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. ,

, CENTER FOR COGNITIVE LEARNING

The mission of the Wisconsin Research and Development' Center

for Cognitive.Learning is to.help learners devel p as rapidly

and effectively as possible their potential aS hnan beings
and as.contributing members of s9ciety., The R&D enter'is
striving to fulfill this.goal by

conducting research to discover more about,
- how children learn

/4e deVeloping improved instructional strategies,
processee and materials for school adminietrators,
teachere,Hand children, and

a

offering assistance Co educators and citizens
_

which will help transfer the outcomes of research
and_development into practice

PROGRAM
-

The activities of.the Wisconsin R&D Center are organized

around one unifying theme, Individually Guihed Edvcation.

FUNDING
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The WisconsiA R&D Center isssupported with funds frowthe
10 National Institute of Education; the Bureau of Education !or,
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,of Wisconsin.

4



ACKNOWLEDGMENTS

I wish to express MY appreciation to Conrad G. Katzenmeyer'fbr'
.providing the opportunity for,me to write this.paper,and for reviewing
each draft. My gratitude i5 also extended.to Steven Jurs and Joseph:
Shaffer who were stimulators for some of the ideas presented in this-
paper.

iv



TABLE OF CONTENTS

Page

cknowledgements iv

List of Tables .
vii:

Abstract ik

I. Introduction 1

The Bayesian.versus Classical Inference Contierv 1

Foundations.of Bayesian,Statistics 1

II.' Educational Evaluation .3

-J

r Development of Educational Evaluation
.EValuation versus Research- 3

,

311.

,TV.

V.

Failure of Classical Statittics in Educational Evaluation

Bayesian Analysih

Definitions -Cf*--Pkobability

Hayes' Theorem : . ,..

iForMation of Prior Probability Distribution
?

lAn Example Of*Bayes' Theorem
4)-kypothesis Testing . . ,

Decision Making
Bayesian Analysis for an Evaivation

Problem=7An Example
Data Collectiori Stopping Rule .

Conclusion '

Summaiy . ..
References

. .

.0

es

5

7

"7

8

9

10
12

14.

.1;

19

21

23



LIST or TABLES

Table

-
I Prior, , and Posterior Probability Distributions

føf1iath Program Example .

vii

Page

16

7-



) ABSTRACT

, Because of the current dominance of classical statistics in the
tradition of Fisher, Ne anI and Pearson, an alternative approach known
as Bayesian statistical inference is unfamiliar to many educational evalua-,
tors, While the classi al model is useful in educational research, it:is
not.as Useful in 'evalua ion because of the need to identify -solutions to
practical problems bas d on a wide spectrum oE information.

Business and.mar eting researchers have utilized the Sayesian model,
for many years because they need to make pract cal decisions rather than
assertions about some:unknown parameter, with is the function of tradi-
tional statistics. The reasoh Bayesian -is effective for decision

making is that it defines probability as'a measure of opinion-or'-belief,
rather than as longrm.frequency. -

Defining pro ability as 4 measure of opini n or belief enables the
Bayesian inveatig tor to consider a'wider range 6f information than is

-possibl9 with th traditional model.- Personal expertise, logical analysis,-

and sof data frm a wide variety of sources serve bo shape opinion-about.

a-state f nature, with experimental data providing additional information
either fo 4r. against the prior opinion of the evaluator. In classical. /

statistics, prior knowledge .or opinion is ignored. However, when practical
decisions must be made the Bayesian stresses that all knowledge.should be
brought to bear on "the problem rather than just an isolated set ofdata.
Because of the decision-making orientation of the evaluator, the Bayesian
model should be considered as an alternative to classical inferbhbe.

Since the Bayesian model views probability as a measure of opinion
rather than as a long-term.frequency-r-the-statistical-requiremants-for---
it are actually greater than for the classical statistician.. Dae ok a
wider range of distributions than with classical statistics demands more
statistical Skills than pany evaluators currently possess. Hoviev$F, the

questions raised by the Bayesian mode4are useful even if the model is
not totally adopted.

9
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6er INTRODUCTION

THE BAYESIAN VERSUS CLASSICA INFERENCE,CONTROVERSY
1/

Throughout t t- sequence of statistical courses digested by most
prospective educational evaluators, little notice is usually given to
\he controversy between so called Neyman-Pearson and Bayesian statis-
icians. .This lack of awareness is no doubt due to the dominant position

tIh e Neyman-Pearson (classical) statistician has enjoyed in soV..al
cience and educational research. However, in some fields,where practiCal
cisions must be made on the basis of all available information,.the
yesian statistical model pas proven its usefulness. In businese and
rketing research and.to a lesser extent in engineering Bayesian analysis

as been effectively ptilized..to determine the appropriatenese of,alterna7
tive decision choiceg.

The basic philosophical difference betWeen-the two ap oaches -concerns

the use of prior information or beliefs. The classical stati tican
assumes.that only specified data gathered after hypothesis fo tion can
be used for inference. The Bayesian statistician contends that he data
gathered in an experiment only serve as additional information to
combined, with the investigator's-prior information or,beliefs. ThisACom-
bining of data and opinion is done through the use of.BaYegr-Theorea- To
moSt educational evaluators the Bayesian approach may seen foreign to all
they have learned about the appropriate Use of statistical inftrencq.

The purpose of this paper is to show, fist, that4the differences
--between educational research and educational evaluation result in.the
-cOnclusion that Statistical techniques appropriate for the form4r are
not necessarily suitable tor the latter; and, second,. that the Bayesian 0
inferential approach offers an alternative statistical model for the: .

educational evaluator, as he/ghe is frequently in the position where
classiCal'inferential statistics does.not alloW for utilizatión of the
type'of information TATich he/she possesses.

FOUNDATIONS OF BAYESIAN STATISTICS /

The ci sical (Neyman-Pearson) rsustAayesian controversy can be
reiated-to a6 asic problem in the histcry Oescience: the roles of
ratAnalism and empiricism and.the interpretation of probabilitY
statements (Weber, 1973).

