,4), (-1,2)
find - X . so that

—— — — e

(a) BB =0X. (c) XA =C¢B.
(b) AX = OB . (d) XA = BC .

10. Find the components of
(a) [4,-1]) + [-5,2] .
(b) 6[4,-1] + 6[-5,2] .
(¢) 6([%,-1] + [-5,2]) .
11. Find the components of
(a) -[5,-6] . (d) o[5,-6] .
(v) -1(5,-6] . (e) 5[5,-6] + 2(5,-6] .
(C) 5[5:"6] 4

12. Determine x and y so that
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13. Determine x and y 8o that
 x[4,2] + ¥[2,1] = [0,0]

(Infinitely many solutions.)

14, Determine a and b so that

(a) [4,3) =al+b] .. (c) i=a[43]+b[3,4]
(b) [3:1"] = al 4 - (d) J = a[4,3] + b[3,ll-]
15, Determine a and b so that

a(2T+ 3?) + b(3T - 2?)

5L + 6] =
16. Find X - Y if
(a) X=£T+ 3—“,_, z= -14_—1:+ 5_-.!_:.
(b) X =1 , Y= -0 455 .
(¢) X=7 , Y= -UL+53.
(d) X =21 , Y=53
17. Given that X -1 =2 and X+ J=3 . Find a and b so
that
?r. aT+ b?
18. Find the angle between X and Y if Xl = 3, l?l = U
and 3(‘ . ? is ' .
(a) o . (c) & .
(b) -3 . (d) -12 .

. —— —
19. Find the component of Y in the direction of X 1if
-—

20. Find X - Y if |
(a) X=21+35+ % , ¥Y=-21-27-2%.
— e — —
(b) }‘:-1) R s i:: 21+3J+L|-k.
(¢) X=1 4+ ,Y=21+3J+1¥k.
— e e
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22,

23,

24,

25.

T43

Find the angle between X and Y' if

B . T )

X=1+J+k ,'§>= é;-+ 33>+ ﬁﬁh.

—
If a vector V of unit length makes an angle of 60° with the
— - —-—
X-axls, write an expression for V in the form ai + bj

The accompanying figure shows a wéight 30° 6
of 100 pounds suspended by two cords
that make angles of 30° and 60° with 7
- horizontal. Find the tension in
e . ord. ;

. aviator who heads his plane due north at a velocity of
120 miles per hour encounters a hurricane blowing due east
at a velocity of 90 miles per hour. Draw a diagram showing
his path of flight and position at the end of one hour.

Which of the following is correct?
Three forces which are represented by the vectors A, B, and
¢ are in equilibrium if and only if

— — —— — —
(a) A+B=2C . (d) A 1is not coplanar with B
— — —
— — —-— -— —
(¢} C=-(A+B). (e) A 1is perpendicular to B
. —
and C .

Which of the following is correct?

The drawing shows a smooth incline 40 feet long that makes
an angle of 30° with the horizontal. How much work is done
in moving an object of 100 pounds from R to S 2?

(a) 2000 foot pounds.
(b) 2000./3 foot pounds.
(c) 40004/3 foot pounds.
(d) 4000 foot pounds. 100 Ibs.
(e) None of the above is correct.
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27. Vhich of the following 1is correct? »
I_r_L the figure shown ia the drawing
|[v] 1is equal to s X
(a) 2. (@) 22 . S |l
(b) 243 . (e) 21 - 33 + 3k . |
(e¢) /22 . ‘

28. 1f (a,b)(@® (¢,d) 1s defined to be (2 + 3c , 2b + 3d) for
all pairs (a,b) , (c,d) of real numbers, which of the
following is correct?

(a) (a:b)@ (C,d) = (C,d)@ (a:b) .
(b) (a,b) @ ((c,d) ® (e,£)) = ((a,0) @ (c,d)) @ (e,f) .
(c) There is a single pair (a,b) such that for all pairs
(a,b)
(a,b)@(u,v) = (a:b) .
(d) For each pair (a,b) there is a pair (u,v) such that
(a,b) @ (u,v) = (0,0) .
11-7. Illustrative Test Questions. Answvers.
1. b and d
2. (a) T (¢) F
b)) T (d) F
3. b and ¢
y, (a) T (e¢) T
(b) T (d) F
5. '53\ 2 6_5 + a;
— —— —
oC 2 0Q + PO
oD = Q0 + PO
OA = QO + OP
6. (a) 1 (a) 1
2
() -1 (e) %
(¢) -1 (£) -2
7. (a) OQ + OP (e) OQ - OF
— —— — ——
(b) OQ—;!;OP_) (£) -29.+0P
(c) 20Q + OP (g) 20Q + 2 OP
—— —— g — —
(a) oQ - OP (h) -2 0Q + 2 OP
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16, (a) 7 (¢) 5
(b) -4 . (d) o
17. a=2, b =3
18. (a) 90° (¢) T70.5°
(b) 104.5° (d) 180°
19. 2
I3
20. (a) -18 (¢) 5
(b) 2 o (a) 3
-2, 15.2°
22, 1+/33
23. [R} =50 , [S] =503 86.6 .
90 .
24,
120
25, ¢
26. b
27. e
28, c,d
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_ Chapter 12

POLAR FORM OF COMPLEX NUMBERS

‘12-1. Introduction.

In this chapter we introduce and study the "polar"
representation of complex numbers, :

The central theorem for all this work is the theorem of
de Moivre. We indicate in the text an "induction" proof. In
this commentary we supply the details. The r. “*'ui, tszween
mathematical induction énd the well order property of the
natural numbers is discussed in Section 1-3 of this Commentary.

The proof. We wish to show that, for every natural number n ,
(*) (cose+isine)n=cosne+isinne.

Let us suppose--contrary to our desired conclusion--that

formula (#) is false for one or more natural numbers n . We
“Intend to force a contradiction from this supposition. Our
supposition states that the set of natural numbers n for which
(*) 4is false contains one or more members. The well order
property asserts that such a set contains a minimal member m ;
an el=ment m such that every natural number less than m 1s
”ggg in the set and each member of the set is greater than or
-equal to m . (Note we cannot say.conversely that every natural
number greater than m 1s in the set.)

Now there are two possibilities: elther m=1 or m>1 .
“But m cannot be 1 for, with m =1, (*) says

cos ® + 31 s8in6 =cose + 1 sinoe

‘and this 1is certainly true (by Property Eg of Chapter 1).
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‘'Hence m > 1 ., But if m> 1 , then (i) m - 1 1is a natural
number, and (ii) (#) 1is true for n=m - 1 since m . 1l < m .
We know, then, that

(%=) (cos @ + 1 sin e)m'1 = cos(m - 1) + 1 sin(m - 1)g
is TRUE. Multiplying both sides of (##) by cos @ + 1 sin e we get
(cose + 1 sing )™ = [cos(m - 1) + 1 sin(m - 1)01(cos® + ' ~' =
= feo T " . cos® - sin(m - 1)6 sin 8]

+ i[sin(m - 1) e cos © + cos(m - 1)6 sin® ]

cos me + 1 8in me :

which must also be true. But m 1s one of the numbers for which
(#) is.false. This is the contradiction. We are forced to
discard our supposition and conclude that (#) 1is true for each
natural number n , |

Exercises 1l2-1. Answers,

1. () 1 +0 -1 (d4) o+o0 -1
(b) o+1 .1 (e) 0 + Ui

(£) 0+4+/T 1

() (&) + (- 3
2. (a) 2+ 31

(b) 5-1

(¢) -2 - 31
3. (a® 4 b2) +0 .1
4. 0+ (-1)1

5. (a) 5
(v) V29
(¢) 3

6. z= (-3 + GV or z=(-3) - FVD1 .

[pages 686-687]
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10.

11.

12,

T49

c
ob
— i E— ——
ee 5

(2) -2-51 (e) 7-1
(b) -2+ 1 (f) 6 - 91
(¢) -2+ 51 (8) 5+ 1
(d) 1+ 21 (h) 5
a=b°.' ]
(a) x=y=2. (¢) x=7,y=121.
(b) x=2, y=-1. (d) x = 2 . (-2 extraneous)

(a) (a2 + bi)(x + y1) = (ax - by)

ax - by 1
bx +ay =0

+ (ay + bx)1 = 1

X=—gB—y ;y=- -1;JL—-2

a~- + b

a" + b

1 a -« bl a _ b .
() z4%T ‘53— =("2'__Ea +b) (T—E')a o 1

__J__?'

1l + z

[pages 687-688]
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Fxeprclses 12-.2. Ans: 3,

s (ay o B+ i) =2 osXTit1sinX)y ;e =%,
7 ]’a') v2(cos g n ) T

(b)3\/'2(-\7%+ 17%) =3ﬁ(cos§%+isin%1r-) ; 0 -._--%E.

(¢) 3+ 1(—L3)

(@) -G +1(}) =cos T4+ 1stn3; g3,

(e) 4(1 + O0L) = 4(cos O+ 1 8in0) ; 8 =0 .

o

cos-%I-g-isin%E;e

i
i

(£) 2(0 - 1) =2(gos-3§+1s1n-3,}) ;e =3L .

2. (a) %+3-=§-1 (d) -5+ 0L
(v) V31 + 1) () 041 B
(e) L+ (- P (£) 2+ oL

3. (a) 6(cos 2L + 1 sin 2L)m-3./3 + 31 .

(b) cos -%"- + 1 sin %’5=-ﬁg— + -]éi .

(¢) 9(cos %+isin-12r)=0+91 .

L, (See Section 12-3.) ,
; il_rl(cosel+isinel).coseg-i‘sinez
: 22'r21c0592+1ﬂn92)~cosez-isinez

r
1
= ?'2'[(005 ® 080 ,+sine , sin e ,)
+ 1(sin @ ; cos @ , - cos © ; Sin @ ,)]
1
=-;,—2—[cos(e 1-8,)+1sin(e, -0,)].
[page 69%]
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6. Using Formula 5-8¢c: 22 = |z|2 , |zl =1 gives 2z = 1.
1

Hence Z = . (Note that 2z # 0 since |z| # 0.)
Using polar form: |z| =1 gives 2z = cos 9 + 1 sin © .
Then 1 _ 1 - cos & -~ 1 sin ©

Z cos 8 + 1 sin Q (cos 9)2 + (sin e)g

cos 8 - 1 sine =7z .

T. According to exercise five
Zy N
(1) EE = ;5[005 (e1 - 92) + 1 sin (e1 - 92)]
2 and 25 lie on the same ray from O 1if and only
ir el - 92 = 2rk where k 1s an integer.

2 r

If 8 - 6, =27k then El = Fl[ cos 21k + 1 sin 21k]
: 2 Tp
Ty T
= ==(1 + 0) = = a real number.
I‘2 r

.*. If 2z, and 2z, lie on the same ray from O, then
their quotient is a real number. Conversely if the
quotient of 29 and Zo is a real number then the
coefficlent of 1 in the right member of (1) must

be zero.

r
L sin (6, - 8,) = 0. Now r, # 0 Dby hypothesis.
T'n 1l 2 1l

Hence sin (e1 - 92) =0 . This is true if and only

if o, - 92 = 2rk which 1s precisely the condition

1
cited above for O, 2 and 25 to be collinear.

8. cos # + 1 sin g =cos 6+ 1sin® if and only if

+ 1 si
gg: g + 1 :12‘% =cos (- 6) + 1 sin (g -8) =1+o01

if and only if (¢) cos (f - ©) =1 and sin (g - 8) =0 .
[pages 69%-695]
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Now cos(g -©) =1 dimplies

[sin(g -© )]2 =1 - [cos(g -.9-)]2 =1-1=0 ,
but sin(g -©6) =0 gives only
[cos(# -©)]% =1 - [sin(g -©)]1° =1

Thus cos(g - ©) =1 implies sin(@ -©) 0 ; but

sin(g - ei)
cos(g - ©)
(c) above is equivalent to the single condition

0 dimplies only cos(@ -©) =1 or

- 1. 1In any case, the pair of conditions

cos(f -©) =1 . But cos(f -©) =1 if and only if

g -0 = 2w , where k 1s an integer.

Exerclises 12-3., Answers.

1.

2. i

T vk

lz| =2, argz;%; z=ﬂ(cosi’{-+isin%)
22 - 2(éos%+isin %)‘= 21 .

23 =2/§(cos%71+ i sin %lr) = -2 + 21
zu=1¥(cos-:r+isin1r)=-4. .
|z|=1,argz=%;z=cos%—r+isin%£.

22=cos¥+isin%lr %-‘%-i.

za=cos 2r + 1.sin 2r = 1
zu=cos%7£+isin%:
=cos—23-7£+isin-237r—,
216
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-]g(cos Z+ 1 sin 3) .

. 1
3. lZl:-g-,aI‘gZ_-,—.%;Z

22=-]9=(cosw+isin1r)=-%.
za=-§];r(cos%+isin§g-)=--§]57i.
4 1 1
z =-8-1-(cos 2'rr+.1.sin2'rr)=-81-.

b, |z|=5,argz=e,_wherecose=-:;- and sine:%.
(e ¥ 52° .)
z2 = 5(cos g + 1 sing) .

2 =25(cos 2 @ + 1 8in 28) = 7 + 241

~ 25(cos 104° + 1 sin 104°) .

z3 = 125(cos 3 0 + 1 sin 38) = - 117 + 441
~ 125(cos 156° + 1 sin 156°) .

2" - 625(cos Lo + 1 sin he) = - 527 - 3361
~ 625(cos 208° + 1 sin 208°) .

5. |z|=1,argz=%7-':.

z=cos%+isin%r=—-]§—‘g-i.

.z =cos¥+isin§;—r

=cos-%7—r+isin2T"=-%+1g—i .

z¥ = cos U7 + 1 sin Ur
=¢coS 0+1s8sin0=1.

: 1611'
4 =COS-—3—-+iSinT

=cos¥+isin%=z=_%_€—i.

217
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6. z7" - A = 1
° n- .n
z r'(cos ne + 1 sin n 8)

--1r-l-(cos ne-1sinneg)
r

= r""[cos(-n) ¢ + 1 sin(-n) 0] .

Exgrﬂl&g& |2_u. Answers. .

1. Wo =.2 » Wl = -2 .

2. W, =A/Z + 1+ 1aA/2 -1

wl=-\/ﬂ+l-i'\/\/§-l.
3. wy =31, w =-3.
¥, wo=€—[-\m+i 2 - /3]
wl = - wo .
5‘w0=2+i,wl=-wo.

6: Wy =‘\/’5—+5£+1 \5;24&

T. Wop =./1zT [qos(% + 21<1r) + 1 sin(%.+ k)]
= JTZT [cos($) + 1 sin(§)]

Yol =V 2T (cos§ + (2 + 1)7] + 1 Sin[%?(?k + 1))

W

0]

=/Tz] [cos(%-;- T) + 1 sin(% + )] =Wy .

Exercises 12.5. Answers .

1, 21, -1 .
2, -1, -1.
3. 1.

b, 1 +1.

[pages TOl, 707, T10]

2138




755

'5. 0, - 1.+;f%—(—././T6 - 1+1.//10+ 1),
] -.J%;(-,/\/I6 ~ 1+ 1 /J/10 + 1)

6. “mc1+ 1), YEQ - 1)

B - 4AC = O .
7w =t HYTT (e 3)
222 -1+2 or 1.1
Zgy = 0.7861 + 1.2721
Zl=—Zo
Zy = - 1.099 + 0.45511
Za=—22.

8. (23 - 12%) - (1 + 21)(z° - 12) - (1z + 1)
29(z - 1) - (1 + 21)z (z - 1) - i(z - 1)

(z - 1)[2° - (1 + 21)z - 1] =
z o4 L (24+./3)1 1+ (2-./3)1
-1, A is , 5 :

Exercises 12-6. Answers.
3 3 '
1 32, e 3 e D) LW VB (-1 - 3)

LZewm, -, L - )

2,
3. ﬁ.’é i » i -Q'ﬁ L "i
/3 +1 /3 -4
hoo1, 24 L ‘
1+ 1 1+ 1 2 1 +1
5 » w ] w —
3z 3z 3z

[pages 710, T720]
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6. W ~ 1.631 + 0.5204 1
Wy ~ ~1,593 + 1.153 1
Wo ~ -3.637 - 1.671 1 .

