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These papers were prepared as part of the activities of the Georgia
Center for the Study of Learning and Teaching Mathematics, under
Grant No. PES 7418491, National Science Foundation. The opinions
expressed herein do not necessarily reflect the position or policy
of ‘the National Science Foundation.

This publication was prepafed pursuant to a contract with the National
Institute of Education, U.S. Department of Health, Education and Welfare.
Contractors undertaking such projects under Government sponsorship

are encouraged to express freely their judgment in professional

and technical matters. Points of view or opinions do not, therefore,
necessarily represent official National Institute of Education position
or policy. . .
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MATHEMATICS EDUCATION REPORTS

The Mathematics Education Reports series makes available recent
analyses and syntheses of research and development efforts in mathematics

education. We are pleased to make available as part of this series the

- pepers from the Workshop on Number and Measurement Concepts sponsored

by the Georgia Center for the Study of Learning and Teaching M;chematics.

Other Mathematics Education Reports make available‘informacion
concerning mathematics education documents analyzed at the ERIC
Informacion Analysis Center. for Science, Macﬁemacics, and énvironmental
Education. Thése reports fall into three broad categories. Research
re;iews summarize and analyze recent research in specifié areas 6f
mathematics education. Resource guides identify and analyze materials
and references for use by mathematics “unachers at all levels. ‘Special
bibliograﬁhies announce the availability of documents and revieQ the
literature in selected interest areas of mathematics education. Reports
in each of these categories may also be targeted for specific sub-
populations of the mathematics education coamunity.

Pricrities for the development of future Mathematics Education Reports
afe established by the advisory board of the Center, in cooperation with
the National Council of Teachefs of Mathematics, the Speciél Interest
Group for Research in Mathematics Education, and other professional
groups in mathematics education. Individual comments on .:% Reports and
suggestions for future Reports are always welcomed by ¢ ¢RIC/SMEAC Center,

Jon L. Higgins
Associate Dlrector
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Acknowledgeinents and Overview

The Georgia Center for the Study of Learning and Teaching Mathematics
(GCSLTM) was started July 1, 1975, through a founding grant from the
National Science Foundation. Various activities preceded the founding
of the GCSLTM. The most significant was a conference held at Columbia
University in October of 1970 on Piagetian Cognitive-Development and
Mathematical Education. | This conference was directed by the late Myron
F. Rosskopf and jointly bponsored by the National Council of Teachers of
Mathematics and the Depaktment of Mathematical Education, Teachers
College, Columbia University with a grant from the National Science
Foundation. Following the October 1970 Conference, Professor Rosskopf
spent the winter and spring quarters of 1971 as a visiting professor of
Mathematics Education at {the University of Georgia. During these two
quarters, the editorial Work was accomplished on the proceedings of the
October conference and a |Letter of Intent was filed in February of 1971
with the National Sciencel Foundation to create & Center for Mathematical
Education kesearch and Innovation. Professor Rosskopf's illness and
untimely death made it impossible for him to develop the ideas contained
in that Letter.

7

After much discussiop among faculty in the Department of Mathematics
Education at the University of Georgia, it was clear that a center devoted
to the study of mathematics education ought to attack a broider range of
problems than was stated in the Letter of Inteat. As a result of these
discussions, three areas of study were identified as being of primary
interest in the initial year of the Georgia Center for the Study of
Learning and Teaching Mathema:ics--Teaching Strategies, Concept Develop-
ment, and Problem Solving. Thomas J. Cooney assumed directorship of the
Teaching Strategies Project, Leslie P. Steffe the Concept Development
Project, and Larry L. Hatfield the Problem 3o0lving Project.

/

The GCSLTM is intended to be a long-term operation with the bread
goal of improving mathematics education in elementary and secondary schools.
To be effective, it was . felt that the Center would have to include.
mathematics educators with interests commensurate with those of the
project areas. Alternative organizational patterns were available--
resident scholars, institutional consortia, or individual consortia.

,The latter organizational pattern was chosen because it was felt maximum
participation would be then possible., In order to operationalize a
concept of a consortia of individuals, five research workshops were held
during the spring of 1975 at the University of Georgia. These workshops

"were (ordered by dates held) Teaching Strategies, Number and Measurement
Concepts, Space and Geometry Concepts, Models for Learning Mathematics,

vii
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and Problem Solving. Papers were commissioned for each workshop. It
was necessary to commission papers for two reasons. First, current
analyses and syntheses of the knowledge in the particular areas chosen
for investigation were needed. Second, -catalysts for further research
end development activities were needed--major problems had to be
identified in the project areas on which work was needed.

Twelve working groups have emerged from these workshops, three in
Teaching Strategies, five in Concept Development, and four in Problem
Solving. The three working groups in Teaching Strategies are: Differential
Effects of Varying Teaching Strategies, John Dossey, Coordinator;
Development of Protocol Materials to Depict Moves and Strategies, Kenneth
Retzer, Coordinator; and Investigagion of Certain Teacher Behavior That
May Be Associated wich Effective Teaching, Thomas J. Cooney, Coordinator.
The five working groups in Concept Development are: Measurement-{oncepts,
Thomas Romberg, Coordinator; Rational Number Concepts, Thomas Kieren,
Coordinator; Cardinal and Ordinal Number Concepts, Leslie P. Steffe,
Coordinator; Space and Geometry Concepts, Richard Lesh, Coordinator; and
Models for Learning Mathematics, William Geeslin, Coordinator. The
four working groups in Problem Solving are: Instruction in the Use of
Key Organizer., (Single Heuristics), Frank Lester, Coordinator; Instruction
Organized to use Heuristics in Combinations, Phillip Smith, Coord’inator;
Instruction in‘Problem Solving Strategies, Douglas Grouws, Coordinator;
and Task Variables for Problem Solving Research, Gerald Kulm, Coordinator.
The twelve working groups are wurking as units somewhat independently
of one another. As rescarck and development enmerges from working groups,
it is énvisioned that some working groups will merge naturally.

The publication program of the Center is of ecentral importance to
Center activities. Research and development monographs and school mono-
graphs will be issucd, when appropriate, by each working group. The
school monographs will be writtea in nontechnical language and are to be
aimed at teacher cducators and school personnel. Reports of single
studies may be also published as technical reports.

All of the above plans and aspirations would not be possible if it
were not for the existence of professional mathematics educators with
the expertise in and Commitment to rcscarch and development in mathematics
education. The professional commitment of mathematics educators to the
betterment of mathematics education in the schools has been vastly under-
estimated. In fact, the basic premisce on which the GCSLTM is predicated
is that there are a significant number of professional mathematics
educators with a great deal of individual commitment to creative scholar-
ship. There is no attempt on the part of the Center to buy this schotar-
ship--only to stimulate it and provide a setting in which it can flourish.

-
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The Center administration wishes to thank the irdividuals who wrote
the excellent papers for the workshops, the participants who made the work-
shops possible, and the National Scicnce Foundation for supporting
financially the first year of Center operation. Various individuals have
provided valuable assistance in preparing the papers givern at iuc workshops
for publfcation. Mr. David Bradbard provided technical editorship; Mrs.
Julie Wetherbee, Mrs. Elizabeth Platt, Mrs. Kay Abney, and Mrs. Cheryl
Hirstein, proved to be able typists; and Mr. Robert Petty drafted the
figures. Mrs. Julie Wetherbee also provided expertise in the daily
operation of the Center during its first year. One can only feel grateful
for the existence of such capable and hardworking people.

Thomas J. Cooney Leslie P. Steffe Larry L. Hatfield

Director . Director Director

Teaching Strategies Concept Development Problem Solving
and

Director, GCSLTM
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OverViewf
J. Larry Martin

Missouri Scuthern College

Since the 1960's there have been many questions raised a.ad statements
made in the professional literature about what geometry shouid be in the
curriculum, why (or if) it should be there, when it should be taught, and
how it should be taught. As a result, "more" geometry is now iucjuged
"earlier" and "informally" or at an "intuitive level." Feelings of
uneasiness among mathematics educators remain. Answers, it indead they
can be so called, such as "more," "earlier,” and "infdrmally" are
inadequate. Alterations of the geometry content in the curriculum have
tended to be tentative ‘ropings toward some ideal of educational pragmatism.
Pragmatism is not inhei ntly bad. 4Admittedly there is merit in a curriculum
that is both teachable and learnable. However, attempts at developing
such a curriculum would be less labyrinthine if they would be made within
a theoretical framework that took into account both the nature of the
child and the structure of the mathematics involved.

It is not surprising that applications of an underlying theory of the
child's conception of space cr the child's conception of geometry have been
minimal. , Existing theorv itself is minimal. Some mathematics educators
have turned to Jean Piaget's work to provide such a theory. Piaget has
carried out a great number nf experiments dealing with the child's cunception

‘of space and/or geometry. His research is within the broader context of

his theory of cognitive development and the nature of knowledge. Yet
there is not unanimity among mathematics educators about how his work
should be interpreted nor, iudeed, even if it is relevant to mathematics
education.

The research workshop on space and geometry sponsored by The Georgia
Center for the Study of Learning and Teaching Mathematics was intended
to stimulate dialogue among mathematics educators with the objectives of
synthesizing existing knowledge concerning the child's conception of space
and geometry and identifying. coordinating, and generating related strdies..
The papers contained in this monograph were presented at the worksbhup and
provided the stimulus for what is hopefully only the initial dialogue.

Edith Robinson presents a historical sketch of the development of
geometry and demonstrates that there are many alternate approaches for
selccting the geometry content for the elementary school. In fact, there
are many different geometries from which to choose.

10
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One basis for choosing would be the nature of physicai reality; this
is, select the geometry which is most nearly isomorphic to the "external
world." But Charles Smock warns that such a choice of a mathematical model
may be self-fulfilling. He points out that a literal interpretation of
Piaget's theory necessitates viewing reality as a black box. The child
constructs his universe and then experiences it as though it were external
to nimself. Thus we could never know what is "real," only what we have .
constructed as real, It is a startling but intriguing idea. At the very
least, it focuses attention on the child rather than treating him as the
black box. In his paper Smock provides a summary of much of Piaget's
early space and gecmetry research and describes critical feattuires of

Piaget's thinking concerning the child's development of space and geometry
concepts.

Izaak Wirszup notes that the Russians have accepted many of Piaget's
tenets. However, the work of the van Hieles has inspired Russian research
more directly. Professor Wirszup reviews the van Hiele levels of development
in geometry and discusses the new Soviet geometry curriculum. The reader ’
will npotice obvious similarities between Piaget's theory and the van Hieles'
theory. Piaget has stages; the van Hieles have levels. The van Hieles have
isolated networks of relations; Piaget has figurative knowledge. Yet there
are also notable differences. The van Hiele levels appear to deal more
with geometric forms; Piaget deals more with transformations. Piaget
provides age guidelines for his stapes;-are there similar age guidelines
for the van Hiele levels? Also in comparison with Piaget's research, both
the van Hieles and the subsequent Russian research are oriented more
"curriculum" and "teaching."

While Smock reviews the early work of Piaget, Jacques Montangaro
reviews more recent Genevan research. Two experjuents by Greco focus on

. the chilc's organization of spatial representations. One study utilizes

Euclidean transformations and the other transformationson a Moebius strip..
Two cxperiments by Vinh Bung deal with the relacions between perimeter antd
area. In addition to reporting these studies, Montangero discriminates
between the figurative and operative aspects of knoviedge and between logfco-
mathematical knowledge and physical knowledge, two quite different
distinctions. As Montangero points cut in his paper, these distinctions

have implications for the classroom. ‘

Directiors for further research on space are suggested by Montangero
and Smock from the perspective of the Geneva group. They suggest that if
new research results are to be added tv those that exist in space, a change

.

in research method is necessary. In chis view, four advantages and four /

limitat{uns of a structural approach to the study of space are presented.
Capitalizing »n the limitations, they suggest programs of research, through
example, which hold promise for new results. The authors point out

empnat cally that an "intermediate'" body of research is necessary for the
results of the Genevans to be applied to educational practice.

11
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Cro,s— ultural studics related to the chiid's geometrical and spatial
concepts Sased on Piaget's work are few. 1In fact, as Michael Mitchelmore
points out, rhere is little cross-cultural research on geometrical concepts
per se of any sort. Mitchelmore does provide, hrwever, a thorough review
ot the rather extengive cross-cultural research on perception. Since there
are so many subpopulations in the United States alone, this reviaw should
be of special‘@ncerest. Mitchelmore speculates on the causes of the
differences found in different cultures. He also warns that alternative
explanations are usually available.

Readers should note that often it iIs difficult to determine whether
a given task is perceptual, in the Piagetian sense (see Smock’s paper),
or requires spatial representation. Borderlines are not always well-defined.
And not all investigators use the word "perception” in the same sense.
Thus careful analyses of the studies which Mitchelmore teviews could yield
clues about conceptualization as well as perception.

kichard Lesh uses transformation ‘geometry as a context within which
to discuss relarinnshipﬁ among mathematical structures, cognitive structures,
and instructional structlres. He examines proposed justifications for
including g=ometry in the elementary school curriculum. But these Justifi-
cations frequently rely on assumed, albeit unverified, relationships between,
for example, mathematical structures and cognitive structures. Lesh suggests
research techniques appropriate for investigating the nature of such
relationships. '

The intent of the preceding paragraphs has been tc provide the recader
with a brief overview of the papers in the monograph. what follows is a
collectinn of observations, comments, suggestions, and questions generated
by the papers and the resulting discussions. Some are reiterations cf
what i{s cortained in the papers. Other portions may cppear oaly obliquely
related to the papers. All are impressions presented here in an attempt
to capture the spirit of the workshop. To that end, not all the ideas are
developed thoroughly, nor are all questions answered. But hopefully they
will help t» give the reader a sense of the rich potcutial for research
in space and geometry. <

What is the purpose of geometry in t“e eleamentary school? Should
inttruction be aimed av developing the -hild's concept of space or the
cnild's concept of geometry? My opinior is thit the instruction should
be almed at assisting the child develop a wu}l-organized concept of space.
This does not mean that there would not be many geometrical concepts in
the curriculum. But the concepts would be those neceSsary for achieving
the primary objective.

Mathematics educators must distingiish between perceptual, represen-
tational, and conceptual space. Ouce we have made these distinctions, we
ueed to aci like we have made them. Recognizing that ot the pre-operational
level perception: may dominate conceptions, we must also allow that perceptjons
do not stand alone. Conceptions influence perceptions. Currently the
curriculum contains mostly perceptual tasks. Honest efforts to study the
Lhild S representational and conceptual space are necessary.

12

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

It is also imperative to distingulsh batween the figurative and
operative aspects of knowing. It appeared to me that the term "figurative
thought'" was often used with a somewhat negative connotation at the work-
shop. Such connotation is not inherent to figurative thought. While
Piaget emphasizes operative thought, he recognizes that figurative thought
is especially important when space conception is involved. Figurations
can serve as an aid to operations. Yet lictle is kaown about the role
that figurative thought plays in the child's construction of space.

Invariance through transformation should be emphasized in research and
in the curriculum. This does not necessarily mean emphasizing the trans-
formaticn itself. As Lesh points out, focusing attention on the transfor-
mation may only serve to confuse the child. Do children think in.terms of
transformations? Does he think in terms of results (end points) or does
he actually consider how he might get from one point to another?

It is obvious that mathematical and psychological uses -of the same
terms do not always coincide. Much more needs to be known.about the rela-
tionship between cognitive "structures" and mathematical "structures” and
how one may assist in developing the other. Do physical "transformations'
or mathematical "transfoiumations" effect mental "transformations"? When
Piaget speaks of topological ‘concepts what does he mean? Studies are needed
which analyze from & mathematical point of view the mathematics involved
in Piaget's tasks, for there is much mathematics there.

The Erlanger Programm has been appealed to as a model--a model for
what? The child's construction (process) of space? For research? 1In
vhat sease is it a model? 1t definitely can be used to formulate research
questions. The Programm speaks of a set X, a group of transformations
and invariants. Research need not be restricted to a pagticular group of
transfcrmations nor even to a specific set X.. The Programm does a nice
job of organizing transformations and displaying the invariants. By
analyzing the resulting structures many rcsearchable questions arise
(sSQ\Martin, 1976) about ideal points, sequence of develcopment, neighbor-
hocdg, continuous functions, etc.

Mathematics educators must ask our own questions. We must not expect

psychologists, for example, to ask the questions of importance to us, let
alone answer them. But this does not mean we should ignore their findings.
Lines of communication must be kept open, indeed strengthened. Piagetian
theury, if it cannot be accepted in toto, need not be rejected in toto.
Can it be adapted and expanded upon to fit our needs? Hou do the Soviet
studies come in? Most of us cannot answer this last question berause we
haven't read them. We need to. Analytical comparisons between Piaget's
theory and van Hiele's thecry could prove fruitful.l )

1havid Cilley at Northwestern University is currently studying the

van Hiele levels and is trying to Ziné ages for each level.

13
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The frequency of examples, iflustrations, anecdotes, and analogies
drawn from the real number system t« make a point was striking during the
first day of the conference. The 1.mber of such illustrations drawn from
space aud geometry was comparative:v -will. This was dismaying at a
conference whose main concern was €3 .. and geometry. But it demonstrates
how little we know about the child's . .struction of space.

