
DOCUMENT RESUME

ED 135 388 IB 004 499

AUTHOR Kirby, Paul J.; Gardner, Edward M.
Tin! Microcomputer Controlled, interactive Testing

Terminal Development.
INSTITUTION Air Force Human Resources lab., Lowry AFB, Colo.

Technical Training Div.
SPONS AGENCY Air Force Human Resources Lab., Brooks AFB, Texas.
REPORT NO AIHEI-TR-76-66
PUB DATE Oct 76
NOTE 27p.

EDRS PRICE MF-$0.83 HC-$2.06 Plus Postage.
DESCRIPTORS Autcinstructional Aids; Computer Programs; *Computer

Science; *Individual Tests; Man Machine Systems; Self
Pacing Machines; *Testing; *Test Scoring Machines

IDENTIFIERS Microcomputers

ABSTRACT
The evolution of a self-contained test scoring

terminal is presented. The rationale for the design is presented
along with an evolutionary description of the requirements for the
system. The sequence of software and hardware tools, which were
developed in order to build the device, are also described in this
report. The resulting device, which contains an imbedded
microcomputer is functionally described and the testing strategies
which it cur.rently supports axe presented. (Author)

* Dcraents acquired by ERIC include many informal unpublished

* materls not available from other sources. ERIC makes every effort *

* to obtain tbe best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy xeproductions ERIC makes available *

* via the ERIC Document Reproduction Service (EDRS). EDRS is not *

* responsible for the quality of the original document. Reproductions *

* supplied by EDRS axe the best that can be made from the original. *

4!***#****

AFHRL-TR-76-66

AIR FORCE 13

A

c).

S LABORATORY

U S. DEPARTMENT OF HEALTH.
EDUCATION 11WELFAItE
NATIONAL INSTITUTE OF

EDUCATION

THIS 00CUMENT HAS BEEN REPRO.
mac) EXACTLY AS RECEIVEO F ROM

THE PERSON OR
ORGANIZATION OR IGI N

A TING IT POINTS OF VIEW OR OPINIONS

STATEO DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL

INSTITUTE OF

EOUCAT`ON POSITION OR POLICY

MICROCOMPUTER CONTROLLED, INTERACTIVE
TESTING TERMINAL DEVELOPMENT

By

- Paul J. Kisty, 1st Lt, USAF
Edward M. Gardner

TECHNICAL TRAINING DIVISION
Lowry Air Force Base, Colorado 80230

October 1976
Final Report for Period February 1975 June 1976

Appmved for public release: distribution unlimited.

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE,TE.XAS 78235

2

NOTICE

When US Government drawings, specifications, or other data are used
for any pur pose other than a definitely related Government
procurement operation, t he Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, furnished, or in any way supplied
the said drawing, specifications, or other data is not to be regarded by
implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that nuty in any way
be related thereto.

This final r7eporir was submit ted by Technical. Training Division, Air
Force Human Resources Laboratory, Lowry Air Force Base, Colorado
80230, under project, 1121, with HQ Air Force Human. Resources
Laboratory (AFSC), Brooks Air Force Base, Texas 78235.

.....

This report has been reviewed:and cleared for open publication and/or
public release by the appropriate Office of Information (01) in
accordance with AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution of this report to the public at large, or by

DDC to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved.

MARTY R. ROCKWAY, Technical Director
Technical Training Division

Approved for publication.

DAN D. FULGI1AM, Colonel, USAF
Conimander

Unclassitied
SECURI ry CL ASSI FIC ArION OF THIS PAGE (ir.:en Dare Entered)....-----,.........,

REPORT DOCUMENTATION PAGE BEFREADORE CINSTRUCTIONSOMPLETING FORM

n REPORT NUMBER
AFFIRL-TR-76-66

2. GOVT ACCESSION ND 3. RECIPIENT'S CATALOG NUMBER

4, TITLE (and Subtitle)
MICROCOMPUTER CONTROLLED, INTERACTIVE
TESTING TERMINAL DEVELOPMENT

5 TYPE OF REPORT 6 PERIOD COVERED

Final
February 1975 June 1976

6 PERFORMING ORG. REPORT NUMBER

7. AUTHOR(A)

Paul J. Kirby
Edward M. Gardner

8 CONTRACT OR GRANT NUMBER(s)

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Tecknieal Training Division
Air Force Human Resources Laboratory
Lowry Air Force Base, Colorado 80230

10 PROGRAM ELEMENT, PROJECT, TASK
AREA 8 WORK UNIT NUMBERS

62703F
11210217 and 11210218

11 CONTROLLING OFFICE NAMr AND ADDRESS
HQ Air Force Human Resources Lzboratory (AFSC)
Brooks Air Force Base, Texas 78235

.

12. REPORT DATE

October 1976
13. NUNBER OF PAGES

24

14. MONITORING AGENCY NAME 6 ADORESS(II different from Controlling Office) IS. SECURITY CLASS, (of this report)

Unclassified

15n. DECLASSIFICATION DOWNGRADING
SCHEDULE

16 OISTRIBUTION STATEMENT (of this Report)

Approved for public release:distribution unlimited.

17, DISTRIBUTION STATEMENT (of the abstract entered In Dlock 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse nide if necessary nnd identi(y by block number)

microcomputer
microcomputer assembly language
microcomputer hardware emulation

!microcomputer software simulation
:self-paced testing

20. ABSTRACT (Continue on reverse side ff necessery rind Identify by block number)

The evolution of a self-contained test scoring terminal is presented. The rationale for the design is presented
alo ig with an evolutionary description of the requirements for the system. The sequence of software and hardware
tools, which were developed in order to build the device, are also described in this report. The resulting device,
which contains an imbedded microcomputer is functionally described and the testing strategies which it currently
supports are presented.

4

DD
FORM73

1473 EDITION OF 1 NOV 55 IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Mien Data Entered)

SUMMARY

Problem .

.The instructional environment created by sells-pacing of mediated materials- requires continual
evaluation of student progress. This has been previously accomplished by explicit or embedded tests items

presented to students who have recorded their responses on paper answer sheets. In the Advanced'

Instructional System (AIS), these sheets are currently read hy a "management terminal which is connected

to a central computer that records student responses and makes appropriate instructional prescriptions. The

operation of the reading device 'With marked sense forms has resulted in a very...high rejection rate of fGrms,

due to incorrect or unreadable information. The problem is to achieve the desirable aspects of this system

while eliminating the many problems resulting from the use of paper forms.

