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® | / ABSTRACT . | N

Because of the curﬂent dominance of classical statistics in the
tradition of Fisher, Neyman, and Pearson, an alternative approach known
as Bayesian statistical /inference is unfamiliar to many educational evalua-'
tors. While the classical model is useful in educational research, it'is
not .as useful in ‘evaluation because of the need to identify solutlons to
practical problems based on a w1de spectrum of information. N

Business and marketing researchers have utilized the Bayesian model .
for many years because they need to make pract cal decisions rather than

’ assertions about some, ‘unknown parameter, w is the function of tradi-
tional statistics. The reasoh Bayesian -is effective for decision
making is that it deflnes probability as ‘a measure of opinion-or-belief,
rather than as long term.frequency. -

- Defining pro ab111ty as Q measure of oplniin or belief enables the

" Bayesian investigdtor to consider a wider range of information than is

and soft data fr a wide variety of sources serve to shape opinion -about:
a state Qf nature, with experimental data providing additional information
either fox #r against the prior opinion of the evaluator. 1In classical .’
statistics, prior knowledge or opinion is ignored. However, when practical
decisions must be made the Bayesian stresses that all knowledgé should be
brought to bear on ‘the problem rather thdn just an isolated set of data.
Because of the decision-making orlentatlon of the evaluator, the Bayesian
model should be considered as an aiternatlve to clagsical ‘infe¥eénce.

- Since the Bayesian model views probability as a measure of oplnion
‘rather than as a long-term freguency, the statistical-requirements-for ... -.
it are actually greater than for the classical statistician.. Use of a
wider range of distributions than with classical statistics demands more
statistical skills than pany evaluators currently possess. Hoﬁeve the
questions raised by the Bayesian model‘are useful even if the model is

not totally adopted.

zp0551blzqzlth the/ traditional model. Personal expertise, logical analysis, .
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. #INTRODUCTION E g }
THE BAYESIAN VERSUS CLASSICAL/INFERENCE CONTROVERSY

Throughout t : sequence of statistical courses digested by most

prospective educat.ional evaluators, little notice is usually given to
he controversy between so called Neyman-Pearson and Bayesian statis-
icians. . This lack of awareness is no doubt due to the dominant position
e Neyman-Pearson (classical) statistician has enjoyed in sogjal
cience and educational research. However, in some fields, where practlcal
cisions must be made on the basis of all available 1nformat10n, the
yesian statistical model has proven its usefulness. In business and -
rketing research and.to a lesser extent in engineering Bayesian analysis
as been effectively utilized .to determ19£ the approprlateness of alterna—f
ftive decision choices. . :

The basic phllosophlcal dlfference between  the two ap oaches concerns
the use of prior information or beliefs. The classical stati t;p;an ‘
assumes. that only specified data gathered after hypothesis fo
be used for 1nference. The Bayesian statlst1c1an contends that he data

combined with the investigator's prior information or beliefs. This,com-
bining of data and opinion is done through the use of Bayés' Theoremy” To
most educational evaluators the Bayesian approach may se%n foreign to all.
they have learned about the appropriate use of statistical 1nﬁérencq
The purpose of this paper is to show, first, that, the differences
~—between educational research and educational evaluation result 1n.the
-conclusign that statistical techniques appropriate for the formér are
not necessarzly sultable for the latter; and, second, that the Bayesian ¥a
inferential approach offers an alternative statistical model for the'
educational evaluator, as he/she is frequently in the position where
‘ classzcal ‘inferential statistics does not allow for utilization of the
type ‘of information which he/she possesses. . =

e

FOUNDATIONS OF BAYESIAN STATISTICS ; g% W

'The classical (Neyman-Pearson) %rsus ﬁaye51an contrcversy can be
related-to a’ )asic problem in the histdry ofisc1ence " the roles of
rati%nallsm and empiricism and. the 1nterpretat10n of probablllty
statements (Weber, 1973). .

To the Greeks, the laws of science were completely precise and
demonstraﬂf% through thé’process of deduction. Fluctuation and varia-
bility were considered’ error and a reflection of lack of knowledge of.
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laws. This
sophers ‘of
However,

ce such as Descartes and scientists such as Newton. //

sclence matured there was less anhd less certainty that a

stem could be\developed from which any data could be seen

as logrbga{gpnsequence. Modern stoqhastic models such as Maxwell's

thermodynamic laws, Mendel's genetic laws, and Einstein's theory of

relativity saw science developing probaﬁility models of phenomena.
Probability models which have been recognized for a long time were

used to cope with ignorance about laws of nature or errors of measure+

mept However, as stochastic models hecame more popular, probability

modelstyere seen as characteristic of nature itself rather than simply

nistic view of knowledée wag asjumed by early philo—;
1,

reflec¥ing ignorance. Thus, modern philosophers were forced to reconfide
F

the alternatives that were available to the concgﬂ% of probability.’
the Bayes1an, probability means dedrxee of personal belief about some e-
nomenon. ‘ This approach contrasts 3§s§énctly with that of the classical
gtatistical -school, which considers probability to, be long-term relative
frequency. The probability of occurrence of an ewvent has been definedr
as the limit of the relative frequency of its occurrence in some spec1-"
fied reference class of events (Fisher, 1956). With few exceptions, &
‘modern statistical textbooks use this relative frequency interpretation -
‘of probability

Bayesians find this view of{probability too restrictive. Often .
statements must be made about hogﬁepeating events which have a degree -
of uncertainty. For example, the statement "The probability is gke.
that a man will land on Mars than that a man will land on Jupit: gg "
makes intuitive sense, yet both -events are unique or nonrepeatinq5$ By -
viewing probability as a measure of belief, the concept takes on broader
and potentially more useful meaning. - B

Bayedian statistics stems indirectly from a paper’ by. Thomas’Bayes
_that originally abpeared in 1763; however, only in 1961 did the first ,
systematic usg of subjective probability and other elements of the
Bayesian model emerge with the appearance of Schlaifer's Introduction
to’'Statistics for Business Decisions. Since then, several additional
« books with a.general business application emphasis have appeared, such
as Savage (1962), Thompson (1972), and Zellner (1971). However, Edwards,
Lindman, and Savage< (1963) and McGee (1971) have presented Bayesian
approaches to social sciences, and Meyer (1971) presented a general
paper on Bayesian statistics at the 1971 American Educational Research =
Association meeting.-Phis ‘author has not found any additional publica-
tions relating the model to educational situations. In this paper, the . .
potential for the use of Bayesian analyses 1n.educationa1 evaluation - C

will be distussed. \ . _ v
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ISR ’EDUCATIONAL‘\'EARLUATION
\ AT _
AL EVALUATION - -

the need to account for and. determlne the worth of scores ¢of new fed ally
funtled educational programSu LThe first years after the passage
Elementary and SecondarY’Educatlon Act (ESEA) of 1965 saw ev uative

chaos--every new project was judged by a unique plan., *many of
the resultjng evaluations would be inadequate was lnevi 3& e, - Few
educators possessed the skills needed 'to conduct effecti evaluation.

