AOTHOR

TITLE INSTITUTIỢN

SPONS AGENCY
pob date
CONIFACT
NOTE
EDES PRICE
DESCBIFTOES

Cooper, Gloria S.; Ed.; Magìsos, Joel H.. ; Ed. Metrics for Theatrical costumjng."
Ohio State 0niv., Columbus. penter for Vocational Education.
Ohio State Univ., Columbus. Center for Vocational Education.
76
08C-0-74-9335
59p.; For a related document see CE 009 736-790
Mr゙ $-\$ 0.83$ HC- $\$ 3.50$ Plus Postage:
*Curriculum; Fine Arts; Instructional Materials; Learning \& Ctivities; Measurement-Instruments; *Metric System; Secondary Education; Teaching Techniques; *Theater Artṣ; Units of Stady (Subject Fields); *Vocational Education.
IDENTIPIERS Costumes (Theatrical)

AESTRACT

Designed to meet the job-related metric deasurement needs of theatrical costuming students, this instructional package is one of five for the arts and humánities occupations cluster, part of a set of 55 packages for:metric instrection in different occupations.
*The package i's inteńded for students who already knowethe oćcupational terminology, measurement terms, and tools currently in use. Each of the five units in this instractional package contains performance objectives, learning yactivities; and supporting informaticn in the form of text, exercises, and tables. In addition; suggested teaching techniques are included. At the back of the package are objective-base'd evaluation items, 'a page of answers 'to' the exercises and tests, a list of metric materials needed for the activitiesb references, and a list of suppliersd The material is. designed. to accqmodate a varlety of individual teaching and learning styles, e.g.i independent study, small group, or whole-class detivity. Exercises are intended to facilitate experiences with measurement instruments, tools, and devices used in this occupation and job-related tasks of estimating and measuring. Unit I, a general introduction to the ietric systemof "measurement, provider informal, hands-on experiences for the studefts. This unit enables students to become familiar'with" the tasic metric units, their symbols, and measurement instruments; apid to develop a set of mental references for metric values. The mefric system of notation also is explained. Unit 2 provides the metric terms which are used in this occupation and gives experience yith occupational measurement tasks. Unit 3

- focuses on job-related.metric equivalents and their relationships.
- Unj.t 4 provides experience with recefnizing and üsing metric
instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments. Unit 5 is designed to give students practice in averting, customary and metric measurementse a skill considered eful, during the transiticn to metric in each occupation. (HD)
\qquad
Documents acquired by ERIC include many informal unpublished materials not avallable from other sources. ERIC makes every effort to obtaln the best copy available. Nevertheless, items of marginal reproducibility are often encouftered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document.Reproduction Servige (EDRS). - is not responsible for the quality of the original document. Reproductions supplied by EDRS are the best that can be made from inal.-

TEACHING AND LEARNNG THE METRIC SYSTEM

This metric instructional package was designed to meet job-related metric measurement needs of students. To use this package students. should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared, with the help of experienced yocational teachers, reviewed by experts, tested in classrooms' in different parts of the United States, and revised before distribution.

Each of the five units of instruction contains performance objectives, learning activities, and supporting information in the form of text, exercises, and tables. In addition, suggested teaching techniques .are included. At the back of this package are objective-based evaluation items, a page of answers to the exercises and tests, a list of metric materials needed for the activities, reefernces, and a list of suppliers.

Classroom experiences with this instructional package suggest the following teachingleaining strategies:

1. Let the first experiences be informal to make learning the metric system fun.
2. Students learn better when metric units are compared to familiar objects. Everyone should learn to "think metric.". Comparing metric units to customary units can be confusing.
3. Students will learn quickly to estimate and measure in metric units by "doing."
4. Students should have experience with measuring activities before getting too much information.
5. Move through the 'units in in on order which emphasizes the sim. plicity of the metric system (e.g., length to area to wolume):
6. Teach one concept at a time to avoid overwhelming students with too much material.

Unit 1 is a general introduction to the metric system of measure. ment which provides informal, hands-on experiences for the students. This unit enables students to become familiar with the basic metric units, their symbols, and measurement instruments; and to develop' a set of mental references for metric values. The metric system of nota. ERIC ${ }^{\text {sexplained. }}$

Unit 2 provides the metric terms which are used in this occupation and gives experience with"occupational measurement tasks.

Unit 3 focuses on job-reated metric equivalents and their relation: ships.

Unit 4 provides experience with recognozing and using metric instruments and tools in occupational measurement tasks. It also provides experience in comparing metric and customary measurement instruments.

Thit 5 is deesigned to give students practice in converting custom. ary and metric measurements. Students should leam to "think metric" and avoid comparing customary and metric units. However, skill with conversion tables will be useful during the transition to metric in eagh occupation.

Using These Instructional Materials

This package was designed to help students leam a core of knowledge about the metric system which they will use on the job. The exerclses facilitate experiences with measuruẹment instruments, tools, and derices used in this occupation and job-related tasks of estimating ${ }^{2}$. and measuring.

This instr y yonal package also was designed to accommodate a variety of indivicual reaching and learning styles. Teacher are encouraged to adapt these materials to their own classes. For example, the information sheets may be given to students for self.study." References may be used as supplemental resources. Exertises may be used in independent study, small groups, or whole-class activities. All of the materials can bel expanded by the teacher.

Glotria S' Cooper
Joel H. Magisos
Editors
This publication was developed pursuani 10 conliaci $N \mathrm{NO}$ O OEC. 0.74 .9935 with the Bureau of Occupational and Adult'Education. U.S. Department of Heath, Education and Welfare. However, the opinions expresed herein do not necescrily reflect the postion or policy of the US. Oflice of Education and no offcial endorsement by the US Otfice of Education should be inferred.

UNIT

SUGGESTED TEACHING SEQUENCE

1. These introductory exercises may require two or three teaching periods for all five areas of measurement.
2. Exercises should be followed in the order given to best show the relationship between length, area, and volume.
3. Assemble the metric measuring devices (rules, tapes, scales, thermometers, and measuring containers) and objects to be measured.*.
4. Set up the equipment at work stations for use by the whole class or as individualized resource activities.
5. Have the students estimate, measure, and record using Exercises 1 through 5 .
6. Present information on notation and make Table 1 available.
7. Follow, up with group discussion of activities.

Other school departments may have devices which can be used. Metric suppliers are listed in the reference section.

OBJECTIVES

The student will demonstrate these skills for the Linear, Area, Volunde or Capacity, Mass onnd Temperature Exercises, using the metric terms and measurement devices listed hete.