Approach

The approach investigated under work units 1121-02-17 and 1121-02-18 has heen to develop an

electronic equivalent to the paper forms used in the current system. In this system the student responds to

questions on a small device called a "microterminal- which consists externally of a keyboard and several

display devices. Internally, this device contains an entire, miniature, progzamouhle computer. This

computer contains five different testing strategies and 1)00 random test answer patterns, and is capable of

conducting an entire testing operation without intervention hy any other computer. Provision is trade for
presenting the resulting data to a central computer through the A1S management terminal or to manually

remove data from the device.

In order to produce this product, it was necessary to develop several software and hardware tools

with" which the microcomputer was simulated, programmed, and constructed. The development tools are

described in this rel.)ort along with the sequence of steps necessary to reach the final product which is the

mieroterminal.

Results

The microterminal works as designed and offers a highly reliable alternative to the forms reader. The

tools developed to build the microterminal are available to support modification of this device or

construction of families of related devices.

Conclusions

The micmterminal offers a solution to the problems of using the AIS management terminal and offers

many further possibilities for low-cost, reliable testing systems within the Air Force.

1

PREFACE

We would like to acknowledge electronic technician Mr. Lyle McKnight's

con It ibution for wiring and assembling both the hardware emulator and thc

microferminal, and for his continued assistance and support during the projct. Mention
should also be given to Mr. Joseph Limos for some of his original conceptional-ideas
regarding a low-cost student terminal and for his role in the experimental testing of the

device. with 50 students from the Logistics Training School at Lowry AF13, Colorado,
while using the first prototype of the present microterminal. Finally, mention should he
given to LiCol Roger Grossel for providing managerial support and freedom in letting us

pursue au idea which we believe could have significant impact on military training
met hodologies.

TABLE OF CONTENTS

Page

L Int rod uct ion 5

B. Product Evolutkin 5

III. The Microcompiner Software/I lardware Development System 8

The PIMPL Programming Language and Compiler 8

Debugging the Initial Program Software Sinmlation 11

Hardware Devekyment System 13

IV. Description of the Student Microterminal 19

V. Conclusion 21

LIST OF ILLUSTRATIONS

tigu re Page

1 Student microterminal 6

/ Student Microterminal 9

3 Sample of P1MPL programming code 11

4 Hardware development system , 14

5 Hardware development system 16

7

3

MICROCOMPUTER CONTROLLED, INTERACTIVE
TESTING TERMINAL DEVELOPMENT

I. INTRODUCTION

The device described in this report is a prototype based upon experiences, both positive and negative,
with the use of self-paced instructional materials in a military technical training classroom. The work was
accomplished under two work units, 1121-02-17 and 1121-02-18. This report describes the evolution of a
device and the technology which made it possible. It is the intent of this report to emphasize why the

device has assumed its current characteristics, rather than to document its internal engineering in detail
since these internal details could change significantly due to the incredible rate of change of microcomputer
technology. llowever, since a special type of engineering envirotiment is necessary for the development of
devices of this kind, several sections of the report outline the tools which had to be built in order to
develop the prototype hardware and software.

In order to accommodate a wider audience for this report, the product evolution is described in the
first section, the development technology is described in the second section, and the resulting
microterminal product in the third (Figure 1).

II. PRODUCT EVOLUTION

The concept of self-paced instructional materials is not new to either the military or civilian
community. Such materials have been in use for a number of years in the form of programmed instructional
texts, student operated media devices, and in limited applications in the form of computer assisted
presentations at computer terminals. Due to the historically high cost of developing and validating
instructional materials in all of these forms, the additional cost of the p:esentation media has often forced
the actual materials to be presented in the cheapest of these forms, which is usually the printed format. As
a corollary of this growth of paper materials, the need to manage students with widely differing learning
rates has placed additional burdens upon the instructional staff. Because self:paced instruction
accommodates these learning rates by altering student learning schedules, the group-paced, easy-tomanage
conventional classroom has become the "learning center" with many different topics and techniques in use

simultaneously by students proceeding at their own pace.

The attempts to automate management of the instructional process have been far more limited than
the application of self-paced instructional materials. The most operational of these attem pts has been at
Memphis Naval Air Station, Tennessee, where self-paced materials have been presented with printed
materials and student oerformance monitored with self-administered tests scored and recorded by
computer. The use of thc computer has enabled the frequent use of evaluation without imposing heavy
burdens upon the instructional staff. A similar approach was the design basis for instructional management
of the Advanced Instructional System (AIS) being developed for the United States Air Force at Lowry Air
Force Base, Colorado.

The hardware and materials used in till concept consist of a "management terminal" and differing
test answer forms which are filled in by students as instructional materials are executed. The terminal
houses a forms reader, printing device and interface minicomputer in a carrel designed for student
self-operation. In this instructional scenario, the student is expected to study materials, take a self-test, and
present the resulting answer form to the management terminal. The terminal reads the form, transmits the
information to the AIS central computer, and presents the test results and an instructional prescription to
the student on the terminal 'minter. The central computer records the student's performance, produces
periodic progress reports to his instructor, and retains information for instructional materials evaluation.

While this may sound like pn ideal situation for a technical training classroom, there have been
problems in practice, centering around the paper forms and reader. In order to provide response feedback
to enhance learning, special chemically treated forms are used which darken upon the application of a
special chemical crayon. It is intended that these marks be read by the reader and provide data for materials
evaluation and for evaluation of the student's perfomiance. In practice, the forms have proven difficult to
read accurately, even when filled out properly by the students. This problem is accentuated by the fact that
pencil marks used to identify the student and the test are spectrally different from the marks produced by
the crayon.

(3,

Figure 1. Student mieroterminal.

yg,

0

This problem led to the belief that an electronic approach to the problem might resolve these physical

difficulties and possibly improve student performance by increasing the intensity of the student's
interaction. The solution took the form of a device called a "student responder." In this device, a keyboard,
several hexadecimal display elements (numbers 0..9 and letters A.,F) and a column of Individual dhplay
lamps were connected directly to a central computer through an interactive computer terminal. The device

was driven by a program in fly, central computer which read the keyboard and illuminated the appropriate
displays. This technique, while not satisfactory Ibr a large number of responders, was adequate for
experimental evaluation of the panel design and potential usefulness of the device.

