
DOCUMENT RESUME

ED 134 150 IR 004 309

AUTHOR Worland, Peter B.
TITLE Teaching Structured Fortran without Structured

Extensions.
INSTITUTION Gustavus Adolphus Coll., St. Peter, Minn.
PUB DATE 76
Wen 25p.

EDRS PRICE MF-$0.83 HC-$1.67 Plus Postage.
DESCRIPTORS Algorithms; College Pr3grams; *Programing;

*Programing Languages 4Tching Techniques
IDENTIFIERS *FORTRAN

ABSTRACT
Six control structures are used in teaching a college

Fortran programing course: (1) simple sequences of instruction
without any control statement, (2) IF-THEN selection, (3)
IF-THEN-ELSE selection, (4) definite loop, (5) indefinite loop, and
(6) generalized IF-THEN-ELSE case structure. Outlines, instead of
flowcharts, are employed for algorithm development. Comparisons of
student performance in structured and standard Fortran classes show
no statistical significance, but suggest that the former approach is
appropriate. (SC)

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy a-vailable. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hatdcopy reproductions ERIC makes available *

* via the ERIC Document Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original. *

-r

TEACHING STRUCTURED FORTRAN
WITHOUT STRUCTURED EXTENSIONS

by

PETER B. WORLAND

GUSTAVUS ADOLPHUS COLLEGE

ST. PETER, MINNESOTA 56082

02

TC -P THIS COPY.RIGHTED MA'EFII,.
PEEN c,RANTED BY

--Peter B. _ WoT;a0.

TO ERIC AND OR,T.AT.i:AY;0,4s
OPERATING

UNDER AGREEMENTL Ft THE NATIONAL IN
STITUTE OF EDuCATIOTi FURTHER RERRO-
DUCTION OUTSIDE

EPIC SYSTEM RE-QUIRES PERMISW.N !RE COPYRIGHT'OWNER

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN.
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-

SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

*

I should first define, or at least give some characteristics of what I mean

by structured programming (S.P.). The main characteristic of S.P., as I see it,

is that it embodies a "top-down" approach to the development of programs. That

is, in the development of an algorithm one procedes from the general to the

particular. The general statement of a problem is subjected to repeated

decomposition into more detailed statements about how the problem is to be solved.

To quote Niklaus Wirth: "The process of refinement continues until a level is

reached that can be understood by a computer, be it a high-level programming

language, FORTRAN, or some machine code." [1]

The result is - ideally - programs that are relatively easily understood and

modified, programs that are reliable, not just efficient. And there is a good

deal of evidence to indicate this is so; consider, for example, the article by

F. T. Baker on the chief programmer team concept [2]. This approach is becoming

more and more important; costs are increasing because of increasing salaries

of programmers, and computation time is getting cheaper.

But why S.P. in FORTRAN? Wirth writes that S.P. is not possible in an

unstructured language such as FORTRAN [1]. He writes further,

"What is possible, however, is structured programming in a 'higher level'
language and subsequence hand-translation into the unstructured language
...although this approach may be practicable with the almost superhuman
discipline of a compiler, it is highly unsuited for teaching programming
...although there may be valid economic reasons for learning coding in,
say, FORTRAN, the use of an unstructured language to teach programming

- as the art of systematically developing algorithms - can no longer be

defended in the context of computer science education."

Well, with respect to his comments on the systematic development of algorithms,

I couldn't agree more. I do not ask my students to develop their algorithms in

terms of FORTRAN. I do, however, require that they carry out the "hand-translation"

into FORTRAN. This has not proved to be an "almost.- sultet..uman effort", the

students manage quite well, at least on the ?roblems I present them with: But,

more on this point later.

03

-2-

Clearly, a language such as PASCAL with its rich structuring facilities, in-

cluding those for data as well as instructions, is ideal. But there remain several

good reasons for using FORTRAN. First, there is the advantage of availability (or

rather, the unavailability of PASCAL or ALGOL or PL/1, etc.). There are reasonably

compatible FORTRAN versions available from computers as powerful as an IBM 370/165

'down to the smallest PDP 8. Like the proverbial mountain, FORTRAN is used bezause

it is there (or perhaps because it was there). On larger systems such as the one

I have the opportunity to use (a UNIVAC 1106), the choice of languages includes

assembler, COBOL, two versions of FORTRAN, BASIC,RPG, SNOBOL, and ALGOL. "Aha,"

you say, "use ALGOL".

