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FOREWORD

The increasing contribution of mathematics to the culture of
the modern world, as well as its importance as a vital part of
scientific and humanistic education', has made it essential that the
mathematics in our schools be both well selected and well taught.

With this in mind, the various mathematical organizations in
the United States cooperated in the formation of the. School
Mathematics Study Group (SMSG). SMSG includes college and univer-
sity mathematicians, teachers of mathematics at all levels, experts
in education, And representatives of science and technology. The
general objective of SMSG Is the improvement of the teaching of
mathematics In the schools of this country. The National Science
Foundation has provided substantial funds for the support of this
endeavor.-

One of the prerequisites for the improvement of the teaching
of mathematics in cur schools is an improved curriculum--one which
takes account of the increasing use of mathematics in science and
technology and in other areas of knowledge and at the same time
one which reflects recent advances in mathematics itself. One of
the first projects undertaken by SMSG was to enlist a group of
outstanding mathematicians and mathematibs teachers to prepare a
series of textbooks which would illustrate such an improved
curriculum.

The professional mathematicians in SMSG believe that the
mathematics presented in this text is valuable for all well-educated
citizens in our society to know and that it is important for the
precollege student tQ learn in preparation for advanced work in thefield. At the same time, teachers in SMSG believe that it is
presented in such a form that it can be readily grasped by students.

In most instances the material will have a familiar note, but
the presentation and the point of view will be different. Some
material will be entirely new to the traditional curriculum. Thisis as it should be, for mathematics is a living and an ever-growing
subject, and not a dead and frozen product of antiquity. This
healthy fusion of the old and the new should lead students to a
better understanding of the basic concepts and structure of
mathematics and provide a firmer foundation for understanding and
use of mathematics in a scientific society.

It is not intended that this book be regarded as the only
definitive way of presenting good mathematics to students at thislevel. Instead, it should be thought of as a sample of the kind of
improved curriculum that we need and as a source of suggestions forthe authors of commercial textbooks. It is sincerely hoped that
these texts Will lead the way toward inspiring a more meaningful
teaching of Mathematics, the Queen and Servant of the Sciences.
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PREFACE

The aim of this experimental text is to focus attention on.

mathematical ideas which are appropriate for stl_dy by college-

capable students in the eleventh grade. These ideas have been

selected and developed by mathematicians and teachers working

together. The mathematicians believe that the mathematics pre-

sentr!d is significant, both intrinsically and as preparation for

future study, and that the expositions are mathematically sound.

The teachers believe that the material is teachable to high school

students. Both groups join in the belief that there is an affin7

ity between youth and clearly presented mathematics which should

be more thoroughly exploited in the nationls schools. The success

of this text will depend, in large measure, on the extent to which

it stimulates students1 interest and influences them to continue

their study of mathematics in high school and subsequently in

college.

In this text students encounter many new mathematical ideas

which require expositions somewhat more sophisticated than those

previously attempted. These expositions develop the idea that

mathematics is an organized body of knowledge which is fOUnded on

a surprisingly small number of basic assumptions. Students who

become aware of this important -idea will begin to understand the

structure of mathematics and will acquire some ability to explore

this structure for themselves.

Explanations which emphasize proof require intensive study.

For this reason no claim is made that this is a course in "mathe-

matics made easy". On the 'contrary, inherent difficulties are

candidly appraised and forthrightly explained in terms that are

appropriate for students at this grade level. For this purpose

the easiest or shortest presentation is not always the best. For

-example, the rules for solving systems of equations could have

been given in much less space than is devoted to the development

of equivalent systems in Chapter Seven; but development pro-

vides a logical basis for understanding these rules. Again, the
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rules for the manipulation of complex numbers could have been
stated briefly rather than der.ived from carefully cnosen postulates
as they are in Chapter Five. Similar examples can be found in

every chapter, indeed, in almost every section of this text. The
purpose in all such cases is to give the student some insight into
the nature of mathematical thought as well as to prepare him to

perform certain manipulations with facility.

The course of study in grade eleven was greatly improved as a
result of the Text Book Panel's decision to devote only one year
(grade ten) to plane and solid geometry. The time gained by the
removal of solid geometry from the eleventh grade sequence is de-
voted to trigorometry (Chapter X), vectors, (XI), and a more ex-
tensive treatment of complex numbers (V, IXX) than is ordinarily
attempted at this stage. The sequence of topics in this sample
text is, of course, only one of many that could have been chosen.
One controlling consideration here was the desire to advance the
student's understanding of number systems. While this development
permeates the entire text, its main bearings are to be found in
Chapter I (Number Systems), Chapters V and XII (Complex Numbers),
and, for the very able student, Chapter XV (Algebraic Structures).

The writing group hopes that the following viewpoints are
discernible in this text.

Plausible arguments have their place provided they do not im-
plant ideas which must later be eradicated. The necessity for im-
proving the student's understanding of the nature of mathematical
reasoning does not imply that every argument must take the form of
a rigorous proof.

It is often desirable to appeal to the student's intuition
and to lead him by an inductive approach to make and test conjec-
tures about the nature of the principles to be proved.

New symbolism should never be used for the sake of being
"mOdern" but only when it serves to convey meaning more accurately

and more succinctly than could be done by other means.

Individual differences in ability and motivition must be rec-
ognized even among college-capable students. Some material must

12



be included for the student who has exc eptional ability in mathe-

matics.

This revision of the original (l95n) of this text was

I'based upon a careful study of th evaluations whiche S

were submitted by the, teachers who i;erial in the ex-

perimental centers during the 1959 year. In a very

real sense these teachers collaborated With the authors in ah

effort to make this text a more effectiv instrument of instruction.

1.3



chapter 1

NUMBER SYSTENS

1-1. Introduction.

This chapter is about the number syst, nr ntary

algebra. You are already familiar with some of thse number

systems. You have used the natural numbers, 1,?,J , ever since

you started to count. The set of integers, ... -3,-2,-1,0,1,2,3, ...,

contains all the natural numbers and has zero and the negative

integers as well. You probably met this number system for the

first time, in a serious way, when you began to study algebra.

The system of rational numbers is an even richer ystem. It con-

tains all those numbers of the form .2- where p and q areq

integers and q is not zero. You were studying the positive

rational numbers when you learned to work with fractions. However

you did not meet the negative numbers until you began your study

of algebra.

In this cha pter we shall meet still another number system

called the real number system. Before we take up our study of the---
real number system we are going to examine again the natural

numbers, the integers and the rational numbers. In this re-

examination we shall study the logical "structure" of the various

systems of numbers. We show how the study of this structure ties

together all of the many special facts about the different

systems which together make uP the real number system. This

program is carried further in Chapter 5 where complex numbers are

studied.

when we speak of the logical structure of a number system we

have in mind a very definit'e meaning which requires explanation.

About 300 D.C. Euclid organized geometry as a logical system,

selecting certain statements as axioms or postulates and deducing

14
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from them other statements called theorems. It was relatively

recentlywithin the last 100 years or so--that a similar organi-
lation of algebra and arithmetic was undertaken.

Organizing number systems in deductive form gives our
knowledge of them a coherence we might not otherwise find. We
shall see that each system can be summarized "in a nutshell" by
listing its "basic propert' -from which we may derive other

properties--and that tie: _es" make it easy to see the
pattern common to all of

. to see their differences.

The important idea in the logical structure of a mathematical
system is that some statements are consequences of other state-
ments. Many of the theorems reflect this idea themselves since
they state that one statement follows from another. They have
the form

(1-1a) If A, then B

where the letters A and B stand for certain statements. We
shall meet many such theorems in this chapter and elsewhere in
this book. Therefore we consider them in some detail in this
introductory section. EYamples of theorems having this form may
be given by taking specific statements for A and B .

Thus with

A: triangles Tl and T2 are congruent

B: triangles TI and T2 are similar .

we have the theorem

If triangles Tl and T2 are congruent, then triangles Tl

and T2 are similar.

And with

A: x is negative

B: x
2

is positive

we have the theorem

If x is negative, then x2 is positive.

(sec. 1-1]
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3

When a theorem has the form "If A, then B" the problem of

"proving" it demands that a chain of reasons be given to convince

the reader that statement B is true if statement A is true.

Note that no assertion is made as to whether either A or B

actually is true; only that in case one of them (A) happens to

be true, then the other (B) must also be true. In case A is

not true, (1-1a) has nothing whatever to say about '9 .

If both a thf- A, then B" and its cverse "If B,

then A" are ti L0 , is often expressed by saying

A if and only if B

which is interpreted as meaning

A if B, and A only if B.

In the latter manner of expression, "A if B" stands for

"If B, then A", while "A only if B" stands for "If not B

.then not A", or equivalently, "If A then B".

This is the way we shall use the expression "only if" in

this book. It is important for you to remember this Pict. For

example the "only if" statement
;

x = y only If x- = y
2

has for us %he sa7.-.2 meaning as the "if then" statemen-

If x = y then x
2

= y2

which happens tc e true for all x and y . Our "orLi if"

statement does nit have the same meaning as

"If x
2

y
2

then x = y"

which is not true for all x and y .

atercises L-la

1. Form th,F2 ::uverse of each of the following state.lents:

(a) :f y, then y greater than x .

(b) A na7=7._ number is a multiple of 2 if it is even.

16
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(c) x = 1 only if x2 = 1 .

(d) If x is less than y, then x is less than z .

(e) "If A, then B" is the converse of "If B, then A"
only if "If B, then A" is the converse of
"If A, then B" .

2. Rephrase each of the following in tlie form "If A, then B;
and if B, then A ."

(a) x.y if and only if x+z.y+ z
(b) x + 1 = y if and only if y - 1 x
(c) 2x + 1 . 7 if an only if x = 3

y)2 x2
_ y
2(d) (x + if and only if x or y is zero

(e) The converse of "If A, then B" is true if and only if
"If B, then A" is true.

1-2. The System of :,ura.L.

The elements c_ .he r=ural number system are the numbers
1,2,3 ... , the numb7s Ld in counting. The numbers of.this
system are ordered 1iar way; the first is 1 , the second,
2 , is obtained by 1 to 1 , the third, 3 , is obtained
by adding 1 to 2 an,1 Eo on. We use one letter N to denote
the natural number zFcm..

If a and b are anT natural numbers then we can add these
numbers to obtain a + b and we can multiply these
numbers to obtain prc,.uct ab . For some pairs of natural
numbers a and b 1010 Lan also subtract to obtain the natural

numbers a - b but -- -Thr all pairs. For insta-c, 5 and 3

are natural numbers e',1 : is 5 - 3 , but not 3 - 5 . For some
pairs of natural nur,13 and b we can also divide to obtain

aa natural number t ()'t for every pair. For in:ance 6 and
6 33 are natural numbe s _7vi 30 is 7 but not .6 .

17
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The operations of addition and multiplication can be performed

with any two natural numbers to yield natural numbers. The

operatiorsof subtraction and division do not have this property.

We express these facts by saying that the natural number system

is closed under addition and multiplication but not under sub-

traction or division.

This property of a number system, of beim; "closed" with

respect to an operation, is one we shall meet over and over again.

As we proceed we will find that each new system we encounter is

closed under more operations than any of its predecessors.

Exercises 1-2a

Here are some sets of natural numbers. For each decide whether it

is closed under addition, multiplIcation, subtraction, division.

1. The set of all natural numbers .

2. The set of all even natural numbers.

3. The set of all odd natural numbers.

4. (1,2,3,4,5)

5. (0,1)

6. The set of all natural numbers greater than 17 .

Any given natural number may be described in a variety of

ways:- Thus 4, 1 4- 3, 2 4- 2, 2 2, 1 4 are all descriptions
of the same number. We call this relation equality and express

it using the sign ".". Thus we write 4 . 1 4- 3, 4 . 2 4- 2,

2 4- 2 - 2 2. Given any pair of symbols a,b representing

numbers, there are only two possibilities: either they are

"equal" (a = b) , or they are not. In the latter case we say

that a and b are different or distinct and we write a / b .

1 8
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The general rules governin the use of the equality sign are

(Dichotomy). Either a . b or a / b .

E (Reflexivity). a - a .

E, (Symmetry). If a = b , then b = a

E4 (Transitivity). If a = b and b = c then a . c .

E . (Addition). If a = b , then a c = b c .

E6 (Multipliation). If a = b , then, ac = bc ,

These rules give directions for asserting certain statements
of equality, in each case but the first two, when certain other
statements of equality are either given or supposed. In

each of the letters a,b,c is to be understood as

representing any one of the numbers in the system N . The point

here Is "lat no :natter what numbers a, b, and c represent, if

(for ex: le) a = b and b - c , then it follows that a = c .

We expre the important fact that there is complete freedom in

substituting for the letters a,b,c by saying they are arbitrary.

The operations of addition and multiplication in the natural

number system have the following properties (among others).

(Closure). a -I- h is a natural number.

(Commutativity). a 4. b = b 4. a .

(Associativity). a 4. (b c) = (a 4. b) c .

(Closure). ab is a natural number.

N. (Commutativity). ab - ba .

4Associati.:Lty). a(bc) (ab)c .

M4 (MultLplicative Identity). 1 a a 1 = a .

1 9
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D (Distributivity). a(b + c) = ab + ac .

C (Cancellation-Addition). If a+c=b+c, then1

a . b .

C
2 (Cancellation-Multiplication). If ac = bc , then

a = b .

Thes pr:perties, which we shall call the E,A,M,D,C properties,

are general statements of familiar "laws" of arithmetic; they are
"general" in the sense that we assert their validity for
arbitrary a, b, c . Some of the corresponding "special" state-

ments in arithmetic are 2 + 3 = 3 + 2, 7(5 + 1) = 7. 5 + 7. 1 .

Exercises 1-2b

1. Which one of the natural number properties is illustrated

by each of the following statements? (All letters represent

arbitrary natural numbers.)

(a) 4-+ 5 = 5 4. 4 (d) xy + xz x(y + z)

(b) 8(x + 2) . 8x 4. 16 (e) 7 . 45 . 2E' + 35

(c) 3(4 7) . (3 4) 7 (f) (x + 2) + 3 = x + 5
2. Using the natural number properties, prove the following

statements to be true for all natural numbers.

(a) (x + y)z = xz + yz

(b) x + xy x(1 + y)

(c) x[y + (w + z)1 = x(y + w) + xz

(d) 'If x + (y + z) = (z + y) + xz then x xz

3. Use properties E,A,M to prove the statements:

If a . b and c d , then a + c b + d .

If a = b and c d , then ac = bd .

We examine a few consequences of properties E,A,M,D,C.

20
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First of all, property A3 (Associativity) asserts that for

arbitrary a, b, c we have a + (b + c) = (a + b) + c . -7nsider
on the other hand the expression a i b 2 . We ordinaril
the sian "+" to denote an operation whi:i-h assigns one natural

r (their sum) to each pair of given natural numbers, and

therefore we should hesitate to use it when more than two numbers

are Involved. However, such hesitaion is unnecery, since the
associative property tells us that makes no difference at all

whether parentheses are inserted around the first two terms or
around the last two. It is thus precisely because of the associ-

ative law that we may define the expression a + -or+ c to be a

third description of the one number already havinE the two names
a + (b + c) and (a + b) + c :

a + b + c = (a + b) + c .

Similar definitions can be made for expressions with more terms,
such as a + b + c + d .

We may adapt the distributive property to sums involving

more than two terms:

a(b + c + d) = a((b + c) + d) [Definition

a(b + c) + ad [Distributivity

= (ab + ac) + ad [Distributivity

ab + ac + ad . [Definition.

Now consider the expressions a + a and a + a + a .

By property M4 (Multiplicative Identity) each term in these

expressions equals a 1 . Using the extended distributive

properties, we can say

a +a=a 1 +a. 1 = a(1 + 1) = 2a ,

a a + a = a(1 + 1 + 1) , 3a .

2 1
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In general,

where there are n terms, n being any natural number.

Similar considerations apply to products, so that we may
define

abc = (ab)c ,

abcd = (abc)d

and similarly with more factors.

Corresponding to the expressions 2a, 3a for sums we
abbreviate products of like factors as

a a = a2

a a a . a3 .

In general

an = a a ... a ,

when there are n factors, n being any natural number.

Example 1-2a: Using properties E,A,M,D prove that for
arbitrarY a , b in N ,

(a + b)2 = a2 + 2ab + b2 .

Proof: (a + b)2 = (a + b)(a + b) [Def.

. (a + b)a + (a + b)b [Distr.

(aa + ba) + (ab + bb) [Distr.

. a2 + ab + ab + b2 [Def., Comm.

= a2 + 2ab + b 2
[Def.

22
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Exercises 1-2c

1. Using the natural number properties, remove all parentheses
from products and list the properties you use.

(a) 5p(3 + r) (d) 2m(m + n + 3)
(b) (2x + 3)(x + 4) (e) (x + 1)(x + y + 2)
(6) (y + 1)(y + 1)

2. Prove that the following statements are true where all letters
represent arbitrary natural numbers.

(a) (a + b + c) + d = (a + b) + (c + d)

(b) (a + b)(c + d) = ac + ad + bc + bd

(c) (px + q)(rx + . prx2 + (pt + qr)x + qt

(d) a(b,+ c + d) ab + ac + ad

(e) a(bcd) = (ab)(cd)

3. Using natural number properties, simplify the following to a
single term.

(a) 4x + 2xy

(b) 2(4u + 1) + 3(4u + 1)

(c) m(p + q) + m(p + q)

(d) (2x + 1)(x + 1) + (1 + 2x)(1 + x)

4 Prove that the square of an even natural number is also an

even natural number.

5. Prove that the square of an odd natural number is also an

odd natural number.

6. Is the product of an even natural number and an odd natural
number even or odd? Prove your answer.

7. Since 152 = 225, 252 . 625, 352 = 1225, , 852 = 7225,

952 . 9025, a pattern can be seen that a two digit natural

number ending in 5 can be squared by writing the product

of the first digit by one more than the first digit, and

following this the square of 5 . Prove that this is true

without testing every case.

23-
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The lists E,A,M,D,C of properties of N , when taken together
with another list, 0 , to be presented in Section 1-3, form a

logical basis of the natural number system. In organizing the

natural number system deductively these basic properties may be

assigned the role played by the axioms and postulates in the

deductive organization of geometry. From them we may derive as

theorems the other algebraic properties of the natural number

system. Corresponding lists of basic properties for the systems

of the integers, the rationals, and the reals are in later sections

of this chapter; and for the complex number system, in Chaptei" 5.

Limitations of space prevent us from going very far into

this "deductive theory" of number systems, but a few examples will
. be given to illustrate the methods by which some of the familiar

"rules of calculation" may be derived from the E,A,M,D,C list.

Beginning in the next section we shall study inequalities from

the deductive point of view.

Example 1-2b: Solve the equation 5x + 3 = 13, and justify

each step in the solution using properties E,A,M,D,C of the

natural number system.

Proof: From the (arithmetical) fact that 13 . 10 + 3 ,

we use E4 to rewrite 5x + . 13 as

5x + 3 . 10 + 3 .

Then by Cl (Cancellation-Addition)

5x . 10 .

Again, an arithmetical fact: 10 = 5 2; and again we rewrite:

5x . 5 2 .

Finally,using 02 (Cancellation-Multiplication), we get

x = 2 .

2 Al.
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Check: Substitution of 2 for x in the original equation

shows that it is satisfied:

5 2 + 3 = 10 + 3 = 13 .

Comment on Example 1-2b: When we study other number systems

(the integers, the rationals, etc.) we shall be able to attack

this problem more directly than the means presently available

permit--for the reason that we shall have longer lists of basic

properties to work with. The significant thing about Example 2

is that it can be solved at all in the system N The "methoe
we used is rather involved--the only virtue we claim for it is

that it can actually be carried out using only the E,A,M,D,C

properties of N . In the system I of-integers, where we have
the number -3 available we shall be able to add -3, to both
sid 3 of 5x + 3 . 13 to get 5x = 10 directly. And in the

1rational number system Q where we have the number 7 available,

1we can then multiply both sides of 5x = 10 by 7 to get x = 2 .

We can perform neither of these steps in N since N contains

1neither -3, nor

Exercises 1-2d

Find natural number solutions for the following, and name the

natural number properties E,A,M,D,C utled.

1. x + 2 =

2. z + 3 = 1

3. 3y . 6

4. 2u + = 7

5. 2u + 1 = 4

6. 3p + = + p

7. 2w + 1 = 4 + 3w

8. 3m + 1 = 2m + 4

2 5
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1-3. Order in the Natural Number System.

One of the first things--if not the first thing--one learns
about the natural numbers is that they come in a definite order:
1 , then 2 , then 3 , then 4 , etc. This is the order of count-
ing. *When a natural number a-, "precedes a natural number b in

the order of counting, we say "a is less than b" and write
a < b . When a < b we also say "b is greater than a" and
wrLte b > a Thus a < b and b > a have exactly the same
meaning. Moreover each of these sta'tements has the same meaning
as the statement: there is a natural number c such that
a + c.. b Thus there is a very close connection between the

order relation of natural numbers and the operation of addition.

We_ examine some basic properties of this order relation. The
first property expresses the fact that given any pair of distinct
natural numbers, one or the other of them is the greater:

pd (Trichotomy). Given any pair a,b of natural

numbers, exactly one of the following

three relations holdS:

a . b, a < b, b < a.

On (Transitivity). If a < b and b < c, then a < c .

CH (Addition). If a < b, then a + c < b + c .

C.4(1) (Multiplication). If a < b, then ac < bc .

(c in N)

The first property is called the "trichotomy property"

because it splits the possibilities into three parts, one of

which must hold while no two of which may both hold. Note, in

particular, that if b < a is false, then either a . b or

a < b, which is written concisely as a < b .

2 6
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Similarly a > b is writ.ten in place of. "a . b or a > b" .

Note also that' "a < b or b < a" means simply "a X b" . If

a < b and b < c we often write a < b < c, in analogy to

a - b c for a = b and b = c . Writing such "chains" of

. equalities and inequalities is justified by the transitivity

properties .1:21 and 02 . Thus in the chain of equalities

a=b=c=d=
each member equals each of the others. In a chain of inequalities

a < b < c < d

each number is less than each of those following it.

Using the connection between order and addition,

a < b

0 says

there is a c in N
if and only if

such that a + c b ,

If there are d and e in N for which

a + d b and b + e c ,

then there is an f in N such that a + f c .

This restatement of 0 is easily proved by showing that d + e

is such an f : if

a + d = b and b + e c ,

then

(a + d) +e=b+e,. c
SO

a + (d+ e) c , wher d + e is in N .

In a similar way, 03 and 04(N) may be restated in terms

of addition and proved from the E,A,M,D properties of N .

27
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The designation 04(N) is used rather than simply 04 to

warn the reader that this particular property will require modi-
fication In the other number systems to be studied in this chapter.

Exercises 1-3a

1. List the members of the set of natural numbers such that
x < 5 .

P. Using natural numbers, write an equality having the same
meaning as 6 > 2 .

3. Using the symbol "<", form true statements using the
following pairs of natural numbers.

(a) 2 and 6 (d) (2 + a) and (1 + a)
(b) 5 and 3 (e) c and b if c . a + b
(c) a and 3a (f) a and e , when a + b = c

and c + d = e .

4. Rewrite the following statements using a<b<c, a<b,
or a -/ b forms:

(a) x is less than 4 or x is equal to 4

(b) 5 is less than x and x is less than 7 .

(c) y is equal to 4 or y is greater than 4 .

(d) m is less than n or n is less than m .

(e) 3 is qess than x or 3 is equal to x , and x is
less than 5 or x is equal to 5 .

5. Restate 0, and 04 in terms of addition and prove them

from the E,A,M,D properties of N .

6. If x 4- a . y and y + b = z (all letters representing

arbitrary natural numbers), what is the order relation of
x and z

There are some similarities between the E properties and
the 0 properties which deserve to be noted, as they reveal

analogies between the methods of treating equations and corre-
sponding methods for inequalities.

2 8
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The two equality properties

Er: If a=b, then a+c=b+ c

If a = b ,.then ac = bc

correspond exactly to the order properties

23: If a<b, then a+c<b+ c

If a < b , then, ac < bc (c in N)

and it is on the basis of this correspondence that a theory of

inequalities may be built to parallel that for equations.

Fully as important in practice as E5 , E6 , 03 , 04.(N) are

their converses, the cancellation properties for equality and

order:

C1: If a+c=b+c, then a.b
C If ac = bc , then a = b (c in N)2*
Cj. If a+c<b+c, thcn a< b.

C4: If ac < bc , then a < b (c in N)

Of these, the first two were included in the lists of basic

properties for N . All four, however, may be proved as theorems

using the E,A,M and 0 properties of N . We examine one of

these proofs to show the power of the trichotomy property.

Theorem 1-3a: (C1) If a+c=b+c, then a=b.
Proof: We suppose that a+c=b+c and deduce a= b

from this assumption. By 01 (Trichotomy), there are exactly

three possibilities, one of which must hold; they are

a = b , a < b , b < a .

2 9
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If we cars the last two possibIlities, the

hold and the Ls true. We 1-:H?r--L.Jre pose
9y 0 (AdjLt1 t_

4!..,ain1) fla l icts our hypo

imilarly

af a + c

Theorem 1-

Theorem 1-3c

Theorem 1-3d:

. < b -r c

a 4 C = b + .

< a alL;c) lea. a ccntradict. -Thus

.t; follows that a = b .

(C2) If ac = bc , then a = b

(C) If a + c b + c , then .J

(C) If ac < bc , then a < b (c in N) .

The proofs are similar to that for Theorem 1-3a and are
left as exercises.

Before we use these theorems to solve inequalities, we note
that because they are the converses of E, , E6 , 03 , 01.4(N) we

may express all eight of these properties in the four compound
statements:

EC1: a=b if and only if a+c=b+ c

a = b if and only if ac = bc--c

a<b if and only if a+c<b+ c

OCn. a < b if and only if ac < bc

(c in N)

(c in N) .

If, in solving an equation or inequality, we use only the C

properties (as we did in Example b, Section 1-2), our discussion

is not logically complete until we perform the "check." For

3 0
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until we do this nc. now whether there is solution.

The compounS for: . are important in pract -e because

they guarantee tn- in which they are use: Is reversible.

Thus Cl give

If s then x = 2 ,

which does not say

if it has a solutio:.

other hand E- say.

3 5 has any solution; only that

tat solution must be 2 . On the

If Al x + 3 = 5 ,

which asserts that

the "check.") _The :

including both assel

("if" part), (ii)

if" part).

1.-.deed satisfy x + 3 = 5 . (This is

Ltatement III gives

_f and only if x . 2 ,

(i) x + 3 = 5 is satisfied by 2

number satisfies x + 3 = 5 ("only

We illustrate the:_'.e :leorems by solving an inequality.

Example 1-3a: Soi: 5x + 3 < 13 in the system N .

Solution: (The me-7:- 1: much The same as that used in

solving Example 1-2b, 'Alat we now use the order properties

corresponding to the eq properries used there.)

5x + 3 < 10 +

5x < 5 2

x < 2

Tid only if

if and only if

if and only if

5x < 10

x < 2

x = 1

[oc1

There are two ways t. attack an inequality like

5x + 3 < 13 . One of -file= 13 to spilt it into two problems:

5x + 3 < 13 or 5x 3 = 13

and to solve them se;=ateIy:

,
x < 2 or x = 2 .

31
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This split can te avoided if we combine EC1 , 0C1 and _F1:Cc

obtaining

EGC : b if and only if a 4. c < b +

ECC
2

: a < b if and only if ac < bc N)

With these last compound statements, inequalities involvdnz
may be handled just like the others. Thus, for example,

5x + 3 < 13 if and only if 5x < 10

if and only if x < 2 . 20C2

Exercises 1-3b

1. Prove the following properties of N , where a, b, c and d

represent arbitrary natural numbers.

(a) Ifa+b. c, thena+b<c+ b
(b) If a(b + c) = d, then ab < d

(c) If a<b and c<d, then a+c<b+ d

(d) If ac = bc , then a . b (Theorem 1-3b)

(e) If a+c<b+c, then a<b (Theorem 1-3c)
(f) If ac < bc , then a < b (Thuorem 1-3d)

2. Solve the following for natural nurrbers.

(a) 2m < 4

(b) 6p + 3 < 15

(c) 3x + 1 < 4

(d) 3x + 4 < x + 8

(e) 5y + 17 > gy + 1

(0 4 < 3x + 1 < 19
3. Prove: a<b<c if and only if a+d<b+d<c+ d.
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T-au or.ler proper-Les req _ for a logical

for the :L:tural. :lumber system. They :'e so-called

"Archime. 7.)erty" the ell p7.'operty." The:i

stated b _

The: prcL:erties are basic for murl of the advanced thec:r,y of

the natur:_l nLImbers, some of which is yo the scope cf tnts

book. Th well order property Is a prLiperty of the order relation

In the na7ural number system which doe:- nct hold for any of the

other nu:L.,ev systems discussed L this chapter. On the other

hand the :,r()Nlediarl property holds for all of the number systerr,s

considere:i IN this chapter--provided the second occurrence Dt.' the

word "Natural" is replaced by "positive."

LIST OF BASIC PROPERTIES

OF THE

NATURAL NUMBER SYSTEM

In the following 'general statements, a, b, c represent

arbitrary members of N :

E, (Dichptomy) Either a = b , or a / b .

E2 (Reflexivity) a . a .

E3 (Symmetry) If a . b , then b = a-.

_Ef.4 (T7ansitivity) If a b b = c , then a = c .

E, (Addition) I a - b , then a + c = b + c .

Er (Multiplic=_L: 7.27 a = b , then ac bc .

3 3
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A_ (C1c. a + b is a natural number .

Com;:.:a .ty) a + b = b

(Assc-La- a + (b + (a + b: + c .

M (Clos_-- a..c is a natural _L...mber.a
Mo ab = ba .

(AssoLa7fvfLty) a(bc) =

.ive :j.entity) a = a 1 = a .

D (DistrLbutivity) a(b + c) = ab + ac .

(Trichotomy) Ey.actly one of the following holds:

a = b, a < b , b < a .

02 (Transitivit,y) If a < b and b < c then a < c .

o (At:._.:_r-on) If a < b , then a + c < b + c .

e4 (1,1 L1u1ti:licar:Lon) If a < b , then ac < bc .

0
5 (Arstfmedes) If a an-

nu77-.7s such tha: a e

na b .

are any given natural

there is a natural numb-ar

-4e_L 0.7..) Each set of :me or more natural numbers

mer=ar; i.e., a member less than

-o eve me=ber c_f ie set.



DEFINITIONS TDB. THE

NATURAL NUMBE:T STTEM

In the following general -ta-7,-:?ma7-7, a, h, c., rep-sent

arbitrary members cf N :

a . f and only if a ana are names for the same

number.

a + b + c = (a + b) + c , a ± : + c + .d = (a + b + c) + d ,

and similar17 with more terms.

na . a + + a , where there are n terms, n in N .

abc = (ab)c , abcd (abcd , similarly for more factors.

a
n

a . a ... a , where tnare are n factors, n in N .

a < b if and only if theme is 311 e in 5 such that

a + e = b .

b > a if and only if a < b

a < b if and only if a < b or a - b .

a < b < c if and only tf a < b and b < c .

SOME Th:=TEMS DF THE

NATURAL '.:JTABER SYSTEM

In the following ger-rai 1.3'a2tement , a, b; d -2=rEsserft

arbitrary membars bf N

a . b if .and a D C (EC1)

a . b If and only az = bc (EC2) (c in N)

a<b if ahd only Lf a c < b + c (0C1)

a < b if and only if ac < bc (0C2) (c in '1\1)

a <b<c if ahd only if a+d<b+d<c

3 5
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Exerciaes 1-3c

1. Use the natural numbers 1, 2, and 2 to 111..istrate 05
(Archimedes).

2. Which element of the set of two digit natur nJ,. numbers is

the minimal element guarantee:I by 06 (WelL-rder)?

3. Which Of the E,A,M,D,0 propeliEs of the na--,:ral numbers

are best illustrated by the f:JLowing s-tatemecs? All
letters represent arbitrary A,tiral numbers.

(a) (x + y)(2x + "iy) = x + y)
(b) 2 4 = 3 x 2

(c) (a + b) + (c +,2) = (a + t + c) + 2
(d) 4y(y 1) = 4y' 4y

(e) 2 < a and a < b , s(,

(0 2[5(x + y)] . 10(x + y)

(g) 2(m + n) < T(m + n) if 2 < T

(h) (a + b)2 a2 b2
cr +

a
2

+ b2 + 2ab a
2
+ 2ab + t-

(j) x + 2 = y + 2 if x.. y

(k) p q only if p + m q

(1) 5 < 2x + y or 5 > 2n +

(m) If u = v , then u2 . v-

(n) 2y < qy if 2 ( q

(o) If (x + y) < /1 then z(x y) > 4 is 7.rue for

some z .

I. Prove that x + 2 . 2 cannot be solved 2..r 7.he natural

number system. (Hint: ass=,,,z a natural nuttar, saY P

a solution and apply the

3 6
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1-4. Th-. System of Integers.

ThcL-: system I of integers has as its members the numbers

3 , -2 , -1 , 0 , 1 , 2 , 3 ,

It inclues as a part the system of natural numbers s well as the
number 0 and the "negative" whole numbers. (Why these numbers
are called "negative" will appear in Section 1-5 when we study the
order relation for I .)

In I we can solve equations such as

2 + x . 2 and 2 + x 1

which 2annot be solved in the system N of natural numbers.
Howeve:', we can do more than this in I ; we can solve any
equatton of the form a + x = b where a and b are any
members of I , whether or not they are in N as well.

.The 7istem I has all of the E,A,M,D properties of N
and, in acslition, two more A properties:

AL (Additive Identity) a + 0 = a , for arbitrary a in I

A
5 (Subtraction) For each pair a, b of integers in I ,-

there is exactly one integer c such that a + c = b .

Definition 1-4a: c = b - a means a + c b , and b - a is
called the difference of, b and a (in that order).

The process of solving the equation a + x = b may be
interpreted as performing a new operation, subtraction. With
this intergretation, A5 asserts that I is closed under
subtraction.

An important special case of A5 and Definition 1-4a is
that in which b 0 . In this case the solution of the equation
a + x 0 is given a special name.

37
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Definition 1-4b: The solution of a + x = 0 is denoted by
-a and is called the additive inverse of a .

Thus if a is any member of I , we have a + (-a) . 0 .
Moreover in view of Definition 1-4a we have -a = 0 - a .

Theorem 1-4a: -(-a) = a , for arbitrary a in I .

Proof: By A_ there is exactly one number in I satisfying

(-a) + x . 0 and by Definition 1-4b that number is -(-a) .

However a + (-a) = 0 and hence using A2 (Commutativity),
(-a). + a . 0 . .But (-a) + a - 0 is simply the assertion that

'a itself is a solution of (-a) + x = 0 . Thus both a and
-(-a) satisfy the equation (-a) + x = 0 . And since there can
be only one solution we conclude a = -(-a) .

The crux of this proof (and of most of the others
in this section) is that whenever two expressions
satisfy an equation which has only one solution
they must be equal.

Those non-zero integers which are not natural numbers
(-1, -2, -3, ...) are the additive inverses of the natural numbers.
Hence we have the following corollary to Theorem 1-4a.

Corollary 1-4a: If a is a non-zero integer, either a is
a natural number, or -a is a natu&l number.

Exercises 1-4a

1. Find additive inverses for the following integers:
(a) 2

(b) -5

(c) 0

(d) m

(e) -p

(f) (b - a)

38
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Which of the properties, definitions, or theorems for I are

illustrated by the following?

(d) -(-(-4)) =, -4

(e) 2 is in N , or -2 is in N .

3. Show that the operation of subtraction is not commutative.

4. Is the operation of subtraction associative? If it is, prove

that it is. If it is not, show that it is not by giving an

example.

5. Prove for all integers: x = y if and only if -x = -y .

6. Prove that 0 is its own additive inverse.

7. Prove that 0 ,is the only integer which is its own

additive inverse.

8. Prove that no natural number is the additive inverse of any

natural number.

(a)

(b)

(c)

6

-5

+ (-6) =

0 = 4

= 0 - 5

0

The system I contains many numbers not in N , but the new

system possesses all of the E,A,M,D properties that N does.

When one first encounters the system I he faces the task of

learning how to work with the new numbers: how to add them, how

to multiply them, etc. We shall.show next that these "computation

rules" are all consequences of the E,A,M,D properties. Moreover,

we shall see in later sections of this chapter, and in Chapter 5,

that the same thing happens with each extension of'the number

system:. the rules for calculating with the "new" numbers all

follow from the properties E,A,M,D of the "new" system, most

of which carry over from the "old"._.sYstem.

The "new" numbers here are 0 and the additive inverses of

the natural numbers. Addition of 0 and any element of I is

covered by property A4 :

a + 0 = a

Multiplication by 0 is even simpler.
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Theorem -41): a - 0 = C , fcr arbitrary a. in I .

Proof: virtue of 7-_-:o::,e72ty .7:1 (Closure for multiplication),
a 0 is sor. member of = . Cur 1.-2ject is to show that it is the

number 0 (SubtrastLD) irr17_1s that for each element b in
I , there is xactly one r.=*,_1: Lr. 1 satisfying the equation

b b ;

moreover, by A4 (Additive Tfzentity) that number is 0 . Now
a 0 Is a member of I , the only member of I satisfying

a - x . a 0

is 0 . We sow that a _ satisfies this equation (from which
it follows that a 0 an:i are equal):

a : - c = a(0 + 0) [DiSt.

= a 0 [Add.--Ident.

Thus a 0 Ls a solut-L= -= a - 0 + x = a 0 . Therefore
a 0 = C .

We turn next to the a:ition and then to the multiplication

of additive inverses.

ThP_orem 1-4c: a + (- = a - b for arbitrary a, b, in I .

Proof: Property A, (::ubtrastion) and Definition l-4a

assert that a - b is the nnly member of I satisfying the
equation

+ x = a .

Since this equation has dnly one solution in I we must conclude
that a - b and a + (-b are equal if we can show that

a + (-b) satisfies the equation b + x = a But this is easy-I

4 0

[sec. 1-41



28

b + (a + (-b)) = b + ((-b) + a) [Comm.

= (b + (-b)) + a [Assoc.

= 0 + a [Add. Inverse

= a [Ada. Identity

Theorem 1-4d: (-a) + (-b) = -(a + b) for arbitrary a , b

in I .

We leave the proof of Theorem 1-4d as an exercise.

Theorem 1-4e: a(-1) . -a , for arbitrary a in I .

(This theorem asserts that the product of any number and the

additive inverse of 1 is the additive inverse of the given

number. This theorem and Theorem 1-4b often strike one as rather

remarkable on first encounter. They are remarkable because they

relate notions which are "additive" (additive identity and

additive inverse, respectively) with the multiplication operation

and Its identity. Note that in each proof it is the distributive

property which plays a prominent role. This is the only one of

our basic properties concerned with both of these operations.)

Proof: Since -a is the only integer satisfying

a + x 0 ,

it will be sufficient to prove that a(-I) satisfies this

equation. Now

a + a(-1) = a 1 + a(-1) [Mult. Ident.

a(1 + (-1)) [Dist.

= a 0 [Add. Invcrse

0 [Th. 1-4b
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Theorem 1-41: (-a)b = -(ab) , for arbitrary a , b in I .

Theorem 1-4g! (-a)(-b) = ab , for arbitrary a, b in I .

We leave the proofs of Theorems 1-4f, 1-4g as exercises.

In Sections 1-2 and 1-3 we discussed the cancellation

properties and their converses for the system N We found in
Section 1-3 that E4 , C2(N), C , CA(N) can be deduced from the

E,A,M,0 properties of N . We now consider cancellation
properties for the system I .

We shall see in Theorem 1-4h that C the converse of E-a , -5
(Addition), holds in I . We shall even see that in I it is
easier to prove C1 than it is in N . In particular, we can

prove it using the notion of additive inverse without recourse to
any order properties. (In N , we could not make such a proof
for we have no additive inverses in N .)

However the converse of E6 (Multiplication) is not true-
in I This is so because of Theorem 1-4b (a 0 . 0): if we
allow c 0 we cannot possibly conclude from ac bc , that
a = b We shall see (Theorem 1-4i) that, except for this single
value of c , we do have a multiplicative cancellation "law".

Theorem 1-4h: (Ci) If a+c.b+c, then a.b.
Proof: If a+c=b+c, then

(a + c) + (-c) (b + c) + (-c) (E5

so a + (c + (-c)) = b + (c + (-c)) [Assoc.

and a + 0 = b + 0 (Add. Inverse

hence a = b . [Add. Ident.

[sec. 1-4]
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Theorem 1-4i: (C2(I)) If ac = bc and c / 0 , then a b .

The proof of C2(I) is more involved than that for C1 .

It is poSsible however to make a proof which uses only the E,A,M

properties of I and the fact that C2(N) is valid in N .

(See Exercise 1-4b, *5.)

As before, we may combine C1 and C2(I) with their

respective converses .E.5 and .E.6 to get in I :

EC : a.b if and only if a+c.b+ c1
IL2: For c / 0 ,

a = b if and only if ac = bc .

Since 0 c 0 for every c in I , we have the very im-

portani; special case of EC2 obtained by taking b = 0 :

For c 0 , ac 0 if and only if a . 0 .

Equivalently,

ac 0 if and-only if a 0 or c 0 .

EXercises 1-4b

1. Perform the indicated operations using natural numbers and

list the properties or theorems used.

(a) 1 + (-2) (0 (-2), (-7)

(b) 12 - (-4) (g) 3(a + 2). - 4(a + 2)

(c) (-8) - (-7) (h) -5 (6) (-3)

(d) (-5) + 7 4(5a)(0)

(e) (-4) (5) (j) -(2a - 3) + 4(3 - 2a)

2. Prove the following statements for all integers.

(a) -(x - y) = y - x

(b) (-x) + (-y) = -(x + y) . (Theorem 1-4d)

(c) (-x)y. -(xy) . (Theorem l-40

(d) (-x)(-y) = xy . (Theorem 1-4g)
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3. State and prove a "distributive" law relating the operations

of multiplication and subtraction.

4. Solve each of the following equations in the system I

listing the E,A,M,D,C properties used.

(a) 5x - 3 . 12 (d) 2(6z + 2) + 3 = 12 - 3(2z - 1)
(b) 3y + 4 . 2y - 18 (e) x - 1 x - 2

(c) 3m - 2(7 - 2m) . 21 (f) 100(p + 4) + llp . 111p + 400

*5. Prove C2(I): If ac = bc and c / 0 , then a . b .

Show first that ac = bc if and only if -(ac) = -(bc)

and then consider cases according as a, b, c, are natural
numbers or not.

1-5. Order of the Integers.

In Section 1-3 we studied the order properties of the natural

numbers. In this section we extend the order relation to the

system I We therefore face the problem of defining a < b for

integral a, b in such a way that our new definition agrees with

the former one whenever the integers a, b are natural numbers.

Recall the crtterion for a < b when a, b are natural
numbers: There is a natural number c such that a + c = b .

We shall prove (Theorem 1-5a) that for integers a, b: if

a ol b , then either there is a natural number c such that

a + c = b , or there is a natural number d such that a . b + d ,

but that not both of c, d can be natural numbers. With this

theorem as our justification, we can then define a < b for

integers a, b. using exactly the same words as for natural

numbers (Definition 1-5a). After this we examine properties

01.1 , 22 , 23 , etc., for the system I .

4 1
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Theorem 1-5a: Suppose a and b are integers and a / b .

Let c = b - a and d . a - b . Then one of the integers c, d

is a natural number and the other is not.

Proof: We show first that -c = a - b :

-c -(b - a) [Exer. 1-4a, 5

(-1)(b + (-a)) [Ths. 1-4c, e

(-1)b + (-1)(-a) [Dist.

(-1)(-a) + (-1)b [Comm.

. a - b [Ths. 1-4c, e, g

Thus d = -c . Next, because a / b , we have c b - a / 0 ;

and hence, by Corollary 1-4a, either c or -c _s a natural

number. If c is a natural number, then -c is not e. natural

number being the additive inverse of a natural number. But if
-c is a natural number, then c is not a natural number being

the additive inverse of a natural number. Summarizing the

possible cases: one of the integers c, d is a natural number

and the other is not. The theorem is proved.

Definition 1-5a: If a and b are integers,

there is a natural number c
a < b means

such that a + c b .

It is customary to use the terms "positive" and "negative"

as introduced in the following definition.

Definition 1-5b: a is positive means 0 < a .

a is negative means a < 0 .

45
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It fellows immediately from Definition 1-5a that every
natural number is a positive integer, for 0 + a . a gives 0 < a
if a is a natural number. On the other hand, the additive

inverses of all the.natural numbers are negative integers because
(-a) + a = 0 gives -a < 0 if a is a natUral nuMlier:

These observations permit us to recast Definition 1-5a in the

following equivalent form.

Definition 1-5c: If a and b are integers,

a < b if and only if 0 < b - a .

In preparation for our discussion of the order properties
, , 23 , etc., of I we prove three useful theorems abou:.

prod-ucts of integers

Theorem 1-51: 2f 0 < a and 0 < b , then 0 < ab .

Theorem 1-5c7 If 0 < a and b < 0 , then ab < 0 .

Theorem 1-5d: If a < 0 and b < 0 , then 0 < ab .

These theorems all follow from Corollary 1-4a, the multi-
plicative closure of N , and the fact that positive integers are
natural numbers.

Proof of Theorem 1-5b: If 0 < a and 0 < b , then a and
b are natural numbers. Hence ab is a natural number, and
0 < ab .

. Proof of Theorem 1-5c: If 0 < a and b < 0 , then a and
-b are natural numbers. Hence a(-b) , or -(ab), is a natural
number, and ab < 0 .

We leave the proof of Theorem 1-5d as an exercise.
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Now for 03 , etc. in I .

The trichotomy property of the order relation in system

a rephrasing of Theorem 1-5a:

0
1

(Trichotomy) If a and b are integers, exactly one

following relations holds:

a b , a < b , b < a .

is

The other basic order properties of N have their counter-

parts in I 02 and 0,, are identical in N and I . 9.11.4 is

quite different.

00 (Transitivity) _I.. a < b and b < c , then

Addition) If a ( b , then a+c<b+c.
(Multiplication) If a < b and 0 < c , then

ac < bc ; but if a < b and c < 0 , then bc < ac .

These properties are consequences of the Definitions 1-5a,

1-5c, Theorems 1-5a, b, c, d and properties of N . Their proofs,

being straightforward, are omitted except for 04 which deserves

particular discussion.

Proof of 04: (i) If a < b and 0 < c , then ac < bc .

By Definition 1-5c, a < b means 0 < b - a If also 0 < e ,

Theorem 1-5b gives 0 < (b - a)c or 0 < bc - ac . By 03

(Addition) we get ac < bc .

(ii) If a < b and c < 0 , then bc < ac . Again, if
a < b , then 0 < b - a . Also, if c < 0 , then 0 < -c. Herice

0 < (b - a)(-c) , so 0 < ac bc and bc < ac .

As we did for N , in I we define

b > a means a < b

a b means a < b or a . b

a < b < c means a < b and b < c

[sec. 1-5]
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Exercises 1-5a

1 Use the symbol "<" to form true statements of order for the

following integer pairs:

(a) 1 and -2 (d) x and -x if x > 0

(b) -7 and -8 (e) (x - y) and (y - x) if y> x

-2 a_d 0 (f' 2x and -3x if x < 0

2. Prove for arbitrary integers x , y , z , w :

(a) If x < y and y < z , then x < z . (Property 02)

(b) If x < y , then x + z y + z . (Property 03)

(c) If < 0 and y < 0 , 7_hen 0 < xy . (Theorem 1-5d)

(d) If D < x and y < 0 , then x > y .

(e) If x < y , then x - z < y - z .

(f) If x < y , then y - x > 0 .

(g) x > 0 if and only if -x < 0 .

(h) 0 < -x if and only if x < 0 .

(i) If xy < yw , then y(w - x) is a natural number.

(j) If x < y and w > z , then x - w < y z .

In Sections 1-2, 1-3, 1-4 we discussed the cancellation

properties which involve equality in the systems N and I .

In Section a-3 we discussed the cancellation oroperties C
'

.2.4(N) involving inequality in the system N . We now look at

the corresponding properties in the system I . C has the same

wording in I as it has in N :

c- If a+c<b+c, then a<b.
It can be proved using 03 (Addition) by adding -c to both

members.

Recall that in N , C4 was proved using 01 (Trichotomy)

and 04(N) (Multiplication). Since property 9.04 (Multiplication)

nas a new form in I , we expect to find that C4 is also differ-

ent from its mate in N Indeed we can prove, using the same

strategy as for .24(N) , that in I , C4 has the form

[sec. 1-5]
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C), For c c

If ac bc , then a < b ;

but for c < 0 ,

If ac < bc , then b < a ,

In I , therefore, the compound statements
EOC

2 '
are

OC a <b if and only if a+c<b+ c1
OC

2
For 0 < c ,--

a < b if and only if ac < bc ;

but for c < 0 ,

a < b .11:f and only if bc < ac .

E0C, a b if and only if a + c b + 'c

E2C0 For 0 < c ,

a < b if and only if ac < bc ;

but for c < 0 ,

a < b if and only if bc < ac .

Just as not all integers are positive, not all additive
inverses of,-integers are negative. Indeed it follows from
Corollary 1-4a and the remarks following Definition 1-5b that

a is positive if and only if -a is negative
and

-a is positive if and only if a is negative.
Unless a is 0 , we know then that one or other of the numbers
a,-a is positive and the other one is negative. Often it is use-
ful to speak of the one which is positive without lallowing which it
is; and similarly for the one which is negative. For this reason
we define the "absolute value" of a number as follows.

4 9
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Definition 1-5d: By the absolute value,

integer a , we mean
lal , Of the

IaI=a if 0 < a ,

lal -a if a < 0 .

Note in particular that lal . 0 if and only if a . 0 ,

that if a 0 , we always have lal > 0 . Thus if a 0 , la.

is the positive number in the pair a,-a and -Ial is the

negative number in the pair a,-a .

We.prove two theorems about absolute values. The first is

little more than a restatement of the remarks in the previous para-

graph. The second gives us an expression for the absolute value

of a .product. We shall return to the subject of absolute values

in Section 1-7.

Theorem 1-5e: -la! < a < lal , for arbitrary a .

Proof: There are two possibilizies: (0 0 < a , (ii) a < 0 .

In the first case a = lal and sinc -ial < 0 (where we have

equality only for a = 0) we have

< 0 < a . la! .

In the second case a . , and since a 0 we have 0 < lal
and hence

-Ial a < 0 <

The statement given in the theorem is an understatement comprising

both of these cases.

Theorem 1-5f: labl = lallbl for arbitrary a, b .

Proof: Again we consider cases (0 0 < a , 0 < b ,

(ii) 0 < a , b < 0 , (iii) a < 0 , 0 < b , (iv) a < 0 1 b < 0 .

5 ()
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For case (i) a . lal b = lbl and since 0 < ab , ab = labl .

Thus labl = ab = !alibi . For case (ii) a = lal , -b =

and since a < 0 , labl = -(ab) . Then labl = -(ab) = a(-b)

= lallbl . T:le other cases are entirely similar.

Example 1-5: Find all integral solutions of the inequality

lx + 1! < 2

Solution: We split the problem into two cases:

(i) 0 < x + 1 , (ii) x + 1 < 0 .

Case (1): For 0 < x + 1 , we have lx + 11 = x + 1. Now

0 x + 1 and lx + 11 2

if and only if

0 < x + 1 < 2

if and only if

-1 < x < 1 . tE0C1

Case (ii): For x + 1 < 0 , we have lx + 11 = -(x + 1)

and 0 < -(x + 1) , so

'x + 1 < 0 and lx + 11 < 2

if and only if

0 < -(x + 1) < 2

if and only if

-2 < x + < 0 (E0C2

if and only if

-3 < x < .

Combining these cases, we have

lx + l < 2 if and only if. -3 < x < 1

Thus the set of solutions is (-3 , -2 , , 0 , 1) .

51
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Exercises 1-5b

1. Solve the following inequalities:

(a) 5m - 2 < 13 , for m in N

(b) 5m - 2 < 13 , for m in I

(c) 4z - 7 < 2z + 3 , for z in N
(d) 4z - 7 < 2z + 3 , for z in I

(e) 4x - 1 < 2(x 1) , for x in N
(f) 4y - 1 < 2(y + 1) , for y in I

(g) < 7p - 2 < 12 , for p in I

(h) y - 1 < 2y - 3 < y + 1 , for y in I

2. Solve the following where all letters represent integers:
(a)

(b)

AI = 3
c1 < 4

(c) x + 41 < -1

(d) 2m + 11 = 3

(e) 4y - 11 -7 . 0

(f) x + 31 < 7

(g) x 51 < 3

(h) 6 13 - x1

(i) 5 + lx + 61 < 8

3. Prove that the following statements are true for arbitrary
x in I :

(a) If 0 < x , then 0 < x2

(b) If 1 < x , then x < x2

(c) If 1 < x , then -x < x2

(d) If x < -1 , then -x2 < x
.4. Finish the proof of Theorem 1-5f.

5. Prove the following theorem: Ix < IXI IA
Use an argument by cases as in Theorem 1-5f. (For reasons
which will appear in Chapter 5, this inequality is called
the "triangle inequality%)

5 2
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The Archimedean property o5 (Section 1-3) is valid in I

if we replace "natural humbers" by "positive integer". The well
order property 06(N) , however does not hold in I . For example,

the set of negative integers does not have a minimal member.

Both N and I , however, are so-called "discrete" systems.

(0 and R are not.) In saying that N and I are discrete we

mean that the integers are not' "too close together"--more precisely,

if a and b are distinct integers la - bi cannot be less than

1 . This fact follows from the well 'order property of N for if

a and b are distinct integers la - bi is a natural number,

and hence its minimal value is a natural number. Since no natural

number is less than 1 , la - 0 must be at least 1 , no matter

what integers a,b may represent.

LIST OF BASIC PROPERTIES OF THE

SYSTEM OF INTEGERS

For arbitrary a , b , c in I :

Ea (Dichotomy) Either a . b or a / b .-

E, (Reflexivity) a = a .

E, (Symmetry) If a = b , then b = a .

E4 (Transitivity) If a . b and b = c , then a = c .

E, (Addition) If a = b , then a + c = b + c .

E6 (Multiplication) If a = b , then ac = bc .

A
1

(Closure) If a and b are integers, a + b

an integer.

A
2

(Commutativity) a + b = b + a .

A, (Associativity) a (b + c) = (a + b) + c .
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A4 (Additive Identity) 0 a = a 0 = a .

A_ (Subtraction) If a and b are given integers,)
there is exactly orle integer c such that a c b .

M (Closure) If a and b are integers, ab is an

integer.

M2 (Commutativity) .ab = ba .

M, (Ascociativity) a(bc) = (ab)c .

mil (Multiplicative Identity) 1 a = a 1 = a .

D (Distributivity) a(b c) = ab ac .

01 (Trichotomy) If a and b are integers, exactly

one of the following hold:

a . b , a < b , b < a

02 (Transitivity) If a < b and b < c , then a < c .

0 (Addition) If a < b , then a c < b c .

04 (Multiplication) If a < b and 0 < c , then

ac < bc ; but if a < b and c < 0 , then bc < ac .

0
5

(Archimedes) If a and b are positive integers,

there is a positive integer n such that na > b .

26 (Discrete) If a and b are integers and a < b ,

then 1 < b - a .

DEFINITIONS FOR THE

SYSTEM OF INTEGERS

In the following general statements, a, b represent

arbitrary members of I :

Definition 1-5a: a < b if and only if there is a c in N
such that a c b .

Definition 1-5b: a is positive means O.< a a is nega-

tive means a < 0 5 4
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Definition 1-5c: a < b if and only if 0 < b - a .

Definition 1-5d: ial . a , if 0 < a ; lal = -a , if a < 0 .

SOME THEOREMS OF THE

SYSTEM OF INTEGERS

In the following general statements, a, b, c represent

arbitrary members of 1 :

-(-a) = a (Theorem 1-4a)

If a / 0, , then either a is in N , or _a is in N

(Corollary 1-4a)

a = b if and only if -a . -b (Exercise 1_4a, Part 5)

a 0 . 0 (Theorem 1-41o)

a + (-b) .... a - b (Theorem 1-4c)

(-a) + (-b) = -(a + b) (Theorem 1-4d)

a(-1) = -a (Theorem 1-4e)

(-a)(b) = -(ab) (Theorem l-40

(-a)(-b) ab (Theorem 1-4g)

a b if and only if a + c b + c (EC1)

For c / 0 , a b if and only if ac = bc (EC2)

ab = 0 , if and only if a . 0 or b = 0 (Corollary to EC2)
-(a - b) = b - a (Exercise 1-4V, Part 2a)

For ,a b , if c = b - a and d . a - b then one of c,d

is a natural number and the other is not (Theorem 1-5a)
If 0 < a and 0 < b then 0 < ab (Theorem 1-5b)

If 0 < a and b < 0 then ab < 0 (Theorem 1-5c)

If a < 0 and b < 0 then 0 < ab (Theorem 1-5d)

a < b if and only if a + c < b + c (0C1)

For 0 <c, a<b if and only if ac < bc ; for c< 0 ,

a < b if and only if bc < ac (0C2)

-Ial < a < ial (,Theorem 1-5e)

lab! lal Ibi (Theorem 1-50

la + bi < lai + ibl (Exercise 1-5b, Part 5)

5 5
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1-6. The Rational Number System.

The rational number system C contains all the integers and
also the "quotient" §; of each pair of integers a,b (b / 0) .

The elements ot Q are called rational numbers. In Q each
equation bY. ---- a , where a and b are integers, b 0, has a
solution denoted by But we can say much morel We shall see'
that, even if a and b b / 0 , are any given rational numbers
there is a Member of Q satisfying the equation bx a .

First, however, we discuss equality of rational numbers, and
their sums and products.

Consider pairs of equations such as

4 and 6x 12 2x = 5 and 6x , 15

These exa:Iples illustrate the trivial fact that a given rational

number satisfies more than one equation of the form bx = a .

Since we use the symbols a,b appearing in an equation to describe
aits root (we Write for the root of bx , a) we must recognize

that each rational number can be described as a quotient of
integers in a variety of ways.

Because I is a part C , our equality relation in

must agree With the equality relation we already have in I . Let

us then determine a criterion Tor the pair of equations

bx a and dx c (b / 0 , d 0)

to have the same solution when we suppose that that solution is a

member of I . Since we are working in I , we have at our dis-
posal the .E,A,M.D,0 properties of I . Using EC2 of I , we

can say

bx = a if and only if bdx = ad (for d / 0)

dx = c if and only if bdx = bc (for b / 0)

Now if we suPPose that bx = a and dx = c have a common

soluti= in I say e then

bde -= ad and bde = bc .

5 6
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Hence D:14. (Transitivity) gives ad be Conversely, if we

suppose that bx . a and dx = c have solutions in I , say

e and f , res Pectively, and that ad = bc , then we have

bde = ad ad . bc , bdf bc

and 1,114 gives

bde bdf

But bd / 0 , so e = f and the solutionsof bx a , dx = c

are the same. Summarizing: bx a and dx = c , b / 0 d / 0

have the same solution in If and only if ad bc

With this clue as our guide, we now extend the equality'

relation to all of Q .

Definition 1-6a: If a,b,c,d are integers, b / 0

d A 0 ,

a c

b means ad = bc

This relation is clearly reflexive:

a a
b for ab = ab ;

it is also symmetric and transitive. Thus E2 E3, E4 hold in Q .

We illustrate the definition by considering an important

example.

Theorem 1-6a: If a,b,c are integers, b and c not zero,

ac a
'6Z b

ProG.: The definition states that

ac a
- if and oh)-Y if (ac)b (bc)a ,

and the last equality follows from the commutativity and aesoci-

ativity of multi Plication in I .

[sec. 1-6]



Ao 1-tumcrical illustrations we have:

16 1.16 1
1-711 77.1-6

0 0.10 0
10 171-6

45

fxercises 1-6a

1. Solve each of the following equations (a;10,c,d in I );

(a) 5X = 3 (d) ax b c (a / 0)

(b) 2X 1 = 6 (e) a(x - 2) + b = ex + d (a / c)
(c) 2(Y - 1) y - 4

2. For what value of k will the following pairs of rational

numbers be equal?

0

'

4 6

'
3 k 1

' 17--
that E3 (symmetry) holds in

Our next problem is to determine how we should add and

multiplY rational numbers. Again we turn to I for the clues to

our general definitions. What can we say about the equations

-bx = a satisfied by the sum and product of pairs of integers?

SuPPose b / 0 d / 0 , and that xl and x, are integers
satisfyin

respectively. Then

and we have

bx - a and dx = c

bx, a and dx
2

= c,

bdx1+bd----ad + bc and (bx1)(dx2) = ac .x2
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Hence

bd(x1 + x2) = ad + bc and bd(x1x2) . ac .

ad + bc acThus xl + x2 -
bd and x

1
x
2

=
bd

With these clues as guide we define addition and multipli-
cation in Q as follows:

Definition 1-6b: If a, b, c, d are integers, b / 0 , d 1 0

a c ad + bc
+ a bd

a c ac
d bd

Note immediately that Q is closed under addition and

multiplication, (A1 , M1), for if a, b, c, d are integers so are
ad + bc , ac and bd and moreover bd / 0 if b 0 and
d / 0 . It also follows that Q has all of the other E,A,M,D
properties which I has.

Addition and multiplication in Definition 1-6b are commutative
and associative (A2 , A3 , M2 , M3) . For example:

c a cb + da ad + bc a c
-T- db bd ' (L2)

Moreover, the equations

x = 0 and 1 x = 0
0are equivalent, hence 0 = . Also
1

x = 1 and 1 x 1

1are equivalent, hence 1 = . Thus, for b / 0 ,

a = 0 if and only if a = 0

5 9
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since

a 06. T if and only if a 1 = b 0 ;

and
a

since

= 1 if and only if a = b

a 1 if and only if a 1 = b 1 .

711 T

Therefore, Q has the identity properties A4 , :

a a 0 al+bOa+ 0 = + T _ _ , b 0,

a a .1 ala1
,3 . . .17_13. 1. ,10/ 0,

Q. also has the subtractioh property A5 , for

a (-a) ab + (-a)b
.

b
2

bc

(-a)Since 5- , b 0, satisfies the equption x = 0,

we call it the additive inverse of a and write a)- § .

Also, the equations

1 x -1 and (-1)x 1

are equivalent, hence

-1 1

Hence, for b 0,

(-a) (-1)a -1 a 1 ,a 1 a a.
1 b -I 7 = ."--T

and so

Sia/
a a

-77T

60
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Moreover, if a 0 and b / 0 , we have

a b ab

and, in particular,
1

a -a- 1 .

1We call the multiplicative inverse (or reciprocal) of a anda

a the multiplicative inverse (or reciprocal). of Tap: . We may then

say that every non-zero member of 0 has a multiplicative inverse

ain, Q . Therefore each rational number -E.., a and b integers,

b / 0 , may be written as the product of the integer a and the

multiplicative inverse of b .

a a 1
T E a 17

a .since a -
1

Exercises 1-6b

1. Find the following sums. All letters represent integers.

2 1 x x
(a) + 'V' (a) and y / 0

x
(b) + z / 0 (e) + ---4-

2 z '

2P + 1 p - 2
J

(c)
a7 + 2 , b / 0 (f)

3 47 + ...7 , c / 0

2. Find the followig

(a) 4 ..?5.

( b ) 4-S ;I: z
t z

(c) t 2 , b / 0

products. All letters represent integers.

(d) .Ey + z , y + z / 0 and y / 0
y

(e)
2p 4- p - 2

4

6 1

[see. 1-61
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i. Prove E- (Addition) for Q .

4. Prove E6 (Multiplication) for Q .

5. Prove that addition is associative in Q . (A3)

0. Prove that multiplication is commutative in Q . (M2)

7. Prove that -a , when a / 0 , a in I .a

na8. Prove that = a for a , n in I and n 0 .

9. Prove that for a / 0
'

= 0 if an only if b = 0 .a

The cancellation properties C1 (Addition), C2 (Multiplica-
tion) both follow from the E,A,M properties we have found are
valid in Q .

then

so

and

a .cecFor example, if
CT- 7" CT

and -a 0 , b, d; f 0

ta. . c).1 ecd
iric `f diT

-g-) = qf 4)

a e
"E' '7

Now let us consider an equation bx =,a , where a and b
al b1

-_are rational numbers, b / 0 . Write a = , b = -wherea2
'2

al
'

a2
'

bl
'

b2 are integers, bl 0 , bo 0 , a2 0 .

Then bx = a is the same as

6 2
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Hence

if and only if

if and only if

if and only if

bx = a

_ (

ala-b
2 b-- /

2

a2b1x = a1b2

cx = d

where c = a2b1 , d = a1b2 are integers and c / 0 since

a
2

/ 0
'

b
1

0 . Therefore each equation bx = a with rational

a, b, b / 0 has a solution in Q ; it is the solution of an

equation cx = d with c, d integers, c / 0 .

This proves that we have a new M property for Q. .

M
5

(Division) Corresponding to each pair a,b of-
rational numbers, b 0 , there is exactly one

rational number c such that bc = a .

Example 1-6a: Solve the equation 4x . 43-- in 0 .

lutions: Using the method given above we multipy each

member by 6 :

1 1
x)T.x if and only If 64 . 6(4)

if an only if 3x . 2

2
if and only if x =

However, we may shorten the work if we merely multiplY,,by. 2 , the

1
reciprocal of

if and only if 2(x) [EC,

if and only if

63
[sec. 1-6]
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The alternative solution for Example l-6b suggests a general
method which M.ves a second proof that M, holds in Q :

If a and b are members of Q , b 0 , then

bx - a if and only if .?b,z(bx) = 4-) a [EC2

1if and only if x = -1-3- a [Mult. Inv.

but, as 13 and a are members of Q , so is their product, by

M (Closure). Thus bx . a has exactly one solution in Q. ,1
1 aIt is 1-5 a , or .

3 1Example 1-6b: Solve 2x + = in Q .
5 3

Solutions: Our two methods give (writing l'iff" for "if and
only if")

15(2x 4) = 15 ;1(2x) = -324 -

1 5 - 9iff 30x -1- 9 = 5 iff x = 7

5 9 -2 iff 1 -4 -2iff
JO- 15 x = -27 7 =

Some people prefer the first method since it immediately converts
the problem into one involving integral coefficients. The
rational numbers reappear only at the end.