1. 'Symbols are not capitalized unfless the unit is a proper name (nmnot MM).
2. Symbols are not followed by periods (m not m).
3. Symbols are not followed by an 8 for plurads (25 g niot 25 gs$)$.
4. A space separates the numerals trom the unit symbols (4 I not 4)).
5. Spaces, not commas, are used to separate large numbers into groups of three digits (45271 km not $45,271 \mathrm{~km}$).
6. A zero precedes the decimal point if the number is less than oney 0.52 g not .52 g).
7. Litre and metre can be spelled either with an ree or er ending.

METRIC UNITS, SYMBOLS, AND REFERENTS

METRIC PREFIXES

Table 1-b

LNEAR MEASUREMENT ACTIVITIES

Metre, Centimetre, Millimetre

I. THE METRE (m) ,

A. DEVELOP A FEELING FORTHE SIZE OF A METRE

1. Pick up one of the metre sticks and stand it up on the floor. Hold it in place with one hand. Walk around the stick. Now stand next to the stick. With your othe. hand, touch yourself where the top of the metre stick. comes on you.

THAT IS HOW HIGH A METRE IS!

2. Hold one amm out straight at shoulder height. Pht the metrastick along this arm until the end hits the end of your fingers. Where is the other end of the metre stick? Touch your. self at that end.

[^0]
3. Choose a partner to stand at your side. Move apart sot that you can put one end of a metrestick.on - your partner's shoulder and the other end on yours shoulder. Look at the space between you., THAT IS TAE WIDTH OF A METRE!

B. DEVELOP YOUR ABLLITY TO ESTIMATE IN METRES

Now you will improve your ability to estimate in metres.
Remember where the length and height bf a metre was on your bedy.:

For each of the following items:
Estimate the size of the items and write your estimate in the ESTIMATE column. Measure the size with your metre stick and wite the answer in the MEASURENENT column.

Decide how close your estimate was to the actual measure. If your estimate was within 25% of the actual measure you are a "Metric Marvel." 0_{0}°

How Close Estimate Measurement. Were You?

$$
(m)^{\circ} \quad(m)^{\circ}
$$

1. Height of door knob

2 Hrom floor.

4. Width of tabier "
5. Length of wall of this room.
6. Distance from youlto wall.

There are, 100 centimizettes in one metré If there are 4 metres and

A DEVELOP A EEMCINE FORTHE SIZE.OF A CENTIMETRE

1. Hold the fintric ruler against the width of your thumbinail. How wide is'tt? t. \qquad cm^{m}
: : 22. Meraure your thumb from 'the first.jontró the end. 3. Use the metric ruler to find the witth of your palm. $\xrightarrow{C m}{ }^{\circ} \mathrm{C}$
2. Measure, your index or pointing finger How long is it?

$\because \quad \mathrm{cm}$

5. Measuray wrist with a tape measure. What is the distance dround it? \qquad cm
6. Use.the tape measure to find your waist size: \qquad cm

B. BEVELOP YOUR ABILITY TO ESTIMATE IN CENTIMETRES

 You are fow ready to estimate in centimetres. For each of the -following items, follow the procedures used for estimating in metres.- θ

1. Lefth of a paper clip. .
2. Diameter (width) of a coin.
3. Width of a postage stamp.
4. Length of a pencil.
5. Width of a sheet of paper.

AREA MEASUREMENT ACTIV́ITIES

 Square Ceqntimetre，Square MetreB．DEVELGP YOUR ABLLITY TO ESTIMATE IN SQUARE CENTIMETRES

WHEN YOU DESCRIBE YHE AREA OF SÓMETHINO YOU ARE SAYiNg How maty squafts of a given size it takes to COVER THE SLLRFACE：

I．THE SQUARE CENTAETRE（ cm^{2} ）

A．DEVELOP A FEELING FOR ASQUARE CENTIMETRE

1．＇Take a clear plastic grid，or use the grid on page 6 ．＇
2．Measure the length and width of one of these small squares with acentimetre ruler．

THAT IS ONE SQUARE CENTIMETRE！
3．＇Place your fingemail over the grid．About how many－ squares does it take to cover your fingemail？

$\div \mathrm{cm}^{2}$

4．Place a coin over the gid．About how many squares does it take to coved the coin？ \qquad cm^{2}
5．Place a postage stamp over the grid．About how many squares does it take to cover the postage stamp？

6．Place an envelope over the grid．About how many squares does it take to cover the envelopte？

－＿＿工 cm^{2} ．

7．Measure the length and width of the envelope in centi． metres．length \qquad cm；width \qquad cm
n．Multiply to find the area in square centimetres．
\qquad $\mathrm{cm} \times$ \qquad $\mathrm{cm}=$ \qquad cm^{2} ．How close are the answers you have in 6 ．and in 7 ？

Yourare now ready to dévelop ұour ability to estimaté in square centimetres．

Remember the size of a square gentimetre．For eath of the following items，follow the procedures used for estimating in＂ metres．

1．Index card．
2．Book cover
3．Photograph．
4．Window pane or desst top．？

II．THE SQUARE METRE（ m^{2} ）。
Estimate: Measurement How Close

A．DEVBCOO A FEELING FOR A SQUARE METRE

1．Tape four metre sticks together to make a square which is one metre long and one metre wide．
2．Hold the square up with one side on the floor to．see how big it is：
3．Place the square on the floor in a cormer．Step back and look．See how much floor space it covers．
4．Place the square over table top or desk to see how much space it covex
5．Place the square against the bottom of a door．See how much of thed door it covers．How many squares would it take to fover the door？ \qquad m^{2} ．
THIS IS HOW BIG A SQUARE METRE IS！ METRES

Yquabre now ready to estimate in square metres. Follow the procedures used for estimating in metres.

1 4

	\cdots
Estimate	Measurement
$\left(\mathrm{m}^{2}\right)$	$\left(\mathrm{m}^{2}\right)^{\prime}$

1.' Door.
2. Full sheet of newspaper.
3. Chalkboard or bulletin board.
4. Floor.
5. Wall "

6: Wall chart or poster.
7. Side of file cabinet.

