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INTRODUCTION

The text that you are about to teach from is the result of

a collaboration between university mathematicians and experienced

high school teachers. The treatment of geometry in this book is

very different, especially in the first few chapters, from the

treatment that nearly everybody is used to. There is no question

that every change in teaching has its price: it calls for a great

deal of preparation when a treatment which has become second nature

is replaced by a treatment some of whose features are new to the

teacher as well as to the student. For this reason, we have made

changes only when we became convinced that they were worth the

price. It should be remembered also that while any change at all

creates some trouble for the teacher, simply because it is a

change, this principle does not apply to the student: for him

au formal treatment of geometry would be new.

This manual is intended to reduce your troubles to a minimum.

It consists of three parts. The main part is a running commentary,

referring to particular short passages of the text. In this part,

we try to explain what we are driving at, and to warn of possible

difficulties. (As of the Fall of 1960, the text has been revised

after use in over one hundred classrooms, but it is natural to

expect that there will still be difficulties that haven't been

recognized and discussed.)

In a very large number of eases, we had trouble deciding

what to put into the running commentary and what to leave out.

We decided at length that when in doubt we should put things in.

Thus we have no doubt included many explanations which are un-

necessary. These, however, should be easy to skip.

Obviously, in a tenth-grade textbook many of the discussions

have to be logically incomplete. We have cut some corners,

expecting the student's intuition to take over, and we believe

that this is as it should be. All sorts of questions can come

up in class, however, and the chances are that this book will

provoke some questions that students don't usually ask in the

ix
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traditional courses. The running commentary is designed to help
you to be one up when this happens. We have also indicated, at

Bone points, the things we think should be emphasized and the

general style of presentation that we had in mind.

There are some topics that can't conveniently be dealt with

in connection with a particular passage of the text. Some of these
topics cut across several chapters. We have therefore added a

series of essays, under the general title, Talks to Teachers. These
include, in our opinion, some of the most important parts of the
commentary. (These will be referred to, hereafter in this manual,

simply as the Talks.)

The first of the Talks, entitled Facts and Theories, we

believe you will want to read right now and at least once more

after you have read well into the text.

Finally, to save you spade-work we have given answers to all

problems and solutions to all but the simplest. These are inter-

spersed in the running commentary at the appropriate places.

Answers have often been given in simplified radical form or as

multiples of r rather than in the form of decimal approximations.

We believe this policy should be encouraged, but that the student

should be able to supply a decimal approximation on demand.

In addition to the Teacher's Commentary you should have

available a copy of Studies in Mathematics, Volume II, Euclidean

Geometry Based on Ruler and Protractor Axioms, by C. W. Curtis,

P. H. Daus, and R. J. Walker. This contains, especially in the

first chapters, much material that could have been put in the

Talks to Teachers. It also containa detailed proofs of basic

theorems that are not mentioned in the text. The properties stated

in these theorems are intuitively obvioua and are generally accepted

by students without comment. A completely logieal development of

geometry must, nevertheless, contain proofs of these theorems, and

so they are included here for whatever use you wish to make of them.

This book will be referred to frequently in this manual. When we

do eo we will speak of it as "Studies II."

9



Some teachers may enjoy referring to a lighter presentation

of some geometric ideas. To them we suggest Studies in Mathematics,

Volume V, Concepts of Informal Geometry.

Although we felt it unwise to make our text logically complete

in its proofs we did attempt to give a complete foundation of

postulates and definitions. On such a foundation a student can

build as elaborate and complete a structure as his capabilities

permit, with the help of his teacher and of supplementary reading.

The only difficulty apt to be met in laying this foundation is an

apparent slowness of the text in coming to grips with really

interesting geometric problems. However, you will find that the

postulates, definitions and simple theorems in Chapters 2,3 and

4, although not particularly interesting when you first study

them, will be of great value in the later chapters. Moreover,

seen from the perspective of the later chapters the basic material

of the early chapters takes on a more interesting appearance as

its importance to geometry becomes appreciated. If a student is

to understand a complicated geometric situation he must first

have a clear picture of the fundamentals.

Obviously you are going to like some features of this text

better than others. In any case, we ask that you teach each

chapter of this book as if you had faith in the presentation. If

some features of it dontt work, we want to know it, but we cantt

find out, one way or the other, unless they are given a fair try.

A half-hearted experiment in the classroom has some of the dis-

advantages of a half-hearted back flip in a gymnasium.

1 0
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USING THE TIME AVAILABLE

This text was written so that very good classes will have

enough material to challenge them for a year. It follows, then,

that some classes will not be able to cover all the material.

You may prefer not to rush through important topics just to cover

pages, so this note will suggest the kind of choices that you can

make. The choices mentioned are only samples, however, and you

will find variations that fit the needs of your own class.

A full course includes all exposition, and a substantial

number of problems from each set. Few, if any, students will

solve all the problems. An approximation to time allotment for

classes which study every topic is given in this table. The

names of chapters are topical and are not necessarily the actual

chapter titles.

Chapter Days Chapter Days

1. Introduction. 3 10. Parallels in Space 6

2. Sets, Numbers, Lines. 10 11. Area, Pythag. Theorem 10

3. Lines, Planes. 6 12. Similarity 15

4. Angles, Triangles 6 13. Circles, Spheres 13

5. Congruences. 20 14. Characterizations of

6. A Closer Look at Proof 6
Sets. Constructions. 10

7. Inequalities 8
15. Area of Circles 5

8. Perpendiculars in Space 9
16. Volumes 8

9. Parallels in Plane 17
17. Coordinate Geometry 20

Total 85 87

The list of days must include time used for chapter reviews

and tests. Though such work is important, a practical observation

is in order: A class that uses two days per chapter for reviewing

and testing uses more than one-sixth of the year in that way, and

xii

11



must plan accordingly.

We believe that every course should include careful treatment

of the first volume, regardlest. of the preceding table. This does

not mean that proofs of theorems should be memorized or that all

problems should be done, however. Selection of material, if

necessary, can begin with Volume 2.

The table above shows that if you are not into Chapter 10 by

the end of the first semester, and many classes will nob be, you

will want to plan ahead so that you can study the chapters and

topics most impartant for your students.

For example, you may decide to omit some material in order

to devote sufficient time to the chapter on coordinate geometry.

(t way to do this Is to omit Chapter 10 and cover the ideas of

Chapters 14, 15 and 16 intuitively while doing selectei problems.

You may also decide to take up Chapter 17 immediately after

Chapter 12.

Or you may decide to teach Chapters 8 and 10 largely on an

intuitive basis, using problems to develop major concepts.

Similarly for Chapters 14 and 15. Then omit Chapter 16 and treat

most of Chapter 17.

CertatIly numerous such plans are possible. Ideally, the

one basic plan is to cover all material. Realistically, due to

factors of time and of individual and group differences, several

alternative plans must be considered, evaluated, and reviewed

constantly.

We list here what can be omitted, in the order, very roughly,

of preference in omission, the last item being the one you should

least consider omitting. Chapter 17 is not included in the list,

partly because its place in such a list is highly controversial

and partly because a reason for omitting other topics is to assure

adequate coverage of coordinate geometry.

Proofs in Section 6-5 and in Chapters 16, 14, 10,

8, 15, 7, 13 (after Theorem 13-5), 12.

All text material (except for formulas) in Chapters

16, 14, 15, 13 (after definition of intercepted arc), 10.



We are not proposing that anyone omit anything unnecessarily,

for all the material is worthwhile. We are merely proposing that,

if pressed for time, you not ruch through too much material with_ -

your students but instead select the material best suited to

their needs.

13
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A WORD ABOUT THE PROBIEM SETS

The problem seta in this book are an extremely important

part of the course. Many concepts are developed and expanded

there. Careful assignment of the problems is essential so as

not.to exclude some of the importanttopies in the development.

Each problem set begins with some simple exercises. Some

of the more difficult problems, not necessarily to be found at

the end of the set, are starred.

It is hoped that the teacher will read all of the problem

in a set before making an assignment. In some cases a sequence

of problems builds an important concept, and an assignment should

contain all the problems that develop the concept. In some

instances a special comment about a problem occurs with the answer

to the problem.

We hope that teachers will use their own judgment about the

number of problems to assign. It is likely that no student will

work all the problems. Certainly most students can be expected

to do only some of the large number provided. You have a good

chance to allow for individual differences in your assignments.

Proofs, and reasons within proofs, are given in varied form

to suggest to the teacher that general understanding of the

problems is more Important than a rigid form of presentation.

(This applies especially to Chapter 5 and the following chapters,

in which many of the problems call for proofs oftheorems.) The

solutions given are not always the only possible solutions, and

good original reasoning by students should be encouraged and

commended.

The fact that we give a proof, in our solutions, in para-

graph form for convenience and brevity does not mean that we

believe that every student should give it in this form. The

teacher can decide which form has the most educational value for

his students at the given time.

On occasion, students should be asked to suggest and solve

problems not in the text.

XV



A GUIDE TO THE SELECTION OF PROBLEMS

Following is a tabulation of the problems in this text. It

'will .be noted that the problems are arranged into three sets; I,

II, and III. At first glance, one might think that these are in

oIrderof difficulty.

TEM IS NOT THE MANNER IN WHICH THE PROBLEMS ARE GROUPED!!!1

'Before explaining the grouping, it should be mentioned that

it ia understood that a teacher will select from all of the

problems those which he or she feels are best for a particular

clasa. However, careful attention should be. given to the comments

.on the problems in A Word About the Problem Sets.

Group I contains problems that relate directly to the

material presented in the text.

Group It contains two types of problems: (1) some that are

similar to those of Group I, and (2) some that are just a little

more difficult than those in Group I. A teacher may use thia

group for two purposes: (1) for additional drill material, if

needed, and (2) for problems a bit more challenging than those in

Group I, that could be used by a better class.

Group III contains problems that develop an idea, using the

information given in the text as a starting point. Many of these

problems are easy, interesting and challenging. The student may

find them more stimulating than the problems in Groups I or II.

However, if time is a factor, a student can very well not do any

of them and still completely understand the'Material in the text.

These are enrichment problems.

It is assumed that a teacher will not feel that he or she

must assign all of the problems in any set, or all parts of any

one problem. It is hoped that this listing will be helpful to

you in assigning problems for your students.

15
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We have included In the problem sets results of theorems of

the text which are important principles in their own right. In-

this respect we follow the precedent of most geometry texts.

However, all essential and fundamental theorems are in the text
proper. The-fact that many important and delightful theorems are

to be found in the problem sets is very desirable as enrichment.

While no theorem stated in a problem set is used to prove

any theorem in the text proper, they are used in solving,nUmerical

problems and other theorems in the problem sets. This seems to be
a Perfectly normal procedure. The difficulty (or danger)', as most

teachers define it, is in allowing the result of an intuitive type

problem, or a problem whose hypothesis assumes too Much, to be

used as a convincing argument for a theorem. The easiest and

surest way to handle the situation is to make a blanket rule for-

bidding the use of any problem result to prove another. Such a

rule, however, tends to overlook the economy of time and, often,

the chance to foster the creative spirit of the student. In.this

text we have tried to establish a flexible pattern which will

allow a teacher and class to set their own policy.

16
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GUIDE TO SELECTION OF PROBLEMi

Chapter 1

Set 1-1 2,5,6,7,9,10.

1-2 1,3,4.

Chapter 2

2-1 1,3,7,12.

2-2 1,2,3,5.

2-3 1,3,4.

2-4 1,2,3.

2-6 2,3,4,5,7.

2-7a 1,2,3,6.

2-7b 1,2,3,7.

Chapter 3

3-la 1,2,3,4.

3-lb 1,2,3,4.

3-1c 1,2,3,4,6.

3-2 1,2,3.

3-3 1,2,3,4,7,11,13.

Chapter 4

4-1 1,2,3,4,5,6,7,8,

9, 10, 11.

II

3,4,8.

5,6.

2,4,5,6.

6.

2.

4,5.

1,8,9.

4,5.

5.

5.

5,7,12.

4.

5,6,8,9,12,18.

12,13,14,15.

xiX
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1,11,12,

2,7.

8,9,10,11.

4,7.

5.

6,7.

6.

7,8.
4,6.

6,7.

8, 9,10,11.

10,14,15,16,17.

16,17,18,19.



Chapter 4

4-3 1,2,3,4,5,6,7,8.
4-4 1,2,3,4,5,6,9,

10,12.

Chapter 5

5-1 1,6,7,9.

5-2 1,2,6,7,8,9.
5-4 1,2,3,5,6,7,8.
5-5 1,2,3,4,6.-
5-6 1,2,3,4,6,9.
5-7 1,2,5,6,9,10,.

5-8 1,3,4,5,6,7.

Chapter 6

6-2a 1,2,3,8.
6-2b 1,2,4,5.
6-3 1,2,3,5,7.
6-4 1,2.
6-5 1 .

II

9,10,11.

7,8,11,13.

2,3,4,8,10,
1],17.

3,4,5.

440.

5,7.

5,7,8.
3,4,7,8,11,12,
14,16.

2,8,11,14,15,

16,17,18,19.

6,7.

3,6.
-4,6,8,940.

3.
8.
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III

12.

14,15,16.

5,12,13,14
15,16.

9.

13,15.

9,10,12,13,20,

21,22,23,24,25,26.

4,5.

4,5.

2,3,4,5,6,7.



Chapter 7

I

Set 7-1 1,2,4,5.

7-3a 1,2,3.

7-3h 1,2,3,5.

7-30 1,2,3,4,7,9,11.

7-3d 1,2,3.

7-3e 1,2,3,8.

7-4 1,2,3.

Chapter 8

8-1 1,2, 4,5,6,8,9.

8-2a 1,2.

8-2b 1.

8-2c 1,2,3,4.

Chapter 9

9-1 1,2,3,4,5,7,9.

9-3 1,2,3,4,5.

9-4 1,4,5,8.

9-6 1,4,6,10. 2

9-7 1,3,4,5.

Chapter 10

10-1 1,2,4.

10-2 1,2,3.

10-3 1,2,4.
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3,7.

4,6.

5,6,10.

5,6,8.

4,5,6,9.

4,5.

3,7.

2,3,4,6,7.

5.

6,10,12,13.

6.

2,6,7,9.

2,3,5,7,8,9,12,

13,16,17,18.

6,8.

3,5.

4,5.

3,6,7.

xxi

6,8.

4,5,6.

10.

5.

6.

8.

7,8.

3,10.
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2,7.
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Chapter 1

COMMON SENSE AND ORGANIZED KNOWLEDGE

This chapter should be treated as an introduction. It is

not a review of algebra or of the Pythagorean relation. The

algebraic problems and the Pythagorean relation are introduced

to illustrate mathematical method, not to provide items for

forgetful students to relearn during the first week of a new

course.

In this chapter it is desired first that the students see

the distinction between a problem with an obvious solution and

one that requires thought and skill in its solution. Later the

need for exact reasoning on the basis of previously defined or

accepted information is illustrated. What should be impressed

upon the-student is the fact that once we establish our basic

information we intend to remain within the framework of our

system to do the remainder of our work. We have our postulates

(which contain undefined terms), 'and our definitions. On the

basis of these (and these alone), we will build up a body of

geometrical information by the application of logical reasoning.

As pointed out in the text, it is impossible to define all

terms, so we have to begin with some undefined terms. Defini-

tions are just agreements that we make to allow us to substitute

a word, phrase or symbol for other phrases that are, in general,

longer and more tedious to write out. A definition may be

thought of as an abbreviation for a longer phrase or group of

phrases. Ie.' P and Q represent phrades such that Q is

taken as an abbreviation for P, then the abbreviated form Q

may be substituted for P in any discussion and the sense of

the discussion remains the same. This also works in the reverse

order. The expanded form P may replace the abbreviated form Q.

For example, consider the definition: A parallelogram is a

quadrilateral whose opposite sides are parallel. If we know

that the quadrilateral ABCD has A131 ICU and ADI1BC, then

we can abbreviate this by saying that ABCD is a parallelogram.

2 0



On the other hand, if we know that ABCD is a parallelogram,

then we can assert what this phrase stands for, namely: ABCD

iS a quadrilateral such that ABIICD and ADI1BC ,

A

So we see that the phrase, "ABCD is a parallelogram" and the

phrase, "ABCD is a quadrilateral and MUM and ADI1BC "

can be used interchangeably. Since definitions are agreements

that a simple phrase means the same as a more complicated phrase,

there is no question about ever trying to prove a definition.

Only a very remarkable student will fully understand the

paragraphs about theorems, postulates, proofs and undefined

terms, when he first studies this chapter. These ideas will

come into sharp focus in the student's mind only when he has

had some experience with them. Chapter 1 is designed merely to

give the student a sufficiently good idea of what is going on so

that he will be better prepared for what follows. For this

purpose, short and simple statements to the class are probably

best. For example, if a student asks what a proof is, a good

answer is that a proof is a complete explanation of why a state-

ment is true. (Later the student will learn, by experience, the

way all of us did, what sort of proof is acceptable in mathe-

matics.) In the same spirit, a definition is simply an exact

explanation of what a word or phrase means.

The explanation of the meaning of postulates has deliber-

ately been made a little ambiguous. There are two possible

viewpoints:

1. Until about 1800, everybody believed that the postul-

ates of geometry were "self-evident truths", and that the

theorems proved from them were statements of fact about the

outside world, learned by pure reason.

21
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2. Since the discovery of non-Euclidean geometry, it has

been plain that the postulates df ordinary geometry are not

"self-evident truths". There are many kinds of geometry; all

of them are equally valid mathematically; some of the very

"peculiar" ones are useful in physics; and each of them is des-

cribed _hz its own set of postulates. Postulates, therefore,

are simply descriptions of the kind of geometrical theory that

we propose to investigate at a given time. And when we prove a

theorem, we are not showing that the theorem is "true" in the

sense that it fits the facts of the outside world. When we

prove a theorem, we are merely showing that the theorem holds

true in the mathematical system described by our postulates.

(See the remarks on non-Euclidian geometry in the chapter on

parallels, and the Talks on Miniature Geometries and Non-Euclid-

ean Geometry.)

It does not seem to us that this second viewpoint is suit-

able for presentation in the second week of the tenth grade.

The student would probably be completely bewildered, and he

might get the idea that Euclidean geometry is just words, words,

words. In Chapter 1 we have therefore been treading a rather

fine line, explaining to the student approximately as much as we

think that he can understand, and being careful in the process

not to make any statements that will have to be corrected later.

What needs to be emphasized, at the start, is that postu-

lates are not just pulled out of the air to satisfy somebody's

whim. The space of Euclidean geometry is an extremely good

approximation to physical space. This is why it got invented,

and this is the most effective way to think about it. We can

and we should use our intuition of physical space to help us

guess what can be proved and how we can prove it. The proof

itself, when we get it, should be logically based on the postu-

lates. A mathematical system, like the geometry we are develop-

ing, that consists of postulates and theorems involving undefined

and defined terms is called a deductive theory. This theory

2 2



itself is given meaning and content by exhibiting an interpre-

tation of the undefined terms. When we give the usual inter-

pretation of point, line, and plane frOm physical space we get

our physical geome.zry, which is an approximate model of our

deductive theory. Other interpretations of the undefined terms

lead to different models. A further discussion of mathematical

models and how they work is given in the Talks.

It might be well to return to the latter part of this

chapter after the student has had a fair 'amount of experience

with the concepts which we have been trying to explain. After

the class has finished Chapter 5, the ideas of postulate,

theorem, proof and undefined term should have become entirely

comprehensible. Chapter 6 will clarify some of the more trouble-

some problems involved in some types of proofs.

The numbers in the left-hand margin refer to the pages in

the text that are being commented upon.

Some students may not remember how to solve simultaneous

1 equations. The thing to do here, as far as the class as a whole

is concerned, is to provide enough reminders so that the class

understands the solution offered by the book.

Notice the manner in which the lengths of the sides of the

rectangles are discussed. The sides of the rectangles are merely

2 line segments, and each segment hr.i a length that is a number of

inches. Note that we write x = 8 and not x = 8 inches. There

are times when we want to talk about x
2 and we square numbers,

for example, (8)2, but we do not square 8 inches. The problem

here is simply to keep the units of measure out of the mathema-

tical operations and use them in the interpretation of the re-

sults of these operations. The lower case letters, x, y, are

used to stand only for numbers which are lengths of the sides

in some unit, for example: If a rectangle is 8 inches long

and x stands for the length, then x = 8.

2 3
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Admittedly, this is a fine point, but we have been very

careful about it in the text, and it will be easier .on the

students if you back us up by being equally careful about it in

the classroom.

The usage that we are following is different from that of

physics and chemistry courses. Physicists have developed, to a

fine point, the art of handling unit signs as if they were

algebraic symbols. A simple example of this is

6 ft. x 6 ft. = 36 sq. ft. = 36 ft.2

From here they move on to measure accelerations in ft.ieec.
2

and

perform cancellations between such expressions according to the

ordinary laws governing fractions. We are not claiming for a

moment that there is anything wrong with this. It is not only

2 very right, but very useful. It is not, however, part of the

natural subject matter of this course, and so we are taking the

more elementary viewpoint that the things we know how to add and

multiply are numbers. This will be quite adequate for our pur-

poses, and the art of handling units algebraically can best be

learned in courses where it is needed.

You may have a student who will enjoy making apparatus to

illustrate the Egyptian method for constructing a right angle.

2 First he needs to tie eleven knots in a piece of cord so tnat

twelve equal lengths result. Then he needs a board and two

tacks. Students can manipulate this simple apparatus to get a

feeling for the operation the Egyptians went through.

Other students may enjoy supplementary reading, for example,

an encyclopedia account of the Egyptian pyramids.

Your students may insist that they do not have to try "all"

cases to be sure of getting a right angle when a2
b2 c2.

3 You will find it hard to argue against the principle of reason-

ing they are using as long as you restrict discussion to this

one case where the mathematical fact is correct in spite of the

reasoning. But try such a thing as the "formula" for primes

p = n
2 - n + 41

[pages 2-3]
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when n = 1, p = 41

n = 2, p = 43

n = 3, p = 47

n = 4, p m 53

n = 5, p 61

n = 6, p = 71

The first six values for n, and many more, yield prime numbers

for p. Your students may believe that this is true for all

values of n. If your class does not have anyone who hits upon

the revealing number, 41, for Which p is not a prime, you can

propose this value yourself.

Or, on a different level, mention the rich child who be-

lieves -- because of several observations -- that every family

has a Cadillac.

4 2. a. 1.

Problem Set 1-1

b. 21135,790

67,895

3. a. 30 mi.

b. Let d be the number of miles between the cities.

d = d + 7.

3d = d + 21.

2d = 21.

d = 10 1. The distance is 10 mi.

5 *4. a. 4 in., 1 in.

b. Let n be the number of inches in the shorter piece and

5 - n the number of inches in the longer piece.

Then is the number of inches in the sides of the

smaller square, and 5-V-1 is the number of inches in

the side of th large square. The problem then requires

that (5-i-a ) 4(R)2 .

25 - lOn + n
2 -r

4n
2

16
=

0 = 3n
2

+ 10n - 25.

0 = (3n - 5) (n 4. 5).

3n - 5 0, or n + 5 . 0,

(pages 3-5]
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3n . 5,
2
or n = -5 (which is meaningless here).

n 1 3-,

5 - n 3 .

The pieces are 1 3- and 3 4 in. long.

5. This is a right triangle because (5)2 + (12)2 (13)2.

6. Reason (d) is likely. Reason (b) would account for large

errors. Reason (a) is unlikely.

7. Since 1
2 - 2.1 + 2 2. 1 the equation is true if n = 1.

Yes. No. No.

8. a. The remainder is one.

b. All of them.

Comment: Each odd integer can be represented by 2n + 1

for some integer n. If we expand (2n + 1)2 and divide by

4, the integral part of the quotient is n2 + n and the

remainder is 1. Hence, if 4 is divided into the square

of any odd integer, the remainder is 1.

6 9. There are 31 (or in special cases, 30) regions formed, never

32. This problem illustrates the danger of Jumping to hasty

conclusions.

10. a. Yes. b. Yes. c. The areas are equal. d. The lengths

are equal.

11. The area of the rectangle is 63 while the sum of the areas

7 of the pieces is 64. The fallacy is that if the other

measurements are correct, the small triangles should have
8

heights of 3 rather than 4. This can be shown by using
9

similar triangles.

*12. The total time for the trip is the distance, 60, divided by

the average speed, 60, and is therefore 1 hour. Since

this hour is used up travelling the first 30 miles at 30

miles per hour, our answer must be that the average speed

of 60 m.p.h. is thin-impossible to achieve.

26

[pages 5-71



8

8-10 This is a description of what is involved in setting up a

mathematical theory. It took the human race a long time to

perfect this idea. You cannot-expect your students to grasp it

from an. abstract description. The understanding of what is

involved in logical reasoning will grow-throughout the course

as students actively engage in logical reasoning. Nobody can

learn logical reasoning in a vacuum.

The idea the student needs to get here is that point, line

and plane are basic terms in our system and that we define more

10 complex terms like triangle, parallelogram, etc., in terms of

point, line and plane.

You can draw dots of different sizes on the blackboard tb

help get at the idea of point. Or you can mention a star,

thousands of times as large as the earth, that is barely visible.

Seen up close it is tremendous. Seen from farther and-farther

away it approximates more and more closely the idea of a point.

10 It may be necessary to point out repeatedly that a line

"does not stop".

The plane is the most difficult of the three terms for some

students to understand. This is revealed by such incorrect

11 language as "rectangular plane" or "circular plane". A plane is

suggested by such convenient objects as the classroom floor, the

top of the teacher's desk, and a sheet of paper. Emphasize,

whenever you use these objects for illustrative purposes, that

a mathematical plane "keeps on going", and move your hand in

appropriate directions.

It may help the student if you occasionally, during the

first months, suggest that they reread the third paragraph of

page 11.

27
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Problem Set 1-2

12 1. a. measurement, size, dimension.

b. dimension, measurement, extent, size.

13 4. plan, houses, churches, schools.

5. plane, bounded by, parallelogram, rectangle, space.

14 6. a. Defining a term usually involves placing it in a class

and distinguishing it from other members of the class.

The term "something" is an unnecessarily large class

into which to place squares. The phrase "that is not

round" does not distinguish it from other "somethings".

(One satisfactory definition at this point: A square

is a rectangle whose sides have the same length.)

b. Only one of the angles has a measure of 900 in a

right triangle. (A right triangle is a triangle with

one right angle.)

c. "When" refers to time, not to geometric figures. A

triangle is not a period of time. (An equilateral

triangle is a triangle whose three sides are equal in

length.)

(1, "Where" denotes a place. "Perimeter" is not a place.

(The perimeter of a rectangle is a number equal to the

sum of the lengths of its sides.)

e. This is a true statement, but it states a process for

computing circumference rather than stating what circum-

ference is. (The circumference of a circle is a number

which indicates its length.)

*7. A. False B. True C. False D. True

28
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Chapter 2

SETS, REAL NUMBERS AND LINES,

Some of the ways in which the material of this chapter

differs from that of a traditional text are: (1) sets are in-

tkoduced and (2) the real numbers, and thereby arithmetic and

algebra, are brought into the course in a fundamental way. The

reason for including sets becomes evident when you realize that

every geometric figure is most simply studied as a set of points.

This book does not treat the theory of sets as an end in itself

but introduces its ideas and terminology to the extent that they

contribute to the geometry course.

The real numbers are needed in geometry for the measurement

of segments, angles, areas and volumes. We introduce them ex-

plicitly, rather than use them without any explanation.

The immediate reason for introducing the real numbers- in

this chapter is that they are needed for the statement of

Postulates 2, 3, and 4. These postulates guarantee in effect

that lengths of segments are expressible-as real numbers, and

have the familiar properties that we expect. One important

advantage of introducing real numbers so early is that we can

use them to define betweenness for points on a line. Then we

can define segment, one of the most important geometric figures,

in terms of between.

Seeing numbers so strongly emphasized in a geometry course

will seem strange at first. At the time when Euclid wrote,

algebra hardly existed, except insofar as it was implicit in

geometry. In the following two thousand years or so algebra

developed to a high degree, but the teaching of elementary

geometry has made rather light use of it.

In this book, algebra is used in two important ways. In

the first place, it is used in the postulates to make them

easier to apply. If we take for granted that the real numbers

are known, then it is possible to give a logically complete set

2 g
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of postulates, adequate for proving the theorems, avoiding some

of the complications and difficulties involved in, say,

Hilbert's Foundations of Geometry. We will see also, as we go

along, that a great deal of the traditional material of geametry

was really algebraic all along, and is much easier to handle

when it is described algebraically. (This is especially true

in the chapter on proportion.)

We believe that for your students these simplifications

are.genuine simplifications, and will make geometry easier for

them to understand in the long run. But the algebraic apparatus

used in this chapter and later may very well call for,more care-

ful preparation than you have ever given before to an early

chapter of a textbook.

In the form in which we have presented it, the discussion

of sets is not really a mathematical theory but simply an ex-

planation of the language in which we propose to talk. As the

"homely examples" in this section show, all of the basic ideas

about sets -- with the sole exception of the empty set -- are

already familiar. Only some of the words in which we talk ,

about them are new.

The standard notation of a set theory is described in

Appendix I, entitled A Convenient Shorthand. This is intended

to be strictly optional and the title of the appendix is meant

to suggest the spirit in which the notation was to be regarded.

There is a serious danger in talking too much, and too fancily,

about sets, at the high school level: the impression may be

conveyed that writing things like AnBCC is a loftier occu-

pation than proving meaty theorems and solving hard problems

in geometry and algebra. This would be sad. We therefore

believe,st*t the language of sets should be introduced matter-

of-factly without fanfare, and that the notation of set theory

should be taught to a given student only if and when the student

is prepared to think of it as a matter of convenience.

3,0
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As a matter of convenience, however, the language of sets

is going to be used continually. For example, 'an angle will be

defined as the union of two non-collinear rays. Two lines in

the same plane are parallel if they do not intersect, and this

means that the lines, considered as sets of points, have no

member in common.

16 Notice that we are referring to the rectangles as the

union of the four line segments, not the line segments plus

the region enclosed by them. Later we shall be concerned with

the interior of geometric figures.

17 Such a statement as "...each of the two lines is a set of

points." seems to Say something specific about "line", which is

to be one of our undefined terms. This should not be cause for

trouble, however, for the material here is informal and explan-

atory. It is not part of our formal system of geometry.

Problem Set 2-1

19 1. The intersection is (5, 9, 11).

The union is (3, 4, 5, 6, 7, 9, 10, 11, 12).

2. a. S
1
and S

2'
S
1
and S

3'
S
1
and S

5'
S
2

and S
5
if you are

a boy, but S3 and S5 if you are a girl.

b. Sl.

c. Sl.

d. The set consisting of all members of faculty and

students of your school.

e. Sl, S2, S3, S5.

20 3. The set [AL

The set [B,C].

The empty set.

4. a. Three committees: [A,B], [A,C], 03,0.

b. [A,B] and [A,C] have A in common. [A,B) and (B,C)

have B in common. [A,C] and 03,0 have C in

common. "Intersect" means "have a member in common".

[pages 15-20]
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5. The set of all positive integers.

6. The empty set. Or, the sets have no common member.

7. The intersection is the segment The union is the

triangle ABC.

8. The set consisting of the one pair (2,1).

21 9. The set consisting of the one pair (4,3).

10. The empty set. Or, there are no common elements.

11. a. The set of all positive integers divisible by 6 (i.e.,

by both 2 and 3) -- (6, 12, 18, 24,).

b. 6n, where n is a positive integer.

e. The set of all positive integers divisible by either

2 or 3, (2, 3, 4, 6, 8, 9, 10, 12,...).

12. a. 1. b. 3. e. 6,-10. d. in (n - 1).

21 The material in this section, too, is informal. This

intuitive development is intended to convince the student that

to each point on a line there corresponds a real number, and

to each real number there corresponds a point on the line.

The feeling for the arrangement of these real numbers on a line

is important to the student at this time.

Pages 23 to 28 point out the properties of real numbers

concerning inequalities and absolute values, and show their

geometric interpretation on a line.

23 Proof of the fact that between any two rational numbers

there is a third one is simple, and interesting to some. In-

tuitively, the "average" seems to be such a number. The fol-

lowing argument justifies this intuitive notion.

1. Let a be the larger and b be the smaller of any

two rational numbers. We show that
a + b .

between a and b.
1 1 1 1 1 1

2. a= .ra+ et< -fa+ < -fb+ -fb= b.

1 1
3. a < + < b.

4. a < < b.
32
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a + b
5. Hence ---f-- is between a and b.

6. Furthermore, a b is rational.

For a more detailed discussion of irrational numbers see

ApPendix III, and also Chapter 4 of Studies II.

23 We introduce here symbols that might be new to some

students, namely <, meaning less than, >, meaning greater

than, , meaning less than or equal to, and , meaning

greater than or equal_to. To say that an inequality can be

written in reverse means, for example, that if 7 < 9, then

9 > 7. This is a statement in the form if x < y, then y > x.

We also have inequalities of the form x y, or y 2:x.

These could be illustrated in the following manner: To say

that x 8, means that x can be either less than 8 or equal

to 8, for example x can be -12, -r, 0, 31 7.999 or 8 itself.

For a more detailed treatment of inequalities see Chapter 4, of

Studies II. There will also be some discussion of inequalities

in Chapter 7 of the text.

24 While the basic algebraic postulates are put in Appendix

II for completeness, the postulates (laws) for inequalities

are included in the text proper, for many students are not

acquainted with them.

25 Some students may be so used to saying "The square root of

9 is plus or minus 3" meaning that 9 has two square roots,

3 and -3, that it will be hard to convince them that the written

statement VT. ± 3" is incorrect. We know of no patent medi-

cine to prescribe. Simply explain, move ahead, and remind

later as necessary.

26 Problem Set 2-2

1. All four are true.

2. a. AB is less than CD.

b. x is greater than y.

[pages 23-26]
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c. XY is greater than oxi equal to YZ:

d. n is less tban or equal to 3.

e. 0 is less than- 1 and 1 is lesa than 2,

f. 5 is greater than or equal to x and x is greater

than or equal to -5, or x lies between 5 and -5

inclusive.

g. x is positive or x is greater than 0.

3, a. k > 0. e. 2 < g < 3.

b. r < O. f. 2 3.

C. t 0. g. a < w < b.

d. s O. or b <, w < a.

4. a, c, d, f, h.

5. a. 3.009, 3.05, 3.1.

b. -3, -2.5, -1.5.
3

c. 1 ,

d. -1 ,

27 *6. a. T. b. T. c. N. d. S. e. S.

(Note to teacher. Parts (d) and (e) are true for r > s > 0

but are not always true for certain negative values.)

*7. a. S. b. T. c. S. d. T. e. T.

27 Most students learn what "absolute value" Means by lookivg

at several exaMples. The method of "defining by pointine

helps the student to grasp the concept, but it certainly is.not

a mathematical method. Assure your students that their notlon

of absolute value will serve them satisfactorily in geometry.

28 Point out that this particular definition is not intended to

be explanatory in the ordinary sense of the word. Awkward

though the definition may appear to be, it does pin the idea,

down and is technically correct, whereas superficially stated

"definitions" that sound good often fail to hold up under

close inspection.

3 4
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Problem Set 2-3

29 1. a, 0, d.

*2. b, c, d.

3. a. r. b. -r. c.- O.

4. Drawings are omitted.

a. The set of points to the left of the zero mark.

b. One point, a unit to the right of O.

c. The set of points to the right-of 1.

d. The part of the line to the left of and including 1.

e. Two points.

f. The part of the line between 1 and -1 inclusive.

g. The union of the part of the line to the left of -1

and the part to the right of 1.

h. The entire line.

30 5. a. The first set includes 0; the second does not.

b. The first set includes 0 and 1; the second does not.

30 Throughout this book, when we speak of "two points", we

really mean two. That is, if A and B are two points, then

A and B are different. The phrases "three points", "two

lines", and so on, are used in the same way. 'On the other hand,

if we say merely that A and B are points of the line' L,

this allows the possibility that A and B are the same; if

lie mean that they are different, we either say explicitly that

they are different or we say explicitly that there are two of

them.

Some usages are matters of convention, and there is not

unanimous agreement on them in the mathematical literature.

(FOr example, most algebra textbooks say that every quadratic

equation has two roots; and thus the equation x
2 - 2x + 1 = 0

has "two roots", which happen to be the "two numbers"'l and 1.)

We have therefore attempted to write this text in such a way

(pages 29-301
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that the reader will understand what we mean without having to

Tay undue attention to the conventions that we are following.

Sometimes we shall use the 'phrase "two differentToints".

for emphasis -- even when the word "different" is not necessary

logically. Postulate 1, for example, uses "different" in this

way.

If you want to acquaint yourself in advance with the nota-

tions that are adopted in the text, see the index of symhols at

the end of the volume.

32- Problem Set 2-4

1 1
1. a. -6, ig .

b. 54, 1 .

c. 24, 2.

2. a. 50, 0.5 .

b. 325, 0.325 .

c. 7320, 732 .

3. a. The numerical value of the length would be 11 divided

by 8 = 1 or approximately 1.3; that of the width

would be 1.

b. The numerical value of the width would be 8 divided

by 11 = .14 or approximately 0.77; that of the length

would be 1.

4. 362 + 482 . 602 = 3600.
6

5. a. P = 4.48 = 192. b. P =
4

= -1s- .

24,% 16
A = 482 = 2304. A = vs-) = .

33 *6. 1. a
2 + b2 = c

2
. 1. Given.

2. a
2
+ b

2
c
2

. 2. By division.

n n n
2 2 2

3. = 3. Another form of Step 2.

3 6
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*7. If the length of any side of the square is s units, it

is given that

s
2 = 4s

from which s
2 48 . 0

or s(s - 4). 0.