Use ALGOL, with its awkward, tedious, input-output statements; ALGOL that I

am only weakly acquainted with, uncomfortable with, unlike the FORTRAN I know so

well, that I've worked with so long (I'm a numerical analyst at heart); ALGOL, for

which there are so few elementary textbooks that I need to deal adequately with the

wide range of skills and talents I find in my students; an ALGOL that gives me puz-

zling results or error-messages- that-strongiy-indicate--c-ompi-ler-bugs----bugs- that----

when shown to the systems programmer, lead him to respond with something like, "Oh

yeah. That looks serious. I'll have to look into that. I'll get back to you later."

When in frustration, you explain the problem to the manufacturer's representative,

his response is, "AL - who? Well, yes, that looks serious. We'll look into it

and get back to you later." Much later. The point is that it's sometimes hard

to get a language other than BASIC, FORTRAN, or COBOL that's adequately supported.

Another reason for using FORTRAN is related to the latter point; it's the

matter of a student finding a job when he/she graduates. I have known quite a few

students who have landed career-path jobs simPly bacause they had some experience

writing FORTRAN, or, even better, COBOL, programs. With some exceptions, a student

competing for such positions, with a knowledge of PASCAL or ALGOL instead of FORTRAN

or COBOL will not get the job.

04

A third advantage of languages like BASIC and FORTRAN, although many will

consider this to be weak, lies in their relative simplicity. Although I have no

hard data to back this statement up, I believe that it is easier for students to

learn to program with such languages than with ALGOL or PL/1. If some basic concepts

of control structures can be preserved using FORTRAN, I believe it's worthwhile.

'Because it is simpler, more students can learn to write good programs. The interested

students can learn PASCAL or ALGOL as a second language. However, at a college of

our size the resources are not available for teaching a second language.

Most of the ideas presented here are not new. It was Hull, I think, that first

suggested the idea of structured FORTRAN in [3]. (You might know the idea would

start with a numerical analyst). A flurry of papers on the subject of S.P. and

structured FORTRAN appeared shortly after that. The paper by Meissner [4] has

a large collection of references on the subject. In all the papers I've read on

structured FORTRAN, the authors recommend the use of a pseudo-language in which

a structured algorithm may be written and then translated by a preprocessor into

.1

The--same--pap er-by-Meissner- -[41-contains-a-- list--af-such-preprocessors .

11,

#

This fall I'm teaching, for the second time, an Introduction to Computer

Science course using FORTRAN with concepts of structured programming, but without

structured extensions. Why, you may ask, ':).11c1 I do something as silly as that?

Well, in my case it was easy. I didn't h ime, nor did I have the money. By

the time I had decided that this approach wcs a good idea, the semester was about

to begin. Also, other jobs took precedence between the previous and current

semester. There was no time for me to write my own preprocessor and the school

doesn't have the money to buy one.

What other reasons could there be for not using such extensions? Ideally, the

structuring facilities should be built into the compiler. This is already happening,

and my approach may soon be obsolete. The FORTRAN Standards Committee is pxoducing

a FORTRAN version with a number of new control structures. Of course, we will still

have to wait until the computer manufacturers announce these new versions.

05

-4-

Until then we must rely on a preprocessor, which accepts "structured

FORTRAN" and produces standard FORTRAN as output to a file which must be exe-

cuted later as a FORTRAN program. This is in itself an awkward business; the

student is running two programs instead of one. To debug slit:di a program he/she

may have to examine the output from the preprocessor as well as the FORTRAN com-

piler. For very small systems (e.g., an 8K PDP 8) this approach may not be

possible at all.

Of course, if the student is required to account for the conversion of

"structured FORTRAN" into standard FORTRAN, these problems do not arise. I will

point out a few other advantages a bit later.

In my approach to structured FORTRAN, I use essentially six control struc-

tures. These are all based on the ideas of Hull [3], and on the iMprovements

suggested by Charmonman and Wagener [5]. These structures are presented to the

class in the order given here, as soon as the class has been introduced to the

idea of conditional transfer.

The first, and-most-elementary-structureT-fs-the timple sectnence-, whke,

consists of a sequence of instructions without any transfer of control statements.