VOLUME MEASUREMENT ACTIVITIES

Cubic Centimetre, Litre, Millilitre, Cubic Metre

1. THE CUBIC CENTIMETRE $\left(\mathrm{cm}^{3}\right)$

A. DEVELOP A FEELING FOR THE CUBIC CENTIMETRE

A. Pick up a colored plastic cube. Measure its length, height, and width in centimetres.
1- \therefore HAT IS ONE CUBIC CENTIMETRE!
2. Find the volume of a plasticlitre box.
a. Place a ROW of cubes against the bottom of ques side of the box. How many cubes fit in the row?
b. Place another ROW of cubes against an adjoining gide of the box. How many rows fit inside the box to make one layer of cubes? \qquad How many cubes in each row? \qquad
How many cubes in the layer in the bottom of the box? \qquad
c. Stand a ROW of cubes up against the side of the box. How, many LAYERS would fit in the box?
How f many cubes in each layer? How many cubes fit in the box altogether?
THE VOLUME OF THE BOXES \qquad CUBIC. CENTIMETRES.
d. Measure the length, width, and height of the box in centimetres. Length \qquad cm ; width \qquad cm; height \qquad cm . Multiply these numbers to find . the volume in cubic centimetres.
\qquad cm x \qquad cm x \qquad $\mathrm{cm}=$ \qquad $\mathrm{cm}^{3} .1$ Are the answers the amain C . and d.?
\qquad (II. THE LITRE (I)

A. DEVELOP A FEELING FOR A LITRE

1. Take a one litre beaker and fill it with water.
2. Pour the water into paper cups, filling each as full as you usually do. How many cups do you fill? THAT IS HOW MUCH IS IN ONE LITRE!
3. Fill the lite container with rice.

THAT IS HOW MUCH IT TAKES TO FILL A ONE LITRE CONTANER!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN STARS

You are now ready to develop your ability to estimate in litres. To withe two and one-hal litres, you mite 2.51 ,or
2.5 litres. To write one-hal litre, your write 0.51 , or 0.5 litre. To wintetwo and three -fourths litres, you write 2.751 , or 2.75 litres.

For each of the following items, use the procedures for estimating in metres.
${ }^{2} 1$

1. Medium -size freezer container.

Large freezer container. 4

III: THE MLLLITTRE (m)

There are 1000 millilitres in one litre. 1000 ,mp $=1$ litre. Half a litre is 500 millilitres, or 0.51 litre $=500 \mathrm{~m} /$
A. DEVELOP A FEELING FOR A MLLILITRE

1. "Examine a centimetre cube. Anything which holds $1 \mathrm{~cm}^{3}$ holds 1 ml .
2. Pill a 1 millilitre measuring spoon with rice. Empty the spoon into your hand. Careïully pour the rice into a
, small pile on a sheet of paper.
THAT IS HOW MUCH ONE MLLILITRE IS!
3. Fill the 5 ml spogegwith rice. Pourer rice into another pile on the sheet of paper.

THAT IS 5 MLLILTTRES, OR ONE TEASPOON!

4. Fill the 15 ml spoon pith rice. Pour the rice into a third pile on the paper.

MASS (WEIGHT) MEASUREMENT ACTIVITIES

Kilogram, Gram

1 P
The mass of an object is a measure of the amount of matter in the object. This amountivealways the samte unless you add ot subtract sone matter from the object. Weight is the term that most people use when thêy mean mass. The weight of an object is affected by gravity; the mass of an object is not. For example, the weight of a person on earth might be 120 pounds; that same pespon's weight on the morn would be ' 20 poutds. This difference is becaused the pull of gravity on the moon is less than the pull of gravity on earth. A perion's mass on the earth

- and on the moon would be the same. The metric system does not measure weight-it measures mass. We will use the term mass here.

The symbol for gram is .

The symbol for,kilogram is kg.

There are 1000 grams in one kilogram, $11.000 \mathrm{~g}=1 \mathrm{~kg}$.
Half a kilogram can be written as 500 gior 0.5 kg .
A quarter of a kilogram can be writter as $250 \mathrm{~g}, 0 \mathrm{r} 0.25 \mathrm{~kg}$.
Two and threefourths kilograms is writter as 2.75 kg .

I. THE KILOGRAM (kg)

Using a balance or scale, find the mass of the items on the table.
Before you find the mass, notice how heary the object "feels"
Using a balance or scale, find the mass of the items on the table.
Before you find the mass, notice how heary the object "feels" and comgtreis to the reading on the scale or balance.

DEVELOP A FEELING FOR THÉ MASS OF A KILOGRAM

 1.

1. Bag of rice.
2. Bag of nails.
3. Large purse or briefcase.
4. Another person.

5. A few books.

A. DEVELOP A FEELING FOR A GRAM

1." Take a colored plastic cube Held dityon xouxthand. Shake the cube if your fam as if shang dice. Feel the pressure on your hand when the cubes in motion, then when it is not in motion..
THAT IS HOW HEAVY A GRAMS
$\because 2 . \quad$ Take a second cube and attach it to the first. Shake the cubes in ?rit one hand and then the other hand; rest
the cubessinear the tips of your fingers, moving your hand up and down.
THAT IS THE MASS OF TWO GRAMS!
3. Take five cubes in one hand and shake them around. THATISTHE MASS OF FIVE GRAMS!

B. DEVELOP YOUR ABILITY TO ESTIMATE IN GRAMS

You are now ready to improve your ability to estimate in grams. Remember how heavy the 1 gram cu be is, how heavy the two gram cubestare, and how heavy thofive.gram cubes ate. For each'of the following items' Follow' the procedures used for estimating in kilograms.

Degreé Celsius

1. DEGREE CELSUSS $\left.\mathcal{H}^{\circ} \mathrm{C}\right)$

Degree Celsius $\left({ }^{\circ} \mathrm{C}\right)$ is the metric measure for temperature.
A. DEVELOP Á FEELNG FOR DEGREE CELSIUS

Take a Celsius thermometer. Look at the marks on it.

1. Find 0 degrees.

WATER FREEZES AT ZERO DEGREES CELSIUS $\left(0^{\circ} \mathrm{C}\right.$) WATER BOILS AT 100 DEGREES CELSIUS $\left(100^{\circ} \mathrm{C}\right)^{4}$
2. Find the temperature of the room. \qquad ${ }^{\circ} \mathrm{C}$. Is the - room cool, warm, or about right?
3. Put some hot water from the faucet into a container. Find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Dip your finger
\therefore quickly in and out of the water. Is the water very hot, hot, or just warm?
4. Put some cold water in a container with a thermometer. Find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Dip your finger into the water. Is it cool, cold, or very cold?
5. Bend your arm with the inside of your elbow around the bottom of the thermometer. After about three minutes find the temperature. \qquad ${ }^{\circ} \mathrm{C}$. Your skin tempeta. ture is not as high as your body temperature.
NORMAL BODY TEMPERATURE IS 37 DEGREES CELSIUS $\left(37^{\circ} \mathrm{C}\right)$. A FEVER IS $39^{\circ} \mathrm{C}$.
A VERY HIGH FEVER IS $40^{\circ} \mathrm{C}$.
B. DEVELOP YOUR ABILITY TO ESTIMATE IN DEGREES CELSIUS

- For each item, ESTIMATE and write down how many degrees Celsius you think it is. Then measure and write the MEASURE. MENT. See how close your estimates and actual measure. ments are.