The only meaningful solution to this equation is s = 4. Area

and perimeter will be numerically equal only if a' side is 4

units long, whatever the unit may be. Since any change in

unit will change the 4 to something else, the area and peri-

meter will no longer be nuMerically equal.,

(Note to teacher: Be i'eady to commend other correct proofs

students may give. The concept of generalization in mathe-

matics is an important one.)

33 Section 2-5 begins by appealing to the student's knowledge.

It then "describes this
situation" formally, in Postulate 2.

The postulate is not a casually chosen group of words to use in

playing a game. It is on the contrary a carefully chosen state-

ment that gives one of the basic properties of points; it form-

alizes something with which the student is already familiar at

an informal or intuitive level. Later postulates will continue

the process of characterizing point, line, and plane bY formal-

izing properties which are intuitively familiar or which have

been suggested by physical experience.

34 Notice how the first strictly geometric definition is set

off. This particular definition does not lend itself to a

discussion of the nature of mathematical definition as well as

some later ones do, so the text postpones such a discussion

until a more suitable example appears.

Postulate 2 and the definition of "distance" use some

words such as "any", "different", "unique" which have not been

defined, and this may bother very dutiful students who are try-

ing to be precise. Ybu can simply say that we are using the

[pages 33-34]
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English language in the course, assuming that the meanings of

all simple non-geometric terms are known. Such terms are used

with their usual meanings. In other words, the language of

ordinary speech is assumed. Geometric terms, words with tech-

nical meanings, are the ones that are treated carefully within

the system of geometry.

35 In Section 2-6 on the infinite ruler, we are trying to

prepare the student in an intuitive manner for Postulate 3

(The Ruler Postulate.) When investigating the general rule

that the distance between the point that corresponds to x and

the point that corresponds to y is ly - xl it might be well

to check the rule for some whole numbers first. There are only

three cases we have to consider: (1) both points correspond to

positive numbers, (2) one point corresponds to a positive num-

ber and the other corresponds to a negative number, and (3) both

points correspond to negative numbers. The case when one point

corresponds to zero has already been considered when discussing

absolute values.

a
1

Case 1 0 10 21

0
1

1
1

Case 2 6

a
Case 3

1 1 1

-21 -10 0

It is clear that the distance from P to Q, (which is the

same as the distance from Q to P,) is 11 in all three

cases above. Now let us check and see if the absolute value

of the difference of the corresponding numbers will give the

distance between these points regardless of the order in which

we take the numbers in the formula, PQ = ly - xl.

Case 1. PQ = 121 - 101 = 11, and 110

Case 2. PQ = 16 - (-5)1 = 11, and 1-5

Case 3. PQ = 1-10 -(-21)1 = 11, and

3 8
[Pages 34-35]
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Now the Ruler Postulate seems reasonable, because we have

seen that ii will give us the results that we would expect from

37 the previous discussion. We now have a coordinate system on a

line; the number corresponding to a point is the coordinate of

that point.

Though the book mentioned previously that a line is a set

of points, there was nu formal statement about how many points

a line contains. Postulate 3 gives us infinitely many points

on every line. This is so because we have assumed the real

number system and are now postulating a one-to-one correspond-

ence between the set of points on a line and the set of real

numbers. (The text will use the phrase "one-to-one correspond-

ence" formally in Chapter 5.)

When we say that the points on a line are in a one-to-one

correspondence with the real numbers, we mean: (1) to each

point of the line there corresponds exactly one real number and

(2) to each real number there corresponds exactly one point of

the line. One-to-one correspondences are not unique to mathe-

matics. For instance, how many times have you taken attendance

in your class by looking to see if each assigned seat in the

classroom is filled? What you have done,is to establish a

one-to-one correspondence between assigned seats in your class-

room and students in your class. If you can match up a seat

with each student, you know that all of the students are present

Postulate 3 is a very powerful tool. Part (3) guarantees

that distances on a line behave in a way that we would normally

expect them to behave in. It would not be sufficient to post-

ulate just the existence of a one-to-one correspondence. We

cannot have anything like this:

4

-3 -2 0 I 2 3

because such an "undesirable" ruler does not satisfy Part (3)

of Postulate 3.
[page 37)
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If you are familiar with the foundations of geometry you

may find Postulates 3 and 4, with their strong emphasis on

algebra, rather strange. We have introduced real numbers in

Postulates 2, 3, 4 as a pedagogical device at the tenth grade

level to avoid very subtle and difficult discussions on the

theory of measure of segments. (See the Talk on the Concept

of Congruence for an indication of this.) One should not

infer that we consider this the best treatment at higher levels.

In an advanced course in the foundations of geometry we would

prefer a treatment of the type given in HilbertIs Foundations

of Geometry or Veblents Monograph on the Foundations of Geometry

(Monograph 1 in Mor_ioLs_p_alLs on Topics, of Modern Mathematics,

edited by J. W. A. Young.) In such a treatment the postulates

would be more geometric, making no reference to algebraic en-

tities, and our Postulates 2, 3, 4 would appear as theorems --

indeed difficult ones to prove.

Note the contrast with the conventional treatment (and

with Euclid) where betweenness is not even mentioned and

betweenness relations are taken, when needed, intuitively from

pictures. The early introduction of real numbers permits us

to define betweenness. The mathematical treatments of Hilbert

and Veblen take betweenness as undefined and characterize it by

postulates,

37
1. a. 3.

b. 3.

c. 3.

2. a. 12.

b. 12.

c. 12.

d. 12.
1

e. 1 T .

Problem Set 2-6

d. 2.

e. 12a1 or 21a1.

f. O.

f. 10.2

g. -

h. 1x1 - x21 or lx2 - x11.

i. 14a1 or /dal.

j. 12s1 or 2181.

40
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(Note to teacher: In (g) point out thatiti - 45- is

exact, while 1.732 - 1.414 = 0.318 is an approximate

result.)

3: a..

Q W P.

Petel5 -4 -3 -2 1 0 I 2 fr5 r-5IffIVIII f 1

Jim 0 1 2 3 4. 5 6 7 n r

b. 1r - 31 by Jim's scale.

l(r 5) (-2)1 = 1r - 31 by Petels scale.

c. 1r - n1 by Jim's scale.

1(r - 5) - (n - 5)1 = 1r - n1 by Petels scale.

4. Subtract 4; from the value at Q.

38 5. a. Yes.

b. p + 2 and q + 2.

c. The distance, by definition, is 1p - ql. For the new

numbering

l(P + 2) (q + 2)1 . Ip

d. Yes.

6. Consider two points with coordinates n and r. After

renumbering the original scale, the coordinates will be

(-n) and (-r).

The distance between them is In - rl.

It is also true that 1(-n) - (-r)1 = 1r - n1 = In - rl.

7. a. No. Gamma.

b. 9 miles or 41 miles
9

Beta
16 Alpha Gamma

Alpha
16 Beta

25 Gama

c. Alpha.

d. Alpha.

(Note to teacher: This problem is leading up to the

concept of betweenness.)

[pages 37-39]
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There are 2 possible arrangements.

B can be between A and C.

A Can be between C and B.

9. B is between A and C. l4.

At ICI- 15

kO The concept of betweenness, though intuitively natural, ia

one that has rarely been formalized in high school treatments

of geometry. From the discussion in the text it can-be seen
that this can be a very tricky concept if we coñsider the
problem on a closed curve. Fortunately, later discussions

and treatments in the text consider betweenness on a line only.

In connection with the idea of betweenness, it might be

worthwhile to propose the following problem.to the class: In

how many ways can faar round beadd, of different colors, be

arranged in a string so as tio make a four=bead necklace? The

answer is that there are only three different ways. The pOint

is that there is only one way for the first three beads-, A,

B, C to be arranged in the necklace; the six orders ABC, ACBi-

BAC, ECA, CAB, CBA all form the-same necklace. The only real .

choice is in the position-of the fourth bead, Di and for this

there are three possibilities: D an be immediately- between

A and B, or immediately between B and C, or immediately

between A and C.

41 The definition of "between" is, folloWed by a discudsion of

definitions in mathematics. A mathematical definitiom-Must be-

didtinguished from a dictionary definition-which-often giVes

only a synonym or description of the term defined. A mathemat-

ical definition is, as this manual mentioned in-Chapter 1, a

formal agreement to use -- when deaired -- one phrase as an

abbreviation for another phrase.

42
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Notice that a definition is logically very different from

a theorem. A typical theorem is in the form, if A, then B,

where A and B are statements. It says that statement B

is deducible from statement A. Fbr example, let A be the

statement "a triangle has two congruent sides" and B the

statement "a triangle has two congruent angles." These atate-

ments mean different things, and we have learned a geometric

fact when me prove that the second statement inevitably fol-

lows from the first.

On the other hand a typical definition is of the form:

P stands for (or is an abbreviation of) Q, where P and Q

are4Wa5es. For example (see Chapter 1, commentary) let P

be "Piiridielograle and Q be ."a quadrilateral whose opposite

sides are parallel." No implication is involved here --

and Q, are not even statements. Rather we are making an agree-

ment, motivated by convenience, that the short phrase P shall

stand for the long phrase Q. Sometimes, to avoid awkwardness

of language, we state a definition in "ifthen" form, for ex-

ample: if the opposite sides of a quadrilateral are parallel,

then we call the quadrilateral a parallelogram. Don't be mis-

led by this. No implication is involved. We are not stating

a geometric fact, but an agreement about how geometric termin-

ology shall be used,namely that the word "parallelogram" shall

stand for the phrase "a quadrilateral whose opposite sides are

parallel."

You can discuss definitions in such down-to-earth terms

as these: A mathematical definition is a convenient handle

for dealing with a mathematical idea just as the set of finger

holes in a bowling ball is a convenient handle to use when

rolling the ball.

You may want to present the idea of definition to your

class like this: Consider the following definition of "honor

student." "Students of East High with a deportment grade of A

and no academic grade below B are called honor students."

[pages 41-42]
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Wnowledge that Cindy Marshall is an honor student at East High

is also knowledge that she has a deportment mark of A and has

no academic mark below B by definition of "honor student". On

the other hand, knowledge that Eric Hughes, a student at East

High, had A in deportment and no mark below B is knowledge that

he is an honor student -- again la definition. "Honor student"

is a convenient label that spares people all the words "a stu-

dent with a deportment mark of A and no academic mark below B".

42 A figure for Theorem 2-1 might lead the students to feel

that they can "see" that point B is between A and C. What must

be realized is that a figure is not sufficient justification of

a proof. To prove this theorem formally we must prove it on

the basis of the definition and not the configuration, for the

only formal knowledge we have of betweenness is that provided

by the definition.

You might wonder why we prove theorems like 2-1 at all;

they seem so obvious. Notice that according to our logical

program, as outlined in Section 1-2, every statement of our

geometry must be either a theorem or a postulate. We could,

of course, take as postulates all statements as obvious as

Theorem 2-1, and some text-books do this. We choose, rather,

to use as few postulates as we feel are pedagogically necessary,

and prefer to give proofs of even the "obvious" theorems. This

does not mean that either you or your students need spend much

time on the proofs. We merely believe that it is good for the

students to know that some "obvious" things can be proved, and

that mature mathematicians do not regard it a waste of time to

devise such proofs (and some of them are unimaginably difficuW

You will probably want to point out to your students that

they are not expected to "learn" the proofs of the theorems in

this chapter. The theorems may not seem meaty to beginning

geometry students, and the proofs are not at all typical of the

kind of geometric reasoning they will usually be doing. We do

not expect them to know how to write proofs of their own until

Chapter 5. The book gives proofs for the sake of completeness.

(page 42)
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Go through them once, and then go on. Assure the students that

the time for mastering simple geometric proofs will come, and

that the book will then help them get a start.

42 The statement that if x < y, then y - x is positive,

might require some amplitication. We can illustrate this with

a specific example, letting x and y represent 2 and 7

respectively. If x < y, and we subtract the smaller number

from the larger,tfien it is certain that the difference will be

a positive number (y - x ) 0). If, on the other hand, x < y,

and we subtract y from x, we would have x - y < 0. If we

subtract 7 from 2 we get a negative number, which is, of

course, less than 0. In the theorem it is given that x < y.

Then y - x is positive and, by definition of absolute value,

ly - xi = y - x.

42 1. a. 7.

b. 6.

c. 10.

Problem Set 2-7a

d. 8 .

e. 0.9 .

f. 1x1 - x21

2. It is only necessary to read a single positive number if

one uses the Ruler Placement Postulate. Neither subtrac-

tion nor computing an absolute value is necessary.

43 3. RS 4. ST = RT.

4. The coordinate of A is -2; that of B is 14.

5. c. See the Ruler Postulate and definition of between.

6. The point having coordinate xl. Theorem 2-1.

7. a. By the Ruler Postulate:

1 1.
AE = 10 - -1-ri r.

2 1
EF = r - -rl r.

FB = r - r1 = r.

AE = EF = FB.

[pages 42-43]
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b. AF = 10 - rl = r.

AB + EF = AF since t-r+ lr= r.

Therefore, E is between A and F.

*8. The inequality x > y > z can also be written z < y < x,
in which case y - z, x - z, and x - y are all positive.
Therefore, CB = y - z,

CA = x - z,

and AB = x y.

From these three equations we observe that
CB + BA = x - z = CA.

Therefore, B is between A and C. (Note: A brief
proof relates z < y < x to Theorem 2-1.)

45 The term "ray" might be new to students. The text makes
clear the distinction between ra and segment. What should be
pointed out to the students is that in the notation for a ray,
for instance AB, the first letter is the end point and the
second is one of the infinitely many points through which the
ray passes. It is not correct, therefore, to refer to the ray
whose end point is A and which passes through point F as-->
FA. The correct notation is AF.

Observe that in the figure for Theorem 2-4 the point P
need not, in spite of the diagram, lie to the right of point B.P may be the same point as B, or P may be between A and
B. However, P cannot be at A, and A cannot be between P
and B, since x is a positive number.

Remarks on The Line Separation Theorem. The following
theorem is not stated in the text, but is often used tacitly
later. It describes the separation of a line by a point, and
is closely analogous to the later postulates in Chapter 3 deal-
ing with the separation of a plane by a line and the separation
of space by a plane.

46
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The Line Separation Theorem. Let P be a point of the

line L. Then L is the union of P and two sets H
1

and

H
2

not containing P, such that

(1) No point of L lies in both H1 and H
2'

(2) If two points Q and R are both in the same set,

H
1

or H
2'

then P is not between Q and R, and

(3) If Q is in H
1,

and R is in H
2'

then P is

between Q and R.

Proof: Let us set up a coordinate system on L such

that P corresponds to O. Let H1 be the set of all points

of f, with negative coordinates and let H2 be the set of

all points of L with positive coordinates. Then L is the

union of P, H1 and H2, because every real number is positive,

negative or zero. P is not in either H
1

or H
2

because 0

is neither positive nor negative. (1) holds because no number

is both positive and negative. It remains to verify (2) and

3) .

Let Q and Ai be points with coordinates x and y.

Suppose that y is the larger; this is merely a choice of

notation. If Q and R are in H
1,

then x < y < 0; by

Theorem 2-1, R is between Q and P; and so P is not

between Q and R. If Q and R are in H2, then 0 < x < Y;

Q is between P and R; and so P is not between Q and R.

This verifies (2).

Let Q, R, x and y be as before, with x < y. If Q

is in H and R is in H
2'

then x < 0 and y > O. There-

fore, x < 0 < y; and therefore, P is between Q and R.

This verifies (3).

This theorem has been deliberately kept out of the text.

It is so obvious that students can be expected to use it tacitly

and its proof is not very interesting mathematically.

Of course, the half-lines H1 and H
2

are analogous to

the half-planes and half-spaces to be discussed in the next

chapter. Notice that a half-line ls different from a ray; a

ray contains its end-point, but a half-line does not.

[page 46)
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Notice that the Line Separation Theorem guarantees that
every ray has exactly one opposite ray.

Problem Set 2-7b

47 1. Two.

2. a. Theorem 2-1.

b. Theorem 2-3.

c. Definition of between.
4+48 3. a. Points X and Y and all points of XY between X

and Y.

b. Points of 741 and all points Z of 13/. such that Y
is between X and Z.

*4. Case 1. If A is between B and C, ihen AB + AC = BC.
Since AB = BC, this leads to the impossibility AC = 0.

Case 2. If C is between B and A, then BC + CA = BA.
This leads to the impossibility CA = 0.

Case 3. B is between A and C, by Theorem 2-2, is the

only remaining possibility and must be true.

(Note: A proof based on setting up a coordinate system

and using Theorem 2-1 is also possible.)

*5. Theorem 2-4.

*6. Proof. Statements: Reasons:
1. AB + BC = AC. Definition of between.

2. AC - AB = BC. Subtracting AB from each side.
3. BC > 0. Distance Postulate.
4. AC > AB. If AC - AB > 0,

AC > AB.
7. a. lEr contains points Y and R but 17 contains

neither points Y nor R. R belongs to 31. but
Y does not. YZ + ZR = YR.

b.Y X Z RorR Z X YI f I I t
4 8

[pages 46-48]



31

48 Review Problems

1. Sl; Sk; S3; S5;-the empty set.

-49 2. 1; 2; no.

Q R

3. a.
4itstIiIi

-3 -2 -1 0 1 2 3 4

b. PQ = 3, RT = 4, TR = 4, PT = 2, QS = 2.

4. a. Positive.

b. Between 0 and 2.

e. Negative.

5. a. AB + BC = AC.

b. AB = BC.

6. There are 12 possible orders. We picture the 6 in which' B

is to the right of A.
D A B 0

I 4

A D B

A B D
4

C D A

A D B

A

7. A

AB + BC = AC. ti contains points A and C, but Ing

contains neither point A nor point C. A belongs to

bt but C does not.

8. x = 9, y = 4.

4 9

[pages 48-49]
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50 9. Perhaps they live in the same house. However, since people

are not always precise in every day language usage, it may

be that they only live near each other -- as on opposite

sides of the street.

10. N - 2.

11. a. AF and E.

b. E and F.

c. Triangle AFE.

d. The empty set.

e. Triangle AEF.

12. a. 5. (ABCD, ABCE, ABDE, ACM, BCDE.)

b. 10. (AB, AC, AD, AE, BC, BD, BE, CD, CE, DE.)

c. 10.

13. No. AC could only be 13 or 7.

A
3 10

I I >

A
7 3

4 I

14. a. F (Should be 6). e. T

b. T f. T

c. T g. T

d. T h. F (Should be 7).
51

15. Yes. Since y is larger than x, the value of y - x

will be the same as the value of Ix Yl.

16. (b) is not a coordinate system because the numbers 4, 3, 2,

1 and 0 each correspond to more than one poiht. This is

not permissible according to Postulate 3.

(e) is not a coordinate system becaUse the distance between

points with coordinates 2 and 1 in the original numbering

is 12 - 11 or 1. In the numbering of (e) the distance

between the same two points is 12 - (-1)1 or 3. By Postu-

late 2 the same two points can correspond to only one num-

ber indicating distance.

17. d; b, e; h; f. 5 0

[pages 50-51)
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Illustrative Test Items for Chapter 2

A suitable chapter test might be made by selecting prob-

lems from the following list. These have been grouped into

sets of problems that are similar with the idea that the

teacher may wish to make a test by choosing none or more from

each set.

In compiling this list and later lists, we generally have

omitted items specifically calling for statements of defini-

tions, postulates, theorems, and so on, in the belief that each

teacher on his own will draw on this wealth of test material,

as well as on his own ingenuity in constructing his own tests.

A. 1. a. Let A be the set of squares of the first eight

non-negative integers. List the members of this

set.

b. Let B be the set of the first eight even positive

integers. List the members of this set.

c. What is the intersection of sets A and B?

d. What is the union of sets A and B?

2. Consider the set of all positive integers divisible by

5. Consider the set of all positive integers divisible

by 3. List the first five integers in the intersection

of these two sets.

3. The intersection of ray -Al and ray g is . The>
union of ray AB and ray g is

B. 1. Arrange the five collinear points E, L. M, S, T in

proper order if LM + ME = LE; SE + ET = TS; LS + SM=ML.

2. A number scale is placed on line la with -5 falling

at R and 6 at S. If the Ruler Placement Postulate

is applied with 0 placed on R and a positive number

on S, what will be the coordinate of S?

3. Copy the following sentences and supply the appropriate

missing symbols over each letter pair.

a. AB has no end points.

b. The end points of MR are M and R.

c. RQ has one endpoint, R.

51
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4. Three towns Lander, Manton and Amity are collinear but

not necessarily in'that order. It is 9 miles from

Lander to Manton and 25 miles from Manton to Amity.

a. Is it possible to tell which town is between the

other two?

b. Which town is not between the other two?

c. What may be the distance from Lander to Amity?

d. Illustrate with sketches.

C. 1. Given A, B, and C are three collinear points with

AB = 8 and CEf= 5. If, also, the coordinate of B

is -2, and the coordinate of A is less than that

of C, what are the coordinates of A and C? Draw

two sketches giving different sets of answers.

2. A B. F

-7 0 3

In the figure:

a. the length of WE is

b. the length of AH is

c. the length of BT is

d. the length of FT is

e. the length of IfY is or

3. If A corresponds to 0

line, what set of numbers

the ray AB? Of the ray

g.

and B to 1 on a number

correspond to the points of

BA?

71 + 131 =

-71 131 =

71 1-31 =

7-31 =

-7+31

-7-101

-7+41 =

52
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2. a. How many square roots does the number 49 have?

b. .../W=

3. a. Write as an inequality: K is a negative number

greater than -10.

b. Restate the following in words: 20 > x > 10.

4. Make a true statement out of each of the following ex-

pressions by replacing each question mark by one of

the following symbols, <, >, =, > : 13-61 ? 16-31;

1-4-21 ? 1-41 - 121; lx + yl ? lx1 + lyl.

Answers

A. 1. a. 0, 1, 4, 9, 16, 25, 36, 49.

b. 2, 4, 6, 8, 10, 12, 14, 16.

c. 4, 16

d. o, 1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 25, 36, 49.

2. 15, 30, 45, 60, 75, 90.

3.

B. 1. L S M E T

2. 11.

3. a. g.
b. M.
c.

4. a. No.

b. Amity.

c. 34 mi. or 16 mi.

d. L 9 M 25 A

A 16 L 9

53



36

C. 1. A B C

, -10 -2 3

A C B
1 f I

-10 -7 -2

2. a. 7

b. x 4- 7.

C. y.

d. y - 3.

e. y - x or ix - yi or iy - xi.

3. The set of numbers, x, such that x 0. The set of

numbers, x, such that x 1.

D. 1. a. 10

b. 4.

0. 4.

d. 10.

e. 4.

f. 17.

g. 3.

2. Two; 7.

3. a. -10 < K < 0, or 0 > K > -10.

b. x is a number between 10 and 20.

4. .; >; .

5 4



ChaPter'3

LtNES, PLANES ANb-SEpARATION

The material of this,chapter'differS from-that of the-

traditiOnal text in seVeral maye. lyirst, Some elementary Solid

geoMetrY is introduced, for the- authoratellevethat here

should be no undue separation-of solid:geometry from plane

geoMetry.

Seclnd, the important idea of Cohvekity-is intróduced,_

Most of the familiar geometric figures, such as triangUlar and-

reetangular regions, or the interiors of circles- and spherett,

or rectangular solidsand circular cOneSi are convex-seta:

=Finally, the separatioh of a plane by one of"-its lines

and the separation of space by' a plane are stUdied. These ideas

are treated pUrely intuitively in_mott -geometry texts_ts. is

indicated by phrases such-as "two points are on Opposite sides

of a line.'

54 The text description of the figure on page 54 asserts

that points A, B, C and E are coplanar. Actually, F is con-

tained in the same plane as A, B, C and E, and we cah say that

A, B, C, E and- F are coplanar.

54 Most students will not see readily-that Postulate 5a

really does fill a plane with points. We do not believe that

you should press the matter, for most students will not be

interested in something so "obviatis." You can show inquiring

students this by using Postulates 1, 6 and 3 along with

Postulate 5a as follows:

A plane has three non-collinear

points A, B, C by Postulate 5a.

Then by Postulate 1 there is a

line L determined by B and C.

The plane contains line L by

Postulate 6. Line L has

infinitely many points by

Postulate 3. Point A, in
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combination with these points individually, determines infi-

nitely many lines by Postulate 1. All of these lines (and

their infinitudes of points) lie in the plane by Postulate 6.

56 Postulate 6 assures us, as the text points out, that a

plane is flat. Your students can use a globe in the classroom

to see that is is not possible to find two points on a sphere

such that the line determined by them lies on the sphere. A

sphere as a surface, then, does not satisfy Postulate 6. Other

surfaces, for example cylindrical ones, are trickier. Ybur

students can find points on a steam pipe in your room such that

the line determined by them lies on the pipe. Pupils should

readily see, however, that finding some such pairs of points

is not enough. The question remains: do all pairs of points

on the pipe satisfy the requirement? Since the answer is no,

the cylindrical surface of the pipe does not satisfy Postulate

6.

A triangular region does not satisfy Postulate 6. Although

the region contains the segment 17 joining its points A and B,
4-*

it does not contain the line AB which is determined by the

points.

55 Theorem 3-1 could be stated in the if-then form: If two

lines intersect, then they intersect in only one point. The

two statements are equivalent.

The students should be reminded of the fact that the "if

. . . then . . ."relatiohship is not unique to geometry or

mathematics. It is a cause and effect relationship common to

science and everyday life, for example: "If I do not sleep for

two consecutive nights, then I will be tired." Statements such

as this often occur in conversation. Full use of the exercise

material in recognizing the hypothesis and conclusion of

statements should be made when you reach Section 3-2.

55 Teachers will recognize the proof of Theorem 3-1 as being

indirect. The text does not wish to describe indirect proof at

this point, or even to describe proof at all. The thing to do,

we believe, is to go through the proof once with emphasis on

(pages 55-56]
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understanding and then go on without asking students to learn

the proof. Theorem 3-1 and the method of indirect proof are

discussed in'Chapter 6.

One of the problems in the teaching of geometry is that

of keeping emphasis on the ideas of proofs rather than on

rote memory. Teacherd have their own ways of doing this, such

as changing the labels on figures, encouraging students to come

up with different proofs, going from paragraph form to two-

column form and vicerversa. In other words, discourage mere

memorization of proofs. (Be careful not to discourage mental

effort, however.)

56 The discussion in the text of a way in which Theorem 3-2
1/4

could be proved suggests that you avoid a proof now--or at

least avoid emphasizing one. The proof goes: It is impossible

for a line and a plane not-containing the,lineto-intersect in

two different points because then the line, by Postulate 6,

would lie in the plane.

56-58 The text proves Theorems 3-2, 3-3, and 3-4 in Chapter 6.

Some time spent on the drawing of planes and lines in

three-space is recommended. Some very simple demonstrations

with a piece of cardboard (representing part of a plane) and a

pencil (representing part of a line) might be performed to

illustrate and clarify those postulates and theorems that make

reference to three-space.

57 You might ask questions designed to clarify some of the

postulates of this chapter: for example, for Postulate 7, "Why

does a stool with three legs tend to be more stable than a chair

with four legs?"

Problem Set 3-la

53 1. One.

Infinitely many lines can be drawn.

2. No.

Three.

[pages 53-58)
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3. Three

4. No end-points. Two end-points.

Problem Set 3-lb

55 1. P and Q are the same point by Theorem 3-1.

2. Infinitely many.

One.

None, if the points are non-collinear; one, if collinear.

3. Postulate 1.

4. a. One line, by Postulate 1.

A
Eel

b. Three lines if the points are non-collinear. There are

three pairs of points, and each pair determines a line,

by Postulate 1.

One line if the points are collinear.

56 5. a. Six: M AC, It, BC, BD, CD.

b. One if D is collinear with A, B, C.

Four otherwise: Ig, It, %Kb, n.

6. a. A set of points is collinear if there is a line such

that each point of the set lies on the line.

58
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A set of points is coplanar if there is a plane such

that each point of the set lies in the plane.

b. For each plane there are at least three non-collinear

points which lie in this plane.

7. "Contains" form.

Given any two different points, they lie on exactly one

line.

Problem Set 3-1c

58 1. Infinitely many.

Infinitely many.

One, if the points are non-collinear; infinitely many, if

the points are collinear.

59 2. The ends of the three legs are always co-planar. The ends

of the four legs may not be coplanar.

3. Point.

Line.

4. No. Yes. Yes. Yes, if n > 2.

5. A set of three or more points is non-collinear if there is

no line which contains them all.

6. Yes, if A, B, C are non-collinear.

No, if A, B, C are collinear.

7. a. A.

b. C.

C. E.

d. Non-collinear, or coplanar.

9.

OR

[pages 56-59]
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10.

60 11. a% An edge of the tetrahedron is the line segment

determined by two vertices.

b. Six: 7E, TU, 7:15, EU, EU, Ur.

c. Yes, for example, the edges AB and CD have no point
in common.

d. No. The faces can be paired six ways; each pair has
an edge in common.

12. Seven: ABC, ABE, BCE, CDE, ADE, ACE, BDE.

Problem Set 3-2

61 1. a. Hyp: John is ill.

Concl: He should see a doctor.

b. Hyp: A person has red hair.

Concl: The person is nice to know.
c. Hyp: Four points lie on one line.

Concl: They are collinear.

d. Hyp: I do my homel::ork well.

Concl: I will get a good grade.

e. Hyp: A set of points lies in one plane.

Concl: Tile points are coplanar.
f. Hyp: Two lines intersect.

Concl: They determine a plane.

2. a. If two lines are different, then they have at most one
point in common.

b. If a student is a geometry student, then he knows how
to add integers.

c. If it rains, then it pours.

[pages 59-61) 60
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d. If a point is not on a line, then the point and the

line are contained in exactly one plane.

e. If a practice is dishonest, then it is unethical.

f. If two lines are parallel, then they determine a plane.

62 S. Postulate 1: If points P and Q are different, then there

is exactly one line which contains them.

Theorem 3-1: If lines L
1
and L

2
are different, they inter-

sect in at most one point.

4. a. No. The theorem places the intersection of two lines

as a condition for the conclusion while not asserting

that any two lines must intersect. The statement in

this problem asserts that two lines must always

intersect.

b. If two lines intersect in a point, then there is exactly

one plane containing them.

Before introducing the postulates on separation it may be

well to look back and re-examine the postulates we already have.

Postulates 1, 5, 6, 7, 8 are similar in that they are purely

geometric and describe how points, lines and-planes lie on or

are "incident with" each other. They are called incidence

postulates. On the other hand, Postulates 2, 3, 4 involve

algebra; they are concerned with properties of measurement,

and so are called metrical postulates.

The incidence postulates are simple ones that logically

form a natural unit for beginning the course. But peda-

gogically this does not seem attractive, for two reasons. Firs%

the incidence postulates would confront the student with solid

geometry in his first approach to a new subject. Second, the

proofs of the basic incidence theorems (for example Theorems

3-1, . . . 3-4) involve the indireôt method, which causes

difficulty for many students.

To avoid these difficulties we have split off Postulate 1

from the incidence postulates and joined it to Postulates 2,

3, and 4 to form the basis of a beginning unit on.measurement

(pages 61-621
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in Chapter 2. This makes use of the student's knowledge of

algebra, and involves, geametrically, only sets of points

contained in a line. Then Chapter 3 discusses the incidence

properties of points, lines and planes and separation proper-

ties. These are non-metrical in character.

The discussion of the preceding three paragraphs.suggests

a rather basic theoretical point, namely, the effect on a

mathematical theory of introducing new postulates. The next

few paragraphs use a miniature geometry to illustrate this

basic point of theory. We intend this as interesting background

material for its broad effect, rather than for any immediate

application to the text.

Examine Postulates 1, 5, 6, 7, 8. You see that they

include familiar determination and intersection properties of

points, lines and planes in Euclidean solid geometry, and also,

in Postulate 5, a minimal indication of how numerous points

are. You probably have in mind, in any case, that a line and

a plane contain infinitely many points. But this can not be

proved on the basis of Postulates 1, 5, 6, 7, 8. We show this

by exhibiting an appropriate "model" for Postulates 1, 5, 6,

7, 8. The model is a concrete system of objects which satisfy

these postulates. Expressed differently, we get a model of our

mathematical theory by assigning specific meaning to the un-

defined terms "point," "line" and "plane," in such a way that

the postulates become true statements.

To construct our model, consider

a set of four distinct objects, a

a, b, c, d. For example, we can /N
/ \

take four dots on a piece of / \
/ \paper as indicated in the / \

diagram. We can think of b \
them if we wish as the ,
vertices of a triangular

pyramid. Interpret "point"

to mean any one of the

62
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objects a, b, c, d; "line" to mean any pair of these objects;

"plane" to mean any triple of them. Then our postulates are

no longer statements involving undefined or uninterpreted terms,

but become definite statements (true or false) about the objects

a, b, c, d. Thus Postulate I now says: any two of the objects

a, b, c, d are contained in a unique pair of them. This is

trivially true. Similarly, Postulate 6 says that if a triple

of the objects contains two of them, then it contains the pair

composed of these two. This is also a trivial truth. Similarly

it can be shown that each of the Postulates 1, 5, 6, 7, 8 is

satisfied when point, line and plane are interpreted in the

given way. In virtue of this the system composed of the four

"points" a, b, c, d, the six "lines" (a,. b), (a, c), (a, d),

(b, c), (b, d), (Cp d) and the four planes (a, b, c), (a, b, d),

(a, c, d), (b, c, d) is called a model for postulates 1, 5, 6,

7, 8.

Since the model satisfies Postulates 1, 5, 6, 7, 8 it must

satisfy the theorems which are deduced from these postulates

(using no others), for example, Theorems 3-1, 3-2, 3-3, 3-4.

This is easily verified. Now you can see that the principle

that a line contains infinitely many points can't be deduced as

a theorem from Postulates 1, 5, 6, 7, 8. For if this could be

done, our model would have to satisfy this principle -- and it

doesn't, since each of its lines contains exactly two points.

Now you can see the effect of introducing the metrical

postulates, in particular Postulate 4, the Ruler Postulate.

This guarantees that a line is rich in points, and that its

infinitude of points are arranged on the line and determine

distances in just the way we want for the kind of geometric

theory we are constructing. The introduction of the metric

postulates excludes finite models,of the type we have discussed,

which do satisfy the incidence postulates. This illustrates the

basic theoretical point we mentioned earlier: in general, as

new postulates are added in a mL.--hematical theory, the scope of

its application,that is the family of models which satisfy

the postulates, is reduced. See the Talks: The Concst of

6 3



Congruence and Miniature Geometries.

62 Notice that in sets D, E, F there are infinitely many

pairs of points such that the segments joining them are con-

tained in the set. The existence of a single pair of points

P, Q such that Ni does not iie in the set is sufficient to

eliminate the possibility of convexity. Thus the union of

the set of points in the interior of a circle and one point

outside the circle is not a convex set.

Separation properties are not explicitly mentioned or ex-

plained in Euclid or in conventional texts. They appear in

geometry in statements such as, "Consider two triangles which

have the same base and a pair of vertices on opposite sides of

the base." They appear in everyday life when we say, for

example, that the town hall and the school are on the same side

63 of the main highway. Notice how the text uses the basic idea

of segment to give a precise statement of what is involved in

the separation of a plane by one of its lines. The intuitive

idea of two points being on the "same side" of line L is ex-

pressed precisely by the condition that the segment joining

them does not intersect L. Notice how the precise formulation

of the separation postulate agrees with our intuitive ideas

about separation.

66 Postulate 10, the Space Separation Postulate, is entirely

similar to Postulate 9, the Plane Separation Postulate. The

corresponding result for a line can be proved from the Ruler

Placement Postulate, and was given at the end of Chapter 2 of

the Commentary.

Problem Set 3-3

66 1. a. Yes. The line segment joining any two points of the

line lies entirely in the line.

b. No. There is one segment joining the two points and it

does not lie in the two points.

c. Yes.

d. No. Any segment containing the removed point would not

[pages 62-66]
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lie entirely within the set even if its end-points were

within the set.

e. No. For any two points, R and S, of the set the

segment rg does not lie in the surface. (Ordinary

3-space is considered here.)

f. Yes.

g. No. No. Yes.

h. No. Yes. No.

i. No. Yes. Yes. No.

J. Two. Half-spaces.

67 2. No. It is necessary that for every two points, the entire

segment Joining them lies in the set.

3. V only. V is the only set in which the segment between any

two points is contained in the set.

4. Yes. Take any two points P and Q in the plane. By

Postulate 6, we know that the line containing these points

lies in the plane. Hence 75$ is contained in the plane,

making the set convex.

5. a. Yes. For any points P and Q in the intersection:

b. No. Points P and Q may be selected as follows:

6. No. Any segment containing the removed point would not

lie entirely in the set even if its end-points were in

the set.

7. Yes.
[pages 66-67]
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8. Any figures of the following nature:

CONVEX NOT CONVEX

9. Yes.

10. No.

11. a. No. The line separating the half-planes is not con-

tained in the union.

b. No. A large region of the plane is still not covered,

as in the diagram.

SOVISISOMOMMOMW
OSSOBSOMOSOOW
OMmORIMOW,
SMSOSOBSOPOSIT

12. a. Two. Half lines.

b. The Line Separation Statement: Given a point and a

line containing it. The points of the line different

from the given point form two sets such that (1) each

of the sets is convex and (2) if P is in one set and

Q is in the other, then the segment Ei contains the

given point.

68 13. A ray has an end-point, but a half-line has no end-point.

6 6
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14. No. Yes. NOP Yes. Yes.

(*Three lines can separate a plane into five regions if we

allow two parallels through a point to a line. This would

give:

IL
I

331

However, if we should assume only one parallel through a

point to a line, we could not get five regions.

Note that within our postulational syatem so far

developed we do not know which choice, if either, we will

accept, or which will be excluded.)

15. Four. Three.

16. Eight. Four.

*17. Consider the segment joining any two points P and Q of

the intersection. NI is contained in the first set, since

it is convex. 15$ is contained in the second set, since it

is convex. By the definition of intersection, the inter-

section contains all points common to the two sets. There-

fore, the intersection contains 154, and the intersection

is a convex set.