The restriction b 0 in M
5 (and in the preceding dis--

cussion) merits comment. We saw that the E,A,M,D properties of
I , which are all in.force in Q , lead to the conclusion

0 = 0 for'any b . Since the properties on which this con-
clusion is based hold in Q, the same conclusion holds in Q .

This means that an equation Ox = a can have a solution in Q
if and only if a is 0 ; but when a is. 0 , every element of

6/1

(sec. 1-6)
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Q satisfies the equation. Hence the desire to "divide by zero",

that is, to solve Ox = a is doomed from the beginning. Either

there is no solution at all (if a / 0) or there are too many

(if a = 0) . The two fundamental criteria for any algebrain

operation,

(i) that it always be possible,

and

(ii) that it determine a definite number,

are both violated in the case of "division by zero". For (0
it is not always possible, and (ii) when it is possible it does

not determine a definite member of 0 . Hence by no stretch of

the imagination can "division by zero" be considered an algebraic

operation. We are therefore obliged to exclude it from all of our

subsequent discussions.

Exercises 1-6c

1. Find solutions for the following where all letters represent

rational numbers, and list the properties of the Tational

number system used.

2(1 - w) 3w
a\.

.2x h (d) + = '2 w 1] .,

3 4(x + 1) 2(3 + x)
2x(b) 3m + i = -II (e) 7 ..,

3

(c) 5Y 1-1 1 1 .

2. State and prove ECI. (Addition) for Q .

3. State and prove EC2 (Multiplication) for Q .

6 5
[sec. 1-6]
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1-7. Order of the Rationals.

In Sections 1-3 and 1-5 we studied the order relation in N
and I . We now face the question of extending it to the system
Q . Since I is a part of Q such an extension must agree with
the relation we already have in I .

In I , as in N , given a specific pair of numbers (such as
3 and 7 , or -2 and 9) we can spot at sight which is the
larger. However it is difficult to tell at a glance whether or

17 25not --v.- is "larger" than -4-- . Even deciding if these numbers27 .1

are equal requires some reflection. We shall see that very little
more reflection is required to decide which is the larger.

In I , our definition of order hinges on the question of
whether or not a difference is positive, since for 'Integers a, b ,

we have a < b if and only if 0 < b - a . To frame our defini-
tipn of order for Q. in the same words, we first decide which

quotients shall be called "positive".

No matter how we may define an order relation in c if it is
-

to agree with our order relation in I (so that 0 < b if b
is a non-zero member of I) and if it is to have property Oh
(Multiplication) , then, for a and b integers, b X 0 , we
must have

0 <

or, since

a

a

if and only if

(t)b2 = ab ,

if and only if

0 < k,1117)bc--

< ab .

aHence it .thiast be the case that the quotient To- is "positive"
(i.e., greater than 0) if and only if the product ab is
positive. If we cannot agree that such a quotient be positive,
then there Is no hope of defining an order relation in Q
consistent with the order relation we already have in I .

We therefore make the following definition:

6 6
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Definition 1-7a: If a and b are integers, b / 0 ,

0 < means 0 < ab .

Since a and b are integers, ab is also an integer.
aTherefore this definition bases the decision that 15 is greater

than 0 on the truth of a statement concerning two integers, 0

and ab . The truth of the latter statement is determined by our

theory of order in I , where we found that 0 < ab if and only

if either 0 < a and 0 < b , or a < 0 and b < 0 .

Because 7 = apy rational number 7 , a and b integers,

b / 0 , may be written as a quotient with a positive integral

denominator. But, then, if 0 < b we have 0 < if and only

if 0 < a

Now that we have decided which rational numbers must be

positive, we return to the question of defining an order relation

for all of Q . Note that

hence if 0

c a bc - ad
d b bd '

and 0 < d ,

c a0 < - 7 if and only if 0 < bc - ad .

We therefore frame our definition as follows.

Definition 1-7b: If a, b, c, d are integers, 0 < b , 0

or equivalently,

a C

<

a c

<

means

means ad < bc ;

fthere is a pcsitive rational number r

a
such that + r

[sec. 1-7]
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From this definition it can be shown that

a c
if and only if ad > bc .

5 5

These inequalities should be compared with the criterion for
equality of rational numbers (Section 1-6):

a c

b= d if and only if ad = bc , b, d 0 .

Ju::". as in N and I , we write r < s for r = s or
r < s , for any rational numbers r, s . Similarly for r > s

17 25Returning to our question regarding 277 and Ty , we see

that the answer depends on whether or not the product 17(41) is
greater than 27(25) .

Because our definition of order in Q is verbally the same
as that in I , we may adapt the previous proofs of 01 , 02 ,

03 , 24 to fit Q :

0 (Trichotomy) Given any pair of rational numbers r
and s , exactly one of the following relations holds:

= S , r < s , s < r .

02 (Transitivity) If r < s and s < t , then r < t .

03 (Addition) If r < s , then r+t<s+t.
04 (Multiplication) If r < s and 0 < t , then rt < st;

but if r < s and t < 0 , then st < rt .

Just as in I , we have in 0 the cancellation properties

221 a <b if and only if a+c<b+ c

OCn For 0 < c ,

a < b if and only if ac < .bc ;

but for c < 0 ,

a < b if and only if bc < ac .

EO a < b if and only if a + c < b + c .
Ci

[sec. 1-7]
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EOC, For 0 < c ,

a < b lf and enT: if ac < bc ;

but for c < 0 ,

a < b if and only if bc < ac .

Exercises 1-'7a

1. Determine the order relation for the following pairs of.

rational numbel-s.

(a) ,27; and

(b) and 2-4
1(

(() at,d , where x < y

(d) and , where xy X 0 and x < Y

3x 4- 5(e) and 2x + 1 , where x < 0

2. Arrange the following rational numbers in a chain of in-

equalities and Justify your arrangement:

4 , -12 AZ a
' 20 ' 59 ' 13

1
3. Prove: 0 < 11 and only if 0 < a .

II. Prove: f; > If and only if ad > bc b, d 0

5. Prove O, for Q : < and < , then <

Where a, b, c, d are In I and bdf L 0 .

0 alao has Archimedes' property:

0 (Archtmedes) If r and a are positive rational

numbers and < n , then there Is a positive Integer

n :Inch that nr > 3 .

0 9
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However the system Q has a special order property which it
does not share with either 11 or I . Both N and I are
"discrete" systems, in the sense that there is a smallest positive
difference b etween integers. Given any pair of distinct integers,

if we subtract the smaller from the larger, the resulting differ-
ence is 1 or more; there is no pair of integers whose difference
is both greater than 0 and less than 1 .

On the other hand we can find pairs of rational numbers whose
difference 1.5 positive and "as small as we like". This will follow
if we prove that between any two distinct rational numbers there
is a third raional number different from either of the original
two. But this is easyl Given rational numbers a and b

a / b , we maY take their "average" P-4-12.- Suppose a < b To

show that a < and < b . Since a < b , we have

a + b2a < a + b ard a + b < 2b , (by 03), so a < end

a + b < b Thus a b
is between a, b . Moreover, if a and

a bb are rational numbers, is also a rational number (by A-a '

We have JUst seen that between any pair of rational numbers,
there is at least one other. But, then there is a rational between
this new one and each of the original ones; another rational
between each of these, etc. By selecting the average each time

we repeatedly halve the difference; and by repeatedly halving the

difference we Qan make It "as small aa we like".

Since it Ls always possible to find another rational between

any two ratiohals, we say that the rational numbers are "dense".
The spetlial order property 06(0 staten just this:

(DensttY) If a and b are rational numbers,
a / then there Is a rational number c such
that a < e < b or b < c < a Hence between
any palr or dVstinet rational numbers, there are
inflnttely mhny rat1onal numbers.

(sec. 1V)
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Exercises 1-7b

1. Using Definition 1-7b and the fact that I has Archimedest

property 015 , show that Q has Archimedes, property.

2. Prove that a < + b < < b for a arid b in Q
a + 2b2a

and a < b .

3. Prove that a < 3a + b 224_212 a
4

3b < b for a and b

Q and a < b .

We now study the solution of inequalities in . Because Q

is not discrete our results are quite different from those we

obtain in I . We review the situatlon in I in order to bring

out this difference.

Example 1-7 : Solve 18 < 3x 4' 7 < 50 for x in

Solution: 18 < 3x 7 < 50

if and only if 11 < 3x < 43

J

11 , 43
and 14 < < 15

if ard ordy if

Now

So the solution set is (4, 5, 6, , 13, 14) .

Cur strategy in attacking this problem was to convertthe

given inequality, 18 < 3x 7 < 50, into an equivalent one of

the form a < X < b , where a and b are certain definite

numbers. The final inequality disPlays at a glance the range of

values of x satisfying the original inequality. Since this

range Is 11;nited "below" (by a ) and "above" (by b ) there

7 1

(see, 1-7)
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can onlY be a finite number of integers in this range; Just which

ones we determined by findinp: consecutive integers on each "side"

of a and b To find the solutions in Q the matter is

different. Cur reasoning on behalf of the assertion

11313 C 3x + / < 50 if and only if --- x ,

is exac1y r,he same whethor we want rational solutions or integral

solutions. put what can we do to describe the solution set in C ?

In .1 the problem i asier because there are only finitely many

members ln the solutl,Dn set. In C , however, between each pair

of distinct members are infinitely many more members. It is

futile to contemplate any list of the solutions in 0 . What we

can do-- and it is all that we can do--is to specify the range, say

a < ç < b containing all the solutions. Indeed every rational

number which Is a solution is in this range and every rational

number Ln this range is a solution.

EXamele 1-7b: solve -1 < 1 - 2x < 2 for X in .

1 - 2x < 2

if and only if < -Lx < 1 (E0C1 0C1

1
if and only if -7 < x < 1 .

Exercises 1-7c

Determine all rational solutions of the following inequalities:

6.

7.

8.

9.

1. 4 < 2x 1 < 8

2. < 5 < 2

1 ,

4. -1 < 2 m 1

5. 1 <

-1 < 6 - 3x < 1

1 1 1
< 2x - 7 < 7

- ?x-1 < < 1
-11

10. 2 --

7 2

(eau. 1-7]
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We return to the subject of absolute values, introduced in

Section 1-5, and extend the definition to Q without change.

Definition 1-7c: If a is any rational number,

lai = a if 0 < a

lal = -a if a < 0 .

And with precisely the same proofs as in I , we may show that for

arbitrary a in Q ,

-Ial < a < lal (Theorem 1-5e)

labl lal Ibi . (Theorem 1-50

We examine some inequalities involving absolute values.

Example 1-7c: Find all solutions of lxi < 1 , for x in C .

Solution: We eliminate the absolute value sign by reverting

to its definition and split our discussion into two.cases:

(i) .0 < x , (ii) x < 0 . In case (i) we have x = lxi , so

for 0 < x , Ix1 < 1 if and only if 0 < x < 1 . [Def.1-7c

In rase (Li) we have x < 0 and lxi = -x , so

for x < 0, lx1 < 1 if and only if x < 0 and, -x < 1

if and only if -1 < x < 0

Combining these cases, we get

Ix! < 1 if and only if -1 < x < 1 .

We could proceed as in Example 1-7c with other such problems.

However the method of arguing by cases can become rather tedious

if we rr:ust use it each time we want to eliminate an absolute value

sign. It ts easier to suffer through the argument once or twice

to prove general theorems, whlch we may then use later without

7 3
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-

resortinF to the-two cases: (1) 0 < x , (ii) x < 0 in each

problem wc meet. this reason we prov,:: the next two theorems.

Theorem 1-7 : Suppose 0 < a . Then

lx1 < a lf and only if -a < x < a .

Proof: ("Only if") We show first that if lx1 < a , then

-a < x < a . We use two cases for the proof, (i) 0 < x ,

(Li) x < 0 , and show that in each case

if lx1 < a , then -a < x < a .

Case (1): If C < x , then 1)(1 = x and so if 1)(1 < a ,

then 0 < x < a , hence -a < x < a , since -a < 0 .

Case (11): If x < 0 , then lx1 -x > 0 and so if

lx1 < a , then 0 < -x < a , or -a < x < 0 . And since 0 < a ,

we can. say 1 -a < x < a .

For the "If" part, we prove

If -a < x < a , then lx1 < a

Again we use two cases: (1) 0 < x , (11) x < 0 .

Case (1): IC 0 < x and -a x a , (i.e., -a < x and

x < a) , then from 0 < x and x < a it follows that lx1 = x < a

and so lx1 < a .

Case (II): If x < C and -a < x < a , ttlen x -1x1 , and

-a < -1x1 or Ix! < a .

Examplo 1-;d: Solve x - 11 < in

7 4
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Solution: From Theorem 1-7a,

I2x - 11 < 5 if and only if -5 < 2x - 1 < 5 [Th.1-7a

if and only if -4 < 2x < 6 [OC

if and only if -2 < x

Theorem 1-7b: Suppose 0 < a . Then

a < Ix, if and only if either x < -a or a < x .

Proof: ("Only if") Two cases: (i) 0 < x , (ii) x < 0 .

Case (i): If 0 < x and a < Ix1 , then a < x .

Case (ii): If x < 0 and a < Ix, , then a < -x , or x < -a
WO.

For the "if" part: 0 < a and a < x give 0 < x so x = Ix, .

Therefore, if a < x , then a < Ix! . Also 0 < a (or -a < 0)

and x < -a give x < 0 so x = -Ix1 . Therefore, if

x -a , then -IxI -a or a Ix! .

Example 1-7e: Solve 2 < 11 - 2xI in Q.

Solution: From Theorem 1-7b,

2 < 11 - 2xI if and only if 1 - 2x < -2 or 2 < 1 - 2x

if and only if 3 < 2x or 2x < -1

3if and only if < x or x < 1
a

Using Theorem 1-7a, we may give a proof, devoid of case-

arguments, for the so-called "triangle inequality"

Ia bI < Ial + IbI .

(Cf. Exercise 1-5b)

7 5
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Theorem 1-7c: ly + zI < IyI + (zI .

Proof: By Theorem 1-5e, we have

<-tyIy < IYI

-IzI < z < IzI

hence, adding,

-(IYI + IzI) < Y + z < +

and, usinl. Theorem 1-7a with x=y+z, a= IyI + (zI

zI IY1 + 1z1

Exercises 1-7d

1. Solve the following for x in Q .

(a) Ix + 11 < 4
(d) 15 3x1 > -1

(b) I2x - 11 < 1

(c) 11 - xl >

(e) I2x -11 < -3

*(f) 2 < Ix + 1I < 3

2. Prove: If a < b < c and d < e < f , then

a +d(b+e<c+f.

LIST OF BASIC PROPERTIES

OF THE

RATIONAL NUMBER SYSTEM

For arbitrary a, b, c in Q:

E (Dichotomy) Either a = b or a / b .

E2 (Reflexivtty) a = a .

76
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1;4

(Symmetry) If

(Transitivity)

a =

If

b ,

a =

then

b and

b = a

b =

.

c

E, (Addition) If a = b , then a + c =

(MultiplIcation) If a.= b , then ac

, then a c .

b + c .

= bc .

A (Closure) a + b is a rational number.
A (Commutativity) a + b = b + a .

A (Associativity) a + (b + c) . (a + b) + c
A..4 (Additive Identity) 0 + a - a + 0 -= a .

A- (Subtraction) For each pair a and b of rational
numbers, there is exactl:T one rational number c suchthat a"+ c = b .

N (Closure) ab is a rational number.
M (Commutativity) ab = ba .

M (Associativity) a(bc) = (ab)c .

Mil (Multiplicative Identity) 1 a = a 1 = a .

Mr (Division) For each pair a,b of rational numbers,
/ 0 , there is exactly one rational number c such

that bc . a .

D (Distributivity) a(b + c) = ab + ac .

0d (Trichotomy) If a and b are rational numbers,-
exactly one of the following holds:

a . b , a < b , b < a .

0, (Transitivity) If a < b and b < c, then a < C.

O (Addition) If a < b , then a + c < b c .

a (Multiplication) If a < b and 0 < c , then
ac < bc ; but if a < b and a < 0 , then bc < ac .

O (Archimedes) If a and b are positive rational
numbers and a < b , there is a positive integer n
such that na > b .

0,-(q) (Density) If a and b are rational numbers,
a / b , then thereis a rational number c such that

< c < b or b < c < a . Hence between any pair of
Uistinct rational nuMbers there are infinitely many
rational numbers.

7 7
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DEFINITIONS FOR THE

RATIONAL NUMBER SYSTEM

Definition 1-6a: If a, b, c, and d are integers, b / 0

and d 0 , then t- if and only if ad - bc .

Definition 1-6b: If a, b, c, and d are integers, b / 0

and d / 0 , then

a c ad + bc a . c ac
bd and

1-3-a-

Definition 1-7a: If a and b are integers, b / 0 , then

a0 <13 if and only if 0 < ab .

Definition 1-7b: If a, b, c, and d are integers, 0 < b

a cand 0 < d , then 13 < if and only if ad < bc .

Definition 1-7c: If a is a rational number, lal = a if

0 < a ; lal . -a if a <

SOME THEOREMS OF THE

RATIONAL NUMBER SYSTEM

If a, b, and g are integers, b / 0 and c / 0 , then

(Theorem 1-6a)

If a and x are rational numbers and 0 < a , then Ix! < a

if and only if -a < x < a . (Theorem 1-7a)

If a and x are rational numbers. and 0 < a , then a < Ixt

If and only if either x < -a or. a < x . (Theorem 1-7b)

If x and y are rational numbers; then Ix + I < lxI IYI
(Theorem 1-7c)

7 8
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1-8. Decimal Representation of Rational Numbers.

The long division algorithm is a procedure for converting any

rational number (1.e.,.quotient of integers) into a decimal ex-

pression of the form

a0. a1a2a3...

where ao is an integer and al , a,, a3 , ... are decimal digits

. We say that a
1

is the digit in the

first place (after the point), a2 is the digit in the second

thplace, . , a
n

is the digit in the n-- place.

Some rational numbers have

1
= 0.3

=

1
= 0.2

"terminating"

1

1

decimal expressions:

. 0.125

- 0.1
10

while others have decimal expressions which do not "terminate":

. 0.3333

4- 10 1(4-6- . J

= 0.142857142857...

0.11111

By a terminatini:. 'cimal expression, we mean one with no digits
but 0 after some place. Although the decimal expressions for1111

, , 7 , 7. do not terminute, they are all'repeating decimal

expressions in the sense that, at some place a block of digits

appears which is repeated thereafter. In the case of , the

digit appears in the first place and is repcated thereafter;

1
for the digit appears In the second place and is repeated

1thereafter. The first six placli's In the decimal expression for 7
are cup.Leci by the diGits 3Z2133:' and this block of six digits

LE repeated thereafter.

7 9
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We indicate that a block of digits repeats by overscoring it:

Since terminating decimal expressions are those having only

Ols after some place, they may also be considered "repeating",

their repeated block consisting of the single digit 0 . Accord-

ing1;/ we shall use the description "repeating" to include

"terminating" as well. With this understanding we state the

following theorem.

The'prem 1-8a: Each rational number has a repeating decimal

expression.

We shall prove this theorem in general below, but first we

examine a numerical example for a clue to the general proof. We

carry out the division algorithm to obtain the decimal expression

11
for .

1.571)128
7/11.0000000

7
W o
3 5

50
119

10

7

28
2r
1/1

56
To

8 0
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We need go no further. The expression repeats since the remainder
4 has appeared twice, each time followed by a 0 "brought down"
from the dividend. This means that the digits in the quotient will
come again in the same order as before.

Suppose a given remainder occurs after all the non-zero
digits of the dividend have been "brought down" so that this re-
mainder is followed by a zero. If this same remainder ever occurs
a second time, again it will be followed by a zero; and from this
point the decimal expression of the quotient repeats.

In view of these observations, our theorem will be proved if
we can show that at least one remainder must appear more than
once after all the non-zero digits of the dividend have been
"brought.down".

Hut this is easyJ Our divisor is a natural number, say n .

All the remainders are less than n , they are natural numbers
selected from the set

(0, 1, 2, , n - 1)

There are n numbers in this set. Hence any list containing more
than n remainders contains at least one of them twice. The
division algorithm can be made to produce a list of remainders as
long as we wish. If we therefore carry out the process until we
have "brought lown" more than n zeros, where n is the divisor
we shall have a list of remainders which contains at least one
repetition. Because any such repeated remainder has a zero
"brought down" behind it each time, we have produced a repetition
in the digits of the quotient forcing it tc repeat thereafter.

Many lists of remainders repeat before we use up all of them.
1For example, all the remainders obtained in converting-7 into a

decimal expressiocl are l's .

81

[see. 1-8]
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Not only have we found that the decimal expression for a

rational number must rePeat, but we can say more. The number of

digits in its repeatinE block, which is at least one, never

exceeds the divisor. As a-matter of fact it is always less than

the divisor, for if any remainder is zero the decimal expression

of the quotient terminates then and there. So if it does not

terminate, then there are only n - 1 possibilities for each re-
mainder. Hence the number of digits in the repeating block is at

least one and at most one less than the divisor. Note that in
1the case of ,-,- there are 0 digits in the block.

We next prove (Theorem 1-8b) that each repeating decimal ex-

pression represents a rational number. As before, we begin with

examples. Let a = 0.123 . Then

103a . 123.777 - 123 + 0.123 =.123 + a

and (10 - 1)a = 123 or 999a = 123 ,

123so a =
999

Let b = 321.052177 . Then

10
3
b 321,052.123 = 321,052 + a .

Thus 123)
1 5")

1,Z)00-j"' '
0
-` 999' '

and we can see that b is rational. We refrain from writing it

as a quotient of integers.

These examples indicate how we may construct a general proof.

Theorem 1-8b: Each repeating decmal expression represents

a rational number.

8 2
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Pro0C: We divlde the proof into three cases. In the first

two cases, we treat decimal expressichl whose "integral parts"

are zero. In the first case we consider such a decimal expression

which repeats "from the beginning". Let

b .

Then 10mb = bib;;2...bm.-5157;27.75;

b
1 m

0:5
1 m

= b
1
b ...b + b

(10m - ])b bib...bm ,

where b
1 m is an integer whose digits are bl ,

_z

Let us call this integer Then

, , bm

and h , being a quotient of integers, is a rational number. This
concludes the :d_rst case.

For our second case. '.et us suppose that we have a decimal

expression whose repeating block appears first just following the
th

place. Let

Then

a - 0.a a ...a E b .

m

10
na - a a..a

n
...bm

ala...an + 0.171bc...bm .

8 3
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that 0.1610,...7; represents a rational number

(be iru, a fiet.21mal expression which repeats "from the beginning").

Thus IGna Is the sum of an integer and a rational and hence is,

rational. Sirwe lOn Is an integer it follows that a itself is

rational. Thls r:oncludes the second case.

The only remaining ',:ase is that of a decimal expression of

the form

a .a,a-...a
0 - n 1 m '

where a
0

Ls an integer not necessarily zero. But

ao 0.a1a2...arj1b2...bm ,

the first term being an integer (by hypothests) and the second
representing a rational number (by the argument in the second case).

We therefore conclude that a0 .ala2...anblb2...bm represents a

rational number. This ends the proof.

Exercises 1-8a

1. Find a rJecimal expression for each of the following rational

numbers:

2. ,Find the rational number reprc r-Ited by each of t e following

decImal expressions:

(a) 0:7 -(d) 1.2977

(b) o.17 (e) 3.51377

(c) o.'IT

8 4
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Show that Theorems 1-3a, 1-31) are converses of each other by
rephraslh the;:1 in the form "If A , then B" .

4, Prove that 1.7 by the method used to prove Theorem

1-a.

J. Obtain decimal e:(prossions for the following rational numbers:
1 1 1 7

,

10- 10- 10

Describe in words a decimal expression for 1 where n is

any natural number. 10
n

1-9. Infinite Decimal Expressions and Real Numbers.

In Section 1-8 we examined the decimal representation of

rational numbers. In this section we consider the collection of

all decimal expressions

a.a a,...a
0 1 n

where ao is an integer and al , a, , ..
'

a
n

... are deci-

mal digits (0,13,4,5,6,7,8,9) . We found in Section 1-3 that

such a decimal expression represents a rational number if and only
if it repeats (or terminates).

Our first observation is that some decimal expressions neither

repeat nor terminate. Consider, for example, the non-terminating

decimal expression

0.1010010001000010000010000001...

formed using only the digits 0,1 ; after the first 1 is one 0 ,

after the second 1 there are two O's , after the third 1 there
are three Ofs , for each natural number n , there are n

zeros following the nth 1 . This decimal expression does not

repeat since no block of zeros s as long as any other block of

[sec. 1-9]
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zeruL;. Variations of this pattern will produce any number of

other non-repeatIn decimal expressions. :There are many non-

repeain c.:.1pressions whose sequence of digits cannot be

describel Uy any su-:h simple rule, however. We snail ,meet some

of them later. (ectioh 1-10.)

Tn- real n.Imuer system, which we shall call R , may he con-

stru't,e.; wi'n T,ne de(:imal expressions playing the role of its

numodrs. To :onstru,t su...;h a system, it is necessary to define

-qtality', "orer", and operations "addition", "multi-

plicaLL): " for 4he u-cimal expressions. Having made satisfactory

definY,Lons r,f tLese riationn and operations, we should be

oblLiTd lo isterzlne wnich of the E,A,M,D,0 properties of the

ratlohal rumzer system :11.:,ht be valid in R . This is no mean
task. indeei it Is quite formidable. It required several

thousand years of human thought to accomplish the transition from

the natural number system to the real number system. This fact
alore nhould .e anyuody that the proble Is not an easy one.

A real nurn;:er which is not rational is called an irrational
(real) number. In "calculations" involving irrational numbers,

it is customary to Us:: rational "approximations" to them.

Ratiohal approximations to irrational numbers may be obtained by

L1:211,:atinL (or chopping off) their decimal expressions:

ao.ala2...an .

The is the sign for "approximate equality"; the rational

decimal on 'Ale rliat is obained by truncating the dnfinite

decimal expression on the left "after the n
th

plaCe".

We define equality itself for irrational decimals as folily:s:

Definition 1-9a: Two irrational decimals are.equal if FOR
EVERY n the rational decimals obtained by truncating them after

th.
the n place are equal.

8 6
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This definition bases our new equality relation on the

equality relation we already have for the rational numbers. Using

the same idea, we may extend the order relation to R :

Definition 1-9b: One irrational decift, :L-s than

another if FOR SOME n the rational truncati.... of the first after

the n th place is less than the rational truncation of the second

after the n
th

place.

Let us compare these definitions. If the truneatsions are not

equal for EVERY n , they must be cjifferent for SOME n . Thus if

two irrational decimals are not "equal", one of them must be "less

than" the other, for given a pair of rational numbers which are

not equal we know that one is less than the other. Thus our

definitions have been constructed in such a way that the properties

E, (Dichotomy) and 0a (Trichotomy) hold in R . The fact that-
h'old in R follows from the fact that they hold in Q .

Using the sequences of truncated rational decimal approxi-

mations formed from pairs of irrational decimal expressions we may

define "sum" and "product" in R by reducing the problem to

operations already defined in We omit the details and merely

announce that such definitions produce a number system R with

all of the E,A,M,D,0 properties of Q . (We restate all these

properties at the end of this section.) The logical structure of

R differs from that of Q only in the fact that R has one new

order property, 07(R) , in addition to all six of the order

Properties which Q has. This new order property is stated at

the end of the list of basic properties of R Its full

significance will appear when you study advanced calculus.

8 7
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LIST OF BASIC PROPERTIES OF

THE REAL NUM.BER SYSTEM

For arbitrary a, b, C n R :

P (Dichotomy) Either a b or a b .

E. (Reflexivity) a . a .

(Symmetry) If a . b , then b = a .

(Transitivity) If a . b and b = c , then a . c .

(Addition) If a . b , then a + c = b + c .

(Multiplication) If a - b , then ac = bc .

A (Closure) a + b is a real number.

A, (Commutativity) a+b=b+a.

A
3

(Associativity) a + (b + c) . (a + b) + c .

A, (Additive Identity) 0 + a - a + 0:-. a .

A. (Subtraction) For each pair a and b of real5
numbers, there is exactly one real number c such

that a + c b .

--1
(Closure),. ab is a real number.

M. (Commutativity) ab . ho .

. S (Associativity) a(bc) (ab)c .

Ea, (Multiplicative Identity) 1 a = a 1 = a .

E5 (Division) For each pair a, b of real numbers,
b 0 , there is exactly one real number c such

that bc . a .

8 8
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(Distributivity) a(b + c) = ab + ac .

(Trichotomy) If a and b are real numbers,

exactly one of the following holds:

a b , a < b , b < a .

(Transitivity) If a < b , and b < c , then a < c .

0. (Addition) If a c b , then a + c < b + c .

24 (Multiplication) If a < b and 0 < c , then

ac < bc; but if a < b and c 0 , then bc < ac .

(Archimedes) If a and b are positive real

numbers and a < b , there is a positive integer n

such that na > b .

--0
0, (Density) If a and b are real numbers, a / b ,_

then 'there is a real number c such that a < c < b

or b < c < a . Hence between any pair of distinct

real 'numbers there are infinitely many real numbers.

0.(R) If (a
0 '

a
1 ' '

a, ... , a
n

...) and(
[bo , bl , b2 , . . , bn , ...) are two sequences of

real numbers with the properties

(1) ad < al < a) < < an <

(ii) bo > b > b, b
c n

(1ii) an < bn , for every natural number n

1
(iv) b

n
- an <

'
for every natural number n

10
n

then there is one and only one real number c such

that a
n

< c < b
n

, for every natural number n .

8 9
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Exercises

1. Arrange the following in order:

2.15/15 , 2.1547... , 2.152... , 2.1547 , L.15477,
where not all of the unwritten diits in the second and
third are zeros.

2. State the property of the real numbers illustrated by each
of the following statements:

(a) x + z < y or y < x + z .

(b) If 0 < x + y and x + y < z , then 0 < z .

(c) (x Y)(x + Y) (x + Y)(x Y)
(d) If .x+y+z=x+z+z, then y=z.
(e) If 0 < -x , then x < 0 .

(0 If x-y<x+y, then there isa z such that
x-y<z<x+y.

(g) x + = z or x + y / z .

(h) x+y+z=x+z+y.
(i) 4(2y) = By

(j) If x+y=x-y and x+y-z, then x y = z .

.(k) (x y) + (y - x) = 0 .

(1) (x + y)2 = (x + y)x + (x + y)y .

1-10. The Equation xn = a .

As stated in Section 1-9, the real number system P. has all
of the algebraic properties of the rational number system Q. .

(It has one more order property which it does not share with Q .)
Thus any algebraic operation which can be performed in either can
be performed in the other. From the point of view of structure

they are indistinguishable except for very deep properties of
their order relations. However, from the point of view of the

numbers they contain they are vastly different: P. contains
many numbers not in (.7J . Because of this it is possible to solve

9 0
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some equatLons which cannot be solved in . In

Corollary 1-iCa we exhibit a class of equations which cannot be

solvol Ln . Theorem 1-10b asserts that some of them can be

L . However, extensive as it is, R is not vast

to contaLn solutions for all of them. Another extension of

or nu:ier system is required for this; it will be made in

Chaptr 5.

Theorem 1-10a: If is a natural number, if ao , al , a2 ,

, a1 are InteR,ers, and if 1,4- is a rational number satis-

t'ylni- the cyquaion

r-1
a + an-1-

then is an integer.

2 ...+a'-x
2
+ a

1
x + a

0
. 0 ,

cf

Proof: 31hce any rational number may be written in "lowest

(Theore 1-6a), we may suppose that p and q are

havini; no c:ommon integral factor greater than 1 , and

that Ls positive. It follows, then, that p
n and q have no

:.ommon i:-tegral factor i:,reater than 1 . By hypothesis

+
n-1 2

('a) -F . . . -F + a (-2) + 0 .

q 1 q
ao _

?it:iyr both sides by q
n-1 we get

an

U
n

+ a
n

p
-1 -

la+ a
n
_n-2

q + + a1pq
n-2

+ a
0
q
n-1

. 0

-(a p
n-1

+ 4- a q
11-1)

n-1 0

9 1

[sec. 1-10]



79

But the expression on the right is an integer. Hence is an
integer and so q is a factor of pn . Since thn only positive
common integral factor of q and pn is 1 , q = 1 .

Therefore .2. is an integer.

Corollary 1-10a) If a is an integer and n is a natural
number, the equation xn a .has a rational solUtion if and only
if a is the nth power of an integer.

The integers which are "squares" of integers are

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
.

Thus If a is any integer not in this list, there is no rational
number satisfying the equation x

2
= a . The integers which are

"cubes" of integers are

0, 1, 8, 27, 64, 125, ...,

and their additive inverses. Thus if a is any natural number
not in this list, there is no rational number satisfying the
equation x 3 . a . We may mac-ce similar statements about fourth

powers, fifth powers, sixth powers, etc.

It is the case however--although we shall not prove it in
detail--that if a is any non-negative real number (integral,

rational, or irrational) and n is any natural number, then the
real number system R contains exactly one non-negative number

satisfying the equation xn = a . (This is Theorem 1-10b.)

Perhaps the simplest case of any interest is

x
2

= 2 .

We indicate the general lines of an argument which, by filling

in some details, can be used to prove that there is a real number

satisfying this equation.

9 2
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We know that is between 1 and 2` , so we are after a

number between 1 and 2 . Hence its decimal expression starts

out 1. . In order to find the digit in the first place after

the point, we calcu)ate

1.0-, 1.1 1.9 , 2.

and find that

21.4 . 1,96 < 2 < 2.25 . 1.5 .

So the first digit after the point is 4 , and our number is 1.4
Now

1.412 . 1.9881 < 2 < 2.0164 . 1.422

and we have another digit: .1.41--- . Continuing,

1.4142 = 1.999396 < 2 < 2.002225 . 1.4152

which gives us another digit. And so on.

The fact that this procedure can be carried out as far as we

may care to carry it--no matter how far that may be--and that each

step produces another digit means that this procedure produces a

decimal expression and therefore describes a real number.

It remains to be seen, however, wl r the square of this

nuber is . Let us call this number c , and write

ao - 1.4 1)0 . 1.5

al = 1.41 bl . 1.42

1.414 b2 . 1.415

etc.

for the (rational) numbers produced by our procedure. Since

a < c < bn
1

for each natural number n ,

it follows that 9 3
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i . 9).8 1

EL = 1.99996

and it can be proved that

81

2
a
n

< c < b2 , for each natural number n.

2.o164 , = 0.0283 < -177

12.00L225 b- = 0.002829 <
10

10 < b - a
n

< , for each tural number n .

10
n

Now 07(R) (Section 1-9) tells us there is only one real number

greater than every a2 and less than every b2 . But both 2 and

c are therel Hence c2 = 2 , and we are through.

The general proof may be carried out along similar lines. We
omit it entirely and simply announce the theorem.

Theorem 1-10b: Given any natural number n and any non-
negative real number a the equation xn . a is satisfied by
one and only one non-negative real number.

Definition 1-10a: The :nique non-negative real number satis-
fying xn . a , n natural, a real and non-negative, is called
the non-negative n th

root of a and is denoted by 11\5. . In the
special case n . 2 , we write simply v4.F. , and call 17-7. the non-
negative square root of

Note that for any c in R 0 < c- . -Hence if a < 0,

the equation x- = a has no solution in R .

9 4
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We emphasize: .7 g. is non-negative. It is an easy conse-

quene of 1;he theorems on products of additive inverses that

and he- e, when C < a , the equation x a has two solutions

in R . The positive solution is the one we call ,7-a- ; The other

solution is tne additive inverse of vrg. ; it is -fg, and is
2

negative. For a = 0 , x- . a has only one solution. It is 0 .

Thus fa- = 0 .

For any real number a , we have

lal =

for if C < a , i.e., a is non-negative, then 13:7 = a ; while

if a < C , then -a and NA7 are both positive and because their

squares are equal, Theorem 1-10b tells us they are equal.

Theorem 1-10c: If a and b are non-negative real number.s,

then

lab = ;

if a Is a non-negative real number and b is a positive real

number, then

TT. Nig.
V b /7_

Proof: v4TE , , and 17 are, respectively, the non-negative

roots of

If we write

we can say

x
2

= ab , x
2

. a , x2 = b .

x 1 =IT'D ,

n < x , < x
2 '

0 < x
3

and

9 5
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2 2
1

ab,
x2 a X

2 2and we want to show that xl x2x3. From x2 = a and x3 = b

2 2we get x2x3 ab .

Since 4x3 = (x2x2)(x3x3)

we can say

SO

2
= (X2X3)(X2X3) = (X2X)2

(X2X3)2 = ab .

This proves that the product x2x.3 satisfies the equation

ab .

However, 0 < x2x, since 0 < x2 and 0 < x , and x
1

is thec-

only non-negative solution of x
2
= ab . Thus xl = x2x3 and we

have proved that .15.7 .N/E,7E . We leave the proof of the other
half of the theorem as an exercise.

, p%," I I , I rrExample 1-10a: v/73 = ih2 3 = V 1'41./ =

177 1777
20

/3c %/-3- 13117 .-4/7

5 v 2 v 5 12145

f a 0 , then Va- 0 , so

a 1
= 7-7- and
y a a a

These two equalities are each equivalent to the defining equation
for

) . a , 0 < .

They are useful whenever one wishes to move the factor \/ i:T. from
the numerator of a fraction to its denominator, or vice versa, as
Examples 1-10b, c show. , 9 6
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Example 1-10b: 217 2
f79 17 9 .77

14

Example 1-10c: 17 a . . 17 17 v77

3 Vff 3 2 6

Example 1-10d: Suppose a, b, and c are rational numbers.

Express the reciprocal of a + bt7 in the form A + AVF , where

A and B are rational numbers, determining A and B in terms

of a, b, c .

Solution: We observe that x
2

- y
2
. (x + y)(x y) and

hence

Therefore

because

Note also that

Thus

A .=

(a + b/F)(a - bVT) = a2 - b2c .

1 a -

a + bi/F a
2

- b2c

_ r
q s

if and only if ps = qr,.

a - bi/T 1 a - WE
2

a
2

- b c a + WC" a - bi/F

a
B -b

-
a - b

2
c a

2
- b

2
c

Example 1-10e: Remove the radicals from the numerator of the

expression

Vx + h -

(This question is important in elementary calculus.)

(sec. 1-10]
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Solution: We multiply numerator and denominator both by

Vx h +\./7. :

/x + h - OF. h V71:. h -
h

+ h ± Vx + h + \fx-

Exerciseo 1-10a

1

vt.'71-7 +

Express each of the following in the form a VE. where a is
rational and b is a natural number without square factors:

IT

1-27-1
27.15.

26.14.
v 25

27

1. 03.

2. j75
3. \7913

4. V72-7

o. 177

7. \A":72-

3. \715-5

10. 1:77

316. 1.. 28.

27
20.

21. 15 \ 3/7

11.
Np 22. \/7-2

512.
23. 15

9 r- 224. (v2)

25. \/72 Va

[sec. 1-10]
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30.

17.27

31. \,/7 +

32. 3/72- -VE3

33. 7j,/-27
51757

34. 11/6-5 - 3Y773

35. 2f2T5 31r7157



86

Express each of the following in the form a + tA/7 where a and

b are rational numbers and c is a natural number without square

factors.

36. (1 + \ig) (1 - 17)

J7. (1 +

08. (/T + .773)2

39. (1 + \AT.) (2 N/f)

40. (5/ + 2r3) (\12- +

Express

form

46.

47.

48.

49.

each of the following

a + tA/E where

1

numbers

a, b, and

50.

51.

52.

c

5 + irg7

and their squares in the

arc integers.

1

2 + VI

1

8 + :1/7

1

3
, r-

+ 2v2

1

9 + 2V5

5 +

1

17 +

7 + 11%/7

1-11. Polynomials and Their Factors. (Review)

By a polynomial in x we mean an expression such as

2x 1 ,

3x2 - x 2 ,

or x 3
- x

2
1 ,

9 9
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which is a sum of terms of the form

a , bx , cx
2

, dx
3

, ,

a, b, c, d, ... being numbers. The numbers are called the co-
efficients of the polynomial. Thus the coefficients of the

polynomials written above and on the preceding page are

2,1 ; 3,-1,2 ; 1,-1,0,1 ; respectively.

By a polynomial in x and y we mean expressions such as

x + y , x3y - xy3 , 2x + 1 ,

which are sums of terms of the form a , bx , cy , dxy , ex
2

,
2fy2 , gx2 y hxy , ; a , b , c , , g , h , ... being

numbers, called the coefficients of the polynomial. We may
define, in a similar way, polynomials in any collection of letters.

When the'numbers appearing as coefficients in a given poly-
nomial belong to a given number system we say that the polynomial
is a polynomial over the given number system. Often a given poly-
nomial may be interpreted as being "over" several numbers systems.
We list some examples, naming number systems containing their
coefficients.

x
3

- V7x + 7

N,I,Q,R
I , Q , R

Q , R

We "add" polynomials by combining terms in accordance with
the commutative, associative and distributive properties. Thus

1 00

(sec. 1-11]
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(x2 + 3x - 1) + (2x3 - 7x2 + x)

. 2x
3
+ (x2 - 7x

2
) (3x + x ) - 1

, 3 2
zx - bx + 4x - 1 ,

(x2y xy + y3) (x3 - 2x2y + xy + 7)

x
3
+ (x2y - 2x2y) + y3 + (xy - xy) + 7

x - x2y + y3 + 7 .

The set of 111 polynomials-in a given set of letters is

closed under addition.

We "multiply" polynomials just as we multiply numerical

expressions. For example

(x + y)(x
2 - y) = (x + y)x2 - (x + y)y

= x3 + x
2y -.xy - y2 .

The set of all polynomials in a given set of letters is

closed under multiplication.

Indeed, the set of all polynomials in a given set of letters

possesses all the E,A,M,D properties of the number system I as

well as Ca C (I) ; whether they are "over" I , Q , or R .- ,

Thus all of theEAMD properties listed at the end of

Section 1-5 as well as Cl (Theorem 1-4h; page 29) and C2(I)

(Theorem 1-4i, page 30) may also be interpreted as valid state-

ments about polynomials if the symbols "a" , "b" , "c" ,

occurring in them are interpreted as polynomials instead of

integers.

Corresponding to the problem of expressing the product of two

or more polynomials as a polynomial, we have the "reverse" problem

of resolving a given polynomial into "factors". Thus, for example,

[sec. 1-11]



89

xj - 2x-y + xy - = x2 (x - 2y) + y(x - 2y)

= (x - 2y)(x2 + y).

In this example, we have resolved the given polynomial "over I"

for its factors are both polynomials over I . As another example,
we have

.x3 - x
2
y
2

- 2xy2 + 2y
4

x(x' - 2y2 ) - y
2
(x

2
- 2y

2
)

y2)(x2 - 2y2)

(x y2)(x +,/y)(x - V7y) ,

Where In the second line we give a factorization over I (or Q )

and in the third line, it is further resolved into a product of
factors over R .

The problem of factorization is the problem of expressing

polynomials in factored form. The technique used to solve

factorization problems amounts to reversing the steps used in ex-
panding products. Fortunately there are only a few general types

into which most factorization problems fall. We give the names of

these types and their formulas in the following list:

Common Factor: ab + ac a(b + c)

Difference of Squares: a2 - b2 = (a + b)(a - b)

Binomial Product: acx2 + (ad + bc)x + bd = (ax + b)(cx + d)

Binomial Square: a
2
+ 2ab + b

2
. (a + b) 2

Sum of Cubes: a3 + b3 = (a + b)(a2 - ab + b2)

Difference of Cubes: a3 - b3 = (a - b)(a2 + ab + b2)

Unless a and b , b and c , or c and d themselves

have common factors, each factor in the right members of these

formulas cannot be factored using polynomials with real

coefficients.

10
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Each of the formulas may be proved using the properties

E,A,M,D by starting with the right member and expanding it. When

the formulas are used for factorization we work the other way--from

left to right.

We illustrate the use of these formulas in factorization

problems with several examples.

Example 1-11a: Factor 2a - 2b - ac + bc .

Solution: The common factors of the first two and last two

terms suggest the "Common Factor" type (Distributivity)

2a - 2b - ac + bc = 2(a - b) - c(a b) .

The expression on the right now consists of two terms which have a

common factor, so

2a - 2b - ac + bc = (a - b)(2 - c) .

Example 1-11b: Factor 2(a - b)2 18c2 .

Solution: Using the "Common Factor",

2(a - b)2 - 18c2 = 2[(a b)2 - 9c2] .

The second factor in the right hand expression has the form of the

"Difference of Two Squares", hence

2(a -.b)2 - 18c2 = 2[(a -
b)2 (302]

2[(a - b) - 3c)][(a - b) + 3c]

. 2(a - b - 3c)(a - b + 3c) .

103
[sec. 1-11]



91

Exercises 1-11a

Factor each of the following polynomials over the integers.

1. 5x - Dy 11. ax + ay + bx + by

2. -6a - 16 12. bx - by + cx - cy

3. 6p - 3q + 15r 13. bx - by - cx + cy

4. 10y - 5x + 20w - 10z 14. 3a3 + 3a2 - 4a - 4

5. 12ab + 613 - 54bc 15. 4m2 9n2

6. a(x + y) + b(x + y) 16. a
4

- 16

7. x(a - b) - y(a - b) 17. 7c2 - 63

8. 2u(x + y) - u(x + y) 18. x2 - (a - b)2

9. b(x - y) + (x - y) 19. (a + b)2 (c + d)2

10. 3(a + b) - (a + b) 20. (x - y + 1)2 - 1

Example 1-11c: Factor 10x
2
+ 7x - 12 .

Solution: If this polynomial can be factored, it must have

the binomial product form

acx
2
+ (ad + bc)x + bd .

Inspection of the polynomial to be factored shows that a, b, c, d
must satisfy the conditions

ac . 10 , ad + bc = 7 , and bd . -12 .

A set of values for a, b, c, d can be chosen as
.

'a . 5 , c . 2 so that ac 10 ,

b = 2 , d -6 so that bd = -12 ,

and then tested for the third conditon. Since

ad + bc = -30 + 4 . -26 7 ,

this set is not acceptable.

101
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Try instead:

a = 5

b 4

Then,

c= 2

d-J.

ad bc = -15 + 8 . -7 7 ;

but since 15 - 8 . 7 , the set can be adjusted:

and

Hence,

Thus

a 5

= _1}

c . 2

d = 3

ad + bc - 15 + (-8) . 7

10x2 + 7x - 12 . (5x - 4)(2x + 3) .

Example 1-11d: Factor Ity2 + 12y + 9

Solution: This polynomial has the form of a Binomial Square

a
2
+ 2ab + b 2

,

4y2 + 12y + 9 . (2y)2 + 2 2y 3 +

. (2y + 3)2 .

Example 1-11e: Factor 6x2 - 4x - 12.

Solution: Noting the common factor 2 ,

6x2 - 4x - 12 = 2(3x2 - 2x - 6) .

The second factor on the right can be factored if it is the Bi-
nomial Product Form

acx
2
+ (ad + bc)x + bd .

(sec. 1-11]
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A possible set of a,b,c,d values is

ar=3 ,o.1 so that ac = 3

b . 2 , d = -3 so that bd = -6 .

But, ad + bc = -9 + 2 = -7 .

If other integral values of a,b,c,d are chosen so that ac = 3
and bd = -6 , it will be found that none of them will satisfy the
conditon ad + bc = -2 In this case the polynomial can not be

factored over the integers. (We shall see in Chapter 4 that this

polynomial can be factored over the reals).

Exercises 1-11b

Factor each of the following polynomials over the integers.

1. x
2

+ 8x + 15

2. w 2
- llw + 24

3. 3a2 - ha - 15

4. 4x2 - 5x - 6

5. y2 - lOy + 25

6. + 4a -

7. wx
2

- 12wx + 36w

8. dy2 - lldy + 30d

9. 25x2 - 30xy + 9y2

10. 9aw2 + 5aw - 36a

11. 4u
2

+ 12uv + 9v2

12. 49z2 + 14z + 1

13. cx2 - 2cx - 8c

14. 2 - 6a - 8a2

15. 9 + 6c - 8c2

16. 15y + 42 - 3y2

17. 7x - 6x2 + 20

18. 4a2b2 + 4ab + 1

19. a
2

+ 2ab + b- c
2

20. a
2
+ b

2
+ 2ab - 2a

Example 1-111: Factor l6x3 - 54y3 .

Solution: Noting the common factor 2 , we have

16x3 51y3 2(8x3 - 27y3) .

[sec. 1-11]
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Since 2
3 . 8 and 3

3
. 27, the second factor on the right can be

written as a Difference of Two Cubes, so

a3 - b3 . (a 7 b)(a2 + ab + b2) applies.

Hence, 16x3 - 54y3 = 2(8x3 - 27y3)

2[(2x) 3
- (3y)

3
]

= 2(2x - 3y)(4x2 + 6xy + 9y2) .

Exercises 1-11c

Factor each of the following polynomials over the integers.

1. c
3
+ d

3
6. 8a3 + x3 11. 27r

3
y + y

2. w3 - 64 r3 64s3 12. 4x3 - 32

3. x
3 + 1 8. 64 - 27x3 13. 128 + 16y3

4. m3 - 8u3 9. ac3 - 64a 14. x6 - y6

5. 27r
3
+ y

3
10. a 3b - 125b

4 .

15. m
6
+ u6

Exercises 1-11d (Miscellaneous Exercises)

Factor each of the following polynomials over the integers.

1. 12m
2 + 8m - 15

2. a
3

- a
2

- a + 1

3. 4xy
2 - 13xy

9. m3 - 8u3

10. 6y2 - yz - I2z2

11. kr - ks + wr - ws

4. d2 + 2dh + h2 - f2 12. 8xIly2 - 20x3y2 - 12x2y2

5. 2am + 3bx + 3bm + 2ax 13. 16r3 - 54

6. 6a3 + 9a3b - 12a4b2 14. c2 + d2 +.2cd - h2

7. 3x - 3y - 5xz + 5yz 15. x + 2x
2
+ 1

8. a
2

- b
2
+ 4a - 4b 16. ay2 - 10ay + 25a

107
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4 0 0
17. 100 - t 24. 4x2 - y2 - z + 2yz

13. mr - ms + pr - ps 25. a5 - 16a

2 2
19. a + b- - c- + 2ab 26. 16 - x8

,

20. 27ry t y 27. 4-x2 - 4y2 + 4y - 1

0,21. 1 + 49z2 - 14z 28. x-
-.)

- x.(x + y) - 20(x + y)
-

2. 5cx- + x - 5c - x 29. (x + y)- + ,kx + y) - 28

2:. 3,2' - 125 AL Gst
92 r2 t2

- lOr + 25

1-12. Rational Exprcssions. (Review)

A rational expression is a quotient of two polynoMials.

Examples are
3

1 x - 1 + 7 x2 + V:2"
x

y - x ' xy + 2

Note that the numbers used in forming the polynomials may be any

of the kinds we have studied, whether integral, rational, or real.

In the name "rational expression" the adjective "rational" refers

to the way the letters x,y,z appear and not to the type of

numbers used.

Using the formulas introduced in Section 1-6

a c ad + bc a c ad - bc
bd a= bd

a c ac
d bd

1

a a

and interpreting the letters as representing polynomials we have

definitions for the sum, product, difference and quotient of

rational expressions. The set of rational expressions is closed

under these four operations and has all the E,A,M,D properties

of the number system Q .

108
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IrAerpret.ing a,b,c to be polynomials, the formula

ac a
77 h

enables us to "simplify" rational

factors from numerator and denom!

found using the methods of Section 1-11).

7 removing common

common factors are

Example 1-12a: Simplify the rational expression

- 6x + 9)(x' + 3x + 9)

Solution: (x-

(x3 - 27)(x

- bx + 9)(x +

- 3)

Jx + 9) (x - 3) 2 (x2 + 3x 9)
(x3 - 27)(x - 3) (x - 3)(x2+3x+9)(x-3)

x2
(x 3)2

.(x 3)'f x
2
+ 3x + 9

= 1

A useful version of the last formula is

b a-b ab
which ean be used to simplify products of rational expressions.

Example 1-121): Write the product 3x + 2 3x
2

+ x - 2

- 1 9x
2

- 4

a rational expression in simplified form.

3x + 2 + x - 2 3x + 2
1.13x-2Solution:

- 1 9x -
(x + 1)(x =IT -Fix+x' 4

as

3x + 2 3x 2 x + 1 1
71-5(-7-2 3x-2 R-7-4- T 7-77

1
7(-77-1

1 0 5
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The phrase "complex fraction" (or compound fraction)is used for

the quotient of two rational expressions, or the quotient of a

rational expression and a polynomi. Examples of these are,

2x 1

7C- -T-7 3c- -- 1 1-

x - 1 ' 3c
7T-1 c - 1 x y

These expressions are sometimes written more compactly by using

to replace the quotient bar, as

2x . x - 1 tric2 (1 1)..L.(1 12c - 1)+44 , 7 . - -07TI x + 1 '

A complex fraction can be changed to a rational expression
ac aby use of the formula
bc

Example 1-12c: Write

Solution:

- 2
Jx - x - 2

x 4

2 + -3x

3x
2

- x - 2
x - 4

as a rational expression.

(3x + 2)(x - 1)
x - 4

2 + Jx 3x + 2

Then x(x - 4) is selected as a new factor in numerator and

denominator and

3x
2

- x - 2
x 4

2 -I- -3X

X

(3x + 2)(x -1) x(x - 4)x - 4
5-X + 2 x(x - 4)

x(3x + 2rx - 1)
(3x + 2) x - 4)

x(x -
x - -4

[sec. 1-12]
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Exercises 1-12a

1. Simplify each of the following rational expressions:

(a)

2
(b) Pat.

(c) 9mnP
12m2p2

(d) " 93))cc

, 10 5m
ke) 10 + 5m

x2 - 25
(k)

x + 10x + 25

y3 - 4y
(1)

2y + 8y2- + 8y

p
2

- p - 6

2p2 - p - 10

c
2
+ 3c - 10

c2 + 2c - 15

x3 - 1(o)
xy + xz + yw + wz

y + z

(g) ab + 2ac - 2b - 4c (P)
+ 2c

(h) y2+ yz - z - z2

y - 2yz + z2

x.2 y2

) x + y

( j c + d
/

c
2

- d
2

xl + 4x2 - 5x

2
a + a

a
.3

+ 1

x
2

- x - 6

2 - x - x

a
2

- ab - 2b
2

4132 a2

x2- - y2 - z
2
+ 2yz

x
2

+ y
2

- 2xy -
- 3y + 6

2. Write the product or quotient in simplified form.

8b
2

2z2 - 4z
2

(a) 24bc (c) 4-yz - yz 12z
3c

(b)
3m - yu

12
x + y

,2 n

(a) Cx 15
x - 9

I

[sec. 1-12]
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3
(e) 2S-3.

- Y2

+ xy

2
(f) x - 1 x

,

x + 1 (x - 1)2

2m2 + m - 3

- 1 km2 - 9

(h) 3a2
a - b

(1) P2 2-5P +

1

3a." + kab + brZ

P2 + 11p + 18
p - 4 -p2

- 2p - 3

(i) c3 - 27d-3 . c - 9d
22

c + 3d
c
2
+ 3cd + 9d2

2
(k) 2m 8

m2 - 3m - 10

(1) 2xy + y2
2

Y - x

m2 - 6m + 5
m2 - 3m + 2

x + y

xy + 2x2

(m) _E2. a.

a + 1 - 1)-2

a2 .

o
2

2ab a + b(n)
a
2 + kab - 3b

2

a'd - b- a + 3b ii"--77

(o) 4x2 - 5x - 6 12x2 + 5x - 2 , 2x2 + x - 6

4x2 + 6x - 4 8)(2 - 6x - 9 3x2 - 4x + 4
a 2x

kr)/ 4----
(i.,, x + y

i

a -

(q) c

b
(s) (x 2) 4 - x2

2x
a

112
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Addition (and subtraction) of rational expressions is based
upon the formula

a c ad + bc
+ bd

which can be proved in a manner similar to that used in this for-
mula with rational numbers. In practice the two formulas

a ac
15" be

a
and +

c_a+c,

are used as shown in the next k:Aample.

5x2
Example 1-12d: Write 77-7 +

expression.

1
as a rational

x 5x
2

1 x 5x2 1Solution: +x -4- ' x - 3 x 7.--7 (x+3)(x-3) 77S

1 5x2 x + 3
t. - 3) + kx + 311x - 3) 7-7-717-777'

: - + 5x2 - (x + 3)_

rK2 - 4'. - 3
, A lvf. - 3)

L- some instances -.he fc)rnulas

-1 4.7 and -(b - a) = a - b .

can be used to adva.

Example 1-12e: 2a a
3a - b b - 3a as a ra'71onal eXpresslon.

113
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Solution: Since -(b - 3a) . 3a - b ,

2a a 2a a(-1)
3a - b 5 - 3a 3a - b (b 3a)(=1)

2a -a
3a - b 7Y77-6

3a
7577-E

Exercises 1-12b

Write each of the following sums or differences as a rational

expression.

x + 2 5x - 4
11.

2a - 1 a
2

1. + a + 7a7-7-1

c 5c
2

2.
2a - 1 a 4- 3

1
5 5

2. 77-a c2

5 2 7 33 rr÷ 13n + mn + 4Y x + 2ymn

4.
Ity -I- 5

14.
2 3

4y
xy + y 2- +

x
2 + xy

:x - 7 x 1-. 9 x - 2

I3
2a

5. --7--- --ma-- + --lc-- ID
-7-- (a - b)2

5
6. --5---- + 2

2
16.

2b b

a- - a a + a b
2

+ 3b + 2 b
7----

- 1

x 1 x x
7. 17.

+1 - x
2

77:-.1-3 X - 5X -I- 6
2

x - x - 6

p 1
18.

m
2

m + 7
8 .

7 -M=IIT
1) - P m2 + 3m - 4

3x x
2

9. 19.
2- h77-7-77 2x + x + 4X x

2 + 2x + 1

m - 3 m + 3 m
2

3
10. 20.

-777.1
9 m

2 y
2 - 2y + 5

114
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Exercises 1-12c (Miscellaneous Exercises)

Write each of the following as a rational expression in simplified
form.

, - ,_3a 2 a
2

- 2a - 15 a
2

- 6a + 91 .
D 2 --.- aa

a - 9

2
2x 15y 3

x3 2
. x + xy12. . --

.57 20
y
J xy - y2

2c - b 2a - 3b 1
. 1

3a + JD
2x2 + 7x - 15 x2 + 6x + 5

x + y 12 4 3
3x - 9y x + y

11.

5. a-7-5 a-T-5

6.

13.

x + 5 x - 5

3c 2b
2

- 4bc-
4bc - bc la

1 1
7.

-1-777 2 - 2 cm om + 917. (m 3)m - 3x2 - xy2
4

8.
18. x x2

+ 3xy
x - 2y 3Yx

2
- 2xy + y2

8

14.
w2 + w - 2 w

2
+ 7w + 10

4
15. - x

21 + R-

a
2 + b216. a - b
a + b

9.

10.

m - n m - 1
m
e

- 1 m2 - n
2

x - 1 x + 2

- 18 3x
2

+ 9x

19.
a 1 + a

' a
1 - a a

a
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1-13. Additional Exercises for Sections 1-1 through 1-7.

Exercises 1-lal:

1. Form the converse of each of the following statements.

(a) If 2x + 1 = y , then x is less than y ,

(b) The sum of two numbers is even if they are each c'ul

numbers.

(c) 7:y . C crify if x = 0 .

(d) If a+c=b+c, then a.b.
(e) If the sum of two numbers is a multiple of 10 , then it

is an even number.

(1) N/a2 + b2 = a + b if (a + b) 2 a2 b2

(g) 3x + 2 . 8 only if x = .

(h) If a(b + c) = ab , then c = 0 .

(1) If 2xy + 3 . 1 , then xy is negative.

(j) (a - b) - c . a - - c) if c . 0 .

2. Rephrase each of the followinE in the form of "If A , then
B" ; and if B , then A ."

(a) 3x - 2 . 10 if and only if x 4 .

(b) y = z if and only if y + x = z + x .

(c) m is less than n if and cnly if m - a is less than
n - a .

(d) abc = 0 if and only if c = 0 .

(e) r + s = 0 if and only if r = -s .

p(r + s) = ps if and only if r = 0 .

(g) x is negative if and onlY if -x is positive.

(h) a . b if and only if (a - b)(a + b) 0 .

(i) x + (y z) = (x + y) (x + z) if and only if x = 0 .
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Exercises 1-2131:

1. Which of the natural number properties is illustrated -:-
each of the following statements? All letters represenl,

arbitrary natural numbers.

(a) If x + 2 = 6 then x = 4 .

(b) (x + y)(x - y) + (x + y)2 = (x + y) 2x .
(c) 2(3a) = 6a .

(d) (x + 2y) x = x(x + 2y) .

(e) 5 + (4 + p) 9 p .

(0 2x + (x + 3) . 3x + 3 .

(g) a + 2b = (a '4- 2b) 1 .

(h) If 3x . 6 , then x . 2 .

(i) w + 3(z + 1) = 3(z + 1) + w .

(j) (a + b) c + (a + b) d = (a + b)(c + d) .

Prove the following statements true for all natural numbers.

(a) x(y + z) zx + yx .

(b) (x + y) + z = y + (z + x) .

(c) (x + y)(u + v) = y(v + u) + x(v + u) .

(d) xy + y = y(1 + x) .

(e) 2(x + (y + 3)] . 2y + 2(x + 3) .

Exercises 1-2cf:

1. Using the natural number properties, remove all parentheses
from the following products and list the properties used.

(a) (x + 1)(3x + 2) .

(b) (2x + 1)(x + 2) .

(c) 2x(x + y + 3) .

(d) 3x(2x + y + 4) .

(e) (x + 2)2.

(0 2(x + 1)2 .

(g) 15(2x)(3y) .

(h) 3x(2y)w .

(i) (x + 1)(x + y + 2) .

(j) (x + y + z)2.

[sec. 1-13]
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2. Using natural number

single term.

(a) 6x + 3xy .

(b) 4yz + 2z (g)

(c) 3(m + 2n) + 4(m + 2n) . (h)

(d) 2(3x + 1) + 5(3x + 1) . (i)

(e) a(x + y) a(x + y) . (j)

10

.._71plify the i-iiowing to a

x(a + 2b) + x(a + 2h) .

Y + 3xy .

5pq + p .

ab + ac + ad .

ab + ac + bd + cd

3. Prove the following statements for all natural numbers

(a) (x + y) + (w + z) = (x + y + w) + z .

(b) xy + xz + yw + wz = (x + w)(y + z). .

(c) (xy)(uv) = xyuv .

(d) (a + b)(x + y + z) x(a + b) + y(a + b) + z(a + b) .

(e) x2 + 2xy + y2 = (x +

Exercises 1-2dt:

Find natural number solutions, for the following equations and list

the E,A,M,D,C

1. x + 3 =

natural number properties used.

4 . 6. 3 + 8z . 27 .

2. y + 5 = 12 . 7. 2a + 5 . a + 8 .

3. 2a = 16 8. 3p + 9 . p + 23 .

4. 7z . 21 . 9. 4w 5 . 6 + 5w .

5. 3x + 6 . 18 . 10. 3x + 15 . 6 + 5x .

Exercises 1-3af:

1. List the members of the set of natural numbers such that

2. List the members of the set of natural numbers such that
x < 2 .

3. Form an equation using natural numbers and having the same

meaning as 2 < 3 .

[sec, 1...113]
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4. Form an equation using natural numbers and having the same

meaning as 5 > 1 .

5. Using the symbol " < " , write true statements using the

following pairs of natural numbers.

(e) ,(3x + 1). and (2x + 4) .

(0 (Um + 3) and (5m + 1) .

(S) x and y , where x = a + 1

. and a . y + 2 .

6. Rewrite the following statements using xy,x<y, or

(a) 3 and 4 .

(b) 7 and 12 .

(c) x and 2x .

(d) a and (a + 2)

x < y < z .

(a) x is less than y or y is less than x .

(b) x is greater than y or y is greater than x .

(c) x is less than 9 and 9 is less than y .

(d) x is less than 5 , and 5 is less than y or 5 is

equal to y .

(e) x is less than 2 or x is equal to 2

(f) 1 is less than x and x is less than 3 .

(g) 2 is less than 3 or 2 is equal to 3 , and 3 is

less than 5 .

(h) 4 is greater than x or 4 is equal to x .

(i) 2 Is less than x or 2 is equal to x , and x is

less than 5 or x is equal to 5 .

(j) x is less than or equal to y , but y is less than

or equal to z .

Exercises 1-3bl:

1. Solve the following for natural numbers.

(a) Dx < 9 .

(b) 24 > 6y .

(c) 3m + 2 < 23 .

(d) 16 > 5w + 1 .

(e) 7x + 3 < 17 .

(f) 23 > 6c 4. 5 .

,(g) 5z + 1 < 2z + 7 .

'',(11) 4y + 3 > 6y + 1 .

(i) 5 < 2x + 1 < 7 .

(j) 26 > 7x 4. 5 > 19 .

119
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2. Prove the following for natural numbers.

(a) If x < y , theft x < y + z .

(b) If x(y + z) wz , then x < w .

(c) If x(y + z + w) = a , then x(z + w) < a .

(d) If x > y and w > z , then x + w > y + z .

(e) If x . a + b and a < y , then 2a < x + y

Exel,cises

1. Find additive inverses for. the following integers.

(a) 6 - 2 (d) -x + 1

(b) 4 - 9 . (e) 0 - y .

(c) x - 2x . -(-x) .

2. Which of the theorems or definitions for I are illustrated
by each of the following? All letters represent arbitrary
integers.

(a) If a + x b and a + y b , then x y .

(b) 2m + 0 . 2m .

(c) If m n 0 , then n -m .

(d) If p (-p) = 0 , then -p 0 - p .

(e) (x + 2y) + [-(x + 2y)] = 0 .

(0 If s . -a , then a . -s .

(g) 0 - (-4) . 4 .

(h) If p 0 and p is not a natural number, then -p is

a natural number.

3. Prove that (a + b) - c . a + (b - 6) . (Hint: Let
x = (a + b) - c and y = b - c and show that c + x . a + (c + y))

4. Prove that a-(b c) = (a.- b) + c . (Hint: Let x = b - c ,

y a - b , and show that y + c . a - x .)
5. Prove that a -(b + c) . (a - b) - c .

120
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Exercises 1-4b!:

1. Perform the indicated operations and list the properties or

theorems used. All letters represent arbitrary integers.

