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INTRODUCTION

m-e text that you are about to teach from is the result of
a collaboration between university mathematicians and experienced
high school teachers. The treatment of geometry in this book is
very different, especially in the first few chapters, from the
treatment that nearly everybody is used to. There is no question
that every change in teaching has its price: it calls for a great
deal of preparation when a treatment which has become second nature
is replaced by a treatment some of whose features are new to the
teacher as well as to the student. For this reason, we have made
changes only when we became convinced that they were worth the
price. It should be remembered also that while any change at all
creates some trouble for the teacher, simply because it is a
change, this principle does not apply to the student: for him
any formal treatment of geometry would be new.

This manual is intended to reduce your troubles to a minimun,
It consists of three parts. The main part is a running commentary,
referring to particular short passages of the text. In this part,
we try to explain what we are driving at, and to warn of possible
difficulties. (As of the Fall of 1960, the text has been revised
after use in over one hundred clagsrooms, but it is naturael to
expect that there will still be difficulties that haven't been
recognized and discussed.)

In a very large number of cases, we had trouble deciding
what to put into the running commentary and what to leave out.

We decided at length that when in doubt we should put things 1in.
Thus we have no doubt included many explanatinns which are un-
necessary. These, however, should be easy to skip.

Obviously, in a tenth-grade textbook many of the discussions
have to be logically incomplete. We have cut some corners,
expecting the student®s intuition to take over, and we believe
that this is as it should be. All sorts of questions can come
up in class, however, and the chances are that this book will
provoke some questions that students don't usually ask in the

Q
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traditional courses. The running commentary is designed to help
you to be one up when this happens. We have also indicated, at
some points, the things we think should be emphasized and the
general style of presentation that we had in mind.

There are some topics that can't conveniently be dealt with
in connection with a particular passage of the text. Some of these
topics cut across several chapters. We have therefore added a
series of essays, under the general title, Talks to Teachers. These
include, in our opinion, some of the most important parts of the
commentary. (These will be referred to, hereafter in this manual,
simply as the Talks.)

The first of the Talks, entitled Facts and Theories, we
believe you will want to read right now and at least once more
after you have read well into the text.

Finally, to save you spade-work we nave given answers to all
problems and solutions to all but the gimplest. These are inter-
spersed in the running commentary at the appropriate places,
Answers have often been given in simplified radical form or as
multiples of ¥ nrather than in the form of decimal approximations,
We believe this policy should be encouraged, but that the student
should be able to supply a decimal approximation on demand.

In addition to the Teacher's Commentary you should have
available a copy of Studies in Mathematics, Volume 11, Euclidean
Geometry Based on Ruler and Protractor Axioms, by C. W. Curtis,

P, H. Daus, and R, J. Walker. This contains, especially in the
first chapters, much material that could have been put in the

Talks to Teachers. It also contains detailed proofs of basic
theorems that are not mentioned in the text. The properties stated
in these theorems are intuitively obvious and are generally accepted
by students without comment. A completely logical development of
geometry must, nevertheless, contain proofs of these theorems, and
80 they are included here for whatever use you wish to make of them.
This book will be referred to frequently in this manual. When we

do so we will speak of 1t as "Studles II."

9
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Some teachers may enjoy referring to a lighter presentation
of some geometric ideas. To them we suggest Studies in Mathematics,
Volume V, Concepts of Informal Geometry.

Although we felt it unwise to make our text logically complete
in its proofs we did attempt to give a complete foundation of
postulates gnd definitions. On such a foundation a student can
build as elaborate and complete a structure as his capabilities
permit, with the help of his teacher and of supplementary reading.
The only difficulty apt to be met in laying this foundation is an
apparent slowness of the text in coming to grips with really
interesting geometric problems. However, you will find that the
postulates, definitions and simple theorems in Chapters 2,3 and
4, although not particularly interesting when you first study
them, will be of great value in the later chapters. Moreover,
seen from the perspective of the later chapters the basic material
of the early chapters takes on a more interesting appearance as
its importance to geometry becomes appreciated. If a student 1is
to understand a complicated geometric situation he muet first
have a clear picture of the fundamentals.

Obviously you are going to like some features of this text
better than others. In any case, we ask that you teach each
chapter of this book as if you had faith in the presentation. If
some features of it don't work, we want to know it, but we cantt
find out, one way or the other, unless they are given a fair try.
A half-hearted experiment in the classroom has some of the dis-~
advantages of a half-hearted back flip in a gymnasium.

10
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USING THE TIME AVAILABLIE

This text was written so that very good classes will have
enough material to challenge them for a year. It follows, then,
that some classes will not be able to cover all the material.

You may prefer not to rush through 1mporta9t topies Jjust to cover
pages, so this note will suggest the kind of choieces that you can
make. The choices mentioned are only samples, however, and you
willl find variations that fit the needs of your own class,

A full course lncludes all exposition, and a substantial
number of problems from each set. Few, if any, students will
solve all the problems. An approximation to time allotment for
classes which study every topic is given in this table. The
names of chapters are topical and are not necessarily the actual
chapter titles.

Chapter Days; Chapter Days
1. Introduction. 3 ]110. Parallels in Space 6
2., Sets, Numbers, Lines. 10 111, Area, Pythag. Theorem 10
3. Lines, Planes, 6 112, similarity 15
4, Angles, Triangles 6 |13. Circles, Spheres 13
5. Congruences, 20 {14, Characterizations of
6. A Closer Look at Proof 6 Sets. Constructions. 10
7. Inequalities 8 15, Area of Circles 5
8. Perpendiculars in Space 9 16, Volumes
9. Parallels in Plane 17 17. Coordinate Geometry 20

Total _EE —E?

The 1list of days must include time used for chapter reviews

and tests. Though such work is important, a praetical observation
is in order: A class that uses two days per chapter for reviewing

and testing uses more than one-sixth of the year in that way, and
O
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must plan accordingly.

We believe that every course should include careful treatment
of the first volume, regardlest of the preceding table. This does
not mean that proofs of theorems should be memorized or that all
problems should be done, however. Selection of meterial, 1f
necessary, can begin with Volume 2.

The table above shows that if you are not into Chapter 10 by
the end of the first semester, and many classes will not be, you
will want to plan ahead so that you can study the chapters and
topics most important for your students.

For example, you may decide to omit some material in order
to devote sufficient time to the chapter on coordinate geometry.

% way to do this 1s to omit Chapter 10 and cover tne ideas of
Chapters 1%, 15 and 16 intuitively while doing selected problems.
You may also decide to take up Chapter 17 immediately after
Chapter 12.

Or you may decide to teach Chapters 8 and 10 largely on an
intuitive basis, ueing problems to develop major concepts.
Similarly for Chapters 14 and 15. Then omit Chapter 16 and treat
most of Chapter 17.

Certaiusy numerous such plans are possible., Ideally, the
one basic plan is to cover all material., Realistically, due to
factors of time and of individual and group differences, several
alterrative plans must be considered, evaluated, and reviewed
constantly.

We 1ist here what can be omitted, in the order, very roughly,
of preference in omission, the last 1item being the one you should
least consider omitting. Chapter 17 1s not included in the 1ist,
partly because 1ts place in such a list is highly controversial
and partly because a reason for omitting other topics 1s to assure
adequate coverage of coordinate geometry.

Proofs in Section 6-5 and in Chapters 16, 14, 10,

8, 15, 7, 13 (after Theorem 13-5), 12.

All text material (except for formulas) in Chapters

16, 14, 15, 13 (after definition of intercepted arc), 10.

xi1i



We are not proposing that anyone omit anything unnecessarily,
for all the material is worthwhile. We are merely proposing that,
if pressed for time, you not rush through too much material with.

your students but instead select the material best suited to
thelr needs,

13




A WORD ABOUT THE PROBLEM SETS

The problem sets in this book are an extremely important
part of the course. Many concepts are developed and expanded
there. Careful assignment of the problems 1is essential 8o as
not. to exclude some of the important topics in the development.

Each problem set begins with some simple exercises. Some
of the more difficult problems, not necessarily to be found at
the end or the set, are starred.

It 1s hoped that the teacher will read all of the problems
in a set before making an assignment. In some cases a sequence
of problems bullds an important concept, and an assignment should
contain all the problems that develop the concept. In some
i{nstances a special comment about a problem occurs with the answer
to the problem.

We hope that teachers willl use their own Jjudgment about the
number of problems to assign. It 1s likely that no student will
work all the problems. Certainly most students can be expected
to do only some of the large number provided. You have & good
chance to allow for individual differences in your assignments.

Proofs, and reasons within proof's, are given in varied form
to suggest to the teacher that general understanding of the
problems 1s more important than a rigid form of presentation,
(This applies especially to Chapter 5 and the following chapters,
in which many of the problems call for proofs of theorems.) The
solutions given are not always the only possible solutions, and
good original reasoning by students should be encoureged and
commended.

The fact that we give a proof, in our solutions, in para-
graph form for convenience and brevity does not mean that we
believe that every student should gilve i1t in this form. The
teacher can decide which form has the most educational value for
his students at the given time. )

On occasion, students should be asked to suggest and solve
problems not 1in the text.

ERIC "



A GUIDE TO THE SELECTION OF PROBLEMS

Following is a tabulation of the problems in this text. It
- 'will be noted that the problenms ‘are arranged into three sets; I,
-II, and III. At first glance, one might think that these are in
order .of difficulty.
THIS IS NOT THE MANNER IN WHICH THE PROBLEMS ARE GROUPED! {3
" Before explaining the grouping, 1t should be mentioned that
1t is understood that a teacher will select from all of the
. _problems those which he or she feels are best for a particular
¢lass. However, careful attenticn should be- glven to the comments
" .on the problems in A Word About the Problem Sets.
] Group I contains problems that relate directly to the
" material presented in the text. ;

Group II contains two types of problems: (1) some that are
similar to those of Group I, and (2) some that are just a little
more difficult than those 1n Group I. A teacher may use this
group for two purposes: (1) for additional drill materilal, 1f
needed, and (2) for problems a bit more challenging than those in
Group I, that could be used by a better class.

Group III contains problems that develop an 1idea, using the
information given 1n the text as a starting point. Many of these-
problems are easy, interesting and challenging. The student may
f£ind them more stimulating than the problems in Groups I or II.
However, if time 18 a factor, a student can very well not do any
of them and still completely understand the material in the text.

These are enrichment problems.
It 1s assumed that a teacher will not feel that he or she

must assign all of the problems in any set, or all parts of any
one problem. It 1is hoped that this 1listing will be helpful to
you in assigning problems for your students.

15
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We have included in the problem sets results of theorems of
the text which are important principles in their own right. In
this respect we follow the precedent of most geometry texts.
However, all essential and fundamental theorems are in the text
proper. The fact that many important and delightful theorems are
to be found in the problem sets 18 very desirable as enrichment.

While no theorem stated in a problem set 1is used to prove
any theorem in the text proper, they are used in solving numerical
problems and other theorems in the problem sets. This seems to be
a perfectly normal procedure. The difficulty (or danger), as most
teachers define it, is in allowing the result of an intuitive type
problem, or a problem whose hypcthesis assumes too much, to be
used as a convincing argument for a theorem. The easiest and
surest way to handlz the situation is to make a blanket rule for-
bidding the use of any problem result to prove another. Such a
rule, however, tends to overlook the economy of time and, often,
the chance to foster the creative spirit of the student. In. this
text we have tried to establish a flexible pattern which will
allow a teacher and clasﬁ to set their own policy.

16
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Chapter 1 .
COMMON SENSE AND ORGANIZED KNOWLEDGE

This chapter should be treated as an introduction. It is
not a review of algebra or of the Pythagorean relation. The
algebraic problems and the Pythagorean relation are introduced
to illustrate mathematical method, not to provide 1tems for
forgetful students to relearn during the first week of a new
course.,

In this chapter it is desired first that the students see
the distinction between a problem with an obvious solution and
one that requires thought and skill in its solution. Later the
need for exact reasoning on the basis of previously defined or
accepted information is 11lustrated. What should be impressed
upon the -student 1s the fact that once we establish our basic
information we intend to remain within the framework of our
system to do the remainder of our work. We have our postulates
(which contain undefined terms), 'and our definitions. On the
basis of these (and these alone), we will build up a ‘body of
geometrical information by the application of logical reasoning.

As pointed out in the text, 1t is impossible to define all
terms, so we have to begin with some undefined terms. Defini-
tions are jJust agreements that we make to allow us to substitute
a word, phrase or symbol for other phrases that are, in general,
longer and more tedious to write out. A definition may be
thought of as an abbreviation for a longer phrase or group of
phrases. Ifﬁ'P and Q represent phrases such that Q 1is
taken as an abbreviation for P, then the abbreviated form Q
may be substituted for P in any discussion and the sense of
the discussion remains the same. This also works in the reverse
order. The expanded form P may replace the abbreviated form Q.
For example, consider the definition: A parallelogram 1is a
guadrilateral whose opposite sides are parallel. If we know
that the quadrilateral ABCD has AB||{CD and AD| |BC, then
we can abbreviate this by saying that ABCD 18 a parallelogram.

ERIC 20
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Orn the other hand, if we know that ABCD 1is a parallelogram,
then we can assert what this phrase stands for, namely: ABCD
1s a quadrilateral such that AB|[CD and &D||EC ,

C D

B A
So we see that the phrase, "ABCD is a parallelogram" and the
phrase, "ABCD is a quadrilateral and AB|[CD and AD||BC "
can be used interchangeably. Since definitions are agreements
that a simple phrase means the same as a more complicated phrase,
there 1s no question about ever trying to prove a definition.

Only a very remarkable student will fully understand the
paragraphs about theorems, postulates, proofs and undefined
terms, when he first studies this chapter. These 1ideas will
come into sharp focus in the student's mind only when he has
had some experience with them. Chapter 1 is designed merely to
give the student a sufficiently good idea of what 1is going on so
that he will be better prepared for what follows. For this
purpose, short and simple statements to the class are probably
best. For example, if a student asks what a proof is, a good
answer 1s that d'proof is a complete explanation of why a state-
ment is true. (Later the student will learn, by experience, the
way all of us did, what sort of proof is acceptable in mathe-
matics.) In the same spirit, a definition is simply an exact
explanation of what a word or phrase means.

The explanation of the meaning of postulates has deliber-
ately been made a little ambiguous. There are two possible
viewpoints:

1. Until about 1800, everybody believed that the postul-
ates of geometry were "self-evident truths", and that the
theorems proved from them were statements of fact about the
outside world, learned by pure reason.
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2. Since the discovery of non-Euclidean geometry, it has
been plain that the postulates &f ordinary geometry are not
"gelf-evident truths". There are many kinds of geometry; all
of them are equally valid mathematically; some of the very
"peculiar" ones are useful in physics; and gach of them is des-

cribed by its own set of postulates. Postulates, therefore,

are simply descriptions of the kind of geometrical theory that
we propose to investigate at a given time. And when we prove a
theorem, we are not showing that the theorem is "true" in the
sense that it fits the facts of the outside world. When we
prove a theorem, we are merely showing that the theorem holds
true in the mathematical system described by our postulates.
(See the remarks on non-Euclidian geometry in the chapter on
parallels, and the Talks on Miniature Geometries and .Non-Euclid-
ean Geometry.)

It does not seem to us that this second viewpoint 1is suit-
able for presentation in the second week of the tenth grade.
The student would probably be completely bewildered, and he
might get the lidea that Euclidean geometry is Just words, words,
words. 1In Chapter 1 we have therefore been treading a rather
fine line, explaining to the student approximately as much as we
think that he can understand, and being careful in the process
not to make any statements that will have to be corrected later.

What needs to be emphasized, at the start, is that postu-
jates are not just pulled out of the air to satisfy somebody's
whim. The space of Euclidean geometry is an extremely good
approximation to physical space. This is why it got invented,
and this is the most effective way to think about it. We can
and we should use our intuition of physical space to help us
guess what can be proved and how we can prove it. The proof
itself, when we get it, should be logically based on the postu-
lates. A mathematical system, like the geometry we are develop-
ing, that consists of postulates and theorems involving undefined
and defined terms 1s called a deductive theory. This theory
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itself is given meaning and content by exhibiting an interpre-
tation of the undefined terms. When we glve the usual inter-
pretation of point, line, and plane from physical space we get
our physical geomecry, which is an approximate model of our
deductive theory. Other interpretations of the undefined terms
lead to different models. A further discussion of mathematical
models and how they work is given in the Talks.

It might be well to return to the latter part of this
chapter after the student has had a fair amount of experience
with the concepts which we have been trying to explain. After
the class has finished Chapter 5, the 1deas of postulate,
theorem, proof and undefined term should have become entirely

comprehensible. Chapter & will clarify some of the more trouble-
some problems involved in some types of proofs.

The numbers in the left-hand margin refer to the pages in
the text that are being commented upon.

Some students may not remember how to solve simultaneous
equations. The thing to do here, as far as the class as a whole
is concerned, is to provide enough reminders so that the class
understands the solution offered by the book.

Notice the manner in which the lengths of the sides of the
rectangles are discussed. The sides of the rectangles are merely
line segments, and each segment hrs a length that is a number of
inches. Note that we write x = 8 and not x = 8 inches. There
are times when we want to talk about x2 and we 8square numbers,
for example, (8)2, but we do not square 8 inches. The problem
here is simply to keep the units of measure out of the mathema-
tical operations and use them in the interpretation of the re-
sults of these operations. The lower case letters, x, y, are
used to stand only for numbers which are lengths of the sides
in some unit, for example: If a rectangle is 8 inches long
and x stands for the length, then x = 8.

23
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Admittedly, this 1s a fine point, but we have been very
careful about it in the text, and it will be easier on the
students if you back us up by being equally careful about it in
the classroom.

The usage that we are following 1is differeat from that of
physics and chemistry courses. Physicists have developed, to a
fire point, the art of handling unit signs as if they were
algebraic symbols. A simple example of this is

‘ 6 £t. x 6 £t. = 36 sq. ft. = 36 £t.2
From here they move on to measure accelerations in ft./sec.2 and
perform cancellations between such expressions according to the
ordinary laws governing fractions. We are not claiming for a
moment that there is anything wrong with this., It 18 not only
very right, but very useful. It 1s not, however, part of the
natural subject matter of this course, and so we are taking the
more elementary viewpoint that the things we know how to add and
multiply are numbers. This will be quite adequate for our pur-
poses, and the art of handling units algebralcally can best be
learned in courses where it is needed. ‘

You may have a student who will enjoy making apparatus to
111ﬁstrate the Egyptian method for constructing a right angle.
First he needs to tie eleven knots in a pilece of cord so tnat
twelve equal lengths result. Then he needs a board and two
tacks. Students can manipulate this simple apparatus to get a
feeling for the operation the Egyptians went through,

Other students may enjoy supplementary reading, for example,
an encyclopedia account of the Egyptian pyramids. g

Your students may insist that they do not have to try "all"
cases to be sure of getting a right angle when a2 + b2 = c2.
You will find it hard to argue against the principle of reason-
ing they are using as long as you restrict discussion to this
one case where the mathematical fact is correct in spite of the
reasoning. But try such a thing as the “"formula" for primes

p = n® - n+ 41

(pages 2-3]
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= 41
= 2, p= U3
3: "u7
=4, p=2753
=5,p*=61

- =6, p="T1
The first six values for h, and many more, yield prime numbers
for p. Your students may believe that thls is true for all
values of n., If your class does not have anyone who hits upon
the revealing number, 41, for which p 18 not a prime, you can
propose this value yourself,

Or, on a different level, mention the rich child who be-

lieves ~-- because of several observations -- that every family
has a Cadillac.

when =1,

o - - B~ I~ <
L}
‘s v 'O

Problem Set l-1

4 2. a. 1. b. 2[135,790
- 67,895
3. a. 30mi.
b. Let d be the number of miles between the cities.

d=%-d+7.
3d =4 + 21.
od = 21.

d =103 The distance is 10 % mi.
5*, a, % in., 1 in.
b. Let n be the number of inches in the shorter plece and
5 - n the number of inches in the longer plece.
Then % 18 the number of inches in the sides of the
smaller square, and 2L 18 the number of inches in
the side of ths large square. The problem then requires
that (23-B) =4 (2.
25 - 10n + n2 _ bn°
16 =316 -
0= 3n2 + 10n - 25,
0=(3n-5) (n+5).
Q 3n - 5=0, or n+5=0,

(pages 3-5]
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10.

11.

3n = 5, or n = -5 (which is meaningless here).
13',

5-1‘1‘3-3-

The pleces are 1 3- and 3 3-1n. long.

This is a right triangle because (5)2 + (12) (13)2.
Reason (d) is 1ikely. Reason (b) would account for large
errors. Reason (a) is unlikely.

Since 12 - 2.1 + 2 =1 the equation is true if n = 1,
Yes. No. No.

a. The remainder is one.

b. All of them.

Comment: Each odd integer can be represented by 2n + 1

for some integer n. If we expand (2n + 1) and divide by
4, the integral part of the quotient is n2 + n and the
remainder is 1. Hence, if 4 1is divided into the square

of any odd integer, the remainder 1is 1.

There are 31 (or in special cases, 30) regions formed, never
32, This problem illustrates the danger of jumping to hasty
conclusions,

a. Yes. b. Yes. c. The arcas are equal, d. The lengths
are equal,

The area of the rectangle is 63 while the sum of the areas
of the pleces is 64, The fallacy is that if the other
measurements are correct, the small triangles should have
heights of 3 % rather than 4. This can be shown by using
similar triangles.

The total time for the trip is the distance, 60, divided by
the average speed, 60, and is therefore 1 hour. Since
this hour is used up travelling the first 30 miles at 30
miles per hour, our answer ‘must be that the average speed

of 60 m,p.h. 18 thén impossible to achieve.
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8-10 This is a description of what 1s involved in setting up a

10

10

11

mathematical theory. It took the human race a long time to
perfect this idea. You cannot..expect your students to grasp 1t
from an. abstract descripticn. The understanding of what is
involved in logical reasoning will grow ‘throughout the gourse-
as students actively engage in logical reasoning. Nobody can
learn lbgical'reasoning in a vacuun,

The 1dea the student needs to get here is that point, line
and plane are basic terms in our system and that we define more
complex terms like triangle, parallelogram, etc., in terms of
point, line and plane.

You can draw dots of different sizes on the blackboard to
help get at the idea of point. Or you can mention a star,
thousands of times as large as the earth, that is barely visible.
Seen up close it 1s tremendous. Seen from farther and farther
away 1t approximates more and more closely the idea of a point.

It may be necessary to point out repeatedly that a line
"does not stop".

The plane 1is the most difficult of the three terms for some
students to understand. This is revealed by such incorrect
language as "rectangular plane" or “"circular plane". A plane is
suggested by such convenient objects as the classroom floor, the
top of the teacher's desk, and a sheet of paper. Emphasize,
whenever you use these dbjects for illustrative purposes, that
a mathematiqal plane "keeps on going", and move your hand in
appropriate directions.

It may help the student if you occasionally, during the
first months, suggest that they reread the third paragraph of
page 11.
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Problem Set 1-2

12 1. a. measurement, size, dimension.

b. dimension, measurement, extent, size.
13 4. plan, houses, churches, schools.

5. plane, bounded by, parallelogram, rectangle, space.

6. a. Defining a term usually involves placing it in a class
and distinguishing it from other members of the class.
The term "something" 1s an unnecessarily large class
into which to place squares. The phrase "that is not
round” does not distinguish it from other "somethings".
(One satisfactory definition at this point: A square

14

18 a rectangle whose sides have the same length.)

b. Only one of the angles has a measure of gpo in a
right triangle. (A right triangle is a triangle with
one right angle.)

¢. "when" refers to time, not to geometric figures. A
triangle 18 not a period of time. (An equilateral
triangle 18 a triangle whose three sides are equal in
length.) .

d. "where" denotes a place. "Perimeter" is not a place.
(The perimeter of a rectangle is a number equal to the
sum of the lengths of its sides.)

e. This is a true statement, but it states a process for
computing circumference rather than stating what circum-
ference is. (The circumference of a circle is a number
which indicates its lengtn.)

7. A. False B. True C. False D. True

28
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Chapter 2
SETS, REAL NUMBERS AND LINES

: Some Of the ways in which the material of this chapter

“ differs from that of a traditional text are: .(1) sets are in-

ifftfqduded and (2) the real numbers, and thereby arithmetic and

_ algebra, are brought into the coursé in a fundamental way. The

- reason for including sets becomes evident when you realize that -
‘fevery geometric figure is most simply gtudied as a .set of points.

‘This book does not treat the theory of sets as an end in itself —

_ but introduces its ideas and terminology to the extent that they
" .contribute to the géometry course. ’

The real numbers are needed in geometry for the measurement
of segments, angles, areas and volumes. We introduce them ex-
plicitly, rather than use tHem without any explanation.

The immediate reason for introducing the real numbers in
this chapter is that they are needed for the statement of

" Ppostulates 2, 3, and 4. These postulates guarantee in effect
that lengths of segments are expressiblé'as real numbers, and
have the familiar properties that we expect. One important
advantage of introducing real numbers so early 1s that we can
use them to define betweenness for points on a line. Then we
can define segment, one of the most important geometric figures,
in terms of between.

Seeing numbers so strongly emphasized in a geometry course
will seem strange at first. At the time when Euclid wrote,
algebra hardly existed, except insofar as it was implicit in
geometry. In the following two thousand years or so algedbra
developed to a high degree, but the teaching of elementary
geometry has made rather light use of it.

In this book, algebra 1s used in two important ways. In
the first place, it is used 1n the postulates to make them
easier to apply. If we take for granted that the real numbers
are known, then it is possible to give a logically complete set

29
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of postulates, adequate for proving the theorems, avoilding some
of the complicaticns and difficulties involved in, say,
Hilbert's Foundations of Geometry. We will see also, as we go
along, that a gfeat deal of the traditional material of gemmetry
was really algebraic all along, and is much easier to handle
when 1t 1s described algebraically. (This is especially true
in the chapter on proportion.) ‘

We believe that for your students these simplifications
are. genuine simplifications, and will make geometry easler for

- them to understand in the long run. But the algebrailc apparatus

used in this chapter and later may very well call for more care-
ful preparation than you have ever given before to an early
chapter of a textbook.

In the form in which we have presented 1t, the discussion
of sets 1s not really a mathematical theory but simply an ex-
planation of the language in which we propose to talk. As the
"homely examples" in this section show, all of the basic 1deas
about sets -- with the sole exception of the empty set -- are
already familiar. Only some of the words 1n which we talk
about them are new,

The standard notation of & set theory 1s described 1n
Appendix I, entitled A Convenient Shorthand. This 1s intended
to be strictly optional and the title of the appendix 1s meant
to suggest the spirit in which the notation was to be regarded.
There 18 a serious danger in talking too much, and too fancily,
about sets, at the high school level: the impression may be
conveyed that writing things l1ike ABCC 1s a loftier occu-
pation than proving meaty theorems and solving hard problems
in geometry and algebra. This would be sad. We therefore
belieggegpet the language of sets should be introduced matter-
of-factly without fanfare, and that the notation of set theory
ahould‘be taught to a given student only if and when the student
i8 prepared to think of 1t as a matter of convenience.

3.0
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13
As a matter of convenience, however, the 1anguaée of sets
is going to be used continually. For example, an angle will be
defined as the union of two non-collinear rays. Two lines in
the same plane are parallel if they do not intersect, and this
means that the lines, considered as sets of points, have no
member in common.

16 . Notice that we are referring to the rectangles as the
union of the four line segments,'ggg the line segments plus
the region enclosed by them. Later we shall be concerned with
the interior of geometric figures.

17 Such a statement as "...each of the two lines is a set of
points." seems to say something specific about "line", which 1s
to be one of our undefined terms. This should not be cause for
trouble, however, for the material here is informal and explan-
atory. It is not part of our formal system of geometry.

Problem Set 2-1

19 1. The intersection is {5, 9, 11}.
The union is (3, %, 5, 6, 7, 9, 10, 11, 12].
2. a., S1 and 32; S1 and Ss; S1 and SS; 82 and 85 if you are
a boy, but 83 and 35 if you are a girl.
b. Sl.
c. Sl‘
d. The set consisting of all members of faculty and
students of your school.
e. Sl’ S?’ S3’ SS.
20 3. The set {A}.
The set (B,C)}.
The empty set.
L. a. Three committees: {A,B}, {A,C}, {(B,C].
b. (A,B) and (A,C) have A in common. {A,B} and (B,C}
have B 4n common. {A,C} and {B,C} have C 1n
common. "Intepsect“ means "have a member in common".

ERIC [pages 15-20]
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. The set of all positive integers.
. The empty set. Or, the sets have no common member.
7. The intersection is the segment BEC. The union 18 the
triangle ABC.
8. The set consisting of the one pair (2,1).
21 9. The set consisting of the one pair (4,3).
10. The empty.set. Or, there are no common elements.
11. a. The set of all positive integers divisible by 6 (i.e.,
by both 2 and 3) -- {6, 12, 18, 24....}.
b. 6n, where n 18 a positive integer.
¢. The set of all positive integers divisible by either
2 or 3, {2, 3, 4, 6, 8, 9, 10, 12,...}.
12. a. 1. b. 3. ec. 6,10. d. %n (n - 1).

21 The material in this section, too, 18 informal. This
intuitive development 18 intended to convince the student that
to each point on a line there corresponds a real number, and
to each real number there corresponds a point on the line.

The feeling for the arrangement of these real numbers on a line
is important to the student at this time.

Pages 23 to 28 point out the properties of real numbers
concerning inequalities and absolute values, and show their
geometric interpretation on a line.

23 Proof of the fact that between any two rational numbers
there is a third one 18 simple, and interesting to some. In-
tuitively, the "average" seems to be such a number. The fol-
lowing argument Justifies this intuitive notion.

1. Iet a be the larger and b be the smaller of any

two rational numbers. We show that EL%%JZ is
between & and b.

2.a=%a+%a<%a+%b<%b+%b-m
3. a <-% a + % b ¢ b.
b a <252 <. 39

lfRJﬂ:‘ [pages 20-23]




15 .

5. Hence 2F2 15 between a and b.
3

6. Furthermore, 9—*2'—" 18 rational.

For a more detailed discussion of irrational numbers see
Appendix III, and also Chapter 4 of Studies II.

23 We introduce here symbols that might be new to some
students, namely <, meaning less than, >, meaning greater
than, < , meaning less than or equal to, and > , meaning
greater than or equal to. To say that an inequality can be
written in reverse means, for example, that if 7 < 9, then
9 >7. This is a statement in the form if x < y, then y > x.
We also have inequalities of the form x <y, or ¥ 2 X.

These could be illustrated in the following manner: To say
that x < 8, means that x can be either less than 8 or equal
to 8, for example x can be =12, -m, 0, 3, 7.999 or 8 itself.
Por a more detailed treatment of inequalities see Chapter 4, of
Studies II. There will also be some discussion of inequalities
in Chapter 7 of the text.

24 While the basic algebraic postulates are put in Appendix
II for completeness, the postulates (laws) for inequalities
are included in the text proper, for many students are not
acquainted with them.

25 Some students may be so used to saying "The square root of
9 is plus or minus 3" meaning that 9 has two square roots,

3 and -3, that it will be hard to convince them that the written
statement "/J = T 3" 18 incorrect. We know of no patent medi-
cine to prescribe. Simply explain, move ahead, and remind
later as necessary.

26 Problem Set 2-2

1. All four are true.
2. a. AB 1is less than CD.
b. x 1s greater than Y.
Q [pages 23-26]
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¢c. XY 1s greater than or equal to YZ: -

d. n 1s less than or equal to 3.

e. O 1is less than. 1 and 1 1s less than 2.

f. 5 1s greater than or equal to x and x is greater
than or equal to -5, or x lies between 5 and -5

=

inclusive.
g. Xx 1s positive or x 1s greater than O.
3. a. k>o0. e. 2<g<3.
b. r <O. f. 2 w3,
c. tKO. g. a<<w<hb,
d. s > 0. or b<wc<a.

4, a, ¢, 4, £, h.

5. a. 3.009, 3.05, 3.1.
b. -3, -2.5, -1.5.
c., 1 %', 1~§ ,-g .

. -1g,132,%. ’ -

ujw

1
>
27 *6. a. T. b. T. ¢, N. 4. S. e. 8.

7

28

(Note to teacher. Parts (d) and (e) are true for r > 8 > 0
but are not always true for certain negative values.)
7. a. S. b. T. c. S. da. T, e. T.

Most students learn what "absolute value" means by looking
at several examples. The method of "defining by point:ix'xg"'~
helps the student to grasp the concept, but it certainly is not
a mathematical method. Assure your students that their notion
of absolute value will serve them satisfactorily in geometry.
Point out that this particular definition 18 not intended to
be explanatory in the ordinary sense of the word. Awkward
though the definition may appear to be, 1t does pin the l1dea.
down and is technically correct, whereas superficially stated
“"definitions" that sound good often fail to hold up under
close inspection.

34
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Problem Set 2-3

1, a, ¢, d.
*2, b, ¢, d.
3, a. r. b, -r. ec. O,
4, Drawings are omitted.
a. The set of points to the left of the zero mark.
b. One point, a unit to the right of O.
¢c. The set of points to the right-of 1. e een
d. The part of the line to the left of and including 1.
e. Two points.
f. The part of the line between 1 and -1 inclusive.
g. The union of the part of the line to the left of -1
and the part to the right of 1.
h. The entire line. |
5. a. The first set includes O; the second does not.
b. The first set includes O and 1; the second does.not;
i
Throughout this book, when we speak of "two points", we

really mean two. That 1s, if A and B are two points, then
A and B are different. The phrases “three points", "two
1ines", and so on, are used in the same way. On the other hand,
if we say merely that A and B are points of the line L,
this allows the possibility that A and B are the same; ir
we mean that they are different, we either say explicitly that
they are different or we say explicitly that there are two of
them.

Some usages are matters of convention, and there 1s not
unanimous agreement on them in the mathematical literature.
(For example, most algebra textbooks say that every quadratic
equation has two roots; and thus the equation x2 -2x +1 =0

s "two roots", which happen to be the "two numbers" 1 and 1.)
We have therefore attempted to write this text in such a way

[
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that the reader will understand what we mean without having to

pay undue attention to the conventions that we are following.

Sometimes we shall use the phrase "two different points"
for emphasis -- even when the word "different" is not necessary
logically. Postulate 1, for example, uses "different" in this
way.

If you want to acquaint yourself in advance with the nota-
tions that are adopted in the text, see the index of symbols at
the end of the volume.

Problem Set 2-4

1. a. -%, f%-.
b. 54, 1 % X
c. 24, 2.

2. a. 50, 0.5 .
b. 325, 0.325 .
c. 7320, 732 .
3. a. The numerical value of the length would be 11 divided
by 84=1 {% or approximately 1.3; that of the width
would be 1.
b. The numerical value of the width would be 8 % divided

by 11 = %% or approximately 0.77; that of the length

would be 1.
y. 362 + 1482 = 602 = 3600.
5. a. P=b4.48 =102, b, p=u.§.=-1§2.
A = 482 = 2308. e
33 46. 1. a® + b2 = c° . 1. Given.
2. a® + b2 =c2 . 2. By division.
2 7 7
n n n
a 2 b 2 [ 2
3. (H) + (H) = (H) . 3. Another form of Step 2.

36
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*7, If the length of any side of the square is 8 units, 1t
is given that

32 = lg
from which 32 ~ 45 =0
or s(s - 4)= 0.

The only meaningful solution to this equation 18 8 = U4, Area
and perimeter will be numerically equal only if a side is 4
units long, whatever the unit may be. Since any change in
unit will change the 4 to something else, the area and peri-
meter will no longer be numerically equal..

(Note to teacher: Be Peady to commend other correct proofs
students may give. The concept of generalization in mathe-
matics is an important one.)

Section 2-5 begins by appealing to the student's knowledge.
Tt then "describes this situation" formally, in Postulate 2.
The postulate 1s not & casually chosen group of words to use in
playing a game. It 1is on the contrary a carefully chosen state-
ment that gives one of the basic properties of points; it form-
alizes something with which the student is already familiar at
an informal or intuitive level. Later postulates will continue
the process of characterizing point, 1ine, and plane by formal-
1zing properties which are intuitively familiar or which have
been suggested by physical experience.

Notice how the first strictly geometric definition is set
off. This particular definition does not lend itself to a
discussion of the nature of mathematical definition as well as
some later ones do, so the text postpones such a discussion
until a more suiltable example appears.

Postulate 2 and the definition of "distance" use some
words such as "any", "31fferent”, "unique" which have not been
defined, and this may bother very dutiful students who are try-
ing to be precise. You can simply say that we are using the

[pages 33-34]
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English language in the course, assuming that the meanings of
all simple non-geometric terms are known. Such terms are used
with their usual meanings. In other words, the language of
ordinary speech is assumed. Geometric terms, words with tech-
nical meanings, are the ones that are treated carefully within
the system of geometry,

In Section 2-6 on the infinite ruler, we are trying to
prepare the student in an intuitive manner for Postulate 3
(The Ruler Postulate.) When investigating the general rule
that the distance between the point that corresponds to x and
the point that corresponds to y 4is |y - x| 1t might be well
to check the rule for some whole numbers first. There are only
three cases we have to consider: (1) both points correspond to
positive numbers, (2) one point corresponds to a positive num-
ber and the other corresponds to a negative number, znd (3) both
points correspond to negative numbers. The case when one point
corresponds to zero has already been considered when discussing
absolute values.

P Q
| | |
Case 1 0 10 21
i ]
Case 2 -éf’ é 6
P Q
Case 3 __J | ]
-21 -10 0

It 18 clear that the distance from P to Q, (which is the
same as the distance from Q to P,) 18 11 in all three
cases above. Now let us check and see 1f the absolute value
of the difference of the corresponding numbers will give the
distance between these points regardless of the order in which
we take the numbers in the formula, PQ = |y - x].

Case I. PQ = |21 - 10| = 11, and |10 - 21] = 11.
Case 2. PQ = |6 - (-5)| = 11, and |-5 - (6)] = 11.
- (-10)]| = 11.

Case 3. PQ = |-10 -(-21)] =3%§, and |(-21)

[pages 34-35])
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Now the Ruler Postulate seems reasonable, because we have

seen that it will give us the results that we would expect from

37 the previous discussion. We now have a coordinate system on a '
line; the number corresponding to 2 point is the coordinate of
that voilnt.

Though the book mentioncd previously that a line is a set
of points, there was nv formal statement about how many points
a line contains., Postulate 3 gives us infinitely many points
on every line. This is so because we have assumed the real
number system and are now postulating a one-to-one correspond-
ence between the set of points on a line and the set of real
numbers. (The text will use the phrase "one-to-one correspond-
ence" formally in Chapter 5.)