To the Greeks, the laWs of science were completely precise and
demonstraAte through the process of deduction. FluctuaLon and varia-

, bility were considered error and a reflection of lack of knowledge of

10



laws. This tic view of knowledge wa As umed by early philo-
sophers.of

,

ce suc as Descartes and scie ist such as Newton.
However, sc ence ma1pred there was less and less certainty that a
ration stem could be veloped from which any data could be seen
as logibal onsequence. Modegp stochastic,models such as Maxwell's
thermodynamic laws, Mendel's genetic laws,, and Einstein's theory of
relativity saw science developing probeility models of phenomena.

.Probability models which,have been recognized for a long time were
used to cope with ignorance about laws of nature or errors of measured-
ment. However, as stochastic,models became mode popular, probability
moI dels ere seen as characteristic of nature itself rather than 'timply
reflec ing ignorance. Thus., modein philosophers were forced to recorAide
the al ernatives that were available to the conctilik of probability: F
the Bayesian, probability means de ee of personal belief about some
nomenon. This approach contrasts dis inctly with that of the classical
9tatistical.school, which considers pr babi4ity to, be long-term relative
frequency. The probability of occurrence of an event has heen define&
as the limit of the relative frequency of itS occurrence in some speci-.
fied.reference class of events (Fisher, 1956).. With few exceptions,
modern statisticia textbooks use this relative frequency interpretation
of probability.

Bayesians find this viewof probability too restrictive. Often,

r;statements must be made about no epeating events which have a degree
of uncsrtainty. For example, the statement "The probabilitTis' ater,
that a man_will land on Mars than that a man will land on ,Jupit .1

makes intuitive sen8e,' yet both .events are unique cr nonrepeatifl By '

viewing probability as a measure of belief, the concept takes on broader
and potentially more useful meaning. - ,

. Bayeilari statistics stems indirectly from a paper/by.Thomas'Bayes
that originally abpeared in 1763; however,.only in 1961 did the first
systematic use of. Subjective probability and other elements of the
Bayesian model emerge with the appearance of Schlaifer's Introduction
to'Statistics for Business Decisions. Since then, several additional

. books with a.general business application emphasis have appeaged, such
as Savage (1962)', Thompson (1972), and Zellner (1971). However, Edwards,
Lindman, and Savage,'!(1963) and McGee (1971) have presented Bayesian
approaches to social sciences, and Meyer (1971) presented a.general
paper on Bayesian statistics at the 1971 American Educational Research
Association meeting.---This'author has not found any additional publica-

,

tions relating the model to educational situations. In this paper, the
potential for the use of Bayesian analyses in.educational evaluation-
will be distussed.

It.
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EDUCATIONACEVALUATION

N.
DEVELOPMENT OF CATI AL EVALUATION
LI

Evaluation mod'ls wire developed in the.past decade,because.o

the-need to account for and.dertermine the worth of scores of neW fed ally

funhed educational programs:. The first ye4;rs after the passage

Elementary and Secondarreducation Act (ESEA) oi 1965 saw ev uative

chaos--every'new project was judged by a unique plan., Th 'many of
the resultipg evaluations would be inadequate was inevit e. Few

educators possessed the skills needed 'to conduct effecti evaluation.

A' few scholars developed generalizable evaluation.plans. Such

models were primarily developed by educational researchers, who attempted

to compromise the rigor,of.traditiOnal experimental design with,the

demarids of programmatic educational actiAties. Although themodels

.did not answer all of the problems of local evaluation, they did provide

generalguidelines that eliminated some of the deficiencies of early

ESEA evaluation reports. These models have been prim ril nonquanti-

tative in nature. They consist of general organizatio1lcatterns

lisping the sequence Qevaluation activities,and key. cis on points.

In view of this statist cal vacuum, most evaluators continue\to.use

.the traditional statistical inference procedures taught in mdst

graduate'schools of education. Such prIsp--duresoaxe usually appropriate

in educational research; however the diTferences between research and

evaluation art? wide enotigh that a common statistical methodology should

hot be assumed.

EVALUATION VERSUS RESEARCH
,

Despite the fact that both evaluation and researCh.can be classified

,as disciplined inquiries demanding empirical support, logical analysis,

'and opennesS to public scrutiny, there e some definite distinctions

tetween these two eduCational activiti The distinctions are priMarily

a mAter-of degree rather than .kind. Iitionally, the.extent and type

of differences will depend upon the theoretical mcidels under considera-'

tion. However, for the purposes of this. paper 4 will be sufficient to

note.that "evaluation is the determination otif worth of a thing"
whkreas "researCh is the activity aimed at obtaining generalizable

'knowledge by.contriving and testing claims about relationships among

variables or describing generalizable phenomena Northen & Sanders,

1973, p. 19] ." Other distinctitindhiCh may be noted between research.

3
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and evaluation are not necessarily inherent in the two activities but
rather Feflect,the way in Wilich they.heve been characterized in
practice. .

'The rules of legitimate evidence,for evaluatj:on data ate broader
than for research data. Prior to a research investigatibn, an experi-
menter must determine,the exact dependent variable which will.be
measured. This is not to say that other beaviors.will be ignored,
but thek; consideration must be secondary to the one specified,in the
hypothesis. .No One would object.to.the researcher'looking elsewhere
for support should the specified behaviornot support the hypothesis;

- however; this starts an entirely new investigation with e new hypothesis,
new design and new data._ Researdhers have always.looked with scorn at
Obst hoc analysis as Something less than scientific.

Evaluation activities are more flexible. With emphasis on the
determination of value, the evaluator's duty is to consider evidence
-from as many angles as possible. For example, the evaluator may be
.requested to measure the effects of a flexible schedule on a number
of independent student projects.. If the evaluator notices that such
a schedule seems to result in higher student absenteeksm, this data
may bekrery important in.the evaluation even though it is a Side.effect.

Research adtivities generally do not provide for.feedback loops.
The sequence "problem - hypothesis 7 sample - data - inference [Hays,

856]" is usually.f011owed until completion.4 In fact, frequently
the researcher may assign most of the activities to rather unsophisticated
,assistants ailo must simply follow the research'plan formed by the ex-
perimenter. After the data ere analyzed spinoffs may arise, but the
experiment at hand has ended. Even an overview of the major evaluation
models will demonstrate the extensive feedback system operating in the
models. For example, Stufflebeam (1973) presents a system,which is
based On continual looping between decisions, activities, and evaluation.