1. Mix some hot and cold water in a container. Dipyour finger into the water.
2. Pour out some of the water. Add some hot water. Dip your, finger quickly into the water.
3. Outdoor temperature.
4. Sunny window sull.

5. Mix of ice and water.
6. Temperature at floor.
7. Temperature at ceiling.

"'2

OBJECTIVES ${ }^{1}$

The student will recognize and use the metric terms, units, and symbols used in this occupation.

- Given a metric unit, state its use in this occupation.
- Given a measurirement task in this occupation, select the epppropriate metric unit and measurement tool. K

SUGGESTED TEACHING SEQUENCE

1. Assemble metric measurement tools (rules, tapes, scales, thermometers, etc.) and - objects related to this occupation.
2. Discuss with students how to read the tools.
3. Present and have students discuss Information Sheet 2 and Table 2.
4. Have students learm occupationally. related metric measurements by complet. ing Exercises 6 and 7.
5. Test performance by using Section A of "Testing Metric Abilities."

METRICS IN THIŚSOCCUPATION

Changeover to the metric systentis under way. Large corporations are already using metric measurement to yompete in the world marke. The metric system has beeh used in various parts of industrial and scientific communities for years, Legistation, passed in 1975, authorizes anorderly transition to use of the metric system. As businesses and industries make this metric changreover, employees will need to use metric measurement in job-related tasks.

Table 2 lists those metric terms which are most commonly used in this occupation. These terms are replacing the measurement units used currently. What kinds of jobrelated tasks use measurement? Think of the many different kinds of measurements you now make and use Table 2 to discuss the metric terms which replace them. See if you can add to the list of uses beside each metric term.

-

TRYING OUT METRIC UNITS

To give you practice with metric units, first estimate the measure. ments of the items below. Write down your best guess next to the item. Then actually measure the item and write down your answess using the correct metric symbols. The more you practice, the easier it will be.

	Estimate	Actual
Length 1. Palm widh		
2. Hand span		
3. Your height		
4. Length of shears		
5. Index card:		
6. Length of your arm		
1. 7. Length of cutting table :-		

8. Length of pants inseam		
9. Width of shoulder	\cdots	
Area 10. Desk top		
11. Area of cutting table		
12. Workroom floor		
13. Sheet of paper		
14. Piece of fabric		
Volume/Capacity 15. Measuring cup (metric)		

,	Estimate	Actual
16. Milk container		.
17. Dye tub	2	n
18. Small box or package		-
19. Pin box		
20. Soft drink can		
21. Coffee cup		
ż̇̇L. Steam or mangle iron reservoir		
Mass 23. Textbook'		
24. Nickel	:	
25. Yourself		1
26. Bolt of fabric ${ }^{\text {a }}$		
27. Box of pins		
28. A litre of water (net)		
Temperature 29. Room		
- 30. Outside \quad -		
31. Hot tap water.		
32. Lighted stage during rehearsa		

COSTUMING WITH METRICS

It is important to know what metric measurement to use. Show what measurement to use in the following situations.

6. Mass of breastplate
A. Width of fabric
8. Mass of box of pins
9. Height of man's hat
10. Quantities for mixing dye solution
from powder
11. Size of your waist
12. Volume of sewing machine oil
13. Amount of fabric for Elizabethan gown
14. Length ofan inseam
15. Rise of a step
$16 . ~ A r e a ~ o f ~ a n ~ a c t i n g ~ s p a c e ~$

4

${ }^{\mathrm{TNTr}} 3$

OBJECTIVE

The sudent will recognize and use metric equivalents.

- Given a metric unit, state an equivalent in a larger or smaller metric unit.

SUGGESTED TEACHING SEQUENCE?

1. Make available the Information Sheets (3.8) and the associated Exercises (8-14), one at a time.
2. As soon as you have presented the Information, have the students complete each Exercise.
3. Check their answers on the page titled ANSWERS TO EXERCISES MND TEST.
4. Test performance by using Section B of "Testing Netric Abilities."
\dagger

METRIC-METRIC EqUUVALENTS

Centimetres and Mililimetres

*
L'ook at the picture of the nail next to the ruler'. The nail is 57 mm long. This is $5 \mathrm{~cm}+7 \mathrm{~mm}$ There are 10 min in each cm , $\mathrm{so} 1 \mathrm{~mm}=0.1 \mathrm{~cm}$ (one-tenth of a centimetre). This means that $7 \mathrm{~mm}=0.7 \mathrm{~cm}, 5057 \mathrm{~mm}=5 \mathrm{~cm}+7 \mathrm{~mm}$
$=5 \mathrm{~cm}+0.7 \mathrm{~cm}$.
$=5.7 \mathrm{~cm}$. Therefore 57 mm is the same as 5.7 cm .
Now measure the paper clip. It is 34 mm . This is the same as $3 \mathrm{~cm}+$ \qquad mm. Since each millimetre is 0.1 cm (one; enth of a centimetre), $4 \mathrm{~mm}=$ \qquad cm . So, the paper clip is $34 \mathrm{~mm}=3 \mathrm{~cm}+4 \mathrm{~mm}$
$=3 \mathrm{~cm}+0.4 \mathrm{~cm}$
$=3.4 \mathrm{~cm}$. This means that 34 mm is the same as 3.4 cm .
Information Sheet 3

Now you try some.
a) $26 \mathrm{~mm}=$ \qquad cm
e) $132 \mathrm{~mm}=$ \qquad cm
b) $583 \mathrm{~mm}=$ \qquad cm
c) $94 \mathrm{~mm}=$ \qquad cm
d) $680 \mathrm{~mm}=$ \qquad
1.

