```
AUTHOF "Bller, Frank E.; Ard Others
TITLE GEcmetry, Teacher's Commentary, Part IIf Unit 16.
    Revised Edition.
INSIITUTION Stanford Univ., Calif. School Mathematics Study
Grcur.
National Science Foundation, Washington, D.C.
6
361F.; For related documents, see SE 021 987-022 002
and EL 130 870-877; Contains occasional marginal
legibility
EDRS FRICE
DESCRIEFORS
IEENTIFIERS
MF-\$0.83 HC-\$19.41 Flus Eostage.
*Curriculum; Elementary Secondary Education;
*Geometry; *Instruction; Mathematics Education; *Secondary School Mathematics; *reaching Guides SPONS AGENCY fue date NOTE
*Schocl Hathematics Study Group
```

AESTRACT
This sixteenth linit in the SMSG secondary school wathematics series is the teacher's commentary for Unit 14. Fcr ach of the chapters in Unit 14, a guiae to the selection of problems is provided, the goals for that chapter are discussed, the mathematics is explained, some teaching suggestions are given, the answers to exercises are listed, and sample test questions for that chapter are included. A final section, labelled "Talks to Teachers," discusses facts and theories; equality, congruence, and equivalence; the concept of congruence; introduction to non-Euclidean geometry; miniature geometries; and area. (DT)

[^0]

School Mathernatics Study Group

Geometry

Unit I6

Geometry

Teacher's Commentary, Part II
REVISED EDITION
Prepared under the supervision of
the Panel on Sample Textbooks
of the School Mathematics Study Group:
Frank B. Allen Lyons Township High School
Edwin C. Douglas
Donald E. Richmond
Charles E. Rickart
Henry Swain
Robert J. Walker
Taft School
Williams College
Yale University
New Trier Township High School
Cornell University

Stanford, California
Distribured for the School Mathematics Study Group
by A. C. Vroman, Inc., 367 Pasadena Avenue, Pasadena, California

Financial support for School Mathematics
Study Group has been provided by the National Science Foundation.

Permission to make verbatim use of material in this book must be secured from the Director of SMSG. Such permission will be granted except in unusual circumstances. Publications incorporating SMSG materials must include both an acknowledgment of the SMSG copyright (Yale University or Stanford University, as the case may be) and a disclaimer of SMSG endorsement. Exclusive license will not be granted save in exceptional circumstances, and then only by specific action of the Advisory Board of SMSG.

01965 by The Board of Trustees of the Leland Stanford Junior University. All rights reserved.
Printed in the United States of America.

Below are listed the names of ill those who participated in any of the writing sessions at which the following $:$ MSG texts were prepared: First Course In Algebra, Geometry, Intemediate Mathemat:cs, Elementary Functions, and Introduction to Matrix Algebra.
H.W. Alexander, Earlinam College
F.B. Allen, Lyons Townshif High Gchool, La Grange, Illinols
Alexander Beck, Olney High School, Fhlladelphla, Pennsylvenfa
E.F. Beckenbach, University of Call:omia at Los angeles
E.G. Begle, School Mathematics Study Group, Yale University
Paul Berg, Stanford university
Emil Berger, Monroe High School, S:. Paul, Minnesota
Arthur Bernhart, University of Oklahoma
R.H. Bing, University of wisconsin
A.L. Blakers. University of fiestern Australia
A.A. Blank, New York University

Shirley Boselly, Frinkiln High School, Seattle, Washington
K.E. Brown, Departmen: of Health, Education, and Welfare, Hashingtion, D.C.
J.M. Calloway, Carleton College
flope Chipman, University High School, Ann Arbor, Michigan
R.R. Christian, University of Britisi Columbia
R.J. Clark, St. Paul's School, Concord, New Hampsh1re
P.H. Daus, University of Callfornia at Los Angeles
R.B. Davis, Syracuse University

Charles DePrima, California Institute of Technology
Mary Dolcians, Hunter College
Edwin C. Douglas, The Tait School, watertown, Connecticut
Floyd Downs, East H1gh School, Denver, Colorado
E.A. Dudley, North Haven High School, North Haven, Cornecticut
Lincoln Duist, The R1ce Institute
Florence Elder, West Hempstead High School, West Hempstead, New York
W.E. Ferguson, Newt on High School, Newtonville, Massachusetts
N.J. Fine, University of Fennsylvanla

Joyce D. Fontaine, North Haven High School, North Haven, Connecticut
F.L. Friedman, Massachusetis Institute of Technology
Esther Gassett, Claremore High School, Claremore, Oklahoma
R.K. Getoor, Unlversity of Nashington
V.H. Haag, Frankiln and Marshall College
R.R. Hartman, Edina-Morningside Senior High School, Edina, Minnesota
M.H. Heins, University of Illinois

Edwin Hewite, Unlversity ot Washington
Martha Hildebrandt, Froviso Township High School, Maywood, Illinols
R.C. Jurgensen, Culver M1lıtary Academy, Culver, Indiana
Joseph Lehner, Michigan State Univeraity
Marguerite Lehr, Bryn Mawr College
Kenneth Leisenring, University of Michiean
Howard Levi, Columbia University
Eunice Lewis, Lahoratory High School, University of Oklahoma
M.A. Linton, William Penn Charter School, Philadel phia, Pennsylvania
A.E. Livingston, University of Washington
L.H. Loomis, Harvard University
R.V. Lynch, Phillips Exeter Academy, Exeter, New Hampshire
W.K. McNabb, Hockaday School, Dallas, Texas
K.g. Michaels, North Haven High School, North Haven, Connecticut
E.E. Moise, University of Michigan
E.P. Northrop, University of Chicago
O.J. Peterson, Kansas State Teachers College, Emporia, Kansas
B.J. Pettis, University of North Carolina
R.S. Pleters, Phillips Academy, Andover, Massachusetts
H.O. Pollak, Bell Telephone Laboratories

Walter Prenowitz, Brooklyn College
G.B. Price, University of Kansas
A.L. Putnam, University of Chicago

Persis 0. Redgrave, Norwich Free Academy, Norwich, Connecticut
Mina Rees, Hunter College
D.E. Richmond, Williams College
C.E. Rickart, Yale University

Harry Ruderman, Hunter College High School, New York City
J.T. Schwartz, New York University
O.E. Stanaitis, St. Olaf College

Robert Starkey, Cubberley H1gh Schools, Palo Alto, California
Fhillip Stucky, Roosevelt High School, Seattle, Washington
Henry Swain, New Trier Township High School, Winnetka, Illino1s
Henry Syer, Kent School, Kent, Connecticut
G.B. Thomas, Massachusetts Institute of Technology
A.W. Tucker, Princeton University
H.E. Vaughan, University of Illinois

John WIagner, University of Texas
R.J. Walker, Cornell University
A.D. Wallace, Tulane University
E.L. Walters, W1lilam Penn Senior High School, York, Pennsylvania
Warren White, North High School, Sheboygan, Wisconsin
D.V. Widder, Harvard University

William Wooton, Pierce Junior College, Woodland H11ls, California
J.H. Zant, Oklahoma State University

Contents

Page
A GUIDE TO THE SELECTION OF PROBLEMS $1 x$
Chapter 11 AREAS OF POLYGONAL REGIONS 255
Chapter 12 SIMILARITY 293
Chapter 13 CIRCLES AND SPHERES 329
Chapter 14 CHARACTERIZATION OF SETS. CONSTRUCTIONS 371
Chapter 15 AREAS OF CIRCLES AND SECTORS 411
Chapter 16 VOLUMES OF SOLIDS 433
Chapter 17 PLANE COORDINATE GEOMETRY 459
TALKS TO TEACHERS
Facts and Theories 515
Equality, Congruence, and Equivalence 521
The Concept of Congruence 527
Introduction to Non-Euclidean Geometry 557
Miniature Geometries 583
Area 597

A GUIDE TO THE SELECTION OF PROBLEMS

Foilowing is a tabulation of the problems in this text. It wiil be noted that the problems are arranged into three sets, I, II, and III. At first glance, one might think that these are in order of difficulty.
THIS IS NOT THE MANNER IN WHICH THE PROBIEMS ARE GROUPED !!!!
Before explaining the grouping, it should be mentioned that it is understood that a teacher will select from all of the problems thcse which he or she feels are best for a particular class. However, careful attention should be given to the comments on the problems in A Word About the Problem Sets.

Group I contains problems that relate directly to the material presented in the text.

Group II contains two types of problems: (1) some that are sinilar to those of Group I, and (2) some that are just a little more difficult than those in Group I. A teacher may use this group for two purposes: (1) for additional drill material, if needed, and (2) for problems a bit more challenging than those in Group I, that could be used by a better class.

Group III contains problems that develop an idea, using the information given in the text as a starting point. Many of these probiems are easy, interesting and challenging. The student may find them more stimulating than the problems in Groups I or II. However, if time is a factor, a student can very well not do any of them and still completely understand the material in the text. These are enrichment problems.

It is assumed that a teacher will not feel that he or she, must assign all of the problems in any set, or all parts of any one problem. It is hoped that this listing will be helpful to you in assigning problems for your students.

We have included in the problem sets results of theorems of the text which are important principles in their own right. In this respect we follow the precedent of most geometry texts. However, all essential and fundamental theorems are in the text proper. The fact that many important and delightful theorems are to be found in the problem sets is very desirable as enrichment.

While no theorem stated in a problem set is used to. prove any theorem in the text proper, they are used in solving numerical problems and other theorems in the problem sets. This seems to be a perfectly normal procedure. The difficulty (or danger), as most teacher's define it, is in allowing the result of an i:1tuitive type problem, or a problem whose hypothesis assumes too much, to be used as a convincing argument for a theorem. The easiest and surest way to handle the situation is to make a blanket rule forbidding the use of any problem result to prove another. Such a rule, however, tends to overlook the economy of time and, of ten, the chance to foster the creative spirit of the student. In this text we have tried to establish a flexible pattern which will allow a teacher and class to set their own policy.

GUIDE TO SELECTION OF PROBLEMS

	I	II	III
Chapter 11			
Set ll-1	1,2,3,6.	4,5.	7,8.
11-2	$\begin{aligned} & 1,2,4,6,7,9 \\ & 10,11,16,18 . \end{aligned}$	$\begin{aligned} & 3,5,8,12,14,15, \\ & 19,20 . \end{aligned}$	13,17,21,22.
11-3a	1,4,5,13,14.	$\begin{aligned} & 2,3,8,11,12,15, \\ & 18,19 . \end{aligned}$	6,7,9,10,16,17.
11-3b	$\begin{aligned} & 1,2,4,6,7,14 \\ & 17,18,22,27 \end{aligned}$	$\begin{aligned} & 3,5,8,9,10,11, \\ & 12,15,16,19,20 \\ & 21,23,24 . \end{aligned}$	13,25,26,28.
Chapter 12			
12-1	$\begin{aligned} & 1,2,3,4,5,6, \\ & 7,8,9,11 . \end{aligned}$	10,12.	
12-2	1,2,4,5.		3.
12-3a	$\begin{aligned} & 1,2,3,4,5,6, \\ & 11,12 . \end{aligned}$	7,8,9,10,13.	14.
12-3b	$\begin{aligned} & 1,2,3,4,5,6,7, \\ & 13,14,23,24 . \end{aligned}$	$\begin{aligned} & 8,9,10,12,18,19, \\ & 21,22,25,26,30, \\ & 31 . \end{aligned}$	$\begin{aligned} & 15,16,17,20,27, \\ & 28,29,32 . \end{aligned}$
12-4	1,2,3,4,5.		
12-5	$\begin{aligned} & 1,2,3,4,5,6 \\ & 7,8,13,15,17 \end{aligned}$	$\begin{aligned} & 9,10,11,12,14, \\ & 18 . \end{aligned}$	16,19,20.
Chapter 13			
13-2	$\begin{aligned} & 1,2,3,4,5,6, \\ & 8,9,13,15 \end{aligned}$	$\begin{aligned} & 7,10,11,16,17, \\ & 19 . \end{aligned}$	12,14,18.
13-3	1,2,3,4.	-5,8,9,10.	6,7.

	I	II	III
Catser 13			
Se: $13-4 \mathrm{a}$	$\begin{aligned} & 1,2,3,4,5,6, \\ & 7,9,10,11 . \end{aligned}$	8.	12,13.
13-4b	$\begin{aligned} & 1,2,4,8,9,10, \\ & 11,16 . \end{aligned}$	$\begin{aligned} & 3,5,6,7,12, \\ & 13,14 . \end{aligned}$	15.
13-5	$\begin{aligned} & 1,2,3,4,7,13, \\ & 16 . \end{aligned}$	$\begin{aligned} & 5,6,8,9,10, \\ & 12,14,15,17, \\ & 18 . \end{aligned}$	11,19.
Chapzer 14			
14-1	$\begin{aligned} & 1,2,3,4,5,6, \\ & 7 . \end{aligned}$		
$14-29$	$1,2,3,4,6,7,$ 3.	5,9.	10,11.
1-20	2,2,5,6,8.	3,4,7.	
1:-3	1,4.	2,3.	
I'-5ı	$\begin{aligned} & 1,2,3,4,5,5, \\ & 7 . \end{aligned}$		
14-53	1,2,3,4.	5,6.	
14-5c	1,3,5.	6,7,8.	2,4,9,10,11,12.
2:7	1, 2 .		3,4,5,6.
Chapter 15			
15-1	1,2,5.	6.	3,4.
15-2	1,2,4,5,11.	3,7,12.	6,3,9,10.
15-3	1,3,4,7.	5,6.	2,8.
15-4	1, 2, 3, $3,5$.	- , 7, 9, $0,11,14$.	10,12,13.
15-5	1,2,3,5.	$\therefore, 6,7,8$.	

	I	II	III
Chapter 16			
Se: 16-1	1,2,3,4,5,6.		
16-2	$1,2,3,5,6,7$.	8.	4.
16-3	$1,2,3,4,5,6$.	7.	8.
16-4	1,2,3,4,5,6.	7,8.	9.
16-5	1,2,3,4,7,8.	5,6,9,10.	11.
Chapter 17			
17-3	2,3,4,5,6,7,8,9.		10,11,12.
17-4	$\begin{aligned} & 1,2,3,4,5,7,8,9, \\ & 12 . \end{aligned}$	$\begin{aligned} & 6,10,13,14, \\ & 15 . \end{aligned}$	11,16.
17-5	$1,2,5,6,8$.	3,4,7.	9,10,11.
17-6	$1,2,3,4,5,6,7,9$.	8.	10.
17-7	1,2,3,4,5,7.	6.	8,9.
17-8	1,2,3,4,5.	6,7,9,10,11,	8.
17-9	1,2,3,4,5,6.	7,10.	$\begin{aligned} & 8,9,11,12,13, \\ & 14,15 . \end{aligned}$
17-10	$1,2,3,5,6,7,8$.	$\begin{aligned} & 4,9,10,11 \\ & 12,13,14 \end{aligned}$	15,16,17,18.
17-12	$\begin{aligned} & 1,2,3,4,13,16, \\ & 17,18,19 . \end{aligned}$	9,10,14,15.	$\begin{aligned} & 5,6,7,8,11,12, \\ & 20 . \end{aligned}$
17-13	1,2,6.	3,7.	4,5,8,9.
17-14	1,2.	3,4,5.	6,7,8,9.

Chapter 11
AREAS OF POLYGONAL REGIONS

This Chapt
onventional subject matter the areas of $t r$.allelograms, trapezoids and ? Although its viewpoint is essentially that of Euclid two points may seem novel. First the introduction of the term polygonal region and second the study of area by postulating its properties rather than by deriving them from a definition of area based on the measurement process. Actually both of these ideas are implicit in the conventional treatment - we have only brought them to the suriace and sharpened and clarified them. Once the basis has been laid, our methods. of proof are simple and conventional, although the order of the theorems may seem a bit unusual.

Observe that in this Chapter we are not trying to develop a very general theory of area applicable for example to figures with curvilinear boundaries. Rather we restrict ourselves to the relatively simple case of a region whose boundary is rectilinear, that is, its boundary is a union of segments. However, it is not obvious how to define the concept of region or of boundary. One suggestion is to turn the problem around and merely consider the figure composed of a polygon and its interior. However, although there is no essential difficulty in defining polygon (see Section 15-1 of text) it is quite difficult to write down preclsely a definition of the interior of a polygon, even though we can easily test in a diagram whether or not a point is in the interior of a polygon. Observe how simply our derinition of polygonal region avolds this difficulty. We merely take the simplest and most basic type of region, the trlangular region, and use it as a sort of building block to define the idea of polygonal region. The essential point $1 s$, that, although it is difficult to define interior for an arbitrary polygon, it is very easy to do it for a trlangle - we actually did this back in Chapter 4. Moreover
our basic procedure in studying area is to split a figure into triangular regions, and reason that its area is the sum of the ares of these triangular regions. Thus we simply define polygonal regions as figures that can be. suitably "built up" fro! triai ine regions, and we have a good basis for our theory.

A further point. The du.nition requires that the triangular regions must not "overlap", that is they must not have a triangular region in common (see the discussion in the text following the definition of polygonal region), but may have only a common point or a common segment. If we permit the regions to "overlap" we can't say that the area of the whole figure will be the sum of the areas of its component triangular regions (see discussion in the text following Postulate 19). Thus for simplicity we impose the condition that the triangular regions shall not "overlap".

A final point. In your intuitive picture of a polygonal region you probably have assumed that a polygonal region is connected or "appears in one plece". Actually our definition does not require this. It permits a polygonal region to be the union of two triangular regions which have no point (or one point or a segment) in common, as in these figures:

14
[pages 317-319]

Thus our definition allows a polygonal region to be a disconnected portion of the plane, and the boundary of a polygonal region need not be a single polygon. This causes no trouble - It just means that our theory has somewhat broader coverage than our intuition suggests.

In lifht of this you will note that the idea of polygon is not er ?ed as strongly in our text as in the conventional eat . When the latter refers to "area of a polygon" it, e area of the polygonal region consisting of the polygon and its interior - which is not explicitly stated or clarified. We avoid the difficulty by defining polygonal region independently of polygon.

Note that in the figures on page 256 it is intuitively clear that the areas of the regions can be found by dividing them up into smaller triangular regions, and that the area of the total region is independent of the manner in which the triangular regions are formed.

Sometimes in a mathematical discussion we give an explicit definition of area for a certain type of figure. For exar.ple, the area of a rectangle is the number of unit squares into which the corresponding rectangular region can be separated. This is a difficult thing to do in general terms for a wide variety of figures. Thus the suggested definition of area of a rectangle (rectangular region) is applicable only if the rectangle has sides whose lengths are integers. Literally how many unit squares are contained in a rectangular region whose dimensions are $\frac{1}{2}$ and $\frac{1}{3}$? The answer is none! Clearly the suggested definition must be modified for a rectangle with rational dimensions. To formulate a suitable definition when the dimensions are Irrational numbers, say $\sqrt{2}$ and $\sqrt{3}$, is still more complicated and involves the concept of limits. Incidentally, even when this is done, it would not be trivial to prove that the area of such a rectangle is given by the familiar formula. (For example, see the Talk on Area.) Furthermore,
[page 319]

15

it would still be necessary to define the area concept for triangles, quadrilaterals, circles, and so on. The complete 3 tudy of area alone these lines involves integral calculus and finds its culmination in the branch of modern mathematics called the Theory of Measure. (See the Talk on Area for a treatment of area in the spirit of the theory of measure.)
clearly this is too heroic an approach for our purposes. * attempt to give an : ilicit definition of area , nal region by means ol a measurement process using unit squares. Rather we study area in terms of its basic properties as stated in Postulates 17, 18, 19 and 20. On the basls of these postulates we prove the familiar formula for the area of a triangle (Theorem ll-2). Consequently we get an explicit procedure for obtaining areas of triangles and so of polygonal regions in general.

Some remarks on the postulates. Observe that our treatment of area is similar to that for distance and measure of ancles. Instead of giving an explin: definttion of area (or distance or anzle measure) by Is of a measurement orocess, we pestulate its basic pr ties which are intuiIIvely fam: : iar "rom study of the : surement process.

Thus Postulate 17 asserts that ${ }^{\circ} \mathrm{O}$ every polygonal region "here is associated a unique "area : .. wer" and is exactly comparable to the Distance Postulate or the Angle Measurement postulate. The uniqueness of the area number is based on the intultive presupposition that a fixed unit has been chosen and that we know how to measure area in terms of thls unit.

Postuiste 10 is one of the simplest and most natural regerties of ar... If two trianglo: are congruent then in \therefore :sot the triar :iar regions deter-ined are "congruent", ie is an exact raplica of the other and so they must have he same mosoure.

16
[pages 319-320]

Postulate 19 is comparable to the Angle Addition Postulate．It is a precise formulation，for the study of area，of the vague statement＂The whole is the sum of its parts＂．This statement is open to several objections．It seems to mean that the measure of a figure is the sum of the measures of 1 ts parts．Even in this form it is not acceptable，since the terms＂figure＂and＂part＂need to be sharpened in this context，and it permits the＂parts＂to overlap．Postulate 19 makes＂clear that the＂figures＂are to be poly，nal regions，the＂measures＂are areas，and that the＂parts＂are to be polygonal regions whose union is the ＂whole＂and which do not overlap．

Postulates 17,18 and 19 seem to give the essential properties of area，but they are not quite complete．We pointad o：above that Postulate 17 presupposes that a unit h：$\because:$ ：sen，$b i=$ we have no way of determining such a ur．t：$:=i s$, a po－ygonal region whose area is unity．For ex $=\cdots:-3$ tulates 17,18 and 19 permit a rectangle of di－nsis：．． 3 and 7 to have area unity．
\cdots ．．．． 20 takes care of this by guaranteeing that a squa： 16 edge has length 1 shall have area 1 ．In ad：：！！$\%$ ． 2 stulate 20 gives us an important basis for ruこむそのr ：e：soning by assuming the formula for area of a re＊tianci：．

A．．．．\because restins point：We could have replaced Postulate $20 . \because 1 \because$ ．\because sumption of the familiar formula for the area of \because zrimele．This is equivalent to Postulate 20.

Fi；se of the term＂at mos：＂in Postulate 19 permits
$R_{1} \quad 2$ to have no common po：\because ，as in this flgure：

［pages 320－322］
17

Since we are introducing a block of postulates concernIng area, this may be a good time to remind your students of the significance and purpose of postulates. They are precise formulations of the basic intuitive judgments suggested by experience, from which we derive more complex principles by deductive reasoning.

To make Postulates 17,18 and 19 significant for the students, discuss the measuring process for area concretely, using simple figures like rectangles or right triangles with integral or rational dimensions. Have them subdivide regions Into congruent unlt squares, so that the student gets the idea that every "figure" has a uniquely determined area number. Then present the postulates as simple properties of the area number which are verifiable concretely in diagrams.

Problem Set 11-1
b. 2,
e. 6 .
c. 5,

324 2. 825 square feet.
3. a. The area is doubled.
b. The area is four times as great.
4. 1800 tiles.
5. 792 square inches.

325*6. a. False. A triangle is not a region at all, but is a figure consisting of segments.
b. False. See Postulate 17.
c. True. By Postulate 17.
d. True. By Postulate 18.
[pages 322-325]
18
e. False. If the regions overlap, their union is less than their sum.
f. True. Since a square is a rectangle.
g. False. The region is the union of a trapezoid and its interior.
h. True. A triangular region is the union of one or more triangular regions.
b. $\quad-\quad-\quad+v=7-17+12=2$.
c. The computation always results in 2.
d. The computation is not affected, since the addition-
al four edges, three faces, and one vertex results
in zero being added to the total.
e. No change.

Notice that, after postulating the area of a rectangle, we proceed to develop our formulas for areas in the following manner: right triangles, which then germit us to work with any triangle, parallelograms, and trapezoids. Of course our postulate permits us to find the are $\begin{aligned} & \text { of } \text { a square, since it }\end{aligned}$ is merely an equilateral rectangle. At this point we have the machinery to find the area of any polygonal region, by just chopping it up into a number of triangular regions, and [pages 325-328]

Einding the sum of the areas of these triangular regions. Note that in the discussion of the area of a triangle, It does not matter which altitude and base we consider, just so long as we work with a base and the corresponding altitude.

In the application of Postulate 19 ton a rnonific case we read from a figure that R iv thu union u che regions F_{1} and R_{2}; see for example the proofs of Theorems 11-1 and ll-2. This is a kind of separation theorem which can be justified from our postulates. Just as with triangles, we may work with either side and the corresponding altitude of a parallelogram.

In Problem $5=t$ 11-2, Problems 13-17 form a sequence of problems involving an interesting consequence of the theorems of the text.

Problem Set 11-2

333 1. a. Area $\triangle A B C=\frac{1}{2} \cdot 7 \cdot 24=84$.
b. $84=\frac{1}{2} \cdot 25 m . \quad h=6 \frac{18}{25}$.
2. 14.4 and 24 .
3. a. $B C=12$.
c. $\quad \mathrm{AB}=15$.
b. $C D=6 \frac{9}{11}$.
d. $\quad A E=\frac{c h}{a}$.
4. Area $\triangle C Q B=$ Area $\triangle D Q B$, since $C Q=D Q$ and the triangles have the same altitude, the perpendicular segment from B to $\overline{C D}$. Area $\triangle A Q C=$ Area $\triangle D Q A$, since $C_{Q}=D Q$ and the triangles have the same altitude, the perpendicular segment from A to $\overline{C D}$. Adding, we have Area $\triangle \mathrm{ABC}=$ Area $\triangle \mathrm{ABD}$.

Alternate Proof: Draw $\overline{\mathrm{CE}} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{DF}} \perp \overline{\mathrm{AB}}$. Then $\triangle C E Q \approx \triangle D F Q$ by A.A.S., and $C E=D F$. Since - $A B C$ and $\triangle A B D$ have the same base and their altitudes -ive equal lengths, the triangles have equal areas.
[pages 328-333]

334 5. The area of the square is s^{2}. The area of each of the four tric... s is $\frac{1}{6} \cdots$. Hence, the aren ${ }^{\prime}$ the star is s^{-}ong.
6. a. 6 .
b. 12 .
c. $18 \frac{2}{3}$.
d. Since $Q B$ and $A F$ measures of the same altitude, there is nct enough information given to determine a unique answer.
7. Since a diagonal of a parallelogram divides it into two congruent triangles, Area $\triangle A F H$ is equal to half the area of the parallelogram. Area $\triangle A Q H=$ Area $\triangle F Q H$ since the bases, $\overline{A Q}$ and $\overline{Q F}$, are congruent and the triangles have the same altitude, a perpendicular from H to $\overline{A F}$. Each is then one-fourth of the area of the parallelogram. In the same way it can be shown that Area $\triangle \mathrm{ABQ}=$ Area $\triangle \mathrm{FBQ}$.
a. 36.
b. 21 .
c. 55 .
d. $\quad 136 \frac{1}{2}$.
e. $121 \frac{1}{2}$.
9. 98.
10. Area of triangle $=\frac{1}{2} b h$.

Area of parallelogram $=\mathrm{bh}^{\prime}$.
$\frac{1}{2} b h=b h^{\prime}$.
$h=2 h^{\prime}$.
The altitude of the triangle is twice the altitude of the parallelogram.
11. a. Area parallelogram $A B C D$ is twice area \triangle BCE because the figures have the same base $(\overline{\mathrm{BC}})$ and equal altitudes, since $\overline{\mathrm{AE}} \| \overline{\mathrm{BC}}$.
[pages 334-335]
11. b. 'i are equal.
c. The areas are equal because the bases ($\overline{A F}$ and $\overline{F D}$) are congruent and their altitudes are congruent since $\overline{A D} \| \overrightarrow{B C}$.
d. Area $\triangle C F D=\frac{1}{2}($ area $\triangle B C E)$ since $F D=\frac{1}{2} B C$ and the two triangles have equal altitudes. Therefore, area parallelogram $A B C D=2($ area $\triangle B C E)$
$=4($ area $\triangle C F D)$.
336 12. The area of trapezoid $D F E C=34$.
The area of trapezold $A G F D=165$.
And so, area of AGECD $=199$.
Area $\triangle \mathrm{AGB}=30$.
Area $\triangle B C E=32 \frac{1}{2}$.
Subtracting the sum of the areas of the two triangles from the area of AGECD, we have $136 \frac{1}{2}$. The area of the fleld is $136 \frac{1}{2}$ square rods.
13. Given: Figure $A B C D$ with $\overline{A C} \perp \overline{D B}$.

Prove: Area of $A B C D=\frac{1}{2} A C \cdot D B$.
Proof: Area of $A B C D=$ Area $\triangle A C D+$ Area $\triangle A B C$ by
Postulate 19.
But Area $\triangle A C D=\frac{1}{2} A C \cdot D P$ and Area $\triangle A B C=\frac{1}{2} A C \cdot P B$.
Therefore, Area of $A B C D=\frac{1}{2} A C \cdot D P+\frac{1}{2} A C \cdot P B$

$$
=\frac{1}{2} A C(D P+P B)=\frac{1}{2} A C \cdot D B .
$$

14. The area of a zhombus equais one-half the product of the lengths $C E$: C diagonals.
15. 12.
1. $A=\frac{1}{2} d d^{\prime}=150=b h=12 b ;$ therefore $b=12 \frac{1}{2}$. The area is 150; the length of a side is $12 \frac{1}{2}$.
*17. Yes. The proof would be the same as for Problem 13 with each " + " replaced by "-".

$$
\text { [pages } 335-336 \text {] }
$$

18. All three triangles have the same altitude. Hence, since $B D=D C$, the two smaller triangles have equal area, by Theorem 11-6, and each is one-half the area of the big triangle, by Theorem 11-5.
19. a. By the previous problem, Area $\triangle \mathrm{ABE}=$ Area $\Delta \mathrm{BAD}=\frac{1}{2}($ Area $\Delta \mathrm{ABC})$. Subtracting Area $\triangle A B G$ from each, leaves Area $\triangle A E G$ $=$ Area \triangle BDG.
b. Since the medians are concurrent, the third median, with the other two, divides the triangle into six triangles:
Area $\triangle A E G=$ Area $\triangle B D G$, Area $\triangle C G E=$ Area $\triangle B G F$, and Area $\triangle C G D=$ Area $\triangle A G F$. But Area $\triangle B D G$
$=$ Area $\triangle C G D$ by Theorem 1l-6, and consequently all the areas are equal. Therefore, Area $\Delta \mathrm{BDG}=\frac{1}{6}($ Area $\triangle \cdot \mathrm{ABC})$.
20. Since $A B$ is constant, the altitude to $\overleftrightarrow{A B}$ must be constant, by Theorem 11-6.
Call the length of the altitude, from P to $\overleftrightarrow{A B}$, h. Then in plane E, P may be any point on either of the two lines parallel to $\overleftrightarrow{A B}$ at a distance h from $\overleftrightarrow{A B}$. In space $\underset{\leftrightarrow}{\longleftrightarrow} P$ may be any point on a cylindrical surface having $\overleftrightarrow{A B}$ as Its axis and h as its radius.
$338 * 21$ a. 104 .
b. $\frac{1}{2} \cdot 16 \cdot 13=104$.
c. With the dimensions given $A B N$ and $A D E$ would not be stralght segments, and so the rigure would not be a triangle.
[pages 337-338]

338 *22. If the line intersects adjacent sides, the area of the triancle formed will be less than one-half the area of the rectangle, so the line must intersect opposite sldes.

$$
\begin{aligned}
& \text { Area ARSD }=\frac{1}{2} h(a+c) \\
& \text { Area CSRB }=\frac{1}{2} h(b+d) .
\end{aligned}
$$

$a+c=b+d$.
But

$$
a+b=c+d, \text { so by subtraction, }
$$

$\mathrm{c}-\mathrm{b}=\mathrm{b}-\mathrm{c}$,
$\mathrm{c}=\mathrm{b}$.
Let M be the point at which $\overline{A C}$ intersects $\overline{R S}$. Then $\triangle A R M \cong \triangle C S M$ by A.S.A., so $A M=C M$. Therefore M is the mid-point of diagonal $\overline{A C}$.

339
We have here a very simple proof of the Pythagorean Theorem. The proof depends upon the properties of the areas of triangles and squares. Notice how Postulate 19 is used in this proof.

Observe that the proof is perfectly general. The Pythagorean relation is proved for the sides of the constructed trlangle and so holds for the original triangle.

Problem Set 11-3a

341 1. $\quad(A C)^{2}=100+9$.

$$
=109 .
$$

$A C=\sqrt{109}$.
He is $\sqrt{109}$ miles from
his starting point.
(Between 10.4 and
10.5 mlles.)
[pages 338-341]

24

341 2. The single right triangle $\triangle A C B$ serves our purpose here.

$$
\begin{aligned}
& (A B)^{2}=(11)^{2}+(6)^{2}=157 . \\
& \quad A B=\sqrt{157} . \\
& \text { He is approximately } 12.5 \\
& \text { miles from nis starting } \\
& \text { point. }
\end{aligned}
$$

3. $(6)^{2}+(6)^{2}=x^{2}$.

$$
\begin{aligned}
72 & =x^{2} \\
6 \sqrt{2} & =x
\end{aligned}
$$

He is approximately 8.5 miles from. his starting point.

4. In right $\triangle A B C,(A C)^{2}=(4)^{2}+(12)^{2}=16+144=160$. $A C^{\prime}=\sqrt{160}=4 \sqrt{10}$. In right $\triangle \cdot A C D,(A D)^{2}=160+9$ $=169$. $A D=13$.
Or, in $\triangle \mathrm{ABE},(\mathrm{AE})^{2}=(4)^{2}+(3)^{2}=16+9=25$.
$A E=5$. in $\triangle \operatorname{AED},(A D)^{2}=(5)^{2}+(12)^{2}=25+144=169$. $A D=13$.
5. a, c, d, e.

342 6. a. It is sufficient to show that $\left(m^{2}-n^{2}\right)^{2}$
$+(2 m n)^{2}=\left(m^{2}+n^{2}\right)^{2} \cdot\left(m^{2}-n^{2}\right)^{2}+(2 m n)^{2}$
$=m^{4}-2 m^{2} n^{2}+n^{4}+4 m^{2} n^{2}=m^{4}+2 m^{2} n^{2}+n^{4}$
$=\left(m^{2}+n^{2}\right)^{2}$.
b. $\quad m=2, n=1$ sives sides with lengths (3, 4, 5).
$m=3, n=1$ gives $(6,8,10)$.
$m=3, \quad n=2$ gives $(5,12,13)$.
$m=4, \quad n=1$ gives $(15,8,17)$.
$m=4, n=2$ gives $(12,16,20)$.
$m=4, n=3$ gives $(7,24,25)$.
There are two other right triangles with hypotenuse
less than or equal $25,(9,12,15)$ and (15, 20,
25), but they can not be obtained by this method.
[pages 341-342]

342 7. a. $A Y=\sqrt{2}, \quad A Z=\sqrt{3} . \quad A B=\sqrt{4}=2$.
b. $\quad A C=\sqrt{5}$. Next segment has length $=\sqrt{6}$.
8. $A C=\sqrt{8}$ or $2 \sqrt{2}$.
$(A Y)^{2}=(A C)^{2}+(Y C)^{2}$, from which $A Y=3$.
343*9. a. $\quad h_{c}{ }^{2}=13^{2}-x^{2}=169-x^{2}$;

- also $h_{c}^{2}=15^{2}-(14-x)^{2}=225-196+28 x-x^{2}$.

Eliminating $h_{c}{ }^{2}$:
$169-x^{2}=29+28 x-x^{2}$.
$28 \mathrm{x}=140$.
$x=5$,
$h_{c}=12$.
b. $\quad h_{a}=14^{2}-x^{2}=196-x^{2}$;
also $\mathrm{h}_{\mathrm{a}}{ }^{2}=13^{2}-(15-\mathrm{x})^{2}=169-225+30 \mathrm{x}-\mathrm{x}^{2}$.
Or $\quad A B \cdot h_{c}=B C \cdot h_{a}$
$14 \cdot 12=15 h_{a}$
*10. Let $\overleftrightarrow{C D}$ meet $\xrightarrow[A 1 \frac{1}{5}]{\leftrightarrow}=h_{a}$.
$\mathrm{h}_{\mathrm{c}}{ }^{2}=14^{2}-\mathrm{x}^{2}=196-\mathrm{x}^{2}$,
also $h_{c}{ }^{2}=18^{2}-(6+x)^{2}=324-36-12 x-x^{2}$.
Eliminating $h_{c}{ }^{2}$:
$196-x^{2}=288-12 x-x^{2}$.
$12 x=92$.
$x=7 \frac{2}{3}$.
$h_{c}=\frac{1}{3} \sqrt{1235}$. (approximately 11.71.)
343° 11. The shorter diagonal divides the rhombus into two equilateral triangles. Hence its length is 8. Since the diagonals are perpendicular bisectors of each other we can use the Pythagorean Theorem to get
 the length of the longer diagonal equal to $8 \sqrt{3}$.
12. Since the sides are all congruent, and the area of the rhombus is the product of the measures of any side and its corresponding altitude, then all the altitudes are congruent. Hence,

it is sufficient to find one altitude. The
diagonals bisect each other at right angles. Hence, each side has length $\sqrt{13}$. Then,
Area of $\triangle \mathrm{ABD}=\frac{1}{2} \cdot 4 \cdot 3=6=\frac{1}{2} \mathrm{DE} \sqrt{13}$,
and

$$
\mathrm{DE}=\frac{12}{13} \sqrt{13} .
$$

13. By the Pythagorean Theorem, $A B=13$.

The area of $\triangle A B C=\frac{1}{2} \cdot 13 h=\frac{1}{2} \cdot 5 \cdot 12$.
Hence $13 h=5 \cdot 12$ and $h=\frac{60}{13}=4 \frac{8}{13}$.
14. By the Pythagorean Theorem, $A B=17$.

The area of $\triangle A B C=\frac{1}{2} \cdot 17 \mathrm{~h}=\frac{1}{2} \cdot 15 \cdot 8$.
Hence $17 \mathrm{~h}=15 \cdot 8$ and $h=\frac{120}{17}=7 \frac{1}{17}$.

27

344 15. Area $\triangle A B C=\frac{1}{2} c h$, and

$$
h=\frac{2(\text { Area } \Delta \mathrm{ABC})}{c} \text {. But Area } \Delta \mathrm{ABC}=\frac{1}{2} \mathrm{ab} \text {, }
$$

and $c=\sqrt{a^{2}+b^{2}}$. Therefore, $h=\frac{a b}{\sqrt{a^{2}+b^{2}}}$.
*16. Lengths are shown in the flgure.
Area $\triangle A S Q=\frac{1}{2}(n \cdot 2 n)=n^{2}$.
Area Δ ABS $=\frac{1}{2}(2 n \cdot 2 n)=2 n^{2}$.
Area $\triangle A B C=\frac{1}{2}(3 n \sqrt{2} \cdot 2 n \sqrt{2})$
$=6 n^{2}$.
Area $\quad \mathrm{QSPC}=$ Area $\triangle \mathrm{ABC}$

- (Area \triangle ABS $+2 \Delta \mathrm{ASQ}$)
$=6 n^{2}-4 n^{2}=2 n^{2}$.

17. Since $\triangle A B C \cong \triangle B E D, m \angle B A C=m \angle E B D$. But $\angle B A C$ is complementary to $\angle \mathrm{ABC}$, so $\angle \mathrm{EBD}$ is complementary to $\angle \mathrm{ABC}$. Since $\angle \mathrm{EBD}+\angle \mathrm{EBA}+\angle \mathrm{ABC}=180$, then $\angle \mathrm{EBA}=90$. Now,
Area of $C A E D=$ Area $\triangle A B C+$ Area $\triangle A E B+$ Area $\triangle B E D$.
$\frac{1}{2}(a+b)(a+b)=\frac{1}{2} a b+\frac{1}{2} c^{2}+\frac{1}{2} a b$.
$a^{2}+2 a b+b^{2}=2 a b+c^{2}$. $a^{2}+b^{2}=c^{2}$.
$345 * 18$. a. $\overline{S B}$ is a median of isosceles $\triangle B C D$ and therefore $\overline{S B} \perp \overline{C D}$. In the same way, $\overline{S A} \perp \overline{C D}$.
$\therefore \overline{C D} \perp$ plane $B S A$,
and $\overline{C D} \perp \overline{S R} . \quad S B=S A$ (they are corresponding medians of congruent equilateral triangles).
 $\overline{S R}$ is a median to the base of isosceles \triangle SBA 28
and hence $\overline{S R} \perp \overline{B A}$.

345
b.

1.	$\mathrm{DA}=2$.	1.	Given.
2.	$\mathrm{SD}=1$.	2.	Definition of mid-point.
3.	$\mathrm{SA}=\sqrt{3 .}$	3.	Pythagorean Theorem.
4.	$\mathrm{RA}=1$.	4.	Definition of mid-point.
5.	$\mathrm{SR}=\sqrt{2}$.	5.	Pythagorean Theorem.

*19. By Pythagorean Theorem, $A C=\sqrt{2}$. Therefore $C D=\sqrt{2}$ and $B D=1+\sqrt{2}$. Hence, $(A D)^{2}=1+(1+\sqrt{2})^{2}=4+2 \sqrt{2}$.
Then $A D=\sqrt{4+2 \sqrt{2}}$.
Since $A C=C D, m \angle A D C=m \angle C A D$. But $m \angle A D C+m \angle C A D$
$=x=45$. Then $2(m \angle A D C)=45$, and $m \angle A D C=22 \frac{1}{2}$.
$m \angle D A B=67 \frac{1}{2}$.

Proofs of Theorems 11-9 and 11-10
Theorem 11-9. (The 30-60 Triangle Theorem.)
The hypotenuse of a right triangle ls twice as long as a leg If and only if the measures of the acute angles are 30 and 60.

Restatement: Given $\triangle \mathrm{ABC}$ with $m \angle C=90, A B=c$ and $B C=a$.
(1) If $m / A=30$ and $m \angle B=60$, then $c=2 a$.
(2) If $c=2 a$,

then $m \angle A=30$ and $m \angle B=60$.
Proof: We teg: in tr. same -- \quad - both parts. 0
\&. lay opp: $=\vec{B}$ ta B, \quad at $\quad \exists C=B C=$:
$\forall A \cong \Delta E^{\prime} \ldots \quad \therefore \quad$: S. nen
equilat.: o o thet $\mathrm{BB}^{\prime}==20$, mich was to
be prover.
(2) $A E^{\prime}=A E=c$. By hypothe $\quad==$. Since
BE' - 2a, then $B B^{\prime}=c, \quad \therefore \quad \Delta \equiv \equiv$ is equi-
leteral. Therefone $\triangle B A \equiv \quad=$ equianzular and
$m_{L} E=\therefore$ Since $m / B C A \quad v$, then $m / B A C=30$,
which :is to be proved.

Note that we can now conclude that $\overline{B C}$, opposite the 30° angle is the shorter leg, since $m / A<m / B$. But bef'ore we had proved this inequality there was still the possibility that $\overline{A C}$ was the longer leg.

Since we know that $A C>B C$ it seems natural to derive their exact relationship. By the Pythagorean Theorem we have

Therefore,

$$
\begin{aligned}
& (A C)^{2}=c^{2}-a^{2} \\
& (A C)^{2}=(2 a)^{2}-a^{2} \\
& (A C)^{2}=3 a^{2}
\end{aligned}
$$

Using the above relationships for a $30-60$ triangle we can always find all sides if we know one of the sides.

Theorem 11-10. (The Isosceles Right Triangle Theorem.) a right triangle is isosceles if and only if the hypotenuse is $\sqrt{2}$ times as long as a leg.

Restatement: Given $\triangle \mathrm{ABC}$ with $\mathrm{m} L \mathrm{C}=90, \mathrm{AB}=\mathrm{c}$ and $B C=a$.
(1) If $c=a \sqrt{2}$, then $\triangle A B C$ is isosceles.
(2) If $\triangle A B C$ is isosceles,
 then $c=a \sqrt{2}$.
[page 346]
$\therefore \quad: \quad$) Using the Pythagore Theorem, $(A C)^{2}=c^{2}-a^{2}$, $(A C)^{2}=(a \sqrt{2})^{2}-a^{2}$, $(A C)^{2}=a^{2}$, $A C=a$, which was to be proved.
1.) Using the Pythagore. : Theorem,
$(A B)^{2}=a^{2}+a^{2}=2 a^{2}$
$A B=a \sqrt{2}$, which was to be proved.
T.... theorems suggest many useful facts in solving numeri: $\because \because=\mathrm{ms}$. For example, in an equilateral triangle with s: she altitude is $\frac{s}{2} \sqrt{3}$ and its area is $\frac{s^{2}}{4} \sqrt{3}$. Certain. \quad problems in Problem Set ll-3b develop such ideas. Zinc: Ley Problems are numbers 4, 7, and 17 .

Problem Set 11-3b
346 1. 5. 35.

2. Drawn $\bar{Z}-\overline{A B}$.

The: $\quad D=D B=3 \sqrt{3}$. $A B=6 \sqrt{3}$.

347 3. Let $x=$ len eth of the shorter leg. Since the triangle is a $30^{\circ}-60^{\circ}$ triangle, $(2 x)^{2}-x^{2}=75$.

$$
3 x^{2}=75 .
$$

$$
x^{2}=25
$$

$x=5$.
[pages 346-347]

The length of the hypotenuse is 10 .
347 4. By Theorem 11-9, \quad AC $=\frac{3}{2}$ Since $(A C)^{2}+(B C)^{2}=(A B)^{2}$,
we have, $\left(\frac{s}{2}\right)^{2}+h^{2}=s^{2}$
from which $h^{2}=s^{2}-\frac{s^{2}}{4}$.
$h^{2}=\frac{3 s^{2}}{4}$ so $h=\frac{3}{2} \sqrt{3}$.

5. Since $m \mathcal{B}=60$, then $m \angle D=5$ and $D F=\frac{3}{2}$. Then $\quad A F=\frac{3}{2} \sqrt{3}$.
6. $\frac{3}{2} \sqrt{3}=15$.
$s=\frac{30}{\sqrt{3}}$.
$s=10 \sqrt{3}$. A side is $10 \sqrt{3}$ inches long.
7. $\frac{1}{2} ; 2 ; \quad \frac{\sqrt{3}}{3} ; \sqrt{3} ; \quad \frac{\sqrt{3}}{2} \quad \frac{2 \sqrt{3}}{3} ; \quad$ Yes.
8. \quad a. $\quad \frac{1}{2}$ base $=10 \sqrt{3}$, altitude $=10$.
$10 \cdot 10 \sqrt{3}=100 \sqrt{3}$.
Area is $370 \sqrt{3}$ square inches.
b. $\quad \frac{1}{2}$ base $=10 \sqrt{2}, \quad$ altitude $=10 \sqrt{2}$.
$10 \sqrt{2} \cdot 10 \sqrt{2}=200$.
Area is 200 square inches.
c. $\quad \frac{1}{2}$ base $=10, \quad$ altitude $=10 \sqrt{3}$.
$10 \cdot 10 \sqrt{3}=100 \sqrt{3}$.
Area is $100 \sqrt{3}$ square inches.

b. $\quad \frac{1}{2}$ base $=12, \quad h=4 \sqrt{3}$. Area is $4 E \sqrt{3}$ square inches.
c. $\quad \frac{1}{2}$ base $=12, h=12 \sqrt{3}$. Area is $\sqrt{3}$ square inches.
30.
a. $\quad a=30$.
$a=30$.
$2 a=60$.
$x=5 \sqrt{3}$.
$3 a=90$.
$y=10$.
$x=6$.
$y=3 \sqrt{3}$.
c. $\quad a=45$.
d. $a=45$.
$2 a=90$.
$x=5$.
$x=4$.
$y=4 \sqrt{2}$.
$y=5 \sqrt{2}$.

349
e. $\quad x=2 \sqrt{3}$.
f. $x=4 \sqrt{2}$.
$y=4$.
$y=4 \sqrt{2}$.
g. $a=60$.
h. $a=45$.
$\mathrm{x}=3 \sqrt{3}$.
$x=2 \sqrt{2}$.
11. $\mathrm{FB}=3 ; \quad \mathrm{HF}=3 \sqrt{3} ; \quad \mathrm{A}=6 \sqrt{2} ; \quad \mathrm{AF}=3 \sqrt{5} ;$
$m \angle A B F=90 ; m \angle A B H=90 ; m \angle H F B=90 ; m / H=60 ;$
$\mathrm{m} / \mathrm{BHA}=\mathrm{m} \angle \mathrm{BAH}=45$.
*12. Let $\overline{C D}$ be the altitude to
$\overline{A B}$. Let $A D=x, \quad C H=h$,
$B C=a, \quad D B=y . \quad$ In $30^{\circ}-$
60° right $\triangle A C D$,
$r=\frac{1}{2} \cdot 4=2, \quad x=2 \sqrt{3}$.
Therefore $y=3 \sqrt{3}-2 \sqrt{3}$
$=\sqrt{3}$. In $=1$ ght $\triangle \mathrm{DBC}$,
$a^{2}=h^{2}+y^{2}=4+(\sqrt{3})^{2}=7$.
$a=\sqrt{7}$.
No, si= $(4)^{2}+(\sqrt{7})^{2} \neq(3 \sqrt{3})^{2}$.

$$
\begin{aligned}
& \text { う. … Let } \overline{C D} \text { bette verpencicular } \\
& \text { from } C \text { to } \leftrightarrows \text { Let } C D=h \text {, } \\
& B D=r, \quad B C=i . \\
& \text { In } 45^{\circ}-45^{\circ} 90^{\circ} \triangle A C D \text {, } \\
& h=A D=\frac{1}{\hat{c}} \sqrt{E} 0=5 \sqrt{2} \text {, } \\
& r=A D-3=5 \sqrt{2}-3 . \\
& \text { In right } \Delta \equiv \\
& a^{2}=r^{2}+h^{2} \cdot(5 \cdot \sqrt{2}-3)^{2}+(5 \sqrt{2})^{2} \text {. } \\
& =50-30 \sqrt{\Sigma}+9+50 \\
& =109-30 \cdot \overline{2} \text {. } \\
& ==\sqrt{109-32 \sqrt{2}} . \quad \text { BC is approximately 8.2. }
\end{aligned}
$$

14．By Pythagorean Theorem，the altitude equals 24.
The area is 240 square inches．
$1 \equiv$.

$D B=2$ 。
$2 \quad \triangle F=\triangle F C A$ ．
－ FB － 4 ．
5．$\triangle \mathcal{A E}$ E isosceles．
16.

［page 350］

350 17. Area $\triangle A B C=\frac{1}{-15 h}$.
But by the $3 y t-\overline{B C}$ ean Theorem, $h=\frac{s}{2} \sqrt{3}$.
Substitutir: $\quad \mathrm{rE}: \triangle \mathrm{ABC}=\frac{5}{2}\left(\frac{\sqrt{3}}{2}\right)=\frac{5}{4} \sqrt{3}$.
351
18. 2. $\sqrt{3}$.
c. $\frac{3}{4} \sqrt{3}$.
b. $\quad 16 \sqrt{3}$.
a. $\frac{49}{4} \sqrt{3}$.
19. Let s be the $=$ ingth of a sicie.
$\frac{s^{2}}{4} \sqrt{3}=9 \sqrt{3}$.
$s^{2}=4.9$.
$s=2 \cdot 5=t$
$h=\frac{s}{c} \cdot \sqrt{3}=\sqrt{3}$.
20. Let $s b=$ the length of a side.
$\frac{s^{2}}{1} \sqrt{3}=-6 \sqrt{3}$.
$s^{2}=-16$.
$\mathrm{s}=\mathrm{z} 4=8$.
$h_{V}=\frac{s}{2} \cdot \sqrt{3}=4 \sqrt{3}$.
21. A side of \quad square is 9 , and so $i t s$ perimEter is 36. Then $\equiv s$ sde of the equilateral targle is 12. The ar $\equiv 0^{-}$thin equitateral triengle \#quais $36 \sqrt{3}$.
ac. $A C=\therefore \sqrt{2}$.
$A F=\pi \sqrt{2}$.
$F C=, \sqrt{2}$.
Therefire \triangle FFO is equilateral and $\because F A C=60$. Area $\triangle F A C=\frac{(9 \sqrt{2})^{2}}{4} \sqrt{3}=\frac{81}{2} \sqrt{3}$.

351 23. Make $\overline{C E} \| \overline{D A}$, making equilaterai \triangle EBC wit. side of 8. The altituas is $4 \sqrt{3}$. Since $A B=\cdots$: $A E=4$ ans $D C=4$. Hence, ars: of trapezold
 $\mathrm{ABCD}=\frac{1}{2}(4 \sqrt{3})(16)=32 \sqrt{\mathrm{E}}$.
24. Draw alṫこutis $\overline{\mathrm{DE}}$ and $\overline{C F}$. Sinc: $\quad \mathrm{BB}=4, \quad \mathrm{FB}=2$ and $C F=\equiv \sqrt{3}$, then $D E=2 \sqrt{3}=\mathrm{Ad} A E=2 \sqrt{3}$. so $A B=\cdots-2 \sqrt{2}$.
Therefore, \therefore rea of $A B C=\frac{1}{2}(2 \sqrt{3})(12+2 \sqrt{2})$ $=6 \div 12 \sqrt{3}$.
352 *25. Since $\overline{O G}$! piane E, ther $\overline{\overline{E G} \perp \overline{A E} \text { ant } \overline{C E} \perp \overline{D G} . ~ . ~ . ~}$
 and $C G= \pm 0=6 . A 工=, \quad A C=6 \sqrt{2}$. I. $\triangle \mathrm{ACD}$, $A D=6 \sqrt{2} . \quad A E=2 \sqrt{5}, \quad \Delta$ by Dythamone Theorem, $D C=4 \sqrt{3}$. Tr $A A G, A G=6, A D=E * \overline{6}$, so $D G=2 \sqrt{3} . \quad 2=\mathrm{efo}: \quad==\frac{1}{2} D C$, so $m_{L} D C G=30$, and $m \angle C D G=50$. Fence. $\quad I \angle F-A B-E=E C$.
*26. a. In $\mathrm{ris} \quad \triangle A D M, \operatorname{IM}=\frac{e}{2}$, so $A M=\frac{\sqrt{3}}{2}$ e. In right $\triangle A M N, A N=\frac{e}{2}$. Ly the The: em of Pythago:as, $(N M)^{2}=\left(\frac{e}{2} \sqrt{3}\right)^{2}-\sum^{2}$. Hence, $N M=\frac{\sqrt{2}}{2}$ e.

 bis=eoor of $\overline{D D}$. Fince in an eviateral triangle the perpendicular oisector the mextan, and the aititude to any side are the sare. H lies on median $\overline{B M}$. Slmilar,H must iz on the medians from D and C. 3

$$
\begin{aligned}
& \text { Hence } \mathrm{BH}=\frac{2}{3} \mathrm{BA} \text {. But } \mathrm{BM}=\mathrm{AH}=\frac{\sqrt{3}}{2} \mathrm{e} . \\
& \text { so } \mathrm{BH}=\sqrt{\frac{3}{3}} \mathrm{e} \text {. Finally, in } \triangle \mathrm{ABH} \text {, } \\
& (\mathrm{AH})^{2}=(\mathrm{AB})^{2}-(\mathrm{BH})^{2}=\mathrm{e}^{2}-\left(\sqrt{\frac{3}{3}} \mathrm{e}\right)^{2}=\frac{2}{3} \mathrm{e}^{2} . \\
& \text { Hence, } A B=\frac{\sqrt{6}}{3} \mathrm{e} .
\end{aligned}
$$

$35327 . \overline{X A} \perp \overline{A B}$ and $\overline{D A} \perp \overline{\mathrm{AB}}$ because of the given square and rectangle. By definition \angle YAD is the plane angle of $\angle X-A B-E$ and hence $m / Y A D=60$. By definition of projection $\overline{X D} \perp E$ and hence $\mathrm{B} / \mathrm{ADY}=90$. Then $m \angle A Y D=30$ and $A D=\frac{1}{2} A Y$. Therefore area $A B C D$ $=\frac{1}{2}$ area $A B X Y=18$.
*28. Find the point of intersection of the diagonals of each rectangle. A line containing these intersection points separates each rectangle into two trapezoidal regions of equal area (or in special cases the line may contain a diagonal and the regions will be congruent triangles). The proof that the trapezoids are equal in area involves showing the pairs of shaded
triangles congruent by A.S.A.

Here is a problem that might be interesting to the class. Yt has to do with cutting up a square into a certain number of smaller squares, not necessarily equal in area. We will talk of an integer k, as being "acceptable" if a square can be subdivided into k squares. For example, given any square we can divide it into 4 squares, but not into 2 , 3 , or 5 . Try it. Below are some diagrams showing how a square may be divided into 6,7 , and 8 smaller squares:

$k=6$

$k=7$

$k=8$

We may ask is there some pattern or some integer k, above which this will always be possible. Actually any $k \geq 6$ will always be acceptable.

We now show that if a square can be divided into k smaller squares, then it can be divided into $k+3$ smaller squares: Imagine that we have already divided a square into k squares. Now, split one of the squares into 4 smaller squares by bisecting the sides. In this process we have lost one larger square and gained four smaller ones, thus gaining three.

We illustrate using, $k=4$.

38

After dividing the original square into 4 smaller squares, we take one of them, and divide it into 4 squares. Instead of having 4 squares from the first division we have only three, and now have 4 additional ones giving a total of 7 . Since we know that $k=6, k=7$, and $k=8$ are acceptable, and that we can get $k+3$ squares from any division, we can form the following sequences:

$$
\begin{array}{lllll}
6, & 9, & 12, & 15, & \ldots, \\
7, & 10, & 13, & 16, & \ldots, \\
8, & 11, & 14, & 17, & \ldots,
\end{array}
$$

Hence all $k \geq 6$ are acceptable.

Review Problems

353 1. four.
2. 12. This may be found by first showing that the area of the triangle is 36 .

354 3. 10 miles.
4. $\frac{15 \sqrt{2}}{2}$.
5. 48.
6. a. 35. b. 5.
7. Let the length of the side of the triangle be $2 n$. Then $(2 n)^{2}=n^{2}+6^{2}$ and $n=2 \sqrt{3}$, so $2 n=4 \sqrt{3}$.
8. The diagonals of a rhombus are perpendicular and bisect each other, forming four congruent right triangles. By the Pythagorean Theorem, half the length of the other diagonal is 5. Each triangle has an area of 30. The area of the rhombus is 120.

39
[pages 353-354]

10. Semprate the figure into
a snctanguiar and a
t=iamgular region. The are of the rectangle is ac. The area of the tiangle is $\frac{1}{2}(b-a)^{2}$.
fine total area is
 $a x+\frac{1}{n^{2}}(b-a)^{2}$.
355 11. Fise cutcer triangle has an area of $\frac{1}{2}$ be. The inner triangle has an area $\frac{1}{2}(b-3 a)(c-M a)$. The area of the shaded portion is found ivy subtraction t be $\frac{1}{2}\left(3 a c+4 a b-12 a^{2}\right)$.
12. 1010.
13. Consider $\overline{B X}$ as a base for \triangle BXC and $\overline{B A}$ as a base for paraillelogram adGB. Then area \triangle BXC $=\frac{1}{4}$ area patallelagram ADCB. By a similar argument,
 the areas of these two triangles from that of the Farallelograsi we find that area AECX $=\frac{1}{2}$ area Tarailelograza ABCD.
14. Eet the length or the side or the isosceles right triargle be e. Then its hypotenuse has length $e \sqrt{2}$, and the aren of a square an the hypotennse is $(=\sqrt{2})^{2}=2 e^{2}$. The area of the triangle is $\frac{1}{2} e^{2}$, thich is one-fourth that of the square.

40
[pagea 354-355]

Alternate solution: The five triangles in the drawing are all congruent, so by Postulate 18 all have the same area. Therefore, by Postulate 19, area $B C D E=4$ area $\triangle A B C$.
$355 * 15$. Let ABC be the given triangle and $A B^{\prime} C$ its projection on the plane. Let X be the mid-point of $\overline{A C}$, the side lying in the plane.

1. $\overline{\mathrm{BB}} \perp \overline{\mathrm{B}^{\prime} \mathrm{C}}$,
$\overline{B B^{\prime}} \perp \overline{B^{\prime} A}$ and
$\overline{B^{\prime}} \perp \overline{B^{\prime} X}$.
2. $\triangle A B^{\prime} B \cong \triangle C B^{\prime} B$.
3. $C B^{\prime}=A B^{\prime}$ and
$\triangle A B^{\prime} C$ is isosceles.
4. $\overline{B X}$ is an altitude of
$\triangle \mathrm{ABC}$;
$\overline{B I X}$ is an altitude of
$\triangle A B^{\prime} C$.
5. $m / B X B^{\prime}=60$.
6. $m / X B B^{\prime}=30$.
7. $B^{\prime} X=\frac{1}{2} B X$.
8. Area $\triangle A B^{\prime} C$
$=\frac{1}{2}$ Area $\triangle A B C$.
9. Definition of'projection. Definition of a line perpendicular to a plane.
10. Hypotenuse-Leg Theorem.
11. Corresponding parts and Definition of isosceles:
12. The median to the base of an isosceles triangle is an altitude.
13. Given, and Definition of plane angle of a dihedral angle.
14. Corollary 9-13-2. 30-60 Trlangle Theorem.
15. Theorem 11-2.
$356 * 16$. On $\overline{A B}$, the longer of the two parallel sides, locate
a point X so that
$A X=\frac{1}{2}(A B+C D)$. Then $\overline{\mathrm{DX}}$ separates the trapezoid into two regions of equal area.

Proof: Area $\triangle A D X=\frac{1}{2} h(A X)$.
Area $X B C D=\frac{1}{2} h(X B+C D)$.
For these areas to be equal it is necessary that

$$
\begin{aligned}
& \begin{aligned}
& \frac{1}{2} h(A X)=\frac{1}{2} h(X B+C D), \text { which will be the case if } \\
& A X=X B+C D . \\
& \text { Since } X B=A B-A X, \text { the previous equation can be } \\
& \text { written } \\
& A X=A B-A X+C D, \text { from which } \\
& A X=\frac{1}{2}(A B+C D)
\end{aligned}
\end{aligned}
$$ written

*17. By the Pythagorean Theorem any face diagonal such as $\overline{A B}$ has length $\sqrt{72}$. The diagonal $\overline{\mathrm{CB}}$ has J.ength $\sqrt{36+72}=\sqrt{108}$ or $6 \sqrt{3}$.
*18. $A C=\sqrt{200}=10 \sqrt{2}$.
$A G=15$.

*19. $\mathrm{BE}=12$.

1. $\triangle C F D \cong \triangle C E B$.
2. $C F=C E$.
3. $(B C)^{2}=256$, or
$B C=16$.
4. $\frac{1}{2}(C E)(C F)=\frac{1}{2}(C E)^{2}$

$$
=200, \text { or } C E=20
$$

5. $\quad \mathrm{BE}=12$.
6. A.S.A.
7. Corresponding parts.
8. Given area of the square.
9. Given and Statement 2.
10. Pythagorean Theorem.

356 *20. The area of RSPQ is $\frac{1}{5}$ that of $A B C D$ as can be seen by rearranging the triangular regions as shown.