#7, arg(l + 1) = -E = 45° |
%'arg(l + i) = -i% = 150 == -]é ar‘g ('[5——42-—1-'-) .

|1 + 1] =/2 . Therefore |wo| - % and
w0=2%—(./2~+ﬁ+ 1/2 -/3) ; wl=—1-1-(-l +1)
: 3
—— 2
w2=§;%1V2-V3-1V2+V?)

8. (a) —2-(L+1), =2~(-1+1), =(-1-1), ==(1-1) .

) 1, R D 1 Lt

(c) 3/T2 (cos 80° + 1 sin 80°) ,
 3/T5 (- cos 20° - 1 sin 20°) ,
3/T2 (cos 40° - 1 sin 40°) .

9. 1.5094% + 1,3122 1 ,
-1.3122 + 1.5094 1 ,
-1.509% - 1.3122 1 ,

1,3122 - 1.509% 1

10, Let « = cos 'ETE"' 1 sin % . Then the n

th roots of unilty are

1, ,wz s eee s D=l Noww satisfies the equation

2% 1o (z - 1) (e ™R 2%y 1) = 0 ;

buts/ £ 1 ; therefore

w2, WP hwos1-0. Q.E.D.
#11, (a) The non-real (n + l)St roots of unity. (See Exercise 8.)

(b) The additive inverses of the non-real (n + 1)St roots
of unity.

[page’ 720]
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Exercises 12-7. Answers,

1.

2 y ' y

wl =a/2 =w1 is equivalent to «/ 1 =w1 ,

or,' 1 =‘4</13 st q # 0 . Treatment for «/ o Symmetric

to ¢« 1 -

(a) 24/3(cos 2L + 1 sin 2L)

(b) 2./3(cos 3 + 1 sin 3)

(¢) 1(cos 143° + i sin 143°)

(d) 1(cos 124° 4+ 1 Sin.12ll°)

(e) rfcos(2r -6 ) + 1 sin(2r -6 )] = r[cos(-6 ) + 1 sin(-0 )]

(£) T(cos 25° 351 4+ i sin 25° 351)

(g) 1(cos 182° 4 1 sin 182°)

(h) 1.062(cos 29° 561 + 1 sin 29° 561)

(@) (-1 +3) + 1(1 +3) "

(b) 0.4684 + 0.2852 1

“(e¢) 0.4384 4+ 0.8988 1

(a) .Pair w K with 2o ™¥ in the product. Each such pair
=wn =1. If n 1s even, n = 2m for some,
Integer m . In the pairing, «w M 43 to be paired with
w 2m-m _ w M put w m appears only once in the
product and is the only unpaired factor; hence, the
product =wm . ‘

(b) 1In pairing as above, if n 1is odd, there 18 no

¢ unpaired root and the product = 1 .

[pages T20-721]
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Let arg z =0 ; we knov |w/]| = |w2| =1 and¢/ =a/12 .

1. rrlj&:’iis(a“ +el) + 1 sin(e +el):} .

e ‘ .2
privar fyrms of z o, 24/, b ares then

From (12-2), zz

Z2 = 2}i{cose + 1 8in 3}

z W= uj{cos(e +%E)+ - sin(e -:--%E)}

.za/2= |z|{cos( e +£§r-) - sin(e +%7L)}

This shows the three rayi v =z , =&, zw2 s, 3epar-ied by
equal angles in multiplker ¢ -231[ s, lrtersecting circia of
radit: |z| . Since equ: . central angles subtend egual arcs,
the points form the inscribed equllateral triangle. Since
W =W22 » we could have started with ¢«/ , and obtzined
the same result,

Take successive n)t’h roots of unity. For simplicity, take
the distance froma) =1+4+0-+1 ¢to

_ wl__= cos( Ty + 1 sin( )

-—\/[1 - cos( )] + (sin 2”) \é- 2 cos( £My - 2 sin & z,
Polygon inscribed in circle of radius |z| is propor’cional

and d. 2|z|sin—:_TI.

(a) ;(/'k = 81/8[cos(_11r6+ _1%11) + 1 sin(f%+ lg-[)] » k=0,1, 2, 3.

th

(b) x =0, - 54/, , where cv p 1sa 5 root of unity.

222
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12-3. Sugges<ad Test Items.

Aart . True-False,

1.. e product of any two ¢-mplex numbers is & complex numizer,

i3s

"f the argument of 2 %+ w7, then 2 1is a real nunber,

X arg z is '%75, the:n arg(zz) is 2r .

oW

"Tre product of the three cube roots of urnity is -1 .

Lh

.. +ne complex number cos g + 1 sin 6 is the multiplizztive
“dentity in the complex number system.

€. It z = |z|(cosg + 1 sxne), when |z] = 0, then tos
mltiplicative inverse of 2z 1is

Ti‘—r(cose+isin9) )

7. In an Argand diagram the number 8' + 81 represents = point
an the circle with center at the origin and radius B8 .

&. If 2 £0 and w 1s a cube root of =z , then ("l - w
1s also a cube root of 2z . .

3. If 225 represents a point on the circle with center at the
origin and radius 1 and if zq represents a point inside
that circle, then 2z, represents a point outside the circle.

Q. The roots of a quadratic equation with real coefficients are
complex numbers,

Part II. Multiple Choice.

Dir=ctions: Zelect the response which best completes the statement
ar answers the question.

11. The absolute value of 41 1is
A, -16 . D. 2.
B. ¥ /15 . E. -4 .
c. 4.
2

12. If z =r(cos e + 1 sine) , then z° is equal %o
A, r2(2 cos® + 21 sine) . D. r2(cos 26 + 1 siz 26) .

2

B. r2(cos 29 ¥ i1 sin20) . E. r2(cose +1sin e %) .

C. 2r(cos 2¢ + 1 sin 20) .
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13. If z; = 2+ 31 and Zy = Jo-- 31, =aen z2y - 2Zg is equal: to
A. 4 40 - 1. . D. &4 - oi .
'B. I3(cos 0° + 1 8in 0°; . E. I3 cos 0° .
Cc. /5(cos -%r + 1 sin .-%r) .

14, If w 1is one of the roots <« the equation w5 = 2z , where
z # 0 , then another root is:
A, w2, - D. cos 72° + 1 sin 72° .
B. w4 . E. |w|(cos 72° + 1 sin 72%)

Cc. w(cos 72° 4+ 1 sin 720)

15, If z=1-1/3, then azxzz 1s equal to

A. 120° . _ D. 150° .
~"  B. 60°. ' E. 330° .
¢c. 300°

16. Which of the following expressions 1is the polar form of 12 9

A. 0+1 .1 D. cos-g-{-isin.%
B. cos T+ 1sinT E. cos%’—r.;.isin%

- C. cos 2r + 1 s8in 27

17. Which of the following is a cube root of 1 ?

A, 4 D. -1
B. cos 150° 4 1 sin 150° E. Both B and D are '
correct.

1 0 0o
c. ——=—(cos U5 ° 4+ i sin U45°)
J2

18. The polar form of the com.plex cumber 2./2 - QJE i is
A. 2./Z(cos 45° 4+ 1 sin 45°) . D. (cos 135° + 1 sin 135°) .
B. U(cos 315° + 1 sin 315°) . E. 16(cos 315° + 1 sin 315°) .
c. 24Z(cos 315° + 1 sin 315°) .
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If z = 3(cos 62 - 1 sin 60°) , the 2t 1s equal to
A. 8(c:: 240° « 1 s1n 240°) . D. .- s 240° 4 1 sin 240°) .
B. 43 - 545 . E. - 213 .

C. W2} (% cas 52° + M1 sin 60°) .

If 2y =ry(ce=3 - +1sin 0,), Z, = rp(cos @ 5 + 1 sin 8 )
Z, . Z

1
and ZB = ra(c::'s e 3~+ 1 sin o 3) , then 22 3 is equal to
T e, + 6 e, + 6
A, 13 [cos-—l————a- + 1 sin _1______3_]
To 9o e
r ra
B. T3 [cos(el+63-62)+isin(el+93~e2)].

C. rlra[cos( e 1 + 8 3) + 1 sin( e 1 -8 3)] - r2(c0562 + 1 sin @,).

r.r 05 © 09 6 =
D. 1 3[cos —=_3 + 1 sin ---]-'-—--g’—}

r o ) e 2

r +r e + 0 09 ™8
E. 1 2 [C@ ——-l—e—'—"':-a' + 1 sin —le——al .

T3 2 2

Which one of tke following numbers is not a 101.'h roct of unity?
A, -1 . D. 1
B. cos 10° + 1 sin 10° . E. cos 36° + 1 sin 36° .

C. cos 108° + 1 sin 108°

225




762

Part IIT: Matching.

Directions: FPFor each of the
TolJ-wing questions choose v
the point on the diagram s
vhZoh represents the given
comp:lex number. Any cholce
=y 2e used once, several

tiw.:3, or not at all. ks
22. Zf::':;ﬂ + 1 ﬂ .
23. z= 3(cos %E + 1 sin %1"-) . %

b, z= [uﬁ(cos % + 1 sin -g-)]4 .

ax 3N 3w
s 3

3
25, =z = 3(cos -%15+ i sin %W—)(cos T+ 1 sin w) .

6(cos 5T . 1 sin 2F)
26. Z = F ,"_TE
3(cos 5 + 1 sin %)

Part IV: Problems.

27. Express the five fifth roots of -1 in polar form.

8. Sclve the quadratic equation z2 - (2 + ¥)z + (41 - 3)=0 .
29, If z = -./3 4+ 1 , express z12 in polar form.

30. If =z 2(cos 25° 4+ 1 sin 25°) ,

] =
z, = 3(cos 30° + 1 sin 30°) ,

and z, 12(cos 45° 4 ¢ =min 45°) ,

24nd




--Answers ttT Suggested Test Items.

I

II.

III.

w W N

W
.

O O ~

10.

11,
12,
13.
4,
15,

16..

18.

+3 2

Y

T

&1

I
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v, 27.

28.
29.

30.

cos 54° + 1 sin 54°

763

cos 126° 4+ 1 sin 126°

cos 198° + 1 sin 198°

cos 270° + 1 sin 270°

cos 342° 4+ 1 sin 342°
1+2L, 14 21

2*2 (cos 1800° + 1 sin 1800°)
or 2'2 (cos ¢° + 1 sin 0°)
or 2+2

or 4096 .

6(cos 90° + 1 sin 90°)

or 61 .



Chapter 17

SEQUENCES AND SERTIES

"ii?i.“Introduction.

This chapter trzats various aspects of the subject of
sequenc=s and series. This section 1s a preliminary one which
introdures definitions =znd some necesssry notation for

fimr-<e sequence,

infixite sequence,

finive seriles,

infinite series, and

sum cof a finite s=ries of numbers.

The E: ~notation for the sum of a series is Introduced also.
Finite and infinite se=smsnces of Tumvers are ordered sequences of
numbers of the forms

respectirely. Tk=re #s a last numpe— 1 the first line; but, as
the three fots irdlczte, there iz nc last number in the second
1ine. A rinite seqreree 1s formed by assoclating an element

ay (wittzim need ==zt == = number) withr each number k in the set

1’ )
{1, 2, «...o K, ..., m}. In the s=me way, an infinite sequence 1is

formed Dy assoclating am element a,, with each number k 1in the

set {1, Ty ...y Ky ... n, ...}. Tus, a finite sequence is a
functton whose damsin is {1, 2, ...- n}, and an infinite
sequenme is a functicon whose domzin :s {1, 2, ..., 1, ...}.

I v inite serfsm 3 defined t— be the indicated sum

ﬁ+a2»+.g., ff—n+ co e

in -this sectiam. Thre teacher shcuid examine also a definition

228
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glven in Section 13-5 of this Commentary.

It 1s important for the student to gain familiarity with the
Z}notation for finite and Infinite series. This notation is
standard throughout all branches .of mathematlcs and in all parts ...
of the world, and the student will continue to encounter it as
long as he studlies mathematics.

Probably the best advice that can be given for teaching this
section is this: use lots of examples to help the student under~
stand the new concepts and the new notation.

Exercises 13-1; Answers.'

1. (a) -1, =4, -7, -10, -13, -16, -19

2 9 12 15 18 21
(b) i '7', To’ I3’ 16’ 19° 75

(C) «/-é-, 2, 2‘\/—2—: ll-, u“\/?’ 8, 8«/-2—
(d) 2x5, #x10, 8x 20, 16x 40, 32x 80, 64x160, 128x 320

Xk
2. (a) -3k + 2 (c) 22

(b) e (a) 2% x 5(2)¢?

Xk
5. (a) (3k+2) _, () 237 _
.7

(b) tﬁé’f—ﬂ . (@) (2% x sty _
b, (a) ~24+ 7T =-2+T7T~-2+7

(b) 7T+0~-T+0+T7+0-7

(¢c) a+2a+ 3a+ 4a + 5a + 6a + Ta

(d) 1 -2+3 -4+5~-64+7
5. (a) 22 (¢c) 28a

(v) o© (d) %

229
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10 ®
6. (a) =2k -3 (¢) = k(k + 2)
k=1 k=1
8 x Kk+1 -
(p) = 2%(-1) (d) = 1+ (2 - k)i
k=1 Tk=1 co o
7. (a) 1, 0, 0, 1, 3, 6, 10
(b) 1L+4+0-1 - 512
. (¢) 3+1+0+0+1+3+6
(a) 16, -2, 1, -2, 16
. s 1.1
8. (a), (p), () -8 -1-3+0+5+3

9. (n+1)°2 - 14(n+1) =n° - 121 - 13

(k + 2)(k + 3)
10. (-1) e (4x - 3)

.11. These are simply the results of the corresponding expansions.
12. (a) no
(b) no

(c) yes

13-2. Arithmetic Sequences and Seriles.

This section treats an old topic, and it is thoroughly
familiar to most teachers. It gives the necessary definitions '
concerning arithmetic sequences and seriles, and it derives
formulas for the n—l‘z-r—1 term of an arithmetic sequence and for the
sum of n terms. .

The derivatici: of the formula for Sn is not the one usually
given. The traditional method is used to derive the formula

1+2+ ... +n= 5——2—5,

and then this result is used to derive the formula for Sn in
230
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the general case. The traditiocnal method can be used also as
follows:

Sn = a; + [al +dl =+ ... + [al + (n - 2)d] + [al + (n - 1)d]

sn=[a; + (n-1)al + [a) + (n -2)d] + ... + [a) +d)l +2a;

2sn = n[2a; + (n - 1)d]

n
sn = zl2a; + (n - 1)d] = %(al + an)

Exercises 13-2; Answers.

1. (a) arithmetic series, d=6
(b) not arithmetic
(¢) arithmetic series, d=5
(d) arithmetic series, = d =4
(e) arithmetic Se}ies, d=154

2. Serigs has 16 terms; a; = -16; a6 = -1
16
S = B1-16 + (-1)1 = - ;?é_
3. Series has 6 terms; a; = -4; ag = 6

Sg = (-4 +6) =6

p=m+d d=p -m
8y =a, -d=m- (p -m) =2m - p
ay = ag + d=2p -m

ag = ay + d=2p-m+ (p-m)=3p - 2m

_3m -p . _m + ~ .. 3p -m
5. ay =gP ap=m sy = BFE ey e p, ag - g

[page T46]
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i,

(a) a5 = 31

(v) a;y== 28
l.
e) ag = 345 -

g. 350 = 2315+ 5

. Largest integer less than 350 and divisible by 23 1is
23.15 = 345
Smallest integer greater than 35 and divisible by 23 1is
2-3 = 46- .