For example,

READ (5,100) A,B,C
X= (A+B+C) / 3.0
Y SORT (X)
WRITE (6,200) X,Y

is such a sequence. This sequence could be delimited by BEGIN and END comments,

as Hull suggests, to give the appearance of a block structure, but I have found

that they are not really necessary with this approach. The fact that such sequ-

-5-

ences always contain, or are nested within, other structures is sufficient to

delimit them.

The next two structures are the ones most difficult to deal with using this

approach. They are the IF-THEN and IF-THEN-ELSE,structures, sometimes called-el-

ection structures. The general forms and examples of both are the following:

40

50

IF(condition)

THEN (optional comment)
[do this if the condition is true]

END IF

IF (X. LE. 50)

THEN DOUBLE THE WEIGHTING FACTOR

W (I) = 2.0 * W(I)

TSCR-(IY = TSCR-(I) +-W(I) *X

I = I + 1

END IF

Go To m
Go To n

Go To 40
Go To 50

Figure 1: The IF-THEN structure with an Example

07

- 6

IF (condition)

THEN (optional comment)

[do this if the condition is true

ELSE (optional comment)

]do this if the condition is flse

END IF

Go To m
Go To n

Go To p

IIF (NAME . EQ. MINAME) Go To 10
-

C THEN FOUND FORMER EMPLOYEE

10

20

END IF

WRITE--(67-300)---NAMET-NUM, TAX

TTAX = TTAX + TAX
SW = 1

ELSE CONTINUE SEARCH

I = I + 1
MNAME = NAMEMP (I)
SW = -1

30

Figure 2: The IF-THEN-ELSE Structure with an example

Go To 30

- 7 -

In both cases the box is given for emphasis. The structure in.the boxes

look very much like the corresponding construction in ALGOL or PL/l. And that

is the idea; the students are told to write-this-pert-of-the-strurcture first

and then to fill in the necessary GO TO's and statement numbers to make it work the

way it looks. Once the students get the idea, it becomes a trivial bookkeeping

step to put in the necessary GO TO's and statement numbers.

I do emphasize thatthe GO TO's should be used only to implement the

control structures given here, if possible (like Dijkstra, I am not dogmatic

about GO TO's). Also, note that the GO TO's are placed as far to the right as

possible to improve the readability of the programs.

A nice feature of this approach is the ability to use comments with the

THEN and ELSE keywords, as in the above examples. This feature is important

in the formation of indefinite loops, to be discussed next.

Definite loops - those whose termination depends on a counter of some

sort - are easily handled using DO loops. The only special requirement that I

have is that the students terminate each DO loop with a-CONTINUE statement to

clearly mark the end of the loop.

Indefinite loops - those whose termination depends on some parameter or

condition - are another matter. They are, to my mind, the least attractive of

the control structure I use. What I am trying to do, of course, is to stimulate

a DO - WHILE or DO - UNTIL kind of control structure. The general form, together

with an example are:

LOOP (optional comment)

***EXIT FROM LOOP (optional comment)

IF (condition) Go To p

END LOOP

Go To m

10

20

8

LOOP WHILE SCORE > = 0

READ (5,100) NAME, SCORE

***EXIT FROM LOOP WHEN END OF LIST

IF (SCORE .LT.0.0) Go To 20

SUM = SUM + SCORE

SUM SQ = SUMSQ + SCORE * SCORE

END LOOP
Go To 10

Figure 3: An Indefinite Loo? Structure with an Example

Note the effecti.,.e use of the comments following the keyword LOOP.

This is an improvement in the schemes given by Hull, and later by Charmomman and

Wagener. Again, a single GO TO is used to implement the loop. The awkwardness

clearly labeled as an exit from the loop. A comment can also be used here to

-indicate the reason for termination.

The last control structure that the students are exposed to is the very

useful CASE structure, which is a generalization of the IF-THEN-ELSE construction.

The general form, together with an example is:

m2

Mk

-9-

GO TO (M1, M2,.d.Mk), v

CASE 1: (optional comment)

[do this if v=M1]

CASE 2: (optional comment)

[do this if v=M2]

CASE K: (optional comment)

[do this if v=Mk]

END CASES

GO TO (50, 60, 70),,IX

CASE I: X <= -
50

YFIC+2

60

70

100

CASE 2: -1<X<1

Y = X**2

CASE 3: X> = 1

Y = 3*X + 1

END CASES

Go To P

Go To P

Go to 100

Go to 100

Figure 4: CASE Structure and an Example

Once again, appropriate comments can be very effective.. The key to the

use of the CASE structure is in the determination of the values of the integer

variable v, and in the fact that the number of statement numbers in the GO TO

list can be more than the number of cases if some of the numbers are repeated.