Exercise 8

Metres, Centimetres, and Millimetres

There are 100 centimetres in one metre. Thus,

- $2 \mathrm{~m}=2 \times 100 \mathrm{~cm}=200 \mathrm{~cm}$,
$-3 \mathrm{~m}=3 \times 100 \mathrm{~cm}=300 \mathrm{~cm}$,
$8 \mathrm{~m}=8 \times 100 \mathrm{~cm}=800 \mathrm{~cm}$,
$36 \mathrm{~m}=36 \times 100 \mathrm{~cm}=3600 \mathrm{~cm}$.
There are 1000 millimetres in one metre, 50 -

$$
\begin{aligned}
2 \mathrm{~m} & =2 \times 1000 \mathrm{~mm}=2000 \mathrm{~mm} \\
3 \mathrm{~m} & =3 \times 1000 \mathrm{~mm}=3000 \mathrm{~mm} \\
6 \mathrm{~m} & =6 \times 1000 \mathrm{~mm}=6000 \mathrm{~mm} \\
24 \mathrm{~m} & =24 \times 1000 \mathrm{~mm}=24000 \mathrm{~mm}
\end{aligned}
$$

From your work with decimals you should know that
one-half of a metre can be written 0.5 m (five-tenths of a metre), one-fourth of a centimetre can be written 0.25 cm (twenty.five hundredths of a centimetre).
This means that if you want to change three.fourths of a metre to millimetres, you would multiply by 1000 . So

$$
\begin{aligned}
0.75 \mathrm{~m} & =0.75 \times 1000 \mathrm{~mm} \\
0 & =\frac{75}{100} \times 1000 \mathrm{~mm} \\
& =75 \times \frac{1000}{100} \mathrm{~mm} \\
& =75 \times 10 \mathrm{~mm} \\
& =750 \mathrm{~mm} . \text { This means that } 0.75 \mathrm{~m}=750 \mathrm{~mm} .
\end{aligned}
$$

Information Sheet 4

Fill in the following chart.

metre m	centimetre cm	millimetre mm
1	100	1000
2	200	
3		
9		
		5000
74		
0.8	80	
0.6		600
	2.5	25
		148
	639	

Millilitres to Litres

There are 1000 millilitres in one litre. This means that
' 2000 millilites is the same as 2 litres,
3000 ml is the. sdme as 3 litres,
4000 ml is the same as 4 literes,
12000 ml is the same as 12 litres.
Since there are 1000 millilitres in each lifre, one way to change millilitres to litres is to divide'by 1000 . For example,

$$
\begin{aligned}
& 1000 \mathrm{ml}=\frac{1000}{1000} \text { litre }=1 \text { litre. } \\
& 2000 \mathrm{ml}=\frac{2000}{1000} \text { liuf }=2 \text { litres. } . \\
& \text { And, as a tinal example, } \\
& 28000 \mathrm{ml}=\frac{28000}{1000} \text { litres }=28 \text { litres. }
\end{aligned}
$$

What if something holds 500 ml ? How many litres is this? This is worked the same way.
$500 \mathrm{ml}=\frac{500}{1000}$ litre $=0.5$ litre (five-tenths of a lites). 50500 ml
1 is the same as one-hall (0.5) of a litre.
Change 57 millilitres to litres.
$\left.57 \mathrm{ml}=\frac{57}{1000} \right\rvert\, \overrightarrow{y y}$
litre).

Information Sheet 5
Now you try some. Complete the following chart.

milliiitres (ml)	litres (l)
3000	3
6000	
1	8
11000	23
	0.3
300	0.9
$\cdots 700$	
	0.77
250	
2	
275	

Exercise 10
Exercise 9

Litres to Millilitres

What do you do if you need to change litres to millilitres? Remember, there are 1000 ,millilitres in one litre, or 1.1 itre $=1000 \mathrm{~m}$.

So,
2 litres $=2 \times 1000 \mathrm{ml}=2000 \mathrm{ml}$,
7 litres $=7 \times 1000 \mathrm{ml}=7000 \mathrm{ml}$,
13 Jitres $=13 \times 1000 \mathrm{ml}=13000 \mathrm{~m}$, 0.65 litre $=0.65 \times 1000 \mathrm{ml}=650 \mathrm{ml}$.

Information Sheet 6
Now you try some. Complete the following chart.

litres 1	mililitres mul
8	8000
5	
46	
	32000
0,4	
0.53	
	480

Exercise II

Grams to Kilggrams

There are 1000 grams in one kilogram. This means that
2000 grams is the same as 2 kilograms,
5000 g is the same as $5 \mathrm{~kg}, ~ * ~-~$
700 g is the same as 0.7 kg , and so on.

- To change from grams to kilograms, you use the samme procedure for changing from millilitres to litres.

Try the following ones.
Information Sheet 7

| grams | $\begin{array}{c}\text { kilograms } \\ \text { kg }\end{array}$ |
| :---: | :---: | :---: |
| 8 | .. |
| 4000 | 4 |
| 9000 | |
| 20000 | |
| | |
| 300 | 8 |

THE CENTEA ROR VOCATIONA EDUCATION

Kilograms to Grams

To change kilograms to grams, you multiply by 1000 .

$$
\begin{array}{rl}
f & \mathrm{~kg}=\mathrm{t} \\
23 \mathrm{~kg} & \times 1000 \mathrm{~g}=4000 \mathrm{~g}, \\
\mathrm{~kg} & \times 1000 \mathrm{~g}=23000 \mathrm{~g}, \\
0.75 \mathrm{~kg}=0.75 \times 1000 \mathrm{~g}= & 750 \mathrm{~g} .
\end{array}
$$

Information Sheet 8
Complete the following chart.

$\begin{array}{\|l} \substack{\text { kilograms } \\ \mathrm{kg} \\ \hline} \end{array}$	grams 8
7	7000
11	
	25000
0.4	
0.63	
	175

Exercise 13

Changing Units at Work

Some of the things you use in this occupation may be measured in different metric units. Practice changing each of the following to metric equivalents by completing these statements.
a) 500 cm of yam 18 \qquad m
b) 250 ml of water is \qquad 1
c) 60 mm hem is \qquad
d) 0.5 kg cutting shear is cm
e) 30 cm of lace is \qquad
f) 40 g thimble is

g) 500 ml of machine oil is
h) 4 cm needle is

1) 1.6 m body height is
j) $0.5 \mathrm{~m}^{2}$ of fabric is
\qquad mm
k) 2 lites of water is \qquad ml
2) 30 cm cutting shearsis \qquad
m) 10 m of elastic is
n) 20 mm diameter button is cm
3) 290 mm dratting paper is \qquad cm

- objectre

The student will recognize and use 'instruments, tools, and derices for measurement tasks in this occupation.

