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POREWORD

The Increasing contributlon of mathematics to the culture of
the modern world, as well as its importance as a vital part of
sclentific and humanistic educavion, has made it essential that the
mathematics in our schools be both well selected and well taught.

With thils in mind, the various mathematical organizations in
the United 3tates cooperated in the formation of the School
Mathematics 3tudy Group (SMSG). SMSG includes college and univer-
sity mathematiclans, teachers of mathematics at ail levels, experts
in education, 2and representatives of sclence and tecmology. The
general objective of SMSG ls the Improvement of the teaching of
mathematles 1In the schools of this country. The National Science
Foundatlon nhas provided substantial funds for the support of this
endeavor.- .

One of the prerequisites for the Improvement of the teaching
of mathematics in our schools is an improved curriculum--one which
takes account of the lncreasing use of mathematics in science and
technology and in other areas of knowledge and at the same time
one which reflects recent advances in mathematics itself. One of
the first projects undertaken by SMSG was to enlist a group of
outstanding matnematicians and mathematics teachers to prepare a
serlies of textbooks which would 1llustrate such an improved
curriculum,

The professional mathematiclans in SMSG believe that the
mathematics presented in this text is valuable for all well-educated
citizens In our society to know and that it is important for the
precollege student tu learn in preparation for advanced work in the
field. At the same time, teachers in SMSG believe that it is
presented in such a form that it can be readily grasped by students.

In most instances the material will have a familiar note, but
the presentation and the point of view will be different. Some
material will be entirely new to the traditional curriculum. This
is as 1t should be, for mathematics is a living and an ever-growing
subject, and not a dead and frozen product of antiguity. This
healthy fusion of the old and the new should lead students to a
better understanding of the basic concepts and structure of
mathematlcs and provide a firmer foundation for understanding and
use of mathematics in a scilentific soclety.

It 1s rnot intended that this book be regarded as the only
definitive way of presenting good mathematics to students at this
level. Instead, it should be thought of as a sample of the kind of
improved curriculum that we need and as a source of suggestions for
the authors of commercial textbooks. It is sincerely hoped that
these texts will lead the way toward inspiring a more meaningful
teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

The aim of this experimental text 1s to focus attention on
mathematical ideas which are appropriate for stidy by college-
capable students in the eleventh grade. These ideas have been
selected and developed by mathematicians and teachers working
together. The mathematiclans believe that the mathematics pre-
sented 1s significant, both intrinsically and as preparation for
future étudy, and that the expositlons are mathematically sound.
The teachers belleve that the material is teachable to high school
students. Both groups join in the belief that there is an affin-
ity between youth and clearly presented mathematics which should
be more thoroughly explo%ted in the nation's schools., The success
of this text will depend, in large measure, on the extent to which
it stimulates students' interest and influences them to continue
their study of mathematics in high school and subséquently in
college.

--------- . In this text students encounter many new mathematical ideas
which require expositions somewhat more sophisticated than those
previously attempted. These expositions develop the idea that
mathematics is an organized body of knowledge which is founded on
a surprisingly small number of basic assumptlons. Students who
become aware of tnhis important idea will begin to understand the
structure of mathematics and will acquire some ability to explore
this structure for themselves.

Explanations which emphasize procof require intensive study.
For thls reason no claim is made that this is a course in "mathe-
matics made easy". On the contrary, innerent difficulties are
candidly appraised and forthrighfly explained in terms that are
appropriate for students at this grade level. For this purpose

““the easiest or shortest presentation is not always the best. For

~‘example, the rules for solving systems of equations could have '

- been given in much less space than 1s devoteq to the develonment
of equivalent systems in Chapter Seven; but ‘his development pro-
vides a logical basis for understanding these rules. Again, the
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rules for the manipulation of complex numbefs could have been
stated briefly rather than derived from carefully cnosen postulates
as they are in Chapter Five. Similar examples can be found in
every chapter, indeed, in almost every section of this text. The
purpose in all such cases 1is to gilve the student some insight into
the nature of mathematical though®t as well as to prepare him to
perform certaln manipulations with facility.

The course of study 1n grade eleven was greatly improved as a
result of the Toxt Book Panel's decision to devote only one year
(grade ten) to vlane and solid geometry. The time gained by the
removal of solid geometry from the eleventh grade sequence is de-
voted to trigorometry (Chapter X), vectors, (XI), and a more ex-
tensive treatment of complex numbers (V, IXX) than is ordinarily
attempted at this stage. The sequence of topics in this sample

text 1is, of course, only one of many that could have been chosen.
One controlling consideration here was the desire to advance the
student's understanding of number systems. Whille this development
permeates the entire text, its main bearings are to be found in
Chapter I (Number Systems), Chapters V and XII (Complex Numbers),
and, for the very able student, Chapter XV (Algebraic Structures).

The writing group hopes that the following viewpoints are
discernible in this text.

Plausible arguments have their place provided they do not im-
plant ideas which must later be eradicated. The necessity for im-
proving the student's understanding of the nature of mathematical
'reasoning does not imply that every argumént must take the form of
a rigorous proof. '

It is often desirable to appeal to the student's intuition
and to lead him by an inductive approach to make and test conjec~
tures about the nature of the principles to be proved,

New symbolism should never be used for the sake of being
"modern" but only when it serves to convey meaning more accurately
and more succinctly than could be done by other means,

Individual differences in ability and motivition must be rec-
.ognized even among college-~capable students. Some material must

12



be included for the student who has eXceptional ability in mathe-

matics.

This revision of the original (1950 ..psi~ of this text was
based upon a careful study of the s» evaluations which
were submitted by the teachers Who . serial in the ex-
perimental centers during the 1959-u. . .< year. In a vepy

real senseé these teachers collaborated witn the authors in an
effort to make this text a more effectivs instrument of instrucsion.

13



Chapter 1

NUMBER SYSTEMS

1-1. Introduction,

This chapter is about the number systou., of ntary
algebra. You are already familiar with some of thi-3e number
systems. You have used the natural numpers, 1,z,5 «+- , ever since
you started to count. The set of integers, ... -3,-2,-1,0,1,2,3, ...,
contains all the natural numbers and has zero and the negative
integers as well. You probably met this number system for the
first time, in a serious way, wWhen you began to study Algebra.
The system of rational numberS 15 an even richer System. It con-

taina all those numpbers of the form %-, where p and q are

integers and q 1is not zero. YOu Were studying the positive
rational numbers when you learned to work with fractions. However
you did not meet the negatlve numbers uyntil you began your study
of zlgebrae.

In thils chapter we shall meet still another number system
called the real number system. Before we take up our study of the
real number system we are going to examine again the natural
numbers, the integers and the rational numbers. In this re-
examination we shall study the logical "structure" of the various
systems of numbers, We show how the study of this structure ties
together all of the many speclal facts about the different
systems which together make up the real number system. This
program is carrled further in Chapter 5 where complex numbers are
studled.

when we sSpeak of the loglcal structure of a number sSystem we
have ln mind a very deflnite meaning which requires explanation.
About 300 B.C. Euclld organized geometry as a loglcal system,
selecting certaln statements @s axioms or postulates and deducing

14



from them other statemerts called theorems. It was relatively
recently--within the last 100 years or so--that a similar organi-
zation of algebra and arithmetic was undertaken.

Organlzing number systems in deductive form gives: our
knowledge of them a coherence ve might not otherwise find. We
shall see that each system car be summarized "in a nutshell" by

listling 1ts "basic propert: -from which we may derive other
propertles--and that th: B -es" make 1t easy to see the
pattern common to all of . to see their differences.

The lmportant idea in the logical structure of a mathematical
system i1s that some statements are consequences of other state-
ments. Many of the theorems reflect this idea themselves since
they state that one statement follows from another. They have
the form

(1-1a) If A, then B

where the letters A and B stand for certain statements. We

shall meet many such theorems in this chapter and elsewhere in

this book. Therefore we consider them in some detail in this

introductory section., E»amples of theorems having this form may
be given by taking specific statements for A and B .

Thus with
A: triangies Tl and T2 are congruent
B: triangles. Tl and T2 are similar.
we have the theorem
If triangles T, and T, are congruent, then triangles Ty
and T2 are similar.

And with
A: X 18 negative

B: x2 is positive
we have the theorem

If x 1is negative, then x° is positive.

[sec, 1-1]
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When a theorem has the form "If A, then B" the problem of

"proving" 1t demands that a chain of reasons be given to convince
the reader that statement B is true if statement A 1is true.
Note that no assertion 1s made as to whether either A or B
actually 1s true; only that in case one of them (A) happens to
be true, then the other (B) must also be true. In case A is

not true, (1-1a) has nothing whatever to say about B .

If both a the " A, then B" and its cc.verse "If B,
then A" are t. L9 . .. 1s often expressed by saying
A if and only if B
which 1s interpreted as meaning '
’ A 1f B, and A only if B.

In the latter manner of expression, "A if B" stands for
"If B, then A", while "A only if B" stands for "If not B
.then not A", or equivalently, "If A then B",

This 1s the way we shall use the expression "only if" in
this book, It s important for you to remember this fazt., For
example the "only if" statement

X =Y only if X = Y2
has for us ‘he sz~= meaning as the "if then" statemen-
'If X =y then x° = ye"

which happens tc .e true for all x and y . Our "on: if"
statement does r.ot have the same meaning as

"If %% = y2  then x = y"

which 1is not true for all x and y .

Exercises .-la

l. Form =h=z zcnverse of each of the following statements:
rox - = Y, then y 13 greater than x .
(b) A namir—= number is a multiple of 2 4if it is even.

16
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(¢) x =1 only if X2 - 1.
If x 1s less than Yy, then x 1is less than z .
(e) "If A, then B" is the converse of "If B, then A"
' only 1f "If B, then A" 1s the converse of
"If A, then B" . )
2. Rephrase each of the following in the form "If A, then B;
and 1f B, then A ." o - '
) X =y if and only if X + z = vV +
X+ 1l=y 1if and onlv if y - 1
X + 1 =17 1if an. only if x = 3

(x + y)2 - x° + y2 if and only if x or ¥y 1s zero

The converse of "If A, then B" is true if and only if
"If B, then A" 1s true.

2
X

i

(a
(b)
(c)
(d)
(e)

1-2. The System o Y-rurel Yumbers.

The elements c. _he rzTural number system are the numbers
1,2,3 ... , the numb:—3 13ed in counting. The numbers of thils
system are ordered - a ‘==:liar way; the firsi is 1 , the second,
2 , 1s obtalned by zo- 1 to 1 s the thir¢, 3 , is obtained
by addlng 1 to 2 , ar: o on. We use one letter N to denote
the natural number sws<an.

If a and b are arny natural numbers then we can add these

" numoers to obtain t! wir mmm a + b and we can multiply these

numbers to obtain t: . ir profuct ab .  For some pairs of natural
numbers a and b we &in also subtract to obtain the natural
numbers a - b but -* “or all palrs. For insta—cs 5 and 3

are natural numbers « 4 :. 18 5 - 3, but not 3 - 5 . For Some
palrs of natural nur - .u and b we can also divide to obtain
a natural number~% 1t ot for every pair. For ingzance 6  and

3 are natural numbe 5 _a¢i 30 is -% but not -% .

17
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5

The operations of addition and multiplication can be performed
with any two natural numbers to yield natural numbers. The
operatiors of subtraction and division do not have this property.

We express these facts by saying that the natural number system
1s closed under addition and multiplication but not under sub-
traction or division. ‘

This property of a number system, of being "closed" with
respect to an operation, 1s one we shall meet over and over again.
As we proceed we will find that each new system we encounter 1is
closed under more operations than any of its predecessors.

Exercises 1-2a

Here are some sets of natural numbers. For each decide whether it
Is closed under addition, multipltcation, subtraction, division.
1. The set of all natural numbers .

2. The set of all even natural numbers.

3. The set of all odd natural numbers.

4. (1,2,3,4,5)

5. (0,1}

. The set of all natural numbers greater than 17 .

Any glven natural number may be described in a variety of
ways.- Thus 4, 1 + 3, 2+ 2, 2 - 2, 1 - 4 are all descriptions
of the same number. We call this relation equality and express
1t using the sign "=". Thus we write U4 = 1 4+ 3, 4 = 2 + 2,

2 +2 =2 ¢« 2. Glven any pair of symbols a,b representing
numbers, there are only two possibilities: elther they are
"equal" (a = b) , or they are not. In the latter case we say
that a and b are different or distinct and we write a # b .

18
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The general rules governir - the use of the equality sign are

1 (Dichotomy). Either a =b or a £ b .

Itz

=

(Reﬁlexivity). a=a .

=

~ (Symmetry). If a =Db, then b = a

hange]

E, (Transitivity). If a=b and b=c , then a = c .

]

55 (Addition). If a =b , then a+ ¢ =Db + ¢ .
Eg  (Multlplicatlon). If a = b , then ac = bc .

These rules give directions for asserting certain statements
of equallty, In each case but the first two, when certain other
statements of equality are either glven or supposed. In

.gl, cee §6 each of the letters .a,b,c 1s to be understood as

representing any one of the numbers in the system N . The point
nhere 15 *nat no matter what numbers a, b, and c¢ represent, If
(for ex: le) a=Db and b ~ ¢ , then it follows that a = c .
We expresc the Important fact that there is complete freedom in
substltuting for the letters a,b,c by saying they are arbitrary.

The operations of addit:on and multiplication in the natural
number system have the following properties (among others),

A, (Closure). a + b 1s a natural number.

A (Commutativity). a +b =Db +a .

A (Associativity). a + (b + c) = (a‘+ b) + ¢ .

M, (Closure). ab 1s a natural number.
(Commutativity). ab = ba .

As

ssoclatl+~ity). a(be) = (ab)e .

N,

e {
ok
5

M), (Multiplicative Identity). 1+ a= a + 1 = a .

19
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D (Distributivity). a(b + ¢) = ab + ac .

C, (Cancellation-Addition). If a + c = b + c , then
a=">b,.

C, (Cancellation-Multiplication). If ac = bc , then
a=>u,

Thecz procerties, which we shall call the E
are general statements of familiar "laws" of arithmetic; they are
"general" in the sense that we assert their validity for
arbitrary a, d, ¢ . Some of the corresponding "speclal" state-
ments in arithmetic are 2 + 3 =23 +2, 7(5 +1) = 7«5+ 71 .

Exercises 1-Cb

1. Which one of the natural number properties is illustrated
by each of the following statements? (All letters represent
arbltrary natural numbers.) '
() ¥ +5=54+14

(d
(b) 8(x + 2) = 8x + 16 (
(
r

) Xy + x2 = x(y + 2)
) T « b5 =28+ 35
(¢) 3(k+7)=(3-4).7 )
i

2. Using the natural number prope

e
f) (x +2) +3=x+75
ties, prove the following

statements to be true for all natural numbers,

(a) (x+V¥)z = xz + yz

() x + xy = x(1 + y) :

(c) =xly + (w+2)] = x(y +w) + xz

(d) 'If x + (v +2) = (z+y) + Xz , then x = xz
*3, Use properties E,A,M to prove the statements:

If a 5 and , then a + ¢ =Db + d .

c d
If a b and ¢ =d , then ac = bd .

it

We examine a few consequences of properties E,AM,D,C.

20
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irst of all, property A, (Associativity) asserts that for

arbltrary a, b, ¢ we have a + (b +c¢) = (a + b) + ¢ . ~-nsider
on the otner hand the expression a + b > . We ordinaril ze
the sign "+" to denote an operatlon whi:h assigns one natural

v or (thelr sum) to each palr of given natural rumbers, and
therefore we should hesitate to use it when more than two numbers
are lIlnvolved. However, such hesitazion is unnece=zary, since the
assoclatlve property tells us that i: makes no dif“erence at all
whether barentheses are inserted around the first <wo terms or
around the last tWwo. It 1s thus precisely because of the associ-
ative law that we may define the expression a + v+ ¢ to be a
third descriptior of the one number already having the two names
a+ (b+c) and (a + b) + ¢

[

a+b+c=1(a+Db)+c.

Slmllar definitions can be made for expressions with more terms,
such as a + b + ¢ + d . '

Vie may adapt the distributive property to sums involving
more than {wo terms:

a(b + ¢ +d) = a((b + ¢) + 4d) [Definition
= a(b + ¢) + ad [Distributivity
= (ab + ac) + ad [Distributivity
- ab + ac + ad . [Definition

Now consider the expressions a +a and a + a + a .
By property .Mh (Multiplicative Identity) each term in these

expressions equals a - 1 , Using the extended distributive

propertles, we can say
a+a=a2a-+1l+a-+1l=al(l+1)=2a,

a+a+a=2all+1+1)=23a.

21
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In general,
na =a-+a+ ... +a ,

where there are n terms, n being any natural number.

Similar considerations apply to products, so that we may
define

i

(ab)e ,
(abc)d ,’

abc
. abcd
and similarly with more factors.

H]

Corresponding to the expressions 2a, 3a for sums we
abbreviate products of like factors as

a-a=a2

a * a-*a = a .
In general
n )
a = a -« a - ... a-,

when there are n . factors, n belng any natural number.

Example 1-2a: Using properties E,A,M,D prove that for
arbitrary a , b in N,

(a + )%= a% 4 2ab 4 b2 .
Proof: (a 4 b)% = (a + b)(a + b) [Def.
= (a + b)a + (a + b)b [Distr.
= (aa + ba) + (ab + bb) (Distr.
= 2a° 4+ ab + ab + b2 (Def., Comm,
= a® + 2ab 4 b2 [Der.

22
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Exerclses 1-2c¢

Using the natural number properties, remove all parentheses
from products and 1list the properties you use.

(a) 5p(3 + r) (d) 2m(m + n + 3)

(b) (2x + 3)(x + &) (e) (x + 1)(x +y + 2)

(¢) (y+1)(y + 1)

Prove that the following statements are true where all letters
represent arbitrary natural numbers.

(a) (a+b+c)+d=(a+0b)+(c+d)

(b) (a + b)(c + d) = ac + ad + bc + bd

(e) (px + a)(rx + t) = prx® + (pt + ar)x + gt

(d) a(b.+ ¢ + d) = ab + ac + ad

(e) a(bcd) = (ab)(cd)

Using natural number properties, simplify the following to a
singie term.

(a) Lx + 2xy

(b) 2(%u + 1) + 3(%u + 1)

(¢) m(p +a) + m(p + q)

(d)  (2x + 1)(x + 1) + (1 + 2x)(1 + x)

Prove that the square of an even natural number is also an
even natural number.

Prove that the square of an odd natural number is also an
odd natural number. o

Is the product of an even natural number and an odd natural
number even or odd? Prove ydur answer,

Since 15° = 225, 252 = 625, 35° = 1225, ... , 852 = 7225,

952 = 3025, a pattern can be seen that a two digit nétural
number ending in 5 can be squared by writing the product
of the first digit by one more than the first digit, and
following this the square of 5 . Prove that this is true
without testing every case.

23-
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The lists E,A,M,D,C of properties of N , when taken together
wlth another list, 0O , to be presented in Section 1-3, form a
logical tasis of the natural number system. In organizing the
natural number system deductively these basic properties may be

. assigned the role played by the axioms and postulates in the
deductive organization of geometry. From them we may derive as
theorems the other algebralc properties of the natural number
system. Corresponding lists of basic properties for the systems

of the integers, the rationals, and the reals are in later sections

of this chapter; and for th: complex number system, in Chaptetr 5,

Limitations of space grevent us from going very far into
this "deductive theory" of number systems, but a few examples will
. be given to 1llustrate the methods by which some of the lamiliar
"rules of calculatlion" may be derived from the E,A,M,D,C list.

Beginning In the next section we shall study inequalities from
the deductive point of view.

Example 1-2b: Solve the equation 5x + 3 = 13, and Justify

natural number system.

Proof: From the (arithmetical) fact that 13 = 10 + 3 ,
ve use Eh to rewrite 5x + 3 = 13 as

5% + 3 = 10 + 3 .
Then by C; (Cancellation-Addition)

Again, an arithmetlcal fact: 10 = 5 ¢ 2; and again we rewrite:
5X=5’2.

Finally,using C, (Cancellation-Multiplication), we get

X = 2 .

24
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Check: Substitution of 2 for x in the original equation
shows that 1t 1s satisfied:

5«2+ 3=10+ 3 =13 .

Comment on Example 1-2b: When we study other number systems
(the Integers, the rationals, etc.) we shall be able to attack
thls problem more directly than the means presently available
permit--for the reason that we shall have longer lists of basic
properties to work with. The significant thing about Example 2
1s that it can be solved at all in the system N . The “method"
we uéed is rather involved--the only virtue we claim for it is
that it can actually be carried out using only the E,A,M,D,C
properties of N . 1In the system I of integers, where we have
the number -3 avallable we shall be able to add -3, to both
sild 3 of 5x 4+ 3 =13 to get 5x = 10 directly. And in the’
rational number system Q where we have the number~% avallable,

we can then multlply both sides of ‘5x = 10 by % to get x =2 .

We can perform nelther of these steps in N since N contains

neither -3 nor -%—

Exerclises 1-2d

Find rnatural number solutions for the following, and name the
natural number properties E,A,M,D,C used.

l. X +2 =5 5. 2u + 1 =4

2, z + 3 =1 6. 3p+ 4 =104 0p
3. 3y =06 7. 2w + 1 = 4 4+ 3w
b, 2u 4+ 5 =7 8. Sm+1=2m+ 4

25
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1-3. Order in the Natural Number System.

One of the first things--if not the first thing-—ohe learns
about the natural numbers is that they come in a definite order:
1, then 2, then 3, then 4 , etc. This is the order of court-
ing. "VWhen a natural number a* "precedes a natural number b in

the order of counting, we say "a is less than b" and write

a ¢b. Wien a < b we also say "b 1s greater than a" and
wr.teé b >a . Thus a <b and b > a have exactly the same
meaning. Moreover each of these statements has the same meaning
as the statement: there is a natural number ¢ such that

a + C.=Db . Thus there is a very close connection between the

order relation of natural numbers and the operation of addition.

We>examine some baslc propertles of this order relation. The
flrst property expresses the fact that given any pailr of distinct
natural numbers, one or the other of them i1s the greater:

0, (Trichotomy). Given any palr a,b of natural
numbers, exactly one of the following
three relations holds:

a = D, a < b, b ¢ a.

9, (Transitivity). If a<b and b ¢ c, then a <c .
O, (Addition). If a < b, then a +c¢ < Db + c .,

€y (N) (Multiplicatlon). If a < b, then ac < be .
(¢ in N)

The first property 1s called the "trichotomy property"
because 1t splits the possibllities into three parts, one of
whlch must hold while no two of which may both hold. ©Note, in
partlicular, that If b < a 1o false, then elther a = b op
a < b, which Is wrltten concloely as a < b .

<
—
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Slmilarly a > b 1s wrltten in place of "a = b or a > b" .
Note also that "a < b or b ¢ a" means simply "a £ b" . If
a<b and b ¢ ¢ we often write a < b < ¢, in analogy to

@ =b=c¢ for a=D>b and b =c . Writing such "chains" of

- equalltles and lnequallities is Justiflied by the transitivity
properties 'E” and Q? . Thus Iin the chain of equalities

a=b=¢c=d-= ...

each member equals each of the others. In a chain of inequalities
. a<b<cccgd...,
each number is less than each of those following it.
Using the connection between order and addition,
there is a ¢ in N
ac<b 1f and only if
b

such that a + ¢ = s

0

0, says

If there are d4 and e 1n N for which

a+ds=2>, and b+e=c,
then there is an f in N such that a + f = ¢ .

This restatement of_q2 is easlly proved by showing that d + e
is such an f : if

a+d=> and b+e=c,
then
(a+d) +e=b+e=c,
80
a+(d+e)=c, where d+e is in N .

In a similar way, 05 and -QM(N) may be restated in terms

of addition and proved from the E,A,M,D properties of N .

21
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The deslgnation ©0,(N) 1s used rather than simply Sy to

warn the reader that this particular property will require nodi-
ficatlion in the other number systems to be studied in this chapter.

Exercises 1-3a

1. Llst the members of the set of natural numbers such that
<5,

2. Uslng natural numberg, Qrite an equality having the same
meaning as 6 > 2 , '

3. Uslng the symbol "<", form true statements using the
followling pairs of natural numbers,
(a) 2 and 6 , (d) (2 +a) and (1 + a)
(b) 5 and 3 (e) ¢ and b, if c=a+b
fc) a and 3a (f) a and e, when a + b = ¢

and ¢ +d = e .
4, Rewrite the followlng statements using a <¢b<c, agb,
or a £ b forms:
(a) x 1Is less than 4 or x 1is equal to 4 .
(b) 5 1is less than «x and x 1is less than 7 .
(c) v 1is equal to 4 or y 1is greater than 4 .
(d) m 1is less than n or n 1is less than m .
(e) 3 1is less than x or 3 1is equal to x , and x is
less than 5 or x 1is equal to § .,
5. Restate 84 and Q) in terms of addition and prove them

from the E,A,M,D properties of N .

6. If Xx+a=y and y+ b =2z (all letters representing
arbltrary natural numbers), what is the order relation of
X and z ? '

There are some similarities between the E properties and
the O properties which deserve to be noted, as they reveal
analogies between the methods of treating equations and corre-
sponding methods for inequalities.

28
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The two equality properties

EB: It a=b, then a4+ c=Db + ¢
Eg: If a=1Db , then ac = be

correspond exactly to the order properties
93: If a<b, then a + c <b 4+ ¢
0y(N): If a < b, then ac < be (¢ in N)

and 1t is on the basis of this correspondence that a theory of
Inequallties may be built to parallel that for equations.

Fully as lmportant in practice as Es , Eg, 05, 0y (N) are

thelr converses, the cancellation properties for equality and

order:
£y If a+c=Db+c, then a=">
Coi If ac =bc, then & =b (¢ in N)
QJ: If a4+4c<b+c, then a b

Cy: If ac"< bc , then a < b (c in N)

Of these, the first two were included in the lists of basic
properties for N . All four, however, may be proved as theorems
using the E,A,M and O properties of N . We examine one of
these proofs to show the power of the trichotomy property.

Thecrem l-3a: (gl) If a+c=b+c, then a=">b .,

Proof: We suppose that a + c = b + ¢ and deduce a = b
from this assumption. By 91 (Trichotomy), there are exactly
three possibillties, one of which must hold; they are

a=>b, ac<b, b<a.,

29
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If we carn elixm__z7- the last two possibtlitles, the :._°s* must

hold and the t -or:<-z Ls true. We tieor “Ope st pose . o = .
Ay 0, (Addit: T orollows L L < b+ c whi: (. 9,
alnt) fle 1y ~+. tlets our hypo: 5 a4+ Cc=Db 4+ 2
imllarly ¢ .ot < a alco lew.. . a ccntradictiz>. ™Thus
ZLoa 4+ ¢ o= 't follows that =z = b . '
Theorem 1- :: (C,) If ac = bc , then a =" odnm B
Theorem 1-jc (C2) If 2 4+c Db+c, then a« ., .

Theorem 1-3d: (C)) If ac < bec , then a < b (c in N).
U

The proofs are similar to that for Theorem 1-3a and are
left as exercises.

Before we use these theorems to solve inequalities, we note
that because they are the converses of EB > Eg » 05, Qu(N) we
may express all elght of these properties in the four compound
statements:

CEGy e

Egg: a

b if and only if a + ¢ = b + ¢

b 1if and only if ac = be (c in N)
le:',a <b if and only if a + c ¢ b + ¢
OC,: "a < b 1if and only if ac < bc (¢ in N).

If, in solving an equation or inequality, we use only the C
properties (as we did in Example b, Section 1-2), our discussion
is not logically complete until we perform the "check." For

30

[sec. 1-3]




18

untll we do <thils ne. now whether there i: = solution.
The compoun: for: . . -’; are lmportart in przc: e because
they guarantee tne ... .7 . in whilch they are use: Lis reversible.

Thus (£, give

If @0 &= _ ., then x =2,
which does rot say - 3 =5 nas any solutior; only that
1f 1t has a solutlic: -~ trat solutlion must be Z . On the

other hand _§5 say.

Ir - Tm X+ 3 =5,
which asserts that ~ = !-deed satisfy x + 3 =5 . (This is
the "check.") ..The : s .atement EC, glves
X 4+ Z > . and only 1if X =2,
including voth asser ‘= : (1) x + 3 =5 1is satisflied by 2
("if" part), (11) .. “zr number satisfles x + 2 =5 ("only
1f" part).

We 1llustrate the.e vieorems by solving an lnequality.

Example 1l-3a: Sol:= 5X + 3 ¢ 13 in the system N .

Solution: (The me=r -% i1z much —he same as that used in
solving Example 1-Zb, ez.:2" that we now use the order properties
corresponding to the 2q. .~ properties used there.)

5% + 3 < 10 + 3 — wnd only if 5x < 10 [oc,

5% ¢ H . 2 1f and only 1if X < 2 ngg

X 2 1f and only if x = 1

There are two ways ¢~ z-tack an inequality like
5% 4+ 3 ¢ 13 . One of =Znex 1o to spiit 1t into two problems:

5 4+ 3 ¢ 1: or 5 + 3 = 13
and to solve them serzrately:

X <2 or” X = 2.
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This split car ze avolded if we combine ggl , 991 and =i, , 922

obtaining
ECC,: a2 40D if ard only Lf a+cgb+
ECUEi acghb if and only if ac < bc ¢ - N)

With these last compound statements, inequalities involvin.g

may be handled Just like the others. Thus, for example, 1
5% + 3 < 13 if anc only if 5x < 10 =%

if and only if X< 2. 3002

Exerclses 1-3b

1. Prove the following properties of N , where a, b, ¢ and d
represent arbltrary natural numbers.
(a) Ifa+b=c, thena +b<cc+ b
(b) If a(b +c) =d, then ab < d
(¢) If a<b and c<d, then a+c<b +d
(d) If ac =bc , then a =b (Theorem 1-3b)
() If a+c<b+c, then a < b (Theorem 1-3c)
(f) If ac <bc, then a ¢ b (Thuorem 1-34)
2. Solve the following for natural nurbers,

{a) om < b (d) 3x + 4% ¢ x + 8
(b) 6p + 3 <15 _ (e) 5y + 17 29 +1
(¢) 3x+1¢h (F) 4 <3x+ 1< 19

3. Prove: a<b<c ifandonlyif a+d<b+d<c +d.
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Two =.ore or ler proper- les 2 reg .-z or a logical i
for the :mural sumber system. Tnaey ars ..o so-called
"Archnime . £ serty" Zoi the ell cris property.” Ther oo
stated bs .

Thes - pre-=rties are basic for mu.: oI the advanced tnecry of
the natur-. numbers, some of which is .=zyoni the scope of this
book. Th well order property 1s a property of the order relation
In the na-ural number system which doe:z nct hold for any of the
other nur er cystems dlscussed i: this chapter. On the other
hand the :rerimedian property nolis for all of the number systens
considercd ir thls chapter--provided the second occurrence »f the

word "natural’ is replaced by "positive."

LIST OF BASIC PROPZRTIES
OF THE
NATURAL NUMBER SYSTEM

In tke following 'general statements, a, b, ¢ represent

arbitrary members of N

E. (Dicrotomy) Either a =%t , ora # b .

=1
E, (Reflexivity) a = a .

E, (Symmatry) If a=b , ther b = a .

E) T-arsltivity) If a=b &i b=c¢c, then a=c¢ .
-55 (Addition) I a =b , then a +c =Db + ¢ .

E;  (Mul=iplice=_:=) =7 a=b , then ac = bc .
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(Cle. ==) 1 + b 1s a natural number

“Comu itz 1Y) a+b=¢b+ .
(Ascc iz =ity) a + (b + (a + b, +c .
{Cloz.. = b 1s a natural _.:mber.

.Commu.zz_v:ty) ab = ba .
(Assc' _z=:vity) a(be) = (a5 - .

(Mult:-li. -ive Tientlty) - a=a « 1 - a .

(Distributivizy) a(b + c)

zb + ac .

(Trichotomy) Exactly one of the following holds: .“
a=b, a<b, b<a
(Transitivi-=y) If 2 < b and b < c ; thern a < c .
(Aczifon) If =z (b, then a + ¢ <b+c .

)

(N, Multizlicaton) If a < b , then ac < bec .

(Arz—fmedes) I a an 3 are any given natural
nusr=Ts such tha- < there 1s a nzatural number

a
wooanish that na @ b .

We l (muer) Eacz set of zne or more natural numbers

orri——d Lomlniz=l memrer; l,e., a member less than
TOTZE . O everr mexber cf T2 Eak.
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DEFINITIONS EOJR THE
NATURAL NUMBZ: STTTEM

In the following general ~te-zmer ==, a, b,

)

A repr=wsent
arbltrary memoers ¢ N

a =5 *“f and only if a an- - are nazes Tor the same
number. '

a+b+c=(a+b)+c,a+ +c+d=(a+b+c)+d,
zand similarl—-r with more terms.

na =a -2+ ... +a , Wwhere thszre are n terms, n in N .

abc = (zb)c , abed = (abc“d , z=d similarly For more factors.

i

a =a - 2"* ... * a, Whzre =nzre are r factors, n 1In N .
a ¢ b if and only if thezme is=2n e 1in ¥ such that

a4+ e =Db.

' >a 1f and only if = ¢ D

<o if and only if = ¢b or a=1>b .

z b ¢ec 1if and only i a b and b < c .

O P o

30ME Tz 0EMS JF THE
NATURAL ~ . MBER SYSTEM

In the foliowlng ger ral Btez-ementz, a, b, o, d zr=prssect

arbitrary members 2 N

a="»b 1f and =iy 27 a -c =04 ¢ (Egl)
a=>b if z2nd only < 2z = bec (Egg) (¢ in N}

a<b ifardecnly :2 a+c<b+ec (“o_c_l)
& < b if ard only if ac < be  (0C,) (¢ in "N)

ac¢cbgce ifa=donly if a+d<<¢b+dgc -d.
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Exercises l-3c

1. Use the natural numbers 1, 2, and 2 to _l_.strate 0
(Archimedes).

2. Whlch element of the set of tvo digit naturz. numbters 1is
the minimal element guarantee: by 95 (Wel_-:rder)?

3. Wnich of the E,A,M,D,0 props~ies of the nc-.-al numbers

;
are best illustrated by the fzllowing stateme-<s? All
letters represent arbitrary m=tural nurbers.

(a) (x +y)(2x + 2y) =@x -~ = (x + v)
(b) 24+ b4 =3x2

(¢) (a2 +Db) +(c+2)=(a=¢t + c) + 2
() By(y + 1) = 23° 4 by

() 2<¢a and a<b, sc - .3

(£) 2[5(x + y)] = 10(x + y)

(8) 2(m+n) <T(m+n) 1f 2 ¢ T

2 . o " i~
(h) (a+b)2= ac+b2 or % 4+ BT £ 2T o+
(1) a° + b° + 2ab = a® 4 2at 4+ o
(J) x+2=y+2 If x=7y%
(k) p=gq only if p+ m = h -
(1) 5 L<2X+y or 5> 2x 4+

(m) If u=v, then u° = v-
(n) 2y <ay if 2 <gq
(o) If (x +y) <t then z{x+y)> % is —ue for

some Z .

Il

k., Prove that x + 2 = 2 cannot be solved in the matural
number system. (Hint: assuzz : natural nu-hsr, say p
a solution and apply the _:=7:i-%1. = fzr a S .
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1-4, Th= 3ystem of Integers.

The system I of Integers has as its members the numbers
eee 5, =3, -2, -1,0,1 sy 2 5 3, vea .

It Incluides as a part the system of natural numbers '‘as well as the
numober O and the "negative" whole numbers. (Why these numbers
ure called "negative" will appear in Section 1-5 when we study the
order relation for I .)

In I we can solve equations such as
2 4+ X =2 and 2 + k =1
which cannot be solved in the system N of natural numbers,
However, we can do more than this in I ; we can solve any
equation ¢~ the form a + X = b where g and b are any
members of I , whether or not théy are in N as well.

. The zrstem I has all of the E,A,M,D properties of N
and, in aciition, two more A properttes:

A, (Additive Identity) a + 0 = a , for arbitrary a in I

A: (Subtraction) For each pair a, b of integers in I ,

there is exactly one integer ¢ such that a +¢c=2Db.

5

Definition l-4a: ¢ = b - ameans a + ¢ = b s, and b - a 1is
called the difference of - b and a (in that order).

The process of solving the equation a + X = b may be
interpreted as performing a new operation, subtraction. With

this interpretation, 55 asserts that I 1is closed under

subtraction.

An important speclal case of 155 and Definition 1-Y4a 1is
that in which b - 0 ., 1In this case the éolution of the equation
a + X =0 1Ls given a special name.
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Definition 1-Ub: The solution of a + X =0 1is denoted by
-a and 1z called the additive inverse of a .

Thus 1f a 1s any member of I , we have a + (-a) = 0 .
Moreover in view of Definition 1-Ya we have -a = O - a.

Theorem l-la: -(.a) = a , for arbitrary a in I .

Proof: By A5 there 1is exactly one number in I satisfying

(-a) + x = 0 and by Definition 1-Ub that number is -(-a) .
However a + (-a) = O and hence using A, (Commutativity),
(-a). + a =0 . But (-a) +a=0 is simply the assertion that

‘2 itself is a solution of (-a) + x = 0 . Thus both a and
-(-a) satisfy the equation (-a) + x = 0 . And since there can
be only one solution we conclude a = -(-a) .

The crux of this proof (and of most of the others
in this section) is that wﬁenever two expressions
Satisfy an equation which has only one solution
they must be equal,

Those non-zero integers which are not natural numbers
(-1, -2, -3, ...) are the additive inverses of the natural numbers.
Hence we have the following corollary to Theorem 1-4a,

Corollary l-4a: If a 1s a non-zero integer, either a 1is

a natural number, or -a 1is a naturi? number,

Exercises 1-4a

l. Find additive inverses for the following integers:

(a) 2 (d) m
(b) -5 : (e) -p
(¢) o© A (£) (b - a)
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2. 4Wnich of the properties, definitions, or theorems for I are
illustrated by the following?
(a) &+ (-6) =0 (d) -(-(-8)) = -4
(b) 4 4+ 0 =4 (e) 2 4isin N, or -2 1s in N .

(¢) -5=0-5

3. Show that the operation of subtraction is not commutative.

4, TIs the operation of subtraction assoclative? If it is, prove
that 1t is. If it is not, show that it is not by giving an
example. '

5. Prove for all integers: x =y 1f and only if -X = -y .

6. Prove that O 1s its own additive inverse.

7. Prove that O !is the only integer which is its own

additive inverse.
8. Prove that no natural number is the additive inverse of any

’

natural number.

The system I contains many numbers not in N , but the new
system possesses all of the E,A,M,D properties that N does.
Wnen one first encounters the system I he faces the task of
learning how to work with the new numbers: how to add them, how
to multiply them, etc. We shall. show next that these "computation
rules" are all consequences of the E,A,M,D properties. Moreover,
we shall see 1in later sections of this chapter, and in Chapter 5,
that the same thing happens with each extension of the number
system: . the rules for calculating with the "new" numbers all
follow from the propértiss E,A,M,D of the "new" system, most

of which carry over from the "old" . system.

The '"new" numbers here are O and the additive inverses of
the natural numbers. Addition of O and any element of I 1s
covered by property A,

a+0=2a.
Multiplication by O 1s even simpler.
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Theoram -ib: a - C = C , fcr zrbitrary a in T .
Proo:i: - virtue of creoierty -Zl (Closure for multiplication),
a + 0 s sor member of I . Cur ::ject is to show that it is the
number O , _ (Subtra:z:ion) impli:s that for each element b  1in
I, thersz is =xactly one rumi.:o i T satisfying the equation
b -~z =D ;

o

moreover, by Ay (Additive T:=ntzity) that number is O . Now

2a - 0 15 a member of I, : the ornly member of I satisfying
a- . +X=a-0 |

i1s O . We snow that a « I satisfies thls equation (from which
1t follows that a - O ani [ are equal):

a+Z +=+C=23(0+0) [Dist.

=a « 0 [Add. TIdent.

Thus a « C 13 a solutizz =2 a - 0+ X =a * O . Therefore
a-0==0C. -

We turn next to th=s aiiition and then to the multiplication
of addizive inverses.

Th=orem 1-4¢: a + (-b) = a - b for arbitrary a, b, in I .

Proof: Property A- [/Zabtraction) and Definition 1-lga

assert tThat a - b 1s the o=I7 member of I satisfylng the
equation

T+ X =a.

Since this equation has czly ome solution in I we must conclude
that a - b znd a + (-t1 are equal if we can show that
a + (~b) satzsfies the ejuztion b + X = a . But this is easy!
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b + (a2 + (-b)) = b + ((-b) + a) [ comm.

[Assoc.

[Add. Inverse
[Ad8. Identity

Theorem 1-4%d: (-a) + (-b) -(a + b) for arbitrary a , b

#

In I.

We leave the proof of Theorem l-44 as an exercise.

Theorem l-4e: a(-1) = -a , for arbitrary a in I .

- (This theorem asserts that the product of any number and the
additlve Inverse of 1 1is the additive inverse of the gilven
number. This theorem and Theorem 1-4b often strike one as rather
remarkable on first encounter. They are remarkable because they
relate notions which are "addltive" (additive identity and
addltive inverse, respectively) with the multiplication operation
and its identity. Note that in each proof it is the distributive
property which plays a prominent role. This is the only one of
our basic properties concerned with both of these operations.)

Proof: Silnce =-a 1s the only integer satisfying
a+X=O,

it wlll be sufficient to prove that a(-i) satlsfies this =
equatlon. Now

a+a(-1) =a - 1+ a(-1) [Mult. Ident.
= a(l + (-1)) [Dist.
=a -+ 0 (Add. Invcrse
= 0 (Th. 1-4b
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Theorem 1-41': (-a)b = -(ab) , for arbitrary a , b in I .

Theorem 1-Ug: (-a)(-b) = ab , for arbitrary a, b in I .

We leave the proofs of Theorems 1-4f, 1-4g as exercises.

In Sections 1-2 and 1-3 we discussed the cancellation
propertlies and thelr converses for the system N . We found in
Sectlon 1-3 that C) , C,(N), Cy , Cy4(N) can be deduced from the

E,A,M,0 properties of N . Ve now conslder cancellation
properties for the system I .

We shall see in Theorem 1-4h that C, , the converse of E

5
(Addition), holds in I . We shall even see that in I it is

easler to prove L, than 1t 1s in N . 1In particular, we can

prove it using the notion of additive inverse without recourse to
any order properties. (In N , we could not make such a proof
for we have no additive inverses in N .)

However the converse of §6 (Multiplication) is not true
in I . This 1s so because of Theorem 1-4b (a +» O = 0): if we
allow ¢ = O we cannot possibly conclude from ac = be » that
a = b . We shall see (Theorem 1-41) that, except for this single
value of ¢ , we do have a multiplicative cancellation "law".

Theorem 1-4h: (Ql) If a+c=Db+c, then a =1b ,

Proof: If a +c¢c=b + ¢, then

(b +¢c) + (-c) LES

i
El

(a +c) + (-c)

SO a+ (c+ (=¢)) =b+ (c + (-c)) [Assoc.

and a+0=D>b+0 [Add. Inverse

hence a=>b., [Add. Ident.
[sec. 1-4]
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Theorem 1-41: (QQ(I)) If ac =bc and ¢ £0, then a="b ,

The proof of C,(I) 1is more involved than that for C) .

It is possible however to make a proof which uses only the E,AM
properties of I and the fact that C,(N) 1is valid in N.
(See Exercise 1-4b, *5.)
As before, we may combine ¢, and QQ(I) with their
respective converses g% and g% to get in I :
ggl: a=>b 1f and only if a 4+ ¢ =Db + ¢
EC,: For c £0,
a=> if and only if ac = bc .
Since 0 * ¢ = 0 for every ¢ 1in I , we have the very im-
portanc speclal case of EC, obtained by taking b = O :
For ¢ £0, ac =0 if and only if a =0 .

Equivalently,
ac = 0 1if and.only if a =0 or ¢ =0.

Exercises 1-Ub

1. Perform the indicated operations using natural numbers and
1ist the properties or theorems used.

(a) 1+ (-2) (£) (-2) « (-7)

(b) 12 - (-%) (g) 3(a + 2) - U(a + 2)
(¢) (-8) - (-7) (h) <5« (6) « (-3)

(d) (-5) +7 (1) %(52)(0)

(e} (-%) - (5) (3) -(2a - 3) +4(3 - 2a)

2. Prove the following statements for all integers.
(a) -(x-y)=y-x
(b) (-x) + (-y) = -(x + y) . (Theorem 1-44d)
(¢) (-x)y. = -(xy) « (Theorem 1-lif)
(@) (-x)(-y) = xy (Theoremil-hg)
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3. State and prove a "distributive" law relating the operations
of multiplication and subtraction.

4, Solve each of the following equations in the system I ,
listing the E,A,M,D,C properties used.

e ¥ s 7 e ¥ s ¥

(a) 5x - 3 =12 (d) 2(6z +2) + 3 =12 - 3(2z - 1)

(b) 3y + 4 =2y - 18 (e) x-1=x -2

(¢) 3m - 2(7 - 2m) =21 (f) 100(p + %) + 1lp = 11lp + 400
*5. Prove C,(I): If ac =bc and ¢ #£0 , then a=1b .

it

1

Show first that ac = bc if and only if -(ac) = -(be) ,
and then conslder cases according as a, b, ¢, are natural
numbers or not.

1-5. Order of the Integers.

In Section 1-3 we studied the order properties of the natural
numbers. In this section we extend the order relation to the
system I . We therefore face the problem of defining a ¢ b for
integral a, b in such a way that our new definition agrees with
the former one whenever the integers a, b are natural numbers.

Recall the criterion for a ¢ b when a, b are natural

numbers: There is a natural number ¢ s8uch that a +¢ = b .
We shall prove (Theorem 1-5a) that for integers a, b: 1if

‘a # b, then either there 18 a natural number ¢ such that
a +¢=Db, or there is a natural number d such that a =b + d ,
but that not both of ¢, d can be natural numbers. With this
theorem as our Justification, we can then define a ¢ b for
integers a, b.- using exactly the same words as for natural

" numbers (Definition 1-5a). After this we examine properties

91 , QQ , 93 , etec., for the system I .
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Theorem 1-5a: Suppose a and b are integers and a £ b .
Let ¢c=Db-a and d =a - b . Then one of the integers ¢, d
is a natural number and the other is not.

Proof: We show first that -c =a - b
-¢ = -(b - a) [Exer. 1-4a, 5
= (-1)(b + (-a)) [Ths. 1-Y4¢, e
= (-1)b + (-1)(-a) [Dist.
= (-1)(-a) + (-1)b [Comm.
=a-b [Ths. 1l-lc, e, g
Thus d = -¢c . Next, because a £ b , We have ¢ =b - a £ 0 ;

and hence, by Corollary l-4%a, either ¢ or -c¢ .s a natural
number. If ¢ 1s a natural number, then -¢ 1is not 2 natural
number beling the additive inverse of a natural number. But if
-c 1is a natural number, then ¢ 1s not a natural number being
the additive inverse of a natural number., Summarizing the
possible cases: one of the lntegers ¢, d 1s a natural number
and the other is not. The theorem 1s proved.

Definltion 1-5a: If a and b are integers,

there 1s a natural number c
ac<cbo means .
such that a + ¢ = b .,

It 1s customary to use the terms "positive" and "negative"
as introduced in the followling definition.

Deflnition 1-5b: a 1s positilve means 0<a.
a 1s negative means ac<o.,
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It follows lmmediately from Definition 1-5a that every
natural number is a positive integer, for 0 + a = a gives 0 < a
1f a 1s a natural number. On the other hand, the additive
inverses of all the. natural numbers are negative integers because
(-a) +a =0 glves -a <O If a 1is a natural number.

These observations permlt us to recast Definition 1-5a in the
following equlvalent form.

Definltlon 1-5¢: If a and b are integers,

ac<b if and only if .0<b - a.

In preparation for our discussion of the order propertles
91 s G, 93 , ete., of I we prove three useful theorems abou-

procucts of intecers.

Theorem 1-5t: 17 O <¢a and O < b, then 0 < ab .

Theorem 1-5c: ' O <¢a and b < O, then ab < 0.

Theorem 1-5d: If a <O and b < O, then 0 ¢ ab .

These theorems all follow from Corollary l-4a, the multi-
plicatlve closure of N , and the fact that positive integers are

natural numbers,

Proof of Theorem 1-5b: If O <a and O < b , then a and
b are natural numbers. Hence ab 1s a natural number, and
0 ¢ ab . p .
" Proof of Theorem 1-5¢: If O <a and b < O, then a and
-b are natural numbers. Hence a(-b) , or -(ab), 1s a natural

number, and ab < 0 .

We leave the proof of Theorem 1-5d as an exercise.
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Now for Eh_, 92 s 93 , etec. in I .

The trichotomy property of the order relation in system I is
a rephrasing of Theorem l-5a:

0, (Trichotomy) If a and b are integers, exactly one
following relations holds:
3.=b, a<b, b<at

The other basic order properties of N have their counter-
parts in I . .92 and 0. are identical in N and I . 94 is
quite different.

(Transitivity) I° a<b and b<c, then acc .

~
-

3 _Addition) If a < b, then a+c < b +c¢ .

L4 (Multiplication) If a < b and O < c , then
ac ¢ bc ; but 1f a ¢ b and ¢ < 0, then be ¢ ac .

||!

These properties are consequences of the Definitions 1-5a,
1l-5¢, Theorems 1-5a, b, ¢, d and properties of N . Their proofs,
being straightforward, are omitted except for ‘Qh which deserves
particular discussion. “

Proof of 0y: (1) If a<¢b and O0< ¢, then ac < bc .
By Definition 1-5¢, a <b means O<¢b -a. Ifalso O0<¢c,
Theorem 1-5b gives O ¢ (b - a)e or O ¢ bc - ac . By 94
(Addition) we get ac < bec .

(11) If a<b and ¢ <0, then be < ac . Again, if
a<b, then 0<b-a. Also, if ¢ ¢ O, then 0 ¢ -c. Hence
0 < (b~ a)(-c) , so O0<ac-be and be < ac .

As we did for N, in I we define
b > a means acgb
aghb means a<b or a=»
a<c<bcge means ag<b and b<ge
[sec, 1-5]
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Exerclses 1l-5a

1. Use the symbol '"¢" +to form true statements of order for the
followlng integer pairs:

(a) 1 and -2 (d) x and -x if x>0
(b) -7 and -8 (e) {x=-vy) and (y - =x)if y>x .
(-7 <2 =z.4 0 (f° 2x and -3x 1if x < O

2. Prove Ior arbltrary integers =z , y , z , W :
(a) I x <y and y< z, hen X ¢ z . (Property‘gg)

(b) I7 x <y, then x+ 2 -~y + 2 . (Property 93)

+
(¢) If =<0 and y <O, =nen O < xy . (Theorem 1-5d)
(d) I > <¢<x and y <O
(e) If %<y, then X =2 <y - 2 .
(f) If =<y, then y >0 .
>0 1f and only 1f -x < O .
) 0< -x 1f and only if x < O .
(1) If xy < yw , then y(w - x) 1is a natural number.
) If X<y and w> zZ, then X =~ W<y -2.

, then x >y .

1
e

In Sections 1-2, 1-3, 1-U4 we discussed the cancellation
properties which involve equality in the systems N and I .
In Section 1-3 we dlscussed the cancellatlion vroperties 98 s
EA(N) involving inequality in the system N , We now look at
the corresponding properties in the system I . c
wording in I as it has in N :

3 has the same

g3 If a+c¢c<b+c, then a <¢b.
It can be proved using 0, (Addition) by adding -c to both

members.

Recall that in N , 94 was proved using gl (Trichotomy)
and 0, (N) (Multiplication). Since property 0, (Multiplication)
has a new form in I , we expect to find that 9# 1s also differ-
ent from its mate in N . 1Indeed we can prove, using the same
strategy as for Cy,(N) , that in I, Cy has the form

[seec. 1-5]
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If ac <~ bc , then a <b ;
but for c¢ < 0 ,

If ac < bc, then b<¢a .

In I , therefore, the compound statements 921 s 992 R gggl s
EOC2 , are

oc, 8@ <b 1if anc only iIf a+c < b + ¢

0oC For O < c ,
a < b 1if and only if ac < bc ;
but for ¢ ¢ 0,
a < b if and only if bec < ac .
EOC1 a<b if and only if a + cLb+e

2992 For 0 <c, _
a < b if and only if ac < be ;
but for ¢ < 0,
a < b 1if and only if bc < ac .

Just as not all integers are positive, not all additive
inverses of:integers are negative. Indeed it follows from
Corollary l-%a and the remarks following Definition 1-5b that

a 1s positive 1if and only 1f -a 1is negative
and

-a 18 positive if and only if a 1is negative.
Unless a 1s O , we know then that one or other of the numbers
a,-a 18 positive and the other one is negative., Often 1t is use-
ful to speak of the one which is positive without kiowing which it
i1s; and similarly for the one which is negative. TFor this reason
we define the "absolute value" of a number as follows.

49

[sec. 1-5]




Defirition 1-5d: By the absolute value, |a| , of the

Integer a , we mean .
la] a if 0 <¢a,

lal
Note In particular that Jal = 0 1if and only if a = O , -=4

3
that 1f a £ 0 , we always have |a]l >0 . Thus if a £ 0, |z
is the positive number in the pair a,-a and -|a| is the

it

-a 1f a < 0.

negative numper in the pair a,-a .

We .prove two theorems about absolute values. The first is
little more than a restatement 6f the remarks in the previous para-
graph. The second gives us an expression for the absolute value
of a product. We shall return to the subject of absolute values
in Séction 1-7.

Theorem 1-Se: -fal < a < lal , for arbitrary a .

Proof: There are two possibilizies: (1) O<¢a , (11) a < ©
In the first case a = |la|l and since -ja] < 0 (where we have

equality only for a = 0) we have

-lal <0< a= [af .
In the second case a = -|lal , and since a £ O we have 0 < |a]

and hence
-lal =a<o0< la] .

The statement given'in the theorem is an understatement comprising
both of these cases.

Theorem 1-5f: |ab| = |a||b| for arbitrary a, b .

Proof: Again we consider cases (1) O0¢a, 0< b,
(11) 0¢a , b <0, (111) a< o0, O <b, (iv) a<o0,b<oO.
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For case (i) a

la] , b = |p| and since 0 ¢ ab, ab = |ab] .
Thus |ab] = ab = |a||b| . For case (i1) a = |al , -b = |b]
and since at < 0 , |ab| = -(ab) . Then |ab] = -(ab) = a(-b)
= lallp] . T.e other cases are entirely similar.

U

Example 1-5: Find all integral solutions of the inequality
Ix + 11 < 2.
Solution: We split the problem into two cases:
(1) O<x+1, (11) x+1<o0.

Case (1): For O < x + 1, we have |x + 1] = x + 1. Now

0<x+1 and lx + 1] ¢ 2
if and only if
O<cx+1c¢g?2
if and only if

Case (11): For x + 1 <0, we have |x + 1| = -(x + 1)
and 0 < -(x +1) , so
'x +1<0 and ix+1] ¢ 2

if and only if
0< -(x+1) <2
if and only 1if

2 <x+1<0 [EOC,
if and only if e
-3 <x<c -1, i EoC

—

1
Combining these cases, we have

|x + 1] ¢ 2 if and only if -3¢x<l

Thus the set of solutions is (-3, -2, -1, 0, 1} .
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Exercilses 1-5b

Solve the following inequalities:

(a) 5m -2 <13, for m in N

(b) 5m -2 ¢ 13, for m in I

(c¢) 42z -7 <22+ 3, for z in N
(d) 4z -7 <2z+ 3, for z in I
(e), 4x -1<¢2(x+1), for x 4in N
(£) 4y -1l<c2(y+1), for y in I

(8) 5<7p-2¢12, for p in I
(h) ¥y -1 L2y -3<y+1, for y in I

Solve the following where all letters represent integers:
(a) Ipl =3

(b) le] < ¥

(¢) Ix + 4} ¢ -1

(d) lem + 1] = 3

(e) l4% -1] -7 =0

(£) lx+3l <7

(g) Ix -5] <3

(n) 6> 13 - x|

(1) 5+ |x+6] <8

Prove that the following statements are true for arbitrary
X in I :

(a) If O0<x, then 0 < x°

(b) If 1< x, then x ¢ x2

(¢) If 1< x, then -x ¢ x2

(d) If x < -1, then -x° ¢ x

Finish the proof of Theorem 1-5f.

Prove the following theorem: Ix + ¥l < Ix] + |yl

Use an argument by cases as in Theorem fTSf. (For reasons
which will appear in Chapter 5, this inequality 1s called
the "triangle inequality",)
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The Archimedean property 95 (Section 1-3) is valid in I

if we replace "natural numbers" by "positive integer". The well
order property 96(N) » however does not hold in I . For example,
the set of negatlve integers does not have a minimal member.

Both N and I , however, are so-called "discrete" systems.
(¢ and R are not.) In saying that N and I are discrete we
mean that the integers are nol "too close together"--more precisely,
If a and b are distinct integers Ja - bl cannot be less than
1 . This fact follows from the well order property of N for if
a and b are dlstinct integers |a - b| 1s a natural number,
and hence its minimal value 1s a natural number. Since no natural
number is less than 1 , |a - b| must be at least 1 , no matter
what 1nﬁggérs a,b may represent.

LIST OF BASIC PROPERTIES OF THE
SYSTEM OF INTEGERS

For arbltrary a , b, ¢ in I

E, (Dichotomy) Either a =b or a #£b .

E, (Reflexlvity) a = a .

E, (Symmetry) If a =15, then b= a .

Ey (Transitivity) If a=1b and b=c, then a=¢ .

E; (ARadition) If a=Db, then a+c=Db+c .

E¢ (Multiplication) If a = b , then ac = bec .

A (Closure) If a and b are integers, a + b is
an integer,

A, (Commutativity) a + b =b + a .

A. (Assoclativity) a + (b +c) = (a +b) + ¢ .
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Ay (Additive Idertity) O+ a=a+ 0 = a .
55 (Subtraction) If a and b are given integers,

there 1s exactly crsz Integer ¢ such that a + ¢ = b .
M; (Closure) If =2 =ad b are integers, ab is an

integer.
M, (Commutativity) .ab = ba .

M. (Ascociativity) a(bc) = (ab)ec .

My (Multiplicative Identity) 1 - a=2a - 1 = a .

D (Distributivity) a(b + c) = ab + ac .

{o

1 (Trichotomy) If a and b are integers, exactly
one of the following hold:

a=>b, a<c<b, ' b <a.
O (Transitivity) If a < b and b<c, then ac<c .
04 (Addition) If a < b, then a+c < b+ c .

Oy (Multiplication) If a ¢b and O < c , then
ac < bec ; but If a¢<b and c < 0, then be < ac .
Oy (Archimedes) If a and b are positive integers,
there is a positive integer n such that na >b .,
9 (Discrete) If a and b are integers and a <D
then 1 5 b - a.

s

DEFINITICNS FOR THE
SYSTEM OF INTEGERS

In the following general statements, a, b represent
arbltrary members of I

Definition 1-5a: a < b 1if and only If there is a ¢ in N
such that a +c¢c =b . g '

Definition 1-5b: a 1s positive means 0.<a. a 1is nega-
tlve means a ¢ O . 54
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Definltion 1-5¢: a < b if and only If 0O < b - a ,
Definition 1-5d: lal =a , if 0<a; lal = -a, 1f ac<o0.

SOME THEOREMS OF THE
SYSTEM OF INTEGERS

In the following general statements, a, b, ¢ represent
arbltrary members of I :
-(-a) = a (Theorem 1l-4a)
If a # 0, then either a isin N, or -a 1sin N
(Corollary 1-4a)
b if and only if -a = -b (Exercise l-lta, Part 5)
0 (Theorem 1l-4b)
+ (-b) = a - b (Theorem 1-kc)
a ( = -(a + b) (Theorem 1-44)
= -a (Theorem l-le)
©) = -(ab) (Theorem 1.4f)
-b) = ab (Theorem l-kg)
if and only if a 4+ c = b + ¢ (Egl)
For ¢ #0, a=0>b Lf and only if ac = be (EC,)
ab = 0, if and only &f a =0 or b = 0 (Corollary to EC
~(a - D) = b - a (Exercise 1-4b, Part 2a)
For @ #b, 1f c=b-2a and d=a - b, then one of ¢,d
1s a natural number and the other is not (Theorem 1-5a)
If 0<a and O<¢ b, then 0 ¢ ab (Theorem 1-5b)
If 0<a and b < O, then ab ¢ 0 (Theorem 1-5¢)
If 2a<0 and b < O, then 0 < ab (Theorem 1-5d)
2<b if and only if a+c <b +c (0C)

i

o
fi

o)

N N N~

For 0<c, a<b 1if and only if ac ¢ bc ; for c < O ,
a < b 1if and only if bec < ac (992)

'|a|.5 a < la] (Theorem 1l-5e)

fab| = |a] .+ |o] (Theorem 1-5f)

fa + ol < |al + Ib| (Exercise 1-5b, Part 5)
- 55
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1-€. The Ratlonal Number System.

The vatlonal number system ¢ contains all the integers and
also the "quotient" % of each palr of integers a,b (b #Z 0) .
The element3 of ¢ are called rational numbers. In Q@ each
equation % = a , where a and b are integers, b £ 0, has a
solution denoted by -% . But we can say much more! Ve shall see’
that, even 4f a3 and b , b #£0O, are any glven rational numbers

there is a meémber of § satisfying the equation bx = a .

First, Dowever, we dlscuss equality of rational numbers, and
their sums and products.

Consider pairs of equations such as

2x = 4 and 6x - 12 s 2Xx = 5 and ©6x = 15 ,

These exanples illustrate the trivial fact that a glven rational
number satisfles more than one equation of the form bxX = a .

Since we use the symbols a,b appearing 1n an equatlon to describe
its root (we Write,-% for the root of bx = a) we must recognize
that each ratlonal number can be described as a quotient of
integers 1n a varlety of ways.

Because I 1s a part ' © , our equality relation in ¢
must agree wlth the equality relation we already have in T . Let
us then determine a criterlon for the pair of equations

bx = & and dx - ¢ (o £0, d £ 0)

to have the Same solution when we suppose that that solution is a
member of I . GSlnce we are worklng in I , we have at our dis-
posal the E,A,M,D,0 properties of I ., Using EC. of I, we

can say v . .
bX = a  if and only 1f  bdx = ad (for d £0) ,
dx = ¢ if and only if bdx = be (for b £ 0) .

Now 1f we gsuPPose that bx = a and dx = ¢ have a common
solution in I , say e , then

bde = ad and bde = bc .
56
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Hence E, (Transitivity) glves ad = be . Conversely, if we
suppose that bx = a and dx = ¢ have solutions in I , say
e and [ , respectlvely, and that ad = bc , then we have

bde = ad , ad = bc , bdf = be

and 554 gives
bde = bdf .
But bd £ 0, SO e = f and the solutiongof bx = a , dx = ¢
are the same. Summarizing: bxXx = a and dx = ¢ , b £ 0 , d £0 ,
have the same solution in I If and only if ad = bc -

b

With thls clue as our guide, We& now extend the equality
relation to all of ¢q .

Definition l-6a: If a,b,c,d are integers, b # O ,
d #0,

‘% = % means ad = be .
This relatlon ls clearly reflexive:

a a

5<% for ab = ab ;

it 1s also symmetric and transitive. Thus _Ee-,.§3,‘§u hold in § .

We illustrate the definition by considering an important
example.

Theorem 1-6a: If a,b,c are integers, b and ¢ not zero,

ac _
e ~

Proc.: The definition gtates that

2
b L]

ac a
5 = B if and only if (ac)b = (be)a ,

and the last eduality follows from the commutativity and associ-
ativity of multiplication in I .
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Ao tumerlcal {llustrations we have:

10 1-15 1 0 _0-10 _0
oF S TIs T % ’ T T =71

1. Solve each of tne rollowing equations (a,b,c,d in I )t
(a) 5% = 3 (d) ax + b < ¢ (a ¥ 0)
(b) 2x + 1 =6 () a(x -2)+b=cx+d (a#e)
(¢) 2(y - 1) 42 =y -1

2. TFor what value of ¥k will the following pairs of rational
numbers be equal?

2 k
(@) 3.5
! &
2 kK + 1
(e) &, Syp=
E;

3. Snow that E (Symmetry) holds in © .

our next problem is to determine how we should add and
multiply ratlonal numbers. Again we turn to I for the clues to
our geneéral definitions. What can we say about the equations
“bx = a Satlsfied by the sum and product of pairs of integers?

SuPPose b £ 0 , d £ 0 , and that xy and X, are integers
satisfying '
, bx = a and dx = ¢ ,
respectively. Then

bxl = a and dx, = ¢,
and wWe have

bdXxy + bde = ad + bc and (bxl)<dxe) = ac .
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Hence

bd(xl + x2) = ad + bc and bd(xlxg) = ac .
. ad + bc ac
Thus X, + x2 = —pg— and xlx2 =33 -

With these clues as gulide we define addition and multipli-
| cation in § as follows:

Definition 1-6b: If a, b, ¢, d are integers, b £ 0, d £ 0 ;

a ¢ _ad + be

b *d T Ted ¢
2 .c_ac

b d  bd *

Note immediately that © is closed under addition and

multiplication, (&1 ,_Ml), for if a, b, c, d are integers so are

ad + bc , ac and bd and moreover bd /O if b £ 0 and

d £ 0. It also follows that Q has all of the other E,A,M,D

—t et

properties which I has.

Addition and multiplication in Definition 1-6b are commutative

and associative (A2 » By My, M3) . For example:

c,a_Ctb+da _ad +bec_a ¢

It T "a "B =T *ta (25)
28 .2 _a.ce_alce) (acle (a.c . e
53 ") =% df"'B’E’df’}“ = G037 ()

Moreover, the equations

X =20 and l1 -x=0
are equivalent, hence 0 = % . Also
X =1 and l - x=1
are equlvalent, hence 1 = %-. Thus, for b £ 0,

%:o if and only if a = O

59
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since
a 0 .
=1 if and only if a + 1 =b « 0Q ;
and
%:1 if and only if a=>
since
1 if and only if a + 1 =Db « 1 ,

ol
i

Therefore, @ has the identity properties AH 5 EM

0 a1 b+« 0 a
= + =<, b#O,

=

a a . 1 a 2
I T el arae dhalh SPRLIP P

Q@ also has the subtraction property A for

5,
a , (-a)_ ab + (-a)b _ o _
gl Lol 80, by,

(%)

b b

Since il%l s b ¥ 0, satisfies the equation % + X =

we call 1t the additive inverse of & and write lgil =

Also, the equations _
1+ x= -1 and (-1)x =1

are equivalent, hence h

-1 1
T=-T=-1
Hence, for b ¥ 0,
(-a) _(-l)a -1, a _l.a_1-a a
T TSI OYTTIOOYTUEI)R T o

and so
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Moreover, Lf a #0 and b # O , we have

plo
|
|
i
=

a .
k)
and, in particular,
1

a--a—=1.

Ye call % the multiplicative inverse (or reciprocal) of a and

-% the multiplicative inverse (or reciprocal) of -% . We may then

say that every non-zero member of ¢ has a multiplicative inverse

in. @ . Therefore each rational number .%_, a and b 1integers,

b £ 0 , may be written as the product of the integer a ahd the
multiplicative inverse of b .

a_a.,1 .1
b~ 72D

i

Exercises 1-6b

1. Find the following sums. All letters represent integers.

(a)%-k% (d) ﬁ—z+—§,y+z;’o and y £ 0
(v) Z+£, 240 (e) 2p§1+2_.;1_2
(c)%+£,‘o¢/0 (f)—g—+_—2—,c;-!0

2. Find the followii.g products. All letters represent integers.
(a) % . % (a) §f§~2 . % , Yy +2#0 and y #£0
(o) $ £ ,240 (e) 2p3+1.P;9.o
(c) '%-2,b,»!o

61
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3. Prove E. (Addition) for ¢ .

4, Prove E;  (Multiplication) for @ .,
5. Prove that additior is assoclative 1in Q . (&a)
©. Prove that multiplication is commutative in q . (M,)

7. Prove that = -1, when a £ 0 , a in I .

3'8 ol®

8. Prove that =a for a,n In I and n£0.

9. Prove that for a £ 0 , § =0 1f an only if b =0 .

The cancellation properties ¢, (Addition), Sy (Multiplica-
tion) both follow from the E,A,M properties we have found ape
valid in Qq .

For example, 1if ~% . %-: % . %- and -% g 0, b,d; ££0
wmen G Pe- G 98
BE D =FG D
and ' % =-% . (22)

Now let us consider an equation bx =, a , where a and b

a by
are ratlonal numbers, b £ 0 . Write a = El , b= 35 ~ Where
bbbt C T A,

a1 » ap » by, by are integers, by £ 0, b, ¥ 0, ay # 0 .

Then bx = a 1s the same as

L
Py T
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Hence b = a

o, a)
if and only if agb2 -ng = aEbE(E:)
if and only if agblx = alb2
if and only if cX = d

where c¢ = agb; , d = a;b. are integers and c £ 0 since

z
ap # 0, by # 0 . Therefore each equation bx = a with rational

a, b, b #0 has a solution in Q ; it is the solution of an
equation cx = d with ¢, d integers, c £ O

This proves that we have a new M property for @ .

M. (Division) Corresponding to each pair a,b of

5

rational numbers, b £ O , there is exactly one
rational number ¢ such that bc = a .

Example 1-6a: Solve the equation ’%x =-% in ¢ .

Solutions: Using the method given above we multipy each
member by 6

Ix =% if and only 1f  6(2x) = 6(3) [EC,
1f an only if X = 2 (Th. 1-6a
if and only if X = % [ﬁs

However, we may shorten the work if we merely multiply.by & , the

reciprocal of %ml”

1. 1 ‘o 1.y _ .1
o= = 1f and only if 2(Zx) = L.(.J) [_E_c_
if and only if X = % {Mult. Inverse

63
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The alternative solutlon for Example 1-6b suggests a general

method which gives a second proof that -ES holds in @ :

If a and b are members of Q@ , b #£ O, then

if and only if (bx)

ox *a (EC

n
o

2

ol

if and only if X = «a [Mult. Inv.

but, as %- and a are members of @ , so is their product, by

M, (Closure). Thus bx = a has exactly one solution in Q .
1 a
It 1is T °a&a,or ¢ .

Example 1-6b: Solve 2X +-% =-% in 9 .

Solutions: Our two methods give (writing "1ff" for "if and
only 1if")

- 3 - 1 1 1,1 3
15(2x +3) =15 - 3 3(ex) = 5(3 - 5)
30; - 5 -1 .5-9
irse 0x + 9 = 5 iff X =3 =
_ 5 -9 _ =2 N l . -4 _ -2
irf X = 5 = ’“—15 iff X = = ——15 = ——15

Some people prefer the first method since it immediately converts
the problem into one involving integral cocfficients. The
rational numbers reappear only at the end.