*18. Two possible figures:

67
[page 68]
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Review Problems

68 1. Yes. No. They may intersect in a point (as the corner of

a room where two walls and the floor meet). -Also, -there

may be no point common to all three if there are three
lines each of which is the intersection of two of the
planes.

2. One plane.

3. a. If a zebra has polka dots, then it is dangerous.
b. If a rectangle has sides of equal lengths, then it is

a square.

c. If Oklahoma wins, then there will be a celebration.
d. If two straight lines intersect, then they determine a

plane.

e. If a dog is a cocker spaniel, then it is sweet-tempered.
4. Each half-plane is conveN. Yes.

69 5. Prom this statement one gets the impression that a plane has
boundaries. To have said, "The top of the table, if it

were absolutely flat and smooth, would give a good idea of
a small part of a plane," would have been a better state-
ment.

6. Three non-collinear points.

A line and a point not on the line.

Two intersecting lines.

7. In the set.

8. Yes.

9. No. Since L2 lies entirely in plane E, if the two lines
were to intersect, L1 would have to contain some other
point of plane E. This is impossible by Theorem 3-2.

10. a. One line contains all points of the set.

b. One plane contains all points of the set.
c. Yes.

d. Yes.

e. Yes.

f. No.

g. Yes. 68
[pages 68-69)



11. Yes, by Postulate 7.

12. Yes.

Illustrative Test Items for Chapter 3

1. If two different lines intersect, their intersection ig

. If two different planes intersect, their

intersection is . If a plane and a line not

contained in the plane intersect, their intersection is

2. Which of these regions, if any, is not convex?

a. b. c. d.

51

3. Which, if any, of the following can separate a plane?

a. Segment b. Point c. Line d. RaY

4. Fill in the blanks in the statements below on the basis of

the figure shown. IMPORTANT: If none of the points given

satisfies the condition, write NONE in the blank space.

Points A, P, and

Points D, P, and

Points P, D, B, and

Points C, A, B, and

are collinear.

are collinear,

are coplanar.

are coplanar.

6 9
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5. Wrii.e each of the following statements in "if-then" form:
a. Two different lines have at most one point in common.
b. Any three non-collinear points lie in exactly one plane.

6. Complete:

a. The set of all points in a plane which lie on one side
of a given line of the plane is a

b. The two sets of points into which a separates
space are each called half spaces.

7. How many planes can contain one given point? Two given
points? Three non-collinear points?

8. Indicate whether True or False:
a. A line and a plane always have at most one

point in common.

b. Two lines always lie,in the same plane.
c. There are lines which do not intersect each

other.

d. If three points are collinear they are coplanar.
e. A point and a line always lie in one and only

one plane.

f. Given two different points A and B. There are
at least two different lines that contain both
A and B.

g. Every two points are collinear.
h. A line has two end-points.

i. There is a set of four points which lie in no
plane.

j. Given two points, there is more than one plane
containing them.

9. State the Plane Separation Postulate in your own words.

7 0
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Answers

1. A point. A line. A point.

2. d.

3. c.

4. B.

None.

A.

P.

5. a. If L
1

and L
2
are two different lines, then they have

at most one point in common.

b. If A, B and C are three non-collinear pointsothen they

lie in exactly one plane.

6. a. Half-plane.

b. Plane.

7. Infinitely many. -Infinitely many. One.

8. a. F; b. F; c. T; d. T; e. F; f. F; g. T;

h. F; 1. T; J. T.

71



Chapter 4

ANGLES AND TRIANGLES

High school geometries usually take 'the notion of interior

for granted. A person is supposed to know from looking at a

figure when a point lies in the interior of an angle, for

example. Most things move along without undue difficulty un-

less somebody raises such a question as: But what reason can

you give td support your claim that point B lies in the in-

terior of angle AOC? Such_a question can hardly be answered

when there is no formal knowledge from which to reason. This

book provides such formal knowledge by treating notions of

betweenness, order and interior.

.Another way in which this book differs from almost every

other text is in its careful treatment of angles: their defi-

nition, their separation properties and their measure. This

last is done in a way to suggest an analogy with the measure of

distance presented in Chapter 2.

There is a clear-cut distinction in this text between an

angle and the measure of an angle. An angle is a set of-points;

its measure is a number. Such a distinction between the point

set and the number is usually not made in text books, the word

11 angle" being used for both.

At the end of this chapter you will see the beginning of

something that may strike you s's very peculiar. The use of the

words equal and congruent in this book is different from the

common usage, and you should have early advance warning of this,

so as to be ready for it. Near the end of this chapter, it is

explained that if mL.A = m/...B, then the angles are called

congruent, and we write L A 7-`4 L. B. In Chapter 5 we will give

a similar definition of congruence for segments. That is, if

AB = CD, then the segments IS and tv15 are called congruent,

and we write

7 2
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(Many texts also say that two triangles are equal, as an

abbreviation of the statement that the areas of the triangles

are the same. In this book, this abbreviation will be avoided;'

we shall simply say that the triangles have the same area.)

There is nothing complicated about our terminology, but

you may find it hard to get used to. To avoid trouble which

might otherwise start soon, we recommend that at the earliest

opportunity you read the talk on Equality, Congruence, and

Equivalence in which we explain what we have on our minds, and

how and why we have departed from the traditional terminology.

In this chapter we have omitted -- rightly, we believe --

the proofs and even the statements of various simple and obvious

theorems of a foundational character. Some of these will be

discussed in Chapter 6, but for a thorough logical treatment of

the material of this chapter, see Chapter 5 of Studies II.

71 No matter what text is used, students must be cautioned

that when using three letters to denote an angle, they must

write the letter corresponding to the vertex between the other

two letters.

72 The three vertices of a triangle are the vertices of the

three angles of the triangle. To verify the statement that the

angles of AAEC are not contained in the triangle, check to see

if the set of points intABC is contained in the set of points

of AABC. If we remember that the set of points inLAEC is

the union of two rays, each of which extends infinitely far in

one direction, and the set of points of A AEC is the union of

three segments, then we see that the triangle cannot possibly

contain its angles.

73 We could define the interior ofiLBAC as the intersection

bf the set of points on that side of It containing B with
<->

the set of points on that side of AB containing C. This

intersection is diagrammed on page 74.

74 The interior of AABC may also be defined as the inter-

section of three half-planes: (1) the side of It that con-

tains B, (2) the side of BC that contains A, and (3) the

(pages 71-74]
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side of n that contains C. A cross hatching of the inter-
section of these half-planes will graphically illustrate that
this region is the same set of points as indicated in the text.

"MOWN
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Problem Set 4-.1

75 1. union, rays, line.
2. union, segments, non-collinear.
3. No. -A7 and WE are line segments, but the sides of LA

are rays.
4. No. Although the union contains the

triangle, the union also contains
the rest or the- sides of the angles.

Union ofL A and LB

5. Seven.
6. LNPR, L NPT, L MPS, L MPT.

7. L AEC, L CEB, L BED, L. DEA.

8. Eight. L A, L C, L ABC, L ABD, L CBD,L ADC, L ADB, L CDB.

Two.

76 9. LAMB, L BMC, L CMD, L DME, L EMF , L FMA, L AMC, L

L. CME, L DMF, L EMA, L FMB.

10. A ABC, A ABF, A BCF, A ACD, A FCD, A AFD, A AGD, A. GFD,

A AED, A AEG, A EBD, A ABD, A BCD, A GDC.

11. a. D, F, M.
b. E, G, H.

[pages 74-76]
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12. No. No. It lies on the angle itself.

13. -Yes. No.

14. No.

15. Yes. No.

16. a. Yes. D is such a point.

b. Yes. E is such a point.

17. P is in the interior of AABC.

18. a. Yes.

b. Not necessarily. P and C could be on opposite sides

of AB.

19. A and C are in opposite half-planes determined by line m.

77 Section 4-2 is not an integral part of the course, and the

information presented in it will not be referred to again in

the text. The material is made available to those classes

whose teachers consider it appropriate in the local curriculum.

79 You may wonder, after seeing the m ALA notation, why the

text uses AB instead of mAB in Chapter 2. Actually mAB

does have the advantage of consistency but we do not feel that

this is to offset the advantages AB has: of convenience and

of common usage. AB and AB are different symbols for dif-

ferent entities. So areLA and mLA.

79 It will be noted that in this treatment of measurement of

angles, it is understood from the start that the unit of measure

80 is the degree. This is implicit in Postulate 11, and in this

respect the Angle Measurement Postulate may seem more satisfy-

ing than Postulate 2 concerning distance, where a unit of

measure was chosen but left unspecified. There is nothing

especially logical, however, about the choice of degree measure

for angles: it merely happens to be customary and familiar.

81 You may notice a similarity between the Angle Construction

Postulate and the Ruler Postulate. We again have a one-to-one

correspondence, this time between rays in a half-plane from a

point on the edge of the half-plane and the numbers between 0

and 180.
[pages 76-81]
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Some additional mention of the use of the degree sign may

be necessary. When we label figures, as in the figure at the

top of page 80, the degree sign is used only to indicate that

the number appearing to the left of it is the degree measure

of the angle, to distinguish from the use of a lower case

letter to identify the angle. For example, we may have an

angle of a°, and we must distinguish this from the angle that

could be identified by the letter "a". We may speak ofL.QAB

as "a 4o degree angle" or we may say that L.QAB is an "angle

whose measure (now understood to be degree measure) is 4o."

One may ask, "Why even mention the degree once we have estab-

lished it as our unit of measure?" The reason is that the

degree is not the only unit by which we can measure angles.

There is, of course, the radian, which is fundamental to trig-

onometry, and we must be absolutely certain with what unit we

are working.

80 One difference in this treatment of geometry is that under

our definition of an angle there is no angle whose measure is

0, nor is there one whose measure is 180. Since the idea of a

1800 angle" or "a straight angle" has been used in geometry

for so long, it might be a little hard for us as teachers to

become accustomed to this usage. In thinking of angles as

point-sets it is apparent that an angle whose measure is 0 is

indistinguishable from a ray, and an angle whose measure is 180

cannot be distinguished from a line. Hence, no such "angles"

appear in this treatment. Another reason for not allowing

these special angles is that it is impossible to determine the

interior of an angle of zero measure or of one whose measure

is 180. Incidentally, Euclid never used "straight angles."

79,80 Note carefully how the ray AC in the figure on page 79

corresponds to the number 180 and how this can be used to de-

termine the measures of other angles as illustrated on page 80.

Note also that the ray AB corresponds to O. Although we do

not allow the possibility of an angle of 1800, this does not

eliminate the possibility of two angles having the sum of their

[pages 80-821
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82 measures equal to 180, and thus we do have supplementary angles.

(See Postulate 14.)

The phrase "linear pair" will probably be new to you. It

is an easily remembered name that simplifies the statement of

Postulate 14 and some of the subsequent definitions and proofs.

On the other hand, we have not found it necessary to use the

phrase "adjacent angles". Linear pair is easily defined, for

it involves only the notion of opposite rays. The idea of

adjacent angles is more complicated, for it involves the idea

of separation in a plane. Two angles are adjacent if they

have a common side and their other two sides are contained in

the opposite half-planes determined by the line containing the

common side.

Problem Set 4-3

83 1. a. 60. g. 25.

b. 30. h. 70.

c. 30. i. 70.

d. 30. j. 90.

e. 70. k. 125.

f. 15. 1. 100.

2. a. p; b. m; c. q; d. n;

84 4. The remaining angle has a measure of 50.

5. a. BHG or GHB.

b. BFG or GFB.

6. a. XZY or YZX.

b. XZK or KZX.

c. KZY or YZK.

d. 180.

85 7. a = 52, b = 128, c,= 52.

8. 70°; 90°; 144°; 164.5°; (180 - n)°, for 0 < n < 180 ,

for 0 < n < 180 , (90 n)°, for 0 < Inj < 90.

7 7

[pages 82-85]
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9. 75, 105.

10. 120.

11. 36, 144.

12. a. One way by the Angle Construction Postulate.

b. Two ways. There are two half-planes in E whose edges

contain A.

5 Notice that the definition of right angle precedes any

mention of perpendicularity. Various approaches would have

been possible; the one used seems to be simplest logically, for

it permits lines, rays and segments to be included in one defi-

nition ot'perpendicular.

36 The text points out that a ray or a segment determines a

unique line which contains it. When two lines intersect, four

rays are determined. These rays in turn detemine four angles.

Sometimes we refer to the angles as angles formed by the lines.

(A mathematical purist might want to replace the phrase "if the

two lines containing the two sets determine a right angle" by

"if the union of the two lines containing the two sets has a

right angle as a subset".)

87 Theorem 4-4 could, with proper restatement, be taken as

the definition of right angles. In that case the definition

of right angle actually used in the text would be replaced by

a theorem.

88 Alternate proof for Theorem 4-7:

Given that -AZ and AE are opposite rays, and AB and
-->
AD are opposite rays so that L 1 and L 2 are .vertical angles.

Let mL 3 = r. Then by Postulate 14, m L I must be 180-r, and

mL 2 must also be 180-r. Therefore, mL 1 = mL 2, andL 1 ;If L..2,

which was to be proved.

78
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Problem Set 4-4

89 1. a. Only one.

b. Infinitely many.

2. tiOt . LRON andLSON are supplementary and have equal
measures. Therefore, each has a measure of 90, making

3k1A-t.
3. a. and 3a.

b. LRXB andL SXA.

c. None occur.

d. LRXB and LRXA .

LSXA and L SXB.

90 4. a. 800. d. (90 - x)°, for 0 < x < 90.

b. 10°. e. x
o
, for 0 < x < 90.

c. 45.5°. f. (x - 90)°, for 90 < x < 180.

5. a. 90.

b. 45.

6. a. Two pairs.

b. 70, 110, 110.

c. 90.

7. r, (180 - (180 - r).

8. meLEGD = 90.

Proof: fiLLAGC + mLCGE = 180.
1 1T m LAGC + T mLCQE = 90.

m LBGC + mLDGC = 90.

m LEG]) = 90.

90 9. If either angle were not acute its measure would be greater

than or equal to 90. Then the sum of the two angles would

not be 90 so that they would not be complementary as given.

Hence, both angles must have measures less than 90 and by

definition be acute.

10. Let the measure of each of the congruent angles be m.

Since they are also supplementary, m + m = 180, 2m = 180

and m = 90. Hence, each angle is a right angle.

[pages 89-90]
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11. m LBGD = 90. (Definition of perpendicular.)
m LAGB + m LBOD + m LDGE = 180. (The Angle Addition
Postulate and the Supplement Postulate.)
m LAGB + m LDGE = 90. (Subtraction. )
Therefore, L AGB and LDGE are complementary. (Definition
of complementary.)

91 12. g = c. (Vertical angles have equal measures.)
b + c + d = 90. (Perpendicular lines form right angles.)
Therefore, b + g + d = 90. (Algebraic substitution of g

for c.)
a = 90. (Perpendicular lines form

right angles.)
Hence, b + g + d = a. (Algebraic substitution.)

13. a. False. An exception occurs if a lies in the ex-
terior of L AOC.

b. False. An exception occurs if a lies in the interior
of LAOC.
(Note to teacher: Point out that one exception is
sufficient to prove a statement false.)

14. 162.
91 15. a. b.

80
(pages 90-91]
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Review Problems

1. Protractor.

2. 0, 180.

3. Acute.

4. Linear pair.

5. Complement.

6. Obtuse.

7. Congruent.

8. Right angle.

9. Congruent.

10. Acute.

11. Union; rays.

12. Non-collinear; triangle.
4+

13. X, T, RS.

14. 90, 180, supplementary. A

93 15. Vertical.

16. a. 110.

b. 70.

-c. 110. 4
A

17. a. 130. b. 65. c. 50. d. 130.

18. 65, 115.

19. 15, 75.

20. If both are right angles.

21. Yes, any vertex of the triangle.

22. Not necessarily. The statement would not be true if the

sum were 180 or larger.

94 23. Yes. See figure on page 57.

81
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24. 5.

25. Yes.

26. Yes.

27. No.

28. 12.
4-10

29. S and T are on opposite sides of VU.

R and T are on opposite sides of /t.
44.

R and S are therefore on the same side of UV; so that

they are in the same half-plane. Since a half-plane is

convex Fig does not intersect tr.

30. By the Supplement Postulate,L2 is a supplement oft_x

andLs is a supplement ofi..y. L. z %Ls because supple-

ments of congruent angles are congruent.

31. Supplements of congruent angles are congruent.

32. The measure must be between 0 and 180.

33. No. The point P must be limited to a half-plane with
--.1.

the ray XY on its edge.

95 34. a. Angle Addition Postulate. b. Supplement Postulate.

35. No. 0 may not be between C and D.

8 2
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Illustrative Test Items for Chapter 4

1. Indicate whether each statement is true or false.

a. A point on the edge of a half-plane belongs to that

halfplane.

b. If two complementary angles are congruent, then each is

a right rnangle.

c. For every positive number r, there is an angle, LA,

such that mLA = r.

d. If a point is in the exterior of any one of the angles

of a triangle, then it is in the exterior of the tri-

angle.

e. If D is in the interior ofLABC, then mLABD + ma0C

= mLABC.

f. If D is in the exterior ofLABC, then DILDBA +mLABC

=mLDBC.

g. If AB and tt intersect at 0, then LAOC

h. If mALQ = 100, then2A, has no complement.

i. If a point is in the interior of an angle of a triangle,

it is in the interior of the triangle.

J. The intersection of two half-planes whose edges have

only one point in uommon is the interior of an angle.

k. The interior of an angle is a convex set.

1. If two angles have the same measure, then they are

vertical angles.

m. The supplement of (90 - x)° is (x + 90)°.

n. Every angle is congruent to itself.

o. Vertical angles are never supplementary.

83
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2. a. In the figure below, there are ,a number of triangles.

Five of these triangles have been listed below. Use

the remaining space to list all of the other triangles

you can find in the figure.

BAF.

BFG.

ECG.

AEF.

GCD.

b. List all of the angles in the figure below.

8 4
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c. State the number of different

angles in the given planar

figure.

How many different angles

are there if the three lines

are not coplahar?

How many linear pairs of angles

are in the figure?

3. Multiple Choice. Select the one correct answer.

a. Which of these points is not in the interior of any

angle?

L, P, H, M, none of these.

b. Which of these is determined ,L

by RS and RT?

L.P2T,LTBS4SRT,i-RTS,

none of these.

c. Which point is in the exterior

of LIRST?

G, R, H; J, none of these.

d. L_TOP and ROS are:

supplementary angles,

perpendicular,

complementary angles,

vertical angles,

none of these.

e. L_QOR andLROS are:

supplementary angles,

perpendicular,

compleMentary angles,

vertical angles,

none of these.

. N

Probs. a - c.

Probs. d - g.



f. L.Q0S is:

a right angle, an acute angle,

a vertical angle, none of these.

g. is perpendicular to:

Mr, tt 4R, AD, none of these.

h. If a 110% then:

m/..MAN =

miLMAN =

mLMAN = m4LBAM,

m4LMAN = m/LBAN,

none of these.

i. If AB 1 NS, thenLNABI'L_SAB

because:

they are both acute,

they are complements of

congruent angles,

they both have the same N4

measure,

they are vertical angles,

none of these.

j. m/AtiAT equals:

180 - 2r, 2r,

180 - r, 180,

none of these.

69

A

86

Probs. h - J.
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4. MATCHING. Below are a number of statements or phrases in

one column and a list of words or expressions in the other.

Complete each statement by selecting the proper word or

expression from the right-hand column.

a. An angle with measure less than 90 is perpendicular

obtuse

b. The supplement of a 600 angle has right

measure 90

c. The number of degrees in a right acute

angle is 120

d. IfLABC is a rip angle, then triangle

rays AB and BC are complement

e. Angles with the same measure are congruent

30

f. The complement of a 600 angle has

measure complementary

g. If the sum of the measures of two supplementary

angles is 90, the angles are

h. An angle with a measure of more than

90 is

i. The supplement of a right angle has

measure

J. Complements of congruent angles are

k. If mLABC m2I_RST = 90, thenLABC is

the of LRST.

1. The supplement of an acute angle is
--> --->

m. AB and AC are opposite rays. Ray

is situated so that m/LCAE =

LCAE is a angle.

n. The measure of an angle that is twice its

supplement is

o. The measure of an angle whose measure is

half that of its complement is

87
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5. XA and XB are opposite rays on the edge of half-plane H.

S and R are points of H such that mL_RXB = 35,

mL_ RXS = 90. Make a sketch and answer the following:

a. Name a pair of perpendicular lines in H, if any occur.

b. Name a pair of complementary angles in the sketch, if

any occur.

c. Name a pair of vertical angles in H, if any occur.

d. Name two pairs of supplementary angles in the sketch,

if two pairs occur.

e. Name two acute angles in the sketch if any occur.

f. Name two obtuse angles in the sketch if any occur.

6. Find mLB in each of the following, where LB is the

supplement ofLA.

a. mLA = 30. b. mLA = n. c. mLA = 45-n.

d. mLA = 120.

7. Find mLB in each of the following, whereLB is the com-

plement ofLA.

a. mLA = 38. b. mLA = 49. c. mLA = n

d. mLA = n+25.

8. a. If one of a pair of vertical angles has a measure of x,

write the formulas for the measures of the other three

angles formed.

b. If three rays have a common endpoint and two of them

are opposite rays, what is the sum of the measures of

-ngles in the resulting figure?

c. H is a point in the interior ofL_RST. mL_HST = 10 and

mL.RST = 30. What is the value of mLHSR?

d. If two congruent angles are supplementary, what kind of

angles are they?

e. If each of two vertical angles has measure 1, what is

the measure of each of the other vertical angles in -

the figure?

f. If the difference between the measures of two complemen-

tary angles is 8, what is the measure of each angle?

8 8
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Sketch two angles such that their intersection is a set

of three points.

b. Is every point in the interior of an angle a point of

the angle?

c. Given A RST and a point P. P and R are on the

same side of g. P and S are on the same side of

Is P in the interior of LRTST

Is P in the interior cif, RST?
-> ->

10. a. If the ray AC lies ill a plane, how many rays AB

are there in the plane such that mi. BAC = 110? Draw

a sketch.

b. In the planar figure it is given

that 1 and that mi_,QAR =

mi. SAR.

Prove: LPAQ 1.1:L_ SAT .

4-> 4-
I

>
11. In the figure AE CF. For each

of the congruences below state the

theorem which justifies it.

a. LAOB L DOE.

b. LDOF L BOF.

c. LDOC L FOG.

8 9
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Answers to Illustrative Test Items for Chapter 4

1. a. False.

b. False.

c. False.

d. True.

e. True.

f. False.

h. True.

i. False.

J. True.

k. True.

1. False.

m. True.

g. False. (0 may not be between n. True.

C and D.) o. False.

2. a. AABE, ABED, ABCD, AABC, ABAG, A BFC.

b. LX,LY, LZ, LZKN,LZNK,LXKN, LAMK.

c. 12, 12, 12.

3. a. P. f. a right angle.

b. L TRS. g. II.

c. G. h. None of these.

d. Vertical angles. i. They both have the

e. Complementary angles. same measure.

J. 180-2r.

4 a. Acute. f. 30. k. Complement.

b. 120. g. Complementary. 1. Obtuse.

c. 90. h. Obtuse. m. Right.

d. Perpendicular. i. 90. n. 120.

e. Congruent. j. Congruent (or o. 30.
acute).

5. a. None qccur in H.

b. LBXR andLSXA.

c. None occur in H.

90° d. LRXA andLRXB,

6. a. 150. b. 180 - n. c.

7. a. 52. b. 41. c!

8. a. x, 180 - x, 180 - x. b.

d. Right. e. 179- f.

9 0

LBXS andLAXS.

e. LSAX andLRXB.

f. LSXB and LRXA.

(135 + n). d. 60.

(90 - n). d. (65 - n).

180. c. 20.

41,49.
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9. a.

b. No; no point in the interior is a point of the angle.

c. Yes, Not necessarily.

10. a. Two.

Bz

b. LPAR andLTAR are right angles, by the definition

of perpendicular.

LPAQ and LSAT are complements of congruent angles,

LQAR andLSAR.
L_PAQ ;=LSAT, because complements of congruent angles

are congruent.

11. a. Complements of congruent angles are congruent.

b. Supplements of congruent angles are congruent.

c. Vertical angles are congruent.

91



Chapter 5

CONGRUENCES

The treatment of congruence in this chapter will seem un-

familiar to many teachers, but the two Talks, Equality, Con-

gruence, and Equivalence and The Concept of Congruence, should

be helpful to them. The difference in treatnent lies chiefly

in the fact that congruence is regarded here as a special kind

of one-to-one correspondence. Our notation Was chosen to show

how the corresponding parts of two triangles are paired with-

out referring to a diagram. Correct use of this symbolism

should eliminate confusion about what the corresponding parts

are in any particular problem.

We have included problems to familiarize students with

the new terminology; the rest of tae problems in the chapter

are familiar in type. In this hook, as in most books, the

students are expected to develoil a working knowledge of proof

by working with congruence of triangles.

Students should show progress, while studying this chapter,

in their ability to recogn!.ze different proofs of a theorem.

The tendency for them to think that a mathematical problem has

only one method of solution should be replaced gradually by

the practice of examining each proof as an example of correct

logical reasoning.

The extent to which a proof is detailed is mainly a

matter between the teacher and student. We believe it desir-

able to develop flexibility of methods dependent upon the

problem at hand and the mathematical maturity of the studers

involved. As the student progresses he should be encouraged

to omit minor steps where understanding is not impaired and

conyenience results. For example, if the hypothesis of a

theorem says that M is the midpoint of AB, the teacher may

require in the first proofs the student does that AM = MB be

justified in two steps:

9 2
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1. M is the midpoint of A. 1. Hypothesis.

2. AM = MB. 2. Definition of
midpoint.

As he learns, the student should be permitted to telescope

this into one step by saying AM = MB, by definition of mid-

point (or even, by hypothesis). The important thing is to

advance the student's growth in the direction of appreciating

and understanding proof.

A*,D can be read: Points A and D correspond to

96 each other, or A corresponds to D.

ABC1f-A.DEF can be read: The points A, B, and C and the

points D, E and F correspond to each other in the order

named, or briefly, A, B, C correspond to D, E, F.

97 In this introduction we first develop the intuitive idea

of a congruence between two geometric figures. A congruence

means intuitively that there is a particular way of moving one

figure so that it coincides with another. We proceed, as

quickly as possible, to the idea that a congruence can be des-

cribed by explaining where each point in a certain finite set

of points is going to go. The idea behind this treatment is

to get the student accustomed to writing down the sets of

matching pairs, so as to prepare the way for the formal mathe-

matical treatment of congruences between triangles.

Two figures are congruent if there is a congruence betwn

them; that is, speaking informally, if one of them can be moved

so as to coincide with the other. In this chapter, hOwever,

heavy stress is given to the idea of a congruence between two

99 figures, for there may be more than one congruence possible

between the two. This stress should begin at the very begin-

ning of the chapter. In this spirit, it should be made plain

that a problem based on this section is not to be considered

solved if the student has merely determined that two figures

are congruent. The problem is solved only when a particular

congruence between the two figures is exhibited.

100 For some pairs of triangles there is a unique one-to-one

correspondence between vertices that is a congruence. However,

[pages 98-100)
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in the case of a pair of isosceles or equilateral triangles,

if there exists a congruence between them, then there is more

than one congruence between them.

1. AEC 4-+ QPR.

DEF 4* SUT.

DFE 4-* TSU .

-EDF 4+ EFD.

UST -<-*UTS.

KLNO 4* IJGH.

2. RFH 4* ACB.

MXPQ4+ LEKW.

DZG 4* TYL .

3. ABC** PNQ.

KXY 4* IHJ.

GDEF 4* WRLM.

4. AFEO 4+ WTSX.

HIJK 4* NRPQ.

CLM 4* CML.

UZY 4+ UYZ.

CLM 4-> UYZ.

CLM 4+ UZY.

5. a, d.

103 6. b, c, e, g, h.

104 7. ABC 4+ ABC.

ABC4+ BAC.

ABC 4+CAB.

105 8. ABCD 4+ AECD.

ABC D 4-> BCDA .

ABCD 4+ CDAB.

ABCD 4+ DABC .

Problem Set

ABC 4+ ACB.

ABC 4* BCA.

ABC 4+ CBA.

ABCD 4+ ADCB.

ABCD 4* DCBA .

ABCD 4+ CBAD.

ABCD 4-* BADC .

[pages 100-105]
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9. a. Yes. b. Yes. c. No. d. Yes. e. Yes. f. Yes.

g. Not always.

10. (a,d), (c,e).

106 11. ABCD4ABCD.

ABCD4*BADC.

ABCD1*DCBA.

ABCD4*CDAB.

12. a. Slide the line to the right or rotate about the point

halfway between A and B. The first of these

motions takes B to C but the second does not.

b. Rotate the line in the plane (or in space) about B.

13. a. If they have the same length.

b. If they have the same measure.

c. Always.

d. If they have the same radius.

e. If their edges have the same length.

f. Always.

g. Always.

107 14. a. Rotate the circle about its center.

b. Turn the circle over in space, leaving the diameter

containing B fixed.

15. a. Slide the frieze horizontally. There are infinitely

many translations of this type that result in con-

gruences.

Using the line of the frieze as an axis, rotate the

frieze a half-turn about this axis and then translate

the frieze horizontally. There are infinitely many

motions of this type that result in congruences.

b. Translate horizontally. Infinitely many. Rotate in

the plane through 180° about a point on the line half-

way between two successive intersections.

Infinitely many.

9 5
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108 16. (a) and (e).

(b) and (c).

(d) and (f).

17. ABCDE4* ABODE

ABCDE4*BCDEA

ABCDE 4* CDEAB

ABCDE4* DEABC

ABCDE44EABCD

A turn-over is needed.

No turn-over is necessary.

No turn-over is necessary.

ABCDE4+AEDCB.

ABCDE4+EDCBA.

ABODE** DCBAE.

ABCDE4+CBAED.

ABODE** BAEDC.
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109 We now begin to talk about congruence in a careful way in

terms of distance and angular measure. It may be helpful to

restate the definition on this page using symbols:

Definition: Consider angles LA and LB,

LA LB if mLA.= mLB.
Consider segments At and m,
AB 1' CD if AB = CD.

Since any definition is an agreement that one expression is an

abbreviation for another, the sentence "LA :'44!B" may be re

placed by the sentence "mLA = mLB" and the sentence

"mLA = mLB" may be replaced by the sentence " LA If LB",

A related thing holds for segments. The sentence "Mi

may be replaced by the sentence "AB = CD" and the sentence

"AB = CD" may be replaced by the sentence 'WE

The question may very well arise as to why we have two

different 'lays of writing exactly the same thing. If ITi tr15

means that AB = CD, why bother to introduce the notation

Un This would be a valid objection if we were talking

about congruence of segments only. But we will be talking

about congruence of segments, angles and triangles; and while

the technical def!,nitions of congruence are different for

these three cases, the basic intuitive idea is the same. The

basic intuitive idea is that two figures (of any sort whatever)

are congruent if one can be moved so as to coincide with the

other. In the Appendix on Rigid Notion (in volume II) this

[pages 108-1091
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basic unity of the idea of congruence is described in an ex-

act mathematical form. In the meantime, it seems worthwhile

to emphasize this unity by using the same word, congruence,

and the same symbol, Z, whenever the idea-occurs. Notice

that in the definition of congruent angles and-segments the

idea of a one-to-one correspondence does not occur, as it does

in the development of the basic idea of a congruence between

two triangles. The idea does appear, however, in the general

definition of congruence given in the Appendix on Rigid Motion.

In the table on Page 109 of the text note that the ex-

pressions on the left and right in each line are interchange-

able, but this does not say that we can use the symbols " "

and " = " interchangeably.

To help make this clear let us skip ahead and examine

Postulate 15 (The S. A. S. Postulate). "Given a correspondence

between two triangles (or between a triangle and itself). If

two sides and the included angle of the first are congruent to

the corresponding parts of the second triangle, then the cor-

respondence is a congruence." Let us consider the word

congruent" that is underlined above. This noy not be replaced

by "equals", since "equals" means "is the same as", and we

would not be able to talk about two different triangles being

congruent. Using "equals" we would be able to talk only about

the identity congruence, which is rather uninteresting. In

the statement of the above postulate it is possible to replace

the phrase, "are congruent to" by the phrase, "have the same

measure as.

111 In the definition of a congruence between two triangles

we see that we must have a one-to-one corresponderice between

the vertices of the triangles such that (1) each pair of

corresponding sides are congruent and (2) each pair of corres:

ponding angles are congruent. Conditions (1) and (2) might be

stated in this alternate manner: (1') each pair of correspond-

ing sides have the same length and (2') each pair of corres-

ponding angles have the same measure.

[pages 109-111]

97



81.

112 The text shows how to mark diagrams to indicate which

parts of figures that are known to be congruent in the state-

ment of a problem. Students should be encouraged to mark the

figures they draw for themselves when this practice is not

continued In the text. They will soon see that this is a very

convenient method of translating the written Information to

their figures. As a student's analysis of a particular prob-

lem develops, he may wish to mark additional elements, the

congruence of which he has established by using the given data.

For example, suppose that it is given for the following figure

that MI 2r7S, 115 lEr, and m 4! A = mif.B. The figure is marked

accordingly:

Suppose it is required to prove that LEXF is isosceles.

After the student has proved that L1ADF CDCE and that

LCEB LDFA, he can put a pair of appropriate marks on these

angles and show visually how much he has accomplished.

112 In answer to the question in the text, "Would it be

correct to write AB DE or LA = LD? Why or why not?"

(Refer to the figure above the question in the text.)

AB ;' DE is incorrect because AB and DE are numbers and

we should speak of them as being equal rather than congruent.

AB = DE is correct. If we wish to emphasize the idea of a

congruence, we can write a different correct statement,

AB DE. LA = LD is incorrect in this case because 4!A is

not the same angle as LI), but LA is congruent to LD and we

should write LA LD or else m4CA=m ef D.

(page 112)
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The text emphasizes the fact that we may use the expres-

sions "AB = DE" and 'YE ; " LA :I= LD" and "m LA =mL D" ,

interchangeably. You may decide for yourself which notation

is easier for you to use in a particular problem.

Let us once again, before reaching the S.A.S. Postulate, .

remind the teacher of the careful use of the correspondence

idea in making statemants about congruence in this text. You

often hear people say that two triangles are congruent with-

out indicating the particular correspondence between the ver-

tices needed to prove the triangles congruent. Thus the state-

ment that &AEC and aDEF are congruent is abbreviated --

without regard to the order in which letters are written --

as AAEC ma?, or AABc AFIED, or LSABC aDFE, and so

on. These statements about congruence are treated in some

courses as different correct ways of saying the same thing.

This is the idea of congruence that is explained in some

conventional texts, but it is not the idea that gets used.

Every time we seem to be using the idea that two triangles are

congruent, it soon becomes clear that what we are really using

is the fact that they are congruent in a particular way; that

is, under a particular correspondence. For example, if we go

on to infer that "corresponding sides have the same length",

then we are claiming to know which side corresponds to which

side. That is, what ia being used is a correspondence between

the triangles. The treatment in this text is based on the

idea that we should talk explicitly about the ideas that we

are really using. The unfamiliarity of this treatment may

make it hard for us as teachers to get used to it. But the

student, at this point, is not used to any formal mathematical

treatment of congruence, and it ought to be easier to teach

him to read what is written on the lines than to teach him to

read between them. As a practical matter, the conventions of

this chapter for the expression

LNAEC ADEF

9 9
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seem to be efficient. It is very easy to read off which

sides and angles are congruent, instead of having to remember

the correspondence without benefit of concise memoranda.

(Refer to the discussion on page III in the text.)

Problem Set

113 1. 17. F. R.

LR MR.

QR.

2. NV LA 2= LF.

LABR LFBR.

RS. ZARB ;-= LFRB.

3. LMLF.
LR LH. =-1"

LK 2:4CW.

4. LR ;=LA. Tiq MS.

LQ,

L.F =2; Lx.

Ilk 5. LA LB.

LAWZ LBWZ. Aror

LAZW LBZW. WZ W.

6. LABW 41MKF.

7. LAIC iNDEF.

Two triangles congruent to the same triangle are congruent

to each other.

(The student may be permitted to generalize the situation

still more by substituting "figure" for "triangle" in this

statement.)

8. a. The triangles are the same size and shape.

b. The triangles are the same size and shape.

c. The triangles vary in size and shape.

d. A possible idea is the statement of Postulate 15.

(pages 111-114)
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115 9. a. =, 71% =, 7-1' or =, =.

b. The sixth.

c. The third.

115 Ft,om the pictures and intuitive development, it seems

very likely that AABC ADEF under the stated conditions,

and we make this intuitively reasonable idea our Postulate 15.

The usual proof of this statement (S.A.S.) involves the

superimposing of one triangle upon the other. This method of

proof is not valid under our postulates. It is a fact that

the S.A.S. Postulate cannot be proved on the basis of the

preceding postulates.

117 Here we give the student an example of an "original"

theorem, and explain how one might think of a proof and write

it out. It is well known to mathematidians that proofs must

not depend on information taken from figures. It may seem

odd, therefore, that the examples of proof in Section 5-4

appear to depend on the figares that are given. This is not

really true; the use of the figures is merely a matter of

convenience, and they have been used because at this rather

difficult stage of his development the student badly needs all

the help he can get.

All valid geometric proofs are independent of figures in

precisely this way. In Studies II, this fact is dramatized by

the total omission of all figures. But such a treatment in

the tenth grade would be more than flesh and blood could stand.

And over and above this fact, the use of figures to aid intui-

tion and stimulate the imagination is one of the most import-

ant things that we are trying to teach. Not even the best and

most mature mathamaticians have found a way to live by logic

alone.