- Given metric and Customary tools, instruments, or devices, differentiate between metric and Customary.
- Given a theatrical costuming measurement task, select and use an appropriate
a tool, instrument or device.
- Given a metric measurement task, judge the metric quantity within 25% and measure within 5% accuracy.

SUGGESTED TEACHING SEQUENCE

1. Assemble metric and Customary measuring tools and devices (rules, scales, ${ }^{\circ} \mathrm{C}$ themometer, wrenches, measuring cups, tapes, hem gages) and display in separate groups at. learning stations.
2. Have students examine metric tools and instruments for distinguishing characteristics and compare them with Customary tools and instruments.
3. Have students verbally describe characteristics.
4. Present or make available Information Sheet 9.
5. Mix metric and Customary tools or equipment at learning station. Give student Exercises 15 and 16.
6. Test performance by using Section C . of""Testing Metric Abilities."

SELECTING ANDUSING

METRIC INSTRUMENTS , TOOLS AND DEVICES

Selecining an improper tool or misreading a gage can result in a failure to obtain fit and maintain style, drape and line. For example, construction of a period shirt with a 40 -inch neck instead of $40-\mathrm{cm}$ heck will result in a waste of time, effort, and materials. Here are some uuggestions:

1. Find out in advance whether Customary or metric units, tools, instuments, or products are needed for a given task.
2. Examine the tool or instrument before using it,
3. The metric system is a decimal system. Look for units marked off in whole numbers, tens or tenths, hundreds or hundredths.
4. Look for metric symbols on the tapes or gages such as $\mathrm{m}, \mathrm{mm}, \mathrm{kg}, \mathrm{g}, \mathrm{kPa}$.
5. Look for decimal fractions (0.25) or decimal mized fractions (2.50) rather than common fractions (3/8) on tapes, rules, and gages.
6. Practice selecting and using instruments and deviges.
7. Don't force bolts, wrenches, or other devices which are not fitting properly.
8. Practice selecting and using tools, instruments, and devices.

MEASURNG UP IN COSTUMING

Practice and prepare to demonstrate your ability to identify, select, and use metric-scaled tools and instruments for the tasks given below. You should be able to use the measurement tools to the appropriate precision of the tool, instrument, or task.

Select and demonstrate or describe use of tools, instruments, or devices to:

1. Mark a hem to be 10 cm from the floor.
2. Stitch a gamment side seam to be 5 cm smaller than it arready is.
3. Estimate the cost of a heary brocade fabric to construct an Italian Renaissance gomn.
4. Measure an actor for a fiting.
5. Measure and cut a pattem for a finger tip length cape.
6. Determine the length of a storage rack in your costume shop 80 you can hang 30 Greek costumes.
7. Prepare and mix a dye solution needed to dye tights.
8. Alter the waistband on a pair of men's trousers.
9. Measure and press mark an even hem allowance.
10. Select a zipper for a costume.
11. Messure even spaces between tucks, buttons, snaps, and pleats.
12. Determine stitch size.
13. Measure the length of a dart.

For the takks below, extimate the metric meisurement to within ${ }^{-1}$ 25\% of actyal measurement, and verify the estimation by measuring to within 5\% of actual measurement.

1. Pants' inseam length Estimate Verity		
2. Number of machine basting stitches per centimetre		
3. Tipper length		
4. Hat size		
5. Length of hem tape		
6. Buttonhole size		
7. Width of hem		
8. Sleeve length		
9. Length of sash cord at maist		
10. Distance between buttons on shirt		
11. Tenith and width of a piece of fabric: a. length		
b. widh		
12. Volume of cleaning fluid in a party-filled container		
13. Mass of a larye headpiece		
14. Width of seam allowance		
/		

OBJECTIVE
The student will recogize and use metric and Customary units interchangeably in ordering, selling, and using products and supplies in this occupation.

- Given a Customary (or metric) measurement, find the metric (or Customary) equivalent on a conversion table.:
- Given a Customary unit, state the replacement unit.

SUGGESTED TEACHING SEQUENCE.

1. Assemble packages and containers of materials.
2. Present or make available Information, Sheet 10 and Table 3.
3. Have students find approximate metric. Customary equivalents by using Exercise 17:
4. Test performance by using Section D of "Tgesting Metric Abilities."

METRIC-CUSTOMARY EQUIVAIENTS

During the transition period there will be a need for finding equitalalents between systems. Conversion tables list calculated equivalents between the two systems. When a close equivalent is neded, a conversion table can be used to find it. Follow these steps:

1. Determine which conversion table is needed.
2. Eook up the known number in the appropriate column; if not listed, find numbers you can add together to make the total of the known number.
3. Read the equivalent(s) from the next column.

Table In the next page gives an example of a metric-Customary conversion table which you can use for practice in finding approximate equivalents. Table 3 can be used with Exercise 17, Part 2 and Part 3. .

Below is a table of metric-Customary equivalents Which tells you what the metric replacements for Customary units are.* This table can be used witt Exercise 17, Part 1 and Part ? The symbol \approx means "nearly equal to."