The restriction b ¥ O in Me (and in the preceding dis-
cussion) merits comment. We saw that the E,A,M,D properties of
I, which are all in force in @ , lead to the conclusion
b«0=0 fogiény b . Since the properties on which this con-
clusion is based hold in Q, the same conclusion holds in Q .
This means that an equation OXx = a can have a solution in Q
if and only if a is O ; but when a 1is O , every element of

64
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ot

¢, satisfies the equation. Hence the desire to "divide by zero",
that Ls, to solve Ox = a 1s doomed from the beginning. Either
there i1s no solution at all (if a ¥ O) or there are too many
(if a = 0) « The two fundamental criteria for any algebrain

operatlon,
(1) that 1t always be possible,

and '
(1i) that it determine a definite number,

are both violated in the case of "division by zero". For (1)

it is not always possible, and (ii) when it is pcssible it does
not determine a definite member of @ . Hence by no stretch of
the imagination can "division by zero" be considered an algebraic
operation. ‘We are therefore obliged to exclude it from all of our
subsequent discussions.

Exercises 1-6¢

Find solutions for the following where all letters represent
rational numbers, and list the properties of the —ational

et

numoper system used.

(a)""%}'{'= (d) 2—(-‘,1,—{—{’—)—+-35—w=2 w#£l
(b) 3m +-§ = % (e) % - M(XJ+ 1) _ 2(3 g x) _ ox

() gl 1.3

2. State and prove EC; (Addition) for Qq .

3. State and prove EC,

5 (Multiplication) for Q .
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1-7.. Order 9£ the Rationals.

In Sections 1-3 and 1-5 we studied the order relation in N
and I . We now face the question of extending it to the system
Q . Since I 1is a part of @ such an extension must agree with
the relation we already have in I

In I, as in N ; glven a specific pair of numbers (such as
J and 7, or -2 and 9) we can spot at sight which is the
larger. However 1t is difficult to tell at a glance whether or
17
27
are equal requires some reflection. We shall see that very little

not is "larger" than %% . Even deciding if these numbers

more reflection 1s required to decide which is the larger.

In I , our definition of order hinges on the question of
whether or not a difference is positive, since for integers a, b,
we have a < b 1f and only If O ¢ b - a . To frame our defini-
tion of order for & in the same words, we first decide which
quotlents shall be called "positive".

No matter how we may define an order relation in 0 , 1f it 1is
to agree with our order relation in I (so that o < be if b
" 1s a non-zero member of I) and if it is to have property 0y
(Multiplicattion) , then, for a and b integers, b £ 0, we
must have

-
2

o< 1f and only if 0 < (%)b

0 < % if and only if O < ab .

Hence 1t must be the case that the quotient % is "positive"
(1.e., greater than 0) if and only if the product ab i
positive. 1If we cannot agree that such a quotient be positive,
then there 1s no hope of defining an order relation in Q

consistent with the order relation we already have in I .

We therefore make the following definition:

66
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Definition 1-7a: If a and b are integers, b ¥ 0,

means 0 ¢ ab .

olm

0«

Since a and b are integers, ab 1s also an integer.
Therefore this definition bases the decision that -% is greater
than O on the truth of a statement concerning two integers, O
and éb . The truth of the latter statement is determined by our
theory of order in I , where we found that 0 ¢ ab if and iny
if either O ¢a and O <¢<b, or a<¢0 and b ¢ O .

Because -% = f%' any rational number -% , a and b integers,
b # 0 , may be written as a quotient with a positive integral

denominator. But, then, if 0 ¢ b we have 0 <-% if and only
if 0<ca.

Now that we have decided which rational numbers must be
poSitive, we return to the question of defining an order relation
for all of & . Note that

hence if 0 ¢ b and 0O ¢ d,
C a .
0 <« I°% if and only if O ¢ bc - ad .

We therefore frame our definition as follows.

Definition 1-7b: If a, b, c, d are integers, 0O < b, 0 < d

% <-% means ad ¢ bc ;
or equivalently,
there is a positive rational number r
a c
<3 means

such that ~+r=«3~.
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From this definition it can be shown that

% >% if and only if ad > be .

These inequalities should be compared with the criterion for
equality of ratioral numbers (Section 1-6): v

2. if and only if ad = bc , b, d ¥ 0,

fo1 I

Juct as in N and I, we write r<¢s for r=sS or
r <8, for any rational numbers r, s . Similarly for r >8 .
Returning to our question regarding %% and -%% , We see
that the answer depends on whether or not the product 17(L41) 1is
greater than 27(25) .

Because our definition of order in @ is verbally the same
as that in I , we may adapt the previous proofs of 91 ,_92 ,
04, 0y to fit g :

9 (Trichotomy) Given any pair of rational numbers p
and s , exactly one of the following relations holds:
r =8, ' r<s, 5 <<r.
Oy (Transitivity) If r<s and s <t , then pr< t .
O, (Addition) If r < s, then r+t < s+t .

0y (Multiplication) If r<s and O < t , then rt < St
but if r <8 and t < 0, then st < rt .

Just asz in I , we have in @ the cancellation properties
oc, a<b 1if and only if a +c < b + ¢
oc, For O0<c,. . "
a b if and only if ac < be ;
but for c¢c ¢ 0,
a < b 1if and only if be ¢ ac .
EOC, a <b 1if and only if a + ¢ <b+c.,

—-—
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EOC.. For 0< ¢,

a <b If and on’.  if ac < bc ;

]

but for ¢ < 0,

a < b 1f and only if bc ac .,

A

Exercises 1-7a

1. Determine the order relatlon for the following pairs »f:
rational numbers.

2 5
(a) 5 and =

2 ;22
(b) 5 and 3

and -% , Where x <y

E)
(d) L ang 2 , Where xy £ 0 and x <y

X Yy
(e) 2§_§~§ and 2x + 1, where x ¢ O

<. Arrange the following rational numbers in a chain of in-
equalltles and justify your arrangement:

ey I . -12 I 2
"‘6‘{':'5:‘3:“"'.2'6:'5_%:1%-

d. Prove: 0 ¢ % 1 and only if 0 ¢ a .

4,  Prove: %’) %- 1f and only i ad > be , b, d ¥ O,

5 OVE o 2 & L& a .t
5.  Prove 0. for @ : i 5 <3 and 7 <F » then T <F>

where a, b, ¢, d are In I, and bdf £ 0 .

@ also has Archimedes! property:

O;; (Archimedes) If r and s are positive rational
numbers and < g, then there ls a positive integer
n  auch that nr > 8 ,

G9
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However the system @ has a speclal order property which it
does not shar'® with either N or I . Both N and I are
"dlscrete" 3/Stems, in the sense that there is a smallest positive
difference petween integers. Given any pair of distinct integers,
1f we subtract the smaller from the larger, the resulting differ-
ence 1s 1 Or more; there 1s no pair of integers whose difference
is both greater than O and less than 1 .

On the other hand we can find pairs of rational numbers whose
difference 15 posltive and "as small as we like". This will follow
If we prove that between any two distinct rational numbers there
Ls a third ratlonal numbepr different from elther of the original
two. But tniS is easyl @lven rational numbers a and Db ,

a # b, weaay take thelr "average" 212 . suppose a <t . To

show that a < &F5D2 ang 240y . Since a < b, we have

Qa < a+b and a + b < 2b, (by 93), 50 a < E-g-ﬁ and
24+0 p . Thys 215 s between a, b . Moreover, if a and

& s

b are rationa2l numbers, E,;~E 15 also a rational number (by ~Al »

M) .

We have Just seen that between any palr of rational numbers,
there 1s at least one other. But, then there is a rational between
this new oneg and each of the origlnal ones; another rational
between each Of these, ete, By selecting the average each time
We repeatedly halve the difference; and by repeatedly halving the
difference we can make 1t "as small as we 1like".

Since 1t ls always possible to find another rational between
any two rationrals, we say that the ratlonal numbers are "dense",
The speclal order property QG(Q) atates Just thls:

o.{@) (penstty) If a and b are ratlonal numbers,
a /b, then there 1s a ratlonal number ¢ such
that A4 < ¢ <b or bc¢ec<¢a . Hence between
any patr or dlstinet ratlonal numbers, there are
tnt'tnttely many rational numbers,
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Exerclses l-7b

1. Using Deflnitlon 1-7b and the fact that I has Archimedes!
property Q5 , Show that Q has Archimedes' property.

2a + b a + 2b

2. Prove that a ¢ - < ~ < b for a ardd b in ¢

and a < b .

ja + b 2a + 2b a + 3b
==

3. Prove that a < K =71 < ¢ b for a and

In @ and a < b,

We now study the solution of linequalities in ¢ . Because
1s not discrete our results are qulte different from those we
obtaln In I . We review the situatlon in I in order to bring
out this difference.

Example 1l-7a: Solve 18 < 3Xx +7 <50 for x in I .

Solutlon: 18 ¢ 3x + 7 < 50
tf and only 1f 11 < 3% < 43
Lf and only Lf Ao oxc 43
Now 1< %%-< it and 14 ¢ %% ¢ 15 ,

30 the solutlon set Ls (4, 5, 6, «ov , 13, 14} .

Cur strategy In attacking this DProblem was to convert the
given lnequallty, 18 ¢ 3x + 7 ¢ 50, into an equivalent one of
the form a < X ¢ b, where & and b ape certain definite
numbers. The flnal inequallty displays at a glance the range of
values of % satlsfylng the original inequallity, Since thig
range Ls limlted "below” (by a ) and "above" (by b ) there

71
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car only ue & filnlge number of Integers In this range; Just which
ones we determined py finding consecutlve integers on each "side"
of a and 9 . To find the solutions In ¢ the matter is
differert, Cur reasoning on pehalf of the assertion

o 32
13 < 3% 4+ { < 50 if and only if }:l <K< =,

1s exac'ly the same whether we Want ratlonal solutlons or integral
golutions, But what can we do to describe the solution set In € ?
In I ‘the problem iz =asier because there are only finltely many
members 1n the solution set. In ¢ , however, betWeen €ach pair
of dlstlnct members are inflnltely many more mempers. It is

futlle to contemplate any 1llst of the solutions in & . What we
can do--and 1t is all that we can do--1s to specify the range, say
a < x <b , contalning all the solutlons. Indeed every rational
number Whicr ls a solutior ls in thls range and every rational
number ln thls range 15 g solution,

Example 1-7b: Solve -1 ¢ 1 - 2x ¢ 2 for X in € .
—TTN e T -

Solution: -l ¢l -2x¢?2
. {f o e n
.lr and only 1Lf < mex <1 [}:ocl , o6
1f and only if Faxgl. [Eoc,, , oc,

Exerclses 1-7c¢

Determine all ratlonal solutlons of the following Inequalities;

1. W <ax+1¢8 5. heBs -2egh

20 2 gy B 50 Te =1 ¢ 6 2 2x ¢l
p . + D

el < B < 8., -%<”?x—%r<7l?
he 1 <o =m0l 9. -1« E:i_ﬁi ¢ 1

- ok
50 1<‘r'--v)/-"<\1“ lO 3/1_1‘(/’3
10, 2 ¢ I ¢
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He return to the subject of absolute values, Lntroduced in
Sectlon 1-5, and extend the definltion to €@ without change.

Deflnition 1-7c: If a 1s'any ratlonal number,

a if 0 < a

——

lal

i

lal = -a if a<o.

And wlth preclsely the same proofs as in I , we may show that for

arbltrary a in G ,
-lal < a < lal , (Theorem 1-5e)
lab] = la] « |b] . (Theorem 1-5f)

We examine some inequalities involvling absolute values,

Example 1-7c¢: Find all solutions of |x| <1, for x in € .

Solution: We eliminate the absolute value sign by reverting
to 1ts definitlon and split our discussion into two: cases:
f1) 0<x, (11) x < O . 1In case (i) we have x = |x| , so

for 0 < x , |x} ¢ 1 1if and only if 0 ¢ x ¢ 1 . [Def.1-Tc
In case (11) we have x < 0 and |x| = -x , so
for x < 0, x| <1 1if and only if x < 0 and. -x < 1

1f and only if -1 <¢x< O (oc,
D
Comblning these cases, we get

lx] <1 1f and only If -1 ¢ x <1 .

We could proceed as In Example 1-7c with other such problems.
However the method of argulng by cases can become rather tedlous
Lf we must use Lt each time we want to elimlnate an absolute value
slgne. It Ls easlev to suffer throupgh the arpument once or twice
Lo prove gencral theorems, whlch we may then use later without
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resorting to the two cases: ' (1) 0 <« x, (i1) x ¢ O in each
"problem weo meciu. L this reason we prcve the next two theorems.

~ Theorem 1-7a: Suppose O < a . Then

x| <a 1f and only iIf -a< x < a .
Proof: ("Only Lf") We show flrst that if |x| < a , then
-a < X ¢ a . Ue use two cases for the proof, (i) 0 < x ,
(11) x < 0, and show that in each case

if [x] < a, then -a ¢ x <a .

Case (L): If O0< x, then [x]| =x and so 1f x| < a,

—

then O <xL
(11)

a , hence -a < x <¢a, slnce -a ¢ 0.

If x <0, then [x| = ~x >0 and so if

[x] <a, then 0<-xga,or -a<x<0. And since 0<a,

we can say i ~a < x<a.

For the "Lf" part, we prove

If -a<¢x<a, then [x] <a.

Agaln we use two cases: (L) O < x, (1i1) x <O .

Case (1): If O0¢x and -ag<xga, (l.e., -a < x and

x < a) , then from O < x and x ¢ a 1t follows that |x| = x < a

— —

and so |x| < a .

Cage (11): If x <O and -a<x<a, then x = -|x| , and
-ai-lxl or |>:|_§_a.
Example 1-7d: Solve |ox - 1] <5 in ¢ .
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Solution: From Theorem 1-Ta,

[Th.1-Ta

lox - 1] ¢ 5 if and only if -5<¢ 2x -1 ¢ 5
1f and only if -k < 2x < 6 [ggh
if and only 1f -2¢<x< 3. [oc,
Theorem 1-7b: Suppose O ¢ a . Then
a < |x| if and only if elther X< -a or a< x.

Proof: ("Only if") Two cases: (i) O <x, (11) x<o.
Case (1): If O <¢x and a < |x| , then a<x.

Case (11): If x <O and a < |x| , then ag-x,or x<-a

For the "if" part: O <a and a < x glve O0<x so x = |x|.
Therefore, if a < x , then a < |x| . Also O0<a (or -a < 0)

and x ¢ -a gilve x <O so x = -|x| . Therefore, if

x ¢ -a , then -|x| g -a or a ¢ |x}| .

Example 1-7e: Solve 2 < |1 - 2x| in q.

Solution: From Theorem 1-Tb,
2 ¢ |1 -2x| if and only if 1 - 2x < -2 or 2 ¢1 - 2x
if and only if 3 ¢ 2x or 2x ¢ -1

if and only if %-( X or X < ~%

Using Theorem 1-7a, we may give a proof, devold of case-
arguments, for the so-called "triangle inequality"

la + o] < lal + |b] .

(Cf. Exercilse 1-5b)
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Theorem 1-7c: |y + z| < |yl + |z| .
Proof: By Theorem 1-5e, we have
-yl <y < Iyl

-lzl <z < |z|

hence, adding,
(vl +zl) <y + 2z <yl + 12],
and, using Theorem 1-7a with x =y + 2, a = |y| + |z| ,

ly + 2zl < Iyl + 1zl .

bExercises 1-7d

1. Solve the following for x in Q

(2) lx+1] < (@) 125 5
(p) lex - 1] <1 (e) l2x -1} ¢ -3
(c) 1 -x| >3 #(£) 2<|x+1] <3

2. Prove: If a<bgc and dce< £, then

’ LIST OF BASIC PROPERTIES
OF THE
RATIONAL NUMBER SYSTEM
For arbitrary a, b, ¢ in Q:
Ey (Dichotomy) Either a=b or a £b .

E. (Reflexivity) a = a .
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(Symmetry) If a=1b , then b = a .
(Transitivity) If a=b and b=c , then a =c .
(Addition) If a =b , then a +¢c =Db + ¢ .

bec .

it

(Multlplication) If a.= b , then ac

(Closure) a + b is a rational number.

(Commutativity) a + b =b + a .
(Assoclativity) a + (b + c) = (a + b) +
(Addltive Identity) O +a =a +0 = a .

(Subtractlon) For each pair a and b of rational
numvers, there is exactir one rational number c¢ such
that a'+ ¢ = b , ’

]

(Closure) ab 1s a ratlonal number.
(Commutativity) ab = ba . |
(Associativity) a(be) = (ab)e .
(Multiplicative Identity) 1 . a =a « 1 = a .

(DLVluLOh) For each palr a,b of rational numbers,
b £ 0, there is exactly one rational number c¢ sucn
that bte = a .

(Dlstributlivity) a(b + ¢) = ab + ac .

(Trichotomy) If a and b are vational numbers,
exactly one of the following holds

a==>un, a<hb, b<a.
(Transitlvity) If a<b and b < ¢, then a < c.
(Addition) If a < b, then a+ c< b4 ¢ .

(Multlplication) If a<b and O ¢ c , then

ac < be ; but Iff a¢b and ¢ ¢ 0, then bec ¢ ac .
(Archimedes) If a and b avre positive rational
numbers and a < b, there 1s a positive Integer n
such that na > b .

() (Denslty) If a and b are rational numbers,

a # b, then there 1s a rational number ¢ Such Lnat
{c b or b<¢ec<a. Hence between any pair of

dlstlinet ratlonal numbers there are Infinitely many
ratlonal numbers,
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DEFINITIONS FOR THE ,
RATIONAL NUMBER SYSTEM

Definition 1-6a: If a, b, ¢, and d are integers, b £ O

and dn¥ 0 , then -% =-% if and only 1f ad = bc .,

Definition 1-6b: If a, b, ¢, and d are integers, b £ 0

and d £ 0 , then

a ¢] ad + bc a
T+d="5v3 2 F

Definltion 1-7a: If a and b are iﬁtegers, b # 0, then

- &2
d

ik

o<% if and only If O < ab .

Definition 1-7b: If a, b, ¢, and d are integers, 0O < b

and 0 ¢ d , then %-< % if and only if ad < bc .

Definition 1-7c: If a 1s a rational number, |a] = a if

O<aj; la] = -a 1f a < 0w,

SOME THEOREMS OF THE
RATIONAL NUMBER SYSTEM

If a, b, and ¢ are integers, b £ 0 and ¢ # O , then

%% = % . (Theorem 1l-6a)

If a and x are rational numbers and O < a , then le's a
If and only If -a < x < a . (Theorem 1-7a)

If a and x are rational numbers and O < a , then a < |x]
Lf and only Lf either x < -a of. a < x . (Theorem 1-7b)

If x and y are ratlonal numbers, then |x + y| < |x| + |y] .
(Theorem 1-7c) -
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1-8. Decimal Representation of Rational Numbers.

The long dlvision algorithm is a procedure for converting any
rational number (l.e., -quotient of integers) into a decimal ex-
presslon of the form

8y-8,8-84. ..
where ay 1is an integer and a) ag, a, , ... are decimal digits
(C,1,%,35,4,5,6,7,8,9) . Ve say that a; 1is the digit in the

flrst place (after the point), a, 1s the digit in the second

place, ... , a_  1is the diglt in the nil place.

Some ratloral numbers have "terminating" decimal expressions:

. 0.5 § = 0.125
$ = 0.55 <5 = 0.1
1 ,
2 = 0.

whlle others have declmal expressions which do not "terminate":

L 0.33333..... 2 - 0.142857142857...
£ = 0.15686.. ... —é— = 0.11111..... )
By a Eermiﬂgzigﬁ “volmal expresclon, we mean one with no digits

put C after some place. Although the decimal expressions for

% s % , %—, %. do not termlnute, they are all repeating decimal

expresslons In the sense thac‘at some place a block of digits

appecars whlch Ls repeated thereafter. In the case of % , the

diglt © appears In the {irst place and is repcated thereafter;
1

for = tn

-

diglt 1 appears in the second place and 1s repeated

[e4}

thevreal'ter. The {irst slx places In the decimal expression for

~~

are wocupled by the dlglts 1"28%7 and this block of six diglits

lz repeated thereafter.
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Yle Indlcate that a block of digits repeats by overscoring it:

1 -
7= 0.3
1 a
z = 0.10
1 —
75 = 0.1 .

Since termlnating decimal expressions are those having only
O's after some place, they may also be considered "repeating",
thelr repeated block conslsting of the single digit O . Accord-
ingly we shall use the descrliption "repeating" to include
”terminating” as well. VWith this understanding we state the
following theorem.

Theorem 1-8a: Each rational number has a repeating decimal

expression.

We shall prove this theorem in general below, but first we
examine a numerical example for a clue to the general proof. Ve
carry out the division algorithm to obtaln the decimal expression

for %; .
1,.571%28
—1.
4 0
35
0
J[L)
o)
L
30
28
20
1b
80
56
40
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We need go no further. The expressicn repeats since the remainder

L has appeared twice, eacn time followed by a 0O '"brought down" -
from the dividend. Thls means that the digits in the quotient will
come again in the same order as before.

Suppose a given remalnder occurs after all the non-zero
digits of the dlvidend have been "brought down" so that this re-
mainder is followed by a zero. If this same remainder ever occurs
a second tlime, again it will be followed by a zero; and from this
polint the decimal expression of the quotient repeats.

In view of these observations, our theorem will be proved if
we can show that at least one remainder must appear more than
once after all the non-zero digits of the dividend have been
"brought down'.

But this is easy! Our divisor is a natural number, say n .
All the remalinders are less than n , they are natural numbers
selected from the set

(0, 1, 2, ... , n-1).

There are n numbers in this set. Hence any list contalning more
than n remainders contalns at least one of them twice. The
divislon algorithm can be made to produce a list of remainders as
long as we wish. If we therefore carry out the process until we
have "brought ilown" more than n zeros, where n is the dilvisor
we shall have a 1list of remalnders which contains at least one
repetition. Because any such repeated remainder has a zero
"brought down" behind 1t each time, we have produced a repetitilon
In the <dligits ol the quotlent forcing it tc repeat thereafter.

Many llsts of remalnders repeat before we use up  all of them.
- : 1 .,
For example, all the remalnders obtalned In converting = into a
decimal ecxpression are 1tg ,
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Not only nhave we found that the decimal exgression for a
ratlonal number must repeat, but we can say more. The number of
diglts 1in 1lts repeating block, which is at least one, never
exceeds the divisor. As a matter of fact 1t 1s always less than
the dlvisor, for if any remalnder is zero the decimal expression
of the quotlent terminates then and there. So if it does not
terminate, then there are only n - 1 possibllities for each re-
malnder. Hence the number of digits in the repeating block is at
least one and at most one less than the divisor. Note that in
the case of %

, there are © digits in the block.

We next prove (Theorem 1-8b) that each repeating decimal ex-
pression represents a ratlonal number. As before, we begin with
examples. Let a = 0.I273 . Then

-

10%a = 123.T23 = 123 + 0.753 =-123 + a
and (16° - 1)a = 123 or 999a = 123 ,
o 123
SO a = 999 .

Let b = 321.052123 . Then

10%b = 321,052,173 = 321,052 + a .
, 1 . . . 12:
Thus b = (921,052 + —9-9—93-) ,

and we can see that b 1s rational. We refrain from writing it
as a quotlent of integers.

These examples Indicate how we may construct a general proof.

Theorem 1-8b: FEach repeating dectimal expresslion represents
a ratlonal number, '
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Proot: We divide the proof inteo three cases. In the first
Lwo cases, we treat declmal expresslicu: whose "integral parts”
are zero,.  In the flrst case we conslder such a declimal expression

which repeats "from the beplnning'". Let

- 0.5]ETITE .
! m

S m,o L mpe———
nen 1070 = by, brn'BIBE' . ’5}—“

= bybo...b 4+ 0.B7ETTIE,

m b
SO (10" - )b = byo....b
where klbn...b 1s an integer whose diglts are b1 >y Yo, .. , b

‘Let us call thls Integer » ¥ Then
C
10™ -1

b

and b , belng a quotlent of Integers, is a rational number. Tais
concludes the :Lrst case.

For our second case, et us suppose that we have a decimal
expression whose repeat!ing block appears first just following the

nth place. Let

a = O.alae...aHBIB?...B; .
+ " n _ -
Then 107'a = alaQ"’an'OIBQ"'Bm

= aja....a_ + O'BZBS"‘Sm .
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Aruitoxt provided by Eic:
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Here a,a....a, Lo somec Integer, and our argument in the first

casac tello ue that 0‘610"“[r represents a ratlonal number
z )

Lelrns a decimal expression which repeats "from the veginning").
K h <

Thus  1¢"a L3 the cwn of an Integer and a ratiorial and hence 1s

e

ratloral. Sluve 10 s an 1Integer 1t follows thrat a itself ls

rational. This concliudes the second case.
The only remalning case 1s that of a decimal expression of
the form

8re@38-00.a DD ...0_ ,
i n-"172 m

0
wnere ag le an Inteper nrnot necessarlly zero. But

ag.alac...anﬁlﬁz...T; = 2y + O‘alaQ"‘an5152“‘5m s

the flrst term belng an integer (by hypothesis) and the sgecond
representlng a ratlonal number (by the argument in the second case),
We therefore conclude that aO'alaE"‘an615¢"‘5m represents a

rational number. Thls ends the proof.

Exercises 1-8a

l. Find a declmal expression for each of the following rational

numbers:

(a) & (a) 2
(0) + () 2.
(c) —i—%

-y

2. ,Flnd the rational number reprc .:nted by each of thebfollowing
declmal expressions:

(a) 0.5 (d) 1.2907
(v) 0.1 {e) 13.9137%

(¢) 0.0
84
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ERIC

Aruitoxt provided by Eic:

(=4
2. Show tnat Theorems 1-8a, 1-3b are converses of each other by
revneaslng them In the form "If A, then B" .
4. Prove that 1.9 = 2.0 by the method used to prove Theorem

l1-%a.

- 0. Cutaln declmal expressions for the following rational numbers:
1 1 ]
1c 2 27 I

Descrive in words a decimal expression for —lﬁ , where n 1is

1
any natural number, 0

1-9. Infirite Decimal E<pressions and Real Numbers.

In Sectlon 1-9 we examined the decimal representation of
rational rumbers. In thls section we consider the collection of

all decimal expressions

ae818nesspees

where a., 1l an Integer and a, , a. , ... , & ... are deci-
O = 1 o n ’

mal digits (0,1,:,2,4,5,6,7,8,9) . We found in Section 1-3 that
such a decimal expresslon represents a rational number if and only
Lf Lt repeats (or terminates).

Our flrst observation is that some decimal expressions neither
repeat nor termlnate. Consider, for example, the non-terminating

declmal cxpression
0.1010010001000010000010000001. ..

formed uslng only the diglts 0,1 ; after the first 1 1is one O R
after the second 1 there are two O's , after the third 1 there
are three O's , ... , for each natural number n , there are n
zeros following the nth 1 . This decimal expression does not
repeat slnce no block of zeros 1s as long as any other block of

et
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zerou. Variatlons of thls pattern will produce any number of

otner nor-repeating decimal expresslons. There are many norn-
repeatln: “ieolrul enpressions whose sequence of dlglts cannot be
deserloct by any such olmple tule, however. Ve snall meet some

of trnem later., (Jectlon 1-10.)

Ire real ruamver system, which we shall call R may he con-
) 2

Wit une declmal expressions playing the role of its

To werotrust sucth a system, 1t is necessary to define
foquality”, "order", and operations "addition", "multi-
«clmal expressions. Having made satisfactory

s of these relations and operatlons, we should be
obllipged to determine whizh of the E,A,M,D,0 properties of the
ratlonal rounber system nmlght be valld in R . This is no mean
tack, Irdecd 1t Lo qulte formidable. It required several
thousand years of human thought to accompllsh the transition from
the riatural number system to the real number system. This fact
alore should ccrvlirce anyvody that the problen Ls not an easy one.

A real numter whlen is not ratlonal is called an irrational
1

(real) numver. In "calculatlons' Ilnvolving 1rrational numbers,

1t is customary to use ratlioral "approximations" to them.

Rational asproximatlions to irrational numbers may be obtalned by

Eruncatlne {or 2nopplng off) their decimal expressions:
A e@y8. ...a_ 4 ce TN S .
APt n“n+l ~oAgedydne. .y
The oign "Y' i the slygn for "approximate equality"; the raticnal

st 1s obtained by truncating theiinfinlte
th

declmal on the ri

declmal expresston on the laft "after the n place",

e dellre ecquallty Ltselfl for irratlonal decimals as follinez:

Definitior 1-%a: Two lrrational decimals are equal 1f FOR

EVERY n the ratlonal declmals nbtalried by truncatlng them after
the n place are equal.
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Thls definltion bases our new equality relation on the
equallty relatlon we already have for the rational numbers. Using
the same ldea, we may extend the order relation to R

Definitlon 1-9b: OCne irrational deci: . '3 than
another 1f FOR 3SOME n the rational truncati.:.. of the first after
th

the n place is less thau the rational truncation of the second
after the_nth place.

Let us compare these definitions. If the truncafions are not
equal for EVERY n , they must be different for SOME n . Thus 1if
two irrational decimals are not "equal", one of them must be "less
than" the other, for given a palr of rational numbers which are
not equal we know that one 1s less than the other. Thus our
definitions have been constructed in such a way that the propertles

_I_E_l (Dichotomy) and -O-l (Trichotomy) hold in R . The fact that
E, , 9, Prold in R follows from the fact that thcy hold in Q .

Using the sequences of truncated rational decimal approxi-
matlons formed from pairs of irrational decimal expressions we may
define "sum" and "product" in R by reducing the problem to
operations already defined in © . We omit the details and merely
announce that such definitions produce a number system R with
all of the E,A,M,D,0 properties of Q . (We restate all these
properties at the end of this section.) The logical structure of
R differs from that of Q only in the fact that K has one new
order property, _Q_?(P.) , in addition to ali six of the order
propertles which @ has., This new order property is stated at
the end of the llist of  basic nroperties of R . Its full

significence will appear when you study advanced calculus.

8T
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LIST CF BASIC PROPERTIES OF

THE REAL NUMBER SYSTEM

For arbitrary a, o, ¢ in R

5]

I = e

Im

1=
o

(Dichotomy) Either a = b or a £ b .
(Relflexivity) a = a .

(Symmetryj; If a = b , then b

i
joV]

(Transitivity) If a =b and b = ¢ , then a =

(Additlon) If a =Db , then a +¢ = b + ¢ .

i}

(Multlplicatlon:) If a = b , then ac = bec .

(Closure) a + b 1s a real number.

(Commutativity) a + b = b + a .

]
V]
+
o’
+
(@]

{Assoctativity) a + (b + ¢)
(Additive Identity) O +a=a +0'=a .
(Subtraction) For each palr a and b of real

numvers, there 1s exactly one real number c¢ such
that a + c = b .

(Closure),. ab 1s a real number.
(Commutatlivlity) ab = ha .

(Assoclatlvity) a(bec) = (ab)e .
(Multiplicative Identity) 1 - a=2a « 1 = a .

(Division) For each pair a, b of real numbers,
b £ 0, there 1s exactly one real number ¢ such .
that ©bec = a . '
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D (Distributlvity) a(b + c¢) = ab + ac .
0] (Trichotomy) If a and b are real numbers,
eractly one of the following holds:
a = b, a<b, b <a.

O (Transitlvity) If a<b, and b<c, then ac<ec .

e}

(Addition) If a <b, then a+c<b+c .

(Multiplication) If a < b and O < ¢ , then

ac ¢ be; but if a<¢<b and ¢ (O, then be < ac .

0.. (Archilmedes) If a and b are positive real
numbers and a < b , there is a positive integer n
such that na > b .

O; (Density) If a and b are real numbers, a £ b ,

then there 1s a real number c¢ such that a ¢ c ¢ b

or bz <<a. Hence between any pair of distinct

real numbers tnere are infinitely many real numbers.

QT(R) if [ao ) 81 5 8y, ees oAy ...} and

{bo » By s by, el b, ...} are two sequences of

real numbers with the properties

(1) a5 8 < a3 < e <8< e

(11) tg > by >0 eee > b > ..

ny
1N

(111) a, < b, , for every natural number n

(Iv) b_ - a —2;-, for every natural number n
n 10" :

then there i1s one and only one real number ¢ such

that a, < ¢ L bn , for every natural number n .
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Lxercises 1-2a

1. Arrange the following in order:
2 505, sa1shy... 0 201530, , 2,15y ,  L.154%0,
vhere not all of the unwritten digits in the second and

third are zeros.

o

. State the property of the rcal numbers illusirated by each
of the followlng statements:

) ¥+ 2 <Yy or y<x4+z

(v) £ 0<x+y and = +y <z, then 0< z .

) (- v+ y) = (x o+ y)x-y) .

) ) ”

(d) If X+ y+2z2==x+2+ 2, then V=2 .

() If O0< -x, then x < O .

(f) If x -y <x+y, then there 1s a 2z such that

X -y<z< %+ 7y .

() x4+ vy=12 or x+y#£z.

(h) x+vy+2=x+2+y.

(1) (2y) = 8y .

(J) If X +y=x-y and x + Yy=12, then %X -y =2 .
(k) (x - y) + (y -x)~0.

(1) G+ 9)% = (x + y)x + (x+ vy .

l—iO. The Equation 1 = a .

As stated in Section 1-9, the real number system R has all
of the algebralc properties of the rational number system Q .
(It has one more order property which it does not share with Q .)
Thus any algebraic operation which can be perfoérmed in either can
be performed ir the other. From the point of view of structure
they are indistinguishable except for very deep properties of
thelr crder relatlons. However, from the point of view of the
numbers they contain they are vastly different: R contains
many number: not in @ . Because of this it is rossible to solve

90

[sec. 1-10]




. R some equatlons whicn carnot be solved in ¢ . 1In
Corcllary 1-1Ca we exnhibit a class of equations which cannot be
sobvel in @ . Theorem 1-10b asserts that some of them can be
solved i R . However, extenslve as it 1s, R 1is not vast
erowsh Lo contaln solutions for all of them. Another extension of

our rumber system 1s requlired {for this; 1t will be made in

Thecren 1-1Ca: If n is a natural number, 1f

R T integers, and 1if %- is a rationa} number satis-

aoaal’agx

fying the sguanion

I, -1 n-z 2
<k e 4+ A . LK X =
a1 Fan_z + oo +oa, + arx + ag 0,
tnen < Lz ar integer.,
. q e
Proct Sirce any rational number may be written in "lowest
terns’ (Tneoram l-ta), we may suppose that p and q are

liivepers naving no common integral factor greater than 1 , and
trat g ls positive, It follows, then, that pn and q have no

commor lrntegral factor greater than 1 . By hypothesis

! -1 o2
ARG _ P 2 -
\q) + '-l(q) Fovee o a,(q) + al(q) +ay=0.
L P R S ._:‘ L A o 5 -1
Multiolying toth sldes by q we get
ﬁ: n-1 -2 n-2 n-1
q +oa, 1P AP qQ + .e. + alpq" + aoq =0

an:d
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But the expression on the right is an integer. Hence %i is an
integer and so q 1s a factor of pn . Since the only positive
common integral factor of- q@ and p" 1s 1 , 4=1,
Therefore %- is an integer.

Corollary 1-10a: If a 1s an integer and n 1is a natural

number, the equation " = a has a rational soiution if and only

if a 1s the nt?

power of an 1lnteger.

The 1ntegers which are '"sqQuares" of integers are
OJ lJ LLJ 9J 16) 25} 36) ug, 6)4', 81, loo, CEC ] .

Thus 1f a 1s any 1integer not 1in this list, there 1s no rational
number satisfying the equation x2 = & . The 1Integers which are
"cubes" of integers are

OJ l, 81 27) 6)4} 1251 "'.)

and thelr additive inverses. Thus 1If a 1is any natural number
not in thils 1list, there 1s no rational number satisfylng the
equation x° = a . We may make similar statements about fourth

powers, flfth powers, sixth powers, etc.

It 1s the case however--although we shall not prove 1t in
detall--that 1f a 1s any non-negatlive real number (integral,
ratlonal, or irrational) and n 1is any natural number, then the
real number system R contailns exactly one non-negative number
satlsfylng the equation x" = a . (This 1s Theorem 1-10b.)

Perhaps the simplest case of any interest is
X" =2 .

We indicate the general lines of an argument whilch, by filling
in some details, can be used to prove that there 1s a real number
satlsfylng thls equation.
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e «now that o 1is vetween 1° and «° , so we are after a
number between 1 and & ., Hence its decimal expression starts
out 1l.°** . In order to flnd the digit in the first place after

tne polnt, we calculate

and flnd that
1.4 2 1,96 ¢ 2 ¢ 2.25 = 1.5° .

So the flrst digit after the point 1s 4 , and our number is 1.b4e-«-

MNow
1.01° = 1.9881 ¢ 2 ¢ 2.0164 = 1.42°

and we have another digit: 1.41--.- . Contihuing, -

1.514% = 1.999396 < 2 < £2.002225 = 1.415°
whlch glves us another diglt. And so on.

The fact that this procedure can be carried out as far as we
may care to carry it--no matter how far that may be--and that each
step produces another digit means that this procedure produces a
declmal expression and therefore describes a real number.

It remalns to be seen, however, wi » the square of this
nusber 13 o . Let us call this number ¢ , and write
a, = 1.4 b0=1.5
a; = 1.41 b, = 1.4z
a_ ~ 1.h41d b, = 1.415
ceteas e ete. cecerone e

for the (rational) numbers produced by our procedure. Since

a < c¢< bn , Tfor each natural number n ,
L

Lt follows that {)3
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a: < c2 < bg , for each natural number n,
Now
ad = 1.9331 , b5 = 2,016k , b° - a° = 0.0283 ¢ -1
17 A s V] T s 1'.1]_ 1 - Yve <lO
al = 1.99929C , »7 = 2.002225 , b - a3 = 0.002829 < —=
& : © 10

and 1t can be proved that

0 ¢ b - a’ < . , for each - ftural number n .
n n 100 e

Now Q?(R) (Section 1-9) tells us there is only one real number

greater than every ai and less than every bg . But both 2 and

>

¢ are there! Hence ¢ = 2 , and we are through.

The general proof may be carried out along similar lines. We
omit 1t entirely and simply announce the theorem.

Theorem 1-10b: Gilven any natural number n and any non-
negative real number a , the equation x" = a 1is satisfied by

one and only one non-negative real number.

Definition 1-10a: The :inique non-negative real number satis-

fying x" = a , N natural, a real and non-negative, is called
the non-negative ntn root of a and is denoted by Q/_ . In the
speclal case n = 2 , we write simply a , and call /A the non-

negative square root of 'a .

2
Note that for any ¢ 1in R, 0 c¢” . ‘Hence 1f a < O,

the equation x = a has no soiution in R .
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We emonaslze: Ja 1s non-negative. It is an easy conse-

querze of the trieorems on products of additlve inverses that

A9}

and ner-~e, wner C ¢ a , the equation x~ = a has two solutions
Ir R . The posltivz solution is the one we call /a . The other

solutlon 1s tne additive inverse of a ; it is -/a and is

negatlve. For a =0 , X = a has only one soluticen. It is 0O .

Thus O = C .

For ary real number a , we have

la] =vA2

for 1 T ¢ a, L.e., a 1is non-negative, then a° = a ; while
if a<C, ther -a and \/QE are both positive and because their

squares are equal, Theorem 1-10b tells us they are equal.

Tneorem 1-10c: If a and b are non-negative real numbers,

thern
VOISV

1f a L3 a non-negative real number and b is a posltive real
e

\/‘g:[@_.

number, then

/o
Proof: /atc , J/a , and /b are, respectively, the non-negatlive
roots of '
x2 = ab , x2 = a , x2 =b .

If we write

We can say 0 <X, . 0« X5 s 0< Xq and

s

A

95

[sec. 1-10]

ERIC

Aruitoxt provided by Eic:



fi = ab, xg =a, x5
and we want to snow that X, = x.x From x2
) ) - 1 273" 2
we get ©ox2 _
g _ A2X3 = ab ,
Since %2%% = (x.x ) (x4x5)
273 et 373
o 2 ) . 2
we can say xZx5 = (A2x3)(xpx3) = (xgx,)
=4 B
80 (x2x3) = ab .
This proves that the product X X4
:{_/_ = ab .
However, O© < Ro¥ - since C < X5 and O < %, ,

~
only non-negative sclutlor of x° =

\/aD '—'\/Fa-\/b .
nalf of the theorem as an exercise.

ab .« Thus

have proved trat

83

and Xq 1s the

xl = x2x3 andlwe

We leave the proof of the other

Example 1-10a: /TF = ue . 3 =|v4;§fj = L3 = &/3

/>—-
JE VT VP s VERE i T
2l - ;
20 " 755 /5

If a# 0, then Va £ 0, sso

/2

s

a

a 1
VE=Ta e g

These two equalities are each equivalent to the
for Va :

a

V&) =a, o

in

\

They are useful whenever one wishes to move the
the numerator of a fractior to its denominator,
Examples 1-10b, c 9(3

[sec. 1-10]
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2J/7 2 2 14
Example 1-10b: = —""\/7 = = ¢ =
9 9 /T 9JT

Example 1-10c: 17 _ AT = AL .\/g YRV
3 3 '

6

Example 1-10d: Suppose a, b, and ¢ are rational numbers.

Express the reciprocal of a + W/c in the form A + B/c , where

A and B are rational numbers, determining A and B 1in terms

of a, b, c .

Solution: We observe that x° - y° = (x + y)(x - y) and
hence
(a + B/E)(a - B/T) = a® - b .
Therefore
S 1 _a - b/c
a + b/c B a2 - b?c
because S

% =-§ if and only if ps = qr .

Note also that

a - bfe _ 1 . a - b/c
a® - b a + b/c a - b/c
Thus . N
o A:‘T_a_'_ﬁs___ y B=T:iDT—'
a“ - b“e a“ - b“ec

‘Example 1-10e: Remove the radicals from the numerator of the

expression

\/:'-:’T‘r}?l—\/i

(This questlon is important in elementary calculus.)

[sec. 1-10]
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Solutlion: We multiply numerator and denomlnator both by
VX + h +X :

VX + 0 -vX , VZFh +VX _ 1 (x+n)-x
h VETFE + VR TOVEFR VR

1
SVE Fh +vX

* Exercises 1-1Qa °

Express each of the following in the form a,/b where a 1is
rgtional and b is a natural number without square factors:

I -z V5
lo lu’o e 6. .:_
S S
2. V75 - )
15. V&L 27. %2
3. V38 _ .
16, /2 28, —~
Y, /77 5 JE
5. VI8 7.V 5 29, A
6. VT2 18. \/-15‘j Ve
7. V1g8 0. S50
v 19. /£ VT
b. V700 ] .
_ . o7 31. V2 + /7
9. /3 0. Vg~
2. Y7 -\/8
10. JVZES 21. V3 - /I
f,- 33. W3k - s)Bh
11. \/{T 2. V2 V50 34, 11/50 - 3Y3TTS
12, /2 23. V5 - /12 35. 2/20 + L5
fr) 2k, (/2)°
13. V5% 25. \/Z - /B
[sec., 1-10]
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Express each of the following in the form a + w/¢c where a and
b are ratlional numbers and ¢ 1is a natural number without square

f'actors.
560 (1 +V2) (L - J/B) b1, 1‘?177?
u

7. (1 +V/2)° ha. 731
S8, VT EVE)E -V vy, MZ 43
Vi -3

39. (1 +VZ)(2 -V2) s, L3

bo. (%Z + /A WE + ¥/3) 3 -V8
" ys, A - AT
5 +v192

Express each of the following numbers and their squares in the
form a + w/c where a, b, and ¢ are integers.

1 1
bo. ——7 50. BT 7
1 Lt
ML 3+ /2 - 5L 9 + 4/5
1
W8, T B 50, ——-t
5+ &0 * 17 + 12/2
1
R

1-11. Polynomials and Their Factors. (Review)

By a polynomial in X we mean an eXpression such as

2X + 1,
3x2 -X+2,
or x3 - x2 + 1,
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which is a sum of terms of the form

a, bx, cx2 s dx3 ) eee

a, b, ¢, d, ... being numbers. The numbers are called the co-
efficients of the polynomial. Thus the coefficients of the
polynomials written above and on the preceding page are

2,1 ; 3,-1,2 ; 1,-1,0,1 ; respectively.

By a polynomial in x and y we mean expressions such as

X+y,x3y-xy3,2><+l,

which are sums of terms of the form a , bx , cy , AXy , ex2 s

fy2 s gxzy R hxy2 sy sse 3 @, b, c, ¢e., 8, h, ... being
numbers, called the coefficients of the polynomial. We may ‘
define, in a similar way, polynomials in any collection of letters.

When the numbers appearing as coefficients in a given poly-
nomial belong to a given number system we say that the polynomial
1s a polynomial over the given number system. Often a given poly-
nomial may be interpreted as being "over" several numbers systems.
We 1list some examples, naming number systems containing their
coefficients.

x + 1 N, I, Q, R
x? -1 I,qQ,R
x2 +-% Q, R

x3 Vi 4 7 R

We "add" polynomials by combining terms in accordance with
the commutative, associative and distributive properties. Thus

100
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(x° + 3x - 1) + (2x° - 7x° + %)
= 2x” 4+ (x° - 7x°) 4+ (3x + x) - 1
= ox® - 6x° 4 bx - 1 ,

(x%y - xy + ¥7) + (x° - 2x®y + xy + 7)

= %0 4 (x%y - 2x%y) + yO 4 (XY - xy) 4 7

i
»

—x2y+y3+7.
The set of 1111 polynomials-in a given set of letters is
closed under addition.

We "multiply" polynomials just as we multiply numerical
expressicns. For example

2 2

]

(x + y)x° - (x + ¥)y

= xd + x2y - Xy - y2 .

(x + y)(x° - ¥)

The set of all polynomials in a given set of letters is
closed under multiplication.

Indeed, the set of all polynomials in a given set of letters
possesses all the E,A,M,D properties of the number system I as
well as C, , QQ(I) ; whether they are "over" I, Q, or R .

Thus all of the E,A,M,D properties listed at the end of
Section 1-5 as well as C, (Theorem 1-%n, page 29) and QQ(I)
(Theorem 1-4i, page 30) may also be interpreted as valid state-
ments about polynomials if the symbols "a" , "b" , "c" ,

occurring in them are interpreted as polynomials instead of
integers.

Corresponding to.the problem of expressing the product of two
or more polynomials as a polynomlal, we have the "reverse" problem
of resolving a given polynomial into "factors". Thus, for example,

[
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o =]
X7 - 2x%y 4 xy - 2y° = x7(x - 2y) + y(x - 2y)

(x - 2y)(x° + y).

In this example, we have resolved the given polynomial "over TI"

]

for 1ts factors are both polynomials over I . As another example,

we have

g}

2.2 z il
x7 - x%y" - oxy® 4+ 2y

1t

o 2,2 2
x(x° - 2y%) - ¥y (x® - 2y?)

il

(x - ¥9) (%% - 2y9)

(x - ¥9) (x +v3y)(x - V3y) ,

Where In the second line we give a factorization over I (or Q )
and in the third line, it 1s further resolved into a product of
factors over R .

The problem of factorization is the problem of expressing
polynomials in factored form. The technigque used to solve

factorization problems amounts to reversing the steps used in ex-
panding products. Fortunately there are only a few general types
into which most factorization problems fall. We give the names of
these types and their formulas in the following list:

a(b + c)

Difference of Squares: a2 - b2

Common Factor: -‘ab + ac

]

= (a +b)(a - b)

Binomial Product: acx® + (ad + be)x + bd = (ax + b)(cx + d)

Binomial Square: a“ + 2ab + b = (a + b)2
Sum of Cubes: a® + b3 = (a + b)(.a2 - ab + b?)
Difference of Cubes: ad - b’ = .(a - b)(a2 + ab + b2)

Unless a and b, b and c¢c, or ¢ and d themselves
have common factors, each factor in the right members of these
formulas cannot be factored using polynomials with real
coefficients.
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Each of the formulas may be proved using the properties
E,A,1M,D Dby starting with the right member and expanding it. When
the formulas are used for factorization we wofk the other way--from
left to right.

We 1llustrate the use of these formulas in factorization
problems with several examples.

Example l-lla: Factor 2a - 2b - ac + bc .

Solution: The common factors of the first two and last two
terms suggest the "Common Factor" type (Distributivity)

2a - 2b - ac + bc = 2(a - b) - ¢(a - b) .

The expression on the right now consists of two terms which have a
common factor, so

2a - 2b - ac + bec = (a - b)(2 - ¢) .

Example 1-1l1b: Factor 2(a - b)2 - 18¢% .

Solution: Using the "Common Factor",

2

2(a - b)° - 18¢2 = 2[(a - b)2 - 902] .

The second factor in the right hand expression has the form of the
"Difference of Two Squares", hence

2(a - ©)% - 18¢2 = 2[(a - b)? - (3c)?)

2{(a - b) - 3c)){(a - D) + 3c]

2(a - b - 3q)(a - b + 3c) .
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Exercises 1-11a

Factor each of the following polynomials over the integars.

1. 5x - oy 1l. ax + a8y + bx + by

2. -b6ba - 16 12, bX - by 4+ ¢cx - cy
3. 6p - 3q + 15r 13, DbX - by - cX + ¢y
L, 10y - 5x + 20w - 10z 14, 3a% 4 32° - 4a - 4
5. 12ab + 6b - Shbe 15, 4m® - 9n®

6. a(x +y) + b(x + ¥y) 16. au - 16

7. x(a - b) - y(a - b) 17. 7¢° - 53

B. 2u(x +y) - ulx + y) 18. x° - (a - b)2

9. b(x - y) + (x - y) 19. (a + )2 - (c + a)°
10. 3(a + b) - (a + b) 20. (x -y + 1)2 -1

Example 1-11c: Factor le2 + 7x - 12 .

91

Solution: If thls polynomlal can be factored, 1t must nave

the blnomial product form
acx® + (ad + be)x + bd .

Inspection of the polynomlial to be factored shows that a,
must satlsfy the conditions

ac = 10 , ad + bc = 7 ,, and bd = -12 .
A set of values for a, b, ¢, d can be chosen as .
‘a=5, c=2 so that ac = 10 ,

-

b=2, d=-6 so that bd

it

-12 ,
and then tested for the third conditon. Since
ad + bc = -30 + 4 = 26 £ 7,

this set 1s not acceptable.
104
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Try 1lnstead:

Then,
ad + bc = -15 + 8 = -7 £ 7 ;
but since 15 - 8 = 7 , the set can be adjusted:

a:5 » c =2
b = -4 ) . d = 3
and
ad + bc = 15 + (-8) =7 .
Hence,
1057 + 7% - 12 = (5% - 4)(2x + 3) .
Example 1-11d: Factor 4y 4 12y 4 g .
Solution: This polynomial hgs the form of a Binomial Saquare
a2 + 2ab + b2 ’
Thus

(2y)2 + 2 . 2y - 3 + (3)°°

(2y + 3)2 .

by° 4 12y + 9

1

I

2
Example l-1lle: Factor 6x° - 4x - 12,

Solution: Noting the common factor 2 ,

6x° - bx - 12 = 2(3%° - 2x - 6) .

The second factor on the right can be factored if it is the Bi-

nomial Product Form

acx® + (ad + be)x + bd .

[sec. 1-11]
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A possible set of a,b,c,d values is

a=3 ,-¢c=1 so that ac

b=2 , d=-3 sothat bd = -6 .
But: » ad+bC'=—9+2=-7#._2.

If other integral values of a,b,c,d are chosen so that ac = 3

and bd = -6 , 1t will be found that none of them will satisfy the
conditon ad + bc = -2 . In this case the polynomial can not be

factored over the integers. (We shall see in Chapter U4 that this

polynomial can be factored over the reals).

Exercises 1-11b

Factor each of the following polynomials over the integers.

1. x° + 8x + 15 11, W + 12uv + 9v2

2. w® - 1lw + 2b 12. 1%922 + 14z + 1

3. 3a® - ba - 15 13. cx® - 2cx - 8¢

B, 4x® - 5% - 6 14, 2 - 62 - 8a“

5. y° - 10y + 25 15. 9 + 6c - 8c°

6. 3a° + ha - 4 16. 15y + U4z - 3y2

7. Wk - 12wx + 36w 17. 7x - 6x° + 20

8. dy° - 1ldy + 30d 18.  4a%0° 4 hap 4 1

9. 25x2 - 30xy + 9y2 19. a2 + 2ab + b2 - 02
10. 9aw2 + Saw - 36a 20. a° + b° +2ab - 2a - 2b + 1 ,

Example 1-11f: Factor 16x° - ShyS .

Solution: Noting the common factor 2 , we have

16x° Zshyd - 2(8x% - aryd) .

[sec. 1-11]
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Since 23 =

8 and 3% - 27, the second factor on the right can be

written as a Difference of Two Cubes, so

Hence,

Factor each

2% - p3 . (a - b)(a2 + ab + b2) applies.
2(8x3 - 27y3)
o[ (2x)° - (3)*]

2(2x - 3y)(¥x° + &y + 9y°) .

]

Exercises 1l-1llc

of the following polynomials over the integers.

1. 34 6. 8a% 4 x3 11, 270%y + v
2. wo . 64 7. 3 - 6h4gd 12. Ux3 - 32
3. xS 41 8. 64 - 27x° 13, 128 + 16y°
y, md . 8u3 9. acS - 6la 14, x6 - y6
5. 2709 + y° 10. 2% - 1256" © 15, w0 4 O

Factor each

Exerclses 1-11d (Miscellaneous Exercises)

of the following polynomials over the integers.

1. 12m° + 8m - 15

2,
3.
4,
5.
6.
7.
8.

3

a-a2-a+l

4xy2 -~ 13xy

2

4° + 2dh + h® - £°

2am + 3bx + 3bm + 2ax

623 + 923 - 12a"b2
3x -~ 3y - 5xz + 5yz
2% - bv° 4 ba - Wy

9. m3 - 8U.3

10.
11.

107

6y2 - yz - 122°

Kr - ks + wr - ws

8xuy2 - 20x3y2 - 12x2y2
1603 - 54

02 + d2 + 2cd - h2

i 2

X + 2x° 4+ 1

ay2 - 1l0ay + 25a

[sec, 1-11]



95

L

17, 100 - t oh,  Ux® Loyt L 2T 4 2y
13, mr - ms + pr - ps 25. a’ - 1G6a
2 2 2 . - - 8

19, a” + b~ - ¢~ + Zab 20, lo - x

- » o
20. 27r’y + vy 7. Wx© - byt 4+ 4y -1

)

“l. 1 + bgz® - 1kg 28, x7 - x(x + y) - 20(x + y)
Z0. 5ex” 4+ x” - 5¢ - 29. (x +y)° + 3(x +y) - 28
ZL.  SrT - 125 0. bGst - 987 + r2 - t2 - 10r + 25

"1-12. Ratlonal Expressions. (Review)

A rational expression is a quotient of two polynomials.

Examples are

1 % -1 x4 2 X2 L F
X X+ 17 <Xy ¥ 2 "

Yy - x
Note that the numbers used in forming thé polynomials may be any
of the klnds we have studied, whether integral, rational, or real.
In the name "rational expression" the adjective "rational" refers
to the way the letters X,¥,Z appear and not to the type of
numbers used.,

Using the formulas introduced in Section 1-6

a2, ¢ _ad+ be a _¢ _ad - be
b "d~ T bd b d '
2., ¢£_2ac LS
b d ~ bd a a
b

and interpreting the letters as representing polynomials we have
definitions for the sum, product, difference and quotient of
rational expressions. The set of rational expressions is closed
under these four operations and has all the E,A,M,D properties
of the number system Q .
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Irsterpreting  a,b,c to be polynomials, the formula

ac _a

DeC b
enables us to "slmpllfy'" rational v removing common
factors from numerator and denom! c common factors are

found using the methods of Section l-11).

Example 1-12a: Simplify the rational expression

o ~

(x7 - 6x + 9)(x“ + 3x + 9)
(2% - 27)(x - 3)

Solution: (X = 0%+ 9)(x" + yx +9) _ (x - 3)%(x° & 3x + 9)

(<7 = 27) (x - 9) (x - 3)(x"+3x49) (x-3)
INCIEN R S
(x - 3)°¢ X° + 3x + 9
= l L]

A useful verslon of the last formula ls

a,c_t.,a2a_c¢t
b a b a b

which can be used to slmplify products of rational expressions.

Example 1-1¢b:  Wrlte the product Jf + 2, 3 ; X -2 9
X< -1 9x° - 4
a ratlonal expresslion In slmplified form. a
[

Solut ton: 3X + 2 . :))X(_ + X - 2 _ 3x + e . é_gx_z X+1

—_— 1 oxe - 1 TTEF IO -T1) 35+ X-
_3x+ 2 33X -2 x4+ 1, 1
T3+ 2 X -2 x¥1I" x -1
- 1
= =7 -
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The phrase "complex fraction" (or compound fraction)is used for
the quotlent of two ratlonal expresslons, or the quotient of a
ratlonal expression und a polynomi:.. Examples of these are,

ox 1.1
X + I 3¢ - 2com 1 x T
X - 1 ? Jc .~ 1 s __i -
X 1 c - X v

These expresslons are sometimes wrltten more compactly by using
" &+ " to replace the quotient bar, as

2% . X -1 - 2 .
T+I+T XF1° (3e® - 2¢ - 1)7‘*3:1 s

i, 1 .01,.,1 1
oot F+H+FE-F -

A complex fraction can be changed to a ratlonal expression

A . ac _ a
by use of the formula 5c =T °

3x2 - X - 2
Example 1-12c: Write § ; =% as a rational expression.
X
3x° - x -2 (3x + 2)(x - 1)
Solution: X - 8 _ x - I
2+ X - JX + 2 *
X X
Then x(x - #) 1is selected as a new factor in numerator and
denominator and
3x° - x - 2 (3x + 2)(x -1) y
—x - I _ X - & . x(x - &)
< + 3X - 3X + 2
= o xx - )

x(3x + 2)(x - 1)
A3x + 2)(x - &)

X(x - 1
x-

110
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Exercises 1-12a

l. Simplify each of the following rational expressions:

2 -
x- - 25
(a) o (k)
mu x° + 10x + 25
2 3
a -
() 35 (1)
o 2y~ + 8y° + 8y
mnp
c 7 2
(e) 12m“p ) B~ P - 6
, 5 ep- - p - 10
X =
(4) %= (n) S+ 3¢ - 10
0 - & ¢® + 2¢ - 15
(&) o 5=m 0 -1
0
XY + XZ 4+ YW + Wz x3 4 Ux® - 5x
(f)
Yy + 2 2
(p) 2+
ab + 2ac - 2b - le¢ 3
(8) 5 + 2¢ 1
2
(h) y + yz - Z - 22 (q) .}_c——.:.i.__.g.
y2 - 2yz + 22 2 - X -~ X
2 2
2 2 a - ab - 2b
x* -y (r)
(1) X + 9y 4p° - a
(3) c +d (s) x° - y2 ~ 22 + 2yz
¢ - d X+y -z
(t) x° + y2 - 2xy - 4
3x -3y + 0
2. Write the product or quotient in simplified form.
8b° 3y 222 . Uz°
(a) 2 2lbce (¢) mrigsz *© 1o
2 ) 2 _ ¢
(b) X +y 12 (d) X~ - ex -15, X -0x+9
3m - Qu X+ Yy x? -9 Ja -~ ax

[sec., 1-12]
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() X3. -y
;3 X© + Xy
(f) X -1 X2 -1
x° + 1 (x - 1)2
(g) 2m - 3 2m2 +m - 3
m® -1 l4m° - g
(h) 3&2 - L:L: . . l
a® - b< 3a% + bab + be
2 2
(1) 2 5p + 6 , p° + 1llp + 18
p2 -4 »~p2 - 2p - 3
() &-2rad. o - od®
¢+ 3d ¢® + 3cd + 9d°
2m® - 8 . m® - 6m + 5
(k) =3 7
m- - 3m - 10 m” - 3m + 2
2xy + y° X+ ¥
(1) =% 7
y- - X Xy + 2x
2
1 R
(m) -5 .
a® + 1 ‘a - l)2
(n) a® 4+ bab - 3b° . 8 + b° - 2ab . a+hb
8° - b- a + 3b a ~->b
(o) 4x° 5x - 6 12x° + 5x - 2 2x° +x - 6
Bx© 4+ 6x - 4 8x° - 6x - 9 3x° - hx + b
8 2X ‘
X
(p) —o— ) R
r3 R X -y
a-»b 2
2y - 4 - x
(a) E (s) (=) +—*
a + o < 2x
= :

[sec. 1-12]
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Addition (and subtraction) of ratlonal expressions 1s based
upon the formula

a ,c_ad+ be

B d - T bad
which can be proved in a manner similar to that used in this for-
mula with rational numbers. In practice the two formulas

a _ac a, & ,c a+c
D b @ gty =—p—
are used as shown in the next cxample.
Example 1-12d: Write —X_ 4 _5X° L as a rational
P ) X + 3 <2 9 "X -3 -ona
expression. '
Solution: as ng - 1 =X ng -
SAELAZ x¢_+:’.."_9 X -3 TX¥3 7 (xF3)x-3) " %3
__ (x-0) + 5x° _ X + 3
T Y YT T = 3) (x + 3){x - 3]  (x ~3)(x + 3y
_ A r = 4+ 5x° - (x + 3)
YK < 3)
.2
oxT - de o0 3

TEVE -3

1- some instances -rie fornulas
a .
-5 =-1 -~ and -(b -2a)=a-b,

can be used to advz-.iag:z,

Example 1-12e: ari:.

TE -5 " F f 3 as a r:-ilonal expression.

113
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Solution: Since -{(b - 3a) = 3a - b,

2a a _2a __ __a(-1)
T -b b -3a-3a -5 Tb - 3a)(=I)

"3Ja -0 Ja-b

Exercises 1-12b

Write each of the following sums or differences as a rational
expression.

2
. X+ 2 , 5x - 4 2a - 1 a
Lo =3—+ = . T3 3+m-o1
5 2a - 1 a + 3 19 c__ . 502
5 5 c + 3 02 _ 9
3 5 2 7 3
3« wn *t - 13- =Ty * x5 oy
h. Jny - = 1k, Ttz
XY + Y X + Xy
X - 7 X + 9 X - 2 3 2a
5. 7 - ] 3 + = 15- a + b + (a _ b—)—e
a~ -a a” + a b” 4+ 3b + 2 be -1
X 1 b ¢ X
70 - 170 ) +
1 -x= X -1 x° - 5x + 6 X - x - 6
8. p - l 180 ‘2 m2 - m + 7
p -1 p° - p me + 3m - 4 M+H
9. L y . 19. 3x - x®
SK -y 2X + 3y x° +bx + 4 x° 4 ox + 1
- 2
-3 m+ 3 m y 3
10. =& - + 20. +
m _3 3 - m 9 - m2 yE - 2y + 5 'y - I

114
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Exercises 1-12c¢ (Miscellaneous Exercises)

Write each of the following as a rational expression in simplified

form.
1. 32 _2z 1. 2 ;2a-15 . a%-6a+g
5 T Ba a® - 9 J - a
o, 2x , 15y° 2. X - ey
. =5 * TV
.5-3_’- < y Xy -y
. 2 -Db ., 2a-3b . 1 1
K + - l()n -
3a <b ox° 4+ 7% - 15  x° 4+ 6x + 5
y, X4y, 12 14 4 - 3
. — . - e
3x Qy X+Yy WS+ W -2 W™+ Tw + 10
5, X+5 _x-35 oo
X - 5 X 5 15. X
2 2 1 + =
6 Jec 2b° - 4p X
* Tbec - be 120 A a2 b2
r 16, a - b - ———i;fr‘
. L a +
7 s
¥ 7 7T -m 2
) 17. EL_i;éﬂ_i_g - (m - 3)
. 2 m - 3
X< - xy
18 2 .
8. > 2 8. x - E__i;gfl + 3y
X© - 2xy + ¥y X -cy
g
a + 1l + a
9 m - n . m -1 19 1-a a
) 2 1 < < ' 1—a+ 2
m- - m- -n I'+a
10. § -1 X + 2

115
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1-13. Additional Exercises for Sections 1-1 through 1-7.

Exercises l-la':

1. Form the converse of each of the following statements.

(a) If 2x +1 =y , then x 1is less than y ,

(b) The sum of two numbers is even if they are each ~ !
numbers,

(¢) =y =C cnly if x =0 .

(d) If a+c=Db+c, then a=">b ,

(e) If the sum of two numbers is a multiple of 10 , then it

is an even number.
2

(f) Va® 1 b° - g +b if (a - b)2 = q? + b° .,

(g) x +2 =18 only if x = 2 .

(h) Ir a(b + c) =ab , then ¢ = 0 .

() If 2xy + 3 =1, then Xy 1s negative.
(3) (@-bv) ~c=a-(b=-c) if e =0 .

2. Rephrase each of the followinz in the form of "If A , then
B" ; and if B, then A ." '

(a) 3x -2 =10 4if and only if x = & .

(b) y==2z if and only if ¥y + X = z + X .

(¢) m 1s less than n if and cnly if m - a 1s less than
n-a. ‘

(d) abe = 0 1if and only if ¢ =0 .

() r+s8 =0 if and only if r = -g .

(f) p(r + s) =ps if and only if r = O .

(g) x 1is negative if and only if -x is positive.

() a=Db if and only if (a - b)(a + b) = O .

(1) x+(y »2)=(x+y)+ (X +2) if and only if X = O .

116
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Exercises 1-2bt:

1.

Whicn of the natural number properties is illustrated =--
each of the following statements? Al letters represen:
arbitrary natural numbers.

a) If x+2=6, then x = U4 .
(B) (x+9)(x-3)+ (x+y)%=(x+y) + 2x .
(c) 2(3a) = 6a .

(d) (x + 2y) » x = x(x + 2y) .

(¢) 5+ (% +p)=9+p.

(f) 2x + (x +3) = 3x + 3.

() a+2b=(a%+26) « 1,

(n) If 3x =6, then x = 2 .

(1

(J

1) w + 3(z + l; 3(z + 1) +w .
) (a+b)sc+(a+b)ed=(a+b)c+ d) .

Prove the following statements true for all natural numbers.,

) x(y +2) = zx + yx .

) (x+y)+z=y+ (z+x)

) (x+y)(u+v) =y(v+u)+x(v+u),
) xy +y =yl +x).

) 2[x+(y+3)] =2y +2(x+ 3) .

(a
(b
(c
(d
(e

Exercises 1-2ct:

1.

Using the natural number properties, remove all parentheses
from the following products and 1list the properties used,

(a) (x+1)(3+2) . () 2(x+1)2.

(b) (2x + 1)(x + 2) . (g) 15(2x)(3y) .

(¢) 2x(x +y + 3) . (n) 3x(2y)w .

(d) 3x(ex +y + 4) . (1) (x+1)(x+y+2).
(e) (x +2)% (1) (x+y+2)2

[sec. 1-13]

117



10F

2. Uslng natural number pre. .- . implify the ifwilowing to a
single term.

r£) x(a + 2b) + x(a + 2b) .
g) ¥y + 3xy .
n)
1)

6x + 3xy . (
: (

3(m + 2u) + ¥(m + 2n) . (n) 5Spq + p .
(
(

byz + 2z « 4

2(3x + 1) + 5(3x + 1) . ab + ac + ad .
a(x +y) +a(x +y) . j) ab + ac + bd + ed .

TN TN TN N
O A 0 o P
— e N e

3. Prove the following statements for all natural numbers

) (x+y)+(w+2z)=(x+y+w)+2z.

) Xy + xz +yw+wz = (X +w(y + 2) .

) (xy)(uv) = xyuv .

) (a+Db){x+y+2)=x(a+Dbd) +yla+bd)+z(a+ b) .
) x° 4 2Xy + y2 = (x + y)2 .

P D

a
b
c
d
e

Exercises 1-241;

Find natural number solutions for the following equations and list
the E,A,M,D,C natural number properties used.

oot 7 e 7 qmases 7 nemen P gt

1. x + 3 =148, 6. 3 +8z =27 .

2. ¥y +5=12 ., 7« 2a +5=a+ 8.
3. 2a = 16 . 8. 3p+9=19p+23.
b, 7z = 21 . 9. 4w +5 =6 + 5w .
5. 3% + 6 = 18 , 10. 3x + 15 =6 + 5x .

Exercises 1-3a!:

l. List the members of the set of natural numbers such that
x < b, )

2., List the members of the set of natural numbers such that
X2 .

3. Form an equation using natural numbers and having the same
meaning as 2 ¢ 3 .

[sec.. }-13]
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4, Form an equation using natural numbers and having the same
meaning as 5 > 1

Using the symbol " < " , write true statements using the
foliowing pairs of natural numbers.

u

(a) 3 and &4 . (e) (3x + 1), and (2x + 4)

(b} 7 and 12 . (f) (4m + 3) and (5m + 1)

(¢) x and 2x . (¢) x and y , where x = a + 1
(d) a and (a + 2) . and a =Yy + 2 .

6. Rewrite the following statements using x £y , x <y , or
X<y<z .

) is less than y or y is less than x .

is greater than y or y 1is greater than x .

is less than 9 and 9 1is less than y .

is less than 5 , and 5 is'less than y or 5 1is

equal to y .

E I T

a
0
c)
d

)

TN N N S

(e) x 1s less than 2 or x 1is equal to 2 .

(f) 1 4is less than x and x 1is less than 3 .

(g) 2 4is less than 3 or 2 1is equal to 3, and 3 1is
less than §5 .

(h) 4 1is greater than x or U4 1is equal to x .

(1) 2 s less than x or 2 1is equal to x , and x 18
less than 5 or x 1is equal to 5 .

(J) x 1s less than or equal to y , but y is less than
or equal to 2z

Exercisez 1-3bt:

1. Solve the following for natural numbers.

(a) 3x <9 . (f) 23 > 6c + 5 .

(b) 2l > 6y . (g) 52 +1<2z+7.
(c) Im+2c¢2e3. P(n) My + 3> 6y 41,
(d) 16 > 5w + 1 . (1) 5<¢c2x+1<¢7.
(e) 7x+3<17 . () 26> 7x +5>19.

[sec. 1-13]
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2. Prove the following for natural numbers.

(a) If <y, then x<¢cy+ 2z .

(b) If x(y+ z)=wz, then X < W .

(¢) If x(y+z+w) =a, then x(z +w) <a .
(d) If x>y and w>z , then X +W Sy + 2 .
() If x=a+Db and a<y, then 2ac<x +y

Exercises 1-lat:

l. Find additive inverses for the following integers.

(a) 6 - 2. (d) -x + 1.
(bp) 4 -9, _ (e) O0-y.
(e) x - 2x . (£) -(-x) .

2. Which of the theorems or definitions for I are illustrated
by each of the following?- All letters represent arbitrary
integers.

a) If a+X=b and a+y="b, then x =y .

b) 2m + 0 = 2m .,

¢) If m+n=0, then n = -m .

) If p+ (~p) =0, then -p =0 -p .

(x +2y) + [-(x+2y)] =0 .

If s =-~-a, then a = -3 ,

0~ (-b4) =4, ;

If p£0 and p is not a natural number, then -p 1is

, a natural number.

