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Foreword

This dissertation is actually an extension and continuation of an earlier
technical report (Weyer & Cannara, 1975), which herein is called “report-1".

Report-1 should (but need not) be read in conjunction with this document.

As a matter of notation, all phrases in the text that are not in English,
but in the computer languages being discussed, are surrounded by single quotes
('), unless their context is otherwise obvious. As a matter of taste, which
rejects the "arrogance of the acronym", names of programming languages and
other proper nouns, excepting trade or institutional names, receive their due

quota of capitals--one.

Several references are made to articles in a few common periodicals, not
necessarily because the articles are uniquely relevant, but because the
periodicals are easily found and their editors traditionally strive for clarity as

well as accuracy.
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Page 1
1. Introduction

Herein are discussed in detail two experiments done at the Institute for
Mathematical Studies in the Social Sciences (IMSSS) at Stanford during the
summer of 1973 and the spring of 1974. Previonsly, Cannara and Weyer
(1974a), and Weyer and Cannara (! ), have described the 1973 experiment; it
wiil be referred to as the "first" experiment. The 1975 document will be

called "report-1".

The experiments attempted to study children, who héu never used a
computer before, learning: (a) concepts relevant to computer pregramming, and
(b) modern programming languages. The languages and other programining
facilities used (e.g., graphics) have been discussed definitively in report-1; this
thesis will simply outline their features and concentrate on observations of the
childrens' learning-processes and the implications of both experiments in terms

of programming-language and curriculum design, and tutoring technique.

Why observe children learning computer-programming? Programming would
seem to be a decidedly adult task for young people who haven't yet completed
their basic schooling. A partial, motivational answer follows immediately; the

remainder of this thesis may be viewed as an attempt to co:nplete that answer.

Thrre main streams of thought converge on the study of children learning
to use a computer. First, is the view that a computer is in fact a tool for
thinking, which implies that it might be applied fruitful ;v at every educational
level (e.g., Brown & Rubinstein, 1973; Dwyer, 1972; Feurzc s, Papert, Bloom,
Grant & Solomon, 1969; Kay, 1972[bh]; Papert, 1970). In particular, the
computer can be usc 1 to stimulate the activity Papert has referred to as
“t]  .ng about thinking". Second, is the desire of some educators to study the
thinking processes of people solving nroblems (e.g., Bloom & Broder, 1950;

Piaget. 1970; Polya, 1957), which leads directly to studies in perhaps the most
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roneral problem-solving realm®  computer programming. ‘Third, is a synthesis of
human problem-solving and computer as-tool, flamboyantly named "artificial-
intelligence research”, which aims to formalize problem-solving procednres (e..,
Feigenbanm & Feldman, 1963; Minsky, 1968, Newell & Simnorn, 1972; Nilson,
1971; Winograd, 1871). Sometimes, artificial-intelligence products can better
our understanding of ourselves and/or provide useful educational strategies (e.g.,

Brown & Burton, 1974; Goldberg, 1973).

We should not be surprised to find children and compnters where those
three streams intersect. The educationai linkage of compnter programming with
thinking is expressed by the idea »f a "mathemnatical laboratory”, in which a
program creates a constructively interactive, and so perhaps more interesting
environment for learning. Unlike most traditional rcalizations of computer-
assisted-instruction (Cai), the laboratory is designed to "understand”, at a
meamngful level, the domain of interest.!  Unlike most classroom lectures, such
a laboratory can give snbstance to the material and exploratory freedo:n to its
users. The user's interaction with a mathematical laboratory is meaiated by a
formal (as opposed to natural) language, whose semantics access the constructive
abilities of the lahoratory and whose syntax is simply a perhaps novel set of
conventions, A computer and a programming language together constitute a
mathematical laboratory of the most general kind, because they are all that are
needed to construct (simulate) any other laboratory. 'That is the main
justification for stndying programming as a general problem-solving activity. It
is based upon a conjecture of Church's that (frecly interpreted) suggests that
any ideas which wmay be formalized may be studied as a computer [)rogmm.2

Formalization of ideas, a fundamental aspect of mathematices, is part and parcel

lSew EVlas (1974) or Dettanger and Marks (13), Tor critigues of present educational
computer applicatien, . anad s b lwaod (V625 0 o Suppes (fa Wittrock, 1973), for

Ristorteally Lyp i canaey Trh oo Lt
Far dascussions of “nurch's thesis, see Monna (1972) or Minsky (1957},

) 10
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of matherwtical laboratories for —rogramming, problem solving and thinling

about thinking.

The production of effective maothematical laboratorics is closely and
bidirectionally connected with artificial-intelligence work and human scif-
understanding. It must grapple with questions beyond the immediate scope of
the laboratories themselves. Effective tutoring techniques, for e:ample, are
educational objectives which mnst be attained even after one has constructed a
laboratory which "understands" its domain. Thus, applying the computer
educationally, as a tool made available via a laboratory, demands answers to
questions posed in a wide variety of fields (e.g., Brown & DBurton, 1974;

Goldberg, 19735,

The theory and practice of computation otffer educators ¢ me valnable tools:
(1) the formalization of ideas as clustered sequences of instructions, (b) mehods
for modelling real-world processes, and (c) metaphors for understanding machine
and human information-processing. Together, these expose thinking techniques
that Papert has termec "powerful ideas”. Concepts of progranuning and
thinking can be taught as naturel and inseparable partners, emphasizing
students' scrutiny of their own thinking ahnut the world. And, it 1s not a new
idea that school-children can and should lecrn how to program u computer, so
that they too might access its unparalleled power as a tool for thinking. The
computer's natural ability to simula e has responded to the ingenuities of
students (as seen, for example, in tte work of Brown and Rubinstein, Dwyer, or
Papert) with the same spectacular generality it has provided to professional
rescarchers (e.g., Levison, Ward & Webb, 1973; Toomre & Toomre, 1973;

Winograd, 1971).

The foregorng remarks were intended to justify a desire to study

programming as an intellectaal activity for children and programming languages

11
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as tools for such activity,  As a teechnological produet, the personai compnter
will soon be as much o reality, as the personal calealator is tc)(laly.:l Accoss to
intevactive computation may soon become commonplice for vast numbers of

children (and adults), at school or at home. Certatnly we should be trying now
to understand how to hone this new tool to maximnm usefulness.  As a medinm
for expressing, nmanipulating and communicating ideas, the personally accessible

computer may stand well above everything sinee the printing prcss."

Teaching programming is a tutorial endeavor of perhaps the most general
kind. The work to be reported here attenipts to characterize some of the
situations that human and mechanical tutors for prarramming will confront and
must be prepared to resolve. It is relevant t qamen ground between
edueation and artificial intelligence because the cuction of computer
programs which can tntor humans with human proficiency is a common goal.
No one has attained that goal yet, because the activities of a good tutor are
tied irrevocably to humanness of language and knowledge (e.g., Winograd, 1974).
Although the theoretical power of the computer (i.e., as conjectured by Church)
may be sufficient to simulate natural intollect, we do nc* yet understand
ourselves (or other species, c.g., Gardner & Gardner, 1975) well enough to
communicate even a coarse description of intelligence to any recipient (note the
arguments of Stert, 1975a, 1975b; and his critics). Those who have recognized
the nature of this problem have come closest to suceess in carefully limited

contexts {e.g., Brown & Burton, 1974; Carbonell, 1970; Winograd, 1971).

The generality of a programming laboratory aud the intimacy of tutorin
Y . ; y y

combine to produce an interesting research environment in which analysis of

:jg““ Kay (19745, 19724, 107°0) or Brand (19740 pp.o vd 71} Tor ooe vaew of the near
future of computing.,

T et A b sbhage (102Y) L e Manchly (1759) Tor historical percgan S 0n
thee computer's deyelopment o and Jacroux (V15) for darectians that technoiangical L;_venlc

are taking now,

g 12
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errors plays a central role. A programming tutor (human or mechanical) must
be ready to intelligently suggest, accept or comment on an arbitrarily wide
range of student interactions and program syntheses. The details of errors do
more than indicate what a student does not understand, they indicute how the
student views the problem at hand in terms of his or her own view of the

world.

Extending a suggestion of Papert's, if a student responds to a posed problem
at all, that response is typically correct by the student's personal analysis. So
the student is surprised to hear "wrong". It is the tutor's responsibility to try
to divine the reasons for the student's error, perhaps acting as does a detective
eliciting evidence from someone from a foreign land--subsequent interaction is
devoted to laying a common foundation of terms (definitions and relations).

The tutor necessarily learns about the student's world view and is better
prepared to handle future errors and future students. Errors are not "bad",

they provide valuable feedback to be exploited for student benefit.d

However, any tutor (human or mechanical) for teaching something as
¢ neral as programming is destined to occasicnaliy fail the student, because it

6 In other words,

must occasionally tackle unsolvable (uncomputable) problems.
the tutor must pass judgment on the correctness of a student's program, and we
know that there exists no general procedure for deciding that an arbitrary

program i.s correct or incorrect. But the range of solvable problems is so broad

that this hard theoretical fact discourages neither researchers nor teachers.

"Proof of program correctness” (Hoare, 1971) and "automatic program synthesis"

Srhis relates to a basic criticism of most past efforts in Cai: not only have programs
been designed which fail to understand their own subjecl-matter, they fail to possess
more than trivial error-handling strategies. Results too often have been just transfer
of programmed instruction text or film to computer storage. using very Jittle, from the
student’'s vantage, of the computer’s computational potential. Dwyer has said that Cai
fails in “reproducing the excitement of masterful teaching”. I would add that rarely
have Cai workers even attenpted Lo capture masterful teaching.

Niscussions of the uncomputable (unsolvable or unprovable) appear in Davis (1965),

Minsky (1967), Chaitin (1975) and Steen (1875). -
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(Fenichel, Weizenbaum & Yochelson, 1970) are active topics in computational
research which have clear bearing on future success in constructing competent

computer-based tutorial systems.

Numerous research projects have taught children particular programming
languages (e.g., Feurzeig and Lukas 1972a; Fischer, 1973; Folk, Statz &
Séidman, 1974; Milner, 1373; Roman, 1972). However, apparently none has
attempted to make explicit the broad range of relevant programming concepts
and their relationship to a student's world of thought. In such terms, many
projects have pursued hazy, somt'atimes arbitrary goals that concentrated on
teaching an available language through ad-hoc, problem-solving situations,
without generalizing situations and soluticn strategies. A study by Folk, et al.,
(1974) is perhaps the most extensiv. attempt to specify relationships bétween
programming concepts and childrer’s thinking processes. But their analysis is
confined to classical statistical models and the concomitant testing of rather

broad hypotheses virtually ignores a wealth of detail in student protocols.

In contrast, protocols (and tutorial notes) are precisely the data upon which
this work is founded. The primary objective is to understand how children
learn programming concepts (e.g., Table I), with secondary emphasis on the
influences of languages and curricula. With error-analysis as a tool,
student/machine interactions must be exposed in as much detail as possible.
Narrow views, provided for example by conventional test scores, are inade;uate
no matter how convenient they may be to obtain and analyze. Quoting Bloom
and Broder on the subject of "objective" tests:

"What is missing is information on the process by which
the problems are solved. The methods of attack, the steps of
the thinking process, the kinds of considerations used to make
one choice rather than another, and the feelings and attitudes
of the subject are neglected or given very little attention.

"... attention on the processes of thought...nay also
require a change from testing and mass studies to those which

involve small numbers of subjects studied by rather intensive
techniques.

14
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12.
13.
14.
15.
16.
17.
18.

Table 1

Some Fundamental Programming Concepts

Machine as a tool manipulated with a command language
Machine possessing an alterable memory

Literal expressions

. Name-value associations

Evaluation and symbol-substitution

. Execution of stored programs

. Programs which make decisions

Procedures (algorithms)

Evaluation of arguments to procedures

Procedures as realizations of functions (transformatinns)
Composition of functions

Partial and total functions

Computational context (local versus global environments)
Evaluation in changing environments

Induction (recursion and iteration)

Data structures as defined by functions

Problem formulation (representation)

Incompliote algerithms (heuristics
134

Page 7
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"The way in which each student looks at a particular
task may make it a unique problem for him."

-- Bloom & Broder, (1950).

It may seem obvious that to understand a physical or iniellectual process
one must exercise and observe it. In fact one must observe what it does
wrongly as well as correctly before a good model of the procéss' structure can
be realized. Thus has error analysis proven its value in many fields (e.g.,
Fromkin, 1373; Newell & Simon, 1972). It is a basic means for evaluating

cheories in all the sciences.

“Truth arises more eastly from error than from confusion."

--Francis Bacon.

This work has depended upon observing children learning by making
mistakes and discoveries. For their own benefit and for the practical
requirements of research, the children had to feel motivated and supported.
Motivation is an essential precursor of effective learning, yet it is often
snubbed in the analysis of everyday education (Jackson, 1968); and it has yet
to be captured accurately in artificial-intelligence applications. So, apart from
examining interactions with a programming laboratory, this work has also been
concerned with the mo.t.ivational aspects of tutoring, curricula, languages and

concepts.

That programming concepts provide a link between formalized thinking and
perceived reality is certainly not a new axiom (Berry, 1964). It was assumed,
perhaps tacitly, in much of the similar research quoted earlier. For motivation,
a student should look to his or her own life experience for applications of the
tools which an understanding of pertinent concepts supplies. This is the
ultimate justification for teaching programming, because the power of a

programming laboratory derives from the fact that students do more than

16
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interact with it, they intervene, and mold the laboratory to their very own

purposes.

The research problem can be summarized by two questions: (a) How do the
characteristics of & p.wsramming laboratory influence a child's motivation and
ability to learn prograrmning concepts and apply them to the solution of

problems? and (b) What are some significant features of that learning process?

[RY]

{
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2 Programming Facilities

Both experiments attempted to impart an understanding of the concepts in
Table I and fluency in two, very different programming languages. This
required the development of: (a) interactive laboratories (interpreters) for the
languages and devices used, (b) parallel curricula for teaching the concepts, (c)
means for acquiring data on each student's interactions, and (d) means for

judging each student's aptitude for programming and mastery of the concepts.

Part of requirement (a) was met easily by using existing interpreters for
two languages, Logo and Simper, developed specifically to teach children
computer programming. At one time, a third language (Spm, Appendix 1),
designed by the author, was also a candidate but was discarded. Development of
some of the devices used and requirements (b), (¢} and (d} defined the work to

be done preliminary to the experiments.
Languages

Tha languages Simper and Logo were chosen because they are
computationally genere;], they are relatively easy to learn, they are interactive
with powerful editing features, and they are highly dissimilar (Figure 1). Eoth
are detailed extensively in report-1, so only a brief description is necessary
here. Both experiments, the first (summer-1973) and second (spring-1974), led}
to changes in both languages--these will be indicated also. In the text, paired,

single quotes (') denote items in the Logo and Simper languages.

Simper was developed by Lorton and Slimick (1969) at IMSSS as a simple
simulation of an imaginary - machine resembling an Hewlett-Packard model 2000.
It has been used to teach business applications of programming to students at
Woodrow Wilson High School in San Fraacisco (Lorton & Muscat, 1975). At
IMSSS, it has been expanded and rewritten in the Algol-60 subset of Sail

(Swinehart and Sproull, 1971) by the author.

r 18
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Simper . Logo
001 :PUT A 43 «TO REPEAT :LETTER:
002 :NAME REPEAT @10 TYPE :LETTER:
002 !ICWRITE A ©20 REPEAT :LETTER:
003 :PUT P REPEAT @END
004 :RUN REPEAT DEFINED
EXECUTING 1 TO 500 «REPEAT "+"
+H+++++++++7G +H++++4+44++47G
...23 INSTRS IN .043 SEC. I WAS AT L:'E 10 IN REPEAT
004 :EDIT 1 «EDIT REPEAT
001 !CASK A @EDIT TITLE
004 :SLIDE 2:7 @TITLE TO REPEAT :LETTER: :TIMES:
002 :ASK B @5 TEST LESSP :TIMES: 1
003 :NEGATE B @7 IFTRUE DONE
004 JUMP B .+2 @EDIT LINE 20
005 :HALT 20 REPEAT :LETTER: DIFFEREMNCE TIWVES: 1
006 :INCREMLNT B @END
007 INAME 4 REPEAT REPEAT DEFINED
SWITCHING REPEAT'S REFERENCES
007 'RUN «REPEAT "+" 10

+++++++++++«EDIT REPEAT

EXE 'UTING 1 TO 500 @6 IFTRUE SKIP
+10 @END
4+t +++ REPEAT DEFINED

HALT...45 INSTRS IN .117 SEC.
«REPEAT "+" 10
007 !LIST +4+4+++++r++
«LIST REFLAT
YOUR PROGRAM:
TO REPEAT :LETTER: :TIMES:

001 :CAS A 5 TEST LESSP :TIMES: 1

002 :ASK B 6 IFTRUE SKIP

003 :NEG B 7 IFTRUE DONE

004 :JUM B .+2 (REPEAT) 10 TYPE :LETTER:

005 :HAL 20 REPEAT :LETTER: DIFFERENCE :TIMES: 1
006 :INC B

007 :CWR A

008 :PUT P REPEAT

(These sample dialogues produce alternative programs for the repeated
printing of a keyboard character supplied by the typist. Prompts from
Simper are the current memory. address (a decimnal numeral) and a ":" or an
"', depending on whether the addressed location is empty or used. Logo

prompts "«" at the outer level and "@" at the editing level. "'G" indicates
a control character typed to stop a potentially endless execution sequence.)

Fig. 1. Simper and Logo Sample Dialogues

Q 4 1 q
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Simper, is designed for interactive use. It is an assembly-language
interpreter for a simple decimal machine with an addressable program counter.
Its instruction set typifies those of early minicomputers and is similar to, but
simpler than, that of the language Mix (Knuth, 1970). As a programming
laboratory, Simper has three functional components: (1) a simulator for the
underlying machine (Figure 2), (2) a rcal-time assembier which translates
symbols and mnemonic iastructions (listed in Table II) into machine language,
and (3) an interpreter which handles editing and general raanagement of
programs (Table III). This system allows students to ge—nerate and easily
"debug" nontrivial machine-language programs. One can imagine that, when the
Simper interpreter is rot running a user's program, it is simply waiting for a
message from the user which is either a phrase in one of the three languages:
machine, assembly or interpreter, or is unintelligible. The reader should
examine Figure 1 again, and then try to follow the execution of the san:iple

program (which realizes the function: 2x + 9) in Figure 3.

Logo (Feurzeig, et al., 1969) is a | ocedural language whose basic data
structures are strings of letters or words. The Logo instruction-set is easily
expanded via procedure (operation) definitions, possibly recursive. An important
feature of Logo (as opposed to Fortran-like languages) is that operations which
a user defines are syntactically equivalent to Logo primitives. Logo contains
essentials of the currently popular Basic language as a subset, but is superior to
Basic in terms of mathematical censistency, and clarity of phrasing and control.
Furthermore, Logo begins to address the important question of language
extensibility, which is a fundamental measure of the usefulness people can

attribute to any language for computing or thinking.

The Logo interpreter used in these experiments was obtained from Bolt,
Beranek & Newman Inc. (BBN) of Boston. It is written in Macro assembly-

languuge for the PDP-10. For the purposes of the experiments, Logo was
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Registers (10 max.) Memory Cells (511 max.)

(program P: ... 001: ...
counter)
A . 002: ..........
B: ...
. .
C* 500*, 250: ..........

Instruction Format (using righthand seven digits)

000 .
) r a
p e d
e g d -- (indirect flag & address)
r i r
a s e
t ' )
i e s
) r
n

(* indicates the configu -ation after the first experiment. The machine
simulated within the Simper interpreter operates on ten-digit decimal
numerals (words), soine of whicl it "understands” as legal instructions.
Each operation mnemonic (Table II) corresponds to a two-digit code, ea It
register has a one-digit code. The address field typically contains a three-
digit memory-cell designator, or register and indirect address digits. The
value in register P is always used as the memory address of the next
instruction to be executed.)

Fig. 2. Structure of Simper’s Simulated Machine

r~

0N
o
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Table II

Simper Machine Operations

(* indicates operations added after the first experiment.)

Mnemonic

PUT
LOAD
STORE

ADD
SUBTRACT
MULTIPLY
DIVIDE
DIVIDE*

LAND
LOR
LEXOR*

JUMP
Jl‘xSI(
COMPARE

SHIFT"
ROTATE
EXCHANGE
INCREMENT
NECATE
ERROR*

ASK
WRITE
CASK
CWRITE
107*
RANDOM
TIME
WAILT
HALT
NOP

Action (if not obvious)

value of address field to register
copy value in addressed cell into register
inverse of 'LOAD'

add value in addressed cell to register

skip next instruction unless dividing by zero
set 'TERROR' flag on division by zero

decimal digit-wise minimum between register and memory
decimal digit-wise maximum
"exclusive or": 'LOR' except for equal digits

transfer to address if register is non-zero

transfer to address if a key has been typed
three-way skip on memory cell's value greater than,
equal to, or less than register’s value

flip contents of two registers

overflow error code to register

decimal numeral from keyboard to register
inverse of 'ASK’

ASCII character from keyboard to register
inverse of 'CASK'

input/output transfer (for graphics etc.)

random 10-digit integer to register
seconds since midnight to register
defer execution for milliseconds in register

stop execution

no-operation

>
NS



(* indicates items added after the first experiment,
after the second experiment,
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Table III
Simper Interpreter Commands

** indicates items added
Parenthesized phrases describe options

obtained by terminating a command with the "altmode” key.)