, A few scholars developed generalizable evaluation. plans. Such
models were primarily developed by educational researchers, who attempted
_ to compromise the rigor of traditional experlmental des19n with the

demands of programmatic educatlonal actlvitles. Although the-models
-did not answer all of the problems of local evaluation, they did provxde

general guldellnes that eliminated some of the deficiencies of early

ESEA evaluation reports. These models have been prim Il nonquanti-

tative in nature. They conslst of general organizatio atterns

llsplng the sequence qgievaluatlon activities -and key decision points.

In view of this statistical vacuum, most evaluators continue to ‘use .
- the traditional statistical ‘inference procedures taught in mo
' graduate schodls of education. Such §£%9Edures«are usually approprlate

in educatlonal research; however  the ferences between research and
evaluation .arq, w1de enough that a common statistical methodology should
hot be assumed. _ ' -

Y

_EVALUATION VERSUS RESEARCH

. Desplte the fact that both evaluation and researchvcan be classified
as dlsc1plined inquiries demandlng empirical support, logical analysis,

“and openness to public scrutlny, there e some definite distinctions
between these two educational act1v1t1ei§ The distinctions are primarily
a matter-of degree rather than kind. A3ditionally, the extent and tyéé
of differences will depend upon the theoretical models under considera~
tion. However, for the purposes of this. paper 1 will be sufflc1ent to
note . that "evaluation is the determination of™ e worth of a thlng““‘
whkreas "research is the activity aimed at obtaining generalizable

- knowledge by contr1v1ng and testing clajms about relationships among

variables or describing generalizable phenomena [Worthen & Sanders,

- 1973, p. 19]." Other dlstlnctlbnS“hhlch may be noted between research-

. , v : oo \
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and evaluatlon are not necessarlly inherent in the two activities but

rather reflect the way in which they have been characterlzed in

'practzce.v : . %

. ' The rules of legltimate ev1dence*for evaluation data ate broader
than for research data. Prior to a research 1nvestlgat1on, an experi-
menter must determine, the exact dependent variable which will.be
,measured. Thi's is not to say that other behaviors will be ignored,

"but thefr consideration must be secondary to the one specified  in the
hypothesis. . No one would object to the researcher' looking elsewhere
for support should the specified behavior. not support the hypothesis;

L however, this starts an entirely new investigation with a new hypothesis,

) new deslgn and new data. - Researchers have always. looked with scorn at
pbst hoc analysis as somethlng less than scientific.

~ Evaluation activities are more flexible. With emphasis on the
determination of value, the evaluator's duty is to consider evidence

.from as many angles as possible. For example, the evaluator may be
.requested to measure the effects of a flexible schedule on a number
of ;ndependent student projects._ If the evaluatoer notices that such
a schedule seems to result in higher student absenteeism, this data
may be”very impdortant in the evaluatlon even though it is a side- effect.

Research )activities generally do not provide for feedback loops.

The sequence "problem - hypothesis -~ sample - data - inference [Hays,
973, P-. 856]" is usuallp,followed until completion. § In fact, frequently
he researcher may assign most of the activities to rather unsophisticated

* .assistants %ho must simply follow the research 'plan formed by the ex-
perimenter. After the data are analyzed spinoffs may arise, but the
experiment at hand has ended. Even an overview of the major evaluation
models will demonstrate the extensive feedback system operating in the

‘models. For example, Stufflebeam (1973) presents a system which is
based on continual looping betwéen decisions, activities, and evaluation.
"~ Parsimony in science requires the avoidance of unnecessary signifi-
cant effects. The consequences of asserting that a varjable has an
effect when it doesn't (Type I error) are generally considered worse
than saying a variable doesn't have an effect when it does (Type II
error). Traditionally, researchers are willing to make Type I errors
only five or one percent of the time, while the frequency of Type II
errors is rarely considered. The.dangers of a Type I error are always
in the forefront of an experizéﬁter's mind. Before a variable is-given
a role in a theory, it is car lly examined to gee if it is necessary.-
Hence a good researcher is characterized as being cautlous, conservatlve,.j”
and skeptical.

However, the evaluator must constantly juggle the relative costs

-of a Type I or Type II error. For example, a university may have devoted
years to developing and implementing a competency-based teacher education
(CBTE) program. Suppose that an evaluator were to compare such a program
with a traditional teacher education program. The null hypothesis would
postulate that both types of programs were equally effective. Because
of the added expense of a CBTE program, a finding of no difference might
result in the university's reverting to a trad1t10na1 program. However,
if the CBTE program were found to be superior, little change in actt&zty
would occur; the program would simply continue. In this situation, a
Type II error would signify that the lengthy development of the CBTE
program was in vain; as a result, the university might decide to switch
back to a traditional program. Of course, in other situations a Type I
error might still cause the most damage. The point is that in evaluation

v 13
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the consequences of both‘iype I and Type II errors can vary con51derably,
dependlng‘on the circumstances and costs. The traditional procedure of’
setting a Type I error probahzlity level at 05 or .01 does not involve con-
sideration of relative costs. _

-~

L}
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FAALURE OF CLASSICAL STATISTICS IN EDUCATIONAL EVALUATION

Classzcal Neyman-Pearson statistics prov1des a good model for typical
research. A problem is first recognlzed,_whether from an unexplained
variable in a theoretical model or just some questlgn arising out of daily
experien¢e. From this problem a researchér postulates a ‘hypothesis about
a state of nature. For example, "Does a 15-minute work break in the .morning