To use the responder, the student would present his student LD. number and his test booklet number

to the device which would then tell him which items in the booklet to answer, and provide him with
response feedback if appropriate. The program allowed several adaptive testing techniques and feedback

modes.

In order to determine whether this device could function effectively with existing instructional
materials, a programmed instructional text which was currently being used in an inventory management
(supply) specialist course at Lowry was administered to a group of 50 students using the responder device.
This text contains imbedded questions used to "exercise" the student and to determine whether he is
mastering the Material as he reads it. While no significant gains were noted in performance, the students

were observed to cover the material about 30% faster on the average than students using chemically treated
forms. In addition,90% of the students favored the .responder device over the chemical formS, suggesting
that their acceptance of the device would pose no problem. All students questioned felt that the responder

was easy to use.and none required detailed personal instruction on its use.

Our initial plari was to produce an adequate number of these devices to allow for testing a larger
group of students; in fact a printed circuit for the device was developed, along with an interface controller,
to interface sixteen of the responders through a single access point to the central system. It was our
intention to use a PDP-I1 family 'minicomputer to perform the connection to the AIS terminal network
hardware, primarily because this was the type of minicomputer used in the existing management terminal,
but also because its manufacturers had announced inexpensive versions of this computer based on large

scale integration electronics. Doe to rapid advances in the technology of microprocessors, this approach was

not followed. In the course of investigation of microprocessors to determine whether one could be used

instead of the more costly PDP-1 I to perform the interface task, we discovered that a vastly different
approach to the responder was technologically cost feasible. We will now describe the steps taken in the
design of the next version of the responder which (because of its stand-alone abilities) was renamed the

microterminal.

Throughout the development of the original responder, a major concern was that the student would
.become dependent upon the central computer for many hours of continuous, errorfree hardware a ^

software operation, since he would be using the responder intermittently for most or the instructional day.
Thus, if the computer failed even once during, for example, a two-hour instructional module, the student
would stand a good chance of being affected unless the central site were recording each minute interaction
on disk; such an I/0 usage at the ,:entral site would be detrimental if a large number of responders were
employed. Also, the very infrequent requests encountered in individual responder usage would tie up more
space at the central site than would be justified for the level of interaction which would be realized in a
typical instructional situation. While this may seem paradoxical, it is typical of the instructional computer
where peak to average processor requirements may vary by ratios larger than 1,000,

The solution to this problem, and prelude to many other possibilities, was to incorporate a complete
microcomputer into the responder. Due to the large production potential of these devices, manufacturers
had already begun to discount their Nices to the point where a complete processor could be assembled for
'several hundred dollars in parts. The future -promised decreases in these prices by at least a factor of four,
thus suggesting that production prices of no more than the parts cost of the prototype might be realizable.
It appeared that such a device could be deployed immediately since it would be unaffected by the
reliability of the central site for its normal operation.

The first step in the design of the stand-alone terminal was to determine its design limit, based not
only upon its instructional icquirements, but also upon the capabilities of existing technology to efficiently
support these requirements. This is a delicate art of knowing where to draw the line between what is

7

wattled (which usually has lio limits) and what can be costvffectively achived with the optimum

combination of state-of-the-art components. In the time frame in which this work was completed, we'

benefited from the timely introduction of a series of nacrocomputer components by Motorola known as

the MMOO family of parts. This enabled the construction of the microprocessor within a box which was

nearly identical to the responder box in external dimensions. The external design of this box is indicated in

Figures I and 2.

The remainder of this report is divided into several sections dealing with the charatleristics of the

responder and each of tlw tools which had to be 4eveloped to produce the prototype device. Because the

microternanal is a self-contained computer, it must be programmed to perform the tasks associated with

the identification of the student and the administration of the teat or instructional material. This program
had to be developed for a computer which did not yet exist: i.e., the one to be contained in the terminal.

This "target" computer would have In facilities ibr the development of software since its normal function
would be to score a test, so a more capable computer had to be obtained ur built on which the software

coulti be developed and tested. It is reommended tint readers not interested in the details of this
development process turn to Section IV.

III. THE MICROCOMPUTER SOFTWARE/HARDWARE DEVELOPMENT SYSTEM

The PIMPL Programming Language and Compiler

The snecific microprocessor to be wed in the microterminal was chosen for a number of reasons

relating to t.k t, ease of use, ease of programming, and its ability to be constructed into a small physical
container. At the initiation of this phase of the project, the Motorola M6800 microprocessor was the best

choice considering all aspects of the design problem. Its weakest feature at the time, however, was that very

little software existed to assist in the production of M6800 programs. Of the available software, all was

incompatible with the development computers available to support the project. For this reason, we
undertook the development of in-house software to aid in the programming of the microcomputer we were

planning to build. Because of the background of the people involved in the project, it was decided that a

large portion 1f the manpower involved would be spent in btdiding good software tools, followed by a

relatively shot% usage of these tools to program the prototype. Our reasoning was that the final product

time would be lbout the sante regardless of how much time was invested in thc tools. By emphasizing tools

rather than end product, we would be much better prepared for futurc modifications and developments in

the microterminal or in related systems requiring a microprocessor for implementation.

A rather uniqu., assembly language was developed, because the design constraints of sizc and cost

mandated a highly compact program, while future needs suggested modifiability and versatility as

important factors. The assembler programoused to translate this language into M6800 machine code was

written to run on the AIS CDC CYBER 73 central site computer, thus making it available to any Air Force

installation having AIS terminals. The assembler is written in the PASCAL language which is excellently

implemented on the central site computer. Because PASCAL is an ideal language for the construction of
compilers and assemblers, the actual manpower required to write this program was about eight man-weeks...

The acronym PIMPL stands for

P rogrammable
I nstructional
NI icroprocessor
P rogramming
L anguage

A primary advantyge in this implementation is that PIMPL programs may be edited using the powerful AIS

program editor, submitted to the assembler for translation in a few seconds, and the resultant program
transferred to the M6800 development processor for esting in a matter of minutes. Thus once these tools

were available, the complete responder program was written in a matter of days and can be modified now in

a matter of minutes.