Name

DUMP

LIST or DEBUG

RUN

GO
CLEAR**
FIX or EDIT*

FLIP**
SLIDE

SCRATCH or
ERASE**

FORGET or NAME

NAMES

SAVE or GET
FIELDS

FORBID or ALLOW
NEWS

HELP

control-G

GooDBYE

or control-7

Action

display decimal content of memory and registers
(symbols too)

display memory content in assembly language
(and machine language), 'DEBUG' shows "secret” tables

execute part or all of a program f{and display
registers)

continue execution (and display registers)
set a particular register's content to zero

change the content of one or more memory cells
(and show prior content)

interchange the contents of two cells
relocate part or all of a program in memory

erase all of a program
erase all or part of a program*

erase or attach a symbol to a memory cell
(and say how much room remains for symbols)

list all symhols and their cell associations
(and their values)

copy memory to or from long-term storage
allow abbreviated instructions

selectively alter the machine's instruction set™*
obtain the latest system news

obtain general information about Simper

stop any activity

log out
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007 :LIST (the user had created the following program)

0C1 :ASK A
002 :MUL A 10
003 :ADD A 6
004 :WRI A
005 :PUT P 1
006 :9

007 :

008 :

009 :

010 :2

007 :RUN$ (the user runs the program, "$" denotes altmoca)

13:04:12 (the time)

EXECUTING 1 TO 500

P A B INSTR
1 0 0 ASK A INPUT NUMBER:4 ("4" typed by user)
2 4 0 MUL A 10
3 8 0 ADD A 6
4 17 0 WRI A NUMBER=17
5 17 0 PUT P 1
1 17 0 ASK A INPUT NUMBER:0
2 0 0 MUL A 10
3 0 0 ADD A 6
4 9 0 WRI A NUMBER=9
5 9 0 PUT P 1
1 9 0 ASK A INPUT NUMBER:-4
2 -4 0 MUL A 10
3 -8 0 ADD A 6
4 1 0 WRI A NUMBER=1
5 1 0 PUT P 1
1 1 0 ASK A INPUT NUMBER:'G (user aborts)
...15 INSTHS [N 1,150 SEC
007 :GO 4 (user continues a bit with no display)
2
13
...4 INSTRS IN .042 SEC
007 :EDIT 10
010 !3 (the user changes the function to be: 3x + 9)

007 :RUN

Fig. 3. Displaying a Simper Program’'s Activity

XY
ERIC

Aruitoxt provided by Eic:
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mod:fied to communicate with various devices, including an "XY" plotier and
graphic display terminals (the total system will be referred to as IMSSS Logo).
A partial list of IMSSS Logo's primitive operations appears in Table [V,
program editing/saving commands appear in Tables V, VI and VII, and the
execution of a sample procedure is shown in Figure 4. The reader should
maintain in mind that Logo is fundamentally a prefix language--commands may
be composed of several operation calls, in which each operation is followed by a
list of any arguments (possibly produced by other operations) it may need in

order to be executed.

One of the few common aspects of the Simper and Logo languages is line-
editing. Table VII shows the commands which allow users to correct typing and
other errors before they terminate their command-lines (causing Logo or Simper
to try to obey them). Particulary useful are the commands (control-E, -N and
-S) which allow previously stored lines or words to be injected into the user's
typing. One of the functions of good line-editing capabilities is to minimize

the burdens on the poor typist.

Finally, it should be noted that in learning to use Simper, the student must
learn the three languages (machine, assembly and interpreter) that ave realized
by the system. This is not a trivial matter for naive programmers, as the

experiments have indicated.

Logo's interactive structure is more nearly unitary. Its basic piece of
exccntable code is a line composed of one or more commands, and its basic piece
of program (procedure definition), is an ordered series cf lines. The Logo
interpreter lways executing (or capable of executing) a user's commands,
which may upon Logo primitives or the user's own procedures. Control
returns to the user only when his or her last command and any ccmmands it
might have called have terminated normally or been aborted. A few of Logo's

primitives may not be executed directly by a user's procedure, but there is not



Page 18

Table IV

Some IMSSS Logo Primitives

(* indicates items added after the first experiment,

x %

Name

TO

ouTpPuUT

or RETURN*
or REPLY**
EDIT

MAKE
VALUE* or TIING
FRONT
WHERE

PLOT

SAY

PRINT
REQUEST
SNAP
MOVESNAP*
WORD
SENTENCE
FIRST |
RANDOM
SUM or ADD*~
IS or SAMEP*
LQUALP

It THEN ELSE

indicatés items added after the second experiment.)

Action
allows creation of a new operation (a procedure)

allows operations to return values to the evaluatcr

allows the user to change an c;p'eration's definition
associates a name with a value

accesses the value associated with a name

moves the "turtle” or train forward

returns the present location of the train

sends turtle drawing to XY plotter or robot

causes the audio system to speak a message

causes the user's terminal to tyne a message

asks the user for a message

makes a "snapshot" of graphics picture being drawn
moves a snapshot as part of an animated display
combines two words (of letters or numerals) into one
combines two words or sentences into a sentence
returns the first letter or word in a value
picks a digit between 0 and 9

returns the sum of two numbers

are two words or sentences identical?

are two numbers equal?

decision naking
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Table V

Logo's Procedure Editing and Debugging Commands

Name Action

TO begin defining a new procedure -

EDIT begin modifying an existing procedure
TITLE redefine the name of the procedure and its inputs
EDIT TITLE change part »>f the title
LIST TITLE display the title
EDIT LINE change part of any line in the procedure
ERASE LINE delete any line
LisT LINE display any line
END stop editing the procedure's definition

LIST display any procedure's definition

ERASE delete any procedure's definition or trace

ERASE ALL delete all definitions

PROCEDURES

LIST ALL display all definitions .

PROCEDURES

LIST CONTENTS display the titles of all defined procedures

LIST ALL display the user's abbreviations for all operations

ABBREVIATIONS

TRACE display a procedure's arguments/returned value
whenever it is executed

BREAK halt execution (same as control-G)

EXIT halt and print a message

GO continue execution

(Indented commands may only be given after editing has been begun with
"I'Q" or 'EDIT".)

bay

"



Table VI

Logo's File-manipulation Commands

Name
SAVE

GET

LIST FILE

LIST ENTRY

LIST PROCEDURES
LIST CONTENTS

LIST ABBREVIATIONS
ERASE ENTRY

CcorPY

Action

replace an entry on a file with the current
contents of memory

append the content of an entry to memory
display the entry names in a file

display everything in an entry

display only the procedures in an entry
display the titles of an entry's procedures
display the abbreviations in an entry
delete an entry from a file

copy a text file to or from a file entry

0o
0

Page 20
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Table VII

Simper/Logo Line-editing Commands (* means Logo only.)

Name Action

control-A or erases the previous character typed

rubout

control-W erases the previous word typed

control-X erases the whole line (also control-U in Simper)

control-R retypes the present line minus deletions

linefeed continuér 1 line beyond 72 characters

return or terminates a line (altmode is also known as "escape" or

altmode "enter")

control-N* insert (into the present line) the next word from the
previous (or edited) line

control-S* skip the next word from the previous (or edited) line

control-E* insert everything remaining in the previous (or edited)

line into the present line

(An example of Logo procedure editing:

«TO WELCOME

@10 SAY "HELLO THERE"

CEDRIT LINE 10 (causes the line number "10" to be printed and
inserted into Logo's input buffer just as if
the user had typed it, so it may be erased.
Logo has now also grabbed the existing text of
line 10 and knows 'SAY' to be its first word)

@10 [ 01]20 "Nsay ""S"Nthere" [ "] GOES A WELCOME"

(The above editing line produced line 20 by
using line 10. "™ means "control-", Logo's
typing is in lower case, deleted characters are
in brackets)

@LIST

TO WELCOME

10 SAY "HELLO"

20 SAY "THERE GOES. A WELCOME" (the new line)

@)

r 29
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Aruitoxt provided by Eic:

~LIST ACKERMAN (the user had defined the following procedure)

TO ACKERMAN :X. :Y:

10 IF EMPTYP :X: THEN RETURN WOED :X: "Y"

20 IF EMPTYP :Y¥: TIIEN RETURN ACKERMAN BUTFIRST :X: "Y"

30 RETURN ACKERMAN BUTFIRST :X: ACKERMAN :X: BUTFIRST :Y:

END
which realizes a string example of Ackerman's function)

TRACE ACKERMAN ('TRACE' will allow the user to follow ACKERMAN's
execution history, observing its arguments when it is
called and the values it returns when it is done.
Recursively generated copies of 'ACKERMAN' are
denoted by indentation)

«PRINT ACKERMAN "XX" "Y" (execution begins)
ACKERMAN OF "XX" AND "Y"
ACKERMAN OF "XX" AND "
ACKERMAN OF “X" AND "Y"
ACKERMAN OF "X" AND "" (" is the empty string)
ACKERMAN OF "" AND "Y"
ACKERMAN RETURNS "YY"
ACKERMAN RETURNS "YY"
ACKERMAN OF "" AND "YY"
ACKERMAN RETURNS "YYY"
ACKERMAN RETURNS "YYY"
ACKERMAN RETURNS "YYY"
ACKERMAN OF "X" AND "YYY"
ACKERMAN OF "X" AND "YY"
ACKERMAN OF "X" AND "Y"
ACKERMAN OF "X" AND "*
ACKERMAN OF " AND "Y"
ACKERMAN RETURNS "YY"
ACKERMAN RETURNS "YY"
ACKERMAN OF "" AND "YY"
ACKERMAN RETURNS "YYY"
ACKERMAN RETURNS "YYY"
ACKERMAN OF "" AND "YYY"
ACKERMAN RETURNS "YYYY"
ACKERMAN RETURNS "YYYY"
ACKERMAN OF “* AND "YYYY"
ACKERMAN RETURNS "YYYYY"
ACKERMAN RETURNS "YYYVY"
ACKERMAN RETURNS "YYYYY" (to PRINT)
YYYYY

-

Fig. 4. Tracing a Logo Procedure's Activity

30
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a strict distinctiorn between sets of commands as exists in Simper’s three-level
structure. However, a quirk in Logo’s evaluation scheine imposes a different
syntax on editing and management commands versus other operations. This will
be discussed later. Readers interested in more detailed discussions of Simper

and Logo should refer to report-1.
Peripheral Devices

Various terminals and controllable devices were available to Logo and
Simper students during and after both experiments (Figure 5). The machine-
language Logo interpreter was modified to dispatch graphics (or other special-
device) commands to a Sail program: Sailogo (Figure 5). This program and
Logo acted as coroutines. Hence, Logo's control of special devices was rea&ized

by Sail procedures.

Most special devices played a relatively small role in the work reported on
here. A brief summary of only the graphics and animation facilities will be

included. All the devices are fully documented in report-l.1

Both experiments sought to establish good examples of how each device
could be employed in solutions to programming problems. Some aspects of this
will be discussed later with emphasis on relating device capabilities to teaching

the concepts (e.g., those in Table I).

All the students whose work will be discussed here began their
programming at conventional, model 33 'l‘eletypes(R). This slow (10-characters-
per-second), noisy, inexpensive but reliable terminal was their basic means for
commuuicating with Logo and Simper until they had mastered the languages

well enough to make good use of such special capabilities as graphics. In spite

ll am indebled to Steve Weyer for his fine implementation of the many special IMSSS-
Logo features. such as graphics and animation

: 31



PDP-10 Operating System

|
IMSSS Student System
/

/ \ \ . | .
TEC(R) Sailogo ------- e —
. Y .\ | N\
] \ . \ | N\
. . | A \ N\
Turtle Audio Train Plotter Teletype(R) IMLAC(R)

(Dotted lines mark connections made after the first experiment)

Fig. 5. Programming System Structure
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of obvious drawbacks, Teletypes were in plentiful supply and provided paper
printout for projects (like posters) whose results students wanted to take homne.
Some students retained a particular liking for Teletypes, because the mechanical

bedlam generated by one in operation fascinated them.

Some fast (a few hundred characters-per-second), text-oriented, video
displays were used occasionally by some students. These had liniited, graphics-

like capabilities, but they were not exploited in the experiments.

In the first experiment, two groups of students used IMLAC(R) pps-1
graphics displays exclusively. These groups, however, are discussed only in
report-1. For the students whose work is of interest here, the IMLAC displays
constituted a goal, attained when a student's proficiency in the languages was

adequate to allow comfortable use of the graphics system (Tables VIII and IX).

'The graphics, line-drawing system emulates many abilities of the robot
“turtle" developed at MIT and BBN (Feurzeig and Lukas, 1972b). It allows
movement on the screen to be specified by "x,y" end-points in addition to the
turtle's normal, roving-polar-coordinates scheme (in which movement is specified
by 'FRONT' and 'BACK' along an angular heading changed by 'RIGHT' and
'LEFT'). For example, a square can be drawn by the Logo procedure 'SQUARE"

TO CORNER :SIZE: TO SQUARE :SIZE:

10 FRONT :SIZE: 10 ZORNER :SIZE:

20 RIGHT 90 20 CORNER :SIZE:

END 30 CORNER :SIZE:
40 CORNER :SIZE:
END

© 33



Name
CLEAR
WIPE

SEE (HIDE)

PENDOWN (PENUP)

PENP
POKE (UNPOKE)
HOME

FRONT (BACK)
LEFT (RIGHT)
SETHEADING

ASETX (ASETY)

ASETXY
RSETX (RSETY)
RSETXY
THERE

HERE

ARC

ZAP (%L2P)

PLOT (UNPLOT)
SETSCALE
SETTURTLE
WRAP

COMPRESS

Page 26

Table VIII
IMSSS Logo Turtle-Graphics Commands

Action

erase the text area of the screen

erasc any drawing and put turtle home

make the turtle appear (disappcar)

enable turtle to draw visible (invisible) lines

return ""TRUE"' if turtle's pen is down, ""FALSE"' otherwise
stick out (pull in) turtle's head

move turtle to home position defined by 'SETTURTLE'
move turtle forward (backward) a specific distance
rotate turtle left (right) specific number of degrees
point turtle on a specific angular heading

move turtle horizontally (vertically) to an absolute
screen position

move turtle horizontally and vertically to a position
move turtle horizontally (vertically) a relative amount
move turtle relative to its present screen position
equivalent to an 'ASETXY' and a 'SETHEADING'
return turtle's current polsition and angular heading
make turtle draw an arc of specified radius and sense
erase last turtle move(s) up to a visible line segment
(do not) direct turtle commands to robot or plotter
set screen resolution in units-per-inch

set both scale and home position on screen

set up screen boundaries for wraparound

shorten IMLAC display list (precludes use of 'ZAP' or 'ZIP')

El{llC 34
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Table IX

IMSSS Logo Animation Commands

Name Action

SNAP wipe screen and begin creating a numbered "snapshot” of
whatever drawing (less erasures) is subsequently done

ENDSNAP finish defining current snapshot and wipe screen
ERASESNAP delete specified snap and its number

WHATSNAPS return a sentence of currently used snapshot numbers
SHOWSNAP display specified snapshot at turtle's screen position
PUTSNAP identify a snapshot with an old or new "object" at a

specific scrcen position, or move or erase an object
MOVESNAP move an object (with wraparound) a relative distance on

a relative heading and return object's final, absolute

position ("R" in an object number has effect of 'RSETXY")

WIPESNAPS wipe screen and erase all snapshots and objects

(A procedure for moving an object, referenced by a snapshot number, across the screen
might be:

TO WALK :SNAPNUMBER:
10 SHOWSNAP :SNAPNUMBER:

20 ZAP (a snapshot is a "line" under erasure)
30 FRONT 10

40 WALK :SNAPNUMBER:

END

or, better:

TO WALK :ObJECTNUMBER:

10 MOVESNAP :OBJECTNUMBER: "10 0"
20 WALK :OBJECTNUMBER:

END

for the latter, 'PUTSNAP’ must first be used to tiec a snapshot (an appearance) to an object
at somne screen position.)
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Lines drawn may be erased by 'ZAP' and 'ZIP' commands, permitting limited
picture editing as well as primitive animation. One student produced a short
sequence showing a fuse "burning” down (disappearing into) and exploding a

firecracker.

'"PLOT' allows one to direct the effects of most graphics commands to either
an HP7202A plotter or a robot turtle (General Turtle Inc., Can.bridge, Mass.).
Most students highly valued the ability to reproduce on paper what their
programs had drawn on the display screens. Since students could use any type
of terminal and still have their drawings appear on the plotter, this was
exploited to encourage students to write and debug storable procedures rather
than to just draw by direct commands. The plotter was only sporadically
available during the first experiment and a true, robot turtle was available on
occasion during both experiments. The robot came along with a "music-box"

which was used.significantly by two students in the second experiment,

During the first experiment, it became apparent that more powerful
animntion abilities would be possible and might serve as strong motivation for
more complex student projects. Prior to the second experiment, genuine
animation was added to Logo and Simper was modified to access the graphics
system as well (Appendix 3, pages 1ST and 1LT). The 'SNAP' command allowed
a student to save the effocts of most subsequent graphics commands as a displﬁy
subroutine within the IMLAC. These "snapshots" could then be shown
anywhere on the IMLAC screen with 'SHOWSNAP' or 'PUTSNAP'. Snapshots of
the same object in different orientations or sizes could then be shown

successively in a "movie” (e.g., with 'MOVESNAP').

Although true animation ('PUTSNAP' and 'MOVESNAP' in Table IX) was
not used by students in the first experiment, it was used in the second. Sowmne

students from the first experiment continued to work with Logo, influencing

36



Page 29

some aspects of the developing animation system. A short film about
Logo/IMLAC graphics and animation is available from IMSSS.2 Figure 6 is

adapted from that film.

Students used animation to produce such things as a flyable helicopter, a
rocket launch, animated tic-tac-toe, movies of throbbing polygons, and a tennis-

game. An example program appears in Appendix 4.

The computer could also be made to utter sounds (via the Logo primitive
'SAY’) composed of any of several thousand prerecorded phrases, words, and
phonemes stored in the IMSSS system. No organized use was made of this in
the experiments, since it amounts to little more than the aural equivalent of
'PRINT’. Only a few terminals with audio output were available to students.
Nevertheless, most students discovered the facility and some made imagina‘i.e

use of it.

Fig. 6. Successive Frames from a Logo-Animation "Movie".

2Pat Crawley of the Stanford Comnunications Department produced this film, starring
Adam Grosser, Greg Hinchliffe, Steve Spurlock, Steve Weyer and the author.

- 35}{
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3 Students, Tutoring and Curricula

The desire to draw some conclusions ubout programming languages led to
the student groupings shown in Table X. The first experiment had been
concerned with assessing the value of graphics as well, accounting for the
formation of groups IV aud V. Those two groups are discussed only in report-1.
Groups I, IT and III in both the first and the second experiments provided most
of the data for comparing the languages, evaluating the curricula and

characterizing tutor-student-machine interactions.

The first xperiment influenced many aspects of the second, some of which
will be discussed here. For example, the enthusiasm generated by the graphics
and animation system inspired the inclusion of graphics in late parts of both
the Simper and Logo curricula, at a time when students had mastered either

language "well enough".

Schools near Stanford were contacted in order to obtain inexperienced
programmers, 10 to 15 years old--an age which is thought to ensure that

children can master abstractions (Piaget, 1970).1

Teachers and others recommending students were asked not to base their
selections on students' performances in school, because the intent was to study
how any child learns to program. It had been observed previously that teachers
tend to recommend only their better, mathematics students for such special
projects. Apart from an admonition against such preference, the manner in
which the invitation "to learn how to use a computer" was presented to students
could not be controlled, so it cannot be stated that the enrollees constituted a

cross-section of local students.

I am indebted to Carolyn Stauffer for her invaluable help as liaison.
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Table X

Experimental Groups

Group Composition

1973: I 8 students learning Logo and then Simper

I 8 students learning Simper and then Logo

I 8 students learning Logo and Simper at once

v 5 students learning Logo with graphics

\Y 10 paired students learning Logo with graphics
1974: I 5 students learning Logo and then Simper

II 5 students learning Simper and then Logo

ITI 5 students learning Logo and Simper at once

39
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In the second experiment, an additional source of "gifted” students was
available. They worked at teletypewriters at home, were assigned to groups
matching [, Il and IlI, received the corresponding curricula on demand by mail
and could call myself or others at Stanford for help during certain hours.
Unfortunately, only u few of these students did significant amounts of work
with Logo and Simper. Their work will be discussed at appropriate times, but

these students are not indicated in the Tables and Figures.

More students responded than were needed for the groups outlined in Table
X. As many as possible were accommodated, including friends who appeared
later during the body of the experiments. Figure 7 presents some responses of
the enrolling students to a brief questicunaire. Since students typically heard
about the course from their mathematics teachers, the indicated preferences
weren't surprising. As an aside, the students' attitudes toward school seemed to
agree with observations in Jackson (1968) that one-fifth or more of all school-

children will readily admit that they dislike school in general.

In all, about fifty students involved theiaselves in the first experiment, and
correspondingly, about twenty enrolled in the second. To some degree, this
insulated the experiments from the problem of dropouts. Transportation

problems created a few defacto dropouts, particularly in the first experiment.

Iu the first exrerimert, students were scheduled to use the machine one
hour per day, four days per week, with more regard for their convenience than
for experimental grouping (Table X). Because the first experiment was in part
a pilot study for the second, Fridays were reserved for modifying the curricula
and debugging the interpreters or devices. However, on demand of some of the

more interested students, Friday was considered open too.