357 *21. b. There are 45 small squares and 10 half squares so the area is 50 square units.
c. There are 42 small squares and 14 half squares so the area is 49 square units.
d. The area of the first triangle is $\frac{1}{2} \cdot 10 \cdot 10=50$; The area of the second triangle is $\frac{1}{2} \cdot 14 \cdot 7=49$.

A leg of the first is 10, and a leg of the second is $7 \sqrt{2}$ or approximately 9.90 . One-tenth unit in length is too small to notice when cutting one triangle out and placing it on the other.

Illustrative Test Items for Chapter 11
A. Area Formulas.

1. The perimeter of a square is 20. Find its area.
2. The area of a square is n. Find its side.
3. Find the area of the figure in terms of the lengths indicated.

4. The base of a rectangle is three times as long as the altitude. The area is 147 square inches. Find the base and the altitude.
[pages 356-357]
5. The area of a triangle is 72. If one side is 12 , what is the altitude to that side?
6. In the figure $W Y=X Y$ and $W Z=X Z . W X=8$ and $Y Z=12$. Find the area of WZXY.

7. RSTV is a parallelogram. If the small letters in the drawing represent lengths, give the area of:
a. Parallelogram RSTV.
b. Δ STU.
c. Quadrilateral VRUT.

8. Show how a formula for the area of a trapezoid may be obtained from the formula $A=\frac{1}{2} b h$ for the area of a triangle.

9. In surveying field ABCD shown here a surveyor laid off north and south line $\leftrightarrow \stackrel{H}{N S}$ through B and then located the east and west lines $\overleftrightarrow{C E}, \overleftrightarrow{\mathrm{DF}}$ and $\overleftrightarrow{\mathrm{A}}$. He found that $C E=5$ rods, $A G=10$ rods, $B G=6$ rods, $\mathrm{BF}=9$ rods and $\mathrm{FE}=4$ rods . Find the area of the fleld.

B. Comparison of Areas.
10. Given: ABCD is a trapezoid. Dlagonals $\overline{A C}$ and $\overline{B D}$ intersect at 0 .
Prove: Area $\triangle \mathrm{AOD}=$ Area \triangle BOC.

11. In this figure PQRS is a parallelogran with $P T=M$ and $\mathrm{NS}=\mathrm{SR}$. In a through e below compare the areas of the two figures listed.
a. Parallelogram SROP and ASQR.
b. Parallelograa SRQP and Δ RIRR.
c. \triangle PIS and \triangle HIR.
d. \triangle STR and \triangle SPR.

e. Δ Kirr and Δ hor.

C. Pythagorean Theoren.

1. How long mast a tent rope be to reach fros the top of a 12 foot pole to a point on the ground which is 16 reet from the foot of the pole?
2. A boat travels south $2 \boldsymbol{l}$ wiles, then east 6 illes, and then north 16 miles. How far is it frcm itss starting point?
3. Given the rectangular solid at tise right with $\mathrm{AB}=12$, $\mathrm{BC}=16$ and $\mathrm{BR}=15$. Find AC and ECC.
4. For the rigure at the right, rind AB and CB.

D. Properties of Special Triangles.
5. a. What is the length of $\overline{\mathrm{CB}}$?
b. What is the length
 of $\overline{A C}$?
6. The diagonal of a square is $\sqrt{2}$. Find its side.
7. The longest and shortest sides of a right triangle are 10 and 20. What is the measure of the smallest angle of the triangle?
8. The measures of each of two angles of a triangle is 45. What is the ratio of the longest side to eitrer of the other sides?
E. Mscellaneous Problems.
-. $A B C D$ is a trapezoid. $C D=1$ and $A B=5$. What is the area of the trapezoid?

9. What is the area of ABCD?

10. $A B C D$ is a rhombus with $A C=24$ and $A B=20$.
a. Compute its area.
b. Compute the length of the altitude to $\overline{\mathrm{DC}}$.

11. Find the area of a triangle whose sides are $9^{\prime \prime}, 12^{\prime \prime}$, and $15^{\prime \prime}$.
12. $A B C D$ is a parallelogram with altitude $\overline{\mathrm{DE}}$. Find the area of the parallelogram if:
a. $A B=2 \frac{1}{2}$ and $D E=6 \frac{1}{3}$.

b. $A B=10, A D=4$, and $m \angle A=30$.
13. Find tre area of an isosceles triansle winich has congruett sides of length 8 and base angles of 30°.

Answers

A. 1. 25.
2. \sqrt{n}.
3. $a b+a(c-a)$, or $a c+a(b-a)$, or $a b+a c-a^{2}$.
4. Let a be the length of the altitude and $3 a$ the length of the base. Then

$$
\begin{aligned}
3 a^{2} & =147 \\
a^{2} & =49 \\
a & =7
\end{aligned}
$$

The altitude is 7 . The length of the base is 21.
5. 12.
6. Consider the figure to be the union of triangular regions $W Y Z$ and $X Y Z$. It can be proved that $\overline{Y Z}$ is the perpendicular bisector of $\overline{W X}$. Hence $\overline{W P}$ and $\overline{X P}$ are altitudes of triangle $W Y Z$ and $X Y Z$ respectively. The area of each of these triangles is 24 . Hence the area of WZXY is 48.
7. a. ad.
b. $\quad \frac{1}{2} d(a-c)$.
c. $\quad \frac{1}{2} d(a+c)$.
8. Separate the rigure into triangular regions by drawing a diagonal. The areas of the respective

triangles are $\frac{1_{2}^{2}}{1} 1$ and
$\frac{1}{2} \mathbf{b}^{h}$. The sum of these
two areas is $\frac{1}{2} b_{1} h+\frac{1}{2} b_{2} h=\frac{1}{2}\left(b_{1}+b_{2}\right)$.
9. Area $A B C D=$ Area $A G F D+$ Aren DHESC - Area ncB - Area CiBB.

Area ABCD $=165+34-30-32 \frac{1}{2}$.
Area $\quad \mathrm{ABCD}=136 \frac{1}{2}$.
the area of the fleld is $136 \frac{1}{2}$ square rodis.
B. 1. Area $\triangle A D C=$ Area \triangle BCD because the telanglea have the same base $\overline{\mathrm{DC}}$ and equal altitudes.
Area \triangle DOC = Area \triangle DOC.
Therefore, by subtracting, he have Area Δ nol
= Area \triangle BOC.
2. a. Area parallelogran sisap
$=2$ Area Δ SGR.
b. Area parallelograz shop
$=$ Area 4 Ritr.
c. Area \triangle fis $=\frac{1}{4}$ Area Δ inR.
d. Area \triangle STR $=$ Area Δ SPR.
e. Area \triangle mir $=4$ Area Δ hir.
C. 1. 20 fee:
2. 10 miles .
(see figure at right.)

3. $\quad A C=20$. $\mathrm{EC}=25$.
4. $A B=25$ and $C B=7$.
D. 1. a. $6 \sqrt{2}$.
b. 12 .
2. 1 .
3. 30.
4. $\sqrt{2}$ to 1 .
E. 1. 6. (see figure at right.)

2. 43. $(A C=13$.
3. a. 384 . (See figure at right)
b. $\quad 19.2 \quad(384 \div 20$.

4. 54. ($\frac{1}{2} \cdot 9 \cdot 12$. The triangle is a right triangle.)

292

5. a. $15 \frac{5}{6}$.
b. 20 .
6. $16 \sqrt{3}$. (From $4 \sqrt{48}$.)

SIMIIARITY

In Chapter 5 we explored the concept of congruence, which encompassed the idea of a one-to-one correspondence between the vertices of two triangles such that corresponding sides and corresponding angles were congruent. In this chapter we talk of a correspondence between triangles such that corresponding angles are congruent and the ratios of corresponding sides are equal. This correspondence is called a similarity. After a discussion of proportions, there appears a proof of the fundamental proportionality theorem for triangles that is different from the usual one given. This proof is not new; quite the contrary. It was found in \exists text-book, published in 1855, written by the noted French mathematician, A. M. Legendre. More will be said about it later. For the most part, this chapter presents a conventional treatment of similar triangles. working with proportionalities. We should need no statements about the algebraic properties of proportions. The four properties we do state, however, will provide a basis for practice and review. The quantities used in proportions are numbers, and the algebra of fractional equations will enable the student to do all that is required.

The geometric mean of two positive numbers, a and c, is the positive number b, such that $\frac{a}{b}=\frac{b}{c}$. You may recognize that b is what has been called, in some textbooks, the mean proportional between a and c. We speak of this as the geometric mean of a and c, and $b=\sqrt{a c}$. Then "geometric mean" and "mean proportional" are names for the same thing, and we prefer to use "geometric mean" in this text. In mathematics there are such things as harmonic and arlthmetic means that do not arise from proportions, and we have usr: "geometric mean" because it arose historically in a geometric construction.

Problem Set 12-1
361 1. a. $7 a=3 b$.
b. $\quad 4 x=3 . \quad$ c. $\quad 6 y=20$.
2. a. $\frac{3}{2}$.
c. $\frac{65}{4}$.
b. $\frac{35}{4}$.
d. $\frac{33}{2}$.
3. a. $\frac{a}{x}=\frac{2}{3}$ and $\frac{a}{2}=\frac{x}{3}$.
b. $\frac{4}{3}=\frac{5}{m}$ and $\frac{m}{3}=\frac{5}{4}$.
c. $\frac{a}{b}=\frac{7}{4}$ and $\frac{b}{a}=\frac{4}{7}$.
d. $\frac{x}{5}=\frac{9}{6}$ and $\frac{5}{x}=\frac{6}{9}$.
4. a. $a=\frac{6 b c}{5 d}$.
c. $\quad a=\frac{21 b d}{20 c}$.
b. $\quad a=\frac{22 b d}{35 c}$.
d. $\quad a=\frac{12 c d}{5 b}$.
*5. a. $\frac{a+b}{b}=\frac{4}{I}$ and $\frac{a-b}{b}=\frac{2}{I}$.
b. $\frac{y+2}{2}=\frac{x+3}{3}$ and $\frac{y-2}{2}=\frac{x-3}{3}$.
c. $\quad \frac{a}{c}=\frac{4}{7} \quad$ and $\quad \frac{a-c}{c}=\frac{-3}{7}$.
d. $\frac{b+a}{a}=\frac{8}{5} \quad$ and $\quad \frac{b-a}{a}=\frac{-2}{5}$.

363 6. a. $1, \frac{7}{3}, 4$.
b. $1, \frac{7}{3}, 4$.
c. $1, \frac{7}{3}, 4$.

The three new sequences are identical, so each pair of the original three sequences are proportional.

363
7. a and d.
a. $1, \frac{7}{5}, \frac{9}{5}$
a and i.
b. 1, 2, 3.
d and i.
c. $1, \frac{7}{9}, \frac{17}{9}$.
b and f.
d. $1, \frac{7}{5}, \frac{9}{5}$.
b and h.
e. $1, \frac{7}{9}, \frac{17}{9}$
I and h.
P. 1, 2, 3.
c and e.
g. 1, $\frac{7}{9}, \frac{17}{9}$.
c and g.
h. 1. 2, 3.
e and g .
i. $1, \frac{7}{5}, \frac{9}{5}$
8. $w=800 ; y=1000$.
9. $x=\frac{3}{4} ; \quad y=1 ; \quad z=\frac{11}{4}$.
10. b and i are correct.

364 11. $\quad p=18 ; \quad q=24 ; \quad t=70$.
12. a. G.M. $=6, \quad(6.000) ;$ A. m. $^{2}=6.5$.
b. G.M. $=6 \sqrt{2}$, (8.484); A.M. $=9.0$.
c. G.M. $=4 \sqrt{5}$, (8.944); A.M. $=9.0$.
d. G.M. $=4 \sqrt{3}$, (6.92R); A.H. $=13.0$.

The definition of a sisilarity, like the definition of a congrisence, requitres two things. For sinilar triangles we could have based our deflafition on either one of the two conditions, and proved the other. It seems best, homever, to make a definition which may be generalized for other polyzonal fleures.

$$
53
$$

Notice that. the idea of a correspondence whj.ch matches vertices is employed for similar triangles as for congruent triangles: the similarity indicates, without recourse to a figure, the corresponding sides and angles.

Problem Set 12-2
366

1. a. $\quad A B=\frac{A C \cdot D E}{D F}$.
b. $\quad \mathrm{BC}=\frac{\mathrm{AB} \cdot \mathrm{EF}}{\mathrm{DE}}$.
d. $\quad \mathrm{AB}=\frac{\mathrm{DE} \cdot \mathrm{BC}}{\mathrm{EF}}$.
c. $\quad A C=\frac{B C \cdot D F}{E F}$.
e. $\quad B C=\frac{A C \cdot E F}{D F}$.
f. $\quad A C=\frac{D F \cdot A B}{D E}$.

367
2. $a, b ; \frac{3}{6}=\frac{4}{8}=\frac{6}{12}$.
a, $d ; \quad \frac{3}{9}=\frac{4}{12}=\frac{6}{18}$.
b, $d ; \frac{8}{12}=\frac{6}{9}=\frac{12}{18}$.
3. $\frac{2}{7.5}=\frac{1.6}{h}$.
$h=\frac{(7.5)(1.6)}{2}$.
$h=6$.
The height of the object in the enlargement is 6 inches.
4. Yes. If $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$, the conditions necessaryfor a similarity are met. That is,
(1) $\angle A \cong \angle A^{\prime}, \quad \angle B \cong \angle B^{\prime}, \quad \angle C \cong \angle C^{\prime}$ and
(2) $\frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C}=\frac{B^{\prime} C^{\prime}}{B C}$.

367
5. Given: $\triangle A B C$; D, E, F the mid-points of the sides $\overline{A B}, \overline{B C}, \overline{C A}$ respectively. Prove: $\triangle E F D \sim \triangle A B C$. Proof: By Theorem 9-22, $E D=\frac{1}{2} A C, \quad F E=\frac{1}{2} A B$, $F D=\frac{1}{2} C B$, and $\overline{E D} \| \overline{A C}$, $\overline{F E}\|\overline{A B}, \overline{F D}\| \overline{C B}$. FDEC, ADEF, DBEF are parallelograms. By Theorem 9-16, $\angle F D E \cong \angle B C A$, $\angle D E F \cong \angle C A B, \quad \angle E F D \cong \angle A B C ;$ since we have also proved above that $\frac{E D}{A C}=\frac{F E}{A B}=\frac{F D}{C B}, \quad \triangle E F D \sim \triangle A B C \quad$ by definition of similarity.

Conventional proofs of the Basic Proportionality Theorem contended with (1) a relatively unconvincing division of the sides of a triangle by a series of parallel lines, and (2) the problem of what to do when the ratio of the length of a segment to the length of a side containing that segment is not a rational number (the incommensurable case). It has of ten been the practice to give a proof of the theorem for the commensurable case and mention the other possibility. The proof in the text avoids this difficulty since it is based on the area postulates, which involve real numbers.

In the proof of Theorem $12-2$ we tacitly assume that E is between A and C^{\prime}. It is obvious from a figure that betweenness is preserved under parallel projection, but we have not justified it on the basis of our postulates. It is easily proved as follows:

5%

[pages 367-369]

(The Parallel Projection Theorem.)

Given two transversals T_{1} and T_{2} intersecting three parallel lines L_{1}, L_{2}, L_{3} in points A, B, and C and A^{\prime}, B^{\prime}, and C^{\prime} respectively. $I P B$ is between A and C then B^{\prime} is between A^{\prime} and C^{\prime}.

Proof: Since $L_{1} \| L_{2}$, then the segment $\overline{A A^{\prime}}$ cannot intersect L_{2} and hence A and A^{\prime} are on the same side of L_{2}. Likewise, since $L_{3} \| L_{2}$, then the segment $\overline{C C}{ }^{r}$ cannot intersect L_{2} and C and C, are on the same side of L_{2}. Since B is between A and C by hypothesis, segment $\overline{A C}$ intersects L_{2} at B; hence, A and C are on opposite sides of L_{2}. Since A^{\prime} and A are in the same halp-plane determined by L_{2} and C^{\prime} and C are in the same half-plane and A and C are in opposite halfplanes then it follows that A^{\prime} and C^{\prime} are in opposite half-planes determined by L_{2}. Hence $\overline{A^{\prime} C^{\prime}}$ meets L_{2} in a point which must be B^{\prime}, since B^{\prime} is the intersection of $A^{\prime} C^{\prime}$ and L_{2}. Therefore, B^{\prime} is between A^{\prime} and C^{\prime}. We have assumed that $A \neq A^{\prime}$ and $C \neq C^{\prime}$. The argument above is easily modified to apply to the cases where $A=A^{\prime}$ or $C=C^{\prime}$.

Note that the application of this principle to Theorem 12-2 involves the case $A=A^{\prime}$.

- Prohlem Set 12-3a

370 1. $\frac{a+b}{a}=\frac{x+y}{x}$. $\quad \frac{a}{b}=\frac{x}{y}$.
$\frac{a+b}{b}=\frac{x+y}{y} . \quad \frac{a}{x}=\frac{b}{y}$.
$\frac{a+b}{x+y}=\frac{a}{x} . \quad \frac{x+y}{a+b}=\frac{y}{b}$.
2. $\quad \frac{F A}{F H}=\frac{F B}{F P T} . \quad \frac{T B}{F T}=\frac{H A}{F H}$.
$\frac{F A}{H A}=\frac{F B}{T B} . \quad \frac{F T}{F H}=\frac{F B}{F A}=\frac{T B}{H A}$.
$\frac{\mathrm{FH}}{\mathrm{HA}}=\frac{\mathrm{FT}}{\mathrm{TB}} . \quad \frac{\mathrm{BT}}{\mathrm{AH}}=\frac{\mathrm{BF}}{\mathrm{KF}}=\frac{\mathrm{FT}}{\mathrm{FH}}$.
3. a. $\mathrm{AB}=5 \frac{5}{7}$. b. $\mathrm{BF}=5$. c. $\mathrm{BF}=13 \frac{1}{2}$.

371 4. . e. $\quad B C=24$.
d. $\quad \mathrm{BE}=7 \frac{1}{2}$.
b. $\quad C E=6 \frac{2}{3}$.
e. $A D=10$.
c. $\quad A C=11$.
5. No. $\frac{20}{16} \neq \frac{30}{23}$.
6. a, b, e.

372 7. a. By Theorem 12-1, $\frac{C A}{C D}=\frac{C B}{C F}$. Then

$$
\frac{C A}{C D}-1=\frac{C B}{C F}-1
$$

or

$$
\frac{C A-C D}{C D}=\frac{C B-C F}{C F} .
$$

Therefore

$$
\frac{\mathrm{DA}}{\mathrm{CD}}=\frac{\mathrm{FB}}{\mathrm{CF}}
$$

372 b. Taking the reciprocals of both fractions of (a) we get

$$
\frac{C D}{D A}=\frac{C F}{F B} .
$$

Then

$$
\frac{C D}{D A}+1=\frac{C F}{F B}+1
$$

or

$$
\frac{C D+D A}{D A}=\frac{C F+F B}{F B} .
$$

Therefore,

$$
\frac{C A}{D A}=\frac{C B}{F B} .
$$

c. By Theorem 12-1, $\frac{C A}{C D}=\frac{C B}{C F}$.

Clearing of fractions, $C A \cdot C F=C D \cdot C B$, and dividing by $C F \cdot C B$ we have

$$
\frac{C A}{C B}=\frac{C D}{C F}
$$

8. $\frac{w}{19}=\frac{9}{16}$ is one. $w=\frac{171}{16}$.
9. x must be 8 or 11 .
10.

No, the figure does not have to be planar.

373
11. Proof: Draw transversal $\overleftrightarrow{D C}$ intersecting $\overleftrightarrow{B E}$ in
G. In $\triangle C A D$ we have by

Theorem 12-1, $\frac{A C}{B C}=\frac{C D}{C G}$
from which $\frac{A B}{B C}=\frac{D G}{G C}$.
Similarly, in \triangle DCF, we

get $\frac{D G}{G C}=\frac{D E}{E F}$.
Hence, $\frac{A B}{B C}=\frac{D E}{E F}$.
(An alternate method of proof might use an auxiliary line $\overleftrightarrow{C W}$ as shown at the right, or a line $\overleftrightarrow{D R} \| \overleftrightarrow{A C}$ as shown here.)

12. Lot I: 80 feet. Lot II: 160 feet. Lot III: 120 feet.
13. Since $\overleftrightarrow{A B} \| \overleftrightarrow{X X}, \frac{O A}{O X}=\frac{O B}{O Y}$.

Similarly, $\overleftrightarrow{B C} \| \overleftrightarrow{Y Z}$ implies
$\frac{O B}{O X}=\frac{O C}{O Z}$.
Hence,
$\frac{O A}{O X}=\frac{O C}{O Z} . \quad$ This implies $\overleftrightarrow{A C} \| \overleftrightarrow{X Z}$ by Theorem 12-2.

374 14. x will be the length of the folded card, so

$$
\frac{6}{x}=\frac{x}{3} \text { and } x^{2}=18
$$

The width of the card should be $\sqrt{18}$ or $3 \sqrt{2}$ inches.
[pages 373-374]
59

374-378 In the proofs of Theorems 12-3, 12-4, and J.2-5 we have drawn the figure with $A B>D E$ and used this in each proof, except that in Theorem 12-3 the case $A B=D E$ was discussed. (Notice here if $A B=D E, \triangle A E^{\prime} F^{\prime}$ and $\triangle A B C$ coincide, that is $\Delta A^{\prime} F^{\prime}=\Delta A B C$.) In the case $A B<D E$ a similar proof would be given with E^{\prime} on $\overrightarrow{D E}$ and $D E^{\prime}=A B$.

It might be advisable to point out to the students the general plan of the proof of Theorem 12-5. First prove $\triangle A B C \sim \triangle A E^{\prime} F^{\prime}$ by the A.A. Corollary, then prove $\triangle A E^{\prime} F^{\prime} \cong \triangle$ DEF by the S.S.S. Theorem, and finally prove $\triangle A B C \sim \triangle D E F$ by the A.A. Corollary.

Problem Set 12-3b
379 1. Similarities are indicated in a, c, d.
Notice that the wording of (e) permits

and

2. The A.A.A. and the A.A. Theorems.
3. a. No.
c. No.
b. Yes.
d. Yes.

380 4. a. The triangles are similar. S.S.S.
b. Not similar.
c. The triangles are similar. A.A.A. or S.A.S.
d. Similar. A.A.A.
e. Similar. S.S.S.
f. Similar. A.A. or S.A.S.

360 5. a. $\angle \operatorname{axc}$ or \angle BXC.
b. $\angle \operatorname{sas}$.
c. \triangle AXC, or \triangle CXB.

381
7. a. $\triangle A B P \backsim \triangle$ QRS.

$$
\begin{aligned}
& \frac{A B}{Q R}=\frac{A P}{Q S}=\frac{B P}{R S}=\frac{1}{3} . \\
& \frac{M P}{R I}=\frac{M M}{R S}=\frac{T W}{I S}=\frac{2}{3} .
\end{aligned}
$$

b. Δ hiti $\sim \Delta$ Bis.
c. $\triangle A B C$ is not $\sim \triangle I Y Z$.
a. \triangle ABC $\sim \triangle$ TSR.
$\frac{\mathrm{AB}}{\mathrm{TB}}=\frac{\mathrm{AC}}{\mathrm{TR}}=\frac{\mathrm{BC}}{\mathrm{SR}}=\frac{1}{5}$.
e. $\triangle A B C \sim \triangle T H X$.
$\frac{A B}{T X}=\frac{B C}{X X}=\frac{A C}{T X}=6$.
8. $\triangle A B C \sim \triangle C B L$ since the vertical angles at L are congruent as well as the given angles B and D. From tixe given information $\frac{C D}{A B}=\frac{4}{I}$. Since the triangles have been proved similar $\frac{D_{L}}{B L}=\frac{4}{I}$. Then $\frac{D L+B L}{B L}=\frac{4+1}{1}$.
Since L is between B and D, this can be written
$\mathrm{BD}=\frac{5}{1}$ or $\mathrm{BD}=5 \mathrm{BL}$.
382 9. a. $\frac{P}{I}=\frac{B}{I}, \quad r x=3, \quad x=\frac{3}{T}$.
b. $\frac{1}{m}=\frac{p}{x}, \quad x=m p$.
c. $\frac{1}{x}=\frac{k}{x}, \quad x=k^{2}$.
d. $\frac{t}{I}=\frac{1}{x}, \quad x t=1, \quad x=\frac{1}{t}$.
e. Part b.
f. Part a.
8. No.

382 10. Of the five. equal pairs of parts three must be angles, for if three were sides the triangles would be congruent. Herse the triangles are similar. Neither of the two pairs of equal sides can be corresponding sides or the triangles would be congruent by A.S.A. The remaining possibility can best be shown by an example.

11. 1. $\triangle . O B X \sim \triangle O_{1} B_{1} X$ by A.A.A.
2. Therefore $\frac{O B}{O_{1} B_{1}}=\frac{O X}{O_{1} X}$.
3. $\triangle O D X \sim \Delta O_{1} D_{1} X \quad$ by A.A.A.
4. Therefore $\frac{O D}{O_{1} D_{1}}=\frac{O X}{O_{1} X}$.
5. From Statements 2 and $3, \frac{O B}{O_{1} B_{1}}=\frac{O D}{O_{1} D_{1}}$.
*l2. a. $\quad \Delta \mathrm{BSC} \sim \Delta \mathrm{BTD}, \quad \triangle \mathrm{DSC} \sim \Delta \mathrm{DRB}, \quad \triangle \mathrm{RSB} \sim \Delta \mathrm{DST}$.
b. $\quad \frac{z}{y}=\frac{p}{p+q}$.
c. $\quad \frac{z}{x}=\frac{q}{p+q}$.
d. $\frac{z}{x}+\frac{z}{y}=\frac{p+q}{p+q}$.
$\frac{z}{x}+\frac{z}{y}=1$.
$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$.
e. Construct perpendiculars. 6 and 3 units long at opposite ends (but on the same side) of any segment $\overrightarrow{B D}$. Join the ends of these perpendiculars to the opposite ends of the segment, and where these lines intersect, draw a perpendicular to $\overline{\mathrm{BD}}$. Measure this perpendicular. It should be 2 units long. Therefore the task would require 2 hours.

13. \qquad

1. ABRQ is a parallelogram.
2. $\angle Q H A \cong \angle B H F$.
3. $\overline{\mathrm{AQ}} \| \overline{\mathrm{RB}}$.
4. $\angle \mathrm{AQB} \cong \angle \mathrm{FBH}$.
5. $\triangle \mathrm{AHQ} \sim \triangle \mathrm{FHB}$.
6. $\frac{A H}{F H}=\frac{H Q}{H B}$.
7. $\mathrm{AH} \cdot \mathrm{HB}=\mathrm{FH} \cdot \mathrm{HQ}$.
8. Given.
9. Vertical angles.
10. Definition of a parallelogram.
11. Alternate interior angles.
12. A.A.
13. Definition of similar triangles.
14. Clearing of fractions.
15. a. and b. Let $a, 2 a, 4 a$ stand for the lengths as shown in the figure. Then it can easily be shown for each pair of triangles mentioned that the S.A.S. Similarity
 Theorem applies.
c. $\angle A D Q$ and $\angle Q A D$ are complementary angles.
$\angle Q A D \cong \angle Q D C$, since they are corresponding
angles of similar triangles. Therefore $\angle A D Q$
and $\angle Q D C$ are complemertary and $m \angle A D C=90$.
16. Let $\overleftrightarrow{\mathrm{BE}}$ be pंarallel to $\overleftrightarrow{\mathrm{AD}}$, meeting $\overleftrightarrow{\mathrm{AC}}$ in E . $\angle A B E \cong \angle D A B$ (alt. int. $\angle s$) and $\angle A E B \cong \angle C A D$ (corr. $\angle \mathrm{s}$). Also, $\angle \mathrm{DAB} \cong \angle \mathrm{CAD}$ (given). Therefore $\angle \mathrm{AEB} \cong \angle \mathrm{ABE}$. Therefore $\mathrm{AE}=\mathrm{AB}$. Since $\frac{C D}{D B}=\frac{C A}{A E}$, then $\frac{C D}{D B}=\frac{C A}{A B}$ by substitution.
$384 * 16$. From the previous problem $\frac{C D}{D B}=\frac{C A}{A B}$. By an exactly similar proof you can show that $\frac{C D^{\prime}}{D^{\prime} B}=\frac{C A}{A B}$. Therefore $\frac{C D^{\prime}}{D^{\prime} B}=\frac{C D}{D B}$.
*17. a. Let E be the point on the ray opposite to
$\overrightarrow{A B}$ such that $A E=y$. lateral, $E C=y$. In the similar triangles ECB and ADB,

$$
\begin{aligned}
\frac{E C}{A D} & =\frac{E B}{A B}, \quad \text { or } \\
\frac{y}{z} & =\frac{x+y}{x}, \\
\frac{y}{z} & =1+\frac{y}{x} . \\
y, & \text { we get } \\
\frac{1}{z} & =\frac{1}{y}+\frac{1}{x} .
\end{aligned}
$$

$$
\text { Dividing by } y \text {, we get }
$$

b. Yes, place the straight-edge against R_{1} on the middle scale and R_{2} on one of the outer scales. Then read off R on the other outer scale.

385
18.

1. $\frac{R W}{A L}=\frac{W S}{L Q}=\frac{R T}{A M} . \quad$ 1. Given.
2. $\frac{\mathrm{RT}}{\mathrm{AM}}=\frac{\frac{1}{2} R T}{\frac{1}{2} \mathrm{AM}}=\frac{\mathrm{RS}}{\mathrm{AQ}}$.
3. $\frac{R W}{A L}=\frac{W S}{L Q}=\frac{R S}{A Q}$.
4. $\triangle R S W \sim \triangle A Q L$.
5. $\angle R \cong \angle A$.
6. \triangle RWT $\sim \triangle$ ALM.
7. Given $\overline{W S}$ and $\overline{\mathrm{LQ}}$ are medians.
8. Steps 1 and 2, and substitution.
9. S.S.S. Similarity.
10. Definition of similar triangles.
11. Step 1 and Theorem 12-4.
12. \qquad
13. $\angle y$ is the complement of $\angle x$.
14. $\angle y$ is the complement of $\angle R$.
15. $\angle \mathrm{x} \cong \angle \mathrm{R}$.
16. $\angle B \cong \angle R H A$.
17. \triangle HRA $\sim \triangle$ BAF.
18. $\frac{H R}{B A}=\frac{H A}{B F}$.
19. $\mathrm{HR} \cdot \mathrm{BF}=\mathrm{BA} \cdot \mathrm{HA}$.
20. $\overline{R A} \perp \overline{A B}$, and definitcion of complementary angles.
21. Given $\overline{\mathrm{RH}} \perp \overline{\mathrm{AF}}$, and Corollary 9-13-2.
22. Complements of the same angle are congruent.
23. $\overline{\mathrm{RH}} \perp \overline{\mathrm{AF}}$ and $\overline{\mathrm{FB}} \perp \overline{\mathrm{AB}}$.
24. A.A. Corollary.
25. Definition of similar triangles.
26. Clearing of fractions in Step 6.

386 20. a. No.
b. Bisect $\overline{P A}_{1}, \overline{P B}_{1}$, etc., and connect the resulting mid-points.
c. $\frac{P A_{2}}{P A_{1}}=\frac{P_{2}}{P_{2} B_{1}}$ because both equal 2. $\angle A_{1} P B_{1}$ is common to triangles $\mathrm{A}_{1} \mathrm{~PB}_{1}$ and $\mathrm{A}_{2} \mathrm{~PB}_{2}$. These triangles are therefore similar by the S.A.S. Similarity Theorem; and as a result of their being similar the sides $A_{2} B_{2}$ and $A_{1} B_{1}$ have the same ratio as the other corresponding sides.
d. Not only $A_{2} B_{2}$ and $A_{1} B_{1}$, but other corresponding sides of triangles $A_{2} B_{2} D_{2}$ and $A_{1} B_{1} D_{1}$ are in the ratio $2: 1$ by a proof like that in part c. $\Delta A_{2} B_{2} D_{2} \sim \Delta A_{1} B_{1} D_{1}$ by the S.S.S. Similarity Theorem.
e. Yes, the method could be used for any point P; but in some instances the enlargement would intersect the given figure.

387*21. $\angle S R X \cong \angle Q T X$ and $\angle R S X \cong \angle T Q X$ (alternate interior (A), so $\triangle \operatorname{SRX} \sim \Delta$ QTX by A.A. Therefore
$\frac{R X}{T X}=\frac{S X}{Q X}$, so $\frac{R X}{S X}=\frac{T X}{Q X}$. Since $\Delta Q X R \sim \Delta T X S$ (given),
$\frac{R X}{S X}=\frac{Q X}{T X}$. Therefore $\frac{Q X}{T X}=\frac{T X}{Q X}, \quad(Q X)^{2}=(T X)^{2}$, and $Q X=T X$, since both $Q X$ and $T X$ are positive. $\angle X Q R \cong \angle X T S$ and $\angle R X Q \cong \angle S X T$ (definition of similar triangles), so Δ QXR $\approx \Delta T X S$ by A.S.A. Therefore $Q R=T S$.

Alternate proof: If $T S>Q R$, then $T X>Q X$ and $\mathrm{XS}>\mathrm{XR}$, from $\triangle \mathrm{QXR} \sim \Delta \mathrm{TXS}$. In Δ QXrT, $\mathrm{m} / \mathrm{XQT}>\mathrm{m} / \mathrm{XTQ}$, by Theorem 7-4, and in $\Delta \mathrm{RXS}$, $m / S R X>m / R S X$. But $m / X T Q=m / S R X$; by alternate interior $\angle \mathrm{s}$, and $\mathrm{m} / \mathrm{XQT}=\mathrm{m} / \mathrm{RSX}$. Contradiction. Similarly if $Q R>T S$.
22.

1. $\bar{\sim} \overline{\mathrm{AW}} \perp \overline{\mathrm{MW}}$.	1.	Given.
BFRQ is a square.		
2. $\angle \mathrm{ABQ} \cong \angle \mathrm{W} \cong \angle \mathrm{MFR}$.	2.	Definitions of perpendicular and square.
3. Let $m / A=a$ and $m / M=m$.	3.	Angle Measurement Postulate.
4. Thus, $m / F R M=a$ and $m \angle A Q B=m$.	4.	Corollary 9-13-2.
5. Also, $m / W Q R=a$ and $m / W R Q=m$.	5.	The sum of the measures of the angles at Q is 180 and the sum of the measures of the angles at $\cdot R$ is 180 .
6. $\triangle \mathrm{ABQ} \sim \triangle \mathrm{RFM} \sim \triangle \mathrm{QWR}$.	6.	A.A.A.
7. $\frac{A B}{Q W}=\frac{B Q}{W R}$ and $\frac{A B}{R F}=\frac{B Q}{F M}$.	7.	Definition of similar triangles.
$\text { 8. } \quad \begin{aligned} \mathrm{AB} \cdot \mathrm{WR} & =\mathrm{QW} \cdot \mathrm{BQ} \text { and } \\ \mathrm{AB} \cdot \mathrm{FM} & =\mathrm{RF} \cdot \mathrm{BQ} . \end{aligned}$	8.	Clearing of fractions in Step 7.

23. Since $\triangle A B F \sim \triangle H R Q$ we know $\angle F \cong \angle Q$ and
$\frac{A F}{H Q}=\frac{A B}{H R}=\frac{B F}{R Q}$. Also $\quad \frac{F B}{Q R}=\frac{\frac{1}{2} F B}{\frac{1}{2} Q R}=\frac{F W}{Q X}=\frac{A F}{Q H}$. Then
$\triangle A W F \sim \triangle H X Q$ by S.A.S. Similarity, and then
$\frac{A W}{H X}=\frac{A F}{H Q}=\frac{F B}{Q R}=\frac{A B}{H R}$.
It is possible to continue in the same way for the other medians.
24. Since \triangle ABF $\sim \Delta X W R$ then $\angle x \cong \angle A$ and
$\frac{X R}{A F}=\frac{X W}{A B}=\frac{W R}{B F} \cdot m / A H F=m / X Q R$ and so $\Delta X Q R \sim \Delta A H F$ by A.A. Then $\frac{R Q}{F H}=\frac{X R}{A F}$.
A similar proof can be followed for each of the altitudes.
*28. a. 1. $\triangle A B C \sim \triangle A D E ; \frac{A B}{A D}=\frac{A C}{A E}=\frac{B C}{D E}$.
25. $\triangle A B C$ and $\triangle A D F$ are not similar even though

$$
\frac{A B}{A D}=\frac{B C}{D F} \text { since } m / B \neq m / F D A .
$$

b. False. The diagram shows a counter-example. The hypothesis is true if X is either E or F. The conclusion is false if X is F.
$390 * 29$. In similar A ABC and EDC, $\frac{x}{39}=\frac{a}{b}$. From the similar B) $A C G$ and AEF, $\frac{a+b}{a}=\frac{7}{3}$, $1+\frac{b}{a}=\frac{7}{3}$, $\frac{b}{a}=\frac{4}{3}$, $\frac{a}{b}=\frac{3}{4}$,

$$
\frac{x}{39}=\frac{3}{4},
$$

$$
x=\frac{3}{4} \cdot 39=29 \frac{1}{4}
$$

Answer. The ball hits the ground at least 29'3" from the net.

$$
\begin{aligned}
& 30 \cdot \Delta \operatorname{CBE} \sim \triangle A E F \text { since } \angle x \cong \angle y \quad \text { (alternate interior } \\
& \text { ueslec of parallel? lines } \overleftrightarrow{B C} \text { and } \overleftrightarrow{A D}) \text { and } \\
& \angle \mathrm{EEA} \cong \angle \mathrm{BEC} \text { (vertical angles); therefore } \frac{\mathrm{EF}}{\mathrm{~EB}}=\frac{\mathrm{FA}}{\mathrm{BC}} \\
& =\frac{A E}{C E} \text { Also, } \triangle C E G \sim \triangle A E B \text { since } \angle A B E \cong \angle C G E \\
& \text { (alternate interior angles) and } \angle C E G \cong \angle A E B \text { (vertical } \\
& \text { angles) ; we get } \frac{B A}{G C}=\frac{A E}{C E}=\frac{E B}{E G} \text {. Since in each case we } \\
& \text { have } \frac{A E}{C E} \text { as one of the fractions, we also have } \frac{E F}{E B}=\frac{E B}{E G} \text {. } \\
& \text { - 1. the } \overleftrightarrow{A X} \| \overleftrightarrow{B Y}, \quad \triangle \operatorname{DAX} \sim \triangle D S Y \text { and } \frac{D A}{D B}=\frac{A X}{B Y} \text {. } \\
& \text { atmilarly, since } \overleftrightarrow{C Z} \| \overleftrightarrow{B Y}, \triangle C E Z \sim \Delta B E Y \text { and } \frac{E C}{E B}=\frac{C Z}{B Y} \text {. } \\
& \text { Exit } A X=C Z, \text { since opposite sides of a parallelogram } \\
& \text { are congruent, and so } \frac{D A}{D B}=\frac{E C}{E B B} \text {. Now } 1-\frac{D A}{D B}=1-\frac{E C}{E B} \text {, } \\
& \frac{\mathrm{DL} \cdot \mathrm{DA}}{\mathrm{DE}}=\frac{\mathrm{EB}-\mathrm{EC}}{\mathrm{~EB}} \text { and } \frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{BC}}{\mathrm{~EB}} \text {. Therefore } \overleftrightarrow{A C} \| \overleftrightarrow{D E} \text { by } \\
& \text { Theron 12-2. And now } \overleftrightarrow{A C}\|\overleftrightarrow{D E}\| \overleftrightarrow{X Z} \text {. } \\
& 301 \text { an. in right f AXE and } \\
& \text { CF, } \angle \mathrm{FXC} \cong \angle E X A, \\
& \text { fence } \angle X A E \cong \angle X C F \quad(\angle a) \text {. } \\
& \angle \text { a ts a complement of } \\
& \angle a \quad \angle b \text { is a complex- } \\
& \text { melt of } \angle c \text {. Hence } \\
& \angle a \cong \angle b \cong \angle X A E \text {. Hence } \\
& \triangle B F C \sim \triangle A D C \text { and } \\
& \frac{B i}{M C}=\frac{A D}{A C} . \\
& \text { i. Size } A B \text { occurs in each denominator, one only } \\
& \text { nurse to show that } \\
& B E=C D+\frac{A D}{A C} \cdot B C . \\
& \therefore!B \cdots \quad B F=F E+B F \\
& =C D+B F \\
& \text { ane only needs to show that } \\
& A F=\frac{A D}{A C} \cdot B C \text {. }
\end{aligned}
$$

This l: essentially what was shown in part a. : lu!: problem.

In Theorem $12-6$ we have assumed the following theorem: In any figit trlangle the altitude from the vertex of the rlght angle intersects the hypotenuse in a point between the end-points of the hypotenuse.

Proof: Let D be the font of the perpendicular from 0 to $\overleftrightarrow{A B}$.

There are 5 possible cases:
(1) $D=A$.
(2) $D=B$.
(3) A is between D and B.
(4) B is between D and A.
(5) D is between A and B.

We would like to show that cases (1), (2), (3), and (4) are lmpossible which leaves case (5) as the required result.

Case (1) is impossible because \triangle BDC then would have two rlght angles, one at C and one at D.

Case (2) 1s impossible for a similar reason as in
Case (1).
Proof that case (3) is impossible:

Suppose that A is between D and B. Then $\angle C D A$ is a right angle of $\triangle C D A$. Moreover $\angle C A B$ is an exterior ancile of $\triangle C D A$ and so ls obtuse. But this is impossible, since $\angle C A B$ ls an acute angle of $\triangle A B C$.

A stinlar proof shows that Case (4) is impossible, hence, Case (5) holds as was to be proved and the altitude tron O must Lntersect the hypotenuse at some point D, suoh that D ls between A and B.

Once we have proved Theorem $12-6$, it is now possible to prove the Pythagorean Theorem using similar triangles. This has not been done in the text, however, since the theorem has been proved once by areas. If time permits, it might be illuminating to the class to let them see the following proof, reminding them that there is more thin one way to attack a mathematical problem.
Theorem: Given a right triangle, with legs of length a and b and hypotenuse of length c. Then $a^{2}+b^{2}=c^{2}$.

Proof: Let $\overline{C D}$ be the altitude from C to $\overline{A B}$, as in Theorem $12-6$. Let $x=A D$ and let $y=D B$, as in the figure. The scheme of the proof is simple. (1) First we calculate x in terms of b and c, using similar triangles. (2) Then we calculate y in terms of a and c, using similar triangles. (3) Then we add x and y, and simplify the resulting equation, using the fact that $c=x+y$.
(1) Since $\triangle A C D \sim \triangle A B C$, we have $\frac{x}{b}=\frac{b}{c}$. Therefore $x=\frac{b^{2}}{c}$.
(2) Since $\triangle C B D \sim \triangle A B C$, we have $\frac{y}{a}=\frac{a}{c}$.

Therefore $y=\frac{a^{2}}{c}$.
(3) Thus we have $x+y=\frac{a^{2}+b^{2}}{c}$,

But $\quad c=x+y$.
Therefore $c=\frac{a^{2}+b^{2}}{c}$, and $a^{2}+b^{2}=c^{2}$, which was to be proved.
[page 392]

314

395
Note to the teacher: At this point in the text you may wish to proceed directly to Chapter 17, Plane Coordinate Geometry, and later return to the remaining chapters.

Problem Set 12-4
393 1. $x=2 \sqrt{5}$.
$z=6$.
$y=3 \sqrt{5}$.
2. $x=16$.
$y=4 \sqrt{5}$.
$z=8 \sqrt{5}$.
$394 \quad 3$.
a. $\quad \frac{4}{6}=\frac{6}{x+4}$.
c. $\quad \frac{9}{a}=\frac{a}{5}$.
$36=4 x+16$.
$a^{2}=9.5$.
$20=4 x$.
$a=3 \sqrt{5}$.

$$
5=x .
$$

b. $\frac{4}{y}=\frac{y}{5}$.
$\mathrm{y}^{2}=4.5$.

$$
y=2 \sqrt{5} .
$$

4. Let the segments of the hypotenuse be x and $25-x$. Then $\frac{x}{12}=\frac{12}{25-x}$ by Theorem 12-6 and definition of similar trlangles.
$144=25 x-x^{2}$.

$x^{2}-25 x+144=0$.
$(x-9)(x-16)=0$. The segments of the hypotoruse are 9 and 16 . If a is the length of the shorter 1 ag,
[pages 393-395]
72
$\frac{25}{a}=\frac{a}{9}$,
$a=15$.
$\frac{25}{b}=\frac{b}{16}$,
$b=20$.
394 5. a. $C D=4 ; \quad A C=\sqrt{20}=2 \sqrt{5 ;} \quad C B=\sqrt{80}=4 \sqrt{5}$.
b. $\quad \mathrm{DB}=27 ; \mathrm{AC}=\sqrt{90}=3 \sqrt{10} ; \mathrm{CB}=\sqrt{810}=9 \sqrt{10}$.
c. Let $\mathrm{DB}=\mathrm{x}$, then $\mathrm{x}(\mathrm{x}+10)=144$.

$$
\begin{aligned}
& x^{2}+10 x=144 \\
& x^{2}+10 x-144=0 \\
&(x+18)(x-8)=0 \\
& x=8
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{DB}=8 \\
& \mathrm{CA}=\sqrt{180}=6 \sqrt{5} \\
& \mathrm{CD}=\sqrt{80}=4 \sqrt{5}
\end{aligned}
$$

d. Let $A D=x$, then $x(x+12)=64$.

$$
\begin{aligned}
x^{2}+12 x-64 & =0 \\
(x-4)(x+16) & =0 \\
x & =4
\end{aligned}
$$

$$
\begin{aligned}
& A D=4 . \\
& C B=8 \sqrt{3} . \\
& C D=\sqrt{48}=4 \sqrt{3 .}
\end{aligned}
$$

73

Problem Set 12-5

396 1. $\quad \frac{9}{16} ; \quad \frac{x^{2}}{y^{2}}$.
2. $\frac{6}{25}$.
3. $4 ; \frac{15}{4}$.
4. 3.
5. $\left(\frac{\mathrm{b}}{20}\right)^{2}=\frac{36}{225}=\left(\frac{6}{15}\right)^{2}=\left(\frac{2}{5}\right)^{2}$,
$\frac{\mathrm{b}}{\mathrm{c}}=\frac{2}{5}, \quad \mathrm{~b}=\frac{40}{5}=8$.
The base of the smaller is 8 inches.
6. $\frac{9}{2}$.
7. Since $\overline{\mathrm{DE}} \| \overline{\mathrm{AB}}, \triangle \mathrm{ABC} \sim \triangle \mathrm{DEC}$.
$\frac{C A}{C D}=3$ and so $\frac{\text { Area } \triangle A B C}{\text { Area } \triangle D E C}=9$.
397
8. a. 2 . b. 4 .
9. $\left(\frac{S}{10}\right)^{2}=\frac{2}{1}$.
$\frac{s^{2}}{100}=\frac{2}{I}$.
$s^{2}=100 \cdot 2$.
$S=10 \sqrt{2} . \quad$ The sides will be $10 \sqrt{2}$.
10. $\frac{A_{1}}{A_{2}}=\left(\frac{2 x}{x \sqrt{3}}\right)^{2}=\frac{4}{3}$.

1.1. If the length of the wire is called d, the side of the square is $\frac{1}{4} \mathrm{~d}$ and that of the triangles is $\frac{1}{3} \mathrm{~d}$. Then the area of the square is $\frac{d^{2}}{16}$ and that of the triangle $\operatorname{lis} \frac{d^{2}}{36} \sqrt{3}$. Then,
$\frac{\text { Area of the triangle }}{\text { Area of the square }}=\frac{\frac{d^{2}}{36} \sqrt{3}}{\frac{d^{2}}{16}}=\frac{4 \sqrt{3}}{9}$:
12. The area of $\triangle A B C=\frac{1}{2} \cdot 140 \cdot 120=8400$.

The area of the required lot must then be 4200. By the Pythagorean Theorem, $A D=90$, and area of
$\Delta A D C=\frac{1}{2} \cdot 90 \cdot 120=5400$. Then, by Theorem 12-7, $\left(\frac{x}{90}\right)^{2}=\frac{4200}{5400}$, and $x=30 \sqrt{7}$. The required distance is approximately 79.4 feet.
13. Given: Right $\triangle A B C, \angle C$ a right angle, and M the mid-point of $\overline{A B}$.
Prove: $M A=M B=M C$.
Proof: Let $\overline{\mathrm{MK}}$ be the perpendicular from M to $\overline{\mathrm{BC}}$, meeting $\overline{B C}$ in K. Then $\overline{M K} \| \overline{A C}$, so $C K=K B$. Therefore $\overleftrightarrow{M K}$ is the perpendicular bisector of $\overrightarrow{C B}$. Hence $M C=M B$. Since $M B=M A$ (given), then $M A=M B=M C$.

398 14. By Problem 13, $K C=\frac{c}{2}$, where $A B=c$. Therefore $m \angle K C B=m \angle K B C=60$, so $m / B K C=60$. Therefore $B C=K B=\frac{c}{2}$.
15. Since $A R=R C, m / A=m / A C R$. Also, since $R C=R B$,
$m \angle B=m / B C R$. Let
$m \angle A=m / A C R=y$ and

$m / B=m / B C R=x$.
Then in $\triangle \mathrm{ACB}, 2 \mathrm{x}+2 \mathrm{y}=180$, and $\mathrm{x}+\mathrm{y}=90$.
*16. $\mathrm{HC}=\sqrt{\mathrm{AH} \cdot \mathrm{HB}}, \quad(\mathrm{HC})^{2}=\mathrm{AH} \cdot \mathrm{HB}, \quad \frac{\mathrm{AH}}{\mathrm{HC}}=\frac{\mathrm{CH}}{\mathrm{HB}}$.
Also $\angle \mathrm{AHC} \approx \angle \mathrm{CHB}$. Hence $\triangle \mathrm{AHC} \sim \triangle \mathrm{CHB}$ by S.A.S.
Similarity Theorem. Therefore $\angle H C B \cong \angle A$. Since $\angle H C B$ and $\angle B$ are complementary, then $\angle A$ and $\angle B$ are coin, ementary, and $\triangle A C B$ is a right triangle. By the preceding problem $M C=A M$, and $M C=\frac{1}{2} A B$
$=\frac{1}{2}(A H+H B)$. But $H C<M C$, except when $M=H$
(1.e., when $A H=H B$). Therefore, $\sqrt{A H \cdot H B}$
$=H C<\frac{1}{2}(A H+H B)$. If $A H=H B$, the last inequality
becomes the equality $\sqrt{(\mathrm{AH})^{2}}=\frac{1}{2}(\mathrm{AH}+\mathrm{AH})$, that is $\mathrm{AH}=\mathrm{AH}$.

Alternate solution. Let u and v be positive numbers, $u \neq v$. Then

$$
\begin{aligned}
& 0<(\sqrt{u}-\sqrt{v})^{2}=u-2 \sqrt{u} \sqrt{v}+v . \\
& 2 \sqrt{u v}<u+v . \\
& \sqrt{u v}<\frac{u+v}{2} .
\end{aligned}
$$

398 17. Outline of proof. $\triangle P X R \leadsto \triangle P Y A$, therefore $\frac{P R}{P A}=\frac{P X}{P Y}$.
$\triangle P R S \sim \triangle P A B$, therefore $\frac{P R}{P A}=\frac{R S}{A B}$.
$\triangle \mathrm{RST} \sim \Delta \mathrm{ABC}$, therefore

$$
\begin{array}{ll}
\text { Area } \Delta & \mathrm{RST} \\
\hline \text { Area } \triangle \mathrm{ABC}
\end{array}=\left(\frac{\mathrm{RS}}{\mathrm{AB}}\right)^{2} .
$$

From the above:

$$
\frac{\text { Area } \Delta \quad \mathrm{RST}}{\text { Area } \triangle \mathrm{ABC}}=\left(\frac{P X}{P Y}\right)^{2} .
$$

$399 * 18.1$. Area Addition Postulate (Postulate 19).
2. Division.
3. Theorem 12-6.
4. Theorem 12-7 and Step 2.
5. Multiplication.

400*19. $a^{2}=h^{2}+y^{2}=h^{2}+(c-x)^{2}$.
$=\left(h^{2}+x^{2}\right)+c^{2}-2 c x$.
$=b^{2}+c^{2}-2 c x$.
In the simllarlty $\triangle A D C \sim \Delta R S T$,

$$
\begin{aligned}
\frac{x}{b}=\frac{k}{I} & =k \\
x & =b k .
\end{aligned}
$$

Therefore

$$
a^{2}=b^{2}+c^{2}-2 b c k
$$

[pages 398-400]

$$
\begin{aligned}
400 * 20 . a^{2} & =n^{2}+y^{2}=n^{2}+(x+c)^{2} \\
& =\left(n^{2}+x^{2}\right)+c^{2}+2 c x . \\
& =b^{2}+c^{2}+2 c x .
\end{aligned}
$$

In the similarity $\triangle A D C \sim \triangle R S T$,

$$
\begin{aligned}
\frac{x}{b}=\frac{k}{I} & =k, \\
x & =b k .
\end{aligned}
$$

Therefore

$$
a^{2}=b^{2}+c^{2}+2 b c k .
$$

*21. (a)

(Thls is the case in which $\angle C$ is acute. If $\angle C$ is obtuse or a right angle, the proof is similar.)
Let $\triangle R S T$ have $\angle R \cong \angle C, \angle S$ a right angle, hynotenuse $=1, \quad R S=k$. By the result of Problem 19, applicd to $\triangle A C T$,

$$
\begin{align*}
& m_{a}^{2}=b^{2}+\left(\frac{a}{2}\right)^{2}-2 b\left(\frac{a}{2}\right) k \\
& m_{a}^{2}=b^{2}+\frac{a}{4}-a b k \tag{1.}
\end{align*}
$$

Applying the same result to $\triangle A C B$,

$$
\begin{equation*}
c^{2}=b^{2}+a^{2}-2 a b k \tag{a}
\end{equation*}
$$

initiplying both sides of Equation (2) by $\frac{1}{2}$ and abtracting from the corresponding sides of Equation (1):

$$
\begin{aligned}
& a^{2}-\frac{1}{2} c^{2}=\frac{b^{2}}{2}-\frac{a^{2}}{\pi} \\
& n_{2}^{2}=\frac{1}{2}\left(b^{2}+c^{2}-\frac{a^{2}}{2}\right)
\end{aligned}
$$

[page 400]

400(b) From part (a) $m_{a}{ }^{2}=\frac{1}{2_{2}} b^{2}+\frac{1}{c^{2}} c^{2}-\frac{1}{4} a^{2}$,

$$
\begin{aligned}
& m_{b}^{2}=\frac{1}{2} a^{2}+\frac{1}{2} c^{2}-\frac{1}{4} b^{2}, \\
& m_{c}^{2}=\frac{1}{2} a^{2}+\frac{1}{2} b^{2}-\frac{1}{4} c^{2} .
\end{aligned}
$$

Adding and collecting like terms,

$$
m_{a}^{2}+m_{b}^{2}+m_{c}^{2}=\frac{3}{4}\left(a^{2}+b^{2}+c^{2}\right)
$$

Review Problems
401 1. a. $\frac{2}{1 I}=\frac{4}{F B}$, hence $F B=22$.
b. $\frac{1}{5}=\frac{F Q}{6}$, hence $F Q=\frac{6}{5}$.
c. $\frac{2 \frac{1}{2}}{9}=\frac{F Q}{7}$, hence $F Q=\frac{35}{13}$.
d. $\frac{6}{9}=\frac{Q B}{12}$, hence $Q B=8$.
2. a. Yes. b. $A F=8$.
3. a. G.M. is $4 \sqrt{5}$, A.M. is 9.
b. G.M. is 6, A.M. is $\frac{9}{2} \sqrt{2}$.
4. Sketches might be of two rhombuses; a rhombus and a square; two parallelograms; a parallelogram and a rectangle.
5. $\frac{12}{F C}=\frac{F C}{3}$, hence $F C=6 . \frac{12}{A C}=\frac{A C}{15}$, hence $A C=6 \sqrt{5}$. $\frac{15}{B C}=\frac{B C}{3}$, hence $B C=3 \sqrt{5}$.
402 6. If $\overline{D E} \| \overline{A B}, \frac{x+3}{3 x+3}=\frac{5}{x+5}$, and $x=7$.
$7:$
[pages 400-402]

402 7. $\triangle \mathrm{ABE} \sim \triangle \operatorname{CDE}$ (A.A.). Corresponding sides are therefore proportional and $D E=4 B E$. Hence $B D=5 B E$.
8. Let e be the length of the side of the original triangle. Then the length of the side of the second triangle is $\frac{e}{2} \sqrt{3}$ and the ratio of the areas is $\frac{4}{3}$.
9. $\frac{x}{8}=\frac{8}{20-x} ; x^{2}-20 x+64=0 ; x=16$ or $x=4$.

$$
\text { (1) If } x=16: a^{2}=16^{2}+8^{2} ; \quad a=8 \sqrt{5} ;
$$

$$
y=20-x=4 ; \quad b=4 \sqrt{5}
$$

$$
\text { (11) If } x=4: \quad a^{2}=4^{2}+8^{2} ; \quad a=4 \sqrt{5}
$$

$$
y=16 ; \quad b=8 \sqrt{5}
$$

Hence there are two possibilities: $x=16, y=4$, $a=8 \sqrt{5}, \quad b=4 \sqrt{5}$ and $x=4, y=16, a=4 \sqrt{5}$,
$b=8 \sqrt{5}$.
10. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$, hence $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{BC}}{\mathrm{EF}}$.
$\triangle A C B \sim \triangle D E F$, hence $\frac{A C}{D E}=\frac{A B}{D F}=\frac{C B}{E F}$.
Since, above, the last ratios are the same, $\frac{A B}{D E}=\frac{A C}{D E}$ and hence $A B=A C$.
11. a. $\triangle A F Q \sim \triangle \operatorname{WAX}$ (A.A.). Hence $\frac{A F}{W A}=\frac{A Q}{W X}$ and therefore $A F \cdot X W=A W \cdot Q A$.
b. $\triangle A X W \sim \triangle F Q A \quad(A . A$.$) and so \frac{Q F}{A X}=\frac{Q A}{X W}$; hence $\quad Q F \cdot X W=A X \cdot Q A$.
c. Since $\triangle A X W \sim \triangle F Q A, \frac{A W}{F A}=\frac{A X}{F Q}$, hence $A W \cdot F Q=F A \cdot A X$.
$7: 1$
[page 402]

$$
\begin{aligned}
403 \quad 12 . \quad \frac{j}{y} & =\frac{x}{520} \\
x & =330
\end{aligned}
$$

13. $\frac{3}{9}=\frac{9}{3+y}$, nence $y=24 \cdot \frac{3}{x}=\frac{x}{24}$, hence $x=6 \sqrt{2}$. $\frac{a 7}{w}=\frac{w}{24}$, hence $w=18 \sqrt{2}$.
+14. $m \angle X Y R=m \angle A B R, \quad m \angle R Y Z=m / R B C$ (corresponding angles.) By addition, $m \angle X Y Z=m \angle A B C$. Since $\overline{X Y} \| \overline{A B}, \quad \triangle R X Y \sim \triangle R A B$, hence $\frac{X I}{A B}=\frac{R Y}{R B}$. Since $\overline{Y Z} \| \overline{B C}, \quad \triangle R Y Z \sim \triangle R B C$, hence $\frac{R Y}{R B}=\frac{Y Z}{B C}$. Hence

$\frac{X Y}{A B}=\frac{Y Z}{B C}$. Hence $\triangle X Y Z \sim \triangle A B C$ (S.A.S.)
15. No. We can be sure that It is when the plane of the triangle and the plane \because the fllm are parallel.

Proce: hocuming that the planes of $\triangle A B C$ and
\triangle DEF aro parallel, $\overline{D A}\|\overline{A R}, \overline{B F}\| \overline{B C}, \overline{D F} \| \overline{A C}$.
$\cdot \therefore$ UDE $\sim \triangle$ OAB,
\triangle ORF ~ \triangle OBC, \triangle OFD $\sim \triangle O C A$.
$\frac{E F}{E C}=\frac{O E}{O B}=\frac{E D}{B A}=\frac{O D}{D A}=\frac{D F}{A C}$, that is, $\frac{E F}{B C}=\frac{E D}{B A}=\frac{D F}{A C}$.
Tharotore Δ. $\sim \Delta$ DeF by S.S.S. Similarity.

80
[page 403]

Illustrative Test Items for Chapter 12
A. l. a. In $\triangle A B C$, if $A D=5$,
$A B=7, \quad A E=7 \frac{1}{2}$,
$E C=3$, is $\overline{\mathrm{DE}} \| \overline{\mathrm{BC}}$?
Explain.
b. In $\triangle A B C$ if $A D=15$,
$A B=25, \quad A C=33$, and

$A E=21$, is $\overline{D E} \| \overline{\mathrm{BC}}$?
Explain.
2. a. Given two similar triangles in which the ratio of a pair of corresponding sides is $\frac{2}{3}$, what is the ratio of the areas?
b. If the ratio of the areas of two similar triangles is $\frac{1}{2}$, what is the ratio of a pair of corresponding altitudes?
3. If 2, 5, 6 are the lengths of the sides of one triangle and $7 \frac{1}{2}, 9,3$ are the lengths of the sides of another triangle, are the triangles similar? If so, write ratios to show the correspondence of the sides.
4. If $A B C D$ is a trapezoid with $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$ and lengths of segments as shown, give numerical answers below:
a. $\quad \frac{A B}{C D}=$?
b. $\frac{\text { Area } \triangle \mathrm{AEB}}{\text { Area } \triangle C E D}=$?
c. $\frac{\text { Area } \triangle A C D}{\text { Area } \triangle B D C}=$?

5. In the ilemre, $A B C D$ is a parallouogram with $\overline{F G} \| \overline{D C}$. $D F=4, D E=6, \quad A B=12$, $X E=2 \cdot K T$. wnd $A F, B C$, DH, Ke and LE.
6. In quadrilateral K'oRS in the flgure, segmente have lengths as showm. Find $\frac{4 S}{\operatorname{Si}}$ In terms of n.
B. I. In the figure, $\overline{A B} \perp \overline{B C}$, $\overline{B H} \perp \overline{A C}$, and the lengths of the segments are as shown. Find x, y, and z.

\therefore With $\overline{A C} \perp \overline{C B}$ and
$\overline{O H} \perp \overline{A B}$ and with lengths
as Indleated in the
:lgure, filnd x, y, and \therefore.

3. In this flgure $\triangle A C B$ is
a vight triangle wlith altitude $\overline{\mathrm{HC}}$ drawn to the hypotenuse $\overline{A B}$. Flnd \therefore, y, and a.

C. 1. $\overline{A F}$ and $\overline{B Q}$ ar'e medlans of $\triangle A B H$, as shown in the figure. Prove $\triangle A B K \sim \triangle F Q K$. Write three equal ration show-
 Ing the proportionality of the gides of these triangles, and give the numertcal value of the ratios.
2. In this figure, $\quad \mathrm{BF}=\frac{2}{3} \mathrm{HB}$ and $B Q=\frac{2}{3} A B$. Prove the two triangles are similar and write three equal ratios showing
 the proportionality of the sides.
3. $\overline{H F} \| \overline{A B}$ as shown in the figure. Prove $A B \cdot F Q=A Q \cdot F H$.

