
DOCUMENT RESUME

ED 134 229 IR 004 441

AUTHOR Nievergelt, J.; Ind Others
TITLE ACSES; The Autoaated Computer Science Education

System at the:University of Illinois.
INSTITUTION Illinois Univ., Urbana. Dept. of Computer Science.
SPONS AGENCY National Science-Foundation, Washington, D.C.
REPORT NO OIOCDC-S-R-76-810
PUB.DITE Aug 76
GRANT EC41511; EPP-74-21590
NOTE 171p.

IDES PRICE EP-$0.69 lic-$8.69 Plus Postage.
DESCRIPTORS Artificial Intelligence; College Curriculum;

.

*Computer Assisted Instruction; *Computer Science
Educationt Information,Retrieval; *Instructional
Innovation; Instructional Systems;.On Line Systems;
Programing Languages

IDENTIFIERS PLATO IV

ABSTRACT
The:Automated Computer Science:Educational System

"ACM) has beendeveloped at:the:University ofIllinois:for the:
ptirpose of provi4inTAmproved education Aor theAtr44vnueber.of
students taking introductory conputer science:ciinrset..:Theitejor
components of this System ate; a library of:instruCtional:leSsons, an:
interactive:programing system with excellent errordiagnOStics an-

information retrieval system, an..automatecLexainiindAuiz system, and.,
several lessons which judge:studentAmograms.; ThiOurepOrt:briefly
describes each of these:components, as-vell as sole.:Ideas,.OR____:7---
programing languageA.esign-resulting from this experienCei-and
presents an evaluation of.theuse-of the:system over2thepast three
years. (Author)

41 ._Doc.uments:.acguired_by..ERIc.include:many..informanpublislied:...
* materialS.notsVailable.from'othersOnrces. ERIC'Amakeseiferyeffort-*.
*.toobtain:the best,copy available.::NeVertheleSsHitetivOf marginal *

* teirOducibility'are-often encotintereclAndthis41-ffecil, the:quality: *:
* .of.the:microficheandihatdcdpyfreprOductiOnwtRIC,,maket-available- *
* via,the.ERIC Document. Reproduction Service (URS). Elms is not *
4i:responsible-for theAtality_Ot.the:orLginal-doCtilenteproduCtions.*

are:thebeSt-thatcan-be:madifrOA the:originaL: 41'

000***********ee.

ACSES: The Automated ComPuter Science Educatio-
System at the University of Illinois

Authors:
-

J. Nievergelt
H. G. Friedman, Jr.
W. J. Hansen
R. Montanelli,
T. R.Wilcox
R. L. .Danielson
R. I. Anderson
A. M. Davis
D. R. Eland
D. W. Embley
W. D. Gillett
P. Mateti .

J. L. Pradels
E. R. Steinberg
M. H. Tindall
L. R. Whitlock

U.S. DEPARTMENT OF NIIM.TH.
EDUCATION a WELFARE
NATIONAL INSTITUTE OP

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT. POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF

I
EDUCATION POSITION OR POL4C4i. -

"PERMISSION TO REPRODUCE THIS COPY-
RIGHTED MATERIAL HAS BEEN GRANTED BY

TO ERIC IND ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE NATIONAL IN-
STITUTE OF EOLICATION. FURTHER REPRO-
DUCTION OUTSIDE THE ERIC SYSTEM RE
OUIRES PERMISS:OM OF THE COPYRIGHT
OWNER."

,Thieyork.was supported in part by the National ScienceFoundation
-Under grants EC41511 and:EPpr747r21590.

. .

Acknowledgements

We are indebted to a host. Of students who have-worked

on portiona of ACSES-as term projects or Master's theses, as well

as those Who participated in the initial use of the system for

instruction.

The assistance and advice of tlie staff-of the PLATO-IV

project.have been appreciated, as well as the support provided by

the National Science FPundetion.

Finally, thanks are due to:Betsy-Colgan.for an excellent

jcb of typing (and scpetimes retypine.this report.

TABLE OF CONTENTS

Page

1. Introduction (J. Nievergelt) 1

2. The library of lessons (H. G. Friedman, Jr) 10

3. Computer assisted programming system.(CAPS) (T. R.
Wilcox, A. M. Davis, M..H. Tindall) 12

I. The GUIDE information and advising system (D. R. Eland,
J. L. Pradels) 45

Interactive test construction and administration in.the
generative exam system (L. R. Whitlock, R. I.
Anderson) 63

6. Antomatic judging of student programs (R. L.
Danielson, P. Mateti, W. D. Gillett) 73

7. EXperimental'and formal language design applied to
control constructs for interactive computing (Lc W.
Edbley) 103

8. Use of ACSES in instruction (R. G. Montanelli, Jr.,
E. R. Steinberg) 112

141

Appendix: Computer Science Lessons 2-4

9. ACSES bibliography

4

....

1. Tntroduction (J. Nievergelt)

From 1972 to 76 the Department of Computer Science has

been heavily involved in a project to develop an automated instructional

system for teaching cauputer programming. After four years of

implementation, with an effort in excess of 25 man-years which produced

approximately a million words of code, our system ACSES (Automated

Computer Science Education System) is noir in routine large-scale

usepassuming about 50% ok the teaching load in various introductory

computer science courses, with a total enrollment of over 1500 students
a-

per semester.

ACSES runs on the PLATO IV system 'developed by the Computer-

based Education Research laboratory at the University of Illinois.

The approximately 1000 terminals across the country attached to the

Illinois PLATO s7stem have permitted a smaller scale use of ACSES in

sane other schools. It is to be expected that the use of ACSES will

continue to increase, in our own courses as well as elsewhere. While

the initial development of ACSES is now complete, expanded use requires

a continuing effort to maintain the system: adapting it to Changes and

new features of the PLATO system, adding new instructional material and,

most important, improving eXieting material on the basis of experience

in actual instructional use.

.
The purpose of this report is to docuMent the ACSES project:

tc serve as a case study in the design,.implementation,--and use of a

major effort in computeraided instruction. This intrOductionis a

concise description of the-ACSES project;-..it presents-the.motivation

for starting the projects the design criteria, the components Of the

resulting system, the experience gained during the implementation and

-1-

use of ACSES. The remainder of the report describes various aspects of

the project in mOre detail.

Why ACSES?

Computers are playing an increasingly pervasive role in our

society, and this fact leads directly to a rapidly increaaing demand

for basic computer science education. This demand arises from two

sources.

First, the demand for computer.professionals continues to

grow. The most widely accepted projections show a doUbling of the total

demand for systems analysts, programmers, computer operators and

associated technicians during the next five years.

Secondly, it seems reasonable to expect that most people will

be required to interact with computers in their daily work within a

decade or two. Even people not directly concerned with computers should

have some understand:Ing of them, because an enlightened pliblic will be

essential if we are to make intelligent decisions concerning the future

role of computers in our society. Currently many citizens view computers

with indifference, while others fear them as the ultimate threat to their

privacy, security, and dignity. Such attitudes will clearly not suffice.

Hence, it is important that every educated person have some understanding

of the principles underlying computers and their implications for society,

as Well as some skill in their use. At the very least, everyone should

have the opportunity to acquire this knowledge in a convenient way.

Recognizing the importance of "computer literacy;" the

President's Science Advisory Committee recommended in their 1967 report

that 75% of all college students should have a meaningful exposure to

6

-2-

computers. Even though this percentage has not yet been attained, the

demand for instruction in basic computer science at our universities,

colleges, junior colleges, and private electronic data processing

schools is enormous. These institutions have relied on the traditional

instructional approach of lecture-discussion-laboratory. This approach

suffers from several defects, particularly when it involves large numbers

of students. It is not particularly suited to the subject and is,

therefore, the cause of student dissatisfaction. Learning to program

requires active participation and intense effort on the part of the

student--two things that are not encouraged by the lecture type of

instruction. An individual tutor for every student would be ideal for

learning a skill such as programming, but such a mode of instruction is

obviously economically not feasible when one aims at a mass-education

program.

In addition, the traditional lecture-based approach can-unly

reach a limited audience. In particUlar, it excludes all people whose

professional duties prevent them from attending school for any length

of time. It is to be expected that there will be a large demand for

basic computer science courses in connection with continuing &tilt

education programs. The situation where somebody sUddenly finds that

he should know something about computers in order to remain effective

on his job, will become an increasingly familiar event.

All of these long-range considerations in addition to our

oyn experience in,teaching introductory computer science at the

University of Illinois to about 2000 students of widely different

-3-

backgrounds every semester0.1ed to the initiation of a large-scale'

project to automate introductory computer science courses, the results

of which are described in this report.

The PLATO IV system, being developed by the Compnter-based

Education Research Ldboratory at the University of Minas gave Us-

a unique opportunity to develop an automated course consisting of

CAI-lessons about computerS and of supporting software, and to trithis

system out on a large audience of diverse educational background. ,The

PLATO IV system, while centered at the Universitrof Tilinoisl-servea

nearly 1000 terminals located at schools and colleges with verydifferent

f.

tYptl.q:student populations, and with wide geograPhic dispersion.

POtentially, computer-assisted instruction (CAI) has,maqr:

...... advantages: It can provide truly individualized instruction by allowing

students to study sequences of lessons tailored to their needs and at

their own pace; given a suitable terminal network, it can reach*wide

audience and, in the forseeable future, do So at low cost. lenause of

its potential cost'effectiveness CAI may become the cheapest.way:for

schools and colleges who do not as yet afer computer science courses

to institute programs in computer studies. However, these potential

advantages of CAI will be realiZed only if much more research,and a large

scale development effort is carried out. We view our project ad a

contribution towurds the goal of demonstrating the feasibility of a

CAI-based approach to the problem of mass-education in basic computer

science.

Desigh criteria, and the resultifig structure of ACSES

ACSES, our automated computer acience education syatem

developed on PLATO IV, is designed to be usable in twa modes, according
-

to the two purposes it is intended to serve: supplementary instruction

wa;tAmur awn university, and main-line imstruction at remote sites.

a) partially

In our Computer Science Department an instructor is still

reaponsible for a course, and CAI lessons are used in an adjunct mode.

He nay discuss a problem in classroom, and then refer the students to en

approprisi,e lesson that gives more detail examples, or allows the stulent

to practice or solve problems on the compui.er. In the case of our computer

science lessons, practicing and prablem solving usually means that the

student must write and execute a small program. MA is able to do so at

the same terminal, and switch easily from lesson tAing to programming

and back.

Thus, in order to operate a partially automated introductory

computer science course, one needs primarily:

-- a library of lessons, covering.several programming languages., computing

techniques, and application areas

a completely self-contained interactive programming system for the

preparation, exedutiOn'and debugging of programs writtenlay'students

in any of the languages covered by the lessons.

an,exam syatem, to automatically generate problems according to

an instructor's specification, to grade the student's solution,

and administer the eiam (data-collection-and-aecurity aspeats).

b) the fully automated mode for main-line instruction.

We expect that the demand for basic computer science courses

ofi the part of high schools, junior colleges, and continuing adult
'

education will grow rapidly in ihe near future. In these settings,

there may not be an instructor available wto can guide the student's

course of study and fill any gaps that might be-present in the lesson

material. Hence in this setting the system has to be usable-in a

fully automated mode, and AMES makes this possible primarily

by providing:

- - a conversatiOnal advice-giving an&inforMation retrieval system

to guide the student through the library Of lessons, based on his

goals and past performanta-___-___

- - a communication systemthat alIows a atudent to'contant a human

tutor for help and advice, from any terminal'Oonnected to the

PLATO System.--

We consider our project to be a major research effort to-

investigate.the extent to which a large introducory couree Can be

autotated. The objective has not been to take one of our existing

-CS tourses and put it on PLATO as-it is. Rather, we'went,tO,tUrn,a;

PLATO terminal into-a rich envirOnment analogous to a:-conventiOnal

library-and laboratory, where yOu have_at_yourfingertiimmeAVOeful:

things' for learning about computer science, and tor practiCing.immediately'.

what you haVe learned. It is the stUdent and his instruetor who'decide

Which one of these things they want to use.
.,

Also, the project has an additional.goal; namely to eerVe-as

a stimulating environment for computer science research in a,variety

of areas: compilers, information systems, artificial iiitelligbice.
6

This last point may 'deserve some explanation, since 'the misconcePtion

is widespread that lesson writing is a routine antivity. It can be, if

one creates poor lessons. It can also be a task as challenging as you

10
-6-

wish tO make*it, if you.view a lesson as an-intersetive program tbat

hap a certain domain of knwledge-,-,and is able to commonicate,with

students about the' knowledgejt has. iye feelvthat if this necessary

ingenuity.and effort are put intO.the design of an instruotiOnal

system and its'eupporting software, such s;aysteimcan be made to

provide an educational experience superior to the one a student has

in a large introductory course taught in the conventional lecture-
:

based manner.

Experience gained during.the 1--Apimentation

From,the technical point of view, the design and implementation

of a camputer-based instruational syStem is no different than the

development.of a large system for some otherHapPlidetiOn: tOnventional

software components dominate: .compilers, interpret ers, rfiIisyátems
.,:

data management. A high level.programming langUage isAeSiraVleoemOst
'"

a necessity. Tutor, the only programMing lazugliage opta11,414e.,:%07*yelopers

of inStructionalilaterial_opJTATO. is a IrOxV4igh,;:lx...4. OngupgOr
. .

programming nian4lachine dialogs, bit ,,is''rUdimentary .147W ,respent to

strncturing large software systems into- Self!.cantained MOdUlesi and :

designing 'clean interfaces between them. It it weir suited:to. prOgtamming

small or medium-sized (a few thousand words of sonrce

conventional lessons, which ar-e I/O, intensive and, as prO

.-

siiiple structure. It is. considerably less well..iiiited;forWriting
' ,--..',V,L.-1.4444,414-

large Complex,,programs such as the: ComPilet iyitem the ;'infcirMation

and adviSing system, and the exam system of Acbts;

Another hindrance whibh affecta-the performance of -our,- complex

gratii'M

. .

oyle user's program to 2 msec of CPU time per clock second under normal

aystem loads. This is sufficient for the conventional lessons,',bUt,it '

causes the response time in-More complex program; to.be

slow.

,

With reOpect,to educational anclpsycholugical aspects of

a computer-based instruCtiOnal wyetemi.it'Mustbe said that thereTisno

systematic bodY of knowledge to guide the deSigner of sUP4-:(1.-4.00#

The vola4inous literebure_on CAT', to the extent that itrapiortsdn

experiments to.determine what:are effective efiVirOn.MOntt(fOr:JOar

treats detailed,aspects:in isolatier, tuider:OOntrOiledconditiO**hiCh'::

dO not apply tothe varied situations:that Occur-when'an' entre.'..coUrse

is given by computer. The best advice is to:try eyerything:in'ac

instruction aa seon is pOSsibIe, to beImepared:to msla

modifications in response to feedback frOm'the users, and to dikidard

nnsuccessful material. The Most prodUctive point of ,view SeeMStO'h6,,

to consider a computer-driven graphics terminal as7amediuiswithliOVel

propertiesvand-to develop a crafts of writing interaetiVe prograumv.fOr

communibation of all kinds educational or other..

Experience using ACSES

Repeated experiments, questionnaires, and plain observation

makes it clear that a large majority of the students liketheexPerience-

of working on PLiTO, and that many prefer studying a lesson-te attending

a lecture in the large classes typiCal of introdUctorycoUrset. Thid
A

is the most conclusive finding of Our effort to evalUate ACSESin inStruction.

ln contrast to'this, we have no conclusive data for:comparing,the

performance of students off and on PLATO - usually no.difference between

.

the two groups were detected.i A comMon-sense conclntion i;that other,

factories 'such as the instructor, and the motivation_of:stUdents have

:*

a Dinh stronger influence on the student's' performenCe than the

difference .between a lecture and a CAI. seisiOn.

Conclusion

The ACSES proj,ect can serve as, a bescimark- to indicate what

effoit is regiiiied to develops iiaintains and use a coseputeibased

instructional system caplet* of assuming a :large jpi.r6 of 'the teaching

load in large introductory courses. We hope that others isley benefit

.from the experiences described in this report.'

gl

13
.9.

2. The librsry of lessons (R. G. Friedman, Jr.)

The largest component of the ACSES system is our library of

instructional lessons. We have over 135 individual lessons, grouPed

into about 20 sass (Appendix 1). The majority ofithese lessons have

been created by students as term projects in courses on computer.assisted

instruction, or as other academic activities, such as theses. -As a reiult

of this origin, our lessons akhibit a wide* variance in level or guelity.

A typical lesson in our library is a program whidh presents
. .

some information in graphical and textual form, sad provides soae.opportOnity

for the student to practice and assess his.understanding of the sUbject

matter by solving problems and answering questions. It is comparable in

scope to a tutorial article or short chapter in a book, and may occupy a

student for hmlf an hour to a few hours.

According to this analogy, our library of 135 lessons represents

a small publishing enterprise. The effort required in creating and

maintaining a collection of interactive programs for instruction (course.

ware), however, is significantly larger than'it is for a comparable amount

of material in textual form. The main reason why courseware development

is solabor-intensive is that, on a medium so powerful as a computer with

a graphics terminal, one wants to use techniques of presentation and inter-

action that are much more elaborate than anything that could be done on

paper. Implementation of these techniques takes a lot of programming time.

Moreover, lessons using elaborate techniques must often be revised several

times, because little experience is available for guiding one on how to

use these techniques effeetively at first attempt.

This need for repeated revision based on experience with actual

instruction, and the significant amount of effort required for each revision,

are the causes for the fact that only a fraction of our lessons are anyWhere

-10-

14

Close to their. final form". AA might be expected, thoseleSeOns which

have been Used most in our own instructioni,particularly, the FORTRAN:,

sequence, are the most polished.

Among the'improvementIv_to the lessons has been a-certain amount'

of standardization. .For example, the functionof-the keyethaVallOwa

student to,conbrol his Path through a-leadowhas beeioltandardiged ming

all CS lessons, so that et studenbiliW,hii:gdde:rthrciugh a faWleasons has

become familiar iIth most'of the control optionnli 811 leSsonsand can

proceed through sUbseqUent leisdni-More easily. Tfiese,conventiona aris

described in lesson coauthors; standard pieces-orcode, Chariaer,sets,

and micro tables have been colledted iniestiOn cslibrary;.,other. coding

suggestions have been collected in les#06 cscode.

Also, several communication lessons have beed coMplebed. Note-

file emotes serves a Ibulletin board" function between authors. Lesson

cscomments ierves to record remarks made.by studenti taking instructional

lessons', for feedback to the authors 'of the lessons. .Lesson Critalk allows

real-time communication between an instructor and each Of several students;

this allows human assistance to a student by an instructor whOinight

be located at a different PLATO site.

Finally, H. O. Friedman, who manages the library of lessons,

has written a router lesson, csrouter,,which allows students access to the

library and maintains records on which lessons:the student has,entered,

which lessons have been completed (as set by each individual lesson),

elapsed time spent, in each lesson, etc.

15

omputeeraiiiitedTrogramming iystei.(CAPS)'

Introduction:, -

The'..princiPle design'goa1.0f,CAPS is to be able.to4iagnose
,

student prograMming errors and help:the stUdentunderst4ia'; h046', Unlike-

,batch systems sUch-is PL/C tEl'orSP/k do43,illOt-Stteisit_to

1!tecovee.frOm..detected errors, Inetead,A.t:interactsr*Ith.the.atudent

to inform him,of his error'ind attempts:tii,proMpt*M-With,suggeitions

about usys of correcting the -eirOr.--_ e studek is required to act1A.11r

analyZe the situation and,then repair his_prograd.H2AutOMatic".diagnosis:

is provided both for compile-time errors and runtime

Most Components of CAPS.are table driVen.,'Thia.perMits

a compact implementation and prOvides a convenient.teChanism for

supporting the different language6 thatare taughtat the University.

Tables for FORTRAN, PL/1, and,COBOL have beein Written:and put intot

classroom use. Tables for LISP, PASCAL, BASIC and.SNOSCkate Under',

preparation. Severe time and spaca,constraints imiXised by, prAtvw

(as it services 500 terminals concurrently) limit the ciPabilitieS of

CAPS to simPle programs using only subsets of the above progrSOMing

languages. -CAPS is sUfficient to handle the',computing-requireineets

for the greater part of_a first semester programMing coUrse SubSet

nuMber five of SP/k [5]

supported by CAPS.

for example, is typical of the language features

3.2. System organization

The principle modUles of.the system are a programeditor,

syntactic and static semantic error diagnostician;-an,interpreter!for

each language supported, a run-time eilor analyzer, a user:program file

manager, and a systeues table.builder and file manager Figure,1).

- 22 -

; . L.. .,

:PLATO :iND"
OTHERLESSONS:.

-coNtioL
-DATA

7-41P

FILE
MANAGER--

.

4Ci

PROGRAM
FILE-

EDITOR

I
I
I
I

I I
: %

I
I / %

I / %

I / %

I
//1 %.

%I

I /
I
I
I N

I
(ANALYZER y

I EDIT-TIME
I ERROR

/
I
I tt

..... 4-
I

.6. -uiE0--
PROGRAM

JNfERPRETER

.ORTRAN,
ANTEAOREYEA'.

COBOL
INTERPRETER'

V
:'"RIINTIME......
.',:,:.ERROR.'''
:. !ANALYZER'. -: ,--
y . .

FORTRAN

TABLES,

L -- -

COBOL

TABLES

- - - .-r

.1

TABLE
AUILDER

Figure 1: CAM System Organization

-13-

;.) AM 1

Each Ofcthesemodules is written in TUTORL a FORTRAN level prOgramming

HlinguSgeA,nd'the. only one used'on PLATO Iv [19) and.holds the

potation of al.eitson within the PLATO IV system. All letsons are.
. ,

potentially.reentrant pure proctedures and they are_the unit of Multi-

-: programMing in thePLATO IV system.