3. Prove that (a + b) -c =a + (b - ¢) . (Hint: Let
Xx=(a+Dd) -cand y=>b-c and show that ¢ + x = a + (c + V)

4. Prove that a-(b -¢) = (a-Db) + ¢ . (Hint: Let x =D - ¢ ,
¥y =a - b, and show that Y+c=a-x .)

5. Prove that a -(b +¢) = (a - b) - ¢ .

120

(
(
(
(
(
(
(
(

5mo- o0 o
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Exercises 1-Up?t:

1. Perform the indicated operations and list the properties or
theorems used. All letters represent arbitrary integers.

(a) (x + vy)(-1) (£) (-x) + (-2) .

() . (g) -2(’)(4)

(¢) 6 - (-2) . (h) (-8) +

() ( (1) (-%) - ( ) .

(e) 5 (3) (-5) - (-9)

2. Solve each of the following equations in I and state the
E,A,M,D,C properties used.

e ¥ s 7 a7 g

(a) 4x -2 =8, (£) 7y + 3(2y + 3) = 17 .
(b) 6m+ 1 =13 . (g) ¥a+7) +3=6+ 3(ca +5) .
(¢) Sy -3=2y+6. ~(h) 5-2(3x+4) = 3(x + 2)
(d) 3p+7=p+ 9. (1) 3(y-1) +2=6-2(y + 3) .
(e) 4x -2(x+1)=6. (3) 13 - (3w =14)=1-2(1 - 3w) .
3. Prove each of the following statements for all integers.
(a) a-(b-c)=a-b+c
(b) a(b - c) = ab - ac
(¢) (a - b)(a+0b)=a® - b°
(d) (a-1b)%=2a%-2a0 +v°.,
(e) (a - b)(a2 + ab + b2) = ad - pd,
Exerclises 1l->a':
1. Use the symbols " ¢ " and " ¢ " to form true statements
of order for the following intéger pairs: -
(a) 4 and -6 . (f) 2w and 3w if w<g O .
(b) -2 and -3 . (g) -3z and z if z <O .
(¢) -5 and ¢ . (h) (y - 1) and (y + 1) 1if
(d) x and -x 1f x ¢ O . y<O0.
(e) vy and 1 1f O<y . (i) 2x and -2x if 0<x .

(J) (2p +.1) and (2p - 1) if 0<.p .

121
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2. Prove for arbitrary integers x,y,w, and z

(a) If O0<x andi O<Ky, then X< x + 3 .
(b) If x<y, then Zx < x+ 7y .

(c) If x <y, then x -y <o0.

(d) If x<y ad z2<w, then X -w<y-z.
(e) If O<Kx<y,then y-x<x+y.

Exercises 1-5b!;

1. Solve the following inequalities.

(a) 2x - 3¢11, x 4in N .

-1 <3 -2y<l,y in I,
2w - 1 < 3w+ 1< hw e 3, w oin I.

(o) % -Zy> -21, v in N .
(¢) 52z -bc¢oz+5, z in N .
(d) 6m +10>8m+86, m in N .
(e) 2(c +1) - 3 <8 -¢c, ¢ in N.
(f) M1 -2¢) +7>-3-3c+2), ¢ in I.
(8) -1<ex+1<1, x in 1 .
(h) -5¢<3x+1<10, x 4in I .
)
)

2. Flnd solutions for each of the following where all letters
' represent integers.

(a) |x| . (£) -1 -2x] = 5.

() lyl + ¥ =0 . () " + 3lex - l]_g .
(¢) lz + 3] <2, (n) 13 - |6 - 3x| =4 .

(d) im - 5] ¢ 6. (1) 18 - 2]y + 3] > 12.

(e) lea+1] =7. (3) % - Jex - 1] > -1.

122
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Exercises l-0at:

1. Solve each of the following equations if all letters
represent arbltrary integers.

(a) 3x -1 =6, (f) 3x +a=">.

(b) S5y +3=5. (g) ay +2 = 3b , a#fo
(¢) 2(m+1) =3 -(m+2).(h) 2(x-a)+1=23a+1h.
(d) % -3(w-2)=5w+1. (1) a-bxa=c, b £ 0
(e) 5x + 3(1 -x) =6, () ax +b(c -x)=d, afb

2. For what 'values of K will each of the following pairs of
ratlonal numbers be equal?

. I K K -1
(a) 5 50 (d) ——fr-,'% .
2 8 2 6 1
(o) Tog o K£O. (e) 7oy T s K#£- T
21 o) g
(c) '% » To5 » K#A0. (f) ¥T+I’»?k-T: K# il,
K£§.
Exercises 1-6bt:
1. Find each of the following sums; all letters represent
arbltrary integers.
(a) #+5. (1) §+%, vdo
X o
(b) 5+ % (8) w—=F+g, a#b,d#o0
1 a -1
(¢) 2+2, 040 () 23L1,2-1,
(d) §+§,xmzo (1) 2+ 24 (a-2), bvAo
2
(e) E‘+3’- (J) ﬁ‘l‘B—%——a y a;(b

123
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2. Flnd each of the following products; all letters represent
arbltrary Integers.

(a) #°2. (£) =2+ +<, afbv,dfo0,
(0) %-%. (g) 242252,

() 2-2, vdo, () 2452 (a-1).

() a-% (1) 22+3 .0, v to.
(«) §+§-pF0. () g5 =g, 2afv.

Exerclses 1-6¢t:

1. Find solutlons for each of the following and list the
properties of the rational number system used. All letters
represent arbltrary rational numbers.

(a) 2% .1, (1) Sy -1)+4-2.

(o) E41-6. () 2xr3)  2(ax-1)

(c) 2w +-% =1 . (b) 2y5+ 3. ¥ Z 1. 6y .
2 ' 2(1 - x) _ x+ 2

(@) 5n -= =14, (1) 1 -2 = — .

(e) QXJ- 1 + 1 ='z3[ ] (J) 'S'" 2)(5- 1 = X .

2. Prove each of the following where all letters represent
arbitrary rational numbers except as noted.

a o a + b c + d
(a) 1If T =45 » then = —g— - b, d £ 0
(0) 1r 2-S%, then 2.9, a,b,c,d £ 0
a [¢] ‘a + b C d
(c¢) 1r T =G, then = = Z . a,b,c,d # 0
(d) If & .S, then 2B _c-d b,d £ 0
b =d° 5 - T a - ’

124
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Exercises 1-7at:

1, Determline the order relation between the following pairs of
ratlional numbers,

11 15 m+1l m-1
(a) '7— ] "8" . (d) 7 s 3 .
4 A
(o) é% > BT * (e) é% s 17% ; a<b, a,b£O0
© FL Fixcy. e

2. Wrlte a chain of inequalities using the fdllowingr

1 15 13 26 25 _ 53 12
T "1 TIT T3 TB7 0 TB

3. Prove %-< O if andonly if a <0, a#0, and a in I .

4, Prove: If %- % and %->.%-, then '% >-% when a,b,c,d,e,f
in I, b,d,f £0.
Exercises 1-7bt:
l. Find five rational numbers between -% and -; .

2. Wrlte a chain of inequalities using the féllowing:
3 3 3 3
2+ql L 123, 122, 13- 12l

3. Prove -fal <a< |al for ‘a2 in q.

b, Prove |ab] = |a] *+ |b] for a,b in q .

Exercises 1-7ct:

l. 6 ¢ 3x + 2 <10 . 6. 2<¢3-2mg 3.
2. b <oy + 7 <l 7. -3¢l -2ac¢3.
. 2w + 3 e
. =2 2 . S | 1
: <75« 8. -3<3p-3<%
. -1<3-x<¢1l. y -
5 -3y qn 9. Sl
5. 2 < == < 15 . .
- B5Xx

0. -1 ¢—522c1,

{sec. 1-13]
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Exercises 1-74t:

1. Solve the :. il.w.: - for x
(0) Ix + . - (g) —E > 2.
(C) IJQ - : . (h) - ; JXI S 1.
(@) a2y - . ., =
(e) % -m » . (1) 1<lx+2/<3.
(§) -2 <fex - 3] ¢1
2. Prove Theoremn. -Ta,b for a = .

1-14., Miscellaneous Exercises.

1. 1In which of the number systems, N, I, Q, or R , does each of
the following equations have a solution?

(a) 2x + 6 =0 . (f) 23x - 5x = 7x + 6(1 +2x) + 1 .
(b) %x =5, (8) 3.5% + 14 = 2,1x + 60.2 .
(¢) 24 x = 3x + 6, (h) x2 - 24 0.
(d) 1 +x=1. (1) 6x + 7(4 + x) - 6(3 - bx) = 0 .
2 _ 1) X +5 _2x + 4

(e) X" = b . (J) 2] - 73 =1,

2. Identify each of the following statements as being true or
false.

a) (-1, 0, 1} is closed under addition,
) The set of natural numbers contains a greatest element.
) The set of integers contains a least element.
d) The sum of a number and its additive inverse 1s zero.
) For each rational number x £ 0 there is a rational

1
number 3 -
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(r) Ever: ==.: 2r the real numbers ha. 3 solution.
(g) /(5 -2 =
(h) ©« %2 .. real number.
(1) V2 +V5 -~
3. Whlch of theZ = . .,3,. properties of the rezl numbers are
illustrated =, - .+ “>Ilowing?
(a) 3[4(x + Co T+ 2) .
(b) If 5= vzl 2y - 2=5, then y+2 =2y -z .
(¢) If m< LoTnen mn2 < n .
(d) p+ 2= + 1. | _
a g - C . a + a ¢
(e} If £ +< ---<—, then ——B—E-= t+g . (b#£0)
(f) (x+y)(=- 5= (x-y)x+y).
(8) (r+s8)+ . r-s)=(1L+a)r+s).
¢ o ¢
(h) 5+7=3
(1) If x+3 v +2 , then X<y -~1.
(3) -a+b=1v -z,
4
L, Determihe which = =-z following statements are true. For
those which are -—== 1list the natural number properties
involved.

(a) 6(4 +5) =32+ 4 4+ 65,
..... (b) 6+ (4 « 3) = (6 + 1) « (6 +5) .
(¢) T3 +7T=T7+72.
(d) 6(7 +4) = 6 « 7 + b,
(e) 6+ 13=13- 3.
(r) 5(20 » 17" = (5 . 20) + 17,
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Explain why you get the same answer whether you add a cc. . .-

5 () =

(5 +7) =0 =(7+5) + 6.

(5 = 7) =& =%+ (54 7)

(6= %) = (5+6) = (4 23)+(5-6)

(12 + 82) + (100 + 10) = (12 + 83) - 100 + (12 +
(3-7) +(8+2)=(8-2) 4+ (3-7).

of figures up or down.
Use the symbol " < " to state order relations for each o:

following palrs of real numbers.

(a)

8

-0

! ;l_;_ Ul

n
o,

e

3olve the inequalities as noted.

s
<X

+ 3<7, xin N .

3y - “ < 16, y in N .

4 -5 <p+2, p in N.
%% +1>sm-1, m in N
2<5 -6, x in I

% -l<cd-¢c, e 1in N .

[sec, 1-14]

(5 - 35) = (5 1),

-3 . (1) —Tug,-%‘
;-5 (5 2, E.

» O . (k) a,a24 for 1 ¢
2536 , 8.2535 . - (1) a,a® for |a
.11, -0.001 . (m) a,-a for a <
s % . ' (n) a,a® for 0 <

Sah (0) a,a® for -1 <
6,
> T3

o]

acl.
a<co.
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() — + 1 = , ¢ _.n N
(n) . W R
(1) _ SHCL <L

() < w+5<10, w in @
(k) -+ ¢dLd - 1¢10, y in F

(m) ~—~ <1, x in R
8. Solve the following inequalities or equations as indicazad.

(a) Ix| <4, = in I.

(b) yl>%, v in Q.

(¢) =} -2, ¢ in R.

(@) l2pl <8, p in N.

(e) 13n| >5, n in I.

(£) l-:%|+l=1+,xin I.

(g) lam -1 +3<2, m in N.
(h) |3-{-'E—l|+x=6, Xx in q .

L‘. -
(1) 12LE3l-y-1. y in Q.

() 2+ j==2 <6 , c in Q.
(x) |om+ 1| ¢ -1 T ir I.

(1) = - L%) =4 in % .

(m) - - .=+l <5, z =i R.

(n) {=| - 3 or I|x]| >5, x in Z.
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«..Z Statements I'ir
- iy o~ (x ~y) -z .

-z) = (x + w) -
only if  -x ..

< 0 only 1f 0 <« -

.ne felriir- statements for

——r

Lrzzrties for natur.

il numtors.

T+ oz) .

ratural numbers using
nunmbers,

(2) ST o= +y).

() (x+y) -z = (z+2)+y.

(c) (x+y)z = xz = yz .

(d) x+(y+2)= v+x)+2z.

() (2 +y)(w+ 2z =xw+xz + 3w+ vz .
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Chapter 2
AN INTRODUCTION TO COORDINATZE GZ METRY IN THE PLANE

2-1. The Coordinate Sy stem.

Although you may ™ave encoun—sre: csordinate sy=tems befors,
the ideas of this section are so :uncamermtzl and 80 useful that
we shall state tnem again.

Coordinate zeometry, or analytic :=ometry, provides a mezus
of treating geom=tric problems by algebra. It was first invented
by a French math=matician named Rene D=scartes (1596-1650) in
1637. One very zreat advantage of anz_T:ic geomeilry over syn-
thetlic geometry := that 1t does nc- dew=nd 80 muck on ingenuity.

“You will recall how very clever yziz neezad to be <= solve some of
the so-called "original problems" of plzne geometry. Coordinate
geometry enables one to attack such prozlems by a =traightforward
method. The resulting algebra m=y be long and invelved, but leads
inevitably to the desired result. Another important use cf
analytic geometry is in the .llwmrination of algebraic work. We
shall see, for exampie, in Chap“=rs 7 and 8 how the algebra 4in-
volved in solving similtaneous ec i@Tions takes on more meaning
when viewed in connection with ti. zeometrlic curves or surfsces
which the equations represent.

You will recal’ that the con#fction be=ween planse zZeom=-ry
and algebra is made by the 1 'rodictsicn < coordinate axes ir a
plane. These are two perps i culz - sTraight lines intersecting
‘n a point 0, callez the o—. =n (Z.g, 2-la). The lines are
usually placed parallel <o tr = ecges of the paper so that thev
can be described in an o:tvious way as horizontal and vertical.
Let us call the horizontzl one the X-axis, the vertical one the

y-axis and label them wizh letters x and Y, as indicated.
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Recall that on each axis we introduce a nurzer scale, usually
using the same unit on each axic, with the pcinT O as the zero
point on each scale. In statistical graphs, - example, it is
often desirable to use different scales on tizi: two axes to distort
or to emphasize. But for our purposes the sczizs will be th=s same.
The scales are to be so chosen -hat points tc 72 right of 0 on
the x-axis and points above O or the y-axls correspond to positive
numbers. Such terms as "right" and "above" hav: meaning if we
agree to the position of the zw=s described earl_lier.

Now comes the vital point. e establish a one-Eg—one corre-~ -
spondence between the set of 21 points 1n the 7lane and the zet

of all ordered pairs of real rnamh=rs., This mear.3 that eacnh pcint
P of the plane will have corrzzpcsding to Zt a single palr of real
numbers, a first and a second (anc hence order=s:}; and conversely
that each such ordered pair of mumbers will havs 2orrespecding ©T
it Just one point of the plane. How is th.s ccrrsspondszrze tx be

estéblished? If P is glven, prc, ect It perpendicwlarly fIrst on
the x—axis, second on The y-axls znd rzad 2ff e corraspooii—g
numbers from the scaless. (The merrpenzticuizr frojection o a.
point P on a line L is the point c¢i irmfersscior of T and The line
through P perpendicular to L.) I. the nuzber zzir Is given, wmrect
perpendiculars on the axes at tr= mrpropr-==fte Zcints. Tk= point P

assocliated with the number pair 1> the untjue iz=ersectiar o*
these perpendiculars. The two rnumrers corresportZing to P are
called the coordinates of P, the first its x-coordinate or

gbscissa, the second 1ts y-coordirzte or crdimats. We place these

two coordinates in parentheses o2rcésring th=m from left to rignt.
In Fig. 2-1a the point P, for ezzmple, corresmtmis to the Hair
(-2.5,2); -2.5 is the abscilsrz. of | z2né 2 -3 .0z ordinate.
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P(-2.5,2)
.—-

Flg. 2-1a.

121

Example 1. Plot the point P(-3,-2). VWhat are the coordinates of

its projJections on the
two axes?

Solution: The projection
M of P on the x-axls has
coordinates (-3,0); the
projection N of P on the
y-axis 1is (0,-2).

y
I -2
-1
-4 B -2 - ]
 m [T I@
S -
P(-3-2) 0N%o,—z)
L3
, Fig. 2-1b.
133
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Notice that the coordinate axes divide the plane into the
four regions labeled I, II, III, and IV in Fig. 2-1b. The regilon
I 1is called the first quadrant, the region II the second quadrant,
etc. Points on the axes are considered to be on the boundary lines
and not 1in either of these quadrants.

Exercises 2-1
1. Locate the following ordered pairs on one set of axes: (1,5),
(-3,2), (-4%,-7), (5,-3), (13,2), (-6,2), (-10,-1). "(Be sure
to label each point by means of its coordinates.)
2. Give the coordinates of the following points.

y
C r
5
D
0 X
40 -5 F 5 10 -
=G
N H

3. Locate points (5,0) and (1,6) and connect them with a straight
line. Locate points (-2,-12) and (5,9) and connect them with
a straight line. What are uin: coordinates of the point of
intersection?

4, P(4,4) lies on a circle with its center at the origin.
(a) Draw a line from P(%4,4) through the origin. Find the
coordinates of a second point of the circle on this line.
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(b) Draw perpendiculars from P(4,4) to both axes. Locate
(f.e., glve coordinates of) points on the circle other
than P(4,4) which lie on the intersection of the circle
with each of these perpendiculars.

(c) Can you give the coordinates of intersection of this same
circle with the axes?

(d) 1Indicate the location of points whose number pairs
satisfy:

(1) %2 4 y2 > 32
(2) x2 + y2 < 32
(3) x° +y° > 3
Repeat Problem 4 for the point P(xl,yl).

Draw through the origin the line I which bisects the first

and third quadrants. :

(a) Find y for each of the following points on L: (2,y),
(8,¥), (-%,y), and (0,y).

(b) Write an equation in x and y which will be true for
every point (x,y) on L.

One vertex of a square is the point A(6,6). The diagonals of

this square pass through the origin.

(a) Draw the square and find the coordinates of its other
vertices. ‘

(b) Where do the sides of the square cross the coordinate
axes?

(c) What is the length of its diagonals?

Plot the points A(6,0), B(0,6), €(0,0). What is the length of

each side of triangle ABC? What is its area?

Draw a line segment through 0(0,0) and A(6,8) extending into

the thlrd quadrant to A' chosen so that length OA = length OA!,

What are the coordinates of A'? What 1s the length of AA!?
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10. Draw --= line segment conn=:ting A(0,1C) and B(12,0). Let
M be e midpoirt of ZB. Draw perpendiculars MA! and MB' to
the - and x axes r=spooctivel-:.

(a) 'nat are the -“ocxidinatzs of A9
(b) what are thz zoordinztes of B!?
{c) “¢hat are thzs cocrdinates of M?

*11. ?2lot A(-3,1) and B(S.ZI). Draw segment AR. Letter the pro-
Jection of B on <The x—axls as C, the projection of A on the
“-axls as D,

(a) ©Give the coorc: - ::tes of D.

(b) Give the coords: <es of C.

(c) Give the lengtz of segmant DC.

(d) Gilve the cooriirz=tes of the projection of the midpoint
¥ of segment &= on the x-axis.

(e) Give the ccom=nz==sz of M.

2-2. The Dlstance BeTwz=a Two Points.

In this section we derive a fundamental formula which is
useful in formulatinz a=Z sulving manylproblems in analytic
geor:etry, the formulz fzr tne distance between two points.

Suppose the two pcfmts are called P1 and P2. Let us denote
the coordinates of F. by (Xi’yl) and the coordinates of P, by
(Xg,jg). This notatizn 1s extremely useful in analytic geometry.
The use of letters with subscripts for the coordinates implies
that the points may rs=prezent any pair of points in the plane, but
at the same time 2llows == to fix our attention on a particular
palr for this discussiz—.. Le. us also denote the distance between
P, and P, by d(Pl,Pz). JUnless otherwise stated, distance will
always be non-negative: that is d(Pl,Pg) > 0.

If the two points nappen to be on the x-axis, the problem is
rather eas;r. In this :zzse *he coordinates of Pl and P
(xl,o) amd (xz,o), respectively. Suppose first that P
right of ¥-; that is x. » x;. Then d(Pl;Pg) =X
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The following diagram illustrates the three possible cases.

Pix, 0) 50,0 _ N _
o (O . d(Pl,PE) = Xp-X; = b-1 = 3.
y
R(x,0) Rix0 - = o.(.1) =
—_— ] bl 4 zéxz 1 i Jx d(Pl’PE) = Xe-xl = 2 ( l) = 30
y _
P(x,0 Phﬁp)
g 12 2 ! L a4 d( P ,P = X=X = ~1- -u = 3.
— 4 1 ¢ % ( 1 2) 27 ( )

Ir P2 1s to the left of Pl; that is Xo < Xy, then
Y

s F;(Izvo)l \ ?&)O) d(Pl’Pg) = xl-x2 == 5—2 = 3.

y
o B RO d(P;,P,) = x

X

[}
[
i
—
L]
n
S~
]
w
.

y
_LFZ,ixro)g 1 E(éx'p)I L 1 1 1 l’x d(Pl’PE) = Xl-x2 = -l-(—ll) = 3.

In elther case d(Pl’PE) can be written Ix2 - xll.

Similarly if Pl and P2 had been on the y-axis
d(Pl’Pg) = |y2 = yll'

' We are now ready to return to the original problem, in which
Pl and P2 are any two points in the plane. To find d(Pl’PE) we

use the Pythagorean Theorem which- asserts that in a right triangle,.
the square of the hypotenuse is equal to the sum of the squares of
the legs. First we construct a right triangle having PlPE as

hypotenuse as in Flg. 2-2a. R is the point of intersection of the
line through P2 parallel to the y-axis and the 1line through Pl

parallel to the x-axis. 1Its abscissa then is the same as the
abscissa of N, the projection of P2 on the x-axis, namely Xpe

Its ordinate is the same as S, the projection of Pl on the y-axis,
namely y,. Its coordinates then are (xe,yl).

[sec, -‘2—2?7
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1Oy _ __ Ry

Mix, 0) % Nixz.0)
L o

PIX,Y,) sioy,) Rlx,))

Fig. 2-2a

Then d(Pl,R) d(M,N) = |x2 - X

1
and d(R,Pe) = d(s,T) = |y2 - yll.

Since PlR and RP2 are the legs of the right triangle PlRPE’
the Pythagorean Theorem tells us that

2 2 2
(d(Py,P5) )% = [a(Py,R) ) + [4(R,P,))°.
Substituting |x, - xll and|y, - yll for d(P,,R) and Q(R,P )
respectively, we have
2 2 2
[d(Pl)Pe)] = |X2 = xll + |y2 - yll

or

2
d(PI)PE) =‘\A;2 - xlle + lye - yll ’

since all distances are non-negative.

. - i 2 2
Since |x; - %1% = (x5 - xl)2 and |y, - v,1° =

a(P),Bp) =/(x, - %)% + (v, - ¥7)5,

and we have proved the following theorem.

we have

[sec. 2-2]
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Theorem 2-2a: The distance between Pl(xl,yl) and P2(x2,y2)

is given by :

2-2a a(Py,B,) =1/(x, - )% + (v, - v,)2
Example 1: Find the distance between the points
(a) Py(3,-2), Py(7,-5)

(b) Pl("u17)) P2('ll)7)

Solution: (a) Take x; = 3, X, = 7, Y1 = -2, ¥

n
'
wn

d(P]_:PQ) =\/(7-3)2 + ("5+2)2 = 5.
Note that we could have taken X, =T, X5 = 3, ¥y, = -5, and Yo = 2.
That 1is, d(Pl,P2) = d(P2,Pl). '

(b) Take Xl = -4, X2 = —ll, yl =17, y2 = Te
A(P,Py) =4/(-11 + ¥)2 4 (7 - 7)2

=/(-1)% = 7.

Since Y1 = Yo the segment P1P2 is parallel to the x-.axis.

We may now use the distance formula to prove another useful
result in coordinate geometry.

Theorem 2-2b: The coordinates of the midpoint M(x,y) of the
line segment Joilning the points Pl(xl,yl) and P2(x2,y2) are given

by the formulas:

1t %o Yy + 93
2—2b X=—-—-—72——— ,y:——g———-o
Proof: It 1is enough to show that :
l Y
d(Pl,M) = d(M,P2) = §d(Pl,P2).
[sec. 2-2]
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By the distance formula (2-2a),

X, +xX Y+y
172 2 172 2 1 2
d(PI,M) = V4;*:T‘— - xl) + (—“?—— - yl) = Jéx +(y2 yl)
X, +X V+y
1'72 2 1'72 2 1 2
ain,2y) = A2 - 52 + (522 )% L 3 S ) Pa(ror)
2 2
a(P),Py) =V (xp-x)2 + (v - ¥,)°
1+x2 Y1+¥o
Therefore M( , = ) is the midpoint of P P,

Example 2: Find the midpuint of the line segment joining the
points (-2,5) and (0,-7).

Solution: Substituting in the midpoint formula (2-2b), we see
that the required midpoint is (-1,-1),

l‘

Exercises 2-2
Compute the distance between the following pairs of points:
(a) (%,-3), (-6,2).
(b) (6:’3): (‘u;'S)'
The end points of a diameter of a circle are A(-2,4), B(4,2). ..
Find the coordinates of the center of the circle.
Find the perimeter of a triangle whose vertices are A(5,7),
B(1,10) and Cc(-3,-8).
A(0,8), B(-3,2) and €(10,2) are the vertices of a triangle.
Find the area.
Find the midpoint, M, of the line segment Joining the points
Pl(3,-5) and P2(O,-8). Check to see if the length of the
segment PlM 1s equal to — the length of the segment P1

The vertices of a quadrilateral are P(4,-3), Q(7,10), R(-8,2),
and S(-1,-5). Find the length of the diagonals.
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Plot the points A(2,3), B(-1,-1) and C(3,-4). Prove that
triangle ABC is isosceles,

A circle whose center is at (4,-3) passes through point (9,9).
Find the length of the radius. Does the circle also pass
through (0,0)?

A line segment has a midpoint of M(3,-5) and one end is at
A(2,-%). wWhat are the coordinates of B, the other end of the
Segment? ‘

A(-1,0) and B(-1,5) are the vertices of the base of an
isosceles triangle. What are the coordinates of the third
vertex C? Explain.

Develop a formula for the length of a line segment joining
Pl(xl,yl) and the origin.

Plot the points A(1,3), B(5,-1), and C(3,-3). Draw segments
AB, BC, and AC. What are the coordinates of the midpoints M,
N, P of these segments respectively? Find the perimeter of
the triangle formed by connecting the points M, N, P.

Compare the perimeter of AMNP with that of AABC.

Show that the points A(-¥,-6), B(1,0) and C(11,12) 1ie on a
straight line,

Determine the coordinates of the midpoint of the line segment
Joining the points Py(x,,y;) with the point P,(2xy,2y;).
Find d(Pl,Pg).

A quadrilateral has as its vertices A(2,1), B(12,3), ¢(6,9)
and D(4,7). M, N, O, P are the midpoints of its sides AB, BC,
CD, and DA respectively,

(a) Plot the points. A

(b) Find the perimeter of the quadrilateral MNOP.

(c¢) Prove that the quadrilateral MNOP is a parallelogram.
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*15. A square whose sides are parallel to the coordinate axes and
one vertex 1s (a,b) and the length of a side is ¢. What are
the other vertices? 'Also, find the coordinates of the mid-
points of each slde of the square.

*17. Snow that the points A(1l,1+b), B(3,3+b), and C(6,6+b) are
collinear.

(NOTE: Other problems applicable to this section may be selected
from the problem-set at the end of this chapter.)

2-3. The Slope of a Line.

In plane geometry we assumed that every pair of distinct points
determines a line. However a line may also be determined by one
point and the direction of the line. 1In coordinate geometry it 1t
useful to glve the direction of a line in terms of the coordinates
of any two distinct toints on the line. For this purpose we

def ne the slope, m, of the line determined by Pl(xl,yl) and

P2(x:,y2) to be T
2-3a LR | (%) # %p)

—

However the slope of a given line, L, does not depend on the
particular palr of points Pl and P2 used to determine the line.
For, suppose P3 and Pu are any other two points on I,. Then we
construct llnes through Py and P, || to th? X and y axes
respectlvely meetlng In R; similarly lines through P3 and Ph
meetlng in 3. See Figure 2-3a. ‘

Pq(xq ’Y4)

Rixys S(Xqi3)
7 i

mﬁﬁﬂﬁ//r R(x,.y,) *

Flgo E-Ja
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Triangles PlRP2 and P3SP4 are similar. Why? Therefore the
corresponding sides are in proportion.

RP2 _ SP4
A

o = ¥ Yy - Y3
Xy - %Xy Xy - X3
— of a line 1s independent of the points used to determine the line.
If we consider the absolute value of m, we see that 1t is the
quotient of Iy2 - yll and I:a:2 - xll; But from Figure 2-3a

But thls means m = , which shows that the slope

lys - yll is d(R,F,) =d lx2 - x,! is d(P{,R).

1
Hence the aZsolizte value of m me=sures the magnitude of the steep-
ness of the Xine segment Png. ~f we drop the absoclute 'value
symbol, the resulting quotient, m, may be positive or nesgative.
The sig~ 18 an important feature of the slope, for 1t enables.
us to tell wzsther a line rises or falls as we proceed from left
to right. Let.us examine the various possibilities. If the
numerator and the denominator are both positive (y2 > ¥ X5 > X
then P2 1s above and to the right of Pl; if both are negative
(y2 < ¥ys %5 < xl) then P, 1s below and to the left of P;. 1In
elther case m > O and the line rises to the right. (See
Figure 2-3b.)

)

Rix,y)

PR-ALIRTY

L
H////// | o TR,Y,)
o

p|(x| 'yl)

x¥
(o]
x

Figas 2-3b

[sec., 2-3]
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A slmilar discussion holds for m ¢ O. The line is horlzontal
if and only if Y5 = ¥y, and in this case the slope m = 0. The line
is vertlcal if and only 1if Xy = Xy, in which case m 1is undefined.

We may summarize the preceding results as follows:

m > O, the lire rises to the right.
[ m ¢ 0, the line falls to the right.
I m = C, the line i: horizontal.
If m 1s undefined, tze line is vertical.

Example 1: Draw a line segment ?1P5 through Pl(2.6,-3) and having

slope, A
(a) m - %
(6) m- -2

Solution:

(a) Plot the point P,. Starting at P, go three units to the
right and then up 2 to reach' a second point P. Note that
P2 1s not uniquely determined. For, the slope may also
be written f% and we could have gone 3 units to the left
and down 2 units, thus arriving at a point satisfying
the problem, 1In either case the line rises as we pro-
ceed from left to right.

(b) Go three units to the right and up (-%), that is, down
4 units. Note that the slope is negative and that the
line falls as we proceed from left to right. As in the
above, - 3 may be written ;% or —3, and P2 is again not
uniquely determined.
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We now use the deririti.. of slope and the distance formula
-to establish two useful facts about parallel and perpendicular

lines.

Tl.eorem 2-3a: Two non-vertical lines are parallel or the
same if and only 1f they have the same slope.

This theorem necessarily leaves out of consideration all
vertical lines. But, of course, any two of them are parallel.

Theorem 2-3b. Two lines neither of which is vertical are
perpendicular if and only if the product of their slopes is -1.

The following proofs of these theorems may be used as review.
Even if you have seen proofs in earlier work (by similar triangles),
you may enJoy reading the following alternative forms.

Proof of Theorem 2-3a: Let Ll and L2 be two non-vertical lines.
If they coincide there is nothing to prove. Both are horizontal
if and only if they are parallel to each other and to the x-axis,
and hence have the same slope, namely, zero. Thus, the theorem is
proved in this special case.

Assume now that neilther line is horizontal. Choose¢ any two
distinct points Pl(xl,yl), Pg(xg,yg) on L,, Figure 2-3b.

by
Pl (X,Y) Q|(X *hvyﬁ
\<\¥x2+ K.Yz)
) —-X
Fig. 2-3b
L, L2
[sec. 2-3]
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Draw horizontal lines through Pl and P2 intersecting L2
Q (% + h,yl) and Q,(x, + k,yg), respectively. Now the linec L;
and L, are parallel if and only if d(Pl,Ql) = d(Pg,Qe). _But
d(Py,9) = d(P,,Q,) if and only if h = k. By the slope formi.a2-3a

the slopes of P1P2 and Q1Q2 are

Yo=Yy Yo=Y
xg-xl and X iﬁ-i -h’
2771 2 1

respectively. These two numbers are equal if and only if h = k.
Therefore, it follows that L, and L, are parallel if and only if
they have the same slopes.

Let us now turn to the proof of Theorem -.%. Two lines,
neither of which is vertical, are perpendicuiar I1f and only if the
product of their slopes is -1 . In the procf of Theorem 2-3b we
shall need the full statement of -=he Pythagorean Theorem. Although
it may not have been emphasized t»5 you, the Pythagorean Theorem
works both ways. Its full statemsnt is: The sum of the squares of
two sides of a triangle is equal Yo the square of a third side
if and only if the triangle 1s a right triangle.

Proof of Theorem 2-3b: Suppose we are given two non-vertical
lines Ll and L2 with slopes m

1 and m, , respectively.

Either these lines intersect or are parallel to each other. If
the latter i1s the case, they are certainly not perpendicular and,
by Theorem 2-3a thelr slopes m, and m, are equal so that

mim, cannot be equal to -1 . Thus we need only consider the

case in which Ll and L2 Intersect. Draw lines Ll' and L

(1f necessary) parallel to L, and L, and such that L, and

LQ' Intersect at the origin. See Figure 2-3c. By Theorem 2-3a

1
2

the slopes of Ll' and L2' are then my and m,, respectively.

[sec. 2-3]
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L

/
o

1
m,)

R(1,m,)

Ly

'

Fig. 2-3c
Consider the points Pl(l,ml) and P2(1,m2). By Formula 2-3a the
»slope of OPl is m, and that of OP2 ;s My That 1is, El and P2 are
on L1 and L2, respectively. Hence, the triangle P10P2 is a right
triangle with right angle at O if and only if _
[d(P),P,)1% = [a(0,,)12 + [d(0,P,)]? (by Formula 2-2a.)

[d(0,P)1% = (1 - 0)2 + (m - 0)% =1 4+m?
[d(0,2,)]% = (1 - 0)2 & (my - 0)% =1 4 m>2

2 2 2 .
[d(Pl’PQ)] = (m2 - ml) + (1 -1)° = myT - 2mymy + my©.
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Hence [d(Pl,Pg)]2 = [a(0,P;)1% + [d(0,P,)1? 1f and only ir
m22 - 2mlm2 + ml2 =1 + ml2 + 1 + m22
-2mlm2 = 2
2-3b mymy = -1

Hence, by the Pythagorean Theorem, OPl must be Perpendicular to
OP2 and, therefore, the lines Ll and L2 are perpendicular. This
proves Theorem 2-3b.

Example 2: Given P,(1,0), P2(4,4), P5(5,-3), Py(8,1). Show that
-PlP2 is parallel to P Pu and perpendicular to P

-0 4
lfOI’PP is-lr:l—

» for PuPy is —81531

—3-0

ml = m2 and mlm3 = -1,

1F3-
Solution: m

’_l

m

:ku sz

Example 3: By the Pythagorean Theorem show that P P2 3 in
Example 2 1is a right triangle.
Solution: [d(Pl,P2)12 = (4 -0)% 4+ (4 -1)° <

[d(P,,P5)1% = (-3 - 4)2 4 (5 - 4)%< 50
[a(P4,P)12 = (-3 - 02 + (5 - 1)% 25

[d(Py, P4) 1% = [d(P,P,)1% + [a(P,,P )12

Example 4: Prove that the diagonals of a square are perpendicular
to each other. )

Solution: This is our first example of the proof of a geometric
theorem by coordinate geometry. We consider a square whose sides
have length a. Here a 1is an arbitrary positive number. We use
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the letter a 1instead of some specific number, such as 5,
because we wish to prove the theorem for all squares. We now
locate the axes so that two sides of the square lie along the
positive axes and the vertex between these two sides 1s at the
origin. The opposite vertex is then the point (a,a). See

Filgure 2-3d.
t 9%

R0.a) R(a.a)

X
0 R (a,0)
Flg. 2-3d
By Formula 2-3a the slope of P1P2 is %{% = ~-1; the slope of OP3 is

::O = 1. The product of these slopes 1s -l1. Therefore, the

diagonals are perpendicular by Theorem 2-3b.

Exerclses 2-3
1. Determine the slope of eacﬁ line whilch passes through the
following sets of points:
(a) (10,5) and (6,8) .
(b) (2,-2) and (4,2) .
(c) (10,-2) and (16,1) .-
(d) (0,3) and (0,-2) .
(e) (0,0) and (5,3) .
(£) (-2,0) and (3,0) .

149

[sec. 2-3]




138 ' . }l

2. (a) On the same coordinate axes draw lines through P(5,6),
each having a slore of %1 —3;-%; 1l; O.
(b) Which line 1is the steepest? _
(c) As the absolutz vzlue of the number for the slope
increased, how do these lines compare?
(d) What do you cbserws about the lines having slope of
and -37?
3. (a) Plot and connect the points (3,2) and (7,-1); plot and
conrect the points (-%,1) and (0,-2).
(b) Find the slope of each line
c) What can one say =zbout these lines?
4. (a) Find the slopes and the lengths of the sides of a tri-
angle having the following vertices: A(3,2), B(6,5),
and €(3,8).
) What do you notice about this triangle?
) Find the midpoints M, M, and My of the sides of the
triangle ABC.
(d) From the data you now have in this exercise and knowledge
of geometry, give the slope of MEME; M;ﬁg and M V.

1
3

5. Use the slope formula to show that the points A(-}4,-6),
B(1,0) and C(11,12) lie on a straight line.
6. Determine b so that A(b,5), B(1,3) and C(-2,1) are collinear.
7. The line Jjoining (p,2) and (1,0) is parallel to the line
Joining (2,3) and (-2,1).
(a) Find p.
(b) Substituting the word "perpendicular" for the word
"parallel"”, find p.
8. Plot the points A(1,%), B(3,2), Cc(4,6), and D(2,8).
(a) Show that ABCD 1s a parallelogram.
(b) Is ABCD a rectangle?

I
al
O
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13‘

14,

*15.

*16,

'*170
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Plot the points A(-3,6), B(2,-3), ¢(11,2) and D(6,11).

(a) Show that ABCD is a rhombus.

(b) Show that ABCD is a square.

A square has its vertices located at A(1,3), B(4,3), C(4,6)

and D(1,6). Show that its dlagonals are perpendicular.

If a 1line L has a slope 8, what is the slope of

(a) a line parallel to L%

(b) a line perpendicular to L?

(a) Find the slope of a line through the points Pl(a,b) and
Pg(b,a)S

(b) Find the slope of a line perpendicular to the line
through Png.

In the right triangle whose vertices are A(-12,1), C(9,3),

and B(11,-18), which vertex is the right angle? Explain.

The slope of a line through the point (2,3) is 2,

(a) Give the coordinates of two other points which this
line passes through.

(b) Determine whether the line passes through the point
(62,23).

A square has 1ts vertices at A(a,b), B(a+ec,b), C(a+c,b+c),

D(a,b+c). Prove that the diagonals are perpendicular to

each other. )

If a, b, and ¢ are any real numbers, show that the points

A(a,b+c), B(b,c+a), and C(c,a+b) are collinear.

A triangle has for its vertices: A(a,b), B(a+c,b), and

C(a+c,b+d).

(a) Verify that this is a right triangle. _

(b) Determine the coordinates of the midpoint M of the

hypotenuse. )
151
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2-h. Sketching Graphs of Equations and Inequalities.

We have establlshed a one-to-one correspondence between all
ordered palrs of real numbers (x,y) and all polnts of the plane.
Suppose we wlsh to fix our attention on only a part of the plane
and hence on a subset of all number pairs. This will impose sone
restrictlon on the numbers x and y. It may appeér as a condition
upon X or upon y or upon both through some relatlion between them.
For example, every point on the y-axis has its abscissa zero,
and no point off the y-axls does. Hence, the equation x = 0 is a
restricting relation on the set of all ordered number palrs which
restricts the corresponding points to 1ie on the y-axis. The
y-axls 1s called the graph of the equation x = 0 or x = O is the
equation whose graph i1s the y-axls. In a similar way the graph
of the < juation y = 0 1s the x-axis.

Another type of restricting relation 1s an inequality. For
example, the inequallty y > O holds for those points and for only
those points whilch lie above the x-axis; the relation x <0
speclfles the points to the left of the y-axis and thosé_on the
y-axis.

The most frequent tyr > of restricting relation on the number
pairs (x,y) is an equatior »etween them. For example, the graph
of the equation x = y 1s evidently the line L which bisects the
first and third quadrants. See Figure 2-la,

Yy
L
I I
0 X
T v
[sec. 2—4]
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The set notatlon glves us a convenient way of describing briefly

the restricting relations mentioned above. For example, the

y-axls can be described by ((x,y) : x = 0}). That is, it 13 the

set of all ordered number pairs (Xx,y) the first of which is zero.

The line of Figure 2-4a is ((X,y) : X = y}. We now define formally

what we mean by the graph of an equation or an inequality.
Definition 2-%a. The graph of an eguation or inequality in

X and y is the set of all points whose coordinates satisfy the

equation or inequality. .
Example 1: Sketch the graph of the equation

2-la X -y -1=0,
Solution: Let us choose a number of values of one of the
coordinates, say ‘X, -and compute the corresponding value of the
other by use of the given equation. For example:

X -2 -1 0 2 b

y -3 -2 |-1]1 3

We may now plot the corresponding set of points as sample points

on the graph.

N W

2 3

N

x|
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We sketch the graph as well as possible from the sample points.
In this simple case the points seem to lle on a straight line.
When we make a systematic study of specific classes of equations
and their graphs in Chapter 6, we shall show that the graph of
every equatlon of the first degree is a stralght line.
Example 2: Sketch the graph of the equatilon

2-4b x2 + y2 = 4

Solutlon: Solve for y to obtain y = /4 - x°, A table of sample
points 1s :

by
3..
4 X
j 3 '
=-3r
Fig. 2-kc

We have sketched in the graph as if it were a circle. By use of
the distance formula (2—2a) we may check that every one of the
sample polints is a distance 2 from the origin. 1In fact, the
equatilon x2 + y2 = U makes 1t clear that every polint will have
thils property, and we see that the graph must be a clrcle.
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Example 3: Sketch the graph of the equation

2-kc y=X2—2X-
 Solution: x |-1] o] 1 ]2 |3
vy | 3] o103
y4
d L'o A i ‘x_
Fig. 2-4d

We have connected the sample points by a “smooth, unbroken"
curve. If we wanted to check that this curve actually is the
graph, we might plot additional points. However, even then we
would not be sure about what happens between any two points on
the curve. Better techniques than simply plotting points will
be developed in the remainder of this chapter and in succeeding

chapters.
Example 4: Sketch the graph of the equation
2-kd ' (x - y)y = 0.

1

Solution: We noticed in Chapter 1 that the product.of two numbers
'i1s zero if and only if at least one of the numbers is zero. Hence
the graph of Bquation 2-%d is the combined set of points satis-
fying either. X -y=0,

or Yy = 0,
We have seen at the beginning of this section that the graph of
X - ¥y = 0 1is the line bisecting the first and third quadrants and
that the graph of y = 0 is the x-axis. ’ '
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Therefore, the graph of the equation (x - y)y = O is the
palr of intersecting lines 4;1 and ,62 given in Figure 2-le.

y
/el
£, -
o] X
Fig. 2-le
Example 5: What 1s the graph of 2x° + 3y° = -1°

Solution: If we add 1 to both sides, we may rewrite the
equation in the form

2+l=o.

2x2 + 3y

For any real numbers x and vy, x2 and y2 are greater than or
equal to zero and accordingly 2x2 + 3y2 + 1 is certainly greater
than or equal to 1 and therefore greater than zero. Hence there
are no points on the graph of this equation; that is, the graph
is the empty set.
Example 6: Graph the inequality O < ¥ < x; that is,
((x,¥y) : 0<y<x).
Solution: Suppose we first consider a fixed value of X, say x = 5,
What 1s ((5,5) : 0 < ¥ < 5)? The set of all points with
coordinates (5,y) with no restriction on y 1is the straight line
parallel to the y-axis passing through the point (5,0). (The
equation of this line is x = 5,) See Figure 2-4f. However we
are only interested in those points (5,y) on this line for which
0 ¥y < 5. But this,is just the line segment PQ with P included

and Q excluded.
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Thus for each fixed value of x, ((x,y) : O < ¥ < x)} consists
Just precisely of the points on the line segment Jjoining the
points (x,0) and (x,x), the first point included and the second
excluded. Therefore the graph of the inequality is shown in
Figure 2-4g.

¢ Q(5,5)

0 P(S‘O) X ’

Fig. 2-4f Fig. 2-kg

In Figure 2-4g the graph includes points on the x-axis for which
x > 0, but does not include any points on the line y = x.

Intercepts. The abscissa of a point of a graph for which the
ordinate 1s zero is called an Xx-intercept of the graph; the
ordinate of a point for which the abscissa is zero is called a
y—intercepg. In sketching graphs it is helpful to obtain these
speclal number pairs, if feasible. To obtain the X-intercepts,
set y-= O in the equation of the graph and solve for x; for the
y-intercepts, set x = 0 and solve for y. 1In the equation

x2 4 y2 = 4 of Example 2, the x-interccpts are +2 and -2; the
y-intercepts are +2 and -2. 1In the equation y = x2 - 2x of
Example 3, the x-intercepts are O and 2; the y-intercept is O.
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Symmetry. In Example 2, when we solved x2 + y2 = 4% for y we ob-

o)
talned y = f”v“ - X7; that is, for every x between -2 and 2, we

found two values of y w!ilch differed only in sign. A similar
statement could be made Lf we had solved for x in terms bf Ve
More important, we notice that if (a,b) is on the graph, so is
(-a,b), and also (a,-b), and even (-a,-b). If a curve has these
propertlies we say that it i1s symmetric with respect to the y-axis,
the x-axis, and the origin, respectively.

We now formulate these definitions more precisely and give a
few examples of the kinds of problems in which they are helpful.

Definition 2-Ub: Two points are symmetric with respect to a
line if the line is the perpendicular bisector of the line segment
Joining the points. Each point is called the reflection of the
other in the line.

For example, if two points have the same abscissa and

ordinates which differ only in sign, then one can be obtained from
the other by a reflection in the x-axis. Thus, the points (a,b)
and (a,-b) are symmetric wilth respect to the x-axis. Similarly,
if two points have the same ordinate and abscissas which differ
only in sign, then they are symmetric with respect to the y-axis;
e.g., (c,d) and (-c,d). See Figure 2-4n.

y
(cd)e-——~1+——==2(c,d)

T(Q‘b)
|
!
—
l
|
{(a,-b)

Fig.’é-hh'
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He shall say that a8 curve is symmetric with respect to a line

if eévery point on the curve goes into another boint on the curve

ngj it 1is reflected in the glven line. Thus the circle in

Example 2 1is symmetric with respect to any dlameter, and the curve
Vo= x° - 2x in Example 3 1is symmetric with respect to the line

X 1, which 18 the line parallel to the y-axls passing through
the point (1,0).

The following rules are worth noting. If in an equation
replacing x by -x results in an equivalent equation, whenever (x,¥)
satisfies the equation, so does (-x,y). Therefore, the graph of
such an equation is symmetric with respect to the y-axis.

Similarly 1f an equation equivalent to the original one 1s obtained
when y 1s replaced by -¥, then the graph of the equation 1is

symmetrlic with respect to the x-axis.

Definition 2-bc: Iwo points are symmetric with respect to a
point 1f the point 1s the midpoint of the line segment Joining them.

In particular the points (- a,-b) and (a,b) are symmetric with
respect to the origin. And we say that a curve 1s symmetric with

respegf.to the origin 1f every point on the curve goes into

another point on the curve when it 1s reflected in the origin.

Accordingly a test for symmetry with respect to the origin i1s to
replace x by -x and y by -¥ 1in the equation and 1f it can be made
to assume its original form, the curve is symmetric with respect
to the origin. For example, the equation y = X becomes -y = -x
whilch can be rewritten ¥ = X by multiplying both sides by -1;
the graph of this equation 1is therefore symmetric with respect to
the origin.

Similarly y = x3 becomes -y = (-x)3 which 1s equivalent to
y = x3 and the curve 1s symmétric with respect to the origin.

On the other hand ¥ = x + 2 1s not symmetric with respect to
the orlgin, since (%x,-y) 1s not on the graph whenever (x,y) 1is.
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It 1s not always simple to discover symmetries with respect
to general lines or polnts. But whenever they are easlily dis-
covered, they should be used to simplify curve sketching. This
dlscussion of symmetry may be summarized as follows:

The graph of an equation 1s symmetrlcal with respect to the

X-axls » (X:-Y)
1f an equivalent equation 1is ob-

y"aX1S (—X, y)

tained by replacing (x,y) by

origin (-x,-¥)

Exercises 2-4
1. Make a table of some number palrs which satisfy the following
sentences. Use these to sketch the graph of each,

(a) 2x+y-1=0 () v = Ix| (m) x>2o0ry >3
(b) y = x° (h) x=1]y-2](n) x>2andy >3
(¢) y-x2=2 (1) vy>x
(d) (x-1)y=0 (3) y<x+3
(e) xy + 3x'=0 (k) x>y°
(£) vy =2x° - x : (1) v > Ix|
2. Plot the point P(3,2).
(a) Reflect it in the origin.
(b) Reflect it in the x-axis.
(c) Reflect it in the y-axis.
(d) Reflect it in the line y = X.
(e) Reflect it in the line y = -1.

(f) Reflect it in the line x = 2.
3. Gilve the x and the y intercepts of the graph of

(a) 2x -y = 6. (f) xy = 25.
(b) x% + y° = 1. (g) v¥° +9 = x. '
(¢) y = %x. (n) x = lyl.
(d) x'+ y2 = 1. (1) x| + 15 =vy.
(e) vy = x° - b, - "A(J) x3 4 2xy + 3y + 27 = O.
160
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4, Test for symmetry with respect

(a) x°2+¥° =9 (g)
(b) y=x°+5 (h)
(¢) v = (x+2)° (1)
(d) xy =1 (3)
(e) x+y=23 (k)
(r) x% =y . (1)

(m)
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to the origin and the axes.
2

X =Y

x2 - y2 16

v = ng

x“ =y

3xy + 6 =

V= X - xu + 2x°

2

XY° - xy £ 6 =

5. Use the intercepts and symmetry to sketch the graph of each.

(a) y =2x + 3 (1)
(b) X =2y + 3 (m)
(¢) y=x° (n)
(d) y > x° (o)
(e) y= -x° (p)
(f) vy = |x| (a)
(8) "y < Ix| (r)
(h) y =1 - x° *(s)
(1) == y° *(t)
(J) x=y°+2 *(u)
(k) = +y% =9 *(v)

x° 4+ y° <9

X < -y2 + b
(X - 2)(x - y) =0
Xy + x° = 0
x< 4+ uye = 4

(x - ¥)(xy) =0

x° y = -

Xy + 6 =

95° + 4y° 5 36
x° + 2y2 < 16
y = x> 7

*2-5, Analytic Proofs of Geometric Theorems.

In Section 2-1 it was mentioned that coordinate geometry

provides a powerful and direct means of proving geometric theoremé.

A simple example was given in Section 2-3. We shall give some

additional ones here. All our proofs are based on the three

formulas of Sectlons 2-2 and 2-3.
The first step in an analytic
positlon of the coordinate axes in
discussed. Logically, no position
Practically, an appropriate choice

proof 1s the selection of the
relation to the figure being
of the axes is preferable.
of axes will simplify the

coordinates of some points and reduce the algebraic work in a

proof. 16 1 ’
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The next step is the assignment of coordiﬁétes to points
which determine the figure. The positions of soﬁe points may be
chosen arbiltrarily, and these polnts must be assigned general
coordinates; that 1s, letters unrelated to each other. Other
points are then determined by the shape of the figure, and their
coordinates must be expressed in terms of the previousiy chosen

_ .. general coordinates. ' -

After thilis has been done, the geometric relations being
discussed can be expressed algebraically. The proof then
proceeds algebraically.

Example 1l: Prove that the medlan of a trapezoild is parallel to
the base. ‘

.

y
C(be) B(d,c)
M, jM2
.
0|(0,0) A(a,0)

Fig. 2-5a-

162

[sec. 2-5]




151

Solution: We introduce axes so that one of the parallel sides of
the trapezoid lies on the x-axis and one vertex 1s at the origin,
Figure 2-5a. The vertex A can lie anywhere on the x-axis so
that its abscisSa must be general. Accordingly A 1s assigned
coordinates (2,0). Similarly, C can be any polnt in the plane,
so 1t 1s assigned general coordinates (b,c). Now, however, the
coordinates of B are restricted by the requirement that the side
CB is parallel to the side OA. This will be true if and only if
the slope of CB is the same as the slope of OA by Theorem 2-3a
(slopes of || lines are equal). Since the slope of OA is 0, the
ordinate of B must be c. The abscissa d of B is general.
By the midpoint formula 2-2b, the midpoint M, of OC 1s (2, £),

the midpoint M, of AB 1is (3%g3 %). By the slope formula 2-3a the
slope of Ml p 1s 0. By Theorem 2-3a, MM, is parallel to OA, and

the theorem 1s proved.
Example 2: Show that the diagonals of a parallelogram bisect each
other,

Clbc) B(p+ac)

0[0,0) A(a,0)

Fig. 2-5b
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Solution: Ve place the axes as in Example 1, and again assign
general coordinates (a2,0) and (b,c) to A and C, Flgure 2-5t.
Now, however, the coordinates of B are determined by the two
conditions that CB is parallel to OA and that BA is parallel to
CO.. The first condition requlres, as before, that the ordinate
of B 1s c¢. 1If we let d <=note the abscissa of B then, by
Theorem 2-3a, the second condition requires that

c-0 _ c-0,

d-a -~ b-0’
that is, d = a + b.

Now, the midpoint of the diagonal AC is (3%9,%) and that of

OB is (E%E,%) by the midpoint formula 2-2b. Since these midpoints

coincide the theorem is proved.

Example 3: Show that the midpoint of the hypotenuse of a right
triangle 1s egquidistant from the three vertices.
Solutlon: Choose the axes as in Figure 2-5c.

by
B8(0,b)

M(3,3)

0(0,0) A(a0)

Fig' 2"50
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The mlidpoint M of AB has coordinates (& b . Hence
: 222

. B ~ -
d(M,A) = \/(a..,-af-)“ + (%)“ = e ac‘ + b"‘

— S
a(0,1) = V(4-0)° + (3-0f = 36" + °

d(M,B) = vfb—%)‘ + (b-g)k = % a” 4 be.

Example %: Prove that the perpendicular bisectors of the sides of

a trlani'le meot Ln a polnt.
Solupigi: Cnoose the x-axis along one slde of the triangle and
the y-ax!s as the perpendicular bisector of this side (Figure 2-5d).

C(b,c)

A(‘Q.O) O (Olo) 8(0,0) X

Flee 2<5d
We choose peneral coordinates (a,0) and (b,c) for B and C.
The coordinates or A are (-a,0) since O L9 the midpoint of AB.
The coordinates ol the mldpolnts Ml,ME of BC and AC are determined
from the aldpelnt rormala -0l
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Let us find tne coordinates of the point P at which the two
perperndicular bisectors PO and PM1 intersect. Since this point
lies on the y-axls, 1t has absclssa zero. Its ordinate is an un-
knovn numver y which we have to determine. By the Formula 2-3a,

Slope of BC =-%§g,
c-2y
Slope of PM = m—o

By Theorem 2-3b, concerning slopes of non-vertical perpendicular
lines, the product of these slopes is -l. Thus

c_ ., c-2y _
-5 ' bia - L
Solving this equation for y, we have
2 . 2.2

_ ¢ -a"+b
V= —pg—

That 138, the polnt of intersection of the two perpendicular bi-

[02_ 2+b2]
gectors at Ml and at 0 is (O, __"?E——'-—)‘ Now we proceed in

exactly the same way to find the intersection of the two perpené
dlcular olsectors at M2 and at 0., The data are exactly as
before except that a Ls replaced by -a throughout. Con-
sequently, we need noﬁ do the algebra again but have only to
replace a by -a in the result. But since a2 = (—a)g, that
result 15 unchanged and we see that the second point of inter-
gectlon cglncldes with the first.

We emphasize the importance of assigning coordinates so that
the flgure determined is the most general one of its kind. There
are two requlirements here. The figure must have all of the pro-
pertles stated in the theorem, and it must have no additional
properties, Thus, in Example 1 the flgure is a trapezoid, that
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1s, a guadrilateral with two sides parallel. It would be wrong,
therefore, to assign to the point B in Figure 2-3a the general
coordinates (d,e), since then the points O, A, B, C would be the
vertices of any quadrilateral. It would be equally wrong to
asslgn to B the coordinates (a,c), since then the trapezoid would
have a right angle at A.

Exercises 2-5
.Use coordinate geometry to prove the following theorems:

1. The line Joining the midpoints of two sldes of a triangle 1is
varallel to the third side and its length 1s one-half the
length of the third side. .

2. If the dlagonals of a parallelogram are perpendicular, it is

a rhombus,

3. If the diagonals of a quadrilateral bisect each other, it is
a parallelogram,

4, The lines Joining the midpoints of the sides of a rhombus
form a rectangle.

5. The sum of the lengths of the perpendiculars drawn from the
midpoints of two sides of a triangle to the third side equals
the length of the altitude drawn to the third side.

6. The lines joining the midpoints of the sides of a triangle
divide the triangle into four congruent triangles.

T« The lines Joiﬁing the midpoints of the opposlite sides of a
quadrilateral bisect each other.

8. If one of the equal sides L of an isosceles triangle is
exter ded by its own length through the vertex opposite the
base to P, the line from P to the vertex not on I is
perpendicular to the vase.

9. Lines Jolning the mldpoints of the sides of an ‘sosceles
trapezold form a rhombus.
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2-6. Sets Satlsfying Geometric Conditions.

In Secfion 2-4 we considered the question of determining the
set of polints whose coordinates satisfied some restricting
relation. In fact we concentrated on sets whose coordinates satis-

fied an equation. In thls section we reverse the question and ask
for an algebraic description of the set determined by some
geometric condition. “he machinery of analytic geometry is
ideally suited for this task. We use the results of the preceding
sectlons to write algebraic descriptions of geometric conditions.
Example 1: Descrive the set of all points at a distance 1 from
the origin.

Solution: Geometrically, the set of poilnts on a circle with
center at the origin and radius 1, satisfiles thic condition. This
is a perfectly good description of the set. However, we could still
describe the set algebraically by using an equation to express the

given geometric condition.
Let P(x,y) be any point satisfying the condition.
Then d(o0,P) = 1.

Using the distance formula (2-2a)

Vix - 0)2 4 (v - 0)2 = 1

or %2 + y° = 1.

This algebralc condition is simply a straightforward algebraic
translation of the geometric condition.

Example 2: Find the set of all points which are twice as far

from the origin as from the point (2,0). _

Solution: 1In this case, we may have no idea what the geometric
description of the set Ls. However, it 1s still easy to write out
the algebralc descriptlion.
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Suppose P(x,y) is any point of the set and let A be the point
(2,0). Then .
h d(0,P) = 2d(P,A)

2 _2v(x - 2)2 + (v - 0)2

or- x° + vo o= 4 (x - 2)2 + (y - 0)2].

»
+
<

It

Simplifying we get 3x° - 16x + 16 + 3y2 = 0.

In Chapter 6 we shall show that this set is actually a circle;
however the fact that we are able to descrlibe the set algebrai-
cally even though we are unable to guess the geometric description,
shows the power of the methods of analytic geometry.

Example 3: Describe the set of points the sum of whose distances
from two perpendicular lines is 1.

Solpt}gg: Choose the perpendicular lines to be the coordinate
axes. Let P(x,y) be any point with the required property.

b
Fy) N@©,y)
X
M(x,0) o)
Fig. 2-6a

Then the distances of P from the perpendicular lines are

d(N, P) =\/(x - 0)2 + (v - y)° YA Ixl,
) =V(x - )% + (v - 02 = V42 = Iyl
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The geometric condition can now be written

d(N,P) + d(M,P) =1
V§§-+V6§‘= 1
or x| + ly] = 1.

If we want to sketch the graph of the set of points whose
coordinates satisfy thls equation, we might use the methods
developed in Section 2-4. .

The intercepts are (0,1), (0,-1), (1,0), (-1,0).

The tests for symmetry tell us that the graph 1s symmetric
wlth respect to both axes and the origin. Hence if we plot the
part of the graph in the first quadrant we can sketch the rest
by symmetry. If X > 0, ¥y > 0, then the equation can be written
X +y = 1. The part in tﬁg first quadrant 1s shown in Figure 2-6b.
The complete point set is shown in Figure 2-6c. '

by y

e

Filg. 2-6b Flg. 2-6¢

We shall use this algebralc technique for describing sets
satisfyling weometrlic conditions extensively in Chapter 6 when we
make a systematlc study of equatlions of the first and second
degree Iin X and y.
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Exerclses 2.6
In each exercise the point set should be plotted.
Write the equation descrlbing the set of points which are at a
dlstance 2 from the origin. K
Write the equation of the set of all points which are at a
distance 1 from the point C(1,0).
Write the equatlon of the set of all points which are at a
distance 3 from the point C€(0,2),
Write the equatlon of the set of all points which are at a

"dlstance 5 from the polnt C(2,3).

Write the equatlon of the set of all points which are Kk units
from the point c(-1,32).

Write the equation of the set of all points at a distance rp
from the point C(h;k). Describe this set geometrically.
Write the equatlon of the set of all points which are equi-
distant from the points A(3,0) and B(5,0).

Wrlte the eqhation of the set of z11 poihts which are equi-
distant from the points A(-2,-5) and P(3,2).

Write the equation of the set of all polnts which are equi-
distant from the points Pl(xl,yl) and Pg(xg,yg). Describe
thls set geometrically.

Wrlite the equation of the set of points each of which is
twice as far from A(-2,0) as it is from B(1,0).

Write the equation of the set of points each of which is the
vertex of a rlght trlangle whose hypotenuse is the line
segment Joining (-1,0) and (1,0). Describe this set
geometrically. .

Wrlte the equatlon of the set of points each of which is the
midpolnt of a line segment of length 2 having its endpoints on
two perpendlcular lines.

Write the equatlon of the set of points each of whlch is the
center of a circle which 17 "angent to the x-axis and which
passes through the potint (0,1). '
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16.

2-T.
1.

2.
3‘

Write an equation whose only solution is x = 0, ¥y = 0; that

s,

give an equation for the origin.

Write an equation for the semicircle of radius 2 with center
at (0,0) and lying to the left of the y-axis.

Write an equation of the set of all points (x,y) such that
the area of the trlangle with vertices (x,y), (0,0) and (3,0)
is 2.

Supplementary Exercises for Chaptgg 2.

Discuss the symmetry and the intercepts of the graph of each

equation.
(a) x =5y -2 (1) 2 - x° = 16
(b) 3x° 4 3y2 = 12 . - (J) y = -2x + 3
(c) 2x* -y =3 (k) x = |yl
(@) 2x° + 3y° - 18 (1) vy = 2x2 + &

2 2 .
(e) 53- - -‘ﬁﬁ—— =4 (m) 16x° 4 g9y = 14y
(£) v = x4 Tx - 6 (n) X2 + 6x + y2 =7
(8) v =521 (0) ¥ = (x - 1)(x - 2)°
(h) x =y +y (p) x+y|l =0

Sketch the graph of each of the above equations.

(a)

(b)

(a)

Describe a line parallel to the y-axis in terms of

coordinates.
Slmilarly, for the x-axis. fy
Sketch the graph of the following:
({x,y) : x° + y2 = 9} . [Read "x and y such that x2+y2 = g"
2 2

(v)

((x,y) + x° + y > 9} .

172

[sec. 2-7]



161

(e) ((x,y) : < r v <o),

(@) ((x,y) & Ixl + Iyl =9} .

(e) ((x,3) : Ixi + Iyl > 9} .

(£) ((x,y) : (x>0 andy > 0) and (Ix| + Iyl < 9)IU.

((x,y) © (x <0 and y < 0) and (x| + |y] < 9.

(g) ((x,y) : Ix| + Iyl < 9N ((x,¥) : x° + ¥° > 9).

5. (a) Plot the points A(0,-3), B(-2,1) and C(6,5) and connect
them with lines. .
(b) Show that the triangle formed 1s a right triangle.
(c) Find the slope of the hypotenuse.
(d) Find the area of the triangle.
6. Given the points A(6,2), B(8,-6) and C(10,0)
(a) Find the distance between the midpoint of AB and AC.
(b) Find slope of line through the midpoint of AB and EC.
7. Given the points A(2,%), B(4;-2) and C(-3,-1). What kind of
trlangle is ABC?
8. Glven the points A(2,-3), B(-1,2) and C(a - 1, a - 3), D(2a,3a)
(a) Flind the value of a for which the line CA will be |
to the line CB.
(b) Find the value of a for which the line CD will be
parallel to the line AB.
9. Flnd the equatlon of the set of all polnts equid;stant from
A{0,0) and B(6,3). ,
10. Find the equatlon of the set of all polnts whose distance from
point A(2,0) is 3 unlts and for which y > O.
11. Prove the diagonals of a rectangle are equal in length.
12. Find the other end of a llne segment Lf one end is (-4,8) and
the midpolint is (%,l%).

13. Plot the points A{-3,2), B(5,-2), €(10,10). Show that the
line segment Jolning the midpolnts of AC and BC is parallel
AB and Ltr length Ls equal to one-half the length of AB.
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20.

21,

Determine y so that the point P(1l,y) lies on the perpen-

dlcular bisector of the line segment joining the points

A(3,2) and B(7,6).

Write the equation of the set of all points

(a) a distance 7 from the x-axis.

(v) a distance 7 from the y-axis.

(¢) a distance 7 from the origin.

(d) a distance 7 from the x-axls and a distance 7 from the
y-axls.

Show that the point C(6,3) is on the perpendicular bisector

of the line segment whose endpoints are A(3,2) and B(7,6).

- A circle with center at the origin passes through the

point (a,b). Which of the following points 1s on the
clircle?

(a) (-a,-b)
(b) {a,-b)
(¢) (-a,b).
Explain.

Write a set description of the set of all points 3 units from
the origin in which the set is restricted to

(a) the first quadrant.

(b) the second quadrant.

(¢) the second or third quadrants.,

(d) the first or third quadrants.

Write a set description of the set of points inside the
triarngle formed by the axes and the line 2x + Yy = 3.

Write the equation of the set of points which 1s the vertex
of an isosceles triangle whose base is the line between the
polnts A(-3,5) and B(Y4,-1).

A llne segment of variable length has its endpoints on the
coordlnate axes, forming with them a triangle whose area is
tonstant. Write the equation of the set of midpoilnts of the
segment.
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Find the slope of the line which is tangent to the circle

x° + y2 = 25 at the point P(-4,3)

Sketch the graph of the follbwing set of points:

n
.

(2) ((x,5) : ¥ = x° - 4

(b) ((x,y) : ¥y < O.and y = x° - ¥)

(¢) ((x,y) : x<0andy=x> -4

() ((x,y) : (y >0 and x >0) and (y = x° - 4)

Plot the points A(0,-3), B(-2,1) -and C(6,5). Connect these
points with lines forming the triangle ABC. Plot A!', B!,
and C!, their reflections in the x-axis. Connect these
points with lines forming the trlangle A'B!'C!'. Comparé the
areas and.the perime-ers of AABC with those of tﬁA}B'C'.

Challenge Problems
Derive a formula which divides the line segment PlP2 in the
ratio ry f o Use this information to prove the medians
of a triangle intersect in a point that is £ the distance
from a given vertex to the midpoint of the opposite side.
Given the points A(1,-2), B(5,4) end C(-3,4). Determine
the coordinates of the centroid of A ABC.
Suppose that a rectangular grid is constructed so that the

units marked off on the X-axis are twice as long as those

on the y-axis, UDevelop a suitable formula for the distance
between any two points Fl(xl’yl) and Pg(xe,yg) in this
coordinate systen.

Deslgn a new coordinate system such that the first of an
ordered pair of numbers represents the'slope of a line
passing through the origln, and the second the length of the
line. By convention + slope wlll mean a line rising to the
richt and - slope will mean a line rising to the left.
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A + line Tength will mean above the horizontal and a - line
length below the horizontal. Let the ordered pairs of
numpers be represented by the letters s and d such that

any point
Suestions:

(a)

P can be represented as P(s,d).

Can you find the equation of a circle in this
coordinate system? (Remember--a graph is a set
of polnts each of which satisfies the equation.)
What 1s the equation of a straight line passing
through the origin?

Draw the graph of d = ks, where k is a constant.
Find the équatlon of a vertical line that does not
pass through the origin. (Hint: Use the perpen-
dicular distance p from the origin to the line
and the Pythagorean Theorem.) Ans. d = p s 4+ 1.
See 1f you can find the equatlon of any line.



Chapter 3
THE FUNCTION CONCEPT AND THE LINEAR FUNCTION

3-1. Informal Background of the Function Concept.

The functlon concept is one of the most basic concepts of all
mathematics and this whole chapter 1s devoted to the study of that
Important idea. We first try to form some idea of what the
conzept 1s about in an informal way.

We base our discusslion of functions on sets. Mathematicians
studied functions long before they talked about sets but they were
led to formulate the function idea in tecms of sets in order to
make their study of this topic as clear as possible.

In order to have a function three things are required:
a set called 1ts domaln; a set_called its range; and a rule for
palring a member of the range with each member of the domain.

! Examgig 3-1: Multiplying integers by 2 gives us an example
of a function. The domain of this function 1s the set of all
Integers. The range of the function is the set of all even in-

tegers. .

- If you nave already studled functions you have probably con-
sldered only those functlong which palr numbers with numbers. For
the functlons we are studylng now nelther the domailn nor the rangé
~has to be a set of numbers. The addltlon table for whole numbers
defines a functlion whose domain is not a set of numbers. It
asslgns a whole number to each palr of whole numbers, namely
their sum. The domaln of this function 1s the set of all pairs of
whole numuvers. Its range 13 the set of all whole numbers. For
Instarce the acditlon tunctlon asslgns 19 to the palr (11,8)

and 2O to the patr  (12,1h) . '
177
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Exerclses 3-1

Each of the following phrases suggests a function. Describe 1its
domain, its range, and its rule.

[

Areas of triangles
The multiplication table for positive integers

o
.

Election returns

People'!s first names

‘People's ages
Pcpulation of cities
A dlctionary

N OVl Fow

[3

Tne relative nearness to the sun of the various planets

\O
.

Batting averages
10. Absolute values
Give some examples of everyday circumstances which suggest functions

3-2. Formal Definition g£ Function.