Answers
A. 1. \quad Yes, since $\quad \frac{5}{7}=\frac{7 \frac{1}{2}}{10 \frac{1}{2}} \quad$ (Theorem 12-2).
b. \quad No, since $\frac{15}{25} \neq \frac{21}{33}$.
b. $\frac{\sqrt{2}}{2}=\frac{1}{\sqrt{2}}$.
3. Yes. $\frac{2}{3}=\frac{5}{7 \frac{1}{2}}=\frac{6}{9}$.
4. a. $\frac{2}{3}$.
b. $\frac{4}{9}$.
c. $\quad 1$.
5. $\quad \mathrm{AF}=8 . \quad \mathrm{BC}=12 . \quad \mathrm{DH}=4 . \quad \mathrm{KF}=\frac{20}{3} . \quad \mathrm{LF}=4$.
E. $K S=\frac{5 n}{2}, \quad K S=\frac{15}{2}, \quad \frac{K S}{S R}=\frac{n}{3}$.
B. 1. $\frac{4}{x}=\frac{x}{5}$, hence $x=2 \sqrt{5} . \frac{4}{z}=\frac{z}{9}$, hence $z=6$. $\frac{9}{y}=\frac{y}{5}$, hence $y=3 \sqrt{5}$.
2. $x=16 . \quad y=4 \sqrt{5} . \quad z=8 \sqrt{5}$.
3. $\frac{4}{6}=\frac{6}{x+4}$, hence $x=5$. $\frac{5}{y}=\frac{y}{4}$, hence $y=2 \sqrt{5}$. $\frac{5}{z}=\frac{z}{9}$, hence $z=3 \sqrt{5}$.
C. I. $\angle A K B \cong \angle F K Q$ (vertical angles) and $\angle B Q F \cong \angle Q B A$ (alternate interior angles), hence $\quad \triangle A K B \sim \triangle F K Q \quad$ (AAA.) $\quad \frac{F K}{A K}=\frac{F Q}{A B}=\frac{K Q}{K B}=\frac{1}{2}$.
2. Since $\frac{\mathrm{BF}}{\mathrm{HB}}=\frac{2}{3}=\frac{\mathrm{BQ}}{\mathrm{AB}}$ and $\angle \mathrm{HBF} \cong \angle \mathrm{ABQ}, \quad \triangle \mathrm{HBF} \sim \triangle \mathrm{ABQ}$ (S.A.S.) and $\frac{H B}{A B}=\frac{B F}{D Q}=\frac{H F}{A Q}$.
3. $\triangle A B Q \sim \triangle F H Q$ (A.A.) and $\frac{A B}{F H}=\frac{A Q}{F Q}$, hence $A B \cdot F Q=A Q \cdot F H$.

$\therefore 11010$ 是

$$
\begin{aligned}
& 31.0 . \\
& \text { 习. } 0 . \\
& \therefore \text {. I. } \\
& \text { 34. } 1 \text {. } \\
& \text { 3. } 1 . \\
& 36.0 . \\
& \text { 3i. } 1 . \\
& \text { 38. } 0 . \\
& \text { 3. } 1 . \\
& \therefore 0 . \\
& \therefore 1.1 . \\
& \text { リこ。 } 0 \text { 。 } \\
& 43.1 . \\
& \text { H. } 0 \text {. } \\
& 15.0 . \\
& \therefore \text { U. } 1 . \\
& \text { ? } 1 \text {. } \\
& \text { !8. } 0 . \\
& 19.0 \\
& 50.0 . \\
& \text { 51. } 1 . \\
& 52.1 . \\
& 23.1 \\
& \text { "! } 1 . \\
& 55.0 . \\
& 50.1 . \\
& 57.1 \text {. } \\
& 58.0 . \\
& 59.0 . \\
& \text { 60. } 0 .
\end{aligned}
$$

$$
\begin{gathered}
\text { ipatges } 104-4081 \\
35
\end{gathered}
$$

CIRCLES AND SPHERES

This chapter falls into two parts: the first studies common properties of circles and spheres relative to intersection with lines and planes, the second deals with degree measure of circular arcs and related properties of angles and arcs, chords, secants and tangents. The first part is unusual since it tieats circles and spheres by uniform methods and states and proves the fundamental theorems on the intersection of line and circle (and sphere and plans) with great precision. You will note that following the fundamental theorems on circles, there is a corresponding section concerning spheres, and probably nowhere else is the analogy between plane and space geometry so strong as it is here. Essentially the same proofs work for the sphere as the circle, as relates to tangent and secant lines and planes. The theorems and methods of proof in the second part are, in the main, conventional but the basic ideas of types of circular arc, angles inscribed in an arc, and arc intercepted by an angle are defined with unusual care.

The convention of letting circle P mean the circle with center P is followed in many of the problems for convenience, where no ambiguity resuits. The text, however, follows the more precise notation, where a separate letter denotes the circle.' We can then talic conctisely about concentric circles C and C^{\prime} or aboutiine L intersecting circle C.

Use concrete situations to illustrate the idea of circle and sphere. For example, ask students to describe the figure composed of all points which are six inches froin a given point of the blackboard - but don't say "points of the blackboard". Use models, cut a ball in half to indicate its center and radius, and so on. Refer to the earth and
the equator（or meridans）as wembles ：－．．．： great circle．Contrent＂grot armie＂： such as tho equator with a parollat now．．．．．．．．．．．．

。
Problem 3

411
1.
a．Falce．
E．Ha：
b．True．
c．False．
d．False．
2．a．False．
b．True．
c．True．
d．False．

』．Tr，
E．True．
n．Trus．
a．fater．
i．Faime
8．Trus．
月．Fata．
423. All pointo lise on a cirele wha enata＂at the glven intersection，and radiw ow yoma．

 pointa ot the sides we this ature as swom on the daeran．（o lo the whon ：unownom．）

4. Let c be the length of any chord not a diameter. Draw radil to 1 ts end-points. Then $2 r>c$, by Theorem 7-7, The Triangle. Inequality. But $2 r$ is the len th of the diameter. Hence the diameter is larger than any other chord.
412. from a point to itself shall be zero - that is, the distance between points is always a positive number. For this reason, in defining the interior of a circle (or sphere), we must include the center in addition to points whose distance to the center is less than the radius.
414 students to grasp. In Case (2), the answer to "Why?" is Theorem 7-6 (The perpendicular segment is the shortest distance from a point to a line).

Case (3), (see below) is more difficult and may cause trouble for some students - also they may think it hair splitting to prove something so "obvious". If they learn and understand the theorem and omit the proof of Case (3), they still may be better off than in a conventional course in which the precise relation between lines and circles is not made explicit, let alone proved. Incidentally, Theorem 13-5 bs exact analog of Theorem 13-2, but is less familiar and less obvious. After working through the proof of Theorem 13-5 they may better appreciate the proof of Theorem 13-2.
415 ly the same as an existence and uniqueness proof. Since we don't know that L and C have points in common, we assume they have a common point and try to ind where it can possibly lie. Frecisely we try to locate it relative to F which is a fixed point on L.

Thus in the first part of the proof we show:
If a point is common to L and C its distance from F is $\sqrt{r^{2}-P F^{2}}$. Since $\sqrt{r^{2}-P F^{2}}$ is a definite positive number, we see that there are only two possible positions on L for a point common to L and C, namely the two points on L whose distance to F is $\sqrt{r^{2}-P F^{2}}$.

In the second part we show a converse: If a point is on L and 1 ts distance from F is $\sqrt{r^{2}-P F^{2}}$ then it is common to L and C. To show this we merely show that $P Q=r$, as follows:
$P Q=\sqrt{F Q^{2}+P F^{2}}=\sqrt{r^{2} \cdots P F^{2}+P F^{2}}=\sqrt{r^{2}}=r$.
Thus the two points described above are common to L and C and constitute their intersection.
415 If your students prefer to derive some of these corollarles by using congruent triangles and other earlier principles rather than Theorem 13-2, by all means pewit them to do so. The fact that Theorem 13-2 is a powerful theorem may be seen better in retrospect by many students.

In applying Theorem 13-2 (and Theorem 13-5) we generally show that since two of the cases do not hold in a particular situation the other one must hold.

Proofe of the Curollarles
Corollary 13-2-1. Any line tangent to C a perpendicular to the radius drawn to the point of moct.

Let L be a tangent to C at polnt S. Draw the radud PS. Let Q be the foot of the perperdicular from P to L. If $Q \neq S$, then L intersects C in exactly 2 polnts and this contradicts the hypothesis that L l.s tangent to C at S. Therefore the point Q must be the point S, hence the
 tangent L is perpendicular to the radius drawn to the point of contact.

Corollary 13-2-2. Any line in E perpendicular to a radius at its outer end, is-tangent to the circle.

Given a line in E, perpendicular to a radius at its outer end, which is a point on circle C. This point is Q, the foot of the perpendicular from center P to L. Then, by Theorem 13-2, the line intersects the circle in Q alone and is therefore tangent to the circle.

90
[page 410]

Corollary 13-2-3. Any perpendicular from the center of C to a chord bisects the chord.

Consider a chord $\overline{A B}$ of circle C and the line L containing $\overline{A B}$. The line L intersects C in two points A and B. Let Q be the foot of the perpendicular from P to L. The intersection cannot be Q alone. Hence, by Theorem 13-2, A and B
 are equidistant.from Q. Therefore the perpendicular from P to the chord bisects the chord.

Corollary 13-2-4. The segment joining the center of a circle to the mid-point of a chord is perpendicular to the chord.
416
Given chord $\overline{A B}$ of circle C and segment $\overline{P S}$ where P is the center of circle C and S is the mid-point of chord $\overline{A B}$. Let $\overline{P Q} \perp \overline{A B}$ with foot Q. By Corollary l3-2-3, Q is the mid-point of $\overrightarrow{A B}$. Since the mid-point of $\overline{A B}$ is unique,
 ($Q=S$), $\overline{P S}$ is perpendicular to the chord $\overline{\mathrm{AB}}$.

Alternate Proof: Let F be the mid-point of $\overline{A B}$. Then P and F are equidistant from A and B in plane E and $\overleftrightarrow{\mathrm{FF}}$ is the perpendicular bisector of $\overline{\mathrm{AB}}$ in plane E by Theorem 6-2.

This also can be done independently of Theorem 13-2 by using congruent triangles.
[page 416]
91

Corollary 13-2-5. In the plane oi a didie, tre perpendicular bisector of a chord passes thmough the center of the circle.

By Corollary 13-2-4 the aegment joiring the center of a clrcle to the mid-point of a chord is perpendicular to the chord, hence the llne contalning the center of a circle and the mid-point of the chord $\underset{\text { a }}{ }$ perpendiculan bisector of the chord. Since theze is only one porpendicular to the chord at its mid-point, tri? perpendicular oisector of a chord must pass through the seater of the circle.

Alternate Proof: The perpendicular bisector of the chord In the plane of the circle contains all points of this plane which are equidistant from the end-points of the chord (Theorem 6-2). Therefore the perpendicular bisector contains the center.

Corollary 13-2-6. If a line in the plane oi a circle Intersects the interior of the circle, then it intersects the circle in exactly two points.

Consider line L in the plane E of clrcie C which contalns a point S inside C. Let F be the foot of the perpendicular from P to L. By Theorem 7-6, PF $\leq P S$. Since S is in the interior or $C, P S<r$. Hence, $P F<r$, and so F is \ln the interior oi C and
 Condition (3) holds.

92
[page 415]

Note on Corollary 13-2-6. This corollary differs from Case (3) of Theorem 13-2 in that the point in the interior of C - does not have to be F, the foot of the perpendicular . to the line. Probably most students will consider this difference quite unimportant, and a proof of an obvious fact as very superfluous. While you may not care to bring it up, a significance of this corollary is that it indicates the precision of our treatment of circles using Theorem 13.2 which allows us to give a formal proof of such an intuitively obvious result.

The idea of congruent circles gives you an excellent opportunity to discuss the general idea of congruence. Point out that to say two figures are congruent means that they can be made to "fit" or that one is an exact copy of the other. But it is very difficult to give the student a precise mathematical definition of the idea until he knows a fair amount of geometry (see Appendix on Rigid Motion). Therefore we define congruerce piecemeal for segments, arigles, triangles, circles, arcs of circles and so on. But in each case we frame the definition to ensure that the figures are congruent, thit is, "can be made to fit". So In the present case, we ne circles to be congruent if they have congruent radil not because we consider this condition to be the basic idea, but because we are intuj.t:vely certain that it guarantees that the circle can be made to fit.

It might be well to remind the students of what is involved in the concept of the distance between a point and a line, including the case where the distance is zero.

Note that in the proof of Theorem 13-3 we have assumed that the distance from each chord to the center is not zero. If it is zero, each chord is a diameter and the theorem still holds.

Pruofs of Theorems 13-3 and 13-4

Theorem 13-3. In the same circle or congruent circles, chords equidistant from the center are congruent.
Given: Chords $\overline{A B}$ and $\overline{C D}$, equidistant from P.

To prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{CD}}$.
$\overline{\mathrm{PF}} \perp \overline{\mathrm{CD}} \overline{\mathrm{PE}} \perp \overline{\mathrm{AB}}$ and $P F \perp C D$ as in the fig re. Draw radii $\overline{\mathrm{PE}}$ and $\overline{\mathrm{P}}$.
Then in right triancles PEB and PFD we have:

(1) $\mathrm{PE}=\mathrm{PF}$.
(2) $\overline{P B} \cong \overline{P D}$.
(3) $\triangle \mathrm{PEB} \cong \triangle \mathrm{PFD}$.
(4) $\quad E B=F D$.
(5) $E B=\frac{1}{2} A B$.
$F D=\frac{1}{2} C D$.
(6) $\frac{1}{2} A B=\frac{1}{2} C D$.
(7) $A B=C D$ or $\overline{A B} \cong \overline{C D}$.
(1) Given.
(2) Radil of same or congruent circles are congruent.
(3) Hypotenuse and Leg Theorem.
(4) Corresponding parts.
(5) Corollary 13-2-3.
(6) Substitution.
(7) Algebra.

Note that this proof still holds if $\overline{\mathrm{AB}}$ intersects $\overline{\mathrm{CD}}$ as shown below:

9) 1
[page 417]

Proof of Theorem 13-4: In the same circle or congruent circles, any two congruent chords are equidistant from the center.
Glven: Chordi $\overline{A P} \cong \overline{C D}$. P is t.e center of the circle.

To prove: $\mathrm{PE}=\mathrm{PF}$ where
$\mathrm{PE} \perp \overline{\mathrm{AB}}$ and $\overline{\mathrm{PF}} \perp \overline{\mathrm{CD}}$ as
in the figure.
Draw radi: $\overline{P B}$ and
$\overline{P D}$.

(1) $\overline{\mathrm{PF}} \cong \overline{\mathrm{PD}}$.
(2) $A B=C D$.
(? $\frac{1}{2} A B=\frac{1}{2} C D$.
$(\therefore) \quad \mathrm{EB}=\frac{1}{2} \mathrm{AB}$.
FD $\quad \frac{1}{2} C D$.
(5) $\mathrm{EB}=\mathrm{FD}$.
(6) $\triangle \quad \mathrm{PEB} \cong \triangle \mathrm{PFD}$.
(7) $\overline{\mathrm{PE}} \cong \overline{\mathrm{PF}}$ or $\mathrm{PE}=\mathrm{PF}$.
(1) Radii of same or congruent circles are congruent.
(2) Gjven.
(3) Multiplication, Step 2.
(4) Corollary 13-2-3.
(5) Stens 3 and 4.
(6) Hypotenust -LeE Theorem.
(7) Corresponding parts.

As In the conventional treatment we have implicitly assumed that the distances of the chords from center P are not zero. If both distances are zero, the ciords are diameters and the theorem is correct. Could one distance be zero and the other not? The answer of course is no, and is justified by the following minor theorem: A diameter is the longest chord of a circle. (See problem Set 13-1, Problem it.)

In this crapter there are very many interesting results of the t. $\quad .$. in the text proper. Many of these interestlng facts afe to be found in the problem sets, accompanied
[page 417]

93
by problems providing numerical application of the fact. In assigning problems, teachers should be careful to watch for such sequences and select accordingly.

Problem Set 13-2

1. a. Corollary 13-2-4. e. Theorem 13-3.
b. Corollary 13-2-2. f. Corollary 13-2-1.
c. Corollary 13-2-6. g. Corollary 13-2-3.
d. Corollary 13-2-5. h. Theorem 13-4.
2. (See Teacher's Commentary for proof of Corollary 13-2-3.)
3. (See Teacher's Commentary for proof of Corollary 13-2-5.)
4. By Corollary 13-2-5, the perpendicular bisector of a chord passes through tine center of the circle. Hence, to find the senter draw any two chords in the circle and the perpendicular bisector of each. The intersection of these bisectors will be the center of the circle.

419 5. Draw a perpendicular from C to $\overline{M N}$, forming a 3-4-5 right triangle. Then the distance from C to $\overline{M N}$ is 16.
6. As in the figure, $C B=15$ and $D C=12$. Then $D B=9$, and the chord is 18 inches lorig.

96

[pages 418-419]

419
7. a. D.
b. c.
c. C.
d. A.
e. C.

420 8. Let $\overline{P T}$ intersect $\overline{A B}$ at F. Then $F B=6$. $\Delta \mathrm{BFP}$ 1s a $30-60$ right triangle. Hence $\mathrm{PB}=4 \sqrt{3}$.
9. Since a tangent to a circle is perpendicular to the radius drawn to the point of contact, the two tangents will be perpendicular to the same line and are, therefore, parallel.

* 10.

1.

1. Given.
2. Corresponding angles of parallels.
3. Definition of circle.
4. Theorem 5-2.
5. Alternate interior angles.
6. Steps 2, 4, and 5.
7. Identity.
8. S.A.S. and Steps 3, 6, and 7.
9. Definition of congruent triangles.
10. Corollary 13-2-1.
11. Steps 9 and 10.
12. Corollary 13-2-2.

420 11. Draw $\overrightarrow{O R} . \overrightarrow{\mathrm{OR}} \perp \overrightarrow{\mathrm{AB}}$, by Corollary 13-2-1. $\quad \mathrm{AR}=\mathrm{BR}$, by Corollary 13-2-3.
421 12. Here are three arrangements.

*13. Let L be the common tangent. Then in both cases, $\overline{P T} \perp \mathrm{~L}$ and $\overline{Q T} \perp L$ by Corollary 13-2-1. But there exists only one perpendicular to a line at a point on the line. Hence $\overline{P T}$ and $\overline{Q T}$ are collinear. This means that P, Q, and T are collinear.
14. $A C=14-x+10-x=18$.

$$
24-2 x=18
$$

$$
2 x=6
$$

$$
x=3
$$

$B R=3, \quad C P=7$, $A Q=11$.

[pages 420-421]

422 *15. (See Teacher's Commentary for proof of Theorem 13-3.)
16. Given: $\angle A E P \cong \angle D E P$.

Prove: $\overline{A B} \cong \overline{C D}$.
Draw $\overline{P G} \perp \overline{A B}$ and
$\overline{P H} \perp \overline{C D}$. Then $\triangle \mathrm{PGE}$ and $\triangle \mathrm{PHE}$ are right triangles with
$m \angle \mathrm{GEP}=\mathrm{m} \angle \mathrm{HEP}$, and
$E P=E P$. Hence,
$\triangle P G E \cong \triangle P H E$, making
 $P G=P H$. By Theorem $13-3, \overline{A B} \cong \overline{C D}$.
17. Since $R D=R E, A B=B C$ by Theorem 13-3. But $D A=\frac{1}{2} A B$ and $E C=\frac{1}{2} B C$ by Corollary 13-2-3. Hence, $D A=E C$.
18. By Corollary $13-2-4$ the segment joining a mid-point of a chord to the center is perpendicular to the chord. By Theorem 13-3 these segments all have equal lengths. By the definition of a circle, all points equidistant from a point lie on the circle having the point as center and its radius equal to the distance. By Corollary 13-2-2 the chords are all tangent to the inner circle.
*19.

1.	$\overline{\mathrm{AO}} \cong \overline{\mathrm{OB}}$.	1.	Definition of a circle.		
2.	$\overleftrightarrow{\delta T} \perp \overleftrightarrow{C D}$	2.	Corollary 13-2-1.		
3.	$\overleftrightarrow{A C} \perp \overleftrightarrow{C D}, \overleftrightarrow{B D} \perp \overleftrightarrow{C D}$	3.	Given.		
4.	$\overleftrightarrow{A C}\\|\overleftrightarrow{C T}\\| \overrightarrow{B D}$.	4.	Theorem 9-2.		
5.	$\overline{\mathrm{CT}} \cong \mathrm{TD}$.	5.	Theorem 9-26.		
6.	$\begin{aligned} & m \angle C T O=m \angle D T O \\ & =90 . \end{aligned}$	6.	Perpendicular lines form right angles.		
7.	$\overline{O T} \cong \overline{O T}$.	7.	Identity.		
8.	$\checkmark \mathrm{CTO} \cong \triangle \mathrm{DTO}$.	8.	S.A.S.		
9.	$\overline{\mathrm{CO}} \cong \overline{\mathrm{DO}} . \quad$ O!	9.	Corresponding parts.		
	[page	422]			

$4: 3$
 $1 \because-\%$ the wis theorem on secant and tangent lines of a $\because: A \rightarrow$. a in the case of Theorem 13-2, the point Q plays \because alow rode In Theorem $13-5$ and its corollaries.
": $\quad \because \quad t:$ thet to prove (3) we show that two sets are amtlos! that is, the intersection of E and S is the $\because: a t$ ad the circle with center F and radius
$\sqrt{\because-x^{6}}$. Tnis is why there are two parts to prove: (1) $i \because \quad i s$ in the intersection then Q is in the circle; and comereely, (2) if Q is in the circle then Q is in the intersection. (Compare the discussion of the alleged Lduatity of the Yale Mathematics Department and the Olympic Heroy Tram of the Commentary, Chapter 10.)
buarye that we establish (1) and (2) by showing:
(1.) Ir a point is common to E and S its distance iron F is $\sqrt{r^{2}-P F^{2}}$.
(2') If a point is in E and its distance from F $\therefore \sqrt{r^{2}}-P_{F^{2}}$ then it is common to E and S. ampure ath Case (3) of Theorem 13-2.

Prools of the Corollaries
H. G: 2liary 13-5-1. Every plane tangent to S is perraniloniat to the radius drawn to the point of contact.
a:ver: Plane E tangent
6 5 rt point R.
To prows: Plane E perpendicular
to the radius drawn to the point o! シrritact.

[pages 423-426]
100

We will use the same method as in Corollary 13-2-1. Let F be the foot of the perpendicular from P fo E. Since E is tangent to S and meets it in only one point, Cases (1) and (3) of Theorem 13-5 do not apply. Therefore (2) applles 30 that F is $n n S$ and E is tangent to S at F. Therefore $\overline{P F}$ is the radius drawn to the point of contact and $E \perp \overline{P F}$.

Corollary 13-5-2. Any plane perpendicular to a radius at its outer end is tangent to S.

Given: Plane E is
perpendicular to radius
$\overline{P R}$ at R.
To prove: Plane E is tangent to S. Then R ls the foot of the perpendicular to plane E

from P. By Theorem 13-5,
plane E Intersects S
only at R, nence, E
is tangent to S.
Corollaries 13-5-3 and 13-5-4 are actually not corollaries to Theorem $13-5$ since their proofs do not require the theorem. They are easily proved and are placed here simply for convenience.

Corollary 13-5-3. A perpendicular from P to a chord oi S, bisects the chord.

By Theorem 13-1, the plane determined by P and $\overline{A B}$ intersects S in a great circle. Then applying Corollary 13-2-3 we get $A Q=B Q$.

A proof using congruent triangles is also possible.
(i) 1
[page 426]

Corollary 13-5-4. The segment joining the center to the mid-point of a chord is perpendicular to the chord.

Given: Sphere S with
D the mid-point of chord $\overline{A B}$.
P is the center of S.
To prove: $\overline{P D} \perp \overline{\mathrm{AB}}$.
As in Corollary 13-5-3, the plane $P A B$ intersects
$\frac{S}{P D} \perp \overline{A B}$ by Corollary $13-2-4$.
Other proofs are possible.

Problem Set 13-3
427

1. $\quad \underset{\mathrm{OA}}{\stackrel{\leftrightarrow}{\leftrightarrow}} \perp \stackrel{\underset{\mathrm{RT}}{\mathrm{FB}}}{\stackrel{\leftrightarrow}{\leftrightarrows}}$.
2. By Corollary 13-5-3, the perpendicular bisects tine chord. By Pythagorean Theorem, one-half the chord is 8 , so the length of the chord is 16.
3. By the Pythagorean Theorem, QX $=4$ inches.

4. $\overline{O Q}$ and $\overline{O P}$ are perpendicular
to the planes of the circles. Therefore $\overline{O Q} \perp \overline{Q A}$ and: $\overline{O P} \perp \overline{\mathrm{~PB}} . \quad \mathrm{OA}=\mathrm{OB}$, by the definition of sphere, and $O Q=O P$, by hypothesis. Then, by the Pythagorean Theorem, $Q A=P B$. Hence

circle $Q \cong$ circle P, by definition.
$427 * 5 . \quad A F=B F$ since they are radil of the circle of intersection, and $O F=A F$ by hypothesis. Also, $\overline{\mathrm{OF}} \perp \overline{\mathrm{AF}}$, $\overline{\mathrm{OF}} \perp \overline{\mathrm{BF}}$, and $\overline{\mathrm{AF}} \perp \overline{\mathrm{BF}}$. Hence, $\triangle \mathrm{AFB} \cong \triangle \mathrm{AFO} \cong \triangle \mathrm{BFO}$, and $\triangle A O B$ is equilateral. Therefore $A O=5$, $m \angle A O B=60$, and $O G$, the altitude of $\triangle A O B$, equals $\frac{5}{2} \sqrt{3}$.
*6. Call the three points A, B, C. To find the center of the circle, in the plane $A B C$ construct the perpendicular bisectors of any two of the three segments $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}$, $\overline{A C}$. The bisectors intersect at the center, Q, of the circle. $\overline{Q A}, \overline{Q B}$, or $\overline{Q C}$ is a radius of the circle. Construct the 'perpendicular to plane $A B C$ at Q. This perpendicular meets the sphere in two points, X and Y. Determine the mid-point, P, of $\overline{X Y} . ~ P$ is the center of the sphere. $\overline{P A}, \overline{P B}$, or $\overline{P C}$ is a radius of the sphere.

428 *7. By Thecrem 13-5 we know that plane F intersects S in a circle. By Postulate 8, the two planes intersect in a line. Since both intersections contain T, the circle and line intersect at T. If they are not tangent at T, then they would intersect in some other point, R, also. Point R would then lie in plane E and in sphere S. But this is impossible, since E and S are tangent at T. Hence, the circle and the line are tangent, by definition.
8. By definition, a great circle lies in a plane through the center of the sphere. The intersection of the two planes must contain the center of the sphere, so that the segment of the intersection which is a chord of the sphere is a diameter of the sphere, and also of each circle.
[pages 427-428]

428 *9. The plane of the perpendicular great circle is the plane perpendicular to the line of intersection of the ranes of the given two, at the center of the sphere. There is only one such plane, by Theorem 8-9. Any two meridians have the equator as their common perpendicular.
*10. The intersection of the spheres is a circle. This can be shown as follows: Let M and M^{\prime} be any points of the intersection. Then $\triangle A M B \cong \triangle A^{\prime} B$ by S.S.S. If $\overline{M O}$ and $\overline{M^{\prime} O^{\prime}}$ are altitudes from M and M^{\prime}, $\triangle A M O \cong \triangle A^{\prime} O^{\prime}$ by A.A.S., so that $A O=A O \quad$ and $0=0^{\circ} . \underset{\leftrightarrow}{H}$ Hence all points M lie on a plane perpendicular to $\overleftrightarrow{A B}$ at 0 and on a circle with center 0 and radius $O M$. Since A and B are each equidistant from M and N, then all points on $\overleftrightarrow{A B}$ are equidistant from M and N, by Theorem $8-1$, and $\overleftrightarrow{A B}$ is perperidicular to the plane of the intersection, by the argument above. By Theorem ll-10, we have $M O=5$ in \triangle MOB. In \triangle MOA, by Pythagorean Theorem, we get $A O=12$. But $O B=5$. Hence $A B=17$.

Caution the students that they will be finding the degree measure of arcs and not the length of arcs.

If $\widehat{A C}$ is a minor arc then the theorem follows from The Angle Addition Postulate. (Postulate 13)
432
It may be noted that if $\overparen{A C}$ is a semi-circle, the theorem follows immediately from The Supplement Postulate (Postulate 14). The proof of the general case, though more troublesome, is made to depend upon these two cases. For a complete proof of Theorem 13-6 see Chapter 8 of Studies II.

$$
101
$$

[pages 428-432]

In the definition of in angle inscribed in an arc, it is important to get across to the student that we are talking about angles inscribed ir ircs of circles. Two points separate the circle into two arcs. The student should see that if an angle is inscribed in one of the arcs, the vertex is on that arc and the angle intercepts the other arc. In many geometry texts this is abbreviated to "an angle inscribed in a circle", but this can only mean "inscribed in an arc of a circle", since this is the way it has been defined in the text.
433 Condition (2) for an intercepted arc says, "each side of the angle contains an end-point of the arc". Notice that in the 4 th example, in the preceding figures if one side is tangent to the circle, the other side of the angle contains both end-points of the intercepted arc and the tangent contains one end-point. For a discussion of Theorem 13-7 see Studies II.
435 The "Why?" in the first case is the Angle Addition Postulate; in the second case it is Theorem 13-6.
437-440 In Problem Set 13-4a, Problems 1 and 6 define two terms which you may want students to be familiar with. Also, Problems 5, 6, 10, 11 and 12 point up interesting facts.

Problem Set 13-4a
437 I. The center is the intersection of the perpendicular bisectors of two or more chords of the arc. (See Problem 4 of Problem Set 13-2.)
2. Since an inscribed angle is measured by half the arc it intercepts, $\overparen{A B}$ must contain 90°. Since the measure of a central angle is the measure of its intercepted arc, $m \angle P=90$ and $\overline{\mathrm{BP}} \perp \overline{\mathrm{AP}}$.

$$
\begin{gathered}
10 \% \\
\text { [pages } 432-437 \text {] }
\end{gathered}
$$

437 3. a. $m / A=m / B$ by Corollary 13-7-2. $m / A H K=m /$ BHF since the intercepted arcs have equal measure. Therefore $\Delta A H K \sim \triangle$ BHF by the A.A. Corollary.
b. $\triangle \mathrm{BFK}$, since $m \angle \mathrm{BFA}=\frac{1}{2} \overparen{2} \overparen{A B}=\frac{1}{2} \overparen{m B F}=m \angle \mathrm{BHF}$, and $\angle \mathrm{HBF}$ is common to the triangles.
438 4. Draw $\overline{\mathrm{RO}}$. We know that $\overline{\mathrm{AO}}$ is a diameter of the smaller circle and therefore that $m / A R O=90$, by Corollary 13-7-1. Then $\overline{\mathrm{hB}}$ is bisected by the smaller circle at point R, by Corollary 13-2-3.
*5. Draw $\overline{A B}$ and $\overline{B C}$ and draw the perpendicular bisector of each segment. Since the segments $\overline{\mathrm{AB}}$ and $\overline{B C}$ are not parallel or collinear, the perpendicular bisectors are
 not parallel and therefore intersect in a point P. This can be seen by using Theorem 9-12, Theorem 9-2, and the Parallel Postulate, in that order. $A P=B P$, and $B P=C P$ by Theorem 6-2. Hence $A P=B P=C P$. By definition of circle, A, B, C must lie on a circle with center P.
6. $m \angle C=\frac{1}{2} m \overparen{2 A B}$.
$\mathrm{m} / \mathrm{A}=\frac{1}{2} \underset{2}{2} \overparen{D C B}$.
Since the sum of these two arcs is the entire circle, $m \angle C+m \angle A=180$. Similarly, $m / B+m / D=180$.
7. $\overparen{m S T}=80$,
$\mathrm{mRV}=150$,
$\mathrm{m} / \mathrm{T}=95$,
$m L V=60$,
$\mathrm{m} / \mathrm{S}=120$.
106
[pages 437-438]

439 8. By problem 6, $\angle C$ and $\angle B X Y$ are supplementary and $\angle D$ and $\angle A X Y$ are supplementary. But $\angle A X Y$ and $\angle B X Y$ are supplementary. Therefore $\angle D$ and $\angle C$ are supplementary and so $A D \| B C$.
9. Draw radii $\overline{P A}$ and $\overline{P B}$. Since $\overline{C D} \perp \overline{A B}, A M=B M$ by Corollary 13-2-3. $\triangle A P M \cong \triangle B P M$ by S.S.S. (or S.A.S. or Hypotenuse-Leg), so that $m / A P C=m / B P C$. Aiso, $m / A P D=m /$ BPD by supplements of congruent angles. Therefore $m \overparen{M A C}=m \overparen{B C}$ and $\overparen{m A D}=m \overparen{B D}$, by the definition of measure of an arc. Hence $\overline{\mathrm{CD}}$ bisects $\widehat{A C B}$ and $\overparen{A D B}$.
10. $\triangle A C B$ is a right triangle with right angle at C, by Corollary 13-7-1. $C D$ is the geometric mean of $A D$ and $B D$, by Corollary i2-6-1.
11. By Theorem $13-7, m / A=\frac{1}{2} m$ BDC. Since $m / A=90$, then $\overparen{m B D C}=180$, and $\widehat{\text { BDC }}$ is a semi-circle. Hence, by definition, $\overparen{B A C}$ is a semi-circle.
440*12. By Problem 5 we know there is a circle through A,B,C. Let $\overleftrightarrow{\leftrightarrow D}$ intersect this circle in D^{\prime}. Then $A B C D$ is inscribed in the circle, and, by Problem 6, $\angle B A D^{\prime}$ is supplementary to $\angle C$. But $\angle B A D$ is supplementary to $\angle C$ by hypothesis. Therefore, $\angle B A D^{\prime} \cong \angle B A D$, since supplements of the same angle are congruent. Hence, $\overleftrightarrow{A D}=\overleftrightarrow{A D}$ and $D=D^{\prime}$.
*13. Since $\overline{A C}$ and $\overline{B D}$ are tangent at the end-points of a diameter, then $\overline{\mathrm{AC}} \| \overline{\mathrm{BD}}$. Also, $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ are segments of chords in the larger circle which are congruent by Theorem 13-3. By Corollary 13-2-3, the radil $\overline{O A}$ and $\overline{O B}$ bisect these chords, so that $\overline{A C} \cong \overline{B D}$. Therefore quadrilateral $A D B C$ is a parallelogram, by Theorem 9-20. But the diagonals of a parallelogram bisect each other, so that $\overline{, A E}$ and $\overline{C D}$ bisect, each other at some point, P. Now O is the mid-point of $\overline{A B}$, so $P=0$, and C, O, D are collinear, making $\overline{C D}$ a diameter. 10%

Other proofs are possible.

441
Theorem 13-9. In the same circle or in congruent clrcles, if two arcs are congruent, then so also are the correspording chords.

Using the figure in the text for Theorem $13-8$ we see that:
Given: $\overparen{A B} \cong \overparen{A^{\prime} B^{\prime}}$.
To prove: $A B=A^{\prime} B^{\prime}$.
Since $\overparen{A B}=\overparen{A^{\prime} B^{\prime}}, \angle P \cong \angle P^{\prime}$, and by S.A.S. Postulate we have $\triangle A P B \cong \triangle A^{\prime} B^{\prime} P^{\prime}$. Thereiore $A B=A^{\prime} B^{\prime}$, by corresporiding parts. If $\bar{A} \bar{B}$ and $\overparen{A}^{\prime} B^{\prime}$ are major arcs the same conclusion holds. If the arcs are semi-circles then the chords are diameters and are congruent.

Theorem 13-10 is immediate if $\angle S Q R$ is a right angle, since then the intercepted arc is a semi-circle.

Here is a proof for Theorein 13-10 in the case in which $\angle S Q R$ is obtuse. Given: $\angle S Q R$ is obtuse.
To prove: $m / S Q R=\frac{1}{2}$ mQXR . Let $\overrightarrow{Q T}$ be the ray opposite to $\overrightarrow{Q S}$. Let x and y be the measures of $\angle S Q R$ and $\angle T Q R$, as in the figure.

1. $\mathrm{y}=\frac{1}{2} \underset{2}{2 \mathrm{QYR}}$.
2. $x=180-y$.
3. $x=180-\frac{1}{2} \overparen{m} \overparen{Q Y R}$.
4. $x=\frac{1}{2}(360-m \overparen{Q Y R})$.
5. $\mathrm{x}=\frac{1}{2} \mathrm{~m} \mathrm{QXR}$.
6. Theorem 13-10, Case in text.
7. Supplement Postulate.
8. Steps 1 and 2.
9. Algebra.
10. Definition of measure of a major arc.

In Problem Set 13-4b, Problems 8, 9, 10, 14 and 16 are interesting theorems in their ownnt... i are applicable to many numerical problems. " l.y grasped and proved. However, they are $: \quad$ later deductive proof in the text.

In the theorems on these pages we will be establishing relationships about the products of the lengths of segments by first establishing a proportion involving these segments using similar triangles.

Problem Set 13-4b

443 1. (See Teacher's Commentary for proof of Theorem 13-9.)
2. a. Since chords $\overline{\mathrm{AF}}$ and $\overline{\mathrm{BH}}$ are congruent, they cut off congruent minor arcs $\overparen{H A B}$ and $\overparen{F B A}$. By Theorem 13-6, $\quad \overparen{m H A}+\overparen{m A B}=\overparen{m F B}+m \overparen{m B}$, and so $\overparen{m H A}=\overparen{m F B}$.
b. From $\overparen{m H A}=\overparen{m F B}$ we get $H A=F B$ by Theorem 13-9. $m \angle A=m \angle B$ and $m / A H B=m / B F A$ by Corollary 13-7-2. Then $\triangle \mathrm{AMH} \approx \triangle \mathrm{BMF}$ by A.S.A.
3. Since $A B C D$ is a square, $\overline{D A} \cong \overline{A B} \cong \overline{B C}$, and therefore, $\widehat{D A} \cong \widehat{A B} \cong \overparen{B C}$ by Theorem 13-8. Then $m / / D E A=m / A E B$ $=m /$ BEC since they are inscribed angles which intercept congruent arcs in the same circle.
4. a. $\angle B A C$.
f. $\angle A D C$.
b. $\angle C A F$. g. $\angle D C A, \angle D B A$.
c. $\angle \mathrm{ADB}, \angle \mathrm{BAF}$. h. $\angle \mathrm{DAF}$.
d. \angle DAF. $1 . \angle E A B$.
e. $\angle \mathrm{DCB}$. j. $\angle \mathrm{DBC}$.

444 5. Since $\mathrm{mPB}=120, \mathrm{~m} / \mathrm{BPC}=60$ by Theorem 13-10. $\overline{P Q} \perp \overline{\mathrm{CP}}$, so that $\mathrm{m} / \mathrm{PPQ}=30 . \Delta \mathrm{APQ}$ is a $30-60$ right triangle. Hence, $A P=4 \sqrt{3}$.
*6. Draw the common tangent at H. Then the angle formed by the tangent at H and line u ured by the same arc as the angles formed by the ' $1: \infty \quad u$ and the tangents at M and N. Then the tangents at M and N are parallel by corresponding angles in one case and by alternate interior angles in the other case.
*7. Draw $\overline{\mathrm{PB}}$. By Theorem $13-7, \quad m / \mathrm{BPR}=\frac{1}{2} \mathrm{~m} \widehat{\mathrm{BR}}$. By Theorem 13-10, $m / 2 B P T=\frac{1}{2}(\overparen{m P}$. But $\underset{\mathrm{mBR}}{\longleftrightarrow}=\mathrm{mPB}$, so $\mathrm{m} / \mathrm{BPR}$ $=\mathrm{m} / \mathrm{BPT} . \overline{\mathrm{BF}} \perp \stackrel{\stackrel{\rightharpoonup}{\mathrm{PT}}}{ }$ and $\overline{\mathrm{BE}} \perp \overleftrightarrow{\mathrm{PR}}$ by definition of distance from a point to a line. $P B=P B$, so
$\triangle \mathrm{PBE} \cong \triangle \mathrm{PBF}$ by A.A.S. Therefore, $\mathrm{BE}=\mathrm{BF}$, which was to be proved.
445 8. Draw $\overline{B C}$, forming $\triangle B C E$. Then, $m \angle D E B=m \angle C+m / B$ $=\frac{1}{2} m \overparen{D B}+\frac{1}{2} m \overparen{A C}=\frac{1}{2}(\overparen{m D B}+\overparen{m A C})$.
9. Draw $\overline{B C}$, forming $\triangle B C E$. Then, $m \angle E=m \angle A B C-m / C$ $=\frac{1}{2} m \overparen{A C}-\frac{1}{2} m \overparen{B D}=\frac{1}{2}(\overparen{m A C}-m \widehat{B D})$.
10. The proof is the same as for Problem 9, except that Theorem 13-10 is used to get the measure of one angle In each case.
11. $\quad \overparen{m B C}=30 . \quad m / B A D=30$. $\mathrm{mCD}=30 . \quad \mathrm{m} \angle \mathrm{AGE}=70$.
$m / K=25 . \quad m \angle D G E=110$.
$\mathrm{m} / \mathrm{E}=30$. $\mathrm{m} \angle \mathrm{ADK}=140$.

354
446 12. $\quad \overparen{m D A}=88$ and $m \overparen{m C}=122$.
$m \angle E D C=m \angle D B C=31$.
$m \angle C M D=m \angle A M B=m \angle A B C=75$.
$m \angle D M A=m \angle C M B=105$.
$m \angle F D B=m \angle D C B=88$.
$m \angle A C B=m \angle A C D=7 B A=44$.
$m \angle C A B=m \angle C D$.
$m \angle D C E=m \angle B i \quad a$
$m \angle D E C=57$.
$m \angle D F A=48$.
$\mathrm{m} / \mathrm{CAF}=119$.
$m \angle C D F=149$.
$m \angle A C E=136$.
13. a. By Corollary 13-7-2, $m \angle A D P=m \angle B C P$ and $\mathrm{m} \angle \mathrm{DAP}=\mathrm{m} \angle \mathrm{CBP}$. Hence $\triangle \mathrm{APD} \sim \triangle \mathrm{BPC}$ by $A . A$.
b. Since similar triangles have corresponding sides proportional, $\frac{A P}{P B}=\frac{P D}{P C}$. Clearing of fractions we have $A P \cdot{ }^{D} C=P B \cdot P D$.
14. a. By Theorem 13-10, $m / D A C=\frac{1}{2} \overparen{m A C}$, and by Theorem 13-7, $m \angle B=\frac{1}{2} m \overparen{A C}$. Therefore $m \angle D A C=m \angle B$.
Since $\angle D$ is common to the triangles, $\triangle A B D \sim \triangle C A D$ by A.A.
b. Since similar triangles have corresponding sides proportional, $\frac{B D}{A D}=\frac{A D}{C D}$. Clearing of fractions we have $B D \cdot C D=A D^{2}$.
$447 * 15 . \quad m / a=\frac{1}{2}(m \overparen{A V}-m \overparen{D D U})=\frac{1}{2}(m \overparen{M B}-m \overparen{U C})$, so
$m \overparen{m V}+m \overparen{m C C}=m \overparen{m B}+m \overparen{m P}$. Similarly, working with $L b$,
$\mathrm{mSD}+\mathrm{mBT}=\mathrm{m} \mathrm{\overparen{AS}}+\mathrm{mTC}$.
Now $m \angle \mathrm{PRQ}=\frac{1}{2}(\overparen{m U T}+\overparen{m S V})=\frac{1}{2}(m \overparen{m U C}+m \overparen{C T}+m \overparen{m A S}+m \overparen{A V})$

$$
=\frac{1}{2}(m \overparen{U C}+m \overparen{A A P})+\frac{1}{2}(m \overparen{C T}+m \overparen{A S})
$$

$$
=\frac{1}{\pi}(\overparen{T B}+m \overparen{m D U})+\frac{1}{2}(\overparen{m S D}+\overparen{m B T})
$$

$+m \overparen{B S T})+\frac{1}{2}(\overparen{m S D}+m \overparen{m D})$
$=\frac{1}{2}(\overparen{m V T}+m \overparen{S U})=m / Q Q R V$.
Therefore $\angle \mathrm{PRQ}$ is a right angle, by definition.
*16. Case I: Draw the diameter from P. Since the diameter is perpendicular to the tangent it is perpendicular to $\overleftrightarrow{A B}$, By Theorem 9-12. Therefore, $\quad \overparen{m A P}=\overparen{m B P}$.

Case II: Draw the diameter perpendicular to the secants. By Case I, $\quad \overparen{m A P}=m \overparen{B P}$ and $m \overparen{C P}=\overparen{n P}$. $B y$ subtraction, $\quad \mathrm{mAC}=m B D$.

Case I: The diameter from P will have as its other end-point, by Theorem 9-12 2.1 Theorem 13-2. Then the two arcs are semi-" wees having equal measures, by definite. .
Alternate proofs involve drawing radii to form congruent triangles, or drawing chords which are transversals and using alternate interior angles.

112
[page 447]

$$
4 ;
$$

Un an ametimes stated, "Given a tangent and

 $\because \because \cdot \because \quad \because 1$!nin: (1) Theorem 13-7; (2) Theorem 13-10;
 (s) Gomopodiac sides ot similar triangles are proportional;
 aoct \because risit a cirole, .. product of the lengths of the armathe \therefore orie equals the product of the lengths of the Bompetat: at the other."

If the labiline oE the flgures for Theorems 13-12, 13-13,


```
    Mツ....! 1:-10
    A ' \therefore = ,! 得
```


$$
\therefore \therefore \because \Delta \Delta \square \square
$$

(3 Mi ()... 1.1
$\triangle \mathrm{SQU} \sim \triangle \mathrm{TQR}$
Theorem 13-14
$Q R \cdot Q S=Q U \cdot Q T$

$Q R \cdot Q S=Q U \cdot Q T$
Since $R=S$ and $T=U$ we get $Q R \cdot Q R=Q T \cdot Q T$ $Q R^{2}=Q T^{2}$.
Since $Q R$ and $Q T$ are positive numbers we have Theorem 13-11, $Q R=Q T$.
$Q R \cdot Q S=Q U \cdot Q T$.
Since $Q=R=U$ then $Q R=0$ and $Q U=0$, hence $0 \cdot Q S=0 \cdot Q T$

$$
0=0
$$

and this is a trivial result, but the patterm $Q R \cdot Q S=Q U \cdot Q T$ still

holds.

[page 451]

Problem Se= 13-5
4521.

2. By Theorem 13-12, $x(x+13)=4 \cdot 12$.

$$
x^{2}+13 x=48
$$

$$
x^{2}+13 x-48=0
$$

$$
(x+16)(x-3)=0
$$

$$
x=3
$$

3. Let $B K=a$. Then by Theorem 13-13,

$$
\begin{aligned}
a(a+5) & =36 \\
a^{2}+5 a-36 & =0 . \\
(a+9)(a-4) & =0 . \\
a & =4 .
\end{aligned}
$$

$$
B K=4 .
$$

453 4. By Theorem 13-14, we have

$$
\begin{aligned}
& x(19-x)=6 \cdot 8 \\
& x^{2}-19 x+48=0 \\
&(x-3)(x-16)=0 \\
& x=3 \\
& w=19-x=16
\end{aligned}
$$

$$
11 ;
$$

[pages 452-453]
L.

$$
\begin{aligned}
& \therefore: \text { ? Eamento to a c:role from an external point are } \\
& \therefore \text { romt, S: SP, } \\
& 1 \%: \mathrm{RM} \text {, } \\
& \text { ? CP, } \\
& \text { H. - DM. } \\
& \text { ak 're ard erouping. } \\
& \because:(: M)+(C L+D L) \cdot(S P+C P)+(R M+D M) \text {, or } \\
& \text { US: OD }=S C+R D \text {. } \\
& \text { we }: \text { ve the radius. } \\
& \text { Thea, } \mathrm{y} \text { Theorem 13-14, } \\
& (x-\quad)(r-8): 6 \cdot 6 \text {, } \\
& u \quad 4=30, r=10 \text {. } \\
& \because \because M, 13-12, \quad 7 \cdot A R=6 \cdot 14, \\
& A M=6 \cdot 2=12 . \\
& A B=12-7=5 . \\
& \text { 4.: . Le: We ling of the atrele be r. Then by Theorem } \\
& 13-1 ;, \quad \therefore \quad(r+r)=(1 a)^{2} \text {. Hence } r=16 \text {. }
\end{aligned}
$$

110

$$
\text { [pares: } \quad \text { h, } 4 \text {] }
$$

454 10. Since all angles of the triangle have a measure of 60 the minor arc has a measure of 120. This leave. 240 for the measure of the major are.
11. If m is the length of the shortest of the four segments, the rest of its chord would have to be the longest of the segments. Otherwise the product of the sexgments of this chord would certainly be less than the product of the segments of the other. Hence, if it were possible to have consecutive integers for the lengths they would be labeled as shown. But in this case, by Treorem 13-14, it would be necessary that:

$$
\begin{aligned}
& & m(m+3) & =(m+1)(m+2) \\
\text { or } & & m^{2}+3 m & =m^{2}+3 m+2 \\
\text { or } & & 0 & =2 .
\end{aligned}
$$

Since this is impossible, the lengths of the segments … ... cannot be consecutive integers.
*12. Applying Theorem $13-13$, we have $A M^{2}=M R \cdot M S$ and $M B^{2}=M R \cdot M S$. Hence, $A M^{2}=M B^{2}$ and $A M=M B$. Similarly $C N=N D$.
455 13. a. Four; two internal, two extermal.
b. One internal, two external.
c. Two external only.
d. One extermal only.
e. None.
$11 i$
[pages 454-455]

455*14. Draw radii $\overline{\mathrm{RA}}$ and \bar{B}. et $\overline{\mathrm{AB}}$ intersect $\overline{\mathrm{RQ}}$ at P . $m \angle A=m \angle B=90$, and $m \angle A P R=m \angle B P Q$ by vertical angles. Therefore $\triangle \mathrm{APR} \sim \triangle \mathrm{BPQ}$ by A.A. This gives $\frac{R P}{Q P}=\frac{R A}{Q B}$. Now suppose $\overline{D C}$ meets $\overline{R Q}$ at point P^{\prime}. Then, by a similar argument, we arrive at $\frac{R P I}{Q P}=\frac{R A}{Q B}$. Hence $\frac{R P P^{\prime}}{Q P T}=\frac{R P}{Q P}$, and P and P^{\prime} are both between R and Q. Therefore $P^{\prime}=P$.
*15. Problem 14 assures us that $\overline{A B}$ and $\overline{C D}$ meet $\overline{\mathrm{RQ}}$ at the same point P. Therefore, by Theorem 13-11, $P A=P C$ and $P B=P D$. Adding, we have $P A+P B=P C+P D$, or $A B=C D$.
456 16. Draw $\overline{Q R} \perp \overline{\mathrm{AP}}$. In $\triangle \mathrm{PQR}, \mathrm{RQ}=\sqrt{(\mathrm{PQ})^{2}-(P R)^{2}}$. Hence $R Q=48$. But $A B=R Q$, since $R Q B A$ is a rectangle. Therefore, $A B=48$.
17. As in the previous problem, draw a perpendicular from the center of the smaller circle to a radius of the larger circle. By the Pythagorean Theorem, the distance between the centers is 39 inches.
18. Draw $\overline{Q E} \perp \overleftrightarrow{P A}$. Since $P Q=20$ and $P E=7+9=16$, then $Q E=12=A B$.
*19. Let d be the required distance. By Theorem 13-13

$$
\begin{aligned}
& \mathrm{d}^{2}=\frac{\mathrm{h}}{5280}\left(8000+\frac{\mathrm{h}}{5280}\right) . \\
& \mathrm{d}^{2}=\frac{50}{33} \mathrm{~h}+\left(\frac{\mathrm{h}}{5280}\right)^{2} .
\end{aligned}
$$

Now since h is very small compared to $5280,\left(\frac{h}{5280}\right)^{2}$
is exceedingly small, and is not significant. So
approximately, $\quad d=\sqrt{1.515 \mathrm{~h}}=1.23 \sqrt{\mathrm{~h}}$.
Hence, d is roughly $\frac{5}{4} \sqrt{h}$.

Review Proulems

457 1. a. chord. f. minor arc.
b. diameter. (also chord.)
c. secant. g. major arc.
d. radius. h. inscribed angle.
e. tangent. i. central angle.
2. 55 and 70.
3. $m / A X B=90$, because it is inscribed in a semi-circle. $m \angle A X Y=45 . \quad \widehat{A Y}=90$ since $\angle A X Y$ is inscribed.
Hence the measure of central angle $A C Y$ is 90 making $\overline{C Y} \perp \overline{A B}$.
4584.
a. True.
f. True.
b. True.
E. False.
c. False.
h. True.
d. True.
i. True.
e. False.
j. True.
5. $m \angle C=65$. $m / A B X=65$.

459 6. Let $\mathrm{mHE}=r$. Then $m / \mathrm{PCH}=90-r$,
$m \angle N H C=180-(90-r)$ or $90+r$. Then
$m \angle N H R=m / N H C-90=(90+r)-90=r$.
Herce, $m \mathscr{M E}=m / N H R$.
7. The Elgure shows a crosssection with x the depth to be found.
$25^{2}=20^{2}+(25-x)^{2}$

$225=(25-x)^{2}$
$15=25-x$
$10=x$. The depth is 10 inches.

$$
\text { [pages } 457-169 \text {] }
$$

459 8. By the Pythagorean Theorem, $A D=9$. If r is the radius, then $O D=r-9$ and $O C=r$. Hence, in \triangle DOC,

$$
\begin{aligned}
r^{2} & =(r-9)^{2}+12^{2} \\
r^{2} & =r^{2}-18 r+81+144 \\
18 r & =225
\end{aligned}
$$

$$
r=12.5 . \text { The diameter of the wheel is } 25 \text { inches }
$$ long.

9. Consider the distance
$B X$ to any other point X on the circle, and the radius $C X$.
$B C+A B=A C=C X . \quad B y$
Theorem 7-7,
$\mathrm{BC}+\mathrm{BX}>\mathrm{CX}$. Hence,
$\mathrm{BC}+\mathrm{BX}>\mathrm{BC}+\mathrm{AB}$ and $\mathrm{BX}>\mathrm{BA}$.

Also $B X<B C+C X$,
or $B X<B C+C D=B D$.
*10. $(4000)^{2}=(100)^{2}+(4000-x)^{2}$
$(4000-x)^{2}=15,990,000$.
$4000-x=3,998.75$.
x = 1.25, approx.
The shaft will be about $1 \frac{1}{4}$ miles deep.

460 11. $A Y=A P$ and $A X=A P$, because tangent segments to a circle from an external point are congruent. Therefore, $A Y=A X$.

$$
120
$$

*12. $\mathrm{AP}^{2}=1(8+1)=9$, by Theorem 13-13.

$$
A P=P X=X Y=3, \text { so } Q X=2 \text { and } X Z=6
$$

3. $A X=2 \cdot 6$, by Theorem 13-14.

$$
A X=4
$$

*13. The angle measures can be determined as shown. Hence, \triangle PAR and \triangle QCR are equilateral triangles and $P R Q B$ is a parallelogram. $P C=P R+R C=A R+R Q$. But $A R=A P$ and
$R Q=P B$. Hence, $P C=A P+P B$.

Illustrative Test Itemb for Chapter 13

A. Indicate whether each of the following statements is true or talse.

1. If a diameter of a sircle bisects a chord of that circle which is not a diameter, then the diameter is perpendicular to the chis rd.
2. If a line bisects both the major and minor arcs of a glven chord, then it also bisects that chord.
3. If two chords of a circle are not congruent, then the shorter chord is nearer the center of the circle.
4. If the measure of an angle inscribed in a circle is 90 , then the measure of its intercepted arc is 45.
5. Any two angles whicr intercept the same arc of the same circle are congruent.
6. Two concentric circies have at least one point in common.
7. An angle inscribed in a semi-circle is a right angle.
8. If the interiors of two spheres each contain the same given point, then the spheres intersect in a circle.
9. If two circles are tangent internally, then the segment Joining their centers is shorter than the radius of either circle.
10. If two arcs, each of a different circle, have the same measure, then their chords are congruent.
B. 1. Given: $\overline{A B} \| \overline{C D}$ as
shown, with $m \overparen{A C}=1.00$ and $\mathrm{mCD}=40$.
Find: a. m $/ \mathrm{B}$.
b. m / c.
c. $m \angle D A B$.

11. In the figure, $\overleftrightarrow{X Y}$ is tangent to circle 0 at B. Find
a. $m / R B S$.
b. mBR .
c. m / S.

C. 1. The mid-point of a chord 10 inches in length is 12 inches from the center of a circle. Find the length of the diameter.
12. Two parallel chords of a circle each have length 16. The ilstance between them is 12. Find the radius of the circle.
13. Two concentric circles have radil of 6 and 2 respectively. Find the length of a chord of the larger circle which is tangent to the smaller circle.
14. The distance from the mid-point of a chord 12 inches long to the mid-point of its minor arc is 4 inches. Find the radius of the circle.
15. In a circle, chords $\overline{A B}$ and $\overline{C D}$ intersect at E. $A E=18, E B=8$ and $C E=4$. Find $E D$.
16. Given: Chord $\overline{\mathrm{BF}}$
bisects chord $\overline{A C}$ at H. $\overleftrightarrow{\mathrm{DE}}$ is a tangent. $\mathrm{FH}=3, \mathrm{BH}=12$ and $C D=3$.
Find: $A C$ and $D E$.

D. 1. Given: $\overleftrightarrow{C A}$ is tangent to circle O at A. Prove: $m \angle B A C=\frac{1}{2} m / 0$.

17. Given: $\widehat{m A C}=\widehat{m B D}$.

Prove: $\overline{\mathrm{AB}} \| \overrightarrow{\mathrm{CD}}$.

3. Prove that a parallelogram inscribed in a circle is a rectangle.
4. $\underset{\mathrm{AB}}{\underset{\mathrm{GB}}{\leftrightarrows}, \underset{\mathrm{BD}}{ }} \underset{\leftrightarrow}{\leftrightarrows}$, and $\underset{\mathrm{DE}}{\stackrel{P}{\leftrightarrows}}$ with tangent to the circle as shown.
Prove: $A B+E D=B D$.

5. Given: Two circles are tangent at A and the smaller circle, P, passes through 0 , the center of the larger circle. The line of centers contains A.

Prove: The smaller circle bisects any chord of the larger circle that has f, as an end-point.
6. $\overline{\mathrm{NO}}$ is a radius of sphere 0 . At 0 , plane $F \perp \overline{N O}$. At P between N and O, plane $E \perp \overline{N O}, \overline{P Y}$ and $\overline{O X}$ are coplanar radil of the circles in which E and F intersect sphere 0 .

If $m \overparen{N Y}=\frac{1}{3} m \overparen{N X}$,

explain why $P Y=\frac{1}{2} O X$.

Answers

A. 1. True.
2. True.
3. False.
4. False.
5. False.
B. 1. a. 70 .
2. a. 60 .
C. 1. 26 inches.
2. 10 .
3. $8 \sqrt{2}$ (from $2 \sqrt{32}$).
b. 110
b. 100
6. False.
7. True.
8. False.
9. False.
10. False.

125
4. Let r be the radius
$36=2$ 2r - $)$.
$52=\varepsilon$.
$6 . \equiv=\quad$ radius
is 6 . ir ies long.

5. 36.
6. $\quad \mathrm{AC}=12, \quad \mathrm{E}=3 \sqrt{5}$.
D. 1. $m \angle B A C=\{\overparen{A B}$.
$m \angle O=m \overparen{A B}$.
Hence $m \angle B A C=\frac{1}{2} m \angle 0$.
2. Draw $\overline{A D}$. Then $m / B A D=m / C D A$ since they intercept congruent arcs. $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$, because of the congruent alternate interior angles formed.
3. Given: $A B C D$ is a parallelogram inscribed
in circle 0.
Prove: ABCD is a rectangle.

1. $\quad \angle D \cong \angle B$.
2. $\overparen{A D C} \cong \overparen{A B C}$, and
$\overparen{A B C}$ is a semi-circle.
3. $\angle D$ is a right angle.
4. $A B C D$ is a rectangle.
5. Opposite angles of a parallelogram are congruent.
6. Arcs intercepted by congruent inscribed angles.
7. An angle inscribed in a semi-circle is a right angle.
8. Definition of rectangle and Theorem 9-23.
9. Since \quad a circle from an exter:-1 point are congmin. $x: A B=B C$ and $D E=D C$ By addition, $A B+D E=-L$.
10. Let $\overline{A X} \quad$ a \therefore of circle 0 whet intersects c1: : \quad : Y . Prove: El .

Consider $\therefore \mathrm{HO}$
is a rigr k, 1t is inse ies en a semi-
 circle. f : x vecause a line perpendicular to a chord and atreing the center of the circle bisects the chord. (S see $\overline{O A}$ and $\overline{P A}$ are perpendicular to a common tar an a A, P must lie on $\overline{O A}$.)
6. Since $\overline{\mathrm{NO}}$ _ at P,
$\overline{\mathrm{NO}} \perp \overline{\mathrm{PY}}, \mathrm{anc} \perp \mathrm{OPY}$
is a right mitangle.
Since $\overline{\mathrm{NO}} \perp \vec{g}$ at 0 ,
$m /$ NOX $=90$, End
$m \mathbb{N Y}=\frac{1}{3} m \sqrt{X}=30$.
From properties 25
30-60 righ: - =ngle
$P Y=\frac{1}{2} O Y$. Eut $\quad \because=O X$.
Therefore, $E Y=\frac{\dot{2}}{2} O X$.

Chapter 14
CFARACDERIZATION OF SETS. CONSTRUCTIONS.

This ch \equiv oter could be entitled Loci and Constructions It deals with the traditional material of loci and ruler and compass constructions, and the treatment is mostly aron ventional. The only real innovation is the use of the ter: "characterization of a set" rather than "locus" as expla.: below.

The teacher may notice with relief or chagrin that -w word locus does not occur in this chapter of the text. Iz omission is deliberate. Conventional texts generally contain the phrase "locus of points" or "locus of a point". The phrase arose historically to mean (1) a description of the "location" of all points which satisfy a given condition or (2) the path of a point which "moves" so as to satisfy the condition. In each case the locus is a flgure, that is, a set of points. Since we are already familiar with the term set, it seems undesirable to introduce a superfluous term which students often find confusing.