'OontrOI:Of the system is-distributed throughout the Modules,

but the student.10Lnever:emire of thetysteMMOduiarity,and never-hSs.
.

to reMeMber'cOmmand.syntax, because each-time.the-System it,ready:for

a cd6dand, the moduiethat will interbretthe*MMind.4iiiiiiivi Menu.
.

of possible actions. thAmillypresting-one key.*will initiate's ne*

action.

During'a programming session student-specific comitunCiStion

betWeen modules is through the block.of storage (1500 words) assigned

to each terminal. This block contains the only internal representation

of the student's program, the Sesodiated spigot)l tible entries and

miscellaneous information identifying the Student and the language he

is using. The internal representation of the student's,prOgram id ustd

1)oth,to regenerate the listing on the screen and as the"objeCt 'code"

for the iifigusge_interpreter. It is a simple tokenization of the input.

Between sessions only prOgrama,explicitly saved in the user Program file

are retained.

3.2.1. program editor

Each editor in the CATS system consists of interpretive tables

specific to the language being compiled; common driving routines to

interpret these tables; and a few routines, specific.to.the language,

that are called from the interpreted tableu. These tables are built

18'
-14a

I .- I A - . I I I

Student I -7 - -r -->I Editor 1 >I Reverse . I,

1.1erminal I.< .1:..;_-
, 1<-- 1. Edit'o ,.1

1, 1 I I. :1

1

I. A
I Lexical ism=====> Name Table
I Analyzer I

I.

V

rwelmeoweesmols
I. I 1 1

1,Compreis I< I SlIntax 12"/"*" 1race
I Module 1 >1.Analyzer 1

1 I 1 I

J

1 I

I Parser IIIIIMUNIVIS> sy Plug Table

I immirmal> Trace
I 1

J

Figure 2a: CAPS Compiler Modules

ip

from asseMbler-like source code written by a compiler implementor.

After generation, these tables are_ztored in common where they are loaded

into .1(120' veTiables_as needed:in compilingetudent programs..._

.Plow of control in the CAPS compilers 3s*hown
. -

:

The editor.looks at each, keyprees the stUdent:entere froin the terMinal.

If the key indicates a.text editing:functiOn it islperformed by the
- .

editor. If the student .is entering new teXt, each-keypresels.peAped

on to the-lexical analyzer.- When thelexical analYzer receives'a,cOmplete

token, that token is paised on to the syntax analyier and pareer for

compilation. Since each keypress is processed
. as it is entered, the

compiler can give immediate error messages when the'ttudent enters an

invalid language construct.

While compiling new text, "Trace'::information.is stored,

allowing the Reverse Editor to Uncompile tio) student's program as the

student backs up to make a change. OccasionallY the storagearea for

Trace information gets full. When this happens, a compression unit is

called which removes alternate entries from the Trace table. Aftit

compression is performed, the reverse editor can only back up to

alternate tokens. If necessaryvit will back up to the previous/ioken

and then forward compile to the current token. In practice, the

compression routine may be called three or four times for a student

program. After four calls, there is Trace information for one out of

every 16 of the first tokens entered. Closer to the "cursor" where

the student is working, the Trace information is available for everyA

token, or at least alternate tokens.

The module labeled 'fisyntax analyzer" in Figure 2a is just an

2 0
46.

interface between the lexical analyzer and the parier. Its functiOn

is to keep track of trace information and to insure that the corredt

tables are loaded for each routine.

3.2.2. Editor tables

Both the scanner and the parser are table driven. The

scanner's table is a state transition matrix derived from the regular

grammar that defines the tokens of the programming language. Special

entries in the table are provided for handling fiked-forthit languages

and continuation "cards". (See Wilcox [14] far more detaili)

The parser is a recursive desdent parser with one Important

difference: a single recursive procedure can be written to recogniZe-

the instance of more than one non-terminal. The non-terthinal.that has

been found by such a procedure is passed badk to the.calling-procedure

where it can be used to choose the next alternative. (This is equivalent

to the separable transition diagrams'of Conway [2] or Tixier's [13] RCF

languages). Lomet [7] bas shown that such a system of procedures can

recognize all deterministic context free languages.

.Tindall [11] has designed a language for writing the

procedures of the parser. The language provides asseMbly-like commands

for dbtaining and testing input syMbols and performing simple syAbol

table operations. More 'complex semantic actions are carried out by

TUTOR procedures called from the parser.

All of the tables for the editor can ba constructed inter-

actively using the table building modules. While under development

the tables are stored on a disk file maintained by the table builders.

For "pUblic" versions of each language, the tables are assembled into

21

Condensed:Po* and stored in a common dataarea:tC, be

teithinali,editing*ograms writien4n'that language. With,thia),aystemi,
_

editor:and.language development can:proceed independently of editOr

:USC'by,Studenta.,

are used:by the compilers:-

into 1500 *nc* variables in central memory. 4 oweVet ecareas

of each may be loaded at once. As shown-;:in. Figurc'Oblr' by, arranging. *ci,

.....data'aieas in Eps carefullyvit7Waa pOssfbletoineet.4:bhii three-area

restriction and still get the:tables. in:deaired:10cationa in'central

,memory. However, the lexical and parsetables.exCeach 400.wordev

,

and only one Of'thel can be loaded abOnce. ce

the compilers sPend.q%of their tide Changing the4oading arring*Ment.

.Figure 2b shows the layout of these areas.

3.2.3. Edit time error

The editoisignals an error to the itudent by flashing

box around the invalid character or synbol (Seallgure.3a). While.
,

the bca is flashing, the editor monitors the student's key 'Presses.

Those Which would move the cursor beyond the point of error-ara4gnored;*

the other's are processed normally. when one of the'keys-MoVei:the

cursor back from the point of error, the box is erased and nOrMal

editing is.resumed.

-A special key, labeled HEtP, proviaes the student with

automatically generated diagnostic assistance. The diagnostician

CPI ECS

nc variables (1500) Storage*. (644)

a

I

1

Lexical
or

Parse

.

I ?aria St.orage 53

I

Tables jv Name Table 64

400 Char Table . 168
.

I Paise Storage 53: I .HaSh Table 20 ,"
iv Symbol' Table 109 Text 60

Ic Symbol Table 210 Trace 8
1 ", I

4 Variables 88
lc Name Table 110

v Naae Table 64 I comion (1288)

v Char 'Table 168 I

Pase
Table

Char Table 119
400

4

Hash Table 20

Text 60 I

1. em
Lexical.

Trace 98 I Table,

400Variables 88

Pointees 22

lc Symbol Table 210
v = variable portion
c = constant pertion
number = length of table

lc Name Table 11011111111.101.01
Ic Char Table 119

Figure 2b: CAPS Editor Data Areas

-19-

inyoked,,by this key uses 6.n algorithi similar to one prbpóaédby

Levy [6], but.modified and improved by Tindall [12]. for Use in the

interactive environment. The actions of the diagnostician will now,

be explained. 'Tbese actions are illustrated in th4continued example

in Figure 3.

The first message generated by.tile diagnoStiCian annOunce#
:

the type of the input syMbol (e.g.,,,:lseyWordi,..arithMetiO:OPerator,;:etC.

and states.simply that in the,given'context:it::i4:,UOt:44iMittedHby'lhe.
: ;

.

language (Figure 3b), The syMbol claps i4 derivedyfromjieldinlbe_
-

. . ,

symbol:table.: :The:language tables include tOpapPing....fromyalueSfound

in this class field into a luitable Ebglish pbrisi-tO

and other messages.

After this information has-been displayed, each time the

student presses the HELP key again, he is shown a modification he could

make to the text that would make the initial portion of his program

legal. These suggested modifications are generated by attempting to

insert, delete or replace a single symbol someihere in the prefim of the

sentential form that had been constructed by the parser up to the point

of error. Only those modifications tbat lead to a successfUl parse all

the wmyto the cursor are reported to the user (Figure 3C-3l).

Modifications are attempted starting at the cursor and then

working back toward the beginning of the program, one syMbol at a time.

Using this algorithm, each successive modification takes more time to

compute, but the probability of a successful parse is less. The most

likely modifications will be suggested first.

As the error handler works its way back from the cursor it

backs up the parser so that it is always ready to accept input from the

24
-20-

FILE = WORKSPACE--_,
e--

TEST:-....PROCEDURE;

..... DECLARE.(A,B,MID)FLOAT:

..L1:....GET.LIST(A,B);

PL/I WORKSPACE(14-010) SPACE = 246

FILE = WORKSPACE WORKSPACE(14-010) SPACE = 245

01DECLARE.(A,B,MID)FLOAT:111
V ,L1: I ..GET.LIST.(A,B);

.MID.=.(.(.A.+.B.)./.2 0, 3

(IM) OR

THIS PUNTUATION SYMBOL IS NOT PERMITTED HERE.

TO FIX,

ol MaMb II10 =MEM. .1=0 MaMb Mi 10 MEN110 MIMIO MMM MOM, 1 OINOMM M1

PRESS I2IU FOR A DIFFERENT SUGGESTION,

c) FILE = WORKSPACE PL/I WORKSPACE(14-010) SPACE = 245yvvir-vv7rv vvrV V V V

TEST:....PROCEDURE:

DECLARE.(A,B,MID)FLOAT:

..L1: GET.LIST.(A,B);

11111 I1 IIMID1=1(1(1A1+31)1121011

"""""POSSIBLE CORRECTION**********
REPLACE I I WITH AN ARITHMETIC OPERATOR,

OR Ran TO FIX,

IMINIIMEM =MEMO 0111Ir eM/IMMO 1110

PRESS UL FOR A DIFFERENT SUGGESTION.

FIGURE 3. EDIT-TIME ERROR ANALYSIS

PILE. KSPACE

....TEST:-..i.. ItP.r7::,111.1RE . . ,

...,
1 1 1 1. 1 1 1 1 .(-A,B;MID)FLPAT;...

.".-1 d_1:".. . ., ISTAA.B))

.MIP4=. (*. (...k..+...-.B.)./.2.0...,.

**********Poss !ALE': coRRECTIoN*.***.*..."1"4:*

INSERT iN ,i;RONT:;; OF

PRESS FOR 'A. DIFFERENT.; 'SUGGESTION.; f.

E) FI LE = WORKSPACE

?.1

TEST: . PROCEDURE;

. . DECLARE . (A ,MID) FLOAT;

Li: ... GET . LIST . (A ,B) ;

(.(.A.+.B.). .2.0.. ;
1

**********POSSIBLE CORRECTION**********

INSERT '1" IN FRONTOF
.

OR. Ifflqn..I TO ,FIX

11111011 ONIMM 11111111116 . MOND 010111M

PRESS cLi FOR A DIFFERENT SUGGESTION;

F) Fl LE = WORKSkCE PL/I WORKSPACE(14 010)

TEST:....PROCEDURE:

. . DECLARE . (A,B, M I D) FLOAT ;

Ll: GEL LIST. (A ,B)

1 1 1 1 1 1 .MID.=. r. (.A +.B.19 /.2.0..

**********POSSIBLE CORRECTION**********

INSERT °)" IN 'FRONT OF
110,

PRESS COD FOR A DIFFERENT SUGGESTION,
.

FIGURE 3. EDIrrTIME ERROR ANALYSIS

FILE WORKSPACE PL/I WORKSPACk(14-010) SPACE = 245

EST:g8..PROCEDURE:

888,888.DECLARE8(A.B.MID)FLOAT:

. L1:8..86ETILIST.(A.B):

. ,......MID8=8(:(,A13118) /828088:
8 8.

'***,"l*PossIBLE CORRECTt oti.."*"
INSERT -")," "IN FRONT OF

PRESS Gab FOR A DIFFERENT SUN

ONIDORAIMII TO FIX..

:FILE .woRictipACE.
ummFies=lzumirwmip7r.

t woRoAcE

fESf:-....PROCEDURE:

,,,......DECLARE.(A,B,MID)FLOAT:

.........MID.=.(41. A .+.B.)./82.0..:

"""""POSSIBLE CORRECTION*'!"*" an:1'0R GB TO FIX.

REPLACE WITH AN ARITHMETIC OPERAiOR

PRESSOR!) FOR A DIFFERENT SUGGESTION,

41 41111111111111D 01111= =1110

FILE = WORKSPACE - PL/I WORKSPACE(14-010). SPACE = 245
........_.

TEST:....PROCEDURE:

@ @ @ @ @ I @DECLARE. B MID) FLOAT:

.GET . LIST. (A
IIIIMIDOMO(41OAO+48)14.081;

--

"""'"""POSSIBLE CORRECTION"""" *cKJ OR Vat TO FIX.

REPLACE'''. WITH AN ARITHMETIC OPERATOR "

PREstallb FOR_ A DIFFERENT SUGGESTION.
_.

FIGURE' 3. ED1TTIME ERROR -ANALYSIS

0 FILE WORKSPACE PIA WORKSPACE(14-010) SPACE = 245

TEST:....PROCEDURE:

"*"*""PossIBLE CORRECTIONe".""" =OR
. REPLACE =WITH A NUMERIC BUILT..IN FUNCTION. --

Doi - " ,

ncESS algp FOR A DIFFERENT:SUGGESTION1

PRESS (iRM TO'SEE.P...LEGALTNUMERICAM4T-IN.FUNCTION

K) FILE = WORKSPACE PL/I_ WORKSPACE(144)10).. T_SPACE 245

TEST:....PROCEDURE:

.........DECLARE.(A.B.MID)FLOAT:

..L1:....6ET.LIST.(A,B):

.........MID.=. 11(.A.+.13.)
S

memeeePossIBLE CORRECTION...41"e".

REPLACE WITH A NUMERIC BUILT-IN-FUNCTION'.

PRESS amm FOR.A DIFFERENT'SUGGESTION.

PRESS 11111 CUD TO SEE'A LEGAL NUMERIC. Ill4TrIN FUNCTION;

TO FIX.

L.) FILE = WORKSPACE PL/I WORKSPACE(14-010). SPACE,

TEST:....PROCEDURE: .

sesesse MID) FLOAT:

.........MID.=.111(.A.+.8.)./.2.0.

"4"4"4"/"POSSIBLE CORRECTIONeeeeeeeeee agOD

REMOVE I I
FROM THE PROGRAM.

FICHJFIE 25. EDITTIME ERROR ANALYSIS

245

28
!-24-

TO FIX.

.

point of modification. The symbols selected for insertion and replacement

are those syMbols that would be accepted by the parser at the point of

modification. This information is itmediately-available from the parser's

tdble.

()
The syMbols that can be used.as a modification are not only

the terminals of the language; but include the non -terminals'as well.

(Non-terminals become procedures in the iecursive descent parse.) This

allows the CAPS error handler to communicate in general-terms such is:

expressions";: ttstatentsIt and; ta_in Figure 3f4 !bnilt.4nifunctiOns".

The more conventional automatiC scheMedarerestriCtesitO-a vOdibulary

of terminal symbols. -The-phrise Used-for eadh:nOn.=terMinal'iS dUppliecr

by the language impleMentor. Note that as the.recuriilie descent--parser

is backed up it.xeturns to procedure-levelsnloser and'Oloser=to the

procedure level of the sentence_silMbol and thiniithe errOrAiaialér'first
r

gives suggestions for local modifications and then; only-When these fail;

will it suggest more global modifications.

Whenever a non-terminal-is involved in a modification; the--

student is given theopportunity to'see what a non-terminal ofthat

type looks like (Figures3j & 3k). Thus whenever a general modification

is suggested; more detailed suggestions are available if needed.

Currently he is shown only the first symbol of a nonrterminal - just

to gethim started - but it would be possible with conbiderable effort

to display the entire non-terminal in some convenient forth Mich ds

.3.2.4. Execution

Execution of the student's program is perrormed by inierPreting

the internal representation produced.by the editor. The internal

.representation is just a tokenized form of.the prograM; laiddown in

-25

the same order apt it appears on the screen, inclUding spaang,information

-2'and ccitmentii: This UternaLrepresentation,clearly.favore,the editor,

ut there is good reason for this. There is only enough storage Tor
. , . e

one copy .of each student's prOg*ain and idieivai response-time can :

.deteriorate at run-time wiihout d6ing.harA,'Aitiek reaPandeAs esiential

during editing: /n a. isetiee, exPariding

.actually: beneficial-, in that-- it . Makea:,. en

relative efticiencies of . ditt,eient
. ,,:'-

US' 'Of, ttioTilike escaear
.

..._eo:reparsing eiCh itateMeatilie
:

,burdensome taak'for

For.:each new..
,,:

must be dedigned 'and' implemeiit
: . .

. " ..:- a . r"

..

work -With the same- form- of ;internal
.

-sytbol tahlestructure mank,m6d4e0 can

-interpreters:. to"the interpieetets are nni'r

but they are a long way trot being:table driien--.14* the editor. ;
\For 'the most .pait, the teatimes provided by.',the, era

depend on the programming language, but one thing'theY Must .Tinvide

is a trace facility. Two levels of trace are provided: flow.Lof-control

only, and flo*otcontrol with yariable assignMents. :.The floW trace

outlines the:keyword;of'.each'statement as it . is executed.. The 'variable

trace: displaire the new value .of 4 'variable each tinie-it is c
,

ptudenta are encouraged:to run with floWArace:enebled so, that.theY Can

see.their: algorithm etecnte aid obtain &better feeling for -whaf,eitch
.

statement does. There is one danger, however: after witching their

program;execute with a flow trace, students_often think something has

gone wrOng when it executes so quickly without trace - even.thOugh the

-

,from him-information ebo4t-i74at ppecifie seciions of his -Pi.ogram are

output produced is identical!

3.2.5. EXecution-tiMe error handling .

:The.Main advantage of interaCtiveerrOr'handlingiS:that

the progreatner 'IS on hand and can' interact with:the system to debug ;

his pro:gram. ,In cAps., with itd:emphisiaon_aid*TinstructiOni. the,

goal is-to discuss:with the studeni,thetiature .Of:thesrror,-,obtain

supposed to do, and finally to suggettl.Ohaoges thei he mightiake.that.

would prevent .future occurrences of the eror. Ap additional4oal'is.
.

,

_-

to perform these tasks ln an easy-to*foii*, Orderlr;mannerthat

(1) the_novice programMer does not beCoMeocnfused:whileileing:the:.

system and (2) he eventually learns how:to,debugprograms Whimdelf.

In CAPSOhe:interactive debuggingsession is AireCted_by the

system and not by the student. This is essential:because the beginning

programmer does not know what questions to ask; he_does nOt know how to

debug. An added benefit of this is that the student does not .have to

learn to command language for_the-debllgging package.-

The CAP I-lin-time error analyzer [10 is given 'control. when"
-

one of the interpreters hasdetecteearrobviousi. anoma1kin:the,rUn-tiMe

environment - a zero divisor or a subsCript put of rang01.0 example.
,

The task.of.the erior.analyzer is to_ help,the stUdept4CiCite,thiCailSe

of this aneimaly.

In general an anomalkVill'be caused eitherb.,ydnyerror in
-

assigningvalues to;sOme of the varidbles involVed.or.by an'error,in

setting up storage for one of these variables. To locate the cause of

the error in the first dasel-the analyzer must reverse-execute the program,

searching back through the history of execution to find out *here and

how those variables were assigned the troublesome values. Similarly,

in the second case, the analyzer locates-the cause by-reverseexeCUting

the program to the point of instantiation of the variable and then searching

backthrough the history.of execution to'find *here and how the variables-

that controlled the instantiation were assigned the tronblesome:values.

In both cases the analyzer engages,in a. discusSion-Withthe,

student while internally it is reverse-executing his'prograM ficm the

41

point of error look* _for assignments to one of the troublesome variable's

involved in the ermi . Once such an assignment haS been found, itlis
_

shown to the student. If this does not help the student locate...the

cause Of his error, the error analyzer then looks at the eXpression

that coMputed the troublesame valUe to Seeif aw;susisicious:nonditions

are present that could be the cause of the error. WheneVer a:possible.

cause is located an appropriate discussion about the conditiOnAS:initiated.'

For this analysis, a common.Misconception table:1.0,1*d:

table Contains information aboutsituations in thelanguage:that are

'potential.trouble spots as well as templates for:the actual discussions

that should be initiated if.the situation .is recognized. piscusSiOns

. Iodated in the table are referenced:61ring. expreasion analyiii.by an.

(operator, value) pair in the following way: As an expression is being

analyzed for the cause of the error, each operator and the value it

returned are looked up in the table. If the pair is present, the discussion

corresponding to it is initiated, otherwise analysis continues. The

analysis of expressions is done by a pre-order traversal of the

eicpressiort tree. This=Creates .a .topclown analysis Of:the,expreisiOn so
.

,

that if.there is.mOre than one connon misconception in"-e.giien_*xpressiOni
. . .

the outer-most one is disCussed firs. Then,- if the itent.needs more

iielp, the inner'ones are. disCussed.tO: give-the 'student .'mare-:details abont
:

the situation. NOte that there may be 'inorei than,'One (soperatOr; 'value)
.,. ,

, . .

pair.CorresPonding:to 'any one: comnion Misconceptionand:More than.. one
.,.. ,

, ..
miiconception -may -be 1. associated with a pair. :

-.If no counon miaconCeptions are pretent or r'nOne: of.the.. diacusSiicia
. .

.

reveal, the cause -of the error to the,Studeriti.; he : is asked".:-WIAent

variables in the expression that '0 hal liee47fthr to

Changed bY the exPressiOn just analyzed ii';',deleted'
. .

e-

troublesome variables and those variables te1ected7:

-Reverse-execution itt then resumed looking _for
. .

Note that the selectiOn,:ok Varidiolei b."
. .

. .