40
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Age/School Distribution Age/Liking of School
c
h 10- st
i 1o
1 pe wo 14 15 15
d hv la gu 14 14 15
r hv me gu -14 14 14
e 5- hv hv ma 14 13 13
n hv hv ma 14 13 13 12
hv hv ma gu 12 13 12 12
fr hv hv hv ma gu 13 11 13 12 12
hv hv hLs hv ma gu 11 10 10 12 12
0_ ___________________________________
10 11 12 13 14 15 1 2 3 4 5
age dislike like

Age/Subject Preferences

English Languages Mathematics Science
15
15- 14
14
14
13
13
10- 15 14 15 15 13
14 14 14 15 14 13
14 14 14 15 14 14 15 13
14 14 14 15 13 13 14 15 12
13 13 14 14 12 14 13 13 14 12
5- 12 15 13 14 13 15 14 12 14 13 12 14 12
12 14 12 13 13 14 14 12 14 12 12 12 14 12
12 14 12 13 15 12 13 13 12 14 14 13 12 12 12 14 12
11 14 12 12 13 12 13 12 12 13 14 13 12 11 14 12 13 11
11 13 10 10 12 10 13 1t 11 10 12 12 11 10 14 11 10 13 10
0_ _________________________________________________________
1 2 3.4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
dislike like

Fig. 7a. Some Information Characterizing the 1973 Students
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Age/Liking of School

14

14

13

13

13

13
12 12
11 12 12 13
9 12 12 13

dislike 1ike

Age/Subject Preferences

c
h 10-
i
1
d wo
r te wo
e 5- te te
n hv te
hv te
hv hv te
ba wo hv hv te
0.. ______________________
9 10 11 12 13 14
age
English Languages
10-
14
13
5- 13
14 13 12
14 13 12 13 14 12
12 13 13 12 12 11 13 13 12
9 12 13 11 12 9 12 12 12 13
0_ _____________________________
1 2 3 4 5 1 2 3 4 5
dislike like

Mathematics Science

14
13
13

13 14

13 13

13 13

14 12 14 13 13

12 12 13 13 12

13 12 12 12 12 12

12 12 11 9 12 11 9 12

1 2 3 4 5 1 2 3 4 5

Iig. 7b. Some Information Characterizing the 1974 Students

ERIC

Aruitoxt provided by Eic:
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In the second experiment, students used the machine three hours per week,
on two-or three-day schedules. This was done because the first experiment had
indicated that students should be segregated by group to allow more uniform
tutoring and to minimize the inevitable distractions raised in a roomfull of
students working at different places in different curricula or on projects in
different languages. The students still retained the right to go to another

room, after their scheduled session had ended, and use another terminal.

In order to obtain an initial assessment of each student's aptitude for
programming, and to point out possible problems that each student might later
have in learning the concepts, a test was constructed prior tc the first
experiment. It consisted of qu-stions gleaned from a wide range of sources,
because no one test in current use seemed to be valid for the range of concepts
in Table I. A number of commercial programming tests were examined and

some questions from these were used.2

However, all these tests relied heavily on timed sections of multiple-choice,
often repetitious questions. Such structuring produces easily graded results and
is commonly used to boost the “reliability" (correlation among test applications)
of a test. In contrast, development of the test used for this work placed
emphasis on the more elusive but crucial notion of validity, and on the

exposure of thought processes (e.g., per Bloom & Broder, 1950).

A test, no matter how reliqble, 1s utterly useless if it fails to measure the
property of interest. It may even be dangerously misleading. In terms of the
theory of testing aud evaluation, as currently applied in the social sciences (e.g.,
sce Worthen & Sanders, 1973; or, for the politics/realities of evaluation, see

Jackson, 1968, and McLaughlin, 1974), validity like reliability is measured by

e o o e e e o T e e i e et 0 b

2le5t.r. ingcluded: the ARCO Computer Programmer. the CPAB and ¢lanagan Industrial Test
series by SPA. the LCPT data-processing test. and the IBM programming aptitude test.
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correlative techniques. However, no matter how long the chain of correlations,
validity :s ultimately founded in human judgements and evaluat’ s . nality.
An example of validation taken from a commercial test-brochur is cutli: -d in
Appendix 2. It should alert the reader to some of the pitfalls thit th.reaten
those who wish to do aptitude testing, particularly with commercially available
materials. Read critically, the example implies that testing theory and practice
typically diverge when validity is demanded, yet validity of measures is

precisely what must be demanded when meaningful research is the goal.

A test was presented to enrolling students for two purposes. One, some
measure of the students' aptitude for learning the concepts was needed for
matched grouping. Two, hopefully it would be possible to match the way
students attacked particular questions in the test with particular aspects of
their performance in the experiments. The test migllt therefore shed light on

the tutorial needs of each student.

The preliminary test was constructed of some questions taken from the
commercial tests mentioned earlier and questions of original design. All
questions were formulated or reformulated to require constructive answers. The
1973 and 1574 tests are reproduced in report-1 and Appendix 2, respectively.
Multiple-choice questions were thought useless. They force students to make
judgements based on two levels: their relevant knowledge and the sensibility of
the prescribed answers. The grader of such questions is freed of the burden of
judging diverse answers simply by having it thrown onto the test constructer
and the least-experienced judges: the students. What students think about each
question and why they give their answers are important pieces of information
that such testing destroys. For this work, students' answers were valued even if
they were wrong or incomplete. Detailed answers would help evaluate the test
as well as the students; and the judging would be done by persons experienced

in the relevant fields (i.c., by the author or other programmers).
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The iesire for constructive answers to all questions on the test is best
justified by those examples of "wrong" answers which nonetheless showed that
students were thinking along the right lines. Figure 8 presents some for a
question derived from a commercial test (note also the subtle defects in
drawings B and C, and the beguiling A-B sequence). It is important to note
that answers like those in the figure evidence approaches to the questions which
would have been counted completely right or wrong if nonconstructive answers
(e.g., multiple-choice) had been required. Figure 9 shows examples of totally

unexpected answers to a question of original formulation.

One can neither assess a student fairly, nor know what a test is testing if
the questioning scheme critically warps or limits information relevant to the

purpose test.

About one-hundred questions were selected for possib’: use in the test.
Before the questions were presented to students enrolling in the first
experiment, their difficulty, clarity, and the time required for their solution
were evaluated by presenting the entire assemblage to several programmers
(children and adults) in the IMSSS community.3 As a result of this simple
evaluation, most of the questions were accepted and were presented in two tests.
Students answered one-third of the questions on the day they enrolled, being
allowed one hour. The second test was to be completed‘ at home at each
student's convenience. The two parts of the itest contained many similar
questions. This was done because the preliminary evaluation had suggested that
time should not be a factor in testing. Thorough and accurate evaluation of
both test and students seemed to demand that as many qulestions as possible be
answered.  Two-part testing would also suggest whether or not any time limit

should be applied to the single test which would be used in the second

3[ am grateful to Marney Beard. Doug Danforth, Adele Goldberq, Paul Hechinger, Greg
Hinchliffe and Lauri Kanerva for their help,
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The Question and the Desired Answer:

Figure A was changed into Figure B by a simple rule. Please draw
figure D so that it corresponds to figure C changed by the same rule.

A B c D
What is the rule in words? BOTTOM SHRINKS, TOP GROWS

Other Answers:
TURN IT UPSIDE DOWN AND ALTERNATE SIZE
A IS A SQUARE WITH A CIRCLE, B IS JUST THE OPPOSITE
YOU CHANGE TO THE QPPOSITES

TAKE THE FIRST BASIC FIGURE AND CHANGE WITH THE
SMALLER AND TURN UPSIDE DOWN

THE SMALL TOP FIGURE BECOMES LARGE AND THE OTHER
BECOMES SMALL AND TIHEY TRADE PLACES

Fig. 8. Some "Wrong" Answers from the 1973 Preliminary Test
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The Question and the Desired Answer:

What one rule, not using arithmetic, was used to make the digits on
the right from the strings of digits on the left?

999999999 9
556 5
6106 6

TAKE THE FIRST DIGIT

Alternate, Unforeseen Answers:
THE DIGIT USED THE MOST

PREDOMINANT NUMBER

WHAT EVER NUMBER THERE IS MOST ON THE LEFT, PUT IT
ON THE RIGHT

TAKE THE DIGIT WITH THE HIGHEST PLACE VALUE,
OR THE ONE THAT REPEATS MOST OFTEN

Note: "number" was acceptable although "digit" or "numeral” were
technically correct. More than half of the students who gave
complete answers to this problem seemed not to be aware of the
distinction. Their rank and choices of words contrasted as:

1973 or 1974 "digit"

student rank or "number"
"numeral”

at or above median 14 11

below median 3 13

Fig. 9. Some Novel Answers from the Preliminary Tests
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experiment. Unfortunately, many of the students failed to complete the lengthy
"take-home" portion of the test, either for lack of interest or because they
dropped out. For the second experiment, it was decided that the test would be
shorter and that new students would work on it during their rirst day, taking

it home to finish if necessary.

Questions had been selected according to their apparent value in testing the
ability to manipulate unfamiliar languages, model or analyze processes, form
deductions, and visualize figural transformations (see Appendix 2). Some of the
questions proved to be very useful for discriminating among the enrolling
students. Two of these, the "candy-machine" and the "numbers-in-boxes"
problems (Appendix 2, or report-1, page 169), required an understanding of
concepts directly related to programming. Errors made by the students on these

two questions were especially interesting and will be discussed.

In the candy-machine problem, a partial flow-diagram was provided in
which few states had been left blank and connections between some: statés were
missing. The task was to complete the diagram in any reasonable way. Many
students had trouble with the basic idea that a process can be represented on
paper as a diagram of the sequence of events in the process. They left blank
states empty, filled them inappropriately, or misconnected the dangling states.
Errors in the solutions given could be divided into three classes: (1)
assignment of unreasonable destinations for unconnected arrows, (2) assignment
of unreasonable functions for undescribed states, and (3) treatment of the entire
diagram as a maze in which only one path was to be marked as a likely
protocol. Errors in class (1) or (2) suggest that a student had trouble using
the information alrrady present in the diagram to deduce reasonable "things to
do next" or "things to do now". Class (3) is interesting because such errors
indicate that a student viewed the diagram as a menu of instructions from
which to choose one plausible sequence, rather than as a complete desc;'iption of

all possible scquences, for some process.
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The numbers-in-boxes question asked the students to obey a short, program-
like sequence of arithmetic instructions which operated on some numbers
written in a set of numbered boxes. Very few students correctly obeyed the
instruction which read: "Add the number in box 7 to the number found in the
box whose box number is in box 6, and write the sum in box 6”". The sentence
is hard to read, but the idea that a number (value) in a box could be used as
the number (name) of a box (indirect addressing) was the typical diﬂ'iculty.
Many students also had trouble with the idea that writing a new number into a
box should destroy its previous contents. Solutions fell into a few distinct
classes which can be attributed to failures in the understanding of those two

concepts.

In both experiments, the test was used to establish a rank ordering of
enrolling students, and performance on the test seemed to break into a few
levels. For the first experiment, roughly equal numbers of students from each
level were assigned to groups I, II and III. The second experiment's grouping
was more constrained by the interaction of students' scheduling preferences with
the desire to keep the groups in separate time-slots. In both experiments
students determined their own class schedule within the time constrainus

mentioned earlier.

Figure 10 shows the composition of the groups according to testing rank,
age and amount of time spent in actual work with the interpreters. The candy-
machine and the "logic” (Appendix 2, or report-1, page 170) problems tended to
be most influential in discriminating among students of equal age above and
below the median. ‘The youngest had the most trouble with the candy machine.
They missed the point that the diagram was an overall description of the
machine. A few of the older students were familiar with flow-charts from
school and thought that problem easy. In the first experiment, they had also

been students who envolled late. These late arrivals usually did very well
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Group Age Hours Spent Using Logo & Simper
IHI*$ 15 36.4
I$ 15 35.7
I1*$ 15 18.1
I11$ 13 29.7
Ir* 13 11.1
I*$ 12 12.7
I1*$....ccceee. 13 59.2
I11# i4 o
I# 14 5.8
| ) COUOOTOON 13 50.6
II 14 33.5
IT 12 22.8
I1# 14 6.4 * marks students who enrolled
I1*# 14 27.9 late.
I# 14 5.7
median.. I# 14 5.7 # marks early dropouts.
114 14 0
I 11 24.2 . marks significant breaks in
I1# 14 4.9 performance on the test.
I11 11 14.2
| 12 23.0 $ marks those who continued
I 14 18.0 programming well beyond the
III*# 13 2.1 experiment.
I11 12 11.0
I1I 13 28.7
I$ 12 27.1
I* 10 11.7
) CSTN 12 21.1
I11 12 20.1
I 12 19.1
I11$ 10 35.7
II 13 6.1

Fig. 10a. Student Ranking on the 1973 Preliminary Test
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Group Age Hours Spent Using Logo & Simper
I$ 12 24.2
1% 9 47.8
II* 13 27.1
II1 12 33.2
II 13 15.4
II 13 26.9 * marks students who enrolled
| § (SRR 13 25.9 late.
I* 12 26.3
median.. 1I$ 13 23.7 # marks early dropouts.
II 11 14.3
I$ 14 45.4 . marks significant breaks in
I# 13 3.2 performance on the test.
II............. 14 12.0
I1I 12 38.6 $ marks those who continued
III*............ 12 16.2 programming well beyond the
I# 12 1.5 experiment. ~
I 12 8.0

Fig. 10b. Student Ranking on the 1974 Preliminary Test
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with the test, perhaps in part because they worked on it quietly alone--a
feature lacking in the massed testing of the first enrollees. This provided

another reason for eliminating timing of the test in the second experiment.

Examining the first experiment's test-results in terms of four constituents:
the first three problems mentioned above, and everything else, the students’
performances compare generally as follows. Students at the bottom of the
ranking (Figure 10a) were unable to grasp the candy-machine and the box-
program questions, they correctly analyzed only the clearest statements in the
logic problem, and they failed to finish the test by a large amount. Students
near the middle filled only the empty states in the candy machine reasonably;
they correctly obeyed all commands but the indirect-addressing command in the
box program, with some failures to erase a box's content when they wrote into
it; they only missed the fourth statement in the logic problem; and they did
fairly well on the rest of the test, though not always finishing it. Students
near the top correctly filled all states and connected all the dangling arrows in
the candy machine, a few of them missed the indirect-addressing command in
the box program, they did the logic problem correctly, and they typically
finished the rest of the test. Similar comments apply to test results for the
second experiment, with the qualification that these students scemed to do

better on the test than did those in the first experiment, Y

Of course these breakdowns are not rigid. In particular, it is very hard to
order many of t.ae tests in the broad middle regions of the rankings. Ranking
forces transitivity upon performance ratings for solutions and problems which
are often qualitatively different. But by demandir&g constructive answers, the
answers contained much detailed information about the students and the test.
If the test had been an exercise in multiple-choice, it is not clear what

information it would have conveyed, but it certainly would have conveyed less.
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Some changes in the test were made as a result of the first experiment.
Aside from making it shorter and unitary, and a;plying it individually with no
time limit, changes typically involved readability and the elimination of

frivolous questions.

Tutoring. Both experiments were planned to depend upon written curricula
which would control the basic information given to students. Interpreters for
the programming languages would simply act as computational resources which
the students could use to work problems in the curricula or experiment with on
their own. However, any attempt to develop a fully self-contained curriculum
for programming was deemed unrealistic. The main concern was gaining access
to tutorial protocols generated by novice programmers working in the best
possible environment for learning. Therefore, human tutcrs were provided who
could help students over failures in the curricula and report their interactions.
The tutors were to be knowledgeable in the programming languages being taught

and would be familiar with the corresponding curricula.

In the first experiment, it was hoped that enough tutors would be available
each day to guarantee at least one for. each five students in each group.4 Two
instructions to the tutors were emphasized: (1) never type anything for the
student on his or her own terminal, even when giving the most direct help, all
typing must be the student's; and (2) when asked for help on any problem,
encourage the student to formulate and try out his or her own ideas first,
before making other suggestions. It was hoped that these instructions would
guarantee the purity of the protocol data and help the students to think as

much about generating and debugging ideas as about getting correct results.

Unfortunately, this tutoring effort failed in some crucial functions. First,

My thanks o to Avron Barr, Marney Beard. Doug Danforth, Adele Goldberg, David Rogosa
and John Shoch for their help as tutors.
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initial enthusiasm faded quickly and most tutors became sporadic in making
their scheduled appearances. This seemed largely due to their lack of prior
experience in working closely with, and at the immediate demand of, several
children at once. Second, and accordingly, the tutors could not maintain
detailed logs of tlicir interactions. Third, the tutors did not always keep up
with new developments in the curricula, partly because its production fell
behind the students' pace and partly because pieces of it were designed "on the
fly" to patch mistakes/omissions. In either case, new curriculum-text was made

available to students and tutors simultaneously--a bad policy.

Therefore, for the second experiment, tutoring was to be done by one
person (the author) working with at most five students, all in the same group
(per Table X), with the appropriate curriculum ready well in advance of each
session. This facilitated note taking, gave the students personal, more uniform
help, and ensured that problems with the curricula/interpreters were caught
quickly. It is one reason why the number of students in the second experiment

is smaller than it was in the first.

Curricula. Development of "parallel” curricula for Simper and Logo proved
to be the most demanding task in setting up the experimer'l‘ts. Both the
concepts and the languages had to be taught, and this is done best with example
problems, some of ‘vhose solutions students must copy, modify or generate. 'Fﬁe
ability to teach b.oth the concepts and the languages would be very sensitive to
the choice of problems. For the students, the experiment was to serve to
improve their litemcy on the subject of computers and computation. Again the

choice of examples and projects would be important.

Unfortunately documentation of problems used in similar work by others
was scarce or cursory. Furthermore, most of the relevant research had been

based on lLogo or an equivalent high-level language. Problems appropriate for a
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low-level language such as Simper are typically quite different. That was the
fundamental obstacle to achieving apparent parallelism, given the intentionally
diverse natures of the languages to be taught. So, the curricula were
constructed to teach the concepts in roughly the same order, using whatever

features each language possessed that could best be exploited for each concept.

As well as the concepts, the mechanical details of each language had to be
taught. A few features (line-editing, Table VII) of Simper and Logo are very
similar and were taught at the same time in the same way. But most features
were taught differently, either because they were appropriate to different
concepts or because they were needed at different times as tools in the general
structure of each language. The Logo and Simper curricula are documented, as
they were during the [i ¢ experiment, in report-1. The discussion here will
concentrate on the changes to the curricula which resulted from that

experiment, in -reparation for the second (see also Appendix 3).

Each curriculu:n was divided izto five logical parts, each typically
discussing more than one concept. Each part gave students programs to work on
and fill-in-the-blanks questions to answer. The parts were distributed one at a
time, giving the autl v a chance w review each student's work on them. Those
students learning Simper and Logo simultaneously (group III) alternately

received parts for each language.

The concepts were presented only very roughly in the order of Table I
For instance, the concept of a heuristic was introduced relatively early via a
scheme for thinking about recursive algorithms. This involved a brief case
analysis of some problems (derived from Polya, 1957): (a) what case can be
computed? (b) how do I detect that case? (c) if not that case, then how do I
generate one closer to it? (d) what must I remember for each case? and (e)
when do I stop? In procedural terms, (a) and (b) form the procedure body, (c)

is the recursive step, (d) preserves local context, and (e¢) is the stopping rule,
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A special effort was made to produce visually pleasing curricula. Path
pointers gave direction to the student, making the next question or inst :cti.n
contingent upon the student's latest response. This subtly introduced decision
making and sequencing (program control), It was, however, a bit too subtle for
most students. Cartoons and examples were chosen for humorous as well as
conceptual merit, and summaries were included so that the curricula could

endure as reference material.

Changes in the curricula between the two experiments centered on
reordering and reformulation of discussions of several concepts. Cne effect was
reduction of the sizes of both the curricula to roughly sixty pages (a reduction

of 1/3 for Simper and 1/5 for Logo).

Modifications to the Simper curriculum were based upon apparent student
confusions in the first experiment. In Part 2, an explicit reminder was added
as to why computers don't understand human languages (because humans
themselves have yet to comprehend their own faculties). ‘This helped to clarify
the curious results students obtained when they followed the advice to "type
anything you please”. Otherwise, Parts 1 and 2 remained unchanged (see
report-1). Parts 3, 4 and 5 then proceeded along a mostly new course in

covering material previously allocated a dozen parts.

The new approach hinged on teaching machine-language first and thereby
motivating both the desirability of the more convenient assembly-language and
the need for the interpreter's powerful editing language. All this was
permeated with allusions to message processing and computational context. The
former being a metaphor used with some success in tutoring experiment-1
students, and the latter being an essential concept that had been troublesome to

many of those students,

Part 3 first sought to clear up the lesser problemn of what literals are in
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the language by demonstrating more examples. It also tried to motivate the
need for registers as a scratch pad. [t then approached one aspect of context:
attention. The machine was described as giving its "attention" to registers and
memory cells when in the process of executing a program--only certain values in
those cells could be "understood" as legal instructions. Without an ability to
focus its attention on a source of messages, the machine would be quite useless.
Registers, as defined by the machine's structure, were described as a means for
passing messages between instructions, reflecting an aspect of the machine's
internal context. In spite of the simplicity of the machine-language programs
written in Part 3, editing commands; such as 'SLIDE' (Table III) found direct

application; and a few students suggested new ones (e.g., 'FLIP').