When we say that the points on 2 1ine are in a one-to-one
correspondence with the real numbers, we mean: (1) to each
point of the line there corresponds exactly one real number and
(2) to each real number there corresponds exactly one point of
the 1line. One-to-one correspondences are not unique to mathe-
matics., For instance, how many times have you taken attendance
in your class by looking to see if each assigned seat in the
classroom is filled? What you have done 18 to establish a
one-to-one correspondence between assigned seats in your class-
room and students in your class. If you can match up a seat
with each student, you know that all of the students are present

Postulate 3 1s a very powerful tool. Part (3) guarantees
that distances on & line behave in & wWay that we would normally
expect them to behave 1in. Tt would not be sufficient to post-
ulate Just the existence of 2a one-to-one correspondence. We
cannot have anything like this:

-
-

because such an “"undesirable" ruler does not satisfy FPart (3)
o of Postulate 3.
ERIC [page 37]
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If you are familiar with the foundations of geometry you
may find Postulates 3 and 4, with their strong emphasis on
algebra, rather strange. We have introduced real numbers in
Postulates 2, 3, 4 as a pedagogical device at the tenth grade
level to avoid very subtle and difficult discussions on the
theory of measure of segments. (See the Talk on the Concept
of Congruence for an indication of this.) One should not
infer that we consider this the best treatment at higher levels,
In an advanced course in the foundations of geometry we would
prefer a treatment of the type given in Hilbert's Founcdations
of Geometry or Veblen's Monograph on the Foundations of Geometry
(Monograph 1 in Monographs on Topics of Modern Mathematics,
edited by J. W. A, Young.) In such a treatment the postulates
would be more geometric, making no reference tc algebraic en-
tities, and our Postulates 2, 3, 4 would appear as theorems --
indeed difficult ones to prove.

Note the contrast with the conventional treatment (and
with Euclid) where betweenness is not even mentioned and
betweenness relations are taken, when needed, intuitively from
pictures. The early introduction of real numbers permits us
to define betweenness. The mathematical treatments of Hilbert
and Yeblen take betweenness as undefined and characterize it by

postulates.
Problem Set 2-6
37
1. a. 3. a. 2.
b. 3. e. |2al or 2|al.
c. 3. £f. 0.
2. a. 1l2. £. 10.2
. 12, g. J§- - .,/é_
c. 12. h. le - x2| or |x, - xll.
. le. 1. |4a] or klal.
e. 1 % . 3. l2s]| or 2|s].
40
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(Note to teacher: In (g) point out that~ﬁ§ - V2 1s
exact, while 1.732 - 1.41% = 0.318 is an approximate

result.)
3. a.
Q w P
Petes 4 "3 "2 I o 1 2 ns r-5
i I 3 3 IS i 1 3 3
Jjmo 1 2 3 4 5 6 7 n ¢
b. |r - 3| by Jim's scale.
[(r - 5) - (-2)] = |r - 3] by Pete's scale.
- ¢c. |r - n| by Jim's scale.
[(r - 5) - (n-5)] =|r - n| by Pete's scale.

4, Subtract '% from the value at Q.
38 5. a. Yes. '
b. p+2 and q + 2.
c. The distance, by definition, is |p - q|. For the new
numbering
lp+2) -(qa+2)] =1Ip-al.
d. Yes. .
6. Consider two points with coordinates n and r. After
renumbering the original scale, the coordinates will Dbe
(-n) and (-r).
The distance between them is |n - r}.
It 1s also true that |(-n) - (-r)] = |r - n| = |In - rl.
7. a. No. Gamma,

b. 9 miles or 41 miles

Beta 16 Alpha 9 Gamma

@ @

Alpha 10 Beta 25 Gamma

L]

c. Alpha.

d. Alpha. .

(Note to teacher: This problem is leading up to the
concept of betweenness. )

(pages 37-39]
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35239 8. There are 2 possible arrangements.

B can be between A and C. A B 15 .C
A can be between C and B. CgA o, B

5. B 1s between A and C. 14,

The concept of betweenness, though intuitively natural, is
one that has rarely been formalized in high school treatments ‘
of geometry. From the discussion in the text it can be seen
that this can be a very tricky concept if we consider the
problem on a closed curve. Fortunately, later discussions
and treatments in the text consider betweenness on a 1line only.

In connection with the idea of betweenness, 1t might be
worthwhile to propose the following problem. to the class: In
how many ways can four round beads, of different colors, be
arranged in a string so as to make a four-bead necklace? The
answer 18 that there are only three different ways: The point
i1s that there 1s only one way for the first three beads, A,

B, C to be arranged in the necklace; the 8lx orders ABC, ACB, -
BAC, BCA, CAB, CBA all form the same necklace. The only real
choice 18 in the position of the fourth bead, D, and for this
there are three possibilities: D can be immediately between

A and B, or immediately between B and C, or immediately
between 4 and C. :

The definition of "between" 1is foilowed by a disguésioﬁ of
definitions in mathematics. A mathematical definition. must be
distinguished from a dictionary definition which -often gives -
only a synonym or description of the term defined. A mathemat-
ical definition is, as this manual mentioned in Chapter 1, a
formal agreement to use -- when desired -- one phrase as an
abbreviation for another phrase,

42
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Notice that a definition is logically very different from
a theorem. A typical theorem 1s in the form, 1if A, then B,
where A and B are statements. It says that statement B
is deducible from statement A. For example, let A Dbe the
statement "a triangle has two congruent sides" and B the
statement "a triangle has two congruent angles." These 8tate-
ments mean different things, and we have learned a geometric
fact when We prove that the second statement inevitably fol-
lows from the first.

On the other hand a typical definition 18 of the form:

B stands for (or is an abbreviation of) Q, where P and Q

. aré- ases. For example (see Chapter 1, commentary) let P
be "parallelogram, and Q be "a quadrilateral whose opposite
sides are parallel." No implication is involved here -- P

and Q. are not even statements. Rather we are making an agree-
ment, motivated by convenience, that the short phrase P shall
stand for the long phrase Q. Sometimes, to avoid awkwardness
of language, we state a definition in "4f--then" form, for ex-
ample: 4if the opposite sides of a quadrilateral are parallel,
then we call the quadrilateral a parallelogram. Don'!t be mis-
led by this. No implication 1s involved. We are not stating
a geometric fact, but an agreement about how geometric termin-
ology shall be used,namely that the word "parallelogram" shall
stand for the phrase "a quadrilateral whose opposite sides are
parallel."

You can discuss definitions in such down-to-earth terms
as these: A mathematical definition 1s a convenient handle
for dealing with a mathematical 1idea just as the set of finger
holes in a bowling ball is a convenlent handle to use when
rolling the ball.

You may want to present the idea of definition to your
class like this: Consider the following definition of "honor
student." "Students of East High with a deportment grade of A
and no academic grade below B are called honor students."

[pages 41-42)
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knowledge that Cindy Marshall is an honor student a%t East High
is a1§o knowledge that she has a deportment mark of A and has

no academic mark below B by definition of "honor student". On
the other hand, knowledge that Eric Hughes, a student at East

High, had A in deportment and no mark below B is knowledge that
he 1s an honor student -- again by definition. "Honor student"
is a convenient label that spares people all the words "a stu-
dent with a deportment mark of A and no academic mark below B".

A figure for Theorem 2-1 might lead the students to feel
that they can "see" that point B 1s between A and C. What must
be realized is that a figure is not sufficient justification of
a proof. To prove this theorem formally we must prove 1t on
the basis of the definition and not the configuration, for the
only formal knowledge we have of betweenness is that provided
by the definition,

You might wonder why we prove theorems like 2-1 at all;
they seem so obvious. Notice that according to our logical
program, as outlined in Section 1-2, every statement of our
geometry must be either a theorem or a postulate. We could,
of course, take as postulates all statements as obvious as
Theorem 2-1, and some text-books do this. We choose, rather,
to use as few postulates as we feel are pedagogically necessary,
and prefer to give proofs of even the "obvious" theorems. This
does not mean that either you or your students need spend much
time on the proofs. We merely believe that it is good for the
students to know that some "obvious" things can be proved, and
that mature mathematicians do not regard it a waste of time to
devise such proofs (and some of them are unimaginably difficult.)

You will probably want to point out to your students that
they are not expected to "learn" the proofs of the theorems in
this chapter. The theorems may not seem meaty to beginning
geometry students, and the proofs are not at all typical of the
kind of geometric reasoning they will usually be doing. We do
not expect them to know how to write proofs of their own until
Chapter 5. The book gives proofs for the sake of completeness.

[page 42]
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Go through them once, and then go on. Assure the students that
the time for mastering simple geometric proofs will come, and
that the book will then help them get a start.

The statement that if x <y, then ¥y - X is positive,
might require some amplification. We can j1llustrate this with
a specific example, letting x and y represent 2 and 7T
respectively. If x <V, and we subtract the smaller number
from the larger,tilen it is certain that the difference will be
a positive number (y - x > 0). If, on the other hand, x < ¥,
and we subtract y from x, we would have x - ¥y < 0. If we
subtract 7 from 2 we get a negative number, which is, of
course, less than O. In the theorem it is given that x <.
Then y - x 1s positive and, by definition of absolute value,

ly ~xl =y - x.

Problem Set 2-Ta

1. a. 7. d. 8% X
b. 6. e. 0.9 .
e. 10. f. |x1 - x2|.

2. It is only necessary to read a single positive number if
one uses the Ruler Placement Postulate. Neither subtrac-
tion nor computing an absolute value is necessary.

3. RS + ST = RT.
4. The coordinate of A is -2; that of B is 14,
5. c¢. See the Ruler Postulate and definition of between.
6. The point having coordinate Xx,. Theorem 2-1.
7. a. By the Ruler Postulate:

AE=|O-%r|=%r.

EF=|1r_2r|=-l-r

3 3 3 '
FB = |% r -r| = % r.

AE = EF = FB.

[pages 42-143)
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b. AF= Jo -2 - 2r.
AE + EF = AF since 1 r + 1 r=2 r
3 3 I
Therefore, E is between A and F,

*8, The inequality x >y >z can also be written z < y < x,
in which case Yy=~-2 x-2,and x -y are all positive.
Therefore, CB = y - 2,

CA=x -z,
and AB=x -y,
From these three equations we observe that
CB+ BA =x -2z = CA,
Therefore, B is between A and C. (Note: A brier
proof relates z <y < x to Theorem 2-1.)

45 The term "ray" might be new to students. The text makes
clear the distinction between ray and segment. What should be
pointed out to the students is that in the notation for a ray,
for instance Zii the first letter is the end point and the
second 18 one of the infinitely many points through which the
ray passes, It is not correct, therefore, to refer to the ray
!2989 end point is A and whiig passés through point F as
FA. The correct notation is AP,

Observe that in the figure for Theorem 2-4 the point P
need not, in spite of the diagram, l1ie to the right of point B,
P may be the same point as B, or P may be between A and
B. However, P cannot be at A, and A cannot be between P
and B, since x is a positive number,

Remarks on The Line Separation Theorem. The following
theorem is not stated in the text, but is often used tacitly
later. It describes the separation of a line by a point, and
is closely analogous to the 1étér postulates in Chapter 3 deal-
ing with the separation of a plane by a line and the separation
of space by a plane. -

46
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The Line Separation Theorem. Let P be a point of the
line L. Then L 1is the union of P and two sets Hl and
H2 not containing P, such that

(1) No point of L 1ies in both H, and H,.

(2) If two points Q and R are both in the same set,

) H, or H,, then P 1s not between Q and R, and

(3) If Q 1s in H,, and R 1s in H,, then P 1s

between Q and R.

Proof: Let us set up a coordinate system on L such
that P corresponds to 0. Let Hl be the set of all points
of L with negative coordinates and let H2 be the set of
all points of L with positive coordinates. Then L 18 the
union of P, Hl and H2, because every real number 1is positive,

negative or zero. P 18 not in either Hl or H2 because O
is neither positive nor negative. (1) holds because no number
is both positive and negative. It remains to verify (2) and
(3). '

Iet Q and 'R be points with coordinates x and Y.
Suppose that y 1s the larger; this is merely a choice of
notation. If Q and R are in Hl, then x <y < 0; by
Theorem 2-1, R 1s between Q and P; and 8o P 1is not
between Q and R. If Q@ and R are in H2’ then 0 < x<Y¥;
Q is between P and R; and so P 1s not between Q and R.
This verifies (2).

Iet Q, R, x and Yy Dbe as before, with x <. If Q
is in Hl and R 18 in H2, then x < 0 and y > 0. There-
fore, x < 0 < ¥; and therefore, P 1s between Q and R.

This verifies (3).

This theorem has been deliberately kept out of the text.
It is so obvious that students can be expected to use it tacitly
and its proof is not very interesting mathematically.

Of course, the half-llnes Hl and H2 are analogous to
the half-planes and half-spaces to be discussed in the next
chapter. Notice that a half-line is different from a ray; a
ray contains its end-point, but a half-1ine does not.

l: [pag;e 246]
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Notice that the Line Separation Theorem guarantees that
every ray has exactly one opposite ray.

Problem Set 2-7b

2. a. Theorem 2-1,
b. Theorem 2-3.
¢c. Definition of between,
3. a. Points X and Y and all points of §§’ between X
and Y.
b. Points of X¥ and all points Z of ¥¥ such that ¥
is between X and Z.
*4, Case 1. If A is between B and C, then AB + AC = EC.
Since AB = BC, this leads to the impossibility AC = 0.

Case 2, If C 1is between B and A, then BC + CA = BA.
This leads to the impossibility CA = 0.

Case 3. B 18 between A and C, by Theorem 2-2, is the
only remaining possibility and must be true.

(Note: A proof based on setting up a coordinate system
and using Theorem 2-1 is also possible.)
*5. Theorem 2-4,

*6. Proof, Statements: Reasons:
1. AB + BC = AC, Definition of between.
2, AC - AB = BC. Subtracting AB from each side.
3. B > 0. Distance Postulate,
L, AC > AB. If AC - AB > 0,
AC > AB.

7. a. X2 contains points Y and R but XZ contains
neither points Y nor R. R belongs to X2 but
Y does not. Y¥YZ + ZR = YR.

b..¥Y X 2z Ror R 3z X

48
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48 Review Problems

1. Sl; Su; Sa; 85;-the empty set.
49 2, 1; 2; no.
S Q

3. a. t
-3 -2 -1

b, PQ =3, R =4, TR=4, PT =2, QS =

P

3 i
1 4

-p..a

Rl
o 1 2 3 4
2

.

4, a., Positive.
b, Between O and 2.
c. Negative.

5. a. AB+ BC = AC.
b. AB = BC.

6. There are 12 possible orders. We picture the 6 in which
18 to the right of A.

DA B ¢

- A D B ¢ )

« 1'\‘1}:1) c >

¢ o &+ »

T A DB ]

L N

— , ; , >
7. A B D c

3 3 ] —
14 v »

& i
4 L4

AB + BC = AC. B contains points A and C, but DB
contains neither point A nor polnt C. A belongs to
DB but C does not.

8., x=9,y=154

49
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50 9.

10.

11.

12.

13.

14,

16.

Perhaps they live in the same house. However, since people
are not always precise in every day language usage, it may
be that they only live near each other -- as on opposite
sides of the street.

N - 2.
a. AF and E.
b. E and F.

c. Triangle AFE.

d. The empty set.

e. Triangle AEF.

a. 5. (ABCD, ABCE, ABDE, ACDE, BCDE.)

b. 10. (AB, AC, AD, AE, BC, BD, BE, CD, CE, DE.)

c. 10. .

No. AC could only be 13 or 7.

b 3 B 10 ¢ .
o 1 A 3 B R

b I 1 H T Ll

a. F (Should be 6). e. T

b, T f. T

c. T g. T

d. T n. F (Should be 7).

Yes. Since y 1s larger than x, the value of y - x

will be the same as the value of |x - ¥y|.

(b) 1s not a coordinate system because the numbers 4, 3, 2,
1 and O each correspond to more than one point. This is
not permissible according to Postulate 3.

(e) is not a coordinate system because the distance between
points with coordinates 2 and 1 in the original numbering
is |2 - 1] or 1. In the numbering of (e) the distance
between the same two points is |2 - (-1)] or 3. By Postu-
late 2 the same two points can correspond to only one num-
ber indicating distance.

d; b, e; h; f. 50
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Illustrative Test Items for Chapter 2

A suitable chapter test might be made by selecting prob-
lems from the following 1ist. These have been grouped into
sets of problems that are similar with the idea that the
teacher may wish to make a test by choosing none or more from
each set.

In compiling this 1list and later lists, we generally have
omitted items specifically calling for statements of defini-
tions, postulates, theorems, and 8o on, in the belief that each
teacher on his own will draw on this wealth of test material,
as well as on his own ingenuity in constructing his own tests.
A. 1. a. Let A be the set of squares of the first eight

non-negative integers. IList the members of this
set.

b. et B be the set of the first eight even positive
integers. List the members of this set.

¢. What is the intersection of sets A and B?

d. What is the union of sets A and B?

o. Consider the set of all positive integers divisible by
5. Consider the set of all positlve integers divisible
by 3. List the first five integers in the intersection
of these two sets.

3. The 1ntersecpigp of ray Kﬁ and ray'EI is . The
union of ray AB and ray‘fa is .

B. 1. Arrange the five collinear points E, L. M, S5, Tin
proper order if IM + ME = LE; SE + ET = TS; LS + SM =ML,

2. A number scale is placed on line ?ﬁg with -5 falling
at R and 6 at S. If the Ruler Placement Postulate
is applied with O placed on R and a positive number
on S, what will be the coordinate of S?

3. Copy the following sentences and supply the appropriate
missing symbols over each letter palr.

a. AB has no end points.
b. The end points of* MR are M and R.
¢. RQ has one endpoint, R.
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4, Three towns Lander, Manton and Amity are collinear but
not necessarily in that order. It is 9 miles from
Lander to Manton and 25 miles from Manton to Amity.

a. Is it possible to tell which town is between the
other two?
b. Which town is not between the other two?
c. What may be the di%tance from Lander to Amity?
d. Illustrate with sketches.
C. 1. Given A, B, and C are three collinear points with
AB = 8 and CB = 5. If, also, the coordinate of B
is -2, and the coordinate of A 1s less than that
of C, what are the coordinates of A and C? Draw
two sketches giving different sets of answers.
2. A B F H

T
-7 0 3 X ¥y
In the figure:
a. the length of AB is
b. the length of AH is
c. the length of BT is .
d. the length of FT is .
e. the length of HT is or
3. If A corresponds to 0 and B to 1 on a number
line, whagafet of numbers Egrrespond to the points of
the ray AB? Of the ray BA?

D. 1. a. [|-7T] + |3} =
b. |-7| - 13] = .
c. |-7) -~ 1-3] = .
a. |-7-3] = .
e. |[-7T+3] =
f. |-7-10| =
g. |-T+4| =
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2. a. How many square roots does the number 49 have?
b, JE9 =

3. a. Write as an inequality: K 1is a negative number

greater than -10.
b. Restate the following in words: 20 > X > 10.

4. Make a true statement out of each of the following ex-
pressions by replacing each question mark by one of
the following symbols, <, >, =, £ 2 ¢ |3-6] ? |6-3];
|-h-2] 2 |-4] - [2]; Ix+y] 2 Ix| + Iyl

Answers

A. 1. a. 0, 1, 4, 9, 16, 25, 36, 49.
b. 2, 4, 6, 8, 10, 12, 1k, 16,
c., U, 16
a. o, 1, 2, 4, 6, 8, 9, 10, 12, 14, 16, 25, 36, 49.
2. 15, 30, 45, 60, 75, 90.

3. AB; i2.
B, 1. L S M g ?
2. 11,
3. a. Kg.
b. WR.
c. -}T&. P
4, a. No.
b. Amity.
¢. 34 mi. or 16 mi.
d L 9 M 25 A
— | —
A 16 L 9 M
— } —
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C. 1. A B c
. =10 -2 3
A ¢ B
-10 -7 -2
2. a., T
b, x+ 7.
CO y.
do y - 30

e. y-xor |x -y|orly-xj.
3. The set of numbers, X, such that x > 0. The set of
numbers, x, such that x < 1.

D. 1. a., 10
b. 4.
c. 4.
é. 10.
e. 4,
. 17.
g. 3.
2. Two; T.

3. a. -10<K<O0, or0>K?>-10.
b. X 3is a number between 10 and 20.
b, =55 <.

(9]
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Chapter 3
LINES, PLANES AND SEPARATION

-

The material of this .chapter differs from that of the
traditicnal text in several ways. First, some elemeritary solid
geometry 1s introduced, for the authors ‘believe ‘that there
should be no undue separation of solid geometry from plane
geometry. :

» _ 8econd, the important idea of convexity is introduced..
Most of the familiar geometric figures, such as triangular and
rectangular regions, Qr the inter;qrs of circles and spheres,
or réctangular solids :&nd circular cones; are convex sets.

‘Finally, the separation of & plane by one of 1its lines /
and the separation of space by a plane are studied. These ideas
are treated purely intuitively in most geometry texts as 1s
indicated by phrases such -as "tﬁbhﬁoints are on opposite sides
of a line.

54 The text description of the figure on page 54 asserts
that points A, B, C and E are coplanar. Actually, F is con-
tained in the same plane as A, B, C and E, and we can say that
A, B, C, E and F are coplanar.

54 Most students will not see readily that Postulate 5a
really does fill a plane with points. We do not believe that
you should press the matter, for most students will not be
interested in something so "obvious." You can show inquiring
students this by using Postulates 1, 6 and 3 along with
Postulate 5a as follows:

A plane has three non-collinear
points A, B, C by Postulate 5a.
Then by Postulate 1 there is a
line L determined by B and C.
The plane contains line L by
Postulate 6. Line L has
infinitely many polnts by
Postulate 3. Point A, in

ERIC
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combination with these points individually, determines infi-
nitely many lines by Postulate 1. All of these lines (and
their infinitudes of points) lie in the plane by Postulate 6.

Pcstulate 6 assures us, as the text points out, that a
plane is flat. Your students can use a globe in the classroom
to see that is is not possible to find two points on a sphere
such that the line determined by them lies on the sphere., A
sphere as a surface, then, does not satisfy Postulate 6. Other
surfaces, for example cylindrical ones, are trickier. Your
students can find points on a steam pipe in your room such that
the line determined by them lies on the pipe. Pupils should
readily see, however, that finding some such pairs of points
is not enough. The question remains: do all pairs of points
on the pipe satisfy the requirement? Since the answer is no,
the cylindrical surface of the pipe does not satisfy Postulate
6.

A triangular region does not satisfy Postulate 6. Although
the regicn contains the segment AB Joining its points A and B,
it does not contain the line Eg’which is determined by the
points.

Theorem 3-1 could be stated in the if-then form: If two
lines intersect, then they intersect in only one point. The
two statements are equivalent.

The students should be reminded of the fact that the "if
. . . then . . ."relatiohship is not unique to geometry or
mathematics. It 1s a cause and effect relationshlp common to
science and everyday life, for example: "If I do not sleep for
two consecutive nights, then I will be tired." Statements such
as this often occur in conversation. Full use of the exercise
material in recoghizing the hypothesis and conclusion of
statements should be made when you reach Section 3-2.

Teachers will recognize the proof of Theorem 3-1 as being
indirect. The text does not wish to describe indirect proof at
this point, or even to describe proof at all. The thing to do,
we belleve, i3 to go through the proof once with emphasis on

[pages 55-56]
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understanding and then go on without asking students to learn
the proof. Theorem 3-1 and the method of indirect proof are
discussed in Chapter 6.

One of the problems in the teaching of geametxry is that
of keeping emphasis on the ideas of proofs rather than on
rote memory. Teachers have their own ways of doing this, such
as changing the labels on figures, encouraging students to come
up with different proofs, going from paragraph form to two-
column form and vice-versa. In other words, discourage mere
memorization of proofs. (Be careful not to discourage mental
effort, however.)

56 The discussion in t@f text of a way in which Theorem 3-2
could be proved suggests that you avoid a proof now--or at
least avoid emphasizing one. The proof goes: It is impossible
for a line and a plane not..containing the. line. to..intersect 1in
two different points because then the line, by Postulate 6,
would lie in the plane.

56-58 The text proves Theorems 3-2, 3-3, and 3-4 in Chapter 6.

Some time spent on the drawing of planes and lines in
three-space is recommended. Some Very simple demonstrations
with a piece of cardboard (representing part of a plane) and a
pencil (representing part of a line) might be performed to
1l1lustrate and clarify those postulates and theorems that make
reference to three-space.

57 You might ask questions designed to clarify some of the
postulates of this chapter: for example, for Postulate 7, "Why
does a stool with three legs tend to be more stable than a chair
with four legs?"

Prcblem Set 3-la

53 1. One.
Infinitely many lines can be drawn.
2. No. '
Three .
Q [pages 53-58]
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55 1.

Three .
No end-points. Two end-points.

Problem Set 3-1b

P and Q are the same polnt by Theorem 3-1.

Infinitely many.

One.

None, 1if the polnts are non-collinear; one, 1f collinear.
Postulate 1. .

a, One line, by Postulate 1.

A B

e -~
v A 4 ot

b. Three lines if the points are non-collinear. There are
three pairs of points, and each pair determines a line,
by Postulate 1.

>

B
’ - /' Ty o

One line if the points are collinear.

A B G

Q> @ O © & o
a. Six: AB, AC, AD, BC, BD, CD.
b. One if D is collinear with A, B, C.

Four otherwise: Kg, Kﬁ, E%, EB.

a. A set of points is collinear if there 1s a line such
that each point of the set lies on the 1line.

58

[pages 53-56]



59

i

A set of points is coplanar if there 1s a plane such
that each point of the set lies in the plane.

b. For each plane there are at least three non-collinear
points which lie in this plane.

“"contains" form.

Given any two different points, they lie on exactly one

line.

Problem Set 3-lc

Infinitely many.

Infinitely many.

One, if the points are non-collinear; infinitely many, 1if
the points are collinear.

The ends of the three legs are always co-planar. The ends
of the four legs may not be coplanar.

Point.

Line.

No. VYes. Yes, Yes, if n > 2,

A set of three or more points is non-collinear if there 18
no line which contains them all.

Yes, if A, B, C are non-collinear,

No, if A, B, C are collinear.

a. A.
b. C.
c. E.

d. Non-collinear, or coplanar.

H €] H G

| |

i F f F

| I

I I

i OR :

|

SR BN S |
//’ /

8 A B

[pages 56-59]
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10.

60 11. a. An edge of the tetrahedron is the line segment

determined by two vertices.

b. six: 1AB, iC, D, BC, BD, TD.

¢. Yes, for example, the edges AB and CD have no point
in common,

d. No. The faces can be paired six ways; each pair has
an edge in common.

12, Seven: ABC, ABE, BCE, CDE, ADE, ACE, BDE,

Problem Set 3-2

John is 111.
Concl: He should see a doctor.

(o))
—
[
»

b. Hyp: A person has red hair.
Concl: The person is nice to know.

c. Hyp: Four points lie on one line.
Concl: They are collinear.

d Hyp: I do my homework well,
Concl: I will get a good grade.

e. Hyp: A set of points lies in one plane,
Concl: The points are coplanar.

f. Hyp: Two lines intersect,

Concl: They determine a plane.
2. a. If two lines are different, then they have at most one
point in common,
b. If a student is a geometry student, then he knows how
to add integers,
c. If it rains, then it pours.

[pages 59-61] 60
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d. If a point is not on a line, then the point and the
line are contained in exactly one plane,

e, If a practice is dishonest, then it is unethical.

f. If two lines are parallel, then they determine a plane.

3. Postulate 1l: If points P and Q are different, then there

i1s exactly one line which contains them.
Theorem 3-1: If lines L1 and L2 are different, they inter-
sect in at most one point.

4, a, No. The theorem places the intersection of two lines
as a condition for the conclusion while not asserting
that any two lines must intersect. The statement in
this problem asserts that two lines must always
intersect.

b. If two lines intersect in a point, then there 1is exactly
one plane containing them.

Before introducing the postulates on separation it may be
well to look back and re-examine the postulates'we already have.
Postulates 1, 5, 6, 7, 8 are similar in that they are purely
geometric and describe how points, lines and-planes lie on or
are "incident with" each other. They are called incidence
postulates. On the other hand, Postulates 2, 3, U4 involve
algebra; they are concerned with propertles of measurement,
and so are called metrical postulates.

The incidence postulates are simple ones that logically
form a natural unit for beginning the course. But peda-
gogically this does not seem attractive, for two reasons. First
the incidence postulates would confront the student with solid
geometry in his first approach to a new subject. Second, the
proofs of the basic incidence theorems (for example Theorems
3-1, . . . , 3-4) involve the indireé¢t method, which causes
difficulty for many students.

To avoid these difficulties we have split off Postulate 1
from the incidence postulates and joined it to Postulates 2,

3, and 4 to form the basis of a beginning unit on.measurement

[pages 61-62])
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in Chapter 2. This makes use of the student!s knowledge of
algebra, and involves, geometrically, only sets of points
contained in a line. Then Chapter 3 discusses the incidence
properties of points, lines and planes and separation proper-
ties. These are non-metrical in character.

The discussion of the preceding three paragraphs suggests
a rather basic theoretical point, namely, the effect on a
mathematical theory of introducing new postulates. The next
few paragraphs use & miniature geometry to illustrate this
basic point of theory. We intend this as interesting background
material for its broad effect, rather than for any lmmediate
application to the text.

Examine Postulates 1, 5, 6, 7, 8. You see that they
include familiar determination and intersection properties of
points, lines and planes in Euclidean solid geometry, and also,
in Postulate 5, a minimal indication of how numerous points
are. You probably have in mind, in any case, that a line and
a plane contain infinitely many points. But this can not be
proved on the basis of Postulates 1, 5, 6, 7, 8. We show this
by exhibiting an appropriate "model" for Postulates 1, 5, 6,

7, 8. The model is a concrete system of obJects which satisfy
these postulates. Expressed differently, we get a model of our
mathematical theory by assigning specific meaning to the un-
defined terms "point," "line" and "plane," in such a way that
the postulates become true statements.

To construct our model, consider
a set of four distinct obJjects,

a, b, ¢, d. For example, we can /
take four dots on a plece of /
paper as indicated in the /
diagram. We can think of o/ \. a
them if we wish as the ~ P
vertices of a triangular ~L
pyramid. Interpret “point" °
to mean any one of the

62
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objects a, b, ¢, d; "line" to mean any pair of these objects;
"slane" to mean any triple of them. Then our postulates are

no longer statements involving undefined or uninterpreted terms,
but become definite statements (true or false) about the objects
a, b, ¢, d. Thus Postulate 1 now says: any two of the obJects
a, b, ¢, d are contained in a unique pair of them. This is
trivially true. Similarly, Postulate 6 says that if a triple

of the objects contains two of them, then it contains the pair
composed of these two. This is also a trivial truth. Similarly
1t can be shown that each of the Postulates 1, 5, 6, 7, 8 is
satisfied when point, line and plane are interpreted in the
given way. In virtue of this the system composed of the four
"soints" a, b, ¢, d, the six "lines" (a, b), (a, c), (a, 4d),

(b, ¢), (b, d), (c, d) and the four planes (a, b, ¢), (a, b, d),
(a, ¢, d), (b, ¢, d) is called a model for postulates 1, 5, 6,
7, 8.

Since the model satisfies Postulates 1, 5, 6, 7, 8 it must
satisfy the theorems which are deduced from these postulates
(using no others), for example, Theorems 3-1, 3-2, 3-3, 3-,
This is easily verified. Now you can see that the principle
that a line contains infinitely many points can't be deduced as
a theorem from Postulates 1, 5, 6, T, 8. For if this could be
done, our model would have to satisfy this principle -- and 1t
doesn't, since each of its lines contains exactly two points.

Now you can see the effect of introducing the metrical
postulates, in particular Postulate 4, the Ruler Postulate.

This guarantees that a line is rich in points, and that its
infinitude of points are arranged on the line and determine
distances in Jjust the way we want for the kind of geometric
theory we are constructing. The introduction of the metric
postulates excludes finite models, of the type we have discussed,
.which do satisfy the incidence postulates. This illustrates the
basic theoretical point we mentioned earlier: in general, as
new postulates are added in a ma-hematical theory, the scope of
its application, that is the family of models which satisfy
thaynostulates, is reduced. See the Talks: The Concept of
ERIC
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Congruence and Miniature Geometries.

Notice that in sets D, E, F there are infinitely many
pairs of polnts such that the segments joining them are con-
talned in the set. The existence of a single pair of points
P, Q such ‘that PQ does not iie in the set is sufficient to
eliminate the possibility of convexity. Thus the union of
the set of points in the interior of a c¢ircle and one point
outside the circle is not a convex set.

Separation properties are not explicitly mentioned or ex-
plained in Euclid or in conventional texts. They appear in
geometry in statements such as, "Consider two triangles which
have the same base and a pair of vertices on opposite sides of
the base." They appear in everyday l1life when we say, for
example, that the town hall and the school are on the same side
of the main highwéy. Notice how the text uses the basic 1idea
of segment to give a precise statement of what is involved in
the separation of a plane by one of its lines. The intuitive
idea of two points being on the "same side" of line L is ex-
pressed precisely by the condition that the segment Joining
them does not intersect L. Notice how the precise formulation
of the separation postulate agrees with our intultive ideas
about separation.

Postulate 10, the Space Separation Postulate, 1is entirely
similar to Postulate 9, the Plane Separation Postulate. The
corresponding result for a line can be proved from the Ruler
Placement Postulate, and was given at the end of Chapter 2 of
the Commentary.

Problem Set 3-3

1. a. Yes. The line segment Jjoining any two points of the
line 1lies entirely in the line.
b. No. There is one segment Joining the two points and it
does not lie in the two points.
¢. Yes,
d. No. Any segment containing the removed point would not

Q -
!;BJ‘Z [pages 62-66]

64



b7

1ie entirely within the set even if its end-points were
within the set.

e. No. For any two points, R and S, of the set the
segment RS does not lie in the surface. (ordinary
3-space 18 considered here.)

f. Yes,

g. No. No. Yes.

h. No. Yes. No.

1. No. Yes., Yes. No.

J. Two. Half-spaces.

No. It is necessary that for every two points, the entire

segment Jjoining them lies in the set.

V only. YV is the only set in which the segment between any

two points is contained in the set.

Yes. Take any two points P and Q in the plane. By

Postulate 6, we know that the line containing these points

1ies 4n the plane. Hence PQ is contained in the plane,

making the set convex,

a. Yes., For any points P and Q in the intersection:

b. No. Points P and Q may be selected as follows:

No. Any segment containing the removed point would not
1ie entirely in the set even if 1ts end-points were in
the sget.

Yes.
[pages 66-6T]
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8. Any figures of the following nature:

CONVEX NOT CONVEX
9. Yes. ‘
10. No.
1l1. a. No. The line separating the half-planes is not con-
tained in the union.
b. No. A large region of the plane is still not covered,
as in the diagram.

Hy —
P
,

P 4

12, a. Two. Half lines.

b. The Line Separation Statement: Given a point and a
line containing it. The points of the line different
from the given point form two sets such that (1) each
of the sets 18 convex and (2) if P 18 in one set and
Q 18 in the other, then the segment PQ contains the
given point.

68 13. A ray has an end-point, but a half-line has no end-point.

66

[pages 67-68]




14,

15.
16.
*17,

*18.

49

No. Yes. No» Yes, Yes.
(#*Three lines can separate a plane into five regions if we
allow two parallels through a point to a line. This would

give:
1
T
ILYA

i .

A'A

L\

However, if we should assume oniy one parallel through a
point to a line, we could not get five regions.

Note that within our postulational system so far
developed we do not know which choice, if either, we will
accept, or which will be excluded.)

Four. Three.

Eight. Four.

Consider the segment PQ Jjoining any two points P and Q of
the intersection. PR is contained in the first set, since
it is convex. PQ is contained in the second set, since it
is convex. By the definition of intersection, the inter-
section contains all points common to the two sets. There-
fore, the intersection contains PQ, and the intersectlon

is a convex set. E

Two possible figures:

H

67
[page 68]
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Review Problems

Yes. No. They may intersect in a point (as the corner of
a room where two walls.and. .the .floor meet).- -Also, -there - - -
may be no point common to all three if there are three
lines each of which is the intersection of two of the
planes.
One plane,
a. If a zebra has polka dots, then it is dangerous, °
b. If a rectangle has sides of equal lengths, then it is

a square,
c. If Oklahoma wins, then there will be a celebration.
d. If two straight lines intersect, then they determine a

plane.
e. If a dog is a cocker spaniel, then it is sweet-tempered.
Each half-plane is conveX. Yes.
From this statement one gets the impression that a plane has
boundaries. To have said, "The top of the table, if it
were absolutely flat and smooth, would give & good idea of
a small part of a plane," would have beer a better state-
ment.
Three non-collinear points,
A line and a point not on the 1line.
Two intersecting lines.
In the set.
Yes,
No. Since L2 lies entirely in plane E, if the two lines
were to intersect, L1 would have to contain some other
point of plane E. This is impossible by Theorem 3-2,

8. One line contains all points of the set.
b, One plane contains all points of the set.
c Yes.

d. Yes.

e Yes.

f. No.

g Yes. 68

[pages 68-69)
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11. Yes, by Postulate T.
12, Yes.

T1lustrative Test Items for Chapter 3

1. If two different lines intersect, their intersection is
. If two different planes intersect, thelr
intersection 1is . If a plane and a 1line not
contained in the plane intersect, their intersection is

2. Which of these regions, if any, is not convex?

d. £

3. Which, if any, of the following can separate a plane?
a. Segment b. Point ¢c. Line d. Ray

4. Pill in the blanks in the statements below on the basis of
the figure shown. TMPORTANT: If none of the points given
satisfies the condition, write NONE in the blank space.

“
A
/c
] / ->l p-
D ]
B
v
Points A, P, and are collinear.
Points D, P, and are collinear.

—————————

Points P, D, B, and are coplanar.
Points C, A, B, and are coplanar.

