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A GUIDE TO THE SELECTION OF PROBLEMS

Following is a tabulation of the problems in this text. It

will be noted that the problems are arranged into three sets, I,

II, and III. At first glance, one might think that these are in

order of difficulty.

THIS IS NOT THE MANNER IN WHICH THE PROBLEMS ARE GROUPED It::

Before explaining the grouping, it should be mentioned that

it is understood that a teacher will select from all of the

problems those which he or she feels are best for a particular

class. However, careful attention should be given to the comments

on the problems in A Word About the Problem Sets.

Group I contains problems that relate directly to the

material presented in the text.

Group II contains two types of problems: (1) some that are

similar to those of Group I, and (2) some that are just a little

more difficult than those in Group I. A teacher may use this

group for two purposes: (1) for additional drill material, if

needed, and (2) for problems a bit more challenging than those in

Group I, that could be used by a better class.

Group III contains problems that develop an idea, using the

information given in the text as a starting point. Many of these

problems are easy, interesting and challenging. The student may

find them more stimulating than the problems in Groups I or II.

However, if time is a factor, a student can very well not do any

of them and still completely understand the material in the text.

These are enrichment problems.

It is assumed that a teacher will not feel that he or she

must assign all of the problems in any set, or all parts of any

one problem. It is hoped that this listing will be helpful to

you in assigning problems for your students.

ix



We have included in the problem sets results of theorems of
the text which are important principles in their own right. In

this respect we follow the precedent of most geometry texts.

However, all essential and fundamental theoirems are in the text
proper. The fact that many important and delightful theorems are
to be found in the problem sets is very desirable as enrichment.

While no theorem stated in a problem set is used to,prove

any theorem in the text proper, they are used in solving numerical

problems and other theorems in the problem sets. This seems to be
a perfectly normal procedure. The difficulty (or danger), as most

teachers define it, is in allowing the result of an iutuitive type
problem, or a problem whose hypothesis assumes too much, to be

used as a convincing argument for a theorem. The easiest and
surest way to handle the situatiOn is to make a blanket rule for-
bidding the use of any problem result to prove another. Such a

rule, however, tends to overlook the economy of time and, often,

the chance to foster the creative spirit of the student. In this

text we have tried to establish a flexible pattern which will

allow a teacher and clasrl to set their own policy.



GUIDE TO SELECTION OF PROBLEMS

Chapter 11

II III

Set 11-1 1,2,3,6. 4,5. 7,8.

11-2 1,2,4,6,7,9, 3,5,8,12,14,15, 13,17,21,22.

10,11,16,18. 19,20.

11-3a 1,4,5,13,14. 2,3,8,11,12,15, 6,7,9,10,16,17.

18,19.

11-3b 1,2,4,6,7,14, 3,5,8,9,10,11, 13,25,26)28:
17,18,22,27. 12,15,16,19,20,

21,23,24.

Chapter 12

12-1 1,2,3,4,5,6, 10,12.

7,8,9,11.

12-2 1,2,4,5. 3.

12-3a 1,2,3,4,5,6, 7,8,9,10,13. 14.
11,12.

12-3b 1,2,3,4,5,6,7, 8,9,10,12,18,19, 15,16,17,20,27,

13,14,23,24. 21,22,25,26,30, 28,29,32.

31.

12-4 1,2,3,4,5.

12-5 1,2,3,4,5,6, 9,10,11,12,14, 16,19,20.

7,8,13,15,17. 18.

Chapter 13

13-2 1,2,3,4,5,6, 7,10,11,16,17, 12,14,18.

8,9,13,15 19.

13-3 1,2,3,4. .,5,8,9,10 6,7.



Chaer 13
Se': 13-4a

13-4b

13-5

1,2,3,4,5,6,
7,9,10,11.

11,16.

16.

8.

3,5,6,7,12,
13,14.

5,6,8,9,10,
12,14,15,17,
18.

12,13.

15.

11,19.

Chapter 14

14-1 1,2,3,4,5,6,
7.

14-2a

' -

1,2,3,4,6,7,

1,2,5,6,8.

5,9. 10,11 .

2,3.
1,2,3,4,5,6,
7.

5,6.
1%-5c 6,7,8. 2, 4-,9,10,11,12 .

1,2. 3,4,5,6.

C'hapter 15

15-1 1,2,5. 6. 3,4.
15-2 1,2,4,5,11. 3,7,12. 6,8,9,10.
15-3 1,3,4,7. 5,6. 2,8.
1) 1 2 .7 3 - 5 10,12,13.

1,2,3,5. 4,6,7,8.

xii
ii
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Chapter 11

AREAS OF POLYGONAL REGIONS

This Chapt- .onventional subject matter

the areas of tr :allelograms, trapezoids and

Although its viewpoint is essentially that of Euclid two

points may seem novel. First the introduction of the term

polygonal region and second the study of area by postulating

its properties rather than by deriving them from a definition

of area based on the measurement process. Actually both of

these ideas are implicit in the conventional treatment - we

have only brought them to the su-face and sharpened and

clarified them. Once the basis has been laid, our methods .

of proof are simple and conventional, although the order of

the theorems may seem a bit unusual.

317 Observe that in this Chapter we are not trying to

develop.a very general theory of area applicable for example

to figures with curvilinear boundaries. Rather we restrict

ourselves to the relatively simple case of a region whose

boundary.is rectilinear, that is, its boundary is a union

of segments. However, it is not obvious how to define the

concept of region or of boundary. One suggestion is to

turn the problem around and merely consider the figure

composed of a polygon and its interior. However, although

there is no essential difficulty in defining polygon (see

Section 15-1 of text) it is quite difficult to write down

precisely a definition of the interior of a polygon, even

though we can easily test in a diagram whether or not a

point is in the interior of a polygon. Observe how simply

our definition of polygonal region avoids this difficulty.

We merely take the simplest and most basic type of region,

the triangular region, and use it as a sort of building

block to define the idea of polygonal region. The essential

point is, that, although it is difficult to define interior

for an arbitrary polygon, it is very easy to do it for a

triangle - we actually did this back in Chapter 4. Moreover

3
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our basic procedure in studying area is to split a figure

into triangular regions, and reason that its area is the
oum of the ar,s of these triangular regions. Thus we

simply define polygonal regions as figures that can be

suitably "built up" fror triar regions, and we have a
good basis for our theory.

318 A further point. The (lc, .nition requires that the

triangular regions must not "overlap", that is they must

not have a triangular region in common (see the discussion

in the text following the definition of polygonal region),

but may have only a common point or a common segment. If

we permit the regions to "overlap" we can't say that the

area of the whole figure will be the sum of the areas of

its component triangular regions (see discussion in the text

following Postulate 19). Thus for simplicity we impose the

condition that the triangular regions shall not "overlap".
319 A final point. In your intuitive picture of a poly-

gonal region you probably have assumed that a polygonal

region is connected or "appears in one piece". Actually
our definition does not require this. It permits a poly-

gonal region to be the union of two triangular regions

which have no point (or one point or a segment) in common,
as in these figures:

(pages 317-319]
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Thus our definition allows a polygonal region to be a dis-

connected portion of the plane, and the boundary of a poly-

gonal region need not be a single polygon. This causes no

trouble - it just means that our theory has somewhat broader

coverage than our intuition suggests.

In light of this you will note that the idea of polygon

is not er' ,,ed as strongly in our text as in the conven-

tional 'eat . When the latter refers to "area of a poly-

gon" it ,e area of the polygonal region consisting of

the polygon and its interior - which is not explicitly stated

or clarified. We avoid the difficulty by defining polygonal

region independently of polygon.

319 Note that in the figures on page 256 it is intuitively

clear that the areas of the regions can be found by dividing

them up into smaller triangular regions, and that the area

of the total region is independent of the manner in which

the triangular regions are formed.

Sometimes in a mathematical discussion we give an

explicit definition of area for a certain type of figure.

For exahple, the area of a rectangle is the number of unit

squares into which the corresponding rectangular region can

be separated. This is a difficult thing to do in general

terms for a wide variety of figures. Thus the suggested

definition of area of a rectangle (rectangular region) is

applicable only if the rectangle has sides whose lengths

are integers. Literally how many unit squares are contained
1 1in a rectangular region whose dimensions are r and 7?

The answer is none: Clearly the suggested definition must

be modified for a rectangle with rational dimensions. To

formulate a suitable definition when the dimensions are

irrational numbers, say ,./T and VT, is still more compli-

cated and involves the concept of limits. Incidentally,

even when this is done, it would not be trivial to prove

that the area of such a rectangle is given by the familiar

formula. (For example, see the Talk on Area.) Furthermore,

(page 319]
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it would still be necessary to define the area concept for

triangles, quadrilaterals, circles, and so on. The complete

study of area along these lines involves integral calculus

and finds its culmination in the branch of modern mathematics

called the Theory of Measure. (See the Talk on Area for a

treatment of area in the spirit of the theory of measure.)

Clearly this is too heroic an approach for our purposes.

;.; attempt to give an plicit definition of area

nal region by means or a measurement process

.1sing unit squares. Rather we study area in terms of its'

basic properties as stated in Postulates 17, 18, 19 and 20.

On the basis of these postulates we prove thr: familiar

formula for the area of a triangle (Theorem 11-2). Con-

sequently we get an explicit procedure for obtaining areas

of triangles and so of polygonal regions in general.

319 Some remarks on the postulates. Observe that our treat-

ment oC area is similar to that for distance and meas.zre of

angles. Instead of giving an explY definition of area

(or distance or an7,1e measure) by s of a measurement

orocess, we p_:otulate its basic pr 'ties which are intui-

-Avely famar from study of the surement process.

32 Thus Postulate 17 asserts that o every polygonal region

there ts associated a unique "area : .:,c,,Jr" and is exactly

comparable to the Distance Postulate )r the Angle Measurement

Postulate. The uniquenesS of the area number is based on

the intuitive presupposition that a fixed unit has been

chosen and that we know how to measure area in terms of

this unit.

Postuilte iP is one of the sim:.:71est and most natural

r:rerties of an. If two triangao::: are congruent then in

Cf:st the trlar ular regions deter77.:Ithed are "congruent",

s an exact of the other and so they must have

.hQ same measure.

1 6

(pages 319-320)
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320 Postulate 19 is comparable to the Angle Addition

Postulate. It is a precise formulation, for the study of

area, of the vague statement "The whole is the sum of its

Parts". This statement is open to several objections. It

seems to mean that the measure of a figure is the sum of

the measures of its parts. Even in this form it is not

acceptable, since the terms "figure" and "part" need to be

sharpened in this context, and it permits the "parts" to

overlap. Postulate 19 makes'clear that the "figures" are

to be poly. al regions, the "measures" are areas, and that

the."parts" are to be polygonal regions whose union is the

"whole" and which do not overlap.

Postulates 17, 18 and 19 seem to give the essential

properties of area, but they are not quite complete. We

IDGintd crA above that Postulate 17 presupposes that a unit

.sen, b:_,7 we have no way of determining such a

Ui. t.;.= Is, a polygonal region whose area is unity. For

ex :stulates 17, 18 and 19 permit a rectang]:, of

3 and 7 to have area unity.

322 ate 20 takes care of this by guaranteeing that a

e edge has length 1 shall have area 1. In

.7stulate 20.gives us an important basis for

fu..77th-2r !-zoning by assuming the formula for area of a

re-tanE:,

At; z,?restinc...; point: We could have replaced Poptulate

.:-.sumptim of the familiar formula for the area

of --..:1-Lanzle. This is equivalent to Postulate 20.

e of the term "at mo" ln Postulate 19 permits

R
1 D to have no common pot. as in this figure:

[pages 320-322]

1 7
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'Since we are introducing a block of postulates concern,-

ing area, this may be a good time to remind your students of

the significance and purPose of postulates. They are precise

formulations of the basic intuitive judgments suggested by

experience, from which we derive more complex principles by

deductive reasoning.

To make Postulates 17, 18 and 19 significant for the

students, discuss the measuring process for area concretely,

using simple figures like rectangles or right triangles with

integral or rational dimensions. Have them subdivide regions

into congruent unit squares, so that the student gets the

idea that every "figure" has a uniquely determined area

number. Then present the postulates as simple properties

of the area number which are verifiable concretely in

diagrams.

323 1. a. 2,

b. 2,

c. 5,

Problem Set 11-1

d. 4,

e. 6.

324 2. 825 square feet.

3. a. The area is doubled.

b. The area is four times as great.

4. 1800 tiles.

5. 792 square inches.

325 *6. a. False. A triangle Is not a region at all, but is

a figure consisting of segments.

b. False. See Postulate 17.

c. True. By Postulate 17.

d. True. By Postulate 18.

[pages 322-325]

18
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e. Fal3e. If the regions overlap, their union is

less than their sum.

f. True. Since a square is a rectangle.

g. False. The region is the union of a trapezoid

and its interior.

h. True. A triangular region is the uniori of one or

more triangular regions.

326 7. a. 4.

1
. 7.

C. 0.1.

d. 0.002.

*8.

e. and f. Since and IT are irrational, the

base and altitude in each case do not have a

common divisor. Hence the rectangular regions

cannot be divided exactly into squares.

a. f - e + v = 7 - 12 + 7 = 2.

b. e + v . 7 - 17 + 12 2.

c. The computation always results in 2.

d. The computation is not affected, since the addition-

al four edges, three faces, and one vertex'results

in zero being added to the total.

e. No change.

328 Notice that, after postulating the area of a rectangle,

we proceed to develop our formulas for areas in the following

manner: right triangles, which then permit us to work with

any triangle, parallelograms, and trapezoids. Of course our

postulate permits-us to find the area of a square, since it

is merely an equilateral rectangle. At this point we have

the machinery to find the area of any polygonal region, by

just chopping it up into a number of triangular regions, and

(pages 325-328)
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finding the sum of the areas of these triangular regions.

Note that in the discussion of the area of a triangle,

it does not matter which altitude and base we consider,

just so long as we work with a base and the corresponding

altitude.

In the application of Postulate 19 to a FInnPtfic case

we read from a figure that R thu union 01 ale regions

and R
2'

. see for example the proofs of Theorems 11-1
-1
and 11-2. This is a kind of separation theorem which can

be justified from our postulates. Just as with triangles,

we may work with either side and the corresponding altitude

of a parallelogram.

In Problem Set 11-2, Problems 13-17 form a sequence

of problems involving an interesting consequence of the

theorems of the text.

Problem Set 11-2

333 1. a. Area AEC = ,LF .7.24 = 84.

b. 84 h = 6g.

2. 14.4 and 24.

3. a. BC = 12. c. AB 15.

9 ch
b. CD 67-7. d. AE=i.

a

Area A CQB = Area A DQB, since CQ = DQ and the tri-

angles have the same altitude, the perpendicular segment

from B to CD. Area A AQC = Area A DQA, since

CQ, = DQ and the triangles have the same altitude, the

perpendicular segment from A to CD. Adding, we have

Area A ABC = Area A ABD.

Alternate Proof: Draw CE 1 AB and DF I AB.

Then A CEQ DFQ by A.A.S., and CE = DF. Since

_LABC and A ABD have the same base and their altitudes

Lave equal lengths, the triangles have equal areas.

[pages 328-333]
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334 5. The area of the square is s
2

.

The area of each of the four trias is

Hence, the area o' the star is s- Ohq.

.6. . a . 6.

b. 12.

c . 184 .

d. Since GB and AF a=e measures of the same

altitude, there is ncz enough information given

to determine a unique answer.

7 Since a diagonal of a parallelogram divides it into two

congruent triangles, Area A APR is equal to half the

area of the parallelogram. Area A AQH = Area A FQH

since the bases, AQ and QF, are congruent and the

triangles have the, same altitude, a perpendicular from

335 8.

9.

H to AF. Each is then one-fourth of the area of the

parallelogram. In the same way it can be shown that

Area A ABQ . Area A FBQ.

1
a. 36. d. 136

2'

b. 21. e. 1211
7'

C. 55.

98.

10.
1Area of triangle Tbh.

Area of parallelogram = bh'.

7bh = bh'.

h = 2h1.

The altitude of the triangle is twice the altitude of

the parallelogram.

11. a. Area parallelogram ABCD is twice area A BCE
because the figures have the same base (BO and

equal altitudes, since AE H BC.

[pages 334-335]
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335 11. o. are equal.

c. The areas are equal because the bases (AF and

FD) are congruent and their altitudes are con-
__

gruent since AD H BC.

1 1
d. Area A CFD = 7(area A BCE) since FD = 713C and

the two triangles have equal altitudes. Therefore,

area parallelogram ABCD = 2(area A BCE)

= 4(area A CFD).

336 12. The area of trapezoid DFEC = 34

The area of trapezoid AGFD = 165.

And so, area of AGECD = 199.

Area A AGB = 30.

1
Area A BCE = 327..

Subtracting the sum of the areas of the two triangles

from the area of AGECD, we have 1364. The area of

the field is 1364 square rods.

13. Given: Figure ABCD with AC ± DB.

1
Prove: Area of ABCD = AC.DB.

Proof: Area of ABCD . Area A ACD + Area A ABC by

Postulate 19.
1 1

But Area A ACD = 7AC.DP and Area A ABC = yLC.PB.

Therefore, Area of ABCD = 47AC.DP + ;AC.PB

= ;AC(DP + PB) = ;AC.DB.

14. The area of :2hombus equa_s 2ne-half the product of the

1,)ngths cf 1--; diagonals.

15. 12.

1 1
16. A = 7old' - 150 = bh = 12b; therefore b = 127. The

area is 150; the length of a side is 14_

*17. Yes. The proof would be the same as for Problem 13

with each "+" replaced by "-".

[pages 335-33E] 2 2



337 18. All three triangles have

the same altitude. Hence,

since BD = DC, the two

smaller triangles have

equal area, by Theorem 11-6,

and each is one-half the

area.of the big triangle,

by Theorem 11-5.

265

19. a. By the preVious problem,

Area A ABE = Area P BAD = -(Area A ABC). Subtract-
ing Area A ABG from each, leaves Area AEG
= Area A BDG.

b. Since the medians are concurrent, the third
median, with the other two, divides the triangle
into six triangles:

Area A AEG = Area A BDG,

Area A CGE = Area A BGF, and

Area A CGD = Area A AGF. But Area A BDG
= Area A CGD by Theorem 11-6,.and consequently
all the areas are equal, Therefore,

Area A BDG = (Area A ABC) .

20. Since AB is constant, the altitude to AB must be
constant, by Theorem 11-6.

Call the length of the altitude, from P to AB, h.
Then in plane E, P may be any point on either of the
two lines parallel to AB at a distance h from AB.
In space, P may be any point on a cylindrical surface
having AB as its axis and h as its radius.

338 *21. a. 104.

1
b. 71013 = 104.

c. With the dimensions given ABN and ADE would
not be straight segments, and so the figure would
not be a triangle.

[pages 337-338]
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338 '22. If the line intersects adjacent sides, the area of the

triangle formed will be less than one-half the area of

the rectangle, so the line must intersect opposite

sides.
1

Area ARSD = 41(a + c)

L
Area CSRB = n(b + d).

a + c = b + d.

But a + b = c + d, so by subtraction,

c-b=b-c
c = b.

Let M be the point at which AC intersects RS.

Then A ARM A CSM by A.S.A., so AM = CM. Therefore

M is the mid-point of diagonal AC.

339 We have here a very simple proof of the Pythagorean

Theorem. The proof depends upon the properties of the areas

of triangles and squares. Notice how Postulate 19 is used

in this proof.

Observe that the proof is perfectly general. The

Pythagorean relation is proved for the sides of the construct-

ed triangle and so holds for the original triangle.

Problem Set 11-3a

341 1. (AC)2 = 100 + 9.

= 109.

AC =

He is 1-17716-77 miles from

his starting point.

(Between 10.4 and

10.5 miles.)

[pages 338-341)
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341 2-

3.

The single right triangle

AACB serves our purpose

here.

(AB)2 = (11)2 + (6)2 157.

AB = 117.
He is approximately 12.5

miles from his starting

point.

(6)2 (6)2 x2.

72 = x2 .

x.

He is approximately 8.5

miles from.his starting

point.

r-

2

C B

4

/146/

7 /

267

4. In Fight A ABC, (AC)
2.. (4)2

(12)2 = 16 + 144 = 160.
AO"= 417.= 4 ,A7. In right A'ACD, (AD)2 = 160 + 9
= 169. AD = 13.

(3)2(4)2 .
+ 9 = 25.loOr, in A ABE, (AE)2 =

AE = 5. in A AED, (AD)2 = (5)2 (12)2 = 25 + 144 = 169.
AD = 13.

5. a, c, d, e.

342 6. a. It is sufficient to show that (m2 n2)2

+ (2mn)2 =
(m2 n2)2. (m2 n2)2

(2mn)2
2 2 2 4 2 2= m - 2m n + n4 h 2n = m + 2m n + n

= (m
2
+ n

2
)
2

.

b. m = 2, n = 1 gives sides with lengths (3, 4, 5).
m = 3, n = 1 gives (6, 8, 10).

m = 3, n = 2 gives (5, 12, 13).

m = 4, n = 1 gives (15, 8, 17).

m = 4, n = 2 gives (12, 16, 20).

m = 4, n = 3 gives (7, 24, 25).

There are two other right triangles with hypotenuse
less than or equal 25, (9, 12, 15) and (15, 20,

25), but they can not be obtained by this method.

[pages 341-342] 2 5
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342 7. a. AY = ,./T, AZ = NTT AB = N/7. 2.

b. AC = Next segment has length =

8. AC =VT or 2 IT'

(AY)2 = (AC)2 + (YC)2, from which AY = 3.

343 * . a. h
c

2
= 13

2
- x 2 169 - x 2

;

also h
c
2 = 152 - (14 - x)2 = 225 - 196 + 28x - x2.

Eliminating h
c

2
:

169 - x2 = 29 + 28x - x2.

28x = 140.

x = 5,

h
c

= 12.

b. h
a

= 14 2 - x 2 . 196 - x 2
;

also ha2 = 132 - (15 - x)2 169 - 225 + 30x - x2.

Or ABh = BC.h
a

14.12 = 15ha

1
= h .

5 a

*10. Let CD meet AB at D. Let BD = x.

2 142 x2 x2,

also h 2 = 182 - (6 + x)2 = 324 - 36 - 12x - x2.

Eliminating hc2:

196 - x2 = 288

12x. 92.

x = 74.

hc =
1

- 12x - x2.

(approximately 11.71.)

2 6
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343 11. The shorter diagonal divides

the rhombus into two equilateral

triangles. Hence its length is

B. Since the diagonals are

perpendicular bisectors of

each other we can use the

Pythagorean Theorem to get

the length of the longer

diagonal equal to 8.1T.

12. Since the sides are all

congruent, and the area

of the rhombus is the

product of the measures

of any side and its

corresponding altitude,

then all the altitudes

are congruent. Hence,

it is sufficient to find

one altitude. The

269

diagonals bisect each other at right angles. Hence,
each side has length /TY. Then,

1 1Area of A ABD .17.4.3 = 6 = -gE,/rs",

12and DE /717.v1.5.

13. By the Pythagorean Theorem, AB = 13.

1 1The area of A ABC -rl'oh =5.12.
60 8Hence 13h 5.12 and h = 37- = 471..

344 14. By the Pythagorean Theorem, AB = 17.

7.

The area of

Hence 17h =

1A ABC = 7.17h

15.8 and h

1
=17.15.8.

1W= 7

2 7

[pages 343-344)
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344 15. Area A ABC . -oh, and

h = 2pirea A ABC11
. But Area Li ABC =

c

1

and c
=,\42 b2.

Therefore, h - ab

Via2 + ba
*16. Lengths are shown in

the figure.

Area A ASQ -1-'(n.2n) = n2.

Area A ABS = -ff(2n.2n) . 2n
2

.

lf

Area A ABC . .;.(3n ig)

6n2.

Area QSPC . Area A ABC

- (Area A ABS + 2 A ASQ)

6n2 - 4112 . 2n2. A B

17. Since A ABC :44 A BED, mL BAC = triL EBD. But L BAC is

complementary to L ABC, so L EBD is complementary

to L ABC. Since L EBD + L EBA + L ABC = a80, then

EBA = 90. Now,

Area of CAED = Area A ABC + Area A AEB + Area A BED.

1
-f(a + b)(a + b) ;ab + ;.c2 + ;eb.

a
2
+ 2ab + b

2
= 2ab + c

2
.

2 2a+ b = c .

345 *18. a. SB is a median of isosceles A BCD and therefore

SB 1 CD. In the same

way, SA i CD.

.'. CD 1 plane BSA,

and CD 1 SR. SB SA

(they are corresponding

medians of congruent

equilateral triangles).

SR is a median to the

base of isosceles A SBA
and hence SR I BA.

[pages 344-345]
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345

*19

b.

1. DA = 2.

2. SD = 1.

3. SA = 17.
U. RA = 1.

5. SR .

By Pythagorean Theorem,

CD = 17 and BD = 1

(AD)2 = 1 + (1 +

1.

2.

3.

4.

5.

Given.

Definition of mid-point.

Pythagorean Theorem.

Definition of mid-point.

Pythagorean Theorem.

AC . . Therefore

ce,Hen

4 + 2

rnL CAD.

= 45,

2.

But MLADC + mL CAD

1and mL ADC = 227.

Then AD = .\//1. + 2 IT.

Since AC = CD, mL ADC =

= x = 45. Then 2(mL ADC)

mL DAB =

346 Proofs of Theorems 11-9 and 11-10

Theorem 11-9. (The 30-60 Triangle Theorem.)

The hypotenuse of a right triangle is twice as long as a leg
if and only if the measures of the acute angles are 30 and
60. A

Restatement: Given A ABC
with mL C = 90, AB c and
BC a.

(1) If rilL A = 30 and

mL B = 60, then

c . 2a.

(2) If c = 2a,

then mL A = 30 and

mL B = 60.

[Pages 345-346]



27.1

Proof: We Ln th, same both parts;

cay °pry, B ta. B' --lat PIC - BC - a

6 B' .S. "nen

(1) m, D' = And BAB Hence BAB' is

equilat-_.: so that BB' - wnich was to

be prov-,:.

(2) AP' - = c. By hypothe:. = Since

BB' - 2a, then BB' = c, is equi-

lateral Therefel'e 6 BA: Ls equLanT:ular and

mL B = ). Since mL BCA iL), then mL BAC = 30,

whLch to be proved.

Note that we can now conclude that EC, opposite the

30
o angle is the shorter leg, since mL A < mL B. But

before we had proved this inequality there was still the

possibility that AC was the longer leg.

Since we know that AC > BC it seems natural to derive

their exact relationship. By the Pythagorean Theorem we have

(AC)2= c2 - a2,

(AC)2= (2a)2 - a2,

(AC)2= 3a2.

Therefore, AC = a..1-3- or AC = BC Vr-3-7

Using the above relationships for a 30-60 triangle we

can always find all sides if we know one of the sides.

346 Theorem 11-10. (The Isosceles Right Triangle Theorem.)

P. right triangle is isosceles if and only if the hypotenuse

is IT times as long as a leg.

Restatement: Given A ABC

with mL C = 90, AB = c and

BC = a.

(1) If c = av("Z then

A ABC is isosceles.

(2) If A ABC is isosceles,

then c = a,./77

[page 346]
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) Using the Pythagor,: Theorem,

(AC
)2 c2 a2,

(AC )2=
a2,

(AC )2= a2,

AC = a, which was to be proved.

Using the Pythagore. _1 Theorem,

(AB)
2
= a

2
+ a2 = 2a

AB = a.,1-f, which was to be proved.

T. .:neorems suggest many useful facts in solving
numeri: LLems. For example, in an equilateral triangle

with si :he altitude' is ;V:i. and its area is 4,4471

Certain problems in Problem Set 11-3b develop such
ideas. Problems are numbers 4, 7, and 17. .

346 1. 5

Problem Set 11-3b

2. Draw AB.

The .D - DB = 3,7-37

AB --,

347 3.

14

Let x _Le length of the shorter leg. Since the
tri nE17,1 is a 30 - 600 triangle,

(2x)2 x2

3x
2

= 75.

x
2

= 25.

x = 5.

[pages 346-3/7]
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The length of the hypotenuse im 10.

347 It. By- Theorem 11-9, AC =

Since (AC)2 (BC)2 = (AB)2,
2

me have, (;-) h2 = s2

2 2 s2from vhich
2h2 3.0. h

5. Since mL B = 60, then alt D =

Then AP =

6.
132115- 15-

Iis
= 10 45. A side is 10.13- inches long.

7. ; 2 ; .1; %TT; "14- 2 1/5"; Ires.

8. a. .3ase = 10.1-3-, altitude = 10.

10-104-3-=

Area is 3101r3- square inches.

b. .Dase = 101-2-, altitude =

ioI10/ 200.

Area is 200 square inches.

c. ;base = 10, altitude = ioI
10-10-ri = 1004-3.

Area is 100,r3- square inches.

9. a. .Dase = 12, h = 12. Area Is :44 square inches.

b. ;base = 12, h = kin. Area is ita-tr-3 square

inches.

c. lbase = 12, h = 1213 . Area is 14411 square2
inches.

3 2

2
3and DP =

(page 3irn



3'L?.--1 10. a. a = 30.

2a 60.

3a = 90.

x 6.

y =

349

c. a = 45.
2a = 9C.

x = 5.

Y = 5,1T

e. x =

. 4.
g. a . 6o.

x =

a = 30.

x =

y = 10.

d. a 45.
x . 4.

y

f. x =

y 4.177

h. a 45.
.x

275

11. FB = 3; HF = AE = 6,17; AF = 3.1T;

mL ABF = 90; mL ABH = 90; mL HFB = 90; mL Ii151 = 60;

mL BHA = mL BAH =

*12. Let CD be the altitude to

AB. Let AD = x, CH = h,

BC = a, DB = y. In 30° -

60° right A ACD,

1
h 74 = 2, x =

Therefore y = 3,/"T - 2% 3

=IT. In Tight A DBC,

a2 h2 72 4

a

No, ../7Y / (3,ra-)2.

3 3
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5C Let CD be t erpendicular
4F-*

from C to T Let CD = h,

BD = r, BC =

In 1.5° - 4=7- 9-(3
ACD,

h = AD = =

r = AD - 3 = - 3 .

. In right A :=2,

a2 r2 h2 3)2 (5."--)2.

= 50 - + 9 + 50

= 109 - 30-2.

a =.\./ 109 - 32 VT. 'BC is approximately 8.2.
14. By Pythagorean Theorem, the altitude equals 24.

The area is 240 square inches.

16.

1. k...DFB azid CFA are
right triangles.

2_ FT = FC .

DB =

F-ai FCA.

FB 74-

isosceles.

1. Given.

2. Given.

3. Hypotenuse-Leg Theorem.

4. Corresponding parts.

5. Det±nition of isosceles
triangle.

. Given.

EP =14TE. 2. Ident_ty.

= BE. 3. Addition of Steps 1
and 2.

= CE . 4. Given.

BEC 5. Given.
are righ= triangles.

6. AFD GBEC. 6. Hypotenuse-Leg Theorem.

7 L AFT a BEC. 7. Corresponding parts.

8. L x 8. Theorem 4-5.

[Page 350]
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350 17. Area A ABC =

Dut by the -'yt--:_gc 'ean Theorem,

Substitutir : re A ABC = SC4

h =

= 3.

351 18 . a . 17. c .

b. 16-1T. d.

19. Let s be the :_angth of a side.
2

-/T =

s2 = 4.9.

s =

h = = = VT.

20. Let s be the 1igth of a side.
.2

=.4.

= L-16.

4 = 8.

h = = LIT
21. A side of square is 9, and so fts perimter is

36. Then E s Isle of the equilal -ran-gle is 12.
The ar a o: t;laa eauiLateral trrg1e 7aquals 36

2L. A: = 2.

=

FC =

Theref -.re A FAC is equilateral and FAC = 60.
2Area A FAC = ( )91

4

[gages 350-351 ]
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351 23. Make CE H DA, making

equilateral A EBC wit-

side of 8_ The al tituze

is 4 v(. Since AB =

AE = 4 ana DC 4.

Hence, arE, of trapezoid

ABCD = 17) (16) = 3217.

24 Draw alt.Lrudes DE and
1

1

CF. Sinc :13 = 4, FB = 2 fi 2
and CF = 13, then

I 68
DE = 217 d AE = 2 if, 2..,/ 3 E 5 F 2

so AB 2v2.
Therefore, Area of ABC:2 22.( 21T) (12 2 V7-2)

. 6 12 /:3.

352 *25. Since CG ! *plane E, then CG j A ant CS DG.

rrJ CAG = , A C-4,2 fa an istace rizht triangle,

and CG = = 6. Alif3o, AC = 6 N/7. . A ACD,

by Pytharzarea= Theorem,

DC = 4 ,./T. T LAGD, 6. AD 2-0, 6, so

JYG = 2 %/3. ;pC, ao mL_ DCG = 30,

and mL CDG - 60. Hance., .7;L F-A33-a:

*26. a_ In rizt:L A ADM, DM =4, so AM -= e . In

right A AMN, AN - S. D9. the Thel7em of

Pythagoras,

. Hence, NM

. A ,77 AH. b7r H": 7-*,T1 therefore

HC = aT . Then F..- r_u.,a7 lie on ae perpendicular

b La e r a f 01). .77-_Lnce in an e7=ilateral triangle

the. perpendicular 61aector the median, and the

altitude .to any :aide Lre the sa B lies on

median BM . H muat 1.La on the medians

from D and. C .

[pageE 35l--:352]



Hence BB = -P11. But 13M = AM =15 e.

so 1 = 1-5
e. Finally, in a ABil,

(AH)2 (AB)2 03102 e2 e)
2

= e2.

Hence, All = e.

353 27 YA AB and DA j AB because of the given square and

rectangle. By definition Z TAD is the plane angle of

Z X-AB-13 and'hence LIZ YAD = 60. By definition of

projection YD 13 and hence roZ ADY = 90. Then
1InZ,AYD = 30 and AD =12AY. Therefore area ABCD

= area ABXY = 18.

*28. Find the point of inter-

section of the diagonals

of each rectangle. A

line containing these

intersection points separates

each rectangle into tau

trapezoidal regions of equal

area (or in special cases

the line may contain a

diagonal and the regions

will be congruent triangles).

The proof that the trapezoids
are equal in area involves

showing the pairs of shaded

triangles congruent by A.B.A.

279
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353 Here is a problem that might be interesting to the class.

It has to do with cutting up a square into a certain number

of smaller squares, not necessarily equal in area. We will
talk of an integer k, as being "acceptable" if a square

can be subdivided into k squares. For example, given any

square we can divide it into 4 squares, but not into 2,

3, or 5. Try it. Below are some diagrams showing how a

square may be divided into 6, 7, and 8 smaller squares:

k .6 k = 7 k = 8

We may ask is there some pattern or some integer k, above
which this will always be possible. Actually any k > 6

will always be acceptable.

We now show that if a square can be divided into k

smaller squares, then it can be divided into k + 3 smaller
squares: Imagine that we have already divided a square into

k squares. Now, split one of the squares into 4 smaller

squares by bisecting the sides. In this process we have

lost one larger square and gained four smaller ones, thus

gaining three.

We Illustrate using ,k = 4.

It

[page 353]
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After dividing the original square into 4 smaller squares,

we take one of them, and divide it into 4 squares. Instead

of having 4 squares from the first division we have only

three, and now have 4 additional ones giving a total of 7.

Since we know that k = 6, k = 7, and k = 8 are accept-

able, and that we can get k + 3 squares from any division,

we can form the following sequences:

6, 9, 12, 15, ...,

7, 10, 13, 16,

8, 11, 14, 17, ...,

353

Hence all k > 6

1. four.

2. 12. This may

of the triangle

are acceptable.

Review Problems

be found by first showing that the area

is 36.

354 3. 10 miles.

4.

5. 48

6. a. 35. b. 5.

7. Let the length of the side of the triangle be 2n.

Then (2n)
2
= n

2
+ 6

2
and n = 2,./T, so 2n =

8. The diagonals of a rhombus are perpendicular and bisect

each other, forming four congruent right triangles. By

the Pythagorean Theorem, half the length of the other

diagonal is 5. Each triangle has an area of 30. The

area of the rhombus is 120.

3 9
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354 9- 2-14-

10. Separate the figure into
a .7.1tangu1 ar and a
IT-fetragular region. The b-43

armk.. of the rectangle
Ls sc. The area of the

INglip. is 4.(b - a.)2.
The -total area is

a= -
355 11. Mae =ter triangle has an area of

The inner triangle has an area ;-(b - 3a)(c - Ala)

The area of the shaded portion is found by subtraction

to be .2(3ac /lab - 12a2).

12. MD_
13. Consider BX as a base for A MC and Bk as a base

for. paraLlelogram ADCB. Then area A EEC = area
parallels:gram ADM. By a similar argument,
areal.= 1 area parallelogram ADCB. SubtractingV

arexts of these tufo triangles from that of the
-zarallelogran me find that area AECX = -;1-. area
7parallelogram &BCD.

14. let the length of the side of the isosceles right
trimvgle be e. Then its hypotenuse has length e,/rZ,
and the area. of a square on the hypotenuse is

1 2re-er2 = 2e2. The area of the triangle is e ,
Mitch one-fOurth that of the square.

4 0
tinges 354-355]



Alternate solution: The

five triangles in the

drawing are all congruent,

so by Postulate 18 all

have the same area.

Therefore, by Postulate 19,

area BCDE = 4 area A ABC.

355 *15. Let ABC be the given

triangle and AB,C its

projection on the plane.

Let X be the mid-point

of AC, the side lying

in the plane.

283

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

6.

7.

8.

Definition of'pro-
jection. Definition of
a line perpendicular to
a plane.

Hypotenuse-Leg Theorem.

Corresponding parts and
Definition of isosceles:

The median to the base
of an isosceles tri-
angle is an altitude.

Given, and Definition
of plane angle of a
dihedral angle.

Corollary 9-13-2.

30-60 Triangle Theorem.

Theorem 11-2.

BB, I B,C,

BB' I BIA and

BB, 1 B,X.

O. ABIB CB,B.

CB' = AB, and

tLABIC is isosceles.

BX is an altitude of

A ABC;

B,X is an altitude of

CiABIC.

mL BXB' = 60.

mL XBB' = 30.

B,X = 4BX.

Area A AB1C

=
1
Area A ABC.r

4 I
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356 *16. On AB, the longer of the

two parallel sides, locate

a point X so that
1/

AX = + CD). Then

DX separates the trapezoid

into two regions of equal

area. A

Proof: Area LI ADX = ;11(AX).

Area XBCD = ;1-1(XB + CD).

For these areas to be equal it is necessary that

;h(AX) = ;11(XB + CD), which will be the case if

AX= XB + CD.

Since XB . AB - AX, the previous equation can be

written

AX = AB - AX + CD, from which

AX= 1703 + CD).

*17. By the Pythagorean Theorem

any face diagonal such as

AB has length f7. The
diagonal CB has length

-136 + 72 = ./Taig or 613-.

*18. AC =

AG = 15.

*19. BE = 12.

1. A CFD 21A CEB.

2. CF = CE.

3. (BC)2= 256, or

BC = 16.

4. (CE)(CF) = .i(CE)2

200, or CE . 20.

5. BE = 12.

1. A.S.A.

2. Corresponding parts.

3. Given area of the
square.

4. Given and Statement 2.

5. Pythagorean Theorem.

(page 356]
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356 *20. The area of RSPQ is
13 that of ABCD as can

be seen by rearranging

the triangular regions

as shown.

. Te bs f a rcage i he ie s ln s te
attd. Te ae s 17 sur nhs id te
bs n h liue

Illustrative Test Items for Chapter 11

1.

2.

3.

A. Area Formulas.

gth is too small to notice when cutting one

triangle out and placing it on the other.

1.

2.

3.

A. Area Formulas.

The perimeter of a square is 20. Find its area.

Illustrative Test Items for Chapter 11

The area of a square is n. Find its side.

The perimeter of a square is 20. Find its area.

Find the area of the figure

in terms of the lengths

indicated.

The area of a square is n. Find its side.

a

[pages 356-357]

4 3

la

c

a

285

la

c
4. The base of a rectangle is three times as long as the

altitude. The area is 147 square inches. Find the

base and the altitude.

285

[pages 356-357]

4 3

Find the area of the figure

in terms of the lengths

indicated.
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5 The area of a triangle is 72. If one side is 12,

what is the altitude to

6. In the figure

and WZ = XZ.

and YZ = 12.

area of WZXY.

WY = XY

WX = 8

Find the

that

7 RSTV is a parallelogram.

If the small letters in

the (Irawing represent

lengths, give the area of:

a. Parallelogram RSTV.

b. ISTU.

c. Quadrilateral VRUT.

8. Show how a formula for the

area of a trapezoid may be

obtained from the formula
1

A = --bh for the area of a
2

triangle.

side?

9. In surveying field ABCD

shown here a surveyor laid

off north and south line

NS through B and then

located the east and west

lines CE, DF and Z.
He found that CE . 5 rods,

AG . 10 rods, BG = 6 rods,

BF = 9 rods and FE = 4 rods.

Find the area of the field.



B. Comparison of Areas.

1. Given: ABCD is a trapezoid.
Diagonal's AC and BD
intersect at 0.
Prove: Area A AOD = Area A BOC.

2. In this figure Jews is a
parallelogram with PT = TQ
and RIS = SR. In a through
e below compare the areas
of the taro figures listed.
a. Parallelogram SEW and

A SW-

b. Parallelogram SRQP and
MR.

c. 8P M and A MR.
d. 8S TR and A SFR_

e. a Mil and A ISM
C. .nrip_r_ean Theorem-

287

1- How long must a tent rape be to reach from the top of a
12 foot pole to a point on Use ground which Is 16
feet from the foot of the pole?

2- A boat travels south 24- miles , Unit east 6 miles,
and then north 16 miles. How far is it from its
starting point?

3. Given the rectangular solid
at the right with AB = 12,
BC = 16 and BH = 15.
Find AC and RC-

Par the figure at the right,
find AB and CB.

4 5

2

15
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D. Properties of Special Triangles.

1. a. What is the length

of CB?

b. What is the length

of AC?

2. The diagonal of a square is V/7. Find its side.

3. The longest and shortest sides of a right triangle are

10 and 20. What is the measure of the smallest

angle of the triangle?

4. The measures of each of two angles of a triangle is 45.

What is the ratio of the longest side to eithr of the

other sides?

E. MIscellaneoussProblems.

ABCD is a trapezoid.

CD = 1 and AB = 5.

What is the area of

the trapezoid?

2. What is the area of

ABCD?

3. ABCD is a rhombus with

AC = 24 and AB = 20.

a. Compute its area.

b. Compute the length

of the altitude to

DC.

4 6

5

B
12
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4 Find the area of a triangle whose sides are 9", 12",

and 15".

5. ABCD is a parallelogram

with altitude DE. Find

the area of the parallelo-

gram if:

1 1
a. AB = 27 and DE=6.

b. AB = 10, AD = 4, and

mL A = 30.

6. Find the area of an isosceles triangle which has

congruent sides of length 8 and base angles of 3a0 .

Answers

A. 1. 25.

2. "Y.

3. ab + a(c - a), or ac + a(b - a), or ab + ac - a
2

.

L. Let a be the length of the altitude and 3a the

length of the base. Then

3a
2 = 147

a
2 49

a = 7.

The altitude is 7. The length of the base is 21.

5. 12.

6. Consider the figure to be the union of triangular

regions WYZ and XYZ. It can be proved that YZ is

the perpendicular bisector of WX. Hence WP and XP

are altitudes of.triangle WYZ and XYZ respectively.

The area of each of these triangles is 24. Hence the

area of WZXY is 48.

4 7



7. a. ad.
b. ;d(a - c).
c. 3.el(a + c).

8. Separate the figure into
triangular regions by
drawing a diagonal. The
areas of Id= respective
triangles are -0112 and

The mum of these

trio areas la
9. Area ABCD -= Area AGM + Area DM - Area AGB - Area CZ&

Area MD = 165 + 34 - 30
1Area ABCD =

?be area of the field is 136i square reds.
B. 1. Area A ADC = Area A BCD became the tarlangles have the

same base DC and equal altitudes.
Area A DOC = Area A DOC.
Therefore, by subtracting, Tye bave Area A ACV
= Area A BOC..

2. a. Area parallelograa SRQP
= 2 Area A SQR.

b. Area parallelogram SSW
= Area A P.

c . Area A PIS = 11- Area A MR.

d. Area A STR = Area A SPR.

e. Area A %TR = k Area A Mr-

4 8



C. 1. 20 fee4:..

2. 10 miles.

(see figure at right.)

3. AC . 20.

EC =

4. AB = 25 and CB = 7.

D. 1. a. 64r27

2. 1.

3. 30.

4. IT to 1.

E. 1. 6, (see figure at right.)

291

b. 12.

2. 43. (AC = 13.)

3. a. 3. (See figure at right)

b. 19.2 (384 4- 20.)

5

20

4. 54. (..912. The triangle is a right triangle.)

49
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5. a . 158,.

6. 16./.3. (From 411-18 )

b . 20.

5 0



Chapter 12

SIMILARITY

In Chapter 5 we explored the concept of congruence,

which encompassed the idea of a one-to-one correspondence

between the vertices of two triangles such that corresponding

sides and corresponding angles were congruent. In this

chapter we talk of a correspondence between triangles such

that corresponding angles are congruent and the ratios of

corresponding sides are equal. This correspondence is

called a similarity. After a discussion of proportions,

there appears a proof of the fundamental proportionality

theorem for triangles that is different from the usual one

given. This proof is not new; quite the contrary. It was

found in a text-book, published in 1855, written by

the noted French mathematician, A. M. Legendre. More will

be said about it later. For the most part, this chapter

presents a conventional treatment of similar triangles.

360 The student is expected to call upon his algebra in

working with proportionalities. We should need no statements

about the algebraic properties of proportions. The four

properties we do state, however, will provide a basis for

practice and review. The quantities used in proportions

are numbers, and the algebra of fractional equations will

enable the student to do all that is required.

361 The geometric mean of two positive numbers, a and c,

a b
is the positive number b, such that = You may,

recognize that b is what has been called, in some text-

books, the mean proportional between a and c. We speak

of this as the geometric mean of a and c, and b

Then "geometric mean" and "mean proportional" are names for

the same thing, and we prefer to use "geometric mean" in

this text. In mathematics there are such things as harmonic

and arithmetic means that do not arise from proportions, and

we have u ''geometric mean" because it arose historically

In a geometric construction.

51.
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Problem Set 12-1

361 1. a. 7a 3b. b. 4x = 3. c. 6y 20.

3 65
362 2. a. 7.- c.

-312

33
d. 7-b.

a 2
3 a. 7 . 7 and S. = i..

b. 4.= .2. and

a 7 ...3 b 4.

c. =4. anu =

d. 15c. = -g. and

4. a.
6bc

c.
21bd

a

b.
22bd 12cd
35c

d. a = --ST-.

a + b 4 a - b 2*5. a. ---7 T and
----B--- T

s and y - 2 x - 3
2 M'b.

y + 2 x + 3

a 4 a - c -3
Tc. 7 and

c

b + a 8 b - a -2
a

.d. and
a

-

363 6. a. 1,

b. 1,

c. 1,

The three ne*'sequences

are identical, so each pair

of the original three

sequences are proportional.

5 2

[pages 361-363]
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363 7.

B.

9-

a

a

d

b

b

f

c

c

e

w

x

and d.

and 1.

and i.

and f.

and h.

and h.

and e.

and g.

and g.

800; v = 1000.

3 y = l; z =

a.

b.

c.

d.

e.

r.

g-

h.

j.

11

1,

1,

1,

1,

1,

1.

1,

1,

7
-9
2,

7

7
5'

7

2,

7

2,

7
5'

9
3'

3.

17

9
5'

17

3-

17

3.

9
5'

10. b and f are correct.

364 11. p = 18; q = 24; t = 70.