14
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Mathematical Foundations of the Development
of Spatial and Hvaulrica] Concepts
Edith Robinscn
University of Georgia

In considering the mathematical basis for elementary school peometry,
we are faced with the difficulty that there is no consensus, either in
*heory or practice, as to what geometry should be taught in the elemen-
tarv school. Although the inclusion of more geometry has been advocated
for decades, implementation has taken a variety of directions. The
curriculum has been augmented by such diverse alternatives as additional
vocabulary (new and old), modified content from high school (Euclidean)
geometry, puzzles of antiquity, and new games and hardware. Moreover,
grade placement of topics has shown comparable diversity: The study of
area, for example, has beepr introduced as earlv as grade 3. Ter some
extent, the current situation reflects our lack of knowledge as to wnat
geometry elementary school children can learn, but it seems unlikely
that this will soon be remedied unless there is a strong commitment about

both the amount and kind of geometry that elementarv school children should

learn.

Since the matter is as vet unresolved, this paper will be separated
into two parts. In the first part, the history and current status of
geometry will be discussed: in the second part, impiications for the™
elementary schonl will be considered.

Historical Development of Geometry

There seems little doubt that as early as 2000 B.C.; some peometry
was known to Babylonians and Egvptians. Thev were familiar with means
of computing areas of rectangles, right triangles, isosceles triangles,
and possibly the general triangle. What is now known as the Pythagorean
Theorem-was also known. Some of the accepted facts were incorrect.

For example, the area of the general quadrilateral was taken to be

% (a2 + ¢)(b + d) where a, b, ¢, and d are lengths of consecative sides.
On the other hand, if an obscure passage in Herodotus 1is interpreted to
mean that the area of each triangular face of the great Pyramid (erected
c. 2900 B.C.) is the square of the vertical helght, a relationship close-
ly supported by present-day measurement, then the builders may well have
been familiar with the Golden Section. Herodotus, together with the
Rhind and Moscow papyri, furnish considerable information about the
procédures devised for computing areas and volumes.

16
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Thales (c. 640-550 B.C.) is frequently credited with perceiving
the deductive possibilities in geomerrv. A wealthv merchant, he made
numerous trips to Egypt, and upon his retirement at an early age, took
up the studv of philosophy and mathematics. During his visits to Fgvpt,
he had become acquainted with geometry and had calculated the height ot
the Great Pyramid from the length of its shadow. He also estaklished
that an angle iascribed in a semicircle is a right angle, that the base
angles of an isosceles triangle are the same size, and he “s believed
to be the first to recognize the importance of studying leci. In his
later years, he advised one of his pupils, Pythagoras by name, to .5 to
Egypt to study mathematics. From the Pythagorean school came muchk of the
geometry that later appeared in Euclid's Elements. According <o Froclus,
writing in the fifth century A.D., it was Hippocratas of Chios, a
Pythagorean, who attempted the first logical organization of geometry.
Somewhat better attompts were made later bv oth:rs of the Pyvthagorean
school. All in all, these efforts spanned some three hundred vears.
The overall plan was to develop a "sequence of statements obtalned by
deductive reasoning from a set of initial statements assumed at the
outset of ~he aiscouvse' (Eves, 1963, p. 12). Abous 300 B.C., Euclid,
the first professor of matnematics at the famed Universitv at Ale)andria,

. collected, organisad, ind_supplemented known results in geometry into the

thirteen books of the Elements. The Elements was bu:t cne of the several
books by Euclid. There was one on geometric fallacies, one on spherical
geometry, one ou surface loci, one on optics (which treated perspective),
one on conics, and one with the nmysterious title, orisms. All of these
are mentioned .y Proclus. but all have beer Tost ex. 'pt the Llements.

The descriptiins, howcwer, testify to the fac: that by Euciid’s time, a
considerable amount uf seometry had been cxplored.

The days of the Roman Fmpire and i"e Dark Ares saw little new
activity in geometry. During this tim . -here were several translations
of the Elements into Lacin: some of tles¢ from the Arabic, some rrom
the Greek. The 1572 translation from the Greek became the source of the
English translation.

The revival of learning, however, brought with it a new interest in
Euclid's famous fifth postulate. From earliest times this had been
thought to differ in character from the other postulates.l Writing in
the rifth century A.D., for example, Proclus, after stating the postulate,
says, "This oughit to be struck from the postulates altogether. For it is
a theorem" (Proclus, 1970, p. 150).

Euclid distinguished between axioms and nostulates. Yo such dis-
tinction will be made here: the two words will be used interchangebly.

17
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This view had been espoused by many over the centuries, but attempts to
prove this "theorem" always resulted in the discovery of some flaw in

the argument. Finally in 1733, the Jesuit priest Girolamo Saccheri,
Professor of Mathematics at the University of Pavia, aud an accomplished
logician, published a bouk entitled Euclides ab omni. naevo vindicatus
(Euclid Freed of Every Flaw). 1In this, he attempted, by the method

of reductio 21 absurdum, tc prove the parallel postalate. The sequence
of theorems he teveloped -for this purpose include many which have now
become clzssics of so-called non-Euclidean geometry. The "contradiction”
which h :trally chtained, however, was based on a vague observation that

lines 1+’ dca't Ywhave that way. The diagram used by Saccheri is shown

ia Figwre /. In th,. diagram, angles & and D are right angles, and

sides A" aad o0 are 1. same length. He was able ro establish that angles
B8 C

Figure

B and C were the s:~ size, and that they were nct both obtuse. He was
unable to prove, however, without the parallel pcstulate, that they could
not both be acute, except by the weak argument cited above. Later it was
shown that Euclid's parallel postnlate was equivilent to postulating that
a rectangle exists--it will be noted that Saccheri was unable to prove
satisfactorily that the quadrilateral shown was 2 rectangle.

Saccheri's book was withdrawn from the markat relatively early.
During the eighteenth century, two other mathema:icians, Lambert and
Legendre, also made attempts to prove the fifth postulate by the method
of reductio ad absurdum. 3oth encountered the sime difficulty as
Sacrheri, namely that of disproving the'acute angle case.

The fifth postulate, as stated by Euclid is:

If a straight line meets two straight limes, so as to
make the two interior angles on the same side of it
taken topether less than two right angles, these’
straight lines, being continuously produced, shall at
length meet on the side on which are the angles which
are less than two right angles. (Todhunter, 1955, p. 6)

The version which is more familiar is the Playfair axiom:
Through a given point A not on a given line m there

passes at most one line which does not interset m.
(Eves, 1973, p. 445)

s
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Between 1792 and 1813, the Prince of Mathematicians, Gauss, attempted

a proof of the Playfair axiom. Failing in all of his attempts, he

developed a geometry in which this did not hold, but apparently fearing

ridicule from the mathematical community, never published hisg results.,

Upon his death in 1855, however, his interest in the problem was dis-

covered, and attentinn thus drawn to two other papers. gne of these, by

the Russian Nicolai [vanovitch Lobachevsky, had been published in 1829, and

the other, by the Hungarian Jinos Bolyal, had appeared in 1832. Both
Lobachevsky and Bolyal had independently developed geometries in which

it was taken as a postulate that through a given external point, at

least two lines can be drawn parallel to a given line. One consequence

of this axiom is that thc sum of the measures of the interior angles

of a triangle is less than two right angles, whereas by Euclid's

postulate, the angle sum is exactly two right angles. Which is true? Reputedly
both Gauss and Lobachewsky attempted ts Settle the matter "in the large''--

Gauss by takiang a triangle formed by three mountain peaks, ard Lobachevsky

with astronumical distances. Both got results that differed from 1800,

_but by no.more.than.could be.accounted for by experimental error:: - Thas-—- - —

the matter was not settled.

The furor caused by the discovery of non-Euclidean geometry
resulted in clnse scrutiny of the foundations of mathematics. The whole
question of formal axiomatics was explored, with emphasis on consistency~-
that is, freedom from contradiction. 1In 1868, Beltrami exhibited a con-
sistent model for Lobachevsky-Bolyai geometry within Euclidean space, thus’
showing it to be consistent if Euclidean geometry is. The new interest
in foundations gave rise to several new sets of postulates for Euclidean
geometry which remedied the various logical flaws. (For example, using
Euclid's postulates, it is possible to prove that all triangles are isos-
celes.) Of the dozen or so such sets of postulates, those of Hilbert
(1299, subsequently revised) and Birkhoff (1932) are probably best known.
As aa indication of the continuing interest in this aspect of geometry,
another ‘et of postulates for Euclidean geometrv was developed. by Levi
in 1960.

In 1854, Riemann showed that another consistent geometry could be
based on the assumption that any two lines in a plane meet; that is,
through a given external point, no lines can be drawn parallel to a
given line. With this development, there were now three geometries bzsed
on three different parallel postulates, and a choice of:

1. The angle sum for the triangle is greater than 180°.

2. The angle sum of the triangle is equal to 180°,
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3. The anglie sum for the triangle is less than 180°.

All have useful models. As to which truly describes physical reality,

we simply do not know. There is some evidence (Tuller, 1967, p. 18) that
the binocular vision of normally sighted individuals is best described

by the hyperbolic model (Lobachevsky-Bolyai). However, as Poincaré
pointed out at the beginning of the twenticch century, physical experi~
mentation, as with mathematics, rests on axions. For example, it is
assumed that light travels in straight lines.

The development of geometry was not restvicted to the study of the

foundations. In 1639, an engineer named DPesargues published a treatise

on conic sections in which he used the notion of an "ideal point" aud

an "ideal line" added to the Eu:lidean plane. At the time the only
attention the book received appears to have been ridicule. For one
thing, Desargues' style of writing was, by all accounts, tedious (all
printed copies of the original manuscript have been lost), and the termi-

_nology he employed baffling. For another, Descartes' book in which he

described his analvtic geometry had appeared in 1637 and this, together
with new results in the calculus, served to direct attention away from geo-
metry. The Napoleonic era, however, saw a lively group of mathematicians
at the Ecole Polytechnique in Paris, among whom was Gaspard Monge. To
solve certain military problems, Monge developed descriptive geometry--—
the geometric theory of representing three-space figures in two-space.
One of Monge's pupils was Jean-Victor Poncelet. Poncelet was later an
officer in the Napoleonic army and was taken prisoner during the retreat
from Moscow. During the year he was imprisoned in Saratoff, he survived
the rigors of prison bv recalling and rearranging all that he nhad~learned
of mathematics, and he returned to France with material for "seven manuscript
notebooks.” One of these, published originaily in 1822, was a book vn pro-
jective geometry. The turn of the century had seen the rediscovery of a
manuscript copv of Desargpues' work, prepared earlier by one of h:s students.
Also, a work by Pascal (another student of Desargues) was rediscovered in
which he credited Desargues with having supgested the methodology for the
proof of a theorem. Projective geometry now came into its own. The

origins of the ideas of projective geometry date back to the Greeks.
Apollonius (?7262~200 B.C.), for example, wrote on conic sections including
cases in which the cone is oblique: enelaus (?100 A.D.) established the
cross ratio property of a transversal drawn across a pencil of lines: and
Pappus (7300 A.D.) established the theorem which still bears his name. .
During the Renaissance, painters had struggled with the problems of
perspective: Difrer, writing in 1525, investigated the problem sclentifi-
cally (i.e., geometrically). Direr, as a matter of fact, should probably .
be givep much more credit for his role in the davelopment of projective
geometry. One of the more intuitive aspects of early projective geometry

was the recognition of invariant properties--the viewer of an object per-
celves different images from c¢ifferent polnts of view, yet there are cer-
tain similarities which enable him to recognize these as images of the

same object. At a later time, these similarities were to be more pre-

cisely described as 'the set of properties preserved under projective
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transtormations.” Ap~first, projective geometry developed as an extension
of Eucliean geometry; that is, the parallel postulate of Euclid was in-
cluded. However, during the "era of interest in foundations, it was

shown that projective geometry is independent of the parallel postulate.
Henceforth it was developed as an abstract geometry based on its own set

" of axioms. Within this framework, Euclidean geometry became a particular

casc of projective geometry.

The nineteenth century alS6 saw one other important development in
geometry. 1In 1872, upon his appointment to a professorship at the
University of Erlangen, Felix Klein presented his definition of geometry
as the study of properties which remair invariant under groups of trans-
formations. The nineteenth century had seen the development of the theory
of abstract groups; models (that is, realizations) of groups include the
symmetries of regular polygons and polyhedra. The Erlanger Program, as
Klein’s proposal came to be known, represented another link berween algebra
and geometry (Descartes had provided an earlier link).

Geometry Today

The historical sketch presented above is just a sketch; many important
persons and contributions have been omitted. What was included was back-
ground information to illustrate three main dirc:tions, or themes, which
seem to have predominated:

1. Axiomatics. Modern axiom schema must meet certain criteria:
Most important is consistency; in addition, independence,
completeness, and categoricalness must be met.

2. Geometries, not geometry. There is, in addition to Euclidéan
geometry, projective geometry, hyperbolic geometry, elliptic
geometry, sevsral Riemannian geometries, inversive geometry,
and so forth.

3. Methodologv. A gross classification here would be synthetic
or algebraic. The former includes sets of axioms with only
seometric content; the latter includes "metric" axiom schema,
group structures, and vector methods.

These directions, of course, are interdependent. They serve to under-
score, however, the flexibility which characterizes "geometry” today.
The present day mathematician, attempting to solve a geometric problem,
has at his command a variety of methods of attack, and, for a given
problem, one of these methods may- be substantially casier than another.
There are, for example, theorems which are ecasy to prove with analytic
methods but difficult to prove synthetically; there are theorems which
are difficult to prove synthetically but easy to prove using groups of
transformations; there are also theorems which are easy to prove synthe-
tically but difricult to prove anaiytically. The present day mathemati-
cian may also "borrow” results from one geometry to assist in the solu-
tion of a problem in some other kind of geometry; the clarificaticn of
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axiom systems enables him to determine when this can be done with impunity.

Geometry today may be studied by any one of a variety of approaches.
‘As a matter of fact, the debate that wages today over whether high school
geometry should be taught traditionally (a synthetic approach), by vector
methods by transformations, or by some eclectic method (including the
coordinate plane), reflects both the availability of multiple approaches

and the desirability of the attendent flexibility for problem
solving. .

Some classifications of geometries. The flexibility alluded to
above permits several schemes for classification of geometries. Some
of these are diagrammed in Figure 2. Figure 2a is from Meserve (1955,
p. vi), and Fipgure 2b is from Coxeter (1965, p. 19). A scheme for classi-
fication which incorporates the Klein definition of geometry is shown in
Figure 2c (modified from Coxeter & Greitzer, 1967, p. 101). 1t should

~ be noted that in Figures 2a and 2b, Euclidean geometry is considered

to be a special case of projective geometry.

topology projﬁFtive

I T 1
projective elliptic afﬁine hyperbolic

— 1 2
affine non-Euclidean Euciidean Minkowskian

Euclidean

(a) (b)

topological transformations

linear trTnsformations

L. . I . ]
similarity fransformatlons Procrustean stretch

I l
isometries dilatations

reflections ;:}ations translations central dilatations

(c)
Figure 2

2
“Hermann Minkowski developed a "world geometry' from the general
theory of relativity.
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To illustrate the first two of these genealogical trees, some axioms
for projective geometry are:
P-1: If A and B are distinct points, there is at
least one line containing both A and B.
P-2: If A and B are distinct points, there is not
more than one line on hoth A and B.

P-3: 1If A, B, and C are points not all on the same
line, and D and E are distinet points such that
B, C, and D are on a line, and C, A, and E are
on a line, there is a point F such that A, B, and
F, are on a line and also D, E, and F are on a lirne-

P-4: There exists at least one line.

P-5: There are at least three distinct points on every
line. )

P-6: Not all poinits are on the same line. (Meserve, 1955, p. 26)

Since all of these postulates hold for Euclidean and non-Euclidean geome-
tries, any theorem derived from these six axioms holds in »:ther subgeometry.
For example, both of the following theorems hoid fo- Yuclidean, hyperbolic, -
or elliptic geometry:

Theorem 1: If two points of a line are on a given
plane, then every pcint of th.: line is on
that plane.

Theorem 2: AnYy two distinct coplanar lines intersect
in a 1 nique point.

On the other hand, because of the differences in the postulates for
parallels in the non-Euclidean and Euclidean geometries, we have the
following theorems:

1. For Euclidean geometry. Two lines in the same plane
which are perpendicular to the same line are parallel.

2. For tiyperbolic geometry. Two lines in the same plane
perpenrdicular to the same line are hyperparallel.

3. For elliptic geometry. Any two lines in the came
plane intersect.

In Euclidean geometry, the point F may be the "point of infinity."
g
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With respect to the classification by transformations, in Figure 2¢,
there are definitions such as: '"A topological transformation is a mapping
of the plane onto itself which is 1-1, continuous, and with a continuous
inverse'" (Gans, 1969, p. 190), and theorems such as:

1. There is a unique similarity transformation that sends a
triangle ABC into a similar triangle A'B'C' so that A, B, C
goes to A', B', C', respectively. (Gans, 1969, p. 75)

2. Every rotation is the resultant of reflections in two lines
' throueh its center. (Gaas, 1967, p. 55)

These two types of classification illustrate the flexibility of
approach which is possible for the stud& of geometry today. However,
regardless of their seeming dissimilarity, in any formal approach, the
geometry is organized into a sophisticated chain consisting of: definition,
axiom, theorem, proof. Furthermore, in essenc.e, this situation has
obtained since Euclid write the Elements. One must go back to the days
of the early Egyptians and Babyloniansn to find much geometry that is of
anempirical nature. This is in contrast to the situation which charac-
terized algebra, in which axiomatic structure came late upon the sconc
(19th century). Prior to that time, solutions to general classes of
problems (e.g., cubic equations) were determined outside of any axiomatic
system. Ceneralization, rather than formalization, characterized
developments in algebra. As a consequence, in school we meet the integers
first as solutions tv equations of the form a + X = b; later they can become
a "concrete’” model for the algebraic structure known as an integral domain.

