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Foreword

This dissertation is actually an extension and continuation of an earlier

technical report (Weyer & Cannara, 1975), which herein is called "report-1".

Report-1 should (but need not) be read in conjunction with this document.

As a matter of notation, all phrases in the text that are not in English,

but in the computer languages being discussed, are surrounded by single quotes

('), unless their context is otherwise obvious. As a matter of taste, which

rejects the "arrogance of the acronym", names of programming languages and

other proper nouns, excepting trade or institutional names, receive their due

quota of capitals--one.

Several references are made to articles in a few common periodicals, not

necessarily because the articles are uniquely_ relevant, but because the

periodicals are ?asily found and their editors traditionally strive for clarity as

well as accuracy.
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1. Introduction

Herein are discussed in detail two experiments done at the Institute for

Mathematical Studies in the Social Sciences (IMSSS) at Stanford during the

summer of 1973 and the spring of 1974. Previonsly, Cannara and Weyer

(1974a), and Weyer and Cannara (1 ), have described the 1973 experiment; it

will be referred to as the "first" experiment. The 1975 document will be

called "report-1".

The experiments attempted to study children, who haa never used a

computer before, learning: (a) concepts relevant to computer prcgramming, and

(b) modern programming languages. The languages and other programiling

facilities used (e.g., graphics) have been discussed definitively in report-1; this

thesis will simply outline their features and concentrate on observations of the

childrens' learning-processes and the implications of both experiments in terms

of programming-language and curriculum design, and tutoring technique.

Why observe children learning computer-programming? Programming would

seem to be a decidedly adult task for young people who haven't yet completed

their basic schooling. A partial, motivational answer follows immediately; the

remainder of this thesis may be viewed as an attempt to complete that answer.

Throe main streams of thought converge ov the study of children learning

to use a computer. First, is the view that a computer is in f:Lt a tool for

thinking, which implies that it might be applied fruitful at every educational

level (e.g., Brown & Rubinstein, 1973; Dwyer, 1972; Papert, Blo&m,

Grant & Solomon, 1999; Kay, 1972[b]; Papert, 1970). In particular, the

computer can be us, 1 to stimulate the activity Papert has referred to as

"tl ..ng about thinking". Second, is the desire of some educators to study the

thinking processes of people solving problems (e.g., Bloom & Broder, 1950;

Piaget. 1970; Polya, 1957), which leads directly to studies in perhaps the most

9
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general problem-solving realm ctnnputer programming. Third, is a synthesis of

human problem-solving and computer as-tool, flamboyantly named "arti ficial-

intelligence research", which aims to formalize problem-so:ving procedures (e,g.,

Feigenbaum & Feldman, 1963; Minsky, 1968; Newell & Simon, 1972; Nilson,

1971; Winograd, 1P71). Sometimes, artificial-intelligence products can better

our understanding of ourselves and/or provide useful educational strategies (e.g.,

Brown & Burton, 1974; Goldberg, 1973).

We should not be surprised to find children and computers where those

three streams intersect. The eth:cationai linkage of computer programming with

thinking is expressed by the idea -)f a "mathematical laboratory", in which a

program creates a constructively interactive, and so perhaps more interesting

environment for learning. Unlike most tradi tional realizations of computer-

assisted-instruction (Cai), the laboratory is designed to "understand", at a

meaningful level, the domain of interest) Unlike most classroom lectures, such

a laboratory can give substance to the material and exploratory freedom to its

users. The user's interaction with a mathematical laboratory is meaiated by a

formal (as opposed to natural) language, whose semantics access the constructive

abilities of the laboratory and whose syntax is simply a perhaps novel set of

conventions. A computer and a programming language together constitute a

mathematical laboratory of the most general kind, because they are all that are

needed to construct (simulate) any other laboratory. That is the main

justification for studying programming as a general problem-solving activity. It

is based upon a conjecture of Church's that (freely interpreted) suggests that

any ideas Ixhich may be formalized may be studied as a comp._ ter program.2

Fornm 1 i za ti on of ideas, a fundamental aspect of ma thematics, is part and parcel

1ae;! Ellis (1)14) or Ma,atino..r and Illrks (11),9), for critiques of present educational

c,,pwmr ;Ippli,.ati,d,, and -',111,,aod (!a62'), or Sup; (in Wittrock. 19/3), for

lystcriaal ly H!,
loi discusion..... of 1.1a.rch's tfw:;Is. !,ee Mcaina (19/?) or Minsky (1961'.

1 0
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of inather,i1tical laboratorie:. for Tograniming, problem solving and thinking

iihout thinking.

The production of effective mathematical laboratories is closely and

bidirectionally connected wi th artificial-intelligence work and human sel

understandi lig. It must grapple wi th questions beyond the immediate scope of

the laboratories themselves. Effective tutoring techniques, for e-:arople, are

educational objectives which must be attained even after one has constructed a

laboratory which "understands" its domain. Thus, applying the computer

educationally, as a tool rnade IV0 i Ia ble via a laboratory, tlemands answers to

questions posed in a wide variety of fields (e.g., Brown & Burton, 1971;

Goldberg, 1973).

The theory and practice of computation offer educators me valuable tools:

(a) the formalization of ideas as clustered sequences of instructions, (b) mediods

for modelling real-world processes, and (c) metaphors for understanding machine

an(1 human information-processing. Together, these expose thinking techniques

that Pa pert has termee "powerful ideas". Concepts of progrananing and

thinking can be taught as na to rpl and inseparable partners, emphasizing

students' scrutiny of their own thinking about the world. And, it is not a new

idea that school-chi ldrf.n can and should let'ro how to program a computer, so

that the) too might access its unparalleled power as a tool for thinking. The

computer's natural ability to si m ul a e has responded to the i ngenui ties of

students (as seen, for example, in tl e work of Brown and Rubinstein, Dwyer, or

Papert) si th the same spectacular gt nerali ty i t has provided to professional

researchers (e.g., Levison, Ward & V/ebb, 1973; Toomre & Toornre, 1973;

Winograd, 1971).

Tlie foregoing remarks were intended to justify a desire to study

programming as an intellectual activi ty for children and programming languages

11
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as took for such activity. As II tvehnological product, the personal compilter

will soou he as much a reality, as the personal calculator is today.3 Access to

interactive computation may soon become commonplace for vast 111.11111)0Is of

children (and adults), at school or at home. Certainly we should In, trying (IOW

to understand how to hone this new tool to maximum usefulness. As a medium

for expressing, manipulating and communicating nleas, the personally accessible

computer May stand well above everything since the printing press. 4

Teaching programming is a tutorial endeavor of perhaps the most general

kind. The work to be reported hen. attempts to characterize :UMW of the

situations that human and mechanical tutors for nri-,..Tailiming will confront and

nn.st be prepared to resolve. It is relevant t. quinoll ground between

education and artificial intelligence because tin action of computer

programs which can tutor humans with human proficiency is a common goal.

No one has attained that goal yet, because the activities of a good tutor are

tied irrevocably to humanness of language and knowledge (e.g., Winograd, 1974).

Although the theoretical power of the computer (i.e., as conjectured by Church)

may be suffic;ent to simulate natural int,Ilect, we do m yet understand

ourselves (or other species, e.g., Gardner & Gardner, 1975) well enough to

communicate even a coarse description of intelligence to any recipient (note the

arguments of Stent, 1975a, 1975b; and his critics). Those who have recognized

the nature of this problem have come closest to success in clrefully limited

contexts (e.g., Brown & Burton, 1974; Carbonell, 1970; Winograd, 1971).

The generality of a programming laboratory and the intimacy of tutoring

combine to produce an interesting research environment in which analysis of

K.ly ( 1', /2,1, 1.11)) of- 11r1n41 ( 19/ 4, ;)p. L4 /1) for ,oio 1.4 of 1.51? ne.tr
f!.itor,! of c.o,IputIng.
4. fen...1w! 5 tj (11/1i. t.,1 for h i..t I( ii On

( UP.) Iii Iii .,1.1 ion., !Amt. ticliniiHq Ica I t..ventc
1.1k in9 now.

1 ''
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errors plays a central role. 11 programming tutor (human or mechanical) must

be ready to intelligently suggest, accept or comment on an arbitrarily vvide

range of student interactions and prograrn syntheses. The details of errors do

more than indicate vvhat a student does not understand, they indicute how the

student views the problem at hand in terms of his or her ovvn view of the

world.

Extending a suggestion of Papert's, if a student responds to a posed problem

at all, that response is typically correct by the student's personal analysis. So

the student is surprised to hear "wrong". It is the tutor's responsibility to try

to divine the reasons for the student's error, perhaps acting as does a detective

eliciting evidence from someone from a foreign land--subsequent interaction is

devoted to laying a common foundation of terms (definitions and relations).

The tutor necessarily learns about the student's world view and is better

prepared to handle future errors and future students. Errors are not "bad",

they provide valuable feedback to be exploited for student benefit.5

liovvever, any tutor (human or naechanical) for teaching something as

g neral as programming is destined to occasionally fail the student, because it

must occasionally tackle unsolvable (uncomputable) problems.5 In other words,

the tutor naust pass judgrnent on the correctness of a student's program, and vve

know that there exists no general procedure for deciding that an arbitrary

program is correct or incorrect. I3ut the range of solvable problems is so broad

that this hard theoretical fact discourages neither researchers nor teachers.

"Proof of program correctness" (Hoare, 1971) and "automatic prograrn synthesis"

5This relates to a basic criticism of most past efforts in Cai: noi only have programs

been designed which fail to understand their own subjecl-matter, they fail to possess

more than trivial error-handling strategies. Results too often have been just transfer

of programmed-instruction text or film to computer storage, using very little, from the
student's vantage, of the computer's computational potential. Dwyer has said that Cai

fails in "reproducing the excitement of masterful teaching". I would add that rarely

aave Cai workers even attempted to capture masterful teaching.
Discussions of the uncomputable (unsolvable or unprovable) appear in Davis (1965).

Minsky (1960, Chailin (1975) and Steen (1975).

1:3
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(Fenichel, Weizonbaum & Yochelson, 1970) are active topics in computational

research which have clear bearing on future success in constructing competent

computer-based tutorial systems.

Numerous research projects have taught children particular programming

languages (e.g., Feurzeig and Lukas 1972a; Fischer, 1973; Folk, Statz &

Seic'anan, 1974; Milner, 1973; Roman, 1972). However, apparently none has

attempted to make explicit the broad range of relevant programming concepts

and their relationship to a student's world of thought. In such terms, many

projects have pursued hazy, sometimes arbitrary goals that concentrated on

teaching an available language through ad-hoc, problem-solving situations,

without generalizing situations and solution strategies. A study by Folk, et al.,

(1974) is perhaps the most extensi, attempt to specify relationships between

programming concepts and children's thinking processes. But their analysis is

confined to classical statistical models and the concomitant testing of rather

broad hypotheses virtually ignores a wealth of detail in student protocols.

In contrast, protocols (and tutorial notes) are precisely the data upon which

this work is founded. The primary objective is to understand how children

learn programming concepts (e.g., Table I), with secondary emphasis on the

influences of languages and curricula. With error-analysis as a tool,

student/machine interactions must be exposed in as much detail as possible.

Narrow views, provided for example by conventional test scores, are inadequate

no matter how convenient they may be to obtain and analyze. Quoting Bloom

and Broder on the subject of "objective" tests:

"What is missing is information on the process by which
the problems are solved. The methods of attack, the steps of
the thinking process, the kinds of considerations used to make
one choice rather than another, and the feelings and attitudes
of the subject are neglected or given very little attention.

... attention on the processes of thought...may also
require a change from testing and mass studies to those which
involve small numbers of subjects studied by rather intensive
techniques.

14
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Table I

Some Fundamental Programming Concepts

1. Machine as a tool manipulated with a command language

2. Machine possessing an alterable memory

3. Literal expressions

4. Name-value associations

5. Evaluation and symbol-substitution

6. Execution of stored programs

7. Programs which make decisions

8. Procedures (algorithms)

9. Evaluation of arguments to procedures

10. Procedures as realizations of functions (transforrnations)

11. Composition of functions

12. Partial and total functions

13. Computational context (local versus global environments)

14. Evaluation in changing environments

15. Induction (recursion and iteration)

16. Data structures as defined by functions

17. Problem formulation (representation)

18. Incomplote algorithms (heuristics)

15
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"The way in which each student looks at a particular
task may make it a unique problem for him."

-- Bloom & Broder, (1950).

It may seem obvious that to understand a physical or intellectual process

one must exercise and observe it. In fact one must observe what it does

wrongly as well as correctly before a good model of the process' structure can

be realized. Thus has error analysis proven its value in many fields (e.g.,

Fromkin, 1373; Newell & Simon, 1972). It is a basic means for evaluating

theories in all the sciences.

"Truth arises more easily from error than from confusion."

--Francis Bacon.

This work has depended upon observing children learning by making

mistakes and discoveries. For their own benefit and for the practical

requirements of research, the children had to feel motivated and supported.

Motivation is an essential precursor of effective learning, yet it is often

snubbed in the analysis of everyday education (Jackson, 1968); and it has yet

to be captured accurately in artificial-intelligence applications. So, apart from

examining interactions with a programming laboratory, this work has also been

concerned with the motivational aspects of tutoring, curricula, languages and

concepts.

That programming concepts provide a link between formalized thinking and

perceived reality is certainly not a new axiom (Berry, 1964). It was assumed,

perhaps tacitly, in much of the similar research quoted earlier. For motivation,

a student should look to his or her own life experience for applications of the

tools which an understanding of pertinent concepts supplies. This is the

ultimate justification for teaching programming, because the power of a

programming laboratory derives from the fact that students do more than

1 (3
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interact with it, they intervene, and mold the laboratory to their very own

purposes.

The research. problem can be summarized by two questions: (a) How do the

characterist;cs of p (..ramming laboratory influence a child's motivation and

ability to learn programming concepts and apply them to the solution of

problems? and (b) What are some significant features of that learning process?
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2 Programming Facilities

Both experiments attempted to impart an understanding of the concepts in

Table I and fluency in two, very different programming languages. This

required the development of: (a) interactive laboratories (interpreters) for the

languages and devices used, (b) parallel curricula for teaching the concepts, (c)

means for acquiring data on each student's interactions, and (d) means for

judging each student's aptitude for programming and mastery of the concepts.

Part of requirement (a) was met easily by using existing interpreters for

two languages, Logo and Simper, developed specifically to teach children

computer programming. At one time, a third language (Spm, Appendix 1),

designed by the author, was also a candidate but was discarded. Development of

some of the devices used and requirements (b), (c) and (d) defined the work to

be done preliminary to the experiments.

Languages

The languages Simper and Logo were chosen because they are

computationally genera], they are relatively easy to learn, they are interactive

with powerful editing features, and they are highly dissimilar (Figure 1). Both

are detailed extensively in report-1, so only a brief description is necessary

here. Both experiments, the first (summer-1973) and second (spring-1974), led

to changes in both languages--these will be indicated also. In the text, paired,

single quotes (') denote items in the Logo and Simper languages.

Simper was developed by Lorton and Slimick (1969) at IMSSS as a simple

simulation of an imaginary machine resembling an Hewlett-Packard model 2000.

It has been used to teach business applications of programming to students at

Woodrow Wilson High School in San Fraucisco (Lorton & Muscat, 1975). At

IMSSS, it has been expanded and rewritten in the Algol-60 subset of Sail

(Swinehart and Sproul], 1971) by the author.

18
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Simper Logo.

001 :PUT A 43
002 :NAME REPEAT
002 !CWRITE A
003 :PUT P REPEAT
004 :RUN

EXECUTING 1 TO 500
+++++++++++IG

...23 INSTRS IN .043 SEC.

004 :EDIT 1
001 !CASK A
004 :SLIDE 2:7
002 :ASK B
003 :NEGATE B
004 :JUMP B .+2
005 :HALT
006 :INCREMENT B
007 !NAME 4 REPEAT
SWITCHING REPEAT'S
007 !RUN

EXE: 'UTING 1 TO 500
+10
++++++++++

+-TO REPEAT :LETTER:
@10 TYPE :LETTER:
@20 REPEAT :LETTER:
@END
REPEAT DEFINED

a-REPEAT "+"
+++++++++++1G

I WAS AT L.:NE 10 IN REPEAT

4-EDIT REPEAT
@EDIT TITLE
@TITLE TO REPEAT :LETTER: :TIMES:
@5 TEST LESSP :TIMES:
@7 IFTRUE DONE
@EDIT LINE 20
20 REPEAT :LETTER: DIFFERENCE :TTVMS: 1
@ESP
REPEAT DEFINED

REFERENCES
4-REPEAT "+" 10

++++++++4-EDIT REPEAT
@6 IFTRUE SKIP

@END
REPEAT DEFINED

HALT...45 INSTRS IN .117 SEC.

007 !LIST

YOUR PROGRAM:

001 :CAS A
002 :ASK B
003 :NEG B
004 :JUM B .+2 (REPEAT)
005 :11AL
006 :INC B
007 :CWR A
008 :PUT P REPEAT

4-REPEAT "+" 10
+++++++-r++

4-LIST REPEAT

TO REPEAT :LETTER: :TIMES:
5 TEST LESSP :TIMES: 1
6 IFTRUE SKIP
7 IFTRUE DONE
10 TYPE :LETTER:
20 REPEAT :LETTER: DIFFERENCE :TIMES: 1

(These sample dialogues produce alternative programs for the repeated
)rinting of a keyboard character supplied by the typist. Prompts from
Simper are the current memory. address (a decimal numeral) and a ":" or an
"!", (lepending on whether the addressed location is empty or used. Lot;..)
prompts "," at the outer level and "@" at the editing level. "G" indicates
a control character typed to stop a potentially endless execution sequence.)

Fig. 1. Simper and Logo Sample Dialogues
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Simper, is designed for interactive use. It is an assembly-language

interpreter for a simple decimal machine with an addressable program counter.

Its instruction set typifies those of early minicomputers and is similar to, but

simpler than, that of the language Mix (Knuth, 1970). As a programming

laboratory, Simper has three functional components: (1) a simulator for the

underlying machine (Figure 2), (2) a roal-time assembler which translates

symbols and mnemonic instructions (listed in Table II) into machine language,

and (3) an interpreter Which haildlcs editing and general management of

programs (Table III). This system allows students to generate and easily

"debug" nontrivial machine-language programs. One can imagine that, when the

Simper interpreter is I ot running a user's program, it is simply waiting for a

message from the user which is either a phrase in one of the three languagE s:

machine, assembly or interpre ter, or is unintelligible. The reader should

examine Figure 1 ar, and then try to follow the execution of the sample

program (which realizes the function: 2x + 9) in Figure 3.

Logo (Feurzeig, et al., 1969) is a i jcedural language whose basic data

struetures are strings of letters or words. The Logo instruction-set is easily

expanded via procedure (operation) definitions, possibly recursive. An important

feature of Logo (as opposed to Fortran-like languages) is that operations which

a user defines are syntactically equivalent to Logo primitives. Logo contains

essentials of the currently popular Basic language as a subset, but is superior to

Basic in terms of mathematical consistency, and clarity of phrasing and control.

Furthermore, Logo begins to address the important question of language

extensibili ty, which is a fundamental measure of the usefulness people can

attribute to any language for computing or thinking.

The Logo interpreter used in these experiments was obtained from Bolt,

Beranek & Newman Inc. (BBN) of Boston. It is wri tten in Macro assembly-

language for the P1)P-10. For the pnrposes of the experiments, Logo was

20



Registers (10 max.) Memory Cells (511 max.)

(program P 001:
counter)

A 002:

B

Ca 500*, 250:

Instruction Format (using righthand seven digits)

000
o r a

g. d (indirect flag & address)
r

a s e

i e s
o r

Page 13

(* indicates the configu .ation after the first experiment. The machine
simulated within the Simper interpreter operates on ten-digit decimal
numerals (words); some of which it "understands" as legal instructions.
Each operation mnemonic (Table II) corresponds to a two-digit code, ea, h
register has a one-0;git code. The address field typically contains a three-
digi t memory-cell designator, or register and indirect address digits. The
value in register P is always used as the memory address of the next
instruction to be executed.)

Fig. 2. Structure of Simper's Simulated Machine

r` 21
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Mnemonic

PUT
LOAD
STORE

Page 14

Table II

Simper Machine Operations

indicates operations added after the first experiment.)

ADD
SUBTRACT
MULTIPLY'
DIVIDE
DIVIDE*

LAND
LOR
LEXOR*

JUMP
JASK
COMPARE

SHIFT":
ROTATE
EXCHANGE
INCREMENT
NEGATE
ERROR*

ASK
WRITE
CASK
CWRITE
MT*

RANDOM
TIME
WAIT

HALT

NOP

Action (if not obvious)

value of address field to register
copy value in addressed cell into register
inverse of 'LOAD'

add value in addressed cell to register

skip next instruction unless dividing by zero
set 'ERROR' flag on division by zero

decimal digit-wise minimum between register and memory
decimal digit-wise maximum
"exclusive or": 'LOR' except for equal digits

transfer to address if register is non-zero
transfer to address if a key has been typed
three-way skip on memory cell's value greater than,
equal to, or less than register's value

flip contents of two registers

overflow error code to register

decimal numeral from keyboard to register
inverse or 'ASK'
ASCII character from keyboard to register
inverse of 'CASK'
input/output transfer (for graphics etc.)

random 10-digit integer to register
seconds since midnight to register
defer execution for milliseconds in register

stop execution

no-operation
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Table III

Simper Interpreter Commands

(* indicates items added after the first experiment, ** indicates items added
after the second experiment. Parenthesized phrases describe options
obtained by terminating a command with the "altmode" key.)