Simper Part 4 reviewed two of the three segments of machine-language
instructions covered in Part 3 (i.e., the operation and register fields), and went
on to motivate the need for the address field as a source of the second input to
binary operations (e.g., addition) and as a means for accessing "full-word"
chunks of data. Since the structure of most machines modelled by Simper was
once dictated by both technology and economics, a brief word to‘that effect was
included in the tutoring. The essential role of memory in any machine
deserving of the name "computer” was alluded to. Using a time-telling program
Jdeveloped in this and the previous part, students were led into assembly
language. The use of new editing commands (e.g., 'LIST'), designed especially
for this second language, were also introduced. The remainder of Part 4 dealt
with execution sequencing, and decision making. It attempted to motivate these
with an odd/even number-testing program analogous te one used in the Logo
curriculum. This problemn was formulated as a test of the student's ability to
translate an English statement of a program into Simper. Students having
trouble writing the program were helped, and details of this tutoring were

recorded. The final version of the program demanded an understanding of
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literals, names (in the form of machine addresses), binary operations, register
and memory-cell intercommunication, conditional and unconditional branching,
and the communication of symbols to and from the typist. To cap off this
work and prove that problems can often be solved in several externally
equivalent ways, the curriculuin suggested rewriting the program with fewer

instructions (three basic forms existed).

Simper Part 5 attempted to crystallize the idea that interactive programs
define new languages and thus set up new contexts when run. Student-defined
symbols (names) and relative addressing were introduced as conveniences,
peculiar not just to assembly-language programming. They found application in
a random-number, guessing-game program used also in the Logo curriculum.
The decision-making operation ("COMPARE') was then introduced as a way of
making the students’ programs smarter--they could now give their users hints
like: "GUESS HIGHER". At this point, the concept of a function was
introduced much as in the original curriculum and with the same visual aids.
Part 5 closed with some reviews of messages and context in terms of the

"domains" of functions.

Now students could go on to learn how to use the Simper graphics
capabilities (Section 2), which were identical in power to those of Logo. They
could also begin to learn Logo if they had not already. As in the first
experiment, most students did not complete both curricula, so things like
"pushdown stacls"” werc discussed only in terms of special projects which a few

students undertoolk.

Part 2 of the new Logo curriculum was changed in the same way as was
Simper Part 2. Part 3 kept the old discussions of literals and simple, direct
commands, but then led into procedures as program elements, rather than

naming (e.g., with 'MAKE'). Time- and date-telling procedures were the focus
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because experiment-1 students had generated these on their own and had found
them useful as well as instructive. The idea that problem solutions could be
broken into logical parts was demonstrated simply by a procedure that c.iled

both the time and date procedures.

Logo Part 4 discussed naming first in terms of procedure names and then
in terms of input variables to procedures. 'MAKE' was only introduced when a
student's special project absolutely demanded it. Execution control was
iltustrated in terms of a procedure that called itself unconditionally, running
forever. This was parallel to what had been done in Simper. Editing
commands were reviewed, and message passing and context were developed ir.
terms of procedure inputs. Bleck diagrams, which had little success in the first
experiment, were simplified and given a second chance as aids. As for Simper,
the introduction of functions was unchanged. Log»'s parsing of complicated
command-lines was depicted with diagrams, and a fill-in-the-blanks script

adapted from the original curriculum,

Logo Pari 5 opened witli decisian-making as an essential ability of any true
computor and a brie! discussinn of the programnier's role in using such abilities
for his o1 her purposes. 'The various Logo predicates were covered using blocik
diagrams, examples and exevcises taken from the originai curriculum. The part
pradicates ~lay in decision-making was emphasized. Composition of commands
was ¢iscussed, particularly along the lines of a teleplione-vall metaphor. This
wvas expanded further in teems of good program articulation as the following
program was developed. The use of simple recursion (iteratior) and stopping
~ules was mctivated by a clock simulat-r which printed "TICK" or "TOCK"
dernding upon whedher the time (in seconds) maintained by the system was
even or odd  Applications of Logo's two decision-structures ('IF'... and "TEST"...)

also were contrasted with this program as:
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TO KLOK TO KLOK
10 TEST EVENP SECONDS 10 IF EVENP SECONDS THEN PRINT "TICK"
20 IFTRUE PRINT "TICK" ELSE PRINT "TOCK"
30 IFFALSE PRINT "TOCK" 20 KLOK
40 KLOK
where
TO SECONDS

10 RETURN BUTLAST BUTFIRST BUTFIRST TIME

and
TO EVENP :X:
10 RETURN ZEROP REMAINDER QUOTIENT :X: 2
were also defined by the students. That Logo has, as most languages have,

redundant operations, was demonstrated by having students write a procedure

('AIN'T") equivalent to 'NOT".

True recursion (making use of local contexts) was introduced, as in the
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earlier curriculum, using the "little brothers” analogy of Brown and Rubinstein.

The true effect of returning control but not a value from a recursively called

instance of a procedure was clarified.

The concept c¢. a "bug" (unforseen error) in a program was illustrated by a

number-guessing-game program similar to that in the Simper curriculum.
Students were asked to design the program and then modify it in several ways,
all of which, except the last (using 'COMPARE'), suffered from particular

inabilities to interact reasonably with the human guesser:

TO QUIZ :PICK: :GUESS:

10 TEST COMPARE :PICK: :GUESS:

20 IFTRUE PRINT "SMARTY!

30 IFTRUE QUIZ RANDOM REQUEST

40 IFFALSE IF LESSP :PICK: :GUESS: THEN PRINT "GULSS LOWER"
ELSE PRINT "GUESS HIGHER"

50 IFFALSE QUIZ :PICK: REQUEST

TO COMPARE X: :Y:
10 IF BOTH NUMBERP :X: NUMBERP :Y: THEN RETURN EQUALP :X: :Y:
FLSE RETURN "FALSE"
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Logo's file system was introduced at this point because it seemed natural
that students would want to save this particular program. As had been done
earlier for editing commands, a one-page manual was included for file

manipulations and abbreviations. Some examples gave practice.

Recursive procedures that return valunes were introduced using a more
thorough treatment of an example from the original curriculum. Both block
and little-brother diagrams were used to describe how a procedure that removes
all instances 'of a selected letter from a selected word should work. , The
students were asked to try their hands (and heads) at solving the problem by
synthesizing the procedure. Errors and questions were to be noted and solutions
were provided. A playlike script attempted to solidify understanding of one
solution. Different forms of solutions (e.g., left- and right-recursive) were also
discussed. Then a modification was suggested which would lead to the solution
of another problem: writing a procedure to reverse a word. Up to this time,
no stopping rules had been concerned with numerical criteria. Now, counting
and program self-modification were introduced by a procedure that counted up
(or down) to a limit and then modified itself permanently by self-erasure:

TO SELFDESTRUCT :HOWSOON:

10 IF LESSP :HOWSOON: 1 THEN ERASE SELFDESTRUCT

ELSE SELFDESTRUCT DIFFERENCE :HOWSOON: 1

The final of Part 5 developed Polya's ideas on solving problems in terms of
the structure of general recursive procedures. Several projects derived from the
first curriculum were present d. Students could then go on to Simper and

graphics, as they pleased.

The graphics curriculum was derived from that presented to students in
groups IV and V (Table X) in the first experiment. Since students in the
second experiment would have already mastered much of the basic languages, it

was shortened (to 7 pages) and concentrated on animation projects. Each
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student who completed either or both languages was asked to think of a project

to work on, graphics providing an enjoyable and quite acceptable inedium.

What and how the students were taught were functions of two main beliefs:
(a) testing should be an educational experience; and (b) people should

understand as many of the valuable products of their culture as possible.

The nature of the tutoring prescribed implicit testing of each student, yet
all students always got each "answer" eventually. Especially in the second
experiment, students saw their actions precipitate promét, accurate tutorial
responses. For both the students and the research, a working goal was to have
students come to feel at ease with dialectical responses to their questions. For
a few ::udents, this proved to be a difficult departure from their accustomed

experiences in formal schooling.

One knows not when a cultural product might be essential (physically or
psychically) to the individual or to the whole culture. But value is subjective
and evanescent, and one who finds an application for a cultural artifact may not
also find others expressing agreement that the application is valuable.
Nevertheless, any successful try at an application (discounting plain luck) first
demands some understanding. This reeks of technology, yet art, history,
engineering and gastronomics all draw from science to form their own
technologies. In short, everyone should understand and be comfortable with his
or her machines (e.g., Pirsig, 1974)--in the particular instance here, the
"machine's machine™ the computer. Some of the children in these experiments
hopefully would benefit in just this way, even if they might not discover the
fact for years. A nagging fear that this might be a vain hope was instilled in
this author when conversing on this research with a successful educational
researcher, who regularly uses computers {or statistical analyses. Hearing that
computers can do more than perform numerical computations left that

professional surprise  an ewunple of how a tool can be misunderstood.
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4 Data Acquisition and Analysis

The simple methods chosen for obtaining data and the type of analysis
believed to be appropriate for this essentially qualitative study will be discussed
here. Some reasons why the analysis should not be founded naively upon

classical statistical inference will also be outlined here.

Throughout both experiments, the Simper and Logo interpreters saved
information on each student's activities. Each command or response typed by a
str.dent was appended to his or her individual protocol file on the operating
systeimn's disc-storage. Prompts and error messages elicited from the interpreters,
and output from students' programs were also saved as they happened. Each
such piece of information was tagged with its time of occurrence. At the end
of the first experiment, the Logo and Simper interpreters were modified to
accept these files directly, in place of keyboard input. Each student's
interactions with the interpreters could thus be replayed and be observed in
their proper context. In addition, the error-message and timing data in the
protocol files could be analyzed in more conventional ways by forming summary
statistics such as error frequencies and typing delays (response latencies). This
sort of data was not of particular interest, except insofar as it could be used to
point out particularly common errors, or confusions due to imperfections in the
curricula or the tutoring. Some additional data were obtained from notes madé
by the tutors during the first experiment and the author's notes from the
second cxperiment, The bulk of the daia derives from the latter notes and
replays of recorded protocols. Some problems with the IMSSS time-sharing
system, encountered during the first experiment, are discussed in report-1.

Most of them also affected the second experiment in minor ways.

The usefulness of these experiments rests upon the ability to understand

students as they have tried to learn Logo, Simper and the concepts explained in

63



O

ERIC

Aruitoxt provided by Eic:

Page 56

the curricula. Classical liypothesis-testing is not of concern in this wo .,
although others have attempted to reduce their analyses of children learning
programuing to clinical forms, e.g.:

"Children who have had a Logo expericnce for several

semesters will perform significantly better on problem solving

tasks than children who have been in a non-Logo control

environment.”

-- Folk et alia, (1973).

For this work, the goal has been an exposure of basic features of how
children think in the relatively unconstrained environment of a programming
laboratory. ‘That is a qualitative exercise in careful judgement, and it centers
on a detailed study of errors made by students as they try out new ideas for
themselves. But, as in any analysis of data, an analysis of errors must be valid
in the sense that its meaning is not warped by analytical constraints.

"It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories, instead of
theories to suit facts.”

--Sherlock Holmes, by Sir Arthur Conan Doyle.

Whenever statistical procedures (such as classical hypothesis-testing) are
applied to data, certain mathematical assumptions (e.g., of scale and
distribution) about the data must legitimately be met, if resulting conclusions
are to carry any scientific weight. In too many research settings, the
importance of procedural assumptions is ignored, generating technically invalid

or misleading analyses.

These remarks evangelize to those who, perhaps as students or other well-
intentioned researchers, might be seduced by the apparent power or elegance of
various, common, analytical procedures (e.g., analysis of variance), while being
unaware of some of their potential for frivolous application to expediently

massaged (o.g., vacuonsly scaled, "transgenerated” and/or "Windsorized”) data.
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In the social sciences, especially in education, the style of research too
often reflects a Quixotic quest for numerical results, apparently stemming from
the belief that quantitativeness is a precursor of objectivity and respectability
in one's discipline.

"They use statistics as a drunkard uses lampposts, for support
rather than illumination.”

--Andrew Lang.

For instance, some psychologist's fundamentally qualititative data might
mysteriously be provided a "scale" on which important "variables" could be
"measured"--the accrueing benefit to psychology ranking with that brought to
music by some quitarist's chance strumining of the Lost Chord.

Quantitativeness at any cost is a precursor of sham not objectivity. This, and
the dangers lurking in the fog of "cookbook" mastery of statistics, are amplified
by the relatively casy access most researchers now have to computerized,
statistical procedures (e.g., Ellis, 1972). Perhaps as seriously, widespread use
standardized p“'\c;cdures has led to stereotyped theorizing (e.g., to hypothesis
testing restricted to linear models and Gaussian-distribniion theory), wherein
convenient rather than reasonable procedures defir- the -heory, and the implicit
necessary assumptions of the procedures are virtually ignorved. The judgemental
analysis for this work hopefully respects the qualitative nature of the data to

which .t is applied.

An example taken from Simper protocol data illusirates the nature of the
judgemental analysis used here. It shows how one student suddenly seemed to
grasp a concept with which he had been having trouble--name-value association
(addressing) in Simper. If the programming is unclear, the reader shonld refer
back to Chapter 2. The student's dialog with Simper is reproduced here as he

[
was engaged in writing a program to realize the function: x% - 3
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003 :2

015 :ASK A

016 :STORE A 200
017 :MULTIPLY A A
018 :SUBTRACT A 3
019 :WRITE A

020 :RUN 15:

He appears to understand the purpose of addressing in 'STORE A 200, but
his program contains several errors that suggest otherwise. The first causes
execution to stop at 017 because the symbol 'A', used in the address field of the
instruction in 017, has no binding and thus no associated value. The student
thought he could square the A register's content with the instruction:
'MULTIPLY A A', and he thought he could subtract 3 from that with:
'SUBTRACT A 3. In both cases, the meaning of the register field seems to be
understood, but the address field is misunderstood. The student corrects the
first error (messages from the interpreter are in lower-case):

020 :FIX 17
017 :MULTIPLY 200 200

200 isn't a register, use a, b, or p
017 :MULTIPLY A 200

020 :RUN 15:
and the proy vorks except that, because location 3 contains the value 2, the
subtraction ° 't do what he expected. At this point he seems to understand

that he can store and access values via addresses (names) because of his correct
use of the register and address fields of the 'STORE' and 'SUBTRACT'

instructions. But the idea crystallizes:

020 :FIX 201
201 :3

when he associates the desired value 3 with the name (location) 201,

020 :FIX 18
018 :SUBTRACT A 201
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and corrvectly accesses it to complete his program. From this dialog, one can see
the student begin to apply the concept in correct fashion (in the 'STORE'
instruction), then fail because he has not yet mastered it fully, and finally
succeed, partly helped by simple error diagnostics. The student later made a

similar mi-take, but corrected it at once.

Fcr the Hurposes of these experiments, this type of analysis can suggest
when «ud how a student masters something presented in the curricula. Students
can be comnpaved in far greater detail than can be done with occasional discrete
tosts, the curricula and languages may be evaluated very finely, and the

preliminary aptitude test's validity may be rated subjectively,

The language evaluation aspect of the protocol analysis is partly
demonstrated by the following examples from Logo and Simper protocols of
absurd or misleading responses to students' syntactic errors. First, consider:

«PRINT :::SNOOPY:::

don't use the empty thing for a name
in which the student’s obvious attempt at multiple indirect-addressing is
completely misconstrued by Logo's simplistic parsing (the first pair of colons
are found to contain no name string). And second:

00t :SUBTRACT 1 FROM P

002 :RUN

warning! you forgot to name a location fromp

illegal memory reference 0 at 1
in which Simper, striving to extract three fields and no more from the student's

=+, compressed a simple syntactic error and generated a more advanced type of

error. Not only was this spurious error unrelated to what the student had
done, it exposed the student to a situation for which he was not yet prepared
(i.e., the use of assembler symbols). These examples were taken from the first

<
experiment’s data, Since 1t was in part a pilot study for the second, the
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analysit led to changes in Logo and Simper that corrected at least some of these

kinds of fan'ts.

It should be clear that the Logo and Simper interpreters used are not
“omart”. They do not tutor their users on the semantics of programs--in the
experiments, that was left to humans. The interpreters do little more than trap
syntactic . crors, sometimes acceptably well:

001 SHIFT

unspecified register, use a, b, or p
001 ;SHIFT 76

76 isn't a register, use a, b, or p
00t :SHIFT A

shift uses 1, or r or @ and a number in the address field
00t SHIFT @56

@56 isn't & register, use a, b, or p
001 :SHIFT L 56

1 isn’t a register, use a, b, or p
001 SHIFT A L57

As was mentioned earlier, a simple analysis of the protocol files was also
carried ont. For evample, if a Simper student's errors were categorized and
plotted as in the graph in Figure 11, an interesting effect usually could be
observed: familiarization with the language led to a decrease in errors classed
as syntactic and an increase in those classed as semantic--an infererence being
that as students increase their active programming vocabulary, they can more
easily realize their ideas about problems as programs and find that their ideas

(now programs) aren't always debugged. But this is more reasonably

corroborated by tutorial data and detailed protocol analysis.

The tutoring process often was dialectical, especiaily when students became
confnsed. Tt therefore possessed an analytical facet whiclh influenced the
recorded data. For example, when stndents expressed donbt about ticiv ability
to solve a particular problem, they were asked to explain the solution they had
attempted, then they and the tutor examined the pros and cons of this in

relation to the problem statement, converging toward a working solution. For
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bill163.dta:3 AUGUST 1, 1973 12:20PM
1 DAYS, 1 LOGINS, 33.40 MINUIES ON, 372 KEYS TYPED ON 60 LINES.
RESPONSE DELAY, MLAN & DEVIATION: 32.15 74,36 SEC.
1.00 LOGINS/DAY, 33.40 MINUYES/DAY, 372.00 KEYS/DAY
33.40 MINUTES/LOGIN, 372.00 KEYS/LOGIN, 60.00 LINES/LOGIN
11.14 KEYS/MINUTE, 6.20 KEYS/LINE, 1.80 LINES/MINUTE
36 ERRORS: 35 GENERAL, 0 MAME, 0 RUN, 0 FIXUPS
36 SYNTAX ERRORS, .60 SYNTAX ERRORS/LINE, 1.08 SYNTAX ERRORS/MINUTE

.00 RUN ERRORS/LINC, .00 RUM ERF ‘MINUTE
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Fig. 11. A Simple Quantitative Analysis of Protocols.
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reasons outlined earlier, this technique was employed extensively and uniformly

only in the second exp .riment.

Implicit tesiing was thus an important part of the curricula and tutoring
(e.g. pages 49L & 49S, Appendix 3), apart from the aptitude testing done before
both experiments and after the second. It allows students and their mastery of

the concepts to be compared at various stages.

The second experiment's post-testing was done only with those students who
completed all curricula and projects for both Logo and Simper. The posttest
contained questions like those used in the preliminary test, but also asked

questions that required writing Logo and Simper programs (see Appendix 2).

'The preliminary aptitude test's results were presented as a rank-ordering of
the students (Figure 10) obtained by a "forced-choice" evaluation of their work.
Perhaps this is not justifiable, for a test whose validity remains uncertain. At
least a few students, especially near the medians, might well be reordered or
considered hopelessly tied. Yet rank-ordering enforces transitivity. The theory
behind the test is simple and qualitative: take as questions vxamples of the
thinking that programmers are typically asked to do, where some types of
thinking are more important, in the prong_amming sense, than others. The
former relates to validity, the latter to transitivity. No part of the theory
suggests cardination or interval scaling. Perhaps a careful, subjective evaluation
of students' constructive answers can more nearly approximate én objective
ranking-technique (if one exists) than falsely objective testing/scoring
procedures can. The theory behind the test may be wrong or incomplete, but
determining that is ons purpose of the experiments: what do students’
interactions with the preliminary test have to do with their interactions with
the programming curricula? The test's validity teeters on the subjective choice

of questions, and stands or falls subject to experimental data.
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5 Results

Anecdotal and judgemental information will be presented which helps in:
(a2) understanding the students, (b) evaluating the tests, programming languages

and curricula, and (c) characterizing relevant features of the tutorial process.

Apart from normally recorded data (replay files and tutorial notes),
students provided both direct and indirect feedback in both experiments by
explicit opinions and by their behavior. Figure 12a summarizes students'
responses to a questionnaire they received shortly after the first experiment.
The total numbers of opinions for all rows are not identical because some
students felt insufficiently exposed to every item to render an opinion. After
the second experiment, a somewhat more qualitative questionnaire was given, but
only to a few students who had finished both curricula and some project. Their

comments appear in Figure 12b.

Most of the feelings expressed in Figure 12 correlate with casual comments
made by the students during the experiments. In the first experiment for
instance, the plotter was preferred to the robot because "it draws better” (it
produced more faithful drawings); the plotter was preferred to Logo graphics
because it produced portable, permanent results; and Logo graphics was
preferred to the robot because it was faster, more accurate, and personally
available for each student. In the second experiment, more emphasis was placed
on the languages and concepts, but most students still expressed clear
preferences for graphics and Logo over teletypewriters and Simper, despite the
addition of full graphics capability to Simper. Graphics instruction iu the
second experiment occurred ouly at the end of either curriculum and was related
to a project chosen by cach student reaching that point. Thus, each student's
liking of graphics and animation was a function of his or her feelings about

the project(s) chosen. For example, one student chese to implement a graphic
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Tone of Student Remarks

Subject Negative Noncommittal Positive
Plotter 1 16
Graphics Turtle 2 26
(GGames 3 25
Tutors 2 3 25
Return again 2 3 25
Train 3 14
Robot Turtle 1 1 9
Logo 8 21
Logo Lessons 3 8 18
Simper Lessons 5 5
Simper 3 3 5
Teletypewriters 4 12 11

Subjects are ranked on relative fraction of positive remarks.

Fig. 12a. The 1973-Students' Preferences

e
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Lixes:

"I got to learn two languzzes and | was able to better

understand the difference between languages machines

understand and iansi:ayes people understand.”

"Lik2d everything about it and had a great time."

"I liked being able to use letters as well as numbers in
writing programs-- I was able to write programs using

words and sentences, not just numbers."

"It gave me something to do."