.nepessary, but it does Termit cTacular.Pruning0fNt

makes, it clearer to the. student:fhow the anal

Error analysis terminabes when on"ei of !the oudiiingpii

arise: (1) the List. troublesome variable on the,list

Constant (The' cOnstant' is inCorrect.) or appear;S:

e value input is. ineorrect.-); (2) 'the Student cbooses

. .

emen

edit ;his'

......prograt4The comimin misconception:most_ recently,iPresenteAtlaiprobal;

the canaejor (3),::,thi46udent.does nOtjelectrepladillin

troublesome_ Srariahl*,040,]stident. Atte lOt.,"ndere
' . -- . , : .4! r .

enough to..knoW 4hen the,-;liariables;tie is' nit

ASSiiitarice in these caneS)-is heYOnd: the , sCOPe'o

The example in Figure 14-. shoUici. demOnetrate
". :

the .ffini-time errOt.,analysis. Assuia4nffthe%:8.
..r

ed:. the

PL/1, program shown, he would receive the execution error as indicated

at the bottom of Figure 4a. If he requests help, he receives the display

in Figure 4b showing him where the variable A was assigned ;the troublesome

value 0. When the student requests more help, the expression compiting

ihe value assigned to A is analyzed. In tkis case (fitted divide,

appears in the common misconceptiqn. table-Tor PL/1 and so the information

shown in Figure Ite is presented to the stndent. Xf the student,requests
.

more-help, the pre-order traversal Cont-iiiiis;,. As:tti one-

programmer is asked. about the reasonablenese:pf...yalUes

(Figtire .4d). If :the student asserts that it:, is :TelisOnable
. ,

tfie value 8, the analyzer muet respond With the ,qonclusion:shorr:in;Figure:

Since there are no more troublesOme *ariabies td,search for; further requeets,""
_

for help are answered with the message shown at the bottom.orIFigure
,

Ir the student admits that 8 is an unreasonable.'valUe for .A',.the_etatement
.

that gave A that value is located and shown to the student (Fignie'4g)

Since this is an input statement involving the only troublesome valUe,

the analyzer terminates with the conclusion shown in Figure 4h.,

The run-time error analysis algorithm is essenti

indePendent. The language dependent information is .contaitied.:.1.4 the

common misconception table. In addition, .each:language interpreter .mus
, .

generate a history or execution in a standard form (similar to that. used

by Zelkdwitz 1151) and provide a rontihe to. ConstrUCt eXpresiion
. _ _ _

. .

from the internal represertation or a statement.

3.3. Dtrnluation ,

CAFS,is an experiment 'in extending the: concept of. pedagogic

programing ay:stems to the interactive: environment. The. logical -setting

EXAMPLI:-.PROCEDUREAPTIONS(MAINjf

DECLARE A 'FIXED

.......,

..........END:

,.ExicuTioN

PRESS ILJ :-FOR-ERROR'ANALYSIS: ut FOR_LIST- OF TER opTIoNs.

A) DETECTION OF ERROR, STUDENT:PRESSE 0E4PKEY1)
. ,

FIGURE-4'. EXECUTIONTIME ERROR' :ANALT5IS
.

ED FOR:: MORE HELF..:' .

_ .

TO SEE HOW- IEXECUT I ON.'..;.FLONED FROM ;.;'HERE TO ..-:ERROR

. .

B) ASS I GNMENT THAT LEAD.. TO ERROR s (PRESSES HELP AGA41)
, . . .

FIGURE4. EXECUTION-TIME::.ERROR -ANALYSIS .

A AAVAltit

EXECUTION-TIME ERROR ,ANALYS S

PROCEDURE . OPTIONS (MAIN) ;

. :DEC RE. A . FIXED;

. .GET.LIST. (A);

1.111, I 1'1 C.

I I S. I, II I EN

ii

THtS:STAt

osiTION'.'0E: ERROR,
ENTGAVEkAN INCORRECTVALUE*;

THIS DIVISION .OPERATICIN PERFORMED HEREEWASJNTEGER

DIVISIOth IN THIS CASE.-THE RESULTING:VALUE:WAS:

ZERO:BECAUSE THE NUMERATOR WAS LESS THAN THE

,DENOMINATWk.

C) POSSIBLE CAUSE OF UNEXPECTED RESULT1, PRESSES HELP AGAIN)

FIGURE 4. EXECUTION-TIME ERROR-:ANALS'SIS

.143,10b,

-EXECUTION-TIME ERROR ANALYSIS

EXAMPL2:.PROCEDURE.OPTIONS(MAtN),
... . . II S I .IiI5i FIXED:

........;GE .1.-(A);

1B 6. B

IBIS r...EN

DOES A VALUE OF 8 LOOK REASONABLE- FOR,-
ANSWER:NO _UNLESS YOU ARE ABSOLOTELY POSITIVE

.

TYPE Y OR- N I

D) REQUEST 'FOR INPUT. FROM STUDENT .(?,RESSESc.. Y

FIGURE 4. gxEcuTioN-Tii4E ,--gRAOR ANALYSIS

38: .

, .

EXECKIONTIM

AMPL2: (MAIN) ;

. .

oo

I I II I 11.II

I .

ERROR ANALYSP

.ON, THE: AGiUMPT ION. THAI: ALL -7, OF :!YOUR::,PREW'''

RESPONGES,WERE- TRUE, THE INDICATED :EXPRES,G,t0

CONTAINS ik -LOGIC ERROR.. THi4EASON
You,;:spf, THAT ALL VAR f4sLE . CONTAINEri. With LN:;.::

.IT. CONTkI N CORRECT 'vaLuOseliuT T.Ht'.;... . . . : . :

-.v.ARIABLE.-imA,LNOt :coNTAIN THEI-REGU
:

HIS STATEMPft_GAYE A AN INCORRECT 4.::,

'ON :THE ASSUMPTI ON .::THAT ALL :.:00-..:YOU12.:-.ORE!,00§:

RESPONSE§ : WERE TRUEf..- THE I.N1"..) I .CATED 'EXPA *4
:,:r.....i.: ...CONTAYI,SA:.:'-LOGI C:.:ERINR.I.;:.. THE: ,R,E. SON...F0

:-

...,Tilg.:::YPP;',, 4AY THAT:. ALL .-VARIA111;,,, *1
IT' Coiliki N CORRECT' VALUE

3:-..,,,st
,.,-.

VAR I ABLE VY NOT CONTA IN T

While no one has yet developed a universally accepted

technique for organizing a body of knowledge, there is some consensus

that a useful point of view is to model knowledge of a subject as a

network built of concepts and relations. Hence'the data stiucture

fOi.the GUIDE rfncept space is simplk-an'abdtradt-graph-Where-the

nodes of the graph are concepts and the arcs are relations between

condepts. The choice of this extremely simple yet powerfUl model was

fully vindicated When it was put to use. It was found to be adequate

to incorporate the synonyzJ dictionary, the hierarchical classification

scheme, and the term clusters which were originally proposed ea separate

components of the concept space. Also, it serves as a keyword index

(holding all keywords which have been attached to lessons) and a

thesaurus (holding all subject-matter terms known to the system and

-AO-NA:mg-how they are related). FUrthermore, when it was desired to

n-index to the library of lessons, the concept space already

P-kovidedthe necessa --e-saisplsm_to do so. And possible

to specify the structuri-Of a course by means -o rather than a

listing of lessons, again simply by utilizing-thi-mechanisms availab e

in the structure of the concept space.

It should be emphasized that the word "concept" is used rather

loosely. Any word or phrase which is the name of a node in the concept

space is called a "concept". Similarly, the relations used in the

.concept space were chosen so as to be intuitively clear to the user.

These relations could be readily extended if it proved desirable to do

so, or if a universally accepted set of relations among topics were to evolve.

-51-

e ,

The relations currently in use are: generic-specific, containor-

containee (Which imposes an index structure on the lesson library), related

(for concepts related, but not by one of the more specific categories),

synonym, owner-member, ant prerequisite-sequel.

A'concept record, then, consists of the concept name, a list of

lessons in which the concept is a keyword, and a list of relationships

with other concepts.

4.3. Word' to term trans/ator

The word to term translator Accomplishes the task (Xe transforming

a sequence of input words into a sequence of terns recognized,by the

system. This is done by extracting the leftmost word of an.input:request,

applying a hash function to that word, and looking in the hash table in

the appropriate location. Entries are arranged in the hash tabe in sudh

a way that it is possible.to extract from the original request the longest

qmssible stibstring Which matches a term known to the system. The progress

of the translation process is communicated to the student by underlining

each term when it is found in the term dictionary.

The -English translator accomplishes-the-task-of-tran fo

.
a sequence of input terms into an intermedate-representation-talyer

processing. The translation is not based on an elaborate linguistic

analysis; rather, the translator-searthes through a space of partial

meanings determined by .an analysis of the domain of discourse. The

.translator's approach to dealing with natural language can be likened

to a person who is harCtof hearing. Even though such a person does not

5 6
-52-

ways "catch all the words someone speaks, he can us

Meaning-of a sentence on the basiS of his knOirledge Of.the 'general topic

Of conversation-and the fa'words he did hear clearly (including the

_ordering and context of those words).

The compuational model ..usedi,n_the_trelnaftiql3 process t,hat

of a nondetermtnistic finite state autoMaton (Figure 2). 'Eased on the

current state Of the automaton and the input -class'..atsigned'when- a term

is encountered, the appropriate :,eritity in 'the itateYtabloi ,deterMines

addition to ba made to -tlie-intermediate: repreeentatiolio

and also establishes the ne9t state tobe :entered:1w the automaton. Each

state of the automaton canbe :adsociated With- a partial. Understanding of

the'requeSt. This Understanding is based-on that 'portion-of...the-request.

which has been analyzed up to that point.. If the translator reached a

dead end in its search for a Meaningful interpretation :of-the request,

it backs up to the.previous term and looks 'in the state,table:for an

alternative interpretation. This process is continued'Until all choices

are exhausted or a consistent interpretation has been found: Using this

approach eliminates the need for storing a grammar of English (saving a

considerable amount of memory) and allows the translator to handle

ungrammatical or partially understood inputs.

. The intermediate representation is a nesting-Of function calls-

to routines in the request proc zzort----The_possiblefUnctions are shown'

in Figure 3. The basic idea is that most requests have a Simple 'syntax;

one section indicating the type of information desired, and the other, a

series of specifications limiting the _domain of interest. The functions

can then be divided into two groups: those specifying a particular lesson

57

5

@ dead state

0 accepting states

Figure 2: The State Diagram of the Son-deterministic

Automaton

59

A

or Set of lessonSvand:thote for Particulartypes of information having

as argumentS a specificationlmUnctiono.or a nestingof-typeand,specificatimii'

functions. This is dismissed more fully in a Ph.D. thesi.S:by Pradels [2]...

... k.5. .Paraphraseri...

The paraphraser produces a paraphrase of:the original request

based-on the-interMediate representation produced by the English-branslator,'

allowing the student to confirm whether his request has been'Properly

understood by the system. If so, he can proceed to.thereilponse.'. If-not,

he can immediately rephrase his request. .(Also, in.mapy dades, he cad

deduce what caused the system to misunderstand his request.)

4.6. Request processor

The request processor accomplishes the task of transforming

the intermediate representation of a request into a specification of

the type of response to be generated. By analogy with the output of

the English translator, this specification has been called the "intermediate

form of the response".

Several simple heuristics are used in the request,processor,

based on the principle.of determining as quickly as posSible Which area

of the databate contains the answer to the original regnesto'and what

possible response of the system will display that area of thedatabase.

In some cases, the request processor simply indicates to theresponse

generator the area.of the database to be displayed (for exaMple, the

term nuMber of a course record). ln other cases, the request prOcessor

asseMbles-some data from the database And passes that information to the

response generator (for example, a list of term numbers or lesson records

Which match a given'specification).

-!557

6

Specification fUnctions:

These functions return a set of lessons depending on the value

of their varidbles.

has two arguments, a course name and a
lesson name.- lt returns the lesson defined
by these.

LS returns the set of lessons which are defined
by characteristics other than th4ir names.
These characteristics might be eBoolean list
of keywords, a type (lesson, exam), a course
to which they belong, an author name, a level
of difficulty, a sequence specification, a time
period, or other specifications, such as whether
the lessons have already been taken or not. Any
of these characteristics can be specified or negated.

Information type functions:

TF : tests if the set is empty or not

AB : returns abstracts of its elements

AN : returns names of author of its elements

NB : returns the size of the set

GR : returns the grade required by the instructor

GO : returns the grade obtained by the student

TS : returns the schedule to achieve relative to the elements
of the set

_

TT : returns the schedule achieved by the student

PQ : returns the set of lessons which are prerequisite to the
argument set

SQ : returns the set of lessons which are sequels to the
argument set

SI ; returns the set of letsons which are similar to-the
argument set

BE : has two arguments, a lesson and a set. Tests if the
lesson belongs to the set.

Figure 3. Request processing functions

. Response generator

The response generator accomplishes the task of transforming

the intermediate form of the response into a display which can be

present.ed to the user. There are four basic types of response which

will be discussed below: list of lessons, record display, graphics
,

display, and feedback message.

4.7.1. List of lessons

The response to a large number of requests presented to the

GUIDE is a list of lessons"matching a given Specification. For this

response; the response generator simply-prodaces a listing of the

and abstract of the lessons which'have been- retrieVedi-

name

4.7.2. Record display

Record displays are generated for lesson course, and student

records. ln the original design of the response generator, it was intended

that most requests would receive a prose response. As an intermediate

step in the development toward that end, it vas decided to display the

entire record which contained the piece ofAnformatioh Which:-hadbeen_

requested._This_approach-to-tbS,response proved tO be to:sUCCSSOful

that iMPlementation of the prose approach was

yith this approach, we anticipate:in

potential questions (hence.redUcing tOtal_CPWIWiggi). and,*ObIe tO proper

answers large class of poorly-phrased:questiont.: Thisfallowsthe student

to.typ&shorter requests and still obtain the desired information.

'Graphic displays

One Of:the-Challenging research taski in impleMenting the

GUIDEwas the development-of am effective means of communicating:the..

structure and content of the concept space. This network possessea a

very ridh structUre of interrelationships which' is: difficult to describe.

Fortunatays the PLATO terminal-provides a graphics :capiabilityWhich;

helted.solve thatprOblSm-The GU7DE utilizes three different-types,---,

of graphical displays to help present different pOintivof viei:ofhe

concept space: the neighborhood, hierarchical,and. mixek:Mode disPlays.

The neighborhood display shows the concePts Which

immediate neighborhobd of a given conceptrighre ii. shoWs'a,sample

neighborhood display. The first circle of nOdes shoWthe

generation" of concepts7.-those thatiare directly related-to the'oentral.

concept of the display. The secondary circles of nodes,show the .-second

generation" of concepts--those that are directly:related to the first

generation concept8 (and hence are two generations awatframthe7Central

concept). Exploration of the concept spade canhe-accomplished.;bY.:

requesting successive displays:where the central node.in eaciOiew:H

display has been selected from the first or second-generati*of the

previous display.

Whereas the neighborhood display gives a sense of "distance"

in the concept space, the hierarchical display imparts a sense of rdirection%

Figure 5 shows a sample hierarchical display. Basically, the hierarchical

mode enables one to traverse the classification tree pursuing topics by

narrowing or expanding one's scope of interest. The sense of direction

imparted by the hierarchical mode is how "high" or "low"a given concept

63

-58-

CSGUIDE
Concept
Spaze

1, input output
2.programming cone
epts

3 io

5 software
6 data type
-7-data structure
El data storage

9 data'operations
IS control istitemen

ti
subprogramd

12 input
13,output

14rmat
-15 edit
16 put'
17 get
10-read
19 Write
20 card reader
21 printer

g -generic
s specific
c containee

ermmm660

related
y synonym
o owner

n contairor m member
0 denotes concepts

denotes concepts used as keywords
what next? (active keys: 1,c,s,e; h,n,m; r.o; BACK1 for index)

Figure 4: Sample Concept Space Neighborhood Display

64

-59-

CSGUICE
Concept
Space

H

T1
I ai languages
2 programming lang
uages

3 ai methodilogives
--and-techniques

4 software .

5 artificial intel
ligence . .

6 computer science
7 pomputer applica
tions

9 lisp
IS planner
11 conniver
12 qa4
13 soil

g generic r related
s specific y, synonym

c containee o owner
n containor m member
0 denotes concepts
41 denotes doncepts used as keywords

what next? (mative keys. I,c,s,e; h,n,m; r.o; BACK1 for index)

Figure ; Sample Concept Space Hierarchical Display

-60-

0,51

CSGUIDE 1 do loop

Lessons & 2.01do
Concept 3.fortdo

Oloops
-7 -. -1-PL,I-Language

6 loop
7 dostatement
.8 itet'aition

9 pll
.111.FORTRAN Language

lt.tortron
15 Language Indepen

diamitil?rogtiMMing

0 denotes lessons
denotes concepts used as keywords

what next? (active keys: 1,c,s,e; h,n,m; r.o; BACK1 tor indix)

FigUre sample concept space Mixed Mode Display

-61-

6-6

.t4e classificatinn"treei and where it is relative. to

k the tree--the.conce compUtSciance"

The mixed mode. disilaY *es- ihtioduCed:to facilitate the

:graphical presentation Of the set.of lesionErWhich are.attached:tO

77.-LgiVen-:concept..- "mixed"Since both lessont.an&cOnCepts_.

*Tear in-thedisplay. An example of such a. displ*yis:shoOn in
. . .

.

Figure 6.. Ah luterating interpretation Of:this displdy is that in a_

very real sense, a lesson can be Viewed as a relation in'the conOept

space, providing a link between various concepts. Forexample in

Figure 6, the concept "dO loop" has.the "fortdo relation With the

concept "fortran."

4.7.4. Feedback response

A feedback response is presented to the user asking for

clarification or fUrther information in three situations: *hen an-'

aMbiguous term is used, when the translator.can't find a valid,

interpretation of the request (often 'caused by a significant word of

the request not being in the database), or when the'request processor

does not have suffiCient information-to process the request (e.g., no

student record availdble).

References

[1] Eland, D. R. An information and advising system for an introductory
computer science couree. Report*UIUCDCS-R -75-738 (Ph.D. Thesis),
Department of Computer Science, University of Illinois at Urbana-
Champaign, June 1975.

[2] Pradels, J. L. The Guide, an information systems RepOrt mucrics-
R-74 -626 (Ph.D. Thesis), repartment of Computer Science, Univeisity
of Illinois at Urbana-Champaign, Mhrch 1974.

6 7

..-62-

InteiadtiVir test construction and :iiimiliistratiOre
examl..;:t .stem:

:-

intrbikietion

enilative

'The Generative Exam System is a Completelyinteractive sy.stem

fOr 'tha 'Construction and atIministr-ation of exaininations. 'SinCe all tasks

associated with examinations (froM exain Writing through, analyses. Or-exam.:

results) are handled :interaCtively the.system
z,

Systep offers rmanY advantages oven:written exams. Tnese,rndvantagea include

a considerable- savings in time and expense in writing., duplicatinf, and

grading exams; exam security, provided by the fact that each student

receives slightly different questions; consistent and accurate exam

grading; the capability 'of allowing each student to review, tile scores and
,correct answers on his exam iminediately after he finishes it; and the

immediate availability of a complete analysis of exam results after a

class finishes an exam.

The operation of the Generative-Exam System is described in

detail in one document (1), and the development and evaluations of the

system are described in detail in another (2). Some of the major

aspects of this project are outlined below.

5.2. System organization

The exam system differentiates between two kinds of users -

student and instructor. An instructor has access to both student and

instructor options; while all other users have access to the student

options only.

Figure 1 is a block diagram of the major components of the

Generative_Exam System. All users enter the system through,the Monitor,

6 8
-63-

Monitor

.01Mr dna. QM.

Student
Records

1 (scores)

dimil

I-

H-
1

Exam
.1

Specs
-1_ - .

I.

n

tics

Exam
Adminis-
tration

,

Exam'
Writing

1
I Student
I Exams

(all
details ofl
the work) I

,
MM. -..

PG/G 1

PG/G 2

PG/G 3

Figure 1: Block Diagram of the Major Components of
the Generative EXam System

-64-

6, 9

and on initial entry are allocated a recOrd in the Student ItScords data:

-base and a permanent storage area for their work in the:Student Exams

data area. Instructors write exams in the Exam,Writing-section by.'

writing problem specifications for each desired problem generator/grader

(pg/g). This set of- problemspecifications. is asseMbled into aa exam

specification.and stored in the Exam Specs data area. When a student

takes an exam. (in -the EXam Administration section), the appropriate exam,

specification is transferred from the-Exam 6ecs data.base to the

student's permanent storage area in the Student Exams data base. The

same area is USed to record his work as he changes from.problem-to

problem. Instructors may review exam results in the Exam.Statistics

seltic .

The heart of the system is the set of pg/g modules Which

produce examination problems. Each pg/g is an independent module which

handles all aspects of one problem except data storage. These functions

of a pg/g include guiding an instructor through the process-of-writing

problem specifications, generating problems (under the constraints of the

problem specifications), administering problems to students, and reviewing

problems with students after their exam.

Since each student's probleMs are generated as he takes his

exam, there is no pre-test security problem. The generation schemes

used by the problem generator/graders are lesigned to operate under

time and storage space constraints so that delays and distractions to

the student are avoided. The generation schemes produce a large nuMber

of similar problems by randomly generating numbers and character strings

and asseMbling problem pieces nto complete problem structures. Some

pg/g's have the capability of generating problems at different specified

levels of difficulty in their subject areas.

45-

The problem generator/graders-employ grading scheMes Which

sward credit pr partitay correct responses by checking reeponteivfor

variants of the correct aiswer or by grading the correctness of one

response on the assumption that the previous response in thaflmOblem

is correct. An example of the former grading scheme is found inthe

FORTRAN expressions pg/g. If the correct answer to'an expression were

"-45.0", the pg/g would award partial credit for the responses "45.0",

"45", or "-45". The DO-loop pg/g uses the second grading soheme mentioned

Shove. The response given by a student for eadh iteration of the DO-loop

is compared to the correct answer for that iteration and to the answer

calculated from.the student's.previous response. FUll credit.is awarded

if the response agrees with either answer.