Name Action

DUMP display decimal content of memory and registers
(symbols too)

LIST or DEBUG display memory content in assembly language
(and machine language), 'DEBUG shows "secret" tables

RUN execute part or all of a program (and display
registers)

GO continue execution (and display registers)

CLEAR** set a particular register's content to zero

FIX or EDIT* change the content of one or more memory cells
(and show prior content)

FLIP** interchange the contents of two cells

SLIDE relocate part or all of a program in memory

SCRATCH or erase all of a program
ERASE** erase all or part of a program*

FORGET or NAME erase or attach a symbol to a memory cell
(and say how much room remains for symbols)

NAMES list all symbols and their cell associations
(and their values)

SAVE or GET copy memory to or from long-term storage

FIELDS allow abbreviated instructions

FORBID or ALLOW selectively alter the machine's inAtructi on riet"

NEWS obtain the latest system news

HELP obtain general information about Simper

con t rol-G stop any activity

GOODBYE log out
or control-Z
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007 :LIST (the user had created the following program)

001 :ASK A
002 :MUL A 10
003 :ADD A 6
004 :WRI A
005 :PUT P 1
006 :9
007 :

008 :

009 :
010 :2

007 :RUN$ (the user runs the program, "$" denotes altmoe.i)

1304:12 (the time)

EXECUTING 1 TO 500

A: B: INSTR:

1 0 0 ASK A INPUT NUMBER:4 ("4" typed by user1
2 4 0 MUL A 10
3 8 0 ADD A 6

4 17 0 WRI A NUMBER=17
5 17 0 PUT P 1

1 17 0 ASK A INPUT NUMBER:0
2 0 0 MUL A 10
3 0 0 ADD A 6

4 9 0 WM A NUMBER=9
5 9 0 PUT P 1

1 9 0 ASK A INPUT NUMBER:-4
2 -4 0 MUL A 10
3 -8 0 ADD A 6

4 1 0 WRI A NUMBER=1
5 1 0 PUT P 1

1 1 0 ASK A INPUT NUMBER:1G (user aborts)

...15 INSTliS Ii 1.190 SEC

007 :GO 4
2

13

(user continues a bit with no display)

...4 INSTRS IN .042 SEC

007 :EDIT 10
010 13
007 :RUN

(the user changes the function to be: 3x + 9)

Fig. 3. Displaying a Simper Program's Activity
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modified to communicate with various devices, including an "XY" plotter and

graphic display terminals (the total system will be referred to a.; IMSSS Logo).

A partial list of IMSSS Logo's primitive operations appears in Table IV,

program editing/saving commands appear in Tables V, VI and VII, and the

execution of a sample procedure is shown in Figure 4. The reader should

maintain in mind that Logo is fundamentally a prefix language--commands may

be composed of saveral operation calls, in which each operation is followed by a

list of any arguments (possibly produced by other operations) it may need in

order to be executed.

One of the few common aspects of the Simper and Logo languages is line-

editing. Table VII shows the commands which allow users to correct typing and

other errors before they terminate their command-lines (causing ogo or Simper

to try to obey them). Particulary useful are the commands (control-E, -N and

-S) which allow previously stored lines or words to be injected into the user's

typing. One of the functions of good line-editing capabilities is to minimize

the burdens on the poor typist.

Finally, it should be noted that in learning to use Simper, the student must

learn the three languages (machine, assembly and interpreter) that are realized

by the system. This is not a trivial matter for naive programmers, as the

experiments have indicated.

Logo's interactive structure is more nearly unitary. Its basic piece of

executable code is a line composed of one or more commands, and its basic piece

of program (procedure definition), is an ordered seriei, cf lines. The Logo

interpreter !ways executing (or capable of executing) a user's commands,

which may ( upon Logo primitives or the user's own procedures. Control

returns to the user only when his or her last command and any commands it

might have called have terminated normally or been aborted. A few of Logo's

primitives may not be executed directly by a user's procedure, but there is not
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Table IV

Some IMSSS Logo Primitives

( indicates items added after the first experiment,
** indicates items added after the second experiment.)

Name Action

TO allows creation of a new operation (a procedure)

OUTPUT allows operations to return values to the evaluatcr
or RETURN*
or REPLY**

EDIT allows the user to change an operation's definition

MAKE associates a name with a value

VALUE* or THING accesses the value associated. with a name

FRONT moves the "turtle" or train forward

WHERE returns the present location of the train

PLOT sends turtle drawing to XY plotter or robot

SAY causes the audio system to speak a message

PRINT causes the user's terminal to tyne a message

REQUEST asks the user for a message

SNAP makes a "snapshot" of graphics picture being drawn

MOVESNAP* moves a snapshot as part of an animated display

WORD combines two words (of letters or numerals) into one

SENTENCE combines two words or sentences into a sentence

FIRST returns the first letter or word in a value

RANDOM picks a digit between 0 and 9

SUM or ADD** returns the sum of two numbers

IS or SAMEP* are two words or .-;entences identical?

EQUALP are two numbers equal?

IF TIIEN ELSE decision .naking
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Table V

Logo's Procedure Editing and Debugging Commands

Name Action

TO begin defining a new procedure

EDIT begin modifying an existing procedure

TITLE redefine the name of the procedure and its inputs

EDIT TITLE change part 3f the title

LIST TITLE display the title

EDIT LINE change part of any line in the procedure

ERASE LINE delete any line

LIbT LINE display any line

END stop editing the procedure's definition

LIST display any procedure's definition

ERASE delete any procedure's definition or trace

ERASE ALL delete all definitions
PROCEDURES

LIST ALL display all definitions .

PROCEDURES

LIST CONTENTS display the titles of all defined procedures

LIST ALL display the user's abbreviations for all operations
ABBREVIATIONS

TRACE display a procedure's arguments/returned value
whenever it is executed

BREAK halt execution (same as control-G)

EXIT halt and print a message

GO continue execution

(Indented commands may only be given after editing has been begun with
or 'Emy.)

2
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Logo's File-manipulation Commands

Name Action

SAVE replace an entry on a file wi th the current
contents of memory

GET append the content of an entry to memory

LIST FILE display the entry names in a file

LIST ENTRY display everything in an entry

LIST PROCEDURES display only the procedures in an entry

LIST CONTENTS display the titles of an entry's procedures

LIST ABBREVIATIONS display the abbreviations in an entry

ERASE ENTRY delete an entry from a file

COPY copy a text file to or from a file entry

28
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Table VII

Simper/Logo Line-editing Commands (* means Logo only.)

Name

control-A or
rubout

control-W

control-X

control-R

linefeed

return or
altmode

control-N*

control-S*

control-E*

(An

Action

erases the previous character typed

erases the previous word typed

erases the whole line (also control-U in Simper)

retypes the present line minus deletions

continue:, line beyond 72 characters

terminates a line (altmode is also known as " escape" Or
"enter")

insert (into the present line) the next word from the
previous (or edited) line

skip the next word from the previous (or edited) line

insert everything remaining in the previous (or edited)
line into the present line

example of Logo procedure editing:

,TO WELCOME
@lc) SAY "HELLO THERE"
@EDIT LINE 10 (causes the line number "10" to be printed and

inserted into Logo's input buffer just as if
the user had typed it, so it may be erased.
Logo has now also grabbed the existing text of
line 10 and knows 'SAY to be its first word)

@10 [ 01120 tNsay "tStNthere" [ "1 GOES A WELCOME"

(The above editing line produced line 20 by
using line 10. "t" means "control-", Logo's
typing is in lower case, deleted characters are
in brackets)

@LIST
TO WELCOME
10 SAY "HELLO"
20 SAY "THERE GOES. A WELCOME" (the new line)

@)

29
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4-LIST ACKERMAN (the user had defined the following procedure)

TO ACKERMAN :X: :Y:
10 IF EMPTYP :X: THEN RETURN WORD :X: "Y"
20 IF EMPTYP :Y: THEN RETURN ACKERMAN BUTFIRST :X: "Y"
30 RETURN ACKERMAN BUTFIRST :X: ACKERMAN :X: BUTFIRST ;Y:
END

which realizes a string example of Ackerman's function)

TRACE ACKERMAN ('TRACE will allow the user to follow ACKERMAN's
execution history, observing its arguments when it is
called and the values it returns when it is done.
Recursively generated copies of 'ACKERMAN' are
denoted by indentation)

.-PRINT ACKERMAN "XX" "Y" (execution begins)
ACKERMAN OF "XX" AND "Y"

ACKERMAN OF "XX" AND
ACKERMAN OF "X" AND "Y"

ACKERMAN OF "X" AND "" ('° is the empty string)
ACKERMAN OF "" AND "Y"
ACKERMAN RETURNS "YY"

ACKERMAN RETURNS "YY"
ACKERMAN OF "" AND "YY"
ACKERMAN RETURNS "YYY"

ACKERMAN RETURNS "YYY"
ACKERMAN RETURNS "YYY"
ACKERMAN OF "X" AND "YYY"

ACKERMAN OF "X" AND "YY"
ACKERMAN OF "X" AND "Y"

ACKERMAN OF "X" AND
ACKERMAN OF "" AND "Y"
ACKERMAN RETURNS "YY"

ACKERMAN RETURNS "YY"
ACKERMAN OF "" AND "YY"
ACKERMAN RETURNS "YYY"

ACKERMAN RETURNS "YYY"
ACKERMAN OF "" AND "YYY"
ACKERMAN RETURNS "YYYY"

ACKERMAN RETURNS "YYYY"
ACKERMAN OF "" AND "YYYY"
ACKERMAN RETURNS "YYYYY"

ACKERMAN RETURNS "YYYYY"
ACKERMAN RETURNS "YYYYY" (to PRINT)
YYYYY

Fig. 4. Tracing a Logo Procedure's Activity
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a strict distinction between sets of conunands as exists in Simper's three-level

structure. However, a quirk in Logo's evaluation scheme imposes a different

syntax on editing and management commands versus other operations. This will

be discussed later. Readers interested in more detailed discussions of Simper

and Logo should refer to report-I.

Peripheral Devices

Various terminals and controllable devices were available to Logo and

Simper students during and after both experiments (Figure 5). The machine-

language Logo interpreter was modified to dispatch graphics (or other special-

device) commands to a Sail program: Sailogo (Figure 5). This program and

Logo acted as coroutines. Hence, Logo's control of special devices was realized

by Sail procedures.

Most special devices played a relatively small role in the work reported on

here. A brief summary of only the graphics and animation facilities will be

included. All the devices are fully documented in report-I.1

Both experiments sought to establish good examples of how each device

could be employed in solutions to programming problems. Some aspects of this

will be discussed later with emphasis on relating device capabilities to teaching

the concepts (e.g., those in Table I).

All the students whose work will be discussed here began their

programming at conventional, model 33 Teletypes(R). This slow (10-characters-

per-second), noisy, inexpensive but reliable terminal was their basic means for

communicating With Logo and Simper until they had mastered the languages

well enough to make good use of such special capabilities as graphics. In spite

I am indebLed to Steve Weyer for his fine impLmentation of the many special IMSSS-

Logo features such as graphics and animatior

(- 31
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PDP-10 Operating System
I

I

I

IMSSS Student System
/ \

/ \
/ \

Logo Simper
/ \ \ . I

/ \ \ . I

/ \ \ . I

TEC(R) Sailogo I

I \ . \ I .. \
I \ . \ I \
I \ \ I . \

Turtle Audio Train Plotter Teletype(R) IMLAC(R)

(Dotted lines mark connections made after the first experiment)

Fig. 5. Programming System Structure

3 2
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of obvious drawbacks, Teletypes were in plentiful supply and provided paper

printout for projects (like posters) whose results students wanted to take home.

Some students retained a particular liking for Teletypes, because the mechanical

bedlam generated by one in operation fascinated them.

Some fast (a few hundred characters-per-second), text-oriented, video

displays were used occasionally by some students. These had limited, graphics-

like capabilities, but they were not exploited in the experiments.

In the first experiment, two groups of students used IMLAC(R) PDS-1

graphics displays exclusively. These groups, however, are discussed only in

report-1. For the students whose work is of interest here, the IMLAC displays

constituted a goal, attained when a student's proficiency in the languages was

adequate to allow comfortable use of the graphics system (Tables VIII and IX).

The graphics, line-drawing system emulates many abilities of the robot

"turtle" developed at MIT and BBN (Feurzeig and Lukas, 1972b). It allows

movement on the screen to be specified by "x,y" end-points in addition to the

turtle's normal, roving-polar-coordinates scheme (in which movement is specified

by 'FRONT and 'BACK' along an angular heading changed by 'RIGHT' and

'LEFT'). For example, a square can be drawn by the Logo procedure 'SQUARE':

TO CORNER :SIZE: TO SQUARE :SIZE:
10 FRONT :SIZE: 10 CORNER :SIZE:
20 RIGHT 90 20 CORNER :SIZE:
END 30 CORNER :SIZE:

40 CORNER :SIZE:
END
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Table VIII

IMSSS Logo Turtle-Graphics Commands

Name Action

CLEAR erase the text area of the screen

WIPE erase any drawing and put turtle home

SEE (HIDE) make the turtle appear (disapi ear)

PENDOWN (PENUP) enable turtle to draw visible (invisible) lines

PENP return "TRUE"' if turtle's pen is down, '"FALSE"' otherwise

POKE (UNPOKE) stick out (pull in) turtle's head

HOME move turtle to home position defined by 'SETTURTLE'

FRONT (BACK) move turtle forward (backward) a specific distance

LEFT (RIGHT) rotate turtle left (right) specific number of degrees

SETHEADING point turtle on a specific angular heading

ASETX (ASETY) move turtle horizontally (vert.cally) to an absolute
screen position

ASETXY move turtle horizontally and vertically to a position

RSETX (RSETY) move turtle horizontally (vertically) a relative amount

RSETXY move turtle relative to its present screen position

THERE equivalent to an 'ASETXY' and a 'SETHEADING'

IIERE return turtle's current position and angular heading

ARC make turtle draw an arc of specified radius and sense

ZAP (2.:P) erase last turtle move(s) up to a visible line segment

PLOT (UNPLOT) (do not) direct turtle commands to robot or plotter

SETSCALE set screen resolution in units-per-inch

SETTURTLE set both scale and home position on screen

WRAP set up screen boundaries for wraparound

COMPRESS shorten IMLAC display list (precludes use of 'ZAP' or 'ZIP')

34
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Table IX

IMSSS Logo Animation Commands

Name Action

SNAP wipe screen and begin creating a numbered "snapshot" of
whatever drawing (less erasures) is subsequently done

ENDSNAP finish defining current snapshot and wipe screen

ERASESNAP delete specified snap and its number

WHATSNAPS return a sentence of currently used snapshot numbers

SIIOWSNAP display specified snapshot at turtle's scre.en position

PUTSNAP identify a snapshot with an old or new "object" at a
specific screen position, or move or erase an object

MOVESNAP move an object (with wraparound) a relative distance on
a relative heading and return object's final, absolute
position ("R" in an object number has effect of 'RSETXY')

WIPESNAPS wipe screen and erase all snapshots and objects

(A procedure for moving an object, referenced by a snapshot number, across the screen
might be:

or, better:

TO WALK :SNAPNUMBER:
10 SIIOWSNAP :SNAPNUMBER:
20 ZAP (a snapshot is a "line" under erasure)
30 FRONT 10
40 WALK :SNAPNUMBER:
END

TO WALK :043JECTNUMBER:
10 MOVESNAP :OBJECTNUMBER: "10 0"
20 WALK :OBJECTNUMBER:
END

for the latter, 'PUTSNAP' must first be used to tic a snapshot (an appearance) to an object
at soine screen position.)

35



Page 28

Lines drawn may be erased by 'ZAP' and 'ZIP' commands, permi tting limited

picture edi ting as well as primi tive animation. One student produced a short

sequence showing a fuse "burning" down (disappearing into) and exploding a

firecracker.

'PLOT' allows one to direct the effects of most graphics commands to ei ther

an 11137202A plotter or a robot turtle (General Turtle Inc., Cambridge, Mass.).

Most students highly valued the abili ty to reproduce on paper what their

programs had drawn on the display screens. Since students could use any type

of terminal and still have their drawings appear on the plotter, this was

exploi ted to encourage students to write and debug storable procedures rather

than to just draw by direct commands. The plotter was only sporadically

available during the first experiment and a true, robot turtle was available on

occasion during both experiments. The robot came along with a "music-box"

which was used signi ficantly by two students in the second experiment.

During the first experiment, it became apparent that more powerful

animation abili ties would be possible and might serve as strong motivation for

more complex student projects. Prior to the second experiment, genuine

animation was added to Logo and Simper was modified to access the graphics

system as well (Appendix 3, pages 1ST and 1LT). The 'SNAP' command allowed

a student to save the effects of most subsequent graphics commands as a display

subroutine wi thin the IMLAC. These "snapshots" could then be shown

anywhere on the IMLAC screen wi th 'SIIOWSNAP' or 'PUTSNAP'. Snapshots of

the same object in di fferent orientations or sizes could then be shown

successively in a "movie" (e.g., wi th 'MOVESNAP').

Although true animation (TUTSNAP' and 'MOVESNAP' in Table IX) was

not used by students in the first experiment, i t was used in the second. Some

students from the first experiment continued to work wi th Logo, influencing
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some aspects of the developing animation system. A short film about

Logo/IMLAC graphics and animation is available from IMSSS.2 Figure 6 is

adapted from that film.

Students used animation to produce such things as a flyable helicopter, a

rocket launch, animated tic-tac-toe, movies of throbbing polygons, and a tennis-

game. An example program appears in Appendix 4.

The computer could also be made to utter sounds (via the Logo primitive

'SAY') composed of any of several thousand prerecorded phrases, words, and

phonemes stored in the IMSSS system. No organized use was made of this in

the experiments, since it amounts to little more than the aural equivalent of

'PRINT'. Only a few terminals with audio output were availabk to students.

Nevertheless, most students discovered the facility and some made imagin14,v.e

use of it.

Fig. 6. Successive Frames from a Logo-Animation "Movie".

2 Pat Crawley of the Stanford Communications Department produced this film. starring

Adam Grosser, Greg Hinchliffe, Steve Spurlock, Steve Weyer and the author.

3 ?
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3 Students, Tutoring and Curricula

The desire to draw sonie conclusions about programming languages led to

the student groupings shown in Table X. The first experiment had been

concerned with assessing the value of graphics as well, accounting for the

formation of groups IV and V. Those two groups are discussed only in report-1.

Groups I, II and III in both the first and the second experiments provided most

of the data for comparing the languages, evaluating the curricula and

characterizing tutor-student-machine interactions.

The first Jxperiment influenced many aspects of the second, some of which

will be discussed here. For example, the enthusiasm generated by the graphics

and animation system inspired the inclusion of graphics in late parts of both

the Simper and Logo curricula, at a time when students had mastered either

language "well enough".

Schools near Stanford were contacted in order to obtain inexperienced

programmers, 10 to 15 years old--an age which is thought to ensure that

children can master abstractions (Piaget, 1970).1

Teachers and others recommending students were asked not to base their

selections on students' performances in school, because the intent was to study

how any child learns to program. It had been observed previously that teachers

tend to recommend only their better, mathematics students for such special

projects. Apart from an admonition against such preference, the mariner in

which the invitation "to learn how to use a computer" was presented to students

could not be controlled, so it cannot be stated that the enrollees constituted a

cross-section of local students.

I am indbted to Carolyn Stauffer for her invaluable help as liaison.
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Table X

Experimental Groups

Group Composition

1973: I 8 students learning Logo and then Simper

II 8 students learning Simper and then Logo

III 8 students learning Logo and Simper at once

IV 5 students learning Logo with graphics

V 10 paired students learning Logo with graphics

1974: I 5 students learning Logo and then Simper

II 5 students learning Simper and then Logo

III 5 students learning Logo and Simper at once

39
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In the second experinwnt, an athlitional source of "gifted" students was

available. They worked at teletypewriters at home, were assigned to groups

matching I, II and III, received the corresponding curricula on demand by mail

and could call myself or others at Stanford for hell; during certain hours.

Unfortunately, only a few of these students did significant amounts of work

with Logo and Simper. Their work will be discussed at appropriate times, but

these students are not i7ulicated in the Tables and Figures.

More students responded than were needed for the groups outlined in Table

X. As many as possible were accommodated, including friends who appeared

later during the body of the experiments. Figure 7 presents some responses of

the enrolling students to a brief questi,unaire. Since students typically heard

about the course from their mathematics teachers, the indicated preferences

weren't surprising. As an aside, the students' attitudes toward school seemed to

agree with observations in .Jackson (19138) that one-fifth or more of all school-

children will readily admit that they dislike school in general.

In all, about fifty students involved theuiselves in the first experiment, and

correspondingly, about twenty enrolled in the second. To some degree, this

insulated the experiments from the problem of dropouts. Transportation

problems created a few defacto dropouts, particularly in the first experiment.