Definizigg EZEE‘ Let A and B be sets and let there be
glven a rule which assigns exactly one member of B to each
member of A . Then the rule, together with the set A 1s said
to be a function and the set A 1is said to be its domain.

The set of all members of B actually assigned to mémbers of A
by the rule is said to be the range of the function.

The word "rule" must be understood here to cover many
different kinds of schemes for making assignments. Sometimes
a rule 1s an algebralc expresslon, but sometimes it can be Just a
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lict of arultrary palrings with no underlying pattern. Example 3-3a
Lilactrates tne flest kind and Example Z-5b illustrates the second
klode  Botnh the domaln of a functlon and the range of a functlon

are sets wub they are subJected to quite ulfferent regulatlons.
Every memver of thne domaln of a function has exactly one member of
the ra:ge ascizned to 1t.  However an Indlvidual member of the

range oi a function can be asslpned to several different members

of 1tsg domain.

The deflnition of function glves no instructions about which
sets are Lo be used i{n Lhe constructlon of functlons. It gives no
clues as to how to find the assignments that it mentions. We have
to o beyond the definition to show how sets are selected and how
rules are made to obtaln useful and interesting -functions.

Example 3-Za: The Constggg Function. Let A be the set of

all real numbers and let b  be any real number. Then assigning
o to each real number glves a functlon whose domaln is the set A
and whose range ts {b} . Any such function whose range contains

exactly one member is called a constant function.

bxample 3-ib: The Tdentlty Function. Let A be the set of

all real numbers and asslgn each member of A to itself. These
asslgnments constitute a function whose domain is A  and whose
range s A . Any such functlon which asslgns each member of the
domaln to ltgelf Ls called an icentity function.

H

Example 3-2¢: Multiplication Regarded as a Functlon. Let A

be the set of all palrs (x,y) of real numbers and assign to

each number (x,y) ot A the product xy . These assignments
constltute a tunction whose domaln i1s A and whose range 1s the
set of all real numbers. 17()

I3
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Exerclses 3-2

Lo Fack of the fcllewing defines a functlon.. Describe its domaln

solen Lo each real number x the number x + 2 .
Assiin to each real number X the number 5x .
ARsslen to each real number x  the number |x| .

)
)
)
‘1) Asslpn to each real number x the number x2 .
)
)
)

Assign to each real number x the number (x + 15)2 .
Assisn to each real number x  the number 4 .
Azslpn to cach even integer the number O and to each
odd Integer the number 1 ,
(n) Asslyn to each point, in the plane the point 2 units to
the right and 3 units down.
——(1) Assign to each rectangle 1ts area.
(J) Assign to ecach palr of distinct points in the plane the
distance between them.
2. Let A be [1,2,3} and let B be (4,5} .
) Deflinc a furction whose domaln is A and whose range
is 2.
(b) Defline a function whose domaln is A, whose range 1s A,
and wnizsh 1s not the identity furction.
(¢) Define a function whose domain is B and whose range
ts B . '
(d) Show that there ls no functlon whose domali is B and

whose range is A .

3-3¢ Notation for a Function.

It is customary to denote func  ‘ons by single letters such
as [,  and h . If x 1s any member of the domain of
functionn f, then f(x) means the element assigned to x Dby the
functlion
Note: The cxpresston f(x) 1ls read "f of x" . Some people

"

prefer to read Lt "Poat k" .

1890
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Example 3-3a: Let the function £ have for its domaln the
set of all real numbers, for i1ts range the set of all non-negative

real numbers, and for its rule the assignment to each real number
of lts square. Then ((2) = Y4, £(3) =9, £(0) = 0, £(-3) = 9,
£(x) = 2 .

Sometlimes thls notatlon Is used to cover more complicated
sltuations. By [(g(x)) we mean the expression obtained by
substltuting g(x) for x 1in f(x) .

fxample 3-3b: If f£(x) = 3x and g(x) = 2x then

o]
—
s
—

~
N”
~—

i

3(2x) = 6x

Example 3-Zc: If f(x) = 3x° + 2 and g(x) = 4x - 1 then
(s s Ty 2
fle(x)) = 3(hx - 1)° + 2

© The ldeafherévis that 1f it makes sense to substitute an
expresslorn E for x 1n f(x) then the symbol f(E) 1is used
to describe the result of performing this substitution.

Example 3-3d: If f£(x) = xg - 3k + 2 then

Exercises 3-3

1. Glven that f s the functlion whose domain is the set of all
positive Integers (1,2,3, ...} and which pairs with each
integer x the Integer 3x. (a) What is the pange of f 2
(b) £(8) =2, (c) £(6) =2, (d) f£la) =7, (e) £(za) =7,
(£) £(2 +x) =2, (g) Does r(3x) = 3£(x)? :

(h) Does f£(ix + &) = 30(x) + 42
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2. Given that f 1s the function whose domain 1s the set of all
positive integers, (1,2,3, ...} which assigns 0 to the
even integers and 1 to the odd integers. (a) What is the

range of £ ? (b) f£(2) =2 (c) f£(3) =2 (d) f(104) = *
(e) Does £(3) + £(5) = £(3 + 5) ?

(f) Does f£(3) + £{¥) = £(3 + 4) 2

(g) Does f£(2) + £(4) = £(2 + 4) ?

(h) Does f(3) . f(u) = (3 « b4) »

(1) Does f(2) « £(4) = f(2 « &) 2

(J) Does f(x + 2) = £(x) ¢

(k) Does f(x + 1) = f£(x) 2

(1) Does f(x . 2) = f(x) ?

3, Let f Dbe a function whose domain 1s ix 1 -1 ¢ x ¢ 2) .
~If f(x) = |x|, what is the range of f ?
4, Let f be a function whose domain 1s the set of all real
numbers. If f(x) = |x]| - x, what is the range of f ?

3-4. Functions Defined by Equations.

Many of the functions we shall meet have sets of real numbers
for thelr domaln and range, and have rules which are expressed by
algebralc equatlons. For instance the function defined in
Example 3-3a 1s such a function. These speclal functions are
of'ten defined only by glving the rule, with no mention of the
domain and range. Thils causes no confusion 1f the student knows
how to supply the proper domain and range himself. Usually in
what follows, 1if a function 1s discussed whose domain is not
given explicitly, 1ts domaln 1s understood to be the set of all
real numbers, For 1nstance, the equation y = 3x2 + 1
can be used to define a function whose domain is the set of all
real numbers, whose range 1s (y : y 2> 1} and whose rule is to
pair with each real number X the number 3x2 + 1. It is
customary to express all this information in more compact form by -

referring to "the function defined by the equation y = 3x° + 1" .

[se.. 3-4]
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If‘we apply this agreement to the equation vy = E-%—K we

see that thils equatlon does not define a function wnose domain is
.the set of all real numbers. The right member of this equation

o Zzies3 i :_—_-ll. D v 11 N 3
13 meaningless for x Nevertheless, the equation vy T

can be used to deflne a functlon provided a se .33l numbers
whicn does not contaln the number 4 1s specific.. 48 1ts domain.
We therefore modify our agreement. When we encounter an equation
of the form Yy = f(x) we assume that the function it defines has
for domain the set of all real numbers which can meaningfully be
substituted for x 1in f(x), unless some other domajn 1s given

explicltly. For instance "the function defined by the equation

~

v = ?~§~ﬂﬂ means the functlon whose domain is the set

(x : x <4 or x >Ll)}, wvhose range 1s (y : y< O or y > 0}
. e ta - 3 . .

and wnose rule 1s to palr S wlth each number x 1in its

domain.

Exerclses 3-+

1. Let f 7Be the function defined bty the equation y = 2x + 6.
(a) What is the domain of f ? (b) What is the range of f ?
(¢) £(2) =2 (d) For what value of x does f£(x) = 100 ?
(e) For what value of x does f(x) =0 ?

2. Wnat s the domaln and range of the function defined by each
of the following eduations

(a) v = 3x (d) .y = x
3 v 2 Lo
(b) v = X (e) v = {/E

) ¥V =X
¢ £ Dbe the furnctlon defined by the equation y = x2 .
) What 1s the domain of f ? (b) What is the range of f ?
) Is there a number X such that f(x) = 6 2

)

Is there a number x guch that f£(x) = -6 ?

\
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4. .Let f be the function defined by the equation y = Xx° .
¢ (a) Wnat 1s the domain of f 2
(b) What 1s the range of f ?
(¢) 'Is there a number x such that f£(x) = 6 ?
" (d) Is there a numb-: x such that f(x) = -6 ?

5. Let n be a positive integer and let f be the function

defined by the equation y = x .

(a) What i3 the domain of f ?
(b) What is the range of f ?

(¢c) Is there a number x such that f(x) = 6 2
(d) Is there a number x such that f£(x) = -6 ?
6. Let f Dbe the function defined by the equation y =-% .
(a) Wvhat 1s the range of f ?
(b) Wnhat is the domain of f ?
(¢) Is there a number x such that f(x) = 6 9
(d) 1Is there a number x such that f£(x) = -6 ?
7. Let f be the function defined by y = -3 .
(a) Wnat 1s the range of f ? *
(b) Wwhat is the domain >f f ?
(c) 1Is there a number x such that f£(x) = 6 2
(d) Is there a number x such that f(x) = -6 2
8. Let f be the function defined by y = j; where n 1is a
positive integer. X
(a) What 1s the range o. f 2
(b) What is the domain of f ?
(¢c) Is there a number x such that f(x) = 6 7
(d) Is there a number x such that f£(x) = -6 ?
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3-5. The Graph of a Function.

Twe sets are needed to define a function, one to be the
domain and one to be the range. After the function is defined
a new set ls created, namely the set of all those pairs produced
by tiie rule of the function. This set is sometimes called the
graph of the function. Indeed many mathematicians claim that this
set 1ls the function itself.

Example 3-5a: Let f Dbe the Qunction d~f"ined by the
equation y = 4x - 7 . Then its graph consisis of all the ordered
pairs of the form (x,4% - 7) . For instance (U,-7), (1,-3), (2,:
are some of the pairs of this graph. ’

Example 3-5b: Let f be the function whose domain is
{(1,2,3), whose range it (&,5), and whose rule assigns 6 to 1,
5 to 2, 6 to 3. Then the graph of f 1is the set
((1,6), (2,5), (3,6)} . This is a function whose rule has no
pattern. It was constructed by making arbitrary pairings.

If a function happens to have a domain and range consisting
of real numbers then the pairs of its graph can be plotted as
points. The resulting geometric figure is also called the
"graph of the function". This implies that the expression "the
graph of a function" can mean two different things. The more
usual meaning is the geometric figure. . The graph of a function
defined by an equation 1s generally considered to be the same as
the graph of that equation, as defined in Chapter 2.

Most of the functions defined by algebralc equations have
smooth curves as tneilr graphs. The student almost always has to
rely on this fact in order to draw the graph of a function.
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defined uy oy O
Solutlorn: Choose several values of x  and compute the
YAntL e

»5 assiired to these values by the function.

N 30 Y
R ER NS | (-3,28) *(3,28)
-0 1.
20+
-1 i .
. 1
~2,13) » «(2,13)
1 U
0+
’ 15
3 ) (-1,4) o “(1,4)
1 1 L '(O"l) L l
-3 -2 -1 0 i 2 3 X
Flg. 3-5a

We find that 23 is assigned to -3, 3 to -2, 4% to -1,
1 to 0, * to 1, 13 to 2, 28 to 2. Thus we know that
part of the graph looks like Figure 3-5a. We can fill in the
rest of .e graph as 1n Figure 3-5b if we believe that the graph
13 a smooth curve. '

3 2 -4 0 i 2 3 X
Fig. 2-5b
[sec. 3-5]
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& do nct now have a logical reason for excluding the curve in
Filgure 3-%¢ as the graph.

20

"Flg. 3-5c¢

Later we shall prove that it is Figure 3-5b which 1s the correct
one rather than Figure 3-5c.

Exercises 3-5

1. Can the pairs (1,2) and (1,3) occur in the graph of the
same function? Justify your answer. .

2. Can the pairs (2,1) and (3,1) occur in the graph of the
same function? Justify your answer.

3. Plot the graph of the functions defined- by each of the
followlng equations:
() y=-2x +1
(b) y = -3x -2 ’
(¢) y=x-2
(d) v = 2x + 2

4. Plot the graph of the functions defined by each of the
followling equations: _
(a) *y = -x° + 6 (d) v

(b) y = 2x° - 1 T (e) y = <3

3x° 4+ 2

i

(C) y = -X -3

[sec. 3-5]
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t-v. Funcztions Defined Geometrically.

Ve are golng to use some of the facts of Coordinate Geometry
Lo lutroduse ancther way of defining functions. EGEE§‘point of
the place palrs two numbers, its k-coordinate and its y-coordinate,
For come seto of polnts these pairings are the pairings of a
functlion. For Llnstance If no two points in a set have the same
<-coordinate then assigning the y-coordinate of each point of this
set Lo Its x-coordinate defines a function. The domain of the
runctlon 1s the set of all x-coordinates of points of the set.
The range of tne function is the set of all y-coordinates of the
set. It is also the case that if no two members of the set have
the same y-coordinate, then assigning the x-coordinate to the
y-coordinate of each point of the set defines a function. However
we follow the generally accepted practice of using only the first
scheme for defining functions. Thus we shall consider that a set
of polnts defines a function if and only if no two points of #*ie
set have the same x-coordinate. The geometrical way of stating
this condltion Is that a set of points defines such a function if
and only if ro vertical line contailns more than one point of the
set.

Exampls -Ca: In Figure 3-6a the figure consisting of the
three peoints  (-1,3) , (1,3) and (2,3) defines a funciion f

Yy
F3) 5l 0,3 2,3
2.
I.
=2 m 0 I X
Flg. 7-ha
whose domain is (-1,1,%] , whose range is (2} , and whose rule
makes the asslgnments f£(-1) = 3, (1) = 3, £(2) = 3 ..
[sec., 3-6]
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_ e
“xample 3-wb:  The graph of the equation y = 3x° 4+ 1

defines a functlon wnose domain 1s the set of all real numbers

Y

and whose range s (y : y >

Example 3-f¢: The curve sketched in Figure 3-6c defines a
y

Fig. 3-be

function. The curve has no simple equation.

189
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Example 3-5d: The part of the graph of the equation

Y

-
Yl

Fig. 3-6d

X = 3y2 + 1 sketched in Figure 3-6d defines a fuﬁction.

In each of the following examples notice that there is a
vertical line that intersects the graph in more tnan one point

Example 3-6e: The graph of the equation x = 3y2 + 1

Y

Fig- 3-66

does rnoft define a function.
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Example X-6f: The clrcle whose center is (0,0) and
y

.y

0

Fig. 3-5f

whose radius is 5 does not define a function.

Example 3-7g: The Figure 3-0p consisting of the points

y
*(3,2)

*(3,1)

*(3,-1)

=

}._‘
(o]

~ ~
. 3-Cg

t
=
SN

(4, , (5,1), (3,2) does not define a function.
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Example 3-fh: The set of points ir Figure 3-5h does not

AN

Pig. 3-6h

define a function.

Exercises 3-6

1. Can a circle be the grapnh of a function?
Z. Can a semi-circle be the graph »of a function?
3. Are there semi-circles which are not the graphs of”functions?
4. Can a triangle be the graph of a function?
5. Can a line be the graph of a function?
6. Are there lines which are not graphs of functions?
" 7. Which of the following are gravhs of functions?
Justify your answer.

Yy y Y
S/ o LT
E / 7/

Q X o X 0 X
Fig. 3-6(7a) Fig. 3-6(7b) Flg. 3-6(7c)
' [sec. 3-6]
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.
_———j&~*—ﬂL ///\\//\\//\\ //2%?Z1Z7ZQZ;Z77

0 L————\x o) X o]

Fig. 3-6(7d) Fig. 3-6(7e) Fig. 3-6(7f)

y y

/‘\/’\ N
\\\\\\:i—_’/,//]x 0 X o__”////f X

Fig. 3-6(7g) Fig. 3-6(7h) Fig. 3-6(71)
8. Prove that if n 1is an odd integer then the graph of
yn = X defines a function and that if n 1is an even

integer then the graph of yn = X does not define a function.
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2-7. PFunctlons Defined EX Physical Processes.

Someone who understands the function concept can find examples
of functions in every aspect of hils dally 1ife. While this does ‘
not always nelp people to understand what 1s going on around them,
the discovery and study of such functions 1s an important part of
any'gcigntific analysis of our world.

3

Example 3-Ta: A falling body defines many functions. For
example, at each instant, a falling body has a speed, and pairing
speed with time produces a function. Physicists have discovered
that for a body falling from rest in a vacuum, the equation
y = 32t defines this function, where t 1s the number of
seconds after the body began to fall and y 1s 1its speed in feet
per second. Another function defined by the falling body is the
one which pairs the distance 1t falls with the elapsed time.
Physicists have discovered that the equation which defines this
function 1s y = 16t%, where t 1is the number of seconds after
the body begins to fall and y 1is the number of feet the body

falls in t seconds.

~ Example 3-7b: The mass of a radioactive body decreases with
time. Such a body defines a function; assign to each instant of
time the mass of the body at that instant. When we study the
exponential functlion, in Chapter 9, we shall see an equation that
defines this function. '

Exerclses 3-7

Below are some descriptions of physical situations which define
functions. Try to find the domain and range for each. Express

194
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the rule in algebrale form if you know 1t; try to make a reason-
able guess Lf you dontt.

1. If a gas is kept at constant temperature its volume and its

' pressure are dependent on each other.

2. The time 1t takes a pendulum to complete a swing depends on
the length of the pendulum.

3. The gravitational attraction of the earth on a body depends
on the body's distance from the earth.

4. If the ends of a beam are clamped and if an object is hung
on it the distance the beam is displaced depends on the
welght of the object.

5. The apparent brightness of a light source to an observer
depends on the distance of the observer from the source.

6. The force exerted by a lever depends on the distance of its
end from the fulcrum,

7. If water is flowing at a uniform rate through a pipe into a
tank, the amount of water in the tank depends on the time of
flow. '

8. The temperature of a cup of coffee depends on the time, it
has been cooling.

9. The temperature at which water bolls depends on altitude.

10. The time it takes an automobile to come to a halt depends
on its speed.

3-8. Functions Defined by Composition; Inverses.

Functlons can sometimes be defined in terms Qf other
functions. This is so, for instance, if f and g are functions
for which the range of f 1is the domain of g .

Example 3-8a: Let f be defined by y = 3x - 5 and g be
defined by y = 3x° + 1. Then the equation y = 3(3x - 5)2 + 1

defines a new function. ' 195
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The following definition 1s a formal statement of this
procedure.

Definition 3-8a: Let A, B and C be sets, let f be a
function whose domain is A and whose range is B, let g be a

function whose domain is B and whose range is C . Then by the
composition of g with { we mean the function whose domain is

A, vwhose range is C and which assigns to each member Xx of A,
the member g(f(x)) of C .

Example 3-8b: Let A be the set (4,5,6), let B be the
set (7,8} and let C be the set (9,10}, let £(4) = 8,
£(5) = 7, £(6) = 8 and let g(7) = 10, g(8) = 9 . Then the graph
of the composition of g with f is ((%,9), (5,10), (6,9)) .

Tt is sometimes helpful to imagine that the rule of a
function describes an action which does something to each member
of the domain to produce the corresponding member of the range.
From this point of view 1t 1s possible also to imagine a process
which undoes what the original function does. The function de-
fined by equation ¥y = x + 6 has the effect of adding 6 to
each number. The function defined by the equation y = x - 6
has the effect of subtracting 6 from each number. Thus each of
these functions "undoes" what the other does. The definition of
inverse function which follows expresses these ideas formally.

Definition 3-8b: Let A and B be sets, let f be a
function whose domain is A and whose range 1s B and let g be

a function whose domain is B and whose range is A . Then we say
that £ and g are inverse functions if, for each x of A,
flg(x)) = g(f(x)) = x « We also say that f 1is the inverse of

g and g 1is the inverse of f if f and g are inverse

196

functions.
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Example 3-3c¢: - Let A be the set of all intepers, let f be

the function which assigns to each Integer ~x  the integer x + 1
and let g be the functlon which assigns to each integer x the
integer x -1 . Then £(x) =x+1, g(x) =x -1, flg(x))
=(x -1) +1=x and g(f(x)) = (x +1) -1 =x . Therefore f
and g are inverse functions.

Example 3-2d: Let A be the set of positive real numbers,
let { have domain A and be defined by vy = x2 . let g have
domain A and be defined by ¥y =+/X. Then g(f(x)) = /X° = x
and f(g(x)) = (‘/E)2 = X which identifies f and g as. inverses.

Some functions have no inverse. Consider, for example, the
function f whose domain 1s the set of all real numbers defined

.
2

by y = x" . If this function had an inverse g , then since
£(2) = 4, £(-2) = 4 we would have to have g(14) = 2 and

g(h) -2 . But this is impossible, since a function must assign
only one member of its range to a member of its domain. Notice
that the single equation y = x2 was used to define a function
with an inverse and a function with no inverse.

i

Theorem 3-8a: Let f be a function whose domain is the set
A -and whose range is the set B. Then f has an inverse if
and only if for each member b of B there is exactly one a of.
A for which f(a) = b .

Proof: Because B 1is the range of f , for each b of B
there is at least one a of A such that f(a) = b . Assign
to each Db all such members a . These assignments define a
function g , whose domain is B , if and only if, this rule
pairs only one a with each b . If there is such a g , then
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g(f(a)) = ¢(b) = a for each a of A, so g(r(x)) = x . Also
for eaci b of B, [(g(b)) = £f(a) = b, so f(g(x)) = x . This
identifies g as the inver;e of f .

If £ and g are inverses, their graphs are closely inter-
related.

Theorem 3-8b: Let f and g be inverses. Then a pair .
(p,4) 1is in the graph of f if and only if (q,p) is in the
graph of g .

Proof: If the pair (p,q) is in the graph of f, then
q=f(p) . If g is the inverse of f then g(q) = p . Thus
(a,p) 1s in the graph of g . Similarly if (q,p) is in the
graph of g , then p = g(q) . If f 41is the inverse of g, then

f(p) = q . Thus (p,q) +is in the graph of f .

By plotting the graph of a function, it is possible to see
whether the function has an inverse or not and also, if the
function does have an inverse, to see what the graph of .the
inverse actually 1s. If no horizontal line has more than one
point on the graph of a function, then the function has an inverse.

Example 3-8e: Figures 3-8a, 3-8b, 3-8c and 3-8d are graphs

of functions. Figures 3-8a and 3-8b correspond to functions with

y y

/ ”

Fig. 3-8a Fig. 3-8b
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Fig. 3-8c¢ Fig. 3-8d

»inverses. Figures 3-8¢ and 3-8d correspond to functions Without.
inverses. Notice that every horizontal line intersects the graphs
of Figures 3—8a and 3-8b in a single point. Notice that some
horizontal line intersects the graphs of Figures 3-8c and 3-8d in
2" points.

Again Figures 3-8e and 3-8f show the graphs of the inverses
of the function associated with Figures 3-8a and 3-8b. Notice

—

Fig. 3-8e Fig. 3-8f

‘that Figures 3-8e and 3-8f are obtained from Figures 3-8a and
3-8b by interchanging the X and y coordinates. This
illustrates Theorem 3-8b.

199

[sec. 3-8]



188

Exercises 3-8

Let f(x) = x° and a(x) = x7 .
{(a) What is f£( (x)) °?

(b) What is g(f(x)) ?

(c) Does f(g(x) = g(f(x)) 2

Let f£(x) = x° and g(x) = X+ 1.
(a) What 1s f(g(x)) ?

(b) What is g(f(x)) ¢

(c) Does f(g(x) = g(f(x)) ?

‘The function f 1is defined by y = 2x + 3. Show that its

ol

inverse is the function defined by y = %x -

The function f is defined by ¥y = 4x + 5 . Show that the
: | .

function defined by y = =15 is not the inverse of f .

Yhich of the functions defined in Exercises 3-6, Problem 7

has an lnverse? o

(a) Show that the points (a,b) and (b,a) are symetrically’
situated with respect to the line y = x . Show how to
use this fact to find the graph of a function from the
grapii of its inverse.

(b) Sketch the graph of the inverse of the function whose

graph 1s shown in Figure 3-8(6a) - Figure 3-8(6d).

¥ o

Fig. 3-8(6a) | Fig., 3-8(6b)

[sec. 3-8]
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Fig. 3-8(6c) Fig. 3-8(6d)

3-9. The Linear Function.

-

Definition 3-9a: A function is a linear function if and only

if it is defined by an equation y = ax + b, where a 1s a non-
zero real number and where b 1is any real number.

Example 3-9a: Each of the following equations defines a

linear function:

vy = 3x 4+ 4 (a =3, b =1)
y = -5% + 6 (a = -5, b =€)
y = x =11 (a =1, b = -11)
y = 2x (a =2, b = 0)
y =X (a =1, b =0)

Theorem 5-9a: Every linear function sets up a one-to-one

correspondence bvetween the set of all real numbers and the set of
all real numvers.

[sec. 3-9]
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Froof: Let the lirear function f be defined by the
equation y = ax + b . Ve are to show that

{1) 1f r 1s any real number then f assigns some real

number f(r) to r .

(2) 1if s 1is any real number then there is some real

. number t such that s = f£(t) .
The first part 1s easy to prove; the number ar + b is assigned
by f to r .

To prove the second part we solve ax + b = s for X,

obtalning x = 2 . ® . Then r (2 = b) = S .because
S - b S - b ; ~
£( 5 ) = a( 5 ) + b .
Therefore 2 ; 2 isa number t such that f(t) = s .

Corollary: Every linear function has an inverse.

It 1s proved in Chapter 6 that the graph of an equation
Yy =ax + b 1is a stralght line. We can check this statement now
with an example.

Example 3-9b: Plot the graph of y = 3x + 2 .

Solution; We first construct a short table of values, We
plot these points and obtain the part of the graph shown in Fig.3-9a.

x|-2]-1{o0l1]2 y

+(2,8)
vi-4]-1l2|5!8

«(1,5)

(0,2

(=1, o] X

(-2,~4)

202
Fig. 3-9a
[sec. 3-9]




191

It certalnly lcoks as though these poinfs are collinear and it is
not hard to velieve that the line they determine is the graph of

the functilon. y

(2,8)
(1,5)
/ (0,2
(-1-ng 0 X )
(~2,~4)
Fig. 3-9b

The graph of thls function 1s the line shown in Figure 3-9b.

Theorem 3-9b: I{ f 1s the linear function defined by

. £ 4

¥y = ax + b, 1ts inverse g 1s the linear functlon defined by
- ix .2
y—a _a'
. .1 b
Proof: f(g(x)) = a(3x - Z) + b = x and
1 b
g(f(x)) = =(ax + b) - 2 =x .

Example 3-9c: Let f Dbe defined by vy
1 Y

3x + 4, then

g='§X--3 a_nd
fg(x)) = 3(%x - %) + b2 ox
and g(f(x)) =-%(3x +4) - % - x .

203
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Theoren ©-7% provides a rormala for firvding irverses of
ar furctlions, It i1s provably easier not to use this formula
to flnd tne inverse of any zlven linear funetion, but rather to
proceed as follows: I the function is defined by the equation
¥ = as + b
(1) =solve the equation for x in terms of vy,

(») loterchange x and y in the answer.

1Y

Erample Z-7e:  (reworlied In the recomnonded way)

1
K==y -
o

ard Intercharging x and y yilelds the cquation
) .

“/:—.X—

v}

«

Linear functlons palr real numbers with real numbers. The
following two theorems show how the palrings made by linear +
functlons are different from the pair%ngs made by other types of
furctlorns. Theorem 3-9c¢c states that linear functions have a
certain property and Theorem 3-9d states that linear functions are
the only functlors which have this property.

Theorem 3-9c: Let the linear function f be defined by
y=ax + b (a# 0) and let p and q be any distinct real numbers.

Then ==l a2 o g

R f(p) - f
Proof: -
rrool =g D -9

ERIC

Aruitoxt provided by Eic:
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Example 5-94: I [ Is
p = 1971, q = 3C, =hen

£(p) = 2(19%1) - ¥ = 5379

£{q) = 3(30) - 4 = 3o
f(p) - r(a) = 5793
P - q= 1931

%,:.figl = 3,

- q

£(p

Thls theorem nas a geometric interpretation. The points
(p,£(p)) and (q,f(q)) are on the graph of the llnear function f.
According to Formula 2-3a of Chapter 2, the expression

f(p) - £(q)
b - q

ls the slope of the line. Theorem 3-9¢ therefore has two conse-
quences. One 1s that the pgraph of y = ax + b has slope a .
The otner ls that tnls slope can be computed from the coordinates

off any palr of dlstinct polnts on the line.

Theorem 3-9d: (Converse of Theorem 3-9c) Let t be any

real number except zero, and let [ be a function whose domain
and range are the set of all real numbers. If for each palr of

distinect real numbers p and ¢
£f(p) - £(q) _

e v

p ~-q
then  ls a linear functlon.

Proofl: Let 9 be any real number. Then for every x

f(x) - fla,) = ¢

X -4
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Therefore f(x) has a representation ax + b, where a 1s the
given number t and b 1s the number -tq  + f(qo) .

Example 3-9e: Suppose t =6 and f£(3) =

Then v f(x) - £(3) _ 6
T x - 3 F
f(x)"5=6
X - 3
f(X)-5=6X-l8
f(x) = 6x - 13

Exercises 3-9

1. Whlch of the following equations defines a linear function?

(a) y=7x+2 (e) y=x+64+1
(b) Yy=7x - 2 (f) Y=%+u
(¢) y=T7x 6
(d) y =2 (8) v =x +b
(h) ¥y=0
2. Let f be a linear function defined by ¥y = 5x + 6 .
(a) f(O) = ? ) ‘
(o) £(3) = 7
(¢) f£(11) = ©
(d) For what values of x does f(x) = 0 ?
(e) For what values of x aoces f(x) = % ?
(f) For what values of x does f(x) = 11 ?

3« Plot the graphs of all of the following equations on the
same set of axes.
(a) y = 2x + 3 (d) vy = ox
(b) y = 2x - 3 (e) y=2
(¢) v =2x +1

[sec. 3-9]
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L. Plot the graphs of all of the following equations using a
single set of axes.

(a) y = -bx + 2 (d) y = -x + 2
(b) y =x + 2 (e) vy = -2x + 2,
(¢) y=3x +2
5. Plot the graphs of all of the follow! ~ equations using a
single set of axes.
(a) y =5+ 0 (¢) . - 5
(b) y = -5x + 6 (@) v - . B

6. Each of the following equatlions defines a linear function.
Find its inverse.

(a) y=92x -1 (d) y=-x-14
(b) ¥y =23x+5 (e) v =6x+T.
(c) "'y =-2x+6

7. For each of the functions of Problem 6 plot its graph and the
graph of its inverse using a single set of axes for each pair.

8. The function f 1is defined by y = 2x - 7 .

a) Find its inverse g .

it

b) f£(6) = ?
c) g(r(e)) =2
d) g(6) = ?

e) f(g(6)) =2
9. The function f 1s defined by ¥
out computation the value of

-3x - 4 . Predict with-

£(1000) - f£(100

Check your prediction by computation.

10. Plot the graph of y = -3x - 4 ., Pick two points on the
graph, measure thelr coordinates, and use these values to
compute the slope of the line.

207
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(o}
11. Let f te defined by y = Xx° . Show by direct computation

that f(3) - 1‘(5) f.z_ f(ul)l : g(()) .

S -

2
12. (a) If f 1is defined by y = x°, for how many values of x

£(x) - £(7) _ £(9) - £(7) ,

does T op—
(b) If £ 1s a linear fimet:! for how many values o «x
a f(X) - S AL f(7\ D)
does S . g

3-10. Linear Functions Having Prescribed Values.

Theorem 3-10a: Let X and x2 be any distinct real numbers
and let Yy and Yo be any distinct real numbers. Then there is
one and only one linear function £ such that -y, = f(xl) and
y2 = f(xe) .

Proof: We seek real numbers a and b such that

;;l + b = yl
Sy b = Yo -
To solve these equations otract the second equation from the
first, obtalning
a(x; - x5) = yp - Vo e
It follows that

Substitute thls expressior for a in -he first equation obtalring

i1 - ¥o
= £ X, + b
< - Xg 1
» yl - Jn
from wnl.n D= L - < x
1 ] =X 11

M y - ¥YXA
or b 1 ‘2 x.1
1T T2

[sec. 3-10]
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Then 1f there 1s a function which makes the given pairings it is
defined by
Y1 - ¥p XV - 9%

y:————————-—x+—-—-———_ .
Xl-—xg xl x2

It should be chec«ed by direct substitution that this function
actually makes the given pairings.

Example 3-10a: Determine the linear function for which
£(3) = 4, £(8) = -1 .

Solutlgg: Determine a and b so that

b = 3a + b
-l=53.+b. .
Subtract to obtain -2a = 5, therefore a = -% « Substitute this
result in the first equation t- ~zvalrn
b=z - ;) + 7, therefcre
27
b='_2-"0
5 23
The requlired function is define: =~ % = - X+ B .
23 15z 8
Check: —?°3+—§---T“\~~T——2=u
5. 23 ) <3 2 _
CE St FT s sy = -5 -1

Thls theorem 18 closely r:z..zfied 1¢ the geometric fact that
two points determine a line. Trs pilnts in question are the
points (xl,yl) and (xg,yg) . Thzoram 3-10a says that if These

points are not on a vertical 14 -+ - 1is Xq £ x2) and not
a horlzontal line (that is ¥, 7.) <hen the line they are o:

is the graph of a linear functi .. .j.ne students will feel tha:

[sec. 3-1v
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lcaving out vertical and horizontal lines is a defect or even an
injustice. These students can be reassured. It will be shown in
Chapter 6 that every line without exception has an equation of the
form ©Xx +qy + r = 0 . This includes our case ¥y = ax + b,
because we can rewrite this equation as ax -y + b = 0 .

Exercises 3-10

1. Find the equation which defines the linear function f such

that

() £(1) =1 ; £(3) =

(b) f£(1) =2 ; f£(3) =

(¢) £(1) =3 ; f£(-3) =4
() £(7) =0 ; f£(8) = k2 .

2. What is the equation of the line which goes through
(aY (1,1) ana (3,3) 2 '
(b) (1,3) and (Z2,1) °
(¢) (1,3) and (-3,%) @
(d) (7,0) and (8,42) °
3. Find the equations of two linear functions for which
£(1) 2. Try to describe the set of all such functions,
What point do thelr graphs have in common?
4, Describe all linear functions f for which

il

(a) f£(0) =0
(b) f(0) = 6
(¢) f£(6) =0

In each case try to interpret your answer geometrically.

J-11., Miscellaneous Problems.

1. Each of the followlng expressions suggests or defines a
function. Describe 1ts domain, its range and its rule.
(a) The perimeter of a hexagon.
(b) The length of the clrcumference of a circle depends on
the length of 1lts diameter.

[sec. 3-11]
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The palrings (1,9), (2,4%), (3,9)

Hourly temperature readings.

To each number Xx 1s assigned x? + Ux - 2,
The palrings (1,a), (2,a), (3,a) . .

Assign to each real number x a number x~ 4 3 .

e N N e
S M| 0O Q0
P I S e

The distance an automoblile travels depends on its

speed and the elapsed time.

(1) To each odd positive integer assign -1 and to each
even positive integer assign 1 .

(J) Distances to the nearest mlle of each state capitol
from Washington, D. C.

Given that f 1s the function whilch assigns 3x2 -5 ¢to

each real number x . )

(a) What is the domain of f ?

(b) Whatc 1s the range of f ?

(¢) ©(c) =7 (£) f(a) = °

(d) f£(-1) =2 (g) f(a - 1) =2

(e) £(5) =7 (h) f£(r) = 2

Given that f 1is the function whose domain is the set of all

integers which assigns +1 to all non-negative integers and

-1 to all negative lntegers.

(a) What 1s the range of f ? (g} (%) + £(2) =2
(b) f£(-3) =2 (h; (% +2) =2
(¢) £(0) = 2 (1) £(-6) =

(a) £(3) = ° (§) £(-6) + 3 =2
(e) f(2 - 6) = ° (k) £(2 + 6) =2
(£) f£(2) - £(6) = » : (1) 3£(6) = 2

Plot the graphs of the functions defined by the followling
equatlons.

(a) v =5x - b (@) y= (x-3)°
(b) y = x84 1 (e) y = 2x°
(¢) v = X -6

211
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" 10,

11.

Let £(x) = % + 3 and g(x) = 2x + 5 .

(a) f(e(x)) =

(b) eg(f(x)) = 2

Each of the following equations defines a linear function
Find its inverse g and check that f(g(x)) = g(f(x)) .

fi

() vy==%x+5 § (¢) vy=-3x+7
(b) y=-2x -1 (d) y=5x - 6
Find the linear function f such that

(a® r(3) = » £(5) =3

2
(bj £(1) =0 , f£(-3) =1
(¢) f£(-2) =3, f£(3)=-2
(d) f£(0) =5 , f(5) =2
(a) If f 1is a constant function does
flx + 1) = £(x) ?
(b) If f 41is a function such that
f{x + 1) = £(x)

must f be a constant function or a linear function?

(a) If f 1is a linear functlon does
f(x +2) - f{x + 1) = £(x + 1) - £(x) °

(b) If f 4is a function such that
£(x +2) - £(x +1) = £(x + 1) - £(x)
must f Dbe a constant or a linear Function?

Let f be the function defined by y = x° + 1 . Does f
have an inverse? 1If so, what is the equztion which defines
the inverse of f 7
Let A be the set of real positive numbers and let f be
the function with domain A defined by ¥ = v .
(a) %hat 1s the range of 1 ?
(b) %hat 1s the equation which defines g, the inverse

of £ ? What is the domain of g ? What is the range

e 912
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13.

Given that £ 1s a function for which

2 : '
f(x) = ax" +bx+c¢c , a£o0.
Prove that if
g(x) = £(x + 1) - £(x)
thern s 1s a linear function,

(a) Find an equation which defines a linear function thas
1s 1ts own inverse,

() Describe the set of all linear functions which are
Thelr own inverses.

213
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Chapter 4
QUADRATIC FUNCTIONS AND EQUATIONS

4-1. Quadratic Functions.
Definition 4-1: Let a, b, ¢ be any real numbers. Then if a #0
we call the function defined by the equation

Yy = ax2 + bx + ¢

a quadratic function.

We are going to study quadratic functions by examining a
succession of special cases. We begin with the function defined -
by y = x2, and then progress to the function defined by

y = ax‘g:

by y = a(x - k)<,

by y=a(x—k)2+p
and eventually arrive at the general case of the function defined
by ’ . 5
. y = ax” + bx + c.

In each case we shall try to see what the graph of the function
looks like.
Exercises 4-1
Which of the following equations define a quadratic function?

y=x2 6.

1. y=2x +1
2. y = 2Xx 7. y=x2+x
3. y = 2x° 8. vy =x(x - 1)
2 . = - -
ooy =5 9 y =x(x - 1)(x - 2)
* 10. y = 2%
5. y=x"+1
For what values of t do the following equations define a
quadratic function®
11, y = tx° + 3x + 1
12, y = x° + tx + 4
13. y=(t - 2)x% + 1

211
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2

14, y % xT +2x + 3

15. y = xt + 2X + 3
Each of the following equations is equivalent to an equa-
tion of the form y = ax2 + bx + ¢. For each find a,b and c.
16. y = 3x° 19. y = (x+2)(x - 3)

18. y =3(x - ¥)% +5

i

4.2, The Function Defined by y = X°.

The equation y = x2 defines a function whose domain 1s the
set of all real numbers. We recall some facts about real num-
bers to help us sketch the graph of this function. We saw in
Chapter 1 that the equation x2 = k has no solution if k < O, has
one solution if k = 0, namely O, and has two solutions if k > O,
namely«/ﬁ and -+vk. We also know that if vy and y, are positive
numbers, then the positive solution of x~ = yl is less than the
positive solution of x2 = ¥o if and only if ¥y is less than Vo

If we use only these facts
to sketch the graph of the
function definéd by y = x2,
we could obtain a graph
which looks 1like

Figure 4-2a. This graph
has a single lowest point
(0,0). For positive values

y

of X, ¥ increases indefin-
itely as x increases in-
definitely. The graph is
symmetric with respect to

the y-axis. Actually the
graph of the functlon defined
by v = x2 does not nave the Figure 4-2a

wobbly appearance ¢ Figure 4-2a. It really looks like the
curve shown in Figure 4-2b, We accept this fact now, without,
proof, on the understanding that the proof will be supplied

[sec. 4-2]
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later. The curve of Figure 4-2b

is called a parabola, the point y
P 1s called its vertex and the
line x = 0 1s called its axis.

ol

P(0,0)
Figure 4-2b
Example 4-2a: Plot the graph Y
o .
of ¥y =x=. (-3,9) - (3.9)
Solution: Draw up a table of |
values. 1
X -3 -2 -1 0 1 2 3
N L B B 2.4 L (2,4
Plot these points and draw a L
smooth curve through them, -1, n - (rn
i § E— o 4 - 'l x
Figure 4-2¢

Exercises 4-2

1. Plot the graph of y = x2. For the following values of x,

determine the corresponding values of y by calculation
and also by measuring on the graph.

(a) x = %— (d) x = %
(b) x = - % (e) x = - %
(e} x=-3 216
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2. Choose several points on the graph of y = xg, measure their

coordinates and check that these numbers satisfy the
equation y = x?

3. What 1s the graph of y = x
(a) 1f only points whose coordinates are integers are

2

considered?
(b) if 6nly points whose coordinates are rational numbers
are conslidered?

4-3. The Function Defined by y = ax-. )
For each value of a the equation y = ax™ defines a
function. These functions are best studied in two cases:
Case I: a > 0
(1) ™r y < 0, there are no values of x which satisfy
y = axg.
(2) For y = O, there is one value of x which satisfles
y = ax2 namely O.
(3) For each y > O, there are two values of x which satis-

fyy= axg, namely J% and 'J% .

(4) For any given X, as a increases, y increases.

Figure 4-3a shows graph of y = ax2 for a = fb » % s 1, 2, b,

Figure Y4-3a

[sec. 4-3]
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Notice that all these curves have the same vertex (0,0), the

same axls X = 0 and all open upward. ©Notice also that the
smaller values of |a| correspond to the "flatter" curves.

Case II: a < 0.

The graph of y = ax2 with a < O can be obtained “rom the
graph of the equation where a > 0 by a geometric construction.
For instanceg Suppose we wished to draw the graph of y = —ng,
First observe that a pair (x,y) satisfies the equation y = yx?
1f and only if the pair (x,-y) satisfies y = “4x®.  Next ob-
serve that (X,y) and (x,-y) are symmetrical to each other with
respect to the x-axis. Therefore to plot the graph of y = —uxg,
all we have to do is
"reflect" the graph
of y = ng in the
X-axis.

- (1,4}

y =4x

(x,y)
.0

(x,y)

y=-ax*

H;9)

Flgure 4-3b

218

[sec. 4-3]




208

Figure 4-3¢
Figure 4-3c shows the graph of y = ax® for a = -5, -2, -1, - %
1
- 5 -
Exercises 4-3
1. Plot the graph of each of the following equations:
(a) v - ox?
(b) v = -2x°
1
(¢) y = 7 X2
2
(d) vy = - % x
2. For each cf-the following determine a so that the graph
of y = ax2 contains the given point.
(a) (1,1) (a) (1,-1)
(v) (1,2) (e) (-2,1)
(e) (2,1) (£) (-2,2)
219
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3. ‘For each of the following pairs of equations, given that
(u,v) Ls on the graph of the first and that (u,w) is on
the graph of the second, which of the following 1s correct?
VoW, VvVe=uw, v<w,

(a) v = 3x° (0) y = 3x2 (¢) y = -3x°
y==‘—3x2 y=U«x2 y = _4x®
2 Lo

4-4%. The Function Defined by y = ax“ + c.
Let us now consider the graph of the function defined by

the equation y = ax2 + c.

The figure 4-4a shows the y=x2

graphs of four functions 2,
» =X
which are representative y

of this case; these are:

Y%
(1) y=x°+1 e
(2) y =x°+ 2
(3) y=x-1 yx-2
(4) y =x° - 2.

So that you may compare the

graphs of the new class of )
functions with that of the

familiar y = x2, the graph

of the latter has been

sketched In with a dashed

line. By studying the

figure you can see that Figure 4-lUa

the graph of y = x2 + 2 18 congruent to the graph of y = x2,
but that for the same x the ordinate of y = x2 + 2 1is two
units more than the corresponding ordinate of y = x2. Similarly
for the same X the ordinate of y = x2 - 2 1s two units less
than the corresponding ordinate of y = x2. Thus the lowest
polnt on the graph of y = x° + 2 1s (0,2) and the lowest point
of y = x° - 2 1s (0,-2). * Note that each of these graphs has

a minimum point.
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Figure U4-Ub shows the graph of y = -x2 + ¢ for various

values of c. Notice that in thils case each of these graphs has
a maxlimum point.

Figure 4-ib

The graphs of all functions defined by equations of the
form y = ax2 i+ ¢ are each symmetric with respect to the y-axis,
regardless of the particular values of a and c. As before,
the smaller values of |a| give "flatter" curves.

We may summarize by saying that the graph of y = ax2 + c
1s congruent to the graph of y = axe, but has a position which
1s |c| units up or down according as c¢ 1s positive or negative.

In each case the curve cuts the y-axis at (0,c).

.Exercises 4-U4

1. Find the vertex and axis of the graph of each of the follow-
ing equations.
221

5x2 + 1

]

(a) vy

(b) y = -5x° + 2
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. (¢) vy = F X" -1
(d) .V=3X2-%'
- 1 &
(e) = -5 X+
“'. Sket-- the graph -f . . the equations .. _-oblem 1.
3. For ezch of the ol _ ' pairs of equations, plot the
graohs using a sinz. of coordinate axes.
(a) vy = 2x° + 3 (d) y = x% 4+ 1
y = 2x? - 3 y = +x2 + .
(b)y=%x2+3 (e) y = -2x2 . 1
y:%x2-~3 y=2x2—l
(¢) ¥ = -2x% + 3 (£) ¥y = -3x2 + 1
y = -2x2 - 3 y = 3x2 + 1

L, Which of the functions in problem 1 have a minimum value
and which have a maximum value? What are these values?

5.  For each of the following pairs of equations, given that
(4,v) is on the graph of the first equation and that (u,w)
is on the graph of the second, which of the following is
correct? v >w, v=w v<w.

3x2 -y (b) v = 3x° - 4
-3x2_- 4 y

(a) ¥

y 3x2 + 6

4-5. The Function Defined by v = a(x - k)2.
In this section we study functions defined by equations
of the form

y = a(x - k)2

where a and Kk are non-zero constants. We proceed by con-
sidering several examples.

222
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Example 4-5a: Ma:e a = .. es and plot the grapn -
2
y = 2(x - 3)°.

X e | 1] 2

s
v

y = 2(x -3)% |..|8

n

The axis of thils curve is ;
line x = 3. Its vertex i
polnt (3,0).

Figure 4-5a

Example 4-5b: Make a compcai<e tzile of values for y = 2x2 and

vy = 2(x - 3)2 and plot the gramzinr =f the two functions on the
same set of axes.

x , eee | -2 | -t 1|2 |3 (45
v = 2x° ..l 8] 210 ]2 |8 18 [...]|..
y = 2(x - 3)° eleed ... |28 [B |20 |2 |8]---

223
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Y |
(~2.8) (1.8) (2,8) { (5,8)
|
|
|
|
|
|
(-1,2) (1,2 (2,2) | (4,2)
o 1 L | | 1 L X
(0,0) I(s.o)

. Figure 4-5p

The graph of y = 2x2 is symmetric with respect to the line x = 0,
and the graph of y = 2(x - 3)2 1s symmetric with ruspect to the
line x = §L v

Summacy of properties of the graph of y = a(x - k)g.

1. Thea graph is congruent to the graph of y = ai?, but has a
position Ikl units to the right or left of the graph y = ax2
according as k > 0 or k € O.

2. If a > 0, the graph opens upward .and has a lowest point
(k,0); 1f a < D the graph opens downward and has a highest point
(k,0). _
3. The graph is symmetric with respect to the line x = k, and
this line 1is zalled the axis of the graph.

Exerciges 4-5

1. Find the vertex and.the axis of the graph of each of the
following equations.

(a) v = (x - 2)° (b) ¥y = -2(x + 1)

2
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1. (e) v %(x -1)° (e) y = 3(x - 27

(d) y=-5 =+2- oy s(x - )
2. Sketch the gr :n = =ach of the equx _ons = T blem 1.

1}

|

2. For each of <nes foc__owing pairs of equatic-=, riot the
graphs using = single set of coordinate ax==.

(a) ¥y = (x - 3)° (@) y = 3(x - 1)°
vy = -(x - 3)2 y = %(x +.1)2

(b) y = -(x - 1)° (e) ¥ =3(x - 1)°
y = -(x - 1)° y = - 3x - 1)

(¢) v =-2(x + 4)2 (£) v =2(x +3)°
y = 2(x - 4)° y = -2(x + 3)°

4, Which of the graphs in problem 1 have a minimum value and

. whizh have a maximum value? What are these values?

5. For each of =he folliowing pairs of equaticas, given that
(u,v) 18 on the graph of the first equatica and that (u,w)
is on the graph of the second determine the values of u
for which v < w, v =W, V> W,

3(x - 4)2 (v) v
-3(x - ¥)® y

3(x - M)g
3(x + M)g

(a) vy

il
i

y

4-6. The Function Defined by y = z2(x - k)2 + D.
We know that the graph of y = ax2 + p has a z»sition which

is |p|] units up or down the graph cf y = axg,.and from the last

section we know thzt the graph of - = a(x =~ k)2 has a position
that 1s |k| units =o the right == _=ft 5f the grash y = ax-.
Hence, the graph = y = a(x - k'~ — p = congruen: to the graph

of y = ax® but 1is ip| uznits up or Zown and |[k| units to the
right or left of tone zrzph of ¥ = ax®. The expr=ssions "up"
and "to the right" are associated with positive z=lues of p amI
X, and "down'" and “to the left"are associlated wit negative

values. .
225
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—~
=

Example %4--a: Plo® the grigns “f y = 2(x + 3)°+ ° and
)T+ 1 - .ing a2 s:incl- set of axes.

x

Figure 4-6z

The graph of y = 2(x - ..j7 + 1 has a lowest v 2t (3,1) and

has the line x = 3 =: Its 2xls. The gmapk =7 - = 2(x + 3)2 + 1
has a lowest poilnt -3, ) arz has ths Zine x = -3 as 1ts axis.
Notice —<hat both c.rvas -—==1 :Tward.

Summary of propsrtie: ¢ ——=on of ¥ =a(x - )T =,

1. If a > 0 tk= graph om=m= upwaré z—d tize curve has a lowest
point (i,p). I a < O <hz ——=ph opens dcwaward znd has a
highest point (k,p).

2. The graph has the 1in= = = k as -3 axiz.

226
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Exerciges 4-0
TN Find the vertex and the axis of the grizh of each of the

ff.llowlng equztlons.

(z) vy = 2(x - 3)2 + 4 (@) = - % = - l)2 -1
12 -
(b) y = -2(x - 3)% - & (e) ~= " =1) +z2
2 T
(c) 7 = (x + 3) (£) y =2 - 2)% - 3
2. Swetch the gzaph of each of th: equazions in Problem 1.
3. For each of tme following pairs of ezuations plot the
graphs using = slngie set of coordinate axes,
2 2
W)yl nt (@) ¥ = -20x+1)%+ 3
y = 2(x - 2)° y = 2(x -1)2 -3
(b) y = 2(x - l)2 3 (e; y = 3(x + l)2 = 2
2 2
y = 2(x + 1) y=(x+1)°+2
2 1 2
(c) y=-2(x+1)°+3 (£ y = -3(x -1)° =2
v o= 2(x + 1)2 - 3 y=x-1)°% -2
I, Which of the exerzises ‘n prcilem 1 have a minimum value

and which have a1 maximmem valu:? What are these-values?
5. For each of the following pai-: .f equations, giwan that
(u,v) i3 on the graph of the . rzt =quation and (u,w) 1is

on the graph of the second, dzivwrzine tr=z values o> U ier s off

which v < w, v =w, v>vw

(a) y = 2(x - 2)° = =
y=2(x - )% -6
(b) y =2(x - 3)° + 5
y = -2(x -~ 3)2 - 6
(¢) y=2(x-3)"+5
y=2(x +3)°+5
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4b-7. The Function deflned by y = ax2 + bx + ¢,

We turn now to tne general quadratic fur:=:ion definec 5%
th= equation y = ax2 + bx + ¢, and reduce the study of thi:z
function to the speclal cases studied in the trevious sect.:as.
We do this by performing a useful algebralc rznipulation kmcwn
as '"completing the square".

Let us examine a few examples first. C-nsider the func—ion
defined by y 3x2 - 6x + 3. Since
3%° - 6x + 3 = 3(x2 -2x + 1) = 3(x - 1)2, ~ur equation is of
the form y = a(x - k)2 and is covered in sect. :n 4-5, Suppose

now we have a more complicated example, sa&y — = 3x2 - 6x + 4.
This cannot be written in the form y = a(x - )2, However ws
can write y = (3x2 - 6x + 3) + 1 and concl.“e znat

vy = 3(x - 1)2 + 1. Thus this second equation is of the type
vy = a(x - k)2 + p studied in section 4-6. Im both examples w=
started with an expression ax2 + bx + ¢ and ended with & new

i

expression, equal to the originél one, of ths rom a(x - k)2 + .
These two examples are typical of what happens in gznerz=l.

Every expression ax® 4 bx + ¢ can ts written i-. ths form
a(x - k)2 + p provided only that =2 1is nct zer-. The Tollowing
theorem states this fact and also shows how k z2ad p ca—
ve found.
Theorem 4-7a.. If a is not zero then
.2
2 = 2 o= b __. . _ hac--21n
ax“ + bx + ¢ = a(x - k) + p where k = - By a=d o = e
Proof: zx° + bx + ¢ = a(x® + =) + c
z 2
_ 2 bx b~ . b
malx T =~ e -
2
b\  u -t
= a(x + ?E) + by
Note: This proof depends on 3 few algebrai: maneuvers., T the

flrst place= the expression —Eg was added to x2 +»§ X to otain
!
2 b w2 b |2
the square x° + = x + z—g = (x + ?E) . MNotice also that add.i:zg
2
b
Z—E Inside the parentheses having the multiplier a on the
a
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2 2
outside amounts zo adding a-Ejg,which is %E,to the whole ex-
4

pression. The zxpression - %E was therefore added to the whole
expresslon to be sure that the final expression was equal to the

original.
Example 4-7a, 3x° - 6x + b = 3(x2 - 2x) + U
= 3(x2 -2x+ 1) - 3+ 4
2
= 3(x - 1) +1
+b bag - b°

Here a = 3, b = -6, ¢ = 4, z2 = -1, 224 =D =1 mre

graph of y = 3% - 6x + 4 1s shown in Figure 4-7a, 1Its vertex
is the point whose coordi -
nates are (1,1). Its axis
1s the line whose equation
ls x = 1. The graph does
not go below the iine whose
equation is y = _,

Figure 4-7a
Example 4-7b, x2 - Ux - 6 = (x2 - bx) -6

(x% - bx +4) -4 - 6
(x - 2)° - 10

l}

2

Here a = 1, b=k, ¢ = -6, }2 = -2, BB =D" _ 15, me
2

graph of y = x° - Ux - 6 is shown in Figure U4-7b,

(sec. 4-7]




Its vertex is the point whose
coordinates are (2,-10). Its
axis 1s the line whose equation
is x = 2. The graph does not

go below the line whose equa-
tion is y = -10.

Example 4-Tc.

-6x% + 7x - 8 = -6(x% - L x) - 8

= -6(x® - Lx + o) + 49 - 8
2

- blx - fp) -5

Here a = -6, b = 7, ¢ = -8,
2

b _ -7 4ac - b® _ -143
’25"1';’ Ta 78

The graph of y = -6x° + 7x - 8
is shown in Figure U4-7c. Its

vertex is the point whose

coordinates are ({%, ;%%Q). Its

axis 1s the line whose equation
is x =735 . The graph dnes
not go above the line whose

equation is y = ;%%Q .
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Exercises 4-7

1. Transform the following equations to the form
y = a(x - k)2 + p, by completing the square

(a) y =x% - ix (£) y = x° - 144

(b) y = 2x - x° (8) v =x°+2x -3
() y=x2+ 3 (h) y = 2x° + 8x - 5
(d) vy =3x° + 5 (1) y = x% + 2x - 24
(e) y = =%+ 6x + 7 (J) v = 10 + 5x - 5x°

2. Find the vertex and axis of the graph of each of the
following equations:

(a) y=x°+7x -8 (£) y = x° - % x + 3
(b) y = -x° - 11x - 31 (8) v = 5x° + 4x + 3
(c) Y=-2x2-x-l (h)y=-3x2+2x—2
(@) y=4x? 4 x - 3 (1) v = -5x° + 3x
(e) y = -2x° - 5 - 1 (3) y = ox° + 8

3. Sketch the graph of each of the equations in problem 2,

4-8. Quadratic Functions having Prescribed Values.
Every quadratic function makes infinitely many pairings of
one real number with another. It is reasonable to ask how many

of these pairings can be prescribed arbitrarily. It turns out
that the answer to this question is three. ILet us state this
fact more specifically. Let X1s Xpy Xg pe any distinet real
numbers and let Yis Yos V3 be any three real numbers whatsocever.
Then, 1f there i1s no linear function which pairs Xy with yl,

X5 with Yo and X3 with y3, there is one and only one quadratic
function which makes these pairings.

— We are not in a position to prove this fact now because its
proof requires solving systems of three equations in three un-
knowns and this topic 1s not discussed until Chapter 8. Iet us
look into an example anyway. Suppose we try to find a
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quadratic function whi~n pairs 3 with 1, 9 with -1 and 6 with 2.

We would look Z.r = g. :dratlic functlon definsd by y = ax2 + bx +c

such that

3 = a‘_)2 +b(l) +:=a+Lt +c¢
J=a(-1)% +b(-1) + ¢c=a-~-5+o0
S = a(_2)2 + b(2) +c =4 + 2b + e,

We seek three numbers a, b,.c¢ which siZisfy these equationé.
It can be checked that a = 2, b = -3 a=d ¢ = 4 satisfy the
equations and that the quadratic furz-ion defined by
Yy = 2x2 - 3x + 4 makes the glven pai-_ags. A method by which
these numbers can be found is descri®: i in Chapter 8.

This question about the gquadratiz functicn also has a
geometric version. It has to do wiih prescribing points to 1lie
on a single parabo’a. It turns ouZ —=at if any three points

are given which do not lie on a “Im= ©ien they lie on the graph

of some equation y = axe + bx + T. \
For instance if the

points with coordinates (1,3), VhSW

(-1,9) and (2,6) are given,

then the graph of the eguation

¥y = 2x® - 3x + = contains these

points. The diagram shows that

these points do lie on the

parabola and th=t they are not

collinear. '

(2,6)

(1,3)

Figure 4-8a
[sec. 4-B]
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Exercises 4-8

1. Find the guadratic function which pairs 0 with 0, 1 with 1
and +1 with =-1.

2. Find the gquadratic function whose graph passes through
(0,0), (2,0) and (1,-1).

3. Find the quadratic function which pairs O with 0, O with 2
and -1 with 1.

y, Determine the number t so that the graph of the equation
y = ax® + bx + c, a # 0, contains the points (0,0), (1,2)

and (-1,t).

4-9. Equivalent Equations; the Equation ax2 + bx + ¢ = 0,

Definition 4-9a. Two equations are said to be equivalent if and
only if they have the same solution set.
Example 4-9a. The equation 2x - 6 = 0 and x - 3 = O are equi-
valent since the solution set of each is (3].

There are several ways of manipulating an equation to obtain
an equivalent equation. Some of these ways are

(1) addition of the same number to both members of an
equation.

" (2) multiplication of both members of an equation by the

same non-~zZero number,
For lnstance the equation 2x = -6 is obtainable from 2x + 6 = 0
by adding -6 to both members, and these are equivalent equations,
The equation x = -3 is obtalnable from 2x = -6 by multiplying
both members by % and these are equivalent equations.

We are going to continue our study of the equation
y = ax2 + bx + c. We have already seen that the function defined
by this equation pairs certain values <f y with 2 values of
X, certain values of y with no values of x and one value of
y with exactly one value of X, We are going to consider y
as a given number and examine the solution set of the equation
y = ax2 + bx + ¢ regarded as an equation in Xx.

As a first step we simplify the problem by reducing it to
the study of equatlons of the form 0 = ax® + bx + c. We shall
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see shortly how useful this step is. We ought also to convince
ourselves that no cases are lost by considering only this
special case with y = 0. For instance the equation

17 = 3x° + Ux + 5 1s equivalent to :the equation O = 3x° + bx - 12.
More generally, if y, a, b, ¢ are numbers, then the equation
y = ax2 + bx + ¢ 1s equivalent to the equation '
0 = ax® + bx + c! where ¢! = ¢ - y. This can be shown by

adding -y to both members of the first equation.

Exercises 4-9

Show. that the following pairs of equations are equivalent.

l. 3x+9 =0, x+3=0

2. 2x+6 =9, x = %

3. x° 4+ 9x +10 =0, 2x°+ 18x + 20 = O

b x4 7x°2 4 3x +9 =0, x3 4+ 7x2 4+ 3x + 12 = 3
5. %; -8 =0, ‘x2 = 16

6. 17x + x° = 11, x° 4 17x - 11 = O

7. x° 4+ 7x + 3 =20, O = -17 + Tx + x°

8. -3x°+lUx -9=6+x, -3x2 4 3x - 15 = 0

9. 5x2 - 15x =‘O, x2 - 3x =0

10. ax2 +bx +c¢c =0, -¢c -Dbx = ax2

e + bx +c¢c =0

Find a quadratic equation of the form ax
equivalent to each of the following:

11. x° + 20

8x + 5
12, x2 + 3x = 2x + 6

13. x2 + 49 = 1hx

‘i

14, 2x° + 3x + 7 = x° + 3x + 6

15. 4x° + 8x = 5
Test the followlng pairs of equations to see if they are
equivalent:

16, 4x - 3 =0, x = %

[sec, 4-9)
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2
lT.x :%,x:% I~y
18. x° - a® = 0, x° + a% = 0
19, x2 =1, x =1

2

20. x =0, X
125

]
(@]

21. (x - 50)*%° =0, (x -50)3 =0

4-10. Solution of ax> + bx + ¢ = 0 by Completing the Square.
Definitions 4-10a. 1If a, b, ¢ are any real numbers and if
a # 0, we say that the equation ax® + bx + ¢ = 0 is a quadratic
equation. A root of the equation ax2 + bxXx + ¢ =0 1s any
member of the solution set of this equation. To solve an
equation means to find its solution set.
Note: Any root of an equation can be called "a solution" of
that equation. When the words "the solution of an equation”
are used they refer to the entire solution set of that equation.

Theorem ¥-10a. The quadratic equation

ax2 + bx + c =0

is equivalent to the equation
2 2
b _ b° - lac
(x + gg) = =
Proof: 1In section 4-7 we showed that
2

Jac - b
a

2 b |2
ax” + bx + ¢ = a(x + 25) +

therefore ax2 + bx + ¢ = 0 1is equivalent to

2 2
a(x+§_bé.) +B£g1r;'_l.=o.
- lhac
a

Adding b to both sides glves the equivalent equation

2 2
a(x + 5%) = E__&EEQE .

v

Multiplying both sides of the equation by the non-zeroc number &
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b2 - lac
ha

Example 4-10a: 3x2 + 4x + 5 = 0 1s equivalent to each of the
following: :

2
(x + ) =

3(x2 + % x) +5=0

2
3(x2 + % x + (%) ) +5 - % =0
2
3(x + %) + %% =0
3(x + 2)2 = - il
3T T
2
2 11
(x + g) =g

Theorem 4-10b. The quadratic equation ax2 + bx + ¢ = 0 has

(1) No roots if b° - hac < O

2 b
(2) One root if b“ - lac = O, namely - Y

2
(3) Two roots if b~ - 4ac > 0, namely

-b - ng - lac b + Vb° - lac

Sa and Ty
Note: This theorem refers only to those roots which are real
numbers. When the complex numbers are introduced in Chapter 5
a different version of thls theorem will be presented.
Proof:. We know that our equation, ax2 + bx + ¢ = 0, 1s
equivalent to

2 2
(X + b ) = b - uac
Za T a2

According to Theorem 1-10b this equation has a solution if
and only if the right member is not negative., Since the
denominator Mag of this right member is the square of the non-
zero number 2a it 1is positive. It follows that the right
member 1is negative if and only if 1ts numerator b2 - lac 1is
negative. Thus the equation a.x2 + bx + ¢ = 0 has no solution

2 2 _ b _ _ _ b
if b2 - lac ¢ 0. .If bS - hac = 0, then x + oz = 0 and X = - »=.
If b - lac > 0, then either
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X+§a= e or
x + £ = . /bT - hac
In the first case
x = bt Vb2 - hac
- za
and in the second
- < o b = Yb® - kac
' - 2a

Corollary: A guadratic equation has at most two roots.

Example 4-10b. Consider the equation 3x2 + Ux + 5 =0. We
have a = 3, b = 4, ¢ = 5, b2 - bac = 4? - 4-3+5 = -44, This
equation therefore has no solution according to Theore. . 10b.
The equation was also treated in example 4-10a and shown to be

equivalent to'the equation
2

2 11
(X+3-) =—§-.
The fact that the right member of this equation is negative, and
consequently the equation has no solution, illustrates the
central idea of the proof of Theorem 4-10b,
Example 4-10c: Consider the equation

3x° + 6x + 3 =0.

We have a = 3, b =6, ¢ = 3, b2 - bac = 6° - 4.3.3 = 0.
According to Theorem U4-10b this equation therefore has exactly
one solution, namely - ™y = -1, The equation is equivalent to
3(x2 + 2x + 1) = 0 or (x + 1)2 = 0. This latter equation clearly
has 71 as its only root.

Example 4-10d: Consider the equation

5x° + 5x - 30 = O.
We have a = 5, b = 5, ¢ = -30, b2 - bac = 5° - 4.5(-30) = 625.
According to Theorem 4-10b this equation has the two solutions

o) and 0
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Since. 4625 = 25, these numbers are :éig—gi and :éié—gi » that

is 2 and -3. Let us check to see if 2 and -3 are in fact roots
of our equation. Substituting 2 for x, we have

5.22 + 5.2 - 30220 + 10 - 30 = O
Substituting -3 for x, we have
5.(-3)2 + 5(-3) - 30 =45 - 15 - 30 = 0

Therefore 2 and -3 are roots of the given equation.

Definition 4-10b. The discriminant of the quadratic equation
ax° + bx + ¢ = 0 1s the number be - hac.
Corollary tc Theorem 4-10b: A quadratic equation has

(1) No solution if its discriminant is negative.

(2) Exactly one root if its discriminant is zero.

(3) Exactly two roots if its discriminant is positive.

Theorem 4-10b amounts to giving three procedures for dealing

with quadratic equations. When complex numbers are introduced,
a single formula will cover 21l the cases, namely
x = —Eg; 1/b2 - hac
2a
As long as we are dealing with real numbers, we can only use
this formula for the case b° - lac > 0.

Exercises U4-10
Test the following quadratic equations to determine which
has no solution, which has one solution and which has two
solutions, by compieting the square.

1. x° - 5 + 6 = 0 6. x° - 6x + 9 =0
2. 2x° -3x -5 =0 7. 5x° = 2x - 1
3. 3x2 +2x + 4 =0 8. 25x2 = -10x - 1
b, 2x° 4 3x = 0 9. 5x° = 3x - 2
5. x4+ x+1=0 10. 2x° + 9x = &
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Test the following quadratic equations to determine which
has no solution, which has one solution and which has two
solutlons, by finding the value of the discriminant.

11. x° - 2x + 4 = 0 15. 15x° + 5x + 1 = 0

12, 3x° - bx - 2 = 0 16. 8x2 =2x + U

13. x° - 9% + %% =0 17. 5x° = 2x - 1

1. 2x° - 3x - 8 = 0 18. x° + 8 + 4 =0
Solve by completing the square

19. x° - 6x = 7 24h, x° +5x + 1 =0

20. x° - 8x = 180 25. x° 4 3x = 10

21. x° - bx - 45 = g 2. x° 4+ 3 x + =0

;:’2.X§—2X-r7=150 o~ y2+31_;y=%

23. x° + U5 = 14x 0f . 6x2 5x = -1
Solve by 13ing the quadratic formula:

29. x2 + 2Xx - - = 0 35. 7x2 + 21x = 2

30. 5y° + 9y — - = 0O 36. 12x° +x -1 =0

31. 3t% = 2t + 2 37. 2x° 4+ 11x - 3 = 0

32. 4y2 =3y + 2 38. ox° + bx + a = 0

33.-x° + X = 1 =0 39. bx° +ax +c =0

34, x2 + X -1=0 50. bx° + cXx +a =20
Solve by any method:

41, 5x - 3x° = 0 46. 2x° - 5x - 6 = O

B2, 2x° - x =3 =0 47, 2x° 4 x - 3 =0

43, x° +x -1 =0 48, 25x° + 10x + 1 = 0

By, x° 4+ 8x = 2 49. 16x° = 8x + 9

45. 5x° - x = 3 =0 50. 3x° 4+ 5x ~ 7 =0

%-11. Solution of Quadratic Equations by Factoring,
Theorem 4-l1la. If a, r and s are real numbers and if

a # 0, then (r,s) is the solution set of the equation

a(x - r)(x - s) = 0,
Proof: First we show that r and s are roots of the

i

equation. If we substitute r for x we obtain
a(r - r)(r - 8) = a.0(r - s) =0,
so r 1s a root of the equation. If we substitute s for X,
[sec. 4-11]
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we obtain
a(s - r)(s - s8) =a(s - r).-0 =0
80 s 1is a root of the equation. There remains to show that
nec other number is a root of the equation. This follows from
the theorem that if a product of real numbers ls zero, one
of the factors must be zero. If a number t is a root of the
equation then a(t - r)(t - s) must be zero. Since a £ 0 it
follows that either t - r is zero or t - s s zero. We conclude
that if t 1is a root either t = r or t = s.
Exar_le 4-1la: Consider the equation
17(x - 23){x + 19) = 0.

According to Theorem “—la its solution set is (18,~19}. To
see this it is helpful vo notice that x + 1&¢ = x - (-19).
Example 4-11b: Consider the equation
17(x - 18)% = 0.
This equation has one root, 18. According to Theorem 4-1la the
solution set of this equation is the set (18,18} which is a
correct but somewhat unusual way of designating the set (18}.
Thus 'the theorem is valid for equations with only one root.