A more significant advantage, however, is that it allows us to concentrate on and develop the essential issue: to define each set by a common, or characteristic, property of its elements. We are concerned with defining, or characterizing, a set of points by means of a property which each point of the set must satisfy. Note that this point arises in other branches of mathematics. For example, in algebra we define the set of even integers by specifying a characteris:ic property (namely, divisibility by 2) satisfied by every even integer and by no other integer.

```
        Jumarlze: We charac size = by specifying:
```



```
        but no -ne: =lements; we call the c.:U -ion a
        charac: =1zz,on of the set. T= show -hミこ a cert\equivin set ir
        charchct==lz=a by a given condition, %= m=st show (l) that
        each pent ji the set satisfies the give: condition; and
        (2) eac: point satisfying the condition is a point of the
        set. T.us, we must prove (1) = theorem End (2) its converse.
        Sometim:es 1: Ls convenient to prove (2) by the indirect
        method.
```

 We mentioned above that in order to characterize a
 figure, we must prove a theorem and its converse. Consićs: the following example：Identify the set of points equi－ distant from two intersecting lines．Having drawn two interseting lines \dot{I}_{1} and L_{2} as b＝low，a student might procee to use the property that each point of the bisector of an a：asle is equidistant from the sides of the angle and conclude that L_{3} is the required set of points．

His salutior however，is not correct，since he has found only a $\mathrm{p} \equiv-\mathrm{t}$ ？the requi \cdots set．If he said that every point in this set was efudistant from the two intersecting lines，fis would be co＝re，k if he were to try to estabils．that every シーーーム trat satisfミニd the given cordition was in $t=1 \mathrm{~s}=\equiv$ ，he woulc readlle see his error．For thers Is a not：．．as in the figue below，that is equidi＝tar： from L_{1} ar：L_{2} ，but which does not－e in L_{3} ．In fac： there are mary points which have this property，and we see that the set defined is not just one line，but two lines determired by the bisectors of the angles．
［page 462．］
125

In Problem Set 14-1, the te- cylindrical surface is used. The mear-az shauld be inturively clear to students and mäy be ised accorcingly.

Problem Set 14-1

463 1. The set of Eoints is a sphere with center C and radius 3 inches.
2. The set of pointe is a circle in E with center C and maius 3 i-sines.
3. The \equiv at of pointe is the ine in the plane E which is pa=-Iel to eaci of the Fven lines and equidistan frm: them.

-. Ie= ze the pofin E which is the foot of the pemparimulan fron σ to $E(1 . e . \overline{O C}$ is 3 inches 10EE:
a. The set of points is a rele with center 0 and ramius 4 inches.
b. The set consists of the Eingle point 0
[page 463]
130
$=4$

4-3 c. There are no point $\because:=2$ inches from C. Hence, the required se: is th- empty set.
5. a. There are four 20 .
b.

$\overline{A B}\|L ; \overline{C D}: L ; \overline{A D}\| M ; \overline{B C} \| M . \quad$ The required set, nsists of the points of the famali=-ogram ABCD together with all inverior po-nis.
6. a. The set consis:; :f two points, the thira vertices \therefore : the two oquinteral tangles which heree $\overline{A B}$玉e one str
b. The scila an se is tie intersection of the two circuiar gior. with centers A and B respectively ari raci : zeet.

463 c. The mid-point of $\overline{A B}$ is the only point of the set. à. The empty set.
7. The set is the union of a pair of line zegments parallel to and having the same le=gth as $\overrightarrow{A B}=-=$ two semicircles with radius 1 incn and centez A and B respectively, as shown.

Problem Set 1E:-2a
464 1. a. The sphere whose cerme: is the joint and whose radius is the giv districe.
b. The cylindrical surfeue with the Elver line as axis and the given distance as racius.
c. The two planes paralle to the zlten Elane and at the given distance Frm $1 t$.
d. The four lines wher 2. the interwans of the following sets of \because innes: two $\equiv t$ megiven dir. tance from one of tre given Dlanes. two at the given distance from the other given ziane.
$1: 2$

```
[pages 463-464]
```

$464 \quad$ The intersection of the two spheres having the given points as centers and the given distances as radil. This intersection may be a circle, one point, or the empty set.
r. A cylindrical surface (see b above) capped by two hemispheres.
2. a. The line which is the perpendicular bisector of the segment joining the two given points.
b. The line parallel to the given lines and midway between them.
c. The two lines which bisect the angles made by the given lines.
\dot{c}. One point - the intersection of the perpendicular bisectors of two of the sides of the triangle determined by the given points.

465 ミ. a. The perpendicular bisecting plane of the segment jolning the given points.
b. The perpendicular bisecting plane of a segment which is perpendicular at its end-points to the given lines.
c. The plane which is parallel to the given planes and midway between them.
d. Two planes which bisect the dihedral angles made by the given planes.
e. A conical surface composed of lines through the foot of the perpendicular and making 45° angles with the given line.
4. a. 1. true. 2. false.
b. 1. true. 2. false.
5. The pole should be placed at the point where the perpendicular bisectors of two sides of the triangle intersect.

$$
\begin{gathered}
\text { [pages } 464-465] \\
133
\end{gathered}
$$

465 6. The perpendicular bisecting plane of $\overline{\mathrm{AB}}$, minus the mid-point of $\overline{A B}$.
466 7. The point is the intersection of the perpendicular bisectors of two of the segments joining the pairs of points. If the points are collinear the two perpendicular bisectors will, of course, be parallel.
8. Points equidistant from two given points lie in a plane r_{1}. Points equidistant from two given parallel planes also lie in a plane r_{2}. In general, the intersection of two planes is a line, but if the two planes should be parallel, the intersection is the empty set or if the two planes should be equal the required set is a plane. In summary the set may be a line, a plane, or the empty set.

Given points A, B and parallel planes m and n.

*9. The union of the interiors of two circles with 4 cm , radil and centers at the given points.

134
[pages 465-466]

*l2. Two pins are put in a
drawing board, at F
and G, and a loop of
string of length 9
is placed around them and pulled taut by a pencil at P. As the pencil moves, always
keeping the string
taut, it describes a

figure called an
"ellipse".
$13 ;$
[page 467]

To j…stify Staterent 1 we are assuming from the diagram that sinc D is in Enterior of $\angle B A C$ so is P. (D is ir the interio of $\angle \mathrm{AR}$ since $\overrightarrow{A D}$ is the bisector of $\angle \mathrm{BAC}$.) This cari be proved jormally by using Theorem 6-5 and tie definition of the inverior of an angle.

In order to illistrete the precision with which we must define a set of points, the following problem might be presented to the class:

Given two points \Rightarrow and E, what is the set of
points C such tra $\triangle A B C$ is a right triangle?
At first thought, $= \pm=$ might consider that the angle inscribed in a semi-cimale is a right angle and give the following as a pictum ai the set:

Note that points $:$
and 3 are not in the . set.

However, the problem $\mathfrak{E z}$ not say, "What is the set of points C such that $\triangle A B C$ is a right triangle with right angle at C." The right angle migt equally well je at A or at B, and we have to draw the set like this:

Note again that poens
A and B are $=$ the set.

The set $c=n s i s t s$ of ail points on a circle with diameter $\overline{A B}$ and also $\equiv l 1$ points or tine lines perpendicular to this diameter at A and \equiv Excluding the points A and B.

In Theorem 14-2 we are referring, of course, to the perpendicular bisectors of the sides in the plane of the triangle.

Theorem 14-2 will be used later to circumscribe a circle about a triangle. The construction is a direct consequence of the theorem. Since the point of concurrency is the center of the circumscribed circle, it is called the circumcenter of the triangle.

In the proof of Theorem 14-2 we can answer the question "Why?", as follows. Suppose $L_{1} \| L_{2}$. We know $\overleftrightarrow{A B} \perp L_{1}$ and $\overleftrightarrow{A C} \perp \mathrm{~L}_{2}$. Hence $\overleftrightarrow{A B} \perp \mathrm{~L}_{2}$. Thus the two lines $\overleftrightarrow{A B}, \stackrel{1}{4}$ are perpendicular to L_{2}, and must be parallel.

Proofs of the Corollaries
Corollary 14-2-1. There is one and only one circle through three non-collinear points.

Since the existence and uniqueness of a noint equidistant from the three vertices of a triangle is proved in Theorem $14-2$, the center and radius of a circle containing any three non-collinear points are uniquely determined.

Corollary 14-2-1. Two distinct circles can intersect in at most two points.

Theorem 13-2 rules out the possibility of more than two collinear points and Corollary $14-2-1$ rules out the possibility of three, or more, non-collinear points.
$470 \longleftrightarrow$ In the proof $\stackrel{\text { of }}{\longleftrightarrow}$ Theorem $14-3, L_{1}$ is perpendicular to $\overleftrightarrow{\mathrm{DE}}$ because $\mathrm{I}_{1} \perp \stackrel{\mathrm{BC}}{\overleftrightarrow{ }}$ and $\overleftrightarrow{\mathrm{BC}} \| \stackrel{\mathrm{DE}}{\longrightarrow}$.

The point of concurrency of the altitudes of a triangle is called the orthocenter.

We have shown in Theorem 9-27 that the medians of a triangle are concurrent at a point, called the centroid of the trlangle.
$13 \ddot{3}$
(pages 469-470)

It is interesting to note that in a given triangle, the orthocenter, circumcenter and the centroid are collinear. This leads to an interesting problem. If we draw the segment between the orthocenter and the circumcenter and find its mid-point, then using this point as center and the distance from this point to the mid-points of the sides of the triangle as a radius and draw the circle defined by these conditions, we get what is called the Nine-point circle. This circle has the following properties: It passes through the mid-points of the sides, it passes through the feet of the three altitudes of the triangle, and it passes through the mid-points of the segments joining the orthocenter (point of intersection of the altitudes) to the vertices.

For complete rigor in the proof of Theorem 14-4, one should first prove that $\overrightarrow{A D}$ and $\overrightarrow{B E}$ really do intersect. The proof is as follows: Since $m / A+m \angle B+m / C=180$, and $m \angle A B E<m \angle B$, and $m m \angle B A D<\angle A$, then we have $m \angle A B E+m \angle B A D<180$. Now $\overleftrightarrow{B E}$ and $\overleftrightarrow{A D}$ are not parallel, since otherwise we would have $m \angle A B E+m / B A D=180$. (We are using the fact that E and D are on the same side of $\overleftrightarrow{A B}$ to ensure that $\angle A B E$ and $\angle B A D$ are a pair of interior angles on the same side of the transversal $\overleftrightarrow{A B}$.) Thus $\overleftrightarrow{B E}$ and $\overleftrightarrow{A D}$ intersect. Let $\overrightarrow{\mathrm{BE}^{\prime}}$ and $\overrightarrow{\mathrm{AD}}$ be the rays opposite to $\overrightarrow{\mathrm{BE}}$ and $\overrightarrow{\mathrm{AD}}$. Then one of the four cases must hold: (1) $\overrightarrow{\mathrm{BE}}$ intersects $\overrightarrow{\mathrm{AD}^{\prime}}$. This I.s lmpossible since if their point of intersection were T, the trlangle TAB would have two angles the sum of whose measures was more than 180 . $(2) \overrightarrow{B E}$ intersects $\overrightarrow{A D}$. This is impossible, since the rays 11e on opposite sides of $\stackrel{A B}{\longleftrightarrow}$.
$(3) \overrightarrow{\mathrm{BE}}$ intersects $\overrightarrow{\mathrm{AD}^{\prime}}$. This is impossible for the same reason as (2).
(4) $\overrightarrow{B E}$ intersects $\overrightarrow{A D}$. Being the only possibility left, this must be true.
Notice that we have used no special property of bisectors, merely the fact that $\overrightarrow{\mathrm{BE}}$ and $\overrightarrow{\mathrm{AD}}$ (excluding B and A) are in the intericrs of $\angle B$ and $\angle A$.

Theorem $14-4$ will be used to inscribe a circle in a triangle. We can see that the point of intersection is equidistant from the sides of the triangle, and a circle with this point as center and the distance from this point to a side as radius, will have the sides of the triangle as tangents. This point of concurrency is called the incenter of the triangle.

Problem Set 14-2b

472 1. The point is the intersection of $\overleftrightarrow{P Q}$ and the bisector of $\angle B$.
2. The fountain should be placed at the intersection of the bisector of $\angle B$ and the perpendicular bisector of $\overline{D C}$.
3. The proof is almost
identical with that of Theorem 14-4: If the bisectors of $\angle B A C$ and $\angle D B C$ meet at P, $\stackrel{\mathrm{AB}}{\stackrel{\mathrm{A}}{\leftrightarrows}}$ and equidistant from $\underset{A C}{\leftrightarrows}$, and also from $\overleftrightarrow{B D}$ and $\overleftrightarrow{B C}$. But $\overleftrightarrow{A B}=\overleftrightarrow{B D}$, hence,
 $\stackrel{\mathrm{CE}}{\stackrel{\mathrm{P}}{\leftrightarrows} \text { and } \stackrel{\text { is equidistant }}{\longleftrightarrow} \text { from }}$ on the bisector of $\angle B C E$.
[pages 471-472]

472 4. This follows by applying Theorem $14-4$ and Problem 3 to the bisectors of the interior and exterior angles of the triangle as shown.

473 5. Let m be the radius of any circle with center M and n be the radius of any circle with center N. Then the situations are:
a. $\quad \mathrm{m}+\mathrm{n}<\mathrm{MN}$.
b. $\quad \mathrm{m}>\mathrm{MN}+\mathrm{n}$ or $\mathrm{n}>\mathrm{MN}+\mathrm{m}$.
6. The angle bisectors are not necessarily concurrent. They are concurrent for a square or a rhombus. In general, they are concurrent if and only if there exists a circle tangent to each of the sides of the quadrilateral.
7. Each of the six segments is a chord of the circle. Hence, each perpendicular bisector passes through the center of the circle.

473 8. The required set is the circle with the segment as diameter, but with the end-points of the segment omitted.

If P is in this set, then $\angle A P B$ issa right triangle by Corollary 13-7-1.

If $\angle \mathrm{APB}$ is a right angle, let $\overrightarrow{A P}$ intersect the circle in Q. Then $\angle A Q B$ is a right angle by Corollary 13-7-1, and hence, $Q=P$ by Theorem 6-3. Therefore P lies on the circle, but $P \neq A$ and
 $\mathrm{P} \neq \mathrm{B}$.

Problem Set 14-3

474 1. There will be two points P, the intersections of the circle with center A and radius 4 , and the circle with center B and radius 5 .
2. The two points P, P^{\prime}, are the intersections of the perpendicular bisector of $\overline{A B}$ and the circle whose center is C and whose radius is 5 .

141
[pages 473-474]
$47^{4} * 3 . \quad l, m, n$ are the 1 bisectors of $\overline{A B}, \overline{A C}$, and $\overline{B C}$ respectively. Each passes through the center 0 of the circle. Thus the points interior to the circle and to the left of ℓ (shaded horizontally) are nearer to A than to B. Similarly the points in-
 side the semi-circular region shaded vertically are nearer to A than to C. The required set is the intersection of the interism of these two semi-circular regions (the interior of the sector ODAE).

475 4. a. Two points, the Intersections of the circle with center B and radius 4, and the circle with center C and radius 3.
b. Two points, the intersections of circles with centers B and C and radius 10.

142
c. Two points, the intersections of the circle with center B and radius 10 , and the perpendicular bisector of $\overline{B C}$.
d. One point, the

$\frac{\text { Intersection of }}{B C}$ and the circ
aith center B and radius 2 , and the circle with center C and radius 4 .

475
The inclusion of some compass and straight-edge constructions in the text is a luxury, a concession to the interest this traditional topic has always generated in geometry classes. Under ruler and protractor postulates the restriction to compass and unmarked straight-edge is quite artificial. For example, to divide a segment into seven congruent segments we need only to divide its length by seven and plot the approprlate points on the segment. An angle can ke divided up by a similar process using a protractor. Certainly one of the quickest ways to construct a perpendicular to a line is to use a protractor to construct an angle of 90°.

The main reason for this bow to tradition, then, is to attempt to capture the interest which arises from the challenge that constructions provide. Historically, compass and straightedge constructions have been tremendously important in stimulating significant advances in mathematics, as in the theory of higher degree equations or in proving that π is a trans-
[page 475]
143
cendental number. We hope that your students will likewise enjoy and benefit from the many challenges found in the theorems and problems of these sections.

The absence of Theorem 14-5 in Euclid's Elements is one of the reasons why present-day geometers state that the jstulats system of Euci1d is incomplete. For a more complete discussion of the need for the therem see Studies II.

Sotice that for every construction, the text gives a proof. When the students dc some of the constructions for themselres, some of these stould be accompanied by a proof that the construction is correct. A careful analysis of a construetion problem will y $\ddagger=1 d$ a proof with just a little more work thari doing the construction.

Notice how the Two-Circle-Theorem is used to establish that the two circles in this construction theorem do actually intersect.

Problem Set 14-5a

1. Part d is not possible.
2.

3. $\angle C . \quad \frac{B C}{H Q}=\frac{A C}{M Q}$.
4. a. If the length of the given segment $\overline{\mathrm{AB}}$ is c , draw the circles with center A and radius c, center B and radius c. Since $c+c>c$, these circles intersect at C and C^{\prime}, say, and $\triangle A B C$ and $\triangle A B C '$ are equilateral.
[pages 476-480]
144

480
b. If c is the length $o:$ the given base $\overline{A B}$ and r is the length of the side, then the two circles with centers A and B and radius r will intersect at C, C^{\prime}, say, if and only if, $r>\frac{C}{2}$, and $\triangle A B C$ and $\triangle A B C$ will be isosceles with base $\overline{A B}$.

In Construction 14-8, the condition that r should satisfy to insure the irtersection of the circular arcs in two points, is that r must be greater than $\frac{1}{2}$ the length of the given segment. In this particular problem, $r>\frac{1}{2} A B$. A value of r that is sure to work is r equal to the length of the given segment; in this problem $r=A B$ will always work.
482 Notice that Construction 14-9 works just as well if P is on L .

Problem Set 1:
483 1. Construct $\overleftrightarrow{B C} \perp \overline{A C}$. Make $\overline{B C} \cong \overline{A C}$.
$\triangle A B C$ is the required triangle.

2. Construct the perpendicular bisector l of $\overline{A C}$, meeting $\overline{A C}$ in \bar{M}. Mark off $\overline{M B}, \overline{M D}$ on ℓ, each congruent to $\overline{A M}$. $A B C D$ is the required square.

14 ;

[pages 480-483]

483 3. Make $\overline{F H} \cong \overline{A B}$. Construct the perpendicular bisectui of $\overline{F H}$. Make $\overline{E Q} \cong \overline{\mathrm{CD}}$. Bisect $\overline{E Q}$. Make $X R=X W=\frac{1}{2} E Q . \quad F W H R$ is the required rhombus.

4. $\frac{\text { On }}{\mathrm{QW}} \stackrel{\leftrightarrow}{A F}$ as a "working line", make $X W=d$ and $X Q=$ base of our triangle. Construct $\overrightarrow{X R} \perp \stackrel{A F}{\leftrightarrows}$.

5.

6. $P Q=A B, Q R=C D$.

$A B$ and $C D$.

Other ways to construct a line parallel to a given line through an extemal point are (l) construct corresponding angles con ruent and (2) construct a line perpendicular to a line through the given point perpendicular to the given line.

On the basis of a construction very similar to 14-11 1t is possible to divide the length of a given segment in a given ratio. Given a segment $\overline{A B}$, we want to divide $A B$ into two segments such that the lengths of these segments will be in some given ratio, say $\frac{a}{b}$. The construction is as follows:

Startint at A draw any ray $\overrightarrow{A D}$, and a ray $\overrightarrow{A C}$ not collinear with ray $\overrightarrow{A D}$. On $\overrightarrow{A D}$ mark off $A B$ and on $\overrightarrow{A C}$ mark off $A E=a$ and $E F=b$. Draw $\overline{B F}$, and through E construct a line. L parallel to $\overleftrightarrow{\mathrm{BF}}$ intersecting $\overrightarrow{\mathrm{AD}}$ at a. Then $\frac{A G}{G B}=\frac{a}{b}$.

Proof: Since we have in $\Delta A B F, \overleftrightarrow{E G}$ parallel to $\overleftrightarrow{B F}$ and intersecting $\overline{A F}$ and $\overline{A B}$, then it follows from Theoiem 12-1 that $\frac{A G}{G B}=\frac{A E}{E F}$, hence, $\frac{A G}{G B}=\frac{a}{b}$.

$$
117
$$

[pages 484-485]

Problem Set 14-5c
485 1. Make $\overline{\mathrm{DE}} \propto \overline{\mathrm{AB}}$. Make
$\angle \mathrm{D} \propto \angle \mathrm{Q}$ and
$\overline{\mathrm{DK}} \cong \overline{\mathrm{FH}}$. Using E
as center and the length FH as radius, strike an arc and with K as center and length $A B$ as radius, strike another arc intersecting the first at X
on the opposite side
of $K E$ from D. DEXK is the required parallelogram. (If both pairs of opposite sides of a quadrilateral are congruent, it is a parallelogram.)
486 2. Using $O A$ as radius and 0 as center, construct an arc as shown. Count the number of small arcs (9 in this example) and draw a radius from 0 to the intersection of the arc and the $(n+1)$ th line (loth in this case). The radius $\overline{O B}$ congruent to the original segment, will be divided by the lines of the paper into congruent segments, which may ba marked off on $\overline{O A}$. We assume that the lines of the paper are parallel and that they intercept congruent segments on one transversal (the margin of the sheet of paper). See
Theorem 9-26.

148
[pages 485-486]
480° 3. Corresponding segments on $\overleftrightarrow{B D}, \overleftrightarrow{A C}$ are parallel and of equal length.

Hence, the segments $\overline{\mathrm{PN}}, \overline{\mathrm{QM}}, \overline{\mathrm{RL}}, \overline{\mathrm{SA}}$ are parallel.
Hence, $\frac{B X}{X Y}=\frac{B P}{P Q}=1$ and $B X=X Y$. Similarly, $X Y=Y Z=Z A$.

487 4. Divide $\overline{\mathrm{AB}}$ into three congruent segments. Construct an equilateral triangle with one of these segments as side.
5. Divide $\overline{A B}$ into five congruent segments. Use one of them as the base.
6. In effect we have here, "If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram", and we know that the opposite sides of a parallelogram are parallel.

Alternate proof: Use S.A.S. and alternate interior angles.
7. On an arbitrary ray
through A lay-off
segments $\overline{A C}$ and $\overline{C D}$,
with C between A and D, of lengths a and b.. Through C draw $\overline{\mathrm{CX}} \| \overline{\mathrm{DB}} . \triangle \mathrm{ACX}$
 and $\triangle A D B$ are similar (A.A.) and have $\frac{A X}{X B}=\frac{a}{b}$.
[page 486-487]

487*8. Construct a triangle ARC with $A C=b, C R=c$, $A R=2 m$.

Bisect $\overline{A R}$ at T. On $\overleftrightarrow{C T}$ take B so that $C T=T B$. Then $\triangle A B C$ is the required triangle for $\triangle A B T \cong \triangle R C T$ by S.A.S., so $A B=C R=c$. Clearly, $\overline{A T}$ is the median and $A T=m$ by construction.
488*9. Construct $A B=x$ and divide it into three congruent segments. ${ }_{\longleftrightarrow}^{A t} E$ (one of the trisection points) construct $\overleftrightarrow{\mathrm{CE}} \perp \overline{\mathrm{AB}}$. Make $\mathrm{EX}=\mathrm{AE}, \quad \mathrm{CE}=\mathrm{BE} . \Delta \mathrm{DBC}$
is the required triangle. To prove that $\overline{B A}$ and $\overline{\mathrm{CX}}$ are medians, draw $\overline{\mathrm{AX}}$. Now, \& EAX and ECB are isosceles triangles with congruent vertex angles and so angles s are all congruent. Then $\overline{A X} \| \overline{C B}$ and \triangle EAX $\sim \Delta$ EBC with

$\frac{\mathrm{AX}}{\mathrm{BC}}=\frac{1}{2}$. Also $\triangle \mathrm{DAX} \sim \triangle \mathrm{DCB}$
and $\frac{D A}{D C}=\frac{1}{2}$, so A is
the mid-point. If $\overleftrightarrow{C A}$ and $\overleftrightarrow{B X}$ were parallel, $A X$ would have to equal $\underset{\leftrightarrow}{\leftrightarrows}$. This we have shown is not true, so $\overleftrightarrow{C A}$ and $\overleftrightarrow{B X}$ must intersect.
[page 487-488]

488*10. Analysis of problem: The common tangent $\overrightarrow{\mathrm{LN}}$ meets m at L, and $L K=L N=L M$, so L is the mid-point of $\overline{K M} . \overline{P N} \perp \overline{L N}$ and $\overline{P M} \perp \mathrm{~m}$. Now proceed as follows: Bisect $\overline{K M}$; let L be the mid-point. With center L and radius $L K$ construct an arc intersecting circle C at N. Construct $\overleftrightarrow{M S} \perp \mathrm{~m}$ and $\overleftrightarrow{N R} \perp \overleftrightarrow{\mathrm{LN}}$, intersecting in P. Then $P M=P N$ and the required circle has center P and radius $P M$.
$489 * 11$.

The problem will be solved if we can find Q, the intersection of the common external tangent and the line determined by the centers. In the figure, A $Q D B$ and QCA are similar, being right triangles with a common acute angle.
Therefore,

$$
\frac{A Q}{B Q}=\frac{A C}{B D}=\frac{r}{B} .
$$

We can find Q by drawing a ray $\overrightarrow{A F}$ making a convenient angle with $\overrightarrow{A B}$, then drawing the ray $\overrightarrow{B G}$ parallel to $\overrightarrow{A F}$ and on the same side of $\overrightarrow{A B}, Q$ is determined as the intersection of $\overrightarrow{F G}$ and $\overrightarrow{A B}$, since triangles $A F Q$ and $B Q Q$ are similar, and

$$
\frac{A Q}{B Q}=\frac{A F}{B Q}=\frac{r}{s}, \quad \text { as desired. }
$$

$$
131
$$

$489 * 12$.

Let $\widehat{A Q C}$ be an arc of 120°. Then $m \angle A Q C=120$ for any position of Q on the arc. Similarly, let $\overparen{B R C}$ be an arc of 120°. Hence, if P is the point of intersection (other than C) of the two arcs, we have $m \angle A P C=m \angle B P C=$ i20. It follows that $m \angle A P B=120$. (A complete analysis of this problem, including the case in which one angle has measure ≥ 120, is very complicated.)
*13. By A.A., $\triangle \mathrm{BPM} \sim \triangle \mathrm{DPN}$ and $\triangle \mathrm{MPC} \sim \Delta \mathrm{NPA}$ so that

$$
\frac{M B}{N D}=\frac{M P}{N P} \text { and } \frac{M C}{N A}=\frac{M P}{N P} .
$$

Hence, $\quad \frac{M B}{N D}=\frac{M C}{N A}$ or $\frac{M B}{M C}=\frac{N D}{N A}$.
By A.A., $\triangle Q B M \sim \triangle$ QAN and $\triangle Q C M \sim \triangle Q D N$ so that

$$
\frac{M B}{N A}=\frac{M Q}{N Q} \text { and } \frac{M C}{N D}=\frac{M Q}{N Q} .
$$

Hence,

$$
\frac{M B}{N A}=\frac{M C}{N D} \text { or } \frac{M C}{M B}=\frac{N D}{N A} \text {. }
$$

Thus the ratios $\frac{M B}{M C}$ and $\frac{M C}{M B}$ are each equal to $\frac{N D}{N A}$.
Therefore $\quad \frac{M B}{M C}=\frac{M C}{M B}, \quad M C^{2}=M B^{2}$,
and
$M C=M B$.
152

489*14. If $k=1$, the required set is the line parallel to m. and n and at a distance $\frac{d}{2}$ from each.

If $k<l$, the required set is the union of two lines, one such that

$\frac{r_{1}}{r_{1}+d}=k$, or $r_{1}=\frac{k d}{I-k}$, and the other such that $\frac{r_{2}}{d-r_{2}}=k$, or $\quad r_{2}=\frac{k d}{1+k}$.
If $k>l$, interchange the roles of m and n.

To construct the number in the text requires 15 steps. To verify this, we must know what we mean by a step. A step is one operation of addition, subtraction, multiplication or division. In this example we start with the integers 1,2 , $3,4,5,7,9,10,17,37$, and 47 . We construct $\frac{5}{2}$ by one step, divide 5 by 2 . In like manner, to construct $\frac{17}{37}, \frac{3}{4}, \frac{7}{3}$, $\frac{1}{7}, \frac{3}{5}, \frac{9}{10}$ and $\frac{37}{47}$ requires one step each; hence, to get these numbers we require 8 steps. To construct the numbers $a=\frac{5}{2}-\frac{17}{37}, \quad b=\frac{3}{4}+\frac{7}{3}, \quad c=\frac{1}{7}+\frac{3}{5}, \quad$ and $\quad d=\frac{9}{10}-\frac{37}{47}$ requires 4 steps, two additions and 2 subtractions. We have now used 12 steps and have arrived at four numbers,
[pages 489, 496]
153
a, b, c, and d. Now perform two divisions (2 steps) and get the numbers $\frac{a}{b}$ and $\frac{c}{d}$. Now we have used up 14 steps. Finally make one division (1 step) $\frac{a}{b} \div \frac{c}{d}$, and we have now constructed the number given in the text in 15 steps. The number is $\frac{3,681,962}{507,899}$.
497 In the figure for the trisection problem, it is interesting to see that as $m / A B C$ increases the marked point P moves in a very limited range on the ray opposite to $\overrightarrow{B A}$. Thas range is $\sqrt{2} r \leq P^{-B}<2 r$. If C coincides with A then $P B=2 r$ and we do not have an angle to trisect. As $m / A B C$ increases C and Q approach coincidence. When they colncide the miler cuts the circle in only one point Q, and $\overline{B Q} \perp \overline{P Q}$ and $B P=\sqrt{2 r}$. The largest angle we can trisect by this method is a 135° angle. The trisection of any obtuse angle can be reduced to the trisection of an acute angle.

Problem Set 14-7

499 1. Stnce for each parallelogram $\angle A$ and $\angle B$ are supplementary,
$m \angle \frac{1}{2} A+m / \frac{1}{2} B=90$. This means that the
 blsectors must be perpendicular to each other. Then the required set will be the circle whose diameter is $\overline{A B}$, except for points A and B.
2. a. Bisect a 90° angle.
b. Bisect a 60° angle (one angle of an equilateral triangle).
c. Blsect a 45° angle. (See a.)

499 d. $90^{\circ}+45^{\circ}$, or $180^{\circ}-45^{\circ}$.
e. $60^{\circ}+60^{\circ}$, or $180^{\circ}-60^{\circ}$.
f. $30^{\circ}+45^{\circ}$, or $90^{\circ}-15^{\circ}$.
g. $60^{\circ}+45^{\circ}$, or $90^{\circ}+15^{\circ}$.
h. $22 \frac{1}{2}^{\circ}$ is half of 45°, and $67 \frac{1}{2}^{\circ}=45^{\circ}+22 \frac{1}{2}^{\circ}$.

500 3. In the discussion that follows, each figure is merely a sketch of the completed figure.
a. Construct $\angle B$ congruent to the given angle. Make $B C=a$. Find the mid-point D of $\overline{B C}$. Use D as center and m_{a} as
 radius to intersect $\overrightarrow{B A}$ at A. There are cases in which the construction is impossible and cases in which there are two solutions.
b. Construct $\angle A C R \cong \angle X$. ihen $\angle A C B$ is the third angle of the triangle. Make $C A=b$ and $C B=a$.

c. Construct a segment $\overline{\mathrm{RB}}$ perpendicular to $\xrightarrow[\mathrm{XW}]{\stackrel{a}{a} \text { "working line", at any con- }}$ venient point and make $R B=h_{b}$. Using B as center
 and a as radius, construct an arc intersecting $\stackrel{X W}{\longleftrightarrow}$ at C. Using C as center and b as radius construct an arc intersecting $\overleftrightarrow{X W}$ at A. (Two solutions in general, depending upon where A is taken, on the ray $\overrightarrow{C R}$ or on the opposite ray.)
d. Construct $\angle W A B$ congruent to $\angle A$. Construct its bisector, $\overline{\mathrm{AX}}$. Make $\mathrm{AB}=\mathrm{c}$. Connect B with X. The point at which $\overleftrightarrow{\longleftrightarrow} \overleftrightarrow{~} \overleftrightarrow{~}$ meets $\overleftrightarrow{A W}$ is C.
(There may be no solution, in case $\overleftrightarrow{\mathrm{BX}} \| \overleftrightarrow{\mathrm{AW}}$.
e. Since we are given $\angle B$ and since
$m / A X B=90$, we can construct
$\angle \mathrm{XAB}$. Then construct $\triangle A B X$ by constructing $\overline{\mathrm{AX}}$
 (of length h_{a}) $\perp \overline{\mathrm{BC}}$, and $\angle X A B$. Using
A as center and m_{a} as radlus, find M, then make $M C=M B$.
[page 500]
154
f. Start by constructing perpendicular to a "working line", $\overleftrightarrow{B C}$. Since we are given $\angle B$ and since $m \angle B X A=90$, $m / B A X$ can be
 easily constructed. Similarly $\angle \mathrm{CAX}$ can be constructed. Construct these two angles at A.
g. Construct $\overline{C X}$ (of length h_{c}) per-. pendiculer to $\overleftrightarrow{A B}$.
Use C as center
and ${ }^{t_{c}} \underset{\leftrightarrow B}{\stackrel{a s}{~ a s}}$ radius Now since $\frac{\mathrm{CY}}{\mathrm{CY}}$ is the bisector of $\angle C$, construct on each side of $\overline{C Y}$ and angle whose measure is $\frac{1}{2} m / c$.
h. Construct an angle congruent to $\angle A$ and make $A C=b$. Using C as center and ${ }^{t_{C}}$ as radius, find X. We now have $\angle X C A$ of measure $\frac{1}{2} m \angle C$. Construct $\angle X C B \cong \angle X C A$.
[page 500]
157

500 4. $\triangle B P M \sim \triangle D P A:$ by A.A.A., and so

$$
\frac{B P}{D P}=\frac{B M}{D A}=\frac{1}{2} .
$$

Hence,

$$
\mathrm{BP}=\frac{1}{3} \mathrm{BD}
$$

A similar argument shows $D Q=\frac{1}{3} D B$, so that P and Q are the trisection points of $\overline{\mathrm{BD}}$.
In the right triangle $A B M$, the ratio $\frac{A B}{B M}=2$.
If $m / B A M=30$, this ratio would have to: be $\sqrt{3}$, and hence, $m \angle$ EAM $\neq \frac{1}{3} \cdot 90^{\circ}$.
Hence the trisection of the segment $\overline{B D}$ would not lead to trisecting $\angle B A D$.
501 5. a. Definition of isosceles triangle.
b. D and E will be inside the circle, because $A D$ and
AE are each less
than the radius.
This can be shown

by considering a
segment joining A to the midpoint M of $\overline{B C}$. $\overline{A M} \perp \overline{B C}$ and D and E are nearer M than B and C are.
If $\overline{R E}$ is drawn, area $\triangle B R D=$ area $\triangle E D R$, hence, area DRSE $>$ area $\triangle B R D$, and, by addition,
area $\triangle \mathrm{ARS}>$ area $\triangle \mathrm{ARB}$. But if $\angle \mathrm{BAC}$ were
trisected, we would have area $\triangle A R S=$ area $\triangle A R B$.
6. Let $\overleftrightarrow{Q D}$ meet $\overline{\mathrm{BA}}$ at G, and drop $\overline{\mathrm{AH}} \perp \overrightarrow{\mathrm{QP}}$. Then $\triangle Q H A \cong \triangle$ QUA $\cong \triangle Q G B$,
from which the desired result follows. Notice that $\overrightarrow{Q A}$ and $\overrightarrow{Q G}$ are trisectors of $\angle P Q R$.
[pages 500-502]
153
402°
Review Problems

503 1. 3, 4, 5, 6, 7, 8, 9.
2. Divide $\overline{A B}$ into 4 congruent segments. Bisect a 90° angle. Construct the rhombus using a 45° angle and $\frac{1}{4} \overline{A B}$ for each side of the rhombus.
3. a. Construct the circle on $\overline{A B}$ as diameter. The circle minus A and B is the set of points P. b. See the solution of Problem 8 of Problem Set 14-2b.
4. The set is the intersection of two parallel lines (each at distance d from L) and a circle (with radius r and center P). This intersection may be the empty set or $1,2,3$ or 4 points.
5. Examples of such quadrilaterals are rectangles and isosceles trapezoids. More generally, if a quadrilateral has this property, then the point of concurrency is equidistant from each vertex, hence, the circle with the point of concurrency as center and the distance to each vertex as radius passes through each vertex. Conversely, any quadrilateral whose vertices lie on some circle has the property that the perpendicular bisectors of the sides are concurrent, so that a quadrilateral has this property if and only if, there is a circle on which all four vertices lie.
6. The perpendicular bisectors of any two chords of the arc will intersect at the center of the circle.

153
[page 503]

503
7.

Let d be the length of the given segment. Using any square find d^{\prime}, the difference between the diagonal and side. . In the proportion $\frac{d^{\prime}}{d}=\frac{s^{\prime}}{s}, s$ will be the length of the side of the required square.

504
8. No, not if $a>b+A B$ or $b>a+A B$.
9. Consider a circle with center P and radius $\overline{P A}$. A, B, C and D will lie on this circle. Since parallel Ines intercept congruent arcs, $m \overparen{A B}=m \overparen{C D}$ and $m \overparen{B C}=m \overparen{A D}$. Hence, $\quad \overparen{m B}+m \overparen{B C}=m \overparen{C D}+m \overparen{A D}$. Hence, $\overparen{A C}$ is a semi-circle and $m \angle B=90$ so the parallelograin is a rectangle.
10. Consider a circle with center P and radius $\overline{P A}$. The parallel chords $\overline{A B}$ and $\overline{C D}$ intercept congruent arcs $\overparen{A D}$ and $\overparen{B C}$. These arcs have congruent chords so that the trapezoid is isosceles. Conversely, only one such point P exists for a given isosceles trapezoid.

160

404
504 ll. Let ℓ, m, be the given parallel lines, and n the transversal. Any point equidistant from m and n must lie on one of the bisectors p, q, of the angles determined by m, n. Similarly, any point equidistant from ℓ and n must lie on one of the bisectors r, s of the angles determined by ℓ, n.

- Thus, any point equidistant from l, m, n, must lie on the intersection of the set A, consisting of lines p and q, and set B, consisting of lines r and s. Since these lines are parallel in pairs (easily proved) the intersection of sets A and B consists of two points only. In the diagram these are the points X and Y where q intersects s and r intersects p.

Illustrative Test Items for Chapter 14
A. 1. Given $\overleftrightarrow{A B}$ and points K and Q in plane E. Tell how to locate a point on $\overleftrightarrow{A B}$ which is equidistant from K and Q.

* K

2. Consider all circles in one plane tangent to $\overleftrightarrow{A B}$ at A. Describe the set of points which are centers of the circles.
3. Describe the set of centers of circles in one plane with radius 3 which are tangent to $\overleftrightarrow{A B}$.
4. Describe the set of points in the plane which are equidistant from the sides of $\angle A B C$ and at distance x from B.
5. If two parallel planes are d units apart, what will be the length of the radil of spheres tangent to both planes? Describe the set of centers of spheres tangent to both planes.
6. Describe the set of points which are at distance 5 from A and at distance 6 from B.
7. Given right $\triangle A B C$ with $\overline{A B}$ as hypotenuse. Describe the set of points C in the plane of the triangle; in space.
8. Describe the set of mid-points of parallel chords in a circle.
9. Under what conditions will the centers of circles inscribed in and circumscribed about a triangle be the same point?
10. Describe the set of centers of circles tangent to the sides of an angle.
11. Under what conditions will one vertex of a triangle be the intersection point of the altitudes of the triangle?
12. Under what conditions will the points of concurrency of altitudes, medians and angle bisectors of a triangle be the same point?
B. 1.

Construct an isosceles triangle in which the base is half the length of one of the congruent sides and for which $A B$ is the length of the perimeter.
2.

0

Construct a rhombus in which the lengths of the diagonals are a and b.
3. Construct an isosceles
triangle with base $\overline{\mathrm{AB}}$
and base angles each measuring 75.

C. If problems are chosen from this section, we suggest giving each student a mimeographed sheet on which the problems are arranged and on which the student does the constructions. This will make the papers easier to check.

1. By construction locate points at distance d from $\overleftrightarrow{A B}$ and at distance h from Q.

2. By construction locate points which are equidistant from $\overrightarrow{A B}$ and $\overrightarrow{B C}$ and equidistant from X and K, as shown.
3. $\overleftrightarrow{A B}$ and $\overleftrightarrow{\mathrm{FH}}$ intersect at some inaccessible point C.

By construction determine the bisector of $\angle \mathrm{ACF}$.

407 .
?
4. Given line ρ and circle C, as shown. Construct a circle of radius x tangent to ρ and C.

Answers

A. 1. The intersection of $\overleftrightarrow{A B}$ and the perpendlcular bisector of $\overline{K Q}$ is the point in question. If $\overline{K Q} \perp \overleftrightarrow{A B}$ there wlll elther be no such or an infinite number.
2. The ilne perpendicular to $\overleftrightarrow{A B}$ at A except point A.
3. $\underset{A B}{\overleftrightarrow{A B}}$. lines parallel to $\overleftrightarrow{A B}$ and at the distance 3 from
4. The intersection of the bisector of $\angle A B C$, and the clrcle with center B and radius x. There is one point.
5. $\frac{1}{2}$ d. The plane parallel to both given planes and midway betwea: them.
6. The intersection of the sphere with center A and radius 5 , and the sphere with center B and radius 6. If $A B<11$, this intersection will be a circle. If $A B=11$, the intersection will be one point. If $A B>11$ there will be no intersection.
7. The circle whose diameter is $\overline{A B}$ minus A and B. The sphere whose diameter is $\overline{A B}$ minus A and B.
8. The diameter perpendicular to one of the chords, minus the end-points of the diameter.
9. If and only if the triangle is equilateral.
10. The bisector of the angle minus the vertex of the angle.
11. If and only if the triangle is a right triangle.
12. If and only if the trlangle is equilateral.
B. 1. Divide $\overline{\mathrm{AB}}$ into 5 congruent segments (Theorem 14-11). Use $\frac{1}{5} A B$ as base and then using $\frac{2}{5} A B$ as radius and A and B as centers construct intersecting arcs to locate a third vertex of the triangle.
2. Let $A B=a$. Let M be the mid-point of $\overline{A B}$. On the perpendicular bisector of $\overline{A B}$ make $Q M=X M=\frac{1}{2} b$. Then $A X B Q$ is the required rhombus.
3. Construct an angle whose measure is 60. By bisecting get angles with measures 30 and 15 , hence $75=60+15$. At A and B construct angles with. measure 75 .
C. l. Construct lines parallel to $\overleftrightarrow{A B}$ at distance d. Construct the circle Q with radius h. The points required are the intersections of the parallels and the circle.
2. One point, the intersection of the bisector of $\angle A B C$ and the perpendicular bisector of $\overline{\mathrm{XK}}$.
3. Construct lines ρ and $\rho \xrightarrow{\perp}$ parallel to $\overleftrightarrow{A B}$ and $\overleftrightarrow{\mathrm{FH}}$ at the same distance from $\stackrel{1}{\mathrm{AB}}$ and $\stackrel{\mathrm{FH}}{ }$. If ρ and ρ_{1} intersect at Q, the bisector of $\angle Q$ will be the required bisector since each of its points is equidistant from $\overleftrightarrow{A B}$ and $\overleftrightarrow{\mathrm{FH}}$.
4. Construct parallels to ρ at distance x from it. With C as center construct the circle whose radius is $r+x$. The intersections of this circle and either parallel will be centers of circles of radius x tangent to f and c.

In this chapter we study the length and area of a circle, the length of a circular arc and the area of a circular sector, deriving the familiar formulas. The necessary treatment of limits is left at an intuitive level. We study the measurement of a circle in the familiar way by means of inscribed regular polygons and so the chapter begins by discussing the idea of polygon. This has not been needed earlier since the idea of polygonal region (Chapter ll) was sufficient for our purposes.

We want a polygon to be a simple "path" that doesn't cross itself. Property (1) takes care of this, since, it prevents two segments from crossing. Property (2) is included for simplicity of treatment. For example, suppese P_{2}, P_{3}, P_{4} were permitted to be collinear. Then, in the face of Property (1), $\overline{\mathrm{P}_{2} \mathrm{P}_{3}}$ and $\overline{\mathrm{P}_{3} \mathrm{P}_{4}}$ would be collinear segments having only P_{3} in common so that the union of $\overline{\mathrm{P}_{2} \mathrm{P}_{3}}$ and $\overline{\mathrm{P}_{3} \mathrm{P}_{4}}$ would simply be the segment $\overline{\mathrm{P}_{2} \mathrm{P}_{4}}$ and there would be no need to introduce P_{3} in the definition at all.

As we indicated in Chapter ll, there is a close connection between the ideas of polygon and polygonal region: The union of any polygon and its interior is a polygonal region. Although this seems quite obvious intuitively, it is very difficult to prove since there is no simple way to 507 define interior of a polygon. However, for a convex polygon it is relatively easy to define interior and to see what is involved in a proof of the principle stated above. (See 508 Problem 3 of Problem Set 15-1.)

Problem Set 15-1

508 1. It has 6 sides, but only 5 vertices.
509 2. Yes. 12. 12. All sides have the same length. All. angles are right angles.
*3. a. By definition of a convex polygon, given any side of the polygon, the entire polygon, except for that one side, lies entirely in one of the half-planes determined by that side. The intersection of all such half-planes is the interior of the polygon. Altematively:
The intersection of the interiors of all the angles of the polygon is the interior of the polygon.
b.

or

indicate ways in which any convex polygon and its interior can be cut into triangular regions.
4. a. $0,2,5,9,5150, \frac{m(m-3)}{2}$. (A diagonal of an n -gon can be drawn from each vertex to all but three other vertices. In doing this, each diagonal is counted twice.)
b.

[pages 508-509]
163

509 5. Since the polygon is convex its diagonals lie in the Interior of each angle, so that the Angle Addition Postulate can be applied to show the sum of the angles of the polygon equals the sum of the angles of the triangles. Consider the point from which the diagonals are drawn, the vertex of each triangle and the opposite side the base. An n-gan then has $n-2$ such bases, and therefore there are $n-2$ triangles. Since the sum of the angles of each is 180, the sum of the angles of the polygon is $(n-2) \cdot 180$.
The number of triangles formed with vertex Q is the same as the number of sides of the n-gone, so that the sum of the angles of the triangle is 180n. The sum of the angles at Q is 360 . Hence, the sum of the angles of the polygon is $180 \mathrm{n}-360=180(\mathrm{n}-2)$.

We indicate how a circle can be divided into n congruent arcs end to end. Let Q be the center of the circle and $\overline{Q P}_{1}$ a given radius. Let $H_{1} \underset{Q}{\longleftrightarrow}$ a half-plane lying in the plane of the circle with edge $\overleftrightarrow{\mathrm{QP}_{1}}$. By the Angle Coninstruction Postulate there is a point X in H_{l} such that $m \angle P_{1} Q X=\frac{360}{n}$.
By the Point Plotting Theorem, there is a point P_{2} on $\overrightarrow{Q X}$ such that $Q P_{2}=Q P_{1}$. Then the minor arc ${ }_{300} \widehat{P}_{1} P_{2}$ has measure $\frac{360}{n}$. Now repeat the process replacing P_{1} by P_{2} and halfplane H_{1} by H_{2}, the halfplane opposite to P_{1}, with Ode $\overleftrightarrow{Q P}$?. This yields a minor
are $\widehat{P_{3} P_{3}}$ of measure $\frac{360}{n}$ which intersects $\widehat{P}_{1} P_{2}$ only in \dot{r}_{\because}, Continuing in this way we get a sequence of points $P_{1}, P_{n}, P_{3}, \ldots, P_{n}-\frac{1}{} P_{n}$, such that successive minor an: $\frac{P_{1} P_{Q}}{P_{P_{3}},}, \cdots, \frac{1}{P_{n}} n_{1} P_{n}$ have measure $\frac{360}{n}$ and [pages 509-510]
have in common only an end-point. Then the major arc $\widehat{P}_{1} P_{n}$ has measure $\frac{n-1}{n} .360$ and the measure of the minor arc $\widehat{P_{1} P_{n}}$ must be $\frac{1}{n} \cdot 360$. Thus the points P_{1}, P_{2}, \ldots, $P_{n}-1, P_{n}$ divide the circle into n congruent arcs, end to end.

An inscribed polygon whose sides are congruent and whose angles are congruent can be proved to be convex, and so is regular in accordance with our definition. We do not prove this because we do not need it for our application of regular polygons to circles.
512 We speak of the regular n-gon inscribed in a given circle. Obviously there are many such regular n-gons for a given n, but they all are congruent and have congruent sides, congruent angles, and equal apothems, perimeters and areas.

The apothem of a regular polygon can also be described as the distance from the center to a side, or the radius of the inscribed circle of the polygon.

We write "A subscript n " here to emphasize that the area of the regular n-gon depends on the value assigned to n and to distinguish it from the area of the circle (circular region) which is denoted by A (see Section 15-4). Of course a, the apothem of the regular $n-g o n$, and p, its perimeter, also depend on n and could be written a_{n} and p_{n}.

Problem Set 15-2

512 1. $\frac{1}{8}$.
2. a. $\frac{1}{8} \cdot 360=45$.
b. Draw a circle and construct eight 45° central angles. Join in order the points where the sides of the angles intersect the circle.
c. Draw a circle and construct two perpendicular diameters. Bisect the four right angles formed. Join in order the points where the sides of the resulting angles intersect the circle.
3. Draw a circle and construct five 72° central angles. Join in order the points where the sides of the angles intersect the circle.
4. $\frac{(n-2) 180}{n}$.
5. No. It is a l2-sided polygon all of whose sides are congruent and all of whose angles are congruent, but it is not convex.

513 6. 3. 120. 30. 60.
4. 90. 45. 90.
5. 72. 54. 108.
6. 60. 60. 120.
8. $45 . \quad 67 \frac{1}{2}$. 135.
9. 40. 70. 140.
10. 36. 72. 144.
12. 30. 75. 150.
15. 24. $\because=156$.
18. 20. 80. 160.
20. 18. 81. 162.
24. 15. 82 $\frac{1}{2}$. 165 .

131
[pages 512-513]

514 7. a. 6.
b. Regular hexagonal regions. 3.
c. Two pentagons and a decagon.

Two l2-gons and an equilateral triangle. Two octagons and a square.
d. Three polygons with different numbers of sides may be used: 4, 6, 12; 4, 5, 20; 3, 7, 42; 3, 8, 24; 3, 9, 27; 3, 10, 15.
8. The measure of each exterior angle is 180 less the measure of an interior angle. Adding n of these we get n. 180 - sum of the measures of the interior angles, or $n \cdot 180-(n-2) 180=360$.
*9. a. $\frac{n}{2}-1$ or $\frac{n-2}{2}$.
b. $\left(\frac{n}{2}-1\right) \cdot 360=(n-2) 180$.

515 10. a. $n=4$, $S=2 \cdot 180=(n-2) 180$.

b. $n=8$, $S=6 \cdot 180=(n-2) 180$.

c. $n=10$, $S=8 \cdot 180=(n-2) 180$.

193
12. The radius is also 2. The apothem is the altitude of an equilateral triangle with side 2 , or $\sqrt{3}$.
*13. In the figure, side $\overline{A B}$ of a regular inscribed octagon is 1 unit long. Since \triangle ADO is a right isosceles triangle, $A D=D O=\frac{r}{\sqrt{2}}$. $B D=r-\frac{r}{\sqrt{2}}$. In right
triangle $A B D, A D^{2}+B D^{2}=A B^{2}$ or
$\left(\frac{r}{\sqrt{2}}\right)^{2}+\left(r-\frac{r}{\sqrt{2}}\right)^{2}=1$, from which $r=\sqrt{\frac{1}{2-\sqrt{2}}}$, or approximately 1.3 .

Beginning in Section 15-3 the text introduces the notion of a limit. It is not intended that the students be given a formal treatment of limits, but rather that they develop an intuitive idea of what a limit is. A discussion like the following may be helpful.

When we write $p \longrightarrow C$, we have in mind that C is a fixed number, the length (or circumference) of the circle, but that there are many successive values for p, depending on which inscribed regular n-gon we are considering. So it is desirable to write p_{n} instead of p for the perimeter of the inscribed regular n-gon. Then we say $p_{n} \longrightarrow C$, meaning that the successive numbers p_{n} approach C as a limit. Observe that we have an infinite sequence or progression of numbers which are the perimeters of regular inscribed polygons for successive values of n; we begin with $n=3$, giving us an inscribed equilateral triangle,

> [pages 515-516]

173
then $n=4$ yields an inscribed square and so on. We represent the infinite sequence p_{n} as $p_{3}, p_{4}, \ldots, p_{n}$, ... and we think of these numbers as being approximations to C which get better and better as we run down the sequence. As a simple analog consider the infinite sequence $.3, .33, .333, .3333, .33333, .$.
which arises when we divide 1 by 3 and take the successire decimal quotients. These numbers are approximations to $\frac{1}{3}$ which get better and better as we travel down the sequence and we may say that this sequence approaches $\frac{1}{3}$ as a limit. Other examples are the two sequences

$$
\begin{aligned}
& 1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots \\
& 1,1 \frac{1}{2}, 1 \frac{3}{4}, \ldots
\end{aligned}
$$

which have limits 0 and 2 . The essential point in all four cases is that each sequence has a uniquely determined "boundary" or "limit number" and that we can reason about the limit of a sequence if we know the sequence, that is, if its successive numbers are determined. However, we can not assume that every sequence has a limit. For example, the following sequence has no limit: $1,-2,4,-8,16, \ldots$.

We need three basic properties of sequences:
(I) It a sequence has a limit it has a unique limit.
(II) If sequence $a_{n} \longrightarrow a$, then sequence $K a_{n} \longrightarrow K a$ for any fixed number k.
(III) If sequence $a_{n} \longrightarrow a$ and sequence $b_{n} \longrightarrow b$ then
sequence $a_{n} b_{n} a b$.
Property (I) says in effect that if the terms of a sequence are getting closer and closer to a number a, they can't, at the same time, be getting cluser and closer to another number b. As an illustration of (II) observe that $.3, .33, .333, \ldots \quad \frac{1}{3}$
and that the sequence of "doubles" has double the limit:

$$
.6, .66, .666, \ldots \quad \longrightarrow \frac{2}{3}
$$

To llluntrate (III) consider

$$
6,5.1,5.01,5.001, \ldots \longrightarrow 5 \text {, }
$$

[page 516]

$$
4,3.1,3.01,3.001, \ldots 3 .
$$

You will easily convince yourself that the sequence of products of corresponding terms approaches $15=5 \cdot 3$.

Notice that in the discussions concerning limits, no mention of "infinity" is made.

The concept of a limit does not involve any notion of infinity. While the word and the symbol (∞) for it are conventent in certain branches of higher mathematics, they should be avoided in introductory discussions where they are neither useful nor enlighten_ng.

The properties of limits used here are easily clarified. Let us write p_{n} for p and $p_{n}{ }^{\prime}$ for p^{\prime} to emphasize that we have two sequences of perimeters, one for each circle. Further, we have $p_{n} \longrightarrow C$ and $p_{n}{ }^{\prime} \longrightarrow C^{\prime}$, and

$$
\frac{p_{n}}{r}=\frac{p_{n}^{\prime}}{r^{\prime}} .
$$

Now we apply Property (II) above to $p_{n} \longrightarrow C$ taking, $K=\frac{1}{r}$ and get $\frac{p_{n}}{r} \longrightarrow \frac{C}{r}$. Similarly, $p_{n}^{\prime} \longrightarrow C^{\prime}$ yields $\frac{p_{n}^{\prime}}{r^{\prime}} \longrightarrow \frac{C^{\prime}}{r^{\prime}}$. To summarlze, we have sequences

$$
\begin{array}{r}
\frac{p_{1}}{r}, \frac{p_{2}}{r}, \ldots, \frac{p_{n}}{r}, \ldots \longrightarrow \frac{C}{r} \\
\frac{p_{1}}{r^{\prime}}, \frac{p_{2}^{\prime}}{r^{\prime}}, \ldots, \frac{p_{n}^{\prime}}{r^{\prime}}, \ldots \longrightarrow \frac{C^{\prime}}{r^{\prime}},
\end{array}
$$

whose corresponding terms als the same numbers. That is, the sequences are the same. Thus, by Property (I) they must have the same limit. Theref'ore

$$
\frac{C}{r}=\frac{C^{\prime}}{r^{\prime}} .
$$

For a treatment of iriational numbers, see the forthcoming book, [rpational Numbers, by Ivan Niven to be published by Random House and the Wesleyan Universit; Press.
[pages 517-518]
1%

Problem Set 15-3

518 1. a. The radius of the circle.
b. 0 .
c. 180 .
d. The circumference of the circle.
2. $C=2 \pi r$,
$628=6.28 \mathrm{r}$,
$100=r$.
The radius of the pond is approximately 100 yards.
519 3. $\frac{22}{7}$ is the closer approximation.
$\frac{22}{7}=3.1429-$,
$\pi=3.1416-$,
$3.14=3.1400$.
4. $C=2 \pi r=480,000 \pi$. The circumference is approximately 1,500,000 miles.
5. The formula gives $2 \pi r=6.28 \times 93 \cdot 10^{6}=584 \cdot 10^{6}$ or 584 million miles, approximately.
Our speed is about 67,000 miles per hour.
0. The radius of the inscribed circle is 6 so that its circumference is 12π. The radius of the circumscribed circle is $6 \sqrt{2}$ so that its circumference is $12 \pi \sqrt{2}$.
*7. The perimeter of $P Q R S$ ls greater than the circumference of the circle.
$A D=2$ and $X W=\sqrt{2}$. Hence $P S=\frac{1}{2}(2+\sqrt{2})$.
The perimeter of the square is $2(2+\sqrt{2})$.
The circumference of the circle is 2π. But $2+\sqrt{2}>\pi$.
8. The increase in circumference is 2π in each case.

Justification of limit properties used in Theorem 15-2: Wo have, writing a_{n} for a and p_{n} for $p, a_{n} \longrightarrow r$ and $\mathrm{p}_{\mathrm{n}} \longrightarrow \mathrm{C}$. By Property III (see above) $\mathrm{a}_{\mathrm{n}} \mathrm{p}_{\mathrm{n}} \longrightarrow \mathrm{C}$, and by Property II, $\frac{1}{2} a_{n} p_{n} \rightarrow \frac{1}{2} r C$. Since $A_{n}=\frac{1}{2} a_{n} p_{n}$, by substitution we get

$$
A_{n} \longrightarrow \frac{1}{2} r C
$$

But we have $A_{n} \longrightarrow A$. Since by Property I sequence A_{n} can have only one limit, $A=\frac{1}{2} r C$.

Problem Set 15-4

522

1. a. $\quad \mathrm{C}=10 \pi, \quad \mathrm{~A}=25 \pi$.
b. $\quad \mathrm{C}=20 \pi, \quad \mathrm{~A}=100 \pi$.
2. a. $C=2 \pi n, \quad A=\pi n^{2}$.
b. $\quad C=20 \pi n, A=100 \pi n^{2}$.
3. a. $4 \pi-\pi=3 \pi$. The area would be approximately 9.4 square cm.
b. No.
4. The area of the first is 9 times the area of the second.
5.

$$
\begin{aligned}
C=2 \pi r & =20 . \\
r & =\frac{10}{\pi} . \\
\text { Area of circle } & =\frac{100}{\pi} \\
& =32 \text { approx. } \\
P=4 \mathrm{~s} & =20 \\
\mathrm{~s} & =5 .
\end{aligned}
$$

Area of square $=25$.
The area of the circle is greater by about 7 square inches.
[pages 520,522]
17%

422
6. $\pi(5 \sqrt{2})^{2}-\pi(5)^{2}=25 \pi$.

The area is 25π square inches.

523
7. Radius $=4 \sqrt{3}$ inches. Circumference $=8 \sqrt{3} \pi$ inches. Area $=48 \pi$ square inches.

8. It is only necessary to find the square of the radius of the circle. If a radius is drawn to a vertex of the cross it is seen to be the hypotenuse of a right triangle of sides 2 and 6 . The square of the radius is therefore $2^{2}+6^{2}=40$. The area of the circle is therefore 40π, 125.6 approximately. The required area is therefore $125.6-80=40.6$.
9. Draw $\overline{P B}$ and $\overline{P C}$. The area of the annulus is $\pi(P C)^{2}-\pi(P B)^{2}$, the difference of the areas of the two circles. This can also be written $\pi\left(\mathrm{PC}^{2}-\mathrm{PB}^{2}\right)$. By Pythagorean Theorem, $\mathrm{PC}^{2}-\mathrm{PB}^{2}=\mathrm{BC}^{2}$. Therefore the area of the annulus is $\pi B C^{2}$.
10. The section nearer the center of the sphere will be the larger.

$$
\begin{aligned}
r^{2} & =(10)^{2}-(5)^{2} \\
r_{1}^{2} & =(10)^{2}-(3)^{2}
\end{aligned}
$$

Therefore, $r_{1}>r$.
11. $\frac{\mathrm{s}^{2}}{2}$.

524*12. $\quad A C^{2}+B C^{2}=A B^{2}$.

$$
\begin{aligned}
\frac{\pi}{8} A C^{2}+\frac{\pi}{8} B C^{2} & =\frac{\pi}{8} A B^{2} . \\
(r+\delta)+(h+s) & =8+h+t . \\
r+s & =t .
\end{aligned}
$$

173
[pages 523-524]

524 *13. a. Note that $r_{1}=O A=O R=B P$ and $r_{2}=O S=C P$. By successive use of the Pythagorean Theorem we get $\quad r_{1}=r \sqrt{2}, \quad r_{2}=r \sqrt{3}, \quad r_{3}=r \sqrt{4}$.
b. Now, using the area formula for a circle, we have $\mathrm{a}=\pi \mathrm{r}^{2}$;
$\mathrm{b}=\pi(\mathrm{r} \sqrt{2})^{2}-\mathrm{a}=\pi r^{2}$;
$c=\pi(r \sqrt{3})^{2}-(a+b)=3 \pi r^{2}-2 \pi r^{2}=\pi r^{2}$;
$d=\pi(2 r)^{2}-(a+b+c)=4 \pi r^{2}-3 \pi r^{2}=\pi r^{2}$.
14. From the second figure, $(4)^{2}-(2)^{2}=12$, and so the altitude of the trapezoid is $2 \sqrt{3}$.
In the first figure, since the bases are parallel and tangent to the circle we see that $\overline{\mathrm{FH}}$ (al.titude of the trapezoid) must be a diameter, add so the radius is $\sqrt{3}$.

Area of the circle is, then, 3π. Area of the trapezoid is $8 \sqrt{3}$. The area outside tine circle is $(8 \sqrt{3}-3 \pi)$ square inches. This is approximately 4 square inches.

17

Notice the common procedure in treating length of circle and length of arc. In each case we "approximate" by means of chords of the same length.

The agreement to consider a circle as an "arc", enables us to Include in Theorem $15-3$ the case of the whole circle as in ary of measure 360 .

To 1llustrate the application of Theorems 15-3 and 15-4 assign Problems 1, 3, 6 and 7.