"I liked the experience of getting to know them [Simper &
Logol." )

"Everything was A.O.K. including the teacher ... always
willing to help.”

"The amount of time [plenty of it] to do things."
"I like the fact that Logo is so easy to follow."

"[The curricula were] well written, ... and I feel I learned
alot. I also think the teacher did a good job."

Dislikes:

"I didn't really learn that much, you would just learn
something and then forget it. It either was so easy or I
didn't understand it and got boring.”

"Simper ... [I can't follow] where it goes next as easily as
in Logo."

Suggestions for Improvement:

"There should be a little bit of discussion for everybody
before thie beginning of each class."

"Have a few review sheets and review 'quizzes'."

"Drop Simper."

Fig. 12b. Some 1974-Students' Opinions
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ping-puug game complete with scoring (Appendix 4). In doing so he learned
virtually all there was to know about the graphics system and thence rated

using graphics first among his experiences.

The item listed as "games" in Figure 12a refers to certain programs
accessible to students on the IMSSS system, such as Hangman, which were
intentionally not announced until the students completed most ol the curricula.
Some students, of course, accidentally discovered a game or two. The policy was
that games could be used after a student’s regular session with Logo or Simper.
Features of popular games are mentioned in report-1. Studenté were encouraged

to write their own games and some were used as examples in the curricula,

particularly in the second experiment (see Appendix 3).

Since, as outlined earlier in Chapter 3, the tutors generally fell short of
expectations in the first experiment, their highly favorable rating in Figure 12a
could provide ammunition for those who believe that students are incapable of
appraising their teachers on educationally relevant grounds. The remarks in
Figure 12b, however, evidence some astute thinking; particularly the first and
third, which are beyond expectations. 'I'h.e student who felt she hadn’t learned
much also wanted quizzes and reviews, she was apparently not aware of the
testing implicit in the curricula and needed clearer motivation. Her faint
praise that: "It gave me something to ds", also points to a lack of motivation.
Furthermore, she had done some programming in Basic in school and never
truly saw the value of Logo's more general structure. Unfortunately, she
enrolled late and her preliminary feelings aren’t available for comparison with

those of others from her school (Figure 13).

One prevalent opinion among students familiar with both Logo and Simper
was that "it's harder to do things in Simper”. So most students preferred to

work with Logo, regardiess of which language they started with. Figure 14

u/q ’1



The School-Teacher's Question:

"I wish to be ... in the 8-week session of computer
programming, being offered to junior high students with
little or no experience with a computer or comnputer
language. Tell what contacts and interests you have that
prompt you to want to take advantage of this opportunity
and to be involved with a computer and computer
programming for an 8-week session.”

The Prospective Students' Responses:

"Computers fascinate me and I really would like to learn
some of the ways a computer can be used. I have never
used a computer before, but I have seen people using
computers and programming them.”

"I think it would be interesting to learn the computer
language. I have used computers before and have enjoyed
it very much.”

"I like math and fignring out equations and other things
like this. I have done some work with computers, but
not very much at all, and I haven't done any work with
Logo. I would like to have some sort of career dealing
with mathematics, and computer programming would be
very interesting and fulfilling.”

"My dad is a student at the ... school and talks about
computers and how they can solve problems. I would like
to learn how to use them myself and also be able to talk
‘computer language' with my dad.”

Fig. 13. Some 1974 Students' Preliminary Feelings
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tabulates the proportion of time that students spent using Logo (and, by
complementation, spent using Simper). Note that, within each group, students
are ordered by pretest rank. Thus Figure 14 may be matched with Figure 10 to
obtain further information. This convention will be observed in other figures

in this section, whenever it is appropriate.

In the first experiment, few students finished the Logo curriculum, so Group I
spent negligible time with Simper (Figure 14a). But many Group II students
went far enough with Simper to be able to start Logo, partly motivated by
seeing their friends' work. In the second experiment, more time and a
somewhat shorter curriculum allowed Group I students to spend some time in

Simper (Figure 14b).

In either experiment, Group II'sybehavior shows that once students began using
Logo, they stayed with it, almost vxcluding further work with Simper. Figure
14 also shows that students using Logo and Simper simultaneously (Group III),
subject only to the stricture that Logo and Simper curriculum parts alternated,
chose to spend most of their time with Logo (apart from one, Figure 14b third
from bottom, who nearly excluded Logo work, spending time on a Simper
number-guessing game). Group III an-wered a capability question: students can
learn two languages, nearly simultar-~-1¢'y, 2nd can do so at least as fast as

students who learn the same languag.. -cquentially.

Mass preference of Logo to Simper was a desirable outcome in terms of the
students' computer literacy. Although Simper provides a convenient way to
learn and experiment with assembly/machine-lainguage programming, it was
hoped that students would see the advantage of a high-level language. Indeed,
Logo offers what many students seem to want: easy access to message and
picture processing. !' offers a computationally more important feature: ease of
phrasing complicated control structures. However, appreciation of this latter

idea was usually confined to the more able students.



Page 69

(Logo hours / Simper + Logo hours, versus pretest rank,
"-" denotes students who took the test but not the course)

Group

bttt
CDODOO00VLOO0OOOW
.. fes] ©

h ek ek ek

Group

.70
.34
.48
.22
31
0.0
17
0.0
.04
0.0

Group

.82
.69
.64
.87
.67
.69
.68

.68
.88

I

XXXXXXXXXXXXXXXXXX XX XXX XX XXX XXX XXX XXX XX XX XXX XXXXx
XXXX XXX XXX XX XXX XXX XXX X XXX XXX XXX XXX XXX XXX XXXXXXXXX
NXXXXXXXXXXXXXXXX XXX XX XXX XX XXX XXXAXXXXXXXXXXXXXX
NXXXXXXXXXXXXXXXXKXXXXX XXX XXX XXX X XXX XX XXX XXX XXXXXX
XXXXXXXXXKXKXXXXXX XXX XXX XX XX XXX XXX XXX XXX XXX N X XXX XXX
XXXXXXXXXXXXXXXX XXX XX XXX XXX XXX XXX X XXX XX XXX XXXXXX

XXXXXKXXXXXNXXXXX XXX XXX XXX XXX XXX XXX XXX XXX XXXXXXXX
XXXXXXXXXXXX XXX AXNX XXX XXX XXX XXX XXX XXX XXX XXX XXXXXXX
NXXXXXXXXXXXXXANARYXX XXX XXX XXX XX XX XXX XXX XXX XXX XXX
NXXXXXXXXXXXXXXXKAXX XXX XX XXX XXX XN XX XXX XX XXX XXXXX
KXXXXXXXXXXXX XK X XXX XXX XXX XXX XXX XXX X XXX XX XXX XXX XXX

II

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX
NXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXX

XXXXXXXXXXXXXXXx

XXXXXXXXx
XX

III

XXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXXXXXX
XXVNXXXXXKXXXXXXNNXXXXXXXX XX XXX XXXXXx
XXAXKXXXXXXXXKXAXXX XXX X XXX XXXX XXX

XXXXXXXXXXXXXXXXXXXXFAXXXNXXX XX XXX XXX XX XXX XX
XXXXNXNXXXXXXNXXXXAXXXXXXXXXXXXXXXXx
AXXNXNXNXAXXXXXXNXXXXXXAXXXXXXXXXXx
ANXNEAXNXAXXNIXXNAX XXX NXXXXXXXXXXXX
AXXXXANANX XXX XX XXX XX NNXXXXXXXXXXXX
XAXXXXXXXNXXXXXXXNXNXXXXXXXXXXXXNXXXXXXXXXXXXX

Fig. 14a. Breakdown of the 1973-Students’ Programming Time
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(Logo hours / Simper + Logo hours, versus pretest rank)

Group I

.83 XXAXXXXXX XX XXX XXX XXX XXX XXX XXX XKXX XXX XX XXX %

.92 AXXXXXXXXXXXXXKXXXRXXKXX XX XXX AKX XX XXX XXX XXX XXXXXX

.84 ) 9.9.9.9.0.9.9.9.9.9.9.9.9.¢0.9:0.0.9.9.0.9.9.9.9.9.9.9.9.0.9.9.9.9.9.9.9.9.0.9.0.0 ¢

.80 AAXXXXKXXXXX XXX XXX AARAX XXX XXX XX XXX XXX XX

1.0 ) 9:9:9:9:0.0.0.0.9.9.9.9.9.9.0.9.9.9.9.9.0.9.0.:9.9.0.9.9.9.9.9.9.9.0.9.9.0.90.0.90.9.9.0.0.0.0.0.0.0 ¢
1.0 KXXXXXXXXXXXXXXX XA XXX XXX XXX XK XXX XXX XXX XXX X XXX XXXX

Group II

.32 XEXXXXXXXXXXXXXX

.58 XXX NRXXXXXXAX XX AXX XXX KXXXXXXX
61 ).9.0.:9:0.9.0.9.0.9.90.9.0.0.9.9.9.9.90.90.9.9.9.9.90.9.9.9.9.0.%
.18 XXXXXXXXX

.01 X

Group III

.86 XXXXXXXXXXXXAXX XXX XXX XXX XX XXX XXX XXX X2 X XXXX
.68 RAXXXAKXXAXXXXXXXXXXAX XXX XXX XXXX XXX

.82 AXAX XXX XXX XXXXXXXXXXXXEXXKXXXXXX XXX XX XXX XXX
.13 XXXXXXx '

a1 XY AXXXXXXXXXXXX XXX XX XXX XXX XX XXX XX XXX

63 ARXXXXXEXXXXXKXXX XA XX XXX XX XX XX XXX XX

Fig. 14b. Breakdown of the 1974-Students’ Programming Time
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Before further discussing the students' behavior, something can be said
about the validity of the preliminary test. For Group II, Figures 14a and 14b
indicate a strong correlation between students' ranks on the pretest and the
time they ne. ded to complete the bulk of the Simper curriculum--Pearson
(Kendall) correlations of .9 (.8) and .6 (.4) respectively, the latter reduced from
.9 (.7) because the first student could not stay in the experiment long enough.
Students were also ranked subjectively according to final programming ability
and dedication to the tasks presented to them in the curricula. Figures 15 and

16 show these ratings, again by pretest rank, for all students.

For the first experiment, Figure 15a also tabulates the mean rate of errors
in each student's commands throughout his or her work wi‘"* Simper. Some
slight, joint trend of ersor rate and pretest rank seems ev.dent. However,
averaging errors in this way blurs the nature and importance of individual
errors. Without referring to detailed protocol analysis, such a correlation
merits little more than a "that's nice". Fur example, typing and reading ability
varied greatly among the students. Furthermore, some students forged along,
not caring how many errors they made, while others worried inordinately about
making mistakes, particularly observed ones. Various combinations of such
abilities and attitudes obviously can confuse simple comparisons of error rates.
It happens that the fourth-ranked student (Figure 15a, with a high error-rate)
fell into the "unbridled typist" category; the third and fourth from the bottom
(with low error-rates) were extremely careful, tending to work out commands on
paper before typing them; and the fifth from the bottom had a penchant for
typing random numerals, which never appeared as errors because Simper was
perfectly happy to store them away. Apparently anomalous error-rates often
had explanations that bore directly upon correlations of pretest rank and error

rate.

Examining the "mastery” and "perseverance” columns of Figure 15a, we also

rat)
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Groups II and III (Simper data)

("-" denotes students who worked less than 3 hours)

Rankings Based Upon Subjective
Evaluation of Performance

Errors per Command Mastery  Perseverance
.06 XXX 1 3
A4 XXXXXX 3 2
A1 XXXXx 3 3
26 XXXXXXXXXXXX 4 3
.03 «x 2 1
.07 XXx 3 2
.07 XXx 2 1
160 XXXXXXX 4 1
S XXXXXXXKXXXXXXXX 5 4
23 XXXXXXXXXXx 4 4
26 XXXXXXXXXXXX 5 4
B0 XXXXXAXKXXKXXXXKXXXXXXXXX 5 5
26 XXXXXXXXXXXX 4 4
15 XXXXXXx 6 5
A3 XXXXXXx 6 2
16 XXXXXXXX 5 4
4 XKXXKXXKXXXXKXXXXXXX 5. 4
27 XXXXXKXKXXXXXXXx 6 3

Fig. 16a. 1973 Simper Students' Performance Versus Pretest Rank
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Groups I and III (Logo data)
("-" denotes students who worked less than 3 hours)

Rankings Based Upon Subjective
Evaluation of Performance

Errors per Command Mastery  Perseverance
16 XXXXXXXX i 1
13 XXXXXXx 2 1
28 XXXXXXXXXXXXXX 2 )3
33 XXXXXXXXXXXXXXXXx 3 2
B2 XXXXXXXXXXXXXXXX 2 2
35 XXXXXXXXXXXXXXXXXx 4 5
220 XXXXXXXXXXX 5 5
26 XXXXXXXXXXXXX 6 5
21 XXXXXXXXXXx 2 1
16 XXXXXXXX 4 4
15 XXXXXXXx 5 3
24 XXXXXXXXXXXX 4 2
26 XXXXXXXXYXXXXX 2 1
260 XXXXXXXXXXXXX 6 4
19 XXXXXXXXXx 3 2
28 XNXXXXXXXXXXXX 5 4
17 XXXXXXXXx 5 J
29 XXXXXXXXXXXXXXx 3 2
A5 0 XXXXXXXx 4 2

Fig. (5b. 1973 Logo Students' Performance Versus Pretest Rank
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("-" denotes student who wworked less than 3 hours)

Rankings Based Upon Subjective
Evaluation of Performance

Errors per Command Mastery  Perseverance

Groups II and IIl (Simper daia)

.08 XXXX " 2
.08 XXXX 2 2
20 XXXXXXXXXX 1 2
07 XXXx 1 1
04 XX 1 1
04 XX 2 3
04 XX 1 1
09 XXXXx 2 2
09 XXXXx 2 3
05 XXx 3 1
07 XXXx 3 2
Groups I and III (Logo data)

.23 XXXXXXXXXXXx 1 1
12 XXXXXX 1 1
19 XXXNXXXXXXx 2 2
14 XXXXXXX 1 1
23 XXXXXXXXXXXx 2 1
09 XXXXx 1 1
21 XXXXXXXXXXx 3 3
19 XXXXXXXXXx 2 1
20 XXXXXXXXXX 3 2
20 XXXXXXKXXX 3 3

Fig. 16. 1974 Students' Performance Versus Pretest Rank
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see some mutual trends with pretest rank. High rankers, especially in mastery,
tend to be above the median; low rankers below. Figure '"h shows similar
results for Logo students. Note, however, the lack of obvio m1al trond

hetween error rate and rank in Figure 15b.

Protocols provide the following explanations. In Groups I and III: the
unbridled typist returns with 2 °  ~a as the fourth-and fifth-runked students;
carcful planners are bottom w. i from the bottom; the random-numeral
typer is now caught by Logo, generating a higher rate, sixth from the bottom;
and a new phenomenon:  picwure-printers, fifth, tenth and cleventh from the
bottom, who discovered how 'PRINT' commands could be employed in procedures
that "drew" theic favorite things (like the "Starship Enterprise"). The latter
three students made relatively fewar errors because they stagnated at this point
in the curricaluimn. Students were never coerced to continue the curriculum.
Rather, a wait-and-sac attitude was adopted, hoping that stragglers would
eventually notice that other things, being done by other students, could also be
interesting.  This tack failed with one of these three students from the first

experiment.

In the second experiment (Figure 16), the-» is again little common tre=d
between error-rate and pretest rank. But again, from protocols, notable
exceptions can be explained.  For instance, the third adent with Simper d:ita
has a high error-rate because wore th.n half of all his crrors were made
playfully, in response te a naming error-message he received one day when he
tried to save a program nnder an illegal name. The middle Logc student has a
very low rate because he authored several games (notably graphics ping-pong)
which he and others used a great deal. and with little chanc: for error. As in
o first experiment, test rank and subjective evaluations are correlated

somewhat,

El{lC ' 8
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In general, students csperimented more with Logo than they did with
Simper, apparently because they felt more able to express their ideas in Logo.
This partially explains why the median error-rates in the two experiments for
Logo students (.24 and .20) are higher than those for Simper students (.16 and
.07). An additional cause is siinply that one has a widcer variety of errors to
commit in a Logo command. This had more noticeable effect in the second
experiment {Figure 16). ‘Ilie lower overall error-rate of students in the second
experiment also correlates with their apparently beiter performance on the
preliminary test (compare proportions above performance breaks in Vigures 10a
and 10b). More prompt and accurate tutoring alsu tended to reduce the total of

crrors.

Understanding the Students. Ilere the central interest is, of course, the
processes through which students learn programming. The goal being to find
observations thai shed iighi on studen!/tutor interactions in general. The
following results derive primarily from detailed protocol analysis, and begin
with a sampling of the students’ initial, unfettered expectations about computers

as rcxpressed first to Simper:

HELLO WHAT'S NEW? DO YOU WANT TO PLAY JOT'I‘(j?
DO YOU LIKE SUMMER? » I AM FUNNY

THIS TYPEWRITER IS TOO SLOW SOME DOGS ARE WHITE

WHAT 1S 12X127 HOW DO YNU WORK?

TEACIH ME i0W 70 DO A PROGRAM 1IOW DO YOU KNOW?

THIERE AR TWO MILLION FLYS IN AMERICA LET N = G

YOU ARE WEIRD, BUT SMART MY NAME IS ...

CAN YOU READ AND WRITE? CaN YoOU TALK?

THIL MAN IS CROSSING THE STREET Aot YOU A CO. "UTER?
TO Bl R NOT TO BE PRINT MY NAMI

DEAR JUDY, THIS COMPUTEHIC CLASS IS A LOT OF IFUN.
EVERY ONCE N A WHILE THE COMPUTER GOES WACKIEIY!

Q ! 8‘1
ERIC
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then to Logo (some error messages arc shown--in lower case):

HOW WwIANY QUESTIONS CAN YOU ANSWER?

HOW MANY WORDS DO YOU iLNOW?

COMPUTERS ARL DUMB
computers needs a meaning
COMPUTERS ARE ILLOGICAL

WHY ARE YOU A COMPUTER?

THIS IS GOING TO BE VERY FUN
this needs a meaning
IT MEANS IT WILL BE ENJOYABLE

[IOW LONG HAVE YOU BEEN IN SERVICE?

how neceds a meaning

YES

y. s needs a meaning
AFFIRMATIVE

affirmative needs a meaning

YES MEANS AGREED, CORRECT
yes needs a meaning

I JUST GAVE YOU A MEANING
i needs a meaning

I MEANS #1176

i needs a meaning

I GIVE UP

ARE w)U A LOGO OR A COMPUTER?

I HAVE HOMEWORK TODAY,
I HATE HOMEWORK

MY DOG IS BLACK

THE SUNSET IS BEAUTIFUL
PLAY CHESS

play needs a mearing

PLAY MEANS ° DO SOMETHING
FUN

fun needs a meaning

IT'S LOGO

ADD TWO AND FOUR

GIVE ME AN INTRODUCTICN

1 AM A VERY BALDLY GOOD BOY

I AM IN A VERY GOOD COMPUTER CLASS BECAUSE IT IS A PLEASUI

WORKING WITH TUE COMIUTER, SHE, LOGO, RETYPES WHA'T "VER "7

WANT

Of course, students had heen encouraged to plumb Logo's and Simper':

"minds”, and all the above efforts received replies of no more than eithe

"unknown operation xxx" from Simper or "xxx needs a aeaning” from Lo o.

Interestingly, Logo's more understandable resp .se tended to stimulnte dialogs.

Some s

dents struck forcaitously upon primitive operations--Simper:

COMPUTI RS ARE FUNNY
are’ Int e vegister, use a, b, or p

COMMAND YOU

‘vou' isn't a rogister, use a, b, or p

("COM" is short for Simper's "COMPARIY

WIHERY IS GERMANY?
you are not using the train
Yhs T AM

RN YOUR LIBRARY BOOKS NOW
your ocds aomeaning

operation), and Logo:

GET GOLF
something missing fe- get
GET GAME
something missing for get
GET PLAY

something missing for get
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YOU ARE A STUPID COMPUTER
PRINT "*"

M 15 THE COMPUTER A COMIMTIVER?
the needs a meaning
DO GO GO 1S GEORGE HOMSY A "7 7 aR?
go needs a meaning george need. a meaning
IS MR, HOMSY A COMPUTER?
MAKE A SN 'Y mr. needs a meaning
a needs a meaning IS 1IOMSY A COMPUTER?
homsy needs a meaning
BREAK IT UP; YOU NASTY THING! SHUT YOUR TERMINAL UP AND"
break GIVE ME AN ANSWER

At this carly :stage, accidental discoveries of this sort usually passed
unnoticed. Eventually most students did take notice of and exploited various
syntactic features like mindless orror-messages, Simper's abbreviation-by-
trur aticn, and the commenting character ';'--Simper:

UNKNOWN OPERATION WRINKLE A

unknown operation unknown HALLUCINATIONS

: YOU CAN'T TALK WITH ME BECAUSE YOU ARE DUMB
(WRT' or 'HAL' select Simper's '"WRITE' or "HALT' onerations) and Logo:
I AM THE TURTLE THISCOM PUTER

i "leeds a meaning thiscomputer needs a meaning

PRINT REQUEST
£ pPAUL IS GREAT TYPE THIS SENTENCE OVER WORD FOR WORD

PRINT "I DO NOT KNOW HOW TO PRINT”

1 o~ 1ot know how to print

. YOU wAED

IF OREN 13 DUMB, TYPE IF NEEDS A MEANTXNG

orer needs a meaning
Paraiox and preaiction weee favorite techniques that some students used to
“tosult" their friends. To his Lizting surprise, the latter above student's
trickery hoisted him e Fis own petard. These were healthy interactions

hecause students were encouraged to keep experimentation as one of their basic

tearning tools.