5.3. korimental results

Two experiments were conducted to evaluate the Generativ EXam

System. In each experiment, subjecta wev'e administered an exam on

PLATO and a written exam. The coefficients for the PLATO exam scores

correlated with the written exam scores averaged .64 in one experiment

and .60 in the other. Assuming that the written exams gave valid

measurements of each student's knowledge, these results suggest that

exams in the Generative Exam System are as effective at evaluating

students as written exais.

The experiments also studied the tailored style examination.

/n a tailored exam, the difficulty levels of the problems are altered as

the student works through the exam in an attempt to match the problem

difficulty level to the student's level of knowledge. This approach

should more accurately measure the extent of a student's knowledge and

make this measurement in less ,tins and with less frustration to the student

.66-

71,,,

than.the tradition style examination. A tailored,examwoula be uSeful

in criteriOn-referenced gra4nig situations such as selfpficee coUrses.

In the experiments conducted to evaluate the Generative 'EXam

Systemp'some Subjects todk tailored PIATO/exams and other subjecti took

regular PLATO exams. (Regular HATO exams, are very similar to written

exams.) The coefficients for the PLATO exam scores correlated with the'

written exam scores were higher for thel group of subjects who took

tailored exams than any other MATO exam group (:83 ror the tailored

subjects versus an average of .59 for the subjects'who took regular

exams in one experiment, and .68 for the tailored subjects versus an

average of .53 for the subjects who took regular exams in the,other

experiment). These results indicate that the taildred exam idea is

at least as effective in evaluating students as regular style exams.

However the implementation of the tailored exam in the Generative Exam

System was inefficient in,terms of time (tailored sUbjects spent an

average of 40.32 minutes on their exam as opposed to an average of

31.78 minutes for the other subjects) and was unpopular (as indicated

by questionnaire results). Improvements to the Generative Exam System

which could make tailoring more efficient and less unpopular have been

planned.

The studies conducted with the Generative EXam System suggest

that interactive'exams are useful and effective in evaluating students

and merit contimed research, especially in the areas of problem

generation and grading and tailored exams.

5.4. The quiz system

In an effort related to the exam system, a (menial quiz system

has been developed which enables presentation of a criterion-referenced

-67 -

726.)

:quiz following a, PLATO computer science lesson. -Lesighed'andliplemented

by R. I. Anderson from a mincept proposed by R..G. Montanelli, the system

is intended 1) to provide a. student taking'a PLATO ComOuter'science lesson

with both a omens to assess how-well he or she learned ihe material that

the lesson is intended to cover and a tool to aid in learning the topic

at hand, and 2) to provide meMbers of the ACSES staff with, a means to'

assess how effective and thorough a PLATO computer science leison is at

teaching its topic.

5.4.1. Quiz system operation

The.system consists of a quiz gystem monitorand a pool of

PLATO quizzes available for administration to students.at the.conclusions

of individual computer science lessons. Each quiz has been,designed to

pertain to some well-defined topic within the computer4cience field

and each quiz question has been selected by the qUiz authorto test

pertinent-details of the topic's content. IncOrporated into each quiz

is a data collection facility to record students' question responses.

Access to the pool of quizzes ii provided, via the quiz system

monitor, to instructors who wish to use the quiz system. The system

monitor allows such instructors to select a quiz of the desired content

area, interactively design the quiz to best suit the particular lesson's

needs, view the quiz exactly as a student will, and finally "attadhwthe

quiz to the chosen instructional lesson. This latter task requires minor

changes be made to thecode of the inetructional lesson to enable an

fiterface vith the quiz. Tbese changes are clearly outlined to the

user, when quiz attaciAment is arranged.

73

-68-

Figure 2 illustrates haw the instructional lesson/quiz interface

operates. At the time a quiz is to be administered to a student, control

is transferred from the instructional lesson to a quiz system program

that functions as a link to the quiz (arrow A). This program determines

which quiz of those available in the system is to be presented for this

particular instructional lesson, and control is transferred to.it (arrow B).

Interaction between the system'program and the lesson that

produces the quiz occurs at various points-during quiz administration

(arrow C). Since all quizzes are designed with a'similar structure, most

aspects of student-quiz interaction are uniform across quizzes. The basic

sequence is as follows:

1) Once the quiz system program verifies the existence of a quiz

for a particular instructional lesson, a page detailing the

quiz's purpose is presented to the student.

2) Quiz questions are then administered; questions may ba sctrned

if the student so desires, and all questions may e reGns,,,-red

in case an error was made.

3) When the student decides that his or her attempt lit t1-0,1

is complete, he or she may advance to the presentaf-ica of the

corrected quiz, which is accompanied by clarifying explanat-ons.

4) Lastly, the student is informed of his or her final quiz scores

as well as the average score received by others in his or her

course.

Following L review of the corrected quiz, a student is returned to the

system program a final tlwe (arrow D) where return to the appropriate

instructional lesson ix provided (arrow E).

74

-69-

INSTRUCTIONAL
LESSON

4411

A
Jor

QUIZ
SYSTEM
PROGRAM

.00

QUIZ

QUIZ

Figure 2: Simplified View of Interaftions

, During Quiz Administration

-70-

5

QUD

0.41.

QUIZ

Once a quiZ has been attached to an instructional lesson,

each student_taking that lesson will also take the quiz, and be informed

of the average score obtained on the cildz by other meMbers of his or her

course. Each instructor will have acc.ers, vla the quiz system monitor,

to data that is accumulated for each quiz question and will be informed

of both the average quiz scores and the average amount of time needed for

taking the quiz for all courses that have used the associated lesson.

Each authorized ACSES staff meMber will also.have access to the data

accumulated for each quiz question, to facilitate analysis ofithe.'

effectiveness and completeness of both the instructional lesson and the.

quiz.

When course instruction is completed, inetructors detach the

quizzes,from the associated lessons. This procedure, which can be accomplished

through the quiz system monitor, clears the accumulated course data. During

the time that a quiz is detached from an instructional lesson, no reversal

of the quiz-accomodating lesson alterations made earlier are necessary.

iimnsfer of control to the quiz system program to administer the quiz

(arrow A of Figure 2) will simply result in the display of the message:

"No quiz currently exists for this lesson". Control is then immediately

returned to the instructional lesson (arrow E).

5.4.2. Past experience and current status

Currently, only quizzes pertaining to selected topics of the

FORTRAN programming language have been implemented. As the first quizzes

of the system, these were all designed and developed from objectives used

to develop the existing FORTRAN instructional lessons; thus instructors

had very little opportunity to manipulate the quiz design to satisfy other

lessons' needs. .More quizzes are being developed, however, andeXisting

quizzes arecontinually being improved. The availability of's quiz that'

suits a user's lesson's needs may be investigated via entrance into the

'quiz system monitor.

The initial trial ofthe quiz system occurred during the fall

semester of 1975, when a FORTRAN character manipulation quiz was presented.

following an instructional lesson on the same topic. Quiz question

responses accumulated from students in an introductory computer science

course clearly indicated various deficiencies within the instructional

lesson and even revedled an instructional error. The lesson was thus

restructured, the disdOvered error was corrected, and the identified

deficiencies were eliminated.

Subsequent use of the quiz system occurred duringiboth the

spring semester and the summer session of 1976. Pour quizzes were presented

following appropriate instructional lessons to'students in foUr different

introductory computer science courses. Preliminary analysis of data

accumulated by these administrations indicated shortcomings both in

instructional.lessons and in quizzes. Corrective action is currently

underway.

References

[1] Whitlock, Lawrence R. Documentation on the generative exam system.
UnpUblished memo, Department of Computer Science, Uhiversity of
Illinois at Urbana-Champaign, June 22, 1976.

[2] Whitlock, Lawrence R. Interactive test construction and administration
in the generative exam system.. Report MUMS-R-76-821, Eepartment
of Computer Science, University of Illinois at Urbana-Champaign,.
SepteMber 1976.

[3] Anderson, Richard I. User's manual and guide to the ACSES.quiz systen.
Technical Report, Department of Computer Science, University of Illinois
at Urbana-Champaign, SepteMber 1776.

-72-

Automatic judging of student programs (R. L. Danielson, P. Mateti,

W. D. Gillett)

An automated system for instruction should be capable of

making judgements and providing comments on student programs, analogous

to the role played by teaching assistants and graders in the mbre
..

traditional means of instruction. Our efforts to provide this capability

have resulted in two lemons which ask the student to write fairly

sophisticated programs and attempt to jndge these programs interactively

with respect to both correctness and good design, and a categorization

of anomalies in beginning students' programs whiChare detectable by

automatic analysis routines.

A program by R. Danielson exposes students to a dynamic

example of the top-down programming process by monitoring their attempts

to write a PL/I program for symbolic differentiation of a polynomial.

PATTIE (Programmed Aid for Teaching Top-down programming by Interactive

Example), mimics the action of a human tutor, in that she engages the

student in an interactive rlialog, judging the correctnesi of student-

suggested refinements and providing hints and comments where necessary.

The tutor uses an AND-OR graph as a model of the stepwise refinement

process, which student and tutor traverse together in the course of

program development. Danielson (l975a, b) discuss this tutor in detail.

The other lesson is a sorting laboratory and program verification

system developed by P. Mateti. This system allows the student to write

an arbitrary in-place sorting proram in a programming language with

specially designed sorting primitives. A special interpreter then

provides a dynamic display of the status of the array and indices during

execution. In addition, the student may provide assertions about the

state of the keys in the array, and the truth or falsity of these

assertions is'indicated during eXecution. The student may subMit.

c&npleted.programs to the program verification routines, which use

the inductive 'assertion method to prove the program Correct, or-prove

it indorrect and provide a counterexample.. A special theorem prover,.

which ia highly efficient in this restricted domain, is the heart of

the system. A full description is in Mateti (1976).'

Finally, a stuay is being conducted byli. Gillett aimed-at

determining and categorizing various legal programming constructs whose

presence in a program prdbably indicates a lack of understanding by a

student (e.g., B**l/2) which is equivalent to B/2). The idea ls to

determine techniques bywhich such errors may be detected; the general

approach is to use iterative analysis methods on a flair graph equivalent

to the student's Fortran souYce program. An automatic program containing

such techniques) while being unable to direct the student toward correctly

developing a program because it isn't aware of the algoritbmbeing

implemented, would still be able to provide incisive comments on improving

program efficiency) correctness, and understandability.

The following subsections provide a more detailed discussion

of these three efforts.

6.1. PATTIE

Top-down programming provides a means for the programmer

to restrict the scope of the ',A,lem he must solve to a manageable

level. The principal aid in this restriction of scope is the use of

levels of abstraction. Successive refinement begins with an abstract

description of the task to be accomplished. This.task is then refined)

that is) described as a serlun of slightly more specific tasks which)

-74-

79

-when coMbined, solve the problem. 'Each'of these tasks at,thisAtecond

level is'refined in turn, producing.a third level of task desCriptions,

and the-process continues until tasks have been described-iUsuffitient:--

detail to be easily translated into programming language statements.

Task descriptions commonly employ a mixture of natural language and

programming language statements, Which allows much of the coMplexity

of the programming langUagb to be ignored Until needed. The successive

levels of task descriptions allow the programmer to'cOncentrate most

of.his attention on the task he is currently refining, and yet be' sure

of the proper integration of that task with the whole solution.

There must be three separate aspects of a system designed to

tutor a student about top-down programming. First, because the.tutor

must monitor the process of developing a program, it is necessary to

provide a representation for acceptable methods of solving a problem,

as well as acceptable completed solution programs. Second, because

we want the student to learn something about the technique of the

top-down programming, the tutor must have some instructional strategy

to aid this learning, and use this strategy in intetaoting with the

student. Finally, the importance of natural language to the successive

refinement process requires the tutor possess some natural language

capability sufficient to understand suggested. refinements and allowthei

to be related to the knowledge of acceptable solutions.

Let's look at each aspect in further detail.

6.1.1. Representation of knowledge

Any sort of problem solving activity (such as programming)

involves reducing the original problem to one which is understood and

8 0
-75- .

can be solved, using some rules or prOblem reduction operators. Problem

solving tutors for other sUbject areas (simple.integration, logic theorems)

give the student a wide range of eXperience, and are capable of handling

a correspondingly wide range of both prestored and student-suggested

problems. To accomplish this, heuristic problem solving routines, with

capabilities similar to those of the students being tutored, are integral

parts of-the system. Such an approach is possible due to the quantitative

nature of the subject areas. Solving problems in integration or proving

simplelogic theorems requires using only a small nuMber of rules

applicable to many problems.

Unfortunately, in top-down programming there is no *ball set

of general rules which can be applied in many situ4ions. There is,

instead, a very large number of distinct refinements which are applicable

in only a small nuMber of instances. This coupled with the difficulty

of clearly establishing a new problem state following a reduction expressed

in natural language, led'us to explicitly store knowledge about the exact

solutions to a particular problem, and change this knowledge to allow the

tutor to accommodate other prdblems. This leads to a need to represent

a top-down solution.

The traditional representation for the stepwise refinement

process is a tree. The root represents.the initial prdblem to be solved,

leaves represent statments in the target programaIng language, and each

intermediate node represents a subtask vn one of the levels of abstraction.

Such a tree, however, represents only one solution; there are likely to

be manx correct solutions to any particular problem. Hence we decided

to represent the solution knowledge as an AND-OR grah.

-76-

Si

-
The basic idea behind an AND-OR graph iS reducine.a'prdblem

,to a series of subproblems, just aS in stepwiie refitiement.-. In:Suck

a graph, each node represents-i prdblem. Solving the prObledrepresented.:::

by an AND nOdecan be accomplished by solving all.the SubprdblamS

representeriby the sucCessor nodes. Solving the problem represented-by

an OR node can be mccomplianed:bySOlVing 1HE one'of the-sdbprdblems

represented by the sucCessor nodes. .The saution tothe

problei (represented by the root of the graph) is successively reduced .

to the solution of sets of subproblemS, Some'of vhiche4ghtlje

immediately recognized as being solved (LEAF nodes), others of vihi0

might need further reduction. Intuitively, an OR node corresponds to

a point in the developient of a solution where a choice must be made

between several (equally correct) approaches. An AND node represents

a point at which refinement involves several tasks which must all be

done to solve the problem. Figure 1 is a small portion of the ANII-OR

solution graph for the problem the tutor is currently using: developing

a program for the symbolic differentiation of a polynomial.

.In order to use an AND-OR gmph as the basis for,a tutor of

successive l'efinement, several features were added. As Figurel

shows, branches between nodes are tagged with English phrases ("transition

phrases") which are usually descriptions of the :asks represented by the

node each branch leads to. Thus, nodes represent subproblems to be

raved, and brances are tagged with English descriptions of the sub-

problems they lead to. PATTIE uses these transition phrases to determine

the path the student is taking through the graph. Other branches (leading

to LEAF nodca) are tagged with PL/1 statements and represent the final

-77-

82

check if

con ns

12,1213.

cons r special

c s

eider general

CLOS

, return divide
into h

pieces

vide

built

funct

use
fun

Pert

o 3

acti
In se

if

INDEX
ion

simpli j.

arts en°
urn mover

SO

us

IF

an

tatement *efficient

IF

de
+ma

side tbe index of

Z t NDXZ

save

betvven

coefficien

and upon*

t both

eat and

of string

VDU aurd009;

yin vent
to save this

value

DCL VDU =Zs
wax ('Z .z) ;

THEN

84

step in refinement of a particular task, namely translation into the

target programming language.

The remaining features added to the basic AND-OR graph

formalism are special branch or node types. Special ERROR branches

allow the'wOblem expert who develops the graph to provide wpecific

hints to be given to the student only in certain contexts. These

.4
ERROi-E17031MM^valkovamimom either AND or OR nodes, and lead to LEAF

nodes which have error messages attached. ERROR branches tagged with

transition phrases ("expected" ERROR branches) correspond to bad

approaches the problem expert felt students were likely to attempt at

that point, and the error message can explain why.that approach is not

good. Untagged ("universal") ERROR bradches lead to error messages

which simply suggest explicit actions which are pzobably needed at that

point.

A second special branch type was needed to handle the common

practice in top-down program development of intermixing partial programming

language statements with English descriptions of refinements. This branch

'type may be tagged with PL/1 statements and marked so as to be displayed

as soon as the node is encountered, but not traversed.

The final special feature is the PROC node, which allows

invocation of a subroutine before it is programmed in detail. When

e.countered in the refinement of one procedure, the PROC node acts like

a LEAF, but also causes the interaction control program to stack the PROC

As the root of the new procedure's subgraph, for later detailed development.

8 5

-79-

6.1.2. StUdent-tutor interaction

ln relation .o the AND-OR graph, the successive refinement

process corresponds to tracing a path througn the graph from C root

to same subset of the LEAF nodes which represent a.solution program.

The exact path taken is determined by suggested refinements input by

the student. At any given time, the student is'actively refining only

one task, the "current task." This current task is represented in the

refinement graph by a single node, which PATTIE determines the correct-

ness of student-suggested refinements by matChing them against brandies

in the graph at and below the current node. Once the student has

described all the actions needed to refine tile current task, 'anew

current task is selected by simply traversing one of the described

branches from the current node to a new current node. The order in

which these branches are travers d is determined by the control program

using a depth-first traversal algo ithm.

The means by which PATTIE\may fnteract with the student is

the display screen of the PLATO IV te inal. Figure2 is a copy of

the screen as the student sees it. Theupper 20 lines are the 'program

area" and contain the developing rolution program. The lower part of

the screen is the "scratchpad," the area where the dialog is conducted.

On the left-hand side of the program area are a series of

"task names" indicating the relationship of each task to others in the

sclution, exactly as the relationships between Sections of this thesis

are described by the section nuMbers. Task nameS\are assigned when the

refinement task is initially described, based on the task name of the

current nOde and the current node type. Each refinement at an AND node

receives a task name composed of the task name of thePaD and a puffix

-8o-

6

1.1

1.2

2.1.2
2.2.2
2.3

CaFTERM: PPOC(T,Z);
DCL(T,Z,BFOR) CHAR;

DCL (NDXZ,LSTAR) FIXED;
NDXZ mINDEX(T,Z);
IF NDXZ
THEN RETURN(W)i
BFOR =SUBSTR(T,NDXZ +2);
LSTHR =INDEX(SUBSTR(T,ND)Z +3),'*');
separate the exp from the rest of the t

2.3.1 IF LSTAR =0
2.3.2 THEN exp 7 is the rest of the string

ELSE
2.4 simplify the parts and returr the answer

END D1FTERM.

;- nig

1-71.7j7qiining task1:31-
What else must be done to refine th o. current task?

HELP n.5w avax1oLle if wav,ted

Figure 2: The student's szreen display.

-81-

87

indicating the nuo!'ar of the branch matched by the refinement. At OR

nodes, on the other hand, the task name of the refinement is simp.14 that

of the OR itself, since only one branch leaving the node is ever traversed.

These task names indicate the relationship between tacks described in

the successive refinement process.

Airllirin the program area there are three distinct subareas.

At the very top are programming.language statements, corresponding to

refinements which had been described well enough to be trawlated and

displayed as code by PATTIE. Immediately below these.is the natural

language description of the current task. Finally, at the very bottom

of the program-area are other tasks awaiting further refinemenz. This

is essentially a stack of refinements described at AND nodes during

solution development, but Whose corresponding branches have not yet been

traversed by the control program. These refinements provide :,. cont!-7t

in which the student can devise his refinements for the current task,

but they needn't yet be considered in detail.

The scratchpad area is Where PATTIE:accepts student inputs.

displays hints, or reveals the anticipated refinements once availdble

hints have been exhausted. This interaction goes on (solely in tLe

scratchpad area) until a correct refinement for the current nbde is

input by the student. At this point, the refinement task description

is moved to the program area, the exact location depending on the

current node type.

If that current node is an OR the student only needs to

input a angle refinement which matches one of the branches leaving

the node, and the control program's actions are correiTondingly simple.

It simply determines which branch leaving the node is matched by the

icudent input, replaces the current taSk-descrintion on the screen with

-82-

the suggested refinement, and traverses the matched branch to a new

current node.

AND nodes, on tte othar,hant:, correspond to points in the

solution process where refining a task requires describing several

separate subtasks. As each refinement is accepted, its description

is maved to the program area stack. When all needed refinements have

been described, the current node-is Pushed on a stack of active AND

nodes (i.e., nodes with all necessary refinements described, but at

least one branch leaving the node untraversed), the top refinement

description on the program area stack is moved up to become the new

current task, and the leftmost branch fram the node is traversed. This-

corresponds to a depth-first traversed of a part'cular path through the

solution graph.

Of course, an essential part of the tutorial process is

providing hints to the student when he makes a mistake. There are

several levels of prompts coded into the dialog routines which

provide slight hints to the student. These are dependent on the

current node type and may be superseded by more explicit hints contained

in the solution graph, if such are available. Such specific hints may

be provided by the problem expert who develops the graph by means of

ERROR branches. If an expected ERROR branch leaves a given node, the

error message the branch leads to will be displayed may if a student

input matches the attached transition phrase when that node is the

current node. ERROR branches are not examined during the lookahead

matching process, to avoid potentially misleading hints. If the brs4ch

is a universal ERROR branch, the error message is displayed in response

-83-

89 r-*

tO the first wrong input received when that node is the current node,

and then the prompt sequence described above takes over.

Finally, the tutor contains a student model based on a 1_,Jt

of semantic concepts relative to problem solving-and the subject area

of the particular problem. Each node and branch in the solution graph

may be tagged with one of these concepts, and for eadh concept the

model keeps track of the probability that the student will suggest

a correct refinement at a point in the.graph tagged with that concept.

This information can be used to provide additional hints to the student,

or to modify the standard procedure of asking for suggestions and

immediately display one or more of the desired refinements.

6.1.3. Natural language capability

An analysis of protocols between a human tutor and a student

over the cme programming problem the tutor is concerned with ifidicated

two things:

(1) student utterances are short, ungrammatical, s:Id relatively

isolated from each other;

(2) students use only.a small huraber of patterns in theil

utterances (both typed and verbal)

Item (1) ruled out the use of a linguistic-based understanding system,

and item (2) provided hope that the tutor could make do with the simple

dialogunderstanding system provided by the PLATOHIV author language,

TUTOR.'