The notion of an algorithmically formatted asse=nbly language is attributable to Nikiaus Wirth, who

designed the assembly language PL360 for the IBM 3o0 series of full size computers. Previous experience
with this language suggested that such an approach might be quite suitable for the programming of
microcomputers. The language also bears some similarity in purpose to the PL/M language

1d I

Ii

II I

13

si'4,1k. 13 1 sit

Or,,trt9

Figure 2. Student microterminal.

implemented for the Intel 8080 microcomputers, although it was intended that PIMPL would relate closely

to the capabilities and limitations of the M6800 microprocessor. By including such language structures as
procedures, IF-THEN-ELSE statements, and WHILE-DO statements such as found in high level
programming languages, the flow of the resulting PIMPL program is much more transparent to the
programmer. We feel -that this significantly enhances the readability of the resulting program as well as
reducing the number of logic errors in the program. Detailed statements, however, allow the efficiency
which only most assemblers achieve and enable the resulting program to be small, thus reducing the cost,
size, and power requirements of the finished product.

The assenibler can be characterized as a top-down recursive descent translator, and appears to
translate PIMPL at a rate of about 130 to 180 lines per second on the CYBER 73 computer. It requires
approximately 40,000 octal words of machine storage for execution and is currently merged with the
M6800 simulator program (described in the next section). This merger allows the immediate translation and
simulation of PIMPL programs.

The PIMPL language allows the user to describe the storage of the target microcomputer with
descriptive names of variables and constants used in the program. It uses attributes of these descriptions to
check the syntax of the program as it is being compiled, and the feasibility of its execution in the target
computer. For example, it will not allow storage allocated in a." read only" type of memory to be used in
such a way that its value would be assumedly changed as the program runs. The bulk of executable
statements are the assignment or function type, such as

A4- 5+B AND BITMASK Or

CALL TIMER

These are translated directly into machine code for the M6800 microprocessor. When an iterative condition
is needed to express an idea requiring repeated test or looping, a statement such as

WHILE A<5 DO
BEGIN LIGHT4- -LIGHT; M-A+1 END:

might be used to express the concept. If the user wishes to make a conditional execution he might use a
form such as

IF A=0 THEN 134-5 ELSE CALL SOMEFUNCTION or
IF A<B THEN BEGIN A4-B; B4-0 END .

Statements may be grouped together into procedures such as

SOMEFUNCTION: PROCEDURE;

WHILE A<B DO -

BEGIN M-A+2; B4-B+1 END;
RETURN;

which may be called by statements such as

CALL SOMEFUNCTION;

In the event that an error is detected in the program by the compiler, it produces an error message of the

form:

X 4- X+ I CALL TIMER;
SEMICOLON EXPECTED

notifying the programmer where the error was detected, and, if possible, what caused the error. In this way
the time ainsumed correcting typographical or feasibDty errors is minimized.

By maintaining a policy of only implementing capabilities which are directly supported by the M6800
microprocessor, we kept the compiler small, fast, and easy to write and debug. We feel that the resulting
small size of the responder program in relation to what it does verifies the correctness of this approach for
the M6800. A section of the responder program is included in Figure 3 to demonstrate how well the
language can describe the flow of the microprogram when properly used. The example was the first
program written by one of the authors, who is not a professional programmer. Without being familiar with

1 5
10

CF A -;,,crINT CLOC<S Fh!OM

A)NE MILLT3-iC7 '',LCO<1

?,L1OK PIT ,:c7)11:DT :

IF Tz LA Y>") THE) ly:=O7L&Y-1:(FOR CLLLED C±LAY

m 3C);)NT : =PSC011t11 : (FO '3OF TW=OE CLOCv

TF somiir rk+- N

11..-)0 J)NI ONLY EV=:.'Y 1 TH
a!=in: MSC,),JNT : (..r.1- 11:TH SEC CT]
T T1CO'jt!T:=T:NTHCMYIT-1:
A:=:rlt Tr A<>HOU"; TH=A
IF TL7JFLAG<>, TH:.N
IF TE.NTHCOW1T=5 TH-N

f:ILO,;K 110N:: ONCE
A:=10: TNTHCOUNT:=At
S:COND=E=2ORDS+1; A:=13FCCNOS:
I= A=60 THErl

717cnNT-7,1= 4INuTES:=MINuTES1:
ii

IF THFN
9-GPI

AI'lJT7S1=01 H3uRS:=H30P?+1:

(TS 1,:r)A FLAG IN .3141

Figure3. Sample of PIMPL programming code.

anything about the program, you could probably determine what this routine does from the information in
the listing. This desirable trait is called "self-documentation" and is not commonly found in assembly

language programs.

When the compiler has finished translating Cne program into M6800 machine instructions, it records
these instructions in the disk system of the CYBER computer for later transfer to the microcomputer at the
request of the programmer. It then prints a readable listing of what the contents of the target computer will
be, so that this information may be used while debugging the program or for purposes of ordering read only
memory circuits if desired. The microcomputer can also store this information in field programmable read
only memories if desired. Normally, at this point, control will be transferred to the simulator program for

trial execution.

Debugging the Initial Program Software Simulation

When a PIMPL program has been sucossfully compiled into machine language, it may still contain
logic errors which would not be revealed until it begins to execute. At the normal time of execution,
however, th e. program will exist in a miniature, minimally configured box designed to perform a specific

limited function, which does not include the development and debugging of computer programs. In order

to debug the program, all of the features of large scale, high-speed computers would prove beneficial. To

obtain these benefits, the microcomputer to be built is "simulated" by a computer program running on the

AIS CYBER computer. This simulator program can perform monitoring and checking tasks which would be

infeasible to build into hardware devices specially designed to debug microprogram.

In order to minimize the user tin.e required by the simulation step, the simulator program should

contain very prolific information which.is not obtainable in the high-speed execution environment of the

actual hardware, but which is useful in determining whether the program is operating correctly. The

simulator written for this project includes the following features:

I. control of maximum simulation run time

2. full display of microprocessing unit (MPU) internal registers

3. assignment to program counter

4. simulation traces initiated by accessing within a range of addresses

5. simulation traces initiated by MPU clock times

6. simulation traces controlled by opcodes executed

7. timed interrupts to write or alter data in memory

8. timed external MPU hardware interrupts

9. timed controls for partial memory and variable listings during simulation.

During simulation, a trace is printed for each machine instruction. Each line of trace lists the line

number, program counter, index register, stack pointer, A regjster, B register, six condition code flags,

cumulative MPU clock time, and new program counter. By correlating the trace listing with the program

listing, it is quickly possible to analyze and debug logical errors in the source code.

Each simulation feature is controlled by a one-line data card attached at the end of the PEMPL source

program. The first number of the line selects the type of simulation command (i.e., one of the features

listed above). The remaining one to four numbers give the parameters of that command, such as designating

at what time the interrupt should occur, or identifying at what program address the simulation listing

should begin. Following is an explanation of each type of control card.