Init ally, these naive pre unmmers often hiad a very high opinion of
Y, I b

Q ’ 8 t
ERIC
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It was easy to show them that Lnglish is not

Flase 79

»

yet a

mode of commnnication between human and machine, but it often took a while

for the implications of this to penetrate.

At times, students' attempts at

commuanication were tied to curriculum ideas:

REMARK LITERALLY

PUT A BU" " A

SIMPER COMMANDS ARE FAMILIAR TO COMPUTERS LIKE SIMPER

PRINT "HOWCOMELOGOWORDSDONOTHAVESPACES!

WILL YOU WRITE ML SOME SIMPER 1

JASE

3 4 10 ARE RELATIVE TO THE NUMBERS 15, 17, 29.

IN WHA'T' WAY THOUGH?

unknown operation 3

4 (‘THREE) IS A NUMBER AND ALL COMPUTERS LIKE YOU SHOULD

KNOW WHAT I'l' MEANS!

Sometimes they bhecame confused about curriculum instructions for giving

commands.

cucrrenlum excerpt:

A FEW WORDS
LINEFEED
1 TYPING 1

GO TO THE SUPITIMARKET
BUY LEGGS AND BACON

FIXPUT P 2TO P 1 RUN

The following shows some examples along with the motivating

. type a few words and ...

. all you do is type LINEFEED and .,

. and then typing 1 and ENTER ..
(sece Appendix 3, page 18L or 17S)

nse FIX to change .. from PUT P 2
to ©r1 P 1 oand then use RUM vl |

In fact, some students typed Simper's proapt because it had been shown at the

peginning of o line they wer

not: ADD

nnknow o operit’

One student treied

Messige!

CECUTING

aske.

to type:

00L:

) get a program to run by simulating Simper's runtime

O 250

unknown uperison excenting

ERIC

Aruitoxt provided by Eic:
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producing an enjoyably idiotic response. Another student, in his frustration,
uncovered a bug; not in one of the interpreters, but in the Sail compiler’s
string runtime-routines:

,NYOU STUPID COMPUTER
'stupid’ isn't a register use a, b, or p

The bug disguised the ™" and thus the proper erro . "unknown operation ,you".
Once in a while, unrestrained joy of accomplishment in solving a problem would
surface, only to be muted by an unbending parser:

YAHOO! T DID IT!

unknown operation v .t 20!
; I KNOW I KNOW

iisviously this student already knew how to protect her comments.

“onfusions sometimes arose + -n students worked with hoth Logo and
Sinteee (w0 lie Greup ). Logo commands cropped np in Simiper protocols and
vicr v sy, Tn o those cases, however, the first or second error me:s: age usually
W freie: 9 rewiad the student of which interpreter was li-iening to his
or her typing. In a few caees, students thought they could resort to Logo
commands when their Simper programs failed to produce results. This was one
sirmple way students gave evidence of heing more at ease with the Logo
language. By far the most common interjection of Logo commuands into Simper
protocols was in saving programs. Apparently, learning the more complicated
Logo scheme of "entries” in "files” verrode some students’ knowledge of

Simper's simpler filing method,
g

At the very least, most stedents initially thought that a computer cou. !

help the v on - personal basis:
PRENT "ALL THE ¢ JURSES AND LESSONS YOU VI TO OFFFER”

Agreed:  that should. and perhaps will, @ aeday be the case. Several students

S5
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discovered Simper's '?' (or 'HELT") command which printed a roneral description
of the Simper language. While this was never intended to be a necessary part
of the course, it nonetheless was exercised frequently by a few students.
Curic.sity and an open desire for aid were attitudes to be e:ploited and
encouraged. Students' were williug to experiment in trying to use Logo and
Simper as information resources to help themn work on ideas from the

curriculum.

Now, in discussing details of how students learned the concepts and the
languages, the Sunper and Logo protocol duta will be treated separately. Some
observations relating students' performance and their worl n the preliminary

test will also be mentioned.

Simper. Sincs work with numb.rs was so much a part of these .ud
prior schooling, it was relatively easy for them to accept that a maciine
(Simper) could have a geod memory for numerals. But several had difficulty
understanding that some numerals could have special meanivng, . ther than
sounting, to a maechine. In the first experimeni. this was a probiem because of
the prenfure inty ¢ ction of assembly language, thus working downward from
snglish vati or than upward from mac.ine language. The ufter sequerce was
adopted i the second experiment and reduced the i i nce of syntactic errors
such as m. tiple instructions per line, making it cleaver iha! only thcee ficlds

can be asaembled inio one memery cell's machine-language numersi.

The orderiy cacention of & saerals as instructions was still more aostract.
The shor ing-list example (App ndix 3, page 178) and the house-to-house
colloction (App-rhis 3, page 318) fatled to motivate e xecution for
come students. Prosrams wers written with interspersed "holes”, despite the

abetonsly sequential relationship beteen inctractions on cither side of o 7oote.

A self-destracting program used in the Ciest cxperoneat hielped here (see report-

- -~
tr

Wil

ERIC
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1), and in the second experiment, greater care in introducing machine language
secemed to be sufficient. Some of the "holey" programming can be traced to
Group T stundents who learned to use Loge line-numbers in canonically sparse
(10-20-30...) sequence and hoped the same editing advantages would accrue in

Simper.

In both evperiments, addressing values rather than stating them directly
was difficult for many students. One wrote his own time-telling program, knew
what had to be done to get minutes from seconds, knew something about
aadn g already, but typed:

001 TIME A

002 :DIVIDE A 60
though he did not intend to divide by the content of location 60. The
curriculum section on indirect addressing was very helpful to those students
who still had  rouble with this concent.  Not surprisingly, tudents who ha .
trouble v h the implicit name-value associations of the numbers-in-bhuxes

vroblem on the preliminary test also had troubl: with ‘ressing in Sim- ot

The most pervasive problem was mastering ae concept of context (or
locality of information) both from the student’s point of view as a user nd
from the point of view of instruction: with'n his or her pro, s, The most
common example of the former occurred when a student ran a program and
dectded that it needed modification. While it wu. =till running, and perhaps
waiting for an input (for 'CASK' or "ASK'), he or she would type an editing
command g "LIST or 'SCRATCH"), fully expesiing 1t to be obeved.  This

cuntime/edit-tine confusi 1 was seen  in eoery student's work oo least once.

Coutext orrors within pros cams cerered upon redundant or memory-

“clothoring” sets of nstructions. For instance:

&0)
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oot :PUT B 1 001 :PUT B 1

002 :STORE B ONE 002 :STORE B ONK
003 :ASK A or 003 :ASK B

004 :PUT B 1 V04 STORE B ©A
005 :STORE B ONE 005 :PUT P .-3

In the first program, the conteuts of register B and cell 'ONE' are unnecessarily
reset at 004 and 005; iu the second, the coutent of cell 'ONE' is continually
destroyed by 'PUT P .-3' (instead of 'PUT P .-2'). This latter kind of bug was
common. yet it had already been exploited as an example within the curriculum
for the first experiment. It was apparent that a much wmore explicit treatment
of com:utational context was needed, and this as done in the second

eaperi sent, with mixed results. Students whr 'iad the most trouble with the
candv-machine problem on the pretest typically had the most trouble organizi

the ¢ Stmper programs.

The most subtle way in which cou.ext affected the students was in the
relationships among the iutevpreter, the assembler and the machine. Most
students in the first exp viment didn't fully grasp the distinction between
editing commaunds and assoller/machine instructions,  Sometimes they
attempted to abbreviate he former (e, "SCR" for 'SCRATCIH') and expect the
latter to be obeyed at once. The second experiment's curriculum was modificd
to cli.ify these issues, which were founded primacily upon the confusion of
editing time with execution time. Its better tack of introducing machine
languaze before assembly language helped a great deal aund explicit discussions
of runtimeZedit-time were ine' ted. No one question on the preliminary tesi
ser ned to relate strongly to this type of error. This is probabiy oue point for

improvemeut of the test.

Toward e end o7 e curriculum and in studen projects, proceduves and
their catling seque: “ided eramples of how pregrams could be structured

by writing functionatly related subueit=. In this case, holes were ok, Success
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here demanded that the student had mastered the concepts of addressig and
program control.  Fatlures to structure these programs correctly were of two
forms:  foilure to define a proper calling sequence, and misplacement of the
calling sequence in the flow of the program. Some inputs to procedures,
particularly the return address, were overlooked;  once the call itself was

incorporated as part of the procedure body.

Becavee, - the first experiment, no students had time to do significan.
worle on the final part of the curriculum dealing with stacks and recursive
procedures, the second experiment treated these programming techniques only as
tools f+ use in projects chosen by students who had completed the formal
curriculum.  When these tools were exevcised, by a few students. the notion of
context could be be motivated very well. IHowever, in either c.periment, few
stadents completed the enrreicnlum 1 fower still completed seme proj -t. In
passing through the course, the data gradually becomes dominated by the work
of the more able, typicall- older, students.  The remaining students simply did

not proceed as far.  This has undoubtedly colored later observations,

Before dealing with individual student performance, a few mscellaneous
comments remain, Some students actively exploited features of the Simper
interpreter--for instance, trunc:'ion of operaticn names (eg., 'STOP" for
STORE and 'TOAN' for 'LOAD'). One student occasinnally harassed the
maclhine y repeatedly saving a procram on .o crle 0 already existed just so
he ceald respond "no™ to Simper's carning: “a program called xxx already
exists! okt desteoy 1?70 The tmportance of elear, relevan: error messages

alen becanoe apoarent (see Chapter 4 for examples).  An czample follows that
Pi I

shows hiow wiseeading one word can dangerously alter the meaning of a o ossay
SAVE
whirt yort want to noune your program? YES

vk, yes anosaved
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illustrates the care that must ! pplied to apparently trivial aspects of an
interpreter.  In line with earlier comments about contextual errors, it shonld be
mentioned that the above question and the students together produced several

saved prograwms called "STRATCH'.

Figure 17 displav:. ilie sequence o which Stmper-related concepts were
learned by each of the students in the second experiment, for which the best
w1 exists. The ting at which mastery occurred was judged as ontlined in
Chapter 4, using error analysis. These language-related concepts connect with

one or nmore of the gencral concepts outlined in Table I, and so give an

approxiiate idea of the sequence of their mastery.

Logo. Students were less able to adjust to Logo's string manipulations than
to its mwore familiar numerical notation. For example, most students had
trouble remembering to quote nonanumerical strings.  Logo does not require that
numerals be quoted, but demands that literal words and sentences be quoted.
The former default tended to be generalized by some to their designation of he
latter, especially ‘n direct commands.  The second experiment attempted to
clarify these notational maters, But was not entirely successtal--all literals

~1eonld probably be quoted at first, perhaps ever by modifying Logo.

Pro had not been introduced early enough in the first experiment, so
2 ose ~tudents did not have a fracework within which to execute direct
command: and then add them to swooed programs by editing  In the second
oxrorivent, procedures were introduced early (Appendix 3, page 18L) and as
being, i essence, new Logo commands.  Many students soon caught on to the
valus of heing abie to construct new and personal tools, either for use or

Anusemsent:

1oy SKIPP o TO WIDL?
6L AP o STHEN DONT, 103 P “"DIAJ"
10 SKIP 127 1 "DIAJ NEEDS A MEANING”
1 eIy DITEERENCE 00 1 b O, 0K
[
! G



Approximate Hours te Apparent Mastery of a Concept

Student {by pretest rank, Fig e 10b)

Concept 1
Addressing 1.1
Sucressor .9
Fixecution

Simple 3.2
Control

(using 2UTY)

Decistons 3.9
(using "JUMP'/
‘COMPARE")

Iterition -
Sub -Programs -

Internal .9
Context
{using storage)

User Machine 3.2
vontext
('RUN'-'EDI'T")

(Boldface nmumbers indicate vory accurate times, a dash signifies that

2

3.8

1.8

h.6

5.8

6.6

1.8

1.2
1.3

8.3

3.3

6.7

8.6

4

1.3

3.6

2.5

6.9

1.6

5.6

3.4

3.4

8.7

8.2

1.2

2.3

7.2

7.3

cone. st was never clearly mastered.)

Fig, 17.

94

Timing of 1974 Studonts” Mastory

10 11

5 - 1.7
2.5 .9
7.5 3.7
7.1 3.4
8.5 17

9.3 1.8
7.8 2.4

13 14
2.3 4.1
9 1.2
4.3 1.7
D 7.7
7.8 10.6
1.5 9.1
6.4 5

15

2.4

1.7

3

(91}

16

Page 86
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Af Simper-Related Concepts
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TO TRY

10 BYIts 90

20 P ULEX CANNARA IS YOUR INSTRUCTOR DO NOT 1 REPEAT DO
N v CalY SOMEBODY ELSE'S PROCEDUIC | OR YOU WILL ¥PEND
OOV LOURS TRYING TO FIGURE I'T OUT AND ALSO YOU WILL

END

The first above was constructed by a student when, well into the curriculum, he
needed a way of clearing hi. display sereen and didn't know that Logo had such
a command ('CLEAR'). e obviously ic.! alveady mastered iteration and simple
recursion,  Interestingly, simple (Lt @ ve) (ocursion came easily to many
students upon their first exposui “Avenndix 3, page 20L), and common

ad-libs took the form:

TO RING TCO L GCYCLE
10 BELL 10 P "LIBRY SHOOP"
20 RING -v BICYCLE
IEND FEND
TO TOM
10 PRINT "IF TOM ' AS NOT GREAT I WOULD STOP WRITING"
20 TOM
END

Several procodures (e, "TELLTIME') that were used in the second experiment
were incorporated because students in the first experiment had done them on
their own and thus found them interesting or useful. Sometimes early
procednre-writing attempted the impossible:

TO TELLV, CATHER

10 PRINT WEATHER

[IND

in the first experimen!, naniing (eone/value associations) had been

introduced via Logo's "AMAKE operifion, but there was relatively little use for
this in later progresmine, In the secon’ experiment. proosdures were used to
introduee the concept, as nanted chusks of commonds which might even reocive
¢owsaces oo ovalues Cinputs) and link thon with internal names (Appendin 3,
Logo Poars ). MAKRE was never mentoned unless a student’s projece logically

required it

9%
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Typical errors using "MAKE in the first expeviment werer (1) forgetting
gquotes avound name and/Zor valne, (2) using colons around the wame (veasonabie
in view of most of Lopo's syntax, o, "MAKE (X "Y"™ i reatly net oaoking the
villue 'Y to the name "X, but to the vidue already assocrated with "X'), (1)
inverting name and vialue positions CMAKE SUM OFF 5 AND 9 ANSWER'), and
(1) linking assignments by one command (a2 reasonable expectation, eqr, 'MAKE
"SNOODPY" "CHARLIE BROWN™ "LINUS", where the curriculum intended
MAKE "SNOOPY" "CHARLIE BROWN"™ and 'MAKE "CHARLIE BROWN"

CLINTIS™),

“oming errors made by students in the second experiment, where procedures
int.oduced the concept, were reflected by defective inpnt correspondences and
control problems generated during editing. For examptler (1) input ~variable
nartes in the title vould not mateh those in the procedure’s body, and (2) the
name of a procedure would be edited bhut not then changed in @ recursive call

oo eall inanother precedure,

In both experirients, initied confusions about Logo's celon notation (te.,
X means Cvalue ascociated with name 'N™) produced errors liker  "PRINT
SSNOOPYST (te actieve indireet addressing), and: "RETURN PRODUCT (X o2y
aor "DOUBLE 2240 (~onfusion: between literale ol names, and bhetween actual
and formal  arameters). Part of the confusion arose because Tiogo does aliow
iclirect addvessing via repeated applications of "VALUR ("I'U L. NG'), and it

alltows pomerals to be aonnes,

Generallys tadents vho has trouble with the cardy-machioe and numbers-

in-bose s probbeas on Che proliminarey teat o0 o oad troable with proceduse
onc oo o The coneept cf et vnters at everal ood s in produeimy a
VO, L Lo pray Seoand, ot as in Siomper, is onot o conlined fo o the
Cortesed e chetorays oo toalos cosider the oo wr of variables
G
Jo

O
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formed in multiple or vecursive procedure calls or in complicated command
lines. The linkage is more subtle in Logo since it is managed by the
parsing/execution stack (see Chapter 2, or report-1), and most students’
misunderstandings showed up as soon as they tried to solve problems requiring
more than one procedure, or even more than one input to one procedure:

TO FUNNYADD :SOMETHING: :SOMETHING:

10 RETURN SUM FIRST :SOMETHING: FIRST :SOMETHING:

END
The above, when executed, e.g., by 'FUNNYADD 87 15, »;/ill not return 9 but 2
instead, because only the last instantiation of "SOMETHING:' will be on the
execution stack when line 10 is executed. This student simply thought that the
position of a name in a title line, rather than its character content, linked it

to a command-line input.

The 'DOUBLYE' procedure, given as an example which students were to later
modify (Appendix 3, page 28L), provides an exemplary set of errors made by
students early in cither experiment. Only the command line and not the title

are shown here:

10 RETURN MULTIPLY :X: 2 10 RETURN PRODUCT :X: :X:

The first is a linguistic confusion: should an operation's name reflect its result
(product) or its action (multiply)? The second is a very common error that
unintentionally makes a squarer--the squaring operation itself being unknown to

most students who made this error!

Since Logo accepts "noise" words such as 'OF' and 'AND' (e.g.,, 'SUM OF 2
AND 3'), many students expected to be able to use "BY" or "TIMES" in
appropriate places in 'DOUBLE' or its inverse: 'UNDOUBLE'. 'The pros and
cons of noise words will be discussed later. Ixamples of personal noise words

and otlier errors made by students doing '"UNDOUBLE' follow:



Page 90

UNDOUBLE MEANS TO DIVID TO UNDOUBLE IS TO TAKE HALF
RETURN DIV 2 :NUMBER: TO UNDOUBLE :THING OF :NUMBER:
RETURN QUO :NUMBER: :2: PRINT DIVIDE :NUMBER: BY 2
RETURN QUO :NUBER: :NUMBER: PRINT DIVISION :NUMBER: :NUMBER:
RETURN QUOTIENT :NUMBER: BY 2 PRINT QUOTIENT :NUMBER:

DIVIDED BY 2

RETURN QUO OF :NUMBER: AND :NUMBER: BY 2

Some classes of error already discussed appear here, namely English attempts at
solutions, spontaneous noise words, and name/value errors. An additional
problem is evident that concerns the stream of messages processed hy Logo
during command execution, namely: to print or return a computed value. Many
students seemed to think that the printing on their terminal was examined by
Logo at the same level as a command. One student believed she needed to
comment (with ;') part of a string because only its first word was a legal Logo
operation:

TO BY

10 PRINT "GOODBYE; KAREN. SEE YOU TOMORROW!"

20 GOODBYE

END
Thus students had trouble understanding that the receiver of a message
determines its context and thus its meaning (or effect). Some were

particularly confused and thought that they must, for example, say: 'PRINT

UNDOUBLE 3' even if their 'UNDOUBLE' properly contained a 'PRINT".

The contrast between 'PRINT' (or 'TYPE') and 'RETURN' was also based
upon the execution-control aspect of 'RETURN'--it terminates a procedure when
executed, no matter where it appears. This was typically a problem for some
students, who used maultiple 'RETURN's as if they were appending to the output
message, as 'PRINT' does. Typically the sever:! nrocedures given in the

curriculum as exercises (Appendix 3, Part 4) had all to be done before a
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student really scemed to master the basic difference between 'PRINT' and

'RETURN".

In the first experiment, a problem based upon a preliminary-test question
(the 2-columin function-table, Appendix 2, page 128) was presented in both
curricula. Since its command line involved one of the ear]’ st exposures of
students to composition of functions, some attempted solutions are interesting.
It was hoped that students would use their 'DOUBLE' procedure in the solution:

TO RULE :NUMBER:

10 RETURN SUM 9 AND DOUBLE :NUMBER:

END
But those not using 'DOUBLE' often became eu‘tangled in the mysteries of
nested expressions, noise words and syntax in trying to produce: 'RETURN SUM

:NUMBER: AND SUM OF :NUMBER: AND 9'. Some examples:

RETURN SUM :NUMBER: :NUMBER: 9
RETURN SUM :NUMBER: :NUMBER: SUM OF 9
SUM OF 9 TO THE PRODUCT OF :NUM: BY 2

TO CORRESPOND 3 TO 15, 4 TO 17, AND 10 TO 29

10 MULTIPLY :NUM: BY 2
20 ADD 9 ‘

10 MAKE PROD :NUMBER: ANJ 2 ANSWER
20 RETURN SUM OF ANSWER AND 9

TO ADD :NUMBER:

10 RETURN SUM DOUBLE ADD 9
The last example loops forever zs 'ADD' calls itself with 9. In the preceding
two examples, students appeared to understand the rule but tried writing the
expression on sequential command lines, among other errors. Such attempts to
communicate values implicitly across command boundaries were initially quite
common and not velated to prior work with Simper. In some cases, the

curriculum (Appendix 3, page 181.) was one influence, bnt most of these

Q. 39




Page 92

students simply felt it was a natural way to proceed towards a solution. Again,

misunderstanding of context usually was the culprit.