69



5. Write each of the following statements in "i1f-then" form:
8. Two different lines have at most one point 1in common.
b. Any three non-collinear points l1ie in exactly one plane,
6. Complete:
@. The set of all points in a pPlane which lie on one side
of a given line of the plane is a . .
b. The two sets of points into which a separates
gspace are each called half spaces.
7. How many planes can contain one given point? Two given
points? Three non-collinear points?
8. 1Indicate whether True or False:
a. A 1line and a plane always have at most one
voint in common.
b. Two lines always lie in the same plane.
c. There are lines which do not intersect each
other,
da. If three points are collinear they are coplanar.
e. A point and a line always lie in one and only
one plane.
f. Given two different points A and B. There are
at least two different lines that contain both
A and B. -
g. Every two points are collinear.
h. A 1ine has two end-points .‘
1. _ There 1s a set of four points which 1lie 1in no
Plane.
J. Glven two points, there 1s more than one plane
containing them.
9. State the Plane Separation Postulate in your owm words,
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Answers

A point. A 1line. A point.

d.

c.
B.
None.

a, If L1 and L2 are two different lines then they have
at most one point in common.

b, If A, B and C are three non-collinear points, then. they
lie in eiactly one plane,

a, Half-plane.

b. Plane,

Infinitely many. -Infinitely many. One.

a. F; b. F; c¢c. T; 4. T; e. F; f. F; g. T;

h. ¥ 4. T J. T.
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Chapter 4
ANGLES AND TRIANGLES

High school geometries usually take ‘the notion of interior
for granted. A person is supposed to ¥now from looking at a
figure when a point lies in the interior of an angle, for
example. Most things move along without undue difficulty un-
less somebody raises such a question as: But what reason can
you give to support your claim that point B 1liles in the in-
terior of angle AOC? Such a question can hardly be answered
when there is no formal knowledge from which to reason. This
book provides such formal knowledge by treating notions of
betweenness, order and interlor.

Another way in which this book differs from almost every
othe} text 1s in its careful treatment of angles: their defi-
nition, their separation properties and their measure. This
last is done in a way to suggest an analogy with the measure of
distance presented in Chapter 2.

There is a clear-cut distinction in this text between an
angle and the measure of an angle. An angle is a set of ‘points;
i1ts measure is a number. Such a distinction between the point
set and the number is usually not made in text books, the word
"angle" being used for both.

At the end of this. chapter you will see the beginning of
something that may strike you &s very peculiar. The use of the
words equal and congruent in this book is different from the
common usage, and you should have early advance warning of this,
so as to be ready for it. Near the end of this chapter, it is
explained that if mLZA = mlB, then the angles are called
congruent, and we write L A Y £ B. In Chapter 5 we will give
a similar definition of congruence for segments. That is, if
AB = CD, then the segments AB and TP are called congruent,
and we write AB = CD.
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(Many texts also say that two triangles are equal, as an
abbreviation of the statement that the areas of the triangles
are the same. In this book, this abbreviation will be avoided;’
we shall simply say that the triangles have the same area.)

There is nothing complicated about our terminology, but
you may find it hard to get used to. To avoid trouble which
might otherwise start soon, we recommend that at the earliest
oprortunity you read the talk on Equality, Congruence, and

Equivalence in which we explain what we have on our minds, and
how and why we have departed from the traditional terminology.

In this chapter we have omitted -- rightly, we believe ~--
the proofs and even the statements of various simple and obvious
theorems of a foundational character. Some of these will be
discussed in Chapter 6, but for a thorough logical treatment of
the material of this chapter, see Chapter 5 of Studies II.

71 No matter what text is used, students must be cautioned
that when using three letters to denote an angle, they must
write the letter corresponding to the vertex between the other
two letters.

T2 The three vertices of a triangle are the vertices of the

' three angles of the triangle. To verify the statement that the
angles of AABC are not contained in the triangle, check to see
if the set of points inZ ABC is contained in the set of points
of AABC. If we remember that the set of points in L ABC 1is
the union of two rays, each of which extends infinitely far in
one direction, and the set of points of A ABC is the union of
three segments, then we see that the friangle cannot possibly
contain its angles.

73 We could define the interior of LBAC as the intersection
of the set of points on that side of XE. containing B with
the set of points on that side of K% containing C. This
intersection is diagrammed on page T4.

T4 The interior of A ABC may also be defined as the inter-
section of three half-planes: (1) the side of Kt that con-
tains B, (2) the side of EE that contains A, and (3) the

EI{IIC (pages 71-74)
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side of KB that contains C. A cross hatching of the inter-
section of these half-planes will graphically illustrate that
this region is the same set of points as indicated in the text.

@~ O W

10.

11.

SAJeNTGINES
NpNLONNNGNNEE
IR NLVONANVESN
NS AR S NANR/
b TTERNA WSS

Problem Set U4-1

union, rays, line.

union, segments, non-collinear.
No. AC and KB are line segments, but the sides of LA
are rays.

No. Although the union contains the
triangle, the union also contains
the rest ot the sides of the angles.

C

-t P

A B

Union ofL A and.B
Seven.
LNPR, L NPT, L MPS, L MPT.
L AEC, L CEB, L BED, L DEA.
Eight. L A, LC, L AEC, L ABD, £ CBD,.L ADC,L ADB, LCDB.

L AMB, L BMC, L CMD, L DME, L EMF, L FMA, L AMC, L BMD,
LCME, L DMF, L EMA, (L FMB.

A ABC, A ABF, A BCF, A ACD, A FCD, A AFD, A AGD, A GFD,
A AED, A AEG, A EBD, & ABD, A BCD, A GDC.

a. D, F, M.

b. E, G, H.

[pages T4-T6]
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12; No. No. It lies on the angle itself,

13. -Yes. No. oF

1%, No. o oD
15, Yes. No.

16. a. Yes. D 4is such a point.

b. Yes. E is such a point. ﬁ‘}(A B\\\?7
17. P 4is in the interior of A AERC.
18. a. Yes.
b. Not zgcessarily. P and C could be on opposite sides
of AB.

19. A and C are in opposite half-planes determined by line m.

77 Section 4-2 is not an integral part of the course, and the
information presented in it will not be referred to again in
the text. The material is made avallable to those classes
whose teachers consider it appropriate in the local curriculum.

79 You may wonder, after seeing the m /LA notation, why the
text uses AB instead of mAB in Chapter 2. Actually mAB
does have the advantage of consistency but we do not feel that
this is to offset the advantages AB has: of convenience and
of common usage. AB and AB are different symbols for dif-
ferent entities. So areZ A and mZA. ’

79 It will be noted that in this treatment of measurement of
angles, it 1s understood from the start that the unit of measure

80 4is the degree. This is implicit in Postulate 11, and in_this
respect the Angle Measurement Postulate may seem more satisfy-
ing than Postulate 2 concerning distance, where a unit of
measure was chosen but left unspecified. There is nothing
especially logical, however, about the choice of degree measure
for angles: 1t merely happens to be customary and familiar.

81 You may notice a similarity between the Angle Construction
Postulate and the Ruler Postulate. We again have a one-to-one
correspondence, this time between rays in a half-plane from a
point on the edge of the half-plane and the numbers between O

and 180.
[pages 76-81]
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Some additional mention of the use of the degree sign may
be necessary. When we label figures, as in the figure at the
top of page 80, the degree sign 1s used only to indicate that
the number appearing to the left of it is the degree measure
of the angle, to distinguish from the use of a lower case
ljetter to identify the angle. For example, we may have an
angle of ao, and we must distinguish this from the angle that
could be identified by the letter "a". We may speak of LQAB
as "a 40 degree angle" or we may say that L QAB is an "angle
whose measure (now understood to be degree measure) is 40."

One may ask, "Why even mention the degree once we have estab-
1ished it as our unit of measure?" The reason is that the
degree is not the only unit by which we can measure angles.
There 1s, of course, the radian, which is fundamental to trig-
onometry, and we must be absolutely certain with what unit we
are working.

One difference in this treatment of geometry is that under
our definition of an angle there is no angle whose measure 1s
0, nor is there one whose measure is 180. Since the idea of a
"180° angle" or "a straight angle" has been used in geometry
for so long, it might be a 1ittle hard for us as teachers to
become accustomed to this usage. In thinking of angles as
point-sets it 1s apparent that an angle whose measure is O 1is
indistinguishable from a ray, and an angle whose measure 18 180
cannot be distinguished from a line. Hence, no such "angles"
appear in this treatment. Another reason for not allowing
these special angles is that 1t 1is impossible to determine the
interior of an angle of zero measure oOr of one whose measure
is 180. Incidentally, Euclid nevgz;used "straight angles."”

79,80 Note carefully how the ray AC in the figure on page 79

corresponds to the number 180 and how this can be used to de-
termine the measures of ggper angles as illustrated on page 80.
Note also that the ray AB corresponds to 0. Although we do
not allow the possibility of an angle of 1800, this does not
eliminate the possibility of two angles having the sum of their

J;BJ};‘ [pages 80-82]

IToxt Provided by ERI

76



82

83

84

85

measures equal to 180, and thus we do have supplementary angles.
(See Postulate 1%.)

The phrase "linear pair" will probably be new to you. It
is an easily remembered name that simplifies the statement of
Postulate 14 and some of the subsequent definitions and proofs.
On the other hand, we have not found it necessary to use the
phrase "adjacent angles". Linear pair is easily defined, for
it involves only the notion of opposite rays. The idea of
adjacent angles 1s more complicated, for it involves the idea
of separation in a plane. Two angles are adjacent if they
have a common side and thelr other two sides are contained in
the opposite half-planes determined by the line containing the
common side.

Problem Set 4-3

1. a. 60. g. 25,
b. 30. h. 70.
c. 30. i. 70.
d. 30. J. 90.
e. T0. k. 125.
f. 1s. 1. 100.
2. a. p; b. m; c. q; d. n;
4. The remaining angle has a measure of 50.
5 a. BHG or GHB.
b. BFG or GFB.
6. a. XZY or YZX.
b. XZK or KzX.
c. KzZY or YZK.
d. 180.
7. a =52, b=128, c.= 52.
8. 70% 90°; 144°; 164.5°; (180 - n)°, for 0 < n < 180 ,
n®, for 0 < n < 180, (90 + n)®, for 0 < |n| < 90.
it

[pages 82-85]
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9. T5, 105.
10. 120.
11. 36, 14k,

12. a. One way by the Angle Construction Postulate.
b. Two ways. There are two half-planes in E whose edges
contain KE.

Notice that the definition of right angle precedes any
mention of perpendicularity. Various approaches would have
been possible; the one used seems to be simplest logically, for
it permits lines, rays and segments to be included in one defi-
nition of*perpendicular.

The text points out that a ray or a segment determines a
unique line which contains 1it. When two lines intersect, four
rays are determined. These rays in turn determine four angles.
Sometimes we refer to the angles as angles formed by the lines.
(A mathematical purist might want to replace the phrase "if the
two lines containing the two sets determine a right angle" by
"if the union of the two lines containing the two sets has a
right angle as a subset")

Theorem 4-% could, with proper restatement, be taken as
the definition of right angles. In that case the definition
of right angle actually used in the text would be replaced by
a theorem.

Alternate proof for Theorem 4_7:

Given that —3 and AE are opposite rays, and AB and
KS are opposite rays so that L1 andlL 2 are vertical angles.
Let mL 3 = r. Then by Postulate 14, m,L1 must be 180-r, and
ml 2 must also be 180-r. Tnerefore, mlL1 =mlL2, andl 1 =2,
which was to be proved.
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90

10.

Problem Set 4.4

a. Only one.

b, Infinitely many.

&_Lﬁg LRON and LSON are supplementary and have equal
measures. Therefore, each has a measure of 90, making

3h_| RB.

a. ﬁ and ?{3

b. £ RXB ands SXA.

c. None occur,

d. L RXB and LRXA.
L SXA and L SXB.

a. 80°, da. (90 - x)°, for 0 < x ¢ 90.
b. 10°. e. x°, for 0 < x < 90.

c. 45.5°, £f. (x - 90)°, for 90 < x < 180.
a. 90.

b. us,

a. Two palirs.
b. 70, 110, 110.

c. 90.
r, (180 - r), (180 - r).
m L BGD = 90.

Proof: mZLAGC + mLCGE = 180.

3 mLAGC + § mLCOE = 90.

m4LBGC + mLDGC = 90,

m £LBGD = 90,
If either angle were not acute iis measure would be greater
than or equal to 90. Then the sum ¢f the two angles would
not be 90 so that they would not be complementary as given.
Hence, both angles must have measures less than 90 and by
definition be acute.
Iet the measure of each of the congruent angles be m.
Since they are also supplementary, m + m = 180, 2m = 180
and m = 90. Hence, each angie is a right angle.

[pages 89-90]
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11. m¢£BGD = 90. (Definition of perpendicular.)
mLAGB + mLBGD + m LDGE = 180. (The Angle Addition
Postulate and the Supplement Postulate.)
m LAGB + m LDJE = 90. (Subtraction.)
Therefore, L AGB and LDGE are complementary. (Definition
of complementary.)

91 12. g =c. (Vertical angles have equal measures. )
b+c+d=90. (Perpendicular lines form right angles.)
Therefore, b + g + & = 90. (Algebraic substitution of g

for c.)
90. (Perpendicular lines form
right angles.)
Hence, b + g + d = a.  (Algebraic substitution.)
13. a. False, An exception occurs if Fﬁ lies in the ex-
terior of L AOC.
b. False. An exception occurs if 63 lies in the interior
of L AQC.
(Note to teacher: Point out that one exception is
sufficient to prove a statement false.)
14, 162,
9l 15, a. b,

o
It

e ad
| e e e e

30
~ [pages 90-91]
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Review Problems

1. Protractor.
2. 0, 180.
3. Acute.
4, Linear pair.
5. Complement.
6. Obvtuse.
7. Congruent.
8. Right angle.
9. Congruent,
0. Acute,
11. Union; rays.
12. Non-collinear; triangle.
13. X, T, R3.
1%, 90, 180, supplementary.
93 15. Vertical.
16. a. 110.
b, T0.
-¢. 110.

v

OT

17. a. 130. b, 65. c. 50. 4. 130.
" 18. 65, 115.
19. 15, T75.
20. If both are right angles,
21. Yes, any vertex of the triangle.
22. Not necessarily. The statement would not be true if the
sum were 180 or larger.

94k 23. Yes. See figure on page 57.

81
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2,
25.
26.

27.
28.

29.

30.

31.
32.
33.

95 34,
35.

65

5.

Yes.

Yes.

No.

12,

S and T are on opposite sides of ﬁﬁl

R and T are on opposite sides of ﬁﬁ.

R and S are therefore on the same side of ﬁ?, so that
they are in the same half-plane. Since a half-plane 1is
convex RS does not intersect .

By the Supplement Postulate, L2 is a supplement of L X
and .8 18 a supplement ofly. L 2z =L 8 because supple-
ments of congruent angles are congruent.

Supplements of congruent angles are congruent.

The measure must be between O and 180.

No. Thelgg}nt P must be limited to a half-plane with
the ray XY on its edge.

a. Angle Addition Postulate. b. Supplement Postulate.
No. O may not be between C and D.

82
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Illustrative Test Items. for Chapter &

Indicate whether each statement 1s true or false. "2

a.

b.

A point on. the edge of a half-plane belongs to that

‘half=~plane.

If two complementary angles are ‘congruent, then each: 71'8
a right angle. '

For .every positive number r, there is an angle; LA
such that m/A =

If a point is in .th_e exterior of any one of the: angles.
of a triangle, then it'is in the exterior of the tri-
angle. )
If D 1is in the interior of L ABC, then mZABD + m¢/DBC
= m LAEC, ’

If D is in the exterior of LABC, then m. DBA + mZABC
= m LDBC.

Ir KB and D intersect at 0, then £ AOC 2, BOD.

If mLQ = 100, then/ZQ has no complement.

If a point is in the interior of an angle of a triangle,
it is in the interior of the triangle.

The intersection of two half-planes whose edges have
only one point in common is the interior of an angle.
The interior of an angle is a convex set,

If two angles have the same measure, then they are
vertical angles.

The supplement of (90 - x)° 1s (x + 90)°.

Every angle 1s congruent to itself.

Vertical ungles are never supplementary.
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2. a. In the figure below, there are -a number of triangles.
Five of these trilangles have been listed below. Use
the remaining space to- list all of the other triangles
you can find in the figure. -

B A BAF.

A BFG.

A BCG.

- Y Cc A AEF.

A GCD.

2 3
b. List all of the angles in the figure below.

84 i



c. State the number of different
angles in the given planar
figure.

How many different angies

are there if the three lines
are not coplanar?

How many linear pairs of angles
are in the figure?

3. Multiple Choice. Select the one correct answer.
a. Which of these points is not in the interior of any
angle? S
L, P, H, M, none of these.
- b. Which of these 18. determined
by §§ and §§?
LRST, L TRS,A SRT, L RTS,
none of these. R
¢. VWhich point 1is in the exterior ‘G P
of ARST?
G, R, H; J, none of these.
d. (TOP and L ROS are:
supplementary angles, - Q

Probs. a - c.

perpendicular, °
complementary angles,

vertical angles,

nohe of these. o

90
e. LQOR and/ZROS are: T «—e —o—> R
M 0 N
supplementary angles,
perpendicular,
complementary angles,
vertical angles, s

none cf these.

Probs. d - g.




f.

J.

L QO0S 1s:

a right angle, an acute angle,
a vertical angle, none of these.

a 18 perpendicular to:

fi_'f, 63, ?5, ﬁﬁ, none of these.

ifr KE_[_?Q_E, then:

ml MAN = mL BAT,

m{L MAN = mL TAS,
m/Z MAN = m/ BAM,
m/ MAN = m L BAN,

none of these.

- > ~
If AB | NS, thenl NAB =/ SAB
because:

they are both acute,

they are complements of
congruent angles,

69

they both have the same N«
measure,

they are vertical angles,

none of these.
m/l MAT equals:

180 - 2r, 2r,

180 - r, 180,

none of these.

86
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0
Probs. h - J.
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4, MATCHING. Below are a number of statements or phrases in
one column and a list of words or expressions in the other.
Complete each statement by selecting the proper word or
expression from the right-hand column.

a. An angle with measure less than 90 1s perpendicular
. obtuse
b. The supplement of a 60° angle has right
measure 90
¢. The number of degrees in a right acute
angle 1is . 120
d. Ifz;ABC is a r_§ht angle, then triangle
rays AB and BC are . complement
e. Angles with the same measure are congruent
. 30
f. The complement of a 60° angle has n
measure . complementary
g. If the sum of the measures of two supplementary
angles is 90, the angles are .

h. An angle with a measure of more than
90 1s .

1. The supplement of a right angle has
measure

j. Complements of congruent angles are
If mfLABC + m/L RST = 90, then L ABC 1s
the of LRST.

1. !gg supplgggnt of an acute angle 1s
AB and AC are opposite rays. Ray
is situated so that m/Z CAE = mL BAE.
LCAE 1is a angle.

n. The measure of an angle that 1s twice its
supplement 1s

o. The measure of an angle whose measure 1s
half that of its complement 1s .
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5. ii and i% are opposite rays on the edge of half-plane H.

S and R are points of H such that m/LRXB = 35,

m/ RXS = 90. Make a sketch and answer the following:

a. Name a pair of perpendicular lines in H, 1f any occur.

b. Name a pair of complementary angles in the sketch, 1if
any occur.

c. Name a pair of vertical angles in H, 1f any occur.
Name two pairs of supplementary angles in the sketch,
if two pairs occur.

e. Name two acute angles in the sketch 1f any occur.

f. Name two obtuse angles in the sketch if any occur.

6. Pind mLB in each of the following, wherelB 1is the

supplement of L A.

a. mlLA=30. b. mLA=n, ¢c. mlLA = 45-n,

d. mlLA =120.

7. Pind mLB 1in each of the following, where LB is the com-

plement of L A.

a. mLA=38. b. mLA=1Y49. ¢. mLA=n

d. mLA =n+25,

8. a. If one of a pair of vertical angles has a measure of X,

write the formulas for the measures of the other three
angles formed.

b. If three rays have a common endpoint and two of them
are opposite rays, what 1s the sum of the measures of
the .agles in the resulting figure?

c. H 1is a point in the interior of LRST. mL HST = 10 and
mZ RST = 30. What is the value of m/LHSR?

d. 1If two congruent angles are cupplementary, what kind of
angles are they?

e. If each of two vertical angles has measure 1, what is
the measure of each of the other vertical angles in -
the figure?

f. 1If the difference between the measures of two complemen-
tary angles is 8, what is the measure of each angle?
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1G6.

11.

Sketch two angles such that their intersection 1is a set
of three points.
Is every point in the interior of an angle a point of
the angle?
Given A RST and a point P. P and R are on the
E%me side of ﬁ P and S are on the same side of
Is P in the interior of L RTS?
Is P :_L_g the interior of A RST? -
If the ray AC 1lies 1in a plane, how many rays AB
are there in the plane such that m/Z BAC = 110? Draw
a sketch.

p. In the planar figure it 1s given Q R 2
that AR | BF and that mL QAR =
m/ SAR.
Prove: LPAQ =L SAT.
p< A > T
In the figure EE)_[_E.; For each
of the congruences below state the
theorem which Justifies 1it.
a. LAOB =L DOE. AC
b. LDOF = L BOF. b
c. LDOC ¥ L FOG. ol B
E 0 R
ol e
Y

89



73 °

Answers to Illustrative Test Items for Chapter %

Faise.

1. a. h. True.
b. False. 1. PFalse.
c¢. False. J. True.
d. True. k. True.
. e. True. 1. False.
f. False. m. True.
g. False. (0O may not be between n. True.
C and D.) o. False.
2. a. AABE, ABED, ABCD, AABC, ABAG, ABFC.
b. LX,LY, LZ, LZKN, L ZNK, LXKN, LYNK,
c. 12, 12, 12.
3. a. P, f. a right angle.
b. L TRS. g.
c. G. h. None of these.
d. Vertical angles. i. They both have the
e. Complementary angles. same measure,
j. 180-2r.
4, a. Acute. £f. 30. k. Complement.
b. 120. g. Complementary. 1. Obtuse.
c. ©90. h. Obtuse. m. Right.
d. Perpendicular. 1. 90. n. 120,
e. Congruent. j. Congruent (or o. 30.
5. acute).  ,  yone geeur in H.
b LBXR and LSXA.
¢. None occur 1in H.
d LRXA and LRXB,
LBXS and LAXS.
e. LSAX and LRXB.
£, LSXB and LRXA.
6. a. 150. b. 180 - n. e. (135 +n). d. 60.
7. a. 52. b. 4. ¢t (90 -n). d. (65 -n).
8. a. x, 180 - x, 180 - x. b. 180. e. 20.
d. Right. e. 179. f. 41,49,
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b. No; no point in the interior is a point of the angle.
c. Yes, Not necessarily.

10. a. Two. B,

~N

b. LPAR and LTAR are right angles, by the definition
of perpendicular.
LPAQ and LSAT are complements of congruent angles,
LQAR and Ll SAR.
L PAQ = [ SAT, because complements of congruent angles
are congruent.

11. a. Complements of congruent angles are congruent.

b. Supplements of congruent angles are congruent.

Vertical angles are congruent.




Chapter 5
CONGRUENCES

The treatment of congruence in this chapter will seem un-
familiar to many teachers, but the two Tallks, Equality, Con-
gruence, and Equivalence and The Concept of Congruence, should
be helpful to them. The difference in treatment lies chlefly
in the fact that congruence is regarded here as a special kind

of one-to-one correspondence. Our notation was chosen to show
how the corresponding parts of two triangles are paired with-
out referring to a diagram. Correct use of this symbolism
should eliminate confusion about what the corresponding parts
are in any particular problem.

We have included problems to familiarize students with
the new terminology; the rest of the problems in the chapter
are familiar in type. In this book, as 1in most books, the
students are expected to develop a working knowledge of proof
by working with congruence of triangles.

Students should show progress, while studying this chaptexr
in their abdility to recogn’ze different proofs of a theorem.
The tendency for them to think that a mathematical problem has
only one method of solution should be replaced gradually by
the practice of examining each proof as an example of correct
1ogical reasoning.

The extent to which a proof is detailed is mainly a
matter between the teacher and student. We believe it desir-
able to develop flexibility of methods dependent upon the
problem at hand and the mathematical maturity of the studeris
involved. As the student progresses he should be encouraged
to omit minor steps where understanding is not impaired and
convenience results. For example, if the hypothesis of a
theorem says that M 1s the midpoint of AB, the teacher may
require in the first proofs the student does that AM = MB be
justified in two steps:

ERIC
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99

1. M is the midpoint of &B. 1. Hypothesis.
2. AM = MB. 2. Definition of
midpoint.

As he 1eérns, the student should be permitted to telescope
this into one step by saying AM = MB, by definition of mid-
point (or even, by hypothesis). The important thing is to -
advance the student's growth in the direction of appreciating
and understanding proof.

Ae«->D can be read: Points A and D correspond to
each other, or A corresponds to D.

ABC «>»DEF can be read: The points A, B, and C and the
points D, E and F correspond to each other in the order
named, or briefly, A, B, C correspond to D, E, F.

In this introduction we first develop the intuitive idea
of a congruence between two geometric figures. A congruence
means intuitively that there is a particular way of moving one
figure so that it coincides with another. We proceed, as
quickly as possible, to the idea that a congruence can be des-~
cribed by explaining where each point in a certain finite set
of points is going to go. The idea behind this treatment is
to get the student accustomed to writing down the sets of
matching pairs, so as to prepare the way for the formal mathe-
matical treatment of congruences between triangles.

Two figures are congruent if there is a congruence betwuen
them; that is, speaking informally, if one of them can be moved
80 as to coincide with the other. In this chapter, however,
heavy stress is given to the 1dea of a congruence between two
figures, for there may be more than one congruence possible
between the two. This stress should begin at the very begin-
ning of the chapter. 1In this spirit, it should be made plain
that a problem based on this section is not to be considered
solved if the student has merely determined that two figures
are congruent. The problem is solved only when a particular
congruence between the two figures is exhibited.

For some pairs of triangles there is a unique one-to-one
correspondence between vertices that is a congruence. However,

[pages 98-100]
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7
in the case of a pair of isosceles or equilateral triangles,

if there exists a congruence between them, then there 1s more
than one congruence between them.

Problem ‘Set 5-1

100 ;. ABC > QPR.

DEF © SUT.
DFE <> TSU,
"EDF <> EFD.
UST <> UTS.
KLNO ©> IJGH.

101 5, RFH e ACB.

MXPQ <> LEKW.
DZG € TYL,

3. ARBC<> PNQ.
KXY < IHJ.
GDEF > WRLM.

102 .  AFEG <> WISX.

HIJK <> NRPQ.
CLM e CML,
UZY < UYZ.
CLM < UYZ.
CLM < UZY.

5. a, d.
103 6. b, c, e, g, h.
104 7. ABC <> ABC. ABC © ACB.
ABC © BAC. ARC <> BCA,
ABC ©> CAB. ABC © CBA.

105 g, AmRcD<> ARCD. ABCD <> ADCB.
ABCD <> ECDA. ABCD <> DCEA.
AECD <> CDAB. AECD <> CBAD.
ABCD <> DAEC. ABCD <> BAIC.

ERIC [pages 100-105]
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9, a, Yes. b, Yes. c¢c. No. d. Yes. e. Yes. f. Yes.
g. Not always.
10. (a,d), (c,e).
106 11. ABCD > ARCD,
ABCD € BADC.
ABCD € ICRA,
ABCD +» CDAB, .

12. a. Slide the line to the right or rotate about the point
halfway between A and B. The first of these
motions takes B to C but the second does not.

b. Rotate the line in the plane (or in space) about B.

13. a. If they have the same length.

b. If they have the same measure.
c. Always.
d. If they have the same cadius.
e. If their edges have the same length.
f. Always.
g. Always.
107 14. a. Rotate the circle about its center.
b. Turn the circle over in space, leaving the diameter
containing B fixed.

15. a. Slide the frieze horizontally. There are infinitely
many translations of this type that result in con-
gruences.,

Using the line of the frieze as an axis, rotate the
frieze a half-turn about this axis and then translate
the frieze horizontally. There are infinitely many
motions of this type that result in congruences.

b. Translate horizorntally. Infinitely many. Rotate in
the plane through 180° about a point on the line half-
way between two successive intersections.

Infinitely many.

95
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108 16. (a) and (e). A turn-over is needed.
(b) and (c). No turn-over is necessary.
(a) and (f£). No turn-over is necessary.

17. ABCDE <> ABCDE. ABCDE ©> AEDCB.
ABCDE €> BCDEA, ABCDE <> EDCBA.
ABCDE <> CDEAB, ABCIDE € DCBAE,
ABCDE € DEABC. ABCDE © GRAED,
ABCDE ©> EABCD. ABCDE #>» BAEDC.
109 We now begin to talk about congruence in a careful way in

terms of distance and angular measure. It may be helpful to
restate the definition on this page using symbols:

Definition: Consider angles <A and £B,
ZAS 4B Af mé&A =mdB.
Consider segments AB and CD,
AB =TCD 4if AB = CD.

Since any definition is an agreement that one expression 1is an
abbreviation for another, the sentence " ZA = ZB" may be re-
placed by the sentence "m<£A = m<ZB" and the sentence

"mZA = mZB" may be replaced by the sentence " ZA 2 LB,

A related thing holds for segments. The sentence "AB =t
may be replaced by the sentence "AB = CD" and the sentence
"AB = CD" may be replaced by the sentence "AB = CD".

The question may very well arise as to why we have two
different ays of writing exactly the same thing. If AD = TP
means that AB = CD, why bother to introduce the notation
A ~ 0D? This would be a valid objection if we were talking
about congruence of segments only. But we will be talking
about congruence of segments, angles and triangles; aind while
the technical definitions of congruence are different for
these three cases, the basic intuitive idea is the same. The
basic intuitive idea 1is that two figures (of any sort whatever)
are congruent if one can be moved sSo as to coincide with the
other. In the Appendix on Rigid Notion (4n volume II) this

[MC [pages 108-109)
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basic unity of the 1dea of congruence 1is descrlbed in an ex-
act mathematical form. In the meantime, 1t seems worthwhile
to emphasize this unity by using the same word, congruence,

. and the same symbol, =, whenever the idea--occurs. Notice -

that in the definition of congruent angles and segments the -
i1dea of a one-to-one correspondence does not occur, as 1t does
in the development of the basic idea of a congruence between
two trlangles. The 1dea does appear, however, in the general
definiticn of congruence given in the Appendix on Rigld Motion.
In the table on Page 109 of the text note that the ex-
pressions on the left and right in each line are interchange-

able, but this does not say that we can use the symbols "=

and " = " interchangeably.

111

To help make this clear let us skip ahead and examine
Postulate 15 (The S. A. S. Postulate). "Given a correspondence
between two triangles (or between a triangle and itself). If
two sides and the included angle of the first are congruent to
the corresponding parts of the second trlangle, then the cor-
respondence 18 a congruence." Let us consider the word
"congruent” that 1is underlined above. This may not be replaced
by "equals", since "equals" means "1s the same as", and we
would not be able to talk about two different trlangles belng
congruent. Using "equals" we would be able to talk only about
the identity congruence, which 18 rather uninteresting. In
the statement of the above postulate it is possible to replace
the phrase, "are congruent to" by the phrase, "have the same ‘
measure as."

In the definition of a congruence between two triangles
we see that we must have a one-to-one correspondence between
the vertices of the triangles such that (1) each pair of
corresponding sides are congruent and (2) each pair of corres-
ponding angles are congruent. Conditions (1) and (2) might be
stated in this alternate manner: (1') each palr of correspond-
ing sides have the same length and (2') each pair of corres-
ponding angles have the same measure.

(pages 109-111]
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112 The text shows how to mark dlagrams to indicate which
parts of figures that are known to be congruent in the state-
ment of a problem. Students should be encouraged to mark the
figures they draw for themselves when this practice 1s not
continued in the text. They will soon see that this 1s a very
convenient method of translating the written information to
their figures. As a student's analysis of a particular prob-
lem develops, he may wish to mark additional elements, the
congruence of which he has established by using the given data.
For example, sSuppose that £t 18 given for the following figure
that AEZTFB, AD 2 X0, and mZA = m<£B. The figure 1s marked
accordingly:

Suppose 1t 1s required to prove that O EXF 18 1sosceles.
After the student has proved that AADF = ABCE and that
ZCEB = £DFA, he can put a pair of appropriate marks on these
angles and show visually how much he has accomplished.

112 In answer to the question in the text, "Would 1t be
correct to write AB = DE or Z£A =<£D? Why or why not?"
(Refer to the figure above the question in the text.)

AB = DE 1s incorrect because AB and DE are numbers and
we should speak of them as being equal rather than congruent.
AB = DE 1s correct. If we wish to emphasize the 1dea of a
congruence, we can write a different correct statement,

KB X DE. <A =«D 1is incorrect in this case because ZA 18
not the same angle as £D, but ZA 1s congruent to ZD and we
should write ZA = £D or else mZA = m<D.

J;Bdf;‘ (page 112]
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The text emphasizes the fact that we may use the expres-
sions "AB = DE" and "AB EZ DE"; " LA = /D" and "m<ZA = ml D",
interchangeably. You may decide for yourself which notation
is easier for you to use in a particular problem.

Let us once again, before reaching the S.A.S. Postulate, .
remind the teacher of the careful use of the correspondence
idea in making statemconts about congruence in this text. You
often hear people say that two triangles are congruent with-
out indicating the particular correspondence between the ver-
tices needed to prove the triangles congruent. Thus the state-
ment that AABC and ADEF  are congruent is abbreviated --
without regard to the order in which letters are written --
as OABC ¥ ADEF, or OABC = AFED, or OABC = ADFE, and so
on. These statements about congruence are treated in some
courses as different correct ways of saying the same thing.

This is the idea of congruence that is explained in some
conventional texts, but it is not the idea that gets used. -
Every time we seem to be using the 1ldea that two triangles are
congruent, it soon becomes clear that what we are really using
is the fact that thej are congruent in a particular way; that
is, under a particular correspondence. For example, if we go
on to infer that "“corresponding sides have the same length®,
then we are claiming to lkmow which side corresponds to which
side. That is, what is being used i1s a correspondence between
the triangles. The treatment in this text is based on the
idea that we should talk explicitly about the ideas that we
are really using. The unfamiliarity of this treatment may
make it hard for us as teachers to get used to it. But the
student, at this point, is not used to any formal mathematical
treatment of congruence, and it ought to be easier to teach
him to read what is written on the lines than to teach him to
read between them. As a practical matter, the conventions of
this:chapter for the expression -

OABC = ADER

99
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seem to
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be efficient. It is very easy to read off which

sides and angles are congruent, instead of having to remember

the correspondence without benefit of concise memoranda.
(Refer to the discussion on page 111 in the text.)

Problem Set 5-2

1. M. F. R.
ZR MR.
ZQ. QR.
2. BR = FF. LA S LF.
RA = RF. ZABR = LFBR.. )
RB = RB. ZARB = /FRB.
3. LM =/LF. MR = FH.
ZR = /LH. MR = TW.
LK S LN, RK = .
B, 4R =ZA RQ = EB.
4Q = ¢B. RF = KX.
LF = LX. QF = K.
5. £A = B. iZ = BZ.
LAWZ = ZBwz. AW = BW
ZAZW = £BZW. WZ = TW.
6. OABW = AMKF.
7. AABC = ADEF.
Two triangles congruent to the same triangle are congruent
to each other.
(The student may be permitted to generalize the situation
st11l more by substituting neygure” for "triangle" in this
statement.)
8. a. The triangles are the same size and shape.

b
c.
d

The triangles are the same size and shape.
The triangles vary in size and shape.
A possible idea 1s the statement of Postulate 15

[pages 111-114)
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4
4
e
e

From the pictures and iﬁtuitive development, 1t seems
very likely that OAABC = ADEF under the stated conditions,
and we make this intuitively reasonable idea our Postulate 15.
The usual pfoof of this statement (S.A.S.) involves the
superimposing of one triangle upon the other. This method of
proof 18 not valld under our postulates. It 1s a fact that
the S.A.S. Postulate cannot be proved on the basis of the
preceding postulates.

Here we give the student an example of an "original"
theorem, and explain how one might think of a proof and write
1t out. It 1s well known to mathematicians that proofs must
not depend on information taken from figures. It may seem
odd, therefore, that the examples of proof in Section 5-4
appear to depend on the figires that are given. This 1s not
really true; the use of the figures 1s merely a matter of
convenience, and they have been used because at this rather
difficult stage of his development the student badly needs all
the help he can get.

Al]l valild geometric proofs are independent of figures in
precisely this way. In Studies II, this fact 1s dramatized by
the total omission of all figures. But such a treatment in
the tenth grade would be more than flesh and blood could stand.
And over and above this fact, the use of figures to aid intui-
tion and stimulate the imagination is one of the most import-
ant things that we are trying to teach. Not even the best and
most mature mathematiclans have found a way to live by logic
alone.

In the proof of Example 1 the reason column contains
three definitions, one theorem, and one postulate. There 1s
an implied use in Step 1 of the fact that ﬁH is given

(pages 115-118]
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bisected by AR. Actually some people would write "Given™" as
the reason for Step 1. Others, wishing to avold any telescop-
ing of steps early in the Yyear, might prefer two steps:

T bisects AR at F. Given.

AF = RF ' Definition of bisect.

A 1ist of acceptable reasons for two-column proofs
follows:
Given.
Definitions.
Postulates already set down.
Previously proved theorems or corollaries,
Principles of algebra or elementary logic.
The blanks in the proof of Example 2 can be filled in
with:
2. ZAHB = ZFHB.
4. AAHB = AFHB. By the S.A.S. Postulate.

5. By the definition of congruence
between trilangles.

Problem Set 5-4

1. a, c, e, f, g, h.

2.
1. AC = DC. 1. Given.
2. BC = EC. 2. Given.
3. ZACB = ZICE. 3. Vertical angles are congruent.
4. AACB = AICE. 4., S.A.S. [The teacher may

prefer a full statement of
the postulate at this stage.]

5. 4£B = LE. - 5, Definition of a congruence
between trlangles.
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3.

1. BB = HE. 1. -Given.

2. <£x =4y, 2. Given.

3. AB = FB. 3. From the definition of
midpoint. -

4, OAABR = AFEBH. 4. S.A.S.

5. <ZR = (H. 5. Corresponding parts of
congruent triangles are
congruent.

u.
~&8s 1, AD = BC, 1. Sides of a square have the

same length.

2. AR = BR. 2. Definition of a midpoint.

3. LA T B. 3. Each angle of a square is
a right angle. All right
angles are congruent.

4, AARD ¥ ABRC. 4, S.A.S.

RD = RC. 5. Definition of congruent

triangles.

b. ZADR = 4BCR, ZARD = £BRC (corresponding parts of
congruent triangles) and ZRDC = ZRCD (complements of
congruent angles are congruent).

5.

1. AB = FH. l. Given.

2. mdx =msLg. 2. Given.

3. BH = HB. 3. Identity.

4,  AABH = AFHB. 4, S.A.S.

5. m£A =mdF. 5. Corresponding parts of con-
gruent triangles are
congruent.

6.

1. AB = FB. 1. Given.

2. mZABH = m4Z FBH. 2. Given.