One concrete illustration of a sector of a circle is a lady's fan, with the ribs of the fan standing for the segments $\overline{\mathrm{QP}}$. The arc $\widehat{\mathrm{AB}}$, of course, need not be a minor arc. Observe that the definition can aliso be phrased: If $\widehat{A B}$ is an arc of a circle with center Q then the set of all points X each of which lies in a segment joining Q to a point of $\overparen{A B}$ is a sector.

Problem Set 15-5

527 1. $5 \pi, 7.5 \pi, 6 \pi, 3 \pi$.
2. $9 \pi, .1 \pi$.
3. $\frac{3}{\pi}$ in each case.

528 4. The measure of the arc is 90. The length of the arc is π.
5. a. Area of sector $=\frac{1}{6} \pi \cdot 12^{2}=24 \pi$.

Area of triangle $=\frac{e^{2}}{4} \sqrt{3}=36 \sqrt{3}$.
Area of segment $=24 \pi-36 \sqrt{3}$ or 13.04 .
b. Area of sector $=\frac{1}{3} \pi \cdot 6^{2}=12 \pi$.

Area of triangle $=\frac{1}{2} \cdot 6 \sqrt{3} \cdot 3=9 \sqrt{3}$.
Area of segment $=12 \pi-9 \sqrt{3}$ or 22.11 .

180
[pages 525-528]

527 c. Area of sector $=\frac{1}{8} \pi \cdot 8^{2}=8 \pi$.

$$
\text { Area of triangle }=\frac{1}{2} 8 \cdot 4 \sqrt{2}=16 \sqrt{2} .
$$

$$
\text { Area of segment }=8 \pi-16 \sqrt{2} \text { or } 2.51
$$

6. a. 2π. b. π.

529 7. Draw $\overline{B G} \perp \overline{A C}$. Then $G C=\overline{6}, A G=24$. In the right triangle $\triangle A G B$, the length of the hypotenuse is twice the length of one leg, so $m / A B G=30, m / B A G=60$, and $C E=G B=24 \sqrt{3}$. The ma,ior arc $\overparen{C D}$ has the length $\frac{2}{3}(2 \pi \cdot 30)=40 \pi$ and the minor arc $\widehat{E F}$ has the length $\frac{1}{3}(2 \pi \cdot 6)=4 \pi$. Thus, the total length of the belt is $2(24 \sqrt{3})+40 \pi+4 \pi=48 \sqrt{3}+44 \pi$.
The belt is approximately 221 inches long.
8. To flnd one small shaded area subtract the area of a 90° sector whose radius 1.s $2 \sqrt{2}$ from the area of a square whose side is $2 \sqrt{2}$.
 $(2 \sqrt{2})^{2}-\frac{\pi(2 \sqrt{2})^{2}}{4}=8-2 \pi$.
The area of the shaded area is $4(8-2 \pi)$. This is approximately 6.87 square inches.

Review Problems
530 1. The first and third are polygons. The third is a convex polygon.
2. a. Yes.
c. No.
b. Yes.
3. 108, 120, 135, 144.
4. 12.

131
[pages 527-530]

530 5. a. The regular octagon in each case.
b. The apothems are equal. The square has the greater perimeter.
6. From the formula $A=\frac{1}{2}$ ap for the area of a regular polygon.
7. 2π.

531 8. 1 and 2.
9. a. 72.
b. $\frac{360}{n}$.
10. 2.
11. a. 10 to 1.
c. $\quad 100$ to 1.
b. $\quad 10$ to 1.
12. $5, \frac{5 \pi}{3}$.
13. $A=\pi r^{2} . \quad r=\frac{1}{2} d$.

Hence, $A=\pi\left(\frac{1}{\frac{1}{c}} d\right)^{2}=\frac{1}{4} \pi d^{2}$.
14. 15π inches, a distance equal to $\frac{3}{4}$ of its circumference.
15. 4π and $\frac{2}{3} \pi$.
16. There are several methods of showing that the four small triangles are congruent to each other. For example, each of the angles marked with an arc will have a measure of 60. In this case the congruence is by A.S.A. Hence, each of the four small triangles has the same area, and then
 the circumscribed triangle has an area four times that of the inscribed triangle.
[pages 530-531]

531 *17. The woodchuck's burrow will be in the region bounded by $\overparen{X O Y}$ and $\overparen{X P Y}$.
The area of each of the equilateral triangles
is $\frac{r^{2}}{4} \sqrt{3}$. The area of each segment is
$\frac{1}{6} \pi r^{2}-\frac{r^{2}}{4} \sqrt{3}$. Then the area in which the woodchuck can settle is
 $2\left(\frac{r^{2}}{4} \cdot \sqrt{3}\right)+4\left(\frac{1}{6} \pi r^{2}-\frac{r^{2}}{4} \sqrt{3}\right)=\left(\frac{2}{3} \pi-\frac{1}{2} \sqrt{3}\right) r^{2}$, as any woodchuck knows.
18. Let a and p be the apcthem and perimeter of the smaller polygon and a^{\prime} and p^{\prime} be the apothem and perlmeter of the larger polygon. The ratio of the areas is $\frac{a p}{a^{\top} p^{\top}}$. But $\frac{a}{a^{\top}}=\frac{p}{p^{1}}$, so that, the ratio of the areas is $\frac{p^{2}}{p^{\prime 2}}$. Hence, $\frac{p}{p^{\top}}=\sqrt{\frac{8}{18}}=\sqrt{\frac{4}{9}}=\frac{2}{3}$. The sides also have the ratio $\frac{2}{3}$.

Illustrative Test Items for Chapter 15

A. Indicate whether each of the following is true or false.

1. The ratio of circumference to adius is the same number for all circles.
2. If the number of sides of a regular polygon inscribed in a given circle is increased indefinitely, its apothem approaches the radius of the circle as a limit.
3. Any polygon inscribed in a circle is a regular polygon.
4. A polygor is a polygonal region.
[page 531]

$$
y \%
$$

5. If the radius of one circle is three times that of a second, then the circumference of the first is three times that of the second.
6. The area of a square inscribed in a given circle is half the area of one circumscribed about the circle.
7. In the same circle, the areas of two sectors are proportional to the squares of the measures of their arcs.
8. The ratio of the area of a circle to the square of its radius is π.
9. The length of an arc of a circle can be obtained by dividing its angle measure by π.
10. Doubling the radius of a circle doubles its area.
B. 1. Find the measure of an angle of a, regular nine-sided polygon.
11. Into how many triangular regions would a convex polygonal region with 100 sides be separated by drawing all possible diagonals from a single vertex?
12. If the circumference of a circle is a number between 16 and 24 and the radius is an integer, find the radius.
13. If the number of sides of a regular polygon inscribed in a circle is increctsod ithout limit, what is the limit of the length of one side? of its perimeter?
14. Write a formula for the area of a circle in terms of its circumference.
15. If the area of a circle is 2π, find its radius.
16. The area of one circle is 100 times the area of a second. What is the ratio of the diameter of the first to that of the second?

$$
1 \because
$$

8. The angle of one sector of a circle is 50°. The angle fi a second sector of the same circle is 100°. Find the ratio of the length of the arc of the first sector to that of the second, and the ratío of the area of the Lrot sector to that of the second.
Y. A atrolar like ls 2 miles in diameter. If you walk at 3 miles per hour, about how many hours will it take to walk around lit? (Give the answer to the nearest whole number.)
9. An angle is inscribed in a semi-circle of radius 6. What is the least possible value of the sum of the areas of the two circular segments that are formed?
\therefore 1. In circle 0 , chord $\overline{X Y}$ is the perpendicular bisector of radius $\overline{\mathrm{OA}}$. $O A=6$.
Find m RAY, the length of $\overparen{X A Y}$, the area of sector' XOY, and the area of the region bounded by $\overline{X Y}$ and $\overparen{X A Y}$.
10. ABCDEF is a regular hexagon clrcums?ribed about circle 0 . If its perimeter is 12 ,
flad the cin:umference and 0 . If its perimeter is 1
find the cin:umference and the area of the circle.

rex

11. On an aerlal photograph the surface of a reservoir is a circle whth dameter $\frac{7}{8}$ inch. If the scale of the photograph is 2 wlles to 1 inch, find the area of the Burface of the reservoir. (Use $\frac{22}{7}$ for π. Give the recult to the nearest one-half square mile.)

Answers

A. 1. True.
2. True.
3. False.
4. False.
5. True.
6. True.
7. False.
8. True.
9. False.
10. False.
B. 1. 140 .
2. 98.
3. 3 .
4. 0. The circumference of the circle.
5. Since $C=2 \pi r, \quad r=\frac{C}{2 \pi}$.

Since $A=\pi r^{2}, \quad A=\pi\left(\frac{C}{2 \pi}\right)^{2}=\frac{C^{2}}{4 \pi}$.
6. $\sqrt{2}$.
7. $\quad 10$ to 1.
8. 1 to 2 in each case.
9.
10. The sum of the areas of the segments will be least when the area of $\triangle A B C$ is greatest. In this case the altitude
 to $\overline{A C}$ is the radius of the circle. The sum of the areas of the segments is found by subtracting the area of the triangle from that of the semicircle. The result is $18 \pi-36$.
c. 1. $\overparen{m X A Y}=120$. The length of $\overparen{X A Y}=4 \pi$. Area sector XOY $=12 \pi$. Area segment $X A Y=12 \pi-9 \sqrt{3}$.
2. The radius of the circle is the altitude of equilateral triangle $\triangle O A B$, so that, $r=\sqrt{3}$. Hence $C=2 \pi \sqrt{3}$ and $A=3 \pi$.
3. The diameter of the reservoir in miles is $\frac{7}{8} \cdot 2=\frac{7}{4}$, so that its radius is $\frac{7}{8}$. The area is $\frac{22}{7} \cdot \frac{7}{8} \cdot \frac{7}{8}=\frac{77}{32}$. The area of the reservoir is about $2 \frac{1}{2}$ square miles.

Chapter 16
VOLUMES OF SOLIDS

In this chapter we study mensuration properties of familiar solids: prismo, pyramids, cylinders, cones and the sphere. Our proofs are conventional in spirit, although our derivation of the formula for surface area of a sphere, based on an assumed approximation to the volume of a spherical shell, is quite unusual in an elementary text. We assume Cavalieri's Principle (Postulate 22) in order to avold coming to grips with fundamental difficulties of a type occurring in Integral Calculus. We emphasize strongly analogies between prisms and cylinders, between pyramids and cones. In fact our definitions of prism and pyramid are formulated so as to be applicable to cylinder and cone. These figures are defined, quite precisely, as solids (spatial regions) rather than surfaces, since our basic concern is for volumes of solids rather than for areas of surfaces.
534 Notice that we define a prism directly as a solid (region of space) rather than as a surface (prismatic surface). This is quite natural since our main object of study in this chapter is volumes of regions, rather the: areas of surfaces. This is analogous to our earlier emphasis on polygonal regions rather than polygons. Note how simply our definition generates the whole solid from the base polygonal region K, and how easily it enables us to pick out the "bounding surface", (see the definitions of lateral surface. and total surface in the text). If we used the alternative approach and defined a prism as a surface we still would have the problem of definirg the interior of this surface in order to get the corresponding solid. Similar observations hold for our treatment of pyramids, cylinders and cones.

Note that in our use of the word "cross-section", the intersecting plane must be parallel to the base. It is possible to have sections formed by a plane which is not parallel to the base, but such sections would not possess all the properties of a cross-section. Note that since a prism in our treatment is a solid, its cross-section is a polygonal region, not a polygon.

In Theorem l6-1, the text states that the cross-sections oi a triangular prism are congruent to the base. Up to this point no mention has been made of congruence of triangular regions, but only of congruence of triangles. It is intuitively apparent that if two triangles are congruent, then their associated triangular regions also are congruent. This can be proved formally using the ideas of Appendix VIII. We will not speak of the congruence of polygonal regions other than triangular regions, since any polygonal region can always be divided into triangular regions.

Corollary 16-1-1 is a direct consecuence of Theorem 16-1, since the upper base is a cross-section of the prism. A similar observation applies to Corollary 16-2-1.

A "parallelogram region" is def' ed formally as the unton of a parallelogram and its ir. ir. The interior of parallelogram $A B C D$ consists of all points X which are on the same side of $\overleftrightarrow{A B}$ as C and D, on the same side of $\overleftrightarrow{B C}$ as D and A, on the same side of $\overleftrightarrow{C D}$ as A and B and on the same side of $\overleftrightarrow{D A}$ as B and C. An alternative definition which is suggested by the text definition of prism is the following: Let $A B C D$ be a parallelogram. Then the union of all segments $\overline{P P^{\prime}}$ where P is
in $\overline{A B}, P^{\prime}$ is in $\overline{C D}$ and $\overline{P P^{1}} \| \overline{A D}$ or $\overline{P^{1}} \| \overline{B C}$ is a parallelogram region.

[pages 535-537]

Theorem 16-3 is easy to grasp intuitively, but tedious to prove formally. Here is an outline of a proof. Let E_{1} and E_{2} be the planes of the bases, L be the transversal and $\overline{A B}$ a side of the base. We want to show that tne lateral face F which is the union of all segments $\overline{P P^{\prime}}$, where P is in $\overline{A B}$, is a parallelogram region. Remember that by definition of a prism, $\overline{\mathrm{PP}^{1}} \| \mathrm{L}$ and $\frac{P^{\prime}}{A^{\prime}}$ is in $\frac{E_{2}}{}$ and Consider $\overline{B B^{\prime}}$
$\overline{A A^{\prime}}\left\|L, \quad \left\lvert\, \frac{B B^{\prime}}{}\right.\right\| L$ and A^{\prime}, B^{\prime} are in E_{2}. Then $A B B^{\prime} A^{\prime}$ is a parallelogram and the lateral face F is the corresponding parallelogram region. To prove this, first show that every point P ! is on $\overline{A^{\prime} L^{\prime}}$, and in fact that $\overline{A^{\prime} B^{\prime}}$ is the set of all such points P^{\prime}. Then show that every point of $\overline{P P^{\prime}}$ is on ABB'A' or is in its interior. Finally show that every point on ABB'A' or in its interior lies in some segment $\overline{P^{\prime}}$. Thus, the segments $\overline{P^{\prime}}$ constitute the parallelogram region composed of $A B B^{\prime} A^{\prime}$ and its interior.

10

Problem Set 16-1

$$
1!1
$$

540 Cross-section is defined for pyramid exactly as for prism.

When we say in Theorem 16-4 that two triangular regions are similar, we mean of course that they are determined by similar triangles.

In (1) of Theorem 16-4, to justify $\overline{A P} \| \overline{A^{\prime} P^{\prime}}$ note that $E \| E_{\leftrightarrow}^{\prime} \underset{\longleftrightarrow}{\text { and }}$ that plane VAP intersects E and E^{\prime} in $\overleftrightarrow{A P}$ and $\overleftrightarrow{A^{\prime} P^{\prime}}$. Thus, $\overleftrightarrow{A P} \| \xrightarrow[A^{\prime} P^{\prime}]{\overleftrightarrow{A}}$ Dy Theorem 10-1. Similarly in (2) we show $\overline{A^{\prime} B} \| \overline{A B}$.
542 Our procedure in Theorem $16-5$ is simply to split the pyramid into triangular pyramids and apply Theorem 16-4 to each of these.

Problem Set 16-2

544 1. square; an equilateral triangle; 3.
2. 25 square inches.
3. $Q A=Q B, m \angle V Q A=m \angle V Q B=90$; $\triangle V Q A \cong \triangle V Q B$ by S.A.S. Hence, VA = VB. Similarly, $V B=V C=V D=\ldots$,
$A B=B C=C D=\ldots$ by definition, so
$\triangle \mathrm{AVB} \cong \triangle \mathrm{DVC} \cong \triangle \mathrm{CVD} \cong \ldots$
 by S.S.S.
*4. Let P, Q, R and S be the mid-points of $\overline{A B}, \overline{A C}$, $\overline{V B}$ and $\overline{V C}$ respectively. Then $\overline{S R}$ and $\overline{P Q}$. are each parallel to $\overline{B C}$ and equal in length to $\frac{1}{2} B C$. Therefore, $\overline{S R}$ and $\overline{P Q}$ are parallel, coplanar, and equal in length making PQRS a parallelogram.

[pages 540-544]

544 5. Let each edge of the base have length s . Each face is a triangle with base s and altitude a. Hence, $\quad A=\frac{1}{\complement^{s}} \mathrm{sa}+\frac{1}{\gamma^{2}} \mathrm{sa}+\ldots \quad$ or

$$
A=\frac{1}{2} a(s+s+\ldots)=\frac{1}{2} a p .
$$

545 6. By Theorem 16-5,

$$
\begin{aligned}
\frac{x}{336} & =\frac{16}{49} \\
x & =\frac{16 \cdot 336}{49}=\frac{768}{7}=109 \frac{5}{7} .
\end{aligned}
$$

Area $\mathrm{FGHJK}=109 \frac{5}{7}$ square inches.
7. The altitude of each face is 13 inches by the Theorem of Pythagoras. Hence,
$4\left(\frac{1}{2} \cdot 10 \cdot 13\right)=260$.
The lateral area is

260 square inches.
If x is the area of the cross-section 3 inches from
the base then $\frac{x}{100}=\left(\frac{9}{12}\right)^{2}=\frac{9}{16}$ and $x=56.25$.
Hence, its area is 56.25 square inches.
*8. Let $P K=a$ and $P B=b$. Draw altitude $\overline{P S}$. $\overline{P S} \perp J K L M N$ at $R . \overline{P B}$ and $\overline{\overline{D S}}$ determine a plane $\stackrel{\text { which intersects }}{\longleftrightarrow}$ JKLMN and ABCDE in $\longleftrightarrow \stackrel{\text { KR }}{\longleftrightarrow}$ and $\overleftrightarrow{B S}$ respectively. Since JKLMN \| ABCDE, $\overleftrightarrow{K R} \| \overleftrightarrow{B S}$.
In \triangle PBS, by the Basic Proportionality Theorem, $\frac{P K}{P B}=\frac{P R}{P S} . \quad B y$ Theorem 16-5, $\frac{\text { area } J K L M N}{\text { area } A B C D E}=\left(\frac{P R}{P S}\right)^{2}$. Hence, $\frac{\text { area } J K L M N}{\text { area } A B C D E}=\left(\frac{P K}{P B}\right)^{2}=\left(\frac{a}{b}\right)^{2}$.

193
[pages 544-545]

546
The text postulates the formulas for the volume of a rectangular parallelepiped and proceeds to prove the remaining formulas for the volumes of prisms, pyramids, cones, cylinders and spheres. This is analogous to the procedure followed in Chapter 11 when the formula for the area of a rectangle was postulated.
546-547 Cavalieri's Principle is an extremely powerful postulate. It can be proved as a theorem by methods resting on the theory of limits as developed in integral calculus. It will be used throughout the chapter to prove theorems concerning the volumes of solids.

A model for making Cavalieri's Principle seem reasonable can be made using thin rectangular rods in an approach slightly different from that of the text. Consider the following statement: Given a plane containing two regions and a line. If for every line which intersects the regions and is parallel to the given line the two intersections have equal lengths, then the two regions have the same area.

Here too, it should be pointed out that the approximations to the areas of the regions improve as the thickness of the rectangular rods becomes smaller and smaller. (Also, see Problem 8 of Problem Set 16-3.)

You may wish to point out that while the proofs of Theorems $16-7$, and $16-8$ require the solids to have their bases coplanar, in numerical application this is not necessary.

In the proof of Theorem 16-9, to help the students visualize how three triangular pyramids are formed by cutting a triangular prism, some visual aid should be used. Disected solids can be purchased from an equipment supply company; or one could try to make them by cutting up a bar of laundry soap. The three pyramids are formec. by cutting the trlangular prism by the planes through the points S, P, R and the points S, P, U.

Theorem 16-10 can be proved without recourse to Civalieri's Principle by splitting the pyramid into triangular pyramids and applying Theorem 16-9. The proof in the text was chosen because it applies just as well to cones as to pyramids, (see Theorem 16-15).

Problem Set 16-3

552 1. $5 \times 4 \times \frac{3}{4}=15$. $\quad 15$ cubic feet of water in the $\frac{15 \times 1728}{231}=112$ approx. $\quad \begin{aligned} & \text { tank. } \\ & 172 \text { gallons approximately. }\end{aligned}$
2. $20 \times 8 \times 4.6=736$. The volume is 736 cubic inches.
3. $\frac{2 \times 3 \times 3 \times 12 \times 12 \times 12}{2 \times 2 \times 231}=\frac{2592}{77}=33.6$.

33 fish can be kept in the tank.
[pages 549-552]
195

552 4. The base can be divided into six equilateral triangles with side 12. Therefore, altitude $\overline{Q F}$ of $\triangle A B Q$ has length $6 \sqrt{3}$. Since $Q C=9$, by Pythagorean Theorem $C F=\sqrt{189}$. Hence the lateral area is $\frac{1}{2} \cdot 72 \cdot \sqrt{189}=36 \sqrt{189}$. Now, $V=\frac{1}{3} A h$, or $V=\frac{1}{3}\left(6 \cdot \frac{1}{2} \cdot 12 \cdot 6 \sqrt{3}\right) \cdot 9=648 \sqrt{3}$.
5. $1836=\frac{1}{3} \cdot(18)^{2} \cdot h$. or $h=17$. The height is 17 feet.
6. The lateral edges will also be bisected and therefore corresponding sides of the section and base will be in the ratio $\frac{l}{2}$, and the areas of the section and base in the ratio $\frac{1}{4}$. The volume of the pyramid above the section will be $\frac{1}{8}$ of that of the entire pyramid because its base has $\frac{1}{4}$ the area of that of the pyramid and its height is half as great. The solid below the plane will then have $\frac{7}{8}$ the volume of the entire pyramid and the ratio of the two volumes is $\frac{1}{7}$.
$553 * 7$. The volume of the complete pyramid which is 60 feet tall is 320 cubic feet. The base of the smaller pyramid is 30 feet above the ground so the part of the 60 foot pyramid to be included contains $\frac{7}{8} \cdot 320$ or 280 cubic feet (see Problem 6). The small pyramid capping the monument has volume $\frac{1}{3} \cdot 4 \cdot 2$ or about 2.7 cubic feet. Hence, the volume of the obelisk in cubic feet is approximately 282.7.
*8. Given a plane containing two regions and a line. If for every line which intersects the regions and is parallel to the given line the two intersections have equal lengths, then the two regions have the same area. Various examples are possible. Here is one:

Here is a formal definition of circular cylinder, and associate terms. Let E_{1} and E_{2} be two parallel planes, L a transversal, and K a circular region in E_{1}, which does not intersect L. For each point P of K, let $\overline{P P^{\prime}}$ be a segment parallel to L with P^{\prime} in E_{2}. The union of all such segments is called a circular cylinder. K is the lower base, or just the base, of the cylinder. The set of all points P^{\prime}, that is, the part of the cylinder that lies in E_{2},
is called the upper base. Each segment $\overline{P P 1}$ is called an element of the cylinder. (Note we did not introduce the term element in defining prism.) The distance h between E_{1} and E_{2} is the altitude of the cylinder. If L is perpendicular to E_{1} and E_{2} the cylinder is a right cylincer. Let M be the bounding circle of K and C the center of M. The union of all the elements $\overline{P P}$ for which P belongs to M is called the lateral surface of the cylinder. The total surface is the union of the lateral surface and the bases. The element CC' determined by the center of M is the axis of the cylinder. Cross-sections are defined for cylinders exactly as for prisms.
10%
[page 553]

554 Here is a formal definition of circular cone, and associate terms. Let K be a circular region in a plane E, and V a point not in E. For each point $-P$ in K there is a segment $\overline{P V}$. The union of all such segments is called a circular cone with base K and vertex V. Each segment $\overline{P V}$ is an element of the cone. The union of all elements $\overline{P V}$ for which P belongs to the bounding circle of K is the lateral surface of the cone. The total surface is the union of the lateral surface and the base.
The distance h from V to E is the altitude of the cone.
If the center of the base circle
is the foot of the perpendicular from V to E, the cone is a right circular cone.

A formal proof of Theorem 16-11 is somewhat involved we present a basis for a formal proof. Let M be the circle which bounds the base of the cylinder. Let C be the center of M and r its radius.
Let E be the sectioning plane, and C_{1} its intersection with the element $\overline{C^{1}}$ of the cylinder. Then the intersection of E with the lateral surface of the cylinder is the circle M_{1} in E with center C_{1} and radius r.

193

To prove this we must show that:
(a) Any point P_{1} common to E and the lateral surface lies on M_{1}.
(b) Any point P_{1} of circle M_{1} is common to the lateral surface and E.

Proof of (a): Let P_{1} be common to the lateral surface and E. Then P_{1} lies on an element $\overline{P P P^{1}}$ where P is on $\frac{\text { circle }}{P P!} \cdot \mathrm{M}$ (by definition of lateral surface). Then $\overline{\mathrm{PP}^{\prime}} \| \overline{\mathrm{CC}}$, since any two elements of a cylinder are parallel. And $\overline{\mathrm{P}_{1} C_{1}} \| \overline{\mathrm{PC}}$ by Theorem 10-1. Thus, $\mathrm{PP}_{1} \mathrm{C}_{1} \mathrm{C}$ is a parallelogram and $P_{1} C_{1}=P C=r$. That is P_{1} lies on circle M_{1}.

Proof of (b): Let P_{1} be a point of circle M_{1}. (Note P_{1}, P and P^{\prime} are defined differently than in (a)). Let $\xrightarrow[\mathrm{P}_{1} \mathrm{P}]{ }$ be parallel to $\overleftrightarrow{\mathrm{C}_{1} \mathrm{C}}$ and meet the base plane in P. Then $\frac{1}{\mathrm{P}_{1} \mathrm{C}_{1}} \| \overline{\mathrm{PC}}$ by Theorem $10-1$ and $\mathrm{PP}_{1} \mathrm{C}_{1} \mathrm{C}$ is a parallelogram as above. Thus $P C=P_{1} C_{1}=r$; so that P
 $\overleftrightarrow{\mathrm{PP}} \| \stackrel{\mathrm{CC}_{1}}{\overleftrightarrow{\prime}}$. Since, $\underset{\mathrm{PP}_{1}}{\overleftrightarrow{(}} \xrightarrow[\mathrm{CC}_{1}]{\overleftrightarrow{(}}$, we see that $\overleftrightarrow{\mathrm{PP}_{1}}$ and $\overleftrightarrow{\mathrm{PP}}$ coincide and P_{1} lies on $\overleftrightarrow{\mathrm{PP}^{\prime}}$. From the diagram P_{1} lies on $\overline{P P^{\prime}}$. Thus, P_{1} is on the lateral surface. Since P_{1} is in E, the proof of (b) is complete.

Since M_{1} bounds the cross-section, we have shown that the cross-section is a circular region. It remains to show it is congruent to the base. This is a relatively simple matter as outiined in the text.

Theorem 16-1'2 is immediate from Theorem 16-11, since the cross-section and the base are congruent circular regions.
[page 555]
103

555 olrcular region is somewhat similar to that of Theorem 16-11. Fir t one would prove that the intersection of the plane and the lateral surface is a circle.

In the diagram for Theorem 16-13, P is the center of the base circle and W is a point on it. Q and R are the intersections of the elements $\overline{P V}$ and $\overline{W V}$ with the sectioning plane.

The reasons in the proof of Theorem 16-13 are:
(1) The A.A. Similarity Theorem and the definition of similar triangles.
(2) $\overline{\mathrm{QR}} \| \overline{\mathrm{PW}}$ so that $\triangle \mathrm{VQR} \sim \Delta V F W$. Then

$$
\frac{Q R}{P W}=\frac{V Q}{V P}=\frac{k}{h} .
$$

(4) $\frac{\text { area of circle } Q}{\text { area of circle } P}=\frac{\pi Q R^{2}}{\pi P W^{2}}=\left(\frac{Q R}{P W}\right)^{2}=\left(\frac{k}{h}\right)^{2}$.

557
Just as in proving Theorem 16-7 on the volume of a prism, consider a rectangular parallelepiped with the same altitude and base area as the given cylinder, and with its base coplanar with the base of the cylinder. Apply Cavalieri's Principle.

557
To prove Theorem 16-15 proceed as in Theorem 16-10. Take a triangular pyramid of the same altitude and base area as the cone and with its base coplanar with the base of the cone. Apply Cavalieri's Principle.
[pages 555-557]
200°

Problem Set 16-4

557 1. $V=\frac{1}{3}(9 \cdot \pi) \cdot 4=12 \pi$.
2. The number of gallons is $\frac{\pi \cdot 14^{2} \cdot 30}{3 \cdot 231}=\frac{22 \cdot 14 \cdot 14 \cdot 30}{7 \cdot 3 \cdot 3 \cdot 7 \cdot 11}$ $=\frac{80}{3}=26 \frac{2}{3}$. (The factors of 231 are 3.7.11. By using $\frac{22}{7}$ the computation can be simplified by reducing fractions.)
3. Subtract the volume of the inner cylinder from that of the outer. This gives

$$
\begin{aligned}
& 16 \pi(2.8)^{2}-16 \pi(2.5)^{2} \\
& \text { or } \quad 16 \pi\left(2.8^{2}-2.5^{2}\right)=16 \pi(2.8-2.5)(2.8+2.5) \\
&= 16 \pi(.3)(5.3)=80 \text { approximately. } \\
& \text { Approximately } 80 \text { cubic inches of clay will be needed. }
\end{aligned}
$$

4. The ratio of the volumes is the cube of the ratio of the altitudes, so

$$
\frac{v_{2}}{v_{1}}=\left(\frac{2}{5}\right)^{3}=\frac{8}{125}=.064
$$

Hence $\quad V_{2}=.064 \times 27=1.73$ approx.
5. Let r be the radius of the base of the first can and h be its height. Then the radius of the second can is $2 r$ and its height is $\frac{h}{2}$. Then

Volume of first can $=\pi r^{2} h$.
Volume of second can $=\pi(2 r)^{2} \cdot \frac{h}{2}=2 \pi r^{2} h$.
Since the volume of the second can is twice that of the first, and the cost is twice the cost of the first, neither is the better buy.

201
[pages 557-558]

558 6. The volume of the pyramid is $\frac{20^{2} \cdot 36}{3}=4800$. The radius of the base of the cone is half the diagonal of the square, or $10 \sqrt{2}$.
The area of the base of the cone is $\pi(10 \sqrt{2})^{2}=200 \pi$, and the volume of the cone is $\frac{200 \pi \cdot 36}{3}=2400 \pi=7,536$ approximately.
7. Let the radius of the base of each cylinder be r and the altitude be h. Then the volume of the cone in Figure 1 is $\frac{\pi r^{2} h}{3}$. The volume of the two cones in Figure 2 is $2\left(\frac{\pi r^{2}}{3} \cdot \frac{h}{2}\right)=\frac{\pi r^{2} h}{3}$.

The volunes are the same.
No, since the sum of altitudes would be the same as the altitude of cone in Figure 1.
8. $\pi r^{2} h-\frac{1}{3} \pi r^{2} h=\frac{2}{3} \pi r^{2} h$.

559 *9. The volume of the frustum is the difference of the volumes of two pyramids. Hence their heights must be found. If x represents the height of the upper pyramid

$$
\begin{aligned}
& \frac{x}{x+8}=\frac{4}{6}, \text { from which } \\
& x=16 \text { and } x+8=24 . \\
& \frac{1}{3} \pi 6^{2} \cdot 24-\frac{1}{3} \pi \cdot 4^{2} \cdot 16=\frac{608 \pi}{3}
\end{aligned}
$$

The volume is approximately 636 cubic inches.

202

To prove Theorem 16-16 we show that the sphere and the solid bounded by the cylinder and the two cones have the same volume by Cavalieri's Principle. Then we can find the volume of the sphere by subtracting the volumes of the two cones from the volume of the cylinder.

The answer to the "Why?" is as follows: Consider one of the cones. Since the altitude of the cylinder is $2 r$ the altitude of the cone is r. Also the radius of the base circle of the cone is r. Therefore, an isosceles right triangle is formed by the altitude, the radius, and a segment on the surface of the cone joining
 the vertex V to a point on the base. Any line parallel to the radius, intersecting the other two sides of this triangle, will form a triangle similar to the original one. Hence, the cross-section of the cone at a distance s from the vertex will be a circular region with radius s; and s will be the inner radius of the section of the solid.

The argument of Theorem 16-17 should not be considered a formal proof, but an interesting example of mathematical reasoning basted on a rather plausible assumption, namely, that S, the surface area of the inner sphere is the limit of $\frac{V}{h}$ as h approaches zero, where V is the volume of the spherical shell and h is its thickness. (We must either define the area of a surface or introduce some postulate concerning it, if we want to reason about it mathematically.) To justify intuitively that $h S$ is approximately the volume of the spherical shell, we may consider it cut open and flattened out like a pie crust to form a thin, nearly flat,
[pages 559-561]
cylinder. Then S becomes the area of the base of the cylinder and h its height, so that, its volume is $h S$. (Actually such a process would involve distortion and the volume of the shell would be slightly greater than hS.)

In the course of reasoning when we say $\frac{V}{h} \longrightarrow S$ as h grows smaller and smaller (or h approaches zero) we mean precisely the following: Let h take as its successive values an endless sequence of positive numbers, $h_{1}, h_{2}, \ldots, h_{n}, \ldots$ which approach zero (for example, $\frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2^{n}}, \ldots$). Then since V is determined by the value assigned to h, V will take on a corresponding sequence of values, $V_{1}, V_{2}, \ldots, V_{n}, \ldots$, We assert that the sequence of quotients $\frac{V_{1}}{h_{1}}, \frac{V_{2}}{h_{2}}, \ldots, \frac{V_{n}}{h_{n}}, \ldots$ will approach the fixed number S.

You may better appreciate this method if we apply it in a simpler case to derive the formula for the circumference of a circle. Consider a circular ring with fixed inner radius r, outer radius $r+h$ and inner circumference C. The area A of the ring is approximately hC (it can be flattened out to approximately a thin rectangle)

and $\frac{A}{h}$ is approximately C. As the ring gets thinner and thinner the approximation gets better and better, that is, $\frac{A}{h} \longrightarrow C$ as $h \longrightarrow 0$. But $A=\pi(r+h)^{2}-\pi r^{2}=2 \pi r h+\pi h^{2}$ so that

$$
\frac{A}{h}=2 \pi r+\pi h .
$$

Now let $h \longrightarrow 0$. Then $\frac{A}{h} \longrightarrow 2 \pi r$. But C is the value which $\frac{A}{h}$ approaches. Therefore, $C=2 \pi r$.

A corresponding derivation for the area of the lateral surface of a cylinder is :".....ritr 'ndled (see Problem 11 of Problem Set 16-5).

For the lateral ght circular cone it is somewhat more complical : given in detail below.

Derivation of Lateral Area of a Right Circular Cone.
The figure shows a vertical section of a right circular cone of base radius R, altitude H, and slant helght S. It is covered with a layer of paint of thickness t. From similar triangles we have

$$
\frac{t}{H}=\frac{a}{S}, \quad \text { and } \frac{b}{H}=\frac{a}{R} \text {. }
$$

Hence,

$$
t=\frac{H a}{S}, \quad b=\frac{H a}{R}
$$

The volume of the paint is

$$
\begin{aligned}
V & =\frac{1}{3} \pi(R+a)^{2}(H+b)-\frac{1}{3} \pi R^{2} H \\
& =\frac{1}{3} \pi\left(2 R H a+H a^{2}+R^{2} b+2 R a b+a^{2} b\right) \\
& =\frac{1}{3} \pi\left(2 R H a+H a^{2}+R H a+2 H a^{2}+\frac{H^{2}}{a^{3}}\right) \\
& =\frac{1}{3} \pi\left(3 R H a+3 H a^{2}+H_{R^{2}}^{3}\right) \\
& =\pi H a\left(R+a+\frac{a^{2}}{3 R}\right)
\end{aligned}
$$

We assume that the lateral area A is the limit approached by $\frac{V}{t}$ as t approaches zero. From above, $\stackrel{V}{t}=\pi S\left(R+a+\frac{a^{2}}{3 R}\right)$.
As t gets very small so does a get very small, and so $\frac{V}{t}$ approaches the limit $\pi S R$.

$$
201 \%
$$

1. Surface area: $4 \pi 16$. Approximately 201. Volume: $\quad \frac{4}{3} \pi 64$. Approximately 268.
2. $\frac{4}{1} ; \frac{8}{1} . \quad \frac{9}{1} ; \frac{27}{1}$.
3. $\frac{4 \cdot 22 \cdot 7 \cdot 7 \cdot 7 \cdot 12 \cdot 12 \cdot 12}{3 \cdot 7 \cdot 7 \cdot 3 \cdot 11}=10,752$.

The tank will hold approximately 10,752 gallons.
4. The area of a hemisphere is one-half the area of a sphere, or $2 \pi r^{2}$. Since the area of the floor is πr^{2}, twice as much paint is needed for the hemisphere, or 34 gallons.
5. Volume of cylinder is $\pi R^{2} \cdot 2 R=2 \pi R^{3}$.
$\frac{2}{3}\left(2 \pi R^{3}\right)=\frac{4}{3} \pi R^{3}$, which
is the formula for the volume of the sphere.

6. Since $r=1$, the volume of the ice cream is $\frac{4}{3} \pi$ and the volume of the cone is $\frac{5}{3} \pi$. Therefore, the cone will not overflow.
563 7. a. The volume of a cube of edge s is s^{3}; the volume of a cube of edge 4 s is $(4 s)^{3}$ or $64 s^{3}$. Hence, the ratio of the volumes is 64 to 1 .
b. If R and $4 R$ are radil of the moon and the earth the volumes have the ratio $\frac{\frac{4}{3} \pi R^{3}}{\frac{4}{3} \pi(4 R)^{3}}=\frac{1}{64}$.

2010
[pages 562-563]
8. The altitude of the cone is r plus the hypotenuse of a $30^{\circ}-60^{\circ}$ right triangle with short side r. So the altitude is 3 r . Using a right triangle determined by the altitude of the cone and a radius of the base, the radius of base of the cone is $r \sqrt{3}$, so the area of the base $1 . .3 \pi r^{2}$. The volume of the cone is therefore $\frac{1}{3}$. $3 \pi r^{3}$.
*9. Let r be sudius of the tank in feet. $r^{2}=18^{2}+(r-6)^{2}$. $r^{2}=324+r^{2}-12 r+36$.
$12 r=360$.
$r=30$. The radius is
30 feet. Using
$V=\frac{4}{3} \pi r^{3}$, the volume of the tank in cubic

18 feet is $\frac{4 \pi \cdot 30^{3}}{3}$.
Converting this to cubic inches, finding the number of gallons contained, and dividing by 10,000 , the number of hours a tank full will last is $\frac{4 \cdot 22 \cdot 27000 \cdot 1728}{3 \cdot 7 \cdot 231 \cdot 10000}$ or about 85 hours.
*10. Let V be the original volume and R the original radius, v the new volume and r the new radius.
Then

$$
\frac{V}{v}=\frac{2}{I}=\frac{\frac{4}{3} \pi R^{3}}{\frac{4}{3} \pi r^{3}}=\frac{R^{3}}{r^{3}}
$$

Therefore, $\quad \frac{R^{3}}{r^{3}}=\frac{2}{I} \quad$ or $\quad \frac{R}{r}=\frac{\sqrt[3]{2}}{1}$.
Hence,

$$
r=\frac{R}{\sqrt[3]{2}}=\frac{\sqrt[3]{4} R}{2}
$$

Since, $\quad \sqrt[3]{4}$ is approximately 1.6 ,

$$
r \text { is approximately } \frac{4}{5} R .
$$

[page 563]

563 *11. Let V be the volume of a cylindrical shell, S the lateral area of the cylinder, and h the thickness of the shell. Then $\frac{V}{h} \longrightarrow S$ as h gets smaller and smaller. By Theorem $16-14$ we know that

$$
\begin{aligned}
V & =\pi(r+h)^{2} a-\pi r^{2} a \\
& =2 \pi r h a+\pi h^{2} a .
\end{aligned}
$$

m

$$
\begin{array}{ll}
& \quad \pi=2 \pi r a+\pi h a . \\
\text { Since, } & h \longrightarrow 0, \quad \pi h a \longrightarrow 0 \text { and } \frac{V}{h} \longrightarrow 2 \pi r a . \\
\text { Hence, } \quad & S=2 \pi r a .
\end{array}
$$

Review Problems

564 1. a. rhombus, $120,60$.
b. 8 .
c. $\quad 32 \sqrt{3}$.
2. 1 approx. $\frac{4}{3} \pi \cdot \frac{5}{2} \cdot \frac{5}{2} \cdot \frac{5}{2}-\frac{4}{3} \pi \cdot 1 \cdot 1$

$$
\frac{4}{3} \pi\left(\frac{125}{8}-1\right)=\frac{4}{3} \pi \cdot \frac{117}{8}=\cdot \frac{\pi}{2}=61.26
$$

3. approx. $\frac{1}{3} \pi \cdot 25 \cdot h=500$.

$$
h=\frac{60}{\pi}=19 \text { approx. }
$$

4. 48 square inches. $\frac{1}{3} B \cdot 12=432$.

$$
B=108
$$

If A is the area of the cross-section, $\frac{108}{A}=\frac{144}{64}$.
$A=48$.
5. Ze volume of the cirst is half the voiume of the second.
[pages 563-564]
208

454

504 6. 4872 approx. $\pi \cdot 144 \cdot 20-\frac{4}{3} \pi \cdot 10 \cdot 10 \cdot 10=$ $\pi\left(2880-\frac{4000}{3}\right)=\frac{4640}{3} \pi=4872$ approximately.
7. $\frac{V_{s}}{V_{c}}=\frac{\frac{4}{3} \pi r^{3}}{\pi r^{2} \cdot 2 r}=\frac{2}{3}$.
$565 * 8$. The volume of the solid equals the volume of the large cone decreased by the sum of the cylinder and the small, upper cone. Let $!$ be the altitude of the small cone. Then $15-\mathrm{h}$; the altitude of the cylinder. Since the cones are similar,

$$
\frac{h}{15}=\frac{3}{8} \quad \text { and } \quad h=\frac{45}{8}
$$

Hence, $\quad V=\frac{1}{3} \pi 64 \cdot 15-\left(\pi 9 \cdot \frac{75}{8}+\frac{1}{3} \pi 9 \cdot \frac{45}{8}\right)$

$$
=\quad \because 0 \pi-\frac{810 \pi}{4}=\frac{875 \pi}{4}=687.5 \text { approx }
$$

9. A di az a parallelogram divides it into congruent triancos. Therefore, by Theorem 16-8 the pyramid is dividez $1=$ two pyramids of equal volume.
*10. In the = -gogular paralieleppad, diagonals $\overline{A X}$ and $\overline{\overline{A B}}$ of rectangle ABXW are congruent and bisec $=a n$. ather at 0 . SimiL Iy, diagonals $\overline{K F}$ and zu. alsect each other

at C° Ey considering the in ation of $\overline{K F}$ and $\overline{W B}, i$ is evident that $O^{\prime}=\quad \cdots$ sefore, all four diagonalrs bisect each other at C stree the diagonals are cong ent, it follows that - equidistant from each of whe vertices, and. is the $\varepsilon=0.5$ of the required sphere.

$$
2: 10
$$

Illustrative Test Items for Chapter 16

A. Indicate whether each statement is true or false.

1. A plane section of a triangular prism may be a region whose boundary is a parallelogram.
2. A plane section of a triangular pyramid may be a region whose boundary is a parallelogram.
3. The volume of a triangular prism is half the product of the area of its base and its altitude.
4. In any pyramid a section made by a plane which bisects the altitude and is parallel to the base has half the area of the base.
5. Two pyramids with the same base area and the same volume have congruent altitudes.
6. The volume of a pyramid with a square base is equal to one-third of its altitude multiplied by the square of a base edge.
7. The area of the base of a cone can be found by dividing three times the volume by the altitude.
8. The volume of a sphere is given by the formula $\frac{1}{6} \pi d^{3}$ where d is its diameter.
9. All cross-sections of a rectangular parallelepiped are rectangles.
10. A cross-section of a circular cone is congruent to the base.
11. Two prisms with congruent bases and congmuent altitudes are equal in volume.
12. In a sphere of radius 3 , the volume and the surface area are expressed by the same number.
13. The area of the cross-section of a pyramid that bisects the altitude is one-fourth the area of the base.
14. The diagonal of a rectangular parallelepiped is $\frac{1}{3}$ the sum of the three dimensions of the parallelepiped.
15. In a right circular cone the segment joining the vertex with the center of the base is the altitude of the cone.
B. I. A school room is 22 feet wide, 26 feet long and 15 feet high. If there should be an allowance of 200 cubic feet of air space for each person in the room, and If there are to be two teachers in the room, how many pupils may there be in a class?
16. A 2^{4} inch length of wire is used to form a model of the edges of a cube. How long a wire is needed to form the edger of a second cube, if an edge of the second is double an edge of the first? What is the ratio of the surface areas of the two cubes? Of their volumes?
17. A square 6 inches on a side is revolved about one diagonal. Give चne volume of the solid thus "generated".
18. If a right circuiar cone is inscribed in a hemisphere such that both have the same base, find the ratio of the volume of the cone to the volume of the hemisphere.
C. 1. If a cone and a cylinder have the same base and the same altltude, the volume of the cylinder is \qquad times the volume of the cone.
19. If the area. of one base of a cylinder is 24 square inches, the area of the other base is \qquad square Inches.
20. In a slrcular cylinder with radius 5 and altitude 6, the area of a cross-section one-half inch irom the base Is \qquad π.
21. In a circular cone with radius 5 and altitude 6 , the area of a cross-section at a distance 2 from the vertex is \qquad _.
22. The area of the base of a pyramid with altitude 12 inches is times the area of a cross-onctinn 2 inches from the base.
23. If the area of a cross-section of a pyramid is $\frac{1}{4}$ the area of the base, this cross-section of the pyramid divides the altitude of the pyramid into two segments whose ratio is \qquad to \qquad .
24. The base of a pyramed is an equilateral triangle whose.. perimeter is 12. If the altitude is 10 , the volume of the pyramid is \qquad .
25. The base of a prism is a parallelogram with sides 10 and 8 determining a 30° angle. If the altitude of the prism is 14, the volume is \qquad .
26. If the dimensions of a rectangular parallelepiped are $3,5,6$, the lengtr of a diagonal is \qquad ; the total surface area is \qquad ; and the volume is \qquad .
27. If the diameter of a ephere is 12 , the volume of the sphere is \qquad , the area of a great circle is \qquad , and the area of the spiere is \qquad .

Answers

A. 1. T,
6. T,
11. T ,
2. T,
7. T,
12. T,
3. F,
8. T,
13. T ,
4. F,
9. T,
14. $\mathrm{F} \because$
5. T,
10. F ,
15. T.
B. 1.32 pupils. $\frac{22 \times 26 \times 12}{200}=34.3$.
2. 48 inches. $\frac{1}{4}$. $\frac{1}{8}$.
3. $36 \pi \sqrt{2}$. The solid consists of two right circular cones with a common base having $r=h=3 \sqrt{2}$.
4. $\quad \frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{V}_{\mathrm{H}}}=\frac{\frac{1}{3} \pi r^{2} \cdot r}{\frac{1}{2} \cdot \frac{4 \pi r^{3}}{3}}=\frac{1}{2}$.

C. 1. 3.
6. 1, 1.
2. 24.
7. $\frac{40 \sqrt{3}}{3}$.
3. 25π.
8. 560.
4. $\frac{25 \pi}{9}$.
9. $\sqrt{70}, 126,90$.
5. $\frac{36}{25}$.
10. $288 \pi, 36 \pi, \quad 144 \pi$.

Chap er 17
PLANE COORDINATE GEOMETRY

The inclusion of a chapter on analytic geometry in a tenth grade geometry course is a recent innovation. We introduced it at the end of the book for two reasons.

First, for flexibility in using the text. Some teachers may prefer to teach analytic geometry in the eleventh grade (or later) in order to do justice to this very important 1dea which shows the complete logical equivalence of synthetic geometry and high school algebra. They may feel that the tenth grade already is crowded with many essential things, and that to crowd $1 t$ further does not do a service to the understanding of synthetic geometry as a mathematical system or of the analytic approach. On the other hand, some teachers may feel a sense of excitement over the opportunity to introduce students to analytic geometry, and may be grateful for a chance to communicate this excitement to their students at the expense of omitting some more conventional material.

Secondly, the analytic geometry was introduced at the end in order to do justice to both synthetic geometry and analytic geometry. If the student is to obtain a deep appreciation of the equivalence of Euclidean Geometry and classical algebra, he must understand these as separate disciplines. He already has spent much time in the study of algebra, and it does not seem desirable to fragment the treatment of synthetic geometry with the piecemeal introduction of analytic ideas - he may fail to grasp that there is an autonomous subject of geometry which is logically equivalent to the autonomous subject of algebra.

In fact, a surprising number of the concepts treated earlier in the book are necessary for analytic geometry. The most obvious of these concepts is that of the number ssale, but much more than this is involved. The idea of piane separition is involved in distinguishing the location cf points with positi.ve coordinates and points with negative coordinates. The theory of parallels fustifies the rect.. angular network used for graphs. Similarity is used in establishing the constant slope of a line. The Pythagorean Theorem forms the basis for the distance formula. The notion of a set of points satisfying certain conditions, x which is basic in coordinate geometry, is treated synthetically in Chapter 14. These few examples will serve to i三lustrate the considerable background of concepts it is desirable for a student to have before beginning a careful treatment of analytic geometry.

The history of geometry, like the history of all of mathematics, is a fascinating story. When one knows the history of a subject, he can better appreciate the years of development necessary to put it into the form we know it today. Since the development of analytic geometry was a major break-through in mathematical thought at the time Descartes discovered it, students might be interested in the history of its development and discovery, just as they might be interested in the history of synthetic geometry. Sujgest to them the title of an available book on the history of mathematics. (An excellent bibliography has recently been published by the National Council of Teachers of Mathematics. Write for the pamphlet "The High School Mathematics Library", by William L. Schaaf. Address: NCTM, 1201 Sixteenth Street, N.W., Washington 6, D.C.)
[page 567]
21.5

The idea of translating between algebra and geometry can be used by the teacher as a means of organizing a cunulative summary of the chapter. The students can be asked to keep a geometry-algebra dictionary like the following.

Geometry	Algebra
A point P in a plane	An ordered pair of numbers (x, y).
The end-points of a segment $P_{1} P_{2}$.	$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and ($\mathrm{x}_{2}, \mathrm{y}_{2}$).
The slope of $\mathrm{P}_{1} \mathrm{P}_{2}$.	The number $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
The distance $P_{1} \mathrm{P}_{2}$.	The number $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
The mid-point of $\overline{\mathrm{P}_{1} \mathrm{P}_{2}}$.	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$.
A line.	The set of ordered pairs of numbers that satisfy some linear equation $A x+B y+C=0$
The intersection of two lines.	The common solution of two linear equations.
Two non-vertical lines are parallel.	$\mathrm{m}_{1}=\mathrm{m}_{2}$.
Two non-vertical lines are perpendicular.	$m_{1} m_{2}=-1$.

Notlce that we now set up a coordinate system on each of two perpendicular lines, rather than on only one line, as we did in Chapter 2. This enables us to find the coordinates of the projections of any point on the two lines. We write these coordinates as an ordered pair (x, y).

$$
210 \%
$$

We again have a one-to-one correspondence, this time between ordered pairs of real numbers and points in a plane. To each ordered pair of real numbers there corresponds one and only one point in the plane, and to sach point in the plane there corresponds one and only one ordered pair of real numbers.

Sections 17-2 and 17-3 cover material that is familiar to most students, and classes should move on as quickly as possible. If students already know the terms abscissa and ordinate, there is no reason to object to their use of these words. The terms are superfluous, however, and need not be introduced by you.

Problem Set 17-3

574 1. "Cartesian" is used to honor the discoverer, Descartes.
2. $(0,0)$.
3. -3 .
4. The origin, or $(0,0)$.
5. $(2,1)$ and $(2,0)$.
6. a. IV.
c. I.
b. II.
a. III.
7. One of the coordinates must be 0 .
8. D, B, C, A.
9. C, A, D, B.
10. a. II. e. IV.
b. I. I. I.
c. IV.
g. II.
d. III.
h. III.
21%
[page 574]
a. y-axis, x-axis, z-axis.
b. $x z$-plane, $y z$-plane, $x y-p l a n e$.
c. 4, 2, 3.

576 When we define the slope of a line segment to be the quotient of the difference between pairs of coordinates, there is no need to introduce the notion of directed distance, but it is absolutely necessary to put the coordinates of the two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the proper position in the formula. That is $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ cannot be used as $m=\frac{y_{2}-y_{1}}{x_{1}-x_{2}}$ although $m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ is also correct. Notice that in finding the slope of $\overline{A B}$ it doesn't matter which point is labeled P_{1} and which one is labeled P_{2}.
578-579 It is important to note here that $R P_{2}$ and $P_{1} R$ are positive numbers and we have to prefix the minus sign to the fraction $\frac{R P_{2}}{P_{1} R}$ if the slope is negative. However, the formula defining the slope of a segment will give the slope m as positive or negative without prefixing any minus sign.

For the Case (1) if $m>0$, then $m=\frac{R P_{2}}{P_{1} R}$, $R P_{2}=y_{2}-y_{1}$ and $P_{1} R=x_{2}-x_{1}$. For the Case (2) if $m<0$, then $m=-\frac{R P_{2}}{P_{1} R}, \quad R P_{2}=y_{2}-y_{1} \quad$ and $P_{1} R=x_{1}-x_{2}$.
Therefore Case (2) becomes $m=-\frac{y_{2}-y_{1}}{x_{1}-x_{2}}$ which is equivalent to $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.

Problem Set 17-4

580

1. a. 7. b. -1 . c. y_{1}.
2. a. 6 .
b. -3 .
c. x_{1}.
3.

a. 2. b. 2. c. 3 .
d. The two points in each part have the same y-coordinate.

581
e. If two points in a plane have the same y-coordinate, then the distance between them is the absolute value of the difference of their x-coordinates.
f. No.
4. a. 3. b. 2. c. 4 .
d. $\left|y_{1}-y_{2}\right|$ or $\left|y_{2}-y_{1}\right|$.
e. The two points in each part have the same x-coordinate.
f. If two points in a plane have the same x-coordinate, the distance between them is the absolute value of the difference of their y-coordinates.
5. $(2,3)$; $(-1,-5) ;(3,-1)$.
6. $\quad P A=2, \quad Q A=2$.
$P B=5, \quad Q B=3$.
$P C=7, \quad Q C=3$.
7. $-1, \frac{3}{5}, \frac{3}{7}$.
8. $\frac{1}{15}$.

213
9. a. $\frac{1}{3}$.
e. $-\frac{15}{8}$.
b. -3.
f. $\frac{8}{15}$.
c. $\frac{7}{4}$.
g. -1.
d. $\frac{3}{4}$.
h. -3.
10. a. 6.
b. 4.5.
*ll. First assume that $\overleftrightarrow{P A}, \overleftrightarrow{P B}$ have the same slope m. Let $P=(a, b)$, $R=(a+1,0)$. Let $\overleftrightarrow{R S}$ be perpendicular to the
$\underset{\mathrm{PA}}{\mathrm{x} \text {-axis. }}$ nor $\underset{\mathrm{PB}}{\stackrel{\text { Neither }}{\overleftrightarrow{~}} \text { is }}$ perpendicular to the x -axis, hence, neither $\overleftrightarrow{P A}$ nor
$\overleftrightarrow{\mathrm{PB}}$ is parallel to

$\overleftrightarrow{R S}$. Let $\overleftrightarrow{P A}, \overleftrightarrow{P B}$ intersect $\overleftrightarrow{R S}$ in Q, Q^{\prime}, respectively. Let $Q=(a+l, c), Q^{\prime}=\left(a+1, c^{1}\right)$
Then $\frac{c-b}{l}=m=\frac{c^{\prime}-b}{l}$.
Whence, $c=c^{\prime}$, and hence $Q=Q^{\prime}$. Hence, $\overleftrightarrow{P A}=\overleftrightarrow{P B}$ (by Postulate 2).
The converse has already been proved (Theorem 17-1). Hence, if $\overleftrightarrow{P A}, \overleftrightarrow{P B}$ have different slopes, then P, A, B cannot be collinear.
12. a. Yes.
b. No.
13. a. -1. b. $-\frac{3}{2}$. c. $\frac{a-b}{2 b}$.
14. Slope of $\overleftrightarrow{A B}$ is $\frac{96}{96}=1$. Slope of $\overleftrightarrow{B C}$ is $\frac{100}{100}=1$. Point B is common. Therefore $\overleftrightarrow{A B}$ and $\overleftrightarrow{B C}$ coincide.
[pages 582-583]
220

583 15. Slope of $\overleftrightarrow{A B}$ is $\frac{96}{96}=1$; slope of $\overleftrightarrow{C D}$ is $\frac{1}{1}=1$. We are tempted to say that $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$, but we must make sure that they are actually two different lines. We test by finding the slope of $\overleftrightarrow{A C}$, which is $\frac{101}{1 O 1}=1$. Hence, $\overleftrightarrow{A B}$ and $\overleftrightarrow{A C}$ must coincide so that C is on $\overleftrightarrow{A B}$ and the lines can't be parallel. It follows that $\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ coincide.
16. Draw the segment which joins (4,3) and the origin; any other segment through the origin lying on the line determined by this segment will also suffice.

The information concerning slopes of parallel and perpendicular lines constitutes a very important principle for the solving of geometric problems analytically. For instance, if a student were asked to show that two nonvertical lines were parallel, he would have to show that their slopes were equal; to show that a pair of oblique lines were perpendicular would require that he establish the slopes to be negative reciprocals of each other. Note that to show two segments parallel it is not sufficient to show they have the same slope; it is necessary to show also that the segments are not collinear (see Problems ll and 15 of Problem Set 17-4).

To sho: why $\triangle P Q R \cong \triangle Q^{\prime} P R$ we first show that $\angle Q^{\prime} P R^{\prime}$ is complementary to $\angle Q P R$. This follows from $m / Q^{\prime} P R^{\prime}+m / Q^{\prime} P Q+m / Q P R=180$ and $m / Q^{\prime} P Q=90$. Therefore $\angle Q^{\prime} P R^{\prime} \cong \angle P Q R$ and $\angle P Q^{\prime} R^{\prime} \cong \angle Q P R$. Since $P Q=P Q$, , the triangles are congruent by A.S.A.

In the converse we use S.A.S. to show $\Delta P Q R \cong \Delta Q^{\prime} P R^{\prime}$ By construction, $R^{\prime} P=R Q$ and $\frac{1}{2}$ and $\angle R^{\prime}$ are right angles. We get $R^{\prime} Q^{\prime}=P R$ as foïlows: $m=\frac{R Q}{P R}$ and $m^{\prime}=-\frac{R^{\prime} Q^{\prime}}{R^{\prime} P}$. Then $m^{\prime}=-\frac{l}{m}$ becomes $-\frac{R^{\prime} Q^{\prime}}{R^{\prime} P}=-\frac{P R}{R Q}$, and since the denominators are equal we have $R^{\prime} Q^{\prime}=P R$.
[pages 583-585]
inanity, we ge ar a right anglo by the
 the \quad ス $\approx \angle P Q^{\prime} R^{\prime}$.
\therefore) that Theorem I_{-}, and some theorem, which follow,
as: d after the proci rather than befog. In this way, his full theorem seems to be a result; the discussion pertains $=$ to the topic being considered.

Probing Set 17-5

1. Slope $\widehat{A B}=\frac{3}{2} ;$ slope $\overline{C D}=\frac{3}{2}$; hence, $\overleftrightarrow{A B} \| \overleftrightarrow{C D}$ or $\overleftrightarrow{A B}=\overleftrightarrow{C D}$. Slope $\overline{A C}=\frac{-4}{5}$, hence, A, B, C, are not collinear. (See Problems 11 and 15 of Problem Set 17-4.) Hence, $\quad \overleftrightarrow{A B} \neq \overleftrightarrow{C D}$, so that $\overrightarrow{A B} \| \overrightarrow{C D}$. Similarly, prove $\overline{\mathrm{BC}} \| \overline{\mathrm{AD}}$.
2. Slope of $\overline{A B}=-\frac{2}{3}$, slope of $\overline{C D}=-\frac{2}{3}$.

Slope of $\overline{B C}=-3$, slope of $\overline{D A}=-3$. Therefore opposite sides are parallel and the quadrilateral is a parallelogram.
3. $L_{1} \perp L_{3}$ and $L_{2} \perp L_{4}$, by Theorem 17-3.

587 4. The second is a parallelogram, as can be shown from the slopes of $\overline{P Q}, \overline{R S}, \overline{Q R}$, and $\overline{P S}$, which are respectively, $\frac{2}{3}, \frac{2}{3},-\frac{1}{5},-\frac{1}{5}$. The first is not a parallelogram since the slopes of $\overline{A B}, \overline{B C}, \overline{C D}$ and $\overline{\mathrm{AD}}$ are respectively, 4, $\frac{1}{2}, 5$, and $\frac{3}{8}$.
5. a. Slope of $\overline{A B}=-\frac{2}{7}$.

Slope of $\overline{B C}=\frac{2}{9}$.
Slope of $\overline{A C}=0$.
[pages 585-587]

587
b. $\therefore x$ Ititude to $\overline{A B}=\frac{7}{2}$. :e $=$ Iti.tude to $\overline{\mathrm{BC}}=-\frac{9}{2}$.
\therefore a mide to $\overline{A C}$ has no slope: it is a vertical
6. Both -. ad $\overline{\mathrm{JD}}$ have the same slops, -1 ; $\overline{\mathrm{AC}}$ has slope $\quad \therefore$ efore $\overline{A B} \| \overline{C D} . \overline{A D}$ and $\overline{B C}$ have diffe: \quad ace. Therefore the figure is a trapezoid. Diagor. $\bar{\sim}$ is horizontal since its slope is 0 . Diagor $\because \quad 3$ vertical. A vertical and a horizontal line a. quanicular.
7. The slc e: Each case is the same, $-\frac{1}{3}$; the slope of line $f c=:(3 n, 0)$ to $(6 n, 0)$ is 0 . Hence, the given -.. - ョre parallel.
8. The slope a the first line is $\frac{b}{a}$. The slope of the second $i-\frac{a}{b}$. Since the negative reciprocal of $\frac{b}{a}$ is - $\frac{a}{b}$, the lines are perpendicular.
*9. Application of the slope formula shows that the slope of $\overline{X Y}$ is $\frac{b}{\theta}$ and thet of $\overline{X Z}$ is $-\frac{a}{b}$. By Theorem $I_{-\cdots} \overline{X Y} \perp \overline{X Z}$. Hence, $\angle X$ is a right angle.
10. $\leq P Q R$ wine right angle if $\overline{P Q} \perp \overline{Q R}$. $\overline{P Q}$ will je pecpendicular to $\overline{Q R}$ if their slopes are negative reciprocals; that is, if:

$$
\frac{-6-2}{5-1}=-\frac{b-5}{b+6}
$$

from which $b=-17$.
11. Slope $\overline{P_{0}}=\frac{-1}{-3} ;$ slope $\overline{R S}=\frac{-1}{b-4} ;$ slope $\overline{Q S}=0$. If $\overleftrightarrow{P Q}$ were the same as $\overleftrightarrow{R S}$ these three slopes would have to se equal; but neither of the first two can be zero fo any value of a or b. If $\overline{\mathrm{P}} \| \overline{\mathrm{RS}}$ then $\frac{-1}{a-3}=\frac{-1}{b-4}$, whence, $a=b-1$.