N Some Curricular Considerations

Implicatiors from the Subject

Obviously, the formal definition-axiom-theorem-proof approach to
geometry is not suitable for elementary school children. Also, as just
mentioned, the historical development of the subject does not provide
the nice curricular model furnished by algebra. Nevertheless. the history
and present status of the several geometries do suggest some alternatives
for selecting geometric content for the elementary school. (These alter-
natives are not intended to constitute an exhaustive list!)

4
Some historians believe that much of the same geomitry was known
to the ancient Chinese and Indians, but that these were not written on
materials which could survive the ages.
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First, there is the historical route. This has heen the traditicnal
one, to the extent that geometry has been taught at a4!1 in the elementary
school. Mensuration formulae are studied first. Then, in the upper grades,
some WOTk is done with similar tviangles and indirect measurement. 1In
high school, classical Euclidean geometry is studied; then, in college,
other geometries (if any pgeometry at all) are studied. One problem with
this approach is that elementary school children nave difficulty with
measur=ment of all kinds, and this serves to delay the introduction of
geomesry,

2

Secod, there is the route of material axiomatics. 1In contrast to
formaZ axiomatics, in which objects may have only the properties assigned.
to them by axiom or definition, material axiomatics assumes the objects
of study to have, in some sense, been known prior to the setting forth
of the axioms. Essentially, this was the Greek notion as exemplified by
Euclid 1n the Elements. As applied to the elementary school curriculum,
the children would be "led" to "discover” such axioms as:

Given two distinct points, there is one and only one
line containing them.

Two lines in the same plane can meet in at most one

point.
Some contemporary textbooks seem to take this approach and ask leading
questjons, the answers to which are essentially the Euclidean postulates.

Third, there is an approach in which children learn certain theorems
by experimentation. Activities based on paper folding, for example,
seem to illustrate this approach. By folding paper, or by drawing a suit-
able number of pictures, children can convince themselves that the base
angles of an isosceles triangle are the same size. By fitting a rectan-
gular piece of cardboard, or a carpenter's square, into a semicircle, the
“truth” of the theorem that an an.le inscribed in a ‘semicircle is a right
angle can be demonstrated. Tearing triangular sheets of paper substan-
tiates the Euclidean angle sum theorem. Studying equatorial lines on a
sphere generates certgin theorems of elliptic geometry. Some examples
of this kind are to be found in the literature for elementary schonl
mathematies.

Fourth, there is the route suggested by the Erlanger Programm. When
considered formally, 'this route may seem to be impossible. However, the
invariants under the various groups of transformations include many of
the properties and relations for which definitjons are given in any formal
course in geometry, viz., parallelism, perpendicularity, congruence for
triangles, congruence for angles, congruence for segmeuts, similarity.
and betweeness. (Betweeness, of course, may be taken as a "primitive
notion” in a synthetic approach, but it 18 defined in a metric approach.)
Transformatiogs themselves can be 2asily illustrated in an experimental
setting. Rotations can be illustrated, for example, by turning a sheet
of paper about a point, and projective transformations by casting shadows.
Since this approach seems not to have been tried, a few examples may not
be out of place here. 0 -~

20
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The formal definition of a topological transformation given earlier
may seem formidable, but it is easily illustrated. If a rubber band is
stretched, whether uniformly or not, so l~+: 0s it is not broken or made
to cross itself, that deformation is an ex.:: . « of a "continuous trans-
formation" whose "inverse 1s also continuous’ , that is, it models a topo-
logical :ransformation. Sometimes cilled “elastic motions," topological
transformations can be modeled with kindergarteners' clay, with balloons,
and with elastic thread. Two of the invariants are: order along a curve,
and interior (exterior) of a simple closed curve ("being a simple closed
curve" 1s also an invariant). Size and shape are not invariants: Circles
can be deformed into triangles, into larger (smaller) circles, or into
any other kind of simple closed curve. Straightness is also not an
invariant under topological transformaticns; that is, in the same sense
that all simple closed curves are "topological equivalent,” a line, an
angle, and a parabola are also equivalent.

Under projective transformations, straightness is an invariant: The
shadow of a straight stick will always be straight. €Size and shape, however,
are not invariants. The shadow of a stick may be longer than, shorter than,
or the same length as the stick, and the shadow of a circle (ellipse) may

~be an ellipse (circle). Moreover, any tupological invariant will be a

projective invariant, since projective transformations are particular kinds
of topological transformations. The isometries (rotations, reflections,
and translatinns) have size and shape as invariants iu addition to all
invarian:s mentioned so far.

1t was mentioned earlier that the idea of an invariant property arose
in the context of a viewer recognizing an object from different images

received as he viewed it from different angles. Apparently, the viewer

is attentive to certain visual "cues" in making such judgments. Possibly
childen could learn for themselves the cues which tell them whether a
particular figure could resuit from a projection (or rotation or

reflection, etc.) of some given figure and, in this way, develop some
meaning for terms such as “congruence,' "perpendicularity,” and "similarity"
prior to the introduction of these words. It should be noted that one

of the difficulties encountered by students in a course 1in Euclidean
geometry arises with cases of "overlapping triangles," as, for example,
triangles ADC and CEA (or triangles ABE and CBD) in Figure 3. 1In each of
these pairs, one is the image of the other under a reflection, and

v

y
Yo

Figure 13
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Articz.larion with High School Geometry

One argument for articulation between elementary and high school
geometry is that of preventing compartmentalization of content into unrelated
collections of "facts.! Such compartmentalization neither reflects the
nuture of mathematizs nor contributes to the mathematical development

-of the student.

[a view of the deductive nature of the usual high school geometry
course, articulation may not seem to be possible unless by "articulation"
one means a kind of duplication--duplication of the simpha;\iénd easier)
parts of the course. As a matter of fact, it has sometimes been recommended
that some of the easier parts of the high school geometry course be moved
down into the elementary school. However, there are Some well-known
difficulties with traditional high school geometry, one of which (recog-
nizing overlapping triangles) was mentioned in the previous section.
Perhaps articulation could be aimed not so much at preparing students for
the easy parts of the course, but for the more difficult.

e

The example of recognizing overlapping triangles was cited as a
possible outcome from studying transformations. The typical method for
handling this difficulty in high school is to make it the specific
goal for one or more lessons. The lessons might begin with teacher or
textbook asserting that there are more than three triangles in Finure
4a, or demonstrating by drawing Figure 4a separated as in Figure 4b.
After more examples, the students might be asked to name all the triangles
in a figure such as Figure 4c. No outcome for the lessons ig expected
other than that students be able to recognize instances of overlapping
triangles. Furthermor~, within this necessarily compact setting, and
with only a small number of instances, not all students acquire the
requisite proficiency.

/.

14
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Figure 4
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2



19 -

In contrast, if learning to recognize images of figures under
transformations is the aim of a series of lessons, and if the pace can
be more leisurely, students might not only learn to recognize instances
of overlapping triangles (images under reflections) but also to make
correct identifications in other slippery cases. In Figure 5, for example,
triangle HIK can be the image of triangle KLH, and triangle BMC the image
of triangle DMA under (separate) rotations of the plane. In this setting,
the student may gain experience with not just one, but three interrelated
competencies, lack of any of which can prove troublesome in formal geometry:

1. recognizing pairs of congruent triangles,

2. recognizing pairs of overlapping congruent triangles, and

3. idencifying corresponding parts of congruent triangles.
With respect to the third, corresponding parts are those which are images

of each other under the transformation, and this, of conrse, 1is true
when the transformation is a similarity as well as when it ia an isometry.

Figure 5

It may be instructive at tl.ls poin™ ro look at some of the other
— - Jdifficulties and misconceptions of students of high school geomecryS to
see if there are other implications for the elementary school. The most
obvious difficulty, of coursc, ic with writing proofs. Another is
difficulty in using algebra where needed for solving numerical problems.
A third difficulty is with definitiuns--believing, for example, that
any scalene triangle has a hypotenuse. Aside from these, howeveﬁ, there

SFor the remainder of this section, the term "high school geometry"
will mean traditional “uclidean geometry taught deductively.
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are others which are either more subtle or whose resolution is less clear-
cut, bwt which, nevertheless, impede the student's progress. In the

following outline some of these are listed and classified, with no claim
that the six categories shown are either mutually exclusive or ekxhaustive.

I. There are difficulties with the relational aspects of geometry.
Four examples are:

A. Corifusion with the meaning of the word "equidistant."

1. BC || Ap = AB = Cp because "parallel lines are
everywhere equidistant." /

2. BB bisects £ ABC 2 DA £ DC because a "point on the
bisector of an angle is equidistant from the sides."

D

8 C

3. For locus pKOble“S) € U1d15ta”t 1s Ofte” taken to mean
q
at a given distanCE.

B. Confusion with the words "complement" and "complementary.'

For example, a student may say "'A complementary angle equals
a right angle," ’

C. Not understanding proportionality. For example, if the
problem is te partition a segment into parts proportional
to three given segments, many students do not know what
this means, and even when shown the "correct" solution, do
not understand why it is correct.

D. Confusion with befpendiculari;y.__For example, when required.

Lo construct a perpendicular to BC from D, some students draw
DC, and others construct a perpendicular to AB at D.

c
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Difficulties with measurement. 'wo examples are:

A,

B.

“Not believing that a square ad a triangle can bound regions

having the same area.

Not believing that the ratios of the areas bounded by similar
polygons is that of the squares of the corresponding sides.

6
Drawing unwarranted conclusions from a theorem or from a sequence
of theorems. Five examples are: :

A,

D.

E.

Asserting that when two parallel iines are cut by a transversal,
the interior angles on the same side of the transversal are
congruent.

Asserting that AB 2 DE because "If a series of parallel lines
cut off congruent segments on one transversal, they cut off
congruent segments on every transversal."

/) No
8/
c/ £

/ N

Believing that two triangles are congruent be SSA.

Believing that two triangles are congruent by AAA.

Believing that any two equilateral triangles are congruent
by SSS.

A theorem 1s not used when needed, or it is used incorrectly.
Two examples are: —_— : °

6These unwarranted conclusions do not appear to be logical difficulcies,

but rather inability to perceive the '"truth" of the situation.
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A. The theorem, "The segment joining the midpoints of two
sides of a triangle has half the length of the third
side” is not used when applicable. :

B. When usingthe theorem, "The side opposite the 30° angle
in a 30-60 right triangle has half the length of the
hypotenuse," the student takes that side to be one- half
the length of the other leg.’

Before proceeding to the last two categories, it may be noted that the
examples so far have to do/with the students' belief system, for they

are cases of mis-belief or dis-belief. That is, it appears that the
mysterious entity called "intuition" is at work. In the case of "comple-
mentary angle,” the intuition seems to be lacking; in the case of the
side opposite the 30° angle, the intuition seems to be faulty. Perhaps
in each of these cases we might say that the student "does not -understand
the theorem,' but that does not tell us very much. Furthermore,™if

.we look at the "interior angles on the same side of the transversal"

situation, who could believe that a and B are the same size in Figure 6a?
So why would a studenc say the angles were congruent? One might argue
that he does not know the meaning of the phrase, "interior angles on the
same side of the transversal,'" yet Figure 6a does not, assist the student
in arriving at the correct relationship. On the other hand, Figure 6b
convinces students DE || AC, but not that DE = % AC.

A
RN
J
®

Figure 6

The last two categories seém to support the lack-of intuition theory.

7Here it appears that the proof of the theorem is not convincing.
What is revealing about the first example is that the other half of the
theorem, viz., that the segment is parallel to the third side, 1s used.
So the theorem deces not seem to entirely agree with "truth" as the
student perceives it.

31
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V. Difficulties with orientation. Although these apply only
to a very few students, they are still revealing. Three
examples are:

A.

JIn- Figure 7a, the line is not straight because

it is neither horizontul ror vertical.
<,

In Figure 7b, the angle is not a right angle because

the vertex is on the left.

In Figure 7c, the angle is not a right angle because
the sides do not have a horizontal-vertical alignment.

b ‘ c

. Figure 7

VI. Other common misconceptions:

A.

Big triangles have bigger angles than small
triangles. Thus if the sides of onc tri-
angle are twice the length of the sides of
another, the angles have the same ratio.

The diagonals of a parallelogram always bisect
the angles.

The diagonals of anyvparallelogram are congruent.

The bisector of an angle of a triangle always
bisects thé opposite side.

A median to one side of a triangle always b
bisects the opposite angle.

An altitude to one side of a triangle always bisects
that side. '

It is always possible to draw a line which bisects one

angle of a triangle and is also the perpendicular bisector
of the opposite side.

32
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An arc of a circle is equal to its chord.

There are many misconceptions about ratios;

in

general, students have trouble setting up

correct ratios between sides of similar triangles.

Difficulty with writing proofs has already been mentioned. What
is apparent, however, is that no amou~t of instruction devoted to the
theory of proof construction will gua:antee that a student will give
a correct proof if, for example, he believes that the diagonals of a
parallelogram bisect the angles. The above list of mis-beliefs and
dis-beliefs, then, displays factors which can effectively interfere
‘with a student's achievement in high school geometry. A natural question
is whether the study of geometry in the elementary school might contri-
bute to the development of this thing called "intuition."

Nearly all
relation in the

18
18
18
18
18
18

of the twenty-five difficulties just listed involve a’
mathematical meaning of the word; for example; .

parallel to,
perpendicular to,
supplementary to,
complementary to,

in the same ratio.as,
congruent to,

bisects.

Apparently some relations are obvious--a scalene triangle, for example,
has a“ longest side, and the segment joining the midpoints of two sides

of a triangle is parallel to the third side. But some are not so obvious.
Perhaps the implication for the elementary school is that the focus be
shifted from properties to relations.

Properties are descriptions of point sets which serve to qualify
(or disqualify) those sets for class membership. Thus, we have such pro-

perties as,

having x number of sides,

being a polygon,

being a polygon with x number of sides,
. having a measure of 90°,

having measure less than 90°.

Relations, on the other hand, alwa&s involve pairs of point sets, of which
"belonging to the same class as" is a fairly simple example. One of the
.advantages of the Erlanger Program is that certain relations are invariant
when the space is transformed by any member of some group of transformations.
Thus, under the topological group, the rectangle labeled X in Figure 8 may
look like any of the figures on the right but can never look like a figure
Under the.group of similarity transformations the rectangle

on the left.

~
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labeled X in Figure 9 may look like any of the figures on the right but
cannot look like any of the figures on the left.

] ™ . O,
=

/
] 7

[

a0 o

Figure 8

j I -
X

Figure 9

To explore the relation, "Y is the image of X,"” the student must
be attentive to some perceptions and ignore others. In something of the
Gestalt sense, the invariant Lecomes ihe figure, the irrelevart features
the ground. In mathematical terms, under the topological group, for the
relation"Y isthe image of X" (the rectangular set X shown in Figures 8 and 9)
to hold, it 1is necessary and sufficient that Y be a simple closed curve.
Under the group of similarity transformations, "being a simple closed
curve" is necessary, as is "having four sides and four right angles."
But neither condition is sufficient--sufficiency requires the propor-
tionality relation for sides. Furthermore, it is not essential that
the viewer know the words, "rectangle," 'right angie,"” "simple closed
curve,”" cr "proportion,” in order to recognize point sets which could
be the image of X. As suggested in the previous section of this
paper, the transformations are easy to model using hands-on materials,
so.that the student can observe results. Then with the right sort ’
of questioning he can predict whether some other figure could or i
could not be an image. The importance of the relation is .thus established
as an integral part of the problem situation, and need not be introduced
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in isolation because its importance will be understood "later" or hecause
"that's what mathematicians study."

"Intuition" is one of those undefined terms, like "mathematical
maturity," which is probably well ygderstood in the trade, but which is
hard to describe. Whenever used, hoWever, it does seem to include
such characteristics as ability to imagine circumstances different from
those given, and to predict what would happen under the new circumstances;
for example, being able to predict what would stay the same and what
would change if the figure were larger, or smaller, or of a different
shape. Such ability would seem tu be what is needed in high school geo-
metry to forestall such unwarrznted conclusions as "a bisector of an
angle of a triangle always bisects the opposite side."

We tend to think of geometry as a mathematical model of space, and
perhaps the appeal that Euclidean geometry has long enjoyed is that it
characterizes space as we perceive it. But that means that the relations
we recognize as being "true" turn out to be valid consequences of the
axioms. However, geometry cannot have that appeal if we fail to recog-
nize certain relationships as being true. Thus a student is unlikely
to find high school geometry very appealing if he is lacking in the kind
of intuition that tells him, "but of course, that has to be.’

Summary

The history of geometry has been unique in mathematies in that it
was formalized as a deductive system very early. Thus if there were
intuitive roots such as characterize the history of the study of number,
these have been lost in antiquity. Furthermore, geometry has not always
been viewed as being as necessary as arithmetic in everyday life. Yet '
geometries constitute an honorable branch of mathematics and deserve a
place in the education of children.

The rise of the ncn-Euclidean geometries showed that a theorem is
no more true than the axioms on which it is based. Hence it makes
lictle sense to enquire which geometry is "true"; it does, however, make
sense tv enquire whica geometry (or which anproach to geometry) would
be more pedagogically sound for children.