12. a. G.M. = 6, (6.000); A.M. = 6.5.

b. G.M. = 6,n, (8.484); A.M. = 9.0.

c. G.m. = 4,1-5; (8.944); A.M. = 9.0-

d_ = 4.15", (6.92R); AM. = 13.0-

e. G.M. (2.449); AM. = 2.5.

364 The definition of a similarity, like the definition of

a congruence, requires two things. Illbr similar triangles re

could have based our definition on either one of the two

conditions, and proved the other It seems best, however,

to wake a definition whiCh may be generalized for other

polygonal figures.

5 3

[pages 363-364]
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365 Notice that.the idea of a correspondence which matches

vertices is employed for similar triangles as for congruent

triangles: ±ie similarity indicates, without recourse to a

figure, -uhe corresponding sides and angles.

Problem Set 12-2

ACDE
d. AB DE.BC366 1. a. AB = -DF--.

b. BC - ABEF
-

AC EF, e. BC 5F--.

-

c. AC =
BCDF

f DFAB
. AC DE

367 2. a, b; Bk.

a, d; 753 = Tn..4 16g.

b, d
8 6 12

; 12 y TS'

2 1.6

h

h = 6.

The height of the object in the enlargement is 6 inches.

4. Yes. If A ABC A AIBIC', the conditions necessary--

for a similarity are met. That is,

(1) LALAIP LB-Z131, Z"LCI

3.

(0)
A'B, AICI BIC,

`' AB BC

(pages 365-367]

and



367 5. Given: A ABC; D, E, F

the mid-points of the sides

AB, BC, CA respectively.

Prove: A EFD A ABC.

Proof: By Theorem 9-22,

1 1ED = -eC, FE

FD = ;CB, and ED 11 AC,

297

FE IIAB, FD 11 CB.

FDEC, ADEF, DBEF are

parallelograms. ,By Theorem 9716, Z FDE Z BCA,

Z DEF a; L CAB, Z EFD .74 Z ABC; since we have also

g.proved above that P, A EFD A ABC by

definition of similarity.

368 Conventional proofs of the Basic Proportionality Theorem

contended with (1) a relatively unconvincing division of the

sides of a triangle by a series of parallel lines, and (2)

the problem of what to do when the ratio of the length of a

segment to the length of a side containing that segment is

not a rational number (the incommensurable case) . It has

often been the practice to give a proof of the theorem for

the commensurable case and mention the other possibility.

The proof in the text avoids this difficulty since it is

based on the area postulates, which involve real numbers.

369 In the proof of Theorem 12-2 we tacitly assume that E

is between A and CI. It is obvious from a figure that

betweenness is preserved under parallel projection, but

we have not justified it on the basis of our postulates.

It is easily proved as follows:

5:3

[pages 367-369]



(The Parallel Projection Theorem.)

Given two transversals T and T
2 intersecting three1

parallel lines 1.1, L
2'

L
3

in points A, B, and C

and A', B', and C' respectively. If B is between
A and C then B' is between A' and C'.

Proof: Since Li II L2, then the segment AA' cannot
intersect L

2 and hence A and A' are on the same side
of L2. Likewise, since L3 H L2, then the segment CC'

cannot intersect L
2

and C and C' are on the same side
of L2. Since B is between A and C by hypothesis,
segment AC intersects L2 at B; hence, A and C are

on opposite sides of L2. Since A' and A are In the

same half-plane determined by L2 -and C' and C are in
the same half-plane and A and X are in opposite half-
planes then it follows that A' and C' are in opposite

half-planes determined by L2. Hence A'C' meets L2 in

a point which must be B', since B' is the intersection

of A'C' and L2. Therefore, B' is between A' and C'.

370 We have assumed that A / A' and C / C'. The argument

above Is easily modified to apply to the cases where A = A'

or C = C'.

Note that the application of this principle to Theorem

12-2 involves the case A = A'.

[pages 369-370)



Prol-qem Set 12-3a

370 1.
a + b x + y a x

a x
a + b x + y a b
---7--- = Y x y
a + b a as_i_z-
x + y 7 A-4----b-

2. FA FB
'PR

TB HA

FA FB FT
=

FB TB
17 Tff PIT 7K
FH FT BT BF Pr
a 7113' AR IT TV'

3. a. AB = i. b. BF = 5. c. BF =

371 4. a. BC = 24. d. BE = 4.
2b. CE = 67. e. AD = 10.

372

C. AC = 11.

5. No.
20 z 30
"r6 r 73'

6. a, b, e.

7. a. By Theorem 12-1, CA CB
CD

Then
CA CB

1 = 1.

or

Therefore

CA - CD CB - CF
CD

DA FB
t95 '017*

5 7

(pages 370-372)
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372 b. Taking the reciprocals of both fractions of (a)

we get
CD CF
DA FB*

Then
CD CF+ 1 + 1

or
CD + DA CF + FB
DA FB

Therefore,
CA CB

CA CBc. By Theorem 12-1,
CD 1.-17TiT'

Clearing of fractions, CA.CF = CD.CB, and

dividing by CFCB we have

8 .

w 9
17 = is one.

CA CD
CB CF'

171w

9. x music be 8 or 11.

10.

1.

2.

4.

1.

2.

3.

4.

Given.

Theorem 12-1.

From Step 2.

Theorem 12-2.

EF II AB.

FG II BC.

GH 11 DC.

XA XB
XE XF*

KB XC
1ff Yff'

XC XD
YU

XA XD.

HE 11 AD.

No, the figure does not have to be planar.

[page 372]
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373 11. Proof: Draw transversal

DC intersecting BE in

G. In A CAD we have by

AC CDTheorem 12-1,
BC CG

AB DGfrom which

Similarly, in A DCF, we

DG DE
get

AB DEHence,

(An alternate method of

proof might use an auxiliary
4-*

line CW as shown at the

right, or a line DR II AC

as shown here)

301

12. Lot I: 80 feet. Lot II: 160 feet. Lot III: 120 feet.

OA OB33. Since AB 11XY, = by.

*4"Similarly, BC II YZ implies

Hence,

OB OC
OY OZ'

OA OC
"CT OZ' This implies ra. II XZ

by Theorem 12-2.

374 14. x will be the length of the folded cara, so

6 x7 and x2 18.

The wid:h of the card should be ,./alr or 3IF inches.

[pages 373-374]
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374-378 In the proofs of Theorems 12-3, 12-4, and 12-5 we have
drawn the figure with AB > DE and used this in each proof,

except that in Theorem 12-3 the case AB . DE was discussed.
(Notice here if AB = DE, A AEIF1 and A ABC coincide,
that is A AEIF1 = A ABC.) In the case AB < DE a similar
proof would be given with El on DE and DE' = AB.

It might be advisable to point out to the students the
general plan of the proof of Theorem 12-5. First prove
A ABC N. A AEIF1 by the A.A.,Corollary, then prove
A AEIF1 lag A DEF by the S.S.S. Theorem, and finally prove
A ABC N. A DEF by the A.A. Corollary.

Problem Set 12-3b

379 1. Similarities are indicated in a, c, d.

Notice that the wording

of (e) permits

and

A

2. The A.A.A. and the A.A. Theorems.

3. a. No. c. No.

b. Yes. d. Yes.

380 4. a. The triangles are similar. S.S.S.

b. Not similar.

c. The triangles are similar. A.A.A. or S.A.S.

d. Similar. A.A.A.

e. Similar. S.S.S.

f. Similar. A.A. or S.A.S.

6 0

(pages 374-380]



380 5. a. LAW or LBW.
b. LAM
c. A ANC, or A =B.

6. if, or ICG = iStg. No .

381 7. a. e ABF A QRS.

b. A IITII RIS.

c. A ABC is not A M.

AB AF BF 1

MT Nkit TW 2

AB AC BC 1d. A ABC .1. A SSE.

AB BC AC g
W ""

8. A ABC A.. A CDT. since the vertical angles at L are
ccmgruent as well as the given angles B and D. From

CD ittine given information = T. Since the triangles have
DL + BL 11 + 1.been proved similar 11

Since L is between B and D, this can be written
BD =I or BD = 5BL.

382 9. a. r 8T= s, x =

1b. = mp.x'
c. .11, .1. Ic2.

t 1 1d. T 3"E',
at = 1,

e. Part b.
f. Part a.

e. A ABC A MX.

303

6. No.

61.

[pages 380-382]
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382 10. Of the five,equal pairs of parts three must be angles,

for if three were sides the triangles would be congruent.

Her..le the triangles are similar. Neither of the two

pairs of equal sides can be corresponding sides or the

triangles would be congruent by A.S.A. The remaining

possibility can best be shown by an example.

27

11. 1.

2.

3.

4.

5.

OBX ^. A 0
1
B
1
X

OBTherefore

by A.A.A.

OX
777r
1

by A.A.A.

OX

OB--g
01 1

0
1
B
1

L ODX A 01D1X

ODTherefore
1 1

From Statements 2 and 3,

18

OD

7371572

*12. a. A BSC A BTD, A DSC A DRB, A RSB , A DST.

b.
z

P ci

c.

d .

z

p + q
z _Lz El+ q

y p + q

,z z
+ = .

l 1 1÷ 7 - .

6 2

(page 382)
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383 e. Construct perpendiculars. 6 and 3 units long at
opposite ends (but on the same side) of any segment
BD. Join the ends of these perpendiculars to the
opposite ends of the segment, and where these lines
intersect, draw a perpendicular to BD. Measure
this perpendicular. It should be 2 units long.
Therefore the task would require 2 hours.

13.

1. ABRQ is a parallelo-
gram.

2. LQHA LBHF.
3. KHI.
4. LAQB LFH.

5. A AHQ FHB.

6.
AH HQ
?Tr

7. AH-HB

1. Given.

2. Vertical angles.

3.. Definition of a
parallelogram.

4. Alternate interior
angles.

5. A.A.

6. Definition of similar
triangles.

Clearing of fractions.7.

14. a. and b. Let a, 2a, 4a

stand for the lengths

as shown in the figure.

Then it can easily be

shown for each pair of

triangles mentioned that

the S.A.S. Similarity

Theorem applies.

o,)
t)

[page 383]
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383 C. Z ADQ and Z QAD are complementary angles.

Z QAD = z"_ QDC, since they are corresponding

angles of similar triangles. Therefore Z ADQ

and Z QDC are complementary and mZ ADC = 90.

15. Let BE be Parallel to AD, meeting AC in E.

Z ABE = Z DAB (alt. int. Z s) and Z AEB t24 Z. CAD

(corr. t_ s). Also, L DAB .7.4Z CAD (given). Therefore

Z AEB =-24Z ABE. Therefore AE = AB. Since

CD CA CD CA
then by substitution.

DB AE' DB AB

1;14 CAB
384 *16. From the previous problem = By an exactly

--similar proof you can show that - Therefore
CAB'

CD' CD
D'B DB'

*17. a. Let E be the point

on the ray opposite to

AB such that AE = y.

'Then A AEC. is equi-

lateral, EC = y. In

the similar triangles

ECB and ADB,

EC EB or

x + y
x '

1 + 1.

Dividing by y, we get

1 1

+
1

b. Yes, place the straight-edge against R1 on the

middle scale and R
2

on one of the outer scales.

Then read off R on the other outer scale.

[pages 383-384]



385 18.

19.

307

RW WS RT
1. yr -

1

RT 243T RS2 = T--- - -Ka.
1-AM

RW WS RS
3'

4. A RSW A AQL.

5. ZR--Z A.

6. A RWT A ALM.

1. Given.

2. Given WS and LQ
are medians.

3. Steps 1 and 2, and
substitution.

4. S.S.S. Similarity.

5. Definition of similar
triangles.

6. Step 1 and Theorem 12-4.

1. L y is the comple-

ment of Z: x.

2. L y is the comple-

ment of L R.

3. LxLR.
4. LB =IL RM.
5. A HRA ^, A BAF.

HR HA
6. BA BF'

7. HR-BF = BA-HA.

386 20. a. No.

1. a J, AB, and defin-
ition of complementary
angles.

2. Given RH AF, and
Corollary 9-13-2.

3. Complements of the same
angle are congruent.

4. RH 1 AF and FB I AB.

5. A.A. Corollary.

6. Definition of similar
triangles.

7. Clearing of fractions
in Step 6.

b. Bisect PA
l'

PB
l'

etc., and connect the resulting

mid-points.

PA
2

PB
2

c. 13T- - because both equal 2. L A1PB1 is
1 '-1

common to triangles A1PB1 and A2PB2. These

triangles are therefore similar by the S.A.S.

Similarity Theorem; and as a result of their being

similar the sides A2B2 and A1B1 have the same

ratio as the other corresponding sides.

[pages 385-386]

6 5



308

386 d. Not only A2B2 and A1131, but other corresponding

sides of triangles A2B2D2 and A1B1D1 are in

the ratio 2:1 by a proof like that in part c.

A2B2D2 A AiB1Di by the S.S.S. Similarity

Theorem.

e. Yes, the method could be used for any point P;

but in some instances the enlargement would inter-

sect the given figure.

387 *21 L SRX L QTX and L RSX L TQX (alternate interior

), so A SRX A Q,TX by A.A. Therefore

RX SX RX TX
= so sry = 7. Since A QXR -.A TXS (given),

RX QX 113,r7X /sly = Ty. Therefore
(Qx)2

k TX)
2 , and

QX = TX, since both QX and TX are positive.

XQR L XTS and L RXQ, L SXT (definition of similar

triangles) , so A QXR A TXS by A .S .A. Therefore

QR = TS.

Alternate proof: If TS > QR, then TX > QX and

XS > XR, from A QXR TXS. In A QXT,
mZ XQT > mL XTQ, by Theorem 7-4, and in A RXS,

mLSRX > mL RSX. But mL XTQ mLSRX, by alternate

interior Ls, and mL XQT = TTIL RSX. Contradiction.

Similarly if QR > TS.

66

[pages 386-387]



387 22.

1. -AW MW.

BFRQ, is a square.

2. LABQLwLMFR.
3. Let mL A = a and

mL N = m.

4. Thus, mL FRM = a

and mL AQB = m.
5. Also, mL WQR = a

and mL WRQ = m.

309

Given.

Definitions of per-
pendicular and square.

. Angle Measurement
Postulate.

6. AABQ m, A RFM A QWR. 6.
, AB BQ A AB BQ
f. 77/- VW ark' 117 Pg.

8. AB.WR = QW.BQ and

ABFM = RF.BQ.

Corollary 9-13-2.

The sum of the measures
of the angles at Q is
180 and the sum of the
measures of the angles
at R is 180.

A.A.A.

7. Definition of similar
triangles.

8. Clearing of fractions
in Step 7.

23. Since A ABF A HRQ we know ZFaLQ, and

AF AB BF FB FW AF
HQ HR RQ. Also 7 = =73T. Then

AAWF m, A HXQ by S.A.S. Similarity, and then
AW AF FB AB

HQ QR HR.

It is possible to continue in the same way for the other
medians.

24. Since A ABF XWR then Zx'AZA and
XR XW WR

= AHF = mL XQR and so A XQR AHF

by A.A. Then 14f:i =g.

A similar proof can be followed for each of the altitudes.

6 7
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388 25. As shown in the two figures the two triangles are

similar by A.A.

26. Since the base angles are congruent, AE = BE and by

subtraction EC = ED. Hence A CED A AEB by the
S.A.S. Simfaarity Theorem.

Therefore Z ECD ris= Z EAB and CD H AB by corresponding

angles.

389 27. False. Let A AB
1
C and A AB

2
C be such that AC = AC,

"ZA, CB1 = CB2, as in the diagram, but the tri-

angles are not congruent. Construct A AIBIC1 A ABI.C.

The triangles AlB101 and AB
2
C satisfy the statements

of the hypothesis, but these triangles are not similar.

AB AC BC*28. a. 1. A ABC A ADE; =

2. A ABC and A ADF are not similar even though

AB BCTT since mZ B mZ FDA.

b. False. The diagram shows a counter-example. The

hypothesis is true if X is either E or F.

The conclusion is false if X is F.

390 *29. In similar ABC and EDC, .3.cg From the similar

ACG and AEF,
a + b 7

a 7'
b 7,

-r 7,

b 4

a 3

x 3

17,

3 1x = 7 39 = 29T

Answer. The ball hits the groundat least 29'3" from
the net.

6 8
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A CEB AEF since Lx=Ly (alternate interior
ahrjec of paralle lines BC and AD) and

EF FAFEA ".41 BEC (vertical angles); therefore --
EB BC

. t7. Also, A CEG A AEB since LABELCGE
(alternate Interior angles) and Z CEG az AEB (vertical

BA AE EBangles); we get Since in each case weGC CE
AE EF EBhave 7E as one of the fractions, we also have EE

DA AX
. Lrc AX tBY, A DAX A DBY and

,

4c-a c--> EC CZimilarly, since cZ H BY, 11 CEZ ...A BEY and EB BY'
Put AX = CZ, since opposite sides of a parallelogram

DA EC DA EC
DB EB'

are congruent,and so 15E EE. Now 1 -
1

DA EB - EC
DR EB and g 1A. Therefore AC II tt by

4->
Theorem 12-2. And now AC H DE H xZ.

In right AXE and

CXF, z FXC = z EXA,

hence z XAE = z XCF (4/ a).

n. Is a complement of

c. b Is a comple-

mnt of L c. Hence

/a;i1 /ba4ZXAE. Hence

A BPC A ADC and

AD
77 T7'

Since AB occurs in each denominator,one only

needs to show that
AD ,PE CD

S!n-- RE FE + BF

,,.. CD BF

one only needs to show that

AD
BP Tu'BC .

Th! 1.; ossentlally what was shown in part a.

lhl Problem.

[pages 390-391]
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391 In Theorem 12-6 we have assumed the following theorem:

In any right triangle the altitude from the vertex of the

right angle intersects the hyPotenuse in a point between

the end-points of the hypotenuse.

Proof: Let D be the foot of the perpendicular from

C to AB.

391 There are 5 possible cases:

(1) D - A.

(2) D = B.

(3) A is between D and B.

(4) B is between D and A.

(5) D is between A and B.

We would like to show that cases (1), (2), (3), and (4)

are Impossible which leaves case (5) as the required result.

Case (1) is impossible because A BDC then would have

two right angles, one at C and one at D.

Case (2) is impossible for a similar reason as in

Case (1).

Proof that uase (3) is impossible:

D A

Suppose that 'A is between D and B. Then Z CDA is a

right angle of A CDA. Moreover Z CAB is an exterior

angle of A CDA and so is obtuse. But this is impossible,

since Z CAB is an acute angle of A ABC.

A similar proof shows that Case (4) is impossible,

henc, Case (5) holds as was to be proved and the altitude

from C must intersect the hypotenuse at some point D,

such that D is between A and B.

7 t)

(page 391]



313

392 Once we have proved Theorem 12-6, it is now possible to

prove the Pythagorean Theorem using similar triangles. This
has not been done in the text, however, since the theorem

has been proved once by areas. If time permits, it might be

illuminating to the class to let them see the following

proof, reminding them that there is more t1":11 one way to

attack a mathematical problem.

Theorem: Given a right triangle, with legs of length a and
b and hypotenuse of length c. Then a

2
+ b

2
= c

2
.

Proof: Let CD be the altitude from C to AB, as in
Theorem 12-6. Let x = AD and let y = DB, as in the

figure. The scheme of the proof is simple. (1) First we
calculate x in terms of b and c, using similar tri-
angles. (2) Then we c,11culate y in terms of a and c,

using similar triangles. (3) Then we add x and y, and

simplify the resulting equation, using the fact that

c = x y.

(1) Since A ACD A ABC, we have )4.

b2
Therefore x =

(2) Since A CBD A ABC, we have Z. .
a. C

Therefore y

a- + b 22
(3) Thus we have x y

But c x + y.

a
2
+ b2Therefore c

and a2 + b2 c2, which was to be proved.

[page 392)
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395 Note to the teacher: At this point in the text you

may wish to proceed directly to Chapter 17, Plane Coordinate

Geometry, and later return to the remaining chapters.

Problem Set 12-4

393 1. x = 2vr-57.

z = 6.

y = 313.

2. x = 16.

y =

z =

4 6394 3.
a'

36 = 4x + 16.

20 = 4x.

5 x.

b.
f.

y2 4.5.

y = 2 1-5-,

C.

Let the segments of the

hypotenuse be x and 25 - x.

12Then 17 f5 by Theorem

12-6 and definition of similar

triangles.

144 = 25x - x2.

x
2

- 25x + 144 = 0.

a
3.

a
2
= 9.5.

a = 3,r5.

(x - 9) (x - 16) = 0. The segments of the hypotenwle are

9 and 16. If a is the length of the shortor

(pages 393-395]
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a.
a

a = 15.
1.126,

b = 20.
394 5. a. CD = 4; AC = "-§5 = 21-5---; CB = 1-8-6 =

b. DB = 27; AC =1-97 3 ITU; CB = 1810 = 9 %/ITO.

c. Let DB = x, then x(x + 10) = 144.

x2 + 10x

x2 + 10x - 144 = 0.
(x 18)(x - 8) = 0.

x = 8.
DB = 8.

CA

CD = .1-87=

d. Let AD = x, then x(x + 12) = 64.
x2 + 12x - 64 = 0.

(x 4)(x + 16). 0.
x =

AD =

CB =

CD = LATT3 4,./77

7 3

(page 39k)



316

Problem Set 12-5

396 1.
9 . x2

T.U' 2

6
2.

25'
15

4. 3.

).
(:0)2 36 ( 65)2 (4)2,

b 2 40
7-6

b = = 8 .

The base of the smaller is 8 inches.

U. 9

7. Since DE UAB, A ABC A DEC.

CA
3

and so

397 8. a. 2

9. (-Pb-)2 =

S2 2
100 T'

10.

S
2 = 1002.

S=
A
1 f=

2 . x 3

Area A ABC
Area A DEC - 9.

b. 4.

The sides will be 10,r2-

4= .

11. If the length of the wire is called d, the side of the
1 1square is and that of the triangles is 7c1.. Then

d2
-

the area of the square is 7.6. and' that of the triangle

ts
d" r--7u 3. Then,

d 2

Area of the trianle 7617_ 4fT.
Area of the square

'7 1. r's
[pages 396-.397]
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1397 12. The area of A ABC = 140.120 = 8400.

The area of the required lot must then be 4200. By the
Pythagorean Theorem, AD = 90, and area of

1
AADC = f.90.120 = 5400. Then, by Theorem 12-7,

t)2 ;11gg,
and x = 30I7: The required distance

is approximately 79.4 feet.

13. Given: Right A ABC, LC a right angle, and M the

mid-point of A.
Prove: MA = MB = MC.

Proof: Let MK be the perpendicular from M to BC,

meeting BC in K. Then MK IIAC, so CK = KB.

Therefore Ur is the perpendicular bisector of CB.

Hence MC = MB. Since MB . MA (given), then

MA = MB . MC.

398 14. By Problem 13, KC = where AB = c. Therefore

mL KCB = mZ KBC = 60, so mL BKC = 60. Therefore

BC = KB = A

15. Since AR = RC, mZ A = mZ ACR.

Also, since RC = RB,

mZ B = mZ BCR. Let

mZ A . mZ ACR y and

mZ B = mZ BCR x.

Then in A ACB, 2x + 2y = 180, and x + y = 90.

*16. HC (HC)2 = AHHB,
ITU MT'
AH CH

Also L AHC acL CHB. Hence A AHC A CHB by S.A.S.

Similarity Theorem. Therefore Z HCB St L A. Since

HCB and Z B are complementary, then L A and Z B
are cool, amentary, and A ACB is a right triangle. By
the preceding problem MC . AM, and MC . 7AB

1
.7(AH + HB). But HC < MC, except when M = H

(i.e., when AH = HB). Therefore, .4/TT1-IE

HC < (AH + HB). If AH = HB, the last inequality

[pages 397-398]
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becomes the equality AAAH)2 = .;.*(AH + AH), that is

Alf = AH.

Alternate solution. Let u and v be positive numbers,
u / v. Then

0 < ("TT -.17)2= u - 211-T7q7-+ v.

2.1171-V- < u + v.

u + v.

PR PX398 17. Outline of proof. A PXR A PYA, therefore T,A. =

PR RSA PRS "v A PAB, therefore yx =-105.

A RST A ABC, therefore

From the above:

Area A RST (RSN2
A-Yea g.10.

Area A RST (PXN2
Area A ABC 15NY

399

400

*18.

*19.

1.

".

3.

5.

a2

Area Addition Postulate

Division.

Theorem 12-6.

Theorem 12-7 and Step 2.

Multiplication.

h2 y2 h2
(c x)2.

(h2 x2) c2
2cx.

(Postulate 19).

= b
2 2

c - 2cx.

In the similarity A ADC A RST,

Therefore

x k "
= =

x = bk.

a2 = b2 + e2 2bck.

(pages 398-4001
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2 \ 2400 ,-20. a
2 =n +y2-h + (x + c) .

(h
2

+ x2) + c
2
+ 2cx.

= b- + c 2 + 2cx .

In the tad lari ty A ADC RST,

x k
T k'

X = bk.

There fore

a
2

- b 2
+ c

2
+ 2bck.

319

(This Ls the case in which z C is acute. If z C is

ob tuse or a right angle, the proof is similar.)

Le t A RST have L R C L S a right angle,

hypotenuse = 1, RS = k. By the result of Problem 19,

applied to A ACT,

2 2 a 2ma - b + (7) -

2
(1) 2 a

= b + - abic.

Apply Ing the same result to A ACB,

(2) 2c. b + a - 2abk.

1111 t p ly Ing bo th 5 Ides of Equation (2) by and
ubt ra c t int; from the corresponding sides of Equation (1):

2 1 2 b-
2

a-m
7j 'a

2 a2
- 7 )

[page 400]
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400 (b)

401 1,

2.

3.

1 2 1 2
From part (a) ma2 ;b2 +

e

2 1 2 1 2 1 2
mb -ffa 743 '

2 1 2 1 2 1 2
mc 713 V

Adding and collecting like terms,

3
m
a
2
+ mb

2
+ m

c

2
= 17(a

2
+ b

2
+ c

2
).

4

Review Problems

a.

b.

c.

d.

a.

a.

b.

2 4

11 FB,

--_-, TE1.1-,

1
2
77. FQ

6 QB
9 12'

Yes.

G.M. is

G.M. is

hence

hence

hence

hence

4 viT.

6,

FB = 22.

FQ =
5'

FQ = s

QB = 8.

b.

A.M. is

A.M. is

AF = 8.

9.

-3vT

4. Sketches might be of two rhombuses; a rhombus and a

square; two parallelograms; a parallelogram and a

rectangle.

12 FC 12 AC
5. = 77, hence FC = o. = 17, hence AC =

BC
hence BC =

402 6 . If DE
I I L x 3 53x + 3 x + 5 '

[Pages 400-402]
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402 7. A ABE A CDE (A . A . ) . Corresponding sides are there-

fore proportional and DE = UBE. Hence BD = 5BE.

8. Let e be the length of the side- of the original tri-

angle . Then the length of the side of the second tri-

4
angle is V5 and the ratio of the areas is 7.

8
x
2 20x + 64 0; x 16 or x 4.

( i) If x = 16: a2 162 + 82; a

y 20 - x = 4; b =

(ii) If x = 4: a2 42 82; a . 4 ./6-;

y 16; b . 8 .,157

Hence there are two possibilities: x = 16, y = 4,

a b = 4 vf-- and x 4, y 16, a . 417,

b = 8 Nrc.
AB AC BC

10. A ABC , A DEF, hence =DE EY'

AC AB CB
ACB A DEF, hence DE DF EF'

AB AC
. Since , above, the last ratios are the same , DE DE

and hence AB = AC .

11 . a. A AFQ A WAX ( A . A . ) . Hence
g AQ and

therefore AF.XW AW.QA .

QF
b . AXW FQA ( A .A . ) and so -AT( = RI

QA
g;

hence QF XW = AX QA .

AW AX
c. Since A AXW A FQA , 77: 77, hence

AW FQ - FA .AX .

[ page 402 ]
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,403 12. _

x 330.

13.
3

=
y '

27
= hence w = 18,1ff.w 24'

3 xhence y = 24. 7 77, hence x = 6.17.

*14. mL XYR - mL. ABR, mL RYZ = mL RBC

(corresponding angles.) By

addition, mL XYZ = mL ABC.

Since XY 11AB, A RXY A RAB,

XY RYhence TE . 7g. Since

YZ I1BC, A RYZ , A RBC,

RY YZhence HenceRB BC
XY YZ

Hence A XYZ A ABC (S.A.S.)AB BC

15. Na. We can he sure that

It Ls when the plane of

trLanp;le and the plane

ri1:r1 are parallel.

Pr,Jof: Assumlnr7,' that the

planes of A ABC and 0

A DEP are parallel,

751,. k AP, EP H BC, DF 11 AC.

.'. A ODE , A OAB,

A OEF A OBC, A OFD A OCA.

EF OE ED OD DF
that i EF ED DF

Thoret'ere A A DEF by S.S.S. Similarity.

(page 1103)



Illustrative Test Items for Chapter 12

A. 1. a. In A ABC, if AD = 5,

AB . 7, AE =

EC . 3, is DE I1BC?

Explain.

b. In A ABC, if AD = 15,

AB = 25, AC = 33, and

AE = 21, is DE 1IBC?

Explain.

3 2 3

2. a. Given two similar triangles in which the ratio of

a pair of corresponding sides is what is the

ratio of the areas?

If the ratio of the areas of two similar triangles
1

is 7, what is the ratio of a pair of correspond-

ing altitudes?

3. If 2, 5, 6 are the lengths of the sides of one tri-
1angle and 77, 9, 3 are the lengths of the sides of

another triangle, are the triangles similar? If so,

write ratios to show the correspondence of the sides.

b .

4. If ABCD is a trapezoid

with AB H Dd and lengths

of segments as shown, give

numerical answers below:

AB n
a.. ur =

b
Area A AEB

. - 9
Area A CED

Area A ACD
C. 9

Area A BDC
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In the figure, ABCD Is a

paralle.iogram with PG H DC.

DF - DE = 6, AB = 12,

KB = Find AF, BC,

CH, KF and LP.

b. In quadrilateral KUS in

the figure, aegments have

lengths as shown. Find

KS
Ln terms of n.

'311

B. 1. In the figure, AB BC,

L AC, and the lengths

of the segments are as

shown. Find x, y, and

With AC -d-f and

AB and with lengths

;3 indicated in the

figure, find x, y, and

In this figure 6 ACB is

a right triangle with

altitude HC drawn to the

hypotenuse AD. Find

z. Y, and z.



C. I. AP and BQ are medians

of A ABH, as shown in

the figure. Prove

ABK A FQK. Write

three equal ratios show-

ing the proportionality

of the sides of these

triangles, and give the

numerical value of the

ratios.

2
2 In this figure, BF = 741B

3
2

and BQ = 7AB. Prove

the two triangles are

similar and write three

equal ratios showing

the proportionality of

the sides.

3. HF 11 AB as shown in

the figure. Prove

AB.FQ = AQ.FH.

A. I.

325

Answers

Yes, since 57 =

1
7-ff

--7 (Theorem 12-2).
' lD

21
b. No, since 12 r 77'

2. a .
7'

v. =
2

.17,T

2 5 6
3. Yes . = = 7.

2
a. 7, b.

7'
c. 1.

20
5. AF 8. BC = 12. DH = 4. KF = 7r.

6.
5n . 15 KS n

KS HS 17 7*

8 3

LF=
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13. 1. hence x = 213. = hence z = 6.

2 hence y = 313 .
Y 5'

2. x 16. y = 415. z 81;-.

14 x '
hence x = 5. = hence y

hence z = 31-5:

C. 1. L L FKQ (vertical angles) and

BQF L QBA (alternate interior angles),
_KFAK TA4 .11c4hence A AKB A FKQ (A.A.)

BF 1;3042. Since Es. = = and Z HBF ABQ, A 1-113F A ABQ

(s.A.s.) and

AB3. A ABQ , A FHQ (A.A.) and mr hence

AB.FQ = AQ.FH.

1
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Chapter 13

CIRCLES AND SPHERES

This chapter falls into two parts: the first studies

common properties of circles and spheres relative to inter-

section with lines and planes, the second deals with degree

measure of circular arcs and related properties of angles

and arcs, chords, secants and tangents. The first part is

unusual since it tPeats circles and spheres by uniform

methods and states and proves the fundamental theorems on

the intersection of line and circle (and sphere and plan)

with great precision. You will note that following the

fundamental theorems on circles, there is a corresponding

section concerning spheres, and probably nowhere else is

the analogy between plane and space geometry so strong as

it is here. Essentially the same proofs work for the sPhere

as the circle, as relates to tangent and secant lines and

planes. The theorems and methods of proof in the second

part are, in the main, conventional but the basic ideas of

types of circular arc, angles inscribed in an arc, and arc

intercepted by an angle are defined with unusual care.

The convention of letting circle P mean the circle

with center P is followed in many of the problems for

convenience, where no ambiguity results. The text, however,

follows the more precise notation, where a separate letter

denotes the circle." We can then talk concisely about

concentric circles C and CI or about line L inter-

secting circle C.

Use concrete situations to illustrate the idea of circle

and sphere. For example, ask students to describe the

figure composed of all points which are six inches from a

given point of the blackboard - but don't say "points of the

blackboard". Use models, cut a ball in half to indicate
A

its center and radius, and so on. Refer to the earth and



oo213d) 

r 

( ' 0) -1.11-;1p 

LT() t.:- rriIr c. UTC.d 

:-.:-., ,:,;-_-i, 

7 : - 1 . 2 . 
. 

- z r 
_ 

f-,' 

),..i; ,:" ."-:. :,..li:::. :. 

: 

:;:.i.1.17,thI 

::!., 1,...1.": ,-'41. 

- ,i--,',"1:-II 

' :3'.:. I 1-3,,i 

' 
: :----,-, i.-:,,.; 

6,-;,..d, 

. an11 

. .,:.,,i,-L 

pull; 

;_..),I 1. 3 

, I, 

:d 

,T 

,:, 

.11 

. t7; 
.:.:, 

..1 

U j 0 1:30D1 

qq21 

' 1.101.q. D G C 

1? 110 0-i. I 

11? 

U i 11;--)AT.:.3 

', 711.1T 0 d i T v 

' )'.3T-1.:.,,1 

;-31-1,1j, 

,.D n.la, 

. i..,1; ,..,' il2e3 

' 0 1-3 I '0,t1, 

2 T r-!8 

- :-:...r-1.1d, 

- 1-.: 

P 

' 0 

q 

' ii.,. 

. P 

o 

q 

r? 

E' 

' T 

. 

Ili. 

TTtf 

d 

,m1; [(1. tmm og-mb;-) ,7,7_11 cc: gons 

[;) :n..:LloE) ;),I1 q-eGa2 

( sUM1 pI.Jw o) anq .enb;-79. 
aqq 

0 EC 



331

4. Let c be the length of any chord not a diameter.

Draw radii to its end-points. Then 2r > c, by

Theorem 7-7, The Triangle.Inequality. But 2r is

the len'th of the diameter. Hence the diameter is

larger than any other chord.

412 We have not adopted the convention that the d!stance

from a point to itself shall be zero - that is, the distance

between points is always a positive number. For this reason,

in defining the interior of a circle (or sphere), we must

include the center in addition to points whose distance to

the center is less than the radius.
414 Cases (1) and (2) .of Theorem 13-2 should be easy for

students to grasp. In Case (2), the answer to "Why?" is

Theorem 7-6 (The perpendicular segment is the shortest

distance from a point to a line).

415 Case (3), (see below) is more difficult and may cause

trouble for some students - also they may think it hair

splitting to prcve something so "obvious". If they learn

and understand the theorem and omit the proof of Case (3),

they still may be better off than in a conventional course

in which the precise relation between lines and circles

is not made explicit, let alone proved. Incidentally,

Theorem 13-5 1...s an exact analog of Theorem 13-2, but is

less familiar and less obvious. After working through the

proof of Theorem 13-5 they may better appreciate the proof

of Theorem 13-2.

415 Remark on Theorem 13-2, Case (3): Case (3) is essential-

ly the same as an existence and uniqueness proof. Since we

don't know that L and C have points in common, we assume

they have a common point and try to find where it can

possibly lie. Precisely we try to locate it relative to F

which is a fixed point on L.

8

[pages 412-415]
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Thus in the first part of the proof we show:

If a point is common to L and C its distance from

F is .jr2 - PF2. Since N42 - PF2 is a definite positive

number, we see that there are only two possible positions

on L for a point common to L and C, namely the two

points on L whose distance to F is NA' 2

415 In the second part we show a converse: If a point is

on L and its distance from F is NA' 2 - PF
2

then it is

common to L and C. To show this we merely show that

PQ = r, as follows:

pF2 .Nd/r2 pF2 pF2

Thus the two points described above are common to L and

C and constitute their intersection.

415 If your students prefer to derive some of these

corollaries by using congruent triangles and other earlier

principles rather than Theorem 13-2, by all means pel-mit

them to do so. The fact that Theorem 13-2 is a powerful

theorem may be seen better in retrospect by many students.

In applying Theorem 13-2 (and Theorem 13-5) we generally

show that since two of the cases do not hold in a particular

situation the other one must hold.

[Page 415]



Proofs of the Corollarit_s

Corollary 13-2-1. Any line tangent to C per-

pendicular to the radius drawn to the r)oint of ,)ntact.

Let L be a tangent to C

at point S. Draw the radl_u

PS. Let Q be the foot of the

perpendicular from P to L.

If Q / 5, then L intersects

C in exactly 2 points and

this contradicts the hypothesis

that L is tangent to C at

S. Therefore the point Q must

be the point S, hence the

tangent L is perpendicular to

the radius drawn to the point

of contact.

333

Corolla= 13-2-2. _Any line in E perpendicular to a

radius at its outer end, is,-tangent to the circle.

Given a line in E, per-

pendicular to a radius at its

outer end, which is a point on

circle C. This point is Q,

the foot of the perpendicular

from center P to L. Then,

by Theorem 13-2, the line

intersects the circle in Q

alone and is therefore tangent

to the circle.

9 0

[page 14161
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Corollary 13-2-3. Any perpendicular from the center
of C to a chord bisects the chord.

Consider a chord AB

of circle C and the line L

containing AB. The line L

intersects G in two points

A and B. Let Q be the

foot of the perpendicular from

P to L. The intersection

cannot be Q alone. Hence,

by Theorem 13-2, A and B

are equidistant.from Q.

Therefore the perpendicular

from P to the chord bisects

the chord.

Corollary 13-2-4. The segment joining the center of

a circle to the mid-point of a chord is perpendicular to the

chord.

Given chord AB of circle

C and segment,. P,9_ where P

is the center Of circle C and

S is the mid-Point of chord

'AB.. Let PQ IAB with foot

Q. By Corollai'y 13-2-3, Q is

the mid-point Of AB. Since

the mid-point of ri is unique,

(Q S), PS is perpendicular

to the chord AB.

Alternate Proof: Let F be the mid-point of AB.

Then P and F are equidistant from A and B in plane

E and PF is the perpendicular bisector of AB in plane

E by Theorem 6-2.

This also can be done independently of Theorem 13-2 oy

using congruent triangles.

[page 1416]
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Corollary 13-2-5. In the plane of a circle, the per-

pendicular bisector of a chord passes through the center of

the circle.

By Corollary 13-2-4 the segment joining the center of a

circle to the mid-point of a chord is perpendicular to the

chord, hence the line containing the center of a circle and

the mid-point of the chord Y6 a perpendicular bisector of

the chord. Since there Is only one perpendicular to the

chord at its mid-poiklt, the perpendicular bisector ofa

chord must pass through the .'.!enter of the circle.

Alternate Proof: The perpendicular bisector of the

chord in the plane of the circle contains all points of this

plane which are equidistant from the end-points of the chord

(Theorem 6-2). Therefore the perpendicular bisector contains

the center.

Corollary 13-2-6. If a line in the plane oi a circle

intersects the interior of the circle, then it intersects

the circle in exactly two points.

Consider line L in the

plane E of circle C, which

contains a point S inside

C. Let F be the foot of

the perpendicular from P to

L. By Theorem 7-6, PF < PS.

Since S is in the interior

of C, PS < r. Hence,

PF < r, and so F is in

the interior of C and

Condition (3) holds.

[page h16]
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Note on Corollary 13-2-6. This corollary differs from

Case (3) of Theorem 13-2 in that the.point in the interior

of C. does not have to be F, the foot of the perpendicular .

to the line. Probably most students will consider this

difference quite unimportant, and a proof of an obvious fact

as very superfluous. While you may not care to bring it up,

a significance of this corollary is that it indicates the

precision of our treatment of circles using Theorem 1:-2

which allows us to give a formal proof of such an intuitively

obvious result.

417 The idea of congruent circles gives you an excellent

opportunity to discuss the general idea of congruence.

Point out that to say two figures are congruent means that

they can be made to "fit" or that one is an exact copy of

the other. But it is very difficult to give the student a

precise mathematical definition of the idea until he knows

a fair amount of geometry (see Appendix on Rigid Motion).

Therefore we define congruere piecemeal for segments,

angles, triangles, circles, arcs of circles and so on. But

in each case we frame the definition to ensure that the

figures are congruent, th't is, "can be made to fit". So

in the preGent case, we 'ne circles to be congruent if

they have congruent radii not because we consider th'_s

condition to be the basic idea, but because we are

Lntultively certain that it guarantees that the circle can

/' be made to fit.

/417 It might be well to remind the students of what is

involved in the concept of the distance between a point and

a line, including the case where the distance is zero.

Note that in the proof of Theorem 13-3 we have assumed

that the distance from each chord to the center is not zero.

If it is zero, each chord is a diameter and the theorem

still holds.

f)

[page 417)
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Proofs of Theorems 13-3 and 13-4

Theorem 13-3. In the same circle or congruent circles,
chords equidistant from the center are congruent.

Given: Chords AB and CD,

equidistant Prom P.

To prove: AB CD.

Let PE 1 AB and
PF i CD as in the fig re.

Draw radii PE and F._

Then in right trianries

FEB and PFD we have:

a

(1)

(2)

(3)

PE . PF.

PB Sg. PD.

A PEB A PFD.

(1)

(2)

(3)

Given.

Radii of same or congruent
circles are congruent.

Hypotenuse and Leg Theorem.
(4) EB = FD. (4) Corresponding parts.

(5) EB = ;AB. (5) Corollary 13-2-3.
1FD = CD.
2

(6) jeB = (6) Substitution.

(7) AB = CD or AB CD. (7) Algebra.

Note that this proof still holds if AB intersects CD
as shown below:



'33P,

Proof of Theorem 13-4: In the same circle or congruent

circles, any two congruent chords are equidistant from the

center.

Given: Chords AP === CD.

P is tH:: center of the

circle.

To prove: PE = PF where

PE AB and PF CD as

.in the figure.

Draw radi-t. PB and

PD.

(1) PR = PD.

(2) AR = CD.

1 1
TCD.

(4) EB = 4.AB.

1FD CD
2

(5) EB = FD.

(6) A PEB A PFD.

(7) PE 2-4 PF or PE = PF.

(1) Radli or same or congruent
circles are congruent.

(2) Given.

(3) Multiplication, Step 2.

(4) 'Corolla 13-2-3.

(5) Steps 3 and 4.

(6) HypotenusL-Leg Theorem.

(7) Corresponding parts.

417 As in the conventional treatment we have implicitly

asowned that the distances, of the chords from center P are

not zero. If both distances are zero, the c:lords are

diameters'and the theorem is correct. Could one distance

be zero and the other not? The answer of course is no, and

is justified by the following minor theorem: A diameter is

the longost chord of a circle. (See Problem Set 13-1,

Problem

In this chapter there are very many interesting results

of the th in the text proper. Many of these interest-

ing facts ai.e to be found in the problem sets, accompanied

(page 417]
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by problems providing numerical application of the fact.
In assigning problems, teachers should be careful to watch
for such sequences and select accordingly.

a.

Problem Set 13-2

Theorem 13-3.Corollary 13-2-4. e.

b. Corollary 13-2-2. f. Corollary 13-2-1.

c. Corollary 13-2-6. g. Corollary 13-2-3.

d. Corollary 13-2-5. h. Theorem 13-4.

2. (See Teacher's Commentary for proof of Corollary 13-2-3.)

3. (See Teacher's Commentary for proof of Corollary 13-2-5.)

4. By Corollary 13-2-5, the perpendicular bisector of a
chord passes through the center of the circle. Hence,
to find the 7tenter draw any two chords in the circle
and the perpendicular bisector of each. The inter-
section of these bisectors will be the center of the
circle.

419 5. Draw a perpendicular from C to MN, forming a 3-4-5
right triangle. Then the distance from C to ii[14 is
16

6. As in the figure,

CB = 15 and DC = 12.

Then DB = 9, and

the Chord is 18

'inches long.

(Pages 418-419)
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419 7.

420 8.

420 9.

*10.

a. D.

b. C.

C. C.

d. A.

e. C.

Let PT intersect AB

at F. Then FB = 6.

A BFP is a 30 - 60

right triangle. Hence

PB = 4

B.

C.

D.

Since a tangent to a circle is perpendicular to the

radius drawn to the point of contact, the two tangents

will be perpendicular to the same line and are, there-

fore, parallel.

1. DO II AC.
*-*
CD is tangent

at C.

2. L A L BCD.

3. OC = OA = OB.

4. LA aLACO.
5 Z ACO L COD.

6. LC0DLB0D.
7. OD = OD.

8. A OCD gg A OBD.

9 Z OCD L OHD.

10. mL OCD = 90.

11. nit_ OBD = 90.

12. FT is tangent

at B.

1. Given.

2. Corresponding angles of
parallels.

3. Definition of circle.

4. Theorem 5-2.

5. Alternate interior angles.

6. Steps 2, 4, and 5.

7. Identity.

8. S.A.S. and
7.

9. Definition
triangles.

Corollary 1

Steps 9 and

10.

11.

12. Corollary 13-2-2.

Steps Jt 6, and

1.1

of congruent

3-2-1.

10.

[pages 419-420]
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420 11. Draw OR. OR I AB, by Corollary 13-2-1. AR = BR,
by Corollary 13-2-3.

421 12. Here are three arrangements.

*13. Let L be the common tangent. Then in both cases,
PT j L and QT J L by Corollary 13-2-1. But there
exists only one perpendicular to a line at a point on
the line. Hence PT and QT are collinear. This
means that P, Q, and T are collinear.

14. AC = 14- x +10- x = 18.

24 - 2x = 18.

2x = 6.

x = 3.

BR = 3, CP = 7,

AQ = 11.

98

[pages 420- 421 ]
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422 .15. (See Teacher's Commentary for proof of Theorem 13-3.)

16 Given: Z AEP Z DEP.

Prove: AB -sz. CD.

Draw PG AB and

PH CD. Then A PGE

and 4S PHE are right

triangles with

mZ GEP = mZ HEP, and

EP =. EP. Hence,

A PGE A PHE, making

PG = PH. By Theorem

13-3, AB CD.

17. Since RD = RE, AB = BC by Theorem 13-3. But

1 1DA = eB and EC = -eC by Corollary 13-2-3. Hence,

DA = EC.

18. By Corollary 13-2-4 the segment joining a mid-point of

a chord to the center is perpendicular to the chord.

By Theorem 13-3 these segments all have equal lengths.

By the definition of a circle, all points equidistant

from a point lie on the circle having the point as

center and its radius equal to the distance. By

Corollary 13-2-2 the chords are all tangent to the

inner circle.

* 1 9

1. AO a OB.

2

3. AC CD, BD CD.

i it? 1M
5. CT E4 TD.

6. mL CTO = mZ DTO
90.