" increase total morning output?” To test this hypothesis, the researcher may
define his population as all office workers in the city. He will then randomly
place 20 such office workers into one-of two experimental groups. One group
 will receive th® coffee break and one will not.- The total morning output: will
‘be determined for both groups.' Using classical statistlcs, it would be possible
to test for a difference in the total output of the two groups that is suffi-
ciently large to be unlikely due to chance.
* This example illustrates the following p01nts. First, the assumptlon
is made that our researcher has no knowledge of the outcome of the experiment.
" In real1ty the experlmenter obviously expects cértain results or he/she
.would probably not conduct the experiment. In fact, it is because he/she
has some knowledge of expected results that the ironical situation arises
of the experlmenter s assuming that he/she has no expectancy. Hopefully
the research will be public and will not be subject to the demand characteris-
tics of the experimenter. The experiment is to be a microcosm where’ the
effects of variables will be assessed strictly in terms of what occurs in
the experiment itself. All outcomes will oe based pn the likelihood of a
sample result, not on any activity which is- determined by .the prejudices of
the experimenter. If the differences between thg two groups are "statis-
tically significant," we then conclude that the variable does have an effect
and it can be included.in outr theoretical model. However, if the results
are not statistically significant,iit"Cannot be concluded that the variable
does not have an effect. All we can say is that there is no evidence to
include the variable in our model. This technique is appropriate for the
slow process of theory building. However, an evaluator frequently does
not have the chance for noncommltmenttthat is given to the researcher.
Given that the evaluator is forced to make a decision, failure to reject
the null hypothesis will probably 18ad to the conclusion that the programs
were equivocal. However, in doing this the rules of inference are being
compromised. Classical procedures were not designed for the purposes of
effective decision making, but rather. for making assertions about popula-
*ion parameters (Edwards et’al. 963) .
Secondly, when an evaluator is hired the employer wants to utilize
all of the expertise available at that time. The classical approach does
~ot allow for this since the researcher must be considered ignorant of
expected outcomes--only ‘the data can provide information. In reality the
evaluator or other staff members should have considerable-knowledge about
the situation.”
. Finally, trad1t1onal statistics does not lend itself to the feedback
system of evaluation. Inferences are strictly limited to the sample data
under current consideration. Any additional tests will be based on new

: - 14' o
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sample data. Freguently.in evaluation, if concluéionijbahnot be clearly
made on available evidenpe,~more data, 'perhaps-of a slightly different
nature, will be’examined, With the classical approach,- the first set'of -
data would be examined and tested independent of thé second set. Thus, if’
proceeding through a feedbatk loop in an evaluati | model, the test of the
new data must.be conducted and analyzed independegfit of the first sets:

' The conclusion to be 8rawn is that- the clgésical statistical procedures j§
utilized in research are ineffective in evalua¥ion for the following reasons:”
(1) The classical approach does, not allow for maximum utilization’ of the

‘ expertise available from the evaluator dnd/or project’ staff; (2).It can only

reject the null hypotheéis,.neve:,acceptgit; (3) The classical approach
cannot effectively consider relative costs/of Type I or Type II errors;
(4) It cannot handle feedback loops, wpisﬁ increase the relative store of
information. = - .5 - . __— Yo
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. payESIAN AMALYSIS .
_/,_ . ) g I . K : * ' ) - o

/ .
/. 1t should be emphasized ﬂ all of the mathematfcal concepts used, in
- traditional statistics are availsble to Bayesian statisticians. However, ¢
4 scme of the interpretations of the classical concepts are broader among -
Bayesians. Perhaps the most importaht of these concerns the issue of pro-
* ‘bability. BT : L S

.

DEFINITIONS.OF»PROBABILITY - S | ' o ) -

At least three separate "types" of probability can be,distihguishéd: .
1. A priori proba@ility. - This type of probability follows the ‘branch-
of pure mathematics called the. calculus of: chances. It is not based on any
data that have been gathered, but rather on logigg assumptions that are
made “about the nature of events.’ It often relf h physical characteris-.
tics, such as symmetrf; The toss'of a coin or 2%
of symmetry. ' o Lo - ' : ‘ g
2. Statistical probability. Probabilities of this nature are estimated: .

° by observing the ration of the frequency of occurrence of some event to the

" total number of opportunities that are available for the ‘event to occur. It
is the relative frequency of a given kind of event or phenomena within a
_class of phenomena, usually called a "population." For example, to say )
that the probability of a particular child being born male is .52 means that
of all known births, .52 of them have been males. This is a c¢ase where O
statistical probability may not correspond to a Eriori.probability,‘since ‘

the a priori probability of a male being born is .50 according to the - B

principle of indifference. Of course, there. may be some explanation for

this discrepancy which will change the a priori probability. N )

3. Subjective probability. The third type of probability is distinctly
-Bayesian and is perhaps the .cornerstone of the differences between Bayesian
and classical statistics. It is important %o note that the Bayesian notion -
of subjective probability cannot be properly criticized on mathematical -
grounds, since it employs the same mathematical machinery as other .concepts

of probability.

1f Bayesian methods are to be criticized, the criticism should

be based on their intuitive reasonableness and appeal, the reality
of their assumptions about human behavior, their pragmatic value,
their place within empirical science and so on. They are not
properly criticized on mathematical grounds. . . . There is no
question of the formal validity of the probability statements
such methods yield, so long as . we play within the formal rules

of the game. [Hays, 1973, p. 810]. o .

7
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The notlon of subjectlve probablllty can-be defined as follows.
A probablllty value is a measure of strength of an individual's opinion
" or belief about the existence of some situation or the occurrence of
_ some event. This is distinctly differént® from a relative frequency }“
prcbablllty. Edwaxds, Llndman, and Savage (1963) 1nd1cated that with
personal probablllty you are saying something about yourself as well
as the event you-are trying to predict. For example, if I were told that
the probablllty of getfing a head A
stand that accordlng to tradition tdeas of prohablllty, with ‘a large
“number. of flips, half of the results would be heads. However, if I were
- told that the coin to.be used had either 2 heags or 2 tails, the tradi-
. tional meaning of probability wouldn't operate, yet I would probably
place bets in line thh.my former predlctlon of .5.
s

BAYES' THEOREM - . .-

Bayes'&Theorem is essentlally an algebraic relationship. by which
prior probabilities are revised in. view of addltlonalljata to obtaln
posterior probabilities. ‘This relationship is most useful ln 'situations
involving subjective prior probability distributions.

v Let P(H) equal the probability of a hypothesis being true prior to

data collection. This is'defined as the prior probability. It is a 3

subjective probablllty although it does not exclufe the possibility of

elements of a traditional frequency model. The st tement "The probabi-
lity that a person walking in my office is a. collegeé senior is .20," could
be .considered a subjective .probability reflecting opsXion prior to data
collection. This statement may be based on a frequency concept o oba~
bility, if perhaps 20 percent of all persons on campus are seniors% or

it may be more subjective, being based on the number of‘seniors that I

. know, past ekperience with people walklng in my, office, or even a non-

' SpelelC ‘"gut" feeling.