Essentially, this facility is a keyword recognition, pattern

matching scheme. Ah author specifies a vcc7ou1ary, consisting of a

number of disjoint classes of synonymous wordo (groups of "content"

words) and a list of words which Pare allowed in a student's inputs

-84-

90

but which carry no meaning ("ignorable" words). Elements of a

Synonym class may be single words or "phralies," whickare a series

of two or more words which must appear contiguously. Phrases provide

a simple means of handling common idioms, and.may consist of ignorable

words, content wort4s appearing elsewheze in the vocabulary, or

completely ne4 words.

TUTOR's facility attepts to assign a meaning to typed

inruts by matching the input against a series of stored ;etternsi Each

pattern consists of representativen-from-one-dr-mord"bf-the clasies of

synonymous words in the vocabulary. Since there are usually many ways

of expressing an idea in natural language, it is.frequently necessary

to attach mor .!. than one keyword pattern- to a single "meaning list."

For example, since keyword order and number of keywords are important

in a pattern match, if it was desired tO assign the same meaning to the

inputs ."a brown cat," "a cat that is.brown," and "a cat" (assuming "cat"

and "brown" are content words and other words are ignorable), the meaning

list must include the patterns 'brown cat," "cat brown," and "cat."

One of the biggest draWbacks of a synonym-class approach such

as this is that a word can have several different meanings in different

contexts. Since.no word can be in two classes (except as part of a

phrase), classes which.contain the same words must be coalesced. This

-----zintroduces-a-certain_amount of :ambiguity into the meaning attached to

some inputs. Fortunately, a node in the refinement graph provides a

well-defined context which helps reduce this aMbiguity caused by merged

classes. The most likely student inputs at a node are exactly-those

which correspond to transition phrases tagged to branches leaving that

node, or nodes slightly lower in the graph. Therefore, if an input-

matches one of these branches, there is a high probability that the

intended meanings are the same.

Alter several improvement iterations, this siimple scheme

allows'the tutor to understand about 80% of itudent inputs using a

vocabulary of about 1500 words.

6.2. Sorting lab and verifiei
7

There are a nuMber Of reasons for eXposing beginning

programming students to the concepts of program correctness.

In particular, the discipline of structured programming depends heavily

on correctness proofs of program segments and personal experience

indicates inventing loop assertions for a program greatly increases the

programmer's understanding of his routines. Unfortunately, few beginning

programmers have the ability to carry out a correctness proof of their

program, whi4h suggests that a program ierifier would be a valuable aid

in teaching introductory programming.

Many of the verifiers which have been written, how.ever, require

intervention by the user to direct the activity of the verifieri which

is not acceptable for beginning students. So it was decided to develop

a program verifier which could verify simple provrams without inter-

vention from the student. To accomplish this, the particular domain of

programs the verifier accepts was limited to programs for inplace sorting

of_the-elements of a one-dimensional array. This domain was chosen for

two reasons:

First, sorting programs are among the most used examples in

introductory programming courses, and second, every program verifier

constructed so far has verified several sorting programs, Which provides

a standard for comparing this.verifier to previous work.

92

The verification system consists of three major components: an

editor, an interpreter, and the program verifier. Let's consider each

of these in a little more detail.

6.2.1. The editor

The editor allows programs to be written in a programming

language with primitives especially designed for sorting (Figure 3).

ln.place sorting routines must conserve:the keys they are sorting;

hence the language provides two primitive operations for moving keys

(exchange and insert), and does not allow assignment of values to the

keys of the array. Successor and predecessor functions on the indices

of the array, as well as a special scan.statement, provide sequential

access to the elements of the array. The language also includes if,

while, and call statements. All procedures are 'allowed to be recursive.

The editor is designed to facilitate top-down program development.

The program is internally represented as a tree; deletion or insertion

of a sUbtree between any two nodes is permitted at any time. Also, the

editor insists that the student complete each statement before inderting

another (e.g., the endwhile of a while statement must be properly inserted

before going on to other statements). Finally, since the language is

sufficiently modest that nearly all its statements maybe recognized by

the first character, the editor completes program statements as soon as
2

the statement type is recognizei, allowing the programmer to concentrate

on the pro8,ram being developed.

The aseertion language'provides two predicates concerned with

arrays, namely sorted (s,t) and arrey(s,t). Their meanings are sorted

(s,t) ea> if s < r < j < t then x(i) < x(j); array. (s,t) < array (uov)

<E> ifs<i<tandu<jevthen x(i) <x(j). The language also

contains predicates =, >, ,>.) for relating indices of the array.

< ptr > ptr > C + 1)

exchange <key> with < key >

insert < keY> below < key >

while <boolexp > do

endwhile

if < boolexp > then

else

endif

scantal with < ptr > from < exp > to < exp >
dbwn5

endscan

procedure < name >

call < name.>

Figure 3: Programming language statements

94

An assertion is then a sentence composed of these basic predicates and

the connectives and and or. Notree that it is possible to express the

negation of a pointer predicate in the language, but not an array predicate

(i.e., sorted or array). The student is required to provide an assertion

statement.for each loop in the program: a loop body exit assertion

(Emil) and a loop exit assertion (Ltx11). Examples of such assertions

are in Figure 4.

6.2.2. The interpreter

The interpreter is capable of executing agy program written

in the programming language. During execution, the statUs of the array
_

being sorted is dynamically displayed, along with the location of the

various indexing pointers (Figure 5). Only.the currently active

procedure is displayed; as each new procedure is entered, that procedure

is disPlayed along with the diagram of the array segment and a stack of

procedure naMes giving an invocation trace. Both assertion language

and programming language statements are executed, and the truth or

falsity of the assertion language statements is indicated.

6.2.3. The verifier

Because this verifier is only, concerned with a limited domain,

it is faster than other program verifiers in existence. There are two

reasons for this: first, since it is impossible for the program to destroy

keys, the verifier only needs to prove the keys are sorted; second, because

of the specific domain, the verifier has been designed to prove theorems

which occur frequently very quickly, while perhaps taking longer than

95
-89-

1 procedure sort (n)
* titv& .A(1114)im+1
2 scan:down with i from n to 2
3 scan up with j from 1 to i-1
4 if xj > xj+1 then
5 exchange xj with xj+I
6 else
7 erdif'

I J N & A(1 ;J) XJ+1 .Lke A(1 VC) s(I+1;N)

w.

_ end50511
1 <. N & A(1 ;2-1) 5(I;N

endscan
s(1;N)

IZ endpfoc

>>> what next? <<<

Figure 4: Sample sorting program

-90-

9 +.

8 13

7 12

6 11 /4.i

5. 9

. 4 2

3 . 7

2 4

1 1

procedure sort 00
* ar.4 & Xi I A(1 IN)
2 scan ,down with
3 scan up with j
4 if xj > xj+1
5 . exchange xj
6 else

endi f
<

endscan
1 < N &

5 endscan
* 5(1 ;N)
10 endproc

XN+i
from n to 2'
from.- to f- 1
'then
With xj+1

X 1 N & .A(1 fi.J) XJ+1

executing 7 *

array -display

.
.11

A(1 ;X-1.) '1. s(IiN)

e.xecut fcn .4?)

Figure 5: Sample execution display

. resumed'

Usual-to provel.ess typical theorems.

The verifier is composed of three distinct subsections The

first,of these, the verification cOndition.generator, id responsible

for creatinvtheorems to be proven from the stUdentis assertions. For

eadh-loop in the program, two theorems are generated aa folloWs. ., A

loop.body entry assertion' 01 I) is, geherated.from.the body exit_

assertion (B 1 by backward sUbstitutiori. '.1qaw, assuming C stands"
EXIT'

for the loop condition, we must prove the tiro-lemmas:

(1) Ban and C implies Bionsy

(2) BgXIT
and -IC implies IIIIT(the lOop exit assertion)

Beginning with the bottommost and innermost loop,,and working outward,

such lemmas are generated for the whole program. These are then passed

to the second section of the verifier, the theorem prover, which-proves

or disproves all lemmas for the program. The third section is a counter

example generator, which will provide the student with counter eXAmPles

for any false lemmas. .

Note that the theorem prover is the subseCtion which is

,

specialized for sorting programs; the lemma generator is a'cOmpletely

general_routine._ Also note,that_the_yerifler will,always terminate, and

indicate whether the prograi,,iireorrect or incorrect with respect tO the

.giiren assertions

.2.4. Performance of the system

The -editor and' interpreter- alone- provides -.a highly-AnstruOtive-

\ sorting laboratOry which has been well :received,bY:stUdentS mhO have

te,.sted portions of the'SyStet. The-.verifilar alone, for thoim_programs

with Which it has been tested, has proven to be the fastest system.

known. (It must be noted, however, that other verifiers can handle

relatively arbitrary programs, While ours is limited in its domain).

A typical'bubble sort routine, for example, requires nine CPU-seconds

to verify. Unfortunately, this may require as long as.30 clock-minutes

during periods of heavy system load, which severely hatapers its usefulness

for instruction.

6.3. Program anomalies detectable by an automated system

Beginning programming students learning their first programming

language normally have a very "narrow" view oethe prOblem solving process.

They learn the function of each ef the individual statements in ihe

particular language but are not familiar with all the language features

and lack the insight to select the most appropriate language constructs

for a particular problem they must solve.

Among some of the reasons why this occurs are':

- Lack of experience,

- TeaChing technique,

- Lack of desire to expand their own programming ability (=lolly

caused by lack of interest), and

- Misunderstandings or misconceptions.

Because students:

- Start coding before they understand all aspects of the problem.

- Program piecemeal and add "fixes" to patch up incomplete algorithms

instead of restructuring or changing the basic algorithm, and

- View their program as a series of essentially unconnected

statements without reflecting on more global aspects of their

program

-93-

99

"Poorly structured" programs are often produced.- Here, "poorly

structured" refers not only to control flaw but also to inefficient,

ineffective, or erroneous data flaw.

An automated system capable of performing the global flow

analysis that the student fails to do is cIearly appropriate. Such a

system capable of:

- Detecting program anomalies,

- Giving detailed information about the anomalies, i.e.,

helping the student understand what is wrong, and

- Helping direct the student in correcting the anomalies would

be a Valuable pedagogical tool.

6.3.1. Data collection

A set of four machine problems given as assignments in a

beginning programming course of approximately 60 students has been

collected. The course used-Fortran as an implementation language and

was directed toward Engineering students. The final solutions (those

handed in for grading) are currently being hand analyzed for progra7-

"defects" dealing with:

- Programming style,

- Efficiency, and

- Language and algorithm misconceptions.

A report presenting:

- A categorization of these "defects";

- Reasons why students produce such "defects",

- Statistics on "defect" frequently, and

- Which "defects" are automatically detectable

will be completed within a few months.

-94-

10 0

6.3.2. Techniques

-' The thesis involves the use of glObal flow analysis

techniques (both currently existing and newly developed) to detect

anomalies in programs.

A flow graph corresponding to the student's source program

is produced. This flow graph is then used by iterative techniques

similar to t23ose developed by Kildal ("A unified approach to glObal

program optimization", SIGACT SIPLAN pp. 194-206, Ctt. 1973) to

perform each of the specific global flow analyses.

A uniform iterative global flaw framework has been developed

which encompasses most of the "standard" (i7e..,'"Live" variables,

common subexpression elimination, dominance, etc.) and newly developed

(i.e., unreferenced data, unititialized variable, transfer variable,

etc.) analyses. Since these techniques do not involve "interval"

analyses, the underlying program flow graPh need not be reducible.

6.3.3. Specific program anomalies

This section presents examples of some of the anomalies to

be detected. Each can be detected by-the techniques mentioned in

section 3 without any knowledge of the user algorithm being implemented.

Figure 6 is a subroutine implementing the binary chop method

of root finding and will be used to present specific examples of anomalies

to be detected. This is the type of code many beginning Fortran

programmers produce as a final product (i.e., turned in to be graded).

101

-95-

Ll SUBROUTINE BINCHP(XL,XR,EPS,DELTA,ROCT)
YL = F(XL)

L3 YR = F(XR)
L4 IF(YL*YR.GT.0) GOTO 10

L5 20 ITER = 0
16 .

IF(ABS(XRXL).LE.EPS) GOTO 30

L7 XM = (XlraR)/2.
L8 YM = F(XM)

L9 ITER = ITER + 1
L10 DELTA = AB3(XR...XL)/2.

L11 PRINT,ITER,XM,DELTA
L12 IF(YL*YM.LT.0.) GOTO 40

L13 XL = XM
L14 YL = YM
L15 GOTO 20
L16
L17 YR = YM
L18 GOTO 20
L19 30 ROOT = XM
120 10 RETURN
L21 END

Figure 67: Binary chop routine

a

4)102

6.3.3.1. Unreferenced data

Uhreferenced data occurs when:

- A value, D, is assigned to a variable, V, and

- That value is not referenced by aay stateMent of the

program.

This can happen in a combination of 2_ways:

1) Variable V is assigned alley value prior to a

reference, or
.....

2) The variable V is never referenced, i.e., iia-"exit"

is encountered prior to a reference.

EXample:

At L17 of Figure 6, a specific value is assigned to 'YR'.

However, there is no ancestor of L17 which references 'YR'.

6.3.3.2. Uhinitialized variable

A variable, V, referenced at a specific statement, S, may be:

TotalW uninitialized

i.e., no execution path from the beginning of the program to

S assigns a value of V, or

- Partially ininitialized

i.e., there is at least one execution path from the beginning

of the program to S which does not assign a value of V.

Fxample of partially uninitialized variable:

Consider XM' referenced at L19. Assuming 'XL' and 'XR'

are sufficiently close upon entry to the subroutine, i.e.,

ABS(XR-XL) <:=EPS, then the flow of control mighi be (L1012,

L3,L4,L5,1,6,L19,120). ThAs execution path leaves 'XM'

uninitialized when referenced.at L19 and thus an erroneous

root is returned.
-97-

,

103

6.3.3.3. Code motion

Code motion can be suggested as a correction to certain

anomalies when the student asks for help. For instance, assume the

partially uninitialized at L19 has been detected. The suggestion

-%
to move L7 between L5 and 16 can be automatically generated-

6.3.3.4. Transfer variable

A variable is a transfer variable if:

- The value of an expression X is assigned to V, and

- At each reference (normally only one) to V which contains

the value of X, the defining components of X have the same

value as when X was assigned to V.

The reason for detecting such a situation is that the assignment

of X to V can be eliminated and the expression X snbstituted for

corresponding references to V. Although such a substitution probably

produces a more efficient program, this is not the major reason for

bringing this to the student's attention. The primary motivation is to

help the student understand how data flows through his Program.

Examples:

1) 'F(XR)' assigned to 'YR' at L3 can be snbstituted for 'YR'

at L4 (thus, eliminating L3).

2) 'XM' assigned to 'ROOT1' at L19 --n be- snbstituted for

'ROOT' at Ll. This.eliminates L19 and since no explicit

.action must be performed before returning, the '0010 30'

at 16 can be replaced by 'RETURN'.

104

98-

Pt.

-There are several situationa-whiehoiven though detected,

dhould not be presented to the studeut. 'No suih,situations are:

1) The:transfer variable is assigned,the yalueof an

expressibn requirini computatiph:(i.e.,, not just the

value of another variable)ioutsideeja loop but 'is

referenced inside the loOp. clearly, the value of

the expression.is invariant to the'loop and its commtatiOh

has been placed outside the loop. for 'execution efficiency.

The transfer Variable is assigned-the value Of an eXprension

requiring computation and ii refPrehced more than on;?e.

Thus the computation would have tbtesperformed more than

once if a sUbstitution were done.

Example:

'F(XM)' assigned to 'YM' at 18 can be substituted for 'YM'

at Ll?, L14 and L17. However, this produces two fUnctional

evaluations each time through the loop when only one is .

needed.

6.3.3.5. Initialization inside loop

When building an "IF" loop, the beginning student often places

the initialization of the loop inside the loop. The two concepts of

code-motion and transfer variable can be used as a partial solution to

detect and correct this situation.

Example:

As the SUbroutine is currently structured, 'ITER' at L5

is a transfer, variable the '0' assigned to ITER'

-99-

at L5 can be substituted fnr '1TEB' at L9). If L5 is

moved out of the loop, say to 14.5, '1TER'.is no longer

a transfer variable becaube.the data referenced through

'ITER' at L9 now has two sources.

Thus, tf movement of the assignment to a transfer variable to

a position outside the loop ciaanges its status, it is a candidate for

a misplaced initialization.

6.3.3.6. Common expression detection

Students often calculate expressions with exactly the same

value several places in their progrmn. Such duplications can be

automatically detected. The purpose of bringing this to the student's

attention is not to produce more efficient code (since an optimizing

compiler will eliminate such redundant computations) but to help the

student batter understand how information flows through his program.

Example:

The value of 'ABS(XR-XL)' computed at 16 is exactly

the same as that computed at L10. A temporary variable

can be usad -co transfer this value to ;the two places it

is used.

6.3.3.7. 'GO'ing to a 'GOTO'

The 'GOTO' is standard tool used (especially in languages like

Fortran) to handle momentarily unresolved actions. When these actions are

finally resolved, the student fails to perform simple optimizations in

order to simplify the control structure and producea more understandable

-100-

promaL A class of such "defects" is the explicit transfer of control

to an unconditional transfer of control.

Example:

%
The 'GOTO 10' at L4 can be replace by 'RETURN'. Such a

form is more easay understood by sameone reading the

program and better reflects the intended meaning.

6.3.3. . Local variable in a parameter list

Students will often place a local variable of the'sUbroutine

in the parameter list. This can:Often be autmatically detected even if

the corresponding argument is actual1y manipUlated in the.calling routine

(although computations involving the argument are normally-completely

dbsent).

Example:

Tbe variable 'DELTA' in the parameter list at Ll is prdbably

a local variable. Since 'DELTA' is assigned prior to any

reference, it cannot be an input varistle. Ass

value returned to the calling routs is never

(see section 6.3.3.1.), it carnot be an output

it can be concluded that 'DELTA' is a local variab

6.3.3.9. Modification of input parameter

It is generally considered a poor programming practice to modify

an input parameter-in a subroutine (of course, a parameter may be used

for both input and output). Such a practiceCan cause erroneous results-

(if the corresponding argument is referenced expecting it to have its

,i

original value) or excess computatiuus to recalculatethe original value

the arguient.

Example:

'XL' and 'XR' in the parameter list-at Ll are clearly

input parameters since they are referenced before they.
...-

are assigned. If the values returned to the calling routine

are referenced, the programmer may incorrectly assume0 he

is referencing the original input values. If the returned

values are never referenced (ie., the parameters are not.,

output parameters) program anomalies mgy occur 'When the

subroutine is used in a different environment.

To

References

[1] Danielson, R. and Nievergelt, J. (1975a). An automatic tutor fori
introductory programming students. Proc. Fifth Symp. on Computer
Science Education, SIGCSE Bulletin, Vol. 7, No. 1, February 1975.

[2] Danielson, R. L. (1975b). PATTIE: An automated tutor for top-

down programming. Report UIUCDCS-R-75-753 (Ph.D. Thesis),
Department of Computer Science, University of Illinois at Urbana-
Champaign, Octdber 1975.

[3] Gillett, W. D. (1976). An iterative program advising system.
Proc. of SIGCSE-SIGCUE Joint Symp. on Computer Science Education,
SIGCSE Bulletin, Vol. 8, No. 1, February 1976.

[4] Gillett, VI. D. (1977). rterative techniques for detection of
program anomalies. Submitted to the Conf. on Principles of
Programming Languages, Los Angeles, California, January 1977.

P
[5] Mateti, P. (1976). An automatic verifier for a class of sorting

programs. (Ph.D. Thesis), to appear as DCS Report, September 1976. -

108

-102-

Vt C

Olie,iseearch [ably, 19701 eXplOres tenobjeGtive'opproaciii

1 language design and apnlieG them, to an inveitigatiOn of control constructs

)Z-interactive computing, particilarly.in Comember-AidedlOetruction'(CAI).

an.erperiam041 avtioadh to lansuawdeslim, a deeigner *opium the .

man element in programmimg and attempts to aGhiGve.an oitimal design

ran empirical investigation of language constructs. *Through.carefUl4

)cumented, thorough, and replicable experiments, dtsigniork cin present

)jective evidence to support claims About language features' and stylistic

Dnsideretions.' In a fcmmal womb to'lenenake desiin, a .designer

scognizes the.theoretical fOundations of programming languages and

hempts to achieve an optimal design by a specification of the properties

f language constructs in order to expose weaknesses, inconsiatencies,

md design flaws. A better understanding of the syntax and mounting

f language constructs can maks it easier for a language designer to

bjectively see vhat features are really desirdhle.

These approaches to language design are not only mpplicable

n an investigation of proposed language constructs but also in an

nvestigation of language design principles. Many lists of design

minciples exist, but notions such as "simplicity" or "uniformity"

bat are ienerally included in these lists are insufficiently defined.

, formal definition of these principlem vould facilitate identification

ad consideration of language features that violate basic design

minciples. Moreover, experiments can be applied in an attempt to

Wectively validate design principles so '..hat language designers

mm confidently apply them. 109
403-

;1

7.2. 'rich
As a means to explore experimental and formal language

4

design, D. W. ibley has designed a new progrmmeing language mailed
e 0

NAIL [ftbley, 1975a]. Unitas originally mOtivated by a desire to'

improve TUTOR [Sherwood, 1974], ihe author language fir the PLATO TV

CA/ system [Alpert and Bitser, 1970]. In KUL, a selector construct

Mobley and Hansen, 1976] is introduced to handle CA/ answer judging;

this construct also unifies selection and iteration and subsumes most

typical high level language constructs (e.g., if-thensa,1 !Ida,

reneatvuntil). Figure 1 gives the essential syntax and semantics of

the KAIL selector. A wtatic exception processing scheme is also

introduced to handle frame sequencing.