Parsimony in science requires the avoidance of unnecessary signifi-
cant effects. The consequences of asserting that a var*able has en
effect when it doesn't (rype-I error) are generally considered worse ,

than saying a variable doesn't have an effect when it does (Type II
error). Traditionally, researchers are willing to make Type I errors
onIV five or one percent of the time, while the frequency of Type II
errors is rarely considered. The.dangers of a Type I error are always
in the forefront of an experimqnter's mind. Before a variable is-given
a role in a.theory, it is care4611y examined to see if it is neceSsary.i.
Hence a good researcher is characterized as being cautious, conservative,
and skeptical.

However, the evaluator must constantly juggle the relative costs
of a Type I or Type II error. For example, a university may have devoted
years to developing and implementing a competency-based teacher education
(CBTE) program. Suppose that an evaluator were to compare such a program
with a traditional teecher education program. The null hypothesis.would
postulate that both types of programs were equally effective. Because
of the added expense of a CBTE program, a finding of .no difference might
result in the university's reverting to a traditional program. However,
if the CBTE prograth were found to be superior, little change in actglity
would occur; the program would simply continue. In this situation,'a
Type II error would signify that the lengthy development of the CBTE
program was in vain; pe a result, the university might decide to switch
back to a traditional program. Of course, in .other situations a Type I

error might still cause the most damage. The point is that in evaluation

\: 13
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the consequences of bothdtype I and Type II errors can vary considerably,
-

dependimPOn the circumstances and costs. The traditional proCedure of"
setting a Type I error probability level at .05 or :01 does not involve con-

sideration of relative costa.

FATLURE OF CLASSICALISTATISTIOS IN EDUCATiONAL EVALUATION

'Classical Neyman-Pearson statistics providesa good model for typical
research.' 4 probleM is first recognized,,whether from an unexplained
variable in a theoretical model or just some questARn arising out:of-daily

experienCe. From this problem a researcher postulates a:hypothesis about
a state of nature. For example, "Does a 15-minute work break in the.morning
increase total morning. Output?" To teat this hypothesis, the. researcher may
define his population as all office workers in the city. He will then randomly

place 20 such office workers into one=of two experimental groups. One group

will receive tlie coffee break and one will not,' The total morning output,will
be dete4mined for both groups.' Using classical statistics, it would be possible

to'test for a difference in the total output of the two 'groups that is suffi-

ciently large to be unlikely due to.chance.
This example illustrates the following points. First, the assumption

is made that our researcher has no knowledge of the outcome of the experiment.
In reality the experimenter obviously expects certain results or he/she

mould probably not conduct the experiment. In fact, it is because he/she
has same knowledge of expected resultg that the ironical situation arises

of the experimenter's assuming that be/she has no expectancy. Hopefully
the research will be public and will not be Subject to the demand characteris-,
tics of the experimenter. The'experiment is to be a microcosm where"the
effects of variables will be assessed strictly in terms of what occurs in

the experiment itself. All outcomes will be basedim the likelihood of a
sample resUlt, not on any activity which is'determined by.the prejudices of

the experimenter.. If the differences between-thp two groups are "statis-
tiCallY significant," we then conclude that the variable does have an effect

and it can be included.in oui theoretical model. Howelier, if the results

ate not statistically significantAt-Cannot be concluded that the variable

does not have an effect. All.we can say is that there is.no evidence to
include the variable in our model. This technique is aPpropriate for the

slow process of theory building. However, an evaluator frequently does

not have the chance for noncommitmentothat is given to the researcher.
Given that the evaluator is forced tOake a decision; failure to reject
the null hypothesis will probably lead to the conClusion that the programs
were equivocal. However, in doing this the rules'of inference are being

compromised. Classical procedureSwere not designed for the purposes of
effective decision making, but rather,for making assertions about popula-
'_ion parameters (Edwards et'allip-63).

Secondly, when an evaluato is hired the employer wants to utilize

all of the expertise available at that time. The classical approach does
not allow for this since the researcher must be considered ignorant of

expected outcomes--only the data can provide information. In reality the
evaluator or other staff members should have considerable,knowledge about
the situation.'

Finally, traditional statistics does not lend itself to the feedback

system of evaluation. Inferences are strictly limited to the sample data

under current consideration. Any additional tests will be based on new

14
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sample data. FregUentiy-in evaluation, if concluSionsitannot be clearly'

made on available evidenpe,,more data, 'peZhaps-of a slightlx.different

nature, will beexamined., With the classical approaOhrthe flrst.setof

data would be examined and- tested inaependent of VI second Set. Thus, if'

proceeding thrpugh a'feedbatk loop in-an evaluati model, the test of the

new data MustAae donducted and analyze4 independ t of the first set'..

The conclusion to be jaiawn it that-the ol sical statistical procedures

utilized in research are Aneffective in evalua n,for the following reasonsi

(1) The classical approach does( not,alloW for,maximum dtilization'of the

expertise available from the evaluatOi ind/oi projeatostaff;, (2),It can only

reject the mull hypothehis,Inever.accept4t; (3)_The classical approach

cannot effectively consider relatiVe coits/of Type I or Type II errors;

(4) It.cannot handle feedback loops, whi94 increase the,relative storeof

Information.
-

S.



0

III

BAYESIAN ANALYSIS

It should be emphasized all of.the mathematical concepts used,in

traditional statistics are avai le to Bayesian.statisticians.- HOwever,

411 home of the interpretations of the classiCal concepts are brdadet among,

Bayesians. Perhaps the most importeht of these COncerns the issue of pro-

jhability.

DEF-INITIONS OF PROBABILITY

At least three. separate "types" of prOhability can bedistihguished:

1. A priori proba*lity. -This type.of probability folloWs the:branch-

Of pure mathematics called thecalculue,ofchances. 'It is not based on any

data that have been gathered, but rather on 1 assumptions that are

made-about the nature of events It oftemrel iphyaical charicteris-.

ticsi such as symmetri. The toss'of a Coin or e is a popular example. 4

of syemetry.
2. Statistical probability. Probabilities Of this nature areestimatedH

by observing.the ratiOn of the frequency of occurrence of some event.to the

total nueber of'opportunities that are available fdi the -event to occur.. 'It-

is the relative,frequency of a given kind of event or phenomena,within a

class.of phenomena, usually called a "population." For example, to say

that the probability of a particular child being born male is .52 means that

of all known births., .52 of them have been pales. This is a Case where

statistical probability may not correspond to a priorijprobability, since

the a priori probability of a male being born is .50 according to the

principle of indifference. Of course, there.may be some explanation for

this discrepancy which will change the a priori probability.