Theorem U4-1la i1s occasionally useful in solving quadratic
equations ax2 + bx + ¢ = 0, because 1t is sometimes possibie to
factor ax2 + bx + ¢ into an expressidh of the form
a(x - r)(x - s).
Example U4-1lc: Consider the quadratic equation

x2 - 3x +2=0.
It is equivalent to the equation
(x =2)(x - 1) =0

and the solution set of the original equation is therefore (2,1].
Example 4-11d: Consider the quadratic equation

2m2+1bc-2=0.
It ié equivalent to the equation

(7x - 1)(3x + 2) = 0.
This 1s equlvalent to the equation

T(x - )3(x + §) = 20(x - H)(x + P = 0.
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The solution set of the original #quation is therefore[% , = %].
The equation
. (7x = 1)(3x + 2) =0
can also be solved directly by solving
T -1 =0
and 3x + 2 = 0.
Exercises 4-11
Solve the following equations by factoring:
1. x° - 5« + 6 =0 16, 6 + 7x = 5x2
2. x° - 8x + 16 = 0 17. 3x° +5x =0
3. x2-16=0 18. 1lx =2 + 15x°
5, x° - 3x =54 =0 19. 9x° - 16 = 0
5. 2x° - 5x 4+ 3 =0 20. Tx° -5 = 2x
6. 2x°+x-3=0 21, 21x° + 40x - 21 = 0
7. 16x° - 25 = 0 22, 21x% + 11x - 2 = 0
8. 33x° - 11x = 0 23, 34x% + 17x = 0
9. x° 4 8x - 65 =0 o4, 18x° - 9x + 1 =0
10. 10x° + 29x - 21 = O, 25. 64x® - 16x + 1 = 0O
11. 15x° - 6 = x 26. x2 - 2ax - 24a® = 0
12. 31x = 6x° + 35 27. x° - 3mx - Wb° = 0
13. x + 2 = 15x2 28, x° - (a + b)x + ab = 0
14, 2x° 4 5x = 12 29. x° + (a -Db)x - ab = 0
15. 5x + U = 6x° 30. t%° - (at + bt)x + ab = 0

4-12. Some Properties of the Roots of a Quadratic Equation.

Theorem 4-12a. If r and 8 are any real numbers there

is a quadratic equation whose solution set is {r,s].
Proof: Since ' :
(x - r){x - 8) = x° - (r + s)x + rs

the equation '
(x ~r)(x -8) =0

is equlvalent to the gquadratic equation

x° - (r +s)x+rs =0.
Since the solution set of the first equation is [r,s} this is
also the 'solution set oi the second.

[secl 4-12]
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Note: If r and s are equal to each other this argument is
still valid. The solution set i1s then {r} which is the same as
[r’r].'

Sometimes such a quadratic equation, with only one root, is said
to have "two equal roots" or a "double root". This terminology
is discussed later in Chapter 5.

Example U4-12a: Consider the set (14,11}.

Since (x - lU)}x - 11) = x° - 25x + 154 the given set is the
solution set of the quadratic equation

x° - 25x% + 154 = 0.
Example 4-12b: Consider the set {14,-11}.
Since (x - 14)(x - (-11)) = (x - 14)(x + 11) = x° - 3x - 154
the glven set is the solution set of the quadratic equation

x2 - 3x - 154 = 0,

Corollary: If {r,s} is the solutlon set o¢f the zguatlon
x2 + pX + q =0, thenr + 8 = -p
and rs = Q.
Proof: We consider our equation to be cZ the type
ax2 + bx+c¢c=0witha =1, b=pand ¢ = ¢. It follows then
from the quadratic formula that the solutions of our equation

2

are

-p + vp~ - Ug
2

-p - ¥p® - g

2

and

The sum of these numbers is
2
-p +/p° - uq%p - VYp~ - 4

which simplifies to -p. The product of these numbers is
2 [ 2 2
p+p~/p2-4q-pﬁ—4q-(p—4ql

which slmplifies to gq.
Theorem 4-12b: If the solution set of the quadratic equation

ax® + bx + ¢ = O is {r,s} then

b .g = &
r+s=-= and r-s a
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] 2
Corollary: If the2quadratic equation ax™ + bx + ¢ = 0 has roots
r and s, then ax® + bx + ¢ = a(x - r)(x - s).
Example 4-12a: Let uz consider the equation

x2 -3x +2=0
which is an instance of the equation discussed in Theorem 4-lla
with p = -3 and @ = +2. 1Its soiution set is (2,1}. According
to Theorem 4-12a we should have

2+ 1=-p=-(-3)

2.1 = q = 2
and these statements are indeed correct.
Example 4-12¢: Consider the equation 21x° + 11x - 2 = 0. We
saw in example 4-11d thzt its solution set is [7 ' - 3} Accord-

ing to Theorem 4-12b w= saould have i + (- 5) = - §T and
7(— 3) = - é% and these statements are indeed correct.

Exercises Nh-12
For each of the following form a gquadratic equatlon whose
solution set is the given set.

1. (5,6 b (6,-6) . (&, 0
2. (3,-7) 5. (0,0) 8. 5, -3
3. (4) 6. (4,-3) 9. (4 - 45 b+ B

10. Find a quadratic equation whose roots are r and =3 .
Find the sum and product of the roots of the following
equations if roots exist,

11. x2 - 13x + 40 =0 14, 2x2 -6x =0
12. x° +5x - 50 =0 15. 7x° - 11x - 8 =
13. 2x2 - 6x +5 =0 6. x> - (p+q) +pg =0

17. The roots of an equation are 2 + ¥3 and 2 - /5. Find the
sum and product of these roots and write the equation.
18. Construct a quadratic equation with integral coefficients

-4 4 -4 .
which has the roots _l_%AZE and _E_gjéi .

19. For each of the following find all values of h such that
the equation has one root:

2 .
(a) 5x2 + 3% +h =0 (e) hx“+3x +2=0

0 240
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*20. Show that if one root of the equation ax2 + bXx + ¢ =0
1s twice the other, then 2b2 = Qac.

4-13. Equations Transformable to Quadratic Equations.

We consider equations which are not quadratic equations but
which can be transformed to quadratic form. Since we know how
to solve quadratic equations any problem reducible to a quadratic
equation can be considered to be solved, so the advantage of
this procedure is clear. There 1s a disadvantage to our procedyre
also; the transformations we use in this section do not al-

ways give -us equafions which are equivalent to the ones we
started with.

We shall deal with trangformations which can produce three
different effects -- they can enlarge the solution set, dimin-
ish 1t or leave it unchanged. Specifically we shall deal with
those transformations for which

(1) the solution set of the derived equation is the same

as the solution set of the original equation (equivalent

equations)

(2) the solution set of the derived equation is a proper

subset of the solution set of the original equation (some

roots get "lost") ‘

(3) the solution set of the original equation is a proper

subset of the solution set of the derived equation (extra-

neous roots are introduced),
- Thus we cannot assume in what follows that the solution set of
the derived quadratic equation is the solution set of the
orlginal eguation,

We QO not have rules for dealing with this subject. Instead
we shall deal with some typical examples,

Example 4-13a: Solve the equation

X -5+ % = 0

Clearly, the given equation is not in the quadratic form. We

multlply both members of thé given equation by X, obtalning

[sec. 4-13]
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I
X(X—5+}—c-)=0
or
x2 - 5x + 4 = 0.

This equation 1s a quadratic equation whose roots are 1 and 4,
Let-us verify that these are also roots of the original equation.

1 -5+ % =0

b - 5 + % =0
In this example multiplying both members of the original equation
by x produced an equation all of whose roéts were roots of the
original one. This does not always happen as the next example
shows.
Example 4-13b: Solve the equation
If we multiply both members of the equation by x - 2 the trans-

formed equation is
x(x - 2) +3=5(x -2) +3

or

X° - 2x + 3 = 5x - 10 + 3,

4

Thié equation 1s equivalent to the quadratic equation
a x2 - Tx + 10 = 0.

The roots of this quadratic equation are 5 and 2. Let us check
these in the original equation: 5 + 3—%-§ =5 + 5_%_§ br 6 =6,
Thus 5 is a root of the original equation. On the other hand

we cannot substitute 2 for x in the 6riginal equation because
this would produce a zero denominatér. Therefore 2 1is not a
root of the original equation., Thérefore 2 is an extraneous root.
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Exercises 4-13z2

Solve each of the following equatiors. Check your answers

by substituting in the original equztion.

1. x - % + 3 =0 6. (x—5) + EJ%LE -9 =0
] 35 _
2. X--}%-—-O Te X-ﬁ—o
‘3. X+-3-E-=-2 8.X-9=x—’_L2-8-
2

N X+ 10 _  7x
v4. X'+ = =2 9. X -5 “%x -3
5. X-l=ﬁ' lO.x--J%=x

Example U4-13c: Solve the equation
Y3x + 4 - x = O.

~We first add x to both members, obtaining the equation

¥3x + 4 = x,

If we square both members of this equation we obtain the equation

3x + U4 = x2

or
x2 -3x - 4 =0,
The roots of this quédratic equation are 4 and -1. We check to

see 1f either of these numbers is a solution of the original

16 - 4 =0
fi+1=2

This shows that one of the two roots of the derived quadratic

equation.

equation, namely +4 is a root of the original equation and that

the other root, namely -1,is not.
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Solve the following equations:

1 /10X = x 6. VBx + 5 =+v2x + 2

2. JSox + 7 =x+ 2 7. J/sx +6+ /3x -2 =6
3. X -3 =x - 5 8. V6x + 7 = V3x + 3 =1
y 3x + 1 + 11 = 3x 9 Jlix -3 = Bx+1 -2
5. V/Bx -1 = /x +1 10, v/2x - 5 +x =2
Example 4-13d: Solve xu - 3x2 + 2 = 0,

This 1s not a quadratic equation. ILet us substitute 't for xg.

Then the transformed equation

t2 -3t +2=0
is a quadratic equation. The roots of this equation are 1 and
2. The roots of the original equation are found by solving the
equations t = x2 =1 and t = x° = 2. We obtain the numbers 1, -1,
JE& - Y. wé find by substitutlion that these numbers are roots.
The solution sef of the original equation 1s therefore
(1, -1, V2, - ¥2).
Example 4-13e: Solve (x2 - Sx)2 - 2(x2 - 5x) - 24 = 0. This is
not a quadratic equation. If we substitute =z vfor x2 - 5x, then
the transformed equation

22 -2z - 24 =0

i1s a quadratic equation. Its roots are 6 and -4. The roots of
the original equation are found by solving the equations

z = x° - 5x = 6

and -
zZ = x2 - 5x = -4,

The solution set of the first of these 1s {6,-1}, the solution
set of the second 1s (4,1]. We find by substitution in .the

original equation that the numbers 6, -1, 4, 1 are roots of the
[sec. 4-13]
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original equation, 8o the solution set of the original equation
1s (6,-1,4,1}.

Exercises 4-13¢c

Solve the following equations by making suitable substitu-

tions.

l
1. x' -2 4+3=0 5. (x2 - 3x)2 - 2(x2 - 3x) -8 =0

}
2 x' -6x°+8=0 6. (x2+3x)2 + 3(x2+- 3x) + 2=0
3. Xu-l3X2+36=O 7.-(—-—I~—F+Tx—-_i—?y—36=o

x -2
b, x* - 20x2 + 100 = x )2 ~
) 8. ('x‘—_'-T) -3(x_l)+2—0

Exercises 4-13d

Solve the following equations.
1
z =
2. (x-5)2+2(x-5) -8=0

. xF o8 -g9-0
x' - 26x° + 25 = 0

N

5

6. (2—x)2—14( - x) + 24 =
7 2

8

-H

(x= + 1) + 6(x + 1) + 8 =

x - 1

'x - 4x + 4 i E E
9. Vex - 3 + 2 ¢/3x - =
10. vex - =2 + yYx - 2

11. 3(x2 + 3x)2 - 2(x2 + 3x

) -5=0
1 2 1
12, 3(; + 1) + 5(; + 1) =2
13. vYx + 2 + 3+ 2x =2
[sec. 4-13]
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14, 2x + 3 - Jlix -1 = vb6x - 2

15. X2+9+7%==-=8
X + 9
2

16. % +5x -5 = ——
X~ + 5x
17 2x -7 _3%x -7 _bkx -2
x2 + 3% + 2 X + 1 X + 2
3X 1
18. + =2
X - 2 uéxz
7 _ 3
19 x5 -85 %x-1
20. 2x° + (a + 2b)x + ab = 0
4-14, Quadratic Inequalities. R

By a quadratic inequality we mean an inequality of one of

the following kinds

(1) ax® 4 bx 4 e >0

' (2) ax® + bx + ¢ < 0.
The solution set of such an inequality can be found by examining
the graph of the equation y = ax® + bx + c¢. The portions of the
graph which are above the x-axis give the values of x which
are the solution set of ax2 + bx + ¢ > 0. The portions of the

graph which are below the x-axis glve values of X which are

the solution set of ax2 + bx + ¢ < 0,
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- 'Here are the cases which can come up
Case I‘(Figure 4-14a)
The solution set of
ax2 + bX + ¢ € 0 is

{x:p < x < qJ.
The solution set of

ax2 + bx + ¢ =0 1s
(p,0) {g,0)

(p,al. 0 ﬁ\\\\’///b X

The solution set of
ax® + bx + ¢ > O is
(x:x < p or x> ql. Figure 4h-14a
Case II (Figure 4-14p)

The solution set of

ax2 + bx + ¢ < 0 1s the

empty set.

The solution set of

ax2'+ bx + ¢ = 0 is {p]. y
The solution set of \
ax2 + bx + ¢ > 0 1is

{(x:x < p or x > p}. (p,0)

d

Figure 4-14p
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Case III (Figure 4-1llc)

" The solution set of
2

ax~ + bx + ¢ < 0 is the empty

set.
2

The solution set of ax™ + bx + c = 0

is the empty set.
2

The solution set of ax~ + bx + ¢ > 0

is the set of all real numbers.

Case IV (Figure U4-14d)
2

The solution set of ax™ + bx + ¢ < O y

is {x:x < p or x > qJl.
2

The solution set of ax“ + bx + ¢ = O Ez///‘\\\\o

18 {p,al.
2

The solutlon set of ax™ + bx + ¢ > O

is {x:p < x < q} .

Case V(Figufe b-lle)
The solution set of
ax® + bx + ¢ < O 1is
{x:x < porx>pl.

The solution set of
2

ax= + bx + ¢ = 0 is (p}.

The solution set of

ax2 + bx + ¢ > 0 is the

empty set.

Figure 4-1lc

0 {p,0)

Figure 4-1ud

{p,0)

{g,0

Figure 4-1lle
[sec. 4-14]
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Case VI (Figure b-14r)

The solution set of

ax2 + bx + ¢ < 0 1s the 0 A X
set of all real numbers.
The solution set of

ax2 + bx + ¢ = 0 is the

empty set.

The solution set of
ax2 +bX + ¢ > 0 is the
empty set.
Figure 4-14r
Example 4-1Ya: Solve x° - 5% + 4 > 0.
Solution: First draw the graph
of y = x2 - Bx 4+ 4, The solution

set of X° -~ 5x + 4 > 0 1s the

y
set {x:x < 1 or x> U4}. We
arrive at this answer by deter- \\
mining the values of x for
1,0 (4,0 o
which the graph is above the o) “\\\"//’ X
Xx-axis.

Figure 4-1lig

[sec. 4-14]
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Example 4-14b: Solve -x° + 2x - 1 < 0.
The solution set of -x° + 2x - 1 < 0
1s the set [x:x < 1 or x> 1}. We
srrive at this answer by determining the
viziues of X for which the graph is
below the x-axis.

(1,0)

Figure 4-1kh
Example U4-1lldc: Solve -x? + 2x > 0.
Solution: First draw the grapn of
y = -x2 + 2X. The solution set of
-x° + 2x > 0 18 the set {x:0 ¢ x <€ 2}.
We arrive at this answer by determining
the values of X for which the graph (2,0)
1s above the x-axis. (0,0)

o

Figure 4-14i

Exercises 4-14
Find the solution set of each or the following inequalities.
x2 - lx +3<0

1.

2. x°+5x+L4>0

3. x°+x-63>0

b, 2x° 4+ Ux 4+ 5 ¢ 0O

5. x° -16< 0 ,
6. 2—6x+9<o ‘ 253
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7. x° -6x +8<o0
8. %% + 2x + 3<o0
9. 5x < 2 - 3x°
10. 3(x + 1) < 5x°
11, 6(-x° + 1) > 13x
12. x% - 4x -5¢0
13, 4x® 4+ 1 > bx
1k, -x® 4+ x> 0
15, 2Xx - 1> x -x
16. Determine values of h for which each of the following
equations has no roots, 1 root, 2 roots.
(a) x + hx + 9 =
(b) x° + hx + Sh =

2

4-15, Applications.

Mathematics sometimes 1s divided into two parts, "pure" and

"applied". The "pure" part is concerned with the logical

*analysis of mathematical objects, such as numbers and points;
‘the "applied" part is concerned with using this knowledge to
obtaln information about other kinds of objects, such as speeds
and places. For instance the statement 5.52 = 260 is an example
of "pure" mathematics. .It can be applied to solve the problem
how many cards are there in five decks of cards each consisting
of fifty-two cards”? 1In this section we shall study a few
problems arising outside the world of mathematics which can be
formulated and solved as quadratic equations.

The fact that quadratic equations can have two roots some -
times introduces a slight complication. It can happen that the
original problem has only one solution and that the auxiliary
quadratic equation has two. Then common sense must be brought.
in to select the right root. For instance if the original prob-
lem is about the number of grains of sand on a beach, then any
negative root of the auxiliary quadratic equation is surely not
the right one. 2 54
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Example 4-15a., On a river which flows at the rate of 3 miles
an hour, a motorboat can go 12 miles downstream and 12 miles
back in 2 hours and 8 mlnutes.  What is rate of the boat in
st1ll water?

Solutlon: We are asked to find the rate of the boat in still
water. We denote this unknown number by x. Then the boat
travels downstream at the rate of x + 3 miles an hour. The

number >f hours it takes to go downstream 1is i;gij . The number
12

of hours it takes to return upstream is -7 ° The number of
hours for the entire trip is their sum
12 ) 12
X+ 37 7 x-3°"

Since we know that the total time is 2 + é% hours we can express
our problem mathematically by the equation

12, 12 _, .8 _32
X+3 X -3 60 -~ 15

This is an equation whilich can be transformed to a quadratic by
multiplying both members by (x + 3)(x - 3). The transformed
equation 1is ' ’

12(x - 3) + 12(x + 3) = —i—g—(x + 3)(x - 3)

or
2ux = $E(x® - 9).
This 1s equivalent to the guadratic equation
4x2 - bsx - 36 = 0,
whose roots are 12 and - % . The number 12 is a possible solution
of the original problem, the negative number - % is not. We
check to see 1f 12 satisfles the original equation by substituting
12 for x. We obtain’

12,12 _ 4 b
w+3 "12-3°5%73
- 32
- 3=

and conclude that the boat must travel 12 miles per hour in
still water.
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Example 4-15b: Many of the bulldings of anclent Greece incor-
porated the proportions of the "golden rectangle". This figure
is a rectangle ABCD having thé
property that if polnts P and Q

are chosen on its longer sides A
80 that APQD is a square then
rectangle BCQP and rectangle

ABCD are similar., Suppose it
18 requlired to find the base
CD of such a rectangle if its
height AD is to be 10 feet,
Solution: In the figure D
AD = AP = PQ = DQ = 10. We

seek CD. We can express

Ot e e e

the geometric conditions con- Figure 4-15

cerning the similarity of the rectangles ABCD and BCQP by the
algebralc equation %% = g% . If we denote CD by x, then
AB = x and QC = x - 10. The equation becomes

X _ 10

10 " x - 10 °
This can be transformed to

x(x - 10) = 100
which is equivalent to

x° - 10x - 100 = O.
We solve this equatlon by use of the quadratic formula. Its
two roots are

10 + /500 10 - 4500
) and 3 .

The second of these numbers 1s negative, and so cannot be the
required length. We conclude that if the height of a "golden
rectangle” is 10 feet, then the length of the base is

10 + 1500 feet. This is approximately 16 feet.

i Exercises 4#-15
1. The perimeter of a rectangle 1s 20 feet, its area is 21
square feet. Find its length and width.

2. A picture which is 9 inches wide by 12 inches long 1is

surrounded by a frame. The area of the frame alone 1is
[sec. 4-15]
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10.

11.

162 square inches. Find the width of the frame.

Find two consecutive pogitive integers whose cubes differ
by 1201.

Assume that an object thrown vertically downward from the
top of a cllff 2400 feet above a lake falls according to
the law 5 = 80t + 16t° where s Ls the distance in feet
that the object falls during the first t seconds.

(a) How long does 1t take for the object to fall 224 feet
from the top of the cliff?

(b) How long does it take until the object strikes the
surface of the lake?

(c) Find the distance the object falls during the 8th and
10th seconds.

The edges of two cubes differ by 2 inches, and their vo.umes
differ by 728 cubic inches. Find the dimensions of each.

A grocer sold oranges at a dollar a bag and raised the
price per dozen by 10 cents by reducing the number of
oranges in a bag by 4. Find

(a) the original number of oranges in the bag;

(b) the original price per dozen.

An engine pulls a train 140 miles. Then a second engine
whose average speed ls 5 miles per hour faster than the
rirst engine takes over and pulls the train 200 miles. The
total time required for the 340 miles is 9 hours. Find the
average speed of each ungine. .

The square root of 3.less than twice a given number is 1
more than the square root of 2 more than the number. Find
the number.

Find the dimensions of a rectangle if the diagonal 1s 2
mcre than the longer side,.which in turn is 2 more than the
shorter side.

Prove that there is no real number such that the sum of 1t
and its reciprocal is 1. _

Is there a rectangle with a perimeter of 66 inches, and an
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The sum of the squares of two consecutive integers 1s 113.
What are these integers?

John and Mark leave St. Paul at the same time. John flies
north whlle mark flies east. Mark flies 100 miles an hour
faster than John. At the end of an hour they are 500 miles
apart. At what average speed did each travel?

The length of a rectangle 1s four times 1ts widtin. Its
area equals that of a square whose perimeter is 14 inches
less than the perimeter of the rectangle. Find the
dimensions of the rectangle.

It is desired to make a rectangular pen to hold livestock.
100 yards of wire fencing materials are available. What

dimenslons willl make the inclosed area a maximum?
(Hint: Sketch graph.)

Miscellaneous Problems

Plot the graphs of each of the followlng pairs of quadratic
functions using a single set of axes for each pair. In
each case speclfy the vertex and axis.

y = x2 6. y = x2 - Ux + 4

y = x2 + 1 y = x2 + 4x + U

y = x2 4 2 7. v = x° - bx + 3

v = (x - 2)2 y = x% & Ux + 3

v = (x - 3)° 8. y = 2x° - lbx - 2
y = -{x -3 2 y = 2x° - hx + 2
y = -2(x - 1) 9. y = x°

y = -2(x - l)2 + 3 y = x° + 3x

y =-(x + 3)2 -1 10. y = (x + 1)2

vy = (x + 3)2 + 1 y = 2x2 - 3x + 1

Test the followlng quadratic equations to determine which
has no solutlon, which has one solution and which has two
solutions by finding the value of the discriminant. Also, .
find the sum and the product of the roots of each equation
1f roots exist,

A

Y i x41=0 12, 4x% 4 12x 1+ 9 = 0
[sec. 4-16]
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13, tS +2t -2 =0 17. 10x° = 3 + 13x
14, 292 43y +5=0 18, x° - 2x+5=0
. 15, 562 -3t - 4 =0 19. x° +8x+6 =0
16, x° =18 + 7x 20. x° + 7x =0
Find the solution set of each of the following equations:
21, 2y vy =6 31, x° +2x =9
22, 12t% + 31t - 15 = 0 32. x° -5x -3=0
23. 2x° + 15x + 27 = O 33, 7x° - 10x + 5 = 0
24h, x° + 6x + 4 =0 3, 2x2 + 4x -7 =0
25. 2x(x +2) + 3 =0 35. 6x°2 -x -3 =0
26. x° + % X + % =0 36. 6x - x° = 0
27. t° 4+ 5t +1 =0 37. 24x° - 86x - 15 = 0
28, 4x° = 3x + 2 38. 2w® = 8w - 7
29. 2y° + 11y - 3 = 0 39. x - 5 = 3x°
30, 36 + 36x + 9x° = 0 50. 6 + 2x - x° =0

For each of the following equations determine k so that
it has exactly one root. '

41, 9x2 + 30x + k=0
42, kx® - 6x = 4

43, 2x° + 8x + k =0
4y, 9x2 - Bkx = -k

45, kx© - kx +1 =0 , '
Form quadratic equations whose solution set is each of the

following:
4, (3,-2)
u’?- [5, "5}

8. (2 + J2, 2 - {2}
9. (%, 3)

1
50- (3’ r) 3]
Find the solutlon set of the following equations:

51. x - ,@x + 9 -1 =20
52, Wx% 4 3 4 e =

' /xC +°3
53. Vix -5+ J2x + 3 +1 =0

259
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2

igé_f 1= X E 1

(x2 - 3x + 1)2 - u(x2 -3x+1) -5=0
X + 7 2 _ 12x
X - 1 x -7 x-1)x-7)

(a + b)2(1 - X)x = ab

kv b+ x -1 = Jx &

3xu S 4x® o7 = 0]

Find the solution set of each of the following quadratic
inequalitiles:

¥2 -4 <o 6. 3x° + 14x - 5 < O
x* -x-2<0 65. 2x° - 3x > 8

2x° 5x > 12 '

Solve:

If 3 times the square of a certaln number is decreased by
9 times the number, the result is 120. Find the number.
The length of a rectangle is 6 more than twice the width.
Its diagonal is 39. Find length and width.

If a number 1s increased by 72, 1ts positive square root
is increased by 4. Find the number.

If the sum of two positive numbers is 50 what are the
numbers if their product is to be a maximum?

(Hint: Sketch graph.)

For what values of k does the equation x2

+ 2kx + 9 =0
have no real roots? .
What 1is the range of the function defined by the equation
v = 3x° - 6x + 52

Given the quadratic equation kx° - 8x + 3 = 0, find the
value of k so that

(2) the solution set consists of one element.

(b) 3 is in the solution set.

Find the values of k for which the equation

kx2 - 2x + 3 = 0 has two distinct real roots.

For what values of r and s is (r,s} the solution set of

x° + (r - 1)x + 25 = 07

[sec. 4-16]
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75. The segment AE is 20 inches long. The point C 1s chosen

on 1t so that AC 1ls the mean proportional between CB and
AB. Find AC.
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Chapter 5
COMPLEX NUMBER SYSTEMS

5-1. Introduction.
In Chapter 4 we considered equations of the form

(5-1a) ax® + bx + ¢ = 0,

where a, b, ¢ are real numbers, a # 0. We developed a method

for solving such equations and found that %he results depend in

& very essential way on the value of the discriminant, b2 - Bac.
If b° - bac > 0, the equation has two real solutions; if

b2 - lac = 0, the equation has one real solution; 1if b2 - bac < 0,
the equation has no real solution.

The time has come, it appears, to ask once more whether we
can extend our number system to include numbers of such a char-
acter that every quadratic equation with real coefficients has
a solutlon regardless of the value of its discriminant. It is
the task of this chapter to make such an extension of the system
of real numbers. Actually we shall find that :he gystem we
derive for this purpose is a richer one than we bargain for: It
gives us the solutions not only of all quadratic equations with
real coefficlents, but also of all polynomial equations of what-
ever‘degree with real coefficients. Even this does not quite
describe the richness of the system we derive, but it is too
soon to tell the whole story. Iet it suffice to say that no
further extensions wlll be necessary for the purposes of
ordlnary algebra.

The simplest example of a quadratic equation with a negative
digscriminant is the equation J

(5-1b) x° +1 =0,

If thls equation is wrltten in the form (5-1la) we have 2 = 1,
b =0, ¢ = 1, and the discriminant is

b2 - “'ac = "u’

so that we know from Chapter 4 that 1t has no real solutlons.
We can see thls without evaluating the discriminant. Since the
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square of each real number is non-negative, we have x2 > 0 for
any real number x. Thus, ! x Is real, x° + 1> 0+ 1 =15 0,
so that no real number is a solutlon of equation (5-1b),

To start we wlll look for a number system in which
Equatlion (5-1b) has a solution. It will turn out, in Section 5-5,
that in thls system every quadratic equation with real coeffi-
clents has a solution. Perhaps if you look again at the method
of solving the quadratic equation 1n Section 4-10 you can now
see why this should be so,

Before undertaking our extension of the system of real
numbers, let us recall the procedure followed in Chapter 1 each
time we extended a number system, We assumed that a new system
could be constructed which would: (1) have all the algebralc
properties of the old system; (2) include all the numbers of the
old system, in such a way that the new and the old élgebraic
operatlons, when applled to numbers of the old system, would be
the same; (3) contaln new numbers of the kind we need. We then
dlscovered the rules for operating wlith the new numbers as
logical consequences of the properties we assumed,

Proceeding ln the same way we now seek a new number system
which contains the system of recal numbers wlth all lts familiar
241 =0,
Equation (%-1b). We shall deslgnate the system by the letter C

propertles and also contalns a number satlsfying x

and call Lt the system of complex numbers. Followlng are the
apeciflc propertles we require of C:

Property C-1

(1)  Two operatlons, addition (+) and multiplication ()
are defined In C. (It ls to be understood that the
result ol an operatlion deflned in a gsystem 1s a
number !'n the system, but when we wish to emphasize
thls fact we wlll say that the system is closed with
respect to the operatlon.)

1) Add!tlon ' associatlve and commutative.

til) € posscsses one and only one addltive ldentlty,

(1v)  Each clement of ¢ has one and only one additive
[see., B-1]
\ L
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inverse.
(v) Mult!plication is associative and commutative.
(vi) C possesses one and only one multiplicative identity.
(vii) Each element of C, other than the additive identity,
has one and only one multiplicative inverse.
(viii)Multiplication is distributive with respect to
addition.

Property C-2
(1) Every real number 1s a member of C.

(11) The sum of two real numbers in C is the same as their
sum 1In the real number system.

(1i1) The product of two real numbers in C is the same as
thelr product in the real number system.

(lv) The additive identity in C is the number O of the
reals.

(v) The multlplicative identity in C is the number 1 of
.the reals,

Property C-3
The set C contalins a special element 1 which has the

property >
Lol = 17 = -1,

We call the speclal element i the imaglnary unit.

5-2. Complex Numbers.
In Sectlon 5-1 we stated a problem: To find a number

system —~ that ls, a set of elements and the operations of
addltlon and multiplicatlon deflned for the set — having pro-
pertlies C-1, C-2 and C-3. Now we try to solve thls problem.
Let us Flfst try to ldentify the set of elements.

Property C-3 implies that C contalns at least one member
not in the set of real numbers because the square of no real
nuniber ls negatlve, By C-1, C i3 closed under the operations
of addition and multipllication, so that !f a and b are real
numbers, the product bl 1Is In C slnce b and ! are, and 1t

[sec. H-2]
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follows that a + bi Is !n C since a and bl are. We see, then,
that all numbers of the form

a + bi, where a and b are real,‘

are included In C. The number i and every real number can be
wrlitten in thls form. We have 1 =0 + 1+i. If a is any real
number a = a + 0+i, since 0+1 = Q. (The statement that the
product of O and any number 1s O can be proved for numbers in C
exactly as It was for Integers in Chapter 1.)

Now, however, if we add and multiply numbers of this form,
take thelr addltive and multiplicative inverses, add and multiply
agaln, and so on, it would seem that we should encounter more and
more numbers of the system not of this form. This is not so!

The sum and product, additive and multiplicative inverses of
numbers which can be written in the form a -+ bi, a and b real,
can be wrltten In the same form. We have not proved this, but
after we complete our discussion of operations with these numbers
you will see how such a proof can be constructed.

The results we have stated imply that if there is any
system which solves our problem, then there is a simplest - -
that 1s, smallest possible — system which solves the problem.
Thls 1ls the system with the following property.

Property C-4 Each element of C can be written in the form

a + bl, where a and b are real numbers.

We add C-4 to our list of baslc properties; thus the system
C whlch has Propertles C-1, C-2, C-3 and C-4 is the system of
complex numbers,

Historical Note. The adJectives "complex", "imaginary" --
and, by contrast, "real" -- which are standard terms sanctloned
by years of use, serve to 1llustrate the "controversial" nature
of our four fundamental properties. As recently as a hundred
years ago many mathematiclans believed that c-1, ¢-2, C-3 and
C-# contradicted one another, that 1s to say, that there could
be no system wlth all thease properties. The proof that thls

[sec. 5-2]
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list of properties is Jjust as respectable as that character-
lzing the "real" numbers was achleved through the work of the
nlnéteenth century mathematicians, Argand, Cauchy and Gauss.
(Such a proof is outlined in Section *510.) Our continued

use of the claszlcal adjJectives serves to remind us of the old
controversy and of tne work of the men who resolved it.

Exercises -2

1. For each of the following ralrs of number systems state a
property of the first which is not possessed by the second:
(a) integers, natural numbers '

(b) ratlonal numbers, integers

(¢) real numbers, rational numbers

(d) complex numbers, real nunbers.

no

. The following equations have solutions in the system of
real numbers .f a, b, and c are real numbers. Ior each
equat!lon name thc smallest number system in which the
equation has a solution in the system if a, b, and c are
‘n the systemn.

(a) a +x =1

(b) ax = b a #o

(¢) ax v+ b = ¢ a # 0
3. Write each of the following complex numbers in the form
a o bl owhere a and b are real numbers.

(a) (¢) -1 (e) 3 () 17,
(6) (a) i () 2

h. Faor enaer »f the followlng vairs of number systems state a
property o0 T “lirst wh'ch i3 not possessed by the second.

o]

(a) narural nunbers, interers
(LY onal nuabars, coaplex nunbers,

Yoo Let O be the set of all real numbers which can be written
in the fnrmoa o+ b /2, where a and b are rational
numbers, Show that
(1) 5 Ls not the set of all real numbers,

(litnt: Show that 3 Ls not Ln 3.)
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*5, (b) S 1s closed wlth respect to real addition and

multiplication.

(¢) the additive and multiplicative inverses of a number
in 8 are also in S. _

(d) S, with real addition and multiplication as operations,
has all the properties listed in Property C-1.

(e) S is the smallest part of the real number system which
has properties C-1l, contains ﬁhevrational numbers, and
contains /2.

5-3. Addition, Multiplication and Subtraction,

We now take up the task of deducing rules for calculating
with the complex numbers. The remainder of this section 1s
devoted to theorems which give formulas for the sum, product and
difference of two complex numbers. We postpone the discussion
of division.until Section 5-4.

Theorem 5-3a. (a + bi) + (¢ +di) = (a + ¢c) + (b + d)i.

- Proof: We suppose that a + bl and ¢ + di are any two given
complex numbers. Consider the expression
(a + bi) + (¢ + di).
Property C-1 assures us that addition in C is associative and
commutative; therefore,

(a + bl) + (¢ +di) = (a2 + ¢) + (bl + di).
But Property C-1 also asserts that the distributive law holds,
so bt + dL = (b + d)i. Hence
(a +bL) + (¢ +di) = (a+c¢) + (b + d)i,
which we were required to prove.

Theorem 5-3b. (a + bi)+(c + di) = (ac ~ bd) + (ad + be)i.
Proof: Given complex numbers a + bl and ¢ + di, we consider

the expression
(a + bi)(c + di).

Using the distributlve law once, we obtaln

(a + bLl)(c + di) = a(c + di) + bi(c + di).
267
[sec. 5-3]
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Applying the distributive law again, and using the commutative
property of multiplicatlion, we have

D
(a + bit)(c + di) = ac + adl + bei + bdi“,
"But 1 = -1, so we can write

(a + bi)(c + di) = ac + adi + beil - bd.
Using the commutative property of addition and once again making
use of the distributive law, we obtailn

(a + bi)(c + di) = ac - bd + (ad + be)i.
This completes the proof.

Example 5-3a, Express the sum of 2 + 31 and 5 + 21 in the form
a + bl, where a and bt are real numbers.

Solution: (2 + 31) + (5 + 21) = (2 +5) + (3 + 2)L =7 + 51,

Example 5-3b. Express the product of 2 + 31 and 5 + 21 in the
form a + bl, where a and b are real numbers.

2(5) - 3(2) + [2(2) + 3(5)11
10 - 6 + (4 + 15)1
h + 101.

Solution: (2 + 31i)(5 + 21)

Example 5-3c. Express the product of 1, 21 and 1 - i1 in the
form a + bit, a and b real.

Soluticn: 1:24-(1 - 1) = -2(1 - 1) = -2 + 21.

Now we conslder subtraction. As in Chapter 1, we denote the
addltlive inverse of =z Dby -z, so that by definition
(5-3a) z + (-z) = 0.

Also, Just as in Chapter 1, we define 2y - 2 to be the solution

1
z of the equatlon

C"

(5-3b) Z) + z = z..
(We leave as an exercise the proof that

where 2y, 2z, are glven.

Equatlon (5-3b) cannot be satlsfled by more than one complex
) It Is easy to see that z

268
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Equation (5-3b),
z) + [z2 + (-zl)] =z + [(-zl) + zg] = [zl + (—zl)] + 2z,
We have therefore proved

Our problem now is to find -z when z = a + bi i1s given,
Let -z = x + yi, where x and ¥y are real. Since

z+ (-2) =0
we get
(a + b1) + (x + yi) = 0.
By the theorem on addition (Theorem 5-3a) this becomes

7

(a+x)+ (b+y)l=0=0+ 0-1
and this equation w!ll be satisfied if

a+ x =0, b+y=0,
that is, if x = -a and y = -b. Thus (-a) + (-b)i is an additive
inverse of a + bi, and since the inverge is unique we have proved
the following: .
Theorem 5-3c. If a + bl is a complex number (a and b real)
then its additive inverse is
-(a + bl) = -a + (-b)i.
We can now summarize our discussion of subtraction in a
theorem,

L

Theorem 5-3d. (a + b1) - (c +di) = (a - ¢) + (b - d)1.

Proof: Using Formula (5-3c), Theorem 5-3a and Theorem 5-3c
we have
(a + bLl) - (¢ + di)

(a + bl) + {-(c + d1)])

(a + bLl) + [(-c) + (-d)1]
la + (-¢)) + [b+ (-d))1
(a-c)+ (b-4di.

i

n
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Exercises 5-3
Express each of the following sums in the form a + bi,

where a and b are real numbers:
(1 + 41) + (3 + 51)

(2 + 61) + (2 - 61)

(3 + 51) + 21

bt (m+ m1)

(V2 + 31) + (21 + 1)

(-1 + 51) + 21

8 + 1

3+ (71 - 3)

(5 + 3L) + (7 + 21) + (3 - 41)
(3+2L) + (J/Z+ 71) + /3 1.

a complex number to each of the following to make the

P e T e T e S S
[ e |~ T o T ¢ N © TR o RN & o)
~—

L N I N i N W

xr
Q,
Q,

sum a real number. Can this be done in more than one way?
(a) 2 - 51 (¢) /2 - /31

(b) x - yi (d) -51

Express each of the following products in the form a + bi,
where a and Db are.real numbers:

(a ) (2 + 31)(% + 71) (3) 61.31

() (2 - 31)(6 + 41) (k) ( 1)(1 - 61)

(c) (3 1)(1 + 21) (1) - 21)(3 - 21)(51)

(d) 1(3 + 51) (m) (4 - 31)%(2 - 51)

(e) 21(«/5 - 1) (n) (2 + 31)(3 - 21)(6 - u1)
(£) (B +v21)(1 + /3 1) (o) (c+ di)(x + yi)

(8) (3 + 41)(3 + 41) ) (x - y)(x + yi)

(h) (1 + 1)(1 - 1)
Find the additive inverses of each of the following complex
numvers and express them in the form a + bi, where a and
b are real numbers:

(a) 3 (e) 5 - U1
(b) 1 . (£) -4 - 3%
(¢) 1+ L . (g) a - bt
(d) 2 + 3L (h) x + yi
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5. Express each of the following differences in the form
a + bl, where a and b are real numbers:

(a) (7 + 111) - (2 + 31) (£) V& - (1 - 1)

p) (5 -61) - (7 -81) (g) 7w -

c) (3+51) -(3-51) (n) (2.+31) - (2 - 31)

(a) i-(1+1) (1) (1-1) -2t

e) (V3 +1) - (2+ J/21)

6. Express the following powers of 1 in the form a + bi,

A,\,—\,\,.

where a and b are real numbers.

(a) 13
(o) 1
(e) 1%
(a) 3
(e) 14n+l, n 1s a natural number
(f) 179

[ State a general rule for determining the n-th power of 1
where n 1s a natural number. Explain why the rmile works.

8. Express each of the following quantities in the form a + bi,
where a and b are real numbers.

3

y

!
+ 1t
4n+3

a i

)

) s n 1s a natural number
) 3L + 41(5 - 1)(5 + 1)

) 7i[(2 - 31) + (W& + 10)]
) [(31 + 6) - (21 + 7)]

) 3(3 + 21) + (6 + 81L) - 2(2 - 31)

) (b+c-al)(a+c -bi)(a + b - ci), where a, b, ¢
are real

3
(h) 3+ 1)

[ TRt I o TN o NN o 4

N e e e e

03

(L) L(L - 1)(L - 2)(1 - 3)
9. Show by >ubuL1tutLon that % + —F" 1 1s a solution of the

5

gquat lon Oz - 3z + 2 = 0,

o
~3
P
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5-4. Standard Form of Complex Numbers.

7 Property C-l4 asserts that each member of C can be expressed

in the form a + bi, where a and b are real numbers. Our
next theorem states that this representation 1is unique: given
any complex number z, there is only one pair of real numbers
a,b such that z = a + bi.

‘Theorem 5-4%. If a, b, c, d are real numbers, then
a + bl =c¢c+ dil if and only if a = ¢ and b = d. )

Proof: The "if" part of the statement, "a + bl = ¢ + di
if a = c and b = d" is clear, since addition and multiplication
have unique results. We have to prove the "only if" part:
a+ bl =c+ dil only if a = ¢c and b = 4, that is, if
a+bi=c+dl thena =c and b = d.

Suppose, accordingly that a, b, ¢, d are real numbers and

that _
a +bil=c+di.

=.Then by the theorem on subtraction (Theorem 5-3d),

(a - ¢c) + (b -d)L =0,

and
a -c= -(b -~ d)i.

We have to show that a = ¢c and b = d, or what is the same,
that a -~ ¢ =0 and b - d = 0. Now if b - d were not zero we
could write

a - C
p-qd- 1
or
(=) = t.

But this would imply that 1 1is a r2al number since a, b, ¢, d
are real numbers and the difference and quotient of real numbers
are real., Since we know that 1 1s not a real number we con-
clude that b - d = 0. But i{f b - d = 0, then -(b - d)i = 0,

and since (a - ¢) = -(b - d)i, it follows th =" a - ¢ = O. This
completes the proof.

Example 5-4a, Find all pairs of complex numbers X,¥ for which
2x + 3yl =6 + 3L,

[sec. 5-4)
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Solutlon: One solution of the problem is X = 3, ¥y = 1. If the
problem had required that X and y be real then by the pre- ~
ceding theorem this would be the only solution. However, since

we permlt X and y to be complex, the preceding theorem is not
directly appllicable, -and the equation may have other solutions;

x =3+ 3L, y = -1 is a solution, for example,

We can use Theorem 5-4 to find all complex solutions of
this equation. Let x =a + bi, y = ¢ + di where a, b, ¢, d are

real, OSubgtituting in
- 2x + 3yl = 6 + 31

we get

2(a + bl) + 3(c + di)iL = 6 + 31,

or

Il

(2a - 3d) 4+ (2b + 3c¢c)i =6 + 3i.

Since the expressions in parentheses in the last equation are
real, it follows from the preceding theorem that the equation
holds 1if and only if

2a - 3d = 6, 2b + 3¢ = 3;

or 3 - 2b _2a -6

¢c==73 ., d=—73—.
Here a and b may be assigned values arbitrarily. Thus, all
the solutions of the equation are given by

X = a + bi, y=3"32b+2a3'b1,

where a2 and b are any real numbers.
The representatlon of a complex number 2z as

Z = a + bi,
where a and b are real numbers, is called the standard form
of z. Note that =z 1Is real if and only if b = 0. (Why?) We
therefore call a the real part of a + bl. The real number b
Is called the imaginary part of a + bi. Thus we can say that
a complex number 1s real 1f and only if its imaginary part is
zero. A complex number a + bl in which a = O 1s called a pure
Ilmaglinary number. Thus a complex number is a pure Imaginary
number 1f and only Lf its real part 1s zero. DO NOT CONFUSE the
Imaglnary part b of the complex number a + bl with the pure

imaglinary number bl, Both the
[sec. 5-4]
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real and imaginary parts of a + bi are real numbers: they are
" the real numbers a and b, respectively. Usually a complex
number which is not real is called imaginary.

Examples 5-4b

z Real part of z Imaginary part of z Standard form of z.
1. 0 0 0 0 + 01
2. 2 + 1 2 1 2 + 11
3.1 -1 1 -1 1+ (1)1
b, o1 . 0 1 0 + 14
5. 1° -1 0 -1 + o1
2

In these examples, only O and 1° are real numbers; only 0 and
1 are pure ilmaglnary numbers; 2 + i, 1 - 1 and i are

imagihary-numbers.

Exerclses 5-4
1. Find the real and imaginary parts of each of the following
complex numbers:

(a) (1 + 1)2 (g8) (V2 - 1)2
(b) 1 + 12 (n) (-1 + 1 45)2
(c) 12 (1) (4 +1) -7
(d) 5 - 1 (J) -212

(e) 2x + 31 (k) 3t

(r) a - 21 (1) 21 + 1

2. What real numbers must be added to each of the following
complex numbers to make the sum a pure imaginary number?
Can this be done in more than one way?

(a) 3+ 21 (¢) 5 - 21
(b) -41 (d) 5 - V21

3. Use Theorem 5-4a to flnd real values for x and y that
satlsfy the following equabions: '
(a) x -yl =3 + 61 (£) x =~y + (x +y)Ll =2 + 61
(b) 2x + yl =6 (g) (L +x) +1(2 -y) =3 - 41
(¢) x - 5yL = 201 (h) x+yl =1+ 12
(d) 8x + 3yl = 4 - ol (1) y®1° = 1(1 - x°)

(e) ox + 3yl -4 =5x -yl + 81 (J) (x +1)2 = y
(sec. 5-4]
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b, Express each of the following complex rumbers in standard

form:

(a) 3+ 2L +5 + 1 (£) (& - 1)(3 - 21)

(b) (3 -21) - (5-21) (g) (1 -1)(2+ 31)(4 + 21)
(c) 31(k - 21) (h) (a+ b -ci)(a +b + ci),
(d) 6 + 51 - (2 - 31) where a,b,c are real numbers
(e) (3 -21)(5 - 21) (1) (x + y1)3, where X and y

are real numbers.
5. Suppose z = X + yil, where X and y are real numbers,
and z° = 8 + 61. Solve for x and Y.

*6. Suppose, for the sake of this exercise, that a and b are
complex numbers. Show that a + bi = 0 and a - bl = 0 if
and only if a = 0 and b = 0. Show also that the underlined

"

word can be replaced by "or" only when we also assume that
a and b are real numbers.
*7. Show that if z; "is any non-real complex number, every
complex number =z can be expressed in one and only one
way ln the form 2z = a + bzl, where a and b are real

numbers.

5-5. Divislon.
We have learned to add, multiply and subtract complex

numbers. We now consider division.

According to Property C-1 every complex number other than O has

one and only one multiplicative inverse. As 1n Chapter 1 we

denote the multiplicative inverse of =z by %, so that by defini-

tion . :

(5-5a) ‘ zo% =1,

Also, Just as in Chapter 1, we define to be the solution =z

NiN
= jro

of the equation

(5-5b) o Etz =g .

when this solution exists. (We leave as an exercise the proof
that equation 5-5b carnnot be satisfied by more than one complex
number z.) It is easy to see that if z, # 0, Equation 5-5b
has the solution ZEL%_):

[sec. 5-5]
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] 1 1 .
zioolz (=) ) = 2z [(=)z,] = 2 = 1. = o
We have therelore proved N
(5-50) -—-g I 1
z, 2 7 zy £ 0.

Our task now ls to find the standard form of 1 when
Z

z = a + bl is glven in standard form., Let us begin by
congldering a numerlcal example,

Example 5-5a. If 'z = 2 + 21 find its multiplicative inverse L
In standard form. g

Solution. We seek a number x + yi(x and y real) satisfying

(2 + 31)(X + yi) = 1.
If we multiply the factors on the left using the theorem on
multiplicatlon (Theorem 5-3b) we may write

(2x - 3y) + (3x + 2y)L =1 + Oi.
Hence, from the theorem on standard form (Theorem 5-4),

2x - 3y = 1,
3X + 2y = 0,
Eliminating y, we have
(b + 9)x = 2.

Hence
. 2 -3 .
*=130 ¥ 7130
and

X +yl = %% + (- f%)i.

Now we can verify by substitution that

1 _ 2 (3
e Tt I b
We treat the general case in exactly the same way. Suppose
a + bl, In standard form, is a non-zero complex number. Recall
that thic means that ‘at least one "of the two real numbers a,b
is not O. If there is a complex number X + yl, x and ¥y
belng peal numbers which satlsfy the equation

(5-5d) (a + bi)(x + yi1) = 1,
then by completing the multiplication in the left member we get
[sec. 5-5]
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(ax - by) + (bx + ay)i = 1.
from the theosrem on standard form (Theorem 5-4), this equation
will be satlisfied 1T and only if
ax - by = 1,
(5-5e) bx + ay = O.

Thug our problem 1is reduced to that of solving two linear
equations with real cofficients for the real unknowns X and
y. We solve these equations by elimination. To eliminate vy,
multiply the first equation by a, the second by b, and add.

We

e et (a2 + b2)x = a.

Our assumpblon that a + bi # 0, 1.e., that at least one of the
real nunbers a, b is not zero, tells us that a2 + b2 #£ 0. Hence
we can write

N a i
A e T—' ]
a“ + 6?

In the same wey, we eliminate x from Equations (5—5e). Mul -
tiplying the first equation by b, the second by a, and sub-
tracting the first from the second, we get

) (a®.+ b%)y = -b.
+ b £ 0, so

y= o
: a + b
How by substitution we can verify that
a ’{_( -b )i
a2 + bgr ae + b2

is a solution of Equation (5-5d) so that 1t is the unique mul-
tiplicative inverse of a + bli. We state our conclusion as a

theorem.

Theorem 5-5, If a + bl 1s a non-zero complgx number in
standard form, then its multiplicative inverse 1is

a b -
1__ - o).
a + b a~- + b

SR 7 M 5+ (3

Now we can combine the results of thils section to obtain
a formula for the quotient of any two complex numbers when the
denominator is not O. We could state the result as a theoren,
but the statement would be cumbersome. It 1s better to

[sec. 5-5]
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remember a procedure which we lLndicate by an example.

Example 5-5b. Find the quotient %—%}%% and express the answer in
standard form. )

Solution: By Formula 5-5c¢,

552t = (8 + 51) (g=tay).

By Theorem 5-5,
1 _ 2 + -3 1
2+ 3113713
Comblning these two equations and using the theorem on rmulti-
plication (Theorem 5-4b) we obtain

“ 2 . -3
(8 + 51)(T§ ) 1)
31 14
3 (g
as the quotlent in standard form.
The following relations involving division of complex
numbers can be proved on the basis of Property C-1 Just as they

ti

were in the real case.

(5-5¢f) zp = 0 if and only if z; = O or zZy = 0 (or both).

172
z z.2
1
(5-58) 7= - ;g = ;lgé
2 4 2%y

2
V4
» 1f z5 #0, 2y # O,
_Z__l_ 23 le L + 2223
22 Zu_ ‘2224

We leave the proofs of these relations as exercises.
(See Exerclses 5-5, Problems 7 - 9.,)

(5-5h) s 1f z, # 0, zy # 0.

Exercises 5-5
1. Find the muitliplicative inverses of each of the foilowing
complex numbers and write them in standard form:

(a) 1 (e) 1 + 1

(b) 5 (f) 2+ 31

(c) 1 (g) 1+ 12

(d) -+ (h) 4 - 31
[sec. 5-5]
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2. Does every complex number have a multiplicative inverse?

3. What complex numbers are thelr own multiplicative inverses?

. What complex numbers are the addlitive inverses of their '
multiplicative inverses?

S ‘EXpress the followling quotients in standard for+
1 + 61
(a) g (6) L33
3 31
(p) =1 (h) %=1
1 -51
(e)  zr— (1) 55=r
13 + 51 1+ /21
(d) == (J) =
1 - J21
(e) 1 + 1 (k) «,/‘2_ -+ 'v/gi
2-1 1 + /21
4+ 31 o + bl .
(f) ] (1) o a,b real, a + ol £ 0
(m) %ai:gs%i;a,b real, 2a - bl # 0
(n) {%}i—%%; m,n real, -m + ni # O

x + 2yl K
(o) 3x_§a§%— ; X,y real, x - yi1 £ 0

6. Show that, 1if zl-% 0, the equation z,-z = z, has no more
than one solutlon,

7. Write in standard form all complex numbers z such that
the real part of % is %, and

(a) the imaginary part of =z 1s zero.
(b) the imaginary part of =z 1is % .
(c) the imaglnary part of =z is 1.
8. Prove that z,2, = 0 if and only if z; = O, or z, = 0, or
both are zero. ’ ‘
*3.  Prove that 2-1— L3 ~z-1-§-3- » Af 7z, £ 0, z) £ O.
2 Zy Zo%y
z. z Z.2) + Zn2.
i 3 _“1°%% 273 e .
¥10. Prove that 7, + 7y 7oty » 1€ 25 £ 0, 2, # 0.
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1l. Make use of the formulas in Problems 9 and 10 to obtain the
followlng sums and products. Wrlte the answers you obtailn
in standard form.

(a) 1l + 1 1
I+ or " T éf

1+ 21 2.4
(v) 3+ &L " AT
2 + 361 { - 261
(¢) 535+ 7o,
2 - 31 3+ 41
(Q) =57 + 5—7F

2
a + bi a - bl .
() (F==7) + (G555 2a+blL#£0,a-bilz£O0
*12. Show that the words "in standard form" may be omitted in

Theorem 5-5 1f we suppose merely that a® + b2 # 0.

5-6. Quadratic Equations.

We come now to a cruclal test for the complex number system,
Does 1t permit us to solve equations of the form

(5-6a) az2 + bz + ¢ = 0,

where 4, b, ¢ are real numbers and

(5-6b) b2 - hac < 0 2

Let us first find the solutions of the quadratic equation on
whlch we have so far focussed our attention:

(5-6c) 2%+ 1 = 0.
If 'z 1s an arbitrary complex number, we have
22 4+ 1 = z° - (-1) = 28 - 19 = (z - i)(z + 1i).

Thls factorlzatilon of 22 + 1 shows that if z 1s a complex
number satisfying Equation (5-6c), then one of the factors
(z - 1), (z + 1) must be zero, and z must be elther 1 or -i.
Converasely, we see that 1 and -1 both satisfy Equation (5-6c).
Therefore we conclude that the solutlons of Equation (5-6¢) are
1, -1, ‘

Equation (5-6c¢) is a speclal case of the mjuation

280
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From Chapter 1, we know that If r 1s real and positive this
cquation has two real solutions. We have just seen that for a
special negat..e valve of 1r, namely r = -1, this equation has
two non-real complex solutions, 1 and -i. Let us next con-
slder the general case 1n which r 1s negative.

i’ r 1s real and negative then -r 1is real and positive,
and ~‘r is defined. We have

(-1)(-r) = (1)2( V)2 = (1 V1)%,

]
it

2% -r =2 - (1 /)%= (2 -1ST)(z+1-77).
Just as In the discussion of Equation (5-6¢), we conclude that
Equation (5-0d) has the two solutions 1 “r, -i +~r, when r
is real and negative,

For the case in which r 1s real and positive we introduced
the notatlon T to describe the solution set of Equation (5-6d):
one solution is /T and the second -+/r. It would be desirable
to extvend the definition of T for negative real r so that
tne description of the solutlon set of Equation (5-6d) would be
the zame for all r. The question 1s which of the two solutions
1 vr, -1 v£r shall we take to be /T if r 1is negative?

Recall that in Chapter 1 we faced the problem of defining
¢?'unamb1guously for positive r. The problem was resolved by
deflning Jr to Le the non-negative solution of Equation (5-6d).
The requlirement that ./r be non-negative was simply an agreement
adopted to make the meaning of .2~ definite. However, this
agreement makes no sense 1f the solutions of Equation (5-6d) are
complex. We have not defined "positive" and 'negative" for
non-real complex numbers, and cannot define these terms for
complex numbers in a way which 1s consistent with their usual
meaning. We must make a new agreement for the case of negative
r. Any agreement which definitely selects one of the solutions
1 J~r, -1 J~r of iguatlon (5-6d) will be satisfactory. We
choose T = L J°F, and accordingly make the f>llowing
definition:

231
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Deflinitlon %-5a. Let 1 be any real number, %We define ./~
as follows:
(1y ¢ o >
nuncer W such that w =
< 0, then J/r = i+ /T,

0, then Jr is nhe unique non-negative real

Example 5-5a,

1

FJ
]

/
v -

1V/1 =1
o) 112 = 2/3 1

\[-21)2 41° = VOB = 1 VT = 21,
Example 5-5tL. Find the product ( +/~5)( /~15).

(AT
il

Solution: We have
( 3)( V-15) = (L V3)(1/15) = EV/E /15 = - /7.

Note that it is not correct to say

( V-5)(V-15) = 5)(-15) = /75.

The statement r 5 = J/Ts has been proved only for the case
In wnich r and s are both positive. The statement is also
true If r and s have opposite signs (Exerclses 5-6, Prob-
lem 5), but as the foregoing example shows, 1t is false Lf both
r and s are negative. '

- 2
Example %-%5¢. {lnd the product (\/F)(\/;:) If r 1is any real
number,

Solution: 'We have to conslder two cases. If r 2 0 we have

2 O, and
YN I A N Y

If r < 0 we have r” < 0, and

E/r3 = (1 () = 12y () e -

Now that we have glven an unambiguous meaning to /T for
each real number r, we state as a theorem our previous con-

Lu

W

cluslions about equations of the form z2 =r, where r is any
glven real number.
Theorem 5-Ga.’ :
- . 2
If r 1is any given real number, the equatlon z° = » has

the roots T and - /v, and no others.

“ 232
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4¢ now turn to the solution of the general quadratic equa-
tion
(5-0e) az® + bz + ¢ = 0, a, b, c real and a # 0.
Recall that we were led to our study of complex numbers because
we falled to find real solutions of Equation (5-6e) when its
discriminant b2 - hac is negative. However, reasoning just as
in Chapter 4, we prove the following theorem:

Theorem 5-0b. ) '

The equation

az® + bz + ¢ = 0, a, b, c real and a # O,

-b + b2 - lhac -b - \/b2 - Yac

2a ? 2a

has the solutions

and no others,

There 1s nothing new if b2 - hac > O; this is the case of
real solutlons discussed in Chapter L4, We now prove that the
formula holds Lf b° - hac < 0, although in this case the
solutions will not be real.

The proof is the same as in Chapter 4, Recall the procedure:

divide by a and complete the square.

2 2
2 b ‘b c b
25t gzt == -2t —p
o a ha a ha ’
(5-66) b2 b2 -1
- lac
(Z + 'ga-) = .
ha
We now have Theorem 5-6a which tells us that Equation (5-6f) has
2

(complex) solutions whether bS - Yac is positive, negative, or
zero.

Applylng Theorem S£-b6a, we obtain

L b _ foB-ltac . n P hac,
.2.5.-“'\/ l&a“ 2a ll»az- )

b + Vb% - hac b - ~/b® - hac

== or z = .
. ca . . 2a
The proof of Theorem 5-0b can be completed by showing that the

SO z =

numbers obtalned actually satisfy the equation.

[sec. 5-6]
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Example 5-5d. Find the solutlions of z2 + zZ 4+ 1 = 0.

Solutlon: a =b =c¢ = 1, By Theorem 5-6b the solutlions are

-1+ V3 -1+ 1V3
2 N 2 g

-1 - 3 -1 -1J/3
2 L]

and

o

Other statements about the relation between the solutions
and coefficients of a quadratic equation can be estabiished
Just as in Chapter 4., 1In particular, if z) and z, are the com-
plex solutlons of the equation '

az2 + bz + ¢ = 0,

then
-b c
(5-68) zl + 22 = ‘—a » Zl'22 = -5 ;
and
(5-6h) az2 + bz + ¢ = a(z - zl)(z - 22).

The proofs are left as exercises.

Exercises 5-6

1. Perform the indicated operations and write the answers you
obtain in standard form.

(a) V=25 + % (e) £6- V/B. /1
(b) - /B -6 ./730 (£) \//_F—l
(&) /2458 -8 () XA

(d) \/:E' "/E (h) \% -l 7

N

Wrlite each of the following complex numbers in standard form,

Assume ¢ 1s a real number,

(a) () V(-0)%
(b) (£) o/=c®
(c) (8) ~/~(-¢c)?
(d)

O TN
no S—
S— n n
ny

<)
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3 Perform the lndicated operations and write the answers you
ovtain in standard form, Assume a and b are positive
real numbers.

OIVACEINGS (a) 2342
] 3 Ve

t) La? -\/Cha‘b (e) .vé32a2 -

) e Gfa e oy ) E

() N/{;E - Pab - &% & -(a + b)2

»h Zxamine the proof that +ab = Ja+vb if a and b are

non-negative real numbers, and explaln wnhy the same argument

W Ut

—~
o

cannoat te used when a and b are negative,
5.  Show that Lf r< Jand s > O, then Jr /s = /7§,
In each of Proclems 5 - 17 solve the glven quadratic equa-

tion ar: express the soiutions in standard form.

5. 2% -1 =2 12, 22 -4z +8 =0

- 2 | 2

fo 27 =+ 2z -1 =20 13. 2 +z - 1=290

3.0 2% - zz -2 =0 14, 25 - bz - 84 = 0 (a _eal)

N E 2 1

deozT -z -1 = . mz" 4+ z + = =0 (m real,m#0)

10, 32% + 2z - L = g 15, 22 -1z +2=0

1. 2% + 4z - 8 =0 17, az° +c =0 (a;c v-al,a # 0)

18. The equation z3 - 8 = 0 has the solution . ww'that
z -2 \is z” - 8, and use this tact to find

3
ns of the. equation,

Cct

WO more s

e - ; . \ 2
13, GSuppose z, and z; are the solutions of az™ + bz + ¢ = 0,

where a, b, ¢ are real and a # 0. Show that

] C
- = e =3 d —
A 22‘ a n 212L a

*20. If z. and z, are the solutions of the equation 322 + bz + ¢

i
-~

Y

-~

show that the equatlon

az® + bz + ¢ = a(z - zl)(z - 22)

holds for every element z of C. (This.formula therefo:e
provides a ''factorization" of the expression az® + bz + c.)

285
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2l. Find quadratic equations which have the following pairs of
solutions:

a) gy =1 -1, zy=1+1
b

=0

(9]
~— e
N
=
I}
O
-
N
no

(
(
(
(d) 2] = a; + byi, zy =a, + bol; ay, by, as, by being

any four given real numbers.
2

*22, Solve the equation z° = i, [Hint: Writing 2z 1in standard
form, z = x + yi, the given equation is equlivalent to a
palr of equations whose unknowns are real: x2 - y2 = 0,

]

*¥23. Solve the equation z< = -1,

*2b, Find nn equation whose solutions are 1 + 21, 1 - 41, 1 + 1,
Is there a quadratic equation having these numbers as
solutions? If there is one, find it. If there is none,
prove that there is none. '

5-7. Graphlcal Representation; Absolute Value.

Accordlng to Propervy C-U4 and Theorem 5-Y4a each complex
number - may be written in one and only one way in the
standard form a + bi, where a and b are real numbers, Thus
each complex number z determines, and is determined by, an
ordered pair (a,b) of real numbers: a2 1is the real part of z,
b the lmaglnary part of z.

Recalling that ordered pairs of real numbers formed the
starting polnt of coordinate geometry, we find that we are able
to represent the complex numbers by points in the xy-plane,.
Agreving to assoclate =z with the point (a,b) if and only if
z = a + bl, in standard lorm,we set up a one—to—onevcorrespond—
ence between the elerants of C and the points of the xy-plane.

286
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It 1s customary to-use the expression "Argand diagram" to
describe the pictures obtalned when the point (a,b) of the
xy-plane 1s used to represent the complex number a + bl given
in standard form. Figure 5-7Ta 1s an example of an Argand dia-
gram si.owing three points (0,0),

(4,-5), (-4,5; and the complax ]Y

numbers they represent. Note that
points on the x-axlis correspond 2=-443]
to real numbers and polnts on .
the y-axis correspond to pure z=0+0j X
imaginary numbers. For the
sake of brevity we shall often
say "the point z = x + yi" in-
stead of "the point (x,y)
corresponding to the ccmplex
number z = x + yi." '

2=4+-5)i

The geometric representa- Figure 5-7a
tion of compl2x number; by means of an Argand dlagram serves a
double purpose. It enables us to Interpret statements about
complex numbers geometrically ‘and to express geometric state-
ments in terms of comﬁlex numwers, As a first example, consider
the formula established in Chapter 2 for the coordinates of the
midpolnt of a iine segment: The midpoint of the segment Joining
(xl,yl) and (xg,yg) is the point (x,y) given by the formulas
- X + X5 ¥yt Yo

(5-Ta) X = —=——=, V¥ =

2 .2
In terms of complex numbers thls may be stated: The midpoint of

— e

=52 segment Joining the points z; = x; + y;1 and z, = Xy + Yol
is the point z = x + yi given by
z, + 2
1 2
{5-7b) z = ——=,
2
Note that we can express in one "complex" equation a statement

which requires two "real" equatlons,

237
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Now we can use Equation (%-7b) to establish a geometric
interpretation of additlon of complex numbers Let zq and Zg be

two complex numbers and suppose that the points 0 z, are

3 Zq»
not colllnear. Let 23 = 29 + 2, and consider the quadrilateral
whose vertlces are 0O, 213 Zpy Z
(Figure 5-7b). The midpoint of

7,=2+z2
the diagonal from z, to z,5 is 2, //’4 |
Zl -+ ZQ ~o ///
~=—5—= ; that of the diagonal S
from 0 to z., is e BN
v /,/ = Z'
0 + z. z z z = -
3 - 7; = _l_g__g ] O Figure 5-7b

lence the diagonals have a common midpoint. Since the dlagonals
>f the quadrilateral bilsect each other the figure is a parallelo-
zram. Thus we have a geometrical construction for the sum of

bwo complex numbers: If two complex numbers are plotted in an
\rgand diagram thelr sum 1s the complex number cofrespondlng to
she fourth vertex of the parallelogram whose o*her three vertices
tre the orlgin and the two given points (and which has the seg-
1ents jolnling z, and z, to the srigin as sides.)

When the points O, 215 Zp are colllnear the parallelogram
:ollapses into a straight line and our construction .fails, We
hall discuss this case later.

Next we consider the geometric construction of the differ-
nce z, - z; of two complex numbers. Since 2y = 7 =2y + (-zl)
'e have only to flnd a geometric construction of the additive
nverse -z of the complex number z. By equation (5-7b) the
idpoint of the segment Joining 2z and -z 1is

z_iftzl=g=o,

hat 1z, the ‘midpoint is the origin. Thus, 1f a complex number
8 plotted in an Argand diagram, its additive inverse is the
omplex number corresponding to the point symmetric to the

iven polnt wilth respect to the origin (Figure 5-7Tc) .

238
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We could now describe
geometric constructions for the
product and quotient of complex ‘ ////z
numbers but these constructions
are not very illuminating. After
we have studied trigonometry and

the relation between complex numbers
and trigonometry (Chapter 12) we
will be able to state simple and
elegant geometric interpretations

of these operations,

Example 5-Ta. Given z; = 3 + 1, Figure 5-7c
and z, = 2 - 21, make use of an
Argand diagram to find the
difference Zy = Zp. .
Solution: Begin by plotting zq
and z,. Then locate the additive 2+,
inverse of Zns namely ~Zpe This

-2
is 'easily done since we know that

Z5 and -z, are symmetric with
regpect to the origin, The N
point z, - z, is the same as N
z, + (-zg). (See Figure 5-7d.) Mz
The geometric representation
of complex numbers suggests a
definition of absolute value of

a complex number. Recall that

when real numbers are ‘ Figure 5-7d

represented by points on a line the absolute value of a real
number is equal to its distance from the origin., Accordingly,
we define the absolute value |z| of a complex number z = a + bi
to be the distance from the origin of the point (a,b). Using
the .listance formula from Chapter 2 our definition may be stated
algebraically as fcllows:

[sec. 5-7]
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Definltion 5-7a. If z = a + bi, where a and b are real

numbers we write
lzl = Vag'*'bg’

and call |z| the absolute value of z.

Example 5-7Tb. Show that the distance between the points z, and
Solution: If Zy = X, + yll, Z5 = X5 + ygi where X1s Y12 Xps Yo
are real numbers, then by the theorem on subtraction

Zg = 2 = (x2 - xl) + (y2 «-yl)i.
By the definition of absolute value

2 2
25 - 2] = lxp - )% + (v, - ¥y)
and this is the distance between the points (xl,yl) and (xg,yg).
When Zy and z, are real numbers we know the following rel-
ations involving absolute value and the algebraic operations:

(5-7c) lzz5] = lzp | |z,]
A Iz, |

(5-74) #Eé = TgiT

(5-7e) lzl + 22| < lzll + 'zgl

5-10) |zl - lzpl | < 12y -zl

These relations continue to hold'when 2y and z, are complex
numbers. Formulas (5-7¢) and (5-7d) can be proved by calculation
(Exercises 5-7, Problems 8 - 9), although we will present simpler
proofs in the next section.

The algebraic proof of Formula (5-7c) is quite difficult
but we can give an easy geometric proof. Consider the triangle
whose vertices are O, Z1y 27 t 2z, in Figure 5-7b. The lengths
of its sides are Izll, |22|, Izl + 22'- Why?  Since the length
of a side of a triangle is less than the sum of the lengths of
the other two sides, we have

Iz + z5] < [z | + lzol .
We wlll show later that when the parallelogram collapses iuto a
gtraight line we have either the inequality above or the

[sec. 5-7]
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equation
lzy + 25| = |zq| + |25]

This will complete the proof of Formula (5-Te), which is often
called the "triangle inequality". The discussion of (5-7f) is
left as an exercise (Exercises 5-7, Problem 10),

For further discussion of the algebra and geometry of
complex numbers 1t 1s convenient to introduce the notion of
complex conjugate. We do this in the next section.

Exercises 5-7
1. Plot each of the following complex numbers in an Argand
diagram. Label the points with the symbols Z1y Zps etc.

z) = 1 z5 =2 4+ 1

22=1 26=—u—21
2y = -1 2 = VB - 1
Zu'—""i 28=Tr—‘\/§i

2, Plot the additive inverse of each complex number in

' Problem 1. Label the point that corresponds to Zq with
the symbol =2y, etc.