Students were always encouraged to decompose a program into a basic set of
related procedures. ‘This was true for graphics projects as well (see report-1).
One problem ('SWITCHI13', Appendix 3, page 37L) was quite effective in
demonstrating this principle, particularly in the second experiment because of
the earlier introduction of procedures. Errors in solving this problem and
other, like problems involved coordinating procedure inputs, choosing operations,
and use of the 'RETURN' command. Students who forgot to declare input
names in the title, or used names different from those named in the title,

found that Logo happily supplies them with the default value rather than

complain about an undefined variable. A desirable solution was:

TO SWITCH13 :X:

10 RETURN WORD THIRD :X: WORD SECOND :X: WORD FIRST :X:

BUTFIRST BUTFIRST BUTEFIRST :X:

END
wlhere 'SECOND' and "THIRD' were previously written by the students to return
the second and third letters of a word respectively. Students often failed to
break the problem into manageable parts and thereby notice that some of the
components had been solved previously. An acceptable solution of that ilk was:

10 RETURN W F BF BF :X: W F BF :X: W F :X: BF BF BF X:
('BF' abbreviates 'BUTFIRST'; 'F', 'FIRST'; and 'W', 'WORD').  Actual
attempts:

10 RETURN W W W F BF BF F BF F BF BF BF :W:

TO SWITCH13

10 THIRD :INPUT:

20 FIRST :INPUT:

30 PUT THIRD FIRST AND FIRST THIRD
END

The first example shows a common initial belief that one input can be
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distributed over several operations, The second shows attempted inter-line
communication, impljcit 'RETURN' and English instructions. A related, simpler
procedure, to put the first letter in a word las¢, was written by one student as:

TO REV .yIP:

10 RETURN :IPY:

END
in the interesting belief that characters in an input's name map into those of
its value. Because Logo aefaults yndeclared names, as mentioned earlier, she
persisted with this scheme in several procedures, thinking she only had to get

the right combination of letters to succeed.

One frequent error was forgetting to specify all of the inputs in a direct
command or recursive call, especially when that input does not change. One

1973- sraphics student defined the following unusual program:

TO STEVE .Bp 17 16 48. TO BD :L: :A: I

10 :BD 17 14 48: 10 FRONT :L:

END 20 RIGHT :A:
30 BD :L: SUM :A: :I. :I:
END

She then typed 'STEVE BD 17 16 48', which works (in the sense that 'BD' is
executed), because in attempting to bind the input, Logo runs 'BD' and waits
for a value, which pever comes. The student did not seem to realize this,
trying 'STEVE' with a different ¢yl to 'BD'; with 'STEVE' and 'BD' traced,

would have helped to correct this mistake.

Many students had trouble upderstanding how procedures communicate
values to one another via 'RETURN'. In the second experiment, for example,
students wrote mayy procedures that were to return values:

70 COMPARE; .OME: :TOY:
10 TEST NUMBERP :SOME: :TOY:
ap IFFALSE RETURN "FALSE"

30 PRV KQUALP :SOMIE: :TOY:
END
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When constants (e.r., ""FALSE™) were to be returned, 'RETURN' was rarely
forgotten, but when another operation/procedure was to be called to generate
the returned value, ‘RETURN' was often forgotten or assumed to be implicit, as
in line 30 above. Several students used structures like line 30 to mean: "now
be 'EQUALP' and do what it does"--an aitempt to implicitly change a

procedure's definition at runtime.

Some projects (e.g., 'BINAR', report-1 or Appendix 2, page 127) were taken
from the first experiment's curricula and used as part of a posttest for students
who completed all of the second experiment's curricula. Other projects were
used for the implicit testing process outlined in the tutoring discussions earlier,
and most students added their own, especially when they were able to use the
graphics system. Some are mentioned in report-1. In the second experiment,
for instance, one .tudent designed a simulation of the PONG(R) game and
another began an animated cookbool. that was supposed to implement a recipe
visually by allowing the user to manipulate snapshots of spoons, cups, etc.

Some of these projects are documented in Appendix 4.

As done earlier for Simper (Figure 17), Figure 18 displays the apparent
sequence in which Logo-related concepts were learned by each of the students in
the second experiment, for which the best data exists. A few students' work

will be discussed in detail after some remarks about the languages and

curricula.
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Concept 1

Literal 1.8
Values
Named 4.2
Values

Command 4.2
Parity
Simple 2.7
Control
(sub-
procedure)
Simple 4.2
'RETURN'

Recursive 15.4
'RETURN'
(context)
Decisions 7.5
('IFY/

"TEST")

Stopping 1i.6
Rules
(iteration)

User/
Machine
Context

3.2

Approximate Hours to Apparent Mns\tcry of Concept

Student (by pretest rank, Figure 10L)

2 3 4 5 6 7 8 9 1) 11 12 13

1.7 1.1 12 1 14 1.7 4.2 4 - 5 1.9 1
56 56 23 3 2 4610 4 - 2 - -

23 b6 4532 28 46114 49 - 6.4 - -

23 1.7 1315 1.4 28 4.1 44 - 26 - 14
65 9.4 78 4.8 29 55114 4 - 178 - -
18.9 16,6 - - 176 19 - - - 165 - -
10.1 94 178 - 856 124262 - - 956 - -
18.1 17.1 114 - 152 179 - - - 114 - -

23 56 12 48 11 21 36 1.8 - 178 - 14

14 15
1 b
6.1 3.1
7.1 7.5
1.8 10.2
6.4 9.1
28.1 -
10.7 -
28.1 -
2 2.6

(Boldface numbers irlicate very accuratc times, a dash signifies that a
concept was never clearly mastered.)
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16 17

.6 3.3

Fig. 18. Timing of 1974 Students' Mastery of Logo-Related Concepts
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Evaluation of Simper and Logo

As a result of the experiments, various modifications were made or should

be made to the languages.

Simmper. First targets for change have been obvious bugs and
inconsistencies in command evaluation and assembly. For example, after the
first experiment, 'SCRATCH' was modified to accept the general form for an
address-range specification (e.g., 'SCRATCH 6:8' has the obvious effect). 'SAVE'
and 'GET' were made to accept the name of the file as an input (e.g., 'SAVE
GLOP'"), resorting to dialog only when such an input is lacking. A more subtle
change was made to 'SLIDE'. One student was frustrated when his memory
space was effectively exhausted even though numerous holes existed between
program segments. So, by the second experiment, a forward 'SLIDE' (e.g.,
'SLIDE 100:200') could recursively squeeze out such holes to make formerly
impossible relocations possible. The user is informed of which holes disappear.
In the interest of making the name fit the action and to reduce confusions with

Logo, 'FIX' was replaced by 'EDIT".

The first experiment also suggested some new operations and & new
command. 'LEXOR' gives a decimal version of "exclusive or" (Table II),
ERROR' tests a flag set by arithmetic overflows, 'I0OT' communicates with the -
Graphics program and the plotter, and 'NEWS' gets the system time schedule
and any new information ahout Simper (or Logo). 'DIVIDE' was modified to set
the 'IS1.ROR' tlag on division by zero, instead of the nrevious and unusual skip-
if-sv cessful convention. ‘The structure of the Simper machine itself was

modified. Five-hundred memory cells and four registers (i.e., A, B, C and P)

were made standard (with upper limits as shown in Figure 2). This was

motivated by students suggesting projects 1or which 250 memory cells were

insufficient. The additional register was added to make procedure calls more
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convenient, especially via a student-programmed stack. The changes were

achieved by a gencralized restructuring of the interpreter.

After the second experiinent, more changes were made, mostly on
suggestions of students (see Table IIT). Significantly, the students were more
concerned with improving Simper's editing abili . (e.g., by adding ‘FLIP') than

.

"
with adding new powers to the simulated machine.

Recommendations. Changes are relatively easy to make in Simpe: because
it is written in a high-level language. An important improvement woula be the
simulation of a micro-coded machine with interrupt handling, so that student:
could be oxposed to some aspects of modern machinvs. Simulated devices other
than the turtle (e.g., a disc) could also be pedagogicaily beneficial. Ilowever,
too many "features” can be detrimental. Since a valuable computational idea is
that problem solutions can be broken logically into parts that are in turn
realized by certain basic and sufficient abilities of some machine, the abilities
chosen should not individually be too powerful. A pedagogically useful addition
would be the ability to run the machine backwards as well as forwards thus to

allow partially nndoing a compututio.n.

Perhaps the most beneficial results would be achieved by making the
interpreter smarter and more congenial in terms of its responses to naive
programmers. A first step would be a structured treatment of the '?' or "T'ELP
command. Successive applications of this command in, say, an addres  field
would obtain successively more detailed help about address fields. In vnis
respect, the interpreter would be more knowledgeable about itself. More general

(and more difficult) powers, such as the ability to evaluate programs, would be

of obvious value i+ ~cunselling studends,

Lego. In the present version of IMSSS Logo (excepting Sailogo),

substantial changes are typically difficult to make. For this type of work, the
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interpreter should have been written in a high-level language (e.g., Mauis,
1973). Several changes in commands, apart from addition of animation, were
made after the experiments (Table V). Consistency and clarity of nomenclature
was the goal. For iustancr, sonie Logo predicates mark themselves as such by
employing the suffix "P" (e.g., 'LESSP') aud some do not (e.g., 'IS'). This was a
source of confusion for a few students. 'IS', in particular, is also very
suggestive of wrong interpretations (e.g., the line "TEST IS :X: LESSP 0" should
be "T'EST LESSP :X: 0'). ‘Thus 'SAMEP" was introduced as an alternative to

'IS".

Reeommendations. Operation names shoula name the attion (e.g., 'ADD’)
rather than the result (e.g., 'SUM')--or, as the precocious 9-year-old put it; "I'd
make a whole new language without any weird commands like 'FRODUCT' and
'REMAINDER'. I'd have MULTIPLY and FINDREMAINDER.". Predicates,
rather than simply being suffixed with "P" should end/start with "?" (e.g.,
'LESS?). If "X:' is to be analogous to 'VALUE "X™, then nesting of colons
should be allowed. Additionally, a different symbol should be used instead of
colon to delimit place holders in procedure titles, or a different, nestable
synonym for '"VALUE' could be chosen (e.g., "@"). Numerals should be
disallowed as names or always be quoted when used as literals just as text is.
More fundamentally, value names and procedure names should use the same
dictionary and notation (e.g., 'A’ could either stand for 'VALUE "A"™ or call
procedure 'A’', as in Algol 60). Pedagogically speaking, any distinctions of
program from data should be defined by the student and not be automatic and

prouomial notation scems most natural.

Another fundamental point concerns command evaluation. Commands for
editing, erasiug, listing «nd filing currently quote rather than evaluate their
inputs (i.e., 'EDIT ROCKET" instead of 'EDIT "ROCKET™ thus disallowing

"EDIT :R:' where 'VALULE "R" is "ROCKWT"). A counsistent, flexible scheme

106



Page 99

(assuming names and procedures shave the sam» dictionary as suggested above)
would allow or:ly 'EDIT "ROCKIT™ and "EDIT R "EDI'T ROCKET could also
be aHowed if the user could make his own procedure definitions that quoete or
evaluate inputs at will--all in the interest of consistency, which is very

important t» naive prograiamers, A further simplification would result if one
operation (e.g., 'DEFINE' or "HOWTQ') performed the functions of both "EDI
and "T'0’, since the only difference is the pre-existence of, or lack of, a

definition.

Noise words (e.g., 'OF and "AND" as in 'SUM OF 3 AND 5') should be
eliminated unless ther are under user control. 'ANI)', for instance, has a very

strong meaning, almost equivalent to "WORD', in many students’ minds:
P SUM OF 3 AND 4 AND 5 AND 6

Logo should emulate Lisp in returning values for all commands and perhaps
printing these values at the top level rather than giving the message "THERE
IS NO COMMAND FOR..." when a student forgets to precede a functiop call
with a receiver for its reply. A uscr-controll2d toggle for automatic value
printing would be a uscful debugging aid. This would make 'STOP" and 'DONE’
equivalent to 'RETURN "', perhaps leading to their wel-omed demise since
"EXIT' really aces what their names suggest they do. Error messages should be
informative (e.g., "X IS ALREADY A LOGO OPERATION" not "X CAN'T Bl A
PROCEDURE NAME"). Misleading error messag:s such as "OUTPUT CAN'T BE
USED AS AN INPUT IT DOES NOT OUTPUT" o+ "OUTPUT CAN ONLY BE
USED IN A PROCEDURE" should be avoided (th» former is gibberish, the
latter should say something like "OUTPUT MUST BIX PRECEDED BY A LINE
NUMBER"). FError messages should not end with a "?" unless the interpreter is

prepared to engage the student in a helpful dialog.

Editing and Filing. At one time or another, mos. students forget to enter
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editing mode with "HBDE or "T'O" when teying to change a line inoa procedure--
commands such as 20 and 'EDL 20" typed at Lopgo's top level resulted in the
messiaes CLINE 20 OF WHA'T PROCEDURE? and "FDEF WHA'T? YOU ARE
NOT DEFINING ANYTHING” which may have misled stodents into treying the

following commands:

EDIT LINE 10 OF UNDOUBLE IN TRI2

FRASE LINE 6 IN RECTANGLE TO AL OF RECTANGLIS

Students often ioncluded extra words (some of which Logo had used in its

own messages) with operations such ax "LDIT and "LIST', ' % do not obey the

peneral Lopgo evalwation scheme;  henee, error messiajes » cao puzzling,
EDIT TO LEVENP EDIT XL
you cian’t cdit that, you can't edit that
FRASE XTI FRASE TO SQUARE
erase what? erase what?
ND LIST ALL FILES
meain defined list all what?
UNDEFINIE AGAIN
undefine needs a meaning. LIST NAMES

something missing for list.

LC OF FILE OF MARTA LIST ALL THAT WAS DONE TODAY
of can’t b a file name itst all what?

GIT FILE PC136 VOWELP

file can't be a file name.
As a convenience, it might be helpful to allow come default applications of
operations Like "LIST. Fov instance, when "LIST, "EDITY, "ERASE" or 'EDIT
LINE xx' is tyvped with no input, the default input would be the name of the
lazt procadure defined or executed. Similarly, a one-entry file could be gotten

without naming the entry.

the distinetion between what is in Logo's innmediate memory (woericipace)
and what 15 on secondary storage Tile entries) seems to be confusing even to

adult<. By waving an entire worlepace on an "eatry”, it is fairly easy to "GET”

108



Page 101

everything back at a later time. But since the workspace could contain the
appended results of several 'GET's from other entries (from other people's files
too), there is often unnecessary duplication in 'SAVE's. One should have the
ability to save partial workspaces (groups of procedures) on entries:
SAVE LIZ D AND UD AND SQUARE (Liz wanted to save individual
procedures on separate entries)
Student typing, some almost verbatim from the curriculum, occurred that
one might expect a reasonable computer-based tutor to handle. Merely
automatjng a programming curriculum by typing text at the student
accomplishes little in dealing with such questions. Ideally a language
inférpreter shiould "know" about concepts and problems the curriculum is

presenting and the intents of procedures the student is writing:

HOW MANY INPUTS DOES "MAKE" HAVE?
IS REQUEST A LITERAL?

literal needs a meaning.

NO IT DOESN'T

HOW MANY INPUTS DOES PRINT HAVE
IS "GEORGE" A WORD?

The ability to answer these questions is easily given to Logo because the subject

terminology (perhaps excepting "literal") is Logo's.

Debugging. Since Logo checks procedure lines for matching quotes and
colons at the time they are typed, it would also seem advantageous to report
other kinds of syntax errors at "define-time" .l'ather than at "run-time". For
example, erroncou rumbers of inputs for primitive commands or procedures,
and undeclar  proceiures or names (not defined globally or in the procedure's
title) could be reported before exiting editing mode, or upon request. The
student could act on these suggestions, editing further, or execute the partially

defined procedure while still in editing mode, or exit to work on something
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else. This could at least help reduce the amount of time students spend in
discovering and correcting syntax errors one at a time. The idea of "l'i{ACE'
should be expanded to allow display of command-line execution, since the
pursuing of typically complicated commands rivals the complexity of recursive
procedure calls. An ability to undo the last command would also be very

helpful, as it is to LISP users.
Implications for Curriculum Design

In the first experiment, reports of tutors about student involvement in
different parts of the curricula and their own projects, real or planned, led to
changes in the presentation order of the concepts and in the techniques for

efplaining certain concepts.

For Simper, most changes made for the second experiment centered u[;or,-
better motivations for: context, sequential execution, addressing and assembly
language. The machine's language of numerals would be taught before assembler
syntax so that students would grasp the latter's reason for existence as well as
its structure. The fact that different languages are appropriate for different
interactions with Simper was exploited in discussing computational context. The
intercommunication of instructions (e.gz., via the registers) within programs was
also treated in terms of context. Ior Logo, the first experiment demonstrated -
that procedures should be introduced early so students can create useful or

enjoyable tools right away.

So, for the second experiment, names were introduced first when naming
procedures and again when naming their inputs. This definitely improved
student interest. Decision making was also introduzed carlier in the second
experiment, in both curricula. Students could embark earlier on their own
projects, like games, some of which were used in parallel in Simper and Logo.

Early work with decision making helped the students in the second experiment
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do better when the time came to combine it with other concepts needed, for

instance, in general recursion with stop rules.

In both experiments, the curriculum format (see Appendix 3) of path
pointers, questions, problems and things to try was generally well-received by
students. Ceriain connecting ideas or processes, such as how expressions are
evaluated and how program execution proceeds, are difficult to sequence on
paper. The flowchart-like diagrams with boxes and arrows (e.g., Appendix 3,
page 38L) were not particularly effective. The younger children had special
difficulty with these artifices, for the same reasons they had trouble with the
candy-machine problem on the preliminary test. Good yet static representations
of essentially dynamic processes are hard to come by. For Logo, the "brothers”
with knowledge clouds did test understanding when some of their states were
left blank, but were of little help in mapping this understanding into a

procedure. Good illustrations of effective metaphors are very important.

One of the questions addressed by this work has been "what are effective
metaphors for teaching the concepts (Table 1) to naive programmers." For many
students, the concept of a conuext or computat'ib'hal environment proved most
difficult. In simplest form this reared itself in their confusing editing and
execution times/languages when interacting with the Logo or Simper
interpreters. Fresh students often gave editing commands to their running
programs, not realizing that their programs had, in effect, taken over the
machine and defined new languages. A linguist would probably say this is a
common problem in human languages as well. The most successful metaphor
used in this work involves thinking about the ability of an active entity
(machine/animal) to" give its attention to some source (internal/external) of
messages and process these messages according to some rules (language).

Eve. one knows what "giving attention” means to himself or herself. Linking

this to generalizations about machines (candy/computing) is all that's needed.
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This applies directly to explaining functions too, if they are thought of as

translators.

In Logo, dealing with recursive procedures that return values was difficult
for almost all students. The above metaphor coupled with an analogy drawn to
a chain telephone call seemed most helpful. The complication is that each
caller must wait (on "hold" or to be called back) until the "callee" has an'
answer to give. The success fo this tutoring device raised hopefully clearer
alternatives to 'RETURN' such as 'REPLY' in Logo. The way in which Logo
uses its internal pushdown stack for saving local contexts during recursion (or
the equivalent Simper programming) links straightforwardly with the attention

metaphor above.

Play-acting out programs, particulary Logo, was tried in both experiments
(e-g., Appendix 3, page 39L) with mixed results. It seemed most effective when
used to explore command evaluation, coupled with the telephone metaphor and a
wary likening of inputs to be instantiated to mailboxes in need of letters. For
simple syntactic problems (e.g., how many 'WORD's to use) a little applied logic
often produced helpful analogies (e.g., for n values use n-1 "WORD's because it

takes n-1 dabs of glue to stick together n blocks).
Case Studies

The problem encountered by two second-experiment students at each point
in each curriculum will be discussed in order to expose both their differences
and commonalities in thought when faced with the task of learning their first
programming languages. They will be referred to by their rank position on the

pretest (Figure 10b) and discussed separately for two languages.

Simper. Student 6 worked relatively seriously and, from the start,

carefully and thoroughly followed the curriculum instructions and examples.
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She was not uncomfortable with the primitive nature of the Simper machine
language nor with the basic commands involved in editing. Addressing and
successor executions seemed common-sensical to her. After some brief problems
with programs that ran off their ends or jumped to nonexistant instructions,
she bad no further trouble with proyram control. Her first major project was
the nu.uber-guessing game from the curriculum. She often did much of the
work at home, bringing it the next day to try out. She made two important
errors First, picking the number to be guessed but failing to store it in
memory for later comparison with the user's guess. Second, using the wrong
register in her decision-making instruction. Both errors can be thought of in
terms of misappropriating the internal context of the machine at runtime. She
also needed help in deciding that the program should pick the number before
the user guesses. This would not matter if only one guess were to be allowed.
Once her program was working, she used it a great deal and modified both the

size of the numbers selected and the hints given when a guess was wrong.

Student 6 went on to other work, but had saved her guessing-game and
often recalled it to use. She worked on indirect addressing with no problems.
The next important project involved the concept of a data-structure consisting
of 5 characters stored in one memory cell. Again she had little difficult and
spent time at home working on her program. When the curriculum called for =a
stop rule to be added to the program for printing 5 characters from a cell, she
picked the correct rule with no help. She still had some trouble matching
registers correctly in v:nat amounted to a several-instruction program. She also
generated a contro. srror by jumping too far back in her program on each loop
circuit and re-initializing a memory cell used for counting. This class of error
persisted in her work for a few days. A further error in clearing memory at
the wrong time prevented her stopping rule from functioning and her program

ran on and on. After correcting these errors, it was obvious that her program
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almost worked but stored only a partial result in memory--the full result being
in a register. She noticed this with no help and corrected the problem. A
subsequent attempt at a similar program demonstrated that complex control .was
still not mastered--a jump was redundantly included and a target symbol was
placed one instruction late in the program. In addition, context problems with
assumed register content recurred. The program was eventually corrected with
help. She then went on to use the graphics system and constructed several

iterative drawing programs without error. She then began the Logo curriculum.