In the first exrerimert, students were scheduled to use the machine one

hour per day, four days per week, with more regard for their convenience than

for experinwntal grouping (Table X). Because the first experiment was in part

a pilot study for the second, Fridays were reserved for modifying the curricula

and debugging the interpreters or devices. However, on demand of some of the

more interested students, Friday was considered open too.
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Age/School

h 10-

Distribution

st

lo

Age/Liking of School

1 pe wo 14 15 15
hv la gu 14 14 15
hv me 9u 14 14 14

5- hv hv ma 14 13 13
hv hv ma 14 13 13 12
hv hv ma gu 12 13 12 12

Fr hv hv hv ma gu 13 11 13 12 12

hv hv hv ma gu 11 10 10 12 12
0-

10 11 12 13 14 15 1 2 3 4 5

age dislike like

Age/Subject Preferences

English Languages Mathematics Science

15

15- 14

14

14

13

13

10- 15 14 15 15 13

14 14 14 15 14 13

14 14 14 15 14 14 15 13

14 14 14 15 13 13 14 15 12

13 13 14 14 12 14 13 13 14 12

5- 12 15 13 14 13 lb 14 12 14 13 12 14 12

12 14 12 13 13 14 14 12 14 12 12 12 14 12

12 14 12 13 15 12 13 13 12 14 14 13 12 12 12 14 12

11 14 12 12 13 12 13 12 12 13 14 13 12 11 14 12 13 11

11 13 10 10 12 10 13 11 11 10 12 12 11 10 14 11 10 13 10

0-
1 2 3 . 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

dislike like

Fig. 7a. Some Information Characterizing the 1973 Students
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h

Age/School

10-

Distribution Age/Liking of School

i 14

1 14

wo 13

te wo 13

e 5- te te 13

hv te 13

hv te 12 12

te 11 12 12 13

ba wo hv hv te 9 12 12 13

0-

9 10 11

age

12 13 14 1 2 3

dislike

4 5

like

Age/Subject Preferences

English Languages Mathematics Science

10- 14

13

13

14 13 14

13 13 13

5- 13 13 13

14 13 12 14 12 14 13 13

14 13 12 13 14 12 12 12 13 13 12

12 13 13 12 12 11 13 13 12 13 12 12 12 12 12

9 12 13 11 12 9 12 12 12 13 12 12 11 9 12 11 9 12

0-

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

dislike like

Fig. 7b. Some Information Characterizing the 1974 Students
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In the second experiment, students used the machine three hours per week,

on two-or three-day schedules. This was done because the first experiment had

indicated that students should be segregated by group to allow more uniform

tutoring and to minimize the inevitable distractions raised in a roomfull of

students working at different places in different curricula or on projects in

different languages. The students still retained the right to go to another

room, after their scheduled session had ended, and use another terminal.

In order to obtain an initial assessment of each student's aptitude for

programming, and to point out possible problems that each student might later

have in learning the concepts, a test was constructed prior te the first

experiment. It consisted of qu,stions gleaned from a wide range of sources,

because no one test in current use seemed to be valid for the range of concepts

in Table I. A number of commercial programming tests were examined and

some questions from these were used.2

However, all these tests relied heavily on timed sections of multiple-choice,

often repetitious questions. Such structuring produces easily graded results and

is commonly used to boost the "reliability" (correlation among test applications)

of a test. In contrast, development of the test used for this work placed

emphasis on the more elusive but crucial notion of validity, and on the

exposure of thought processes (e.g., per Bloom & Broder, 1950).

A test, no matter how reliable, is utterly useless if it fails to measure the

property of interest. It may even be dangerously misleading. In terms of the

theory of testing and evaluation, as currently applied in the social sciences (e.g.,

see Worthen & Sanders, 1973; or, for the politics/realities of evaluation, see

Jackson, 1968, and McLaughlin, 1974), validity like reliability is measured by

2 fests included: the APCO Computer Programmer. the CPAB and ilanagan Industrial Test

series by SPA. the LCPI data-processing test. and the IBM programming aptitude test.
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correlative techniques. However, no matter how long the chain of correlations,

validity :s ultimately founded in human judgements and evaluat uS iality.

An example of validation taken from a commercial test-brochur is oil Lli: d in

Appendix 2. It should alert the reader to some of the pitfalls ti1;11 t' eaten

those who wish to do aptitude testing, particularly with commercially available

materials. Read critically, the example implies that testing theory and practice

typically diverge when validity is demanded, yet validity of measures is

precisely what must be demanded when meaningful research is the goal.

A test was presented to enrolling students for two purposes. One, some

measure of the students' aptitude for learning the concepts was needed for

matched grouping. Two, hopefully it would be possible to match the way

students attacked particular questions in the test with particular aspects of

their performance in the experiments. The test might therefore shed light on

the tutorial needs of each student.

The preliminary test was constructed of some questions taken from the

commercial tests mentioned earlier and questions of original design. All

questions were formulated or reformulated to require constructive answers. The

1973 and 1974 tests are reproduced in report-1 and Appendix 2, respectively.

Multiple-choice questions were thought useless. They force students to make

judgements based on two levels: their relevant knowledge and the sensibility of

the prescribed answers. The grader of such questions is freed of the burden of

judging diverse answers simply by having it thrown onto the test constructer

and the least-experienced judges: the students. What students think about each

question and why they give their answers are important pieces of information

that such testing destroys. For this work, students answers were valued even if

they were wrong or incomplete. Detailed answers would help evaluate the test

as well as the students; and the judging would be done by persons experienced

in the relevant fields (i.e., by the author or other programmers).

4 4
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The desire for constructive answers to all questions on the test is best

justified by those examples of "wrong" answers which nonetheless showed that

students were thinking along the right lines. Figure 8 presents some for a

question derived from a commercial test (note also the subtle defects in

drawings B and C, and the beguiling A-B sequence). It is important to note

that answers like those in the figure evidence approaches to the questions which

would have been counted completely right or wrong if nonconstructive answers

(e.g., multiple-choice) had been required. Figure 9 shows examples of totally

unexpected answers to a question of original formulation.

One can neither assess a student fairly, nor know what a test is testing if

the questioning scheme critically warps or limits information relevant to the

purpose test.

About one-hundred questions were selected for possib' use in the test.

Before the questions were presented to students enrolling in the first

experiment, their difficulty, clarity, and the time required for their solution

were evaluated by presenting the entire assemblage to several programmers

(children and adults) in the IMSSS community.3 As a result of this simple

evaluation, most of the questions were accepted and were presented in two tests.

Students answered one-third of the questions on the day they enrolled, being

allowed one hour. The second test was to be completed at home at each

student's convenience. The two parts of the test contained many similar

questions. This was done because the preliminary evaluation had suggested that

time should not be a factor in testing. Thorough and accurate evaluation of

both test and students seemed to demand that as many questions as possible be

answered. Two-part testing would also suggest whether or not any time limit

should be applied to the single test which would be used in the second

3 / am grateful to Marney Beard. Doug Danforth, Adele Goldberg, Paul Hechinger, Greg

Hinchliffe and Lauri Kanerva for their help.
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The Question and the Desired Answer:

Figure A was changed into Figure B by a simple rule. Please draw
figure D so that it corresponds to figure C changed by the same rule.

What is the rule in words? BOTTOM SHRINKS, TOP GROWS

Other Answers:

:JRN IT UPSIDE DOWN AND ALTERNATE SIZE

A IS A SQUARE WITH A CIRCLE, B IS JUST THE OPPOSITE

YOU CHANGE TO THE OPPOSITES

TAKE THE FIRST BASIC FIGURE AND CHANGE WITH THE
SMALLER AND TURN UPSIDE DOWN

ATHE SMALL TOP FIGURE BECOMES LARGE AND THE OTHER
BECOMES SMALL AND THEY TRADE PLACES

Fig. 8. Some "Wrong" Answers from the 1973 Preliminary Test
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The Question and the Desired Answer:

What one rule, not using arithmetic, was used to make the digits on
the right from the strings of digits on the left?

999999999 9

556 5

6106 6

TAKE THE FIRST DIGT.T

Alternate, Unforeseen Answers:

THE DIGIT USED THE MOST

PREDOMINANT NUMBER

WHAT EVER NUMBER THERE IS MOST ON THE LEFT, PUT IT
ON THE RIGHT

TAKE THE DIGIT WITH THE HIGHEST PLACE VALUE,
OR THE ONE THAT REPEATS MOST OFTEN

Note: "number" was acceptable although "digit" or "numeral" were
technically correct. More than half of the students who gave
complete answers to this problem seemed not to be aware of the
distinction. Their rank and choices of words contrasted as:

1973 or 1674 "digit"
student rank or

"numeral"

at or above median 14

"number" .

11

below median 3 13

Fig. 9. Some Novel Answers from the Preliminary Tests
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experiment. Unfortunately, many of the students failed to complete the lengthy

"take-home" portion of the test, either for lack of interest or because they

dropped out. For the second experiment, it was decided that the test would be

shorter and that new students would work on it during their rirst day, taking

it home to finish if necessary.

Questions had been selected according to their apparent value in testing the

ability to manipulate unfamiliar languages, model or analyze processes, form

deductions, and visualize figural transformations (see Appendix 2). Some of the

questions proved to be very useful for discriminating among the enrolling

students. Two of these, the "candy-machine" and the "numbers-in-boxes"

problems (Appendix 2, or report-1, page 169), required an understanding of

concepts directly related to programming. Errors made by the students on these

two questions were especially interesting and will be discussed.

In the candy-machine problem, a partial flow-diagram was provided in

which few states had been left blank and connections between some states were

missing. The task was to complete the diagram in any reasonable way. Many

students had trouble with the basic idea that a process can be represented on

paper as a diagram of the sequence of events in the process. They left blank

states empty, filled them inappropriately, or misconnected the dangling states.

Errors in the solutions given could be divided into three classes: (1)

assignment of unreasonable destinations for unconnected arrows, (2) assignment

of unreasonable functions for undescribed states, and (3) treatment of the entire

diagram as a maze in which only one path was to be marked as a likely

protocol. Errors in class (1) or (2) suggest that a student had trouble using

the information alrrddy present in the diagram to deduce reasonable "things to

do next" or "things to do now". Class (3) is interesting because such errors

indicate that a student viewed the diagram as a menu of instructions from

which to choose one plausi ble sequence, rather than as a complete description of

all possible sequences, for some process.
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The numbers-in-boxes question asked the students to obey a short, program-

like sequence of ari thmetic instructions which operated on some numbers

wri tten in a set of numbered boxes. Very few students correctly obeyed the

instruction which read: "Add the number in box 7 to the number found in the

box whose box number is in box 6, and wri te the sum in box 6". The sentence

is hard to read, but the idea that a number (value) in a box could be used as

the number (name) of a box (indirect addressing) was the typical difficulty.

Many students also had trouble wi th the idea that wri ting a new number into a

box should destroy its previous contents. Solutions fell into a few distinct

classes which can be attributed to failures in the understanding of those two

concepts.

In both expeiiments, the test was used to establish a rank ordering of

enrolling students, and performance on the test seemed to break into a few

levels. For the first experiment, roughly equal numbers of students from each

level were assigned to groups I, II and III. The second experiment's grouping

was more constrained by the interaction of students' scheduling preferences with

the desire to keep the groups in separate time-slots. In both experiments

students determined their own class schedule wi thin the time constrai ry.,s

mentioned earlier.

Figure 10 shows the composi tion of the groups according to testing rank,

age and amount of time spent in actual work wi th the interpreters. The candy-

mach i ne and the "logi c" (Appendix 2, or report-1, page 170) problems tended to

be most in fluential in discriminating among students of equal age above and

below the median. The youngest had the most trouble with the candy machine.

They missed the point that the diagram was an overal 1 description of the

machine. A few of the older students were fami liar wi th flow-charts from

school and thought that problem easy. In the first experimen t, they had also

been studen ts who enrolled la te. These late arrivals usually did very well

4 9
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Group

111*$
1$
11*$
111$
III*

Age

15
15
15
13
13

Hours Spent Using Logo & Simper

36.4
35.7
18.1
29.7
11.1

1*$ 12 12.7
11*$ 13 59.2
III# 14 0
1# 14 5.8
II 13 50.6
II 14 33.5
II 12 22.8
11# 14 6.4 * marks students who enrolled
11*# 14 27.9 late.
I# 14 5.7

median.. I# 14 5.7 # marks early dropouts.
II# 14 0
I 11 24.2 . marks significant breaks in
11# 14 4.9 performance on the test.
III 11 14.2
I 12 23.0 $ marks those who continued
I 14 18.0 programming well beyond the
III*# 13 2.1 experiment.
III 12 11.0
III 13 28.7
1$ 12 27.1
I* 10 11.7
II 12 21.1
III 12 20.1
i 12 19.1
111$ 10 35.7
II 13 6.1

Fig. 10a. Student Ranking on the 1973 Preliminary Test
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Group Age Hours Spent Using Logo & Simper

1$ 12 24.2
111$ 9 47.8
III* 13 27.1
III 12 33.2
II 13 15.4
II 13 26.9 * marks students who enrolled
II 13 25.9 late.
I* 12 26.3

median.. 11$ 13 33.7 # marks early dropouts.
II 11 14.3
1$ 14 45.4 . marks significant breaks in
I# 13 3.2 performance on the test.
III 14 12.0
III 12 38.6 $ marks those who continued
III* 12 16.2 programming well beyond the
I# 12 1.5 experiment.
I 12 8.0

Fig. 10b. Student Ranking on the 1974 Preliminary Test
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with the test, perhaps in part because they worked on it quietly alone--a

feature lacking in the massed testing of the first enrollees. This provided

another reason for eliminating timing of the test in the second experiment.

Examining the first experiment's test-results in terms of four constituents:

the first three problems mentioned above, and everything else, the students'

performances compare generally as follows. Students at the bottom of the

ranking (Figure 10a) were unable to grasp the candy-machine and the box-

program questions, they correctly analyzed only the clearest statements in the

logic problem, and they failed to finish the test by a large amount. Students

near the middle filled only the empty states in the candy machine reasonably;

they correctly obeyed all commands but the indirect-addressing command in the

box program, with some failures to erase a box's content when they wrote into

it; they only missed the fourth statement in the logic problem; and they did

fairly well on the rest of the test, though not always finishing it. Students

near the top correctly filled all states and connected all the dangling arrows in

the candy machine, a few of them missed the indirect-addressing command in

the box program, they did the logic problem correctly, and they typically

finished the rest of the test. Similar comments apply to test results for the

second experiment, with the qualification that these students seemed to do

better on the test than did those in the first experiment.

Of course these breakdowns are not iigid. In particular, it is very hard to

order many of Lae tests in the broad middle regions of the rankings. Ranking

forces transitivity upon performance ratings for solutions and problems which

are often qualitatively different. But by demanding constructive answers, the

answers contained much detailed information about the stUdents and the test.

If the test had been an exercise in multiple-choice, it is not clear what

information it would have comeyed, but it certainly would have conveyed less.
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Some changes in the test were made as a result of the first experiment.

Aside from making it shorter and unitary, and si;plying it individually with no

time limit, changes typically involved readability and the elimination of

frivolous questions.

Tutoring. Both experiments were planned to depend upon written curricula

which would control the basic information given to students. Interpreters for

the programming languages would simply act as computational resources which

the students could use to work problems in the curricula- or experiment with on

their own. However, any attempt to develop a fully self-contained curriculum

for programming was deemed unrealistic. The main concern was gaining access

to tutorial protocols generated by novice programmers working in the best

possible environment for learning. Therefore, human tutors were provided who

could help students over failures in the curricula and report their interactions.

The tutors were to be knowledgeable in the programming languages being taught

and would be familiar with the corresponding curricula.

In the first experiment, it was hoped that enough tutors would be available

each day to guarantee at least one for each five students in each group.4 Two

instructions to the tutors were emphasized: (1) never type anything for the

student on his or her own terminal, even when giving the most direct help, all

typing must be the student's; and (2) when asked for help on any problem,

encourage the student to formulate and try out his or her own ideas first,

before making other suggestions. It was hoped that these instructions would

guarantee the purity of the protocol data and help the students to think as

much about generating and debugging ideas as about getting correct results.

Unfortunately, this tutoring effort failed in some crucial functions. First,

4My thanks go to Avron Barr, Marney Beard. Doug Danforth, Adele Goldberg, David Rogosa

and John Shoch for their help as tutors.
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initial enthusiasm faded quickly and most tutors became sporadic in making

their scheduled appearances. This seemed largely due to their lack of prior

experience in working closely wi th, and at the immediate demand of, several

children at once. Second, and accordingly, the tutors could not maintain

detailed logs of tl,c ir interactions. Third, the tutors did not always keep up

with new developments in the curricula, partly because i ts production fell

behind the students' pace and partly because pieces of it were designed "on the

fly" to patch mistakes/omissions. In either case, new curriculum-text was made

available to students and tutors simultaneously--a bad policy.

Therefore, for the second experiment, tutoring was to be done by one

person (the author) working wi th at most five students, all in the same group

(per Table X), witli the appropriate curriculum ready well in advance of each

session. This facilitated note taking, gave the students personal, more uniform

help, and ensured that problems wi th the curricula/interpreters were caught

quickly. It is one reason why the number of students in the second experiment

is smaller than i t was in the first.

Curricula. Development of "parallel" curricula for Simper and Logo proved

to be the most demanding task in setting up the experimeiits. Both the

concepts and the 1Rnguages had to be taught, and this is done best wi th example

problems, some of whose solutions students must copy, modify or generate. The

ability to teach bt,th the concepts and the languages would be very sensitive to

the choice of problems. For the students, the experiment was to serve to

improve their literacy on the subject of computers and compu tation. Again the

choice of exampl s and projects would be important.

Unfortunately documentation of problems used in similar work by others

was scarce or cursory. Furthermore, most of the relevant research had been

based on Logo or an equivalent high-level language. Problems appropriate for a
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low-level language such as Simper are typically quite different. That was the

fundamental obstacle to achieving apparent parallelism, given the intentionally

diverse natures of the languages to be taught. So, the curricula were

constructed to teach the concepts in roughly the same order, using whatever

features each language possessed that could best be exploited for each concept.

As well as the concepts, the mechanical details of each language had to be

taught. A few features (line-editing, Table VII) of Simper and Logo are very

similar and were taught at the same time in the same way. But most features

were taught differently, either because they were appropriate to different

concepts or because they were needed at different times as tools in the general

structure of each language. The Logo and Simper curricula are documented, as

they were during the fi I experiment, in report-1. The discussion here will

concentrate on the changes to the curricula which resulted from that

experiment, .n rep.11aiion for the second (see also Appendix 3).

Each curriculunl was (nvided into five logical parts, each typically

discussing more than one r.oncept. Each part gave students programs to work on

and fill-in-the-blanks questions to answer. The parts were distributed one at a

time, giving the au th a a chance to review each student's work on them. Those

students learning Simper and Logo simultaneously (group III) alternately

received parts for each language.

The concepts were presented only very roughly in the order of Table I.

For instance, the concept of a heuristic was introduced relatively early via a

scheme for thinking about recursive algorithms. This involved a brief case

analysis of some problems (derived from Folya, 1957): (a) what case can be

computed? (b) how do I detect that case? (c) if not that case, then how do I

generate one closer to it? (d) what must I remember for each case? and (e)

when do I stop? In procedural terms, (a) and (b) form the procedure body, (c)

is the recursive step, (d) preserves local context, and (e) is the stopping rule.
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A special effort was made to produce visually pleasing curricula. Path

pointers gave direction to the student, making the next question or inst cti n

contingent upon the student's latest response. This subtly introduced decision

making and sequencing (program control). It was, however, a bit too subtle for

most students. Cartoons and examples were chosen for humorous as well as

conceptual merit, and summaries were included so that the curricula could

endure as reference material.

Changes in the curricula between the two experiments centered on

reordering and reformulation of discussions of several concepts. One effect was

reduction of the sizes of both the curricula to roughly sixty pages (a reduction

of 1/3 for Simper and 1/5 for Logo).

Modifications to the Simper curriculum were based upon apparent student

confusions in the first experiment. In Part 2, an explicit reminder was added

as to why computers don't understand human languages (because humans

themselves have yet to comprehend their own faculties). This helped to clarify

the curious results students obtained when they followed the advice to "type

anything you please". Otherwise, Parts 1 and 2 remained unchanged (see

report-1). Parts 3, 4 and 5 then proceeded along a mostly new course in

covering material previously allocated a dozen parts.

The new approach hinged on teaching machine-language first and thereby

motivating both the desirability of the more convenient assembly-language and

the need for the interpreter's powerful editing language. All this was

permeated with allusions to message processing and computational context. The

former being a metaphor used with some success in tutoring experiment-1

students, and the latter being an essential concept that had been troublesome to

many of those students.

Part 3 fi rst sought to clea r up the lesser problem of what li terals are in
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the language by demonstrating more examples. It also tried to motivate the

need for registers as a scratch pad. It then approached one aspect of context:

attention. The machine was described as giving its "attention" to registers and

memory cells when in the process of executing a program--only certain values in

those cells could be "understood" as legal instructions. Without an ability to

focus its attention on a source of messages, the machine would be quite useless.

Registers, as defined by the machine's structure, were described as a means for

passing messages between instructions, reflecting an aspect of the machine's

internal context. In spite of the simplicity of the machine-language programs

written in Part 3, editing command, such as 'SLIDE' (Table III) found direct

application; and a few students suggested new ones (e.g., 'FLIP').