(a) (x + y)(-1)

(b) ( -3) ( -x)

(c) 6 - (-2) .

(d) (-3) 4

'(e) 5(0)(a - b) .

(f) (-x) + (-2) .

(g) -2(3)(4)

(h) (-8) + 12 .

(i) (-4) (-7)

(j) (-5) (-9)

2. Solve each of the following equations in I and state the

E,A,M,D,C properties used.

(a) 4x - 2 . 8 . (f) 7y + 3(2y + 3) = 17 .

(b) 6m + 1 = 13 . (g) 4(a + 7) +. 3 . 6 + 3(2a + 5) .

(c) 5y - 3 = 2y + 6 . (h) 5 - 2(3x + 4) . 3(x + 2) - 18 .

(d) 3p + 7 = P + 9 (i) 3(y - 1) + 2 . 6 - 2(y + 3) .

(e) 4x - 2(x + 1) . 6 . (j) 13 - (3w - 4) . 1 - 2(1 - 3w) .

3. Prove each of the following statements for all integers.

(a) a - (b - c) . a - b + c .

(b) a(b - c) = ab - ac .

(c) (a - b)(a + b).. a2 - b2 .

(d) (a -
b)2 a2

2ab + b2 .

(e) (a - b)(a2 + ab + b2) = a3 - b3

Exercises 1-5a!:

1. Use the symbols " < " and " < " to form true statements

of order for the following integer pairs:

(a) 4 and -6 . (0 2w and 3w if w < 0 .

(b) -2 and . (g) -3z and z if z < 0 .

(c) -5 and 2 . (h) (y - 1) and (y + 1) if

(d) x and -x if x < 0 . y 0 .

(e) y and 1 if 0 < y . (1) 2x and -2x if 0 < x .

(j) (2p +..1) and (2p - 1) if 0 .p .
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Prove' for arbitrary integers x,y,w, and

(a) If 0 < x and 0 < y , then x < x + y .

(b) If x < y , then 2x < x + y .

(c) If x <'y , then x y < 0 .

(d) If x <.y and z < w , then x - w < y - z .

(e) If 0 < x < y , then y - x < x + y .

Exercises 1-5b1:

109

1. Solve the following inequalities.

(a) 2x - 3 < 11 , x in N .

(b) 4 - 3y > - 21 , j in N

(c) 5z - 4 < 2z + 5 , z in N .

(d) 6m + 10 > 8m + 6 , m in N.
(e) 2(c + 1) - 3 < 8 - c , c in N .

(0 4(1 - 2c) + 7 > -3 3(c + 2) , c in I .

(g) -1 < 2x + 1 < 1 , x in 1 .

(h) -5 3x + 1 < 10 , x in I .

(i) -1 < 3 - 2y < 1 , y in I .

(j) 2w - 1 3w + 1 < 4w + 3 , w in I .

2. Find solutions for each of the following where all letters
represent integers.

(a) Ixl = 3

(10) tt + 4 = 0 .

(c) 1z + 31 < 2 .

(d) 1m - 51 < 6

(e) 12a + 11 .

(f) -11 - 2x1 . 5 .

(s) 4 + 3I2x - 11 < 13 .

(h) 13 - 16 - 3x1 = 4 .

(1) 18 2Iy + 31 12.

(j) 4 - I2x - 11 > -1 .

122
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Exercises 1-6a!:

1, Solve each of the following equations if all letters

represent arbitrary integers.

(0 3x + a = b .

(g) ay + 2 . 3b , a X 0
7_.(m + 2) . (h) 2(x - a) + 1 . 3a + 4 .
. 5w + 1 . (i) a - bx = c b X 0

6 . (j) ax + b(c - x) =d, aXb
d. For what 'values of K will each of the following pairs of

rational numbers be equal?

4 K K -( a ) 5 . 6 2

2 8 6(b) , 7 , K 0 . ( e ) , ; K - .

a(c) , , K 0
K 2 1+ ' 2K - 1 K

K

(a) 3x - 1 . 6 .

(b) 5y + 3 . 5 .

(c) 2(m + 1) = 3

(d) 4 - 3(w - 2)
(e) 5x + 3(1 x)

Exercises 1-6bt:

1. Find each of the following sums; all letters represent

arbitrary integers.

(a) +4 (f) +

(b) + .

(c) + , b 0

(c1) x,y 0

(e) a + .

(g) aXb,dX0

(h)
a +1 a- 1

(i)
a + 2

- 2)

(i)

12-3
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2. Find each of the following products; all letters represent

arbitrary integers.

(a)
-117 7

(b) fL; .

(c) Ta): , b 0 .

(d) a -;

) t -§ b O.

Exercises 1-6cl:

(f) -c , a/b,d/O.
(g) a+1,a- 15'
(h) a 2

(a - 1) .

(1) 2ab+ 3 0 , b 0

(j) all a a b

1. Find solutions for each of the following and list the

properties of the rational number system used. All letters

represent arbitrary rational numbers.

(a) 5x - 4

(b) 1 6 .
7

(c) . 1 .

(d) 5n - . 4 :
(e) - 1 4

Ey-2

1

3
2

2

6y .

x + 2

2x - 1

3

3

2. Prove each of the following where all letters represent

arbitrary rational numbers except as noted.

(a) If -b- -d- , then a +b c+ da _
c

--E-- --a-- .

(b) If t , then .ac
(c) If . , then a +b c+ d

a

(d) If t a - b c - d
, then

--E-- d

124
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Exercises 1-7al:

1. Determine the order relation between the following pairs of

rational numbers.

11 lj m +1 m- 1(a) T , ( d ) --9---
2 4

( b ) , ET (e) 7?-s. , ; a < b , a,b 0

( c )
1J ; x < Y

1

2. Write a chain of inequalities using the f011owing

1 15 13 26 25 .22 12

1
3. Prove < 0 if and only if a < 0 , a 0 , and a in I .a

a c c e a e4. Prove : If > 7 and 7 > , then 13 > T, when a, b, c,d, e, f

in I , b,d, f / 0 .

Exercises 1-7b1:

5 61. Find five rational numbers between and
7 7

2. Write a chain of inequalities using the following:

+ , -41 , 141 1;1

3. Prove -ial < a < lal for a in Q .

4. Prove labi = lal 10 for a,b in Q .

Exercises 1-70:

1. 6 < 3x + 2 < 10 . 6.

2. -4 < 2y + 7 < 4 . 7.
+

3. -2 <
2w 3

< 2 .

5 8.

4. -1 < 3 - x < 1 .

5 - 3y 9.
5. 2 < < 15 .

2 < 3 - 2m 3 .

<

-1 <

4 - 2a < 3

4 - 3 x
< 1

4 -
1

5x
< 1
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Exercises 1-7df:

1. Solve the for x

(a) lx

(b) lx .

(c) 13L,

(d) 12y

(e) 14 - m

(12i PI >
(g)

(h) > 1 .

(1) 1 < lx + 21 < 3

(j) -1 < 12x - 31 < 1 .

2. Prove Theorerr:. ..-7a,b for a

1-14. Miscellaneous Exercises.

1. In which of the number systems, N, I, Q, or R , does each of
the following equations have a solution?

(a) 2x + 6 . 0 .

(b) x . 5 .

(c) 2 + x = 3x + 6.

(d) 1 + x 1 .

(e) x2 = 4 .

(f) 23x - 5x = 7x + 6(1 + 2x) + 1 .

(g) 3.5x + 14 = 2.1x + 60.2 .

(h) x2 - 2 = 0.

(i) 6x + 7(4 + x) - 6(3 - 4x) . 0 .

(j) x + 5 2x + 4
2

2. Identify each of the following statements as being true or
false.

(a) (-1, 0, 1) is closed under addition.

(b) The set of natural numbers contains a greatest element.

(c) The set of integers contains a least element.

(d) The sum of a number and its additive inverse is zero.

(e) For each rational number x 0 there is a rational
1

number .

(sec. 1-14]
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(f) Ever: er the real numbers haL a solution.

(a) .A5

(h) o < x2 real number.

(i) \A".7 +\/5

3. Which of the 1. properties of the real numbers are

illustrated

(a) 3[4(x + + 2) .

(b) If 5 2y - z = 5 , then y z = 2y - z .

(c) If m < . mn2 < n 3 .

(d) p + . . 1 .

a _ c

,

a +c a, c(e) If + - then = , 7 (b 0)o
---

(f) (x + Y)(x (x - Y)(x + Y)

(g) (r + s) + s) = (1 + q)(r + s) .

(h) + -3

(i) If x + 3 <, , 2 , then x < y - 1 .

(j) -a + b

4. Determi1ne which 7f- followf.ng statements are true. For

those which are list the_ natural number properties

involved.

(a) 6(4 + 5) = 4 + 6 5.

(b) 6 + (4 ) = (G + 4) (6 + 5) .

(c) 73 + 7 = 7 + .

(d) 6(7 + 4) 6 7 + 4.

(e) 6 1;=19 - 5.

(f) 5(20 17 = ( 20) 17.

127
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(E) ( = (5 J) (5 IL)

(h) (,) ± 7) 6 - (7 + + 6 .

(I) = 6 + (3 + I) .

(j) 4) (5 u) = (4 3) + (5 6)

(k) + 80) (100 + 10) .--- (12 + 89) 100 + (12 + S 10 .
(1) (3 7) + (8 2) = (8 2) + (3 7) .

5. Explain why you get the same answer whether you add a cc1.___
of figures up or down.

6. Use the symbol " < " to state order relations for each of:
following pairs of real numbers.

(a) 6, -3 .

(i)

(b) -2, -5 .

(j)

(c) -7 , 0 .

(k)

(d) 82536 , 8.2535 .

(1)

(e) -0.1 , -0.001 .

(m)

(f)
(n)

(g) 2, . (o)

(h)
( ' lj

7. Solve the inequalities as noted.

(a) 2x + 3 < 7 , x in N .

3y - < 10 , y in N .

4

15 '

,

a,a2 for

19 '

1 < a .

a,a2 for lad < 1 .

a,-a for a < 0 .

a,a2 for 0 < a < 1

a,a
2

for -1 < a < 0

(c' 4p - 5 < 2p + 2 , p in N .

(d), + > 3m - 1 , m in N .

(e) 2 < 5x - 4 < 6 , x in I .

- 1 < c c in N .
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( ) ----= i- .1

5(x - 1)
, _...n N _

(h)
__ 5y +

y N .

'D

(1)
ix b

<, t 1
.:i 11-: .

(j) _w + 5 < 10 , w in

(k) - 4 - 1 < 10 , in F.

(1) < 5d - 4 < 10 , d in I .

(m) < 1, x in R .

u. Solve the following inequalities or equations as indica.,

129
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(i) 1

14

37 31 y 1 y in Q .

-
(i) 4 .4- I

1
1 < 6 c in Q .

(k) 1Ln 11 < ir I .

(1) -I4i= 4 in .

(m) < + 11 < 5 , z R .

(n) Fx1 or lx1 > 5 , x in

in N .

ix + 11 x . 6 , x in Q .
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[sec. 1-14]

(i) 1

14

37 31 y 1 y in Q .

-
(i) 4 .4- I

1
1 < 6 c in Q .

(k) 1Ln 11 < ir I .

(1) -I4i= 4 in .

(m) < + 11 < 5 , z R .

(n) Fx1 or lx1 > 5 , x in



117

Prov the statements f:r L1 numors.

(a) H (x y) - z .

(b) - - z) = (x + w) + z) .

(c) D < x only if -x

(d) x < 0 only if 0 < .

Prove .he fo...L.:-Lng statements for atural numbers using only
the for naturL_ numbers.

N-
+ Y.,

(b) + y) - z (x + z) + y

(c) (x + xz + yz .

(d) x + (y + z) = y + x) + z .

(e) (x + y)(w + z = xw + xz + yw + yz .

130
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Chapter 2

AN INTRODUCTION TO COORDINATE GE7,MITTEY IN THE PLANE

2-1. The Coordinate S-,,stem.

Although you may have encoun cDordinate sytems before,
the ideas of thi. section are so iuntamlental and so useful that
we shall state -tnem again.

Coordinate geometry, or analytic za.cmetry, providez a means
of treating geometric problems by algebra. It was first invented
by a French matimaticIan named Rene Dasmartes (1596-1650) in
1637. One very great advantage of analTtic geometry over syn-
thetic geometry LE that it does nct denend so much on ingenuity.
You will recall how very clever yaLL neehed to be tz solve some of
the so-called "original problems" af plane geometry. Coordinate
geometry enables one to attack Each protlems by a Etraightforward
method. The resulting algebra may be 1,=g and involved, but leads
inevitably to the desired result- Another important use cf
analytic geometry is in the L111;:mnation of algebraic work.. We
shall see, for example, im Chapt:rs 7 and. 8 how the algebra in-

volved in solving sinmataneous eclat-tons takes on mare meaning
when viewed in connection with tr_., zeometric curves or surfa-ces
which the equations represent.

You will recall that the cantMon between plane tieom=_ry
and algebra is made by the f- of coordinate axes a
plane. These are two 1).::p=c.ticula- stralLght lines intersecting
in a point 0, cane::: the or tn (-.ELg. 2-1a). The lines are
uaually placed pareTiel to eages of the paper so that the7
can be described in am obviot.3 way as horizontal and vertical_
Let us call the horizontal one the x-axis, the vertical one the
y-axis and label them with letters x and y, as indicated.

131
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Recall that on each axis 1Nt! introduce a iu-zer scale, usually

using the same unit on each axi, with the pc.Lr 0 as the zero

point on each scale. In statistical graphs, 2:7 example, it is

often desirable to use different scales on tr cwo axes to distort

or to emphasize. But for our pu-ooses the sca_es will be the same.

The scales are to be so chosen -tat points tc --e right of 0 on

the x-axis and points above 0 ar the y-axis cor-espond to positive

numbers. Such terms as "right" and "above" have meaning if we

agree to the position of the ames described earlier.

Now comes the vital point. le establish a one-to-one corre-

spondence between the set of a_II points in the :lane and the ret

of all ordered pairs of real rumb-ers. This mea-s that eacn pcint

P of the plane will have corr-2po:_d1n:-. to it a __agle pair of real

numbers, a first and a second (anc hence order,2a; and conversely

that each such ordered pair. of :lumbers will have correancmding

it just one point of the plane. How is th_s correspond.amme be

established? If P is given, prc,ect it pernandic7,1=-rly f-rst on

the x-axis, second on the y-axis .7-aha read ff e corresprig
numbers from the scales. (The n,e__-pen-licuLar --ojectdon of a

point P on a line L is the point c- ir-Tersecnr of L and =he line

through P perpendicnlar to L.) I. the nu:±e r is given, erect

perpendiculars on the axes at tna _:=propra.ate mo]nts. 9Th potnt P

associated with the number pair i ie un_nue i_tnersectior

these perpendiculars. The two rimners correanonEfing to P arf

called the coordinates of P, the first its x-coo7dinate or

abscissa, the second its y-coordihlte or ordinate. We place theae

two coordinates in parentheses nrcering thsm from left to rig-rt.

In Fig. 2-la the point P, f carre-.s to the sa4-

(-2.5,2); -2.5 is the abscion of _ aria_ 2 _s _ mrdinate.

132
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3
P(-2.5,2)

2

1

. _

-3 -2 -1 ol 1 2 3

-2

-3

Fig. 2-1a.

Example 1. Plot the point P(-3,-2). What are the coordinates of
its projections on the

two axes?

Solution: The projection

M of P on the x-axis has

coordinates (-3,0); the

projection N of P on the

y-axis is (0,-2).

133
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Notice that the coordinate axes divide the plane into the

four regions labeled I, II, III, and IV in Fig. 2-1b. The region

I is called the first quadrant, the region II the second quadrant,

etc. Points on the axes are considered to be on the boundary lines

and not in either of these quadrants.

Exercises 2-1

1. Locate the following ordered pairs on one set of axes: (1,5),

(-3,2), (-4,-7), (5,-3), (13,2), (-6,2), (-10,-1). -(Be sure

to label each point by means of its coordinates.)

2. Give the coordinates of the following points.

AB

-10 1 0

3. Locate points (5,0) and (1,6) and connect them with a straight

line. Locate points (-2,-12) and (5,9) and connect them with

a straight line. What are coordinates of the point of

intersection?

4. 1)(4,4) lies on a circle with its center at the origin.

(a) 1?raw a line from P(4,4) through the origin. Find the

coordinates of a second point of the circle on this line.
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(b) Draw perpendiculars from P(11,4) to both axes. Locate

(i.e., give coordinates of) points on the circle other

than P(4,4) which lie on the intersection of the circle

with each of these perpendiculars.

(c) Can you give the coordinates of intersection of this same
circle with the axes?

(d) Indicate the location of points whose number pairs

satisfy:

(1) x2 + y2 > 32

(2) x2 + y2 < 32

(3) x2 + y2 > 32

*5. Repeat Problem 4 for the point P(x1,y1).

6. Draw through the origin the line L which bisects the first
and third quadrants.

(a) Find y for each of the following points on : (2,y),

(8,y), (-4,y), and (0,y).

(b) Write an equation in x and y which will be true for
every point (x,y) on L.

7. One vertex of a square is the point A(6,6). The diagonals of
this square pass through the origin.

(a) Draw the square and find the coordinates of its other.
vertices.

(b) Where do the sides of the square cross the coordinate

axes?

(c) What is the length of its diagonals?

8. P2ot the points A(6,0), B(0,6), C(0,0). What is the length of
each side of triangle ABC? What is its area?

9. Draw a line segment through 0(0,0) and A(6,8) extending into
the third quadrant to Al chosen so that length OA . length OAI.
What are the coordinates of At? What is the length of AAt?
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10. Draw -7.e line sgment connting A(0,10) and B(12,0). Let

M be e midpoint sf B. Draw perpendiculars MA? and MB? to

the :; Ind x axes n.pective.17.

(a) :hat are the -ocrdinat.:: of Al?

(b) ',hat are the coorU1nate3 of B??

(c) What are the coordinates of M?

*11. Plot A(-3,1) and. B(5,::). Draw segment A. Letter the pro-

jection of B on the xaxis as C, the projection of A on the

x-axis as D.

(a) Give the coortIzates of D.

(b) Give the coorif -tes of C.

(c) Give the lengtO of segment DC.

(0) Give the coortinates of the projection of the midpoint.

Y of segment Aa -1-)n the x-axis.

(e) Give the caorftnates. of M.

2-2. The Distance BetweEm Two .Points.

In this section we derive a fundamental formula which is

useful in formulatinm ant sulvtng many problems in analytic

geometry, the formula for tne distance between two points.

Suppose the two profnts are called Pi and P2. Let us denote

the coordinates of P, by (xi,y1) and the coordinates of P2 by

(x2772). This notation 1-n extremely usefsil in analytic geometry.

The use of letters with silbscrtats for the coordinates implies

that the points may repreoent any pair of points in the plane, but

at the same time allows a:'.a to fix our attention on a particular

pair for this discussion- Leu us also denote the distance between

Pi and P2 by d(P1,P2)._ Unless otherwise stated, distance will

always be mon-negative;7 that is d(P1,P2) > 0.

If the two points happen to be on the x-axis, the problem is

rather easy. In this case the coordinates of Pi and P2 become

(x1,0) amd (x2,0), respectively. Suppose first that P2 is to the

right of F,; that is x. xi. Then d(P1,P2) = x2 - xi.
=
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The following diagram illustrates the three possible cases.

t I 6
P(xc,0) 1

Plx' 0 P6(2d
i_LLI d(P1,P2) . x2-xl . 4-1 . 3.

d(P1,P2) . x2-Ki . 2-(-1) = 3.
x

d(P1,P2) . x2-xl . -1_(-4) . 3.

If P2 is to the left of PI) that is x2 < xl, then

1 I i 1

l

P2(4(2,0), F1)(4x, p)

[ _ d(P1,P2) . xi-x2 . 5-2 . 3.
x

1 i F2)(12'43), ff'4113,)

i
d(P1,P2) . x1-x2 . 1-(-2) = 3.

x
Y

TaPI
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I, VA , FIV ,
I , c,4 d(P1,P2) . xi-x2 . -1-(-4) . 3.

In either case d(P1,P2) can be written Ix2 - xli.

Similarly if P1 and P2 had been on the y-axis

d(P1,P2) = 1Y2 - Y11.

We are now ready to return to the original problem, in which
P, and P2 are any two points in the plane. To find d(P1,P2) we

use the Pythagorean Theorem which asserts that in a right triangle,
the square of the hypotenuse is equal to the sum of the squares of
the legs. First we construct a right triangle having P1P2 as

hypotenuse as in Fig. 2-2a. R is the point of intersection of the

line through P2 parallel to the y-axis and the line through P1

parallel to the x-axis. Its abscissa then is the same as the
abscissa of N, the projection of P2 on the x-axis, namely x2.

Its ordinate is the same as S, the projection of P
1 on the y-axis,

namely yl. Its coordinates then are (x2,y1).
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Fig. 2-2a

Then d(P1,R) = d(M,N) = lx2 - x11

and d(R,P2) d(S,T) = 1Y2 Y11.

Since P1R and RP2 are the legs of the right triangle P1RP2,

the Pythagorean Theorem tells us that

[d(P1,P2)]2 = [d(P1,R)]2 + [d(R,P2)]2.

Substituting 1x2 x11 andlY2 Y11 for d(P1,R) and d(R,P2)

respectively, we have

(d(P1,P2)12 = 1x2 x112 + 13,2 - Y112

or

12d(P1,P2) .1/1x2 - x112 + 13,2 Yli

since all distances are non-negative.

Since 1x2 - x112 . (x2 - x1)2 and 1y2 - Y112 = (Y2 - Y02,
we have

d(P1,P2) =x2 - 1) (J, -

and we have proved the following theorem.

(sec. 2-2]
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Theorem 2-2a: The distance between P1(x1,y1) and P2(x2,y2)

is given by

2-2a d(P1,P2) .A//(x2 - x1)
2
+ ky2 -

Example 1: Find the distance between the points

(a) P1(3,-2), P2(7,-5)

(b) P1(-4,7), P2(-11,7)

Solution: (a) Take xi = 3, x2 = 7, yi = _2, y2

d(P1,P2) .1(7-3)2 + (-5+2) -

Note that we could have taken xi = 7, x2 = 3, yi = -5, and y2 . -2.

That is, d(P1,P2) = d(P2,P1).

(b) Take xi . -4, x2 = -11, yi . 7, y2 = 7.

d(P1,P2) .1(-11 + 4)2 + (7 - 7)2

Since yi . y2, the segment P1P2 is parallel to the x-axis.

We may now use the distance formula to prove another useful

result in coordinate geometry.

Theorem 2-2b: The coordinates of the midpoint M(x,y) of the

line segment joining the points P1(x1,y1) and P2(x2,y2) are given

by the formulas:

2-2b x
2

Proof: It is enough to show that

d(P1,M) d(M,P2) =
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By the distance formula (2-2a),

\ ,Y1+Y21
+X

2 2 2 1 2 2d(P1,M) xl/
Y1) "" IFIAx2-xl) 4.(Y2-Y1)

x,+xn
d(M,P2) L2 c x

2 `

)2 (

2 Y2) 24kx2-xl) 4.(Y2-Y1)
2

'

d(P1,P2) =14x2-x1) 2
+ ky2 yl)

2
.

xi+xo y,'+y2
Therefore M( -2 ) is the midpoint of P

1
P2 .

Example 2: Find the midpoint of the line segment joining the

points (-2,5) and (0,-7).

Solution: Substituting in the midpoint formula (2-2b), we see

that the required midpoint is (-1,-1).

Exercises 2-2
1. Compute the distance between the following pairs of points:

(a) (4,-3), (-6,2);

(b) (6,-3),

2. The end points of a diameter of a circle are A(-2,4), B(4,2).

Find the coordinates of the center of the circle.

3. Find the perimeter of a triangle whose vertices are A(5,7),
B(1,10) and C(-3,-8).

4. A(0,8), B(-3,2) and C(10,2) are the vertices of a triangle.
Find the area.

5. Find the midpoint, M, of the line segment joining the points
P1(3,-5) and P2(0,-8). Check to see if the length of the

segment P1M is equal to -22-* the length of the segment PiP2.

6. The vertices of a quadrilateral are P(4,-3), Q(7,10), R(-8,2),

and S(-1,-5). Find the length of the diagonals.
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7. Plot the points A(2,3), B(-1,-1) and C(3,-4). Prove that

triangle ABC is isosceles.

8. A circle whose center is at (4,-3) passes through point (9,9).

Find the length of the radius. Does the circle also pass

through (0,0)?

9. A line segment has a midpoint of M(3,-5) and one end is at
A(2,-4). What are the coordinates of B, the other end of the

segment?

10. A(-1,0) and B(-1,5) are the vertices of the base of an

isosceles triangle. What are the coordinates of the third

vertex C? Explain.

11. Develop a formula for the length of a line segment joining

P
1
(x

1,
y
1
) and the origin.

12. Plot the points A(1,3), B(5,-1), and C(3,-3). Draw segments

AB, BC, and AC. What are the coordinates of the midpoints M,

N, P of these segments respectively? Find the perimeter of

the triangle formed by connecting the points M, N, P.

Compare the perimeter of AMNP with that of AABC.
13. Show that the points A(-4,-6), B(1,0) and C(11,12) lie on a

straight line.

14. Determine the coordinates of the midpoint of the line segment

joining the points P1(x1,y1) with the point P2(2x1,2y1).

Find d(P1,P2).

15. A quadrilateral has as its vertices A(2,1), B(12,3), C(6,9)

and D(4,7). M, N, 0, P are the midpoints of its sides Kif,

O-I5, and a respectively.

(a) Plot the points.

(b) Find the perimeter of the quadrilateral MNOP.

(c) Prove that the quadrilateral MNOP is a parallelogram.
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*16. A square whose sides are parallel to the coordinate axes and

one vertex is (a,b) and the length of a side is c. What are

the other vertices? Also, find the coordinates of the mid-

points of each side of the square.

*17. Show that the points A(1,1+b), B(3,3b), and C(6,6b) are

collinear.

(NOTE: Other problems applicable to this section may be selected

from the problem-set at the end of this chapter.)

2-3. The Slope of a Line.

In plane geometry we assumed that every pair of distinct points

determines a line. However a line may also be determined by one

point and the direction of the line. In coordinate geometry it it

useful to give the direction of a line in terms of the coordinates

of any two distinct 7oints on the line. For this purpose we

defLne the slope, m, of the line determined by P1(x1,y1) and

F2(x,,y2) to be

2-3a

However the slope of a given line, L, does not depend on the

particular pair of points P1 and P2 used to.determine the line.

For, suppose P3 and P4 are any other two points on L. Then we

construct lines through P1 and P2 11 to the x and y axes

respectively meeting in R; similarly lines'through P3 and P4

meeting in 3. See Figure 2-3a.

Fig. 2-Ja.
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Triangles P1RP2 and P3SP4 are similar. Why? Therefore the

corresponding sides are in proportion.

RP1.
2

SPq

771 =
1 3

Y2 Y1But this means m
'
which shows that the slopex2 - =xl x4 x3

of a line is independent of the points used to determine the line.

If we consider the absolute value of m, we see that it is the

quotient of 1y2 - yll and I2 - x11. But from Figure 2-3a

1y2 - y1 is d(R,P2) a=d lx2 - xl: is d(P1,R).

Hence the atsolu.te value of m measures the magnitude of the steep-

ness of the line segment P1P2. .1-f we drop the absolute Nalue

symbol, the resulting quotient, may be positive or negative.

The sign is an important feature of the slope, for it enablea

us to tell 1,tether a line rises or falls as we proceed from left

to right. Let..us examine the various possibilities. If the

numerator and the denominator are both positive (y2 > yl, x2 > xl)

then P2 is above and to the right of P
1,

if both are negative

(y2 < yl, x2 < xl) then P2 is below and to the left of Pl. In

either case m 0 and the line rises to the right. (See

Figure 2-3b.)

13(x1,y1)

Fig. 2-3b
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A similar discussion holds for m < 0. The line is horizontal
if and only if y2 . yl, and in this case the slope m = 0. The line
is vertical if and only if x2 . xl, in which case m is undefined.

We may summarize the preceding results as follows:

If m > 0, the line rises to the right.

m < 0, the line falls to the right.

If m = C, the line if.. horizontal.

If m is undefined, t2-le line is vertical.

Example 1: :raw a line segment 71P2 through P1(2.6,-3) and having
slope,

(a) m

4
(b) m = -

Solution:

(a) Plot the point Pl. Starting at P1 go three units to the

right and then up 2 to reach'a second point P. Note that
P
2 is not uniquely determined. For, the slope may also

-2be written 77 and we could have gone 3 units to the left
and down 2 units, thus arriving at a point satisfying
the problem. In either case the line rises as we pro-
ceed from left to right.

(b) Go three units to the right and up (-4), that is, down
'4 units. Note that the slope is negative and that the

line falls as we proceed from left to right. As in the
.above, - -7 may be written 7 or 77, and P2 is again not

uniquely determined.
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We now use the definitiy.. of slope and the distance formula

-to establish two useful facts about parallel and perpendicular

lines.

Theorem 2-3a: Two non-vertical lines are parallel or the

same if and only if they have the same slope.

This theorem necessarily leaves out of consideration all

vertical lines. But, of course, any two of them are parallel.

Theorem 2-3b. Two lines neither of which is vertical are

perpendicular if and only if the product of their slopes is -1.

The following proofs of these theorems may be used as review.

Even if you have seen proofs in earlier work (by similar triangles),

you may enjoy reading the following alternative forms.

Proof of Theorem 2-3a: Let L
1

and L
2
be two non-vertical lines.

If they coincide there is nothing to prove. Both are horizontal

if and only if they are parallel to each other and to the x-axis,

and hence have the same slope, namely, zero. Thus, the theorem is

proved in this special case.

Assume now that neither line is horizontal. Choose any two

distinct points P1(x1,y1), P2(x2,y2) on Ll, Figure 2-3b.

(sec. 2-3]
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Draw horizontal lines through P1 and P2 intersecting L2 in

Qi(x, + h,y1) and Q2(x2 + k,y2), respectively. Now the liner L1

and L2 are parallel if and only if d(P1,Q1) = d(P2,Q2). .But

d(P1,Q1) d(P2,Q2) if and only if h k. By the slope formia.2-3a

the slopes of P
1
P
2

and Q
1
Q
2

are

Y2-Y1
d

y
2
-y

1
x2 xl an -

- x
2
+k-x

1
-h'

respectively. These two numbers are equal if and only if h = k.

Therefore, it follows that L1 and L2 are parallel if and only if

they have the same slopes.

Let us now turn to the proof of Tneorem _-,-. Two lines,
neither of which is vertical, are perpendicular if and only if the
product of their slopes is -1 . In the proof of Theorem 2-ap we
shall need the full statement of :he Pythagorean Theorem. Although
it may not have been emphasized t3 you, the Pythagorean Theorem
works both ways. Its full statement is: The sum of the squares of
two sides of a triangle is equal to the square of a third side
if and only if the triangle is a right triangle.

Proof of Theorem 2-3b: Suppose we are given two non-vertical
lines T. and L

2
with slopes m

1
and m

2 '
respeutively.

Either these lines intersect or are parallel to each other. If
the latter is the case, they are certainly not perpendicular and,
by Theorem 2-3a their slopes ml and mo are equal so that

m
1
m
2 cannot be equal to -1 . Thus we need only consider the

case in which L
1

and L
2 intersect. Draw lines L

1
and L

2

(if necessary) parallel to L1 and Lo and such that L11 and

L21 intersect at the origin. See Figure 2-3c. By Theorem 2-3a

the slopes of Llt and L21 are then ml and m2, respectively.

[sec. 2-3]
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Fig. 2-3c

Consider the points P1(l,m1) and P2(l,m2). By Formula 2-3a the
slope of OP1 is ml and that of OP2 is m2. That is, P1 and P2 are
on L1 and L2, respectively. Hence, the triangle P10P2 is a right

triangle with right angle at 0 if and only if

+ [d(0,P2)]2 (by Formula 2-2a.)

0)2 m12

0)2 m22

{d(0, P1)}2

(d(0, 1,1)12 0)2

(d(0, 1,2)12 0)2

[d(p1,1,2)]2 m1)2 (1 1)2 m22 m12.
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x %, %Hence [d(P ,P2)] 2
[d(0,P1)i

2
+ [d(0,P2)]

2
if and only if

m
2
2

- 2m
1
m
2

+ m
1
2
. 1 + m

1
2
+ 1 -4- m

2
2

2-3b

-2m
1
m
2
= 2

.
m1m2 -1

Hence, by the Pythagorean Theorem, OP1 must be perpendicular to
OP2 and, therefore, the lines Ll and L2 are perpendicular. This
proves Theorem 2-3b.

Example 2: Given P1(1,0), P2(4,4), P3(5,-3), P4(8,1). Show that
PiP2 is parallel to P3P4 and perpendicular to P1p3.

4-0 4Solution: m
1
for P

1
P
2

is
.47-1 -3-

1-(-3) 4m for P P is
2 3 4 8-5

-3-0 3m3 for P1P3 is

mi = m2 and m1m3 . -1.

Example 3: By the Pythagorean Theorem show that P1P2P3 in

Example '2 is a right triangle.
0)2 1)2

4)2 4)2=

(-3 0)2 1)2=

[d(P1,P2)]
2

+ [d(P3,P1)] 2

Example 4: Prove that the diagonals of a square are perpendicular

to each other.

Solution: This is our first example of the proof of a geometric
theorem by coordinate geometry. We consider a square whose sides
have length a. Here a is an arbitrary positive number. We use

Solution: [d(P1, p2)J2

[d(p2,1,3)J2

[d(1,3,1,1)]2

%[d(P2,P3)] 2
=
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the letter a instead of some specific number, such as 5,

beause we wish to prove the theorem for all squares. We now

locate the axes so that two sides of the square lie along the

positive axes and the vertex between these two sides is at the
origin. The opposite vertex is then the point (a,a). See

Figure 2-3d.

P2(0,a) P3(a,a)

Fig. 2-3d

cF,
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a-0By Formula 2-3a the slope of P P is . -1; the slope of OP
3

is1 2 Z5-a
a-0

- 1. The product of these slopes is -1. Therefore, the

diagonals are perpendicular by Theorem 2-3b.

Exercises 2-3

1. Determine the slope of each line which passes through the

following sets of points:

(a) (10,5) and (6,8) .

(b) (2,-2) and (4,2)

(c) (10,-2) and (16,1)

(d) (0,3) and (0,-2) .

(e) (0,0) and (5,3) .

(f) (-2,0) and (3,0) .
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2. (a) On the same coordinate axes draw lines through P(5,6),
1 2each having a slope of -7; -3; -7; 1; O.

(b) Which line is the steepest?

(c) As the absolute value of the number for the slope

increased, how do -these lines compare?
1(d) What do you observe about the lines having slope of -3-

and -3?

3. (a) Plot and connect the points (3,2) and (7,-1); plot and

connect the points (-4,1) and (0,-2).

(b) Find the slope of each line

(c) What can one say about these lines?

4. (a) Find the slopes and the lengths of the sides of a tri-

angle having the following vertices: A(3,2), B(6,5),

and C(3,8).,

(b) What do you notice about this triangle?

(c) Find the midpoints M1, M2 and M3 of the sides of the

triangle ABC.

(d) From the data you now have in this exercise and knowledge

of geometry, give the slope of 112143, M1M-3 and ITT-
1 2'

5. Use the slope formula to show that the points A(-4,-6),

B(1,0) and C(11,12) lie on a straight line.

6. Determine b so that A(b,5), B(1,3) and C(-2,1) are collinear.

7. :rhe line joining (p,2) and (1,0) is parallel to the line

joining (2,3) and (-2,1).

(a) Find p.

(b) Substituting the word "perpendicular" for the word

"parallel", find p.

8. Plot the points A(1,4), B(3,2), C(4,6), and D(2,8).

(a) Show that ABCD la a parallelogram.

(b) Is ABCD a rectangle?
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9. Plot the points A(-3,6), B(2,-3), C(11,2) and D(6,11).

(a) Show that ABCD is a rhombus.

(b) Show that ABCD is a square.

10. A square has its vertices located at A(1,3), B(4,3), C(4,6)

and D(1,6). Show that its diagonals are perpendicular.

11. If a line L has a slope what is the slope of
(a) a line parallel to L?

(b) a line perpendicular to L?

12. (a) Find the slope of a line through the points Pl(a,b) and

(b) Find the slope of a line perpendicular to the line

through P1P2.

13. In the right triangle whose vertices are A(-12,1), C(9,3),

and B(11,-18), which vertex is the right angle? Explain.
14. The slope of a line through the point (2,3) is4.

(a) Give the coordinates of two other points which this

line passes through.

(b) Determine whether the line passes through the point

(62,23).

*15. A square has its vertices at A(a,b), B(a+c,b), C(a+c,b+c),

D(a,b+c). Prove that the diagonals are perpendicular to

each other.

*16. If a, b, and c are any real numbers, show that the points

A(a,b+c), B(b,c+a), and C(c,a+b) are collinear.
.*17. A triangle has for its vertices: A(a,b), B(a+c,b), and

C(a+c,b+d).

(a) Verify that this is a right triangle.

(b) Determine the coordinates of the midpoint M of the

hypotenuse.
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2-4. Sketching Graphs of Equations and Inequalities.

We have established a one-to-one correspondence between all

ordered pairs of real numbers (x,y) and all points of the plane.

Suppose we wish to fix our attention on only a part of the plane

and hence on a subset of all number pairs. This will impose some

restriction on the numbers x and y. It may appear as a condition

upon x or upon y or upon both through some relation between them.

For example, every point on the y-axis has its abscissa zero,

and no point off the y-axis does. Hence, the equation x 0 is a

restricting relation on the set of all ordered number pairs which

restricts the corresponding points to lie on the y-axis. The

y-axis is called the graph of the equation x = 0 or x 0 is the

equation whose graph is the y-axis. In a similar way the graph

of the E ivation y = 0 is the x-axis..

Another type of restricting relation is an inequality. For

example, the inequality y > 0 holds for those points and for only

those points which lie above the x-axis; the relation x < 0

specifies the points to the left of the y-axis and those on the

y-axis.

The most frequent.tyn of restricting relation on the number

pairs (x,y) is an equation oetween them. For example, the graph
of the equation x = y is evidently the line L which bisects the
first and third quadrants. See Figure.2-4a.

Fi.g. 2-4a
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The set notation gives us a convenient way of describing briefly

the restricting relations mentioned above. For example, the
y-axis can be described by [(x,y) : x = 0). That is, it is the

set of all ordered number pairs (x,y) the first of which is zero.

The line of Figure 2-4a is ((x,y) : x = y). We now define formally
what we mean by the graph of an equation or an inequality.

Definition 2-4a. The graph of an equation or inequality in

x and y is the set of all points whose coordinates satisfy the

equation or inequality.

Example 1: Sketch the graph of the equation

2-4a x - y 1 = 0.

Solution: Let us choose a number of values of one of the

coordinates, say x, and compute the corresponding value of the

other by use of the given equation. For example:

x -2 -1 0 2 4

Y -3 -2

1_

-1 1 3_

We may now plot the corresponding set of points as sample points
on the graph.

Fig. 2-4b
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We sketch the graph as well as possible from the sample points.

In this simple case the points seem to lie on a straight line.

When we make a systematic study of specific classes of equations

and their graphs in Chapter 6, we shall show that the graph of

every equation of the first degree is a straight line.

Example 2: Sketch the graph of the equation

2-4b x2 y2 4

Solution: Solve for y to obtain y = ±14 - x2 A table of sample

points is

xl 0 1 1.5 2 -1 -2

y t2 t1.7 -1.3 0 -1.7 0

Fig. 2-4c

We have sketched in the graph as if it were a circle. By use of

the distance formula (2-2a) we may check that every one of the

sample points is a distance 2 from the origin. In fact, the

equation x2 + y2 . 4 makes it clear that every point will have

this property, and we see that the graph must be a circle.
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Example 3: Sketch the graph of the equation

2-4c y x2 - 2x.

Solution: x -1 0 I 1 2 3

3 0 I -1 0 3

143

Fig. 2-4d

We have connected the sample points by a ''smooth, unbroken"
curve. If we wanted to check that this curve actindly is the
graph, we might plot additional points. However, even then we
would not be sure about what happens between any two points on
the curve. Better techniques than simply plotting points will
be developed in the remainder of.this chapter and in succeeding
chapters.

Example 4: Sketch the graph of the equation
2-4d (x - y)y = O.

Solution: We noticed in Chapter 1 that the product...of two numbers
is zero if and only if at least one of the numbers is zero. Hence
the graph of Equation 2-4d is the combined set of points satis-
fying either. x - y 0,

or y O.

We have seen at the beginning of this section that the graph of
x - y = 0 is the line bisecting the first and third quadrants and
that the graph of y = 0 is the x-axis.
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Therefore, the graph of the equation (x - y)y = 0 is the

pair of intersecting lines and X,
2

given in Figure 2-4e.1

Fig. 2-4e

Example 5: What is the graph of 2x2 + 3y2 _

Solution: If we add 1 to both sides, we may rewrite the

equation in the form

2x2 + 3y2 1 = 0.

For any real numbers x and y, x2 and y2 are greater than or

equal to zero and accordingly 2x2 + 3y
2
+ 1 is certainly greater

than or equal to 1 and therefore greater than zero. Hence there

are no points on the graph of this equation; that is, the graph -

is the empty set.

Example 6: Graph the inequality 0 < y < x; that is,

((c,Y) : 0 < Y < x).

Solution: Suppose we first consider a fixed value of x, say x = 5.

What is ((5,y) : 0 < y < 5)? The set of all points with

coordinates (5,y) with no restriction on y is the straight line

parallel to the y-axis passing through the point (5,0). (The

equation of this line is x = 5.) See Figure 2-4f. However we

are only interested in those points (5,y) on this line for which

0 < y < 5. But this,is just the line segment PQ with P included

and Q excluded.
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Thus for each fixed value of x, ((x,y). : 0 < y < x) consists

just precisely of the points on the line segment joining the

points (x,0) and (x,x), the first point included and the second
excluded. Therefore the graph of the inequality is shown in
Figure 2-4g.

Fig. 2-4f

0 P(x, 0)

Fig. 2-4g

In Figure 2-4g the graph includes points on the x-axis for which

x > 0, but does not include any points on the line y = x.

Intercepts. The abscissa of a point of a graph for which the
ordinate is zero is called an x-intercept of the graph; the
ordinate of a point for which the abscissa is zero is called a
y-intercept. In sketching graphs it is helpful to obtain these
special number pairs, if feasible. To obtain the x-intercepts,
set y = 0 in the equation of the graph and solve for x; for the
y-intercepts, set x = 0 and solve for y. In the equation
x
2
+ y

2
4 of Example 2, the x-interccpts are +2 and -2; the

y-intercepts are +2 and -2. In the equation y = x2 - 2x of

Example 3, the x-lntercepts are 0 and 2; the y-intercept is 0.
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Symmetry. In Example 2, when we solved x2 y
2
. 4 for y we

tained y = ±-1A - x2; that is, for every x between -2 and 2, we

found two values of y wlich differed only in sign. A similar

statement could be made if we had solved for x in terms of y.

More important, we notice that if (a,b) is on the graph, so is

(-a,b), and also (a,-b), and even (-a,-b). If a curve has these

properties we say that it is symmetric with respect to the y-axis,
the x-axis, and the origin, respectively.

We now formulate these definitions more precisely and give a

few examples of the kinds of problems in which they are helpful.

Definition 2-4b: Two polnts are symmetric with respect to a

line if the line is the perpendicular bisector of the line segment

joining the points. Each point is called the reflection of the

other in the line.

For example, if two points have the,same abscissa and

ordinates which differ only in sign, then one can be obtained from

the other by a reflection in the x-axis. Thus, the points (a,b)

and (a,-b) are symmetric with respect to the x-axis. Similarly,

if two points have the same ordinate and abscissas which differ

only in sign, then they are symmetric with respect to the y-axis;

e.g., (c,d) and (-c,d). See Figure 2-4h.

Fig. 2-4h,

[sec. 2-4]
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We shall say that a curve is symmetric with respect to a line
if every ooint on the curve goes into another point on the curve
when it is reflected in the given line. Thus the circle in
Example 2 is symmetric with respect to any diameter, and the curve
y = x2 - 2x in Example 3 is symmetric with respect to the line
x 1, which is the line parallel to he y-axis passing through
the point (1,0).

The following rules are worth noting. If in an equation
replacing x by -x results in an equivalent equation, whenever (x,y)
satisfies the equation, so does (-x,y). Therefore, the graph of
such an equation is symmetric with respect to the y-axis.
Similarly if an equation equivalent to the original one is obtained
when y is replaced by -y, then the graph of the equation is

symmetric with respect to the x-axis.

Definition 2-4c: Two points are symmetric with respect to a
point if the point is the midpoint of the line segment joining them.

In particular the points (-a,-b) and (a,b) are symmetric with
respect to the origin. And we say that a curve is symmetric with
respect.to the origin if every point on the curve goes into
another point on the curve when it is reflected in the origin.
Accordingly a test for symmetry with respect to the origin is to
replace x by -x and y by -y in the equation and if.it can be made
to assume its original form, the curve is symmetric with respect
to the origin. For example, the equation y = x becomes -y -x
which can be rewritten y = x by multiplying both sides by -1;
the graph of this equation is therefore symmetric with respect to
the origin.

.

Similarly y = x 3
becomes -y = (-x)- which is equivalent to

= x
3
and the curve is symmetric with respect to the origin.

On the other hand y = x + 2 is not symmetric with respect to
the origin, since (-x,-y) is not on the graph whenever (x,y) is.
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It is not always simple to discover symmetries with respect

to general lines or points. But whenever they are easily dis-

covered, they should be used to simplify curve sketching. This

discussion of symmetry may be summarized as follows:

The graph of an equation is symmetrical with respect to the

if an equivalent equation is ob-

tained by replacing (x,y) by

Exercises 2-4

1. Make a table of some number pairs which satisfy the following

sentences. Use these to sketch the graph of each.

(a) 2x + y - 1 . 0 (g) Y = lxi (m) x > 2 or y > 3

(b) y . x2 (h) x = ly - 2I(n) x > 2 and y > 3

(c) y - x2 . 2 (i) Y > x

(d) (x - 1)y = 0 (j) Y < x + 3

(e) xy 3x '. 0 (k) x y2

(f) Y = 2x2 - x (1) y > lxI

2. Plot the point P(3,2).

(a) Reflect it in the origin.

(b) Reflect it in the x-axis.

(c) Reflect it in the y-axis.

(d) Reflect it in the line y = x.

(e) Reflect it in the line y = -1.

(f) Reflect it in the line x . 2.

3. Give the x and the y intercepts of the graph of

(a) 2x - y = 6.

(b) x2 + y2 . 1.

(c) y = ;x.

(d) x y2 . 1.

(e) y = x2 - 4.

(f) xy = 25.
y2

(h) x = lyl.

(i) lxi + 15 = y.

(j) x3 + 2xy + 3y + 27 . O.
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4. Test for symMetry with respect to the origin and the axes.
(a) x2 + 2 - 9 (g) x y2

(b) y = x2 + 5 (h) x2 - y2 . 16
(c) y (x + 2)2 (i) Y = lxi
(d) xy 1

(e) x + y . 3

(0 x2 y2

(j) x2 = y3

(k) 3xy + 6 = 0

(1) y x6 - x4 2x2
(m) k2y2

xy 6 = 0

149

5. Use the intercepts and symmetry to sketch the graph Of each.
(a) y . 2x + 3 k2 y2

(b) x 2y + 3 (m) x < -y'
0

+ h

(c) y x2 (n) (x - 2)(x - y) = 0
(d) y > x2 (o) xy x2 = 0
(e) y -x2 x2 4y2 4

(f) Y = lxi

(g) Y < 'xi

(h) y , 1 - x2

(i) x = Y2

(i) x = Y2 + 2

(k) x2 + y2 . 9

(q) (x - y)(xy) - 0

(r) x2 + y -4

*(s) xy 6 = 0

*(t) 9x2 + 4y2 > 36

*(u) x2 2y2 < 16

*(v) y = -x3

*2-5. Analytic Proofs of Geometric Theorems.

In Section 2-1 it was mentioned that coordinate geometry
provides a powerful and direct means of proving geometric theorems.
A simple example was given in Section 2-3. We shall give some
additional ones here. All our proofs are based on the three
formulas of Sections 2-2 and 2-3.

The first step in an analytic proof is the selection of the
position of the coordinate axes in relation to the figure being
discussed. Logically, no position of the axes is preferable.
Practically, an appropriate choice of axes will simplify the
coordinates of some points and reduce the algebraic work in a
proof. .1-6 1.
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The next step is the assignment of coordinates to points

which determine the figure. The positions of some points may be

chosen arbitrarily, and these points must be assigned general

coordinates; that is, letters unrelated to each other. Other

points are then determined by the shape of the figure, and their

coordinates must be expressed in terms of the previously chosen

general coordinates.

After this has been done, the geometric relations being

discussed can be expressed algebraically. The proof then

proceeds algebraically.

Example 1: Prove that the median of a trapezoid is parallel to

the base.

C(b,c) B(d,c)

0 (0,0)

Fig. 2-5a

162
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Solution: We introduce axes so that one of the parallel sides of

the trapezoid lies on the x-axis and one vertex is at the origin,
Figure 2-5a. The vertex A can lie anywhere on the x-axis so

that its abscissa must be general. Accordingly A is assigned
coordinates (a,0). Similarly, C can be any point in the plane,

so it is assigned general coordinates (b,c). Now, however, the
coordinates of B are restricted by the requirement that the side
CB is parallel to the side OA. This will be true if and only if

the slope of CB is the same as the slope of OA by Theorem 2-3a
(slopes of 11 lines are equal). Since the slope of OA is 0, the
ordinate of B must be c. The abscissa d of B is general.

/b cBy the midpoint formula 2-2b, the midpoint M1 of OC is k-ff,
cthe midpoint M

2
of AB is (8.4-d

) 2). By the slope formula 2-3a the
slope of M1M2 is O. By Theorem 2-3a, M1M2 is parallel to OA, and

the theorem is proved.

Example 2: Show that the diagonals of a parallelogram bisect each
other.

Fig. 2-5b
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Solution: We place the axes as in Example 1, and again assign

general coordinates (a,0) and (b,c) to A and C, Figure 2-5b.

Now, hoWever, the coordinates of B are determined by the two

conditions that CB is parallel to OA and that BA is parallel to

CO.. The first condition reautres, as before, that the ordinate

of B is c. If we let d denote the abscissa of B then, by

Theorem 2-3a, the second condition requires that

c -0 c=0,
7-75. b-O'

that is, d . a + b.
(a+b,i)

Now, the midpoint of the diagonal AC is and that of

OB is
(ib+a,N

) by the midpoint formula 2-2b. Since these midpoints

coincide the theorem is proved.

Example 3: Show that the midpoint of the hypotenuse of a right

triangle is equidistant from the three vertices.

Solution: Choose the axes as in Figure 2-5c.

Fig. 2-5c

1 6 4

[sec. 2-5]



153

a
'b

The midpoint M of AB has coordinates 2. Hence
2

b 0
(77)

Va.` + b 2

4."1-0)2 + 04-02= ;'.1/4a2 + b2

b 1'd(M,B) = 17( +
2 1a-

+ b2-.
2

Examnle 4; Prove that the perpendicular bisectors of the side!; of

a trlanrle meet in a point.

Solution: Choose the x-axis along one side of the triangle and

the y-axis as the perpendicular biseetor of this side (Figure 2-5d).

Pig. 2-5d

We chooc c,eneral coordinates (a,0) and (b,c) for B and C.

The coonlinates of A are (-a,0) since 0 is the midpoint of AB.

The coordinate:1 of the midpoints M
1'

M
2

of BC and KE are determined

from the ;nidpeInt formula

1 6
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Let us find the coordinates of the point P at which the two

perpendicular bisectors PO and PM1 intersect. Since this point

lies on the y-axis, it has abscissa zero. Its ordinate is an un-

known number y which we have to determine. Bythe Formula 2-3a,

c-O
Slope of BC .

Slope of PM

By Theorem 2-3b, concerning slopes of non-vertical perpendicular

lines, the product of these slopes is -1. Thus

c c-2y
b+a -*"

Solving this equation for y, we have

c
2
-a

2
+b

2

Y 2c

That is, the point of intersection of the two perpendicular bi-

(c -a
2 2

+b
2
)%sectors at M

1
and at 0 is (0, ). Now we proceed in

2c

exactly the same way to find the intersection of the two perpen-

dicular bisectors at M
2

and at O. The data are exactly as

before except that a. is replaced by -a throughout. Con-

sequently, we need not do the algebra again but have only to

replace a by -a in the result. But since a2 (-a)2, that

result is unchanged and we see that the second point of inter-

section coincides with the first.

We emphasize the importance of assigning coordinates so that

the figure determined is the most general one of its kind. There

are two requirements here. The figure must have all of the pro-

perties stated in the theorem, and it must have no additional

propertten. Thus, in Example 1 the figure is a trapezoid, that

1 (3 6
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is, a quadrilateral with two sides parallel. It would be wrong,

therefore, to assign to the point B in Figure 2-5a the general

coordinates (d,e), since then the points 0, A, B, C would be the

vertices of any quadrilateral. It would be equally wrong to

assign to B the coordinates (a,c), since then the trapezoid would

have a right angle at A.

Exercises 2-5

Use coordinate geometry to prove the following theorems:
1. The line joining the midpoints of two sides of a triangle is

parallel to the third side and its length is one-half the

length of the third side.

2. If the diagonals of a parallelogram are perpendicular, it is

a rhombus.

3. If the diagonals of a quadrilateral bisect each other, it is

a parallelogram.

4. The lines joining the midpoints of the sides of a rhombus
form a rectangle.

5. The sum of the lengths of the perpendiculars drawn from the

midpoints of two sides of a triangle to the third side equals

the length of the altitude drawn to the third side.

6. The lines joining the midpoints of the sides of a triangle

divide the triangle into four congruent triangles.

7. The lines joining the midpoints of the opposite sides of a

quadrilateral bisect each other.

8. If one of the equal sides L of an isosceles triangle is

exterded by itS own length through the vertex opposite the

base to P, the line from P to the vertex not on L is

perpendicular to the base.

9. Lines joining the midpoints of the sides of an Isosceles

trapezoid form a rhombus.
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2-6. Sets Satisfying Geometric Conditions.

In Section 2-4 we considered the question of determining the

set of points whose coordinates satisfied some restricting

relation. In fact we concentrated on sets whose coordinates satis-

fied an equation. In this section we reverse the question and ask

for an algebraic description of the set determined by some

geometric condition. The machinery of analytic geometry is

ideally suited for this task. We use the results of the preceding

sections to write algebraic descriptions of geometric conditions.

Example 1: Describe the set of all points at a distance 1 from

the origin.

Solution: Geometrically, the set of points on a circle with

center at the origin and radius 1, satisfies this condition. This

is a perfectly good description of the set. However, we could still

describe the set algebraically by using an equation to express the

given geometric condition.

Let P(x,y) be any point satisfying the condition.

Then d(0,P) = 1.

Using the distance formula (2-2a)

j(x - 0)2 + (y - 0)2 = 1

or X
2

-I- y
2

= 1.

This algebraic condition is simply a straightforward algebraic

translation of the geometric condition.

Example 2: Find the set of all points which are twice as far

from the origin as from the point (2,0).

Solution: In this case, we may have no idea what the geometric

description of the set is. However, it is still easy to write out

the algebraic description.
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Suppose P(x,y) is any point of the set and let A be the point

(2,0). ThPn

d(0,P) 2d(P,A)

/AA 2 + Y2 - 210( 2)
2
+ lY 0)2

% %or x
2

y
2

. 4[(x - 2) 2
+ ky - 0) 2

].

Simplifying we get 3x2 - 16x + 16 + 3y2 0.

In Chapter 6 we shall show that this set is actually a circle;

however the fact that we are able to describe the set algebrai-

cally even though we are unable to guess the geometric description,

shows the power of the methods of analytic geometry.

Example 3: Describe the set of points the sum of whose distances

from two perpendicular lines is 1.

Solution: Choose the perpendicular lines to be the coordinate

axes. Let P(x,y) be any point with the required property.

P(v)

Fig. 2-6a

Then the distances of P from the perpendicular lines are

d(N,P) .14x - 0)2 + (Y. Y.)2 -1 lxl,

d(M,P) .A/(x - x)2 + (y - 0)2 lyl.

1 69
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The geometric condition can now be written

or

d(N,P) + d(M,P) --. 1

1

lxi + Il = 1,

If we want to sketch the graph of the set of points whose

coordinates satisfy this equation, we might use the methods

developed in Section 2-4.

The intercepts are (0,1), (0,-1), (1,0), (-1,0).

The, tests for symmetry tell us that the graph is symmetric

with respect to both axes and the origin. Hence if we plot the

part of the graph in the first quadrant we can sketch the rest

by symmetry. If x > 0, y > 0, then the equation can be written

x + y 1. The part in the first quadrant is shown in Figure 2-6b.

The complete point set is shown in Figure 2-6c.

Fig. 2-6b Fig. 2-6c

We shall use this algebraic technique for describing sets

satisfying geometric conditions extensively in Chapter 6 when we

make a systematic study of equations of the first and second

degree in x and y.
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Exercises 2-6

In each exercise the point set should be plotted.

1. Write tne equation describing the set of points which are at a
distance 2 from the origin.

2. Write the equation of the set of all points which are at a
distance 1 from the point 0(1,0).

3. Write the equation of the set of all points which are at a
distance 3 from the point 0(0,2).

4. Write the equation of the set of all points which are at a
distance 5 from the point C(2,3).

5. Write the equation of the set of all points which are k units
from the point C(-1,3).

6. Write the equation of the set of all points at a distance r

from the point C(h,k). Describe this set geometrically.
7. Write the equation of the set of all points which are equi-

distant from the points A(3,0) and B(5,0).

B. Write the eqUation of the set of all points which are equi-
distant from the points A(-2,-5) and P(3,2).

*9. Write the equation of the set of all points which are equi-

distant from the points P1(x1,y1) and P2(x2,y2). Describe
this set geometrically.

10. Write the equation of the set of points each of which is

twice as far from A(-2,0) as it is from B(1,0).

11. Write the equation of the set of points each of which is the

vertex of a right triangle whose hypotenuse is the line

segment joining (-1,0) and (1,0). Describe this set
geometrically.

1.12. W:ite the equation of the set of points each of which is thc,

midpoint of a line segment of length 2 having its endpoints on

two perpendicular lines.

13. Write the equation of the set of points each of which is the
center of a circle which i angent to the x-axis and which

passes through the point (0,1).
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14. . Write an equation whose only solution is x = 0, y = 0; that

Is, give an equation for the origin.

15. Write an equation for the semicircle of radius 2 with center

at (0,0) and lying to the left of the y-axis.

16. Write an equation of the set of all points (x,y) such that

the area of the triangle with vertices (x,y), (0,0) and (3,0)
is 2.

2-7. Supplementary Exercises for Chapter 2._
1. Discuss the symmetry and the intercepts of the graph of each

equation.

(a) x = 5y - 2 y2 x2
16

(b) 3x2 + 3y2 . 12 (j) y = -2x + 3

(c) 2x2 - y = 3 (k) x II
(d) 2x2 + 3y2 . 18

2

(1) y = 2x2 ± 4

(e)
x2

- -Yr = 4 (m) 16x2 9y2 ..l44

(f)

(g)

y= -x 2
+ 7x - 6

2

(n)

(0)

x2 + 6x + y2 = 7

y (x - 1)(x - 2)2

(h) X = y2 y (p) Ix + yl . 0

2. Sketch the graph of each of the above equations.

3. (a) Describe a line parallel to the y-axis in terms of

coordinates.

(b) Similarly, for the x-axis.

4. Sketch the graph of the following:

(a) (.(x,y)
x2 y2

91 (Read "x and y such that x2-1-37.2 . 9".

(b) Nx,Y) : x2 + Y2 > 9)
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(c). ((x,Y) : x2 + Y2 < 91 .

(d) ((x,Y) ixi + = 91 .

(e) ((x,Y) Ixl + 1Y1 > 9) .

(f) ((x,y) : (x > 0 and y > 0) and (Ixl + 1Y1 < 9))U_

((x,y) : (x < 0 and y < 0) and (lxi + IYI < 9)).

161

(g) ((x,y) : Ix1 + lyi < n ((x,y) : x2 + y2 > 9) .

5. (a) Plot the points A(0,-3), B(-2,1) and C(6,5) and connect

them with lines.

(b) Show that the triangle formed is a right triangle.

(c) Find the slope of the hypotenuse.

(d) Find the, area of the triangle.

6. Given the points A(6,2), B(8,-6) and C(10,0)

(a) Find the distance between the midpoint of AB and AC.

(b) Find slope of line through the midpoint of AB and BC.

7. Given the points A(2,4), B(4;-2) and C(-3,-1). What kind of

triangle is ABC?

8. Given the points A(2,-3), B(-1,2) and C(a - 1, a - 3), D(2a,3a)

(a) Find the value of a for which the line CA will be

to the line CB.

(b) Find the value of a for which the line CD will be

parallel to the line AB.

g. Find the equation of the set of all points equidistant from

A(0,0) and B(6,3).

10. Find the equation of the set of all points whose distance from

point A(2,0) is 3 units and for which y > 0.

11. Prove the diagonals of a rectangle are equal in length.

12. Find the other end of a line segment if one end is (-1,8) and
1 1

the midpoint Ls
c.

13. Plot the points A(-3,-2), B(5,-2), C(10,10). Show that the

line seEment joining the midpoints of AC and BC is parallel

AR and it length Ls equal to one-half the lenEth of AB.

1.73
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14. Determine y so that the point P(1,y) lies on the perpen-
dicular bisector of the line segment joining the points
A(3,2) and B(7,6).

15. Write the equation of the set of all points
(a) a distance 7 from the x-axis.

(b) a distance 7 from the y-axis.

(c) a distance 7 from the origin.

(d) a distance 7 from the x-axis and a distance 7 from the
y-axis.

16. Show that the point C(,3) is on the perpendicular bisector
of the line segment whose endpoints are A(3,2) and B(7,6).

17. A circle with Center at the origin passes through the
point (a,b). Which of the following points is on the
circle?

(a) (-a,-b)

(b) (a,-b)

(C) (-a,b).

Explain.

18. Write a set description of the set of all points 3 units from
the origin in which the set is restricted to
(a) the first quadrant.

(b) the second quadrant.

(c) the second or third quadrants.

(d) the first or third quadrants.

1 . Write a set description of the set of points inside the

triangle formed by the axes and the line 2x + y --. 3.

20. Write the equation of the set of points which is the vertex
of an isosceles triangle whose base is the line between the
points A(-3,5) and B(4,-1).

21. A line segment of variable length has its endpoints on the
coordinate axes, forming with them a triangle whose area is
constant. Write the equation of the set of midpoints of the
segment.

1 7 1
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22. Find the slope of the line which is tangent to the circle

x
2

+ y
2
. 25 at the point P(-4,3).

23. Sketch the graph of the following set of points:

(a) ((x,y) : y = x2 - 4)

(b) ((x,y) : y < Oand y = x2 - 4)

(c) ((x,y) : x < 0 and y = x2 - 4)

(d) ((x,y) : (y > 0 and x > 0) and (y x2 - 4)

24. Plot the points A(0,-3), B(-2,1) and C(6,5). Connect these

points with lines forming the triangle ABC. Plot At, Bt,

and Ct, their reflections in the x-axis. Connect these

points with lines forming the triangle AtB1Ct. Compare the

areas and.the perime ers of AABC with those of AAtBICt.

Challenge Problems

1. Derive a formula which divides the line segment P1P2 in the

ratio r1 : r2. Use this information to prove the medians
2of a triangle intersect in a point that is 73 the distance

from a given vertex to the midpoint of the opposite side.

2. Given the points A(1,-2), B(5,4) cnd C(-3,4). Determine

the coordinates of the centroid of AABC.

3. Suppose that a rectangular grid is constructed so that the

units marked off on the x-axis are twice as long as those

on the Dovelop a suitable formula for the distance

between any two points F1(x11y1) and P2(x21y2) in this

coordLnate system.

4. Design a new coordinate syJtem such that the first of an

ordered pair of numbers represents the slope of a line

passing through the origin, and the second the length of the

line. By convention 4- slope will mean a line rising to the

r1F,ht ani - slope will mean a line rising to the left.
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A line fength will mean above the horizontal and a - line
length below the horizOntal. Let the ordered pairs of

numbers be represented by the letters s and d such that
any point P can be represented as

Ouestions:

(a) Can you find the equation of a circle in this

coordinate system? (Remembera graph is a set
of points each of which satisfies the equation.)

(b) What is the equation of a straight line passing

through the origin?

(c) Draw the graph of d = ks, where k is a constant.

(d) Find the equation of a vertical line that does not

pass through the origin. (Hint: Use the perpen-

dicular distance p from the origin to the line

and the Pythagorean Theorem.) Ans. d pys + 1.
(e) See if you can find the equation of any line.

17



Chapter 3

THE FUNCTION CONCEPT AND THE LINEAR FUNCTION

3-1. Informal Backg_round of the Function Concept.

The function concept is one of the most basic concepts of all

mathematics and this whole rthapter is devoted to the study of that

important idea. We first try to form some idea of what the

concept is about in an informal way.

We base our discussion of functions on sets. Mathematicians

studied functions long before they talked about sets but they were

led to formulate the function idea in terms of sets in order to

make their study of this topic as clear as possible.

In order to have a function three things are required:

a set called its domain; a set called its range; and a rule for

pairing a member of the range with each member of the domain.

Example 3-1: Multiplying integers by 2 gives us an example

of a function. The domain of this function is the set of all

integers. The range of the function is the set of all even in-

tegers.

If you have already studied functions you have probably con-

sidered only those functions which pair numbers with numbers. For

the functions we are studying now neither the domain nor the range

has to be a set of numbers. The addition table for whole numbers

defines a function whose domain is not a set of numbers. It

assigns whole number to each pair of whole numbers, namely

their sum. The domain of this function is the set of all pairs of

whole numbers. Its range is the set of all whole numbers. For

instance tho ackitlon VtInction asolrgns 19 to the pair (11,8)

and ';'6 tp thr paLr (12,111) .

7 7
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Exercises 3-1

Each of the following phrases suggests a function. Describe its

domain, its range, and its rule.