3. BH = BH. 3. Identity.

4 AABH = AFBH. 4. S.A.S.

5 AH = FH. 5. Definition of congruent
triangles.

9~ (page 121)
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7. AH
Oiven: AH and KB bisect each A }
other at point F. \/

- To prove: AFAB = AFHR. 8
1. AF 2 WF. 1. Definition of bisect. ____
¥E = FR. -
2. ZAFB-% (L HFR. 2. Vertical angles are
congruent.
- 7 3. OAFB = AHFR. 3. S.A.S.
8. )
1. AE = DE. 1. Definition of bisect.
CE = BE. -
2.  LCED = ZEEA. 2. Vertical angles are
congruent.
3. OCED £ OABEA. 3. S.A.S.
4, CD = BA. 4, Definition of a congruence
between triangles.
Similar proof for AC = DB.
9.
a. 1. AD = EC. 1. Sides of a square are
congruent. -
2. DF = CQ. 2. Given.
3, AD - DF = BC - CQ. 3. Subtraction.
L, AF + FD = AD. 4. Definition of between. ’
5. AF = AD - FD. 5. Subtracting FD from both
sides of Step &4.
6. BQ + QC = EC 6. Definition of between.
7. BQ =BC - QC 7. Subtracting QC from both
sides of Step 6.
8. AF = Q. 8. From Steps 3, 5 and T.
9, AR = BER. 9. Definition of midpoint.

10. <A = <B. 10. All angles of a square are
right angles and all right
angles are congruent.

11 OLRF = OABRQ. | 11. S.A.S.

12. RF = RQ. 12. Corresponding parts.

[page 122]
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b. Yes, many possible pairs.
F!' and Q' will be two points of ITC such that DF! = CQ"
There are also possibilities on AB.

10.
1. AH = AB, 1. Given. T
2. ZHAF = /ZBAF. 2. Definition of bisect.
3. AF = AF. 3. 1Identity.
4.,  AABF = AAHF. 4, S.A.S.
5. FH = FB. 5. Definition of congruent
triangles.

When dealing with overlapping triangles a person can, as
the text says, avold getting mixed up by writing congruences
down in standard form. Another policy many teachers recommend - -
is that of redrawing figures on scratch paper, separating the
triangles. Thus a person can see the crucial triangles more
clearly if he draws this figure to assist him in dealing with
the figure on page 123.

H H
Mm{ i f >Q
F
A

In the last paragraph of Section 5-5 we explicitly state
the conventions about the information a student may and may
not draw from a figure in solving problems.

A reminder, particularly pertinent in this chapter which
contains 80 many problems: Most students should attempt only
a reasonable sampling of the problems provided. The generous
array is provided so that you may select according to your
class and your own preferences, and so that the very best

[pages 122-125]
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student will not want for opportunity to test his ability and
to discover interesting mathematical relationships.

Problem Set 5-5

125 1.
1. AC = DB. 1. Given.
L ACF = £ DEE.
FC = EB.
2. OACF £ ADEE. 2. S.A.S.
3. AF = DE. 3. Corresponding parts of
congruent triangles.

2. U4, Given.

5. Given.
6. S.A.S.
126 3.

1. HA = FB. 1. The sides of a square are
equal in length.

2, AB = BA. 2. TIdentity.

3. <ZHAB = ZFBA. 3. Each 1s a right angle.

4, AHAB = AFBA. 4, S.A.S.

5. AF = BH. 5. Corresponding parts of
congruent triangles.

4. No. We do have BF = HF (Definition of midpoint) and
since ZABW & ZRHQ we also know that ZWBF = ZQHF
(Suppiements of congruent angles are congruent), but thes2
facts are not enough to prove the triangles congruent.

5.
a. 1. AX = BY. 1. Given.
2. AB = AB. 2. Identity.
3. ZXAB = (LYBA, 3. Each is a right angle.
b, AXAB = AYBA. 4, S.A.S. )
5. AY = EX. 5. Corresponding parts of
congruent triangles.
b. No.
106
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6.
1. r=m, 1. Given.
x=y.
2, r+X=m+yYy. 2. Addition from Step 1.
3. mdHAB = r + X. 3. Angle Addition Postulate.
mLFBA = m + y.

4, mZHAB = m<£FBA. 4, Steps 2 and 3.

5. AB = BA, 5. Identity.

6. AH = BF. 6. Given.

7. AHAB = AFBA, 7. S.A.S.

7,

1. AR_| R, BR_| RY. 1. Given.

2. MZARX = mZYRB = 90. 2. Definition of right angle.

3. mZXRB = mZ£XRB. 3. Identity.

4, mZi4RB = mZXRY. 4, Addition from Steps 2 and 3,
and the Angle Addition
Postulate.

5. AR = RX, BR = RY. 5. Given.

6 AARB £ AXRY. 6. S.A.S.

7. 1B = XY. 7. Definition of congruent
triangles,

127 Here is a striking example of the use of a particular

correspondence to establish a congruence. We merely show that
an isosceles triangle is congruent to itself under a corres-
pondence which interchanges the vertices at the ends of the
base. This is considerably simpler than the traditional
proof.

107
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Proof of Corollary 5-2-1
Every equilateral triangle is equiangular.
Given: O&WABC such that AC = BC = AB.
mo prove: ZA = 4B =£C.
The general procedure i1s to make successive applications of
Theorem 5-1.
Proof': C
If AC = BC then, by
Theorem S-1 we have
mlA = m&B.
If AB = AC then, by .
Theorem 5-1 we have
méB =m&C. .
Therefore, mZA = mZC and, A B
mZA =médB =mdC or
LA T LB =LC.
In the Angle Bisector Theorem the points B and C, the

_auxiliary segment IC and the point D are introduced into

the figure as a part of the proof. We believe their use is
natural at this point. Later, in Chapter 6, we elaborate on
sucn auxiliary sets. You may want to mentlon that dotted
segments are often used for auxiliary segments and should

not be confused with dotted segments used to indicate segments
hidden by & plane in figures involving three dimensions.

You may have noticed that the proof of Theorem 5-3 1is
not complete: we have not shown that D 1is in the interior
of ZBAC, as required by the definition of a bisector. This
omission was deliberate, and similar ones will occur in some
later proofs. Most such omissions will be concerned with
separation properties; that is, with showing that certailn
points lie on the same or on opposite sides of certain lines
or planes, or with showlng that a certain point lies between
two others on a line. These things are all '‘obvious" from
pictures, and their proofs are often long, difficult and un-
interesting. We therefore feel that they should be omitted

[pages 128-130]
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from the exposition in the text. You will find problems in
Section 6-5 to take care of these betweenness matters which
should seem interesting and worthwhile to your strongest
students. ’
In the case of Theorem 5-3, the omitted proof depends on

the following two theorems which are reproduced {rom
Section 6-5, of the text. We suggest that you wait until
Chapter 6 to discuss this with your students.

" Theorem 6-5. If M 1is between A and C on a line L
then M and A are on the same side of any other line that

contains C. :

Y

~

Proof: The proof will be indirect. If M and A are on
opposite sides of L' (in the plane that contains L and L')
then some point D -of L' 1lies on the segment AM. Therefore,
D 1s between A and M, by definition of a segment. But D
lies on both L and L'. Therefore, D = C. Therefore, C
is between A and M. This is impossible, because M is
between A and C. (See Theorem 2-3).

109 -
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- Theorem 6-6. If M 1s between A and C, and B is
<>
any point not on the line AC, then M 1is in the interlor of
ZABC.

Proof: -By the preceding theorem, we lmow that M and A
are on the same side of BC By another application of the
preceding theorem (interchanging A and Cc) we lmow that M
and C are on the same side of KE By definition of the
interior of an angle, these two statements tell us that M 1s
in the interior of <ABC, which was to be proved.

Problem Set 5-6

130 1.
i. Base angles of an isosceles triangle are congruent.
2. The Supplement Postulate.
3. Supplements of congruent angles are congruent.
131 2.
1. FA = FD. 1. Gilven.
2. LA ZLD. 2. Base angles of an isosceles
triangle are congruent.
3. AB=IC. 3. Given.
4.  OAFB = ODFC. L. S.A.S.
5. ZABF = ZICF. 5. Corresponding parts of
congruent triangles.
6. (,FBC = LFCB. 6. Supplements of congruent
angles are congruent.
Q
IERJ!:‘ (pages 130-131]
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1. LEBC = LECB. 1. Base angles of an 1isosceles

triangle are congruent.

2. LABE 1s supplementary
to ZERC. ZICE 1s 2. The Supplement Postulate.
supplementary to ZECB.

132 6.

3. ZEBA = /ECD. 3. Supplements of congruent
- angles are congruent.
1. mZABC = mZACB. 1. Base angles of an 1sosceles
mZDEC = m /DCB. triangle are congruent.
2. mZABC + mZDEC = 2. Addition, from Step 1.
mZ ACB + m ZDCB.
3. mZABD = mZABC + 3. Angle Addition Postulate.
mZ DEC.
mZACD = m LACB +
mZ DCB.
4. £ ABD = ZACB. 4, Steps 2 and 3.
1. mZACB = mZ ARC. 1. Base angles- of an 1isosceles
mZDCB = mZDBEC. triangle are congruent.
2. mZACB - mZICB = 2. Subtraction, from Step 1.
mZABC - mZDEC.
3. mZACD = mZACB - 3. From the Angle Addition
mZ DCB. Postulate. ~
mZABD = mZABRC -
mZDEC.
Y, mZACD = mZ ABD. Y. Steps 2 and 3.
Since CA = CB, %CA = % CB. As X 1s the midpoint of
i, CX = % AC. Similarly, CY = % CB. It follows that

CX = CY. Then ACXY 1s an 1sosceles triangle with base
angles ZCXY and ZCYX. Theorem 5-2 tells us that these
base angles are congruent.

[pages 130-132]
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9.

95

Given: ODABPC with AB = BC = CA.
To prove: <A = B = £C.
A B
1. CA = CB. 1. Given.
2. LA = B, 2. Base angles of an isosceles
triangle are congruent.
3. AB=EC. 3. Given.
¥, LA ZLC. 4. Base angles of an isosceles
triangle.
5. JAT/BECLC. 5. Steps 2 and. 4.
Given: AABC with AB = BC = CA, and P, Q, R ‘the mid-
points of AC, AB and K.
To prove: PR = RQ = QP.
1. AC = CB = BA. 1. Given.
2. %AC = % CB = 1 BA. | 2. Multiplication, from Step 1.
3. CR=RB-= % CB, 3. Definition of midpoint.
] = Q4 = 5 AB,
CP = PA = % CA.
4, CR=RB=BQ =QA = 4, Steps 2 and 3.
‘AP = PC.
5. LC =2 (B = LA 5. Every equilateral triangle
is equiangular.
6. ACRP = ABQR = AAPQ. 6. S.A.S.
7. PR = RQ = QP. 7. Corresponding parts of
congruent triangles.
Given: TQ is a median of AFAB. W | AB. F
Prove: AFAB 18 isosceles.

112
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1. AQ = RQ. 1. Definition of median of a

triangle.

2. £FQA and ZFQB are 2. Definition of perpendicular.

right angles.

3. J4FQA = (FQB. 3. All right angles are
congruent.

b, R = R. 4, Identity.

5. aFA T AFQB, 5. S.A.S.

6. PA = FB. 6. Corresponding parts,

T AFAB i8 isosceles. T. Definition of isosceles
triangle.

132 In Theorem 5-4, the point F! 1s shown between D and

¥, the figure could Just 28 well be drawn so that F is
betwean D and F'.
133 Proof of Theorem 5-5.

If two angles of a triangle are congruent, then the sides
opposite these angles are congruent.
Given: AABC with ZA =/ZB.
To prove: AC = TC.
The general procedure i1s to set up a one-to-one correspondence
between the triangle and itself, indicated by ABC «— BAC,
and to use the A.S.A., Theorem.

In the correspondence CAB<—>CBA ’ C
we see that JA <> /B,
KB <— EE,
LB <> ZA.
A B

Thus two angles and the included side of ACAB are congruent
to the parts that correspond to them. By the A.S.A. Theorem
this means that

OCAB £ ACBA.

EMC [pages 132-133]
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By the definition of a congruence all pairs of corresponding
parts are congruent. Therefore, ’
T =E.

From the definition of 1sosceles triangle, AABC 18 1sosceles.

Proof of Corollary 5-5-1

An equiangular triangle 1s equilateral

Given: OABC such that ZA =B 2.
To prove: AB = I = XC.
The general procedure is to make successive applications of
Theorem 5-5. Of course, you could set udp a one-to-one corres-
pondence and use the A.S.A, Theorem if you wished.
Since ZA = /B, we have from <
Theorem 5-5 AC = X, and
since 4C = /B, we have from
Theorem 5-5 AC = AB.
Therefore, AB = BC = AC.

A B
Problem Set 5-7
133 1. a. Need Za ¥ &b. (S.A.8.). e. Need ER = FR, (A.S.A.).
b. Need BF = BF. (S.A.S.), £. Need XF = XF. (s.A.S.),
or Za % /b, (A.S.A.). or JZXYF SZYF. (A.S.A.).
c. A.S.A, g. Need CXFY SZ&FY. (A.S.A.),
d. Need QR ¥ WR. (S.A.S.), or XY = KV. (s.A.8.).
or ZA =ZM. (A.S.A.).
134 2. a. ZAHB.
b. «AHB, ZABH.
c. EBF.
d. «F, TH or £HBF, HB.
3. a. ZAFB, ZB.
b. AR, RF.
¢c. BB, TR.
d. ZR.
e. RF. 114
f. ZAFB.

EMC (pages 133-13%4]




a. HB, EF.

b. ZAHB, ZHBA.

c. ZHEF, -

d. <HBF, LF.

e. ZA. -

1. BEXTE. 1. Definition of bisect.

2. Za T b, 2. Givén.

3.  £CEG = £EEF. 3. Vertical angles.

4. ACGE = ABFE. 4, A.S.A.

5. CE = TF. 5. Corresponding parts.

6. GF bisects IC. 6. Definition o6f bisect.

1. <B=/cC. 1. Given. )

2. BC = CB. 2. Identity.

3. «£C = {B. 3. Given:

4., AABC = OAACB. 4, S.A.S.

5. AB = AC, 5. Corresponding parts of
congruent trianglig.

Given: AABC with ZA = ZB = ZC,

To prove: AB-= BC = AC.

Proof: The sides opposite <A and £B
are congruent by Theorem 5-5. Hence,

BC = AC. Considering ZC and ZA 1in
a similar fashion, we find that AB = EC.
Therefore, AB = BC = .AC.

Given: AABC. with B = BC = TA.
To prove: AABC = ACAB.

1. 520K and W 2 EB.| 1. Gdven, A —pg

2. /LB T LA, 2. An equilateral triangle 1s
equiangular.

3. AOABC = ACAB. 3. S.A.S.

(This could also be proved using A.S.A.)

{page 135]
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136 11.

12.
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Given: GK bisects JZFGH.
G | FH at K.
‘To prove: AFGH is isosceles.
F K H

1. (FGK = ZHGK. 1. Definition of bisécts.

2. @K = K. 2. Identity.

3. (OKF and ZGKH are 3. Definiticn of perpendicular.

right angles. ’

4, ZGKF = ZGKH. 4, All right angles are
congruent.

5.  OGKF = AGKH. 5. A.S.A.

6. Fa = Ha. 6. Corresponding partzc.

7.  AFGH is isosceles.| 7. Definition of isosceles

T triangle.

1. J/FBH = /RMH 1. Supplements of congruent
angles are congruent.

2. /FHB = /RHM, 2. Vertical angles are
congruent.

3. HB = M. 3. Given.

4., ABFH = AMRH. 4, A.S.A.

5. HF = HR. 5. Corresponding parts.

Yes

1. £RWM = ZSWM, 1. Supplements of congruent
angles are congruent,

2. MW = MW. 2. Identity.

3. J/RMW = ZSMW. 3. Definition of bisect.

4, ARWM = ASWM 4, A.S.A.

5. <R = 8. 5. Corresponding parts.

1. AF = RB. 1. Given. 3

2. BF = FB 2. Identity.

3. AB = RF. 3. Subtraction, from Steps 1
and 2.

4. ZA = £R. 4. @Given.

5. 4x =Ly. 5. Given.

6. LABN = ARFH. 6. A.S.A.

7. AN = RH. 7. Corresponding parts.



14,

15.
*16.

o eem——

—

a. 1. mZAXR =mZEBXF.| 1. Given. =
2. mLRXF = m4FXR.| 2. Identity.
3. mZAXF = mZBXR.| 3. Steps 1 and 2 and the
Angle Addition Postulate.
4, =M. 4, Definition of midpoint.
5. JZA = ZB. 5. Given.
6. AAXF = ABXR. 6. A.S.A. -
7. EF X TR, 7. Corresponding parts.
b. No.
l. ma =mlb,. 1. Given.
2. mlw=mlX. 2. Given.
3. mda+mlw = 3. Addition.
msb + ms. : .
4, mZMKE =mZa + msw.) 4. Angle Addition Postulate.
5. mZMRG = mZDb + mds.] 5. Angle Addition Fostulate.
6. m<ZMKH = mZ MRG. 6. Steps 2, 3, and 4.
7. MK = WR. 7. Theorem 5-5.
8. M S 4M. 8. Identity.
9. AMKH = AMRG. 9. A.S.A.
10. KH = GR. 10. Definition of a congruence
between triangles.
No. Neither S.A.S. nor A.S.A. apply. -
1. mdB=mlT. 1. Given.
2. mZQ =mZS. 2. Given.
3. R = TS. 3. Given,
4, OBRQ = ATRS. 4, A.S.A.
5. QR = SR. 5. Corresponding parts.
6. <£XRQ =ZYRS. 6. ‘Vertical angles.
7. OXRQ = OYRS. 7. Steps 2, 5, 6, and A.S.A,
8. RX = RY. 8. Corresponding parts.
117
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- 137 In Steps 9 and 10 of the proof of Theorem 5-6 we tacitly
assume that H 1lies in the interior of ZABC and the 1lnterior
of ZAE'C. This 18 Justified by Theorem 6-6, the proof of
which appears above.

Problem Set 5-8

139" 1.
’ 1. A =XB. 1. Given. )
2. HF 2 EBF. 2. Given.
3. KF = 1F. 3. Identity.
4.,  AABF = AAHF. 4. s.s.S.
5. LBAF = LHAF, 5. Corresponding parts.
2. '
i 1. B = FH. 1. Given.
H = ¥B.
2. XF = TFK. 2. Identity.
3. OABF = AFHA. 3. S.S8.s.
4, r = 4s. 4, Corresponding parts.
3.
1. A = ER. 1. Given.
™ = AR.

2. AB = EA. 2. Identity.
3. AABR = ABAH. 3. S.S8.8.
4, LH = ZR. 4. Corresponding parts.

140 4. a. S.A.S.—-
b. Cannot be proved .congruent.
c. S.A.S.
d. S.S.S.
e. Cannot be proved congruent.
f. S.A.S.
g. S.A.S.
h. 3.8.S.
1. S.A.S.
j." S.A.S. 118
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5. He can specify the lengths.of three sides, or the lengths
of two sides and the measure of the included angle, or
the length of one side and the measure of the two angles
including it.

6. It is given that AC = BC and ZACH ¥ £BCH, by Theorem
5-2, ZA ¥ £B, so that AACH £ ABCH by A.S.A. Then <£AHC
and ZBHC are right angles, and, by definition, CH_| AB.

7. Let AABC be isosceles with AC = BC, and let CD be the
median to the base. Prove: <ZACD 2 £BCD.

1. AC = BC. ’ 1. Given.

2. CD = CD. 2. Identity.

3. DA = DB. 3. Definition of median of
a triangle.

4, OACD 2 ABCD. 4y, 8.s.S.

5. ZACD = LBCD. 5. Definition of congruent
triangles.

(An alternate proof using S.A.S. is also possible.)

right angles.

FH_| AB. 8. Definition of perpendicular.
(An A.S.A. proof 1is also possible.)

To the Teacher: It seems improbable that any student will

question as to whether the bisector of £AFB will in fact

intersect the base AB. If this question does arise, point

out that in the preceding exercise it was shown that in an

isosceles triangle the median to the base bisects the vertex

angle. Hence, we know that the bisector of the vertex angle

does intersect the base as the figure indicates. General

questions of this sort are discussed in Section 6-4 of

Studies II.

1. AF = BF. 1. Given. .

2. ZAFH = /BFH. 2. Definition of bisector.

3. FH = FH. 3. Identity.

4.,  OAHF = ABHF, 4, S.A.S.

5. AH = HB. 5. Corresponding parts.

6. ZAHF = /BHF. 6. Corresponding parts.

T. ZAHF and ZBHF are| 7. Definition of right angle.
8.

[page 141]
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142 9.
a., 1. AF = IR, 1. Given.
2, TR = TF. 2, Given.
3., RF = TR 3. Identity.
4, OAFR = AERF, 4, s.8.S.
5. LARF = /BFR. 5., Corresponding parts.
b. No.
10.
a. 1. AB = FH. 1. Given,
"2, AH = FB. 2. Given.
3. HB = BH. 3. Identity.
4, AABH = OFHB. 4, 8.S.S.
5, ZFHB = (ABH, 5, Corresponding parts.
6. HK = K. 6. Definition of bisects.
7. ZHKR = (ZBKQ. 7. Vertical angles.
8. AHKR ¥ ABKQ. 8. A.S.A.
9. QK = RK. 9, Corresponding parts.
b. Yes. The intersecting lines iB and 13 determine a
plane in which the other segments and points must lie.
11.
1. AASPZ AOBRQ ¥ 1. S.A.S.
ACQR = ADRS.
2. SP = QR. 2., Corresponding parts.
PQ = RS.
3. QS =8Q 3. Identity.
L, OPQS T ARSQ. 4, 8.s.S.

143 12. The S.S.S. theorem was used as a reason in the proof of
the theorem. However, the very same theorem we are
proving (The base angles of an isosceles triangle are
congruent,) was used in the proof of the S.S.S. theorem,

[pages 142-143]
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*13.

1551y,

15.

The A.A.A. theorem was given as a reason in Step 7. But
in the proof of A.S.A, (Theorem 5-4), the reason for
Step 2 was given as the S.A,S. postulate, which is what
we are trying to prove now. Thus, our reasoning looks
like this: - -

1. Za = 4b, 1. Given.
2., ZARH = ZARB. 2. Supplements of congruent
angles,

3. AR = AR. 3. Identity.

4, Zm = 2w, 4, Given.

5. AARH ¥ AARB. 5. A.S.A.

6. RH = RBE. 6. Corresponding parts.

7. RF = RF. 7. Identity.

8.  ARHF = ARBPF. 8. S.A.S.

9. ZHFR = ZBFR. 9. Corresponding parts.
10. ZHFR and ZBFR are| 10. Definition of right angles.

right angles.

11. AF_| BH. 11. Definition of perpendicular.

Although a lengthy indirect proof is possible, it should
not be expected at this point. After we have proved that
the sum of the measures of the angles of a triangle is 180,
this can be done easily by A.S.A.

121
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16.
1. AW = AB. 1., Given.
2. LA = (A. 2. Identity.
3. HB_| AF, 3. Given.
Ik, mZAYF = mZAHH, 4, Definition of perpendicular
and of right angle.
5. AAWF = AABH, 5. A.S.A,
. 6. FW = HB, 6. Corresponding parts.
17.
1. <AWF = ZRQF 1. Given.
2. mla = % mZAQF. 2. Definition of bisect.
méb = %- mZRQF.
3. mea =mlb, 3. Steps 1 and 2.
¥, T _AR. 4, @iven.
5. mZBFQ = mZHM. 5. Definition of perpendicular
. ané of right angle,
6. FQ = . 6. Identity.
7. ABFQ = AHR. 7. A.S.A.
8. WM. 8. Corresponding parts.

#18. On AF take A' such that AP = A'F.

Thus A CFA' £ A BFA by S.A.S. Hence A'C = AB and
m / CA'F = m / BAF. Similarly, taking H' on ia such
that H'Q = HQ, A WQH! = A RQH, so that WH' = HR and
m AWH'Q =M L RHQ. But HR = AB, 80 WH' = A'C, Since
AC = WH and AA' = HH' we get A ACA' = A HWH! by
S.S.S. This gives m / CAF =m /WHQ and m / CA'F =
m / WH'Q, so that m / FAB = m / QHR. By addition,
m/CAB=m/WHR, Thus AABC S A HRW by S.A.S.
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1. BC = RW. 1. Given.
2. RQ =% RW. 2. Definition of median of a. -
N 1 triangle.
BF = 5 BC.
3. RQ = BF. 3. Steps 1 and 2.
4, AF = HQ. ‘&, Given.
5. AB = CR. 5. Given.
6. OABF = AHRQ. 6. S.S.S.
7. &B={R. 7. Corresponding. parts.
8.  OABC = OHRW. 8. Steps 1, 5, 7 and S.A.S.
*¥20. a. One figure is: A R_$ C
B D
1. AR = CS. ~. Glven.
2. AR + RS = CS - SR.J 2. Addition.
3. AR + RS = AS. 3. Definition of betweenness.
CS + SR = CR.
4, AS = CR. 4, Steps 2 and 3.
i AB = CD. 5. Given.
BS = DR.
6. OABS = ACDR. [6. s.s.s.
T. ZBSA = ZDRC. 7. Definition of ckdng;r'uence
between triangles.
b. No. .
*21. OADB = OGDE, by S.A.S. since AD = GD, BD = ED, and
m<£ZADB = m £GDE.
Hence, AB = GE.
OCAD = AFGD, since AD = GD, CD = FD, m£CDA = m £FDG.
Hence, AC = GF.
ABDC = AEDF, since CD = FD, BD = ED, m LBDC = m £ EDF.
Hence, BC = ED. Therefore, OAEFG = ABCA by S.S.S.
O
EMCQZ. Yes. (page 146]
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26.
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L

O PTG WU & WN

mZRAA = mZ SQA. - 1. Definition. of perpendicular
L and of right angle.
R =5 i 2. Given.
AQ =M. 3. Identity.
ARQA = ASQA. 4. S.A.S.
RA = SA. 5. Definition of congruent
triangles.
AC = iC 6. Identity.
RC = SC. 7. Given.
ORAC = OASAC. 8. s.S.S.
ZRCA = ZSCA.. 9. Definition of congruent

triangles.

Nothing about the distances. Since AVAB is isosceles,
ZVAB = £/VBA; and similarly for the other two pairs.
In this case AAVB = ABVC = AAVC. Therefore,

AB = BC = AC, so that AABC is equilateral, and the
six indicated angles are congruent.

OAAMB = ARMQ by given data, vertical angles, and the
S.A.S. Postulate. Hence, AB = RQ. Prove AQ = RB
similarly, using AAMQ = ARMB.

Six pairs. (AB = RQ, AQ = RB, AC = RX, QC = BX,

BC = QX, AX = RC.)

Still true if figure is not planar.

Four. Twelve.

Yes, all four faces are congruent by S.S.S.
Equilateral triangles.

124

[pages 146-147])

ry



108

Review Problems

138 1. congruent; sides; congruence. _
2. (a) 8S.A.S.
(b) A.S.A., S.A.S.
3. RTS<—> STR, RTS<—»RTS.
4,” S.A.S., A.S.A.
5.

1. AR = RH. l. G@Given.

2. LA =/LH. 2. Base angles of an isosceles.
triangle are congruent.

3. AF = BH. 3. Given.

4, OAAFR ~ AHER. 4. S.A.S8.

5. RB = RF. 5. Definition of congruence
of trilangles.

6.

l. RB = RF. 1. Given.

2. (CRBF = (RFB. 2. Base angles of an isosceles
triangle are congruent.

3. ZABR = (HFR, 3. Supplements of congruent
angles are congruent.

L, AB = HF. 4, Given.

5. OABR = AHFR. 5. S.A.S. .

6. AR = RH. 6. Definition of congruence
of triangles.

119 7. TX. A.S.A. .
8. Yes, approximately.
AABC = AABC!.
A.S.A,
150 9. £8XQ 18 the angle.

1. SX = 3R. 1. Given.

2. 55 bisects ZRSX, or| 2. Definition of angle -

mZRSQ = mZXSQ. bisector.

3. WEWW. 3. Identity.

L. ORSQ = AXQ. L. s.A.s.

5. <R = ZSXQ. 5. Corresponding angles of con-
gruent triangles are
congruent.

O

{pages 148-150)
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10. .
1, LABF and ZRHF are| 1. If two se@ients are per-
~ right angles, : pendicular to each other,
- . the angle determined is a
: right.angle.
2. <x =4y. 2. Given.
3. J4FBQ = ZFHW. 3. Complements of congruent
- -angles -are congruent.
4. QB = WH. 4. Given,
5. FB = FH. X \ 5. Definition of” midpoint
6. - OBFQ = AHFW. 1 6. s.4.8.
11. )
1. <BAH = ZRAH. 1. .Given.
2. AB = AR. 2. Given.
3. AF = AF. 3. Identity.
4,  AABF = AARF. 4, s.A.S.
5. FB = FR. 5. Definition of congruence.
12.
1. RB = RF. 1. Given. ,
2. mZRBF = mZRFB, ‘2, DBase angles of an isosceles
triangle are congruent.
3. BF = FB. 3. Identity.
4, AB = HF. 4, G@iven.
. 5. AB + BF = HF + FB. 5. Addition, Steps 3 and 4.
6. AB + EF = AF, ' 6. Definition of between.
HF + FB = HB.
7. AF = HB. 7. Steps 5 and 6.
8. * AFR = AHER. 8. S.A.S.
151 13.. In A\ ABM and FER, -
1. AB = FB. 1. Given.
2. MB = RB, 2. Given,
3. /mBA ¥ /RFF. 3. Vertical angles.
4., AARM YAFER. 4, S.A.S.
5. AM = FR. 5. Corresponding parts.

{pages 150-151]
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In .@}.AQR and FQM,
6. LA =ZLF and 6. Corresponding parts.
LAMB = £FRB.
7. LARQ = LFMQ. 7. Supplements of congruent
angles are congruent.
8. AR = M, 8. Addition from Steps 1 and 2.
9, AAQR T AFQM. 9. A.S.A.
14,
1. AF = HB, 1. % AH =% AH.
2. LA S/H. 2. Given.
3. AR = HQ. 3. Given.
4, AAFR ¥ AHR. 4, S.A.S.
5. <ZRFA S ZQHH. 5. Definition of congruence.
6. BW = FW. 6. Theorem 5-5.
15.
1. HA = HB. 1. Given.
2. mZHAB = mZHBA. 2. Theorem 5-2.
3. $mlHAB = ZmlHBA, | 3. Multiplication, from Step 2.
4. mZFAB = 3 mCHAB, 4. Definition of bisect.
mLFBA = % mZ HBA,
5. mZFAB = mZ FBA. 5. Steps 3, 4.
6. FA = FB. 6. Theorem 5-5.
16.
1. Z . 1. Given.
ED = TD.
ZE = £cC.
2. AAED ¥ AECD. 2. 8.A.S,
3. &5 ¥ ED. 3. Definition of congruent
triangles.
4, ZDAB = (DBA. 4, fTheorem 5-2.
127
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152 18.

C 111

Given: AABC with
median EX | ¥ and Y, X
median BY | AC.
Prove: AABC 18 equilateral. ,
A D B
1. LZAXB and £AXC. are 1. Perpendicular lines
right angles. _ determine right angles.
2. ZAXB = ZAXC. 2. Right angles are congruent.
3. BX = CX. 3. Definition of median.
4, AX = AX. 4, Identity.
5. OAXB = OAXC. 5. S.A.S.
6. AB 2 AC. 6. Definition of congruent
triangles.
7. BER2E. 7. Proof similar to Steps 1
through 6
8. & ¥ X = AL. 8. Steps 6 and 7. -
9. OAEC 18 equilateral.j 9. Definition of equilateral
triangle.
1. 1B = HE. 1. Given.
2. ZABR = ZHEBF. 2. Vertical angles are con-
gruent.
3. F¥B = RE. 3. Given.
4, AABR = AHBF 4, S.A.S.
5. m&£A =mdlH, 5. Corresponding parts.
m<£ARB = m £HFB,
6. m&MRH = m LMFA, 6. Supplements of congruent
angles are congruent.
AB + BF = HB + BR or Addition, from Steps 1 and
AF = RH. 3.
8. AMRH = AMFA, 8. A.S.A,
9. EM = WM. 9. Corresponding parte
128
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19. Given: OBCD £ AWXY,
D8 bisects ZEDC and
ﬁ bisects JWYX.
Prove: IS =
1. ABCD = AwWXY 1. Given.
2. LB =4W. 2. Definition of congruent
BD = WY. triangles.
LBDC X LWYX.
3 £LBDS £ 4WYT, 3. Definition of bisects and
Step 2.
4 ABDS = AWYT, 4. A.S.A.
5 = 9T, 5. Definition of congruent
triangles,
20.
1. Z£X =Z4Q. 1. Given.
2. XW = QR. 2. Given.
3. WR = RW 3. Identity.
L, XR = QW 4, Addition, Steps 2 and 3.
5. Za =<b 5. Given. ]
6. AXAR T AQMW. 6. A.S.A.
T. XA = QM. 7. Corresponding parts.
8. KX =KQ 8. Theorem 5-5.
9. KA = KM, 9. Subtraction, Steps 7 and 8.
21.
1. mfl + m&3 =m&XJT.| 1. The Angle Addition Postulate.
mZ2 + méh = mZXJIB.
2. mll +m&3 = 2. By algebra from what is
mZ2 + m&h given.
3. mZXJT = mLXJB 3. Steps 1 and 2.
L, JT = JB 4, @Given.
5. JX = JdX 5. Identity.
6. AXJT = AXJB. 6. S.A.S.
7. JLTXI = ZLBXJ. 7. Corresponding angles of
congruent triangles.
8. AXJP = AXJQ 8. A.S.A.
9. 45 =46 9. Corresponding angles of
congruent triangles,
129
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“". 2. Yes. The natural proof, showing APAQ = APHQ holds in
either case.. The congruence postulates and theorems hold
i . for any two triangles, coplanar or not. '
¥53.23. -a. By S8.5.8. AAQP ¥ ARQP, Therefore, ZAQP -Lmr
" Then OAQR % . Am,RbySAS. and RA = RB,
b. No. Yes.

*2L4,  Yes, , . o o .
1. AF = m and BF = ™. L. Definition of trisect. =
2. mZAFB = m{ MFH, 1 2. Vertical ‘angles.
3. OAFB = AHPM. | 3. 8iA.ss : '
4, LA = LFHM. 4. Definition of congruence.
5. AF = FB, 5. Given.
6. FH = FM. . 6. Steps'l and 5.
7. <M = (FHM. 7. Theorem 5-2.
8. <M= A 8 Steps 4 ana 7.
9. AT = MR, 9. Multiplication, Step. 6.
10. AABT = AMTH. 10. S.A.S,

25. Given: RA, FB, RC eachl] KS.
RA = RB = RC.
Prove: SA = SB = SC.

1. £SRA, £SRB, £SRC arej 1. Perpendicular lines
right angles. determine right angles.

2. «SRA S £SRB = £SRC. | 2. All right angles are
congruent.

3. SR = SR = SR. 3. Identity.

4. ASRA Y ASRB = ASRC.%. S.A.S.

5.- SA = SB = SC. 5. Definition of congruent
triangles.

O
‘ 152-1
[MC [pages 15 53]
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*26.

*27.

15408,

*29.

1. APAB = AQAB. 1. Given.
2. AP = AQ, and 2. Definition of congruent
L BAP 2 /BAQ. triangles.
3. AX = AX. 3. Identity.
L, AXAP ¥ AXAQ. 4, Steps 2-and 3 and S.A.S.
5. PX = QX. 5. Definition of congruent
triangles.
1. AH = AF. 1. Construction.
2. AB = AC. 2. Given.
3. <A T LA 3. Identity.
4,  OABH = AACF. 4, S.A.S.
5. ZAHB = ZAFC. 5. Corresponding parts.
6. BF = CH. 6. Subtraction, Steps 1 and 2.
7. FC = HB, 7. Corresponding parts.
8. AFBEC ¥ AHCB. 8. S.A.S.
9. LFBC = (HCB. 9. Corresponding parts.
10. ZABC = ZACB. 10. Supplements of congruent
angles are congruent,
1. OADC = ACEA. 1. 8.s.s. .
2. ZBAC = ZICA. 2. Corresponding parts.
3. OABD £ ACDB. 3. 8.8.8.
y, ZABD = £CDB. 4, Corresponding parts.
5. AABE ¥ ACDE. 5. A.S.A.
6. AE = CE, BE = DE. 6. Corresponding parts.
Draw BC. Then
1. DB = DC, AB = AC. 1. Given.
2. m/ZABC = mZ ACB, 2. Base angles of an isosceles
m ¢£DBC = m £DCB. triangle are congruent.
3. mZABD = m £LACD. 3. Subtraction, Step 2.
4,  ZBAX = LCAY 4, Given.
5. ABAX ¥ ACAY. 5. A.S.A.
6. AX = AY. 6. Corresponding parts.
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I1lustrative Test Items for Chapter 5.

A. 1. Below are listed the 6 pairs of corresponding parts
of two congruent triangles. Name the congruent
triangles.

" B ¥ MK, <A S4M.
B RF. 4B =K.
WY WF. W = £F.

2. Given the figures shown below with AABC = ADEF, and
M between B and C. Write " + " for each of the
following statements which is true. Otherwise,
correct the statement to make it true.

a. AB ¥ DE. e. <LABC = ZABM.
b. <ZA =<D. f. ZABC = ZABM,
c. BC = EF. g. ZC 'l'zF.

d. mlB=nmnlE, ZACB = ZDEF.

WaAN

3. Given the two congruent figures shown, complete each
correspondence in such a way that a congruence results.

a, ABCD <> .
b, BFA€—> ____ .
c. FCD «—>___ .
d. ABFCD<> .

—————

B W
G
F H
) Q
c D S
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4. Given the figure shown, in accordance with the speci-
fications at the left, 1list the data that would cor-
rectly fill the blanks at the right.

a. side, angle, side of AACD: AC,__ , AD.
b. angle, side, angle of OABC: ____, AB, ___ .

D c

A 8

B. 1. Complete the following definitions:

a. Two angles are congruent angles 1if .
b. Two segments 'are congruent segments if .
¢. An triangle is one having two congruent sides.

d. £XYZ 1s bisected by a ray ?5 if S 18 in
and 1f .

e. A segment whose endpoints are a midpoint of one
side of a triangle and the opposite vertex 1s the

of the triangle.

2. In AABC as marked in the figure, CD 1is to
the base of the triangle o
and ZACB 1s the
of the triangle.

A B
3. Indicate whether each of the following 1s true or

false:

a. If AABC = ACAB, then £A = £B.

b. All equilateral triangles are congruent.