Simulation Run Time: command designator number 0 followed by one number for the maximum

desired run time, expressed in microseconds. For example, a simulation data card (i.e., one line of data

attached to 'II: and of the PIMPL program) with 0 2000 will permit the simulation to run for 2,000
cumulative M.'t I (microprocessing unit) microseconds before terminating the simulation run.

Initialization of Program Counter: command designator number 1 followed by one number for the

decimal value of the new desired program counter. If this command is not used, the program counter is
established by the normal hardware convention of using the microprocessor startup vector which points to

the starting address of the program.

Simulation Trace by Address: command designator number 2 followed by two numbers for the
beginning and ending program counter addresses for tracing and listing the simulation. Any program code
executed between these two addresses will be shown in the simulation trace. For example, a control data

line with 2 64000 64200 will provide a simulation trace whenever that part of the program beitigeiecuted

is between program addresses 64,000 and 64,200. "

Simulation Trace by Clock: command designator number 3 followed by two numbers _for the
beginning and ending cumulative MPU time for which the simulation trace should be listed. For instance, a

data line with 3 2000 5000 would allow a simulation trace to be listed when the MPU is running between

2,000 and 5,000 microseconds of the total simulated real-time run.

Simulation Trace by Opcode: command designator number 4 followed by one number for the
opcodet Whenever the microprocessor instruction with that opcode is executed, a one-line simulation trace

is provided. As with all the simulation commands, more than one may be used by having multiple data lines

attached at the end of the PIMPL program deck.

17

Timed hiterrupts: command designator number 6 followed by four numbers. There are four types of
interrupts used, a hardware interrupt of the MPU, a nonmaskable hardware interrupt of the MPU, an
interrupt that will write or alter a byte of data in memory, and an interrupt that will list adesignated page
of memory at a predetermined time. This last type is transparent to the actual simulated program, but
provides the user with a current list of memory and stored source program variables. Each of these
interrupts is designated by the fourth parameter number, numbered 0 to 3.

The fitst of the four numbers designates at what time the interrupt is to occur, expressed in
microseconch accumulated from the start of the run. The second number tells the memory address location.
The third number is the data that is to be written into the memory address of the second number when the

fourth number is a 2, which specifies a write into memory. And the fourth number, 0 to 3 in value,
designates the type of interrupt.

An example of a hardware interrupt would be 6 2000 0 0 0. Here the first number, 6, indicates an
interrupt. The number 2,000 indicates the interrupt is to occur at a time of 2,000 microseconds into the
simulation. The next two zeros are ignored while the last 0 indicates this is to be a hardware interrupt as
opposed to a nonmaskable, write memory, or page dump of memory interrupt.

An example of a nonmaskable interrupt would be the same except for the last number, 6 2000 0 0 1.
Here the 1 distinguishes a nonmaskable interrupt from a normal interrupt.

An example of writing data into memory at a given time would be 6 2000 65000 77 2. This is
interrupted by the simulator as, "at a cumulative MPU time of 2,000 'microseconds write into memory
location 65,000 the value 77."

The fourth type of interrupt is the page dump. Here 6 2000 255 0 3 is interrupted by the simulator
to mean, "at a cumulative MPU run time of 2,000 microseconds, print the contents of the 256th page
(pages numbered from zero) of memory and tben continue with the simulation." This is a transparent
interrupt with the result that all memory locations between hexadecimal FF00.and FFFF will be printed at
that point of time in the simulation listing.

As mentioned, each, type of command card may be used many times. As an example, suppose a
program is quite extensive and involves a large amount of simulation time. Simulation traces controlled by
address, time, or opcode may be discriminately turned on and off, listing only those portions of the
simulation the author is concerned with. A simulation representing a microprocessor controlled sequence of
events or interactions with the external world could conceivably take several real-time seconds or minutes.
The program trace can easily be ct:rifigured to follow only those interactions the author is presently
concemed with. Software delays and wait loops may be skipped and counters may be changedjumping to
new segments of executable code. Interrupts may be interjected to simulate external interactions with
switches, controls and signals.

Upon completion of the simulation, a listing is provided of all declared random access memory
(RAM), read only memory (ROM) and I/0 (input/output) ports. This is given by page number, byte
number, decimal and hexadecimal value, and designates whether it is RAM, ROM, or an I/0 port, and
loaded or unused space. This type of listing is useful for a number of reasons. It shows the amount of object
code generated by the assembly, the final value of all the program variables stored in RAM, the location
memory of specific procedures, the actual object code generated by the assembler, an overall mapping of
memory and I/0 ports which is useful for correlation with actual hardware addressing schemes, and a means
of verifying object code placed in ROMs or PROMs (programmable ROMs).

Hardware Development System
Once a good language, assembler and simulator have been established, the fmal component necessary

for a complete microcomputer Gevelopment system is a hardware emulator (Figure 4). It should be a
working, self-contained MiCTOComputer that not only duplicates the microcomputer (proposed in the final
hardware design) but also in:Ndes many features to facilitate program development and debugging.

It may initially. take longer to develop such a system, but once completed it will pay for itself many
times in time saved dining the microcomputer development process. The capability to "look inside" the
microcomputing process, halt and display information, read or write memory data, and continue running
becomes an invaluable aid. With this tool, if properly designed and used, development efficiency increases
significantly.

18

13

Figure 4. Hardware developMent system. 20

The _basic concept is to write and simulate your microprocessor application program until it

approximates the final product. Then the assembled program is loaded into the hardware system. The
hardware emulates the proposed hardware design and executes the object code as it would be done with the

final- version.

At this poin t it is possible to test the 'micro-controlled hardware. If carefully designed, all is near
completion. However, this is when the hardware may reveal some logic errors in the software or when the
author's notions of the system design and implementation in Ilk program fail to meet the actual physical
requirements. However. using the hardware development system. with its many front panel controls, one
can quickly and easily remove any remaining bugs from a program.

The development hardware includes three integrated circuit boards, a front panel with hexadecimal
displays and switches, power supplies and a Plexiglas cover. The three large boards are functionally divided
into a central processor board, memory hoard, and control panel board (Figure 5).