1. Areas of triangles

2. The multiplication table for positive integers

3. Election returns

4. People's first names

5. People's ages

6. Population of cities

7. A dictionary

8. The relative nearness to the sun of the various planets
9. Batting averages

10. Absolute values

Give some examples of everyday circumstances which suggest functions

3-2. Formal Definition of Function.

Definition 7!-2a: Let A and B be sets and let there be

given a rule which assigns exactly one member of B to each
member of A . Then the rule, together with the set A is said
to be a function and the set A is said to be its domain.

The set of all members of B actually assigned to members of A

by the rule is said to be the range of the function.

The word "rule" must be understood here to cover many

different kinds of schemes for making assignments. Sometimes

a rule Is an algebraic expression, but sometimes it can be just a

178

[sec. 3-2]



167

list of arbirary pairings with no underlying pattern. Example 3-3a

illustrates 1,he first kind and Example 3-5b illustrates the second

kind. i?.oth the domain of a function and Lhe range of a function

are sets hut. they are subjected to quite d1Cferent regulations.

Every member of the domain of a function has exac:tly one member of
the ran.,::;e aJsiTned to it. However an individual member of the

range of a function can be assigned to several different members

of its domain.

The definition of function gives no instructions about which

sets are to be used In the construction of functions. It gives no
clues as to how to find the assignments that it mentions. We have

to go beyond the deCinition to show how sets are selected and how
rules are made to obtain useful and interesting .functions.

Example 3-la: The Constant Function. Let A be the set of
all real numbers and let b be any real number. Then assigning
b to each real nuber gives a function whose domain is the set A

and whose range is (b) . Any such function whose range contains
exactly one member is called a constant function.

Example 3-Lb: The 7dentity Function. Let A be the set of
all real numbers and assign each member of A to itself. Thcse
assignments constitute a function whose domain is A and whose
range Ls A . Any such function which assigns each member of the
domain to itself Ls called an d.ritity function.

Example Nultiplication Regarded as a Function. Let A

be the set of all pairs (x,y) of real numbers and assign to
each number (x,y) of A the product xy . These assignments
constitute a function whose domain is A and whose range is the
set of all real numbers. 179
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Exercises 3-2_ _

1. Each of the following defines a function.. Describe its domain
and rangc.

(a) Assign to each real number x the number x + 2 .

(t) Asslgn to each real number x the number 5x .

(c) Assign to each real number x the number
(A) Assgn to each real number x the number x

2
.

(e) Ass1n to each real number x the number (x + 15) 2

(f) Assin to each real number x the number 4 .

(g) Assign to each even integer the number 0 and to each
odd integer the number 1 .

(h) Assign to each point in the plane the point 2 units to
the right and 3 units down.

--(i) Assign to each rectangle its area.

(j) Assign to each pair of distinct points in the plane the

distance between them.

2. Let A be (1,2,31 and let B be (4,51 .

(a) Define a function whose domain is A and whose range
is B .

(b) Define a function whose domain is A, whose range is A,

and which is not the identity furction.

(c) Define a function whose domain is B and whose range
is B

(d) Show that there is no 'function whose domain is B and
whose range is A .

3-3:- Notation for a Function.

It is customary to denote func-,ons by single letters such
as f, g and h . If x is any member of the domain of

function f, then f(x) means the element assigned to x by the
function f .

Note: The expression f(x) Is read "f of x" . Some people
prefer to read it "f at x" .

1 80
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Example 3-3a: Let the function f have for its domain the
set of all real numbers, for its range the set of all non-negative

real numbers, and for its rule the assignment to each real number
of its square. Then f(2) = 4, f(3) .,,. 9, 1(0) = 0, f(-3) = 9,

f(x) = X

Sometimes thls notation is used to cover more complicated
situations. By f(g(x)) we mean the expression obtained by

substituting g(x) for x in f(x) .

Example 3b: if f(x) = 3x and g(x) . 2x then

f,(g(x)) = 3(2x) = 6x

Example 3-3c: If f(x) - + 2 and g(x) . 4x - 1 then

f(g(x)) 3(4x - 1)2 + 2

The idehere is that if it makes sense to substitute an

expression E for x in f(x) then the symbol f(E) is used

to describe the result of performing this substitution.

Example 3-3d: If f(x) = x- - 3x + 2 then

f(2h + 4) = (2h + 4)2 - 3(2h + 4) + 2

Exercises 3-3

1. Given that f is the function whose domain is the set of all

positive integers (1,2,3, ...) and which pairs with each
integer x the integer 3x. (a) What is the range of f ?

(b) f(4) = ? , (c) 1(6) = ? , (d) f(a) = ? , (e) f(2a) = ? ,

(f) 1(2 + x) ? , (g) Does f(3x) = 31(x)?
(h) Does f(x + 4) = 3f(x) + 4?

1 8 1
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2. Given that f is the function whose domain is the set of all

positive integers, (1,2,3, ...) which assigns 0 to the

even integers and 1 to the odd integers. (a) What is the

range of f ? (b) f(2) ? (c) f(3) = ? (d) f(104) ?

(e) Does f(3) + f(5) = f(3 + 5) ?

(0 Does f(3) + f0) = f(3 4. 4) ?

(g) Does f(2) + f(4) f(2 4. 4) ?

(h) Does f(3) f(4) = f(3 4) ?

(i) Does f(2) f(4) = f(2 4) ?

(j) Does f(x + 2) . f(x) ?

(k) Does f(x + 1) . f(x) ?

(1) Does f(x 2) . f(x) ?

3. Let f be a function whose domain is jx : -1 < x ( 2) .

If f(x) = ixi, what is the range of f ?

4. Let f be a function whose domain is the set of all real

numbers. If f(x) Ix1 x, what is the range of f ?

3-4. Functions Defined by Equations.

Many of the functions we shall meet have sets of real numbers

for their domain and range, and have rules which are expressed by

algebraic equations. For instance the function defined in

Example 3-3a is such a function. These special functions are

often 'd.efined only by giving the rule, with no mention of the

domain and range. This causes no confusion if the student knows

how to supply the proper domain and range himself. Usually in

what follows, if a function is discussed whose domain is not

given explicitly, its domain is understood to be the set of all

real numbers. For instance, the equation y = 3x + 1

can be used to define a function whose domain is the set of all

real numbers, whose range is (y y > 1) and whose rule is to

pair with each real number x the number 3x
2

+ 1. It is

customary to express all this information in more compact form by

referring to "the function defined by the equation y = 3x 2 + 1" .

(se_. 3-4]
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3If we apply this acreement to the equation y wex - 4
see that this equation does not define a function whose domain is

.the set of all real numbers. The right member of this equation
3is meaninzless for x = 4 . Nevertheless, ,the equation y

can be used to define a function provided a se -n1 numbers
which does not contain the number 4 is specifie.. us its domain.

We therefore modify our agreement. When we encounter an equation
of the form y f(x) we assume that the function it defines has

for domain the set of all real numbers which can meaningfully be

substituted for x in f(x), unless some other domaln is given

explicitly. For instance "the function defined by the equation

I I,y means the function whose domain is the setx -

(x : x < 4 or x > 4), whose range is (y : y < 0 or y > 0)

and whose rule is to pair with each number x in its

domain.

Exercises 3-4

1. Let f b,p the function defined by the equation y 2x + 6.

(a) What is the domain of f ? (b) What is the range of f ?

(c) f(2) (d) For what value of x does f(x) = 100 ?

(e) For what value of x does f(x) = 0 ?

2. What Is the domain and range of the function defined by each

of the following equations

(a) y . 3x (d) y = x 3

(b) y
(e) y = :1/7

(c) y VR.

3. Let -f be the function defined by the equation y = x
2

.

(a) What is the domain of f ? (b) What is the range of f ?

(c) Is there a number x such that f(x) 6 ?

(a) Is there a number x sch that f(x) -6 ?

[sec. 3-4]
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4 _Let f be the function defined by the equation y = x
3

.

(a) What is the domain of f ?

(b) What is the range of f ?

(c) 'Is there a number x such that f(x) = 6 ?

(d) Is there a.numb x such that f(x) = -6 ?

5. Let n be a positive integer and let f be the function

,defined by the equation y = xn .

(a) What :.L3 the domain of f ?

(b) What is the range of f ?

(c) Is there a number x such that f(x) = 6 ?

(d) Is there a number x such that f(x) = -6 ?

6. 1Let f be the function defined by the equation y = .

(a) What is the range of f ?

(b) What is the domain of f ?

(c) Is there a number x such that

(d) Is there a number x such that

7. Let f be the function defined by

(a) What is the range of f ?

(b) What is the domain Df f ?

(c) Is there a number x such that

(d) Is there a number x such that

18. Let f be the function defined by y = where n is a

f(x) = 6 ?

f(x) = -6 ?

.y =

f(x) = 6 ?

f(x) = -6 ?

positive integer.

(a) What is the rangi.:. o. f ?

(b) What is the domain of f ?

(c) Is there a number x such that f(x) = 6 ?

(d) Is there a number x such that f(x) -_-_. -6 ?

x
n

184
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3-5. The Graph of a Function.

Two sets are needed to define a function, one to be the

domain and one to be the range. After the function is defined

a new set is created, namely the set of all those pairs produced

by the rule of the function. This set is sometimes called the

graph of the function. Indeed many mathematicians claim that this
set is the function itself.

Example 3-5a: Let f be the function d-fined by the

equation y ..,, 4x - 7 . Then its graph consisl.s of all the ordered

pairs of the form (x,4x - 7) . For instance (0,-7), (1,-3), (2,1

are some of the pairs of this graph.

Example 3-5b: Let f be the functioh whose domain is

(1,2,3), whose range is (6,5), and whose rule assigns 6 to 1,

5 to 2, 6 to 3 . Then the graph of f is the set

((1,6), (2,5), (3,6)1 . This is a function whose rule has no

pattern. It was constructed by making arbitrary pairings.

If a function happens to have a domain and range consisting

of real numbers then the pairs of its graph can be plotted as

points. The resulting geometric figure is also called the

"graph of the function". This implies that the expression "the

graph of a function" can mean two different things. The more

usual meaning is the geometric figure. . The graph of a function

defined by an equation is generally considered to be the same as

the graph of that equation, as defined in Chapter. 2.

Most of the functions defined by algebraic equations have

smooth curves as tneir graphs. The student almost always has to

rely on this fact in order to draw the graph of a function.

185
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E:Mr:21C!

defir:e:).

Try to draw the graph of the function

4 1

Z,olutio: Choose several values of x and compute the

assle'l to these values by the function.

+ 1 (-3,28).

30-Y
0(3,28)

20-

2; 1

(-2,13 ) . . (2
1

,13)

10

13

3 3
(-1,4) (1,4)

i 1

40(0,1)
4 1

-3
f

-2 -1 0
F

1 2 3 X

Fig. 3-5a

We find that 28 is assigned to , -3, 13 to -2, 4 to -1,
1 to 0, 4 to 1, 13 to 2, 28 to 3 . Thus we know that
part of the graph looks like Figure 3-5a. We can fill in the
rest of .e graph as in Figure 3-5b if we believe that the'graph
is a smooth curve.

20

10

0
1 2 3 x

Fig. 3 -5b
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e do not now have a logical reason for excluding the curve in
Figure 3-c: aa the graph.

Later we shall prove that it is Figure 3-5b which is the correct
one rather than Figure 3-5c.

Exercises 3-5

1. Can the pairs (1,2) and (1,3) occur in the graph of the
same function? Justify your answer.

2. Can the pairs (2,1) and (3,1) occur in the graph of the
same function? Justify your answer.

3. Plot the graph of the functions defined.by each of the
following equations:

(a) y -2x + 1

(b) y = -3x - 2

(c) y x - 2

(d) y = 2x + 3

4. Plot the graph of the functions defined by each of the
following equations:

(a) %/- . -x2 + 6 (d) y = 3x2 + 2

(b) y = 2x2 - 1 (e) y x3

(c) y . -x2 -

(sec. 3-5]
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Funtiens Defined Geometrically.

We are coin to use some of the facts of Coordinate Geometry
to introdue another way of defining functions. a(terY point of

the plane pairs two numbers, its x-coordinate and its y-coordinate.
For some sets of pointo these pairings are the pairings of a
function. For instance If no two points in a set have the same

x-coordinate then assigning the y-coordinate of each point of this
set to its x-coordinate defines a functfton. The domain of the
function is the set of all x-coordinates of points of the set.

The raniTre of the function is the set of all y-coordinates of the
set. It is also the case that if no two members of the set have
the same y-coordinate, then assigning the x-coordinate to the
y-coordtnate of each point of the set defines a function. However
we follow the generally accepted practice of using only the first
scheme for defining functions. Thus we shall consider that a set
of points defines a function if and only if no two points of
set have the same x-coordinate. The geometrical way of stating
this condition is that a set of points defines such a function if
and only if no vertical line contains more than one point of the
set.

Exampl,, -Ca: in Figure 3-6a the figure consisting of the
three pointz; (-1,3) , (1,3) and (2,3) defines a fune-t,ion f

2

(1.,3) .(2,3)

-2 0 x

Fig. .3-6a

whose domain is (-1,1,) , whose range is (3) , and whose rule
makes the assignments f(-1) - 3 , f(1) = 3 , f(2) . 3 ,

[sec. 3-6]
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Exampl:? 3-6b: The graph of the equation y . 3x2 + 1

defines a function whose domain is the set of all real numbers

Fig. 3-6b

and whose range is (y : y

Example 3-6c: The curve sketched in Figure 3-6c defines a

Fig. 3-bc

function. The curve has no simple equation.

189
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Example 3-6d: The part of the graph of the equation

Fig. 3-6d

x = 3y-
2

1 sketched in Figure 3-6d defines a function.

In each of the following examples notice that there is a

vertical line that intersects the graph in more than one point

Example 3-6e: The graph of the equation x . 3y2 1

does not define a function.

Fig. 3-6e

190



Example 3-61: The circle whose center is (0,0) and.

Fig. 3-of

whose radius is 5 does not define a function.

Example 3-6g;: Th Figure 3-6g consisting of the points

(3,-1), (3,1), (3,2

Fig. 3-6g

does not define a function.

1 9 1
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Example 3-6h: The set of points in Figure 3-6h does not

define a function.

Fig. 3-6h

Exercises 3-6

1. Can a circle be the graph of a function?

2. Can a semi-circle be the graph of a function?

3. Are there semi-circles which are not the graphs orfunctions?

4. Can a triangle be the graph OT a.function?

5. Can a line be the graph of a function?

6. Are there lines which are not graphs ()f functions?

7. Which of the following are graphs of functions?

Justify your answer.

/ // //

Fig. 3-6(7a)

///

Fig. 3-6(7b)

[sec. 3-6]

192

Fig. 3-6(7c)



181

Fig. 3-6(7d) Fig. 3-6(7e) Fig. 3-6(70

Fig. 3-6(7g) Fig. 3-6(7h) Fig. 3-6(7i)

8. Prove that if n is an odd integer then the graph of
yn x defines a function and that if n is an even

integer then the graph of yn x does not define a function.

193
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2-7. Functions Defined by Physical Processes.

Someone who understands the function concept can find examples

of functions in every aspect of his daily life. While this doeS

not always nelp people to understand what is going on around them,

the discovery and study of such functions is an Important part of

any'scientlfic analysis of our world.

Example 3-7a: A falling body defines many functions. For

example, at each instant, a falling body has a speed, and pairing

speed with time produces a function. Physicists have discovered

that for a body falling from rest in a vacuum, the equation

y = 32t defines this function, where t is the number of

seconds after the body began to fall and y is its speed in feet

per second. Another function defined by the falling body is the

one which pairs the distance it falls with the elapsed time.

Physicists have discovered that the equation which defines this

function is y = 16t2, where t is the number of seconds after

the body begins to fall and y is the number of feet the body

falls in t seconds.

Example 3-7b: The mass of a radioactive body decreases with

time. Such a body defines a function; assign to each instant of

time the mass of the body at that instant. When we study the
.

exponential function, in Chapter 9, we shall see an equation that

defines this function.

Exercises 3-7

Below are some description's of physical situations which define

functions. Try to find the domain and range for each. Express

194
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the rule in algebraic form if you know it; try to make a reason-
able guess if you don't.

.1. If a gas is kept at constant temperature its volume and its
pressure are dependent on each other.

2. The time it takes a pendulum to complete a swing depends on
the length of the pendulum.

3. The gravitational attraction of the earth on a body depends
on the body's distance from the earth.

4. If the ends of a beam are clamped and if an object is hung
on it the distance the beam is displaced depends on the
weight of the object.

5. The apparent brightness of a light source to an observer

depends on the distance of the observer from the source.
6. The force exerted by a lever depends on the distance of its

end from the fulcrum.

7. If water is flowing at a uniform rate through a pipe into a

tank, the amount of water in the tank depends on the time of
flow.

8. The temperature of a cup of coffee depends on the time, it
has been cooling.

9. The temperature at which water boils depends on altitude.
10. The time it takes an automobile to come to a halt depends

on its speed.

3-8. Functions Defined by Cbmposition; Inverses.

Functions can sometimes be defined in terms of other
functions. This is so, for instance, if f and g are functions
for which the range of f is the domain of g .

ExaMple 3-8a: Let f be defined by y 3x 5 and g be
defined by y 3x2 4- 1. Then the equation y = 3(3x - 5)2 1

defines a new function.
195
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The following definition is a formal statement of this

procedure.

Definition 3-8a: Let A, B and C be sets, let f be a

function whose domain is A and whose range is B, let g be a

function whose domain is B and whose range is C Then by the

composition of g with f we mean the function whose domain is

A, whose range is C and which assigns to each member x of A,

the member g(f(x)) of C .

Example 3-8b: Let A be the set (4,5,6), let B be the

set (7,8) and let C be the set (9,10), let f(4) = 8,

f(5) . 7, f(6) = 8 and let g(7) = 10, g(8) . 9 Then the graph

of the composition of g with f is ((4,9), (5,10), (6,9)) .

It is sometimes helpful to imagine that the rule of a

function describes an action which does something to each member

of the domain to produce the corresponding member of the range.

From this point of view it is possible also to imagine a process

which undoes what the original function does. The function de-

fined by equation y = x + 6 has the effect of adding 6 to

each number: The function defined by the equation y = x - 6

has the effect of subtracting 6 from each number. Thus each of

these functions "undoes" what the other does. The definition Of

inverse function which follows expresses these ideas formally.

Definition 3-8b: Let A and B be sets, let f be a

function whose domain is A and whose range is B and let g be

a function whose domain is B and whose range is A . Then we say

that f and g are inverse functions if, for each x of A,

f(g(x)) = g(f(x)) = x . We also say that f is the inverse of

g and g is the inverse of f. if f and g are inverse

functions.
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Example 3-3c: bet A be the set of all inteE;ers, let f be

the function whiJh assigns to each integer_ x the integer x + 1

and.let be the function which assigns to each integer x the

integer x 1 . Then f(x) = x + 1 , g(x) x - 1 , f(g(x))

(x - 1) + 1 = x and g(f(x)) (x + 1) - 1 = x Therefore f

and g are inverse functions.

Example 3-8d: Let A he the set of positive real numbers,

let f have domain A and be defined by y = x 2
. let g have

/2domain A and be defined by y .,/7. Then g(f(x)) .iix x
N

and f(g(x)) (/) 21/x= x which identifies f and g as.inverses.

Some functions have no inverse. Consider, for example, the
function f whose domain is the set of all real numbers defined

by y = x
2

. If this function had an inverse g , then since
f(2) . 4 f(-2) = 4 we would have to have g(4) = 2 and
g(4) . -2 But this is impossible, since a function must assign

only one member Of its range to a member of its domain. Notice
that the single equation y x

2
was used to define a function

with an inverse and a function with no inverse.

Theorem 3-8a: Let f be a function whose domain is the set
A and whose range is the set B. Then f has an inverse if
and only if for each member b of B there is eXactly one a of.

A for which f(a) = b

Proof: Because B is the range of f , for each b of B
there is at least one a of A such that f(a) = b . Assign
to each b all such members a . These assignments define a
function g , whose domain is B , if and only if, this rule

pairs only one a with each b . If there is such a g , then
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g(f(a)) g(b) - a for each a of A, so E(f(x)) = x . AlSo

for each b of B, f(E(b)) = f(a) = b, so f(g(x)) = x . This

identifies g as the inverse of f .

If f and g are inverses, their graphs are closely inter-

related.

Theorem 3-8b: Let f and g be inverses. Then a pair

(p,q) is in the graph of f if and only if (q,p) is in the

graph of g

Proof: If the pair (p,q) is in the graph of ,f, then

q = f(p) . If g is the inverse of f then g(q) = p Thus

(q,p) is in the graph of g . Similarly if (q,p) is in ,the

graph of g , then p = g(q) . If f is the inverse of g, then

f(p) = q . Thus (p,q) is in the graph of f .

By plotting the graph of a function, it is possible to see

whether the function has an inverse or not and also, if the

function does have an inverse, to see what the graph of the

inverse actually is. If no horizontal line has more than one

point on the graph of a function, then the function has an inverse.

Example 3-8e: Figures 3-8a, 3-8b, 3-8c and 3-8d are graphs

of functions Figures 3-8a and 3-8b correspond to functions with

Fie:. 3-8a

198
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l_riverses. Figures 3-8c and 3-8d correspond to functions without

inverses. Notice-that every horizontal line intersects the graphs

of Figures 3-8a and 3-8b in a single point. Notice that some

horizontal line intersects the graphs of Figures 3-8c and 3-8d in

2 points.

Again Figures 3-8e and 3-8f show the graphs of the inverses

of the function associated with Figures 3-8a and 3-8b. Notice

Fig. 3-8e Fig. 3-8f

that Figures 3-8e and 3-8f are obtained from Figures 3-8a and

3-8b by interchanging the x and y coordinates. This

illustrates Theorem 3-8b.
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Exercises 3-8

1. Let f(x) x2 and g(x) . x3

(a) What is f(.(x)) ?

(b) What is g(f(x)) ?

(c) Does f(g(x) = g(f(x)) ?

2. Let f(x) . x2 and g(x) . x3 + 1.

(a) What is f(g(x)) ?

(b) What is g(f(x)) ?

(c) Does f(g(x) = g(f(x)) ?

3. 'The function f is defined by y 2x + 3. Show that its
1 3inverse is the function defined by y, = - .

4. The function f is defined by y = 4x + 5 . Show that the

1function defined by y = 4x is not the inverse of f .+ 5

5. Which of the functions defined in Exercises 3-6, Problem 7

has an inverse?

6. (a) Show that the points (a,b) and (b,a) are symetrically'

situated with respect to the line y = x . Show how to

use this fact to find the graph of a function from the

grapil of its inverse.

(b) Sketch the graph of the inverse of the function whose

graph is shown in Figure 3-8(6a) - Figure 3-8(6d).

Fig. 3-8(6a)

[sec. 3-8]
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3-9. The Linear Function.

Definition 3-9a: A function is a linear function if and only

if it is defined by an equation y = ax + b, where a is a non-

zero real number and where b is any real number.

Example 3-9a: Each of the following equations defines a

linear function:

y = 3x + 4 (a - 3, b = 4)

y = -5x + 6 (a = -5, b 6)

y x - 11 (a - 1, b = -11)

y = 2x (a . 2, b = 0)

y = x (a - 1, b 7

Theorem 3-9a: Every linear function sets up a one-to-one

correspondence between the set of all real numbers and the set of

all real numbers.

[sec. 3-9]
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Proof: Let the linear function f be defined by the

equation y = ax + b . We are to show that

(1) if r is any real number then f assigns some real
number f(r) to r .

(2) if s is any real number then there is some real
number t such that s = f(t) .

The first part is easy to prove; the number ar + b is assigned
by f to r .

To prove the second part we solve ax + b . s for x,

s - -obtaining x _ b
. Then f (

s b
) = s .becausea a

f(s b) a(s b)

Therefore s - b
is a number t such that f(t) = s .a

Corollary: Every linear function has an inverse.

It is proved in Chapter 6 that the graph of an equation
y = ax + b is a straight line. We can check this statement now
with an example.

Example 3-91): Plot the graph of y = 3x + 2 .

Solution: We first construct a short table of values. We

plot these points and obtain the part of the graph shown in Fig.3-9a..

x -2 -1 0 1 2

-11 -1 2 5 8

202
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It certainly looks as thoui:,h these points are collinear and it is

not hard to believe that the line they determine is the graph of

the function.

Fig. 3-9b

The graph of this function is the line shown in Figure 3-9b.

Theorem 3-9b: If f is the linear function defined by

y = ax + b, its inverse g is the linear function defined by

1 b

Proof: f(g(x)) = aq-lx + b = x and

g( f x ) = + b - = x .

Example 3-9c: Let f be defined by y = 3x + 4, then

1
and

f(g(x)) = 3(+3x - + 4 = x

and g(f(x)) =A(3x + 4) - = x .
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Theovera prov'Ldes a formula for fidin inverses of
linea2 fupctons. It is probably easier not to use this formula'

to fin(.: uhe inverse of any given linear function, but rather to
proceed as follows: If the function is defined by the equation
y - ax + b

(1) solve the equation for x in terms of y ,

() tnterchange x and y in the answer.

E::ample 3- (reworl:ed ip the reco=cnded way)

y - + 4

y - h

1 4
N

and interchanging x and y yields the equation
1

y -
A

Linear functions pair real numbers with real numbers. The

following, two theorems show how the pairings made by linear

functions are different from the pailings made by other types of
functions. Theorem :J-9c states that linear functions have a
certain property and Theorem 3-9d states that linear functions are
the only functions which have this property.

Theorem 3-9c: Let the linear function f be defined by
y = ax + b (a / 0) and let p and q be any distinct realnumbers.

f(p) - f(q)Then. = ap _ q

Proof: f(p) - f(q) (op + b) - (aq + b)
p q p q

ap + b - aq - b

a(p - q)
p q

a
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Example If f is defined by y - h and

p = 1.7)61, q 'r.her

f(p) 7;(l961) - h 13879

f(q) , 3("30) - 4 86

f(p) - f(q) - .1(93

p q , 1931

f(p) f(q)p q . 3 ,

This theorem has a geometric interpretation. The points

(p,f(p)) and (q,f(q)) are on the graph of the linear function f.

According to Formula 2-3a of Chapter 2, the expression

f(p) - f(q)
p q

Is the slope or the line. Theorem 3-9c therefore has two conse-

quences. One is that the graph of y = ax ± b has slope a .

The other Ls that this slope can be computed from the coordinates

of any pair of distinct points on the line.

Theorem (Converse of Theorem '-9c) Let t be any

real number. except zero, and let f be a function whose domain

and range are the set of all real numbers. If for each pair of

distinct real numbers p and q

f(P) f(q) t,
p q

then r I. a linear function.

Proof: Let g
o

be any real number. Then for every x

f(x) - 1(q0) t

- f(g0) t(x - go)

f(x) tx - ,tqc) ± 1(q0) .

205
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Therefore f(x) has a representation ax + b, where a is the
given number t and b is the number -tqo + f(q0) .

Then

Example 3-9e: Suppose t . 6 and f(3) =

f(x) - f(3) 6
x -

f(x) - 5 6

f(x) - 5 . 6x - 18

f(x) . 6x - 13

Exercises 3-9

1. Which of the following equations defines a linear function?
(a) y = 7x + 2

(b) y = 7x - 2

(c) Y = 7x
(g) y x6 + 4(d) j . 2
(h) y 0

2. Let f be a linear function defined by y = 5x + 6 .

(a) f(0) ?

1%
(b) f(7) = ?

(c) f(11) ?

(d) For what values of x does f(x) . 0 ?
1(e) For what values of x does f(x) ?

(f) For what values of x does f(x) 11 ?
3. Plot the graphs of all of the following equations on the

same set of axes.

(a) y . 2x + 3 (d) y . 2x

(b) y . 2x - 3 (e) y 2x - 5

(e) y . 2x + 1

(e) y = x 6 + 4

(f) y 4

(sec. 3-9)

206



195

4. Plot the graphs of all of the following equations using a

single set of axes.

(a) y . _4x + 2 (d) y = -x + 2

(b) y = x + 2 (e) y -2x + 2.

(c) y = 3x + 2

5. Plot the graphs of all of the followir, equations using a

single set of axes.

(a) y = 5x + 6 (c)

(b) y . -5x + 6 (d) y 6.

6. Each of the following equations defines a linear function.

Find its inverse.

(a) y 2x - 1 (d) y -x - 4

(b) y = 3x + 5 (e) y 6x 4. 7.

(c) .y . -2x + 6

7. For each of the functions of Problem 6 plot its graph and the

graph of its inverse using a single set of axes for each pair.

8. The function f is defined by y 2x - 7 .

(a) Find its inverse g .

(b) f(6) = ?

(c) g(f(6)) = ?

(d) g(6) = ?

(e) f(g(6)) = ?

The function f is defined by y = -3x - 4 . Predict with-

out computation the value of

f(1000) -11(100)
1000 - 0

Check your prediction by computation.

10. Plot the graph of y = -3x - 4 . Pick two points on the

graph, measure their coordinates, and use these values to

compute the slope of the line.

207
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0
11. Let f be defined by y xL . Show by direct computation

that f(3) - 1(5) 1(4? - f(6)
- 5 - 6

12. (a) If f is defined by y = x2, for how many values of x

does f(x) f(7) f(9) f(7) 9
x - 7 9 7-7

(b) If f is a linear funetl For how many values oY'

does f(x) -

x - 7
f(7)

3-10. Linear Functions Having Prescribed Values.

Theorem 3-10a: Let x
1

and x
2

be any distinct real numbers

and let yl and y2 be any distinct real numbers. Then there is

one and only one linear function f such that--y1 = f(x1) and

Y2 f(x2)

Proof: We seek real numbers a and b such that

b Y1

"2 b = Y2

To solve these equations .J.Jtract the second equation from the

first, obtaining

It follows that

a(x1 - x2) . yl - y2

y1 y2a =
x2

Substitute this expressor ror a in -Ale fL7-st equation obtaining

tlrom

or
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Then if there is a function which makes the given pairings it is

defined by

Yl Y2 x1Y2 Y1x0
Y-v xx

1
xi - x2

2

It should be checked by direct substitution that this function

actually makes the given pairings.

Example 3-10a: Determine the linear fimetion for which

f(3) . 4, £(5) = -1 .

Solution: Determine a and b so that

4 . 3a + b

-1 . 5a b .

Subtract to obtain -2a . 5, therefore a . . Substitute this

result in the first equation t:

4 = therefere

-= -2

.2 23The required function is define = 2x + 2

23 8
4Check: - 0 + -2 = -I- - ----

23 5 2
-1 .5 +

This theorem is closely r,-..teti c the geometric fact that

two points determine a line. a.,,0 pAnts in question are the

points (x1,y1) and (x2,y2) . -771171nm 3-10a says that if -7..Itze

points are not on a vertical li! (-- is xi / x2) and not

a horizontal line (that is yi :hen the line they are o:

is the graph of a linear functi, -710 students will feel thaz
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leaving out vertical and horizontal lines is a defect or even an

injustice. These students can be reassured. It will be shown in

Chapter 6 that every line without exception has an equation of the

form px + qy + r = 0 . This includes our case y = ax + b,

because we can rewrite this equation as ax - y + b 0 .

Exercises 3-10

1. Find the equation which defines the linear function f such

that

(a) f(1) . 1 ; f(3) = 3

(b) f(1) . 3 ; f(3) . 1

(c) f(1) . 3 ; f(-3) = 4

(d) f(7) o ; 1(8) . 42

2. What is the equation of the line which goes through

(a) (1,1) and (3,3) ?

(b) (1,3) and (3,1) ?

(c) (1,3) and (-3,4) ?

(d) (7,0) and (8,42) ?

3. Find the equations of two linear functions for which

f(1) - 2'. Try to describe the set of all such functions.

What point do their graphs have in common?

4. Describe all linear functions f for which

(a) f(0) o

(b) f(o) = 6

(c) f(6) o

In each case try to interpret your answer geometrically.

3-11. Miscellaneous Problems.

1. Each of the following expressions suggests or defines a

function. Describe its domain, its range and its rule.

(a) The perimeter of a hexagon.

(b) The length of the circumference of a circle depends on

the length of its diameter.

[sec. 3-11]
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(c) The pairings (1,9), (2,4), (3,9) .

(d) Hourly temperature readings.

(e) To each number x is assigned x2 4x - 2 .

(0 The pairings (1,a), (2,a), (3,a) .

(g) Assign to each real number x a number x2 + 3 .

(h) The distance an automobile travels depends on its

speed and the elapsed time.

(i) To each odd positive integer assign and to each

even positive Integer assign 1 .

(j) Distances to the nearest mile of each state capitol

from Washington, D. C.

2. Given that f is the function which assigns 3x2 - 5 to

each real number x .

(a) What is the domain of f ?

(b) What is the range of f ?

(c) f(C) ? (f) f(a) = ?

(d) f(-1) ? (g) f(a - 1) = ?

(e) f(5) = (h) f(v) =

3. Given that f is the function whose domain is the set of all

integers which as1igns 4.1 to all non-negative integers and

-1 to all negative Integers.

(a) What is the range of f ? (g) f(4) + f(2) = ?

(b) f(-3) = ? (h) f(4 + 2) = ?

(c) f(0) ? (1) f(-6) = ?

(d) f(3) ? (j) f(-6) + 3 = ?

(e) f(2 - 6) = ? (k) 1(3 6) . ?

f(2) - f(6) = ? (1) 3f(6) = ?

4. Plot the graphs of the functions defined by the following

equations.

(a) y = 5x - 4 (d) y.'7= (x - 3)2

(b) y = -x2 1 (e) y 2x3

(c) y 3x2 -

211
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5. Let f(x) = x2 + 3 and g(x) = 2x + 5

(a) f(g(x)) = ?

(b) g(f(x)) = ?

6. Each of the following equations defines a linear function f .

Find its inverse g and check that f(g(x)) g(f(x)) .

(a) y x + 5 (c) y = -3x + 7

(b) y -2x - 1 (d) y = 5x - 6

7. Find the linar function f such that

(a: f(3) =

(b) f(1) =

(c) f(-2) =

(d) f(o) =

5 f(5) = 3

0 , f(-3) . 1

3 , f(3) -2

5 , f(5) = 2

8. (a) If f is a -.2onstant function doas

f(x + 1) . f(x) ?

(b) If f is a function such that

f(x + 1) = f(x)

must f be a constant function or a linear function?

9. (a) If f is a linear function does

f(x + 2) - f(x + 1) = f(x + 1) - f(x) ?

(b) If f is a function such that

f(x + 2) - f(x + 1) . f(x + 1) - f(x)

must f be a constant or a linear function?

10. Let f be the function defined by y x3 +.1 . Does f

have an inverse? If so, what is the equation which defines

the inverse of f ?

11. Let A be the set of real positive numbers and let f be
1the function with domain A defined by y

(a) What is the range of f ?

(b) What is the equation which defines g, the inverse
of f ? What is the domain of g ? What is the range
af g ?
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12. Given that f is a function for which

f(x) = ax
2

+ bx + c a 0

Prove that if

g(x) f(x + 1) - f(x)

201

then is a linear function.

13. (a) Find an equation which defines a linear function that
is its own inverse.

(b) Describe the set of all linear functions which are

their own inverses.

213
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Chapter 4

QUADRATIC FUNCTIONS AND EQUATIONS

4-1. Quadratic Functions.

Definition 4-1: Let a, b, c be any real numbers. Then if a / 0
we call the function defined by the equation

y = ax2 + bx + c

a quadratic function.

We are going to study quadratic functions by examining a
succession of special cases. We begin with the function defined
by y = x2 , and then progress to the function defined by

y = ax2.,

by y = a(x - k)2,

,2
by y = a(x - k) + p

and eventually arrive at the general case of the function defined
by

y = ax2 + bx + c.

In each case we shall try to see what the graph of the function
looks like.

Exercises 4-1

Which of the following equations define a quadratic function?

1. y = x2 6. y = 2x + 1
2. y = 2x

7. y = X2 + X
3. y = 2x

2
8. y = x(x - 1)

4. =
2

Y 9. y = x(x - 1)(x - 2)

10. y = 2x
5. y = x 2 + 1

For what values of t do the follOwing equations define a
quadratic function:

11. y = tx2 + 3x + 4

12. y = x 2
+ tx + 4

13. y = (t - 2)x2 + 1

211
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1

14. y = x
2
+ 2x + 3

15. y = x t 2x + 3

Each of the following equations is equivalent to an equa-

tion of the form y = ax
2 + bx + c. For each find a,b and c.

16. y = 3x2 19. y = (x + 2)(x - 3)

17. y = 3(x - 4)2

18. y = 3(x - 4)2 + 5

20. y = (4x + 7)(3x - 2)

4-2. The Function Defined y = x2 .

The equation y = x
2 defines a function whose domain is the

set of all real numbers. We recall some facts about real num-

bers to help us sketch the graph of this function. We saw in

Chapter 1 that the equation x
2 = k has no solution if k < 0, has

one solution if k = 0, namely 0, and has two solutions if k > 0,

namely,/ and --AT. We also know that if y, and y2 are positive

numbers, then the positive solution of x
2

= y
1

is less than the

positive solution of x
2 = y2 if and only if yl is less than y2.

If we use only these facts
ly

to sketch the graph of the

function defined by y = x2,

we could obtain a graph

Figure 4-2a. This graph
////

which looks like

has a single lowest point

(0,0). For positive values

of x, y increases Indefin-

itely as x increases in-

definitely. The graph is

symmetric with respect to

the y-axis. Actually the

graph of the function defined

by y x2 does not have the Figure 4-2a

wobbly appearance cf Figure 4-2a. It really looks like the

curve shown in Figure 4--2b. We accept this fact now, without,

proof,,on the undemtanding that ,the proof will be supplied

[sec. 4-2)
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later. The curve of Figure 4-2b

is called a parabola, the point

P is called its vertex and the

line x = 0 is called its axis.

Example 4-2a: Plot the graph

of y = x2 .

Solution: Draw up a table of

values.

205

x -3 -2 -1 0 1 2 3

y 9 4 1 o 1 4 9

Plot these points and draw a

smooth curve through them.

Figure 4-2b

(-3,9) (3,9)

(-2,4) (2,4)

(-1,1) (1,1)

Figure 4-2c

Exercises 4-2

1. Plot the graph of y = x2 . For the following values of x,

determine the corresponding values of y by'calculation

and also by measuring on the graph.

1
(e) x = -

216
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2. Choose several points on the graph of y = x

2
, measure their

coordinates and check that these numbers satisfy the
2

equation y = x.

3. What is the graph of y = x
2

(a) if only points whose coordinates are integers are

considered?

(b) if only points whose coordinates are rational numbers

are considered?

4-3. The Function Defined

For each value of a the equation y = ax- defines a

function. These functions are best studied in two cases:

Case I: a > 0

(1) 3r y < 0, there are no values of x which satisfy

y = ax
2

.

(2) For y = 0, there is one value of x which satisfies

y = ax
2

namely 0.

(3) For each y > 0, there are two values of x which satis-

fy y = ax
2 , namely If and -.A. .

(4) For any given x, as a increases, y increases.
1 1Figure 4-3a shows graph of y = ax2 for a = Tz5,7,1, 2, 5

217
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Notice that all these curves have the same vertex (0,0), the

same axis x = 0 and all open upward. Notice also that the

smaller values of lal correspond to the "flatter" curves.

Case II: a < 0.

The gzeph of y = ax2 with a < 0 can be obtained l'rom the

graph of the equation where a > 0 by a geometric construction.

For instance, suppose we wished to draw the graph of y = -4x2 .

First observe that a pair (x,y) satisfies the equation y = 4x2
if and only if the pair (x,-y) satisfies y = -11x

2
. Next ob-

serve that (x,y) and (x,-y) are symmetrical to each other with
respect to the x-axis. Therefore to plot'the graph of y = -4x2,
all we have to do is

"reflect" the graph

of y = 4x2 in the

x-axis.

Figure 4-3b
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Figure 4-3c

1Figure 4-3c shows the graph of y = ax2 for a = -5, -2, -1, -
1

Exercises 4-3

1. Plot the graph of each of the following equations:

(a) y 2x
2

(b) y = -2x2

1. 2
(c) y = x

1(d) y = -
2

2. For each of.the following 4etermine a so that the graph

of y = ax
2

contains the given point.

(a) (1,1) (d) (1,-1)

(b) (1,2) (e) (-2,1)

(c) (2,1) (f) (-202)

219
[sec. 4-3]



209

3. For each of the following pairs of equations, given that

(u,v) Is on the graph of the first and that (u,w) is on

the graph of the second, which of the following is correct?

v > w, v = w, v < W.

(a) y = 3x2

y = -3x
2

(b) y = x2

y = 4x2

4-4. The Function Defined y = ax2 + c.

Let us now consider the graph of the function defined by

the equation y = ax
2

+ c.

The figure 4-4a shows the y=x2+2
ly

graphs of four functions

(c) y = -3x2

y

which are representative

of this case; these are:

(1) y = x2 + 1

(2) y x2 + 2

(3) y = x2 - 1

(4) y = x2 - 2.

So that you may compare the

graphs of the new class of

functions with that of the

familiar y = x2 , the graph

of the latter has been

sketched in with a dashed

line. By studying the

figure you can see that

y=x2+I

y. x2- 2

Figure 4-4a

the graph of y = x
2
+ 2 is congruent to the graph of y = x2 ,

but that for the same x the ordinate of y = x
2

+ 2 is two

units more than the corresponding ordinate of y = x
2

. Similarly
for the same x the ordinate of y = x

2
- 2 is two units less

than the corresponding ordinate of y = x 2
. Thus the lowest

point on the graph of y = x2 2 is (0,2) and the lowest point

of y = x2 - 2 is (0,-2). Note that each of these graphs has

a minimum point. 2.20
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Figure 4-4b shows the graph of y = -x 2
+ c for various

values of c. Notice that-in this case each of these graphs has

a maximum point.

\ y.-x
2+

2

1

1

y= x2 + I

y=- x2- 2

Figure 4-4b

The graphs of all functions defined by equations of the

form y = ax 2 + c are each symmetric with respect to the y-axis,

regardless of the particular values of a and c. As before,

the smaller values of lal give "flatter" curves.

We may summarize by saying that the graph of y = ax2 + c

is congruent to the graph of y = ax2 1 but has a position which

is 1cl units up or down according as c is positive or negative.

In each case the curve cuts the y-axis at (0,c).

-Exercises 4-4

1. Find the vertex and axis of the graph of each of the follow-

ing equations.

(a) y = 5x2 + 1
221

(b) y = -5x2 + 2
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(c) y = x2 - 1

1(d) y = 3x2 -

(e)

SketT- the graph --)f

3, For each of the fol_

graphs using a

(a) y = 2x2 + 3

y = 2x2 - 3

(b) y = x2 + 3

1 2y = x- - 3

(c) y = -2x2 + 3

y = -2x2 - 3

the equations ,..:oblem 1.

pairs of equatins, plot the

of coordinate axes.

(d) y = -x2 + 1

y = -FX
2

(e) y = -2x

y = 2x2 - 1

(f) y = -3x2 + 1

y = 3x2 + 1
4. Which of the functions in problem 1 have a minimum value

and which have a maximum value? What are these values?
5. For each of the following pairs of equations, given that

(u,v) is on the graph of the first equation and that (u,w)
is on the graph of the second, which of the following is
correct? v > w, v = w, v < w.

(a) y 3x2 - 4 (b) y = 3x2 - 4

y -3x2 4 y = 3x2 + 6

4-5. The Function Defined lay = a(x k)2.
In this section we study functions defined by equations

of the form
y = a(x - k)2

where a and k are non-zero constants. We proceed by con-
sidering several examples.
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Example 4-5a: a ,es and plot the grapn

y 2(x - 3)2.

x ... 1

y - 2(x - 3)2 -. 8 2

The axis of this curve is

line x = 3. Its vertex i

point (3,0).

Figure 4-5a

Example 4-5b: Make a compaslte ta'.;le of values for y = 2x2 and

y = 2(x - 3)2 and plot the griri: f the two functions on the

same set of axes.

x . ... -2 -I 1 2 3 4 5 ...

y = 2x2 ... 8 1 o 2 8 ... ... ...

y = 2(x - 3)
2

... ... ... 18 8 2 0 2 8 .
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Figure 4-5b

The graph of y = 2x2 is symmetric with respect to the line x = 0,
and the graph of y = 2(x - 3)2 is symmetric with rJspect to the
line x = 3.

Summaa of 2roperties of the graph of y = a(x -
1. The graph is congruent to the graph of y = ax , but has a

position Ikl units to the right or left of the graph y = ax2
according as k > 0 or k < 0.

2. If a > 0, the graph opens upward.and has a lowest point
(k,0); if a < 0 the graph opens downward and has a highest point
(k,0).

3. The graph is symmetric wdth respect to the line x = k, and

this line is called the axis of the graph.

Exercises 4-5
1. Find the vertex and,the axis of the graph of each of the

following equations.

(a) y = (x - 2)2 (b). y = -2(x + 1)2

(sec. 4-5]
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1. (c) y (e) y 3(x -

(d) y = - -(f) y -5(x 1)-

2. Sketch the gr o- each of the equL.:....Lons ::77)blem 1.

3. For each of t-J,,J ftwing pairs of eqlzatic=, the

graphs using sirl;LIe set of coordinate ax-1a.

(a) y = (x - 3)2

y = -(x

(b) y =

y = -(x - 1)2

(c) y = -2(x + 4)2

y = 2(x - 4)2

(d) y = ?.7*(x 1)2

4(x 1)2

(e) y = 4(x 1)2

3
Y = 7(x - 1)2

(f) Y = 2(x +
1-)2

Y = -2(x +
1.)2

4 Which of the graphs in problem I have a minimum value and

which have a maximum val.1e: What are these values?

5. FOT each of mhe following pairs of equaticns, given that

(u,v) is on the graph of the first equaticn and that (u,w)

is on the graph of the second determine the values of u

for: which v < w, v = w, v > w.

(a) y 3(x - 4)2

y = -3(x - 4)2

(b) y 3(x - 4)2

Y = 3(x + 4)2

4-6. The Function Defined la y =

We know that the graph of y =

is Ipl units up or down the graph

section we know that the graph of

%a(x - k) 2
+ p.

ax 2 + p has a 7nsition which

cf y = ax2 ,.and from the last

= a(x - k) 2 has a position

that is Ikl units to the right 7-77 Left af the gra2h

Hence, the graph cf y = a(x - p fs congruent to the graph

of y = ax but is pJ units up ar town and Ikl units to the

right or left of tte gqaph of y = ax2 . 2fte- exprassions "up"

and "to the right" are associated with .gositive Talues of p amT,T.

k, and "down" and to the left"are assaniated wittt_ negative

values.
2 2 5
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Example : Plo the gr._::p:ms Lf y = 2(x + 3 + and
2y = 2(x - + 1 lag a :J.L:1 set of axes.

(3,1)

Ix= 3

Figure 4-6a

.The graph of y = 2(x - + 1 has a I.Jwest , (3,1) and
has the line x = 3 az f_-:s as. The graph = 2(x + 3)2 + 1
has a lowest point az= has the :ine x = -3 as its axis.

Notice -::hat both cas 77-=E:71.

Summary of prope=iez 0: of y a (x -

1. If a > 0 th-z--1- graph =ma:. .upward az.d s-te curve has a lowest

point . If a < 0 77,:te ;7E:10h opens tLc7ramwa_rd and: has a

highest point (k4p).

2. The graph has the = k as 1".:3 axle-

226
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Exercises 4-6

nd the vertex and the axis of the grL:.bh of each of the

ftllowing equatlons.

(a) y = 2(x 3)2 + 4

(b) y = -2(x - 3)2 4

(c) y = (x + .3)2

(d)

(e)

- 1)
2

- 1

1)2

2nN(f) y = - ci - 3

S:etch the g:-.._aph of each of the eaua__Lons in Problem 1.

3. For each of t:::e following pairs of earaations plot the

graphs using a single set of coordinate axes.

,a) y 2(x - 1)2 3

y 2(x 2)2 + 3

(b) y = -2(x - 1)2 - 3

y = 2(x + 1)2 + 3

(c) y = -2(x + 1)2 + 3

y = -2(x + 1)2 - 3

(d) y = -2(x + 1)2 + 3

Y 2.(x 1)2 3

(e; y = 3(x + 1)2 2

y = (x + 1)2 + 2

y = -3(x - 1)2 - 2

y - 1)2 - 2

Which of the exeraise$ ln pr%.-Llem 1 have a mindmum value

and which have a maxf.mum valu-:? What are these-values?

5. For each of the following ,f eauations, gi7an that

(u,v) i$ on the graph bf the equation and (u,w) is

on the graph of the second, der=Lne t177-:. values ar u ftzri)

which v < w, v = w, V > w

(a) y = 2(x 1-2

= 2(x - 6

(b) y = 2(x - 3)2 + 6

y = -2(x - 3)2 6

(c) y = 2(x - 3)2 + 6

y = 2(x + 3)2 + 5

227
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4-7. The Function defined by y = ax2 + bx + c.

We turn now to the general quadratic fuhion defined by

the equation y = ax2 + bx + c, and reduce the study of thiz

function to the special cases studied in the trevious sectas.

We do this by performing a useful algebraic manipulation kmcwn

as "completing the square".

Let us examine a few examples first. Ccnsider the fun=lon
defined by y = 3x2 - Ox + 3. Since

3x2 - 6x + 3 = 3(x2 - 2x + 1) -= 3(x - 1)
2

, 7:-;:r equation is of
Nthe form y = a(x - k) 2

and is covered in ser.77_:n 14-5 Suppose

now we have a more complicated example, say T 3x2 - 6x + 4_

This cannot be written in the form y = a(x 1c)2. However wE,

can write y = (3x 2 - 6x + 3) + 1 and concltp
N

y = 3(x - 1)
2

+ 1. Thus this second equation ia of the tyre
N2y = a(x - k) + p studied in section 4-6. Lm both examples we

started with an expression ax 2
+ bx + c and ended with a new

.expression, equal to the original one, of ths ro= x)
2 +

These two examples are typical of what happens 1.n g.,?neral.

Every expressioh aa 2 + bx + c can be written
. im. the form

a(x - k) 2
+ p provided only that a is not 2he folLnlang

theorem states this fact and also shows how k aat p ea=

be found.

Theorem 4-7a. If a is not zero then

N b
2

ax2 + bx + c = a(x - k) 2 + p where k = - amd 7..
4ac--

ea 4a

, txxProof: ax2 + bx + c = akx 2
+ + c

a

r bx - b
2

= \X2 b--

a TT_

2

Note: This proof depends on a few algebrai-maneuverm.
b2 2 bfirst place the expression was added to x + x to :attain
4a

2 b b2 b
2

a

the square x + - x + = (x + 75-.) . Notice also-that adif.74a
4ab 2

,, inside the parentheses having the multiplier a on the
4a

[sec. 4-7]
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b
2

b
2

outside amounts :0 adding a ,which is g,to the whole ex-
4a,

pression. The expression - 7-6.. was therefore added to the whole

expression to be str..e that the final expression was equal to the
original.

Example 4-7a. 3x2 - 6x + 4 . 3(x2 - 2x) + 4

= 3(x2 - 2x + 1) - 3 + 4

= 3(x - 1)2 + 1
ac - b 2

Here a = 3, b = -6, c = 4, 4
. -1, 1. The4a

graph of y = 3x2 - 6x + 4 is shown in Figure 4-7a. Its vertex
is the point whose coordi-

nates are (1,1). Its axis

is the line wftose equation

is x = 1. The graph does

not go below the line whose

equation is y =

X.1

Figure 4-7a

Example 4-7b. x
2

- 4x - 6 (x2 - 4x) - 6

. (x2 - 4x + 4) - 4 - 6

(x - 2)2 - 10

4ao4; b2Here a = 1, b =-4, 10. The

graph of y = x
2
- 4x - 6 is shown in Figure 4-7b.

229
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Its vertex is the point whose

coordinates are (2,-10). Its

axis is the line whose equation

is x = 2. The graph does not

go below the line whose equa-

tion is y = -10.

Example 4-7c.

-6x2 7x - 8 = -6(x2 - x) - 8

-6(x2 - x - 8

-6(x - .1(27) 143
24

Here a = -6, b . 7, c =

b 4ac - b 2
-143

12' a = 24

The graph of y = -6x2 7x - 8

is shown in Figure 4-7c. Its

vertex is the point whose
-143..coordinates are (47, j Its

axis is the line whose equation

is x = . The graph does

not go above the line whose
-143equation is y =

230
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Exercises 4-7

1. Transform the following equations to the form
y = a(x - k)2 + p, by completing the square

(a) y = x2 - 4x y = x2 - 144

(b) y = 2x - x2

(c) y = x2 + 3

(d) y = 3x2 + 5

(e) y = -x2 + 6x 7

(g) y = x2 + 2x - 3

(h) y = 2x2 + 8x - 5

(i) y = x2 + 2x - 24

(j) y 10 + 5x - 5x2
2. Find the vertex and axis of the graph of each of the

following equations:

(a) y x2 + 7x - 8 (f) y = x2 - x + 3

(b) y = -x2 - llx - 31 (g) y 5x2 + 4x + 3

(c) y = -2x2 - x - 1 (h) y -3x2 + 2x - 2

(d) y = 4x2 + x - 3 (i) y = -5x2 + 3x

(e) y = -2x2 - 5x - 1 (j) y = 2x2 + 8
3. Sketch the graph of each of the equations in problem 2.

4-8. at1c Functions having Prescribed Values.

Every quadratic function makes infinitely many pairings of

one real number with another. It is reasonable to ask how many

of these pai'.'ings can be prescribed arbitrarily. It turns out
that the answer to this question is three. Let us state this
fact more specifically. Let x

10
x
2'

x be any distinct real
3

numbers and let yl, y2, y3 be any three real numbers whatsoever.
Then, if there is no linear function which pairs xl with
x2 with y2 and x3 with y3, there is one and only one quadratic
function which makes these pairings.

We are not in a position to prove this fact now because its

proof requires solving systems of three equations in three un-
knowns and this topic is not discussed until Chapter 8. Let us
look into an example anyway. Suppose we try to find a

(sec. 4-8]
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quadratic function whin pairs 3 with 1, 9 wath -1 and 6 with 2.

We would look r a q. Jratic function defined by y = ax2 + bx+c

such that
3 = a' _)

2 + b(1) + c

) = a(-1)2 + b(-1.) = a. + c

6 = a.(2)2 + b(2) + c = 4a 2b + c.

We seek three numbers a, b,.c whLch si2Isf these equations.

It can be checked that a = 2, b = -3 Emd c = 4 satisfy the

equations and that the quadratic f117--Ion defined by

y = 2x2 - 3x + 4 makes the given paL=.71gs. A method by which

these numbers can be found is descrfti in Chapter 8.

This question about the quadratlz function also has a

geometric version. It has to do with Trescribing points to lie

on a single parabola. It turns out 7ztlat ff any three points

are given which do not lie on a lf=a-t±len. they lie on the graph

of some equation y = ax
2
+ bx + u-

For instance if the

points with coordinates (1,3),

(-1,9) and (2,6) are gfVen,

then the graph of the equation

y = 2x 2 - 3x + 4 contains these

points. The diagram shows that

these points do lie on the

parabola and that they are not

collinear.

[sec. 4-8]
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Exercises 4-8

1. Find the quadratic function which pairs 0 with 0, 1 with 1
and +1 with -1.

2. Find the quadratic function whose graph passes through

(0,0), (2,0) and (1,-1).

3. Find the quadratic function which pairs 0 with 0, 0 with 2

and -1 with 1.

4. Determine the number t so that the graph of the equation

y = ax 2
+ bx + c, a j 0, contains the points (0,0), (1,2)

and (-1,t).

Equivalent Equations; the Equation ax2 + bx + c = 0.

Definition 4-9a. Two equations are said to be equivalent if and

only if they have the same solution set.

Example 4-9a. The equation 2x - 6 = 0 and x - 3 = 0 are equi-

valent since the solution set of each is t3).

There are several ways of manipulating an equation to obtain

an equivalent equation. Some of these ways are

(1) addition of the same number to both members of an

equation.

(2) multiplication of both members of an equation by the

same non-zero number.

For instance the equation 2x = -6 is obtainable from 2x + 6 = 0

by adding -6 to both members, and these are equivalent equations.

The equation x = -3 is obtainable from 2x = -6 by multiplying

both members by -3,2' and these are equivalent equations.

We are going to continue our study of the equation

y = ax2 + bx + c. We have already seen that the function defined

by this equation pairs certain values of y with 2 values of

x, certain values of y with no values of x and one value of

y with exactly one value of x. We are going to consider y

as a given number and examine the solution set of the equation

y = ax
2 + bx + c regarded as an equation in x.

As a first step we simplify the problem by reducing it to

the study of equations of the form 0 = ax2 + bx + c. We shall
(sec. 4-91
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see shortly how useful this step is. We ought also to convince

ourselves that no cases are lost by considering only this

special case with y = 0. For instance the equation

17 = 3x 2 + 4x + 5 is equivalent to .che equation 0 = 3x 2
+ 4x - 12.

More generally, if y, a, b, c are numbers, then the equation

y = ax2 + bx + c is equivalent to the equation

0 = ax
2
+ bx + ct where cl = c - y. This can be shown by

adding -y to both members of the first equation.

Exercises 4-9

, Show, that the following pairs of equations are equivalent.

1. 3x + 9 = 0, x + 3 = 0

2. 2x + 6 = 9, x =

3. x
2

+ 9x + 10 = 0, 2x
2
+ 18x + 20 = 0

4. x3 + 7x2 + 3x + 9 0, x3 + 7x2 + 3x + 12 = 3
2

5. - 8 0, x2 = 16

6. 17x + x2 11, x2 + 17x - 11 0

7. x
2
+ 7x + 3 = 20, 0 = -17 + 7x + x2

8. -3x2 + 4x - 9 = 6 + x, -3x2 + 3x - 15 = 0

9. 5x2 - 15x 0, x2 - 3x

10. ax
2
+ bx + c = 0, -c - bx = ax2

Find a quadratic equation of the form ax2 + bx + c = 0

equivalent to each of the following:

11. x2 + 20 = 8x + 5

12. x
2 + 3x = 2x + 6

13. x 2 + 49 = 14x

14. 2x2 + 3x + 7 . x2 + 3x + 6

15. 4x2 + 8x = 5

Test the following pairs of equations to see if they are

equivalent:

16. 4x - 3 = 0, x =

[sec. 4-9]
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17.

18.

19.

20.

21.

3x
2

= x =

x2 - = O 2
p x

x
2

= 1, x = 1

x
2

= Op x = 0

(x
50)125

= 0,

2+ a 0

(x - 50)13 = 0

4-10. Solution of ax2 + bx + c = 0 12,y. Completing the Square.

Definitions 4-10a. If ap b, c are_any real numbers and if

a / Op we say that the equation + bx + c = 0 is a quadratic
equation. A root of the equation ax2 + bx + e = 0 is any

member of the solution set of this equation. To solve an

equation means to find its solution set.

Note: Any root of an equation can be called "a solution" of

that equation. When the words "the solution of an equation"

axe used they refer to the entire solution set of that eduation.

Theorem 4-10a. The quadratic equation

ax
2
+ bx + c = 0

is equivalent to the equation

(x + 4k)
2

b2 -

2
4ac

4a

Proof: In section 4-7 we showed that

2
kac - b

2
ax

2
+ bx + c = a(x + ) +

therefore ax
2

+ bx + c 0 is equivalent to

b. 2
4ac - b2a(x + m) + ---7g--- . O.

b
2

- acAdding 4to
both sides gives the equivalent equation

b. 2
b
2

- 4aca(x + la) -
a

Multiplying both sides of the equation by the non-zero number -1-

gives the equivalent equation

2 3 5

[sec. 4-10]
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2

- 4ac
7g1

4a
2

Example 4-10a: 3x2 + 4x + 5 = n is equivalent o each of the

following:
4

3(x
2

+ x) + 5 = 0

2

3(x
2

+ x + (7) ) + 5 - = 0
4 2

2 2 11
3(x + + = 0

2 2 11
3(x + ) = -

, 2
11

(x + ) = 7
Theorem 4-10b. The quadratic equation ax2 + bx + c = 0 has

(1) No roots if b2 - 4ac < 0

(2) One root if b2 - 4ac = 0, namely - 1.23F

(3) Two roots if b2 - 4ac > 0, namely

-b - 1/132 - 4ac -b + 1/132 - 4ac
and

2a 2a

Note: This theorem refers only to those roots which are real

numbers. When the complex numbers are introduced in Chapter 5

a different version of this theorem will be presented.

Proof:. We know that our equation, ax
2 + bx + c = 0, is

equivalent to

225

b
2

b
2

- 4ac
(x + = 2

4a

According to Theorem 1-10b this equation has a solution if

and only if the right member is not negative. Since the

denominator 4a2 of this right member is the square of the non-

zero number 2a it is positive. It follows that the right

member is negative if and only if its numerator b2 - 4ac is

negative. Thus the equation ax
2 + bx + c = 0 has no sollition

if b
2

- 4ac < O. If b2 - "lac . 0, then x + -21-1 = 0 and x = -

If b
2

- 4ac > Op then either
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In the first case

and in the second

b li/b 2 - 4acx + =

4a
g-

or

b b
2

- 4ac,

x = -
4a

-b + .N/b2 - 4ac
2a

-b - - 4acx -
2a

Corollary: A quadratic equation has at most two roots.
Example 4-l0b. Consider the equation 3x2 + 4x + 5 = 0. We

have a = 3, b = 4, c = 5, b2 - 4ac = 42 - 4.35 = -44. This

equation therefore has no solution according to Theore. 10b.

The equation was also treated in example 4-10a and shown to be
equivalent to the equation

2

(x + 4) = - .

The fact that the right member of this equation is negative, and

consequently the equation has no solution, illustrates the

central idea of the proof of Theorem 4-10b.

Example 4-10c: Consider the equation

3x
2
+ 6x + 3 = 0.

We have a = 3, b = 6, c = 3, b2 - 4ac = 62 - 4.3.3 = 0.

According to Theorem 4-lOb this equation therefore has exactly
6one solution, namely - 277 = -1. The equation is equivalent to

3(x2 + 2x + 1) = 0 or (x + 1)2 = 0. This latter equation clearly
has as its only root.

Example 4-10d: Consider the equation

5x
2
+ 5x - 30 = 0.

We have a = 5, b = 5, c = -30, b2 - 4ac . 52 - 4.5(-30) = 625.

According to Theorem 4-10b this equation has the two solutions

-5 + .425 -5 - -1/4n3and10 10
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Since ..,/13 = 25, these numbers are -5 25 and -5 25 , that10 10
is 2 and -3. Let us check to see if 2 and -3 are in fact roots

of our equation. Substituting 2 for x, we have

5.22 + 5.2

Substituting -3 for x,

5.(-3)2 + 5(-3)

- 30 = 20 + 10 - 30 = 0

we have

- 30 = 45 - 15 - 30 = 0

Therefore 2 and -3 are roots of the given equation.

Definition 4-10b. The discriminant of the quadratic equation

ax
2
+ bx + c = 0 is the number b 2 - 4ac.

Corollary to Theorem 4-10b: A quadratic equation has

(1) No solution if its discriminant is negative.

(2) Exactly one root if its discriminant is zero.

(3) Exactly two roots if its discriminant is positive.

Theorem 4-10b amounts to giving three procedures for dealing

with quadratic equations. When complex numbers are introduced,

a single formula will cover al2 the cases, namely

-b 1b 2 - 4acx =
2a

As long as we are dealing with real numbers, we can only use

this formula for the case b2 - 4ac > 0.

Exercises 4-10

Test the following quadratic equations to determine which

has no solution, which has one solution and which has two

solutions, by completing the square.

1. x
2

- 5x + 6 0

2. 2x
2

- 3x - 5 0

3. 3x
2

+ 2x + 4 = 0

4. 2x
2
+ 3x = 0

5. x
2
+ x + 1 = 0

6. x2 - 6x + 9 . 0

7. 5x
2

= 2x - 1

8. 25x
2

= -10x - 1

9. 5x
2

= 3x - 2

10. 2x
2

+ 9x = 4
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4-11. Solution of quadratic Equat_Lons pi Factoring
Theorem 4-11a. If a, r and s are real numbers and if

a / 0, then (r,$) is the solution set of the equation

a(x - r)(x - s) = 0.

Proof: First we show that r and s are roots of the
equation. If we substitute r for x we obtain

a(r - r)(r - s) = a-0(r - s) = 0,
so r is a root of the equation. If we substitute s for x,

[sec. 4-11]

. x
2
+ x - 1 . 0 40. bx

2
+ cx + a = 0

Solve by any method:

41. 5x - 3x2 = 0 46. 2x2 - 5x - 6 = 0
42. 2x

2
- x - 3 = 0 47. 2x2 + x - 3 = 0

43. x 2 +x-l= 0 48. 25x2 + 10x + 1 . 0
44. x2 + 8x . 2 49. 16x2 8x + 9
45. 5x

2
- x - 3 = 0 50. 3x2 + 5x - 7 = 0
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we obtain

a(s - r)(s - s) = a(s 0.0 = 0
so s is a root of the equation. There remains to show that
no other number is a root of the equation. This follows from
the theorem that if a product of real numbers Ls zero, one
of the factors mist be zcro. If a number t is a root of the
equation then a(t - r)(t - s) must be zero. Since a / 0 it
follc,ws that either t - r is zero or t - s .f..3 zero. We conclude
that if t is a root either t = r or t = s.

Exam..de 4-11a: Consider' the equation

17(x 13)(x 4. 19) = 0.

According to Theorem LZ..la its solution set is (18,,19). To

see this it is helpful to notice that x + = x - (-19).

Example 4-11b: Consider the equation

- 18)2 = 0.

This equation has one root, 18. According to Theorem 4-11a the

solution set of this equation is the set (18,18) which is a

correct but somewhat unusual way of designating the set (18).

Thus'the theorem is valid for equations with only one root.

Theorem 4-11a is occasionally useful in solving quadratic

equations ax2 + bx + c = 0, because it is sometimes possible to

factor ax 2 + bx + c into an expression of the form

a(x r)(x - s).

Exwvie 4-ilc: Consider the quadratic equation

x
2

- 3x + 2 = 0.

It is equivalent to the equation

(x - 2)(x - 1) = 0

and the solution set of the original equation is therefore (2,1).

Example 4-11d.: Consider the quaCratic equation

21x
2
+ llx - 2 = 0.

It is equivalent to the equation

(7x - 1)(3x + 2) = 0.