Some students study geometry in high school, and for these students
some“articulation between the content of high school geometry and rhat
of the elementary school would seem desirable. At the present time,
the high school geometry course is under attack, with heated debates
among the proponents of : vector approach, a transfnrmation approach,
an electic approach, and those who favor the traditional course. Yet
regardless of how the matter is resolved, Euclidean space will most
likely be the central core. Thus anything the student already knows
about the nature of Euclidean space will be of help. Facts are nice
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to know; vocabulary is also nice to know. But what is even nicer is to -
be able to visualize altered circumstances and arrive at a sound conjecture
about what "has to be the case." As a matter of fact, this is nice to
know even if you nevdr take another course in geometry .
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Piaget;s Thinking
about the !
Developmenﬁ“of Space Concepts and Geometryl
Charles D. Smock

University of Georgia

For the genetic espitemologist, knowledge results from

contiruous construction, since in each act of understanding,
some degree of invention is involved . . .

Jean Piaget

The conceptual revolugion for psychology and education required by
Piaget's epistemology is,¥P think, more appreciated than understood.

That is, Piagetian ideas pass around as common currency, among researchers

and practitioners alike, but all too often turn out to be only vague
facsimiles or counterfeit copiles. If we are to benefit fully from
Piagetian ideas of psychological development and learning of mathematical
concepts, we must translate those ideas with as little transformation

as possible. 1In this paper, I hope to do just that in the context of

the purpose of this workshop, i.e., review selected theoretical and
methodological issues relevant to research into the development and
learning of space and geometry concepts. Specifically, I will (a) review
certain critical features of the epistemological and theoretical aspects
of Piaget's positions vis-a-vis the development of space concepts, (b)
review the available evidencé concerning the construction of the '"pérma-
nent object" which is the fundamental invariant of our spatial world, and
(c) summarize Piaget's early work on space and geometry, and (d) offer
some methodological suggestions and guidelines for inquiring into cogni-
tive development in general and space and geometry in particular.

1This report is based on activities supported (in part) by the
Mathemagenics Activities Program-Follow Through, C. D, Smock, Director,
under Grant No. OEG-0-8-522478-4617 (287) Department of HEW, U. §, Office
of Education. However, the opinions expressed herein do not necessarily
reflect the position or policy of the U. $. Office of Education, and no
official endorsement by the U, S. Office of Education should be inferred.
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First, as I argued in an earlier paper (Smock, 1973) a coherent,
accumulative body of "facts" based on psychclogical research on the
development of space is nacessary but not sufficient for building a
theory of instruction. Our observation and interpretation of facts are
heavily prestructured by our epistemological belief and knowledge base
or cognitive structures. Understanding of the relevance and implications
of Piagetian concepts and data for educaticn devends on each of us
starting at the beginning--i.e., with his theory of the nature of know-
ledge and knowledge acquisition and then building up our personal know-
ledge base of empirical findings and demonstration of ideas generated
from appropridte experimental settings. Until recently, American
researchers' contribution to an accumulative body of knowledge relevant
to Flaget's theory was limited to replication of Genevan studies. Current
research indicates that the methodological implications (of which I will
speak later) of the theory are more ciearly recognized (e.g., Forman),
1973; overton & Jackson, 1973; To ssaint, 1974)... But, n any case, the
mathematics educacion'researcﬁer geeds to build his’ understandingz of the
implications of psychological research findings on a firm understanding
of the epistemological considerations that are the fourdazion of Piaget's
theory of cognitive development and’ learning.

Plaget is characterized as a "natural genetic epistemologist." The
adjectives may be interpreted with little ambiguity, i.e., "observations
of the srigiua: (of knowledge). lLiowever, the specific epistemolcgical
position of Piaget is not so re8dily located, even from his own writings,
but ¢+ -e are strong indications that he represents « 'radical construc-

ti view (Smock, 1973; Smock & von Ciasersfteld, 1974: von Glasersfeld,
1u., That is, the environment is, and must remain, a "black box."

Al »=" aver "know" is our own cognitive structures. Knowledge is no
mo w0 less, than constructed invariants of organism-environment
relati._. but this construction o

involves the adjustment of, for instance, percepts to
conceptual structures which the perceiver has already
assembled; and this adjustment of the new to the old is

called 'assimilation.' But cognitive equilibration also
involves the adjustment of concepts to percepts, and

this second type of adjustment, which can take the form

of creating a novel structure or of combining se-eral )
already assembled structures to form a larger conceptual

unit, is called 'accommodation.' (von Glasersfeld, 1974, p. 4)

The process of development and learning (cg-uéatve recreeniganion) isg
then, % response to conflict among internal functional structures (Smock,
1969. 1974). .

The genetic epistemology of Piaget assumes that spatial concepts are

constructed through commerce with the perceived environment and are only \
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one aspect of the development of general cognitive structures. Expectedly,
then, three themes characterize the Genevan research on space. First, the
primary concern is on conceptual and representational Space not perceptual
space. Thus, acquisition of concepts of the spatial world(s) is a product

of general intellectual development. The genesis of SPace perception is )
treated separately; the series of experiments on perception ig used to high-
light the contrasts of perception with that.of space representation.

A second theme emphasizes that spatial representations are built up
through the process of organization of actions and/or 10gico~mathematical
experience. Initially these are sensory-motor actions (resulting in
"practical" space) which later are internalized actions that culrinate
in operational (infra~logical) systems. The active manipulatior: of the
spatial-temporal environment (objects, empty space, intervals, duration,
mgvemencs), rather than a passive copying by the perceptual system,
generates representations of space.

Finally, a third theme ic the characterization of spatial concept
acquisitions according to th. “vpe of geometri¢c concepts involved~-topo-
logical, projective, or Euclidean. According to Piaget the historical
order (Euclidean, projective, topological) is reversed logically and
ontogenetically.

Object Permanence .

. 7 . :

The construction of space representation emerges at the beginning
.. :he concrete operational period (ages 5-7) from nreceding preopera-
tional cognitive acquigitions of the "practical group of displacements"
and the even earlier construction of the sensori-motor-.period. In the
beginning, there is an "object'--the origin of, and basic unit for, the
development of spatial relations as well -as the starting point of Piaget's
analyses of the nature of knowledge. 2 Thus, an understanding of the
development of object permanence is essential for "knowing" Piaget's
epistemology as well as his psychological theory of the concepts of
space. .o

~-

zcicacions of Fiaget's .ork will be used oniy as necessary to iden-

tify specific sources. of ideas (e.g., quotations). A selective set of
primary sources is:listed in the references. . -

3See E. von Glasersfeld's (1974) discussion for more details on the
epistemological aspects of the notion of the constructed permanent
"object."
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The infant is at first not aware of any -sermanent objects, but
merely "perceptual pictures,” which appear, disappear, and perhaps
reappear. In its simplest form, attainment of object permanence means
that the infant knows the object continues to exist when it is outside
of the perceptual field. The indicator of this knowledge (object
permanence) consists in '"true search" on the subject's part. A true
search is a search for the vanished object independent of subject's
on-going actions and perceptions.

The simplest procedure Piaget used to ctest the "object permanence"
is as follows:

1. E shows the child the object (e.g., a doll).

2. E grasps the object in his hand so that the child no longér
sees the object.

3. E puts his hand under a coverlet.

4. E withdraws the hand clcsed.

5. E eernds the closed hand to the child.
"If the child ébens the hand, finds it empty, goes on to search for the
object under the coverlet and gets it, then he is considered to have

attained the concept of object (i.e., object permanence).

The "logic”‘supposedly necessary for the attainment of object
permanence by the child is as follows:

1. There is an object.

2. A and B are the only possible E;aces the objecct could be.
3. The object is not a A.

4. Therefore, the-object must be at B.

According to Piaget, the inrant's conception of external objects as
permanent, independent entities is acquired in six distinct stages during
the sensory motor period (0-2 years)., Evidence for the stages was based
primarily on Piaget's observation of his three children's reac® ions to
objects which disappear from view. The behavior pattern characteristics
of each stage, along with the estimated age ranges reported by Piaget,
are summarized below.

During Stage I and II the infant has the ability for recognition,
has intercoordination of schemata, and shows simple expectations. How-
ever, the ability to recognize the mother's face, or to look at the
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-

object from which the sound comes from, or to continue to look at the

place where the object has just vanished and to continue with the sucking
response after removal of the nipple, is not a manifestation of the attain-
ment of object permanence.

Recognition

Conceptually, recognition of an object means that the S knows that
object he sees now is the same object that he saw previously. Recogni-
tion is operationally identified by the fact the subject can respond in
the same way when the same object is presented at two time points. For
Piaget, recognition is at first only a particular instance of assimila-
tion: The thing recognized stimulates and feeds the sensorimotor schema
which was previously constructed for its use. 1In order that the recog-
nized representation or 'picture" become an externalized "object," it
must be dissociated form the action itself and the causali relations
dependent on the immediate activity. :

Intercoordination of Schemata

From the second month of life and the beginning of the thira, the
child tries to lock at the objects he hears, thus revealing the rela-
tionships being established between sounds and visual pictures. . Does
this mean that by presenting certain sounds, the anticipation of a :
certain image of an object is elicited and thus tnat the child has
already an object concept? Piaget argues that simple intercoordination
of schemata between sight and hearing, at the outset, does not generate
an objective identity of the visual image and auditory image, but simply
a subjective identity,i.e., the child tries to see what he hears because
each scl :ma of assimilation seeks to encompass the whole universe.
Discovery of the visual picture announced by the sound is only the
extension of the act of trying to see. It is not the sume case as that
of an adult when his act of searching with the glance 1s accompanied by
a belief in the firm existence of the object looked at.

Simple Expectation (Anticipation) N

True search is an indication of the beginning of the object concept
but, again, simple cxpectation is not. Simple expectation refers to
those behavior patterns in which the search for vanished objects is
only a continuation of the earljer act of accommodation. The child only
preserves the orientation grnerated by tne earlier perception, e.g., in
the case of the disappew.ring visual image, the child limits himself to
looking at the place where the object vanished. Tf nothing reappears, he
quickly shifts attention. )
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In simple expectation, the vanished object is not yet for the
child a permanent object which has been moved, it is a mere image which
re-enters the void as soon as it vanishes, and emerges from it for no
dbjective reason. True search is an active search and includes inter-
vention of movements which do not solely extend the interrupted action.
In this case, the child will find out where the "thing" could have been
put, he will remove obstacles, change the position of the presenting
objects at hand, 4and so on.

One could, perhaps, argue that the child's failure to engage in
active search (i.e., simple expectation) is due to lack of motor skill
at this early age. However, if the child, while not knowing how to search
(motorically) for the =zi:cnt object, nevertheless believes in its permanence,
then '"true search' shou.d bLegin as soon as prehension skills have been
acquired. Such is not the case as the child's behavior in Stage IILI
indicates.

Stage III is a transition.perlod from prehension of an object at
hand to true search for a missing object. 1In this intermediate stage,
five types of behavior are distinguishable: (1) visual accommodation
to rapid movements, (2) interrupted prehension, (3) deferred circular
reaction, (4) the reconstruction of an invisible whole from a visible
fraction, and (5) the removal of the obstacle preventing perception.
I'he first of these behavior patterns merely extends those to the second
stage, and the fifth fulfills those of the fourth stage.

All the behavior patterns enumerated hitherto merely extend the
action in progress. Clearly, visual accommodations to rapid movements,
interrupted prehension, and deferred circular reactions, all consist merely
in returning to the momeptarily suspended act--not in complicating that action
by removing the obstacles which arise. The reconstruction of invisible
totalities and the removal of obstacles preventing perception both seem
to involve such differentiation, but this only appears to be true. That
is, when the child tries to get to a haif-hidden object and, to do this,
removes the. obstacles which cuver the hidden portion, the action is by
no means as complicated as that of rémoving a screen masking the
entire object. In the latter case, the child must momentarily giwve up
the attempL 4t direct prehension of the object in order to raise a-
screen which is recognized as such. On the contrary, in the former case,
the child sees part of the object and tries to grasp it; he only recon-
structs the totality as a function of this ongoing action and not
because a new action pattern, consisting of removing the screen, has
been differentiated. Removal of obstacles preventing perception requires
knowledge of an object in relation to the subject and not in relation to
the object, i.e., the obstacle-screen and the object as such are not yet
related. From this point of view, the object is still only the extension
of the action in progress. . .
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True Search

Stage 1V marks an important transition. Prior to Stage ,
infant lacks object permanencz and knows a thing and its locAtion only
in the context of his ongoing actions. He either cannot fi hidden
things or can only find them when he has begun to reach for them before
they disappear. In Stage IV, the infant is aware of the object's per-
manence. If he ohserves ar. object disappear, he searches for it even
when he has not begun to reach for the object before it disappeared.
However, his objectivity has an important limitation which indicates
that his ideas of things continue to be bound up with how he acts upon
them. An object is not localized in terms of where it has moved, but
in terms of where it was found in the past.

Piaget employed the following procedure to test children for Stage
IV behavior. First an object was hidden in place A and then in place
B. Piaget noted that after the children had found the object at A, they
attentively watched the cbject being hidden at B. However, when the
object disappeared in view, the children searched at A. This pattern
of success at.A and failure at B was referred to as AB.

Three possible explanations are offered for the AB behavior: diffi-
culties in memory, in spatial localization, and in object conceptuali-
zation. Plaget (1954) makes it clear however, that the first two are
considered but different aspects of the difficulty in object conceptuali-
zation: '"Faced with the disappearance of the object, the child immediately
ceases to reflect: in other words, he does not try to remember the
sequence of positions and thus merely returns to the place where he
was successful in finding the cbject the first time" (p. 61). The
memory explanation is simply a way of saying the child has trcuble
keeping track of places, and the second, or spatial localization
.explanation, provides reasons for this difficulty. Further, Piaget
argues that the infant localizes objects in terms of a scheme hased upon
the inrant's prior actions. Accordingly the AB error occurs because there
has been no previous action at B, and therefore the infant has no "memory"
of that place. On the other hand, he is able to localize A because it
was at that locale that his practical action brought him a toy. When he
sees a toy being hiddem at B, he registers only that a toy is being hidden at
a "place” and so scarches at the only place-he is able to localize.

When talking «bout the third explanation, Piaget points out that
adults are able to think of particular objects only because of the
assumption that objects are independent of the many places they may
occupy. However, if we did not distinguish thing from place, the adult
would be aware of "ball-under-the-arm-chair,” "ball-under-the-cushion,"
etc., which is what the infant does in Stage IV. The child endows
objects with only a few special positions without being able, consequentlv,
to consider it as entirelv independent of them. Piaget (1954)
concludes: “In a general way in all the observations in which the child
searches in A for what he has seen disappear in B, the explanation should
be sought in the fact that the object is not yet sufficiently individuaiized
to be dissociated from the global behavior related te position" (p. 63).
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The first acquisition of Stage'V is signified by success on a task
where an objectr is hidden under a first screen which the child finds
then under a second screen, and the subject no longer searches for the -
obiect under the first screen, but only under the second one. As mentioned
above, the childsucceeds in keeping track of only the visible displacements
of the object and locates it only when he has actually seen it. From
repeated experiments, Plaget found .that when an invisible displacemeni
of object intervenes, the child relapses into the same difficulties
which he has already vvercome when visible displacements were involved.
These findings furnish us with a good example of the law of "temporal
displacement," i.e., when an operation passes over from one plane to
another, it has to be relearned on this new plane. In particular, the
groups of displacements of object which, at the*beginning of the fifth
svage, had been constituted on the plane of direct perception of relaticu-
ships of position, must be formed anew as soon as it has been transferred
to the plane of representation of these relationships.

In the final (VI) stage, the object is not as it was during the
first four stages, i.e., merely an extension of various accomodations.
Nor is it, as in Stage V, merely a permanent body in motion whose move-
ments have become independent of self but only to the extent and scope
of perception. 1Instead, in Stage VI the object is definitely now freed
frou perception and practical action.

It should be emphasized that a supject's search for an object under
a screen, after the subject has seen the object disappear under the
screen (Stage IV and V), does not necessarily presuppose that the subject
"imagines" the object under the screen. Rather, the search simply
indicates that the subject understood tne relation of the two objects
at the moment he perceived it (at the moment the object was covered)
and, therefore, interprets the screen as a ign of the actual presence
‘of the object. It is one thing to assume .. : permanence of an object
when one has just seen it or when some other cbject in sight recalls
its presence. It is quite another thing to imagine the first object
when there are no perceptual signs to confirm its hidden existence.
True representation begins only when nn perceived sign commands belief
in permaneacy, that is, from the moment when the vanished object is
displaced according to an itinerary which the subject may deduce
but not perceive. With regard to the infant at the fifth stage,
the objects are not "permanent" to the extent that he does not know
how to imagine or to deduce the invisible displacements of bodies as
objects truly independent of the self. On the contrary, the representa-
tion and deduction characteristics of the sixth stage result in disasso-
ciating the object from action and perception and objects in motion become
real objects independent of the self.
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Review of Recent Studies

A reviey of studies of object permanence revealed that most are
concentrated on Stage IV, because Stage IV is considered by Piaget to
be the critical period where the "true Search" behavior begins. The
procedures used in these studies generally are the same as those Piaget
used except for additional control of critical variables such as the
length of interval between hiding the object and permitting the child
to search (usually a 3-second delay was used), and the number of times
the object is hidden at A before it is hidden at B (usually the object
wae hidden twice at A before it is hidden at B).