3. 8ubjective _probability. The third type of'probability is distinctly

-Bayesian and is perhaps thecornerstone of the differences between Bayesian

and classical statistics. It is important to note that the Bayesian notionT

of subjective probability cannot be properly criticized on mathematical

grounds, since it.employs the same mathematical machinery as otherconcepts

of probability.

If Sayesian methods are to be criticized, the criticism should

be based on their intuitive reasonableness and appeal, the relity

of their assumptions about human behavior, their pragmatic value,

their place within empirical science and so on. They are 'not

properly criticized on mathematical grounds. . . . There is no

question of the formal validity of the probability statements

such methOds yield, so long as we play within the formal rules

of the game. plays, 1973, p. 810).

7
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The notion of subjective probability can-be defined as follows.
A probability value is a measure of strength of an individual's opinion
or belief aBout the existence of soMe situatiOn or the occurrence.Of
some event. This is distinctly'differehefrom a relative frequency
probability. Edwards, Lindman; and-Savage (1963) indicated that with
personal probability you are saying something about yourself as well
as the event you-are trying to 'predict. For example, if I were told tilat
the probability ofgetting a head a coin tqss.is .5, I would under-
stand that according to traditión44. *leas of probability, with'a large

'number of flii5s, half of the resul s would be eads. However,.if I were
told that the coin to.be Used had el er 2.hea s or 2 tails, the tradi-

, tional meaning of probability wouldn't operate, yet I would probablY
place bets in line with.my former prediction Of .5.

'BAYEV THEOREM

Sayest&Theorem is essentially an algebraic relationship by which
prior probabilities are revised in. vies./ of additionallata tO.obtain
posterior probabilities. 'This relationship is most useful in situations
involving subjective prior probability,distributions.

"v Let P(H) equal the probability of a hypothesis being true prior to
data collection. This is' defined as the prior probability. It is a
subjective probability although'it does not exclu e the possibility of
elements of a traditional frequency model. The st teMent "The probabi-
lity that.a person walking ih my office is a-colleg senibr is .20," could
be.considered a subjective.probability reflecting o ion prior to data
collection. This statement may be based on a frequenc concept o oba-
bility, if perhaps 20 per:cent of all persons on campus are senior , or
it may be more subjective, being based on the number of;seniors that I
know,'past.ekperience with people walking in my,office, or even a non-
specific'"gut" feeling.

According to McGee (1971), thia kind of probability can also be
, expressed in terms of.odds. The odds on a statement are determined by
the probability of a statement divided by the probability of its denial.
If you offer three to one odds in a bet on a football game, this is the
same as saying yotifeel that.your chance of winning the bet is .75. The

'odds you offer are usually based on'both objective data; such as the
frequency of your team winning, and subjective feelings about the physical
condition of'both teams, where the game is played, and many other factors.

Let,P(D/H) equal the probability of the hypothesis being true after
data collection. This is usually tfie most public probability since
many modes are available which are widely accepted by.researdhers. This
probability provides the likelihood function. Traditional studies are,'
,heavily based upon this type of conditional probability as reflected in
the statement "What is theprobability of obtaining a Sample mean as

,great as X', given that the hYpothetical population mean is u?"

P(DI)H)

P (H)
L t P(5/H) -

17



The probability (PD), or "the probability of the data" is.of little
intuitive interest and primarily serviet a standardiming role;. It is

defined thus:

for each
A, lie

P(D) := P(D/H
1
rP(H

1
)

,
ernative hypothesis.H1.., .

.

*bra now leads to the basic form of Bayes' TheOrem:

P(D/H)P(HY
P(H/D) =

/ .

.

' _.--------

P(H/b) it the .probability that the-hypOthesis is true on:the basi.t of,---":-----

both the initial probability"P(H), apd the experimental.data:-, ___::----<
...,

. ,
.. .

Thus, in using Bayep' Theorem,.a'prior prObability-P-(H),1ormed
.based on any infoimation available, including lOgic or intuition. :Then'
data are collected from a sample arida likelihood,.fdicylon iaf.ormed

, [P(D/H)j. This information is then uied to refine the prioriiobabilityk
which results in a'posterioi probability. Bayes' Theor can be reformu-
lated to apply to,continuous parameteri.... If a/param r n has a prior'
probability.density function p(n), and if x is a dam variable for ..

which.v(x/n) is thedensity of x giVen n, and x) is the density of x,

then the posterior probability:density.of n iven x is

v( /n)1.1
u(n/x) =

v(x)

/--

.FORMATION OF PRIORTROBABILITY DISTRIBUTION [P(H)]

In classical statistical:testing, the only sburce of relevant
information about a population is the results,gained frcm a sample.
Of course certain assUmptions are.held atout the batic'popUlation dis-
tribution, but.nowhere aces theyiior opinion of the evaluator enter
explicitly as it dOes in Bayesian analysis. Each sample is.drawn as
though it were th first of its,sort ever taken.

If an important decision, is to be made,' logid woul&dictate the
use of ail relevant information. In,reality, thit is just what most
,evaluatois do. While they collect their "hare data, their intuition will_
predominte should the,data turn'out to be nonsupportive. _Through 0

,

0 4
rationalization, internal analysis of'the data, at pecondary findings,
the evaluator will,somehow, lether/his subjective opinion interact with the
statistical results. The Bayesian researcher attempts to let his/herin-.,

...t-ttiition enter the decision making prOcest through the prior Probability
ibution.rather than, through the back door.
By definition there(are nO explicit rules foi determining the shape

of/the prior, probabilitYdistribution. However; as noted by:Edwards
et/al. (1963) there are times when the,shape of the initial distribution

-/Will'be very important in the final outcome:

,

1. If small prior probabilities are initially assigned to areas
where the data indicate the parameter is loCated,

-2. If a large probability it assigned to a region where'the data
are nonsupportive.
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3. If both experimenter's prior opinion and the data are diffuse.