*. There are 14 integers which are multiples of 23
between 35 and 350-
S,y = (46 + 345) = 2,737,

10. (a) 35
(b) -2

(¢) 5+ 243
(@) ¢+ cd T

11. VYes, the new common difference is 5d.

12. d =‘% hence the six arithmetic means are:

13. (a) 55
(b) 499,500
(c) -U5

8
14, 63k = 216
=1

15. ﬁrlgi—lla + nb

(pages T46-TUT]
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n“ + n _
16. —p— = 153
n2 + n - 306 =0
n=-18, n =17.
n = 17 will check. The other result n = -18 will also
check 1f one begins with the last term (17) and count

backwards.
4 .
17. 3 (ak + b) = 10a + 5b = 10
k=0
y
% (ak + b) = 102 + 4b = 14
k=1

from which, a =3, b= -4
or alternately, from
P n P

2a,=3a, +3 ¢ for m<n<p
k=m k k=m k k=n+1 k ’ ’

Y Y 0
Zo(ak +b) -2 (ak+Db) =% (ak +Db) =b =10-14 = -4
k= ==

k=1 k=0

hence, from 10a + 5b = 10, a = 3.
18, %(n +m+ 1)(m -n)
19, 579
20. a, =a - (n - 1)a

- _n(n - 1?1

Sn = na 5

21, From 3 - x - (-x) = (-x) - V9 - 2x,
x° + Bx = x(x +8) =0
XxX=0 or x = -8
X = 0 does not satisfy. If x = -8, the series is

-11, 8, 5.
233

[pages T47-T748]




71
22. Denote the numbers by x+y, x, x - V.
Then x = -1, y=3 or ¥y = -3,
For elther value of ¥y, we obtained the numbers
2, -1 and -4.

23. (a) There are 42 integers in the required sum,
842 = 6321.

(b) oOur sequence begins with 7 and ends with 297 with
d = 10, and 30 integers in the sum.
S3q = 4,560.

13-3. Geometric Sequences and Series.

This section also treats a toplc that is familiar to most
teachers. It gives the necessary definitions concerning geometric
sequences and seriles, and it derives formulas for the nEE term
of a geometric series and for the sum of n terms. ‘

There 18 another derivation of the formula for Sn that 1s
frequently given.

+a;r+a r? + ... + a7l

Sn = a 1

1

2 n-1 n
rSn = a,r + a|r” + ...+ aqr + a,r

Subtract the second line from the first. 'Then

n
Sn - rSn = al - alr
n
Sn(l - r) =a,;(1-r)
a (1 - r) al(rn - 1)
Sn = I-r =~ "1 -1
Exerclses 13-3; Answers.
1. (a) -50, -250, -1250
1 2
(®) -3 % -5

1 ; 234
() 7. 75 w3 |
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2. b = i,/ac

3. (a) 1023
(v) 61
(¢) ©
5 95
r (1L - r
y, —
5 r = 2; a1 = 1
63 =2 -1
n==~6
6. 4
7. Yes!
l+r+ r2 =7
(r+3)(r-2)=0
r=2 or r = -3

The two seriles corresponding to these roots are:

l+2+4=17
1l -3+9=7"7.

8. r =1; the number of terms in the sum is
n+m-n+1731=m+1
Sm+ 1 =m+ 1.

rn(rm+1 - 1)

r AL S = =T
22n+1 ) 1
9. =—5=%
10. (a) k=%3%
(b) x= -7
L1101

[pages 752-753]
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12. 1. ar2 = =4

2. aru = -1

.2 4
1. r = - Y

2. a-lg = -1
a
a = -16
2 _ -4 1
r =357 T
pol
-2
-16, -8
3.3 . _ . _ 6
13. ajr” = -216; a,r = -6; a; = -3
the series is, -g, -6, -6r
and the sum of squares is
36(<% + 1 + r) = 189
r
(422 - 1)(r° - 4) =0
r=% -5 2, -2.

1
r =z -12, -6, -3
r = -~%: 12, -6, 3

Series are repeated in reversed order for r =2 and r = -2,

14. From plane geometry we know that angle
) APB 1s a right angle.
Therefore, ' AM:MP = MP:MB

or WF° = AM.MB

MP =./AM-NB A M B
'The definition of a geometric mean between any two numbers is
that it is the square root of the product of the numbers.

Therefore, AM, MP, MB are the terms of a geometric series.

[page 754]
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TTh

15, (a). X, 16, 6l or -4, +16, -64,

(v) V3B, Y5

(c) haubz, or g2

(a) a a; an=Db; n=3
1

ar = Db
r® = 2
a
_ + b, + Jab, _ _+
r = - = or - a2—alr——Jab

13-4, Limit of a Sequence.

The limit of a sequence 18 one of the really fundamental
concepts in mathematics, and it is unfortunate that it is a
difficult concept for most students.

Consider the nature of the limit of a sequence. Some
sequences have 1imits, and some do not. Suppose that we agree to
assoclate with each sequence that 1s convergent the 1limit of this
sequence. It 1s clear that, according to the definition given'in
Chapter 33 this assoclation defines a function. Let this function
be denoted by L, and let the value of this function correspond-
ing to the infinite sequence Bys 8oy ey Bpy oo be denoted by

oeee)

L(al, 8oy +ees By

The domain of this function consists of a proper subset of the all
infinite sequences. The domain of L consists of the set of all
convergent sequences (that is, the set of all sequehces which

have 1limits); the function I 1s not defined for most infinite

 sequences.

237
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The function I has many interesting properties as follows.

(1) Every sequence of the form ay, a5, ..., 2, a, &,
belongs to the domain of L, and

L(al, a .y 8y, 8, a, ...) = a.

2!

(2) 1f ay, ap, ..., &, ... Delongs to the domain of L,
and if ¢ 1s any number, then Cay, Cap, «.., C2p,
also belongs to the domain of L, and

L(cal, Capy +..5 Ca, vee) = cL(al, 8oy +ees @
(3) If ay, ag, ..., &y, ... and by, by,
belong to the domain of L, then
aq + bl’ a5 + b2, cees B bn, ... and

albl, a2b2, cevs anbn’ ... also beilsng to the domain

of L, and

L(alibl’ a2ib2: o-o’+anibm.: ..,..)

= L(al’ a2, e 0y 53 2, -‘oo) i I-'-'}.:";: b

n 2, “e 0y
L(albl, a5bgs c.e, @D eee)

= L(al, 85y +ees 8, ...)-L(bl, Doy «eey Do, A

Furthermore, if bn # 0 for all n and
L(bys by «ees by, ...) #0, then the infinite

ay a, a, -
sequence EI’ E;’ RPN AR also belongs to the
n

domaln of L, and

L(al' a_2_ ) an ) _ L(al!' a2’ e3 N )
) 3 eeey ’ 7D
B-I b2 Fr: L( 1, 52: s n? . )

[pages T54-761]




776

It should now be pointed out that the propertles listed
in (1), (2), (3) are exactly the results stated in Theorems 13-4a
13-4b of the text; the notation is different, but the meahing is
the same.

The limit of a sequence 1is thus the value of a specilal
function. The limit function 1s another important example of a
function whose domain is not a set Qf real nunbers; 1t may be in
order to recall that the domains of the trigonometric functions
are the set of geometric obJects called signed angles.

The usual treatment of limits focuses attention on how the
number L(al, Bos oo a,, ...) is assoclat: .. ‘'1th the sequence

8y 8ps eees Bs ees - This part of the treatment 1s left on an

Antuitive hkesis in this section, and the tezcher should present
dt intultiveliy also.

Ixercises 13-4; Answers.

1. (a) 3 (c) 3
(b) 1 (@) 3

2. The convergent series with their limits are:
(b) © (£) 2
() © (n) %
(e) 1 (1) 3
3. (a) 3 () ¥
(p) 1 (d) o
(e) 2

4y, (a) See example (13-4e).

1 2 1 2
(v) 1Um(= - ) = 1im = - lim (13-4p(2)]
n-»w 0 ;E n—so ' noew n®
_lmd -2 um 5 [13-45(1)]
n—sw n
=0-2.0=0

[pages T61-763]
239



77T

2 2 -3
2n- - 3n n 2
n' 2
. n
6 lim 2n3'———> 2 ———-)-2-
5n - 1 5 _ 1 0
n°  nd
b c
a+r—1-+-—2
7 n 2
y.€e. T
d+ S+ 3 d
n n
3n _ 3
Exercise 3(a) has a limit of 5 = B
n2
Exercise 3(b) has a limit of —5 =1
n ~
3n3 _ 3
Exercise 3(c) has a limlt of =5 = E
5n
8. If d=0 and a=0 and e # 0,
2
the 1im an2 +bn+c g-

dn® + en + £

c

If- a=b=d=e=0, the limit — < (£ £ 0).

f
*g, Dividing each term of the numerator and denominator of
a a
1 r
an’ +ant+ ... +a Gtmtert¥ a
> e, = we get B T = B
T r-
byn” + hn + ...+ b, by + B T 0
n ot

where b # O

1 -7 1iml -2" 21
10. -nff:; 1 - r_i_ TImIl -r I -~
3 1
' (1 -%+-=)(3 - =5)
(n2 - 3n + 5)(3n5 - 1) _ n 'rf’Sz n
n—so n(n’ - 17n + 11) (r - + =)
. n n

[pages T763-764]
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:‘lé. (a) 1. [See Theorem 13-4a]
(p) ©

(¢c) 7. [13 - 4b (1) and 13-4a] |

13-5. Sum of an Infinite Series.

In Section 13-1 an infinlte series was defined to be the
~indicated sum

o]

13-5a a) +a, + ... +‘an + ..., or kil a,-

"From the modern point of view this definition is not sufficiently
concrete to be satisfactory. 'It is more customary now to say

that the infinite series denoted by the two -symbols in 13-5a is
the infinite sequence

13-5b 815 8oy .-y B,
where
8, =23,
Sy = a) t a5 = 8y + a,
83=al+a2+a3=,2+a3
Sp = 2y + ay + ... ta) =8, 4 %2,

The infinite series denoted by the symbols in 13-5a is thus the

sequence (sl, Bps «evs 8 .) of partial sums S, -

n’
The sum of the infinite series 13-5a is.

13-5¢ . nlﬁpmsn
We write
13-5d > an = A’
k=1
241
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and by this statement we mean ncthing more nor less than

13-5e n¥i§é§h = A
(-]
The symbol 2 &, 1s used to d¢eaote both the infinite series and
k=1

its sum.
Iet us consider the nature: sf the sum of an infinite series.
With some infinite sequences = , 8oy e CHPIY we assoclate

the number A defined by 1l3-5e¢. It 1s clear that this associla-
tion defines another function; we shall denote it by S. The
value of this function corresponding to the sequence

Qys 8oy cees By e is S(al, Bns wees B, A

The 1imit of a sequence is a value of the L function
discussed in Section 13-4 of this Commentary. We thus have the
following set of relations:

13-5¢f kilan = A
=il 5
= S(al, Bos eees B .)
= L(sy, Sp» ++vs S, DR

It follows that properties of the sum of an infinite series can
be obtained from properties of the L function. From (1) in
Section 13-4 of this Cammentary, we have

S(al, 855 +e+s 875 0, 0, col) = L(sl, Sps +evs Sps Sps S, )
='Sn
=a1+a2+...+an

As a result of this property, we can say that the sum of an
infinite series i1s a generalization of the concept of sum of a
" finite series.

242
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From-(2) in Section 13-4 of this Commentary, we obtain
another property of the S function. If 8ys 8gr cees a_,

n
belongs to the domain of S, than ca, , Cags ey can, also
belongs to the domain of S, and
S(cal, Cay, «..s CA, o) = cS(al, 8ps eevs B cea)
The proof can be given as follows. IT sn i1s the nEE partial
.sum of X a,., then cs i1s the n— partial sum of z ca,,,
k n : k
k=1 =1
S(cal, Cay, «evy €A, N L(csl, C8ps «.vs CS ced)

= cL(sl, Sos eees ?n’ ved)

=CS(al, a2’ o ey al;’ --o).

In the same way, we can use (3) in Section 13-4 of this Commentary

to show that, if Qys 8py +esy 8 and bl’ b2, ey bn’
1’ 22 L SPRRTRY

a, T bn’ ... belongs to the domaiﬁ of VS, and

n’
belong to the domain of S, then ay ty

S(al ¥ by, a, t by, vy 8. = b, v..)
+

S(alx 3-2: sy an: s = S(le b2: evey bn.- -")'

il

There are two basic questions in connection with the study of
infinite series. (a) Does the infinite series
a; +ag+ ... ta .. *converge? (b) If the infinite series

converges, what is 1ts sum? It will be in order to comment on

" these two questions. Question (a) can be stated in many different

ways, in fact, the following questions are all really different

" ways of asking the same question,
’ ©

‘(1) Does the infinite series 3 a “cohﬁerge?”“
k=1

(2) Does im s ‘exist?

[pages TT70-TT72]
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(3) Does the infinite sequence By Bgs eees Bps o ees
belong to the domain of definition of the function_ S?

(4) Does the infinite sequence B8,, S5, ..., S belong

n’ « a0
to the domain of definition of the function L?

More advanced courses in mathematics. contain many tests which
enable us to tell whether a given infinite series 2 a, converges ’

' k=1 ‘
" or diverges. Many of these tests are applied directly to the
given infinite sequence 8y5 Bps eeey By e rather than to the °

. derived infinite sequence 8q » 52, cees By eee e

Question (b) in the last paragraph is a completely separéte
gquestion in the following sense: it may be known that a given
(1] .
infinite series I ak converges, but it may still be impossible
, k=1 , . .
to find its sum. From the definition of a 1limit, however, it
follows that 8, 1s a good approximation to the sum of the
infinite series 1f n 1s sufficiently large. This remark forms
the basis for the use of infinite series for calculation of the
type involved in the computation of tables of trigonometic
functions, exponential functions, logarithm functions, and so forth.

Exercises 13-5; Answers.

1. Solution: 8y = 2
Sy = 9
53 = 21
SL]. = 38

Series Arithmetic: Find Sh by theorem 13-2a
. SO e o .
g =‘§[2 + 2+ (n -1)5]
= %(51’1 - l)-
[page 772]
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P . = L. = Lo L. = L. (12
- 2. Solution: 3 =160 %2 " T00°T0° 23 = oo (1)
=-l-
81 = 100
s - 17
2 ~ 1000
- (717
®3 = 10,000
: : li\n ‘
550 - &"°)
S, OO( %0 (theorem 13-3a)
1-16
g - _ T 107 -1
n 10n¥I 10 - 1

3. Solution: Series is arithmetic .°. by theorem 13-2a

8, = %?(ll - n)

b, Solution: Series is geometric

1
a =% r=%)

8, = (%)p -1 by theorem 13-3a-.
5. Solution: a, = sl = 2
[e ]
o2+ 44648+ ...+2n+...=5 2n.
n=1
a, = 8, - a; = 6 -2 =14
ag = 83 - 8, =12 - 6 =6
ay = 20 - 12 = 8
a5 =30 - 20 = 10
'an = 2ns ‘
6. Solution: a) =8 =2; a,= 6 - 2 =1U; ag = 14 - 6=28
ay = 30 - 14 = 16; 2y = 62 - 30 = 32

2, 4, 8, 16, 36, ...,
2+2%2 423 , ok 254 .. 402

[page T72]
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2 = -(-2)

7. Solution: a; = 8, =2 =
ay = 8, - si = -l = -(2)2 = -(_2)2
ag = 83 - 8, =28 = (2)% = -(-2)3
ay =8 -85 = -16 =.-(2)u = _(_2)4
ag =8, - 8 =32 = 22 = _(-2)°
a, = -(-?)n

2 -4 +8-16+ ...+ -(-2)"+ ... = ; -(-2)"
n=1

8. Solution: a; =3 =2(1) + 1
a,=8-3=5 =2(2) +1
ag =15 - 8 =7 = 2(3) + 1
a, =24 - 15 =9 =2(4) + 1
a, = en + 1

" 3+5+ T+ ...+ (en+1)+ ... = ; (2n + 1)

: n=1

9. Solution: a, =2 =2.1 a, = n(n + 1)
a, =8 - 2= 6 = 2.3
a3=20-8=12 = 3.4
'au=1¥0-20=20 = 4.5
a, = n(n + 1)

2+ 6 +12+ ... +nn+ 1)+ ... = ; n(n.+ 1)
‘ n=1
246
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10.