: Accordlng-to McGee (1971), this kind of probablllty can also be -
expressed in terms of .odds. ~The odds on a statement are determined by
the probability of a statement divided by the prdbabi;ity of its denial.
If you offer three to one odds in a bet on a foatball game, this is the
same as saying you’ feel that your chance of w1nn1ng the bet is .75. The

*odds you offer are usually based on both objective data, such as the
frequency of your team winning, and subjective feelings about the physical
condition of:both teams, where the game is played, and many other factors.

Let P(D/H) equal the probability of the hypothesis being true after
data collection. This is usually the most public probability since
many modes are available whicH are widely accepted by researchers. This
probability provides the likelihood function. Traditional studies are

. heavily based upon this type of conditional probability as reflected in \
the statement "What is the ‘probability of obtaining a sample mean as

.great as x, glven that the hypothetical populatlon mean is u?"

_ _pmOH

. ‘ Let P(IS/H) P (H)

v

a coin toss .is .5, I would under= «

»



‘ The probablllty (PD), or "the probability of the data" is of little
intuitive interest and primarily serv1es a standard121ng rolex It is
deflned thus: ' - : .- - -
: . . .. . ¢

‘P'(D) = P(D/H RIEICR I o

» \ " )

for each ernatlve hypothe51s Hl' : e e :
- A llf 9g,ljgebra now leads tG tﬁe ba51c form of Bayes' Theorem /F
P(H/D) _(_Q&P_(I:I.) . ) . ¢

P(D)

P(H/D) is theA@mobablllty that the: hypothe51s is true on the bas;s off///

both the initial probability P(H). and the experlmental data., Lo

Thus, in using Bayes' Theorem, a prior probablllty P(H) formed
based on any information available, including. Togic or 1ntu1tlon.’ Then
‘data are collected fram a sample and @& likelihood fanction is foxmed

. [P(D/H)]. This information is then used to refine the prlor,probabllltYK ]
which results in a’'posterior probablllty. Bayes,‘Theor can be reformu-
lated to apply to continuous parameters.. If aféaram t8r N has a prior’
probability density function u(n), and if x is a. dom variable for

. which’v(x/n) is the density of X given n,»
‘- then the posterior probability: den51ty of n iven y is

' vi{x/mu
\V(X/,) 1. , . N - N
EZFORMé§10N OF PRIOR PROBABILITY DISTRIBUTION-[P(H)] )

P(n/X)k=

In classical statlstlcal'testlng, the only source of relevant
information about a populatlon is the results.. dained from a sample.
Of course certain assumptions are held about the basic" population dis-
tribution, but nowhere does the prlor opinion of the evaluator enter
exp11c1tly as it does in Baye31an analysis. Each sample 1s ‘drawn as
though it were thé first of Lts _sort ever -taken.
) If an 1mportant decision ‘is to be made,’ loglc would dictate the
use of all relevant informatiah. In reality, this is just what most

.evaluators do. While they colléct their "hard" data, their intuition will

predanlngte should the .data turn out to be nonsupportlve. . Through
ratlonallzatlon, internal analysis of* the data, or §econdary findings,

’ the evaluator will -somehow- let her/his subjective opinion interact with the'

‘ stqtlstlcal results. The Bayesian researcher attempts to let his/her in-
- hu:d;;.t:.lon enter the decision making process through the prlor probability
f"_dns ibution.rather than, through the back door.
\;* "/ By definition there are no explicit rules for determining the shape
_ ofrthe prior, probability ‘distribution. However, as noted by Edwards
et al. (1963) there are times when the- -shape of the inltlaI dlstrlbutlon
IW111 be very 1mportant in the final outcome a

S 1. 1If small prior probabllltles are 1n1t1ally a551gned to areas

. where the data indicate the parameter is located.

‘2. 'If a large probability is assigned to a region where the data
are nonsupportive. :

18

o i : -
! <. . / :

(2]



10

’ 3. If both experimenter's prior_epinion and the data are diffuse.
4. 1If.observations are expensive and relatively few can be made.
5.” If major decisions have to be made prier to the cdllection

of much data, such as sample size. '
. . . N

AN E)J\MPLE OF BAYES' THEOREM SN
Consider a situation where an evaluation team needs an estlmate of
the Wechsler' 1.Q. for a school district when no test results are readily
- available. ‘The evaluation team should utilize teacher canments, observa
« tional data, achievement test results, and any other information that is
‘available. The team may then meet together and collectlv\ly decide the
« shape of the probability distribution. .
. -In the absence of.any 1nformatlon, the best estimate of the mean
I.Q. may form’ a. normal distrfbution with a mean of 100 and a standard
: deviation around 15. That is, if they'were to know: nothlng about the
school district, they would probably assume that it is .,average. - The pro-
bability of an average school district havi' ~a mean I.Q. above 130 is
‘not very likely, ig_their~opinion perhaps nd more than two or three per-
cent.