Simper Part 4 reviewed two of the three segments of machine-language

instructions covered in Part 3 (i.e., the operation and register fields), and went

on to motivate the need for the address field as a source of the second input to

binary operations (e.g., addition) and as a means for accessing "full-word"

chunks of data. Since the structure of most machines modelled by Simper was

once dictated by both technology and economics, a brief word to that effect was

included in the tutoring. The essential role of memory in any machine

deserving of the name "computer" was alluded to. Using a time-telling program

developed in this and the previous part, students were led into assembly

language. The use of new editing commands (e.g., 'LIST'), designed especially

for this second language, were also introduced. The remainder of Part 4 dealt

wi th execution sequencing, and decision making. It attempted to motivate these

with an odd/even number-testing program analogous to one used in the Logo

curriculum. This problem was formula ted as a test of the student's abili ty to

translate au English statement of a program in to Simper. Students having

trouble writing the program were helped, and detai Is of this tutoring were

recorded. The final version of the program demanded an understanding of
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literals, names (in the form of machine addresses), binary operations, register

and memory-cell in tercommuni cation, condi tional and uncondi ti coal branching,

and the communication of symbols to and from the typist. To cap off this

work and prove that problems can often be solved in several externally

equivalent ways, the curriculum suggested rewri ting the program with fewer

instructions ( three basic forms existed).

Simper Part 5 attempted to crystallize the i dea that interactive programs

define new languages and thus set up new contexts when run. Student-defined

sym bols (names) and relative addressing were introduced as conveniences,

peculiar not just to assembly-language programming. They found appli cation in

a random-number, guessing-game program used also in the Logo curriculum.

The decisi on-making operation ('COMPARE') was then introduced as a way of

maki ng the students' programs smar ter--they could now give their users hints

like: "GUESS HIGHER". At this point, the concept of a function was

introduced much as in the original cur -i culum and wi th the same visual aids.

Part 5 closed wi th some reviews of messages and context in terms of the

"domains" of func tions.

Now students could go on to learn how to use the Simper graphics

capabi li ties (Section 2), which were identical in power to those of Logo. They

could also begin to learn Logo if they had not already. As in the first

experiment, most students did not complete both curricula, so things like

"pushdown stacks" werc discussed only in terms of special projects which a few

students undertook.

Part 2 of the new Logo curri culum was changecl in the same way as was

Simper Pa rt 2. Part 3 kept the old discussions of literals and simple, direct

cornnlands, but then led into procedures as program elements, rather than

naming (e.g., with 'MAKE.). Time- and date-telling procedures were the focus
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because experiment-1 students had generated these on their own and had found

them useful as well as instructive. The idea that problem solutions could be

broken into logical parts was demonstrated simply by a procedure that ci led

both the time and date procedures.

Logo Part 4 discussed naming first in terms of procedure names and then

in terms of input variables to procedures. 'MAKE' was only introduced when a

student's special' project absolutely demanded i t. Execution control was

illustrated in terms of a procedure that called i tself unconditiomffly, running

forever. This was parallel to what had been done in Simper. Editing

commands were reviewed, and message passing and context were de vdopc d ir.

terms of procedure inputs. Meek dingrams, which had li ttle success in the first

experiment, were simplified and given a second chance as aids. As for Simper,

the introduction of functions was unchanged. Loy's parsing of complicated

command-lines was depicted wi th diagrams, and a fill-in-the-blanks script

adapted from the original curriculum.

Logo Pa ri 5 opened wi th decisi on-making as an essential abili ty of any true

computer aad a brief discuss:on of the programmer's role in using such abili ties

for his or her purposes. The various Logo predicates were covered using block

diagrams. examples and exercises taken from the original curriculum. The part

prndicatet; -)lay in decision-making was emphasized. Composi tion of coinmands

was aiscussed, particularly along the li nes of a telephone-...:all metaphor. This

,.as e::panded fiiitF2r in terms of good progra in articulation as !.he following

program was developed. The use of si mph: recur;,ion (i terrAi or ) and stopping

7ules was mc tivated by a clock si mu la t7 r which printed "TICK" or "TOCK"

(It nnding upon whether the time (in sec i_.,nr.4) maintained by the system was

even or (RH. Applications of Logo's two decision-structures (IF_ and 'TES'r...)

also were con trasted With this program as:
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TO KWK TO KLOK
10 TEST EVENP SECONDS 10 IF EVENP SECONDS THEN PRINT "TICK"
20 IFTRUE PRINT "TICK" ELSE PRINT "TOCK"
30 IFFALSE PRINT "TOCK" 20 KLOK
40 ICLOK

where

and

TO SECONDS
10 RETURN BUTLAST BUTFIRST BUTFIRST TIME

TO EVENP :X:
10 RETURN ZEROP REMAINDER QUOTIENT :X: 2
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were also defined by the students. That Logo has, as most languages have,

redundant operations, was demonstrated by having students write a procedure

('AIN'T') equivalent to 'NOT'.

True recursion (making use of local contexts) was introduced, as in the

earlier curriculum, using the "little brothers" analogy of Brown and Rubinstein.

The true effect of returning control but not a value from a recursively called

instance of a procedure was clarified.

The concept a "bug" (unforseen error) in a program was illustrated by a

number-guessing-game program similar to that in the Simper curriculum.

Students were asked to design the program and then modify it in several ways,

all of which, except the last (using 'COMPARE% suffered from particular

inabilities to interact reasonably with the human guesser:

TO QUIZ :PICK: :GUESS:
10 TEST COMPARE :PICK: :GUESS:
20 IFTRUE PIUNT "SMARTY!"
30 IFTRUE QUIZ RANDOM REQUEST
40 IFFALSE IF LESSP :PICK: :GUESS: THEN PRINT "GUESS LOWER"

ELSE PRINT "GUESS HIGHER"
50 IFFALSE QUIZ :PICK: REQUEST

TO COMPARE :X: :Y:
10 IF BOTH NUMBERP :X: NUMBERP :Y: THEN RETURN EQUALP :X: :Y:

ELSE RETURN "FALSE"

6 0
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Logo's file system was introduced at this point because it seemed natural

that students would want to save this particular program. As had been done

earlier for editing commands, a one-page manual was included for file

manipulations and abbreviations. Some examples gave practice.

Recursive procedures that return values were introduced, using a more

thorough treatment of an example from the original curriculum. Both block

and little-brother diagrams were used to describe how a procedure that removes

all instances of a selected letter from a selected word should work. The

students were asked to try their hands (and heads) at solving the problem by

synthesizing the procedure. Errors and questions were to be noted and solutions

were provided. A playlike script attempted to solidify understanding of one

solution. Different forms of solutions (e.g., left- and right-recursive) were also

discussed. Then a modification was suggested which would lead to the solution

of another problem: writing a procedure to reverse a word. Up to this time,

no stopping rules had been concerned with numerical criteria. Now, counting

and program self-modification were introduced by a procedure that counted up

(or down) to a limit and then modified itself permanently by self-erasure:

TO SELFDESTRUCT :HOWSOON:
10 IF LESSP :HOWSOON: 1 THEN ERASE SELFDESTRUCT

ELSE SELFDESTRUCT DIFFERENCE :HOWSOON:

The final of Part 5 developed Polya's ideas on solving problems in terms of

the structure of general recursive procedures. Several projects derived from the

first curriculum were present cl. Students could then go on to Simper and

graphics, as they pleased.

The graphics curriculum was derived from that presented to students in

groups IV and V (Table X) in the first experiment. Since students in the

second experiment would have already mastered much of the basic languages, it

was sh or toned ( to 7 pages) and concentrated on ani matLon projects. Each
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student who completed ei ther or both languages was asked to think of a project

to work on, graphics providing an enjoyable and quite acceptable diedium.

What and how the students were taught were functions of two main beliefs:

(a) testing should be an educational experience; and (b) people should

understand as many of the valuable products of their culture as possible.

The nature of the tutoring prescribed implicit testing of each student, yet

all students always got each "answer" eventually. Especially in the second

experi ment, students saw their actions precipitate prompt, accurate tutorial

responses. For both the students and the research, a working goal was to have

students come to feel at ease wi th dialectical responses to their questions. For

a few students, this proved to be a difficult departure from their accustomed

experiences i n formal schooling.

One knows not when a cultural product might be essential (physically or

psychically) to the individual or to the whole culture. But value is subjective

and evanescent, and one who finds an application for a cultural arti fact may not

also find others expressing agreement that the application is valuable.

Nevertheless, any successful try at an application (discounting plain luck) first

demands some understanding. This reeks of technology, yet art, history,

engi neering and gastronornics all draw from science to form their own

technologies. In short, everyone should understand and be comfortable wi th his

or her machi nes (e.g., Pi rsig, 1974 )--in the particular instance here, the

"mach ine's machi ne": the computer. Some of the children in these experiments

hopefully would benefi t i n just this way, even if they might not discover the

fact for years. A nagging fear that this might be a vain hope was instilled in

this author when conversing on this research with a successful educational

researcher, who regularly uses computers for statistical analyses. Hearing that

compu ters can do more than perform numerical computations left that

professional surprise an e,..traple of how a tool can be misunderstood.

06



Page 55

4 Data Acquisition and Analysis

The simple methods chosen for obtaining data and the type of analysis

believed to be appropriate for this essentially qualitative study will be discussed

here. Some reasons why the analysis should not be founded naively upon

classical statistical inference will also be outlined here.

Throughout both experiments, the Simper and Logo interpreters saved

information on each student's activities. Each command or response typed by a

sty.lent was appended to his or her individual protocol file on the operating

system's disc-storage. Prompts and error messages elicited from the interpreters,

and output from students' programs were also saved as they happened. Each

such piece of information was tagged with its time of occurrence. At the end

of the first experiment, the Logo and Simper interpreters were modified to

accept these files directly, in place of keyboard input. Each student's

interactions with the interpreters could thus be replayed and be observed in

their proper context. In addition, the error-message and timing data in the

protocol files could be analyzed in more conventional ways by forming .summary

statistics such as error frequencies and typing delays (response latencies). This

sort of data was not of particular interest, except insofar as it could be used to

point out particularly common errors, or confusions due to imperfections in the

curricula or the tutoring. Some additional data were obtained from notes made

by the tutors during the first experiment and the author's notes from the

second experiment. The bulk of the Oa La derives from the latter notes and

replays of recorded protocols. Sonic problems with the IMSSS time-sharing

system, encountered during the first experiment, are discussed in report-1.

Most of them also affected the second experiment in minor ways.

The usefulness of these experiments rests up6n the ability to understand

students as they have tried to learn Logo, Simper and the concepts explained in



Page 5E3

the curricula. Classical hypothesis-testing is not of concern in this wu

although others have attempted to reduce their analyses of children learning

programming to clinical forms, e.g.:

"Children who have had (2 Logo experience for several
semesters will perform significantly better on problem solving
tasks than children who have been in a non-Logo control
environment."

-- Folk et alia, (1973).

For this work, the goal has been an exposure of basic features of how

children think in the relatively unconstrained environment of a programming

laboratory. That is a qualitative exercise in careful judgement, and it centers

on a detailed study of errors made by students as they try out new ideas for

themselves. But, as in any analysis of data, an anidysis of errors must be valid

in the sense that its meaning is not warped by analytical constraints.

"It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of
theories to suit facts."

--Sherlock Holmes, by Sir Arthur Conan Doyle.

Whenever statistical procedures (such as classical hypothesis-testing) are

applied to data, certain mathematical assumptions (e.g., of scale and

distribution) about the data must legitimately be met, if resulting conclusions

are to carry any scientific weight. In too many research settings, the

importance of procedural assumptions is ignored, generating technically invalid

or misleading analyses.

These remarks evangelize to those who, perhaps as students or other well-

intentioned researchers, might be seduced by the apparent power or elegance of

various, conunon, analytical procedures (e.g., analysis of variance), while being

unaware of some of their potential for frivolous application to expediently

massaged (e.g., vacuously scaled, "transgenerated" and/or "Windsorized") data.

6 ,1
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In the social sciences, especially in education, the style of research too

often reflects a Quixotic quest for numerical results, apparently stemming from

the belief that quantitativeness is a precursor of objectivity and respectability

in one's discipline.

"They use statistics as a drunkard uses lampposts, for support
rather than illumination."

--Andrew Lang.

For instance, some psychologist's fundamentally qualititative data might

mysteriously be provided a "scale" on which important "variables" could be

"measured"--the accrueing benefit to psychology ranking with that brought to

music by some guitarist's chance strumming of the Lost Chord.

Quantitativeness at any cost is a precursor of sham not objectivity. This, and

the dangers lurking in the fog of "cookbook" mastery of statistics, are amplified

by the relatively easy access most researchers now have to computerized,

statistical procedures (e.g., Ellis, 1972). Perhaps as seriously, widespread use

standardized 1,,cedures has led to stereotyped theoriziug (e.g., to hypothesis

testing restricted to linear models and Gaussian-distribu on theory), wherein

convenient rather than reasonable procedures defin' th, hc.)ry, and the implicit

necessary assumptions of the procedures are virtually ignored. The judgemental

analysis for this work hopefully respects the qualitative nature of the data to

which .t is applied.

An example taken from Simper protocol data illustrates the nature of the

judgemental analysis used here. It shows how one student suddenly seemed to

grasp a concept with which he had been having trouble--name-value association

(addressing) in Simper. If the progranuning is unclear, the reader should refer

bark to Chapter 2. The student's dialog with Simper is reproduced here as he

was engaged in writing a program to realize the function: x2 - 3 :

6 r
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003 :2

015 :ASK A
016 :STORE A 200
017 :MULTIPLY A A
018 :SUBTRACT A 3
019 :WRITE A
020 :RUN 15:

He appears to understand the purpose of addressing in 'STORE A 200', but

his program contains several errors that suggest otherwise. The first causes

execution to stop at 017 because the symbol 'A', used in the address field of the

instruction in 017, has no binding and thus no associated value. The student

thought he could square the A register's content with the instruction:

'MULTIPLY A A', and he thought he could subtract 3 from that with:

'SUBTRACT A 3'. In both cases, the meaning of the register field seems to be

understood, but the address field is misunderstood. The student corrects the

first error (messages from the interpreter are in lower-case):

020 :FIX 17
017 :MULTIPLY 200 200
200 isn't a register, use a, I), or p
017 :MULTIPLY A 200
020 :RUN 15:

and the pror 'orks except that, because location 3 contains the value 2, the

subtraction do what he expected. At this point he seems to understand

that he can store and access values via addresses (names) because of his correct

use of the register and address fields of the 'STORE' and 'SUBTRACT'

instructions. But the idea crystallizes:

020 :FIX 201
201 :3

when he associates the desired value 3 with the name (location) 201,

020 :FIX 18
018 :SUBTRACT A 201

6E;
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and correctly accesses it to complete his program. From this dialog, one can see

the student begin to apply the concept in correct fashion (in the 'STORE'

instruction), then fail because he has not yet mastered it fully, and filially

succeed, partly helped by simple error diagnostics. The student later made a

similar p,i.,take, but corrected it at once.

Fcr the jurposes of these experiments, this type of analysis can suggest

when i.ud how a student masters something presented in the curricula. Students

can be ,:oinpaed in far greater detail than can be done with occasional discrete

tests, the curricula and languages may be evaluated very finely, and the

preliminary aptitude test's validity may be rated subjectively.

The lanp4age evaluation aspect of the protocol analysis is partly

demonstrated by the following examples from Logo and Simper protocols of

absurd or misleading responses to students' syntactic errors. First, consider:

-PRINT :::SNOOPY:::
don't use the empty thing for a name

in which the student's obvious attempt at multiple indirect-addressing is

completely misconstrued by Logo's simplistic parsing (the first pair of colons

are found to contain no name string). And second:

001 :SUBTRACT 1 FROM P
002 :RUN
warning! you forgot to name a location fromp
illegal memory reference 0 at 1

in which Simper, striving to extract three fields and no more from the student's

!, cmnpressed a simple syntactic error an(1 generated a more advanced type of

error. Not only was this spurious error unrelated to what the student had

done, it exposed the student to a situation for which he was not yet prepared

(i.e., the use of assembler symbols). These examples were taken from the first
a

experiinent's data. Since it was in part t pilot study for the second, the
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analysit. led to changes in Logo and Simper that corrected at least, some of these

kiruls or faults.

It should be clear that the Logo and Simper interpreters used are not

niartu. They do not tutor their users on the semantics of programsin the

experiments, that was left to humans. The interpreters do little more than trap

syntactic .crors, sonetimes acceptably well:

001 :SHIFT
unspecified register, use a, or p
001 :SHIFT 76
76 isn't a register, use a, b, or p
001 :SHIFT A
bhift uses 1, or r or @ and a number in the address field
001 :SHIFT @56
056 isn't a register, use a, b, or p
001 :51111.7 L 56
I isn't a register, use a, b, or p
001 :SIIIPF A L57

As was mentioned earlier, a simple analysis of the protocol files was also

carried out. For example, if a Simper student's errors were categorized and

plotted as in the graph in Figure 11, an interesting effect usually could be

observed: familiarization with the language led to a decrease in errors classed

as syntactic and an increase in those classed as semantican infererence being

that as students increase their active programming vocabulary, they can more

easily realize their ideas about problems as programs and find that their ideas

(now programs) aren't always debugged. But this is more reasonably

corroborated by tutorial data and detailed protocol analysis.

'rho tutoring process often was dialectical, especially when students became

confused. It therefore possessed an analytical facet which influenced the

recorded data. For example, when students expressed doubt about ti ability

to solve a particular problem, they were asked to explain the solution they had

attempted, then they and the tutor examined the pro!.; and cons of this in

relation to tho prchlern statoment, conyergin.; toward a working solution. For
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reasons outli ned earlier, this technique was employed extensively and uniformly

only in the second exj, riment.

Implicit testing was thus an important part of the curricula and tutoring

(e.g. pages 49L & 49S, Appendix 3), apart from the apti tude testing done before

both experiments and after the second. It allows students and their mastery of

the concepts to be compared at various stages.

The second experiment's post-testing was done only with those students who

completed all curricula and projects for both Logo and Simper. The posttest

contai ned questions like those used in the preliminary test, but also asked

questions that required writing Logo and Simper programs (see Appendix 2).

The preliminary aptitude test's results were presented as a rank-ordering of

the students (Figure 10) obtained by a "forced-choice" evaluation of their work.

Perhaps this is not justifiable, for a test whose validity remains uncertain. At

least a few students, especially near the medians, might well be reordered or

considered hopelessly tied. Yet rank-ordering enforces transi tivi ty. The theory

behi nd the test is simple and qualitative: take as questions examples of the

thinking that programmers are typically asked to do, where some types of

thinking are more important, in the prograMming sense, than others. The

former relates to vali di ty, the latter to transi tivi ty. No part of the theory

suggests cardi na ti on or interval scaling. Perhaps a careful, subjective evaluation

of studen ts' constructive answers chn more nearly approximate an objective

ranking-technique (i f one exists) than falsely objective testing/scoring

procedures can-. The theory behind the test may be wrong or i ncomplete, but

detfrmining t hat is one purpose of the experiments: what do students'

intoractions with the preli mi nary test have to do wi th their interactions wi th

the programming curricula? The test's vali di ty teeters on the subjective choice

of questions, and stands or falls subject to experi mental data.
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5 Results

Anecdotal and judgemental information will be presented which helps in:

(a) understanding the students, (b) evaluating the tests, programming languages

and curricula, and (c) characterizing relevant features of the tutorial process.

Apart from normally recorded data (replay files and tutorial notes),

students provided both direct and indirect feedback in both experiments by

explicit opinions and by their behavior. Figure 12a summarizes students'

responses to a questionnaire they received shortly after the first experiment.

The total numbers of opinions for all rows are not identical because some

students felt insufficiently exposed to every item to render an opinion. After

the second experiment, a somewhat more qualitative questionnaire was given, but

only to a few students who had finished, both curricula and some project. Their

comments appear in Figure 12b.

Most of the feelings expressed in Figure 12 correlate with casual comments

made by the students during the experiments. In the first experiment for

instance, the plotter was preferred to the robot because "it draws better" (it

produced more faithful drawings); the plotter was preferred to Logo graphics

because it produced portable, permanent results; and Logo graphics was

preferred to the robot because it was faster, more accurate, and personally

available for each student. In the second experiment, more emphasis was placed

on the languages and concepts, but most students still expressed clear

preferences for graphics and Logo over teletypewriters and Simper, despite the

addition of full graphics capability to Simper. Graphics instruction in the

second experirnent occurred only at the end of either curriculum and was related

to a project chosen by each student reaching that point. Thus, ench student's

liking of graphics and animation was a function of his or her feelings about

the project(s) chosen. For example, one student chose to implement a graphic
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Tone of Student Remarks

Subject Negative Noncommittal Positive

Plotter 1 16
Graphics Turtle 2 26
Games 3 25
Tutors 2 3 25
Return again 2 3 25
Train 3 14
Robot Turtle 1 1 9
Logo 8 21
Logo Lessons 3 8 18
Si mper Lessons 5 5
Si mper 3 3 5
Teletypewriters 4 12 11

Subjects are ranked on relative fraction of positive remarks.

Fig. I 2a. The I 973-Students' Preferences
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"I got to learn two iangua.;rs and I was able to better
understand the difference between languages machines
understand and iancslak,;es people undcrstand."

"Liked everything about it and had a great time."