Notice that it would be impossible for $k s i$ develcp the distance formula without the Pythagorean Thersem, which in turn rests upon the theory of areas, para: and co-gruence.

It might be instructive with a good class \because have them derive the distance formula with P_{I} and $P_{\bar{E}}: \cdots$ various positions in the plane. In working with the dirtance formula, it does not matter in which order we \quad ite P_{I} and P_{2} in as much as we will be squaring the diff mence between coordinates. The distance formula holds even minen the segment $\overline{P_{1} P_{2}}$ is horizontal or vertical.

Problem Set 17-6

3. a. 5
e. 17.
b. 5 .
f. $\sqrt{2}$.
c. 13 .
g. 89 .
d. 25 .
h. $5 \sqrt{5}$.
4. a. $\left(y_{2}-y_{1}\right)^{2}+\left(x_{1}-x_{2}\right)^{2}$.
b. $x^{2}+y^{2}=25$.

591 5. Ey the distance formula $R S=5, R T=\sqrt{2}$ and $S T=5$. Since $S T=R S$ the triangle is isosceles.

221
\triangle DEF will be a -ght trange with $\angle D=$ ant $=$ sle only if $D E^{i} \cdot D F^{2}=E E^{2}$. This is the sa三E since $Z^{2}=5, \quad D F^{2}=45$ and $Z^{2}=50$.
ㄱ. $B=\sqrt{8}=2 \sqrt{2} . \quad B C=\sqrt{72}=5 \sqrt{2} . \quad A C=\sqrt{128}=8 \sqrt{2}$. Fence, $A B+B C=A C$, aril therefore, from the Triangle Inequality, A, B, C, arj coilinear. It now follows ?rom the definition of "between" that B is between A and C.
8. a. 7 .

$$
\text { b. } \quad 5 .
$$

9. a. (a, b).
b.

$W Y=\sqrt{(a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}$. $X Z=\sqrt{(0-a)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}$.

Hence, $\quad i Y=X Z$.
*10. a. Let $A=(2,0,0), B=, 2,3,0)$. From the meaning of the z, y, and z-cocidinates, $O A=2, A B=3$, and $B P=6 . \quad B y$ the Pythagorean Theorem applied to $\triangle O E=O B^{2}=13$, then applied to $\triangle O B P$, $O P^{2}=\because$ anc $O P=7$. ($\overline{O P}$ may also be considered a diaz=l oE a rectangilar block.)
t. Generalizing the procedure in part (a.), the distance is $\sqrt{x^{2}+y^{2}-z^{2}}$.
c. $\quad P_{1} P_{2}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$.
59.

T：－：：i－point formula in prove to be very useful in th $=$ ar．ash follows．will be true，for example， wher we 二牢 seaking of tiE edians of a triangle．If we kno：－ser ordnates of ti．ertices of a triangle，and appi．$\cdots \operatorname{zefinition~of~}=1 a n$ ，we can find the coordinates of $t:-\ln$ in which tre $=\mathrm{Ec}$－an intersects the opposite side．$=2 \pi$ wili give us $t=$ coordinates of its end－points and $\leq \therefore=\therefore$ us to find tre $-1 g t h$ and slope of the median．

The Jnoof of the mid－．．int tormula is easily modified to hen－- hor－jontal and srtical segments．

Problem 5 ＝t 17－7

1．a．$(2,6)$ ．
d．$(0,0)$ ．
b．$-2.5,0$ ．
\therefore 2，0）．
2．．． $8,12$.
d．（1．58，1．11）．
b．$\quad(-5.5-1.5)$ ．
e．$\quad\left(\frac{a+b}{2}, \frac{c}{2}\right)$ ．
c．$\quad\left(\frac{5}{12}, \frac{1}{2}\right)$ ．
f．$\left(\frac{5}{2}, \frac{\mathrm{l}}{2}\right)$ ．
$59^{4} 3$ a．$(4,2)$ ．
c．$\quad-9=\frac{13+z}{2}, \quad 30=\frac{19+y}{2}$,
$x=-31 . \quad y=41$ ．
The＝ther eri－poing is at（－31，41）．
 ＝mul三．$\overline{A Z} \overline{\equiv D}$ siree the slope of $\overline{A C}$ is 4 and －he slope $c=$ is $-\frac{1}{4}$ ．These are negative Feiproca；$\overline{A C}$ and $\overline{\equiv D}$ bisect each other since Ning the mid－point formula each has the mid－point $(3,5)$ ．

$$
220
$$

［pares 592－594］

594 5. The mid-point X of $\overline{93}$ is $(3,2)$.
The mid-point Y cf \bar{E}-s $(-1,3)$.
The mid-point $Z \in f \overline{\mathrm{Ji}}=(1,0)$.
By the iistance fonuan $\therefore=\sqrt{37}, A y=\sqrt{52}$ or $2 \sqrt{13}$, and $B Z=\%$.
6. ミy formula, the mic-poitas of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ and $\overline{\mathrm{DA}}$ Ere $W(0,1), \quad x(-1,6), \quad T(4,6)$ and $Z(5,1)$,
respectively. $\overline{W X}$ has length $\sqrt{26}$ and slope -5 . \equiv also has length $\sqrt{25}$ and slope $-5 . \overline{X Y}$ has slope 0 , hence, $\mathbb{W X}_{F} \leftrightarrows$, so trat, $\overline{W X} \| \overline{Y Z}$. Wit the same two sldes parallei and congruent the figure is a parall=iogren.
7. Ey the mid-point formula the other end-poin: of one median is ($\frac{a}{2}, \frac{3 a}{2}$), and the other erd of another median is $\left(\frac{-a}{2}, \frac{3 a}{c}\right.$. By the slope formula, tine slopes of these medians ane 1 and -1 . Since 1 tis the necstive $E=1 p r o c i l$ of $-I$, the medians are perpendicuiar.
8. From the similari:.
betrieen $\triangle P_{1} P F \equiv g$
$\Delta \equiv P_{Z}, \quad P_{1}=\frac{1}{3}=_{1} S$.
Sinca $T U=3$ ari
$T V=P_{1} S, \quad T V=\frac{1}{3}-V$.
In terms of coordinates
$x-x_{1}=\frac{亏}{3}\left(x_{2}-x_{1}\right)$, or

$x=\frac{1}{3}\left(x_{2}-x_{1}\right)+x_{1}$.
This zan ziso be written $x=\frac{x_{2}+2 x_{1}}{3}$. By a =imizar argumen with $\overline{P P}_{2}$ projected inte the y-axis,

$$
\mathrm{y}=\frac{\mathrm{y}_{2}+\mathrm{z}_{1}}{3}
$$

[page 594]

Therefore the coondinates of are $\left(\frac{x_{2}+2 x_{1}}{3}, \frac{y_{2}+2 y_{1}}{3}\right)$.
595*9. a. Replacing $\frac{1}{Z}$ by $\frac{r}{r+s}$ the solution of the previous $\mathrm{F}=\mathrm{mblem}$, if x_{2}, I_{1}, we get

$$
x=\frac{r}{y+s}\left(x_{2}-x_{1}\right)+\cdots
$$

from which. $x=\frac{r\left(x_{2}-x_{1}\right)+x_{1}(r+s)}{r+s}$,

$$
c r \quad x=\frac{r x_{2}+s x_{1}}{r+s} \text {. }
$$

If $x_{2}<x_{1}, \quad$ similar areatent leame the same resulz.
By a similar argument wits $\overline{E_{1} P_{2}}$ projecten into the y-axis,

$$
\pi=\frac{-y_{2}-3 I}{r-s}
$$

b. $x=\frac{3 \cdot 25+5.5}{3+5}=12.5$;
$y=\frac{3 \cdot 36+2.11}{0}=2.3$.

228
[page 55]

Although we may place our axes in any manner we desire In relation to a figure, there are advantages to be had by a clever choice. For instance, if we are given an isosceles triangle, we may place the axes wherever we wish, then use the properties of an isosceles triangle to determine the coordinates of the vertices. Suppose we place it like this:

The student should be permitted to draw upon his knowledge c: synthetic geometry and make use of the fact that the a-itude to the base of an isosceles triangle bisects the base. Hence, the x-coordinate of the vertex should be haif the x-coordinate of the end-point of the base that is not at the origin. On the other hand the y-coordinate of the vertex is not determined by the coordinates of the other vertices and is an arbitrary positive number. Suppose we place the axes like this with the vertex on the y-axis:

Then, since the altitude bisects the base, the lengths of the segments into which it divides the base are equal, and therefore the end-points of the base may be indicated by $(a, 0)$ and $(-a, 0)$.

$$
2 \geqslant 3
$$

There also are limits to what we can choose for coordinates. For parallelograms, we find that three vertices may be labeled arbitrarily, but the coordinates of the fourth vertex are determined by those of the other three. Naturally there is more than one way in which we may label a parallelogram. Below in the figure on the left the coordinates of points A, B, and D were assigned first. Then the coordinates of C were determined in terms of the coordinates of the other three points. In the figure on the right A, B and C were chosen first. Notice how the coordinates of D are given in terms of the other coordinates.

One word of CAUTION. The above discussion is based upon the fact that such things as isosceles triangles or parallelograms are given in the problem. If the problem is to prove that a quadrilateral is a parallelogram or that a triangle is isosceles, then we cannot assume such properties to be true, and must establish, as part of the exercise, sufficient properties to characterize the figure.

If class time is limited, the end of Problem Set 17-8 would provids a satisfactory conclus !on to the coordinate geometry work. The balance of the chapter could be covered in later courses.

Problem Set 17-8
598

1. $D B=\sqrt{(a-0)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}}$.
$A C=\sqrt{(a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}}$.
Therefore, $D B=A C$.
2. Locate the axes along the legs of the triangle as shown.
By definition of midpoint $\mathrm{PA}=\mathrm{PB}$.
Therefore $P=(a, b)$.

It must be shown that
$P A=P C$ (or that
$P B=P C)$. By the distance formula

$$
\begin{aligned}
& P A=\sqrt{(2 a-a)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}} \text { and } \\
& P C=\sqrt{(a-0)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}} .
\end{aligned}
$$

3. Let the x-axis contain the segment and the y-axis contain its midpoint. Then the y-axis is the perpendicular bisector of the segment. Let $P(0, b)$ be any point of the y-axis, and $A(-a, 0)$ and $B(a, 0)$ be the end-points of the segment. Then:

$$
\begin{aligned}
& \quad P A=\sqrt{(0+a)^{2}+(b-0)^{2}}=\sqrt{a^{2}+b^{2}} . \\
& P B=\sqrt{(a-0)^{2}+(0-b)^{2}}=\sqrt{a^{2}+b^{2}} . \\
& \text { Hence } P A=P B .
\end{aligned}
$$

[page 598]
231

599
4. Place the axes so fingt the segment will have end-pointe $A(-a, 0)$ $B(a, 0)$, ad the y-ans will be its perpenticular bisector. Let $Q(x, y)$ be any peint =yuicissant from A and 3 . From the distane= :ormula
$Q A^{2}=\left(x+\equiv+y^{2}\right.$ and $Q B^{2}=(x-a)^{2}+y^{2}$.
Since $Q A=B, Q A^{2}=Q B^{2}$ or

$$
(x+a)^{2}+y^{2}=(x-a)^{2}+y^{2}
$$

Simplifyizs. $\quad 4 a x=0$.

$$
\bar{z}=0, \quad \text { since } a \neq 0 .
$$

Hence G minitie on the y-axis which is the perpendicul三 isector of $\overline{A B}$.
5. The mid-point of $\overline{A C}=\left(\frac{a+b}{2}, \frac{c+0}{2}\right)=\left(\frac{a+b}{2}, \frac{c}{2}\right)$. The mid-point of $\overline{B D}=\left(\frac{a+b}{2}, \frac{0+c}{2}\right)=\left(\frac{a+b}{2}, \frac{c}{2}\right)$. Since the =agonals have the same mid-points, they bisect each otmer.
6. $R=\left(\frac{d}{2}, \frac{c}{2}\right), \quad S=\left(\frac{b+a}{2}, \frac{c}{2}\right)$.

Since R ant S have the same y-coorinates, $\overleftrightarrow{R S} \| \overleftrightarrow{A B}$. Since $\overline{R S}$ is horizontal,

$$
\begin{aligned}
& E=\frac{b \cdot a}{2}-\frac{d}{2}=\frac{b+a-d}{2} . \\
& D=d-b \text { and } A B=a .
\end{aligned}
$$

Therefore $\frac{1}{2}(A S-D C)=\frac{a-(d-b)}{2}=\frac{b+a-d}{2}$.
Hence, $R S=\frac{l}{2}(A B-D C)$ which was to be proved.
7. $R=(2 a, 0), \quad S=(2 a+2 d, 2 e)$. $T=(2 b+2 d, 2 c+2 e), \quad W=(2 b, 2 c)$.
Mid-point of $\overline{W S}=(a+d+b, e+c)$. Mid-point of $\overline{T R}=(a+b+d, c+e)$. Therefore $\overline{W S}$ and $\overline{T R}$ bisect each other.
8. Area $\triangle A B C=$ area $(X Y B A)+$ area (YZCB) - area (XZCA).

Area $\triangle A B C=\frac{1}{2}(s+r)(b-a)+\frac{1}{2}(t+s)(c-b)-\frac{1}{2}(r+t)(c-a)$.
Multiplying out and combining terms,
area $\Delta A B C=\frac{1}{2}(r b-s a+s c-t b+t a-r c), \quad$ or
area $\triangle A B C=\frac{a(t-s)+b(r-t)+c(s-r)}{2}$
9. $Z Y^{2}=(b-a)^{2}+c^{2}$. $X Z^{2}=b^{2}+c^{2}$.
$X Y=a . \quad X R=b$.
Since $(b-a)^{2}+c^{2}=\left(b^{2}+c^{2}\right)+a^{2}-2 a b$, Therefore $Z Y^{2}=X Z^{2}+X Y^{2}-2 X Y \cdot X R$.

Observe that this proof remains valid if R lies between X and Y.
10. Select a coordinate system as indicated.
$M=(b, c), \quad N=(a+d, e)$. $A B^{2}=4 a^{2}$.
$B C^{2}=4(a-b)^{2}+4 c^{2}$.
$C D^{2}=4(b-d)^{2}+4(c-e)^{2}$. $D A^{2}=4 \mathrm{~d}^{2}+4 e^{2}$.
$A C^{2}=4 b^{2}+4 c^{2}$.
$B D^{2}=4(a-d)^{2}+4 e^{2}$.
$M N^{2}=(a+d-j)^{2}+(e-c)^{2}$.

From these expressions the given equation can ke verified. Note that
$(a+d-b)^{2}=a^{2}+d^{2}+b^{2}+2 a d-2 a b-2 b d$.
11. Place the axes and label the vertices as shown.

$$
A C^{2}=b^{2}+c^{2}
$$

$$
B C^{2}=(a-b)^{2}+c^{2}
$$

$$
\frac{A B^{2}}{2}=2 a^{2}
$$

$$
M C^{2}=(a-b)^{2}+c^{2}
$$

$$
\left(b^{2}+c^{2}\right)+\left(4 a^{2}-4 a b+b^{2}+c^{2}\right)=2 a^{2}+2\left(a^{2}-2 a b+b^{2}+c^{2}\right)
$$

$$
=2 a^{2}+2\left[(a-b)^{2}+c^{2}\right]
$$

Therefore $A C^{2}+B C^{2}=\frac{A B^{2}}{C}+2 M C^{2}$.

Problem Set 17-9

la. The vertical line through $(5,0)$.

1b. The two vertical lines through $(5,0)$ and $(-5,0)$.
23.1

480
603

2a. The half-plane above the horizontal line through $(0,3)$.

3. All points between the 4. $y-a x i s$ and the line $x=2$.

2b. All points between the lines $y=3$ and $y=-3$.
4. All points within or on the boundary of the indicatei strip.
[page 603]
235

603

5. All points within, or on the lower boundary of the indicated strip.

6. All points within the second quadrant.

604

7. All points within indicated angle.

236

$$
604
$$

8a. All points on the vertical lines indicated.

8c. The intersection of the solutions for (8 a) and (8b). i.e., all points in the first quadrant with integral coordinates.

9. The intersection of the three half-planes formed by the three given conditions. i.e., all points within the angle formed by the positive part of the y-axis and the ray from the origin

0. All points within or on the boundary of the indicated rectangle. as shown.
[page 604]
$604 * 11$.

All points in the interior of the square with vertices $(4,4),(-4,4),(-4,-4)$
*13.

The rays bisecting the angles formed by the x and y-axes in first and second quadrants.
*12.

All points except the end-points on the two segments joining $(-4,4)$ and $(4,4)$ and $(-4,-4)$ and $(4,-4)$.
*14.

Lines bisecting the angles formed by the x and y -axes.

484

604 *15. The square with vertices

$$
\begin{aligned}
& (5,0),(0,5),(-5,0) \\
& \text { and }(0,-5) .
\end{aligned}
$$

Prablem Set 17-10

2.

$23: 3$

485

5.

$$
6,7,8
$$

[page 610]

11.

12.

[page 610]
241

610
17.

611 18. a. The yz-plane.
b. The xy-plane.
c. A plane parallel to the yz-plane, intersecting the x -axis at $\mathrm{x}=\mathrm{l}$.
d. A plane parallel to the $x z-$ plane, intersecting the y -axis at $\mathrm{y}=2$.

The material in Section 17-11 may have been previously covered in a first year algebra course. If this is the case, do not spend any more time than is necessary on this section.

You will note that in the discussion on this page, it is necessary for us to find an additional point in order to plot the graph of the equation. We may do this in two ways. The first would be to assign to x a value, substitute this value in the given equation and compute the corresponding value of y (or we could assign a value to y and compute x). The second method depends upon the discussion here in the text. For we know how a line with a positive or negative slope will lie, and we also know that if a line has a positive 243
[pages 610-611]

611 slope then $m=\frac{R P_{2}}{P_{1} R}$ and if its slope is negative, $m=-\frac{R P_{2}}{P_{1} R}$.
Then, given one point on the graph and the slope we can find a second point by counting the units in the legs of the right triangle. Consider the example used by the text, $y=3 x-4$. We see immediately that the y-intercept is -4 and that the slope is 3 . Since the slope is positive, the graph will rise to the right. Hence, we can find a second point by starting at $(0,-4)$ and counting 1 unit to the right and three units up to the point $(1,-1)$. We can check to see that we are correct by applying the slope formula to these coordinates.

Let us consider one more case, namely, when the slope of the given line is negative. Draw the graph of the equation $y=-\frac{2}{3} x+3$. We see that the point $(0,3)$ lies on the graph, and to locate a second point by this method, we must realize that we will be working with a slope of $-\frac{2}{3}$. The graph, then, will rise to the left and we can locate a second point by counting 3 units to the left from $(0,3)$ and 2 units up, as in the figure below.

244

Problem Set 17-12

5. The graph is the whole $x y$-plane.
6. The graph is the empty set; 1.e., there are no points whose coordinates satisfy the equation.
7. The graph contains a single point, the origin (0,0).
8. The graph is the empty set.
[page 616]
24;
6169.

11.

10.

12.

13. $3 x-y-1=0 . \quad A=3, \quad B=-1, \quad C=-1$.
14. $\mathrm{x}+\mathrm{y}-1=0 . \quad \mathrm{A}=1, \quad \mathrm{~B}=1, \quad \mathrm{C}=-1$.
15. $2 x-y-4=0 . \quad A=2, \quad B=-1, \quad C=-4$.
16. $\mathrm{y}=0 . \mathrm{A}=0, \mathrm{~B}=1, \quad \mathrm{C}=0$.
17. $x=0 . A=1, B=0, \quad C=0$.
18. $\mathrm{y}+3=0 . \quad \mathrm{A}=0, \quad \mathrm{~B}=1, \quad \mathrm{C}=3$.
19. $\mathrm{x}+5=0 . \mathrm{A}=1, \quad \mathrm{~B}=0, \quad \mathrm{C}=5$.
20. $x-5 y=0 . A=1, \quad B=-5, \quad C=0$.

492

Problem Set 17-13
6181

b.

$$
x=2 \frac{1}{3} ; \quad y=4 \frac{2}{3}
$$

The empty set.

... The equations are equivalent. Any
pair of numbers
whose sum is 3
is a common solution.
2. a.
(1) and (4)
(3) and (4).
b. (1) and (2)
(2) and (3)
(2) and (4).
c. (1) and (3).
3. 4000 miles.

247
[page 618]

619 4. a. The intersection is point (2,4).

b. The intersection is the ray shown with end-point $(2,4)$.

c. The intersection is the interior of $\angle A B C$.

d. The conditions are $\mathrm{y}<2 \mathrm{x}$ and $\mathrm{y}<4$.
5. a. The intersection is the interior of the triangle with vertices $(2,1),(2,4)$, and $(-1,4)$.
b. $\quad x+y<3$,
$x>0$,
$y>0$.

243
[page 619]

494
619 6. The mid-point M has coordinates
$\left(\frac{3+5}{2}, \frac{4+8}{2}\right)=(4,6)$.
The slope of $\overline{A B}$ is
$\frac{8-4}{5-3}=2$, so the slope of L is $-\frac{1}{2}$ and its equation is L :
$y-6=-\frac{1}{2}(x-4)$,
$y-6=-\frac{1}{2} x+2$, or

$x+2 y=16$.
Alternate solution: L is the set of points $P(x, y)$ for which $P A=P B$. This gives

$$
\sqrt{(x-3)^{2}+(y-4)^{2}}=\sqrt{(x-5)^{2}+(y-8)^{2}}
$$

which reduces to $x+2 y=16$.
7. In the preceding problem, we found the equation
$L: \quad x+2 y=16$.
Similarly, for M and N we find
M: $3 \mathrm{x}-\mathrm{y}=-3$,
N: $\quad 2 \mathrm{x}-3 \mathrm{y}=-19$.
The intersection G of L and M is obtained by solving their equations:

$$
G=\left(\frac{10}{7}, \frac{51}{7}\right)
$$

Substituting in the third equation, we find that G lies on N also.

$$
240
$$

[page 619]

620 *8. Take a coordinate system in which Queen's Road is the x -axis and King's Road is the y -axis.

The coordinates of the elm; spruce, and pine are as indicated. The maple is gone, but its assumed position is labeled $(0, m)$. The slope of $\overleftrightarrow{\mathrm{EP}}$ is $\frac{3}{4}$, so its equation (in slope-intercept form) is
The slope of $\stackrel{\stackrel{\leftrightarrow y}{|c|}}{\stackrel{\leftrightarrow}{\leftrightarrows M}}$ is $=\frac{3}{4} x+3$. slope form) is

$$
\overleftrightarrow{S M}: \quad y=-\frac{m}{2}(x-2)
$$

Solving these two equations simultaneously, we find the coordinates of A :

$$
A:\left\{\begin{array}{l}
x_{1}=\frac{4(m-3)}{2 m+3} \\
y_{I}=\frac{9 m}{2 m+3}
\end{array}\right.
$$

Similarly, we get the equations

$$
\begin{array}{ll}
\overleftrightarrow{S P}: & y=-\frac{3}{2} x+3, \\
\overleftrightarrow{~ E M: ~} & y=\frac{m}{4}(x+4),
\end{array}
$$

and the point of intersection is
$B:\left\{\begin{array}{l}x_{2}=-\frac{4(m-3)}{m+6}, \\ y_{2}=\frac{9 m}{m+6 .}\end{array}\right.$
The line $\overleftrightarrow{A B}$ has the equation,

$$
\overleftrightarrow{A B} \quad y-y_{1}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)
$$

[page 620]

620 The intersection T of $\overleftrightarrow{A B}$ and the x-axis is found by letting $\mathrm{y}=0$ and solving for x :

$$
\begin{gathered}
x=x_{1}-y_{1}\left(\frac{x_{2}-x_{1}}{y_{2}-y_{1}}\right), \\
x=\frac{x_{1} y_{2}-x_{2} y_{1}}{y_{2}-y_{1}} .
\end{gathered}
$$

Now

$$
\begin{aligned}
x_{1} y_{2}-x_{2} y_{1} & =\frac{4(m-3)}{2 m+3} \cdot \frac{9 m}{m+6}+\frac{4(m-3)}{m+6} \cdot \frac{9 m}{2 m+3} . \\
& =\frac{72 m(m-3)}{(m+6)(2 m+3)} \\
y_{2}-y_{1} & =\frac{9 m}{m+6}-\frac{9 m}{2 m+3} \\
& =\frac{9 m(m-3)}{(m+6)(2 m+3)} .
\end{aligned}
$$

Dividing, we get $x=8$. Therefore the treasure was buried 8 miles east of the crossing. Suppose now that the pine were also missing. Assume coordinates ($0, p$), for P and carry through the calculation in terms of both m and p. The algebra is a little more complicated, but if it is done correctiy both m and p drop out in the final 'esult, which is again $x=8$.

251

[page 620]

620 *9. The y-axis is a line through C, perpendicular to the base $\overline{\mathrm{AB}}$, i.e., it contains the altitude from C. If $\overleftrightarrow{A M}$ where m is its slope, contains the altitude from A, it has the equation

$$
y=m(x+4),
$$

Since $\overleftrightarrow{A M} \perp \overleftrightarrow{B C}, \quad m=-\frac{1}{\text { slope } \overleftrightarrow{\mathrm{BC}}}$.
But slope $\overleftrightarrow{B C}=-\frac{8}{7}$, so $m=\frac{7}{8}$, and the equation of $\overleftrightarrow{\mathrm{AM}}$ is $\quad \mathrm{y}=\frac{7}{8}(\mathrm{x}+4)$.
To find the y-intercept, let $x=0$:

$$
y=\frac{7}{8} \cdot 4=\frac{7}{2}
$$

Now do the same for $\overleftrightarrow{B N}$, which contains the altitude from B. Slope $\overleftrightarrow{A C}=\frac{8}{4}=2$, so the slope of $\overleftrightarrow{B N}$ is $-\frac{1}{2}$, and its equation is

$$
y=-\frac{1}{2}(x-7)
$$

Letting $x=0$, we get the y-inter- pt

$$
y=-\frac{1}{2}(-7)=\frac{7}{2} .
$$

Therefore $\overleftrightarrow{A M}$ and $\overleftrightarrow{B N}$ meet at the point $\left(0, \frac{7}{2}\right)$ on the line containing the altitude from C. For the general triangle, slope $\overleftrightarrow{B C}=-\frac{c}{b}$, slope $\overleftrightarrow{A M}=\frac{b}{c}$, so $\overleftrightarrow{A M}: \quad y=\frac{b}{c}(x-a), \quad$ and the y-intercept is $-\frac{b a}{c}$. Similarly, slope $\overleftrightarrow{A C}=-\frac{c}{a}$,

slope $\overleftrightarrow{B N}=\frac{a}{c}$, so
$\stackrel{\leftrightarrow N}{\longleftrightarrow} \quad y=\frac{a}{c}(x-b)$, and
the y-intercept is $-\frac{a b}{c}$.
[page 620]
252

620 Therefore the three altitudes meet at the point ($0,-\frac{a b}{c}$). Note that this proof does not depend on the signs of a, b, and c, but only on the fact that $A, B, l i e$ on the x-axis and C on the y-axis.
621 *10. Let $A=\left(x_{1}, y_{1}\right), B=\left(x_{2}, y_{2}\right), \quad C=\left(x_{3}, y_{3}\right)$.
Then we have

$$
\begin{aligned}
& \mathrm{R}=\left(\frac{\mathrm{x}_{2}+\mathrm{x}_{3}}{2}, \frac{\mathrm{y}_{2}+\mathrm{y}_{3}}{2}\right), \\
& \mathrm{S}=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right), \\
& \mathrm{T}=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{3}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{3}}{2}\right) .
\end{aligned}
$$

The slope of $\overleftrightarrow{A R}$ is

$$
m_{1}=\frac{\frac{y_{2}+y_{3}}{2}-y_{1}}{\frac{2}{x_{2}+x_{3}}} \frac{y_{2}+y_{3}-2 y_{1}}{x_{1}}
$$

If $G=\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$, then the slope of $\overleftrightarrow{A G}$ is

$$
m_{1}^{\prime}=\frac{\frac{y_{1}+y_{2}+y_{3}}{3}-y_{1}}{\frac{x_{1}+x_{2}+x_{3}}{3}-x_{1}}=m_{1},
$$

$\underset{B T}{\operatorname{so~}_{\overleftrightarrow{G}}}{ }_{\text {is }}$ is on the median $\xrightarrow[A R]{\overleftrightarrow{A}}$. Similarly, the slope of

$$
m_{2}=\frac{\frac{y_{1}+y_{3}}{2}-y_{2}}{\frac{x_{1}+x_{3}}{2}-x_{2}}=\frac{y_{1}+y_{3}-2 y_{2}}{x_{1}+x_{3}-2 x_{2}}
$$

and the slope of $\overleftrightarrow{B G}$ is

$$
m_{2}^{\prime}=\frac{\frac{y_{1}+y_{2}+y_{3}}{3}-y_{2}}{\frac{x_{1}+x_{2}+x_{3}}{3}-x_{2}}=m_{2}
$$

so G is on the median $\underset{\leftrightarrow}{\longleftrightarrow} \stackrel{\longleftrightarrow}{\leftrightarrows}$. Similarly, we find that G is on the median $\overleftrightarrow{C S}$. Hence, the three medians intersect in the point G whose coordinates are the averages of the coordinates of the vertices.

The equation $x+3 y+1=0$ is equivalent to $y=-\frac{1}{3} x-\frac{1}{3}$, which is in slope-intercept form. Therefore the slope is $-\frac{1}{3}$. The line M through $(1,2)$ perpendicular to L has slope 3 , so an equation for it is

$$
\begin{aligned}
\mathrm{M}: \quad \mathrm{y}-2 & =3(x-1), \\
y & =3 x-1 .
\end{aligned}
$$

Solving the equations for M and L simultaneously to find their intersection P, we get

$$
P=\left(\frac{1}{5},-\frac{2}{5}\right)
$$

Computing the distance d from $(1,2)$ to P by the distance formula, we find $d=\frac{4}{5} \sqrt{10}$.
[page 621] 254

621 *12. The line I with
equation $y=x$ has slope 1 , so the line M through (a, b). perpendicular to I has slope -1 . Àn equation for M is

M: $y-b=-(x-a)$, $x+y=a+b$.
Sclving for the point of
 Intersection P, we get
$P=\left(\frac{a+b}{2}, \frac{a+b}{2}\right)$.
The distance is obtained
from $d^{2}=\left(\frac{a+b}{2}-a\right)^{2}+\left(\frac{a+b}{2}-b\right)^{2}=\frac{(a-b)^{2}}{2}$, $d=\frac{|a-k|}{\sqrt{2}}$.
*13. From Problem 9, we have $H=\left(0,-\frac{a b}{c}\right)$.
From Problem 10, we have $M=\left(\frac{a+b}{3}, \frac{c}{3}\right)$.
To find D we get the perpendicular bisectors u, v of $\overline{\mathrm{AB}}$ and $\overline{\mathrm{BC}}$:

Therefore,

$$
\begin{aligned}
& u: \quad x=\frac{a+b}{2}, \\
& v: \quad y-\frac{c}{2}=\frac{b}{c}\left(x-\frac{b}{2}\right) .
\end{aligned}
$$

Now

$$
\begin{aligned}
& \mathrm{HM}^{2}=\left(\frac{a+b}{3}\right)^{2}+\left(\frac{c^{2}+3 a b}{3 c}\right)^{2}=\frac{c^{2}(a+b)^{2}+\left(c^{2}+3 a b\right)^{2}}{(3 c)^{2}}, \\
& \mathrm{HD}^{2}=\left(\frac{a+b}{2}\right)^{2}+\left(\frac{c^{2}+3 a b}{2 c}\right)^{2}=\frac{c^{2}(a+b)^{2}+\left(c^{2}+3 a b\right)^{2}}{(2 c)^{2}}, \\
& {M D^{2}=\left(\frac{a+b}{6}\right)^{2}+\left(\frac{c^{2}+3 a b}{6 c}\right)^{2}=\frac{c^{2}(a+b)^{2}+\left(c^{2}+3 a b\right)^{2}}{(6 c)^{2}} .}^{25} .
\end{aligned}
$$

[page 621]

From these equations we get,

$$
\begin{gathered}
H M=2 M D, \quad H D=3 M D, \\
H M+M D=H D
\end{gathered}
$$

This shows that H, M, and D are collinear, that M is between H and D, and that M trisects $\overline{H D}$: $M D=\frac{1}{3} \mathrm{HD}$.

Problem Set 17-14

626 1. In each case the result is 25. This becomes obvious if radii are drawn to the points on the circle.
2. a. (1), (3), (4), (6).
b. (3), (4).
c. (1).
3. a. Center $(0,0) ; r=3$. f. $(4,3) ; r=6$.
b. $(0,0) ; r=10$. g. $(-1,-5) ; r=7$.
c. $(1,0) ; r=4$. \quad. $(1,0) ; r=5$.
d. $(0,0) ; r=\sqrt{7} . \quad$ i. $(1,0) ; r=5$.
e. $(0,0) ; r=2$. \quad. $(-3,2) ; r=5$.

627 4. a. Replacing x and y in the equation by the given coordinates satisfies the equation.
b. $x^{2}-10 x+y^{2}=0$,
$\left(x^{2}-10 x+25\right)+y^{2}=25$,
$(x-5)^{2}+(y-0)^{2}=5^{2}$.
The center of the circle is (5,0); the radius is. 5 .

$$
255
$$

[pages 621, 626-627]

627 c. The ends of the diameter along the x-axis are $(0,0)$ and $(10,0)$. The slope of the segment joining $(0,0)$ and $(1,3)$ is 3 . The slope of the segment joining $(10,0)$ and $(1,3)$ is $-\frac{1}{3}$. Since 3 and $-\frac{1}{3}$ are negative reciprocals, the lines are perpendicular and a right angle is formed.
5. a. The x-axis intersects the circle where $y=0$, that is where $(x-3)^{2}=25$, or at points $(-2,0)$ and $(8,0)$. The y-axis intersects the circle where $\mathrm{x}=0$, that is where $9+\mathrm{y}^{2}=25$, or at points $(0,4)$ and $(0,-4)$.
b. $2 \cdot 8=4 \cdot 4=16$.

[page 627]
25%
6276.

The radius of the larger circle is $1+\sqrt{2}$. So the equation is

$$
x^{2}+y^{2}=(1+\sqrt{2})^{2}
$$

There would be another tangent circle of radius $\sqrt{2}-1$ and the same center.
7.

The including circle is $\mathrm{x}^{2}+\mathrm{y}^{2}=100$.
[page 627]
258

627 8. a. $y=m(x+7)$.
b. $x^{2}+\{m(x+7)\}^{2}=16$, $\left(1+m^{2}\right) x^{2}+14 m^{2} x+\left(49 m^{2}-16\right)=0$, $x=\frac{-14 m^{2} \pm \sqrt{\left(14 m^{2}\right)^{2}-4\left(1+m^{2}\right)\left(49 m^{2}-16\right)}}{2\left(1+m^{2}\right)}$
$=\frac{-14 m^{2} \pm \sqrt{4\left(16-33 m^{2}\right)}}{2\left(1+m^{2}\right)}$
$=\frac{-7 m^{2} \pm \sqrt{16-33 m^{2}}}{1+m^{2}}$
$y=m(x+7)=\left(\frac{-7 m^{2} \pm \sqrt{16-33 m^{2}}+7+7 m^{2}}{1+m^{2}}\right) m$
$=\frac{m\left(7 \pm \sqrt{16-33 m^{2}}\right)}{1+m^{2}}$.
If $16-33 \mathrm{~m}^{2}>0$, there are two points of intersection:

$$
\begin{aligned}
& P_{1}=\left(\frac{-7 m^{2}+\sqrt{16-33 m^{2}}}{1+m^{2}}, \frac{m\left(7+\sqrt{16-33 m^{2}}\right)}{1+m^{2}}\right) \\
& P_{2}=\left(\frac{-7 m^{2}-\sqrt{16-33 m^{2}}}{1+m^{2}}, \frac{m\left(7-\sqrt{16-33 m^{2}}\right)}{1+m^{2}}\right)
\end{aligned}
$$

259

627 c. If $16-33 m^{2}=0$, there is one point of intersection:

$$
\begin{aligned}
P & =\left(\frac{-7 m^{2}}{1+m^{2}}, \frac{7 m}{1+m^{2}}\right) \\
\text { and } \quad m^{2} & =\frac{25}{33}, \quad m= \pm \frac{4}{\sqrt{33}} .
\end{aligned}
$$

This means that the two lines

$$
\begin{aligned}
& y=\frac{4}{\sqrt{33}}(x+7), \\
& y=-\frac{4}{\sqrt{33}}(x+7)
\end{aligned}
$$

are tangent to the circle.
If $16-33 m^{2}<0$, there is no point of intersection.

628
9. Put the given equation in standard form

$$
(x-5)^{2}+(y-3)^{2}=2^{2}
$$

the given circle has center (5,3), radius 2. Let the required circle have center (a, b) and radius r. Then $b=a=r$, since the circle touches the x and y-axes, and the distance from center (a, b) to center $(5,3)$ is $r+2$. Hence,

$$
\begin{aligned}
& r+2=\sqrt{(r-5)^{2}+(r-3)^{2}} \\
& r^{2}+4 r+4=2 r^{2}-16 r+34 \\
& r^{2}-20 r+30=0 \\
& r=\frac{20 \pm \sqrt{400-120}}{2} \\
& r=10 \pm \sqrt{70} .
\end{aligned}
$$

Thus, there are two solutions:

$$
(x-r)^{2}+(y-r)^{2}=r^{2}
$$

where $r=10+\sqrt{70}$ (approx. 18.37) and $r^{2}=337.3$

(approx.) or $10-\sqrt{70}$ (approx. 1.63) and $r^{2}=2.7$		
(approx.).	[pages $627-628$]	260 .

Review Problems

628 1. $(5,0)$.
2. $(-1,5)$.
3. $\frac{b}{3 a}$. The median is vertical and has no slope.
4. $\frac{a}{b}$.
5. $\quad 2 b ; \sqrt{9 a^{2}+b^{2}} ; \sqrt{9 a^{2}+b^{2}}$.
6. $-\frac{3}{2}$.
7. $\quad 5 \sqrt{2} ; \quad 6 \sqrt{2}$.
8. $\left(\frac{1}{2}, 3 \frac{1}{2}\right) ;(3,6) ;(6,3)$; $\left(3 \frac{1}{2}, \frac{1}{2}\right) ;(4,4) ; \quad\left(2 \frac{1}{2}, 2 \frac{1}{2}\right)$.
9. Place the axes and assign coordinates as shown.
a. $\quad T=(2 a, a), \quad U=(a, 2 a)$.
$P T=\sqrt{4 a^{2}+a^{2}}=a \sqrt{5}$.
$Q U=\sqrt{a^{2}+4 a^{2}}=a \sqrt{5}$.
Therefore $P T=Q U$.
b. The slope of $\overline{P T}=\frac{a-0}{2 a-0}=\frac{1}{2}$.

The slope of $\overline{Q U}=\frac{0-2 a}{2 a-a}=-2$.
Since -2 is the negative reciprocal of $\frac{1}{2}$, the segments are perpendicular.

$$
201
$$

628 *. Using the point-slope form the equation of $\overleftrightarrow{~} \underset{P T}{ }$ 1s:

$$
y-0=\frac{1}{2}(x-0)
$$

or $\quad y=\frac{1}{2} x$.
The equation of $\overleftrightarrow{Q U}$ 1s:

$$
\text { or } \quad \begin{aligned}
y-0 & =-2(x-2 a) \\
y & =-2 x+4 a
\end{aligned}
$$

The coordinates of V, given bj the common solution of the equations of $\overleftrightarrow{P T}$ and $\overleftrightarrow{Q T}$ are $\left(\frac{8 a}{5}, \frac{4 a}{5}\right)$. The distance VS is then
$\sqrt{\left(\frac{8 a}{5}-0\right)^{2}+\left(\frac{4 a}{5}-2 a\right)^{2}}=\sqrt{\frac{100 a^{2}}{25}}=2 a=$ length of side.
62910.

Take coordinate system as shown. Then $M=(b, c)$; $N=(a+d, c)$.
Equation of $\stackrel{M N}{ }$ 1s: $\quad \mathrm{y}=\mathrm{c}$.
Equation of diagonal $\overline{A C}$ is: $y=\frac{c}{d} x$.
Point R of intersection is (d, C), which is also the midupoint of $\overline{A C}$.
11. $x=0$.

$$
20 \%
$$

[pages 628-629]

508
62912.

Equation of $\underset{A B}{\longleftrightarrow}$ is $y=0$. Slope $\overline{B C}=1$.
Equation of $\overleftrightarrow{B C}$ is $y=x-6$.
Equation of $\overleftrightarrow{C D}$ is $y=3 \sqrt{2}$.
13. Lengths of parallel
sides are: $|a|,|b-d|$. Altitude is $|c|$.
Hence, area $=\frac{1}{2}|c|(|a|+|b-d|)$.

14. $(2,1)$.
15. A circle with center at the origin and radius 2.
16. a. $x^{2}+y^{2}=49$.
b. $x^{2}+y^{2}=k^{2}$.
c. $(x-1)^{2}+(y-2)^{2}=9$.
*17. Find first the intersection of the line $x+y=2$ and the circle. Now $x=2-y$.
Therefore, $\quad(2-y)^{2}+y^{2}=2$,

$$
4-4 y+y^{2}+y^{2}=2
$$

$$
(y-1)^{2}=0
$$

so that $\quad y=1$ and $x=1$.
Thus the point (1,1) is the only point of intersection, so that the line is tangent to the circle.
[page 629]
263

Answers to Review Exercises

$$
\text { Chapters } \frac{13}{26 .} \frac{17}{1 .}
$$

2. 1 .

3 . 0 .
4. 1 .
5. 0.
6. ৩.
7. 0.
8. 1.
9. 1.
10. 0 .
11. 0 .
12. 0.
13. 0.
14. 1.
15. 0.
16. 1 .
17. 1.
18. 0.
19. 1.
20. 1 .
21. 0.
22. 0.
23. 1.
24. 1.
25. 0.
27. 0 .
28. 1.
29. 1.
30. 0.
31. 0.
32. 1.
33. 1 .
34. 1.
35. 1.
36. 1 .
37. 0.
38. 0.
39. 1.
40. 0 .
41. 1.
42. 0.
43. 0.
44. 0.
45. 1.
46. 0 .
47. 1.
48. 0.
49. 1.
50. 0.
[pages 630-633]
231

Illustrative Test Items for Chapter 17

A. l. What name is given to the projection of the point $(5,0)$ into the y-axis.
2. State the number of the quadrant in which each of the following points is located: $(3,3),(6,-2),(-2,8)$.
3. What are the coordinates of a point on the x-axis if the distance from the point to the y-axis is 4 ?
4. A ray with its end-point at the origin makes a 30° angle with the positive x-axis and extends into the first quadrant. What are the coordinates of a point on the ray whose distance from the origin is 2 ?
B. 1. Determine the slopes of the line segments between the following pairs of points:
a. $(0,0)$ and $(5,3)$. d. $(-1,0)$ and $(-3,-2)$.
b. $(1,4)$ and $(4,8)$ e. $(-2,-3)$ and $(-2,3)$.
c. $(-2,2)$ and $(3,-4)$.
2. If a square is placed with two of its sides along the x - and y-axes, what are the slopes of each of its dlagonals.
3. If scalene $\triangle A B C$ is placed with $\overline{A B}$ along the x-axis which of the following lines has no slone? $\overline{A B}$, the median to $\overline{A B}$, the altitude to $\overline{A B}$, the angle blsector of $\angle c$.
C. 1. Determine the distance between each pair of points: a. $(1,4)$ and $(2,3)$. c. (a, b) and $(-a,-b)$. b. $(-1,0)$ and $(-9,15)$.

$$
200
$$

2. If three of the vertices of a rectangle are at $(0,1)$, $(5,1)$ and $(5,4)$ what is the length of a diagonal of the rectangle.
3. The vertices of a trapezoid are $(0,0),(a, 0),(b, c)$ and (d, c). What is the length of the segment joining mid-points of its non-parallel sides?
D. 1. A triangle has vertices $A(0,0), B(12,0)$ and $C(9,6)$. What is the equation of the median to side $\overline{\mathrm{AB}}$?
4. Of the following equations which pairs of lines are a. parallel, b. coincident, c. intersecting, d. perpendicular.
(1) $3 y=6 x-3$.
(2) $\mathrm{y}-2 \mathrm{x}=5$.
(3) $y=2-2 x$.
(4) $2 y+1=x$.
5. A right triangle has vertices $(0,0),(m, 0),(0, n)$. What is the equation of the median which passes through the origin?
E. 1. Using coordinate geometry prove that the mid-point of the hypotenuse of a right triangle is equidistant from the vertices.
6. Show that the points A, B, C, D whose coordinates are $(2,3),(4,1),(8,2),(6,4)$ are vertices of a parallelogram. Show that the figure formed by Joining the mid-points of the sides of $A B C D$ is a parallelogram.
7. Prove by coordinate geometry the theorem: If a line parallel to one side of a triangle bisects a second side, then it also bisects the third side.

230

Answers

A $=$ 1. The origin.
2. I, IV, II.
3. $(4,0)$ or $(-4,0)$.
4. $(\sqrt{3}, 1)$.
B. 1. a. $\frac{3}{5}$.
b. $\frac{4}{3}$.
c. $\frac{-6}{5}$.
d. 1 .
e. The line is vertical and has no slope.
2. $1,-1$.
3. The altitude to $\overline{\mathrm{AB}}$.
c. l. a. $\sqrt{2}$ b. 17. c. $2 \sqrt{a^{2}+b^{2}}$.
2. $\sqrt{34}$.
3. $\quad \frac{1}{c}(|a|+|b-d|)$.
D. 1. $y=2(x-6)$.
2. a. (1) and (2).
b. None.
c. (1) and (3); (1) and (4); (2) and (3);
(2) and (4); (3) and (4).
d. (3) and (4).
3. $m y=n x$.
E. 1. Take a coordinate system as shown, with vertices $(0,0)$, $2 m, 0)$, $(0,2 n)$.
Then mid-point P of hypotenuse hat oordinates (m, n). Distance of P from each vertex is $\sqrt{m^{2}+n^{2}}$.

2. Slope $\overline{A B}=-1=$ slope $\overline{C D}$.

Slope $\overline{A D}=\frac{1}{4}=$ slope $\overline{B C}$.
Hence, $\overleftrightarrow{A B} \neq \overleftrightarrow{C D}$, so that $\overrightarrow{A B} \| \overrightarrow{C D}$.
Likewise $\overline{A D} \| \overline{B C}$.
The mid-points of the sides taken in order are $(3,2)$, $\left(6,1 \frac{1}{2}\right),(7,3)$ and $\left(4,3 \frac{1}{2}\right)$. Slopes of sides of the figure formed by joining these mid-points are $-\frac{1}{6}$ for each of one pair of sides and $\frac{3}{2}$ for each of the other pairs. Hence, this figure also is a parailelogram.
3. Select a coordinate system in such a way that the vertices are $A(0,0), B(2 a, 0)$, $C(2 b, 2 c)$. Let M be mid-point of $\overline{A C}$, $\overline{\mathrm{MN}} \| \overline{\mathrm{AB}}$. Then
$M=(b, c)$. Slope
$M N=0 . ~ H e n c e, ~$
equation $\underset{M N}{\longleftrightarrow}$ is $y=c$.

Equation $\overleftrightarrow{B C}$ is $y=\frac{c}{b-a}(x-2 a)$.
Solving these equations we find $N=(a+b, c)$. Hence, (from mid-point formula) N is the mid-point of $\overline{\mathrm{BC}}$.

FACTS AND THEORIES

Science today is playing an increasingly important part in the life of the individual. No one can claim to be truly educated unless he has a reasonable understanding of the facts and methods of science. Thls does not mean that we must all become nuclear physicists, nor that we must spend all our time reading books and attending lectures on the latest collection of particles discovered by the physicists. But it does impose on us the obligation to learn enough of the facts of modern science to provide a foundation for understanding. It does imply an intelligent selection of material to be learned.

We, as educators, are especially obligated to make such a selection for our students. They come to us with a miscellaneous hodgepodge of disjointed facts and pseudo-facts, gleaned from newspapers, magazines, books, and other sources. We must help them -- with our own Iimited information -- to straighten out their ideas, to build a reasonable conceptual structure upon which they can hang new facts, to distinguish between that which is significant and that which is not, and, perhaps most important of all, to understand how new knowledge is acquired. If pursued to the extreme, this last goal would lead us to the far reaches of epistomology and scientific method, which have been the subjects of many weighty tomes written by scholars over many lifetimes, and about which the last word has certainly not been uttered. But to dismlss this topic entirely as being too subtle for the immature minds of our students is to deny them the opportunity of becoming a little more mature in our classrooms.

What should be the alms of the mathematics teacher, in the light of what we have fust said?

Certainly we shoul.d help the student to become acquainted with the racts of mathematics by working with them. We agree that our subjont is an essential tool in science and in daily life, and that the student should acquire a working facility in it. Therefore we tench him aritimetic, elementary algebra, intuitive
geometry in the lower grades, advanced algebra, symthetic and analytic geometry, possibly calculus and other topics in the higher grades.

It would be difficult, however, to defend the teaching of all these subjects on the srounds of utility alone. No one pretends, for example, that it is of practical importance that the bisector of an angle of a triangle divides the opposite side in the way that it does. We proceed, then, to the second aim, of deveioping in the student an appreciation of clear, lofical reasoning as exemplified in mathematics, and an ability to transfer this type of reasoning to other situations. We have been moderately, though not eminently, successful in this respect in the past. Whether our present efforts will tend to further this objective remains to be seen. We certainly hope so.

A third aim, which has been receiving more attention of late, is to develop in the student an understanding of the structure of mathematical systems. We are beginning to speat of closure, comutativity, distributivity and so on in dealins with number systems, ard -- still too timidly, perhaps -- of the axiomatic nature of geometry.

This third aim is closcly related io the broader one mentioned earlier, of nelping the student to understand how now lonowledge is acquired, how man learns about the physical world, how he constructs, dovelups and tests theories about the pivsical, biological, soclal, and conomic aspects of life around him. Let us address ourselves briefly to these questions.

Whether we recocnize it or not, theory plays an indispensable role in our sturly of any flcld whatsoever. the acts of naming, classifylne, and soneralizlnc: are conceptual in nature. Even emothonal reactions to stimuli depend on a structurinc of experience. The real world -- matever that may mean -- reaches us only by constructinc a conceptual world to corrospond to it. In setting up a particular alscipline, it 1 s not necossary, hovever, to refer back alwar; to the prlmary data suppliod by our senses. The ra:t materlal. for a theory at one starc may bo the conoontual world of
a previous stage. For example, the classical geometry of various surfaces in three dimersions may be taken as the jumping-off place for a study of abstract metric spaces, and we would then abstract from this classical geometry, testing our new theory against it. In every case, then, we operate simultaneously in two different "planes." One is the primary, intuitive plane, containing the raw data from which our theory will be abstracted. This, following Bridgman, we call the "P-plane." The second is the conceptual plane, the "C-plane." Initially, the C-plane is empty, waiting to. be filled with the concepts and relations which we construct.

We have complete freedom with respect to the concepts and relations which we choose to insert in the C-plane, so long as we do not assert any connection between it and the P-plane. Naturally, we hope event:!ally to set up a correspondence between the two planes, and this hope guides our constructions and our choice of language. Logically, there is no necessity to make the language in the C-plane correspond to that of the P-plane, and in order to avoid confusion it might be better to use different terms entirely. For example, the "points," "lines," and "planes" of axiomatic geometry (the C-plane) might be replaced by other terms which have not been preempted in physical geometry (the P-plane). But once the formal distinction between the two planes and their languages has been established and understood, there is a psychological advantage to be gained from the use of the same terms, for the proposed correspondence is then transparently indicated. Thus, we know that the geometricai "point" is meant to correspond to the physical point, the geometrical "line" to the physical line, and so on. We can intuit, conjecture, and then perhaps prove theorems in the C-plane by peeking over into the P-plane at the corresponding "facts," arrived at by experiment there. For example, the concurrence of the medians of a triangle could be guessed from crawing a number of physical triangles and their medians on a plece of paper. This type of experience is extremely valuable and constitutes an important psychological adjunct to mathematical discovery. It must be pointed out carefully, though, that formal proof in the C-plane is necessary. Furthermore, the

$$
271
$$

logical conclusion to be draw from this combined guessing and proving process is not that we have made the geometrical theorem more certain by experimental verification. The truth of the theorem has been established (in the C-plane) with complete certainty by logical deduction from the axioms. Rather, our feeling of satisfaction on seeing that the theorem works out on paper should. stem from the confirmation of the correspondence between the two planes. What we do tend to establish by such empirical tests is the adequacy of our postulate system to bring about a close correspondence.
consider for example, what our situation would be if we had in our system all of the postulates of Euclidean geometry except for the parallel postulate. Suppose, then, that we measured the angles of many triangles and found, within the limits of experimental error, that the sum of the measures of the angles was 180. Then, passing to the $C-p l a n e$, we attempted to prove the correspondInfs result as a theorem, and of course falled. The correct conclusion to draw would be that (a) we were not clever enough to find a proof, or (b) that our axiom system was not agequate for the purpose. Historically, it was the belief that (a) was the only, possibility, together with an imperfect understanding of axiomatics, that delayed the development of non-Euclidean geoemtry. Eventually, of course, this very problem led to our present deeper understanding of the connection between fact and theory.

What are the considerations that govern our choice of undefined elements and relations and unproved propositions (axioms, postulates)? Certainly we want our system to be consistent: a proposition and its contradiction should not both be provable in the system. If we regard our axioms as inputs and our theorems as outputs, then economy and fruitfulness are desirable as increasing output per unit input. Of course, this analogy is not to be taken too serlously, but it imwicates why we should not postulate everythlne. Unfortunately, some geometry texts nowadays go to the extreme of setilng dow fifty or more postulates. There is nothine logically wrong with this, but it militates against economy, elegance, intuitiveness, simplicity, and ease of
verification in a particular interpretation -- properties that are certainly desirable.

One property that we have not mentioned is that of being categorical. This means that every two concrete interpretations (models) of the system will be essentially the same: it is possible to set up a one-to-one correspondence between the elements and relations of the two interpretations, so that they may be regarded as identical except for the names assigned to the elements and relations. The two models are then said to be isomorphic. If we start with a particular P-plane and wish to describe it completely by means of an axiom system, without permitting any nonisomorphic models, then we try to make our system categorical. This is the case with Euclidean geometry or the real number system.

Sometimes we reap an inexpected harvest from the construction of a categorical system. We may find two apparently different interpretations, and can then conclude that they are essentially identical because the system is categorical. Any theorem which holds in one model is then sure to hold in the other. An example is the pair of models M_{1}, consisting of the real numbers under addition, and M_{2}, consisting of the positive real numbers under multiplication. The one-to-one correspondence $M_{1} \longleftrightarrow M_{2}$ is established by the exponential function (from M_{1} to M_{2}) and the logarithm (from M_{2} to M_{1}). Another example is the pair of physical processes, diffusion of a gas and heat-flow, both being governed by the same differential equation. Still another example is the isomorphism of Euclidean plane geometry with the collection of all real-number pairs. This isomorphism allows us to solve geometrical problems by means of algebra, and vice versa.

At other times, we find it more profitable to make our system non-categorical. This is true when we have several P-planes which bear some resemblance to each other. If wo can construct a suitable C-plane so that each of the P-planes is an interpretation of it, then anything we prove in the $C-p l a n e$ will hold in all of i.ts non-isomorphic models. This happens, for example, in the case of group theory. It also happens when we stats a few, but not all of the axioms of Euclidean geometry. In this case our

520
theorems, beinc provable, say, Mthout the parallel postulate, must hold also for all geometries satisfying the stated axioms. There is no reason to hide this desirable state of affairs from our students, for fear of violating their intuitions about space. Rather, we should regard such occasions as valuable opportunities for teachine an important lesson.

Our discussion here has been far from exhaustive. We hope that Lt has served the purpose of pointing to a desirable and sometimes neslected goal in education, and that it has indicated hon we, as teachers of mathematics, can approach this goal.

GOUALITY, COMGRUEACE, AND BCUITALEACE:

1. Angles and Segments.

In describines the rolation of "equality" betieen ancles and segments, this book departs from comon usace. Bofore explaining Why this has been done, let us flrst note quickly how the new usage compares with the old. Suppose we have two angles with the same degree measure r, like this:

A
and two segments of the same length, lile this:

In these two instances, the facts are plain. They would be reported in the following ways, in the old and new terminologies.

In Words
In Symbols

Old	New	Old	New
The angles are equal.	The argles are congruent.	$\angle \mathrm{A}=\angle \mathrm{B}$	$\begin{gathered} \angle A \cong \angle B \\ (\text { or } m \angle A=m \angle B) \end{gathered}$
The segments are equal.	The segments are congruent.	$\overline{\mathrm{AB}}=\overline{\mathrm{CD}}$	$\begin{gathered} \overline{A B} \cong C D \\ \text { (or } M E=C D) . \end{gathered}$

From the table it is plain that the new usage is not complicated. We have simply suostituted one word for another, and one symbol for another. Of course, even simple changes should be made only for good reasons; they go against everybody's habits, and cause

$$
235
$$

522

much more trouble at first than their simplicity would suggest. We believe that there are very good reasons for the use that we have made of the word congruence. Following is an explanation of that thess reasons are.
2. Various Kinds of Equality.

The word "equals" is commonly used in mathematics in at least this many different senses:
(1) When we vrite $2+4=3+3$, we mean that the number $2+4$ and the number $3+3$ are exactly the same number (namely, 6). Here "equals" means "is the same as."
(2) When we say that two angles are equal, we mean that they have the same measure, or the same shape.
(3) Two circles are equal if they have the same radius.
(4) Two secments are equal if they have the same length.
(5) Two triangles are equal if they have the same area.
(5) Two polyhedrons are equal if they have the same volume. These uses of "equals" divicie sharply into three groups.
(I) The first meaning ("is the same as") stands entirely alone. This is the logical identity. It arises in all branches of mathematics, including geometry.
(II) "Equality" expresses the same basic idea for angles, circles, and secments, in (2), (3), and (4). It means in each case that the first ficcure can be moved so as to coincide with the second without stretching. (For a fuller explanation, see Appendix VIII, on Ricicl Hotion.) This idea is geometric, and is one of the most basic ideas In geometry. Applied to triangles, it is always described as cons 'ience and not as equality.
(III) "Equality" to mean equal areas or equal volumes, as in (5) and (5), implies that two things are equal if they contain the same amount of "stuff."

These are the tinee main icleas involved. We notice that the words and tho Ldeas overlap both ways. Not only is the word "equals" used in two widely different senses, but the basic ide? involved in (2), (3), and (4) is expressed by two apparently -unrelated words.

$$
2 i^{\prime}
$$

Obviously students can and do learn to keep track of what is meant, even when the words and the ideas cverlap in this way. All of us learned to do this, when we were In the tenth grade. The whole thing becomes easier to learn, however, and easier to keep track of, if the words match up with the ideas in a simpler and more natural way. This can be done as follows:
(I) We can agree to write " $=$ ", and say "equals," only when we mean "is the same as." (This is the standard usage in nearly all of modern mathematics.)
(II) We already have a word to express the idea that one triangle can be made to coincide with another; we say that they are congruent. We can use the same word to express the same idea when we are talking about angles, circles or segments.
(III) When we want to convey the idea that two triangles have the same area, we can simply say that they have the same area.

Notice that if we do this we have not introduced any new words into the language of geometry. We are not trying to be technical. All that we are trying to get at is a situation in which the familiar and available words correspond in a natural way to the familiar and basic ideas. The correspondence looks like this:
(I) $=$, between any two things whatever, means "is the same as."
(II) \cong, between any two geometric figures whatever, means that one can be moved so as to coincide with the other.
(III) Equality of area, equality of volume, and so on, are to be described explicitly as such.

All this is straightforward language. We believe that your students will find it easy to learn and easy to use.

3. Equivalence Relations.

All the uses of "equals," in mathematics or otherwise, involve the notion of two things being alike in some respect. The particular respect to be consldered may be made explicit, as in usage (5) above, or it may not, as in "All men are created equal." As mentioned above, mathematicians have pretty generally
agreed to use the word to mean "alike in all respects"; that is, identical. Instead of the other usage they speak of an "equivalence relation." A relation between padrs of objects, from some given set, is called an equivalence relation if it has the following three properties:
(1) It is reflexive. That is, any object of the set is equivalent to itsclf.
(2) It is symmetric. That is, if A is equivalent to B, then $B 1 s$ equivalent to A.
(3) It is transitive. That is, if A is equivalent to B, and B is equivalent to C, then A is equivalent to C.

In a mathematical development we may use several different kinds of equivalence relations. To keep them separate we give them different names and different symbols. In our geometry we have used the following equivalence relations.
(a) Identity. The relation "is the same as" is easily seen to satisfy the three properties listed above. The word "equal" and the symbol " $=$ " are reserved for this equivalence relation.
(b) Congruence. Here again, the properties are easily checked. (Refer to the talk on Congruence for a general treatment.) The symbol is " \cong ".
(c) Similarity. Here again we have an equivalence relation, denoted oy "~".
(d) We have not introduced any special notation for "equality of area," or "equality of volume," but each of these relations is reflexive, symmetric and transitive. We could, if it were convenient, introduce words and symbols for these equivalence relations.

Such insistence on exactitude of language and symbolism may sometimes seem mere quibbling, but it is on such extreme carefulriess that modern mathematics is based.
4. Classification and Functions.

Equivalence relations are connected closely with another concept which is important in mathematics. This is classification. The connection is as follows.

Suppore we have an equivalence relation \approx defined for a certain set 3 . Wo can then classify the elements of S into disjoint classes (1.e. no two classes intersect) S_{1}, S_{2}, \ldots, by puttine into the same class all elemari. which are equivalent to aach ther. Convorsely, suppose the. \quad ave a classification o: 3 Into diojolnt clacses. Then we can deff.ne an equivalence relation by saytne that a is equivalent to \underline{b} if and only if at ancl b are in the same class. These two constructions Equivalence Classification, Classiflcation ——Equivalence,
are inverses of each other. If we start with an equivalence, pass to its classification, and then pass from this classification to 1 ts induced equivalence, we end up with the same equivalence. Similarly, if we start with a classification; form the induced equivalence, then form 1 ts induced classification, we end up wh the sane classification.

An example may make this clearer. Suppone S is the set of all polysons. Let us define \approx among polygons by saying that $P_{1} \approx P_{2}$ if P_{1} and P_{2} have the same number of sides. (This relation \approx ocviousiy is reflexive, symmetric and transitive.) The induced classification is then into triangles, quadrilaterals, pontacons, hexagons, ..., n-gons, If we start with this classlification, its induced cquivalence is: $P_{1} \approx P_{2}$ if P_{1} and P_{2} are in tiee same class, 1.e., if they are both n-gons (for the same n). Wias is the same as the original equivalence.