7. OT OT.

8. A CT0DT0.
9. CO DO. 9:J

1. Definition of a circle.

2. Corollary 13-2-1.

3. Given.

4 Theorem 9-2.

5. Theorem 9-26.

6. Perpendicular lines form
right angles.

7. Identity.

8. S.A.S.

9. Corresponding parts.

[page 422]
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eively the basic theorem on secant. and

:t pianes, Theorem 13-5, follows the pattern of Theorem
the theorem on secant and tangent lines of a

In the case of Theorem 13-2, the point Q plays

r,ile In Theorem 13-5 and its corollaries.
)4. th,tt to prove (3) we show that two sets are

that Ls, the intersection of E and S is the
the .circle with center F and radius

. This is why there are two parts to prove: (1)

is the intersection then Q. is in the circle;
.1hd c'.)rivemlely, (2) if Q is in the circle then Q is in
the intersection. (Compare the discussion of the alleged
idchtIty if' the Yale Mathematics Department and the Olympic

Team of the Commentary,Chapter 10.)

)1.)erve that we establish (1) and (2) by showing:

(I') IC a point is common to E and S its distance

m P is N/r2 PF2.

(2') If a point is in E and its distance from F

- PP- then it is common to E and S.

wLth Case (3) of Theorem 13-2.

Pi:oot's of the Corollaries

Cer)liary 13-5-1. Every plane tangent to S is per-

7:!c;dar to the radius drawn to the point of contact.
Plane E tangent

at point R.

p::f)o,:!: Plane E perpendicular

to the radLus drawn to the point

::A;tar3t.

[pages 423-426]
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tr?6

We will use the same method as in Corollary 13-2-1.

Let F be the foot of the perpendicular from P to E.

Since E is tangent to S and meets it in only one point,

Cases (1) and (3) of Theorem 13-5 do not apply. Therefore

(2) applies so that F is on S and E is tangent to S

at E. Therefore PF is the radius drawn to the point of

contact and E j PF

Corollary 13-5-2. Any plane perpendicular to a radius

at its outer end is tangent to S.

Given: Plane E is

perpendicular to radius

PR at R.

To prove: Plane E is

tangent to S. Then R

Is the foot of the per-

pendicular to plane E

from P. By Theorem 13-5,

plane E intersects S

only at R, hence, E

is tangent to S.

Corollaries 13-5-3 and 13-5-4 are actually not

corollaries to Theorem 13-5 since their proofs do not require

the theorem. They are easily proved and are Placed here

simply for convenience.

Corollary 13-5-3. A perpendicular from P to a chord

of S, bisects the chord.

By Theorem 13-1, the plane determined by P and AB

intersects S in a great circle. Then applying Corollary

13-2-3 we get AQ = BQ.

A proof using congruent triangles is also possible.

0

[page 426]
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Corollary 13-5-4. The segment joining the center to

the mid-point of a chord is perpendicular to the chord.

Given: Sphere S with

D the mid-point of chord AB.

P is the center of S.

To prove: PD I AB.

As in Corollary 13-5-3,

the plane PAB intersects

S in a great circle. Then

PD 1 AB by Corollary 13-2-4.

Other proofs are possible.

Problem Set 13-3

427 1 .

4-* ,

OA 1 RT.

2. By Corollary 13-5-3, the perpendicular bisects the
chord. By Pythagorean Theorem, one-half the chord
is 8, so the length of the chord is 16.

3. By the Pythagorean Theorem,

QX = 14 inChes.

4. OQ and OP are perpendicular

to the planes of the circles.

Therefore OQ I QA and

OP I PB. OA = OB, by the

definition of sphere, and

OQ = OP, by hypothesiS.

Then, by the Pythagorean

Theorem, QA = PB. Hence

circle Q circle P,

by definition. 0 2

(pages 426:427J
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427 *5. AF = BF since they are radii of the circle oC inter-

section, and OF = AF by hypothesis. Also, OF AF,

OF I BF, and AF I BF. Hence, A AFB AFO = A BFO,

and A AOB is equilateral. Therefore AO - 5,

mL AOB = 60, and OG, the altitude of A AOB,

5equals

Call the three points A, B, C. To find the center of

the circle, in the plane ABC construct the perpendicu-

'lar bisectors of any two of the three segments AB, BC,

AC. The bisectors intersect at the center, Q, of the

circle. QA, QB, or QC is a radius of the circle.

Construct the perpendicular to plane ABC at Q. This

perpendicular meets the sphere in two points, X and

Y. Determine the mid-point, P, of XY. P is the

center of the sphere. PA, PB, or PC is a radius

of the sphere.

428 *7- By Theorem 13-5 we know that plane F intersects S in

a circle. By Postulate 8, the two planes intersect in a

line. Since both intersectionS Contain T, the circle

and line intersect at T. If they are not tangent at

T, then they would intersect in some other point, R,

also. Point R would then lie in plane E and in

Sphere S. But this is impossible, since E and S

are tangent at T. Hence, the circle and the line are

tangent, by definition.

8. By definition, a great circle lies in a plane through

the center of the sphere. The intersection of the two

planes must contain the center of the sphere, so that

the segment of the intersection which is a chord of the

sphere is a diameter of the sphere, and also of each

circle.

1 '3
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428
. The plane of the perpendicular great circle is the

plane perpendicular to the line of intersectim of
the 1...Lanes of the given two, at the center of the
sphere. There is only one such plane, by Theorem 8-9.
Any two meridians have the equator as their common
perpendicular.

*10. The intersection of the spheres is a circle. This can
be shown as follows: Let M and M' be any points of
the intersection. Then A AMB A AM,B by S.S.S. If
MO and M'O' are altitudes from M and M',
A AMO a A AM'O' by A.A.S., so that AO = AO' and
0 . 0'. Hence all points M lie on a plane perpendicu-

(-->
lar to AB at 0 and on a circle with center 0 and
radius OM. Since A and B are each equidistant
from M and N, then all points on AB are equi-<>distant from M and N, by Theorem 8-1, and AB is

perpendicular to the plane of the intersection, by the
argument above. By Theorem 11-10, we have MO = 5 in
A MOB. In A MOA, by Pythagorean Theorem, we get
AO = 12. But OB = 5. Hence AB 17.

430 Caution the students that they will be finding the

degree measure of arcs and not the length of arcs.
432 If AC is a minor arc then the theorem follows from

The Angle Addition Postulate. (Postulate 13)
432 It may be noted that if AC is a semi-circle, the

theorem follows immediately from The Supplement Postulate
(Postulate 14). The proof of the general case, though more
troublesome, is made to depend upon these two cases. For a
complete proof of Theorem 13-6 see Chapter 8 of Studies II.

[pages 428-432]
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432 In the definition of ma angle inscribed in an arc, it is

important to get across to the student that we are talking

about angles inscribed ir arcs of circles. Two points

separate the circle into two arcs. The student should see

that if an angle is inscribed in one of the arcs, the vertex

is on that arc and the angle intercepts the other arc. In

many geometry texts this is abbreviated to "an angle inscribed

in a circle", but this can only mean "inscribed in an arc of

a circle", since this is the way it has teell defined in the

text.

433 Condition (2) for an intercepted arc says, "each side

of the angle contains an end-point of the arc". Notice that

in the 4th example, in the preceding figures if one side is

tangent to the circle, the other side of the angle contains

both end-points of the intercepted arc and the tangent

contains one end-point. For a discussion of Theorem 13-7

see Studies II.

435 The "Why?" in the first case is the Angle Addition

Postulate; in the second case it is Theorem 13-6.

437-440 In Problem Set 13-4a, Problems 1 and 6 define two terms

which you may want students to be familiar with. Also,

Problems 5, 6, 10, 11 and 12 point up interesting facts.

Problem Set 13-4a

437 1. The center is the intersection of the perpendicular

bisectors of two or more chords of the arc. (See

Problem 4 of Problem Set 13-2.)

2. Since an inscribed angle is measured by half the arc it

intercepts, AB must contain 900 . Since the measure

of a central angle is the measure of its intercepted

arc, mL. P = 90 and BP I AP.

)

[pages 432-437]
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a. mZ A = mZ B by Corollary 13-7-2.

mZ AHK = mZ BHF since the intercepted arcs have
equal measure. Therefore A AHK A BHF by the
A.A. Corollary.

b. A BFK, since mZ BFA = ;mAB = ;flIBF = mZ BHF, and
Z HBF is common to the triangles.

Draw RO. We know that AO is a diameter of the smaller
circle and therefore that miZ ARO 90, by Corollary
13-7-1. Then RB is bisected by the smaller circle
at point R, by Corollary 13-2-3.

*5. Draw AB and BC and

draw the perpendicular

bisector of each segment.

Since the segments AB

and BC are not parallel

or collinear, the per-

pendicular bisectors are

not parallel and therefore

intersect in a point P.

This can be seen by using Theorem 9-12, Theorem 9-2,
and the Parallel Postulate,.in that order. AP = BP,
and BP = CP by Theorem 6-2. Hence AP = BP = CP.
By definition of circle, A,B,C must lie on a circle
with center P.

6. mL c ;m5a.

mZ A . ;mDCB.

Since the sum of these two arcs is the entire circle,
mZ C + mZ A = 180. Similarly, mZ B + mZ D = 180.

7. mST = 8o,

150,

mLT = 95,

MLY = 60,

MLO = 1202

[pages 437-438]
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439 8. By Problem 6, L C and L BXY are supplementary and

D and L AXY are supplementary. But L AXY and

BXY are supplementary. Therefore L D and L C

are supplementary and so AD H BC.

9 Draw radii PA and PB. Since CD lAB, AM = BM by

Corollary 13-2-3. A APM ==-1 A BPM by S.S.S. (or S.A.S.

or Hypotenuse-Leg), so that m4L APC = rnL BPC. Also,

rnL APD = rnL BPD by supplements of congruent angles.

Therefore mAC = rrECN and MB = mBD, by the definition

of measure of an arc. Hence CD bisects ACB and

ADB.

10. A ACB is a right triangle with right angle at C, by

Corollary 13-7-1. CD is the geOmetric mean of AD

and BD, by Corollary 12-6-1.

11. By Theorem 13-7, rnL A = yiBDC. Since miL A = 90, then

mBDC = 180, and Ee is a semi-circle. Hence, by

definitiOn, BAC is a semi-circle.

440*12. By Problem 5 we know there is a circle through A,B,C.
4-30

Let CD intersect this circle in D'. Then ABCD' is

inscribed in the circle, and, by Problem 6, L BAD' is

supplementary to L C. But L BAD is supplementary to

C by hypothesis. Therefore, L BAD'L BAD, since

supplements of the same angle are congruent. Hence,

AD = AD' and D = D'.

*13. Since AC and BD are tangent at the end-points of a

diameter, then AC BD. Also, AC and BD are

segments of chords in the larger circle which are

congruent by Theorem 13-3. By Corollary 13-2-3, the

radii OA and OB bisect these chords, so that

AC BD. Therefore quadrilateral ADBC is a parallelo-

gram, by Theorem 9-20. But the diagonals of a parallelo-

gram bisect each other, so that ,A7 and CD bisect

each other at some point, P. Now .0 is the mid-point

of AB, so P = 0, and C, 0, D are collinear,

making CD a diameter. jilY
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Other proofs are possible.

Theorem 13-9. In the same circle or in congruent

circles, if two arcs are congruent, then so also are the
corresponding chords.

Using the figure in the text for Theorem 13-8 we see
that:

Given: AB = A'B'.

To prove: AB = A'B'.

Since AB = A'B', /P=ZP', and by S.A.S. Postulate we

have A APB = A A'B'P'. Therefore AB = A'B', by corre-
sponding parts. If AB and A'B' are major arcs the same
conclusion holds. If the arcs are semi-circles then the

chords are diameters and are congruent.

442 Theorem 13-10 is immediate if Z SQR is a right angle,

since then the intercepted arc is a semi-circle.

-Here is a proof for Theorem 13-10 in the case in which
Z SQR is obtuse.

Given: Z SQR is obtuse.

1To prove: mZ SQR = rQXR.

Let gT be the ray opposite

to QS. Let x and y be

the measures of Z SQR and

Z TQR, as in the figure.

1.
1y = mQYR.
2

1. Theorem 13-10, Case in
text.

2. x = 180 - y. 2. Supplement Postulate.

3. x = 180 - 3. Steps 1 and 2.

4. x = Jff-(360 - me). Algebra.

5. x -32-frat. 5. Definition of measure of a
major arc.

103
(pages /4/11- )1142 j
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1443 In Problem Set 13-4b, Problems 8, 9, 10, 14 and 16 are

interesting theorems in their owr '))t- - are applicable

to man:r numerical problems. Ly grasped and

proved. However, they are 1 later deductive

proof in the text.

In the theorems on these pages we will be establishing

relationships about the products of the lengths of segments

by first establishing a prOportion involving these segments

using similar triangles.

Problem Set 13-4b

443 1. (See Teacher's Commentary for proof of Theorem 13-9.)

2. a. Since chords AF and BH are congruent, they cut

off congruent minor arcs HAB and FBA. By

Theorem 13-6, mg + mAD = mFB + mAB, and so

mHA = mFB.

b. From mHA = mFB we get HA = FB by Theorem 13-9.

mZ A = mZ B and m/ AHB = mZ BRA by Corollary

13-7-2. Then A AMH BMF by A.S.A.

3. Since ABCD is a square, DA eg AB ta BC, and therefore,

a (4 a svIEC by Theorem 13-8. Then m/ DEA = mZ AEB

mZ BEC since they are inscribed angles which inter-

cept congruent arcs in the same circle.

4. a. Z BAC. f. Z ADC.

b. Z CAF. g. Z DCA, Z DBA.

c. LADB, Z BAF. h. Z DAF.

d. Z DAP. 1. Z EAB.

e. Z Dn. J. Z DBC.

1.01
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444 5. Since mPB = 120, mL BPC = 6o by Theorem 13-10.

PQ CP, so that mL PPQ = 30. p APQ is a 30 - 60

right triangle. Hence, AP =

1Draw the common tangent at H. Then thF- angle formed

by the tangent at H and line u 1, ured by the

same arc as the angles formed by the u and the

tangents at M and N. Then the tangents at M and

N are parallel by corresponding angles in one case

and by alternate interior angles in the other case.

1.7 Draw PB. By Theorem 13-7, mL BPR = rBR. By Theorem

1
13-10, mL BPT rPB. But ma = rriFIL so mL BPR

= mL TipT. BF .1:7-e and BE 1 PR by definition of

distance from a point to a line. PB = PB, so

PBE A PBF by A.A.S. Therefore, BE = BF, which

was to be proved.

445 8. Draw BC, forming A BCE. Then, mL DEB . mL C + mL B

= ;ma 4- ;m:A-*c = ;.(mDB mAc).

9 Draw BC, forming A BCE. Then, mL E = mL ABC - mL C

i712 - ;mfib = - ma).

10. The proof is the same as for Problem 9, except that

Theorem 13-10 is used to get the measure of one angle

in each case.

11. mga = 30. mL BAD . 30.

m6 = 30. mL AGE = 70.

mLK . 25. mL DGE . 110.

mLE = 30. mL ADK 140.

1 i 0

(pages 014-105)
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446 12. mDA = 88 and mBC = 122.

mL EDC mZ DBC 31.

CMD rnZ AMB = mZ ABC = 75.
rrIL DMA . mZ CMB = 105.

raZ FDB = mZ DCB = 88.

raL ACB = rnZ ACD = ')BA . 44.

nIL CAB . rnZ CPT'

alZ DCE rnZ BL

alZ DEC . 57.

niL DFA . 48.

niL CAF = 119.

rnZ CDF . 149.

alZ ACE . 136.

13. a. By Corollary 13-7-2, 111Z ADP = mZ BCP and
trZ DAP - mL CBP. Hence A APD A BPC by A.A.

b. Since similar triangles have corresponding sides
AP PDproportional, -c-,B- = pr. Clearing of fractions we

have AP. C = PB PD.

14. a. By Theorem 13-10, mZ DAC 47mAC, and by Theorem

13-7, rnZ B -;-rnA-C. Therefore mZ DAC . mL B.

Since Z D is common to the triangles,
A ABD A CAD by A.A.

o. Since similar triangles have corresponding sides
BD ADproportional, Tr ru. Clearing of fractions we

have BD .CD = AD2.

1 I.

(page 446]



447 *15. mL a = ;.(m0 - MR) = ;;,(mci - me), so

m.R+ = + ma
mg 4. InR = me + ma

Now mL PRQ = 47.(me +

= +

4r(INT +

355

Similarly, working with L b,

ria) =(?_i.liga mCT + mita+ mO)

10) + 11;(ma + m2)

mDU) + ;.(mSD + mBT)

mR) + ;.(mSD + mDU)

ria) = mL QRV.

Therefore L PRQ is a right angle, by definition.

Case I: Draw the diameter from P. Since the diameter

is perpendicular to the tangent it is per-

pendicular to AB, By Theorem 9-12. There-

fore, mAP = mBP.

Case II: Draw the diameter perpendicular to the secants.

By Case I, m M.fi and mb-i" = By

subtraction, me = thB.

Case I The diameter from P will have as its

other end-point, by Theorem 9-12 a-1J Theorem

13-2. Then the two arcs are semi-.- -:les

having equal measures, by definitic .

Alternate proofs involve drawing radii to form congruent

triangles, or drawing chords which are transversals and

using alternate i,nterior angles.

(page 447]



.7:.:times stated, "Given a tangent and

external point, the length of
.3,..-otric mean of the length of the secant

exernal segment." The reasons in the
f. (1) Theorem 13-7; (2) Theorem 13-10;

,-.,rcilary 12-3-1 (/ 0. = Q, Identity);
:;Ides of similar triangles are proportional;

both ..H.deo by 0.17i

e ;...em 13-14 ::>1; words is, "If two chords inter-
a cireie, product of the lengths of the
one equ!lis the product of the lengths of the

:;egmi!n; of tho other."

If 'the label!hg of the figures for Theorems 13-12, 13-13,
H-7L Is consi'stent as illustrated below

- A T,ii

\
., C P

:'

t. f:,1::11, We ..(1

ur

tne

A hnd

Lhe !n A

1. , -

T

,,jr-

er-

or.1

1 1 3



A SQU A TQR

-Theorem 13-14

QR QS = QU. QT

QR QS = QU. QT

Since R S and T = U

we get QR.QR = QT. QT

QR
2

QT
2

.

Since QR and QT are

positive numbers we have

Theorem 13-11, QR = QT.

QR QS = QU QT.

Since Q = R = U then

QR = 0 and QU 0, hence

0 -Qs = 0 QT

0 0

and this ls a trivial

result, but the pattern

QR 'QS = QU' QT still

holds.

357
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452 1

Problem Set 13-5

1. 1. Given.AC, CE and RH

are tangents at

B, D, and F

respectively.

2. CB = CD. 2. Theorem 13-11.
EF = ED.

3. CB + EF = CD + DE 3. Addition.
CE.

2. By Theorem 13-12, x(x + 13) = 4 .12.

x
2

13x = 48.

x
2
+ 13x - 48 . 0.

(x + 16)(x - 3) = 0.

x = 3.

3. Let BK = a. Then by Theorem 13-13,

a(a + 5) = 36.

a
2
+ 5a - 36 . 0.

(a + 9)(a - 4) = 0.

a = 4.

BK = 4.

453 4. By Theorem 13-14, we have

x(19 - x) = 6 .8.

x
2

- 19x + 48 = 0.

(x - 3)(x - 16) = 0.

x = 3.

w = 19 - x = 16.

(pages 452-453]
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AB and BC are

tanmt at A and

respectively.

A AOB and A COB

al.7J ri.L;ht tel-

:fv". CBO

nO.

705.

+ CB - OB.

1. Given.

2. Corol]ary 13-- '

3. mL ABC = 120, and

Theorem 13-11.

4. Theorem 11-9.

5. Addition.

taLgents to a role from an external point are

-- SP,

RM,

CP,

- DM.

and croupinc,

NTO (CL + DL) (SP -1- CP) (RA DM), or

7 SC + RD.

be the radius.

Theorem 13-14,

r )(r - 8) 6 6,

4 r = 10.

13-12, AP, = 6 14,

As 6 2 = 12.

Ai 12- 7 = 5.

_Xils of th, (1.rcie be r. Then by Theorem

+ 4) =. (112. Hence r = 16.

1 1.(i

[pars
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454 10. Since all angles of the triangle have a measure of 6o
the minor arc has a measure of 120. This leave.J, 140
for the measure of the major arc.

11 If m is the length of the shortest of the four segments,
the rest of its chord would have to be the longest of the
segments. Otherwise the product of the sgments of this
chord would certainly be leEs than the prnduct of the
segments of the other. Hence, if it were-possible to

have consecutive integers for the lengths they would be
labeled as shown. But in this case, by Theorem 13-14,
it would be necessary that:

m(m + 3) = (m + 1)(m + 2)

or m2 + 3m = m2 + 3m + 2
or 0 = 2.

Since this is impossible, the lengths of the segMents
cannot be consecutive integers.

*12. Applying Theorem 13-13, we have AM2 = MR MS and

MB
2
= MR MS. Hence, AM

2
= MB

2
and AM = MB.

Similarly CN = ND.

455 13. a. Four; two internal, two external.

b. One internal, two external.

c. Two external only.

d. One external only.

e. None.

t

[Pages 454-455]
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455 *14. Draw radii RA and et AB intersect RQ at P.

mL A = mL B = 90, and mL APR mL BPQ by vertical

angles. Therefore A APR A BPQ by A.A. This gives

= g. Now suppose DC meets ,RQ at point P'.

Then, by a similar argument, we arrive at =g.

Hence g--1-1 =g, and P and P' are both between

R and Q. Therefore PI = P.

*15. Problem. 14 assures us that AB and CD meet RQ at

the same point P. Therefore, by Theorem 13-11;

PA = PC and PB = PD. Adding, we have

PA + FB PC + PD, or AB = CD.

456 16. Draw QR I AP. En A PQR, RQ = V4(PQ)2 (PR)2. Hence

RQ . 48. But AB = RQ, since RQBA is a rectangle.

Therefore, AB = 48.

17. As in the previous problem, draw a perpendicular from

the center of the smaller circle to a radius of the

larger circle. By the Pythagorean Theorem, the

distance between the centers is 39 inches.

18 Draw QE IV'. Since PQ = 20 and PE = 7 + 9 . 16,

then QE = 12 . AB.

*19. Let d be the required distance. By Theorem 13-13

2 h in
d 37guko000 + 510)'

d2 4,3h + ( h 2
3-03-6)

h 2
Now since h is very sma:11 compared to 5280, (5280)

is exceedingly small, and is not significant. So

approximately, d = ../1.51.1E= 1.23 1-17.

Hence, d is roughly ,TE.

[pages 455-456]
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Review Problems

457 1. a. chord. f. minor arc.

b. diameter. (also chord.)

c. secant. g. major arc.

d. radius. h. inscribed angle.

e. tangent. i. central angle.

2. 55 and 70.

3. mL AXB = .90, because it is inscribed in a semi-circle.,
mL AXY = 45. mAY = 90 since L AXY is inscribed.

Hence the measure of central angle ACY is

CY I AB.

90 making

458 4. a. True. f. True.

b. True. g. False.

c. False. h. True.

d. True. L. True.

e. False. j. True.

5. rriL C = 65. mL ABX = 65.

459 6. Let ma = r. Then mL PCH 90 r,

mL NHC = 180 - (90 - r) or 90 r.

niL NHR = mL NHC - 90 = (90 F r) - 90

HeLce, ma = mL. NHR.

Then

- r,

7 Th- figure shows a cross-

se7:tion with x the

debth to be found. 25, 1

\

- 20
2

(25 - x)

225 = (25 - x)2

1-5 = 25 - x

10 = x. The depth is 10 inch.

[pages 457-45q]
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459 8. By the Pythagorean Theorem,

AD = 9. If r is the

radius, then OD = r - 9

and OC = r. Hence, in

A DOC,
r2 9)2 122,

r
2

r
2 - 18r + 81 + 144,

18r = 225,

r = 12.5. The diameter of the wheel is 25 inches

long.

363

Consider the distance

BX to any other point

X on the circle, and

the radius CX.

BC + AB AC = CX. By

Theorem 7-7,

BC + BX > CX. Hence,

BC + BX > BC + AB and

BX > BA.

Also BX < BC + CX,

or BX < BC + CD BD.

*10. (4000)2 = (100)2 + (4000- x)2

(4000 - x)2 = 15,990,000.

4000 - x = 3,998.75.

x = 1.25, approx.

The shaft will be about

1IT miles deep.

460 11. AY = AP and AX = AP, because tangent segments to a

circle from an external point are congruent. Therefore,

AY = AX.

120

(pages 459-460]
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*12. AP
2
= 1(8 + 1) . 9, by Theorem 13-13.

AP = PX = XY = 3, so QX = 2 and XZ = 6.
3 -AX = 2. 6, by Theorem 13-14.

AX = 4.

*13. The angle measures can

be determined as shown.

Hence, A PAR and

A QCR are equilateral

triangles and PRQB is

a parallelogram.

PC = PR + RC = AR + RQ.

But AR = AP and

RQ = PB. Hence,

PC = AP + PB.
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Illustrative Te:it Items for Chapter 13

A. Indicate whether each of the following statements is true or

false.

1. If a diameter of a 3irc1e bisects a chord of that circle

which is not a diameter, then the diameter is perpendicu-

lar to the ch..,rd.

2. If a line bisects both the major and minor arcs of a

given chord,then it also bisects that chord.

3. If two chords of a circle are not congruent, then the

shorter chord is nearer the center of the circle.

I. If the measureof an angle inscribed in a circle is 90,

then the measure of its intercepted arc is 45.

5 Any two angles whicn intercept the same arc of the same

circle are congruent.

6: Two concentric circles have at least one point in common.

7. An angle inscribed in a semi-circle is a right angle.

8. If the interiors of two spheres each contain the same

given point, then the spheres intersect in a circle.

9 If two circles are tangent internally, then the segment

joining their centers is shorter than the radius of

either circle.

10. If two arcs, each of a different circle, have the same

measure, then their chords are congruent.

B. 1. Given: AB H CD as

shown, with m2 = 100

and mCD = 40.

Find: a. mL B.

b. filL C.

c. alL DAB.

4 0
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*-*
2. In the figure, XY is

tangent to circle 0

at B. Find

a. mL. RBS.

b. mR.-

c. mL S.

C. 1. The mid-point of a chord 10 inches in length is 12

inches from the center of a circle. Find the length of
the diameter.

2. Two parallel chords of a circle each have length 16.

The distance between them is 122 Find the radius of
the circle.

3. Two concentric circles have radii of 6 and 2

respectively. Find the length of a chord of the larger
circle which is tangent to the smaller circle.

4. The distance from the mid-point of a chord 12 inches
long to the mid-point of its minor arc is 4 inches.
Find the radius of the circle.

5. In a circle,chords AB and CD intersect at E.

AE = 18, EB = 8 and CE = 4. Find ED.

6. Given: Chord BF
bisects chord AC at

*-3p.

H. DE is a tangent.

FH = 3, BH = 12 and

CD = 3.

Find: AC and DE.

'



D. 1. Given: CA is tangent

to circle 0 at A.
1

Prove: mL. BAC . vaL 0.

2. Given: ma = ma.
Prove: AB H CD.

367

3. Prove that a parallelogram inscribed in a circle is a

rectangle.

4. Given: Circle P with
4->

AB, BD, and DE

tangent to the circle

as shown.

Prove: AB + ED = BD.
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5 Given: Two circles are tangent at A and the smaller
circle, P, passes through 0, the center of the
larger circle. The line of centers contains A.

Prove: The smaller circle bisects any chord of the
larger circle that has A as an end-point.

6. NO is a radius of

sphere O. At 0,

plane F 1 NO. At

P between N and 0,

plane E 1 NO. PY

and OX are coplanar

radii of the circles

in which E and F

intersect sphere O.

If = 4,MR,

explain why PY = OX.

Answers

A. 1. True. 6. False.

2. True. 7. True.

3. false. 8. False.

4. False. 9. False.

5. False. 10. False.

B. 1. a. 70. b. 110 c. 50.

2. a. 60. b. 100 c. 20.

segment

(Use auxiliary

RS or OB.)
C. 1. 26 inches.

2. 10.

3. 8,7g (from 21).



4. Let be?the radius.

36 . 2-- 2r -

52 -

6.77 = radius

is 1r Aes long.

5. 36.

6. AC = 12, )E =

4

6 6

,) 2 r - 4

369

D. 1. mL BAC

mL 0 = mAB.

Hence mL BAC = ;mL 0.

2. Draw AD. Then m,L BAD = m,L CDA since they intercept

congruent arcs. AB CD, because of the congruent

alternate interior angles formed.

3. Given: ABCD is a

parallelogram inscribed

in circle 0.

Prove: ABCD is a

rectangle.

1. LDLB.
2. ADC Q; ABC, and

liTia is a semi-circle.

3. L D is a right angle.

4. ABCD is a rectangle. 1

126

Opposite angles of a
parallelogram are_congruent.

Arcs intercepted by . con-
gruent inscribed angles.

An angle inscribed in a
semi-circle is a right
angle.

Definition of rectangle
and Theorem 9-23.
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4. Since 7. a circle from an exter:.,_i point are

congrt.=n,t. N, AB = BC and DE = DL By addition,

AB +-DE

5 Let AX .d of

circle 0 whf-f- inter-

sects ciI_ Y.

Prove:

Consider -
is a rigt. Jecause

it is inEs: m a semi- A

circle. 3ecause a line perpendicular to a

chord and tr.ing the center of the circle bisects

the chord. (S.;...=e OA and -PA are perpendicular to a

common tan at A, -P must lie on OA.)

6. Since NO at P,

NO PY, OPY

is a right =riangle.

Since No 1. 7;* at 0,

mL NOX = 90, and

riR 4ina

From properti f a

30 - 60 right. 7.7..angle

1PY .20y. But = 0X.

Therefore, FY. = i9X.



Chapter 14

CHARACT.ERIZATION OF SETS. CONSTRUCTIONS.

This chapter could be entitled Loci and Constructi)n-
It deals with the traditional material of loci and ruler
and compass constructions, and the treatment is mostly '1,P1-;

ventional. The only real innovation is the use of the ter-
"characterization of a set" rather than "locus" as explE__
below.

The teacher may notice with relief or chagrin that -.-
word locus does not occur in this chapter of the text.
omission is deliberate. Conventional texts generally

contain the phrase "locus of points" or "locus of a point".
The phrase arose historically to mean (1) a description of
the "location" of all points which satisfy a given condition
or (2) the path of a point which "moves" so as to satisfy
the condition. In each case the locus is a figure, that is,
a set of points. Since we are already familiar with the
term set, it seems undesirable to introduce a superfluous
term which students often find confusilg.

A more significant advantage, however, is that it allows
us to concentrate on arid develop the essential issue: to
define each set by a common, or characteristic, property of
its elements. We are concerned with defining, or character-
izing, a set of points by means of a property which each
point of the set must satisfy. Note that this point arises
in pther branches of mathematics. For example, in algebra
we define the set of even integers by specifying a character-
is:aic property (namely, divisibility by 2) satisfied by every
even integer and by no other integer.

123
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-iumm:ize: We charac 7erize by specifying

wh :h is satibfied all -el:7.:nts of the set,

tut no ,iements; we call the r2 -.ion a

charac7r1.z7-:_on of the set. Tc shc;z that a certain set

characteriza by a given condition, we m:ost show (1) that

euch p t )f the set satisfies the 7iven aondition; and

(21 eac:. pcint satisfying the condition Ls a point of the
set. Thus, we must prove (1) a. theorem and (2) its converse.

Sometimes it is convenient to prove (2) by the indirect

method.

We mentioned above that in order to characterize a

figure, we must prove a theorem and its converse. Ccnsier
the following example: Identify the set of points equi-

distant from two intersecting lines. Having drawn two

intersecting line:. 12 and L2 as below, a student might

procees to use the property that each. point of the bisector

of an angle is equidistant from the aides of the angle and

conclude that L
3

is the required set of points.

His solutLon., however, is not correct, :1:nce he has found

only a part f the required set. If he said that every

point in this set was es;.L.distant from the two intersecting

lines, he would be cc-7=ot, if he were to try to

establlar: that every Tc:Lnt that satisfied the given condition

was In this he woulL readily see his error. For there
is a noir.: as in the figs:re below, that is equidistant

from L ar L but which dotes not 1_..e in L
3'

In fact2'

there arF. many points which have this ,-;t7operty, and we- see

that the set defined is not just one line, but two lines

determined by the bisectors of the angles.

(page 462]
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'La

In Prb1er71 3et 111-1, the te777 cylindrical surface is

usecL The mean_i_nz: should be intuttively clear to students

and may be -.1sed accordingly.

37 3

Problem Set 14-1

463 1. The set of roints is a sphere ith center C and radius
3 inches.

2. The se-,-,* of points is a circle in E with center C

and dius 3 t=hes.

3. The t of points is the _line in the plane E which is
pa-Tel to each of the 7..r_ven lines and equidistant;

fr= them.

(Liven

Le tne mofir cC E which is the foot of the
from C o E (i.e. OC is 3 inches

lom

a. -The set of uoints is a rrcle with center 0 and
re-lus 4 inches.

b. The set consists of thesingle point 0

tpage 463)
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4t3 c. There are no point = 2 inches from C. Hence,

the required set is 7,h, empty set.

5 a. Ther- are four ic 00 --3.

b.

AB H L; CD L; AD U M; BC !I M. Tne

required set ,::rsists of the paints cf th.er

.oarelleLogram ABCD together with all intertar

pcfnts.

6. a. The set consia7; two points, the. third -vertices

.ff the two eqral t7_ang1es wh-h hart.Ie AH

az one'siC .

b. The se is te intersection of tre two

alrcular gior. with centers A and B respec-

tively rat*:

A

feet.

[page 462]
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463 C. The mid-point of AB is the only pcfnt of the set.

d. The empty set.

7 The set is the union of a pair of line zezments parallel

to and having the same length as AB nnf two semi-

circles with radius 1 fnph and center- A and B

respectively, as shown_

Problem Set

464 1. a. The sphere whose -cent. Is the ,...-71777=. point amf

whose radius is the g±Tn distance_

b. The cylindrical surfas:e with the give:a line as

axis and the given distance as radius.

c. The two planes parallel to the -,74.7en Plane and at

the given distance fr= it.

d. The four lines whLzt a the, intertanans af the

following sets of TZ:Lanea: two at ie given

tance from one of tae given planea-, two at the

given distance from the other givenTaane.

(pages 463-464]
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464

465

The intersection of the two spheres having the

given points as centers and the given distances as

radii. This intersection may be a circle, one

point, or the empty set.

A cylindrical surface (see b above) capped by

two hemispheres.

P. a. The line which is the perpendicular bisector of the

segment joining the two given points.

a. The line parallel to the given lines and midway

between them.

a. The two lines which bisect the angles made by the

given lines.

t. One point - the intersection of the perpendicular

bisectors of two of the sides of the triangle

determined by the given points.

a The perpendicular bisecting plane of the segment

joining the given points.

D. The perpendicular bisecting plane of a segment

which is perpendicular at its end-points to the

given lines.

c. The plane which is parallel to the given planes

and midway between them.

d. Two planes which bisect the dihedral angles made

by the given planes.

e. A conical surface composed of lines through the

foot of the perpendicular and making 45° angles

with the given line.

a. 1. true.

b. 1. true.

2. false.

2. false.

The pole should be placed at the point where the per.-

pendicular bisectors of two sides of the triangle

intersect.

[pages 464-465]

1 3 3



377

465 6. The perpendicular bisecting plane of AB, minus the
mid-point of AB.

466 7. The point is the intersection of the perpendicular

bisectors of two of the segments joining the pairs of
points. If the points are collinear the two per-

pendicular bisectors will, of course, be parallel.

8. Points equidistant from two given points lie in a plane
r
1. Points equidistant from two given parallel planes

also lie in a plane r2. In general, the intersection

of two planes is a line, but if the two planes should

be parallel, the intersection is the empty set or if

the two planes should be equal the required set is a

plane. In summary the set may be a line, a plane, or
the empty set.

Given points A, B

and parallel planes

m and n.

*9. The union of the interiors

of two circles with 4 cm.

radii and centers at the

given points.

131

[pages 465-466]
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d >1

*12. Two pins are put in a

drawing board, at F

and G, and a loop of

string of length 9

is placed around them

and pulled taut by a

pencil at P. As the

pencil moves, always

keeping the string

taut, it describes a

figure called an

"ellipse".

d < 1

d= 1 (Center of
square is part of

the set )

t 3 5

[page 467]
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467 To ,j,.stify Stater:ant 1 we are assuming from the diagram

that sinc. D is in tte interior of z BAC so is P.
--->

(D is in the interior of BAf since AD is the bisector

of / BAC.) This can ae provad :ormally by using Theorem

6-5 and the definitian of the interior of an angle.

In order to i11:Istrrte the precision with which we must

define a set of points, ttL.e. following problem might be

presented to the class:

Given two points and E, what is the set of

points C such tha: A ABC is a right triangle?

At first thought, ane might consider that the angle

inscribed in a semi-circle is a right angle and give the

following as a picture an the set:

Note that points

and 3 are not in the

set:

However, the problem e:ft not say, "What is the set of points

C such that A ABC is a right triangle with right angle at

C." The right angle mignt equally well be at A or at B,

and we have to draw the set like this:

Note again that Dairts

A and B are riat in

the set.

The set consists of all points on a circle with diameter AB

and als= all points on the lines perpendicular to this

diameter at A and E excluding the points A and B.

1-page 467]
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469 In Theorem 14-2 we are referring, of course, to the
perpendicular bisectors of the sides in the plane of the
triangle.

Theorem 14-2 will be used later to circumscribe a circle
about a triangle. The construction is a direct consequence
of the theorem. Since the point of concurrency is the center
of the circumscribed circle, it is called the circumcenter
of the triangle.

In the proof of Theorem 14-2 we can answer the question
"Why?", as follows. Suppose L1

I I
L2. We know AB L

1

and AC ± L2. Hence AB L2. Thus the two lines AB, 4EZ
are perpendicular to L2, and must be parallel.

Proofs of the Corollaries

470 Corollary l4-2-1. There is one and only one circle
through three non-collinear points.

Since the existence and uniqueness of a point equidistant
from the three vertices of a triangle is proved in Theorem
14-2, the center and radius of a circle containing any three
non-collinear points are uniquely determined.

Corollary 14-2-1. Two distinct circles can intersect in
at most two points.

Theorem 13-2 rules out the possibility of more than two
collinear points and Corollary 14-2-1 rules out the possibility
of three, or more, non-collinear points.

470 In the proof of Theorem 14-3, L, is perpendicular to** *-41.DE because L1 1 BC and BC H DE.

The point of concurrency of the altitudes of a triangle
is called the orthocenter.

We have shown in Theorem 9-27 that the medians of a
triangle are concurrent at a point, called the centroid of
the triangle.

(pages 469-470]
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It is interesting to note that in a given triangle, the

orthocenter, circumcenter and the centroid are collinear.

This leads to an interesting problem. If we draw the segment

between the orthocenter and the circumcenter and find its

mid-point, then using this point as center and the distance

from this point to the mid-points of the sides of the tri-

angle as a radius and draw the circle defined by these

conditions, we get what is called the Nine-point Circle.

This circle has the following properties: It passes through

the mid-points of the sides, it passes through the feet of

the three altitudes of the triangle, and it passes through

the mid-points of the segments joining the orthocenter (point

of intersection of the altitudes) to the vertices.
471 For complete rigor in the proof of Theorem 14-4, ohe> --->

should first prove that AD and BE really do intersect.

The proof is as follows: Since mL A + mL B + mLC = 180,

and mL ABE < mL B, and,=-mL BAD < LA, then we have

mL ABE + mL BAD < 180.
4->

Now BE and AD are not parallel, since otherwise we would

have mL ABE + mL BAD = 180. (We are using the fact that E

and D are on the same side of I5ir to ensure that L ABE

and L BAD are a pair of interior angles on the same side

oC the transversal 4a.r.) Thus BE and AD intersect.

Let BE' and AD, be the rays
---> --* El

opposite to BE and AD. Then

one of the four cases must hold:

(1) TV' 'intersects AD'. This

Ls impossible since if their

point of intersection were T,

the triangle TAB would have

two angles the sum of whose

measures was more than 180. DI

(2) BE' intersects AD. This is impossible, since the rays

lie on opposite sides of AB.
---->

(3) RE intersects AD'. This is impossible for the same

reason as (2).

(pages 470-471]
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(4) BE intersects AD. Being the only possibility left,

this must be true.

Notice that we have used no special property of bisectors,

merely the fact that BE and AD (excluding B and A)

are in the interiors of Z B and Z A.
Theorem 14-4 will be used to inscribe a circle in a

triangle. We can see that the point of intersection is

equidistant from the sides of the triangle, and a circle

with this point as center and the distance from this point

to a side as radius, will have the sides of the triangle as

tangents. This point of concurrency is called the incenter

of the triangle.

Problem Set 14-2b

472 1. The point is the intersection of PQ and the bisector
of Z B.

2. The fountain should be placed at the intersection of the

bisector of Z B and the perpendicular bisector of DC.

3. The proof is almost

identical with that of

Theorem 14-4: If the

bisectors of Z BAC
P/and L DBC meet at P,

P is equidistant from

AB and AC, and also
, *-*

from BD and 15-e. A

But .--4rge, hence,

P is equidistant from

CE and BC and lies

on the bisector of ZBCE.

[pages 471-472]
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472 4 This follows by applying Theorem 14-4 and Problem 3 to

the bisectors of the interior and exterior angles of

the triangle as shown.

473 5

LI

Let m be the radius of any circle with center M and
n be the radius of any circle with center N. Then
the situations are:

a. m + n < MN.

b. m > MN + n or n > MN + m.

6. The angle bisectors are not necessarily concurrent.

They are concurrent for a square or a rhombus. In

general, they are concurrent if and only if there exists

a circle tangent to each of the sides of the quadrilater-

al.

7. Each of the six segments is a chord of the circle.

Hence, each perpendicular bisector passes through the

center of the circle.

140
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473 8. The required set is the circle with the segment as

diameter, but with the end-points of the segment omitted.
If P is in this set, then APB is a right

triangle by Corollary 13-7-1.

If L APB is a right

angle, let 71 intersect

the circle in Q. Then

AQB is a right angle by

Corollary 13-7-1, and hence,

Q = P by Theorem 6-3.

Therefore P lies on the

circle, but P / A and

P / B.

Problem Set 14-3

474 1. There will be two points P, the intersections of the

circle with center P. and radius 4, and the circle
with center B and radius 5.

2. The two points P, P',

are the intersections

of the perpendicular

bisector of AB and

the circle whose center

is C and whose radius

is 5.

4
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474 *3 9, m, n are the

bisectors of AB, AC,

and BC respectively.

Each passes through the

center 0 of the circle.
n

Thus the points interior

to the circle and to the

left of /Z. (shaded

horizontally) are nearer

to A than to B.

Similarly the points in-

side the semi-circular

region shaded vertically are nearer to A. than to C.

The required set is the intersection of the interirs

of these two semi-circular regions (the interior of tlitte

sector ODAE).

385

475 4. a. TwL, points, the

intersections of

the circle with

center B and

radius 4, and

the circle with

center C and

radius 3.

b. Two points, the

intersections of

circles with

centers B and

q and radius 10.

131
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475

475

c. Two points, the

intersections of

the circle with

center B and

radius 10, and

the perpendicular

bisector of BC.

d. One point, tte

Intersection of

BC and the circLe

;ith center B Lnd

radlius 2, and tlle

circle with center

C and radius L.

The inclusion of some compass and straight-edge con-
structions in the text is a luxury, a concession to the
interest this traditional topic has always generated in
geometry classes. Under ruler and protractor postulates the
restriction to compass and unmarked straight-edge is quite
artificial. For example, to divide a segment into seven
congruent segments we need only to divide its length by seven
and plot the appropriate points on the segment. An angle can
be divided up by a similar process using a protractor.
Certainly one of the quickest ways to construct a perpendicu-
lar to a line is to use a protractor to construct an angle
of 900.

The main reason for this bow to tradition, then, is to
attempt to capture the interest which arises from the challenge
that constructions provide. Historically, compass and straight-
edge constructions have been tremendously important in stimu-
lating significant advances in mathematics, as in the theory
of higher degree equations or in proving that r is a trans-

(page 475]
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cendental number. We hope that your students will likewise

enjoy and benefit from the many challenges found in the

theorems and problems of these sections.

476 The absence of Theorem.l4-5 in Euclid's Elements is one

of the reasons why present-day geometers state that the

.3stu1atc: system of Euclid is incomplete. For a more complete

discussion of the need for tnis theorem see Studies II.

477

479

Notice that for every construction, the text gives a

proof. When the students dc some of the constructions for

themselves, some of these sh,suld be accompanied by a proof

that tne construction is correct. A careful analysis of a

construction problem will y±eld a proof with just a little

more work than doing the conatruction.

Notice how the Two-Circle-Theorem is used to establish

that the two circles in this construction theorem do actually

intersect.

480 1.

2.

Problem Set l4-5a

Part d is not possible.

BC AC
3. Z C. Er7 1717

4. a. If the length of the given segment AB is c,

draw the circles with center A and radius c,

center B and radius c. Since c c > c, these

circles intersect at C and C', say, and A ABC

and A ABC' are equilateral.

[pages 476-480]
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48o b. If c is th,_7_, length of the given base AB and r

is the length of the side, then the two c:i'rcles

with centers A and B and radius r will inter-
sect at C, C', say, if and only if, r > 2ff,

and A ABC and 6 ABC will be isosceles with
base AB.

481 In Construction 14-8, the condition that r should
satisfy to insure the intersection of the circular arcs in

1two points, is that r must be greater than 7 the length
1of the given segment. In this particular problem, r > AB.

A value of r that is sure to work is r equal to the
length of the given segment; in this problem r = AB will
always work.

482 Notice that Construction 14-9 works just as well if P
is on L.

Problem Set 1/!,

/483 1. Construct BC i C.
Make BC = AC.

ABC is the required

triangle.

2. Construct the perpendicu-

lar bisector g of AC,

meeting AC in M. Mark

off MB, MD on 2,
each congruent to AM.

ABCD is the required

square.

id.
[pages 480-483)



483 3. Make FH ..==rf AB. Construct

the perpendicular bisectif

of FH. Make EQ gr. CD.

Bisect EQ. Make
1XR=XW=EQ. FWHR is

the required rhombus.

389

4. On AF as a "working line", make XV = d and XQ = e.
,QW is the base of our triangle. Construct XR 1 AF

and on it make XP = h.

5

6. PQ = AB, QR = CD.

M is the mid-point

of PR. QT I PR.

QT meets semi-circle

at S. QS is the

geometric mean of

AB and CD.

(page 483]
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484 Other ways to construct a line parallel to a given line

through an external point are (1) construct corresponding
angles ,conj:ruent and (2) construct a line perpendicular to
a line through the given point perpendicular to the given

line.

485 On the basis of a construction very similar to 14-11 it
is possible to divide the length of a given segment in a
given ratio. Given a segment AB, we want to divide AB
into two segments such that the lengths of these segments
will be in some given ratio, say §. The construction is
as follows:

Startinx at A draw any ray and a ray --IRr not
collinear with ray AD. On AD. mark off AB and on AC
mark off AE = a and EF-= b. Draw BF, and through E
construct a line .L parallel to BF intersecting AD at

AG aG. Then

Proof: Since we have in A ABF, EG parallel to BF and
intersecting AF and AB, then it follows from Theorem 12-1

AG AE AG athau = nence, =1.5.

1. 7
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Problem Set 14-5c

485 1. Make DE 21AB. Make

ZDaLQ and
211 FH. Using E

as center and the

length FH as radius,

strike an arc and with

K as center and length

AB as radius, strike

another arc intersect-

ing the first at X D

on the opposite side
4-10

of ICE from D. DEXK is the required parallelogram.

(If both pairs of opposite sides of a quadrilateral are
congruent, it is a parallelogram.)