Thome NAIL control constructs were tested in two experiments

conducted on-line in a CAI environment, and the results indicate that

they are likely to be Psychologically sound. /n an experiment on the

KAIL selector [ftbley, 1975b], subjects attented to understand and

answer questions about two short programs. For one group of subjects,

these programs were written in 8, a language containing the selector;

and for the other group, they were written in A, an AIOOL-like language.

In the other experiment on frame sequencing Obbley, 19764, sUbjects

debugged and modified a sUbstantial CAI lesson about 500 lines in length.

One version, T, was written in a TUTOR-like language, and the other

version, K, was written in a BAIL-like language.

These RAIL control constructs were also examined through a formal

definition of their semantics, and their properties were clearly exposed.

-104-

110

selector

contiol

loop-control'

choices

semantics':

The

-)Lstatemeit-sequence
--

CoMtrol,, Choices]

[stitaimentseqUence loop.,control 'choices]
_

- vif expression

expreesion

expreision

I relationiexpressiOn statement-SeqUence

- 41 relation expression :'atateMent-sequence choices

selector is executed. in 5 steps

1. ftecutethelnitial stitement-sequence.

2. EValuate the control-expression and save its value in a
temporary, t. .t

3. Test each choice in turn until a ."selected choice" is.found
such that

(t relation choice-expression)

yields true.

4. EXecute the statement sequence in the selected choice.

5. EXecution now continues as follows: For j, exit. For
while, if no selected choice is found, exit; otherwise,
NEUn to step 1. For until, if no selected choice is
found, return to step 11-6therwise, exit.

111

Figure 1: Essentials of the KAIL selector

-105-

An axiomatic approach was applied to the KA1L selector, and the KAIL

excePtion processing scheme was defined in terms of a behavioral

model. The TUTOS exception processing Scheme vas also formally

defined and compared with the 1CAIL scheme.

7.3. Conclusions

7.3.1. .Design:Prindiples

As:a result of the investigation of experlmentaland foriaal

,

approaches to language design three basic:desiAn PrinCiplesevolyed:''

1. Uniformity,-

2. Separability, and

3. Locality.

These three principles are proposed as a possible:basis for an informal

approach to language design.

The uniformity Principle Suggests that languages ought to

be designed yith a one-to-one relationship between 'syntax 'mind Semantics.

ln a program written in a uniform language, a single sementic notion

consistently has the same syntactic form. Moreover, a siiile rule

applies to each language construct independent of its context. In a

nonuniform language, there are several ways to axpress a single semantic

notion or varioui possible meanings for a syntactic form depending on the

execution history, so a programmer has more to consider. Monuniformity

leads to more decisions and thus more probability of error.

The separability principle suggests that special puriose

composite structures may be harmful. The advantage of a composite

construct lies in its power to produce a desired effect with a minimal.

amount of code. Most high level language structures are composite

constructs; and so long as no programmer needs an unavailable component

of a compoSite construct, all is well. In the unfortunate situation where

a needed component is unavailable, the language designer maybe willing

to extend his language. If not, a programmer wOuld have to Obtain the

component indirectly by "programming uround" the problem, if this is

possible; otherwise he would have to use a different language. To

supply syntactic forms for many composite structures would cause language

'y

constructs to'proliferate. To force the programmer to indireCtly separate

composite structures, on the other hand, would result in code that'is

more difficult to understand and maintain. Eieparability suggests that

a few general language constructs are better than many constructs that

have only specific utility and that caution should be exercised in the

creation -;4' special purpose constructs.

The locality principle suggests that language features should

be as permanent and local as possible. Locality aids wogrammers because

it structures information. When a programmer has a large amount of

information to consider, any medhanism that structures this infOrmation

or restricts it so only a small subset needs consideration is most

helpful. When a programming language encourages locality, it reduces

the amount of text a programmer must consider in order to determine the

effect of a language construct. FUrthermore, it imposes a ebructure

on information acCessing methods and restricts the variability of language

features whenever possible. Locality also facilitates modularity and is

particularly valuable when a program must be Modified.

In [EMbley, 1976] these principles are formally defined. Moreover,

the experiments conducted in this research lend support to these principles,

particularly the sequencing experiment.

7.3.2. The experimental approach to language design

The results of the selector experiment support the hypothesis

that programmers understand the KAIL selector more easily than an

equivalent set of traditional constructs. S language subjects answered

more questions correctly than A language subject's and also thought they

initially better understood the S-favored program. Statistics on the

nuMber of questions initially answered correctly, average time taken to

obtain a correct answer, and initial and final self-evaluations are all

in the direction of the S languaie. No performance statistics favor

the A language.

In the sequencing experiment, the results generally lend

support to all three basic design principles. In Ts the behavior, of

a procedure is context dependent, but in K, the behavior is independent .

of context. T subjects introduced errors due to this context dependency

when they improperly inserted new procedures. This lends support to

the uniformity principle.. Several observations support the separability

principle. T subjects had difficulty separating composite constructs,

and in one instance, none of them were able to find a way to "program

around" a particular problem. The experiment also supports the locality

principle because T subjects consistently failed to reset_glasastatus .

information when they attempted to fix one of the bugs. In K, this

information vas local and caused no particular prOblem.

The experimental approach to language design can produce

scientific evidence to support claims about language features and design

issues as shown in both experiments. Through empirical tests, designer;

can gain assurance that their language features are psychologically sound,

and they can gain confidence in language design principles.

114
.108-

7.3.3. Experiments in the PLATO environment

Since these experiments were conducted on PLATO, they also

illustrate the applicability of an on-line methodology for conducting

experiments in programming. Several advantages.can be gained by

conducting experiments on-line in an interactive, CAI environment.

There can also be several disadvantages.

The advantages include:

1. A controlled teaching environment,

2. The dbility to interaab meaningfully with subjects

during an experiment,

3. Individualized sequencing,

4. The ability to gather highly precise data,

5. The ability to impose strict timing constraints,

6. Assistance in grading,

7. On-line editing capabilities, and

8. On-line execution capabilities.

The disadvantages include:

1. Cost,

2. System failures, and

3. Subject unfamiliarity with the system.

In general, the experiments profitably took advantage of the

PLATO environment. Time and space limitations, hawever, prevented full.

exploitation of potential advantages.

7.3.4. The formal approach to language design

An application of =Axiomatic formalisMto.the KATI, selector

helped clarify and concisely specify several general Observations. The.

;
RAIL if and case are semantically identical, and.all is complex Compared

,

to the other control types. The formalism ilso revealed similarities

and differences among if, while, and until, and led.to an investigation

of another possible control type.

The semantics of both KATZ and TUTOR exception `handlinkwere

defined in terms of a special purpose abstract machine. This behavioral

definition shows that the KAIL constructs adhere to the locality principle

better, than the.TUTOR constructs. Moreover,.the'formaliam shows how the

TUTOR constructs violate both the uniformity and separabiliiy principles.

The formal approach to language design can objectively reveal

properties of language features as shown in the formal definition of the

KAIL control constructs. It can also Objectively expose weaknessesrand

inconsistencies and provide insight into why some language feeures are

better than others.

7.4. Summary

The results indicate that further research in experimental

and formal languaga desiga is likely to be fruitful. Theseiahods can

be applied to obtain objective evidence to-support claims'about language

features and design immes in general. It would be particularly valuable

to further apply thesamethods to obtain additional Oupport'for the

three basic design principles. These could then be Confidently used

as a partial basis for reasoning about and designing programMing

language features in general.

References

[1] Alpert, D. and Bitzer, D. L. AdVances in computer based educatiOn.
Science, 167, (20 March 1970), 1582-1590;

[2] Embley, D. W. An experiment on a unified control construct. Technical

Report No. UIUCECS-R-75-759, University of.Illinois at Ufbana-
Champaign, Department of Computer Science, August 1975b.

EMbley, D. W. An experiment on CAI sequencing constructs. Technical
Report No. UIUCECS-R-76-771, University of Illinois at Ufbana-
Champaign, Department of Computer Science, February 1976a.

Embley, D. W. An introduction to KAIL. Lesson kaids on the PLATO
System, University of Illipois at Urbana-Champaign, August 1975a.

Embley, D. W. Experimental and formal language design applied to
control constructs in interactive computing. Technical Report No.
UIUCECS-R-76-811, University of Illinois at Ufbana-Champaign,
Department of Computer Science, July 1976b.

Embley, D. W. and Hansen, W. J. The KAIL selector - a unified

control construct. SIGPLAN Notices, Vol. 11, No. 1, January 1976,

22-29.

Sherwood, B. A. The TUTOR language. Computer-based Education
Research Leboratory and Department of Physics, University of
Illinois at Urbana-Champaign, June 1974.

111

8. Use of ACSES in instruction (R. G. Montanelli) Jr., E. R. Steinberg)

An introductory computer science course at the University

of Illinois ordinarily consists of 2 large lectures taught by a

professor and a smaller discussion taught by a teaching assistant

(TA) each week. The lectures introdgmpoetnew mateiial, While

thedisoussions.are small classes in which TAB answer questions and

help students with theie puer programs. Since somewhat more

than.,one7half.of the lecture time was typically spent on FORTRAN, .

it was initially dedided to develop a.sequence of PLATO lessons to

teadh FORTRAN and to use these lessons to replace OneAecture a week,

thrOughout theisemester.

Work on the lessons was begun in the fall of.1973 by

students in an honors course. During the course of the project,

most lessons were written by students. In addition to being in

computer science, many of the students had some teaching (or teaching

related) experience as teaching assistants, consultants, and graders.

All the lessons went through numerous stages of testing followed by

revisions, corrections, and improvements. Ultimately lessons were

polished by highly experienced staff members or students.1 The

lessons were not designed according to some particular theory of

instruction beCause it id not.clear that a suitable one exists

(Anastasio, 1974). ./t was felt that the best way to arrive at a good

set of lessons would be to encourage varying styles and techniques,

and to ultimately choose the best lessons on the basis of their

effectiveness or on student preferences. Of course this could

1The authors
Jr., Sandra
this area.

would especially like to thank Professor H. G. Friedman,
Leach, and Jeffrey Barber for 1:heir invaluable help in

1 la 1
-112-

(and did) *esult in some lessons which had to be completely rewritten;

-,but it avoided the possible trapof using a theory which might not

apply. More detailS about the development of the lessons are given in

NOntanelli (1975),,while Barber (1975) reports an indepth study of the

design, evaluation; and subsequent revision on the baSis of data

lected during use, of one lesson.

8.1. Fall, 1974

The initial use of 12 of the lessons to replace clasrroom

instruction occurred in the fall of 1974, although optional, voluntary

use had occurred for some lessons duriog the previous sp-ing and

summer. A relatively small class (50 students) taught by the first

author was selected for the first actual test. ln order to obtain

some comparisons between the lessons and ordinary classroom instruction,

the class vas randomly divided in half, with one-half receiving the

traditional two lectures and the other having a PLATO lesson replace

a lecture each week. There were three interesting results from this

early experiment. First, questionnaires administered at varying points

during the semester indicated that although students seamed reasonably

satisfied with PLATO early in the semester, the comments made at the

semester's end indicated soma dissatisfaction. Four possible explanations

were: 1) early in the semester students found PLATO new and interesting,

but the novelty wore off by the semester's end, 2) students were more

concerned with grades by the end of the semester, 3) earlier lessons

were in better shape than later ones, and 4) a computer memory (ECB)

shortage made it impossible for a group of students in a room of

PLATO terminals to use many different lessons simultaneoubly.

11--W,
-113-

-Undotibtably each of these explanations played some partlit4tddent

attitudeS, end of course little cou3.41* done:to:nhange..the effeCts

of the first two. However, it was the case,that some-Of:the earlier

lessons had been better testedthan tome:of theleter Ones. Thue!,some

.additional improvements for these lessons **re indicated. Alio,. the

,

shortage of igps could have had a larger:effect at,the....end of the

. semester, because as students fell behinCOrlteeded to.reviel, they,

created a demand for many lessons at the same:timei-and't.iii Wasn't

possible.

The most encouraging result via a correlation of -.58 between

the amount of time spent in the recittired PLATO.lestons and the-:2ourss

grade. If this was a cause and effect relatiOnahip it illuAtrateC

the usefulness of the lessons.

The final interesting res-u1t was the lack of,a significant

difference between the two voups on achievement variables. Nith

some of the ;roblems encountered, this resultnaas good, in:spite-of

the fact that all observed differences favored the non-PLATO group,'

with two exams almost showing significant differences at the .05

level.' Other results showed similar, low drop rates in bot4 groups,

and no relevant differences from the previoutyter's ciasi on thi---"

results of a student rating of instruction form. More detailed

results appear in Montanelli (1975)..

Three possible methods for improving-the,instruction gotten

through using the PLATO FORTRAN lessons were identified. They !ere:

1) increase ECS; 2) revise lessons, especially to indlude more

exercises and other interaction; and 3) consider more stronglY

.. ,

encouraging students to use the PLATO materials. On line data indicated

that on the average, students probably did less than one-half of the

assigned material. A computer-managed instruction (CMI) program

(Anderson et al, 1974) had already shown that PLATO could be used

successfully to increase stulf performance through an only.

A later experiment in fall 19750 considered this question. Also,

Ecs was added in January of 19750 solving one problem, and revisions

of lessons were begun along lines indicated.

The study concluded that CAI materials initially written

by students could replace some lectured cm the FORTRAN language

in 11.4 14+;:011"!tdry camputer science ceurse, However, it was obvious

that more effort must b(! spent on lesson development and evaluation

tban wms origfJ.nally suspected.

8.2. Spring, 1975

The purposes of this evaluation were fourfold: (1) to get

baseline information on students' attitudes and to determine if there

were changes during the semester; (2) to assess the data collection

in CS records; (3) to provide guidelines for revision and improvement

of some of the lessons; and (4) to provide recommendations for improved

implementation and integration of PLATO into CS courses.

8.2.1. Students' attitudes

It is particularly important to evaluate student attitudes

when a new technolOgy is introduced. A positive attitude is a necessary

though not always sufficient condition for learning. The student's

attitude must be sufficiently positive that she/he is willing to try

the CAI lessons. Student attitudes can also serve as a valuable

-115-

121

resource of information for revising and improving both the lessons

themselves and methods and procedures in course implementation. Although

PLATO had been widely used in a variety of courims at the University of

Illinois, it was anticipated tuat most of these beginning CS students

would not have had prior experience with it. What was their initial

reaction to the prospect of using pLATO and on What basis mas:this

made? As expected moet of the students2 in the sample (73:out of 99)

had not had previous PLATO experience. Responses to an open,ended

question revealed that about 39% of the initial reactions were positive,

44% indicated fear or displeasure, and 24% could not be interpreted

positive or negative.

Thus, although most of the students bad not had previous

experience on PLATO, their expectations were not negative. For the

most part, theywere uncertain or favorably disposed. Their comments

revealed some concern and sOme confusion, not knowing what to expect.

Their sources of information about PLATO were mainly other students mho

had courses on PLATC and instructors in this coarse. This information

may not have been entirely relevant because other courses may have

used PLATO in different ways than CS 105, e.g., supplementary drills

or computer management of instruction. lt seems, therefore, that

students need some specific information about CS 105 and PLATO.

Three questions were asked at both the beginning and end of

the semester to assess possible changes in attitude toward PLATO per se.

Students were asked to'rate each:statement on a 5-point scalii from_

strongly agree to strongly disagree. There was no statistically

significant difference between scores comparing the entire initial

2
Questionnaires were banded out randddly to students in different

PLATO sections. 122
-116-

ale ot-99 to the end of _Semester sample of 75. lIor laskthere

Ignificent difference when the data were limited to .the 56 studenta

filled out questionnaires both la January and April. Weaver,

can be teen from Table 1, the proportions 'of -o4u4ants who, were

irtein in &miry deer:egad by April:: Tkii shift vas teniersi:disagreeing

t;.-PiATO` is an "expen.eieelimikick", dieegreeing that it is. dithutisnising,t;

. ,

agreeing...tbet4TATO Wee enjoyable.

the material* as the lost

.1" of the students (5i11$)-iiiditsted tarir4r.144

m /IMO U. of course it-tit.A13,

1 16% tO avoid -it. The ism,

Usably diffeient' traethi mean

t students in 23 courses .(Biagel 3.50rib)4., Aitheugh

Lt that the PLO° .presentation was most, effective' for-

mired, 30% felt the presentation Would have, been i

relative by lecture aadior textbook. A' few

favored NATO because the lectures_Were "worthless:

tde, it wasn't that PLATO was so great, but that

re SO poor.

What "bugs students moat about PIATO is when tbely come a

mg" distance and the System is 4oim. Tieforbmately, 'darite the first

days-bf the semester the system was down wet of the 'time..

With respect to the lessons, studesils are mist irritated

inadequate response judging The Aespon most frequently:

btu:rocas vas fortccep: resPonse tile was too slow and 'was

Table 1

Attitudes of CS 105 Students to PLATO st
Beginning and And of Spring, 1975 Ssiester

AGREB OR
STROIGLY AGREE

JAN.* APR.**

'Aspens ve ginniick .04 .CYT

2Dehuosnisi1g .16 .17

;enjoy PLATO .118 .65

2 Complter-based education dehumanises atiidei

3 I enjoYed (or expect to enjoy) using PLATCY.this' seise

= 99.

es N 75

el*beraOle 7bo...Cope yith: Another, major. 6oMPlaint imkeiieoh..ok Clarity,
.

A

_such as poor directions, inadequate explanations, -lesson Notevague or

confusing. Some coMplained that lessois were toci long or bOring

Special questionnaires were'rdlittibuted for thellessons on

FORTRAN arithietic and "FORTRAN:fOrmatting. 'Mean overall rating for the

FORTRALaritbnietic lesson-wae 3.9, ,on a'5 point -scale where 4 vas
4

The adisntagegt 'cited for,-doiMg 'thien1essOn. on -PLATO were:.

bacics,:kotP.ratioti,-(fv0; active p cipo3d. set1dy east-er,to

learn. The students who did the lesson-on PLATO preerred .that medium

of ipstraction oier &:paper handout'of the 3.esso. After, teling the

format lesson students indicated tiiat bat ihs

,

able .to 'work at their "own paCe :and; that eXeraiSafi-
.,.

Fittr-six ilarcent- of -the- atUdente:-indicateit-.. .

PLATO 'to aleCture 'on this Material 27% priaferrecf'a leetuie. ;and

said:their .hed no preference.

CS, records kept track-:Ok.,the number...

of times. AL atUdent had 'signed in to a lesson and the total time sPent

on klesson.., Data did not tell whether a student:4a cOMp1eted the

lesson and 'repeated it or had done part of the lesson .each- tlie he
' .

signed'in. Data revealed that the average tithe :spent onScime.-of the .

lessons in class tends to exceed tbe allotted class time. st3ome examples

are:given,here;.'-
meati iuta1er2of

lesson mean time

fortii 48.63 18782 :

.4:

loops 61..46 19.6 30-116 20.1
fortarrael -00.79 --35-144:-

i

Another usefUl aspect _of the data Collection waS the yecord

of last date the _students had signed on. A quick glance enabled,the

ctor to check up on attendance. In April a random sample of 26
,

students in each of the six CS 105 sections vas chosen. On4 60% of

these 156 students had-,aigned onto the system Within the-,preceding

2 weeks. The reasons were not ascertitined in this sass..

8.2.3. Lesdons, instimctiinial design. aneleatnin

It seemed that..toMe of the lesions Zdienixt make;much use,of

the interactive feature Of PLATO.. Lessons! varied.ln
,

exercises provided, requirement of a specific. criterion Of perforDzince

in order to proceed, . Eu2d frequency of sets;.of,exercisec
<

A stuay was detiigned using lesson, fortarith to .invetiti

the effectS of learner control, placement -or eXercise ;sets 'and. PLATO
: ,. ::

versui varian copy handoutd of the lesson: lltifortUn4 PMTø

system was down Most of the time during.which the 'experiment vai'to

have taken place. It was also down during ,the-Preceding.lieekends,vnien

the teaching assistant was to have .set up implementation and.--'s4e-vas

unable to check out her work.

One should not assume results- of the 10-minute quiSZeir.-WWre

dependable for drawing conclusions. However, they might provide eome

tentative insights.

Mean Scores on a 10-point Quiz Given..by. TAB in qui Z sections ,

Non-
Coercive Coercive Handouts

Frequent sets
of exerCises. I.

Pew sets 'of
exerCises

7.26

126

It is difficult to understand why students with fewer exeCtises

on handouts did better than those who had more exercises. (The reverse

was true on MATO.) Note that the highest scores were'obtained by

those who had-more frequent sets.of exerCises and who were in coercive

conditiona. It was decided to repeat:the_eXperiment again the next

semester, When it was anticipated that the systeM would be more stable

and the lesson thoroughly tested. Results are summarizerrin Section'

8.3.

.A seCond experiment was set up for lesson fortfmtl. The purpose

was to see WhiCh instructional Conditions aremost facilitative. The'

factors in the 2 x 2 x 2 design were _(1) Coerciveness (ieqUired or

optiOnal), (2) instructions to do problems or do them correctlY,

and (3) size of exercise set (2 or 4 of. each type). Do students follow

suggestions in the instructions about how much.practice they should get?

Table 2 shows that students in the agtional conditions did mote I-and F-

format problems then in the required conditions. (This May have been

due to an artifact of the lesson. Required students were notgiven

the opportunity to do more than reqUired.) But in the E.-formats'

optional students did fewer prOblems. The same pattern emerges when

.students are:told how many problems to do correctly,(rable 3)... In the.