4. If4observations are expensive and relatively few can be made.

5.- If major decisions have to be made pripr to the callection
)of much data, such as sample size.

AN E AMPLE OF BAYES". THEOREM

e Wechsler'1,Q. for a school district when no test results,are readily
Consider a situation Where an evaluation team needs an estimate oe

th

'l

- available. The evaluatiOn team shouId utilize teacher comments, observa
tional data, achievement test rdsults, and any other information that is

The'team-may then meet together and collectively decide the

; shape of the probabIli-ty dietribution.
..In the absence of.any information, the best estimate of the mean

I.Q. may form,',.a normal distribution With a mean of 100 and a standard

deviation Around 15. Thaf is, if theyWere to kncw, nothing about the
school district, they would probably assVme that ,it is,average. %The R4o,
babiLity of an average schOol, district havi6g.N.a mean I.Q. above 130 is
.not,very likely, ix their,opinion perhaps nb more than two or three per-

cent.
\However, one of the-staff members had reading scoresthat indicated, .

these stUdents were a year.behind in reading. Also, everal teachers te7

marked that'the'students sdemed rather "slow.° Because of this additional
.information, the eyaluation team may decide that-a positively skewed dis
'triloiation, with a mean of 95 best.describes thearroup opinion. Although some

information ilipliesthese students may be belcirnormal, such information'
not totally reliableand in fact the atudents'ight be normal. Therefore,

even though the group opinion is that the mean I.Q. score is most,likely

around 95, they may feel the.chances are greater that it is above 95 than
below 95. A positively skewed distribution.would reflect thisfeeling.

Assume.for'the mcment that the decision has been made.to actually test
'a sample of"children with Wechsler Scale. This Information would then be

incorPorated into the Prior probability distribution to.form the'posterior
opinion.- The technique used to accomplish this Would be Bayes.' Theorem.

An:example from Hays (1973), will help to solidify what has,been pre-

sented., Suppose this time the evaluation team is concerned about the
academic ability of a. single child. There is general agreement among psy-
chologists that I.Q. is best represented AS forming a normal disttilution

with A mean of'100. Consider the followin

I.Q.

130 - greater

distributiont

ABILITY (H)

115 - 129 4

100 - 114 .34

85 - 99
70 - 84. .14

less - 69 ..02

This'is the prior-probab lity distriboution P(H) for this example. It

is a subjective probabi ity distribution but there is widespread agreement
about its shape. In thi situation, it may be the distribution for the

Wechsler.

9



Suppose that a two-item test is give%to a, large gro of Chilldren.

i
he distribution of test scores given each level".ofiI.:Q; tained. This

. -

cwould be a conditional probability distribution showing stribution of

I.Q. scOres for each score on the two-item test. This. wo ovide P(D/10,

that is, "What is the probability of an experim ntal out e pr, given the

prior probability distribution H?" To deterred 11e this, distribution sCores
would be needed for both I.Q. and for the test, .

411
.

,

I.Q. ' PROBABILITY (D/H)

130 - greater
115 - 129
100 - 114
85 - 99
70 - 84

less - 9

'.05 .15 .80

. 15 .35 .50

.30 .30 .40

. 40 .30 .30

. 50 :35P .15

.80 .15 05

TEST SCORE 0.
.EachToolumn representS a, onditiona1'd4 cores given

intlligerlce level; Suppose a 'hild is brou the ability that
his I.Q.,.is'Over 130.must be quickly deterrid.OW JinforMation
about the child, the probability.would'be ..024 .:.0on'our prior informa-

tion about the distribution oeintelligence. NOW,AtUppose that tilt\child

is given the brief!test. If theichild scored :24.40 prObability ot-Ara I..Q.
over 130 is .00 on,the basis of,this test infOt*ibn'lOne. However, a
Bayesian would be uncomfortable 4ith a probab;*7 this high, i.TICe from

preViouS-experience very few people have ar04. over 130. the score'of
a,single test should be consideredf but it-should be tempered with-iprior
feelings about tthe rarity of the 'Vent. This'is done through the use of
Bayes'.Theorlm, akpresented'earlier:

v.

(80) (.02) .016
'P(130/2) - - .046

(.80)(.02)+(.50)(.14)47...4717(.05)(.02) .346 1

Using. the same procedure, othervalues would result in.the following
poStdxior distribution for those childrenscoring 2 outhe test.

I.

I.Q. , PROBABILITY (H/D)

130.- 'greater
115 - 129
100,- 114
85 - 99
.470 - e4

less - 69

. 046

. 202

.393

. 295"

.061

.003

By comparing the*.posterior probability distribution P(H/D) With-the
prior prtbability distributicA P(H), one..can see the effect Of the additionar
information. I.Q. values greater than 100.have a higher probability than*
with the prior.distributioh. The prObability of an I.Q.score greater than
130 has.increased from .02 to .046.. However, the change has not been nearly

,

20



1-2

f.

so great as if the data alone were considered. Thus, for a Bayesian, if '

an eVent tie seen as rare, one set of data will.usuAlly not,drastically
c ange the probability of that'event's occurrence. With the'Bayesian

.mo el, this_ posterior probability distribution capbie'consideied a prior
pro Ability for another round of data collection. This process can

butin. Unlike e classical approach no set of datA can stand alone:
Co inue,bwith each sgt of data being with,the'prior distri-

o th

HYPOTHESIS TESTING.
1

In addition to'the notion of subjective'probability, the'Bayesian
position onjwpothesis testing would ale8 elicit great negative response
from classical statisticians. The Bayesian position is best reflected in

'a statement by D.L. Meyer: f

Our.teaching must be revolutionized.to the point where
topics such aS confidence interval's and,teste of' significance"

'are taught almost as an afterthought for those'fortunate enough
to have a formal'model. in diecussinq the first course in
statistics with the staff of'a certain versity,,they, told me
that descriptive statistics .is taught-4i only two weeks so that
"1de get to the important stuff--infere 9.kly..". I am

proud to report that ai SyracUse, we spend a f1i. semester..on'
the important stuff7descriptive satist#cs (19 , p. 4).

So rarely do Bayehians have reason to use inferential test that a
discussion of Bayesian Statistics.couldlie,relatively complete without

,

bringing up the issue. Mowever, because it is so important in,classical
stat4stical tho ght it cannot be_arided entirely.

