AOTHOR	Mazria, Edward; Winitsky, David
TITLE	Solar Guide and Calculator.
INSTITUTION	Oregon Oniv., Eugene. School of Architecture and Allied Arts.
pus date	Jun 76
NOTE	27p.; Parts of text may be marginally legible due to small type: This guide was developed by Center for
	Environmental Research
AVAILABLE FROM	Center for Environmental Research, University of Oregon, Eugene, Oregon 97403 ($\$ 3.00$)
EDRS PRICE	MP-\$0.83 Plus Postage. HC Not available from EDRS.
DESCRIPTORS	*Climatic Factors; *Environmental Influences; *Solar

ABSTRACT
This guide provides users with a basic understanding of where and how the sun works in relation to a building and site and provides a simplified method of calculating sun angles and the available heat energy from the sun on vertical and horizontal surfaces. (Author/IRT)

[^0]

Copyright, June 1976
All rights reserved. No part of this publication may be reproduced for other than personal use without the written permission of Edward Mazria or David Winitsky.

The Center for Environmental Research Schoel of Architecture and Allied Arts University of Oregon
Eugene, Oregon 97403

The primary intent of this simplified user's solar guide is to:

1) Provide users with a basic understanding of where and how the sun works in relation to a building and site.
2) Provide users with a simplified method of calculating sun angles and the available heat energy from the sun on vertical and horizontal surfaces.

contents:

TOOLS:
A. How the Sun Works 2
B. The Sun Chart 3
C. The Solar Intensity Masks...................... 6

APPLICATION:
D. Plotting the Skyline (obstructions) 10
E. Calculating Solar Energy for Heating 11

This is the first working draft of a more comprehensive user solar guide being developed by Edward Mazria and David Winitzky (June 1976). Portions of the text of this guide come from: 1) Solar Energy in Pacific Northwest Buildings, John Reynolds; 2) Solar Energy Workbook, Edward Mazria; and 3) The Impact of Solar Energy on Architecture, Robert Gray. The computer data used in developing the sun chart and solar intensity mask was supplied by Steven Baker.

A.Hom the Sun Worlk eapth's orbor

> As every modern person knows, the sun is at the center of the solar systen, the earth moves in a circular orbit around the sun in a years time, the earth is spherical in shape and rotates on its axis once a day, and this axis is tilited at twenty-two and one-half degrees away fi,m vertical to the plane of the earth's ornit around the sun. This tilt, causes a given point on the earth's surface to receive different amounts of solar energy at different times of the year which causes the seasons and their changes in temerature.
roimter

spring \& fall

sumpmer

B, The Sun Chapt

In order to understand and be responstive to the effects of the sin on the location and destan of places, it is necessary to know, at any given monent, the sun's position in the sky. This information is necessary is order to calculate solar heat gain. and in locating buildings, outdoor spaces, interior room arrangements, windows, shading devices, vegetation dend solar collectors. The chart which is developed here provides a convenfent way of locating the sun for $44^{\circ} \mathrm{N}$. latitude at any time and date. The folloring is a sequential description of how the sun chart was developed. it is included here to provite basic solar background information.

Two coordinates are needed to locate the

azimuth
Solar azfruth is the angle, along the horizon, of the position of the sun reasured to the esst of west from true south. The declination map on page 4 provides the magnetic variations for true south for locations within the United States.

So, the grid on the chart represonts vertical and herizontal anglas of the whole skydume. It is as if there was a clear dome around the observer, and then the chart was peeled off of this dome and laid flat.

sum position

With the altitude and azinuth angles, the sun can be located at any point in the sky.

Co.The Solar Intensity Maske

vertical amd horizontal surfaces

60° inelined surfaces

30° innelined surfaces

D. Plofting the Sixyline

To find the amount of direct sun that any paint on your site receives. It is necessary tn plot obstructions which block the sun as seen from that point. We call this plotting the "skyline" and it is done in a similar way in which tre plotted the sun's poth. If the skyline is low, that is with no tall trees, adjacent buildings, abruptly rising hills, or other obstructions, the following procedure is unnecessary as all the points on the site will recelve sun.