"I liked being able to us,, letters as w211 as numbers in
writing programs-- I was able to write programs using
words and sentences, not just numbers."

"It gave me something to do."

"I liked the experience of getting to know them [Simper &
Logo]."

"Everything was A.O.K. including the teacher ... always
willing to help."

"The amount of time [plenty of it] to do things."

"I like the fact that Logo is so easy to follow."

"[The curricula were] well written, ... and I feel I learned
alot. I also think the teacher did a good job."

Dislikes:

"I didn't really learn that much, you would just learn
something and then forget it. It either was so easy or I
didn't understand it and got boring."

"Simper ... [I can't follow] where it goes next as easily as
in Logo."

Suggestions for Improvement:

"There should be a little bit of discussion for everybody
before the beginning of each class."

"Have a few review sheets and review 'quizzes'."

"Drop Simper."

12b. Some 1974-Students' Opinions
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ping-pu,,g game complete with scoring (Appendix 4). In doing so he learned

virtually all there was to know about the graphics system and thence rated

using graphics first among his experiences.

The item listed as "games" in Figure 12a refers to certain programs

accessible to students on the IMSSS system, such as Hangman, which were

intentionally not announced until the students completed most or the curricula.

Some students, of course, accidentally discovered a game or two. The policy was

that games could be used after a student's regular session with Logo or Simper.

Features of popular games are mentioned in report-1. Students were encouraged

to write their own games and some were used as examples in the curricula,

particularly in the second experiment (see Appendix 3).

Since, as outlined earlier in Chapter 3, the tutors generally fell short of

expectations in the first experiment, their highly favorable rating in Figure 12a

could provide ammunition for those who believe that students are incapable of

appraising their teachers on educationally relevant grounds. The remarks in

Figure 12b, however, evidence some astute thinking; particularly the first and

third, which are beyond expectations. The student who felt she hadn't learned

much also wanted quizzes and reviews, she was apparently not aware of the

testing implicit in the curricula and needed clearer motivation. Her faint

praise that: "It gave me something to ch3", also points to a lack of motivation.

Furthermore, she had done some programming in Basic in school and never

truly saw the value of Logo's more general structure. Unfortunately, she

enrolled late and her preliminary feelings aren't available for comparison with

those of others from her school (Figure 13).

One prevalent opinion among students familiar with both Logo and Simper

was that "it's harder to do things in Simper". So most studenk preferred to

work with Logo, regardless of which language they started with. Figure 14
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The School-Teacher's Question:

"I wish to be ... in the 8-week session of computer
programming, being offered to junior high students with
little or no experience with a computer or computer
language. Tell what contacts and interests you have that
prompt you to want to talo advantage of this opportunity
and to be involved with a computer and computer
programming for an 8-week session."

The Prospective Students' Responses:

"Computers fascinate me and I really would like to learn
some of the ways a computer can be used. I have never
used a computer before, but I have seen people using
computers and programming them."

"I think it would be interesting to learn the computer
language. I have used computers before and have enjoyed
it very much."

"I like math and figuring out equations and other things
like this. I have (lone some work with computers, but
not very much at all, and I haven't done any work with
Logo. I would like to have some sort of career dealing
with mathematics, and computer programming would be
very interesting and fulfilling."

"My dad is a student at the ... school and talks about
computers and how they can solve problems. I would like
to learn how to use them myself and also be able to talk
'computer language with my dad."

Fig. 1:L Some 1974 Students' Preliminary Feelings
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tabulates the proportion of time that students spent using Logo (and, by

complementation, spent using Simper). Note that, within each group, students

are ordered by pretest rank. Thus Figure 14 may be matched with Figure 10 to

obtain further information. This convention will be observed in other figures

in this section, whenever it is appropriate.

In the first experiment, few students finished the Logo curriculum, so Group I

spent negligible time with Simper (Figure Ha). But many Group II students

went far enough with Simper to be able to start Logo, partly motivated by

seeing their friends' work. In the second experiment, more time and a

somewhat shorter curriculum allowed Grou.p I students to spend some time in

Simper (Figure 14b).

In either experiment, Group Irst,behavior shows that once students began usir.g

Logo, they stayed with it, almost uxcluding furtber work with Simper. Figure

14 also shows that students using Logo and Simper simultaneously (Group III),

subject only to the stricture that Logo and Simper curriculum parts alternated,

chose to spend most of their time with Logo (apart from one, Figure 14b third

from bottom, who nearly excluded Logo work, spending time on a Simper

number-guessing game). Group III an-wered a capability question: students can

learn two languages, nearly simulta:,--is'y, and can do so at least as fast as

students who learn the same ki-iguag,..,

Mass preference of Logo to Simper was a desira!)le outcome in terms of the

students computer literacy. Although Simper provides a convenient way to

learn and experiment with assembly/machine-language programming, it was

hoped that st udents would see the advantage of a high-level language. Indeed,

Logo offers what many students seem to want: easy access to message and

picture processing. offers a computationally more important feature: ease of

phrasing complicated control struc tures. However, appreciation of this latter

idea was usually confined to the more able students.

'76
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(Logo hours / Simper + Logo hours, versus pretest rank,
"-" denotes students who took the test but not the course)

Group I

.99 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.98 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx

Group II

.70 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.34 XXXXXXXXXXXXXXXXX

.48 XXXXXXXXXXXXXXXXXXXXXXXX

.22 XXXXXXXXXXX

.31 XXXXXXXXXXXXXXXx
0.0

.17 XXXXXXXXx

0.0
.04 XX

0.0

Group III

.82 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.69 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx

.64 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
-

.87 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx

.67 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx

.69 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx
.68 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.68 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.88 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Fig. 1 4a. Breakdown of the 1973-Students' Programming Time
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(Logo hours / Simper + Logo hours, versus pretest rank)

Group I

.83 XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx
.92 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.84 XXXXXXXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXX
.80 XXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

1.0 X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
1.0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX

Group II

.32 XXXXXXXXXXXXXXXX
.58 XXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.61 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx
.18 XXXXXXXXX
.01 x

Group III

.86 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX> XXXXX

.68 X XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

.82 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXMO XXX

.13 XXXXXXx

.71 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx
63 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXx

Fig. 14 b. Breakdown of the 1974-Students' Programming Time
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Before further discussing the students behavior, something can be said

about the validity of the preliminary test. For Group II, Figures 14a and 14b

indicate a strong correlation between students' ranks on the pretest and the

time they ric ded to complete the bulk of the Simper curriculum--Pearson

(Kendall) correlations of .9 (.8) and .6 (.4) respectively, the latter reduced from

.9 (.7) because the first student could not stay in the experiment long enough.

Students were also ranked subjectively according to final programming ability

and dedication to the tasks presented to them in the curricula. Figures 15 and

16 show these ratings, again by pretest rank, for all students.

For the first experiment, Figure 15a also tabulates the mean rate of errors

in each student's commands throughout his or her work wi'' Simper. Some

slight, joint trend of er:or rate and pretest rank seems evident. However,

averaging errors in this way blurs the nature and importance of individual

errors. Without referring to detailed protocol analysis, such a correlation

merits little more than a "that's nice". Fur example, typing and reading ability

varied greatly among the students. Furthermore, some students forged along,

not caring how many errors they made, while others worried inordinately about

making mistakes, particularly observed ones. Various combinations of such

abilities and attitudes obviously can confuse simple comparisons of error rates.

It happens that the fourth-ranked student (Figure 15a, with a high error-rate)

fell into the "unbridled typist" category; the third and fourth from the bottom

(with low error-rates) were extremely careful, tending to work out commands on

paper before typing them; and the fifth from the bottom lmd a penchant for

typing random numerals, which never appeared as errors because Simper was

perfectly happy to store them away. Apparently anomalous error-rates often

had ex plana t ions that bore directly upon correlations of pretest rank and error

rate.

Exa int ni ng tho "mastery" and "perseverance" columns of Figure 15a, we also

713
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Groups II and III (Simper data)

("-" denotes tudents who worked less than 3 hours)

Rankings Based Upon Subjective
Evaluation of Performance

Errors per Command Mastery Perseverance

.06 XXX 1 3

.14 XXXXXX 3 2

.11 XXXXx 3 3

.26 XXXXXXXXXXXX 4 3

.03 x 2 1

-
.07 XXx 3 2
.07 XXx 2 1

.16 XXXXXXX 4 1

XXXXXXXXXXXXXXXX 5 4

.23 XXXXXXXXXXx 4 4
-

.26 XXXXXXXXXXXX 5 4

.50 XXXXXXXXXXXXXXXXXXXXXXXX 5 5

.26 XXXXXXXXXXXX 4 4
A5 XXXXXXx 6 5

.13 XXXXXXx 6 2

.16 XXXXXXXX 5 4

.3.1 XXXXXXXXXXXXXXXXX 5 4

.27 XXXXXXXXXXXXXx 6 3

Fig. 15a. 197:1 Simper Students' Performance Versus Pretest Rank
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Groups I and III (Logo data)

("-" denotes students who worked less than 3 hours)

Errors per Command

Rankings Based Upon Subjective
Evaluation of Performance

Mastery Perseverance

.16 XXXXXXXX ,I 1

.13 XXXXXXx 2 1

.28 XXXXXXXXXXXXXX 2 1

.33 XXXXXXXXXXXXXXXXx 3 2

.32 XXXXXXXXXXXXXXXX 2 2
-

.35 XXXXXXXXXXXXXXXXXx 4 5

.22 XXXXXXXXXXX 5 5

.26 XXXXXXXXXXXXX 6 5

.21 XXXXXXXXXXx 2 1

.16 XXXXXXXX 4 4

.15 XXXXXXXx 5 3

.24 XXXXXXXXXXXX 4 2

-
.26 XXXXXXXYXXXXX 2 1

.26 XXXXXXXXXXXXX 6 4

.19 XXXXXXXXXx 3 2

.28 XXXXXXXXXXXXXX 5 4

.17 XXXXXXXXx 5 3

.29 XXXXXXXXXXXXXXx 3 2

.15 XXXXXXXx 4 2

15 b. 1973 Logo Students' Performance Versus Pretest Rank
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denotes student .0-ho ..vorked less than 3 hours)

Rankings Based Upon Subjective
Evaluation of Performance

Errors per Command Mastery Perseverance

Groups II and III (Simper daj.a

.08 XXXX 2

.08 XXXX 2 2

.20 XXXXXXXXXX 1 2
.07 XXXx 1 1

.04 XX 1 1

.04 XX 2 3
.04 XX 1 1

.09 XXXXx 2 2

.09 XXXXx 2 3

.05 XXx 3 1

.07 XXXx 3 2

Groups I and III (Logo data)

.23 XXXXXXXXXXXx 1 1

.12 XXXXXX 1 1

.19 XXXXXXXXXx 2 2

.14 XXXXXXX 1 1

.23 XXXXXXXXXXXx 2 1

.09 XXXXx 1 1

.21 XXXXXXXXXXx 3 3
- -
.19 XXXXXXXXXx 2 1

.20 XXXXXXXXXX 3 2

.20 XXXXXXXXXX 3 3

Fig. 16. 1 974 Students' Performance Versus Pretest Rank
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see .400)0 mutual trends wi th pretest rank. High rankers, especially in mastery,

tend to be above the median; low rankers below. Figure ' r,b shows similar

resuhs for Logo students. Note, however, the lack of ohvio ml ti nd

between error rate and rank in Figure 15b.

Protocols provide the following explanations. In Groups I and III: the

unbridled typi at returns wi th as the fourth-and fifth-ranked :Ancients;

cart'Ful planners are bottom a., from the bottom; the random-numeral

typer is now caught by Logo, generating a higher rate, sixth from t he bottom;

and a new phenonienou: pic cure-printers, fifth, ten th and eleventh from the

bottom, who discovered how PRINr commands could be employed in procedures

that 'drew" their favori te things (like the "Starship Enterprise"). The latter

three staidc -Its made elat; vely fewer errors because they stagnated at this point

in the curriculum. Stadents were never coerced to continue the curriculum.

Rather, a wai t-and-s,,e atti tude was adopted, hoping that stragglers would

eventually notice that. other things, being done by other students, could also be

interesting. This task failed wi th one of these three students from the first

experiment.

In the second experiment (Figure 16), the-e is again 1 i ttle common tre:-.cl

between error-ra te and pretest rank. But again, from protocols, notable

exceptions can be explained. For instance, the third udent with Simper cl,ta

has a high error-ra te because more th a half of all his errors were made

playfully, in response tk, a naming error-message he received one clay when he

tried to save a program under iii i Ilegal name. The middle Logo student has a

very low ra te because he authored several games (no tably graphics pi ng-pong)

wh ich he and ,,t hers used a great deal and wi th little chanu., for error. As in

fi rs experi mon t, te:4t rank and snhject ive evaluations are correla Led

somm"xliat.
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In general, students e:,.perimented more wi th Logo than they did wi th

Simper, apparen tly because they felt more able to express thei r ideas in Logo.

This partially explains why the median error-rates in the two experiments for

Logo studen ts (.24 and .20) are higher than those fcr Simper students (.16 and

.07). An add i tional cause is simply that one has a wider variety of errors to

commi t in a Logo command. This had more noticeable effect in the second

experi ment (Figure 16). The lower overall error-r ate of students in the second

experiment also correlates wi th their apparently better performance on the

preliminary test (compare proportions above performance breaks in L'igtures 10a

and 101)). More prompt and accurate tu toring also tendutt to reduce the total of

error,..

Understand i ng the Students. lIore the cen tral interest is, of course, the

1,..ocesses th rough which students learn programming. The goal being to find

observatim,s that shed 601 t on student/tutor in tet actions in general. The

following results derive pri marl ly from detailed protocol analysis, and begin

wi th a sampli ng of the students ini ti al, unfettered expectations about computers

as oxpressed first to Simper:

HELLO WHAT'S NEW?

DO YOU LIKE SUMMER?

THIS TYPEWRITER IS TOO SLOW

WHAT IS 12X12?

TEACH I\,1E HOW TO DO A PROGRAM

DO YOU WANT TO PLAY JOTTO?

I AM FUNNY

SOME DOGS ARE WHITE

1I0W DO YOU WORK?

110W DO YOU KNOW?

THERE AIZ1' TWO MILLION FLYS IN AMERICA LET N = G

YOU ARE WEIRD, BUT SMART

CAN YnIJ READ AND WRITE?

THE MAN IS CROSSING THE STREET

MY NAME IS ...

CA74 YOU TALK?

AI : YOU A CO. 'UTER?

TO W.. iI iT 0 BE PRINT MY NAME

Di:Au ,juny, Tilts coNu'Irrvic cl,Ass Is A LOT cm, I:UN.
EVERY 0:`;(.1.: IN A WHILE CON1PUTER (-10ES NVACIKEY!

84



then to Logo (some error messages ar,. shown --in lower case):

HOW MANY QUESTIONS CAN YOU ANSWER?

110W MANY WORDS DO YOU i:NOW?

COMPUTERS ARE DUMB
computers needs a meaning
COMPUTERS ARE ILLOGICAL

IIOW LONG HAVE YOU BEEN IN SERVICE?
how needs a meaning
YES

s needs a meaning
AFFIRMATIVE
affirmative needs a meaning
YES MEANS AGREED, CORRECT
yes needs a meaning
I JUST GAVE YOU A MEANING
i nee(Is a meaning
I MEANS #176
i needs a meaning
I GIVE UP

Page 77

WHY ARE YOU A COMPUTER?

THIS IS GOING TO BE VERY FUN
this needs a meaning
IT MEANS IT WILL BE ENJOYP.BLE

MY DOG IS BLACK

THE SUNSET IS BEAUTIFUL

PLAY CHESS
play needs a mearing
PLAY MEANS DO SOMETHING

FUN
fun needs a meaning
IT'S LOGO

AItE '1.)U A LOGO OR A COMPUTER? ADD TWO AND FOUR

GIVE ME AN INTRODUCTION

I AM A VERY BADLY GOOD BOY

I AM IN A VERY GOOD COMPUTER CLASS BECAUSE IT IS A PLEASUI
WORKING WITH THE COMPUTER, SI1E, LOGO, RETYPES WHA'l VER t;" WANT

I HAVE HOMEWORK TODAY,
I HATE HOMEWORK

Of course, students had been encouraged to plumb Logo's and Si rnper'

"mi nds", and all tho above efforts received replies of no more than ei

"unknown operation xxx" from Simper or

In teres ti ngly, Logo's more understandable

Pxxx needs a .leaning" from Lc o.

resj se tended to sti flI UI :1te dialogs.

Some s dents struck fo:,ititously upon pri -nitive opera tionsSimper:

COMPUTI.tti ARE FUNNY
'aro. i n t rier, use a, b, or p
COMMAND YOU
'yen' isn't a i-gister, use a, b, or p

('C( NI is short for Simper's 'Ck NI PARE' operation ), and Logo:

\VIU:RE IS (U.:}0.1ANY"
you are n)t usin, the train
YES I AM

s..1

GET GOLF
something missing fr- get
GET GAME
something :nissing for get

YOUR 1,111IU\RY BOOKS NOW GET PLAY
something missing for getyou' .,c-ds a moaning



PRINT "*"

DO GO GO
go needs a meaning

MAKE A SN -i'Y
a needs a meaning

BREAK IT UP; YOU NASTY TILING!
break
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YOU ARE A STUPID COMPUTER

IS THE COMPUTER A COMPUTER?
the needs a meaning
iS GEORGE HOMSY A
george need :. a meaning
IS MR. HOMSY A COMPUTER?
mr. needs a meaning
IS IIOMSY A COMPUTER?
homsy needs a meaning
SHUT YOUR TERMINAL UP AND
GIVE ME AN ANSWER

At this early .Aage, accidental discoveries of this sort, usually passed

unnoticed. Eventually most students did take notice of and exploited various

syntactic features like mindless :rror-messages, Simper's abbreviation-by-

trui aticn, and the commenting character ';'--Simper:

UNKNOWN OPERATION WRINKLE A
unknown operation unknown HALLUCINATIONS

; YOU CAN'T TALK WITH ME BECAUSE YOU ARE DUMB

(WRI or '11A1 select Simper's 'WRITE' or 'HALT' onerations) and Logo:

I AM THE TURTLE THISCOPUTER
i 'weds a meaning thiscomputer needs a meaning

PRINT REQUEST
PAUL i GREA'I"I'YPE THIS SENTENCE OVER WORD FOR WORD

Pi/INT "I DO NOT KNOW HOW TO PRINT"
a., not know how to print

; YOU i.IED

:I,' OREN U.3 DUMB, TYPE IF NEEDS A MEANT.NG
07°1 ndsu meaning

Par,,iox and preniction woce favorite techniques that some students used to

"insult" their friends. To Ithz ILs'Ang surpri, the hater above student's

tricker:: hoisted him Lit Hs own fwtard. These v,ere healthy interactions

be,%nise students wore encouraged to keep experinientation as one of their basic

learning tools.

In:Lally, those naive pr(, ,immors ofti lnul a very high ophdon of
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pubitional technology. It was easy to show them that English is not yet a

Anode of communication between human and machine, but it often took a while

for th- implications of this to ponetrate. At times, students' attempts at

communication were tied to curriculum ideas:

REMARK LITERALLY PUT A BU A

SIMPER COMMANDS ARE FAMILIAR TO COMPUTERS LIKE SIMPER

PRINT -IIOWCOMELOGOWORDSDONOTIIAVESPACES?

WILL YOU WRITE ME SOME SIMPER 1 ASE

3 4 10 ARE RELATIVE TO TIIE NUMBERS 15, 17, 29.
IN WHAT WAY THOUGH?
uni:nown operation 3
3 (TIIIZUF,) IS A NUMBER AND ALL COMPUTERS LIKE YOU SHOULD
KNOW WHAT IT MEANS!

Sometimes they became confused about curriculum instructions for giving

commands. The following shows some examples along with the motivating

cuericulum excerpt:

A FEW WORDS ... type a few words and ...

LINEFEED ... all you do is type LINEFEED and

1 TYPING 1 ... and then typing 1 and ENTER ...

GO TO THE SUPE;;MARKET (:iee Appendix 3, page I8L or I7S)
BUY EGGS AND BACON

FIX l'UT P 2 TO P I RUN u:.;e FIX to change .. frwa PUT P 2
to "IT P 1 and then use HART 1,1

In fact, some students typIl Simper', pro.npt because it had been shown at the

Linning of ;1 lino thoy wer, ashe, to type:

ADD it
1:nkr10%...1 per;i 001:

One student tried , get a program to con by simulating Simper's runtime

:::L('UTIN0 1 '0 250
tHiknown I FYIfl ,..xecuting
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producing an enjoyably idiotic response. Another student, in his frustration,

uncovered a bug; not. in one of the interpreters, but in the Sail compiler's

string runtime-rou tines:

,YOU STUPID COMPUTER
'stupid isn't a register use a, b, or p

The bug disguised the "," and thus the proper erro . "unknown operation ,you".

Once in a while, unrestrained joy of accomplishment in solving a problem would

surface, only to be muted by an unbending parser:

YAHOO! I DID IT!
unknown operation oo!
; I KNOW I KNOW

!i),.:ously this stu(ient already knew how to protect her comments.