This is equivalent to the equation

7(x - 4,)3(x + = 21(x - 4)(x + = 0.

(sec. 4-11]
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1 2,The solution set of the original Ff!quation is therefore(7 , -

The equation
(7x 1)(3x ± 2) = 0

can also be solved directly by solving

7x - 1 = 0

and 3x + 2 = 0.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

4-12.

Exercises 4-11

Solve the following equations by factoring:

x 2
- 5x + 6 = 0 16. 6 + 7x = 5x2

x 2 - 8x + 16 = 0 17. 3x
2 + 5x = 0

x
2

- 16 = 0 18. 11.x =2 + 15x2

x
2

- 3x - 54 = 0 19. 9x2 - 16 = 0

2x
2

- 5x + 3 = 0 20. 7x
2

- 5 . 2x
2x2 + x - 3 = 0 21. 21x2 + 40x - 21 = 0
16x2 - 25 = 0 22. 21x

2
+ llx - 2 = 0

33x
2

- llx = 0 23. 34x
2
+ 17x = 0

x
2
+ 8x - 65 = 0 24. 18x2 - 9x + 1 = 0

10x
2
+ 29x - 21 = 0 25. 64x2 - 16x + 1 = 0

15x 2
- 6 = x 26. x2 - 2ax - 24a2 = 0

31x = 6x2 + 35 27. x2 - - 4b
2

= 0

x + 2 = 15x2 28. x2 - (a + b)x + ab = 0

2x2 + 5x = 12 29. x2 + (a - b)x - ab = 0

5x + 4 = 6x2 30. t2x2 - (at + bt)x + ab = 0

Some Properties of the Roots of a Quadratic Eguation.

Theorem 4-12a. If r and s are any real numbers there

is a quadratic equation whose solution set is (r,$).

Proof: Since

(x - r)(x - s) = x
2

- (r + s)x + rs

the equation
(x - r)(x - s) = 0

is equivalent to the quadratic equation

x
2

- (r + s)x + rs = 0.

Since the solution set of the first equation is (r,$) this is

also the eolution set of the second.
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Note: If r and s are equal to each other this argument is

still valid. The solution set is then (r) which is the same as

(r,r).

Sometimes such a quadratic equation, with only one root, is said

to have "two equal roots" or a "double root". This terminology

Is discussed later in Chapter 5.

Example 4-12a: Consider the set (14,11).

Since (x - 14N - 11) = x2 - 25x + 154 the given set is the

solution set of the quadratic equation

x
2

- 25x + 154 = 0.

Example 4-12b: Consider the set (14,-11).

Since (x - 14)(x - (-11)) = (x - 14)(x + 11) = x2 - 3x - 154

the given set is the solution set of the quadratic equation

x2 - 3x - 154 = 0.

Corollary: If (r,$) is the solution set af the i,-41.10.1t.ion

x
2
+ px + q = 0, then r + s = -p

and rs = q.

Proof: We consider our equation to be cf the type

ax
2
+ bx + c = 0 with a = 1, b = p and c = c. It follows then

from the quadratic formula that the solutions of our equaticen

are
kg

and

The sum of these numbers is
+,/p2

2

which simplifies to -p. The product of these numbers is

2 2 2
4

2
4

which simplifies to q.

Theorem 4-12b: If the solution set of the quadratic equation

ax
2 + bx + c = 0 is (r,$) then

r + s = - k and r.s = aa

[sec. 4-123
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Corollary: If the quadratic equation ax 2
+ bx + c = 0 has roots

r and s, then ax
2 + bx + c = a(x - r)(x s).

Example 4-12a: Let u: consider the equation

x
2 - 3x + 2 = 0

which _Ls an instance of the equation discussed in Theorem 4-11a

with p = -3 and q = +2. Its solution set is (2,1). According

to Theorem 4-12a we should have

2 + 1 = -p = -(-3)

2.1 = q = 2

and these statements are Indeed correct.

Example 4-12c: Consider the equation 21x2 + llx - 0. We
2saw in example 4-11d that its solution set is (1.7 , - Accord-

1 2ing to Theorem 4-12b snould have + k- \

= ana
7

7k/
1- \2 2 and these statements are indeed correct.

Exercises 4-12

For each of the following form a quadratic equation whose

solution set is the given set.

1. (5,6) 4. (6,-6) 7. , 0)

2. (3,-7) 5. (0,0)
8' '

3. (4) 6. (4, .;-) 9. (4 4 + ig)

10. Find a quadratic equation whose roots are r and

Find the sum and product of the roots of the following

equations if roots exist.

11. x
2 - 13x + 40 = 0 14. 2x

2
- 6x = 0

12. x
2 + 5x - 50 = 0 15. 7x2 - 11x - 8 = 0

,

13. 2x
2 - 6x + 5 = 0 16. x

2
- kr) + q) pq = 0

17. The roots of an equation are 2 + 1/-3- and 2 - . Find the

sum and product of these roots and write the equation.

18. Construct a quadratic equation with integral'coefficients

which has the roots and
3 3

19. For each of the following find all values of h such that

the equation has one root:

(a) 5x2 + 3x + h = 0 (c) hx2 + 3x + 2 0

(b) 5x2 + hx + 3 = 0 2 4 -0
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1,20. Show that if one root of the equation ax 2
bx c = 0

is twice the other, then 2b2 = 9ac.

4-13. Equations Transformable to Quadratic Equations.

We consider equations which are not quadratic equations but

which can be transformed to quadratic form. Since we know how

to solve quadratic equations any problem reducible to a quadratic

equation can be considered to be solved, so the advantage of

this procedure is clear. There is a disadvantage to our procedure
also; the transformations we use in this section do not al-

ways give-us equations which are equivalent to the ones we

started with.

We shall deal with transformations which can produce three

different effects -- they can enlarge the solution set, dimin-

ish it or leave it unchanged. Specifically we shall deal with

those transformations for which

(1) the solution set of the derived equation is the same

as the solution set of the original equation (equivalent

equations)

(2) the solution set of the derived equation is a proper

subset of the solution set of the original equation (some

roots get "lost")

(3) the solution set of the original equation is a proper

subset of the solution set of the derived equation (extra-

neous roots are introduced).

Thus we cannot assume in what follows that the solution set of

the derived quadratic equation is the solution set of the

original equation.

We do not have rules for dealing with this subject. Instead

we shall deal with some typical examples.

Example 4-13a: Solve the equation

4x - 5 += 0

Clearly, the given equation is not in the quadratic form. We

multiply both members of the given equation by x, obtaining

[sec. 4-13]
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or

4,x(x - 5 + 9 = 0

x2 - 5x + 4 0.

This equation is a quadratic equation whose roots are 1 and 4.

Let us verify that these are also roots of the original equation.

4
1

44 - 5 + 7 . 0

In this example multiplying both members of the original equation

by x produced an equation all of whose roots were roots of the

original one. This does not always happen as the next example

shows.

Example 4-13b: Solve the equation

3 3x + 7-7-7 5 7-7-7

If we multiply both members of the equation by x - 2 the trans-

formed equation is

or

x(x - 2) + 3 = 5(x - 2) + 3

x2 - 2x + 3 = 5x - 10 + 3.

This equation is equivalent to the quadratic equation

x2 - 7x + 10 0 .

The roots of this quadratic equation are 5 and 2. Let us check

3these in the original equation: 5 + ! 5 + 2 or 6 = 6.

Thus 5 is a root of the original equation. On the other hand

we cannot substitute 2 for x in the original equation because

this would produce a zero denominator. Therefore 2 is not a

root of the original equation. Therefore 2 is an extraneous root.

245
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Exercises 4--13a

1.

2.

3.

4.

5.

Solve each of the following equations.

by substituting in the original

4x - + 3 = 0 6.

x - = 0 7.

1x + - = -2 8.

1x + - = 2 9.

x - 1 = 371-1. 10.

equation.

(x 5)

3+5

Check yaur answers

+ = 09

°
x

x

x - 9

x2 -r 10

2

72

7x
x - 5

x -

x - 5

x

Example 4-13c: Solve the equation

13x + k - x = 0.

We first add x to both members, obtaining the equation

If we square both members of this equation we obtain the equation

3x + 4 . x2
or

x2 - 3x - 4 = 0.

The roots of this quadratic equation are 4 and -1. We check to

see if either of these numbers is a solution of the original

equation.
if17 - 4 = 0

+ 1 = 2

This shows that one of the two roots of the derived quadratic

equation, namely +4 is a root of the original equation and that

the other root, namely -lois not.

246
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Solve the following equations:

1 . x

2. V6x + 7 = x + 2

3. - 3 = x - 5

4. + 1 + 11 = 3x

6 .

7 .

8 .

9.

5. 1/5x - 1 = VT+ 1 10.

= 61/5x + 6 + V3x - 2

V6x + 7 - 1/3x + 3 = 1

1/4x - 3 = 18x + 1 - 2

1/2x - 5 + x = 2

Example 4-13d: Solve - 3x2 + 2 = 0.

This is not a quadratic equation. Let us substitute

Then the transformed equation

t
2

- 3t + 2 0

for x
2

.

is a quadratic equation. The roots of this equation are 1 and

2. The roots of the original equation are found by solving the

equations t = x2 = 1 and t = x2 = 2. We obtain the numbers 1, -1,

157, - Arf. We find by substitution that these numbers are roots.

The solution set of the original equation is therefore

(1, -1, 1/7f, -

Example 4-13e: Solve (x2 - 5x)2 - 2(x2 - 5x) - 24 = 0. This is

not a quadratic equation, If we substitute z for x
2

- 5x, then

the transformed equation

z
2

- 2z - 24 = 0

is a. quadratic equation. Its roots are 6 and -4. The roots of

the original equation are found by solving the equations

z = x
2 - 5x = 6

and
z = x

2
- 5x = -4.

The solution set of the first of these is (6,-1), the solution

sz:t of the second is (4,1). We find by substitution in.the

original equation that the numbers 6, -1, 4, 1 are roots of the

[sec. 4-13]
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original equation, so the solution set of the original equation

is

1.

2.

3.

4.

1.

2.

3.

(6,-1,4,1).

Solve the following

tions.

x - 4x2 + 3 = 0

x
4

- 6x2 + 8 . 0

x4 - 13x
2
+ 36 = 0

x
4

- 29x2 + 100 = 0

Solve the following

1
2 - = x

(x - 5)2 + 2(x - 5)

3x +
1

Exercises 4-13c

- 2(x
2

+ 3(x2 +

substitu-

- 3x) -8 =0

3x) + 2=0

36 = 0

+ 2 = 0

equations

5.

6.

7.

8.

Exercises

by making suitable

(x
2

- 3x)
2

(x2 + 3x)2

1

a
(x - 2)

2

(R2-c--T)

4-13d

x
3(x

equations.

- 8 = 0

x -x +

4.

5.

6.

7.

8.

9.

x4 - 8x2

(x2 - x)2

(x2 + 1)2

x - 1

- 9 = 0

- 14(x2 - x) + 24 =

+ 6(x2 + 1) + 8 - o

1 3

0

7 77-77

112x - 3 + 2 V3x - 2 = 5

10.

11.

12.

13.

Vax - 5 = 2 + Vx - 2

3((2 + 3x)2 - 2(x2 + 3x)

1
2

13(7 + 1) + 5()-E + 1) = 2

- 5 = 0

Vx + 2 + V3 + 2x = 2

[sec. 4-13]
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14. 1/2x + 3 - 1/4x - 1 = 1/6x - 2

15. 42 + 9 + 1

x + 9

16. x2 + 5x - 5
6

0
x- + 5x

17. 0
2x - 7 3x - / 4x - 2

x + -R-7"g
x' + 3x + 2

3x 1
18. + . 2

7x - 2 4 - x
7 ___.8 - __.1_,

19 7-7-5x-b x- i
20. 2x

2 + (a + 2b)x + ab = 0

= 8

4-14. Quadratic Inequalities.

By a quadratic inequality we mean an inequality of one of

the following kinds

(1) ax2 + bx + c > 0

(2) ax2 + bx + c < 0.

The solution set of such an inequality can be found by examining

the graph of the equation y = ax
2 + bx + c. The portions of the

graph which are aboVe the x-axis give the values of x which

are the solution set of ax
2
+ bx + c > 0. The portions of the

graph which are below the x-axis give values of x which are

the solution set of ax
2
+ bx + c < 0.

249
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"Here are the cases which can come up

Case I (Figure )4-14a)

The solution set of

ax
2

bx + c < 0 is

(x:p < x < q).

The solution set of

ax
2

+ bx + c = 0 is

(P, q)

The solution set of

ax
2

+ bx + c > 0 is

(x:x < P or x

Case II (Figure 4-14b)

The solution set of

ax
2
+ bx + c < 0 is the

empty set.

The solution set of

ax2 + bx + c = 0 is (p).

The solution set of

ax
2

+ bx + c > 0 is

(x:x < p or x > p).

Figure 4-14a

2 50
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Case III (Figure 4-14c)

The solution set of

ax
2 + bx + c < 0 is the empty

set.

The solution set of ax2 + bx + c = 0

is the empty set.

The solution set of ax2 + bx + c > 0

is the set of all real numbers.

Case IV (Figure 4-14d)

The solution set of ax2 + bx + c < 0

is (x:x < P or x > q).

The solution set of ax2 + bx + c = 0

The solution set of ax2 + bx + c > 0

is (x:p < x ( q) .

Case V(Figure 4-14e)

The solution set of

ax + bx + c < 0 is

(x:x < p or x > p) .

The solution set of

ax
2 + bx + c = 0 is (p).

The solution set of

ax
2 + bx + c > 0 is the

empty set.

0

Figure 4-14c

Figure 4-14d

Figure 4-14e
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Case VI (Figure )4-14f)

The solution set of

ax
2
+ bx + c < 0 is the

set of all real numbers.

The solution set of

ax
2
+ bx + c = 0 is the

empty set.

The Solution set of

ax
2
+ bx + c > 0 is the

empty set.

Example 4-14a: Solve x2 - 5x + 4 > 0.

Solution: First draw the graph

of y = x 2 - 5x + 4. The solution

set of x2 - 5x + 4 > 0 is the

set (x:x < 1 or x > 4). We

arrive at this answer by deter-

mining the values of x for

which the graph is above the

x-axis.

Figure 4-14f

Figure 4-14g
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Example 4-14b: Solve -x2 + 2x - 1 < 0.

The solution set of -x2 + 2x - 1 < 0

is the set (x:x < 1 or x > 1). We

rrrive at this answer by determining the

value of x for which the graph is

bel7)1!, Z:be x-axis.

Example 4-14c: Solve -x2 + 2x > 0.

Solution: First draw the graph of

y = -x
2

+ 2x. The solution set of

-x
2
+ 2x > 0 is the set (x:0 < x < 2).

We arrive at this answer by determining

the values of x for which the graph

is above the x-axis.

Figure 4-14h

Figure 4-14i

Exercises 4-14

Find the solution set of each of the following inequalities.
2 h

1. x - qx + 3 < 0

2. x
2

+ 5x 4- > 0

3. x
2
+ x - 6 > 0

4. 2x
2

+ itx -I- 5 < 0

5. x2 - 16 <

6. x
2 c

ox + 9 < 0 253
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4-15. Applications.

Mathematics sometimes is divided into two parts, "pure" and
"applied". The "pure" part is concerned with the logical
-analysis of mathematical objects, such as numbers and points;
',the "applied" part is concerned with using this knowledge to
obtain information about other kinds of objects, such as speeds
and places. For instance the statement 5.52 = 260 is an example
of "pure" mathematics. It can be applied to solve the problem
"how many cards are there in five decks of cards each consisting
of fifty-two cards"? In this section we shall study a few
problems arising outside the world of mathematics which can be
formulated and solved as quadratic equations.

The fact that quadratic equations can have two roots some-
times introduces a slight complication. It can happen that the
original problem has only one solution and that the auxiliary
quadratic equation has two. Then common sense must be brought.
in to select the right root. For instance if the original prob-
lem is about the number of grains of sand on a beach, then any
negative root of the auxiliary quadratic equation is surely not
the right one. 254
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21: 4

24x = 4(x2 - 9).

This is equivalent to the quadratic equation

4x
2

- 45x - 36 = 0,
3whose roots are 12 and - . The number 12 is a possible solution

of the original problem, the negative number - 4 is not. We

check to s.ee if 12 satisfies the original equation by substituting

12 for x. We obtain'

12 12 4 4

12 +

32
15

and conclude that the boat must travel 12 miles per hour in

still water.

Example 4-15a. On a river which flows at the rate of 3 miles

an hour, a motorboat can go 12 miles downstream and 12 miles

back in 2 hours and 8 minutes. What is rate of the boat in

still water?

Solution: We are asked to find the rate of the boat in still

water. We denote this unknown number by x. Then the boat.

travels downstream at the rate of x + 3 miles an hour. The
12number Df hours it takes to go downstream is . The number

of hours it takes to return upstream is 1 2
. The number of

hours for the entire trip is their sum

12 , 12
77-7 x - 3

8Since we know that the total time is 2 + -6-5, hours we can express

our problem mathematically by the equation

12 12 8 32
7-7-7 2 15

This is an equation which can be transformed to a quadratic by

multiplying both members by (x + 3)(x - 3). The transformed

equation is

12(x - 3) + 12(x + 3) = 452-(x + 3)(x - 3)

or
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Example 4-15b: Many of the buildings of ancient Greece incor-

porated the proportions of the "golden rectangle". This figure
is a rectangle ABCD having the

property that if points P and Q.

are chosen on its longer sides

so that APQD is a square then

rectangle BCQP and rectangle

ABCD are similar. Suppose it

is required to find the base

CD of such a rectangle if its

height AD is to be 10 feet.

Solution: In the figure

AD = AP = PQ = DQ = 10. We

seek CD. We can express
Figure 4-15the geometric conditions con-

cerning the similarity of the rectangles ABCD and BCQP by the
AB BCalgebraic equation 75- . If we denote CD by x, then

AB = x and QC = x - 10. The equation becomes

x 10
10 x - 10

This can be transformed to

x(x - 10) = 100

which is equivalent to

x
2

- 10x - 100 = 0.

We solve this equation by use of the quadratic formula. Its

two roots are
10 10 - 4g66

2
and

2

The second of these numbers is negative, and so cannot be the

required length. We conclude that if the height of a "golden

rectanglo" is 10 feet, then the length of the base is
10 j500

2-
feet. This is approximately 16 feet.

Exercises 4-15

1. The perimeter of a rectangle is 20 feet, its area is 21

square feet. Find its length and width.

2. A picture which is 9 inches wide by 12 inches long is

surrounded by a frame. The area of the frame alone is

A
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162 square inches. Find the width of the frame.

3. Find two consecutive positive integers whose cubes differ

by 1261.

4 Assume that an object thrown vertically downward from the

top of a cliff 2400 feet above a lake falls according to

the law s = 80t 16t2 where s is the distance in feet

that the object fails during the first t seconds.

(a) how long does it take for the object to fall 224 feet

from the top of the cliff?

(b) How long does it take until the object strikes the

surface of the lake?

(c) Find the distance the object falls during the 8th and

10th seconds.

5. The edges of two cubes differ by 2 inches, and their vo:Lumes

differ by 728 cubic inches. Find the dimensions of each.

6. A grocer sold oranges at a dollar a bag and raised the

price Fier dozen by 10 cents by reducing the number of

oranges in a bag by 4. Find

(a) the original number of oranges in the bag;

(b) the original price per dozen.

7. An engine pulls a train 140 miles. Then a second engine

whose average speed is 5 miles per hour faster than the

first engine takes over and pulls the train 200 miles. The

total time required for the 340 miles is 9 hours. Find the

average speed of each ::ngine.

8. The square root of 3,1ess than twice a given number is 1

more than the square root of 2 more than the number. Find

the number.

9 Find the dimensions of a rectangle if the diagonal is 2

more than the longer side, which in turn is 2 more than the

shorter side.

10. Prove that there is no real number such that the sum of it

and its reciprocal is 1.

11. Is there a rectangle with a perimeter of 66 inches, and an

area of 260 square inches?
2 5 7
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12. The sum of the squares of two consecutive integers is 113.

What are these integers?

13. John and Mark leave St. Paul at the same time. John flies

north while mark flies east. Mark flies 100 miles an hour

faster than John. At the end of an hour they are 500 miles

apart. At what average speed did each travel?

14. The length of a rectangle is four times its width. Its

area equals that of a square whose perimeter is 14 inches

less than the perimeter of the rectangle. Find the

dimensions of the rectangle.

*15. It is desired to make a rectangular pen to hold livestock.

100 yards of wire fencing materials are available. What

dimensions will make the inclosed area a maximum?
(Hint: Sketch graph.)

4-16. Miscellaneous Problems

Plot the graphs of each of the following pairs of quadratic

functions using a single set of axes for each pair. In

each case specify the vertex and axis.
2

1. y = x 6. y = x2 - 4x + 4

y = x2 + 1 y = x 2 + 4x + 4
,

2. y = x2 + 2 7. y = x 2 - 4x + 3

y = (x 2)2 y = x2 + 4x + 3

3. y = (x - 3)2 8. y = -2x2 - 4x - 2

y = 2x2 - 4x + 2

4. y = -2(x 1)2 9. y = x2

y = -2(x - 1)2 + 3 y = x2 + 3x

5. y =-(x + 3)2 - 1 10. y = (x + 1)2

y = (x + 3)2 + 1 y = 2x 2 - 3x + 1

Test the following quadratic equations to determine which

has no solution, which has one solution and which has two

solutions by finding the value of the discriminant. Also, ,

find the sum and the product of the roots of each equation

if roots exist.

11. x 1 = 0 12. /; 2 12x 4 9 = 0

[sec. 4-16]
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13.

14.

15.

16.

t
2

+

2y
2

+

5t
2

-

x
2

=

2t - 2

3y + 5

3t - 4

18 + 7x

=

.

=

0

0

0

17.

18.

19.

20.

10x2 = 3 +

x 2
- 2x + 5

x
2

+ 8x + 6

x
2
+ 7x = 0

ljx

= 0

= 0

Find the solution set of each of the

21. 2y 2
+ y = 6 31.

22. 12t-
2
+ 31t - 15 = 0 32.

23. 2x
2
+ 15x + 27 = 0

24. x 2 + 6x + 4 = 0

25. 2x(x + 2) + 3 = 0

26. x2 + x + 0

27. t
2

+ 5t + 1 = 0

28. 4x2 = 3x + 2

29. 2y
2
+ lly - 3 = 0

30. 36 + 36x + 9x2 = 0

following equations:

x 2 + 2x = 9

x
2

- 5x - 3 = 0

33. 7x2 - 10x + 5 = 0

34. 2x2 + 4x - 7 = 0

35. 6x2 x - 3 = 0

36. 6x - x2 = 0

37. 24x2 - 86x 15 = 0

38. 2w2 . 8w - 7

39. x - 5 = 3x2

40. 6 + 2x - x2 = 0

For each of the following equations determine k so that

it has exactly one root.

41. 9x
2
+ 30x + k = 0

42. kx
2

- 6x = 4

43. 2x
2

+ 8x + k = 0

44 . 9x
2

- 8k x -4

45. kx
2

1 = 0

Form quadratic equations whose solution set is each of the

following:

46. (3,-2)

47. [5,-5)

48. (2 + 11T, 2 -

49. (-34% , 4)

50. (-37" , 3)

Find the solution set of the following equations:

51. x - 1/5x + 9 - 1 = 0

52. 1x2 + 3 +
4

%/x2 +-3

53. 1/3x - 5 + N/2x + 3 + 1 = 0
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54. ax - 17)(2 9 - 0
22 2

x + x + 1

56. (x2 - 3x + 1)2 - 4(x2 - 3x + 1) - 5 = 0

x + 7 2 12x
57. 7-77 x - 7 (x - 1)(x - 7)

58. (a + b)2(1 - x)x = ab

59. Vx + 4 + ix - 1 = ix - 4

60. 3x4 - 4x2 - 7 = 0

Find the solu:Lon set of each of the following quadratic
inequalities:

61. x2 - 4 < 0 64. 3x2 + 14x - 5 < 0
62. x2 - x - 2 < 0 65. 2x2 - 3x > 8
63. 2x

2 + 5x > 12

Solve:

66. If 3 times the square of a certain number is decreased by
9 times the number, the result is 120. Find the number.

67. The length of a rectangle is 6 more than twice the width.
Its diagonal is 39. Find length and width.

68. If a number is increased by 72, its positive square root
is increased by 4. Find the number.

69. If the sum of two positive numbers is 50 what are the

numbers if their product is to be a maximum?

(Hint: Sketch graph.)

70. For what values of k does the equation x2 + 2kx + 9 0
have no real roots?

71. What is the range of the function defined by the equation
y = 3x2 - 6x + 5?

72. Given the quadratic equation kx 2
- 8x + 3 = 0, find the

value of k so that

(a) the solution set consists of one element.
(b) 3 is in the solution set.

73. Find the values of k for which the equation

kx
2

- 2x + 3 = 0 has two distinct real roots.

74. For what values of r and s is (r,$) the solution set of
x
2
+ (r - 1)x + 2s = 0?

(sec. 4-16]
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75. The segment Ar is 20 inches long. The point C is chosen

on it $o that AC is the mean proportionni between CB and

AB. Find AC.

(sec. 4-16)



Chapter 5

COMPLEX NUMBER SYSTEMS

5-1. Introduction.

In Chapter 4 we considered equations of the form

(5-1a) ax2 + bx + c = 0,

where a, b, c are real numbers, a / O. We developed a method
for solving such equations and found that the results depend in
a very essehtial way on the value of the discriminant, b2 - 4ac.
If b'

2
- 4ac > 0, the equation has two real solutions; if

b
2

- hac = 0, the equation has one real solution; if 1)2 - 4ac < 0,
the equation has no real solution.

The time has come, it appears, to ask once more whether we
can extend our number system to include numbers of such a char-
acter that every quadratic equation with real coefficients has
a solution regardless of the value of its discriminant. It is
the task of this chapter to make such an extension of the system
of real numbers. Actually we shall find that .che system we
derive for this purpose is a richer one than we bargain for: It
gives us the solutions not only of all quadratie equations with
real coefficients, but also of all polynomial equations of what-
ever degree with real coefficients. Even this does not quite
describe the richness of the system we derive, but it is too
soon to tell the whole story. Let it suffice to say that no
further extensions 14111 be necessary for the purposes of
ordinary algebra.

The simplest example of a quadratic equation with a negative
discriminant is the equation

(5-1b)

If this equation is written in the form (5-1a) we have a = 1,
b = 0, c = 1, and the discriminant is

b2 4ac -4,

so that we know from Chapter 4 that It has no real solutions.
We can see thin without evaluating the discriminant. Since the
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square of each real number is non-negative, we have x
2
> 0 for

any real number x. Thus, if x is real, x2 + 1 > 0 + 1 = 1 > 0,
.

so that no real number is a solution of equation (5-1b).

To start we will look for a number system in which

Equation (5-1b) has a solution. It will turn out, In Section 5-5,

that in this system every quadratic equation with real coeffi-

cients has a solutlon. Perhaps if you look again at the method

of solving the quadratic equation in Section 4-10 you can now
see why this should be so.

Before undertaking our extension of the system of real

numbers, let us recall the procedure followed in Chapter 1 each

time we extended a number system. We assumed that a new system

could be constructed which would: (1) have all the algebraic

properties of the old system; (2) include all the numbers of the

old system, in such a way that the new and the old algebraic

operations, when applied to numbers of the old system, would be

the same; (3) contain new numbers of the kind we need. We then

discovered the rules for operating with the new numbers as

logical consequences of the properties we assumed.

Proceeding in the same way we now seek a new number system

which contains the system of real numbers with all Its familiar

properties and also contains a number satisfying x2 + 1 = 0,

Equation (5-1b). We shall designate the system by the letter c

and call lt the system of complex numbers. Following are the

specific properties we require of C:

Property C-I

(L) Two operations, addition () and multiplication ()

are defined in C. (It Is to be understood that the

result or an operation defined In a system is a

number In the system, but when we wish to emphasize

thls fact we w111 say that the system is closed with

respect to the operation.)

(11) Addition Is associative and commutative.

(1;1) C possesses one and only one addltive Identity.

(Iv) Each element or C has one and only one addttive

[sec. 5-1]
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Inverse.

(v) Mult!plcation is associative and commutative.
(v1) C possesses one and only one multiplicative identity.

(vii) Each element of C, other than the additive identity,

has one and only one multiplicative inverse.

(viii)Multiplication is distributive with respect to

addition:

Property C-2

(1) Every real number is a member of C.

(11) The sum of two real numbers in C is the same' as their

sum in the real number system.

(11i) The product of two real numbers in C is the same as

their product in the real number system.

(iv) The additive identity in C is the number 0 of the

reals.

(v) The multiplicative identity in C is the number 1 of

.the reals.

Property C-3

The set C contains a special element which has the

property
1.1 = i

2
= -1.

We call the special element i the imaginary unit.

5-2. Complex Numbers.

In Section 5-1 we stated a problem: To find a number

systemthat is, a set of elements and the operations of

addition and mult1PlIcation defined for the set --having pro-

perties C71, C-2 and C-3. Now we try to solve this problem.

Let us first try to Identify the set of elements.

Property 0-3 implies that C contains at least one member

not in the set of real numbers because the square of no real

number Is negative. By C-1, C Is closed under the operations

of addition and multiplication, so that if a and b are real

numbers, the product bi is in C since b and I are, and It

[see. 5-2]
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follows that a + bi is In C since a and bi are. We see, then,
that all numbers of the form

a + bi, where a and b are real,

are included in C. The number i and every real number can be
written in this form. We have i = 0 + 1-i, If a is any real
number a = a + 0-i, since 0-1 = 0. (The statement that the
product of 0 and any number is 0 can be proved for numbers in C
exactly as it was for integers in Chapter 1.)

Now, however, if we add and multiply numbers of this form,
take their additive and multipltcative inverses, add and multiply
again, and so on, it would seem that we should encounter more and
more numbers of the system not of this form. This is not so!
The sum and product, additive and multiplicative inverses of
numbers which can be:dritten in the form a 1)1, a and b real,

can be written in the same form. We have not proved this, but

after we complete our discussion of operations with these numbers
you will see how such a proof can be constructed.

The results we have stated imply that if there is any

system which solves our problem, then there is a simplest - -
that Is, smallest 114ossIble --system which solves the problem.
This is the system with the following property.

Property C-4 Each element of C can be written in the form
a 1- bi, where a and b are real numbers.

We add C-4 to our list of basic properties; thus the system

C which has Properties C-1, C-2, C-3 and C-4 is the system of
complex numbers.

Historical Note. The adjectives "complex", "imaginary" --

and, by contrast, "real" -- which are standard terms sanctioned

by years of use, serve to illustrate the "controversial" nature
of our four fundamental properties. As recently as a hundred

years ago many mathematicians believed that C-1, C-2, C-3 and

C-4 contradicted one another, that is to say, that there could
be no system with all these properties. The proof that this

(sec. 5-2]
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list of properties is just as respectable as that character-

izing the "real" numbers was achieved through the work of the

nineteenth century mathematicians, Argand, Cauchy and Gauss.

(Such a proof is outlined in Section *540.) Our continued

use of the clacai adjectives serves to remind us of the old

controversy and of the work or the men who resolved it.

Exercises 5-2

1. For each of the followIng pairs of number systems state a

property of the first which is not possessed by the second:

(a) integers, natural numbers

(b) rational numbers, Integers

(c) real numbers, rational numbers

(d) complex numbers, real numbers.

2. The following equations have solutions in the sysem of

real numbers if a, b, and c are real numbers. For each

equation name the smallest number system in which the

equation has a solution in.the system if a, b, and c are

!ri the system.

(a) a 4- x = b

(b) ax b a /

(c) ax b=s a 0

3. Wrlte each of the following complex numbers in the form

a bi where a and b are real numbers.

)1

(a) 1 (c) (0) 3 (f;)

(0 9 (3) (r) 21.

1,7)r ea(2h mr thc ?ollswlng pairs of number systems state a

pcopert:; o r:rst wh'ch ls not possessed by the second.

(,1) nr0.7:Ar'al rv..imbers, Integers

(b) L.O. I n'Imhers, complex numbers.

Let i be t;he sW; or all real numbers wl.C.ch can be wr'tten

in tie ror:1 a 1. b,/-2, where a and b are rational

numbers. L;how that

(a) Z., Ls not the set oC all real numbers.

(Hint: :;how that fi In not tn 3.)

[sec. t)-21
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.5. (b) S is closed with respect to real addition and

multiplication.

(c) the additive and multiplicative inverses of a number

in S are also in S.

(d) S, with real addition and multiplication as operations,

has all the properties listed in Property C-1.

(e) S is the smallest part of the real number system which

has properties C-1, contains the rational numbers, and

contains vr.

5-3. Addition, Multiplication and Subtraction

We now take up the task of deducing rules for calculating

with the complex numbers. The remainder of this section is

devoted to theorems which give formulas for the sum, product and

difference of two complex numbers. We postpone the discussion

of division.until Section 5-4.

Theorem 5-3a. (a + bi) + (c + di) = (a + c) + (b + d)i.

Proof: We suppose that a + bi and c + di are any two given

complex numbers. Consider the expression

(a + bi) + (c + di).

Property C-1 assures us that addition in C is associative and

commutative; therefore,

(a + bi) + (c + di) = (a + c) + (bi + di).

But Property C-1 also asserts that the distributive law holds,

so bi + di = (b + d)i. Hence

(a + bi) + (c + di) = (a + c) + (b + d)i,

which we were required to prove.

Theorem 5-3b. (a + bi).(c + di) = (ac bd) + (ad + bc)i.

Proof: Given complex numbers a + bi and c + di, we consider

the expression
(a + bi)(c + di).

Using the distributive law once, we obtain

(a + bi)(c + di) = a(c di) + bi(c + di).

267
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Applying the distributive law again, and using the commutative

property of multiplication, we have

(a + bi)(c + di) = ac + adi + bci + bdi-.

But 1 2
= -1, so we can write

(a + bi)(c + di) = ac + adi + bci bd.

Using the coMmutative property of addition and once again making

use of the distributive law, we obtain

(a + bi)(c + di) = ac - bd + (ad + bc)i.

This completes the proof.

Example 5-3a. Express the sum of 2 + 3i and 5 + 2i in the form

a + bL, where a and b are real numbers.

Solution: (2 + 3i) + (5 + = (2 + 5) + (3 + 2)i = 7 + 5i.

Example 5-3b., Express the product of 2 + 3i and 5 + 2i in the

form a + bi, where a and b are real numbers.

Solution: (2 + 31)(5 + 2i) = 2(5) - 3(2) + [2(2) + 3(5)]i

= 10 - 6 + (4 + 15)i

= 4 + 19i.

Example 5-3c. Express the product of i, 2i and 1 - i in the

form a + bi, a and b real.

Solution: - 1) . -2(1 - i) = -2 + 2i.

Now we consider subtraction. As in Chapter 1, we denote the

additive inverse of z by -z, so that by definition

(5-3a) z + (-z) = 0.

Also, just as in Chapter 1, we define z2 zi to be the solution

z of the equation

(5-3b) zi + z

where
"1'

7
2
are given. (We leave as an exercise the proof that

Equation (5-31)) cannot be satisfied by more than one complex

number z.) It is easy to see that z2 + (.z1) is a solutLon of

268
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Equation (5-3b).

z1 [2 (-z1)] z1 [(-z1) z2] [z1 (-z1)] z2
= 0 + = z 2 .z2

We have therefore proved

(5-3c) z2 - z1 = z2 + (-z1).

Our problem now is to find -z when z = a + bi is given.
Let -z = x + yi, where x and y are real. Since

z + (-z) = 0
we get

(a + bi) + (x + yi) = O.

By the theorem on addition (Theorem 5-3a) this becomes

(a + x) + (b + y)i = 0 = 0 + 0.i

and this equation yell be satisfied if

a + x = 0, b + y = 0,
that is, if x = -a and y = -b. Thus (-a) + (-b)i is an additive
inverse of a + bi, and since the inverse is unique we have proved
the following:

Theorem 5-3c. If a + bi is a complex number (a and b real),
then its additive inverse is

-(a + bi) = -a + (-b)i.

We can now summarize our discussion of subtraction in a
theorem.

Theorem 5-3d. (a + bi) - (c + di) = (a - c) + (b - d)i.

Proof: Using Formula (5-3c), Theorem 5-3a and Theorem 5-3c
we have

(a + bi) - (c + di) = (a + bi) + [-(c + di)]

= (a + bl) + [(-c) + (-d)1]

[a + (-c)] + [b + (-d)]1

= (a c) + (b - d)i.

269
[sec. 5-3]



259

Exercises 5-3

1. Express each of the following sums in the form a + bi,

where a and b are real numbers:

(a) (1 + 41) + (3 + '51)

(b) (2 + 61) + (2 - 61)

(c) (3 + 51) + 21

(d) 4 + (Tr + wi)

(e) (,/7 + 31) + (21 + 1)

(f) (-1 + 51) + 21

(g) +

(h) 3 + (7i 3)

(1) (5 + 31) + (7 + 21) + (3 - 41)

(j) (3 + 21) + (v12- + 71) + 1.

2. Add a complex number to each of the following to make the

sum a real number. Can this be done in more than one way?

(a) 2 - 51

(b) x - yi

(c) %id i

(d) -51

3. Express each of the following products in the form a + bi,

where a and b are.real numbers:

(a). (2 + 31)(4 + 71) (j) 61.31

(b) (2 - 31)(6 + 41) (k) 71(-21)(1 - 61)

(c) (3 - i)(1 + 21) (1) (4 - 21)(3 - 21)(51)

(d) 1(3 + 51) (m) (4 - 31)2(2 - 51)

(e) 21( - 1) (n) (2 + 31)(3 - 21)(6 - 41)

(f) (8 4-Nif i)(1 jj 1) (0) (0 di)(x yi)

(g) (3 + 41)(3 + 4i) (P) (x Y)(x + Yi)
(h) (1 + i)(1 - 1)

.4. Find the additive inverses of each of the following complex

numbers and express them in the form a 131, where a and

b are real numbers:

(a) 3 (e) 5 - 41

(b) (0 -4 - 31

(c) 1 + I (g) a - bl

(d) 2 + 31 (h) x + yl

(sec. 5-3)
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5. Express each of the following differences in the form

a + bi, where a and b are real numbers:

+ 111) - (2 + 31) (0 - (1 - 1)

- 61) - (7 - (g) ir - yi

+ 51) - (3 - 51) (h) (2.+ 31) - (2 - 31)

- (1 + 1) (1) (1 - 1) - 21

+ i) - (2 +

6 Express the following powers of 1 in the form a + bi,

where a and b are real numbers.

, n is a natural number

7. State a general rule for determining the n-th power of i

where n is a natural number. Explain why the ride works.
8. Express each of the following quantities in the form a + bi,

where a and b are real numbers.

'(a) i3 + 14

14n+3
n is a natural number

(c) 31 + 41(5 - 1)(5 + 1)

(d) 711(2 - 3i) + (41 + 10)]

(e) 1.[(31 6) - (2i I- 7)J

(c) 3(3 + 21) (6 -I- 81) - 2(2 - 3i)

(g) (b + c - ai)(a + c bi)(a + b - c1), where a, b, c

are real

1 If 3
(h) 7 1)
(1) 1(1 - 1)(1 - 2)(1 - 3)

3 -17Show by substitution that i is a solution of the

equat)n 2z 2
- 3z + 2 = O.

(a) (7

(b) (5

(c) (3

(d) i

(e) (

(a) 13

(b) i
4

(c) 19

(d)

(e) 1
4n+1

(0 179
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5-4. Standard Form of Complex Numbers.

Property C-4 asserts that each member of C can be expressed

in the form a + bi, where a and b are real numbers. Our

next theorem states that this representation is unique: given

any complex number z, there is only,one pair of real numbers

apb such that z = a + bi.

'Theorem 5-4. If a, b, c, d are real numbers, then

a + bl = c + di if and only if a = c and b = d.

Proof: The "if" part of the statement, "a + bi = c + di

if a = c and b = d" is clear, since addition and multiplication

have unique results. We have to prove the "only if" part:

a + bi = c + di only if a = c and b = d, that is, if

a + bi c + di then a = c and b = d.

Suppose, accordingly that a, b, c, d are real numbers and

that
a +.bi = c + di.

Then by the theorem on subtraction (Theorem 5-3d),

(a - c) + (b - d)i = 0,

and
a - c = -(b - d)1.

We have to show that a = c and b = d, or what is the same,

that a - c = 0 and b - d = O. Now if b - d were not zero we

could write
a - c
b - d iP

or

(t : d)
But this would imply that i is a real number since a, b, c, d

are real numbers and the difference and quotient of real numbers

are real. Since we know that i is not a real number we con-

clude that b - d = O. But if b d = 0, then -(b - d)i = 0,

and since (a - c) -(b - d)i, it follows th a - c = O. This

completes the proof.

Example 5-4a. Find all pairs of complex numbers xpy for which

2x + 3y1 = 6 + 31.

(sec. 5-4]
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Solution: One solution of the problem ls x = 3, y = 1. If the

problem had required that x and y be real then.by the pre----

ceding theorem this would be the only. solution. However, since

we permit x and y to be complex, the preceding theorem is not

directly applicable, end the equation may have other solutions;

x = 3 + 31, y = -1 is a solution, for example.

We can use Theorem 5-4 to find all complex solutions of

this equation. Let x = a + bi, y = c + di where a, b, c, d are

real. Substituting in

we get

or

2x + 3y1 = 6 + 3i

2(a + bi) + 3(c + di)i = 6 + 3 ,

(2a - 3d) + (2b + 3c)1 = 6 + 31.

Since the expressions in parentheses in the last equation are

real, it follows from the preceding theorem that the equation

holds if and only if

2a - 3d = 6, 2b + '3c = 3;

or
3 - 2b A 2a - 6

c p U =

Here a and b may be assigned values arbitrarily. Thus, all

the solutions of the equation are given by

3 - 2b 2a - bx = a + bi, y = +

where a and b are any real numbers.

The representation of a complex number z as

z = a + bi,

where a and b are real numbers, is called the standard form

of z. Note that z Is real if and only if b = O. (Why?) We

therefore call a the real part of a + bi. The real number b

is called the Imaginary part of a + bi. Thus we can say that

a complex number is real if and only if ts imaginary part is

zero. A complex number a + bi in which a = 0 is called a pure

Imaginary number. Thus a complex number is a pure imaginary

number If and only if its real part is zero. DO NOT CONFUSE the

Lmaginary part b of the complex number a + bi with the pure

ImagInary number bl. Both the
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real and imaginary parts of a + bi are real numbers: they are
the real humbers a and b, respectively. Usually a complex
number which is not real is called imaginary.

Examples 5-4b

z Real _part of z Imaginary part of z Standard form of z_
0 0 + 01

1 2 + 11

-1 1 + (-1)1

1 0 + 11

0 -1 + Oi

In these examples, only 0 and 1 2
are real numbers; only 0 and

1 are pure imaginary numbers; 2 + i, 1 - i and i are
imaginary. numbers.

1. 0 0

2. 2 + 1 2

3. 1 - 1 1

4. 1 0

5. i
2

-1

Exercises 5-4

1. Find the real and imaginary parts of each of the following

complex numbers:

(a) (1 + 1)2 (g) - 1)2

(b) 1 + 12 (h) (-1 + i%/5-)2

(c) i (1) (4 + i) - 7

(d) 5 - (j) -212

(e) 2x + 31 (k) 31

(f) a - 2i (1) 21 + 1

2. What real numbers must be added to each of the following

complex numbers to make the sum a pure imaginary number?

Can this be done in more than one way?

(a) 3 + 21 (c) 5 - 21

(b) -41 (d) 5 i

3. Use Theorem 5-4a to find real values for x and y that

satisfy the following equations:

(a) x yi = 3 + 61 x - y + (x + y)i = 2 + 61
(b) 2x + y1 = 6 (g) (1 + x) + i(2 - y) . 3 - 41

(c) x - 5y1 = 201 (h) x+ y1 = 1 + 12
(d) 8x + 3y1 = 4 - 91 01 y212 x2)

(e) Px 3y1 - 4 = 5x - y1 + 81 (j) (x + 1)2 . y

[sec. 5-4]
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4. Express each of the following complex rilmbers in standard

form:

(a) 3 + 21 + 5 + 1 (f) (4 - 1)(3 - 21)

(b) (3 - 21) - (5 - 21) (g) (1 - 1)(2 31)(4 + 2i)

(c) 31(4 - 21) (h) (a + b ci)(a + b + ci),

(d) 6 + 51 - (2 - 31) where a,b,c are real numbers

(e) (3 - 21)(5 - 21) (i) (x + yi) 3 , where x and y

are real numbers.

5. Suppose z = x + yi, where x and y are real numbers,

and z
2

= 8 + 6i. Solve for x and y.

*6. Suppose, for the sake of this exercise, that a and b are

complex numbers. Show that a + bi = 0 and a - bi = 0 if

and only if a = 0 and b = 0. Show also that the underlined

word can be replaced by "or" only when we also assume that

a and b are real numbers.

07. Show that if zi 'is any non-real complex number, every

complex number z can be expre6sed in one and only one

way in the form z = a + bz
1,

where a and b are real

numbers.

5-5. Division.

We have learned to add, :aultiply and subtract complex

numbers. We now consider division.

According to Property C-1 every complex number other than 0 has

one and only one multiplicative inverse. As in Chapter 1 we
1denote the multiplicative inverse of 7 by --, so that by defini-

tion

(5-5a) z. = 1.1

z
2Also, just as in Chapter 1, we define 7.7. to be the solution

-1of the equation

(5-5b) z
1
*z = z2

when this solution exists. (We leave as an exercise the proof

that equation 5-5b cannot be satisfied by more than one complex

number z.) It is easy to see that if z1 ,4 0, Equation 5-5b

has the solution
1

(sec. 5-5]
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[z1(-)Jz2 l.z2 z2.
I -1 1 '...

We have therefore proved
z
2 1(5-5c) __ = z __. z

1
O.7 2

-1
z,

1Our task now is to find the standard form of when7
z a + bi is given in standard form. Let us begin by

considering a numerical example.

Example 5-5a. Ir.z = 2 + 31 find its multiplicative inverse

in standard rorm.

Solution. We seek a number x + yi(x and y real) satisfying

(2 + 3i)(x + yi) = 1.

If we multiply the factors on the left using the theorem on

multiplication (Theorem 5-3b) we may write

(2x - 3y) + (3x + 2y)i = 1 + Oi.

Hence, from the theorem on standard form (Theorem 5-4),

2x - 3y = 1,

3x + 2y = O.

Eliminating y, we have

(4 + 9)x = 2.

Hence
2 -3

x y = 3-7

and

x + yi = 4?7

Now we can verify by substitution that

1 2 , 3\
2 +

We treat the general case in exactly the same way. Suppose

a bi, in standard form, is a nOn-zero complex number. Recall

that this means that at least one-of the two real numbers a,b

is not O. If there is a complex number x + yi, x and y

being real numbers which satisfy the equation

(5-5d) (a + bi)(x yi) = 1,

then by completing the multiplication in the left member we get

(sec. 5-5]
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(ax - by) (bx + ay)i - 1.

Yrom the theorem on standard form (Theorem 5-4), this equation

will be satisfied if and only if

ax by = 1,
(5-e) bx + ay = O.

Thus our problem is reduced to that of solving two linear

equations with real cofficients for the real unknowns x and

y. We solve these equations by elimination. 'To eliminate y,

multiply the first equation by a, the second by b, and add.

We get
%

(a
2 + b

2
)x = a.

Our assumption that a + bi / 0, i.e., that at least one of the

real numbers a, b is not zero, tells us that a
2

+ b
2
/ O. Hence

we can write
a

x .

a" + b

In the same wpy, we eliminate x from Equations (5-5e). Mul-

tiplying the first equation by b, the second by a, and sub-

tracting the first from the second, we get

, 2 2%
ka .+ b )y = -b.

As before, a 2
± b

2
/ 0, so

-b
Y 2

a + b
2

Now by substitution we can verify that

a ( -b %

2 )1
+

a2 + ba
2

+ b2

is a solution of Equation (5-5d) so that it is the unique mul-

tiplicative inverse of a + bi. We state our conclusion as a

theorem.

Theorem 5-5. IC a + bi is a non-zero complex number in

standard Corm, then its multiplicative inverse is

1 a -b
a + bi

a
2
+ b

2
a + b

Now we can combine the results of this section to obtain

a formula for the quotient of any two complex numbers when the

denominator is not O. We could state the result as a theorem,

but the statement would be cumbersome. It is better to
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remember a procedure which we indicate by an example.

Example 5-5b. Find the quotient
,.312 1: 31 and express the answer in

standard form.

Solution: By Formula 5-5c,

-544 (8 + 5i) (2

By Theorem 5-5,
1 2 -3 4

2 + 3i

Combining these two equations and using the theorem on multi-
plication (Theorem 5-4b) we obtain

J

, 2 -3
1 ±)

31
(- 44)i

as the quotient in standard form.

The following relations involving division of complex
numbers can be proved on the basis of Property C-1 just as they
were in the real case.

(5-5f) z1z2 = 0 if and only if z1 = 0 or z2 = 0 (or both).

z
1

z2 z
1
z
3(55g) , if z2 / 0, z4 / 0.z2 z4 z2z4

zi z3
(5-5h)

+

zlz 4 + z2z3
, if z2 / 0, z4 / 0.z2 z4 z2z4

We leave the proofs of these relations as exercises.

(See Exercises 5-5, Problems 7 - 9.)

-Exercises 5-5

1. Find the multiplicative inverses of each of the following

complex numbers and write them in standard form:

(a) 1 (e) 1 +

(b) 5 (f) 2 + 3i

(c) (g) 1 + 12
(d) -1 (h) 4 - 31
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2. Does every complex number have a multiplicative inverse?

3. What complex numbers are their own multiplicative inverses?

4. What complex numbers are the additive inverses of their

multiplicative inverses?

Express the following quotients in standard fpr..

1

2 + (g) 16+

3
(h)

31
+ 71

1

.21 - 5 (1) 311-51
13 + 51 1 + ,/-2-1

21
1 - ,/-2-1.

2 - i (k) '
/,.. + rad_

(e)
1 + 1

1 4IL
4 + 31
+ 51 (1) p....44.; a,b real, a +

2

a + 2 bi
2a - bi ;a,b real, 2a - bi / 0

(f)

(m)

(n)
-

ni; m,n real, -m + ni / 0

3x +2.yi
(o) ; x,y real, x - yi / 0

6. Show that, if z1 / 0, the equation zlz = z2 has no more

than one solution.

7. Write in standard form all complex numbers z such that
1the real part of 7 is 7., and

(a) the imakinary part af z is zero.

(b) the imaginary part of z is -.1g .

(c) the imaginary part of z is 1.

8. Prove that z,z2 = 0 if and only if zi = 0, or z2 = 0, or

both are zero.
z
1

7.

3
z
1 3*9. Prove that if

z,

z27 0, z4 / O.z2 z4 z2z4

z, zz4 + zz3
*10. Prove that +

i

z2 z4 z2z24 2
if Z2 / 0, Z4 / 0*

? 7 9.
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11. Make use of the formulas in Problems 9 and 10 to obtain the
following sums and products. Write the answers you obtain
in standard form.

(a)
1 + 1 -

1 + 21 1-7-7T

(bI
1 + 21 2-1
3 + 41 7717

(ci
2 + 361 - 261
6 + di 3 - 41

(d)
2 - 3i 3 + 4i
3 + + 2 - 41

(e) (:
,, () a + b1 / 0, a - bi / 0+

*12. Show that the words "in standard form" may be omitted in

Theorem 5-5 if, we suppose merely that a2 + b2/ 0.

5-6. Quadratic Equations.

We come now to a crucial test for the complex number system.

Does it permit us to solve equations of the form

(5-6a) az2 + bz + c = 0,

where a, b, c are real numbers and

(5-6b) b
2

- 4ac < 0 ?

Let us first find the solutions of .the quadratic equation on

which we have so far focussed our attention:

(5-6c) z
2
+ 1 = 0,

If z is an arbitrary complex number, we have

z
2
+ 1 = z2 - (-1) = z2 - i

2
= (z - i)(z + 1).

Thls factorlzatlon of z 2
+ 1 shows that if z is a complex

number satisfying Equation (5-6c), then one of the factors

(z - i), (z + i) must be zero, and z must be either i or -i.

Convereely, we see that i and -i both satisfy Equation (5-6c).

Therefore we conclude that the solutions of Eqpation (5-6c) are

Equation (5-6c) is a special case of the Equation

(5-6d) 280 z
2
_ = r.

[sec. 5-6]



270

From.Chapter 1, we know that if r is real and positive this

equation has two real solutions. We have just seen that for a

special negati*e value of r, namely r = -1, this equation has

two non-real complex solutions, i and -i. Let us next con-

sider the eneral case in which r is negative.

If r is real and negative then -r is real and positive,

and is defined. We have

r = (-1)(-r) = (i)2 (
/Ti-,)2;

and hence
z2 z2 v(-02

(z - i Vr----;)(z + i

Just as in the discussion of Equation (5-6c), we conclude that

Equation (5-6d) has the two solutions i vgs, 1---Ts, when r

is real and negative.

For the case in which r is real and positive we introduced

the notation 11-7 to describe the solution set of Equation (5-6d):

one solution is v/i7 and the second -117. It would be desirable

to extend the definition of ,5 for negative real r so that

the description of the solution set of Equation (5-6d) would be

the same for all r. The question is which of the two solutions

1 vC:r, shall we take to be 117 if r is negative?

Recall that inChapter 1 we faced the problem of defining
c-
.,/r unambiguously for positive r. The problem was resolved by

defining to Le the non-negative solution of Equation (5-6d).

The requirement that,5 be non-negative was simply an agreement

adopted to make the maning of 11-7 definite. However, this

agreement makes no sense if the solutions of Equation (5-6d) are

complex. We have not defined "positive" and "negative" for

non-real complex numbers, and cannot define these terms for

complex numbers in a way which is consistentWith their usual

meaning. We must make a new agreement for the case of negative'

r. Any agreement which definitely selects one of the solutions

1 ,/.7-r;, -1 vC-i; of Equation (5-6d) will be satisfactory. We

choose = I .)=F, and accordingly make the following

definition:
231
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Definition 3.-6a. Let r be any real number. We define
as follows:

(1) IC r > , then ,./7r- is the unique non-negative real
2-number w such that w r.

( ) IC r < 0, then ./r =

Example
= I =

1-12 11.-2 = 2 I-is

271

v1121)2 ,Ai2 -11/7 = iN/17 = 21.
Example 5-6L. Find the product ( VC3)(

Solution: We have

( ,/-15) = = 1217511--5 =
Note that it is not correct to say

( 1-3)( f-15) = ./c)(-15) = -175.
The statement vi; = -,/ric-s has been proved only for the case
in which r and s are both positive. The statement is also
true if r and s have opposite signs (Exercises 5-6, Prob-
lem 5), but as the foregoing example shows, it is false if both
r and s are negative.

Example 5-6c. Find the product ()(-\A, 3
) if r is any real

number.

Solutisn: We have to consider two cases. If r > 0 we have
and

\/ 3 .117 2r = r = = r
0

If r < 0 we have r < 0, and

,/TVP = (i ,/Cir;)(i./r3) = 1=-1--r4 _r2.

Now that we have given an unambiguous meaning to IF for
each real number r, we state as a theorem our previous con-
clusions about equations of the form z

2
= r, where r is any

given real number.

Theorem 5-6a.'

If r is any given real number, the equation z2 = r has

the roots IF and - IF, and no others.

232
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, now turn to the solution of the general quadratic equa-

tion

(5-6e) az
2 + bz + c = 0, a, b, c real and a / 0.

Recall that we were led to our study of complex numbers because

we failed to find real solutions of Equation (5-6e) when its

d.iscriminant b
2 - 4ac is negative. However, reasoning just as

Ln Chapter 4, we prove the following theorem:

Theorem 5-6b.

The equation

az
2

bz + c = 0, a, b, c real and a / 0,

has the solutions

-b + .\./b 2 - 4ac -b - -\,/b 2 - 4ac
2a 2a

and no others.

There is nothing new if b 2
- 4ac > 0; this is the case of

real solutions discussed in Chapter 4. We now prove that the

formula holds if b 2 - 4ac < 0, although in this case the

solutions will not be real.

The proof is the same as in Chapter 4. Recall the procedure:

divide by a and complete the square.

2 b b
2

b
2

z

4a' 4a

2
b b

2 - 4ac
(z + 7a)

4a
2

We now have Theorem 5-6a which tells us that Equation (5-60 has

(complex) solutions whether b
2

- 4ac is positive, negative, or

(5.-60

zero.

Applying Theorem 5-6a, we obtain

b /b2 - kac b
z + -7-a- = V 2 or z +

2a ;

4a- 4a2

-b + %/b 2 - 4ac -b - 'lb 2 - 4ac
so z - or z =

'2a , 2a
The proof of Theorem 5-6b can be completed by shoWing that the

numbers obtained actually satisfy the equation.

4ac
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Example 5-6d. Find the solutions of z2 + z + 1 = O.

Solution: a = b = c = 1. By Theorem 5-6b the solutions are

-1 + .7-73 -1 + i 1-5
2

and
-1 - ../CJ -1 - i frj

2

Other statements about the relation between the solutions
and coefficients of a quadratic equation can be established
just as in Chapter 4. In particular, if zi and z2 are the com-
plex solutions of the equation

az 2
+ bz + c = 0,

273

then
-b

(5-6g) zl z2 ' zl.z2 T. ;
and

(5-6h) az2 + bz + c = a(z z1)(z - z2).

The proofs are left as exercises.

Exercises 5-6
1. Perform the indicated operations and write the answers you

obtain in standard form.

(e) vq. vca(a) v(-25 + vC-4

(b) - - 6 1-20 J-
(c) + 5 1-98 (s)

3

(d) (h) :173:7

2. Write each of the following complex numbers in standard form.
Assume c is a real number.

(a) ,\A(2)2 (e) N(-C)2

(b) J(2)2 (f)

(c) ,\/-(-2)2- (g)

(d)
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3. Perform the indicated operations and write the answers you

obtain Ln standard form. Assume a and b are positive

real numbers.
r-7

(a)

(b)

(c) -a + -,/C5-

() - 2ab - b
2

+ .11(a + b)-

. E;:amine the proof that = /E IS if a and b are

n2n-negatLve real numbers, and explain why the same argument

cannot be used when a and b are negative.

5. j;how that if r < 0 and s > 0, then =

In each of Problems 3 - 17 solve the given quadratic equa-
tion express the solutions in standard form.

h
o

(d) 5.1-a2
3 -PE

(e) /-/-32a2 - -5 a

6. z- 1 - 12. z
2

- 4z 8 = 0

7. z2 - = 0 13. 2z
2 +z 0

2 J 14. z
2
- hz - 8a = 0 (a _eal)

1). z- - z 1 - 0 15. nz2 + z + = 0 (m real,m/0)
13. - = 0 16. z - iz + 2 = 0
11. z 8 = 0 17, az

2
c = 0 (a,c 1,a / 0)

13. ine eq..aation z3 - 6 = 0 has the solution w that
z - 2 is a factor of z3 - 8, and use this fact to find

two more solutions of the equation.

19. Suppose z1 and z2 -re the solutions of az2 + bz + c = 0,

where a, b, c are real and a / 0. Show that

z1 z2 = - a- and zlzc_ .

4'20. If z1 and z2 are the solutions of the equation az 2 + bz + c = 0

show that the equation

az + bz + c = a(z - z )(z z
2

)
1

holds for every element z of C. (This.formula,therefoe

provides a "factorization". of the expression az2 + bz + c.)

285
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21. Find quadratic equations which have the following pairs of
solutions:

(a) = 1 - i, z2 = 1 + i

(b) 21 = i, z2 = 2 + i

(c) 21 = 0, z2 = 0

(d) z1 = al + bli, z2 = a2 + b2i; a,, b
1,

a
2'

b
2 being

any four given real numbers.

*22. Solve the equation z
2

= i. [Hint: Writing z in standard
form, z = x + yi, the given equation is equivalent to a
pair of equations whose unknowns are real: x2 - y

2
= 0,

2xy = 1.]

*23. Solve the equation z
2

=

*24. Find !-In equation whose solutions are 1 + 21, 1 - i, 1 + i.
Is there a quadratic equation having these numbers as
solutions? If there is one, find it. If there is none,

prove that there is none.

5-7. Graphical Representation; Absolute Value.

According to Property C-4 and Theorem 5-4a each complf:x
number may be written in one and only one way in the

standard L'onn a + bd., where a and b are real numbers. Thus
each complex number z determines, and is determined by, an
ordered pair (a,b) of real numbers: a is the real part of z,

b the imaginary part of z.

Recalling that ordered pairs of real numbers formed the
starting point of coordinate geometry, we find that we are able
to represent the complex numbers by points in the.xy-plane.
Agreng to associate z with the point (a,b) if and only if
z = a + bi, in standard form,we set up a one-to-one correspond-
ence between tLe elements of C and the points of the xy-plane.

286
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It is customary to.use the expression "Argand diagram" to

describe the pictures obtained when the point (a,b) of the

xy-plane is used to represent the complex number a + bi given

in standard form. Figure 5-7a is an example of an Argand dia-

gram sLowing three points (0,0),

(4,-5), (-4,Yi and the complex

numbers they represent. Note that

points on the x-axis correspond

to real numbers and points on

the y-axis correspond to pure

imaginary numbers. For the

sake of brevity we shall often

say "the point z = x + yi" in-

stead of "the point (x,y)

corresponding to the complex

number z = x + yi."

The geometric representa-

2=-4+3i

Z=O+ Oj

z=4-4-5)1

Figure 5-7a

tion of comp]ex numher2 by means of an Argand diagram serves a

double purpose. It enables us to interpret statements about

complex numbers geometrically-and to express geometric state-

ments in terms of complex numuers. As a first example, consider

the formula established in Chapter 2 for the coordinates of the

midpoint of a line segment: The midpoint of the segment joining

(x1,y1) and (x2,y2) is the point (x,y) given by the formulas
X
1
+ X2

Y1 Y2
x -(5-7a) Y

2 2

In terms of complex numbers this may be stated: The midpoint of

segment joining the points z1 = xl + yli and z2 = x2 + y21

is the point z = x + yi given by

Z
1 + z2

(5-7b) z

2

Note that we can express in one "complex" equation a statement

which requires two "real" equations.

2 8 7
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Now we can use Equation (5-7b) to establish a geometric
interpretation of addition of complex numbers. Let z1 and z2 be
tup complex numbers and suppose that the points 0, z10 z2 are
not collinear. Let z3 = z1 + zo and consider the quadrilateral
whose vertices are 0, z15 z2, z3

(Figure 5-7b). The midpoint of

the diagonal from zi to z2 is

z + z
1 9

;.that of the diagonal

from 0 to z, is

0 + z
3

z
3

z
1
+ z

2
2 7." T.

Z2
Z3= ZI+22

0 Figure 5-7b

ience the diagonals have a common midpoint. Since the diagonals
)f the quadrilateral bisect each other the figure is a parallelo-
ram. Thus we have a geometrical construction for the sum of
two complex numbers: If two complex numbers are plotted in an
krgand diagram their sum is the complex number corresponding to
:he fourth vertex of the parallelogram whose other three vertices
Ire the origin and the two given points (and which has the seg-
lents Joining z1 and z2 to the prigin as sides.)

When the points 0, zl, z2 are collinear the parallelogram

:ollapses into a straight line and our construction.fails. We
thall discuss this case later.

Next we consider the geometric construction of the differ-
thce z2 z, of two complex numbers. Since z2 zl = z2 + (-z1)
re have only to find a geometric construction of the additive
nverse -z of the complex number z. By equation (5-7b) the
ldpoint of the segment joining z and -z is

z + 0
= -2- = 0,

hat 13, the midpoint is the oriin. Thus, if a complex number
s plotted in an Argand diagram, its additive inverse is the

ompiex number corresponding to the point symmetric to the
iven point with respect to the origin (Figure 5-7c).
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We could now describe

geometric constructions for the

product and quotient of complex

numbers but these constructions

are not very illuminating. After

we have studied trigonometry and

the relation between complex numbers

and trigonometry (Chapter 12) we

will be able to state simple and

elegant geometric interpretations

of these operations.

Example 5-7a. Given zi = 3 +

and z2 = 2 - 2i, make use of an

Argand diagram to find the

difference zi - z2.

Solution: Begin by plotting z1

and z
2'

Then locate the additive

inverse of z2 namely -z2. This

is easily done since we know that

z
2 and -z

2 are symmetric with

respect to the origin. The

point z1 - z2 is the same as

z
1

(-z
2

) (See Figure 5-7d.)

The geometric representation

of complex numbers suggests a

definition of absolute value of

a complex number. Recall that

when real numbers are

Figure 5-7c

Figure 5-7d

represented by points on a line the absolute value of a real

number is equal to its distance from the origin. Accordingly

we define the absolute value IzI of a complex number z = a bi

to be the distance from the origin of the point (a,b). Using

the Jistance formula from Chapter 2 our definition may be stated

algebraically as fcllows:
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Definition 5-7a. If z = a + bi, where a and b are real
numbers we write

IzI = 1,/a 2 + b 2

and call IzI the absdlute value of z.

Example 5-7b. Show that the distance between the points zi and
z2 is 1z2

z11'
Solution: If zi = xi + yii, z2 = x2 + y2i where xi, yl, x2, y2

are real numbers, then by the theorem on subtraction

z2 - zi = (x2 - xi) + (y2 - yi)i.

By the definition of absolute value

Iz2 zj = 1/(x2 x1)2 (Y2 Y1)2
and this is the distance between the points (x1,y1) and (x2,y2).

When z
1

and z
2 are real numbers we know the following rel-

ations involving absolute value and the algebraic operations:

(5-7c) 1z1z21 = 1z11 1z21

IzlI

2 2

Izl z2I < IzlI 1z21

(5-7d)

(5-7e)

(5-70 I IzlI Iz21
I

Izi 7 z21.

These relations continue to hold when z
1

and z
2

are complex

numbers. Formulas (5-7c) and (5-7d) can be proved by calculation

(Exercises 5-7, Problems 8 - 9), although we will present simpler

proofs in the next section.