I give my students a number of examples and exercises which force the student to

11

-10-

do some thinking about particular ways to use the CASE structure effectively.

For example, one would not want to use a complex set of nested IF-THEN-ELSE

structure simply to define v; in that case the USE structure might as well

be eliminatee, altogether.

You will note how similar these control structures appear to those used in

PL/1 and ALGOL. Structured programs, no matter what the language, look very similar.

The students are exposed to all of these control structures as early as

possible - usually by the end of five weeks. .Naturally, this approach is not

without its problems. Some of the typical - but early - errors are illuscrated

in the next three figures:

10

20

30

LOOP
..

***EXIT FROM LOOP

IF (X.GT.Y)
THEN

END-LODFL

ELSE

Go To 20
Go To 30

Go To 10

END IF

Figure 5:

1F (S.LT.60)

THEN

Overlapping Structures

Go To 10
Go To 20

10 Go To 40--
_END IF

20 'IF (S.LT.70) Go To 30
Go To 40

THEN
30

END IF
40

Figure 6: Jumping Over a Structure

IF (X.GT. COST)

THEN

IF (A-1.LT.0)

THEN

ELSE

IF (P.NE.0

THEN

ELSE

Figure 7: Missing END IF's

Figure 5 illustrates the case of overlapping structures. Some students

seem to at first confuse the ideas of overlapping versus nested. When this happens,

I give the student some helpful hints as to how the particular problem can be

solved in a different way, without such a mess. Having seen this, the students

do not make this kind of error again, at least in my experience.

Figure 6 illustrates how some students, in attempting to be efficient,

jump past a block of code. Again I repeat to them the near-axiom: IInever use a

GO TO except to implement one of the control structures." With some hints the

students realize that the problem can be handled in another way (e.g., a CASE

structure or nested IF-THEN-ELSE structures), and this type of error usually

does not arise again.

Figure 7 shows a common frustrating problem -- the omission of the END IF

delimeters. The result is a sequence of code that looks ambiguous, especially

with the last ELSE improperly indented. Sometimes the student is not even iure

what he/she intended. In this case the student is reminded that each structute

has a beginning and an end, and that an examination of his/her design of the program

:i.3

- 12 -

will straighten out the ambiguity (more on this later). Remember that the idea

is that I or anyone elhe" should be able to read the code as a sequence of control

structures, where control flows uniformly from top to bottom, without looking at

the GO TO's at all.

In general, the students seem to get the idea fairly quickly. Putting in

the GO TO's, comments, and line numbers become more or less automatic. One

complaint I have seen of this approach is that it requires a "disciplined approach

to programming". But, after all, isn't that precisely what the activity of program-

ming needs? The errors described above could be made in PL/1 or ALGOL just as easily.

The difference is that, rather than have the compiler detect the errors, I, as the

instructor, must point them out. The extra burden is on me, but not so much on

the students.

Of course, I have thus far discussed only the ,:ontrol structures that I need

in the code. And S.P. is concerned not only with the control structures, but also

with the whole design process. The process of algorithm design should really be

language independent, except for the last "refinement", to use Wirth's terminology.

Refinement refers 'o the step-by-step inclusion of more detail in the description

of the problem solution.

In genera], I try to get the students to develop their programs from the top

to the bottom (i.e., from the general to the particular). Furthermore, I try to

get them to "think modularly", that is, to break up large problems into sequences

of small, easy-to-handle modules, which arise in a natural fashion in the process

of refining the solution. For this aspect of the course I teach by example (see below).

,Rather than use flowcharts to do program design, I prefer to use outlines.

To me, flowcharts are outmoded, clumsy, and take too much time to construct. A

well-done flowchart may look attractive but it does not look like a program.

There remain considerable hurdles before a complex flowchart is converted tp an

equivalent program. T can best illustrate what I mean with the following example,

- 13-

which I discuss in claSs.

The problem is to write a program that will find the median of a set of test

scores. I find that this is a good illustration for the use of arrays. After

some discussion of how we would find the median if we did the problem by hand,

I write down the following outline of the solution:

I. Read all the numbers into an array, SCORE.

II. Sort the elements of SCORE into ascending order.

III. Compute and print the median.

Next, we decide that each of these steps is complex enough to be refined

independently. We note that step I. is not difficult since we had encountered

similar problems before. We decide to use a negative "score" as a trailer.