11.

12,

a = 3 - 1 - 1
n  (an + 2){(3n - 1) 3n - 1 3n + 2
1 1l . _ 1 1 1 1 .
Thus a.l=-2-—-5, 8.2—--5--'8', ag =F =T 5 e
‘ 1 1

- N 1
S, =8 tap,tagt ... ta, =%~ D
= 1 1 _ 1
Lim S, = Un (5 - 55705) =5 -

I ~»00 n-—o

Evidently 8 =a, + 8, _, OF 8 = 8p = 8y,

X k-1 _ __k k-1
Hence &y = mrapiz) ~ ZI3(k-1)+2] = 2(3k+2) ~ 2(3k-1)
L
¥ -1

=

Substituting kx =1, 2, 3, ... we obtain the series

1 1 1 1
T + pivo] + batad + een +«r3k F2)(3% - 1) + een

Solution: (2 -2) + (% -2) + (& - -3—) + e
5, =5 -2=-2 + 2
8, = =2 +%
Sq = -2 + {%
s = =2 +-——-3——7§
n (n + 1)
- |
2 2 2
e 2 - = lim( - 2) = =2
k=l %° + 2 +1 ‘F) now (n + 1) )
_______ ‘ [See: 13-4b(2)]
[page 772]
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14,

15.

785

2 2 2 2
) 2 1 3 2 4 3
Proof': (T - 73')4'(-5——-1;—)4'(-6———5—)4'
s =-l+22
1 K
o, = -4 3
2 3 5
s =-l+42
3 KN
g = L, (n+1 2
n n +
2 1
1+ =+
2 n  _2
n—»w n—> o ._-+—§
n o n
‘. Seriles diverges since 1im 8, does not exist.
n—>cw
Proof': 8, = 1
52 = -1
s3 = 2
Su=“2
If n 1s even
g = - 1
n 2
and 1f n 1s odd
_n+ 1
8, =
in elther case Sh has no limit and therefore the series
diverges.
n-1
1im .l§ Sk = 1lim 12 .EXEE:_ll
n—»w n k=0 n—>ow n
2
1 n- - n 1
= lim — = 1lim (1 - =
En-—->oo n -é-n—-?oo n
- XL 8
-3 24
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) n-1 _-' )
16. 11m-%-2k2=11m_1,3.(n 1){1)(2n 1)
n->*° n- k=0 n->»o«c n
1 1 1
= lim (1 - =)(2 - &)
Gn___,w n n
=1
= 5
n 1 1 1 1 1 1
17. 8, = kil(guf;—j-- =73 = (5 ~'§) + (g - 7) + ..
1 1
+ (ﬁh + 1 2n + 3)'
Y 1
3 " Pn + 3°
1 1 1
lim 8 = 1lim (7 - ) =
N0 nse 3 2n +3 T
1
-2 1 1 1 1
18. e“=1l+3+5r+5g* w16 "
=1, 00000
. 50000
.1 2500
.02083
,00260
,00026
. 00002
m1.6487|1
19. loge 1.1 = .10000 - .00500
.00033 - .00003 + ...
= 010033 bR ] 00503 + e o
X 0.0953

249
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13-6. The Infinite Geometric Series.

The infinlte geometric series has many important appiications
in mathematics, and it provides especially useful illustrations of
the ideas developed in Section 13-5. Given the infinite geometric
seriles ¢

n-1
13-6a a; +a;r+ +a;r + ..
or
0
13-6a b alrk'l,
k=1

it 1s possible to determine precisely the values of r for which
the series converges and for which the series diverges. Further-
more, 1t i1s possible to find the sum of the series for every value

of r for which the series convergeé. The value of Sn is

obtained by using the formula in Section 13-3 for the sum of a

finite geometric series. We obtain Sn in a form such that its

1limit can be evaluated directly. Thus, in this special case, we
show that the series converges and find the sum of the series
gimultaneously. There are only a few types of infinite series for
which this simple situation exists.

Exercises 13-6; Answers.

1. (a) r = %; s = I_%_I =2
2
0 re ok oemsd .2
S l“"'"(s" "3")
2. (a) r=r; s = I—%—;
1 1 1 .-
() r=(1- a); SerTETTUCE T
1 -al <1
0<caxg?2
250
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a=.5; 5= .1
s = a _ .5 ~22_5
n IT-r 1-.1 g~ 9
(b) 0.062
a = .062; r = .01
s = a 062 .062_62 _.31
n T -r T-.0I .99 T 33 1%
(¢) 3.297
a = .,297; r = ,001
s .297 - =297 _ 297 33
n 1 - .00 7999 ~ 999 ~ TIT
Therefore common fractlon = l%%
(d) 2.69

Therefore, common fraction is 2l

’]?6.
(It should be noted here that 2.69 ... 1s another way
of writing 2.70 ... This should be explained to the
student to avoid confusion on this.)
L, a=T2"% r=.9; 8= -i—-:{—2—§ = 720 inches.
2 1
5 371 -x
2 ~-2x =3
2x = -1
-1

- = | ‘
x:t‘\/%- 251
[page 7771
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a__3
I -7~ 32
ca _ 3
I+ T
2a + 3r = 3
4ba - 3r = 3
6a = 6
a=1 Therefore, r = %

a; = 12; r = %; s = IjéLI'= au",

-5
Set handlicap h = 5000 yards. To cover half this distance
the hare will need h/ZV minutes. Meanwhile the tortoise
goes vh/2V yards, and at the end of the time interval
required to traverse this distance the contestants will still
be apart by

o
~jt
pom
n
<

Note that the new di-*ance apart is obtained from the old by
multiplying by (V + v)/2V. We now repeat the .process
replacing h by h(V + v)/2V. The second interval of time

. will be
l h(V + v
(2v)
and the distance apart at the end of that interval will be
h(V + v 2
(2v)
252
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10.

11.

True; there will be infinitely many time intervals, but the
sum of these willl be

- . V+v V + vy2
ve B VY (RN
_h. 1 _ hn
-2V 1 - V+v V-v
: v
That 1s, the hare will overtake the tortoise in %gﬁ? = 5.005

min. The fallacy was in using the word "never" to describe
a sum of infinitely many time Ilntervals, when that sum was
5.005. We can check our result by the equatilon

™ = h + Tv.

The left-hand member represents the distance from the start-
ing point the hare will be in T mlnutes, the right-hand
member represents the corresponding distance for the tortoise,
This 1s known as one of Zeno's paradoxeé. Reference may be
made to this and two others, The Arrow‘and The Achilles, in
Dantzig's Number , the Language of Science.

The perimeters are of lengths

6
36, 183, =27,
1 .
a; = 36; - r =-§~/§:
s = 72(2 + /3) /3
x 268.7 inches 3
(a) a, = 12; r =-%~/3} s =9(3 ++/5)

4

47,12 inches.

(b) a S = 20% sq. in.

1
0
H
]
Wl

1

[page 778]
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Answers to Miscellaneous Exercises

3 K 3 K 3 ,
2((-2)*-2x]=2(-2)"-2 2 k :
k=0 k=0 k=0

= -15 - 12

= —17 .

1 1
(a) 8+4+2+1+§+E+.”

(®) 3+ 6+ 9+12+15+ 18 + ...

1,1 1 1 1
() 7+ 16+ o+ 256 * Toow * WO *
(d)

Wi e

-1 +3-9+27 -81 + ...

4 6 8 10 12

(e) a2 +a +a +a +a° +a°+ ...

(f) 1+ -1-1+1+1-14+
20

1+2+3+...+n =-91¥%;£D1

-_—

Writing several terms we get:

1 1 I lra, .
-2-[1'2 —0] +-2-[2'3 —21] +"§[3L|- - 23] + ...

+3ln(n + 1) - n( - 1)],

which becomes BiB—ng)--

For k=1, 2, ... the identity is

3 =22 .12 5=3°.2°

Hence the series is

1+ (32-18) « (52-3%) + ... + (0° - [n - 11%).
This series 1s collapwslble. When parentheses are removed
each term‘cancels except n2. ’

[page 7791
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1 _1_ .1
2 3723
101 _ 1
3§~ 3F
1 _1_ 1
-5 %5

1 1

Sl
}

7. 7 Take 6 and 24 as any two positive integers. The required

ratio r 1is determined by
2

a.r = a
3

1

6r° = 24
r=-2,

and the geometric mean is a,r = - 12

6 + 24
2
Note that the geometric mean i1s smaller than the arithmetic

mean.
Now take a and b as any two positive integers. The
requlred r 1is determined by

2
ar =

Arithmetic mean is = 15

Vab

r = PR

Vab.

1+ ©

1+

and the geometric mean 1s ar

Arithmetlic mean is EL%%JZ,

Jab S_a ; b, equality obﬁaining when a = b.
255

[page 780]




793
To show vab £ %, observe that for any real numbers

. a, b.
(a -1)2>0 ’
(a - b)2 + bab > 4ab
(a + b)2 > 4ab
a+b> 2J/ab.
< 2(1)(3)
8 .g—.]-'-(l.-}-g)' 2—-.11-. or !‘.—: §=.2_;1¥_g.3=_];
T T2 I T2 = 2 1, , 3°73°3TF"2
K)
3. _}_(_2_ + E—); 3 = é or similar to above.
1 2'1 1 2 —
9. Number of vertices of a cube is 8, L p— P

Number of faces of a cube is 6. ;
Number of edges of a cube is 12
8 1s the harmonic mean between 6 and 12

_2(6)(12
because 8 = —-é-—_)’_iﬁ)-

14
8 =37
8 =8

10. Try the result for 2 and 8 first and then generalize:
Iet a and b be the two numbers.
Then the geometric mean is +/ab ,
the arithmetic mean is %2, and

2ab
P +a *

To Prove: .ab =Ja ; b . bQ;‘ba

/ab = a+b 2ab
ab ’\/ 2 '@ +0Db
Jab = /ab

the harmonic mean is

256
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2 1 1 1 1 1 1
2 (-3)%(2k + 1) By BT e
' ~ 1.000 - .111
.022 - .005
.00L - .000
X 1.023 - .116 = 0.907
S X 3.464 (0.907)

3.14
The 1limit of the sum is 7.
12, 3,250 yards

13, 3n§3n + 52

14, If n = number of days, then 10n 1is the distance travelled.
a; =8, a, =8+ %(n -~ 1)

n n -1
10n = 5(16 + = )
n=9,
. n 5
15, = (2k - 1) = n“ = 12321.
k=1 n = 111.
16. U436
. 17. (a) 850

(b) 825. This series is obtained from the series for
(a) by subtracting 1 from each of the 25 terms.

18. a; = B44; a,yy = $86.90.
19. If the series is a -d, a, a +d, a+ 2d,

(a) (a - d)2 + (a + 2d)2 > a® + (a + d)2.
" Expanding and subtracting,

43° > o,
(b) (a - d)(a + 2d) < a(a + d)
-2d° < o.
[pages T780-781]
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:

20. (&) Yes. The new difference 1s still d and the new
sum 1s S, + nc. This 1s an application of

. n ( ) n n
Z(a, +c¢c)= Ta + ZTc
k=1 ¥ k=1 ¥ k=1
= S_ + nc.
n

(b) Yes. The new difference is cd and new sum is ¢
times the original sum.

n. n
kZ=‘.lcak = ckilak = cS.

(c) No

(d) No

(e) Yes. New ratio 1is %.

(f) Yes. New ratio 1is still r.

21 n+ 1
oo 1 R S | _ 1
" bP+cec " c+a 'c+a a+b
A a+b _ b -c¢
T +c){c +a) -~ (c +a)la+ b)
b-¢c _Db-c
b+c¢c  a+b
a2 - b2 = b2 - 02

a2, b7, ¢ are in arithmetic progression.

23. This 1s an arithmetic progression,
1 - V% 1,1+ X,

+

1l - x 1l -x 1l -x
with d = f — -
S n + nn - 1) ./x

nT 1y X 2(1 - x)

>

!

[pages T781-782]
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o, nal+-i—T)—-nn'ld=mal+——(—T—me'ld.

a1='é'(#if—m)' (m(m - 1) - n(n - 1)]

= o gy(m - n)(m+n - 1)
=_-%-(mfn—l)/.

S --(m+n)al+(m+n)(r£+n’l)—d—

m+n

(m+ n - lld]
2

= (m + n)[al +

= (m%—n)%[- (m+n-1) + (m+n -1)]

= 0.
*25, .m -
§(al+am)-n
n B
§(al+an.) =m.
_ 2n, _ 2m
.al+am—-r-rr, a1+an—n.
2a +(m—l)d=g£1-- 2a +(n—1)'-g-“-1-
1 m’ 1 n ’
from which d = —g—(-mT;—r—lland
a =m2+n2+mn—m—n
1 mn
5 _mtn2®+2n° +2m -2n- 20 m+n - 1)2(m+n)y
m + n 2 mn , mn
_m+n —2mn__(m+n)
== e~ .
259
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JIllustrative Test Questions

Note: Teachers may prefer to change some of the multiple
choice items (e.q. 30, 31, 33, 35, 36, 39) as problem
questions.

Multiple Choilce.

Directions: Select the response which best completes the

statement or answers the question. Cross out
the letter of your cholce on the answer sheet.

A sequence of numbers 1ls best described as
(a) A set of numbers such that the difference between
successive numbers 1s constant.

(b) A correspondence which associates one number with each
natural number n.

(c) A set of numbers in ascending order of magnitude.
(d) A set of numbers with commas between successive numbers.

(e) An indicated sum of a set of numpers.

) okl 10
The third term of the sequence r s is
(a) )42k. (d) 321(
(b) 2° . (e) 8.

(c) r8.

Which one of the following symbols represents an infinite
sequence of numbers s ?

(a) {Sk} k=5 (d) Soo . !
(b) Sy, 8p» S35 S, (e) .{Sk} .

w | k=1
(c) kilsk.

260
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5 .
4., The symbol {TF%E?E}IC o is equivalent to which of the
following sequences?
1 1
(a) -1, 0,.1, 2. (4) o, w5
1 1 1 1 2
(p) -1, 0, KN (e) 0, T E 7 -

21 3 2
(C) RER-L 3';-3--

5. The kth term in the series 13 + 2:5 + 3.7 + 4.9 + ...
could be '
(a) k(2k - 1). (4) 2k(2k + 1).
(p) x(x + 2). (e) 7k - 4.
(c) w(2k + 1).
6. The series 03 + 25 + 4.7 + ... 1s equivalent to
(a) = 2k(k + 3) (d) = (k - 1)(k + 2).
k=0 - k=1 |
(0) = 2k(2k + 3) () = (k - 2)(kx + 1).
k=2 k=2

(c) s (3k - 3)(3k).
k=1

-
-3
.

The series 1+:3 + 35 + 57 + 79 1s equivalent to

3 6
(a) = (k + 1)(k + 3). (&) = (3 -21)(3 + 1).
k=0 J=2
L Y
(») = k(k + 2). (e) = 3(4k - 3).

k=1 k=1

L
(¢) = (2k - 1)(2x + 1).
k=1

261




10.

11.

12,

799

What is the 18%"  term of the arithmetic series
5+ 14 (=3) + ... 72

(a) -63 (@) 77
(v) -67 (e) 73
(c) -T2 |

If the first term of an arithmetic progression is ~3 and
the difference between any two successive terms is 2, then

the nth term 1s

(a) n(n - 4). (d) -3 + 6n.
(b) 2n - 3. | (e) 5 - 3n.
(¢) on - 5. -

A formation has 2% men in the first row, 23 in the
second, and so on to the last row, which has only one man.
How many men are there in the formation?

(2) 276 (d) 575
(b) 288 (e) 375
(c) 300 e

10
"2 (2k + 1) =

k=1

(a) 120. (a) 99.

(b) 231. ' (e) =21.

(e) 110.

If a, b, ¢ 1is an arithmetic progression, then a - b + ¢ =
(a) a. (d) a + c.

(v) b, (e) -b.