The central processdr boa:A includes the Motdrola M6800 microprocessor, a crystal-controlled. one
microsecond system clock, a one millisecond clock derived from this clock, a bootstrap loader, three
peripheral interface adapters (PlAs), input and outrut buffering of the 16 bit address bus and 8 bit data
bus, 768 bytes of random access memory (RAM) with a read/write protect switch, and a resident
programmable read-only memory (PROM) programmer and socket for 4k and 8k Intel ultra-violet erasable
PROMs.

The memory board. has 3k bytes of random access memory arranged in three rows. lk by 8 bits per
:oW, with room on .the board fot another row. There is sufficient buffering of bus and data lines, and
decoding logic for an additional 4k bytes of me,nory to be added by connecting anotker board. The
memory board has a protect switch that disables the write function of the memory, thus making it into a
psuedo ROM.

The third board is the control board. As compared to the MPU and memory boards, which are
inherently clear as to the functions they perform, the control board should contain all the "bells and
whistles" and development aids necessary to iacilitate development and debugging of hardware and
software. Initially, it is not always clear what these features are and which are best to have, but the
necessity for a powerful and fkxible control bmrd with panel will manifest itself during the development
p ft) ce Ss .

With this brief overview of the develoormot hardware, a chronological description of adevelopment
process will show how the system is used, sonic ot its authoring and debugging features, and the power and
efficiency with which one person can develop an elaborate, microcont rolled, interactive, hardware/software
system.

The development cycle is a continuous process of authoring software, editing, assembling, simulating.
..and emulating in hardware, with implied .debugging throughout. This sequence is repeated in one form or
another.until a final product is produced. A program is interactively writ ten in PIMPL at an AIS terminal.
When assembled; the program is stored in the disk system.for transfer to the hardware emulator. To serially
transfer the .object code, an AIS CAMIL (Computer Assisted/Managed Instructional Language) program
called TRANSPORT is rtin at the AIS terminal.

TRANSPORT will automatically scan the PIMPL program data for declared ROM starting at address
0000 anitscanning to the full addressing width of 65,535. For each contiguous segment of code, normally
divided into ..256 byte pages, TRANSPORT will serially output the high and low byte starting address and
the number of bytes to be transmitted, followed by the actual object code.data. The CAMIL language has a
unique feature incorporated into its compiler and interface software for outputting data through an
external output jack .at the rear of the AIS terminal. The CAMIL -Software command, when executed,
serially outputs a 20 bit word, with a timing pa.se for each bit, and a sync signal for the end of each
transmit ted word. The output data rate is sixty, 20 bit words per second with the last 8 bits of each word
serving as the actual data byte. Thus, in one minute about 3,600 words of PIMPL program may he
transferred to the hardware emulator.

While TRANSPORT is running, the AIS terminal displays each page number and page length being
sent. When the serial output of all PIMPL hject code is complete, a message will appear at the terminal's
screen stating that the output operation is finished. The operator then sets the memory protect switch
located on the memory board of the hardware emulator. This has the effect of making the random access
memory orray of the hardware emulator appear as if it were now read only memory and nondestrUctive.

15

2 1

CONTROL DATA CORP.

CYBER 7316 COMPUTER

CENTRAL PROCESSING BOARD
WITH: Bootstrap loader & interface

to CYB6Z 7316.
PROM programer.
Pe.ripheral Interface
Adapters.
Bus drivers.
Auxillary RAM.

PSUEDO ROM MEMORY BOARD
WITH: 3K x 8 RAM.

Write disable switch.

FRONT CONTROL PANEL

ADDRESS BUS DISPLAY

0 0
SINGLE RESET
CYCLE

PROGRAM COUNTER STACK POINTER

ADDRESS DISPLAY

DATA BUS DISPLAY

INDEX REG. A REG.

() ()

GO/

HALT

B REG.

DATA DISPLAY

SWI
CONTINUE

CONDITION CODE
FLAGS

0 0 0 0 00

0000 0000 0000 0000 00000000 0 0
ADDRESS SWITCUES DATA SWITCHES LOAD NMI

ENABLE

Figure 5. Hardware development system.

"2

16

In order to receive data from the AIS computer, the hardware emulator uses a program called a

bootstrap loader. One of the three PIAs on the central processing board is used for this interface. Coaxial

lines are used between the terminal and emulator with SN75451 line drivers and SN7414 Schmitt receivers.

Because this technique is good for frequencies to 20 MHz over distances of 100 feet, no parity is sent and
no error detection or correction is used. As it turns out, several dozen transfers, with 24 thousand bits per
transfer, failed to produce one error during emulation.

The bootstrap loader, once loaded and turned on, causes the emulator MPU to sit in a wait mode
until interrupted by an external interrupt from the PIA. As the data is serially received at the emulator, the
receipt of each full word causes a serial to parallel 8 bit shift into the PIA and an MPU interrupt. The MPU
stores the byte in the next appropriate, sequential location of memory and then waits for another byte.
Initially, at the beginning of each transfer the loader expects the high and low address and length to be sent,
followed by the data. The MPU is fast enough to service each interrupt and byte sent to it through the PIA,
and yet stay well ahead of the data transfer rates.

The bootstrap loader may be hand toggled into RAM by using the address and data switches on the
front control panel, or a ROM version residing on the MPU board may be used after its starting vector is
toggled in at the highest two addresses of memory.

The entire process of recongiling a large P1MPL program, transferring it by using TRANSPORT and
the bootstrap loader, and running a new version of the program in the emulator, takes on the average
between three and five minutes. A three to five minute turn-around time becomes an invaluable
developmert aid. The programmer's output increases manyfold and complex microcomputerized systems
are not only realizable, but with minimal time and effort.

Features and cuntrols of the hardware development terminal or emulator that facilitate user
development of software and hardware include:

I. complete microcomputer emulation

2. resident bootstrap loader for swapping programs from the CDC Cyber computer

3. psuedo ROM via RAM read/write protect switch

4. rese.., halt and run switches

5. single cycle with hexadecimal display for address and data bus

6. software controlled breakpoints with display of all internal MPU registers

7. address controlled breakpoints with display of all internal MPU registers

8. breakpoint continue/run switch from trap

9. 16 address and 8 data switches with read/load control

10. peripheral interface adapters for emulation of prototype hardware

11. automatic PROM programmer with socket

The thought process by which an author debugs his program is unique unto himself. The intent of the
type of controls provided, is to give him enough flexib'lity and capability to perform any type of logical
debugging he desires. Normally, an assembled program listing (showing the address of each line of program
code) is used in conjunction with the emulator. The program logic flow is followed on the listing while
emulating. When something goes astray, the control panel switches and display "windows" enable the
designer to "look inside" his program to learn what is specifically happening during execution.