Refining step I., we have:

I: Initialize the loop index I to 1.

II: Repeat the following until score SCORE (I) < 0:

A. Read a score into array location SCORE (I).

B. Add 1 to I.

III: Set N ... I - 1, the total number of scores.

That part of the problem is reasonably refined; it would be a simple matter

to code the later outline into structured FORTRAN. Therefore, next we concentrate

on step II. Since sorting had not been discussed before, I spend some time with

some short samples of data considering how we might sort them by hand. I lead

them into a simple exchange sort algorithm. The following outline is the result:

1

15

-14-

IV: Set NOC = N 1, the numbers of comparisons to be made.

V. Repeat' until switch W does not change value:

A. Set switch W=0

B. For I=1 to NOC

11. If SCORE(I) > SCORE(I+1)

then

a. Interchange SCORE(I) and SCORE(I+1)

b. Set W=1

C. Exit from loop if W=0

Next, we discuss how to actually implement an interchange. Having done

so, we refine the latter outline to the following:

IV:' Set NOC = N-1, the number of comparisons

V"." Repeat until switch W does not change value:

A. Set W=0

B. For I=1 to NOC

1. If SCORE(I) > SCORE(I+1)

then

[

a. Set TEMP = SCORE (I)

b. Set S(1) = S(I+1)

c. Set S(I+1) = TEMP

d. Set W=1

-^

C. Exit from loop if W=0

- 15-

Next we consider the problem of computing the median, now that the scores

have been sorted. After some trials on some short samples of data, we determine

that:

VI. If N is odd

rthen

A. the median is SCORE (N/2 + 1)

else

B. the median is (SCORE (N/2) + SCORE (N/2 + 1))/2
,g0mow

Another refinement is needed to specify the determination of the odd-even question:

VI. Set I = N/2

VII. If N = 2*I
1Ii

then (N is even)

A. the median is (SCORE (I) + SCORE (I+1))/2

else (N is odd)

B. then median is SCORE (I+1)
MIME.

We note at this point that each of the outlines have been refined enough, and

we can easily code the following program (introductory documentation is omitted

here):

.

- 16-

5

DIMENSION SCORE (100)
I=1

LOOP UNTIL NO MORE SCORES:
READ (5,100) SCORE (I)

***EXIT FROM LOOP IF TRAILER ENCOUNTERED
IF (SCORE(I).LT.Q) GO TO 10
I = I+1

GO TO 5
C END LOOP
10 N = I-1

NOC = N-1

SORT THE SCORES INTO ASCENDING ORDER

LOOP UNTIL SWITCH W DOES NOT CHANCE VALUE
12 W = 0

DO 20 I = 1, NOC
IF (SCORE(I).GT.SCORE (I+1)) GO TO 15

GO TO 20

THEN
15 TEMP = S(I)

S(I) = S(I+1)
S(I+1) = TEMP
W = 1

END IF
20 CONTINUE

***EXIT FROM LOOP IF W STILL O.
IF (W.NE.0) GO TO 12

END LOOP

COMPUTE THE MEDIAN

I = N/2
IF (N.E(1.2*I)

THEN (N IS EVEN)
30 MED = (SCORE (I) + SCORE (I+1))/2

ELSE (N IS ODD)
40 MED = SCORE (1+1)

END IF
50 WRITE (6,100) MED

STOP
END

GO TO 30
GO TO 40

GO TO 50

Thus, in the design stages of a program, I ask the students to use outlines

like those above, rather than flowcharts. From the beginning stage of the

development, the problem solution is in outline form. The necessary variable

names are introduced (and defined) in the outlines where convenient. More and .

- 17 -

more details are intrpduced in successive stages; some of the steps in a given

outline are treated as separate modules if they appear to be complex enough to

consider by thenselves. I don't require ehe students to use a specific macro

language in their outlines. I do stress, however, that the language used in the

outlines should resemble the structures discussed above. This is reinforced

by examples. Eventually, then, the outline, through successive refinement, begins

to resemble structured FORTRAN. And each refinement, it seems to me, is more

natural, more straightforward than with flowcharts.