¢c. (@iven a correspondence between two triangles such
that two sides and an angle of the first triangle
are congruent to the corresponding parts of the
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second triangle, then the correspondence 1is a
congruence.
d. If ZABC = £XYZ, then the points A, B, and C
coincide respectively with points X, ¥, and 2.
e. An equilateral triangle is isosceles,
If 1ike markings indicate congruent parts, in which of
the following figures can two triangles be proved
congruent? Answer by naming the pair of trianéléa
which can be proved congruent or by writing "none."
In the cases where two triangles can be proved con-
gruent give the abbreviation of the congruence theorem
or postulate which applies (S.A.S., etc.).

a. b.

Y
D
C
A 4 B
1
E w 7 X
c. d.
D
D $ Cc
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2. 1In each of the following, if enough is given to
establish congruence between the two triangles, state
the appropriate reason by writing S,A,.S., S.S8.S.,or
A,S,A, If not, name one other pair of parts which, if
congruent, would enable you to prove the triangles

congruent. D
Given:
a. «£ADB = «cpB, AD = CTD.
b. XB & TH, A B c
u v
¢. UT = ST, VT = RT. A
d. UV = RS, UT = ST.
R s J
e. ' uJFG = fHFG, LHGF = LJGF. F G

f. FJ = FH, JG = HQG.
H

3. State whether or not each of the pairs of triangles
described below can be proved congruent using postu-
lates and theorems we have had.

a. Two 1sosceles triangles with congruent bases.

b. Two equilateral triangles with congruent bases.

c. Two isosceles triangles with congruent bases:and
a base angle of one congruent to a base angle of
the other.

d. Two 1sosceles triangles with congruent vertex
angles.

4, The information given in the statements refers in each
case to the figure. I1If the given information is
sufficient to prove the triangles congruent, write the
abbreviation of the congruence statement which would
be used as a final reason. Otherwise write "not
enough given".
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a. AC = BC, AD = DB,

b, AW, 4 =.2.

c. L1 =42, 43 =/4h,
d. AC = BC, <A =/B.

e. KD = DB, m3 s mlh,
. CD bisects 4C.

TD_| X8, J‘
TD is a median to AB. A D B
AC = BC, TD bisects £C. .

TB_| KB, TS is the bisector of LC.

ZACD = ZBCD, LUAD = £CED.

D bisects 18, IT = TB.

m. <l =Z2, L3 S<L4, (A =B,

Given: <ZRMW = ZSMW.
ZRWK = ZS¥K.

Prove: JZR = /8. M l
-s b

Proof: (Supply the reasons.)
Statements Reasons

P Rt DR M

1. ZMWR is supple- 1.
mentary to LRWK.

ZMWS is supple-
mentary to £SWK.

2, JRMW = ZSMW, 2.,
ZRWK = ZSWK.

3. ZNWR = ZMWS. 3,

4, WW S WW. L,

5. AMWR = AMWS. 5.

€, <R = 8. 6.
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In this figure AB = FH and N C
mix =mlg. 1 T
Show that mZA = mZF. ’

8 ‘ F

Given: AABC, with AC = BC, AF = BH, PF | AB and
™ | BB
Prove: PF = QH. ¢
P o\
A = v B

Given: The figure with.

Cc F
AC = DF,
AB = IE,
CM and ¥P are congruent
A M B D P E

medians.

Prove:  AABC = ADEF.
Given: The figure with
AB = CD,

AD = CB, and
F bisects ED.
Prove: EF = GF.

Prove the theorem that the median from the vertex of
an i1sosceles triangle 1s_the bisector of the vertex
angle of the triliangle.

Prove: Angle bisectors from corresponding vertices
of two congruent triangles are congruent.

Prove: A diagontl of a square blsects 1ts angles.
(Note: The teacher may prefer to supply the drawing
from the answers in order to make lettering uniform.)
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- 4, In the figure,
o Given: (JRTP =/ZXPS, PT = SP
and  /ZPSO = /TPO.
Prove: WT X XP.

Answers
A. 1. OABW, AMKF.
2. a. +. e. “+.. ‘
b. mZA = mZD. £, +. )
or ZA ={D. g. +.
c. +. h. <ZACB ¥ {DFE,
d. +. ‘ or (LABC = /DEF,
3. a. QGSwW.
b. GIR.
c. HSW.
d. QGHSW.

4, a. <DAC. -
b. £CAB, £ZB. (In either order.)

B. 1. a. They have the same measure.
b. They have the same length.
c. Isosceles.
d. The interior of (X¥Z; JXYS = Z2ZYS.
e. Median.

2. Perpendicular, vertex angle.

3. a. True. d. False.
b. False. e. True.
c. False.
c. 1. a. OABD = ACBE: A.S.A.,
b. None.
c. OABD = OCDB: S.A.S.
d. ORCD = OASAB: 8S.S.S.
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2. a. 8S.A.S. (or A.S.A.).
b. AD and €D, or ZABD and /£CBHD.

c. S.A,S,
d. 4V and S, or VI and RT.
e. A,S.A,
f. S.S.8.
3. a. Not necessarily.
b. Yes,
c. Yes,

d. Not necessarily.

4, a, 8S.,S.S. h. Not enough given,
b. S,A.S. or A.S.A. i. S.A.S. or A.S.A,
c. A.S.A, J. A.S.A,
d. Not enough given. k. A,S.A, or S,.A,S,
e. S.A.S. 1. S.S.S. or S.A.S,

f. Not enough given. m. A.,S.,A, or S.A.S.
g. Not enough given.

Reasons
D. 1. 1. Supplement Postulate,
2. Given.
3. Supplements of congruent angles are congruent.
4, Identity. '
5. A,S.A.
6. Definition of a congruence between triangles.
2. 1. AB = FH. 1. Given.
2. mZx =mlg. 2. G@Given.
3. BH = BH. 3. Identity.
4,  OAABH = AFHB. 4, S.A.s.
5. mZA =mdPF, 5. Definition of a congruence
between triangles.
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1. YF | A5, R _| &S,

1. Given.
2. JLPFA TLQHB. 2. Definition of perpendicular.
Any two right angles are
congruent,
3. AT =K. 3. Given.
4, <A = LB. 4, If two sides of a triangle
are congruent, the angles
opposite these sides are
congruent.
5. KF = B ' 5. Given.
6. APFA = AQHB. 6. A.S.A,
7. PF = QH. 7. Corresponding parts of
congruent triangles.
1. AB = DE. 1. Given,
2. TH and ¥P are 2, Given.
medians.

3. M and P are 3. Definition of median.
midpoints of 1B,
m.

4, AM = DP. 4, Step 1 and definition of
midpoint. )

5. CM = FP. 5. Given.

6. AC = DF. 6. Given.

7. AAMC = ADPF. 7. S.S.S.

8. <A Z4D. 8. Corresponding parts.

9. AABC £ ADEF. 9. S.A.S.

Note: A proof in which the final reason is S.S.S.
is also possible if ACMB 1is proved congruent

to AFPE.
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5.

1, AB = CD, AD = CB. 1. Given,

2. BD = RD. 2. Identical.

3. OAABD 5 ACDB. 3. 8.8.S8.

4, ZEDF = £GFF. 4. Corresponding parts.

5. DF = BF. 5. Definition of bisects,

6. LEFD = /QOFB. 6. Vertical angles are
congruent,

7. AEDF 2 AGEF. T. A.S.A,

8. EF = GF. 8. Corresponding parts.

E. 1. G@Given: O ABC is isosceles c
with vertex at £cC.
CD is a median.
Prove: UD bisects CZACB.
A D 8

1. A= |, 1. Definition of isosceles
triangle.

2. XD 2 DE. 2. Definition of median.

3. TD =TD. 3. Identical.

4., AACD = AERCD. 4, s.S.S.

5. £ACD = ZFECD. 5. Corresponding parts.

6. CD bisects ZACB. 6. Definition of angle bisector

(Another way of proving AACD £ ABCD is to showZA > ¢B
and use S.A,S.)

2. QGiven: AQABC & AWXY.
XD and W2 are angle
bisectors.

Prove: A = WZ.
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1. OABC = AWXY. 1. Given.
ZCAB = LYWX. 2. Corresponding- parts.
! ZDAB S <7ZwX. | 3. Step 2, and definition of
angle bisector.
Yy, TB= WX 4. Corresponding parts.
- 5. LB L 5. Corresponding parts.
6. OABD = AWXZ. 6. A.S.A,
7. BD=W2 7. Corresponding parts.
3, Given: ABCD is a square A 8
with diagonal DB.
Prove: DB bisects
ZADC and ZAEC.
D C
1. AB = BC, AD = DC.| 1. Definition of square.
2. DB = DE. 2. Identity.
3. QKD = ACED. 3. 8.s.S.
Y, ZABD = £CBD, }. Corresponding parts.
ZADB = £CDB.
5. BD bisects 5. Definition of bisect.
ZADC and Z£AERC.
L,
1. /RTP = ZXPS. 1. Given,
2, PT = SP. 2. Given.
3.  £PSO = /TPO. 3. Given.
4., ARTP = AXPS. 4, A.S.A.
5. RT = XP. 5. Corresponding parts.
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Answers to Review Exercises

Chapters 1 to 5

1, - 21, - b1, - 61, -
2, - 22, - b2, + 62, +
3. + 23, - ‘ 43, + i 63. -
4, o+ 2k, + b, o+ ) 64, -
5. + 25, - 5, - 65, -
6. + 26. + b6, + 66. -
7. - 7. - 47, - 67. +
8. - 28, - 48, + - 68, -
9. + 29. + hg, - 69. -
10. - 30, - . 50. + 70. +
11, + 31. - 51. - . -
12. + 32. - 52, - 2. +
13, - 33. + 53. + 73. +
4, - 34, - 54, + T4, +
15, + 35. + 55. = 5. +
16, + 36, + 56. + 76. -
17. - 37. - 57. - 7. +
18. - 38, - 58. + 78. -
19. + 39. - 59. + 79. +
20. - 4o, + 60. + 80. +
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Chapter 6
A CLOSER LOOK AT PROOF

One purpose of this chapter is to allow the student,

‘having had some experiencé with proof, to observe the material

of previous chapters as illustrating the. postulational struc-
ture of mathematics. Another purpose is to prove Theorems. 3-2«~
to 3-5;, as promised in Chapter 3. ‘These proofs are used to:
introduce indirect proof and -existence and uniqueness théorems:,
This chapter also discusses questions of betweenriess that were:
avoided in Chapter 5. '

As we pointed out in the Introduction to the Commentary,
this chapter includes material that we believe can be omitted.
by some classes. If your class is composed chiefly of stu-t
dents for whom the material in. Section 6<5 is too abstract,.
1t may be best simply to move on. There is plenty of wortht
while material in later chapters. :

Section 6-1 should be quite understandable to students.
now, particularly if they reread Section 1-2. In general, we
encourage students to direct their attention to the geometric
rather than the algebraic issues involved in proofs since the
student is supposed to be familiar with the fundamentals of
algebra, but is Just learning geometry. For this reason we )
are more explicit in stating geometric principles rather than
algebraic principles as reasons in proofs. The teacher can
use any formulation of algebraic principles that he considers
suitable for his class.

Our viewpoint is that in a first approach to deductive
reasoning, it is desirable to treat logic informally and to
encourage the student to appreciate the nature of logical
reasoning by engaging in 1it. Consequently, we avoid putting
into this text any apparatus of logic- that we can readily get
along without. However, you may wish to mention some relevant
principles of logic yourself. Thus vhen treating indirect
proof, you may wish to refer at the appropriate time to the
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Law of the Excluded Middle, which asserts that either a state-
ment 1s true or 1ts negation is true. This also can be ex-
pressed: a statement must be elther true or false. S

The essential logical principle which is implicit in the
indirect method may be expressed formally as follows: If
statement A 1mplies a false statement, then A 1tself 1is
rfalse. For example, let A be the statement "It is not
raining”. Then A implies the statement, "The people coming
in the door are dry". The latter statement is false, since
the people actually are wet. Thus we conclude that statement
A, "It 1s not raining", is false. You can test other examples
of the indirect method to see that they are applications of
the principle above.

A common type of argument which involves the indirect
method may be put in the following form:

(1) One of the statements A or B 18 known to be true.

(2) A implies X.

(3) X 148 known to be false.

(%) Therefore, A 1is false,

(5) Therefore by (1), B must be true.

Usually (1) will be an application of the Law of the Ex-
cluded Middle, as in "AB = CD or AB # CD", or "today is
Tuesday or today is not Tuesday".

Often (3) will be Jjustified by pointing out that state-
ment X contradicts an accepted principle or a known truth.
For example, if X 18 the statement "Two lines have two
points in common", X 1s false since 1t contradicts Postulate
1. This 1s an illustration of the Law of Contradiction, which.
asserts that a statement and its negative (or contradictory)
cannot both be true. Thus if X contradicts ¥, and Y 1is
true, X mast be false.

Sometimes we encounter an argument similar to the type
described above, in which we have several alternatives, rather
than just two. Thus (1) might have the form: One of the
statements A, Bor C 1is known to be true. Then we would
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proceed to "demolish" the 2lternatives as above. We show that
A implies a false statement and must be false. Similarly we
show B false. Then we conclude that C must be true. A
common example of such an -argument might begin with the state-
ment: AB < CD or AB=CD or AB >-CD.

Some students may be confused by such a statement as: We
suppose something is false in order to prove it true. It may
help to soft-pedal the word "false" and say that if we don't
¥now whether a statement is true, it is reasonable to take 1ts
opposite (or negative) and see what follows from it. Our
approach 1s to explore possibilities, not to say categorically
that the given statement is false or equivalently that its
opposite 1s true.

The very phrase "suppose so and so" may be confusing to
some students. The word "suppose" may suggest to them that we
are supposing it as a fact rather than considering it as a
hypothesis. Remind them that in everyday life we often reason
from premises without knowing that they are true. For example,
when not sure of today's date we might argue 8so: I know today
1s Saturday and I think the date 1is June 15th, but I'm not sure.
If today is June 15th, then June 1st also was a Saturday. But
I remember that June lst was a school day. Therefore, today
can't be June 15th. Sometimes we actually reason from false
premises, as when we argue that if Lincoln had not been shot,
the course of American history would have been such and such;
or that if the ILusitania had not been torpedoed, the United
States would never have entered World War I.

You may be able to help your students by using, in inform-
al classroom speech, such phrases as: Assume for the sake of
argument; Pretend, and see where you end up; Work on the
theory that . . . , and see the kind of Jjam you get into.
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161 1.

162 4,

- A

Problen Set 6-2a
a. My Mother 18 not color blind.
b. My brother 1s left-handed.
c. Jane drank some hot chocolate.
All.
(1) This set 1s not a stainless steel product.
(2) This set 1s a stainless. steel product.
(3) This set will not rust.
(4) This set did rust.
Yy 1s true, z 1s true.

W, u and x are not true. Yes, indirect reasoning is used

in reaching each conclusion,

Let A Dbe "someone 1s a member of the swimming club".

Let B be "someone can play the piccolo".

Let C be "someone 1s a turtle".

Let D be "someone wears striped trunks in the club pool”

Then the problem may be diagrammed this- way:

(1) If A 1s true, then B 1s true.

(2) If B 18 true, then C 1s not true.

(3) If D 1s true, then A 1s true.

(4) D 18 true.
Thé conclusion 1s that "C 18 not true" 1s true. Hence,
in terms of the problem, the conclusion i1s "I.am not a
turtle".
a. Red, white.
b. Yes. A 18 not green. o
£ Given scalene AAEF. To prove

that the bisector of anyrangle,\:

F, 18 not perpendicular to AB.
If we assume that the bisector
of LF is perpendicular to KB,

Q then AAFQ = ABFQ (A.S.A.) and
AF = BF. The assumption that

T 18 perpendicular to AB led to the contradiction that the
scalene AABF 18 1sosceles,

{pages 161-162]
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- 163 Notice from the proofs in Section 6-2 that uniqueness 1is
* usually established by indirect proof. Showing that there 1is
only one of something can be accomplished by showing that
- there cannot be two.

Note that it is possible to establish uniqueness without,
or before, establishing existence. For example, the proof of
uniqueness in Theorem 3-3 can be made logically independent of
the question of existence, as follows: Suppose that there
are two planes containing L and P. lLet Q and R be two
points of L. Then both planes contain P, Q, R which are
non-collinear points. This contradicts Postulate 7. Hence
our supposition is false and there 1s at most one plane con-
taining L and P.

In ordinary life, too, knowledge of uniqueness can be
independent of knowledge of existence. A person with just one
day of his vacation left knows very well that he will not
spend more than one day sailing. But he does not know that he.
will spend that one day sailing.

Existence means tret there is at least one. Uniqueness
means that there 1is at most one. Existence and uniqueness
means that there 18 one and only one, or exactly one.

Problem Set 6-2b

166 1. Yes. Postulates 6 and 7
2. 3. wBandHK WBandTI-? B ana &7,
167 3. 6. AQ and BQ, AQ and CQ, 1< ana %, B ana B4,
- BQ and m, CQ, and DQ
4, PQ and PT are the same line. -
5., Yes. By Postulate 7. ABQ. AB. B.
6. If A, B, C, D are not coplanar, we 1list the planes
ABC, ABD, ACD, BCD. However, if A, B, C, D are coplanap
there is only one plane determined.

J;BJ}:‘ [pages 163-1671
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168

169

Many students may feel that the formal proof of unique-
ness in Theorem 6-1 1s mere hair splitting. For them 1t
probably 1s best not to belabor the point. After they have
had more contact with uniqueness principles they may better
appreciate the point.

Some students may obJect that the uniqueness proof 1s
unnecessarily complicated, that the Angle Construction Postu-
late "guarantees" that there 1s a unique line M 1in plane B
perpendicular to L at P. This 18 not quite correct. The
Angle Construction Postulate asserts that there 1s a unique
ray PY with Y 1in half-plane H such that mZiZXPY 1s 90.
Then line 'ff_LiL. Suppose then we apply the same process to
the half-plane K opposite to H.

Y
R
-« P 8 >L
K

The Angle nggpruction Postulate now asserts that there
is a unique ray P2 with"g' in half-plane K such that
mi XPZ 1s 90. Then line PZ_| L, qugpe of our postulates
or theorems tells us that the lines PY and PZ are identi-
cal. The uniqueness part of Theorem 6-1 takes care of this.
Actually i1t does more -~ 1t proves that no conceivable process
of "construction" or definition can yield a second line per-
pendicular to L at P in plare E,

The question at the end of the paragraph following
Theorem 6-1: Can you i1dentify a uniqueness theorem which has
no corresponding existence theorem? Yes, Theorem 3-1: Two
different lines intersect in at most one point. Theorem 3-2
could be reworded to yield another example: If a plane does
(pages 168-169]
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not contain a line, then the plane and the line intersect in
at most one point.

169 In Theorem 6-2 we have put together in compact form, an
important theorem and converse, by using the languaze of sets.
The theorem and its converse establish a characteristic or
distinguishing property of any point of the perpendicﬁIar
bisecting line of a given segment - that 1is, a property which
holds for, and only for, points of this line. This property
then is a characterigation of the perpendicular bisector as a
set of points., Other such characterization theorems will
appear later.

In Theorem 6-2 note the importance of the restriction that
all points considered lie in a plane. If this restriction is
removed, we get a corresponding result in space: The perpen-
dicular bisecting plane of a segment is the set of all points
that are equidistant from the endpoints of the segment. This
is Theorem 8-7 of Chapter 8. Note that Theorems 8-1 and 8-2
give further "equidistance" properties of lines and planes.

173 Case 2 of Theorem 6-4: U = Q. A p
Use the first 5 statements of Case 1.
6. L RUP = LRUT. 6. Statement 2,
¥ | Q
7. L. 7. Definition of
perpendicularity.
¢+ T
v
S
Case 3 of Theorem 6-4: Q 18 P
between R and U.
Insert a step between steps 2 and 3: R Q U
LPQU £ LTQU. Supplements >L
of congruent
angles.
T

Refer in Reason 6 to the new state-
o ment rather than to Statement 2.

ERIC {pages 169-173]
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Problem Set 6-3

«>
17% 1. EC is the perpendicular bisector of ED and so EB = ED by

_ Theorem 6-2.

2. x=T, y=5, z =10,

3. Since P and M are points which are each equidistant

from A and B, M is

the perpendicular bisector of KB

by Theorem 6-2 and Postulate 1. Then QA = QB by

Theorem 6-2.
y,
l. PT = PR + RT. 1. Definition of betweenness.
2. RT = RQ. 2. Theorem 6-2.
3. PT = PR + RQ. 3. Substituting RQ for RT
in Statement 1.
T. No. Yes.
*8, =

1. AC = BC.
2, mlA=mlB.

- 3. %inLA = %m LB.
4, LDAB ¥ [ EBA.
5. AF = BF.

<>
6. CF is perpendicular
bisector of AB.

*g,

Given: HB bisects /g AHF
ABF

Prove: HB bisects AF.

[pages

1. Given.

2. DBase angles,

3. Division; from Statement 2
4, ¥Prom step 3.

5. If two angles of a triangle

are congruent, the sides
opposite them are congruent.

6. Theorem 6-2 and Postulate 1.

H

and ///////4fy
A F
\j/

8
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1. X =Yy, IPm=s8, 1. Definition of bisect.
2. HB = HB. 2. Identity.
3. A ABH & A FEH. 3. A.S.A. ~
4., HA = HF, BA = BP.| 4. Corresponding parts.
5. HB | AF. 5. Theorem 6-2.
HB bisects AF.
#10.
1. RC = SC. 1. Given.
/ RCA & / SCA.
2. AC = AC. 2. Identity.
3. A RCA & A SCA. 3. S.A.8.
k., RA = SA. y, Corresponding parts.
5. Q is mid-point of 5. Given.
RS.
6. AQ | ®S. 6. Theorem 6-2.

This discuscsion of the introduction of auxiliary sets is
a departure from the conventional treatment. It is important
and deserves attention. Consider how often students assume
they can, by "construction®, justify referring to a line
whose existence has not been proved and which, in fact, may
not exist (see Example 2).

Notice that we say "“introduce” line B or segment PQ
and avoid using such words as "draw" or "construct™. As soon
as we have shown the existence of line “E (or segment PQ)
we have the logical right to reason about it and to derive
properties of it in our geometry. This is independent of
whether we choose to draw or represent it in a diagram. '
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178
179

181

ERIC
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Having proved the existence and uniqueness of a certain
geometric object in our theory, we sometimes ask how it could
be constructed physically from given data using prescribed
operations or procedures. Thus the -discussion of Theorem 6-4
gives a precise description of the construction of the perpen-
dicular to a given line from a given external point using
ruler and protractor. In this instance, the construction is
given before the proof to help the student grasp it.

(Once this important distinction between the common meaning of
"draw" and the meaning of "introduce" described above is es-
tablished with your students, it seems agreeable to use the
term "draw" for convenience. An occasional reminder of the
distinction should be made, however, so that the correct
concept becomes the one suggested by whatever word is used.)

Notice in Section 6-4% that we do not say that auxiliary
segments always are shown as dotted segments. The dotted seg-
ment seems necessary only when the figure becomes so compli-
cated that the method of proof becomes obscure.

If A, C, D and E are non-coplanar in Example 1, the
proof based on introducing TE "does not hold. The proof in
which AC 1is introduced does hold, however.

Problem Set 6-%4

1. 3. cConsider %C. 1. Two points determine a line.

2. AD = CD, 2. Given.

3. mLDAC = m LDCA. 3. Base angles of an isosceles
triangle are congruent.

4, mLDAB = m LDCB, 4, Given.

5. mLBAC = m/LBCA. 5. Subtraction using state-
ments 3 and 4,

6. AB = CB. 6. If two angles of a triangle
are congruent, the sides
opposite are congruent.

This proof does not work if pointé A, B, C and D are not
coplanar. Step 5 would not be valid.
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1. Draw XA. * 1. Two points determine a line,
2. XA = XA, 2., Identical.
4, A YXA =A BAX. 4, 8.8.8.
5. mi YXA = ml BAX, 5. Corresponding parts,
mlL BXA = mL YAX. ‘
6. mi YXO = mL BAO. 6. Subtraction in Statement 5.
7. LY =LB, 7. Corresponding parts.
8. AXOY = A AOB. 8. A.S.A.
*A similar proof is possible if ¥YB is drawn.
Y S
E A
1. Draw EZ and V. 1. Two points determine a line.
2, YE=SA./E&/A. 2, Given,
3. ¥S = 3Y. 3. Identity.
4, AYSA T A SYE, 4, 8.A.S.
5. LYSA =L SYE, 5, Corresponding parts.
154
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4, Y S
E M A
1. Let M be the midpoint | 1. A segment has exactly one
of EA. midpoint.
2. Consider MY and MS. 2. Two points determine a line.
3. EM = AM. 3. Definition of midpoint.
4, LETS LA and 4, Given.
YE = 3K,
5. AYEM =A SAM, 5. A.S.A.
6. M = TN. 6. Corresponding parts.
7. mLMYS = ml MSY. 7. Base angles of an isosceles
triangle are congruent.
8. mLEYM = m/ ASW. 8. Corresponding parts.
9. mLEYS = mL ASY. 9. Addition of Statements 7
and 8.
5. .
1. Consider AD. 1. Two points determine a line.
2. AC = AB. 2. Given. i
CDh = DB.
3. AD = AD. 3. Identity.
4, A ACD £ A ABD. 4, s.s.S.
5.  LACD =L ABD. 5. Corresponding parts.
182 This is very unusual material for a tenth grade geometry

text. We introduce it to indicate that the assertions we make
can be justified from our postulates (without recourse to
diagrams), and to give some typical examples of how we can
logically justify betweenness and separation properties which
usually are read from figures. There are two pitfalls ‘here.
Pirst, it is best not to try to teach this material to stu-
dents who are perfectly satisfied with the proofs as originally

f ol vt
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given. They probably are not yet ready for this kind of
critical thinking and their progress in geometry will not be
impeded by passing on to the next chapter. There is an
opposite danger for the very critical student. He may become
distrustful of diagrams and fail to develop a sound geometrical
intuition. He should be reminded that our theory of geometry
is suggested by physical space, is applicable to it, and that
many theorems can be discovered and most can be appreciated
by the study of diagrams and models. (See Chapter 7, Section
7-1, on making conjectures in geometry.) Point out that a
geometric proof in which one step depends on the diagram,
although not mathematically perfect, 1s still incomparably
superior to what is considered logical in most areas of human
discourse,

Having clarified the basic point in this section we don't
hesitate in later chapters to use the diagram to Justify prop-
erties of betweenness and separation. The complete Jjustifica-
tion of all such properties used 1is still quite difficult and
requires a deeper study of the foundations of geometry. (See
Studies II.)

As we mentioned eariier, you will have to decide how much
time your class should devote to Section 6-5. If you do not
choose to have your class as a whole study the section, your
better students may find that the exposition and the problems
provide excellent supplementary work.

Problem Set 6-5

1. a. Ll B. By Theorem 6-6.
b. L C. By Theorem 6-6.
c. L A,LB, andLC. By the definition of the interior of
a triangle.

156
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185%2. The argument (using the first drawing) depends on the

. assumption from the drawing that E 18 inside . XBC'. 1In
a careful drawing (see below) X will appear on the oppo-
site side of BC!' from E. -

D c

]
CS E c'
A E 8
X

3. The three possibilities are:

a, A 1son L. In this case L intersects both AC
and AB.

186 b. A 18 in Hl' In this case A 18 on the same side of
L as B, and C 18 on the other side of L. In
this case L intersects AC. This follows from the
Plane Separation Postulate.

c. A 1s in H2. In this case A 18 on the other side
of L from B so L intersects AB.

4, a. Since D 1s between A and C, D is in the interior of
L ABC, by Theorem 6-6, and the definition of the in-
terior of an anglg‘iyplies that A and D are on
the same side of BC.

Theorem Q;g’implies that D and F are on the same
side of EC.

fIERJ!:‘ (pages 185-186}
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*6,

a.

c.

141

Since TF intersects AC at D, it follows from the
Plane Separation Postulate that F belongs to H2.
Since BE intersects AG at C, it follows from the
Plane Separation Postulate that E P_glongs to H2
A and D are on the same side of BC because it 1s
given that D 48 in the interior of LABC. Theorem
6-5.
E is in H2 })y the Plane Separation Postulate.
Theorem 6-5. o
Each point of ED with the exception of B 1ies in
H, but no point of EC does. Also, B does not 1lie
on EC.
Each poin;c_ef EC other than E 1ies on the sahe
side of AB as C and D, but each polnt on the ray
opposite -EB with the exception of B 1lies on the
other side of (_1’3 Note that C and D are on the
same side of AB 8ince D is in the interior of

L ABC. -
It follows from Problem 3 that BD intersects either
. or‘_)m. It follows from parts & and b above
that BD does not intersect ET.
Each point of AC other than A 1ies on the same
side of 13, with C and D by Theorem 6-5 and the
Plane Separation Postulate, but each point of the ray
opposite —ﬁﬁ, with the exception of B, lies on the
other side of rB>

Since D is in the interior of L ABC, it follows from the
Angle Addition Postulate that m/ ABD + m LDBC = m/L AEC.
Since all of these measures are positive it is impossible
that elther

(1) mLABD + mLARC
(2) mLABC + mL DBC

m LDBC or
m L ABD.

Since (1) is impossible, A is not in the interior of L DEC.
Since (2) is impossible, C is not in the interior of L ABD.
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188+7. a. D 1les in the plane determined by A, B, C since it
is on the line‘_’g. E 1lies in this plane since 1t 1‘@
on the-line AB,
b. A and B are on the same side of 1&; and C 1s on
the opposite side from A and B, Hence, B inter-
‘a_e’cts AT at a point X between A and C, .
c. BC. ’

8. a. True.
b. True.
c. Ralse,
d. True,

159
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Illustrative Test Items for Chapter 6

1. In A ABF, every point of AF
except and 18 in the ~

F interior of ; __. of the
points of AB 4s in the in-
terior of L ABF.

A B

2. Snow melts at temperatures above 32°, There 18 snow on
the ground and the temperature outside is 40°, Write a
logical conclusion.

3. @Given that PA‘_:-> PB,
QA = QB and PQ meets
EB at M as shown in
the figure. S P M Q
Without using congruent
triangles, prove M 1s
the midpoint of AB. 8

L, In this plane figure there are

two isosceles triangles with.
the same base, AB. i 1B

H and 18 -~ to AB. Every
roint of is from A
and B.

5., 1If, for the sake of argument, you accept the following
hypothesis, which of the following are logical concluaionsé
Hypothesis: Every piece of Alpha candy is delicious.
Conclusions: a. Since this plece of candy is delicious,

it must have been made by Alpha Company.
b. This Alpha caramel is delicious.
¢. Since this piece of candy is not deli-
cious, it could not have been made by

: Alpha Company.
IERJ!: P pany
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10.

F .
= BF, The polints given in the
17T AH = BH. picture are coplanar.
= BK.
Does 1ine FH pass through K?
A 8 If AT = 3, then BT = .
State é theorem which supports
AL your conclusions.
K
FB = AB. F
M = AQ.
WF = WA,
Are W, Q and B necessarily w 8
collinear if these three ‘
points are coplanar? £

Given that A, B, C, F are four non-coplanar polnts, list
all the planes determined by subsets of A, B, C, F.

Prove that the perpendicular bisector of one side of a
scalene triangle cannot include the opposite vertex of
the triangle.

In this figure,

" 1SR T
AX = PX,
m = XBo
Prove: HF = BF and
H QA = QF.
A X F
+8
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Answers

1. A and F; ABF; None.

2., 'The snow is melting.

3. Since PA = PB and QA = QB, P and Q lie 1ln the perpexn~
dicular bisector of KB. Therefore, ﬁ is the perpen-
dicular bisector of AB.

4, Bisects. Perpendicular, Equidistant.

5. b, ¢. .

6. Yes. 3. Theorem 6-2,

7. No. Not unless the entire figure 1s a plane figure.

8. ABC, ABF, ACF, ECPF.

9, Given that A ABF is scalene.

F Assume that FH ocould bisect

X8 and be perpendicular to AB,

Then A AFH = A BFH by S.A.S.

and FA = FB, so A AFB is

isosceles. The assumptions

A H B lead to the contradiction that
a scalene triangle is isosceles,
Hence the assumptions were false.

10, ‘ng 18 the perpendicular bisector of AF. Therefore,
QA = QF. Since XH = XB is given, X 1is the midpoint of
HE and X is its perpendicular bisector.
Hence, HF = BF.
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Chapter 7
GEOMETRIC INEQUALITIES

The material covered in this chapter 18 quite similar to
that found in corresponding chapters of other geometry texts.
The main difference is that we compare two segments or two
angles merely by comparing their lengths or measures. Thus,
although our inequalities describe geometric relations, they
involve only real numbers. This 18 another advantage of our
early introduction of real numbers. Because students do not
always know principles of inequalities well, we restate the
order postulates first given in Section 2-2, giving examples
to show how they are applied.

The idea that a conjecture must not be considered true
until (unless) it has been proved, bears emphasis. To put it
bluntly, a conjecture is a guess. The kind of conjectures we
pay attention to are the shrewd, reasonable ones that are
based upon inductive thinking or insight. But conjectures, no
matter how reasonable they seem, remain guesses until they are
proved. ,

It may be good for your students to be reminded that con-
Jecturing is an important part, even if only the first stage,
of mathematical work. After all, a man who develops new
mathematics often must try to decide what the truth is before
he can present a logical proof of it. There is no reason to
look down on the art of making conjectures. There is, however,
no excuse for confusing guessing with proving.

Goldbach'!s conjecture that every even number 1is the sum
of two primes is a simple non-geometric example that you can
mention. After many generations the conjecture is still not
a theorem.

The example of Section T-1 should suggest two things to
the student. First, he should try to make reasonable conjec-
tures. Second, he should express his conjectures in good
mathematical language. The second goal may be the more aiffi-

O 1t to achieve.

E119
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Problem Set 7-1

1. The opposite sides are unequal in length with the side
opposite tlie largest angle having the greater length.

2. AB+ BC > AC. BC + AC > AB. AB + AC > BC. The sum of
the lengths of two sides of a triangle is greater than the
length of the third side.

3. RS + ST + TQ > RQ. The sum of the lengths of three sides
of a quadrilateral is greater than the length of the fourth
side.

4, It increases.

5. DF > XZ.

D A u

7. From B drop a perpendicular to E at a point D of E. Then
D willlie on some AC and for this AC, m L BAC = m L BAD
is a minimum., If KF is the opposite ray to KB, m L BAF
is a maximum,

8. The procedure does not woi'k since 11 L DAE 15 larger than
either m L BAD or m L EAC. This shows up clearly if
m L BAC is close to 180.

It may be helpful to state the order principles in English
as well as in algebraic symbolism. For example, O-2 may be
stated: If the first of three numbers is less than the second
and the second is less than the third, then the first 1s less
than the third.. Similarly, 0-3 asserts: If the same number
18 added to each of two unequal numbers, the sums are unequal
in the same order. Or 0-3 may be stated: If the same number
18 added to esch side of an inequality, the inequality remains

{pages 190-191}
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true. You recognize that these order principles are essen-
tially the same as the "Axioms of Inequality" which appear in
most geometry texts. The order principles refer to real num-
bers rather than geometric quantities.

Example 6, simple as it seems, 1s quite important and
often used. In many geometric problems it is necessary to
prove a relation suchas a <c or ¢ > a. In the conventional
treatment we refer to a diagram and conclude. ¢ > a by the
principle, "The whole is greater than any of its parts"”.
Ordinarily, we prove a relation like c > a by applying Exam-
ple 6, that 1s, we show ¢ = a + b, where b 1s positive.
(Actually in our applications a, b and ¢ will all be positive.)
We might reword this as, a + b > a when b > 0, since ¢ = a + b.
Even more simply we can say, "The sum of two positive numbers
is greater than either number." Thus, the final justification
is a property of real numbers. An important application of
Example 6 occurs later in Step 8 of the proof of Theorem 7-1.

Example 6. If a + b = c and b is positive then a < c.
Reasons only: S
1. Given. 4, Postulate 0-3.
2. Definition of positive. 5. Substituting ¢ for a + b.
3. Relation between < and >.

Example 7. If a + b<c, then a ¢ - b,

Proof:

1. a + Db <ec. 1. Given.

2. a+ b+ (-b) <c + (-b).2. Postulate 0-3.
3. a<c - b, 3. Algebra.

"Algebra" means here that the principle involved is well
known to the student in the sense that it involves the "field"
properties; that is, the basic properties of addition, multi-
plication, subtraction and division but not order or inequality
properties. He knows that a + b + (-b) = a, and that
¢ + (-b) = ¢ - b. Step 3 also involves substitution.

165
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Example 8. If a < b, thenc - a > c - b for every c.
This may be stated: If unequal numbers are subtracted from
the same number, the differences are unequal in reverse order.

Proof:

l. a<h. : ] 1. Given.

2. a+(c-a-0>b)c<

b+ (c - a-b) 2. Postulate 0-3.

3. ¢ -b<¢c - a, 3. Algebra.

b, ¢c-a>c - b, L, Relation between < and >.
le 10. If x <y and z €< O then xz > yz.

Proof:

1. z < 0. 1. Given.

2. z+ (-z) <0 + (-z), | 2. Postulate 0-3.

3. 0 < -z. 3. Algebra,.

b, -z >o0. L, Relation between < and >.
5. x<vYy. 5. Given. . .

6. x(-z) < y(-z). 6. Postulate O-4.

T. -xz < -yz. T. Algebra.

8. -xz + (xz + yz) < 8. Postulate 0-3.

-yz + (xz + yz)

9. yz < xz. 9. Algebra.
10. xz > yz. 10. Relation between < and >.

We have just proved: If unequal numbers are multiplied
by the same negative number, then the products are unequal in
the opposite order. Actually all the familiar "Axioms of
Inequality” can be derived from the four order postulates.

Step 6 of the proof of Theorem 7-1 tacitly assumes that F
is in the interior of / BCD. This is justified in Problem 4
of Problem Set 6-5. It is probably true that no kind of
mathematlics can be effectively presented in a completely
rigorous form to a tenth-grade class. We should not feel
gullty about teaching tenth-grade students merely as much as
they can learn. The betweenness problem here will probably
go unnoticed by most students. It should be called to the
attention only of very capable and critical students. (Such
students will probably be rare.)

{pages 192-194)
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The formal justification of Step 8 involves an application
of Example 6 of Section 7-2: If a + b = c and ‘b 1s positive,
then a < c. (See the Commentary above.} We have Step 7,

mlL BCD=ml B+ m/l FCD,
and m L FCD 1s positive (all angle measures are positive by
the Angle Measurement Postulate). 'THus, by Example 6
mli Bgmli BCD or m/L BCD > m.g B.
Hereafter we usually apply Example 6 in such situations with-
out explicit reference.