(¢) c.

262
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13. The seventh term of the sequence 2, -4, 8, ... is

(a) -10. (d) 312-

(v) -128. (e) -34.

(c) -256. .
14. What 1s the fourth term of the geometric sequence J3, 3,

(a) 6 (d) 943

(6) 9 (e) 27 |

(c) 6V3

15. A man gives his son an allowance of 1 cent on the first
day of the mohth, and each day thereafter, tne allowance
is twice the amount given the preceding day. Which of the
following expressions 1s equal to the total number of cents
that the boy receiygg\}n a month that has 30 days?

530 ) '
() Z=p T (@) 1.229
29
(v) gg—::il . (e) 2(230 - 1)
o 30
27 + 1
() ZH4+
‘ ‘ no k-1
16. For what value of n does Z 5-2 = 3157
=1
(2) & (d) 32
() 5 (&) 7

() 6

263
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19.

20,

801

20

(@) 2" -2

(e) None of the ahove 1s
correct. -

(c) 10(2%° + 2).

The positive geometric mean between 3 and 54 1is

(a) 27. (d) 9v3.
(b) 6V 3. (e) 162.
{c) o/2.

An infinite series has a sum 1if

(a) The partial sums do not exceed a fixed number - M.
(b) The partial sums remain finite as n increases.
(¢) The sequence of partial sums has a limit. |

(d) The a®" term of the series approaches zZero as n
Inecreases.

(e) The partial sums alternate in sign and decrease in
absolute value.

Which of the following infinite series has the numbers é,
%, and g as the first three terms in 1ts sequence of

partial sums?

0 2
(@) F+grg+ .- () 3%
(B) F+Erg+ o () = s

) F-P+GE-H+0-3 ...
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21.

22,

a23.

2k,

25.

Which of the following series is divergent?

(a) 2 + 1+ % + ... (d)
(b) 1 +g+gr+... (e)
) bdeh-

1im n° + 2n - 3 _
n—s>w n2 ) -

(a) o. : (d)
(b) 1.~ (e)
(e) 2.

1im 5k - 3 _

k—>o § + 2k

(2) 3 (a)
(6) 1. L (e)
() -3 -

lim 3n2

n—wo 2n - 5

@) 3. (a)
(0) -3 . (e)
(c) -1

Find the sum of the geometric series
and r = - %.

(a) 2 (a)
() 3 (e)
(c) %

265

0.01 0.01 0.01
-—i—-“l-——é—-“l-T“l'...

.3+ .03 + .003 + ...

3.

The limit does not
exlst.

= -
The limit does not
exist.

The limit does not
exist.

= ar
k=0

when a =1

2
3

The serles has no sum.
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26. The repeating decimal .23 1s equivalent to the geometrilc
series whose common ratio r and first term a nave the

values
(a) r= .01, a=23 (d) r= .01, a=_.23.
(b). r=.1, a=.23, (e) r =

.000l, a = 23, .
(¢) r= .23, a = .0l. |

27. What is the sum of the odd-numbered terms of the geometric

progression 1, - %u. %, --%3 ces 2
(a) (a) %
() % (e) 2
5
(e) T -

28. T.e sum of all numbers of the form 2k + 1, where k takes on
integral values from 1 to n 1is '

(a) nZ. ‘ « (d) (n + 1)2.
(v) n(n + 1). (e) (n + 1)(n + 2).
(¢) n(n + 2).
29, The sum of the squares of the first n positive integers 1s
glven by the expression n(n + g)(zn +<Kl, if ¢ and Xk

are respebtively

(a) 1 and 2. (d) 1 and 1.
(b) 3 and 5. (¢e) 2 and 1.
(¢) 2 and 2.

266
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30.

31.

32,

33.

Two men set out at the same time to walk towards each other
from M and N, 72 miles apart. The first man walks at
the rate of % mph. The second man walks 2 miles the
first hour, 2% miles the second hour, 3 miles the third
hour, and so on in the arithmetic progression. Then the men
will meet

(a) in 7 hours. (d) nearer N than M.
(b) in 8% hours. (e) midway between M
and N.

(c) nearer M than N.

By adding the same constant to each of 20, 50, 100,
a geometric progression results. The common ratio is

(a) 3. (@) 1.
(0) % . (e) %
() 3.

The arithmetic mean (average) of a set of 50 numbers is
38. If two numbers. namely, 45 and 55, are discarded,
the mean of the remaining set numbers 1s

(a) 36.5. " “(d) 37.5,
(v) 37. (e) 37.52.
(e) 37.2,

A harmonic progression is a sequence of numbers such that
thelr reciprocals are in arithmetic progression.

Let 5, represent the sum of the first n terms of the
harmonic progression; for example, S5 represents the sum
of the first three terms, If the first three terms of a
harmonic progression are 3, 4, 6, then

(a) sy = 20. (c) 85

(b) sy

49, (e) s, =38y -

25. (a) sg = 49.

26
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35.

36.

37.

805

When simplified the product (1 - %J(l - %)(1 - %)...(1 - %
becomes
1 2
(&) & - @ mgmrc
() % () sy -
() 2o =1) . |

Let 39 be the sum of the first nine terms of the sequence,

X + a, x2 + 2a, x3 +3a, ... . Then 59 equals
' 8 10 .
Oa + x + X7 -x :
(a) 2. (@) Fp=r + e
10 v 11
(b) 50a - E;—:{T— . () 2 —=% 4 is5a,
- x -1

9
(e) zi—i-% + U5a.

For the infinite series
1 1 1 1 1 1

1
l1-5-F+8-16"32+v8r 128~
let 8 be the sum. Then 8 equals

(a)
(e)

—
o
-

<oy o 9
A o

The arithmetic mean between XX & ang £ = a

is (the symbol # means "not equal to")

, when x # 0,

(a) 2, if a # 0. (d) =
(b) 1. | .

: (e) x
(C) l: ifa=20 only. I
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38. A 16-quart radiator is filled with water. Four quarts
are removed and replaced with pure antifreeze liquid.
Then four quarts of the mixture are removed and replaced
with pure antifreeze. This is done a third and a fourth
e -times-—The-fractional- part of--the- final-mixture-that-isg- - ——

water is
(a) T - () 2.
() 255 () 33 .

(0).“%%

39, The first term of an arithmetlic series of consecutive

Jdntegers 1is k2 + 1. The sum of 2k + 1 terms of this

serles may be expressed as

3, (k + 1)3. (a) ( k + 1)2 .

() (x - 1)3 +13 . (e) (2 + 1)(x + 1)2,
(c) (x +1)3 .

(a) x

Part II. Problems

40. Find the number of terms in the geometric series
5+ 10 + 20 + ... whose sum 1s 1275.

41, Change the decimal 2.35 to a common fraction.
42, If 1 +3 + 5+ ... +k=121, k = ?

43, In a puzzle contest 1480 dollars in prize money is divided
among the 8 1leading contestants. The money 1s divided
according to the following scheme: 10 dollars 1s paid to
the lowest ranking prize winner and each of the other 7
recelves a fized amount more than the preceding person.

How much does the leading money winner receive?

269 ‘
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44, Insert U4 positive terms between 9 and 288 to form
a geometric sequence.

45, The number of bacteria in milk doubles every 3 hours.
If there are n bacteria at a given time, how many will
“~ there be at the end of 24 ~hours from then?

46. Each operation of a vacuum pump removes % of the air
remaining in a cylinder. How much of the air present

’ubefore the first operation remains in the cylinder
after the sixth operation?

Answers Eé Suggested Test Items ‘

Part I.
1. B 14, B 27. D
2. ¢C 15. A 28. ¢
3. A 16, C 29. D
4. B 17. A 30. E
5. C 18. ¢ . 31. A
6. ‘A 19. ¢ 32. D
7. C 20. B 33. B
8. A 21. D 34, B
9. C 22. B 35. D -
10. ¢C 23. A 36. B
11. A 24, E 37. B
12, .B 25. D 38. B
13. B A

26. D 39.

270
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Part 1I.
Lo,
)'I’lo

b2,

)43.

232

99
21

$360

271

1,
L5,

- U6,

18, 36, 72, 144

28n

(%—)6 % 0.178 of tank. -



Chapter 14
PERMUTATIONS, COMBINATIONS, and THE BINOMIAL THEOREM

14.1. Introduction, Counting Problems.

Tn the introductory section we talk in a general way about the
counting process and mention some of the kinds of enumeration
problems arising in various fields of knowledge.

We 1ist three important ideas used in counting collections of
"things". We shall exploit these ideas repeatedly throughout the
chapter. It may be observed here that in this chapter we use only
the non-negative integers for all of our problems since our prob-
lems are problems of counting. The things we count may be "objects"
of any kind, including various kinds of r.umbers. Thus, in Example
"14-2¢ we count rational fractions (we use integers, -of course, in

~order to count them). In Section 14-5 we discuss the binomlal
theorem~ a theorem about expressions which may represent any kind

' of numbers, real or complex, (or the elements of any commutative
ring)- but our method is a counting method. The coefficients
which arise from our count are lntegers, although x and ¥y them-
selves may represent numbers of any kind. ) ‘

' In a sense, when we come to this chapter, we turn our backs
on the real and complex number systems and work solely with non-
negative integers. Thus, there is no logical reason why one could
not skip directly from Section 1-3 or 1-5, Chapter 1, to Chapter
14, ) ,

Most of Section 1l4-1 is devoted to indicating some of the
kinds of counting problems one may meet in various fields. The
talk about the large numbers which arise in some of them 1s in-
tended to bolster our case for the necessity of deriving general
results to solve, in one blow, classes of problems., We point out
that, although many specific problems may be solved by a routine
enumeration of cases, this method is, (1) very often thoroughly
impractical because of the extremely large number of cases, (11)
not at all in line with our obJject, which is to develop a theory
capable of handling classes of problems of this sort.
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In order not to be misunderstood, we must admit quite candidly
that there are very many counting problems which the methods we
present - and all other known methods - are quite incapable of
hahdling. In cases where direct enumeration is out of the question-

.because of the brevity of human 1life or the nature. of the problem- .
“we are totally unable to find any answers. It seems to be a fact
of human nature - wilthout which mathematics and science might not
exlst - that man has a talent for posing more questions than he

‘can answer. .

We 1llustrate our three fundamental ideas by recasting the

proof given in Chapter 13 for

1+2~r~...+n=n{ngl
in terms of an array of dots. That our "new" proof is merely a re-
casting of the "old" one may be seen by adding the number of dots
in each row

l+n ' ;

and multiplying by the number of rows.

How we "draw the line" through our array of dots may cause a
little uneasiness with some students who will worry about how we
know where it "comes out" at the bottom. Note that, in row 1, it
is above the first dot, below the second; in the second row it is
above the second, below the third; ...; in the nth row; above the

nth ' dot, below the (n + 1)5%,

- 273
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A variant of this proof may be found interesting. Suppose we

take a square array of n + 1 dots in each of n + 1 rows, isolat =~
ing those dots on the "diagonal".

I 2 3 4 5 n n+l

n+|

There are n + 1 dets_on the dlagonal {(one in each row, one in
each column). Below the dlagonal, the second row has 1 dot, the
third row has 2 dotS,..e.eesce.... the (n + l)St row has n dots.
Thus, below the diagonal are 1 + 2 + ...+n dots. Above the
diagonal, there are also 1 +2 + ... +n dots (replace the word
"row" by "column" above). The sum of the number of dots in these
three parts 1s

{n + 1) + 2s,

where s =1+2 +.... + n. But we have n + 1 1rows each wlth
n + 1 dots. Therefore,

(n + 1) + 2 = (n + 1)2

2s

(n + 1)2 - (n +1)

(n + 1)n
s = n§n2+ 12
274
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This alternative proof is a bit more complicated since 1t divides
the array into three parts instead of two, but perhaps it is eas..:
to see where the lines of demarcation 'come out".

Almost all of our reasoning in later sectilons of this chapter
1s based on counting the elements in some rectangular array. It
is for this reason that we present the probf for 1 +2 + ...+ n =

Eiﬁgi_ll . We want to get the student started thinking this way.

There are two exercises at the end of Section 1-1, The first
exerclse presents a popular puzzle whose solution is a counting-
problem in our sense. We give a big hint designed to lead the
student to form a conjecture which will solve it. Making a
rigorous proof for the conjecture - and for nearly every one of
our results in later sections - requires the method of "mathemat-
ical induction" or some variant of it. (Cf., This Commentary,
Section 1-3). We present none of these induction proofs, although
we ought to for the sake of logical completeness. If we did
present such proofs, we would have a much longer chapter and a
more difficult one. We have tried - in each problem we consider -
to carry through the cases for enough to reveal the general pattern
and hope we have gone far enough .to engender "reasonable" confi-

-dence in our generalizations. We maintain here that we can Justify
this confidence with induction proofs, and hope the reader will
accept our word that we can. .

Exercises 1lU4-1. Answers

1. 29 = 512, The first filve rows have the number of
"spelling paths" tabulated as follows. THe arrows in
the diagram show the paths involved in the first three

I'OWS 1 = 20
2 =2
LO 'y = 0%
> 3
LOGA 8 =2
"LOGAR 16 = 2"
[page 7871
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Students may count the paths from each L and develop
the Pascal Triangle pattern (see Exercises 14-4, Part
23), but. it is probably best to shelve thils discussion

until then,
2. (a)

+ 1 2 3 4 "5 6

1l2 3 & 5 6 7T -
o3 4 5 6 T 8

3(4% 5.6 7 8 9

4 67 8 9 10

5 7 8 9 10 11

6|17 8 9 10 1 12

(b) (1) the 7; appearing six times in the table.

(11) " Multiples of 3; appearing twelve times 1r
the table as against nine powers of 2.

(iii) Non-primes; appearing twenty one times 1in the
table as against fourteen primes.

14-2. Ordered Multiples.

The ideas in this section are fundamental for all the work in
the later sections of this chapter.

This section is concerned with the cardinality of carteq*an
products of sets, although we omit ‘mention of these words in the
text. (The cardinality of a set 1s the number of elements in 1¢t. )

The cartesian product of two sets A, B (in that order) is
the set of ordered couples of the form (a,b) where a 1s an
element nf A and b 1s an element of B; It is denoted by
A x B. An example with which the student 1s already famillar 1is
the carteslan product R X R, where R 1s tne set of real num-
bers. Its elements are the ordered pairs (x,y) where x and Yy
are real numbers. Coordinate geometry was invented in 1637 by

[pages 787-788]
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René desCartes who, associating the two sets R,R with perpen-
dicular number-~lines, introduced‘these ordered couples as represen-
tatives of the points in the plane determined by the number lines.
The term "cartesian" is used to honor the man who first did this.

For our counting problems we are interested only in the case
in which the sets A and B are finite. If A and B have,
respectivelyy n an¢ m elements, then there are n Xm
elements in the cartesian product. This 18 our fundamental use of
13, the third of our "counting ideas" in Section 14-1. It is
stated as a formal principle in the text in Section 14-2. . In the
same sectlion 1t is later extended to a more general form involving
an arbitrary - but finite - number of finite sets.

We introduce ordered triples (a,b,c) as ordered couples of
the form ((a,b),c) by "dropping" the irmer pair of parentheses.
Thus, we take as our set of ordered triples the cartesian product
(A X B) X C, and our dropping of the parentheses corresponds to
dropping the parentheses in the cartesian product (A X B) X C,
But the cartesian product is not associative! ' Thus, we appear to
be cheating. Our defense is the following: there is a one-to-one
correspondence between the set of couples ((a,b),c) and the
triples (a,b,c) when the latter are suitably defined otherwilse,
80 that - for our counting problems - we may use the one to repre-
sent the other. Our offense is therefore, merely an "absue of the
language'. We prefer our tower of couples because we feel it is
easier to see how to count triples, quadruples, etc., when we look
at them this way.

We step up to ordered quadruples, quintuples, etc., and say
we can do it in general for ordered m-triples. (This assertion
conceals one of our tacit inductions.)