Now, of course, this approach isn't really new either. I'm sure Nicklaus

Wirth subscribes to it (or, at least, he has no aversion to flow charts) although

I have not read a reference of his to that effect. I can recall that Daniel

McCracken, at a conference some time ago, had said that he didn't like flowcharts,

but he wasn't sure (at that time) what to replace them with.

And yet, with all that's been published on S.P., I'm amazed at ehe number

of introductory textbooks on programming that still attempt to teach programming

In ehe same old way. Students are never really taught how to write programs.

Detailed presentations of the particular language elements are made. Many examples

of programs and many exercises are provided. Sometimes flowcharts are shown, but

with little emphasis on how to design one. I suppose that's why I'm writing

this paper; I like to think of myself "spreading the word as a disciple of S.P.".

The paper is written in the first person because it is one man's opinion; I don't

expect to persuade everyone that my views are correct. However, I should note

that there is at least one book on S.P. in FORTRAN, by Lynch and Rice, but I

haven't seen it yet.

I would like to exhibit several more examples, these from students using

this approach. Early in the course, even before the concept of looping is in-

- 18-

troduced, I give my first exam. In that exam the students are asked to write

a FORTRAN program to find the middle value of there numbers (i.e., the median)

read from a data card. This is a difficult program to write on a test at this

point. The following is an example written by a student using S.P. (admittedly,

one of the better students). The second example was written by a student

(also one of the better students) in my class where S.P. was not used. The

examples speak for themselves.

100 FORMAT ()

READ (5,100) A, B, C
IF (A.LE.

THEN

GO TO 200

GO TO 300

200 X1=A
X2=8

GO TO 350

ELSE

300 X1=8
X2=A

END IF
350 IF (C.GE.X2) GO TO 400

GO TO 500

THEN
400 WRITE (6,100) X2

GO TO 700

ELSE
500 IF (C.GE. X1) GO TO 600

GO TO 650

THEN
600 WRITE (6,100) C

GO TO 700

ELSE
650 WRITE (6,100) X1

END IF
END IF

700 STOP
END

Figure 8: Finding the Median of Three Numbers with S.P.

20

- 19 -

100

READ (5,1Q0) A,B,C
FORMAT ()

IF (A. GE.B) GO TO 10
IF (B. GE.C) GO TO 20
IF (B. GE.A) GO TO 30

70 WRITE (6,100) A
GO TO 50

10 IF (A. GE.C) GO TO 60
GO TO 7n

60 IF (B. GE.C) GO TO 80
90 WRITE (6,100) C

GO TO 50
80 WRITE (6,100) B

GO TO 50
20 IF (A. GE.C) GO TO 70

GO TO 90
30 IF (B. GE.C) GO TO 110

GO TO 80
110 IF (C. GE.A) GO TO 90

GO TO 70
50 STOP

END

Figure 9: Finding the Median of Three Numbers Without S.P.

I'm proud of the next e.ample - The Eight Queens r-oblem - which one

of my students (admittedly ae is very sharp) wrote just a week ago, after

only six weeks of class. I haven't had time to check it carefully but it

does appear to be correct, and it certainly is well structured, from a

FORTRAN point of view at least.

'Eight Queens' by Barry Johnson. 10/20/76
Finds all possible ways to place 8 queens on a chess board
uo that'none may take any other.
The columns in the output represent the columns the
queens would be in,.and the numbers printed out are
the respective rows they are in.

INTEGER ROW, COLUMN, ATTACK, QUEEN(8), I
WRITE(6,102)
WRITE(6,103)
WRITE(6,104)
COLUMN 1

TEST 'BEGIN''

C START LOOP 1
C START LOOP 2 **********
20 IF(TEST 'BEGIN') ROW 1

TEST 'BEGIN'

START LOOP 3 **********
10 CALL ATTACK

***EXIT FROM LOOP 3 21

-20-

IF (ATTACK.NE.1YES') GO TO 1
ROW = ROW + 1
CALL CHECK

END LOOP 3 **********
1 QUEEN(COLUMN) = ROW

COLUMN = COLUMN + 1
***EXIT FROM LOOP 2
IF(COLUMN.LE.8) GO TO 20

C END LOOP 2 **********
WRITE (6,101) (QUEEN (I),I = 1,8)
ROW = ROW + 1
CALL CHECK
TEST = 'MIDDLE'

C END LOOP 1
101 FORMAT (1 ',8(I1,2X))
102 FORMAT (1 COLUMN:')
103 FORMAT (' 1 2 3 4 5 6 7 8 ')
104 FORMAT (' I)