I The most p ular notimatf a test is a tentative decision between
two h potheses o the basis Of data. This usually leads to a Choice
betwe n WO actions, sUch as whether te5 include a supplementary reading

pr 9)am in the curricdlimor not. With this purpose in Mind, the use-
fulneSs of the null hypothesis.is queetionable since the null hypothesis
can be expected to be false from the beginning (Edwards, 1963). The )

cliff ential treatment of two groUps, regardless of the nature of the treatr
ment is usually sufficient to result in4some difference in sdo s on the
de dent Variable (Edwards et al, 1963). This is probably magnified'in
edu tional environments, where placebo effects are_frequently significant.

Of course MOre is at stake than simply choosing between two options,
pince economic matters will enter in determining what activity is actually
(followed. One would hardly choose to implement an expensive reading program
unless there were clear evidence of the likelihood of substantial improve-'
ment.. The whole issue of statistiCA1 versus educational significance makes
clear the hypothesis-testing procedure is taken only halfseriously.

This problem is avoided by the Bayesiane since hypothesis testing
does not hold any particular relevance. That particular prObabilities sech
as .01 or .05 are highlighted for special treatment is without special
interest to the BayeSian. In deciding between two alternatives, simply
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.., . . .

reviewing their posterior probabilities will usually reveal the appropriate
decisfbn. Ahy further analysis is likely to.be bas d upon utility values .

(in'the langUage of decision theory) rather than onç a particular probability
: value, . .

.

Forexample, if two math programs are being c pared ahd both invofve
the same economic factors, then the progm that s ems to be better should-
be adopted, hoWever slight the superiority. If one program is more expensive
.than the other, then a payoff function may be applied to accoun cost
'differences. 'If one "program is markediy Atore expensive than_ er, then
it will1 oniy be:adopted if there is.clear evidence of its supr,iolity. A-,-

tradi't1ional significante leVel of .01 may7not be'enough.to justify ihe rel-
ative difference in cost. Finally, even if the relative.dosts are the saMe,
if one program appears to have.a stronger theoretiCal foundation,..thenve
would.require rather convincing evidence-to justify adoption of the alter-
native program. Bayesian analysis, throuih the use of the prior prObability,
can account for thfs Prejudice;.traditional.inference cannot.

.

As noted earlier,.although Bayesiansstatistical inference does not ..

require the testing of hybotheses in the traditional-sense, testing can
occur sincerthe probability laws that apply in classical statistics also
apply to Bayesian analyses, ohly,the meaning is different. Therefore; the
Same testing techniques available to classic inference can be legiPmately
used by Bayesian*. This difference in meaning, however, can lead to situa-
tions where a classical statisticiacrmay reject a null hypothesis while a
Bayesian will see the same data providing support for the null hypothesis..
Edwards et al. (1963) developed this arguMent in detail; it will not be
reviewed inkts entirety here. However, the intuitiVe argument can be
made more quickly.

If a true null hypothesis is'being tested under.a one-tailed t-test
with a large sample, a t-value between 1.68 and 1.96 will occur two percent
of the time. Of-course, if the null hypothesis'is false, the-frequency of

.

this outcome will depend on the alternative hypothesis. However, given the
conditiOn of .no prior knowledge as specified with classical inference, a
'uniform distribut'on of alternative hypotheses with t-values between 0 and
20 is not unrea'so Able. Under.such a condition, and assuming thenull
.hypothesis 4s fa e t will fall in the range fram 1.43 to 1.96 at most
1.40% of the time (i.e., 1.961.68/20 = 1.40%). Thus-a t-value would occur

....

in this interval more frequently under the condition of a true null hy-
pothesis than under a diffuse alternative hypothesis, despite the fact that
the'classital statistician Would rejeet the null hypotheSis.: Obviously,
any answer to this argument depends upon the shape of the prior distribution
of the alternative hypothesis. The clasSicalstatistician cannot handle
this problem 4.nce he does not consider the shape of such a distribution.

To continue with the current discussion would lead to theoretiCal
issues beyond the scope of this paper. However, the point must be made
that although Bayesian statistical analyses do allow for the use of classic
testing procedures, sometimes the outcomes will not coincide. Since
Bayesians usually' hold that traditional testing proced tr es are simply a
nominal statistical exercise, the question of how Baye ians make decisions
remains;

.
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DEC,ISION MAKING

Upon reflectiOn, the Cla.ssical approach of rejecting a_sharp null
hypothesis doesn't really provide much information. As anyone familiar

with information theo is -aware, the most knoWledge is gained,by reducing

the number of optio in talf. Givexl the stochastic nature 'of the world,

one Can 6.viously t eliminate 50 percent of all alternatives with certainty.
Howelier one sho d be able to do better than simply reach a probabilistic
conclus n I6 the real value of same parameter does not appear to be at
one point along an infin4e range of possible-valUes.

This no doubt was thfi feeling of McGee (1971) when he noted:

111

The author had for some years.felt the need to consider-
alternatives to'setting up a hull hypothesis'in order to
reject it and; having considered the position of the Bayesians,
was.a ready convert at an intensive sumMei session in information
theory. . . The idea of an expe-aN approaching a sta-
tistician with the request "1 want to re' ct the null hypothesis"
was totally out.of place'(p., 277).

An example of the Bayesian approach to estimating the probability that an
I.Q. value was greater than 130 was presented earlier. Now Consider a
situation w ere a decision between two alternative math programs must be
made. Th traditional approach would be.to set up a null hypothesis of
no dif ence on some test score.: The alternative hypotheSis would be
that ere is a difference between the two programs. A two-tail test is
.likely to b.d.'employed, This is a typical kind of problem found: in educational
evaluation.

An obvious difficulty can arise in this kind of situation. Suppose
no significant t-value were obtained.. There would then be no particular

reas for faVoring one program over the other and #toss of a coin would
bean appropriate decision maker. Obviously, the evaluator is given license
tdRer. .any conclusio . She/he could simply choose the program which re-
sulted in e sli. y higher mean test score and use this score as
partial jus fi,ation. This is often done when one hears the report that
"means were in the right directionr or "results were just short of signi-
ficance." According to the classical rules, these statements carry as much .
weight as saying the coin almost landed tails.- Clearly, with nonsignifi-
cant results, the evaluator,cannot reach any other conclusion than to as-
sume nO diffeience for the moment. Suppose she/he plays the game and doesn't
draw conclusions on the basis of the data. She/he is then likely to appeal
to other items, such as cost effectiveness,-theoretical soundness, or
teacher preference.