R. D. Luce, Some Basic Mathematical Concepts, SMSG Studies
. in Mathematlcs, Volume I, has an introductory discussion of carte-

sian products and other ideas of set theory. See also Elementary
Mathematics of Sets with Applications, Mathematical Association of
America. s

277
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The exercises are designed to develop practice in associlating
ordered m-triples with the items we want to count in various prob-
lems. This is practice in using fundamental ldea number one of
Section 1-1. Teachers will find 1t necessary to assign only as
many of these exerclses as the students require to develop con-
fidence in theilr ability to handle them.

Exercises 14-2., Answers

1. 12(5) = 60 *21.  (a) #(5°) = 100

2. u4(2) =8 (b} 42(3) = 148

3. 8(11) = 88 *22, 5(8) - 1(2) = 38

4, 12(8) = 96 *23, 5(8) - 2(2) - 1(2) = 34

5. 6{2) = 12

6. 4(3) = 12

7. 9(9) = 81. Note that a digiﬁ may be repeated as in 55.
8. 10(10) = 100. Note that one.poster could win both prizes.
9. 42 =16 ,
10. 26° = 676

11, ¥ = 6h.

12. 5(9°) = 405

13, 4.6 = 144

1. 42(6°) = 576

15. 4(6)(3)(2) = 144 -

16. 12(3)(120) = 4320

17. TR 256,

18. 12(9)(10) = 1080

19. 9(10") = 90,000

20. 20 = 1024

[pages T793-795]
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14-3. Permutations.

We introduce permutations as ordered m-triples, without dup-
lication, of elements of a glven set which has at least m
elements. Our problem 1s to count them. We do this by considering
in turn small values of m (specifically m =2 and m = 3).
Using the technique developed in Section 14-2, we set up the pro-
cedure for stepping to larger values of m and announce (induc-
tion!) the general formula. We give some illustrations and then
exefcises in wr'- > . student 1s to count some permutations on
his own,

Exercises 1l4-3. Answers.

1. 7° =16,807; P(7,5) = 2,520

N

°

(25,3) = 13,800

(6,3} = 120; 6° = 216
(6,4) = 360; 6% = 1296
(
7

y,u) = 245 A = 256
= 2:097:1523 P(8:7) = )'l’0320

O O =N o0 =N
(00)
I

. T! = 5040

. P(6,4) = 360

. P(4,3) =24
10. P(20,3) = 6840
11. P(3,3) =6
12. P(4,4) = 24
13. P(4,2) =12

14, 5-P{6,4) = 1800
15. P(4,4%) . P(5,5) = 2880
6. 262(10%) = 6.76 x 10°

17. 7! = 5040 279
[pages 795, 802-803]
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19-
20.

21,

6

817

8! = 40,320

(a)
(b)
(c)
(a)

(e),

(£)
()
(h)
(1)
(a)

()

(d)

11
336
2730
1326
2

455

60

1
©0.

720

(n - 2)[n(n - 1) - 930] =0

n® - n - 9% =0

n=31; n#30, since 2<n

n(n - 1)(n - 2) [(n -3)(n-2) -20] =0
n2 -Tn - 8 =0

n=28 nj# -1, since 5<n

n(n - 1)[(n +2)(n +1) - 72] =0

n2 +3n - 70 =0

n=10; n#ZO, n#1l,n#-T, Since 2 < n.
(n - 1)[n(n + 1) - 10(n - 1)] =0

n® - 9n +20 =0

n=»4 ors5.

280
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22. (a) (n+3)n+2)(n+ 1), or P(n + 3,3)
(v) n(n -1)(n - 2), or P(n,3)
(¢) n(n+1)(n +2), or P(n+ 2,3)

(@) Ty
(e) (n - m)}

(£) (n=1)tn(n+1)=(n+ 1)1
(g) Mt (n-2)1 _ (n-1)t (n+ld) n+1

nl (n-1J 1 nl (n - I)7 = Tt
+ 1) 1
(h) ns[§3 T -

o =il poan e ooy

23. (a) P(n,3) + 3.P(un,2) + P(n,1) =

n(n - 1)(n -2) +3n(n-1) +n

= n3 - 3n2 + 2n + 3n2 ~ 3N 4+ n

- 3
(b) (n+ 1) [non! + (2n - 1)(n - 1)! + (n=-1)(n-2)1] =
(n - 2)t (n+ 1)[n°(n-1) + (2n-1)(n-1)+(n~1)]
(n-2)1(n +1)(n-1)[n° + (2n - 1) + 1]
(n - 2)1 (n-1)(n1)(n® + 2n)

-

(n-=2) m=-1)n (n+1) (n+ 2)

il

(n + 2)!
(¢) P(n + 1, m) (n+1)nn-1)(n - 2)...[(ntl)=msl)
(n+1)nn-1)(n-2)...(n-m+ 2)
)
)

]

]

= (n + 1 [n(n - 1)(n - 2)[1’1 - (m“1)+1J

]

(n +1). P(n,m 1)

[page 8ou4]
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m( (n - 1)(n = 2)...[(n=-1) - (m~ 1) + 11} +

((n - 1)(n - 2)...l(n - 1) m 4 1))
= m[n-1)n-2)...n -=m+ 1))+
[(n -~ 1)(n~-2)...(n - m)]
= m[(n -1)(n-2)...in-m+ 1))+
[(n-1)n=2)...in ~m+ 1)(n - .m)]
= (n-21)n-2) ...(n-m +.l)[m+(n-m)j
= n(n ~1)(n - 2) (n - m+ 1)
= P(n,m)

Note that 1t is easier to start with the right
member and derive from i1t the left member of the
equality. The symmetric property of the equals
relation discussed in Chapter 1 completes the proof
1f one wlshes to be more preclse.

(e) P(n - 2,m) + 2m-P(n - 2, m-1) + ﬁ(m—l)-P(n-2,m-2)

= (n-2)n-3)(n- 4...0(n-2)-m + 1]
+omn=-2)n -3) ... - 2)-(m-1)+1]
+mm-~1)(n~-2)(n - 3)...[(n-2)=(m-2)+1]

= (n-2)n ~ 3) ee. n-m-1)
+2m(n~-2)(n-3) ...(n~m)
+ m(m=-1)(n-2)(n=-3)...(n-m+1)

= (n-2)n-3)...(n -m+1)(n - m)(n-m-1)
+omn - 2)(n - 3) «..(n -m+ 1)(n - m)
+mm-1)(n -2)(n =3)...(n -m + 1)

[page 8okl
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=(n-2)(n=~-3)...(n -m+1)[(n-m(n-m-1) + 2m(n-m) + m(m-1)]
=(n-2)(n-3)e..(n - m + l)[(n2 2 2 imom]
(n'- 2)(n ~3)...(n -m + l)(n2 - n)

n(n - 1)(n -2)(n - 3)...(n - m + 1)

2nm+m®-n+m) + 2mn-2m

o]

P(n,m).

14-4, Combinations.

The word "combinations" 1s used in the title of this section
and, 1ndeed, of this chapter, in an archaic sense. The use of
set-terminology has pushed the word out of the mathematical vocab-
ulary for we cannot speak of a set as a combination of its elements.
One may form sets by "collecting" elements; certainly not by "com-
bining" them in any sense of the English word "combine". Atoms
may combine to form molecules, but there 1s a blg conceptual
difference between a molecule and the set of its atoms.

' ~ We never actually use the word 1n the text, though we do
mention it three times.

The method we present for calculating C(n,m) is a standard
one, appearing in many algebra texts (among others, Chrystal's
Algebra, Volume II (Second Edition, 1900, page 7). Another method
appears in Whitworth's Choice and Chance (Fourth Edition, 1886,
page 66) and, in a different form, in Kemeny, Snell, and Thompson's
Introduction to Finite Mathematics (1957) page 98. The two versions
of the second method appear in Section 14-6 of our text.

283
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Exercises 1l4-4. Answers

1. (a) ot = 16
(v) ({a,b,c}, {a,b,d}, {a,c,d}, (b,c,d]}
(¢) {a,b,c); abe, acb, bac, bca, cab, cba.
{a,b,d}; abd, adb, bad, bda, dab, dba.
(a,c,d}; aecd, adec, cad, cda, dac, dca.
(b,c,d}; bed, bde, chd, ecdb, dbe, dcb.
(d) c(4,3) = 4.

2. (a) &5
(b) 56
(e) 792
o (a) c(25,24) = c(25,1) =25
(e) c¢(12,10) = c(12,2) = 66
(r) ¢(100,98) = ¢(100,2) = 4950

(g) &

. .
c(26,21) _ P(26 . 11
(h) f§§5f37l = ‘Ljyfil F(26,5) ~ 120

3.  log 100! = 1og(99!100) = log 100 + log 99! = 157.9700.

1

) ., ¢(10,8) c(10,2) = 45

c(10,2) = 45

1

5

6 c(15,2) = 105

7. €(8,3) =56

8 c(16,4) = 1820

9 c(9,4) = 126, (Void committee not considered).
315

280

10. ¢(7,2)-C(6,2)

i

11. ¢(8,2)-c(5,2)

[pages 816-817]
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12, c(4,1)-c(5,2).c(6,2)
0(4,2)°0(5,2)°C(6,2)

15. ¢(20,2).-c(4,2)5! = 136,800
4. ¢(3,2).0(6,3):5!
15. ¢(10,m-1)

600 if boys team;
900 if girls team.

7200

16. ©(100,5)~ 7.528 x 107

17. ¢(52,5) ¥ 2.599 x 10° -
18. ¢(100,10) & 1.731 x 107 |
19. c(%,3)-0(48,2) ~ 4.512 x 107

20. P(k,3)-C(13,6)-c(13,6)-C(26,1) ¥ 4.596 x 10°

21. . 4.¢(13,7)-[c(13,2) 1P~ 3.258 x 107

22. 41c(13,5).c(13,4)-c(13,3).c(13,1) = 8.209 X 1olo

23. ¢C(n,m) = C(n,n-m) so 12 =n - 8 and

n = 20. ¢€(20,17) = ¢(20,3) = 1140
24, 4 =18 - (m +2), m=12. c(12,5) = 792.
25, ¢(n-1;m-1)+C(n-1,m)= (m_ljz%?n:I%%%*-Ijjl +
(n - 1)}
mil(n - 1) - m]¥
(n - )!m (n - 1)! (n - m)

“mlm - )7 {{n = m)T] + mil(n - m- 1)I]{n - m)

n{n - 1)!
mi{n - m)!
n!

“=m? (n - m)!

¢(n,m).

Alternate proof: The C(n,m) selections can be
classified into two sets; those which contain a specifiled
jtem called "A" and those which do not contain A. There are
¢(n-1,m-1) selectlons which contain A and there are ¢(n=-1,m)
selections that do not.

.*. ¢(n,m) = ¢(n-1,m-1) + ¢{n-1,m). .

[pages 817-818]
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27. un.an-2)=E

14-5.

, 823
2 3 4 5 6 7 8 9 .10

A\\ﬂl\ 0 1l

L 1 4 6 4 1

5 1 .5 10 10 5 1

6 1 6 15 20 15 6 1

7 "1 7 21 35 35 21 7 1

8 1 8 28 56 T0 56 28 8 1

9 1 9 36 84 26 1268+ 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

These values may be found in any table of the binomlal
coefficients, such as the C.R.C. Standard Mathematical
Tables, Twelfth Edition, page 388.

- !
2 — %33= n -1, ¢(n-2,n-3) =

etc.

. 1 -
Since C(n,n-2) = (’fé)yzz n(g L) and

14+ 2 4+ ooet (n=2) + (n-1) = (n‘1)£§n-l) + 1]

then, C(n,n-2) = C(n-1,n-2) + C(n-2,n-3) +... +

c(2,1) + ¢(1,0) for 3 { n.

The Binomial Theorem.

Exercises 14-5. Answers

1.

(a) %t - 4x3y + 6x2y2 - 4xy3 + yu.

(v) x° 5x4y + 10x7y° - 10x%y° + 5xy4 )

1

(c,)_,:_-,a5 + 5a4b + 10a3b2 + 1Oa2b3 + 5ab4 + b5

(d) al + 7a6b + 212702 + 35a4b3 + 35a3b4 + 21a°b° +

7ab? + b7

[pages 818, 824]
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h 2

(e) 641° + 100057 + 280U"V° + 16009V + 60USV' + 120vD

- 0

(£) r8 - 16rTs + 112r°s® - w48rOsd + 1120r's" - 1792r7sd

+ 1792r256 _ 102krs! + 25658
(g) gr + j% z + —% + %- + —%?—-zlL +32 2 412 6
(n) x? - 9 x8 + 9x7 - %%x6 + %;x —%x + 77 21 X0 - %%%2
+ 5%6 X - 3%5

(1) x16 + 8x12 4 28xlu + 56x13 + 70x12 + 56x11 + 28x10

9 ., .8 8( 8 6 b

+ 8x7 + x°, or x (x + 8x7 + 28x° + 56x5 + T0x

+ 56xTt 4+ 28x° 4+ 8x + 1)
(5) %8 - 18617Tq + 144c20a2 - 67201547 + 2016c1a"

no32¢ 305 + 53760 12a® - n608c taT + 2304e10g8

512c9d9, or c9(c9 - 18c8d + 1hkeTd® - 67206d3
M

+ 2016¢2a" - no32ctd® + 5376634® - n608c2aT

8

+ 23504ed® - 512d°)

(k) x"6 + 12x"5y'2 + 6Ox—1y" + 16Ox'3y'6

+ 240x_2y_8
+ 192x‘1y'1o + 61+y'12

6,.-6

() 32x~10 _ 2nox °y3 4 720x70y0 - 1080x~ty~2

-2 _-12
¥

+ 810x - 2u3y~1h

237
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2. (a) n
(b) 7% (n +1)
() 17°P
(d) 0dd number values
(e) c(35,20)
(£) 532 and 3153
(g) 22;C(n,5). = C(n,17) and 5 =n = 17
(h) c(22,11) atlpll = 705, 432 allp'l
5. (a) ©(15,6)a%® = 5005298

() ©(13,3)x%0(-5)% = -35,750x™°
(¢) ©(17,11)(2x)3(-1)1* = -312%%

(d) C(10,5)(EX’1)5(§)5 = 252 .

(e) ©(12,6)(x~1)8(x2)® = g2ux®

(8) o1 ()T (- BT - b2

(g) ©(10,7)a”b! = 120a’b’
(n)  (9,4) (x2)*(-y)P = -126x°y°

(1) C(10,8)(§)2(_x2)8 _ 18Ox14

(5) ©0(9,6)(x)(-2y%)® = 5376x7°
(k) ©¢(12,8)(x%)%(2)® = 105
4.,  (a) 1.02% = 1 4 L(0.02) + 6(0.02)2 + 4(0.02)3 + (0.02)4

=1 + 0.08 + 0.0024 + 0.000032 + 0,00000016
~ 1,0824

238
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(b) 1.02% =1 + 12(0.02) + 66(0. 02)2 + 220(0.02)°
+ 495(0.02)

+

_ 14 0.24 + 0.0264 + 0.00176 + 0.00007920 + ...
N 1.2682 |

(¢) (1 - 0.02)%2 =1 - 0.24 + 0.0264 - 0.00176
+ 0.00007920 ‘

~ 0.7847
(a) 2.0110 = 210 1 10(2)%(0.01) + 15(2)8(0.01)2

+ 120(2)7(0.01)° + 210(2)8(0.01)"

= 1024 + 51.20 + 1.1520 + 0.015360 + 0.00001920 + ...

8 1076.3674
(e) (2-0.01) = 1024 - 51.20 + 1.1520 - 0.015360
+ 0,00001920 - ...
~  973.9367

(5) 16; (1-1)8 = 1(2-1)"12 = (1-b1+612-41341*)2
=(-4)2 =

() (2-1) = 25 - s(2)™1 + 10(2)°(1)%-10(2)%(2)’
+ 5(2)(i)u - 12 = - 38 - 411

) G+ Z 0T - @@ 21(2)5(%21)?

s 35 + 3@ + a2’
7 &0+ BT

- X L4 7 ¥/3, _ 63 _ 105 V3, L35, 189v/3,
- 128 128 - T 128 —128
189 27 ¥3, _
- 338 " T 128 -~
[page 825]
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2
Note:  Students may remember from Chapter 12 that
-% - Jég. is a cube ?oot of unity, so that
V3T 1 /3 3] ° 1 /3
&7 - (g B [ - )

10 (& + L)

14-6, Arrangements.