486 2. Using OA as radius and 0 as center, construct an
arc as shown. Count the number of small arcs (9 in

this example) and draw a radius from 0 to the inter-
section of the arc and the (n + 1)th line (10th in

this case). The radius OB congruent to the original

segment, will be divided by the lines of the paper into

congruent segments, which may be marked off on OA. We

assume that the lines of the paper are parallel and

that they intercept congruent segments on one trans-

versal (the margin of the sheet of paper). See
Theorem 9-26.

391
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4-* 4.-*
I& 3. Corresponding segments on BD, AC are parallel and of

equal length.

Hence, the segments PN, QM, RL, SA are parallel.

BX BPHence, xy 157 - 1 and BX XY. Similarly,

XY = YZ = ZA.

487 4. Divide AB into three congruent segments. Construct an

.equilateral triangle with one of these segments as side.

5. Divide AB into five congruent segments. Use one of

them as the base.

6. In effect we have here, "If the diagonals of a quadri-

lateral bisect each other, then the quadrilateral is a

parallelogram", and we know that the opposite sides of

a parallelogram are parallel.

Alternate proof: Use S.A.S. and alternate interior

angles.

7. On an arbitrary ray

through A lay-off

segments AC and CD,

with C between A

and D, of lengths a

and b, Through C

draw CX H DB. A ACX

and A ADB are similar

(A.A.) and have 3r4

(page 486-487]
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488 *9.

393

Construct a triangle ARC with AC = b, CR = c,

AR = 2m.

Bisect AR at T. On take B so that CT TB.

Then A ABC is the required triangle for A ABT A RCT

by S.A.S., so AB = CR = c. Clearly, AT is the median

and AT = m by construction.

Construct AB = x and divide it into' three congruent

segments. At E (one of the trisection points)

construct CE I AB. Make EX = AE, CE = BE. A DBC

is the required triangle.

To prove that BA and CX

are medians, draw AX.

Now, A EAX and ECB

are isosceles triangles

with congruent vertex

angles and so angles s

are all congruent.

Then AX H CB and

EAX. m, A EBC with

AX 1Eu 7. Also A DAX A DCB

DA 1and ra =7, so A is

4-* 4->
the mid-point. If CA and BX were parallel, AX

would have to equal CB. This we have shown is not

true, so 15T and BX must intersect.

[page 487-488]
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488 *10. Analysis of problem: The common tangent LN meets m
at L, and LK = LN = LM, so L is the mid-point of

KM. PN I LN and PM m. Now proceed as follows:

Bisect KM; let L be the mid-point. With center L

and radius LK construct an arc intersecting circle C
4-* , 4--*

at N. Construct VI m and NR LN, intersecting
in P. Then PM = PN and the required circle has

center P and radius PM.

489 *11.

The problem will be solved if we can find Q, the

intersection of the common external tangent and the

line determined by the centers. In the figure,

22, QDB and QCA are similar, being right triangles

with a common acute angle.

Therefore,

11137/ f
We can find Q. by drawing a ray -Kir making a con-

-40
venient angle with AB, then drawing the ray BG

parallel to 77 and on the same side of AB. Q is

determined as the intersection of Tir and 55r, since

triangles AFQ and BGQ are similar, and

= = as desired.

:3
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395

Let AQC be an arc of 1200. Then m,L AQC = 120 for

any position of Q. on the arc. Similarly, let BRC

be an arc of 1200. Hence, if P is the point of

intersection (other than C) of the two arcs, we have

mL APC = mL BPC 120. It follows that mL APB . 120.

(A complete analysis of this problem, including the case

in which one angle has measure > 120, is very

complicated.)

*13. By A.A., A BPM A DPN and A MPC NPA so that

MB MP MC MPand vND NP NA NP'

MB MC MB ND
--A.Hence,

/s71-5

or
NA Mu NA'

By A.A., A QBM 4, A QAN and A QCM ,.. A QDN so that

MB MQ MC MQ
NA Rq and

MB MC MC NDHence, or
NA N15 ME irg-

MB MC NDThus the ratios and are each equal toMC MB NA'
MC ma2 mB23MB

and MC . MB.

Therefore

152
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489 *14. If k = 1, the required set is the line parallel to m

and n and at a distance 7 from each.

4 rn
(1/

4H 2 d

4

If k < 1, the required set is the union of two lines,

one such that

4
4-

4;
if I Ar_2

cif

r
1 kd

-T-

k , or r1 and the other such that

r
2 kdor r2

2

If k > 1, interchange the roles of m and n.

496 To construct the number in the text requires 15 steps.

To verify this, we must know what we mean by a step. A step

is one operation of addition, subtraction, multiplication or

division. In this example we start with the integers 1,2,

3,4,5,7,9,10,17,37, and 47. We construct ;. by one step,
17 3 7divide 5 by 2. In like manner, to construct 77,

1 3 9 37
IT, -5, -r-O- and requires one step each; hence, to get

these numbers we require 8 steps. To construct the numbers
17 , 3 , 7 1 3 9 37a = - = -,- c = 7 -r and d -

requires 4 steps, two additions and 2 subtractions. We

have now used 12 steps and have arrived at four numbers,

(pages 489, ilq6]
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a, b, c, and d. Now perform two divisions (2 steps)

and get the numbers and Now we have used up 14

steps. Finally make one division (1 step) v41, and we
have now constructed the number given in the text in 15

step 3
s. The number is 681 962

497 In the figure for the trisection problem, it is inter-

esting to see that as mL. ABC increases the marked point P

moves in a very limited range on the ray opposite to V

This range is yrr < PB < 2r. If C coincides with A

then PB = 2r and we do not have an angle to trisect. As

Trit ABC increases C and Q approach coincidence. When

they coincide the ruler cuts the circle in only one point Q,

and BQ 1 PQ and BP = ,.orr. The largest angle we can

trisect by this method is a 135° angle. The trisection

of any obtuse angle can be reduced to the trisection of an

acute angle.

Problem Set 14-7

499 1. Since for each parallelo-

gram L A and ZB are
supplementary,

1 1
mL A ± r11,Z.'e = 90-

This means that the

bisectors must be perpendicular to each other. Then

the required set will be the circle whose diameter is

AB, except for points A and B.

L. a. Bisect a 90° angle.

b. Bisect a 600 angle (one angle of an equilateral

triangle).

c. Bisect a 45° angle. (See a.)

[pages 497-499]
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499 d. 900 + 45°, or 1800 - 450 .

e. 600 + 600, or 180° - 600 .

f 300 + 45°, or 90° - 15°.

g. 60° + 450, or 900 + 150 .

h. 22-31 is half of 45 and 64° = 45° + 24°.

500 3. In the discussion that follows, each figure is merely a
sketch of the completed figure.

a. Construct LB
congruent to the

given angle. Make

BC = a. Find the

mid-point D of

BC. Use D as

center and m
a

as

radius to inter--*
sect BA at A.

There are cases in which the construction is

impossible and cases In which there are two

solutions.

b. Construct L ACR =?I` L X.

filen L ACB is the

third angle of the

triangle. Make

CA = b and CB = a.

0.)
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500 c. Construct a segment

REY perpendicular to

a "working line",

XW, at any con-

venient point and

make RB = h
b'

Using B as center X A

and a as radius,

construct an arc4*
intersecting XW at C. Using C as center and

4-*b as radius construct an arc intersecting XW at
A. (Two solutions in general, depending upon where
A is taken, on the ray CR or on the opposite
ray.)

d. Construct WAB

congruent to L A.

Construct its bi-

399

sector, AX. Make

AB = c. Connect

B with X. The4>
point at which BX

meets AW is C.

(There may be no

solution, in case
,

BX H AW.)

Since we are given

B and since

mL AXB = 90, we

can construct

XAB. Then con-

struct A ABX by

constructing AX

(of length ha)

and Z. XAB. Using

A as center and m
a

as radius, find M, then make C = KB.

[page 500 ]
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500 f. Start by constructing

AX (of length ha)

perpendicular to a
11

working line'', BC.

Since we are given

z B and since

mL BXA = 90,

mL BAX can be

easily constructed.

Similarly z CAX

can be constructed.

Construct these two

angles at A.

Construct CX (of

length he) per-.

pendicular to ILTEr.

Use C as center

and t as radiusC4->
to cut AB at Y.

Now since CY is

the bisector of

CY construct
4on each side of

g.

CY and angle

whose measure is

1 /
C.

h. Construct an angle

congruent to L A
and make AC = b.

Using C as center

and t as radius,

find X. We now

have z XCA of measure

z XCB ;az XCA.

( page 500]
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500 4.

501 5.

4ol

A BPM A DPA, by A.A.A., and so

BP BM 1

Hence, BP = -1. BD.

A similar argument shows DQ = -;." DB, so that P and Q

are the trisection points of BD.

In the right triangle ABM, the ratio g = 2.

If mL BAM = 30, this ratio would have to,be 17, and

hence, BAM / .90°.

Hence the trisection of the segment BD would not lead
to trisecting L BAD.

a. Definition of isosceles

triangle.

b. D and E will be

inside the circle,

because AD and

AE are each less

than the radius.

This-0'6.n be shown

by cOnsidering a

segment joining A to the mid-point M of BC.

AM 1 BC and D and E are nearer M than B
and C are

If RE is drawn, area A BRD = area A EDR, hence,

area DRSE > area A BRD, and, by addition,

area A ARS > area A ARB. But if L BAC were

trisected, we would have area A ARS.= area A ARB.

6. Let QD meet BA at G, and drop AH'i QP. Then

A QRA A QGA A QGB,'-

from which the desired result follows. Notice that
and QG are trisectors of L PQR.

[pages 500-5021

158



402*

Review Problems

503 1. 3, 4, 5, 6, 7, 8, 9.

2. Divide AB into 4 congruent segments. Bisect a 900

angle. Construct the rhombus using a 450 angle and

4 .5 for each side of the rhombus.

3. a. Construct the circle on AB as diameter. The

circle minus A and B is the set of points P.

b. See the solution of Problem 8 of Problem Set 14-2b.

4 The set is the intersection of two parallel lines (each

at distance d from L) and a circle (with radius r

and center P). This intersection may be the empty set

or 1, 2, 3 or 4 points.

5. Examples of such quadrilaterals are rectangles and

isosceles trapezoids. More generally, if a quadrilateral

has this property, then the point of concurrency is

equidistant from each vertex, hence, the circle with the

point of concurrency as center and the distance to each

vertex as radius passes through each vertex. Conversely,

any quadrilateral whose vertices lie on some circle has

the property that the perpendicular bisectors of the

sides are concurrent, so that a quadrilateral has this

property if and only if, there is a circle on which all

four vertices lie.

6. The perpendicular bisectors of any two Chords of the arc

will intersect at the center of the circle.

1 5 :)
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s' N

403

Let d be the length of the given segment. Using any
square find d', the difference between the diagonal

d' s'and side. , In the proportion = s will be thed s
length of the side of the required square.

504 8. No, not if a > b + AB or b > a + AB.

9. Consider a circle with center P and radius PA. A,

B, C and D will lie on this circle. Since parallel
lines intercept congruent arcs, ma mCD and

mBC = ma Hence, ra + = mCD + Ma Hence, AC

is a semi-circle and mL B = 90 so the parallelogram
is a rectangle.

10. Consider a circle with center P and radius PA. The
parallel chords AB and CD intercept congruent arcs
AD and 2. These arcs have congruent chords so that
the trapezoid is isosceles. Conversely, only one such
point P exists for a given isosceles trapezoid.

160
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504 11 Let m , e the givent

parallel lines, and n

the transversal. Any

point equidistant from

m and n must lie on

one of the bisectors

p, q, of the angles

determined by m, n.

Similarly, any point

equidistant from )2

and n must lie on

one of the bisectors

r, s of the angles

determined by 2, n.

' Thus, any point equi-

distant from .2, m,

n, must lie on the

intersection of the set A, consisting of lines p

and q, and set B, consisting of lines r and s

Since these lines are parallel in pairs (easily proved)

the intersection of sets A and B consists of two

points only. In the diagram these are the points X

and Y where q intersects s and r intersects p.

16 1
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Illustrative Test Items for Chapter 14

A. I. Given AB and points

K and Q. in plane E.

Tell how to locate a

point on le which is

equidistant from K

and Q.

405

A B

0

4-*
2. Consider all circles in one plane tangent to AB at A.

Describe the set of points which are centers of the

circles.

3. Describe the set of centers of circles in one plane

with radius 3 which are tangent to AB.

4. Describe the set of points in the plane which are equi-

distant from the sides of z ABC and at distance x

from B.

5. If two parallel planes are d units apart, what will be

the length of the radii of spheres tangent to both

planes? Describe the set of centers of spheres tangent

to both planes.

6. Describe the set of points which are at distance 5

from A and at distance 6 from B.

7. Given right A ABC with AB as hypotenuse. Describe
the set of points C in the plane of the triangle; in

space.

8 Describe the set of mid-points of parallel chords in a

circle.

9. Under what conditions will the centers of circles

inscribed in and circumscribed about a triangle be the

same point?

10. Describe the set of centers of circles tangent to the

sides of an angle.

1 6 2
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11. Under what conditions will one vertex of a triangle be

the intersection point of the altitudes of the triangle?

12. Under what conditions will the points of concurrency of

altitudes, medians and angle bisectors of a triangle be

the same point?

A
B. 1. 1

2.

Construct an isosceles triangle in which the base is

half the length of one of the congruent sides and for

which AB is the length of the perimeter.

a

Construct a rhombus in which the lengths of the diagonals

are a and b.

3. Construct an isosCeles

triangle with base AB A

. and base angles each_

measuring 75.

C. If problems are chosen from this section, we suggest giving

each student a mimeographed sheet on which the problems are

arranged and on which the student does the constructions.

This will make the papers easier to check.

1. By construction locate

points at dlstance d

from 15ir and at

distance h from Q.

1613

A



2. By construction locate

points which are equi-

distant from AB and
-->
BC and equidistant

from X and K, as

shown. A

3. 1:16 and I;it intersect

at some inaccessible

point C.

By construction determine

the bisector of L ACF.

4. Given line and

circle C, as shown.

Construct a circle of

radius x tangent to

-1P and C.

.44-4

40 7

X
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A.

Answers

4-*
1. The intersection of AB and the perpendicular bisector

of KQ is the,point in question. If KQ1.4-A-g' there
will either be no such or an infinite number.

2. The line perpendicular to AB at A except point A.

0 Two lines parallel to AB and at the distance 3 from
AB.

4. The intersection of the bisector of Z. ABC, and the
circle with center B and radius x. There is one
point.

). 7 d. The plane parallel to both given planes and midway
between them.

6. The intersection of the sphere with center A and
radius 5, and the sphere with center B and radius
6. If AB < 11, this intersection will be a circle.
If AB = 11, the intersection will be one point. If
AB > 11 there will be no intersection.

7. The circle whose diameter is AB minus A and B.

The sphere whose diameter is AB minus A and B.

8. The diameter perpendicular to one of the chords, minus
the end-points of the diameter.

9. If and only if the triangle is equilateral.

10. The bisector of the angle minus the vertex of the angle.

11. If and only if the triangle is a right triangle.

12. If and only if the triangle is equilateral.
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B. 1. Divide AB into 5 congruent segments (Theorem 14-11).
1 2Use 3 AB as base and then using 3 AB as radius and

A and B as centers construct intersecting arcs to

locate a third vertex of the triangle.

2. Let AB = a. Let M be the mid-point of AB. On the

perpendicular bisector of AB make QM = XM = b.

Then AXBQ is the required rhombus.

3. Construct an angle whose measure is 60. By bisecting

get angles with measures 30 and 15, hence

75 = 60 + 15. At A and B construct angles with'

measure 75.

C. 1. Construct lines parallel to AB at distance d.

Construct the circle Q with radius h. The points

required are the intersections of the parallels and

the circle.

2. One point, the intersection of the bisector of Z ABC

and the perpendicular bisector of XK.

3. Construct lines and parallel to AB and FH

at the same distance from A and PH. If and

..1P1 intersect at Q, the bisector of Z Q will be

the required bisector since each of its points is

equidistant from AB and PH.

Construct parallels to at distance x from it.

With C as center construct the circle whose radius

is r X. The intersections of this circle and

either parallel will be centers of circles of radius
x tangent to and C.

P.



Chapter 15

AREAS OF CIRCLES AND SECTORS

In this chapter we study the length and area of a circle,

the length of a circular arc and the area of a circular

sector, deriving the familiar formulas. The necessary treat-

ment of limits is left at an intuitive level. We study the

measurement of a circle in the familiar way by means of

inscribed regular polygons and so the chapter begins by

discussing the idea of polygon. This has not been needed

earlier since the idea of polygonal region (Chapter 11) was

sufficient for our purposes.

506 We want a polygon to be a simple "path" that doesn't

cross itself. Property (1) takes care of this, since, it

prevents two segments from crossing. Property (2) is

included for simplicity of treatment. For example, suppcse

P2, P3, P4 were permitted to be collinear. Then, in the

face of Property (1), P2P3 and P3P4 would be collinear

segments having only P3 in common so that the union of

P
2
P
3

and P
3
P
4

would simply be the segment P
2
P
4

and there

would be no need to introduce P
3

in the definition at all.

As we indicated in Chapter 11, there is a close

connection between the ideas of polygon and polygonal region:

The union of any polygon and its interior is a polygonal

region. Although this seems quite obvious intuitively, it

is very difficult to prove since there is no simple way to

507 define interior of a polygon. However, for a convex polygon

it is relatively easy to define interior and to see what is

involved in a proof of the principle stated above. (See

508 Problem 3 of Problem Set 15-1.)
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Problem Set 15-1

508 1. It'has 6 sides, but only 5 vertices.

509 2. Yes. 12. 12. All sides have the same length. All

angles are right angles.

*3. a. By definition of a convex polygon, given any side

of the polygon, the entire polygon, except for that

one side, lies entirely in one of the half-planes

determined by that side. The intersection of all

such half-planes is the interior of the polygon.

Alternatively:

The intersection of the interiors of all the angles

of the polygon is the interior of the polygon.

b.

or

indicate ways in which any convex polygon and its

interior can be cut into triangular regions.

4. a. 0, 2, 5, 9, 5150, m(m
2

3). (A diagonal of an

n-gon can be drawn from each vertex to all but

three other vertices. In doing this, each diagonal

ts counted twice.)

b.

(pages 508-509)
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Since the polygon is convex its diagonals lie in the

interior of each angle, so that the Angle Addition

Postulate can be applied to show the sum of the angles of

the polygon equals the sum of the angles of the triangles.

Consider the point from which the diagonals are drawn,

the vertex of each triangle and the opposite side the

base. An n-gon then has n-2 such bases, and therefore

there are n-2 triangles. Since the sum of the angles

of each is 180, the sum of the angles of the polygon

is (n - 2) 180.

The number of triangles formed with vertex Q is the

same as the number of sides of the n-gon, so that

the sum of the angles of the triangle is 180n. The

sum of the angles at Q is 360. Hence, the sum of

the angles of the polygon is 180n - 360 180(n - 2).

510 We indicate how a circle can be divided into n congruent
arcs end to end. Let Q be the center of the circle and
Qp

1
a given radius. Let H, be a half-plane lying in the

.L

plane of the circle with edge QP1. By the Angle Con-

struction Postulate there is a point X in H1 such that
360mL PlQX .

By the Point Plotting Theorem,
--4

there is a point P2 on QX

such that QP2 rQP1 . Then

the minor arc P
1
P
2

has measure
360

. Mow repeat the process

replactng PI by P2 and half-

plane Hi by Ho, the half-

plane opposite to P with
4 1,

edge QP,. This yields a minor
360

irc 'P P of measure which intersects P
1
P
2

only in
';? 3

P,. (ontInuing in this way we get a sequence of points

P P, P. . P P such that successive minor
1 n :1n,

360
Ar.(1 773, .", Pn 1Pn have measure --- and

[pages 509-510]
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have in common only an end-point. Then the major arc PiPn

has measure
n - 1

.360 and the measure of the minor arc

1
PiPn must be 17.360. Thus the points

P
n

P
n divide the circle into n congruent arcs, end

to end.

: 511 An inscribed polygon whose sides are congruent and whose

angles are congruent can be proved to be convex, and so is

regular in accordance with our definition. We do not prove

this because we do not need it for our application of regular

polygons to circles.

512 We speak of the regular n-gon inscribed in a given

circle. Obviously there are many such regular n-gons for

a given n, but they all are congruent and have congruent

sides, congruent angles, and equal apothems, perimeters and

areas.

The apothem of a regular polygon can also be described

as the distance from the center to a side, or the radius of

the inscribed circle of the polygon.

We write "A subscript n" here to emphasize that the

area oC the regular n-gon depends on the value assigned to
n and to distinguish it from the area of the circle

(circular region) which is denoted by A (see Section 15-4).

Of course a, the apothem of the regular n-gon, and p,

its perimeter, also depend on n and could be written an

and pn.

1 7 0

[pages 510-512]
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Problem Set 15-2

1512 1.
TT'

2. a. u.360 = 45.

b. Draw a circle and construct eight 450 central

angles. Join in order the points where the sides

of the angles intersect the circle.

c. Draw a circle and construct two perpendicular

diameters. Bisect the four right angles formed.

Join in order the points where the sides of the

resulting angles intersect the circle.

3. Draw a circle and construct five 720 central angles.

Join in order the points where the sides of the angles

513

It.

5.

6.

intersect the

(n - 2)180

circle..

12-sided polygon all of whose sides are

all of whose angles are congruent, but

30. 60.

45. 90.

54. 108.

60. 120.

64. 135.

70. 140.

72. 144.

75. 150.
,- 156.

80. 160.

81. 162.

84. 165.

No. It is a

congruent and

It is not convex.

3. 120.

4. 90.

5. 72.

6. 60.

8. 45.

9. 40.

10. 36.

12. 30.

15. 24.

18. 20.

20. 18.

24. 15.

I. 7 I

[pages 512-513]
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53.4 7. a. 6.

b. Regular hexagonal regions. 3.

c. Two pentagons and a decagon.

Two 12-gons and an equilateral triangle.
Two octagons and a square.

d. Three polygons with different numbers of sides may
be used: 4, 6, 12; 4, 5, 20; 3, 7, 42; 3, 8, 24;
3, 9, 27; 3, 10, 15.

8. The measure of each exterior angle is 180 less the
measure of an interior angle.

of the interior angles,

*9.

515 10.

Adding n of these we get

n .180 - sum of the measures

or n 180 - (n - 2) 180 . 360.

a. 1- or

b. (14 - 1) 360 . (n - 2)180.

a. n = 4,

S . 2 .180 (n -2)180.

b. n . 8,

S 6 -180 = (n -2)180.

c . n . 10,

S 8 3.80 2)180.

(pages 514-515)
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515 11. The angle sum is increased by 180 while the number of

sides is increased by one.

12. The radius is also 2. The apothem is the altitude of

an equilateral triangle with side 2, or IT.

*13. In the figure, side AB

of a regular inscribed

octagon is 1 unit long.

Since A ADO is' a right

isosceles triangle,

AD = DO = -x-:

BD = r - I. In right

triangle ABD, AD2 + BD 2 = AB2 or
2 2

( + (r - = 1, from which r 1

or approximately 1.3.

Beginning in Section 15-3 the text introduces the notion

of a limit. It is not intended that the students be given a

formal treatment of limits, but rather that they develop an

intuitive idea of what a limit is. A discussion like the

following maY be helpful.

516 When we write we have in mind that C is a

fixed number, the length (or circumference) of the circle,

but that there are many successive values for p, depending

on whtch inscribed regular n-gon we are considering. So it

is desirable to write pn instead of p for the perimeter

of the inscribed regular n-gon. Then we say pn---).C,

meaning that the successive numbers pn approach C as a

limit. Observe that we have an infinite sequence or

progression of numbers which are the perimeters of regular

Inscribed polygons for successive values of n; we begin

wtth n = 3, giving us an inscribed equilateral triangle,

[pages 515-516)
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then n - 4 yields an inscribed square and so on. We re-
present the infinite sequence pn as p3, p4, Pn,
... and we think of these numbers as being approximations
to C which get better and better as we run down the
sequence. As a simple analog consider the infinite sequence

.3, .33, .333, .3333, .33333, ...

which arises when we divide 1 by 3 and take the successi're
1decimal quotients. These numbers are approximations to n-

which get better and better as we travel down the sequence
1and we may say that this sequence approaches as a limit.

Other examples are the two sequences

, 1 1 1
1, "ff, ... 77, ***

2
1 31, 17, IT, ...

which have limits 0 and 2. The essential point in all
four cases is that each sequence has a uniquely determined
"boundary" or "limit number" and that we can reason about the
limit of a sequence if we know the sequence, that is, if its
successive numbers are determined. However, we can not assume
that every sequence has a limit. For example, the following
sequence has no limit: 1, -2, 4, -8, 16, .

We need three basic properties of sequences:
(I) IC a sequence has a limit it has a unique limit.
(II) If sequence an---4.a, then sequence Kan---4Ka for

any fixed number K.

(HI) If sequence an---4.a and sequence bn----).b then
sequence anbn---4.ab.

Property (I) says in effect that if the terms of a
sequence are getting closer and closer to a number a, they
can't, at the same time, be getting closer and closer to
another number b. As an illustration of (II) observe that

.3, .33, .333, ...
1---> n-

and thqt the sequence of "doubles" has double the limit:
.6, .66, .666, 2

To 11111r1te (HI) consider

, 5.1, 5.01, 5.001, ...---*5,

(page 516)
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4, 3.1, 3.01, 3.001, ... 3.

You will easily convince yourself that the sequence of

products of corresponding terms approaches 15 = 5. 3.

Notice that in the discussions concerning limits, no

mention of "infinity" is made.

The concept of a limit does not involve any notion of

infinity. While the word and the symbol (m) for it are

convenient in certain branches of higher mathematics, they

should be avoided In introductory discussions where they are

neither useful nor enlightening.

517 The properties of limits used here are easily clarified.

Let us write pn for p and pn' for p' to emphasize

that we have two sequences of perimeters, one for each circle.

Further, we have pn---.C and pn'---->C1, and

Pn
fl

r 7r*
Now we apply Property (II) above to pn---*C taking K =

Pn C C'and get Similarly, p
n

yields
r'

To summarize, we have sequences

P1 P2 Pn7, 7, 7, >

P 1 I P 2 ' n C'
r--) -7-) ) -7-)r r r r"

whose corresponding terms the same numbers. That is,

the sequences are the same. Thus, by Property (I) they must

have the same limit. Therefore

C C'

518 For a treatment of irrational numbers, see the forth-

coming book, IrratLonal Numtctrs, by Ivan Niven to be publish-

ed by Random House and th..f: Wesleyan University Press.

[pages 517-518]
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Problem Set 15-3

518 1. a. The radius of the circle.

b. O.

c. 180.

d. The circumference of the circle.

2. C = 2rr,

628 = 6.28r,

100 = r.

The radius of the pond is approximately 100 yards.
22519 3. 7 is the closer approximation.

22
= 3.1429-,

r = 3.1416-,

3.14= 3.1400.

C = 2rr = 480,000r. The circumference is approximately
1,500,000 miles.

5 The formula gives 2rr = 6.28 x 93 106
. 584, 106 or

584 million miles, approximately.

Our speed is about 67,000 miles per hour.

o. The radius of the inscribed circle is 6 so that its
circumference is 12r. The radius of the circumscribed
circle is 6IT so that its circumference is 12r 1-2-.

*7. The perimeter of ,PQRS is greater than the circumference
of the circle.

1AD = 2 and XW = 172-. Hence PS = 7(2 -I- vr).

The perimeter of the square is 2(2 +

The circumference of the circle is 27r. But 2 + > r.

8. The increase in circumference is 2r in each case.

(pages 518-5193
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520 Justification of limit properties used in Theorem 15-2:

Ws have, writing an for a and pn for p, an--=or and

p
n By Property III (see above) anpn and by

1 1Property II, 7 anpn* rC. Since An 7 anpn, by

substitution we get
1

An rC.

But we have An Since by Property I sequence An
1can have only one limit, A = rC.

Problem Set 15-4

522 1. a. C 10Y, A = 25r.

b. C = 20y, A = 100r.

2. a. C = 2vn, A = yn2 .

b. C = 20rn, A = 100rn 2 :

3. a. 4y - Y = 3y. The area would be approximately 9.4

square cm.

b. No.

4. The area of the first is 9 times.the area of the

second.

5 C = 2rr . 20.

r = 71017.

Area of circle . 100

32 approx.

P = 4s . 20

s . 5.

Area of square = 25.

The area of the circle is greater by about 7 square

inches.

[pages 520,522]
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6. r(5,/-2-)2 - r(5)2 = 25r.

The area is 25r square inches.

523 7- Radius = 4,7-5. inches.

Circumference = 8,/Tir

inches.

Area = 48r square inches.

5 if

5

8 It is only necessary to find the square of the radius of
the circle. If a radius is drawn to a vertex of the
cross it is seen to be the hypotenuse of a right triangle
of sides 2 and 6. The square of the radius is there-
fore 22 + 62 . 40. The area of the circle is therefore
40r, 125.6 approximately. The required area is there-
fore 125.6 - 80 = 40.6.^

9 Draw PB and PC. The

r(PC) 2
- r(PB) 2

, the d

two circles. This can

By Pythagorean Theorem,

the area of the annulus

10. The section nearer the

larger.

11.

area of the annulus is

ifference of the areas of the

also be written r(PC
2

- PB2 ).
PC

2
PB

2
BC 2 . Therefore

is rBC2.

center of the sphere will be the

r2 = (10)2 - (5)2.

r
1

2
. (10) 2

- (3)
2

.

Therefore, r
1

> r.

s
2

2

524 12. AC2 + BC2 = A132.

g Ac2 g,BC2 = g AB2.

(r + g) 4 (h s) = g + h + t.

r + s = t.

1 7 8

[pages 523-524)
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524 *13. a. Note that r1 = OA = OR = BP and r2 = OS = CP.

By successive use of the Pythagorean Theorem we

get r1 = r2 . r3 =

b. Now, using the area formula for a circle, we have

a = rr
2

;

b = r(r,./) 2
- a . rT2;

c = r(r175-)
2

- (a +
32

- 2rr2 = rr2;

d = r(2r)
2

- (a + b + c) = 4rr2 -
32

rr
2

.

14 From the second figure,
(4)2 (2)2

12, and

so the altitude of the

trapezoid 1J 21-5.

In the first figure,

since the bases are

parallel and tangent

to the circle we see

that FH (altitude

of the trapezoid) must

be a diameter, aad so

the radius is NiT.

Area of the circle is,

then, 3r. Area of

the trapezoid is 813.
The area outside i;he

circle is (8,15. - 3r)

square inches. This

is approximately 4

square inches.

6

A 3 F 3

DL141, C

2

* [page 524)
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525 Hotice the common procedure in treating length of circle

:And length of arc. In each case we °approximate" by means

of: chords of the same length.

526 The agreement to consider a circle as an "arc", enables

us to'include in Theorem 15-3 the case of the whole circle

as an an; of measure 360.

To illustrate the application of Theorems 15-3 and 15-4

assign Problems 1, 3, 6 and 7.

527 One concrete illustration of a sector of a circle is a

lady's fan, with the ribs of the fan standing for the

segments QP. The arc AB, of course, need not, be a minor
arc. Observe that the definition can also be phrased: If

AB is an arc of a circle with center Q. then the set of
all points X each of which lies in a segment joining Q
to a point of AB is a sector.

Problem Set 15-5

527 .1. 5r, 7.5r, 6r, 3r.

2. 9v, .1r.

3
3. in each case.

528 4. The measure of the arc is 90. The length of the arc
is r.

5. a. Area of sector r 122 = 24-r.
2

Area 'of triangle

Area of segment = 24r - 36/.5- or 13.04.

b. 1 ,2Area of sector r 70 - 12r.

1Area of triangle = 7.6,/r5 .3

Area of segment . 12r - 9../T or 22.11.

1 8 0

[pages 525-528)



527 c. Area of sector

Area of triangle

Area of segment

6. a. 2v.

529 7. Draw BG I AC. Then

425

1
- -8- v .8

2
- 8v.

= 4,1 = 16N7.

. 8v - 16,1f or 2.51.

b. v.

GC 6, AG = 24. In the right

triangle A AGB, the length of the hypotenuse is twice

the length of one leg, .so mL ABG = 30, mL BAG = 60,

and CE - GB = 2411 The major arc CD has the length

i(2v.30) = 40v and the minor arc rEP has the length

1,-,p2v. 6) - 4v. Thus, the total length of the belt is

2(24 + 40v + 4v 48,/ .4- 44v.

The belt is approximately 221 inches long.

8. To CLiad one small shaded

area subtract the area of

a 900 sector whose radius

is 2,.1 from the area of

a square whose side is 2 f-2-.

r-
(2-1-2-)

2 v(2v2) 2

4
= 8 - 2.

The area of the shaded area is 4(8 - 2v). This is

approximately 6.87 square inches.

Review Problems

530 1. Tht: first and third are polygons.

The third is a convex polygon.

2. a. Yes. c. No.

b. Yes.

3. 108, 120, 135, 144.

. 12.

1 8 1

[pages 527-530]
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530 5. a. The regular octagon in each case.

b. The apothems are equal. The square has the greater
perimeter.

6. 1From the formula A = ap for the area of a regular
polygon.

7. 2r.

531 8. 1

a.

and

72.

2.

2.

a. 10 to 1.

b. 10 to 1.

12. 5,

13. A . rr 2
. r

Hence, A = rqd

360b. n
c. 100 to 1.

)2 4.77.d2.

314. 15r inches, a distance equal to 7 of its circuMference.

215. 4r. and
7 7/..

16. There are several methods

of showing that the four

small triangles are con-

gruent to each other.

For example, each of the

angles marked with an arc

will have a measure of 60.

In this case the congruence

is by A.S.A. Hence, each

of the four small triangles

has the same area, and then

the circumscribed triangle

has an area four times that

oC the inscribed triangle.

(pages 530-53111
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531 *17. The woodchuck's burrow will be in the region bounded

by XOY and XPY.

The area of each of the

equilateral triangles
,2

is i,73. The area of

each segment is

r21 2 7rr - %/7. Then

the area in which the

woodchuck can settle is2
2(' .15) + rr2 - r -ITT) = TT - as

any woodchuck knows.

18. Let a and p be the apothem and perimeter of the

smaller polygon and a' and p' be the apothem and

perimeter of the larger polygon. The ratio of the areas

is 411r.. But = 2-, so that, the rntio of the, areasa p a P1
,2

ir 2is Hence, 125-1- = l= . 7. The sides also
ID1

2

have the ratio 4.

Illustrative Test Items for Chapter 15

A. Indicate whether each of the following is true or false.

1. The ratio of circumference to radius is the same number

for all circles.

2. If the number of sides of a regular polygon inscribed in

a given circle is increased indefinitely, its apothem

approaches the radius of the circle as a limit.

3. Any polygon inscribed in a circle is a regular polygon.

4 A polygor is a polygonal region.

[page 531]
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5. If the radius of one circle is three times that of a

second, then the circumference of the first is three
times that of the second.

6. The area of a square inscribed in a given circle is half
the area of one circumscribed about the circle.

7. In the same circle, the areas of two sectors are pro-

portional Lc) the squares of the measures of their arcs.

8. The ratio of the area of a circle to the square of its
radius is r.

9. The length of an arc of a circle can be obtained by

dividing its angle measure by r.

10. Doubling the radius of a circle doubles its area.

B. 1. Find the measure of an angle of a,regular nine-sided
polygon.

2. Into how many triangular regions would a convex polygon-
al region with 100 sides be separated by drawing all

possible diagonals from a single vertex?

3. If the circumference of a circle is a number between
16 and 24 and the radius is an integer, find the

radius.

If the number of sides of a regular polygon inscribed
in a circle is increasod Jithout limit, what is the
limit of the length of one side? of its perimeter?

5. Write a formula for thearea of a circle in terms of
its circumference.

6. If the area of a circle is 2r, find its radius.

7. The area of one circle is 100 times the area of a
second. What is the ratio of the diameter of the first
to that of the second?
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u. The angle of one sector of a circle is 50°. The angle

a second sector of the same circle is 1000. Find

the ratio of the length of the arc of the first sector

to that of the second, and the rati.o of the area of the

rirst sector to that of the second.

A l'cular jrze Is 2 miles in diameter. If you walk
at 3 miles per hour, about how many hours will it take

to walk around it? (Give the answer to the nearest

whole nurnber . )

10. An angle is inscribed in a semi-circle of radius 6.

What is the least possible value of the sum of the areas

of the two circular segments that are formed?

1. In circle 0, chord XY

iS the perpendicular bi-

sector of radius OA.

OA = 6.
r-ThFind mXIAY, the length

of XAY, the area of

sector 'XOY, and the

area of the region

bounded by XY and XAY.

0 ABODEF is a regular hexagon

circumsribed about circle

O. If its perimeter is 12,

find the ci:':umference and

the area of the circle.

On an aerial photograph the surface of a reservoir is a
7circle with diameter }3 inch. If the scale of the photo-

graph is 2 uliles to I inch, find the area of the
22surfacle or the reservoir. (Use for v. Give the

reult to the nearest ohe-half square mile.)
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Answers

A. 1. True. 6. True.

2. True. 7. False.

3. False. 8. True.

4. False. 9. False.

3. True. 10. False.

B. 1. 140.

2. 98.

3. 3.

4. 0. The circumference of the circle.

5. Sit,e C = 2vr, C
r . -N.

2 c2
Since A . wr2, A = 7(.t.77) = 777.

6.

7. lo to 1.

8. 1 to 2 in each case.

9 .

10. The sum of the areas of

the segments will be

least when the area of

AABC is greatest. In

this case the altitude

to AC is the radius of

the circle. The sum of

the areas of the segments

is found by subtracting

the area of the triangle

from that of the semi-

circle. The result is

18v - 36.
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C. 1. mXAY = 120. The length of XAY = 47r.

Area sector XOY = 12v. Area segment XAY = 12v - 913.

2. The radius of the circle is the altitude of equilateral

triangle A OAB, so that, r = vrT. Hence C = 27r.17.

and A = 37r.

7 73. The diameter of the reservoir in miles is 2 -
13 7'

7so that its radius is The area isU
22 7 .7 77= 77. The area of the reservoir is about

square miles.



Chapter 16

VOLUMES OF SOLIDS

In this chapter we study mensuration properties of

familiar solids: prismb, pyramids, cylinders, cones and the

sphere. Our proofs are conventional in spirit, although

our derivation of the formula for surface area of a sphere,

based on an assumed approximation to the volume of a

spherical shell,is quite unusual in an elementary text. We

assume Cavalieri's Principle (Postulate 22) in order to

avoid coming to grips with fundamental difficulties of a

type occurring in Integral Calculus. We emphasize strongly

analogies between prisms and cylinders, between pyramids

and cones. In fact our definitions of prism and pyramid

are formulated so as to be applicable to cylinder and cone.

These figures are defined, quite precisely, as solids

(spatial regions) rather than surfaces, since our basic

concern is for volumes of solids rather than for areas of

surfaces.

534 Notice that we define a prism directly as a solid

(region of space) rather than as a surface (prismatic

surface) . This is quite natural since our main object of

study in this chapter is volumes of regions, rather thr...1

areas of surfaces. This is analogous to our earlier

emphasis on polygonal regions rather than polygons. Note

how simply our definition generates the whole solid from

the base polygonal region K, and hew easily it enables

us to pick out the "bounding surface", (see the definitions

of lateral surface. and total surface in the text) . If we

used the alternative approach and defined a prism as a

surface we still would have the problem of defining the

interior of this surface in order to get the corresponding

solid. Similar observations hold for our treatment of

pyramids, cylinders and cones.
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J35 Note that in our use of the word "cross-section", the

intersecting plane must be parallel to the base. It is

possible to have sections formed by a plane which is not

parallel to the base, but such sections.would not possess

all the properties of a cross-section. Note that since a

prism in our treatment is a solid, its cross-section is a

polygonal region, not a polygon.

535 In Theorem 16-1, the text states that the cross-sections

of a triangular prism are congruent to the base. Up to this

point no mention has been made of congruence of triangular

regions, but only of congruence of triangles. It is

intuitively apparent that if two triangles are congruent,

then their associated triangular regions also are congruent.

This can be proved formally using the ideas of Appendix

VIII. We will not speak of the congruence of polygonal

regions othr than.triangular regions, since any polygonal

region can always be divided into triangular regions.

536 Corollary 16-1-1 is a direct conse.,uence of Theorem 16-1,

since the upper base is a cross-section of the prism. A

similar observation applies to Corollary 16-2-1.

537 A "parallelogram region" is def' ed formally as the

union of a parallelogram and its in :r. The interior

or parallelogram ABCD consists of all points X which
C- ->

are on the same side of AB as C and D, on the same

stde of BC as D and A, on the same side of CD as

A and B and on the same side of DA as B and C. An

alternative definition which is suggested by the text

definition of prism is the following: Let ABCD be a

parallelogram. Then the union of

all segments- PP where P is

Ln AB, P' is in CD and

PP' H AD or PP, H BC is a

parallelogram region.

[pages 535-537]
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537 Theorem 16-3 is easy to grasp intuitively, but tedious

to prove formally. Here is an outline of a proof.

Let El and E2 be the

planes of the bases, L

be the transversal and

AB a side of the base.

We want to show that the

lateral face F which

is the union of all segments

PP', where P is in AB,

is a parallelogram region.

Remember that by definition

of a prism, PP' II L and

P' is in E
2'

Consider

AA' and BB' where

AA' L, BB' L and

A', B' are in E2. Then ABB'A' is a parallelogram

and the lateral face F is the corresponding parallelogram

region. To prove this, first show that every point 13! is

on and in fact that A'B' is the set of all such

points P'. Then show that every point of PP, is on

ABB'A' or is in its interior. Finally show that every

point on ABB'A' or in its interior lies in some segment

PP'. Thus, the segmts PP constitute the parallelogram

region composed of ABB'A' and its interior.

[page 537]
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Problem Set 16-1

1. FH H BA (Definition of prism). Hence, FH and BA
determine a plane (Theorer. 9-1). By definition the

riper and lower bases of a prism are parallel, hence,
H HA (Theorem 10-1). Hence, ABFH is a

parallelogram.

539 2. 30 + /-4a + 5o + 7o + 20 = 210.

3. 3 x 8 x lo + 8 x 4,1T= 240 +

The total surface area is 240 + 32,71 square inchf:.s.

IL Since each lateral face is a rectangle, its area is the
product of base and altitude. If e is the length of
a lateral edge and Sl, S2, S3, are lengths of

the sides the prism base, then Al = Sle, A2 - S2e,

A
3
= S, Adding these areas to get the lateral

area, A = Sle + S2e + = (S1 + S2 + S3 + ...)e.

But S
1

+ S
2 3

+ = p, the perimeter of the

base. Therefore, A = p. e.

5. 3, 6, 3,7-3; 30, 90, 60;

Let the required perimeter be y inches. Since
52 = 10y, we have y = 5.2. The perimeter of the
base Ls 5.2 inches.

i

[pages 538-539]
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540 Cross-section is defined for pyramid exactly as for

prism.

When we say in Theorem 16-4 that two triangular regions

are similar, we mean of course that they are determined by

simlIar triangles.

In (1) of Theorem 16-4, to justify AP H A'P' note

that E H E' and that plane VAP intersects E and E'
,J

in AP and A'P'. Thus, AP H A'P' by Theorem 10-1.

Similarly in (2) we show A'B' H AB.

542 Our procedure in Theorem 16-5 is simply to split the

pyramid into triangular pyramids and apply Theorem 16-4

to each of these.

Problem Set 16-2

544 1. square; an equilateral triangle; 0.

2. 25 square inches.

3. QA = QB, mL VQA = mL VQB = 90;

A VQA A VQB by S.A.S.

Hence, VA = VB. Similarly,

VB . VC = VD =

AB = BC = CD = . . by

definition, so

A AVB A DVC A CVD

by S.S.S.

*4. Let P, Q, R and S be

the' mid-points of AT, AC,

VB and VC respectively.

Then SR and PQ. are each

parallel to BC and equal in
1length to -75. BC. Therefore,

SR and PQ are parallel,

coplanar, and equal in length

making PUS a parallelogram.

[pages 540-51;4]
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544 5. Let each edge of the base have length s. Each face

is a triangle with base s and altitude a.
1 1Hence, A = Tea .4- 7sa or

1 / 1P. = 7aks s ...) = 7ap.

545 6. By Theorem 16-5,

x 16
776 77'

16 .336 768 5
49 -7- 10.97.

5Area FGHJK 1097 square inches.

7. The altitude of each face is

13 inches by the Theorem of

Pythagoras. Hence,

1
4(7.10 .13) = 260.

The lateral area is

260 square inches.

If x is the area of the cross-section 3 inches from
on 2

the base then
)00 (*) 17 and x = 56.25.

Hence, its area is 56.25 square inches.

*8. Let PK = a and PB = b. Draw altitude PS.

PS 1 JKLMN at R. PB and PS determine a plane4->
which intersects JKLMN and ABCDE in KR and
IR?' respectively. Since JKLMN

fl ABCDE, KR II BS.
In A PBS, by the Basic Proportionality Theorem,

PK PR area JKLMN (1112.y eorem -5,157 F§.
B Th 16

area ABCDE

Hence,
2 aarea JKLMN (PK\ (7)2.

area ABODE TEJ

[pages 544-5451
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546 The text postulates the formulas for the volume of a

rectangular parallelepiped and proceeds to prove the remain-

ing formulas for the volumes of prisms, pyramids, cones,

cylinders and spheres. This is analogous to the procedure

followed in Chapter 11 when the formula for the area of a

rectangle was postulated.

546_547 Cavalleri's Principle is an extremely powerful postulate.

It can be proved as a theorem by methods resting on the theory

of limits as developed in integral calculus. It will be used

throughout the chapter to prove theorems concerning the

volumes of solids.

A model for making Cavalieri's Principle seem reasonable

can be made using thin rectangular rods in an approach

slightly different from that of the text. Consider the

following statement: Given a plane containing two regions

and a line. If for every line which intersects the regions

and is parallel to the given line the two intersections have

equal lengths, then the two regions have the same area.

Here too,.it should be pointed out that the approximations

to the areas of the regions improve as the thickness of the

rectangular rods becomes smaller and smaller. (Also, see

Problem 8 of Problem Set 16-3.)

9

[pages 546-547]
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549 You may wish to point out that while the proofs of

Theorems 16-7 and 16-8 require the solids to have their

bases coplanar, in numerical application this is not
necessary.

550 In the proof of Theorem 16-9, to help the students

visualize how three triangular pyramids are formed by
cutting a triangular prism, some visual aid should be used.

Disected solids can be purchased from an equipment supply

company; or one could try to make them by cutting up a bar
of laundry soap. The three pyramids are formed by cutting

the triangular prism by the planes through the points S,

P, R and the points S. P, U.

551 Theorem 16-10 can be proved without recourse to

Cavalieri's Principle by splitting the pyramid into tri-

angular pyramids and applying Theorem 16-9. The proof in
the text was chosen because it applies just as well to

cones as to pyramids, (see Theorem 16-15).

552 1.

Problem Set 16-3

5 x 4 x = 15. 15 cubic feet of water in the
tank.

15 x 1728
112 approx. 112 gallons approximately.231

2. 20 x 8 x 4.6 = 736. The volume.is 736 cubic inches.

3. 2 x 3 x 3 x 12 x 12 x 12 2592
2 x 2 x 231 - 33.6.

33 fish can be kept in the
tank.

(pages 549-552]

195



441

552 4. The base can be divided into six equilateral triangles

with side 12. Therefore, altitude QF of A ABQ has

length 6 IT. Since QC = 9, by Pythagorean Theorem

CF = -17376.. Hence the lateral area is

= 36,./7-§5-. Now, V = 4.Ah, or

1( 6 1 6 iT). 9 = 6481-3-.7 7
1

5. 1836 = (18)
2

h. or h = 17. The height is 17 feet.