When the svaluator begins to look at this kind of eVidence, she/he is
stepping outside Of the public system of inference and becomes'open to
criticism. While heterogeneous and frequently qualitative data are useful,
an evaluator trained in classical statAtics has difficulty in dealing with
such information in a systematic way. Because she/he has difficulty
explaining the procedure she/he used to make decisions, the evaluator is
frequently criticized for being biased or subjective. By making public
the process whereby she/he used these other sources of information, the
Bayesian evaluator reduces the chances that she/he will be criticized for
personal biag, fuzzy thinking, or irratibnal decisions. Others may

2 3



ee,with her or his prior probabi ty diStribution,.but the way

at the research data and subjective opinion were brought together

annot be di7uted, assuming acceptance of the BaYesian paradigm.
%

Bayesian Analysis for an valuation Problem - -An Exgnple
44

. Math Program.Y has ecently been developed to replace the standard

Math Program X. ,School istrio0No.,32 wants to conaider adoption Of
Math.Program Y becuase jt appeals to a community'which considers itself
progressive.and innovfive. Not much money is available for. data col-
lection, so the,evalUation Will.have to utilize a sMall sample.. These
evaluators, who'have considerable knowledge of math educatlion programs,

.are not enthuslaatic about Math program Y. 'They feel the program has

serious flaws'and has riot betn adequately developed.
.The.evaluatoks, along with school district personnel, have agreed

.tb.uSe.:the scores On the Standard'Math Achievement Test to help with the
judgment-- A lot of. data have been collected in the papt from schools
using Program X: HOwever, the data are old, since the program has not

been heavily used inrecent years. The national norms for schools using
Program Xare available on the Standard Math Achievement Test and are
as,follows:

Score Distribution
t;

15 .00 .s

14 .10

13 .10

12 .
.10

.41 11 .25

10 .25

9 ,.10

8 ,.10

7 .00
ff

6 .00

5 .00

4 .00

3 .00

2 .00

1 .00

In addition to the old data, the following information is also avail-

able:

, 1. School District No. 32 is located in an upper'middle class area
where the parents of the students are engaged in skilled or professional

occupations.
2. Math Program X has been recently modified, and according to some

sources, probably would result in.better test performance.
On the basis of all this information, the task is to determine where

the value of'u , the mean Score on the Standard Achievement Math Test,
lies for School District No. 32 Using Program X. The prior probability

-dist4bution for Program X is presented in Table 1 along with the rest of
the data needed for this example.
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TABLE 1

PRIOR A, AND'POSTERIOR PROBABILITY DATRIBUTIONS
FOR MATH PROGRAM EXAMPLE'

5,^

Mean
_Test.

Score

r.
Prior ..

Distributions
'Data Posterior

Distributions Distributions -
X X Y'

15

14

13

12

li
10

9

8

7

4/

2

4

.25.

.25

-15

.10

.01

.01

.01

.01

.01

.10

.10

.20

.20

.10

.ib

.10

.10

.05

:90.

.05

.05

.90

:05 .263

.474

.263

.95_

.05'

The prior probability distribution for Program Y is almost totally aubjective
eince little data are available. The lack of enthusiamq, for the program by
the evaluation team ia revealed by the prior probability distribution.

Test data are obtained for both Program X and Piogram Y. The mean score
for Program X is 10'and for ProgramNY is 12, However, since there may be
measurement error in: the test data, aome credibility is given to the scores
next to the obtainedmean (.05 for each score). The posterior distributiOn
has been determined by Bayes' TheOrem. The results are somewhat similar to
those obtained with traditional statistics, Which would rely on the.data
alone. However, confidence in the true value of the mean for Program X is
weak. The eValuators are only 47 percent certain that the value is 10,
While tlitey are quite certain (95 percent). about the true value forTi. ram
Y. This is.because the data tend to go considerably counter to their
pxior feelings about the true yalue for Program X. Perhaps more data for
Program X would be appropriate.

71
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j
J These findings illustrate the geperalization.that when the prior

probaSility distribution and the data distrtbution are dissifila?, the
posterior probability distribution will be diffuse. .This logical'since -

data that go agOnst common sense will usually result in greater uncer-
tainty about:the real nature of events than,data that support prior.

beliefs. In ClassiCal statistids, concluSiOnhould be unaffected tqr

prior Opinion.

jt--
eppATA COLLECTION STOPPINGROLE

'A finaldistinctiOn:between thetra inferente. techniiaues lie6 in.-
their differepttreatMent Of data-Stopping rules. . Classical procedures.

:requirethee*Rerimenter to sR000,in,advancd how Much datashe/he will
collec.'iff.6'principlp is dkittined in Most texteon general Statistics'
(e.g. HaYs, 1963). Such a requiremenids part óf 01 overallrule bY

_ -c

'clatsiCal.statisticians to specify all dataooliection and data analysis
, - , it

activities, prior tO any a4ual data lathering, with the exception of .

ce$tain.posthoc tests.- This prin 4Ie la extremely difficule,fdr an .
%.educational evaluator tp followsince his working environment:is .,
Very puid; initial specification of all'datagathering proCedure is

usually impossible. The classical statistician iS so Specific on thiS
,

L-point because'of the ease with which a null hypothes1S:Can be reje ted-
4 fact, with repeated cycles of data gathering and testing, an, '

experimenter 'could be certain of rejecting.the null hypothesis even if
it were true (Hays, 1963).

. However, as Edwards'. et al. (196,2) nOted, this is n t a problem for ,

a Bayesian who does hot use the null hypothesis testing Irocedure. : ,

..i. ' .

an contrast, if you:set Out to collectdata until.your
posterior probability for a hypothesis which unknown to you
is trtie has been reduced to .01, then 99..times out of 100 you
will never make.it, no matter how many data you, Or your children
after you, maY collect [p. 239].

4
.