After a program is first loaded into the emulator by the bootstrap, the RESET switch is pressed,
followed by the RUN switch. Then while running, the MPU may be halted at any time by flipping the RUN
switch to the HALT position. Once halted, control of the bus is given to the front control panel. The
address display (4 hexadecimal digits) will show the last address on the address bus prior to halting the
MPU. Likewise, the data display (2 hexadecimal digits) will display the last data to appear on the data bus
prior to halting. If the MPU is not halted, the address ard data are still displayed, but change at the
processing speed of the MPU, causing the display to appear as a blur to the human eye.

'When in the halt mcide, each successive depression of the single-cycle switch Will permit the MPU to
execute the next program command. This action also updates the address and data displays. With this

17

feature, the author may "walk" through his program one step at a time while comparing the address and

data displayed with the logic of his program listing.

If additional-information is necessary for debugging, the internal reyisters and condition codes of the

MPU may be displayed on the front panel. Display of this information is initiated in two ways. The author

may insert the PIMPL command SWI (software interrupt) in his program at the point the display of

information is required or he may toggle the appropriate program address on the front panel and enable the

NMI (nonmaskable interrupt) switch (also on the front panel).

Both the SWI and NMI cause the MPU to display the value of its registers at '.he point in the program

where the command is encountered, and then halt the MPU and emulation process. Information displayed

includes the program counter, stack pointer, index register, A register, B register, and condition code flags

for carry, overflow, zero, negative, interrupt, and half carry. This information may be correlated with the

program listing for possible bugs. When complete, the MPU may be restarted by hitting the SWI/NMI

continue switch on the front panel.

This information is normally not available to designers because of no access provisions on the MPU

integrated circuit. Ilowever, the SWI/NMI feature of the emulator causes the MPU to jump into a "priority

display and halt" mode. When a software or nonmaskable hardware interrupt is encountered by the MPU, it

places its internal contents in the memory stack while processing the interrupt: The emulator copies the

information stored in the stack, displays it on the front panel in a hexadecimal format, restores the MPU

from the stack, and then halts the MPU. This entire process is transparent to the program running in the

hardware emuia tor, but provides a powerful aid to the developer. 1

When the hardware and software development process using the simulator and emulator is complete,

the designer should have a smoothly running system that is a version of the machine he eventually hopes to

build. All the logic design for the microprocessing unit, input/output interface, external signals and

software should be complete. All that remains for the designer is to reconfigure his hardware as a
stand-alone system (i.e., no longer using the emulator, but instead, the actual integrated circuits) and to

transform his assembled software code from the psucdo read only memory of the memory board to ROM

or PROMs.

Since the emulator served as a hardware prototype, the reconfiguration to a stand-alone

microcomputerized system from the emulator is a straightforward process. The electronic schematic

diagrams and circuits used during emulation are the same for the final product.

Programming PROMs may be done quickly and automatically using the hardware development

terminal. The assembled code already resides in the pedo ROM arca of the memory board. The bootstrap

loader in conjunction with the program. TRANSPORT, loads the PROM programmer program from the'

AIS computer into the hardware development terminal at a predesignated and reserved part of memory.

The program's listing of the memory map; provided at the end of each PIMPL assembly, is used to
divide the object code into sequential sections of 512 or 1024 bytes of code. These sections provide the

code for each PROM to be programmed.

To program a PROM, an ultraviolet erasable 4k or 8k PROM (Intel's 2704 or 2708) is placed in the

socket located on the MPU board. The 16 bit starting address (high and low order byte) for the section of

code to be programmed is toggled into memory, at location 0000 and 0001 using the front panel controls.

The PROM programmer program is RESET and RUN. A small red light next to the PROM socket will be lit

during the programming cycle. When the cycle is complete, approximately 2 1/2 minutes for a 4k PROM,

the light turns off, the PROM may be removed, and the next PROM may be prognmmed using the same

process.

It becomes a simple process to reprogram the PROMs for a new version of software. To do this, Intel

PROMs arc exposed one inch from an ultraviolet light source for 20 to 30 minutes. This erases the old bit

pattern stored in the PROM, and readies the PROMs for a new programming cycle.

2 4

18

IV. DESCRIPTION 01, 1III sTuDENT MICROTERM:NAL

The folloNing section 'will 'give a description of the final version of the student mierotermimd

explaining its physical layout. resident controlling program and microcomputer electronics,

.efer to Figure 1 tOt an illustration of the mieroterminal. The boy shown measures approximately 10
bY .5 by 3 inches. yet contains the entire electronic; and memory for a stand-alone computer that has five
testing strategies and 000 multiple-choice answer patterns.

Messages used in a dialog with the student are conveyed by means of lighting a small red light
adjacent to each printed message on the front panel. The current version has fourteen small lights for
messages. Six of these are used for messages with the student while administering a test, two more are for
yes/no feedback, four are used when extracting data collected -while in the instructor mode, and the last
two lights are unused.. It is possible to add more lights or to have more aunt one light on at a time, if
mult iple messages are desired simultaneously.

The display located in the middle has four light emitting diode (LED), hexadecimal displays which
display the numbers between 0 and 0 and the cliaracters A through E for multiple-choice response
feedback. Larger numbers, such as a nine digit social security number, are displayed by stepping the
numbers across the four-digit display from right to left as they arc entered.

The key boar&s sixteen keys include the numbers 0 through 9, CLEAR, SEND, and four blanks. Tir:
keys nunthered between I and 5 also have the letters A through E printed on them for multiple-choicl
responses. Several different manufactured keyboards were tested until one was found which had a positive
tactile feel and whose key olds could he altered for messages appropriate to our testing scenario.

The prototype box is made from one-eighth inch and three-sixteenth inch white opaque Plexiglas.
This has .proven to be an easy material to work with and has withstood a lot of rough handling.

The P1MPL progr:o» that controls the box resides in six 512 by 8 bit, ultra-violet erasable PROMs,
Cour of whft.h are for the program and two more for test answer patterns. If the testing pattern is ever
compromised. the two PROMs holding the answer pattern may be easily exchanged for two new ones
without afftctifq; Or altering the other four PROMs.

The PIMPL program is sequentially arranged in the order of declarations, answer arrays, procedures,
program body, and initialization of hardware vector pointers. Logically the.program is executed by first
initializing variables. then by receiving the user's social security number and test booklet number, followed
by administration of the test and cmcluding with the calculatiowand display of the final test score.