3. In each of the following problems find z) + z2 and Z) = Zps
and also construct them graphically. :

(a) zy =1+ 1, Zp = 2 + 1
(b) =z =3 + 2i, Zy = 2 + 31
(c) zy = -1 + 2%, Zp =2 - 1
(d) zy = -3 + b, zy = -1 - 31
(e) zy = =3 + 1, zp =1 + 41
(f) =z, =-21 Zp =2 - Ui
() z; =3, z, = -3 + 5i
(n) =z =4, 2y = =41

i, Let Z1s Zpy ttt o sZg be the points. given in Problem 1. Use
Equatlon 5-7b to find the midpoints of the segments Jjoining
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z, and Zgy 23 and Zgs 2y and Z7s and plot the points in
an Argand diagram,
5. Find |z| if:

‘a) z=3-4 (@) z = 1%+ 17
(b) z = -21 (e) z=m+ V21
(¢) z =1+ 1°
z —-—
6. Show that, if z # O, TzT I =1,
T Find the set of points described by each of the following
equations ,
. . .z
(a) z =1 (b) z = |z] (e) z =137

8. Give an algebraic proof of the equation
. Izlzgl = lzll'lzgls
it zq and z, are complex numbers,

9. Give an algebraic proof of the equation

Z | |2, |
22| el ?

if z) and z, are complex numbers, and z, # O.
10. State a geometric proof of the inequality

Izll - 1zl l Stz -2, l .

11. Suppose 0O, zy =a+bl, z; = ¢ + di are collinear. If
zg = 29 + 2z, show that Z4 lies on the line through O, z,
and 25

12. Prove that the triangle with vertices 0, 1, z is similar
to the triangle with vertices 0, z, 22 by showing that
corresponding sides are proportional. (Hint: Note that the
length of each side of the second triangle 1is equal to |z]
multiplied by the length of each side of the first triangle.)

Use the result to describe a geometric construction for zg.
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5-8. Complex ConjJugate.

Definition 5-Ba. If z = a + bl, in standard form (a and b real),
we call a + (-b)1 the complex conjugate, or simply the conjugate
of z, and wrilte

Z=3a bl =a+ (-b)l.
i =a - bl we may also write

I

Since a + (-b)

} a + bl = a - bi

——— 1 —
Example 5-8a. 2 + 31 = 2 - 31; <T = -1 =1,
It 1s easy to see that the conjugate of the conjugate of a complex
number 18 the complex number itself, If z = a + bi in standard
form, we have

S
fl

(z) = (a+Dbi) =a -bi =a + bi
so that

(5—83') V4 = 2.
Thus 1if the first of two numbers 1s the conjugate of the second,
then the second is the conjugate of the first. We call such a

pair of numbers conjugate.

Although we have not used the term "conjugate" before, con-
Jugates of complex numbers have appeared in many of our state-
ments about complex numbers. Thus, for example, the solutions
of a quadratic equation with negative discriminant are conjugate,
Also, the formula for the multiplicative inverse of z = a + bi
can be written

1 ~a+ (-p)i 7z
a + bi 3.2 + b2 lzl?
or _
1l _ z
(5"8b) -z° = -l"';'l'g .

From Equation (5-8b) we get immediately
(5-8c) Z+Z = |z|2.

This last equation is important enough to deserve statement as
a theorem and a new proof,

Theorem 5-8a.

o 2
z:z = |z|°.
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Proof: If z = a + bl in standard form,then

2.7 = (a + pl)(a - bt) = a% - (b1)? = 2% - v%1% = 2% . p2(.1)

3 ;
= |z|2.

= a® + b2 = ( a® + b2)

Now that we have proved Equation (5-8c) independently of
Equation (5-8b) we can derive (5-8b) from (5-8c). In fact, it
is convenlent to use Theorem 5-8a directly in dividing complex
numbers, The following example is illustrative,

Example 5-8b. Find the quotient %-{-%% .
Solution: The conjugate of 2 + 31 is 2 - 3i. Multiplying

g I %% by S : gi, and using Theorem 5-8a and Equation 5-5g,we get

8+51 _ 2-31 84+51 _ (2 -31)(8 + 51

[}

¥ T -3 "7 F 3T - ¥
. (2)(8) - (5)(=3) + [8(-3) + 2(5)]1
22 4 3°
31, ,-14 31 1k

it

ottt =53 - 31

If 'we plot z and z in an Argand diagram (Figure 5-8a),

~2=-0+D e ~z=a+bi

Figure 5-8a
we see that z 1s the reflection of =z in the x-axis; that is,
z and 7Z are symmetric with respect to the x-axis, Similarly,
-Z 1is the reflection of z in the y-axls. From this diagram,
or by direct calculatlon, we also see that z + z = 2a and
z - z = 2bi, With these equations we can express a and b in
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terms of z and z. We thus obtaln the following theorem:

Theorem 5-8b.
I{ z = a + bl 1in standard form, then

.z +7Z =2a, z- 2z =2bi;
or

a=3(Z+z), b=3(z-02).

Observe that since a complex number is real if and only 1if its
Imaginary part i1is O and pure imaginary if and only if its real
part is 0, Theorem 5-8b has the fcllowing corollary.

Corollary. The complex number z 1is real if and only if z = Z
and pure imaginary if and only if z = -z.

Theorem 5-8b permits us to state any relation between the
real and imaginary parts of a complex number =z as a relation
between =z and Z. In particular,every statement of analytic
geometry can be expressed as a relation of this kind. Before
considering examples we state the following theorem which
siﬁplifies the computation of conjugates.

Theorem 5-8¢.
If z, and 2, are any complex numbers, then

(a) 2z, + z, = z) + Z5;

(b) 272y = 21725
©) FER T T
(a) 2 . A .
%2 Z,
: 2

The proofs are left as exercises (Exercises 5-8, Problem 5 ).
Example 5-8c. Show that, for any =z, the reflection of the
point 3iz + 2 in the x-axis is the point -3iz + 2,

Solution: The reflection of a point 3iz + 2 in the x-axis is its
conjugate, 3iz + 2. Using Theorem 5-8c twice we obtailn
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3iz + 2 = (31){z) + 2 = [31)(Z) + 2
= -3iz + 2,

which was to be shown.

Example 5-8d. Show that the circle of radius 1 with center
at the origin 1s the set of all points =z which satisfy the

equation .
zez = 1,

Solution: There are two possible approaches, We can start witﬁx
the definition of this circle as the set of points whose distance
from the origin is 1, and use the fact that the distance of the

point z = x + y1 from the origin is |z|. Then =z 1is on the

circle if and only if 2]
z| = 1.

Squaring both sides of this equation and using Theorem 5-8a we
get -

. Zez = Izl2=l. :
However we can also start with the equation of the circle
from analytic geometry:

x2_+ y2 = 1.

If z = X + yi then by Theorem 5-8b

X = % (z +2), y= %(z - Z).

Substituting for x and ¥y, we obtain
2 2

(3 GE+2) + 15 E-20 =1,
or "1 = 2 1 = 2
K(z+z) --&-(z—z) =1,

1mp11fyin§f>we have

Zez = 1,

Example 5-8e. Show that the segments which join the points

z) =X + yli and zZp = X5 + ygi to the origin are perpendicular

if and only if the product z -Z, 1s pure imaginary.

1
Solution: Again, there are two;approgches. We can either

Zzp, or state them first in terms of (x1,y,) and (X5,¥5), and then
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use Theorem 5-8b. We will follow the first approach.

The segments Jjoining z, and Z, to the origin will ve per-
pendlcular 1f and only if the triangle with vertices O, Z1s Zp
is a right triangle. By the Pythago-:an Theorem this will be
true if and only if

2 2 2
'zll + |22| = lz = 22|
Using Theorems 5-8a and 5-8¢c this equation may be written
(

2,2 + 2y2, = (z; - 22)(zl - 22) = (z - zﬁ - zo
212y * ZpZy = Z9Z) - 292, - ZpZ) + 2,2,

0 = -2y2; - 7,7
or, uslng Theorem 5-8¢ again and referring to Bjuation (5-8a),

2122 = - EizQ = (zlzé).
By the Corollary to Theorem 5-8b this equation can hold if and
only if the product z, 2

Finally, we can use Theorems 5-8a and 5-8c¢c to establisb

Formulas 5-7¢, 5-7d. We do the first as an example.

is .pure imaginary.

Example 5-8f. Show that |z;-z,] = |z;]| |z,i

Solution: Since the numbers in the equation which is to be
"established are positive it will suffice to prove

2 2 2
Izl-22| = Izll l22| . (Why?) We have
2 _—
Izl-zel = (zy-25) (z]+25) = (21-22)(z1-22)

2 2
lzll |22,

tl

(2)-27) (25°725)
This completes the proof.
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(N
! Exercises 5-8
1. Express the conjugate of each of the following complex

numbers in standard form:

(a) 2+ 31 (@) -5 (g) mi'
(b) -3 + 21 (e) -21 (n) 4 + 16
(e¢) 1 -1 (£) 1 - 1° (1) -31 + /3 1°

2. Use conjugates to compute the following quotients. Write
the answer in standard form.

(a) 1 (g) 2E8L

i 3 - 61
(b) 15— (h) ==
S R
(a) =3 (9 ;: =
(e) 01 (1) —f—i——j_—z
(g) 32t (1) 13 _ 1

(n) §§——{%I ; X, y real, 2x - y1 £ O

(o) (1 + 1)(-12+_2é% + (2 - 1)

(p) el
(1 -1)T - 211 =737
3. For each of the following sketch in an Argand dlagram the
set of complex numbers =z which satisfy the given equation.

h)z=% (v) E=%

i, For each of the following sketch in an Argand diagram the
set of points =z that satisfies the given equation.
(a) z+%Z =3 (b) z -2 =21 (¢) z -Z =3+ 21
5. Let z2) =%, + yli, 25 = X5 F ygi be any complex numbers,
X1s Y1 Xos Yo real. Prove each of the following.
(a) Z; 7z, =2 + Z,
(p) =z

+

=
N
n
—
N
n
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5. (e) 2z =77; =7 -7Z; [Hint: Show that (-z,) = -(Z;
and use (),

—

V4 V4
1 1. Ry
(a) (;~J - = [Hint: Show that (1) = 2= and use (b).]
- |

2 Zo
6. For any z, find the reflection of the point
23 - (3 +42i)z2 + 5iz - 7 in the y-axis.
7. If 2° = (z)“, show that =z 1is either real or pure imaginary
8. Show that the product zlzg is pure imaginary *f and only if
21 o
EE is pure imaginary.

2 2 2
9. Prove that |;l - 25| + [z + 251 = 2]z [T + 2|22|2.
10. Suppose zZy and z, are complex numbers and that

Z) * zp and z,z,

are real numbers, Show that

either
or zq and z, are real,
2) = % -
11. Use the relation z*Z = |Zl2 to show that

5|l
25 1 Tzl

12, Write the equation of the straight line y = 3x + 2 as an

equation in z and Z.
13. Show that if K # O is any complex number and C is any real
number then Kz + Kz = C is the equation of a straight line,
14. Show that the points z, and z, are symmetric with respect
to the line y = x if and only if
(1 - 1)z

l+(l+i)22=0.

15, What is the relation between the line segments joining zq
and z, to the origin if the product z,Z, is real?

L
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5-9. Polilynomlal Eguations

Linear and quadratlic equations are special cases of poly-
nomial equations. A polynomial is an expression of the form

Y = n n-1 _ .., 2
(5-9a) P(z) = ajz  + a;z + +a ,z° +a, _,z+a

where n 1s a non-negative integer and ags ai, any **e58,_ 1» 8,
are any given complex nurbers, ag # 0. The nor-negative integer
n 1is called the degree of the polynomial and the numbers ags 2,
are called its coefficients. A polynomial

Bpatcts Bngs By
equation of degree n 1s an equation

(5"9b) P(z) = 0,

where P(z) 1s a polynomial of degree n, Linear equations are
polynomial equations of degree 1; quadratic equations are polyno-
mial equations of degree 2,

Examples 5-0a.
(a) 22 - % 22+ z -2 = 0 is a polynomial equation of
degree 3 wlth rational coefficients,
(b) 22 - /223 &+ 7z2 - 3 =0 1is a polynomial equation of
degree 5 with real coefficients.
(e) z3 - 72+ 3 =01s not a polynomial equation.
(d) 523 - (2 -1)z+ (3 + 71) = 0 1s a polynomial equation
of degree 3 with complex coefficients. )
(e) z - 3+ J? = 0 is not a polynomial equation, but mul-

tiplying by zE we obtain the polynomial equation
z3 - 322 + 1 = 0, Every sSolution of the Tirst equation is

a solution of the second, and every solutlon of the second

equation is a solution of the first.

"Every equation which can be written in terms of the un-
lknown and given numbers, using only the operations of addition,
multiplication, subtraction and division,can be transformed into
a polynomial equation, equivalent except for extraneous roots.
Thus, ordinary algebra is mostly concerned with the solution of
polynomial equations,., Let us summarize some of the advantages
that the complex number system C has over the real number
system R in connection with polynomial equations,
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There are certaln quadratic equations whose coefficilents
are In R but which have no solutions in R; every such equation
has solutions in C. This was proved in Section 5-5 for the
case of yeal coefflclents, bub 1t is true - veffi-
clents are complex numbers, ;oY example

22 + (1 - 51)z - (12 + .

has the ywo solutions 2 + 31 ahd =3 + 21, a fact which may be
checked by substitution. Methods for finding such solutions

will be presented in Chapter 12. The theorem that the solutions
of any guadratic equation with complex coefficients are complex
nunbers y% an unexpected and demarkable result, It shows us that
we will wot have to extend th& complex number system in order to
solve quadratic equations whoada coefficients are in C., Recall
that R dues not have this proparty; indeed it was Just for this
reason that we extended R to Q. . .

.. .But the merits of C go rar beyond this. Evéry polynomial
equatlon with coefficients in € has solutlons in C,/ahd indeed
all the yvulutions that could ba expected are in C. This result,
which ls ltmown as the Fundamental Theorem of Algebra, comes as
an enormouy bonus, when we recall that to solve the simple equa-
‘tlon x2 v -1 the new element 4 had to be invented. Conceivably, .
one might expect to need a new number J to solve x4 = -1, for
example, Thls 1s not the case! This equation has four and only
four complex solutions, all of, the form a + bl, where a and b
are real numbers. (See Chapter 12 and Exercises 5-9.)

The first proof of the Fundamental Theorem was given by
Gauss 1n 1799. Since then sevegrel other proofs have been dev-
eloped and although some are guite simple, none is simple enough
to be preasented here. WYWe shall however make a preclse statement
of the thedrem In a form which Ls baslc for the study of poly-
nomlals.
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Theorem 5-9.
Let
- n n-1 cee 2
P(z) = a,z + &,z + +a, 020 +a, 1z +a,

be a polynomlial of degree n with complex coefficients. Then
there exist n complex numbers Py Tpy *rey Tp (not necessarily
distinct) such that

P(z) = a_(z - ri)(z - ry)eee (z - r,) .
If one of the factors in the factorization of P(z) stated in
Theorem 5-9 18 z - r, r 18 called a zero of P(z); if exactly
m of these factors are z - r, r 18 called a zero of multi-
plicity m. A zero 1is called a simple zero if i1ts multiplicity
1s one; otherwilse 1t 1s called a multiple zero. Since the total
number of factors in Theorem 5-9 is n, the sum of the multi-
plicities of the zeros of a polynomial of degree n 1s n. This
may also be stated: The number of zeros, each counted with its
" multiplicity, of a polynomlal of degree n 1s n.
i Since amproduct 1s 0 1f and only 1f one of 1ts factors 1s O,
it 1s clear that z 1s a solution of the polynomial equation

P(z) =0
if and only 1f 2z .equals one of the zeros of P(z). According
to Theorem 5-9 a polynomial of degree n > O has at least one
zéro (exactly one 1if Py =Ty = ses = rn) and may have as many as
'n  zeros (exactly n 1f no two of the numbers Tyy Tpyter,Ty
are equal). It follows that every polynomial equation of degree
n > 0 has at least one complex solution, and may have as many as
n solutlions, but has no more than a solutions.

Example 5-9b., Discuss the possible number of solutions of a
polynomlal equation of degree 3. Include examples,

Solution: The equation may have 1, 2, or 3 solutions, If 1t
has one solution, this must be a triple zero (zero of multiplic-
1ty 3) of the polynomial., If it has two solutions, one must be
a simple zera, the other a double zero (zero of multiplicity 2)
of the polynomial. If it has three solutlons each must be a
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simple zero of the polynomial,
An example of the first case is given by the polynomial

cquation 2 - 325 432 -1=(z-1)3=o0.
The only solution of the equation is z = 1. 1 is a triple zero
of the polynomial z3 - 322 + 3z - 1.

The eqguation

23 -2 241 = (z + 2 oo
has the solutions 1, -1, -1 is « 'mn° 2ro and +1 a double zero.
The equation ' '

23 4+ 7 = z(z - 1)(z + 1) =0
3

has the solutions 0, i, -1. Each is a simple zero of z° + z.
Let P(z) be a polynomial of degree n,
P(2) = a,(z - 7))z - mp)eer (2 - p),
and define Q(z) by
Q(z) = a (z - PE)"f (z - rn).
Then Q(z) 1s a polynomial of degree n - 1 whose zeros are the
zeros of P(z), except possibly for ry, and
P(z) = (z - ry)Q(z).

Now suppose we have to determine the zeros of P(z) and that we
have found one zero, ry. The remaining zeros will be the zeros
of Q(z) and to find Q(z) we have only to divide P(z) by z - r,
since

' ;ﬂ—szl = Q(z)
This fact enables us to reduce the solution of a polynomial
equation of degree n to the solution of an equation of degree
n - 1 once we have determined one solution of the original equa-
tlon. The followlng example illustrates this.

3.1 =o0.

Solutlon: The solutions of the equation are the zeros of z3 - 1,

One zero 1s obviously 1, We divide z3 - 1byz - 1:

Example 5-9¢, Find all solutions of the equation z
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z2 + 2 + 1
z -1 z3 -1
3 2
z°- - 2
z2
2
zZ - 2
z
z - 1
G

The remaining solutions thus are the -ros of z° + z + 1, that
is, the solutions of

<

z" i .
Solving thils quadratlc equation we get the roots - % + 1 Jéz ’
- % -1 —%3 . Thus the solutlons of the given equation are 1,

1 ,1¥3 1 143
- - S -

In thls example we observe that, as in the case of quadratic
equations, the complex roots are conjugate. We can show that
whenever the coefficients of a polynomial equation are real the
complex solutioné occur 1n conjugate pairs; that is, if 2z 1is
a solution of such an equation 2z 1s also a solution. Let =z
be a solution of

n -1

a o + oe 4 + = .
0% T @ . a _,z+a, =0

Then we have n .= .0y +a =0=0.
2,2 a a,_12 + a, ,

and using Theorem 5-8c repeatedly we get

— /=\n - (=yn-1 ~ - _

ao(z) + al(z) o+ oeee + an-l(z) +a = 0.
Since the coefficlents are real, 8 = a_, a; = a1,'"" En-l =
a _1’ arl = a, and we have

\yn —yn-1 .. = _
a (2)" +a (=)~ e +a jz+a, =0,
30 that Z 1a also a solutiosn of the equation.

301

isec, 5-9]




294

Exercises 5-9

1. Determine the zeros and the multiplicity of each zero for
the following polynomials.
(a) 5(z - 1)(z + 2)3

2
(b) zu(z + %) (z - 3)

(¢) (z -3+ 21)%(z+ 1)
2. Find the zeros of the following polynomials and state the
multiplicity of each zero.

(a) 25 + + 323
(b) 24 +22° + 1

(c) 23 + 322 4 3z + 1
3. Write two polynomial equations whose only solutions are 1 and
2 such that:
(a) the two equations “zve the same deg—ee;
(b) the two equations _.= of cifferent degrees,
%.  Discuss,with examples, :1e imsssible number of solutions of
an equation of degree ﬂ? '

5. Find all solutions of z* - — = Q.
6. Find all solutions of %he i>llowing equations, given one
solution.
(a) 123 - 20z° + 36z - 16 = ¢ z =4
(b) 23 - 422 4 6z - L 0 z =2

' Find all solutions of :ne folloawing equations, given two
solutions.

3

(a) zl’L +2z2° + z+ 2= 3 z = -1, <2

(b) z4 - 323 - 327 -7+ . =0 z = 4,1
8. Find the polynomial wh :z& zerss include 1 and -21 if:
(a) the polynomial ha: cti: 1>west possible degree,
(b) the polynomial har rezl -oefficients and has the lowest
possible degree,
(¢c) the polynomial has rea. vefficients, the lowest
possible degree and -2. is a double zero.

[sez. »-2)

300




295

9. Given that 3 + /2 1 1s a solution, find all solutions of

the equation
2" - 623 + 222 + 54z - 99 = O.

‘10. Glven that 1 - 51 is a solution, find all solutions of
the equation

3

o223 4 422 4 yp - 12 = 0,

11. (a) Find a formula for the coefficients of the cubic poly-
nomlal whose zeros are Tys To rg if the coefficient of
the highest power is 1.
*(b) Do the same for the quartic polynomial.
*(c) HMake a guess as to the form of a corresponding formula
for a polynomial of degree 7.

5-10. iliscellaneous Exercises.
1, If 2z = 2 - 31, evaluate

- = 1 2 2 4 + 51
=2, 2Z, IZI: |z|’b—z-’ |z| ’ |Z |, and—z—s——.
2. Write a quadratic equation having the solutions c¢ + di and

¢ - di, where ¢ and d are real.

3. Is’'the set of numbers (1,-1,1,-1i) closed with respect to
multlplication? Addition?

b, If z = x + yl show that

x £ lzl-and y < |z].

5. Sketch the set of points 2z which satisfy each of the
following condltions. '
() |z -2] =3 (¢) Jz -21] <t
(o) |z + 2| > 3 (@) Jz - 2,1 <5

0. Write an equation in X and y which is equivalent to the
equation |z - (2 + 31)| = 5.
Descrlbe the set of points in an Argand diagram which
satlsfy the glven equation,
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T ‘Give a geometrical interpretation Tor the following rel-

ations,
(a) lzq| < |25l (@) 2z + Z, = 0
(p) lz| =5 (e) z) - 22 =0

(c) Z) + 25 = 0 ‘

8. Find all complex numbers z such that (Real part of z) =
(Imaginary part of z), and |z]| = 1.

9. Determine al" quadratic equations with real coefficients
which have 3 + 21 as a solution,

10. Plot the point corresponding to 3 + 5i in an Argand diagram.,.
Then multiply the glven number successively by i, 12, and
13, and plot the three points which correspond to the
resulting products. Finally, show that the three last
namned points together with the given polnt form the
vertices of a square.

11. Show that ' z, 1s a solution of the equation
a22 + bz + = 0, where a, b, ¢ are real and be - hac < 0,
- _c > - _b 34
then 2,25 = % and z, + 2, = 3 ° Use the result- to

describe a geometric construction for Zge
12, Find all quadratic equations wi:th real coefficients having
solutions z, and z, such that z, + z, = 1 and z,2, = b4,
13. Find all complex numbers 2z for which the real part of
.z2 is 0. Show that if 2z belongs to this set, then %
also belongs to the set. '
14, For what real values of r does the equation

rx° + (L+1)x +2=0

have non-real complex solutions? For what values of r
does it have only one solution?

15. Show by an example that a - bi need not be the complex
conjugate of a + bi?

16. Find the equatlon of the perpendlcular bilsector of the
line joining z; and z,. (Hint: Use the fact that the per-
pendicular tiaactor of a line segment is the set of points

" equidistant “rom the endpoints.)
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18.

1y,

20.

21,

*22,

297

Let z, = X, + yoi. Describe the set of points z = x + yi
|z - Ebl
which satlsfy the 1nequality Te-z T < 1.
o]
Let zq and 25 be ‘distinct non-zero complex numbers. Show

that 2 and 2, represent points 1n an Argand diagram lying
on a stralght line through the origin if and only if ;1 is
real. 2
Solv= the equation z4 = -1, (You may find it helpful to
refer to Exercises 5-6, Problems 22 and 23.)

Show that 1t 1s impossible to satisfy all the order postu-~
lates of Chapter 1 in the complex number system. Consider
the element 1, Certalnly 1 # 0, so either 1 > Qor 1< 0O
1f the "Trichotiomy" property is to hold. Show that each of
the assumptions 1 > 0, 1 < O leads to conclusions contra-
dicting at least one of the order postulates.

Find all complex numbers x,y with the property that the con-
Jugate of x + yi 1s x - yi.

If z = x + y1, show that

IxI + Iyl < 2 [z].
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*5-11. Construction of the Complex Number System.
In this chapter we have assumed that we have available a

number system (which we called the complex number system) satis- i
fying certain imposed requirements (th: “our fui..imental proper- :
tirs C-1, ¢-2, C-3, C-4). In a sense we have stated what a com-
ple.. ..umber system ought to be. On the basis of the imposed re-
quirements we have learned how to compute in such a systew.

It is a fundamental (but sophisticatec) question whecher
there =ctually exlsts a number system C ful:llling the reguire-
ments we set down in Sections 5-1 and 5-2. We shall skeizh the
basic steps for constructing such a system. Many of the details
will 2 left to the reader.

=2t us return to our earlier developments. There we learned
that Zhe rule which assoclates with the complex number a + bi
the codered pair of real numbers (a,b) sets up a one-to-one
corrsspondence between the set of complex numbers and the set of
orderad pairs of real numbers, This fact and the information
whick we have obtained on how we are compelled to add and multi-
ply In C motivates the following proposal for constructing, on
the basis of the real number system, a number system which meets
the requirements we imposed on C, '

Let K denote the set of ordered pairs of real numbers (a,b).
These are the obJects which we are to "add" and "multiply". Let
us say: (a,b) = (c,d) if and only if and only if a = ¢ and b = d.

It is necessary to define operations of addition and multi-
plication for K. The facts we have deduced from the fundamental
properties of the complex number system lead us to believe that
the definitions which we shall put down are "reasonable" when we
keep in mind our mission of constructing a complex number system
with "real building blocks".

We define

Addition: (a,b) + (c,d) = (a + c, b + 4d).

Multiplication: (a,b)e(c,d) = (ac - bd, ad + be),

Not= that the operatica of "addition" in K ic defined in terms

of the operation of =z.Jddltion in th: real number system and that
[sec. 5-11]
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the operation of "multiplication' L. .f'med in terms of
addltion, subtraction and multiplication Lii £: rszal number
system., [Note that our definitilons assure closure of the oper-
ations + and e of K: the "sum" of two ordered palrs of real
numbers is an ordered pair of real numbers, the "product" of two
ordered palrs of real numbers is an ordered pair of real numbers.,

Two remarks are in order. First, we must distinguish,
"addition" and "multiplication" in K from addition and multiplica-
tion in the real numver system. The two kinds of addition and
multiplication apply respectively to different kinds of objects.
That 1s why we use the exaggerated plus sign + and the exagger-
ated times sign +« for the operations of "addition" and multi-
plication" in K. :

-8econd, we emphasize that + and ¢ are constructed from
what we learned about addition and multiplication in C keeping
in mind that our correspondence between & + bi and (a,b)
identifies "real part" with "first component" and "imaginary
part" with "second component'. ' The spadework sets in at this
stage. We verify first that K with the addition + and
multiplication ¢ satisfies the usual laws of algebra. This
verification depends upon properties satisfied by the real
number system. We easily verify that (0,0) is the additive
identity for K, that (1,0) is the multiplicative identity for K,
and that (-1,0) 1s the additive inverse of the multiplicative
identity. S

Explliclitly, we have the following results:

(a,b) + (0,0) = (a,b), (a:b) ¢ (110) = (a:b):
(1,0) + (-1,0) = (0,0).
Verifly these three statements.
further (0,1) o (0,1) = (~1,0).

Hence K possesses an element whose square is the additive in-
verse of the multiplicative identity. This sounds a bit heavy-
handed but tells us that we have grounds for optimism as far as
capturing somethling that will play the role of the all-important 1.,
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Let us go so far as to denote (0,1) by i. We may write
(a)O) + (O)b)

i
]

(a)O) + (b,O) * (O)l)

(5-11a) (a,b)

(2,0) + (b,0) « 1

Now if we restrict our attention to the special elements of
K whose second components are zero, we see that they behave
under + and ¢ the same way that their first components do
under the + and « of the real number system. That is

(5-11b) (2,0) + (v,0) = (a + b,0),
. (5-11c¢) (2,0} « (b,0) = (ab,0).

Verify the statements (5-11b), (5-1lc) and also the follow-
ing two:
(a:O) + ('Q)O) = (0,0);
(8,0) « (£, 0) = (1,0),  a #o.

We now define a notion of order among the special elements
of the form (a,0). (Remark: We could not define a notion of
order in K, even if we wanted to, which would yield the expected
relation among the special elements (a2,0). This remark applies
to C also. If we had an order relation in C like that in R we
could expect the square of each non-zero element to be positive,
This would force 12 into the unacceptable position of being both
positive and negztive in the sense of the real number system.)
We define

"Less than": [(a,0) < (b,0)] means (a < b).

It is now possible to show that the set of elements of the
form (a,0) together with the operation of addition + , the
operation of multiplication ¢ , and the relation of inequality
< satisfy the postulates for the real number system.,

Verify this assertion.

We are thus Juétified in taking this set of awkward appear-
ing elements (a,0) with addition, multiplication and order so
introduced as our real number system, With this understanding we
verify that K has 211 the properties imposed on C. Note that
(-1,0) is the addizive inverse of the multiplicative identity
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of our present real number system and that

(5-11d) 1« 1=(-1,0).

Thanks to the fact that the elements (a,0) may be taken as
the rezl numbers, Property C-2 is satisflied. By Formula (5-11d),
Property C-3 is satisfied. Further Formula (5-1la) tells us that
Property C-4 is satisfied. There remains to be verified only
that <+ and e ~are commutative and associative, that the dis-
tributive law holds in K, and that each element has an additive
inverse, in order to show that K has Property C-1l.

The commutative and assoclative laws for 4+ and e are
readily vefified as is the distributive law. As an illustra-
tion we consider the distributive law:

(a,b) o [(c,d) ‘+ (e,f)]
= (a,b) s (c + e,d + f)

(a(c +e) - b(d + ), ble +e) + a(d + £))

and [(a,b) (c,d)] + [(a:b) o (e,r)]

(ac - bd, be + ad) + (ae - bf, af + be)

((ac - bd) + (ae - bf), (bc + ad) + (be + af))
(a(c + e) - b(d +£), blc+e)+a(d+rf)).

We see that the distributive law holds.
Additive inverse? Since
(a,b) + ("a:'b) = (0,0),
(-a,-b) 1s the additive inverse of (a,b).
It 1s now simple to verify that a non-zero element (a,b) has
a multiplicative inverse and hence that the equation

(a,b) o (x,5) = (c,d), (a,b) # (0,0)

has a unlque solution.

[sec. 5-11)
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Given (a,b) # (0,0), we verify that

b
(a,b) o( a
’ a + b° ’ a® + b
\

a ~b -b a
(a(az + b2> - P (ag + bg), ¢ (aé + bz>+ ° (a2 + bz))
(1,0). | |
We now conclude that K together with + and e« satisfles
the conditions imposed on the complex number system.

At this stage 1t suffices to redesign our notation for the
real numbers in K and to designate the real numbers by the

]

letters, a, b, ¢c,-++, to use the standard notations for the
additlve unit and the multiplicative unit, and to write + and
for 4 and « respectively. With these agreements each complex

number is o” the form
a + bi, ...

where a and b are real, and 12 - -1§
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Chapter 6
EQUATIONS OF THE FIRST AND SECOND DEGREE IN TWO VARIABLES

6-1. The Straight Line.
In Chapter 2 we took a preliminary look at analytic geometry,
The purpose of this chapter is to use the techniques of analytic

geometry to study systematically the graphs of equations of the
first and sec:und degree in two veriables.

One of the axioms of plane geometry is that two distinct
points determine a line. 1In Chapter 2 we defined the slope of
the straight line determined by Pl(xl,yl) and Pg(xg,yg) to be
the real number

Yo = ¥h

X2 - Xl'

m =

We then used the geometric picture of the Stralght line to estab-
lish the fact that this rcal number m did not depend on the
particular pair of points on the line which wére used to compute
it. We now use this fact to prove

Theorem 6-la. If Pl(xl,yi) is any point in the plane and
m 1is any real number, then the equation of the straight line
passing through the point Pl with slope m is

6—13.. y - yl = m(x - xl)'

Proof: Let " P(x,y) be any point on the line distinct from
Pl' Since the slope of the line is independent of the two points
used to compute 1it, regardless of which poimt P(x,y) on the line
we take, so long as it is not Pl itself, we must have

y—yl
X—Xl'

m =
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x # x; and hence X - X # 0., {(Why can't x = xl?) If we multiply
both sides of the equation by x - Xy, We have

y -y, = m(x - Xl)'
This argument shows that the coordinates of any point on the 1line,
except P, satisfy the equation y -y, = m(x - xl). Of course
the coordinates of Pl satisfy the equation also.

There 1s, however, the possibllity that some polnts on the
graph might not lie on the line though Pl with slope m. For
instance, it 1s conceivable that the graph could be one of the point
sets shown below in PFig. 6-la.

aY

Fig. 6-1la.

Of course our intuition and our experience in plotting polnts tell
us that thic is not the case. 1In order to be abiolutely sure, we
must prove that every point Q(x',y') whose coordinates satisfy the

equation, actually does lie on the line through 'P wlvh slope m.

1
Let Q(x',y') be any point whose coordinates satisfy
6-1a y -y, = m(x - xl).
Then y' -y, = m(x' - xl).
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If x!' = X then y'! - y, = 0 and y!' = yy- This means that @
is Just Pl' And since Pl is certainly on the line, we only need
to consider the case x!' # X5 that 1s x' - x, A 0. If

x' - Xy # 0 we can rewrite

yt -y,
y' -y =m(x' - x;) as TR m.

But this equation tells us that the line determined by Pl and Q
has slope m. Q then is on the line through Pl with slope m.
And we have now shown that any point Q(x',y') whose coordinates
satisfy the equation 6-la lies on the line. Since the coordinates
of every point on the line satisfles 6-la and any point whose
coordinates satisfy 6-la lies on the line, equation 6-la is the
equation of the line through Pl with slope m. The proof is now
complete.

1s called the point-slope form of

The equation y - v, = m(x - xl)
the equation of a line.
Example 6-la. Find the eqguation of the line passing through

the point (1,2) with slope. 2.

Solution. By Theorem 6-la the answer is y - 2 = 2(x - 1).
This simplifies to y = 2x. To sketch the graph of the equation we
simply plot the point (1,2) and use the fact that the slope is 2
to locate a second point on the line, as we did in Chapter 2 .
That is, we go to the right 1 and up 2 and find that the point
(2,4) 1is also on tqg line. g

j i . —4\——‘
i i
EEN
L : /
|
{O A1
b th
il
r {1, 2 !
i o
s 4
;.i i l .
Fig. 6-1b.
[séc. 6-1]
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An even easler way to plot the line would be to use the point (1,2)
which was given and to find one of the intercepts. In our case both
the x-intercept and the y-intercept are zero.

If in the polnt-slope form of the equation of a line,
Yy -y, = m(x - xl), we let x = 0, we find the y-intercept to be
¥y - omxy. We set the y-intercept ¥q - mx, = Db and the equation of

1
the line can be written in the form

6-1b .y =mx + b,

Thls 1s an extremely useful form of the equation of a line as
both the constants m and b have geometric significance --m
gives the slope and b tells us that the line crosses the y-axils at
(0,b). For obvious reasons this form of the equation of the line is
called the slope-intercept form. It should look familiar to you
since it has the same form as the defining equation for the linear
function which you met in Chapter 3.

Up to this point we have talked about straight lines which pass
through a point and whlch have slope m. This discussion includes
every line which has a slope. However, in Chapter 2 we noted that

every non-vertical line has a slope. (What is the slope of a hor-
izontal 1ine?) This means that the only lines which do not have
equations which can be written in the slope-intercept form are
vertical lines.

Suppose we consider the vertical line through the point (2,0).
The point (2,1) is on it. So is the point (2,2) and the point
(2,3). In fact all the points with abscissa 2 1ie on the line.
Furthermore any point which lies on the line has abscissa 2. So
the equation x =2 1s the equation of the vertical line through
the point (2,0). '

Similarly every vertical line which crosses the X-axis at
(a,0) must have the equation x = a. We are now able to assert
that every straight 1line either has the form Yy =mx +b or x =a
for some real numbers m, b, and a.
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Example 6-1b. Find == <quation of the line through the po:i_ts

fr'}) and (3"5)'
Solu- " - In or¢-r = _ = =she point- .~ . ° -1 we m.st find
’ YE - yl - - -
m. The f:-—ula for th- s R L 2 ~%}——i—5l= _2.
Xp = Xy -3
“ovositutzng in oy -y o xl) we have y - (-5) = -2(x - 3)

Example 6-lc. Find -« Qjuation of the line parallel to
-Xx + 5 and having x-irZe apt 2.

Solution: By 6-1b (tz~ :lope-intercept i:vm), the line
Yy = =X +5 has slope -1. * ‘'heorem 2 - 3a hich says that
puarallel lines have the same .ope, the slope c: the line we are
after 1s -1. We use the poin:-slope form with m = -1 and (2,0)
as the point Pl(xl,yl) to obtain the equation y - 0 = -(x - 2).

Exercises 6-1

1. Write an equation of the line which passes through the two

points:
(a) Py(2,4)  and Py(4,5)
“(b) P,(2,4) and Po(4,2)
(¢c) P(0,0) and P,(1,5)
(d) P,(10,2) and P,(0,0)
(e) P1(2,7) and Py(-8,5)
2. Draw the graph of each of the following equations on the same
set of coordinate axes:
(a) y=2x +1
(b) v =lx +1
(¢} vy =-3x +1
(d) y = -x +1 318
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N

10.

11.

Draw the graph. of C- y=2X anc y = 2x - on
the same set oI coo. 2xls
(a) Draw line:z thro...~ i~ 2,2) having

m= -2, -1, O, z.
(b) Write an equation . ¢. .. .ine.
Write an equation of % o 1 line passing through (3,4).
Determine m so that - - ne ‘hose equation 1s y = =x + 3
passes through the poi. Lo ).
Write an equation of ¢t: - w.ozh slope - % and Xx-Llnter-
cept 2.
Write an equation of tr . ine z:ssing through the origin and

the point (-1,3).
Write an equation of th- 11 ¢ passing through the origin and
the point (xl,yl).

Write an equation of the l:ir= passing through the origin with
slope m. In many praci.cgl problems this relation between
two variables X and y ‘. called direct variation. If

vy = kx we say that y vzries directly as x, or that ¥
is proportional to x. 1Ir. tne latter case, k 1is called the
constant of proportionality.

Write an equation expressizz —ne relation between variables
of the following:

(2a) The perimeter of an =qu__.teral triangle varies directly
as the length of a s.de.

(b) The number of feet s traversed by a freely falling
body varies directly as the square of its time of fall
t. '

(¢) The current I in zn e’=zctric ecircuit varies directly

knl

as the electrcmotive force E.

B
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13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

309

If x wvaries as y, =znd x =8 when y = 15, find x
when y = 10. -

The volume 7 of an :{ieal gas variles directly as itz absolute
temperature T. If U = 1500 cc. when T = 300° absolute
what will the temperzzure be when volume is 2500 227

Find the value of k for which the line y = kx + will
pass through the point (- %,-3).

Write an equation of the line passing through (3,%) parallel
to the line whose equation is y = 2x + 2. '

Write an equation of the line through the origin perpendicular

to the line whose equation is y = %x + %. Co

Write an equation of a line through the point (-2,5) and
perpendicular to 5x - 2y = 2.

A line has a slope % and passes through the point (8,-12).

‘Write an equation of a 'second line through this point per-

pendicular to the first line.

Graph the lines on the same coordinate axes whose equation is
5x + 3y - ¢ = 0 and having y-intercepts

(a) -3 S (@) s
(b) -1 (e) L
(e} 0

Write an equation of the line which passes through the point
(-5,7) and is parallel to. .

(a) the y-=zxis (b) the x-axis

Write an ecuation of the liine perpendicular to the line whose
equation i=s 2y + x =5 znd intersecting it, on,

(a) the y-axis (b) the x-axis

Write an equation of the line tangent at the point (3,4) to
the circle with center at the origin and radius 5.

320
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23. Pind an equztizzn o the line at - dis  ace 2rzm the
origin with x-_=-zTercezt 5,

2%, Find an equati = =f ':e2 line which pz- es thz:ucw the origln
and the midpol: = i -re segment cut o:: by t:: rzordinate
aXes on the li: - wh.zz equation is 2x - 3y - : = 0O,

25. PFind an equaticz: of the line which contains tae zzortest line

segment that Jjc.ns the origin and a point on the line whose
ejuation i1s y - 2x = 10.

6-2. The General Linear Equation Ax + By + C = 0.

Definition 6-2a. The equation

6-2a AXx + By +C =0, A° 4+ B2 # 0

is called the generzl linear equation in two varia=les Xx and y.

(A2 + B # 0 1s ar sconomizal wey of saying either A or B is

not zero.)

In tk= last seczion we showed that the graph of the equations
y=mx +t and x = a are straight lines. We now ask: Is the
graph of ewery linear equation'a straight 1line?. And conversely,
Is every straight line the graph of soume linear equation? The
answef is given by

Theorem 6-2a: The grapa of every linear equation 1s a
straight 1line and every strzight line is the graph 22 a linear

equation.
Proof: Every lineexr egquation hzs the form

Ax + By +C =0, A° - B £ 0. If F #0,

.

y=-g*-=
which 1s the equation of tre 1line w72 slopy m =4—.‘§ and
y-intercept b = -% 5y Thaorem 6-la. |

[sec. 6-2]
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If & =C then A0 = :_%,

which s ine equat :rn of &z o tical line thriuzi; che point f
(—%,O), ‘herefor every _lirzz= equation has fz= ts grarnh a
straighs ne.

Conv: ~sely, every stri_--: _ine 1s either vz=—ical and has an
equation = = a for some =z  zumber a, or tk= line has a slope
m  and : y-intercept L. and has an equat=on of the form
Yy =mx + :. Since both c¢. =—z=se equations can :. written in the
form of t:.2 general linear eguztion -- (1)x + vy + (-a) =0
and (-m;: L (1)y - (-p) = =, the theorem is p.ovad

Example 6-2a. What . the _lope of the line whose equation
is 3x + 2y +7 = 07

Solution: The given equaticz can be written in the form
¥y = —%x - %. Hence the slope of the line is - %.

In this exampls we see tha® a line may be th= graph of differ-
ent equations. Thus, th2 eguat-ons 3x +2y +7 = 0 and
y =»-gx - % are equavic-: of The sam= line.

For two equations wi_se graphs a—= verticsl lines, it 1s easy
to see whether or not tx= two equaticms are =cmations for the same
line, Since in this zz== B = 0, <=2 equ: . ™ms have the form

For example 2x =% znd U4x = 6 are

Bla

AX + C =0 or x = -

equaticas for the :rams  razzht line; name’y, che vertical line

with x-intercept t%

A For equaticrs woos Z/=1o3 are Ton-vertical Znes, we simply
write them in sIzpe-intz- 23t form zmd cozpere sizJDes and inter-
cepts. For exzmple 2% -~ — - L =0 anf 4 + 2y - 6 =0 are
not equations o: the sams _imr= since tae-r »lope-izttercept forms
are y =~ 2x - 4 ant T o= -2x + 7, From tiZ=s form of the
equations we kncw that =h= _inss have the same slzee, -2, and
are therefore parallel. Buz their 7y-intercepts zre & and 3
respectively, and hence they certainly are not the same line.

[sec, 6-2]'
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kBy + kC = 0 both

i

On the oti2r hand Ax + By - C = 0 and ki

have the :lope intercest form y = - % X -

e

and are equations

[3

for zhe =za~e2 line. Tne result can be " tat:d _. the following way:
AX + By + C =20

The zracas of two linear equations of t 2
are the same line if and onl;" if their ' or: .. i:oding cceffZcients

are proportional.

Example 6-2b. L:ztermine without urawin: graphs wheth=r the
followlng pairs of ecuations have as their gruphs lines which are

tnhe same or are paral’:sl:
(a) 5x - 10y - 25 = o, (b) x =27 -3,
X -2y +5 = by = 3x -~ 2.
Solution: (a) _% = %% = "%2 = -F, th= two equatiicms repre-

sent the same line.

(b) If we first rewrzte the =quations =z the form
Ax +By +C =0, wehave X -2y +7 =0, -3x +6y +2 = 0.

Then _% = :% % %; hence the equzilconz do not represent the szme

line. However, since =he slcpasvof L:th lines are %, the lires
are parallel,

vie have now obtained several form: ar equations of straight
lines -~ the point-slope form, the slcpe--imsercer: form, ani the
generzl form. The flrst is conver =nt 12 the Zime 1s glvem by a
polnt and the slope. Tk szecond - _lows 1s o read off the sSlope
and the y-intercept. zzwever, -aly r n-vertical lines can be
wrltt:n 1n these two forms, wher:zs, z21 eguation for any line can
be wr.tten in the genera form. icothsr useful form 1s given in

the iollowing example.
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Example 6-2c. Find the equation oi' the line whose =z-incser-

cept 1s a and whose y-intercept is b, whers a £ 2 and
b £ 0.

Solution: The slope of the y
line 1is

b -0 b
m=g§5T"% =" 7 \\\(0 t

and 1t crosses the y-axls at the ~
point (0,b). Therefore its \\\\\\
equation is \49,0)

- .k . 0 N X
y=-3X + b, or equivalently \\\
6-2b % + % = 1. Fig. 6-2

Equation 6-2b is called the intercept form of the equatiza
of a straight line.

Exercises 6-2

and rmasses

hip-!

1. Wrlte an equation of the line that has slon:= -
through point (-1,-2). Write it in the 7 rx AXx ~E~ - C = 0

\

2. Use the intercept form to write an equat=z. of the lin= nzv-
ing x-intercept 2 and y-lntercept 3.

3. Find the slope and the y-intercept of the lines whose equs—

tions are;

(a) 3x -2y - 6 =0 (d) hxx_ ¥ -7 =0
(b) x -8y +2 =0 (e) 8 ~ 25 - 7 =¢
(¢) 59 -9x -1=0 (f) =% ==y +~ =2

324

[sec. 6-é3




314

Pind the X and y-intercepts of the lines whose equations
are given, by first writing each equation in the intercept

form: 7
(a) 3x +2y - 6 =0 (d) 4x - 7y - 20 =0
(b) b4x - 3y - 12 = (e) 3x -5y +10=0

0
(¢) 5x +2y - 10 =0 (f) 2x -3y +5 =0

Consider the following pairs of equations. Without sketching
graphs, determine which pairs represent lines which are the
same, are »arallel, or are neither.

(a) 3x -2y -2 =0 (d) 6x +2y +5 =0
bx - 4y -4 =0 X +3y +5 =0
(b) 2x -2y -7 =0 ~(e) 6y =x-73
3x - 6y —~1 =0 33% + 21y = -2
(¢) x~y-==0 (f) 3x +y-1=0
X -y -2=0 2x + 2% = %

(g) 2x +1 -y =0
Write an equation of a line which passes through the point
(0,0) and is parallel to the line whose equation is
2x -y -5 =0,
Write an equation of a line which passes through the point
(-2, %) and is perpendicular to the line whose equation is

'é - %=1

320
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6-3. The Parabola.

-

The first two sectlions of this chapter were concerned with the
first degree equation and 1its graph, the straight line. We proved
that every straight line in the xy-plane is the graph of a first
degree equation in the variables x and 'y, and conversely. We
showed in plane geometry that the set of points equidistant from
two fixed polnts is a stralght line (perpendicular bisector of the
segment Joining the two points). A navural question to ask next
i1s, what 1s the set of polnts equidistant from a point and a line?
The answer 1s given by the fdllowing definiton.

Definition 6-3a. The set of points equidistant from a line
and a point off the line 1s called a parabola. The line is called
the directrix, and the point is called the focus. The line through
the focus perpendicular to the directrix is called the axis, or,
sometimes the axis of symmetry, of the parabola.

In Fig. 6-Za, DD' is the di- D
rectrix and F 1s the focus. The
intersection of the axis of the
parabola with the directrix 1s
the point R, and the mildpoint R F

of RF 1s V. The point V is -
on the parabola because

d(R,Vv) = d(V,F). The point V
is called vertex of the parabola.

Fig. 6-3a

Example 6-3a. Find the equation of the parabola which has
the directrix x = -2 and focus (2,0).

326
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Solution: Our problem i1s to find an equation which is satis-
fied by the set of points (x,y) which are equidistant from the
line x = -2 and the point (2,0). 1In Fig. 6-3b, let P(x,y) be
any such point, and let Q Dbe the intersection of the perpendi -
cular from P %o the line X = -2 with that line. Then since PQ
is horizontal, Q has coordinates (-2,y). Since P is equi-
distant from F(2,0) and the line x = -2,

d(P)F) = d(P)Q)

w/QX-E)E + (y-0)? =«//(X+2)2 + (y-y)?

x2

- 4x + 4+ y2 = x° ¥+ bx + 4
y2 = 8x.

Up to this point we have
shown that the coordinates of any
point equidistant from the point al-2y)
(2,0) and the 1line x = -2 sat-
isfy the equation y2 = 8x. Con-
versely, it may be shown (See
Problem 5, Exercises 6-3) that if
the coordinates of a point satisfy +
the equation y2 = 8x, then the
point is equidistant from the
line x = -2 and the point
(2,0). Thus y° = 8x 1s the
équation of the parabola.

2

X=

Fig. 6-3b
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To sketch the parabola we use the technigu=s of Chapter 2.
The x and y 1in*~rcep® are both 0. Tarths=rmore since
(-y)a = y2 = Bx, the cu ve is symmet—ic with respect to the x-axis.
2

Since x = % 2 0, ¢there are no poinzz on the zraph for x < O,
We plot a few convznient points and draw & smooth curve .through
them. '

KO%—ZI

yi| O} +t2]+-

These points are shown Zn Fig. 6-3b,

Example H-3b. Find the equation =’ the set of points equi-
distant from the line.- y = -3 and the pz=int (0,3); that is, the
parabola with directrix y = -3 and focus  (0,3). As in Example
6-3a we begin with

| 4(p,F) = d(P,q)
V(x-0)24(y-3)2 =/ (x-x)Z + (y43)°

This simplifies to r |

x° = 12y. ' L g

I we test for symmetry, . ? ' F(0,3)

<

&)

(-x)2 = x® = 12y, and the par- ‘ ;\\ —— I~ ’
abola is symmetric with respect o NN

/.
TN
/
BN

to the y-axis. The vertex is '6f§'4'3'2‘
at the origin. Trds information _
together with the points obtained
from the following table enables ‘ - |

N 1O

e

us to sketch the parabolz as shown |
in Fig. 6-3c.

z | -6 | =3 9)
2l ol %]
329
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We now consider the more general problem of finding the equa-
tion of the parabola with focus F(0,c) and directrix the line
¥y = -c. As betore we let P(x,y) be any point on the parabola.
The Q(x,-c) is the foot of the perpendicular from P to the
irectrix. See Fig. 6-3d. Then

d(P,F) = d(P,Q)

or / (x:0)% 4 (y-0)2 = (x-x)2 + (y-(-0) )2

2 2 2 ]
x° + (y-¢)° = (y+c) r
- Ellolc
6-3a x° = hey. N
, NG
The vertex is at the origin; - N [
the parabola is symmetric with = 5 ’/; Ly
respect to the y-axis, which is L
the axis of the parabola. 1
|
Fig. 6-3d . y=|~c Q (X,~¢
|

If we had taken the directrix to be the line X = -¢ and the
focus to be (c¢,0), a similar agrument would have given the equa-
tion

6-3b y2 = lhex _|

These two equations are sometimes Al
referred to as the standard forms s e s
of the equation for the parabola.
In these forms the vertex is at N
the orlgin and the absolute value 0 Bic ln
of the constant ¢ 1is the dis- 1
tance of the focus and the direct-
rix from the origin.

xy)

Sl

o
/1™,

b 3
o

N

1

329 Fig. 6-3e
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If we conslder the more general case in which the focus is any

polnt (a,b) and the directrix is any line parallel to one of the
coordinate axes, only the algebra is more difficult. ;

Example ©-3c. Find the equation of the parabola with focus
(4,2) and directrix the line x= -6,

Solution: ‘Let P(x,y) be
any point on the parabola and let
Q(-6,y) be the point in which
the perpendicular from P to - ‘ N %

the directrix meets the directrix.—— a6y i - L
‘ ¢ — Ly | ]
A L '

a(r,F) = d(P,Q) —

E
— AN .
'v/(X-u)e + (y-2)° - j 1 ? %7/ f AN

5
H
™

= A (x-(-6) )2 & (y-y)? -

.
Llivene L
()2 2 )2 . Lol T N
(x-4)% + (y-2)° = (x + 6) —6l-8-433-(0] | 234 %6
(y-2)° = 12x + 8x + 36 - 16 7 2\
2 EEEEABREE
(y-2)° = 20(x + 1) EMNE
— I A
(y—2)2 = 20 (x -1 (-l)). T ; P {5 Y
The vertex is the point V(-1,2). Fig. 6-3f
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In general, if the equation has the form

it 1s a parabola
l(x - n)% = Ye(y - k) I with vertex V(h,k),

focus dlrectrix
(h,k + ¢) v=k-c¢
| 4 i N -t i
L ! l I 'lep.yb | L { ‘1
| { Q|{hi-cly !
1( A\
\ Il
Axis, |y 3K P {h+c,k) C N b Tb(x,y
: VIhk) NG 1T
|
: \ X
AN Q 1
N\ = y=k=d
&
! K
. ! | L P 4
Flg. 6-3g Fig. 6-3n

Example 6-3d. Find the coordinates of the vertex, the focus,
and the equation of the directrix of the parabola:

(a) x° +6x -2y +3 =0,
(b) y2 + 4x + 8y +4 = 0,
[sec. 6-3]

331



321

Solution: Using the method of completing the square
(Chapter 3),
2

(a) x= +6x +9 =2y -3 +9
(x + 3)2 =2y + 6
(x +3)% = 2(y +3)
(x +3)% = 1)y +3).
By 6-3c, h=-3, k=-3, c =z
Hence  V(-3,-3); F(-3,-8); DD': y = - L.
(b) v +Ux +8y +4 =0
ve + 8y + 16 = -U4x - 4 + 16
(v + #)% = -b(x - 3)

(v +4)% = 4(-1)(x - 3)
By 6-3¢, h =3, k = -4, ¢ = =1.
Hence v(3,-4); F(2,-4); DD': x =4,

The parabola has the interesting and useful phyE{cal'property
that a ray of light emanating from the focus will be reflected
from a parabollc surface in a line parallel to,its axis. This
property 1is the reason for the parabolic shape of automobile head-
lights and the metal reflectors in flashlights. The reflected
light 1s then concentrated in a beam which can be directed where
1t will be most useful. | '

Exercises for 6-3.

1. Find an equation of the parabola and sketch the graph showing
the focus and the directrix of each:

(a) directrix x = -3 and focus (3,0).

(b) directrix x = % and focus (-4,0).
(¢) directrix y = 5 and focus (0,-5).
(d) directrix y = -6 and focus (0,6).

[sec. 6—3]
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Find the coordinates of the focus, the equation. of the direct-
rix, and sketch the graph of each of the following:

(a) x° = -4y (e) x =y°

() x2 = by (f) x2 + y=0
(¢) ¥° = -6x (g) 2x° - 4y =0
() x° = -6y (h) 3x + by° = 0

Give several examples of a parabola from the physical world.

For each of the following parabolas find an equation of its
axis, its directrix, and the coordinates of its vertex and
1ts focus. Sketch the curve.

(a) y = %§X2 (d) x = —2y2
(b) =-—fgx2 (e) x +y° =0
(e) y° = 20x (f) x° . vy =0

Complete the proof of Example 6-3a. That is, prove that if a
point (x,y) has coordinates which satisfy the equation

y2 = 8x, then the point is equidistant from the line x = -2
and the point (2,0). (HINT: Try to read the proof backwards
and supply reasons for each step.)

The area of a circle varies directly as the square of the
radius.

(a) What is the constant of proportionality?

(b) Write an equation.

(¢) Sketch the graph.

(d) If the measure of the area of a circle is 63, find

i1ts diameter,
333
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T. Skeﬁch the graph of,
(a) x =+ V3 (c)
(b) x =- /¥y | (d)

Is each a parabola? Discuss.

vy =+ /%
y=-Jx

8. Find an equation for each parabola having the following foci
and directrices and sketch:

a) Focus (0,2) and directrix the x-axis.

(

(b) Focus (0,-2) and directrix ﬁhe x-axis.
(¢) PFocus (0,2) and directrix y = -4.

(d) Focus’ (2,0) and directrix the y-axis.
(e) Focus (-2,0) and directrix the y-axis.
(f) Focus (-2,0) and @irectrix x = 1.

(g) Focus (1,2) and éirectrix x = -2,

(h) Focus (2,-1) and directrix x = 4

(L) Focus (-1,2) &nd directrix y = -3.

(J) Focus (1,-2) and directrix y = 2.

(k) Focus (2a,0) and directrix x =a, a > O.
(1) Focus (2a,a) and directrix x =a, a > O.

9. Given the equation x° - by + 16 = O
(a) Sketch the graph.

(b) Where does the line whose equation is y - 8 =
intersect the curve?

(c) Describe the intersection of the line whose equation is
¥y - 3 = 0 with the curve.
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10.

11.

12,

13.
14,

15.

16.

For each of the following parabolas find the coordinates of
the vertices, an equation of the axis of symmetry, and sketch
the curve: ’

0

(a) ¥° +.2y - 5x + 11
(b) x° - 2x - vy +8 =0
(c) 2y° + 28y - x + 101 = O
(d) 5y2 - 24y - x +U47 =0
(e) 1%0y® + 140y - 80x - 20 = 0

(£) Magy2 + 8a3y - x +b4a + a =0 (a>o0).

A line segzent perpendicular tc the axis of the parabola at
its focus wnose end points are =n the parabola 1s called the
latus rectizm. 3Show that the lezzth of the latus rectum of a
parabola is two times the distance between the directrix and
the focus. Lote: The latus rectum is also called the "focal

chord", see page 359.

Pind the length of the latus rectum of the parabolas whose
equations are,

(a) y° = x (d) y = f—gxg
(b) x° =y o (e) X =6y
(¢) ¥° = ix (£) -3x = y2

Find an equation of the parabola whose latus rectum equals 4,
vertex 1s at the origin and the axis 1is the x-axis.

Write an equation of the parabolz whose focus is (2,-3) and
vertex is (1,-3).

Write an equation of the parabola whose vertex is at the
origin, axis is the x-axis, and Passing through the point -
(-3,-2). Wnat is the focus?

Write an equation of the parabola passing through (-3, + 5)

and the origin and having as its axis of symmetry the y-axis.

What 1s the focus of the parabola? ‘
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19.

20.

2l.

22.
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Write an equation of the parabola having the end points of its
latus rectum at (4,5) and (4,-8), and its vertex at the
origin.

Write an equation of the parabola whose focus is (0,-2) 1its
directrix is parallel to the x-axis., and the length of its
latus rectum equal 8.

Find the value of a 350 thzt the parabcla whose equation is
T o= ax2 will pass through,

a) The point whosz coordinates are (7.18).

{b) The point whoss coordinates are (xj,yo).

Can this be dcz2 Zor any point?

Consider the paraboliz whose equation is y = x2 + X + 5.
Replace the x by x - 2.

(a) Write the "new" equation.

(b) Sketeh the graphs of each of these equations on the same
coordinate axes.

(¢) Replace x in the equation y = X% +x + 5 by x + 2,
write the "new" equation and sketch its graph on the
same set of coordinate axes as for (b) above.

(1) DI scuss anything interesting which you observe about
these curves,

A comet moves in a parabolic orbit with the sun at the focus.

When the comet 1s 4 x 10/ miles from the sun, the line from

the sun to it makes an angle of 60° with the axis of the orbit
(drawn in the direction in which the orbit opens).

Find how near the comet comes to the sun.

The longitudinal section of a reflector is a parabola 16
inches across and 8 inches deep. How far from the vertex
1s the focus?
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4200
23. A cable of the Golden Gate —

suspension bridge is in the
shape of a parabola (ideally). 6
The supporting towers of the ‘
cable are 4,200 feet apart. r‘ 748

ANKENERENTE SN TR ST LN TN T EELITE YN

"] Road-way

The cable passes over the
cupporting towers 746 feet
zbove the bay. The bridge
-3 200 feet above the bay.
The lowest point of the ) ‘
cable is 6 feet above the

road-way. Find the lengths of supporting rods (from the cable
to the road-way) at 100-foot intervals from the center of the
bridge to one of the towers.

200'

6-4 The General Definition of the Conic

In tHis Chapter we have considered the set of points equi-
distant from two fixed points and the set of points equidistant
from a fixed point and a fixed line. We now ¢.rry this precess one
step further. We do not d=mand that the point be the same distance
from the fixed point and the fixéd-line, but that the distance
from the point be some constant times the distance from the 1line.

Example 6-4a. Find an equation of the set of points with the
property that the distance of each point from the point (1,0) 1is
oae~-half the distance from the line x = U4, .
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Solution: See Fig. 6-ha,

a(F,P) = 3d(P,Q) |

yi L
P o ! Z :
Vix-12 2 NENEE I
D P i :
2 I i -
= % N/?k - 1)% 4 (y-y)? Ry ) T
=7 e[
2 2 1 2 L
(x -1)° +y° = (x - %) % }xh_flﬁf 2
T 1
x2--2x+1+y2=11rx2-2x+4 FL i
%XE + y2 =5 ' Fig., 6-l4a
e 2
%‘- +% = 1,

Example 6-4b. Find an equation of the set of polnts, each of
which is twice as far from (4,0) as from the line x = 1.

Solution: See Fig 6-4b

d(F,P) = 2d(p,Q) ,
5 ) : R SO NV 2 O O
Vix - 52 ey . i M
— 5 N DA
= 24/(x - 1)° + (y-y) ,ub\quﬁ,_w_“ |/ |
2 . .2 _ 2 N T T ESKPoyp [
(x = B)° +y° = 4(x - 1) , \- Q%\ Tt
x° - 8x + 16 + y2 = Ux® _ 8x + 4 ~<// 10 N |fe0) X
2 2 RN / ] BERNN)
~3x Yy o= -12 P \\
%2 i ii2 . Y -
iy 2 - e IS
338 Fig. 6-4b
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We adupt a notation similar to that of Section 6-3 and call
the fixed point the focus and designate it by F(c,0); the fixed
line, the directrix,and let it have the equation x = d; the con-
stant, the eccentricit:,and denote it by the letter e. Then
(See Fig. 6-ic)

aAY
d(P,F) = e-d(P,Q)

2 2
«/(Js -c) +y P("’V/)____o(d,y)
2 2
=e\/(X—d)+(y-y) //
: ZF(c,0) S
(x - 0)2 + y2 = eg(x - d)2 0 >X
. X=d
6-la xg(l-eg) + 2x(de2-c) + y2
- eede _ CE
Fig. 6-4c
|
If we take e =1 and d = -c, we see that we get the
equation y2 = Yex, which was the equation of the parabola,

(6-3b). Since this case has been discussed in great detail, we now
concentrate on the cases in which e 1is positive but not equal to
1.

In order to simplify the equation 6 - 4a, we choose the con-
stant d to be §§, making the coefficient of X =zero. Geometric-

ally this simply determines the position of the directrix. The

equation becomes

2
6-4b xg(l - e2) + y2 = Eg(l - e

e

2)

The tests for symmetry (Chapter 2) tell us that the graph of
the equation is symmetric with respect to both of the coordinate
axes and the origin. The x-intercepts are i-%; the y-intercepts

are + % 1- eg{ But 1f e > 1,4/ 1 - € 45 not real and there

are no intercepts. We therefore consider two cases.

339
[sec. 6-4]



329

Case 1: e < 1. We use the same notation for intercepts

which we used for the stralght line and let % = a and % 1 - e2

= b. (We have tacitly assumed that ¢ and e and therefore a
and b are positive. This will be understood in all that
follows.) Then

b = %-«/l - e2 = a~ 1 - e2, and g = 1l - e2. If we now
% 2 2 c 2
substitute =5 for (1 - e ) and b“ for —g(l - ) in equa-
a e
tion 6-4a, we have
2.2
X"b N y2 = b2,
2
a
2. 2
or 52 + Xg =1, (e < 1).
a b

Case 2: e > 1. We multiply both sides of equation 6 - 4b
by - 1 and the equation becomes

2
2 2 2 c
x2(e® - 1) - ¥° = (e - 1),
e
and if we let % = a and % e2 - 1 = b, the equaticn becomes

x2 2
T - Ly =1, (e > 1).
a“ b

These two cases lead us to make the following definitions:
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Definition 6-4a. The set of points P with the property that
the Alobundn from P to a fixed point is equal to a constant,
e, O0<e <1, times the distance from P to a fixed 1line, is
called an ellipse, The fixed point is called the focus. The fixed
line is called the directrix. The constant e '1is called the
eccentricity.

Definition 6-4b. The set of points P with the property
that the distance from P to a fixed point is equal to a constant,
e > 1, times the distance from P to a fixed line, is called a
hyperbola. The fixed point is called the focus. The fixed line is
called the directrix. The constant e 1is called the eccentricity.

We may summarize these definitions and the definition of the
parabola (6-3a) in the following table:

"THE CONIC SECTIONS

If e =1, the conic is a parabola.
If e < 1, the conic is an ellipse.
If e > 1, the conic is a hyperbola.

These curves -- the parabola, the ellipse, and the hyperbola -- are
called conic sections, since all of them can be obtained as plane
sections of a right circular cone. 1In addition to these curves,
one can also obtain a circle, a straight line, and two intersecting
stralght lines as special cases of plane sections of a cone.

The equations which we derived for all of these curves are
equations of the second degree in x and y. This 1s not coinci-
dental. It can be shown that every equation of the second degree

in X and vy,

Ax? + Bxy + Cy® +Dx + By + F = O,

has for its graph a conic section (or one of the limiting forms of
these curves mentioned above). See Problems 8 and 9 in Exercise
"6-4, Conversely, every conic section (no matter what the position
of the focus and the directrix) is the graph of an equation of the
second degree in x and Y.
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These statements tell the whole story for second degree equa-
tions in two varlables. Our study of analytic geometry has now
furnished us with a complete description of all graphs of first
and second degree equations -- they are sZmply stralght lines and
the conic sections (or limiting forms of these curves). We will
study in more detail the properties of tn= circle, ellipse, and

- hyperbola in the next two sections.

Exercises 6-U4

1. Fi..1 an equation of the set of poinfts with the property that
the distance of each point from P(2,0) 1is % the distance
from the line whose equation is y = 3. Identify the conic.,

2, The focus of a conic is the origin and the corresponding
directrix is the line whose equation is Yy = =2. The eccen-
tricity is 2.

(2) TIdentify the conic.
(b) Write an equation of the curve.

3. The eccentricity of a conic is 1. The focus is the point
F(-2,3) and the directrix is the line whose equation is
X =L,
(a) Identify the conic.
(b) Write an equation of the conic.

4.  The eccentricity of a conle is /2, the focus is (-3,0),
and the directrix is 3x - 2 = 0.

(a) 1Identify the conic.
(b) Write an equation of the conic.

5. The focus of a conic is (-1,3), the directrix is 2x - 1 =
and the eccentricity is 2 /5.

(a) TIdentify the curve.

(b) Write an equation of the conic.
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6. Write an equation for each set of data.

Focus Directrix e
(—") ("2)3) y = -2 2
(v) (1,1) X =2 %

2

(e) | (1,-2) y =% 2
(d) (-1,-3) X =0 1
(e) | (3,-5) x =0 £

* Sketch the graph of each.
7. Identify the conic and sketch the graph of each of the

following:

(a) 2x° + 3y2 =6 (d) 4x° & 16y =0

(b) 4x° - 16y° = 16 (e) 9x° + 9y° = 4

(c) 4x° + 16y° = 16 (£) y° = 9x - 36
*8, Discuss the conic of the equation,

Ax2 + Cy2 + F =0

(a) If A.C > O.

(b) If A.C < O.

(¢) If A.C =o0.
*9, Discuss the conic of the equation,

Ax® + Cy° + DX + By + F = O
(a) If A.C > O.
(b) If A.-C < O.
(¢) If A.C = 0.
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*10.- The eccentricity of a conic is g; Lts focus 1is the point

whose coordinates are F(2,-1); 41ts directrix is the line
whose equation is y = x.

(a) Identify the conic.

(b) Write an equation of the conic.

6-5. The Circle and the Ellipse.

We begin this sectlon by reviewing the derivation of the equa-
_tion for the circle, which we met in Chapter 2.
Let C(h,k) be a point in the plane and r be a positive
real number. The circle with center C and radius r 1is the set
of all points P(x,v) such that the distance from P to C 1is

equal to r. Then (see Fig. 6-5a) Ny
d(C,P) =r Pix,y)
'\/(7—h)2+(y-k)2=r r
c(hk)
6-5a | (x - h)2 + (y - k)2 = p?
N
Fig. 6-5a

We have shown that every point on the circle must satisfy
equation 6-5a. Conversely, if the coordinates x and y of any
point P satisfy 6-5a, then the point lies on the circle. For
since r 1s positive, taking the positive square root of both
sides of 6-5a, we have

V(x -n)2 4 (y - ¥)° = r,
d(c,P) = r,

and therefore P 1ies on the circle with radius r and center at

Cc(h,k). 244
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We have proved that the coordlnates of every point on the
clrcle satisfy equation 6-5a and conversely “hat every point whose
coordinates satisfy 6-5a lie on the circle. Therefore, equation
6-5a 1s the equation of the circle with center C(h,k) and radius
r.

If we cnonslder the speclal case in which the center is at the
origin, the equation assumes the simpler form y

2 2 2 Px,y)

6-5b x° +y° =1r°,
' c|0,0)
Mg. 6-5;\\\\

T—

We saild in the last section that the circle was a limiting
case of the ellipse. Let us now turn, then, to the ellipse. We
shall show presently how the circle can be obtained from the
elligae.

The ellipse was defined as the conic with eccentricity
0 < e <1l. We recall that 1f we take the focus to be F(c¢,0),

the directrix to be the line x = 35, and let a = % and
‘ e

b = % l-eg, then the equation for the ellipse can be written
2 2

6-5c¢ Lo+ Ly = 1,

b
Then ¢ = ae and we may rewrite
F(ae,0) and the directrix DD!' Y

c ae _ a {o,b)
as x = = = =, !
: V'ta,0 Flae,0) Via,0) .
Since e < 1, é > a and the 0 > X
graph is shown in Fig. 6-5c. _a
(0,-b) *=e
Flg. 6-5c
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The line segment V'V with length 2a 1is called the major
axis. It 1s a line of symmetry of the curve and passes through
the focus and is perpendicular to the directrix. The 1line Joining
the points (0,-b) and (0,b) having length 2b is called the
minor axis and 1s parallel to the directrix. The two .axes inter-
sect in a point (0,0) which is called the center of the ellipse.
We have already notlced that the graph of the equation 6-5c is
symmetrical with respect to both coordinate axes and the origin,
The majJor axis and the minor axis are axes of symmetry for the
curve,

Example 6-5a. Find the coordinates of the vertices, the
focus, the eccentricity, and the equation of the directrix for the
ellipse whose equation

x2 Xe
Bt =1
Solution: a <5, b = 3,
.2 o , —
b = aa/l - ¢ or : r“; Py P
o 2 22 IR SR N N1 N
b™ = a~ - a”e”, and since &;y/’/”—_ li. I i x=%§~
c = ae N B %
2 . g2 FG0) Aneti .
b™ =a -c¢ or F@a0) /vt
. S N LD
a? < b2 4 2, ~~1 - 1
; i
Note that the semi-major axis a t ! J ;‘T

is always greater than b.