6. The lateral edges will also be bisected and therefore

corresponding sides of the section and base will be in
1the ratio ' and the areas of the section and base

1in the ratio 7. The volume of the pyramid above the
1section will be of that of the entire pyramid because
'ET

1its base has the area of that of the pyramid and its

height is half as great. The solid below the plane will
7then have the volume of the entire pyramid and the

1
ratio of the two volumes is 7.

553 *7 The volume of the complete pyramid which is 60 feet tall

is 320 cubic feet. The base of the smaller pyramid is

30 feet above the ground so the part of the 60 foot

pyramid to be included contains '4..320 or 280 cubic

feet (see Problem 6). The smaal pyramid capping the

monument has volume 4..4. 2 or about 2.7 cubic feet.

Hence, the volume of the obelisk in cubic feet is

approximately 282.7.

*8. Given a plane containing two regions and a line. If for

every line which intersects the regions and is parallel

to the given line the two intersections have equal

lengths, then the two regions have the same area.

Various examples are possible. Here is one:

[pages 552-553] 196
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553 Here is a formal definition of circular cylinder, and

associate terms. Let E
1

and E
2 be two parallel planes,

L a transversal, and K a

circular region in El, which

does not intersect L, For

each point P of K, let

PP' be a segment parallel

to L with P' in E
2.

The union of all such segrents

is called a circular c1J_i_er.

K is the lower base, or just

the base, of the cylinder.

The set of all points P',

that is, the part of the

cylinder that lies in E2,

is called the upper base. Each segment PP, is called an
element of the cylinder. (Note we did not introduce the term

element in defining prism.) The distance h between El
and E

2 is the altitude of the cylinder. If L is per-
pendicular to El and E2 the cylinder Js a right cylinder.

Let M be the bounding circle of K and C the center of
M. The union of all the elements PP' for which P belongs
to M is called the lateral surface of the cylinder. The

total surface is the union of the lateral surface and the
bases. The element CC1 determined by the center of M is

the axis of the cylinder. Cross-sections are defined for
cylinders exactly as for prisms.

[page 553]
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554 Here is a formal definition of circular cone, and

associate terms. Let K be a circular region in a plane

E, and V a point.not in E.

For each point -P in K there

is a segment PV. The union of

all such segments is called a

circular cone with base K and
n_vertex V. Each segment PV

is an element of the cone. The

union of all elements PV for

which P belongs to the bounding

circle of K is the lateral

surface of the cone. The total

surface is the union of the

lateral surface and the base.

The distance h from V to E

is the altitude of the cone.

If the center of the base circle

is the foot of the perpendicular

from V to E, the cone is a

right circular cone.

555 A formal proof of Theorem 16-11 is somewhat involved -

we present a basis for a formal proof. Let .M be the circle

which bounds the base of the cylinder. Let C be the center

of M and r its radius.

Let E be the sectioning plane,

and C
1

its intersection with

the element CC' of the

cylinder. Then the intersection

of E with the lateral surface

of the cylinder is the circle

M
1

in E with center C
1

and

radius r.

0 3

[pages 554_555)
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555 To prove this we must show that:

(a) Any point P1 common to E and the lateral surface
lies on M

1.

(b) Any point P1 of circle Mi is common to the lateral
surface and E.

Proof of (a): Let P1 be common to the lateral surface
and E. Then P

1 lies on an element PP1 where P is on
circle M (by definition of lateral surface). Then
PP' II FO-7) since any two elements of a cylinder are parallel.
And PiCi PC by Theorem 10-1. Thus, PP1C1C is a
parallelogram and PiCi = PC = r. That is Pi lies on
circle M

1.

Proof of (b): Let P1 be a point of circle Mi.
(Note P P and P' are defined differently than in (a)).
Let PIP be parallel to C1C and meet the base plane in P.__
Then P1C1 n PC by Theorem 10-1 and PP1C1C is a
parallelogram as above. Thus PC PiCi r, so that P

lies on circle M. Then P determines an element PPI and4E-> 4-->
ppt H CC1. Since, PP1 II CC1, we see that PP1 and
coincide and P1 lies on /T). From the diagram Pi lies
on PP'. Thus, P1 is on the lateral atirface. Since Pi
is in E, the proof of (b) is complete."

Since M
1 bounds the cross-section, we have shown that

the cross-section is a circular region.- It remains to show
it is congruent to.the base. This is a relatively simple

matter as outlined in the text.

555 Theorem 16-12 is immediate from Theorem 16-11, since

the cross-section and the base are congruent circular regions.

[page 555]
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In Theorem 16-13 the proof that the cross-section is a

circular region is somewhat similar to that of Theorem 16-11.

Flr't one would prove th.qt the intersection of the plane and

the lateral surface is a circle.

In the diagram for Theorem 16-13, P is the center of

the base circle and W is a point on it. Q. and R are the

Intersections of the elements PV and WV with the section-

ing plane.

The reasons in the proof of Theorem 16-13 are:

(1) The A.A. Similarity Theorem and the definition of

similar triangles.

(2) QR PW so that A VQR ,,, A VFW. Then

QR VQ k
157 Vi5= 17'

0 area of circle Q. 1TQR2 fu 2 k 2

/ area of circle P '71V
0

(E)
71-PW

557 Just as in proving Theorem 16-7 on the volume of a prism,

consider a rectangular parallelepiped with the same altitude

and base area as the given cylinder, and with its base

coplanar with the base of the cylinder. Apply Cavalieri's

Principle.

557 To prove Theorem 16-15 proceed as in Theorem,16-10.

Take a triangular pyramid of the same altitude and base area

as the cone and with its base coplanar with the base of the

cone. Apply Cavalieri's Principle.

[pages 555-557]
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Problem Set 16-4

557 1. = 7(9 v) 4 = 127r.

fr. 14
2

30 22. 14 .14. 302. The number of gallons is
3 231 7. a. 3 .7. 11

8o 2 .
--- -1- = 267. kThe factors of 231 are 3.7 11. By

22using the computation can be simplified by reducing
fractions.)

3. Subtract the volume of the inner cylinder from that of
the outer. This gives

16r(2.8)2 - 167(2.5)2

or 167(2.82 - 2.52) . 167(2.8 - 2.5)(2.8 + 2.5)

= 16r(.3)(5.3) = 8o approximately.
Approximately 80 cubic incl'es of clay will be needed.

4. The ratio of the volumes is the cube of the ratio of the
altitudes, so

vn
(G\n 3G 8

v = v57 125 .064.
1

Hence V2 = .064 x 27 = 1.73 approx.

558 5. Let r be the radius of the base of the first can and
h be its height. Then the radius of the second can is
2r and its height is 4. Then

Volume of first can . 'Tr
2
h.

2 hVolume of second can . 7(20 7 27rr
2
h.

Since the volume of the secOnd can is twice that of the
first, and the cost is twice the cost of the first,
neither is the better buy.

2

(pages 557-558)
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202, 36558 6. The volume of the pyramid is 4800.
3

The radius of the base of the cone is half the diagonal

of the square., or 10-1-2-.

The area of the base of the cone is r(10,12-)2 - 200r,

.and the volume of the cone is 200r 36 2400r = 7,536
3

approximately.

7. Let the radius of the base of each cylinder be r and

the altitude be h. Then the volume of the cone in

Figure 1 is rr-h
. The volume of the two cones in

Figure 2 is 2(11-i--

The volumeF are the same.

No, since the sum of altitudes would be the same as the

altitude of cone in Figure 1.

8. rr h2 -
1 2h = rr

2 2TIT y h.

559 *9. The volume of the frustum is the difference of the

volumes of two pyramids. Hence their heights must be

found. If x represents the height of the upper pyramid

4

x + 8 15'
from which

x 16 and x + 8 . 24.

-7/'
1 , 1 2770 2 24 - 4 16 4

The volume is approximately 636 cubic inches.

2

[pages 558-559)
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55c) To prove Theorem 16-16 we show that the sphere and the

solid bounded by the cylinder and the two cones have the same
volume by Cavalieri's Principle. Then we can find the volume

of the sphere by subtracting the volumes of the two cones

from the volume of the cylinder.

560 The answer to the "Why?" is as follows:

Consider one of the cones. Since the altitude of the cylinder
is 2r the altitude of the

cone is r. Also the radius

of the base circle of the

cone is r. Therefore, an

isosceles right triangle is

formed by the altitude, the

radius, and a segment on the

surface of the cone joining

the vertex V to a point on

the base. Any line parallel to the radius, intersecting the

other two sides of this triangle, will form a triangle
similar to the original one. Hence, the cross-section of
the cone at a distance s from the vertex will be a circular

region with radius s; and s will be the inner radius of
the section of the solid.

561 The argument of Theorem 16-17 should not oe considered

a formal proof, but an interesting example of mathematical

reasoning based on a rather plausible assumption, namely,

that S, the surface area of the inner sphere is the limit
V

of Ti as h approaches zero, where V is the volume of the

spherical shell and h is its thickness. (We must either
define the area of a surface or_ introduce some postulate

concerning it, if we want to reason about it mathematically.)

To justify intuitively that hS is approximately the volume

of the spherical shell, we may consider it cut open and

flattened out like a pie crust to form a thin, nearly flat,

[pages 559-561]
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cylinder. Then S becomes the area of the base of the

cylinder and h its height, so that, its volume is hS.

(Actually such a process would involve distortion and the

Volume of the shell would be slightly greater than hS.)
VIn the course of reasoning when we say S as h

grows smaller and smaller (or h approaches zero) we mean

precisely the following: Let h take as its successive

values an endless sequence of positive numbers,

h
1,

h
2' "°' h , which approach zero (for example,

1 1 1
7, , n, ...). Then since V is determined by

2

the value assigned to h, V will take on a corresponding

sequence of values, V1, V2, , Vn, ..., We assert

V
1

V
2

Vn
that the sequence of quotients IT-, ., E-,

1 2

will approach the fixed number S.

You may better appreciate this method if we apply it in

a simpler case to derive the formula for the circumference

of a circle. Consider a

circular ring with fixed

inner radius r, outer

radius r + h and inner

circumference C. The area

A of the ring is approxi-

mately hC (it can be

flattened out to approxi-

mately a thin rectangle)

and Trl is approximately C. As the ring gets thinner and

thinner the approximation gets better and better, that is,
A %*
---->C as But A = r(r + h)

2
- rr

2 = 2rrh + rh
2

so that
A

= 2rr +

A
Now let h---*O. Then 1----3,2rr. But C is the value which

Aw approaches. Therefore, C

[page 561)
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A corresponding derivation for the area of the lateral

surface of a cylinder is s4 'lndled (see Problem 11
of Problem Set 16-5).

For the lateral ,

somewhat more compliouG._
ht circular cone it is

given in detail below.

Derivation of Lateral Area of a Right Circular Cone.

The figure shows a vertical

section of a right circular cone

of base radius R, altitude H,

and slant height S. It is

covered with a layer of paint

of thickness t. From similar

triangles we have

t a A b a7 = anu

Hence,
, Ha

=

The volume of the paint is

1 1V = 77r(R + a) 2
(H + b) TrR2H

.,Tr(2RHa + Ha2 + R2b + 2Rab + a2b)

.;q1.(2RHa + Ha2 + RHa + 2Ha2 +

= 47.(3RHa + 3Ha2 + ila3)

2
THa(R + a + 57)

We assume that the lateral area A is the limit approached
Vby as t approaches zero. From above,2

- TS(R + a + i7).

As t gets very small so does a get very small, and so
V7 approaches the limit irSR.

(page 561j
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Problem Set 16-5

562 1. Surface area: 41r16. Approximately 201.
4-

Volume: 7764. Approximately 268.

4 8 9. 27
2.

T; I' 77 -r.

4 22 7 7 7 12 12 12
3. 10,752.

3 - 7 7 - 3 11

4.

The tank will hold approximately 10,752 gallons.

The area of a hemisphere is one-half the area of a sphere,

or 27rr
2

. Since the area of the floor is irr
2

, twice

as much paint is needed for the hemisphere, or 34

gallons.

5. Volume of cylinder Is

irR2. 2R = 27R3.

4(27R3) = 4vR3, which

is the formula for the

volume of the sphere.

6.
4

Since r 1, the volume of the ice cream is 77 and
5the volume of the cone is Tr. Therefore, the cone

will not.overflow.

563 7. a. The volume of a cube of edge s is s3; the

volume of a cube of edge 4s is (4s)3 or 64s3.

Hence, the ratio of the volumes is 64 to 1.

b. If R and 4R are radii of the moon and the earth

4 3
7.7R

1the volumes have the ratio
4
71.7r(4R)3'

[pages 562-563]
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563 8. The altitude of the cone is r plus the hypotenuse of
a 300 - 600 right triangle with short side r. So
the altitude is 3r. Using a right triangle determined
by the altitude of the cone and a radius of the base,
the radius of base of the cone is so the area
of the base 1- 32

. The volume of the cone is there-
1

fore 3rr
3

*9. Let r be . ,adius of

the tank in feet.

r2 = 182 + (r - 6) 2
.

r2 = 324+ r2 - 12r+ 36.

12r = 360.

r = 30. The radius is

30 feet. Using

4 3V = , the volume

of the tank in cubic

tor. 30feet is
3'

I 8

Converting this to cubic inches, finding the number of
gallons contained, and dividing by 10,000, the number

4of hours a tank full will last is 22.27000 .1728
3. 7. 231. 10000

or about 85 hours.

*10. Let V be the original volume and R the original
radius, v the new volume and r the new radius.

4 3Then
2

,graR R3V

7rwr r

R3 2Therefore, = I or

Hence, r -
2

Since, Vir is approximately 1.6,

4
r is approximately 7 R.

(page 5631
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563 *11. Let V be the volume of a cylindrical shell, S the

. lateral area of the cylinder, and h the thickness of

the shell. Then y
---*S as h gets smaller and

smaller. By Theorem 16-14 we know that

.
V = r(r + h)

2
a - yr

2
a

= 271-rha ± rh
2
a.

- 2rra + rha.

V
Since, h----->0, rha -->0 and E ----->2rra .

Hence, S = 2rra.

Review Problems

564 1. a. rhombus, 120, 60.

b. 8. c.

44 5 5 ; _ 7.7.1 1.2. :71 approX. 7

4,7r(l25 1) = -41

3. approx. 77. 25.h = 500.

6o
h = = 19 approx.

5.

48 square inches -K-B 12 = 432.

B = 108.

If A is the area of the cross-sectJon,

108 144A
A = 48.

= 61.26

volume of the first is half the voiume of the second.

(pages 563-564J
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564 6. 487 2 approx. Tr 144 20 - 14r 10 10 10 =

4000 464ow(2880 = r = 4872_,approximately.

V
s 7

4 yr3

7. v 2
c yr .2r

565 *8. The volume of the solid equals the volume of the large

cone decreased by the sum of the cylinder and the small,

upper cone. Let h be the altitude of the small cone.

Then 15 - h ; the altitude of the cylinder. Since the

cones are similar,

h 3 45= and h =

75 45NHence, v 15 - (r9 -8- ,

8low 875w
: 'ow - 687.5 approx.

9. A di.. a parallelogram divides it into congruent

trian_ s_ Therefore, by Theorem 16-8 the pyramid is

divich-t 1:21: two pyramids of equal'volume.

*10. In th,e 77- -angular

parallelepd, diagonals
AX aicd 4B of rectangle

ABXW are cvagruent and

bisec a± 71ther at 0.

SimiL_ chagonals KF

and :Isect each other

at C' 1:7 considering

the in )v.-Ition of KF and WB, i Is evident that

01 . 2efore, all four diagonaLn bisect each other

at C ;lince the diagonals are cong:-...aent, it follows

that Tquidistant from each of vertices, and-

is th.- of the required sphere.

2

[pages 564-565)
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Illustrative Test Items for Chapter 16

A. Indicate whether each statement is true or false.

1. A plane section of a triangular prism may be a region

whose boundary is a parallelogram.

2. A plane section of a triangular pyramid may be a region

whose boundary is a parallelogram.

3. The volume of a triangular prism is half the product of

the area of its base and its altitude.

4. In any pyramid a section made by a plane which bisects

the altitude and is parallel to the base has half the

area of the base.

5. Two pyramids with the same base area and the same volume

have congruent altitudes.

6. The volume of a pyramid with a square base is equal to

one-third of its altitude multiplied by the square of a

base edge.

7. The area of the base of a cone can be found by dividing

three times the volume by the altitude.

8. The volume of a sphere is given by the formula .51,7d3

where d is its diameter.

9. All cross-sections of a rectangular parallelepiped are

rectangles.

10. A cross-section of a circular cone is congruent to the

base.

11. Two prisms with congruent bases and congruent altitudes

are equal in volume.

12. In a sphere of radius 3, the volume and the surface

area are expressed by the same number.

210
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The area of the cross-section of a pyramid that bisects

the altitude is one-fourth the area of the base.

14. The diagonal of a rectangular parallelepiped is

the sum of the three dimensions of the parallelepiped.

1 . In a right circular cone the segment joining the vertex

with the center of the base is the altitude of the cone.

B. 1. A school room is 22 feet wide, 26 feet long and 1,

feet high. If there should be an allowance of 200

cubic feet of air space for each person in the room,

and If there are to be two teachers in the room, how

many pupils may there be in a class?

2. A 24 inch length of wire is used to form a model of the

edges of a cube. How long a wire is needed to form the

edges of a second cube, if an edge of the second is

double an edge of the first? What is the ratio of the

surf:ace areas of the two cubes? Of their volumes?

3. A square 6 inches on a side is revolved about one

diagonal. Give :ne volume of the solid thus "generated".

4 . If a right circular cone is inscribed in a hemisphere

such that both have the same base, find the ratio of

the volume of the cone to the volume of the hemisphere.

C. 1. If a cone and a cylinder have the same base and the same

altitude, the volume of the cylinder is times the

volume of the cone.

2. If the area.of one base of a cyAnder is 24 square

inches, the area of the other base is square

Inches.

3. In a circular cylinder with radius 5 and altitude 6,

the area of a cross-section one-half inch from the base

Ls v.

2 1
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4. In a circular cone with radius 5 and altitude 6, the

area of a cross-section at a distance 2 from the

vertex is

5. The area of the base of a pyramid with altitude 12

inches is times the area of a cross-flQr,tion 2

inches from the base.

6. 1If the area of a cross-section of a pyramid is

the area of the base, this cross-section of the pyramid

divides the altitude of the pyramid into two segments

whose ratio is to

7 The base of a pyramLd is an equilateral triangle whose

perimeter is 12. If the altitude is 10, the volume

of the pyramid is

8. The base of a prism is a parallelogram with sides 10

and 8 determining a 300 angle. If the altitude of

the prism is 14, the volume is

9. If the dimensions cf a rectangular parallelepiped are

3, 5, 6, the length of a diagonal is ; the

total surface area is ; and the volume is

10. If the diameter of a sphere is 12, the volume of the

sphere is , the area of a great circle is

and the area of the sphere is
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A. 1.

2.

3.

I.

5.

Answers

T, 6. T, 11.

T, 7. T, 12.

F, 8. T, 13.

F, 9. T, 14.

T, 10. F, 15.

B. 1. 32 pupils. 22 x 26 x 12 _ 34.3.
200

2. 48 inches.

T,

T,

T,

F-

T.

3. 36r.../. The solid consists of two right circular cones
with a common base having r = h

1 2Vc 7rr r

H 1 4rr

C. 1. 3. 6. 1, 1.

40 15-7,

8. 560.

9. -../75, 126, 90.

2. 24.

3. 25r.

4. 2.3E

36
10. 288r, 36r, 144r.

2 t 3



Chap_r, 17

PLANE COORDINATE GEOMETRY

The inclusion of a chapter on analytic geometry in a

tenth grade geometry course is a recent innovation. We

introduced it at the end of the book for two reasons.

First, for flexibility in using the text. Some teachers

may prefer to teach analytic geometry in the eleventh grade

(or later) in order to do justice to this very important

idea which shows the complete logical equivalence of

synthetic geometry and high school algebra. They may feel

that the tenth grade already is crowded with many essential

things, and that to crowd it further does not do a service

to the understanding of synthetic geometry as a mathematical

system or of the analytic approach. On the other hand, some

teachers may feel a sense of excitement over the opportunity

to introduce students to analytic geometry, and may be

grateful for a chance to communicate this excitement to

their students at the expense of omitting some more con-
ventional material.

Secondly, the analytic geometry was introduced at the

end in order to do justice to both synthetic geometry and

analytic geometry. If the student is to obtain a deep

appreciation of the equivalence of Euclidean Geometry and

classical algebra, he must understand these as separate

disciplines. He already has spent much time in the study

of algebra, and it does not seem desirable to fragment the

treatment of synthetic geomtry with the pLecemeal intro-

duction of analytic ideas - he may fail to grasp that there

is an autonomous subject of geometry which is logically

equ.I.valent to the autonomous subject of algebra.

0 11
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In fact, a surprising number of the concepts treated

earlier in the book are necessary for analytic geometry.

The most obvious of these concepts isthat of the number

szale, but much more than this is involved. The idea of

plane separition is involved in distinguishing the location

cf points with posit:me coordinates and points with negative

coordinates. The theory of parallels justifies the rect-

angular network used for graphs. Similarity is used in

establishing the constant slope of a line. The Pythagorean

Theorem forms the basis for the distance formula. The

notion of a set of points satisfying certain conditions,

which is basic.in coordinate geometry, is treated syntheti-

cally in Chapter 14. These few examples will serve to

illustrate the considerable background of concepts it is

desirable for a student to have before beginning a careful

treatment of analytic geometry.

567 The history of geometry, like the history of all of

mathematics, is a fascinating story. When one knows the

history of a subject, he can better appreciate the years

of development necessary to put it into the form we know

it today. Since the development of analytic geometry was

a major break-through in mathematical thought at the time

Descartes discovered it, students might be interested in

the history of its development and discovery, just as they

might be interested in the history of synthetic geometry.

Suggest to them the title of an available book on the history

of mathematics. (An excellent bibliography has recently

been published by the National Council of Teachers of

Mathematics. Write for the pamphlet "The High School

Mathematics Library", by William L. Schaaf. Address:

NCTM, 1201 Sixteenth Street, N.W., Washington 6, D.C.)

(page 5671

'2 1 6



5b8

1461

The idea of translating between algebra and geometry

can be used by the teacher as a means of organizing a

'cumulative summary of the chapter. The students can be

asked to keep a geometry-algebra dictionary like the

following.

Geometr Al ebra

A point P in a plane

The end-points of a segment

P1P2'

The slope of P1P2.

The distance P
1
P

The mid-point of P
1
P 2 .

A line.

The intersection of two
lines.

Two non-vertical lines
are parallel.

Two non-vertical lines
are perpendicular.

An ordered pair of numbers
(x,Y).

(x1,y1) and (x2,y2).

Y2 ylThe number m -

The number

N/(x2 x1)
2

(Y2 Y1)
2

(

x
1
+x

2
y
1
+ v

-2\
).

' 2

The set of ordered pairs of
numbers that satisfy some
linear equation
Ax + By + C = 0.

The common solution of two
linear equations.

m = m'
1 2'

m
1
m
2
= -1

Notice that we now set up a coordinate system on each

of two perpendicular lines, rather than on only one line,

as we did in Chapter 2. This enables us to find the co-

ord]nates of the projections of any point on the two lines.

We wrIta these coordinates as an ordered pair (x,y).

[page 568]
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We again have a one-to-one correspondence, this time

between ordered pairs of real numbers and points in a plane.

To each ordered pair of real numbers there corresponds one

and only one point in the plane, and to each point in the

plane there corresponds one and only one ordered pair of

real numbers.

Sections 17-2 and 17-3 cover material that is familiar

to most students, and classes should move on as quickly as

possible. If students already know the terms abscissa and

ordinate, there is no reason to object to their use of these

words. The terms are superfluous, however, and need not be

introduced by you.

Problem Set 17-3

574 1. "Cartesian" is used to honor the discoverer, Descartes.

2. (0,0).

3. -3.

4. The origin, or (0,0).

5. (2,1) and (2,0).

6. a. IV. c. I.

b. II. d. III.

7. One of the coordinates must be O.

8. D, B, C, A.

9. C, A, D, B.

10. a. II. e. IV.

b., I. f. I.

C. IV. g. II.

d. III. h. III.

2 t
(page 571



575 *12. a. y-axis, x-axis, z-axis.

b. xz-plane, yz-plane, xy-plane.

c. 4, 2, 3.

576

463

When we define the slope of a line segment to be the

quotient of the difference between pairs of coordinates,

there is no need to introduce the notion of directed distance,

but it is absolutely necessary to put the coordinates of the

two points (x1,y1) and (x2,y2) in the proper position in

Y2 Y1the formula. That is m = cannot be used asx2 - xi

Y2 Y1 Y1 Y2m = although m is also correct. Noticexi - x2 xi - x2

that in finding the slope of AB it doesn't matter which

point is labeled P/ and which one is labeled P2.

578-579 It is important to note here that RP2 and PiR are

positive numbers and we have to prefix the minus sign to the

RP2
fraction 177r if the slope is negative. However, the

Ll-

formula defining the slope of a segment will give the slope

m as positive or negative without prefixing any minus sign.

RP,
For the Case (1) if m > 0, then m - `,

'1

RP2 . y2 - yi and PiR = x2 - xi. For the Case (2) if

RP2
m < 0, then m = - p p, RP2 = y2 - yi and PiR = xi - x2.

Ll-

Y2 YlTherefore Case (2) becomes m - which isxi - x2

Y2 Y1equivalent to m x2 - xi

[pages 575-579]
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580 1.

2.

3.

581

Problem Set 17-4

C... -1 ca. 7. b
Yl.

a. 6. b. -3. c. xl.

a. 2. b. 2. C. 3.

d. The two points in each part have the same

y-coordinate.

e. If two points in a plane have the same y-coordinate,

then the distance between them is the absolute

value of the difference of their x-coordinates.

f. No.

4. a. 3. b. 2. c. 4.

d.
1Y1 Y21 or 1Y2 Y11.

e. The two points in each part have the same

x-coordinate.

f. If two points in a plane have the same x-coordinate,

the distance between them is the absolute value of

the difference of their y-coordinates.

5. (2,3); (-1,-5); (3,-1).

6.

7.

8.

PA = 2,

PB = 5,

PC = 7,

-1,
3,

a

QA = 2.

QC = 3.

3
7,

2 J

[pages 580-581]



582 9.

10.

1
a. 7.

b. -3.

C.

d.

a.

7

3v.

6.

*11. First assume that
41E--* 4->
PA, PB have the

same slope m.

Let P = (a,b),

R = (a + 1,0).

Let le be per-
, , pendlcular to the

x-axis. Neither

PA nor PB is

perpendicular to

the x-axis, hence,

neither PA nor

PB is parallel to
4-> 4-*

RS. Let PA, PB intersect RS in Q, Q',

respectively. Let Q = (a + 1,c), Q' = (a + 1,c1)

Then c - b c' - b
1 1

Whence, c = 0 and hence Q Q'. Hence, W=1Eig
(by Postulate 2).

The converse has already been proved (Theorem 17-1).
4-> 4-*

Hence, if PA, PB have different slopes, then P,

A, B cannot be collinear.

465

15
e. - -8-.

8
f.

g. -1.

h. -3.

b. 4.5.

12. a. Yes. b. No.

3583 13. a. -1. b. -r. c.
a - b
2b

*-* 96 4-> 10014. Slope of 'AB is .9-8, = 1. Slope of BC is no- - 1.

Point B is common. Therefore AB and BC coincide.

[pages 582-583]
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4-> 96 (4. 1
583 15. Slope of AB is 75 = 1; slope of CD is T. . 1.

We are tempted to say that AB 11 CD, but we must

make sure that they are actually two different lines.

We test by finding the slope of ta% which is

101
101

1. Hence, AB and AC must coincide so that
*--).

C is on AB and the lines can't be parallel. It

follows that AB and CD coincide.

16. Draw the segment which joins (4,3) and the origin;

any other segment through the origin lying on the line

determined by this segment will also suffice.

583 The information concerning slopes of parallel and

perpendicular lines constitutes a very important principle

for the solving of geometric problems analytically. For

instance, if a student were asked to show that two non-

vertical lines were parallel, he would have to show that

their slopes were equal; to show that a pair of oblique

lines were perpendicular would require that he establish

the slopes to be negative reciprocals of each other.

Note that to show two segments parallel it is not sufficient

to show they have the same slope; it is necessary to show

also that the segments are not collinear (see Problems 11

and 15 of Problem Set 17-4).

585 To show why A PQR = A Q'PRI we first show that

Q'PR' is complementary to L QPR. This follows from

m,Z Q'PR, + mL Q1PQ + mL QPR = 180 and mL Q'PQ = 90.

Therefore Z Q'PR' PQR and Z PQIR' = QPR. Since

PQ = PQ', the triangles are congruent by A.S.A.

In the converse we use S.A.S. to show A PQR = A Q1PRI

By construction, R'P = RQ and R and Z R' are right
RQ

angles. We get R'Q' = PR as follows: m = FR and

R'Q' 1 R'Q' PR
m' = - Tp77. Then m' = 77-1 becomes

R'P RQ'
and

since the denominators are equal we have R,Q1.= PR.

[pages 583-5853
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101naLly, we ge a riE7ht ang1 b ing the

z Q'PR i in rior ,rigle of ?Q-R1 and
tha R PQ'R'.

)t,, that Theorem and some theor, which follow,

d after the proof rather than befc.- In this
way, full theorem seems to be a result

, the dis7assion'
pertr, t to the topiu being considered.

Probl,m Set 17-5

586 1. Slope AB = 4; slope CD =4; hence, AB H CD or

V3= C6. Slope AC = -4, hence, A, B, C, are not

collinear. (See Problems 11 and 15 of Problem Set 17-4.)
Hence, AB / CD, so that AB H CD.

Similarly, prove BC H AD.

2 22. Slope of AB = - slope of CD = - 7.

Slope of BC = -3, slope of DA = -3.

Therefore opposite sides are parallel and the

quadrilateral is a parallelogram.

3. Ll I L3 and L2 I Lit, by Theorem 17-3.

587 4. The second is a parallelogram, as can be shown from the

slopes of PQ, RS, QR, and PS, which are

2 2 1respectively, 7, 1
- - The first is not a_

parallelogram since the slopes of AB, BC, CD and
AD are respectively, 4, 4, 5, and 4.

5. a. Slope of AB = -

2Slope of BC =7.

Slope of AC = 0.

[pages 586-587]
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587 b . ltitude to AB = ;.

9ltitude to BC = - =ff.

to AC has no slope; it is a vertical_

6. Both _rid 3D have the same slop::, -1; AC has

slope ,,,!!efore AB H CD. AD _Lnd BC have

differ Therefore the figure is a trapezoid.

Diagor_ 13 horizontal since its slope is 0.

Diagon:, 13 vertical. A vertical and a horizontal

line a_

7 The slc e aach case is the same, - ; the slope of

line jc (3n,0) to (6n,0) -is 0. Hence,-the

given 1_ 7 are parallel.

8. The slope 7,f. the first line is The slope of the

second. L7 - §. Since the negative reciprocal of

a
is

1E'
the lines are perpendicular.

*9. ApplicatiLm of the slope formula shows that the slope
aof XY is and that of XZ is - IT. By

Theorem 17- XY Xa. Hence, X is a right angle.

10. Z, PQR wi a right angle if PQ QR
PQ will ie pa_-7pendicular to QR if their slopes are

negative reciprocals; that is, if:

-6 - 2 b - 5
5 - 1 b + 6

from which b = -17.

-1 -111. Slope P, slope RS = b -
slope QS = 0.

If PQ were the same as RS these three slopes would

have to Le eapal; but neither of the first two can be

zero fo. .1ny value of a or b.

If P RS then -a-.1-1-3- 10-1 whence,

a = b - 1.

[page 5B71 223
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Notice that it would be impossible for ILZ T develc.-p

the distance formula without the Pythagorean7ter;rem, which

in turn rests upon the theory of areas, paral Le12, and

co:zzruence.

It might be instructive with a good claas have zhem

derive the distance formula with P
1

and P
2

2 various

positions in the plane. In working with the dAl=nce

formula, it does not matter in which order we PI and
P
2 in as much as we will be squaring the difrance between

coordinates. The distance formula holds even ,=4,e1 the

segment P1P2 is horizontal or vertical.

Problem Set 17-6

590 1. a and b. AB = 1, AC = 3, AD = 4.5, BC . 4,

BD = 3.5, CD = 7.5.

2. a. 1x2 - x11 or .1(x2 - x1)2.

b. 13r2 Yl1 .1N2 yl)2.

3. a. 5. e. 17.

b. 5. f.

c. 13. g. 89.

d. 25. h.

4. a.
(Y2 Y1)2 (xl X2)2.

b .
x2 y2

591 5. Ey the distance formula RS = 5, RT = .17 al.ld ST = 5.

Since ST = RS the ti;.iangle is isosceles.

221
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591 A DEF will be a Lght tr-Lanle with Z D a

only if DE` DF2 - E. This fs the ..:aaa since

. 5, DF2 . 45 and = 50.

= = 2I. BC 72 = 6 1-2. AC
Hence, AB + BC = AC, ant therefore, from the Triangle
inequality, A, B, C, ara collinear. It now follows
from the definition of "betwe=n" that B is between

and C.

8. a. 7.

9. a. (a,b).

b.

b. 5.

0)2 (b 0)2 =,v/a2 b2.

XZ = V/(0 - a)2 + (b - 0)2 b2.

Hence, WY = XZ.

*10. a. Let A = (2,0,0), B = ,2,3,0). From the meaning
of the :::, y, and z-cocvdinates, OA = 2, AB
and BP - 6. By the Pythagorean Theorem applied

to A o, 0B2 = 13, then applied to A O.BP,
OP2 = and OP = 7. (OP may also be considered

a dip7---=1 of a rectangular block.)

t Generalizing tAle -procedure in part (a), the

/ 2distance is .-,;:x + y
2 2

C. P
1
P
2
= Nx

2
- x

1
)2 + (y2 - y

1
)2 + (z -

2

[page 591]

225

2



471

59- ta-point formuli I prove to be .very useful in

.ich follows. 7.'hL, will be true, for example,

wher. 4e :=-1-77: speaking of th.,71 -edians of a triangle. If we

kno .yrdinates of th r-tices of a triangle, and

appi: :Lo±ifinition of a we can find the coordinates

of t:le. in which the L7a:ec1an intersects the opposite

side. L.:11a will give us t coordinates of it's end-points

and us to find the .igth and slope of the median.

The 7)Toof of the mid-._:Aat formula is easily modified

to horL_:ontal and rtical segments.

Problem Set 17-7

5Q3 1. a.

b. -2.5,0).

2,0).

2.

o. I-5.5. a.5).

C. 5 1:,

594 a. a. (4,2).

d. (0,0).

e. (0.0).

d. (1.58,1.11).

(a ; b ,i).

f.

+
30 . 19

x = -31. y = 41.

The c-ater ena-pot= is at (-31,41).

ED ztnce hE:77.,-a lengths Nra,11 by the distance

_7_77mu1a. A: ap since the slope of AC is 4 and

troe. slope cf 2: is 7. These are' negative
AL and D bisect each other since

_aing the mid-point far=lala each has the mid-point (3,5).

(pas,:es 592-59241
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594 5. The mid-point X of AB s (3,2).

The mid-point Y cf E7 _s (-1,3).

The mid-point Z :f :A o (1,0).

Ey the distance fo:--mul.%1 VrT, = or

24TS, and BZ =

6. y formula, the mLd-poino.s of AB, BC, CD and DA
are 14(0,1), X(-1,6), 7(4,6) and 1(5,1),
respectively. WX has length and slope -5.

:7 also has length /7::27-., and slope -5. XY has
slope 0, hence, WX F '77 so that, WX 11 YZ.

Wt-.1-a the same two sides parallel and congruent the
figure is a parallalog=.

7. By the mid-point formula the other end-point of one
a 3amedian is (7,-T), and the other end of another

f-a 3a_median is By the slope formula, the slopes
of these med'ns ,;t:.7e 1 and -1. Since 1 _is the

nemative reolprol of -1, the medians are per-
pendic'ular.

8. From the similart:i

between A P Pr a'40
1

A = S' L_ 2 1

Sincia TIT -.7. a an

TV = P1S,

In terms

x - xi =

x =

1
11-1 = 71.

of coordinates

- x1), or

- xl) + xl.
x
2
+ 2x

This aan ,A.so be written x -
3

. By a zdmlar

argumenz; with PA:12 projected...into the y-axia,

Y2 2Y1
Y = 3

[page594]



473

Therefore the cozrdinates of P are

(

x
2
+ 2x1 y2 + 2y1

N 3 3 )-

1
595 *9. a. Replacing by r

LL the solution of the
+ s

b.

previous pT77blem, if x2 ;- ml, we get

x = (x2 - xi) +

r(x2 - xl) + xl(r + s)
from which_ x -

, s

If x
2

< x. a atmilar arr.%;ment leada to the
1'

same result_

By a similar argument. witt E1P2 projected into

the y-axis,

3 25 + 5
3 + 5

.772 37-
= s

5 12.5;

3 .36
Y

[page 5]
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595 Although we may place our axes in any manner we desire

In relation to a figure, there are advantages to be had by
a clever choice. For instance, if we are given an isosceles

triangle, we may place the axes wherever we wish, then use

the properties of an isosceles triangle to determine the

coordinates of the vertices. Suppose we place it like this:

4,b)

(0,0) ( , ) (a,0)

The student should be permitted to draw upon his knowledge

of synthetic geometry and make use of the fact that the

aLtitude to the base of an isosceles triangle bisects the
ba2e. Hence, the x-coordinate of the vertex should be

half the x-coordinate of the end-point of the base that is
no7; at the origin. On the other hand the y-coordinate of
the vertex is not determined by the coordinates of the other
vertices and is an arbitrary positive number. Suppose we
place the axes like this with the vertex on the y-axis:

(-0,o) (o,o) (a,o)

Then, since the altitude bisects the base, the lengths of

the segments into which it divides the base are equal, and

therefore the end-points of the base may be indicated by
(a,0) and (-a,0).

(Page 595]
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There also are limits to what we can choose for co-

ordinates. For parallelograms, we find that three vertices

may be labeled arbitrarily, but the coordinates of the

fourth vertex are determined by those of the other three.

Naturally there is more than one way in which we may label a

parallelogram. Below in the figure on the left the co-

ordinates of points A, B, and D were assigned first.

Then the coordinates of C were determined in terms of the

coordinates of the other three points. In the figure on

the right A, B and C were chosen first. Notice how the

coordinates of D are given in terms of the other co-

ordinates.

D (b,c) c(o+b,c)

A (op) E3(0,0) x

One word of CAUTION. The above discussion is based

upon the fact that such things as isosceles triangles or

parallelograms are given in the problem. If the problem

is to prove that a quadrilateral is a parallelogram or that

a triangle is isosceles, then we cannot assume such properties

to be.true, and must establish, as part of the exercise,

sufficient properties tn ,-laracterize the figure.

If class time is limited, the end of Problem Set 17-8

would provido a satisfactory conclus:.on to the coordinate

geometry work. The balance of the chapter could be covered

in later courses.

230
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Problem Set 17-8

598 1. DB = VI(a - 0)2 + (0 - b)2 =V/a2 + b2.

0)2 v/a2 b2.AC Vf= (a - 0)2

Therefore, DB = AC.

2. Locate the axes along

the legs of the triangle
B(0,2b)

as shown.

By definition of mid-

point PA = PB.

Therefore P
C(0,0) A(20,0) x

It must be shown that

PA = PC (or that

PB = PC). By the distance formula

PA = V/(2a - a)2 + (0 - b)2 =v/a2 + b2 and

VPC = .N/1(a - 0)2 + (b - 0)2 /a2 + b2.=

3. Let the x-axis contain

the segment and the

y-axis contain its mid-

point. Then the y-axis

is the perpendicular

bisector of the segment.

Let P(0,b) be any

point of the y-axis, and

A(-a,0) and B(a,0) be

the end-points of the

segment. Then:

P(0,b)

(b 0)2 1a2 b2.PA = (0 + a)2 +

PB = (a - 0)2 + (0 b)2 =v/a2 b2.

Hence PA = PB.

[page 598]
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599 4. Place the axes so t:at

the segment will have

end-pointz Ar.-a,0)

B(a,0), Ecad the y-azis

will be its perpendicular

bisector. Let Q(x,y)

be any pcint--emuldistant

from A and 3. From

the distance -..ormula

QA
2 = (x + + y2 and QB2 = (x - a)

2
+ y2 .

N

Since QA2 QB2
or

, 2
(x a + y2 (x - a) + y2.

=-- O.

= a, since a / O.

Hence Q, ar=tt lie on the y-axis whichIS-fthe per-

pendicularaentar of A.

477

b + N / c
5. The mid-75oInt af AC = c O

A 2
a b

,7).

(a 12. b,0 -42- c) (a 42- b,22).The mid=boint of -BD =

Since the t-Lagonals have the same mid-points, they

bisect each atter,

tip + a cN
6. R

Ci
- = Vff,7i 2 JT).

Since. R S have the same y-cool'alnates, RS AB.

Since RS is horizontal,

b d_b+a-"d
7.3 -

2 2 2 -*

TIC = d - b and AB = a.

1
Therefore 1

a- d-b) b+a-d7(A3 - DC)
2

Hence, RS = t(AB - DC) which was to be proved.

[page 599]
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599 7 R = (2a,0), S = (2a + 2d,2e).

T = (2h + 2d,2c + 2e), W = (2b,2c).

Mid-point of WS = (a + d + b,e + c).

Mid-point of TR = (a + b + d,c + e).

Therefore WS and TR bisect each other.

600 8. Area A ABC = area (XYBA) + area (YZCB) - area (XZCA).

Areas ABC = +r)(b -a) 4(t+ s)(c -b) -4(r+ t)(c - a).

Multiplying out and combining terms,

1
area A ABC = ( rb - sa sc - tb ta - rc), or

area ABC
a(t - s) + b(r - t) + c(s -A - 2

9.
zy2 (b a)2 c2.

XZ2 = b2 + c 2
.

XY = a. XR = b.

a)2 c2 (b2 c2) a2Since (b 2ab,

Therefore ZY2 = XZ2 + XY2 - 2Xf .XR.

Observe that this proof remains valid if B. lies

between X and Y.

10. Select a coordinate system as indicated.

m

AB
2

BC2

CD2

DA2

AC2
8D2

MN2

(b,c), N = (a +d,e).

= ha2 .

= 4(a - b)2 + 4c2.

='4(b - d)2 +

= 4d2 + 4e2.

= 4b2 + 4c2,
4(a d)2 42.

= (a +d- .0)2+ (e 02.

C(2b,2c)

2c1,20

o,

From these expressions the given equation can be

verified. Note that

(a + d b)2 a2 d2 b2
2ab 2bd.

2 3

[pages 599-600]
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600 11. Place the axes and label

the vertices as shown.

AC2 = b
2
+ c 2.

BC2 = (2a b)2 c2

AB
2

2-7- ca .

MC2 = (a - b)
2
+ c

2.

6o3

(b,c )

47q

Since A(0,0) M(a,0) B(2a,0)
(b2+

) + (4a2 - 4ab +b2+ c2) = 2a2+ 2(a2 2ab + b2+ c2),

= 2a2+ 2[(a- b)2+ c2].

2 AB2Therefore AC2 + BC - r2 + 2MC2.

Problem Set 17-9

(5,0)

0

la. The vertical line
through (5,0).

lb. The two vertical lines
through ( 5, 0) and
(-5)0).

2 3 1

(pages 600-603]
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603

2a. The half-plane above
the horizontal line
through (0,3).

2b. All points between the
.

lines y = 3 and y = -3.

3. All points between the 4. All points within or on
y-axis and the line the boundary of the in-
x = 2. dicatei strip.

(page 603]
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6o4

481

5. All points within, or 6. All points within the
on the lower boundary
of the indicated strip.

second quadrant.

All points within indicated angle.

23ti

[pages 603-604]
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6o4

8a. All points on the
vertical lines
indicated.

8b. All points on the
horizontal lines
indicated.

8c. The intersection of the
solutions for (ba) and
(8b). i.e., all points
in the first quadrant
with integral coordinates.

5°

0

(3,5)

(I

0

9. The intersection of the 10. All points within or on
three half-planes formed the boundary of the in-by the.three given dicated rectangle.
conditions. i.e., all
points within the angle
formed by the positive
part of the y-axis and
the ray from the origin 2 3
as shown.

[page 604]



604 *11.

(-4,4) (4,4)

(41-4)

All points in the interior
of the square with vertices

(-4,4), (-4,-4)

*13.

The rays bisecting the
angles formed by the x
and y-axes in first and
second quadrants.

*12.

483

(-4,4) (4,4)

(-4,-4) (41-4)

All points except the end-Daints
on the two zegments join1=g
(-4,4) and (4,4), and
(-4,-4) and

*14.

Lines bisecting the angles
formed by the x and y-axes.

[page 604]

9 38



484

6o4 *15. The square with vertices

(5,0), (0,5), (-5,0)
and (0,-5).

Prn:b1em Set 17-10

610
2.

(pages 6o14, 610 )



485

5. 6,7,8.

(4,)

240

[page 610]

y-lx 2 (x-4)

or,y22(x-31)

or, y+722 x
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6io 9-

11.

10.

12.

[page 610)

2 4



610 13.

15.

14.

16.

487

[page 610)

2 4 2

The graph is
the y-axis.
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6lo 17.

The graph is the x-axis.

611 18. a. The yz-plane.

b. The xy-plane.

c. A plane parallel to the yz-plane, intersecting

the x-axis at x = 1.

d. A plane parallel to the xz-plane, intersecting

the y-axis at y = 2.

611 The material in Section 17-11 may have been previouslY

covered in a first year algebra course. If this is the case.,

do not spend anY more time than is necessary on thi6 section.

You will note that in the discussion on this page, it

is necessary for us to find an additional point in order to

plot the graph of the equation. We may do this in two ways.

The first would be to assign to x a value, substitute this

value in the given equation and compute the corresponding

value of y (or we could assign a value to y and compute

x). The second method depends upon the discussion here in

the text. For we know how a line with a positive or negative

slope will lie, and we also know that if a line has a positive

243
[page 610-611]
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RP, RP
2611 slope then m and if its slope is negative, m

1-111 r111

Then, given one point on the graph and the slqe we can find

a second point by counting the units in the legs of the

right triangle. Consider the example used by the text,

y = 3x - 4. We see immediately that the y-intercept is -4

and that the slope is 3. Since the slope is positive, the

graph will rise to the right. Hence, we can find a second

point by starting at (0,-4) and counting 1 unit to the

right and three units up to the point (1,-1). We can check

to see that we are correct by applying the slope formula to

these coordinates.

Let us consider one more case, namely, when the slope of the

given line is negative. Draw the graph of the equation

2y = - + 3. We see that the point (0,3) lies on the

graph, and to locate a second point by this method, we must
2realize that we will be working with a slope of - 7. The

graph, then, will rise to the left and we can locate a

second point by counting 3 units to the left from (0,3)

and 2 units up, as in the figure below.

244

[page 611]
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Problem Set 17-12

616 1. Y 2.

2x+5y=t7

3.

5. The graph 16 the whole xy-plane.

6. The graph is the empty set; i.e., there are no points

whose coordinates satisfy the equation.

7. The graph contains a single point, the origin (0,0).

8. The graph is the empty set.

[page 6161
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616 9.

11.

10.

12.

13. 3x - y - 1 = O. A = 3, B = -1,
14. x + y - 1 = O. A = 1, B = 1,
15. 2x - y - 4 = O. A = 2, B = -1,
16. y = 0. A = 0, B = 1, C = 0.
17. x = 0. A = 1, B = 0, C = O.

18. y + 3 = O. A = 0, B = 1, C = 3.
19. x + 5 = 0. A = 1, B 0, C = 5.
20. x - 5y = O. A = 1, B = -5, C =

C = -1.

C = -1.
C = -4.