The algebraic proof of Formula (5-7c) is quite difficult

but we can give an easy geometric proof. Consider the triangle

whose vertices are 00 zi, zi + z2 in Figure 5-7b. The lengths
of its sides are 1z

1
I

'
Iz
2

I 1z
1
+ z

2
1. Why? Since the length

of a side of a triangle is less than the sum of the lengths of

the other two sides, we have

1z1 z2I < 1z11 Iz2I.
We will show later that when the parallelogram collapses into a

straight line we have either the inequality above or the
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equation

lz
1
+ z

2
1 = 1z

1
1 + 1z

2
1 .

This will complete the proof of Formula (5-7e), which is often

called the "triangle inequality". The discussion of (5-70 is

left as an exercise (Exercises 5-7, Problem 10).

For further discussion of the algebra and geometry of

complex numbers it is convenient to introduce the notion of

complex conjugate. We do this in the next section.

Exercises 5-7

1. Plot each of the following complex numbers in an Argand

diagram. Label the points with the symbols zl, z2, etc.

z
1

= 1 z
5

= 2 + i

z
2

= z6 = -4 - 21

z3 = -1 z7 =

z4 = z8 = r

2. Plot the additive inverse of each.complex number in

Problem 1. Label the pbint that corresponds to z1 with

the symbol -z1, etc.

3. In each of the following problems find z1 + z2 and z1 z
2'

and also construct them graphically.

(a) z1 = 1 +

(b) z1 = 3 + 2i,

(c) z1 = -1 + 21,

(d) z1 = -3 + 4i,

(e) z1 = -3 +

z1 = -2i

(g) z1 = 3,

(h) z1 = 4,

z
2
= 2 + i

z
2
= 2 + 3i

z
2
= 2 - i

z
2

= -1 3i

z
2
= 1 + 4i

z
2
= 2 - 4i

z
2

= -3 + 51

z
2

=

4. Let zl, z2, ,z8 be the points given in Problem 1. Use

Equation 5-7b to find the midpoints of the segments joining
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z2 and z5, z3 and z6, z and z7, and plot the points in

an Argand diagram.

5. Find Izi if:

z = 3 - ki (d) z = i4 + i7

(b) z = -2i (e) z=r+
(c) z = 1 + 12

6. Show that, if z 0 -1-A-r- 1 = 1.

7. Find the set of points described by each of the following

equations

(a) z = 1 (b) z = Izi (c) z =

8. Give an algebraic proof of the equation

Izlz21 = 1z11-1z21,

if z
1

and z
2
are complex numbers.

9. Give an algebraic proof of the equation

z
1 1z1 1

72-

if z1 and z2 are complex numbers, and z2 j 0.

10. State a geometric proof of the inequality

k21 1 zl - z2 1 .

11. Suppose 0, z1 = a + bi, z2 = c + di are collinear. If

z3 = z1 + z2 show that z3 lies on the line through 0, z1

and z2.

12. Prove that the triangle with vertices 0, 1, z is similar

to the triangle with vertices 0, z, z
2 by showing that

corresponding sides are proportional. (Hint: Note that the

length of each side of the second triangle is equal to Izi

multiplied by the length of each side of the first triangle.)

Use the result to describe a geometric construction for z 2
.
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5-8. Complex Conjugate.

Definition 5-8a. If z = a + bi, in standard form (a and b real),

we call a + (-b)1 the complex conjugate, or simply the conjugate

of z, and write

= a 17bi = a + (-b)i.

Since a + (-b)i = a - bi we may also write

= a + 1)1 = a bi

Example 5-8a. 2 + 3i = 2 - 3i; (72.) = zr = 1.

It is easy to see that the conjugate of the conjugate of a complex
number is the complex number itself. If z = a + bi in standard
form, we have

(7) = (a + bi) = a - bi = a + bi
so that

(5-8a) z = z.

Thus if the first of two numbers is the conjugate of the second,

then the second is the conjugate of the first. We call such a
pair of numbers conjugate.

Although we have not used the term "conjugate" before, con-

jugates of complex numbers have appeared in many of our state-
ments about complex numbers. Thus, for example, the solutions

of a quadratic equation with negative discriminant are conjugate.

Also, the formula for the multiplicative inverse of z = a + bi
can be written

or

(5-8b) 1 E.z 2
lzl

From Equation (5-Rb) we get immediately

(5-8c) z.7 = 1z12.

This last equation is important enough to deserve statement as

a theorem and a new proof.

Theorem 5-8a.

z. = 1z12.

2! 9 :3
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Proof: If z a bi in standard form,then

bo a2 (bi)2 a2 b2i2 a2 b2(_1)

a2 (/a2 b2)
2

lz12.

Now that we have proved Equation (5-8c) independently of

Equation (5-8b) we can derive (5-8h) from (5-8c). In fact, it

is convenient to use Theorem 5-8a directly in dividing complex

numbers. The following example is illustrative.

Example 5-8b. Find the quotient

Solution: The conjugate of 2 + 3i is 2 - 31. Multiplying

2 3ioy and using Theorem 5-8a and Equation 5-5g,we get

8 + 5i 2 - 3i 8 + 5i - 3T8 +
2 + 31 2 - 3i 2 + 31 2 - 31 2 + 31

(5)(-3) + [8(-3) + 2(5)]i

22 + 32

31 (-14Ni 31 14
77 ,-177)" 17 77 "

If 'we plot z and z in an Argand diagram (Figure 5-8a),

-2a+bi iz=a+bi

2=a-bi

Figure 5-8a

we.see that Z. is the reflection of z in the x-axis; that is,

z and Z are symmetric with respect to the x-axis. Similarly,

is the reflection of z in the y-axis. From this diagram,

or by direct calculation, we also see that z + = 2a and

z - z = 2bi. With these equations we can express a and b in
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terms of z and 7. We thus obtain the following theorem:

Theorem 5-8b.

IP z = a + bi in standard form, then

.z + = 2a, z = 2bi;

1a = (z + z), b = - z).

Observe that since a complex number is real if and only if its

imaginary part is 0 and pure imaginary if and only if its real

part is 0, Theorem 5-8b has the following corollary.

Corollary. The complex number z is real if and only if z =

and pure imaginary if and only if z = -7.

Theorem 5-8h permits us to state any relation between the

real and imaginary parts of a complex number z as a relation
between z and Z. In particular,every statement of analytic

geometry can be expressed as a relation of this kind. Before

considering examples we state the following theorem which

simplifies the computation of conjugates.

Theorem 5-8c.

If z
1

and z
2
are any complex numbers, then

(a) z1 + z2 = z, + z2;

(b) z1.z2 = zi.z2 ;

(c) z1 - - z2 ;

(d)
zi

=
z2

z
1

or

z
2

The proofs are left as exercises (Exercises 5-8, Problem 5 ).

Example 5-8c. Show that, for any z, the reflection of the

point 3iz + 2 in the x-axis is the point -3iF+ 2.

Solution: The reflection of a point 3iz + 2 in the x-axis is its

conjugate, 3iz + 2. Using Theorem 5-8c twice we obtain
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31z + 2 = (3i)(z) + 7 = T7TT(z) + 7

= -3f7 + 2,

which was to be shown.

Zxample 5-8d, Show that the circle of radius 1 with center

at the origin is the set of all points z which satisfy the

equation
z-7 = 1.

Solution; There are two possible approaches. We can start with'

the definition of this circle as the set of points whose distance

from the origin is 1, and use the fact that the distance of the

point z = x + yi from the origin is IzI. Then z is on the

circle if and only if
IzI = 1-

285

Squaring both sides of this equation and using Theorem 5-8a we

get
= IzI2 = 1-

However we can also start with the equation of the circle

from analytic geometry:
2x + y 2

= 1.

If.z = x + yi then by Theorem 5-8b

1 / ix = kz + zl, y = t7kz - 1zl.

Sub3tituting for x and y, we obtain
2 2

1

or
4- (7 + z ) 2 - (7 - z)2 = 1.

Simplifying-, we have

= 1.

4cample 5-8e. Show that the segments which join the points

z1 = xi + yli and z2 = x2 + y2i to the origin are perpendicular

if and only'if the product zi.F2 is pure imaginary.

Solution: Again, there are two-approaches. We can either

express the geomebric conditions-immeaately in terms of z1 and

z or state them first in terms of (x1,Y1) and (x2,y2), and then2,
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use Theorem 5-8b. We will follow the first approach.

The segments joining z1 and z2 to the origin will be per-

pendicular if and only if the triangle with vertices 0, zl, z2

is a right triangle. By the Pythago7-Jan Theorem this Will be

true if and only if

lz 12 + 1z
2
12 = lz

1
- z

2
12

1 '

Using Theorems 5-8a and 58c this equation may be written

+ z21-2 = (z1 - z2)(z1 - z2) = (z1 - z)(77: -

z1z1 + z2z2 = z1z1 - z1z2 - z2z1 + z2z2 ;

0 = -z172 -

or, using Theorem 5-8c again and referring to Equation (5-8a),

= - Tiz2 = - (z1-12).

ay. the Corollary to Theorem 5-8b this equation can hold if and

only if the product z1z2 is Ture imaginary.

Finally, we can use Theorems 5-8a and 5-8c to establish

Formulas 5-7c, 5-7d. We do the first as an example.

Example 5-81'. Show that 1z1z21 = 1z11 1z21

Solution: Since the numbers in the equation which is to be

'established are positive it will suffice to prove

Iz1'z212 = 1z1121z212. (,Why?) We have

1zi.z212 = (z1.z2) (z1.z2) = (z1.z2)(ZT.

(z1.17) (z2T,) = ZlI
2

lz212.

This completes the proof.
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Exercises 5-8

1. Express the conjugate of each of the following complex

numbers in standard form:

(a) 2 3i (d) -5

(b) -3 + 2i (e) -2i

(c) 1 - i (0 1 - i5

(g) Ti7

(h)

(i) -31 + i 2

287

2. Use conjugates to compute the following quotients. Write ,

the answer in standard form.

2
1+1 (g) /611

(b) (h)

(c) 2-i++311 (1)
5

3 + v/7.5 i
-4 + 3i 3 -(d) (j)

5 - VT5

(e) (k)
_

(f)
3 + 21 113

(1)

11.0 a + bi
2a + 3bi ; a, b real, 2a + 3bi 0

(n) 2.cc ;1 ; x, y real, 2x yi 0

(o)
(1 + 1)(-1 21) + (2 - i)

2 - 3i

(P) (i - 1)(i !i 2)(i - 3)

3. For each of the following sketch in an Argand.diagram the
set of complex numbers z which satisfy the given equation.

1
(a)- z = - (b)

4 For each of the following sketch in an Argand diagram the
set of points z that satisfies the given equation.
(a) z + = 3 (b) z - = 2i (c) z -7 = 3 + 2i

5. Let z1 = xl + yli, z2 = x2 + y2i be any complex numbers,

xl, yl, x2, y2 real. Prove each of the following.

(a) z1 + z2 = + 272

(b) z1.z2 = 77.z2
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-I

6.

7.

8.

9.

(c) zi - z = z, - z2 [Hint:

and use

Show that (-z2) =

z
(d) (71

2

For any

z
3

- (3

If z
2

-

Snow that

z
1

is pure
z2

Prove that

z
-1- [Hint: Show
z
2

z, find the reflection

+ 2i)z
2
+ 5iz - 7 in

(F) 20 show that z

the product z1z2 is

imaginary.

1z1 - z21
2
+ 1z1

that (71,1-) = and use (b).]
4.2 z2

of the point

the y-axis.

is either real or pure imaginary

pure imaginary and only if

1+ z21
2
= 21z11 2

+ 21z21 2
.

10. Suppose z
1

and z
2 are complex numbers and that

z, + z2 and_zaz2

are real numbers. Show that

either

or
z
1

and z
2
are real,

zl = Z 2
'

11. Use the relation z.7 = jz12 tO show that

z
1

1z11

7- I TE-2 T
2

12. Write the equation of the straight line y = 3x + 2 as an

equation in z and -E.

13. Show that if K 0 is any complex number and C is any real

number then KT + = C is the equation of a straight line.

14. Show that the points z1 and z2 are symmetric with respect

to the line y = x if and only if

-(1 - + (1 + i)z2 = 0.

15. What is the relation between the line segments joining z1

and z2 to the origin if the product z172 is real?
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5-9. PoLynomial Equations

Linear and quadratic equations are special cases of poly-

nomial equations. A polynomial is an expression of the fom

(5-9a) P(z) = a
o
zn + a

1
21-1 + + a

n-2 z2 + a
n-1

z + a
n

where n is a non-negative integer and a
0,

a
11

a
2' '

a
n-1,

a
n

are any given complex nurbers, ao / 0. The non-negative integer

n is called the degree of the polynomial and the numbers a00 a10

a2,..., an_l, an are called its coefficients. A polynomial

equation of degree n is an equation

(5-9b) P(z) = 0,

where P(z) is a polynomial of degree n. Linear equations are

polynomial equations of degree 1; quadratic equations are polyno-

mial equations of degree 2.

Examples 5-9a.
3

(a) 2z
3 - 3-z 2 +z- 2 - 0 isapolynomial equation of

degree 3 with rational coefficients.

(b) z5 -1/z3 + 7z2 - 3 = 0 is a polynomial equation of

degree 5 with real coefficients.

(c) z3 - 7 Afi- + 3 = 0 is not a polynomial equation.

(d) 5z 3 - (2 - i)z + (3 + 7i) = 0 is a polynomial equation

of degree 3 with complex coefficients.

(e) z - 3 + = 0 is not a polynomial equation, but mul-

tiplying by z we obtain the polynomial equation

z
3 - 3z

2
+ 1 = 0. Every solution of the first equation is

a solution of the second, and every solution of the second

equation is a solution of the first.

-Every equation which can be written in terms of the un-

b:nown and given numbers, using only the operations of addition,

multiplication, subtraction and division,can be transformed into

a polynomial equation, equivalent except for extraneous roots.

Thus, ordinary algebra is mostly concerned with the solution of

polynomial equations. Let us summarize some of the advantages

that the complex number system C has over the real number

system R in connectIon with polynomial equations.
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Thepa are certain quadratic equations whose coefficients

are in A 'Put which have no solutions in F.; every such equation

has sollktl,ons in C. This was p7,oved in Section 5-6 for the .

case of peal coefficients, but lt is true oeffi-
cients afe complex numbers. .'or example

z
2

+ (1 - 51)z - (12 +

has the oto solutions 2 + 31 44d + 21, a fact which may be
checked by substitution. Methods for finding such solutions

will be presented in Chapter 12. The theorem that the solutions

of any gu5.dratic equation with complex coefficients are complex
numbers 1.5 an unexpected and INemarkable result. It shows us that

we will klot have to extend the complex number system in order to

solve que.dratic equations whose coefficients are in C. Recall
that R dves not have this propePtyi indeed it was jttst for this

reason tbat we extended R to C.

,But the merits of C go fax, beyond this. ..Very polynomial

equation With coefficients in C has solutions in Cj'and indeed
all the sv1utions that could 10a expected are in C. This result,
which is khown as the Fundamental Theorem of Algebra, comes as

an enorm,lis bonus, when we recall that to solve the simple equa-
tion x2 -1 the new element j, had to be invented. Conceivably,
one might expect to need a neW Aumber j to solve = -1, for
example. This is not the casei This equation has four and only

four con1ex solutions, all of,the form a + bi, where a and b

are real 4Umbers. (See Chaptep 12 and Exercises 5-9.)

The first proof of the Ful/Iclamenta1 Theorem was given by
Gauss In 1799. Since then seVoral other proofs have been dev-

eloped aRa although some are cullte simple, none is simple enough
to be presented here. We sha1 l. however make a precise statement

of the theorem In a form which ls basic for the study of poly-
nomials.

3 1
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Theorem 5-9.

Let

P(z) = aozn + a1zn-1 + + an-2 z
2
+ a

n-1 z + an
be a polynomial of degree n with complex coefficients. Then
there exist n complex numbers r1 r2, rn (not necessnrily

distinct) such that

P(z) = ao(z - r1)(z - r2). (z - rn).

If one of the factors in the factorization of P(z) stated in

Theorem 5-9 is z - ro r 18 called a zero of P(z); if exactly

m of these factors are z ro r is called a zero of multi-

plicity m. A zero is called a simple zero if its multiplicity

is one; otherwise it is called a multiple zero. Since the total

number of factors in Theorem 5-9 is no the sum of the multi-

plicities of the zeros of a polynomial of degree n is n. This

may also be stated: The number of zeros, each counted with its

multiplicity) of a polynomial of degree n is n.

Since a product is 0 if and only if one of its factors is 00

it is clear that z is a solution of the polynomial equation

P(z) = 0

if and only if ,equals one of the zeros of P(z). According

to Theorem 5-9 a polynomial of degree n > 0 has at least one

zero (exactly one if r1 = r2 = = rn) and may have as many as

n zeros (exactly n if no two of the numbers r
1'

r
2, 1

r
n

are equal). It follows that every polynomial equation of degree

n > 0 has at least one complex solution, and may have as many as

n solutions, but has no more than a solutions.

Example, 5-9b. Discuss the possible number of solutions of a

polynomial equation of degree 3. Include examples.

Solution: The equation may have 1, 2, or 3 solutions. If it

has one solution, this must be a triple zero (zero of multiplic-

ity 3) of the polynomial. If it has two solutions, one must be

a simple zero, the other a double zero (zero of multiplicity 2)

of the polynomial. If it has three solutions each must be a
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simple zero of the polynomial.

An example of the first case is given by the polynomial

equation
3

3z
2

4- 3z - 1 = (z - 1) 3z - = O.

The only solution of the equation is z = 1. 1 is a triple zero

of the polynomial z3 - 3z2 + 3z 1.

The equation

,2z
3 - z

2
z 1 = (z = 0

has the solutions 1, -1. -1 is a ro and +1 a double zero.

The equation

z
3

z = z(z - i)(z + i) = 0

has the solutions 0, i, -i. Each is a simple zero of z 3
+ z.

Let P(z) be a polynomial of degree n,

P(z) = a
o
(z r

1
)(z - r

2
).-. (z - r

n
),

and define Q(z) by

Q(z) = ao(z - ro)... (z - rn).
"

Then Q(z) is a polynomial of degree n - 1 whose zeros are the

zeros of P(z), except possibly for rl, and

P(z) = (z - r1)Q(z).

Now suppose we have to determine the zeros of P(z) and that we

have found one zero, rl. The remaining zeros will be the zeros

of Q(z) and to find Q(z) we have only to divide P(z) by z

since
P( z )

= Q(z)z - r1

This fact enables us to reduce the solution of a polynomial

equation of degree n to the solution of an equation of degree

n - 1 once we have determined one solution of the original equa-

tion. The following example illustrates this.

Example 5-9c. Find all solutions of the equation z3 - 1 = O.

Solution: The solutions of the equation are the zeros of z
3

- 1.

One zero is obviously 1. We divide z 3
- 1 by z - 1:

30 3
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z
2
+ z + 1

z - 1 f z
3

3 2
z - z

z
2

-1

2z z
z 1

The remaining solutions thus are the --?'os of z
2
+ z + 1, thnt

is, th,7, solutions of

1 v/75Solving this quadratic equation we get the roots + i -r- ,

- 7 - i -7- Thus the solutions of the given equation are 1,

1 iI 1 i,./5

+ 7

In this example we observe that, as in the case of quadratic

equations, the complex roots are conjugate. We can show that

whenever the coefficients of a polynomial equation are real the

complex solutions occur in conjugate pairs; that is, if z is

a solution of such an equation 7 is also a solUtion. Let z

be a solution of

Then we have

a z
n

+ n-1 + + a
n-1 z + an 0.

a ozn + a z + + a
n-1

z + an = T =

and using Theorem 5-8c repeatedly we get

a + a CEP-1 + + + n . 0.

Since the coefficients are real, a.0 = ao, "El alow, 1711_1 =

a
n-1, n

a
n
and we have

(70
', 1 /

+ a n-1. F + a
n

= 0,"
ao that 7 is also a solutIon of the equation.

3 0
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Exercises 9-9

1. Determine the zeros and the multiplicity of each zero for
the following polynomials.

(a) 5(z - 1)(z + 2)3
2

(b) z
4
(z + ) (z - 3)

(c) (z - 3 + 2i)2(z + 1)5

2. Find the zeros of the following polynomials and state the
miltiplicity of each zero.

(a) z5 + z 4
+ 3z

3

(b) z
4
+ 2z

2
+ 1

(c) z
3
+ 3z2 + 3z + 1

3. Write two polynomial equations whose only solutions are 1 and
2 such that:

(a) the two equations "...3.ve tb same deg2ee;

(b) the two equations cr tlfferent degrees.
4. Discussowith examples, 7..Ae 7zssible number of solutions of

an equation of degree 4.

5. Find all solutions of z 0.

6. Find all solutions of th.7 .:.:-)1lowing equations, given one
solution.

(a) az3 - 20z2 + 36z - 16 z = 4

(b) :3 - 4z2 + 6z - L = 0 Z = 2
7. Find all solutions of fo.liowing equations, given two

solutions.

(a) z
4
+ 2z

3
+ z + 2 -

(b) z - 3z3 - 3z 2
- -

8. Find the polynomial whHse zer

(a) the polynomial ha7. thy. 1

(b) the polynomial ha s. rt2.2.

possible degree.

(c) the polynomial has real

possible degree and -2:1.

(sec.

z = -1, -2

= 0 z = 4,1

os include 1 and -21 if:

)west possible degree.

:oefficients and has the lowest

::)efficientr, the lowest

a double zero.
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9. Given that 3 + i is a solution, find all solutions of

the equation h

z- - 6z3 + 2z2 + 54z - 99 = 0.

.10. Given that 1 - is a solution, find all solutions of

the equation

z4 - 2z3 + 4z2 + 4z - 12 = 0.

11. (a) Find a formula for the coefficients of the cubic poly-

nomial whose zeros are r r
2'

r
3

if the coefficient of

the highest power is 1.

*(b) Do the same for the quartic polynomial.

*(c) Make a guess as to the form of a corresponding formula

for a polynomial of degree 7.

5-10. Miscellaneous Exercises.

1. If z = 2 - 31, evaluate

-z, z, 1z1, 171, 1. 1z12, 1z21, and 4 5i

2. Write a quadratic equation having the solutions c + di and
c - di, where c and d are real.

3. Is"the set of numbers (1,-1,1,-1) closed with respect to

multiplication? Addition?

4. If z = x + yi show that

x 1z1 and y 1z1.

Sketch the set of points z which satisfy each of the

following conditions.

(a) lz - 21 = 3 (c) lz - 211 < 4
(b) lz + 21 > 3 (d) 1z - zol < 5

6. Write an equation in x and y which is equivalent to the

equation 1z - (2 + 31)1 = 5.

Describe the set of points in an Argand diagram which

satisfy the given equation.

[sec. 5-10]
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7. 'Give a geometrical interpretation for the following rel-

ations.

(a) 1z11 < 1z21 (d) z1 + Z2 = 0

(b) Izj = 5 (e) Z - Z2 = 0

(c) z
1
+ z

2
= 0

8. Find all complex numbers z such that (Real part of z) =

(Imaginary part of z), and 1z1 = 1.

9. Determine al quadratic equations with real coefficients

which have 3 + 2i as a solution.

10. Plot the point corresponding to 3 + 5i in an Argand diagram.

Then multiply the given number successively by i, i
2

and

i
3, and plot the three points which correspond to the

resulting products. Finally, show that the three last

named points together with the given point form the

vertices of a square.

11. Show that z
o
is a solution of the equation

2 h
az

2
+ bz + = 0, where a, b, c are real and b - ifac < 0,

then z070 = -aS. and zo + To = - . Use the result-to

deneribe a geometric construction for zo.

12. Find all quadratic equations with real coefficients having

solutions z1 and z2 such that z, + z2 = 1 and z1z2 = 4.

13. Find all complex numbers z for which the real part of
2

. z is 0. Show that if z belongs to this set, then 1.

also belongs to the set.

14. For what real values of r does the equation

2 /Tx + kl + r)x + 2 = 0

have non-real complex solutions? For what values of r

does it have only one solution?

15. Show by an example that a - bi need not be the complex

conjugate of a + bi?

16. Find the equa`;lon of the perpendicular bisector of the

line joining zi and z2. (Hint: Use the fact that the per-

pendicular bz_zector of a line segment is the set of points

equidistant -.from the endpoints.)

[sec. 5-10]
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17. Let zo = xo + yo Describe the set of points z = x + yi

1z O! < 1.which satisfy the inequality
iz - z

18. Let z
1

and z
2 be 'distinct non-zero complex numbers. Show

that z
1

and z
2 represent points in an Argand diagram lying

zl
on a straight line through the origin if and only if -z is

real.

19. iol the equation z = -1. (You may find it helpful to

refer to Exercises 5-6, Problems 22 and 23.)

20. Show that it is impossible to satisfy all the order postu-

lates of Chapter 1 in the complex number system. Consider
the element 1. Certainly i / 0, so either i > 0 or i < 0

if the "Trichotomy" property is to hold. Show that each of

the assumptions i > 0, i < 0 leads to conclusions contra-

dicting at least one of the order postulates.

21. Find all complex numbars x,y with the property that the con-
jugate of x + yi is x - yi.

*22. If z = x + yi, show that

Ixl 4- IA
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*5-ll. Construction of the Complex Number System.

In this chapter we have assumed that we have available a

number system (which we called the complex number system) satis-

fying certain imposed requirements (th- f'our fui.amental proper-

tiPs C-I, C-2, C-3, C-4). In a sense we have stated what a com-

plea. :.umber system ought to be. On the basis of the impoaed re-

quirements we have learned how to compute in such a systea

It is a fundamental (but sophisticated) question whe7.ther

there actually exists a number system C fulfilling the require-

ments we set down in Sections 5-1 and 5-2. We shall sketch the

basic steps for constructing such a system'. Many of the details

will L.Ie left to the reader.

et us return to our earlier developments. There we learned

that the rule which associates with the complex number a 4. bi

the =dered pair of real numbers (a,b) sets up a one-to-one

correspondence between the set of complex numbers and the set of

ordered pairs of real numbers. This fact and the information

which we have obtained on how we are compelled to add and multi-

ply fn C motivates the following proposal for constructing, on

the basis of the real number system, a number system which meets

the requirements we imposed on C.

Let K denote the set of ordered pairs of real numbers (a,b).

These are the objects which we are to "add" and :multiply". Let

us say: (a,b) = (c,d) if and only if and only if a = c and b = d.

It is necessary to define operations of addition and multi-

plication for K. The facts we have deduced from the fundamental

properties of the complex number system lead us to believe that

the definitions which we shall put down are "reasonable" when we

keep in mind our mission of constructing a complex number system

with "real building blocks".

We define

Addition: (a,b) (c,d) = (a + c, b + d).

Multiplication: (a,b).(c,d) = (ac - bd, ad + bc).

Note that the operation of "addition" in K lc defined in terms

of the operation of addition in th: real number system and that

[sec. 5-11]
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the operation of "multiplication" 1. in terms of

addition, subtraction and multiplication in t. real number

system. Note that our definitions assure closure of the oper-

ations + and of K: the "sum" of two ordered pairs of real

numbers is an ordered pair of real numbers, the "product" of two

ordered pairs of real numbers is an ordered pair of real numbers.

Two remarks are in order. First, we must distinguish,

"addition" and "multiplication" in K from addition and multiplica-

tion in the real number system. The two kinds of addition and

multiplication apply respectively to different kinds of objects.

That is why we use the exaggerated plus sign + and the exagger-

ated times sign for the operations of "addition" and multi-

plication" in K.

Second, we emphasize that + and are constructed from

what we lcarned about addition and multiplication in C keeping

in mind that our correspondence between a + bi and (a,b)

identifies "real part" with "first component" and "imaginary

part" with "second component". The'spadework sets in at this

stage. We verify first that K with the addition + and

multiplication satisfies the usual laws of algebra. This

verification depends upon properties satisfied by the real

number system. We easily verify that (0,0) is the additive

identity for K, that (1,0) is the multiplicative identity for K,

and that (-1,0) is the additive inverse of the multiplicative

identity.

Explicitly, we have the following results:

(a,b) + (0,0) = (a,b), (a,b) (1,0) = (a,b),

(1,0) + (-1,0) = (0,0).

Verify these three statements.

Further (0,1) (0,1) = (-1,0).

Hence K possesses an element whose square is the additive in-

verse of the multiplicative identity. This sounds a bit heavy-
handed but tells us that we have grounds for optimism as far as
capturing something that will play the role of the all-important L.

[sec. 5-11]
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Let us go so far as to denote (0,1) by i. We may write

(5-11a) (a,b) = (a,0) + (0,b) = (a,0) + (b,0). (0,1)

= (a,0) + (b,0) i

Now if we restrict our attention to the special elements of

K whose second cmponents are zero, we see that they behave

under + and the same way that their first components do

under the + and of the real number system. That is

(5-11h)

(5-lie)

(a,0) + (b,0) = (a + b,0),

(a,0) (b,0) = (ab,0).

Verify the statements (5-11b), (5-11c) and also the follow-

ing two:
(a,0) + (-a,0) = (0,0);

(a,0) (.. , 0) = (1,0), a / 0.

We now define a notion of order among the special elements

of the form (a,0). (Remark: We could not define a notion of

order in K, even if we wanted to, which would yield the expected

relation among the special elements (a,0). This remark applies

to C also. If we had an order relation in C like that in R we

could expect the square of each non-zero element to be positive.

This would force 12 into the unacceptable position of being both

positive and negative in the sense of the real number system.)

We define

"Less than": [(a,0) < (b,0)] means (a < b).

It is now possible to show that the set of elements of the

form (a,0) together with the operation of addition + , the

operation of multiplication , and the relation of inequality

< satisfy the postulates for the real number system.

Verify this assertion.

We are thus justified in taking this set of awkward appear-

ing elements (a,0) with addition, multiplication and order so

introduced as our real number system. With this understanding we

verify that K has all the properties imposed on C. Note that

(-1,0) is the add17.ive inverse of the multiplicative identity

(sec. 5-11)
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of our present real number system and that

(5-11d) i i = (-1,0).

Thanks to the fact that the elements (a,0) may be taken as
the rerA. numbers, Property C-2 is satisfied. By Formula (5-11d),
Property C-3 is satisfied. Further Formula (5-11a) tells us that
Property C-4 is satisfied. There remains to be verified only
that + and are commutative and associative, that the dis-

tributive law holds in K, and that each element has an additive
inverse, in order to show that K has Property C-1.

The commutative and associative laws for + and are
readily verified as is the distributive law. As an illustra-
tion we consider the distributive law:

(a,b) [(c,d) + (e,f)]

= (a,b) (c + e,d + f)

= (a(c + e) - b(d + b(c + e) + a(d + f))

and ((a,b) (c,d)) + ((a,b) (e,1)]

= (ac - bd, bc + ad) + (ae - bf, af + be)

= ((ac - bd) + (ae - bf), (bc + ad) + (be + af))

= (a(c + e) - b(d + f), b(c + e) + a(d +

We see that the distributive law holds.

Additive inverse? Since

(a,b) + (-a,-b) = (0,0),

(-a,-b) is the additive inverse of (a,b).

It is now simple to verify that a non-zero element (a,b) has

a multiplicative inverse and hence that the equation

(a,b) (x,y) = (c,d), (a,b) / (0,0)
has a unique solution.

[sec. 5-11)
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Given (a,b) / (0,0), we verify that

(a,b) ( a 0 -b 2)
a + b- a-

0
+ b

a= (a( . a ) - b ( 2 2), a ( --b b (e-
a + b a + b + a + b2))

= (1,0).

We now conclude that K together with + and satisfies

the conditions imposed on the complex number system.

At this stage it suffices to redesign our notation for the

real numbers in'K and to designate the real numbers by the

letters, a, b, to use the standard notations for the

additive unit and the multiplicative unit, and to write + and
for + and respectively. With these agreements each complex
number is o the form

a + bi,

where a and b are real, and i2 = -

313
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Chapter 6

EQUATIONS OF THE FIRST AND SECOND DEGREE IN TWO VARIABLES

6-1. The Straight Line.

In Chapter 2 we took a preliminary look at analyt:ic geometry.
The purpose of this chapter is to use the techniques of analytic
geometry to study systematically the graphs of equations of the
first and sec...nd degree in two variables.

One of the axioms of plane geometry is that two distinct
points determine a line. In Chapter 2 we defined the slope of

the straight line determined by P1(x1,y1) and P2(x2,y2) to be
the real number

m -
x 2 - x

1

Y2 Y1

We then used the geometric picture of the straight line to estab-
lish the fact that this roal number m did not depend on the

partiCular pair of points on the line which were used to compute
it. We now use this fact to prove

Theorem 6-1a. If P1(x1,y1) is any point in the plane and
m is any real number, then the equation of the straight line
passing through the point P1 with slope m is

6-1a. y yl = m(x - x1).

Proof: Let P(x,y) be any point on the line distinct from
P
1. Since the slope of the line is independent of the two points

used to compute it, regardless of which point P(x,y) on the line
we take, so long as it is not P1 itself, we must have

Y1

m

314



3014

x / xl and hence x - xi / 0. (Why can't x = x1?) If we multiply

both sides of the equation by x - xi, we have

Y1 m(x xl).

This argument shows that the coordinates of any point on the line,

except Pl, satisfy the equation y - yl m(x x1). Of course

the coordinates of P
I

satisfy the equation also.

There is, however, the possibility that some points on the

graph might not lie on the line though P1 with slope m. For

instance, it is conceivable that the graph could be one of the point

sets shown below in Fig. 6-la.

Fig. 6-la.

Of course our intuition and our experience in plotting points tell

us that thic is not the case. In order to be ab!lolutely sure, we

must prove that every point Q(x,,y1) whose coordinates satisfy the

equation, actually does lie on the line through ,P1 with slope m.

Let Q(x',y') be any point whose coordinates sati.3fy

6-la
Y1 m(x xl).

Then
Y1 Y1 m(xl xl).

3 1 5
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If xl = x
1,

thrm y' y
1

= 0 and y' = y
1 . This means that Q.

is just P. And since P
1

is certainly on the line, we only need
to consider the case xl / x that is x' - x

1
/ 0. If

x' - x
1
/ 0 we can rewrite

Y1 Yl
yl - yi = m(xl - xi) as - m.x xi

But this equation tells us that the line determined by Pi and Q.

has slope m. Q then is on the line through Pi with slope m.

And we have now shown that any point Q(x,,y,) whose coordinates

satisfy the equation 6-la lies on the line. Since the coordinates

of every point on the line satisfies 6-la and any point whose

coordinates satisfy 6-la lies on the line, equation 6-la is the

equation of the line through Pi with slope m. The proof is now
complete.

The equation y - yi = m(x - xi) is called the Roint-slope form of

the equation of a line.

Example 6-1a. Find the equation of the line passing through

the point (1,2) with slope 2.

Solution. By Theorem 6-la the answer is y - 2 = 2(x - 1).

This simplifies to y 2x. To sketch the graph of the equation we

simply plot the point (1,2) and use the fact that the slope is 2

to locate a second point on the line, as we did in Chapter 2 .

That is, we go to the right 1 and up 2 and find that the point
(2,4) is also on the line.

! 1 ,

A

Fig. 6-lb.

[sec. 6-1]
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An even easier way to plot the line would be to use the point (1,2)

which was given and to find one of the intercepts. In our case both

the x-Intercept and the y-intercept are zero.

If in the point-slope form of the equation of a line,

y - yi = m(x - xl), we let x = 0, we find the y-intercept to be
yl mxi. We set the y-intercept yl 1 mxl = b and the equation of

the line can be written in the form

6-lb
. y = mx 0.

This is an extremely useful form of the equation of a line as

both the constants m and b have geometric significance --m

gives the slope and b tells us that the line crosses the y-axis at
(0,b). For obvious reasons this form of the equation of the line is

called the slope-intercept form. It should look familiar to you

since it has the same form as the defining equation for the linear

function which you met in Chapter 3.

Up to this point we have talked about straight lines which pass

through a point and which have slope m. This discussion includes
every line which has a slope. However, in Chapter 2 we noted that

every non-vertical line has a slope. (What is the slope of a hor-

izontal line?) This means that the only lines which do not have

equations which can be written in the slope-intercept form are

vertical lines.

Suppose we consider the vertical line through the point (2,0).

' The point (2,1) is on it. So is the point (2,2) and the point
(2,3). In fact all the points with abscissa 2 lie on the line.

Furthermore any point which lies on the line has abscissa 2. So
the equation x 2 is the equation of the vertical line through

the point (2,0).

Similarly every vertical line which crosses the x-axis at
(a,0) must have the equation x = a. We are now able to assert

that every straight line either has the form y = mx + b or x = a
for some real numbers m, b, and a.

317
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Example 6-1b. Find .:;.quation of the line through the polt,s

,-3) and (3,-5).

Solu- In ordr The point- -n we nr-st find

Y2 Yl (-5)7m. The £: -111a for th- n
3 -x2 - X

1
-

itut=f--; in y - yi xl) we have y - (-5) = -2(x - 3)

Example 6-1c. Find ,0-; ';,..luation of the line parallel to

-x + 5 and having x-irt;5: ept 2.

Solution: By 6-lb (tLn JoiDe-intercept 1._'1-m), the line
= -x + 5 has slope -1. Theorem 2 - 3a Mich says that

praliel lines have the same Lope, the slope cf the line we are
after is -1. We use the poil----;-slope form with m = -1 and (2,0)
as the point P1(x1,y1) to obtain the equation y - 0 = -(x - 2).

Exercises 6-1

1. Write an equation of he line which passes through the two
points:

(a) P1(2,4) and

-(b) P1(2,4) and P2(4,2)

(c) P1(0,0) and P2(1,5)

(d) P1(10,2) and P2(0,0)

(e) P1(2,7) and P2(-8,5)

2. Draw the graph of each of the following equations on the same
set of coordinate axes:

(a) y = 2x + 1

(b) y = 4x + 1

(c) y = -3x + 1

(d) y = -x + 1
318
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3. Draw the graph_ of

the same set of coo.

y = 2x and y = 2x on

(a) Draw lines thro..

m -2, -1, 0,

(b) Write an equation .

2,2) having

u,: _Ine.

5. Write an equation of t: 1 line oa:Dsing through (3,4).

6. Determine m so that -.._ ne Alose equation is y = 7ox + 3

passes through the poi ).

7. Write an equation of t:

cept 2.

1
-.,.:- -.:11 slope - .7 and x-lnter-

8. Write an equation of

the point (-1,3).

Tassing through the origin and

9 Write an equation of th- lf passing through the origin and

the point (x1,y1).

10. Write an equation of the passing through the origin with

slope m. In many pracical problems this relation between

two variables x and y called direct variation. If

y = kx we say that y vasieo directly as x, or that y

is proportional to x. In tne latter case, k is called the

constant of proportionalIty,

11. Write an equation express:la:I- relatfon between variables

of the following:

(a) The perimeter of an eq_L T;eral triangle varies directly

as the length of a L;_u.2.

(b) The number of feet s traversed by a freely falling

body varies directly as the square of its time of fall

(c) The current I in an ectric circuit varies directly

as the electromotive force E.

10
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12. If x varies as y, and x - 8 when y = 15, find x
when y = 10.

13. The volume 7 of an iieal gas varies directly as its absolute
temperature T. =f 7 = 1500 cc. when T = 3000 absolute

what will the tempera:ure be when volume is 2500

14. Find the value of k for which the line y = kx + 1r will
1pass through the point (- 7,-3).

15. Write an equation of the line passing through (3,4) parallel
to the line whose equation is y = 2x + 2.

16. Write an equation of the line through the origin perpendicular
1 1to the line whose equation is y = +

17. Write an equation of a line through the point (-2,5) and
perpendicular to 5x - 2y = 2.

18. A line has a slope and passes through the point (8,-12).
Write an equation of a second line through this point per-
pendicular to the first line.

lg. Graph the lines on the same coordinate axes whose equation is
5x + 3y c = 0 and having y-intercepts

(a) (d) 5

) -1 (e)

(c)

20. Write an equation of the line which passes through the point
(-5,7) and is parallel to,

(a) the y-axis (b) the x-axis

21. Write an ec-...ation of the line perpendicular to the line whose
equation is 2y + x = 5 and intersecting it, on,

(a) the y-axis (b) the x-axis

22. Write an equation of the line tangent at the point (3,4) to

the circle with center at the origin and radius 5.

320
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23. Find an equation of: te line at -. dif lce fr:m the

origin with x-L-2..terceht 5.

Find an equati :f ioe line which pa -. es thr:. ohe origin

and the midpoi: segment cut of: by

axes on the wtr.Le equation is 2x 3y = O.

25. Find an equation of the line which contains rae zhortest line

segment that jo.:.ns :he origin and a point on the line whose

equation is y - 2x - 10.

6-2. The General Linear Equation Ax + By + C = 0.

Definition 6-2a. The equation

6-2a Ax + By + C = 0, A2 B2 / 0

is called the general linear ecuation in two variables x and x.

(A
2
+ B

2
f 0 is an economizal way of saying eithez A or B is

not zero.:

In tte last sec:ion we showed that the graph of the equations

y = mx + t and x = a are straight lines. We naw ask: Is the

graph of eTery linear equation'a straight line? And conversely,

Is every straight line the graph of some linear equation? The

answer is given by

Theorem 6-2a: The graph of every linear equatfnn is a

straight line and every straight line is the graph of a linear

equation.

Proof: Every lineaT equation haE the form

Ax + By + C = 0, A
2

/ 0. If F 0,

A
-y -Ex

A
which is the equation of the line -,w=r1 slope m = and-

C
y-intercept b = -17 by 2h,-orem 6-1a.

[sec. 6-2]
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If E C. then i 0

which ls equat of -tical line thr:I.L., ithe point

Therefor every equation has LILI' ts graph a

straight ..ne.

Cony 7sely,
7:: line is either 7:-.1ical and has an

equation = a for some :7 ..:aumber a, or tJae: line has a slope
m and y-inte2cept and has an equat:a-i of the form
y = mx + Since both o_ 7:nese equations can ' written in the
form of tLe.general linear eoaation -- (1)x + y 4 (-a) = 0
and + (1)y (-b) the theorem is c ..oved

Example 6-2a. What 1. the .:1pe of the line .41-iose equation
is 3x + 2y + = 0?

Solution: The gLven equatica can be written in the form

7y = -ix - -. Hence the slope of the line is - 22 2'

In this example we see that a line may be the graph of differ-
ent equations. Thus, the equat:...ons 3x + 2y + 7 = 0 and

7y = - are equa:77 of zne sa=e line.2 -
For two equations 7n.:__..se grazphs a2e vertical lines, it is easy

to see whether or not t two equattons are aL:..,ations for the same
line. Since Ln this B = 0, equ:-T;:t-ms have the form

AX + C = 0 or x For example 2x = and 4x = 6 are

equations for the ::am.s. -,:=L7ht line; namely, -,:he vertical line

with x-intercept

equatics =al-x:3 are nan-vertLcal ---.2-Thes, we simply

write them in si-z__--pe-intee.-.7:-t- form a!mf compz;:pe sZa--oes and inter-
cepts. For example 7- - 4 0 amf 4x 2y - 6 0 are

not equations oLfthe same xrs since tne-L:r ,,lope-:L=tercept forms

are y- - 2x - 4 ani 7 - -2x 7. _From thr'-'7=; form of the

equations we know that 7.-1Te -ines have the same sle, -2, and
are therefore parallel. B7..= their y-intercepts-are 4 and 3

respectively, and hence they-certainly are not the.same line.

[sec. 6-2]
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On ,t...ae otror hand Ax + By + C = 0 and kA:: kBy + 1<0 - 0 both

Ahave the slope intercept form y = - x -4. and are equations
-

for ;he na:te line. The result can be -tated the follow:Lng way:

The 7rans of two linear equations of t. Ax + Er + = 0

are the same line lf and on:7 if their nding coefficients

are proportional.

Exarrole 6-2b. Le-termine without urawini: graphs whether the

following pairs of ea.tations have as their grs.phs lines which are

the same or are parallel:

(a) 5x lOy - 25 = (b) x = - 3,

-x - 2y + 5 ---, 6y 2.

10Solution: (a) = 7 = - -5, the two equatLans repre-

sent the same line.

(b) If we first rewrite the equatfons in the farm

Ax + By + C 0, we have x - 2y +-7, 0, -3x + 6y 2 = O.

Then = / 3, hence the equa',im== io not represent the same

1line. However, since the slopes of -L_th lines are the lineas

are parallel.

We have now obtained several form: far equations of straight

lines -- the point-slope form, the slppitr7terce7t form, ant the

general form. The first is conver ent iie linle is give= ty a

point and the slope. The,:seao,nd low:: as to read off the slope

and the y-intercept. Lswever, -aiy r n-vertical lines can be

writt:.:n in these two forms, whea:as, an eauation for any line can.

be wrLtten in the genera for7a. knother useful form is given in

the following example.

0 2 0

[sec_ 6-2]
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Example 6-2c. Find the equation of the line whose :?:..-inter-

cept is a and whose y-intercept is b, where a / J and
b O.

Solution: The slope of the

line is

b - 0 b
m 0 - a 797'

and it crosses the y-axis at the

point (0,b). Therefore its

equation is

y x + b, or equivalently
a

6-2b + = 1
a b

Equation 6-2b is called the intercept fc=m of the equatLam

of a straight line.

Exercisas 6-2

1. Write an equation of the line that has alcr- p-nd :;.7P,szes

through point (-1,-2). Write it in the frm Ax - C = 0

2. Use the intercept form to write an aquatr2L:. af the aina Inav-

ing x-intercept 2 and y-intercept 3

3 Find the slope and the y-intercept of the 1Lnes whose equa-

tions are;

(a) 3x - 2y - 6 . 0 (d) 4x -

(b) X - By + 2 = 0 (e) 8x - 2y C

(c) 5y - 9x - 1 = 0 (f) -x +

324
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4. Find the x and y-intercepts of the lines whose equations

are given, by first writing each equation in the intercept

form:

(a) 3x + 2y - 6 = 0

(b) 4x - 3y - 12 = 0

(c) 5x + 2y - 10 - 0

(d) 4x - 7y - 20 = 0

(e) 3x - 5y + 10 . 0

(0 2x - 3y + 5 . 0

5. Consider the following pairs of equations. Without sketching

graphs,,determine which pairs represent lines which are the

same, are parallel, or are neither.

(a) 3x - 2y - 2 . 0 (d) 6x + 2y + 5 0

6x - 4y - 4 = 0 x + 3y + 5 = 0

(b) 2x - 2y 7 = 0 (e) 6y = x - 3

13x - 6y 1 = 0 -3x + 21y = -2
2

(c) x y - = 0 (f) 3x +y-l= 0

x y - = 0 2x + = 2
3 5

(g) 2x +1-y= 0

6. Write an equation of a line which passes through the point

(0,0) and is parallel to the line whose equation is

2x - y - 5 = O.

7. Write an equation of a line which passes through the point

(-2, and is perpendicular to the line whose equation is

3 2 5
[sec. 6-2]
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6-3. The Parabola.

The first two sections of this chapter were concerned with the

first degree equation and its graph, :the straight line. We proved

that every straight line in the xy-plane is the graph of a first

degree equation in the variables x and y, and conversely. We

showed in plane geometry that the set of points equidistant from

two fixed points is a straight line (perpendicular bisector of the

segment joining the two points). A na:1ural question to.ask next

is, what is the set of points equidistant from a point and a line?

The answer is given by the following definiton.

Definition 6-3a. The set of points equidistant from a line

and a point off the line is called a parabola. The lihe is called

the directrix, and the point is called the focus. The line through

the focus perpendicular to the directrix is called the axis, or,

sometimes the axis of symmetry, of the parabola.

In Fig. 6-ia, DDT is the di-

rectrix and F is the focus. The

intersection of the axis of the

parabola with the directrix is

the point R, and the midpoint

of RF is V. The point V is

on the parabola because

d(R,V) d(V,F). The point V

is called vertex of the parabola.

Fig. 6-3a

Example 6-3a. Find the equation of the parabola which has

the directrix x = -2 and focus (2,0).
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Solution: Our problem is to

fied by the set of points (x,y)

line x = -2 and the point (2,0)

any such point, and let Q be the

cular from P to the line x = -2

is horizontal, Q has coordinates

distant from F(2,0) and the line

find an equation which is satis-

which are equidistant from the

. In Fig. 6-3b, let P(x,y) be

intersection of the perpendi-

with that line. Then since PQ

(-2,y). Since P is equi-

x = -2,

d(P,F) d(P,Q)

.(x-2)2 (Y-02 .,N1/(x+2)2 + (y-y)2

x
2

- 4x + 4 + y2 x2 + 4x + 4

Y
2

= 8x.

Up to this point we have

shown that the coordinates of any

point equidistant from the point

(2,0) and the line x = -2 sat-

isfy the equation y2
= 8x. Con-

versely, it may be shown (See

Ft'oblem 5, Exercises 6-3) that if

the coordinates of a Point satisfy

the equation y2 = 8x, then the

point is equidistant from the

line x = -2 and the point

(2,0). Thus y2 = 8x is the

equation of th parabola.
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To sketch the parabola we use the tachnizaes of Chapter 2.

The x and y int2r0,-Tt- are both O. Furtharmore since

(-y)
2

y
2

8x, the ve is symmetric with respect to the x-axis.
2

Since x = > 0, there are no poinT.o on the mraph for x < 0.

We plot a few convnient points and .traw a smooth curve through

them.

0
1

0 +2

These points are shown im Fig. 6-3b.

Example 6-3h. Find the equation oLt the

distant from the line. y = -3 and the ptint

parabola with direL.trix y = -3 and. fms

6-3a we begin with

d(P,F) = d(P,Q)

(y.+3)2

This simplifies to

x 2
= 12y.

If we test for symmetry,

(-x) = x
2

= 12y, and the par-

abola is symmetric with respect

to the y-axis. The vertex is

at the origin. This information

together with the points obtained

from the following table enables

us to sketch the parabola as shown L

in Fig. 6-3c.

set of points equi-

(0,3); that is, the

(0,3). As in Example

,

I

.

1 i
F(0, ) /A

MIIMAIMIllt
'311M1111111112:2111011111
1-2

5 WAIIIUMW
.. x-6-5'..-

, 1

1

I

i y=-3 3 Q(K,-3)

I
i

Fig. 6-3c

m -6 -3 3 6

7 3 i o 3

3 2 8
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We now consider the more general problem of finding the equa-
tion of the parabola with focus F(0,c) and directrix the line
y = -c. As before we let P(x,y) be any point on the parabola.
The Q(x,-c) is the foot of the perpendicular from P to the
directrix. See Fig. 6-3d. Then

d(P,F) d(P,Q)

or '(x--0)2+(y-c)2 =/(x-x)2 (Y-(-0)2

x2 + (y-c) 2
= (y+c)

2

6-3a

The vertex is at the origin;

the parabola is symmetric with

respect to the y-axis, which is

the axis of the parabola.

Fig. 6-3d

-r
40 C)

0
(x,y:

If we had taken the directrix to be the line x = -0 and the
focus to be (c,0), a similar agrument would have given the equa-
tion

6-3b

These two equations are sometimes

referred to as the standard forms

of the equation for the parabola.

In these forms the vertex is at

the origin and the absolute value

of the constant c is the dis-

tance of the focus and the direct-

rix from the origin.

320
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If we consider the more general case in which the focus is any

point' (a,b) and the directrix is any line parallel to one of the

coordinate axes, only the algebra is more difficult.

Example 6-3c. Find the equation of the parabola with focus
(4,2) and directrix the line x= -6.

Solution: -Let P(x,y) be

any point on the parabola and let

Q(-6,y) be the point in which

the perpendicular from P to

the directrix meets the directrix.

d(P,F) = d(P,Q)

+ (y-2)2

= 1/1(.-(-6) )2 + (P-Y)2

(y...2)2.=
(x + 6)2

(y-2)2 . 12x + 8x + 36 - 16

(y-2)2 = 20(x + 1)

(y-2)2 . 20 (x - 1 (-1)).

The vertex is the point V(-1,2).

-6

t-

330

-3

F(

5

Fig. 6-3f
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6-3c
In general, if the equation has the form

- k)2 = 4c(x - h)1 it is a parabola

x - h)2 = 4c(y - k) 1 with vertex V(h,k),

(h + c,k)

focus

(h,k + c)

directrix

__
-A

-1- r 4-

X. h -c

Aocis y.ks V' ( h +c k)

V h,k)

.....

r-

. 1
L ..

Fig. 6-3g

= h -

y = k -

Vth

0

-C
0

.u;

Fig. 6-3h

Example 6-3d.. Find the coordinates of the vertex, the focus,
and the equation of the directrix of the parabola:

(a) x2 + 6x - 2y + 3 = 0,

(b) y2 4x 8y 4 0.

(see. 6-3]
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Solution: Using the method of completing the square

(Chapter 3),

(a) x2 + 6x + 9 . 2y - 3 + 9

(x + 3)2 ... 2y + 6

(x + 3)2 . 2(y + 3)

(x + 3)2 = 14(Y + 3).

By 6-3c, h = -3, k -3, c

Hence V(-3,-3); F(-3,4); DDI: Y =

(b) y2 + 4x + 8y + 4 0

y
2

+ 8y + 16 . -4x - 4 + 16

(y + 4)2 = -4(x - 3)

(y + 4)2 = 4(-1)(x - 3)

By 6-3c, h = 3, k -4, c = -1.

Hence V(3,-4); F(2,-4); x = 4.

The parabola has the interesting and useful phycal *property

that a ray of light emanating from the focus will be reflected

from a parabolic surface in a line parallel to,its axis. This

property is the reason for the parabolic shape of automobile head-

lights and the metal reflectors in flashlights. The reflected

light is then concentrated in a beam which can be directed where

it will be most useful.

Exercises for 6-3,.

1. Find an equation of the parabola and sketch the graph showing

the focus and the directrix of each:

(a) directrix x = -3 and focus (3,0).

(b) directrix x = 4 and focus (-4,0).

(c) directrix y = 5 and focus (0,-5).

(d) directrix y = -6 and focus (0,6).

[sec.. 6-3]
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2. Find the coordinates of the focus, the equation of the direct-

rix, and sketch the graph of each of the following:

(a) x2 = -4y

(b) x2 = 4y

(c) y2 . -6x

(d) x2 = -6y

(e) x y2

(0 x2 + y = 0

(g) 2x2 - 4y = 0

(h) 3x + 4y2 . 0

3. Give several examples of a parabola from the physical world.

4. For each of the following parabolas find an equation of its

axis, its directrix, and the coordinates of its vertex and

its focus. Sketch the curve.

(a) Y = -17zx2

(b) y -46- x2

(c) y2 = 20x

(d) x = -2y2

(e) x + y2 = 0

(f) x2 y 0

5. Complete the proof of Example 6-3a. That is, prove that if a
point (x,y) has coordinates which satisfy the equation

y2 . 8x, then the point is equidistant from the line x = -2
and the point (2,0). (HINT: Try to read the proof backwards

and supply reasons for each step.)

6. The area of a circle varies directly as the square of the

radius.

(a) What is the constant of proportionality?

(b) Write an equation.

(c) Sketch the graph.

(d) If the measure of the area of a circle is 63, find

its diameter.
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7. Sketch the graph of,

(a) x + N/7

(b) x = -

(c) y = +

(d) y - Irt

323

Is each a parabola? Discuss.

8. Find an equation for each parabola having the following foci

and directrices and sketch:

(a) Focus (0,2) and directrix the x-axis.

(b) Focus (0,-2) and directrix the x-axis.

(c) Focus (0,2) and directrix y = -4.

(d) Focus (2,0) and directrix the y-axis.

(e) Focus (-2,0) and directrix the y-axis.

(f) Focus (-2,0) and directrix x = 1.

(g) Focus (1,2) and tirectrix x = -2.

(h) Focus (2,-1) and:directrix x = 4.

(i) Focus (-1,2) and directrix y = -3,

(j) Focus (1,-2) and directrix y = 2.

(k) Focus (2a,0). and directrix x = a, a > 0.

(1) Focus (2a,a) and directrix x = a, a > 0.

9. Given the equation x2 - 4y + 16 = 0

(a) Sketch the graph.

(b) Where does the line whose equation is y - 8 = 0

intersect the curve?

(c) Describe the intersection of the line whose equation is

y - 3 = 0 with the curve.
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10. For each of the following parabolas find the coordinates of
the vertices, an equation of the axis of symmetry, and sketch
the curve:

(a) y2 + 2y - 5x + 11 = 0

(b) x2 - 2x - y + 8 = 0

(c) 2y2 + 28y - x + 101 = 0

(d) 5y2 - 24y - x + 47 = 0

(e) 140y2 + 140y - 80x - 20 0

(f) 4a2y2 + 8a3y - x + 4aL + a - 0 (a > 0).

11. A line seg=ent .Derpendicular tc the axis of the parabolA at
its focus whose end points are zn the parabola is called the
latus rect=. Show that the lerEth of the latus rectum of a
parabola is two times the distance between the directrix and
the focus. 1Dte: The latus rectum is also called the "focal
chord", see page 359.

12. Find the length of the latus rectum of the parabolas whose
equations are,

2(a) y2 = x (d) y ftx

(b) x2 y (e) x2 - 6y

(c) y2 4x (f) -3x y2

13. Find an equation of the parabola whose latus rectum equals 4,
vertex is at the origin and the axis is the x-axis.

14. Write an equation of the parabola whose focus is (2,-3) and
vertex is (1,-3).

15. Write an equation of the parabola whose vertex is at the
origin, axis is the x-axis, and passing through the point
(-3,-2). What is the focus?

16. Write an equation of the parabola passing through (-3, + 5)
and the origin and having as its axis of symmetry the y-axis.
What is the focus of the parabola?
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.17. Write an equation of the parabola having the end points of its

latus rectum at (4,E,) and (4,-8), and its vertex at the

origin.

18.. Write an equation of the parabola whose focus is. (0,-2) its

directrix is parallel to the x-axis. and the length of its

latus rectum equal S.

19. Find the value of a so that the parabcla whose equation is

= ax will pass through,

a) The point whos coordinates are (f,18).

The point whose coordinates are (x0,y0).

Can this be daae for am. point?

20. Consider the parabola whose equation is y = x2 + x 5.

Replace the x by x - 2.

(a) Write the "new" equation.

(b) Sketch the graphs of each of these equations on the same

coordinate axes.

(c) Replace x in the equation y = x
2

+ x + 5 by x + 2,

write the "new" equation and sketch its graph on the

same set of coordinate axes as for (b) above.

(d) Discuss anything interesting which you observe about

these curves.

21. A comet moves in a parabolic orbit with the sun at the focus.

When the comet is 4 x 107 miles from the sun, the line from

the sun to it makes an angle of 600 with the axis of the orbit

(drawn in the direction in which the orbit opens).

Find how near the comet comes to the sun.

22. The longitudinal section of a reflector is a parabola 16

inches across and 8 inches deep. How far from the vertex

is the focus?
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4 200'
23. A cable of the Golden Gate

suspension bridge is in the

shape of a parabola (ideally)

The supporting towers of the

cable are 4,200 feet apart.

The cable passes over the

Lupporting towers 746 feet

above the bay. The bridge
Ls 200 feet above the bay.

The lowest point of the

cable is 6 feet above the

road-way. Find the lengths of supporting rods (from the cable
to the road-way) at 100-foot intervals from the center of the
bridge to one of the towers.

Road-way

746

II III I 1 I Ili I* I rrr

200'

6-4 The General Definition of the Conic

In this Chapter we have considered the set of points equi-

distant from two fixed points and the set of points equidistant
from a fixed point and a fixed line. We now c.:vry this process one
step further. We do not chmand that the point be the same distance
trom the fixed point and the fixed line, but that the distance
from the point be some constant times the distance from the line.

Example 6-4a. Find an equation of the set of points with the
property that the distance of each point from the point (1,0) is
oae-half the distance from the line x = 4.
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Solution: See Fig. 6-4a.

d(F,P) =

V1(x - 1)2 + y2

NAx 4)2 + (Y-Y)2

_1)2 y2 4..(x 4)2

x2 - 2x + 1 + y2 = 4,x2 - 2x + 4

40c2 y2

2 2
1.4 + = 1 .

1

l

Fig. 6-4a
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Example 6-4b. Find an equation of the set of points, each of

which is twice as far from (4,0) as from the line x = 1.

Solution: See Fig 6-4b

d(F,P) = 2d(P,Q)

..1(x 4)2 y2

= 2-1(x - 1)2 + (y-y)

(x - 4)2 + y2 = 4(x - 1)2

x2 - 8x + 16 + y2 = 4x2 - 8x + 4

-3x2 +.y
2 = -12

x2 2

1

338
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We adc,pt a notation similar to that of Section 6-3 and call
the fixed point the focus and designate it by F(c,0); the fixed
line,the directrix,and let it have the equation x = d; the con-

stant,the eccentricit:,and denote it by the letter e. Then
(See Fig. 6-4c)

d(P,F) = e.d(P,Q)

..17;77c)2 y2

= eV(x - d)2 + (y - y)2

(x - c)2 + y2 = e2(x - d)2

6-4a x2(1-e2) + 2x(de2-c) + y2

e
2
d
2

- c
2

Fig. 6-4c

If we take e = 1 and d = -c, we see that we get the

equation y2 4cx, which was the equation of the parabola,

(6-3b). Since this case has been discussed in great detail, we now
concentrate on the cases in which e is positive but not equal to
1.

In order to simplify the equation 6 - 4a, we choose the con-
stant d to be -9-7, making the coefficient of x zero. Geometric-.

ally this simply determines the position of the directrix. The
equation becomes

2 c
226-4b x (1 - e2) + y 7(1 - e 2

).

The tests for symmetry (Chapter 2) tell us that the graph of
the equation is symnetric with respect to both of the coordinate
axes and the origin. The x-intercepts are +-g.; the y-intercepts

are + --s/1 - e
2

. But if e > 1,,s//1 - e
2

is not real and theree

are no intercepts. We therefore consider two cases.

33U
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Case 1: e < 1. We use the same notation for intercepts

329

which we used for the straight line and let 2- = a and S..../c - e

= b. (We have tacitly assumed that c and e and therefore a

and b are positive. This will be understood in all that

follows.) Then

b = 241 - e
2

. a11 - e
2

and = V/1 - e
2

. If we now
a

b
2

. c
2

f .substitute -75 for (1 - e
2

) and b
2

for ffkl - e2 ) in equa-
a-

tion 6-4a, we have

or

x2b2
+ y

2
= b

2
,

a
2

Case 2: e > 1. We multiply both sides of equation 6 - 4b

by - 1 and the equation becomes

2
x
2
(e

2
- 1) - y

2
(e

2
- 1)2.22,

and if we let = a and 2-le 2 - 1 = b, the equation becomes

2 2
-47) - = 1, (e > 1).
a` b

These two cases lead us to make the following definitions:
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Definition 6-4a. The set of points P with the property that

tqw, rvom P to a fixed point is equal to a constant,

e, 0 < e < 1, times the distance from P to a fixed line, is

called an ellipse. The fixed point is called the focus. The fixed
line is called the directrix. The constant e 'is called the

eccentricity.

Definition 6-4b. The set of points P with the property

that the distance from P to a fixed point is equal to a constant,

e > 1, times the distance from P to a fixed line, is called a

hyperbola. The fixed point is called the focus. The fixed line is

called the directrix. The constant e is called the eccentricity.

We may summarize these definitions and the definition of the

parabola (6-3a) in the following table:

THE CONIC SECTIONS

If e = 1, the conic is a parabola.

If e < 1, 'the conic is an ellipse.

If e > 1, the conic is a hyperbola.

These curves -- the parabola, the ellipse, and the hyperbola -- are

called conic sections, since all of them can be obtained as plane

sections of a right circular cone. In addition to these curves,

one can also obtain a circle, a straight line, and two intersecting

straight lines as special cases of plane sections of a cone.

The equations which we derived for all of these curves are

equations of the second degree in x and y. This is not coinci-

dental. It can be shown that every equation of the second degree

in x and y,

Ax2 Bxy + Cy
2

+ Dx + Ey + F = 0,

has for its graph a conic section (or one of the limiting forms of

these curves mentioned above). See Problems 8 and 9 in Exercise

6-4. Conversely, every conic section (no matter what the position

of the focus and the directrix) is the graph of an equation of the

second degree in x and y.
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These statements tell the whole story for second degree equa-
tions in two variables. Our study of analytic geometry has now

furnished us with a complete description of all graphs of first
and second degree equations -- they are sfmply straight lines and

the conic sections (or limiting forms of These curves). We will

study in more detail the properties of the circle, ellipse, and
hyperbola in the next two sections.

Exercises 6-4

1. FL i an equation of the set of points with the property that
the distance of each point from P(2,0) is 4. the distance
from the line whose equation is y = 3. Identify the conic.

2. The focus of a conic is the origin and the corresponding
directrix is the line whose equation is y = -2. The eccen-
tricity is

(a) Identify the conic.

(b) Write an equation of the curve.

3. The eccentricity of a conic is 1. The focus is the point
F(-2,3) and the directrix is the line whose equation is
x 4.

(a) Identify the conic.

(b) Write an equation of the conic.

4. The eccentricity of a conic is the focus is (-3,0),

and the directrix is 3x - 2 = O.

(a) Identify the conic.

(b) Write an equation of the conic.

5. The focus of a conic is (-1,3), the directrix is 2x - 1 = 0
and the eccentricity is 2 ,./T.

(a) Identify the curve.

(b) Write an equation of the conic.

3 2
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6. Write an equation for each set of data.

Focus Directrix

(b)

(c)

(d)

(e)

(-2,3)

(1,1)

(1,-2)

(-1,-3)

(3,-5)

y = - 2

x = 2

2
Y =

X = 0

x = 0

2

1

2

* Sketch the graph of each.

7. Identify the conic and sketch the graph of each of the

following:

(d) 4x2 + 16y = 0

(e) 9x2 + 9y2 = 4

(0 Y2 = 9x - 36

*8 Discuss the conic of the equation,

Ax
2

+ Cy
2

+ F = 0

(a) 2x2 + 3y2 = 6

(b) 4x2 - 16y2 = 16

(c) 4x2 + 16y2 = 16

(a) If A.0 > 0.

(b) If A.0 < 0.

(c) If A.0 = 0.

*9. Discuss the conic of the equation,

Ax
2

+ Cy
2
+ DX + Ey + F = 0

(a) If A.0 > 0.

(b) If AC < 0.

(c) If A.0 = 0.
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2*10.- The eccentricity of a conic is 5; its focus is the point

whose coordinates are F(2,-l); its directrix is the line
whose equation is y = x.

(a) Identify the conic.

(b) Write an equation of the conic.

6-5. The Circle and the Ellipse.