The type of test strategy to be used, the answer pattern for ;he test administered and the length of
the test ate all derived from the five digit test booklet number that the student enters.

Extensive software was developed to prevent the student front entering erroneous data, such Its a
nonexistent or invalid booklet pumber, and to preveat him-from accessing proprietary information. In
every case, the microterminal box has not been difficult to use by students attempting to use it for the first
time. The lights and messages and natural progression through a testing strategy, seem to be well human
factored and not confusing to new users.

Because of the nature of the PIMPL language muf the extensive use of procedures in developing.the
microtenninal program. the actual amount of ,:ode generated -s quite compact. All together, 29 separate
proc;dures are used. with nesting of called procedures several levels deep. This approach makes software
development that controls and teph..:es hardware touch easier and more logical to the developer. The actual
body ofthe'program is relatively %horn compared to the rest of the program listing, but it visiblyeontains
the entire outline aml structure t,t

When tasks are required. such ts receiving 9 keyed inputs front the student for his social security
numher followed by a SEND key, a procedure called ACCEPT is simply called with the variable. LENCTII,
initialize& to nine prior to the call. ACCEI7 (in turn) uses other procedures. which in turn call other
sepients of code. In this way, code is-used very efficiently.

It is important to note that when designing a hardware/software. system, simple trade-off studies are
necessary to determine if a control signal. electrical pulse or some function is more efficiently implemented
in software or in hardware. With the current availability of large read only memories at low prices combined .

19

25

with the powet, speed and flexibility of the microprocessor it becomes very cost-effective to implement as

much of the control hardware in software (also referred to as firmware) as possible.

This approach was used in the' design a the microterminal. A good example of this is in It Ow the

keyboard is handled. Scanning of the keyboard for depressed keys, encoding of the keys, debpunce of keys

during depiession, and key lockout if more than one key is pressed at the same time is all handled by the

microprocessor and firmware.

For the prototype microterminal, live testing strategies were implemented and reside in the "box."

The first strateg is merely a linear progression through a test, with no correct response feedback. The

second strategy is a linear progression with yes/no response feedback. The third strategy is similar to the

second, except that when a test item is missed the student must remain at that item until he gets it correct.

The fourth straw*/ is the same as the third except that at the end of the test, the student loops back

around and continues taking each question he missed, until he has answered them correctly.

The fifth strategy implements a form of adaptive testing, called flexilevel. The intention.of adaptive

testing is to determine a student's comprehension level of the subject matter by using an algorithm that asks

as few questions as necessary during the test, but which maintains as high a correlation as possible to the

test score that would have been derived had all thelest quest ions. been asked.

In a flexilevel adaptive test, the questions are ranked from the first to the last item according to

increasing degrees of difficulty. In the strategy implemented, the first question administered is the middle

question of the test.. Each successive question asked is based on whether the preceding question was

answered correctly or incorrectly, a higher numbered question for correct and a lower numbered question

for incorrect. In .this manner the test continues until the student finishes at the last question or the first

numbered question of the test. The filTh strateg uses this technique, using any variable length test and

always starting with the numerically middle question.

At the present time, a hardware interface is being developed which, will enable the microterminal to

swap its gathered student test data into the central .computer-managed system at the completion of a test.

For the present time; until the central interface is complete, information may be manually retrieved

from the terminal while in an instructor mode. To log on as an instructor a special sequence of keys is

pressed. Once this is done a red light will appear next to the message that says "Instructor Mode.

To retrieve information while in instructor mode, a key corresponding tO the same number of a light

with appropriate message is depressed. For instance, if when in instructor mode a 1 is depressed, the nine

digit social security number may be stepped across the display. A 2 will display the booklet number. A 4

will display the student's score, while a 5 will display the elapsed time taken during the test, as expressed in

hotirs and Minntes. Key 6 depressed (used in conjunction with the SEND key) will display each missed

question and all the incorrect responses given for that question. For each of these instructor functions,

appropriate lights and messages are used to facilitate the retrieval process. The microterminal is reset for a

new student by depressing the blank key under the CLEAR key while m the instructor mode.

It was mentioned previously that the elapsed time during a test was measured. This capability 1s

performed by an interesting combination of hardware and software. The microprocessor uses a one

microsecond crystal-controlled system clock.. From this frequency, a .millisecond clock is derived in .

hardware by using three successive decade counters. This millisecond clock interrupts the microprocessor

each one-thousand of a second. Slower clock periods are derived from this interrupt. Each interrupt

increments a software millisecond counter which in turn affects one-tenth second, second, minute and hour

software variable clocks.

Not only is this timing mechanism used for measuring test durations, but it serves many other

purposes, such as for short time delays in key &bounce routines, strobe pulses for latching data to the

microterminal displays, and for timed pauses when displaying messages such as the yes/no test item

feedback.
The microterminal hardware consists of a Motorola M6800 microprocessing unit, a 128 x 8 bit

random-access memory chip, six .4096 bit programmable read only memories, a 1 megahertz clock, one

peripheral interface adapter, fourteen discrete light emitting diodes, four hexadecimal displays, a sixteen

key keyboard, and a few discrete transistor-transistor locic (TTL) integratul circuits. Except for the

keyboard, all these 'iris fit on a 4.5- by 6.0-inch board that mounts against the underside of the top panel

2 6
20

of the micRiterminal box. By maintaining a compatible family of microcomputer integrated circuits, such
as the Motorola 6800 family, and by performing many of the hardware control functions in software the
total parts count was kept low thus enabling the building of the entire microcomputer with appropriate
student interactive displays on one small board: Refer to Figure 6 for a functional block diagram of the .
complete microterminal...

V. CONCLUSION

The stand-alone testing terminal, described in this report, is the tip of an iceberg which could greatly
change the, nmnn6r in which testing is performed in the armed services. Specific systems may be relatively
easily developed which emphasize testing technique, test item security, teaming during testing, or
automated entry of test results for item or response analysis by a larger system. The greatest difficulty will
be obtaining assembled devices such as these in small quantity without losing the low-cost potential of the
'imbedded microcomputer, and in attaching families of these devices to current inappropriately designed
central Systems. H. solutions to these problems 'can be found, the full potential of reliable, automated,
self-paced learning centers may be realized.

0 7

21 *U.S. GOVERNMENT PRINTING OFFICE: 1977-771-057/29