0.

(page 616) 2413
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Problem Set 17-13

1 2x = 27; y = 47.

C.

(0,3)

b.

The empty set.

-The equations are
equivalent. Any
pair of numbers
whose sum is 3
is a common solution.

and (4).

and (3), (2) and (4).

2. a. (1) and (4), (3)

b.

c.

(1) and (2),

(1) and (3).

(2)

3. 4000 miles.

[page 618]



619 4. a. The intersection is

point (2,4).

b. The intersection is

the ray shown with

end-point (2,4).

c. The intersection is

the interior of

ABC.

1493

d. The conditions are y < 2x and y < 4.

5. a. The intersection is

the interior of the

triangle with vertices

(2,1), (2,4), and

(-1,4).

b. x + y < 3,

x > 0,

y > 0.

I>

243

(-1,4) (2,4)

(2,1)

(page 619)
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61g 6. The mid-point M has

coordinates

(3 1- 5,4 1- 8)
(4,6).

The slope of AB is

8 - 4
so the

1slope of L is and

its equation is L:

y - 6 = - ;0( 2, or

x + 2y = 16.

Alternate solution: L is the

for which PA = PB. This gives

3)2 + (Y 4)2 = 14x 5)2 + - 8)2

which reduces to x + 2y = 16.

7. In the preceding problem, we found the equation

L: x + 2y = 16.

Similarly, for M and N we find

M: 3x - y = -3,

N: 2x - 3y = -19.

The intersection G of L and M is obtained by

solving their equations:
(10,5

Substituting in the third equation, we find that G
lies on N also.

set of points P(x,y)

24)
[page 619]
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620 *8. Take a coordinate system in which Queen's Road is the

x-axis and King's Road is the y-axis.

M(0,m)

,ACx:y)AB(
E(-4,0) S(2,0)

The coordinates of the elm, spruce, and pine are as

indicated. The maple is gone, but its assumed position

is labeled (0,m). The slope of EP is 4, so its

equation (in slope-intercept form) is

V-?. y 4. 3.

The ,slope of SM is - 7, so its equation (in point-

slope form) is

SM: y - 7(x - 2).

Solving these two equations simultaneously, we find

the coordinates of A:
4(m - 3)

A:
xl 2m + 3 /

9m
Y1 2m + 3'

Similarly, we get the equations
4> 3
SP: y = - 7pc + 3,

4-*

and the point of intersection is

= 4 m - 3

I.

x
m +

B:
9m

Y2 m + 6'

The line AB has the equation,

(Y2 Y1)(xAB: x2 - xi

[page 620]
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4-*
620 The intersection T of AB and the x-axis is found by

letting y = 0 and solving for x:

x, - xi
x = xl - yl(y; 5r;),

xly2 - x0y1
x -

Y2 Yl

Now

4(m - 3) 9m .4(m -3) 9m
x1y2 x2Y1 2m + 3 .M7-7-6 m + 2m + 3'

72m(m - 3)
(m + 6)(2m + 3)'

9m 9m
1 ETT-T 2m 4- 3'

91m - 3)
(m + )(2m

Dividing, we get x = 8. Therefore the treasure was

buried 8 miles east of the crossing.

Suppose now that the pine were also missing. Assume

coordinates (0,p), for P and carry through the

calculation in terns of both m and p. The algebra

is a little more complicated, but if it is done

correctly both m and p drop out in the final

-esult, which is again x = 8. .

[page 620]
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620 *9. The y-axis is a line through C, perpendicular to the
base AB, i.e., it contains the altitude from C. If
15t where m is its slope, contains the altitude

from A, it has the equation

y = m(x + 4),

1Since AM I BC, m =
slope

But slope 4t-C*= - 71,, so m = and 'the equation of

AM is

To find the y-intercept, let x = 0:

7 4 7y = =

Now do the same for BN, which contains the altitude
from B. Slope r = = 2, so the slope of is

1
- 17, and its equation is

1,
Y = 70C 7).

Letting x = 0, we get the y-inte7 ept

1( 7y = 7)

7%Therefore AM and BN meet at the point (0,) 7 on

the line containing the altitude from C.

For the general triangle,

cslope BC =-

slope tr= so

AM: y = - a), and

the y-intercept is -132g1.

4-> c A(a,0)Similarly, slope AC

4-* aslope BN = -87, so

a
BN: y = - b), and

abthe y-intercept is -

[page 620]
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620 Therefore the three altitudes meet at the point

(0,- ). Note that this proof does not depend on the

signs of a, b, and c, but only on the fact that

A, B, lie on the x-axis and C on the y-axis.

621 *10. Let A = (x1,y1), B = (x2,y2), C = (x3,y3).

Then we have

x2 +x3 y2 +y3
( 2

x1+ x2 yi+ y2

( 2 ' 2 )'

xi +x3
( 2 .7 2 )

4-30.

The slope of AR is

Y2 Y3

2 Y1 Y2 Y3 2Y1m =
1 x

2
+ x

3
x2 + x3 - 2x1'

2
x
1

X1 -I- X + x3 yi + y2 + y
G

l

= ( 3
3

If -), then

4-31.

the slope of AG is

Y1 Y2 + y3

3 Y1m
1

=
x + x

2
+ xl

1

m

3
xi

R =

S

T

so G is on the median AR. Similarly, the slope of
4-90.

BT is

Y1 Y3
2 Y2 Y1 Y3 2Y2m = =

2 x
1
+ x3 xi + x3 - 2x2'

2
x2

[pages 620-621)
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621 and the slope of BG is

Yl Y2 Y3
3 Y2

= m
2'm2 1 = x

1
+ x

2
+ x

3
3

x
2

so G is on the median BG. Similarly, we find that
G is on the median CS. Hence, the three medians
intersect in the point G whose coordinates are the
averages of the coordinates of the vertices.

The equation x + 3y + 1 = 0 is equivalent to
1 1

y = - 7x - 17, which is in slope-intercept form.

1Therefore the slope is - 7. The line M through
(1,2) perpendicular to L has slope 3, so an
equation for it is

M: y - 2 = 3(x - 1),

y= 3x - 1.
Solving the equations for M and L simultaneously to
find their intersection P, we get

P g)

Computing the distance d from (1,2) to P by the
4 r--distance formula, we find d = 10.

[page 6211_
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621 *12. The line L with
equation y x has

slope 1, so the

line M through (a,b),

perpendicular to L has

slope -1. An equation

for M is

M: y - b -(x - a),

x + y = a + b.

Solving for the point of

intersection P, we get

P (i1421,2412).

The distance is obtained

(a b)2a)2 (a + b b)2from d2 0-1-J2

la - bl.

ab*13. From Problem 9, we have H = (0,- -15--).

From Problem 10, we have M (2-4-/24).

To find D we get the perpendicular bisectors u, v of

AB and BC:

Therefore,

Now

a + b
u: x

v: 26)-(x -

(a + b,c2 1c- ab).

Hm2 2 (2_41a) 2 c2(a + b)2 +(c24- 3ab)
22 b

(3c)2

HD2 =
(a +b) 2

(c 3ab)2=c2(a +b)2+ (92 +3ab)22

(2c)2

mD2 (a +b)2 (c23ab)2 c2(a+b)2+ (c2+3ab)2

(6c)2
25

(page 621]
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621 From these equations we get,

HM = 2MD, HD = 3MD,

HM + MD = HD.

This shows that H, M, and D are collinear, that M

is between H and D, and that M trisects HD:

1
MD = 7 HD.

Problem Set 17-14

626 1. In each case the result is 25. This becomes obvious if

radii are drawn to the points on the circle.

2. a. (1), (3), (4), (6).

b. (3), (4).

c. (1).

3. a. Center (0_0); r = 3.

b. (0,0); r = 10.

c. (1,0); r = 4.

d. (0,0); r = 4/7".

e. (0,0); r = 2.

f. (4,3); r = 6.

g. (-1,-5); r = 7.

h. (1,0); r = 5.

i. (1,0); r = 5.

j. (-3,2); r = 5.

627 4. a. Replacing x and y in the equation by the given

coordinates satisfies the equation.

b. x 2 - 10x + y2 = 0,

(x2 - 10x + 25) + y2 = 25,

(x - 5)2 + (y - 0)2 = 52.

The center of the circle is (5,0); the radius

is- 5.

'2 5 6

[pages 621, 626-627]
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627 c. The ends of the diameter along the x-axis are

(0,0) and (10,0). The slope of the segment

joining (0,0) and (1,3) is 3. The slope of

the segment joining (10,0) and (1,3) is

Since 3 and - 4. are negative reciprocals, the

lines are perpendicular and a right angle is formed.

5. a. The x-axis intersects the circle where y = 0, that

is where (x - 3)2 = 25, or at points (-2,0) and .

(8,0). The y-axis intersects the circle where

x = 0, that is where 9 + y2 25, or at points

(o,4) and (0,-4).

b. 2 .8 = 4 .4 . 16.



7.
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The radius of the larger circle is 1 + ../T. So the

equation is
x2 y2 (1

There would be another tangent circle of radius

IT- 1 and'the same center.

(10,0)

The including circle is x 2 + y2 = 100.

(page 627]

2 5 8
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627 8 . a. y = m(x + 7) .
x2 (no +7) )2b. 16,

(1 + m2)x2 + 14-m2x + (49m2 - 16) = 0,

- -14m2 14m2) 2 - (1 + m2) ( 49m2 - 16)x
2( 1 + m2)

-14m2 ± .14( 16 - 33m2)
2(1 + m2)

-7m2 ± .116 33m2
1 + m2

Y = m(x + 7) = (-( m
2 + - 33m2 + 7 + 7m2

2 )m1 + m

_ m(7 ± .116 - 33m2)
1 + m

.

If 16 - 33m2 > 0, there are two points of
intersection:

p ( -7m2 + 116 - 33m2 17 + '116 - 33m2))
P1 1 + m2

P

1 + m2

CrM2 ... '11.6 331112 In ( 7 .. '1 1.6 ... 331112 ) \
2 f 11 + m2 1 + m2

259

[page 627]
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627 c. If 16 - 33m2 = 0, there is one point of

intersection:

628

P =
-7m

2

7m )2
1 + m- 1 + m

IL 4
and m

2
= m =

+

This means that the two lines

4y=
V33
4

y = ---(x + 7)

are tangent to. the circle.

If 16 - 33m2 < 0, there is no point of inter-

section.

Put the given equation in standard form

5)2 3)2 22.

The given circle has center (5,3), radius 2.

Let the required circle have. center (a,b) and radius

r. Then b = a = r, since the circle touches the x-

and y-axes, and the distance from center (a,b) to

center (5,3) is r + 2. Hence,

r + 2 = V4(r - 5)2 + (r - 3)2

r2 + 4r + 4 2r2 - 16r + 34

r
2

- 20r + 30 = 0

20 ±1400 - 120
r

2

r = 10 ±,r7F.

Thus, there are two solutions:

(x r)2 (y r)2 r2,

where r = 10 + ITT (approx. 18.37) and r2 = 337.3

(approx.) or 10 - 1-77 (approx. 1.63) and r2 = 2.7
(approx.).

[pages 627-628] 260
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Review Problenm

628 1. (5,0).

2. (-1,5).

3. The median is vertical and has no slope.

4.
a

5. 2b 102; .../9a2 b2.

6.
3

7 . 5 Nr2--;

8. (;.,4); (3,6); (6,3); (44); (4,4);

9. Place the axes and

assign coordinates as S(0, 2a) U R(201120)

shown.

a. T = (2a,a), U = (a,2a).

PT =VIlla.2 + a2 = ayr.

QU =-N/ra2 + 4a2 =

Therefore PT = QU.

a - 0 1b. The slope of PT =
2a - 0 7'

0 - 2aThe slope of QU =
ea - a

P( 0,0) 0(20,0)

1Since -2 is the negative reciprocal of 17,

the segments are perpendicular.

9 '6 I

(page 628)
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*-*
628 *c. Using the point-slope form the equation of PT is:

y - 0 . 4;,(x - 0)

1
or y = -g x.

4-*
The equation of 'QU is:

629 10.

y - 0 = -2(x - 2a)

or y = -2x 4- 4a.

The coordinates of V, given bj the common

solution of the equations of ITi! and V are

(44') The distance VS is then

-----1
,v/(8a 0)2

(

4
- c

a ,
a)
%2

-
V/100a

25
2a = length

of side.

Take coordinate system as shown. Then M = (b,c);

N = (a 4- d,c).

Equation of MN is: y = c.

Equation of diagonal AC is: y = x.

Point R of intersection is (d,c), which is also

the mid-point of AC.

11. x = 0.

") t
I

(pages 628-629)
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629 12,

A 6 B(6,0)

Equation of 15r is y = 0. Slope BC = 1.

Equation of V is y = x - 6.

Equation of le is y =

13. Lengths of parallel

sides are: 'al, lb - di.

Altitude is ici.

Hence,
(d,c)

area + lb - di).
(b,c)

(0,0) (a ,o)

14. (2,1).

15. A circle with center at the origin and radius 2.

16. a. x2 + y2 = 49.

b. x 2 + y2 = k
2

.

c. (x - 1)2 + (y 2)2 = 9.

*17. Find first the intersection of the line x + y = 2 and

the circle. Now x = 2 - y.
y)2Therefore, (2 y2

4 y2 y2

(y - 1)2 = 0,

so that y = 1 and x = 1.

Thus the point (1,1) is the only point of intersection,

so that the line is tangent to the circle.

(page 629]
233
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Answers to Review Exercises

Chapters 13 to 17

1. 1. 26. 1.

2. 1. 27. 0.

3. 0. 28. 1.

4. 1. 29. 1.

5. 30. o.

6. . 31. 0.

7. 0. 32. 1.

8. 1. 33. 1.

9. 1. 34. 1.

10. 0. 35. 1.

11. 0. 36. 1.

12. 0. 37. 0.

13. 0. 38. o.

14. 1. 39. 1.

15. o. 4o. 0.

16. 1. 41. 1.

17. 1. 42. 0.

18. o. 43. 0.

19. 1. 44. 0.

20. 1. 45. 1.

21. 0. 46. 0.

22. 0. 47. 1.

23. 1. 48. 0.

24. 1. 49. 1.

25. 0. 50. 0.

(pages 630-633]

2 d
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Illustrative Test Items for Chapter 17

A. 1. What name is given to the projection of the point (5,0)
into the y-axis.

2. State the number of the quadrant in which each of the
following points is located: (3,3), (6,-2), (-2,8).

3. What are the coordinates of a point on the x-axis if the

distance from the point to the y-axis is 4?

4. A ray with its end-point at the origin makes a 30°

angle with the positive x-axis and extends into the

first quadrant. What are the coordinates of a point

on the ray whose distance from the origin is 2?

B. 1. Determine the slopes of the line segments between the

following pairs of points:

a. (0,0) and (5,3). d. (-1,0) and (-3,-2).

b. (1,4) and (4,8). e. (-2,-3) and (-2,3).

c. (-2,2) and (3,-4).

2. If a square is placed with two oC its sides along the

x- and y-axes, what are the slopes of each of its

diagonals.

3. If scalene A ABC is placed with AB along the x-axis

which of the following lines has no slope?

AB, the median to AB, the altitude to AB, the angle
bisector of L C.

C. 1. Determine the distance between each pair of points:

a. (1,4) and (2,3). c. (a,b) and (-a,-b).

b. (-1,0) and (-9,15).

2
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2. If three of the vertices of a rectangle are at (0,1),

(5,1) and (5,4) what is the length of a diagonal

of the rectangle.

3. The vertices of a trapezoid are (0,0), (a,0), (b,c)

and (d,c). What is the length of the segment joining

mid-points of its non-parallel sides?

D. 1. A triangle has vertices A(0,0), B(12,0) and C(9,6).

What is the equation of the median to side AB?

2. Of the following equations which pairs of lines are

a. parallel, b. coincident, c. intersecting,

U. perpendicular.

(1) 3y = 6x - 3.

(2) y - 2x = 5.

(3) y = 2 - 2x.

(4) 2y + 1 = x.

3. A right triangle has vertices (0,0), (m,0), (0,n).

What is the equation of the median which passes through

the origin?

E. 1. Using coordinate geometry prove that the mid-point of

the hypotenuse of a right triangle is equidistant from

the vertices.

2. Show that the points A, B, C, D whose coordinates are

(2,3), (4,1), (8,2), (6,4) are vertices of a

parallelogram. Show that the figure formed by joining

the mid-points of the sides of ABCD is a parallelogram.

3. Prove by coordinate geometry the theorem: ,If a line

parallel to one side of a triangle bisects a second

side, then it also bisects the third side.

2 i .
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11-7 1. The origin.

2. 1, IV, 11.

3. (4,0) or (-4,0).

4. (19,1).

3B. 1. a. 7' b.

Answers

4
1,3"'

c.
-6

d. 1.
5'

e. The line is vertical and has no slope.

2. 1, -1.

3. The altitude to AB.

C. 1. a. -.1-2": b. 17. c. 2v/a2 + b2.

2. VT17.

3. ar(Ial + lb - dl).

D. 1. y = 2(x - 6).

2. a. (1) and (2).

b. None.

c. (1) and (3); (1) and (4); (2) and

(2) and (4); (3) and (4).

d. (3) and (4).

3. my = nx.

E. 1. Take a coordinate system

as shown, with vertices

(0,0), (2m,0), (0,2n).

'Then mid-point P of

hypotenuse hat: oordinates

(m,n). Distance of P

from each vertex is

vi m2 n2.

( 3 );

2t37
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2. Slope AB = -1 = slope CD.

Slope AD = slope BC.

Hence, "r3/t1+), so that AB H CD.

Likewise AD H BC.

The mid-points of the sides taken in order are (3,2),

(6,4), (7,3) and (4,37). Slopes of sides of the
1

1figure formed by joining these mid-points are -

for each of one pair of sides and for each of the

other pairs. Hence, this figure also is a parallelogram.

3. Select a coordinate

system in such a way

that the vertices are

A(0,0), B(2a,0),

C(2b,2c). Let M be

mid-point of AC,

MN II AB. Then

M = (b,c). Slope

MN = 0. Hence,

equation MN is y = c.
4-30

Equation BC is y IT-2=7(x - 2a).

Solving these equations we find N = (a + b,c).

Hence, (from mid-point formula) N is the mid-point

of BC.

C(2b,2c)

B(23,0)

f?,



FACTS AND THEORIES

,Science today is playing an increasingly important part in

the life of the individual. .No one can claim to be truly educated

unless he has a reasonable understanding of the facts and methods

of science. This does not mean that we must all become nuclear

physicists, nor that we must spend all our time reading books and

attending lectures on the latest collection of particles discovered

by the physicists. But it does impose on us the obligation to

learn enough of the facts of modern science to provide a foundation

for understanding. It does imply an intelligent selection of

material to be learned.

We,'as educators, are especially obligated to make such a

selection for our students. They come to us with a miscellaneous

hodgepodge of disjointed facts and pseudo-facts, gleaned from

newspapers, magazines, books, and other sources. We must help

them -- with our own limited information -- to straighten out

their ideas, to build a reasonable conceptual structure upon which

they can hang new facts, to distinguish between that which is

significant and that which is not, and, perhaps most important of

all, to understand how new knowledge is acquired. If pursued to

the extreme, this last goal would lead us to the far reaches of

epistomology and scientific method, which have been the subjects

of many weighty tomes written by scholars over many lifetimes,

and about which the last word has certainly not been uttered. 3ut

to dismiss this topic entirely as being too subtle for the imma-

ture minds of our students is to deny them the opportunity of

becoming a little more mature in our classrooms.

What should be the aims of the mathematics teacher, in the

light of what we have just said?

Certainly we should help the student to become acquainted

with the facts of mathematics by working with them. We agree that

our subj--t is an essential tool in science and in daily life,

and that the student should acquire a working facility in it.

Therefore we teach him arithmetic, elementary algebra, intuitive
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geometry in the lower grades, advanced algebra, synthetic and
analytic geometry, possibly calculus and other topics in the
higher grades.

It would be difficult, however, to defend the teaching of all
these subjects on the grounds of utility alone. No one pretends,
for example, that it is of practical importance that the bisector
of an angle of a triangle divides the opposite side in the way
that it does. We proceed, then, to the second aim, of deveioping
in the student an appreciation of clear, logical reasoning as
exemplified in mathematics, and an ability to transfer this type
of reasoning to other situations. We have been moderately, though

not eminently, successful in this respect in the past. Whether
our present efforts will tend to further this objective remains to
be seen. We certainly hope so.

A third aim, which has been receiving more attention of late,
is to develop in the student an understanding of the structure of
mathematical systems. We are beginning to speal: of closure,

commutativity, distributivity and so on in dealing with number
systems, and -- still too timidly, perhaps -- of the axiomatic

nature oC geometry.

This third aim is closely related 'c,o the broader one.mentioned

earlier, of helping the student to understand how now knowledge is
acquired, how man learns about the physical world, how he con-

structs, develops.and tests theories about the physical, biological,
social, and economic aspects of life around him. Let us address
ourselves briefly to these questions.

Whether we recognize it or not, theory plays an indispensable
role in our study of any field whatsoever. The act :). of naming,

classifying, and generalizing are conceptual in nature. Even

emotional reactions to stimuli depend on a structuring of experi-
ence. The real world -- whatever that may mean -- reaches us only

by constructing a conceptual world to correspond to It. In setting

up a particular discipline, It 1.3 not necessary, however, to refer

back always to the primary data supplied by our senses. The raw

material for n theory nt one stage may be the conceptual world of

2 7 0
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a previous stage. For example, the classical geometry of various

surfaces in three dimensions may be taken as the jumping-off place

for a study of abstract metric spaces, and we would then abstract

from this classical geometry, testing our new theory against it.
,

In every case, then, we operate simultaneously in two different

"planes." One is the primary, intuitive plane, containing the

raw data from which our theory will be abstracted. This, follow-

ing Bridgman, we call the "P-plane." The second is the conceptual

plane, the "C-plane." Initially, the C-plane is empty, waiting to.

be filled with the concepts and relations which we construct.

We have complete freedom with respect to the concepts and

relations which we choose to insert in the C-plane, so long as we

do not assert any connection between it and the P-plane. Natural-

ly, we hope event tally to set up a correspondence between the two

planes, and this hope guides our constructions and our choice of

language. Logically, there is no necessity to make the language

in the C-plane correspond to that of the P-plane, and in order to

avoid confusion it might be better to use different terms entirely.

For example, the "points," "lines," and "planes" of axiomatic

geometry (the C-plane) might be replaced by other terms which have

not been preempted in physical geometry (the P-plane). But once

the formal distinction between the two planes and their languages

has been established and Understood, there is a psychological

advantage to be gained from the use of the same terms, for the

proposed correspondence is then transparently indicated. Thus,

we know that the geomet,.ical "point" is meant to correspond to

the physical point, the geometrical "line" to the physical line,

and so on. We can intuit, conjecture, and then perhaps prove

theorems in the C-plane by peeking over into the P-plane at the

corresponding "facts," arrived at by experiment there. For

example, the concurrence of the medians of a triangle could be

guessed from drawing a number of physical triangles and their

medians on a piece of ptper. This type of e.:perience is extremely

valuable and constitutes an important psychological adjunct to

mathematical discovery. It must be pointed out carefully, though,

that formal proof in the C-plane is necessary. Furthermore, the

2
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logical conclusion to be drawn from this combined guessing and

proving process is not that we have made the geometrical theorem

more certain by experimental verification. The truth of the

theorem has been established (in the C-plane) with complete cer-

tainty by logical deduction from the axioms. Rather, our feeling

of satisfaction on seeing that the theorem works out on paper

should stem from the confirmation of the correspondence between

the two planes. What we do tend to establish by such empirical

tests is the adequacy of our postulate system to bring about a

close correspondence.

Consider for example, what our situation would be if we had

in our system all of the postulates of Euclidean geometry except

for the parallel postulate. Suppose, then, that we measured the

angles of many triangles and found, within the limits of experi-

mental error, that the sum of the measures of the angles was 180.

Then, passing to the C-plane, we attempted to prove the correspond-

ing result as a theorem, and of course failed. The correct con-

clusion to draw would be that (a) we were not clever enough to

find a proof, or (b) that our axiom system was not adequate for

the purpose. Historically, it was the belief that (a) was the

only possibility, together with an imperfect understanding of

axiomatics, that delayed the development of non-Euclidean geoemtry.

Eventually, of course, this very problem led to our present deeper

understanding of the connection between fact and theory.

What are the considerations that govern our choice of un-

defined elements and relations and unproved propositions (axioms,

postulates)? Certainly we want our system to be consistent: a

proposition and its contradiction should not both be provable in

the system. If we regard our axioms as inputs and our theorems as

outputs, then economy and fruitfulness are desirable as increasing

output per unit input. Of course, this analogy is not to be

taken too seriously, but it incates why we should not postulate

everything. Unfortunately, some geometry texts nowadays go to

the extreme of setting down fifty or more postulates. There is

nothing logically wrong with this, but it militates against

economy, elegance, Intuitiveness, simplicity, and ease of

9
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verification in a particular interpretation -- properties that are

certainly desirable.

One property that we have not mentioned is that of being

categorical. This means that every two concrete interpretations

(models) of the system will be essentially the same: it is

possible to set up a one-to-one correspondence between the elements

and relations of the two interpretations, so_that they may be

regarded as identical except for the names assigned to the elements

and relations.. The two models are then said to be isomorphic. If

we start with a particular P-plane and wish to describe it com-

pletely by means of an axiom system, without permitting any non-

isomorphic models, then we try to make our system categorical.

This is the case with Euclidean geometry or the real number system.

Sometimes we reap an unexpected harvest from the construction

of a categorical system. We may find two apparently different

interpretations, and can then conclude that they are essentially

identical because the system is categorical. Any theorem which

holds in one model is then sure to hold in the other. An example

is the pair of models M1, consisting of the real numbers under

addition, and M2, consisting of the positive real numbers under

multiplication. The one-to-one correspondence M
1
<--0.M

2
is

established by the exponential function (from M1 to M2) and the

logarithm (from 142 to M1). Another example is the pair of

physical processes, diffusion of a gas and heat-flow, both being

governed by the same differential equation. Still another example

is the isomorphism of Euclidean plane geometry with the collection

of all real-number pairs. This isomorphism allows us to solve

geometrical problems by means of algebra, and vice versa.

At other times, we find it more profitable to make our

system non-categorical. This is true when we have several P-planes

which bear some resemblance to each other. If we can construct a

suitable C-plane so that each of the P-planes is an interpretation

of it, then anything we prove in the C-planc will hold in all of

its non-isomorphic models. This happens, for example, in the

case of group theory. It also happens when we sta."1 a few, but

not all of the axioms of Euclidean geometry. In this case our

273
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theorems, being provable, ,,ay, without the parallel postulate,

must hold also for all geometries satisfying the stated axioms..

There is no reason to hide this desirable state of affairs fi.om

our students, -for fear of violating their intuitions about space.

Rather, we should regard such occasions as valuable opportunities

for teaching an important lesson.

Our discussion here has been far from exhaustive. We hope

that it has served the purpose of pointing to a desirable and

sometimes neglected goal in education, and that it has indicated

hew we, as teachers of mathematics, can approach this goal.

2 7 i



i-QUALITY, CONGRUENCE, AND EUIVALENCE

1. Angles and

In describing the relation of "equality" between angles and

segments, this book departs from common usage. Defore e.xplaining

why this has been done, let us first note quickly how the new
usage compares with the old. Suppose we have two angles with the
same degree measure

A

r, like this:

13

and two segments of the same length, like this:

A 13

a

In these two instances,, the facts are plain. They would be

reported in the following ways, in the old and new terminologies.

In Words

Old

The angles

are equal.

The segments

are equal.

New

The angles are

congruent.

The segments

are congruent.

In Symbols

NewOld

LA --LB

AB =CD

LPILB
(or m A = mL 13)

AI

(or AE = CD).

From the table it is plain that the new usage is not complicated.

We have simply substituted one word for another, and one symbol
for another. Of course, even simple changes should be made only

for good reasons; they go-against everybody's habits, and cause

f
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much more trouble at first than their simplicity would suggest.

We believe ..nat there are very good reasons for the use that we
have made of the word congruence. Following is an explanation

of what these reasons are.

2. Various Lnt of Equality.

The word "equals" is commonly used in mathematics in at

least this many different senses:

(1) When we write 2 4 = 3 + 3, we mean that the number
2 i 4 and the number 3 + 3 are exactly 'the same number (namely, 6).

Here "equals" means "Is the same as."

(2) When we say that two angles are equal, we mean that

they have the same measure, or the same shape.

(3) Two circles are equal if they have the same radius.
(4) Two segments are equal if they have the same length.

(5) Two triangles are equal if they have the same area.

(6) Two polyhedrons are equal if they have the same volume.

These uses of "equals" divide sharply into three groups.

(I) The first meaning ("is the same as") stands entirely

alone. This is the logical identity. It arises in all branches

of mathematics, Including geometry.

(II) "Equality" expresses the same basic idea for angles,

circles, and segments, in (2), (3), and (4). It means in each

case that the first figure can be moved so as to coincide with

the second without stretching. (For a fuller explanation, see

Appendix VIII, on Rigid Motion.) This idea is geometric, and is

one of the most basic ideas in geometry. Applied to triangles,

it is always described as cong_',9nce and not as equality.

(III) "Equality" to mean equal areas or equal volumes, as

in (5) and (6), implies that two things are equal if they contain

the same amount of "stuff."

These aro the three main ideas involved. We notice that the

words and the ideas overlap both ways. Not only is the word

equals" used in two widely different senses, but the basic idea

involved in (2), (3), and (4) is expressed by two apparently

-unrelated words.
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Obviously students can and do learn to keep track of what is

meant, even when the words and the ideas (werlap in this way. All

of us learned to do this, when we were in the tenth grade. The

whole thing becomes easier to learn, however, and easier to keeP

track of, if the words match up with the ideas in a simpler and

more natural waY. This can be done as follows:

(I) We can agree to write "=", and say "equals," only when

we mean "is the same as." (This is the standard usage in nearly
all of modern mathematics.)

(II) We already have a word to express the idea that one

triangle can be made to coincide with another; we say that they

are congruent. We can use the same word to express the same idea
when we are talking about angles, circles or segments.

(III) When we want to convey the idea that two triangles

have the same area, we can simply say that they have the same area.

Notice that if we do this we have not introduced any new

words into the language of geometry. We are not trying to be

technical. All that we are trying to get at is a situation in

which the familiar and available words correspond in a natural

way to the familiar and basic ideas. The correspondence looks
like this:

(I) =, between any two things whatever, means "is the same

as. It

(II) 11, between any two geometric figures whatever, means

that one can be moved so as to coincide with the other.

(III) Equality of area, equality of volume, and so on, are to

be described explicitly as such.

All this is straightforward language. We believe that your

students will find it easy tolearn,and easy to use.

3. Equivalence Relations.

All the uses of "equals," in\mathematics or otherwise,

involve the notion of two things being alike in some respect.

The particular respect to be considered may be made explicit, as

in usage (5) above, or it may-net, as in "All men are created

, equal." As mentioned above, mathem4icians have pretty generally
I
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agreed to use the word to mean "alike in all respects"; that is,

identical. Instead of the other usage they speak of an "equiva-

lence relation." A relation between pairs of objects, from

some given set, is called an equivalence relation if it has the

following three properties:

(1) It is reflexive. That is, any object of the set is

equivalent to itself.

(2) It is symmetric. That is, if A is equivalent to B,

then B is equivalent to A.

(3) It is transitive. That is, if A is equivalent to B,

and B is equivalent to C, then A is equivalent to C.

In a mathematical development we may use several different

kinds of equivalence relations. To keep them separate we give

them different names and different symbols. In our geometry we

have used the following equivalence relations.

(a) Identity. The relation "is the same as" is easily seen

to satisfy the three properties listed above. The word "equal"

and the symbol "=" are reserved for this equivalence relation.

(b) Congruence. Here again, the properties are easily

checked. (Refer to the talk on Congruence for a general treat-

ment.) The symbol is

(c) Similarity. Here again we 1.iave an equivalence relation,

denoted by 'I...".

(d) We have not introduced any special notation for
ttequality of area," or "equality of volume," but each of these

relations is reflexive, symmetric and transitive. We could, if

it were convenient, introduce words and symbols for '.7,hese equiva-

lence relations.

Such insistence on exactitude of language and symbolism may

sometimes seem mere quibbling, but it is on such extreme careful-

ness that modern mathematics is based.

1}. Classification and Functions.

Equivalence relations are connected closely with another

concept which is important in mathematics. This is classification.

The connection is as follows.

2 8
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Suppose we have an equivalence relation defined for_a

certain set S. We can then classify the elements of S, into

disjoint classes (i.e. no two classes intersect) S S
1, 2'

by putting Into the same class all elent, which are equivalent

to each .thr. Conversely, suppose thL ave a classification
3 into disjont classes. Then we can define an equivalence

relation by saying that a is equivalent to b if and only if

a an(A b are in the same class. These two constructions

EquivalenCe

Classification

Classification,

Equivalence,

are Inverses of each other. If we start with an equivalence,

pass to its classification, and then pass from this classification

to its induced equivalence, we end up with the same equivalence.

Similarly, if we start with a classification, form the induced

equivalence, then form its induced classification, we end up

with tho samo classification.

An example may make this clearer. Suppose S is the set of
all polygons. Let us define Z.' among polygons by saying that

P1 P, if P1 and P2 have the same number of sides. (This

relation obviously is reflexive, symmetric and transitive.)

The Induced classification is then into triangles, quadrilaterals,

pentagons, hexagons, n-gons, . If we start with this

'classification, its induced equivalence is: P1 P2 if P1 and

. Po are In the same class, i.e., if they are both n-gons (for the

same n). This Is the same as the original equivalence.

Notice that in this example, our classification was by means

of a unique number attached to each polygon, namely the number of

sides. Whenever we have a unique number attached to each object

nf a set S, we'have a numerical function f(a). Thus, every

numerical function induces a classification: each class consists

precisely of those elements a with the same functional value

f(a). As another example let S be the set of angles and let

f(a) = mZa. The corresponding equivalence relation is then our
,

familiar con cgru =, etween angles.

On the other hand, not every eT.ivalenrn relation is easily

characterised by a function. If S is h st of triangles it
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Is hard to see how the similarity relation, ,, or the congruence

relation, , can be associated with a function. As a matter of

fact this can be done, but the methods involved are well beyond

elementary mathematic, as well as being highly artificial.

2



THE CONCEPT OF CONGRUENCE

Congruence is a rich and complex idea with many ramificationF,

in geometry - there really is nothing quite like it in algebra.

It applies to figures of all kinds - :egments, angles, triangles,

circular arcs, polygons, truncated pyramids - in fact to any con-

ceivable figure. It plays an essential role in the theory of

geometric measure of length, area and volume - it is intimately

related to the important concept of rigid motion.

We will examine carefully the cony Titional theory of

congruence and the related theory of linear measure. This will

be contrasted with the theory of congruence adopted in our text.

Finally we treat the concept of congruence for general figures

and its relation to the idea of rigid motion.

I. The Conventional Theory of Congruence and

Linear Measure

I-1. Congruence in terms of size and shape. The term

congruence immediately calls to mind the famous dictum: Two

figures are congruent if they have the same size and the same

shape. Certainly this statement emphasizes the basic intuitive

or informal idea that if two figures are congruent, one is a

"replica" of the other. Also it points up the important property

that if we know two figures to be congruent we can infer that

they have the same area (or volume) und that they are similar.

But this is not the essential issue. It is: Does our

dictum define congruence? Is it really a formal definition of

the term congruence in terms of more basic ideas? Clearly the

answer is no. For the notions size and shape are more complex

than congruence. In order to measure (or define) size (area or

volume) we try to find out how many conEruent replicas of a basic

figure (for example, square or cube) "fill out" a given figure.

So actually it would be more natural and sJmple to base the theory

of size (and shape) on the idea of congruence rather than the

reverse.
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1-2. Congruence In terms of rigid motion. But there are

other "definitions" of congruence which we must discuss - consider

the famous, "Two figures are congruent if they can be made

coincide by a rigid motion". Let us analyze this. Conceived

concretely, say In terms of two paper heart-shaped valentines, it

affords an excellent illustration of the intuitive idea of con-

gruence and emphasizes again that one Is a "replica" of the other.

But this illustration, like most physical situations, does not

have the precision required for an abstract mathematical concept.

Surely we would have to pick up the first valentine and move it
with almost infinite gentleness to prevent bending it slightly

when getting it to coincide with the second one. And huw could

we be certain of perfect coincidence of the two valentines?

Wouldn't this require perfect eyesight? It is clear that this

"definition" interpreted concretely gives us a physical approxi-

mation to the abstract idea of congruence but doesn't define it.

Moreover it is not even applicable in many physical situations:

you hardly could get two "congruent" billiard balls to coincide

by a rigid motion.

Should we then conclude that the idea of rigid motion is

essentially physical and can not be mathematicized as an abstract

geometrical concept? Definitely not. Mathematicians are

ingenious and clever people and it might be a mistake to decide

beforehand that they could not construct a precise abstraction

from a given physical idea. Most familiar mathematical

abstractions had their origin in concrete physical situations -

certainly geometry had its origin in practical problems of

surveyirg the heavens and the earth.

Let us table for the present the question of whether we can

form an abstract geometrical theory of rigid motions. It would

seem that a treatment of congruence based on a logically satis-

factory theory of rigid motion could not be elementary and would

hardly be suitable for a first course. In any case, without

deeper analysis, the second "definition" is not a definition at

all and might more properly be considered a statement of a proper-

ty which rigid motions should have: namely, that any rigid motion

9 9
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transforms a figure into a congruent one.

1-3.. Another definition. Consider and criticize a third

suggested "definition": Two (plane) figures are congruent if a

copy of the first made on tracing paper can be made to coincide

with the second.

I-4. Congruence of segments. Since our three "definitions"

do not define congruence we must probe more deeply. Here, as so

often in solving problems, the imperialist maxim, "Divide and

conquer", is very helpful. Instead of tackling the concept of

congruence in its most complex form, that is,for arbitrary

figures, let us begin by considering a simple special case. A

line segment -- or as we shall call it,a segment -- is one .of the

simplest and most important geometric figures. We naturally begin
by considering congruence of segments.

Let us recall how this is treated in Euclid or in the conven-
tional high school geometry course. Congruent segments, usually

called equal segments, are conceived as "replicas" of each other,
in general with different locations in space. Congruent segments
may coincide or be identical but they don't have to. If segments--
AB and CD are congruent we may

interpret this concretely to mean

AB and CD are "caliper equivalent"

- that is,if a pair of calipers is

set so that the ends coincide with

A and B, then, without changing the

setting, the ends of the calipers

can be made to coincide with C and

D.

1-5. Basic properties of congruence of segments. What is

the logical significance of congruence of segments in Euclid?

Actually it is taken to be an undefined term. More precisely,
using the notation AB = CD, congruence is a basic relation =
between the segments AB and CD which we do not attempt to
define. We study it (as always in mathematics) in terms of its

2
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basLc properties which are formally stated as postulates. Some

of these postulates, which are not explicit in Euclid or in most

geometry texts are:

(1) (Reflexive Law) AB

(2) (Symmetry :,aw) If AB = CD then CD = AB;

(3) (Transitive Law) If AB = CD and CD = EF then AB = EF.

That is, congruence of segments satisfies the three basic proper-

ties of equality or identity and so is an example of an equivalence

relation. We must not asnume that congruence means identity, since

distinct segments can be congruent.

(11) (Location Postulate) Let

AB be a ray and let CD be a
A

segment. Then_there exists a

unique point P in PI such that C .D

(5) (Additivity Postulate)

Suppose AB = BC = B'C',
BIB is between A and C and B1

CI

is between A' and C'. Then

AC = A'C'.

We insert a few words on the important mathematical idea of

equIvalence relation. The most basic example of an equivalence

relation and the one which suggests the concept is the relation

equality or identity. Equivalence relations abound i. geometry,

for example, congruence of figures or similarity or equivalence

of figures. (For a discussion of equivalence relations see the

Talk on Equality, Congruence, and Equivalence.)

1-6. Theory of linear measure. Segments are geometric

figures, not numbers. But they can be measured by numbers --

they do have lengths. In the conventional high school treatment

it is assumed with little discussion that lengths of segments can

be defIned as real numbers. We indicate how to do this. Although

the result is familiar, the process is complex and subtle and

requires for its complete justification additional postulates.

However, Postulates (1), ..., (5) above are sufficient for an

understanding of the process.
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We begin by choosing a segment UV which will be unchanged

throughout the discussion (a so-called "unit" segment) . Now given
any segment AB we want to measure AB in terms of UV. This

-->
involves a "laying-off" process. We take the ray AB and lay-off

U. *V

A Pi P P3 B

UV on it repeatedly, starting at A. Speaking precisely, there
is a point P1 in AB such that UV = A. Similarly, we can
show that there is a point P2 in -A-g such that (a) UV .==. P1P2

and (b) P1 is between A and P2. For convenience we write
condition (b) as (AP1P2) . Continuing, there is a polfit- P3 such
.that UV V.. P2P3 and (P1P2P3). By this proc,..'ss we develop a

sequence of points Pl, P2, ..., Pn, ... on T1 such that

(1) UV P1P2 = P2P3 = = pn iPn,

(2) (AP1P2), (P,P2F3), (Pn 2Pn 1Pn).

Intuitively (1) and (2) say that 17 -1.s laid-off on AB n times
In a given direction - but note ho j precisely and objectively
(1), (2) say this, avoiding the somewhat vague terms "laying-off"
and "direction". From another viewpoint we are laying the basis

for a coordinate system on the line by locating precisely the
points PI. P

2' "" P ... which are to correspond.to the
integers 1, 2, n, .

Now what has this to do with the measure of AB? Clearly we
must learn how B is related to the points Pl, P2, P3, .

In the simplest case one of these might coincide with B, for.

example, F3 = B. Then of course we define the measure of AB
to be 3.

2
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I-7. Fofinement of the approximation process. You may ask,
"Did we have to go through this elaborate process to explain that
if the "unit" segment UV exactly covers AB three times, then
the measure or AB is 3?" Disregarding the importance of mak
the idea "exactly covers" mathematically precise, observe that tne
process Ilelps us to define a seasuro for AB in the more general

and difficult case when one of the points Pl, P
2'

coincides with B. For suppose B falls between two consecutive
points of our sequence, say (1°_131°5). Clearly then we will have
to assign to AB a measure x h that 4 < x < 5. In other

words we have set up a general process which enables us at least

to determine an approximation to the measure of AB, that is to
find lower and upper bounds for it.

P Q. Q2 Q P4 i 9 5

We do not complete the discussion but indicate how it proceeds.

To fix our ideas, suppose (P BP 5 ) To get a better idea of what

the measure of AB should be we subdivide P P
5 into ten con-

gruent subsegments and proceed as above. Precisely, we set up a

subsidiary sequence of points Q1, Q9 which divide PhP5
into ten congruent subsegments. That is,we require

P4'71 7.14 Q1Q2 Q2Q3

(PC1Q2), (Q1Q20,3), (Q8Q9P5).

If B were to coincide with one of Q1, Q2, ..., Q9, saY
B - Q6, we assign to AB the measure 4.6. If B falls between
two of the Q's, say (q6BQ7),,we require that x, the measure of
AB, '-atisCy

4.6 < x < 4.7.

In the ca.:e we repeat the process by subdividing Q647

into ten corLgrunt subsegments and proceed as before.

and

28'3
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1-8. The definition of linear measure. Clearly we have a

complex process (though a refinement of a simple idea) which will

assign to segment AB a definite decimal, terminating or endless.

This decimal we define to be the measure or length of AB.

1-9. Basic 1,2.-operties of linear measure. We write the
Measure of AB (UV still being fixed) as m(AB). Observe that
we really have here a function AB -->m(AB) which associates to
each segment a unique positive real number. What are the basic
properties of this "measure" function? They are easily grasped
intuitively:

(1) m(A) = m(A'B') if and only if AB = A'B' - that is,

congruent segments and only congruent segments have equal measures;

(2) If (ABC) then m(AB) + m(BC) = m(AC) - that is,

measure is add'tive in a natural sense;

(3) m(UV) = 1 - that is, the measure of the unit segment

is unity.

Notice tnat (2) is a clear and useful form of the vague

statement, "the whc'e is the sum of its parts".

We summarize in a theorem which can be deduced from a suitable

set of postulates for Euclidean Geometry:

Theorem. Let the segment UV be given. Then there exists

a function which assigns o each segment AB a unique pc:I.tive

real number m(AB) satisfying (1), (2), (3) above.

1-10. Uniqueness of measure function. We naturally ask if
there is just one measure function? Clearly not. For the function

must depend on the choice of the

unit segment UV. To be specific, U M V
suppose we take as a new unit segment,

UM, where M is the mid-point of UV

(that is UM = MV and (UMV)). Then according to our theorem

there will be a measure function; let us call it m'. (since we

have no right to assu:. , is the same as the original measure

function) such that mika) = 1. We see quickly that m'(UV) = 2;

CI 00 I
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further it can be shown m'(AB) = 2m(AB) for any segment AB.
This is a formal statement of the trivial seeming fact that
"halving the unit of measurement doubles the measure". A corres-
ponding result holds in general:

Theorem. If m, m' are two measure functions on the set
of all segments, then

m'(AT3) = k.m(A77)

where k is a fixed positive real number.
In the preceding example we had k = 2. Of course k need not
be an integer - it can be any positive real number, rational or
irrational. As a related example consider the corresponding
situation in the measure of angles: The radian measure of an

angle is -T.,74- times the degree measure of the angle.1c0

Summla: Any two measure functions on the set of all segments
are pronortional.

What does this mean for the development of the theory of
measurement of segments? It says in effect that it doesn't matter
which measure function we choose, since making a different choice
would only multiply all measures by a constant. Thus,.in conven-
tional geometrical theory, we fix a unit UV at the beginning,
determine a corresponding measure function, and thereafter use
this measure function as if it were the only possible one. And
instead of saying precisely the measure of AB in terms of unit
UV, we say simply the measure of AB, and forget about UV.
The situation in everyday life is quite different - we employ
measure functions based on a variety of units: inches,.light
years, millimeters, miles.

We close this part of our discussion by observing that the
distance between A and B is merely defined to be the measure
of AB. Sometimes we want to refer to the distance between A
and A itself. This we take to be zero. A separate definition
is required for this case since we my not refer to the segment
AB unless we know A / B.
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Query. Was it necessary to use the integer ten in the sub-

division process? Would others work? Could the process be

simplified by making a different choice?

II. Congruence Based on Distance

In this part we discuss the treatment of congruence adopted

in the text, contrasting it with the conventional one. The point

of departure is to "reverse" the conventional treatment and

define congruence in terms of distance. This enables US to use

our knowledge of the real number system early in the discussion -

it leads to a new treatment of the important geometric relation,

betweenness, and a new way of conceiving segments and rays.

II-1. The student's viewpoint. The conventional treatment,

in brief, begins with an undefined notion of congruence of

segments and deduces the existence of a distance function from a

suitable set of postulates. The high school student - in studying

this treatment - somehow absorbs the idea that segments (and

angles) can be theasured by numbers, and is permitted to apply his

knowledge of algebra whenever it is convenient.

11-2. The Distance Postulate. Since the student thinks of

segments and angles as measurable by numbers and it is hopeless

to prove this at his level from non-numerical postulates, it

seems most reasonable to make the existence of a measure function

or distance a basic postulate which is used consistently through-

out the course. So we adopt

Postulate 2. (The Distance Postulate.) To every pair of

different points there corresponds a unique positive number.

If the points are P and Q, then the distance between P

and Q is defined to be the positive number of Postulate 2,

denoted by PQ.

Don't read into this more than ic says - it is a very weak

statement. Notice that it doesn't state a single property of

distance - merely that there is such a thing. In particular it

'doesn't say anything about lengths of segments - in fact we don't

even have segments at this stage,of our theory.