9 + 02 or c = 4,

Then 25

]
\n
[t
O
s
1]
]
N =

Since ¢ ae 4

Then the vertlces are (5,0) and (-5,0); the focus is (4,0);

} 2
e = =—; the directrix x = 1?.
5
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If we had used the point F!(-ae,0) as the focus and the
line x = - g as the directrix, we would have obtained exactly the
same ellipse. The fact leads us to state an interesting property
of the ellipse: The sum of the distances from Ejae,o) and
F!'(-ae,0) to any point on the ellipse is constant and equal to 2a,
the length of the major axis. (The proof is left as an exercise.
See Problems 8 and 9, Exercise 6-5.)

This property suggests an easy mechanical way to construct an
ellipse, Take a string of length 2a with a loop on each end.
Fasten the loops at points (ae,C) and (-ae,0) with thumb tacks.
Place a pencil inside the string and trace the curve, keeping the
string taut. The resulting curve will be the desired ellipse.
There are obvious applications of this technique to constructing
elliptical flower beds, patios, etc.

Now that we have mere information about the ellipse, we are in
a better position to discuss the relation of the circle to the
ellipse, The shape of the ellipse depends on the constant e. If

e 1is very close to zero, b =aa/1 ~ e2 1s very close to a. 1In
fact 1f we let e approach O the ellipse becomes more and more

like a circle; so that we say the circle is a limiting form of an
ellipse. (If e approaches O then ¢ and -c both approach O
.and the two foci converge at the center. The directrices

X = + % on the other hand, recede farther and farther from the
foci.) This, then is the way in which the circle is related to the
ellipse.

Another interesting physical property of an ellipse is the
fact that a ray of light or a sound wave eﬁanating from one focus
F is reflected back from an elliptical surface to the other focus,
F'. This property 1s responsible for the so-called whispering
gallery properties of some elliptical shaped domes. A whisper at
one focus can be heard distinctly by a person standing at the other
focus, although the distance between the two persons may be very
great,
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EZxerclses 6-°¢

1. Find an equation of a circle having these properties. Sketch
the graph of each on the same set of coordinate axes,

Radius Center
(a) 3 (0,0)
(b) 3 (0,2)
(e) 3 (2,0)
(a) 3 (3,-1)
(e) 3 (-1,2)
2. From the following equations, find the center and radius of

eacn circle:

(b) (x-2)%+{(y+3)2=9
(¢) (x+3)%+(y-62=5

i
W
(o))

(e) 9(x + )2 4 gy°

(£) x° - 10x + 25.+ y2 =7

(8) x° - 6x +9 +y° - 8 + 16 = 16
(h) x° 4 y2 -2Xx +Uy +5 =7

(1) x° 4 y2 -4x +6y -1 =0

(4) 3K2 + 3y2 - 6x -~ 36y + 36 =0

(k) x°-x+y% -3 =17

i

(1) 5% + 4y° 4 12x = 16y + 11

[sec. 6-5]
343




338

Find the coordinates of the vertices, of the focus, the eccen-
tricity, the length of the majJor and minor axes and the equa-
tion of the directrix for the ellipse whose equation is,

2 2
(a) %6 + %T =1 (£) 2x°® =50 - y°

2 .2
{b) F- +¥p =1 (8) ¥% = 36(1 - x°)

2 2
2 X

(c) 9x° + 25y° = 225 (b)) F+ke-2
, D 2 x° 2
(d) 25x° +_4y© =-100 (1) H=2-y

2 2 ve 2
(e) 4% + 9y° = 36 (5 % =2-x

(k) 2%3 + 2%— =1

Find the coordinates of the vertices, the focus, and the equa-
tions of the directrices of the ellipses having given the
following. Sketch the graph and write an equation for each

if a =5 and, :

(a) e = .2 (c) e =.6
(b) e = .k d) e =.8

Find an equation of the ellipse given the following:

(a) One focus (2,0) and vertices (45,0).

(b) Coordinates of the end points of the minor axis (0,%2)
“""and of the major axis (x,0),
(¢c) Vertices (+7,0) and eccentricity equal to %.
(d) Coordinates of the endpoints of the minor axis (Odtvfg)
and eccentricity equal to %.

(e) Focus (6,0) and eccentricity equal to %.‘
349
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(f) Focus (8,0) and directrix x = 10.

(g) Vertices (43,0) and directrix x = 6.

2 2

The focl of the ellipse whose equation Eg + Z? = 1 are
a b

F and F', What change occurs in this conlc,

(a) As d(F.F') approaches 09
(b) As d(F,F') approaches 2a9

Show that for any elllpse having center at the orlgin the
distance from elther end of the minor axls to elther foci
1s one half the major axis.

2 2
Glven the ellipse %6 + %5 = 1., Show that for any point

P(x,y) on the ellipse, the sum of the distances from F(2,0)
and F'!'(-2,0) 1s 8.

X2 2
Glven the ellipse = + X§ = 1. Show that for any point

a b
P(x,y) on the ellipse, the sum of the distances from F(c,0)
and F'(-c,0) .1s =2a,

In this Section 6-5, the focus was taken on the positive axis
at F(ae,0) and the directrix was always the line x = %.

The curve would remain the same 1if the names of the axes
should be 1nterchanged., For example, suppose the focus 1is
the point F(0,1), the directrix is the line whose equation
1s y = 4, and the eccentricity e = %. Find the equation

of the elllpse.

Compare the equatlon for the ellipse in probtlem 9 with the one
for the elllpse with focus F(1,0), the directrix whose equa-
tion 1s x = 4, and the eccentriclty e = %.

.
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12.

*135.

14,

"(b) Foci (4,3) and (4,-1), eccentricity equal to

Find an equation of the ellipse with focus F(0,ae), direct-
a

rix y =%, and eccentricity e. (Note: The major axis 1is

still the axis containing the focus, i1t is perpendicular to
the directrix, and always has length 2a.)

An ellipse with eccentricity e, coordinates of the center
(h,k) and of the focus F(h + ¢, k), and the equation of the

directrix x = h + J%. If ¢c =ae and b =a~/1 - e2,
e

show that the"equation of the ellipse can be written in the
form,

Note: The center of an ellipse is the midpoint of: both the
maJjor and minor axis.

Write an equation of the ellipse from each of the following
data: (Use the result of Problem 13.)

(a) vertices (5,2) and (-3,2), one focus at (4,2)

W~

(¢) vertices (-5,3) and (-5,1), eccentricity equal to %.

(d) MaJor axis equal to 10 and parallel to y-axls, minor
axis equal to 6, center (-2,-1). '

(e) Endpoints of minor axis at (-3,5) and (-3,-6), one

focus at (3, - %)-

(f) Endpoints of major axis at (2,-3) and (-12,-3),

eccentricity equal to %.

*(g) vVertices (43,2), directrix x =T.

*(h) Focus (3,4), directrix y = 5. (Is there more than
one solution?)

[sec. 6—51
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*(1) Focus (-5,2), eccentricity equal to =. (Is there more

U=

than one solution?)

15. For each of these ellipses give the coordinates of the verti-
ces and of the focus, the eccentricity, and an equation of the
directrix. Sketch each curve showing the vertices, the focus,
and the directrix. (Use the results of problem 12.)

(a) iﬁ;%gélg + (x_§~2)2 =
(b) (x +2 + 2)2 (X - 1)° _ 1

(c) x° + Myg +6x +9 = 16

(d) 16x° + 9y° - 96x + T2y + 1ub =

!
b=

{e) ux® +-9y2 +8x - 36y + 4 =0 AyP .
16. An artificial satellite is \

placed in an elliptical d

orbit about the earth so : N Plxy)

that the North and South T

poles of the earth lie in 4000

the plane of its orbit. Its Pe Sx

distance from the North Pole \——\/§74

plus its distance from the 420

South Pole 1s constant. How _ﬂ/,//

high will it be when it S

passes ‘directly over the

North Pole, if it is 200 F“////

miles above the surface of

the earth the moment when it

passes through the plane of the equator? write an equation
for its orbit with respect to the center of the earth.
-(Assume that the diameter of the earth is 8,000 miles and
that the earth is spherical.) '

[sec. 6-5]
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17. Arcs in the form of a semi-ellipse were noticed in a building.
When measured, the distance across the base of the arc was
found to be 24 feet and the maximum height from the base
was found to be 8 feet. Find the height of the arc at in-
tervals of 4 feet from one end to the middle.

"18. Find the coordinates of four points on the curve of

x2 + uyg = 80 s0 that they are the vertices of a square
having diagonals through the origin.

6-6. The Hyperbola.

In section 6-4 we defined the hyperbola as the conic with
eccentricity e > 1; that is, the set of all points P with the
property that the distance from P to a fixed point, the focus,
is a constant, e > 1, times the distance from P &to a fixed
line, the directrix.

We recall that 1f we let the focus be F(c¢,0) and the direct-

rix be the line whose equation is x = 92, then the x-intercepts
e

were + a = + =, and although there were no y-intercepts, we let.

ojo

b = =4/e” - 1. The equation of the hyperbola then assumed the

simple form

6-6a

r,
- = 1.
bt_.

Just as for the ellipse, ¢ = ae, and the focus becomeé the

"l

point 'F(ée,o) and the directrix the line x = %. In contrast to
the ellipse, we now have e > 1 and % < a. Whereas the directrix

was to the right of the focus for the ellipse, their positions are
Just reversed for the hyperbola. The graph is shown in Fig. 6-6a,

353
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The line segment V'V 1s called

the transverse axis and has length

2a. (The line segment joining the

points (0,-b) aud (0,b) is

sometimes called the conjugate

axis and has length 2b.) The

origin O 1is called the center Vi-ae)

of the hyperbola. Again, as was P
‘the case for the ellipse, the - 4

curve 1is symmetric with respect ////Q(xy)
to both the coordinate axes and :

the origin. As before we might

have taken the focus to be the ,
point F'(-ae,0) and the directrix to be the line x = —'% and

Fig. 6-6a

we would have obtained the same curve.

Example 6-6a. What are the coordinates of the vertices and
the focus, the equation of the directrix, and the'eccentricity for -

x2 2
the hyperbola - . ¥ _ - 1.
16 b
Solution: Ay
b2 = ag(e2 - 1)
b2:-_.-a2e2..a2 —+—+— +—t+—
v(-4,0)
Since c¢ = ae
b2 = 02 - a
02 = a2 + b2

In this problem, a =4, b =2
Hence, c® = 16 + 4 = 20
V5

fl
0
4]
1
=
4]

c

1]

e
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The vertices are (-4,0) and (%&,0).

The focus is (2.4/5,0).

The equation of the directrix is x = ~£;~ =

Vs
The hyperbola has a property similar to the property we noted

for the ellipse, namely, the absolute value of the difference be-

e

v
wjco

tween the distances from F and F' +to any point on the hyperbola

is constant, and equal to 2a. See Problems 4 and 5 of Exercise
6-6. This property i1s the basis for the LORAN system of navigation
used extensively in World War II.

We have noticed that there are no y-intercepts for the

2 2
X
hyperbola ;g - %g = 1. If we solve for y we get
v =+ g x2 - ag. Now if 'xl < a, x2 - a2 is not real. This
shows that there is a vertical strip from x = -a to x =a 1in

which there are no péints on the graph of 'the hyperbola. On the
other hand if we take larger and larger values for x, ¥y also
increases in absolute value., While these facts are extremely use-
ful in sketching the graph, there 1is still another property of the

hyperbola which 1s even more helpful for this purpose.
2 2

Example 6-6b. Sketch the graph of ;r-— %T = 1. T

Solution: Since the curve is symmetric with respect to both
coordinate axes and the origin, we need only consider the part of
the graph in the first quadrant, The x-intercepts are 1 and -L
There are no-points on the graph in the strip between the vertical
lines x = -1 and x = 1. See Fig. 6-6b.

355
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Ty ! 1
Solving for y we get A\ y
5 N y=2ix

vy =12evx - 1. \ /1l 4
For very large values of Xx, ¥y \\/ 7 //
in the first quadrant is very \‘Xf/‘77; /
nearly equal to 2x. Similarly DAL
in the fourth quadrant for 1arge _ /’}7’</f- N
X, y 1s close to -2x. We \K1Df /Z/\/// v{1.9) X
notice that the lines whose equa- / j/;,;'i
tions are y = 2x and y = -2x A VAN
are the dlagonals of the rectangle / / \\\
with sides of length 23 =2 and ’ yE2 i

2b = 4, parallel to the coordin-

ate axes and centered at the Fig. 6-6b

origin. These two lines are 4
called aszmptoteu of the hyperbola. We use the fact that the curve
gets closer and closer to these lines as X increases, to sketch
the graph ln the first and fourth quadrants. The rest of the curve
cen be drawn using the symmetry of the curve '

2
if‘f
2

Let us turn now to the eguation

SD“JN

W

If we solve for y we get y = i‘%
In the same way, since a 1s a constant, if we take large values

-for x, then Y 1n the first quadrant is nearly equal to % X.
b

In the fourth quadrant y is close to - - X. The lines whose
, b b )
.equations are y = 3 X and y = - 7 X are called asymptotes of

the hyperbola.

We notice as before that these lines are diagonals of the
rectangle with sides of length 2a and 2b parallel to the axes,
centered at the origin. These equations can be written

0 = X -y and % X +y =0,

vlo
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Both lines are the graph of the single equation

b2 _2 2
X -y =0
;? .
2 2
X
or - = Q.

The fact that the hyperbola has these lines as asymptotes greatly
reduces the work involved in sketching its graph. We simply plot
the points which are the vertices and use the asymptotes (that is,
the diagonals of the rectangle) to sketch the curve. As a rule no
other polnts need to be plotted. '

x 2
Example 6-6c. Sketch the graph 75 - %T = 1,

Solution: The vertices are — ;
(-»,c) and (5,0). The asymp- - N
o o N (0,3) "
ol Are y o= x % X. \\ //

See Fig. 6-6c. \ N AT

Although we sald in Section €801 | ‘N] A~ (3.0)

6-4% that every equation ///’0~\w\a\\‘

AX? + Bxy + Cy° + Dx + Ey « F = 0 * o3 [N

has as its graph a conic section <] 1;r:i
(or a limiting form of one of =a X :
these), we have not encountered I LI
any equation in which B was not Fig. 6-6c

zero. This 18 because we have

always considered conlcs with axes parallel to the coordinate axes,
If we had taken more general positions for the directrix, B would
not have been zero. In particular if the transverse axis of the
hyperbola is the line y = x and the center is at the origin, the
equation of the hyperbola may take the form xy = k,

A hyperbola with an equation of this form is called an equilateral
or ractangular hyperbola., Fig, 6-6d shows the graph of this
equation for k = 1, 2, 3, |

[sec. 6-6])
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xy =K
Fig. 6-6d

Example 6-6d. There is a scientific principle, important in
both physics and chemistry, known as Boyle's law, which may be
stated as follows: If a fixed mass of gas 1is confined in a cylin-
der with a piston (Fig. 6-6e), and if a variable pressure p is
applied to the piston, resulting in a corresponding change in the
volume v, then p and Vv are '
related by the equation pv =k,
where the particular value of the
constant k will depend on the

kind of gas as well as on other ﬁfggggqug

factors, If we let the positive {;:fiiy;g

X-8xls be the p-axis and the

positive y-axis be the v-axis, Fig, 6-6e

then the equation pv = k will
be represented by one branch of an equilateral hyperbola,

[sec. 6-6)
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When two variables x and Yy are related by an equation of

the form xy =k, or y = %, then y 1s said to vary inversely

as X, or to be inversely proportional to x. Thus, for example,
Boyle's law asserts that v is inversely proportional to p.

Example 6-6e., Suppose that a certain mass of gas 1s confined,
at pressure of 10 pounds per square 1nch,‘\in'a volume of 200
cublec inches. Find the relation between pressure and volume, ‘and
determlne the volume when the pressure is increased to 50 pounds
per square inch.

Solution: The constant k 4in the equation pv = k 1is deter-
mined by substituting the values p = 10 and v = 200; thus
k = 2000, The relation between P and v may be written as
v = 2000/p, so that when p = 50, v = 40 cublc inches.

Exercises 6-6

2 2
1. Given %7 - ¥F = 1,

(a) Write an equation of each asymptote of the hyperbola.
(b) Give the coordinates of the vertices.
(c) Sketch the graph of the equation.
2, Glven 3xy = 36,
(a) Write an equation of each asymptote.
(b) Give the coordinates of the vertices.
(c) Sketch the graph of the equation.

o -
~

(O
ot
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Glve the coordinates cof the vertlces, the coordinates of the
focus, an equation of the directrix, an equation of the asymp-
totes and the eccentricity of the followlng. Sketch the curve
showing the vertex, the focus, the directrix, and the asymp-
totes. [See examples in 6-6.]

2 2
b'd vy~ 2 2

(2) 5 -%°1 (@) ¥° - x% =36

2 2
(b) 3= - 45 =1 (e) y® - 3x° = 36
(¢) x° -y° =36 (£) 3x° - uy® = 36

2 2

Given the hyperbola %7 - %r-= 1. Show that the absolute

value of the difference of the distances from any point in
the first quadrant on the hyperbola to the points

F(/5,0) and F'(-+5,0) is 2.

x2 2
Given the hyperbola - ZE = 1. Show that the absolute
a b

value of the difference of the distances from any point P on
the hyperbola to the points F(ae,0) and F'(-ae,0) 1is =2a.

(Hint: . ag(e2 - 1) or a® + b° = 2%, Since ¢ = ae,

2 2)

a"~ + b2 =C )

Write in standard form the equation of the hyperbola given the
coordinates of the focl and the absolute value of the differ-
ence of the distances from point P(x,y) on the hyperbola

to the two foci:

(a) F(4,0), F'(-4,0), and |d(P,F)-d(P,FW| = 6.
(v) F(O,4), F'(0,-4), and Id(P,F)—d(P,F')I = 6,

Suppose we take the focus of the hyperbola to be the point
F(0,2), the directrix to be the line whose equatlon is

y = %, and the eccentricity to be 2. Flnd the equation of

the hyperbola and gketch Lts graph.
[sec. 6-6]
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Derlve an equation of the hyperbola with focus F(0,ae), di-
rectrlx y = g, and eccentricity e. (Note that the vertices

are (0,a) and (0,-a). The transverse axis is on the
y-axls and has length 2a. Hint for the solution: Let

be = ag(e2 -1).)

Wirite an equaﬁion of the hyperbola from the glven set of data.
(a) Vertices (4%5,0) foeci (48,0).

Vertices (+43,0) distance between foci equal to 8.
Vertices (+3%,0) eccentricity equal to 2.

2, one vertex at (4,0).

)

)
(d) Directrices x = +
i

) 5
(f) Asymptotes y = #3x, one vertex at (2,0).

Foci (+7,0) eccentricity equal

() Asymptotes 3x + 2y =0 and 3x - 2y = 0, focus (0,3).

Sketch the graph for each of the following, making use of the
asymptotes, vertlces, and when necessary a few sample points.

(a) 9x® - #y° = 36 (£) xy =4

(o) wx® -y =u (g) v° -0 =9,

(¢) :x® - ay® = 38 (h) xy - 1=0

(d) =° - ”yg = 4 (1) xy + % =0

(e) 2¢% - y¥ =9 (J) 25x% - 4y® _ 100x + K0 y =
100

Sketch the graph of,

(a) y =4/ 306 4 x© (c}) x =A/36 4 y2
() y = =/36 + x° (d) x = -+/36 + y©

Are any of these hyperbolas? Explaln.
361
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Find an equation of a hyperbola passing through the point of
(2,3) having as asymptotes the lines of 3x - 5y = 0 and

33X + 5y = 0,

Find an equation of the hyperbola whose asymptotes are the

2 2

lines of 7x™ - 25y~ = 0 and which passes through the point

of (5,1).

Find an equatlon of the hyperbola through the point of (0,2)
and having as asymptotes the lines of U4x - y = 0 and
bx +y = 0, Sketch the curve.

If a hyperbola passes through the point of (2,0) and has
asymptotes of y = + 4x find an equation of the hyperbola
and sketch the curve.
Show that the hyperbola with center at A(h,k) and focus at
F(h + ae,k), directrix x = h + %, and eccentricity e has
the equation,

2 2
(x_~ h) (Y= k)° _
—7 - y"b‘e— = 1.

a

(Note: The center of a hyperbola is the point of intersect-
ion of Lts asymptotes.)

Wrlte an equation of the conic for each set of data:

(a) Vertices (3,1) and (0,1), one focus at (4,1).

(b) Focl (4,-3) and (-2,-3), one vertex at (3,-3).

-3
(¢) tocl (5,7) and (-2,7), eccentricity equal %.

(d) Vertices (-5,7) and (2,7), eccentricity equal

Mo\

Find an equatlion of the hypcrbola with center at C(3,4),

focun F(3 4+ 2 /2,4), and directrix whose equation is

x = 3+ 2. UOketeh the graph.
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19. Find .the coordinates of the vertices, the focus, the center;
an equation of the directrix, the asymptotes; and the eccenc ™~
tricity of the following:

(a) x§22_(},_1:__§)2=1

() g® o x-nf
2 2

(c) -25 =1

(4) 3(x - 3)% - 2(y +2)% = 18

(e) X2 - y2 - kx + 6y -6 =0

(£) «x —2x-y2—6y-l7=0

I
=
=

(g) 9x° - 72x - 16y° - 96y

2 2

(h) "%y +12y + 12 = x“ +4x +9 =0

(1) oy° - hx® - hx - 18y + 44 =0

() 4x° - 25y° + 32x = -50y - 39

20. If y wvarles lnversely as x, and y = 4 when Xx = 2,

(a) Flnd the relation between x and y.
(b) Find the value of y when X = 5,

(c) Draw a graph for (a) and use it to check your
answer for (b).

21.  For a given electromotive force the current I carried by a
wlre varles Inversely as the resistance R. With a certain
electromotive force a wire whose resistance is 15 ohms will
carry a current of 20 amperes. Find the current produced
by the same electromotive force ' . the resilstance 13 increased
to 50 ohms.

363
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If the relation between variables x and y 1s of the form
vy = ﬁé, then y 1s sald to vary inversely as the square of
X

X’
(a) Find the value of k 4if y =3 when Xx = 5.
(b) Find the value of y when x = 2.

Accordlng to Newton's law of gravitation, the welght of a
body varles inversely as the square of its distance from

the center of the earth. 1f a body weighs 50 pounds at

the surface of the earth, how much would it weigh at a height
of 200 miles above the earth, assuming th% radius of the
earth to be 4000 miles.

On a level plane the sound of a rifle and that of its bullet
striking the target are heard at the same instant. Describe
the possible set of locations of the listener,

Supplementary Exercises

Find the slope and the intercepts of each line having the
following equation:

(a) 3y - 2x - 15 = O (e) £-%=1
(b) 3x +2y - 20 =0 (f) vy =5
-8 = ) 22X L Lo
(¢) 2y -3x-8=0 (g) = +%=1
2X 2
(@) FE-o (h)%-7—x-1=o

Write an equatlon of the line having Intercepts whose coord-
inates are (6,0) and (0,-%).

Wrlte an equation of the line passing through tlie points
. 2 -
A(-1,-5%) and 5(3, -5).
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4, Write an equation of the 1line having the following properties:
‘; ‘(a) Slope m =3, y-intercept is 2.
(b) Parallel to line X +y - 6 = 0, y-intercept is 4,

(¢) Perpendicular to line 2x + 3y - 22 = 0, y-intercept
1s -3, '

5. Consider the equations,

(1) y=x+6 (3) v = 35X - y
(2) ¥ =3x (4) ¥ = 2x
(5) y=-gx+2

(a) Write the slopes of the lines éiven by these equations.
(b) What 1s the y-intercept of each line?

(¢) Which of the lines rise to the right, and which ones
sink to She right? '

(d) Which of the 5 lines is the steepest?

’(e) Find an equation of the line which has the_same slope as
the line defined by (1) and the same y-intercet as
the line defined by (3).

6. Write an equation of the line through (-2,3) and parallel
to the line y = 3x - 8,

7. Wrlte an equation of the line perpendicular to the line
2y = 5% + 10 and passing through the point (+3, -2).

8. The coordinates of the vertices of a triangle are A(5,10),
B(10,-7), and C(-5,-5). Write an equatlon of the lines

forming this triangle,




10.

11.

12,

13.

14,
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Determine wlthout sketching the graph which pairs of equa- 7
tions represent lines which are parallel, perpendicular, the
same, or neither.

(a) 2x -3y =5 (e) y=7
3k + 2y - 4 =0 y = 12

(p) 2x -4 +3y =0 (f) 2x+y -7=0
3x - 7 = -2y 2X -y +7 =0

(¢) x+2y =6 (g) 2x +y =0
2x = 6 +y 2% = 1

(d) 2x=3+y (h) x -2y +5 =0
y=2x-5 y =3

Given,

(L) 3x -2y -4 =0 (LL) 34 +4y +12 =0

(a) Determine the y-Intercept b and the slope m of each.

L]
(b) Sketch the graph of each on the same coordinate axes.

(c) Are these lines perpendicular? Explain,

Write an equation of a line passing through the point (0,0)
and perpendicular to the line whose equation is
2x +y ~ 4 = 0.

Write an equation of a line passing through the point (2,-1)

and parallel to the line. whose equation is g% + % = 1.

Write an equation of a line through the point (-5,1) and
having the same y-intercept as the line whose equation is

ex +y -~ 4 =0,

Write an equation of a line parallel to the line whose equa-
tlon i1s 3y = x and passes through the x-intercept of the
line whose equation is x + 3y = 3.
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18. -

If the speed of reaction of 2 chemicals doubles for every
10° C rise in temperzture t on the range 0°C < t < 100°C,
how many times as fast would the reaction proceed at 100°C
than at 20°C?

If A varles directly as C, and B varies directly as C,
show that A +B, A - B and vAB will each vary directly
as C,.

Write an equation of the curve having,

(a) F(3,0), F'(-3,0), and d4(P,F) + d(P,F!') 10,

(b) F(0,3), F'(0,-3), and d(®,F) + d(P,F') = 10.
(¢) F(3,0), F'(-3,0), and Id(P,F) - d(P,F')l = 2,
(d) F(0,3), F'(0,-3), and Id(P,F) - d(P,F')I = 2,
(e) F(0,1), Q(x,-1), and d(P,F) = d(P,Q).
(f) PF(1,0), Q(-1,y), and d(P,F) = d(P,q).
Identify each. ,
Identify the conic whose equation 1is,
(a) 9x2 + 9y2 = U, (g) x° 4 y2 + by = 0.
(b) 2x° + 3y° = 6. (n) %2 + 4y° + 6x + 9 = 0.
(¢) 4x® - 16y° = 16. (1) 9x° - 16y - 72x + 96y = 1h4
(4) #x2 + 1692 = 16, () «© - 452 + 2x + 16y - 19 = O.
(e) 4x® + 16y =~ oO. (k) 9y° + 16x% - 96x + 72y = -14b
(f) y2 = Ox - 36. f) y2 + 3X + 6y = 0.

(m) ux2 - 8x - 36y = 9y2 + 68,
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20,

21.

22,

23.
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Graph each of the following:

(a) ¥ = (x - 5)° (k) X? +uy® g

(0) % = (v - 1)® ) w2 4 y® >

(¢) (2x - y)% = (m) x° +y° < 16

() 9-(x-2y)2=0 (n) %% - 4y® <

(e) %% =y° (0) '4y® - xf > 4

(£) xy =0 (p) ¥% - 4x 30

“(g) x®+a2xy +3y% -8 =0 (q) x2- Uy <o

*(n) #x° + 9y° = 9 - 1l2xy. *(r) x° +y° - bx + 6y + 13 < O.
(1) x<o *(s) y° - 4x - by < O.

(3) vy2o0 *(t)  {(x,¥) 1z < 0JU ((x,¥7)!y < 0)

Find an equation of a circle which has as a dlameter the latus
rectum of the parabola whose equation is y2 = 16x.

Find an equation of the hyperbola whose asymptotes are the

lines of 3x2 - 5y2 = 0 and which passes through the point

of (2,3).
If the asymptotes of a hyperbola are given by 2x° - 7y2 =0

and the hyperbola passes through the point of (3,0), find
an equatlion of the hyperbola.

2

Find the equation of the hyperbola whose asymptotes are glven

22 2 2
by a’x - by = 0, and which passes through the point of

(b,0). (a and b are real numbers),
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© 24, Sketch the graph of x° - y2 = k, when k . has the following
values: _ .
(a) k = 16 (e) k =-1
(b) k =9 (f) k = -4
(c) k =14 (g) k=0
(d) k=1 (h) k = -16 |

*25. PFind the coordinates of the end points of the chords perpen-
dicular to the transverse axis at the focl of the hyperbola
2

whose equation 1s ﬁé - XE = 1. Develop a formula for the
a b
length of these chords in terms of a and b. Will this
2 x2
same formula hold for a hyperbola of XE - = = 17?
' a b

26. Find an equation of the set of points P(x,y) such that the”

distance from P to the vertex of the parabola x° = 8y is
twice the distance to its focus.

27. The arch of a stone bridge has the form of a parabola; the
"span is 40 feet, and the maximum height is 10 feet. Find
‘the helght of the arch at intervals of 5 feet from one end

to the middle.

28. Show that if a parabola has its vertex at (a,b) and focus
at (a+c,b), then the equation of the parabola is (y-b)2 =
he(x-a).

29. Find an equation similar to that of 2 for a parabola having
vertex at (a,b) and focus at (a,b+c).

30. Show that if a parabola has its vertex at (a,b) and the line
of x =a -c as directrix, an equation of the parabola is

(y - b)2 = be(x - a).
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Challenge Problems

--Find the equation of the parabola having x = -a as directrix

and focus at (a,0). Discuss the curve for a > O. For
a < 0.

A chord through the focus perpendicular to the axis of a par-
abola is called the focal chord of the parabola. Show that
the end points of the focal chord of the parabola

y2 = Jax are (&,2a) and (a,-2a).

Find the equation for the parabola with focus at (1,1) and
the line of y = -X as directrix. Sketch the curve.

Find the equation of the line parallel to the line whose equa-

tion is y = % X + 2 which is 2 units from this line.

The 1line through the focus F and the point Pl(xl’yl) on
the parabola y2 = Jex intersects the parabola in a second

point Pg(xg,yg). Find the coordinates of P, in terms of

2

Xy,¥7» and ¢ . If V dis the vertex, the line through P,V
cuts the directrix at R, prove that the 1line through P2R

18 parallel to the axis -of the parabola,
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Chapter 7
SYSTEMS OF EQUATIONS IN TWO VARIABLES

7-1. Solutlon 3ets of Systems of Equations and Inecualities.

Definition 7-~la. The solution set of an equation (inequality)
in two variables x and y 1s the set of ordered pairs of real
numbers (x,y) which satisfy the equation (inequality).

The same one-to-one correspondence which we set up in Chapter
2 between ordered pairs of real numbers and the points in the plane
now gives us a one-to-one correspondence between the elements of
the solution set of an equation (inequality) and the points on the
graph of the equation (inequality).

In this chapter we are again interested in the algebraic
aspects of equations; that is, the ordered pairs of real numbers
whlch satisfy the equations. However, we will freely use whatever
geometric informatlon we may have about an equation to determine
its solution set.

Example 7-la. Find the solution zet of,

(a) v =x (¢) v > 2x
(b) y = 2x° (d) x° +y2 > 1.
Solution:

(a) The solution set of ¥y =X 1s the set of ordered pairs
(a,a) where a 1s any real number.

(b) The solution set of y = 2x°  1s the set of ordered

palrs (a,2a2) where a 1s any real numbe:.
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(=) The solution set of y > 2x 1s {(x,%): vy > ¢ }.

However this Lls really Just & re-

statement of the problem and while

it i8¢ a true statement, 1t 1s not

very enlightening. We use a graph

to lndicate the solution get.
See Fig. 7-la. We draw the graph

of y = 2x. Then for any partic-
ular value of x, the palr of

coordinates of any point (x,y)
with 'y > 2x corresponds to an

PR N S

element of the solutlion set.
Geometrically these are the points

,_+~j

on anﬁ vertical lines x = a, on Fig. 7-la.
or above the point (a,2a). Thus '

the graph of the inequality is the shaded region in Fig. 7-la. The .
solution set 1is the set of ordered pairs which are coordinates of

points in the shaded region.

(d) To obtain the solution set of x° +~y2 > 1, we draw the

graph of x2 + y2 = 1. This 1s the circle with center at the

origin and rad;us L. If P 41s any point outside the circle, then
4(0,P) = &/ x° + y© > 1.

Qr | x2 +- y2 > 1.

Conversely, if x° + y2 > 1, then Vg2 & yg > 1, A(O,P) > 1, -

and the point lies outside the circle. The solution set is the set

of ordered pairs which are coordinates of points outside the circle
with center at the origin and radius 1.
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Frcm now on for "the solution set 1s the set of ordered pairs
which are the conrdinates of points belonging to the set..." we
shall use the less precise, but shorter "the solution set is the
set of polnts...". Thils briefer statement is Justified by che one-
to-one correspondence which has been established between the set of
ordered pairs of real numbers and the set of points in the plane.

In thls chapter and the next we want to consider the set of
ordered palrs which satisfy two or more equations (inequalities).
When such problems are consldered we shall refer to the two or
more equations (ilnequalities) as a system of equations (inequali-
ties). Each of the individual equations (inequalities) is called

a cvomponent of the system.
Definition 7-1b. The solution set of a system of equations

(inequalities) in two variables x and y is the set of all
ordered pairs (x,y) which are common to the solution sets of the

component equations (inequalitdies).
Suppose we are considering a system of two equations.  Let the

solution sets corresponding to the equations be Sl and Sg. Then

the solution set S c¢f the system 1s the set of ordered pairs
which are in both S, and 8,. (In set language, this set 1is
called the "intersection" of S, and S,. The symbol for set inter
section 18 "M ".  The solution set S can Shen be written
§ = 5,MN8,.

Example 7-1b., What is the solution set of the following
systems: /

(a) Jx-f~y-2=0, (b) x| > 2,

0. {|y| < 1.

it

]‘x -y +2
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3nlution:

(a) The solutlon set of the system is {(0,2)} ; that is, the
set of ordered pairs consisting of the single ordered pair (0,2).
We can use the graphs of the equations to convince ourselves that
this is the only ordered palr of the solution set. The ordered
patr (0,2) 1s the only member of the solution set since any
ordered palr in the solution set must be the coordinates of a point
on both the lines x +y -2 =0 and x -y + 2 = 0. These lines
intersect In only one point; namely (0,2).

(b) The solution set of |x| > 2 is the set of points to the
left of the line x = -2 and to the right of the line x = 2.
See” Flg. 7-1b. The solution set of |y] < 1 1is the set of points
inside the horizontal strip between y = -1 and y = 1. The
solution set of the system 1s the iIntersection of these two sets
or the set of points in the cross-hatched region in Fig. 7-1b.

B e E e

eorT Ty

Fig., 7-1b,

Suppose we have a system consisting of two equations which
have solutlon sets Sl and Sg. Accorqing to our definition the
solution set, 5, of the system 1s the intersection of Slv and
82. If the Intersection of Sl and 82 is the empty setf, then

the equations have no common solution and the system is said to
be inconsistent.

[sec. T7-1]
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The following systems are examples of inconsistant systems.

(a) {QX +y =5 (b) x° 4+ y2 = 20

~11 x° 4 y2 6

]
i

2X +y

If the intersection of Sl and 82 138 not empty. *n . there

must be at least one pair of numbers (x,y) which will £ ey
both equations. The system is then said to be consistent,
2x - Ty = -5

The system 8

5x + 3y

1s consistent because we can verify the fact that the palr x = 1,
¥y =1 will satisfy both equations.

A consistent system is said to be dependent if S, = S,3 that

1s, for example, consider the system

3k + Ty = 12
6x + lby = 24

The second equation is obtained by doubling each member of the
first. It is evident that any solution of the first equation 1is
also a solution of the second and conversely. .°. the system is
dependent. The graphs corresponding to the two equationé are the
same stralght line. The system of quadratic equations

x° + 4y° = 100

is also dependent.
2y° = 50 - P

We can summarize our conclusions about systems of ‘eguations in
two variables as follows: _

A system 1s inconsistent if its solution set 1s the empty set;
tiat 1s, the component equations have no common solutions.

A system 1s consistent i1f i1ts solution set contains at least
one member; that is, the component equations have at least one

common solution.

[sec. 7-1]
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A consistent system 1s dependent if the solution set of the
system ig the game as the solution set of one of the component
equatlons; that 1s every solution of any one of 1ts component
equations 1s a solutlion of every other.

Exercises T7-1

1. Is (2,0) an element of the solution set of the system
2X + 3y = U
8x - 7Ty = 16 ?

Sketch the graph of each of the two equations. How do the
graphs 1llustrate your answer?

2. Is (1,2) an element of the solution set of the system

o

bx - y =
6 ?

it

12x - 3y

Sketch the graph of each of fhe two equations. Are there
otner elements which belong to the solution set of this system?

3. Doas the solution set of
X + by = 13
2x + 8y = 14

contain the element (1,%)? Sketch the graph of each of the
two equations. According to the greazrs, what seems to beé the
solutlion set for the system?

4, For the system
3% - by = 11
12x - 16y = b;
For what value of b will the solution set be empty?

)
(o) For what value of b will the solution set contain
the element (5,1)?
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(c) For what value of b will the solution set contain
infinitely many ordered pairs?

What different .ypes of solution sets can there be for the
system

ax + by = ¢

dx + ey = f ?
Discuss the graphical interpretation of your answer.

By inspection determine which of the following systems are
consistent. If the system is consistent, determine :hether
or not it 1s also dependent.

2 2

(a) | x+y=1 (g) jx +y° = 34
%x =2 - %& ~x2 - y2 = 16
(v) [ x =2y - 1/ (n) [x2 + 52 - 61
{2x=2y—l <\9x2-—25y2=0
(¢) [ y=2x-1 (1) [ %% +y® = &
{ X - %y = % { 2x° + y2 = U4
(d) [ y=2x+1 (3) [y =2
{ y =2X + 3 { y = x2 + 5
(e) { 7x + 5y = 11 (k) { 3x° + 3y° = 15
| 3x - 2y = 13 2x? + 2y2 = 10
(f) bx = 26 + 7y | (jb { 6x° - 2y +2 =0
5x - 7 = 1ly %% -3y +3 =0
377
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Does the solution set of the system

y = x°

y =2 ~ x2

contain the element (1,1)? Can you use symmetry to find a

second element of the solution set? Find one. Sketch graphs
of the two equations. How many solutions does the system
seem to have?

Find the solution set by sketching the graph of each of the
following:

(a) x2 + 4% =4 (g) ¥v° = (x - 5)°2

(b) %% + 4y° > 4 (h) x <0

(c) x2 + by® < 4 (1) y>0

(@) %% = y° (3) %2 = (v - 1)?

(e) x> y° *(k) x° +2xy +y° - 4 =0
(f) xy =0 *(f) ¥ <2x° 4 bx + &

*(m) ((x,y): x <0} U ((x,y): y <0

(Note: U 1s .he symbol for union. The solution set of such
a sentence consists of the elements which belong to either
set.)

Is (3,2) an element of the solution set of the system
2X - 3y =0
X+4+y-5=0
5x - 3y

Sketch the graphs of these equations. How do the giaphs
illustrate your answer?

9 =0

[sec. 7-1]
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10. Is (1,2) an element of the solution set of the system
3x +2y =5
5 -y =3
16x + 2y = 20 9

Sketch the graphs of the three equations. How do the graphs
1llustrate your answer?

11. How must the graphs of the component equations of the system

ax + by = ¢

dx + ey = ¢
gX + hy = k
be related if there 1s to be a single element in the solntion

set 87
1l2. If the system
ax + by = ¢
dx + ey = f

has a single element in 1ts solution set, what would you
suspect about m (ax + by - ¢) + n (dx + ey - f£) = 0? Test
your conjecture by referring to Problem 9. Obviously, this
does not constitute a proof, but can you prove 1it?

By our definition, the solution set of an equation 1s a set of
ordered pairs of real numbers. Of course in the definition we

might have substituted for "real numbers", elements from any number
system. In particular if we allowed ordered pairs of complex
numbers, some systems above which were inconsistent might have
solutions. In the next two problems, use the definition: The
solution set of an equation is the set of all ordered pairs of
complex numbers which satisfy the equation.

{sec. 7~1]
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*13. What 1s the solutlon set of the system:

2
X

¥

y o=x - 4 ?
*14, What 1s the solution set of the system:
ix + (2 - L)y + 61

] It
o O
K)

x - 1y

7-2. Equlvalent Equations and Equivalent Systems of Equatilons.

Definition 7-2a. Two equations (inequalities) are equivalent
1f and only if they have the same solution set.

We have already been led to conslder equivalent equatlons
several times 1n this course. The process of solving 3x + 2 = 0
conslsts of replacing the equatlion by the equlvalent equation

X = - % . In Chapter 6 we developed several equlvalent equations
for non-vertical stralght lines. For example, 2x + 3y -6 =0 1is
equlvalent to X +y =1 and also to y = - % X + 2., Each of

3 2

these equlvalent equations for the same stralght line makes 1t
easy for us to obtaln some speclfilc Information about the line.
Just as we flnd 1t useful to c¢onslder several equlvalent equatlons
for the same stralght line, we shall now find 1t helpful to con-
sider systems of equations which are eguivalent to a glven system,
In fact the general method of solving systems of equatlons which
we shall develop conslsts of finding particular systems which are
equlvalent to the glven system. ’

Flrst we shall deflne equlvalent systems of equatlons and then
we shall show how the ldea of equlvalent gystems helps us to find
the solutlon set of the system. '
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Definition 7-2b. Two systems of equations are equivalent if

and only 1 they have the same solution set.

Example 7-2a. The system

3k -y - 8

1l 1l
o O

X + 2y - 5
is equivalent to the simpler system

X =3

]

y 1

which allows us to write (3,1) as the solution set of the

original system,

In tr2 next several sections we shall be concerned with
methods for obtailning the solution set of a given system of equa-
tions,

Before we proceed to study these methods, let us review some
of the operations which leai to equivalent equations, as well as
Some of the operations which may not lead to equivalent equations.
The following examples illustrate such operations.

mxample 7-2b,

(a) % - 2 =0 is equivalent to x = 2.

(6) %% +y = 0 1s eguivalent to y = - x5,

P

(c) %x = 6 1is eguivalent %o x = 12.

(d) 2x = 6 1is equivalent to x = 3.

1]
p
»
n
!
no
It

O 1s cquivalsnt to X + 2x + 1 = 2% + 3.

o ") 2

(a) x° +3° =0 1s not equivalent to x(x° + yg) = 0.

Since the solution set of the first equation is ' ((0,0)}; while
that of the second 1s ({(0,¥)); vy any real number.

(b) x = - 2y 1s not equivalent to x° = ﬂyg since the

331
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solution set of the first is {(a, - % a)l, for any real number
a; while the solution set of the second, in addition to the order-
ed pairs in the solution set of the first equation, contains all

ordered pairs (a,la), for any real number a.

(c) x? - y2 = 0 1is not equivalent to X + y = 0. Why?

(d) X2 = y2 is not equivalent to x =y, since {(a, - a)}
as well as {(a,a)}, for all real a, satisfy the first equation,
but not the second.

To summarize, if we add or substract the same expression from
both members of an equation, or multiply or divide both members by
a non-zero constant, the resulting equation is equivalent to the
original one.

On the other hand, if we square or extract the square root of
both members, or multiply or divide both members of an equation by
an expression involving a varlable, the resulting egquation may not
be (and probably is not) equivalent to the original one.

- We now formulate a principle which is helpful in obtaining
systems of equations which are equivalent to a given system and
from which it is easy to find the solution set of the original
system (and incidentally of all the equivalent systems).

Principle 7-2a. 1f either of the equations of a system 1is
replec >ed by an equivalent equation, the resulting system is equiv-

alent to the original system.

The same is true if several equations are replaced by equiva-
lent equations. Therefore, all the algebralc operatlons which
produce equivalent equations will be useful to us in our efforts to
find the solution set of a system.

Example 7-2d. Find the solution set of the system
(1) 3x +2y + 4 =0
(2) {BX -3y -25=0

Solution: To eliminate y, we multiply the first equation by
5 and the second by 2 and add, obtaining the equation

(3) 2(3x + 2y + 4).+2(5x - 3y - 25) = O,

[sec. 7-2]
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clear that any pair of numbers (xl,yl) which satisfies

and third equations must satisfy the second. The proof
Sincw the pair (xl,yl) satisfles the first and third
we hive
jxl + 2yl + =0

Z, R N J . fany - - =
3(/“1 i dyl + 4) + 2()xl )Yl 25) 0,

it follows that This equation

r - 3 _’_)=
X4 2¥q 25 0.

t the pair (xl,yl) satlsfies the second equacion. The

ow complete.‘

equally easy to show that a solution of the system con-
equations (2) ‘and (3) 4is also a solution of (1)
solution of the system consisting of (1) and (2) is

of (3). We can sumr rize these results by stating that
e systems are equiveslent according to our definition of
systems. (It should ie observed that elther the system
of (1) (3) (2)
simpler szystem than the first, since we chose our multi-

(3)

If we look at the seccond system

and cr the system consisting of

such a way that the equation reduces to an equa-

only, namely x = 2.)

5 = 3y - 25 =0

X = 2,
ain its solution set as follows. Any pair . (x,y) which
the second equation has the form (2,a) for some real

The pair belongs to the solution set of the system 1if
f 1t also satisfies the first equation; that is

10 - 3a - 25 = 0.

8 true if and only if a = -5, Hence, the solution set
tem 1s  ((2,-5)}.
[sec. 7-7]
333

and -



374
In Example 7-2d, we have used very strongly the fact that the
system 3(3x + 2y + 4) + 2(5% - 3y - 25)= 0
5% - 3y - 25 =0
3x + 2y + 4 =0
5k - 3y - 25 = 0.

The left member of the first equation of the first system above is
called a linear combination of the left members of the equations in

is equivalent

to the system

the second system.
Thz same argument which we have used in this example can be
gsed tce show that the system

f(x:Y)

g(x,y)

0

0

where f(x,y) and g(x,y) are expressions in the two variables
x and y, 1s equivalent to the system

| jaf(x,y) + bg(x,y) =0
' l _ f‘(x,y) = 0
or the system
af{x,y) + vg(x,y) =0
g(x,7) = 0.

See Problems 15 and 16.
Thls ge'=2ral result can be stated ia the following principle:

Principle 7-2b. Principle of Linear Combination. The system

of equations obtained by setting each of two ,expressions involving
X and y equal to zerc is equivalent to the system obtained by
pairing either of these expressions with an equation obtained by
setting a linear combination of the two expressions equal to zero.

We 1llustrate the use of this principle in solving systems of
equations in the following example.
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Example 7-2e. Find the solution set of the system:

3X -y -8=0

X +2y -5 0.

The system is equivalent to the system
33X -y -8 =0
a(3x -y -8) +b(x +2y -5) =0

We may choose a and b in such a way as to eliminate eoither
X or y from the second equation. Let us choose a = 2, b = 1,
the system then becomes

{3x -y ~-8=0
T - 21 =0

Omitting the details c¢f the proof, we show the remainder of
the series of equivalent systems:

3 -y - 8
U
-y + 1
{00

y =1
X =3

The solution set of the original system is the same as the solution
set of the equivalent system ‘

It il
o O

I
o O

that 1s ((3,1)).
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This method of solving systems of linear equations is essen-
tially the same as the elimination method, which you have probably
used many times before. The only real difference i1s that the defi-
nition of equivalent systems and the principle of linear combina-
tlon assure us that the solution set of the system we obtain in the
end is the same as the solution set of the original system.

Exercises 7-2

1. Determine whether or not the following sets of equations are
equivalent. Justify your answer.

(a) 3x =6 and S 2xX =3

(b) Ix + 3y = 12 and 3% + Uy = 12
(¢) 5x + 20 = 35 and X =3

(d) 8x - 10 = 2y and bx ~y =5
(e) x=y and x° 4+ y2 =0
(f) x=-Jy +3 and x° = vy +3
(8) x=Jy -0 © and x2 =y -6
(h) x-2=y and lx - 2 =y
(1) y = x° and y= Ix|
(3) =xy + x2 =0 and y = -X

(k) x2 - x - 12 =0 and x =0

2. If (3,5) is the only element of the solution set of the
system

(1) {Bx + by

3x - by

3x + 4y =29

6x = 18
equivalent 1f it is known that the solution set of (ii) has
only one element?

29 is the system (i1i)
-11,
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8 1s ((&,2)), and

i

If the solution set of (1) {x +y
2% - y = 10 X -y=14

(11) 5% + 2y = 34 has a single element in 1ts solution

set, 18 (1) equivalent to (i1)? :

Determine whether or not the following sets of systems are
equlivalent., Justify your answer,

(a) X +y = 10 and |2x + 2y = 20
X -y =6 X - y=6
(p)  [5x + U4y =3 and {y = -3
X +y = (0] X = 3
(c) 7% + 3y = 15 and [7x + 3y = 15
5¢ - 2y - 19 = 0 2(7x+3y-15) + 3(5x-2y-19) = O
4(3x-Uy+24) + (5x+3y+1ll) = O
-5x - 3y = 11 5 + 3y + 11 =0

3% + 5y = 18  and {x =1
2

X +3y =6 and Jx° + 3y = 6

(a) {BX - by = -24  and

5 + 4y - 3 = 0 and {x =1

x5 +y° =25 and {y =

(3)

(h) {x +y = -8 and {xg - 100 = 0O

'
—\]
P
i
Ul
o
~
)
—\]
<.
il
Ul
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Sketch the graph of the component equations of

(1) <2 4 ye - 25 and (11) <2 _ ye -9
_ 4 _ 4
y =3 X y =3 X
Determine from the graphs whether or not the systems are
equivalent.
Is the system (1) x2 . y2 = 25 equivalent to
X =y +5
(11) Jx -y =5
X +y =5

" Sketch the graphs of the component equations to check'your

answer. Form another system which will be equivalent to
(11). Are all three of these systems equivalent?
2 2

‘Sketch the graph of the system (i) x° - y© = 16

x° + 4y° = 4
and the system (1i1) vy =x -1
x2 + uyg =4

Use these graphs to help you discuss whether or not these
systems are equivalent. .

Choose a ’and b, not both zero, in each of the following
so as to eliminate the term in y:

(a) aly - x°) +b(y - 2x - 3)
(b) a(2x® + 7y) +b(3x + 3y - 5)
(¢) a(3x® +2y - 5) +b(3x° - 3y +7)

(d) a(x® + 9y + 8) + b(4x® - 2y + 7)
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Choose a and b, not both zero, 1n each of the following
30 as to eliminate the term 1n x:

a(x +y +3y° - 7) + by -x)
a(x + 3y - 7) + b(2y - 5x)

a(5% - 7 +2y) +b(y® - 11x + 21)

/

a(bx - 7 + 2y) + b(ya + 11x + 21)

Choose a and b, not both zero, so as to ellmlnate one of

the variables:

(a)
(b)
(c)
(d)
(&)

(b)

2 2

a(x® + Y2 - 7x +3) + b(2x° + 5y2 - 1l4x +y)

a(x + 3y - 7x2 +2) + b(zlx? - 9y + y2 - 3x + 10)

a(x + 3x2 +2y +7) +b(x - 5y + 21)

2 2 .2
)

a(x2 + 2y + X + 4y -~ 7) + b(2x° +y° +x + 2y + 12

Using the constants a and b form two systems equiv-
alent to the system

X +y =1
{ 2X -y ='4
by the principle of linear comblnatlon.
Select several real number values for a and b. Draw

the graph of the component equatlons of the egquivalent
systems formed on the same coordinate axes.

Select real number values for a and for b 8o as to
elliminate the term in x; so as to elimlnate the term
in y. Draw the graph of the component equations of
these two systems on the coordinate axes used above,
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12.

1.

*14,

Given the following equivalent systems:
(1) (x +y =2 (11) [x =2 (111) [x =2
{gx - 5y = X +y =2 vy =0

(a) What real numbers a and b will change (1) to (11)
By the principle of linear combination? (ii) to (ii1)
by the principle of linear combination?

I

(b) Sketch a graph on the same coordinate axes of the com-
ponent equations of these three systems; (1), (ii),
and (1i1),

(¢) Give the solution set of (i), (i1) and (i1i).

By use of equivalent Systems and the principle of linear com-
bination, find the solutlon set of each of the following sys-
tems:

(a) 2x -y - U4 =
X -2y + 7 =

1

2y - 2

2x - 3y =5
'x - 1.5y = 2.5

Rt
!

(c) {.OEy = .01x - .1 {2x = 8y - 10
{

(v) 7x + 5y = 11
3x - 2y =13

.03x - .1y = O 5 = %y - x

(d) %x + %y = b 0= - %x - %y - %
X + Ey =4 X = %y»+ 1

() [1x +3y +7 =0 () [3x -+ =1
2x + Sy = 21 X - % - %

Prove that if system (1) 1is equivalent to system (2), and
1f system (2) is egulvalent to system (3), then system
(1) 4is equivalent to system (3).

g
j—
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0 1s equivalent to the
0]

1]

i

*15. Prove that the system £f(x,y)
g(x,y)

system a-f(x,y) + beg(x,y) =0
‘ g(x,y) =0

*16., If f(x,y) and g(x,y) are algebraic expressions, show that
the systems, '

{f(x,y) 0 and {a-f(x,Y) + beg(x,y)

|
o

are

it

I
o

it

| e(=,y) =0 cef(x,y) + deg(x,y) =
equivalent if and only if ad - bc £ O

7T-3. Systems of Linear Equations,

In this section we are concerned with finding the solution
set of the system

1]

a-X + b,y + ¢ 0, not both a and b zZero
i { RS 1 1 1

X + b2y + ¢y, =0, not both a, and b2 zero.

a2
" We now have several ways of attacking this problem. The
method of eliminating one of the variables, as we haQe seen in the
preceding section, 1s essentially the same thing as finding _an
equivalent system using the principle of linear combination,

In addition, we may consider the problem from the geometric
point of view. The machinery of analytic geometry which we deve-
loped in Chapter 6 will be extremely useful in this method of
solution. :

We begin by consldering some examples.

"Examgle 7-3%3a. Find the solution set of the system

{ X +y-1=020

2x = 2 - 2y.
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Solution: The system 1s equivalent to the system

X+y-1=20
2x+2y72=0,

¥

But the left member of the second equation 1s simply twice the left
member of the first equation. Hence, any ordered pailr which sat-
lsfies the first equation will satisfy the second. The system is
dependent and the solution set of the system is the set of points
on the line whose equation x +y - i =0; that is, {(a,l-a)},
where a 1s any real number. Geometrically the two equations are
equations for the same straight line.

Example 7-3b. Find the solution set of the system

X+y+1=0
2Xx + 2y + 1 = 0,

Solution: The system is equivalent to the system

It

0

{2(x +y +1) - (2x + 2y + 1)
0

X+ y+1

X +y +1 0.

U

1=0
which 1s equivalent to {

It 41s clear that there are no ordered palrs (x,y) which satisfy
the equation 1 = 0. And since the system

l1=0

X +y +1 0

1s equivalent to the originél system, the solution set of the orig-
inal system is the empty set. Hence, the system is inconsistent.

- Geometrically the lines must be parallel. This follows since the
two lines have the same slope, -1, but not the same y-intercepts.

it

Example 7-3c. Find the solution set of the system

2X + 3y + 1 =0
323X - 5y + 4 = 0.
3972
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Solutlon: The system is equivalent to

0
0,

it

{—3(21 + 3y + 1) +2(3x - 5y + &)
2X + 3y + 1

it

Il

that is I 197 - 5 = 0 which is equivalent to [y = %g
l?x + 2y + 1 =0,

2x + 3y + 1 =0

X

which is equilvalent to {y’: {%
X = 1—9-.

The solution set is therefore {(- %%, {%)}, and the system is

consistent. Geometrically the lines intersect in the point
(- 2L, 2
19° 19‘°

We return now to the general system 7-3a,

a,x + bly +cq = 0, not both ay and bl Zero.

X + b2y + ¢, = 0, not both a and b Zero.

an 2 2 2
The graphs of the two equatlions of this system are straight lines

(Section 6-2). Let us call them L, and L,. Geometrically,

three cases are possible,
Case I. The lines L1 and L2 are the same line.
Case II. The lines Ll and L2
Case III. The lines Ll and L2 intersect in a single

are parallel.

point.

Case I, We have noted already in Chapter 6 that the graphs
.of the two equations are the same stralght line if and only if the
corresponding coefficients are proportional; that is, a| = ka2,

by = kb,, ¢y = ke,. (k # o. Why not?) 1In this case the system

1
1s depend2ant.
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Case II. We also noted in Chapter 6 that two distinct lines
are parallel 1if and only if they have the same slope {or are both
vertical). Since the slopes are '

a a

1. 2

m, = - — and m, = - —
1 bl 2 b2’

the lines are parallel if and only if

a, a,
B, 5, °F 21P2 = %0
If the lines are vertical, b, =Db, =0 and a-.b = a.b, = 0.

1 2 172 271
Therefore two distinct lines are parallel if and only if

or a.b, - a.b, = 0.

ajby = agb, 1% = agby

In thls case the system is inconsistent.

Case III. We shall show that two lines intersect in a single

point (and are therefore consistent) if and only if
a b, -fasby # 0.

Using the principle of linear combination the original system is
equivalent to the system

| bg(alx + by + cl) - bl(agx + b2y * ) o

0,

i

alx + bly + cl

which 1s equivalent to the system
blc2 - b,eC

271
alb2 - a2bl

X =

a;x + bly + cy = o,

[sec. 7-3]
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which 1s equiyalént to the system

’

x = 218 - 2%

5 -5 b-

d a)% = 8%,

- e A
V= s

1%~ 2%

N

The solution set of the orilginal system 1s the same as that of the
last system and this 1s clearly

blc2 - bgcl agcl - a

1%2
- 4 - .
aib2 aébl alb2 agbl
Hence, the two lines intersect in this single point if and only if
alb2 - agbl # 0, since the systems are equivalent if and only if

a,b, - asb . # 0.

0 consistent?
0]

H]

Example 7-3d. Is the system |5x + 4y + 7
2x - Ty +5

Solution: Since a;b, - a2bl =5(-7) - (#)(2) = -43 £ 0,

]

the system 1s consistent. The solution set is the single number

-69 11
pair, _B’EB- .

Let us look again at the system a.X + bly + ¢y 0

Il

1

X + b2y + C 0.

Il

a2 2
If we consider the equation obtalned by setting the linear

combination k + ky(a x + by + 02) = 0, the

l( 1 l) 2( 2
result is again a linear equation. Its graph, therefore, is a
straight line by Section 6-2. Furthermore, if the two given lines

a.x +Ib1y + C
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intersect in Q(xo,yo), then aX_ blyo +c¢y; =0 and

a2xO -+ bgyo T ey = 0 and for any real numbers kl and kg,
+

k X +Db cq) + kp(a x ) + by, + c2) = k.0 + k,'0 = O,

l(al o 1Yo
Therefore, Q(xo,yo) is on the line. So our Principle 7-2b

simply asserts that the system of equaticns whose graphs are the
two lines intersecting in Q(xo,yo) is equivalent to the system

consisting of one of these lines and any other line which passes
through Q(xo,yo). Our method amounts to finding the equivalent

system consisting of the horizontal and vertical lines passing.

through Q(xo,yo); that 1s, the system X =X

n
<

y

9 is equivalent to

I

Zxample 7-3e. The system X + 3y
X -3y =-3
the system [k (x + 3y - 9) + ky(x - 3y +3) = 0
X -3y +3 =0
Any line through the point of intersection of the lines of the

original system can be represented by the first equation in the
second system for some values of kl and kg. In particular, if

kl = 1 and k2 = -1 the resulting equation is the equation of

the vertical line 3y - 9 + 3y - 3 = O; that is y =2, If
kl =1 and k2 = 1, the resulting equation is the horizontal

Yy \r! . |
line x = 3, — :
, 3\ 

2 ).2) , :
. ] Lo y=2

N
D
=4
- —1-— —+C¥
[_‘

| X=3

Fig. 7-3a,
[sec. 7-3]
396
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Exercises 7-3

Tell whether the graphs of the component equations of each of

the followl: 2 the same straicht line, parallel
lines, or tines, Also, tell whether *' -3e
systems & " b, inconsistent, or depende:
(a) J5x +b4y +7 =0 (£) [|2x -y =-3
2X - 7y +5 =0 9=Xx+Yy
(b) [3x +3y +1 =0 (&) y=%X+5
2x + 2y + 1 =0 y_%x-‘j
(e) 3x = 1 - 2y (h) 2X -y =6
g-x—6y=3 bx - 2y =5
{(a) 2x - .5y = .1 (1) f3x -2y =1
=y -2 6x - Uy =2
2y _ X ¥
(e) [y=zx-1 (3) s +E5=1
y = %x + 6 10x + 6y = 5
Find the solution sets of the following systems:
(a) [x+3y =09 (1) [v=-gx+e
X =3y =-3 X + 4y +2 =
(b) bx +y =5 2x+2y=100
2x - 3y = 13
(c) 2% - 9y =5 32X + 1 _ 3y J 2
3x - 3y = 11 ”"‘1+ ,;2=a
(d) [3x -7y =1 x+2y~3
2X - 3y = =1 8y+4x

397

(sec. 7-3)



388

*3.

b,

(e) {1Lx+y=2 (m) |252-8
2x - 3y = 8 2x - 3y =5
(£) [3x=-3y -1 (n) {xéy-x”uy 4
_ s X+y _x-2y 22
Lx - 6y = 53 3 5 5
() | 3x + by = 16 () [2-¢-%
X d
B5X + 3y = 12 a—+%=a§
(h) % + % = % {p) X + ay = b
%’E-i*%:—%'- 2X - by = a

Prove that ;f alb2 - agbl = 0, blc2 - b2°l = 0, and
821 - 830 = 0, then there exists a real number k # 0

such that a; = kag,. b, = kbg, and ¢y = kcg. Assume, of

1
course, that a.b 0 and a,b 0.
1-1 272

A man can row downstream 6 mlles in 1 hour and return in
2 hours. Find hils rate in still water and the rate of the
river.

If a field i1s enlarged by making 1t 10 rods longer and 5
rods wider, its area 1s increased by 1050 square rods. If
1ts length 1s decreased by 5 prods and 1ts width is decreas-
ed by 10 rods, 1ts area 1s decreased by 1050 square rods.
Find the original dimensions of the fileld.

The sum of the acute angles of an obtuse triangle is 85°, If
the dilfference of the acute angles 1is 190, what are the
angles?

A and B are 30 miles apart. If they leave at the same
time and travel in the same direction, A overtakes B in 8
hours. If they walk toward each other, they meet in 3 hours.
What are theilr rates?
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One alloy contains 3 times as much copper as silver, an-
other contains 5 times as much silver as copper. lHow much

of each alloy must be used to make 14 pounds in which there

1s twice as much copper as silver?
ind two numbers such that
(a) = 'r sum is 12 and their difference is 3;

. vy . of their reciprocals is 24 and the difference
:1r reciprocals is 4.

The formula s =s  + Vv t - 16 t° 1s often used for falling

bodies where s 1s the height of the body at any time ¢,

s, 1s the initial height (when t = 0), v, 1s the initial

velocity and the coefficient 16 1is used for one half of the
acceleration of gravity. Distance s 1s in feet and time ¢
is in seconds. If s = 10,000 when t =5, and s = 8,550

when t = 10, find 84 and Vo'

PFind an equation of the line which passes through the origin
and the intersection of the lines whose equations are
bx +y =2 and 2x - 3y = 8,

Find an equation of the line which passes through the point
(5,4) and the intersection of the lines whose equations are

y = - %x + % and X + gy = - % .

Systems of One Linear and One Quadratic Equation.

The simplest kind of system of two equations in which at

least one 1s not linear, is a system consisting one linear and one
quadratic equatlon.

Example T7-la. Find the solution set of the system

y = 2
Yy = 2x + 3.
[sec. T-4])
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Solution: If (x,y) belongs to the solutvion set of the
syscem, then 1t must have the form {a,2a + 3) for some real
nunber a,. in order to belong to the solution set of the second
equation. On the other hand, to belong to the solution set of the

first, the ordered pair must have the form (a,ag) for some real
number a. Hence, a palr with first element a, belongs to the

solvtlon set of the system if and only if 2a + 3 = a2. This
»8 that a = -1 or a : 3. Hence, the solution set of the

syewem s ((-1,1), (3,9)}.

Example 7-4b., Find the solution set of the system

)

x2+y2=5

X + 2y 5.

Solution: The elements of the solution set of the equation

X +2y =5 must have the form (a,ﬁgé). The palr will satisfy

X2 + yg'h 5 in addition, if ard snly if
a® 4 ! i)g =5
uag + 25 Jda + a2 = 20
58 - {1 + 5 =0
a2 -2 +1=0

Hence, a = 1 and the solution set of the system is {(1,2)].

Example 7-Uc. Find the solution sct of the system

To= 1

»
i

<
!

it

400
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Solution: The elements of the solution set of the second
equation must have.the form (a,a). The pair will satisfy the
first equation also, if and only if

a2 - &ae =1

Bub this - uation is not satisfied by any real number a. Hence,
the solution set of the system is the empty set.*

Example [-4d. Find the solution set of the system

%2 . y2 -0

x -y =0

Soliarion: Tz elements of the solution set of the second
el.+ticn must have the form (a,a). The pair will satisfy the
frrwt :opatlon also, if and only 1if,

a2 - & =0,

Siwce snlo equatlon 1s satisfied by every reél number a, its
s21uTioi. 32t 1s the set of all real numbers, Therefore, the
solutiorn set of the original system is the set of all pairs Qa,a)
were i 1s any real number,
The: preceding examples exhibit four different kinds of =z31-

¢ for thls kind of system, namely, the empty set, a set
cem3lsting of only one pair of r:il numbers, a set consisting of
tw- pz'rs of real numbers, and o 2t whose graph is a certain line.
Meroow . these are the only kin:: of solutlon sets which can

UL oon det

¢. «ur, =i we proceed to show.

* e tat Lf we allowed the var-ables to represent complex
numbers cur solutlon set would be:

O ERE R 1Y3)),
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Suppose we wish to find the solution set of the system

2 0

0,

]

Ax® + Bxy + Cy° + Dx + Ey + F
(1) Lx + My + N

1l

where not all of A, B, C, D, or E are 0, and where M 1is
not O, Any member of the solution set of Ix + My + N =0 must

have the form (a, - Lﬁ—%—ﬂ). The pair belongs to the solution

set of the system if and only if it satisfies, in addition, the
first equation of the system, thal is

(11)
na® + Ba(- M) 4 o(_ La—lle-)2 + Da + E(- QJ—N) +F = 0.

This equation can be expressed as,

2 -
(111) Aja® + Boa + C_ = O.
If AO = EO = CO = 0, every real number 2 satisfies the
equation.
If A, =B, =0, but C, # 0, no real number a satisfies the

equation.
If A, =0 but B, # 0, there is one real number a which

satisfles the equation.
If A, # 0, there are either no, one, or two real numbers for a

which satisfy the equation.

This result has a very interesting geometric interpretation.
It means that any straight line

(1) will not intersect a conic or

(2) will intersect 1t once or

(3) will intersect it twice or

(%) will actually be a part of the graph of the conic.
The fourth case can occur when the conic is "degenerate" in the
sense that 1ts equation can be expresses as the product of two
linear factors one of which is the linear equation of the system
as in Example 7-4d above. In this case, the graph of the linear
equation is actually a part of the graph of the quadratic equation.

[sec., 7-4]
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Some graphical interpretations of statements, 1-4 are shown in
the following sketches:

(1) The line does not intersect the conic.

Q >

The line intersects the conic once.
(3) The line intersects the conic twice.

403
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(4) Tne line is a part of the graph of a degenerate conic -
whose graph consists of two (intersecting,parallel,or coincident)
lines,.
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The previous discussion eliminates the possibility mentioned in
Chapter 4 that a parabola might actuall:- . ok like *“he curv. -
Flg. 7-%4c.

For, if one such wiggle occurred, we could draw a line intersecting
the parabola in three points.

- In the examples we hzave considered so far, we found the sol-
ution set of the system by first determining the form which a
nunber pair with first element a must have 1% it is to satisfy
the linear equation. Then we reasoned that the number pair be-
longs to the solution set of the system if and only if 1t-also
satisfies the quadratic equation. This transformed the problem of
finding the solution set of the system into the problem of solving
a quadratic equation. Of course, we might just as well have said
suppose the second element of the ordered pair is b; then if the
pair 1s to satisfy the linear equation, the first element of the
palr must have a certain form, etc. In s2me systems thils approach
greatly simplifies the algebraic manipulzzions involved in finding
the solutic.. set.

405
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v 7=te, PFind tI .. Lution set of the system
>
27T + Xy =5
X +Uby=7.

Solution: If an ordered palr whose second member is b, be-
longs to the solution set of the second egaation, then the ordered
palr must have the form (7-4b,b). The pair is an element of the
solution set of the system if and only if it satisfies the first
equation., That is,

2b° + (7 - #b)b = 5

2b° + Tb - 4b€ = 5

2o 45 = o
(0 - 5)(b - 1) =0. ] :
Hence, the ordered pair (7 - 4b,b) belongs to the solution set
of the system if and only if b =1 or b = %. The solution set

of the system 1is 5(3,1), (-3, %))-

Exercises T7-4%

1. Find the solution set of each of the following systems. Use
the procedure developed in this section.

(a) x2 +y° =50 (g) V2 43Xty =T

X-y=0 X +10 =y

X +3=0 (h) 3x - 2y = 0

2 2

X -y +1=0 T +y =52
x+4y+2x-11=o(1) Xy = - 12

5 X + 1t =

~ 2 2
2 =0 (5) [ex®-xy=y
X +y =0 X =Yy




y,
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(e) |xy =6 (k) [3x° - y® =3
2x-y=1 . 2y—x=8
() vy = 2x® ) x° . y2 +X +y =0
y +1=2x X+l=y
(m) v =x° -1
vy=-1Ux -5

Find the solutlon set of each of the following systems,
Check by sketchlng the graph of the equations of each system.

(a) {y=x2 (c) |x® +uy® = 25
2X -y = - 3 y-2=-g(x-3)
(v) Xy =9 (d) Xy - 2x + 2y + 4 =0
X+y=5 X -2 =0

Discuss the geometric interpretation of the solution sets of
the systems in Problem 1.

A line passing through the point (O,-5) 1s tangent to the

conlec whose equation 1s x2 =y + 3. Write an equatlon of
the line. How many tangents are possible? Give the equa-
tion of each.

A line having slope 2 1s tangent to the circle whose equa-

tion 1is x2 + y2 = 16. Write an equation of this line. How

many tangents are posslble? Glve the equation of each.

Find value of k in terms of r and m so that the line
whose equatlon 1s y = mx + k will be tangent to the circle

whose equation 1s x2 + y2 = rg, r > 0,

407
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-5 Other Systcems.