118 In the proof of Example 1 the reason column contains

three definitions, one theorem, and one postulate. There is

an implied use in Step 1 or the fact that EFT is given

[pages 115-1181
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bisected by AR. Actually some people would write "Given" as

the reason for Step 1. Others, wishing to avoid any telescop-

ing of steps early in the year, might prefer two steps:

lg bisects WIT at F. Given.

AF = RF Definition of bisect.

A list of acceptable reasons for two-column proofs

follows:

119

Given.

Definitions.

Postulates already set down.

Previously proved theorems or corollaries.

Principles of algebra or elementary logic.

The blanks in the proof of Example 2 can be filled in

with:

2. LAMB

It. IPHB aFHB. By the S.A.S. Postulate.

5.
By the definition of congruence
between triangles.

120 1. a, c, e, f, g, h.

Problem Set 5-4,

121 2.

1.

2.

AC = DC.

BC = EC.

1.

2.

Given.

Given.

3. L ACB LDCE . 3. Vertical angles are congruent.

4. LACBLDCE. 4. S.A.S. (The teacher may
prefer a full statement of
the postulate at this stage.]

5. LB --=-= LE. 5. Definition of a congruence
between triangles.

102
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3.

4.

5.

1.
2.
3.

4.
5.

- a:-

Lx Ly.
AB = FB.

1.

2.

3.

6 ABR 6FBH. 4.

LR '.;.= LH. 5.

1. AD = BC. 1.

2. AR = BR. 2.

3. LA LB. 3.

4. LARD= 6BRC. 4.

5. RD = RC. 5.

-Given.

Given.

From the definition of
midpoint.

S.A.S.

Corresponding parts of
congruent triangles are
congruent.

Sides of a square have the
same length.

Definition of a midpoint.

Each angle of a square is
a right angle. All right
angles are congruent.

S.A.S.

Definition of congruent
triangles.

b. LADR LBCR, LARD 1" LBRC (corresponding parts of

congruent triangles) and LUC LRCD (complements of

congruent angles are congruent).

1.
2.
3.
4.

AB = FH.
mLx = mLg.
BH = HB.

LABH 6FHB.

1.

2.

3.

I.

Given.

Given.

Identity.

S.A.S.

5. InZ A = mLF. 5. Corresponding parts of con-
gruent triangles are
congruent.

6.
1. AB = FB. 1. Given.

2. m LABH = mL FBH. 2. Given.

3. BH = BH. 3. Identity.

4. 6 ABH 6FBH . 4. S.A.S.

5. AH = FH. 5. Definition of congruent
triangles.

(page 1211

103



7.
Given: Zi and MI bisect each A

other at point F.

To prove: AFAB AMR.

8.

I.

2.

3.

Definition of bisect._

Vertical angles are
congruent.

S.A.S.

1. 707

IMS

2. ZAFB-N. LHFR.

AAFB :If

1. AE = DE. 1. Definition of bisect.

CE = BE.

2. LCEDz-.-zBaA. 2. Vertical angles are
congruent._

3. ACED L1BEA. 3. S.A.S.

4. CD = BA. 4. Definition of a congruence
between triangles.

Similar proof for AC = DB.

9.
a. 1. AD = BC. 1. Sides of a square are

congruent.

2. DF = CQ. 2. Given.

3. AD - DF = BC - CQ. 3. Subtraction.

4. AF + FD = AD. 4. Definition of between.

5. AF = AD - FD. 5. Subtracting FD from both
sides of Step 4.

6. BQ + QC = BC. 6. Definition of between.

7. BQ = BC - QC. 7. Subtracting QC from both
sides of Step 6.

8. AF = B. 8. From Steps 3, 5 and 7.

9. AR = BR. 9. Definition of midpoint.

10. 4!A LB. 10. All angles of a square are
right angles and all right
angles are congruent.

11. ZNARF LOW. 11. S.A.S.

12. RF = R. 12. Corresponding parts.

[page 122)
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b. Yes, many possible pairs.

Ft and Qt will be two points of 15C. such that DFt = CW.

There are also possibilities on It.

10.

1. AH = AB. 1. Given.

2. LEAF Id LBAF. 2. Definition of bisect.

3. AF = AF. 3. Identity.

4. AABF AAHF. 4. S.A.S.

5. FH = FB. 5. Definition of congruent
triangles.

123 When dealing with overlapping triangles a person can, as

the text says, avoid getting mixed up by writing cOngruences

down in standard form. Another policy many teachers redommend----

is that of redrawing figures on scratch paper, separating the

triangles. Thus a person can see the crucial triangles more

clearly if he draws this figure to assist him in dealing with

the figure on page 123.

125 In the last paragraph of Section 5-5 we explicitly state

the conventions about the information a student may and may

not draw from a figure in solving problems.

A reminder, particularly pertinent in this chapter which

contains so many problems: Most students should attempt only

a reasonable sampling of the problems provided. The generous

array is provided so that you may select according to your

class and your own preferences, and so that the very best

[pages 122-125]
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student will not want for opportunity to test his ability and

to discover interesting mathematical relationships.

Problem Set

125 1.
1. AC = DB. 1. Given.

ACF 24 DBE.

FC = EB.

2. A ACF tDBE. 2. S.A.S.

3. AF = DE. 3. Corresponding parts of
congruent triangles.

2. 4. Given.

5. Given.

6. S.A.S.

126 3.

1. HA = 'FB. 1. The sides of a square are
equal in length.

2. AB = BA. 2. Identity.

3. 4:HAB LFBA. 3. Each is a right angle.

4. LOMB &FBA. 4. S.A.S.

5. AF = BH. 5. Corresponding parts of
congruent triangles.

4. No. We do have BF = HF (Definition of midpoint) and

since Z.ABW LI1HQ we also know that ZWBF =11 LIQHF

(Supplements of congruent angles are congruent), but thef-4:16

facts are not enough to prove the triangles congruent.

5.

a. 1. AX 22 BY. 1. Given.

2. 2. Identity.

3. ZXAB LYBA. 3. Each is a right angle.

4. AXAB 7s; LYBA. 4. S.A.S.

5 . 5. Corresponding parts of
congruent triangles.

b. No.

106
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6.

1. r = m.

x = y.

2. r x = m y.

3. m ZHAB = r x.

m4!FEA = m y.

7

4. m,!HAB = mLFBA.

5. AB = BA.

6. AH = BF.

7. AHAB 24 &FBA.

1. Given.

2. Addition from Step 1.

3. Angle Addition Postulate.

4. Steps 2 and 3.

5. Identity.

6. Given.

7. S.A.S.

1. AR_i_ RX, BR_LRY. 1. Given.

2. m LARX = mLYRB = 90. 2. Definition of right angle.

3. me!XRB = me!XRB. 3. Identity.

4. m GARB = m4!XRY. 4. Addition from Steps 2 and 3,
and the Angle Addition
Postulate.

5. AR = RX, BR = RY. 5. Given.

6. AARB AXRY. 6. S.A.S.

7. AB 2-= XY. 7. Definition of congruent
triangles.

127 Here is a striking example of the use of a particular

correspondence to establish a congruence. We merely show that

an isosceles triangle is congruent to itself under a corres-

pondence which interchanges the vertices at the ends of the

base. This is considerably simpler than the traditional

proof.

107
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128 Proof of Corollary 5-2-1

Every equilateral triangle is equiangular.

0iven:-LNBC such that AC = BC = AB.

To prove: LA =LB :==LC.

The general procedure is to make successive applications of

Theorem 5-1.

Proof:

If AC = BC then, by

Theorem 5-1 we have

m LA = mLB.

If AB = AC then, by

Theorem 5-1 we have

mLB = me!C.

Therefore, mLA = me!C and,

mLA = mL.B = me!C or

LA =.1.4!B

129 In the Angle Bisector Theorem the points B and C, the

auxiliary segment 7 and the point D are introduced into

the figure as a part of the proof. We believe their use is

natural at this point. Later, in Chapter 6, we elaborate on

suen auxiliary sets. You may want to mention that dotted

segments are often used for auxiliary segments and should

not be confused with dotted segments used to indicate segments

hidden by a plane in figures involving three dimensions.

130 You may have noticed that the proof of Theorem 5-3 is

not complete: we have not shown that D is in the interior

of LBAC, as required by the definition of a bisector. This

omission was deliberate, and similar ones will occur in some

later proofs. Most such omissions will be concerned with

separation properties; that is, with showing that certain

points lie on the same or on opposite sides of certain lines

or planes, or with showing that a certain point lies between

two others on a line. These,things are all'bbvious" from

pictures, and their proofs ai.e often long, difficult and un-

interesting. We therefore feel that they should be omitted

91
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from the exposition In the text. You will find problems in

Section 6-5 to take care of these betweenness matters which

should seem interesting and worthwhile to your strongest

students.

In the case of Theorem 5-3, the omitted proof depends on

the following two theorems which are reproduced from

Section 6-5, of the text. We suggest that you wait until

Chapter 6 to discuss this with your students.

Theorem 6-5. If M is between A and C on a line L
then M and A are on the same side of any other line that

contains C.

Proof: The proof will be Indirect. If M and A are on

opposite sides of LI (in the-plane that contains L and LI)

then some point D of L' lies on the segment 70q. Therefore,
D is between A and M, by definition of a segment. But D
lies on both L and LI. Therefore, D = C. Therefore, C

is between A and M. This is impossible, because M is

between A and C. (See Theorem 2-3).

109
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Theorem 6-6. If M is between A a-nd C, and B is
4*

any point not on the line AC, then M is in the interior of

LAM.

Proof: -By the preceding theorem, we know that M and A
4->

are on the same side of B. By another application of the

preceding theorem (interchanging A and C) we know that M
<->

and C are on the same side of AB. By definition of the

interior of an angle,

in the interior

130 1.

1. Base angles

2. The Supplement

3. Supplements

131 2.

these two statements tell us that M is

of LABC, which was to be proved.

Problem Set 5-6

of an isosceles triangle are congruent.

Postulate.

of congruent angles are congruent.

1. FA = FD. 1. Given.

2. LA II= LD. 2. Base angles of an isosceles
triangle are congruent.

3. AB = DC. 3. Given.

4. a AFB aDFC . 4. S.A.S.

5. L ABF LDCF. 5. Corresponding parts of
congruent triangles.

6 . z F Bc FC B . 6. Supplements of congruent
angles are congruent.

(pages 130-131)
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3.

4.

5-

1. LEBC ZECH. 1. Base angles of an isosceles
triangle are congruent.

2. LABE is supplementary
to LEW. LECE is 2. The Supplement Postulate.
supplementary to LECH.

3. LEBA LEICD. I 3. Supplements of congruent
angles are congruent.

1. mLABC = mLACB.
m L DBC = m

2. mLABC mLDBC =
mL ACB m LECH.

3. mLABD = mLABC
m L DBC .

mL ACD = m LACB
m DCB.

4. L ABDI-LACB.

1. Base angles of an isosceles
triangle are congruent.

2. Addition, from Step 1.

3. Angle Addition Postulate.

4. Steps 2 and 3.

1 . m ACB = InZ ABC .

mLDCB= mLDBC.
2. mLACB - mLECB =

mLABC - mLDBC.

3 . m ACD = m L ACB -
niL DCB.
m ABD = m L ABC -
yn DB C .

4. m L ACD = mL ABD.

1. Base angles of an isosceles
triangle are congruent.

2. Subtraction, from Step 1.

3. From the Angle Addition
Postulate.

4. Steps 2 and 3.

132 6. Since CA = CB, CA = CB. As X is the midpoint of

AU, CX =.- AC. Similarly, CY = CB. It follows that

CX = CY. Then ACXY is an isosceles triangle with base

angles LCXY and LCYX. Theorem 5-2 tells us that these

base angles are congruent.

[pages 130-132]
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7. Given: LIAD3 with AB = BC = CA.

To prove: LA 11 LB LC.

95

1. CA = CB. 1. Given.

2. LA LB. 2. Base angles of an isosceles
triangle are congruent.

3. AB "= EC. 3. Given.

4. LA LC. 4. Base angles of an isosceles
triangle.

5. LA :2=LB 7=LC. 5. Steps 2 and_4.

8. Given: &ABC with AB = BC = CA, and P, Q, R the mid-

points of 3r, An and TU.

To prove: PR = RQ = QT.

1.

2.

3.

4.

5.

6.

7.

AC CB BA.
1 1 1

AC = -f CB = BA.

1
CR RB CB,

CP = PA = CA.

CR = RB = = QA =
AP = PC.

LC 7. LB s= LA.

LNCRP LLEQR afeAPQ.

Q =PR = R QP.

1.

2.

3.

4.

5.

6.

7.

Given.

Multiplication, from Step 1.

Definition of midpoint.

Steps 2 and 3.

Every equilateral triangle
is equiangular.

S.A.S.

Corresponding parts of
congruent triangles.

9. Given: is a median of LNFAB. Tili AB.

Prove: /NFAB is isosceles.

112
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1. AQ = BQ. 1. Definition of median of a
triangle.

2. LPQA andLPQB are
right angles.

2. Definition of perpendicular.

3. LFQA LFQB. 3. All right angles are
congruent.

4. FQ = FQ. 4. Identity.

5. eLPQA &MB. 5. S.A.S.

6. FA = FB. 6. Corresponding parts.

7. AFAB is isosceles. 7. Definition of isosceles
triangle.

132 In Theorem 5-4, the point Fl is shown between D and

F, the figure could just as well be drawn so that F is

between D and F'.

133 Proof of Theorem 5-5.

If two angles of a triangle are congruentr then the sides

opposite these angles are congruent.

Given: CiABC with LA Z_B.

Tb prOve: AC BC.

The general procedure is to set up a one-to-one correspondence

tetween the triangle and itself, indicated by ABC *--*BAC,

and to use the A.S.A. Theorem.

In the correspondence CAB4--*CBA

we see that LA 4-3Lais,

rs *--*

LB **L.A.

Thus two angles and the included side of LCAB are congruent

to the parts that correspond to them. By the A.S.A. Theorem

this means that

6CAB CMTBA.

[pages 132-133]
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By the definition of a congruence all pairs of corresponding

parts are congruent. Therefore,

Tr.

From the definition of isosceles triangle, 1SAEC is isosceles.

Proof of Corollary 5-5-1

An equiangular triangle is equilateral.

Given: /NAM such that LA Ze.B ZLC.

To prove: IS 2. SC AU.

The general procedure is to make sucCessive applications of

Theorem 5-5. Of course, you could set up a one-to-one corres-

pondence and use the A.S.A. Theorem if ypu wished.

Since LA 2-"LB, we have from

Theorem 5-5 At' W, and

since LC LB, we have from

Theorem 5-5 AU T.
Therefoe, 2-fw -pm

133 1. a. Need La --.11 Lb.

b. Need HF

or La Lb.

c. A.S.A

d. Need QR 2::

or LA LM.

Problem Set 5-7

(S.A.S.). e. Need MI' T. (A.S.A.).

(s.A.S.), f. Need 37 (S.A.S.),

(A.S.A.). or LXYF LKYF. (A.S.A.).

(S.A.S.),

g. Need

or

LXFY 2=LKFY.

.11rK7.

(A.S.A.),

(S.A.S.).

(A.S.A.).

134 2. a. LAHB.

b. LAHB, LABH.

c.

d. LF, PIT or LHBF, T.

3. a. LAFB, LB.

b. TR-, TIP.

C. MR.

d. LR.

e.

f. LAFB.
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135 4. a. FIE, EP.

b . L AHB, LHBA.

c. LHBF.

d. LHBF, LP.

e. LA.

6.

1- ZE TT. . Definition'of bisec .

2. La '24 Lb. 2. Given.

3. LCEG ZBEF. 3. Vertical angies.

k. ACGE ABFE. 4. A.S.A.

5. CE 5. Corresponding parts.

6. ZIP bisects W. 6. Definition of biSect.

1. LB 1. Given.

2. BC = CB. 2. Identity.

3. LC I.-LB. 3. Given.

4. /NAM 4aKaL 4. S.A.S.

5. AB = AC. 5. Corresponding parts of
congruent triangles.

A

7. Given: AABC with LA ..23Z-LC.

To prove: AB.= BC = AC.

Proof: The sides opposite LA and LB

are congruent by Theorem 5-5. Hence,

EC = AC. Considering LC and LA in

a similar fashion, we find that AB = BC.

Thererore, AB = BC . AC.

8 Given: AABC with AB 2"TX.

To prove: AABC kXAB.

1. AT trA and W AIL 1. Given. A
2. LB .2-:LA. 2. An equilateral

equiangular.
triangle is

3. &ABC 1: ACAS. 3. S.A.S.

(This could also be proved using A.S.A.)

[page 135]
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Given: Uir bisects LFGH.

TIILLITI at K.

Tb prove: AFGH is isosceles.

99

1.
2.

3.

LFGK -1'LHGK.

LIEF and LGKH are
right angles.

1.

2:

. 3.

Definition,of bisects-.

IdentitY.

DefinitiaR -of- perpendicular.

4. LGKF LGKH. 4. All right angles are
Congruent. .

5. AGKF -21AGKH. 5. A-,S.A:

6. FG 24 2U. 6. 0orresponding partt.

10.

7. AFGH is isosceles. 7. Definitibn of isosceles
triang1S,

1. LFBH -=-4= LRMH. 1. Supplements-of congruent
angles are congruent.

2. LFHB LRHM. 2. Vertical angles are
congruent.

3 3. Given.

4. &BIM -21 caini . 4. A.S.A.

5. AP -21 ER. 5. Corresponding parts.

11. Yes.

1. LRWM LSWM. 1. Supplements of congruent
angles are congruent.

2. MW 2. Identity.

3. LRMW LSMW. 3. Definition of bisect.

ARWM ASWM. 4. A.S.A.

5. LR -24LS. 5. Corresponding parts.

12.

1. AF = RB. 1. Given.

2. BF = FB. 2. Identity.

3. AB = RF. 3. Subtraction, from Steps 1
and 2.

4. LA :Z4OR. 4. Given.

5. La Ly. 5. Given.

6. GABN 6. A.S.A.

7. V =1-.' 211. 7. Corresponding parts.

[pages 135-136]
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*13. a. 1. m LAXR = mL BXF.

14.

2. mLRXF = mZFXR.

3. mLAXF = mLBXR.

4.

5. LA I" LB.

6. AAXF LVEKR.

i. 24 TR.

b. No.

1. Given.

2. Identity.

3. Steps 1 and 2 and the
Angle Addition Postulate.

4. Definition of midpoint.

5. Given.

6. A.P.A.

7. Corresponding parts.

1. mL a = mL b.

2. mLw mLx.

3. mLa + mLw
mLb + mLs.

k. mLICH = mL a + mLw.

5. mL MRG mL b + mLs.

6. m MICH = mL MRG.

7 .

8. zm

9. AMICH AMRG.

10.

1. Given.

2. Given.

3. Addition.

4. Angle Addition Postulate.

5. Angle Addition Postulate.

6. Steps 2, 3, and 4.

7. Theorem 5-5.

8. Identity.

9. A.S.A.

10. Definition of a congruence
between triangles.

15. No.

*16.

Neither S.A.S. nor A.S.A. apply.

1. mLB = mL T. 1. Given.

2. mLQ = mLS. 2. Given.

3. BQ = TS. 3. Given.

4. ABM '-'=" ATM. 4. A.S.A.

5. QR = sR. 5. Corresponding parts.

6. LXRQ 6. Vertical angles.

7. /NXRQ =-1= LSYRS. 7. Steps 2, 5, 6, and A.S.A.

8. RX = RY. 8. Corresponding parts.
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137 In Steps 9 and 10 of the proof of Theorem 5-6 we tacitly

assume that H lies in the interior of 4:ABC and the interior

of LAEIC. This is justified by Theoreth 6-6, the proof of

which aPpears above.

Problem Set 5.-13.

:1* 1.
1. Aff z'
2. 17
3. AP 21 ATI.

NABF LIAHF.

5. LBA172". LHAP.

2.

1. Given.

2. Given.

3. Identity.

4. S.S.S.

5. Corresponding parts.

1. 703

711.

2. XPX.
3. 6ABF 6FHA.

It. Li' 1" Ls.

3.

1. Given.

2. Identity.

3. S.S.S.

4. Corresponding parts.

1 . TN.

2.

3. CSABR 6BAH.

4. Lia2:4nR.

140 4. a.

b. Cannot be proved congruent.

c. S.A.S.

d. S.S.S.

e. Cannot be proved congruent.

f. S.A.S.

g. S.A.S.

h. S.S.S.

1. S.A.S.

j. S.A.S. 118

1. Given.

2. Identity.

3. S.S.S.

4. Corresponding parts.

(pages 137-140]
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5. He can specify the lengths-of three sides, or the lengths

of two sides and the measure of the included angle, or

the length of one side and the measure of the two angles

including it.

6. It is given that AC = BC and LACH LBCH, by Theorem

5-2, LA a LB, so that AACH ABCH by A.S.A. Then LAHC

and LIM are right angles, and, by definition, MILL311.

7. Let LSAIC be isosceles with AC = BC, and let ZI5 be the

median to the base. Prove: LACD a .CBCD.

1. AC = BC. 1. Given.

2. CD = CD. 2. Identity.

3. DA = DB. 3. Definition of median of
a triangle.

4. LIACD a blICD. 4. S.S.S.

5. LACD = LMCD. 5. Definition of congruent
triangles.

(An alternate proof using S.A.S. is also possible.)

8.

1. AF = BF. 1. Given.

2. LAFH LBFH. 2. Definition of bisector.

3. FH = FH. 3. Identity.

4. alum AMU. 4. S.A.S.

5. AH 5. Corresponding parts.

6. LAHF = eBEF. 6. Corresponding parts.

7. LAHF and LIEF are
right angles.

7. Definition of right angle.

8. FILLAS. 8. Definition of perpendicular.

(An A.S.A. proof is also possible.)

To the Teacher: It seems improbable that any student will

question as to whether the bisector of LAM will in fact

intersect the base A. If this question does arise, point

out that in the preceding exercise it was shown that in an

isosceles triangle the median to the base bisects the vertex

angle. Hence, we know that the bisector of the vertex angle

does intersect the base as the figure indicates. General

questions of this sort are discussed in Section 6-4 of

Studies II.
[page 141]
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142

a. 1.

2.

3.

WET ==

1.

2.

3.

Given.

Given.

Identity.

4 . AAPR If &PRP. 4. S.S.S.

5. LARP LEM. 5. Corresponding parts.

b. No.

10.

a. 1. AB = I. 1. Given.

2. AH = FB. 2. Given.

3. HB BH. 3. Identity.

4. COM COMB. 4. S.S.S.

5. LFHB LAM. 5. Corresponding parts.

6. HK = C. 6. Definition of bisects.

7. LHKR LEM. 7. Vertical angles.

8. AHKR LOK14. 8. A.S.A.

9. QK = RK. 9. Corresponding parts.

b. Yes. The intersecting lines Ag and Az determine a

plane in which the other segments and points must lie.

11.

1. AASP ABPQ V 1. S.A.S.
ISCQR ADRS.

2. SP = QR. 2. Corresponding parts.

PQ = RS.

3. QS = SQ. 3. Identity.

4. APQS RSQ. 4. S.S.S.

143
12. The S.S.S. theorem was used as a reason in the proof of

the theorem. However, the very same theorem we are

proving (The base angles of an isosceles triangle are

congruent.) was used in the proof of the S.S.S. theorem.

(pages 142-143]
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3.04

*13. The A.A.A. theorem was given as a reason in Step 7. But

in the proof of A.S.A. (Theorem 5-4), the reason for

Step 2 was given as the S.A.S. postulate, which is what

we are trying to prove now. Thus, our reasoning looks

like this:

145*14. 1.

2.

3.

4.

La ;1461).

LARH ZARB.

1.

2.

3.

4.

Given.

Supplements of congruent
angles.

Identity.

Given.

AR AR.

Lm Lw.

5. AARH AARB. 5. A.S.A.

6. RH RB. 6. Corresponding parts.

7. Identity.

8. ARHF AREF. 8. S.A.S.

9. ZHYR LBFR. 9. Corresponding parts.

10. LHFR and LEFR are
right angles.

10. Definition of right angles.

11. AF 1 BH. 11. Definition of perpendicular,

15. Although a lengthy indirect proof is possible, it should

not be expected at this point. After we have proved that

the sum of the measures of the angles of a triangle is 180,

this can be done easily by A.S.A.

121
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1. AW = AB.

2. LA =LA.

3. RELLMF.

k. mL AWF = mZ ABH.

5. LiAWF AABH.

6. FW =

1. GAWP LRQF
12. raZa = mLAQ.F.

mZb = mLRQF.

3. mta = mL b.
4.
5.

LL
mLBFQ = mLILK.

6. FQ = FQ.

7. .6, BFQ LiHFQ.

8. SZ

1. Given.

2. Identity.

3. Given.

4. Definition of perpendicular
and of right angle.

5. A.S.A.

6. Corresponding parts.

1. Given.

2. Definition of bisect.

3. Steps 1 and 2.

4. Given.

5. Definition of perpendicular
and of right angle.

6. Identity.

7. A.S.A.

8. Corresponding parts.

*18. On AF take AI such that AF = AIF.

Thus A CFAI 1' A BFA by S.A.S. Hence

m LCAIF = m L BAF. Similarly, taking HI

that HIQ . HQ, A WQHI =`; A RQH, so that

m Z.WHIQ m RHQ. But HR AB, so WHI

AIC = AB and

on HQ suzh

WHI HR and

AIC. Since

AC = WH and AM = HIP we get A ACM A HWHI by

S.Sc.S. This gives m L CAP m L WM and m CAI?

m WHIQ, so that n L FAB = m QHR. By addition,
L CAB m L WHR. Thus t ABC t HRW by S.A.S.

122
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146*19.
1. BC = RW. 1. Given.-

2.
1

RQ = RW. 2. Definition of median of a
triangle.

BF = BC.

3. RQ = BF. 3. Steps and 2.

4. AF = HQ. 4. Given.

5. AB = CR. 5. Given.

6 . 6 ABF AHRQ. 6. S.S.S.

7. LB .1=4!R. 7. Corresponding parts.

8 . 6 ABC 2--; 6HRW . 8. Steps 1, 5, 7 and S.A.S.

*20. a. One figure is:

1. AR = CS. -. Given.

2. AR + RS = CS SR. 2. Addition.

3. AR + RS = AS. 3. Definition of betweenness.

CS + SR = CR.

4. AS = CR. 4. Steps 2 and 3.

5. AB = CD. 5. Given.

BS = DR.

6. LIABS &3DR. 6. S.S.S.

7. LECA LDRC. 7. Definition of congruence
between triangles.

b. No.

4'21. 6ADB 6GDE, by S.A.S. since AD = GD, BD = ED, and

m.CADB = mLGDE.

Hence, AB = GE.

6CAD L1FGD, since AD = GD, CD = FD, m4!CDA = me!FDG.

Hence, AC = GF.

6BDC LSEDF, since CD = FD, BD = ED, mLBDC = mLEDF.

Hence, BC = ED. Therefore, 6EFG = 6BCA by S.S.S.

*22. Yes.
(page 146]
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23.

1 .

2.

3.

m LRQA = m SQA. 1. Definition of perpendicular
and Of right angle.

2. Given.

3. Identity.

1 =

11:E T.
4. pRQA LSQA. 4. S.A.S.

5. RA 1" SA. 5. Definition of congruent
triangles. --

6. AC = 6. Identity.

7. RC = SC. 7. Given.

8. L1RAC LSAC. 8. S.S.S.

9. LRCA LSCA.. 9. Definition of congruent
triangles.

24. a. Nothing about the distances. SinCe AVAB is isosceles,

LVAB 11:4CVBA; and similarly for the other two pairs.

b. In this case AAVB LBVC LIAVC. Therefore,

AB = BC = AC, so that LABC is equilateral, and the

six indicated angles are congruent.

*25. a. LAMB LIRMQ, by given data, vertical angles, and the

S.A.S. Postulate. Hence, AB = RQ. Prove AQ = RB

similarly, using LAMQ LRMB.

b. Six pairs. (AB = RQ, AQ = RB, AC = RX, Qe = BX,

EC = QX, AX = RC.)

c. Still true if figure is not planar.

26. a. Four. Twelve.

b. Yes, all four faces are congruent by S.S.S.

Equilateral triangles.
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Review Problems

148 1. congruent; sides; congruence.

2. (a) S.A.S.

(b) A.S.A., S.A.S.

3. RT84-,-5TR, RTS4-1RTS.

4. S.A.S., A.S.A.

5.

1. AR = RH.

2. LA ZLH.
1.

2.

Given.

Base angles of an isosceles-
triangle are congruent.

3. AF = BH. 3. Given.

k. aAFR AHBR. 4.

5. RB = RF. 5. Definition of congruence
of triangles.

6.

1. RB = RF. 1. Given.

2. LRBF LRFB. 2. Base angles of an isosceles
triangle are congruent.

3. LAM LHFR. 3. Supplements of congruent
angles are congruent.

4. AB = HF. 4. Given.

5. AABR AHFR. 5. S.A.S.

6. AR = RH. 6. Definition of congruence
of triangles.

149 7. 4.X. A.S.A.

8. Yes, approximately.

AABC LIABC'.

A.S.A.

150 9. 4!SXQ is the angle.

1. Tg 3N. 1. Given-

2. Ea bisects LRSX, or
mLRSQ = m4!XSQ.

2. Definition of angle
bisector.

3. ZiZ 1FIC 3. Identity.

4. 6RSQ 7.1 AXSQ. 4. S.A.S.

5. LR LSXQ. 5. Corresponding angles of con-
gruent triangles are
congruent.

[pages 148-150]
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io.
1. LABF and 4!RHF are

right angles.
1. If two.segments- are per-

pendicular to each other,
the angle deterMined is a
rightangle.

2. Lx 2: Given,

3. LFBQ LFHW. a. Complements of congruent
angles axe congruerif.

4. QB = WH. 4. GiVen,

5. FB = FH. Definition--of-midpoint.

6. ABFQ AHFW. 6. z4v.4.

11.
1. LBAH LRAH. i.

2. AB = AR. 2. Given.

3. AF = AF. 3. Identity.

AABF AARE'. 4. S.A.S.

5. FR = FR. 5. Definition of congruence.

12.

1. RB = RF. 1. Given.

2. mLRBF = mLRFB. 2. Base angles of an isosceles
triangle are congruent.

3. BF = FB. 3. Identity.

4. AB = HF. 4. GiVen.

5. AB + BF = HF + FB. 5. AdditiOn, Steps 3 and 4.

6. AB + BF = AF. 6. Definition of between.

HF + FB = HB.

7. AF = HB. 7. Steps 5 and 6.

8. 'AFR 8. S.A.S.

In LEL ABM and FBR,

1. AB = FB. 1. Given.

2. MB = RB. 2. Given.

3. LMBA 2r &BF. 3. Vertical angles.

4. AABM '-`-tAFBR. 4. S.A.S.

5. AM = FR. 5. Corresponding parts.

[pages 150-151]

126



no
In AS,AQR and pax,
6. 0 7.:4!F and 6. Corresponding parts.

LAMB 7=LFRB.

LARQ LFM. 7. Supplements of congruent
angles are congruent.

8. AR = FM. 8. Addition from Steps 1 and 2.

9. AAQR AFQM. 9. A.S.A.

14.

1. AF = HB. 1.
2 27 AH = AH.

2. LA 11LH. 2. Given.

3. AR = HQ. 3. Given.

4. AAFR &REQ. 4. S.A.S.

5. LRFA 5. Definition of congruence.

6. BW = FW. 6. Theorem 5=-5.

15.
1. HA = HB. 1. Given.

2. m4!HAB = m4!HBA. 2. Theorem 5-2.

3.
11 razfiAB = me!HBA. 3. Multiplication, from Step 2.

4. m4!FAB = mLHAB.

m4!FBA = me!HBA.

4. Definition of bisect.

5. m4!FAB = mLFBA. 5. Steps 3, 4.

6. FA . FB. 6. Theorem 5-5.

16.
1 . := 1. Given.

LE

2. AAED ABCD. 2. S.A.S.

3. A15 24 TM. 3. Definition of congruent
triangles.

4. traB LDBA. 4. Theorem 5-2.

.127
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17. Given: AAEC with

median Ar_IX and

median MY_LNU.

Prove: LIAEC is equilateral.

1.

2.
3.

4.

5.

6.

7.

LAXB and LAXC are
right angles.

LiUCB LAXC.

BX = CX.

AX = AX.

ilAn twVo.

AB Llf. AC.

A

8.

9. LIAPC is equilateral.

152 18.

1 . Rt.

2. LABR '14 4:1TBF.

3.

4. AABR AHBF.

5. m4!ti = me!H.
mZARB = m4!HFB.

6. ms!MRH = mAGMFA.

111

1. Perpendicular lines
determine right angles.

2. Right angles are congruent.

3. Definition of median.

4. Identity.

5. S.A.S,

6. Definition of congruent
triangles.

7. Proof similar to Steps 1
through 6.

8. Steps 6 and 7.

9. Definition of equilateral
triangle.

1. Given.

2. Vertical angles are con-
gruent.

3. Given.

4. S.A.S.

5. Corresponding parts.

6. Supplements of congruent
angles are congruent.

7. AB BF = HB BR or 7. Addition, from Steps 1 and
AP = RH. 3.

8. AMRH AMFA. 8. A.S.A.

9. IR '22 M. 9. Corresponding parts

128
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19. Given: ABCD AWXY,

bisects LBDC and

bisects LWYX.

Prove: rig

20.

21.

W T X

1.

2.

ABCD AWXY.

LB:="LW.
MI5

1.

2.

Given.

Definition of congruent
triangles.

GBDC LWYX.

3. LBDS ZWYT. 3. Definition of bisects and
Step 2.

4. ABDS AWYT. 4. A.S.A.

5. 15g 5. Definition of congruent
triangles.

Q.

2. XW = QR.

3. WR = RW.

4. XR = QW.

5. La Lb.

6. AXAR 40.1QMW.

7. XA = QM.

8. KX = KQ.

9. KA = KM.

Given.

2. Given.

3. Identity.

4. Addition, Steps 2 and 3.

5. Given.

6. A.S.A.

7. Corresponding parts.

8. Theorem 5-5.

9. Subtraction, Steps 7 and 8.

1. mL1 + m4!3 = mLXJT.
mL2 + m4!4 = m4!XJB.

2. me!1 + mL3 =
m4!2 + mL4.

3. mLXJT = m.!XJB.

4. JT = JB.

5. ta = JX.

6. bour 2 tOUB.

7. LTXJ LBXJ.

8. LOUP 2 AXJQ.

9. L5 2-L6.

1. The Angle Addition Postulate.

2. By algebra from what is
given.

3. Steps 1 and 2.

4. Given.

5. Identity.

6. S.A.S.

7. Corresponding angles of
congruent triangles.

8. A.S.A.

9. Corresponding angles of
congruent triangles.
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22. Yes. The- natural proof, showing APAQ APBZ holds in,
either .case., 'The- congruence- poStulates and theorems hold

for mt tlito triangles,. coplanar or'InOt.

153; 23. ,a. By 'S.S.S. AAQp 4p..,. Therefore, ZAP ZLBQF.

then. 4AQR .,4NR` by. ,RA 'LAB.

b. No. Yes.

*24. Yes.

1.

2.

3.

AF FH and BF = FM.

m L AFB mL MFH. I

AAFB AHFM.

1. Definition of trisect.

2. Vertical angleat
3. S.A.3-.

4. LA 7: LF1124. 4. Definition of congruence.

5. AF FB. 5. Given.

6. FH FM. 6. Steps 1 and 5.

7. LM LFHM. 7. Theorem 5-2.

8. LM LA. 8 Steps 4 and 7.

9. AT = MR. 9. Multiplication, Step 6.

10. A AM Z' A MTH. 10. S.A.S,

25. Given: K, 1111, each_Og.

RA . RB = RC.

Prove: SA . SB = SC.

1. ZSRA, LSRB, LSRC are
right angles.

1. Perpendicular lines
determine right angles.

2. LSRA LSRB ;"LSRC. 2. All right angles are
congruent.

3. SR = SR = SR. 3. Identity.
LSRA LSRB ASRC.4. S.A.S.

5. SA SB = SC. 5. Definition of congruent
triangles.

[pages 152-153]
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*26.

*27.

1.

2.

3.

k.
5.

APAB 64;1AB.

AP = AQ, and
LBAP afLBAQ.

AX = AX.

XAP AXAQ.

PX = QX.

1. AH = AF.

2. AB = AC.

3. LA :21LA.

k. AABH AACF.

5. LAMB LAFC.

6. BF = CH.

7. FC = HB.

8. AFBC AHCB.

9. LFBC LHCB.

10. LABC LACB.

1514428.

1. AADC ACBA.

2. ZBAC L DCA .

3. AABD ACDB.

4. LABD

5. A ABE a" ACDE.

6. AE = CE, BE = DE.

*29. Draw ig0. Then:

1. DB = DC, AB = AC.

2. m L ABC = mL ACB,
m LDBC = m LDCB.

3. mLABD = mLACD.

4. LBAX LCAY

5. ABAX '1" ACAY.

6. AX = AY.

1. Given.

2. Definition of congruent
triangles.

3. Identity.

4. Steps-2 -and 3 and S.A.S.

5. Definition of congruent
triangles.

1. Construction.

2. Given.

3. Identity.

4. S.A.S.

5. Corresponding parts.

6. Subtraction, Steps 1 and 2.

7. Corresponding parts.

8. S.A.S.

9. Corresponding parts.

10. Supplements of congruent
angles are congruent.

1. S.S.S.

2. Corresponding parts.

3. S.S.S.

4. Correspondiltg parts.

5. A.S.A.

6. Corresponding parts.

1. Given.

2. Base angles of an isosceles
triangle are congruent.

3. Subtraction, Step 2.

4. Given.

5. A.S.A.

6. Corresponding parts.

131
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Illustrative Test Items for Chapter 5..