Wotice that in this example, our classification was by means of a unique number attached to each polygon, namely the number of shdcs. Wenevor :le have a wique number attached to each object of a set s, we have a numerical function $f(a)$. Thus, every numerlcal fiunction induces a classification: each class consists precisoly of those elements a with the same functional value $f(a)$. As another example let S be the set of angles and let $f(a)=m / a$. The corresponding equivalence relation is then our famillar congru $\therefore \ldots$, between angles.

On the other hand, not every ereivalence relation is easily characterized oy a function. If S is the s . of triangles it 39

Is hard to see how the similarity relation, \sim, or the congruence relation, \cong, can be associated with a function. As a matter of fact this can be done, but the methods involved are well beyond elementary mathomatice, as well as being hichly artificial.

THE CONCEPT OF CONGRUENCE

Congruence is a rich and complex ldea with many ramifications in geometry - there really is nothing quite like it in algebra. It applies to figures of all kinds - segments, angles, triangles, circular arcs, polygons, truncated pyramids - in fact to any conceivable figure. It plays an essential role in the theory of geometric measure of length, area and volume - it is intimately related to the important concept of rigid motion.

We will examine carefully the conv ntional theory of congruence and the related theory of linear measure. This will be contrasted with the theory of congruence adopted in our text. Finally we treat the concept of congruence for general figures and its relation to the idea of rigid motion.

I. The Conventional Theory of Congruence and Linear Measure

I-1. Congruence in terms of size and shape. The term congruence.immediately calls to mind the famous dictum: Two figures are congruent if they have the same size and the same shape. Certainly this statement emphasizes the basic intuitive or informal idea that if two figures are congruent, one is a "replica" of the other. Also it points up the important property that if we know two figures to be congruent we can infer that they have the same area (or volume) und that they are similar.

But this is not the essential issue. It is: Does our dictum define congruence? Is it really a formal definition of the term congruence in terms of more basic ideas? Clearly the answer is no. For the notions size and shape are more complex than congruence. In order to measure (or define) size (area or volume) we try to find out how many congruent replicas of a basic figure (for example, square or cube) "fill out" a given figure. So actuaily it would be more natural and simple to base the theory of size (and shape) on the idea of congruence rather than the reverse.

I-2. Congruence in terms of rigid motion. But there are other "definitions" of congruence which we must discuss - consider the famous, "Two figures are congruent if they can be made to coincide by a rigid motion". Let us analyze this. Conceived concretely, say in terms of two paper heart-shaped valentines, it affords an excellent illustration of the intuitive idea of congruence and emphasizes again that one is a "replica" of the other. But this i.llustration, like most physical situations, does not have the precision required for an abstract mathematical concept. Surely we would have to pick up the first valentine and move it with almost infinite gentleness to prevent bending it slightly when getting it to coincide with the second one. And how could we be certain of perfect coincidence of the two valentines? Wouldn't this require perfect eyesight? It is clear that this "definttion" interpreted concretely gives us a physical approximation to the abstract idea of congruence but doesn't define it. Moreover it is not even applicable in many physical situations: you hardly could get two "congruent" billiard balls to coincide by a rigid motion.

Should we then conclude that the idea of rigid motion is essentially physical and can not be mathematicized as an abstract geometrical concept? Definitely not. Mathematicians are ingenious and clever people and it might be a mistake to decide beforehand that they could not construct a precise abstraction from a given physical idea. Most familiar mathematical abstractions had their origin in concrete physical situations certainly geometry had its origin in practical problems of surveying the heavens and the earth.

Let us table for the present the question of whether we can form an abstract.geometrical theory of rigid motions. It would seem that a treatment of congruence based on a logically satisfactory theory of rigid motion could not be elementary and would hardly be suitable for a first course. In any case, without deeper analysis, the second "definition" is not a definition at all and might more properiy be considered a statement of a property. which rigid motions should have: namely, that any rigid motion

$$
232
$$

transforms a figure into a congruent one.
I-3. Another definition. Consider and criticize a third suggested "deffinition": Two (plane) figures are congruent if a copy of the first made on tracing paper can be made to coincide with the second.

I-it. Congruence of segments. Since our three "definitions" do not define congruence we must probe more deeply. Here, as so often in solving problems, the imperialist maxim, "Divide and conquer", is very helpful. Instead of tackling the concept of congruence in its most complex form, that is, for arbitrary figures, let us begin by considering a simple special case. A line segment -- or as we shall call it, a segment -- is one of the simplest and most important geometric figures. We naturally begin by considering congruence of segments.

Let us recall how this is treated in Euclid or in the conventional high school geometry course. Congruent segments, usually called equal segments, are conceived as "replicas" of each other, in general with different locations in space. Congruent segments may coincide or be identical but they don't have to. If segments $\overline{A B}$ and $\overline{C D}$ are congruent we may interpret this concretely to mean $\overline{A B}$ and $\overline{C D}$ are "caliper equivalent" - that ls, if a pair of calipers is set so that the ends coincide with A and B, then, without changing the setting, the ends of the calipers can be made to colncide with C and D.

I-5. Basic properties of congruence of segments. What is the loglcal significance of congruence of segments in Euclid? Actually it is taken to be an undefined term. More precisely, using the notation $\overline{A B} \cong \overline{C D}$, congruence is a basic relation \cong between the segments $\overrightarrow{A B}$ and $\overrightarrow{C D}$ which we do not attempt to define. We study it (as always in mathematics) in terms of its
basic properties which are formally stated as postulates. Some of these postulates, which are not explicit in Euclid or in most geometry texts are:
(1) (Reflexive Law) $\overline{A B} \cong \overline{A B}$;
(2) (Symmetry saw) If $\overline{A B} \cong \overline{C D}$ then $\overline{C D} \cong \overline{A B}$;
(3) (Transitive Law) If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$ then $\overline{A B} \cong \overline{E F}$. That is, congruence of segments satisfles the three basic properties of equality or identity and so is an example of an equivalence relation. We must not assume that congruence means identity, since distinct segments can be congruent.
(4) (Location Postulate) Let $\overrightarrow{A B}$ be a ray and let $\overline{C D}$ be a segment. Then there exists a unique point P in $\overrightarrow{A B}$ such that $\overline{A P} \cong \overline{C D}$.
(5) (Additivity Postulate) Suppose $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}, \quad \overline{B C} \cong \overline{B^{\prime} C^{\prime}}$, B is between A and C and. B^{\prime} is between A^{\prime} and C^{\prime}. Then $\overline{A C} \cong \overline{A^{\prime} C^{\prime}}$.

We insert a few words on the important mathematical idea of equivalence relation. The most basic example of an equivalence relation and the one which suggests the concept is the relation equality or identity. Equivalence relations abound ir. geometry, for example, congruence of figures or similarity or equivalence of figures. (For a discussion of equivalence relations see the Talk on Equality, Congruence, and Equivalence.)

I-6. Theory of linear measure. Segments are geometric figures, not numbers. But they can be measured by numbers -they do have lengths. In the conventional high school treatment it is assumed with little discussion that lengths of segments can be defined as real numbers. We indicate how to do this. Although the result is familiar, the process is complex and subtle and requires for its complete justification additional postulates. However, Postulates (1), ..., (5) above are sufficient for an understanding of the process.

We begin by choosing a segment $\overline{\mathrm{UV}}$ which will be unchanged throughout the discussion (a so-called "unit" segment). Now given any segment $\overline{A B}$ we want to measure $\overline{A B}$ in terms of $\overline{U V}$. This involves a "laying-off" process. We take the ray $\overrightarrow{A B}$ and lay-off

$$
\mathrm{U} \bullet \longrightarrow \mathrm{~V}
$$

$\overline{U V}$ on it repeatedly, starting at A. Speaking precisely, there is a point P_{1} in $\overrightarrow{A B}$ such that $\overline{U V} \cong \overline{A P}_{1}$. Similarly, we can show that there is a point P_{2} in $\overrightarrow{A B}$ such that (a) $\overline{U V} \cong \overline{P_{1} P_{2}}$ and (b) P_{1} is between A and P_{2}. For convenience we write condition (b) as $\left(A P_{1} P_{2}\right)$. Continuing, there is a point ${ }^{\prime} P_{3}$ such that $\overline{\mathrm{UV}} \cong \overline{\mathrm{P}}_{2} \mathrm{P}_{3}$ and $\left(\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3}\right)$. By this procss we develop a sequence of points $P_{1}, P_{2}, \ldots, P_{n}, \ldots$ on $\overrightarrow{A B}$ such that (1)

$$
\begin{equation*}
\overline{W V} \cong \overline{P_{1} P_{2}} \cong \overline{P_{2} P_{3}} \cong \ldots \cong \overline{P_{n}-1 P_{n}} \tag{2}
\end{equation*}
$$

Intuitively (1) and (2) say that $\bar{\Gamma}$ is laid-off on $A B \quad n$ times In a given direction - but note ho: $/$ precisely and objectively (1), (2) say this, avoiding the somewhat vague terms "laying-off" and "direction". From another viewpoint we are laying the basis for a coordinate system on the line by locating precisely the points $P_{1}, P_{2}, \ldots, P_{n}, \ldots$ which are to corresporid to the Integers $1,2, \ldots, n, \ldots$.

Now what has this to do with the measure of $\overline{\mathrm{AB}}$? Clearly we must learn how B is related to the points $P_{1}, P_{2}, P_{3}, \ldots$. In the simplest case one of these might coincide with B, for example, $P_{3}=B$. Then of course we define the measure of $\overline{A B}$ to be 3 .

I-7. Ferlnement of the approximation process. You may ask, "Did we nave to go through this elaborate process to explain that lf the "unit" segment $\overline{\mathrm{V}}$ exactly covers $\overline{\mathrm{AB}}$ three times, then the measure of $\overrightarrow{A B}$ is $3 ?^{\prime \prime}$ Disregarding the importance of maki;) the ldea "exactly covers" mathematically precise, observe that the process helps as to define a measure for $\overline{A B}$ in the more general and difrlcult case when :- one of the polnts P_{1}, P_{2}, \ldots colncidee with 3. For suppose B falls between two consecutive polnts of our sequence, say $\left(P, 3 P_{5}\right)$. Clearly then we will have to assign to $\overline{A B}$ a measure $x \quad \therefore$ h that $4<x<5$. In other words we have set up a general process which enables us at least to determine an approximation to the measure of $\overline{A B}$, that is to find lower and upper bounds for it.

We do :ot complete the discussion but indicate how it proceeds. To flx our ldeas, suppose $\left(\mathrm{P}_{4} \mathrm{BP}_{5}\right)$. To get a better idea of what the measure of $\overline{A B}$ should be we subdivide $\mathrm{P}_{4} \mathrm{P}_{5}$ into ten congruent subsegments and proceed as above. Precisely, we set up a subsidiary sequence of points $Q_{1}, \ldots . Q_{9}$ which divide $\overline{P_{4} P_{5}}$ Into ton congruent subsegments. That is, we require

$$
\overline{P_{4} Q_{1}} \cong \overline{Q_{1} Q_{2}} \cong \overline{Q_{2} Q_{3}} \cong \ldots \cong \bar{Z}_{9} \overline{P_{5}}
$$

and

$$
\left(P_{u} Q_{1} Q_{2}\right), \quad\left(Q_{1} Q_{c} Q_{3}\right), \quad \ldots, \quad\left(Q_{8} Q_{9} P_{5}\right)
$$

If B were to colncide with one of $Q_{1}, Q_{2}, \ldots, Q_{9}$, say $B=Q_{6}$, we assign to $\overline{A B}$ the measure 4.6. If B falls between $\frac{\text { two of the }}{A B}$, satise say $\left(Q_{6} B Q_{7}\right)$, we require that x, the measure of $\overline{A B}$, satisey

$$
4.6<x<4.7
$$

In the lutton ease we repeat the process by subdividing $\overline{Q_{6} Q_{7}}$ Into ten congrient subsegments and proceed as before.

I-8. The definition of linear measure. Clearly we have a complex process (though a refinement of a simple idea) which will assign to segment $\overline{A B}$ a definite decimal, terminating or endless. This decimal we define to be the measure or length of $\overline{\mathrm{AB}}$.

I-9. Basic properties of linear measure. We write the measure of $\overline{A B}$ ($\overline{U V}$ still being fixed) as $m(\overline{A B})$. Observe that we really have here a function $\overline{A B} \longrightarrow m(\overline{A B})$ which associates to each segment a unique positive real number. What are the basic properties of this "measure" function? They are easily grasped intuitively:
(1) $m(\overline{A B})=m\left(\overline{A^{\prime} B^{\prime}} ;\right.$ if and only if $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}$ - that is, congruent segnents and only congruent segments have equal measures;
(2) If (ABC) then $m(\overline{A B})+m(\overline{\mathrm{BC}})=m(\overline{\mathrm{AC}})$ - that is, measure is add tive in a natural sense;
(3) $m(\overline{U V})=1$ - that is, the measure of the unit segment is unity.

Notice tnat (a) is a clear and useful form of the vague statement, "the whe ${ }^{\text {e }}$ is the sum of its parts".

We summarize in a theorem which can be deduced from a suitable set of postulates for Euclidean Geometry:

Theorem. Let the segment $\overline{U V}$ be given. Then there exists a function which assigns to each segment $\overline{\mathrm{AB}}$ a unique poritive real number $m(\overline{A B})$ satisfying (1), (2), (3) above.

I-10. Uniqueness of measure function. We naturally ask if there is just one measure function? Clearly not. For the function must depend on the choice of the unit segment $\overline{\mathrm{WV}}$. To be specific, suppose we take as a new unit segment,
 $\overline{U M}$, where M is the mid-point of $\overline{U V}$ (that is $\overline{U M} \cong \overline{M V}$ and (UMV)). Then according to our theorem there will be a measure function; let us call it m^{\prime} (since we have no right to assu: is the same as the original measure function) such that $m^{\prime}(\overline{U M})=1$. We see quickly that $m^{\prime}(\overline{U V})=2$;
further it can be shown $m^{\prime}(\overline{A B})=2 m(\overline{A B})$ for any segment $\overline{A B}$. This is a formal statement of the trivial seeming fact that "halving the unit of measurement doubles the measure". A corresponding result holds in general:

Theorem. If m, m^{\prime} are two measure functions on the set of all segments, then

$$
m^{\prime}(\overline{A B})=k \cdot m(\overline{A D})
$$

where k is a fixed positive real number.
In the preceding example we had $k=2$. Of course k need not be an integer - it can be any positive real number, rational or irrational. As a related example consider the corresponding situation in the measure of angles: The radian measure of an angle is $\frac{\pi}{180}$ times the degree measure of the angle.

Summary: Any two measure functions on the set of all segments are prozortional.

What does this mean for the development of the theory of measurement of segments? It says in effect that it doesn't matter which measure function we choose, since making a different choice would only multiply all measures by a constant. Thus, in conventional geometrical theory, we fix a unit $\overline{\mathrm{V}}$ at the beginning, determine a corresponding measure function, and thereafter use this measure function as if it were the only possible one. And instead of saying precisely the measure of $\overline{A B}$ in terms of unit $\overline{U V}$, we say simply the measure of $\overline{A B}$, and forget about $\frac{\overline{U V} \text {. }}{\bar{U}}$ The situation in everyday life is quite different - we enploy measure functions based on a variety of units: inches, light years, millimeters, miles.

We close this part of our discussion by observing that the distance between A and B is merely defined to be the measure of $\overline{A B}$. Sometimes we want to refer to the distance between A and A itself. This we take to be zero. A separate definicion is required for this case since we miy not refer to the segment
AB unless we know $A \neq B$.

Query. Was it necessary to use the integer ten in the subd.lvision process? Would others work? Could the process be simp.ified by making a different choice?
II. Congruence Based on Distance

In this part we discuss the treatment of congruence adopted in the text, contrasting it with the conventional one. The point of departure is to "reverse" the conventional treatment and define congruence in terms of distance. This enables us to use our knowledge of the real number system early in the discussion f.t leads to a new treatment of the important geometric relation, betweenness, and a new way of conceiving segments and rays.

II-I. The student's viewpoint. The conventional treatment, in brief', begins with an undefined notion of congruence of segments and deduces the existence of a distance furiction from a suitable set of postulates. The high school student - in studying this treatment - somehow absorbs the idea that segments (and angles) can be measured by numbers, and is permitted to apply his knowledge of algebra whenever it is convenient.

II-2. The Distance Postulate. Since the student thinks of segments and angles as measurable by numbers and it is hopeless to prove this at his level from non-numerical postulates, it seems most reasonable to make the existence of a measure function or distance a basic postulate which is used consistently throughout the course. So we adopt

Postulate 2. (The Distance Postulate.) To every pair of different points there corresponds a unique positive number.

If the points are P and Q, then the distance between P and Q is defined to be the positive number of Postulate 2 , denoted by PQ .

Don't read into this more than it says - it is a very weak statement. Notice that it doesn't state a single property of distance - merely that there is such a thing. In particular it doesn't say anything about lengths of segments - in fact we don't even have segments at this stage, of our theory.

230

II-3. The Distance Postulate causes a change in viewpoint. This may seem strange, but it isn't. Most texts begin with a discussion of points and lines in a plane, including such basic ideas as segment and ray. As in Euclid these ideas essentially are taken as undefined. But having adopted the Distance Postulate we can define them. This is an important - and unforeseen consequence of the Distance Postulate: We don't get just Eucitr with the theorems rearranged, but new insights into the basic geometric ideas and a new way of inter-relating them.

II-4. "Between" and "Segment" as defined terms. How then can we define segment in terms of the basic terms point, line, plane? It is easy to do this using the additional notion of a point belng between two points. Having adopted Postulate 2, the idea of distance is at our disposal and we can define betweenness so:

Definition. Let A, B, C be three collinear points. If $A B+B C=A C$ we say B is between A and C, and we write ($A B C$).

We now define segment in terms of betweenness.
Definition. Let A, B be two points. Then segment $\overline{A B}$ is the set consisting of A and B together with all points that are between A and B. A and B are called endpoints of $\overline{A B}$. Further we define $m(\overline{A B})$, the measure or length of $\overline{A B}$, merely to be the number $A B$.

That is, the length of a segment is merely the number which is the distance between its endpoints. The contrast with conventional theory is striking: There congruence of segments is basic and a difficult argument is needed to prove the existence of a measure function - here distance is basic and the proof of the existence of a measure function is trivial.

II-5. Congruence of segments by Definition. Now it is absurdly easy to define congruence of segments.

Derinition. $\overline{A B} \cong \overline{C D}$ means that the lengths of $\overline{A B}$ and $\overline{C D}$ are equal, that is $A B=C D$.

Formally what we have done is just this. We took the basic property relating congruence and measure ((1) of Section I-9)

$$
m(\overline{\mathrm{AB}})=m(\overline{\mathrm{CD}}) \text { if and only if } \overrightarrow{\mathrm{AB}} \cong \overline{C D},
$$

which is a theorem in the converitional treatment, and adopted it as a definition in our treatment. There, segments which were congruent were proved to have the same measure - here, segments which happen to have the same measure are called congruent.

II-6. Properties of congruent segments. Does congruence of segments, as we have defined it, have the properties we expect? We see quickly that \cong is an equivalence relation, that is
(1) $\overline{A B} \cong \overline{A B} ;$
(2) If $\overline{A B} \cong \overline{C D}$ then $\overline{C D} \cong \overline{A B}$;
(3) If $\overline{A B} \cong \overline{C D}$ and $\overline{C D} \cong \overline{E F}$ then $\overline{A B} \cong \overline{E F}$.

These merely say
(1') $\mathrm{AB}=\mathrm{AB}$;
(2') If $A B=C D$ then $C D=A B$;
(3') If" $A B=C D$ and $C D=E F$ then $A B=E F$, which are the basic properties of equality of numbers.

Further we have
(5) Suppose $\overline{A B} \cong \overline{A^{\prime} B^{\prime}}, \overline{B C} \cong \overline{B^{\prime} C^{\prime}}, \quad(A B C)$ and ($A^{\prime} B^{\prime} C^{\prime}$). Then $\overline{A C} \cong \overline{A^{\top} C^{\top}}$.

To prove this we have

$$
\begin{aligned}
& A B=A^{\prime} B^{\prime}, \\
& B C=B^{\prime} C^{\prime},
\end{aligned}
$$

so that

$$
A B+B C=A^{\prime} B^{\prime}+B^{\prime} C^{\prime} .
$$

The betweenness relations yield

$$
A B+B C=A C, \quad A^{\prime} B^{\prime}+B^{\prime} C^{\prime}=A^{\prime} C^{\prime},
$$

and we get

$$
A C=A^{\prime} C^{\prime} \text { or } \overline{A C} \cong \overline{A^{\prime} C^{\prime}} .
$$

Thus several of Euclid's (or Hilbert's) Postulates for congruence reduce, in our treatment, to elementary properties of real numbers.

II-7. The Ruler Postulate. You may wonder if we can also derive from Postulates 1 and 2 , the Location Property: ((4), Section I-5):

Let $\overrightarrow{A B}$ be a ray and let $\overrightarrow{C D}$ be a segment. Then there exists a unique point P in $\overrightarrow{A B}$ such that $\overrightarrow{A P} \cong \overline{C D}$. The answer is - with a vengeance - no. On the basis of Postulates 1 and 2 , we can't even prove that a line contains any points. Clearly Postulates 1 and 2 are too weak to support the kind of theoretical structure we are trying to build. The text supplements them by adopting the powerful Ruler Postulate:

Postulate 3. (The Ruler Postulate.) The points of a line can be placed in correspondence with the real numbers in such a way that
(1) To every point of the line there corresponds exactly one real number,
(2) To every real number there corresponds exactly one point of the line, and
(3) The distance between two points is the absolute value of the difference of the corresponaing numbers.

This guarantees at one swoop that a line has the intrinsic properties we expect of it. Now the lines in every model of our theory will be well-behaved and richly endowed with points. It implies the congruence and order properties of a line in the conventional theory. Specifically it yields: (1) a form of the Location Property (Theorem 2-4); (2) that a segment can be "divided" into a given number of congruent "parts" - in particular it can be bisected (Theorem 2-5). It implies important order properties: Theorem 2-1 which says in effect that the order of points on a line in terms of geometric betweenness corresponds exactly to the
order of their coordinates in terms of algebraic betweenness; and the Line Separation Property which is not explicitly dealt with in the text (see Commentary for Teachers, Chapter 2; also Problem 12 of Problem Set 3-3).

Observe the attractive inter-dependence of the weak Distance Postulate and the powerful Ruler Postulate. The, first asserts the existence of a distance function but permits it to be completely trivial - the second tailors the line to our expectations but is impossible of statement without the notion of distance postulated in the first. Note that if we weaken the Ruler Postulate by dropping condition (3) and require merely the existence of a 1-1 correspondence between the points of a line and the set of real numbers, we may have pathological situations of the type indicated in the diagram.
 $A B+B C=A C$, but $-1,000$, the coordinate of B, definitely is not between the coordinates of A and

Our discussion suggests an important point in mathematical or deductive thinking. The Distance Postulate enables us to define betweenness but not to prove the existence of a single point between two given points. This is illustrated by the finite model above. The Ruler Postulata, however, implies the existence of infinitely many points between any two. This illustrates the point that a mathematical definition does not assert the existence of the entity defined. You may characterize the pot of gold at the end of the rainbow with great precision but you may experience equally great disappointment if you start to search for it before proving an existence theorem.

A final word. We may have oversold the deductive power of the Ruler Postulate and given you the inpression that Postulates 1, 2 and 3 are sufficient for a complete theory of congruence. This is not so. Our theory so far is sufficient for the "linear" theory of congruence, specifically for congruence of segments but not for congruence of more general figures like angles, trfangles, circular arcs or triangular pyramids. For this we
must introduce further postulates concerning congruence of angles and triangles. We discuss this in the next part since our main object here has been to indicate the flavor of the treatment in the text in contrast with the conventional one.

III. Congruence for Arbitrary Figures and Rigid Motions.

In this part we continue the discussion of congruence by indicating how it is successively defined for familiar elementary figures: angles, triangles, etc. Then using the simple and powerful modern idea of transformation we formulate the congruence concept for arbitrary figures - this surpasses in elegance and generality anything obtained in the field by the classical geometers. As a by-product we obtain - after two millenia - a precise mathematical concept of rigid motion. This is a great cultural achievement of our time. Rescuing from the jungles of physical intuition Euclid's crude superposition argument, we refine and perfect it to yield an objectively formulated concept which will be of use to human beings as long as they are impelled to think precisely about space.

III-1. Congruence of angles. The conventional treatment of angle congruence is similar to that sketched in Part I for congruence of segments - but naturally it is a bit more complicated since angles are more complex figures than segments. It begins with an undefined relation $\angle \mathrm{ABC} \cong \angle \mathrm{PQR}$ between two angles which as usual indicates that they are replicas of each other. This may be interpreted concretely to mean that if a frame composed of two fointed rods is set so that $\xrightarrow[B A]{\text { the }}$ and $\xrightarrow[B C]{\text { coincide with the the without chan }}$ $B A$ and $B C$, then without changing the setting the rods can be made to coincide with $\overrightarrow{Q P}$ and $\overrightarrow{Q R}$. We

assume as for segments that congruence of angles is an equivalence relation:
(1) (Reflexive Law) $\angle \mathrm{ABC} \cong \angle \mathrm{ABC}$;
(2) (Symmetry Law) If $\angle A B C \cong \angle P Q R$ then $\angle P Q R \cong \angle A B C$;
(3) (Transitive Law) If $\angle A B C \cong \angle P Q R$ and $\angle P Q R \cong \angle X Y Z$ then $\angle A B C \cong \angle X Y Z$.

The Location Postulate for segments ((4), Section I-5) has the analogue
(4) (Angle Location Postulate) Let $\angle X Y Z$ be any angle and $\overrightarrow{A B}$ be a ray on the edge of half-plane H.
 Then there is exactly one ray $\overrightarrow{\mathrm{AP}}$, with P in H, such that $\angle P A B \cong \angle X Y Z$.

And the Additivity Postulate (5), Section I-5) appears in the form
(5) (Angle-Additivity Postulate)

Suppose $\angle B A D \cong \angle B^{\prime} A^{\prime} D^{\prime}$, $\angle D A C \cong \angle D^{\prime} A^{\prime} C^{\prime}, \quad D$ is in the interior of $\angle B A C$ and D^{\prime} is In the interior of $\angle B^{\prime} A^{\prime} C^{\prime}$. Then $\angle B A C \cong \angle B^{\prime} A^{\prime} C^{\prime}$.

Essentially on the basis of these postulates a measure process can be set up which assigns to each
 angle a unique positive real number called its measure in such a way that a fixed preassigned angle ("unit" angle) has measure 1 (compare Sections I-6 to I-9).

Denoting the measure of $\angle X Y Z$ by $m / X Y Z$, we have as you would expect from our discussion of measure of segments:
(1) $m \angle A B C=m \angle A^{\prime} B^{\prime} C^{\prime}$ if and only if $\angle A B C \cong \angle A^{\prime} B^{\prime} C^{\prime}$;
(2) If C is interior to $\angle A B D$ then
$m \angle A B C+m \angle C B D=m \angle A B D$.
(Compare (1), (2) Section I-9).
29%

But there are two properties which are unique to angular measure. First there is a real number b which is a least upper bound for the measure S of all angles (b is 180 in the familiar "degree measure"). Second the measure S of "supplementary adjacent" angles (i.e., a linear pair) always have a constant sum and this sum is the least upper bound b. Stated precisely: If $\angle A B C$ and $\angle C B D$ are a linear pair, then $m \angle A B C+m \angle C B D=b$.

III-2. Congruence of angles based on angular measure. We saw in (1) above that the conventional theory of angle congruence yields (as for segments) that two angles are congruent if and only if they have equal measures. This suggests (as for segments) that we assume the existence of angular measure and define congruence of angles in terms of it. Thus the treatment in the text assumes

Postulate 11. (The Angle Measurement Postulate.) To every angle $\angle A B C$ there corresponds a real number between 0 and 180, called the measure of the angle, and written as $\mathrm{m} / \mathrm{ABC}$, (compare the Distance Postulate).

Clearly our postulate has been set up so that the unit angle is the degree. In other words the angle characterized by $m / A B C=1$ is what is usualily defined to be a degree and will have the property that ninety such angles laid "side by side" will form a right angle. Precisely speaking the measure of a right angle will tiarn out to be 90 . Notice that the measure of no angle can be 0 or 180 since our definition of angle restricts the side S to be non-collinear. (For a discussion of this restriction see Commentary for Teachers, Chapter 4.).

Now following a familiar path (Section II-5) we adopt the

Definition. $\angle A B C \cong \angle P Q P$ means that $m \angle A B C=m \angle P Q R$. Then properties (1), (2), (3) of III-l above reduce to familiar equality properties of real n i. ibers. The Angle Location Property ((4) above) must be postulated and is introduced in the form:

Posculate 12. (The Angle Construction Postulate.) Let $\overrightarrow{A B}$ be a ray on the edge of half-plane H. For every number r between 0 and. 180 there is exactly one ray $\overrightarrow{A P}$, with P in H , such that $\mathrm{m} / \mathrm{PAB}=\mathrm{r}$.

It might be thought now that the additivity property for angles ((5) above)) could be derived as a theorem as was the corresponding property for segments (see (5), Section II-6). This isn't so. But it is a simple and important property of angles, and it is perfectly natural to postulate it:

Postulate 13. (The Angle-Addition Postulate.) If D is a point in the interior of $\angle B A C$, then $m \angle B A C=m \angle B A D+m \angle D A C$.

Finally we need a postulate to express the pecuiliarly "angular" property of supplementation:

Postulate 14. (The Supplement Postulate.) If $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are opposite rays and $\overrightarrow{A D}$ is another ray, then $m \angle D A C+m / D A B$ $=180$.

III-3. Congruence of triangles. We are now ready to consider congruence of triangles. Our definition of congruent triargles (Chapter 5 of text) is essentially the conventional one: One triangle is a "copy" of the other in the sense that its parts are "copies" of the corresponding parts of the other. But observe the precision with which it is formulated. The correspondence doesn't depend on individual interpretation of the vague term "corresponding" but is based objectively on a pairing of the vertices

$$
\mathrm{A} \longleftrightarrow \mathrm{~A}^{\prime}, \quad \mathrm{B} \longleftrightarrow \mathrm{~B}^{\prime}, \quad \mathrm{C} \longleftrightarrow \mathrm{C}^{\prime}
$$

which induces a pairing of sides and of angles

$$
\begin{aligned}
& \overline{\mathrm{AB}} \longleftrightarrow \overline{\mathrm{~A}^{\prime} \mathrm{B}^{\prime}}, \quad \overline{\mathrm{BC}} \longleftrightarrow \overline{\overline{\mathrm{~B}}^{\prime} \mathrm{C}^{\prime}}, \quad \overline{\mathrm{CA}} \longleftrightarrow \overline{\mathrm{C}^{\prime} \mathrm{A}^{\prime}} \\
& \angle \mathrm{A} \leftrightarrow \angle \mathrm{~A}^{\prime}, \quad \angle \mathrm{B} \longleftrightarrow \mathrm{~B}^{\prime}, \quad \angle \mathrm{C} \longleftrightarrow \angle \mathrm{C}^{\prime} .
\end{aligned}
$$

Notice how spelling out the notion "corresponding" in this way helps to point up the importance of the notion of a congruence which is not mentioned in the conventional treatment. Thus our treatment brings to the fore the idea of a l-l correspondence between the vertices of $\triangle \cdot A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ which ensures that they arei congruent because it requires corresponding sides and corresponding angles to be congruent, that is to have equal measures. This simple idea is capable of broad generalization.

Do we need postulates on congruence of triangles? We have a lot of information on congruence of segments and congruence of angles, separately - but nothing to inter-relate these ideas. For example, we can't yet prove the base angles of an isosceles triangle are congruent. Thus we introduce the S.A.S. Postulate to bind together our knowledge of segment congruence and angle congruence.

Now let us examine more closely the notion of congruence of triangles. Is it really necessary to require equality of measure of six pairs of corresponding parts? If we think of the sides of a triangle as its basic determining parts it seems very natural to define congruent triangles as having corresponding sides which are congruent. Naturally if we were to adopt this definition we would postulate that if the corresponding sides of two triangles are congruent their corresponding angles also are congruent, in order to ensure that this definition of congruent triangles is equivalent to the familiar one. Notice how much simpler the definition of a congruence between triangles becomes if we adopt the suggested definition. It is merely a l-l correspondence between the vertices of the triangles,

$$
\mathrm{A} \longleftrightarrow \mathrm{~A}^{\prime}, \quad \mathrm{B} \longleftrightarrow \mathrm{~B}^{\prime}, \quad \mathrm{C} \longleftrightarrow \mathrm{C}^{\prime}
$$

which "preserves" distances in the sense that the distance between any two vertices of one triangle equals the distance between their corresponding vertices in the second triangle, that is

$$
A B=A^{\prime} B^{\prime}, \quad B C=B^{\prime} C^{\prime}, \quad A C=A^{\prime} C^{\prime}
$$

III- \cdot. Congruence of quadrilaterals. The main objection to the sugeested definition is that it doesn't generalize in the obvio:ls way for polygons - not even for quadrilaterals.
This is attested by the fact that a square and a rhombus can have sides of the same lencth and not be congruent. So to guarantee congruence of quadrilaterals it is not sufficient to require just that corresponding
 sides be congruent, and it is customary to supplement this by requiring the congruence of corresponding angles. Thus the convention al definition requiring congruence both of sides and of angles applies equally well to triangles and quadrilaterals.

However angles, though very important, are rather strange creatures compared to segments and it seems desirable, if possible, to characterize congruent quadrilaterals in terms of congruent segments, or equivalently, equal distances. This is not so hard.

Going back to a triangle we observe that its three vertices taken two at a time yield three segments or three distances and that the figure is in a sense determined by these three distances. Simllarly the four vertices of a quadrilateral yield not four, but six segments (the sides and the diagonals) and six corresponding distances, which serve to determine the quadrilateral. This suggests: If we have a l-1 corresnondence

$$
A \longleftrightarrow A^{\prime}, \quad B \longleftrightarrow B^{\prime}, \quad C \longleftrightarrow C^{\prime}, \quad D \longleftrightarrow D^{\prime}
$$

between the vertices of the quadrilaterals $A B C D, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ such that corresponding distances are preserved, that is

$$
A B, A C, A D, B C, B D, C D=A^{\prime} B^{\prime}, A^{\prime} C^{\prime}, A^{\prime} D^{\prime}, B^{\prime} C^{\prime}, B^{\prime} D^{\prime}, C^{\prime} D^{\prime}
$$

we call the correspondence a congruence and we write $A B C D \cong A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. It is not hard to show this definition equivalent to the more familiar one.

III-5. Congruence of arbitrary flgures. We now must face the problem of formulating a general definition of congruence. The plecemeal process we have employed, defining congruence separately for segments, angles, triangles, quadrilaterals is unavolcable \ln an slementary treatment but is neither satisfying nor complete. For it still remains to define congruent circles and congruent clroular arcs and congruent ellipses and congruent rectangular solids, etc. In each case we construct an appropriate definition, we are sure it is correct, and are equaliy sure the general concept has eluded us.

So let's make a fresh start. Suppose F and F^{\prime} are two congruent figures. Our basic intuition is that $F I$ is an exact copy of F. Somehow this entails tilat each "part" of FI^{\prime} copies a corresponding "part" of F - that each point of F b behaves like some corresponding point of F. If F has a sharp point at A then F^{\prime} must have a sharp point at a corresponding point $A^{\prime} ;$ if F has maximum flatness at B then F^{\prime} has maximum flatness at a corresporing point B^{\prime}; if F has a largest chord $\overline{P Q}$ of length 12.3 then F^{\prime} has a corresponding largest chord $\overline{P^{\prime} Q^{\prime}}$ of the same length, 1 c.3; and so on. How can we tie together these illustrations in a simple and precise way?

III-E. A congruence machine. Suppose instead of conceiving F^{\prime} as a given copy of F, we take F and try to make a copy ' F, of it. As an illustration let F be a house key. Then. F^{\prime} can be produced by a key duplicating machine. The machine has the secret or the congruence concept - how does it work?

The machine has two moving parts: a scanning bar which traces the given key and a cutting bar which cuts a blank into a duplicate. As the scanning bar traces. F starting at its tip A, the cutting bar traces the blank starting at its corresponding tlp A^{\prime}. As the scanner moves to
 position B, the cutter cuts away the metal and comes to rest at a corresponding position B^{\prime}. When B rises to a "peak" so does
B^{\prime} - when B falls to a trough so does B ! - when B traverses a line segment, B^{\prime} traverses a line segment of equal length. What guarantees that this pror true copy? Simply this: When the scamer is fixed B, the cutter comes to rest in a position B^{\prime}.ivtances $A B$ and $A^{\prime} B^{\prime}$ are equal. And this is true lul each position B of the scanner. Clearly what the machine does is to associate to each chord $\overline{A B}$ from A of F an "equal" chord $\overline{A^{\prime} B '}$ from A^{\prime} of F^{\prime}. And it assoclates the chords by associating their endpoints B and B^{\prime}. Precisely speaking, the machine effects a 1-1 correspondence $X \longleftrightarrow X^{\prime}$ between F and F^{\prime} such that the distance $A X$ always equals the distance $A^{\prime} X^{\prime}$.

Does this property hold just for A, the tip of F, and A^{\prime} its correspondent in F^{\prime} ? Clearly not. The machine doesn't know where we start. What we have asserted about the chords of F from A will hold just as well for the chords from any point of F. So the $1-1$ correspondence $X \longleftrightarrow X^{\prime}$ between F and F^{\prime} has the stronger property that for every choice of P and Q if $P \longleftrightarrow P^{\prime}, Q \longleftrightarrow Q^{\prime}$ then $P Q=P^{\prime} Q^{\prime}$, or as we say the correspondence preserves distance. Here we have the essence of the concept of congruence.

The legend has it that when Pythagoras succeeded in proving the theorem ascribed to him, he was so elated that he sacrificed a hecatomb of oxen to the gods. Surely in the light of this tradition the formal definition oi congruence deserves a section all to Lteslf.

III-T. l'he deflnition. Let $X \longleftrightarrow X^{\prime}$ be a $1-1$ correspondence between two sets of points F, F^{\prime} such that

$$
P \longleftrightarrow P^{\prime}, \quad Q \longleftrightarrow Q^{\prime}
$$

always Lmplies $P Q=P^{\prime} Q^{\prime}$. Then wo say F is congruent to F^{\prime} and we write $F \approx F^{\prime}$. Moreover we call the $1-1$ correspondence a congruence between F and F^{\prime}.

548
This definition is the culmination of two thousand years of thinking about congruence. Although it may seem quite abstract Lt unifies and unites the plecc...al discussion of congruence we have given. Every instance of congruent figures disoussed above from segments to quadrilaterals can be pr ad : case of our general definition. This is discussed in deti:! a Appendix VIIl of the text on Rigid Motion.

As a simple illustration of the definition let F and F^{\prime} each be a triple of non-collinear points, say F is (A, B, C) and F^{\prime} is $\left[A^{\prime}, B^{\prime}, C^{\prime}\right\}$. Let the $1-1$ correspondence between F and F^{\prime} which preserves distance be (1) $A \longleftrightarrow A^{\prime}, \quad B \longleftrightarrow B^{\prime}, \quad C \longleftrightarrow C^{\prime}$. Then we have $A B=A^{\prime} B^{\prime}, \quad B C=B^{\prime} C^{\prime}$, $A C=A^{\prime} C^{\prime}$. We see intuitively that Fl^{\prime} is a copy of F. Now
 shift from the point triples to the triangles they determine. The S.S.S. Theorem tells that $\Delta A B C$ is congruent to $\Delta A^{\prime} B^{\prime} C^{\prime}$ in the conventional sense.

It follows (see Appendix VIII) that $\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ in the sense of our definition. Actually there is a l-l correspondence between the infinite point sets $\triangle A B C, \Delta A^{\prime} B^{\prime} C^{\prime}$ which makes the vortices correspond as in (1) and which has the property that $P \longleftrightarrow P^{\prime}, ~ Q \longleftrightarrow Q^{\prime}$ always implies $P Q=P^{\prime} Q^{\prime}$.

Observe how the correspondence between the triangle is engendered by the trivial seeming correspondence between their vertices. For example, if P is on $\overline{A B}$ its correspondent P^{\prime} is determined as the unique point Pl^{\prime} on $\overline{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}$ such that $A^{\prime} P^{\prime}=A P$. Let us think of the finite set of its vertices, $\{A, B, C\}$, as a "skeleton" of $\triangle A B C$. Then if the skeletons ($A, B, C),\left(A^{\prime}, B^{\prime}, C^{\prime}\right\}$ of two triangles are congruent the triangles as a whole are congruent - using "congruent" in its
present sense. This idea was too complex to introduce in Chapter 5 of the text. But it was fore-shadowed there in the insistence that congruence of triangles was the consequence of the existence of a "congruence" between them - that is, a 1-1 correspondence between their sets of vertices which preserves lengths of sides and measuren of angles.

There is an essentia ent of complexity in the definition of congruence: It req: es , wneral) the pairing off of the points of two infinite st .3 to preserve distance. This is uriavoidable - it even seems to be present in the comparatively simple problem of duplicating keys. There is however an important element of simplicity: We don't have to mention angles and the preservation of their measures - the distance concept covers the situation. It follows easily that angle measures are preserved:

for if $P \longleftrightarrow P^{\prime}, ~ Q \longleftrightarrow Q^{\prime}, \quad R \longleftrightarrow R^{\prime}$ correspond under a congruence between F and F^{\prime}, and P, Q, R are non-collinear, we see by the S.S.S. Theorem that $m / P Q R=m / P^{\prime} Q^{\prime} R^{\prime}$.

You may find it interesting to give for quadrilaterals a discussion like the above for triangles - consider the vertex sets $(A, B, C, D),\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right\}$ of quadrilaterals $A B C D$, $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ as their "skeletons". In this connection recall the discussion of congruence of quadrilaterals at the end of Section III-4.

III-8. Motion in geometry. We can state the definition of rigid motion now, but it probably will be more meaningful if we say a few words first about the sense in which "motion" is used in contemporary geometry.

Let a body B move physically from an initial position F in space to a final position F^{\prime}. It is rot necessary for our purposes in geometry (as compared say with kinematics or fluid dynamics) to bother aro: intermediate stages e the motion. So we can desc \therefore merely by specifyins the initial position X in F of an arbitrary point P of body B and its corresponding final position X^{\prime} in F^{\prime}. In its most general form, then, a motion is conceived as a l-1 correspondence or transformation between two figures F and F^{\prime}. The technical term "transformation" is often preferable to "motion" since it doesn't suggest various irrelevant attributes of physical motion.

III-9. Rigid Motion. A motion or transformation between two point sets F and F^{\prime} is a rigid motion if it preserves distances - that is if it is a congruence between F and F^{\prime} as defined in Section III-7. A detailed discussion of concept of rigid motion mears in Appendix VIII of the text

To in'jrodiz: you to the modern theory of congrue: figures and rigid motic" e have put the main emphasis on the 'irst; since, it is more fami_工r and seems easier to apprehend. Ho ever, glancing back a^{*} the definition of congruent figures, su see it implicitly invoives the notion of rigid motion. In fact now we can reword $1 t: F$ is congruent to $F i$ provided there exists a rigid motion between them, or as we say more graphically, a rigid motion which "transforms F into Fr". This is the highly reflned culmiation of the vague and famous classical statement which served to -troduce our disclassion of congruence: "Two :lgures ane motion."

Sometimes the clarification of the basic concepts of a branch of mathematics firms up the foundations, puts the capstone on the superstructure and sets it to rest. This is not so here. The concept of rigid motion has stimulated the study of classical geometry, has yielded new insights and helped to unfold new unities. It has suggested the study of more general geometric transformations ("non-rigid motions") and has presented problems to the field of Modern Algebra, since motions tend to occur in certain "natural algebraic formatic s" called groups.

In the first place congruence and rigid motion have an impact on geometry since they apply to all figures. We can talk precisely not merely about congruence of (or rigid motion between) triangular pyramids or spherical zones or hyperbolic paraboloids but also of llnes, planes. spare, half-planes, rays, etc. At first It may sound silly $*$ say \pm line is zongruent to a line - but try to find a bett. repasa of a line than a line! It must be Just because the $r \in \ldots$, songruence applied to lines is so fundamental and universa? the are not conscious of it - as a fish must be unconscious $==$ notion humidity. In a first approach, congruence takes on finurtance as applied to segments (or angles or triangles) precisely beause not all segments (or angles or triangles) are congraent tc each other.

So it may seer trimial to say a line is congruent to a line or a plane to a $\mathrm{fl}=0$ seace to itself. But suppose we shift the focus from the ritic sdea of congruent figures to the dynamic - and logically prirs - Laja of rigid motion. Is it trivial to say there exist riEf alions between lines or butwen planes or between space and 1.4 Just to ask this questim discloses a broad vista: One c the $r i n c i p a l$ concerns of con mporary geometry (or conten rey nathematics) is the study of transformat lons (rigid and nomely if of n-dimensional spaces.

Consider the simplest case: Rigid motions which transform a line L into a line L^{\prime}. If L \| L^{\prime} we have slides or translations which "move" the points
 of L along parallel transversals to get their corresponding points of L^{\prime}. If L and L^{\prime} meet in Just one point C we have a rotation about C. If L and L^{\prime} coincide, that is $L=L^{\prime}$, we have two types of rlgid motions operating on L :

(1) translations along L ;
(2) reflections of L in a po nt C, where point C of L is "fixed" (that is it corresponds to itself) and every other point of L "moves" on L from one side of C to the other.

Similar considerations apply to planes. The theory culminates In the study of rigid motions of space - that is between space and itself. Here the basic types are translations, in which no point is fixed, rotations in which each point of a line (the axis of the rotation) is fixed, and reflections in a slane E in which each point of plane E is fixeci and the half-spaces separated by E are "interchanged". More precisely a reflection in E is a transformation $X \longleftrightarrow X^{\prime}$ such that if X is in E then $X^{\prime}=X$ and $L f X$ is not $\ln E$ then E is the perpendicular bisector of $\overline{X X}$. All rigid motions of space are "combinations" of these three basic types, just as all positive integers other than 1 are combinations of primes.

You may say that the theor of rigid motions of lines, planes and space is attractive and relatively simple, but haven't we left out the annoying complexities involved in the study of specific congruent figures like segments, truncated triangular pyramids and cones with oval bases? Not at all: They are elegantly covered in the theory of rigid motions of the basic "linear manifolds": line, plane, space.

As a rery simple illustration suppose segment $\overline{A B}$ is congruent to segment $\overline{A^{\prime} B^{\prime}}$. Then there is a rigid motion between them which, let us say, makes A correspond to A^{\prime} and B to B^{\prime}. Now we have the remarkable result that
 this rigid motion, which is a certain kind of l-l correspondence between ε zments $\overline{A B}$ and $\overline{A^{\prime} B^{\prime}}$ can be extended to form a rigid motion b. een the whole line $\overleftrightarrow{A B}$ and the whole line $\overleftrightarrow{A^{\prime} B^{\prime}}$ and this extension can be made in just one way. Thus we don't disturb the correspondence between $\overline{A B}$ and $\overline{A^{\prime} B^{\prime}}$ but "amplify" $\underset{\leftrightarrow}{\text { it }}$ by suitably defining a unizue correspondent for each point of $\overleftrightarrow{A B}$ not in $\overline{A B}, \underset{\leftrightarrow}{\leftrightarrows}$ that the inal correspondence is a rigid motion between $\overleftrightarrow{A B}$ and $\overleftrightarrow{A^{\prime} B^{\prime}}$. So in the study of rigid motions between lines as wholes, we are automatically covering all possible rigid motions (and hence all possible relations of congruence) between "linear" figures; (that is, subsets of lines which contain more than one point). Similarly any rigid motion between "planar" figures (that is, subsets of a plane which are not contained in any line) is uniquely extendable to a rigid motion of their containing planes. Finally we observe that any coriceivable rigid motion is encompassed by a rigid motion of space.

554

III-10. Non-rigid motions. As we have indicated, modern geometry is concerned with transformations that do not preserve distance, as well as with those which do. In Eucliidean Geometry the most important example is a similarity, which bears the same relation to similar figures that a congruence or rigid motion does to figures which are congruent. Formally suppose $v \in \ldots$. is a l-1 correspondence between figures F and $F^{\prime \prime}$ such that

$$
P \longleftrightarrow P^{\prime}, \quad Q \longleftrightarrow Q^{\prime}
$$

always impiies $P^{\prime} Q^{\prime}=k \cdot P Q$ where k is a fixed positive number. Then we call the correspondence a similarity transformation or a similarity and we say F is similar to F^{\prime}. It easily follows that a similarity transformation - although it is not in general a rigid moticn - always preserves angle measures. This definition of similar figures, when restricted to triangles, can be proved equivalent to the familiar one. The simplest general type of similarity is the dilatation (in a plane or in space) - this is a similarlty which leaves a given point C fixed and radially "stretches" the distance of any point from C by a positive factor k.

$\because!$

Other important types of transformations are central various geometric theories. For example, "parallel proje... n" between planes in affine geometr,": "centid projection" between planes in projective geometry; and topological transformations, which are a type of continuous 1-1 correspondence, in topology. The theory of map-making is concerned with various "projections" or other kinds of transformations bevween a sphere and a cone, sylinder or plane.

And so we have ended our talk by touching upce a modern generalization of rigid motion which well might merit a talk for itself.

> ITTRODUCTMU - $-\cdots-$ ODEAN GEOMETE:

Acout one hundred and fifty years ago, a revolution in mathematioai thought begar! with the discovery of a geometrical theory which dirfered from the classical theory of space formulated by Euclid about 300 B.C. Euclid's Geometry Text, the Elements, was the finest example of deductive thinking the human race had known, and had been so considered for two thousand years. It was believed to be a gerfectly accurate description of physical space, and at the same time, the only way in which the human mind could conceive space. It is no small wonder then that the development of theories of non-Euclidean geometry had an impact on mathematical thought comparable to that of Darwin in biology, Copernicus in astronomy or Einstein in physics.

How did this revolutionary change come about? Strangely enough it may be considered to have had its origin in Euclid's text. Although he lists his postulates at the beginning, he refralns from employing one of them until he can go no farther without it. This is the famous fifth postulate which we may state in equivalent form as

Euclid's Parallel Postulate. If point P is not on line L, there exists only one line through P which is parallel to L.

It seems probable that Euclid deferred the introduction of the flfth postulate because he considered it more complex and harder to grasp than his other postulates.

The consequences of introducing Euclid's Parallel Postulate are almost phenomenal. Uslng it we get in sequence:

1. The Alternate Interlor arge Theorem for parallel lines;
\therefore The sum of the measures of the angles of a triangle
$15 \cdot 180 ;$
2. Parallel lines are everywhere equidistant;
3. The existence of rectangles of preassigned dimensions. As remote but recognizable consequences of Euclid's Parallel Postulate, we have:
4. The familiar theory of area in terms of square units which in effect reduces any plane figure to an equivalent rectangle;
5. The familiar theory of similarity;
6. The Pythagorean Theorem.

It is hard to see how any of these important results could be proved without recourse to Euclid's Parallel Postulate or an equivalert assumption.

There is no explicit evidence that Euclid considered the fifth postulate an improper assumption in his basis for geometry. But generations of mathematicians for over 2000 years were dissatisfled with it, and worked hard and long in attempts to deduce it as a theorem from the other seemingly simpler postulates. Right up to the beginning of the l9th century able mathematicians convinced themselves that they had settled the problem only to have flaws discovered in their work. Sometimes they employed the princtple of the indirect method and developed elaborate and subtle arcuments to prove that the denial of Euclid's Parallel Postulate would force one into a contradiction. None of these argumente stood up under analysis. Finally early in the 19 th century, \quad. Bolyai (1802-1860) a Hungarian army officer, and N. I. Lobschevsky (1793-1856) a Russian professor of mathematics at the Un:versity of Kazan, independently introduced theories of geometry based on a contradiction of Euclid's Parallel Postulate.

The purpose of this talk is to give an elementary introduction to the non-Euclidean theory of geometry which Bolyai and Lobactevsky created.
I. Two Non-Euclidean Theorems

In this part we try to give you - without a long preliminary discussion - the flavor of non-Euclidean geometry. Our viewpoint is this: Suppose we consider the hypothesis that there are two lines parallel to a particular line through a particular point. What will follow? As a basis for our deductions we assume the postulates of Euclidean geometry except the Parallel Postulate, specifically Postulates $1, \ldots, 15$ of the text.

Theorem 1. Let P be a point and L a line such that there are two lines through P each of which is parallel to L. Then L is wholly contained in the interior of some angle.

Prooi: Let lines M and N contain P and be parallel to L. Then M and N separate the plane into four "parts" each of which is the interior of an angle. Specifically these parts or regions may be labelled as the interiors of the angles $\angle A P B$, $\angle A^{\prime} P^{\prime}, \quad \angle A^{\prime} P B, \angle A P B '$ where P is between A and A^{\prime} on M and P is between B and B^{\prime} on N. Let Q be any point of L. Since L does not meet M or N, Q is not on M or N. So Q is in one of the four angle interiors say the interior of $\angle A^{\prime} P B$. Now where can L lie? Note that one of its points Q is in the interior of $\angle A^{\prime} P B$ and that L does not meet the sides of the angle $\angle A^{\prime} P B$. Clearly L is trapped inside $\angle A^{\prime} P B$ and the theorem is proved.

312

Observe how strange this is when compared with the Euclidean situation where only a part of a line can be contained in the intertor of an angle, as indicated in the figure. But note - as always in mathenatics - the inevitability of the result once the hypothesis is granted. You may say the argument ic valid abstractly - but it doesn't correspond to physical reality.

As you make a statement like this you begin to tread the path of. the non-Euclidean geometers. All that one needs to think mathematically is set of precisely stated assumptions (postulates) from which conclusions (theorems) can be derived by logical reasonlng. Are these assumptions absolutely true when applied to the physical world? We don't really know. It is not our professional concern as mathematicians to answer the question. It lies in the dometn of physicists, astronomers and surveyors. As human beings who work in mathematics we may like to feel that our theories are applicable to physical reality. But this doesn't require the absolute truth of our postulates or our theorems. When Euclidean geometry is applied by an architect or engineer or surveyor he doesn't require results which are absolutely correct - he might consider this a mirage. Rather he demands results correct to the degree of precision required by his problem - accuracy of one part In a hundred might be excellent in a pocket magnifying glass but one part in a million might be too rough for a far-ranging astronomical telescope.

Our first theorem indicated how pustional or nun-metrical properties in a non-Euclidean geometry might differ from our Euclidean fxpectations. Now we show how metrical properties specificaliy the angle sum of a triangle - are altered when we change the Parallel Postulate.

Theorem 2. Let P be a point and L a ine such that there are two lines through P each of which is parallel to L. Then there exists at least one triangle the sum of whose angle measures is less than 180.

$$
\therefore
$$

We first prove a lemma.
Lemma. If the sum of the angle measures of a triangle is greater than or equal to 180 then the measure of an exterior angle is less than or equal to the sum of the measures of the two remote interior angles.

Proof: We have $a+b+c \geq 180$. Hence
$a+b \geq 180-c=d$.
Proof of Theorem 2: Suppose the theorem false. Then the sum of the angle measures of every triangle is greater than or equal to 180.

Let L be a line and P a point such that there are two lines through P parallel to L. Let line $\overleftrightarrow{P Q}$ be perpendicular to L at Q. Since there are two lines through P parallel to L one of these must make an acute angle with line $\overleftrightarrow{P Q}$. Suppose then line $\overleftrightarrow{P X}$ is parallel to $L \underset{\longleftrightarrow}{\longleftrightarrow}$ and makes an acute angle, $\longleftrightarrow \mathrm{QPX}$, with line $\overleftrightarrow{P Q}$. Let line $\overleftrightarrow{P Y}$ be perpendicular to line $\stackrel{\rightharpoonup}{P}$ with Y on the same side of line $\overleftrightarrow{P Q}$ as X. Let $m / Y P X=a$; then $a<90$. (Think of a as a small positive number, say .1.) Now locate R_{1} on L so that $Q R_{1}=P Q$ and R_{1} is on the same side of $\overleftrightarrow{P Q}$ as X and Y. Draw segment $\overline{P R}_{1}$. Then $\triangle P Q R_{1}$ is Isosceles so that $m \angle Q P R_{1}=m / Q R_{1} P=a_{1}$. Since the exterior angle of $\triangle \mathrm{PQR}_{1} \quad t \quad Q$ is a right angle, the Lemma implies

$$
a_{1}+a_{1}=2 a_{1} \geq 90
$$

and

$$
a_{1} \geq 45
$$

Let $m / Y P R_{1}=b_{1}$. Then

$$
b_{1}+a_{1}=90,
$$

so that $\quad b_{1}=90-a_{1}$
and
$b_{1} \leq 45$.
$b_{1}>\mathrm{a}$.
Moreover
Now we repeat the argument by constructing a new triangle.
Extend segment $\overline{Q R_{1}}$ to R_{2} making $R_{1} R_{2}=P_{1}$. Draw $\overline{P R}_{2}$. Then $\Delta P R_{1} R_{2}$ is isosceles, so that $m / R_{1} P R_{2}=m / R_{1} R_{2} P=a_{2}$. By the Lemma

$$
a_{2}+a_{2}=2 a_{2} \geq a_{1} .
$$

So that

$$
2 a_{2} \geq a_{1} \geq 45
$$

and

$$
a_{2} \geq \frac{45}{2}
$$

Let $m / Y P R_{2}=b_{2}$. Then

$$
\begin{aligned}
b_{2}+a_{2} & =b_{1} \\
b_{2} & =b_{1}-a_{2} .
\end{aligned}
$$

Since $b_{1} \leq 45$ and $a_{2} \geq \frac{45}{2}$ we have

$$
\mathrm{b}_{2} \leq \frac{45}{2} .
$$

Moreover

$$
b_{2}>a
$$

Continuing in this way we obtain a sequence of real numbers

$$
b_{1}, \quad b_{2}, \quad b_{3}, \quad \cdots
$$

which are less than or equal to respectively

$$
45, \quad \frac{45}{2}, \quad \frac{45}{4}, \ldots
$$

but all of which are greater than the fixed positive number a. This is impossible since repeated halving of 45 must eventually produce a number less than a. So our supposition is false and the theorem holds.

A proof of tile type, though not difficult, may be unfamiliar and you may have to mull it over a bit to appreciate it better. In intuitive terms $1 t$ is not very hard. There are two main points. First, the ray $\overrightarrow{P X}$ which doesn't meet L acts as a sort of boundary for the rays $\overrightarrow{\mathrm{PR}_{1}}, \overrightarrow{\mathrm{PR}_{2}}, \ldots$ which do meet L. Thus the angles $\angle Y P R_{1}, \angle Y P R_{2}, \ldots$ have measures b_{1}, b_{2}, \ldots which are greater than a. On the other hand (if the sum of the angle measures of every triangle is at least 180) we can pile up
 of measures at least $45, \frac{45}{2}, \frac{45}{14}, \ldots$ so that the angles $\angle Y \mathrm{YR}_{1}, \angle Y \mathrm{YR}_{2}, \ldots$ have measures at most $45, \frac{45}{2}, \frac{45}{4}, \ldots$. So we have a contradiction in that the angles $\angle Y P R_{1}, \angle Y P R_{2}$, ... have measures which approach zero but are all greater than a fixed positive number a.

A final remark. You may object that we have not really justified that $\overrightarrow{\mathrm{PX}}$ is a "boundary" for $\overrightarrow{\mathrm{PR}_{1}}, \overrightarrow{\mathrm{PR}_{2}}, \ldots$. To take care of this observe that $\overrightarrow{P_{1}}$ and $\overrightarrow{P X}$ are on the same side of line $\overleftrightarrow{\mathrm{PQ} .}$ Consequently one of them must fall inside the angle formed by $\overrightarrow{P Q}$ and the other. Suppose $\overrightarrow{\longrightarrow P}$ fell inside $\angle Q_{P R}$. $\xrightarrow{\text { Then }} \overrightarrow{\mathrm{PX}}$ would meet line $\underset{\mathrm{QR}_{1}}{\longleftrightarrow}$. Since this is impossible, $\overrightarrow{\mathrm{PR}_{2}}$ must lie inside $\angle Q P X$. Similarly for $\overrightarrow{\mathrm{PR}_{2}}, \ldots$.
II. Neutral Geometry

We are using the term "neutral geometry" in this part to indicate that we are assuming neither Euclid's Parallel Postulate nor its contradictory. We shall merely deduce consequences of Euclid's Postulates other than the Parallel Postulate, (specifically our discussions are based on Postulates $1, \ldots, 15$ of the text). Our results then will hold in Euclidean Geometry and in the nonEuclidean geometry of Bolyal and Lobachevsky since they are deducible from postulates which are common to both theories. Our study is neutral also in the sense of avoiding controversy over the Parallel Postulate. Actually its study helps us to accept the idea of non-Euclidean geometry since it points up the fact that mathematically we have a more basic geometrical theory which can be definitized in either of two ways.

We proceed to derive some results in neutral geometry. Since you are familiar with so many striking and important theorems which do depend on Euclid's Parallel Postulate you might think that there are no interesting theorems in neutral geometry. However, this is not so. First we sketch the proof of a familiar and important theorem of Euclidean geometry whose proof does not depend on a parallel postulate (see text, Theorem 7-1).

Theorem 3. An exterior angle of a triangle is larger than either remote interior angle.

Proof: Given $\triangle A B C$ with exterior angle $\angle B C D$. We show $\mathrm{m} / \mathrm{BCD}$ is greater than m / B and m / A. Let E be the mid-point of segment $\overline{B C}$ and let F be the point unch that $A E=E F$ and E is between A and F. It follows that $\triangle B E A \cong \triangle C E F$ so that
$m / B=m / E C F$.
But

$$
m \angle \overline{B C D}=\mathrm{m} \angle \mathrm{ECF}+\mathrm{m} / \mathrm{FCD} .
$$

$m \angle B C+m \angle F: D$,
so that
$m / B C D>n$.
The proof :. ed as usual by epplying the above ument to show that tre . al angle of $\angle B C D$ is larger tha: . A.

Corollary 2. The sum of the measures of two ang- if a triangle is lets an 180.

Proof: Giv. $\triangle A B C$ we show $\pi A+m \angle B<180$. By the theorem m / A is ess than the mescure of an exterior angle at B. Thus
$m \angle A<180-m \angle B$
so that

$$
m / A+m \angle B<180 .
$$

This corollary is important since, without assuming a parallel postulate, it gives us information about the angles of a triangle. It tells us for example, that a triangle can have at most one obtuse angle or at most one right angle.

Corollary 2. In a plane two lines are parallel if they are both perpendicular to the same line (compare text, Theorem 9-2).

Proof: The basic properties of perpendicular lines in Euclidean geometry are studied prior to the introduction of the Parallel Postulate, and so are part of (or are valid in) neutral geometry. Thus the familiar proof of the corollary is applicable: If the two lines met we would have, in a plane, two lines perpendicular to the same line at the same point. This is impossible and the lines can't meet.