"onfu,-;,;ns sometimes arose \ .n students worked wi th both Logo and

Orc up III). Logo commands cropped up in Si niper protocols and

, t h?se cases, however, the first or second error Ines: age usually

rtni ind the student of which interpreter was I i ening to his

nr her typing. In a fe,v .,:.ayes, students thought they could resort to Logo

commands when their Simper drograms failed to prodw:e results. This was one

sit'tple way students gave evidence of 'wing more at ease wi th the Logo

languag,,. By far the most common interjection of Logo commands into Simper

protocols was in saving programs. Apparent ly, learning the more complicated

Logo scheme of "entries" in "files" verrode some students' knowledge of

Simper's simpler filing method.

A.t the very lEa t, most stl'Ients i ni ti ally thought that a computer cou

p tln 1 on lwrsonal

HILT!' "ALL THE ,IIHSES AND LESSoNS YOE II VE TO OPFER"

:1gred; that and perhap., !i-t.kly be this cas. Soveral stmlonts
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discovered Simp,r's '?' (or 'HELP') command which printed a g-nerai description

of the Simper language. While this was never intended to be a necessary part

of the course, it nonetheless was exercised frequently by a few students.

Curio .sity and an open desire for aid were attitudes to be e-:ploited and

encouraged. Students were willing to experiment in trying to use Logo and

Simper as information resources to help them work on ideas from the

curriculum.

Now, in discussing details of how studonts learned the concepts and tile

languages, the Simper and Logo protocol data will be treated separately. Some

observations relating students' performance and their worl. n the preliminary

test will also be mentioned.

Simper. Sinc, work with numb.u-s was so much a port of these ..ud

prior schooling, it was relatively easy for them to accept that a mac'iine

(Simper) could have a gond memory for numerals. But several had difficulty

understanding +hat some numerals could have special meanii.g, tle.!r than

.ounting, to a marina°. In the first experinoun. this was a problem because of

the OVOIL :f I:re int :ction of assembly language, thus working r!owrward from

English rail -1- than upward from mac i no language. The l ter sequerc(-: was

adopted it, the second experiinent ;isnd reduced the i: 'ace of syntactic errors

such as iii . ltiple instructions per line, making it clear:r on!y ftcoe fields

can be a.--,eru!)::,1 in 0110 nie liv his machine-language numeu.

'lite order ly ,x,',.11/ ion 1 1 th,o,c, as instructions was still more nos tract.

The silo! eximple (All ndi>.-. 1, pilge 17.9 and the house-to-house

colloction (App-ndix 3, p,ego f;iiled to inotk-ne o xecuiion for

solo, student:-;. PrH,r;ittis Hen 1,1 intersperAed "halos", ilepit I 'no

sequenti;il rAttHuship het en in trnctions On

A serf-iles:flictim; used in th,.. csperim, !It helped here (see report-
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I), and in dm second experiment, greater care in introducing machine language

seemed to be sufficient. Some of the "holey" programming can be traced to

Croup III students who learned to use Logo line-mimbers in canonically sparse

(10-20-30...) soquence aml hoped the same editing advantages would accrue in

Simper.

In both eyoeriments, addressing value.s rather than stating them directly

was difficult for many students. One wrote his own time-telling program, knew

what od to be done to get mintaes front seconds, knew something about

:1(1(it tu; already, but typed:

001 :TIME A
002 :DIVIDE A (10

though he dhl not int.aid to divide by the content of location GO. The

urriculum section on indirect addressing was very helpful to those students

who still had rouble with this cow' Not surprisingly, tudents who li .

trouble -'11 the implicit name-value associations of the numbers-in-b,xes

oroblem on the preliminary test also had troubl.. with . .ressing in Sim- .r.

The most pervasive problem was mastering concept of context (or

locality of information) both from the student's point of view as a uset and

front the point of vie,v of instractiwc with n his or lwr pro itins. The most

common example of the former occurred when a student ran a program and

docided that it needed modification. While it wa', still running, and perhaps

waiting for an input (for 'CASK' or 'ASK'), he or she would type an editing

command 'LIST' or 'SCRiVi'CIF), fully expe.:ting it to be obeyed. Tins

t time confusi 1 was seen in e- student's wurk l..ast once.

Context . errors within proi ..ams cot ,red upon redundant or memory-

"(-h,':1)..ring" Of instructions. For in:;tance:
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001 :PUT B 1 001 :PUT B 1
002 :STORE B ONE 002 :STORE B ONE
003 :ASK A or 003 :ASK B
004 :PI7T B 1 004 :STORE B @A
005 :STORE 13 ONE 005 :PUT P .-3

In the first. program, the contents of register 13 and cell 'ONE' are unnecessarily

reset at 004 and 005; in the second, the content of cell 'ONE' is continually

destroyed by 'PUT P .-3' (instead of 'PUT P This latter kind of bug was

common. yet it had already been exploi ted as an example within the curriculum

for the first experiment. It was apparent that, a much more explicit treatment

of con utational context was needed, and this '-as done in the second

expel. lent, wi th mixed resul ts. Students wi'' wd the most trouble with the

caluHinachine problem on the pretest typically had the most trouble

th r Simper programs.

The most subtle way in which con, ext affected the students was in the

relationships among the iotecpreter, the assembler and the mach:no. Most

students in the first exp ri meat didn't fully gra,p the distinction between

edi ting commands ,ler/machine inst ructions, Sometimes they

attempted to abbreviate ,..he former (e.g., "SCR" for 'SCRATCH') and exp t. the

latter to be obeyed at once. The second experiment's curriculum was modified

to cl.J.i fy these isues, were founded pri finn ly upon the confusion of

odi tin!. time with execution time. Its better tack of introducing machine

l'Qfore assembly iangun40 helped a great deal and explicit discussions

of ;.unti onledi t- :me inc led. No one question on the preliminary test

set .ned to relate strongly to this type of error. This is probably one point for

improvement of the te

He end curriculum azOl ii studen projects, procedures and

their cailing seque:. e:aiupl'- of llow prcranis could be structured

by wri tin.g function:1 , related in this cOse, holes were oh. Success
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here demanded that the student had mastered the concepts of addresstng and

program control. railnres to structure these programs correctly were of two

forms: failure to define a proper calling sequence, 101d misplacement of the

calling sequence in the flow of the program. Some inputs to procedures,

particularly the return address, were overlooked; once the call itself was

incorporated as part of the procedure body.

llecan the first experiment, no students had time to do significan..

work on the final part of the curriculum dealing with stacks and recursive

procedures, the second exrrinient tie 'tell those programming techniques only as

tools f, use in projects chosen by students who had completed the formal

curriculum. When these tools were exercised, by a few students, the notion of

cootext could be be motivated very well. However, in either e.:.periment, few

completed the curriculum :I fewer stll completed sc..aie proj'

passing through the cour:;e, the data gradually becomes dominated by the work

of the more able, typicall s. older, students. 'File remaining students simply did

not proceed as far. This has undoubtedly later ol,servations.

Before dealing with individual student performance, a few miscellaneous

comments rerwlin. Some students actively exploited features of flu- Simper

interpreter for in.--.Lnice, trunciou of operatnni names (e.g., 'STOP' for

and 'LOAN for 'LOAD'). One student o,...itsionally harassed the

machine 2, repeatedl} saving a p' nun on . Hie !` already existed just so

he ecald re'Apood "Ill)" to Simper', "a program called xxx already

si:-;ts ! ok to destcoy it?". The importance oF clear, relevan error messages

becani,. apparent (see CI .tpt(r 1 f,a- examples), An e:,:ample follows that

show, how toi-;reading (ou, word c.in dangemusly altor the moaning of a .

SAVL
v..hat you %%ant to name your program? YES
ok, yo.,, I:. averl
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illustrates the care that must 1 pplied to apparently trivial aspects of an

interpreter. In line with earlier comments ibout. contextual errors, it should be

mentioned that the above 1niesti on arid the studen's together produced several

saved iwograins called 'SCRATCH'.

Figure 17 display:, he sequen..e ;II which Simper-related concepts were

learned by each of the students in the second experiment, for which the best

L.1 exists. The tin, at wInch mastery occurred wa-. judged as outlined in

Chapter 4, using error analysis. These language-related concepts connect with

one or more of the general concepts outlined in 'Lable I, and so give an

approximate idea of the sequence of their mastery.

Logo. Students were less able to adjust to Logo's string manipulatioas than

to its more familiar numerical notation. For example, most students had

trouble remembering to quote non o ii merical strings. Logo does not require that

numerals be quoted, but demands that literal word:-; and sentences be quoted.

The former default tended to be generalized by some to their designation of the

lit ter, espPcially -11 di rect commands. The second experiment attempted to

clarify these notational mat .rs, 1,at was not entirely succes:,! literals

..11, -lid probably be quoted at fi rst, perhaps eveL by modi fying Logo.

Pro !lad not been introduced early enough in the first experiment, so

,se udent. did not have a fraP:oworlc within which to execute direct

comfit:Ind ,ind then uld the:n to sio, ed piogrilils by editi nr In the second

ext p:ont.. procedures Were introduced early (Appendix 3, page 18L) and as

being, 1,1 essence, new I,ogo commands. Many students soon caught on to the

vain- of hein4 ,ibie to const ruct m".v and pors,tri,t1 took, either for use or

10111:0'111,11f:

'1'4)

DONE
10 ',1(11'

DE.'1,-IZEN(',E 0: 1

TO WIDI,?
123 P "DIAJ"

P "DIA.1 NEEDS A MEANING"
25 I, O.K.

:;ND
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Approximate Hours to Apparent Mastery of a Concept

Student ( hy pretest rank, Fir Ob)

Concept 1 2 4 i 7 8 9 10 11 12 13 14 15 16 17

Addressing 1.1 3.8 1.2 1.3 1.4 1.2 5.1 - 1.3 5 1.7 - 2.3 1.1 2.4

Successor .9 1.8 1.3 .9 1 1.'2. 1.4 1.8 1.6 2.5 .9 - .9 1.2 1.7

Execution

Simple 3.2 5.6 8.3 2.6 4.7 3.4 3.8 2.8 7.5 3.7 - 4.3 7.7 5.9 -
Control
( using ':'1Y1")

Decisions 3.9 5.8 9.3 3.6 5.9 3.4 2.3 -;.3 7.1 3.4 - 5 7.7 5.9
( usi ng 'JUMP/
'COMPARE')

lten1 tion 8 8.7 7.2 7.3 -

Suh -Programs 6.9 8.2 7.3 9.1 8.5 7 7.8 10.6 -

Internal .9 1.8 6.7 3 1.6 1.2 2.4 4 9.3 1.8 1.5 9.1 1.7

Context
( using storage)

User Machine 3.2 6.2 8.6 2.5 5.6 1.2 2.4 1.'1 7.8 2.4 6.4 5 5.3
..:on text
('RUN'-'ED1'1")

( Bold face numbers ( ndira accurate ti mes, a dash signi fies that a
conc :)t was never clew. ma:itered.)

Fig. 17. Timing of 1971 Stud.!nts' Mast-ry ,f Simp,!r-Eciated Concepts

91
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TO TRY
10 111.11 00
20 P ' tX CANNARA IS YOUR INSTRUCTOR DO NOT 1 REPEAT DO

N Co!'Y SOMEBODY ELSE'S PItOCEDUR ., OR YOU WILL SPEND
'::" 1-10115 TRYING TO FIGURE IT OUT AND ALSO YOU WILL

fvtA mE mADnownifinninwonlownnunn-
END

The first altove was constructed by a student when, well into the curriculum, he

needed a way of cleari ng hi:, display sciaen and didn't know that Logo had such

a contmand ('CLEAR'). He obviously itI a id mastered itteratioti and simple

recursion. Interestingly, simple (Lt t to) Torsion came easily IA many

students upon their first exposat ''' 3, page 2014, and commt

ad-libs took the form:

TO 1tIN'._1 To ..1CYCLE
10 BELL 10 P "LIBBY SHOOP"
20 RING i BICiCLE
END END

TO TOM
10 PRINT "IF TOM AS NOT GREAT I WOULD STOP WRITING"
20 TOM
END

Several procedures (e.g., 'TELLTIME') fila '. were used in t he second exporiment

were incorporated because students ill the first experiment had done them on

their own ;nH thus found them interesting or useful. Sometimes early

procedure-wri ting attempted the impossible:

TO l'ELIN,
10 PRINT WEATHER
END

in tile first expetti men!, uuaag ( nam-/va I tie associat ions) had been

introduced via 1,ortt's ':\1A1'E opet fi,m, but t Itere was rela tively little te-te for

t 11 ttt I 11 Li t.[. In tin. secon ' experinwnt, .tdures were ut.ed to

introduro concept, ;Is named ks of comm,uuls whi(h might ,ven live

due:, ( inputs) and link th ti wi t Ii internal names (Appendix 2,

1,0,0 Pti 1). k nr.: 111010 Lined IllihisS ii tiiciiiits 1rOji.C1

ro,(1111rOd I t
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Typical errors using 'MA.1(.1"; in the first experimeni wore: (1) forgettiin,

quotes areund name and/or va)ue, (2) using colons around the name (reasonahie

in view f inwd of Logo's syntax, 'MAKI:: :X: ''Y'' i oIlily w.t. 'linking the

value 'Y' to the name 'X', but to the value already astmciate(I with )t

inverting name and value i)ositions ('MAKE SUM 01' .1-) AND ANSWER'), and

(.1) linking assignments hy one command (a reasonahle expectation, '1\4/11(1".,

"SNOOP\'" "CHARLIE 111ZOVN" "LINUS'", where tho curricolitm intended

N1AK1 "SNOOPY" "CHARLIE BROWN"' and 'MAI<It; "CHARLIE 11R0\VN''

)itiil orroni [IlIldo by stti(i''IL ill 'lie second experiment, where procodurt-?s

tho concept, v,ere reflected hy defective input correspcAulences and

11 ro. prOlditIllS ge amnera orl during ediiing. For exple: (1) input -ariablet 1

naries in the title. not match thw.t. in the procedure's hotly, aiul (2) the

aline of a procodu;:e would be edited hui. not then changed in a recursive call

a call in another pic-edure.

lii both exporil.Htnts, initial confusions about [ogo's colon notation (i.e.,

moans value tv.t..iciated with n.inie 'N'") In.oduced errors like: "PRINT

..S2.t0OPY::" (te ac ievo indirect tildre...sing), and: '10:TIlltN IRODU(T :X: :2:'

or 7)0unt,E (.-onfusioii ... between literal:. at..1 naines, an(1 betveen actual

and form.ii ar,Inieter. ). Part of tho confusion arose hocituse 1,...)go does allow

indirect addro,....ing via repeated application. t;.r 'vALLE. ('TI.,N(.1'), and it

itemerals I be t, iii

Go:orally, twtnt Ito 11:1. triniLle -,1111! laml)ers-

II h I III n trv te. .1 . Had th

,n1 1 II. '111.' C,.ite,111

pro,

'111 v 1,d D.); 111

and, ;is in r, I out

HI(') ()II, lio of v
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formed in multiple or recursive procedure calls or in complicated command

lines. The linkage is more subtle in Logo since i t is managed by the

parsing/execution stack (see Chapter 2, or report-1), and most students'

misunderstandings showed up as soon as they tried to solve problems requiring

more than one procedure, or even more than one input to one procedure:

TO FUNNYADD :SOMETHING: :SOMETHING:
10 RETURN SUM FIRST :SOMETHING: FIRST :SOMETHING:
END

The above, when executed, e.g., by 'FUNNYADD 87 15', will not return 9 but 2

instead, because only the last instantiation of ':SOMETHING:' will be on the

execution stack when line 10 is executed. This student simply thought that the

position of a name in a title line, rather than its character content, linked it

to a command-line input.

The 'DOUBLE' procedure, given as an example which students were to lata.

modify (Appendix 3, page 28L), provides an exemplary set of errors made by

students early in ..:ither experiment. Only the command line and not the title

are shown here:

10 RETURN MULTIPLY :X: 2 10 RETURN PRODUCT :X: :X:

The first is a linguistic confusion: should an operation's name reflect its result

(product) or its action (multiply)? The second is a very common error that

unintentionally makes a squarer--the squaring operation itself being unknown to

most students who made this error!

Since Logo accepts "noise" words such as 'OF' and 'AND (e.g., 'SUM OF 2

AND 3'), many students expected to be able to use "BY" or "TIMES" in

appropriate places in 'DOUBLE' or its inverse: 'UNDOUBLE'. The pros and

cons of noise words will be discussed later. Examples of personal noise words

and other errors made by students doing 'UNDOUBLE' follow:
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UNDOUBLE MEANS TO DIVID TO UNDOUBLE IS TO TAkE HALF

RETURN DIV 2 :NUMBER: TO UNDOUBLE :THING OF :NUMBER:

RETURN QUO :NUMBER: :2: PRINT DIVIDE :NUMBER: BY 2

RETURN QUO :NUI3ER: :NUMBER: PRINT DIVISION :NUMBER: :NUMBER:

RETURN QUOTIENT :NUMBER: BY 2 PRINT QUOTIENT :NUMBER:
DIVIDED BY 2

RETURN QUO OF :NUMBER: AND :NUMBER: BY 2

Some classes of error already discussed appear here, namely English attempts at

solutions, spontaneous noise words, and name/value errors. An additional

problem is evident that concerns the stream of messages processed hy Logo

during command execution, namely: to print or return a computed value. Many

students seemed to think that the printing on their terminal was examined by

Logo at the same level as a command. One student believed she needed to

comment (with ';') part of a string because only its first word was a legal Logo

operation:

TO BY
10 PRINT "GOODBYE; KAREN. SEE YOU TOMORROW!!"
20 GOODBYE
END

Thus students had trouble understanding that the receiver of a message

determines its context and thus its meaning (or effect). Some were

particularly confused and thought that they must, for example, say: 'PRINT

UNDOUBLE 3' even if their 'UNDOUBLE' properly contained a 'PRINT'.

The contrast between 'PREi\l'r (or 'TYPE') and 'RETURN' was also based

upon the execution-control aspect of 'RETURN'--it terminates a procedure when

executed, no matter where it appears. This was typically a problem for some

students, who used multiple 'RETURN's as if they were appending to the output

message, as 'PRINT' does. Typically the sevor0 nrocedures given in the

curriculum as exercises (Appendix 3, Part 4) had all to be done before a
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student really seemed to Twister the basic difference between 'PRINT' and

'RETURN'.

In the first experiment, a problem based upon a preliminary-test question

(the 2-column function-table, Appendix 2, page 128) was presented in both

curricula. Since its command line involved one of the earl; st exposures of

students to composition of functions, some attempted solutions are interesting.

It was hoped that students would use their 'DOUBLE procedure in the solution:

TO RULE :NUMBER:
10 RETURN SUM 9 AND DOUBLE :NUMBER:
END

But those not using 'DOUBLE' often' became entangled in the mysteries of

nested expressions, noise words and syntax in trying tto produce: 'RETURN SUM

:NUMBER: AND SUM OF :NUMBER: AND 9'. Some examples:

RETURN SUM :NUMBER: :NUMBER: 9

RETURN SUM :NUMBER: :NUMBER: SUM OF 9

SUM OF 9 TO THE PRODUCT OF :NUM: BY 2

TO CORRESPOND 3 TO 15, 4 TO 17, AND 10 TO 29

10 MULTIPLY :NUM: BY 2
20 ADD 9

10 MAKE PROD :NUMBER: AND 2 ANSWER
20 RETURN SUM OF ANSWER AND 9

TO ADD :NUMBER:
10 RETURN SUM DOUBLE ADD 9

The last example loops forever os 'ADD' calls itself with 9. In the preceding

two examples, students appeared to understand the rule but tried wri'ing the

expression on sequential commami lines, among other errors. Such attempts to

communicate values implicitly across command boundaries were initially quite

common and not related to prior work with Simper. In some cases, the

rarriculurn (Appendix 3, pnge 18L) was one influence, but most of these
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students simply felt it was a natural way to proceed towards a solution. Again,

misunderstanding of context usually was the culprit.

Students were always encouraged to decompose a program into a basic set of

related procedures. This was true for graphics projects as well (see report-1).

One problem ('SWITCH13', Appendix 3, page 37L) was quite effective in

demonstrating this principle, particularly in the second experiment because of

the earlier introduction of procedures. Errors in solving this problem and

other, like problems involved coordinating procedure inputs, choosing operations,

and use of the RETURN' command. Students who forgot to declare input

names in the title, or used names different from those named in the title,

found that Logo happily supplies them with the default value

complain about an undefined variable. A desirable solution was:

rather than

TO SWITCH13 :X:
10 RETURN WORD THIRD :X: WORD SECOND :X: WORD FIRST :X:

BUTFIRST BUTFIRST BUTFIRST :X:
END

where 'SECOND' and were previously written by the students to return

the second and third letters of a word respectively. Students often failed to

break the problem into manageable parts and thereby notice that some of the

components had been solved previously. An acceptable solution of that ilk was:

10 RETURN W F BF BF :X: W F BF :X: W F :X: BF BF BF :X:

('BF abbreviates 'BUTFIRST; I", 'FIRST; and 'W', 'WORD'). Actual

attempts:

10 RETURN WWWF BF BF F BF F I3F BF BF :W:

TO SWITCII13
10 THIRD :INPUT:
20 FIRST :INPUT:
30 PU'l"FIIIRD FIRST AND FIRST 'FIIIRD
END

The first examplo shows a common rani tial belief that one input can be

1_00
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distributed over several ope:tations. The second shows attempted inter-line

communication, implicit 'RETURN' and English instructions. A related, simpler

procedure, to Pat the first letter in a word last, was written by one student an;

To REV :YIP:
10 RETURN :IPY:
END

in the interesting belief that characters in an input's name map into those of

its value. Because Logo defaults undeclared names, as mentioned earlier, she

persisted with this scheme in several procedures, thinking she only had to get

the right combination of letters to succeed.