] Gratch and Landers (1°7/1) observed infants biweekly until they were
between 6 and 12 months of age in order to replicate and elaborate .on

the observations Piaget employed to define State IV of object concept.
Their observations suggest that the Stage IV phenomenon s part of an
age-related sequence of responses to hidden objects. B.fore the infants
found an object hidden out ¢{ their reach, they were able to find it

when partially hidden (P) and were able to find objects that_were

grasped before they were covered (G). The Stage IV error (AB) phenomenon
occurred repeatedly over a period of 1-3 months. During that period,
however, the character of AB changed. Initially, infants seemed to ignore
the displacement of the object to a second position. Later, they
appeared to be in conflict over whether to use the cues provided by

their prior successful searches or their awareness of the displacement

of the object. Finally, they rame to rely on the cue of object displace-
ment. . :

Landaers (1971) siudied the effects of "active experience" (i.e.,
searching for the hidden toy) versus "gassive experience'" (i.e., observing
but not searching) on the AB behavior. Using infants between the ages
of 7% and 10% months, “e found that infants who had more experience
finding za object at the A position tended to have more difficulty finding
the object when it was hidden at the B position.. This suggests that simply
watching the expeiimenter hide and uncover a toy at A does not establish the
A side as a "'special" place, which active search does. The results seem
0 clarify and establish empirically Piaget's argument that the Stage
IV infant's behavior and object concepts are dependent upon 'context"
and "'action." The previously reinforced motor response seems to be a

.more potent aid Lo memory than the most recent visual input when repra-
sentational processes are just beginning.

S 4

2,

*Three groups were used: (GI)--""low active A-experience group''--
two active experiences at A; (GIT)--"high active A-experience group'--
10 active searchings at A; (GILI)--"high passive A-c¢xperience group'--
two scarching trials at A plus 8 observing trials.
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Evans and Gratch (1972) studied the AB error to evaluate the relative
merits of place (spatial localization) and thing-of-place (object con-
ceptualization) arguments Piaget offered for explaining the AB error.
Infants between the ages of 8% and 10, months served as subjects.
Half of the infants were assigned to "same toy' condition and the other
half to "toy change" condition in which different toys were used on B-place
test trials than those used'on the A-place trials. The result showed no
difference between subjccts' performance on the two conditions. This result,
Evans and Gratch concluded, supportéd the notion that the AB error occurs
because A has somehow become "a place where hidden toys are found," rather
than because, as Piaget has argued, the particular object belongs at A.
If Piaget's thing-of-place argument were correct, then the fact that the
child sees a new nbject hidden at B should increase the probability that
he will search correctly since no previous action by the child has endowed
the new object with a place.

Lecompte and Gratch (1972) investigated directly the development of
object identity in infants by varying the objects instead of its spatial
position. This involves tricking the child by hiding one thing and having
him find another. The assumption is that if a child is aware of the
permanent nature of the object being hidden, in the sense in which zdults
are and which Piaget attributes to infants at Stage IV, he will be
surprised when he is tricked because his belief i1 permanence will have
been violated. Subjects consisted of infants at three different age levels:
9, 12, and 18 months. Two rating scales, both with seven categories were
devised to evaluate the child's immediate reaction to the trick (levels of
puzzlement) and his subsequent behavior (what he was surprised or puzzled
about). The result showed that infants at all age levels reacted differently
on the trick trials than they did either before of after the trick (two
trick trials were inserted among a total of nine trials). Older’infants
reacted with high puzzlement and searched for the missing toy and for the
cause of the disappearance. Younger infants were mildly puzzled and only
focused on the new "..v. The autho:s concluded that these results conformed
to Piaget's account of the development of the object concept.

As has been meaticned previously, Piaget has not controlled the time
interval between obje -t being hidden at A and the time the subject is
allowed to search. Lurris (1973) studied the role of delay and compared
the subjects' performance on a 0O-sec. and 5-sec. delay task. Infants 10
months of age served as subjects. The results indicated that infants at
this age search cor. ‘t.y, but errors are more likely with delay and if cues
previously associate. with finding the object distriuct the infant after its
disappearance. Yarris draws attention to the similarity between this
behavior of the hum:n fnfant and the frontally lesioned primate. He
propos.s that maturnt n of frontal cortex may be important for the develop-
nent of search beha. ... The argument is based on the fact that Harlow, H.,
Lar.ow. M., Ruepiv - 2nd Mason (1960) found that prior to 5 months, training
on .ialayed-rvepor.- :asks led to little or no improvement. After 5 months,
learning 'wa: .rve.ingly more rapidly with increasing age. The learming
curves -or u- and Y-gec. ~asks were similar, but the ability to solve the
delay task developed more slowly. Harris (1973) concludes that these data
demonstrate that the infant's immaturity makes nim susceptible to pro-
active inrerference in short-term memory. ’
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Webb, Massar, and Nadolny (1972) observed the behavior of l4- and 16-
month-old children in searching for hidden objects. A three-choice,
instead of two-choice, task was used, and the subjects were zllowed to
search for the object on each trial until i: was found. The major
finding was that the second-choice behavior of the l4-month-old children
was essentially random but that of the 16-month-old children was predomi-~
nately correct after an initial error. The interpretation of these authors
was that the child knows the location of the object in two distinct and
relatively independent ways. That is, ne remembers both past acticns
in locating the object, and the location of where he saw the object
hidden. In the search, first credence is given to the past location of
the object whereas the immediately prior perception becomes functlonal
only after the other cues prove unreliable. Thus, the child knows the
correct location of the hidden object in scme sense even while making
the error on the initial choice. The interpretation applied to these
data has an interesting analogy to several recent attempts to reformulate
Piaget's conservation problems, i.e., that perceptual strategies interfere
with the child's use of other solution processes. “‘ebb et al. suggest
that an overdependence on action-marked cues and past success overrides
a functional memory for visually presented events.

Gruber, Girgus, and Bannasisi (1971) modified Piaget's methods of
studying object permanence in children in order to study development of
object concepts in cats. Eight behavioral tasks were constructed:

(1) an auditory stimulus (click) off to one side; (2) an object swung

in a circle around the kitten; {(3) an object placed in front of the kitten
and then moved slightly; (4) an object and kitten placed on a stool; (5)

a kitten playing with an object and auditory distraction introduced; (6)

a kitten playing with an object and visual distraction introduced;

(7) a kitten playing with an object and object is covered while.

kitten is distracted; (8) an cbject is covered while the kitten is playing
with it. The data indicated that cats reach only an early "developmental" -
limit. Unlike children, the kittens were unable to follow an object
through a series of invisible displacements. Interestingly, house-reared
cats showed similar limitations but advanced more rapidly than cage-reared

animals. Finally, the lougitudinal data suggested that cats go through
.. four stages, rather than the six found in children. In 24 weeks kittens

develop as far as children do in the first year, but the child's behavior
eventually becomes more complex and more general.

Uzgiris and Hunt (1966) constructed a series of scales for assessing
infant psychological development. For each of the series of '"eliciting
situations," certain infant actions were selected as indicative of
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signffic=nt steps in that branch of psychological development.5 To give
a concrete idea of the scales, the "noticing the disappearance of a
slowly moving object" item is a good example:

Noticing the disappearance of a slowly moving object.

Location:

Object:

Directions:

Repeat:

-Infant Actions:

The infant may be supine on a flat surface,
in an infant seat, or sitting up by himself.

Any bright object that attracts the infant's
attention.

Once the infant has focused on the object, move

it slowly to one side and away from the infant,
making it disappear below the edge of the infant's
seat or the surface cn which he is placed. After
a few moments, bring the object back in front

and slightly above the infant's eyes from the
opposite side. Always move the object in the

same directicn and have it disappear at the same
point. -

3~4 times,

A. Does not follow object to point of dis-
appearance.

b. Loses interest as soon as ~Lject disappears
(eyes begin to wander and then focus on any
interesting object within view).

*c. Llingers with glance at the point where the
object has disappeared.

*d. After several presentations, returns glance
to the starting point or the poiut of
reappearance before the object has reappeared.

e. Searches with eyes around the point yhere the
: object has disappeared.

5Escalona and Corman (1967) also constructed a scale for assessi g
the degree of object permanence. The administration condition and
responses are described which enabled the examinar to score the child
as belonging to a particular level of a particular stage. '

*Actions marked with an asterisk (*) are considered critical r.-
this particular step of development.

A}

oYy -
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Miller, Cohen, and Hill (1970) replicated the ordinal scales of
cbject permanence constructed by Uzgiris and Hunt with 84 infants (ages
6, 8, 10, 12, 14, 16, and 18 months). Consistent age changes were
found that suggested two overlapping developmental dimensions:

(1) the ability to deal with visible versus ipvisible displacements.

and, (2) the ability to handle nomsequential versus sequential displace-
ments. However, the trend of data suggested, contrary to previous
evidence, that the infant can cope with single invisible displacements
not involving movement before he can handle complex visible displacements
that do involve movement.

Bell (1970) studied the development of the concept of object as
related to infant-mother attachment with infants between tae ages of 8%
and 11 months. Two scales, closely comparable to those constructed
by Escalona and Corman (1967) and Uzgiris ~nd Hunt (1966) were devised.
Seventy percent of the infants showed "positive de€calage," i.e., they
tended -0 be more advanced in the development of "person' permanence
than in the development of the concept of inanimate objects as permanent.
Another imporcant finding was that the development of the object concept
was intimately associated with the attachment of a baby to his mother.
The babies who manifest strong evidence of "d€calage" c¢isplayed more active
efforts to establish and maintain interaction with the mother through
approaching, reaching and/or initiating interaction.

Bower (1971) has raised the question as to whether object permanence
could be a built-in property of the nervous system (as is the case with_
so many other kinds of perceptual knowledge). During the experiment with
20, 40 and 80 day old infants, a screen moved in -from one side and covered
the object. After various intervals (1.5, 3, 7.5, or 15 sec.) the screen
was moved away. In half of the trials the object remained as the screen
moved away, and in the other trials the object was removed prior to
removing the screen. Tne results showed that when the object had been
occluded for 1.5 sec. all the infants manifested greater surprise at
its nonreappearance than at its reappearance. The index of surprise
Lere was determined by a change in heart rate. Thus, it would seem that
the infants expected the object to be present. However, while the oldest
infants "expacted" the object to reappear, i.e., showed the greatest
heart rate deceleration afte: the iongest occlusion period, the youngest-
infants exhibited a reverse effect after the longest occlusion period,
i.e., showed more surprise at the cbject reappearance than at its non-
reappearance. It seems that even very young infants know that an object
is still there (built-in str.cture) after it has been hidden, but if
the time of occlusion is prolonged, they fe-;.: the object altogether.

Bower (1371) suggested that while the older infants identify an

- object by its features, the younger infants (less than 16 weeks)

identify objects by pluace or movement. To test this idea, a group
of infants between 6-16 weeks and a group between 16-22 weeks were
examined in four situations: (1) An object moved along a track,

went behind a screen, emerged on the other side, moved on for

a short distance, stopped and then returned to .ts original position.

51



44

(2) The object moved along the track, wen: behind the screen and at

the moment when the ubject should have emerged on the other side of the
screen a totally diffarent object emerged, moved on for a short digtance
before reversing and repeating the entire cycle in the opposite direction.
(3) The object moved along a track as before, except at the time when
according to its speed before occlusion it should still have been behind

the screen, an identical object moved out.

(4) The object moved along

the track as before, and at the time when it should have been behind the
screen a totally different object moved ont. The results are summarized

in Table 1.

Table 1

Infants Reactions to Bower's'
Object-Movement Situations

Zonditions

(1) One object. one movement

S,

(2) 1wo objects, one movement’

(3) One rbject, two movements

(4) Two objects, two movements

Younger Infants
(6-16 weeks)

Continued to
follow the path of
mavement when the
object stopped

(Same response
as above)

Upset and

refused to look
any more; infants
did not continue
ta> follow the
object's path
when it stopped

(Same response
as above)

Older Infants
(16-22 weeks)

- Stopped track-

ing the object
when it
stopped

25% of the
times infants
would look to
the other side
of the screen
when the object
stopped

On every trial,
infants would
look to the
other side of
the screen when
the object
stopped

(Same response
as above)

From these results, Bower argues that the younger infants responded not

Z0o moviug objects but to movement per se. Simil:rly. their responses were
10t to stacionary objects, but to places. On the. contrary, older infants

identify a:. object by its features rather than b’ its place or movements,
for them different features imply different objects that can move indepen-

lently. 5 Z
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Conclusions

Upject permanence means that an infant knows the object continues to
exist when it is outside of the perceptual /and action field. '"True search"
is the indication of object permanence. y true searct! Flaget means that
the subject engages in an active search for the vanished object indepen-
dent of his action and perception. .

Six stages in the development of t ncept of object permanence
have :been identified with Stage IV marking an important tramsition. Prior
tn Stage IV, the infant knows a thing only in the context of his ongoing
actions; he is concerned with his objeéiive as one and che same thing as
his desire. In short, before Stage IV the action is the source of
external world. After Stage IV the object be~omes detached from the infant's
activity and gradually acquires an independent status.

Recent st idies of object permanence have concentrated on the infant's
Stage IV concept of object and, in particular, on the AB phenomenon. AB
means that after the infant has experience of successful searches at place A,
though he has watched tne object being displaced to place B, his search
for the object is at A. The implication is that the infant conceives
the object as bheing the product of his action: The toy does not exist by
itself, but is the end result of the reaching of his hand at A. At the
end of Stage IV, the infant's search for object begins to ogcillate
between pluce A and B, and this is the mark of the begirning of the
object being detached from the action. Studies of infant concept of
Stage IV generally have confirmc the developmental sequence observed and
theoretical interpretations reported by Plaget.

Landers' (1971) study showed the influence of prior motor experience
on the subsequent search behavior of the infant. Evans and Gratch (1972)
argue against Piaget's thing-of-place interpretation of AB behavior but
do not take the role of action into consideration. The 'thing-of-place-
A" concept cf object that Piaget offered is simply the result of the
"action-at-place-A." If the subject has only had the experience of.
"action-at-A" there is no reason to expect that the infant would search
at B even when the infant has noticed the object being hidden at B is
different from what was hidden at A in the former trials.

The critical point in Lecrmpte and Gratch's (1972) study is that
while the older infants were engaging in a search for the missing toy, the
younger infants were only focusing un the new toy. The younger infants' hehav
only indicaced that the "toy change' had been noticed, or, the ability
to identify the object by its features had already been demonstrated.
Lower's (1971) study showed that the ability to identify the object by
its features was present at the age of 16-22 weeks. Since this
Yehavior does not fulfill the criterion of 'true search," there is no
reason to believe the object still exists for the infant once it
vanishes from the infant's perceptual field. :

53



O

ERIC

Aruitoxt provided by Eic:

46 - -

Harris (1973) suggests a physiological basis for lack Sf object
permanence. For him the inability to solve delayed reaction tasks 1is
the basic source of difficulty for infants. Tt might be possibley as

he indicates} that the ability to solve such delay tasks is relatdd to
maturation of frontal cortex.

//‘\EJWebb et al. (1972) used a new procedure, in which the infants

wer® allowed to correct errors and make a second choice on a three—
choice task. The results of the study showed predominant corrécr secoad
choice of the l6-month-old infants. 1t is clear that 16-monta-old infants
do not forget prior relevant perceptual input; thejerror on the first
attempt only shows that, at this age, "action" overrides prior percep-
tions at this cognitive developmental stage. It seems, therefore, that
the development of any conservation (object, area, weight, etc.) goes
through the same process with action being predomirant initially, then

perceptual factors and finally the reoresentational (logico-mathematical)
system.

Gruber et al. (19 demonstrated that cats never go beyond the
Stage IV concept of opject™_ This result seems to suggest that there

is a corresponding chiange in nervous system (e.g., in frontal cortex)

along with the develépment of object concept. s A ‘
The scales that Uzgiris and Hunt (1966) and Escalona asé\ézjman (1967)

developed to standardize tests of infant's object concept should prove
valuable. Plaget always allows great latitude of procedures in“wperi-
ments.aéd in éany cases it is the best way to find out about what a child
knows. gﬁkever, standardization of procedures are, at least, necessary
for comparative analyses.

Bell (1970) found that the development of person permanence was more
advanced than that of inanimate object concepts. Though Bell did not
.emphasize the role of experience in the development of object permanence,
infants who had more interaction with the mother were significantly more
advanced in the development of person permanence than those with less
interaction. Piaget (1954), in interpreting the transition from Stage
IV to Stage V, emphasizes the role of such experience. ’

-

Construction of Space

The analysis of the nature of space has preoccupled philosophers and
scientists for centuries. Piaget and Inhelder (1967) were intrigued by
the fact that the historical and logical sequences of geometry (measurement
of space) were in conflict. Geometry primers are algest unanimous in
presenting the fundamental ideas of 'space as restigelupén Euclidean
conCepts such as straight lines, angles, squares, Tirtles, measurements,
and the like. On the other hand, abstract geometrical analysis tends
to show that the fundamental spatial concepts are not Euclidean at all,
but 'topological',i.g" based entirely on qualitative correspondences
involving concepts like proximity and sepa*ation, order and enclosure.
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With his studies of the child's conception oflspace, Piaget has success-
fully demonstrated that the child's space invariably begins with simple
(basic) topological types of relatiouships long befpre it becomes pro-
jective or Euclidean in nature.

The misconception that spacc concepts begin with simple Euclidean
characteristics arises primarily from ignoring the fact that the evolution
of spatial rélations proceeds at two different levels. There is an

~interval of several years between perceptual and conceptual construction

of space (despite their pursuing a simiiar path of development).
Children's perceptual space has reached projective and quasi-metric
levels during the first year of life, when their conceptual space -
has barely begun.