Below are listed the 6 pairs of corresponding parts

of two congruent triangles. Name the congruent

triangles.

W. LA zm.

_- zw LF.

2. Given the figures shown below with &ABC ALM?, and

M between B and C. Write " " for each of the

following statements which is true. Otherwise,
_

correct tile statement to make it true.

a. AB DE. e. LAW LAB4.

b. LA = D. f. LAW = 44ABM

c. BC = EF. g. ZC 4%F.

d. mLB = mLE. h. LACB LDEF.

3. Given the two congruent figures shown, complete each

correspondence in such a way that a congruence results.

a. ABCD 4-+
b. BFA 4--*

c. FCD

d. ABFCD.E.
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4. Given the figure shown, in accordance with the speci-

fications at the left, list the data that would cor-

rectly fill the blanks at the right.

a. side, angle, side of AACD: , 31%

b. angle, side, angle of AABC: , AB,

A 8

B. 1. Complete the following definitions:

a. Two angles are congruent angles if

b. Two segments ere congruent segments if

c. An triangle is one having two congruent sides.

-*
d. LXYZ is bisected by a ray YS if S is in

and if

e. A segment whose endpoints are a midpoint of one

side of a triangle and the opposite vertex is the

of the triangle.

2. In AABC as marked in the figure, CD is to

the base of the triangle

and LACB is the

of the triangle.

A
3. Indicate whether each of the following is true or

false:

a. If AABC &CAB, then LA Z: B.

b. All equilateral triangles are congruent.

c. Given a correspondence between two triangles such

that two sides and an angle of the first triangle

are congruent to the corresponding parts of the
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second triangle, then the correspondence is a

congruence.

d. If LOC 12.411Z , then the points A, B, and C

coincide respectively with points Y4 Y, and Z.

e. An equilateral triangle is isosceles.

C. 1. If like markings indicate congruent parts, in which of

the following figures can two triangles be proved

congruent? Answer by naming the pair of triangles

which can be proved congruent or by writing "none."

In the cases where two triangles can be proved con-

gruent give the abbreviation of the congruence theorem

or postulate which applies (S.A.S., etc.).

a.

C.

134
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2. In each of the following, if enough is given to

establish congruence between the two triangles, state

the appropriate reason by writing S.A.S., S,S,S.,or

A.S.A. If not, name one other pair of parts which, if

congruent, would enable you to prove the triangles

congruent.

Given:

a. ZADH =Law, Al5

b. At u A

V

c. UT = ST, VT = RT.

d. UV = RS, UT = ST.

e. aFG LUG, LIIMF LJGF.

f. FJ = FH, JG = HG.

3. State whether or not each of the pairs of triangles

described below can be proved congruent using postu-

lates and theorems we have had.

a. Two isosceles triangles with congruent bases.

b. Two equilateral triangles with congruent bases.

c. Two isosceles triangles with congruent bases.and

a base angle of one congruent to a base angle of

the other.

d. Two isosceles triangles with congruent vertex

angles.

4. The information given in the statements refers in each

case to the figure. If the given information is

sufficient to prove the triangles congruent, write the

abbreviation of the congruence statement which would

be used as a final reason. Otherwise write "not

enough given".
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a. AC at BC, AD vs DB.

b. IU :ft .1r, Ll
c. Ll :11 L2, L3 IT Lk.
d. AC st BC, LA 1# LB.
e. AT5 =1 MI, mL3 .. mLli.
f. L15 bisects C.

g. tiLLYX.
h. t95 is a median to 173.
i. I,C = P4, t95 bisects C.

3. maim, tra is the bisector Zif LC.
Is. L ACD 1' LBCD, zoAD := LCBD.

1. a bisects rs, ra a MS.

m. Ll I'L2, L3 :31L4, LA LB.

D. 1.. Given: LRMW I'LSMW.

LR14K l' LSWK.

Prove: LR 31.; ZS.

119

Proof: (Supply the reasons.)
Statements

1 . LMWR is supple- 1.
mentary to LRWK.

LMWS is supple-
mentary to LSWK.

2. LRMW 24 LSMW.

LRWK ;I: LUIS.

3. LNWR I'LMWS.

It. IN 14/.

5. A MWR 2,1' AMWS.

6, LR Z: LS.

Reasons
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2. In this figure AB = FH and

me!x = mefg.

Show that m4fA = m4fF.

3. Given: INAMC, with AC TU, TE4 TILLIE and

71-1.311-

Prove: PF = QH.

4. Given: The figure with.

AC = DF,

AB = DE,

CR and TT are congruent

medians. A

Prove: &ABC

5. Given: The figure with

AB = CD,

AD = CB, and

F bisects 15.

Prove: EF = GF.

E. 1. Prove the theorem that the median from the vertex of

an isosceles triangle is_the bisector of the vertex

angle of the triangle.

2. Prove: Angle bisectors from corresponding vertices

of two congruent triangles are congruent.

3. Prove: A diagonL1 of a square bisects its angles.

(Nbte: The teacher may prefer to supply the drawing

from the answers in order to make lettering uniform.)
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4. In the figure,

Given: Emil ::"ACPS, PT = SP

and LPSO 7.:LTPO.

Prove: IFf XV.

Answers

A. 1. AAEW, ANICF.

2. a. +.

b. mLA = mLD.
or LA LD.

c . +.
d. +.

3. a. QGSW.

b. GHQ.

c . HSW.

d. QGHSW.

121.

e. +.

f. +.

g. +.

h. LACB "ar LDFE,

or ,LABC LDEF.

4. a. LDIAC.

br. LCAB,LB. (In either order.)

B. 1. a. They have the same measure.

b. They have the same length.

C. Isosceles.

d. The interior of LXYZ; LINZ 7.1 LZYS.

e. Median.

2. Perpendicular, vertex angle.

3.

C. 1.

a. True. d.

b.

c.

False.

False.

e.

a.

b.

LAPD acme: A.Z.A.

None.

C. LAM 11 LCDB: S.A.S.

d. tOICD ASSAB: S.S.S.

False.

True.
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2. a. S.A.S. (or A.S.A.).

b. 7C15 and Z75, or LABD and LCBD.

c. S.A.S.

d. LV andLS, or Mr and RT.
e. A.S.A.

f. S.S.S.

3. a. Not necessarily.

b. Yes.

c. Yes.

d. Not necessarily.

4. a. S.S.S.

b. S.A.S. or A.S.A.

e. A.S.A.

d. Not enough given.

e. S.A.S.

f. Not enough given.

g. Not enough given.

h. Not enough given.

i. S.A.S. or A.S.A.

j. A.S.A.

k. A.S.A. or S.A.S.

1. S.S.S. or S.A.S.

m. A.S.A. or S.A.S.

Reasons

D. 1. 1. Supplement Postulate.

2. Given.

3: Supplements of congruent angles are congruent.

4. Identity.

5. A.S.A.

6. Definition of a congruence between triangles.

2. 1. AB = FH.

2. mLx = mL g.

3. BH =

4. LSABE *;," A FHB.

5. mLA = mLF.

139
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1. isiwas, rztri_mg.
2 . ZPFA .1" QHB .

3 .

. LA 1-= LB.

5. AP 1.11 Mfr.

6. A PFA A QHB .

7. PF = QH .

1. GiVen.

2. Definition of perpendicular.
AnY two right angles are
congruent.

3. Given.

4. If two side8 of a triangle
are congruent, the angles
opposite these sides Pa,re
congruent.

5. Given.

6. A.S.A.

7. Corresponding parts of
congruent triangles.

1. AB = DE.

2. 'CM and P are
medians.

3. M and P are
midpoints of At,

4. AM = DP.

5.

6. AC = DF .

7. A AMC A DPF .

8. LA --4LD.

9. A ABC ;1/41 DEF .

1. Given.

2. Given.

3. Definition of median.

4. Step 1 and definition of
midpoint.

5. Given.

6. Given.

7. S.S.S.

8. Corresponding parts.

9. S.A.S.

Note: A proof in which the final reason is S.S.S.

is also possible if ACMB is proved congruent

to AFPE.
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5.

1. AB = CD, AD = CB. 1.

2. BD = BD. 2.

3.

4.

AABD ACDB. 3.

LEDF 4:GBF. 4.

5. DF = BF. 5.

6. LEFD LOB. 6.

7. AWF /MP. 7.

8. EF = GF. 8.

E. 1. Given: &ABC is isosceles

with vertex at,CC.

el5 is a median.

Prove: V15 bisects LACB.

Given.

Identical.

S.S.S.

Corresponding parts.

Definition of bisects.

Vertical angles are
congruent.

A.S.A.

Corresponding parts.

A

2. 7C15 125.

3. LT 2f7B.

4. AACD ABCD.

5. LACD LBCD.

6. a bisects ZACB.

1. Definition of isosceles
triangle.

2. Definition of median.

3. Identical.

4. 3.3.3.

5. Corresponding parts.

6. Definition of angle bisector.

(Another way of proving LIACD &BCD is to showLA l'A!B

and use S.A.S.)

2. Given: AKBC g &Ca.

7a5 and 7Z are angle

bisectors.

Prove: 705 2-P72%
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1. LABC AWXY. I. Given.

2. ZCAB LYWX. 2. Corresponding parts.

3 . ZDAB LZWX. 3. Step 2, and definition of
angle bisector.

4. XS 4. Corresponding parts.

- 5. ZB 5. Corresponding parts.

6. ZIABD 614X,Z. 6. A.S.A.

7. 7. Corresponding parts.

3. Given: ABCD is a square

with diagonal M.

Prove: DB bisects

LAM and /ABC.

A

I. AB = BC, AD = DC. I. Definition of square.

2. 15814=nr. 2. Identity.

3. LIABD ACBD. 3. S.S.S.

4. LABD
LADB

LCBD,
LCDB.

4. Corresponding parts.

5. BD bisects 5. Definition of bisect.

LAM and LABC.

4.

I . LRTP LXPS. I. Given.

2. PT = SP. 2. Given.

3. LPSO LTPO. 3. Given.

4. ARTP LXPS. 4. A.S.A.

5. RT Yr. 5. Corresponding parts.
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,Review

Answers to Review Exercises

Chapters 1 to 1

1. 21. 41. 61. -

2. - 22. 42. +
,

62. +
3, + 23. - 43. + 63. -

4. + 24. + 44. + 64. _

5. + 25. - 45. 65. _

6. + 26. + 46. + 66. _

7. - 27. 47. 67. +
8. 28. _ 48. + . 68. _

9. + 29. + 49. - 69. -
DD. - 30. 50. + 70. +
11. + 31. 51. 71.
12. + 32. 52. 72. +
13. - 33. + 53. + 73. +
14. 34. 54. + 74. +
15. + 35. + 55. 75. +
16. + 36. + 56. + 76. _

17. 37. _
57. 77. +

18. 38. 58. + 78. _

19. + 39. 59. + 79. +
20. 4o. + 60. + 80. +
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Chapter 6,

A CLOSER LOOK AT PROOF

One -purpose of this chapter is to allow the students :

having had some experience with proof, to observe the material

of previous chapters as illustrating the postulational struc-

ture of mathematics. Another purpose is to prove 'Theorems.3.--2

to 35, as promised in Chapter a. These Oroofs ire Uted'to''

introduce indirect proof and existence and Uniquenest thedremt.

This chapter also discusses questions of betweenness that were'

avoided in Chapter 5.

As we pointed out in the Introduction to the Commentary,

this chapter includes material that we believe can be.omitted

by some classes. If your clats is composed chiefly of stu-t

dents for whom the material in Section 6=5 is too abstracts,

it may be best simply to move on. There is plenty of worth=

while material in later chapters.

159 'Station 6-1 should be quite understandable to students

now, particularly if theY reread Section 1-2. In generals we

encourage students to direct their attention to the geometric

rather than the algebraic issues involved in proofs since the

student is supposed to be familiar with the fundamentals of

algebra, but is just learning geometry. For this reason we

are more explicit in stating geometric.principlet rather than

algebraic principles as reasons in proofs. The teacher can

use any formulation of algebraic principles that he considers

suitable for his class.

160 Our viewpoint is that in a first approach to deductive

reasoning, it is desirable to treat logic informally and to

encourage the student to appreciate the nature of logical

reasoning by engaging in it. Consequently, we avoid putting

into this text any apparatus of logic that we can readily get

along without. However, you may wish to mention some relevant

principles of logic yourself. Thus when treating indirect

proof, you may wish to refer at the appropriate time to the
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Law of the Excluded Middle, which asserts that either a state-

ment is true or its negation is true. This also can be ex-

pressed: a statement must be either true or false.

The essential logical principle which is implicit in the

indirect method may be expressed formally as follows: If

statement A implies a false statement, then A itself is

false. For example, let A be the statement "It is not

raining". Then A implies the statement, "The people coming

in the door are dry". The latter statement is false, since

the people actually are wet. Thus we conclude that statement

A, "It is not raining", is false. You can test other examples

of the indirect method to see that they are applications of

the principle above.

A common type of argument which involves the indirect

method may be put in the following form:

(1) One of the statements A or B is known to be true.

(2) A implies X.

(3) X is known to be false.

(4) Therefore, A is false.

(5) Therefore by (1), B must be true.

Usually (1) will be an application of the Law of the Ex-

cluded Middle, as in "AB = CD or AB / CD", or "today is

Tuesday or today is not Tuesday".

Often (3) will be justified by pointing out that state-

ment X contradicts an accepted principle or a known truth.

For example, if X is the statement "Two lines have two

points in common", X is false since it contradicts Postulate

1. This is an illustration of the Law of Contradiction, Which

asserts that a statement and its negative (or contradictory)

cannot both be true. Thus if X contradicts Y, and Y is

true, X must be false.

Sometimes we encounter an argument similar to the type

described above, in which we have several alternatives, rather

than just two. Thus (1) might have the form: One of the

statements A, B or C is known to be true. Then we would

dre.
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proceed to "demolish" the alternatives as above. We show that

A implies a false statement and must be false. Similarly we

show B false. Then we oonclude that C must be true. A

common example of such an argument might begin with the state-

ment: AB < CD or AB = CD or AB > CD.

Some students may be confused by such a statement as: We

suppose something is false in order to prove it true. It may

help to soft-pedal the word "false" and say that if we don't

know whether a statement is true, it is reasonable to take its

opposite (or negative) and-see what follows from it. Our

approach is to explore possibilities, not to say categorically

that the given statement is false or equivalently that its

opposite is true.

The very phrase "suppose so and so" may be confusing to

some students. The word "suppose" may suggest to them that we

are supposing it as a fact rather than considering it as a

hypothesis. Remind them that in everyday life we often reason

from premises, without knowing that they are true. For example,

when not sure of today's date we might argue so: I know today

is Saturday and I think the date is June 15th, but I'm not sure.

If today is June 15th, then June 1st also was a Saturday. But

I remenber that June 1st was a school day. Therefore, today

can't be June 15th. Sometimes we actually reason from false

premises, as when we argue that if Lincoln had not been shot,

the course of American history would have been such and such;

or that if the Lusitania had not been torpedoed, the United

States would never have entered World War I.

You may be able to help your students by using, in inform-

al classroom speech, such phrases as: Assume for the sake of

argument; Pretend, and see where you end up; Work on the

theory that . . . , and see the kind of jam you get into.
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Problen Set 6-2a

161 1. a. My Mother is not color blind.

b. My brother is left-handed.

c. Jane drank some hot chocolate.

2. All.

3. (1) This set is not a stainless steel product.

(2) This set is a stainless steel product.

(3) This set will not rust.

(4) This set did rust.

162 4. y is true, z is true.

5. w, u and x are not true. Yes indirect reasoning,is used

in reaching each conclusion.

6. Let A be "somtone is a member of the swimming club".

Let B be "someone can play the piccolo".

Let C be "someone is a'turtle".

Let D be "someone wears striped trunks in the club pool"

Then the problem may be diagrammed this wuy:

(1) If A is true, then B is true.

(2) If B is true, then C is not true.

(3) If D is true, then A is true.

(4) D is true.

The conclusion is that "C is not true" is true. Hence,

in terms of the problem, the conclusion is "I am not a

turtle".

7. a. Red, white.

b. Yes. A is not green.

8. F Given scalene AABF. To prove

that the bisector of any angle,

F, is not perpendicular to MI.

If we assume that the bisector

of L. F is perpendicular to Mg, ,

then AAFQ ABF Q (A.S.A.) and

AF = BF. The assumption that

A: is perpendicular to AI led to the contradiction that the

scalene AABF is isosceles.

(pages 161-162)

147



13.1

163 Notice from the proofs in Section 6-2 that uniqueness is

usually established by indirect proof. Showing that there is

only one of something can be accomplished by showing that

there cannot be two.

Note that it is possible to establish uniqueness without,

or before, establishing existence. For example, the proof of

uniqueness in Theorem 3-3 can be made logically independent of

the question of existence, as follows: Suppose that there

are two planes containing L and P. Let Q and R be two

points of L. Then both planes contain P, Q, R which are

non-collinear points. This contradicts Postulate 7. Hence

our supposition is false and there is at most one plane con-

taining L and P.

In ordinary life, too, knowledge of uniqueness can be

independent of knowledge of existence. P. person with just one

day of his vacation left knows very well that he will not

spend more than one day sailing. But he does not know that he

will spend that one day sailing.

Existence means thlt there is at least one. Uniqueness

means that there is at most one. Existence and uniqueness

means that there is one and only one, or exactly one.

Problem Set 6-2b

166 1. Yes. Postulates 6 and 7.

2. 3. WB and HK. WB and V. 1i1 and V.

167 3. 6. AQ and BQ, AQ and Cg, Vand 1Rtand,
4+ 4-* 4->

BQ and DQ, CQ and DQ.

4. PIZ and PT are the same line.

5. Yes. By Postulate 7. ABQ. AB. B.

6. If A, B, C, D are not coplanar, we list the planes

ABC, ABD, ACD, BCD. However, if A, B, C, D are coplanav

there is only one plane determined.

[pages 163-167]
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168 Many students may feel that the formal proof of unique-

ness in Theorem 6-1 is mere hair splitting. For them it

probably is best not to belabor the point. After they have

had more contact with uniqueness principles they may better

appreciate the point.

Some students may object that the uniqueness proof is

unnecessarily complicated, that the Angle Construction Postu-

late "guarantees" that there is a unique line M in plane B

perpendicular to L at P. This is not quite correct. The

Angle Construction Postulate asserts that there is a unique

raz FY with Y in half-plane H such that mLXFY is 90.

Then line ItLL. Suppose then we apply the same process to

the half-plane K opposite to H.

A

The Angle Construction Postulate now asserts that there
4-10

is a unique ray PZ with Z in half-plane K such that
4-* ,

mi_XPZ is 90. Then line pz_ l_p. No one of our postulates
4-*

or theorems tells us that the lines FY and PZ are identi-

cal. The uniqueness part of Theorem 6-1 takes care of this.

Actually it does more - it proves that no conceivable process

of "construction" or definition can yield a second line per-

pendicular to L at P in plane E.

169 The question at the end of the paragraph following

Theorem 6-1: Can you identify a uniqueness theorem which has

no corresponding existence theorem? Yes, Theorem 3-1: Two

different lines intersect in at most one point. Theorem 3-2

could be reworded to yield another example: If a plane does

(pages 168-169]
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not contain a line, then the plane and the line intersect in

at most one point.

169 In Theorem 6-2 we have put together in compact form, an

important theorem and converse, by using the language of sets.

The theorem and its converse establish a characteristic or

distinguishinKproperty of any point of the perpendicular

bisecting line of a given segment - that is, a property which

holds for, and only for, points of this line. This property

then is a characterisation of the perpendicular bisector as a

set of points. Other such characterization theorems will

appear later.

In Theorem 6-2 note the importance of the restriction that

all points considered lie in a plane. If this restriction is

removed, we get a corresponding result in space: The perpen-

dicular bisecting plane of a segment is the set of all points

that are equidistant from the endpoints of the segment. This

is Theorem 8-7 of Chapter 8. Note that Theorems 8-1 and 8-2

give further "equidistance" properties of lines and planes.

173 Case 2 of Theorem 6-4: U = Q.

Use the first 5 statements of Case 1.

6. L RUP = L. RUT. 6. Statement 2,
and U = Q.

7. 7. Definition of
perpendicularity.

Case 3 of Theorem 6-4: Q is

between R and U.

Insert a step between steps 2 and 3:

L PQU LTQU. Supplements
of congruent
angles.

Refer in Reason 6 to the new state-

ment rather than to Statement 2.

1.1 L

[pages 169-173]
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Problem Set 6-3

174 1. EC is the perpendicular bisector of 1115 and so EB = ED loY

_ Thq9XTm_672.,_

2. x = 7, y = 5, z 10.

3. Since P and M are points which are each equidistant

from A and B, 14 is the perpendicular bisector of ra
by Theorem 6-2 and Postulate 1. Then QA = QB by

Theorem 6-2.

1.

2.

3.

PT = FR + RT.

RT = RQ.

PT = FR + RQ.

1.

2.

3.

Definition of betweenness.

Theorem 6-2.

Substituting RQ for RT
in Statement 1.

175 7. No. Yes.

*8.

1. AC = EC. 1. Given.

2. mLA = mLB. 2. Base angles.

3. ;-inLA =;-m LB. 3. Division, from Statement 2

k. L DAB LEBA. 4. 7tom step 3.

5. AF = BF. 5. If two angles of a triangle
are congruent, the sides
opposite them are congruent.

4-*
CF is perpendicular
bisector ofTE.

6. 6. Theorem 6-2 and Postulate 1.

*9.

Given: Er bisects Al AHF and
ABF.

Prove: RE bisects Y.

151
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1. x y, r S.
2. HB HB.

3. ABH FBH..

4. HA us BA BF.

5 HB AF.

HE bisects AF.

1. Definition of bisect.

2. Identity.

3. A.S.A.

4. Corresponding parts.

5. Theorem 6-2.

1. RC SC.

z RCA at Z SCA.

2. AC AC.

3.. A RCA al A SCA.

4. RA 22 SA.

5. Q is mid-point of

RS.

6. AQ RS.

1. Given.

2. Identity.

3. S.A.S.

4. Corresponding parts.

5. Given.

6. Theorem 6-2.

176 This discuscion of the introduction of auxiliary sets is

a departure from the conventional treatment. It is tmportant

and deserves attention. Consider how often students assume

they can, by "construction", Justiry referring to a line

whose existence has not been proved and which, in fact, may

not exist (see Example 2).

Notice that we say "introduce" line AB or segment PQ

and avoid using such words as "draw" or "construct". As soon

as we have shown the existence of line Iat (or segment PQ)

we have the logical right to reason about it and to derive

properties of it in our geometry. This is independent of

whether we choose to draw or represent it in a diagram.

152
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Having proved the existence and uniqueness of a certain

geometric object in our theory, we sometimes ask how it could

be constructed physically from given data using prescribed

operations 'or 'procedures. Thus the-discussion of Theorem 6-4

gives a precise description of the construction of, the perpen-

dicular to a given line from a given external point using

ruler and protractor. In this instance, the construction is

given before the proof to help the student grasp it.

(Once this important distinction between the common meaning of

"draw" and the meaning of "introduce" described above is es-

tablished with your students, it seems agreeable to use the

term "draw" for convenience. An occasional reminder of the

distinction should be made, however, so that the correct

concept becomes the one suggested by whatever word is used.)

Notice in Section 6-4 that we do not say that auxiliary

segments always are shown as dotted segments. The dotted seg-

ment seems necessary only when the figure becomes so compli-

cated that the method of proof becomes obscure.

178 If A, C, D and E are non-coplanar in Example 1, the

179 proof based on introducing ME *does not hold. The proof in

which 1-6 is introduced does hold, however.

Problem Set 6-4

181 1.
1. Consider A.

2. AD = CD.

3. m LDAC = mLDCA.

4 . m L DAB = m LDCB.

5. mLBAC = m L ECA .

6. AB = CB.

1. Two points determine a line.

2. Given.

3. Base angles of an isosceles
triangle are congruent.

4. Given.

5. Subtraction using state-
ments 3 and 4.

6. If two angles of a triangle
are congruent, the sides
opposite are congruent.

This proof does not work if point's A, B, C and D are not

coplanar. Step 5 would not be valid.
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2.

1. Draw XA. * 1. Two points determine a line.

2. XA = XA. 2. Identical.

3. XY = AB and AY = XB. 3. Given.

4. A m A sax. 4. S.S.S.

5. mL DCA mL BAX.

mL EOCA = m L YAX .

5. Corresponding parts.

6. mLYXO=mLBAO. 6. Subtraction in Statement 5.

7. LY LB. 7. Corresponding parts.

8. AXOY A AOB. 8. A.S.A.

3.

*A similar proof is possible if IT is drawn.

1. Draw rg and AY. 1. Two points determine a lino.

2. YE = SA. E A. 2. Given.

3. YS = SY. 3. Identity.

4 . A YSA A SYE. 4. S.A.S.

5. L YSA L SYE. 5. Corresponding parts.
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4.

1.

2.

3.

4.

Let M be the midpoint
of EA.

Consider RY

ER

LE .111 LA and

1.

2.

3.

4.

A segment has exactly one
midpoint.

Two points determine a line.

Definition of midpoint.

Given.

YE 17.
5. A YEM A SAM. 5. A.S.A.

6 . 6. Corresponding parts.

7. mL. MYS = mLMSY. 7. Base angles of an isosceles
triangle are congruent.

8. mL EYM = mL ASW. 8. Corresponding parts.

9. m L EYS = mL ASY. 9. Addition of Statements 7
and 8.

5.
1. Consider A. 1. Two points determine a line.

2. AC = AB. 2. Given.

CD = DB.

3. AD = AD. 3. Identity.

4. A ACD ABD. 4. S.S.S.

5. LACD L ABD. 5. Corresponding parts.

182 This is very unusual material for a tenth grade geometry

text. We introduce it to indicate that the assertions we make

can be justified from our postulates (without recourse to

diagrams), and to give some typical examples of how we can

logically justify betweenness and separation properties which

usually are read from figures. There are two pitfalls here.

First, it is best not to try to teach this material to stu-

dents who are perfectly satisfied with the proofs as originally
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given. They probably are not yet ready for this kind of

critical thinking and their progress in geometry will not be

impeded by passing on to the next chapter. There is an

opposite danger for the very critical student. He may become

distrustful of diagrams and fail to develop a sound geometrical

intuition. He should be reminded that our theory of geometry

is suggested by physical space, is applicable to it, and that

many theorems can be discovered and most can be appreciated

by the study of diagrams and models. (See Chapter 7, Section

7-1, on making conjectures in geometry.) Point out that a

geometric proof in which one step depends on the diagram,

although not mathematically perfect, is still incomparably

superior to what is considered logical in most areas of human

discourse.

Having clarified the basic point in this section we don't

hesitate in later chapters to use the diagram to justify prop-

erties of betweenness and separation. The complete justifica-

tion of all such properties used is still quite difficult and

requires a deeper study of the foundations of geometry. (See

Studies II.)

As we mentioned earlier, you will have to decide how much

time your class should devote to Section 6-5. If you do not

choose to have your class as a whole study the section, your

better students may find that the exposition and the problems

provide excellent supplementary work.

Problem Set 6-5

1. a. L B. By Theorem 6-6.

b. L C. By Theorem 6-6.

c. L. A,L.B, andL.C. By the definition of the interior of

a triangle.

156
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105 *2. The argument (using the first drawing) depends on the

assumption from the drawing that E is inside L. In

a careful draw-4140 (see below) X will appear on the oppo-

site side of BC, from E.

3. The three possibilities are:

a. A is on L. In this case L intersects both R.

and rig.

186 b. A is in H
1.

In this case A is on the same side of

L as B, and C is on the other side of L. In

this case L intersects lrear. This follows from the

Plane Separation Postulate.

c. A is in H2. In this case A is on the other side

of L from B so L intersects ITL

4. a. Since D is between A and C, D is in the interiorof

LABC, by Theorem 6-6, and the definition of the in-

terior of an angle implies that A and D are on

the same side of BC.

Theorem 6aimplies that D and F are on,the same

side of BC.

(pages 185-186)
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b. Since intersects re at D, it follows from the

Plane Separation Postulate that F belongs to H2.

Since M intersects re at C, it follows from the

Plane Separation Postulate that E belongs to H2.
4-*

187 5. a. A and D are on the same side of BC because it is

given that D is in the interior of LABC. Theorem

6-5.

E is in H
2
by the Plane Separation Postulate.

Theorem 6-5.

Each point of with the exception of B lies in

H
1
but no point of EU does. Also, B does not lie

on W.
b. Each point of ra. other than E lies on the sake

4-W
side of AB as C and D, but each point on the ray

opposite g with the exception of B lies on the

other side of 113. Note that C and D are on the
4-*

same side of AB since D is in the interior of

LABC.
4-W

C. It follows from Problem 3 that BD intersects either

AU or MT. It follows from parts _a and b above
4-*

that BD does not intersect V%

d. Each point of X.C. other than A lies on the same

side of 154 with C and D by Theorem 6-5 and the

Plane Separation Postulate, but each point of the ray

opposite It, with the exception of B, lies on the

other side of lg.

*6. Since D is in the interior of LAX:, it follows from the

Angle Addition Postulate that mLABD + m LDBC = mLAEC.

Since all of these measures are positive it is impossible

that either

(1) m L ABD + m L ABC = m L DBC or

(2) m LABC + mL DBC = mLABD.
Since (1) is impossible, A is not in the interior ofLDBC.

Since (2) is impossible, C is not in the interior ofLABD.
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188* a.. D lies in the plane determined by A, B, C since it

is on the line 10% E lies in thie plane since it le

on the'line AB.

b. A and B are on the same side of le and C is on

the opposite side from A and B. Hence, le inter:.

sects AU at a point X between A and C.

C. BC.

8. a. True.

b. True.

C. False.

d. True.

159
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Illustrative Test Items for Chapter 6

1. In 4ABF, every point of 7ZP

except and is in the

interior of L . of the

points of AT is in the in-

terior of LAW.

2. Snow melts at temperatures above 320. There is snow on

the ground and the temperature outside is 40°. Write a

logicalconclusion.

3. Given that PA = PB,

QA = QB and PQ meets

MS at M as shown in

the figure.

Without using congruent

triangles, prove M is

the midpoint of n.

4.

5. If, for the

hypothesis,

Hypothesis:

Conclusions:

In this plane figure there are

two isosceles triangles with.

the same base, A. lat riS

and is to AB. Every

point oife is from A

and B.

sake of argument, you accept the following

which of the following are logical conclusions?

Every piece of Alpha candy is delicious.

a. Since this piece of candy is delicious,

it must have been made by Alpha CompanY.

b. This Alpha caramel is delicious.

c. Since this piece of candy is not deli-

cious, it could not have been made by

Alpha Company.
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6. AP = BF. The points given in the

AH = BH. picture are coplanar.

AK = BK.

Does line FH pass through K?

If AT,= 3, then BT =

State a theorem which supports

your conclusions.

7. PB = AB.

FQ = A.

WF = WA.

Are WI Q and B necessarily

collinear if these three

points are coplanar?
A

8. Given that A, B, C, F are four non-coplanar points, list

all the planes determined by subsets of A, B, C, F.

9. Prove that the perpendicular bisector of one side of a

scalene triangle cannot include the opposite vertex of

the triangle.

10.

161

In this figure

AX = PX,

XH = XB.

Prove: HF = BF and

QA = QF.
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Answers

1. A and F; ABF; None.

2. The snow is melting.

3. Since PA = PB and QA = QB, P and Q lie in the perpen-

dicular bisector of Therefore, V is the perpen-

dicular bisector of 111.

4. Bisects. Perpendicular. Equidistant.

5. b, c.

6. Yes. 3. Theorem 6-2.

7. No. Not unless the entire figure is a plane figure.

8. ABC, ABF, ACF, BCF.

9.
(liven that AABF is scalene.

Assume that FH could bisect

/03 and be perpendicular to 111.

Then A AFH 1" A BFH by S.A.S.

and FA FB, so A AFB is

isosceles. The assumptions

lead to the contradiction that

a scalene triangle is isosceles.

Hence the assumptions were false.

10. QB is the perpendicular bisector of P. Therefore,

QA = QF. Since XH = XB is given, X is the midpoint of

MI and FX is its perpendicular bisector.

Hence, HF = BF.
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Chapter 7

GEOMETRIC INEQUALITIES

The material covered in this chapter is quite similar to

that found in corresponding chapters of other geometry texts.

The main difference is that we compare two segments or two

angles merely by comparing their lengths or measures. Thus,

although our inequalities describe geometric relations, they

involve only real numbers. This is another advantage of our

early introduction of real numbers. Because students do not

always know principles of inequalities well, we restate the

order postulates first given in Section 2-2, giving examples

to show how they are applied.

189 The idea that a conjecture must not be considered true

until (unless) it has been proved, bears emphasis. To put it

bluntly, a conjecture is a guess. The kind of conjectures we

pay attention to are the shrewd, reasonable ones that are

based upon inductive thinking or insight. But conjectures, no

matter how reasonable they seem, remain guesses until they are

proved.

It may be good for your students to be reminded that con-

jecturing is an important part, even if only the first stage,

of mathematical work. After all, a man who develops new

mathematics often must try to decide what the truth is before

he can present a logical proof of it. There is no reason to

look down on the art of making conjectures. There is, however,

no excuse for confusing guessing with proving.

Goldbachls conjecture that every even number is the sum

of two primes is a simple non-geometric example that you can

mention. After many generations the conjecture is still not

a theorem.

The example of Section 7-1 should suggest two things to

the student. First, he should try to make reasonable conjec-

tures. Second, he should express his conjectures in good

mathematical language. The second goal may be the more diffi-

cult to achieve.
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Problem Set /-1

190 1. The opposite sides are unequal in length with the side

opposite the largest angle having the greater length.

2. AB + BC > AC. BC + AC > AB. AB + AC > BC. The sum of

the lengths of two sides of a triangle is greater than the

length of the third aide.

3. RS + ST + TQ > EQ. The sum of the lengths of three sides

of a quadrilateral is greater than the length of the fourth

side.

4. It increases.

5. DF > XZ.

6.

7. From B drop a perpendicular to E at a point D of E. Then

D willlieon some AC and for this AC, m L BAC . ra L BAD

is a minimum. If it is the opposite ray to it, m L BAF

is a maximum.

191 8. The procedure does not work since m L DAE in larger than

either raL BAD or m L EAC. This shows up clearly if

m L. BAC is close to 180.

It may be helpful to state the order principles in English

as well as in algebraic symbolism. For example, 0-2 may be

stated: If the first of three numbers is less than the second

and the second is less than the third, then the'first is less

than the third.- Similarly, 0-3 asserts: If the same number

is added to each of two unequal numbers, the sums are unequal

in the same order. Or 0-3 maybe stated: If the same number

is added to each side of an inequality, the inequality remains

[pages 190-191)
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true. :You recognize that these order principles are essen-

tially the same as the "Axioms of Inequality" which appear in

most geometry texts. The order principles refer to real num-

bers rather than geometric quantities.

192 Example 6, simple as it seems, is quite important and

often used. In many geometric problems it is necessary to

prove a relation such as a < c or c > a. In the conventional

treatment we refer to a diagram and conclude.c > a by the

principle, "The whole is greater than any of its parts".

Ordinarily, we prove a relation like c > a by applying Exam-

ple 6, that is, we show c = a + b, where b is positive.

(Actually in our applications a, b and c will all be positive.)

We might reword this as, a + b > a when b > 0, since c = a + b.

Even more simply we can say, "The sum of two positive numbers

is greater than either number." Thus, the final justification

is a property of real numbers. An important application of

Example 6 occurs later in Step 8 of the proof of Theorem 7-1.

Example 6. If a + b = c and b is positive then a < c.

Reasons only:

1. Given. 4. Postulate 0-3.

2. Definition of positive. 5. Substituting c for a + b.

3. Relation between < and >.

Example 7. If a + b < c, then a < c b.

Proof:

1. a + b < c. 1. Given.

2. a + b + (-b) < c + (-b).2. Postulate 0-3.

3. a < c - b. 3. Algebra.

"Algebra" means here that the principle involved is well

known to the student.in the sense that it involves the "field"

properties; that is, the basic properties of addition, multi-

plication, subtraction and division but not order or inequality

properties. He knows that a + b + (-b) = a, and that

c + (-b) = c - b. Step 3 also involves substitution.

165
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Example 8, Ifa< b, thenc-a>c-bfor every c.
This may be stated: If unequal numbers are subtracted from

the same number, the differences are unequal in reVerse order.

Proof:

1. a < b.

2. a + (c - a - b) <
b + (c - a - b). 2. Postulate 0-3.

3. c - b < c - a. 3. Algebra.

4. c - a > c - b. 4. Relation between < and >.

192 Example 10. If x < y and z < 0 then xz > yz.

Proof:

1. z < 0. 1. Given.

2. z + (-z) < 0 + (-z ). 2. Postulate 0-3.

3. 0 < -z. 3. Algebra.

4. -z > 0. 4. Relation between < and >.

5. x < y. 5. Given.

6. x(-z) < y(-z). 6. Postulate 0-4.

7. -xz < -yz. 7. Algebra.

8. -xz + (xz + yz) < 8. Postulate 0-3.

-yz + (xz + y )

9. yz < xz. 9. Algebra.

10. xz > yz. 0. Relation between < and >.

We have just proved: If unemial numbers are multiplied

by the same negative number, then the products are unequal in

the opposite order. Actually all the familiar "Axioms of

Inequality" can be derived from the four order postulates.