Student 14 began Simper and had difficulty immediately in understanding
successor execution. His reaction to an erroneous program was to erase it
rather than edit it. He was mystified by the first program in the curricalum
because, when run, it gave no visible result until memory was displayed after
execution. This resulted from a misreading of the curriculum instructions. As
a result, he required more than average amounts of tutoring. He had great
difficulty understanding the need to match register names when communicating
values among instructions. When introduced to addressing, he attempted to
address a value by content. That is, he used an address equal to the value, not
an arbitrary address, as desired. In doing so, his first such program generated
overflows by dividing by empty cells (0 values). He was helped to correct these
problems and still preferred to erase entire programs rather than edit. In
working on one program from the curriculum, he demonstrated a typical context
error: typiug editing commands to a running program. At this time he decided
to review the entire curriculum. He repeated some previous errors, in
particular, use of the wrong registers for inter-instruction communication.

Since he was in Group III, he was also learning Logo and some Logo editing
commands crept into his Simper interactions. His review of addressing helped
him clear up his old confusion about content versus location. In reconstructing

one curriculum program, he produced a control structure that jumped to a
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wrong location. He also neglected a printing instruction even though he created
a value in a register to be Printed, Context errors from typing editing

commands to running programs persisted.

He made severa] syntax errors that indicate he doesn't really understand the
3-field structure of Sijmper instructions. Most notable was an attempt to use
multiple address fields to store multiple characters in a registesr. Again a
control problem appeared as he starte? the guessing-game project. His program
had a jump to a redundant instruction. His corrected program worked but
printed out a message backwards, When translating a 'JUMP' to a '"COMPARE'
he left in an unnecessary inSiiuction prior to the jun.p “hat prevented ihe
program from operating. He repeated this error twice. Upon first exposure te
symbols, he forgot to attach them to memory cells and so generated illegai
addresses upon running the Programs. In a later program to realize the
functicn 2x+9, he used an address literally and so wrongly operated on an
instruction in the program body. The data-structure program he produced
contained several bugs including a misaimed jump and ¢ redundant instruction
that is never executed, With help he tried several times, but never quite
understood how the program Wwas to function. Iteration and symbolic addressing

remained unmastered,

Logo. Student ¢ },ad begun Logo after leaving Simper. She grasped
intraprocedure control quickly but failed initially at using nested
(sub)proceudres. Once helped she went on to create her own version of a
simple recursive procedure t0 Print her name. She was initially confused about
procedures that returpy values and what to do with the value. She had no
trouble with simple command syntax, but did have trouble with the colon
notation denoting 11-'.11;18(1 values--gl;e either neglected the colons inn the command
line or put them around constants, After a few such errors she seemed to

understand name/valye asso€iations in Logo. A series of several procedures are
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faced in tite curriculum which demand successively morr complex command lines.
She used 'LAST' to mean "place this character iast" not "take the last
character". Commands that build strings out of parts tended to get too few
‘WORD's. She used the same name for beth inputs of a 2-input procedure thus
getting only the final instantiation when it is called. She considered 'FIRST' to
act destructively on its input. She faiied to use a building block sub-procedure
at .n opportune time. After several siring manipulating procedures she
mnastered the command syatax, but did not quite know when to use 'RETUZN'
appropriately. She failed to use a recursive call when it was of obvious
necessity. She used 'RETURN's successively, as if they append to an output
message rather than terminate execuiion. She worked on the first major
project--the guessing-game and needed help understanding 'BOTH'. In more
complicated projects like 'REVERSE' she de nonstrated understanding of inputs
and control but not quite of recuvsive 'RETURN's which she tended to leave
dangling so that values were fed to Logo not the calling procedure. The use of

stop rules was no problem for her.

Student 14 had been learning Simper at the same time as Logo. He began
by typing literally from the curriculum (e.g.,, "CONTROL-N"). He retyped
procedures rather than use edit. He attempted to elicit information from Logo
by having it print sentences which, of course, ha‘ve no meaning to Logo. He
tended to use previous procedures' structures as solutions to new problems. He
had trouble matching input names to procedure command lines. Prefix notation
seemed no problem to him, but he did have trouble providing enough inpdts to
operations in command lines. He also forgot basic syntax items like line
numbevs and colons. 'The major project of the guessing game failed on first try
because it tested a constant rathev than a computed value. At this point he
helped another sutdent with earlier work. After much help he had a working

guessing game which he used alot. Some Simper commands appear. In the
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more complicated recursive procedures he neglected not only recursive returns
but stop rules. He tended to misplace stop rules so they never got executed.
Once they were working he enjoyed observing such procedures operate on long
inputs under 'TRACE'. When the opportunity arose to use an already existing
procedure as a tool in solving another problem, he rarely capitalized on it. He
began using the graphics system and experimented with various kinds of
pictures drawn from building block procedures he'd been given, but produced

little original work.
Summary

The two students, whose work has been outlined, suggest the range of
abilities that were present during both experiments. Some students took tc the
curricula and languages quickly and easily, while others did not. As has been
discussed, and as Figures 17 and 18 also suggest, the preliminary test seems to
order students approximately on ability to complete the curricula. It also
seems, from subjective evaluations of the studeni , to order them approximately
on mastery. The more important question of how students learn the concepts is

only answerable from case-study data.

The metaphors outlined earlier seem to work becanse they help students
identify with the process they are trying .2 understand. The two most common,
virtually universal misunderstandings of all the students were: (1)
misunderstandings of linguistic/compﬁtntiona] context, and (2) ill-defined
intents. The former applying to both the storage/passing of information within
their programs and their interactions with the interpreters. The latter, or
fuzzy program specifications, amounts to wishful thinking, wherein the
particular interpreter was expected to read the student's mind .md run correctly
even though, for instance, a command had been left out. Leaving out recursive

'RETURN's, as mentioned earlier, is a Lypical example in which the student
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expects the computer to be the command whose value is not returned. A brief

categorization of all errors appears in Table XI.

In terms of the concepts originally selected as important to learning
programming (Table I), a somewhat different ordering on difficulty for each’
student is impiied by individual case-studies, at least in the second experiment
whose data are best. Typically, however, individual orderings approximate the
sequence listed in Table I, with the notable exceptions of: concept 1, due to
user/machine context errors, falls at about position 5; concepts 14, 15, and 17,
because of internal program-management errors and common difficult:‘y in

starting on a reasonable program design, fall last; and concepts 5 and 9 lump

together at position 9.

-

With regard to progiamming languzges and their influence on students, tHe
data strongly suggest that languages should be syntactically consistent, and
powerful in both editing and execution capabilities. As one student said after
her first hour with Logo: "If computers can understand languages like Logo,

can't they understand English?"
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Table XI

Categorization of Observed Student Errors and Misconceptions

Use of Language Syntax

Predicates difficult to master, especially combinations such as
'EOTH'/'EITHER".

Making up nonexistent noise words analogous to Logo's.

Misunderstanding deferred-command parsing in Logo--inputs are read
backwards. \

Using infix and postfix rather thar tue Logo prefix.

Trying to use ditto marks to copy parts of a line to next line.

Existence of "holes" in Simper programs.

Literal interpretation of Simper address field.

Thinking that changiag (Simper) target cell's content changes all
instruction's address fields that reference that cell.

Forgetting to put a value in a (Simper) target cell before accessing
it.

Testing the wrong reglster in Simper loops. .

A

Sequencing

Not knowing any or the simplest stop condition on an iteration or
recursion.

Confusion between iterative and recursive techniques--input and
return values.

Jumping inappropriately.

Multiple commands per line.

Improperly communicating Simper instructions that destroy rather
than pass on contents of registers.

Use of Procedures

Meaning of input values (using colon : in Logo for both constants
and variables).

Thinking procedure names must say what they do in order to work.

Distributed or forgotten inputs.

Returns from looping procedures unforeseen.

Names of inputs not distinct or assumed to computationally :elate to
a value (e.g., see page 93).

Names of inputs'not the same in title and use.

Returning Values

Simple recursion and 'EXIT' is easy, but returning value to self is

not.

Procedure becomes, semantically, the value or function to be
returned.

Last procedure called, in series of calls, returns value for the emntire
series.

Distinction between Logo 'DONE' and 'RETURN'.
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Table XI (continued)

Storage/Memory

Not understanding that a 'SAVE' can destroy a previously filed
program.

Understanding memory in Simper as read-copy/write-destroy; and
that it is permanent until changed by a program.

Editing Versus Runtime

Problems editing Logo titles.

Hard to think about runtime when editing (thinking that editing
actually executes).

Understanding what 'RUN' means for a program--that the machine's
linguistic appearance to the user is redefined by the program.

Problem Solving Methods

Surprised that a problem can be solved or that the computer can
carry out a certain command.

Failure to generalize previous solutions to present problem.

Inability to break problem solution into program steps to write,

Multiple-line solutions rather than well-structured iteration or
function calls. :

Failure to see minimal solutions.

Failure to exploit the style of the programming language (such as the
possibility for extra inputs to act as ccunter or method of
passing conditional information).
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Spm
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This appendix documents the syntax and sermantics of a language (Spm)

designed by the author but never used in any experiments.

It simulates a

string-processing machine in which one operation, assignment ('ISNOW'), plays

the central role.

Litera

Name/value linking

Name evaluation

Indirect naming

String appending

String definitions
(substitutions)

Input/output

L .belling

Storage release
Operation definition
(dialogs)

Execution call

Recursion

First, a comparison of Logo/Spm phrasing:

"DONALD"

MAKE "DONALD" "DUCK"

THING OF "DONALD"
or just :DONALD:

MAKE :DONALD: "FOWL"

WORD OF "ABC" AND "D"

ABBREVIATE "WORD"
AS "JOIN"

PRINT JOIN "ABC" "D"

line numbers as below

automatic

«TO DD :W: C:
@10 PRINT JOIN :W: :C:
@END

«DD “ABC" "D"
ABCD

«TO RECURSE
@10 P "RECURSE"
@20 RECURSE
@END

«RECURSE
RECURSE

127

[DONALD]

@[DONALD] ISNOW [DUCK]
or DONALD ISNOW [DUCK]

@[DONALD] or DONALD

@G@[DONALD] ISNOW [FOWL]
or @DONALD ISNOW [FOWL]

STACK ISNOW [ABC);
STACK ISNOW [D];
NEXT ISNOW APPEND;

[PUSH] ISFOR [STACK ISNOWJ;
[DO] ISFOR [NEXT ISNOWJ;
[TYPE] ISFOR [TTY ISNOW];

PUSH [ABC]; PUSH [DJ;
DO APPEND; TYPE STACK;

LAB ISNOW NEXT; DO LAB;
FORGET LAB;

DD ISNOW [DO APPEND;
TYPE STACK;

@[] ISNOW NEXT];
PUSH [ABC]; PUSH [DJ;
DO DD;ABCD

RECURSE ISNOW [
TYPE [RECURSE];

DO RECURSE;];

DO RECURSE;RECURSE...
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Spm Syntax. The meta-symbols « and | mean, respectively, "rewrite
as" and "or". The paired meta-symbols < > () and { } mean, respectively,
"a non-terminal”, "one of" and "optional". Spaces may be ignored. Note that

( ) < > and +« appear both as terminal and meta-symbols:

{program> « {<blank>} {<statementd> {<blank>}} ; (<program>)}
<{blank> + <non-printing teletype motion character> {<blank>)}
{statement> + <comment) | <assignment) | {(substitution> | <forget) |}

<testd> {<blank>} : {<blank>} <statement)

{comment> + (literal> {{<blank>} <{comment>}
<assignment> « <destination> ISNOW (<source> | {<blank>} <literal>)
{substitution> + (<destination> | <literal> {<blank>}) ISFOR

(<source> | {<blank>} <literal>)

<forget> + FORGET <source>
{testd « (IFEMPTY | IFNOTEMPTY) (<source> | <literal>)
literal> + [ <balanced string> ]

<balanced stringd « (<stringd>)} {<balanced string>} {<literal>} (<stringd)}

{destination) + (<name> | <indirect name)) <blank) |
<literal name> {<blank>}

{source> + <blank> <name> |
{<blank>} (<literal name> ] <indirect named)

(literal name> « @ {<blank>} (<literal> | <literal named)

<indirect named> « @ {<blank>} (<name> ] <indirect name>)

(string> +« <blank> | (K<name> | : | ;| @ ) {<string>)}

{name> « (A|]B|IC|D|E|F|G|H]JI|JIK]L|M|
N|OIPIQIR|S|T|UIVIWIX]|Y]Z]
011121314151 6]7]81911"[|#]
-‘Sl%l&l'l(|2!‘|+|,l‘l-|/|<|
= >17?] | " | ¢« ) {<named}

128
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Semantics. The Spm machine consists of (a) a processor, which interprets
strings in the Spm language defined above; (b) an arbitrary number of memory
cells, each capable of storing a balanced string of arbitrary length; and (c) two
pushdown stores called 'STACK' and 'NEXT', each consisting of an ordered set
of memory cells of which only that cell bearing the name of the set is
immediately accessible. New memory cells are created as needed to satisfy
assignments. Any existing accessible cells, except 'STACK' and 'NEXT', can be
released. The Spm machine also maintains an inaccessible and variable stock of

cells for satisfying 'ISFOR' statements and 'STACK' and 'NEXT' manipulations.

Certain strings have special meaning to the Spm machine as names,
primitive operations. Names which Spm automatically associates with specific
memory cells are: '"T'TY', 'STACK' and 'NEXT'. Other names are defined by
the execution of assignments. All accessible cells must necessarily have distinct
names. Spm operations are predefined names which cause specific activities of
the machine when it encounters them during the execution of statements.
'ISNOW’, 'ISFOR’', 'FORGET', 'IFEMPTY', 'IFNOTEMPTY', '@, %', "', '[' and ']
have such effect. The two pushdown stores, whose accessible cells are namead
'STACK' and 'NEXT', have special properties: (a) if either 'STACK' or 'NEXT'
appears as the destination in an assignment, the machine attaches a new cell to
the accessible end of the appropriate ordered set of cclls. The new cell is loaded
with the value of the source and the name 'STACK', or 'NEXT' as appropriate,
is associated with this new cell rather than with the previously accessible cell;
(b) if either 'STACK' or 'NEXT' occurs as a source in an assignment, a
substitution or a <forget)>, the Spm machine uses the accessible cells's content,
and releases the cell. The name 'STACK' or 'NEX'T', as appropriate, is then
associated with the next cell in the corresponding ordbred set of cells. The
same action results when either 'STACK' or 'NEXT' appears as a destination in
a substitution statement; (c) no change in the structure of 'STACK' or 'NEXT'

is made if cither appears as a source in a test.
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Spm Primitives
Symbhotls Operations

NEXT ISNOW

STACK ISFOR

TTY FORGET
IFEMPTY
IFNOTEMPTY
APPEND
HEAD
TAIL
AFTER

bod 1

'NMEXT"' always contains the string to be executed next by the Spm machine.
The macaine obtains one statement after another from this string by scanning
the val:e of 'NEXT' from left to right until a '}', not part of a literal, is
encountered. The scanning process removes all characters up through the '
from 'NEXT’, shortening its conitent as execution procedes. When the last
statrment in 'NEXT' has been executed, the current cell is released and replaced
by that directly beneath it. Should 'NEXT' ever be exhausted of cells, the Spm
machine will automatically attempt to fill 'NEXT' with characters from the
teletypewriter ("I'TY'). If a statement cannot be executed, the machine prints a
message and again goes to the teletypewriter for input. Note that this is
analogous to execution of the statement 'NEXT ISNOW TTY'. 'STACK' is the
accessible cell in the general pushdown store and may have as value any string.
‘TTY' is the user's terminal. Assignment to it causes the assigned value to be
printed. Assignment from it to a destination obtains characters from the
typist. Its value is not maintained by Spm, so characters disappear on the way
in or out as typing proceeds at the terminal. Its value is '[]' when input or

output has been completed.

'ISNOW' is the means for changing the content of the Spm machine's

107



Page 123

memory. When a name is used for the first time in an assignment, the
machine obtains a new cell in which to store the assigned value and associates
the name with this cell. 'ISFOR’ is & simple symbol/string substitution
mechanism. After it is executed, the Spm machine will automatically substitute,
for any occurrences of the value on the left of the 'ISFOR' in the text of any
statement scanned fromm 'NEX'T’, the value on the right. This amounts to a
simple transformation of the Spm language to suit the user. Recursive
substitutions are not allowed. 'FORGET' is the means for releasing names and

their associated memory cells from the Spm machine's memory.

'TFNOTEMPTY' and 'IFEMPTY' are tests which, if the value tested is not
'[1' or is '[]', respectively, will execute the subsequent statement. Otherwise, the

statement is skipped.

'"APPEND’ joins a character to the end of a string. The character is
assumed to be in the top cell of 'STACK', with the string immediately beneath.
It returns the resultant string as the value of 'STACK'. If a string is used for
the character, only its first character will be appended. 'HEAD' accepts a
string in 'STACK’ and returns the first character of that string in 'STACK'.
'TAIL’ is like '"HEAD', but returns all characters in the string after the first is
removed. For 'AFTER', 'STACK' and the cell beneath it each contain a
character. If the character in 'STACK’ occurs before the other character in tllle
lexicographical ordering defined for the characters of the Spm alphabet, the top
character is removed from 'STACK'  Otherwise, both 'STACK' cells are removed
and the value of '[]' given to 'STACK'. If strings are supplied as values, only

the first character of each will enter into the comparison.

'@ indicates that the value of the string which follows should be
interpreted as a name. Note '©[ABC] and 'ABC' are equivalent. ;' terminates

an Spm statement. "' indicates the beginning of a statement in a test. '[’ and
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'] respectively denote the start and end of a literal. Note that '[' and ']" must

occur in pairs according to the syntax. There is no legal way to obtain cither

bracket singly in a piece of executable text. They may be obtained from '[]'

however, with the 'HHEAD' and "TAIL' functions. Some details of Spm phrasing

follow:

String constant
Empty string
Assignment

Name evaluations
Recursive naming
(unlimited indirect

addressing)

Using 'STACK'
(produces):

Using 'NEXT'
(program control,
produces):

Substitutions
ISNOW];

Input/output

(types out "ABCD")
Storage release
Operation defining

Execution
(types out "ABCD")

Recursion

Stack release

Premature return

[DONALD] (literal)

(]

@[DONALD] ISNOW [DUCK] or DONALD ISNOW [DUCK]
@[DONALD] or just DONALD both have the value DUCK

@E[DONALD] ISNOW [FOWL] or @DONALD ISNOW [FOWL]

STACK ISNOW [ABC]; STACK ISNOW [D];

L e L L L L L + trmmmm—— +
| TTY ISNOW STACK {{-- NEXT | ABCD |-~ STACK
R R L P LTt + dmmmm——— +

[PUSIHI] ISFOR [STACK ISNOW]; [DO] ISFOR [NEXT

[TYPE] ISFOR [TTY ISNOWJ;

PUSH[ABC]; PUSH[D]; DO APPEND; TYPE STACK;ABCD

FORGET DONALD;
DD ISNOW [DO APPEND; TYPE STACK;];

PUSH [ABC]; PUSH [D]; DO DD;ABCD
RECURSE ISNOW [TYPE [ABCD]; DO RECURSE;];
DO RECURSE;ABCDABCDABCDABCD...

@[] ISNOW STACK;

@[] ISNOW NEXT;
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Appendix 2 Aptitude-Testing Details
An Example of Commercial Test Evaluation

The example derives from remarks in the published manual for one of the
programming tests examined. The validity of that test was assessed by three
studies: (1) correlation of test scores and grades of three groups of
programming trainees, (2) correlation of test scores and overall performance
ratings by supervisors of programmers, and (3) a study like that ¢ (2) in
which grades on a training course were also available. Studies (1) and (3) both
assumed, without discussion, that the testing done during training was itself a
valid measure of programming ability. Studies (2) and (3) both assumed that
ratings by superiors were similarly valid. Study (1) indicated that, of fifteen
relevant correlations between subtest scores and trainee groups, eight were of
statistical (normal theory) significance. And only one subtest was significantly
correlated with trainee performance over all groups, in spite of the fact that
the overall test/training correlation for each group was significant.
Interestingly, the most variable subtests were those which relied heavily on time
and repetition. In Study (2), three of five subtest correlations and the overall
correlation were significant but small; and the two remaining subtests were
those which exhibited variable or minimal correlation with performance in
study (1). Unfortunately, the ratings used as the validating measure in (2) were
not confined to programming ability and included such things as attitudes.
Therefore, study (2) is invalid. Study (3) found three subtests significantly
correlated with training course grades, but one of the three had not been
si#nificantly correlated with grades for any group in study (1). Furthermore,
t'.e ratings used in the other half of study (3) were virtually uncorrelated with
subte:t results. The brochure went on to state that these ratings and job
tenure were correlated more strongly than anything else in both halves 7 the

study--the suggestion being that low correlations must be expected wl
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evaluations place high value on relatively invalid properties (i.e., tenuve). An
alternative observation can be made which applies to any correlational
procedure: the sample variance of a measured property may be so low that
apparent but spurions correlations with another measure arise. In study (3),
the test scores could have had low variability for good reason: the testees could
have been of very nearly the same competence. In any event, none of the
studies provided a clear validation of this particular test for programming

aptitude,
19%4 Test Questions

The prec and post-tests given to studg,l}&s/l(n the second experiment are

-

presented here, inning on pag‘c_s./l’f;and 131 respectively (some of the

questions are specifical eferred to in the text). All students in that

experiment worke 1e pretest;~Nhut only a few, who finished both the Logo and

Simper cureitula, worked the posttest™~Zhe questions in these tests were drawn

‘he same set used to construct the 1973 experiment's pretests and so

reflect their content as well.

134