The present review concerns only conceptual space. But since the
perceptual and sensori-motor structures constitute both the point of
departure and the foundation of the entire conceptual construction of
space, we will start by going over briefly the development of perceptual
space as seen In the child's percepticn of shape.

. In the experiments of the child's perception of shapes, Piaget and
Inhelder (1967) identified three stages. During Stage I, the only shapes
recognized, and drawn, are closed, rounded shapes and those based on
simple topological rolations such as openness or closure, proximity and
separation, surrounding, etc. These relations express the simplest
fussible coordinations of actions, e.g., following a contour step by

step, surrounding, separating, and so on. With Stage II the recogni-

-tion of Euclidean shapes begins based on the distinction between straight

and curved lines, angles of different sizes, parallels, and relations
between equal or unequal sides of figures. At this lev'l, the coordi-
nations of actions is of a more complex type in that the child now
recognizes a straight line by the action of following--with hand or
eye--without changing direction, and recognizes an angle by two such
intersecting movements. rinally, at Stage III the child is able to
return systematically to a fixed point of reference while exploring an
object. That is, he now can'rsordinate all his mcvements into a single
whole according to a system <! reference. For example, if the object
is a figure of a starfish eng-.-~d on a surface, and the child is asked
to identify the figure through haptic exploration, a child at Stage III
is able to touch each arm in turn, exploring the angles between the arms,
and returning systcomatically to the center where the aras meet.,

Perceptual orgenization of space proceeds through a developmental
stage sequepce. At first it is u.sed on topological relationships, and
later on projective and Euclidean relations. Does conceptual space, after
spme year's inserval, pass through the same phases?

The most important différenrr between topological relations and the

projective and Eu« .idean relation: s in the-way in which different
figures or objects ar. related to one another. Psychologically,
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topological relations are the most primirive ones; the relations of - e
proximity, separation, order, enclosure at.d continuity are built up
empirically between the various parts of {igures or patterns which they
organize. These relations are independent of any contraction or expan-
sion of the figuresand, therefore, do not conserve features such as dis-
tances, straight lines, or angles during changes of shape. Hence,
‘we may say that topological space is purely internal to a particular
fipure whose intrinsic properties it expresses, and it ic impossible
tor relationships of this type to lead to comprehensive systems linking
ti"7«rent figures together. It is in this sense that topological rela-
t =1ips are considered primitive
Projective space begins psychologically at the point when the object
o1 patterr is no longer viewed in isolation, but begins to be considered
in relation to a 'point of view'; the viewpoint of the subject (in which
case a perspective relationship is involved) or that of other objects on
which it is projected. Because of this property concerning viewpoints,
the study of projective space can be called the 'geometry of viewpoints'

Euclidean space is different from projective space in.that the
concepts-of distance and measurement are introduced. It deals with
the orientarinn of objects relative to each other and to a system of
reference points arranged along different dimensions. Because of its
concern with the objects as such; the study of Euclidean space may be
called the 'geometry of objects'

In short, topological space deals with the internal relations of the
"isolated object, projective space deals with relations of objects to
the subject, and Euclidean space deals with relations o’ objects to
objects.

The evolution of the conceptual spaces can be clearly demonstrated
in children's drawings of geometrical figures. Three distinct stasges
can be identified from the drawing of children when they are asked to
copy figures.- During Stage I (0-¢ years), the circle is drawn as an
* irregular closed curve, squares and triangles are not distinguishéd
from circles, and the drawing is of two more or less intersecting lines.
While thére is no distinction as yet between straight-sided and curved figures,
depending on the complexity of the figures, there is correct copying of
the topological properties.

Stage II (4-€ years) marks the beginnings of the differentiation
of what Piaget desigaxtes as Euclidean shapes, Thus, a square is distinct
from a triangle, o circle from an ellipse. Two types of crosses are
distinguished wiiich marks the discovery of ablique lines. Finally,
the rhombus (as distinct from the square)is reproduced correctly.

/
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At Stage III (6 to 7 years), the child's idea of shapes Is at the
uperational level. Tildren draw figures quicklv and correctly and these
const:;uctions reflect antlicipation through mental Images (advanced organi-
zatior) i.. terms of potential measurements, coordinations, etc.

Development of Topological space

The study of drawings has shown that the simplest topological rela-
tionships such as proximity and separation also are the first to emerge
iy the course of psychological development. This order of appearance
is also maintained when space is treated axiomatically by peometricians.
In the case of a linear series, the relationship of proximity subsisting
between separate elements A, B, C is sufficient to provide a basis for
the relation of order. This may be perceived intuitively at an
equally early stage of development. The notion of order or sequence
is thus a tiird basic topological relationship.

The relation of order exemplified by three elements arranged in a
series ABC also entails a specific relationship expressed by the word
'between.' Thus B is between A and C, and at the same time botween
C and & This relationship, hose invariance reains a mystery to children
who have not yet learned to rcverse a séries, evolv . concurrently with
the notion of order itself. The relation between is one particular
instance of the more general relationships of 'surrunding'. These are, \
of course, elementary spatial relationships, just as much as proximity,
separation, or order. Indeed, as regards the construction of space, they
are even more important, since it is most probably these relationships
which lead the child by the most direct route to differentiate and build
up the three initial topological dimensions.

If the locatign of a poiﬁc between two others designates a one-dimen-
sional surrounding (i.e., a line), and the location of a point inside or
outside a closed figuré designates a two-dimensional surrounding (i.e.,

a surface), then the relationship of a point, whether inside or outside
a closed box, designates a three-dimensional surrounding (i.e., 3-dimen-
sional space).

It appears that in the case of 'surrounding', there is one area in
which perceptual relationships have not yet been, developed and hence
is ideally suited for studying the main features of representation.
Knots have the added advantage of having been the subject of extremely
detailed geometrical analysis. From the standpoint of mental develop-
ment, the knot is something which the child learns to form at an early
age, and /' is therefore eminently suited to psychogenetic investigation.
The tasks consist of asking the child to (1) :eproduce an 'overhand'
knot (an ordinary single-looped knot), a circle, a figure of eight; or
a pseudo-knot (homeomorphic with the circle when the ends of the string
are joined): (2) tn compare left vs. right overhand knots, taut vs. slack -
knots, and an overhand knot vs. a circle, a figure of eight, or a pseudo-
knot; and () to predict the shape of the knot following certain transformati
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Stage I (up to 4) can be divided into substages. During Substage
IA the children could not copy knots. Either one end of the string is
wound around the other without inserting either end in the loop or one.
end is inserted in a half-loop without superimposing it. In neither case
is there the necessary 'surrounding' and, consequently, no knot. During
Substage IB the children learn how to copy the knots but are irable to
follow the various sections of a slack knot with one finger, nor were
titey able to distinguish true from pseudo-knots.

At Substage IIA the child perceives the identity between a pair of
taut knots, or between a pzir of loose knots, but this identity is lost
1f one of the knots is tightened (or slackened) even though each of the
pailr i3 h~meomorphic to the other. ,

A pu:allelism between the concept of number and the concept of
space can be found at this transitional period. At about 5 or 6 years
of age, a child can establish intuitively the correspondence between a

number of objects and a " narate but equal number of other objects, but
only when the arranger: " objects produces a similar visual pattern
(such as two straight : As soon as the intervals between conse-~

cutive items in one of .- vows is altered the equivalence of number is

no longer recognized. Similarly, in the experiment reported above, the
child at 5 or 6 can recognize either tight or slack knots when com-
pared with visually identical models, but is unwilling to grant their
equivalence without the perceptual equivalence. At Stage IIB the
correspondence between the taut and slack knot is established through
motor anticipation. For example, the child might say: "If I pull,
I'll get the one before." [n other words, the child at this stage
can imagine the knot in terms of actual transformational motor
activites, rather than perceptually static patterns.

Finally, at .Stage III (8-10 years), the actions become internalized
and completely reversible in nature. Whatever happens to the perceptual
patterns, the relationship of the surrounding remains unchanged.’

Development of Projective S$pace

As has been pointed out earlier, topoiogichl space only furnishes

- the basis for that type of analysis which operates from the standpoint

of each figural object considered in isolation. In projective space,
however, the object 1s considered in relation to the viewpeint of the
subject (perspective) or that of other objects (projective). Thus, pro-
jective relationships presume the intercoordination of objects separatei
in space.

5
Piaget's reports of his investigations concerned with projective
lines and perspective attempt to show that the precondition for forming
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projective straight lines is a progressive discrimination and coordina-
tion of different viewpoints. Next he takes up projection of shadows
and provides a demonstration that projection of shadows is understood at
the same level of development as perspective transformations relating to
the same object. In the study on "viewpoints" (of a group of mountains)
the problem of the overall coordination of perspectives, such as arises
when the observer moves arcund and about a number of interrelated objects,
is analyzed. The mutual implications of projective and Euclidean space
notions are then studied with the rotation and development of surfaces
and the distinction between perceptual ana conceptual space is
considered. This review will be specifically concerned only with the
problems of construction of a straight line and coordination of perspec-
tives. The former involves perspective of a single object, while the
latter with perspective vis=a-vis a group of objects.

The concept of straight line results from the child's first attempts
to relate objects spatially in a system of projective viewpoints or co-
ordinates. Strictly speaking, the topological idea of a line does not
include the straight line at all. To transform an ordinary line (the
only kind of line recognized by topology) into a straight line requires
the introduction, either of a system of viewpoints such as the elements
of a line masking ecach other to form a perspectiv~, or else a system of
displacements, distances and measurements.

The task of constructing a straight line will illustrate clearly the
critical difference between perceptual “and conceptual space. The task
consists of asking the child to use match-sticks to form a straight
line parallel to the edge of a square table, lying at some angle to the
two adjacent.sides of the square table, or across a section of a round
table. , :

The results show that at Stage 1 children can recognize a straight
line and distinguish it from a curve, but they are unable to construct
such a line parallel to the edge of a table, except when allowed to do
so where an existing model or edge of the table is spatially very close.
Otherwise, the performance reflects the formation of a topological line
with successive elements very close together and cyrved in various ways..
When the line to be imagined and constructed conflicts with perceived
straight or curved lines lying adjacent, -such as on the ground offeved
by the table top, the child is no longer able to form a straight line.

In this case, the line no longer consists of merely imitating a past or
present perception, but entails creuting new relationships within an

existing pattern distinct from those sought after. Such an achievement

requires a projective operation based on the action of 'taking aim', or
else a Euclidean operation based on change of position.

At Substage ITA (4-6 years), the child arranges the matches parallel
with the cdge of the table, and can even arrange them against a neutral
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ground. But, he is unable to resist the influence of an edge (of the
table) if the required line is no longer parallel to it. Two distinct
types of spatial concepts need to be recognized at this point. The first,
intuitive, is no more than an internalized imitation (a mental image) of

-previously perceived events. Consequently, it can be either favored or

discouraged by current perceptual configurations. The second, not
evolved as yet, is based on operations, and therefore is freed from the
influence of such configurations. At Substage 1IB (6~7 years) the child
is able to free himself from the influence of the surrounding perceptual
configuration and to form lines independent of the edges of the table.

At Stage III (8-11 years) the child discovers a new technique ¢f visuail
alignment, i.e., the operations of "sighting' or 'taking aim'. The child
discovers the projective straight line, then, when the fact that two points
X and Y can be relsted to the observer 0 through the agency of the line
OXY 1is grasped. ‘rhe conceptual straight line thus differs from the per-
ceptual straight line (and from the topological line) by virtue of the ~
awareness of the part played hy different points of view. To join X and
Y together in a direct line, the child must, at the same time separate
them from the perceptual ground, join X and Y either Ly means of a
movement or else by visual inspection. The second procedure can only

be carried out be discriminating between different pointe of view, and

it is choice of the point of view OXY that enables the child to correct
his alignment.

. The perspective of a group of objects as viewed by an observer from
different positions, or alternatively by a number of observers, is
examined with two aims in mind. First, to study the construction of a
global system linking together a number of different perspectives, and
second, to examine the relationships which the child establishes between
his cwn viewpoint and those of other observers. ’

The task used by Piaget consists of three clearly distinguishable
model mountains on a pasteboard. The child is asked to imagine or to
identify from pictures, the various viecws ‘or 'snapshots') of the group
of mountains when it is seen from different positions.

the results show that throughout Stage 1T {(5-7 years) the child
does not distinguish between his viewpoint and that of other observers.
At Substage I1A, performance is confined to reproduction of his own
roint of view. In Substage 11B the child makes, some attempt to distin-
guish between difterent viewpoints, but usually lapses into the egocen-
tric constructions of Substage ITA. The child does not yet think in
terms of 'groupings' of Projective relations and correspondences or the
invariance of the correspondences amid the e¢ndless transformations of the
projective relationships. :

It is the egocentric illusion which prevents these cnildren from
reversing left-right/before-behind relations and ‘thereby rotating the per-
spectives along with the changing viewpoints, a continuation of the il1lu-

sion which is responsible for absence of shape constancy in 'young babies'
perception.
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At Stage IIT (7-8 to 11-12 years) the child shows a progressive dis-
crimination and coordination of perspectives. At Substage ILI. <ertain
relationships are varied with changes in the positior of the observer,
but there is still no comprehensive coordination of viewpoints. In most
cases; the before-behind relationship can be reversed, but the left-right
relationship retains its rigidity. At Substage IIIB the child achleves
a complete relativity of perspectives as demonstrated by the discovery
that: (1) to each position of the observer there corresponds a particular
set of left-right, before-behind relations between the objects constitu-
ting the group of mountains, i.e., the point to point correspondence
between position and perspective; and (2) between each perspective view-
point valid for a given pcsition of the observer and each of the others,
there also is a correspondence expressed by specific chianges of left-
right, before-behind relations. It is this correspondence between all
possible points of view which constitutes coordination of perspectives.

From the point of view of both mathematical construction and psycho-
logical development, projective and Euclidean space are closely related
and both derive from topological space. In addition, projective and
Euclidean space are¢ related in another way, i.e., it is possible to
construct a series of transitional stages between projective and Eucli-
dean soace by considering affinities and similarities. Affinities may
be defined mathematically as projective correspondences conserving
parallelisms, similarities as affinities conserving angles, and Eucli-
dean displacements as similarities conserving distances.

The conservation of parallels can be demonstrated in the study of
reactions in a very simple case of 'affinitive' transformations, namely,
the increase and decrease in the width of the rhombuses in a set of
"Lazy Tongs" (see Figure 1).

X>©<: O .
Figure 1. The transfurmations of rhombuses seen ir "Lazy Tongs ."

The task consists of asking the child to predict and draw what will happen
when the handles are opened or closed.

The results show that the child at Substage IIA (4-5% years) is
unable to anticipate any transformation when the apparatus is stationery,
If he sees the beginning of a change, he can imagine the continuation of
it, but only in the form of endless enlargement of the 'windows.' At
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Substage IIB (5% - 7 wears), the child foresees that the rhombuses will
grow longer, and he is also prepared to admit that they will eventually
get smaller again. Bu:r this predierion remains global and inadequate,
for the transformations appear to him not as a continuous (quantitative)
series but as abrupt, disjointed changes (qualitative).

At Stage IIL (7-11 vears), all the transformations are predicted
correctly, and the necessary parallelism of opposite sides of the rhom-
bus is recognized, i.e., the paraliclism of the sides is operationally
aligned with the trans{ormition of the figure as a whole and is no ionger
simply perceived or imagined intuitvively.

The next task is to examine the discovery of the similarity of angles,
such as in triangles or rectangles, in order to analyze similarities.
To do this, children were asked to draw, cr compare, pairs of similar
or dissimilar triangles. o

The results snow that at Substage [IA (4-6 years) the child faced
with the task of drawiag a triangle larger than the model is con-
tent with producing any sort of triangle, i.e., all triangles are
treated as the same in contrast to nontriangular figures. During Sub-
stage IIB (¢-7 years) the erlavgements begin to take account of paralle-
lism between the pairs of sides, but only in a few special cases, such
as when the enlargemeit is velatively small and the parallelism is
apparent,

Stage IIT (7-11 vears) marks the appearance of operations facili-
tating general comparison of parallels, angles and simple dimensional
relations, such as the ratic of 1:2., At this level, the child is able
to draw and compare similar criangles, but not similar re: t ingles. The
latter requires some knowléedge of dimensional proporticns, whereas
recognition of similarity of triangles depends only on elementary quali-
tative operations. At Stage IV, the child attalns a concept of pro-
portionality for all dimensional relations.

Development of Euclidean Space

Elementary topological relations are concerned with the object as
a thing-in-itself and/or with various features taken successively. Pro-
jective concepts, in contrast, imply a compreheasive linking together
of separate objects into a single system based on coordination of
dif ferens viewpoints. Concurrently with the develcp~ent of an orgenized
complex of viewpoints, coordination of objects as such emerges. Ulti-
mately this latter development provides for the transition to Euclidean
space, with the concepts of parallels, angles and proportion providing
the link between the two systems. Such a coordination of objects re-~
quires conservation of distance together with some notion of ‘'displace-
ment’ (ur congruent transformation of spatial figures) which culminate
in the construction of systems of reference or coordinates.

At the outset, the coordinates cf Euclidean space appear to be no :,
more than a network embracing all objects and consist of relstions of
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order applied simultaneously to all three dimensions. Within this network,
each object is linked simultaneously with the rest in three directions;
left-right, above-below and before~behind, along straight lines parallel

to each other along one dimension and intersecting those belonging to

the other two dimensions at right angles.