However, one of the staff members had reading scores that indicated: d
these students were a year behind in reading. Also, Several teachets te-
marked that the students séemed rather "slow.” Because of this addltlonal
~.information, the evaluation team may decide that a positively skewed dis-

" tribution, with a mean of 95 best descrlbes theagroup opinion. Although some
information ﬂﬁplles ‘these students may be bel 'normal, such information'
+is not totally reliable and in fact the students’ dxght be normal. Therefore,
even though the group opinion is that the mean I. Q. score is most likely
around 95, they may feel the chances are greater that it is above ‘95 than
below 95. A positively skewed distribution: would reflect this feeling. “ﬁ
! Assume for the moment that the dec1510n has been made to actually test
‘a sample of “children with Wechsler Scale. . This nformat}on would tHen be
lncorporated into the prior probability distribution to -form the’ posterlor
opinion. - The technique used to accomplish this would be Bayes Theorem.
An ‘example from Hays (1973), will help to solidify what has been pre-
sented. Suppose this time the evaluation team is concerned about the

academlc ability of a single child. There is general agreement among psy- e
chologxsts that I.Q. is best represented as forming a normal dlsttIBhtlon
with a mean of 100. Consider the following. distribution: N
I.9. L.
130 - greater
115 - 129 |
100 -~ 114
85 - 99 . ' '
70 - 84, :
less - 69 } ‘ r\ o

Thls is the prlor probab lity dlstrLthlon P (H) for this example. It

is a subjective probab1 ity distribution but there is widespread agreement
about its shape. In this situation, it may be the distribution for the
Wechsler. ‘ i -
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ji>>£:) Suppose ‘that-a two—ltem test is given,te a large gro of chilldren.

he distribution of test scores given each 1eve1?of,1 Q. tained. This
would be a conditional probablllty distribution showing istribution of
I.Q. scores for each score on the two-item test.’” This. woyld: ; ]
that is, "What is the probability of an experimental outqbme P, glven the
prior probability distribution H?" To determine this, distribution scores

- would be needed for both I.Q. and for the two-item test. -
> L - .
' 1.9. IR PROBABILITY (D/H)
v " 130 - greater ' _-f.65~ .15 .80 o
115 - 129 . .15 .35 .50 . | .
. 100 - 124 .30 .30 .40 R
85 - 99 . .40 .30 .30 :
, ., 70 - 84 ' .50 3% .15 .
N ST o less =69 - © .80 .15 ;,:,05
J S L ' *TEST-SCORE L 0., AL A

4

Each column represents a: ondltlonal dl& A9y alle iy /2 » -cores given
1ntélllgence level. Suppose a¥%¥child is brou ‘tﬁ% vﬁ}th“ﬁ ] ab;llty that
his I.Q. is ever 130 must be quickly determined - Wighoit ¥ 1nformatlon
about the child, the probability would be .02,k ‘
tlon about the distribution of‘lntelllgence. Now//Buppose that tﬁg ch11d
is given the brief test. If the ;child scored 2, the probability of I.Q.
over 130 is .80 on the ‘basis of . thls test 1nforquion’glone. However, a
Bayesian would be uncomfortable Wlth a probab’~w this high, Since from
previousiexperlence very few peop1e have an’ I. . over 130. The score of
a single test should be cons1dered, but it- should be tempered with-prior
feelings about the rarity of the gvent. This ‘is done through the use of ..
Bayes' Theor?m agbpresented earl;er : ’ .

Lo

A

B (.80) (.02) . - - _.016 :
.P‘13°/2’ = 1.80) (.02)+(.50) (.14)+. . +(-05) (-02) = 386 u.046

] Us1ng the same procedure, other values would result in the follow1ng
posté:mor distribution for -those children: scor1ng 2 on the test

. - I1.0. , - PROBABILITY (1/D)

i 130 .- greater N -' .046
© 115 - 129 2 +202
100 - 114 . o7 .393

85 - 99 < 295 e
. 0 - 84 c < .061

N N .

less - 69 e ' . 003

~

By comparlng the posterlor probablllty dlstrlbutlon P(H/D) with the

prior pfobability distributich P(H), one can_see the ‘effect of the additional

information. I.Q. values greater than 100 have a higher probability than:
with the prior ‘distributiorni. The probablllty of an I.Q. 'score greater than
- 130 has.1ncreased from .02 to .046.. However, the change has not been nearly

90
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so great as if the data alone wé&e considered. Thus,‘for a Bayesian, if
an event jis seen as rare, one’ set of data will- usually nos drastically
change the probability of that'event's occurrence. With the® Bayesian
. mo el, this posterior probability distribution can be considered a prior
ability for another round of data collection. This process can
co inues with each sdt of data being integrated with_ the '‘prior distri-
butiqn. Unllke the class1cal approacht\np set of data can stand alone.

. ‘

HYPOTHESIS TESTING. .. - ) . .
. o . : B +
. In addition to the notion of subjective probability, the ‘Bayesian
position on hypothesis testing would aled elicit great negative response
* from classical statisticians. The Bayesian position is best reflected in
"a statement by D.L. Meyer: A e v ‘ :
~* Our teaching must be revolutlonlzed ,to the point where
topics such -as confidence 1nﬁervals and tests of 51gn1f1cance . ]
R " are taught almost as an afterthought for those ‘fortunate enough ‘
to have a formal model. In discussing the first course in
statistics with the staff of ‘a certain versity, -they told me
that descriptive statistics dis*taught in only two weeks so that
"we get to the important stuff--infere

: e-—-gq ly." I am 0 R

- proud to report that at Syracuse, we spend au%héé semester.. on‘

2 the important stuff--descrlptlve statist&cs (197X, p. 4). ’ »'

‘ So rarely do Bayeslans have reason to use inferential tes%s that a
discussion of Bayesian statistics could:be. relat1vely complete without
bringing up the 'issue.. However, because it is so 1mportant in. class1cal
sta¥fstical thoyght it cannot be_k!plded entirely.