We begin this section by reviewing the derivation of the equa-
tion for the circle, which we met in Chapter 2.

Let C(h,k) be a point in the plane and r be a positive
real number. The circle with center C and radius r is the set
of all points P(x,y) such that the distance from P to C is
equal to r. Then (see Fig. 6-5a)

N/Rx - h)2 (y k)2 r

6-5a

d(C,P) = r P(x,y)

Y ) =

Fig. 6-5a
We have shown that every point on the circle must satisfy

equation 6-5a. Conversely, if the coordinates x and y of any
point P satisfy 6-5a, then the point lies on the circle. For
since r is positive, taking the positive square root of both
sides of 6-5a, we have

.V/(x - h)2 (y - k)2 = r,

d(C,P) = r,

and therefore P lies on the circle with radius r and center at
C(h,k).

3 4
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We have proved that the coordinates of every point on the

circle satisfy equation 6-5a and conversely that every point whose

coordinates satisfy 6-5a lie on the circle. Therefore, equation

6-5a is the equation of the circle with center C(h,k) and radius
r.

If we crmsider the special case in which the center is at the

origin, the equation assumes the simpler form

6-5b x
2

+ y
2

r
2

411111111ii

)

Fig. 6-5b\\N,

We said in the last section that the circle was a limiting

case of the ellipse. Let us now turn, then, to the ellipse. We

shall show presently how the circle can be obtained from the

ellipse.

The ellipse was defined as the conic with eccentricity

0 < e < 1. We recall that if we take the focus to be F(c,0),

the directrix to be the line x = -7, and let a = -e- and

b then the equation for the ellipse can be written

6-5c x
2 2

+ 42. = 1.
a b

Then c = ae and we may rewrite

F(ae,0) and the directrix

Since e < 1, -J. > a and the

graph is shown in Fig. 6-5c.

Fig. 6-5c
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The line segment V'V with length 2a is called the major
axis. It lo a line of symmetry of the curve and passes through
the focus and is perpendicular to the directrix. The line joining
the points (0,-b) and (0,b) having length 2b is called the
minor axis and is parallel to the directrix. The two axes inter-
sect in a point (0,0) which is called the center of the ellipse.

We have already noticed that the graph of the equation 6-5c is
symmetrical with respect to both coordinate axes and the origin.

The major axis and the minor axis are axes of symmetry for the
curve.

Example 6-5a. Find the coordinates of the vertices, the

focus, the eccentricity, and the equation of the directrix for the

ellipse whose equation

x2
+ = 1

Solution: a = 5, b = 3.

b = - e
2

or

b2 = a2 - a2e2 , and since

c = ae

b
2

a
2

- c
2

or

a
2

b
2 2

+ c .

Note that the semi-major axis a

is always greater than b.

Then 25 = 9 + c
2

or c 4.

I ,

i

I

1

r-4I
I

---

--1---gr
-__

.

t, -1-r.
11116:1111

,

0,4,0).
; ,

iA\

"\- ----:

I

;

I

L
1

Since c = ae 4 . 5e or e

Then the vertices are (5,0) and (-5,0); the focus is (4,0);

)I.

e = -; the directrix x =
5
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If we had used the point Ff(-ae,0) as the focus and the
a

line x = - as the directrix, we would have obtained exactly the

same ellipse. The fact leads us to state an interesting property

of the ellipse: The sum of the distances from F(ae,0) and

Ff(-ae,0) to any point on the ellipse is constant and equal to 2a,

the length of the major axis. (The proof is left as an exercise.

See Problems 8 and 91 Exercise 6-5.)

This property suggests an easy mechanical way to construct an

ellipse. Take a string of length 2a with a loop on each end.
Fasten the loops at points (ae,0) and (-ae,0) with thumb tacks.

Place a pencil inside the string and trace the curve, keeping the
string taut. The resulting curve will be the desired ellipse.

There are obvious applications of this technique to constructing

elliptical flower beds, patios, etc.

Now that we have more information about the ellipse, we are in

a better position to discuss the relation of the circle to the

ellipse. The shape of the ellipse depends on the constant e. If

e is very close to zero, b = - e
2

is very close to a. In

fact if-we let e approach 0 the ellipse becomes more and More

like a circle; so that we say the circle is a limiting form of an
ellipse. (If e approaches 0 then c and -c both approach 0

and the two foci converge at the center. The directrices
ax = + on the other hand, recede farther and farther from thee

foci.) This, then is the way in which the circle is related to the

ellipse.

Another interesting physical property of an ellipse is the

fact that a ray of light or a sound wave emanating from one fodus
F is reflected back from an elliptical surface to the other focus,
F1. This property is responsible for the so-called whispering

gallery properties of some elliptical shaped domes. A whisper at

one focus can be heard distinctly by a person standing at the other

focus, although the distance between the two persons may be very
great.

347
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Exercises 5-c:

1. Find an equation of a circle having these properties. Sketch
the graph of each on the same set of coordinate axes.

Radius Center

(a) 3 (0,0)
(b) 3 (0,2)

(c) 3 (2,0)

(d) 3 (3,-1)

(e) 3 (-1,2)

2. From the following equations, find the center and radius of
each circle:

(a) x2 y2

(b) (x - 2)2 + (y + 3)2 = 9

(c) (x + -3ff')2 + (Y - 6)2 = 5

(d) 3x2 + 3(Y + 5)2 = 7

(e) 9.(x + 4)2 + 9y2 =

(0

(g)

(h)

x2

x2

x2

- 10x + 25 + y2 = 7

- 6x + 9 + y2 - 8y + 16

y2
2x + 4y 5 7

16

(1) x2 y2
4x + 6y - 1 0

(j) 3x2 + 3Y2 6x - 36y + 36 0

x2 y2

(1) 4x2 + 4y2 + 12x = 16y + 11

[sec. 6-5]
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Find the coordinates of the vertices, of the focus, the eccen-

tricity, the length of the major and minor axes and the equa-

tion of the directrix for the ellipse whose equation is,

1

1

(c., ) 9x
2

+ 25y
2

= 225

(d) 25x2 + ..4y2 100

(e) 4x2 + 9y2 36

(f) 2x2 50 - y2

(g) y2 x2)

2(h) x+ = 2

x2

2
(j) = 2 - x2

(k) 2;
2

= 1

4. Find the coordinates of the vertices, the focus, and the equa-

tions of the directrices of the ellipses having given the

following. Sketch the graph and write an equation for each

if a = 5 and,

(a) e = .2

(b) e = .4

(c) e = .6

(d) e = .8

5. Find an equation of the ellipse given the following:

(a) One focus (2,0) and vertices (±5,0).

(b) Coordinates of the end points of the minor aXis (0,+2)

and of the major axis (+/1,0).

(c) Vertices (±7,0) and eccentricity equal to

(d) Coordinates of the endpoints of the minor axis
1and eccentricity equal to T.

(e) Focus (6,0) and eccentricity equal to *.
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(f) Focus (8,0) and directrix x = 10.

(g) Vertices (3,0) and directrix x = 6.

x26. The foci of the ellipse whose equation 2- are
a b

F and Fl. What change occurs in this conic,

(a) As d(F,F') approaches 0?

(b) As d(F,F,) approaches 2a?

7. Show that for any ellipse having center at the origin the
distance from either end of the minor axis to either foci
is one half the major axis.

,2 2
8. Given the ellipse IE. = 1. Show that for any point

P(x,y) on the ellipse, the sum of the distances from F(2,0)
and Fl(-2,0) is 8.

x2*9 Given the ellipse -7 1. Show that for any point
a

P(x,y) on the ellipse, the sum of the distances from F(c,0)
and Fl(-c,0) °is 2a.

10. In this Section 6-5, the focus was taken on the positive axis
at F(ae,0) and the directrix was always the line x =

The curve would remain the same if the names of the axes
should be interchanged. For example, suppose the focus is
the point F(0,1), the directrix is the line whose equation

1is y = 4, and the eccentricity e = 7. Find the equation

of the ellipse.

11. Compare the equation for the ellipse in problem 9 with the one
for the ellipse with focus F(1,0), the directrix whose equa-
tion is x = 4, and the eccentricity e =
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12. Find an equation of the ellipse with focus F(0,ae), direct-

rix y = t, and eccentricity e. (Note: The major axis is

still the axis containing the focus, it is perpendicular to

the directrix, and always has length 2a.)

*13 An ellipse with eccentricity e, coordinates of the center

(h,k) and of the focus F(h ± c, k), and the equation of the

directrix x = h 4.z. If c = ae and b = aN/1 - e2,

show that the'equation of the ellipse can be written in the

form,

(x - h)2 (y - k)2 1

a
2

b
2

Note: The center of an ellipse is the midpoint of, both the

major and minor axis.

14. Write an equation of the ellipse from each of the following

data: (Use the result of Problem 13.)

(a) Vertices (5,2) and (-3,2), one focus at

(b) Foci (4,3) and (4,-1), eccentricity equal to §.

2
(c) Vertices (-5,3) and (-5,1), eccentricity equal to T.

(d) Majo axis equal to 10 and parallel to y-axis, minor

axis equal to 6, center (-2,-1).

(e) Endpoints of minor axis at (-3,5) and (-3,-6), one

focus at (3,

(f) Endpoints of major axis at (2,-3) and (-12,-3),

eccentricity equal to Pr.

*(g) Vertices (+3,2), directrix x = 7.

*(h) Focus (3,4), directrix y = 5. (Is there more than

one solution?)

[sec. 6-5]
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*(i) Focus (-5,2), eccentricity equal to (Is there more

than one solution?)

15. For each of these ellipses give the coordinates of the verti-

ces and of the focus, the eccentricity, and an equation of the

directrix. Sketch each curve showing the vertices, the focus,
and the directrix. (Use the results of problem 12.)

)2 5)2

e5 9

(b) (x -I- 2)2 + (XL-6-1)2 = 19 1

(c) x2 + 4y2 + 6x + 9 = 16

(d) 16x2 + 9y2 - 96x + 72y ± 144 = 0

(e) 4x2 + gy2 + 8x - 36y + 4 0

16. An artificial satellite is

placed in an elliptical

orbit about the earth so

that the North and South

poles of the earth lie in

the plane of its orbit. Its

distance from the North Pole

plus its distance.from the .

South Pole is constant. How

high will it be when it

passes'directly over the

North Pole, if it is 200

miles above the surface of

the earth the moment when it

passe... through the plane of the equator? Write an equation

for its orbit with respect to the center of the earth.

(Assume that the diameter of the earth is 8,000 miles and
that the earth is spherical.)

(sec. 6-5]
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17. Arcs in the form of a semi-ellipse were noticed in a building.

When measured, the distance across the base of the arc was

found to be 24 feet and the maximum height from the base

was found to be 8 feet. Find the height of the arc at in-

tervals of 4 feet from one end to the middle.

18. Find the coordinates of four points on the curve of

x2 + 4y
2 = 80 so that they are the vertices of a square

having diagonals through the origin.

6-6. The Hyperbola.

In section 6-4 we defined the hyperbola as the conic with

eccentricity e > 1; that is, the set of all points P with the

property that the distance from P to a fixed point, the focus,

is a constant, e > 1, times the distance from P to a fixed

line, the directrlx.

We recall that if we let the focus be F(c,0) and the direct-

rix be the line whose equation is x = then the x-intercepts

were + a and although there were no y-intercepts, we let
e

b = -9-A/e2 - 1.

simple form

6-6a

The equation of the hyperbola then assumed the

- 2
X7 = 1.

a b

Just as for the ellipse, c = ae, and the focus becomes the

point F(ae,0) and the directrix the line x = a. In contrast to

the ellipse, we now have e > 1 and t < a. Whereas the directrix

was to the right of the focus for the ellipse, their positions are

just reversed for the hyperbola. The graph is shown in Fig. 6-6a.
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The line segment VW is called

the transverse axis and has length

2a. (The line segment joining the

points (0,-b) ãLld (0,b) is

sometimes called the conjugate

axis and has length 2b.) The

origin 0 is called the center

of the hyperbola. Again, as was

.the case for the ellipse, the

curve is symmetric with respect

to both the coordinate axes and

the origin. A4s before we might

have taken the focus to be the

343

Fig. 6-6a

point F'(-ae,0) and the directrix to be the line x = and

we would have obtained the same curve.

Example 6-6a. What are the coordinates of the vertices and

the focus, the equation of the directrix, and the eccentricity for
,2 2

the hyperbola - Z-- 1.

16 4

Solution:

b2 = a2(e2 - 1)

b2 = a2e2 a2

Since c ae

b
2

= c
2

- a
2

c
2

= a
2

+ b2

In this problem, a = 4, b = 2

Hence, c2 16 + 4 = 20

c = 2Nr-. ae = 4e

. e
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The vertices are (-4,0) and (4,0).

The focus is (2./5,0).
8, r-The equation of the directrix is x -

4
= 5 v 5

7\/ 5

The hyperbola has a property similar to the property we noted

for the ellipse, namely, the absolute value of the difference be-

tween the distances from F and F1 to any point on the hyperbola

is constant, and equal to 2a. See Problems 4 and 5 of Exercise
6-6. This property is the basis for the LORAN system of navigation

used extensively in World War II.

We have noticed that there are no y-intercepts for the

x2 2
hyperbola - = 1. If we solve for y we get

a

y = ± - a2 . Now if Ixi < a,
v/x2 a2 is not real. This

b." 2

shows that there is a vertical .strip from x = -a to x = a in

which there are no points on the graph of the hyperbola. On the

other hand if we take larger and larger values for x, y also

increases in absolute value. While these facts are extremely use-

ful in sketching the graph, there is still another property of the

hyperbola which is even more helpful for this purpose.
2

Example 6-6b. Sketch the graph of - = 1.

Solution: Since the curve is symmetric with respect to both

coordinate axes and the origin, we need only consider the part of

the graph in the first quadrant. The x-intercepts are 1 and -1.

There are no points on the graph in the strip between the vertical

lines x = -1 and x = 1. See Fig. 6-6b.



Solving for y we get

y = + 2VC 2 - 1.

For very large values of x, y

in the first quadrant is very

nearly equal to 2x. Similarly

in the fourth quadrant for _large

x, y is close to -2x. We

notice that the lines whose equa-

tions are y = 2x and y -2x

are the diagonals of the rectangle

with sides of length 2d = 2 and

2b = 4, parallel to the coordin-

ate axes and centered at the

origin. These two lines are

1M111111111111Mil
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Fig. 6-6b
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called asymptotes of the hyperbola. We use the fact that the curve

gets closer and closer to these lines as x increases, to sketch

the graph in the first and fourth quadrants. The rest of the curve

ce.n be drawn using the symmetry of the curve.
2 2

Let us turn now to the equation - 1.
a

If we solve for y we get y = + x - a
2

.

bvt2
a

In the same way, since a is a constant, if we take large values

for x, then y in the first quadrant is nearly equal to -a. x.

In the fourth quadrant y is close to - x. The lines whose
a

equations are y = x and y x are called asymptotes ofa a

the hyperbola.

We notice as before that these lines are diagonals of the

rectangle with sides of length 2a and 2b parallel to the axes,

centered at the origin. These equations can be written

0 = x - y and x + y = O.a a
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Both lines are the graph of the single equation

b2 2 2x - y = 0
a-

The fact that the hyperbola has these lines as asymptotes greatly

reduces the work involved in sketching its graph. We simply plot

the points which are the vertices and use the asymptotes (that is,

the diagonals of the rectangle) to sketch the curve. As a rule-no

other points need to be plotted.
,2

Example 6-6c. Sketch the graph = 1.75

Solution: The vertices are

(-r-,,C) and (5,0). The asymp-

.7.nr,:, are y = + x.
5

See Fig. 6-6c.

Although we said in Section

6-4 that every equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

has as its graph a conic sectiora

(or a limiting form of one of

these), we have not encountered

any equation in which B was not

zero. This is because we have

always considered conics with axes parallel to the coordinate axes.

If we had taken more general positions for the directrix, E would
not have been zero. In particular if the transverse axis of the

hyperbola is the line y = x and the center is at the origin, the

equation of the hyperbola may take the form xy = k.

A hyperbola with an equation of thin form is called an equilateral
or rectangular hyperbola. Fig. 6-6d shows the graph of this

equation for k = 1, 2, 3.

slim .....:
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Fig. 6-6c
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xy = k

Fig. 6-6d

Example 6-6d. There is a scientific principle, important in

both physics and chemistry, known as Boyle's law, which may be
stated as follows: If a fixed mass of gas is confined in a cylin-
der with a piston (Fig. 6-6e), and if a variable pressure p is

applied to the piston, renulting in a corresponding change in the
volume v, then p and v are

related by the equation pv = k,

where the particular value of the

constant k will depend on the

kind of gas as well as on other

factors. If we let the positive

x-axis be the p-axis and the

positive y-axis be the v-axis,

then the equation pv = k will

be represented by one branch of an equilateral hyperbola.

FINNIMMIle

Fig. 6-6e
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When two iariables x and y are related by an equation of

kthe form xy = k, or y = , then y is said to vary inversely.

as x, or to be inversely proportional to x. Thus, for example,
Boylets law asserts that v is inversely proportional to p.

Example 6-6e. Suppose that a certain mass of gas is confined,
at pressure of 10 pounds per square inch,"%in a volume of 200
cubic inches. Find the relation between pressure and volume, 'and

determine the volume when the pressure is increased to 50 pounds
per square inch.

Solution: The constant k in the equation pv = k is deter-
mined Iv substituting the values p = 10 and v = 200; thus
k = 2000. The relation between p and v may be written as
v = 2000/p, so that when p = 50, v = 40 cubic inches.

Exercises 6-6

x2 2
1. Given

(a) Write an equation of each asymptote of the hyperbola.

(b) Give the coordinates of the vertices.

(c) Sketch the graph of the equation.

2. Given 3xy = 36..

(a) Write an equation of each asymptote,

(b) Give the coordinates of the vertices.

(c) Sketch the graph of the equation.

3 t
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3. Give the coordinates of the vertices, the coordinates of the

focus, an equation of the directrix, an equation or the asymp-

totes and the eccentricity of the following. Sketch the curve

showing the vertex, the focus, the directrix, and the asymp-

totes. (See examples in 6-6.]

2 2

(a) - = 1
e5

_2 2
(b)

(c) x2 - y2 = 36

2 2
(d) y - x = 36

(e) 4y 3x2 . 36

3x2 431.2

2
2

4 x
. Given the hyperbola -r - 1. Show that the absolute

value of the difference of the distances from any point in

the first quadrant on the hyperbola to the points

F(N/,0) and FI(-,/,0) is 2.

_2 2

5. Given the hyperbola r-:22. - = 1. Show that the absolute
a b

value of the difference of the distances from any point P on

the hyperbola to the points F(ae,0) and FI(-ae,0) is 2a.

(Hint: b
2

= a
2
(e

2
- 1) or a2 + b2 = a2e2. Since c = ae,

2 2 2,
a + b = c ).

6. Write in standard form the equation of the hyperbola given the

coordinates of the foci and the absolute value of the differ-

ence of the distances from point P(x,y) on the hyperbola

to the two foci:

(a) F(4,0), Fl(-4,0), and Id( P,F)-d(P,Ft)1 = 6.

(b) F(0,4), FI(0,-4), and Id(P,F)-d(P,F1)1 = 6.

7. Suppose we take the focus of the hyperbola to be the point

F(0,2), the directrix to be the line whose equation is

1
y 7, and the eccentricity to be 2. Find the equation of

the hyperbola and sketch its graph.

(sec. 6-6]
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8. Derive an equation of the hyperbola with focus F(0,ae), di-
a

rectrix y = E, and eccentricity e. (Note that the vertices

are (0,a) and (0,-a). The transverse axis is on the

y-axis and has length 2a. Hint for the solution: Let

b
2

. a
2
(e

2
- 1).)

9. Write an equation of the hyperbola from the given set of data.

(a) Vertices (±5,0) foci (48,0).

(b) Vertices (±),0) distance between foci equal to 8.

(c) Vertices (.±3,0) eccentricity equal to 2.

(d) Directrices x = +2, one vertex at (4,0).

4(e) Foci (+7,0) eccentricity equal

(C) Asymptotes y = :Dx, one vertex at (2,0).

(g) Asymptotes 3x + 2y = 0 and 3x - 2y = 0, focus (0,3).

10. Sketch the graph for each of the following, making use of the

asymptotes, vertices, and when necessary a few sample points.

(a) 9x2 - 4y2 = 36

(b) 4x2 - y
2

= 4

(c) 4x
2

- 9y
2

36

(d) x2 - 4y2 4

9x2 y2

11. Sketch the graph of,

(a) y ,v/36 1- X2

(b) y 136 + xr"

(f) xy . 4

y2 9x2

(h) xy - 1 = 0

(i) xy + 4 = 0

(j) 25)(2 - 4y2 - 100x + 40 y =

100

(c) x =.136 y2

(d) x = --v46 + Y2

Are any of these hyperbolas? Explain.
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12. Find an equation of a hyperbola passing through the point of

(2,)) having as asymptotes the lines of 3x - 5y = 0 and

3x 5y*--- 0.

13. Find an equation of the hyperbola whose asymptotes are the

lines of 2x- 25y2 = 0 and which passes through the point

of (5,1).

14. Find an equation of the hyperbola through the point of (0,2)

and having as asymptotes the lines of 4x - y = 0 and

4x ± y = 0. Sketch the curve.

15. If a hyperbola passes through the point of (2,0) and has

asymptotes of y = + 4x find an equation of the hyperbola

and sketch the curve.

*16. Show that the hyperbola with Center at A(h,k) and focus at

F(h ae,k), directrix x = h + !, and eccentricity e has

the equation,
h)2 k)2

= 1.
a
a

b
2

(Note: The center of a hyperbola is the point of intersect-

ion of its asymptotes.)

17. Write an equation of the conic for each set of data:

(a) Vertices (3,1) and (0,1), one focus at (4,1).

(b) Foci (),-3) and (-2,-)), one vertex at (3,-3).

(c) Foci (5,7) and (-2,7), eccentricity equal

3(d) Vertices (-5,7) and (2,7), eccentricity equal 7.

18. Pind an equation of the hyperbola with center at C(3,4),

focus F(3 i 2 vri7,4), and directrix whose equation is

X Sketch the graph.

3 6 2,
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lg. Find_the. coordinates of the vertices, the focus, the center;

an equation of the directrix, the asymptotes; and the eccen..

tricity of the following:

(x + 2)2 (y - 5)2
9

1

4)2 1)2

=16 --I--
2 2(c)xlu 25 1

(d) 3(x - 3)2 - 2(y + 2)2 18

(e) x2 - y2 - 4x + 6y - 6 = 0

(0 x2 - 2x y
2

- 6y - 17 0

(g) 9x2 - 72x - 16y2 - 96y = 144

(h) 4y2 + 12y + 12 - x2 + 4x + 9 0

(1) 9y2 - 4x2 - 4x - 18y 44 = 0

(j) 4x2 - 2-y25 + 32x = -50y - 39

20. If y varies inversely as x, and y .-- 4 when x . 2,

(a) Find the relation between x and y.

(b) Find the value of y when x = 5.

(c) Draw a graph for (a) and use it to check your

answer for (b).

21. For a given electromotive force the current I carried by a

wire varies inversely as the resistance R. With a certain

electromotive force a wire whose resistance is 15 ohms will
carry a current of 20 amperes. Find the current produced

by the same electromotive force t.he resistance is increased

to 50 ohms.

363
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2 . If the relation between variables x and y is of the form

y = --, then y is said to vary inversely as the square of
x
2

x,

(a) Find the value of k if y . 3 when x . 5.

(b) Find the value of y when x 2.

23. According to Newton's law of gravitation, the weight of a

body varies inversely as the square of.its distance from

the center of the earth. If a body weighs 50 pounds at

the surface of the earth, how much would it weigh at a height

of 200 miles above the earth, assuming radius of the

earth to be 4000 miles.

*24. On a level plane the sound of a rifle and that of its bullet

striking the target are heard at the same instant. Describe

the possible set of locations of the listener.

6-7, Supplementary Exercises

1. Find the slope and the intercepts of each line having the

following equation:

(a) 3y - ax - 15 = 0 (e) = 1

(b) 3x + 2y - 20 0 (f) Y = 5

(c) 2y - 3x - 8 0
si..

tn.\ 2x
\ 5 3

??S. . 0 2(d) (h) - 7x - 1 = 0
3

2. Write an equation of the line having intercepts whose coord-

inates are (6,0) and (0,-4).

5. Write an equation of the line passing through the points

A(-1,-5) and 13(.4, -5).
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4. Write an equation of the line having the following properties:

(a) Slope m = 3, y-intercept is 2.

(b) Parallel to line x + y - 6 . 0, y-intercept is 4.

(c) Perpendicular to line 2x + 3y - 22 = 0, y-intercept
is -3.

5. Consider the equations,

(1) y x + 6 (3) = gx 4

(2) y 3x (4) y = 4.

(5) y = - ix + 2

(a) Write the slopes of the lines given by these equations.

(b) .What is the y-intercept of each line?

(c) Which of the lines rise to the right, and which ones
sink to ..he right?

(d) Which of the 5 lines is the steepest?

(e) Find an equation of the line which has the same slope as
the line defined by (1) and the same y-intercet as
the line defined by (3).,

6. Write an equation of the line through (-2,3) and parallel
to the line y = 3x - 8.

7. Write an equation of the line perpendicular to the line
2y . 5x + 10 and passing through the point (+3, -2).

8. The coordinates of the vertices of a triangle are A(5,10),
B(J0,-7), and C(-5,-5). Write an equation of the lines
forming this triangle.

[sec. 6-7)
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Determine without sketching the graph which pairs of equa-

tions represent lines which are parallel, perpendicular, the

same, or neither.

(a) - 3y = 5 (e) Y = 7

3x + 2y - 4 0 y 12

(b) 2x - 4 + 3y = 0 (f) 2x + y - 7 0

3x - 7 = -2y 2x - y + 7 0

(c) x + 2y = 6 (g) 2x + y 0

2x . 6 + y 2x = 1

(d) 2x = 3 + y (h) x - 2y + 5 . 0

1y = 2x - 5 y = 7

10. Given,

(L) 3x - 2y - 4 - 0 3L + 4y + 12 . 0

(a) Determine the y-Intercept b and the slope m of each.

(b) Sketch the graph of each on the same coordinate axes.

(c) Are these lines perpendicular? Explain.

11 Write an equation of a line passing through the point (0,0)

and perpendicular to the line whose equation Is

2x + y - 4 = 0.

12 Write an equation of a line passing through the point (2,-1)

and parallel to the line whose equation is + = 1.
-3

13. Write an equation of a line through the point (-5,1) and

having the same y-intercept as the line whose equation is

2x + y 4 . 0.

14. Write an equation of a line parallel to the line whose equa-

tion is 3y = x and passes through the x-intercept of the

line whose equation is x 3y = 3.
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15. If the speed of reaction of 2 chemicals doubles for every
100 C rise in temperature t on the range '00C t < 100°C,
how many times as fast would the reaction proceed at 100°C
than at 20°C?

16. If A varies directly as C, and B varies directly as C,

show that A + B, A - B and NrA.---B will each vary directly
as C.

17. Write an equation of the curve having,

(a) F(3,0), FI(-3,0), and d(P,F) + d(P,F!) = 10.

(b) F(0,3), F'(O,-3), and d(P,F) + d(P,F1) = 10.

(c) F(3,0), F"(-3,0), and Id(P,F) - d(P,F/)1 = 2.

(d) F(0,3), Ft(0,-3), and Id(P,F) - d(P,F!)1 = 2.

(e) F(0,1), Q(x,-1), and d(P,F) = d(P,Q).

(f) F(1,0), Q(-1,y), and d(P,F) = d(P,Q).

Identify each.

18. Identify the conic whose equation is,

(a) 9x2 + 9y2 = 4.

(b) 2x2 + 3y2 6.

(c) 4x2 - 16y2 - 16.

(d) 4x2 + 16y2 . 16.

(e) 4x2 4 16y = 0.

(1) Y2 = 9x - 36.

x2 y2

(h) x2 + 4y2 + 6x + 9 0.

(i) 9x2 - 16y - 72x + 96y 144

(j) c2 - 4y2 + 2x + 16y - 19 = 0.

(k) 9y2 + 16x2 - 96x + 72y -144

(i) y2 + 3x + 6y 0.

(m) 4x2 - 8x - 36y . 9y2 + 68.
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19. Graph each of the following:

(a) Y2 = (x 5)2

(b) x2 1)2

(c) (2x - y)2 4

(d) 9 - (x - 2y)2 0

(e) x2 = y2

(f) xy 0

(k) x2 + 4y2 4

x2 y2
16

(n) x2 - 4y2 < 4

(0) 4y2 x2 4

(p) y2 - 4x > 0

357

*(g) x2 + 2xy 4 y2 - 4 0 (q) x2 - 4y 0

.(h) 4x2 9y2 *(r) x2 y2
4x + 6y + 13 < 0.

(i) X < 0

(j)

*(s) y2 - 4x - 4y < 0.

*(t) ((x,y) Ix < 0)IJ ((x,y)!y < 0)

20. Find an equatim of a circle which has as a diameter the latus

rectum of the parabola whose equation is y
2

= 16x.

21. Find an equation of the hyperbola whose asymptotes are the

lines of 3x
2

- 5y
2
= 0 and which passes through the point

of (2,3).

22. If the asymptotes of a hyperbola are given by 2x2 - 7y
2

= 0

and the hyperbola passes through the point of (3,0), find
an equation of the hyperbola.

23. Find the equation of the hyperbola whose asymptotes are given

by a2x2 b2y2 = 0, and which passes through the point of
(b,0). (a and b are real numbers).
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24. Sketch the graph of

values:

x
2

- y
2

= k,

(a) k = 16 (e)

(b) k = 9

(c) k = 4 (g)

(d) k = 1 (h)

when k has the following

k = -1

k = -4

k = 0

k = -16

*25. Find the coordinates of the end points of the chords perpen-

dicular to the transverse axis at the foci of the hyperbola

x Y
2

whose equation is 7 - = 1. Develop a formula for the
a

length of these chords in terms of a and b. Will this

2 x2same formula hold for a hyperbola of 47 -
a` b

26. Find an equation of the set of points P(x,y) such_that the

distance from P to the vertex of the parabola x2 = 8y is

twice the distance to its focus.

27. The arch of a stone bridge has the form of a parabola; the

span is 40 feet, and the maximum height is 10 feet. Find

the height of the arch at intervals of 5 feet from one end
to the middle.

28. Show that if a parabola has its vertex at (d,b) and focus
at (a+c,b), then the equation of the parabola is (y-b)

2 =
4c(x-a).

29. Find an equation similar to that of 2 for a parabola having
vertex at (a,b) and focus at (a,b+c).

30. Show that if a parabola has its vertex at (a,b) and the line
of x = a c as directrix, an equation of the parabola is

(y - b)
2

= 4c(x - a).
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Challenge Problems

--1. Find the equation of the parabola having x = -a as directrix

and focus at (a,0). Discuss the curve for a > 0. For

a < 0.

2. A chord through the focus perpendicular to the axis of a par-

abola is called the focal chord of the parabola. Show that

the end points of the focal chord of the parabola

y
2

. 4ax are (a,2a) and (a,-2a).

3. Find the equation for the parabola with focus at (1,1) and

the line of y = -x as directrix. Sketch the curve.

4. Find the equation of the line parallel to the line whose equa-

1tion is y = 7 x 2 which is 2 units from this line.

5. The line through the focus F and the point P1(x1,y1) on

the parabola y
2

4cx intersects the parabola in a second

point P2(x2,y2). Find the coordinates of P2 in terms of

x y
l'

and c . If V is the vertex, the line thrOUgh P V
1

cuts the directrix at R; prove that the line through P2R

is parallel to the axis of the parabola.
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Chapter 7

SYSTEMS OF EQUATIONS IN TWO VARIABLES

7-1. Solution Sets of Systems of Eauations and Inevalities.

Definition 7-1a. The solution set of an equation (inequality)
in two variables x and y is the set of ordered pairs of real
numbers (x,y) which satisfy the equation (inequality).

The same one-to-one correspondence which we set up in Chapter
2 between ordered pairs of real numbers and the points in the plane
now gives us a one-to-one correspondence between the elements of
the solution set of an equation (inequality) and the points on the
graph of the equation (inequality).

In this chapter we are again interested in the algebraic

aspects of equations; that is, the ordered pairs of real numbers
which satisfy the equations. However, we will freely use whatever

geometric information we may have about an equation to determine
its solution set.

Example 7-1a.

(a) y x

(b) y - 2x2

Solution:

(a) The solution set of y = x is the set of ordered pairs
(a,a) where a is any real number.

(b) The solution set of y = 2x2 is the set of ordered

pairs (a,2a
2

) where a is any real numbei.

Find the solution set of,

(c) y > 2x

(d) x2 + y2 > 1.
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(c) The solution set of y > 2x is

However this is really just a re-

statement of the problem and while

it is a true statement, it is not

very enlightening. We use a graph

to indicate the solution oet,

See Fig. 7-1a. We draw the graph

of y = 2x. Then for any partic-

ular value of x, the pair of

coordinates of any point (x,y)

with y > 2x corresponds to an

element of the solution set.

Geometrically these are the points

on anY vertical line x = a, on

or above the point (a,2a). Thus

, : y 2x .
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. ..

V.46%:.; 1.

:11' I

, ....-
,

4

e. -:-i.:4'6i.
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,
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-
. -1

Fig. 7-la.

the graph of the inequality is the shaded region in Fig. 7-1a. The .

solution set is the set of ordered pairs which are coordinates of

points in the shaded region.

(d) To obtain the solution set of x
2

graph of x
2

+ y2 - 1. This is the circle with center at the

origin and radius 1. If P is any point outside the circle, then

Y
2

> 1, we draw the

Or

d(O,P)
vix2 y2

x
2

q y
2

1.

0
Conversely, if x

2
+ y- > 1, then Aix 2 + 7

2
> 1, d(0,E) > 1,

and the point lies outside the c:I.rcle. The solution set is the set

of ordered pairs which are coordinates of points outside the circle

with center at the origin and radius 1.

'3 7 3
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From now on for "the solution set is the set of ordered pairs

which are the coordinates of points belonging to the' set..." we
shall use the less precise, but shorter "the solution set is the
set of points...". This briefer statement is justified by Ohe one-

to-one correspondence which has been established between the set of
ordered pairs of real numbers and the set of points in the plane.

In this chapter and the next we want to consider the set of
ordered pairs which satisfy two or more equations (inequalities).

When such problems are considered we shall refer to the two or

more equations (inequalities) as a system of equations (inequali-

ties). Each of the individual equations (inequalities) is called
a cJomponent of the system.

Definition 7-1b. The solution set of a system of equations

(inequalltdes) in two variables x and / is the set of all
ordered pairs (x,y) which are common to the solution sets of the
component equations (inequalities).

Suppose we are considering a system of two equations.- Let the

solution sets corresponding to the equations be S1 and S2. Then

the solution set S cf the system is the set of ordered pairs

which are in both S1 and S2. (In set language, this set is

called the "intersection" of S1 and S2. The symbol for set inter

section is 'in". The solution set S can then be written
S = S

1
ns

2'

Example 7-lb. What is the solution set of the following
systems:

(a) fx + y - 2 = 0, (b) fix! > 2,

x - y 2 . 0.
11Y1 <1.

373
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Solution:

(a) The solutLon set of the system is ((0,2)1 ; that is, the

set of ordered pairs consisting of the single ordered pair (0,2).

Wo can use the graphs of the equations to convince ourselves that

this is the only ordered pair of the solution set. The ordered

pair (0,2) is the only member of the solution set since any

ordered pair in the solution set must be the coordinates of a point

on both the lines x + y - 2 = 0 and x - y + 2 = 0. These lines

Intersect in only one point; namely (0,2).

(b) The solution set of lxi > 2 is the sPt of points to the
left of the line x -2 and to the right of the line x = 2.

See-Fig. 7-lb. The solution set of lyl < 1 is the set of points

inside the horizontal strip between y = -1 and y = 1. The

solution set of the system is the intersection of these two sets

or the set of points in the cross-hatched region in Fig. 7-lb.
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Suppose we have a system consisting of two equations which

have solution sets S1 and S2. According to our definition the

solution set, 3, of the system is the intersection of Sl and

S2. If the intersection of Sl and S2 is the empty set, then

the equations have no common solution and the system is said to

be inconsistent.

[sec. 7-1]
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The following systems are examples of inconsistant systems.

{2x + y = 5

2x + y = -11
1

(b) x2 + y2 = 20

x2 + y
2

= 6

365

If the intersection of S
1

and 5
2

is not empty. 4h' there

must be at least one pair of numbers (x,y) which will
both equations. The system is then said to be consistent.

- 7y -5
The system

5x + 3y 8

is consistent because we can verify the fact that the pair x = 1,
y = 1 will satisfy both equations.

A consistent system is said to be dependent. if S, . S2; that

is, for example, consider the system

{3x + 7y . 12

6x + 14y = 24

The second equation is obtained by doubling each member of the
first. It is evident that any solution of the first equation is

also a solution of the second and conversely. .. the system is
dependent. The graphs corresponding to the two equations are the
same straight line. The system of quadratic equations

{x2 + 4y2 = 100

2 1, 22y 50 -

is also dependent

We can summarize our concluslons about systems of ;equations in

two variables as follows:

A system is inconsistent if its solution set is the empty set;

tl,..1c is, the component equations have no common solutions.

A system is consistent if its solution set contains at least

one member; that is, the component equations have at least one
common solution.

a
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A consistent system is dependent if the solution set of the

system is the same as the solution set of one of the component

equations; that is every solution of any one of its component

equations is a solution of every other.

Exercises 7-1

1. Is (2,0) an element of the solution set of the system

{2x .4- 3y = 4

8x - 7y = 16 ?

Sketch the graph of each of the two equations. How do the

graphs illustrate your answer?

Is (1,2) an element of the solution set of the system

{4x - y = 2

12x - 3y = 6 ?

Sketch the graph of each of the two equations. Are there

oi;her elements which belong to the solution set of this system?

3. Dos the solution set of

4.

{x .4- 4y . 13

2x 4- 8y - 14

contain the element (1,3)? Sketch the graph of each of the

two equations. According to the gro7.1..rs, what seems to be the

solution set for the system?

For the system

3x - 4y . 11

12x - 16y = b:

(a) For what value of b will the solution set be empty?

(b) For what value of b will the solution set contain

the element (5,1)?

3 7 (3
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(c) For what value of b will the solution set contain

infinitely many ordered pairs?

5. What different ,ypes of solution sets can there be for the
Ely$ tem

fax + by = c

dx + ey . f ?

Discuss the graphical interpretation of your answer.

6. By inspection determine which of the following systems are
consistent.

or not

(a)

(b)

(c)

If the system is consistent,

it is also dependent.

x + y = 1

= 2 - -g

(s)

1 1

{

x = 2y - 1 (n)

{ 2x = 2y - 1

y = 2x - 1

1 1T=

determine ihether

x2 y2
= 16

x2 +.4y2 . 61

9x
2

- 25y2 = 0{

{(i)

2x
2

+ y 2 = 4

{

y = 2x + 1

y = 2x + 3

I7x + 5y - 11

3x - 2y = 13
l

{

(f) 4x - 26 + 7y

5x - 7 - lly

(i) y .,-- x2

{

3x2 3y2

y = x2 + 5

2x
2

+ 2y2 = 10

()) o. x
2
- 2y + 2 = 0

377
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7. Does the solution set of the system

2
= x

y = 2 - x2

contain the element (1,1)? Can you use symmetry to find a

second element of the solution set? Find one. Sketch graphs

of the two equations. How many solutions does the system

seem to have?

8. Find th c! solution set by sketching the graph of each of the

following:

(a) x2 + 4y2 = 4

(b) x2 + 4y2 > 4 (h) x < 0

(c) x2 + 4y2 < 4 (i) y > 0

(d) x2 = y2 (j) x2 = (Y 1)2

(e) x2 > y2 *(k) x2 2xy + y2 - 4 = 0

(f) xy = 0 *(i) y < 2x2 + 4x + 4

y2 5)2

*(m) ((x,y): x < 0) U ((x,y): y 0 ]

(Note: U is ,,he symbol for union. The solution set of such

a sentence consists of the elements which belong to either

set.)

9. Is (3,2) an element of the solution set of the system

1

2x - 3y . 0

x + y - 5 . 0

5x - 3y - 9 = 0

Sketch the graphs of these equations. How do the gi-aphs

illustrate your answer?

(sec. 7-1]
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10. Is (1,2) an element of the solution set of the system

I3x + 2y = 5

5x Y - 3

16x + 2y = 20 ?

Sketch the graphs of the three equations. How do the graphs
illustrate your answer?

11. How must the graphs of the component equations of the system

{ax + by = c

dx + ey = f

gx + hy = k

be related if there is to be a single element in the so3ntion
set S?

12. If the system

{ax + by = c

dx + ey = f

has a single element in its solution set, what would you
suspect about m (ax + by - c) + n (dx + ey - = 0? Test

your conjecture by referring to Problem 9. Obviously, this
does not constitute a proof, but can you prove it?

By our definition, the solution set of an equation is a set of
ordered pairs of real numbers. Of course in the definition we
might have substituted for "real numbers", elements from any number
system. In particular if we allowed ordered pairs of complex

numbers, some systems above which were inconsistent might have
solutions. In the next two problems,. use the definition: The
solution set of an equation is the set of all ordered pairs, of

complex numbers which satisfy the equation.

[sec. 7-1)
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*13. What is the solution set of the system;

2
Y =

y = x - 4 ?

*14. What is the solution set of the system:

{

ix + (2 - i)y + 6i . 0

x - iy = 0 ?

7-2. Equivalent Equations and Equivalent Systems of Equations.

Definition 7-2a. Two equations (inequalities) are equivalent

if and only if they have the same solution set.

We have already been led to consider equivalent equations

several times in this course. The process of solving 3x + 2 = 0

consists of replacing the equation by the equivalent equation

2
x = - 5 . In Chapter 6 we developed several equivalent equations

for non-vertical straight lines. For example, 2x + 3y -6 = 0 is

2equivalent to x x = 1 and also to y = - x + 2. Each of
5 2

these equivalent equations for the 3ame straight line makes it

easy for us to obtain some specific information about the line.

Just as we find it useful to Consider several equivalent equations

for the same straight line, we shall now find it helpful to con-

sider systems of equations which are equivalent to a given system.

In fact the general method of solving systems of equations which

we shall develop consists of finding particular systems which are

equivalent to the given system.

First we shall define equivalent systems of equations and then

we shall show how the idea of equivalent systems helps us to find

the solution set of the system.
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Definition 7-2b. Two systems of equations are equivalent if
and only if they have the same solution set.

Example 7-2a. The system

3x - y - 8 0

x + 2y - 5 = 0

is equivalent to the simpler system

x

y = 1

which allows us to write (3,1) as the solution set of the
original system.

In th., next several sections we shall be concerned with
methods for obtaining the solution set of a given system of equa-
tions.

Before we proceed to study these methods, let us review some
of the operations which leai to equivalent equations, as well as
some of the operations which may not lead to equivalent equations.
The following examples illustrate such operations.

Example 7-2b.

(a) x - 2 = 0 is equivalent to x = 2.

\ 2
(b) x y = 0 is equivalent to y = - x

2
.

1
(c) x = 6 is equivalent to x = 12.

(d) 2x = 6 is equivalent to x = 3.

(e) x- - 2 = 0 ls equivalent to x
2

-I- 2x 1 = 2x 3.

Example 7-2c.

(a) x`
0

. 0 is not equivalent to x(x2 y2) = 0.

Since the solution set of the first equation is 1(0,0)); while
that of the second is ((0,y)), y any real number.

(b) x = - 2y is not equivalent to x2 . hy2 since the

331
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1solution set of the first is ka, - 7 a)), for any real number

a; while the solution set of the second, in additiOn to the order-

ed pairs in the solution set of the first equation, Contains all.

1ordered pairs (a,ue), for any real number a.

(c) x
2

- y2 - 0 is not equivalent to x + y = 0. Why?

(d) x
2

= y2 is not equivalent to x = y, since ((a, - a))

as well as ((a,a)), for all real a, satisfy the first equation,

but not the second.

To summarize, if we add or substract the same expression from

both members of an equation, or multiply or divide both members by

a non-zero constant, the resulting equation is equivalent to the

original one.

On the other hand, if we square or extract the square root of

both members, or multiply or divide both members of an equation by

an expression involving a variable) the resulting equation may not

be (and probably is not) equivalent to the original one.

We now formulate a principle which is helpful in obtaining

systems of equations which are equivalent to a given system and

from which it is easy to find the solution set of the original

system (and incidentally of all the equivalent systems).

Principle 7-2a. If either of the equations of a system is

replaed by an equivalent equation, the resulting aystem is equiv-

alent to the original system.

The same is true if several equations are replaced by equiva-

lent equations. Therefore, all the algebraic operations which

produce equivalent equations will be useful to us in our efforts to

fihd the solution set of a system.

Example 7-2d. Find the solution set of the system

(1) f3x + 2y + 4 0

(2) 15x - 3y - 25 = 0

Solution: To eliminate, y, we multiply the first equation by

5 and the second by 2 and add, obtaining the equation

(3) 3(3x - 2y + 4) + 2(5x - 3y - 25) = 0.
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Now it is clear that any pair of numbers (x
1
,y

1
) which satisfieS

the first and third equations must satisfy the second. The proof

is simple. Sinc the pair (x1,y1) satisfies the first and third

'equations we have

and

+ 2y1 = 0

3(3x, 2y1 + 4) + 2(5x1 - 3y1 - -25) = 0,

from'which it follows that 5x
1
- 3y

1
- 25 = 0. This equation

states that the pair (x1,y1) satisfies the second equadon. The

proof is now complete.

It is equally easy to show that a solution of the system con-
sisting of equations (2) 'and (3) is also a solution of (1)

and that a solution of the system consisting of (1) and (2) is
a solution of (3). We can summ rize these results by stating that
these three systems are equiv712ent according to our definition of
equivalent systems. (It should e observed that either the system
consisting of (1) and (3) or the system consisting of (2) and
(3) L; a simpler system than the first, since we chose our multi-
p1-1-_.s in such a way that the equation (3) reduces to an equa-
tion n x only, namely x = 2.) If we look at the second system

(2)

(3) {

5x - 3y - 25 = 0

x = 2,

we can obtain its solution set as follows. Any pair (x,y) which
satisfies the second equation has the form (2,a) for some real
number a. The pair belongs to the solution set of the system if
and only if it also satisfies the first equation; that is

10 - 3a - 25 = 0.

But this is true if and only if a = -5. Hence, the solution set
of the system is [(2,-5)].
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In Example 7-2d,

system

{

3(3x

to the system

we have used very strongly the

+ 2y + 4) + 2(5x - 3y - 25)= 0

5x - 3y - 25 = 0

{3x + 2y + 4 = 0

5x - 3y - 25 = 0.

fact that the

is equivalent

The left member of the first equation of the first system above is

called a linear combination of the left members of the equations in
the second system-

The same argument which we have used in this example can be
used to show that the system

f(x,y) = 0

g(x,y) = 0

where f(x,y) and g(x,y) are expressions in the two variables
x and y, is equivalent to the system

or the system

pf(x,y) + bg(x,y) = 0

f(x,y) .-. 0

{

afx,y) i- bg(x,y) = 0

g(x,j) = 0.

See Problems 15 and 16.

This ge-cral result can be stated in the following principle:

Principle 7-2b. Principle of Linear Combination. The system
of equations obtained by setting each of two,expressions involving
x and y equal to zero is equivalent to the system obtained by
pairing either of these expressions with an equation obtained by

setting a linear combination of the two expressions equal to zero.

We illustrate the use of this principle in solving systems of
equations in the following example.

3 8 1
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Example 7-2e.. Find the solution set of the system:

3x - y - 8 = 0

x + 2y - 5 = O.

The system is equivalent to the system

3x - y - 8 = 0

a(3x - y - 8) + b(x + 2y - 5) . 0

We may choose a and b in such a way as to eliminate either

x or y from the second equation. Let us choose a = 2, b = 1.

the system then becomes

3x y - 8 = 0

7x - 21 = 0

Omitting the details of the proof, we show the remainder of

the series of equivalent systems:

- y - 8 = 0

x - 3 0

1-y + 1 = 0

1 x - 3 . 0

1

Y = 1

x = 3

The solution set of the original system is the same as the solution
set of the equivalent system

that is ((3,1)).

y = 1

x =3;

3 3 :3
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This method of solving systems of linear equations is essen-

tially the same as the elimination method, which you have probably

used many times before. The only real difference is that the defi-

nition of equivalent systems and the principle of linear combina-

tion assure us that the solution set of the system we obtain in the

end is the same as the solution set of the original system.

Exercises 7-2

1. Determine whether or not the following sets of equations are

equivalent. Justify your answer.

(a) 3x = 6 and . 2x = 3

(b) 4x + 3y = 12 and 3x + 4y = 12

(c) 5x + 20 = 35 and x = 3

(d) 8x - 10 = 2y and 4x - y = 5

y
2

=(e) x = y and X
2

-I-

(f) x = - ..//y + 3 and x
2

= y 4- 3

(g) x = -i3r 6 and x
2

(h) x - 2 = y and lx - 21 = y

(i) y = x2 and Y = lx1

(j) xy + x2 = 0 and y = -x

(k) x2 - 4x - 12 = 0 and x . 6

2. If (3,5) is the only element of the solution set of the

system
(i) 3x + 4y = 29

is the system (ii)5
3x 4- 4y =-29

13x - 4y = -11, 6x = 18

equivalent if it is known that the solution set of (ii) has

only one element?
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3. ir the solution set of (1) fx + y = 8 is ((6,2)), and

{

x - y . 42x - y = 10

(ii) 5x + 2y = 34 has a single element in its solution
set, is 9.) equivalent to (ii)?

4. Determine whether or not the following sets of systems are

equivalent. Justify your answer.

(a)

{x + y = 10

x - y = 6
1

and 2x + 2y = 20

x - y = 6

(b)

{5x + 4y = 3 and {y. = -3

x + y = 0 x = 3

(c)

17x + 3y = 15 and 57x + 3y = 15

5x - 2y - 19 = 0 2(7x+3y-15) + 3(5x-2y-19) = 0

(d) 53x - 4y . -24 and + (5x+3y+11) = 0

-5x - 3y = 11 5x + 3y + 11 . 0

(e)

{3x + 5y = 18 and {x = 1

2x + 1 = y 2x + 1 = y

(f) 5x2 + 3Y = 6

x + y = 9

and {x2 + 3y = 6

+ 3Y =

(g) + 4y - 3 = 0 and ix = 1

1x + 2y = 0

(h)

{x + y = - 8 and x
2

- 100 = 0

x 2 - y2 = 96 y2 = 4

{

x2 y2
and = 5 - x

1 1

(j) fx - y = 0

t.2x - 7y = 5

{x
2

- y
2
= 0

2x - 7y = 5
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5. Sketch the graph of the component equations of

and (ii)
x
2

- y
2

. 9

4
y = 5 x

(i) x
2

y
2

y

=

=

25

4
x

Determine from the graphs whether or not the systems are

equivalent.

6. Is the system (i) x2 - y2 = 25 equivalent to

x = y + 5

(ii) ).( y = 5

x + y = 5

Sketch the graphs of the component equations to check your

answer. Form another system which will be equivalent to

(ii). Are all three of these systems equivalent?

7. Sketch the graph of the system (i)

{

x
2

- y2 . 16

x
2

+ 4y2 . 4

and the system (ii) y = x 4

x2 + 4y2 = 4

Use these graphs to help you discuss whether or not these

systems are equivalent.

8. Choose a and b, not both zero, in each of the following

so as to eliminate the term in y:

(a) a(y - x2) + b(y - 2x - 3)

(b) a(2x2 + 7y) + b(3x + 3y - 5)

(c) a(3x2 + 2y - 5) + b(3x2 - 3y + 7)

(d) a(x2 + 9y + 8) + b(4x2 - 2y + 7)
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9. Choose a and b, not both zero, in each of the following

so as to eliminate the term in x:

(a) a(x + y + 3y2 - 7) + b(y -x)

(b) a(x + 3y - 7) + b(2y - 5x)

(c) a(5:et - 7 + 2y) + b(y2 - llx + 21)

(d) a(5x - 7 + 2y) + b(y2 + llx + 21)

10. Choose a and b, not both zero, so as to eliminate one of

the variables:

(a) a(x2 + y2 - 7x + 3) + b(2x2 + 5y2 - 14x +y)

(b) a(x + 3y 7x2 + 2) + b(21x2 - 9y + y2 - 3x + 10)

(c) a(x + 3x2 + 2y + 7) + b(x - 5y + 21)

(d) a(x2 + 2y2 + x + 4y - 7) + b(2x2 + y2 + x + 2y + 12)

11. (a) Using the constants a and b form two systems equiv-

alent to the system

f x + y = 1

2x - y = 4

by the principle of linear combination.

(b) Select several real number values for a and b. Draw

the graph of the component equations of the equivalent

systems formed on the same coordinate axes.

(c) Select real nuMber values for a and for b so as to

eliminate the term in x; so as to eliminate the term

in y. Draw the graph of the component equations of

these two systems on the coordinate axes used above.
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12. Given the following equivalent systems:

( ) fX + y = 2 (ii) Jx = 2 (iii) = 2

1.2x - 5y = 4 x + y = 2 y = 0

(a) What real numbers a and b will change (i) to (ii)

6y the principle of linear combination? (ii) to (iii)

by the principle of linear combination?

(b) Sketch a graph on the same coordinate axes of the com-

ponent equations of these three systems; (i), (ii),

and (iii).

(c) Give the solUtiOn set of (i), (ii) and (iii).

13. By use of equivalent Systems and the principle of linear com-

bination,find the solution set of eaeh of the following sys-

tems:

(a) 2x - y - 4 = 0

{

(f) 2y = 2x - 1

x - 2y + 7 . 0 x . 2y - 2

(b)

{7x + 5y = 11 (g) { ax - 3Y = 5
3x - 2y =-13 ')( - 1.5y = 2.5

(c)

{.02y

= .01x - .1 (h) 2x = 8y - 10
1.03x - .ly = 0 15 = 3y - x

(d)
2 4r + -37 = 4 (i)

3

2 1 2

x + 2y = 4 x = 1

-i. iy .

{

(e) llx + 3y + 7 . 0 (j) x + 1

12x + 5y = 21

*14. Prove that if system (1) is equivalent to system (2), and

if system (2) is equivalent to system (3), then system

(1) is equivalent to system (3)..
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{5. Prove that the system f(x,y) = 0 is equivalent to the

g(x,y) = 0

system a.f(x,y) + b.g(x,y) . 0

g(x,y) . 0

*16. If f(x,y) and g(x,y) are algebraic expressions, show that

the systems,

if(x,y) = 0 and + b.g(x,y) . 0 are

g(x,y) = 0 c.f(x,y) + d.g(x,y) . 0

equivalent if and only if ad - bc 0

7-3. Systems of Linear Equations.

In this section we are concerned with finding the solution

set of the system

{alx + bly + cl . 0' not both a
1

and b
1

zero

a2x + b2y + c2 = 0' not both a
2

and b
2

zero.
7-3a

We now have several ways of attacking this problem. The

method of eliminating one of the variables, as we have seen in the

preceding section, is essentially the same thing as finding.an

equivalent system using the principle of linear combination.

In addition, we may consider the problem from the geometric

point, of view. The machinery of analytic geometry which we deve-

loped in Chapter 6 will be extremely useful in this method of

solution.

We begin by considering some examples.

'Example 7-3a. Find the solution set of the system

{x+y-l= 0
2x = 2 - 2y.
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Solution: The system is equivalent to the system

{x +y-l= 0
2x + 2y 7 2 = 0.

But the left member of the second equation is simply twice the left
member of the first equation. Hence, any ordered pair which sat-

.

isfies the first equation will satisfy the second. The system is
dependent and the solution set of the system is the set of points
on the line whose equation x + y - 1 = 0; that is, [(a,l-a)),
where a is any real number. Geometrically the two equations are

equations for the same straight line.

Example 7.73b. Find the solution set of the system

{x + y + 1 = 0

2x + 2y + 1 = 0.

Solution: The system is equivalent to the system

{2(x + y + 1) - (2x + 2y + 1) = 0

x + y + 1 = 0

which is equivalent to
{1 = 0

x + y + 1 = 0.

It is clear that there are no ordered pairs (x,y) which satisfy
the equation 1 = 0. And since the system

1 = 0

{x + y + 1 = 0

is equivalent to the original system, the solution set of the orig-
inal system is the empty set. Hence, the system is inconsistent.

Geometrically the lines must be parallel. This follows since the
two lines have the same slope, -1, but not the same y-intercepts.

Example 7-c. Find the solution set of the system

{2x + 3y + 1 . 0

3x - 5y + 4 = 0.
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Solution: The,system is equivalent to

f

-3(2x + 3y + 1) + 2(3x - 5y + 4) = 0

2x + 3y + 1 . 0,
,

that is f 19y - 5 . 0 which is equivalent to 1 y . 49-

t2x + 3y + 1 = 0,
2x + 5y + 1 =0

which is equivalent to

{

=Y -1%-

17

The solution set is therefore ((- g, -.&), and the system is

consistent. Geometrically the lines intersect in the point

19' 19

We return now to the general system 7-3a,

alx + b1y + cl = 0, not both al and bl zero.

a2x + b2y + c2 0' not both a
2

and b
2

zero.

The graphs of the two equations of this system are straight lines

(Section 6-2). Let us call them L
1

and L2 . Geometrically,

three cases are possible.

Case I. The lines L
1

and L
2

are the same line.

Case II. The lines L
1

and L
2

are parallel.

Case III. The lines L
1

and L
2

intersect in a single

point.

Case I. We have noted already in Chapter 6 that the graphs

of the two equations are the same straight line if and only if the

corresponding coefficients are proportional; that is, al = ka2,

b = kb
2'

c
1

= kc
2'

.(k 0. Why not?) In this case the system1

is depend.mt.
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Case II. We also noted in Chapter 6 that two distinct lines

are parallel if and only if they have the same slope (or are both

vertical). Since the slopes are

a
1

a
2

ml b and m2 = - F-,
2

the lines are parallel if and only if

a, a,
c_= F- or

1 2
a1b2 = a2b

1.

If the lines are vertical, 131 = b2 = 0 and a1b2 = a2b1 = 0.

Therefore two distinct lines are parallel if and only if

a1b2 = a2b1 or a1b2 - a2b1 = 0.

In this case the system is inconsistent.

Case III. We shall show that two lines intersect in a single

point (and are therefore consistent) if and only if

a1b2 -.a2b1 / 0.

Using the principle of linear combination the original system is

equivalent to the system

1

b2(a1x + bly + cl) - b1(a2x + b2y + c2)

which Is equivalent to the system

jx=

a
1
x+b1 y+c

1
=0,

b1c2 - b2c1

a1b2 - a2b1

+ bly + cl = 0,



which is equivalt;.nt to the system

=
b1c2 - b2c1

alb2 a2b1

a2c1 - a1c2

a1b2 - a2b1

The solution set of the original system is the same as that of the

last system and this is clearly

b1c2 - b2c1 a2c1 - a1c2

a1b2 - a2b1' a1b2 - a2b1
;)

Hence, the two lines intersect in this single point if and only if

a1b2 - a2b1 / 0, since the systems are equivalent if and only if

a1b2 - a2b1_/ 0.

{

Example 7-3d. Is the system 5x + 4y + 7 . 0 consistent?

2x - 7y + 5 = 0

Solution: Since a1b2 - a2b1 . 5(-7) - (4)(2) = -43 / 0,

the system is consistent. The solution set is the single number

pair,
(43' 44 )

Let us look again at the system

{

sax + bly ± cl . 0

a2x + b2y + c2 = 0.

If we consider the equation obtained by setting the linear

combination kl(alx + bly + cl) + k2(a2x +.b2y + c2) = 0, the

result is again a linear equation. Its graph, therefore, is a

straight line by Section 6-2. Furthermore, if the two given lines
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intersect in q(x0,y0), then alxo + logo + cl = 0 and

a2x0 + b2y0 + c2 = 0

k1(a1x0 + b1y0 + cl)

Therefore, Q(x0,y0)

and for any real numbers kl and k2,

+ k2(a2x0 + b2y0 + c2) k1.0 + k2.0 = O.

is on the line. So our Principle 7-2b

simply asserts that the system of equaticns whose graphs are the
two lines intersecting in Q(x0,y0) is equivalent to the system

consisting of one of these lines and any other line which passes
through Q,(x0,y0). Our method amounts to finding the equivalent

system consisting of the horizontal and vertical lines passing
through Q(xo,Y0);

the

Any

that is, the system X =
o

Yo.

{

Example 7-3e. The system x,+ 3y.= 9 is equivalent to

x - 3y . -3

k
2
(x - 3y + 3) . 0{system k

1
(x 4- 3y - 9) +

x 3Y + 3' = 0

line through the point of intersection of the lines of the
original systen can be represented by the first equation in the
second system for

k
1

= 1 and k., =

the vertical line

. 1 and k2 -

line x 3.

some values of kl and k2. In particular, if

-1 the resulting equation is the equation of

3y - 9 + 3y - 3 = 0; that is y = 2. If

1, the resulting equation is the horizontal

Fig. 7-3a.
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Exercises 7-3

1.. Tell whether the graphs of the component equations of each of

the follows' e the same straizht line, parallel

lines, or tines. Also, tell whether

systems .1t, inconsistent, or dependel

(a)

(b)

(c)

(d)

(e)

j3x

{3x

{

{5x + 4y + 7 = 0

2x - 7y + 5 = 0

+ 3y + 1 = 0

2x + 2y + 1 = 0

= 1 - 2y

3. .. 6y = 3

.2x 7 .5y = .1

.4x = y - .2

2= 5x - 1

Y = 2x + 6
5

5 2x - y = - 3

9 = x + y

1

1

y = 3x + 5

1y = 3x - 5

{2x - y = 6

4x - 2y = 5

3x - 2y = 1

1 6x - 4y = 2

10x + 6y = 5

2. Find the solution sets of the following systems:

{x + 3y = 9

x - 3y = -3

(b) 4x + y = 5

2x - 3y = 13

(c) 2x - gy . 5

3x - 3y = 11

(d) 3x - 7y = 1

2x - 3y = -1

{y = - 4. + 2

x + 4y + 2 = 0

{2x + 2y = 100

+f = 14

(k)

{

2x ;.- 1 3y -4- 2

u)

fx -I. 2y - 3 = 0

.12 -. 8y + 4x

3 9 7
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*3.

(e) 4x + y = 2

2x - 3y 8

(1) f 3x = - 3y - 4

I x - 6y - ji.

{

(g) 3x + 4y . 16

5x + 3y . 12

(h)

{
2x y 1
5 V 5

(m) x 5

2x - 3y 5

2x - by = a

Prove that if a1b2 - a2b1 = 0, blc2 b2c1 = 0, and

a2c1 - a1c2 = 0, then there exists a real number k 0

such that a
1
= ka

2'
b
1

= kb
2'

and c
1

= kc
2' Assume, of

course, that a1b1 / 0 and a2b2 / 0.

A man can row downstream 6 miles in 1 hour and return in
2 hours. Find his rate in still water and the rate of the
river.

5. If a field is enlarged by making it 10 rods longer and 5
rods wider, its area is increased by 1050 square rods. If
its length is decreased by 5 rods and its width is decreas-
ed by 10 rods, its area is decreased by 1050 square rods.
Find the original dimensions of the field.

6. The sum of the acute angles of an obtuse triangle is 85°. If
the difference of the acute angles is 190, what are the
angles?

7. A and B are 30 miles apart. If they leave at the same
time and travel in the same direction, A overtakes B in 8
hours. If they walk toward each other,they meet in 3 hours.
What are their rates?

398
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8. One alloy contains 3 times as much copper as silver, an-

other contains 5 times as much silver as copper. How much

of each alloy must be used to make 14 pounds in which there

is twice as much copper as silver?

9. Find two numbers such that

(a) 'r sum is 12 and their difference is 3;

of their reciprocals is 24 and the difference

21r reciprocals is 4.

10. The formula s=s +vo t- 16 t2 is often used for falling
o

bodies where s is the height of the body at any time t,

s
o

is the initial height (when t = 0), v
o

is the initial

velocity and the coefficient 16 is used for one half of the

acceleration of gravity. Distance s is in feet and time t

is in seconds. If s = 10,000 when t = 5, and s = 8,550

when t = 10, find so and vo.

11. Find an equation of the line which passes through the origin

and the intersection of the lines whose equations are

4x y 2 and 2x - 3y = 8.

12. Find an equation of the line which passes through the point

(5,4) and the intersection of the lines whose equations are

y = - 7x + 7 and x + 37 _

7-4. Systems of One Linear and One Quadratic Equation.

The simplest kind of system of two equations in which at

least one is not linear, is a system consisting one linear and one

quadratic equation.

Example 7-4a. Find the solution set of the system

= x2

y = 2x + 3.

[sec. 7-4]
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Solution: If (x,y) belongs to the solution set of the

system, then it must have the form (a,2a + 3) for some real
number a, in order to belong to the solution set of the second

equation. On the other hand, to belong to the solution set of the

first, the ordered pair must have the form (a,a
2

) for some real
number a. Hence, a pair with first element a, belongs to the

sol-Jon set of the system Af and only if 2a + 3 . a2. This
s that a = -1 or a 3. Hence, the solution set of the

-1:1--,-=m is ((-1,1), (3,9)).

Example 7-4b. Find the solution set of the system

{x2 y2

x 4- 2y . 5.

Solution: The elements of the solution set of the equation

x + 2y . 5 must have the form (a ) The pair will satisfy

x
2

+ y
2
. 5 in addition, if ard only if

a
2

+ ( 1 2 . 5

4a
2 + 25 .0a + a

2
20

-5a
2

- 5 0

a
2

- 2; 4. i = 0.

(a - 1) . 0

Hence, a . 1 and the solution set of the system is ((1,2)).

Example 7-4c,. Find the solution st of the system

{

x2 - . 1

y

4
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Solution: The elements of the solution set of the second

equation must have,the form (a,a). The pair will satisfy the

first equation also, if and only if

a
2 - 4a

2
= 1

-3a
2

= 1

a
2

=

But this , ivation is not satisfied by any real number a. Hence,

the solution set of the system is the empty set.*

ExaMple 7-4d. Find the solution set of the system

1

x2 - y2 = 0

x - y = 0

SoL,1:ion: Th..± elements of the solution set of the second

_,ticsn must have the form (a,a). The pair will satisfy the

f=:',t ,,.:f..lation also, if and only if,

2
a - a = 0.