Corollary 3. Let L be a line, and let P be a point not on L. Then there is at least one line through P, parallel to L.

Proof: Tr. on the existence $\mathrm{L}_{2} \perp \mathrm{~L}_{1}$ through \quad the $\mathrm{L}_{2} \| \mathrm{L}_{1}$.

Observe that $\because . j$...far - almost hackneyed - discussion has yielded a very; $n \cdots$. principle: That parallel lines exist. More precis: Un e exists at least one lIne parallel to a given line tr $\quad \because \quad \cdots$ external point. And wot this result without assuming a $\quad \because . . l$ postulate! So the :racial point in our study of the $t \quad y=$ arallelism will be whether there is one, or more than $\because \quad:$ parallel to a given line through an external point.

To prove an $1-\quad . \quad$ and not sufficiently well known, theorem of Legendre $17,-1333$) we introduce the following:

Lemma. Given \therefore and $\angle A$. Then there exists a triangle $\Delta A_{1} B_{1} C_{1}$ such the \equiv it has the same angle measure sum as
$\triangle \mathrm{ABC}$;
(b) $m \angle A_{1}-\mathrm{A}$.

Proof: We use tiE $-\infty$ construction as in Theorem 3. Let E be the mid-point $口=$ and let F satisfy $A E=E F$ and E is between A and F. Tin $\triangle B E A \cong \triangle C E F$ and corresponding angles have equal mezuires. $\triangle A F C$ is the $\Delta A_{1} B_{1} C_{1}$ we are seeking. We have

$$
\begin{aligned}
m L A+m L B+m L C & =m L l+m L 2+m L 3+m / 4 \\
& =m L 1+m L 2^{\prime}+m L 3^{\prime}+m L 4 \\
& =m L C A F+m L A F C+m L \text { FCA. }
\end{aligned}
$$

To complete the pros rose that

$$
m L A=m L 1+m \not L^{\prime} 2=m L l+m L 2^{\prime}
$$

so that

$$
m \angle A=m \angle \quad i F^{2} \div m \angle A F C .
$$

Hence one of the teri on the right is less than or equal to $\frac{l}{2}$ the term on the left, -hat is $\frac{1}{2} m / A$. Consequently $\triangle A F C$ can be relabeled $\Delta A_{1} B_{1} C_{Z}$ so as to make the theorem valid.

$$
313
$$

Note that since we have not assumed Euclid's Paralel Postulato we don' = know that the angle measu?e sum is consten: for alz triangles. $\because=$ the lemma is a signlficant result in th : \because can corstruct from a given triangle a new one with the sar: measure sum. In intuitive terms we can replace a trianc - by a "slenderer" one without altering its angle measure sur. - effect the proof shows this by cutting off \triangle ABE from $\triangle A B C$ pasting it back on as \triangle FCE.

Now we can prove the following remarkable theorem.
Theorem 4. (Legendre.) The angle measure sum of is less than or equal to 180 .

Proof: Suppose the contrary. Then there must exist a triangle, $\triangle \mathrm{ABC}$, whose angle measure sum is $180+\mathrm{p}$, where p is a positive number. Now we apply the Lemma. It tells us that there exists a slenderer triangle, $\Delta A_{1} B_{1} C_{1}$, whose angle measure sum also is $180+p$ such that $m / A_{1} \leq \frac{1}{2} m \angle A$.
To fix our ideas let us say $p=1$ and $m / A=25$. Then

$$
m \angle A_{1}+m \angle B_{1}+m \angle C_{1}=181 \text { and } m / A_{1} \leq \frac{25}{2} .
$$

Pressing our advantage we reapply the lemma. So there is a still slenderer triangle, let us call it $\Delta \mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2}$, whose angle measure is $180+p$ and $m / A_{2} \leq \frac{1}{2} m \angle A_{1}$. That is

$$
m \angle A_{2}+m \angle B_{2}+m \angle C_{2}=181 \text { and } m \angle A_{2} \leq \frac{25}{4} .
$$

Continuing in this way, we get a sequence of triangles each w. .h Engle measure sum 181 and with successive angles of measures n: greater than

25, $\frac{25}{2}, \frac{25}{4}, \frac{25}{8}, \ldots$.

568

To see this $1:$ impossible, $c=i d e r L \cdot E_{5} C_{5}$ for which $m / A_{5}<p$. We have

$$
m_{2} \dot{A}_{j}-1 B_{5}+m / C_{5}=16 \text { an } m_{5} \leq \frac{25}{32}
$$

Certainly

$$
m L A_{5}<1
$$

but

$$
m \angle B_{5}+m \angle C<180
$$

by Corollary 1 to Theorem 3. Addine the inequalities,

$$
m \angle A_{5}+m \angle B_{5}+m \angle C_{5}<181 .
$$

This contradiction implies our supposition false, and the the is established.

Note the point of the proof is to get a triangle so "slender", that is witt: one ansle so small, that the triangle can't exist by Corollary 1 bove. It may now be instruc-ive to write out the preof in general terms without assigning epecific values to p anin m $\angle \mathrm{A}$.

Corollary 4. The angle zeasure sum of any quadrilateral is less than or equal to 360 .
-II. Do Rectarge Exist?
:or.: \therefore atudy neutral $\equiv \cdots$ etry, and are interested in whetre a rean exist in arre a geometry, and what happens If it i.e. : of our theore- ill have the hypothesis that a rectangle $=\ldots \ldots$ We use freely $\because \ldots$ resulte of Part II on neutral geoms....

Th: exic: in a rectangle i= geometry is not a trivial thing - imag... \quad at Euclidean gemm ry would be like if you didn't have could ' $\quad=$ rectancles. - you try to construct a rectangle jou wil. $\because:$ - you ure assumine Euclid's Parallel Postulate or one of its rons: triangle is 2 j 0.

First, ts avolc amb-guity, we famally define rectangle as we shall use the tem:

Definition. (piane) quadrilateral is called a rectangle if Each of ite angies is a right angie.

Notice trat s_nce we are operaring in neutral geometry and have not. $=\sim$ Eaclid': Parallel Postulate, we can't automatically apply Ean: iar Zucliézan propositions, such as (1) the opposite sides of \bar{z} netangle are parall \equiv or (2) that they are equal in length, o: $\overline{3}$) that a cogonal $=0$ des a rectangle into two congruent tr - تles. If $w=$ want: ssert any of these results we will rove onote them som armfinition without assuming a paral:

For - -f ons partiazler rectangle exists then a rect-

 gi"en pos:-i oal nums=. Ther there exists a rectangle with

Prof: We use $A B C D$ as a "ining block" to construct the Gesired recterale. Construct : c....ir ateral DCEF congruent to $\therefore C D$, se the: $\overline{\mathrm{EF}}$ and $\overline{\mathrm{AB}}$ a e $:=$ osite sider of line $\overleftrightarrow{C D}$. Then $D C E R$ a a rettangle, $: \because \in: B$ B, Z, ie on a - ne by a familtan perpend valarity p: pe \cdots. 3imslayly, A, D, F are colvinear. $\because \sim A B C E F D$ is a quacileseral $F \equiv E F$ and consequentiy a rectancle. Note ABEF has the paperty that

$$
A F=2 C .
$$

Similar \because we constract FEGH a congruent replica of ABCD zo that $\overline{\mathrm{GH}}$ and $\overline{\overline{S B}}$ are on onpos..: sides $0=\underline{2}$ ne $\overleftrightarrow{\mathrm{EF}}$. And we wee that $A B=$ is a rectangle suc: that

$$
A E=3 A^{-}
$$

Continuing in this way we can construct a rectangle AEVZ such that

$$
\therefore Z=n A Z
$$

for each positive integer n. Now choose n so big thet nAD $>x$. Then ABYZ satisfies the co tions of our theorem.

Corollary 5. If =ne pa-icilar rectangle Exists, then a rectangle exis $=$ aiti two ari ariny large adjacent sices.

Restatemert: Suppose a : : : Vargle ABCD exists anc x, y are given positize real numbes. Ther were exists a retan⿹ㅡㄹ긍 PQRS such that $\bar{r} \because x$ 又

Proof: By the treoren we have a rectangie ABYZ wit: $A Z>x$. By placing iocezaive congruent replicas of ABY "an top" of each othos at =tine with ABYZ, we erentually get a rectangle $A A^{\prime} \quad \therefore A^{\prime}>y$ ar $A Z>x$.

$$
325
$$

Theorem 6. If one particular rectangle ewists then a rectangle rxists with two adjacerit ミides of pre:segned lengths x, y.

Proof: Our method is that of a tailor: Эy the last corollary we get a rectangle $P Q R S$ such that $P Q>x$ and $P S>y$; then we cut it down to fit.

 perpendicular from Q^{\prime} to inre $\overrightarrow{B S}$ with for R^{\prime}. We show PQ'R'S is a rectangle. It certeinly has rigu angles at p, S,
 >90. Then the sum of the angle measures of cincilatin PQ'R'S is greater than 360 contring to the oorollary of Legendre's Theorem (Eart II). Suppose - $\mathrm{P}_{\mathrm{H}} \mathrm{R}$ (<90. Ther
 sum greater than $3 \in 0$. Thus the $c=1 \bar{F}$ possinlity is $m_{L} 3 \sigma^{\circ}=90$, and PQ'R'S is a rectangle.

In the same way there is amint $E=\overline{3 S}$ such that
 R''. Then as above PQ'R'S' is \equiv rectangie, and it has sites $\overline{P Q^{\prime}}$ and $\overline{P S^{\prime}}$ of lenths x and y.

Theorem 7. If one particulan rectargl- exists tien every right triangle has an angie mexzure sum 0 as.

324

572

Proof: Our procedure is to show: (1) any right triangle is congruent $=0$ a triangle formed by the splitting of a rectangle by a dlagonil, and (2) the latter type of triangle must have an ancle measire of 180. Let $\triangle A E C$ de a right triangle with right angle at B. By Theorem 6 there exists a rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ with $A^{\prime} E^{\prime}=A B$ and $B^{\prime} C^{\prime}=B C$. Draw $\overline{A^{\prime} C^{\prime}}$. Then
$\triangle A B C \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ and they have the same angle measure sum. Let p be the angle measure.sum of $\triangle A^{\prime} B^{\prime} C^{\prime}$ and q be that of $\triangle A^{\prime}$ ''D'. We have

$$
\begin{equation*}
p+q=4.90=360 \tag{1}
\end{equation*}
$$

We want 0 show $p=180$. By Legendre's Theorem $p<180$ or $p=180$. Su: pose $p<180$. Then by (1) $q>180$, contrary to Legendre:s T eorem. So $p=180$ must hold and the proof is complete.

Theorer 3. If one particular rectangle exists then every triancle has an angle measure sum of 180.

Proof: Any triangle $\triangle A B C$ can be split into two right triangles. Each of these has angle measure sum 180 by Theorem 7 . It easily follows that the same holds for $\triangle A B C$.

This is a rather striking result: The existence of one puny rectangle with microscopic sides inhabiting a remote portion of space guarantees that every conceivable triangle has an angle measure sum $0: 180$. Since this is a typically Euclidean Property we are tempted to say that if in a neutral geometry a rectangle exists, the geometry must be Euclidean. The statement is correct but not fully justified, since to characterize a neutral geometry as Euclidean we must know that it satisfies Euclid's Parallel Postulate. This can now be proved without trouble.

$$
35
$$

Theorem 9. If one particular rectangle exists then Euclid's Parallel Postulate holds.

Proof': Suppose a rectangle exists but Euclid's Parallel Postulate fails. Then there must exist a line L and a point P such that there are two lines through P parallel to L, since by Corollary 3 there is at least one line parallel to a given line through an external point. Then by Theorem 2 there exists one triangle, at least, whose angle measure sum is less than 180. This contradicts Theorem 8. Consequently Euclid's Parallel Postulate must hold.

What we have justified is a remarkable equivalence theorem, namely: Euclid's Parallel Postulate is logically equivalent to the existence of a rectangle. That is, taking either of these statements as a postulate we can deduce the:other as a theorem, provided of course we assume the postulates for a neutral geometry.

An interesting condition equivalent to the existence of a rectangle is the existence of a triangle whose angle measure is 180:

Theorem 10. If there exists one particular triangle with angle measure sum of 180, then there exists a rectangle.

Proof: Suppose $\triangle A B C$ has angle measurc: sum 180. First we show there is a right triangle with angl: measure sum 180. Split \triangle ABC into two right triangles, whose angle measure sums are say p and q. Then

$$
p+q=180=2 \cdot 90=360
$$

We show $\mathrm{p}=180$. By Legendre's Theorem, $\mathrm{p} \leq 180$. If $\mathrm{p}<180$ then $q>180$ contrary to Legendre's Theorem. Thus there is a right triangle, say $\triangle A B D$, which has angle measure sum 180 .

Now we put two such right triangles together to form a rectangle. Construct $\triangle A E B \cong \triangle B D A$ with E on the opposite side of line $\overleftrightarrow{A B}$ from D. Show ADBE is a rectangle.

Corollary 6. If one particular triangle has angle measure sum 180 then every triangle has angle measure sum 180.

Proof: By Theorems 10 and 8.
Corollary 7. If one particular triangle has angle measure sum 180 then Euclid's Parallel Postulate holds.

Proof: By Theorems 10 and 9.
Corollary 8. If one particular triangle has an angle measure sum which is less than 180 then every triangle has an angle measure sum less than 180 .

Proof: Suppose $\triangle A B C$ has angle measure sum less than 180. Consider any triangle $\triangle P Q R$. By Legendre's Theorem its angle measure sum p must satisfy $p=180$ or $p<180$. Suppose $p=180$. Then by Corollary 6, $\triangle A B C$ has angle measure sum 180 , contrary to hypothesis. Thus $p<180$.

Comparing Corollaries 6 and 8 we observe an important fact. A neutral geometry is "homogeneous" in the sense that all of its triangles have an angle measure sum of 180 or they all have angle measure sums less than 180. The first type of neutral geometry is merely Euclidean geometry - the second type corresponds to the non-Euclidean geometry developed by Bolyai and Lobachevsky. This will be discussed in the next part.

$$
327
$$

Ex三rcis三 l. Suppose there :.. only one line parallel to a particuar ine L through a paricular point P. Prove that Euclid's P allel Posti-ate holde.

Exerc-se 2. Suppce Finere me two lines parallel to a partaular line L taciagh a EFricular point P. Prove there are two lines paralle - to sach line through each extermal point.
IV. Lobachevskian Geometry

Now we introduce the non-Euclidean geometry of Bolyai and Lobachevsky as a formal theory based on its own postulates. We call the theory Lobachevskian geometry to signalize the lifetime of work which Lobachevsky devoted to the theory. To study Lobachevskian geometry we merely assume the postulates of Euclidean geometry but replace Euclid's Parallel Postulate by Lobachevsky's Parallel Postulate: If point P is not on line L there are at least two lines through P which are parallel to L. In other words we assume the postulates of neutral geometry (Postulates l, ..., 15 of the text) and adjoin Lobachevsky's Parallel Postulate. Consequently the theorems which we have already derived are valid in Lobachevskian geometry. In fact, by putting together two earlier results we get the following important theorem.

Theorem ll. The angle measure sum of any triangle is less than 180.

Proof: By Theorem 2 there exists a triangle whose angle measure sum is less than 180. Hence the same is true of every triangle by Corollary 8.

Corollary 9. The angle measure sum of any quadrilateral is less than 360.

Proof: By the corollary to Legendre's Theorem (Part II, Theorem 2) the only other possibility for the value is 360 - and this is ruled out by Theorem 11.

Corollary 10. There exist no rectangles.
Now we show that simllar trlangles can't exist in Lobachevsklan geometry, except of course for the trivial case of congruent triancles.

Theorem 12. Two triangles are congruent if thelr corresponding angles have equal neasures.

Proof: Suppose the theorem false. Then there exist $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ which are not congruent such that $m \angle A=m \angle A^{\prime}$, $m \angle B=m / B^{\prime}, m \angle C=m / C^{\prime}$. Since the triangles are not congruent $A B \neq A^{\prime} B^{\prime}$ (otherwise they would be congruent by A.S.A.). Similarly $A C \neq A^{\prime} C^{\prime}$ and $B C^{\prime} \neq B^{\prime} C^{\prime}$. Consider the triples $A B, A C, B C$ and $A^{\prime} B^{\prime}, A^{\prime} C^{\prime}, B^{\prime} C^{\prime}$. One of these triples must contain two numbers which are greater than the corresponding numbers of the other triple. Consequently it is not restrictive to suppose $A B>A^{\prime} B^{\prime}$ and $A C>A^{\prime} C^{\prime}$.

Then we can find $B^{\prime \prime}$ on $\overline{A B}$ such that $A^{\prime} B^{\prime}=A B^{\prime \prime}$ and $C^{\prime \prime}$ on $\overline{A C}$ such that $A^{\prime} C^{\prime}=A C^{\prime \prime}$. It follows that
$\triangle A^{\prime \prime} C^{\prime \prime} \cong \triangle A^{\prime} B^{\prime} C^{\prime}$ so that
$m \angle A B^{\prime} C^{\prime \prime}=m / B^{\prime}=m / B$.
Hence $\angle B^{\prime \prime} C^{\prime \prime}$ is supplementary to $\angle B$. Similarly $\angle C C^{\prime \prime} B^{\prime \prime}$. Is supplementary to $\angle C$. Therefore quadrilateral $B B^{\prime \prime} C^{\prime \prime} C$ has an angle measure sum of 360 . This contradicts Corollary 9 and our proof is complete.

We have here a striking contrast with Euclidean geometry. In view of Theorem 12, in Lobachevskian geometry there cannot be a theory of similar figures based on the usual definition. For if two trlangles were similar, the measures of their corresponding angles would be equal and they would have to be congruent. In general two similar figures would be congruent and so have the same size. In a Lobachevskian world, pictures and statues would have to be life-size to avoid distortion.

Now let us consider the question of measurement of area. For the sake of simplicity we restrict ourselves to triangles. Clearly the Euclidean procedure of measuring area in terms of square units will not apply since squares don't exist in Lobachevskian geometry. To clarify the problem we ask what are the essential characteristics of area. As a minimum we require:
(1) The area of a triangle shall be a uniquely determined. positive real number;
(2) Congruent triangles shall have equal areas;
(3) If a triangle T is split into two triangles T_{1} and T_{2} then the area of T shall be the sum of the areas of T_{1} and T_{2}.
It is easy to verify that the familiar formula for the area of a triangle in Euclidean geometry satisfies these conditions.

There is a similar area formula (or area "function") in Lobachevskian geometry but it is most naturally expressed in terms of the angles of a triangle. To state it formally we introduce the

Definition. The defect (or deficiency) of $\triangle A B C$ is $180-(m / A+m / B+m / c)$.

Note that the defect of a triangle literally is the amount by which lts angle measure sum falls short of 180 .

The defect of a triangle has the essential properties of area:

Theorem 13. The defect of a triangle satisfies properties (1), (2), (3), above.

Proof: Clearly (1) is satisfied since the defect of a triangle is a definite positive number. Property (2) holds since congruent trlangles have equal angle sums and so equal defects.

To establish (3) let $\Delta \mathrm{ABC}$ be given and let D be a point of $\overline{B C}$, so that $\triangle A B C$ is split into $\triangle \cdot A B D$ and $\triangle A D C$. The sum of the defects of the latter two triangles is

$$
\begin{aligned}
& 180-(\mathrm{m} / \mathrm{BAD}+\mathrm{m} / \mathrm{B}+\mathrm{m} / \mathrm{BDA})+180-(\mathrm{m} / \mathrm{CAD}+\mathrm{m} / \mathrm{c}+\mathrm{m} / \mathrm{CDA}) \\
= & 180-(\mathrm{m} / \mathrm{BAD}+\mathrm{m} / \mathrm{CAD}+\mathrm{m} / \mathrm{B}+\mathrm{m} / \mathrm{c}) \\
= & 180-(\mathrm{m} / \mathrm{BAC}+\mathrm{m} / \mathrm{F}+\mathrm{m} / \mathrm{c})
\end{aligned}
$$

which is the defect of $\triangle A B C$.
Are there other area functions besides the defect? It is easy to verify that if we multiply the defect by any positive constant k, we obtain an area function which satisfies Properties (1), (2), (3). This is not as remarkable as it might seem, since the specific form of our definition of defect depends on our basic agreement to measure angles in terms of degrees. If we adopt a different unit for the measure of angles and define "defect" in the natural manner, we obtain a constant multiple of the defect as we defined it. To be specific, suppose we change the unit of angle measurement from degrees to minutes. This would entail two simple changes in the above theory: (a) each angle measure would have to be multiplied by 60; (b) the key number 180 would have to be replaced by 60 times 180 . Thus the appropriate definition of "defect" would be 60 times the defect as we defined $1 t$.

Finally we note that it can be proved that any area function satisfying (1), (2), (3) must be k times the defect (our definition) for some positive constant k. In view of this it is natural to define the area of a triangle to be its defect.

Query. Which of the Properties (1), (2), (3) holds for the defect of a triangle in Euclidean geometry?

It $L s$ interesting to note that in Euclidean spherical geometry the sum of the ancle measures of a triangle is greater than 180 and the area of a triangle is given by its "excess", that is its angle measure \mathfrak{m} um minus 180.

Exerelse 1. Given $\triangle A B C$ with points, D, E, F in $\overline{A B}, \overline{B C}, \overline{A C}$ respectively. Prove that the defect of $\triangle A B C$ is the sum of the defects of the triangles $A D F, B E D, C F E$, and DEF.

Exercise 2. If points P, Q, R are inside $\triangle A B C$ prove that $\triangle A B C$ nas a larger defect than $\triangle P Q R$.

We conclude this part by observing that th- "amiliar Euclidean property - parallel lines are everywhere equidistant - fails in Lobachevskian geometry. In fact there are parallel lines of two types. If two parallel lines have a common perpendicular they diverge continuously on both sides of this perpendicular. If two parallel lines don't have a common perpendicular they are asymptotic - that is if a point on one recedes endlessly in the proper direction, its distance to the other will approach zero.

Conclusion

In 1 ts further development Lobachevskian geometry is at least as complex as Euclidean geometry. There is a Lobachevskian solid geometry, a trigonometry and an analytic geometry - problems in mensuration of curves, surfaces and solids require the use of the calculus.

You may object that the structure is grounded on sand - that Lobachevskian geometry is inconsistent and eventually will yield contradictory theorems. This of course was the implicit belief that led mathematiclans for 2,000 years to try to prove Euclid's Parallel Postulate. Actually we have no absolute test for the consistency of any of the familiar branches of mathematics. But it can be proved that the Euclidean and Lobachevskian geometries stand or fall together on the question of consistency. That is, 15 either is incoristent, so is the other.

Once the ice nad been broken by Bolyai and Lobachevsky's scocessful chrierge to Euclid's Parallel Postulate, mathematiräans were stimilates t. set up other non-Euclidean geometries - that is, geometric thec: 'es which contradict one or more of Euclid's Postulates, or approach geometry in an essentially different way. The best known of these was proposed in 1854 by the German mathematician Riemann (1826-1866). Riemann's theory contradicts Euclid's Parallel Postulate by assuming there are no parallel lines. This required the abandonment of other postulates of Euclid since we have proved the existence of parallel lines without assuming any parallel postulate (Corollary 3). In Riemann's theory, in contrast to those of Euclid and Lobachevsky, a line has finite length. Actually there are two types of non-Euclidean geometry assoclated with Riemann's name, one called single elliptic geometry in which any two lines meet in just one point, and a second, double elliptic geometry, in which any two lines meet \ln two polnts. The second type of geometry can be pictured in Eucliclean space as the geometry of points and great circles on a sphere.

582

Riemann also introduced a radically different kind of geometric theory which builds up the properties of space in the large by studying the behavior of distance between points which are close together. This theory, called Riemannian Geometry, is useful in applied mathematics and physics and is the mathematical basis of Einstein's General Theory of Relativity.

Bolyai and Lobachevsky have opened for us a door on a new and apparently limitless domain.

WINIATURE GEOMETRIES

1. Preamble. In a given set of postulates for a special part of mathematics, it is hardly to be expected that the laws of classical logic, the rules of grammar and a definition of all the ter... be in ded. We recsgnize their need but assume them whenever usec. $v=$ als assume that the reader is familiar with the usual lavs aritnmetic and aisebra that may be used. Indeed there may ze sther needed logical assumptions that are overlooked so that the emphasis may be planed upon the particular topic under immediate cis ussion, and the rostulates will be confined to those that have $=:$ mmediate geometric use.
2. Geracteristics of a postulate system. What postulates should we make? There is no definite answer to this question. The answer depends upon the aucience and upon the purpose and the preferences (or prejudices) of the individual. However, there are some deslrable characteristics of a postulate system, which we proceed to discuss. We may not be able to attain all of them, and may have to make some compromises.
(1) Simplicity.* The postulates should be simple, that is, easily understood by the audience for which they are intended. But simple is a relative term, and depends upon the experience of the audtence.
(2) Pauc:ty. It may be desirable to have only a few undeflned entitiee and relations and to make only a few assumptions about them. It may be necessary to sacrifice these characteristics to galn simplicity of understanding. Most texts on plane geometry for beginning students do sacrifice these characteristics, and some texts over-do it to avoid proving converses, espectally lf the method of proof by contradiction is needed. This puts a high premium on factual geometry as against logical geometry. It is not my purpose here to condemn or commend this

[^1]point of view. It all deper is upon the audience and the purpose of the text, but it may be very difficult to determine (except by the Rule of Authority) whetrer the system satisfies the next characteristic.
(3) Consistency. The postulate system should be consistent. It should not be self-contradictory. This part may be easy to determine. For example, we :ould not want to include two assumptions such as (A): Two lines in the same plane aiways have a point in common (Projective Geometry) and (B): There are lines in the same plane that have no point in common (Euclidean Geometry). But more is needed. The postulate system should never lead to a contradiction. This may de difficult to determine or impossible to determine. We seldom know all the consequences of the postulate system, and in that case the proof of absolute consistency may not he possible. We content ourselves with relative consistency. If' we can give at least one interpretation of the undefined terms based upon our experiences or experiments for which we grant all the assumptions are true, we are satisfied. We call such an interpretation a model. In the wese - a simple sistem such as that for a miniature geometry, the construction of such models may be possible, and indeed in more than one way. In a complex postulate system, such as that needed for all of Euclidean Geometry, logically developed, this may be extremely difficult. If we have more than one model for the same system so that we can find a correspondence connecting every entity and relation of one model with an entity and relation of each of the other models, that is, put the models into one-to-one correspondence, we say the models are isomorphic. We shall do this for some of our miniature geometries. But for more complex geometric systems, we may not have more than one model. The relative consistency of Euclidean Geometry is proved (but it is much too difficult for us to do it) by using arithmetic as a model, and showing it is possible to put Euclidean Geometry into one-to-one correspondence with arlthmetic logically developed. Since we have never found a contradiction in arlthmet.lc, we are content to say Euclidean geometry is as consistent as arithmetic. If we wish to prove that a non-Euclidean
geometry is relatively consistent, we fird a model (interpretation) whin Euclidean geometry for it and after that is done (it is not an easy task and is beyond our intent), we know non-Euclide.: geonetry is consistent if Euclidean geometry is. This is n, the only way it can be done, for arithmetic (algebraic) methods cre also avallable.
(4) Independence. It may be desirable to have all tre postulates independent, especially if we are seeking models. By that we mean that the postulate system is such that no postulate can be derived from the others. The arguments present in (2) above are again applicable. In a given postulate system, it may be possible to prove that some of the assumptions could be derived from others, but it may be so difficult that it is a task to be avoided. However, it is not really difficult to prove: "Two distinct lines cannot have more than one point $\leq=$ common" roan the assumption: "Thores che and on.jy one line that contains two distinct points". The method of contradiction is used, and this polnts out the essential importance of this method of proof if we wish to make good use of our ase mptions of logic. The independence of all the postulates of a sytem is most readily found in terms of models. If we can find a model that satisfies all but one of the postulates and denies that one, then that particular postulate is independent of the others. If we can do this for each postulate \ln turn, then the postulates form an independent system.
(5) Completeness: A postulate system for Euclidean geometry, or any other special geometry we wish to discuss, should also be complete. That is, we must include enough postulates to prove all the theorems we wish to prove. This topic will not be discussed In detail here; it is enough to include a warning not to overlook tacit assumptions as Euclid* and his imitators did.
*See-Felix Kleln, Elementary Mathematics from an Advanced Standpoint; Meserve, The Foundations of Geometry, p. 230-231; Wilder, Foundations of Mathematics, Chapter 1, 2.

We illustrate various ideas mentioned above by confining our attention to incidence properties alone and make no attempt to discuss postilates of measure or separation, but do recognize that parallelism :- essentially an incidence property. First we confine our attention to three types of miniature geometries which contain only a finite number of points and lines:
I. A three point - three line geometry; II. A four point - six line geometry; III. A seven point - seven line geometry.

After that we illustrate the incidence properties of Hyperbolic Geometry by considering two models in which the number of points on a line is infinite and where we change the Parallel Postulate from ts usual Euclidean form.
3. Etheee point geometry.

Undefined: point, line, on.
Concerning these undefined terms, we make the following four postulates:

Pl. There exist three and only three distinct points.
P2. On two distinct points there is one and only one line.
P3. Not all points are on the same Itne.
P4. On two distinct lines there is at least one point.
As far as consistency is concerned, there does not seem to be any direct contradiction. The relative consistency of the system is accepted on the basis of any one of the following three isomorphic models.
(a) The usual model of a triangle, consisting of three non-collinear points, but here a line contains only two points. The line segments of a more complete geometry are merely drawn to point out the three pairs of points. A line is merely a set of
 two points. It is easy to observe that Postulates Pl - P4 are all satisfied.
(b) A group of three boys forming committees of two in all possible ways. If the boys are called A, B, C, the committees are the three pairs $(A, B),(B, C),(C, A)$. If the postulates are read with 'boy' replacing 'point', 'committee' replacing 'line' and 'member of' replacing 'on', with possible changes in language to preserve the meaning, it is easy to see P1, P2, P3 are obviously satisfied by the way the committees were formed. A simple observation of the three committees checks P4.
(c) Points are interpreted as the special ordered number triples $(x, y, z): A(1,0,0), B(0,1,0), C(0,0,1)$. Lines are interpreted as the special equations $x=0, y=0, z=0$. A 'point' is 'on' a 'line' if its coordinates satisfy the equation of the line.

Pl follows from our choice of coordinates.
P2 must be verified: $A(1,0,0)$ and $B(0,1,0)$ are both on $z=0$ but not both are on $x=0$ or $y=0$. A similar verification is needed for the other pairs of points.

P3: The point $A(1,0,0)$ does not satisfy the equation of the line $\overleftrightarrow{B C}, x=0$.

P4: There are three distinct pairs of lines (i) $\mathrm{x}=0$, $y=0 ;(1 i) y=0, z=0 ;$ (i1i) $z=0, x=0$. It is easy to verify that $C(0,0,1), A(1,0,0), B(0,1,0)$ lie on the pairs (i), (ii), (iii) respectively.

We prove three theorems directly from the postulates without a model. For heuristic purposes any one of the models could be used.

Theorem 1. On two distinct lines there is not more than one point.

Proof: If two lines had two distinct points in common, then Postulate P2 would be contradicted. Hence Theorem 1 is true.

Theorem 2. There exist three and only tiree lines.
Proof: Since there are three and only three points (Pl), there are only tiree pairs of points: $(A, B),(B, C),(C, A)$. Each such pair determines one and only one line (P 2). These lines are all distinct (P3). Hence there are three and only three lines.

Theorem 3. Not all lines are on the same point.
Proof: There are three and only three lines (A, B), (B, C), (C, A), (Theorem 2). The first and third are on the point A, but this point is not on the line (B, C) because of $P 3$. A similar argument concerning the points B and C completes the proof.

Of course all three of these theorems could have been verified In any model. That is, we could have taken them as postulates too, but then the system would not have been an independent one. To demonstrate the independence of the original system P1-P4 we use geometric models but either of the other models could be used equally as well. We use the notation $P H^{\prime}$ to indicate that $P 4$ is denied but $P 1, P 2, P 3$ are satisfied. Similar meanings are given to $P 3^{\prime}, ~ P 2^{\prime}$, and $P 1^{\prime}$. The model $P^{\prime \prime}$ is constructed by adding a fourth line (denying Theorem 2) in such a way that there are two lines which have no point in common. This denies P4,

but the other postulates are satisfied. In the model P3', all three points are on the same line and the other postulates may be verified. In the model $\mathrm{P} 2^{\prime}$, there are two lines whicn contain both A and B. In terms of the committee interpretation you may think of A and B both belng on two distinct committees, say the Einance Committee and the Custodian Committee. The model for Pl' ls not shown here. It must contain more than three points.

The smallest such model which will also satisfy the other acioms is the model for a seven point geometry to be discussed in Section 5. After that model is $\mathrm{F}=\mathrm{me}$ ented the proof of the independence of the system Pl-P4 will $5=$ complete.
4. A four point geonetry. Again point, line, and on are underined. To distinguish the postulates from those just used we use the letter Q.

Q1. There exist four and only four distinct points.
Q2. On two distinct points there is one and only one line. (P2)

Q3. Every line contains two and only two points.
Theorem 1. There exist six and only six lines.
Proof: The number of pairs of points is the number of combinations of four things taken two at a time, $4_{4} C_{2}=\frac{4 \cdot 3}{2}=6$ (Q1) and this is the number of lines (Q2). These lines are all distinct, (Q3). Hence the theorem is proved.

If we call the points $0, A, B, C$, the lines are represented by the point pairs $(O, A) ;(O, B) ;(O, C) ;(A, B) ;(A, C) ;(B, C)$.

Definition. Two lines are paraliel if they have no point in common.

Note that the word parallel is used in a very special sense. No concept of a plane has yet been introduced.

Theorem 2. Through a given point not on a given line there is one and only one line parallel to the given line.

Proof: A glven point, say A, lies on three and only three lines and these lines are distinct (Q1, Q2, Q3). If we pick one of these lines, say $A O$, neither of the remaining points, B and C, can lie on lt (Q3), and hence the two lines have no point in common and so are parallel by definition.

Several models of this geometry are avallable. The two-member committee model is quite apparent. Each member is on three committees but there is always a unique second committee that can meet while this member is engaged in committee business.

In order to present geometric models, we imagine the model to be embedded $1 . n$ ordinary Euclidean geometry and then abstract from the diagram those features that are wanted. One such model is that of a complete quadrangle (a term borrowed from projective geometry) which consists of four points, no three collinear, and the six lines which they determine by pairs. Of course you must recognize that our line is only a point-pair. It is easy to verify that Postulates Q1, Q2, Q3 are all satisfied. Models Q1', Q2', Q3', needed to prove the postulates are independent, are more or 1 ess self-explanatory. C

Q1, Q2, Q3

Q3'

If the model Q2' bothers you, think of it in terms of a diagram drawn on a sphere with N and S being the poles, or if you know something of chemical bonds, think of it in terms of a double bond between N and S, and all the rest as single bonds.

The figure for $\mathrm{Q} 1, \mathrm{Q} 2, \mathrm{Q} 3$ could be imagined in ordinary 3 -space thus forming a tetrahedron. Indeed we could then add additional postulates.

Undefined: plane.
Q4. On three points there is one and only one plane.
If we think entirely in terms of plane geometry each of the models already drawn also satisfy $Q 4$.

Q5. Every plane contains three and only three points.
None of the models of plane geometry satisfy this axiom, which, however, is satisfied by the tetrahedron model. That is, the tetrahedron model satisfies all five postulates Q1 - Q5. It is possible to present models in 3 -space to prove the independence of these five postulates but this will not be done here, but the reader is urged to try his hand at it.

Another property of the tetrahedron model that the reader may be interested in proving is that it satisfies Incidence Postulates $1,6,7,8$, and Existence Postulate 5 of our text.

The committee interpretation of this enlarged system takes into account three-member committees as well as two-member commitues. Our tetrahedron model is for a four point - six line - four plane geometry.

Let us return to the system Q1, Q2, Q3 and its two geometric interpretations and discuss algebraic systems isomorphic to them. For the complete quadrangle model, we consider points as the special ordered number triples $(x, y, z): A(1,0,0) ; B(0,1,0)$; $C(0,0,1) ; O(1,1,1)$. As lines we take the six equations $x=0$, $y=0, z=0, x=y, y=z, z=x$. We say a point is on a line if its coordinates satisfy the equation of the line.

Q1 is satisfied by the way coordinates were introduced. It is now possible to verify Q2 and Q3. There are six pairs of points and it is possible to show that any pair lies on one and only one line and this line contains neither of the other points. For example, $B(0,1,0)$ and $C(0,0,1)$ satisfy the equation $x=0$, but nelther $A(1,0,0)$ nor $O(1,1,1)$ do; $B(0,1,0)$ and $O(1,1,1)$ satlsfy the equation $x=z$, but neither of the points $A(1,0,0)$ or $C(0,0,1)$ do. Similarly, for the four other pairs.

For the tetrahedron model, we consider points as the special ordered number triples $(x, y, z): A(1,0,0) ; B(0,1,0) ; C(0,0,1)$ and $0(0,0,0)$. (Note the difference between the two models.) As the lines we consider the six pairs of equations which can be formed from the four equations $x=0, y=0, z=0, x+y+z=1$.
(These are the equations of the four pinnes.) $Q 1$ is satisfled by the way coordinates were introduced. It is now possible to verlfy Q2 and Q3. For example, $B(0,1,0)$ and $C(0,0,1)$ satisfy the two equations $x=0, x+y+z=1$, but both do not lie on either $y=0$ or $z=0$. A similar analysis can be given for every other pair of points. In this algebraic model, Postulates Q4 and 25 also may be verified.
5. A seven point geometry. As mentioned earlier this geometry is one that denies the existence of only three points but satisfies P2, P3, P4 of the three-polnt geometry. We repeat these postulates for convenience of reference. The essential distinction between this geometry and those already discussed is that every line contains three and only three points. It is necessary to include a postulate which guarantees there is at least one line.

Undefined: point, line, on.
P2. On two distinct points there is one and only one line.
P3. Not all points are on the same line.
P4. On two distinct lines there is at least one point.
P5. There exists at least one line.
P6. Every line is on at least three points.
P7. No line is on more than three points.
Of course P6 and P7 could be put together to say: Every line is on three and only three points.

We construct a special model for this postulate system by selecting seven distinct points, which we call A, B, C, D, E, F, G. We deftne seven and only seven lines, a, b, c, d, e, f, g, each befng a set of three points, by means of the foliowing table.

A	B	C	D	E	F	G
B	C	E	A	G	D	F
F	D	A	G	B	E	C
C	a	b	d	e	G	f

It is not our purpose to discuss the many theorems that can be proved from this postulate system, but to point out several interpretations of it. It may bother you a bit to call (D,E,F) a line, but it is a line by definition fust as much as the triple (A, B, F) is a line. Of course this geometry is not like the Euclidean geometry of your experience -- it is a finite projective geometry where we have considered only incidence properties. However, its interpretation as a group of seven persons and seven conmittees of three and only three members is also available. Since we set up the model by definition (committee aspect) and then drew a diagram to correspond, we must verify all the Postulates P2 to P7. This may be long in detail but it is not difficult. There are 21 pairs of points $\left({ }_{7} C_{2}=\frac{7 \cdot 6}{2}\right)$ and 21 pairs of lines, but an examination of the table shows that each row contains each letter once and only once, and each letter is in three and only three columns, and this will simplify the details. It is merely time consuming to verlfy all the postulates; these postulates are all satisfied in the geometric model. To verify $P 4$, for example, from the table, it is necessary to consider 21 pairs of lines, and indeed it is easy to verify not only that each pair has a point in common (there are no pairs of parallel lines) but only one point in common.

The results can be tabulated as follows

c	a	b	d	e	g	f
b	e	f	a	g	c	d
d	c	a	${ }_{5}$	b	f	e
A	B	C	D	E	F	G

Not only may we verlfy $P 2-P 7$ in this way, but also the dual of each of these statements. The dual is obtained by interchanging the words point and line wherever they appear. For example, the dual statement to $P 6$ and $P 7$ combined would read:

$$
346
$$

D6, 7. Every point is on three and only three lines.
This is easily verified from the defining table.
The algebraic isomorphism for this geometry consists of the following assignments of coordinates to points and equations to lines:
$A(1,0,0) ; B(0,1,0) ; C(0,0,1) ; D(0,1,1) ; \quad E(1,0,1) ; \quad F(1,1,0)$; $G(1,1,1) ; a: \quad x=0 ; b: \quad y=0 ; c: \quad z=0 ; d: \quad y=z ;$ e: $\quad x=z ; \quad f: \quad x=y ; \quad E: \quad x+y+z=2$.

All the postulates could be verlfied purely algebraically. For example, $D(0,1,1)$ and $E(1,0,1)$ both lie on the line $x+y+z=2$, but not both are on any other line. The line $\mathrm{x}=\mathrm{y}$ contains the three points $\mathrm{C}(0,0,1), G(1,1,1), F(1,1,0)$ but no other point. This is enough to give the general idea.
6. Models for a hyperbolic geometry. In order to discuss such a model, it will be embedded in a Euclidean plane. Hence we assume that the postulates of Euclidean geometry as stated in the text have been made and Euclidean geometry has been developed. We. will use the terms point, line, plane, and circle as developed in such a treatment. The corresponding words placed in quotes will stand for entities in a new geometry, and will be defined by means of Euclidean terms. In this way we will: obtain models to illustrate some of the incidence properties of hyperbolic geometry.

The first model is often called a projective model, but the explanation of the term is beyond our present means. Consider a circle. We define a "point" of our new geometry to be a point in the interior of the circle; a "line" is a chord of this circle without its end-points; the "plane" is the interior of the circle. It is easy to observe that two "lines" may or may not
 intersect. If two chords of the circle
intersect on the circle, we say ihat the corresponding "lines" are "parallel". Note that there is a definite distinction between two "lines" being "parallel" and two "lines" not intersecting. It is
also easy to observe that throuch a given "point" P, there are exactly two "lines", $\overline{F A}$ and $\overline{P B}$, which are "parallel" to the "line" $\overline{A B}$, and that there are an infinite number of "lines" throuch P that do not intersect the "line" $\overline{A B}$.

In the above model length and angular measure are distorted, and a study of projective geometry is needed to discuss the model. There ls a model, called Poincaire's Universe, where length is distorted but angular measure is not (but no proof is intended). To understand tnis model some knowledge of orthogonal circles in Euclidean Eeometry is required, and the corresponding theorems are not usually presented in an introductory course in plane geometry. We state the necessary definitions and theorems (without proof).

Two circles are orthogonal if their angle of intersection is a rleht angle. By the angle of intersection of two circles we mean the angle between the tangent lines draw at a common point.

Through two points there is one and only onc iircle (or line) orthogonal to a given circle.

In the PoIncaire model, a "point" is again a point inside a Given circle C, and the "plane" is the set of all points in the Interior of the circle. A "line" is either a diameter of the circle C, without its end-points, or that part of a circle orthogonal to the circle C which lies inside C. We note, therefore, that through two "points" there is one and only one "line". Two "lines" are said to be "parallel" if their corresponding diameters or circles intersect on C. It is again easy to observe that through a given "point" P, there are two "lines" $\overparen{P A}$ and $\widehat{P B}$, which are "parallel" to the "line" $\overparen{A B}$, and that there are an infinite number of "lines" through P that do not intersect the "line" $\overparen{A B}$. One more idea may be observed in this diagram (based on the assumption that angular measure is not distorted).
"The sum of the measures of the "angles" of a "triangle" such as $\triangle \mathrm{PQR}$ or $\triangle \mathrm{APB}$ is less than 180."

A more detailed study of the geometry of the circle in the Euclidean plane, including a study of the concept of cross-ratio is needed to carry the discussion further. Some further results and suggestions or indications of ideas that might be investigated can be found in Eves and Newson, Introduction to Foundations and Fundamental Concepts of Mathematics.

AREA

It is possible to revelop the theory of area, as far as we need it, from a very simple set of postulates, which are intuitively acceptable. In some rospect they are more intuitive than the ones given in the text, being stmpler to state and requiring fewer preliminary definitions. For example, it is not necessary to define polygonal region in order to state the postulates. It is satisfying that this is one of the many cases in mathematics in which intuition and rigor go hand in hand. We shall sketch this development a.t least up to the point where it is clear that we could proceed as in the text, by deriving as theorems the postulates of the text which are not already included in our set. Some of the early theorems may appear obvious and hardly worth proving; but if we recognize the fact that postulate systems are constructed by fallible humans and need to be tested by their consequences, then we should derive satisfaction from the provability of some "obvious" statements by means of our postulate system.

We always speak of the area of something, and this something is a region or a figure -- which are simply names for certain sets of points in a plane. Thus, area is a function of sets, an assignment of a unique real number to a set. Whenever we speak of a function, it is important to be quite clear as to the domain of the function, that is, the set of objects for which the function provides us with an answer. In our case, we must ask, what sets are to have an area assigned to them? We could limit ourselves, if we wished, to simple sets, like polygonal regions. This has the disadvantage that it eliminates regions bounded by circles, ellipses, hyperbolas, and other smooth curves, regions which (our intuition tells us) should have areas. Of course, we do not want huge sets like the whole plane, or half-planes, or the interiors of angles, to have area. These all have the property of being unbounded. Fortunately, it can be proved that it is possible to assign a reasonable area to every reasonable set in the plane. The first

598
\cdots
"reasonable" means that the area function will not violate our intuition. The second "reasonable" we shall interpret in the widest possible sense, namely, as "bounded". A bounded set is, one that can be enclosed in some square (or circle). We shall therefore adopt as our first area postulate the following:

Postulate Al. There is a function A (called area) defined for all bounded sets in the plane: to each bounded set S, A assigns a unique non-negative number $A(S)$.

Let us observe immediately that a point and a segment are bounded sets, so we have committed ourselves to the unfamiliar position of attributing an area to such sets. The area will turn out. to be zero, of course. There are excellent precedents: let us recall that we have allowed ourselves to speak of the distance from a point to itself as being zero. Analogously, in the theory of probability it is useful to have events with zero probability, even though the events are possible. Indeed, the theories of linear measure, area, volume, probability, and counting all have a great deal in common, since they are concerned with assigning measures to various sets. Far from being a disadvantage, the concept of zero area is extremely valuable. It makes explicit our sound intuition of what sets are "negligible" as far as area is concerned. For example; the Area Addition Postulate in the text (Postulate 19) essentially asserts that the area of the union of two sets is equal to the sum of their areas, provided that they overlap in a "negligible" set -- a finite union of points and segments. It is somewhat easier to accept an Area Addition Postulate in winch the "negligible" set is the empiy set, as in Postulate A2 that follows, and to prove later that certain sets really are "negligible".

Postulate A. If S and T are bounded sets in the plane which have no points in common, then the area of the union of S and T is equal to the sum of the areas. That is, if V is the union of S and T, then $A(V)=A(S)+A(T)$.

We have already remarked that Postulate A2 is weaker in one respect than the Area Addition Postulate in the text, for it does not allow even one point in common to the sets S and. T. Observe also that Postulate A2 does not need to assert the existence of $A(V)$. This is in fact a simple consequence of Postulate $A l$, for the union of two bounded sets is also bounded.

Our third postulate will give the essential connection between our geometry and area. For this we need a somewhat more general concept of congruence than the usual one. Two sets will be called congruent if there is a one-to-one correspondence between them which preserves all distances. More precisely, suppose there is a one-to-one correspondence between S and T such that, A and B being any points of S corresponding to A^{\prime} and B^{\prime} in T, the distance $A B$ is equal to the distance $A^{\prime} B^{\prime}$. Then we shall say that S is congruent to T, or $S \cong T$. Our definitions of congruence for segments, angles, triangles, and circles are special cases of this more general definition. For a fuller treatment, see the Appendix on Rigid Motion and the Talk on Congruence. If our area function is to be reasonable, then congruent sets should have the same area:

Postulate A3. If S is a bounded set and $S \cong T$, then $A(S)=A(T)$.

Again, it is easy to see intuitively that if S is bounded and $S \cong T$, then T is bounded, and $A(T)$ exists by Postulate Al.

Now let us consider the area of a square of side 1 together with its interior: For all we know from the first three postulates, this area might be 0 . This does violence to our intuition, and even more, we could then prove that every bounded set has area 0 . Therefore we must postulate that this area is positive, say equal to k. But then the new area function defined by $A^{\prime}(S)=\frac{1}{k} A(S)$ would be just as good as the old and would have the desirable property that $i i$ assigns the value 1 to the unit square and its interior. We shall therefore postulate this immediately:
postulate Al. In S lis the set consisting of a square of aide 1 togetner with its interior, then $A(S)=1$.

This postulate essentially does no more than (a) rule out the trivial case of a constantly zero area function, and (b) fix the unlt by which we measure the area of a set. We can think of It as a normalization postulate, and shall speak of our area function as being normalized.

Sunning up our four postulates -- these are all we need -- we see that we have a non-negative (Postulate Al), finitely-additive (Postulate A2), normalized (Postulate A4) function of bounded sets in the plane (Postulate Al), invariant under rigid motion (or congruence) (Postulate A3). The term "finitely-additive" refers to the fact that we can easily replace the two sets in Postulate A2 by any finlte number of sets, no two of which have a point in common.

At the becinnine of this talk, we stated that it is possible to asslen a reasonable aree to every reasonable set in the plane. This theorem, asserting the existence of such a function, is rather deep and difficult to prove. Nevertheless, it provides us with a sound basis for a treatment of area in the plane. The set of four postulates matches our intuition quite well, especially If we have not subjected to close scrutiny the vast generality involved in the phrase "all bounded sets in the plane". It should be remarked that the theorem does not guarantee a unique function, but any two functions that satisfy the conditions will agree for decent, non-pathological sets such as polygonal regions, circular regions, and recions bounded by arcs of smooth curves like parabolas, hyperbolas, ellipses, etc.

It would be pleasant if this treatment could be generalized to volume in three dimensions. Surprisingly, the corresponding statement in thrse dimensions is false. One form of the BanachTarski Paradox asserts that it is possible to split each of two spheres of different radii into the same finite number of sets, corresponding sets irom each sphere belng congruent. If the threedimensional statement were true, the corresponding sets would have
equal volumes, by the invariance under congruence, and therefore the spneres would have equal volume, by the finite-additivity of volum . On the other hand, the usual formula for the volume of a sphere would be valid, thus leading to a contradiction. In threedimensions, therefore, it is necessary to limit our volume function to a more restricted class of sets than the bounded ones. This restriction is no cause for alarm, since the resulting domain of the volume function is still much wider than we need for ordinary purposes. The sets that we exclude are all really "wild". With this one modification the methods used here are still applicable in three-dimensions.

Now we shall proceed with the business of developing the consequences of our set of postulates. These consequences we shall state as theorems. First, however, we need a simple result which has nothing directly to do with area, but which is a basic property of our real number system.

Theorem 1. If a is a non-negative number such that for every positive integer number n, na ≤ 1, then $a=0$.

The statement may seem a little strange, but it is specifically designed to yield the type of result needed, namely that a certain number is 0 . For example, suppose that we wish to prove that a certain formula yields the correct value for the area of a given figure. Let the area be A and the number given by the formula be B. Denote by a the absolute value of their difference, $|A-B|$. Then we wish to prove that $a=0$. We may be able to show that no multiple of a exceeds 1 . If so, then Theorem 1 assures us that $a=0$ and therefore that $A=B$. Another way of stating Theorem lis: There is no positive number which is simultaneously $\leq 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$. Still another way is: Every positive real number is less than some positive integer." If we regard this last statement as belng a known property of real numbers, then the proof of Theorem 1 is quite easy. Suppose, indeed, that a satisfies the hypotheses of the theorem, but that $a>0$. Then $\frac{l}{a}$ is a positive number, and there is a positive

Integer n such that $\frac{1}{a}<n$, by what we have just sald. For this $n, 1<n a$, contradicting the hypothesis na ≤ 1. Therefore the assumption $a>0$ is false. Since $a>0$ or $a=0$ by hypothesis, and the first is false, the second must be true.

We ean now prove some rather obvious results which are usually assumed implicitly in customary treatments. They are, in fact, somewhat less obvious than some of the theorems that Euclid took the trouble to prove (e.g., the theorem that vertical angles are congruent). It is interesting to contemplate what the situation mi天ht have been if Euclid had decided that these were worthy of statement and proof. Perhaps school boys for centuries would have studied and proved:

Theorem 2. The area of a point is 0 .
Proof: Let S be a unit square plus its interior. By Postulate $A^{\prime}, ~ A(S)=1$. Let n be an arbitrary positive integer, and choose n points $P_{1}, P_{2}, \ldots, P_{n}$ in S. If T is the set $\left\{P_{1}, \ldots, P_{n}\right\}$, then by Postulate $A 2$ (rather, by the generalization of Postulate A2 to n disfoint sets), we have $A(T)=A\left(P_{1}\right)+A\left(P_{2}\right)+\ldots+A\left(P_{n}\right)$. Now any two one-point sets are congruent, so by Postulate $A 3, A\left(P_{1}\right)=A\left(P_{2}\right)=\ldots=A\left(P_{n}\right)$, and $A(T)=n A\left(P_{1}\right)$. Let R be all of S except for the points of T. Then R and T have no points in common and their union is S. By Postulate A2,

$$
A(T)+A(R)=A(S)
$$

By Postulate $A 1, A(R) \geq 0$. Therefore

$$
A(T) \leq A(S)
$$

Substitutin\& 1 for $A(S)$ and $n A\left(P_{1}\right)$ for $A(T)$, we gei

$$
\mathrm{nA}\left(\mathrm{P}_{1}\right) \leq 1
$$

In Theorem 1 , we may take $a=A\left(P_{1}\right)$, since $A\left(P_{1}\right)$ is non-negative by Postulate Al. Therefore $a=0$, that is, $A\left(P_{1}\right)=0$. Since every point is congment to $P, A(P)=0$ for every point P, by Postulate A3.

Observe that. in the proof of Theorem 2, we proved and made use of a special case of:

35;

Theorem 3. If T is a subset of the bounded set S, then $A(T) \leq A(S)$.

The proof may be left to the reader.
Now we state a useful theorem which is similar to Postulate A2, but which has a weaker hypothesis.

Theorem 4. If S and T are bounded sets, V is the union of S and T, and I is the intersection of S and T, then $A(V)=A(S)+A(T)-A(I)$.

Proof: Let S^{\prime} be the part of S not in T. Then the union of S^{\prime} and I is S, and $S!$ and I are disjoint. By Postulate A2,

$$
A(S)=A\left(S^{\prime}\right)+A(I) .
$$

Also, the union of S^{\prime} and T is V, and S^{\prime} and T are disjoint. By Postulate A2,

$$
A(V)=A\left(S^{\prime}\right)+A(T)
$$

Therefore

$$
\begin{aligned}
A(V) & =A(S)=A(I)+A(T) \\
& =A(S)+A(T)-A(I) .
\end{aligned}
$$

Theorem 5. If S and T are bounded sets and V is their union, then

$$
A(V) \leq A(S)+A(T)
$$

The proof follows from Theorem 4 on observing that $A(I) \geq 0$, by Postulate Al.

Theorem 6. If $S_{1}, S_{2}, \ldots, S_{n}$ are bounded sets and V is their union, then

$$
A(V) \leq A\left(S_{1}\right)+A\left(S_{2}\right)+\ldots+A\left(S_{n}\right)
$$

The proof follows from Theorem 5 by induction.
Next, we prove another "obvious" theorem.
Theorem 7. The area of a segment is 0 .
Proof: Let $\overline{B C}$ be a Eiven segnent, of length k. There is a natural number in such that $k \leq m$. On the ray $\overrightarrow{B C}$,

let D be the point such that $B D=m$. To prove that $A(\overline{B C})=0$ it is suffictent to show that $A(\overrightarrow{B D})=0$, by Fostulate $A l$ and Theorem 3. Now $\overline{B D}$ is the union of m segments S_{1}, \ldots, S_{m} of length 1 . These segments are not disjoint, but we can still apply Theorem 6 to get

$$
\begin{aligned}
A(\overline{B D}) & \leq A\left(S_{1}\right)+\cdots+A\left(S_{m}\right) \\
& =m A\left(S_{1}\right),
\end{aligned}
$$

since S_{1}, \ldots, S_{m} are all concruent. Therefore it is sufficient to show that a segment of length 1 has area 0 . The proof of this proceeds as in Theorem 2, by fltitine an arbitrary number n of disjoint unit segments within a unit square. We omit the details.

We are now in a positilon to prove that the boundary of a polygonal region (defined in Chapter li) has no influence on its area.

Theorem 8. Lat R bo a polygonal region and let R^{\prime} be the same region with all or part of the boundary removed. Then $A\left(R^{\prime}\right)=A(R)$.

Proof: Let R_{0} be the region R with all of the boundary removed. Then R_{0} is contained in R^{\prime} and R^{\prime} is contained in R. Therefore

$$
A\left(R_{0}\right) \leq A\left(R^{\prime}\right) \leq A(R),
$$

by Theorem 3. It is sufficient to show that $A\left(R_{0}\right)=A(R)$. Let B be the boundary, consisting of a finite number of segments. By an application of Theorem 6, Theorem 7, and Postulate Al, we find that $A(B)=0$. But R is the union of the disjoint sets R_{0} and B, so

$$
A(R)=A\left(R_{0}\right)+A(B)=A\left(R_{0}\right),
$$

and the proof is complete.
Postulate 19 of the text now follows readily, since the overlap of the two regions R_{1} and R_{2} consists of a finite number of points and segments, and the area of the overlap is 0 . We state Postulate 19 as a theorem, but omit the proof.

Theorem 9. Suppose that the polygonal region R is the union of two polygonal regions R_{1} and R_{2}, which intersect at most in a finite number of segments and points. Then $A(R)=A\left(R_{1}\right)+A\left(R_{2}\right)$.

Now conslder a rectangle R of base b and altitude a. We are alming at a proof that $A(R)=a b$, this being Postulate 20 of the text.

358

Choose an arbitrary positive integer n, and determine p and q, also positive integers, by the conditions

$$
\begin{aligned}
& \frac{p-1}{n}<b \leq \frac{p}{n}, \\
& \frac{q-1}{n}<a \leq \frac{q}{n} .
\end{aligned}
$$

Starting at K, lay off $口$ segments of lenGth $\frac{1}{n}$ along ray $\overrightarrow{K L}$ and q segments or length $\frac{1}{n}$ along ray $\overrightarrow{K N}$. Then L is on the p-th segment on $\overrightarrow{K L}$ and N^{n} is on the q-th segment on $\overrightarrow{K N}$. The rectangular region R is now enclosed between two rectangular regions S and T, where S has dimensions $\frac{p-1}{n}$ and $\frac{q-1}{n}$, T has dimensions $\frac{p}{n}$ and $\frac{q}{n}$. Therefore

$$
A(S) \leq A(R) \leq A(T)
$$

Now S consists of $(p-1)(q-1)$ square regions of side $\frac{l}{n}$, and T consists of $p q$ square regions of side $\frac{1}{n}$. If the area of one of these square regions is A_{n}, then

$$
\begin{aligned}
& A(S)=(p-1)(q-1) A_{n}, \\
& A(T)=p q A_{n},
\end{aligned}
$$

so

$$
(p-1)(q-1) A_{n} \leq A(R) \leq p q A_{n}
$$

It remains to compute A_{n} and then $A(R)$. But a unit square, whose area $i s 1$, can be split up into n^{2} squares of side $\frac{1}{n}$,

$$
\begin{aligned}
1 & =n^{2} A_{n} \\
A_{n} & =\frac{1}{n^{2}}
\end{aligned}
$$

Therefore

$$
(p-1)(q-1) \cdot \frac{1}{n^{2}} \leq A(R) \leq p q \cdot \frac{1}{n^{2}}
$$

Now, from the conditions determining p and q^{n}.

$$
\frac{p-1}{n} \cdot \frac{q-1}{n} \leq a b \leq \frac{p}{n} \cdot \frac{q}{n}
$$

The two fixed numbers $A(R)$ and $a b$ both lie in the interval with end-points $\frac{p-1}{n} \cdot \frac{q-1}{n}, \frac{p}{n} \cdot \frac{4}{n}$, so the absolute value of their difference is at most equal to the lengut of the interval:

$$
\begin{aligned}
& |A(R)-a b| \leq \frac{p}{n} \cdot \frac{q}{n}-\frac{(p-1)}{n} \cdot \frac{(q-1)}{n} \\
& |A(R)-a b| \leq \frac{p-q-1}{n^{2}}
\end{aligned}
$$

Since $\frac{D^{2}}{n^{2}}$ is approximately $\frac{b}{n}$ and $\frac{q}{n^{2}}$ is approximately $\frac{a}{n}$, the right side is approximately $\frac{1}{n}(a+b)$, which is very small if n is large. An application of Theorem 1 to the fixed non-negative number $\frac{|A(R)-a b|}{(a+b)}$ would then yield that this number is 0 . To make this argument precise, choose n so large that $\frac{l}{n} \leq a$ and $\frac{1}{n} \leq b$. Then $\frac{p-1}{n}<b$ implies that

$$
\frac{p}{n}<b+\frac{l}{n} \leq 2 b
$$

and $\frac{a-1}{n}<a$ implies that

$$
\frac{q}{n}<a+\frac{1}{n} \leq 2 a .
$$

Therefore

$$
\frac{p+q-1}{n^{2}}<\frac{p+q}{n^{2}}=\frac{1}{n}\left(\frac{p}{n}-\frac{q}{n}\right) \leq \frac{2 a+2 b}{n}
$$

Combining this with our previous inequality, we get

$$
|A(R)-a b| \leq \frac{2 a+2 b}{n},
$$

or

$$
n \cdot \frac{|A(R)-a b|}{2 a+2 b} \leq 1
$$

for all sufflctently large positive integers n, and therefore for all n. By Theorem 1 ,

$$
\frac{|A(R)-a b|}{2 a+a b}
$$

10 0, so $A(R)=a b$. This completes the proot of:

608

Theorem 10. The area of a rectangle is the product of its base and altitude.

We have now reached our goal of establishing Postulates 17-20 of the text from our system of Postulates Al-A4. This may not seem like a great accomplishment if we are interested in polygonal regions only, but it permits the evaluation of areas of other regions without the necessity of making ad hoc extensions of the domain of the area function at a later stage. It provides us with an excellent example of the power of deductive reasoning. Finally, the transition from here to the integral calculus is a smooth and natural one. For example, the calculation of the area under the curve $y=x^{n}$, for all integers n (including $n=-1$) can be carried out on the basis of this development, without any rererence to the differential calculus.

[^0]: **

 * Documents acquired Ey ERIC include many informal unpublished
 * materials nct available from other souices. ERIC makes every effort *
 * to oftain the best copy available. Nevertheless, items of marginal *
 * reproducibility are often encounterea and this affects the quality *
 * of the micrcfiche and hardccpy reproductions ERIC makes available *
 * via the ERIC Document Reproduction Service (EDRS). EDRS is not *
 * responsible for the guality of the original document. Reproductions * * supplied $b y$ EDRS are the best that can be made from the original.

[^1]: *See Nelson Goodman, "The Test of Simplicity", Science, October 31, 1958, Vol. 128.