~ The most popular notloﬂltf a test is a tentative dec1s1on between
two h potheses on the basis of data. This usually leads to a choice
betwe n two actions, such as whether té include a supplementary reading
pr am in the curricdlim or not. With this purpose in mind, the use-
fulness of the null hypothesis-is questionable since the null hypothesis

can be expected to be false from the beginning (Edwards, 1963) The !
dlfi?rentlal treatment of two groups, regardless of the nature of the treat-

ment,] is usually sufficient to result ingsome difference in scoreg on. the
dependent variable (Edwards et al, 1963). This is probably magnlfied‘in .
educational environments, where placebo effects are frequently significant.
Of course More is at stake than simply choosing between two options,
ince‘economic matters will enter in determining what activity is actually
/followed. One would hardly choose to implement an expensive reading program
(unless there were clear evidence of the likelihood of substantial improve-
ment.' The whole issue of statistical versus educational significance makes :
clear the hypothesis-testing procedure is taken only half seriously.
This problem is avoided by .the Bayesians since hypothesis testing
does not hold any particular relevance. That particular probabilities such
as .0l or .05 are hlghllghted for special treatment is without special
interest to the Bayesian.. In deciding between two alternatives, simply
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rev1ew1ng their posterlor probabllltles will usually reveal the appropriate
dec1s£bn. Any further analysis is likely to .be based upon utlllty values
(in 'the language of decision theory) rather than on|\ a particular probablllty

value.
For example, 1f two math programs are belng fol pared ahd both involve
the same economic factors, then the prog? that seems to be better should ™

be adopted, however slight the superiority. If one program 1s more expens1ve
-than the other, then a payoff function may be applied to accoun or\ cost

- differences. If one program is markedly More expensive than the other, then
it will only be adopted if there is.clear evidence of its supériority. A,
traditional significante level of .0l may not be emough to justify the rel-
ative difference in cost. Finally, even if the_relative_COsts are the same,
if one program appears to have-a stronger theoretical foundation, then we = -
would .require rather convincing evidence to Justlfy adoption of the alter-
native program. Bayesian analysis, through the use of the prior probability,
can account for th¥s prejudice;’ traditional. inference . carnot.

As noted earlier, .although Bayesian statistical infeérence does not
requlre the testlng of hypotheses in the traditional-sense, testing can
occur 51nce’the prdbability laws that apply in classical statistics also
apply to Bayes1an.analyses, only‘the meaning is different.. Therefore, the
same testing techniques available to classic inference can be legitimately
used by Bayesiang. This difference in meaning, however, can lead to situa-
tions where a classical statisticiasf may reject a null hypothesis while a
Bayesian will see the same data providing support for the null hypothesis.
Edwards et al. (1963) developed this. argumént in detail; it will not be .

. reviewed 1n'its entirety here. However, the intuitive argument can be

. made more quickly.

If a true null hypothesis is 'being tested under- a one-tailed t-test
with a large sample, a t-value between 1.68 and 1.96 will occur two percent
of the time. Of course, if the null hypothesis'is false, the frequency of
this outcome will ‘depend on the alternative hypothesis. However, given the
condition of no prior knowledge as specified with classical inference, a
‘uniform distribution of alternative hypotheses with t-values between 0 and
20 is not unreasopable. Under.such a condition, and : assuming the-null
., hypothesis is falke t will fall in the range from 1. 68 to 1.96 at most -

" 1.40% of the time (i.e., 1.96-1.68/20 = 1.40%). Thus a t-value would occur
in this interval more frequently under the condition of a true null hy-
pothesis than under a diffuse alternative hypothesis, despite the fact that
the classical statistician wduld reject the null hypothesis. ' Obvipusly,

any answer to this argument depends upon the shape of the prior distribution
of the alternative hypothesis. The classical,statistician'eannot handle
this problem sgjince he does not consider the shape of such a distribution.

To continue with the current discussion would lead to theoretical
issues beyond the scope of this paper. However, the point must be made
that although Bayesian statistical analyses do allow for the use of classic
testing procedures, sometimes the outcomes will not coincide. Since
Bayesians usually hold that traditional testing proceddres are simply a ,
nominal stat1st1cal exerc1se, the questlon of how Bayegians make dec1s1ons
remains: :

R 2
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DECISION MAKING :

Upon reflectlon, the classical approach of rejecting a .sharp null
hypothesis doesn t really provide much information. As anyone familiar ¢
with information theory is -aware, the most knowledge is galned by reducing
in half. leed the stochastic nature 'of the world,
one can t eliminate 50 percent of all ‘alternatives with certainty.
However{ one shoyld be able to do better than simply reach a probablllstlc
conclus , the real value of some parameter does not appear to be at
one point along an-infinife range of possible- .values.

This no doubt was the feeling of McGee (1971) when he noted-

The author had for somevyears.felt the need to consider-
alternatives to’'setting up a null hypothe51s'1n order to
reject it and, having considered the p051t10n of the Baye51ans,
was-a ready convert at an intensive summer session in information
theory. . . . The idea of an experimd ter approachlng a sta-
tistician with the request "I want to réyect thé null hypothesis®
‘ was totally out of pldce-[pu 277]. o : -
An example of the Baye51an agproach to estimating the probablllty that an
1.Q. value was greater than 130 was presented earlier. Now c¢onsider a
situation where a decision between two alternatlve math programs must be
made. The¢/ traditional approach would be to set up a null hypothe51s of
no diffefence on some test score. The alternative hypothesis would be
that ere is a’differenee between the two programs. A two-tail test is
“likely to béﬁemplOYedy This is a typical kind of problem found in educational
evaluation. ’ '
An obvious difficulty can arise in this kind of situation. Suppose
nonsignificant t-value were obtained. There would then be no particular
x for favorlng one program over the other and q’toss of a coin would
‘be n appropriate decision maker. Obviously, the evaluator is given license
to™a: .any conclusicfi. She/he could simply choose the program which re-
sulted intt i y higher mean test score and use this score as
partial juskifig@tion. This is often done when one hears the report that
"means were ihi the right direction® or “"results were just short of signi-
ficance." According to the classical rules, these statements carry as much-
weight as saying the coin almost landed tails. - Clearly, with nonsignifi-
cant results, the evaluator‘cannot reach any other conclusion than to as-
sume no difference for the moment. Suppose she/he plays the game and doesn't
draw conclusions on the basis of the data. She/he is then likely'to appeal
to other items, such as cost effectlveness, theoretical soundness, or
teacher preference. :

Whéen the evaluator beglns to look at this klnd of ev1dence, she/he is
stepping outside of the public system of inference and beccmes open to
criticism. While heterogeneous and frequently qualitative data are useful,
an evaluator trained in classical statistics has difficulty in dealing with

" such information in a systematic way. Because she/he has difficulty
explaining the proceduré she/he used to make decisions, the evaluator is
frequently criticized for being biased or subjective. By making public
the process whereby she/he used these other sources of information, the
Bayesian evaluator reduces the chances that she/he will be criticized for -
personal biasg, fuzzy thinking, or irrativnal decisions. Others may
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di ee w1th her or hlS prior probabl ity distribution, but the way
;;at the research data and subjective opinion were brought together

ot be‘dlsguted, assuming acceptance of the Bayesian paradigm.