194 Step 6 of the proof of Theorem 7-1 tacitly assumes that F

is in the interior of 2:BCD. This is justified in Problem 4

of Problem Set 6-5. It is probably true that no kind of

mathematics can be effectively presented in a completely

rigorous form to a tenth-grade class. We should not feel

guilty about teaching tenth-grade students merely as much as

they can learn. The betweenness problem here will probably

go unnoticed by most students. It should be called to the

attention only of very capable and critical students. (Such

students will probably be rare.)
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The formal justification of Step 8 involves an application

EXample 6 of Section 7-2: If a + b = c and 13 is positive,

then a < c. (See the Commentary above.) We have Step 7,

m L BCD = mL B + mL FCD,

and mL FCD is positive (all angle measures are positive by
_

the Angle Measurement Postulate). Example'6

mLB<mL BCD ormL BCD >mL B.
Hereafter we usually apply Example 6 in such situations with-

out explicit reference.

The following lemma usually is applicable in proving an

angle larger than another.

Lemma. If D is in the interior of L AEC, then mL ABC >

m L ABD.

Proof: The argument above applies. By the Angle Measure-

ment Postulate

m LAW = mL ABD + m L CBD

and mL ABC >..mL ABD by Example 6.

Similarly we can prove an analog for lengths of segments.

Lemma. If C is between A and B, then AB > AC.
,

Problem Set 7-3a

195 1. a. L ACB and L CAB.

b. L FCB.

2. a. L DBC and L EBA.

b. m L DBC > m L A, by Theorem 7:1.

c. m L DBC > m L C, by Theorem 7-1.

d. m L DBC + m L CBA = 180, by Postulate 14.

3. a. 4o.

b. is greater than 73.

c. is equal to 112.

d. is less than 112.

e. is equal to 30.

f. is equal to 90. 4-
g. This is impossible, since, by Theorem 6-3, AC and EC

are not both perpendicular to

(page 195)
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196 4. No. It is not true for the exterior angle at each of the
other vertices. Another exception is a rectangle.

*5. By the Supplement Postulate, a + w = 180. EUt b <w, by
the Exterior Angle Theorem. Adding a to each side of this

inequality, we geta+b<a+wwhich becomesa+b< 180,

which_waeto,be,provcd.. Simil4rly, b 4. c < 180 and

a + c < 180.

*6. Given: A ABC with 7M

To prove: mL A < 90.

mLB < 90.

Proof: By the previous

problem we have

mL A +mL B < 180.

But the base angles of

an isosceles triangle are congruent, so 2(m L A) < 180,
and mL A < 90. Also, mL B < 90, since the measures of
the base angles are equal.

197 The S.A.A. Theorem usually is proved after the Parallel

Postulate is Introduced, since it follows readily from the

theorem that the sum of .-the angle measures of a triangle is
180. Since the S.A.A. Theorem does not depend on the Parallel

Postulate (Chapter 9) we introduce, it here and can apply it

whenever needed.

An S.S.A. theorem also holds when the angle is an obtuse

angle, but there is little value is bringing this fact to the

attention of a class. Outstanding students might enjoy proving

the fact, however.

Problem Set 7-3b

199 1. Since AQ = BZ,L QBA =L QAB.

Also AB = AB and L H 2--"L F. Therefore, L. ABH BAF
byS.A.A.

168
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AB i. 1. yen.

2. BF aZ BF. 2. Identity.

3. AF = KB. 3. Addition, Steps 1 and 2.

4.

5.

/A K and Q are
right angles.

AK = HQ.

4.

5.

Definition of perpendicular
_lines.,

Given.

6. A AKF ;t:-A HQB. 6. Hypotenuse - Leg Theorem.

7. KF = QB. 7. Corresponding parts.

3. A PAH A AFX by Hypotenuse-Leg-Theorem, hence

LE&A Zt L FAB. Therefore, FB = AB.

200 4.

...... ...

Given: HB,I, AF, QA I BF, HB = QA.

Prove: & FAB is isosceles.

Since AB = AB, A AEC ---f A BAQ by Hypotenuse-Leg, Theorem, and _

so I.. HAB Z. L QBA. It follows that FA = FB and A FAB-is

isosceles.

5. L AKF :N. AEQ (Supplements of congruent angles),

L A .L A, AQ = AF. Hence, A AQB ';',A AFK by S.A.A.

Then QB = FK.

6. Since L a Z' L c, AB = FB. Also in A ABH and FBH

EH = BH, end ita BAH and BITH are right angles. Therefore,

these triangles are congruent by the Hypotenuse-Leg Theorem

Hence, AH = FH.

200 In the proof of Theorem 7-4, Statement (3) involves

Example 6 of Section 7-2., .(See comment above on Theorem 7-1,

Step 8.) 169
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One frequently sees Theorem 7-4 proved by the following

method:

Given: A ABC with AB > AC.

To prove: mL C mL.B.

Take D, between A and B, such that AD = AC. Bisect L A, and
4-90

let E be the intersection of the bisector with the line BC.

Show that AADE -21-A ACE, by the S.A.S. Postulate. It follows

that mL ADE = mL Acg. By the Exterior Angle Theorem,

mL ADE > AIL. DBE.

Therefore, mLC>mLB, which was to be proved.

This proof tacitly assumes that thaisector of L A really does
4-90

intersect BC in a point between B and C. See Problem 5 of

Problem Set 6-5 for consideration of this matter.

Problem Set 7-3c

203 1. L G. L K.

2. 17.

204 3. a. 40.

b. 80.

c.

4. a. ML KL.

b. ML < MK.

c. KL ML MK.

d. None.

e. ML > KL and ML > KM.

f. ML KM and ML KL.

5. In A ABC, AT is the-longest side, since it is opposite the

angle with the greatest measure. In A ADC, 7Cf5 is the

longest side, for the same reason. Therefore, AD > AC

and 7i15 is the longest of the five segments.

170
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6. Tr, 111,

(Note to the teacher: You may expect to get a reaction

from the student, to the effect that the figure is incor-

rect, sincemLA+mL B+ mLL Ô < 180. This isafine

opportunity to point out that we cannot prove, on the

basis of the postulates given so far, that the sum of the

measures of the.angles in a triangle is 180. When we ,get

to the Parallel Postulate in Chapter 9, we will be in a

position to prove the angle sum theorem. In any case,

given the hypothesis that such a triangle exists, we can

assert the conclusion that its sides are ordered in the

given manner.)

7. Given: Mr is the shortest side.

US is the longest side. F

To prove: znL CFA > in L CBA.

1 . In ABF, AB > AF. 1. Given.

2. mLBFA>mL ABF. 2. Theorem 7-4.

3. In Li BCF, CB > CF. 3. Given.

4. mL CFB > mL CBF. 4. Theorem 7-4.

5. mL BFA + m L CFB >

m L ABE + m L CBF.

5. Adding Stebs 2, 4.

6. mL CFA > m L CBA. 6. Step 5 and the Angle-
Addition Postulate.

205 *8. Given: FA = FB.

A is between H and B.

To prove: FH > FB.

1. FA = FB. 1. Given.

2. mL FAB = m L B. 2. Ease angles of an isosceles
triangle are-congruent.

3. mL FAB >mL H. 3. Theorem 7-1.

4. mL B>mLH. 4. Steps '2 and 3.

5. FH > FB. 5. Theorem 7-5.

-
171
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9. a. If a team can win some games, it has some spirit.

b. If two angles are congruent, they are right angles.

c. Any two supplementary angles are congruent.

d. The intersection of two half-planes is the interior of

an angle.

e. If Joe is seriously ill, he has scarlet fever.

f. If a man lives in Ohio, he lives in Cleveland, Ohio.

g. If two triangles are congruent, then the three angles

of one are congruent to the corresponding angles of

the other.

h. If the sum of the measures of two angles is 90, the

angles are complementary.

Statement Converse Statement Converse

a. F T e. T F

b. T F f. T F

c. F F g. F . T

d. T F h. T T

10. No. The converse should be, "If I will be burned, I hold

- a lighted match too long." The hypothesis does not con-

tain "if", and the conclusion does not contain "then".

11. a. No. 9b, 9d, 9e, 9f.

b. Yes. 9a, 9g.

206 Note that the distance between a line and a point is a

numbeP. Theorem 7-7 really involves three inequalities:

(1) AB + BC > AC,

(2) BC + AC > AB,

(3) AC + AB > BC.

The text proves (1), and this is sufficient since a

relabeling of the figure will give (2) and (3).

.A72
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Problem Set 7-3d

207 1. AT and AP. AT and TF.

The statement of Theorem 7-6.

208 2. HB < HA < HF. The statement of Theorems 7-6 and 7-5.

3. 3, 13.

4. .k -j<x<k+ J.

5. 1. DB < CD + CB.
DB < AD + AB.
CA < CD + AD.
CA < CB + AB.

2. 2DB + 2CA < 2CD + 2AD
+ 2CB + 2AB.

3. DB + CA < CD + AD +
CB + AB.

6. 1. If the points are noncollinear, the inequality follows

from Theorem 7-7.

2. If the points are collinear, then either (1) B is on

the segment AC, in which case AB + BC = AC, or (2) A

is between B and C, in which case BC > AC, so AB + BC

> AC, or (3) C is between A and B, in which case

AB > AC, so AB + BC > AC.

1. The sum of the lengths of
two sides of a triangle is
greater than the length of
the third side of the
triangle.

2. Addition.

3. Division.

f3 A C A C B

209 *7. Case 1. (n = 3). We know from the preceding problem

(Problem 6) that the result is true in this case; that is,

A1A2 + A2A3 A1A3.

Case 2. (n = 4).

1. A1A2 + A2A3 + A3A4 A1A2 + A2A4 because it follows

from Case 1 that A2A3 + A3A4 A2A4.

2. A1A2 + A2A4 AiA4 by Case 1.

3. A1A2 + A2A3 + A3A4 > AlA4 follows from Steps 1 and

2.

173
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General Case (n is arbitrarily large).

1. We continue ai5 in Cases 1 and 2 to show that

A1A2 + A2A3+
+ An-2 An.-1 A1An-1.

2. A1An..1 + An..1 An AlAn by Case 1.

3. An...1 An AlAn - by Step 2.

4. A1A2 + A2A3 + + An..2 An1 + An...1An> AlAn

from Steps 1 and 3.
*8. XA + XC > PA + PC except when X is on the segment AC, in

which case the equality sign holds. Similarly,

XB +.XD > PB + PD except when X is on BD, in which case

equality holds. Therefore,XA + XB + XC + XD > PA + PB

+ PC + PD except when X is on AC and also on BD, and

this can happen only if X . P, which is excluded by

hypothesis.

The result also holds if X is not in the plane of

A, B, C and D.

*9. Consider the reflection QI of Q with respect to m. Then

m is the 1.-bisector of WI and intersects riql at a point

which we call M. The point R on m to make PR + RQ a

minimum is the point where Tql intersects m.

Let S be any point of m other than R. If S M, then

A SKI :1.2A SMQ by S.A.S. SQI = &Q, so PS + SQ = PS + SQI.

If S = M, then again PS + SQ = PS + SQI.

In A PSQI, PS + SQ > = PR + RQI = PR + RQ.

:. PS + SQ > PR + RQ.

o'

210 The proof of theorem 7-8 is among the harder ones; you

may want to skip it and merely authorize the use of the

theorem in solving problems.

We have assumed properties from the diagram without for-

mal justification. This will be done often hereafter as we

(page 210) 174



159

indicated in the Commentary at the end of Chapter 6. The

proof in the text tacitly assumes that K, M, C are noncollineam

The proof applies to the case indicated by the left-hand figure

below as well as to that shown in the text. If K, M, C are

collinear (see right-hand figure below), then El, K, C are

collinear and K lies between B and C. Thus BC > CK and since

CK = EF we have BC > EF.

211 Proof of Theorem 7-9.
Restatement: Given A AEC and Li DEF. If AB = DE, AC = DF

and BC > EF, then mL A>mL D.

Proof: Since m L A and m L D are numbers, there are

only three possibilities: (1) mL A . m L D (2) m L A < mLD,

and (3) mL A .> L D.

(1) If mL A=mL D, then t BAC EDF and EC = EF.

This contradicts the hypothesis, therefore it is

impossible that mL A = m L D.

(2) IfmLA<mLD, then EC < EF by Theorem 7-8. The

last is false. Therefore, it is impossible that

(page 211)
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mL A < mL D.
Only possibiliti (3) remains, and the theorem is proved.

Problem Set 7-3e

212 1. If two triangles have two sides of one congruent to two

sides of the other, the third side of the first is longer

than the third side of the second if and only if the

included angle in the first is larger than the included

angle in the second.

2. In A ACD and BCD, AC = EC, DC = DC and BD < AD, and so

mL x> mL yby Theorem 7-9.

3.

4.

5.

1. RA me RF. 2. Given.

2. RB = 2. Identity.

3. mL ARB <mL F. 3. Given.

4. AB < BF. 4. Theorem 7-8.

1. RA = RF. 1. Definition of medien.

2. RB = FaL 2. Identity.

3. mL FRB > mL ARB. 3. Supplement Postulate.

FB > AB. 4. Theorem 7-8.

5. mL A > mL F. 5. Theorem 7-4.

In A ACQ and BCQ, AQ EQ,

CQ CQ and BC > AC. Then

by Theorem 7-9 L... CQB >L CQA.

Since the two angles are

supplementary, L... CQB is

obtuse.

213 6. In A AHF and FQA, FH = AQ, AF = AF, and AH > pa.

Therefore, by Theorem 7-9, ELL AFH > mL FAQ. Then in

A ABF, AB > FB by Theorem 7-5.

7. Given: QR = QS, SR = ST. 176
prove: mL RQT > m L RST.

(pages 212-213)



RS > RQ, ST > TQ.

m L 1 > m L 3,

m L 2 > m L 4.

mL RQT > mL RST.

161

8
1. AB = FB. 1. Definition of median.

2. BM = BR. 2. Identity.

3. mL ABH > mL HBF. 3. Given.

(or, m L HBF > mL ABH

See below.)

4. AH > FH. 4. Theorem 7-8.

Also, if the median were drawn so that L ABH <L FBH,

then AH < FH.

Alternate Proof: Assume that HA = HF. ThenA AHB =?IiFHB

by S.S.S., so L ABH L FBH and /MIA?, This contradicts

the given information so that HA yi HF.

-9.
1. AB > AC. 1. Given.

2. L ACB > L ABC. 2. Theorem 7-4.

3. In A BCD and A FPO,

FC = DB.

3. Given

4. CB = CB. 4. Identity.

5. FB > CD. 5. Theorem 7-8.

214 In reading Section 7-4, consider the following. A

blasting worker m4y ask for more soup at 11 a.m., and mean

nitroglycerine. He may ask for more soup at noon, and mean

food. If confusion could arise in-any given case, he would

be explicit. His listener will normally interpret his

language in light of the circumstances. Likewise, the fact

that the context usually points to the proper meaning of

altitude makes the use of the word for three different ideas

(pages 213-214)
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permissible, and perhaps even desirable.

Problem Set 7-4

215 1. a. An altitude of a triangle is the perpendicular segment

joining a vertex of the triangle to the line that

contains the opposite side.

b. A median of a triangle is a segment Whose end-points

are one vertex and the mid-point of the opposite side.

216 3. They are the same segments and hence have the same length.

4.

,a > t, b > r, c > s by Theorem 7-6, and a+b-i-c >

If the triangle is oblique the proof still holds. If the

triangle is a right triangle, simply replace two of the

> symbols by the 2, symbol.

5. Given:AABC with AC=AB=QB.

1 Al5 I MS,

BF I AU.

Prove: CE = BF = AD.

ABD BCF CAE

by S.A.A. and so 4

AD = BF = CE.

178
A
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Review Problems

216 1. Yes, if the trunk is perpendicular to the ground. There

are really three congruent triangles by Hypotenuse-Leg

ITieorem.

2. M. In A AEC, Te. is the shortest side since it is

opposite the smallest angle. In AACE, < AU for the

same reasón. Therefore, a is the shortest segment in

the figure.

3. Given:

>TSU.

Prove: AT > ru.

Locate X on so that

BX = BC.

L FXB > L A by Theorem 7-1.

fore, AF > CF.

4

L C = L FXB > L A. There-

1. AF = HB. 1. Given.

2. BF = BF. 2. Identity.

3. AB = HF. 3. Subtraction in Statements
1 and 2.

4. ABK AHFQ. I. Hypotenuse-Leg Theorem.

5. LQ L K. 5. Corresponding parts.

Yes. There will be two triangles which are congruent by

217 5.

S.A.A.

Since AC > AB, mL B>mL C.

L. AEC is an exterior angle

of LABD and so m AL AEC > m ALB.

Therefore, m L ADC > m L C.

Hence, AC > AD.

179
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6. Let a, b and c be the lengths of the sides as shown.

t + r > a.

t + s > b.

-

2(t, + r + s) > a + b + c.
1t + r + > t + b + c).

7. x > r since HF is the

shortest segment. y > s

since Ati is the longest

segment.

x + y > r + s, by addition.

Therefore, raZ F > niZ A.

8. Let a be the length of the

longest side of the triangle

and b and c the lengths of

the other sides.

1. a < b + c. 1. Theorem 7-7.

2. a = a. 2. Identity.

3. 2a < a + b + c. 3. Addition.

4. a-1-444 I. Division.a <

*9. In AABF w < a (Given that AF ) AB). c < w ( L AFB is an

exterior angle of A FBH.) And so, c < a. Also, a < a + x,

which gives us that mL A<mLABH. We now have

mLH<mL A<mLABH and as aresult we know that the

three sides of A ABH are unequal.

*10. Since mL CAB < mL ABG by Theorem 7-1,

mL C +mLCBA +mL CAB < 1 + mL CBA +mLABG 1 +

180 = 181.

180

(page 2173



165

218 *11. The conclusion is obvious if each angle is acute so we

suppose we have a figure as shown so that a > 90.

Then x < 90 and a + b + c < (a + x) + x < 180 + 90 = 270.

*12. XB bisects L CBA. V IE.
mLXBY = mL A, L XYA L XYB,

XY XY, therefore Li AXY BXY

(S.A.A.) and AY = BY.

A XBY. (S.A.A.) and

so BC = BY. Therefore, AB = 2BC.

13. We prove that r + s > x + y.

1. r t > x w.

w + v > y.

1. Theorem 7-7.

2. r + t + w + v >

x + w + y.

2. Addition.

3. r+t+v>x+ y. 3. Subtraction.

4. r+s>xl- y. 4. Statement 3 and the fact

that t + v = s.

181
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*14 If L ABE is a right angle, P = Q = B. Hence, we suppose,

with no loss of generality, that L ABE is acute. Its

vertical angle is also acute, so

L ABE < 90,

m L CBD < 90.

We show that P is on the

same side of B as E by

showing that it cannot be

on the side with D. If P

were on the side with D,

L.ABE would be an exterior

angle of A ABP. This leads

to the contradiction that

m L APB < m L ABE.

However, this is Impossible since m L APB = 90 and

m L AbE < 90. Hence, P is on the same aide of B as E.

Similarly, it may be shown that Q is on the same side

of B as D by considering A ECQ and showing that the

assumption that it lies on the side with E leads to the

contradiction that the acute exterior L.CBD has measure

less than the right LCBQ.

182



Illustrative Test Items tor,Chapter

1. Consider this figure and list

correct respon- ses to fill

blanks below.

167

a. x

b. is the longest side of A K.

c. is the shortest side of A KM.

2. In kiXYZ, if XY 18, fZ = 10 and XZ = 15, which angle of the

triangle has the largest measure?

3. A triangle has sides of lengths x and x + y. Can the third

side of the triangle be of length y? State a theorem to

support your conclusions.

4. Given: A AEC.

E is a point between B and C.

D is a point between A and E.

Prove: L ADC

5. Given A AEC with median REF and m L ARB = 73. Prove mLA > mALC.

6. As shown in this figure, ABCD

is a square and E is a point

on AB such that B is between

A and E.

Prove: ED > AC.
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If, in this figure, EH bisects

L ABF and L A L F, prove the

ray opposite Tig bisects-L ATIF.

8. Prove that the perimeter of

the pentagon (shown in this

Eigure) is greater than the

perimeter of A ACE.

9. For the given figure prove that

the sum of the altitudes is less

than the-perimeter of the triangle.

(Use a, b, c, as lengths of the

sides of the triangle and r, s, t,

as lengths of the altitudes,

as indicated.)

10. Indicate whether true or false.

a. The bisector of the vertex angle of an isosceles triangle

bisects the base and is perpendicular to it.

b. The base angles of an isosceles triangle are acute.

c. Any exterior angle of a triangle is larger than any in-

terior angle of the triangle.

d. If an angle of one triangle is larger than an angle of a

second triangle, then the side opposite the angle in the

first triangle is longer than the side opposite the angle

in the second.

e. A triangle can be formed with sides of lengths 351, 513,

162.
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An altitude of a triangle lies in the interior of the

triangle.

g. If AB> AC in at, AEC, then mL C > mL B.

h. Two triangles are congruent if they have two angles and a

side of one congruent to the corresponding parts of the

other.

i. If the three angles of a triangle have unequai measures,

then no two sides of the triangle are congruent.

j. A median of a triangle is perpendicular to the side to

which it is drawn.

k. In A AEC both We and -KC can be perpendicular to TU.
4-÷

1. The shortest segment from P to AB is the Perpendicular from

P to rA..

1L Prove: If D is a point between a and C, then 705 is shorter

than one of ;IT, A.

12. Prove that one of the congruent sides of an isosceles triangle

is longer than the segment which connects the vertex with any

point in the base.

:Answers

1. x = 45. TR. mg.

2. L Z.

3. No. The sum of the lengths of two side's of a triangle -is

greater than the length of the third side-.

L ADC is an exterior angle of A DEC and so L ADC > L DEC.

L DEC is an exterior angle of p ABE and so L DEC > L B.

Therefore, z ADC > z B.

5. Bc > AB by Theorem 7-8.

m L A > mL C by Theorem 7-4.
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6. Since mL A = 90, L DBE is obtuse.

'By Corollary 7-1-1 L E is acute-.

Then in A DBE, DE > DB by

Theorem 7-5. A ABD BCA

by S.A.S. so AC = DB. Hence;

DE > AC.

-->
7. Let G be a. point on beyond H so tha.t HG is the ray oppoSite

-*
HB. AA.3-1 A FEE by S.A.A. Theorem. Then L AHB L FHB

and hence L AHG L GHF since supplements of congruent angles

are congruent.

8. ED + DC > EG1

AB + BC > AC.rf
Theorem 7-7.

EA = EA.

ED + DC + AB + BC + EA > EC + AC + EA, by addition.

9. r< c, t<.b, s<aby Theorem 7-6, thenr+t+s<a+b+ c
by addition.

10. a. T

b. T

C. F

d. F

e. F

f. F

g. T

h. T

11. If AD BC then AD < AB and

AD < AC by Theotern 7-6. If

1r is not' perpendicular to

*R- then either L ADB or L ADC

must be obtuse. Say L ADB is

obtuse, then L ADC is acute.

ait m L ADC > m L B. Hence,

LB is acute. Thus, AD < AB

by Theorem 7-5.

186

i. T

j. F

k. F

1. T
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12. Given: A AHF with AH = FH

and B,a point between A and F.

To prove: AH > HB.

Proof:

171

1. m L HBA > m L F.

2. mLA=mL F.

3. m LHBA >m L A.

4. AH > BH.

1. Theorem 7-1.

2. Base angles of an isosceles
triangle are congruent.

3. Substitution.

4. Theorem 7-5.

187



Chapter 8

PERPENDICULAR LINES AND PLANES IN SPACE

This is a good time to ask yourself whether it is likely

that your class will cover all the topics in the text. You

will want to plan ahead to give your class a suitable program.

You could make, rather quickly if necessary, an intuitive

presentation of the propositions of Chapter 8 by using

familiar physical objects. Having students draw some figures

after looking at simple models will improve their ability to

handle three-dimensional problems.

On the other hand, deductive work in three-space may

seem more important to you than many alternatives. Part of

the time you plan to allot to deductive work can be spent on

proofs in three-space, even if this entails omitting some

deductive work in two-space.

219 It is worth spending time to make the basic definition

of the chapter meaningful. A sizeable model will make your

demonstration more effective. Use the floor as a plane,

several pointers for concurrent lines in the plane, and a

window pole for the perpendicular. Have students concentrate

on one particular pointer. Move the pole to show that the

pole can be in many positions, even im the plane, and b, .

perpendicular to the particular pointer. But the pole - in

all but one position - is not .perpendicular to the other

pointers. When the pole is perpendicular to all of the

pointers, it is perpendicular to the plane. If some students

discover the idea of Theorem 8-3 at this time, that's fine:

While such demonstrations can do much to assist students

in understanding spatial relationships, a most effective

means is the assigning of smaller models to be constructed by

each student. Coat hangers, thin wire, straws, string and

cardboard can be used to make models of the next theorems to

be studied. (See Problem Set 8-1a, Problem 10.)
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One particularly meaningful device which students can

make at an early stage is the following. Each student has a

piece of cardboard on Which he draws a segment and marks a

point on that segment. Next he inserts several common pins

such that each pin is perpendicular to the segment at the

point. The teacher can check each model at a glance. The

model helps to illustrate the basic definition of Section 8-1

and Theorem 8-5.

Some excellent materials, mainly sticks and connectors*,

for constructing models in three-space are available from

suppliers of scientific and mathematics equipment. Many

teachers find these to be advantageous over ready-made

models.

Problem Set 8-1

220 1. a. Yes.

b. No, there would be points in space which are not

in plane B.

2. a.

3.

b. c. Yes.

Each of the three lines is

perpendicular to the original

line.
(page 220)
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4. The statement is true. (Refer to the discussion of

using the word if in definitions, Chapter 2, page 41

of the text.)

5 L L ABS,

6. No. The definition requires that the line be perpendicu-

lar to every line containing Q and lying in E.

7. a. Yes. b. ZTSP and Z TSR.

8. a. Yes, three points are always coplanar.

b. Not necessarily.

*9. a.

1. PB = QB. 1. Given.

2. PA = QA. 2. Given.

3. BA . BA. 3. Identity.

4. LPABQBA. 4. S.S.S.

5. PABzLQAB, 5. Corresponding parts.

6. ta AX . 6. Identity.

7. A PAX a A QAX. 7. Statements 2, 5, 6 and S.A.S.

8. PX QX. 8. Corresponding parts.

b. No.

222 As a model for Theorem 8-1 you can use the tip of a

light fixture and a spot on the floor as points, and a

window pole as a line. You can even tag the pole with A,

B, and a movable X.

190
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Problem Set 8-2a

224 1. Yes. Statement of Theorem 8-1. 6.

2. Yes. Yes. Yes. Statement of Theorem 8-1.

225 Some students should enjoy making a model for Theorem

8-2. We suggest a thin stick punched through a sheet of

cardboard, with different colored strings leading from the

ends of the stick to A, B, and C. Then use thumb-tacks

for points X, Y and Z.

226 You can devise a model for Theorem 8-3 by punching a

pointer through a sheet of cardboard to represent L and

E. Then lay pencils on 'he cardboard to represent Ll, L2,

and L
3

.

Problem Set 8-2b

227 1. This follows directly from Theorem 8-2.

2. The line of intersection is perpendicular to the floor.

Many, in fact, every line in the floor going through the

point at which L intersects the floor will be perpen-

dicular to L. No. It is perpendicular only to lines

of the floor that contain the point of intersection of

L and the floor.

228 3. a. Three. The sides of the square all lie in a plane.

AB and FB determine another plane, and AB and

BH determine a third.

b. We know BH HR, HR RF, RF FB, BF BH

(from the square) and FB AB (Given.). From the

last two of these we note that one line, V, is
perpendicular to two other lines at their point of

intersection so we know that 4ig plane ABH. It

is also true that RH plane ABH, but the student

probably cannot prove this now.
(pages 224-228) 191
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4. a. Three. Planes ABF, RHB, and AHRF.

b. BB I RH. (Given.) HB I AF. (Theorem 6-2 and

Postulate 1.) Therefore, HB 1 plane AHRF. This

follows from Theorem 8-3.

5. 1. 1. Given.FB I plane P.

2. FB I AB. 2. Definition of a line
perpendicular to a
plane.

3. ITIL FBA xi VIZ FBR 90. 3. Definition of perpen-
dicular lines.

4. BR = BA. 4. Given.

5. FB FB. 5. Identity.

6. A ABE' a A RBP. 6. S.A.S.

7. FA = FS. 7. Corresponding parts.

8. LFARLFI. 8. Base angles of an
isosceles triang2e.

*6. Yes.

1. AT = TF. 1. Property of the edge
of a cube.

2. AB = BF. 2. Same as Reason 1.

3. BR = BL. 3. Given.

4. AR = FL. 4. Subtraction, Steps 2
and 3.

5. A ATR A ins. 5. S.A.S.

6. TR = TL. 6. Definition of congru-
ence.

7. KT I AT. 7. Property of a cube.

KT I FT.

8. KT 1 plane ABFT. 8. Theorem 8-3.

9. KT 1 RT a.1-4 9. Definition of a line
perpendicular to a
plane.KT I 'IL.

10. A KTR A KTL. 10. S.A.S.

11. KR = KL. 11. Corresponding parts.

192
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230 7.
1. ViV.

2. 1T(51:11EV.

3.

1. Definition of a line
perpendicular to a
plane.

2. Given.

3. Theorem 8-3.

231 By the time you reach Theorem 8-4 it might be best to

proceed without a complete or elaborate model. Students

should be encouraged to perceive spatial relationships in a

diagram rather than to become completely dependent on spatial

models.

231 You may use a spoked wheel and axle to make Theorem 8-5

intuitively familiar: any line perpendicular to the axle at

the hub must be in the plane of the wheel.

232 Proof of Theorem 8-7

The perpendicular bisect1ng plane of a segment is the

set of all points equidistant from the end-points of the

segment.

Restatement: Let E be the perpendicular bisecting

plane of AB. Let C be the mid-point of AB. Then

(1) If P is in E, then PA = PB, and

(2) If PA = PB, then P is in E.

Proof of (1): If P = C, then we already know that

PA = PB. If P C, then 11 lies in E by Postulate 6,

and AB in by the definition of a line perpendicular to a

plane. It follows that z ACP 2gZ: BCP, and, since CA = CB

and CP = CP, we have A ACP 2; BCP by S.A.S. Therefore,

PA = PB.

113
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Proof of (2): If P = C, then certainly P is in E.

If P C, then ACP 2; A BCP by S.S.S. Theorem. Thus
,

HD.
Z ACP -a Z BCP and *CI I AB. E contains CP by Theorem 8-5,

and P lies In E.

Alternate proof of (1): Let C be the mid-point of AB.

If P = C, then certainly PA = PB. If P C, then 11
is the perpendicular bisector of AB (in plane ABP) and

therefore PA = PB by Theorem 6-2.

Alternate proof of (2): If P = C, then certainly P

is in E. If P l C, then 11 is the perpendicular bisector

of AB (in plane ABP). Since E contains /1 by Theorem

8-5, P lies in E.

The proof of part (2) of Theorem 8-7 as given above

requires that Theorem 8-5 be proved previously. A simple

Indirect proof uses Theorem 8-1 and the Space Separation

Postulate in the following way:

Given P such that PA = PB. Suppose P does not lie

In E. Then it lies in one of the two half-spaces into which

E separates space. A and B lie In opposite half-spaces,

since AB intersects E at C, by hypothesis. Then P is

in the half-space opposite to either A or 18, say B.

Then PB meets E In a point Y. By (1), Y is equidistant

from A and B, and by hypothesis, P is equidistant from

A and B. Then by Theorem 8-1, B is equidistant from A

and EP. This absurdity Implies that our supposition is false,

and so P is in E.

194
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Problem Set 8-2c

233 1. a. Infinitely many.

b. One.

2. Yes. Yes. No.

3. The conclusion follows directly from Theorem 8-5.-

4. Points W, X, Y and Z are given equidistant from the

ends of AB. By Theorem 8-7, they all belong to the

perpendicular bisecting plane of AB and are therefore

coplanar.

a. BW. pc. BR. 90. Z:BKF.

b. Not necessarily. W, K and R could be any points

234 5-

*6.

in E.

1. There exists a plane
Et perpendicular to
L at M.

2. If E.= Et, each
line in Et through
M is perpendicular
to L.

3. If E 0 Et, the
intersection of E
and Et is a line
Lt.

L I Lt .

1. Theorem 8-4.

'2. Definition of a line
perpendicular to a
plane.

3. Postulate 8.

4. Definition of a line
perpendicular to a
plane.

234 The proof of Theorem 8-8 uses the word "let" in two

somewhat different senses. "Let Lines L
1

and L
2

be

perpendicular" means "Call the two given perpendiculars L1

and L
2
" "Let M be the mid-point of AB" means "Consider

the mid-point of AB, and call it M". (The mid-point exists

by Theorem 2-5).

195
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Review Problems

236 1. a. F. e. T.

b. F. f. F.

c. F. g. T.

d. T. h. T.

2. AR > RB. mL B > mL A (mL B = 90) .

3. Theorem 8-8. Yes. Yes .

237 k. Yes . No. No. Yes. No.

5. Theorem 6-3.

6, Only one. MQ and WF are coplanar by Theorem 8-8, so

that M, Q, W and F are coplanar. If two points are

in a plane the line containing them is in the same
4-*

plane. Hence MW and QF are coplanar with MQ and

WF.

7 a. Three. Plane ABF, plane RHB and plane RHF.

Two intersecting lines determine a plane.

b. AF j RH and AF I. BH so, AF "plane RHB by

Theorem 8-3.

238 8. A XAP a A XBP by S.A.S.

Hence XA = XB. Similarly we know XB = XC.

Hence X is equidistant from A, B, C.

9
1. L plane ABC. 1. Given.

2. L jQA, QB, QC. 2. Definition of a line
perpendicular to a
plane.

3. PQ ="PQ. 3. Identity.

4. PA = PB = PC. 4. Given.

5. A PAQ 2; t PBQ PCQ. 5. Hypotenuse-Leg Theorem.

6. QA = QB = QC. 6. Corresponding parts.

7. For any point X Q 7. S.A.S.
on L,
AXAQ 211 , XBQ a A XCQ.

8. XA = XB = XC. 8. Corresponding parts.

(pages 236-238)
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10. On the ray opposite to QB let R be the point such

that QR = QB. Then APQR 21 A PQB by S.A.S.

.". PR = PB. AP I PR, and AP PB since

API plane PBC. Therefore, A APR 2E6 APB (S.A.S.)

and AR.= AB. .. AQI RB, (AQ IV') by Theorem 6-2

and Postulate 1.

239 11. Connect A with X, the point of -10' such-that

BX = BH. Then A ABH A ABX (S.A.S.) and AX = AH.

Since AB BF, niz ABF > rnL F, and since Z:AXF i3

an exterior angle of A ABX, rnZ:AXF > niL ABX > 111Z F.

Then AF > AX and, substituting, we have AF > AH.

12. Suppose AB were perpendicular tO each of the three

rays Ta, AD, AE. Then by Theorem 8-3 and 8-5, the
--*

13.

three rays would be coplanar. If AD and AE were
--*

each perpendicular to AC and all were in a plane,

then AD, AE would be opposite rays and not perpen-

dicular. Hence each ray cannot be perpendicular to the

other three.

1. 71 I n.

2. YP I AB, or

y4-

3. XB m.

4. Tciri AB, or

4ATI x)3.

5. AB E.

1. Given.

2. Definition of a line
perpendicular to a
plane.

3. Given.

4. Reason 2.

5. Statements 2, 4 and
Theorem 8-3.

197
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Illustrative Test Items for Chapter 8

A. 1. Can the distance from a given point to a given plane

vary?

2. Identify the set of points which are equidistant from

two points A and B?

3. Through a given point not in a plane, how many lines can

be perpendicular to the plane?

4. At a point on a line how many lines can be perpendicular

to the line?

5. At a point on a line how many planes can be perpendicu-

lar to the line?

6. Is it possible for a line which intersects a plane in

only one point not to be perpendicular to any line in

the plane?

7. Can a line be perpendicular to a line in a plane and

yet not be perpendicular to the plane?

8. Three points A, B, C are each equidistant from two

points P and Q. Fill in the blanks to make 'true

statements.

a. If A, B, C are collinear then is

equidistant from P and Q.

b. If A, B, C are not collinear then

is equidistant from P and Q.

B. 1. Points A, B, C, and D are not coplanar.

A ABC is isosceles with AB . AC.

ADBC is isosceles with DB = DC.

F is the mid-point of BC.

In the figure at least one

segment is perpendicular to

a plane. What segment?

What plane?

198
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2. Given in this figure thatitt JX,
Iiirjog and If

a. and lar determine

a plane ABK. IS lilt

perpendicular to plane

ABK? If your answer

was "yes, state a

theorem that supports

your conclusion.

<-4
b. Do FB, RB, HB all

lie in plane KBQ?

Explain.

c. There will be different planes determined

by the given lines.

3. In this figure, plane E

bisects RQ and E 1 R.

Also RT = QT. Explain

why T lies in plane E.

C. Indicate whether true or false:

1. A line perpendicular to a plane is perpendicular to

every line in the plane.

2. If a line is perpendicular to two lines of a plane it

must be perpendicular to the plane.

3. Through a point on a plane only one plane can be passed.

4. There are infinitely many lines perpendicular to a given

line at a given point on the line.

5. Two lines perpendicular to the same plane are coplanar.
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6. Through a point on a line two planea can be pasaed

perpendicular to the line.

7. Thirteen points each equidistant from the end-points of

a segment are coplanar.

8. If two linea L
1

and L2 are each_perpendicular to_

line L, at a given point of L, there is a plane

containing L1 and L2

9. All linea perpendicular

the line are coplanar.

that is perpendicular to L.

to a line at a given point of

10. A line perpendicular to a line in a plane is perpendicu-

lar to the plane.

11. If /g and plane E are each perpendicular-to-

point P, then lar lies in plane E.

D. 1. In this figure E is the

perpendicular bisecting

plane of AB. If CF

liei in E and CF = CB

FB, prove A ACF is

equilateral.