Finding solution sets for systems of equations in which
nelther component equation 1is linear, is complicated. There are
several special methods which solve the problem for parti..lar
types of systems consisting of two quadratic equations. .aese
methods usually consist of finding simpler systems which are equi-
valent to the original system by eliminating one of the variables
from one equation. This elimination process may be essentially
our method of linear combination, or it may involve substituting
an expression for one variable obtained from a first equation in
a second equation.

Example 7-5a. Find the solution set of the system:

3x° - y° 4+ 22 = 0
x° + 2y° - 107 = O

Soluticn: We form a linear combination of the left members

which will eliminate yg, namely

2 2 2

2(3x% - ¥y + 22) + (x° + 2y2 - 107) = O.
By Principle 7-2b the new system

3x° - y° + 22 =

!
o

7x° - 63

]
o

is equivalent to the original system. This in turn is equivalent
to the system

3%x° - y° 4+ 22

]
o

x2 - 9

]
o
-

408
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which is equivalent to

(3x° - y% +22) - 3 (x® - 9) =0
x2 -9 =0
y2 - 49 =0
or
x2 9 = 0.

Just as in the previous section, we may observe that any ordered
pair satlsfying the first equation must have the form (a,7) or
(a,-7) for some real number a; while any pair satisfying the
second must have the form (3,b) or (-3,b) for some real number
b. Hence, the only ordered pairs satisfying both equations are

(3:7): (3:"7): (‘3:7): and (—3,—7). Since the system
y2 - 49 =0
x2 -9 =0

is equivalent to the original system, the solution set of the
original system 1is '

((3,7), (3,-7), (-3,7), (-3-7)}.
Example 7-5b., Find the solution set of the system

2

i

2xy - y°= + 24 0

2x2 + Xy + 2 0.

Il

By the Principle of Linear Combination (Principle T-2b) the
system 1s equivalent to the system '

2 4 Xy + 2)

i
o

{—(2xy - y2 4 24) + 2(2x

2x2 +.Xy + 2

|
o
e

That 1s,
4x2 4 y° = 20

2X" + xy = -2,
409
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Since no ordered pair with first element zero satisfies the second
equation, thils system 1s equlvalent to the system

As 1n the last section we now say that if an ordered pair with
flrst element a satisfies the second equation, it must have the
form
(a, - 2 - 2a)
) a .

It 1s a member of the solution set of the éystem if and only if it
1s a member of the solution set of the [irst equation; that is,

2

ba + (= g - 2a)2 = 20.

2 +-i% +8 + 4a® = 20

a

Then since a # 0 la

8au + 4 - 12a2 = 0

2a* - 332 .1 =0

(2a® - 1)(a% - 1) = 0

Hence, the p-ir (a, - % - 2a) belongs to the solution set of the
system if and only if a =1, a = -1, a = L y Or a = - L .
J2 NE)

Hence, thes solution set is

{(l: ")“”): ("l:)“”): ( ':'L" ’ "3 “/E)‘: (" ':'L" L] 3 ‘\/—2-))'
V2 V2
Example 7-5¢. ' Find the solution set of the system
x2 _ y2 =0
2x° + Xy = A48.
410
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Solution: The system can be written
(x +y)(x -y) =0
Any ordered palr with first element a satlisfying the first equa-
tion must either have the form (a,a) or the form (a,-a) for
some real number a. If the ordered pair is to be a member of the

solution get of the system i1t must, in addition, satisfy the
second equation; that is either

48
3a° = 48

a® =16
a=14o0or a=-4

2(a)? + a(a)

cr 2(--a)2 + a(-a) = 48
a® = 48

a=4J3 or a=-4.J3

Hence, an ordered pair of the form (a,a) 1is a member of the
solution set of the system if and only if a 1s 4 or -4, A
pair of the form (a,-a) 1s a member of the solution set of the
system if and only if a =4 /3 or a = -4 V3. Hence, the
solution set of the system is

[(ll»,)—l»), (“)“”:“)“”): ()“” ‘~/_: ")“”“/_3-): (")“”‘\/3: )“”‘\/—3— )].

These examples illustrate some of the types of systems for
which the solution sets can be fouril using the methods of this
chapter. Of course, not every system can be solved so easily.

Example '/-5d. Find the solution set of the system

x° - Myg +8y -~-8=0
x2 + 9y2 ~ Ux -~ 32 = 0,

[(sec. 7-5]

411



4o2

Sovlution: No linear combinatlon of the left members of the

two equations will eliminate either x or y. However, we can

eliminate x2 and obtain the equivalent system

(x2 - uy2 + 8y - 8) --(x2 + 9y2 - Ux - 32) =0
x2 - 4y2 + 8y - 8 = 03
that 1s, -13y° + 8y + Ux + 2L = O
x° - 4y2 +8 -8=0

Then while 1t is possible to use the technique which we have used
before of letting b be the second element of an ordered pair
which satisfies the first equation, we run into a few complica-
tions. The pair must then have the form

(3% - 2b - 6, b).

The pair belongs to the solution set of the system, if and only if,
in addition it satisfies the second equation; that is,

(322 - 20 - 6)% - 42 + 80 - 8 = 0.

This equation is an equation of the fourth degree in b and we do
not have available methods for solving such equations. So that
while in theory our method still applies, in actual.practice, we
are unable to carry it through successfully. In such'situatlons
the number of members of the soclution set of the system and approx-
Imations for these number palrs can frequently be obtained from
the graphs of the component equations., See Fig. 7-5a.

} ol i A PR
N _ A
B -
=N ~o
— e %
Yy i ] ~
l -
\ .. O SN i x
A1 T~
|47 !
L= ST N
Flg., 7-5a.
[sec. 7-5]
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The equations may be rewritten in the form

C(y-1)%
2
(x - 2) %

1.

From Flgure 7-5a we see that the solution set of the system con-
talns four number pairs. They are approximately

(2.8,1.9), (-2.2,1.3), (-3.8,-.7), and (5.6, - 1.6)}.

Solution set for systems of inequalities can be obtained
graphically in a similar way. -

Example 7-H5e. Find the solution set of the system

¥y < 5Hx2 +8x - | w oot

| v > x° - 12x + 32.
Solutlon: We first sketch the graph the two parabolas whose
equations are y = -x° + 8x and y = x° - 12x + 32. We may re-

write the equations y - 16 = -(x - 4)2 and y - (-4) = (x - 6)2.
The first 1s a Parabola with vertex V1(4,16) and axis the line

= I which opens downward, The second 1s the parabola with
Vertex V,(6,-4) and axis the 1ine x = 6 opening upwards. The

solution set 1s the set of points below the first parabola and
above the second; that 1s, the shaded region R in Fig. 7- 5b,
not including points on the boundary.
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1.

~

7
! %&m x

7-5b.

Fig.

Exercises T7-5
Use the principle of linear combination to find the solutlon

set of the system
2 = 100

4x° & N

Ix - y° = -20.

Check your answer by sketching the graph of the component

equations of the system.
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solution c=t of tn: stem

o

x2 + 4y2 = 100

[ 2y = 20 - B,

31w+ zhe geometriz interpretation of the solut.-u set of this

ye
3. w2t e solution set of the . vstem
%% + y° = 20
12 _ 12
= =3 -5
T Ihe geometric interpretation of the solution set of =his
Sy& .z
4, ... the solution set of the system
x2 +y° - 25 =0

ve - x> -2x-1=0.

G.ve the geometric interpretation of the solution set of this

I3 Tem.

5. Find thie solutlon set of the system

x° - 5Xy + 4y2 =0
Xy =1

6. TFind tie solution set of each of the following systems:

(a) x° - y2 = U , (n) x° + 4y2 = 20
x2 + y2 = 16 x° - 5xy + 4y2 =0
(b) [x® -7y =2 (1) [x°-y° =16
i\xg -3% =12 , 9x® - 25y° = 0
fc) %2 - y2 = 11 (3) 2 + Xy + y2 =14
2x2 - 5y2 =T X2 + 2y2 = 12

[sec. 7-5]
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(ay x° - xy = 3 (3 Co2x% 4 Xy + y2 -5x + 6 =
! - 2 2 -
X" +y- =05 v 4+ iy + 5x - 6 =
(e) x° - y% = 13 (4 Tox? 4 sxy - y° = 4
12x2+y2=-1 2x2+3xy-8=
(f£) 8x° - y2 = U4 (n); x° + Xy + y2 = %6
4x2+y2=4 , xy =0
(g) 2x2-3xy=2 (n, §x2-2:=::5=—1
2X2"5XY-31Y2=O 1 = = xy
7. Find the solutlon set of each or the following systems:
(a) [x® +y% <9 (n) [x2+y° 29
y2>_x <9x2+16y23144
x>0
(b) <x2—y2'_<_‘9 (1) |v® < ux
X% 2y > 4 $x% > by
x-y=20
r D
(c) <x2+y2225 (1) [x®+y"<es
2 2
k)c2+y2525 13{%5+19—2_1
(@) |x® +y2 <16 (k) (7 %> -6x+9
(?
1x+2y—2=0 ly?_z‘-6x+8
(&) [vexPsax-3 () [=">0
‘ 5
-y—l:O L9>y~
(2) [ +162 3126  (m) [=-2Pa(y -1 gl
x> + 4y < 16 7 £ szz)z
416
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2
(g) ix o<k (n) [y>:— -~
o X2
e - L ~ . —
o + 9 E 1

-0 Supplementary Exerc .szas
1. Find the solution ==t 0f the following systems:
(a) {x-g;vza (e) ."‘_g_l_%:%
X +y =3 _zi_f:)_l - = =.:2£
" (b) 5 + 8y = 7 (£) 2X - 3y = Db
2X + Ty =1 IX + o=
() 2 =T -y (g) X + 1y = %
2x + 5y = 13 SX - ¥ = 3W
e
(a) bx + 5 =y (h) ax + by = =2
%—y = 4x cx + d- = f

2. Find the solution sst of each of the following systems:

(a) x>0 (d) Ix>o
1
- . y >0
y 0
2 ¥y < -3x + 24
¥y < -x + 10
(b) T 2 )
2
4
N (e) (v <2x

1
~
o

~

2 2
+4-< 1

(¢) Zx+7"7>6 (v >0
K m -2 (£) [x> -2
[::+;/“~ xx2

¢ .
' y<3
417
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(g) X 20 (p) 2 axy = b
|70 +9y = 20
e 3y > 6
(h) = 5y » 10 (a) QXY—y = - 24
“-_—6y->-6 +xy=_2
=+ Ty £ 28
X~ Ty £ 21 (r) { = 36
(1) J"}:—-By-3o=o y+6
oty =0 (s) [ox® = 29
[+ -y -11 =0
7x -2y + 38 =
(J) Xy = 12
X -2y =0 (t) [x+y=5
c L. _1.=E_
(k) x° +y° =1 X"y
.ux2+9y2=35 (u) {
(7) Sx. +4y2=3o
bx™ 4 5y2 = 30 (V) {X , = 144
Ux 2 _ 1y
(m) IX2+Y2+4}£+6y= 40
x=10+y (w) 2+5y2=3
(n f8x - 3y° =5 X -y =0
7= - 3xy =10 (%) 432 =17
(0 X2+y2_25 =4x—12
‘LL;;AXQ_QO !xe—xy-rye:le
=y + 10

In terms of k such that the line whose equation
mx + k shall be tangent to the conic whose equation




Chapter 8
SYSTEMS CF I_{ST DEGREE EQUATIONS IN THREE VARIABLES

8-1. A Three Diz=ns. -nal Coordinate Syste-.

In Chapt - .. @< _.arned taz: & one-tc-one correspondence
carnn be establ sh:.. L:zTween ordersd pairs c. real numbers (x,y)
and points in a piine. In this thapter we shall deal with
triples of numbers (x,y,z) and view ther. sometimes as consti-
tuting solutlon sexn of equations in thre=s variables, and some-
times ac representing points in three-dimensional space. Thus
we will wish, at =%: outset, to set up a ocne-to-one corirespond-
ence between rder=. triples & real numbers (x,y,z) and the
points of thrsze-dim=nsionsl sgmace., We use a method similar to
the one we uszd in zwo dimens=“cns.

Take three mucually perp=ndicular lines and label these
lines the x-dxis, =he y-axis, znd the z-axis respectively. These
lines can bz chosen, and labelled, in any mannsr whessoever,
For the saks »f un: ormity, and because the choice 1is a common
one, lzt ti= x- and y-axes be
In & Zorizor—al plane and the
z-axis perpe:id’ cular to this
plane. The . ;:at of inter-

section of tiwv =w=s ls 9, the ~'Z

origin, e iszism —umoper

isgales .: th: axss, as we did wizh I

cocrdiz=Te v tems _-n one and -

two diz.nsiszos, In such a way

that the zero of each of the L S Y

axes coincides at the origin. )
The positive direction OX ////}//
extands forward, toward the 7
observer; the positive dir- X
ection OY extends to the _ Fizure 8-la
right; and the pcsitive

—
@fmision 0Z extexds upward., A plane dete-mined by arv two

419



410

of the axes 1s called & cczrdinate plane. There are three such

planes, tr.= X7 -plane, =n: XZ-plane, z=nd the YZ-plane,

Througnh any point F 1in space draw three planes which are
respective’y perpendicu..n.- to the threz coordinate axes., The
numbers attached to the zoints in whicr these planes intersect
the x-, y-, and z-axes zr= called the x-coordinate, the
y-coordinzze, and the z-:zoordinate of the point P respective-
ly. Thess planes and the
three coocrdinate planes
form a oDooz-llike Z
figure [z led

a rectanzulzr —
paralle_=pired). ///////
We can tnen £ind e =
the tripls of 3(/ P(xy 2)

|

|

i

coordinates of

L
M

any glven T >iz=
in space; ang,
zonverselsy, ws i

can locate =z D A
poilnt Im sprs ///

when ary cmesm=d

triple of r==i Tigure 8-1b

S

numbers 1s z_v=n. This one—fo-one corresrondence between points

in space and the ordere:d ttiples of res aumbers (x, y, z) is
called a threse-dimensional -oordinate srstem. '

Exzzele  Plzt the —aos (5,-2,-).
So_ .ilon: Begin at ooz origin ez @ ~.roceed 5 units in the

directisn. of the mosiziwe x-axls, 2 .tz in the direction of
the negative y-axis, zzmd + units iz The direction of the pos-
itive z-axis. The point | ocated 1s :h: required point.

420
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Y=
1

|

r

D

P(5:"2;4)

Exercises 8-1,
Plot the following points:

1. (o, -1, 3) 6. (0,2,0)
2. (-2, 0, ¥) 7. (1, -1, 0)
3. (3, 2, 4) 8. (2, -3, &)
b, (2, -1, -3) 9. (3, 2, -4)
5. (<4, -2, -7) 10. (2, 0, -3)
11, Where do all points 1lie for which x = 0; for which x = 2;
for which x = -32
12. Where do all polnts lie for which-y = 0; for which y = 3?

13. Where do all the points lie for which z = 2; for which
z = =27
*14, Where do all points lie for which x + y = 42

8-2, Distance Formula in Three Dimensions.

Development of a‘formula for the distance between two
points in space 1s ciosely related to the problem of finding the
length of the diagonal of a rectangular parallelepiped. Let us
review the latter problem firsﬁ.‘ By virtue of the Pythagorean
relation we have

421
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a®(A,c) = a2(a,D) + da?(D,c) ——. c
a®(a,B) = d°(a,c) + 4°(c,B)
Substituting for de(A,C) we have D
a(a,B) = d°(A,D) + 42(p,c) + a2(c,B)
Figure 8-2a
(8-2a) d(A,B) = \/ée(A,D) + da2(p,c) + a2(c,B)

Thus, the diagonal of a rectangular parallelepiped equals the
square root of the sum of the squares of its dimensions.
Consider now the distance

between the points A(1,2,4) and Z
B(3,5,6). These points are ,i:[:_:;j
opposite vertices of a ! Ai __4
parallelepiped as indicated DF : I’/:
in Pigure 8-2b., The distance : 1 t ;
between them, AB, may be | i_Jﬂ__J Y
obtained by applying formula _ﬁ_iﬁi;,_i//

s %

) Figure 8-2b

(8-2a) a(a,B) =~/a2(a,D) + a3(D,C) + a2(c,B).

From Fl..re 8-2b we see that

d(A,D) = 3 -1 =2
d(D,C) =5 -2 =3
d(CyB) = 6 - 4 =2
d(A,B) = V& + 9 + & = V17,

Using the same method, we now derive a formula for the
distance between any two points in space,'Pl(xl,yl,zl) and
PQ(XQ’YQ’ 22) e '

From (8-2a) we have

a(21sPp) =V aB(2),Q) + aB(Q,R) + 42(R,P,) (See Fig.8-2c.)

[sec. 8-2]
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But d(P,Q) = |x, - |
d(Q,R)

d(R,Pg)

IYQ - yll

|22 - le

' 2

)24 (yp - 90+ (2, = 2))

(8-2b) s d(Pl,Pg) = N/}xg - Xy
This 1s the formula for the distance between two points in three
dimensions. The formula is correct no matter where Pl and P2

lie in space.

U

Figure 8-2c

Exercises 8-2,

Find the distance between the following pairs of points:
l‘ (6’ 7’ l)’ (2’ 3’ l)
2' (4: “lp ‘5): (7’ 3: 7)
3. (O: 4: 5): ("6’ 2: 8)
4- (3p Q: 7): (‘l’ 3’ 7)
5. (4: ‘lp 3): (12: 7: "l)
6. (-4, 2, -7), (8, 18, 1¥)

[sec. 8-2]
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-1

(C) 1, O), ('l, -1, '2)
('3, ll, '8), ("8: '6, '6)
(3: 4 5): (8, 4, l)

(1. 2, 3), (0, 0, 0)

b O D
¢

[

€-3. An Eguation of a Plane.

Fzom plane geometry we know that the set of points in a
plan=. at s=qual distances from two given points, is a line.
SimZ__.rly, in space, the set of points at equal distances from

two =% “en points is a plane. We use this property to derive
the =t;uation of a plane: Since it was proved in geometry that
this croperty characterizes a plane, the equation we derive will

n

recoe

-2nt a plane with all the properties of the plane studied

l

I geometry.

Exzmple 1l: Determine the equation of the plane whose points
ar= =quidistant from A(l, 2, 3) and B(2, 5, 4).

Solution: If P(x, ¥, z) 1s any point in the plane, we

«now that
d(P,A) = d(p,B).

Usimz Formula (8-2b), we have
ViE-124 (5 =224 (z - 3)2

=V (x-22 4 (y-5)2+ (z - 12,
From =his we have

x° - 2x + 1 + y° - by + 4 + 2° - 6z + 9

=x° - hx o+ 4o+ y2 - 10y + 25 + 2° - 8z + 16
wkilich reduces to

(E-3a) 2x + 6y + 2z = 31,

Thus the equation of this plane is of first degree in 3 variables.
Using this same ‘method we prove that the equation of every
plac= is an equation of first degree in 3 variables. Instead of

[sec. 8-3]
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two speclal points, A and B,
we use P,(xg, ¥ zl) and
P2(x2, Yos 22) to represent
any two distinct points in Z
space, Then we have

Figure 8-3a
d(P,,P) = d(P,,P)
‘\/(xl“x)2 + (yl‘Y)e + (zl_z)2 '\Axe‘x)e + (YQ‘Y)e + (22"2)2

2 2 2 2 2
X, - 2xlx + X7 kY] - 2yly + y

2
+ z) ~ 2zlz + 2z

2 2 2 2 2

_ .2
= X5 - 2x2x + x + Vs - 2y2y + ¥y o+ z25 - 2222 + z

(8-3b) 2(x, - xl)x + 2(y, - vy + 2(zy - zl)z

- (x5 - %)+ (v - ¥5) + (23 - 29)) = 0.

Since d(Pl,P)'and d(P2,P) are positive numbers, this argument can
be reversed. Therefore we know that a point P(x, y, z) whose
coordinates satisfy equation (8-3b) is equidistant from P, and
P2.

Equation (8-3b) is an equation of first degree provided

the coefficlents of x, y, and z are not all zero. Let us
denote these coerficients by

A = 2(x2 - xl), B = 2(y2 - yl), C = 2(22 - zl).

These will all be zero only 1if Xy = Xy, Yo =¥ and
Zs = Zq, l.e., points Pl and P2 coinclde. But Pl and P2 are

[sec. 8-3]
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distinct. Therefore we have proved that every plane in three
dimenslons can be represented by an equation of the form

AX + By + Cz + D=0
where

_ 2 2 2 2 2
D = —[(X2 - xl) + (y2 - yl) + (22 = zl)}
and A, B, C are real constants, not all zero. The converse
theorem can also be proved, i.e., that every equation of this

form represents a plane. The proof of this converse is given
below,

Proof: Let P(x, y, 2z) be any point on the plane that is
the set of points equidistant from 0(0, 0, 0) and Q(kA, kB, kC)

where '
-2D
k =
A+ BY 4 c°
Then PO = PQ
x° 4 y2 + 2% = (x - ch)2 + (y - kB)2 + {z - kC)2
2,2

0 = -2kAx + k2A° - 2kBy + kB2 - 2kCz + k2C2

2k(AX + By + Cz) = k2(A® + B + ¢?)
Ax + By + Cz = % (A% + B2 + %) .
2D
Put k = :
A° + BZ 4+ ¢°

The equation becomes
AX + By + Cz + D=0

This argument 1s reversible. This means that any point P
whose coordinates satisfy AX + By + Cz + D=0 1is equildistant
from the two polnts O and Q. Hence Ax + By + Cz + D=0 is,
by deflnltlon, the equation of a plane.

Note: If D = 0, it follows that k = 0. The two points
colnclide, and no plane 1s determined, The case where D =0 is
treated in Problem 3, Exercise 8-3,

420
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Exercises 8-3,

1. Use the methcd of Example 1 to find.the equation of the
plane whose points are equidistant from each of the following
palrs of points:
{a) (-1, 3, 2), (4, -2, -2);

(b) (‘1: -3, ‘2): (-2, 0, 4)3
(¢) (5, -1, 2), (-5, 1, -2);
(d) (2, 4, -5), (0, 2, 3);
(e) (-2, 0, 6), (1, 4, 3);
(f) (‘1: 2, ‘3): (1: -2, 3)-

2. In each of the following, find the equation of the plane that
is the set of points equldistant from the glven points,

and sketch the graph.
(8) (%, o, 0), (-2, 0, 0O)
(b) (O: 3 O):-(O: -1, O)
(¢) (o, 0, O), (4, 2, 0O)
(d¢) (o, 0, 0), (0, 5, 3)
*3. Prove that the equation
ax + by + cz2 =0
where not all the constants a, b, c are zero, represents

the set of polnts equldistant from the symmetric poilnts
(a, b, ¢) and (-a, -b, -c). i

.

8-4. The Solution Set of an Equation in Three Variables.

We shall examine several first degree equations in three
variables, both graphically and algebraically, to gain familiarity
with this representation of a plane.

Definition 8-%a. The solution set of an eguation in three
variables is the set of real number triples (x, y, z) that
Batisfy the equation.

4217
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Example 1: Find some of the elements of the solution set
of the equation

(8-4a) X+ 2y + 2z =5,

Solution: We may tabulate elements of the solution set of
this equation by assigning values to x and y; and computing
the corresponding values of 2z. In this way we may find as many
number triples of the solution set as we wish.

In the first lines of the tabulation gilven below, we give
the assigned values of x and y; in the third line we give the
computed value of =z.

—
X)) O] 1 {-1 1i2]0/. X arbitrary
ylojl1l l1(-1({0]2 y arbitrary
z|| 5] 2 h 6131 z=5-Xx -2y
Example 2: By considering sets of points in the solution
set of

X +y =14,
sketch the graph of the equation.

Solution: Viewed as an equation in three variables, this
equation has the form

(8-4b) X+ y+ 0z =14,

Since the coefficient of 2z in this equation is Zero, we are no
longer free to assign values to x and y at random. For ex-
ample, if x = 1, we must assign the value 3 to Y. On the
other hand, when x =1 and y = 3, we are free to assign any
value whatsoever to 2z, We know from the definition of the
coordinates of a point P(x, y, z) (see Figure 8-1b) that all
the points for which x =1 and y = 3 1lie on the perpendicular
to the XY plane through the point (1, 3, 0). Since all these
points (1, 3, z) correspond to number triples in the solution
set of equation (8-4b) no matter what value =z has, we see that
thls perpendicular line lies in the plane X + ¥ + O.z = 4

[sec. 8-4)
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(Figure 8-4a). Similarly all 7
points (2, 2, z), (3, 1, z),
(4, 0, z) lie in the plane.
Continuing in this fashion, we
see that the plane contains all
- the perpendiculars to the
XY-plane that intersect the
XY-plane in the line x + y = 4,
Since all these lines lie
in a plane perpendicular
to the XY-plane, we see
that the equation Figure 8-la
X +y = 4 represents a plane p. .endicular to the XY-plane. Its
line of intersection with the XY¥-plane has the equation
x+y=U4 (z=0).

Example 3: By considering subsets of the solution set of
the equation x = 3, sketch a graph of the equation.

Solution: Viewed as an equation in three variables, this

equation has the form
X+O'y+O~Z=3.

Here X must be assigned the value 3, but y and 2z may
assume any values. We see then that this plane 1s the set of
points at the directed distance, +3, from the VYZ-plane. It 1s
therefore parallel to the YZ-plane.

Z
X=3
-l = Y
et
g
X
Figure 8-4b
[sec. 8-4]
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Exercises 8-4,
1. Sketch the graphs of each of the equations

(a) x -2y =5 (d) y-22=0
(b) x -2y =0 (e) 2x -z =0
(¢) y+2z=8

2. Four points on the graph of'the plane
X +y =6

are seen to be A(3, 0, 0), B(1, 4, 0), c(2, 2, 0), D(0, 6,0).
Give three other poilnts on the graph with the same x and
y values as A; as B; as C; as D. Sketch the graph.

3. Sketch the graph of z = -2; of x = 5; of y = 3,

8-5. The Graph of a First Degree Equation iz Three Variables.

I either one or two of the coefficie:¥s in the equation
AX + By + Cz + D = ¢

are zero, Section 8-4 gives us a method of ¢raphing the equation.
If all the coefficlents are different from zero, we proceed in
a similar fashion.

Consider, for example, the graph of the equation

(8-5a) X+2y+z =5,

Recall from Chapter 6 that an easy way to plot the graph of a
linear equation is to find the intercepts of the line, Similarly
in three dimensions the graph of a plane is easy to sketch if we
begin by finding the intersection of the plane with the coordi-
nate planes. These intersections with the coordinate planes are
called traces. If we want the intersection of plane (8-5a) with
the XY-plane we must put 2z = 0 1in the equation

X+ 2y + 2 = 5.
The resulting equation is
X+ 2y =5,

[sec. 8-5]
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This is the equation of a

stralght line in the XY-plane, Z

and this straight line is

called the trace of '
X+2y+ 2z =25

in the XY-plane.

“

Similarly the XZ-trace is -ég

X+ 2z =5,
and the YZ-trace is

2y + z = 5, , =y
The grazh o these line= in X
the coordinzte planes makes
the positior of the plane

X+2y+ =5 Figure 8-5

clear.

crcises 8-5,
1. Sketch the graph of each of the following equations.
(a) x ~2y + z=5
b)Yy x +2 =5
(¢) x =2y -2 =5
(d) x + 2y + z =5
(e) bx -2y + 2z =0

(f) 5x + 4y = 20

(g) 3x - 2y + % z =0
(n) - % + % +&=1
(1) x =2y =2 =0
(J) 2'%-X -3 % y =0

2. On the same set of axes sketch the graphs of the following
palrs of equations, indicating the graph of the intersection
set,

() x+ 2y + z
X

i
($)}

(b) x -2y + z
z =

]
($)}

L]
’_l
1
n

[sec. 8-5]
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(¢) 5x + 4y = 20 () x -2y +2z =5
3x -4y =0 2x - 4y + 2z = 10
(d) sBx + 4y = 20

-9x + 6y - 52 = 0O

8-6. The Solution Set of a System of First Degree Equations in
Three Variables. Definitions.

Defiznition 8-6a. A system gg first degree equations in three-
variables consists of two or more equations in three variables,
In this bzok we will consider only systems that involve either
two or three equations.

Definition 8-6b. The solution set of a system of first
degree equations in three variables is the set of all number
triples that satisfy all equations of the system. (It is the
intersection of the solution sets of the equations of the
system.)

Definition 8-6c. Two systems are equivalent if their solu-
tion sets are the same.

*8-7,. The Solution Set of a System of Two First Degree
Equations in Three Variables. Graphic Approach.
(See Appendix.)

8-8. Algebraic Representation of the Line of Intersection of
Two Intersecting Planes.

In this section we study the intersection of a pair of

planes
(8-8a) X+2 -2 -5 =
(8-8b) X + j + 2 -2 =0,

Our procedure is to obtain the equations of three planes

which pass through the line of intersection of the given planes
[sec. 8-8]
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and which ~'ve particularly useful representations of that line.
We constru-t three different linear combinations of the
expressions

(x + 2y - z - 5)
and (x +y+2z -2),
and find three components of equivalent systems each of which
has the coefficient of at least one variable equal to zero.

A component of an equivalent system can be written
a(x +2y -z ~-5) +b(x+y+.2z-2) =0,
(1) We eliminate X by choosing a =1, b = -1,
(x+2y -2 -5) - (x+v+2z-2)=0
(8-8¢) , Yy -2z -3=0
(2) We eliminate y by choosing a = 1, b = -2,
(x +2y -2z -5) -2(x+y+2-2)=0
(8-8d) -Xx -3z -1=0
(3) We eliminate 2z by choosing a =1, b = 1.
(x +2y -2 -5) + (x+y + 2z 0

i
no
~
1}

(8-8e) 2x + 3y ~7 =0

We now have three distinct new equations (8-8c), (8-8d),
(8-8e), any two of which may be chosen to represent the line of
intersection of the given planes.

If we represent this line by the planes

(8- 8c) | Y -2z -3=0
and '
(8-8d) X -3z -1=0
we can express x and y 1in terms of z:
(8-8r) ‘ (1) %= 38 ds

y = 2z + 3.

This 1is an especially convenient form for determining
particular points on the line of intersection of the two given
planes. It enables us easily to wrlte down as many number triples

[sec. 8-8]
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in the solution set as we wish, We se that we may assign values
to z at random, and obtain correspon=—ing values of x and vy.
Thus the solution set contains infinit =iy many number triples.,
Thls 1s what we should have expected, =ince the intersection of
these two planes is a line.

Example 1. Write 4 members of t::- solution set of the above
system (1).

Solution: Using the first represasntation given above, (8-8f),
assign arbitrary values to 2z, and compute the corresponding
values of x and vy.

X -11 -4 21 -7 X = -3z -.1
¥ 3| 5111 7 = 2z + 3
z || o] 1]-1] 2 z arbitrary

If we use (€-8d) anu '3-Be), we can express Yy and 2z in
ferms oI x;

1
- Lk o)

(8-8g) TTU3
Z=—'§(X+l).

Using this repmesentation of the line of intersection of the two
given planes, check the number of triples obtained above by
assigning the tabulated values of X, and computing the other

values.
x| -1|-~4| 21 -7 X arbitrary
y y = - 3(2x - 7)
2 z=-3(x+1)
Using (8-8c) and (8-8e) we can express x and z in terms of y:
1
x=-%(3y - 17)
(8-8n) 2 ’
zZ = §(y - 3).

Using thls representation, check again the number triples obtained
from (8-8f) by assigning the tabulated values of ¥, and computing
the corresponding values of x and z.

[sec. 8-8]
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How can we describe the whole so

PO,

"Solution: In this example e

. 8et has z = 2,
- We have
3 2x -y
y
or X

Thus four number triples in the

k25

1
x X = - g(3y - 7).
y 3151117 y arbltrary
1
z z =5y - 3)
Example 2: Find four number triples in the solution set of
-the system '
2X -y + 2z = 6,
z = 2,

lution set algebraically?
very number triple in the solution

By substituting this value in the first equation

2

x - 2

1
-E<y + 2)-
solution set can be written by

assigning arbitrary values to x, and computing the values of

y:
X 0 1|-1 2
-2 0 {-U 2
z 2 2 2 2
or by assigning arbltrary values
of x:
X
vil -2 0]-4%]2
= ]
vThe complete description of the
x arbitrary
as y=2x -2 or as
z = 2

In this case, 2z may not be cho

[sec.

X arbitrary

y =2x -2

z =2

to ¥y, and computing the values
X=%(y+2)

y arbitrary

z =2

solution set is given elther
X = %(y + 2)

y arbitrary

z =2,

sen arbitrarily.

435
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406 Exercises 8-8,

In each of the problems given below, Lf the planes intersect in
a line, express two of the variables of the solution set in teris
of the third variable, and tabulate a subset of the solution set
consisting of four number triples.

1. x -3y -2z =11 6. 2x + 5z - 18y = 6
X -5y +2z =1 X -3z -y = -3
2. X +2y -2z =28 7. 3x - by + 2z =6
X+y+2z=0 6x - By + U4z = 14
3. X -z2+y=5 8. -5x + 4y + 8z =0
X+ 2y = -2 -3x + 5y + 15z =0
b, 2x + 4y - 7 = 52 9. 6z - Ty + Ux = 13
bx + 8y - 14 = 52 5x + 6y -~z =7
5, ~2X +y + 3z =0 10. -10x + 4y - 5z = 20
“dx + 2y + 6z = O EX‘;%y+z=4

8-9. The Solution Set of a System of Three First Degree Eguations
in Three Variables,

We now consider the solution set of three first degree equa-
tions in three varlables. A simple example will introduce us to
the problem.

2x+3y+z=6

Ax+y+z=4

e e o e

-
p—
—

——
—
—
-

Figure 8-9a
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2X + 3y + z = 6,
bx +y + z = 4,
z = 2,

Figure 8-9a suggests the graphic solution in which A is the
single point of intersection of the three planes. Algebraically,
we may use the value of =z giv%n by the third equation; substi-
tute 1t in the first two equations, and then solve for x and

v:
2x + 3y = 4,

bx +y = 2;

The point of intersection of the three planes is (%, %, 2).
Usually the graphic representation of the three planes
reprgsented by three first degree equations in three variables
will be too complicated to draw. But it is helpful to keep in
mind the geometric meaning of the equations when we consider the
types of solution sets that we may expect. These correspond to
the types of intersections that are possible for three planes in
space. The method of solution will be the same in all cases.
It is illustrated by the following examples. In each ease the
problem is to find the solution set.

Example 1: X + 2y ~ 3z 9,

-8,
-X + 3y - 4z = 15,
Step 1: Eliminate x frqm the second and third equations by

adding appropriate multiples of the first equation. We now have
the equivalent system

2X -y + 2z

x+2y-3z=‘9,
0 -~ 5y + 8z = -26,
0 + 5y - 7z = 24,

Step 2: Eliminate y from the third equation by adding an
appropriate multiple of the second equation obtaining the

[sec. 8-9)
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equlvalent system
X+ 2y -~ 3z 9,

O -5y + 8z = -26
O+0+ 2z = -2,

Step =: Substitute =z = -2 in the second equation obtaining
-5y = -26 + 16
y = 2.’
Step +: Substitute =z = -2, and y = 2 in the first equation.
X+4+6=09
X = -1,

Step 5: Check the solution.
‘ -1+ 4+ 6=09,
-2 -2 -4 = -8,
1+6+8 =15, .
We see that the solution is the number triple (-1, 2, —2). The
planes intersect in a point. Figure 8-9b, page 433, shows three
planes intersecting in a point. (Case 1.)

Example 2: 2Xx - 3y +z -3 =0,
X+ 5y -2z-23=0,
5x + 12y - 2z - 12 0.

To simplify the arithmetic, we interchange the first and
second equations, and proceed with the steps described in
Example 1. :

Step 1: Eliminate x from two equations, obtaining the equi-~
valent system,

X+55 -2-3=0,

O -13y + 3z + 3 = 0,

O - 13y + 3z + 3, = O.
Step 2: Eliminate y from the third equation.

X+5 -2-3=0,

O - 13y + 3z + 3 =0,

O+0+ 0+ 0 = 0.
In this case, the third equation contributes no new information.
If Step 2 gives the identity, O = O, one of the given equations
is a linear combination of the other two. Here the left member
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of the third equation,

. 5 + 12y -~ 2z - 12
can be obtalned as
(2x -3y +2z-3)+ 3(x+5y -2z - 3).

Therefore, we know, by an argument similar to that given in the

discussion of equivalent systems in Chapter 7, that the graph
of the third equation must pass through the line of intersection

of the planes
2x -3y +2 ~3=0

X +5y -2 -~3=0,
(This relationship will be studied further in Section 8-10.)
Thus the complete solution of the given system 1s an infinite
set of triples representing the points on the line of intersec-
Cion of the given planes. We may use the method in Section 8-8
if we wish to determine the numbers of the solution set.
Eliminating x from the first two equations we have

(x -3y +2-3)=-2(x+58y -2z -3)=0
-13y + 3z + 3 = 0.
Eliminating =z from the first two equations we have
(2x -3y +2-3)+(x+5y -2z-3)=0
3x + 2y - 6 = 0,
Solving for x and z in terms of y:

X

[

%(-Ey + 6))

313y - 3),

y 1s arbitrary.
Figure 8-9b shows three planes intersecting in a straight line,
(Case 2a.)

2

it

‘Examgle 3: Xx+5y-2-3=0,
. 2x - 3y +2 -3 =0,
2x + 10y - 2z - 6 = 0,
Here Step 1 yields

439
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X+5 -2z -~-3=0,

O - 13y + 3z +3 =0,

O+0+ 0+ 0 =0,
We see that the left-hand member of the third equation is twice
the left-hand member of the first equation.

) 2x + 10y - 2z - 6 =2(x + 5y - z - 3),
Therefore the first and third planes coincide., Again, the
solution is completely described by the first two equations. It
1is the same line we found in Example 2, (See case 2b, Figure
8-9b.)

Example U4: X+ 2y +2z =14,
X -2y + 2 o,
X + 2z =4,
For simplicity, move the third equation into the first row

N

X +z=1U,

X+ 2y +z =14,

X -2y +z =0,
Step 1: Eliminate x in the second and third equations.

X+ 0+ gz =14,

0+ 2y + 0 =0,

0 -2y + 0 = -4,
Step 2: Eliminate y from the new third equation.

X+ 0+ 3z =14,

O+2y + 0 =0,

O+ 0+ 0= -4,
Since there are no triples for which O = -4 there are no solutions.
In this case one plane is parallel to the intersection of the
other two. (See Case la, Figure 8-9b.)

]

it

Example 5: X+y+2z =1,
X+y+ 2z =2,
X+y+ 2z =3,

By subtracting the first equation from the other two we find

[sec. 8-9]
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Ilmmediately
X + y + 2z

0+0+0=1,
0O+0+0 2.
Again, we have no solution. The three planes are parallel.
 (See Case ha, Pigure 8-9b.) '

]

s

]

il

Example 6: X -~y ~2z =1,
2)( ....- 2y - le = 2’
-X +y + 2z = -1,

Step 1 gives .the equivalent system
X~y -2z =1,
O+0+0
O+ 0+ 0=0.
In this case, the three equations represent the same plane.
(See Case 3, Figure 8-9b.)

]
(@)
-

Example 7: +

-+

+

bl E = T\ VI TR

i <jw <}
4

Njw NJV N
i
w

il
=

These equations are linear in the variables %, %, % .
We treat these reciprocals as the unknowns.

Retaln the first equation, changing the order of the var-
iables so that the computation that fdllows can be carried on

more conveniently,
-_l.+g+§.=3
z Yy X
Step 1: Eliminate % from the second and third equations. We

have the equivalent system

1 2 3
"Iyt <=3
8
2,32 Ll
0 + 5 + == 5 or O+ 7 b= 1.
[sec. 8-9]
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Step 2: Eliminate % iromgthe3third equation
-—Z-+S;+§=3’
7,8,
0 + 7 +tx =9
1 . _ 1
‘ O+O+3(---2. --x-—'g'.
Step 3: Substitute % = 2 in the second equation.
L4116 = 9
1:—
¥ - 7
1 :
== - ' S = -1,
y =t v
,Step U4: Substitute % = 2, % = -1 in the first equation, obtaining
1
-E-2+6=3
1 _ =
—z"—'l. . Z—l.

Step 5: Check the solution.
3.2 + 2(-1) - 1 = 3,
2.2 + 3(-1) + 2 = 3,
b2 + (-1) - 3 = 4,

Summary. The method described in this section is called
triangulation because, in the case of a unique solution, the non-
zero coefficients (represented by Step 2 in Example 1) lie in
the form of a triangle:

1 2 -3
0 <5 8
0 0 1

This method provides a systematic procedure that enabies
us to recognize when the solution set is empty, when it contains
a single triple, and when it contains infinitely many triples
corresponding either to a line of points or to a plane of points,
The method can be summarized as follows:
Step 1. After choosing a convenient first equation, eliminate one

[sec. 8-9]
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variable (say x) from the other two equations by adding
approprlate multiples of the (chosen) first equation.

In a similar way, work with the second and third equa-
tlons which now contain only y and z. Multiplying
by sultable numbers, eliminate a second variable

(say y) from the third equation.

The third equatlon now gilves a value of one variable
(say z). Substitute this value in the second equation
to obtaln y. Substitute the values of y and 2z in
the first equation to obtain x.

Check the values of x, y, 2 found in Steps 1 - 4 in the
given equations.

In Filgure 8-9b we give sketches that 1llustrate the possible
types of 1ntersectlon of three planes in space,

“l. The

in a point. The solution

set

triple.

three planes intorsect

is a slngle number

Intersection

2. The three planes intersect

in a line. The solution

P 'l
is the infinite set of ! \
number triples correspond- ! /
|
l.

set

ing to the points on the e
line. I
(a) The three planes have N I 70 ity

2 line in common.

Line of™
Intersectic

Figure 8-gb

[séc. 8-9]
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2. (b) Two planes coincide
and intersect the
third plane in a
line. The solution
set is the same as
in 2(a).

Intersection

3. All three planes coincide.
The solution set is the
infinite set of number
3 Planes
triples corresponding to -
the points in the plane.

4, The three planes do not have
. @ common 1ntersection, The

solution set is empty. The i '
system is inconsistent,
(a) Two planes intersect;
the third is parallel
to their intersection. /K
Paral

lel Lines

Figure 8-9b continued
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(b)

(c)

(a)

Two planes are parallel,
The third plane inter-

sects these two in :
paraliel lines. | A
. |1 /A’/ .
N el
~
>§
Paralle! Lines

Two planes coincide
and are parallel to
the third plane.

The three planes are
parallel.

Figure 8-9b continued
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Exercises 8-9,

In each of the folliowing problems, determine whether the solution
s<: ls empty or whether its graph is a point, a line, or a plané.
If the intersection is a point, give its coordinates.

1. x+z =8, 10. 20x - 20y - 30z = O,
X+ y+ 2z = 17, 15x - 10y - 25z = O,
X+ 2y + z = 16, 10x - 20y - 10z = O.

2. X+ 2y -z=5 11. %% + 3422 2,

X +y + 2z =11, vz
a 10 .1 3 _
X+y+_32—-l)~". '3‘)?4'-37—'2"0:

ooxrE - 18,3
2.X+2y-3z=-l, X Yy Z— :
x - y + 2z = 11. 12-%*"1‘24"‘]:_0‘:1:

b x +y -5z =9, Y
2x + 3y - 12z = 22 3.8_2_,

2 X y -z 2
ooy E =3 Sk 8 3. 5

5. X -2y + 3z = 6, Xy z -
2Xx +y - 2z = -1, 13. x +y + 2 = 2,
3x - 3y - z = 5. 2X + 2y + 2z = 5,

6. 2x + by + z =0, X -y +2z=7.

X -y + 3z =8, 14, 3x -y -2z - 2 =0,
3x + 7 - 2z = -2. ey -z + 1 =0,

7. X -2y + z =4, 3x -5y - 3 =0.

) - + - = -12
3x + b6y 3z 12, 15, % _1 7,
2x - Uy + 2z = 8. y

8. 2x + 3y + 7z - 13 = 0, % - Z =5,

3X + 2y - 5z + 22 = 0, -
2.1_9
5% + 7y..- 3z + 28 = 0. z X~V

9. 'y 4z =6, 6. x +y +2z=23
3x + 2y - bz = 2, 3x + 3y + 3z = 9,

T +y - 3z = 5. X+y-2z=6.
[sec. 8-9)
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7. % + % - % = 3, 20. 2x -y + 4z = 3,
2 _1 1 3x + 2y - 2z = -1,
xTytz o x - Yy + 10z = 7.
‘;“'g—-}]-é-*-?:O- 21. 2x+y+z—3=o,
Y X + Uy + 3z - 10 = 0,

18. x + 2y + z = 3,
2X -y + 32 =T, 0o,
3x +y + 4z = 10.
19. 3x + 5y + 2z = 0,
12x - 15y + 4z = 12,
6x - 25y - 8z = 8.

*23. We consider buying three kinds of food. Food I has one
unit of vitamin A, three units of vitamin B, and four units
of vitamin C. Food II has two, three and five units,
respectively. Food III has three units each of vitamin A
and vitamin C, none of vitamin B, We need to have 11 units
of vitamin A, 9 of vitamin B, and 20 of vitamin C.

(a) Have we enough information to determine uniquely the
amounts of each of the foods we must get?

(b) Suppose Food I costs 60 cents and the others 10 cents
per unit. Is there a solution for this problem if exactly

X -3y -2z + 7 = 0.
X -2y - 3z = 2,

X - Uy - 13z = 14,
3x - S5y - 4z = 0,

one dollar is spent for these foods?

*24, The solutlon set of the following system contains only one
triple. Determine which of the equations may be omitted
without altering the solution set.

X+y =25

-X + 3z = 2
X+ 2y +z =1
vy + 2 = -4

*8-10. Equivalent Systems of Equations in Three Variables.
(See Appendix.) '

[sec. 8-10]
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8-11. Miscellaneous Exercises.

1. A number may be written in the form 100h + 10t + u, where

h, t, and u represent respectively the hundreds, tens and
units digits. If the sum of the digits of a certain number
1s 13, the sum of the units and tens digits is 10, and the
nunber is increased ty 99 if the digits are reversed, find
thr number.

2, Find the relation that must hold between the numbers a,
b, ¢ 1in order that the system

3x + 4y + 5z = a,
bx + 5y + 6z = b,
5% + 6y + 7z = c,

have a solution. N ,
3. Find a three digit number such that the difference between
each succeeding pair of digits is 1 and the sum of the
digits is 15. '
. A man has three sums of money invested, one at 3 96, one at
4 %, and one at 4 % %. His total annual income from the
three investments 1s $346. The first of these yields $ul
per year more than the other two combined. If all the money
were invested at 3 % 96 he would receive $# per year more
than he does now. ‘How much is invested at each rate?
5. For what value of a wlll the three planes representéd by
the equations given below have a line of intersection?
Give the coordinates of three points on the 1ine.
X+y+z=256
y -2 =1
2x - 3y + az =7

6. Three trucks were hauling concrete. The first day onez
truck hauled 4 loads, the second hauled 3 1loads, and
the third hauled 5 1loads. The second day the trucks
hauled 5, 4, and % loads respectively. The third day
the same trucks hauled 3, 5, and 3 loads réspéctively. If
the trucks hauled 78 cu. yds. the first day, 81 cu. yds.

~
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the second day, and 59 cu. yds. the third day, find the
capaclty of each truck, assuming they were fully loaded on
each trip,

Frank Nixon has a metal savings bank which registers the
total amount deposited. Only pennies, nickels and dimes
can be deposited. Frank knows that he has deposited one
coin on each of 40 days. The bank shows a total deposit
of $1.80. If Frank. deposited as many-pennies as both
dimes and nickels, find the number of each.

A printing shop has three presses. One press operated
8 hours on Monday, ! hours on Tuesday, and 2 hours on
Wednesday. A second press operated 4 hours on Monday,

1 hour on Tuesday, and 5 hours on Wednesday. The third
press operated 7 hours on Monday and 7 hours on Tuesday.
Monday's output frém the three presses was 1270 units,
Tuesday's was 730 units, and Wednesday's was 550 units.
What was the average output per hour for each press?

If A, B, C 'can do a piece of work in 2 % days, A and

B can do the work in 4 % days, and C does twice as much
work as- A, at this rate, find the number of days in which
each can do the work alone.

Three planes, A, B, ¢, working together can spray a certaln
cotton field in 2 hours., After they had worked together for
one hour, plane C developed engine trouble, and planes

A and B completed the job in one hour and 20 minutes
more. The next day it was found necessary to respray the
part sprayed by plane C, This was done by planes A and

B 1in twenty minutes. How long would it take each plane to
spray the entire field? o
R, S, and T are the points of tangency of a triangle ABC
circumscribed about a circle. If the sides of the triangle
AB, BC, and AC are respectively 10, 8, and 7 units long,

449
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12.

13.

14,

15.

£ind the lengths of the
segments AS, SB, BT, TC,
CR and AR. A

Figure 8-1la
If a parabola defined by the equation y = ax2 + bx + ¢
passes through the points (-1,1), (3,1), (4,-4), find the
values of the constants a, b and c.
If a parabola defined by y = ax2 + bx + ¢ passes through
the points (1,4), (-3,20), (~1,0), find the values of the
constants a, b and c.
A local school gym entrance meter received half dollars from
adults, quarters from high school pupils, and dimes from
elementary school pupils. An attendant opened the box when
the meter showed that 320 admissions had been deposited,
giving a total of $76. He found there were twice as many
dimes as quarters. Find the number of adults, high school
pupils, and elementary school pupils who had paid admission. .
The stopping distance of a car after the brakes are applied
is given by the equation

_ 1 2
s =3 kt® + At + B

where
8 = number of feet the car travels after the brakes are
applied,
t = number of seconds the car is in motion after the

brakes are applied.

[sec. 8-11] -
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If the following pairs of values were found for s and ¢t,
experimentally, find the values of the constants k, A, and
B.

~

s = U s = 84 s = 114
g 21 { ‘ {
t =1 t =2 t=3.

16. Averages tor a marking period in a certailn mathematics class
are based on scores made on a one-hour test, a short quiz,
and a final examinatlon. The scores made by Frank, Joyce,
and Eunice, as well as their final averages, are shown in
the following table.

Test (T) | Quiz (Q) Examination (E) | Final (A)
Frank 78 78 86 82
Joyce 78 g8 74 80
Eunice 84 blL 86 81

(a) Find values of Wys Vip, VW that the instructor may
have used to compute A 1if he used the formula

WyT o+ W + waE = (wl + oWy w3)A
to compute the final average, A,
(b) Can you find a triple of values for (wl, Wos w3)
whose sum is 1.

17. A firm sent a messenger to the post office to buy $10
worth of 7¢ air mail stamps, 44 stamps and 1¢ stamps. The
directions gilven were to buy as many air mail and 44 stamps
as possible, getting twice as many air mail stamps as U4¢
stamps,. and buying one cent stamps with the change that
remalned after the air mail and four cent stamps had been
purchased. How many of each kind of stamps will the
messenger obtain?

18. After playing 18 holes of golf, a player reports his score
as a certain number. His actual score is 1 stroke per hole
greater than the number which he reports. If the number
which he gave as his score and his actual Sscore are aver-
aged the resulting number 1is % greater than par. A score
of 2 over par is less than the number he reports by 1.
What is par for the course, and what number does he report
as his score?

[sec. 8-11]
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*19. Find an equation for the plane containing the points
("11030)) (11 "110)) ("113:2) .

20. [NOTE: This problem should interest students who have
studied chemistry.]
The problem of balancing chemical equations can be reduced
to arn easy algebraic process. We:-illustrate by several
simple examples:
(a) Balance the equation for the i{ollowing chemical
reaction:

( YFeS + ( )02-—» ( YFeO + ( )so2

Insert the letters W, X, ¥, and z in the blanks and write
down the equations resulting by equating the amounts of
Fe in FeS and FeO
(w) FeS + (x) 02-——>(y) Feo + (z) SO,
W=y w(Fe) = y(Fe)
Repeat this process for the sulfur and oxygen.

w(sS) = z(8) ; W=2z

x(2 0) = y(0) + z(20) ; 2x =y + 2z

W=y
W=z
2X =y + 2z
Solve for X, ¥, and z in terms of w
y =W
zZ =W
X = % w

Choose W so that 1t 1s the smallest positive intéger for
which x, y, and z are also integers.

W = 2; X =3
Yy = 2; z = 2
2 FeS + 3 02——+-2 FeO + 2 SO2 .

[sec. 8-11]
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(b) Balance the equation for the following chemical
reactlon:

( MHy+ (0 )o, —> ( )H0 + ( JNO,
(

(a)NH3 + b)02——>(c)H20 + (d)NO2
Nitrogen: a =d
Hydrogen: 3a = 2¢
Oxygen: 2b = ¢ + 24
d = a
_ 3
c-§a
_ 1
b_n-a

<. a must be equal to 4
b=7; e¢=6; d=214
b My + 7 0p—> 6 HyO + 4 NO,
Balance the equations for the following chemical reactions.
(a) Ag + }{NOB-——>AgNO3 + NO + H,0 '
(b) AuCly + KI —> AuCl + KC1 + I,
(c) HNO, + HI —>NO + I, + H0
(d) MnO, + HC1l—>HMnCl, + Cly, + HuO
(e) c:~(on)3 + NaOH + H,0, —>Na,Cro, + H

50
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APPENDIX

*8-7. The Solution Set of a System of Two First Degree
Equations in Three Variables. Graphic Approach.
In Section 8-3 we established the fact that every

~ equatlion
Ax + By + C2z+ D =20

(in whleh A, B, and C are real coefficients not all zero)
represents a plane, If we have two such first degree equations,
they represent two planes that have one of three positions with
respect to ecach other. The graphs of the two equations may
Intersect In a line, they may be parallel, or they may be the
same plane. Our problem 1s to discuss the solution set of a
gsystem of two such equations. The most important case 1s the
one In which the two planes. intersect in a 1line. However, we
will give an example to 1llustrate each of the three cases.

Example 1: The two planes intersect in a line. Find the
solutlon set of the system

(8-72a) X+2y+2z-5=0,

Solution: We use a method similar to one studied in
Chapter 7. The complete solution set of the system (8-7a) may
be obtalned by studying the equivalent system obtained by com-
blning elther of the equations of (8-7a) with a combination

a(x + 2y + 2 -5) +b(x+2z-~3)=0

of the equatlons of the system. By choosing a =1, b = -1, we

have
(x + 2y + 2 -5) - (x+ 2z -3) =0,
whilch reauces to

(8-7b) y = 1.

Thus the line of Intersectlon of the gilven planes, (8-7a) , is
also the llne of intersection of the plancs

or
N NS 1.
[sec., 8-7)
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(1) The easiest system to graph is the last one.

Line of
Intersectiof— !

Flgure 8-7a
N (See also 8-7b and 8-7c.]

(2) Let us sketch the graph

X + 2y + z
y
The second plane is
parallel to the XZ-plane
and one unlt to the right
of 1t, Thus 1ts trace 1n
the XY-plane has a point
9f Intersection wlth the
XY-trace of the first
plane; and 1ts trace in
the YZ-plane has a polnt
of Intersection with the
YZ-trace of the first
plane. Both these polnts
have y = 1. They determlne
the llne of Intersection
of the two planes. This

line ls parallel to the X

[sec,

Intersectio

of the pair

5,
1.

Line of

Figure 8-7b
8-7]
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XZ-plane.
(3) The third graph (Figure 8-Tc) glves a sketch of the
given planes

X+ 2y + z =5,
X+Z=3.

Thls graph i1s the most
difficult to draw. The

second plane has as 1its Z
XY-trace the line
X+2y+2z=5
x = 3.
This intersects the L @13)
\
XY-trace of the first ,’///\
\
plane, namely, // \
X+ 2y =5, // \
v
in the polnt x = 3, // > Y
Yy = l, z = 0, // ’,/// /
The traces of these two ~ L= »
(310) x4z:=37
planes in the YZ-plane X !
are
z = 3
2y + z = 5, Figure 8-T¢

They lIntersect in the point

x=0, y=1, z = 3,
We see that the line of intersection of these two planes is the
same line as the one we obtained in (1) and (2), and that it is
parallel to the XZ-plane.

Example 2., The two planes are parallel, Find the Solution
set of the aystem

X+ 2y + 2 =5,

X+ 2y + 2 = 10,

4506
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X+2y+2=5

X+2y+2=10

X
Figure 8-7d

Solution: By inspection, we can see that there is no
number triple that satisfies both these equations. This is so
because, for each number iriple, the sum (x + 2y + z) has a
definite value that cannot be both 5 and 10,

The planes have no point in common; they are parallel.
The system is inconsistent, since any triple (x, y, z) that
satisfies one equation will not satisfy the other.

Example 3. The planes coincide. Find the solution set of
the system

3X + 6y + 32 - 15 = 0,

Solution: By inspectlon, we can see that every number
triple in the solution set of the first equation is also in the
solution set of the second equation; and conversely. The given
planes coinclde. The system is dependent; the left member of

the second equation is three times the left member of the first
equation,

(sec. 8-7]
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Exercises 8-7.

Determine which of the following pairs of equations represent
straight lines. Sketch the graph in each case. When the planes
intersect; Indicate on the graph where the line of intersection

lles.
1. X -2y + 5z = 10, 7. x + by =4,
z = 1. z - X =0, 5
2. x - 2y + 5z = 10, 8. X +y ~2z=2,
x = U, 2z = 6x + 2y - 4,
3. x - 2y + 5z = 10, 9. z -x =0,
y = =2, 3y + 2 = 9.
b, x +y =5, 10. x = -2,
X =T7+7Y. z = 4,
5. X+ y =5, l1. X + 2y + 2 = 5,
X+ y+ z = 10. X + 2y + z2 = 5,
6. 3y +z =0, 12, x + 2y + z = 8,
X + by =4, X -2y = 0,

#8-10. Equivalent Systems of Equations in Three Variables..

We glve here a treatment of equivalent systems for first
degree equations in three variables that is similar to the
treatment developed for two equations in two variables in
Chapter 7.

Recall the procedure used in Chapter 3 to study systems of
first degree equatlons in two variables,.as well as the methods
used 1n Sections 8-7, 8-8, and 8-9 to study systems of first
degree equations in three varlables, We have bcen using the
followlng operations whlch can always be performed upon the
equatlions of a system to yleld an equlvalent system:

1. Two equatlohs of the system may be interchanged.

2. An equation of the system may be multiplied by any
number k # O.

3. k tlimes any equatlon of the system may be added to any

other equation of the system,
[sec., 8-10]
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Conslder now the set of all equations that we can obtain from
“two given equations,

(8-10a)
X+y+tz-2=0,

by multliplying the first equation by a constant, a, and the
" second equation by a constant, b (where a and b are not both

{x + 2y -z -5=0

zero), and then adding the two equations. This procedure in-
volves operations (2) and (3). Thus, we can represent all such
equations hy

(8-10b) a(x +2y -z -5) +b(x+y+2-2)=0
(a, b not both zero).

By definition, any solution of the system {(8-10a) must re-
duce each of the expressions in the parentheses in (8-10b) to
zero. It must therefore be a solution of (8-10b).

For example, if we take a =2, b = 1, we obtain

2(x + 2y -~z ~-5)+ 1l{x+y+2-2)=0

(8-10c) 3x + 5y - z - 12 = 0O,

Since this equation is of first degree, it represents a plane.
Since 1t is satisfied by all the triples in the solution set of
(8-10a), the plane passes through the line of intersection of
the planes in (8-10a). Hence the equation (8-10c) represents

a plane through the intersection of the planes in (8-10a).

Thus any two distinct planes formed by substituting values
of a and b 1in (8-10b) determine the same line of intersection
as the equations in (8-10a). The left members of the equations
obtained from (8-10b) are called linear ¢ smbinations of the
left members of the equations in (8-10a). We have used this
converse proposltlon In Sections 8-7, 8-8, and 8-9.

Example 1. Find the equations of 2 distinct planes.through
the line .’ f(ntersection of the planes of the system
y =2
z =5,
Sketch the graph. ,
[sec. 8-10]
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‘Solutlon: The general equation of all planes through the
Intersectlon of the given planes is equation

(8-10d) ., - a(y -2) +b(z -5) =0 (a,b not both zero)
1, If we take a =1, b = 1,
we have

y-2+z-5=0

y+z=7.
The glven plane y = 2 1is

parallel to the XZ-plane and /////1
2 units to the right of 1t://///////’ i #_l//////’/;’,
The given plane z = 5 1is ‘ | |

parallel to the XY-plane and
5 unilts above 1t. These

planes intersect in a line Y
parallel to the X-axlis, The )

new plane y + z = 7 has the //////

following traces: X~

In the XY-plane where z = 0,

y=17;
in the YZ-plane where x

=0, Figure 8-10a
yt+taz=7;
in the XZ2-plane where y = 0, Z
z =1,

It is a plane parallel
to the X-axis. (See
Figure 8-10b,)
Note that the
YZ-trace, y + 2 = 7,

passes through the
polnt y =2, z = §
in the YZ2-plane,

X

Figure 8-10b
fsec. 8-10]
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2, If we take a = = 2 in equation (8-10d) we have

2, Db
2(y - 2) + 2(z - 5) =0,
2y +-2z - 1k = O,
This plane coincides with the plane we have Just studied,

Y+ z=T7.
This 1s because the a and b we have chosen are both

twice the a and b
3. If we take a =2, b = 1,

chosen above.
we have

2y -2) +(z-5)=0

2y + z - 9 = 0.
The traces of thls plane are
Z=0,y—%;

X=0, 2y + z = 9;
y=0, z =09,

Thls is another plane parallel
again that the trace

to the X-axis. Notice

Ay +z =09
passes through
the point A
(0, 2, 5). 5
See Figure 8-10c. 12
e
///"““
/////

Figure 8-10c
[sec. 8-10]
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Exercises 8-10.

1. Find an equation for a plane through the line of intersec-
tlon of the planes in each of the following systems. By
sketching the graph in each case, show that the plane
represented by the equation you have found passes through'
the Intersection of the given planes.

(a) x + 2 =0, (b) y+ 4 =0,
z - 4 =0, z -5 = 0.
2. In each of the followlng problems, find an equation for the
plane containing the given point and passing through the
line of intersection of the given palr of planes.

1

(2) (1, 2, 1) ; X + 2y - 3z = 0,
X -y +2z=1.
(b) (3, -1, 0) ; 2y - 3z -2 =0,
X+ y+2z=0.
(C) The origin ; X + 2z = 0,

2x -y +2z -8 =0.
(a) (2, 2, 1) ; 2X -~y +2-3-=0,
. X -3y + 4 =0.
*3. Prove that the planes represented by the equations

2X -y + 3z =1

6x -3y + 9z = 5
are parallel, Show that, for all values of a and b, both
différent from zero,

a(2x -y + 3z - 1) + b(6x -3y +9z -5) =0
represents a plane parallel to the given planes,
4, Find an equation for the plane containing the point (1, -1, 1)
and passing through the line of intersection of the planes,

X+y -3 0
z - 4 =0,
Sketch the graph, showlng the traces of the three planes,
and show that the plane represented by the equatlon you
have found passes through the intersection of the given
planes.

[sec. 8-10]
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commutative law for, 635
addition, 636
addition of vectors, 635
commutative property, 6, 21, 40, 64, 75
completing the square, 217, 224
complex fraction, 97
complex numbers, 225, 251, 256, 683
addition, multiplication, subtraction,
argument, 693
construction of, 298
division, 264
graphical representation, 275
properties, 253
real part, 262
standard form, 261, 691
complex numbers and vectors, 684
complex solutions, 291, 293
components, 4 .
X-component, 646
y-component, 646
composition, 183, 184
computation with logarithms, 505
conic, 326
directrix, 328
eccentricity, 328
.focus, 328
conjugate, 282
consistent systems, 365
constant function, 167, 200
convergent sequence, 756
converse, 3, 29, 192
coordinates, 125
coordinate axes, 119
coordinate geometry, 119
coordinate system, 119, 409
cosine function, 561, 566, 569
counting problems, 783
" cube roots, 71l
decimal,
degree of a polynomial, 289
deMoivre Theorem, 695
denvity, 57, 64, 76
dependent systems, 365
dichotomy, 6, 20, 40, 63, T4, 75
difference of cubes, 89
difference of squares, 89
directed line segments, 629, 630
additio:.. 31
. equivalent, 630
discriminant, 227, 247, 251, 272
distance, 629 ,
distance formula, 124, 127
three dimensions, 411
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distributive law for multiplication of a vector by a scalar, 638
distributivity, 21, 41, 64, 76
~"divergent sequence, 757
-division, 64, 75
domain, 165, 166, 170, 173, 176, 182, 183, 18.4
dot product, 656
double root, 231
dummy variable, 734
e, base of natural logarithms, 511
element,
identity, 851
inverse, 852
elimination, 266
elllpse, 330
center, 335
ma jor axis, 335
minor axis, 335
vertices, 335
equality, 5
equations,
trigonometric, 612

equation x° = a, T7

equation y = ax® + bx + c, 222, 243

equilibrium, 667

equivalent angles, 552

‘equivalent equations, 222, 226, 233,
inequalities, 370, 422

equivalent paths, 548

equivalent systems, 371, U448

exponentlal functions, 520

exponents, laws of, 529

external operation, 845

extraneous roots, 233, 23%

factoring, solution by, 228

factors, 86-89

field, 858

focal chord, 359

function, 165, 166, 182, 183, 844
composition 183
inverse, 1é3, 523
linear, 189, 191, 193, 196, 201, 220
notation, 168

Yy = ax”™ 4 bx 4+ ¢, 217
vy = a(x - k)e, 211
y=alx - k)2 +p, 214
Yy = ax + ¢, 209

y = ax5, 206

y = X2, 204

fundamental theorem of algebra, 290
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general term, 734
geometric progressions, 749
‘geometric sequence, 748
geometric series, 748
golden rectangle, 245
graph, 140, 141, 173, 420
graphs of the trigonometric functions, 590
group, 848
harmonic mean, 780
horizontal line, 197
hyperbola, 330, 342

asymptotes, 345

center, 351

conjugate axis, 343

transverse axis, 343
identities, 612
identity,

“additive, 24

multiplicative, 6
identity element, é51
identity function, 167
imaginary, 254

part, 262

unit, 253
inconsistent systems, 364
inequality, lg

graph of, 140, 145
infinite decimal, 72, 774
infinite geometric series, 774
initial point, 630
inner product, 655
integers, 1, 2%, 42
intercept form, 313
intercepts, 145
internal operation, 845
interpolation, 498-501, 579
inverse,

additive, 25

multiplicative, 48

of a linear function, 190, 191
inverse element, 852
inverse functions, 183, 184
inverse variation, 348
irrational, 73

decimal, 73, gu
isomorphic, 680, 685
law of cosines, 294, 658
law of sines, 59
limit of a sequence, 754
limits - theorems on, 758
linear combination, 374, 449
linear equation, 310
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logarithm function, Uus5

graph of, U456

properties of, 47k
logarithm function with base a, 511
logarithms of n!, 813
major axis, 334
mantissa, 488
mathematical system, 678
maximum point, 210
mid-point formula, 127, 128
minimum point, 209
minor axis, 33%4
multiplication, 20, 40, 55, 64, 75
multiplication by scalars, 8
multiplicatlon formulas,

identities for, 700
multiplicative inverse, 48, 264, 266
natural logarlthm function, 456
natural numbers, 1, 4, 22, 33
n factorial, 799 >
non-abelian group, 8s4, 857

nth roots of unity, 718

nth term of a geometric sequence, 749

nth term of an arithmetic sequ“nceé 740
9

one-to-one cor:iespondence, 120, 1 680, 783
ordered m-tuples, 788, 792

ordersd pairs, 789

ordered partition of a set, 831

ordered triple, 791 :

order proverty, 13, 31, 53

ordinate, 120, 125

origin, 119

parabola, 205, 221, 315

axls, 315
directrix, 315
focus, 315

latus rectum, 324

standard form, 318

vertex, .5
parallel, 133, 134
parallel rays, 629
partial sums, 765
partitions, 826
Pascal's Theorem, 818
permutations, 783, 795
plane, equation of, U415 *
polnt-slope form, 305
polar form, 683, 692
polynomials, 86, 87, 88, 289
prescribed values 196, 220

product, )
dot, 656

inner, 655




projection, 120
properties of groups, 851
Pythagorean Theorem, 125
quadrant, 122
quadratic equation, 203, 243, 252
guadratic equations with complex coefficients,
quadratic formula, 228
quadratic inequalities, 238
quotient, 43
radian measure, 556, 559
range, 165, 166, 173, 176, 183, 184
rational expressions, 95
numbers, 1
number system, 43, 65
solution, 79
real number system, 1
reflection, 146, 283
reflexivity, 6, 20, 40, 63, 75
repeating decimal, 67, 6
resultant, 665
Riemann, Bernhard, 727
Riemann surface, 727
root, 224, 229
roots of order n, 710
scalars, 6uk
selections with repetition, 834
sequences and series, 731
arithmetic sequence, 739
convergent sequence, 756
divergent sequence, 757
finlte sequence, 731
finite series, 732
geometric sequence, 748
geometric series, 748
infinite geometric series, 774
infinite sequence, 731
infinite series, 732

nth term of a geometric sequence, 749

nth term of an arithmetic sequence, 740

series for,

cos X, T71
e, 7171
sin x, 771

sets satisfying %eometric conditions, 156
sigma notation, "=", TUus5
signed angles, 550, 551
sine function, 561, 566, 569
slope, 130, 132, 192, 303
of parallel lines, 133
of perpendicular lines, 134
gslope - intercept form, 306
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solution of an equation, 224
solution set,
of equation or inequality, 361
of a system, 363
of three first degree equations, 417, 422, u2§
speclal angles,
trigonometric functlons of, 573, 574
square roots, 701
standard form, 262
standard form for log x, 488
standard position,
" the decimal point, 496
straight line, 303
structure, 1, 2
subfield, 863
subfields intermediate to Q and R, 865
Subsets of a finite set, 806
subtraction, 75
sum of a finite geometric series, 751
sum of an infinite series, 764, 766
sum of arithmetic serles, 743
sum of cubes, 89
summation notatien, 734

sum s of a fbn%xe series, 735

symmetric, 283
symmetry, 6, 20, 40, 64, 75, 146-148
system of equations, 361, 381, 389, 398, 422
table of common logarithms, 46k, 502, 503
table of trigonometric functions, 578, 580
tangent functlion, 561, 566"
terminal point, 630
terminating decimal, 66, 67
Theorem of 'deMolvre, 695
trace, 420
transitivity, 6, 13, 20, 40, 55, 64, 75
trlangle inequality, 62, 280
triangulation,

method of solution, 432 ,
trichotomy, 13, 16, 55, 74
trigonometric functions, 561, 566, 583
two-dimensional vector space, 682
variation,

direct, 308
vectors in three dimensions, 661
vector space, 681
velocity, 674 -
vertex, 205, 213, 220
vertical line, 133, 176, 197
well order property, 20, 40
work, 672 -
zero element for vector,
\ addition, 636
zero factorial, 799 - :
zero of a polynomial, 291 469
zero vector, 648