The following lemma usually is applicable in proving an
angle larger than another.

Lemma. If D is in the interior of L ABC, then m L ABC >
m L ABD,

Proof: The argument above applies. By the Angle Measure-
ment Postulate

m L ABC =m/l ABD + m/l CED
and m L ABC > m L ABD by Example 6. -
Similarl} we can prove an analog for lengths of segments.
Lemma. If C 15 bgtween A and B, then AB > AC.

Problem Set 7-3a

1. a. L ACB and L CAB.
b. L FCB.
2. a. L DBC and L EBA.
b. ml DBC >m/l A, by Theorem fll.
c. ml DBC >m/l C, by Theorem 7-1.
d. m/ DBC + m L CBA = 180, by Postulate 1%4.
3. a. %o.
b. 18 greater than 73.
c. 1s equal to 1ll12.
d. 18 less than 112.
e. 1s equal to 30.
f. 18 equal to 90.
g. This 1s impossible, since, by Theorem 6-3, Xg.and'gs
Q are not both perpendicular to .
RIC - (page 195}
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196 4, No, It 18 not true for the exterior angle at each of the
other vertices. Another exception 1s a rectangle.

*5. By the Supplement Postulate, a + w = 180. But b < w, by
the Exterior Angle Theorem. Adding a to each side of this-
inequality, we get a + b < a + w which becomes a + b ¢ 180,

-~ - which.was. to be proved. Similarly, b + ¢ < 180 and _

. a+ ¢ <180,

*6. Given: A AEC with AT & X,
To prove: m/l A < 90.
mlB < 90.

Proof: By the previous
problem we have | / —
mli A+ml B< 180, |
But the base angles of
an isosceles triangle are congruent, so 2(m L A) < 180,
and mL A < 90. Also, m/Z B < 90, since the measures of
the base angles are equal,

A B

197 The S.A.A. Theorem usually is proved after the Parallel
Postulate 1s introduced, since it follows readily from the
theorem that the sum of the angle measures of a triangle 1s
180. Since the S.A.A. Theorem does not depend on the Parallel
Postulate (Chapter 9) we introduce 1t here and can apply it
whenever needed.

An S,S.A. theorem also holds when the angle 1s an obtuse
angle, but there 1s little value is bringing this fact to the
attention of a class. Outstanding students might enjoy proving
the fact, however,

Problem Set 7-3b

199 1. Since AQ = By, L QBA =/ QAB.
Also AB = AB and L H=[ F. Therefore, A ABH = A BAF

by S.A.A,
168
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2.
1. AB = HF. 1. Given,
2., BF = BF, 2. Identity.
3. AF = HB, 3., Addition, Steps 1 and 2.
L, & K and Q are 4, Definition of perpendicular
- right angles. .. . .| .. ...lines. .
5. AK = HQ. 5. Given.
6. AAKF =A HQB. 6. Hypotenuse - Leg Theorem.
7. KF = QB. 7. Corresponding parts.

3. APFAH ¥ A AFX by Hypotenuse-Leg .Theorem, hence
L BFA % L FAB, Therefore, FB = AB.

F A

B -
— > - >

Given: HB | AF, QA | BF, HB = QA.
Prove: A FAB 1s isosceles.
Since AB = AB, A ABH A BAQ by Hypotenuse-Leg, Theorem.and. - ..
so L HAB & [ QBA. It follows that FA = FB and A FAB"1s
isosceles.

5. L AKP = L ABQ (Supplements of congruent angles),

LA=L A AQ = AF. Hence, A AQB = A AFK by S.A.A,

Then QB = FK,

6. Since L a2 Lc, AB= FB. Also in A ABH and FEH
B = B, and & BAH and BFH are right angles. Therefore,
these triangles are congruent by the Hypotenuse-Leg Theorem
Hence, AH = FH.

200 In the proof of Theorem 7-4, Statement (3) involves
Example 6 of Section T7-2. (See comment above on Theorem 7-1,

69
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One frequently sees Theorem T-4 proved by the following
method:

Given: A ABC with AB > AC.

To prove: m/ C > ml B.

Take D, between A and B, such that AD = AC. Bilsect L A,‘gnd
let E be the intersection of the bisector with the line BC.
Show that A ADE <A ACE, by the S.A.S. Postulate. It follows
that m L ADE = m L ACE. By the Exterior Angle Theorenm,

ml ADE > ml DBE.
Therefore, m L. C > m L B, which was to be proved. .
This proof tacitly assumes that théﬁ%isector of L. A really does
intersect EE in a point between B and C. See Problem 5 of
Problem Set 6-5 for consideration of this matter.

Problem Set 7-3c¢

1. G. LK
2. G,
3. 40,
iB.
b, ML > KL.

ML < MK.

KL > ML > MK.

None.

ML > KL, and ML > KM.
ML > KM and ML > KL.

5. In A ABC, AC is the longest side, since 1t 1s opposite the
angle with the greatest measure. In A ADC, AD is the
longest side, for the same reason. Therefore, AD > AC
and AD is the longest of the five segments.

170
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¥, kB, KC.

(Note to the teacher: You may expect to get a reaction
from the student, to the effect that the flgure 1s incor-
rect, sincemlL A +mlL B+m/L C < 180. This 1s a fine
opportunity to point out that we cannot prove, on the.
basis of the postulates given so far, that the sum of the

measures of the angles in a ‘triangle 1s 180.. When. we..get ..

to the Parallel Postulate in Chapter 9, we will be in a
position to prove the angle sum theorem. In any case,

given the hypothesis that such a triangle exists, we can
assert the conclusion that 1ts sides are ordered in the

given manner.) c
Given: AF 1s the shortest side.
TB 1s the longest side. g 8

To prove: m /L CFA > m /L CBA.

1. InA ABF, AB > AF. 1. Glven.

2, mlL BFA > ml APBF. 2. Theorem T-4.

3. InA BCF, CB > CF. 3. Gilven.

4, mlL CFB > mL CEF. I, Theorem T-%4.

5. mlL BFA +m/ CFB > 5. Adding Steps 2, 4.

ml ABF + mlL CBF.

6. mlL CFA > m/ CBA. 6. Step 5 and the Angle-

Addition Postulate.
F'

Given: FA = FB.
A 1s between H and B.
To prove: FH > FB.

dLB g
1. FA = FB. 1. Given.
2. mlL FAB=m/l B. 2. Base angles of an 1sosceles
triangle are-congruent.
3. ml FAB > ml H. 3. Theorem T7T-1.
4, mlL B>m L H. 4, Steps 2 and 3.
5. FH > FB. 5. Theorem T-5.
171
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9. a. If a team can win some games, 1t has soine spirit.

b, If two angles are congruent, they are right angles.

¢. Any two supplementary angles are congruent,

d. The intersection of two half-planes is the interior of
an angle.

e, If Joe 1s seriously 111, he has scarlet fever.

f. If a man lives in Ohio, he lives in Cleveland, Ohio.

g. If two triangles are congruent, then the three angles
of one are congruent to the corresponding angles of
the other.

h., 1If the sum of the measures of two angles is 90, the
angles are complementary. -

Statement Converse Statement Converse
a, F T e. T F
b, T F £r. T F
c. F F g. F . T
a, T F h. T T

10. No. The converse should be, "If I will be burned, I hold
- & lighted match too long." The hypothesis does not con-
tain "1f", and the conclusion does not contain "then'.
1l. a, No. 9b, 94, 9e, 9f,
b. Yes. 9a, 9g.

206 Note that the distance between a line and a point 1is a
numbei*, Theorem T7-7 really involves three inequalities:
(1) AB + BC > AC, B

(2) BC + AC > AB,
(3) AC + AB > EC,
A C

The text proves (1), and this 1s sufficient since a
relabeling of the figure will give (2) and (3).

.‘1.'72 -
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Problem Set T7-3d

AT and AF. AT and TF.

The statement of Theorem 7-6.

HB < HA < HF. The statement of Theorems 7-6 and 7-5.
3’ 130

k- J<x< k+ .

5.

209 *7.

1. DB < CD + CB. 1. The sum of the lengths of
DB < AD + AB. two sides of a triangle 1s
CA < CD + AD. greater than the length of
CA < CB + AB. the third side of the

triangle.

2., 2DB + 2CA < 2CD + 2AD [ 2. Addition.
+ 2CB + 2AB,

3. DB+ CA <CD+ AD + 3., Division.
CB + AB.

1. If the points are noncollinear, the inequality follows
from Theorem 7-T.

2. If the points are collinear, then either (1) B is on
the segment AC, in which case AB + BC = AC, or (2) A
is between B and C, in which case BC > AC, so AB + BC
> AC, or (3) C is between A and B, in which case
AB > AC, so AB + BC > AC.

—eer

7 S
A B C B A C A C B

Case 1. (n = 3). We know from the preceding problem
(Problem 6) that the result is true in this case; that is,

AjAy + Aghg > AjAs.

Case 2. (n = 14).

1. AlA2 + A2A3 + A3Ah-2 AlA2 + A2Ah because it follows

from Case 1 that A2A3 + A3Au_2 AAy.

2. A1A2

3. AA, + MMyt Ay > A A, follows from Steps 1 and

+ AQAAAZ AIAM by Case 1.

2.

173
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General Case (n is arbitrarily large).

1, We continue as in Cases 1 and 2 to show that
A1A2 + A2A3+ seceve + An_2 An-l-z AlAn-l’

2. AA L4 AL, Ay 2 AJA, Dy Case 1.

3. A A2 AA - AA,_, by Step 2.

R Iy WY NI WY S Y WA

from Steps 1 and 3.
*8, XA + XC > PA + PC except when X is on the segment AC, in

which case the equality sign holds. Similarly,
XB + XD > PB + PD except when X is on ED, in which case
equality holds. Therefore,XA + XB + XC + XD > PA + PB
+ PC + PD except when X 1s on AC and also on BD, and
this can happen only if X P, which is excluded by
hypothesis.

The result also holds if X is not in the plane of
A, B, C and D.

*9, Consider the reflection Q' of Q with respect to m. Then
m 1s the |-bisector of QJ' and intersects QX' at a point
which we call M. The point Ron m to make PR + RQ a
minimum is the point where ¥Q! intersects m.

let S be any point of m other than R. If S ¥ M, then
A SMQ' ¥ A SMQ by S.A.S. SQ!' = 8Q, so PS + SQ = PS + SQ!.
If S = M, then again PS + SQ = PS + SQ!.

In A PSQ', PS + SQ > PQ' = PR + RQ! = PR + RQ.
S.PS +3SQ > PR + RQ,

210 The proof of theorem 7-8 is among the harder ones; you
may want to skip it and merely authorize the use of the
theorem in solving problems,

Q We have assumed properties from the diagram without for-
FRICmal justification. This will be done often hereafter as we
e {page 210} 174
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indicated in the Commentary at the end of Chapter 6. The
proof in the text tacitly assumes that K, M, C are noncollinear.
The proof applies to the case indicated by the left-hand figure
below a8 well as to that shown in the text. If K, M, C are
collinear (see right-hand figure below), then B, K, C are
collinear and X lies between B and C. Thus BC > CK and since
CK = EF we have BC > EF.

B
B K M
Y%M / i K
A C A C
211 Proof of Theorem T7-9.

Restatement: Given A ABC and A DEF. If AB = DE, AC = DF
and BC > EF, then m{L A >m L D.

B "
/\ E
A H- c D ) F
Proof: Since m.l A and m L D are numbers, there are
only three possibilities: (1) mL A=mL D (2) m L A<mLD,
and (3) mL A>mL D.
(1) If mL A=mL D, then A BAC A EDF and BC = EF.
This contradicts the hypothesis, therefore 1t 1s
impossible that mL A =m L D.

(2) If mL A <m LD, then BC < EF by Theorem 7-8. The
last is false. Therefore, it 1s impossible that

EMC {page 211}
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mlL A<mlL D,
Only possibility (3) remains, and the theorem is proved.

Problem Set 7-3e

212 1. If two triangles have two sides of one congruent to two
sides of the other, the third side of the first is longer
than the third side of the second if and only if the
included angle in the first is larger than the included
angle in the second.

2. In A ACD and BCD, AC = BC, DC = DC and ED < AD, and so
mli x >ml y by Theorem 7-9.

3 1. RA = RF, 2. Given.
2. RB = RB, 2. Identity.
3. mlL ARB < ml ERF, 3. Given.
4, AB < BF. 4, Theorem 7-8.
% 5. Ra = RF. "1, Definition of medien,
2. RB = RB. 2. Identity.
3. mlL FRB > m.L ARB, 3. Supplement Postulate.
4, FB > AB. 4, Theorem 7-8. '
5. miL A>mlL F. 5. Theorem T-4.

5, In B ACQ and BCQ, AQ = R,
CQ = CQ and BC > AC. Then
by Theorem 7-9 L CQB > L CQA.
Since the two angles are
supplementary, L CQB 1is
obtuse, A

Q B

213 6. In A AHF and FQA, FH = AQ, AF = AR, and AH > FQ,
Therefore, by Theorem 7-9, m L AFH > m/ FAQ. Then in
A ABF, AB > FB by Theorem T7-5.

Given: QR = QT, SR = ST. 176
Prove: m/l RQT > m L RST.

{pages 212-213}
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RS > RQ, ST > 1Q. S
ml 1l>mL 3, A
mlL 2>ml 4,

mlL RQT > mL RST.

R T
Q
8. 1. AB = FB. 1. Definition of median.

2. BH = HH. 2. Identity.
3. mlL ABH > mL HBF, 3. Given.

(or, m L HBF > mL ABH.

See below.)
uo AH > F}Io u. Theorem 7"8.
Also, if the median were drawn so that L ABH <L FHi,
then AH < FH.
Alternate Proof: Assume that HA = HF. Then A AHB = A FHB
by S.5.S., so L ABH ¥/ FBH and B | AF. This contradicts
the given information, so that HA # HF.

-9.

1. AB > AC. 1. Given.
2. L ACB > L AEC. 2. 'Theorem T-i.
3. In A ECD and A FEC, 3. Given

FC = DB.
4, ¢B = CB. 4, Identity.
5. FB > CD. 5. Theorem T-8.

214 In reading Section T-4, consider the following. A

blasting worker may ask for more soup at 11 a.m., and mean
nitroglycerine., He may ask for more soup at noon, and mean
food. If confusion could arise in-any given case, he would
be explicit. His listener will normally interpret his
language in light of the circumstances. Likewise, the fact
that the context usually points to the proper meaning of

O 1titude makes the use of the word for three different ideas

{pages 213-214}
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216

permissible, and perhaps even desirable. .

Problem Set T7-4

1, a., An altitude of a triangle is the perpendicular segment
Joining a vertex of the triangle to the line that
contains the opposite side,

b, A median of a triangle is a segment whose end-points
are one vertex and the mid-point of the opposite side.

3. They are the same segments and hence have the same length.

a>t, b>r, ¢ > 8 by Theorem 7-6, and a+b+c > ris+t.

If the triangle is oblique the proof stiil holds. If the
triangle is a right triangle, simply replace two of the

> symbols by the > symbol.

5. Given: A ABC with AC=AB=CB. c
CE | AB, AD | TB, \
BF | AC.
Prove: CE = BF = AD.
) A ABD = A ECF = A CAE 5 0

by S.A.A, and so °
AD = BF = CE.

1798
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Review Problems

216 1. Yes, if the trunk is perpendicular to the ground. There
are really three congruent triangles by Hypotenuse-Leg
. [Theorem. . . o
2. OFE. 1In A ADC, AC is the shortest side since it is
opposite the smallest angle. In A ACE, CE < AC for the
- same reason. Therefore, CE is the shortest segment in
the figure.

3. Given: FB | AC.
A8 > IC.
Prove: &AF > FC.
Locate X on aé go that
BX = BC.

L FXB > L A by Theorem 7T-1. L C =L FXB >L A. There-
fore, AF > CF.

+ 1. AF - HB. 1. Given.
2, BF = BF. 2. Identity.
3., AB = HF. ‘ 3. Subtraction in Statements
1 and 2.
4, A ABK T A HFQ. 4, Hypotenuse-Leg Theorem.
5. LQZT LK. 5. Corresponding parts.

Yes. There will be two triangles which are congruent by

S.AA, c
7 5. Since AC > AB, mL B>mL C.
L ADC is an exterlor angle
of A ABD and so m/ ADC > m [B. o
Therefore, m L ADC > mL C.
Hence, AC > AD,
A B

179

{pages 216-217]}



164

*9.

*10.

t +r >a.
t +8 >0,
T+ 8 DCo o - -~ -
2(¢.

t +

x > r since HF 18 the
shortest segment. y > 8
since AB 1s the longest
Begment.

x +
The

Let

a, b and ¢ be the lengths of the sides as shown.

+r+8)>a+b+ec.
r+ s >-% (a + b + ¢c).

¥ > ¢ + 8, by addition.
refore, m / F>m/ A.

a be the length of the

longest side of the triliangle

and
the

1.
2.
3.
4,

In

exterior angle of A FBH.) And so, ¢ < a.

b and ¢ the lengths of c
other sides.

a<b+ec. 1. Theorem T7-T.
a=a. 2. Identity.
2a < a + b + c. 3. Addition.
a < &%M 4, Division.

A ABF w < a (Given that AF > AB).

which glves us that mL A < m L ABH, We now have

m L

H<mlL A<m/l APH and as a result we know that the

three sides of A ARH are unequal.

Since m L CAB < m L ABG by Theorem 7-1,

m L
180

C+mLCBA+mLCAB<C]l +mlL CBA+m/ ABG=1 +

= 181.

130

{page 217)

¢ <w (L AFB 18 an
Also, a < a + x,
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218 *11. The conclusion 1is obvious if each angle 1s acute so we
suppose we have a figure as shown so that a > 90.
Then x < 90 and a + b+ ¢ < (a + x) + x < 180 + 90 = 270.

*12, XB bisects L CBA. XY | AB.
mLXBY = mLA, L XYA =/ XVB,
XY = XY, therefore A AXY ¥ A EXY
(s.A.A.) and AY = BY.
AXPC = A XBY. (S.A.A.) and
80 BC = BY. Therefore, AB = 2BC.

13, We prove that r + 8 > x + y.

l. r+t >x+ W, l. Theorem 7-T.
w+v>o>y.
2. r+tH+wH+vVv> 2. Addition.
X+ wW+Yy.
3. r+t+v>OX+Y. 3. Subtraction.
L, r+8>x+7y. 4, Statement 3 and the fact

that t + v = s.

181

{page 218}
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*14

If L ABE 1s a right angle, P = Q = B. Hence, we suppose,
with no loss of generality, that L ABE 1s acute. 1Its
vertical angle 1s also acute, so

m L ABE < 90, =

A
m L CEBD < 90.
We show that P 1s on the
same side of B as E by P B _
showing that 1t cannot be [ P D

on the side with D, If P
were on the side with D,

L ABE would be an exterilor
angle of A ABP. This leads
to the contradiction that
m L APB < m L AEE. %
However, this i1s impossible since m L APB = 90 and
m L ABE < 90. Hence, P 18 on the same side of B as E.
Similarly, it may be shown that Q 1s on the same side
of B as D by considering A BCQ and showing that the
assumption that 1t lies on the side with E leads to the
contradiction that the acute exterior L CED has measure
less than the right L CHQ.

1382
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Illustrative Test Items for Chapter 7

1. Consider this figure and 1ist
correct responses to f1ll
blanks below.

a. x x -
b. is the longest side of A KER.
c. 18 the shortest side of A KER,

2. In AXYZ, if XY = 18, ¥Z = 10 and XZ = 15, which angle of the
triangle has the largest measure?

3. A triangle has sides of lengths x and x + y. Can the third
side of the triangle be of length y? State a theorem to
support your conclusions. B

4, Given: A ABC.
E 18 a point between B and C.
D 18 a point between A and E. E
Prove: L ADC > L B.

A c

5. Given A ABC with median RB and m L ARB = 73, Prove m/LA >m/C.
c

6. As shown in this figure, ABCD
182._’aqua.reandEiaapoint
on AB such that B 18 between

A and E. - \
Prove: ED > AC,

183
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10.

- —>

If, in this figure, BH bisects -
L ABF and L A = L F, prove the

ray opposite ﬁg bisects--L AHF.

e
A- i F
Prove that the perimeter of 8
the pentagon {shown in this
figure) 1s greater than the
perimeter of A ACE.
A
For the given figure prove that
the sum of the altitudes 18 less
than the ‘perimeter of the trilangle. a b
(use a, b, c, as lengths of the S{ ¢
sides of the triangle and r, s, ¢,
as lengths of the altitudes,
as indicated.) c

Indicate whether true or false.

a.

The bisector of the vertex angle of an isosceles triangle
bisects the base and 1s perpendicular to 1t.

The base angles of an i1sosceles triangle are acute.

Any exterior angle of a triangle 1s larger than any in-
terior angle of the triangle. N

If an angle of one triangle 1s larger than an angle of a
second triangle, then the side opposite the angle in the
first triangle is longer than the side opposite the angle
in the second.

A triangle can be formed with sides of lengths 351, 513,
162.

184
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£. An altitude of a triangle leies; in the interior of the

triangle.

g. If AB> AC in A ABC, thenm /. C > m /. B.

h. Two triangles are congruent if they have two angles and a
side of one congruent to the corresponding parts of the
other.

i. If the three angles of a triangle have unequal measures,
then no two sides of the triangle are congruent.

j. A median of a triangle is perpendicular to the side to
which it 1is drawn.

k. In A ABC both AB and AC can be perpendicular to IC.

1. The shortest segment from P to Kg'is the verpendicular from

P to Eg.

Prove: If D is a point between = and C, then AD is shorter
than one of AC, AB.

Prove that one of the congruent sides of an isosceles triangle
is longer than the segmen’ which connects the vertex with any
point in the base.

Answers

x = U5, K. XB.

LZ.

No. The sum of the lengths of two sides of a triangle 1s
greater than the length of the third side.

L ADC is an exterior angle of A DEC and so [ ADC > DEC.
L DEC is an exterior angle of A ABE and so / DEC >/ B.
Therefore, / ADC > / B.

BC > AB by Theorem 7-8.

mli A>mL C by Theorem 7-4. B

73 \ 107

185
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6. Since mL A = 90, L DBE is obtuse. N :
L ‘By Corollary 7-1-1 L E 1s acute. \\ }
Then in A DEE, DE > DB by § g
Theorem 7-5. A ABD ='A BCA N \E
- by S.A.S., 80- AC = DB. Hence, A B

DE > AC.

7. Let G be a point on EH> beyond H so that HG 18 the ray opposite,—
I{B. AABH = AFEHbySAA Theorem. ThenLAHB ~ , FHB
and hence L AHG = L GHF since supplements of congruent angles
are congruent.

e —

8. ED + DC > EC,

AB + BC > A Theorem T-T.

E‘Q=EA3 .
ED + DC + AB + BC + EA > EC + AC + EA, by additlon.

9. r<c, t<b, 8 <a by Theorem 7-6, thenr +t + 8 <a+bd+c
by addition.

10. a. T e, F i. T
b, T f. F J. B
c. F - g. T k. F
d. F h. T 1. T

11. If AD | BC then AD < AB and
AD < AC by Theoren 7-6. If A
AD is not perpendicular to
BC then either L ADB or L ADC
must be obtuse. Say L ADB is
obtuse, then L ADC is acute.
But m L ADC > mL B. Hence,
L B is acute. Thus, AD < AB
by T'neqrem T7-5.

1386
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Given: A AHF with AH = FH

and B a point between A and F.

To prove: AH > HB.

Proof':

H 171

1. m/iL HBA >Dm /L F.
2, mlLA=mLlLF.

3. m L HBA >m L A.
¥, AH > BH,

187

Theorem 7-1. .

Base angles of an 1sosceles
triangle are congruent,

Substitution.
Theorem 7-5.
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Chapter 8
PERPENDICULAR LINES AND PLANES IN SPACE

This is a good time to ask yourself whether 1t 1s likely
that your class will cover all the topics in the text. You
w1lll want to plan ahead to‘give your class. a suitable program.
You could makeilrather quickly if necessary, an intultive
presentation of the'proposiiions of Chapter 8 by using
familiar physical objects. Having students draw some figures
after looking at simple models will improve their ability to
handle three-dimensional problems..

On the other hand, deductive work in three-space may
seem more important to you than many alternatives. Part of
the time you plan to allot to deductive work can be spent on
proofs in three-space, even if this entails omltting some
deductive work in two-space.

It is worth spending time to make the basic definition
of the chapter meaningful. A sizeable model will make your
demonstration more effective. TUse the floor as a plane,
several pointers for concurrent lines in the plane, and a
window pole for the perpendicular. Have students concentrate
on one particular pointer. Move the pole to show that the
pole can be in many positions, even imn the plane, and be
perpendicular to the particular pointer. But the pole - in
all but one position - is not .perpendicular to the other
pointers. When the pole is perpeindicular to all of the
pointers, it is perpendicular to the plane. If some students
discover the idea of Theorem 8-3 at this time, that's fine!

While such demonstrations can do much to assist students
in understanding spatial relationships, a most effective
means is the assigning of smaller models to be constructed by
each student. Coat hangers, thin wire, straws, string and
cardbosrd can be used to make models of the next theorems to
be studied. (See Problem Set 8-la, Problem 10.)

1388
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One particularly meaningful device which students can
make at an early stage is the following. Each student has a
piece of cardboard on which he draws a segment and marks a
point on that segment. Next he inserts several common pins
such that each pin is perpendicuiar to the segment at the
point. The teacher can check each model at a glance. The
model helps to illustrate the basic definition of Section 8-1
and Theorem 8-5.

Some excellent materials, mainly sticks and connectors,
for constructing models in three-space are available from
suppliers of scientific and mathematics equipment. Many
teachers find these to be advantageous over ready-made
models.

Problem Set 8-1

200 1. a, Yes.

b. No, there would be points in space which are not
in plane B.

2. a. b. c. Yes.

Each of the three lines is
perpendicular to the original

line.
{page 220]
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4, The statement is true. (Refer to the discussion of
using the word if in definitions, Chapter 2, page 41
of the text.)

5. [ ABR, [/ ABS, / TBA.

6. No. The definition requires that the line be perpendicu-
lar to every line containing @ and lying in E,.

7. a. Yes. b. /TSP and / TSR.
8. a. Yes, three points are always coplanar.
b. Not necessarily.
*9, a.
1., PB = QB. 1. Given.
2. PA = QA. 2. Given.
3. BA = BA. 3. Identity.
Y. A PAB = A QBA. 4, S.8.8.
5. [/ PAB & / QAB. |5. Corresponding parts.
' 6. AX = AX. 6. Identity.
7. APAX & A QAX. | 7. Statements 2, 5, 6 and S.A.S.
8. PX = QX. 8. Corresponding parts.
b. No.
222 As a model for Theorem 8-1 you can use the tip of a

light fixture and a spot on the floor as points, and a
window pole as a line. You can even tag the pole with A,
B, and a movable X.

190
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Problem Set 8-2a

224 1, Yes. Statement of Theorem 8-1. 6.

2. Yes. Yes. Yes. Statement of Theorem 8-1.

225 Some students should enjoy making a model for Theorem
8-2. We suggest a thin stick punched through a sheet of
cardboard, with different colored strings leading from the
ends of the stick to A, B, and C. Then use thumb-tacks
for points X, ¥ and 2. _

226 You can devise a model for Theorem 8-3 by punching a
pointer through a sheet of cardboard to represent L and
E. Then lay pencils on “he cardboard to represent L1’ L2,

and L3.

Problem Set 8-2b

227 1. This follows directly from Theorem 8-2.

2. The line of intersection is perpendicular to the floor.
Many, in fact, every line in the floor going through the
point at which L intersects the floor will be perpen-
dicular to L. No. It is perpendicular only to lines
of the floor that contain the point of intersection of
L and the floor.

228 3, a. Three. The sides of the square all lie in a plane.
AB and FB deternine another plane, and AB and
BH determine a third.

b. Welknow BH | HR, HR | RF, RF | FB, BF | BH
(from the square) and FB | AB (Given.). From the
last two of these we note that one line, , 18
perpendicular to two other lines at their point of
intersection so we know that ﬁ_[_ plane ABH. It
is also true that ?ﬁf_l plane ABH, but the student

[ERJf:‘ probably cannot prove this now.
A (pages 224-228) 191
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a. Three. Planes ABF, RHB, and AHRF.

b. HB 1 RH. (Given.) HB | AF. (Theorem 6-2 and
Postulate 1.) Therefore, HB | plane AHRF. This
follows from Theorem 8-3.

1. 7¥B | plane P. 1. Given.

2. T¥B | AB. 2, Definition of a line
perpendicular to a
plane.

3. m/ FBA = m/ FBR = 90.| 3. Definition of perpen-
dicular lines.

4, BR = BA. 4., Given.

5. FB = FB. 5. Identity.

6. A AFF & A RBF. 6. 8S.A.S.

7. FA = FB. 7. Corresponding parts.

8. [ PAR & / FRA. 8. Base angles of an
isosceles triangle.

Yes.

1. AT = TF. 1. Propsrty of the edge
of a cube.

2. AB = BF. 2. Same as Resson 1.

3. BR = BL. 30 Giveno

4, AR = FL. 4, Subtraction, Steps 2
and 3.

5. A ATR & A FTL 5. S.A.S.

6. TR = TL. 6. Definition of congru-
ence.

7. KT | AT. 7 Property of a cube.

T | T

8. KT | plane ABFT. 8. Theorem &-3.

9. T_L_'F and 9. Definition of a line
T 1:—TT perpendicular to a

plane.
10. A KTR & A KTL. 10. S.A.S.
11 KR = KL. 11. Corresponding parts.

192
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230

231

231

232

7.

1. W[R 1. Definition of a line
perpendicular to a
plane.

2. ®e |9 2. Given.

3. TETI_E. 3. Theorem 8-3.

By the time you reach Theorem 8-4% it might be best to
proceed without a complete or elaborate model. Students
should be encouraged to perceive spatial relationships 1n a
diagram rather than to become completely dependent on spatial
models.

You may use a spoked wheel and axle to make Theorem 8-5
intuitively familiar: any line perpendicular to the axle at
the hub must be in the plane of the wheel.

Proof of Theorem 8-T

The perpendicular bisecting plane of a segment is the
set of all points equidistant from the end-points of the
segment. ]

Restatement: Let E be the perpendicular bisecting
plane of AB. Let C be the mid-point of AB. Then

(1) If P is in E, then PA = PB, and
(2) If PA =PB, then P 1is in E.

Proof of (1): If P = C, then we already know that
PA = PB. If P #C, then CP 1lies in E by Postulate 6,
and 1ﬁ;_LZﬁ? by the definition of a line perpendicular to a
plane. It follows that / ACP & / BCP, and, since CA = CB
and CP = CP, we have A ACP &% A BCP by S.A.S. Therefore,

PA = PB.
A

I8
{pages 230-232} 193
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Proof of (2): If P = C, then certainly P is in E.
If P#C, then A ACP %A BCP by S.S.S. Theorem. Thus
/ ACP %/ BCP and GF | 5B. E contalns CP by Theorem 8-5,
and P 1lies In E.

Alternate proof of (1): Let C be the mid-point of AB.
If P =C, then certainly PA = PB. If P f C, then 7ﬁ?
is the perpendicular bisector of AB (in plane ABP) and
therefore PA = PB by Theorem 6-2.

Alternate proof of (2): If P =C, then certainly P
1s in E. If P #C, then €F 4s the perpendicular bisector
of AB (in plane ABP). Since E contains T? by Theorem
8-5, P 1lies in E.

The proof of part (2) of Theorem 8-7 as given above
requires that Theorem 8-5 be proved previously. A simple
indirect proof uses Theorem 8-1 and the Space Separation
Postulate in the following way: )

Given P such that PA = PB. Suppose P does not lie
in E. Then it lies in one of the two half-spaces into which
E separates space. A and B 1lie in opposite half-spaces,
gince AB intersects E at C, by hypothesis. Then P 1is
in the half-space opposite to either A or B, say B.

Then PB meets E 1in a point Y. By (1), Y 1s equidistant
from A and B, and by hypothesis, P 1s equidistant from
A and B. Then by Theorem 8-1, B 1s equidistant from A
and B! This absurdity implies that our supposition 1s false,

[: (: so P 1s in E.
i 194
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25

234

234

2.
3.
k.

Problem Set 8-2¢

a. Infinitely many.
b. One.

Yes. Yes. No.

The cgnclusion follows directly from Theorem 8-5. -

Points W, X, Y and Z are given equidistant from the
ends of AB. By Theorem 8-7, they all belong to the
perpendicular bisecting plane of AB and are therefore
coplanar.

a. BW. BK. BR. 90. [/ BKP.

b. Not necessarily. W, K and R could be any points
in E.

1. There exists a plane 1. Theorem 8-%4.
E' perpendicular to

L at M.
2. If E.= B!, each T 2. Definition of a line
line in E!' through perpendicular to a
M 1is perpendicular plane.
. to L.
3. “If E ¢ E', the 3. Postulate 8.

intersection of E
and E!' is a line

L.,
4. L] 1v. 4. Definition of a line
perpendicular to a
plane.

The proof of Theorem 8-8 uses the word "let" in two

somewhat different senses. "Let Lines L, and L, be
perpendicular” means "Call the two given perpendiculars L,
and L2". "Let M be the mid-point of AB" means "Consider
the mid-point of AB, and call it M". (The mid-point exists
by Theorem 2-5).

195

{pages 233-234}



236 1.

257 4.

6.

233 8.

Review Problems

a. F. e T.
b. F. by F.
c. F. g T.
d. T. h. T.
AR>RB. m/B>m/A (m/B-=
Theorem 8-8. Yes. Yes.
Yes. No. No. Yes. No.
Theorem 6-3.

Only one.

that M, Q, ¥ and F are coplanar.

181

50).

«—>» @ >
MQ and WF are coplanar by Theorem 8-8, so

If two points are

in a plane the line containing them is in the same

plane. Hence

<>

WEF.

a. Three. Plane ABF, plane

MW and QP are coplanar with MQ and

RHB and plane RHF.

Two intersecting lines determline a plane.

b. AF | RH and AF | BH so,
Theorem 8-3.

A XAP = A XBP by S.A.S.

‘AF | plane RHB by

Hence XA = XB. Similarly we know XB = XC.

Hence X is equidistant from A, B, C.

1. L | plane ABC. - 1. Given.

2. L] Q, QB, QC. 2. Definition of a line
perpendicular to a
plane.

3. PQ = PQ. 3. Identity.

4, PA = PB = PC. 4. Given.

5. APAQ % A PBQ A PCQ.; 5. Hypotenuse-Leg Theorem.

6. QA = QB = QC. 6. Corresponding parts.

7. For any point X £Q [ 7 S.A.S.

on L,
AXAQ A XBQ = A XCQ.
8. XA =XB = XC. 8. Corresponding parts.

(pages 236-238)
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239 1l.

12.

13.

On the ray opposite to E‘é’ let R be the point such
that QR = QB. Then A PQR %A PQB by S.A.S.

.. PR=PB. AP | PR, and AP | PB since

AP | plane PBC. Therefore, A APR & A APB (S.A.S.)
and AR.= AB. .°. AQ | ®B, (AQ | B&) by Theorem 6-2
and Postulate 1.

Comnect A with X, the point of BF such that

BX = BH. Then O ABH &% A ABX (S.A.S.) and AX = AH.
Since AB | BF, m/ ABF > m/ F, and since / AXF i3
an exterior angle of A ABX, m/ AXF > m/ ABX > m/ F.
Then AF > AX and, substituting, we have AF > AH.

Suppose AB were perpendicular to each of the three
_—_ —>
rays ﬁ, AD, AE. Then by Theorem 8-3 and 8-5, the
—> -—>
three rays would be coplanar. If AD and AE were
—
each perpendicular to AC and all were in a plane,
—_ —>
then AD, AE would be opposite rays and not perpen-
dicular. Hence each ray cannot be perpendicular to the
other three.

1. Y8 In 1. Given.
<€«—> (—-)
. YP | AB, or 2. Definition of a line
<>
perpendicular to a
AB | VYB. plane.
<>
3. X8| m 3 Given.
> <>
4. XB | AB, or 4. Reason 2.
<> <>
AB | XB.
e
5. AB | E. 5. Statements 2, 4 and
Theorem 8-3.

197
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T1llustrative Test Items for Chapter 8

Can the distance from a given point to a given plane
vary?

Identify the set of points which are equidistant from
two points A and B?

Through a given point not in a plane, how many lines can
be perpendicular to the plane?

At a point on a line how many lines can be perpendicular
to the line?

At a point on a line how many planes can be perpendicu-
lar to the 1line?

Is it possible for a line which intersects a plane in
only one point not to be perpendicular to any line in
the plane?

Can a line be perpendicular to a line in a plane and
yet not be perpendicular to the plane?

Three points A, B, C are each equidistant from two
points P and Q. Fill in the blanks to make true
statements.

a. If A, B, C are collinear then is
equidistant from P and Q.

b. If A, B, C are not collinear then
is equidistant from P and Q.

Points A, B, C, and D are not coplanar.

A ABC is isosceles with AB = AC.

A DBC 1is isosceles with DB = DC. A
F is the mid-point of BC. o

In the figure at least one
segment is perpendicular to

a plane. What segment?
What plane?

198
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2. Given in this figure that
® |8, ‘é?a’]ag, B |5 fA
Tﬁ?_[’ﬁ; and J_jﬁi
a. ?ﬁ? and 75? determine

a plane ABK. IS ﬁif F K
perpendicular to plane

ABK? If your answer B
was "yes", state a

theorem that supports

your conclusion. R H
b. Do ﬁﬁ; ?&z ‘?ﬁ; all
lie in plane KBQ?
Explain.
c. There will be different planes determined
by the given lines. R

3. In this figure, plane E

— —

bisects RQ and E | RQ. £ <~
Also RT = QT. Explain

why T 1lles in plane E.

c. Indicate whether true or false:

1. A line perpendicular to a plane 1s perpendicular to
every line in the plane.

2. If a line 1is perpendicular to two lines of a plane it
must be perpendicular to the plane.

3. Through a point on a plane only one plane can be passed.

4, There are infinitely many lines perpendicular to a given
line at a given point on the line.

5. Two lines perpendicular to the same plane are coplanar.

ERIC 199
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6. Through a point on a line two planes can be passed
perpendicular to the line.

7. Thirteen points each equidistant from the end-points of
a segment are coplanar.

8. If two lines L, and L, are each perpendicular to = __ _
line L, at a given point of L, there 1s a plane

containing I’l and L2 that is perpendicular to L.

9. All lines perpendicular to a line at a given point of
the line are coplanar.

10. A line perpendicular to a line in a plane 1is perpendicu-
lar to the plane.

>
11. Ir ﬁ and plane E are each perpendicular too FH at—
point P, then AB 1lies in plane E.