$1 \mathrm{~cm} \approx 0.39$ inch	1 inch $\approx 2.54 \mathrm{~cm}$	$1 \mathrm{ml} \approx 0.2 \mathrm{tsp}$	$1 \mathrm{tsp} \approx 5 \mathrm{ml}$
$1 \mathrm{~m} \approx 3.28$ feet	1 foot $\approx 0.305 \mathrm{~m}$	$1 \mathrm{ml} \approx 0.07 \mathrm{tbsp}$	1 tbsp
$1 \mathrm{~m} \approx 1.09$ yards	1 yard $\approx 0.91 \mathrm{~m}$	$11 \approx 33.8 \mathrm{ff} 02$	$1 \mathrm{floz}=29.6 \mathrm{ml}$
$1 \mathrm{~km} \approx 0.62$ mile	1 mile $\approx 1.61 \mathrm{~km}$	$11 \approx 4.2$ cups	1 cup
$1 \mathrm{~cm}^{2} \approx 0.16 \mathrm{sq}$ in	1 sq in $\approx 6.5 \mathrm{~cm}^{2}$	$11 \approx 2.1 \mathrm{pts}$	$1 \mathrm{pt} \approx 0.471$
$1 \mathrm{~m}^{2} \approx 10.8 \mathrm{sq} \mathrm{ft}$	$1 \mathrm{sq} \mathrm{ft} \approx 0.09 \mathrm{~m}^{2}$	$11 \approx 1.06$ qt	$1 \mathrm{qt} \approx 0.951$
$1 \mathrm{~m}^{2} \approx 1.2 \mathrm{sq} \mathrm{yd}$	$1 \mathrm{sq} \mathrm{yd} \approx 0.8 \mathrm{~m}^{2}$	$11 \approx 0.26 \mathrm{gal}$	$1 \mathrm{gal} \approx 3.791$
1 hectare ≈ 2.5 actes	$1 \mathrm{acre} \approx 0.4$ hectare	$1 \mathrm{gram} \approx 0.03502$	
$1 \mathrm{~cm}^{3} \approx 0.06 \mathrm{cu} \mathrm{in}$	$1 \mathrm{cu} \mathrm{in} \approx 16.4 \mathrm{~cm}^{3}$	$1 \mathrm{~kg} \approx 2.2 \mathrm{lb}$	$1 \mathrm{lb} \approx 0.45 \mathrm{~kg}$
$1 \mathrm{~m}^{3} \approx$	$1 \mathrm{cuft}=0.03 \mathrm{~m}^{3}$	1 metric ton $\approx 2205 \mathrm{lb}$	1 ton $=$
$\because 1 \mathrm{~m}^{3} \approx 1.3 \mathrm{cu} \mathrm{yd}$	$1 \mathrm{cu} \mathrm{yd} \approx 0.8 \mathrm{~m}^{3}$	$\mathrm{ikPa} \approx 0.145 \mathrm{psi}$	1 psi $\approx 6.895 \mathrm{kP}$

[^1]Information Shcet 10

MLLMMETRES AND CENTIMETRES TO INCHES

INCHES TO CENTIMETRES AND MILLIMETRES

ANY WAY YOU WANT IT

1. You are working as a theatrical costuming assistant. With the change to metric measurement, some pattems, fabric, directions and notions used in theatrical costuming will be available only in metric sizes. You will need to be familiar with approximate Customary equivaents in order to select correct pattem sizes and quantities of supplies for proper fit, drape and style in garment construction. You will also need Customary equivalents to order supplies in metric units. To develop your skill, use Table 3 and Information Sheet 10 and give the approximate metric quantity (both numbers and unittfor each of the following Customary quanitites.

Customary Quantity	Metric Quantity
a) $1 / 2$ cup of dye concentate	
b) 3 in. hem	
c) $1 / 2 \mathrm{in}$. seam allowance	
d) $3 / 4$ in. button	
e) 5 yds, of musin	,
f) 4 oz. package of powdered dye	
g) 1 pt. of sewing machine oil	
h) 20 yd. spool of thread	
i) 2 oz. ball of linen thread	
j) 9 in. by 12 in. dratting paper	
k) 2 in. needle	
1) 411. oz.of liquid dye concentrate	
m) 4 in. wide sponge	
n) 2 gyd.can of cleaning fuid	
0) 30 in. pants inseam	

2. Use the conversion tables from Table 3 to convert the following:

a) $15 \mathrm{~mm}=$	in.	e) $30 \mathrm{in}=$.	cm
b) $81 \mathrm{~cm}=\quad$	in.	f) $24 \mathrm{in} .=\quad$	cm
c) $30 \mathrm{~cm}=$	in.	g) $4 \mathrm{in} .=$	cm
d) $22 \mathrm{~mm}=-$	in.	h) $5 / 8 \mathrm{in}=$.	mm

| i) $50 \mathrm{~cm}=$ | in. | k) $11 / 8 \mathrm{in}=$ | mm |
| :--- | :--- | :--- | :--- | :--- |
| j) $65 \mathrm{~mm}=$ | in. | 1) $43 / 4 \mathrm{in}=$ | cm |

3. Complete the Requisition Form using the items listed. Convert the Customary quantities to metric before filling out the form:
Complete all the information (Date, For, No., etc.). Order the following theatrical costuming supplies:
a) 1 doz. 10 in. zippers
b) 1 lb d dressmaker's pins
c) 7 yd s. of colored taffeta
d) $1 / 2$ doz. 4 in . seam rippers
e) 2 pairs of 8 in. bent handle shears
f) Two 1 pt. bottles of liguid dye concentrate

SECTIONA

1. One kilogram is about the mass of a: r^{*}
(A] nickel
[B] apple seed
(C) basketball
[D] Volkswagen "Beetle"
2. A square metre is about the stea of:
[A] this sheet of paper
[B] a card table top
[C] a bedspread
(D) [a postage stamp
3. Zipper lengths are measured in:
[A] milliitres
[B] centimetres
[C] millimetres
[D] grams
4. An actor's height is messured. in:
(A] kilograms
[B] centimetres
[C] millimetres
[D] metres
5. The correct way to write twenty crams is:
(A] 20 gms
[B] 20 Gm .
(C] 20 g.
[D| 20g
6. The correct way to mrite twelve thousand millimetres is:
[A] $12,000 \mathrm{~mm}$.
[B] 12.000 mm
(C) 12000 mm
[D] 12000 mm
SÉCTION B
7. A piece of fabric 200 centimetres long also has a length of:
[A] 0.02 métre
[B] 2 metres
[C] 0.2 metre
[D] 20 metres
8. An ironing board $1: 5$ metres long would also be:
[A] 150 centimetres
[B] 15000 centimetres
[C] 1500 centimetres
\downarrow
[D] 15 centimetres

SECTION C

9. To measure in centimetres you would use a:
[A] tape
[B]. measuring cup
[C] . male
[D] thermometer
10. For measuring millilitres you would use a:
[A] tape
[B] thermometer
[C] measuring cup
[D] scale
11. Extimate the length of the line egment below:
(A] 23 rrams
†(B] 6 centimetres
[C] 40 millimetres
(D] 14 pascals
12. Estimate the length of the line regment below:
(A) 10 millimeties
[B] 4 centimetres
[C] . 4 pascals
[D] 23 milliprams

13. The metric unit for mas which

 replaces the ounce in:[A] millipram
[B] millilitre
[C] litre
[D] gram
14. The methaturiit for liquid messure which replaces fluid ounces is:
[A] millilitres
iver
[B] millirams
[C] grams
[D] litres
[A] 15.7 in .
[B] 90 in.
[C] 17.7 in .
[D] 45 in.
16. The equivalent of 45 cm is:

EXERCISES 1 THRU 6

The answers depend on the items used for the activities.

EXERCISE 7

Currently accepted metric units of measurement for each question are. shown in Table 2. Standards in each occupation are being established now, so anpwers may vary.