A reference frame proper, however, is not simply a network composed
of relations of order between the various objects. It applies equally
to positions and enables the relations between objects to be maintained
as invariant and independent of potential displacement of the objects.
Thus, a frame of reference constitutes a Euclidean space after the
fashion of a 'container'; and is relatively independent of the mobile
objects contained therein, just as projective coordination includes the
totality of potential viewpoints.

‘he simplest and most natural reference frame available to the
child is probably that provided by the physical world in the shape of
vertical and horizontal axes. On the empirical level, the horizontal
is given by the plane on which everyday objects rest, the earth itself
(where flat), or the artificial planes of floors, terraces, and so on.
Another important factor is the surface of a liquid, e.g., surface of
a lake or level of water in a glass. Walls of rooms and houses,
posts, chimney stacks, trees, etc. provide experience with verticality.
The study cf the construction of horizontal and vertical axes.provides
a suitable way to understand the construction of coordinates in Eucli-
dean Space.

The task for studying horizontality uses two narrow-necked
bottles: one with straight, parallel sides an< the other with rounded
sides. Each is partially filled with colored water and the children are
‘asked to "guess' the position of the water when the bottle is tilted.
The study of the vertical involves floating a cork with a matchstick
placed vertically in it on the surface of the water in the jars.
The child is asked to draw the position of the "mast' of this 'ship"
at different inclinations of the jar. In addition, the child is shown
a mountain of sand and asked to plant posts “nice and straight" on
the summit, on the ground nearby, and on the slopes of thé mountain.

The results show that at Stage I (up to 4-5'years), the child is.
unable to represent either the water or the mountain as a plane surface.
At Stage IIA the child realizes the water as a plane surface, but always
parallel to the base of the bottle ¢ven when the bottle is tilted. It
is surprising, but children at this level not only fail to note that the
water level is always horizontal in their everyday observations but also
do not use the results of the experiment when it is performed (i.e.,
with complete perceptual information available)!

«

63



O

ERIC

Aruitoxt provided by Eic:

56

During Stuge IIB, the child no long draws the water level parallel
to the base of the jar when the jar is 92§;ed, but he still fails to
coordinate his predictions with anv fixed reference systum outside the
jar (i.e., with the table or the stand). Also, children at this level
are usually able to stand the posts upright when planting them in the
sides of the sand hill, but continue to draw them perpendicular to. “he
incline.

At Stage III (7-8 to 9 years), the child is able to predict the horizon-
tal and vertical 1in all cases which requires a system of ccordination or-
series of comparisons between objerts in different positions and orienta-
tions. These comparisons are made by linking the various objects together
in a system where stationary cbjects (the table) serve as reference
points for mobile ones (the liquid surface).

The conclusion to be drawn is that Euclidean relations, completed
by the construction of reference frames, are essentially relations
established between numbers of objects and serve to locate them within
an organized whole. Thus, horizontal-vertical axes are constructed at
the same time as perspectives and are coordinated since these latter also
constitute overall systems linking together objects or patterns. But
projective space is in essence a coordination both of viewpoiuts, actual
or virtual, and of the figures considered in relation tc these view-
points. Coordinates, on the other hand, link together objects, as such,
in their objective positions, displacements, and relative distances.

The age of 9 (approximately) is midway in the perlod during which con-
crete operations first take shape and thus marks a decisive turning point
in the development cf spatial concepts, 1.e., compietion of the frame-
work appropriate to both Euclidean and projective systems.

Conclusions

Piaget maintains that the evolution of spatial relatfons proceeds
at the two distinct levels: perceptual and ovperational (conceptual).
Several years of experience separate the full development of perceptual
and conceptual construction of space, but siwil.r paths of development
(topological, followed by projective and Eucliiean) are observed.

Topological relaticns (proximi.y, separation, order, enclosure and
coutinuity) are the most elementary spati.:l relationships both from the
genetic-psychological and mathematical point of view. The topological
relations, with which the child begins to construct his concept of
space, are transformed concurrently into projective and Euclidean con-
cepts. Projective space introduces a 'point of view', and Euclidean
space introduces 'distance' and 'measurements" into topological space.
The first of these, embracing perspective, section, projections, and
plane rotations, results from the cocrdination of .iewpoints, while
theisecond derives from the conservation of ‘straigu. lines, parallels,
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angles, and lastly, general coordinate systems.

In psychological terms, topological space relations consist of such

.elements as '"A is near, beside, far f.om, in(side), out(side) B," or

"A is between B and C." Projective space introduces relations such as
"A is before/behind, above/velow, of to the right of/to the left of B,"
and Euclidean concepts ~d: quanritative aspect to these projective rela-
tionships; Euclide:zn r=!ations consist of the additional ~-ncepts

such ag "How far is A before/behind, abcve/below, or to the right/to

the left of B."

Elementary topological relationships subsist between neighboring -
parts of a single object, or between an object and its immediate environ-
ment. Such a space is merely a continuous collectjion of elements which
mdy be expanded or contracted; neicher'straight lines, distances, nor
angles are conserved. Consequently, topological concepts do not lead to
the construction of a stable system of figures, nor to fixed relations
between such figures. Topologically, each continuous domain constitutes
a space, and thus there is no universal space operating as a frame
and enabling objects or figures to be located relative to one another.
There are, for the child, as many spaces as there are objects or distinct
patterns, the irntervals between more distant elements either belonging
to the elements themselves or not being spatial at all. In this connec-
tion, projective concepts perform a vital role in bringing about a
global coordination of space.

Projective concepts take account, not only of internal topological

"relationships, but also of the shapes of figures, their relative posi-

tions and apparent distances, though always in relation to a specific
point of view. Unlike the ccordinate system implied in Euclidean space,
a projective system does not conserve distances and dimensions, but does
rinserve the relative positions of parts of figures or of figures rela-
tive to one another and the whole in relation to the plane corresponding -
to the observer's visual field. From the psychological standpoint, the
essential feature here is the inclusion of the observer (or a 'point-of-
view') in relation to which the figures are projected. Elementary pro-
Jective concepts are therefore based on the same operations as are topo-
logical concepts, but wi-h the addition of a 'viewpoint'. The linkinj
this 'viewpoint' with operations of order is basic for the construction
of the projective straight line. A straight line is a series of points
so arranged that from the 'end-on' viewpoint they are in alignment and
are reduced projectively to 2 single point. Similarly, the notion of
spatial dimensions can be defined more clearly in terms of certain sats
of conditions specified by a given viewpoint. Topologically, the first
dimension correspotids to a linear series, the second to the notion of
inside and outside a closed linear boundary, and the third to the notion
of inside and outside a closed two-dimensional boundary (surface). The
addition of a perspective viewpoint to which the figures are related
permits these same relationships to embrace relative orientation as
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expressed by 'on the left or on the right', ‘'above or belov' K and ‘before
or behind'.

Intermediate between the projective and Euclidean relatior.hlps,
there arise certain relationships (affine and similarity) which children
begin to understand at about the same time as they master the proiec~
tive relationships. Projective relationships conserve neither paralleis,
angles, nor distances. Affine relationships, on the other hand, conserve
parallels while angles and distances continue to vary. In the -:1e of
similarities, however, the figure retains its shape unchangad ‘stiaight
or curved lines, parallels and angles) but changes in size according to
relations of proportionality. Finally, Euclidean relationships add the
notions of distances and measurement.

To conclude, topological and projective geometry are concerned with

qualitative properties of space, whereas Euclidean geometry introduces
quantitative properties to space.

Child's Conception of Geomefgz

The techniques Piaget (Piaget, Inhelder, & Szeminska, 1960) used to

scud} conservation and measurement of length, area, and volume will first

be described briefly. Second, some general findings will be presented.
Finally, processes assumed to be involved in the child's construction
of metric properties of space will be considered.

Methods

The results obtained from studies of children's spontaneous measure-
ments and comparisons of two straight lines are described in some detail
so as to clarify the general context in thich measurement and conser-
vation behaviors develop.

§poncane5us measurement was studied by showing a tower made of w
twelve blocks of cubes and parallelepipeds. The tower was 80 cm in
height, and the child was asked to build a similar tower on another table.
The instructions deliberately.avoided mention of measurement; the experi-
menter used phrases such as: 'You make a towe- the same height as mine."

For conservation of length the child first was shown two straight - -
sticks identical in length and with the ends aligned. One of the sticks
was then moved forward 1 or 2 cm, and the child was asked wuich of the two
was longer or whether they were the same length. In a second task, twelve
to sixteen macchés were arranged in two parallel rows and 1-2 cm apart.
One of the rows was then modified by placing the matches at an angle.
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The question to be answered wzs always whether the two lines were still
the same length. Finally,'two strips of paper each 30 cm long and about
1 cm wide were placed before the child, and he was asked to assure him-
gself the two strips were identical {v length. One of the strips was
cut, first in two parts, then in several, and parts arranged in an arc,
etc. The same questions as those in the first task were asked. '

The technique for studying measurement of length was a direct exten-
sion of that used in the conservation of length task. The cnild was asked
to judge between strips of paper in a variety of linear arrangements,
involving right-angles, acute angles, etc., but these were now pasted
on cardboard sheets. After his replies ("equal" or "one is longer"), he
was shown several movable strips and asked to verify his judgment: ''Have
a lcok with this and see if you're rlght. Try ‘and measure.”" Finally,
he was given ghort strips of cardboard 3 cm, 6»cm, (these lengths corre-
sponding with those of segments on the mounted/strips) to aid in verifying
his judgment. The experimenter also demqga:rﬁfed by applying the 3 cm
card two or three times along the mounted strips, beginning with the
point of origin, and explained "a little man is walking along a road and
these are the successive 'steps' he takes as he walks.” 1In this latter
case, the child was asked to finish the task as he was shown.

The conservation of area tasks were ccmposed of several separate
sections which permitted a modification of the arrangement of parts, to
test whether or not the child considered the .whole to remain constant.
For example, two cardboard rectangles, each made up of 6 squares, might
be used. - The twelve such squares were all equal, and each of the rec-
tangles was two squares wide and three high. After constructing the
rectangles, the experimenter transferred the top right-hand square on one
to the bottom right-hand corner, which yielded a pyramid of three squares
in the bottom row, two in the second, and one at the top. The child
was asked whether this tlgure had the same area as the other rectangle
which was left intact. In a secnond task the child was shown two rec-
tangles, recognized as congruent, from which the experiemnter cut off a
portion of four corners, putting them against the sides to produce an
irregular polygon, etc. (any congruent figures can be used instead of
rectangles if desired). The questions were always: 'Are these the same
size?" "Is there the sane amount of room?" etc.

Measuremant of areas was studied by using two tasks: (1) Measure-
ment by superposition involved t objects consisting of a large right
triangle (A), an Irregular figurc¥(®), and griangles (squares cut diagonally
in half). There were sufficient smaller shapes to cover the whole of
B and more than enough to cover A, The child was asked to use the
smaller shapes to cover the large figures. (2) For measurement by unit
iteration, the child was shown a number of shapes equal in area but
differing markcdly in shape. One (A) was a square that could be composed
from the nine smaller squares, and the others (B and C) were irregular
figures made up of the same number of small squares. The child was
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given a cardboard square representirg one unit together with a pencil

and was free to examine the material, and to draw on tt. 1If he did

not know what to do, the experimenter demonstrated how to use the unit-
square to cover the large square if necessary. When finished with A,

B, and C, the child was given two mo:: shapes that were more heterogeneous
and not equal (D and E). The child was offered a choice of three counters .
to use for mecsuring: a square, which was a quarter of D, a rectangle
double the squares (so that two would fit into D), and a triangle equal

to a square cut diagonally in half. The child was asked to use the small
squares or triangles to fit into the large figures.

Conservation and measurement of volume was observed by showing the
child 2 block measuring 4 cm in height with 3 cm x 3 cm base (volume ‘
= 36 cublc cm). The block was presented as "an old house" built on an
island, (a square cardboard, 3 cm x 3 cm pasted on a sheetv cf corrugated
card). The house is ''threatened,” so the inhabitants decide to build = [

~another which is to have exactly as much room. The child is shown these
othor islands which are also pieces of card but which differ irom the
fitst in size or shape or in both, their measurements being 2 x 2 cm, °
2x3em 1 x2cm 1 x1cm and 3 x4 cm. The problem consists in
reproducing the volume of the first block while altering its form to
comply with the new base. The equal volume must be built from wooden
cubes of 1 cm? (the original block is solid). Equality of volume was
expressed by "as much room," with further explanation as necessary.

Results

The results are presented here in three sections: first, results
from the study of children's spontaneou$ measurements; second, the
results from the study of the compariton of two straight lines: and
tpird, a summary of the results of studies of conservation and measure-
ment of length, area, zn. volume.

Spontaneous measurement. The responses made by children in the study
of spontaneous measurement are summarized in Table 2.

Table 2

Levels of Development in Childrens'’ Spontaneous Measurement

Stage 1 (4 ~ 4% years) Visual transfer

Stage II (4% - 7 years) - IIA: - Manual transfer
: IIB: Body transfer

Stage III (7 - 8% years) ITIA: Transitive congruence
ITIB: Unit ijteration

T
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At Stase I, visual transfer is the only basis of comparison between
the two objects (e.g., towers). Compariscn of the heights of two towers
is made entirely by moving the line of vision; the subject makes no
effort to move one of the towers closer to the other. ’

Ca .

Substage IIA is characterized by visual transfer being supplemented
bv manual- transfer. The towers to be compared are now brought together
so that an appraisal of '"meighboring"” objects is made. In Substage IIB,
children usé' their bodies, e.g., the span of hands or arms to "transfer"
the height of the tower from one to another (body transfer). Such
behavior.is considered the beginning of the use of a middle term, but
the transitivity involved here is still intuitive.

During Stage III transitivity in the operational sense is understood.
The smaller as well as the iarger object (term) is used as the middle
term. For example, the lcngth required is noted; if the "'rule'" is too
short, they stop and go back and forth between the towers. Eventually,
any object available is used as a common measuring rule. Such an object
is stopped as often as necessary, which is the equivalent of assigning
a "unit-value" to a given length. This operation of unit iteration marks
the appearance of a metric system.

Comparisons of lengths. The results of comparing two straight lines
are summarized in Table 3. .

Table 3

Levels of Development in Children's Comparisons of Two Straight Lines

Stage I & ITA . Nonconservation
Stage LIB Intermediate responses
Stage ITI Conservation

Staye I and I1B behavior 1s characterized by no_conservation of
tength, i{.e,judgements depend exclusively on the perceptual characteris-
tics of the settiry. Thus, when the child visibly focuses on the leading
extremity of a moving stick, that stick will be judged longer and the
proyzressive changes at the other end of the stick are ignored.

The beginniny, of Stage IIB is observed when intermediate responses
oceur, i.e., the child’'s responses oscillate between nonconservation and
conservation. For -:»ample, the child concentrates first on one end of the
rair of sticks and judges the top stick to be longer (because it pro-
jects beyond the other), but the next moment he focuses on the other
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end-point where the lower stick projects beyond the top one and he now
decides that the lower stick is longer.

Conservation of length defines the Stage III level and results from
the operation of compensarion. When the sticks are being staggered, the
child often responds: "The sticks are still the same length; there's a
little space here (difference between the leading extremeties) and there’s
the same little space (difference between the trailing extremeties).”

Summary

The development of conservation and measuremeuc in length, area,
and volume follows similar courses as those observed in the studies
of straight line comparisons and spontaneous measurement. The only
differconces lie in: (1) Content, i.e., the number of dimensions involved.
(2) The measuremént of volume is relatively inadequate at level ITIB as
compared to that of length and area at the sawe lovel. One cannot apply
a unit-velume over the total-volume to be measured in most cases as is
possible for length and area, i.e., often many elements are hidden
from view. (3) Calrulation of length based on linear units appears
complete at level WIIB, but not so for arca and volume. Again, the
child can perform unit iteration at IIIB level but "multipiication”
(e.g., for a rectangle, 2 cm x 3 cn = 6 cm) operatious are not realized
until Stage IV. Responses of the children in the experiments ot conservation
and measurement cf length, area, and volume are summarized in Table 4.

Discussion

To measure requires sc..e "thing" as a base unit and transposing of
that unit in a sysctematic way to the whole of the object to be measured.
Underlving the Piagetian concept of measurement arc the concepts of
"conservation of size," "subdivision,” "change of pusition,” and a
“coordinate system.” The measurement of space, thus, is not possible
without the establishment of conservation of size, and of the coorcii-
nation between change of position and subdivision.

The achievement of conservation of size depends or recoguition of
the distinction between empty space as "container" and solid moveable
objects as "contained."” 1If, for example, two straight sticks of equal
length are first laid end to eand and then slightly staggered in rela-
tion to one another, Stage I and II subjects say that the lengths are
equal, but at Stage III they are :onvinced of the equality because now
it is "recognized" that newly occupied "sites” compensate for places
left empty by the change 1n position. This awareness of compensation
is based on the discovery that properties of length, area, or volume
remain invariant when position is changed. But, the discovery of these
invariants in turn depends on knowledge that when an object undergoes
a slight change of position the space left unoccupied by the change is
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Table 4

Summary of Children's Responses in Conservation and Measurement

Conservation Measurement
Stage I & (IA Nonconservation Perceptual comparisons
Stage I1B Intermcdiate Intuitive transitivity*
Responses.
Stage IIIA Conservation Operational transitivity*
Stage IIIB . Me o -: measurement: unit
iteration*#**
Stage IV** . Met:ic measurement:
mathematical multipli-
cation***

*Transitivity is intuitive when the transrerring of a middle term in
comparison is limited only to some certain favorable situations (e.g.,
when objects to be compared are neighboring each other), and the com—
parison is still not free from percepptual influence and thus is still
only approximate. An operational transitivity, on the other hand, is not
restricted by the situational factors; it depends solely on logical

-inference, thus, if A=B, and B=C, then A=C.