D. 1. In this figure E 1s the A
perpendicular bisecting
plane of AB. If CF
lies in E and CF = CB
= FB, prove A ACF 1s
equilateral. \ ~F

2. 'wﬁj‘ven in this figure:
BK | E at B.
e at a.

HA = FB = AK.

Prove: A HBA,

A PAB, and

AKBA are in one
plane and are con- E | /
gruent to each other.

200
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3. V 1is the mid-point

of edge RW of the w T
cube shown in this v |
figure. R s
<
Prove VB = VF. l\\\\\\\\
N
WD T
LI N 2
/ \
’
/ \
\ B8
Answers

A. 1. No, it is the length of the unique perpendicular
segment from the point to the plane.

. The perpendicular bisecting plane of XE.
. One.

. Infinitely many.

. No.

2

3

Y

5. One.

6

T. Yes.

8., a. If A, B, C are collinear then each ypoint of the
line containing A, B, C 1s equidistant from P

and Q.

b. If - A, B, C are not collinear, then each point of
the plane containing A, B, and C 1is equidistant
from P and Q.

201
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BC ] plane DFA.

a. No. BQ cannot be proved perpendicular to the
plane ABK on the basis of the information given.

b. Yes, Theorem 8-5.

c. Six; ABK, ABQ, ABH, ABR, ABF, and the plane
perpendicular to ‘A—B> at B.

This follows from Theorem 8-T7.

F. T. T.

F. 8. T.

F. 9. T.

T. 10. F.

T. 11. T.

F.

1. AC = CB. 1. Theorem 8-T.
AF = FB.

2. AC = CF = AF. 2. Hypothesis and Step 1.

3. A ACF 1is equi- . 3. Definition of equi-
lateral. lateral triangle.

¢ ana ¥E are coplanar (Theorem 8-8). Since all
vertices of A HBA, A FAB and A KBA are points of
these lines, the triangles are in one plane. / HBA,
/ KBA and / FAB are right angles (Definition of a
line perpendicular to a plane). BA = BA (Identity).
A HBA & A FAB &% A KBA (Hypotenuse-Leg Theorem) .

202
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*3.

s s

Use auxiliary segments RB and WF.

1. ARAB % A WHF. 1. S.A.S.

2. RB = WF. 2. Corresponding sides.

3. RV = VW. 3. Definition of mid-point.

<>
4. /VRB and / VWF 4. RW | planes of faces
are right angles. and WHPFT.
5. A RVB & A WVF. 5. S.A.8.
6. VB = VP, 6. Corresponding sides.
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Chapter 9
PARALLEL LINES IN A PLANE

In this chapter we introduce the Parallel Postulate and
the familiar theorems on parallels and quadrilaterals. The
treatment is not significantly different from that of most
traditional texts, except in this respect: The explicit use
of the postulates and theorems of our early chapters and the
careful formulation of definitions.

By this time the student should be quite adept at making
proofs. Consequently, this chapter simply states the easier
theorems and leaves thelr proofs for the student to accom-
plish. Proofs not supplied in the text are provided in this
commentary. Please note, however, that students may often
discover proofs different from the one glven here, or in the
text, and, of course, such proofs should receive appropriate
recognition and acceptance.

As we proceed to study more complicated materlial we
shall relax the degree of precision with which we treat 1t.
We shall sometimes state ‘definitions which are not wholly
precise and give proofs that are not logically complete, with
the expectation that they will be understood with the aid of
diagrams. In succeeding chapters this is done more exten~
sively. In the present chapter we point out several instances
of unprecise treatment and indicate appropriate clarification:

The discussion of paraliel lines in a plane, though by
no means difficult, encompasses probably the most significant
property of Euclidean geometry, namely, the "Parallel
Postulate", stated on page 262. ‘By way of introduction ask
the students to tell what they mean by parallel lines. The
answers will no doubt vary, and some will probably be in-
correct. Most answers will probably be descriptions, rather
than definitions. It is hoped that from a discussion of this
sort the class will get the feeling that they are working
with something that 1s intuitively very simple, but that at

ERIC 204

IToxt Provided by ERI



190

41

the same time the concept of parallelism is not one that can
easily be "pinned down" by the student.

Point out to the students the definition of parallel
lines gives two conditions that must be met by the lines,

(1) they must lie in the same plane and (2) they must not
intersect. Ask the student for an example of two lines that
satisfy condition (2), but fail to satisfy condition (1) and
hence are not parallel. Skew lines is the example.

Remind the students that parallel lines do not meet.

You will sometimes hear the expression: "Parallel lines. meet
at infinity". This does not mean that the linez do meet.
Mathematiclans abhor exceptions, for example, two lines do
not always meet in the Euclidean plane, and just as it 1is
convenlent to introduce complex numbers into algebra so that
every quadratic equation has a root, so it is convenient td
adjoin to the points of the plane, certain "ideal” points so
that we can say two lines always meet.

Notice, however, that such lines are no longer Euclidean
lines. To each Euclidean line we adjoin an ideal point to
form a new kind of line, called a projective line, that is no
longer a Euclidean line. This 1s done in such a way that the
same ldeal point is adjoined to each line of a family of
parallel 1lines. If two Euclidean lines are parallel then
thelr associated projective lines meet in an ideal point. If
two Euclidean lines are not paralle) they meet 1n a point P
and their associated projective lines meet in the same point
P. This avoids an exception, but all the properties of real
points do not carry over automatically to ideal points. When
we say two projective lines meet at an ideal point, it follows
that their associated Euclidean lines do not meet at ali. Ir
we adjoin these ideal points to the set of real points in the
Euclidean plane, we get a new "plane", which has different
properties from the Euclidean plane, and which we may call a
"projective plane" in the sense that '"point", "line", and
"plane" would satisfy the set of incidence postulates usually

(page 241]
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made for projective geometry. But this 1s not the geometry
we are studying; in Euclidean Geometry we do have parallel
lines, in Projective Geometry there are no parallel lines.

Theorem 9-2 gave us one method for constructing a line
parallel to another line through an external point. The
method was used in Theorem 9-3 to prove the existence of at
least one iine parallel to a given line from a point not on
the line.

Some enterprising students will feel that Theorem 9-3
establishes uniqueness as well as existence of L2,
especially in light of the paragraph following the proof.
After all, Theorem 6-1 assures that L, a3 a perpendicular
to L1 at P is unique. Should this arise you may counter
with a statement of this sort: "If this seems astonlshing
to you, perhaps you are reading more meaning in Theorem 9-2
than 1s actually there. Notice that Theorem 9-2 does not say
two lines in a plane are parallel only If they are both
perpendicular to the same line. Is it possible then that two
lines could also be parallel under some other conditions?”

If more discussion seems necessary you may declde to
present the following: Let the figure be that of Theorem
9-3. PFrom point R on L2 drop a perpendicular to L,
meeting L at S. Note that we do not know that s 1.
From P make ‘P_Z>_L‘}_'(_S? Now we hza.ve_%.> Il L and L, I L
by Theorem 9-2. We seem to have two lines through P
parallel to L.

A
5i\j
N

(page 242}
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The student will probably claim that PR | RS and therefore
Y7 ana L, coincide (Theorem 6-3). While you may agree

"~ with him that this sounds promising, ask him to prove that
7§¥_Li%;, the fact his argument is based on. Whatever he may
refer to as convincing evidence from his general store of
knowledge you easily can maintain the essential point of the
whole discussion: that nothing in our previous postulates or
theorems will disprove our argument. The sort of reasons
which refute it - the sum of the measures of the angles of a
quadrilateral is 360, or of a triangle is 180, alternate
interior angles (Theorem 9-8), corresponding angles (Theorem
9-9), and so on - have not been proved yet (and in fact, can -
not be until the Parallel Postulate is assumed).

You would probably not want to go further into this with
your class, especially at this time - and probably not even
this far. But we should state the point to this discussion,
for the reader, at least. The point is that the statements
which would refute the above argument are all logically
equivalent to Postulate 16. Neither Postulate 16 nor any of
these equivalent statements 1s deducible as a theorem from
Postulates 1-15. It was the discovery of this fact that
finally led geometers to the realization that some postulate
of parallelism is necessary. (See Talks on Introduction to
Non-Euclidean Geometry and on Miniature Geometries.)

245 Notice that we give a precise definition of alternate
interior angles rather than a "definition” in terms of a
plcture. Observe that our definition depends on the separa-
tion concept as developed in Chapter 3.

246 Proof of Theorem 9-%

Given a transversal to two lines, if one pair of alter-
nate interior angles are congruent, then the other pair-of
alternate interior angles are also congruent.

207
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Given: Linés Ll and L2 cut by transveral T such that
/ ABC = / BCD.

To Prove: /x % /7.

By the Supplement 3 E
Postulate / ABC and [/ x -
are supplementary, as are
/BCD and /y. Since
/ ABC & / BCD, then
/ x% /7y, because
supplements of congruent
angles are congruent.

A

Problem Set 9-1

ou8 1. a. No. b. No.

2. They do not intersect, they are both perpendicular to a
third line, they form alternate interior angles with a
transversal.

(Note: The third condition includes the second as a
special case.)

3. No.

4, Not necessarily.

5. a. No, the 80° angles are not alternate interior
angles, and the alternate interior angles are not
equal.

b. Two sizes: 80° and 100°.

6. L I Ly, M I M,. i

203
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7. Select any two points j/
> P

A, B on L. Draw PA.

Draw / CPA & / BAP so -

that C and B are on
opposite sides of ;A.

men ¥ || L by J4

Theorem 9-5.

P o

8. a. Yes. b. No. c. Yes. d. Yes. e. Yes, since a
line -ontaining the center of the earth is perpendicular
to c:rtaln other lines containing the center. ‘
f. No. g. Yes. h. Yes.

9. Yes. (Such lines are called skew lines.)

10. AABD %A BAC by S.A.S. Then DB = CA. Then
ApCB % A CDA by S.5.S. and m/ BCD & m/ ADC. (It is
not possible to prove that / BCD and / ADC must be
right angles. Attempts to do so suggest the need for
some further postulate.)

11. Proof: A APR %A PBQ %A RQC &% A QRP by S.S.S. By
corresponding parts m/a =m/A, m/b=m/B and
m/ ¢ =m/ C. Since the sum of the measures of / a,
/b and /c 1s 180 by Postulates 13 and 1%, the
sum of the measures of /A /B and /C 1s 18o0.

It may seem surprising that we can prove that the sum
of the measures of the angles of A ABC 1is 180 before we
have introduced the Parallel Postulate. In_this Problem the
hypothesis assumes the exlistence of a triangle in which the
length of each segment joining the mid-points of two sides 1is
one-half the length of the third side. This cannot be proved
before assuming the Parallel Postulate. We should note,
however, that if we do assume that such a triangle exists,
and from this show that the sum of the measures of the angles
is 180, we can prove the Parallel Postulate. (See the
commentary above on equivalence of statements to the Parallel
Postulate. See, also, Talks on Introduction to Non-Euclidean

[:R\!: Geometry, Corollary T.)

wll Toxt Provided by ERIC
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Proof: APAR & A QAR by S.A.S. Then / ARP & / ARQ

“and 18| $3. By a similar proof using A ABD and

A ACD, ﬁ_l_*B—C? Then ¥Q || B¢ by Theorem 9-2.

(Note: A proof based on isosceles triangles without
drawing AD 1s also possible.)

1. A DAT = A CBT. 1. S.A.S.
2. DT = CT. 2. Corresponding parts.
3. m/ DTA = m/ CTB. 3. Corresponding parts.
4, A DST & A CST. 4., S.S.S. ,
5. m/ DIS = m/ CTS. 5. Corresponding parts.
6. m/ STA = m/ STB. 6. Addition.
«—>
7. ST ] AB. 7. Definition of perpen-
dicular lines.
8. m/ TSD = m/ TSC. 8. Corresponding parts.
9. 5T 3. 9. Definition of perpen-
dicular lines.
10. DC || AB. 10. Theorem 9-2.
210
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Proof of Theorem 9-6
Given two lines and a transversal, if one pair of
corresponding angles are congruent, then the other three
pairs of corresponding angles have the same property.

Given: Lines L1 and L2 cut by transversal T such that
a pair of corresponding angles, /a and / a', are
congruent.
To Prove: /b & /b, [c&/ct, /dm/a.
Given that /Jam/ a'. T
By the Supplement Postulate 1
/ & 1s supplementary to b
éb, and [a' is - - ¢ d'
supplementary to /Db!.
Since supplements of a
congruent angles are
congruent, /b &/ bt.
Similarly we show
/c™/c' and /am/ar.
The method of proof of Theorem 9-7 is merely to use the
property of vertical angles to establish a pair of alternate
interior angles congruent, and by Theorem 9-5, the lines are

'y

Iy
o
"
al
.
ol

- parallel.

Because the converses of Theoremn 9-5 and 9-7 are reason-
able and are readily accepted by students as intuitively true,
you may find that the dependence on the Parallel Postulate
remains unrecognized, even after the converses have been
proved. As preparation for the proof of Theorem 9-8 and
preliminary to the Parallel Postulate a conslideration similar
to the following could be discussed.

It seems reasonable that the converse of Theorem 9-5 is
true. Let's examine 1ts reasonableness if we assume that the
parallel to a line through a point not on the line 18 not
unique. Then we could suppose two such parallels exist, as
in the figure.

211
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A

Now how reasonable 1s the converse of Theorem 9-5? Accord-
ing to it, a=x and a =Yy, 8o that x =y. But by the
Angle Construction Postulate x # y. This contradiction
means that 1f we want the converse of Theorem 9-5, and many
more such "reasonable" theorems, to hold, then we must accept
the uniqueness of the parallel.

Problems 7 and 8 of Problem Set 9-3 present a more
complete picture of the situation by showing that the Parallel
Postulate can be proved if Theorem 9-8 or Theorem 9-12 is
assumed. Prom all of this the student should become con-
vinced some postulate of parallelism must be stated. The
importance of the Parallel Postulate is ‘best seen, perhaps
after the sequence of theorems through Theorem 9-13 1is
finished and the student can look at the sequence, including
the Postulate, in its entire development.

‘The Parallel Postulate seems reasonable on the basis of
our experience in the world about us. There 18 no theoretical
reason why we could not assume the existence of two parallels
to a given line through an external point. From this point
on, Parallel Postulates different from ours result in the
development of different geometries, called Non-Euclidean
Geometries. (See Chapter 1 of Studies II and the Talks on
Miniature Geometries and Introduction to Non-Euclidean

212

Geometry.)
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Now that we have the uniqueness of a parallel through
an external point it is pcssible to prove the converse of
Theorem 9~5. Note carefully in--the proof in the text how
the fact that this parallel is unique is used to establish
the validity of Theorem 9-8.

Proofs of Theorems 9-9, 9-10, 9-11 and 9-12

Theorem 9-9. If L, i L,, We then lmow by Theorem 9-8
that the alternate interior angles are congruent. By
application of the property that vertical angles are congru-
ent, we can establish the pairs of corresponding angles to
be congruent. e e

The term "interior angles on the same side of the trans-
versal” can be defined formally as follows: Let L be a
transversal of Ll and L2, intersecting them in P and
Q. Let A Dbe a point of Ll and B a point of L2 such
that A and B are on the same side of L. Then / PQB
and / QPA are called interior angles on the same side of
the transversal L. Compare this with the definition of
alternate interior angles.

Theorem 9-10. Given

L, Il L,. Then it follows T
from Theorem 9-8 that . / >l
/as™/b. Also, /a and o/ d '

/ 4 are supplementary.

Hence, m/a +m/ d = 180

=m/ b+ m/ d. Therefore ) e /b >le
LP and /d are /

supplementary. In a like

manner / e can be proved

supplementary to / a.

A
y
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Theorem 9-11. Given:
In a plane, L, i Ly and
L, I Ly. ‘To Prove:

L H L,. We use the in-
direct method of proof and
assume that L, 1s not
parallel to L2. If this

is8 true, then these two

lines will meet at some point
now two lines through P (L1

This contradicts the Parallel Postulate, hence,

parallel to L2.

Remark on proof of Theorem 9-11.

A

4
|z
\
\
\

A
A

P. This means that there are
and LQ) parallel to Lj.
L1 must be

This theorem can be

proved directly as follows:
Given: In a plane, I I Ls,
L, H Lg.

To Prove: L; Il L,.

ILet T be a transversal
intersecting Ll’
Such a transversal exists,
since any line in the plane of
Ll’ L2, L3 which meets Ll
in only one point must meet
Lo
nate interior angles formed as

Ly I L, hence

L, | Ly, hence

Therefore,

(%)

and

214

L2 and L3.

and L3 by the Parallel Postulate.

A

A
[¢]
>...,<\°<
v
\
”

A

v
r
]

Consider the alter-
indicated in the figure.

(1) /a ® /b by Theorem 9-8.
(2) [/ c % /b by Theorem 9/-8.
(3) fas/ec,

L Il L,

by Theorem 9-T.

(page 255)
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255 Theorem 9-12. Lines - L L
L, L, and L, ¢ve coplanar. ) P "
Given: L, ||L, and "L 11
at P.
To Prove: L | L. - - ,Lg
L intersects L2, v

otherwise L and L, would

be .parallel to L2 and contain

P. This contradicts the Parallel Postulate. Therefore L
is a transversal of L, and L,. By Theorem 9-8 it follows
that L and L, form a right angle. Thus LlLe.

Problem Set 9-3

255 1.
1 m/ A =m/B 1. Given.
=m/ C = 90.
2. AD || CB 2. Theorem 9-2.
3. m/C=m/D=90. 3. Theorem 9-10.

B
2. Given: Isosceles A ABC

with AB = BC and

t | AC and inter-

secting AB and BC p )
at P and Q.

Prove: A PBQ 1s isosceles.

A C
1. /Ja=/c. 1. Theorem 5-2.
2. t || Aac. 2.  Given.
3 /x=/A and 3. Theorem 9-9.
/vy =/C so that
Lx=/y.
y, PB £ BQ, or L, Theorem 5-5.
APBQ 1is isosceles.
215
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3. /P /S by Theorem 9-9.
/ RIS % / 8 by Theorem 5-2.

From these two statements / PQT & / RTS. Then
PQ & PT by Theorem 5-5.

4., a. Suppose M does not intersect L. Then, by
definition, M ]| L,. But L, 1is given Il L,.
Hence there are through P two parallels to L2
-~ an impossibility by the Parallel Postulate.
The assumption that M does not intersect L2 is
ttierefore false, so that M does intersect L2.

b. Suppose L, |l L,. R || L, by the given infor-
mation. Also by the given information both Ll
and R contain P. Since there cannot be two
parallels to a line through a point, the assumption
L, || L, 1is false, and L, intersects L,.

5. a. /Y& /BQY and /B /BQY by Theorem 9-8.
Therefore, /B & /Y.

b. Consider ¥X forming / PYZ with sides extending
in the same direction as those of / ABC.
Then, from part (a), m/ PYZ = m/ ABC. But
m/ PYZ + m/ XYZ = 180, and therefore
m/ ABC + m/ XYZ = 180.

It should be intuitively clear what is meant when we say
two parallel rays extend in the same or opposite directions.
A formal definition is easily given. If AB || CD and B
and D are on the same side (opposite sides) of XC we say
A2 and OB extend in the same (opposite) directions.

6. If the sides of one angle are perpendicular respéctively
to the sides of another angle, then the angles are either
congruent or supplementary.

216
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»T. Draw a transversal $Q of L1 and M and also of L2

and M forming angles &a, b and ¢ as shown. If

L, [| M, then /b & /c; and since L, H w,
/a®/c by Theorem 9-8. Therefore, / a & /Db.

But then L1 = L2 by the Angle Construction. Postulate,
so there cannot be a second parallel to M through Q.

258 *8, Consider a line t perpendicular to M from P. By

258

259

Theorem 9-12, t | L,. Assume L, parallel to M.
Then t | L,. Since L, and L, cannot both be per-
pendicular to t at P, L2 cannot be parallel to M
as was assumed.

Observe that although the proof of Theorem 9-13 is more
precise than that given in most texts, it still depends on
the figure to show that / x and / x' are alternate
interior angles. '

Theorem 9~13 1s the first major consequence of our
Parallel Postulate. The proof is directly related to the
fact that there is but one line parallel to the base of the
triangle through the oprosite vertex. If there were more
than one, or no parallels, the sum of the measures of the
angles of a triangle would be less than 180 or greater
than 180 as is the case in the Non~Euclidean Geometries.
(See Talk, Introduction to Non-Euclidean Geometry.) It is
interesting that in Euclidean spherical geometry the sum of
the measures of the angles of a spherical triangle is greater
than 180.

‘Proofs of the Corollaries

Corollary 9-13-1. (iven a correspondence between two
triangles. If two angles of the first triangle are congruent
to the corresponding parts of the second, then the third
angles are congruent.
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Given: AACE and ABDF,
such that /A& /B and

/ C&/D. c
To Prove: / E & /F.
We now know, from
Theorem 9-13 that the sum D A E

of the measures of the

angles of a triangle 1is

180. Given that the sums

of the measures of two

angles in each triangle are

equal, then the differences g F
between this sum and 180

in each case are equal.

Thus m/ E = m/ F and LE =/ F.

corollary 9-13-2. This proof follows directly from
Theorem 9-13. If the sum of the measures of the angles of &
triangle 1is 180, and one angle has a measure of 90, then
the sum of the measures of the remaining two angles must be
90. By definition, then, these angles are complementary.

Corollary 9-13-3.
Given: A ABC with exterior

angle / BCR.
To Prove: m/ BCR = m/ A + m/ B.

By the Supplement Postulate
m/ BCR = 180 - m/ BCA.

From Theorem 9-13 it follows
that m/ A + m/ B = 180 - m/ BCA.
Therefore m/ BCR = m/ A + m/ B.

-
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Problem Set 9-4

a. 85. d. 180 - (r + a).
b. 1. e.  90.
c. 180 - on. £, 90 - %’k

m/ P = 4.2

The Parallel Postulate assures us that L 1is the only
parallel to AC through B. It is also used to prove
that alternate interior angles are congruent when
parallels are cut by a transversal, and this theorem in
turn is used in the proof of the angle-sum theorem.

(Numbers in parentheses
were given in the
original problem.)

a. Yes. b. - No.

By theorems on transversals of parallels / EED & / A
and / DBC & / C. But / EBD & / DBC. Therefore
/A S/ C. Hence AB = BC.

We have m/ 1 =m/3 by
hypothesis and m/ 2 = m/ 4
by Theorem 5-2. But
m/1l+m/3=m/2+m/ b

by Corollary 9-13-3. Taking
half of each sum we have

m/ 1 =m/ 2, and the bisector
is parallel to the base by
Theorem 9-T7. .

- 219

{pages 260-261}



205

262 8. For convenience we indicatc angles as shown in the
figure.

v

1. r=m/2 +mn/ 4. 1. Corollary 9-13-3.
8 =m/ 1.+m/ 3.
2. r+s=(m/1+m/2)}2. Addition.
+ (m/ 3 +m/ ¥4).
3. m/l+m/2=+t and |3. Angle Addition Postulate.
m/3+m/ 4= -
4, r+8 =t + u. 4., Statements 2 and 3.

#*9, Since QB = QA, /B /1. Since /2 and /1 are
complements, /2 and /B are also. But /B and
/ C are complements, hence, / 2 %/ C because
complements of the same angle are congruent. Now
QA = QC, and, hence, QB = QC.

»10. In A ABC, m/B =90 - a.

In AATS, m/ATS = 38%- 2
180 - (90 - a) _ 90 + a
) =7

In A BTR, m/ BIR =

f

m/ STR = 180 - (m/ ATS + m/ BTR)

180 - (180?- a . 902+ a

180 - 135 = 145,

f

i
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Proofs of ‘Theorems 9- 14 through ‘9-18

Theorem 9-14,

Given: Parallelogram ABCD wlth diagonal TC’

To Prove: A ABC & A CDA.

265

1. R || B¢ and XB | ©D. 1.

2. [/ DCA & / CAB. o2,
/ DAC & / ACB.

3. &C =TA. - 3.

4. AABC A CDA. 4.

Definition of a

parallelogram.

Alternate interior

angles.
Identity.
A.S.A. Theoren.

The proof using Vdiagonal BD 1s of course » 8imilar to this.
Observe we are reading from the figure that D and B

are on opposite sides of Xa

Theorem 9-15 is an immediate consequence of Theorem 9-14:
Since the triangles are congruent it follows that the corres-

ponding sides are congruent.
Corollary 9-15-1.

Given: L, i L, and P L, p Q _
and Q on L. h o
To Prove: P and Q are
equidistant from L2.
' _ Le -
) s T i
221
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O

1. Prom P and Q drop 1. Theorem 6-4 and
. vy ) definition of distance

gc;rpendicula.rs PS and from & point to a line.
q to L.

2. T8 ||, 2. Theorem 9-2.

3. PQTS 1is a parallelogram. 3. Definition of parallelo-

gram.
b, PS = QT. 4., . Theorem 9-15.

Theorem 9-16. Since the triangles into which a diagonal
divides a parallelogram are congruent, then the corresponding
angles are congruent. In the figure of Theorem 9-1%,

/ D% /B. Considering diagonal TB, we can show, in the
same manner, / A & / C.

Theorem 9-17. Consider any two consecutive angles of 2
parallelogram as the interior angles on the same side of a
transversal cutting two parallel lines. Then Theorem-9-17
is immediate by Theorem 9-10 (given two parallel lines and a
transversal, interior angles on th: same side of the trans-
versal are supplementary).

Theorem 9-18.

Given: Parallelogram ABCD with diagonals AC and BD.
(We assume from the figure that the diagonals intersect at
P. PFor a proof see answers to Problems 19 and 20 of Problem
Set 9-6.) :

To Prove: AC and BD bisect each other.

{pages 265-266} 2 22
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l. [as/at, 1. Alternate interior
Abuéb'° _8.!18168.
- 2. KB «=7Tb. 2. Theorem 9-15.
3. AASP & A CDP. 3. A.S.A. Theorem.
L, AP & TP. 4. Correesponding parts.
DP & BP. 4
5. AC and BD bisect 5. Definition of bisect.

each other.

As 18 pointed out in the text, there is a natural break,
or summary point, after Theorem 9-18. Teachers should keep
in mind that a careful selection of problems can emphasize
the common characteristic of Theorems 9-14 through 9-18,
and similiarly for Theorems 9-19, 9-20, and 9-21. At the
same time, the fact that Theorems 9-1% through 9-25 all
involve quadrilaterals is. strengthened by the arrangement of
the text. Thus Problem Set 9-6 supplies problems for both
Section 9-5 and Section 9-6.

266 Proofs of Theorems 9-19, 9-20, and 9-22
: D c

A 8

Theorem 9-19.

Given: Quadrilateral ABCD with AB % CD and AD & CB.
To Prove: ABCD is a parallelogram.

1. Draw diagonals AC and DB.

2. By the S.S.S. Theorem AABC %A CDA and A DAB & A BCD.
3. Therefore /a®/b and /c & /a.

4. Then by Theorem 9-5, AB || CD and AD | BC.

5. ABCD 1is a parallelogram by definition.

{page 266}
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Theorem 9-20.

Given: Quadrilateral ABCD with AB % TD and iB || ©Tb.
To Prove: ABCD 1s a parallelogram.

Since AB || D, [/ a % /b by eslternate interlor
angles AC = CA, and A ABC &%A CDA by the S.A.S. Postulate.
Therefore DA & BC and by Theorem 9-19 ABCD 1s a parallelo-
gram.

Theorem 9-21.
Ggiven: Quadrilateral ABCD with diagonals DB and AC
bisecting each other at P.
To Prove:; ABCD 1s a parallelogram.

1. ©DP = FB. 1. Given.
AP = PC.

2. [/ CPB & / DPA. 2. Vertical angles are
[ DPC & [ BPA. congruent.,

3. ADPC & A BPA. 3. S.A.S. Postulate.
ACPB & A APD.

4, AB = CD. 4, Corresponding parts.
AD = CB.

5. ABCD is a parallelogram. 5. Theorem 9-19.

Theorem 9-22 states a fact that surprises many students.
Perhaps some students willl enjoy making a model to demon-
strate visually, rather than just logically, that the length
of the segment joining the mid-points of two sides is one-
half the length of the third side.

In some texts a rectangle is defined in the following
way: If one angle of a parallelogram is a right angle then
the figure 1s a rectangle. If this definition is used, you
would want the Theorem. If one angle of a parallelogram 1s
a right angle then all four angles are right angles, which
in effect is Theorem 9-23. Using this theorem you see that
the suggested definition is equivalent to our definition of

224
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268 Proofs of Theorems 9-23, 9-24, and 9-25

Theorem 9-23. By Theorem 9-17 the -consecutive angles of
a parallelogram are supplementary, and since one‘gngie is a
right angle its supplement must be a right angle. Two
successive applications of Theorem 9-17 will establish that )

_ the other two angles are right angles. Or we could apply the-

theorem that opposite angles of a parallelogram are congru- -
ent. B .

Theorem 9-23 gives us an efficient way to prove that a .
quadrilateral is a rectangle. First prove that it is a
parallelogram and then prove that one anglé is a .right angle..

268 Theorem 9-24.
Given: Rhombus ABCD with
diagonals AC and HD.
To Prove: AC ] BD.

D ' C.

By the definition of
rhombus AB = AD and CB = CD; A B
that 18, A and C are equi- -
distant from B and D. Since .
A and C are coplanar with B and D, by Theorem 6-2
%8 1s the perpendicular bisector of BD. Hence, AC | BD.
An alternate proof uses the S.S.S. Theorem to get con-
gruent any two of the triangles having a common side. Then
the angles of a linear pair are congruent, and the diagonals
are perpendicular-.

268 Theorem 9-25. Using the figure of Theorem 9-24 we have:
Given: ABCD with AC | BD and AC and BD bisecting

each other.
To Prove: ABCD 1is a rhombus.

By hypothesis, ‘5.3 is the perpendicular bisector of
ED, 8o that AB = AD and CB = CD by Theorem 6-2.
Similarly, AD = CD 80 that AB = AD = CD = CB. By
definition, ABCD 18 a rhombus.
An alternate proof uses. the fact that A APB & A APD
El{fC «ACPB & ACPD by S.A.S.

R {page 268} 225



269

211

After the class has become familiar with the properties
of quadrilaterals stated on the previous pages you might
propose the following two problems for them to work. Neither
of these can be solved since there is a counter-example (an
example satisfying all of the given conditions that does not
satisfy the desired result) for each one.

(1) Given quadrilateral ABCD such that 2B || D and

AD 8%, prove this quadrilateral is a parallelogram. Do
not inform the students that this cannot be proved. Let them
search for themselves for a while and perhaps realize that
the counter-example is an isosceles trapezoid. This figure
satisfies all of the given conditions, but certainly is not a
parallelogram.

(2) Given a quadrilateral ABCD such that the diagonals are
perpendicular to each other. Prove that the quadrilateral is
a rhombus (or a square). This problem, also, cannot be
solved. A counter-example 1s a kite, like this:

It can be formed from two
non-congruent isosceles

B
/ﬂ\
triangles having the same A
base fitted together as in
D

7~

the figure. A more general
figure is also possible.

Problem Set 9-6

1. a. All four quadrilaterals.
b. All four.

c. Square, rhombus.
da. All four.
e. Square, rhombus.
f. All four.
g. Square, rhombus.

h. All four.
[pages 268-269]
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270

u.

1. Rectangle, square.
J. Rectangle, square.

X+ 30+ 2x - 60 = 180 and x = 70. Therefore,
m/A=m/F=280; m/B=m/H= 100.

Since the opposite angles of a parallelogram are con-
gruent, /H & /A and also LR& /A, 8o that

L R®/H. Since interior angles on the same side of a
transversal which cuts parallel lines are supplementary,
/M 18 supplementary to / A. By substitiition we see
that /M 1s supplementary to /H.

a. Yes. No. No. No.
b. Yes. No. No. No.
c. Yes. Yes. No. No.
4. Yes. No. No. No.
e. No. No. No. No.
f. No. No. No. No.
g. Yes. No. Yes. No.
h. Yes. No. Yes. No.
1. Yes. Yes. No. No.
J. Yes., VYes. Yes, Yes.
k. Yes. No. No. No.
1. Yes. No. No. No.

AD = BC and AB = DC since opposite sides of a
parallelogram are congruent. Then A APD % A CRB and
AAPB % A CRD by S.A.S. Then by corresponding parts
RD & PB and PD & RB. Having opposite sides congruent,
DPBR 1is a parallelogram.

2217
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1. TFE || AD. 1. Definition of &
FE 1 BC parallelogram.
M \
2. &D || BC. 2. Theorem 9-11.
3. FE & AD. 3. Theorem 9-15.
FE & BC.
4, AD & BC. 4, Statement 3.
5. ABCD is a parallelo- | 5. Statements 2 and 4
gram. and Theorem 9-20.
1. PXRY is a parallelo-| 1. Definition of a
gram. parallelogram.
2. PX = RY, R{ = PY. 2. Theorem 9-15.
3. /Xes&/T. 3. Theorem 9-9.
4y, /s=/T. 4. Theorem 5-2.
5. [ XpS & /8. 5. Angles congruent to the
same angle. Statements
. 3 and &4.
6. PX = SX. 6. Theorem 5-5.
T. PY = TY. 7. By steps similar to
steps 2-6.
8. PX+ XR+ RY + YP 8. Statements 6 and 7 by
- SX + XR + RY + YT, addition.
or PX + XR + RY + YP
= RS + RT
1. DQ=BQ. 1. Theorem 9-18.
2. Dc || BA. 2. Definition of a
parallelogram.
3. [/ EDQ &/ FEQ 3. Theorem 9-8.
4, [/ DQE & / BQF 4, Vertical angles are
congruent.
5. A DQE & A BQF. 5. A.S.A.
6. EQ = FQ. 6. Corresponding parts.
7. TEF 1s bisected by 7. Definition of bisect.
Q.
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271 9,

272 10.

12.

273 13.

Through D draw a parallel to CB meeting AB at X.

Then DCBX 1is a parallelogram in which case CB = DX.

Since i1t was given that AD = CB, therefore DX = DA

and / DXA & / A. But, by corresponding angles

/DXA & / B, Therefore / A% /B.

a, ADCQ & AKBQ by A.S.A. or S.A.A. 8o that Q 1is
mid-point of DK. In A ADK, PQ || AKX and

PQ = $AK = 5(AB + BK). BK = CD since they are
corresponding parts of congruent triangles.
PQ = 5(AB + CD).

Hence,

b. 8 inches. c. 51]1'-
1. Draw DB. 1. Two points determine a
segment.

2. RQ |l DB; RQ=%DB. |2. Theorem 9-22,

3. SF || DB; SP=#DB. |3. Theorem 9-22.

4, RQ = SP. 4. Statements 2 and 3.

50 R—Q ll .S_-P.O 50 Theorem 9"’11.

6. SPQR 1is a parallelo- |6. Theorem 9-20.
gram.

7. SQ and PR bisect 7. Theorem 9-18.
each other,

Let C!' be between B

and C such that AD = BC'.

Then 8D || B so that

ABC'D 18 a parallelogram

and m/ ADC' = m/ BC'D.

Making this replacement in

m/ ADC' < m/ ADC, we have

m/ BC'D < m/ ADC. By the A B-

Exterior Angle Theorem

m/ C < m/ BC'D. Therefore m/ C < m/ ADC.

[pages 271-273)
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273 *14. Given: A ACB with AC = EC, PX | AC, ¥Y | EC,

*15.

¥ | AC.

To Prove: PX + PY = BT.

1. Draw a perpendicular,| 1. Theorem 6-4%.
g, from P to BT.
«—> A >

2. PX || Q, and 2. Theorem 9-2.
T

3. PQTX is a parallelo- 3. Definition of a
gram. parallelogram.

4, PX = QT. 4, Theorem 9-15.

5. [/ &@B&/A. 5. Theorem 9-9.

6. [/ YBP S LA 6. Theorem 5-2.

7. [ Q@B & / YBP. 7. Statements 5 and 6.

8. A QpPB & A YBP. 8. S.A.A. Theorem.

9. PY = BQ. 9. Corresponding sides.

10. PX + PY = QT + BQ, 10. Steps 4 and 9.

or PX + PY = BT. c
Given: P interior %o
equilateral A ABC. PQ, ) R
PR, PS and CD are Y
perpendiculars as shown. f Z} P \
To Prove: PQ + PR + PS = CD.
A DQ 8
1. ' Draw XY, through 1. Theorems 6-3 and 6-%,.
P, | CD intersecting
AC, CD, BC as shown.
2. Tz || @, PQll Zb. |2. Theorem 9-2.
3. PQDZ 1s a parallelo- |3. Definition of a
gram. parallelogranm.
4y, PQ = 2D. 4, fTheorem 9-15.
5. PR + PS = CZ. 5. Problem 14,
6. PQ + PR + PS = CZ + ZD, 6. Steps 4 and 5.
PQ + PR + PS = CD.

(page 273])
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273 16.

274 17,

18.

*19.

EFOD 18 a parallelogram, by definition. Hence EF = DO
and EF || DO. Similarly DO = CB and CB = OA.
Therefore EF = OA and EF || OA. So EFAO is a
parallelogram and FA || EO. Since CD || EO, we have
FA || cD. '
a. ABB'A' is a parallelogram so that AA!' = BB!,
Similarly BCC!'B' is a parallelogram and BB! = CC!.

Thus AA' = CC' and AA'C'C is a parallelogram.
“> >
Hence AC || Atct.

b. The proof does not apply if the figure is not in a
plane because it has not been proved that if two
lines in space are parallel to a third line they
are parallel to each other.

By S.A.S. the four triangles are congruent. Hence the
four sides 'Ei, iﬁ; etc. are congruent. But of the
three angles at N, for example, two are complementary.
Therefore the third is a right angle. ILikewise the
other angles of KIMN are right angles and the figure
is a square.

1. A and D are on A D
the same side of

¢ because 7\?"?&

2. Similarly ¢ and D

are on the same side
>
of AB. B c

3. D ‘13 in the interior
of /A by the defin-
ition of the interior
of an angle.

231
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274 #20. 1. In the parallelogram

275

275

ABCD shown, D 1s

in the interior of A D
/ ABC by the preced-

ing problem.

2. ?33 intersects AC
by Problem 5 of
Problem Set 6-5.

—
3. Similarly, DB
intersects A_0'.

4, Hence BD intersects
AC.

It is intuitively evident that B is the mid-point of
KE:'. This can be proved formally as follows. One of A, B,
¢ must be between the other two (Theorem 2-2). If A 1i8
between B and C we have BC > AB, contradicting BC = AB.
Similarly if C 1is between A and B we get AB > BC
which is impossible. Thus B 18 between A and C and B
18 the mid-point of AC by definition.