-

e L A . J | .
Bayesian Analysis for anﬁévaluation Problem--An Example
S =

A

. . —_
Math Program Y has necently been developed to replace the standard
Math Program X. School istrio#® No. .32 wants to consider adoptlon of
Math Program Y becuase £ appeals to a. cammunity which considers itself
progress1ve and inno (€ive. Not much money. is available for data col-
lection, so the. evaluation will.have to utilize a small sample._ These

evaluators, who: have considerable knowledge af math educat'ion programs,.'

- are not enthusiastic about Math program Y. They feel the program has
serious flaws’ and has not been adequately developed.

: The evaluators, along with school district personnel have agreed
'ﬁo use “the scores on the Standard Math Achievement Test to help with the
Judgment.‘ A lot of data have been collected in the pagt from schools
using Program X. However, the data are old, since the program has not
been heavily used in.recent years. The national norms for schools using
AProgram X are avallable on the Standard Math Achlevement Test and are
as.- follows- : g

N

Score o . " Distribution
¢ 15 o .00 3
.14 .10
13 ' - .10
12 . . .10
y§ 11 L .25
. .10 . : ' .25 :
'y S : 9 : v .10 ’
8 | .10 . ’
. 7 .00 -
6 . .00 //
5 .00 .
4 .00
. 3 .00
. ©2 .00
bt 1 .00

éble:
1. School District No. 32 is located in an upper’middle'class area .

where the parents of the students are engaged in skllled or profess10nal
occupations.

In addition to the old data, the following information is'also avall-

2. Math Program X has been recently modlfled and’ accordlng ‘to some

sources, probably would result in better test performance.

on the basis of all this information, the task is to determine where

the value of u , the mean score on the Standard Achievement Math Test,
lies for Schoot District No. 32 using Program X. The prior probability

“distribution for Program X is presented in Table 1 along w1th the rest of

the data needed for this example.
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' TABLE 1 o . . o
. . . ) . . _v {’
PRIOR{ DATA, AND POSTERIOR PROBABILITY DISTRIBU‘;'IONS -
J - FOR MATH PROGRAM EXAMPLE ) : L
. t ‘QP"L . - S L
. . ‘ . -
Mean ° , - Prior et -7 .+ ‘Data . , * Posterior - S
‘Test, Distributions Distributions '~ = Distributions o .
' Score R 4 Y ' X Y v X Yy ot
14‘—‘\- .25' . . ) . S - . " . - R ’
13 s X . .05 | _
12 .15 . .10 ' ‘0 L .95 .
11 » .10 . .10 .05 - .05 - .263 .05
10 .01 .20 290 T .74 "
) .01 .20 .05 : ~ .263
.01 . . .10 ' B
.01 .10 N ™~
' .01 .10
~
5 ) .10 :
4/ 1 }
/( Y. .
3 . L
2 N\
L1 - ‘
/
.

v

The prior probability distribution for Program Y is almost totally ‘subjective.
Since little data are available. The lack of enthusiasm for the program by
the evaluatlon team i§ revealed by the prior probability distribution.

Test data are obtained for both Program X and Program Y. The mean score
for Program X is 10 and for Program. Y is 12 However, since there may be
measurement error in the test data, some credibility is given to the scores
next to the obtained-mean (.05 for each score). The posterior distribution
has been determined by Bayes' Theorem. The results are somewhat similar to
those obtained with traditional statistics, which would rely on the. data
alone. However, confidence in the true value of the mean for Program X is
weak. The evaluators are only 47 percent certain that the value is 10, &

. while t@ey are quite certain (95 percent) about the true vadue for*Pt

*¥. This is because the data tend to go considerably counter to théir

prior feelings about the true value for Program X. Perhaps more data for
Program X would be appropriate. : ’




")

) These flndlngs 1llustrate the generallzatlon that whén the prlor
probaﬁhllty distribution and the data distribution are digsi 1lar, the
posterior probability distribution will be diffuse. .This is logical 'since -
data that go agajinst common sense will usually result in greater uncegr-
tainty about the real nature of events than data that support prior -
beliefs. 1In class1cal statlstlcs, conclus1o '*should be unaffected
prlor oplnlon.. S e , : .
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 AOATA G COLLECTION STOPPING’ RULEm« T T

'A final d1st1nctlon between the - two 1nference technlques lles in -
_ their d1fferept treabment of data stopp1ng rules. - Classical procedures
. require_the . ex erlmenter to s 1f§w1n ‘advanceé how much data she/he will
' j {hls pr1nc1pLe is dﬁ%ilned in most texts'on general statistics”
(e g., Hays, 1963). Such a requlrement is part oﬁ_gn overall. rule by
classlcal statisticians to specify art’ data. collectlon and data analysis .
activities, prior to any ac@ual data gatherlng,_w1th the exceptlon of
ceytain’ post hoc tests. This prlnd;ble is extremely difficult for an .
educatlonal evaluator to follow, sifice his ‘working enviromment is . .
very fluld- initial spec1f1catlon of all’ data—gatherlng procedure is
usualIy 1mposs1ble. The classical statlstlclan is so spec1f1c onlthis - -
- point because of the ease with which a null hypothes1s ‘can be rejegted..
Iy fact, with repeated cycles of data gathering and testing, an
experlmenter ‘eould be certain of re3ect1ng the null hypothes1s even 1f
‘it were true (Hays, 1963) .
. However, as Edwards et al. (1962) noted, th1s is nmat a'problem for .-
a Bayesian who does not use the null hypothesis, testing rocedure.'

e . ~ o o AN - .
In contrast, if youdet" “>ut’ to collect data until your
~postersor probability for a hypothesis which unknown to you
is true has been reduced to .01, then 99. times out of 100 you .
will never make .it, no matter how many data you, or your children
after you, may collect [p. 239]. S
N

-

) " The cornerstone of thls difference between classical and Bayes1an
data collection procedures is known as the "likelihood pr1nc1ple
This principle flows directly from Bayes' Theorem and the-concept ‘of
subjective probability. It . is in operation when two differept experi-
mental outcomes (x and y) have the same bearing on opinion about’ a para-
. meter. That is, if P(x/A) and P(y/}) are proportional functions of A,
then each of the two data x and Yy have® exactly the _same thlng to say
about values of ‘A. _
In. the d1screte case, if P(D /H.) kP(D/H ) for some positive 9
,constant k, than the likelihood principle operates. For example, in a
coin toss, 10 heads out of 20 throws means the same thing as 20 heads" dut
of 40 throws.’ ThlS simple principle was discussed by classical statisti-
cians such as Fisher (1956).. However, in classical testing the pr1nc1ple
is lost, accordin?,to Savage (1962):
: ’
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- .despite gross violations of principles of classical inference.