Given in this figure:
4-,
HIC I. E at B.

E at A.

HA . FB AK.

Prove: A HBA,

AFAB, and

AKBA are in one

plane and are con-

gruent to each other.

200
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3. V is the mid-point

of edge RW of the

cube shown in this

figure.

Prove VB = VF.

Answers

A. 1. No, it is the length of the unique perpendicular

segment from the point to the plane.

2. The perpendicular bisecting plane of AB.

3. One.

4. Infinitely many.

5. One.

6. No.

7. Yes.

8. a. If A, B, C are collinear then each point of the

line containing A, B, C is equidistant from P

and Q.

b. If-A, B, C are not collinear, then each point of

the plane containing A, B, and C is equidistant

from P and Q.
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B. 1.- BC plane DFA.

2. a. No. BQ cannot be proved perpendicular to the

plane ABK on the basis of the information given.

b. Yes, Theorem 8-5.

c. Six; ABK, ABQ, ABH, ABR, ABF, and the plane

perpendicular to le at B.

3. This follows from Theorem 8-7.

C. 1. F. 7. T.

2. F. 8. T.

3. F. 9. T.

4. T. 10. F.

5. T. 11. T.

6. F.

D. 1.
1. AC = CB. 1. Theorem 8-7.

AF = FB.

2. AC = CF = AF. 2. Hypothesis and Step 1.

3. AACF is equi-
lateral.

. 3. Definition of equi-
lateral triangle.

2. lilt and la are coplanar (Theorem 8-8). Since all

vertices of A HBA, A FAB and A KBA are points of

these lines, the triangles are in one plane. z HBA,

z KBA and z FAB are right angles (Definition of a

line perpendicular to a plane). BA = BA (Identity).

A HBA a A FAB 21A KBA (Hypotenuse-Leg Theorem).
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*3.

Use WF.auxiliary segments RB and

1. ARAB St Li WHF. 1. S.A.S.

2. RB WF. 2. Corresponding sides.

3. RV m VW. 3. Definition of mid-point.
4-110

4. Z:VRB and LVWF
are right angles.

4. RW I planes of faces
RAB and WHFT.

5. LRVBAWVF. 5. S.A.S.

6. VB VF. 6. Corresponding sides.
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Chapter 9

PARALLEL LINES IN A PLANE

In this chapter we introduce the Parallel Postulate and

the familiar theorems on parallels and quadrilaterals. The

treatment is not significantly different from that of most

traditional texts, except in this respect: The explicit use

of the postulates and theorems of our early chapters and the

carerul formulation of definitions.

By this time the student should be quite adept at making

proofs. Consequently, this chapter simply states the easier

theorems and leaves their proofs for the student to accom-

plish. Proofs not supplied in the text are provided in this

commentary. Please note, however, that students may often

discover proofs different from the one given here, or in the

text, and, of course, such proofs should receive appropriate

recognition and acceptance.

As we proceed to study more complicated material we

shall relax the degree of precision with which we treat it.

We shall sometimes state 'definitions which are not wholly

precise and give proofs that axe not logically complete, with

the expectation that they will be understood with the aid of

diagrams. In succeeding chapters this is done more exten-

sively. In the present chapter we point out several instances

of unprecise treatment and indicate appropriate clarification.

The discussion of paraliel lines in a plane, though by

no means difficult, encompasses probably the most significant

property of Euclidean geometry, namely, the "Parallel

Postulate", stated on page 262. By way of introduction ask

the students to tell what they mean by parallel lines. The

answers will no doubt vary, and some will probably be in-

correct. Most answers will probably be descriptions, rather

than definitions. It is hoped that from a discussion of this

sort the class will get the feeling that they are working

with something that is intuitively very simple, but that at
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the same time the concept of parallelism is not one that can

easily be "pinned down" by the student.

241 Point out to the students the definition of parallel

lines gives two conditions that must be met by the lines,

(1) they must lie in the same plane and (2) they must not

intersect. Ask the student for an example of two lines that

satisfy condition (2), but fail to satisfy condition (1) and

hence are not parallel. Skew lines is the example.

Remind the students that parallel lines do not meet.

You will sometimes hear the expression: "Parallel lines meet

at infinity". This does not mean that the linec do meet.

Mathematicians abhor exceptions, for example, two lines do

not always meet in the Euclidean plane, and just as it is

convenient to introduce complex numbers into algebra so that

every quadratic equation has a root, so it is convenient to

adjoin to the points of the plane, certain "ideal" points so

that we can say two lines always meet.

Notice, however, that such lines are no longer Euclidean

lines. To each Euclidean line we adjoin an ideal point to

form a new kind of line, called a projective line, that is no

longer a Euclidean line. This is done in such a way that the

same ideal point is adjoined to each line of a family of

parallel lines. If two Euclidean lines are parallel then

their associated projective lines meet in an ideal point. If

two Euclidean lines are not parallel they meet in a point P

and their associated projective lines meet in the same point

P. This avoids an exception, but all the properties of real

points do not carry over automatically to ideal points. When

we say two projective lines meet at an ideal point, it follows

that their associated Euclidean lines do not meet at all. If

we adjoin these ideal points to the set of real points in the

Euclidean plane, we get a new "plane", which has different

properties from the Euclidean plane, and which we may call a

"projective plane" in the sense that "point", "line", and

"plane" would satisfy the set of incidence postulates usually

(page 241)
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made for projective geometry. But this is not the geometry

we are studying; in Euclidean Geometry we do have parallel

lines, in Projective Geometry there are_no parallel lines.

242 Theorem 9-2 gave us one method for constructing a line

parallel to another line through an external point. The

method was used in Theorem 9-3 to prove the existence of at

least one line parallel to a given line from a point not on

the line.

Some enterprising students will feel that Theorem 9-3

establishes uniqueness as well as existence of L2,

especially in light of the paragraph follouing the proof.

After all, Theorem 6-1 assures that L2 a3 a perpendicular

to L
1

at P is unique. Should this arise you may counter

with a statement of this sort: "If this seems astonishing

to you, perhaps you are reading more meaning in Theorem 9-2

than is actually there. Notice that Theorem 9-2 does not say

two lines in a plane are parallel only if they are both

perpendicular to the same line. Is it possible then that two

lines could also be parallel under some other conditions?"

If more discussion seems necessary you may decide to

present the following: Let the figure be that of Theorem

9-3. From point R on L2 drop a-perpendicular to L,

meeting L at S. Note that we do not know that RS L2

From P make 4/31.4-Z. Now we have H L and L
2

H L

by Theorem 9-2. We seem to have two lines throligh P

parallel to L.

(page 242)
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The student will probably claim that PRIV and therefore
4V. and L

2
coincide (Theorem 6-3). While you may agree

with him that this sounds promising, ask him to prove that

PR RS, the fact his argument is based on. Whatever he may

refer to as convincing evidence from his general store of

knowledge you easily can maintain the essential point of the

whole discussion: that nothing in our previous postulates or

theorems will disprove our argument. The sort of reasons

which refute it - the sum of the measures of the angles of a

quadrilateral is 360, or of a triangle is 180, alternate

interior angles (Theorem 9-8), corresponding angles (Theorem

9-9), and so on - have not been proved yet (and in fact, can

not be until the Parallel Postulate is assumed).

You would probably not want to go further into this with

your class, especially at this time - and probably not even

this far. But we should state the point to this discussion,

for the reader, at least. The point is that the statements

which would refute the above argument are all logically

equivalent to Postulate 16. Neither Postulate 16 nor any of

these equivalent statements is deducible as a theorem from

Postulates 1-15. It waa the discovery of this fact that

finally led geometers to the realization that SOMB postulate

of parallelism is necessary. (See Talks on Introduction to

Non-Euclidean Geometry and on Miniature Geometries.)

245 Notice that we give a precise definition of alternate

interior angles rather than a "definition" in terns of a

picture. Observe that our definition depends on the separa-

tion concept as developed in Chapter 3.

246 Proof of Theorem 9-4

Given a transversal to two lines, if one pair of alter-

nate interior angles are congruent, then the other pair-of

alternate interior angles are also congruent.

2 07
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Given: Lines L
1

and L2 cut by tranBveral T such that

Z ABC a Z BCD.

To Prove: ZxaLy.
By the Supplement

Postulate z ABC and Z x

are supplementary, as are

Z BCD and Z y. Since

Z ABC a Z BCD, then

Zx y, because

supplements of congruent

angles are congruent.

Problem Set 9-1

248 1. a. No. b. No.

2. They do not intersect, they are both perpendicular to a

third line, they form alternate interior angles with a

transversal.

(Note: The third condition includes the second as a

special case.)

3. No.

4. Not necessarily.

5. a. No, the 800 angles are not alternate interior

angles, and the alternate interior angles are not

equal.

b. Two sizes: 80° and 100°.

6. 1,1 111,2, 141
I

142.

208
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249 7. Select any two points

A, B on L. Draw PA.

Draw LcPALBAP so
that C and B are on

opposite sides of V.

Thep 11 n L._ by

Theorem 9-5.

8. a. Yes. b. No. c. Yes. d. Yes. e. Yes, since a

line 'ontaining the center of the earth is perpendicular

to caetain other lines containing the center.

f. No. g. Yes. h. Yes.

9. Yes. (Such lines are called skew lines.)

10. AABD 211A BAC by S.A.S. Then DB = CA. Then

ADCB 21A CDA by S.S.S. and inZ BCD 21 inZ ADC. (It is

not possible to prove that L BCD and L ADC must be

right angles. Attempts to do so suggest the need for

some further postulate.)

250 11. Proof: AAPR wA PBQ RQC 21A QRP by S.S.S. By

corresponding parts mL a = InZ A, 111Z: b mL B and

mL c = mL C. Since the sum of the measures of L a

b and L c is 180 by Postulates 13 and 14, the

sum of the measures of L A, 2: B and L C is 180.

It may seem surprising that we can prove that the sum

of the measures of the angles of A ABC is 180 before we

have introduced the Parallel Postulate. In_this Problem the

hypothesis assumes the existence of a triangle in which the

length of each segment joining the mid-points of two sides is

one-half the length of the third side. This cannot be proved

before assuming the Parallel Postulate. We should note,

however, that if we do assume that such a triangle exists,

and from this show that the sum of the measures of the angles

is 180, we can prove the Parallel Postulate. (See the

commentary above on equivalence of statements to the Parallel

Postulate. See, also, Talks on Introduction to Non-Euclidean

Geometry, Corollary 7.)

(pages 249-250) 209
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250 12. Proof: APAR gi A QAR by S.A-.S. Then z ARP gi Z: ARQ

and 1-1.1:$1. By a simdlar proof using A ABD and

A ACD, VIV. Then II 41e by Theorem 9-2.

(Note: A proof based on isosceles triangles without

drawing AD is also possible.)

13.

1. ADAT giA CBT. 1. S.A.S.

2. DT = CT. 2. Corresponding parts.

3. mL. DTA = mL CTB. 3. Corresponding parts.

4. A DST 2.1A CST. 4. S.S.S.

5. mL DTS = mL CTS. 5. Corresponding parts.

6. :14STA = niZ STB. 6. Addition.

7. 7. Definition of perpen-
dicular lines.

4-*
ST I AB.

8. raZ TSD = mL TSC. 8. Corresponding parts.

9. 9. Definition of perpen-
dicular lines.

10. DC H AB. 10. Theorem 9-2.

210
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252 Proof of Theorem 9-6

Given two lines and a transversal, if one pair of

corresponding angles are congruent, then the other three

pairs of corresponding angles have the same property.

Given: Lines L
1

and L
2

cut by transversal T such that

a pair of corresponding angles, Z a and Z a', are

congruent.

To Prove: Zb glIZbl, Lc %Lc', ZdalZdt.

Given that Ziligt/ a'.

By the Supplement Postulate

Z a is supplementary to

Lb, and Z a' is-

supplementary to

Since supplements of

congruent angles are

congruent, Z b 2IZ

Similarly we show

Lc INZO and ZdaLdl.
252 The method of proof of Theorem 9-7 is merely to use the

property of vertical angles to establish a pair of alternate

interior angles congruent, and by Theorem 9-5, the lines are

-parallel.

Because the converses of Theoremn 9-5 and 9-7 are reason-

able and are readily accepted by students as intuitively true,

you may find that the dependence on the Parallel Postulate

remains unrecognized, even after the converses have been

proved. As preparation for the proof of Theorem 9-8 and

preliminary to the Parallel Postulate a consideration similar

to the following could be discussed.

It seems reasonable that the converse of Theorem 9-5 is

true. Let's examine its reasonableness if we assume that the

parallel to a line through a point not on the line is not

unique. Then we could suppose two such parallels exist, as

in the figure.

2 1 1
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Now how reasonable is the converse of Theorem 9-5? Accord-

ing to it, a = x and a = y, so that x = y. But by the

Angle Construction Postulate x y. This contradiction

means that if we want the converse of Theorem 9-5, and many

more such "reasonable" theorems, to hold, then we must accept

the uniqueness of the parallel.

Problems 7 and 8 of Problem Set 9-3 present a more

complete picture of the situation by showing that the Parallel

Postulate can be proved if Theorem 9-8 or Theorem 9-12 is

assumed. From all of this the student should become con-

vinced some postulate of parallelism must be stated. The

importance of the Parallel Postulate is test seen, perhaps

after the sequence of theorems through Theorem 9-13 is

finished and the student can look at the sequence, including

the Postulate, in its entire development.

252 -The Parallel Postulate seems reasonable on the basis of

our experience in the world about us. There is no theoretical

reason why we could not assume the existence of two parallels

to a given line through an external point. From this point

on, parallel Postulates different from ours result in the

development of different geometries, called Non-Euclidean

Geometries. (See Chapter 1 of Studies II and the. Talks on

Miniature Geometries and Introduction to Non-Euclidean

Geometry.)
212
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253 Now that we have the uniqueness of a parallel through

an external point it is pcssible to prove the converse of

Theorem 9-5. Note carefully ln-the proof in the text how

the fact that this parallel is unique is used to establish

the validity of Theorem 9-8.

254 Proofs of Theorems 9-9, 9-10, 9-11 and 9-12

Theorem 51.: If L1 H L2, we then know by Theorem 978

that the alternate interior angles ate congruent. By

application of the property that vertical angles are congru-

ent, we can establish the pairs of corresponding angles to

be congruent.

The term "interior angles on the same side of the trans-

versal" can be defined formally as follows: Let L be a

transversal of L
1

and L
2'

intersecting them in P and

Q. Let A be a point of L1 and B a point of L2 such

that A and B are on the same side of L. Then ZPQB
and L QPA are called interior angles on the same side of

the transversal L. Compare this with the definition of

alternate interior angles.

254 Theorem 9-10. Given

L
1

H L
2'

Then it follows

from Theorem 9-8 that

a NZ:b. Also, La and
d are supplementary.

Hence, mL a + mL d = 180

/1 b + mZ d. Therefore

z b and z d are

supplementary. In a like

manner L e can be proved

supplementary to L a.

213
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255 Theorem 9-11. Given:

In a plane, L1 n L3 and

L2 fl L3. 'To-PrOver

L1 H L2. We use the in-

4

4

199

L.

;0- P
aLi

direct method of proof and Ls
4

assume that L
1

is not

parallel to L2. If this

is rue, then these two

lines will meet at some point P. This means that there are

now two lines through P (L1 and L2) parallel to L3.

This contradicts the Parallel Postulate, hence, Li must be

parallel to L2.

Remark on proof of Theorem 51-11,. This theorem can be

proved directly as follows:

Given: In a plane, L1 H L3,

L2 H L3.

To Prove: LI 11 L2.

Let T be a transversal

intersecting Ll, L2 and L3.

Such a transversal exists,

since any line in the plane of

L
1,

L
2'

L
3

which meets Ll

in only one point must meet

L
2

and L
3

by the Parallel Postulate. Consider the alter-

nate interior angles formed as indicated in the figure.

L1 H L3, hence (1) Z a m L b by Theorem 9-8.

L2 n L3, hence (2) Z c W z:b by Theorem 9-8.

Therefore, (3) La 2ILc,

and (4) L1 H L2 by Theorem 9-7.

214
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255 Theorem 9-12. Lines

L, L1 and L
2

pre coplanar.

Given: L1 L 6.ricrI, 1 Li

at P.

To Prove: L 1 L2.

L Intersects L
2'

otherwise' L and L
1

would

be.parallel to L2 and contain

P. This contradicts the Parallel Postulate. Therefore L

is a transversal of L1 and L2. By Theorem 9-8 it follows

that L and L2 form a right angle. Thus L 1 L2.

255 1.

Problem Set 2:2

1. nIZ A = nIZ B 1. Given.

= mZ C = 90.

2. AD H CB. 2. Theorem 9-2.

3. mZ C = mZ D = 90. 3. Theorem 9-10.

2. Given: Isosceles A ABC

with AB = BC and

t AC and inter-

secting AB and BC

at P and Q.

Prove: A PBQ is isosceles.

1. ZA v.Z C. 1. Theorem 5-2.

2. t 11 AC. 2. Given.

3 LxLA and 3. Theorem 9-9.

Ly'ALC so that
x Z y.

4. PB BQ, or 4. Theorem 5-5.

APBQ is isosceles.

(page 255)
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255 3. 2:PQT1112:S by Theorem 9-9.

Z RTS Z S by Theorem 5-2.

From these two statements L Per L RTS. Then

Ku PT by Theorem 5-5.

256 4. a. Suppose M does not intersect

definition, M H L2. But Li

L2. Then, by

is given H L2.

Hence there are through P two parallels to L2

-- an impossibility by the Parallel Postulate.

The assumption that M does not intersect L2 is

therefore false, so that M does intersect L2.

b. Suppose Li II L2. R H L2 by the given infor-

mation. Also by the given information both Li

and R contain P. Since there cannot be two

parallels to a line through a point, the assumption

Li II L2 is false, and Li intersects L2.

5. a. L Y NZ: BQY and 2: B N ,Z BQY by Theorem 9-8.

Therefore, LB NZ: Y.

257 b. Consider 11 forming L PYZ with sides extending

in the same direction as those of L ABC.

Then, from part (a), niZ PYZ mL ABC. But

PYZ + mL XYZ = 180, and therefore

mL ABC + mL XYZ 180.

It should be intuitively clear what is meant when we say

two parallel rays extend in the same or opposite directions.

A formal definition is easily given. If ig H 11 and B

and D are on the same side (opposite sides) of ir we say

51 and extend in the same (opposite) directions.

6. If the sides of one angle are perpendicular respectively

to the sides of another angle, then the angles are either

congruent or supplementary.

216
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257 *7.

258 *8.

Draw a transversal Vt of Ll and M and also of L
2

and M forming angles a, b and c as shown. If

L2 H M, then ZbaLc; and since L1 II M,

La saIL c by Theorem 9-8. Therefore, L a NZ b.

But then L
1
= L2 by the Angle Construction, Postulate,

so there cannot be a second parallel to M through Q.

Consider a line t perpendicular to M from P. By

Theorem 9-12, t 1 Ll. Assume L2 parallel to M.

Then t 1 L2. Since Ll and L2 cannot both be per-

pendicular to t at P, L2 cannot be parallel to M

as was assumed.

258 Observe that although the proof of Theorem 9-13 is more

precise than that given in most texts, it still depends on

the figure to show that Z:x and Z:xl are alternate

interior angles.

Theorem 9-13 is the first major consequence of our

Parallel Postulate. The proof is directly related to the

fact that there is but one line parallel to the base of the

triangle through the opposite vertex. If there were more

than one, or no parallels, the sum of the measures of the

angles of a triangle would be less than 180 or greater

than 180 as is the case in the Non-Euclidean Geometries.

(See Talk, Introduction to Non-Euclidean Geometry.) It is

interesting that in Euclidean spherical geometry the sum of

the measures of the angles of a spherical triangle is greater

than 180.

259 Proofs of the Corollaries

Corollary 2-13-1. Given a correspondence between two

triangles. If two angles of the first triangle are congruent

to the corresponding parts of the second, then the third

angles are congruent.

217
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Given: AACE and ABDF,

such that LAIALB and

ZONZ D.
To Prove: LENZ F.

We now know, from

Theorem 9-13 that the sum

gles in each triangle are

of the measures of two

anof

the measures of the

angles of a triangle is

180. Given that the sums

equal, then the differences

between this sum and 180

in each case are equal.

Thus mZE = mLF and ZEratZ F.

260 Corollary 9-13-2. This proof follows directly from

Theorem 9-13. If the sum of the measures of the angles of a

triangle is 180, and one angle has a measure of 90, then

the sum of the measures of the remaining two angles must be

90. By definition, then, these angles are complementary.

260 Corollary9-13-3.

Given: A ABC with exterior

angle Z:BCR.

To Prove: ITILBCR = 1112:A + 111Z B.

By the Supplement Postulate

mL BCR = 180 - mLBCA.

From Theorem 9-13 it follows

that mL A + mZ:B 180 - mL BCA.

Therefore mZ,BCR = mL A + mL B.

218
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Problem Set 9-4

260 1. a. 85. d. 180 - (r + a).

b. 1. e. 90.

c. 180 - 2n. f. 90 - ;k.

2. mL P 4.2.

3. The Parallel Postulate assures us that L is the only

parallel to AC through B. It is also used to prove

that alternate interior anges are congruent when

parallels are cut by a transversal, and this theorem in

turn is used in the proof of the angle-sum theorem.

261 4. (Numbers in parentheses

were given in the

original problem.)

5. a. Yes. b. No.

6. By theorems on transversals of parallels L KI3D L A

and L DBC L C. But L L DBC. Therefore

LA faiL C. Hence AB = BC.

7. We have InZ 1 = InZ 3 by

hypothesis and mL 2 = InZ 4

by Theorem 5-2. But

InZ 1 + InZ 3 = InZ 2 + niZ 4

by Corollary 9-13.-3. Taking

half of each sum we have

InZ 1 = InZ 2, and the bisector

is parallel to the base by

Theorem 9-7.

219
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262 8. For convenience we indicate angles as shown in the

figure.

1. r=n2+nV1t.
s = niL 1 + mL 3.

1. Corollary 9-13-3.

2. r + s = ( mZ 1 + niZ 2) 2. Addition.

+ (mL 3 + rnZ .

3. mL 1 + niZ 2 = t and

mL 3 liaL 4 = u.

3. Angle Addition Postulate.

4. r + s = t + u. 4. Statements 2 and 3.

*9. Since QB = QA, LBLl. Since Z 2 and z 1 are

complements, z 2 and Z B are also. But ZB and

ZC are complements, hence, Z2MZC becauSe
complements of the same angle are congruent. Now

QA = QC, and, hence, QB = QC.

*10. In A ABC,

In A ATS,

In A BTR,

mt. B = 90 - a.

mL
180-

niL
180

niL STR = 180 -

= 180 -

= 180 -

a

- a) 90 + a
2

(n1Z ATS + naL BTR)
(18(_27:s. 902+ a

135 = 45.

220
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265 Proofs of-TheoreMs_914 through:9-18

Theorem" -14.

Given: Parallelogram ABCD with diagonal TC.

To Prove: ABC faLi CDA.

1. 1. Definition of a
parallelogram.

A5 17 and VS I CD.

2. L1ALcAB.
DAC a Z ACB.

2. Alternate interior
angles.

3. IT = . 3. Identity.

4. ABC a CDA. 4. A.S.A. Theorem.

The proof using diagonal BD is

Observe we are reading from

are on opposite sides of te.

265

of course, similar to this.

the figure that D and B

Theorem 9-15 is an immediate consequence of Theorem' 9-14:

Since the triangles are congruent it follows that the

ponding sides are congruent.

Corollary 9-15-1.

Given: L1
II

L2 and P

and Q on Ll.

To Prove: P and Q are
equidistant from L2.

T'
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1. From P and Q drop

perpendiculars PS and

QT to 1,2.

2. PS 11QT,

3. PQTS is a parallelogram.

4. ps . QT.

1. Theorem 6-4 and
definition of distance
from a point to a line.

2. Theorem 9-2.

3. Definition of parallelo-
gram.

4.. Theorem 9-15.

266 Theorem 9-16. Since the triangles into which a diagonal

divides a parallelogram are congruent, then the corresponding

angles are congruent. In the figure of Theorem 9-14,

Z:D NZ, B. Considering diagonal DB, we can show, in the

same manner, LANZ C.

266 Theorem 2-17. Consider any two consecutive angles of a

parallelogram as the interior angles on the same side of a

transversal cutting two parallel lines. Then Theorem-9-17

is immediate by Theorem 9-10 (given two parallel lines and a

transversal, interior angles on th':: same side of the trans-

versal art supplementary).

266 Theorem 9-18.

Given: Parallelogram ABCD with diagonals AC and BD.

(We assume from the figure that the diagonals intersect at

P. For a proof" see answers to Problems 19 and 20 of Problem

Set 9-6.)

TO Prove: AC and BD bisect each other.

(pages 265-266) 222



1. ZatalLal.
ZbaZbt.

1. Alternate interior
angles.

2. M of Z15. 2. Theorem 9-15.

3. AABP 214 CDP. 3. A.S.A. Theorem.

4. AP a CP. 4. Corresponding parts.

DP a BP.

5. AC and BD bisect
each other.

5. Definition of bisect.

As is pointed out in the teXt, there is a natural ,break,

or summary point, after Theorem:9-18. Teachers should keep

in mind that a careful selection of problems can emphasize

the common characteristic of Theorems 9-14 through 9-18,

and similiarly for Theorems 9-19, 9-20, and 9-21. At the

same time, the fact that Theorems 9-14 through 9-25 all

involve quadrilaterals is, strengthened by the arrangement of

the text. Thus Problem Set 9-6 supplies problems for both

Section 9-5 and Section 9-6.

266 Proofs of Theorems 9-19, 9720, and 9-22

A

Theorem 9-19.

Given: Quadrilateral ABCD with AB a TB and AD al CB.

To Prove: ABCD is a parallelogram.

1. Draw diagonals AC and DB.

2. By the S.S.S. Theorem AABC INA CDA and ADAB 214 BCD.

3. Therefore Za12Lb and ZeaZ d.

4. Then by Theorem 9-5, AB II CD and 105 H

5. ABCD is a parallelogram by definition.

(page 266)
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266 Theorem 9-20.

Given: Quadrilateral ABCD with AS NM and WE us.

To Prove: ABCD is a parallelogram.

Since AB 11 TTi, L a OLZ:b by alternate interior

angles AC = CA, and A ABC NA CDA by the S.A.S. Postulate.

Therefore DA a BC and by Theorem 9-19 ABCD is a parallelo-

gram.

266 Theorem 9-21,.

Given: Quadrilateral ABCD with diagonals DB and AC

bisecting each other at P.

To Prove: ABCD is a parallelogram.

1. DP a PB.

AP a PC.

2. Z CPB DPA.

DPC Z BPA .

3. A DPC a A BPA.

A CPB a A APD.

4. AB a CD.

AD a CB.

5. ABCD is a parallelogram.

1. Given.

2. Vertical angles are
congruent.

3. S.A.S. Postulate.

4. Corresponding parts.

5. Theorem 9-19.

267 Theorem 9-22 states a fact that surprises many students.

Perhaps some students will enjoy making a model to demon-

strate visually, rather than just logically, that the length

of the segment joining the mid-points of two sides is one-

half the length of the third side.

268 In some texts a rectangle is defined in the following

way: If one angle of a parallelogram is a right angle then

the figure is a rectangle. If this definition is used, you

would want the Theorem. If one angle of a parallelogram is

a right angle then all four angles are right angles, which

in effect is Theorem 9-23. Using this theorem you see that

the suggested definition is equivalent to our definition of

rectangle.
224
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268 Proofs of Theorems 9-23, 9-24, and 9-25

Theorem 9-23,. By Theorem 9-17 the consecutive :angles ot

a parallelogram are supplementary, and since one angle is A

right angle its supplement must be a right angle. TwO

successive applications of Theorem 9-17 will establish that

the other two angles are right angles. -Or-we cotid apply the-

theorem that opposite angles of a parallelogram are congrU=

ent.

Theorem 9-23 gives us an efficient way to prove that a

quadrilateral is a rectangle. First prove that it is a

parallelogram and then prove that one angle is a.right angle.

268 Theorem 9-24.

Given: Rhombus ABCD with

diagonals AC and

To Prove: AC "BD.

By the definition of

rhombus AB = AD and CB = CD;

that is, A and C are equi-

distant frOm B and D. Since

A and C are coplanar with B and D, by Theorem 6-2

is the perpendicular bisector of BD. Hence, AC I. BD.

An alternate proof uses the S.S.S. Theorem to get con-

gruent any two of the triangles having a common side. Then

the angles of a linear pair are congruent, and the diagonals

are perpendicular.

268 Theorem 9-25. Using the figure of Theorem 9-24 we have:

Given: ABCD with AC BD and AC and BD bisecting

each other.

To Prove: ABCD is a rhombus.

By hypothesis, is the perpendicular bisector of

BD, so that AB = AD and CB = CD by Theorem 6-2.

Similarly, AD = CD so that AB = AD = CD = CB. By

definition, ABCD is a rhombus.

An alternate proof uses, the fact that ti APB al A APD

a A CPB A CPD by S.A.S.

(page' 268) 225
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After the class has become familiar with the properties

of quadrilaterals stated on the previous pages you might

propose the following two problems for them to work. Neither

of these can be solved since there is a counter-example (an

example satisfying all of the given conditions that does not

satisfy the desired result) for each one.

(1) Given quadrilateral ABCD such that AB II CD and

AD 2C BC, prove this quadrilateral is a parallelogram. Do

not inform the students that this cannot be proved. Let them

search for themselves for a while and perhaps realize that

the counter-example is an isosceles trapezoid. This figure

satisfies all of the given conditions, but certainly is not a

parallelogram.

(2) Given a quadrilateral ABCD such that the diagonals are

perpendicular to each other. Prove that the quadrilateral is

a rhombus (or a square). This problem, also, cannot be

solved. A counter-example is a kite, like this:

It can be formed from two

non-congruent isosceles

triangles having the same

base fitted together as in

the figure. A more general

figure is also possible.

Problem Set 216

269 1. a. All four quadrilaterals.

b. All four.

c. Square, rhombus.

d. All four.

e. Square, rhombus.

f. All four.

g. Square, rhombus.

h. All four.

(pages 266-269]
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.269 i. Rectangle, square.

J. Rectangle, square.

2. x .+ 30 + 2x - 60 180 and x = 70. Therefore,

mZA=mZ10= do; mZB=niZH= 100.

3. Since the opposite angles of a parallelogram are con-
gruent, Z H Z A and also ZRaZ A,. so that
Z R farZ H. Since interior angles' on the same side of a
transversal which cuts parallel lines are Supplementary,,
M is supplenientary to Z A.. By substitution .we see

that Z M is supplementary to Z H.

270 4. a. Yes. No. No. No.
b. Yes. No. No. No.
c . Yes. Yes. No. No.
d. Yes. No. No. No.
e. No. No. No. No.
f. No. No. No. No.
g. Yes. No. Yes. No.
h. Yes. No. Yes. No.
i. Yes. Yes . No. No.
J. Yes. Yes . Yes. Yes.

lc. Yes. No. No. No.
1. Yes. No. No. No.

5. AD = BC and AB = DC since opposite sides of a

parallelogram are congruent. Then L APD A CRB and
A APB a A CRD by S.A.S. Then by corresponding parts
RD PB and PD RB. Having opposite sides congruent,
DPBR is a parallelogram.

227
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1. FE H E. 1. Definition of a

FE H BC.
parallelogram.

2. AD H BC. 2. Theorem 9-11.

3. FE al AD. 3. Theorem 9-15.

FE a BC.

4. AD NBC. 11. Statement 3.

5. ABCD is a parallelo- 5. Statements 2 and 4

gram. and Theorem 9-20.

271. 7.

1.

2.

3.

4.

5.

6.

7.

8.

PXRY is a parallelo-
gram.

PX = RY, RX = PY.

Z XPS a Z T.

ZSNZ T.
Z XPS S .

PX = SX.

PY = TY.

PX:E. XR + RY + YP

= SX + XR + RY + YT,

1.

2.

3.

4.

5.

6.

7.

8.

or PX + XR + RY + YP

= RS + RT.

8.

1. DQ, = BQ. 1.

2. DC H BA. 2.

3. Z EDQ 1;1EL FBQ. 3.

4. 2: Da a Z,BQF. 4.

5. ArQB a BQF. 5.

6. EQ = FQ. 6.

7. EF is bisected by 7.

Q.

Definition of a
parallelogram.

Theorem 9-15.

Theorem 9-9.

Theorem 5-2.

Angles congruent to the
same angle. Statements
3 and 4.

Theorem 5-5.

By steps similar to
steps 2-6.

Statements 6 and 7 by
addition.

[pages 270-271]
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Theorem 9-18.

Definition of a
parallelogram.

Theorem 9-8.

Vertical angles are
congruent.

A.S.A.

Corresponding parts.

Definition of bisect.
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271 9. Through D draw a parallel to CB meeting AB at X.

Then DCBX is a parallelogram in which case CB DX.

Since it was given that AD . CB, therefore DX . DA
and z DXA NZ: A. But, by corresponding angles

Z: DXA i/ B. Therefore L A al Z: B.

272 10. a. A DOQ ad A KBQ by A.S.A. or S.A.A. so that Q is
mid-point of DK. In A ADK, PQ H AK and

PQ = 4AK 1(AB + BK). BK = CD since they are

corresponding parts of congruent triangles. Hence,

PQ ir(AB + CD).

b.

12.

1.

2.

3.

4.

5.
6.

7.

8 inches. c. 5.

1.Draw DB.

2.
1RQ II DB; RQ 7 DB.

3.
1SP H DB; SP 7 DB.

RQ SP. 4.

RQ II SP. 5.

SPQR is a parallelo-
gram.

6.

SQ and PR bisect
each other.

7.

273 13. Let CI be between B

and C such that AD = BC, .

Then H so that

ABC , D is a parallelogram

and mL ADC, . 111Z BC, D.

Making this replacement in

znZ ADC, < InZ ADC, we have

n1L ECID < mZ: ADC. By the

Exterior Angle Theorem

raZ C < mZ: BM. Therefore ntZ C < mL ADC.

[pages 271-273)
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Two points determine a
segment.

Theorem 9-22,

Theorem 9-22.

Statements 2 and 3.

Theorem 9-11.

Theorem 9-20.

Theorem 9-18.



273 *14. Given: A ACB with AC gm BC, PX I AC, PY BC,

BT I AC.

To Prove: PX + PY = BT.

215

1. Draw a perpendicular, 1. Theorem 6-4.

PQ, from P to BT.

2. PX 11 QT, and 2. Theorem 9-2.

V II n
3. PQTX is a parallelo-

gram.

4. PX en .

5 ZQPBINZA.
6. LYBPLA.
7 LQPBLYBP.
8. A QPB a A YBP.

9. PY = BQ.

10. PX + PY QT + BQ,

or PX + PY BT.

.
Definition of a
parallelogram.

4. Theorem 9-15.

5. Theorem 9-9.

6. Theorem 5-2.

7. Statements 5 and 6.

8. S.A.A. Theorem.

9. Corresponding sides.

10. Steps 4 and 9.

*15. Given: P interior to

equilateral A ABC. PQ,

PR, PS and CD are

perpendiculars as shown.
To Prove: PQ + PR + PS as CD.

1. Draw XY, through

P, 1 CD intersecting

AC, CD, BC as shown.

2. PZ fi QD, PQ ZD. 2.

3. PQDZ is a parallelo- 3.

gram.

4. PQ ZD. 4.

5. PR + PS = CZ. 5.

6. PQ + PR + PS = CZ + ZD, 6.

PQ + PR + PS = CD.

1. Theorems 6-3 and 6-4.

[page 273]

. g3o

Theorem 9-2.

Definition of a
parallelogram.

Theorem 9-15.

Problem 14.

Steps 4 and 5.
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273 16. EFOD is a parallelogram, by definition. Hence EF = DO

and EF H DO. Similarly DO . CB and CB = OA.

Therefore EF = OA and EF H OA. So EFAO is a

parallelogram and FA HEO. Since CD H EO, we have

FA H CD.

274 17. a. ABBIAI is a parallelogram so that AAI = BBI.

Similarly BCCIB1 is a parallelogram and BB' = CC'.

Thus AAI = CCI and AAICIC is a parallelogram.

Hence AC H

b. The proof does not apply if the figure is not in a

plane because it has not been proved that if two

lines in space are parallel to a third line they

are parallel to each other.

18. By S.A.S. the four triangles are congruent. Hence the

four sides KL, LM, etc. are congruent. But of the

three angles at N, for example, two are complementary.

Therefore the third is a right angle. Likewise the

other angles of KLMN are right angles and the figure

is a square.

*19. 1. A and D are on

the same side of

4-gr because AD

2. Similarly C and D
are on the same side

4--)
of AB.

3. D is in the interior

of Z A by the defin-

ition of the interior

of an angle.

231
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274 *20. 1. In the parallelogram

ABCD shown, D is

in the interior of

Z ABC *by the preced-

ing problem.

2. .g intersects AC

by Problem 5 of

Problem Set 6-5.

3. Similarly, DB

intersects AC.

4. Hence BD intersects

AC.

217

275 It is intuitively evident that B is the mid-point of

AC. This can be proved formally as follows. One of A, B,

C must be between the other two (Theorem 2-2). If A is

between B and C we have BC > AB, contradicting BC mi AB.

Similarly if C is between A and B ve get AB > BC

which is impossible. Thus B is between A and C and B

is the mid-point of AC by definition.

275 Caution the students that the statement of Theorem 9-26

does not say that the segments intercepted on one transversal

are congruent respectively to segments intercepted on another

transversal. The segments of any one transversal are con-

gruent to each other.

In the proof of Theorem 9-26, we have tacitly assumed

that T2 does not contain B; otherwise, T4 could not be

parallel to T2. The case in which T2 contains B is

easily disposed of using congruent triangles, ALBA and

&PBC, since ZDBA and Z PBC are vertical angles.