Caution the students that the statement of Theorem 9-26
does not say that the segments intercepted on one transversal
are congruent respectively to segments intercepted on another
transversal. The segments of any one transversal are con-
gruent to each other.

In the proof of Theorem 9-26, we have tacitly assumed
that T, does not contain B; otherwlse, Tu could not be
parallel to '1‘2. The case in which 'J.‘2 contains B 18
easily disposud of using congruent triangles, A DBA and
AFBC, since /DBA and / fBC are vertictl angles.

In Problem Set 9-7, Problem *7 is intended to provide
the capable student with some insight into the problem of
incommensurability. 239
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280

280

281

282

) You may wish to point out to your class that the
centroid of a triangle has a significant physical inter-
pretation. It is a "central point" of the triangle. TIf

the triangle and its interior are given a physical existence,
in the form of a piece of cardboard or wood, for example,

the center of gravity of each is at the centroid of the tri-
angle, and the triangular piece will balance on & pin at
this point. Also, if the triangular plece 1s freely suspend-
ed from a vertex and a plumb line attached to that vertex,
the plumb line will always come to rest over the centroid of
the triangle.

Problem Set 9-7

1. a. By Theorem 9-26, RS = ST; and then by th: same
theorem 2Y = YX.

b. No. -

-

2. The right edge of sheet A 1s a transversal divided
into congruent segments by ruled parallels. By
Corollary 9-26-1, any other transversal, in particular
66; will be divided into congruent segments by the
same parallels,

3. Congruent corresponding angles assure parallel lines
through Nl, N2, ooy N5. Considering a sixth
parallel through A, Corollary 9-26-1 explains why
AB will be divided into congruent segments.

y, 12, 5, 6.
5. 10, 5, 5.

[pages 280-282]
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282 *6. Extend BC making -
- CE = BC and draw AE.
Extend BP to meet
AE at W. Draw B || Az,
Now MC || AE by Theorem
9-22 and BP = PW by
Theorem 9-26. By Theorem
9-22 again, AW = 2MP = 2PC
= WE. Hence BW 18 &
median of A ABE and meets
the median AC at a point
Q where AQ = 2QC.

*7. a. 3.
b. 7.
c. 9.
d. 1207.
e. No set of parallels can include ﬁﬁ’, ﬁ and <(?‘-1‘>
283 *8.
1. Through C draw a 1. Theorem 9-3.
1ine oL |/ DY.
2. BC = AD. 2. Theorem 9-15.
3. BY = DX. 3. Halves of equal numbers

are equal.
4, BYDX 1s a parallelo- | 4. Theorem 9-20.

5. DY || xB. 5 Definition of a

parallelogram,
«—> <>

6. cL || xB. 6 Theorem 9-11.

7. ©€Q = QT. 7. Theorem 9-26.

8. AT = TQ. 8. By steps corresponding
to Steps 1-T.

9. AT = TQ = QC. 9. Steps 7 and 8.

234
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Review Problems

283 1. a. S. 1. A. q. A.
b. S. J. N. r. A.
c. S. k. 8. s. 8.
d. A. 1. s. t. s.
e. S. m, S, u, S,
£f. A n. S. y v. S.
g. A. o. A. w. A.
h. S. p. S. x. . A.

285 2. a. Yes, No, No, No.
b. No, No, No, No.
c. Yes, No, Yes, .No.
da. Yes, Yes, Yes, Yes.
e. No, No, No, No.
f. Yes, No, No, No.
g. No, No, No, No.
h. No, No, No, No.
i. Yes, No, No, No.
J. Yes, No, Yes, No.
k. Yes, No, No, No.
1. Yes, No, Yes, No.

3. a. supplementary. b. congruent.
286 4, (d) are parallel,

5. (b) a rectangle.
*6. (a) If and only if the diagonals of ABCD are congruent
and perpendicular. Answer (c) i1s incorrect. Although
the inseribed quadrilateral 1s a square if ABCD is a
square, it is untrue that the inscribed quadrilateral
is a square only if ABCD is a square. See the figure,

\n
\

Q [pages 283-286)
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11.

288 12,
13.

14,

a. U0, 70. c. 90, 6.
b. 60, 120.

DG = 4. (GF =8 =3AF. AF =24, DP = l2.
DG = DF - GF = 4.)

9 inches.,

a. 55.

b. 3, 180-%‘5' or 9—622&.

m/ A =m/ ACD - m/ ABC = 2b - 2a.
m/ E=m/ ECD - m/ EBC =D ~ a.

Therefore m/ E =  m/ A.

65.

A AOC & A BOD by S.A.S.
/ C & /D since they are corresponding parts.

g1 . .

Ac || BC since / C and /D are congruent alternate

interior angles,

1. AP = RC. 1. Given,.

2. AD=CB, AD | CB. |2. Opposite sides of a

parallelogram are con-
gruent and parallel.

3. / DAP & / BCR. 3. Alternate interior
angles.

4, A DAP & A BCR. 4, S.A.S.

5. DP- & BR. ’ 5. Corresponding parts.

6. PB & RD. 6. i’rgof similar to Steps

T. DPBR 18 a parallelo-' T. Theorem 9-19.

gram.

236
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288 15. The statement can be dis-

D o
proved by a counter-example. ‘
If parallelogram ABCD has
side CB in common with K
A B E

isosceles triangle CBE in

which CB &% CE and B is

between A and E, then quadrilateral AECD meets
the requirements of the hypothesis of the problem but
is not a parallelogranm,

*16. Given: CM = MB, AM & CM. ¢

Prove: A ABC 1is a right y

triangle. M

Let m/B=x and

m/ C =y as shown in X

the figure. A 8

1. m/ MAB = x, 1. Base angles of an
m/ CAM = y. ' isosceles triangle.

2. m/CAB=x+y. 2. Angle Addition Postulate.

3. 2x + 2y = 180. 3. Theorem 9-13.

4, x+y = 90. 4, Division.

5 5

. m/ CAB = 90. Steps 2 and 4.

17. Given: ABCD 1s a parallelo- D c
gram. DX bisects / ADC. o/
AY bisects / DAB. DX and x
AY intersect at P.
Prove: .ﬁ?lﬁ’ A B
[page 288]
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289 =18,

223

= 180.
2. fm/ ADC + m/ BAD 2. Division, from State-
ment 1.
= 90,
3. m/ ADP + m/ DAP = 90.| 3. Step 2 and definition
of bisect.
k. m/ DPA = 90. 4,  Theorem 9-13 and
Statement 3.
5. T)Yl W 5. Definition of perpen-
dicular{
1. Consider KE, ?K; 1. A segment is determined
PE and KM. by two points.
2. PK || AC and 2. Theorem 9-22.
PK = $AC.
3. ACDE is a parallelo-| 3. Theorem 9-20.
gram.
4. ED = AC. uo Theorem 9-150
5. EM = BAC. 5. Given, and Statement 4.
6. EM = PK. 6. Statements 2 and 5.
7. EM || Ac. 7. Definition of parallelo-
- gram,
8. PK || EM. 8. Theorem 9-11.
9. PEMK is a parallelo-| 9. Theorem 9-20.
gram.
10. KE bisects PM. 10. Theorem 9-18.

238
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289 19. .

290 20. The diagonals of quadrilateral ABDC bisect each other
so ABDC 1is a parallelogram. For the same reason,
AFBC 1s a parallelogram. F, B, D are collinear be-
cause only one parallel to AC can contain point B.

239
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Illustrative Test Items fo¥ Chapter 9

If a statement is always true write the word TRUE. If it is

not always true write the word FAISE.

1.

10.

11.
12,

The diagonals of a square are perpendicular to each
other.

A square is a parallelogram.

If the diagonal of a quadrilateral divides it into two
congruent triangles, then the quadrilateral is a
parallelogram,

Lines which never meet are parallel.

If two consecutive angles of a quadrilateral are right
angles, then the quadrilateral it 2ither a trapezoid or
a rectangle.

Two lines which are each perpendicular to a third line
are parallel.

Given a correspondence between two triangles. If the
triangles have two sides and an angle of one congruent
to the corresponding parts of the other, then the
correspondence is a congruence.,

Every right triangle has two acute angles.

If a diagonal of a parallelogram divides it into two
isosceles triangles, the parallelogram is a rhombus.

If each two opposite sides of a quadrilateral are con-
gruent segments, the quadrilateral 1s a parallelogram.

Opposite angles of a parallelogram are congruent.

The measure of an exterior angle of a triangle equals
the sum of the measures of the two remote interior
angles.
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13.

14,

15.
16.
17.
18.
19.

20.

21.

22.

23.

24,

The perimeter of the triangle formed by Joining the
mid-points of the sides of a given triangle is half the
perimeter of the given triangle.

If the diagonals of a quadrilateral are perpendicular
and congruent, the quadrilateral is & rhombus.

A line that bisects one side of a triangle bisects
another side also.-

The diagonals of a parallelogram are congruent.
A diagonal of a parallelogram bisects two of its angles.,
A quadrilateral with three right angles 1s a rectangle.

A set of parallel lines intercepts congruent segments on
gny transversal.

Given two parallel lines and a transversal, two interior
angles on the same side of the transversal are supple~
mentary.

If two angles of a triangle are congruent to two angles
of another triangle, then the third angles are congruent.

If a 1ine bisects one side of a triangle and is parallel
to a second side, then it bisects the third side.

If a quadrilateral has a pair of sides parallel and the
other pair of sides congruent, then the quadrilateral 1s
a parallelogram.

If a parallelogram has one right angle, it has four
right angles.

Would the following information about a quadrilateral be
sufficient to prove it a parallelogram? a rectangle?

a rhombus? a square?
a. Each two opposite sides are parallel.
b. Each two opposite sides are congruent.

c. Three of its angles are right angles.
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d. Its diagonals bisect each other.
e. Its diagonals are congruent.
T. Its diagonals are perpendicular and congruent.

g. Its diagonals are perpendicular bisectors of each
other.

h. It is equilateral.

1. It is equiangular,

J. It is equilateral and equiangular.

k. Each two opposite angles are congruent.

1. Each two consecutive angles are supplementary.

2. Write on your paper these names of quadrilaterals:
parallelogram, rhombus, rectangle, square. After each
name write the number of every statement below which
always applies to it.

Each two opposite sides are parallel.

Each two opposite angles are congruent.

Each two opposite sides are congruent.

Diagonals have equal lengths.
Diagonals bisect each other.

Diagonals are perpendicular.

All sides are congruent.

All angles are congruent.

O O 3 OO0 U\ & W P

All angles are bisected by the diagonals.
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P
a. In quadrilateral MNOP
having diagonal MO,
if / OMP & / MON,
what two segments are M N
parallel?
b. If the parallel lines //ﬁ X o
x and y are cut by b !
a transversal, and if
m/ b 1s 10 greater .« g y,
than m/ a, find //
m/ b.
Given: ABCD 1is a rhombus. B ¢
m/ BAD = 60, AD = 5. \
Find: BD. \
\
A D
Given: A AB? with medians
BD anda EC. BD = 8, B
EC = 9,
Find: The lengths of the E
shorter segments of each
median.
A D ¢

If in the figure, DB = DC
= BE and m/ ECB = 30,
find m/ ABE. E
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Two sides of a parallelogram are 6 and 10. PFind the
length of the segment connecting the mid-point of the
shorter side with the Intersection of the diagonals.

In AABC, AE bisects / A,
B bisects /B, and

<>

OF || 2. m/ CAB = 40

and m/ CBA = 60. What

1s m/ BER?

In A ABC, A—g bisects

/A. BE bisects /B,
<> <>

and DF || AB. m/ C = 110

and m/ CDF = 50. What

is m/ BEF?

Two angles of a triangle have a total measure of 100.
What 18 the measure of either of the obtuse angles
formed at the intersection of the bisectors of these
two angles?

Ir the measure of one of the congruent angles of an
isosceles triangle is 70, what is the measure of the
smallest angle of the triangle?

Find the measure of each acute angle of a right tri-
angle if the measure of one of them is three times that
of the other.

Consider the following theorem: Given two lines and a
transversal. If one pair of alternate interior angles
are congruent, then the lines are parallel.

Given: Lines L1 and L2 cut by a transversal L to
form congruent alternate interior angles.

To Prove: L, Il Ly.

Proof: Suppose L1 intersects L2 in a point P.

This situation leads to a contradiction of' what theorem?

-
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5.

Given: In the figure

ABCD 18 a parallelogram

with AP = QC.
Prove: DP || QB.

(2]

A P B

Given: NP intersecting

MS at O with MN = NO

LN

and OP = PS.
Prove: MN ||

—
Given: BD bisects / EBC,

<P P
and BD || AcC.
-Prove: AB = BC.

Given: In A ABC, C

bisects / ACB.
intersects C at

Prove: AC = EC.

E.

N
e

Given: / BAC 1s a right g

A c

angle. QB = QA.
Prove: QB = QC.

Prove: If a line is

parallel to the bases of
a trapezoid and bisects
one of the non-parallel

sides, then it bisects
either diagonal of the
trapezoid.

. 4
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P 0= oWV & w

Answers
True. 9. True.
True. 10. True.
False,. 11. True.
False,. 12, True.
True. 13. True.
False. 14, PFalse,
False. 15, False,
True. 16. PFalse.
a. Yes. No. No. No.
b. Yes., No. No. No.
e Yes. Yes. No, No.
d. Yes. No. No. No.
e, No, No. No. No.
r. No. No. No. No.
g. Yes. No. Yes. No.
h. Yes. No. Yes. No.
1. Yes. Yes. No, No.
J. Yes., Yes. Yes. Yes,
k., Yes. No. No. No.
1. Yes. No. No. No.
Parallelogram. 1, 2, 3,
Rhombus. 1, 2, 3, 5, 6,
Rectangle. 1, 2, 3, 4,
Square. 1, 2, 3, 4, 5,

a. MP || NO.

5.

17.
18.
19.
20.
2l.
22.
a3,
24,

S.

7,
950

The length of the shorter segment of

The length of the

m/ ABE = 90.

5.
30.

shorter segment of

231

False.
True.
False,
True.
True.
True.
False.
True.
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7. 10.
8. 130.
9. ho. )

0. 235, 675 —
D. 1. The Exterior Angle Theorem.'

2. . oo-
1. AD = CB, AB = CD. 1. Theorem 9-15.
2. /JAa=/c. 2.  Theorem 9-16.
3. AP = CQ. 3. Given.
. A APD & A CQB. L, S.A.S.
5. PD & QB. 5. Corresponding parts.
6. PB = DQ. 6. Subtraction, Statements.
1 and 3.
7. DQBP 18 a parallelo-} 7. Theorem 9-19.
gram.
8. TP || @B. 18. Definition of a ‘
parallelogram.
3.
1. / NoM = / POS. 1. Theorem 4-7.
2. /S =/ POS. 2. Theorem 5-2.
/M= / NOM.
3. /M=/5S. 3. From Statements 1 and 2.
y. W || 55 4. Theorem 9-5.

L, [ EBD and [ A are congruent because they are corres-
ponding angles formed by parallel llnes and the trans-
versal AE. / CBD and / C are congruent since they
are alternate interior angles of parallel lines. Since
the given bisector makes / EBD % / CBD, then /A & /C,
and the opposite sides AB and BC are congruent.
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1. AR || cp. 1. Given.

2. /[ AcD & / BCD. 2. Definition of bisect.

3. /[ EAC & / ACD. 3. Alternate interior
angles.,

4. [/ E & /BCD. 4.,  Corresponding angles.

5. [ E & /EAC. 5. Statements 2, 3, and

6. AC = EC. 6. Theorem 5-5.

1. / CAQ 1is a comple- 1. Definition of comple-

ment of / BAQ. ment.
2. /C 1is a complement | 2. Corollary 9-13-2.
of / B.

3. /B=/BN. 3. Base angle of an
isosceles triangle.

4, Jcaq =/ cC. 4, Complements of congruent
angles are- congruent.

5. QC = QA. 5. Theorem 5-5.

6. QB = Q. 6. Given.

7. QB = QC. 7. Steps 4 and 5.

Given: The figure with trapezoid TRAP having

PA || TR, PE = ET and EZ || TR.
Prove: PO = OR.

?i: 152’ and ﬁﬁ?

are parallel.
PE = ET.
PO = OR.

1. _Theorem 9-11.

2. Given.
3. Theorem 9-27.
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Chapte» 10
PARALLELS IN SPACE

This Chapter develops the properties of parallellism and

perpendicularity of lines and planes in space and applies

these properties to the study of projéction of figures on &
plane. Essentially the treatment 1s conventional. A minimum

program would cover Section 10-1, studying the essential

properties of parallelism of lines and planes and the related
properties of perpendicularity. Section 10-2, which probably

48 more difficult, is devoted to dihedral angles and in-
particular to their application to the concept of perpen-

dicular planes. Sections 10-1 and 10~-2 give good coverage of
the basic subject matter. Section 10-3, which could be taken
1f time and class ability permit, does not add to the
student's basic knowledge of parallelism and perpendicularity
but applies it to the interesting geometric problem of pro-
jecting figures into a plane.

In this Chapter you will see a very strong analogy
between the material Eoncerning parallel lines in a plane as
described in Chapter 9, and the discussion of parallel planes.
in space. For example Theorem 10-2, on a line perpendicular
to one of two parallel planes, is analogous to Theorem 9-12;
and Theorem 10-3, two planes perpendicular to the same line
are parallel, is analogous to Theorem 9-2, expressed in the
form: In a plane, two lines perpendicular to the same line
are parallel. In some cases the proofs are a bit more
involved, since we are working in space and not just in a
plane.

249
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296 1.

297 2.

298 5.

Problem Set 10-1

a. True. g. False,
b, True. h. True.
c. False. i. True.
d. True. J. False.
e. True. k. True.
L. True. 1. Palse.

let AZ intersect plane n at T. Draw AX, BT, TY,
and CZ. Then BT || CZ and TY || AX by Theorem 10-1.
From Theorem 9-26, in plane ACZ, AT = T2; and in
plane AZX, XY = YZ.

1. s || r. 1. Given.

2. AB ] r. 2. Given.

3. KB ]s. 3. ‘Theorem 10-2.

4., AB ] CX and 4,  Theorem 8-3.
i | oY

5. A ACX A ACY. 5. S.A.S.

6. AX = AY. 6. Corresponding parts.

1. m | AB, n ] AB. 1. Given.

2. mf n. 2. Theorem 10-3.

3. m] CD. 3. Given.

4, n ] CD. 4, Theorem 10-2.

By Theorem 10-5, AB = CD. Consider BD. AB | ED and
cD 1 BD by definition of a line perpendicular to &
plane. Then A ABD & A CDB by S.A.S. and AD = CB by
corresponding parts.

250
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298 #6, By Theorem 10-3 we know E || F. By Theorem 10-1 we

know 7ﬁ;||'§ﬁ and €& | 8. since BK = AD and

BH = AC, we know we have two parallelograms. These
are rectangles since AB is perpendicular to both
planes and thérefore to lines in the planes through A
and B. A4CAD and HBK are plane anglee of the
dihedral angle D-AB-H and are congruent. Then

A cAp % A HBK by S.A.S. However, we do not know the
measure of any of the angles of the two triangles and
so cannot find the length of CD.

*T. Let points D and G Dbe such that AD = BG and E
and F be such that AE = BF. Draw DE and GF.
Then:

(1) AE || BF and AD || BG by Theorem 10-1,

(2) AEFB and ADGB are parallelograms since they have
two sides parallel and equal in length.

(3) EF = AB and DG = AB because opposite sides of a
paralielogram have equal lengths. Also EF || AB
and DG || AB.

(4) Therefore EF = DG and EF || DG making EDGF a
parallelogram by Theorem 9-20.

(5) ED = FG.
(6) A ADE & A GFD Dby S.S.S.
(7) [ DAE % / GBF.

251
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299

*8. Given two skew lines L, and
L2, at any point P on L2
draw the one line L3
parallel to Ll. Then
L2 end L3 intersect
and determine a plane
parallel to Ll.

Proof: L1 and L3 are coplanar and determine a plane
n because they are parg}}el. L1 and L2 cannot be
coplanar because they are skew. Hence, L2 and L3
are distinct intersecting lines determining a plane m.
Planes m and n have the line L3 in common, hence
it is their intersection. Ll, which 18 in n, could
intersect m only at some point of L3; and this 1is
impossible since L, || Ly. Hence L, | m.

*9, QP || SM by Corollary 10-4-2. In the plane of RL and
QP, QP | PL; and in the plane of SM and F, Ulm
Since QF 1s perpendicular to both PL and PM, JF | E.
Then both RL and SM are perpendicular to E by
Corollary 10-4-1.

The notion of dihedral angle may seem strange to a
student on first acquaintance. You might point out that Just -
as angles arise in the practical problem of measuring the
difference in direction of two lines, so dihedral angles are
suggested when we have to specify the "difference in direct-
jon" of two planes. If you are designing a gable roof for
your house, somehow you must specify the size of the angular
opening between the sides of the roof.

In designing a building, an architect must specify the
relative direction of plane surfaces. Ordinarily walls are
perpendicular to floors, but in many modern buildings, pianes
appear which are not perpendicular to each other. There 1s
implicit in this situation the notion of dihedral angle and

[page 299]
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the problem of measuring dihedral angles. Consider the
every-day situation of specifying how steep a hill 1is. When
we say a hill has an inclination of 25°, this can be inter-
preted as a statement about the angle formed by the plane of
the hill and a horizontal plane.

You can illustrate dihedral angles very easily by using
the covers or leaves of a book to represent the faces and
the binding to represent the edge. You can use this to give
the students some feeling for relative size of dihedral
angles, bisection, perpendicularity, and so on.

299 Dihedral angles are important for theoretical reasons
as well as for practical ones. Observe that planes are as
important in space as lines are in a plane, If angles
formed by lines are worth studying in a plane, 1t is natural
to try to make a similar study of angles formed by planes in
space. In studying the properties of points, lines and
planes in space we naturally try to generalize .planar con-
cepts about lines to spatial concepts about lines and planes,
Thus we study "angles formed by planes", perpendicularity of
lines and planes and of planes and planes, and parallelism
of lines and planes and of planes and planes.

299 Notice in the definition of dihedral angles, that we
cannot just speak of the union of two half-planes, but that
ve must include their common edge in the union. This 18
because a half-plane does not contain 1ts edge. Similarly
the side or face of a dihedral angle is defined, not as a
half-plane, but as the union of a half-plane and 1ts edge.
(This 1s sometimes called a "closed" half-plane to emphasize
that the half-plane has been "closed up" by adjoining 1its
bounding line - in contrast a half-plane in our sense 1s
called an "open" half-plane.) Observe that the intersection
of the two faces is their common edge, just as the inter-
section of the two sides of an (ordinary) angle is their
common end-point.
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301

Suggested definitions: Dihedral angles / A-PQ-B and
ZA'-—PQ-B:_Ere vertical if A and A!' are on opposite
sides of PQ, and B and B! are on opposite sides of Tii

The interior of dihedral angle /A-PQ-B consists of
all points which are on the same side of plane APQ as B
and are on the same side of plane BPQ as A. The exterior
of a dihedral angle consists of all points which are not in
the interior of the angle and are not in the angle itself.

Notlce that the rafters of a gable roof form plane
angles of the dihedral angle formed by the sides of the roof.

Some of your students may have difficulty in grasping
the 1dea that a spatial onject like a dihedral angle can be
measured dy its plane angle which is only a "planar" figure.
You might polnt out that two dihedral angles will Doe
"congruent", that is cdn be made to "fit", 1f and only if
their plane angles are congruent, taat is have equal measure.
This can be illustrated with models of sheets of cardboard,
folded lengthwise to form dihedral angles. Observe that
they can be made to coincide if, and only if, corresponding
plane angles can be made to coincide, that is if and only if
the plane angles have equal measure. Similarly if you form
a dihedral angle which is "twice as large" as a second
(say by putting two "congruent" dihedral angles together),
you can convince the student that the plane angle of the
first has a measure which 1s twice as large as that of the
second.

The formal significance of the above discussion is this.
Although the text proper does not define congruence of
dihedral angles, a general definition of congruence for any
two figures is given in Appendix VIII, Rigid Motion. (See
also the Talk on the Concept of Congruence.) Using this
definition we can prove the theorem that two dihedral angles
are congruent if and only if their plane angles are congruent.
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301 We could have given a definition of right dihedral
angle very similar to that for right angle. First by
analogy with the idea of linear pair of angles (see page 82,
Student Text), we can define "planar pair" of dihedral
angles as follows: Dihedral angles / A-PQ-B and / A'-PQ-B
form a planar pair if A and A' are on opposite sides of
‘P_a. Then if the dihedral angles of a planar pair have the
same measure each 1s defined to be a right dihedral angle.

Proofs of the Corollaries

302 Corollary 10-6-1. If a line is perpendicular to a
plane, then any plane containing this line 1is perpendicular
to the given plane.

Given: 0B 1 E, F contains ="
To Prove: F | E. c
P

In E draw ‘ﬁ?l‘fa Since ﬁ_]_ E, then by the
definitionegf a‘_]’.ine perpendicular to a plane, Blﬁ,
likewise AB | BC.(_)Hence ABC 1s a plane angle of
[/ A-PQ-C, since AB and are perpendicular to FQ
at B. Since / ABC 1s a right angle we see that F 1lE

by the definition of perpendicular planes.

302 Corollary 10-6-2. If two planes are perpendicular,
then any line in one of them perpendicular to their line of

intersection is perpendicular to the other plane.

> <>
Given: F | E, AB | PQ.
To Prove: AB 1 E.
- , <>
Using the figure above, in E draw BC | PQ. Then by
the definition of a plane angle, / ABC 1s a plane angle of
/ A-PQ-C. F | E by hypothesis. Hence [/ A-PQ-C 1s a right
dihedral angle, and its plane angle, / ABC, 1s a right
angle, and AB | BC. Since it was given that 1 BQ, we
now have (A—g perpendicular to two lines }_r; E passing
@ through its foot, hence by Theorem 8-3, AB | E.
ERIC [pages 301-302]
FullText Provid ic =~
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Problem Set 10-2

32 1. [/ c-aB-D, [/ A-BC-D, [/ A-CD-B, [/ B-AD-C,
[/ B-AC-D, / A-BD-C.

7303 2. / CPB is a plane angle of / C-PA-B. Since m/ CPB
= 90, m/ C-PA-B = 90. m/ CAB = 60 since A CAB can
be proved to be egullateral.

3. a. 1 g. (0]
b. 1 h. O
c. (¢ i. (¢
4. (¢ Jo O
e. o k. 1.
f. 1

30 4. XP | r and YP | s by Corollary 10-62. Then XP | QP
and"if 1_55' by the definition of a line perpendicular
to a plane. By Theorem 8-3, @ ]| E. Since XP | m,
XP | PQ and / XPQ 1is a right angle. Therefore
A X-AB-Q 1is a right dihedral angle, and by definition
of perpendicular planes s | m.

5. x=1U45; m=145; y=

305 *6. If E, Il L,,» then
E3 and L12 do not
meet. Then L12 and
L13 do nct meet; and
since they both lie in
El’ they are parallel.
Similarly, L12 and
Ll3 are parallel. Also L13 and L23 do not inter-
sect, for if they did intersect at a point P this
point would lie in each of El’ E2, E3, and E3
would meet L12 at P which in this case 18 not
possible.
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If E3 intersects L12 at point P, P 1lies on each
of El’ E2 and E3, and hence in L12’ L13, and
L23. Hence all three lines are concurrent at P.

305 #7. Point X 1ies in plane ABC and also in plane A'BIC?,
and hence on their intersection. Similarly, Y and /]
lie on the intersection on these two planes, cor the
points X, Y, Z 1lie on a line u, which was to be
proved.

Remark 1. The two non-parallel planegaﬁlways intersect,
but it might happen that B'C' and BC are parallel
lines, so there would be no point X. This would happen
) > «—>
if and only if BC and B!C' are both parallel to the
line u. This could not happen for two pairs of side-~
Jines for we could not have two lines through a vertex -
parallel to u.

Remark 2. The Theorem is also valid if plane ABC
= plane A'B!'C', but we have not proved it.

Desargues! Theorem 1s an interesting and important
incidence theorem relating concurrence of lines with
collinearity of points. The theorem is also valid when
the two triangles are coplanar, but is much harder to
prove. In this case the student can get an intuitive
appreciation of its correctness by imagining the figure
to collapse into a plane.

2517
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The theory of projections is important in engineering,
particularly in drafting. Speaking broadly it may be con-
sidered part of the subject of "map" making or the repre-
sentation of geometrical objects on a given surface, usually
taken as & plane. (See Problem U4 of Problem Set 10-3. for
an indication of the use of projections in giving planar
representations of a solid object.) The study of projection
throws light on familiar visual experiences. For example,
if we look at a circle, inclined so that its plane is oblique
to the line of sight, it appears as an ellipse - that is,
we see 1t as 1f it were projected on a plane which is per-
pendicular to the line of vision.

Observe that the definition of S' the projection of
a set of points S as the set of projections of all points
of S means two things. Namely, that the projection of
every point of S must be in S', and, in addition, that
such projections form the whole of S'. That-is each point
of S' must be the projection of some point of S. Other-
wise S' would contain the projection of S and additional
points besides. As a homely illustration of a similar
situation consider the statement that the Yale Mathematics
Department is the same as the Olympic Hockey Team. Disre-
garding its improbability, this statement asserts two things.
Pirst that every member of the Yale Mathematics Department
is a member of the Olympic Hockey Team. But further, that
every member of the Olympic Hockey Team is a member of the
Yale Mathematics Department - otherwise the Olympic Hockey
Team would be a larger set than the Yale Mathematics Depart-
ment. To summarize: in identifying a set S' as the
projection of S we will have to prove a characterization
theorem for S' involving a theorem and its converse.
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The conventional phrase is to project a point or figure
"onto" a plane rather than "4nto" a plane. We have changed
this in order to be consistent with mathematical usage in
the theory of mappings or transformations. A mapping is a
correspondence which assoclates with each point of a given
set S a unique point of a set S'. We describe this by
saying that each point of S 18 "mapped into" its associated
point of S' and that S 18 "mapped into" S'. We say S
18 "mapped onto" S' only when the whole of S' 1is involved,
that is when each point of S' 18 the associated point of
some point of S. Since this distinction between Unto"
and "onto" is quite firmly established in higher mathematics
we thought it wise to use the appropriate technical term
"into" even at this elementary level.

The answer to why M intersects L: M and L Dboth
1ie in F. Suppose M || L. Then by Corollary 10~4-1
M | E implies L | E. This contradicts the hypothesis.
Therefore M must intersect L.

Problem Set 10-3

1. a. Yes. d. Yes.
b. No. e. No.
c. Yes; yes; Yyes. f. No.
2. a. Not necessarily. c. Yes.
b, No. da. Yes.

3. 75? and -§§ are perpendicular to plane m. Hence
X || BY and ABYX d4s a plane figure. Since the
projection of a segment is a segment (or a point) N
4s in this plane. Since MN | m, MN || AX and
M || BY. Then XN = NY so that N 1s the mid-point
of XY because parallels which intercept congruent
segments on one transversal intercept congruent segments
on any transversal.

(pages 308-310]
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310 4,

311 5.

312 *7.

*8,

Since the intersection point shown within the large
triangle in the problem may be on a vertex, on &n edge
or on the extension of an edge, or elsewhere in the
exterior of the large triangle the projection may

appear as follows:

Let BE be the perpendicular to plane m at B,
Then AB | BE, and 1t s given that AB | BC. Hence
AB | plane EBC. By definition of projection CD | m.
Then CD || BE so that D 1s in the plane EBC.

Then DB 48 4in this plane and AB | BD or / ABD 1is
a right angle.

By definition of projection Q' | m and therefore
also QQ' 1l Q'X 8o that A Q'X 4s a right triangle.
Then QQ' < QX. But AQ & AQ, and AX # AQ'. In
triangles QAX and QAQ!', m/ QAQ' < m/ QAX by
Theorem 7-9, which was to be proved.

The projection is a regular hexagon with segments from
its vertices to its center.

[pages 310-312]
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Review Problems

312 1. a. Yes [— ] —_
b. Yes .
c. Yes . L

313 2. No. No.

3. Yes. A plane angle of a dihedral angle is the angle
formed by two rays, one in each side of the dihedral
angle and perpendicular to its edge at the same point.

No. 90.
g, a. S. h. S.
b. S. 1. S.
c. S. 3. S.
a. A. k. S.
e, S. 1. A,
f. S. m. S.
A, n. S.
a1k 5. .
1. AF | E. 1. Definition of pro-
Jection.
2. Plane ABF | E. 2. Corollary 10-6-1.
3. HB | FB. 3. Definition of per-
pendicular.
4. HB | plane ABF. 4. Corollary 10-6-2.
5. HB | AB. 5. Definition of line
perpendicular to a
plane.
6. [/ ABH 1s a right 6. Definition of per-
angle., pendicular.
261
o [pages 312-314]




1. ED || CE. 1. Theorem 10-1.

2. [/ ADB =« /E. | 2.  Corresponding angles:
of parallel lines.

3. /A% /E, 3. 'Hypothesis and base
angles of ‘an isosceles
triangle.

4. /ADB & /A, 4. Steps 2 and 3.

5. BD = AB. 1 5. Theorem 5-5.

1. RX || BD and - 1. Theorem 9-22.

RX = %BD.
YZ || BD and
YZ = 38D. -

2. RX || Yz. 2. Corollary 10-4-2,

3. RX = YzZ. 3. Step 1.

4y, R, X, Y, Z are 4.,  Theorem 9-1.

coplanar. .

5. RXYZ 1is a parallelo-} 5. Two sides both congruent

gram. and parallel, --..

plane, ||, plane; plane, |, |. - —
plane, |, plane, plane, ||, ].

plane, ||, plane, line, 1,
plane, ||, line, plane, |,
plane, |, 1line, 1line, ||,
line, ||, ine, plane, |,
line, |, plane, plane, ||,
plane, |, 1line, plane,|, |.

o vl el e

X is the mid-point of BD and of AC.

E, _B?:, _ﬂ, ﬁi, c6 are parallel segments. (Theorem
9-2). Y dis the mid-point of FH and EG. (Theorem
9-26). In trapezoid AEGC, XY = 3(AE + CG) (See
Problem 10 of Problem Set 9-6). 1In trapezoid BFHD,
"XY=-%(BF+DH). .*. AE + CG = BF + DH. '

[page 315]
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Illustrative Test Items for Chapter 10

X 1Q

A. 1. Given: YA ] E at A.
EﬁlE at B. F 1s a
point on ‘QTB’ Are X, N
A, B, F coplénar? A
State a theorem to support
your conclusion. What is
m/ XaB? If m/ BFX = 135, '
what is m/ AXF?

4

B s D
\

2. Plane x | plane r. They

intersect in AB. In X Q
M8 W @ ™ AL _Z.
lie in plane r.
m/ FHW =
m/ FHQ
m/ FHT =
Support your conclusions with suitable principles. On
the basis of the given information we cannot say that
any of these three angles 1s a plane angle of dihedral
/ W-AB-F. / WHF would be a plane angle of / W-AB-F
ir WH |

F,

no
X
-
e o]
x

3. In the figure, <;‘>_1"za.ne x _]_ﬁ
and plane y | AB. 1Is
x || y? State a theorem to

A

support your conclusion.
Plane E 1intersects x in

T'T'h?a.ndy:Lnﬁr."w_ﬁ> ‘CTF’

—

If a‘_J_.)ine L is perpendicular
to WK and intersects ,
what kind of angles does L
make with 3}??
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Indicate whether true or false.

a.

If a plane is perpendicular to each of two lines, the
two lines are coplanar.

If a plane 1ntersects.two other plahes in parallel
lines, then the two planes are parallel.

Two planes perpendicular to the same line are parallel.

If each of two planes is parallel to a line, the planes
are parallel to each other.

The projection of a line into a plane is always a line.
Two lines are parallel if they have no point in common.

For each acute angle there is a plane such that the
projection of the.acute angle into the plane is an
obtuse angle. >

The length of the projection of a segment into a plane
is alway~ less than the length of the segment.

Two lines parallel to the same plane are parallel to
each other.

If each of two intersecting planes is perpendicular to
a third plane, their line of intersection is perpendicu-
lar to the third plane. ‘

If a line not contained in a plane is perpendicular to
a line in the plane, then it is perpendicular to the
plane.

If a plane bisects a segment, every point of the plane
is equidistant from the ends of the segment.

At a point on a line there are infinitely many lines
perpendicular to the line.

Through a point outside a plane there 1s exactly one
line perpendicular to the plane.

<> > <>
If plane E 1is perpendicular to AB and AB ||CD,
then E | CB.
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A\ plane perpendicular to one of two perpendicular
planes 1is never perpendicular to the other plane.

If plane M is perpendicular to plane N and A ABC
lies in plane M, then the projection of A ABC into
plane N 1is a line segment.

It is possible for the measure of a plane angle of an
acute dihedral angle to be 90.

Any two plane angles of a given dihedral angle are
congruent.

If a line is not perpendicular to a plane, then each
plane containing this line is not perpendicular to the

plane.

A
Given: H is the pro-
jection of A 1into plane
E. HB 1is the projection
of AB into E. HF is
the projection of ‘AF H F
into E. AF = AB. .
Prove: HF = HB. E -
Given. E || F. / ¢ F

|
AB_LE at A. /|

CD__LE at D.
Prove: AC = BD.

Given: AH || BF || .
AH = BF = QK.
Prove: A ABQ & A HFK.

P




Yes.

90.

Answers

Statement of Theorem 8-8 or 10-4. 90. 145,

90. 90. Statements of Corollary 10-6-2 anqp*
the definition of a line perpendicular to a plane. AB.

> . <>
Yes. Statement of Theorem 10-3. WK || QF. Right angles.

T. h. F. o. T.

F. i. PF. P. F.

T. J. T, qQ. T.

F. k. F. r. F.

F. 1. F. 8. ‘P,

F. m. T. t. F.

T. n. T.

1. AH | E. 1. Definition of pro-

Jection.

2. [/ AHF and / AHB 2. Definition of a line
are right angles. _ gizgg?dicular to a

3. AH = AH. 3. ldentidy. -

4, A AHF & A AHB, 4. Leg-Hypotenuse Theorem.

5. HF = HB. 5. Corresponding parts.

1. B || op. 1. Theorem 10-k.

2. A, B, C, D are 2. Theorem 8-8 or Theorem
coplanar and so 9-1.
determine a quadri-
lateral.

3. AB | F. 3.  Theorem 10-2.
cD | F.

4, AB = CD. 4.,  Theorem 10-5.

5. ABCD 18 a parallelo-| 5. Two sides congruent and
gram, parallel,

6. [/ BAD is a right 6. Definition of a line
angle. verpendicular to a

plane,