One frequent error was for getting to specify all of the inputs in a direct

command or recursive call, especial ly when that input does not change. One

1973- graphics student defined the following unusual program:

TO STEVE :BD 17 16 48: TO BD L 'A' I:
10 :BD 17 16 48: 10 FRONT :L:

END 20 1-CJIIT :A:

30 BD :L: SUM :A 1 I
END

She then typed 'STEVE BD 17 16 48', which works (in the sense that 'BD' is

executed), because in attemPting to bind the input, Logo runs 'BD' and waits

for a value, which never comes. The student did not seem to realize this,

trying 'STEVE' ith a different call to 'BD', with 'STEVE and 'BD' traced,

would have helped to correct this mistake.

Many students had trouble understanding how procedures communicate

values to one anoth 'RETUer via RN'. In the second experiment, for example,

st udents wrote matly procedures that were to return values:

TO COMPARE :SOME: :TOY:
10 TEST NUN1BERP :SOME: :TOY:

20 1FFA1'sE RETUPN "FALSE"
30 WTRUE EQUAL!' :SOME: :TOY:

END
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When constants (e.g., "FALSE') were to be returned, 'RETURN' was rarely

forgotten, but when another operation/procedure was to be called to generate

the returned value, 'RETURN' was often forgotten or assumed to be implicit, as

in line 30 above. Several students used structures like line 30 to mean: ',now

be 'EQUALP' and do what it doer."--an attempt to implicitly change a

procedure's definition at runtime.

Some projects (e.g., 'BINAR', report-1 or Appendix 2, page 127) were taken

from the first experiment's curricula and used as part of a posttest for students

who completed all of the second experiment's curricula. Other projects were

used for the implicit testing process outlined in the tutoring discussions earlier,

and most students added their own, especially when they were able to use the

graphics system. Some are mentioned in report-1. In the second experiment,

for instance, one Audelit designed a simulation of the PONG(R) game and

another began an animated cookbool-, that was supposed to implement a recipe

visually by allowing the user to manipulate snapshots of spoons, cups, etc.

Some of these projects are documented in Appendix 4.

As done earlier for Simper (Figure 17), Figure 18 displays the apparent

sequence in which Logo-related concepts were learned by each of the students in

the second experiment, for which the best data exists. A few students' work

will be discussed in detail after some remarks about the languages and

curricula.
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Approximate Hours to Apparent Mastery of Concept

Student (by pretest rank, Figure 101)

Concept 1 2 3 4 5 6 7 8 9 13 11 12 13 14 15 16 17

Literal 1.8 1.7 1.1 1.2 1 1.4 1.7 4.2 .9 .5 1.9 .4 1 .5 .6 3.3
Values

Named 4.2 5.6 5.6 2.3 3 2 4.6 10 4 2 - 6.1 3.1 - 4.4
Values

Command 4.2 2.3 5.6 4.5 3.2 2.8 9.6 11.4 4.9 6.9 7.1 7.5 - 6.8
Parity

Simple 2.7 2.3 1.7 1.3 1.5 1.4 2.8 4.1 4.4 - 2.6 1.4 1.8 10.2 6.8
Control
(sub-
procedure)

Simple 4.2 6.5 9.4 7.8 4.8 2.9 5.5 11.4 4 7.8 6.4 9.1 - 6.8
'RETURN'

Recursive 15.4 18.9 15.5 17.6 7.9 16.5 - - 28.1 -
'RETURN'
(context)

Decisions 7.5 10.1 9.9 7.8 8.5 12.9 26.2 - 9.5 - - 10.7 - 6.8
('IF/
"I'EST")

Stopping 11.6 18.1 17.1 11.4 15.2 7.9 - 11.4 - - 28.1
Rules
(iteration)

User/ 3.2 2.3 5.6 1.2 4.8 1.1 2.1 3.6 1.8 - 7.8 1.9 2 2.6 - 1.6
Machine
Context

(Boldface numbers ir :Beate very accuratc times, a dash signifies that a
concept was never clearly mastered.)

Fig. 18. Timing of 1974 Students' Mastery of Logo-Related Concepts
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Evalua ti on of Simper and Logo

As a result of the experiments, various modifications were made ot slmuld

be made to the langnages.

Simper. First targets for change have been obvious bugs and

inconsistencies in command evaluation and assembly. For example, after the

first experiment, 'SCRATCH' was modified to accept the general form for an

address-range specification (e.g., 'SCRATCH 6:8 has the obvious effect). 'SAVE'

and 'GET' were made to accept the name of the file as an input (e.g., 'SAVE

GLOP'), resorting to dialog only when such an input is lacking. A more subtle

change was made to 'SLIDE'. One student was frustrated when his memory

space was effectively exhausted even though numerous holes existed between

program segments. So, by the second experiment, a forward 'SLIDE' (e.g.,

'SLIDE 100:200) could recursi vely squeeze out such holes to make formerly

impossible relocations possible. The user is informed of which holes disappear.

In the interest of making the name fit the action and to reduce confusions with

Logo, 'FIX' was replaced by 'EDIr.

The first experiment also suggested some new operations and a new

command. 'LEXOR' gives a decimal version of "exclusive or" (Table II),

ERROR' tests a flag set by arithmetic overflows, 'IOT' communicates with the

Graphics program and the plotter, and 'NEWS' gets the system time schedule

and any new information about Simper (or Logo). 'DIVIDE' was modified to set

the 'El.ROW flag on division by zero, instead of the previous and unusual skip-

if-su (es.-rtil convention. The structure of the Simper machine itself was

modified. Five-hundred memory cells and four registers (i.e., A, B, C and P)

were made standard (with upper limits as shown in Figure 2). This was

motivated by students suggesting projects for which 250 memory cells were

insufficient. The additional register was added to make procedure calls more

. 10 4
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cony( nient, especially via a student-programmed stack. The changes were

achieved by a generalized restructuring of the interpreter.

After the second experiment, more changes were made, mostly on

suggestions of students (see Table III). Significantly, the students were more

concerned wi th improving Simper's editing abi ii (e.g., by adding 'FLIP') than

wi th adding new powers to the simulated machine.

Recommendations. Changes are relatively easy to make i n Simpel because

i t is wri tten in a high-level language. An important improvement woula !le the

simulation of a micro-coded machine wi th interrupt handling, so that student::

could be exposed to some aspects of tuodern machinAN. Simulated devices other

than the turtle (e.g., a disc.) could also be pedagogically beneficial. However,

too many "features" can be detrimental. Since a valuable computational idea is

that problem solutions can be broken logically into parts that are in turn

realized by certain basic and sufficient abilities of some machine, the abilities

chosen should not individually be too powerful. A pedagogically useful addition

would be the abili ty to run the machine backwards as well as forwards thus to

allow partially undoing a computation.

Perhaps the most beneficial results would be achieved by making the

interpreter smarter and more congenial in terms of its responses to naive

programmers. A first step would be a structured treatment of the '?' or '17 TI.P'

command. Successive applications of this command in, say, an addres field

would obtain successively more detailed help about address fields. In 1,1);1

respect, the interpreter would be more knowledgeabk about i tself. More general

(and more di fficult) powers, sue}, as the abili ty to evaluate programs, would be

of obvious value eounselling ,studt:nfts.

Lego. In the present version of IMSSS Logo (excepting Sailogo),

substantial changes are typically di fficult to make. For this type of work, the

10 5
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interpreter should have been w-itten in a high-level language (e.g., Monis,

1973). Several changes in commandr., apart from addition of animation, were

made after the experiments (Table :V). Consistency and clarity of nomenclature

was the goal. For instance, some Logo predicates mark themselves as such by

employing the suffix "P" 'LESSP') and some do not (e.g., 'IS'). This was a

!;ource of confusion for a few students. 'IS', in particular, is also very

suggestive of wrong interpretations (e.g., the line "TEST IS :X: LESSP 0" should

be "FEST LESSP :X: 0'). Thus 'SAMFF was introduced as an alternative to

'IS',

Recommendations Operation names shoulu name the alti on (e.g., 'ADD')

rather than the result (e.g., 'SUM')--or, as the precocious 9-year-old put i t: "I'd

make a whole new language without any weird commands like 'PRODUCT and

'REMAINDER'. I'd have MULTIPLY and FINDREMAINDER.". Predicates,

rather than simply being suffixed wi th "P" should end/start with "?" (e.g.,

'LESS?'). If ':X:' is to be analogous to 'VALUE "X", then nesting of colons

should be allowed. Additionally, a different symbol should be used instead of

colon to delimi t place holders in procedure titles, or a different, nestable

synonym for 'VALUE could be chosen (e.g., "@"). Numerals should be

disallowed as names or always be quoted when u ;ed as li terals just as text is.

More fundamentally, value names and procedure natnes should use the same

dictionary and notation (e.g., 'A' could ei ther stand for 'VALUE "A"' or call

procedure 'A', as in Algol 60). Pedagogically speaking, any distinctions of

program frotn data should be defined by the student and not be automatic and

pronomi al notation seems rnost natural.

Another fundanwntal point concerns command evaluation. Commands for

editi ng, erasing, listing :.,nd filing currently quote rather than evaluate their

inpu ts (i.e., 'EDIT ROCKET instead of 'EDIT "ROCKET"' thus disallowing

'EDIT where 'VALUE "R"' is "ROCKET"). A consistent, flexible scheme
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(assuming names and procedures share the sam diet ionary as suggeste(l above)

would allow ouly 'EDIT "ROCKET"' aml 'EDIT R'. 'EDIT ROCKET' could also

be allowed if the user could make his own procedure defini tions that quot( or

evaluate inputs at willall in the interest of consistency, whiLh is very

important t.) naive prograinnwrs. A further si mph flea lion would result if one

operation (e.g., 'DEFINE' or 'HOWTO') performed the functions of both 'EDIT'

and "l'O', since the only di fference is tlw pre-exist ence of, or lack of, a

definition.

Noise words (e.g., 'OF and 'AND as in 'SUM OF 3 AND 5') should be

el i mi !lilted unless they are under user control. 'AND', for instance, has a very

strong meaning, almost equivalent to 'WORD', in many students' minds:

P SUM OF 3 AND 4 AND 5 AND 6

Logo should emulate Lisp in returning values for all commands and perhaps

printing th,se values at the top level rather than giving the message "THERE

IS NO COMMAND FOR..." when a !Ancient forgets to precede a functioP call

wi th a receiver for its reply. A user-controllA toggle for automatic value

prin Ling would be a uscful debugging aid. This would make 'STOP' and 'DONE'

eqnivalent to 'RETURN ""', perhaps leading to their wel omed (lemise since

'EXIT' really (toes whit their names suggest they do. Error messages should be

informative (e.g., "X IS ALREADY A LOGO OPE7ATION" not "X CAN'T BE A

PROCEDURE NAME"). Misleading error messagt s such as "OUTPUT CAN"r BE

USED AS AN INPUT IT DOES NOT OUTPUT" o "OUTPUT CAN ONLY BE

USED IN A PROCEDURE" should be avoided ( th, former is gibberish, the

lat ter should say something li k "OlJTPUT MUST BE PRECEDED BY A LINE

NUMBER"). Error messages should not end wi th a "?" unless the interpreter is

prepared to engage the student in a helpful dialog.

Editing and Filing. At one time or another. [nos,. students forget to enter

10 7
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editing mode with 'EDIT or 'TO' wilco trying to chango line in a proccdure

commands such as nd 'EDI, typed at Logo's top Il`yel l'eSulted ill OW

"EINE 20 OF WHAT PROCEDURE?" and "EDIT WHAT'? YOU ARE

NOT DEFINING ANYTHING" which may have mislod students into trying the

following commands:

EDIT LINE It) OF UNDOPULE IN TRI2

ERASE LINE IN RECTANGLE To lit;) OE RECl'ANGLE

Stinlents oftim includod c\tra words (some of which I,ogo had used in its

own no";sages) with olwrations such as 1:Dri" and .1.151-,

geneual Eno evaluation sche:no; hence. error une:.:4,yge5

EDIT TO EVEN!) EDIT :XI:
you can't mlit that, you can't edit that

ERASE :XI:
erase what?

END
again defined
UNDEFINE AGAIN
undefine needs a meaning.

ERASE TO SQUARE
erase what?

LIST ALL FILES
lint all what?

LIST NAMES
something missing for list.

imt obey the

LC OF FILE or N4ARTA LIST ALL THAT %VAS DONE TODAY
of can't he a fibs, name list all what?

Grr FILE PC136 VOWEL',
file can't be a file name.

As a convenience, it (light I), helpful to allow some default applications of

operations like 'LIST'. For ita,tanco, when 'LIST', 'EDIT', 'ERASE' or 'EDIT

LINE :ix' is tylli'd s.tli 110 t, t he defallit ililihit WoUld IP' the name of the

Iti p:oc.sdure ch.l'ined o execioed. Similarly, a onc-entry file could be gotten

without nannni; the entry.

he distinction between what is in Logo's immediate .nernory (wor; Imre)

;Ind what is (n so-ondary stc,r,f;";' Ill entri.,,,) s,ejiis t 0 he confusing even to

adult,:. By ,.nvi n;,.- ;in intiro work.:pare on ',in "entry", it is fairly l'al-sy to 'GET'
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everything back at a later time. But since the workspace could contain the

appended results of several 'GET's from other entries (from other people's files

too), there is often unnecessary duplication in 'SAVE's. One should have the

ability to save partial workspaces (groups of procedures) on entries:

SAVE LIZ D AND UD AND SQUARE (Liz wanted to save individual
procedures on separate entries)

Student typing, some almost verbatim from the curriculum, occurred that

one might expect a reasonable computer-based tutor to handle. Merely

automating a programming curriculum by typing text at the student

accomplishes little in dealing with such questions. Ideally a language

interpreter should "know" about concepts and problems the curriculum is

presenting and the intents of procedures the student is writing:

HOW MANY INPUTS DOES "MAKE" HAVE?

IS REQUEST A LITERAL?
literal needs a meaning.
NO IT DOESN'T

HOW MANY INPUTS DOES PRINT HAVE

IS "GEORGE" A WORD?

The ability to answer these questions is easily given to Logo because the subject

terminology (perhaps excepting "literal") is Logo's.

Debugging. Since Logo checks procedure lines for matching quotes and

colons at the time they are typed, it would also seem advantageous to report

other kinds of syntax errors at "define-time" rather than at "run-time". For

example, erroncou numbers of inputs for primitive commands or procedures,

and undeclar proce,iures or names (not defined globally or in the procedure's

title) could be reported before exiting editing mode, or upon request. The

student could act on these suggestions, editing further, or execute the partially

defined procedure while still in editing mode, or exit to work on something
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else. This could at least help reduce the amount of time students spend in

discovering and correcting syntax errors one at a time. The idea of 'TRACE'

should be expanded to allow display of command-line execution, since the

pursuing of typically complicated commands rivals the complexity of recursive

procedure calls. An ability to undo the last command would also be very

helpful, as it is to LISP users.

Implications for Curriculum Design

In the first experiment, reports of tutors about student involvement in

different parts of the curricula and their own projects, real. or planned, led to

changes in the presentation order of the concepts and in the techniques for

eiplaining certain concepts.

For Simper, most changes made for the second experiment centered upon

better motivations for: context, sequential execution, addressing and assembly

language. The machine's language cJ ntimerals would be taught before assembler

syntax so that students would grasp the latter's reason for existence as well as

its structure. The fact that different languages are appropriate for different

interactions with Simper was exploited in discussing computational context. The

intercommunication of instructions (e.g., via the registers) within programs was

also treated in terms of context. For Logo, the first experiment demonstrated

that procedures should be introduced early so students can create useful or

enjoyable tools right away.

So, for the second experiment, names were introduced first when naming

procedures and again when naming their inputs. This definitely improved

student interest. Decision making was also introd=ed earlier in the second

experiment, in both curricula. Students could embark earlier on their own

projects, like games, some of which were used in parallel in Simper and Logo.

Early work with decision making helped, the students in the second experiment
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do better when the time came to combine it with other concepts needed, for

instance, in general recursion with stop rules.

In both experiments, the curriculum format (see Appendix 3) of path

pointers, questions, problems and things to try was generally well-received by

students. Cer',ain connecting ideas or processes, such as how expressions are

evaluated and how program execution proceeds, are difficult to sequence on

paper. The flowchart-like diagrams with bo:ces and arrows (e.g., Appendix 3,

page 38L) were not particularly effective. The younger children had special

difficulty with these artifices, for the same reasons they had trouble with the

candy-machine problem on the preliminary test. Good yet static representations

of essentially dynamic processes are hard to come by. For Logo, the "brothers"

with knowledge clouds did test understanding wb-n some of their states were

left blank, but were of little help in mapping this understanding into a

procedure. Good illustrations of effective metaphors are very important.

One of the questions addressed by this work has been "what are effective

metaphors for teaching the concepts (Table I) to naive programmers." For many

students, the concept of a context or computational environment proved most

difficult. In simplest form this reared itself in their confusing editing and

execution times/languages when interacting with the Logo or Simper

interpreters. Fresh students often gave editing commands to their running

programs, not realizing that their programs had, in effect, taken over the

machine and defined new languages. A linguist would probably say this is a

common problem in human languages as well. The most successful metaphor

used in this work involves thinking about the ability of an active entity

(machine/animal) to give its attention to some source (internal/external) of

messages and process these messages according to some rules (language).

Eve, n e knows what "giving attention" means to himself or herself. Linking

this to generalizations about machines (candy/computing) is all that's needed.
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This applies directly to explaining functions too, if they a:e thought of as

translators.

In Logo, dealing with recursive procedures that return values was difficult

for almost all students. The above metaphor coupled with an analogy drawn to

a chain telephone call seemed most helpful. The complication is that each

caller must wait (on "hold" or to be called back) until the "callee" has an

answer to give. The success fo this tutoring device raised hopefully clearer

alternatives to 'RETURN' such as 'REPLY' in Logo. The way in which Logo

uses its internal pushdown stack for saving local contexts during recursion (or

the equivalent Simper programming) links straightforwardly with the attention

metaphor above.

Play-acting out programs, particulary Logo, was tried in both experiments

(e.g., Appendix 3, page 39L) with mixed results. It seemed most effective when

used to explore command evaluation, coupled with the telephone metaphor and a

wary likening of inputs to be instantiated to mailboxes in need of letters. For

simple syntactic problems (e.g., how many 'WORD's to use) a little applied logic

often produced helpful analogies (e.g., for n values use n-1 'WORD's because it

takes n-1 dabs of glue to stick together n blocks).

Case Studies

The problem encountered by two second-experiment students at each point

in each curriculum will be discussed in order to expose both their differences

and commonalities in thought when faced with the task of learning their first

programming languages. They will be referred to by their rank position on the

pretest (Figure Mb) and discussed separately for two languages.

Simper. Student 6 worked relatively seriously and, from the start,

carefully and thoroughly followed the curriculum instructions and examples.
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She was not uncomfortable with the primitive nature of the Simper machine

language nor with the basic commands involved in editing. Addressing and

successor executions seemed common-sensical to her. After some brief problems

with programs that ran off their ends or jumped to nonexistant instructions,

she 1,ad no further trouble with prc4,ram control. Her first major project was

the riuber-guessing game from the curriculum. She often did much of the

work at home, bringing it the next day to try out. She made two important

errors First, picking the number to be guessed but failing to store it in

memory for later comparison with the user's guess. Second, using the wrong

register in her decision-making instruction. Both errors can be thought of in

terms of misappropriating the internal context of the machine at runtime. She

also needed help in deciding that the program should pick the number before

the user guesses. This would not matter if only one guess were to be allowed.

Once her program was working, she used it a great deal and modified both the

size of the numbers selected and the hints given when a guess was wrong.

Student 6 went on to other work, but had saved her guessing-game and

often recalled it to use. She worked on indirect addressing with no problems.

The next important project involved the concept of a data-structure consisting

of 5 characters stored in one memory cell. Again she had little difficult and

spent time at home working on her program. When the curriculum called for a

stop rule to be added to the program for printing 5 characters from a cell, she

picked the correct rule with no help. She still had some trouble matching

registers correctly in v,nat amounted to a several-instruction program. She also

generated a contra. error by jumping too far back in her program on each loop

circuit and re-initializing a memory cell used for counting. This class of error

persisted in her work for a few clays. A further error in clearing memory at

the wrong time prevented her stopping rule from functioning and her program

ran on and on. After correcting these errors, it was obvious that her program
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almost worked but stored only a partial result in memory--the full result being

in a register. She noticed this with no help and corrected the problem. A

subsequent attempt at a similar program demonstrated that complex control was

still not mastered--a jump was redundantly included and a target symbol was

placed one instruction late in the program. In addition, context problems with

assumed register content recurred. The program was eventually corrected with

help. She then went on to use the graphics system and constructed several

iterative drawing programs without error. She then began the Logo curriculum.