2 3
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11-3. The Distance Postulate causes a chanoe in viewpoint.

This may seem strange, but it isn't. Most texts begin with a

discussion of points and lines in a plane, including such basic

ideas as segment and ray. As in Euclid these ideas essentially
are taken as undefined. But having adopted the Distance Postulate

we can define them. This is an important - and unforeseen -

consequence of the Distance Postulate: We don't get just Euclid

wit'n the theorems rearranged, but new insights into the basic

geometric ideas and a new way of inter-relating them.

II-4. "Between" and "LIETIEL" as defined terms. How then
can we define segment in terms of the basic terms point, line,

plane? It is easy to do this using the additional notion of a

point being betWeen two points. Having adopted Postulate 2, the

idea of distance is at our disposal and we can define betweenness
SO:

Definition. Let A, B, C be three collinear points. If

AB + BC =C we say B is between A and C, and we write
(ABC).

We now derine segment in terms of betweenness.

Definition. Let A, B be two points. Then segment AB

is the set consisting of A and B together with all points
that are between A and B. A and B are called endpoints
of AB. Further we define m(AB), the measure or length of AB,

merely to be the number AB.

That is, the length of a segment is merely the number which

is the distance between its endpoints. The contrast with con-

ventional theory is stAking: There congruence of segments is

basic and a difficult argument is needed to prove the existence
of a measure function - here distance is basic and the proof of

the existence of a measure function is trivial.

11-5. Congruence of segments lay: Definition. Now it is

absurdly easy to define congruence of segments.

2 9
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Definition. AB = CD means that the lengths of AB and CD

are equal, that is AB - CD.

Formally what we have done is just this. We took the basic

property relating congruence and measure ((J.) of Section 1-9)

m(AB) = m(CD) if and only if AB al7T5,

which is a theorem in the conventional treatment, and adopted it

as a definition in our treatment. There, segments which were

congruent were 212ved to have the same measure - here, segments

which happen to have the same measure are called congruent.

11-6. Properties of congruent segments. Does congruence of

segments, as we have defined it, have the properties we expect?

We see quickly that = is an equivalence relation, that is

(1) AB = AB;

(2) If AB = CD then CD = AB;

(3) If AB = CD and CD = EF then AB a EF.

These merely say

(1') AB = AB;

(2') If AB = CD then CD = AB;

(3') If- AB = CD and CD = EF then AB = EF,

which are the basic properties of equality of numbers.

Further we have

(5) Suppose AB = A'B', BC = B'Cl, (ABC) and (A'B'C').

Then AC = A'C'.

To prove this we have

AB = A'B',

BC = BIC',

so that

AB BC = A'B' B'C'.

The betweenness relations yield

AB 4. BC = AC, A'B' B'C'

2 1.) .1.
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and we get

AC . AlC, or AC = A'C'.

Thus several of Euclid's (or Hilbert's) Postulates for congruence
reduce, in our treatment, to elementary properties of real numbers.

11-7. The Ruler Postulate. You may wonder if we can also
derive from Postulates 1 and 2, the Location Property:
Section 1-5)

Let AB be a ray and let CD be a segment. Then there
--*exists a unique point P in AB such that AP = CD.

The answer is - with a vengeance - no. .0n the basis of Postulates
1 and 2, we can't even prove that a line contains any points.
Clearly Postulates 1 and 2 are too weak to support the kind of
theoretical structure we are trying to build. The text supplements
them by adopting the powerful Ruler Postulate:

Postulate 3. (The Ruler Postulate.) The points of a line
can be placed in correspondence with the real numbers in such a
way that

(1) To every point of the line there corresponds exactly
one real number,

(2) To every real number there corresponds exactly one
point of the line, and

(3) The distance between two points is the absolute value
of the difference of the corresponding numbers.

This guarantees at one swoop that a line has the intrinsic
properties we expect of it. Now the lines in every model of our
theory will be well-behaved and richly endowed with points. It
implies the congruence and order properties of a line in the
conventional theory. Specifically it yields: (1) a form of the
Location Property (Theorem 2-4); (2) that a segment can be "divided"
into a given number of congruent "parts" - in particular it can be
bisected (Theorem 2-5). It implies important order properties:
Theorem 2-1 which says in effect that the order of points on a
line in terms of geometric betweenness corresponds exactly to the

0 9 2
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order of their coordinates in terms of alsebraic betweenness;

and the Line Separation Property which is not explicitly dealt

with in the text (see Commentary for Teachers, Chapter 2; also

Problem 12 of Problem Set 3-3).

Observe the attractive inter-dependence of the weak Distance

Postulate and the powerful Ruler Postulate. The,first asserts

the existence of a distance function but permits it to be complete-

ly trivial - the second tailors the line to our expectations but

is impossible of statement without the notion of distance

postulated in the first. Note that if we weaken the Ruler

Postulate by dropping condition (3) and require merely the

existence of a 1-1 correspondence between the points of a line

and the set of real numbers, we may have pathological situations

of the type indicated in the diagram.
7

Here B is between A and C since

AB 4. BC . AC, but -1,000, the co-

ordinate of B, definitely is not A 3 B 4

between the coordinates of A and C.0 - 1,000 3.2

Our discussion suggests an important point in mathematical

or deductive thinking. The Distance Postulate enables us to

define betweenness but not to prove the existence of a single

point between two given points. This is illustrated by the finite

model above. The Ruler Postulate, however, implies the existence

of infinitely many points between any two. This illustrates the

point that a mathematical definition does not assert the existence

of the entity defined. You may characterize the pot of gold at

the end of the rainbow with great precision but you may experience

equally great disappointment if you start to search for it before

proving an existence theorem.

A final word. We may have oversold the deductive power of

the Ruler Postulate and given you the impression that Postulates

1, 2 and 3 are sufficient for a complete theory of congruence.

This is not so. Our theory so far is sufficient for the "linear"

theory of congruence, specifically for congruence of segments -

but not for congruence of more general figures like angles,

triangles, circular arcs or triangular pyramids. For this we

9 q,
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must Introduce further postulates concerning congruence of angles
and triangles. We discuss this in the next part since our main

object here has been to indicate the flavor of the treatment in
the text in contrast with the conventional one.

III. Congruence for Arbitrary Figures

and Rigid Motions.

In this part' we continue the discussion of congruence by
indicating how it is successively defined for familiar elementary
figures: angles, triangles, etc. Then using the simple and
pawerful modern idea of transformation we formulate the congruence
concept for arbitrary figures - this surpasses in elegance and

generality anything obtained in the field by the classical
geometers. As a by-product we obtain - after two millenia - a

precise mathematical concept of rigid motion. This is a great

cultural achievement of our time. Rescuing from the jungles of

physical intuition Euclid's crude superposition argument, we

refine and perfect it to yield an objectively formulated concept
which will be of use to human beings as long as they are impelled
to think precisely about space.

III-1. Congruence of angles. The conventional treatment of

angle congruence is similar to that sketched in Part I for con-

gruence of segments - but naturally it is a bit more complicated

since angles are more complex figures than segments. It begins

with an undefined relation Z ABC Z PQR between two angles

which as usual indicates that they

are replicas of each other. This

may be interpreted concretely to

mean that if a frame composed of

two jointed rods is set so that

the rods coincide with the rays
--*
BA and BC, then without changing

the setting the rods can be made to
--*

coincide with QP and QR. We

assume as for segments that congruence of angles is an equivalence

relation:

291,
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(1) (Reflexive Law) L ABC === L ABC;

(2) (Symmetry Law) If L ABC = L PQR then L PQR = L ABC;

(3) (Transitive Law) If L ABC = L PQR and L PQR = XYZ

then L ABC 24 L XYZ.

The Location Postulate for segments ((4), Section I-5) has

the analogue

(4) (Angle Location Postulate)

Let XYZ be any angle and Ali. be

a ray on the edge of half-plane H.

Then there is exactly one ray AP,

with P in H, such. that

PAB = XYZ.

And the Additivity Postulate

((5), Section I-5) appears in the

form

(5) (Angle-Additivity Postulate)

Suppose L BAD L B'A'D',

DAC = L D'A'C', D is in the

interior of L BAC and D' is

in the interior of Z B'A'C'.

Then LBACLBIAtCt.
Essentially on the basis of

these postulates a measure process

can be set up which assigns to each

angle a unique positive real number

called its measure in such a way that a fixed preassigned angle

("unit" angle) has measure 1 (compare Sections 1-6 to 1-9).

Denoting the measure of Z XYZ by mL XYZ, we have as you

would expect.from our discussion of measure of segments:

(1) mL ABC = mL A'B'C' if and only if Z ABC =

(2) If C is interior to ABD then

ABC + mL CBD = mL ABD.

(Compare (1), (2) Section I-9).

A
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But there are two properties which are unique to angular
measure. First there is a real number b which is a least upper
bound for the measure S of all angles (b is 180 in the
familiar "degree measure"). Second the measure S of "supple-
mentary adjacent" angles (i.e., a linear pair) always have a
constant sum and this sum is the

least upper bound b. Stated

precisely: If ABC and

CBD are a linear pair, then

mZ ABC mL CBD = b.

111-2. Congruence of angles based on arular measure. We
saw in (1) above that the conventional theory of angle congruence
yields (as for segments) that two angles are congruent if and
only if they have equal measures. This suggests (as for segments)
that we assume the existence of angular measure and define

congruence of angles in terms of it. Thus the treatment in the
text assumes

Postulate 11. (The Angle Measurement Postulate.) To every
angle ABC there corresponds a real number between 0 and 180,

called the measure of the angle, and written as mL ABC, (compare
the Distance Postulate).

Clearly our postulate has been set up so that the unit angle
is the degree. In other words the angle characterized by
mL ABC = 1 is what is usually defined to be a degree and will
have the property that ninety such angles laid "side by side"
will form a right angle. Precisely speaking the measure of a

right angle will turn out to be 90. Notice that the measure
of no angle can be 0 or 180 since our definition of angle
restricts the side S to be non-collinear. (For a discusaion

of this restriction see Commentary for Teachers, Chapter 4.),

Now following a familiar path (Section 11-5) we adopt the

20'f
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Definition. L ABC ===1 L PQP means that mL ABC = mL PQR

Then properties (1), (2), (3) of III-1 above reduce to familiar

equality properties of real rviibers. The Angle Location Property

(CO above) must be postulated and is introduced in the form:

Postulate 12. (The Angle Construction Postulate.) Let Toit

be a ray on the edge of half-plane H. For every number r

between 0 anu. 180 there is exactly one ray Tar, with P in

H, such that mL PAB = r.

It might be thought now that the additivity property for

angles ((5) above)) could be derived as a theorem as was the corres-

ponding property for segments (see (5), Section 11-6). This isn't

so. But it is a simple and important property of angles, and it

is perfectly natural to postulate it:

Postulate 13. (The Angle-Addition Postulate.) If D is a

point in the interior of / BAC, then mL. BAC = mL BAD + mL DAC.

Finally we need a postulate to express the peculiarly

"angular" property of supplementation:
--->

Postulate 14. (The Supplement Postulate.) If AB and AC
--->

are opposite rays and Ap is another ray, then mL DAC + mL DAB

= 180.

111-3. Congruence of triangles. We are now ready to consider

congruence of triangles. Our definition of congruent triangles

(Chapter 5 of text) is essentially the conventional one: One

triangle is a "copy" of the other in the sense that its parts are

"copies" of the corresponding parts of the other. But observe

the precision with which it is formulated. The correspondence

doesn't depend on individual interpretation of the vague term

It corresponding" but is based objectively on a pairing of the

vertices

B4--*B1,

which induces a pairing of sides and of angles

AB<-->A1B1,

A *---3Z A , Ei4---->Z 131 , C<----->Z CI .

2 97
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Notice how spelling out the notion "corresponding" in this way
helps to point up the importance of the notion of a congruence

which is not mentioned in the conventional treatment. Thus our

treatment brings to the fore the idea of a 1-1 correspondence

between the vertices of A ABC and A A'B'C' which ensures that
they are congruent because it requires corresponding sides and

corresponding angles to be congruent, that is to have equal

measures. This simple idea is capable of broad generalization.

Do we need postulates on congruence of triangles? We have a
lot of information on congruence of segments and congruence of
angles, separately - but nothing to inter-relate these ideas.

For example, we can't yet prove the base angles of an isosceles
triangle are congruent. Thus we introduce the S.A.S. Postulate

to bind together our knowledge of segment congruence and angle
congruence.

Now let us examine more closely the notion of congruence of
triangles. Is it really necessary to require equality of measure
of six pairs of corresponding parts? If we think of the sides of

a triangle as its basic determining parts it seems very natural

to define congruent triangles as having corresponding sides which
are congruent. Naturally if we were to adopt this definition we

would postulate that if the corresponding sides of two triangles

are congruent their corresponding angles also are congruent, in

order to ensure that this definition of congruent triangles is
equivalent to the familiar one. Notice how much simpler the

definition of a congruence between triangles becomes if we adopt
the suggested definition. It is merely a 1-1 correspondence
between the vertices of the triangles,

A<-->A1, B<-->B',

which "preserves" distances in the sense that the distance between
any two vertices of one triangle equals the distance between their

corresponding vertices in the second triangle, that is

AB = A'BI, BC = B'C', AC . A'C'.
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ConGruence of quadrilaterals. The main objection to

the suggested definition is that it doesn't generalize in the

obvious way for polygons - not even for quadrilaterals.

This is attested by the fact that a

square and a rhombus can have sides

of the same length and not be con-

of quadrilaterals it is not sufficient

gruent. So to guarantee congruence

to require just that corresponding

sides be congruent, and it is customary to supplement this by

requiring the congruence of corresponding angles. Thus the

conventionnl definition requiring congruence both of sides and

of angles applies equally well to triangles and quadrilaterals.

However angles, though very- impbrtant, are rather strange

creatures compared to segments and it seems desirable, if possible,

to characterize congruent quadrilaterals in terms of congruent

segments, or equivalently, equal distances. This is not so hard.

Going back to a triangle we observe that its three vertices

taken two at a time yield three segments or three distances and

that the figure is in a sense determined by these three distances.

Similarly the four vertices of a quadrilateral yield not four,

but six segments (the sides and the'diagonals) and six correspond-

ing distances, which serve to determine the quadrilateral. This

suggests: If we have a 1-1 correspondence

D<--*D,

between the vertices of the quadrilaterals 'ABCD, A'B'C'D' such

that corresponding distances are preserved, that is

AB,AC,AD,BC,BD,CD =

we call the correspondence a congruence and we write

ABCD A'B'C'D'. It is not hard to show this definition equivalent

to the more familiar one.

299
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111-5. Congruence of arbitrary figures. We now must face

the problem of formulating a general definition of congruence.

The piecemeal process we have employed, defining congruence
separately for segments, angles, triangles, quadrilaterals is

unavoidable in an elementary treatment but is neither satisfying
nor complete. For it still remains to define congruent circles

and congruent circular arcs and congruent ellipses and congruent
rectangular solids, etc. In each case we construct an appropriate

definition, we are sure it is correct, and are equally sure the
general concept has eluded us.

So let's make a fresh start. Suppose F and F' are two
congruent figures. Our basic.intuition is that F' is an exact
copy of F. Somehow this entails that each "part" of F' copies

a corresponding "part" of F - that each point of F' behaves
like some corresponding point of F. If F has a sharp point
at A then F' must have a sharp point at a corresponding point
A'; if F has maximum flatness at B. then F' has maximum
flatness at a correspor.,ing point 1.3'; if F has a largest
chord PQ of length 12.3 then F' has a corresponding largest
chord P'Q' of the same length, 12.3; and so on. How can we

tie together these illustrations in a simple and precise way?

111-6. P. congruence machine. Suppose instead of conceiving
F' as a given copy of F, we take F and try to make a copy 'F"

of it. As an illustration let F be a house key. Then. F1 can

be produced by a key duplicating machine. The machine has the

secret of the congruence concept-- how does it work?

The machine has two moving parts:

a scanning bar which traces the given

key and a cutting bar which cuts a

blank into a duplicate. As the scan-

ning bar traces. F starting at its

tip A, the cutting bar traces the

blank starting at its corresponding

tip A'. As the scanner moves.to
4C-'--_-(E

position B, the cutter cuts away the metal and comes to rest at

a corresponding position B1. When B rises to a "peak" so does
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B' - when B falls to a trough so does B! - when B traverses

a line segment, B' traverses a line segment of equal length.

What guarantees that this pror

this: When the scanner is fixed

comes to rest in a position B'

true copy? Sim,71y

B, the cutter

,L6tances AB and

A'B' are equal. And this is true luv each position B of the

'scanner. Clearly what the machine does is to associate to each

chord AB from A of F an "equal" chord A'BI from A' of

Fl. And it associates the chords by associating their endpoints

B and B'. Precisely speaking, the machine effects a 1-1

correspondence X4H*X1 between F and FI such that the

distance AX always equals the distance AIX'.

Does this property hold just for A, the tip of F, and

A' its correspondent In F'? Clearly-not. The machine doesn't

know where we start. What we have asserted about the chords of

F from A will hold just as well for the chords from any point

of F. So the 1-1 correspondence X.*--->X, between F and F'

has the stronger property that for every choice of P and Q if

Q4:.).QI then PQ or,as we say the corres-

pondence preserves distance. Here we have the essence of the

concept of congruence.

The legend has it that when Pythagoras succeeded in proving

the theorem ascribed to him, he was so elated that he sacrificed

a hecatomb of oxen to the gods. Surely in the light of this

tradition the formal definition or congruence deserves a section

all to itself.

111-7. The definition. Let X4-4,X, be a 1-1 corres-

pondence between two sets of points F, F' such that

always implies PQ P'Ql. Then we say F is congruent to F1

and we write F FI. Moreover we call the 1-1 correspondence

a congruence between F and Fl.
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This definition is the culmination of two thousand years of

thinking about congruence. Although it may seem quite abstract

it unifies and unites the pleceeal discussion of congruence we

have given. Every instance of congruent figures discussed above

from segments to quadrilaterals can be pi -d case of our

general definition. This is discussed In detL,'I .1 Appendix VII1

of the text on Rigid Motion.

As a simple illustration of the definition let F and F'

each be a triple of non-collinear points, say F is (A, B, C)

and F1 is (A', B1, C1). Let the 1-1 correspondence between

F and F' which preserves distance be

(1) A A ' , B1 , C C1 . Then B B'

we have AB = MB', BC = BIC', \ \

AC = A'Cl. We see intuitively

that F' Is a copy of F. Now A C

shift from the point triples to the triangles they determine. The

S.S.S. Theorem tells that A ABC is congruent to A AIB'C' in

the conventional sense.

It follows (see Appendix VIII) that A ABC A A'BIC' in the

sense of our definition. Actually there is a 1-1 correspondence

between the infinite point sets A ABC, A A1B1C1 which makes the

vertices correspond as In (1) and which has the property that

(),4*R,' always implies PQ = P1Q1.

Observe how the correspondence between the triangle Is en-

gendered by the trivial seeming correspondence between their ver-

tices. For example, if P is on AB its correspondent P' is

determined as the unique point PI on A,B1 such that

MP' . AP. Let us think of the finite set of its vertices,

(A, B, C), as a "skeleton" of A ABC. Then if the skeletons

(A, B, C), (A', B', C') of two triangles are congruent the

triangles as a whole are congruent - using "congruent" in its

302
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present sense. This idea was too complex to introduce in

Chapter 5 of the text. But it was fore-shadowed there in the

insistence that congruence of triangles was the consequence of

the existence of a "congruence" between them - that is, a 1-1

correspondence between their sets of vertices which preserves

lengths of sides and measurer; of angles.

There is an essentia ent of complexity in the definition

of congruence: It req s neral) the pairing off of the

points of two infinite sL ,a to preserve distance. This is

unavoidable - it even seems to be present in the comparatively

simple problem of duplicating keys. There is however an important

element of simplicity: We don't have to mention angles and the

preservation of their measures - the distance concept covers the

situation. It follows easily that angle measures are preserved:

for if Q4-4.1Q1, correspond under a congruence

between F and F', and P, Q, R are non-collinear, we see

by the S.S.S. Theorem that mL PQR = mL pIQtRt

You may find it interesting to give for quadrilaterals a

discussion like the above for triangles - consider the vertex

sets (A, B, C, D), (A', B', C', DI) of quadrilaterals ABCD,

AIBICID' as their "skeletons". In this connection recall the

discussion of congruence of quadrilaterals at the end of Section
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111-8. Motion in geometry. We can state the definition of

rigid motion now, but it probably will be more meaningful if we

say a few words first about the sense in which "motion" is used

in contemporary geometry.

Let a body B move physically from an initial position F

in space to a final position F'. It is not necessary for our

purposes in geometry (as compared say with kinematics or fluid

dynamics) to bothr intermediate stages ,C the motion.

So we can desc - merely by specifying the initial

position X in F of an arbitrary point P of body B and

its corresponding final position X' in F'. In its most general

form, then, a motion is conceived as a 1-1 correspondence or

transformation between two figures F and F'. The technical

term "transformation" is often preferable to "motion" since it

doesn't suggest various irrelevant attributes of physical motion.

111-9., Rigid Motion. A motion or transformation between

two point sets F and Fl is a rigid motion if it preserves

distances - that is if it is a congruence between F -,nad F' as

__defined in Sectlon 111-7. A detailed discussion of concept

of rigid motion -:=7.pears in Appendix VIII of the text:

To 1.,,roduc:,. you to the modern theory of congruE , figures

and rigid motic-: le have put the main emphasis on the 'irst; since
,

it is more famiL_Lar and seems easier to apprehend. 1-1(:: :ever,

glancing back a-, the definition of congruent figures, ,ou see it

implicitly involves the notion of rigid motion. In fact now we

can reword it: F is congruent to Fl provided there exists a

rigid motion between them, or as we say more graphically, a rigid

motLon which "transforms F into F'". This is the highly

refined culmination of the vague and famous classical statement

which served to L=troduce our discussion of congruence: "Two

figures are ,1-.ent if they can e made to coincide by a rigid

motion."
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Sometimes the clarification of the basic concepts of a branch

of mathematics firms up the foundations, puts the capstone on the
superstructure and sets it to rest. This is not so here. The

concept of rigid motion has stimulated the study of classical

geometry, has yielded new insights and helped to unfold new unities.

It has suggested the study of more general geometric transforma-

tions ("non-rigid motions") and has presented problems to the

field of Modern Algebra, since 'lotions tend to occur in certain

"natural algebraic formati, s" called groups.

In the first place congruence and rigid motion have an impact

on geometry since they apply to all figures. We can talk precise-

ly not merely about congruence of (or rigid motion between) tri-

angular pyramids or spherical zones or hyperbolic paraboloids but

also of lines, plane s. spa:-), half-planes, rays, etc. At first

it may sound silly - say 1.1 line is congruent to a line - but

try to find a bett_ rep:L.:a of a lIne than a line! It must be
just because the re_.,;1:: 2ongruence applied to lines is so funda-
mental and universa' th_L ie are not conscious of ft - as a fish
must be unconscious -:... notion humidity. In A first approach,
congruenCe takes on 140,,rtance as applied to segments (or angles

or triangles) precLel7 brrcause not all segments (or angles or
tnLangles) are congruent tc each other.

So it may seer triti,11 to say a line is congruent to a line
or a plane to a p1: or 6;ace to itself. But suppose we shift
the focus from the ..-.;at!'.0 tdea of congruent figures to the dynamic
- and logically pri-n Ldea of rigid motion. Is Lt trivial to
say there exist rigl -tons between lines or btrc-veen planes or
between space and i% Just to ask this questi= discloses a

broad vista: One c the r:.'incipal concerns of con-2mporary

geometry (or context- 7 nathematics) is the study of transform-

atLons (rigid and n n-dimensional spaces,
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Consider the simplest case:
Al BI CiRigid motions which transform a

line L into a line L' If

L L' we have slides or trans-

.

lations which "move" the points , A

of L along parallel transversals

to get their corresponding points

of L'. If L and L' meet in

just one point C we have a
A'

rotation about C. If L and

L' coincide, that is L LI,

we have two types of rigid motions

operating on L:

(1) translations along L;

(2) reflections of L in a pc_nt C, where point C of L is

"fixed" (that is it corresponds to itself) and every other point

of L "moves" on L from one side of C to the other.

L

Similar considerations apply to planes. The theory culminates

in the study of rigid motions of space - that is between space and

itself. Here the basic types are translations, in which no point

is fixed, rotations in which each point of a line (the axis of the

rotation) is fixed, and reflections in a olane E in which each

point of plane E is fixed and the half-spaces separated by E

are "interchanged". More precisely a reflection in E is a

transformation X*---4X' such that if X is in E then X' = X

and if X is not in E then E is the perpendicular bisector

of XX'. All rigid motions of space are "combinations" of these

three basic types, just as all positive integers other than I

are combinations of primes.
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You may say that the theory of rigid motions of lines, planes
and space is attractive and relatively simple, but haven't we left
out the annoying complexities involved in the study of specific

congruent figures like segments, truncated triangular pyramids
and cones with oval bases? Not at all: They are elegantly

covered in the theory of rigid motions of the basic "linear

manifolds": line, plane, space.

As a very simple illustration
1

suppose segment AB is congruent

to segment A'B'. Then there is a

rigid motion between them which,

let us say, makes A correspond

to A' and B to B'. Now we

have the remarkable result that

this rigid motion, which is a certain kind of 1-1 corresPondence
between E 2;ments AB and A'B can be extended to form a rigid
motion b :leen the whole line AB and the whole line A'B' -

and this extension can be made in just one way. Thus we don't
disturb the correspondence between AB and A,B, but "amplify"
it by suitably defining a uni.:-..ue correspondent for each point ofE-->
AB not in AB, so that the final correspondence is a rigid4,
motion between AB and A'B'. So in the study of rigid motions
between lines as wholes, we are automatically covering all possible
rigid motions (and hence all possible relations of congruence)
between "linear" figures; (that is, subsets of lines which contain
more than one point). Similarly any rigid motion between "planar"
figures (that is, subsets of a plane which are not contained in
any line) is uniquely extendable to a rigid motion of their
containing planes. Finally we observe that any conceivable rigid
motion is encompassed by a rigid motion of space.
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III-10. Non-rigid motions. As we have indicated, modern

geometry is concerned with transformations that do not preserve

distance, as well as with those which do. In Euclidean Geometry

the most important example is a similarity, which bears the same

relation to similar figures that a congruence or rigid motion

does to figures which are congruent. Formally suppose ve

is a 1-1 correspondence between figures F and F' such that

PHoPI, Q4H-4,QI

always implies P'Q' = k.PQ where k is a fixed positive number.

Then we call the correspondence a similarity transformation or a

similarity and we zay F is similar to F'. It easily follows

that a similarity transformation - although it is not in general

a rigid motion - always preserves angle measures. This definition

of similar figures, when restricted to triangles, can be proved

equivalent to the familiar one. The simplest general type of

similarity is the dilatation (in a plane or in space) - this is a

similarity which leaves a given noint C fixed and radially
ftstretches the distance of any noint from C by a positive

factor k.

k,' 3
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Other important types of transformations are central 1:

various geometric theories. For example, "parallel proje

between planes in affine geometry: "centl-,,_ projection" betwt:en

planes in projective geometry; and topological transformations,
which are a type of continuous 1-1 correspondence, in topology.
The theory of map-making is concerned with various 'projections"

ZT other kinds of transformations between a sphere and a cone,
=ylinder or plane.

And so we have ended our talk by touching upaa a modern

generalization of rigid motion which well might merit a talk for
itself.



I::THODUCTij IDEAN GEOMETY.

.:,tout one hundred and fifty years ago, a revolution in mathe-

matical thoughtbe4-7,an with the discovery of a geometrical theory

which diCfered from the classical theory of space formulated by

Euclid about 300 B.C. Euclid's Geometry Text, the Elements, was

the Cinest example of deductive thinking the human race had known,

and had teen so censidered for two thousand years. It was believed

to be a cerfectly accurate description of physical space, and at

the same time, the only way in which the human mind could conceive

space. It is no ,small wonder then that the development of theories

of non-Euclidean geometry had an impact on mathematical thought

comparable to that of Darwin in biology, Copernicus in astronomy

or Einstein in physics.

How did this revolutionary change come about? Strangely

enough Lt may be considered to have had its origin in Euclid's

text. Although he lists his postulates at the beginning, he re-

frains from employing one of them until he can go no farther

without it. This is the famous fifth postulate which we may state

in equivalent form as

Euclid's Parallel Postulate. If point P is not on line L,

there exists only one line through P which is parallel to L.

It seems probable that Euclid deferred the introduction of

the fifth postulate'because he considered it more complex and

harder to grasp than his other postulates.

The consequences of introducing Euclid's Parallel Postulate

are almost phenomenal. Using it we get in sequence:

I. The Alternate Interior Anzle Theorem for parallel lines;

The sum oC thu measures of the angles of a triangle

310
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3. Parallel lines are everywhere equidistant;

4. The existence of rectangles of preassigned dimensions.

As remote but recognizable consequences of Euclid's Parallel

Postulate, we have:

5. The familiar theory of area in terms of square units

which in effect reduceS any plane figure to an equivalent rect-

angle;

6. The familiar theory of similarity;

7. Thk.! Pythagorean Theorem.

It is hard to see how any of these important results could be

. proved without recourse to Euclid's Parallel Postulate or an

equivalent assumption.

There is no explicit evidence that Euclid considered the

fifth postulate an improper assumption in his basis for geometry.

But generations of mathematicians for over 2000 years were

dissatisfied with it, and worked hard and long in attempts to

deduce it as a theorem from the other seemingly simpler postulates.

Right up to the beginning of the 19th century able mathematicians

convinced themselves that they had settled the problem only to

have flaws discovered ln their work. Sometimes they employed the

principle of the indirect method and developed elaborate and

subtle arguments to prove that the denial of Euclid's Parallel

Postulate would force one into a contradiction. None of these

argument: stood up under analysis. Finally early in the 19th

century, . Bolyai (1802-1860) a Hungarian army officer, and

N. I. Lotachevsky (1793-1856) a Russian professor of mathematics

at the Un:yersity of Kazan, independently introduced theories of

geometry based on a contradiction of Euclid's Parallel Postulate.

The purpose of this talk is to give an elementary intro-

duction tJ the non-Euclidean theory of geometry which Bolyai

and Lobacevsky created.

3 1 I.
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I. Two Non-Euclidean Theorems

In this part we try to give you - without a long preliminary
discussion - the flavor of non-Euclidean geometry. Our viewpoint
is this: Suppose we consider the hypothesis that there are two
lines parallel to a particular line through a particular point.
What will follow? As a basis for our deductions we assume the
postulates of Euclidean geometry except the Parallel Postulate,
specifically Postulates 1, ..., 15 of the text.

Theorem 1. Let P be a point and L a line such that there
are two lines through P each of which is parallel to L. Then
L is wholly contained in the interior of some angle.

ProoT: Let lines M and N contain P and be parallel to
L. Then M and N separate the plane into four "parts" each of
which is the interior of an angle. Specifically these parts or
regions may be labelled as the interiors of the angles Z APB,
A'PB,, L A'PB, L APB' where P is between A and A' on M

and P is between B and B' on N. Let Q be any point of L.
Since L does not meet M or N, Q is not on M or N. So Q is
in one of the four angle interiors say the interior of Z A'PB.
Now where can L lie? Note that one of its points Q is in the
interior of L A'PB and that L 'does not meet the sides of the
angle L A'PB. Clearly L is trapped inside Z A,P3 and the
theorem is proved.
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Observe how strange this is when compared with the Euclidean

situation where only a part of a line can be contained in the

interior of an angle, as indicated in the figure. But note - as

always in mathematics - the-inevitability of the result once the

hypothesis is granted. You may say the argument is valid abstract-

ly - but it doesn't correspond to phylcal reality.

As you make a statement like this you begin to tread the path

of the non-Euclidean geometers. All that one needs to think mathe-

matically isa set of precisely stated assumptions (postulates)

from which conclusions (theorems) can be derived by logical reason-

ing. Are these assumptions absolutely true when applied to the

physical world? We don't really know. It is not our professional

concern as mathematicians to answer the question. It lies in the

dompth of physicists, astronomers and surveyors. As human beings

who work in mathematics we may like to feel that our theories are

applicable to physical reality. But this doesn't require the

absolute truth of our postulates or our theorems. When Euclidean

geometry is applied by an architect or engineer or surveyor he

doesn't require results which are absolutely correct - he might

consider this a mirage. Rather he demands results correct to the

degree of precision required by his problem - accuracy of one part

in a hundred might be excellent.in a pocket magnifying glass but

one part in a million might be too rough for a far-ranging

astronomical telescope.

Our Cirst theorem indicated how positional or nun-metrical

properties in a nonEuclidean geometry might differ from our

Euclidean xpectations. Now we show how metrical properties -

specifical y the angle sum of a triangle - are altered when we

change th Parallel Postulate.

Theolem 2. Let P be a point and L a iine such that there

are two llnes through P each of which is parallel to L. Then

there exits at least one triangle the sum of whose angle measures

is less than 180.

3 I 3
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We first prove a lemma.

Lemma. If the sum of the angle measures of a triangle is
greater than or equal to 180 then the measure of an exterior

angle is less than or equal to the sum of the measures of the two
remote interior angles.

Proof: We have a + b + c > 180. Hence

a + b > 180 - c = d.

Proof of Theorem 2: Suppose the theorem false. Then the
sum of the angle measures of every triangle is greater than or
equal to 180.

Let L be a line and P a point such that there are two
4E->

lines through P parllel to L. Let line PQ be perpendicular
to L at Q. Since there are two lines through P parallel to
L one of these must make an acute angle with line PQ. Suppose
then line W is parallel to L and makes an acute angle,4-
Z QPX, with line PQ. Let line PY be perpendicular to line

with Y on the same side of line IFee' as X. Let m,Z yPX = a;
then a < 90. (Think of a as a small positive number, say .1.)

Now locate R, on L so that QR1 PQ a4d R, is on the same
side oC PQ as X and Y. Draw segment PR1. Then A PQR1 is-

isosceles so that mi" QPR1 = mL QR1P = al. Since the exterior
angle of A PQR1 t Q is a right angle, the Lemma implies

3
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a
1
+ a

1
= 2a

1
> 90

and

Let rilL YPR1 = b . Then

so that

a
1

> 45.

b
1

+ a
1

90,

bl = 90 - al

and bl < 45.

Moreover b
1

> a.

Now we repeat the argument by constructing a new triangle.

Extend segment QR1 to R2 making R1R2 PR1. Draw PR2.

Then A PR1R2 is isosceles, so that mL R1PR2 = mL R1R2P = a2.

By the Lemma

a2 + a2 = 2a2 2. al.

So that 2a2 2 al 2 45

45and

Let mL YPR2 = b2. Then

b2 + a2 = bl,

b2 = bl - a2.

45Since bl < 45 and a2 > 7r. we have

45b2

Moreover b
2

> a.

Continuing in this way we obtain a sequence of real numbers

b
1,

b
2'

b
3'

which are less than or equal to respectively

45 45
45, 77-,

but all of which are greater than the fixed positive number a.

This is impossible since repeated halving of 45 must eventually

produce a number less than a. So our supposition is false and

the theoreM holds.
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P. proof of this type, though not difficult, may be unfamiliar

and you may have to mull it over a bit to appreciate it better.

In intuitive terms it is nct very hard. There are two main points.>
First, the ray PX which doesn't meet L acts as a sort' of

boundary for the rays PR1, PR2, ... which do meet L. Thus the
angles L YPR 1,

YPR2, ... have measures bl, b2, ... which
are greater than a. On the other hand (if the sum of the angle

measures of every triangle is at least 180) we can pile up

successive angles L QPR R
1
PR

2' .", starting at ray Tal;r,

45 45of measures at least 45, 7F, 77, ... so that the angles

45 45YPR1, YPR2, ... have measures at most 45, 77,

So we have a contradiction in that the angles L YPR1, ypR2,

... have measures which approach zero but are all greater than a

fixed positive number a.

A final remark. You may object that we have not really> >
justified that PX is a "boundary" for PRI, PR2, . To

take care of this observe that PR
1

and PX are on the same side

of'llne PQ. Consequently one of them must fall inside the angle>
formed by PQ and the other. Suppose PX fell inside L QPRi.
Then PX would meet line 01. Since this is impossible,

PRI, must lie inside L QPX. Similarly for PR2,
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II. Neutral Geometry

We are using the term "neutral geometry" in this part to

indicate that we are assuming neither Euclid's Parallel Postulate

nor its contradictory. We shall merely deduce consequences of

Euclid's Postulates other than the Parallel Postulate, (specifical-

ly our discussions are based on Postulates 1, ..., 15 of the text).

Our results then will hold in Euclidean Geometry and in the non-

Euclidean geometry of Bolyal and Lobachevsky since they are

deducible from postulates which are common to both theories. Our

study Is neutral also in the sense of avoiding controversy over

the Parallel Postulate. Actually its study helps us to accept

the idea of non-Euclidean geometry since it points up the fact

that mathematically we have a more basic geometrical theory which

can be definitized in either of two ways.

We proceed to derive some results in neutral geometry. Since

you are familiar with so many striking and important theorems

which do depend on Euclidls Parallel POstulate you might think

that there are no interesting theorems in neutral geometry. How-

ever, this is not so. First we sketch the proof of a familiar

and important theorem of Euclidean geometry whose proof does not

depend on a Parallel postulate (see text, Theorem 7-1).

Theorem 3. An exterior angle of a triangle is larger than

either remote interior angle.

A

Proof: Given A ABC with exterior angle L BCD. We show

mL BCD is greater than mL B and mL A. Let E be the mid-point

of segment BC and let F be the point :'1.1ch that AE = EF and

E is between A and F. It follows that A BEA -=.4 A CEF so

that mZ B = mL ECF.

But mL BCD = mL ECF + mL FCD.

3
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-"sDr mL E:7?

mL BC. +

mL BCD > LIL

as usual by applying the above -ument to

show that tr-1 al angle of z BCD is larger tha: A.

Corollary 1, The sum of the measures of two ang:..13: :Tf a

triangle is le an 180.

Proof: Giv: A ABC we show -.T1L A + mL B < 180. By the

theorem mL A iE tass than the meazure of an exterior angle at

B. Thus mL A < 180 - mL B

.so that

mL A + mL B < 180.

This corollary is important since, without assuming a parallel

postulate, it gives us information about the angles of a triangle.

It tells Us for example, that a triangle can have at most one obtuse

angle or at most one right angle.

Corollary 2. In a plane two lines are parallel if they are

both perpendicular to the same line (compare text, Theorem 9-2).

Proof: The basic properties of perpendicular lines in

Euclidean geometry are studied prior to the introduction of the

Parallel Postulate, and so are part of (or are valid in) neutral

geometry. Thus the familiar proof of the corollary is applicable:

If the two lines met we would have, in a plane, two lines per-

pendicular to the same line at the same point. This is impossible

and the lines can't meet.

Corollary 3. Let L be a line, and let P be a point not

on L. Then there is at least one line through P, parallel to

L.
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Proof7 Th

on the existenc

L2 J L1 through

Observe that .

has yielded a very

exist. More prec.i.:.

to a given line th-

without assuming a

our study of the t

one, or more than

external point.

To prove an 17.

_L'om Corollar7 2 by the miliar theorem

Lculars: Let
1

L rough P, and

L2 L1 .

_tar - almost hackneyed - discussion

princLple: That parallel lines

=-e exiss at least one line parallel

-n -xternal point. And w got this result

postulatet So the :7'ucial point in

arallelism will be whether there is

. parallel to a given line through an

and not sufficiently well known,

theorem of Legendre 17 _L-1833) we introduce the following:

Lemma. Given

AA
1
B
1
C
1

such th:._

6ABC; (b) mL A
1 -

A

and L A. Then there exists a triangle

it has the same angle measure sum as

Proof: We use t 71=e construction as in Theorem 3. Let

E be the mid-point

Is between A and F.

and let F satisfy AE = EF and E

11.1._2n A BEA = A CEF and corresponding

angles have equal meares. A AFC is the A A1B1C1 we are

seeking. We have

ITIL A B + C = 1 + ITIL 2 + rilL 3 + m/ 4

ITIL 1 + mL 2 + ITIL 3' + mL 4

ITIL GAF + ITIL AFC + mL FCA.

To complete the pro:f r_D-_e that

mL A = mL 1 + trILL2 = mL 1 + ITIL 2'

so that

ITIL A = mL ,F mL AFC.
1Hence one of the te7. )n the right is less than or equal to

1
the term on the left, t.hat is -rL A. Consequently A AFC can

be relabeled A A
1
B
1
C- so as to make the theorem valid.

--

0
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Note that since we have not assumed Euclid's Pari& Postu-

late we don'-. know that the'angle measu.?e sum is constiln: for al:

triangles. :o the lemma is a significant result in th ,3 can

construct fl-:m a given triangle a new one with the sam:

measure sum. In intuitive terms we can replace a trianu- by a

"slenderer" one without altering its angle measure susE, effect

the proof shows this by cutting off A ABE from A ABC past-

ing it back on as A FCE.

Now we can prove the following remarkable theorem.

Theorem 4. (Legendre.) The angle measure sum of 7=7 triang1.a.

is less than or equal to 180.

Proof: Suppose the contrary. Then there must exist a tri-

angle, A ABC, whose angle measure sum is 180 + p, where p Is

a positive number. Now we apply the Lemma. It tells us that there

exists a slenderer triangle, A AiBiCi, whose angle measure sum

1 /also is 180 + p such that mL < vilL. A.

To fix our ideas let us say p = 1 and mL A = 25. Then

mL A1 + mL B1 + mL C1 = 181 and m/.. A1 <

Pressing our advantage we reapply the lemma. So there is a

still slenderer triangle, let us call it A A2B2C2, whose angle

1measure is 180 + p and mL A2 < .2mL Al. That is

25A2 + mL B2 C2 = 181 and A2 <

Continuing in this way, we get a sequence of triangles each

anzle measure sum 181 and with successive angles of measureLl

greater than

25
25 25 25

, 7r, 7T,

3 2
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To see 7:his 4 impossible, c-1:_ider -B-C
5

for which
D

rilL A
5
< p

We.have

Certainly

but

+ rTIL 05 = 1t1

ITIL A
5

< 1,

mL B + niL C, < 180

by Corollary 1 tc Theorem 3. Adding the inequalities,

ITIL A5 + B5 + c5 < 181.

This contradiction implies our supposition false, and the

is established.

Note th-- point of t'he proof is to get a triangle so "slender",

that is with one angle sc small, that the triangle 'can't exist by

Corollary 1 :_bove. It may now be instructive to write out the

pn7of in general terms without assigning s_pecific values to p

amiL .m,/ A.

Corollary 4. The angle measure sum of any quadrilateral is

less than or equal to 360.

A5 <

321.
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71-I. Do Rectarzl Exist?

ttudy neutral 72-:. otry, and are interested in

wheth . r- can exist in a geometry, and what happens

if it our theore7. .ill have the hypothesis that

a rectangle We use freely 7L3 results of Part II on

neutral geome=

exis Di a rectangle ti a geometry is not a trivial

thing - imagt Lat Euclidean geon7-ry would be like if you didn't

have could_ 't rectangles. you try to construct a rect-

angle "-iu wil_ you :.re assumingEuclid's Parallel Postulate

or one of its .ons-L.-quences, such as, 7he angle measure sum of a

triangle is O.

First, ts avoid amblguity, we frmally define rectangle as

we shall use the term.:

Definitican.. A (plane) quadrilateral is called a rectangle

if eanh of its an71.:2s is a right angLe.

Notice that sl..nce we are operating in neutral geometry and

have not.ats-:7ed Eaclid'..: Parallel Postulate, we can't automatical-

ly apply fa: _Liar Euclie'-,3n propoaltions, such as (1) the opposite

sides of a Lre..-fotangle are paralle-i_ or (2) that they are equal in

length, 07 _7.1 that a d..-gonal ttdes a rectangle into -tw con-

gruent tr. ies. If w want .f.asert any of these results we

will 1-7e prov..: them 'from :-r ?finition without assuming- a

paral:el Fcr example, is immediate by Corollary.2.

lf one partlar rectangle exists then a rect-

arL. LE-7- 747t-t an artitrarily lamm-e aide.

Restateant-: Sup=e a tare ABCD exists and x is a

gi----en pcsti:f' =al number% Than tnere exists a rectangle with

on.eside cf z-reater tmst:n. x.

9 0
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Prc.tf: We Lts. ABCD as a _Lng blook" to construct the
a=2.sired rectangle. Construct c.ir ateral DCEP congruent to

tha7, EF and AB a 'e :osite sides of line CD.
Then DCER a re:tangle. B. C, E ._1e on a _Lne by
a familLa p2:.pend'ularity p: oe' . Similarly, A, D, F are
collinear. ABCEFD is a quad:'ILateral ABEF and consequently
a rectangle. N-L,te ABEF has the Tronerty that

AF = 2.
Similar_ we osnstruct FEGH a congruent replica of ABCD

os 4-4that GH and AB are on onposao, sides of line EF. And we
see that ABC.: is a rectangle 311Ch that

=

Continuing in this way we can const=ct a rectangle AEIE such
that

;-,1Z = nAZ

for each positive integer n. Now choose n so big that nAD > x.
Then ABYZ sat±sfie th c7--7 itions of our theorem.

2212111=j2. If tne par-oicular rectangle exists, tnen a
rectangle exists with two art.1-arily large adjaaent sites.

Restatement: Suppose a oaangle ABCD ext and x, y
are given positi7e real nilt-lbet. Then 7oere existz a =tan:741e
PQRS such that 77,. > x 7:7'1

z'

Proof: By the taeorem we have a rectangle ABYZ wito
AZ > x. By placLng _ccessve congruent replicas of ABYZ "Tan

top" of each othr strtin with APYZ, we e7Tantua1ly _zat a
rectangle AA7.7- y ant AZ > x.

1 ;0
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Theorem 6. If one particular rectangl eists then a rect-

angle i'xists with two adjacent aides of presaLgned lengths x, y.

Proof: Our method is that of a tailor: r the last corollary

we get a rectangle PUS such that PQ > x and PS > y; then we

cut it down to fit
S R' R

There is a point Q' in --, such that x. Lroz-: a

perpendicular from Q' to I.Le with fc::D R'. We sh014.

PQ'R'S is a rectangle. It certainly has ri;La angles at 1), S,

R'. We show L PQ'R' also is a right an7ae. Zuppose m/ FCCF:

> 90. Then the sum of the angie measures of n_latrilat=a1

PQ'RIS is greater than 360 c,',.ntr:an.y tc thL-7, cc:ollary cf

Legendre's, Theorem (Fart II). Su'ppose PZ-19, < 90 Thal'

NIL Q(PR' > 90 and quadrilateral ha= an angle

sum greater than 360. Thus the cray posltL1.ty f_s m, = 90,

and PQ'R'S is a ractangla.

In the same way there .is :=int E- PS such_ that

PS' = y. Drop a perpendicular S' o 1Lne, Q'R, toot

R". Then as above TQ'R"S' Is a rectangle, =Id it has

PQ' and PS' of lengths x ant y.

Theorem 7. If one particular rectan=1 exLsts then every

,right triangle has an angle ma:at-ure sum

A

.) 1

00: Dl

Bz
C.
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Proof: Our procedure is to show: (1) any right triangle is

congruent -7,T, a trLangle formed by the splitting of a rectangle by

a dtagonal, and (2) the latter type of triangle must have an

angle measure of 180. Let A AEC be a right triangle with

'right anw.le at B. By Theorem 6 there exists a rectangle AIB'CIDI

with A'E' = AB and B'C' = BC. Draw A'C'. Then

A ABC A A'B'C' and they have the same angle measure sum.

Let p be the angle measure.sum of A A'B'C and q be that

of A A'C'D'. We have

(1) p q . 4.90 = 360.