You wlll need: 1) a transit or compass for the bearing resdings and a hand level for altitude readings, and

2) * copy of the sun

chert for your location
Place yourself at the approximate locatfon where you wish to know the solar radiation. This may require a ladder if the location is on the second floor or rocf of a bullding-tobe.

Find the altitude of the skyline as

follows:
.. Detemine which direction (bearing) is true south. (Remember magnetic variation: true south will be about 21° east of magnetic south in Eugene, Oregon.)
.- Alming your level true south, determine the altitude (anqle above the horizon) of the styline. Plot this point on your chart above 0° true south.
.. Simliarly, find and record the altitudes of skyline for each 15° bearing, both east and west of south, to at least 120°. This is a cotal of 17 altitude readings. Plot these readings for the respective bearing angles on the sun chart and connect them.
. For fsolated tall objects that block the sun such as tall evergreen trees, find both the bearing angle and the altitude for each object and record them at the approprtate point on the chart.
.. Finally, plot the deciduos trees in the skyline with a dotted line. These are of a special nature because they will block the sun during spring through fall and let most of the sun pass through when their leaves are gone, fall through spritig.

This completes the skyline. The open areas on your completed chart are those times when you will get sun at that spot.

E. Calculating Solan Emergy
 In the design of solar heating and cool-

 ing systens, it is important to know the amount of thermal radiation (sun's heat medsured in BTU's) that strikes a surface at sone particular time of the day, hour, or dafly or monthly totals, this can all be de termined by the use of the solar intensity masks which fit over and are used in conjuict. Ion with the Sun Chart. The mask marked " $90^{\circ}{ }^{\circ}$ is for vertical and horizontal surfaces. mask " 60° for inclined surfaces of 60°. and 1ikenise, mask " $30^{0^{-}}$for inclined surfaces of 30° (as measured from the horizon).
the solar intensity masks have center axis and base line which ore used for alignment with the Sun Chart. To align the mask for a particular surface, detanine the direction the surface is facing and set the center axis of the mask on the bearing angle (the direction the surface is facing) of the Sun Chart. Keep the base line directly over the base line of the Sun Chart. You are now ready to determine the solar intensity values for that surface.

hourly fotals

To determine the clear day hourly totals of heat energy striking a surface:
1)-. Select the proper mask based on the surface slope.
2).. Align the mask on the sun Chart based on the orfentation of the surface to the aast or est of south.
3)- Select the month when you want the reading and use that sun path to read the values. 4).- Select the hour and month in which you want the reading: the intersection of the hour 1 ine and the sun path wlll locate the position of the sun. Read the number of BTU's for that sun's position from the radiation mask - If the point where you want the raading falls between radiation lines, interpolate to find the value.
4OTE: This clear day number needs to be ad. fusted depending on your location in the U.S. Ind the line which is closest to your area on the map below. S is for summer adjustment numbers, and W is for winter adjustment numbers. Multiply the clear day totals from the mask by these adjustment numbers.

dauily totalls

To detemaine the total dally amount of heat energy striking a surface:
-- Simply follow the procedure for the hourly totals for each hour of the day and total these to get the dafly total. If the hourly totals have not been adjusted for your area, then adjust the dafly total by multiplying it by appropriate adjustrent factor from the map.

Threskeld and Jordan, Transactions of The American Society of Heating and Air Conditioning Engineers, 1968, v. 64 .

SUN CHARTS
 for
 $28^{\circ} \mathrm{NL}, \quad 32^{\circ} \mathrm{NL}, \quad 36^{\circ} \mathrm{NL}, 40^{\circ} \mathrm{NL}$ and $48^{\circ} \mathrm{NL}$

A
SUPPLEMENT
to the
SOLAR GUIDE AND CALCULATOR

Edward Marria
Eugene, Oregon

[^0]: ***

 * Documents acquired by ERIC include many informal unpublished * * materials not available from other sources. ERIC makes every effort * to obtain the best copy available. Nevertheless, items of marginal * reproducibility are often encountered and this affects the quality * of the microfiche and hardcopy reproductions BRIC makes available * * via the ERIC Document Reproduction Service (EDRS). EDRS is not * * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original. * **