Student 14 began Simper and had difficulty immediately in understanding

successor execution. His reaction to an erroneous program was to erase it

rather than edit it. He was mystified by the first program in the curriculum

because, when run, it gave no visible result until memory was displayed after

execution. This resulted from a misreading of the curriculum instructions. As

a result, hc i..equired more than average amounts of tutoring. He had great

difficulty understanding the need to match register names when communicating

values among instructions. When introduced to addressing, he attempted to

address a value by content. That is, he used an address equal to the value, not

an arbitrary address, as desired. In doing so, his first such program generated

overflows by dividing by empty cells (0 values). He was helped to correct these

problems and still preferred to erase entire programs rather than edit. In

working on one program from the curriculum, he demonstrated a typical context

error: typing editing commands to a running program. At this time he decided

to review the entire curriculum. He repeated some previous errors, in

particular, use of the wrong registers for inter-instruction communication.

Since he was in Group III, he was also learning Logo and some Logo editing

commands crept into his Simper interactions. His review of addressing helped

him clear up his old confusion about content versus locption. In reconstructing

one curriculum program, he produced a control structure that jumped to a
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wrong location. He also neglected a printing instruction even though he created

a value in a register to be printed. Context errors from typing editing

commands to running programs Persisted.

He made several syntax errors that indicate he doesn't really understand the

3-field structure of Simper instructions. Most notable was an attempt to use

multiple address fields to store multiple characters in a register. Again a

control problem appeared as he starteil the guessing-game project. His program

had a jump to a redundant instruction. His corrected program worked but

printed out a message backwards. When translating a 'JUMP' to a 'COMPARE'

he left in an unnecessary instrqction prior to the jun.p that prevented the

program from operating. He re peated this error twice. Upon first exposure to

symbols, he forgot to attach them to memory cells and so generated illegal

addresses upon running the programs. In a later program to realize the

function 2x+9, he used an address literally and so wrongly operated on an

instruction in the program body. The data-structure program he produced

containpd several bugs including a misaimed jump and e redundant instruction

that is never executed. With help he tried several times, but never quite

understood how the program was to function. Iteration and symbolic addressing

remained unmastered.

Logo. Student 6 had begun Logo after leaving Simper. She grasped

intraprocedure control quickly but failed initially at using nested

(sub)proceudres. Once helped she went on to create her own version of a

simple recursive procedure to Print her name. She was initially confused about

procedures that return va lues and what to do with the value. She had no

trouble with simple command syntax, but did have trouble with the colon

notation denoting named values-- she either neglected the colons in the command

line or put them around constants. After a few such errors she seemed to

understand name/value associations in Logo. A series of several procedures are
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faced in tile curriculum which demand successivety num- z.omplex command lines.

She used 'LAST. to mean "place this character last" not "take the last

character". Commands that build strings out of parts tended to get too few

'WORD's. She used the same name for both inputs of a 2-input procedure thus

getting only the final instantiation whcri it is called. She considered 'FIRST' to

act destructively on its input. She fai]ed to use a building block sub-procedure

at n opportune time. After several string manipulating procedures she

.nastered the command syntax, but did not quite know when to use 'RETURN'

appropriately. She failed to use a recursive call when it was of obvious

necessity. She used 'RETURN's successively, as if they append to an output

message rather than terminate execution. She worked on the first major

project--the guessing-game and needeJ help understanding 'BOTH'. In more

complicated projects like 'REVERSE' she de nonstrated understanding of inputs

and control but not quite of

dangling so that values were

recut-sive 'RETURN's which she tended to leave

fed to Logo not the calling procedure. The use of

stop rules was no problem for her.

Student 14 had been learning Simper at the same time as Logo. He began

by typing literally from the curriculum (e.g., "CONTROL-N"). He retyped

procedures rather than use edit. He attempted to elicit information from Logo

by having it print sentences which, of course, have no meaning to Logo. He

tended to use previous procedures' structures as solutions to new problems. He

had trouble matching input names to procedure command lines. Prefix notation

seemed no problem to him, but he did have trouble providing enough inputs to

operations in command lines. He also forgot basic syntax items like line

numbers and colons. The major project of the guessing game failed on first try

because it tested a constant rather than a computed value. At this point he

helped another sutclent with earlier work. After much help he had a working

guessing game which he used alot. Some Simper commands appear. In the
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more complicated recursive procedures he neglected not only recursive returns

but stop rules. He tended to misplace stop rules so they never got executed.

Once they were working he enjoyed observing such procedures operate on long

inputs under 'TRACE'. When the opportunity arose to use an already existing

procedure as a tool in solving another problem, he rarely capitalized on it. He

began using the graphics system and experi mented with various kinds of

pictures drawn from building block procedures he'd been given, but produced

little original work.

Summary

The two students, whose work has been outlined, suggest the range of

abilities that were present during both experiments. Some students took to the

curricula and languages quickly and easily, wh3le others did not. As has been

discussed, and as Figures 17 and 18 also suggest, the preliminary test seems to

order students approximately on ability to complete the curricula. It also

seems, from subjective evaluations of the studen , to order them approximately

on mastery. The more important question of how students learn the concepts is

only answerable from case-study (Lite.

The metaphors outlined earlier seem to work because they help students

identify wi th the process they are trying .1 understand. The two most common,

virtually universal misunderstandings of all the students were: (1)

misunderstandings of linguistic/computational context, and (2) ill-defined

in tents. The former applyi ng to both the storage/passing of information wi thin

th& r programs and thei r i nteractions with the interpreters. The latter, or

fuzzy program specifications, amounts to wishful thi nking, wherei n the

particular in terpreter was expected to read the student's mind .,nd run correctly

even though, for i nstance, a command had been left out. Leaving out recursive

'RUURN's, as mentioned earlier, is a typical example in which the student
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expects the computer to be the command whose value is not returned. A brief

categorization of all errors appears in Table XI.

In terms of the concepts originally selected as important to learning

programming (Table I), a somewhat different ordering on difficulty for each'

student is implied by individual case-studies, at least in the second experiment

whose data are best. Typically, however, individual orderings approximate the

sequence listed ia Table I, with the notable exceptions of: concept 1, due to

user/machine context errors, falls at about position 5; concepts 14, 15, and 17,

because of internal program-management errors and common difficulty in

starting on a reasonable program design, fall last; and concepts 5 and 9 lump

together at position 9.

With regard to propamming languages and their influence on students, the

data strongly suggest that languages should be syntactically consistent, and

powerful in both editing and execution capabilities. As one student said after

her first hour with Logo: "If computers can understand languages like Logo,

can't they understand English?"
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Table XI

Categorization of Observed Student Errors and Misconceptions

Use of Language Syntax

Predicates difficult to master, especially combinations such as
'EOTHYEITIIER'.

Making up nonexistent noise words analogous 10 Logo's.
Misunderstanding deferred-command parsing in Logo--inputs are read

backwards.
Using infix and postfix rather than tile Logo prefix.
Trying to use ditto marks to copy parts of a line to next line.
Existence of "holes" in Simper programs.
Literal interpretation of Simper address field.
Thinking that cliangi.ag (Simper) target cell's content changes all

instruction's address fields that reference that cell.
Forgetting to put a value in a (Simper) target cell before accessing

it.
Testing the wrong register in Simper loops.

Sequencing

Not knowing any or the simplest stop condition on an iteration, or
recursion.

Confusion between iterative and recursive techniques--input and
return values.

Jumping inappropriately.
Multiple commands per line.
Improperly communicating Simper instructions that destroy rather

than pass on contents of registers.

Use of Procedures

Meaning of input values (using colon : in Logo for both constants
and variables).

Thinking procedure names must say what they do in order to work.
Distributed or forgotten inputs.
Returns from looping procedures unforeseen.
Names of inputs not distinct or assumed to computationally :elate to

a value (e.g., see page 93).
Names of inputs'not the same in title and use.

Returning Values

Simple recursion and 'EXIT' is easy, but returning value to self is
not.

Procedure becomes, semantically, the value or function to be
returned.

Last procedure called, in series of calls, returns value for the entire
series.

Distinction between Logo 'DONE' and 'RETURN'.
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Table XI (continued)

Storage/Memory

Not understanding that a 'SAVE' can destroy a previously filed
program.

Understanding memory in Simper as read-copy/write-destroy; and
that it is permanent until changed by a program.

Editirgi Versus Runtime

Problems editing Logo titles.
Hard to think about runtime when editing (thinking that editing

actually executes).
Understanding what 'RUN' means for a program--that the Machine's

linguisti.c appearance to the user is redefined by the program.

Problem Solving Methods

Surprised that a problem can be solved or that the computer can
carry out a certain command.

Failure to generalize previous solutions to present problem.
Inability to break problem solution into program steps to write.
Multiple-line solutions rather than well-structured iteration or

function calls.
Failure to see minimal solutions.
Failure to exploit the style of the programming language (such as the

possibility for extra inputs to act as ccunter or method of
passing conditional information).
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Appendix 1 Spm

This appendix documents the syntax and semantics of a language (Spm)

designed by the author but never used in any experiments. It simulates a

string-processing machine in which one operation, assignment ('ISNOW'), plays

the central role. First, a comparison of Logo/Spm phrasing:

Litera

Name/value linking

Name evaluation

Indirect naming

String appending

"DONALD" [DONALD]

MAKE "DONALD" "DUCK" @[DONALD] ISNOW [DUCK]
or DONALD ISNOW [DUCK]

THING OF "DONALD" @[DONALD] or DONALD
or just :DONALD:

MAKE :DONALD: "FOWL" @KDONALD] ISNOW [FOWL]
or @DONALD ISNOW [FOWL]

WORD OF "ABC" AND "D" STACK ISNOW [ABC];
STACK ISNOW [D];
NEXT ISNOW APPEND;

String definitions ABBREVIATE "WORD" [PUSH] ISFOR [STACK ISNOW];
(substitutions) AS "JOIN" [DO] ISFOR [NEXT ISNOW];

[TYPE] ISFOR [TTY ISNOW];

Input/output PRINT JOIN "ABC" "D" PUSH [ABC]; PUSH [D];
DO APPEND; TYPE STACK;

L be1ling line numbers as below LAB ISNOW NEXT; DO LAB;

Storage release automatic FORGET LAB;

Operation definition 4-TO DD :W: :C: DD ISNOW [DO APPEND;
(dialogs) @10 PRINT JOIN :W: :C: TYPE STACK;

@END @[] ISNOW NEXT];

Execution call 4-DD "ABC" "D"
ABCD

Recursion

PUSH [ABC];
DO DD;ABCD

PUSH [D];

«-TO RECURSE RECURSE ISNOW [
@IO P "RECURSE" TYPE [RECURSE];

RECURSE DO RECURSE;];
@END DO RECURSE;RECURSE...
+-RECURSE
RECURSE
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Spill Syntax. The meta-symbols 4- and I mean, respectively, "rewrite

as" and "or". The paired meta-symbols < > ( ) and ( ) mean, respectively,

"a non-terminal", "one of" and "optional". Spaces may be ignored. Note that

( ) < > and 4- appear both as terminal and meta-symbols:

<program> 4- (<blank)) (<statement) (<blank))) ; (<program))

<blank> - <non-printing teletype motion character> (<blank))

<statement> 4- <comment> I <assignment> 1 <substitution> I <forget> I

<test> (<blank)) : (<blank)) <statement>

<comment> 4- <literal> ((<b lank)) <comment>)

<assignment> 4- <destination> ISNOW (Csource) 1 (<blank)) <literal>)

<substitution> 4- (<destination) 1 <literal> (<blank))) ISFOR
(Csource) I (<blank)) <literal>)

<forget> 4- FORGET <source>

<test> 4- (IFEMPTY 1 IFNOTEMPTY) (Csource) 1 <literal>)

<literal> 4- [ <balanced string> ]

<balanced string> 4- (<string)) (<balanced string)) (Cliteral)) (<string))

<destination> 4- (<name) 1 <indirect name>) <blank> I

<literal name> (<blank))

<source> 4- <blank> <name> I

(<blank)) (Cliteral name) 1 <indirect name>)

<literal name> 4- @ (<blank)) (Cliteral) 1 <literal name>)

<indirect name> (<blank)) (<name) 1 <indirect name>)

<string> 4- <blank> I (<name) : I ; 1 @ ) (<string))

<name> 4- (AIBICIDIEIFIGIHIIIJIKILIMI
NIOIPIQIRSITIUIVIWIXIYIZI
01112131415161718I9HVI#I
$I%I&I'I(1?1*1+I;I-141/I<I
=1)HI I I

4- ) (<narne))
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Semantics. The Spm machine consists of (a) a processor, which interprets

strings in the Spm language defined above; (b) an arbitrary number of memory

cells, each capable of storing a balanced string of arbitrary length; and (c) two

pushdown stores called 'STACK' and 'NEXT', each consisting of an ordered set

of memory cells of which only that cell bearing the name of the set, is

immediately accessible. New memory cells are created as needed to satisfy

assignments. Any existing accessible cells, except 'STACK' and 'NEXT', can be

released. The Spm machine also maintains an inaccessible and variable stock of

cells for satisfying 'ISFOR' sta tements and 'STACK and 'NEXT' manipulations.

Certain strings have special meaning to the Spm machine as names,

primitive operations. Names which Spm automatically associates with specific

memory cells are: "PTY', 'STACK' and 'NEXT'. Other names are defined by

the execution of assignments. All accessible cells must necessarily have distinct

names. 'Spm operations are predefined names which cause specific activities of

the machine when it encounters them during the execution of statements.

'ISNOW', 'ISFOR', 'FORGET', 'IFEMPTY', 'IFNOTEMPTY ' , ' ' , ;', and 'T

have such effect. The two pushdown stores, whose accessible cells are named

'STACK' and 'NEXT', have special properties: (a) if either 'STACK' or 'NEXT'

appears as the destination in an assignment, the machine attaches a new cell to

the accessible end of the appropriate ordered set of cells. The new cell is loaded

ith the value of the source and the name 'STACK', or 'NEXT' as appropriate,

is associated with this new cell rather than with the previously accessible cell;

(b) if either 'STACK' or 'NEXT' occurs as a source in an assignment, a

substi tution or a <forget>, the Spm machine uses the accessible cells's content,

and release!..; the cell. The name 'STACK' or 'NEXT', as appropriate, is then

associated wi th the next cell in the corresponding or6red set of cells. The

same action resu!ts when either 'STACK' or 'NEXT' appears as a destination in

a substi tuti on statement; (c) no change in the structure of 'STACK' or 'NEXT'

is made if ei ther appears as a source in a test.
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Spm Primitives

Symbols Operations

NEXT ISNOW
STACK ISFOR
rry FORGET

IFEMPTY
IFNOTEMPTY
APPEND
HEAD
TAIL
AFTER

'NEXT' always contains the string to be executed next by the Spm machine.

The mac;-tine obtains one statement after another from this string by scanning

the val:e of 'NEXT' from left to right until a ';', not part of a literal, is

encountered. The scanning process removes all characters up through the ';'

from 'NEXT', shortening its content as execution procedes. When the last

staterieit in 'NEXT' has been executed, the current cell is released and replaced

by that directly beneath it. Should 'NEXT' ever be exhausted of cells, the Spm

machine will automatically attempt to fill 'NEXT' with characters from the

teletypewriter ("1"1"Y'). If a statement cannot be executed, the machine prints a

message and again goes to the teletypewriter for input. Note that this is

analogous to execution of the statement 'NEXT ISNOW TTY'. 'STACK' is the

accessible cell in the general pushdown store and may have as value any string.

'TTY' is the user's terminal. Assignment to it causes the assigned value to be

printed. Assignment from it to a destination obtains characters from the

typist. Its value is not maintained by Spm, so characters disappear on the way

in or out as typing proceeds at the terminal. Its value is when input or

output has been completed.

'ISNOW' is the means for changing the content of the Spm machine's
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memory. When a name is used for the first time in an assignment, the

machine obtains a new cell in which to store the assigned value and associates

the name with this cell. 'ISFOR' is r. simple symbol/string substitution

mechanism. After it is executed, the Spm machine will automatically substitute,

for any occurrences of the value on the left of the 'ISFOR' in the text of any

statement scanned from 'NEXT', the value on the right. This amounts to a

simple transformation of the Spm language to suit the user. Recursive

substitutions are not allowed. 'FORGET is the means for releasing names and

their associated memory cells from the Spm machine's memory.

'IFNOTEMPTY' and 'IFEMPTY' are tests which, if the value tested is not

or is '[]', respectively, will execute the subsequent statement. Otherwise, the

statement is skipped.

'APPEND' joins a character to the end of a string. The character is

assumed to be in the top cell of 'STACK', with the string immediately beneath.

It returns the resultant string as the value of 'STACK'. If a string is used for

the character, only its first character will be appended. 'HEAD' accepts a

string in 'STACK' and returns the first character of that string in 'STACK'.

'TAIL' is like 'HEAD', but returns all characters in the string 'after the first is

removed. For 'AFTER', 'STACK' and the cell beneath it eaCh contain a

character. If the character in 'STACK' occurs before the other character in the

lexicographical ordering defined for the characters of the Spm alphabet, the top

character is removed from 'STACK'. Otherwise, both 'STACK' cells are removed

and the value of given to 'STACK'. If strings are supplied as values, only

the first character of each will enter into the comparison.

'@' indicates that the value of the string which follows should be

interpreted as a name. Note '@[A13C] and 'ABC' are equivalent. ';' terminates

an Spm statement. ':' indicates the beginning of a statement in a test. '[' and
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'1 respectively denote the stiirt and end of a literal. Note that '[' and 1' must

occur in pairs according to the syntax. There is no legal way to obtain either

bracket singly in a piece of executable text. They may be obtained from '[1'

however, with the 'HEAD' and 'TAIL' functions. Some details of Spin phrasing

follow:

String constant [DONALD] (literal)

Empty string []

Assignment @[DONALD] ISNOW [DUCK] or DONALD ISNOW [DUCK]

Name evaluations KDONALD] or just DONALD both have the value DUCK

Recursive naming OG[DONALD] ISNOW [FOWL] or @DONALD ISNOW [FOWL]
(unlimited indirect
addressing)

Using 'STACK' STACK ISNOW [ABC]; STACK ISNOW [D];
(produces):

D I<-- STACK
+ +

I ABC I
+ +

Using 'NEx9r. NEXT ISNOW APPEND; TTY ISNOW STACK;
(program control,
produces):

TTY ISNOW STACK j<-- NEXT I ABCD I<-- STACK

Substitutions
ISNOW];

Input/output
(types out "ABCD")

[PUSII] ISFOR [STACK ISNOW]; [DO] ISFOR [NEXT

[TYPE] ISFOR [TTY ISNOW];

PUSH[ABC]; PUSH[D]; DO APPEND; TYPE STACK;ABCD

Storage release FORGET DONALD;

Operation defining DD ISNOW [DO APPEND; TYPE STACK;];

Execution PUSH [ABC]; PUSH [D]; DO DD;ABCD
(types out "ABCD")

Recursion RECURSE ISNOW [TYPE [ABCD]; DO RECURSE;];
1)0 RECURSE;ABCDABCDAI3CDABCD...

Stack release

Premature return

ISNOW STACK;

e[] ISNOW NEXT;
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Appendix 2 Aptitude-Testing Details

An Example of Commercial Test Evaluation

The example derives from remarks in the published manual for one of the

programming tests examined. The validity of that test was assessed by three

studies: (1) correlation of test scores and grades of three groups of

programming trainees, (2) correlation of test scores and overall performance

ratings by supervisors of programmers, and (3) a study like that e. (2) in

which grades on a training course were also available. Studies (1) and (3) both

assumed, without discussion, that the testing done during training was itself a

valid measure of programming ability. Studies (2) and (3) both assumed that

ratings by superiors were similarly valid. Study (1) indicated that, of fifteen

relevant correlations between subtest scores and trainee groups, eight were of

statistical (normal theory) significance. And only one subtest was significantly

correlated with trainee performance over all groups, in spite of the fact that

the overall test/training correlation for each group was significant.

Interestingly, the most variable subtests were those which relied heavily on time

and repetition. In Study (2), three of five subtest correlations and the overall

correlation were significant but small; and the two remaining subtests were

those which exhibited variable or minimal correlation with performance in

study (1). Unfortunately, the ratings used as the validating measure in (2) were

not confined to programming ability and included such things as attitudes.

Therefore, study (2) is invalid. Study (3) found three subtests significantly

correlated with training course grades, but one of the three had not been

si--nificantly correlated with grades for any group in study (1). Furthermore,

t'.e ratings used in the other half of study (3) were virtually uncorrelated with

subte.;t results. The brochure went on to state that these ratings and job

tenure were correlated more strongly than anything else in both halves r the

study--the suggestion being that low correlations must be expected wh
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evaluations place high value on renal vely invalid properties (i.e., tenure). An

alternative observ iti on can be made which applies to any correlational

procedure: the sample variance of a measured property may be so low that

apparent but spurious correlations with another measure arise. In study (3),

the test scores could have had low variabili ty for good reason: the testees could

have been of very nearly Lhe same competence. In any event, none of the

studies provided a clear validation of this particular test for programming

apti tude.

1919 Test Questions

The pi and post-tests gi ven to stude9A-s'1 n the second experiment are

presented here, tinning on pages -r:5:-7 and 131 respectively (some of the
-

questions are specifical eferred to in the text). An students in that

experiment worke le pretest, ut only a few, who finished both the Logo and

Simper cpiula, worked the posttest. 'he questions in these tests were drawn

fro he same set used to construct the 197 .. experiment's pretests and so

reflect their content as well.
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