. The 11ke11hood principle is in confllct with many
hlstorlcally important concepts of statistics. For example,
‘»whether-a- test is unbiased depends not op the likelihood . -
alone, but rather on Pr(x/)\) considered as a function of x
as well -ag)a finction of A. Similarly with the concepts
of sxgnlflcance or confidence level. For instance, it has
been w1de1y ‘believed that the 1mport of such a datum as 6 -
red—eyed flies out of 100 depends on whether the experiment
was désigned to cbserve 100 flies or designed to cbserve 6
red-eyed flies. An estimate tnbiased for either of these
experlments 1S biased for the other [p. 13;

1

. . Since stopplng rules are ;rrelevant to a Bayesian, greater ob-~
jectivity actually results than with thg,tradltional model. Once data
are collected, the original intentions of the. experimenter are' irrelevant.
The experimenter can collect data until he has proven his point or exhausted
all his funds, time, or patience.. "’ »

Such freedom should be appeallng to an. educat10na1 ‘evaluator who is
grequently r presSures that 1nterfere with a predetermined plan of data
collection? Frequently a shortage of funds, uncooperative . teachers, or,
pressures of time prevent data.collection from being completed. ILeft w1th _
incomplete data, most evaluators continue to grind out .inferential tests

Frequently

these violations go unnoticed.or else are rationalized as being necessary

' to meet the demands of the real world. Violations of assumptions do not .

2
]

necessarlly reflect negatively on the practicing evaluator, for statlstical
models should reflect reality, rather than force reality to reflect the

statis 1 model. -If the stopping rule principle is violated so frequently,

then th&Bayesian model, which disregards the stopping rule, may be more

approprlate ‘for evaluatlon situations. .
Q .

L
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: ~ CONCLUSION - L

At this time, a textbook describing Bayesian analyses for educational
problems does not exist, althougl) there are several texts slanted toward
other disciplines which should prove useful to educators (e.g., Morgan,
1968; Zellner, 1971).

. One should not assume that: less mathemat1ca1 rigor is required in
Bayesian analysis than in classical statistigs; in reality, the opposite
is true. Classical statistics, with its:emphasis on the normal underlying
distribution, has been documented so well that students with little
mathematical sophistication can perform adequate statistical analyses.

The Bayesian mode}, however, requires a good understanding of distribution
. theory in order to adequately describe the prior.probability distribution.
Som® simple analyses using discrete distributions may be within the reach
of almost anyone; however the full richness of the Bayesian approach may
,not be appreciated without some mathematical sophlstlcatlon.

Most evaluators can take some steps to begin to utilize a more
'Bayesian approach in their daily work. Even if the Bayesian model is not i
completely accepted, the questions Traised by the Bayesians should increase
the vigilance of the evaluator to avoid gross violations of the classical
model. Fregquently, when a model in a given area is’widely used, the
. ‘assumptions underlying the model are taken for granted. (One needs only
. to look at the 19th century Newtonian phy51c1sts or early 20th century be-
haviorists to see this problem.)

The follOWlng recommendations are made and should be easy to im-~

- plement.

.. Don't parade stat15t1ca1 procedures in an attempt to add respecta-
bility to a subjectlve process. When an évaluator or any scientist attempts
to generalize beyond his data, he is engagihg in a subjective process (Edwards
et al., 1962). The mathematical models may be useful, but they do not auto-
matlcany objectify any inferential .process.

2. 'Realize the ease with hhlch the null hypothesis is rejected. Just .
ggcause oné has been able to reject a null hypothesis at the .01l or .05 leyel -
does not necessarily mean that something of educational significance has-been
found. As noted by Savage (1962) , null hypotheses are frequently rejected
inappropriately, and even if approprlately used’ little of any practical sig- .
nificance can be concluded from the rejection of single null hypothesis.

3. Report probability levels when pOSSlble.. Instead of using the
magical .05 or .01 levels of null hypothesis rejection, the actual proba-
bility levels for the alternative hypothesis should be reported. ,Mo
evaluators are familiar with power and power functions, but they are rarely
- discussed beyond a first course in statist;eéifti C o

Lout
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4, Spec:.fy Prior opinion. Since most activities J.n evaluation
involve hypotheses where the evaluator is not neutrals, prlor opinion and
the reasons for this opinion are legitimate information.. Instead of using
"this information covertly when drawing conclusions, openly expressing the
initial bias may.be more appropriate. If expressed in probability terms,_
Bayes Theorem could be applied to revise such opinion. Conventional inferen-
tial analyses could still be performed if desired. : '

5. Remember the data stopp:.ng rule. If the evaluato; is determined
to tést a sharp null hypothes:.s, the size of the sample must be specified
in advance and sequential test:.ng of data must be avoided. ‘Also, the
s:.gm.f:.:i?nce level should be determ:.ned prror to data collection'. !

,3:“0‘ ) .
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SUMMARY

Numerous arguments have been presented in support of the approprlateness
of the Bayesian model for the educational evaluator. For the most part the
_ evaluator is engaging in appropriate practices, but the classical statistical
model does not describe how she/he really works. By changing models, the
evaluator will be able to continue doing what she/he already does, yet she/he
will be better able to explain to oth how it is done.

This does n¢ an that tle -use Of Bayesian model will not requlre
‘any changes in pra ice. Such’ ‘a model requlres greater specificity in .
Situations where no rules existed, such as expression of bias towards one
program or the other prigr to data collection. However, such changes should
result in a new sense of ‘freedom since the evaluator can admit that numerous
types and sources of data resulted in her/hls decisions and at the same -time
she/he can stay w1th1n the llmlts of a credlble statlstlcal model.

30
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