C * SUBROUTINE ATTACK
*****i**********************

SUBROUTINE ATTACK
ATTACK = 'NO'
IF(COLUMN.EQ.1) RETURN
N= COLUMN - 1
DO 3 I = 1,N

IF (QUEEN (I).EQ.ROW) ATTACK = 'YES'
IF (ABS(FLOAT(COLUMN - I)/FLOAT(ROW-QUEEN(I))).EQ.1.0)

ATTACK = 'YES'
3 CONTINUE

RETURN

C * SUBROUTINE CHECK

SUBROUTINE CHECK
100 FORMAT (1110 MORE SOLUTIONS')

C LOOP
C ***EXIT FROM LOOP
30 IF (ROW.NE.9) RETURN
C START LOOP
30 IF (COLUMN .EQ. 1)

THEN
6

. WRITE (6,100)
*********TERMINATE PROGRAM

STOP
END IF

7 COLUMN = COLUMN - 1
ROW = QUEEN'(COLUMN)
ROW = ROW + 1

C END LOOP
END

GO TO 10

GO TO 20

GO TO 6
GO TO 7

GO TO 30

- 21 -

The output has. the form:

COLUMN:

1 2 3 4 5 6 7 8

1 5 8 6 3,7 2 4

1 6 8 3 7 4 2 5

8 4 1 3 6 2 7 5

NO MORE SOLUTIONS

The program given here has some minor structural improvements over

the original, but no other changes. This student wrote the program in less

than three days without any hints as to how to solve the problem. This pro-

gram made 16,042 tests compared to Wirth's Pascal Program [9] that made 15,720

test.to generate the 92 solutions. However, this program required 16 seconds

CPU time on a UNIVAC 1106 compared to less than one for Wirth's program on a

CDC 6400. But that's still not bad for a sophomore.

Overall, I think the results have been successful, given the constraints

mentioned earlier. To summarize, I have a few statistics that indicate, to me

at least, that teaching structured FORTRAN is certainly better than standard

FORTRAN.

Table 1
A Comparison of Three Introductory Computer Science Courses

Cl = "non-S.P." in FORTRAN

C2, C3 = S.P. in FORTRAN

Statistics for the Entire Course (30 students)

Course Mean Std. dev. T-values

C1 72.7 11.2
1.90

C2 78.5 12.5

23

- 22 -

Statistics for the Final Exam (30 students)

Course Mean Std. dev. T-values

Cl 72.2 11.7

1.31

C2 76.5 13.5

Statistics for the First Hour Exam (30 students)

Cl 69.7 22.2
2.52 (C1 with C2)

C2 82.2 15.4 1.64 (C1 with C3)

1.3 (C2 with C3)

C3 77.4 12.8

The t-values for tbe entire course and for the first hours exam, (C1 with

C2) and (.:1 with C3), are significant at the,10% level. The tvalue for the

final exam is not significant. Also, it should be noted that, with respect to

the progrni to find the median of three numbers given on the first test, only

four students in class Cl wrote programs without any errors, compared to eight

in class C2. These are not overwhelming statistics, but at least they are in

favor of this approach to teaching programming.

Finally, I should point out that I am not dogmatic about this approach

either. We are now writing our own preprocessor to handle structured FORTRAN.

I am very interested to see how well my class will do using this preprocessor.

I may change my mind, but I do not believe they will perform significantly better.

ezag

References

[1] N. Wirth, "On the Composition of Well-Structured Programs", ACM Computing
Surveys, 6, 4 (1974), 247-260.

[2] F. T. Baker, "Chief Prcgrammer Team Management of ProduCtion Programming",
IBM Systems Journal, 11, 1 (1972), 56-73.

[3] T. E. Hull, "Would you Believe Structured FORTRAN?", SIGNUM Newsletter
8, 4 (1973), 13-.16.

[4] L. P. Meissner, "On Extending FORTRAN Control Structures to Facilitate
Structured Programming", SIGPLAN NOTICES, Sept., 1975, 19-29.

[5] S. Charmonman and
SIGNUM Newsletter

J. L. Wagener, "On Structured Programming in FORTRAN",
10, 1 (1975), 21-23.

Development by Stepwise Refinement", Comm. ACM, 14, 4[5] N. Wirth, "Progran
(1971, 221-227.