In Problem Set 9-7, Problem *7 is intended to provide

the capable student with some insight into the problem of

incommensurability. 232
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280 You may wish to point out to your class that the

centroid of a triangle has a significant physical inter-
pretation. It is a "central point" of the-triangle. If
the triangle and its Interior tre given a physical existence,

in the form of a piece of cardboard or wood, for example,

the center of grality of each is at the centroid of the tri-

angle, and the triangular Piece will balance on t pin, at

this point. Also, if the triangular piece is freely suspend-

ed from a vertex and a plumb line attached to that vertex,

the plumb line will always come to rest over the centroid of
the triangle.

Problem

280 1. a. By Theorem 9-26, RS = ST; and then by th,: same

theorem ZY = YX.

b. No.

281 2. The right edge of sheet A is a transversal divided

into congruent segments by ruled parallels. By
Corollary 9-26-1, any other transversal, in particular
0Q, will be divided into congruent segments by the

same parallels.

3. Congruent corresponding angles assure parallel lines

through N1, N2, ..., N5. Considering a sixth

parallel through A, Corollary 9-26-1 explains why

AB will be divided into congruent segments.

4. 12, 5, 6.

282 5. 10, 5, 5.

[pages 280-2821
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282 *6. Extend BC making

CE .-1C and draw AE.

Extend BP to meet

AE at W. Draw 1E% AE.

Now MC n AE by Theorem

9-22 and BP PW by

Theorem 9-26. By Theorem

9-22 again, AW 2MP . 2PC

= WE. Hence Em- is a

median of A ABE and meets

the median AC at a point

Q where AQ = 2QC.

*7.

283 *8.

a.

b.

c.

d.

e.

3.

7.

9.

1207.

No set of parallels can

V

\

W

include AR, /g and

219'_

1. Through C draw a 1. Theorem 9-3.

line CL II DY.

2. BC = AD. 2. Theorem 9-15.

3. BY = DX. 3. Halves of equal numbers
are equal.

4. BYDX is a parallelo-
gram.

4. Theorem 9-20.

5. DY XB. 5. Definition of a
parallelogram.

6. CL H XB. 6. Theorem 9-11.

7. CQ = QT. 7. Theorem 9-26.

8. AT = TQ. 8. By steps corresponding
to Steps 1-7.

9. AT = TQ = QC. 9. Steps 7 and 8.

234
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Review Problems

283 1. a. S. i. A. q. A.

b. S. J. N. r. A.

c . S. k. S. s . S.

d. A. 1. S. t. S.

e. S. m. S. u. S.

f. A. n. S. v. S.

g. A. o. A. w. A.

h. S. p. S. x. A.

285 2. a. Yes,- No, No, No.

b. No, No, No, No.

c. Yes, No, Yes, .No.

d. Yes, Yes, Yes, Yes.

e. No, No, No, No.

f. Yes, No, No, No.

g. No, No, No, No.

h. No, No, No, No.

i. Yes, No, No, No.

J. Yes, No, Yes, No.

k. Yes, No, No, No.

1. Yes, No, Yes, No.

3. a. supplementary. b. congruent.

286 4. (d) are parallel.

5. (b) a rectangle.

*6. (a) If and only if the diagonals of ABCD are congruent

and perpendicular. Answer (c) is incorrect. Although

the inscribed quadrilateral is a square if ABCD is a

square, it is untrue that the inscribed quadrilateral

is a square only if ABCD is a square. See the figure.

[pages 283-2861
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287'8.

,221

a.

b.

40,

60,

70.
120.

Le . 4. (OF . 8 . 4E7.

DO = DF - GF = 4.)

9. 9 inches.

10. a.
b.

55.

3a-2-, 81 0 3a.- -2- or

c . 90, 6

AF . 24. DF = 12.

360 - 3a

11. raZ A = raZ ACD - mZ ABC = 2b - 2a.

mZ E = mZ ECD - mZ EBC = b - a.

Therefore mZ E = mZ A.

288 12. 65.

13. AOC fal BCD by S.A.S:

LCULD since they are corresponding parts.

14.

AC

interior

II BC since Z C and

angles.

Z D are congruent alternate

1.

2.

3.

AP = RC.

AD = CB, AD 11 CB.

Z DAP 21 BCR .

1.

2.

3.

Given.

Opposite sides of a
parallelogram are con-
gruent and parallel.

Alternate interior
angles.

4. £DAPABCR. 4. S.A.S.

5. Di). ta BR. 5. Corresponding parts.

6. PB rig RD. 6. Proof similar to Steps
1-6.

7. DPBR i8 a parallelo-
gram.

7. Theorem 9-19.

236
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288 1 . The statement can be dis-

proved by a counter-example.

If parallelogram ABCD has

side CB in common with

isosceles triangle CBE in

which CB CE and B is

between A and E, then quadrilateral kECD meets

the requirements of the hypothesis of the problem but

is not a parallelogram.

*16. Given: CM = MB, AM a CM.

Prove: A ABC is a right

triangle.

Let mZ B = x and

mL C = y as shown in

the figure.

1. mL MAB = x,

CAM = y.

1. Base angles of an
isosceles triangle.

2. 111Z CAB = x + y. 2. Angle Addition Eostulate.

3. 2x + 2y = 180. 3. Theorem 9-13.

4. x + y . 90. 4. Division.

5. mL CAB = 90. 5. Steps 2 and 4.

17. Given: ABCD is a parallelo-

gram. 15r bisects z ADC.

WT' bisects Z: DAB. 1-51> and

W' intersect at P.

Prove: AY.

[page 288]
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288 17 .

289 *18.

223

1. mie:ADC + mZ: BAD

. 180.

2. .ittZ ADC + iIttZ BAD

a. 90.

3. niZ ADP + mc DAP 90.

4. nIZ DPA 90.

5. -11 At

1. Theorem 9-17.

2. Ddvision, from State-
ment 1.

3. Step 2 and definition
of bisect.

4. Theorem 9-13 and
Statement 3.

5. Definition of perpen-
dicular.

1. Consider AC, PK,

PE and KM.

2. PK n AC and

PK TAC.

3. ACDE is a parallelo-
gram.

4. ED AC.

1
5. EM TAC.

6. EM PK.

7. EM n AC.

8. PK 11 EM.

9. PEMK is a parallelo-
gram.

10. KE bisects PM.

238

1. A segment is determined
by two points.

2. Theorem 9-22.

3. Theorem 9-20.

4. Theorem 9-15.

5. Given, and Statement 4.

6. Statements 2 and 5.

7. Definition of parallelo-
gram.

8. Theorem 9-11.

9. Theorem 9-20.

10. Theorem 9-18.

(pages 288-289]
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289 19.

290 20. The diagonals of quadrilateral ABDO bisect each other

so ABDC is a parallelogram. For the same reason,

AFBC is a parallelogram. F, B, D are collinear be-

came only one parallel to AC can contain point B.

239
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Illustrative Test Items fdi. Chapter 2

A. If a statement is always true write the word TRUE. If it is

not always true write the word FALSE.

1. The diagonals of a square are perpendicular to each

other.

2. A square is a parallelogram.

3. If the diagonal of a quadrilateral divides it into two

congruent triangles, then the quadrilateral is a

parallelogram.

4. Lines which never meet are parallel.

5. If two consecutive angles of a quadrilateral are right

angles, then the quadrilateral is either a trapezoid or

a rectangle.

6. Two lines which are each perpendicular to a third line

are parallel.

7. Given a correspondence between two triangles. If the

triangles have two sides and an angle of one congruent

to the corresponding parts of the other, then the

correspondence is a congruence.

8. Every right triangle has two acute angles.

9. If a diagonal of a parallelogram divides it into two

isosceles triangles, the parallelogram is a rhombus.

10. If each two opposite sides of a quadrilateral are con-

gruent segments, the quadrilateral is a parallelogram.

11. Opposite angles of a parallelogram are congruent.

12. The measure of an exterior angle of a triangle equals

the sum of the measures of the two remote interior

angles.

240
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13. The perimeter of the triangle formed by joining the

mid-points of the sides of a given triangle is half the

perimeter of the given triangle.

14. If the diagonals of a quadrilateral are perpendicular

and congruent, the quadrilateral is a rhombus.

15. A line that bisects one side of a triangle bisects

another side also..

16. The diagonals of a parallelogram are congruent.

17. A diagonal of a parallelogram bisects two of its angles,.

18. A quadrilateral with three right angles is a rectangle.

19. A set of parallel lines intercepts congruent segments on

any transversal.

20. Given two parallel lines and a transversal, two interior

angles on the same side of the transversal are supple-

mentary.

21. If two angles of a triangle are congruent to two angles

of another triangle, then the third angles are congruent.

22. If a line bisects one side of a triangle and is parallel

to a second side, then it bisects the third side.

23. If a quadrilateral has a pair of sides parallel and the

other pair of sides congruent, then the quadrilateral is

a parallelogram.

24. If a parallelogram has one right angle, it has four

right angles.

B. 1. Would the following information about a quadrilateral be

sufficient to prove it a parallelogram? a rectangle?

a rhombus? a square?

a. Each two opposite sides are parallel.

b. Each two opposite sides are congruent.

c. Three of its angles are right angles.
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d. Its diagonals bisect each other.

e. Its diagonals are congruent.

f. Its diagonals are perpendicular and congruent.

g. Its diagonals are perpendicular bisectors of each

other.

h. It is equilateral.

i. It is equiangular.

J. It is equilateral and equiangular.

k. Each two opposite angles are congruent.

1. Each two consecutive angles are supplementary.

2. Write on your paper these names of quadrilaterals:

parallelogram, rhombus, rectangle, square. After each

name write the number of eVery statement below which

always applies to it.

1. Each two opposite sides are parallel.

2. Each two opposite angles are congruent.

3. Each two opposite sides are congruent.

4. Diagonals have equal lengths.

5. Diagonals bisect each other.

6. Diagonals are perpendicular.

7. All sides are congruent.

8. All angles are congruent.

9. All angles are bisected by the diagonals.
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C. 1. a. In quadrilateral MNOP

having diagonal 0,

if L0MPLM0N,
what two segments are

parallel?

b. If the parallel lines

x and y are cut by

a transversal, and if

mLb is 10 greater 4

than m,L a, find

mL b.

2. Given: ABCD is a rhombus.

mL BAD = 60, AD = 5.

Find: BD.

3. Given: A ABC with medians

itand EC. BD = 8,

EC = 9.

Find: The lengths of the

shorter segments of each

median.

4. If in the figure, DB = DC

BE and miZ ECB = 30,

find 111,Z ABE.

A
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5. Two sides of a parallelogram are 6 and 10. Find the

length of the segment connecting the mid-point of the

shorter side with the intersection of the diagonals.

6. In AABC, ir bisects ZA,
le bisects 2:B, and

DF n m 111Z CAB = 40

and mZCEIA = 60. What

is MZ:BEF?

7. In A ABC, zr bisects

z A. le bisects z B,

and DF n AB. DrilL C = 110

and m2: CDF = 50. What

is mZ:BEF?

8. Two angles of. a triangle have a total measure of 100.

What is the measure of either of the obtuse angles

formed at the intersection of the bisectors of these

two angles?

9. If the measure of one of the congruent angles of an

isosceles triangle is 70, what is the measure of the

smallest angle of the triangle?

10. Find the measure of each acute angle of a right tri-

angle if the measure of one of them is three times that

of the other.

D. 1. Consider the following theorem: Given two lines and a

transversal. If one pair of alternate interior angles

are congruent, then the lines are parallel.

Given: Lines L
1

and L
2

cut by a transversal L to

form congruent alternate interior angles.

To Prove: L1 II L2.

Proof: Suppose L1 intersects L2 in a point P.

This situation leads to a contradiction of"what theorem?
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2. Given: In the figure

ABCD is a parallelogram

with AP = QC.

Prove: DP II QB.

3. Given: 5 intersecting

MS at 0 with MN = NO

and OP = PS.

Prove: MN H

--
4. Given: BD bisects z EBC,

4+
and BD II AC.

"Prove: AB = BC.

5. Given: In ABC, Tir

bisects z ACB.

la intersects at E.

Prove: AC = EC.

6. Given: Z: BAC is a right

angle. QB = QA.

Prove: QB = QC.

7. Prove: If a line is

parallel to the bases of

a trapezoid and bisects

one of the non-parallel

sides, then it bisects

either diagonal of the

trapezoid.
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Answers

A. 1. True. 9. True. 17. False.

2. Truer 10. True. 18. True.

3. False. 11. True. 19. False.

4. False. 12. True. 20. True.

5. True. 13. True. 21. True.

6. False. 14, False. 22. True.

7. False. 15. False. 23. False.

8. True. 16. False. 24. True,

B. 1. a. Yes.

b. Yes.

n. Yes.

d. Yes.

e. No.

f. No.

g. Yes.

h. Yes.

i. Yes.

j. Yes.

k. Yes.

No. No. No.

No. No. No.

Yes. No. No.

No. No. No.

No. No. No.

No. No. No.

Nor Yes. No.

No. Yes. No.

Yes. No. No.

Yes. Yes. Yes.

No. No. No.

1. Yes. No. No. No.

2. Parallelogram. 1, 2, 3, 5.

Rhombus. 1, 2, 3, 5, 6, 7, 9.

Rectangle. 1, 2, 3, 4, 5, 8.

Square. 1, 2, 3, 4, 5, 6, 7, 8, 9.

C. 1. a. MP II NO. b. 95.

2. 5.

3. The length of the shorter segment of BD . 24.

The length of the shorter segment of EC . 3.

4. mL ABE . 90.

5. 5.

6. 30. 246
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7. 10.

8. 130.

9. 4o.

10. 22, 67'.

D. 1. The Exterior Angle Theorem.

2.

1.

2.

3.

it.

AD = CB, AB = CD.

L A aL C.

AP CQ.

A APD al A CQB.

1.

2.

3.

4.

Theorem 9-15.

Theorem 9-16.

Giveri.

S.A.S.

5. PD QB. 5. Corresponding parts.

6. PB DQ. 6. Subtraction, Statement&
1 and 3.

7. DQBP is a parallelo-
gram-

7. Theorem 9-19.

8" 57' Q75. 8. Definition of a
parallelogram.

3.

1. L NOM a POS. 1. Theorem 4-7.

2. LS gELPOS. 2. Theorem 5-2.

M a Z:NOM.

3. L M = s. 3. From Statements 1 and 2.

4. Idt H 4. Theorem 9-5.

4. z EBD and 2:A are congruent because they are corres-

ponding angles formed by parallel lines and the trans-

versal tr. z CBD and z C are congruent since they

are alternate interior angles of parallel lines. Since

the given bisector makes L EBD L CBD, then L A giz!C,

and the opposite sides AB and BC are congruent.
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5.

1 .

2.

3.

AE II CD.

L ACD L BCD.

L EAC L ACD.

1.

2.

3.

Given.

Definition of bisect.

Alternate interior
angles.

E aIL BcD. 4. Corresponding angles.

5. L E OIL EAC. 5. Statements 2, 3, and
4.

6. AC - EC. 6. Theorem 5-5.

6.

1. L CAQ is a comple-

ment of Z: BAQ.

1. Definition of comple-
ment.

2. L C is a complement

of 2: B.

2. Corollary 9-13-2.

2: B a L. BAQ. 3. Base angle of an
isosceles triangle.

It. L CAQ L C. 4. Complements of congruent
angles are-congx,uent.

5. QC = QA. 5. Theorem 5-5.

6. QB QA. 6. Given.

7. QB - QC. 7. Steps 4 and 5.

7. Given: The figure with trapezoid TRAP having

PA H TR, PE = ET and EZ H TR.

Prove: PO = OR.

1. 174 and tit

are parallel.

2. PE = ET.

3. PO = OR.

1. Theorem 9-11.

2. Given.

3. Theorem 9-27.
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Chapter 10

PARALLELS IN SPACE

This Chatter ,develops the properties of parallelism and

verpendicularity of lines and planes,ih sPade and ipplies

these properties to-tiie stUdy of projection Of figures,on a

plane. Essentially the treatment is conventional. A minimum

program Would cover Section 10-1, studying the essential

properties of parallelism of lines and planes and the related

prOperties of perpendicularity. Section 10-2, which probably

is more difficult, is, devoted to dihedral angles, and:_im

sparticular to their application to the concept of perpen-

dicular planes. Sections 10-1 and 10-2 give good coverage of

the basic subject matter. Section 10-3, which could be takeh

if.time and Class ability permit, does not add to the

student's basic knowledge of parallelism and perpendicularity

but applies it to the interesting geometric problem of pro-

jecting figures into a plane.

In this Chapter you will see a very strong analogy

between the material concerning parallel lines in a plane as

described in Chapter 9, and the discussion of parallel planes

in space. For example Theorem 10-2, on a line perpendicular

292 to one of two parallel planes, is analogous to Theorem 9-12;

and Theorem 10-3, two planes perpendicular to the same line

293 are parallel, is analogous to Theorem 9-2, expressed in the

form: In a plane, two lines perpendicular to the same line

are parallel. In some cases the proofs are a bit more

involved, since we are working in space and not just in a

plane.

249
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Problem Set 10-1

296 1. a. True. g. False.

b. True. h. True.

c. False. I. True.

d. True. J. False.

e. True. k. True.

f. True. 1. False.

297 2. Let AZ intersect plane n at T. Draw AX, BT,

and CZ. Then BT U CZ and TY H AX by Theorem 10-1.

From Theorem 9-26, in plane ACZ, AT m TZ; and in

plane AZX, XY YZ.

3.

4.

1. 8 11 r.

2. AB i r.

3. AB is.

AB CX and

j.

5. A ACX cal A ACY.

6. AX a. AY.

1. Given.

2. Given.

3. Theorem 10-2.

4. Theorem 8-3.

5. S.A.S.

6. Corresponding parts.

1. m AB, n i AB.

2. mIIn.
3. m CD.

k. n i CD.

1. Given.

2. Theorem 10-3.

3. Given.

4. Theorem 10-2.

298 5. By Theorem 10-5, AB CD. Consider BD. AB I ED and

CD BD by definition of a line perpendicular to a

plane. Then A ABD á CDB by S.A.S. and AD . CB by

corresponding parts.

250
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298 *6. By Theorem 10-3 we know E 11 F. By Theorem 10-1 we

know 4A H lit and tr II 1. Since BK . AD and

BH AC, we know we have two parallelograms. These

are rectangles since AB is perpendicular to both

planes and therefore to lines in the planes through A

and B. 2iCAD and HBK are plane anglee of the

dihedral angle D-AB-H and are congruent. Then

A CAD 21A HBK by S.A.S. However, we do not know the

measure of any of the angles of the two triangles and

so cannot find the length of CD.

*7. Let points D and G be such that AD BG and E

and F be such that AE = BF. Draw DE sand 'CIF.

Then:

(1) AE n BF and AD H BG by Theorem 10-1.

(2) AEFB and ADGB are parallelograms since they have

two sides parallel and equal in length.

(3) EF . AB and DG . AB because opposite sides of a

paralielograM have equal lengths. Also EF fi AB

and DG H AB.

(4) Therefore EF = DG and EF H DG making EDGF a

parallelogram by Theorem 9-20.

(5) ED . FG.

(6) A ADE a GFD by S.S.S.

(7) Z DAE L GBF.

251
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*8. Given two skew lines LI and

121 at any point P on L2

draw the one line L
3

parallel to Ll. Then

L
2

and L
3

intersect

and determine a plane

parallel to Ll.

Proof. L and L
3

are coplanar and determine-a plane
1

n because they are parallel. L1 and L2 cannot be

coplanar because they are skew. Hence, L2 and L3

are distinct intersecting lines determining a plane m.

Planes m and n have the line L
3

in common, hence

it is their intersection. Ll, which is in n, could

intersect m only at some point of L3; and this is

impossible since L1 II L3. Hence L1 fi
m.

*9. QP H SM by Corollary 10-4-2. In the plane of RL and

QP, QP I PL; and in the plane of gi? and 41; %MINT
Since Zar is perpendicular to both PL and TR, Ori. B.

Then both RL and SM are perpendicular to E by

Corollary 10-4-1.

299 The notion of dihedral angle may seem strange to a

student on first acquaintance. You might point out that just

as angles arise in the practical problem of measuring the

difference in direction of two lines, so dihedral angles are

suggested when we have to specify the "difference in direct-

ion" of two planes. If you are designing a gable roof for

your house, somehow you must specify the size of the angular

opening between the sides of the roof.

In designing a building, an architect must specify the

relative direction of plane surfaces. Ordinarily walls are

perpendicular to floors, but in many modern buildings, planes

appear which are not perpendicular to each other. There is

implicit in this situation the notion of dihedral angle and

(page 299)
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the problem of measuring dihedral angles. Consider the

every-day situation of specifying how steep a hill is. When

we say a hill has an inclination of 25°, this can be inter-

preted as a statement about the angle formed by the plane of

the hill and a horizontal plane.

You can illustrate dihedral angles very easily by using

the covers or leaves of a book to represent the faces and

the binding to represent the edge. You can use this to give

the students some feeling for relative size of dihedral

angles, bisection, perpendicularity, and so on.

299 Dihedral angles are important for theoretical reasons

as well as for practical ones. Observe that planes are as

important in space as lines are in a plane. If angles

formed by lines are worth studying in a plane, it is natural

to try to make a similar study of angles formed by planes in

space. In studying the properties of points, lines and

planes in space we naturally try to generalize.planar con-

cepts about lines to spatial concepts about lines and planes.

Thus we study "angles formed by planes", perpendicularity of

lines and planes and of planes and planes, and parallelism

of lines and planes and of planes and planes.

299 Notice in the definition of dihedral angles, that we

cannot just speak of the union of two half-planes, but that

we must include their common edge in the union, This is

because a half-plane does not contain its edge. Similarly

the side or face of a dihedral angle is defined, not as a

half-plane, but as the union of a half-plane and its edge.

(This is sometimes called a "closed" half-plane to emphasize

that the half-plane has been "closed up" by adjoining its

bounding line - in contrast a half-plane in our sense is

called an "open" half-plane.) Observe that the intersection

of the two faces is their common edge, just as the inter-

section of the two sides of an (ordinary) angle is their

common end-point.

253
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300 Suggested definitions: Dihedral angles z A-PQ-B and

z /0-PQ-B, are vertical if A and A' are on opposite

sides of PQ, and B and B' are on opposite sides of 1z
The interior of dihedral angle LA-PQ-B consists of

all points which are on the same side of plane APQ as B

and are on the same side of plane BPQ as A. The exterior

of a dihedral angle consists of all points which are not in

the interior of the angle and are not in the angle itself.

Notice that the rafters of a gable roof form plane

angles of the dihedral angle formed by the sides of the roof.

300 Some of your students may have difficulty in grasping

the idea that a spatial object like a dihedral angle can be

measured by its plane angle which is only a "planar" figure.

You might point out that two dihedral angles will be

11 congruent", that is can be made to "fit", if and only if

their plane angles are congruent, that is halle equal measure

This can be illustrated with models of sheets of cardboard,

folded lengthwise to form dihedral angles. Observe that

they can be made to coincide if, and only if, corresponding

plane angles can be made to coincide, that is if and only if

the plane angles have equal measure. Similarly if you form

a dihedral angle which is "twice as large" as a second

(say by putting two "congruent" dihedral angles together),

you can convince the student that the plane angle of the

first has a measure which is twice as large as that of the

second.

301 The formal significance of the above discussion is this.

Although the text proper does not define congruence of

dihedral angles, a general definition of congruence for any

two figures is given in Appendix VIII, Rigid Motion. (See

also the Talk on the Concept of Congruence.) Using this

definition we can prove the theorem that two dihedral angles

are congruent if and only if their plane angles are congruent.
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301 We could have given a definition of right dihedral

angle very similar to that for right angle. First by

analogy with the idea of linear pair of angles (see page 82,

Student Text), we can define "planar pair" of dihedral

angles as follows: Dihedral angles LA-PQ-B and Z:At-PQ-B

form a planar pair if A and At are on opposite sides of

It Then if the dihedral angles of a planar pair have the

same measure each is defined to be a right dihedral angle.

Proofs of the Corollaries

302 Corollary 10-6-1. If a line is perpendicular to a,

plane, then any plane containing this line is perpendicular

to the given plane.

Given: Vr E, F contains W.

To Prove: F .I. E.

4E-4 4-* 4-*
In E draw BC 1 PQ. Since AB .I. E, then by the

definition of a line perpendicular to a plane, lgilt
4-0

likewise AB BC. Hence ilABC is a plane angle of

z A-PQ-C, since AB and are perpendicular to 11
at B. Since I. ABC is a right angle we see that F E

by the definition of perpendicular planes.

302 Corollary 10-6-2. If two planes are perpendicular,

then any line in one of them perpendicular to their line of

intersection is perpendicular to the other plane.
4-* 4-*

Given: F E, AB .I. PQ.

To Prove: 11 1. E.
A-40

Using the figure above, in E draw BC 1. PQ. Then by

the definition of a plane angle, z ABC is a plane angle of

z A-PQ-C. F E. by hypothesis. Hence z A-PQ-C is a right

dihedral angle, and its plane angle, z ABC, is a right

angle, and AB J. BC. Since it was given that 11;in, we

now have *a' perpendicular to two lines in E passing

through its foot, hence by Theorem 8-3, AB .I. E.

[pages 301-302]
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Problem Set 10-2

302 1. Z C-AB-D, Z A-EC-D, Z A-CD-B, Z B-AD-C,

Z B-AC-D, Z A-BD-C.

---303 2.

3.

Z CPB is a plane angle of Z C-PA-B. Since mZ CPB

= 90, miZ C-PA-B = 90. mZ CAB = 60 since A CAB can

be proved to be equilateral.

a. 1 g. 0

b. 1 h. 0

C. 0 i. 0

d. 0 J. p

e. 0 k. 1.

f. 1

304 4. XP 1 r and IT 1 s by Corollary 10-6=2. Then XP QP

and, YP 1 QP by the definition of a line perpendicular

to a plane. By Theorem 8-3, QP I E. Since XP m,

XP 1 PQ and Z XPQ is a right angle. Therefore

Z X-AB-Q is a right dihedral angle, and by definition

of perpendicular planes s 1 m.

5. x = 45; m = 45; y = 90. CD = DH. Lm

305 *6. If E3 II L12, then

E
3

and L
12

do not

meet. Then L12 and

L
13

do not meet; and Lis

since they both lie in

E
l'

they are parallel.

Similarly, L12 and

L13 are parallel. Also L13 and L23 do not inter-

sect, for if they did intersect at a point P this

point would lie in each of El, E2, E3, and E3

would meet L
12

at P which in this case is not

possible.

256
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If E
3

intersects L
12

at point P, P lies on each

of E E
2

and E
3'

and hence in L
12'

L
13'

and

L23. Hence all three lines are concurrent at P.

305 *7. Point X lies in plane ABC and also in plane A,BICI,

and hence on their intersection. Similarly, Y and Z

lie on the intersection on these two planes, or the

points X, Y, Z lie on a line u, which was to be

proved.

Remark 1. The two non-parallel planes always intersect,4*
but it might happen that BIC' and BC are parallel

lines, so there would be no point X. This would happen

it and only if BC and BIC' are both parallel to the

line u. This could not happen for two pairs of side-
..

lines for we could not have two lines through a vertex*

parallel to U.

Remark 2. The Theorem is also valid if plane ABC

= plane AIBICI, but we have not proved it.

Desargues, Theorem is an interesting and important

incidence theorem relating concurrence of lines with

collinearity of points. The theorem is also valid when

the two triangles are coplanar, but is much harder to

prove. In this case the student can get an intuitive

appreciation of its correctness by imagining the figure

to collapse into a plane.
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306 The theory of projections is important in engineering,

particularly in drafting. Speaking broadly it may be con-

sidered part of the subject of "map" making or the repre-

sentation of geometrical objects on a given surface, usually

taken as a plane. (See Problem 4 of Problem Set 10-3. for

an indication of the use of projections in giving planar

representations of a solid object.) The study of projection

throws light on familiar visual experiences. For example,

if we look at a circle, inclined so that its plane is oblique

to the line of sight, it appears as an ellipse - that is,

we see it as if it were projected on a plane which is per-

pendicular to the line of vision.

307 Observe that the definition of SI the projection of

a set of points S as the set of projections of all points

of S means two things. Namely, that the projection of

every point of S must be in SI, and, in addition, that

such projections form the whole of SI. That'As each point

of SI must be the projection of some point of S. Other-

wise SI would contain the projectioin of S and additional

points besides. As a homely illustration of a similar

situation consider the statement that the Yale Mathematics

Department is the same as the Olympic Hockey Team. Disre-

garding its improbability, this statement asserts two things.

First that every member of the Yale Mathematics Department

is a member of the Olympic Hockey Team. But further, that

every member of the Olympic Hockey Team is a member of the

Yale Mathematics Department - otherwise the Olympic Hockey

Team would be a larger set than the Yale Mathematics Depart-

ment. To summarize: in identifying a set SI as the

projection of S we will have to prove a characterization

theorem for SI involving a theorem and its converse.

258
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308 The conventional phrase is to project a point or figure

"onto" a plane rather than "into" a plane. We have changed

this in order to be consistent with mathematical usage in

the theory of mappings or transformations. A mapping is a

correspondence which associates with each point of a given

set S a unique point of a set SI. We describe this by

saying that each point of S is "mapped into" its associated

point of SI and that S is "mapped into" S,. We say S

is ttmapped onto" S, only when the whole of S, is involved,

that is when each point of 5, is the associated point of

some point of S. Since this distinction between "into"

and "onto" is quite firmly established in higher mathematics

we thought it wise to use the appropriate technical term

"into" even at this elementary level.

308 The answer to why M intersects L: M and L both

lie in F. Suppose M II L. Then by Corollary 10-4-1

M 1.E implies L 1 E. This contradicts the hypothesis.

Therefore M must intersect L.

Problem Set 10-3

309 1. a. Yes. d. Yes.

b. No. e. No.

c. Yes; yes; yes. f. No.

2. a. Not necessarily. c. Yes.

b. No. d. es.

310 3. AX and BY are perpendicular to plane m. Hence

AX H BY and ABYX is a plane figure. Since the

projection of a segment is a segment (or a point) N

is in this plane. Since MU m, MN A AX and

MN ILBY. Then XN = NY so that N is the mid-point

of XY because parallels which intercept congruent

segments on one transversal intercept congruent segments

on any transversal.

[pages 308-310)
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310 4. a. b.

IIMI

311 5. Since the intersection point shown within the large

triangle in the problem may be on a vertex, on an edge

or on the extension of an edge, or elsewhere in the

exterior of the large triangle the projection may

appear as follows:

6. Let BE be the perpendicular to plane fil at B.

Then AB "BE, and it is given that AB IBC. Hence

AB plane EBC. By definition of projection CD" m.

Then CD n BE so that D is in the plane EBC.

Then DB is in this plane and AB "BD or z ABD is

a right angle.

By definition of projection QQ1 m and therefore

also QQ1 Q1X so that A QQ'X is a right triangle.

Then QQ1 < QX. But AQ AQ, and AX AQ,. In

triangles QAX and QAQ1, mL QAQ1 < siL QAX by

Theorem 7-9, which was to be proved.

312 *7.

*8. The projection is a regular hexagon with segments from

its vertices to its center.

(pages 310-312]
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312 1. a. Yes

b. Yes.

c. Yes.

313 2. No. No.

3.

2117

Review Problems

Yes. A plane angle of a dihedral angle is the angle

formed by two rays, one in each side of the dihedral

edge at the same point.angle and perpendicular to its

No. 90.

4. a. S. h.

b. S. i.

C. S. j.

d. A. k.

e. S. 1.

f. S. m.

g. A. n.

314 5.

1. 1.AF E.

2. Plane ABF E. 2.

3. HB FB 3.

4. HB plane ABF. 4.

5 HB I AB. 5.

6. Z ABH is a right
angle.

6.

261

S.

S.

S.

S.

A.

S.

S.

[pages 312-314]

Definition of pro-
jection.

Corollary 10-6-1.

Definition of per-
pendicular.

Corollary 10-6-2.

Definition of line
perpendicular to a
plane.

Definition of per-
pendibular.
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315 6.

1. 1. Theorem 10-1.BD-II CE.

2. Z: ADB 21Z E. 2. Corresponding angles
of parallel lines.

3. L A L E. 3. Hypothesis and base
angles of an isosceleb
triangle.

ADB A. 4. Steps 2 and 3.

5. BD AB. 5. Theorem 5-5.

1. RX n BD and

RX = 4pD.

YZ II BD arid

yZ = 4pD.

2. RX H YZ.

3. RX YZ.

4. R, X, Y, Z are
coplanar.

5. RXYZ
gram.

*8. plane, HY

plane, 1.

plane, H y

plane, H

plane, 1.

line, H ,

line, 1.

plane, 1.

is a parallelo-

1. Theorem 9-22.

2. Corollary 10-4-2.

3. Step 1.

4. Theorem 9-1.

5. 'No sides both congruent
and parallel.

plane, plane, I, I.

plane, plane, 11 , I.
plane, line, 1, 1.

line, plane, I, I.

line, line,
11 , I.

line, plane,_ 1, 1.

plane plane , JI, .1.

line, plane, 11, I.

*9. X is the-mad-point of BD and of AC.

AB, BF, XY, DH, CG are parallel segments. (Theorem

9-2). Y is the mid-point of FH and EG. (Theorem

9-26). In trapezoid AEGC, XY = 4(AE + CG) (See

Probiem 10 of Problem Set 9-6). In trapezoid BFHD,

XY = 4(BF + DH). .*. AE + cq BF + DH.

[page 315]
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Illustrative Test Items for Chapter 10

A. 1. Given: VI E at A.

VIE at B. F is a
4->

point on QB. Are X,

A, B, F coplanar?

State a theorem to support

your conclusion. What is

:11Z XAB? If mL EFX . 135,

what is 111L AXF?

2. Plane x plane r. They
4->

Intersect in AB. In x

TH 1. Ur.

lie in plane r.

mL FHW =.

mL FHQ =

:11,L FHT =

Support your

249

conclusions with suitable principles. On

the basis of the given information we cannot say that

any of these three angles is a plane angle of dihedral

z W-AB-F. z WHF would be a plane angle of z W-AB-F

if WH

3. In the figure, plane xildr
4->

and plane y 1.AB. Is

x Jj y? State a theorem to

support your conclusion.

Plane E intersects x in
4-÷

lir and y in tr. WK

If a line L is perpendicular
4-> .

to WK and intersects tr,

what kind of angles does L

make with QF?
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B. Indicate whether true or false.

a. If a plane is perpendicular to each of two lines, the

two lines are coplanar.

b. If a plane intersects two other planes in parallel

lines, then the two planes are parallel.

c. Two planes perpendicular to the same line are parallel.

d. If each of two planes is parallel to a line, the planes

are parallel to each other.

e. The projection of a line into a plane is always a line.

f. Two lines are parallel if they have no point in common.

g. For each acute angle there is a plane such that the

projection of the.acute angle into the plane is an

obtuse angle.

h. The length of the projection of a segment into a plane

is alway7 less than the length of the segment.

i. Two lines parallel to the same plane are parallel to

each other.

j. If each of two intersecting planes is perpendicular to

a third plane, their line of intersection is perpendicu-

lar to the third plane.

k. If a line not contained in a plane is perpendicular to

a line in the plane, then it is perpendicular to the

plane.

1. If a plane bisects a segment, every point of the plane

is equidistant from the ends of the segment.

m. At a point on a line there are infinitely many lines

perpendicular to the line.

n. Through a point outside a plane there is exactly one

line perpendicular to the plane.

o. If plane E is perpendicular to AB and AB
I I CD,

then E
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p. A plane perpendicular to one of two perpendicular

planes is never perpendicular to the other plane.

If plane M is perpendicular to plane N and A ABC

lies in plane M, then the projection of A ABC into

plane N is a line segment.

q.

251

r. It is possible for the measure of a plane angle of an

acute dihedral angle to be 90.

s. Any two plane angles of a given dihedral angle are

congruent.

t. If a line is not perpendicular to a plane, then each

plane containing this line is not perpendicular to the

plane.

C. 1. Given: H is the pro-

jection of A into plane

E. HB is the projection

of AB into E. HF is

the projection of AF

into E. AF = AB.

Prove: HF = HB.

2. Given: E H F.

AB 1. E at A.

CD I E at D.

Prove: AC = BD.

3. Given: AH H BF H QK.

AH = BF = QK.

Prove: A ABQ ;IA HFK.
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Answers

A. 1. Yes. Statement of Theorem 8-8 or 10-4. 90. 45.

2. 90. 90. 90. Statements of Corollary 10-6-2 and
4-i

the definition of a line perpendicular to a plane. AB.
4-* 4-*

3. Yes. Statement of Theorem 10-3. WK H QF. Right angles.

B. a. T. h. F. o. T.

b. F. i. F. p. F.

e. T. j. T. q. T.

d. F. k. F. r. F.

e. F. 1. F. s. T.

f. F. m. T. t. F.

g. T. n. T.

C. 1.

2.

1. AH I E.

2. Z AHF and Z AHB

are right angles.

3. AH = AH.

4. A AHF a A AHB.

5. HF = HB.

1. Definition of pro-
jection.

2. Definition of a line
perpendicular to a
plane.

3. Identity.-

4. Leg-Hypotenuse Theorem.

5. Corresponding parts.

1. AB H CD.

2. A, B, C, D are
coplanar and so
determine a quadri-
lateral.

3. AB F.

CD F.

4. AB = CD.

5. ABCD is a parallelo-
gram.

6. Z: BAD is a right
angle.

1. Theorem 10-4.

2. Theorem 8-8 or Theorem
9-1.

3. Theorem 10-2.

4. Theorem 10-5.

5. Two sides congruent and
parallel.

6. Definition of a line
perpendicular to a
plane.
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