EXERCISE 8

a) $\begin{array}{rlr}2.6 \mathrm{~cm} & \text { e) } & 13.2 \mathrm{~cm} \\ \text { b) } & 58.3 \mathrm{~cm} & \text { f) } \\ \text { cl } & 80.2 \mathrm{~cm} \\ \text { cl } & .4 \mathrm{~cm} & \text { g) } \\ \text { d) } & 140.0 \mathrm{~cm} \\ \text { d } & 68.0 \mathrm{~cm}, & \text { h) } \\ 230.7 \mathrm{~cm}\end{array}$

EXERCISES 9 THRU 13

Tables are reproduced in total. An. swers are in parentheses.

Exercise 9

metre m	centimetre cm	millimetre mm
1	100	1000
2	200	(2000)
3	(300)	(3000)
9	(900)	(9000)
(\mathbf{j})	(500)	5000
74	(7400)	(74000)
0.8	80	(800)
0.6	(60)	600
(0.025)	2.5	25
(00.188)	(14.8)	148
(66.39)	639	(6390)

Exercise 10

millilitres ml	litres 1
3000	3
6000	(6)
(8000)	8
14000$)$	(14)
(23000)	23
300	0.3
700	(0.7)
(900)	0.9
250	(0.25)
(470)	0.47
275	(0.275)

Exercise 11

litres	milililitres ml 1
8	8000
5	(5000)
46	(46000)
(32)	$32000{ }^{\circ}$
0.4	$400)$
0.53	(530)
(0.48)	480

Exercise 12

grams g	kilograms kg
4000	4
9000	(9)
23000	(23)
180000	8
300	(0.3)
275	(0.275)

Exercise 13

kilograms kg	grams \mathbf{g}
7	1000
11	(11000)
(25)	25000
0.4	(700)
0.63	(630)
(0.175)	175

Exercise 14

a) 5 m
i) 160 cm
b) 0.25 litre
j) $5000 \mathrm{~cm}^{2}$
c) 6 cm
k) 2000 ml

1) 12.1 cm
Part 3.
d) 500 g
2) 300 mm
e) 300 mm
m) 1000 cm
f) 0.04 kg
n) 2 cm
B) 0.5 litre
3) 29 cm
h) 40 mm

EXERCISES 15 AND 16

The answers depend on the items used for the activities.
-

$\frac{\text { EXERCISE } 17}{\text { Part } 1 .}$

a) 118.5 ml
i.) 56.68
b) 7.62 cm
j) 22.86 cm by
c) 1.27 cm
30.48 cm
d) 1.905 cm
k) 5.08 cm
e) 4.55 m
l) 118.4 ml
f) 113.2 g
m) 10.16 cm
g) 0.47 litre
n) 7.58 litres
h) 18.2 m
0) 76.2 cm

Part 2.
a) 0.60 in .
b) 31.9 in
c) 11.8 in .
d) 0.88 in .
c) 76.2 cm
f) 61.0 cm
g) 10.2 cm
h) 15.9 mm
i) 19.7 in .
j) 2.60 in .
k) 28.6 mm
a) 12.25 .4 cm
b) 0.45 kg
c) 6.37 m
d) 6.10 .16 cm
e) 2.20 .32 cm
f) $2 \cdot 0.47$ litre

TESING METRIC ABILITIES θ

1. C
2. B
3. A
4. C
5. B
6. B
7. B
8. A
9. D
10. D
11. A
7.. B
12. B
13. A
14. C

SUGGESTED METRIC TOOLS AND DEVICES NEEDED TO COMPLETE MEASUREMENT TASKS IN EXERCISES 1 THROUGH 5 (*Optional)

LINEAR

Metre Sticks
Rules, 30 cm
Measuring Tapes, 150 cm
*Height Measure
*Metre Tape, 10 m
*Trunde Wheel
*Area Measuring Grid

VOLLME/CAPACITY

${ }^{*}$ Nesting Measures, set of 5, $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$
Economy Beaker, set of 6, $50 \mathrm{ml} \cdot 1000 \mathrm{ml}$
Metric Spoon, set of 5, $1 \mathrm{ml}-25 \mathrm{ml}$
Dry Measure, set of 3, 50, 125, 250 ml
Plastic Littre Box
Centimetre Cubes

Bathroom Scale
*Kilogram Scale
*Platiorm Spring Scale 5 kp Capacity 10 kg Capacity
Balance Scale with 8-piece mass set
*Spring Scale, 6 kg Capacity

TEMPERATURE

SUGGESTED METRIC TOOLS AND DEVCES

NEEDED TO COMPLETE OCCUPATIONAL MEASUREMENT TASKS

In this occupation the tools needed to complete Exercises 6, 15 , and 16 are indicated by " k."
A. Assorted Metric Hardarere-Hes nuts, washers, ccrews, cotter pins, etc.
B. Drill Bits-Individual bits or sets, 1 mm to 13 mm range
C. Vemier Caliper-Pocket slide type, 120 mm range •
D. Micrometer-Outside micrometer caliper, 0 mm to 25 mm range -
E. Feeler Gage- 13 blades, 0.05 mm to 1 mm range
F. Metre Tape- 50 or 100 m tapg
G. Thermometers-Special purpose types such as a clinical thermometer
H. ${ }^{1}$ Temperature Devices-Indicators used for ovens, freezing/ cooling systems, etc.
I. Tools-Metric open end or box wrench sets, socket sets, hex key sets
J. Weather Devices-Rain gage, barometer, humidity, wind velocity indicators
K. !Pressure Gages-Tire pressure, air, oxygen, hydraulic, fuel, etc.
L. ${ }^{1}$ Velocity-Direct reading or vane type meter
M. Road Map-State and city road maps

* N. Containers-Buckets, plastic containers, etc., for mixing and stoing liquids

0. Containers-Boxes, buckets, cans, etc., for mixing and storing dry ingredients

Most of the above items may be obtained from local industrial, hardware, and school suppliess. Also, check with your school district's math and science departments and/or local industries for loan of their metric measurement devices.

[^2]

[^0]: THAT IS HOW LONG A METRE IS!

[^1]: *Adapted from Let's Mecsure Metric. A Teacher's Introduction to Metric Measurement. Division of Educational Redesign and Renewal, Ohio Department of Education, 65 S . Front Street, Columbus, OH 43215 1975 .

[^2]: ${ }^{1}$ Measuring devices currently are not available. Substitute devices (i.e., thermometer) may be used to complete the measurement task.