In this section we consider the number of ways a list havirg
duplications may be (re-) arranged. Using the same reasoning we
determine the number of ordered partitions of a finite set. Compare
Kemeny, Snell, and Thompson, An Introduction to Finite Mathematics.
As a corollary we obtain another method for counting the m-element

subsets of an n-element set.
Either or both of Sections 1lU4-6, 14-7 may be omitted at the
discretion of the teacher. -

Exerclses .U4-6a; Answers

6!
1. 1T3IRT = 120

143

3. 3—m-é~.r2—.r = 201, 801, 600
1
%, 2—3?—5 ~ k.11k x 10°°
2!
5. 6! =7T20; use "qu" as a single element

6 gysT - BT = 780; use "P///" as an element.
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T« zro1e7 = 90

8. There are 3}, 3-letter arrangements having no 0;
¢(3,2)-3! arrangements having one 0 and C(3,1)3 arrange-
ments having two O's. 3! + 3-3! + 3-3 = 33.

9. 41 + 3.2 =60

Exercises 1l4-6b; Answers.

61

1. Bl - 2520 6. (a) —— - 15
(21) (21)7(3!)
81 , | 121
2. = 560 (b) : = 15,400
Toennl (31)* (k1) ’
3. —]%?f;m ~ 8,472 X 108 (C) !n!k)!
a1 ’ (k!)n(n!)
. Fr57 = 56
52f & 5.364 x 1020
(131)

14-7,. Selections with Repetitions.

This section involves calculations wﬁich are rather more in-
volved than those in the earlier sections. Since it is the last one
in the chapter, it goes without saying that it may be omitted at the .
the teacher's discretion without loss of "continuity".

We apply our result to a problem (Example 14~7c) of partitio

numerorum. The general problem in this field is to determine the

. number of ways (if any) of representing a natural number n as

a sum of terms taken from a given set of integers. The number of
terms may be either restricted (as in our example) or unrestricted
and we may either consider or ignore the order of the terms. The
two problems of this sort which we consider (Example l4-4e and
Example 14-7c) are two of the easier ones in this field. (In our
examples the given sets are the natural numbers and the non-negative
integers). This branch of mathematlcs 1s extensive and fascinating.

[pages 829, 833-834]
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It abounds with unsolved problems, ingenlous methods and striking
results. We can go into none of this here. (Cf. Hardy and
Wright, An Introduction to the Theory of Numbers, Oxford University
Press, Chapters 19, 20, 21. )
One of the most famous of the unsolved problems in this theory-
and one of the simplest to state - 1s the questlon whether every
even natural number greater than 2 1s a gum of two primes.. Gold-
bach conjJectured (1742) that the answer is "yes", that given any
natural number n, greater than 1, there‘afe primes p and ¢
(not necessarily distinect) for which

2n =p + q
No one has proved this nor has anyone found an even natural number
which 18 not the sum of two primes. Thus, we don't even know
whether the number of such representations 1s always positive.
Here 1s an easily stated counting problem which has eluded solutions
for over 200 years.

Exercises 1l4-7; Answers

10 + 12 - 1
(< T )

1. To = 293,950
2, (10+ g - 1) = 2002

5. (8 >~ 1) = es2

o 8t2-h) -a

5. (13+g—1):'=91‘ '

6. This problém is analogous to Example 14-Tc.

721 +5 -1 _
( 521 ) = H?§TT = 12,650,
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14-.8, Miscellaneous Exercises. Answers

The first 30 of these exercises are arranged "in order of
difficulty". The 31st, although verbose, has a "moral" lesson.

= 30

=
N
Nfe=s

2. c¢(10,7) = ¢(10,3) = 120

3. ©(12,2) = 66

b, ELB_%_QI; There are C(n,2) 1lines on the n-points, but
n of these are sides of the polygon, 20 the number of
diagonals is C(n,2)- n = ni _n = Bn-3)

2IMn-2)T 2
5. 6! =720

6. 2.P(6,4) = 720

7. ©(5,3) =10

8. 2:8! = 8C,340 .
9. 5.P(8,3) = 1680 . .

10. ¢(10,3) - ¢(5,2) -5! = 144,000

11. 26-25u = 10,156,250 ® 1.016 X 107,
12, 3°2-+2 -1 +1 = 12.

13. ¢(2,2) + c(3,2) = 4; the even sum arises from a pair
of odds or a palr of evens,

4. 5(%)(3) = 60

15. C(4,3)" 12.¢(4,2) = 288 Following the queen's selection
in C(h,j)qyﬁéys,=there are 12 choices for the type of
pair and C(4,2) ways to form the pair. Or, C(%,3)
ways for queens with 48 choices for the first card of

the pair and 3 choices for the second, but uSé 3

“ways to form pair to avoid duplications. Hence,

o(h,3) - B2~ 288, 59

[pages 839-840]




16,

17.
18.

19.

20.

2l.

2.

23.

2k,

831

c(¥,3) + c{4,2) = C(5,3) = 10. At least one flag of each
color must be used. Case (i); if 1. red flag and 3
blue, the C(4,1) ways for the red flag to fill one of
four positions. Case (i1); 1f 2. red flags used,
then C(%,2) ways. :

6(3)(2)(2)(1)(1) = 72
51713131 = 21,772,800.

]
%ﬁ = 20,160. Since the steel ring can be looked.at from

both sides: (or "turned over"), each only half of the 8}
arrangements will be distinct.

2.5-.-P(5,5) + 5°4°P(5,5) = 3600. One of the two who will
not sit next to each other may select an end seat in 2
ways, leaving 5 places for the others and P(5,5) ways
for the remaining 5 persons. There are 5 ways to
not sit in an end seat, leaving 4 ways for the second
person and P(5,5) ways for the remaining persons.

Y. P(6,k) = 1920
k=3
c(10,7) - ¢(8,5) = 64, where C(8,5) ways to have the
two friends together at the dinner party.

8; 1let 1,2,3,4 represent the relative heights. Then
a tree displays the different way for one order starting
with the shortest boy at one end. Since, the shortest
boy may also be placed at the opposite end, the number
of branches in the tree must be doubled.

4
/
3
. Ly s
o 1—3—U4—2
Ny—s—a

[page 8u40]
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25,
26,

27.

28'

*29o

*30,

31.

P(6,5) = 720

26 -1 =63

1440. Three cases can be considered. Qggg {1). vVowel
in first position, then there are six ways to keep
vowels separated. (Case Lill. Vowel in second positilon,
then there are three ways to keep vowels separated.

Case giiiz. Vowel in third place, then there 1is but one
way to keep the vowels separated. Permuting the vowels
and consonents in these cases glves the total number of

)]

ways as~ 6°3!4! 4+ 3.3141 4+ 13141 = 10-31-41 = 1440,

3(5)(5) = 75, where there are three choilces for the
final digit, five cholces for the flrst diglt, and five
cholces for the second diglt.

3(7)(6) = 126, where there are three choices for the
final diglt, six choices for the first diglt, and seven
cholces for the second digit.

B(7)(6) + ¥(5) +2 = 190; 1(6)(5) + 3(5)% + 3(4) + 2 =
119,

(a) C(mn,2)

(b) n-C(m,2)

(c) n*C(m,2) ~_m - 1

C(mn, “mn - 1

n \n 2 3 i 5
i 2 3 4

2 3 5 T 39
1 1 2

3 5 7 T 7

M i 2 1 4
7 IT 5 19
i 1 3 1

5 5 7 19 &

(d) (1) . Chance of exposure becomes less., (ii) Chance

of exposure becomes greater.
[pages 840-841]
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14-9, Illustrative Test Questions

A, True-False ltems.

1. P(n,n) = C(n,n) =1

2. P(n,m) = C(n,m)* m!

3, C(n,n) = P(n,n)"

4. P(5,3) = c(5,2)

5. ©(8,3) = c(7,3) + ¢(7,2)

6. The number of three-element subsets which can be

selected from a2 set of five elements 1is 3!

T The number of pairs of elements which can be
1
selected from a set of eight elements 1s §$gT .

8. (n + 1)!
9. (ni)(m?)

(n +1)n!, n#O

(n + m)!, n,m # 0

10,

(n -1)!, 2<n

B. Multiple cholce items.

1. How many four digit numbers may be formed from the
digits 1,2,3,4,5?

A' C(SJH') ‘D. 51’-
B. P(5,4) E. None of the above 1s correct.
c.

2. if a nickel and two pennies are laid in a row, in
how many ways can they show heads or tails?

A, 16 D, b
B, 8 E, 3
Cc 5
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If two distingulshable dice are tossed, in how many
ways can they show a total of seven?

A, 3 D. 6
B. i E. 7
G. 5

How many ways can three different paintings be
arranged on the four walls of a room, one painting

to a wall?

A, 3t D. 31
B. & E. 3x1h
e, b1

How many ways can the letters of the word LINK be
arranged if none of the resulting arrangements may
begin with K?

A, 81 D. 18
B. 27 E. 6
C. 24

If there are 10 teams in a basketball league,
how many games would have to be played 1f each
team plays every other team exactly once?

A. 5 D. i5
B. 20 E. 90
C. 25

How many different outflts consisting of a sweater,
a skirt, and a palr of shoes can a girl wear if
she has 3 sweaters, U4 skirts, and 2 pairs of

shoes?

A, 48 D. 12

B. 36 E. None of the above 1s correct.
c. 24



10. .

11.

835

From a group of 7 boys and 8 girls, how many
ways can a committee of 3 boys or 3 girls be
chosen?

A. ©(7,3) * ¢(8,3)
B, ¢©(7,3) + ¢(8,3)

c. ¢(15,3)
D. (8+7+6) + (7-6:5)
E. ¢(15,6)

How many sums can be formed from a penny, a nickel,
a dime, a quarter, and/or a half dollar?

A. 5! pD. 5°
. B. 25 E. None of the above 1s correct;
c. 22 -1

Which of the following expressions gives the
number of three letter symbols that can be formed
from the letters of the word MATHEMATICS if no
letter is repeated in a symbol?

! !
I D. 1%.
8! 11!
B 5T B BT
81
C. 3T

The number of distinguishable ways the letters of

the name TENNESSEE can be arranged is:
Aol D. PR

B. %% E. %%

c. 2°
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12.

13 L] :

14,

16,

If n coins are tossed, how many ways may they
fall?
2

A, 11 D. nl
B. 2n E. on!
c. of

The expression 15 . 14 - 13 . 12 1is equal to:

151 151)(1 12
A, 13T D. 71
1]
B. 1 114' E. None of the above is correct.
c 151
. lﬂ!;lll!)
The value of 6!3 0: is:
A. 0 D. The -expression cannot be
evaluated.
B. Undefined E. None of the above is correct.
C. 20
(n-r-2)(n-r-1)(n-r) is equal to
1 ni .
A, (n - I’). D. -("ﬁ‘—_—r)'!'
1
B. (nig = f)é), E. None of the above is correct.
n!
C. oF

If P(n,3) = 120, then n 1s equal to:

A, 12 D. 5
B. 10 ' E. h

c. 6
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17. If C(n,r) =10 and P(n,r) =60, then n 1is

equal to:

A. .3 : D. 10 : e
B. 5 E. 50 )

c. 6

18. In the expansion of (a + x)?, where n 1is a
positive integer,

A. the first term is a"x
B, :he number of terms is n

c. the sum of the exponents of a and x 1n
each term is n + 1
D. the next to the last term is nax™"1
. All the above are correct.
C. Short answer items.
1. Find the value of P(10,3)
2. Find the value of C(80,78)

121

3. Find the value of

nl _
by, Find n 1if -(—ﬁ—:'—z—r!‘ = 56
5. How many odd numbers having three digits can be
formed from the digits 0, 1, 2, 3, 4, 5?

6. How many ways can 2 girls and 4 boys be seated
in a row of 6 chairs if the 2 girls sit side
by side?

T If there are 4 plane routes and 5 rail routes
between Chicago and St. Paul, how many ways can a
man complete a round trip if he always travels one
way by plane and one way be rall?;

300




838

8. How many code words each containing four letters can
be composed from 3 vowels and 4 consonants if the
vowels and consonants must alternate?

9. 1f ¢(n,6) = ¢(n,8), rfind ¢(n,2)
10. Find the two expansion of (a + b)6
whose coef: i dal to ¢(6,2).
11, Find the fifth verm in the expansion of (x + y)7
D, Problems

1. How many ways may three glasses be filled without
mixing, 1f there are five kinds nf wine available?

2. How many different "words" may be formed as arrange-
ments of the letters of COCOA so the letter A
lies in the center of the arrangement?

3. How many different arrangements of the letters of
SYZYGY may be made so the three y's do not
come together?

b, How many different arrangements of the letters of
UBIQUITOUS may be formed so the letter q 1is
followed by the letter u?

5. How many cormmittees consisting of two or more
persons may be formed from a group of ten persons?

6. How many lines are determined by a set of nine
polnts on a plane if one of the lines lles on four
of the points and no one of the other lines lies
on more than two of the. points?

T Six packages are to be delivered to six different
addresses., If two delivery boys are available,
how many different ways may they be delivered?
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" 14-9 TIllustracive Test Items, Answers

A.

True-false items.

1. False 6. False
2. True T True
3 False 8. True
b, False 9. PR
Se True 10. Tilse
Multiple choice items

1. D 10, B

2. B 1. D

3. D 12, C

h, C 13. B

5. D 14, E

6. D 15. A

Te C 6. C

8. B 17. B

9. C 18. D
Short answer iltems,

1. T20 Te 4o

2. 3160 8. '288
3, 27,720 9. 91

5. 6 10. 152%p"
5. 90 1. 35x%y°
6. 240 .
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D, Problems

1 PP =3
4t

2. prr =6

3, 2. 41=096

I, %%57 = 90,720

5, 2% 10 = 1013

6. ¢(x " b,2) +1 =31

7. 26 = 64, since each péckage has two ways in which

it may be delivered.
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Chapter 15
ALGEBRAIC STRUCTURES

Exerclses 15-2; Answers.
a b a b a b
1. a a b a a a -a b a
b a a , b b a , b a a. s
| n a b a b a b a b
a o 5 a b 2 b b a b a a b a
b b b, b a b, b a a, b b a, b a b,
a b a b a b a h
a a b a b a a b b a b b
b b b, b b b, b a b, b b a .
2. Thate 1s an operation in A follows from the fact that the
product in the conventional sense of memibers a and b of
A 1s 1tself a member of A. The mul-#:vlication table 1s:
. 1 1 el -1
T 1 1 T -1 -1
i 4 =1 -1 1
-1 -1 -1 1 i
-1 -1 1 1 -1
Exerclises 15-35; Answerss
1. Here only Example 4 calls for comment. Suppose that «
and /@ are nth roots of 1. From =1 and® " =1, we
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have (« @ ) =1 and (/e )rl =1, That is, « «& and
&/ are each nth roots of 1. From the fact that o < 1s
an nth roov of 1, we sece tnat « 1s an operation in A.
From the fact‘f/k?is an ntn root of 1, we see that
Postulate G 2 1s fulfilled, the unigueness of solution of
the equation & z = « in A being guaranteed by the
uniqueness of tne solution of ~ z =« 1iIn C. The associ-
ative law follows automatically from the fact that multipli-
cation in the complex number system is assoclative. Note that
« is commutative. Consequently the equation z «F = « has-
exactly tne somie solution set In A as does <5 z =¢q .

2. DNot every equation of the form & z =& where and <& are
given complex numbers has a solution; e.g., take « = 0,
A =1, |

3. Given a, b, ¢, d integers, we have

(2 + 842) + (¢ + a/2) = (a +¢c) + (b +d)/2 €4,
sinc. a - =2 and b+ d are integers. Also the equation
G 40/ 2) + X =c + a2
nas tre u—imae solution
{c - 2)+ (da - b)J/2
in I, ani moreover tnis solutlon 1s a member of A since
¢ - & ani & - b are both Integers. The remalning details
are rmacily furnished.