I--andF- formats optional did More than.sUggested, in E'7.,.format they

,Aid fewer. This may have been related:to prOblem difficulty. Table 4

shows that all students did.a rather high percentage of woblems

correctly and FrfOrmat eXercised. However, in the,E4brMat

exerdises,:the percentage of problems done correCtly was.Only 51%

in required conditions and 44% in optional.- It is apParentlY the case

that when the problenis are not too dgfiCult. students Palm Suggestions

-121-

Table 2

Mean NuMber of PrOblems Done by Type of
Exercise and Experimental Condition

I-format (N=316)

Small Sets Given

Do Do Rigbt

Large Sets Given

Do Do Right

Required 4.2 5.4 8.2 9.1

:

Optional .

y-fOrtatlff=300)
Required

8.2

6.5

8.4

7.0

32.4

12.0

12.2-

13.8
Dptional 9.7 9.4 13.5 14.4.

E-fOrmat (N=242)
Required. 6.0 1.1.1 12.0 18:7
Optional - 8.1 12.8

Table 3

NUMber of PrOblems Done CorrectlY

I-format

Instructions
Do Do Right

Required 5.2 6.1
Optional 8.2 7.9

F-format
Required 7.8 8.9
Optional 9.1 9.1

E-format
Required 11.0 8.6
Optional 5.0 5.5

Table 4

Percent of Problems Done Correctly

FORMAT

Condition

Required 84.2 86.1 50.8
Optional 76.0 77.6 43.6

128
-122-

Tota1.

6.7
10.3

9.8
11.7

11:9
10.4

.for.how.much to dop, or practicbeven.More. Rut.When,,saMe:.6*6-11tor

is encountered, they do significantly lels.than'reqUired..', it!should

be pointed gut.thst optional students,Aid a lower.perbent cOrrect and

this was statistically signifiCant. ROweVer, itmightnOt.beeducatiamallY- -

significant. That is, a student performineet

do any worse on a subsequent achievimentiest than a'

cOrf,gr'ml.ght ,not

at an 85% accuracy level. There may be, cOnsiderOle, difference between

students operating at 51% and 44% levels. 1nfact, neither Of.theeo

levels mould seem to 'be satisiactori in'tiiiii-Of"adequste'uaderstanding.

Apparently a reasonable minimmn requirement for praatice

is not abrasive to students. Although not easential for lest difficult

concepts, it seems necessary for More difficult:ones.. Alio, the

difficult problems (R-format here) should be accompanied by some form

of corrective information in feedback and/or:help secidendes.

8.2.4. Classroom dbservationi (course implementation)

Students took notes on lessons.- A questionnaire Was distributed

after students had completed lesson fortif.- Results ShOwid-thetabout

2/3 of the students took notes on lessOns fortif_andfOrtirith.ind that'

3/4 of the students who took notes knewthat the,materialWai.covered

in the text.

Whenever the clasSroom was visitedi almoctorwws seated at_

a terminal near the door. She/he wore no identification nOr-Was there

any sign on the terminal.. Students had no Way ofichowint.that a "human....

being" was available for help. FUrthertbre, ProctOrsjenerally were

busy programming or playing.a.gaMe.OnPLATO sOthat if a StUdent did raine:-.

a hand for help. .it was unlikely to be-aoknowledged

8.2.5. Recommendations

1. More .extensive and better communication should be established between

instructors and .students as well ai between .proitors and 'students. CS

105 instruotors might- help create a more positive attitude by:orienting

students as to the. goals of the. PIATO lessons in CS 105,1 haw: 'ninci time

they will .takei what :they can expect from the lessons, who.--WiLL help

them if there are problems, and so on. It is also important that

they tell the students that ,PLATO is used differently.by different

courses; therefore, previous negative experience may not be at

applicable here.

Provide a large sign for .the proctor to put ori:top 'ot hi

tenninal so that studente bum that a person .is in the

available. Proctors shoUld be oriented to the responsitaliti

walking around the classroom periodically. Also, they ahOniehalie

worked through each of the lessons themselvee.

The attendance, or lack of it, st- PLATO sessions ihOuld be

investigated. It may be part of an overall stUdent syndrome of

generally poor class attendance it this time in the.temester.

be in part a reflection of student attitude.toward the usefeness of

the PLATO leesons at this point in the course.

2. ReviseLdata collection to includwthe time it takes to cOmplete

each lesson, number of times the student has completed entire lesson,

and number clk,,times the student ilea entered lesson.

3. Lesson revi. a.rns

and using more. .

it takes students to complete a :Lesson mustise compatible, With ;amount

of time allotted. Some of the lesions apparently take more, time, than

Ke: -14 be aimed at minimizing student fry:nitration

interactive capability. The length. Of time

anticipated because students take mates. *For long leliOns,' a Member of

1.a,(1
-124-

tives may be feasible: allow 2 deissiOns t9

e.handouta'of the text 'parts of Aessons and t

read: theia ,.befcire 'to PLATO, and to- spend: -11.14TO- time ans*ering
, !p.

.quectiond',0 4040 exercises.
. . ,. ..,

:A deãisión hftito be-mide
:

. . .

a ii. textbOok.7r;

,

a list Of a.
. ,

cibe Us it,;-.practice

ivith, help' }Sign es-,and Coltective

an inc. ;.iresPonise. : Ifb teach41

cone! 'es iiimild: be :.hei.. :- '-e '')...,...../..,....
: - - t.

of_ the- 'lessons develcip ..ideais ., la
. . ,

understands:the-concept: Iiiiireyer,

learner, a different seiVende Oi,. a
,. . .. _.. ,..:,,-.,

. .
.. .;

Conisiderable benefit _might, be deriireiby: reviiiOn-of.`.anoli --leitions und6r

the guidenee. of a . first-rate lectUrer *to iias insights with respect to
, .

....

such PrOblems..' An imporbault steP.'in lesson reliiiiOn. Or y!r.

the author to observe a student. (or a persOn isho. is nOt.;on

Collett' vett) do.the lesson. Thii shonlciproVide :COnsiderablCinformation
. _

about the kind of responses to expect and the kind 'of durricuitAes the
,
,

. . ;.
.stbdent will have in understanding. Lessons should be:flexible in

,
iSspOnie judging; allowing for' i'broad. Span- of' correct alternatives:

Students :like'tO have selfkjuizzes or sets 'Of :praCtiCe

exercises available. A good paradigm might .be to reinire"that a minimum

nUmber of **Ohl* be done' correctly, *ith the oPtion to:do:Ai iitanrinore
. .

as the.student chooses.

4.. Student ittitUdes were generally favorable -to CS 10,9ii- PlATO. There
.

wati'apPerently iaci performance decrement cOmpared'to previous seMestera.'.'

The-tisk nai is to make revisions s a tO reaah an even PropOition.

, :t}ie :.stuctenis.' .

kJ..

8.3. pal, 1975

After a year's experience using the FORTRAN lessons, and

with some revisions planned for the summer of 1975, it 1MA decided

to conduct a large scale, controlled experiment in CS 105, in the

fall of 1975, in order to determine the effectiveness' of the lessons.

In order to control for effects of instructor and time of day, four

CS 105 lecture sections were scheduled, tvo at.9:00 am and two at

10:00 am. Students at each hour were randomly assigned to one of the

two sections and one section at each hour was arbitrarily chosen to ,

use PLATO to replace one lecture per week, while the other had two

lectures. Finally, two professors OA and IO, neither of whom had ever

used PLATO prior to the start of classes, were assigned to the

sections so that professor A taught a PLATO section at 900 and a ,non-

PLATO section at 10:00, while professor B did the reverse. (A fifth

section, taught by a third professor, used PLATO, birt was not inviolved

.in the experiment.) More details concerning this'eXperiment are.available

in Montanelli (1976).

The three hypotheses of this study were:

1. PLATO students would enjoy the course more,.and give it a stronger

recommendation to their friends.

2. PLATO and non-PLATO students wculd perform equally well on exams

and homeworks in the course.

3. The drop rates in the two types of sections would:be similar.

In ansier to.the question (from the questionnaire.adMinistered

with the final exam): 'If a friend were taking CS 105 next'spring.and

PLATO and non-PLATO seetions were offered, What would yourecommend he

take?' PLATO students strongly recommended PLATO (112 cirdled 'definitely

PLATO' 88 KATO if convenient ' 45 had 'no recOmtnepdatiOn' p, 15- said

' lecture if Convenient and.21. said:. ' definitil* lecture ' On. the

other hand, non-PIATO students were :neutral (their- response's, in order,

were 29, :22, 91, 20, 19),, or even showed a ilight preference for PIATO.

In order to 'et:spare learning across: gronpf,..a. alga gnivariat.e

analysis of Viriance.was.:CampUtediimr.eie.0...-..examä for tot1 pointa
. ..

on compute* prograMS.::::No significant diferences were-foutt4::- ppd. means,:F.,

. . , .

were near3Y .identiCai

conbernth
.

.

; :'-
...only -

and-18 (114) rom

ttudente.i4 4RATO-

their friendS '...ChOose:pLeao eeetions
.

.Even if ;the ' eitra 251 drope in :bile :'.13

they Would have it SmRll effeet on-the:4

recomMending PLATO, and only 36 of ilieM rewrite

shOuld be remarked: that when the -PLATO students 'were aak4to iidicate

whit they thought:_were the worst features*. of PLATO, 78 Ciiec*ed?...'The

distanCe to CERL' (Unfortunately the lerminalS are lelcated on the north

edge of campus in CERL, about a mile from`most conmierce courses.), while

37 checked 'Lack of human contact', and 31 checked 'PLATO-going down',

the next two most frequently checked responses. Thus the major problem

wad unfortunately out of Our control.

The second hypothesis was not rejected', (hie to.nearlY identical'

scores ons exams and Machine problems. There: ie no 'reason to suspect that,
. . .

the PIATO drops were poor students. EoWever, ff the dropped PLATO

itudento were belay average, they could -not have had a large enOUgh,.
effect on the results to alter the obvious conclusion: Thia result

. ., ,

is: certainly, in agreement 'with most 'StUdles of the effeets- of CA.I.

: In fact,. When JimisOn, SUppes, and Wells (1974) surveyed the .effectivenese

of alternative instructional media, they, abated:

' ;the, equeleffectiieness concluSion seeme tn. be, broadi,y, notrect
,

for poet; alternate MethOdi..Of 'instrUetion..40;',thii.:college. level

and suggested studying costs of varioUs inethOda::0-:deolititary. linweVer,

a major advantage-Of CAI is that- once Useci;'-'

a textbnek or moVie. As a:result ;of this ezPer

which Students liked:the least were-re:Writ

a quiz system_ has been begun:. When completed,..:

to each student at the completion of each lesson

written by the authors of the lessons., and

written from the seine objectivee -that were.useCtO write 'the lessons.

The resulting- quiz scores will not ;oplat_. tell,t.the, Students;

understand the material which the lesson:is

tell instruCtors and lesson authors haw well the lesson iw-WnrkIng.. 7

Thus, continual improvement is possible, and *Whips .'eventually, CAl

materials will be as good as the best lecturer; ingitherefore better

than many.

On the other hand, the hypotheiis aboUt aql drop, rates

was. rejected.- Thia Was. a 'surprising result, .espeCially Idieullie 11er-

experiment ,a year earlier, (Under:worse cOnditionS).:ShOwedineS-differenees.:. ,

HOweVeri the earlier coUrfieay have been::kipeciii; Oast.. lt::.Was 'a

relatively small' electiveoaurse with:Mainly juniors anCiseSinte:in

psythabgy aid Similar fields. These students were more involved_and

intereeted in the experiMent, and they may have stayed.foi that reason. .

On the other hand, CS 105 is a required Course for freihmen inthe college

arcoMmerce* and the students,were *ecumably less iiterected'in long,

term educational goala(for themSelveS,as.well.as for, the PLATO materials):; .

MoveVeralthough thiS-drop rate waa,disturhing,.there:vere

reasons for it, a13. of which Could be fixed. For ontthing,1'..,the 4;43.4:
.

three weeks were cOnfusing for:the studeitsbecause'theThadfprerenrolled,

in a Course which:theY exPeCted WoUld conaist of tWo

discussiam eaCh wtek.- Instead,..thrte-fiftha of thet.had*leCtUre

cancelled and had to sign up for anNIO:stdtiOn inttead. Theie;seCtions

caused a lot of trouble, as tome were aCheduled for veektnds.vaudMany

studentscomplained thatthey were Unable i,,;:meet any of:Mt:remaining

available PLATO times. AlthoUgh most of this.cunftsionwas necessary

due to the natUre of the experiment, in the '.fUture studentswill:

pruregister for PLATO sections just'as f mmr.OtherolaSs.7 kiecond

possible cause for the different drop .rates:Was that for'the,-first'

few weeks, PLATO students were required-tO:do-their progiliminirii,problems"
.

in.one of the online, interactive compilers. Although tt was thought

that thiS would be fun for the students, the compiler gave very.poor

response time because of the amount of processintgoiiwou:to check for

errors after each student keypresi. Finally, droba'40.t:haVe'been, due
-

.in part to,student dissatiafaction Withfthetwa:pOor-leSionswhich were

later rewrittep._:$tudents had:not been systematically'pallekabout

the lessois,befOre,and tht relatiVely negative reattiOn.:.totio of

them wal quite surprising.

Another possible:explanitiou:for the,higher:drOP:rate-oh
.., ,

.

HATO, is that some .st'udents (; artti,machine and :that CAI

W111 always have this problem. The authors do not feel that the'

large differences found here could be attributed tO this reason. However,

some data on this question is reported belows, for CB 105 in spring 1976.

In sunmary, this experiment showed. that -PIATO lessons cen,, be ,

used to replace one lecture a week in 'an

sections. The remaining problems 'are: 1) Is 'there a higher drop

rate on 13:4.TO? and 2) Can instruction be improved througA continued

developnent of the CAI materials?

At the, same time as the large experiment was b -Co

-
in CS 105, acme smaller studies were being COnaiiiied with-the CS. 103.

class. In the first of these, Barber's (1975) iestioa' 'On

arithmetic was Used to test student attitude and peire;w1aPee ait*erencei':
,

after using different versions' of the leason..: Eabh,bf :the,:61 -*Went,*

was randomly assigned to 1 of 6 experimental groups end' studied the
.

lessOn in one of three modes (PLATO:coerciVei.JTATOno*.00erCiVe,t
handouts) and under. one Of two cOnditions bf qaeitioning (inOre

less freqUent). PIATO coercive students were:'fbrced'tO Ab

in the lesson, while the 'PLATO-min-coercive: grottp. could. Usata

ANS.tollbain the answers to the online exercise's,' without ,

them: Hendoiit students were lbahed out Of PLATO -0,1nd were given 7'

.which essentially consisted:of .cOpies of-the displays the ablier=-144desi

saw at the terminal The "More treqUerikiluestiOning grO

. exercises placed in various ...parts_of the .text...16..tliat..:033.aost-eies*,44

ended with a few exercises. The. "lees" ireciuiairt questio

vas simply the original lesson whichContained:a.,fesec

drills An variowp4aces.

ri;itt4o pionpo 'Afit not ills the Mr key nor exhibit': sother attitude

verfo3pOinteAittermq's from th. ..PPercArt.tin,PLAI tliff_rre .ccelbined

U. SeCondl*, there mere no 'evinces

n4in.'PLATO and:handout sbadenteor beW.h more or lesi,frequent

tetioning groups, On either.the' quiz overitRTRAPPari*NbiOsiven

morel days after the lesson or'on a question eif7OBTRAN arithmetic

an exam given three weeks-later.

There were some interesting differences in attitudei found

a questionnaire.distributed tommliatelytal2Diring the,kATO,session.

wway analyses of variance, mode (PLATO vs. Witten) b); questioning

pre vs. less frequent), were run on the questionnaire items. There

re significant (M, 77) 16.8, p < .001) differences between PLATO

a non-PLATO groups in whether the students would recommend MATO or

handout to a friend. PLATO students recommended PLATO,,wiile non-

&TO students were neutral. Other statistically significant results

nded to show that PLATO students with less frequent questioning were

sO happy about some parts of the lesson than the PLATO students with

re frequent questioning or those with handouts.

,

_ The_cpayAitterinee. twbween t .4e '.4rcto med4ik was that jug.° 114.5k0d.,f415.1..._ _

comented on each answer, but the handout student had to loOk-up answers

said comments in the back. The PLATO version-was perceived to be fun,

entertaining" and more interesting by 13 of students who resPonded

andwas credited with making it easier to learn by 11 studeits.: They

apparently had different expectations of CAI than a terbbook. They,

complained that "You Can't ask it queetions." The same vas true of the

handout, but nobody expected it from a' texi.

More frequent questions on PLATO gave the studentsmore..

confidence that they had learned the meterial.,and,a stronger, feeling

that the feedback helped their underetanding. There was.no evidence

of such differences for the handout students in the twO questioning

conditions.

Student behavior was essentially the,stme in the pLATO Coercive

and non-coercive conditions. Contrary to, expectation (Bmrber,.1975;

Agderson & Faust, 1973), students under learner-Control engaged in

appropriate learning strategies. The coercive students did not peak

at the requirements that were imposed. The attitudes evidenced on the

questionnaire were consistent with this behavior. ,Students Aid not have

a strong feeling that they prefered to make their own decisions about

,:-.-41pallyi,..theLabsenCe Of significant7perfoimano

an-:the iiOuris 'on the quiz ,meity have been 'tine'

ielateir.eiplanation is that with stioh ainouncet

testCtbafitOdente Were mot3veteCto'learn the:Materiskregardlesksdp

the methOd'Of4cesentation More Comple* contentsaght:h4Ve resulted

in perfOrmance -differences.,

'The second .experiment in OS:203 'involired-the.hyPothesiathat-

students would do more work'in the lessons and,thua-4ohi6e.bitter

understanding of the:course materia1:116:theY were reciuireldto dothe

lessons.. In order to test this hypothesis, ther704dentvin:Pq

were randomly divided into three grOupi. In Group 1, doing:the PLATO

lessons was not counted as part of the students' grides4 In:the other ...

two groups, doing the lessons counted 5% (Group .0 and ip% (Group'3) of the

grade with other factors down Weighted accordingly. Thei ekpectation

vas that increasing the degree to which the lessons cOuzted ine, grade

would increase studying the lessonsl and thns-increase *mane.

Based on 80 students (26 or 27 per group) whOiremained in

the course for at least 5 weeks and took the first eximli ihe nuMber of

PLATO lessons completed (using time in lesson as a,completion criterion)

iscpresented in the first raw of Table 5. Although the*, is about 1 chance

_Table 5 .

Wans on Performance Data of Three,Grouts
with Varying Percentages of Their-Grades.
Determined.fran Completing PLATO Lessons'

Group 1

0%

Group 2-

5%
Group 3
15%.

Probebility1

Ababer.of PLATO lessons.
'camp:101mi 7.7 8.5 9.7 .095

&tabor of PLATO lessons
coMpleted ignoring drops 8.5(20) 9.3(24)

.10.5(23) 094

Total madhine prObiem
points 136. 140. x54.- .50

litur exam 1 written 65.7 64.2 70.9, .29

Hour exam 1 PLATO 64.7(23) 60.6(25) 70.8(05) .006

Hdur exam 2 50.8(16) 50.0(23) 52.6(23) .84

'Final exam 128.3(18) 114.6(23) 129.3(23) , .17

1 Probdbility of the obsarved F value fram a 1-way analysis of variance

between the 3 groups.

Group sizes were 261 27, and 27, unless specifically indicated.

students in Group I took the second exam).

(i.e. 16

'::

e44.4t40..

beigii:re
. ,-, ,either n differences befteen,groups;l'andi2,,c44'grO41 did:bitter

-,-
ouis2-_2The'only statistically significant result lidigated that

" tiidentn in griitii"j- dicfbectai. on, 1' -the iiiiit... hOnr "exits-which

Van:On, la
-

SOipiailorbtietkindriotAitawere.alsoidollecteiOnjts,10:.-

a OD , student Usage 0inthe ;fall ni 1975. Table.6 predentseeMe

the requirekPLATO leSsons. .Columh

was taken. In'generalp.leissons were required. 'tabe'

'end of.the week following that during.Whickihe

but all previously assigned lessOni were reqUireC:Wbe.dOne'befOre

an exam, which accounts for the kileup.arounOiepteObe*29'. 'COltOn'

2 gives names (sameWhat.mneumonic) Of.tin.requirt. lesSons.ColUMn,5

reports the nuMber of occurrences of a type Of error.** OcCurred

when a lesson did not properly return to the Ope*ini,systpm.ifter .

execution. Lesson fortchar (FORTRAN chaiacter handling) :ha0(telatively'

large nuMbenof sugh "errors" due to in experimental quiz *oh was

apPended to it (see section 5.4. on the quiz systeM).'-:COIOnn 4 gives

the nuMber of times each lesson was invoked by a student in-the class,

LesSon:

t78 csintro
,

9/8

9/25

9/29

10/23

10/27

,11/3

- 11/3

.11/16

12/2

-4P/4

forbintrO

forbarith

forbif

fortfmt1

forbarray1

fmtsim

fortarray2

binsearch

fortfmt2

nuMbers

fortsubl

fortsubex

fortchar

bags 6 ,

CS 103 Fall 1975 - Lesson Dabn Accumulated gains

- -

BbMber_14Mber,of
Bad _of..._...atudents_.

exits uses entered

2 129: 84.