!:;hLo equation is satisfied by every real number a, its

szau:t.ov set is the set of all real numbers. Therefore, the

sDlutlox; set of the original system is the set of all pairs (r,a,a)

wHere i Is any real number.

Thk, preceding examples exhibit four different kinds of zl

cselt: for this kind of system, namely, the empty set, a set

c1.-r,g of only one pair of r-2.1 numbers, a set consisting of

ps of real numbers, and a :.et whose graph is u certain line.

these are the only kinl of solution sets which can

we proceed to show.

* if we allowed the vaF_ables to represent complex

numherz LAT, solution set mould be:.

rt-nri 3N , 1,5
,1/4-",-,

40i
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Suppose we wish to find the solution set of the system

Ax2 + Bxy + Cy2 + Dx + Ey 1- F = 0
(i)

1
Lx + My + N = 0,

where not all of A, B, C, D, or E are 0, and where M is

not 0. Any member of the solution set of Lx + My + N = 0 must

N
Jhave the form (a, -

La 4-
. The pair belongS to the solution

set of the system if and only if it satisfies, in addition, the

first equation of the system, that; is

(ii)
La N) La 1 N%2Aa2 + Ba(- j + Da + E(- La N) + F = 0.

This equation can be .axpressed as,

(iii) A0a2 + Boa + Co = 0.

If A
0

= E = C0 = 0, every real number a satisfies the3

equation.

If Ao = Bo = 0, but Co / 0, no real number a satisfies the

equation.

If A
o

= 0 but B
o
/ 0, there is one real number a which

satisfies the equation.

If A
o
/ 0, there are either no, one, or two real numbers for a

which satisfy the equation.

This result has a very interesting geomeLu c interpretation.

It means that any straight line

(1) will not Intersect a conic or

(2) will intersect it once or

(3) will intersect it twice or

(4) will actually be a part of the graph of the conic.

The fourth case can occur when the conic is "degenerate" in the

sense that its equation can be expresses as the product of two

linear factors one of which is the linear equation of the system

as in Example 7-4d above. In this case, the graph of the linear

equation is actually a part of the graph of the quadratic equation.

(sec. 7-4]
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Some graphical f_nterpretations of statements, 1-4 are shown in

the following sketches:

(1) The line does not intersect the conic.

(2) The line intersects the conic once.

393

(3) The line intersects the conic twice.

403
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(4) The line is a part of the graph of a degenerate conic

whose graph consists of two (intersecting,parallel,or coincident)

lines.
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The previous discussion eliminates the possibility mentioned in

Chapter 4 that a parabola might actua117 ok like 17he curv.

Fig. 7-4c.

Fig. 7-4c.

For,if one such wiggle occurred, we could draw a line intersecting

the parabola in three points.

In the examples we have considered so far, we found the sol-

ution set of the system by first determining the fOrm which a

number pair with first element a must have if it is to satisfy

the linear equation. Then we reasoned that the number pair be-

longs to the solution set of the system if and only if it also

satisfies the quadratic equation. This transformed the problem of

finding the solution set of the system into the problem of solving

a quadratic equation. Of course, we might just as well have said

suppose the second element of the ordered pair is b; then if the

pair is to satisfy the linear equation, the first element of the

pair must have a certain form, etc. In sme systems this approach

greatly simplifies thc algebraic manipulions involved in finding

the solutic_ set.

4 0
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7-4e. Find iution set of the system

{272 + xy = 5

x + 4y = 7.

Solution: If an ordered pair whose second member is b, be-

longs to the solution set of the second equation, then the ordered

pair must have the form (7-4b,b). The pair is an element of the

solution set of the system if and only if it satisfies the first

equation. That is,

2b
2

+ k7 - 4b)b = 5

2b
2

+ 7b - = 5

2b
2

- 7b + 5 = 0

(2b - 5)(b - 1) = 0.

Hence, the ordered pair (7 - kb,b) belongs to the solution set

of the system if and only if b = 1 or b = t. The solution set

of the system is C(301), (-3, i)).

Exercises 74

1. Find the solution set of each of the following systems. Use

the procedure developed in this section.

{(a) x2 + y2 = 50

1

(g) y2

x - y = 0 x + 10 y

(b) m2 - 4x + 3 = 0 (h) 3x - 2y . 0

x -y+1= 0 x2 + y2 52

(c) {

x2 + ky + 2x - 11= 0 (i) xy = - 12

y = x + 5 x + 14 = 2y

(d) { x2 - y2 = 0 (j) f '2x - xy = y2

x + y = 0 )sx = y

[sec. 7-11]

4 06



397

(e)

{xy = 6 (k) 3x2 - y2 . 3

2x - y = 1 2y x 8

y = 2x2 (A x2 -y2 +x+y= 0
y + 1 = 2x x + 1 = y

(m) y = x2 - 1

2. Find the solution set of each of the following systems.

Check by sketching the graph of the equations of each system.

(a) = x2 (c) x2 + 4y2 = 25

y - 2 = - (x- 3)

(b) {xy 9

x + y = 5

(d) xy - 2x + 2y + 4 0

x - 2 0

3. Discuss the geometric interpretation of the solution sets of

the systems in Problem 1.

A line passing through the point (0,-5) is tangent to the

conic whose equation is x
2
= y 3. Write an equation of

the line. How many tangents are possible? Give the equa-

tion of each.

5. A line having slope 2 is tangent to the circle whose equa-

tion is x
2

+

many tangents

6. Find value of

whose equation

whose equation

y
2

= 16. Write an equation of this

are possible? Give the equation of

k in terms of r and a so that
is y = mx + k will be tangent to

is x2 + y2
2= r, r O.

407

(sec. 7-4]

line. How

each.

the line

the circle



398

7-5 Other Systems.

Finding solution sets for systems of equations in which

neither component equation is linear, is complicated. There are

several special methods which solve the problem for partl,lar

types of systems consisting of two quadratic equations. lnese

methods usually consist of finding simpler systems which are equi-

valent to the original system by eliminating one of the variables

from one equation. This elimination process may be essentially

our method of linear combination, or it may involve substituting

an expression for one variable obtained from a first equation in

a second equation.

Example 7-5a. Find the solution set of the system:

1

3x2 y2

x2 + 2y
2

- 107 = 0

Solution: We form a linear combination of the left members

which will eliminate y
2

, namely

2(3x2 - y2

By Principle 7-2b the

+ 22) + (x2 + 2y2

new system

3x2 - y2 + 22 =

- 107) = O.

0

.
7x

2
- 63 = 0

is equivalent to the original system. This in turn is equivalent
to the system

3x
2

- y
2

+ 22 = 0

x - 9 = 0,

408
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which is equivalent to

or

{

(3x2 y2 (x2 9)

x
2

- 9 = 0

{y2

x2 - 9 = 0.

399

Just as in the previous section, we may observe that any ordered

pair satisfying the first equation must have the form (a,7) or
(a,-7) for some real number a; while any pair satisfying the
second must have the form (3,b) or (-3,b) for some real number
b. Hence, the only ordered pairs satisfying both equations are
(3,7), (3,-7), (-3,7), and (-3,-7). E.ince the system

{y
2

- 49 = 0

x2 - 9 = 0

is equivalent to the original system, the solution set of the
original system is

((3,7), (3,-7), (-3,7), (-3-7)).

Example 7-5b. Find the solution set of the system

{

2xy - y2 + 24 = 0

2x
2

+ xy + 2 . 0.

By the Principle of Linear Combination (Principle 7-2b) the

system is equivalent to the system

That is,

-(2xy

{

- y2 + 24) + 2(2x2 + xy + 2) . 0

2x
2

+ xy + 2 = 0;

1

4x2 4- y2 = 20

2x2 + xy = -2.

409
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Since no ordered pair with first element zero satisfies the second

equation, this system is equivalent to the system

4x
2

+ y
2
= 20

2
y - Tc- - 2x.

As in the last section we now say that if an ordered pair with

first element a satisfies the second equation, it must have the

form

(a, - - 2a).

It is a member of the solution set of the system if and only if it

is a member of the solution set of the first equation; that is,

Then since a / 0

4a
2

+ (-

4
4a

2
+

a-

8a
4

4

2 %

- 2a)
2

=
a

+ 8 + 4a
2

=

- 12a
2
. 0

20.

20

2a
4

- 3a
2

1 = 0

(2a2 - 1)(a2 - 1) = 0

2Hence, the p-ir (a, - - 2a) belongs to the solution set of the
a

1 1system if and only if a = 1, a = -1, a = , or a = -
1727

Hence, the solution set is

((1, -4), (-1,4), ( 1 , -3 (

./

, 3

Example 7-5c. Find the solution set of the system

2
x - y2 = u

2x
2

+ xy = 48.

410
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Solution: The system can be written

1

(x + y)(x - y) = 0

2x
2

+ xy = 46.

Any ordered pair with first element a satisfying the first equa-

tion must either have the form (a,a) or the form (a,-a) for
some real number a. If the ordered pair is to be a member of the

solution set of the system it must, in addition, satisfy the

second equation; that is either

2(a)2 + a(a) = 48

3a 2
= 48

a
2

16

a = 4 or a = -4

or 2(-a)
2

+ a(-a) = 48

a
2

= 48

a = 4 -45 or a = -4 5",

Hence, an ordered pair of the form (a,a) is a member of the

solution set of the system if and only if a is 4 or -4. A

pair of the form (a,-a) is a member of the solution set of the

system if and only if a = 4 A5 or a = -4 ,r5. Hence, the

solution set of the system is

((4,4), (-4,-4), (4 .1'5, -4,15), )).

These examples illustrate some of the types of systems for

which the solution sets can be founl using the methods of this

chapter. Of course, not every system can be solved so easily.

EXample Y-5d. Find the solution set of the system

1

x2 41,2 8y 8

x 2 + gy2 - 4x - 32 = O.

[sec. 7-5]
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Solution: No linear coMbination of the left members of the

two equations will eliminate either x or y. However, we can

eliminate x2 and obtain the equivalent system

{(x? 4y2 8) _(x2 9y2
4x - 32) = 0

x
2

- 4y
2

+ 8y - 8 . 0;

that is, {-l3y
2

+ 8y + 4x + 24 . 0

x2 - 4y
2

+ 8y - 8 . 0

Then while it is possible to use the technique which we have used

before of letting b be the second element of an ordered pair

which satisfies the first equation, we run into a few complica-

tions. The pair must then have the form

(V-h2 - 2b - 6, b).

The pair belongs to the solution set of the system, if and only if,

in addition it satisfies the second equation; that is,

(24b2
2b - 6)2 - 4b2 + 8h - 8 = 0.

This equation is an equation of the fourth degree in b and we do

not have available methods for solving such equations. So that

while in theory our method still applies, in actualqpractice, we

are unable to carry it through successfully. In such'situations

the number of members of the solution set of the system and approx-

imations for these number pairs can frequently be obtained from

the graphs of the component equations. See Fig. 7-5a.

I 1

MO= EMI
INIMOr'ql Inr
1121611121MINIIIIIRICIIMall 0

INEMIIIISMI11111111111

Fig. 7-5a.
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The equations may be rewritten in the form

{

x2 (y - 1)2
7 1

. 1

(x 2)2 2
+ = 1.

From Figure 7-5a we see that the solution set of the system con-
tains four number pairs. They are approximately

[(2.8,1.9), (-2.2,1.3), (-3.8,-.7), and (5.6, - 1.6)).

Solution set for systems of inequalities can be obtained

graphicallyin a similar way.

Example 7-5e. Find the svlution set of the system

{y < - x2 + 8x

y > x2 - 12x + 32.

Solution: We first sketch the graph the two parabolas whose

equations are y = -x
2

+ 8x and y = x
2
- 12x + 32. We may re-

write the equations y - 16 -.= -(x - 4)2 and y - (-4) = (x - 6)2.

The first is a Parabola with vertex V1(4,16) and axis the line

x = 4 which opens downward. The second is the parabola with

Vertex V
2(6,-4) and axis the line x . 6 opening upwards. The

solution set is the set of points below the first parabola and

above the second; that is, the shaded region R in Fig. 7-5b,

not including points on the boundary.

413
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Q 8.

0

/ 1. r y-16. -(x-4)2

\ (6,-4) It

Fig. 7-5h.

Exercises 7-5,

1. Use the principle of linear combination to find the solution

set of the system

1

4x2 y2
. 100

4x y2 . -20.

Check your answer by sketching the graph of the component

equations of the system.

4 I
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.e solution Eet of th.- .tem

x2 + 4y2 , 100

1 2
1,2y

2
. 50 - --5x .

7.17e geometrlc interpretation of the solut.L=1 set of thls

t:e solution set of the. .vstem

{x2 + y2 , 20

1 2 1 2x = 3 -
7y2

e geometric interpretation of the solution set of t.17is

4. the solution set of the system

{x
2

+ y
2

- 25 = 0

y 2
- x

2
- 2x - 1 = 0

G._ve the geometric interpretation of the solution set of this

5. FLnd t:D.e solutlon set of the system

{

x2 - 5xy + 4y2 . 0

xy .. 1

6. .17.1.n.:-: t;:e solution set of each of the following systems:

(a)

(b)

{

i

{

x - y2 . 4

X
2

+ y
2

. 16

lx2 - 7y = 2

x.2 - y2 . 12

x2 y2
11

2x
2
- 5y2 . 7

(h)

(i)

)

[sec. 7-5]
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x2 + 4y2 = 20

2 2x - 5xy + 4y . 0

x2 - y2 = 16

9x
2
- 25y2 . 0

x2 y2 4

x 2
+ 2y 2

. 12
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(a) { x
2

- xy
n n

x-

= 3

5 y + y + 5x - 6 = 0

2x + __.xy + y
2 - 5x + 6 = 0

2 _

2 .

2 2
(e)

y2
x

2x
2

+ y
2

= - 1

- (../
2x + 5xy - y = 4

2x2 + 3xy - 8 = 0

4x
2

(0

{

- y2 =

+ y
2

= 4

(m)) x
2 + xy + y

2 = 36

xy = 0

4x2 4

2x
2 - 3xy = 2 (n,

2x
2

- 5xY - 3Y
2

= 0 /

x - e_xy -1
2 ,

7- = xy
_,-,

=
(g)

7. Find the solution set of each of Lhe following systems:

x2 + y2 > 9

9x
2 + 16y

2 < 144

x > 0

y2 < 4x

x > 4y

x - y = 0

x2 + y
2 < 25

x2
9

2

< x
2

- 6x + 9I

[ Y > x` - 6x + 8

(e) y < x
2 + 2x -

-y-1=0
(.0 '- > 9

a

3

{
L 9 > 7

(a)

{

x
2

+ y
2 < 9

Y
2
i x

(h)

(b)
x2 y2

(i)

x + 2y
2' > 4

(c) x2 + y2 > 25 (J)

x2 + y2 25

(d) x2 + y2 < 16 k)(T
x + 2y - 2 =

1

0

(f) x2

x
{

+ 16y2 16

+ 4y
2

K 16

(m) '.7"- 2)2 + (Y - 1)2 < 4

416
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1

Supplementary Exerc_ses

1. Find the solution t of the following systems:

(a) i x - 2-y = 6

1 x + y = 3

(b)

{5x + By = 7
2x + 7y = 1

1

('.) 3;.= = 7 Y

2x + 5y = 13

(d) r 6x + 5 = y
1
--y = 4x
4

() x 1
--TT r 7

- 1
6

e

{

(0 2x - 31'). = b

3x + IY - '

(g)

{x + ry = -7

SX - 77 = 3W

{(h) ax + by = -e

2. Find the solution set of each of the following systems:

(c)

0

0

2

-3

7 > 6

(d)

(e)

x > 0

y > 0

y < -3x + 24

Y K - x + 10
{

Y < 2x
2

2 2
i-- + i- < 1

y > 0
1

y < x - 2

= + y

417
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(g)

(h)

(1)

(j)

(k)

(i)

(m)

(n:

(0'

y
0

3

3y > 6

- 6y > 6
+ 7y 28
- 7y 21

- 5y - 30
+ 7y + 11
- - 11

=

=

=

0

0

0

(p)

(q)

(r)

( s )

{x2 - 3xy = -4
x2 + 9y2 = 20

2xy - y2 = - 24
2x2 + xy = -2

{x2 y2 36

x2 = y + 6

9x2 + y2 = 29

{x:, = 12
x - 2y = 0 (t) x + y = 5

fx2
y2 i 4- b

1 4x2 + 972 = 36 (u) x2 = y

1

52-
ky42 + 5y2 = 30 (v) x2 + 4y2 = 144

x + 1 = 02

30

y
27x

2 - 2y2 + 38 =

Ix2 y2 + 4x + 6y 40

x 10 + y (w)

8x2 3y2

7a- - 3xy = 10

4x2 + y2 = 144

x2

ix

3y2

y = 0

X2 4 y2 = 17
2

+ y2 = 25

4.7,7

2y = 4x - 12

= x2 - 20 (y) 22 - xy + y2 = 12
3x = y + 10

F:nci rn n terms of lc such that the line whose equation
y = "=. k shall be tangent to the conic whose equation

7-7
J... y =xT..
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Chapter 8

SYSTEMS OF DEGREE EQUATIONS IN THREE VARIABLES

8-1. A Three DirrnsL:nal Coordinate Syste7..

In Chapt 2 arned t:aat. a one-tc-one correspondende

can be establ sh tween ordered pairs c2 real numbers (x,y)

and points in a pl.ne. In this tthapter we shall deal with

triples of numbers (x,y,z) and view the::: sometimes as consti-

tuting solution se of equations in three variables, and some-

tlmes as representing points in three-dimensional space.. Thus

we will wish, at outset, to set up a one-to-one correspond-

ence between triples 3f real numbers (x,y,z) and the

points of three-dLmansionai stace. We use a method similar to

the one we used in two dimenEns.

Take three mutually perpendicular lines and label these

lines the x-axis, the y-axis, and the z-axis respectively. These

lines can be chosen, and labelled, in any mannr wha=zoever.

For the saka- of unformity, and because the choice is a common
one, let x- and y-axes be

_Lln a torizor-tal plane and the

z-axis perpencular to this

plane. The ,int of inter-

section of anes is 0, the

origin. ',e;e uicn ==maer

:spales th mxes, as we did with

coordte s:7tenm n one and

two di:Lt..asisn's, in such a way

that the zero of each of the

axes coincides at uhe orWn.

The positive direction OX

extends forward, toward the

observer; the positive dir-

ection 7.5T extends to the

Tatht; alld the pasltive

OZ extP-s upward, A plane:dete:mined by any two

FLT:ure 8-la
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of the axes is called a coordinate 21aaf.. There are three such

planes, th XZ-plane, and the YZ-plane.

Through any point F in space draw three planes which are

respectively perpendicu= to the three coordinate axes. The

numbers attached to the points in which these planes intersect

the x-, y-, and z-axes ar,e called.the x-coordinate, the

y-coordinate, and the ,t-toordinate of the point P respective-

ly. These =lanes and the

three ca=l'nate planes

form a b=-:Like

figure

a rectangular

paralleleoi:ed).

We can then find

the triple of

coordinates of

any given

_In space; and,

ponveraelF, we

-can locate a

noint in sp:e

.when ay anm,,z1=ed

triple of real.

numbers is -7-en. This -one-to-one cueondence between points,

in space and the ordered tttl;ples of rea numbers (x, z) is

aalled a three-dimension-al :oordinate E-7-stem.

P1--t- the ( 51

Sdlc.tion: Begin at tne orizin aoceed 5 units in the

directitn of the mosit2.--Te x-axis, 2- m:_ts in the direction of

the negat-ive y-ax-is, and 4 unitz in the direction of the pos-

itive m--axis. The pnint Dcated is :he required point.

4 2
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Figure 8-1c

Plot the following points:

Exercises 8-1.

1. (0, -1, 3) 6. (0,2,0)

2. (-2, 0, 4) 7. (1, -1, 0)

3. (3, 2, ).) 8. (2, -3, 4)

4. (2, -1, -3) 9. (3, 2, -4)

5. (-4, -2, -7) 10. (2, 0, -3)

11. Where do all points lie for which x = 0; for which x = 2;

for which x = -3?

12. Where do all points lie for which y = 0; for which y = 3?

13. Where do all the points lie for which z = 2; for which

z = -2?

*14. Where do all points lie for.which x + y = 4?

8-2. Distance Formula in Three Dimensions.

Development of a formula for the distance between two

points in space is closely related to the problem of finding the

1.1..ngth of the diagonal of a rectangular parallelepiped. Let us

review the latter problem first. By virtue of the Pythagorean

relation we have

421
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d2(A,C) = d2(A,D) + d2(D,C)

d2(A,B) = d2(A,C) + d2(C,B)

Substituting for d2(A,C) we have

d2(A,B) = d2(A,D) + d2(D,C) + d2(C,B)

Figure 8-2a

(8-2a) d(A,B) = V42(A,D) + d2(D,C) + d2(C,B)

Thus, the diagonal of a rectangular parallelepiped equals the

square root of the sum of the squares of its dimensions.

Consider now the distance

between the points A(1,2,4) and

B(3,5,6). These points are 7;1

opposite vertices of a
7m

parallelepiped as indicated
DI

in Figure 8-2b. The distance
Lbetween them, AB, may be

obtained by applying formula

Figure 8-2b

(8-2a) d(A,B) = Id2(A,D) + d2(D,C) + d2(C,B).

From Fi?...re 8-2b we see that

d(A,D) =

d(D,C) =

d(C,B) =

d(A,B) =

3 - 1 = 2

5 - 2 = 3

6 - k = 2

%/14 + 9 + = V.
Using the same method, we now derive a formula for the

distance between any two points in space, P1(x1,y1,z1) and

P2(x2,3"2,z2).
From (8-2a) we have

d(P1,P2) ="42(P1,Q) + d2(Q,R) + d2(R
'
P
2

) (See Fig.8-2c.)

[sec. .8-2]
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But d(P1,Q) = 1x2 x11

d(Q,R) = 1Y2 Yll

d(R,P2) = 1z2 - z11

413

%..(8-2b) d(P1,P2) = v/(x2 - x1)2 + (y2 - y1)2
2

z1)2

This is the formula for the distance between two points in three

dimensions. The formula is correct no matter where P
1
and P2

lie in space.

X

Figure 8-2c

Exercises 8-2.

Find the distance between the following pairs of points:

7, 1), (2, 3, 1)

-1, -5), (7, 3, 7)

4, 5), (-6, 2, 8)

0, 7), (-1, 3, 7)
-1, 3), (12, 7, -1)

2, -7), (8, 18, 14)

1. (6,

2. (4,

3. (0,

4. (3,

5. (4,

6. (-4,

[sec. 8-21
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8.

9.

10.

(c,

(-3,

(3,

(10

1,

4,

2,

0), (-1, -1, -2)

-8), (-8, -6, -6)

5), (8, 4, 1)

3), (0, 0, 0)

kn Equation of a Plane.

Ftmm plane geometry we know that the set of points in a

plane, at equal distances from two given points, is a line.

Simi__-1y, in space, the set of points at equal distances from
two en points is a plane. We use this property to derive

the --eation of a plane: -Since it was proved in geometry that

this Ttmperty characterizes a plane, the equation we derive will

ret,ssent a plane with all the properties of the plane studied

Examtle 1: Determine the equation of the plane whose points

a=e equidistant from .A(1, 2, 3) and 13(2, 5, 4).

Solution: If P(x, y, z) is any point in the plane, we
nurti- that

d(P,A) = d(P,B).

Tis-12=z Formula (8-2b), we haVe

1)2 (y 2)2 3)2

= 2)2 + (Y 5)2 + (z 10?
Fro= Phis we have

hx
2 - 2x + 1 + y2 - qy + 4 + z2 - oz + 9

= x2 - 4x + 4 + y2 - lOy + 25 + z2 - 8z + 16

whLch reduces to

(E-3a) 2x + 6y + 2z = 31.

Thus the equation of this plane is of first degree in 3 variables.

Using this same method we prove that the equation of every

plar.e is an equation of first degree in 3 variables. Instead of

[sec. 8-3]
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two special points, A and B,

we use P1(x1, yl, z1) and

P2(x2, y2, z2) to represent

au two distinct points in

space. Then we have

IA

Figure 8-3a

=

..\/(x1-x)2 (Y1-Y)2 (z1-z)2 = Vlx2-x)2 (Y2-Y)2 (z2-z)2

2 2 2 2xl - 2x1x + x yl - 2y1y + y2 + z, - 2z1z + z 2

2 2 2 2= x2 - 2x2x + x + y2 - 2y2y + y2 + z2 - 2z2z + z2

(8-3h) 2(x2 - xl)x + 2(y2 - yl)y + 2(z2 z1)z

((4 - xT) + - + - 4)) = 0.

Since d(P
1'

P) and d(P
2,

P) are positive numbers, this argument can
be reversed. Therefore we know that a point P(x, y, z) whose

coordinates satisfy equation (8-3b) is equidistant from P1 and

P
2

Equation (8-3b) is an equation of first degree provided

the coefficients of x, y, and z are not all zero. Let us

denote these coefficients by

A = 2(x2 - x1), B = 2(y2 - y1), C = 2(z2 - z1).

These will all be zero only if x2 = xl, y2 = yl, and

z2 = zl, i.e., points P1 and P2 coincide. But P1 and P2 are

(sec. 8-3)
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distinct. Therefore we have proved that every plane in three

dimensions can be represented by an equation of the fo.rm

Ax + By + Cz + D = 0

where

2 T 4))D -((x
2 - x ) + +

and A, B, C are real constants, not all zero. The converse

theorem can also be proved, i.e., that every equation of this

form represents a plane. The proof of this converse is given
below.

Proof: Let P(x, y, z) be any point on the plane that is
the set of points equidistant from 0(0, 0, 0) and Q(kA, kB, kC)
where

-2Dk
A
2

+ B
2
+ C

2

Then PO = PQ

x2 + y2 + z2 = (x - kA)2 + (y - kB)2 + (z - kC)2

0 -2kAx + k2A2 - 2kBy + k2B2 - 2kCz + k2C2

2k(Ax + By + Cz) k2( A2 B2 c2)

k .Ax + By + Cz kA
2
+ B2 + C2) .

The equation becomes

-2DPut k -
A
2
+ B + C

2

Ax + By + Cz + D = 0

This argument is reversible. Thls means that any point P

whose coordinates satisfy Ax + By + Cz + D = 0 is equidistant

from the two points 0 and Q. Hence Ax + By + Cz + D = 0 is,

by definition, the equation of a plane.

Note: If D = 0, it follows that k = O. The two points

coincide, and no plane is determined. The case where D = 0 is

treated in Problem 3, Exercise 8-3.

4 2 ()
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Exercises 8-3.

1. Use the method of Example 1 to find the equation of the

plane whose points are equidistant from each of the following

pairs of points:

(a) (-1, 3, 2), (4, -2, -2);

(b) (-1, -3, -2), (-2, 0, 4);

1, -2);

2, 3);

4, 3);

-2, 3).

2. In each of the following, find the equation of the plane that

is the set of points equidistant from the given points,

and sketch the graph.

(a) (4, 0, 0), (-2, 0, 0)

(b) (0, 3, 0), .(0, -1, 0)

(c) (0, 0, 0), (4, 2, 0)

(d) (0, 0, 0), (0, 5, 3)

*3 Prove that the equation

ax + by + cz = 0

where not all the constants a, b, c are zero, represents

the set of points equidistant from the symmetric points

(c) (5, -1, 2), (-5,

(d) (2, 4, -5), (0,

(e) (-2, 0, 6), (1,

(0 (-1, 2, -3), (1,

(a, b, c) and (-a, -b, -c).

The Solution Set of an Equation in Three Variab7.es.

We shall examine several first degree equations in three

variables, both graphic'ally and algebraically, to gain familiarity

with this representation of a plane.

Definition 8-4a. The solution set of an equation in three

variables is the set of real number triples (x, 21, z) that

satisfy the equation.

427
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Example 1: Find some of the elements of the solution set
of the equation

(8-4a) x + 2y + z = 5.

Solution: We may tabulate elements of the solution set of
this equation by assigning values to x and y, and computing
the corresponding values of z. In this way we may find as many

number triples of the solution set as we wish.

In the first lines of the tabulation given below, we give
the assigned values of x and y; in the third line we give the
computed value of z.

x 0 1 -1 1 2 0

y 0 1 1 -1 0 2

z 5 2 4 6 3 1

x arbitrary

y arbitrary

z = 5 - x 2Y

Example 2: By considering sete of points in the solution
set of

x + y = 4,

sketch the graph of the equation.

Solution: Viewed as an equation in three variables, this

equation has the form

(8-4b) x + y + 0z = 4.

Since the coefficient of z in this equation is zero, we are no

longer free to assign values to x and y at random. For ex-
ample, if x = 1, we must assign the value 3 to y. On the
other hand, when x = 1 and y = 3, we are free to assign any
value whatsoever to z. We know from the definition of the

coordinates of a point P(x, y, z) (see Figure 8-1b) that all
the points for which x = 1 and y = 3 lie on the perpendicular
to the XY plane through the point (1, 3, 0). Since all these
points (1, 3, z) correspond to number triples in the solution
set of equation (8-4b) no matter what value z has, we see that

this perpendicular line lies in the plane x + y + 0.z = 4

(sec. 8-4)
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(Figure 8-4a). Similarly all

points (2, 2, z), (3, 1, z),

(4, 0, z) lie in the plane.

Continuing in this fashion, we

see that the plane contains all

the perpendiculars to the

XY-plane that intersect the

XY-plane in the line x + y = 4.

Since all these lines lie X (4AO)

in a plane perpendicular

to the XY-plane, we see

that the equation Figure 8-4a

x + y = 4 represents a plane p. .andicular to the XY-plane. Its

line of intersection with the XY-plane has the equation

x + y = 4 (z = 0).

Example 3: By considering subsets of the solution set of

the equation x = 3, sketch a graph of the equation.

Solution: Viewed as an equation in three variables, this

equation has the form

419

x + 0.y + 0.z = 3.

Here x must be assigned the value 3, but y and z may

assume any values. We see then that this plane is the set of

points at the directed distance, +3, from the YZ-plane. It is

therefore parallel to the YZ-plane.

Figure 8-4b

[sec, 8-4]
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Exercises 8-4.

1. Sketch the graphs of each of the equations
(a) x - 2y = 5 (d) y 2z = 0
(b) x 2y = 0 (e) 2x - z = 0
(c) y + 2z = 8

2. Four points on the graph of the plane

2x + y = 6

are seen to be A(3, 0, 0), B(1, 4, 0), C(2, 2, 0), D(0,6,0).
Give three other points on the graph with the same x and
y values as A; as B; as C; as D. Sketch the graph.

3. Sketch the graph of z = -2; of x = 5; of y = 3.

8-5. The 0raph of a First Degree Equation Jr Three Variables.

If either one 'or two of the coefficies in the equation

Ax + By + Cz + D =

are zero, Section 8-4 gives us a method of graphing the equation.
If all the coefficients are different from zero, we proceed in
a similar fashion.

Consider, for example, the graph of the equation

(8-5a) x + 2y + z = 5.

Recall from Chapter 6 that an easy way to plot the graph of a
linear equation is to find the intercepts of the line. Similarly
in three dimensions the graph of a plane is easy to sketch if we'
begin by finding the intersection of the plane with the coordi-
nate planes. These intersections with the coordinate planes are
called traces. If we want the intersection of plane (8-5a) with
the XY-plane we must put z = 0 in the equation

x + 2y + t = 5.

The resulting equation is

x + 2Y = 5.

[sec. 8-5]
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This is the equation of a

straight line in the XY-plane,

and this straight line is

Called the trace of

x + 2y + z = 5

in the XY-plane.

Similarly the XZ-trace is

x + z = 5,

and the YZ-trace is

2y + z = 5.

The graph of these linaa in

the coordinzze planes makes

the position of the plane

x + 2y + = 5

clear.

Figure 8-5

421

Exercises 8-5.

1. Sketch the graph of each of the following equations.

(a) x - 2y + z = 5

(b) x + z = 5

(c) x - 2y - z = 5

(d) x + 2y + z = 5

(e) 4x - 2y + z = 0

(f) 5x + 4y = 20

(g) 3x - 2y + -5s- z = 0

(h) - + + = 1

(1) x - 2y - z = 0

(j) 2 x - 3 -Is'-y= 0

2. On the same set of axes sketch the graphs of the following

pairs of equations, indicating the graph of the intersection

set.

(a) x + 2y + z = 5 (b) x 2y + z = 5

x = 1 z = 2

[sec. 8-5]
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(c) 5x + 4y = 20

3x - 4y = 0

(d) 5X + 4y = 20

-9x + 6y - 5z = 0

(e) x - 2y + z = 5

2x - 4y + 2z = 10

8-6. The Solution Set of a System of First Degree Equations in
Three Variables. Definitions.

Definition 8-6a. A system of first degree equations in three-
variables consists of two or more eowations in three variables'.

In this ha'ok we will consider only systems that involve either
two or three equations.

Definition 8-6b; The solution set of a system, of first

degree equations in three variables is the set of all number

triples that satisfy all equations of the system. (It s the
intersection of the solution sets of the equations of thn
system.)

Definition 8-6c. Two systems are equivalent if their solu-
tion sets are the same.

*8-7. The Solution Set of a SyLtem of Two First Degree
Equations in Three Variables. Graphic Approach.
(See Appendix.)

8-8. Algebraic Representation of the Line of Intersection of
Two Intersecting Planesc

In this section we study the intersection of a pair of
planes

(8-8a) x + 2y z - 5 0

(8-8b) x + y + z - 2 = O.

Our procedure is to obtain the equations of three planes
which pass through the line of intersection of the given planes

[sec. 8-8]
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and Waich /:\re particularly useful representatidns of that line.

We construit three different linear combinations of the

expressions
(x + 2y - z 5)

and (x + y + z - 2),

and find three components of equivalent systems each of which

has the coefficient of at least one variable equal to zero.

A component of an equivalent system can be written

a(x + 2y - z - 5) + b(x + y +,z 2) = 0.

(1) We eliminate x by choosing a = 1, b = -1.

(x + 2y z - 5) - (x + v + z - 2) = 0

(8-8c) y - 2z - 3 = 0

(2) We eliminate y by choosing a = 1, b = -2.

(x + 2y - z - 5) - 2(x + y + z - 2) = 0

(8-8d) -x - 3z - 1 = 0

(3) We eliminate z by choosing a = 1, b = 1.

(x + 2y - z - 5) + (x + y + z - 2) = 0

(8-8e) 2x + 3y - 7 = 0

We now have three distinct new equations (8-8c), (8-8d),

(8-8e), any two of which may be chosen to represent the line of

intersection of the given planes.

If we represent this line by the planes

(8- 8c)

and

(8-8d)

y - 2z - 3 = 0

-x 3z - 1 = 0

we can express x and y in terms of z:

(8-80 rx = -3z - 1,

Ly = 2z + 3.

This is an especially convenient form for determining

particular points on the line of intersection of the two given

planes. It enables us easily to write down as many number triples

[sec. 8-8]
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in the solution set as we wish. We that we may assign values
to z at random, and obtain correspon=ing values of x and y.
Thus the solution set contains infinite.7..y many number triples.
This is what we should have expected, :Lnee the intersection of
these two planes is a line.

Example 1. Write 4 members of solution set of the above
system (1)..

Solution: Using the first representation given above, (8-80,
assign arbitrary values to z, and compute the corresponding
values of x and y.

x -1 -4 2 -73517
0 1 -1 2.

{x = -3z -.1

y = 2z + 3

z arbitrary

If we use (E.-8d) anc. 6-Se), we can express y and z in
ter:,Is of x;

(8-8g)

1
y = - 7.(2x - 7),

1z = nx + 1).

Using this 2ep:,7esentation af the line of intersection of the two
given planes, check the number of triples obtained above by
assigning the tabulated values of x, and computing the other
values.

x -1 -4 -7

Y

{

x arbitrary
1y = - 7(2x - 7)

z 1,z = - nx + 1)
Using (8-8c) and (8-8e) we can express x and z in terms of y:

(8-8h)
x = r(3y 7),

z = -;.*(y - 3).

Using this representation, check again the number triples obtained
from (8-8f) by assigning the tabulated values of y, and computing
the corresponding values of x and z.

[sec. 8-8]
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1/
{x = - 7k3y - 7)

y arbitrary

z = ;(y - 3)

425

Example 2: Find four number triples in the solution set of

-the system
2x - y + 2z = 6,

z = 2.

How can we describe the whole solution set algebraically?

'Solution: In this example every number triple in the solution

_set has z = 2. By substituting this value in the first equation

we have
2x - y = 2

y = 2x - 2

1/or x = -gky + 2).

Thus four number triples in the solution set can be written by

assigning arbitrary values to x, and computing the values of

x

Y:
_

1 -1 2

7 -2 0 -4 2

2 2 {

x arbitrary

y = 2x - 2

z z = 2

or by assigning arbitrary values to y, and computing the values

of x:

1
= .7(y. + 2)

y arbitrary

z z = 2

The complete description of the solution set is given either

y -2 0 2

{

1x arbitrary x = .72(y + 2)

as y = 2x - 2 or as y arbitrary

z = 2 z = 2.

In this case, z may not be chosen arbitrarily.

435
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426 Exercises 8-8.

In each of the problems given below;if the planes intersect in

a line,express two of the variables of the solution set in termS

of the third variable, and tabulate a subset of the solution set

consisting of four number triples.

1. x - 3y - z = 11 6. 2x + 6z - 18y 6

x - 5y + z = 1

2. x + 2y - z = 8

x + y + z = 0

3. x - z + y = 5

x + 2y = -z

4. 2x + 4y - 7 = 5z

4x 4- 8y - 14 = 5z

5. -2x + y + 3z = 0

-4x ± 2y + 6z = 0

x - 3z - y = -3

7. 3x - 4y + 2z = 6

6x - 8y + 4z 14

8. -5x + 4y + 8z . 0

-3x + 5y 15z = 0

9. 6z - 7y + 4x = 13

5x + 6y - z = 7

10. -10x + 4y - 5z = 20
4

2x - 5 y + z = 4

8-9. The Solution Set of a System of Three First Degree Equations

in Three Variables.

We now consider the solution set of three first degree equa-
tions in three variables. A simple example will introduce us to

the problem.

Figure 8-9a
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2x + 3y + z = 6,

4x + y + z = 4,

z = 2.

Figure 8-9a suggests the graphic solution in which A is the

single point of intersection of the three planes. Algebraically,

we may use the value of z givtn by the third equation; substi-

tute it in the first two equations, and then solve for x and

y:
2x + 3y = 4,

4x + y . 2;

1 6x = ; y = ; z = 2.

1 6The point of intersection of the three planes is (T 1-, 2).

Usually the graphic representation of the three planes

represented by three first degree equations in three variables

will be too complicated to draw. But it is helpful to keep in

mind the geometric meaning of the equations when we consider the

types of solutidn sets that we may expect. These correspond to

the types of intersections that are possible for three planes in

space. The method'of solution will be the same in all cases.

It is illustrated by the following examples. In each case the

problem is to find the solution set.

Example 1: x + 2y - 3z = 9,

ax - y + 2z = -8,

-x + 3y - 4z = 15.

Step 1: Eliminate x frgm the second and third equations by

adding appropriate multiples of the first equation. We now have

the equivalent system
x + 2y - 3z = 9,

0 - 5y + 8z = -26,

0 + 5y - 7z = 24.

Step 2: Eliminate y from the third equation by adding an

appropriate multiple of the second equation obtaining the
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equivalent system
x + 2y - 3z = 9,

O - 5y + 8z = -26

O + 0 + z = -2.

Step "3: Substitute z = -2 in the second equation obtaining

-5y = -26 + 16

y = 2.

Step- : Substitute z = -2, and y = 2 in the first equation.

x + 4 + 6 = 9

x = -1.

Step 5: Check the solution.

-1 + 4 + 6 9,

-2 - 2 - 4 = -8,

1 + 6 + 8 = 15. ,

We see that the solution is the number triple (-10 2, -2). The

planes intersect in a point. Figure 8-9b, page 433, shows three

planes intersecting in a point. (Case 1.)

Example 2: 2x - 3y + z - 3 = 0,

x + 5y - z - 3 = 0,

5x + 12y - 2z - 12 = 0.

To simplify the arithmetic, we interchange the first and

second equations, and proceed with the steps described in

Example 1.

Step, 1: Eliminate x from two equations, obtaining the equi-

valent system,
x + 5y - z - 3 = 0,

O - 13y + 3z + 3 = 0,

O - 13y + 3z + a = 0.

Stem 2: Eliminate y from the third equation.

x + 5y - z - 3 = 00

O - 13y + 3z + 3 = 0,

O + 0 + 0 + 0 = 0.

In this case, the third equation contributes no new information.

If Step 2 gives the identity, 0 = 0, one of the given equations

is a linear combination of the other two. Here the left member
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can be obtained as

(2x - 3y + z - 3) + 3(x + 5y - z - 3).

Therefore, we know, by an argument similar to that given in the

discussion of equivalent systems in Chapter 7, that the graph

of the third equation must pass through the line of intersection
of the planes

2x - 3y + z - 3 = 0

x + 5y - z - 3 = O.

(This relationship will be studied further in Section 8-10.)

'Thus the complete solution of the given system is an infinite
set of triples representing the points on the line of intersec-

tion of the given planes. We may use the method in Section 8-8

if we wish to determine the numbers of the solution set.
Eliminating x from the first two equations we have

(2x - 3y + z - 3) - 2(x + 5y z - 3) = 0

-13y + 3z + 3 = 0.

Eliminating z from the first two equations we have

(2x - 3y + z - 3) + (x + 5y - z - 3) = 0

3x + 2y - 6 = 0.

Solving for x and z in terms of y:

x = (-2y + 6),

z = 7(13y - 3),

y is arbitrary.

Figure 8-9b shows three planes intersecting in a straight line.

(Case 2a.)

Example 3:

Here Step 1 yields

x + 5y - z - 3 = 0,

2x - 3y + z - 3 = 0,

2x + lOy - 2z - 6 = 0.
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x + 5y - z - 3 = 0,

O - 13y + 3z + 3 = 0,

O + 0 + 0 + 0 = 0.

We see that the left-hand member of the third equation is twice
the left-hand member of the first equation.

2x + lOy - 2z - 6 = 2(x + 5y z - 3).
Therefore the first and third planes coincide. Again, the
solution is completely described by the first two equations. It
is the same line we found in Example 2. (See Case 2b, Figure
8-9b.)

Example 4: x + 2y + z = 4,

x - 2y + z = 0,

x + z = 4.

For simplicity, move the third equation into the first row

x + z = 4,

x + 2y + z = 4,

x - 2y + z = 0.

Stt'b 1: Eliminate x in the second and third equations.

x + 0 + z = 4,

0 + 2y + 0 = 0,

0 - 2y + 0 = -4.

Step 2: Eliminate y from the new third equation.

x + 0 + z = 4,

O + 2y + 0 = 0,

O + 0 + 0 = -4.

Since there are no triples for which 0 = -4 there are no solutions.
In this case one plane is parallel to the intersection of the
other two. (See Case 4a, Figure 8-9b.)

Example 5: x + y + 2z = 1,

x + y + 2z = 2,

x + y + 2z = 3.

By subtracting the first equation from the other two we find
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x + y + 2z = 1,

O 1- 0 + 0 = 1,

O + 0 +.0 - 2.

Again, we have no solution. The three planes are parallel.
(See Case 4d, Figure 8-9b.)

Example 6: x - y 2z = 1,

2x-_- 2y - 4z 2,

-x + y + 2z = -1.

Step 1 gives:the equivalent system

x y - 2z = 1,

O + 0 + 0 = 0,

O + 0 + 0 = 0.

In this case, the three equations represent the same plane.
(See Case 3, Figure 8-9b.)

Example 7:

111These equations are linear in the variables 7, 3, .

We treat these reciprocals as the unknowns.

Retain the first equation, changing the order of the var-
iables so that the computation that follows can be carried on
more conveniently.

1 2 3

Step 1: Eliminate from the second and third equations. We
have the equivalent system

1 2 3
+ 7 + 3,

7 80 + + 9,y x

1 10 + = 5 or

[sec. 8-9]

441



432

1Step 2: Eliminate from the third equation

1 2 3
- + + = 3,

0 + + = 9,

10 + 0 + 7 = 2.

Step, 3: Substitute = 2 in the second equation.

+ 16 = 9

1

y -1.

1 1
.Step 4: Substitute -3F = 2, = -1 in the first equation, obtaining

1
- 2 + 6 = 3

z

.. z = 1.
z

Step 5: Check the solution.

32 + 2(-1) - 1 = 3,

2.2 + 3(-1) + 2 = 3,

4.2 + (-1) 3 = 4.

smaa. The method described in this section is called

triangulation because, in the case of a unique solution, the non-

zero coefficients (represented by Step 2 in Example 1) lie in

the form of a triangle:

0 0 1

This method provides a systematic procedure that enables

us to recognize when the solution set is empty, when it contains

a single triple, and when it contains infinitely many triples

corresponding either to a line of points or to a plane of points.

The method can be summarized as follows:

Step 1. After choosing a convenient first equation, eliminate one
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variable (say x) from the other two equations by adding

appropriate multiples of the (chosen) first equation.

Step 2. In a similar way, work with the second and third equa-

tions which now contain only y and z. Multiplying

by suitable numbers, eliminate a second variable
(say y) from the third equation.

Steps 3 The third equation now gives a value of one variable
and 4. (say z). Substitute this value in the second equation

to obtain y. Substitute the values of y and z in

the first equation to obtain x.

Step, 5. Check the values of x, y, z found in Steps 1 - 4 in the
given equations.

In Figure 8-9b we give sketches that illustrate the possible

types of intersection of three planes in space.

1. The three planes intorcect

in a point. The solution

set is a single number

triple.

2. The three planes intersect

in a line. The solution

set is the infinite set of

number triples correspond-

ing to the points on the

line.

(a) The three planes have

a line in common.

Intersection

11111A

"1:7111ne/o)
Intersectio

Figure 8-9b
[sec. 8-9]
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2. (b) Two planes coincide

and intersect the

third plane in a

line. The solution

set is the same as

.tn. 2(a).

3. All three planes coincide.

The solution set is the

infinite set of number

triples corresponding to

the points in the plane.

4. The three planes do not have

a common intersection. The

solution set is empty. The

system is inconsistent.

(a) Two planes intersect;

the third is parallel

to their intersection.
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4. (b) Two planes are parallel.

The third plane inter-

sects these two in

parallel lines.

(c) Two planes coincide

and are parajlel to

the th!,rd plane.

(d) The three planes are

parallel.
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Exercises 8-9.

In each of the following problems, determine whether the solution

set is empty or whether its graph is a point, a line, or a plane.

If the intersection is a point, give its coordinates.

1. x + z = 8,

2.

3.

4x - y + 2z = 11.

4. x + y 5z = 9,

2x + 3y - 12z = 22,

3x 5y + z = -5.

5. x - 2y + 3z = 6,

2x + y - 2z = -1,

3x - 3y - z = 5.

6. 2x + 4y + z = 0,

x - y f- 3z = 8,

3x + y - 2z = -2.

7. x - 2y + z = 4,

-3x + 6y - 3z = -12,

2x - 4y + 2z = 8.

8. 2x + 3y + 7z - 13 = 0,

3x + 2y - 5z + 22 = 0,

5x f- 7y_ - 3z + 28 = 0.

9.

3x 2y - 4z = 2,

7x f- y - 3z = 5.

x + y + 2z = 17,

x + 2y + z = 16.

x + 2y - z = 5,

x + y + 2z = 11,

x + y + 3z = 14 .

x + 2y - z = -1,

2x + 2y - 3z = -1,

10. 20x - 20y - 30z = 0,

15x - lOy - 25z = 0,

10x - 20y - 10z = 0.

10 3 2
11. + + = 2,

10 1 3

± 7 7 °
4 18 3

7-7+7= -1*
, 5 12 10 ,
lc. + + =

x y z

3 8 2
7 7 7

4 8
7 7 z

13. x + y + z = 2,

2x + 2y + 2z = 5,

x - y + z = 7.

14. 3x - y - 2z - 2 = 0,

2y - z + = 0,

3x - 5y - 3 = 0.

3 1

x y

3

3 1

16. x + y + z = 3,

3x + 3y + 3z = 9,

x + y z = 6.
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1 2 1 y + 4z = 3,17. + - 5, 20. 2xx 7
12 1

3x + 2y - 2z = -1,
3c- - r 1, X - 4y + 10z = 7.

21. 2x + y + z - 3 = 0,

x + 4y + 3z - 10 = 0,
18. x + 2y z = 3,

x - 3y - 2z + 7 = 0.
2x - y + 3z = 7,

22. x - 2y - 3z = 2,
3x + y + 4z = 10.

x 4y - 13z = 14,
19. 3x + 5y + 2z = 0,

3x - 5y - 4z = 0.
12x - 15y + 4z = 12,

6x - 25y - 8z = 8.

*23. We consider buying three kinds of food. Food I has one

unit of vitamin A, three units of vitamin B, and four units
of vitamin C. Food II has two, three and five units,

respectively. Food III has three units each of viltamin A

and vitamin C, none of vitamin B. We need to have 11 units

of vitamin A, 9 of vitamin B, and 20 of vitamin C.

(a) Have we enough information to determine uniquely the

amounts of each of the foods we must get?

(b) Suppose Food I costs 60 cents and the others 10 cents

per unit. Is there a solution for this problem if exactly

one dollar is spent for these foods?
*24. The solution set of the following system contains only one

triple. Determine which of the equations may be omitted

without altering the solution set.

437

{x

+ y = 5

-x + 3z = 2

x + 2y + z = 1

y + z = -4

*8-10. Equivalent Systems of Equations in Three Variables.

(See Appendix.)

(sec. 8-10]

447



438

8-11. Niscellaneous Exercises.

1. A number may be written in the form 100h + 10t + u, where
h, t, and u represent respectively the hundreds, tens and
units digits. If the sum of the digits of a certain number
is 13, the sum of the units and tens digits is 10, and the

number is increased by 99 if the digits are reversed, find
thr number.

2
. Find the relation that must hold between the numbers a,

b, c in order that the system

{3x + 4y + 5z = a,

4x + 5y + 6z . b,

5x + 6y + 7z . c,

have a solution.

3. Find a three digit number such that the difference between
each succeeding pair of digits is 1 and the sum of the
digits is 15.

4. A man has three sums of money invested, one at 3 56, one at
4 /b, and one at 4 °A. His total annual income from the

three investments is $346. The first of these yields $44

per year more than the other two combined. If all the money
1were invested at 3 o
7 /b he would receive $4 per year more

than he does now. How much is invested at each rate?
5. For what value of a will the three planes represented by

the equations given below have a line of intersection?

Give the coordinates of three points on the line.

x + y + z = 6

y - z = 1

2x 3y + az = 7

Three trucks were hauling concrete. The first day oncl

truck hauled 4 loads, the second hauled 3 loads, and
the third hauled 5 loads. The second day the trucks

hauled 5, 4, and 4 loads respectively. The third day

the same trucks hauled 3, 5, and 3 loads respectirely. If

the trucks hauled 78 cu. yds. the first day, 81 cu. yds

6
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the second day, and 69 cu. yds. the third day, find the
capacity of each truck, assuming they were fully loaded on
each trip.

7. Frank Nixon has a metal savings bank which registers the
total amount deposited. Only pennies, nickels and dimes
can be deposited. Frank knows that he has deposited one
coin on .each of 40 days. The bank shows a total deposit
of $1.80. If Frank.deposited as ManY -Pennies as both
dimes and nickels, find the number of each.

8. A printing shop has three presses. One press. operated
8 hours on Monday, 4 hours on Tuesday, and 2 hours on
Wednesday. A second press operated 4 hours on Monday,
1 hour on Tuesday, and 5 hours on Wednesday. The third
press operated 7 hours on Monday and 7 hours on Tuesday.
Monday's output from the three presses was 1270 units,

Tuesday's was 730 units, and Wednesday's was 550 units.

What was the average output per hour for each press?

2if A, B, C .can do a piece of work in.2 7 days, A and
4B can do the work in 4 days, and C does twice as much

work as. A, at this rate, find the number of days in which
each can do the work alone.

10. Three planes, A, B, 0, working together can spray a certain
cotton field in 2 hours. After they had worked together for
one hour, plane C developed engine trouble, and planes
A and B completed the job in one hour and 20 minutes
more. The next day it was found necessary to respray the
part sprayed by plane C. This was done by planes A and
B in twenty minutes. How long would it take each plane to
spray the entire field?

11. R, S, and T are the points of tangency of a triangle ABC

circumscribed about a circle. If the sides of the triangle
AB, BC, and AC are respectively 10, 8, and 7 units long,

449
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find the lengths of the

segments AS, SB, BT, TC,

CR and AR.

Figure 8-11a
12. If a parabola defined by the equation y = ax2 + bx + c

passes through the points (-1,1), (3,1), (40-4), find the

values of the constants a, b and c.

13. If a parabola defined by y = ax 2 + bx + c passes through

the points (1,4), (-3,20), (-100), find the values of the

constants a, b and c.

14. A local school gym entrance meter received half dollars from

adults, quarters from high school pupils, and dimes from

elementary school pupils. An attendant opened the box when

the meter showed that 320 admissions had been deposited,

giving a total of $76. He found there were twice as many

dimes as quarters. Find the number of adults, high school

pupils, and elementarir school pupils who had paid admission.

15. The stopping distance of a car after the brakes are applied

is given by the equation

where

s = -1g* kt 2 + At + B

s = number of feet the car travels after the brakes are

applied,

t = number of seconds the car is in motion after the

brakes are applied.
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If the following pairs of values were found for s and t,

experimentally, find the values of the constants k, A, and
B.

is = 46 is = 84 is = 114
7

lt = 1 lt 2 It = 3.
16. Averages ror a marking period in a certain mathematics class

are based on scores made on a one-hour test, a short quiz,
and a final examination. The scores made by Frank, Joyce,

and Eunice, as well as their final averages, are shown in
the following table.

Test (T) Quiz (Q) Examination (E) Final (A)
Frank 78. 78 86 82
Joyce 78 98 74 80
Eunice 84 64 86 81

(a) Find values of w
12

w
2'

w
3 that the instrUctor may

have used to compute A if he used the formula

w1T w2Q w3E (wl w2 w3)A
to compute the final average, A.

,(b) Can you find a triple of values for (wl, w2, w3)
whose sum is 1.

17. A firm sent a messenger to the post office to buy $10
worth of 74 air mail stamps, 44 stamps and 14 stamps. The
directions given were to buy as many .air mail and 44 stamps
as possible, getting twice as many air mail stamps as 44
stampsuand buying one cent stamps with the change that
remained after the air mail and four cent stamps had been
purchased. How many of each kind of stamps will the
messenger obtain?

18. After playing 18 hales of golf, a player reports his score
as a certain number. His actual score is 1 stroke per hole
greater than the number which he reports. If the number
which he gave as his score and his actual score are aver-

1aged the resulting number is gfeater than par. A score
of 2 over par is less than the number he Teports by 1.
What is par for the course, and what number does he report
as his score?
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*19. Find an equation for the plane containing the points

(-1,0,0), (1,-1,0), (-1,3,2).

20. [NOTE: This problem should interest students who have

studied chemistry.]

The problem of balancing chemical equations can be reduced

to an easy algebraic process. We-illustrate by several

simple examples:

(a) Balance the equation for the following chemical

reaction:

( )FeS + ( )02---> ( )Fe0 + ( )S02

Insert the letters w, x, y, and z in the blanks and write

down the equations resulting by equating the amounts of

Fe in FeS and Fe0

(w) FeS + (x) 02 -->(y) Fe0 + (z) SO2

w = y w(Fe) = y(Fe)

Repeat this pro.cess for the sulfur and oxygen.

w(S) = z(S) w = z

x(2 0) = y(0) + z(2 0) ; 2x = y + 2z

w = y

w = z

= y + 2z

Solve for x, y, and z in terms of w

y = w

z = w

3x = w

Choose w so that it is the smallest positive integer for

which x, y, and z are also integers.

w = 2;

y = 2;

x = 3

z = 2

2 FeS + 3 0
2

Fe0 + 2 SO
2
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(b) Balance the equation for the following chemical

reaction:

( )NE3 + ( )o2 --* ( )1-120 + ( )NO2

(a)NH3 + (b)02--*(c)H20 + (d)NO2

Nitrogen: a = d

Hydrogen: 3a 2c

Oxygen: 2b c + 2d

d . a

3c = 7 a

b

:. a must be equal to 4

b = 7; c 6; d . 4

4 NH3 + 7 02--4. 6 H20 + 4 NO2

Balance the equations for the following chemical reactions.

(a) Ag + HNO3 ---*AgNO3 + NO + H20

(b) AuC13 + KI + KC1 + 1
2

(c) HNO3 + HI + 12 + H20

(d) Mn02 + HC1---a11iaC12 + C12 + H20

(e) Cr(OH)3 + NaOH + H202 ---*Na2Cro4 + 1120

4 5 3

(sec. 8-11)
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APPENDIX

"8-7. The Solution Set of a System of Two First Degree,

Equations in Three Variables. Graphic Approach.

In Section 8-3 we established the fact that every

equation
Ax + By + Cz + D = 0

(in which A, B, and C are real coefficients not all zero)

represents a plane. If we have two such first degree equations,

they represent two planes that have one of three positions with

respect to each other. The graphs of the two equations may

intersect in a line, they may be parallel, or they may be the

same plane. Our problem is to discuss the solution set of a

system of two such equations. The most important case is the

one in which the two planes. intersect in a line. However, we

will give an'example to illustrate each of the three cases.

Example 1: The two planes intersect in a line. Find the

solution set of the system

(8-7a) x 2y + z - 5 . 0,

x z - 3 = O.

Solution: We use a method aimilar to one studied in

Chapter 7. The complete solution set of the system (8-7a) may

be obtained by studying the equivalent system obtained by com-

bining either of the equations of (8-7a) with a combination

a(x 2y + z - 5) + 1)(x + z - 3) = 0

of the equations of the system. By choosing a = 1, b = -1, we

have
(x 4- 2y + z - 5) - (x + z - 3) = 0,

whLch reauces to

(8-7b) y -, 1.

Thus the ltno or intersection of the given planes, (8-7a) , is

also the lino of Ineeroection of the planes

-i 7' 4 7. =,

{

x y 5 X 3

or
y- 1.
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(1) The easiest system to graph is the last one.

Line of
lntersectio

y= 1

-x+z =3

Figure 8-7a

(See also 8-7b and 8-7c

(2) Let us sketch the graph of the pair

x + 2y + z = 50

y= 1.
The second plane is

parallel to the XZ-plane

and one unit to the right

of it. Thus its trace in

the XY-plane has a point

of intersection with the
\

XY-trace of the first

plane; and its trace in

the YZ-plane has a point

of intersection with the

YZ-trace of the first

plane. Both these points

have y = 1. They determine

the line of Intersection

of the two planes. This
X

line Is parallel to the

Line of
Intersectio

yr.1

4)+5

x+2y+z=5

(sec
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XZ-plane.

.(3) The third graph (Figure 8-7c) gives a sketch of the

given planes

x + 2y + z = 5,

x + z = 3.

This graph is the most

difficult to draw. The

second plane has as its

XY-trace the line

x = 3.

This intersects the

XY-trace of the first

plane, namely,

x + 2y = 5,

in the polnt x = 3,

y = 1, z = 0.

The traces of these two

planes in the YZ-plane

are
z = 3

2y + z = 5.

They intersect in the point

Figure 8-7c

x = 0, y = 1, z = 3.

We see that the line of intersection of these two planes is the

same line as the one we obtained in (1) and (2), and that it is

parallel to the XZ-plane.

E:xample 2. The two plapeR are parallel. Find the solution

set of the system

x + 2y + z = 5,

x + 2y + z = 10.
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Figure 8-7d

Solution: By inspection, we can see that there is no
number triple that satisfies both these equations. This is so
because, for each number 'Idriple, the sum (x + 2y + z) has a
definite value that cannot be both 5 and 10.

The planes have no point in common; they are parallel.
The system is inconsistent, since any triple (x, ys 0 that
satisfies one equation will not satisfy the other.

Example 3. The planea coincide. Find the solution set of
the system

447

x + 2y + z - 5 = 0,

3x + 6y + 3z - 15 =, 0.

Solution: By inspection, we can see that every number
triple in the solution set of the first equation is also in the
solution set of the second equation; and conversely. The given
planes coincide. The system is dependent; the left member of
the second equation is three times the left member of the first
equation.
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Exercises 8-7.

Determine which of the following patrs of equations represent

straight lines. Sketch the graph in each case. When the planes

intersect, indicate on the graph where the line of intersection

lies.

1. 2y + 5z = 10, 7. x + 4y = 4,

z = 1. z - x = 0.

2. x - 2y + 5z = 10, 8. 3x + y - z = 2,

x = 4. 2z = 6x + 2y - 4.

3. x - 2y + 5z = 10, 9. z - x = 0,

y = -2. 3y + z = 9.

4. x y = 5, 10. x = -2,

x = 7 + y. z = 4.

5. x + y 5, 11. x + 2y + z = 5,

x + y + z = 10. -x + 2y + z = 5.

6. 3y z = 9, 12. x + 2y z = 8,

x + 4y . 4. x - 2y = O.

*8-10. Equivalent Systems of Equations in Three Variables.

We give here a treatment of equivalent systems for first

degree equations in three variables that is similar to the

treatment developed for two equations in two variables in

Chapter 7.

Recall the procedure used in Chapter 3 to study systems of

first degree equations in two variables,.as well as the methods

used in Sections 8-7, 8-8, and 8-9 to study systems of first

degree equations in three variables. We have bcen using the

following operations which can always be performed upon the

equations of a system to yield an equivalent system:

1. Two equations of the system may be interchanged.

2. An equation of the system may be multiplied by any

number k / 0.

3. k times any equation'of the system may be added to any

other equation of the system.
[sec. 8-1.0]
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Consider now the set of all equations that we can obtain from

two given equations,

ix + 2y - z 5 = 0
(8-10a)

lx + y + z - 2 = 0,

by multiplying the first equation by a constant, a, and the

second equation by a constant, b (where a and b are not both

zero), and then adding the two equations. This procedure in-

volves operations (2) and (3). Thus, we can represent all such
equations by

(8-10b) a(x + 2y - z - 5) + b(x + y + z - 2) = 0

(a, b not both zero).

By definition, any solution of the system (8-10a) must re-

duce each of the expressions in the parentheses in (8-10b) to

zero. It must therefore be a solution of (8-10b).

For example, if we take a = 2, b = 1, we obtain

2(x + 2y - z - 5) + 1(x + y + z - 2) = 0

3x + 5y - z - 12 = 0.
(8-loc)

Since this equation is of irst degree, it represents a plane.

Since it is satisfied by all the triples in the solution set of

(8-10a), the plane passes through the line of intersection of

the planes in (8-10a). Hence the equation (8-10c) represents

a plane through the intersection of the planes in (8-10a).

Thus any two distinct planes formed by substituting values

of a and b In (8-10b) determine the same line of intersection

as the equations in (8-10a). The left members of the equations

obtained from (8-10b) are called linear cmbinations of the

left members of the equations in (8-10a). We have used this

converse proposition in Sections 8-7, 8-8, and 8-9.

Example 1. Find the equations of 2 distinct planes,through

the line ,' intersection of the planes of the system

y = 2

z = 5.

Sketch the graph.

[sec. 8-101
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Solution: The general equation of all planes through the

intersection of the given planes is equation

(8-10d) a(y - 2) + b(z - 5) = 0 (a,b not both zero)

1. If we take a = 1, b = 1,

we have

y - 2 + z - 5 0

y + z = 7.

The given plane y = 2 is

parallel to the XZ-plane and

2 units to the right of it.

The given plane z = 5 is

para:11e1 to the XY-plane and

5 units above it. These

planes intersect in a line

parallel to the X-axis. The

new plane y + z = 7 has the

following traces: X

In the XY-plane where z = 0,

zz5

Y = 7;
in the YZ-plane where x = 0, Figure 8-10a

y + z = 7;

in the XZ-plane where y = 0,

z = 7.

It is a plane parallel

to the X-axis. (See

Figure 8-10b.)

Note that the

YZ-trace, y + z = 7,

passes through the

point y = 2, z = 5

in the YZ-plane.

Figure 8-10b

fsec. 8-10]
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2. If we take a = 2, b = 2 in equation (8-10d) we have

2(y - 2) + 2(z - 5) = OP

2y + 2z 14 = 0.

This plane coincides with the plane we have just studied,

y + z = 7.

This is because the a and b we have chosen are both

twice the a and b chosen above.

3. If we take a = 2, b = 1, we have

2(y - 2) + (z - 5) = 0

2y + z - 9 = 0.

The traces of this plane are

9z = p y

x = 0 , 2y + z = 9;

y = 0 z = 9.

This is another plane parallel to the X-axis. Notice
again that the trace

2y + z = 9

passes through

the point

(0, 2, 5).

See Figure 8-10c.

Figure 8-10c

(sec. 8-10]
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1.

Exercises 8-10.

Find an equation for a plane through the line of intersec-

tion of the planes in each of the following systems. By

sketching the graph in each case, show that the plane

represented by the equation you have found passes through

the intersection of the given planes.

(a) x + 2 = 0, (b) y + 4 = 0,

z 4 = 0. z - 5 = °.
2. In each of the following problems, find an equation for the

plane containing the given point and passing through the

line of intersection of the given pair of planes.

(a) (1, 2, 1) ; x + 2y - 3z = 0,

x - y + z = 1.

(b) (3, -1, 0) ; 2y - 3z - 2 = 0,

x + y + z = 0.

(c) The origin ; x + z = 0,

2x - y + z - 8 = 0.

(d) (2, 2, 1) ; 2x - y + z - 3 ----.

x - 3y 4 . 0.

0,

*3. Prove that the planes represented by the equations

2x - y + 3z = 1

6x - 3y + 9z = 5

are parallel. Show that, for all values of a and b, both

different from zero,

a(2x - y + 3z - 1) + b(6x - 3y + 9z 5) = 0

represents a plane parallel to the given planes.

*4. Find an equation for the plane containing the point (1, -1, 1)

and passing through the line of intersection of the planes,

x + y - 3 = 0

z - 4 = 0.

Sketch the graph, showing the traces of the three planes,

and show that the plane represented by the equation you

have found passes through the intersection of the given

planes.

(sec. 8-10)
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