4, See z.ztion 7 of thilg canapter "Subfields intermediate to

Q ans -l:l” »
Exercises i .-, Answers.
1. Exampl: o the inverse of a 1s 1 :.

Examr.¢ 3: :he inverse of (a,b,c) i: (-a, -b, -c).
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Example 4: the inverse ofd = cos(ggk) + 1 sin(ggg), k' =0,
1, ..., n -1, is 1 = cos(B™) - 1 sin(ZE),

Example 5: the inverse of a is 1l/a.
Exercise 3: the inverse of a+ b+/2 1is (-a) + (-b)/2.
Exercise 4: the inverse of a + b+/2 1is

b
=e - D
= b.
(b.a)-a=0p-(at- a) .
=b - e
= b.

The table for {0,1} does not satisfy the group requirements.
Tne equation O * x = 1 does not have a solution in {0,1}.
The first three tables given for f{a,b)] do not satisfy the
group requirements, for in the cases of the first and third

tables the equation a * x = b has no solution iIn A and in
the case of the second table the equation b * X = a has no
solution in A.

The fourth table for {a,b} does satisfy the group re-
gulrements. That G 2 1s satisfied may be seen by notlng
that each new row and each column of the body of the table
contain each of the elements a and b (without repetition).
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Notice that we cannot be cavaller about the assoclative law!
We must examine the 8 cases afforded by the distinct ordered
triples with components in A. The confirmation of the
assoclative law 1s glven by the following table.

Y (°2°3) (clcz) . Cg

a a al|a *(aa) =a -a=a (aa) « a=a »a =a
a-~a b'l'a s (ab) =ab=0> (aa) « b=a e b =D
a b a |a(ba) =ab=> (ab)a = ba = b

a b b | a(bb) =aa =a (ab)b = bb = a

b a a | b(aa) =ba =0b ~(ba)a - ba = b

b a b | blab) =bb=a (ba)b = bb = a

b b a | b(ba) =bb =a -(bb)a = aa = a

b b b | b(bb) =ba=0> (bb)b = ab = b

Each of the indicated reductions in the second and third
columns of the body of the table 1s carried out by use of

the multiplication table with which we are concerned.
1 -1

We have: e =a, a ~ =a, b~ = b,
The table
. a b
a b b
b a a

ylelds an example of a non-assoclative operation. In fact,
(2a)b = bb = a ‘and af(ab) = ab = b, so that (aa)b # a(ab),
a being distinct from b,

N, Suppose that e and f are elements of A satisfying for
each a € A, '

ae = ea = a,

af fa = a.

[page 853]
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Then setting a = f 1in the first line, we obtailn
fe = ¢,

and setting a = e 1in the second line, we obtain

fe = e.
Hence
e =°f.
It follows that there 1s at most one element  ~ £ A

satisfying for all a € A: ae = ea = a.

We have

a(xb) = (ax)b = eb =Db ,
so that xb 1s a solutlion of az = b. Thus az = b has at
least one solution. If =z is any solution of az = Db, we

it

have ]
Yb = y(aZ) = (ya)z = @Z = z’

so the only possibility for 2z 1s the element yb. Thus
az = b has at most one solution in A. Hence the equatlon
az = b has a unique solution in A.

The equation wa = b 1s similarly treated.

Corollary. X =Y.

We found (1) xb satisfies az = b, (ii) no member of
A besides yb safisfies az = b. It follows that xb = yb.
But b 1s arbitrary. Taking b = e, we obtain x =Y.

(Thus a "right™" inverse is also a "left" inverse -- even
if our operation is non-commutative, provided each of them
exists. We nelther knew nor needed this fact in solving
Exercise 15-%, 5, however.)
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6. Since e 1is the identity element, the following part of the
table 1s evident:

e e a b

° ' a 3

b b

Consider the product aa. It is not possible that
aa = a, for ae = & and the equstion ax = a has a unique
solution. . -
It is not possiple that aa = e, <for 1f aa =e¢, then

ab = b “
since the equation ax = b has a solution in A and this
solution would have to be distinct from e and a. Since
' _ eb = b,

and the equation yb = b has a unique solution, we should
be forced to conclude that a = e. This 1s impossible. We
must reject aa = e. Hence necessarlly aa = b.

At this stage we are assured that our table contains
the following entries:

. e a b

e e a b

a a b

bl b ,
Since the element a has an inverse of a'l and nelther e
nor a 1is the inverse of a (as we see from the second line

of the table as far as it has been constructed), al = b,

30
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Hence ab - "+ - e. Ve have at th stage

e a b

e e a b

a a b e

b b e

We now see, since the equation bx = a has a solution in A
and thils solution 1s different from e and a, that bb = a.
Conclusion: 1f we have a group contalning precisely three
elements: e, a, b, and e 1s the identlity element, the
multiplication table 1is

° e a b

- e e a b

(*) ' ala b e

b b e a

We must note that we have merely shown that, if (A, * )
is a group, then the multiplication table 1s given by (*).
There remalns to be shown that (*) does respect the group
axloms. Lo ,

G 2. Since each row and column of the body of (%)
contalns each of the elements of A precisely once, G 2
1s satilisfiled.

G 1. We may break down the checking of the assoclative
law into two cases. '

Case 1. At least one of the factors 1s e. Thls case
is dlsposed of by noting

(ecz)c3 = cyCqy = e(cch), Chs Cq € A;
(cle)c3 = cyCy = cl(ec3), Cys Cq € A;
(cieple = cyey = cy(ege), ¢y, ¢p € A.

310
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Case 2. No factor is e. We 1list all the possibllities
. and compute the desired products employing (*).

c; ¢, cg | (eye,)0 c3 ¢y .(0203)

a a a | (aa)a =Dba =-¢e a(aa) = ab = e
a a b | (aa)b =Dbb =a a(éb) = ae = a
a b a | (abl)a =ea =a a(ba) = ae = a
a b b (ab)b=eb=0D a(bb) = aa =D
b a a | (ba)a =ea =a b(aa) = bb = a
b a b| (ba)b=eb=Db | blab) = ve =D
b b a | (bb)a =aa =0Db b(ba) = be'= b
b b b | (bb)b =ab =e b(bb) = ba = e

Exercises 15-5; Answers.

1. Here ne J(x) = 7\(ax+/€)l+/‘*. From no./ = m, we con-
clude that A« =Y and A& +4 =o . Hence A = Y/«,
=S8 -(e@r /_o: ). With ) and 4 so taken neo./ = m.

2. The identity element is the linear function e given by
e(x) =1 x+0=x,

3. From ./ on =e, we have A=1l/ax ,#4=-2F/cC .

b, A (x) =a x+8, m(x) =7 %+, (x) = 3 =
47 em(x) =Ry x + )+ () = (Lo)x + L=
/o(/"l om)(x) = [( ; )X + i'&ﬁ] +2 =V x +d.
o -1 — 1 "ﬂ __t dor“'(é'f
mef TH(x) = A )] +d =& + &

(

«
(mep et Ll x+@) + ELZE 7y s,

o

il

x) =

[pages 854, 858]
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5. Ve have .7 om(x) =a 7V x + (& +a < ) and

me A4 (x) =7a x+ (S +7,2). Henceom = mo ./

if and only 1f3 + o« < =< + > /2. This la’c’cer.equali’cy

holds if and only ifq <& - = 773 -,& . The assertion

follows. :

6. Note that, if (a,b), (c,d) E’A, then (a,b) * (c,d) =

(ac, ad + b) € A since ac # 0. Given elements. (aq s b, ),

(25, by), (ag, bg) € A, we have

((a1, by) d (ags bo)) * (ag, bg) = (2525, alb'2 + b)) + (ag, by)
= (ala2a3, ala2b3 + (alb2 + bl))"

and _ :

(a5 2y) « ((aps Bp) » (a3, By)) = (a1 By) * (ap2ys 2Py + By)
= (aja,85, 8y (a2b3 + b2) + b,).

The assoclative law nov'} follows.

Note that for every (a,b) €A, we have
(a3b) « (1,0) = (1,0) * (a,b) = (a,b).
Hence A has an iden"ci’cy element, namely (1,0). Further,

(%:"'2) satisfies both
(a,b) * (x,¥)

(1,0)
and
(x,y) » (a,b) = (1,0).
The conditions of Ex. 15-4, No. 5 are fulfilled.

(%, ~§) is the inverse of (a,b).

[pége 858]
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A (1,1) correspondence between A and the set of non-
constant linear fupctions is defined by the rule which assigns
to (a,b) € A the linear functlion gilven by

A (x) = ax + b. _
This correspondence has the property that 1fb m corresponds
to (c,d) €4, then me ./ corresponds to (c,d) » (a,b).
That is, "product corresponds to product”. This is an
instance of isomorphism. The structure (a, - ) was, of
course, constructed in an obvious way from the group of non-
constant linear functions with composition as the operation.
The object of the exercise was to construct a group isomorphilec
to an important group of common occurrence but having elements
and rules of a different nature.

This exercise is strailghtforward. It suffices to note in
either case that « 1s an operation, that (1,0) € A 1is the
identity element, that, if (a,b) € A, then (é, -2) €A

and that the verification of the associative law remsins valild
for the case where A consists of the set of ordered palrs

of complex numbers with non-zero first components.

Exercises 15-6; Answers.

1.

We note that (bd)(bra™l) =1, so that (ba)™t =vta7.
Hence
ad r be (ba)"*(aa + be)

b-ld~l(ad + be)

(a1 ) (aa) + (0 7ra™h) (ve)

1 1

a+d ¢

b~

- a ,¢c
=5 *tq

The details are readlly supplied.

S 313
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2. The argument may be based on the use of reciprocals. Thus

(a/b)/c = ¢t + (v71a)

il

R

1l

s a

(bc)fla

a/be.

The second part may be treated as follows.
-1 -1
(a/p)/(c/d) (b "a)/(d "e)

(a7e)™t (v71a)

1l

((a ) te (v la)

(ve) "t (ad)

ad/be.

_The following points should be emphasized:

(a) The indicated calculations in the asserted ildentity are
all meaningful, there being no divisions by zero.

(v) (d‘l)‘l = d.

(c) A corresponding result holds for an arbltrary abelian
group, -

3. The glven pailr of equations imply

e(ax + by) = ce d(ax + by) = cd
Jb(dx + ey) = bf ' a(dx + ey) = af
and subtraction gives (respectively)
(ae - bd)x = ce - bf, (ae - bd)y = af - cd.
314
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Since ae - bd # 0, "we conclude

_ce - bf _af - cd,
X =%e - nd ’ ¥ = ae < va’

so that if our system has any solution (x,y) it must be
ce - bf af - cd
ae - bpd > ae - bd :

Substitution in the original -equations verifies that this

couple 18 indeed a solution:
ce - bf af - cd _ ace - abf + abf - bed _

a* e -BatP*ae-bd - ae - bd =0
ce - bf af - ¢d _ cde - bdf + aef - cde _
d* e - oa ¥ ae-Dba ae - bd = f.
+ 0 1 2 . 0O 1 2
0 0 1 2 0 O 0 O
m-=-
1 1 2 0 1 0 11 2
|
2 2 0 1 2 o |2 1

Both commutative laws follow from the very construction of

the addition and multiplicatlion tables. On turning to the
table (*) of Ex. 15-4, No. 6, we see on taking e = O,

a=1, b=2, that (A, +) 1s a group whose identlty element
1s 0. The postulate F 1 1is verified. The postulate F 2
is readily checked from the multiplication table. (Be sure
that the assoclative law is verified.)

As far as F 3 1s concerned we may put aslde the case
where a = 0 since we know that the product O and any
element of A 1s 0. Further since multiplicatlon 1s

[page 862]
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commutative, it suffices to consider only the first of the
two distributive laws. The check may be tabulated as follows:

a b ¢ a * (b+c) - a *b+a *c
1 0 0 1 +0=0 0+0=0
1 0 1 1 «1=1 O+1=1
1 0 2 1 e2=2 0+2=2
1 1 0 1 +1=1 1+0=1
11 1 1 e2=2 1+1 =2
1 1 2 1 «0=0 1+2=0
1 2 0 1 e2=2 24.0=2
1 2 1 1 +0=0 2+1=0
1 2 2 1 1 =1 24+2=1
2 0 0 2 +0=0 0+0=0
2 0 1 2 +1 =2 0O+ 2 =2
2 0 2 2 e2 =1 0+1=1
2 1 0 2 ¢1 =2 2 4+0=2
2 1 1 2 e2 =1 24+ 2=1
2 1 2 2 40 =0 2+1=0
2 2 0 2 +2 =1 1+0=1
2 2 1 2 ¢+0=0 1+2=0
2 2 2 2 e1 =2 1 +1 =2

This 1s, quite frankly, tedlous. If the division
algorithm has been developed, as well as the result that
if a prime number divides a product of integers it divides
one of the factors, 1t 1s not hard to generalize this exercilse
to the case where 3 1s replaced by an arbitrary prime p,
A 1is replaced by [(0,1,..., p - 1} and "addition" and
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"multiplication" are defined as in the exercise save that

we operate with remainders obtalned on division by p. If
p 1s replaced by a natural number which 1s not a prime, the
resulting structure 1s not a field.

5. The verification of F 1 and F 2 1s immediate.
Cf. Ex. 15-4, No. 3. The additive identity 1s a and the
multiplicative identity is b. Note that B consists simply
of the element b. It suffices to verify

b(cl + c2) = be, + be,, s Cp €4,
to be assured that F 3 holds. Since b =1,
b(cy f cy) =g * ey
and

be, + bc, = ¢

1 2 1 ¥ Co-

Exercises 15-7; Answers.

1. From our formulas for sum and product we see that the usual
addition and multiplication define operations in "A. The
difference of two elements of A 1s an element of A, as 1is
easlly checked. We have seen that the same holds true for
quotients of elements of A. The commutative, assoclative
and distributive laws hold for (A, +, ¢ ) since they hold
for the real number system. The verification of the field
postulates 1is now routine.

2. The details parallel those of the first exercise and are
readily furnished.

3. Suppose that x 1s a real number belonging to both A and
B. Since x€ A, x=a +Db /2 where a and b are
rational. Since x € B, x = ¢ + d V2 where ¢ and d
are rational. It 1s essential to recall that +/2 and J3

317
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ar= z=th 1rrational. We start with the :quality
a + b2 =1c +dV3

axi d:vaw the consaqummées.
7ase 1. d = . Zgo~ x 1 ratlona’,
Zzt 2 2. d # 0. F=-x we corclude thet

VIR ¢ +-‘c12,/'é‘,
ool s \/-3— is of the form

« +3 /2

where. T and&? are both rational. On taki:y squarex, we have
3 WA = (x4
« Z+ 26”4 (20 BT

I

Since

we conclude, by the uniqueness property established 1n
Section 15-7 concerning the representation of the members
of A 1in the form a + b2, a, b rational, that

3 =« 2, 20°
and
0=2axd .
NowB # O since /3 1s irrational. Hence from O = 2a g,

we conclude ¢« = O and
(%) 3 = 242,

At this point we make use of the fact that, & may be
written in the form p/q where p and g are natural
numbers which are not both divisible by a natural number
greater than one. 1In partlicular, p and ¢ cannot both be
even. From (**) we obtaln

2
3 = 2(%)

318
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aid =

SR 3q2 -2 p2.
Nov 4 mv, =:=.= even, otherwlse the 1: 't-hand side of ([ #=x)
wouls - oi.. =d the right-hand side e7en. Hence g = 2r,
where . iz = natural number. From {=%¥) we obtailn

3(2r)? = 2p°,

is

and he:
6r2 - p2.
We no: * et p o1ls even, Thils 1s impossible, for =
odd. <& wlx hypothesis d # 0 must be rejected.
¢ .awilon: X is rational; i.e., ANBCQ.

Since ~<"A(™Z. we have Q = AMB.
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