134. 60

; 6 197 89

4 214 76 70

.7 272 82 74

5 177 81 60

o 208 .66 44

3 87, 48 22

1 91 52 39

2 149 57 53

5 160 46 37

0 94 49 26

1 95 55 18

19 122 57 34

49

48

AtMber of
stpdents
completed per **est. -0

81

Average Avarage-
time, time Per student

47

27

64

63

49

30

86

56

66

33

68

.75

70

53

46

--(in- minutes) spent in-the-lesson breaCh-studenty and -colunn-

the a*eragetime.for studentevho completed the lesson.- the

,

last column ih.Tiblk6 gives UiPer bounde (beCause s udente were

-reviewing) tor the iveragetiies to'coMplete:the leseons.. Note:that

the relatively poor percentage or stndenta finiehing-fortatith is an

artifact dUe to the exieriment'desCribed-earlier in:cfhich one-third

of the students signedkinto the system, bUt.Were directed to a"handout':

and prevented from finishing the lesson. Althoughthoegenerelly decreasing

nuMbers in columns 5 and 6 woUld seem to indicatiedecreasinguse of and

interest in PLATO, they are also dueito a'relatively litg4 drop rate
. , r

which left only 67 students finiehing the coirse after an:initial

enrollment of 87. This result was largely due to 11 studentawho dropped

after taking the first exam (in the 6th week), but befOre.the-8th'week.

deadline. One-half of this exam was given on 'pLAT6, and *there were

several problems resulting in lost exmns and frustrated students which

could have caused some of the extra drops', Another indication of

dissatisfaction with the PLATO a..am came from student responses to au

end of seMester questionnaire. Although only a few students criticized

PLATO, four said it W48 fine e, ept for the exam. Also near the end of

- AddrAwar.14 ;10441,

.,Although no experiments were runo cerbesin.-slata Ina s'e011ected

in CS 105'.in order to observe rOutifie use of. PLATO. Por .examplei::Table.

-presents-:`C-Oiiree evaluation results laor 6, .Bameaterl th CS,..l05.: Only those

professore Who taught at least two ,aectione, withi:at 'leftist:4r ofl PIATO

are inclUded. Although regults within the fall 1975;0100:74er:IPrOfaisors

azid.".119 Would tend, to be :interpreted-,aa showing':kawer,:eValUstieni.',:or

professors in PIATO. sections tats. coiapared ;with' thOse,_.aateg

in nOn4PLATO,Sectionso...rdeults fives the -.*iria...PrbfesisOrti(A

whe taught PLA.TO and no4-P1ATO SieCtioni n aepaxate l:sieeel4ar,s'..:

support this idea. One possible .expiana3ion ii that ,both;:PficOaSsoris A

and r .remarked after fall 1975, that th r*ed fAri.

lecture to both- PLATO and non...PIATO groupB. They-both;felt, that;.their

lectures to the PIATO. sections lacked coUtinuiti :end often-OVer4pped-

or left gaps with the PLATO lessons.

8.5. Summary

k few general conclusions can be drawn from the large amoUnt

of data analyzed here. First, PIATO legsons originally 'written .by

Aww.11 iw 4n 4n4tnnA11114tnnu

(1] Anderson, P. C. and 7aust, G. W. Educational Psychology Dodd,

Mead and Company, NencYbrk, 1973.

1[2] Barber, J. A. -Data collection as an improvement technique for
PLATO lessons. Report UNCLCS-R-75,777 (M,S. Thesis), 'Department
of CompUter Science, Uhiverdity Of Illinois at UAddt-Chempaign,
DeceMber 1975.

[3j Montanelli, R. G., Jr. CS 103 PLATO eicpekinient, Fall 1974.

Report UIUCDCS-R-75-746, Department-of COmputer Science, University of,

Illinois at Urbana-Champaign, Ally 1975.

[4] Montanelli, R. G., Jr. Evaluation of the uae of CAI materials in an
introductory computer science course. weserted at the AEDS
International Convention, Phoenix, Arizona, May 1976.

[5] Jamison, D., Suppest P. and Wells, S. The effectiveness of alternative

instruCtional media: a survey. RevievtofEdudational Research, Vol. 44,
No. 1, Winter 1974, 1-67.

der4oni-, ,..140es',menUal.and.guide td;the.:ACSES'iPliA'APkt

(*4.0.!11,r*00:1 RePOrti4041Pter1.97.5..
-

40.erson:, R. 1. An-AFperiments on modes of question an

appeara,s DCS:Reporti,Deq0000r197,0 -

y

beri, 3. A. :in' improve:tent teichhiqUe,fOr.!.P/ATO:..'

Report UIUCDC.SR757q77 -thelifie0:,::::*torigneitik.Ok:OdtipUter.
...Science UniveraitY ..Dece Mbei 1975.

Barnetts-R. D. Winteractilie,OWL syir6em.,1:01:00o, Report1.3Iugcs-
A-75-685 (M.S. Theiis), Iepartmant Of-.Cdaphter':SCiencephiVertittiof

:Illinois et'Utbaha4lhamiaigni Oniltry 197:5

Danielson, R. and Nievergelts J. (1975). An automatic tUtOrHfor
introductorY prograiming students. Proc. Fifth Symp. on"COmputer
Science Education, SIGCSE. Bulletin, Vol. 7, No. 1, Febrhary'1975...

,

Danielson, R. L. PATTIE: An automated tutor for top-down *ogre:ming.
Report UIUMOS-R-75-753 (Ph.D. Thesis),.Department of Computer4Sciences
University of Illinois at Urbana-Champaign, Ootdber 1975.

Davis, A., Tindall, M. H. and Wilcox, T. R. (1975). Interactive error

diagnostics for an instructional programming system. Proc. Fifth

Symp. on Computer Science Education, SIGCSE Bulletin, Vol. 7, No.--.4

February 1975.

Davis, A. M. An interactive analysis system for execution4ime errors.

Report UIUCDCS-R-75-695 (Ph.D. Thesis), Department of Computer Science,

University of Illinois at Urbana-Champaign, January 1975::

Eland, D. R. An information and advising system for an automated' ,

introductory computer science course. Report U/UCDCS-R-75-.138 (Ph.D.

Thesis), Department of,Computer Science, Uhtversity of Illinois at
Urbana-Champaign, JUne 1975..

Gillett041);--An-interactive-program.adviSing-gyatem..2'Proc.
of SIGCSE-SIGCUE joint Symp., on Computerilcience Education, SIGCSE
BUiletin, VOl..-8,-No. 1, February 1976.

-Gillett, IN-D. 'Iterative techniques for detection of program anomalies,
mihmitted to the Conference on Principles of Progrelphing Lenguagei, Los..
Angeles, California, January 1977.

Gillett,-W. D. Interval maintenance in an interaCtive environment.
in preparation.

Iiquierdo$ F. J. A generator/grader of-prcibleMs*outayntaXof
prograMming languages ,to be-used'in an autoMOteCeXainsystemenott
UIUCDCS-175-755.(M.S.,.Thesis),'DepartMentompUter Sciendef
UOiversity of /11inois'at Urbana-ChamPaign, SepteM00,1975.

Mateti, P. An autoMatic verifier for a class of 8pitingpr paw!
(Ph.D. Thesis), to appear as DCS Report,40ePteMber:l976.

,

Montanelli, R. G., Jr. CS 1o3 PLATO experiMeht,:Fill 19711,18-port
UIUCDC841-75-746, Department of Computer Science) Unilinrsity'vf-'
Illinois at Urbana-Champaign, july-1975.

Mcntaneili, R. G., Jr. Evaluation of the use of .CAI materials:in an
introductory computer science course. presented at the AIDS International
Convention, Phoenix, Arizona, May 1976.

f

Montanelli, R. G., Jr. Using CAI to teach.intrOductory computer
programming. submitted to Communications of the ACM

Montanelli, R. G., Jr. and Steinberg, E. R. -Using PLATO to teach'
introductory computer science - an overall evaluation. in .preparation.

Nakamura, S. Reorganization of an interactive compiler. (M.8 Thesis),

to appear as DCS Report, August 1976.

Nievergelt, J., Reingold, E. M. and Wilcox, T. R. The automation of
introductory comnuter science courses. in A. Gunther. et al. (eds).

Sega..----A-comparitson-of:stndent-verformancteunder-;-tiO-Inethoda-..
,

error announcement.. Report UTUCDCS-R-75-727 (M.S. Vheais) $.

4: Deparjment Of -COmputer Science, UniVersity. of. Illinois ,et Urbana=;'

- ChemPaign,4May 1975:
.. .

, ,

;.,-.
...

Steinberg,.E.,R.!npd'Montanellil.p4 G.'veir..; Effects of-,boerciVeness
. ,

...Hand:aspects df humanOachine interaction in-a-COM0**H3Pie000..-;;CAL*

,.......1008On. tO be submittedtd journal of Comiuter-ibaianitinetion.'
. .. , . .

, Tindall, M. H. An interactive table-driven parser system. papnrt
=dm-R-75-745 (M.S. Thesis), Department of Computer Science, University
of Illinois at Urbana-Champaign, August 1975.

Tindall, M. H. An interactive compile-time diagnostic system. Report

UNCDCS-R-75-748 (Ph.D. Thesis), Department of Compnier Science, Uhiversity
of Illinois at Urbana-Champaign, Octdber 1975.

White L. A. CAPS compiler CPU use report. Report UTUCDCS-R-.75-790,

Department of Cceputer Science, University of' Illinois at Urbana-

Champaign, Lecember 1975.

Whitlock, L. R. Interactive test construction and administration in

the generative exam systen. Report um:a-R.-76-821 (Ph.D. Thesis),
-tepartnnt of Computer Science, University of Illinois at Urbana-
Champa_gn, September 1976.

T. R. The interactive compiler as a consultant in the computer

aided instruction of programming. Proc. of the Seventh Annual Princeton
Conference on Information Sciences and Systems, March 1973.

Wilcox, T. R., Davis, A. and Tindall, M. H.. The design and implementation

of a. table-driven, interactive diagnostic programming system. to appear

in Communications of the ACM.

Wilcox, T. R. An interactive table-driven diagnostic editor for

high-level programming'languages. in preparation.

Appendbc: Computer Science Lessons

a. Sequencintand Entry Lessons

Description Status

listiy into the ACSES. System .. operational

Convimational ReqUest Operational
reliabitit Proceirsor
*Pter, Index to the Conputer operational.

Science 'Lessons
. , ,

Introduction- to the Mini- dust .starbed
Language _Sequence

Intro. to Language Independent
Programing Sequence

Introduction to the PL/1. Lesson
Sequence

Introducition to the FORTRAN ,work: in';.:t4gogkese
Language and Lessons

Introduction to the BASIC just started
Lesson Sequence

Introduction to the COBOL operational

Lesson Sequence

Introduction to the-APL Sequence operational

lubroduction to the Logo jult Started
Lesson Sequence

,

Introduction to the Data operatiOnal

StructUres Sequence

Introduction to the -Numerical just started
Analysis SeqUence

Introduction to the Logical operational.

Design Sequence

Router Lesson for Conputer operational
Science-doUrses

1

.
,

. 151

Name

introprog

Pal

soinaga

csmini

cstrees

roboint

robocar

rObostack

rObobick

c. Mini-Languages

,Bascriptimk

:Introduction to.the'Mini
Language SeqUence

Pictorial-Progralming Language-.
for.Children.

Wig
RecUrsion

Mini Progralming Systea.
-PrOtOtype

Tree aCiltitit Manipaastion
Mini-LangUage

IntrodUctiOn tO the Robot cte-
Sequence:.

Robot Car Mini-Language,

Robot Car Sta0k:AlgOrithm

Robot Car BaCktradk'Algorithm

Ste us

;u7Trterted.

lsr complete

titiovir
,-.9p,4401114

pPe ioa

153
-146-

ope tiOnal,

W.oiklin progress

-Lt.Ncirk14...P0i008.8

work kréress

Name

introprogc

fleiCktt

loops

beginblock

detab,

files

recurse

: trigrat

.formlang

wgremar

d. language. Inderndent. Programing

_
, leiCrOn ,

IntrOductiontOfLanguage :-

Independent 'Programing Sequence

114w.Chartint:

TOTYpe'Idops

:Begin BlOcke,:

Becision...Tables

-Fire

PecUraion

Directed Development of a
Program

Formal Computer Languages

Two Level Grammars:.

154

t7;

-147-

Status

nearly complete

nearly'cOmplete.

operational'

operational

operational',

-iiiiie*igkitair7-7- -7 -7 77

operational,

wOrk40:prOgress

nearly,Compiete

prOgress
_ -.

e. PL/1 Language

Name I/222E12L1221 Status"1.--

pllintro Introduction to the PL/1 operational

Lesson Sequence

pllarith PL/I Arithmetic Operations operational

_pllstring Iftring.Operations in_PL/1: _ .operatiOnal.

pllif PL/1 IF Statements and DO operational.

Groups

PI MO- 'PL/1."DO Statnients operational'

pllarray PL/1 Arrays nearly complete

pllarrayx Advanced Examples of PL/1 nearly complete

Arrays

pllproc PL/1 Procedures and Subprograms nearly complete
.......

pllio PL/1 LIST Input/Output bierational

plledit PL/1 EDIT Input/Output nearlyCOmplete

plleditdrl PL/1 EDIT Input/Output Drill nearly complete

pllpic PL/1 PICTURE Specification work in progress

pllrecurse PL/1 Recursive Procedures nearly Complete

pllstrl Data Structures in PL/1" operational

155

'Nome
.0

fortintro

'fortarith

.for,bil.

forbdo -, IFORTRAIU.D0400pa
4 ,

4

forbarrsyl Octi Diiiniii,.:'

tirbehrigkY2 DO D4Dif81.01*.I.Arriirs.-
foriiiii61,:,, imOiqiionteiliit,

, .:DeaCti

IniroduCtion to 'the. FORTRAN
Language and. Imemonor

Introduction tO ircerati Operational
Aggvnetio
FORTR4i4 S.:batmen- operatiO41

atatus"

mOrk: in prottritife

forboubex FORTRAN ERNIROO1INF'2,

fortfunct FORMAN,FUNCTION Su

forth& Introdiction- to lioiTRA*

Staipementi

fortfat2 Adhemced FORTRAN FOPMAT
Statement '

fmtsim FORTRAN FORMAT SiMulstar nearly qnplete

fortcbar Character Handling in FORTRAN operational

156

B. BASIC Language

Name Description Status

basicintro Introduction to the BASIC just started
Lesson Sequence

basicbasic Introductory BASIC just started

basicrer Beginning BASIC work in progress_

basicrefl Advanced BASIC work in progress

basicloop FOR-NEXr_Loops in BASIC just started .

basicarray Arrays in BASIC work in progress

157
-150-

h. COBOL Languar

,.

...-. Name Description, , Status

tcdbolintro Introduction to the 00BOL operational
Lesson Sequence.

coholiden COBOIrIdentification and operational

ibmdzolment Dtvisions
.

cdboledit Advanced COBOL PICTURE operational

Clauses

'coholdate. COBOL Data Division operational

cdbolproc COBOL Procedure Division operational

cdbolref COBOL Language Reference work in progress

i. APL Language

Name Description Status

aplintro Introduction to the APL operational

Sequence

aplscalar APL. Scalars operational

aplvector APL Vectors . oPerational

159

160

Name:.

snobOl

:Asp

-logointro

logotest

logoproc
-/

logocom

k. Other Languages

.DeticriptiOn.:

'SNOBOL4'.

L/SP List Piocessing
Language .

InAitduction-to-the-- -
LOGO Lesson_Sequence

LOGO Test Instructions

Lola Procedures

LOGO Commands.

161
-154-

_StatUs

revidion needed

work in progress

just started-,

just started

justetaAed

work in progress

InformatiOn:13rOcesding:.:.

sortintro

:4forting

sOrtlab

Hbinsearchl

Aztrostrct

Strl

str2:

str3,

lister

wader

,treetrav

strees,

ion.

Introduction tollorting

Sortiug.,

so* prOgam Judging.

Binirrtearching:-'
. .

70,mar,iSeax04nillith704:TRAF

3.ti0Pdtiorrbq.2thel:Ots-
..StractUreiz:0614,060,

-Infokmations:StructurefP'.

Structurè

Exper.ienCes7.ritit#S...t;,;itades:

.TrarteriaL

Treer--and List MinipUlation Mini-
Language

Statwa

ewc* in progress

ravi.siOn,:needed

!cm* in. progres8

nearly , Can Plate

Name

intronum,

matmult

nuiqUad

iineql:

lineq2

tootlab

leastsq

linprog

montecarlo

splinei

m. NUmerical Analysis

Description ,

IntroduCtion to the NbMetical .

Analysis Sequence

Matrix.Mhltiplication..

NuMerical Integration

tinear EquatiOni- :

Linear Equations

Non4inearEquatiOn4

Least SqUares

Lineirj,kogramming:
.

MOCte.Carlo:NkIthods

...SPliOe:APproximitiOu

163

.v.,Status

juSt. Started

..worIt'in progress

reliipion needed

.7,.i:Ctit in progress

.revi,Sion needed
--

.tOrision'needed

operational
,

'OPirati0114..

operazional
- -

iork iüproresa

n. Applications

Descrivbion ,Status

=siMulation Literate Simulation woes in progress

, traficsim Traffic Simulation operational .

..,

racetrack Simulation Games operational

--"-PeZfroll- Payroll-Program operational ----
, .

csslides Computer Utes in Bustles's 14ork in progress

16 4

-157-
^-

o. SystemlIrokran'Ining

Description

Experience with 'Di3kstraSa-
phores

illustration of. the DeadloCk
Problem

Ekperience With I/0 SUpeivisor'
'BufferiUg 'EOUtines

Finitif State .Michine for
Lexicat Analysis
Top-Down. pinitaic 'Analysis

Bottom-iip.Analisis of Expressions

Code Generation by 'ienplates

Status

opertional

operational

operational

sy4

operitiouil

:-operational

:aearkW:CUmplite

operational

p. C

Descri

.IntroauctiOn'zto
CompUting'Rerx des.'Office

134'0.3,1*g
Jab .Control Langua

-3124436.01P?ad1499,L,1° and

DEC713 :Sp/ ,piles
ciikonii Plotter,
Remote Terminals

calcomp

online

Status

Sifork in Progress

166

-3.59-

Name

intrologic

logicarith

logicgate

logicmdn

logicff

logicseq

logiccdr

logicmsi

logidhdw

logicflow

logiclab

boolex

logiccoMb

R. Logical Design

Description,

Introduction to the Logical
Design Sequence

Introduction to Digital
Arithmetic

CoMbinationtI Building
Blocks

Minimization of Boolean
Expressions

Basic Sequential Building
Blocks--Flip.Flops

Sequential Circuit Design

Combinatorial PrOblems

MS! Logical Building Blocks

Semiconductor Fabrication Methods

Data Plow Edagrams

LOgic Laboratory

Boolean Expressions

Combinations of Logic Circuits

187
.160.

Status

operational

operational

operational

operational

nearly complete

work in progreis

operational

operational

operational

operational

just started

work in progress

just started -

Name

refianual.

cursedit

wits

Dicription
. .

ReferendeltimMeil,

for the.-pn.Line Compilers

JITOTRANCOOileir'

FCTRAN
Compilers

,

pllcomp pL/1 CaMpilSr-

pllcomp2 PL/1
vith,Linelditor

fortcomp FORTRANZoMPiler

fortcomp2 PORTBAN'Compileridth
Line!ditor

basiccomp BASIC Compiler

cobolcomp COBOL Compiler

pascalcomp PASCAL Compiler

snobolcamp SNOBOL4 and SPITBOL
Compiler

lispcomp LISP Compiler under revision

StatUe

:opeiroiona

oPerSiOnal:

..OPer41,9nak

:under reVisiOn

Under reviiion

under revision
4.

under revision

under:revision

unaer:revision

under.revision

Under revision

Name

cscomments

cstalk

csmsg

csnotes

a. Communication

Description, .

Comments between Cg Students
and Authors:.

On-Line Consultation with an

InWtructor

Bulletin Board for Course
Messages

CS Author - Author Communication

169
-162-

Status

'aperationaL-

operational

operational

operational .

.

. 'Lesson Writing and Elvauation

Name Description

atle Suggestions on Plato Lesson
Writing Style

coauthors UtefulNaterial_and,_Coding
--:Convention0Lfor-CS_Authors--

Graphical Lesson StrUcture Design

Mini Programming System
Prototype

cslibrary Library of Useful Routines, Char-
sets, Micros, Etc.

cscode Coding Suggestions for CS Lessons

kail. KAIL Lesson Programming Language
Compiler

kaids Description of KAIL Language

khelp Author Aids for KAIL Compiler
as Implemented

csscrap Lesson Space for Author Practice

csnotes CS Author - Author Communication

csdesign

csmini

Status,

operational

operational

operational

operational

operational

operational

work in progress

nearly complete

operational

operational

operatif,eml

1151111JOGRAPHIC DATA
SMUT

1. Repom No. 3.

UNCDCS-R-76-810

3. Recipim:it'a Aceession No.

E ie.&

ACSESL The Automated
at

Computer Science Education System
the University of Illinois

TWribate .,

August 1976
6.

7. Autbor(s)
J. Nievergelt) et al.

il. rerforming

10. Pi-oWa=Work

Ocganszation Rept.
,.

W. Performing Organization Name and Address
Department of Computer Science .

University of Illinois at Urbana-Champaign.
Urbana, Illinois 61801

Unit No.

Nag
-

--t7-r.',10..._rtroct/Groo-
Dc 1511 andEPP74.i.--
21590

12. Sponsoring Organization Name and Address.

National Science Foundation
Washington, D.C.

11 Type of Report k Period
Covered !

,

.

',

ANN PI a 10

15. Supplementary Notes .

16. Abstracts

The Automated Computer Science Educational System (kiXES) has
been developed at the University of Illinois for the purpose ot providing
improved education for the large nuMber of students taking introductory
coMputer science courses. The major components of this system are: .

a library of instructional lessons, an interactive programming system
with excellent error diagnostics, an information retrieval :Irstem,
an automated exam and quis system, and several lesaons wnich judge
student ppograms. This report briefly describes et,,ch uf these
components, as well as some ideas on programming language design
resulting from our experience, and presents an evaluation of the use
of the system over the past three years.

17. Key Words and Document Analysis. 17a. Descriptors

computer -assistea instruction interactive compilers

CAI . infatuation retrieval
.computer science education artifir!ial intelligence

educational 'innovation programming language design
PLATO

lib. ldentifiers/Open-Ended Terms
.

.

..., .

17e. COSATI Field/Group

111.,AvallAtoility Statement . 19..Security Class (This
Report)

WiCLAASIFirp

21. No. of Pages

20. Security Class (This
Pa e

22. Price

FORM NTIII1111 110.70

171