-

The cornerstone of this difference between classical and Bayesian
data colleCtion'procedures is known As the "likelihood principle."
This principle flows directly from.Bayes' Theorem and the-conceptof
subjectiye probability. It is in operation when two different experi7
mental outcomes (x and y)' have the same bearing on opinion abbuta para-
meter. That is, if P(X/A) and P(y/X) axe.proportional functions of A,
then each of the two data x and y have'exactly the same thing to pay
about values of A. .

_

.
In.the discrete case, if P(IP/H

1
) = kP(D/H1) for some positive

,constant k, then the likelihood prihciple operates. For example, in a
IIIcoin toss, 10 heads out of 20 throws means the same thing as 20 head.wOut
of 40.throws.' This simple Principle was discussed by classical statisti-
cians suCh as Fisher (1956)- HoweVer, in classical teSting the principle
is lost, accorag to Savage (1962):

2 6



The likelihood principle is in conflict with Many
historiCally important cOncepts of StatiStics: For examplei

Tehether-a'teSt.is unbiased depends not op the likelihood
alone, b41..ather on Pr(x/X) considered as a function of x

finction of A. Similarly with the concepts
of significance or'confidence level. For instance, it has
,:been Widelyibelieved that the impokt of such aAatum as 6
recl7eyed,flies out of 100 depends onwhether the experiment

.was designed to observe-100 flies or designed.to observe 6
red-eyed,flies. An estimate Unbiased for either, of these
experiMents-is biased for the other (p.T17a.

. Since stopping rules Are irrelevant to a Bayesian, greater (6107
jectivity actually resultS than with th9,traditional.model. Once data
are collected, the originalintentionsof ihe. experimenter,ard'irrelevant.
The.experimenter can c011ect data until he has prOven 'hialopint or ekhnusted
all his funds, time, or patience..

. -
Such freedom should be appealing to an:educationalevaluator who is

frequently uWer pressures that interfere with 4 predetermined plan of data:
collectionf'"Frequently a shortage of:funds, uncooperative teachers, orl.
pressures of time preVent data.collection from being completed. Left with
InCOmplete data, most evaluators continue to grind outinferential tests
.despite gross violations of principles ofOlassical inference. Frequently
these violations go unnoticedor else are rationalized as being necessary
to meet the demands 'of the real woild. Violations of assumptions do not,
neCessarily reflect negatively on the TasctiCingevaivator,for statistical
lodels should ebflect reality, father than fOrce reality to reflect the
statisidlal model. ,If the stopping rUle principle is violated So frequently,

'then.thigtayesian modsl, which disregards the stopping rule, may be more
appropriate,for evaluation situations.

-q
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CONCLUSION 41.

4110

At this time, a textbook desCribing Bayesian analyses for educational
problems does not exist, althouglvihere are several texts slanted.tpward
other disciplines which should prove useful to educators (e.g., Morgan,
1968; ellner, 1971).

.0n4 should not assume that.less mathematical rigor ie required'in
Bayesian analysis than in classical statist4s; in reality, the opposite
is true. Classical statistics, with iti.emphasis on the normal underlying
distribution, has been documented so well that students with little
mathematical sophistication can perform adeqUate statistical analyses.
The Bayesian_model, however, requires a good understanding of distribution
theory in-order to adequately describe the priordprobability distribution.
Somksimple analyses using discrete distributions may be within the reach
of almost anyonel however the full richness of the Bayesian approadh maj
not be appreciated Without some mathematical sophistication-

' Most evaluators can take sone steps to begin to utilize a more
Bayesian approach in their daily work. Even if the Bayeeian model is not
completely accepted, the questione kaised by the Bayesians should increase
the vigilance of the evaluator to avoid gross violations of the classical
model.. Frequently, when a model in a given- area iStWidely-used, the
assumptions underlying the model are taken for granted. (One needs only
to look at the.19th century Newtonian physicists or early 20th century be-
haviorists-to see this problem.)

The following recomMendations are made and should be easy to ins-

plement:
1. Don't.parade StatistiCal procedures in an attempt to add respecta-

bility to a subjective process. When an evaluator or any scientiet attempts
to generaliie beyond his data, he is engaging in a subjective pkocess (Edwards
et al., 1962). The mathematical.models may be useful, but they do not auto-
maticaltY Objectify any inferential.process.

2. 'Realize the ease with, which the null hypothesis is rejected. Just .

*cause one has been Able to reject a null" hypothesis at the .01 or .05 level .

does not necessarily mean that something of educational significante has7been
fOund. As noted by Savage (1962), null hypotheses are frequently rejected
inapprOpriately, and even if appropriately used'little of.any practical sig-
nificance can be concluded frati the-rejection of,single null hypothesis.

3. .Report probability levels when possible.. Instead of using the
magical .05 or .01 levels of null hypothesis rejection, the actual proba-
bility levels for the alternative hypothesis should be reported.
evaluators are familiar with power and power_functions, but they are rarely
discussed beyond a first course in statistics:'t-

-
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4. Specify prior opinion. Since most activities in evaluation
involve hypotheses where the evaluator is not neutra4'priOr opinion and
tht reasons for thit opinion are legitimate information.. Instead of uting
'this information covertly.when drawing conclusions, openly expressing the
initial bias may.be more appropriate. If expressed in probability,termt,
Bayes Theorem could be applied to revise such opinion. Conventional'inferen-
tial analyses could still be performed if desired.

5. Remember the data stopping rule. If the evaluator is determined
to test a sharp null hypothesis, the size of the sample must be sPecified
in advance and sequential testing of data must be avoided. .Also, the
signifiwnce level should be determined prior to data collection'. I

2.
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SUMMARY

Numerous arguments have been presented in support Of the appropriateness
of the Bayesian model for the educational evaluator. For the most'part the
evaluator is engaging in appropriate practices,'but the classical statistical
model does not describe how she/he.really works. .By changing Models, the
evaluator will be able, to continue doing what she/he already does, yet she/he
will be better able:to explain to otheas how it is done.

This does nqkpean that,.the -use Pf_Bayesian model will not require
any changes in prartice. Such'a model requires greater specificity in
Situations where no rules existed, such as expression of bias towards one
program or,the other priOr to data collection. However, such changes should
result in a new sense of'freedom since the eValuator can admit that numerous
types and sources of data resulted in her/his decisions and at the same.time
she/he can stay within the limits of a credible statistical model.
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