We want -Lc) show p = 180, By Legendre's Theorem p < 180 or

180. SuToose ,p < 180. Then by (1) q > 180, contrary to

..Legendres T .eorem. So p = 180 must hold and the proof is

complete.
,

Theorer: 8. If one particular rectangle exists then every

triangle has an angle measure sum of 180.

A c
Proof: Any triangle A ABC can be split into two right

triangles. Each of these has angle measure sum 180 by Theorem 7.

It easily follows that the same holds for A ABC.

This is a rather striking result: The existence of one puny

rectangle with microscopic sides inhabiting a remote portion of

space guarantees that every conceivable triangle has an angle'

measure sum of 180. Since this is a typically Euclidean Property

we are tempted to say that if in a neutral geoMetry a rectangle

exists, the geometry must be Euclidean. The statement is correct

but not fully justified, since to characterize a neutral geometry

as Euclidean we must know that it satisfies Euclid's Parallel

Postulate. This can now be proved without trouble.

3 2 5
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Theorem 9. If one particular rectangle exists then Euclid's

Parallel Postulate holds.

Proof: Suppose a rectangle exists but Euclid's Parallel

Postulate fails. Then there must exist a line L and a point P

such that there are two lines through P parallel to L, since

by Corollary 3 there is at least one line parallel to a given

line through an external point. Then by Theorem 2 there exists

one triangle, at least, whose angle measure sum is less than 180.

This contradicts Theorem 8. Consequently Euclid's Parallel

Postulate must hold.

What we have justified is a remarkable equivalence theorem,

namely: Euclid's Parallel Postulate is logically equivalent to

the existence of a rectangle. That is, taking either of these

statements as a postulate we can deduce the-other as a theorem,

provided of course we assume the postulates for a neutral geometry.

An interesting condition"equivalent to the existence of a

rectangle is the existence of a triangle whose angle measure is

180:

Theorem 10. If there eN.ists one particular triangle with

angle measure sum of 180; then there exists a rectangle'.

A

Proof: Suppose A ABC has angle measurc sum 180. First

we show there is a light triallgle with angl measure sum 180.

Split A ABC into two right triangles, whose angle measure sums

are say p and q. Then

p q = 180 = 2.90 = 360.

3 2 6
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We show p - 180. By Legendre's Theorem, p < 180. If p < 180
then q > 180 contrary to Legendrels Theorem. Thus there is a
right triagle, say A ABD, which has angle measure sum 180.

8

A

Now we put two such right triangles together to form a rect-
angle. Construct A ARR A BDA with E on the opposite side
of line AB from D. Show ADBE is a rectangle.

Corollary 6. If one particular triangle has angle measure
sum 180 tilen every triangle has angle measure sum 180.

Proof:

Coroll

sum 180 t

Proof:

By Theorems 10 and 8.

ry 7. If one particular triangle has angle measure
en Euclid's Parallel Postulate holds.

By Theorems 10 and 9.

Coroll ry 8. If one particular triangle has an angle measure
sum which i less than 180 then every triangle has an angle

measure sum less than 180.

Proof: Suppose A ABC has angle measure sum less than 180.

Consider any triangle A PQR. By Legendrels Thebrem its angle

measure sum p must satisfy p = 180 or p < 180. Suppose
p = 180. Then by Corollary 6, A ABC has angle measure sum 180,

contrary to hypothesis. Thus p < 180.

Compar ng Corollaries 6 and 8 we observe an important fact.

A neutral Tmetry is "homogeneous" in the sense that all of its

triangles have an angle measure sum of 180 or they all have

angle measure sums less than 180. The first type of neutral

geometry is merely Euclidean geometry - the second type corresponds

to the non-Euclidean geometry developed by Bolyai and Lobachevsky.
This will be discussed in the next part.

9 ;
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EXe.Ini2e: 1. Suppose there only one line parallel to a

particular 1ne L th.=ugn a particular point P. Prove that

Euclid's P, allel Postulate holds.

Exercse 2. Suppcse there E.J2e two lines parallel to a

partf:.:ular line L ttt-gh a Tarticular point P. Prove there

are t,eio lines parallel to :Eich line through each external point.
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IV. Lobachevskian Geometry

Now we introduce the non-Euclidean geometry of Bolyai and

Lobachevsky as a formal theory based on its own postulates. We

call the theory Lobachevskian geometry to signalize the lifetime

of work which Lobachevsky devoted to the theory. To study

Lobachevskian geometry we merely assume the postulates of Euclid-

ean geometry but replace Euclid's Parallel Postulate by Lobachev-

sky's Parallel Postulate: If point P is not on line L there

are at least two lines through P which are parallel to L. In

other words we assume the postulates of neutral geometry (Postu-

lates 1, ..., 15 of the text) and adjoin Lobachevsky's Parallel

Postulate. Consequently the theorems which we have already de-

rived are valid in Lobachevskian geometry. In fact, by putting

together two earlier results we get the following important

theorem.

Theorem 11. The angle measure sum of any triangle is less

than 180.

Proof: By Theorem 2 there exists a triangle whose angle

measure sum is less than 180. Hence the same is true of every

triangle by Corollary 8.

Corollary 9. The angle measure sum of any quadrilateral is

less than 360.

Proof: By the corollary to Legendre's Theorem (Part II,

Theorem 2) the only other possibility for the value is 360 - and

this is ruled out by Theorem 11.

Corollary 10. There exist no rectangles.

Now we show that similar triangles can't exist in Lobachev-

skian geometry, except of course for the trivial case of congruent

triangles.

:3 2 ;)
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Theorem 12. Two triangles are congruent if their correspond-
ing angles have equal measures.

A

Proof: Suppose the theorem false. Then there exist A ABC
and A A'B'C' which are not congruent such that mL A . mL A',
mL B = mL B', mL C = mL C'. Since the triangles are not congruent
AB / A'B' (otherwise they would be congruent by A.S.A.). Similar-
ly AC / A'C' and BC-/ B'C'. Consider the triples AB, AC, BC
and MB', A'C', B'C'. One of these triples must contain two

numbers which are greater than the corresponding numbers of the
other triple. Consequently it is not restrictive to suppose
AB > A'131 and AC > A'C'.

Then we can find B" on AB such that A'B' . AB" and
C" on AC such that AIC' = AC". It follows that
A AB"C" A'BIC, so that

mL AB"C" mL B' mL B.

Hence z BB"C" is supplementary to L B. Similarly L OCIIBII
is supplementary to Z C. Therefore quadrilateral BB"C"C
has an angle measure sum of 360. This contradicts Corollary 9
and our proof Ls complete.

We have here a striking contrast with Euclidean geometry. In

view of Theorem 12, in Lobachevskian geometry there cannot be a

theory of similar figures based on the usual defLnition. For if
two triangles were similar, the measures of their corresponding

angles would be equal and they would have to be congruent. In
general two similar figures would be congruent and so have the
same size. In a Lobachevskian world, pictures and statues would
have to be life-size to avoid distortion.

3 3 0
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Now let us consider the question of measurement of area. For

the sake of simplicity we restrict ourselves to triangles. Clearly

the Euclidean procedure of measuring area in terms of square units

will not apply since squares don't exist in Lobachevskian geometry.

To clarify the problem we ask what are the essential characteris-

tics of area. As a minimum we require:

(1) The area of a triangle shall be a uniquely determined .

positive real number;

(2) Congruent triangles shall have equal areas;

(3) If a triangle T is split into two triangles Tl and

T
2

then the area of T shall be the sum of the areas of T
1

and

T2.

It is easy to verlify that the familiar formula for the area of a

triangle in Euclidean geometry satisfies these conditions.

There is a similar area formula (or area "function") in

Lobachevskian geometry but it is most naturally expressed in terms

of the angles of a triangle. To state it formally we introduce the

Definition. The defect (or deficiency) of A ABC is

180 - (mL A + mL B + mL C).

Note that the defect of a triangle literally is the amount by

which its angle measure sum falls short of 180.

The defect of a triangle has the essential properties of

area:

Theorem 13. The defect of a triangle satisfies Properties

(1), (2), (3), above.

Proof: Clearly (1) is satisfied since the defect of a tri-

angle is a definite positive number. Property (2) holds since

congruent triangles have equal angle sums and so equal defects.



To establish (3) let A ABC

be given and let D be a point of

so that A ABC is split into

A ABD and A ADC. The sum of

the defects of the latter two

triangles is

579

180 - (mL BAD +mL B+ mL BDA) + 180 - (mL CAD+ mL C+mL CDA)

= 180 - (mL BAD+ mL CAD + rrIL mL C)

= 180 (niZ BAC+ mL P+ mL C)

which is the defect of A ABC.

Are there other area functions besides the defect? It is
easy to verify that if we multiply the defect by any positive
constant k, we obtain an area function which satisfies Properties
(1), (2), (3). This is not as remarkable as it might seem, since
the specific form of our definition of defect depends on our basic
agreement to measure angles in terms of degrees. If we adopt a
different unit for the measure of angles and define "defect" in
the natural manner, we obtain a constant multiple of the defect
as we defined it. To be specific, suppose we change the unit of
angle measurement from degrees to minutes. This Would entail two
simple changes in the above theory: (a) each angle measure would
have to be multiplied by 60; (b) the key number 180 would
have to be replaced by 6o times 180. Thus the appropriate
definition of "defect" would be 60 times the defect as we
defined it.

Finally we note that it can be proved that any area function
satisfying (1), (2), (3) must be k times thg Agfect (our
definition) for some positive constant k. In view of this it is
natural to define the area of a triangle to be its defect.

QuerY. Which of the Properties (1), (2), (3) holds for the
defect of a triangle in Euclidean geometry?

332
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It is interestIng to note that in Euclidean spherical geometry

the sum of the angle measures of a triangle is greater than 180

and the area of a triangle is given by its "excess", that is its

angle measure sum minus 180.

Exerclse 1. Given A ABC with points, D, E, F in

AB, BC, AC respectively. Prove that the defect of A ABC is

the sum of the defects of the triangles ADF, BED, CFE, and

DEF.

Exerci.e 2. If points P, Q, R are inside A ABC prove

that A ABC has a larger defect than A PQR.

We conclude this part by observing that th- 'amiliar Euclid-

ean property - parallel lines are everywhere equidistant - fails

in Lobachevskian geometry. In fact there are parallel lines of

two types. If two parallel lines have a common perpendicular

they diverge continuously on both sides of this perpendicular.

If two parallel lines don't have a common perpendicular they are

aSymptotic - that is if a point on one recedes endlessly in the

proper direction, its distance to the other will approach zero.

333
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Conclusion

In its further development Lobachevskian geometry is at least

as complex as Euclidean geometry. There is a Lobachevskian solid

geometry, a trigonometry and an analytic geometry - problems in

mensuration of curves, surfaces and solids require the use of the

calculus.

You may object that the structure is grounded on sand - that

Lobachevskian geometry is Inconsistent and eventually will yield

contradictory theorems. This of course was the implicit belief

that led mathematicians for 2,000 years to try to prove Euclid's

Parallel Postulate. Actually we have no absolute test for the

consistency of any of the familiar branches of mathematics. But

it can be proved that the Euclidean and Lobachevskian geometries

stand or fall together on the question of consistency. That is,

if either is Incor-,istent, so is the other.

Once the ice had been broken by Bolyai and LobachevskylE

s,ccessful chr_le:Ige to Euclid's Parallel Postulate, mathematf7Ltans

were stimulate t set up other non-Euclidean geometries - that is,

geometric theu ,2s which contradict one or more of Euclid's

Postulates, or approach geometry in an essentially different way.

The best known of these was proposed in 1854 by the German

mathematician Riemann (1826-1866). Riemann's theory contradicts

Euclid's Parallel Postulate by assuming there are no parallel

lines. This required the abandonment of other postulates of

Euclid since we have proved the existence of parallel lines with-

out assuming any parallel postulate (Corollary 3). In Riemann's

theory, In contrast to those of Euclid and Lobachevsky, a line

has finite length. Actually there are two types of non-Euclidean

geometry associated with Riemann's name, one called single

elliptic geometry in which any two lines meet in just one point,

and a second, double elliptic geometry, in which any two lines

meet in two points. The second type of geometry can be pictured

in Euclidean space as the geometry of points and great circles

on a sphere.
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Riemann also introduced a radically different kind of

geometric theory which builds up the properties of space in the

large by studying the behavior of distance between points which

are close together. This theory, called Riemannian Geometry,*

is useful in applied mathematics and physics and is the mathematic-

al basis of Einstein's General Theory of Relativity.

Bolyai and.Lobachevsky have opened for us a door on a new

and apparently limitless domain.

33:)



MINIATURE GEOMETRIES

1. Preamble. In a given set of postulates for a special

part of mathematics, it is hardly to be expected that the laws of

classical logic, the rules of grammar and a definition of all the

ter, be rt :.tded. We reccEnize their need but assume them when-
ever usea. We als': assume that the reader is familiar with the

usual laws ot' arithmetic and alEebra that may be used. Indeed
there may other needed logical assumptions that are overlooked

so that the emphasis may be plar2ed upon the particular topic under

immediate LLsussion, and the .costulates will be confined to those

that have _immediate geometri.c use.

2. Characteristics of a costulate system. What poatulates

should we malce? There is no definite answer to this question.

The answer depends upon the audience and upon the purpose and the

preferences (or prejudices) of the individual. However, there

are some desirable characteristics of a postulate system, which

we proceed to discuss. We may not be able to attain all of them,

and may have to make some 'compromises.

(1) Simplicity.* The postulates should be simple, that is,

easily understood by the audience for which they are intended.

But simple is a relative term, and depends upon the experience

of the audience.

(2) Paucity. It may be desirable to have only a few unde-

fined entities and relations and to make only a few assumptions

about them. It may be necessary to sacrifice these characteris-

tics to Eain simplicity of understanding. Most texts on plane

geometry for beginning students do ,sacrifice these characteris-

tics, and some texts over-do it to avoid proving converses,

especially IC the method of proof by contradiction is needed.

This puts a high premium on factual geometry as against logical

geometry. It is not my purpose here to condemn or commend this

*See Nelson Goodman, "The Test of Simplicity", Science,
October 31, 1958, Vol. 128.
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point of view. It all depeis upon the audience and the purpose

of the text, but it may be very difficult to determine (except by

the Rule of Authority) whether the system satisfies the next

characteristic.

(3) Consistency. The postulate system should be consistent.

It should not be self-contradictory. This part may be easy to

determine. For example, we would not want to include two assump-

tions such as (A): .Two lines in the same plane always have a

point in common (Projective Geometry) and (B): There are lines .

in the same plane that have no point in common (Euclidean Geometry).

But more is needed. The postulate system should never lead to a

contradiction. This may be-difficult to determine or impossible

to determine. We seldom know all the consequences of the postulate

system, and in that case the proof of absolute consistency may not

he possible. We content ourselves with relative. consistency. If

we can give at least one interpretation of the undefined terms

based upon our experiences or experiments for which we grant all

the assumptions are true, we are satisfied. We call ouch an

interpretation a model. In the ,2.ace a simple system such as

that for A miniature geometry, the construction of such models

may be possible, and indeed in more than one way. In a complex

postulate system, such as that needed for all of Euclidean Geometry,

logically developed, this may be extremely difficult. If we have

more than one model for the same system so that we can find a

correspondence connecting every entity and relation of one model

with an entity and relation of each of the other models, that is,

put the models into one-to-one correspondence, we say the models

are isomorphic. We shall do this for some of our miniature

.geometries. But.for more complex geometric systems, we may not

have more than one model. The relatiVe consistency of Euclidean

Geometry is proved (but it is much too difficult for us to do it)

by using arithmetic as a model, and showing it is possible to put

Euclidean Geometry into one-to-one correspondence with arithmetic

logically developed. Since we have never found a contradiction in

arithmetic, we are content to say Euclidean geometry is as con-

sistent as arithmetic. If we wish to prove that a non-Euclidean
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geometry is relatively consistent, we find a model (interprzltation)

within Euclidean geometry for it and after that is done (it Ls not

an easy task and is beyond our intent), we know non-Euclide.::::

geometry is consistent if Euclidean geometry is. This is the

only way it can be done, for arithmetic (algebraic) methods 'Lre

also available.

(4) Independence. It may be desirable to have all th,5,

postulates independent, especially if we are seeking modelz. By

that we mean that the postulate system is such that no postulate

can be derived from the others. The arguments present in (2)

above are again applicable. In a given postulate system, it may

be possible to prove that some of the assumptions could be derived

from others, but it may be so difficult that it is a task to be

avoided. However, it is not really difficult to prove: "Two

distinct lines cannot have more than one poit c:pmmon'' T-rom

the assumption: "The 'J and only one linE: that contains two

distinct poInts". The method of contradiction iz used, and this

points out the essential importa.nce of this method of proof _LS we

wish to make good use of our assimptions of logic. The indepen-

dence of all the postulates of a sytem is most readily found in

terms of models. If we can find a model that satisfies all but

one of the postulates and denies that one, then that particular

postulate is independent of the others. If we can do this far

each postulate in turn, then the postulates form an independent

system.

(5) Completeness: A postulate system for Euclidean geometry,

or any other special geometry we wish to discuss, should also be

complete. That is, we must include enough postulates to prove all

the theorems we wish to prove. This topic will not be discussed

In detail here; it is enough to include a warning not to overlook

tacit assumptions as Euclid* and his imitators did.

*See-Felix Klein, Elementary Mathematics from an Advanced Stand-
point; Meserve, The Foundations of Geometry, p. 230-231; Wilder,
Foundations of Mathematics, Chapter 1, 2.
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We illustrate various ideas mentioned above by confining our

attention to incidence properties alone and make no attempt to

discuss postulates of measure or separation, but do recognize that

parallelism essentially an incidence property. First we confine

our attention to three types of miniature geometries which contain

only a finite number of points and lines:

I. P. three point - three line geometry; II. A four point - six

line geometry; III. A seven point - seven line geometry.

After that we illustrate the incidence properties of Hyper-

bolic Geometry by considering two models in which the number of

points on a line is infinite and where we change the Parallel

Postulate from Lts usual Euclidean form.

3. 'A th.ree point ELeometry.

Undefined: point, line, on.

Concerning these undefined terms, we make the following four

postulates:

Pl. There exist three and only three distinct points.

P2. On two distinctpoints there is one and only one line.

P3. Not all points are on the same line.

P4. On two distinct lines there is at least one point.

As far as consistency is concerned, there does not seem to be any

direct contradiction. The relative consistency of the system is

accepted on the basis of any one of the following three isomorphic

models.

(a) The usual model of a triangle, consisting

of three non-coIlinear points, but here a line con-

tains only two points. The line segments of a more

complete geometry are merely drawn to point out the

three pairs of points. A line is merely a set of

two points. It is easy to observe that Postulates

P1 -- P4 are all satisfied.

fl (10
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(b) A group of three boys forming committees of two in all
possible ways. If the boys are called A, B, C, the committees
are the three pairs (A,B), (B,C), (C,A). If the postulates are

read with 'boy' replacing 'point', 'committee' replacing 'line'

and 'member of' replacing 'on', with possible changes in language

to preserve the meaning, it is easy to see Pl, P2, P3 are

obviously satisfied by the way the committees were formed. A

simple observation of the three committees checks P4.

(c) Points are interpreted as the special ordered number

triples (x,y,z): A(1,0,0), B(0,1,0), 0(0,0,1). Lines are

interpreted as the special equations x = 0, y 0, z = O. A

'point' is 'on' a 'line' if its coordinates satisfy the equation
of the line.

P1 follows from our choice of coordinates.

P2 must be verified: A(1,0,0) and B(0,1,0) are both on
z = 0 but not both are on x = 0 or y = O. A similar veri-

fication is needed for the other pairs of points.

P3: The point A(1,0,0) does not satisfy the equation of
the line tl% x = O.

P4: There are three distinct pairs of lines (i) x = 0,

y = 0; (ii) y = 0, z = 0; (iii) z = 0, x = O. It is easy to
verify that C(0,0,l), A(1,0,0), B(0,1,0) lie on the pairs (i),

(ii), (iii) respectively.

We prove three theorems directly from the postulates without

a model. For heuristic purposes any one of the models could be

used.

Theorem 1. On two distinct lines there is not more than one

point.

Proof: If two lines had two distinct points in common, then

Postulate P2 would be contradicted. Hence Theorem 1 is true.
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Theorem 2. There exist three and only three llnes.

Proof: Since there are three and only three points (P1),

there are only three pairs of points: (A,B), (B,C), (C,A).

Each such pair determines one and only one line (P2) . These

lines are all distinct (P3). Hence there are three and only

three lines.

Theorem 3. Not all lines are on the same point.

Proof: There are three and only three lines (A,B), (B,C),

(C,A), (Theorem 2). The first and third are on the point A, but

this point is not on the line (B,C) because of P3. A similar

argument concerning the points B and C completes the proof.

Of course all three of these theorems could have been verified

in any model. That is, we could have taken them-as postulates too,

:but then the system would not have been an independent ona. 'To

demonstrate the independence of the original system P1 - P4 we

use geometric models but either of the other models could be used

equally as well. We use the notation P4' te indicate that P4

is denied but Pl, P2, P3 are satisfied. Similar meanings are

given to P3', P2', and P1'. The model P4' is constructed by

adding a fourth line (denying Theorem 2) in such a way that there

are two lines which have no point in common. This denies P4,

Acommittee
of one

P4'

commi tee of
three

P3'

but the other postulates are satisfied. In the model P3', all

three points are on the same line and the other postulates may be

verified. In the model P21, there are two lines which contain

both A and B. In terms of the committee interpretation you may

think of A and B both being on two distinct committees, say

the Finance Committee and the Custodian Committee. 'The model for

P11 is not shown here. It must contain more than three points.
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The smallest such model which will also satisfy the other a-cioms

Is the model for a seven point geometry to be discussed in Section

5. After that model is r,resented the proof of the independence of

the system P1 - Pk will 'a-, complete.

4. A four point geo=etry. Again point, line, and on are

undefined. To distinguish The postulates from those just used we

use the letter Q.

Ql. There exist four and only four distinct points.

Q2. On two distinct points there is one and only one line.

( P2)

Q3. Every line contains two and only two points.

Theorem 1. There exist six and only six lines.

Proof: The number of pairs of points is the number of com-

4.3binations of four things taken two at a time, 4C2 = = 6 (Q1)

and this is the number of lines (Q2). These lines are all dis-

tinct, (Q3). Hence the theorem is proved.

If we call the points 0, A, B, C, the lines are represented-

by the point pairs (0,A); (0,B); (0,C); (A,B); (A,C); (B,C).

Definition. Two lines are parallel if they have no point in

common.

Note that the word parallel is used in a very special sense.

No concept of a plane has yet been introduced.

Theorem 2. Through a given point not on a given line there

is one and only one line parallel to the given line.

Proof: A given point, say A, lies.on three and only three

lines and these lines are, distinct (Q1, Q2, Q3) . If we pick one

of these lines, say AO, neither of the remaining points, B and

C, can lie on it (Q3), and hence the two lines have no point in

common and so are parallel by definition.
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Several models of this geometry are available. The two-member
committee model is quite apparent. Each member is on three commit-

tees but there is always a unique second committee that can meet

while this member is engaged in committee business.

In order to pesent geometric models, we imagine the model to

be embedded in ordinary Euclidean geometry and then abstract from

the diagram those features that are wanted. One such model is that

of a complete quadrangle (a term borrowed from projective geometry)

which consists of four points, no three collinear, and the six

lines which they determine by pairs. Of course you must recognize

that our line is only a point-pair. It is easy to' verify that

Postulates Ql, Q2, Q3 are all satisfied. Models Q1', Q2', Q3',

needed to prove the postulates are independent, are more or less

self-explanatory.
'C 2

oil Q31

If the model Q2 bothers you, think of it in terms of a diagram

drawn on a sphere with N and S being the poles, or if you know

something of chemical bonds, think of it in terms of a double bond

between N and S. and all the rest as single bonds.

The figure for Ql, Q2, Q3 could be imagined in ordinary

3-space thus forming a tetrahedron. Indeed we could then add

additional postulates.

Undefined: plane.

Q4. On three points there is one and only one plane.

If we think entirely in terms of plane geometry each of the

models already drawn also satisfy Q.

3 4
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Q5. Every plane contains three and only three points.

None of the models of plane geometry satisfy this axiom,

which, however, is satisfied by the tetrahedron model. That is,

the tetrahedron model satisfies all five postulates Ql - Q5. It

is possible to present models in 3-space to prove the independence

of these five postulates but this will not be done here, but the

reader is urged to try his hand at it.

Another property of the tetrahedron model that the reader may

be interested in proving is that it satisfies Incidence Postulates

1, 6, 7, 8, and Existence Postulate 5 of our text.

The committee interpretation of this enlarged system takes

into account three-member committees as well as two-member

commites. Our tetrahedron model is for a four point - six line

- four plane geometry.

Let us return to the system Ql, Q2, Q3 and its two geometric

interpretations and discuss algebraic systems isomorphic to them.

For the complete quadrangle model, we consider points as the

special ordered number triples (x,y,z): A(1,0,0); B(0,1,0);

C(0,0,1); 0(1,1,1). As lines we take the six equations x = 0,

y = 0, z = 0, x = y, y = z, z = x. We say a point is on a

line if its coordinates satisfy the equation of the line.

Q1 'is satisfied by the way coordinates were introduced. It

is now possible to verify Q2 and Q3. There are six pairs of

points and it is possible to show that any pair lies on one and

only one line and this line contains neither of the other points.

For example, B(0,1,0) and C(0,0,1) satisfy the equation x = 0,

but neither A(1,0,0) nor 0(1,1,1) do; 3(0,1,0) and 0(1,1,1)

sattsfy the equation x z, but neither of the points A(1,0,0)

or C(0,0,1) do. Similarly, for the four other pairs.

For the tetrahedron model, we consider points as the special

ordered number triples (x,y,z): A(1,0,0); B(0,1,0); C(0,0,1)

and 0(0,0,0). (Note the difference between the two models.) As

the lines we consider the six pairs of equations which can be

formed from the four equations x = 0, y = 0, z = 0, x+y+z = 1.

3 4
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(These are the equations of the four planes.) Q1 is satisfied by

the way coordinates were Introduced. It is now possible to verify
Q2 and Q3. For example, B(0,1,0) and C(0,0,1) satisfy the
two equations x = 0, x y z . 1, but.both do not lie on
either y = 0 or z = O. A similar analysis can be given for
every other pair of points. In this algebraic model, Postulates

Q4 and Q5 also may be verified.

5. A seven point geometry. As mentioned earlier this geometry

is one that denies the existence of only three points but satisfies

P2, P3, P4 of the three-point geometry. We repeat these

postulates for convenience of reference. The essential distinction

between this geometry and those already discussed is that every

line contains three and only three points. It is necessary to

include a postulate which guarantees there is at least one line.

Undefined: :Joint, line, on.

P2. On two distinct points there is one and only one line.

P3. Not all points are on the same line.

P4. On two distinct lines there is at least one point.

P5. There exists at least one line.

P6. Every line is on at least three points.

P7. No line is on more than three points.

Of course P6 and P7 could be put together to say: Every

line is on three and only three points.

We construct a special model for this postulate system by

selecting seven distinct points, which we call A, B, C, D, E, F,

G. We derLne seven and only seven lines, a, b, c, d, e, f, g,

each being a set of three points, by means of the following table

A BC DEP' G
BC E A GDF
F D A GBEC
c a bd e g f
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It i2 not eur purpose to discuss the many theorems that can

be proved from this postulate system, but to point out several

interpretations of Lt. It may bother you a bit to call (D,E,F)

a line, but it is a line by definition just as much as the triple

(A,B,F) is a line. Of course this geometry is not like the

Euclidean geometry of your experience -- it is'a finite projective

geometry where we have considered only incidence properties. How-

ever, its interpretation as a group of seven persons and seven

committees of three and only three members is also available.

Since we set up the model by definition (committee aspect) and

then drew a diagram to correspond, we must verify all the Postulates

P2 to P7. This may be long in detail but it is not difficult.

7.6.
There are 21 pairs of points (

7
c
2

) and 21 pairs of

lines, but an examination of the table shows that each row contains

each letter once and only once, and each letter is in three and

only three columns, and this will simplify the details. It is

merely time consuming to verify all the postulates; these postulates

are all satisfied in the geometric model. To verify P4, for

example, from the table, it is necessary to consider 21 pairs of

lines, and indeed it is easy to verify not only that each pair has

a point in common (there are no pairs of parallel lines) but only

one point in common.

The results can be tabulated as follows

cab deg f
bef a g c d

d c a g b f e

ABCDEFG
Not only may we verify P2 - P7 in this way, but also the dual of

each of these statements. The dual is obtained by interchanging

the words point and line wherever-they appear. For example,

the dual statement to P6 and P7 combined would read:

!; 6
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D6, 7. Every point is on three and only three lines.

This is easily verified from the defining table.

The algebraic isomorphism for this geometry consists of the
following assignments of coordinates to points and equations to
lines:

A(1,0,0); B(0,1,0); C(0,0,1); D(0,1,1); E(1,0,1); F(1,1,0);
G(1,1,1); a: x = 0; b: y = 0; c: z - 0; d: y z;
e: x = z; f: x = y; g: x y z 2.

All the postulates could be verified purely algebraically.
For example, D(0,1,1) and E(1,0,1) both lie on the line
x + y + z 2, but not both are on any other line. The line
x = y contains the three points C(0,0,1), G(1,1,1), F(1,1,0)
but no other point. This is enough to give the general idea.

6. Models for a Vperbolic geometrx. In order to discuss
such a model, it will be embedded in a Euclidean plane. Hence we
assume that the postulates of Euclidean geometry as stated in the ,

text have been made and Euclidean geometry has been developed. We
will use the terms point, line, plane, and circle as developed in
such a treatment. The corresponding words placed in quotes will
stand for entities in a new geometry, and will be defined by means
of Euclidean terms. In this way we will obtain models to illus-
trate some of the incidence propertes 3f hyperbolic geometry.'

The first model is often called a projective model, but the
explanation of the term is beyond our present means. Consider a
circle. We define a "point" of our new

geometry to be a point in the interior of'

the circle; a "line" is a chord of this

circle without its end-points; the "plane"

is the interior of the circle. It is easy

to observe that two "lines" may or may not

intersect. If two chords of the circle

intersect on the circle, wc say that the corresponding "lines" are
11 parallel11. Note that there is a definite distinction between two
"lines" being "parallel" and two "lines" not intersecting. It is
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also easy to observe that through a given "point" P. there are

exactly two."lines", PA and PB, which are "parallel" to.the

-).i.line" AB, and that there are an infinite number of "lines"

throuEh P that do not intersect the "line" AB.

In the above model length and angular measure are distorted,

and a study of projective geometry is needed to discuss the model.

There Ls a model, called Poincaire's Universe, where length is

distorted but angular measure is not (but no proof is intended).

To understand this model some knowledge of orthogonal circles in

Euclidean geometry is required, and the corresponding theorems are

not usually presented in an introductory course in plane geometry.

We state the necessary definitions

and theorems (without proof).

Two circles are orthogonal if

their angle of intersection is a

right angle. By the angle of inter-

section of two ,circles we mean the

angle between the tangent lines

drawn at a common point.

Through two points there is one and only onL eircle (or line)

orthogonal to a given circle.

In the Poincaire model, a "point" is again a point inside a

given circle C, and the "plane" is the set of all points in the

interior of the circle. A "line" is either a diameter of the

circle C, without its end-points, or that part of a circle ortho-

gonal to the circle C which lies inside C. We note, therefore,

that through two "points" there is one and only one "line". Two

"lines" are said to be "parallel" if their corresponding diameters

or circles intersect on C. It is again easy to observe that

through a given "point" P, there are two "lines" PA and PB,

which are "parallel" to the "line" 2, and that there are an

infinite number of "lines" through P that do not intersect the

"line" AB. One more idea may be observed in this diagram (based

on the assumption that angular measure is not distorted).

,3 " 8
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"The sum of the measures of the "angles" of a "triangle"
such as A PQR or A APB is less than 180."

A more detailed study of the geometry of the circle in the
Euclidean plane, including a study of the concept of cross-ratio
is needed to carry the discussion further. Some further results
and suggestions or indications of ideas that might be invesiigated
can be found in Eves and Newson, Introduction to Foundations and
Fundamental Concepts of Mathematics.



AREA

It is possible to (3.evelop the theory of area, as far as we

need it, from a very simple set of Postulates, which are intuitive-

ly acceptable. In some respect they are more intuitive than the

ones given in the text, being simpler to state and requiring fewer

preliminary definitions. For example, it is not necessary to define

polygonal region in order to state the postulates. It is satisfying

that this is one of the many cases in mathematics in which intuition

and rigor go hand in hand. We shall sketch this development at

least up to the point where it is clear that we could proceed as in

the text, by deriving as theorems the postulates of the text which

are not already included in our set. Some of the early theorems

may appear obvious and hardly worth proving; but if we recognize

the fact that postulate systems are constructed by fallible humans

and need to be tested by their consequences, then we should derive

satisfaction from the provability of some "obvious" statements by

means of our postulate system.

We always speak of the area of something, and this something

is a region or a figure -- which are simply names for certain sets

of points in a plane. Thus, area is a function of sets, an assign-

ment of a unique real number to a set. Whenever we speak of a

function, it is important to be quite clear as to the domain of thE

function, that is, the set of objects for which the function pro-

vides us with an answer. In our case, we must ask, what sets are

to have an area assigned to them? We could limit ourselves, if we

wished, to -simple sets, like polygonal regions. This has the dis-

advantage that it eliminates regions bounded by circles, ellipses,

hyperbolas, and other smooth curves, regions which (our intuition

tells us) should have areas. Of course, we do not want huge sets

like the whole plane, or half-planes, or the interiors of angles,

to have area. These all have the property of being unbounded.

Fortunately, it can be proved that it is possible to assign a

reasonable area to every reasonable set in the plane. The first

3 .5
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It

reasonable" means that the area function will not violate our
intuition. The second "reasonable" we shall interpret in the
widest possible sense, namely, as "bounded". A bounded set is, one
that can be enclosed in some squiare (or circle) . We shall there-
fore adopt as our first area postulate the following:

Postulate Al. There is a function A (called area) defined
for all bounded sets in the plane; to each bounded set S, A
assigns a unique non-negative number A(S).

Let us observe immediately that a point and a segment are
bounded sets, so we have committed ourselves to the unfamiliar
position Of attributing an area to such sets. The area will turn
out,to be zero, of, course. There are excellent precedents: let
us recall that we have allowed ourselves to speak of the distance
from a point to itself as being zero. Analogously, in the theory
of probability it is useful to have events with zero probability,
even though the events are possible. Indeed, the theories of
linear measure, area, volume, probability, and counting all have
a great deal in common, since they are concerned with assigning
measures to various sets. Far from being a disadvantage, the

concept of zero area is extremely valuable. It makes explicit
our sound intuition of what sets are "negligible" as far as area
is concerned. For example; the Area Addition Postulate in the
text (Postulate 19) essentially asserts that the area of the union
of two sets is equal to the sum of.their areas, provided that they
overlap in a "negligible" set -- a finite union of points and
segments. It is somewhat easier to accept an Area Addition
Postulate in which the "negligible" set is the empty set, as in
Postulate A2 that follows, and to prove later that certain sets
really are "negligible".

Postulate A2. If S and T are bounded sets in the plane
which have no points in common, then the area of the union of S

and T is equal to the sum of the areas. That is, if V is the
union or S and T, then A(V) A(S) A(T).

r 5
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We have already remarked that Postulate A2 is weaker in one

respect than the Area Addition Postulate in the text, for it does

not allow even one point in common to the sets S and T. Observe

also that Postulate A2 does not need to assert the existence of

A(V). This is in fact a simple consequence of Postulate Al, for

the union of two bounded sets is also bounded.

.Our third postulate will give the essential connection between

our geometry and area. For this we need a somewhat more general

concept of congruence then the usual one. Two sets will be called

congruent if there is a one-to-one correspondence between them

which preserves all distances. More precisely, suppose there is a

one-to-one correspondence between S and T such that, A and

B being any points of S corresponding to A' and 13, in T,

the distance AB is equal to the distance POB,. Then we shall

say that S is congruent to T, or S T. Our definitions of

congruence for segments, angles, triangles, and circles are special

cases of this more general definition. For a fuller treatment, see

the Appendix on Rigid Motion and the Talk on Congruence. If our

area function is to be reasonable, then congruent sets should have

the same area:

Postulate A3. If S is a bounded set and S T, then

A(S) = A(T).

Again, it is easy to see intuitively that if S is bounded

and S T, then T is bounded, and A(T) exists by Postulate

Al.

Now let us consider the area of a square of side 1 together

with its interiot For all we know from the first three postulates,

this area might be 0. This does violence to our intuition, and

even more, we could then prove that every bounded set has area O.

Therefore we must postulate that this area is positive, say equal

to k. But then the new area function defined by A,(S) =

would be just as good as the old and would have the desirable

property that assigns the value 1 to the unit square and its

interior. We shall therefore postulate this immediately:

5 2
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Postulate A. If S is the set consisting of a square of
sIde I together with its interior, then A(S) = 1.

This postulate essentially does no more than (a) rule out

the trivial case of a constantly zero area function, and (b) fix
the unit by which we measure the area of a set. We can think of

it as a normalization postulate, and shall speak of our area

function as being normalized.

Summing up our four postulates -- these are all we need -- we
see that we have a non-negative (Postulate Al), finitely-additive

(Postulate A2), normalized (Postulate A4) function of bounded sets

in the plane (Postulate Al), invariant under rigiclmotion (or

congruence) (Postulate A3) . The term "finitely-additive" refers
to the fact that we can easily replace the two sets in Postulate

A2 by any finite number of sets, no two of which have a point in
common.

At the beginning of this talk, we stated that it is possible to
assig,n a reasonable area to every reasonable set in the plane.

This theorem, asserting the existence of such a function, is
rather deep and difficult to prove. Nevertheless, it provides us

with a sound basis for a treatment of area in the plane. The set
of four postulates matches our intuition quite well, especially

if we have not subjected to close scrutiny the vast generality

involved in the phrase "all bounded sets in the plane". It should

be remarked that the theorem does not guarantee a unique function,

but any two functions that satisfy the conditions will agree for

decent, non-pathological sets such as polygonal regions, circular

regions, and regions bounded by arcs of smooth curves like parabolas,

hyperbolas, ellipses, etc.

It would:be pleasant if this treatment could be generalized

to volume in three dimensions. Surprisingly, the corresponding

statement in three dimensions is false. One form ofthe Banach-

Tarski Paradox asserts that it is possible:to split each of two

spheres of different radii into the same finite number of sets,

corresponding sets from each sphere being congruent. If the three.-

dimensional statement were true, the corresponding sets would have

353
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equal volumes, by the invariance under congruence, and therefore

the spheres would have equal volume, by the finite-additivity of

volum-. On the other hand, the usual formula for the volume of a

sphere would be valid, thus leading to a contradiction. In three-

dimensions, therefore, it is necessary to limit our volume function

to a more restricted class of sets than the bounded ones. This

restriction is no cause for alarm, since the resulting domain of

the volume function is still much wider than we need for ordinary

purposes. The sets that we exclude are all really "wild". With

this one modification the methods used here are still applicable

in three-dimensions.

Now we shall proceed with the business of developing the con-

sequences of our set of postulates. These consequences we shall

state as theorems. First, however, we need a simple result which

has nothing dLrectly to do with area, but which is a basic property

of our real number system.

Theorem 1. If a is a non-negative number such that for

every positive integer number n, na. < 1, then a = O.

The statement may seem a little strange, but it is specifi-

cally designed to yield the type of result needed, namely that a

certain number is O. For example, suppose that we wish to prove

that a certain formula yields the correct value for the area of a

given figUre. Let the area be A and the number given by the

formula be B. Denote by a the absolute value of their differ-

ence, 1A-Bl. Then we wish to prove that a - O. We may, be able

to show that no multiple of a exceeds 1. If so, then Theorem 1

assures us that a = 0 and-therefore that A = B. Another way of

stating Theorem 1 is: There is no positive number which is simul-
1 1 1taneously < 1, 7, 7,

7'
. Still another way is: Every

positive real number is less than some positive integer. If we

regard this last statement as being a known property of real

numbers, then the proof,of Theorem 1 is quite easy. Suppose,

indeed, that a satisfies the hypotheses of the theorem, but
1

that a > O. Then is a positive number, and there is a positive
a ,

r .4
L) 0 1.



602

integer n such that < n, by what we have just said. Fora
this n, 1 < na, contradicting the hypothesis na < 1. Therefore
the assumption a > 0 is false. Since a > 0 or a 0 by
hypothesis, and the first is false, the second must be true.

We can now prove some rather obvious results which are usually
assumed Implicitly in customary treatments. They are, in fact,

somewhat less obvious than some of the theorems that Euclid took
the trouble to prove (e.g., the theorem that vertical angles are
congruent). It is interesting to contemplate what the situation
might have been if Euclid had decided that these were worthy of
statement and proof. Perhaps school boys for centuries would
have studied and proved:

Theorem 2. The area of a point is O.

Proof: Let S be a unit square plus its interior. By
Postulate A4, A(S) - 1. Let n be an arbitrary positive integer,
and,choose n points Pl, P2, Pn in S. If T is the
set (Pl, ..., Pa), then by Postulate A2 (rather, by the
generalization of Postulate A2 to n disjoint sets), we have
A(T) = A(P1) + A(P2) + A(Pn). Now any two one-point sets
are congruent, so by Postulate A3, A(P1) = A(P2) = A(Pn),
and A(T) = nA(P1). Let R'be all of S except for the points
of T. Then R and T have no points in common and their union
is S. By Postulate A2,

A(T) A(R) = A(S).

By Postulate Al, A(R) > O. Therefore

A(T) < A(S).

Substituting 1 for A(S) and nA(P1) for A(T), we get;

nA(Pi) < 1.

.In Theorem 1, we may take a = A(P1), since A(P1) is non-negative
by Postulate Al. Therefore a = 0, that is, A(P1) = O. Since
every point is congruent to P, A(P) = 0 for every point p, by
Postulate A3.

Observe that in the proof of Theorem 2, we proved and made
use of a special case of:

W.)
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Theorem 3. If T is a subset of the bounded set S, then

A(T) < A(S).

The proof may be left to the reader.

Now we state a useful theorem which is similar to Postulate A2,

but which has a weaker hypothesis.

Theorem 4. If S and T are bounded sets, V is the union

of 3 and T, and I is the intersection of S and T, then

A(V) = A(S) + A(T) - A(I).

Proof: Let S' be the part of S not in T. Then the

union of SI and I is S, and S' and I are disjoint. By

Postulate A2,

A(S) = A(S') + A(I).

Also, the union of SI and T is V, and S

disjoint. By Postulate A2,

A(V) = A(S') + A(T).,

Therefore

and T are

A(V) = A(S) = A(I) + A(T)

= A(S) + A(T) - A(I).

Theorem_5. If S and T are bounded sets and V is their

union, then

A(V) < A(S) + A(T).

The proof follows from Theorem 4 on observing that A(I) > 0,

by Postulate Al.

3 5 (3
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Theorem 6. If S 1, S2, S
n are bounded sets and V

is their union, then

A(V) < A(S1) + A(S2)

The proof follows from Theorem 5 by induction.

Next, we prove another "obvious" theorem.

Theorem 7. The area of a segment is O.
--

Proof: Let BC be a given segment, of length k. Thor.e is
a natural number m such that k < m. On the ray BC,

let D be the point such that BD = m. To prove that A(BC) = 0
it is sufficient to show that A(BD) . 0, by Postulate Al and
Theorem 3. Now BD is the union of m segments Si, ..., Sm
of length 1. These segments are not disjoint, but we can still
apply Theorem 6 to get

A(BD) < A(S
1

) + + A(S)

since SI, Sm are all congruent. Therefore it is sufficient
to show that a segment of length 1 has area O. The proof of this
proceeds as in Theorem 2, by fitting an arbitrary number n of
disjoint unit segments within a unit square. We omit the details.

We are now in a position to prove that the boundary of a poly-
gonal region (defined in Chapter 11) has no influence on its area.

Theorem 8. Let R be a polygonal region and let RI be the
same region with all or part of the boundary removed. Then
A(RI) = A(R).
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Proof: Let R
o

be the region R with all of the boundary

removed. Then R
o

is contained in R, and R' is contained in

R. Therefore

A(R0) < A(R') < A(R),

by Theorem 3. It is sufficient to show that A(R0) = A(R). Let

B be the boundary, consisting of a finite number of segments. By

an application of Theorem 6, Theorem 7, and Postulate Al, we find

that A(B) = 0. But R is the union of the disjoint sets Ro

and B, so

A(R) = A(R0) + A(B)

and the proof is complete.

Postulate 19 of the text now follows readily, since the over-

lap of the two regions R1 and R2 consists of a finite number of

points and segments, and the area of the overlap is O. We'state

Postulate 19 as a theorem, but omit the proof.

Theorem 9. Suppose that the polygonal region R is the union

of two polygonal regions R1 and R2, which intersect at most in

a finite number of segments and points. Then A(R) = A(R1) + A(R2).

Now consider a rectangle R of base b and altitude a. We

are aiming at a proof that A(R) ab, this being Postulate 20 of

the text.

l<
1. 1 _1

a

3 5 8
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Choose an arbitrary positive integer n, and determine p

and q, also positive integers, by the conditions

< b
n'

< a < 2.
n

.1Starting at K, lay off p segments of length along ray KL
1and q segments of length along ray KN. Then L is on the

--->p-th segment on KL and N is on the q-th segment on KN.
The rectangular region R is now enclosed between two rectangular
regions S and T, where S has dimensions 2=-1 and R=-1.

n '

T has dimensions 2- and a. Therefore

A(S) < A(R) < A(T).
1Now S consists of (p - 1)(q - 1) square regions of side ,

and T consists of pq square regions of side .r2t. If the area
of one of these square regions is An, then

A(S) = (p - 1)(q - 1)An,

A(T) pqAn,

S

(p 1)(q - 1)An < A(R) < pqAn.

It remains to compute An and then A(R). But a unit square,
1whose area Is 1, can be split up into n

2
squares of side ,

- 1 = n2An,

A = 2

Therefore

(p - 1)(q - 1) 2.2 < A(R) < pq

Now, from the conditions deteraning p and

ab < 11.a
n n n

:> 5
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The two fixed numbers A(R) land ab both lie In the interval

with end-points so the absolute value of

their diffrence is at most equal to the length of the interval:

1A(R) abl < .2 (P (cl 1)
n n

IA(R) - abi < P 1.

Since 2.2 is approximately r-ti and ao is approximately §,
n

1,the right side ts approximately ka + b), which is very small if

n is large. An application of Theorem 1 to the fixed non-negative

number 1A(R)
+ b)

- ab]
would then yield that this number is 0. To

(a

make this argument precise, choose n so large that 111-- < a and

< b. Th,,n P ; 1 < b implies that

< b + 1 < 2b,
n

and k < a implies that

Therefore

< a + < 2a.
n n

+ - 1 ,,, l(p 2a + 2b.
. 2-- n'n n

Combining this with our previous Inequality, we get

1A(R) abi <
2a + 2b

or
lAcR) abi < 1
La + 2b '

for all sufficiently large positive integers n, and therefore

for all n. By Theorem 1,

IA,0)
abl

+ 2b

is 0, 20 A(R) ab. This completes the proof of:

3 60
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Theorem 10. The area of a rectangle is the product of its

base and altitude.

We have now reached our goal of establishing Postulates 17-20

of the text from our system of Postulates Al-Ali-. This may not

seem like a great accomplishment if we are interested in polygonal

regions only, but it permits the evaluation of areas of other re-

gions without the necessity of making ad hoc extensions of the

domain of the area function at a later stage. It provides us with

an excellent example of the power of deductive reasoning. Finally,

the transition from here to the integral calculus is a smooth and
natural one. For example, the calculation of the area under the

curve y = x
n

, for all integers n (including n = -1) can be

carried out on the basis of this development, without any reference
:to...the differential calculus.

ti I