**Stage IV applies only to the development in the measurement of area
and volume.

***The operatiorn of unit iteration is not equivalent to mathematical
multiplication. The former consists in measuring the size of an object
by moving a unit measure of the same dimensions stepwise over the total
object (i.e., using unit-length to measure length, unit-area to measure
area, unit-volume to measure volume). The latter allows one tc measure
area using linear units (e.g.. 2 cm x 2 cm = 4cml): Or one can measure
volume usine linear units (2 cm x 2 cm x 2 cm = 8 cm3). or linear and
two-dimensional units (e.g., 4 emé x 2 cm = 8§ cm3).

-
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exactly equivalent to the newly occupied space. While the argument is
circular--since compensation between spaces and newly occupied spaces
depends on the invariance of area and volume despite change in position,
and the latter depends on the awaren~ss of compensation--it is this
reasoning which enables the child tn recognize the conservation of size
when objects indergo changes of position.

Conservation of size is but a precondition for measurement. Measurement
also depends on the coordination of subdivision and change of position.
The operations of subdivision and change of position and their relations
to measurement are as follows.

Operations of subdivision. Let us suppose a straight line C with a
given length. By the operations of subdivision and composition the line
may be‘broken into a number of contiguous parts and these in turn can be
reunited to compose the original whole. Such parts may be represented
by a length A which, together with another A” to which it is contiguous,
yields a more inclusive part B (= A+ A”), while B in turn is completed
by a final part B”, so that together they yield the whole line (B + B’ = C).
A child at Stage II1A understands composition and can- therefore deduce
the following relations: A+ A" + B/ =C; B - A" = A; C-B = B’; etc.
Here the quantification is derived only from part-whole relations and
not from relations between one part and another: The subject is aware
that A < C; A < C; B < C; 3' < C; A < B; etc., without needing to know
the precise lengths of A, A’ and B’. Between these elementary parts,

A, A7 and B , there can be no relation other than that of qualitative
equivalence which is derived from their common membership of C.

Operations of change of posit’ a. 1In the linear series above, the
initial order of its three elementary parts was AA’B’. Any change in
‘heir relative position is simply a matter of altering that order to

AAB or AB/A etc. Similarly, to change the position of the total line C
amounts to an alteration in the order of C relative to a serles of
reference elements. On the other hand, any change in the . der of its
own parts will not affect the total length (C) because A+ A + B/ =
B+ A+A’= A+ A’ +8B”=C. Likewise, the forward movement of the
line C does not affect its length; i.e., the compensation is between
newly filled spaces and vacated spaces. But, compen=ation also can be
expressed in the language of qualitative subdivision: by moving forward,
the stick C is increased by a new element C at its forward end; at the
same time it loses a part C which it leaves behind. But 51nce change
of puesition is a change in the order of things, the ,hew part €/ and the
cld part of C* are regarded as equivalent, i.e., C’= C% and the child
argues C + C/ - C”=Ciustas C+C”~-C”=C.

-
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/

/

Thus, both subdivision and change of position ace¢ {ual.tative in
character, and each taken alone is not sufficient to (.v rise to measure-
ment. This fact is clearly seen in the study of children's spontaneous
measuremenit. A change of position withcout subdivision evokes intuitive
judgements based on movement. The most elementary form of thi. response
is for the subject to run his finger along the two lines and make a
motor comparison. A sLight advance is noted when the child transfers
a span or the width of two ‘or three fingers. However, all these response
types are limited because subdivision is approximate; there are no defi-
nite "marks" for guidance. Subdivision without change of position also
cannot tesult in measuremenft.. The most elementary form is exemplified
by responses of a child when asked to judge the length of two outlines.
He lays a strip of paper along one part only of a single outline. Later,
he lays another strip along part of the second outline and passes judge-
ment on the relations between the two, without comparing the two measuring
strips. What he calls measuring is simply comparing two outlines by
splitting each one separately into sections, without transferring these
sections from one outline to the other or comparing them with each other.
Thus, when subdivision without change of position occurs, two objects
cannot be compared in terms of metric unit, and there is not true
measurement.

Meas: rement begins when one part (A) belonging to a whole (C) 1is
compared with the remaining parts of the same whole by change of posi-
tion (either its own or that of a common measure, used transitively) so
that A (or its equivalent) is superposed on these other parts. This
implies subdivision and change of position are fused into one single
operation and no longer simply complementary. The operations alluded to
above involve the alternate use of subdivision and change of position
and not the two together. Thus, subdivision antecedes change of posi-
tion and is not its consequence; but change of position itself also is
quite independent of subdivision. This fact is illustrated in the .on-
servation of size. There is always an initial subdivision of the whole
into parts, and the relative position of parts is then changed so the
various parts take one another's positicns. The operations do not in-

‘'volve any direct or indirect comparison between the several parts. But

when one part (A) is applied to the remainder of the whole (C), the sub-
division is not independently given, it is generated by the change

of position effected either by A itself or by its transitive equivalent.
Thus, A is moved stepwise along C-A, giving first A=A' (so that B=24),
then A=A'=B' (so that C=3A). In this case the subdivision cannot be
dissociated from the corresponding changes of position. The subdivision
depends wholly on change of position, but the reverse is also true. It
is this synthesis of qualitative operations which gives rise to unit
iteration and so constitutes meas srement. By applying one section over
and over until the whole has been :nvered completely, the whole is
effectively reduced to a multiple o. that section and tne section becomes
a unit. Since the unit can be subdivided in turn, using one of its
fractional elements as a sub-unit, it follows that any size whatever

can be compared with any other by means of whole and fractional units.
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The nction of unit iteration to this point, however, is not yet
completelv developed in the metric notion of space. Areas are measured
only in terms of units which are themselves areas, and volumes in terms
of unit-volumes. It is not until later that the child learns to cal-
culate areas and volumes by linear units. This. ability to apply mathe-
matical multiplication to the measurement of space evolves, according to
Piaget, from the realization of the continuity of space. Thus, surface
can be reduced to line when it is thought of as an infinite sSeries of
lines; volume can be reduced to surface when it is thought of as an
infinite series of surfaces. It is with this achievement (mathematical
multiplication) involving area and volume that the child has reached
the final phase in the construction of Euclidean space.

. To summarize, geometry is the science of space. The child's notion
of space changes with development. At first, the child only is able

to conceive of space in terms of such relationship as neighborhood, order,
betweeness and closure. Later, he learns to construct space by a 'point
of view' of the observer(s), and to describe space in terms of left-rizh:
before-behind, and above-below. At the final stage, the child can con-
serve distance, and with the aid of a coordinate system, begins to
conceive space in metric terms.

¢

The three stages in the evolution of the child's notions of space
correspond to spatial relationships constituting three branches of
geometry. The conceptualizations that appear first in psychological
development ar«. the ones constituting the topological space; those -
appearing next constitute projective space; and those appearing last
in psychological development are ones that constitute Euclidean space.
The evolution of these notions of spatial relationships constituting
topological and projective spaces has been treated in The Child's
Conception of Space (Piaget & Inhelder, 1967). The development of
the child's understznding of Euclidean space was left to a separate
volume because it involves the complex notions of distance and
measurement. The Child's Conception of Geometry (Piaget, Inhelder, &
Szeminska, 1960) continues the work by treating these problems. In
the latter volume, it was argued that conservation of distance
is based on the distinction between movable objects and fixed sites
as reference points. Measurement of space presupposes the notion
of the conservarion of distance and actually begins as the operations
of subdivision and change of position are fused into a single operation.

4
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Final Thoughts and Direcqigpfifor Future Inquiry

A theory as comprehensive as Plaget's quite naturally draws much
attention. Replications are attempted, discrepancies are found, ond
research based on the theory tends to, initially, be multi-directional.

It would be surprising, indeed, if no findings contradictory to the theory
were reported. What is surprising in this case, is that so muca of
Piaget's findings have withstood the empirical onslaught. Piaget's

(1970) more recent distinction between figurative and operative thought
gives the theory more flexibility for dealing with a broader range

of psychological problems, including "real life activity." Youaiss ard
Denniscn (1971) have confirmed some of the implications of the figura-

‘tive and operative distinctions. They have shown that the two processes

are complementary within development levels but with operative thought
dominating the figurative processes. Also, Piaget's theoretical
structure too often has been considered without the role it gives to
experience, which varies from one individual to another; thr critical
point is that modes of dealing with experience are similar among persons.

Piaget's biclogical tradition has often been contrasted with the
psychometric tradition in the U. S., but the two approaches may not be
so far apart. Laurendeau and Pinard's (1970) extensive study of five
Piagetian tasks, which confirmed many of Piaget's findings using a great
many subjects, made gooduse of scalugram analysis. The technique is
gaining in popularity, since it supposedly answers the questicn of-
whether a set of behaviors oceur in an orderly {(developmental) seyuence.
Laurendeau and Pinard's research also sets an important pre:edent, that
is, using the same children for many tasks within the same study. The
analysis of interrelations among task performance of the same children
is necessary to describe the common underlying cognitive structure.

For example, Kaufman (1971) examined the factor structure ' some cf

Piaget's and Gesell's tests, and the Lorge-Thorndike test. .o ° 7 vear-
old children. The Piagetinn tasks reflected three factov -, -+~ ding
to the operatioun of number, classes, and relations. Bart {.v..; reported

a general formal operational factor and ua seconi factor r tites - task
context. Berzonsky (1971) found five separate factc's n 3 vercubles
with first-grade children). Shantz (1966) did not v . ! » oen-ivsis,

but did study the. interrelationsiiip among tests of ¢l .-, wucliin. atlon
of asymmetciec logical relations and spatial multipiicaiicw i+ .- rete
operational children. The tasks were found to interce:velat. irad -ately,

L ry . -
but exhibited a variety»of morc -pecific complex relec ..onz™inn.



A point often neglected is that a moderate correlation beiween
scores on tests of multiplicative abilities, for example, i3 not ts say
that the relationship between n. _tiplicative abilities i: m.derate. The
latter statement could be made if all relevant variables vy considered,
but it is difficult to know when this has been achieved =.ace adequate
dataare still not available. Researchers, understandabiy, wish to develop
their own tasks, but contradictory results lead to quexti.t of t‘e validity
of the instruments. Even the vall, ty of the Piagetiau tisks (since pri-
macy does not imply validity) is not known. It does se~w, however, that
too many new tests are developed prior to a thorough un.:zrstanding of the
theoretical imperatives for tasks that might provide a :¢st of the theory.
There is the nagging suspicion that some tests are d-veicped with a
hopeful eye toward being able to test a child and, wit:. .:rtainty, place
him in Stage X. The dangers of assessing a child's -og..-.ive structure(s)
on the basis of a few "tests," especially using staundardiied psychometric
methodology, was pointed out early by Inhelder, Bovei Sinclair, and
Smock (1966).

One further thought. Gagné (1968) would leave :=. Adevoid of arv
hope for Piaget's theory. '"I believe that many ¢? th=: puiinciples w-.iioned
by P.aget, including such things as reversibilir:. . . are abstracti:«s. . .
obviously in Piaget's mind. But they are not in tn: chil“'s mind (n. 188).
Surely what Gagné means Is that an (external) observer atiaches » (.2l
to mental operations. It really is unlikely that Piages r-ioks v child
goes acound saying, "I am practizing reversibilitv.” then li -om:s to

the brass tacks of a counter theory, Gagné can only of. 1 ohew Lracifie
"euthenics" which are learned are generalized by combining u1 » rtler
"euthenics," "by means of a little understood, but neverihelc.. :le.endable,

mechanism of ::carning traasfer" (p. 189). Our only comment :s chat this
phantom mechanism also has gone unnamed by all childcen [ k. ..

What ove does when two theoretical positions . i zenfliet is

rarelv a matter of empirical or logical compulsion. .o ‘. urring and
developneniat approaches often speak of the saw ther .nenou, using
different terms, leaving one searching fo: a .i:v¢ 1 aguage which would

make everyone happy. What one does about a st -al of the data on

the concept of space, contradictory to or reguiti.g comment by Piaget's
theory, is also largely a matter of choice. C1i.en our current state of
knowledge, the theorv, if one believes it, ca. be made to account

for most ail of th' -indings discussed here. “elevent systematic inquiry
iato Piaget's foundation has a relatively short history.

The directior of future inquity is set by the critical concepts
and nethndologica! imperativ>s of liagei's theory. Psychological research
by and large has been, until about 196%, }iwuited to psychological

analysis ( "stages" rather than "chang«' &~. based on response choice

3
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rather than actions and transicrmations. For example, most studies of
development of concepts of space are concerned with what cues are per-
ceptible, i.e., is the child anle to discrimiaate between a form or
object and its mirror image. The Impertant question, from the viagetian
perspective, is whether the :.’id can identify an object that is & 1800
change from the standard o%j.~z. More generally, can the child
distinguish a change in poi.:“on €-om a change in state? Thus, the
strategies used by the chilc to distinguish various transformations
constitutes the bases for describing developmental change. 'The main
"point of Piagetian theory is the shift from analysis of "features” to
the coordination of input and action (Inhelder et al., 1966).

Each advance in science is accompanied by methodological and/or
technical innovations made "realizable" by the new ideas. Pilaget's
contribution in this area is his refined observational procedures designed,
as much as possible, to give the child opportunity for "spontaneous
construction.” Psychology has beer a psychology of controlled choice
and not a psychology of transformations. Piaget's epistemological
imperative to psychology is that learning occur: by making transforma-
tions on objects and, further, that learning results from self-generated
transformations:

[In manipulating] besides learning something about the
object in the cou se of such an experiment, the child also
learns something of the way actions are coordinated and how
one determines :.aother. (Piaget & Inhelder, 1967, pp. 453-454)

The usual method of psychological research is to present successive
exposure to stimuli controlled v the experimenter. The structuralist
(Piagetian) approach, on the other hand, requires situations that per-
mit self-regulation of patterns.of action sequences. 0f course, many
psvchological researchers believe that such procedures, while theore-
tically relevant, are too imprecise and not appropriate for the science
of psvchology. 1If, for exemple, input variables are determiied by
the "whim'" of the subjec., now can "causes' be identified? The answer
depends on our definition of "explanation." 1f the concept of "cause"
involves the issues of "antecedents-consequent'' relations, then the
structuralist approach appears naive and out-dated. However, if formal
(as contrasted to efficient) causality is accepted as a type of
"explanation,' there is no problem.

Research involving the psychology of transformations, including
those conserned with space—time, requires a mucn finer grain analysis than
the analysis that is typical of past behavioral studies. The microanalysis
of dcvelopment a la Piaget is essential to further our knowledge generally anc
for testing Piaget's theory. Aside from the latter, microanalysis of
action patterns under controlled conditions will fill in apparent
discontinuities in cognitive development (i.¢., to discover and
explicitly describe :he nature of the functiopal interactions thut give
rise to the nypothesized cmergent functions).

77
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As Forman (1973) suggests, microanalysis has the further advantage
ot placing the focus on the child rather than.on the task. It is not
sufiicient to know the developmenta! (rder of 1 task; rather the vxperimenter
must observe, record and analyze the process (action pattern) of task
solution. Otherwise, the investigator cun only make indirect interpre-
tations, i.e., those derived from his reasoning of what is logically required
to solve the particular problem. An example from Forman (1973) follows:

-

It has "“een reasoned that the child can distinguish a two
dimens.onal 'convexity' by using the convention that shadows
come trom above (Yunas, 1973 Another reader could enter
with his 'veah, but' and poirt to other features of the

task which might have been the cues of response. If the
researchers wouid take a closer look at the child, say

with high-speed photography, they may find somcthing in

the nati-e of the research that would mak: the conclusions
firm. What if the child extendei a single finger toward

the 'concavity,' as if to place nis firger 'inside,' but
when approaching the ’'convexity' he ma.ntained an infant!(le
thumb-forefinger opposition as if to pinch at the 'protrusion'.

That microanalysis of behavior can add significantly to the urderstanding
of spatiai development is clear from the work of Forman (1973) and the
study of visual scanning patterns by Vurpillot (1968), among others.

Emphasis on transformation -apability, microanalysis of behavior
(i.e., logic action patterns) and open-ended response conditions all
require a s ft in cur basic parad.gm about experimentation (Smock, 1973).
The full me .ing and implications of this Piagetian "revolution” are
now becoming cl-ar (Smock & von Glasersfeld, 1974).
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Breakthroughs in the Psychology of
Learning and Teaching Geometry
Izaak Wirszup

The University of Chicago

.

Russian mathematicians and mathematics educators nave always been
very fond of geometry. To Some extent, this fascination is due to their
pride in the achievements of Lobachevskii. Whatever the reasons, gecmetry
has always played a central role in the Russian school mathematics curri-
culum. But even in Russia children traditionally began .their study of
geometry as a separate subject relatively late, namely in grade 6 (that is,
at the ‘age of 12 or 13).

This late start occurred largely because the development of the student's
deductive and logical reasoning powers had been inappropriately considered
to be a principal goal of school geometry instruction. And yet, the course
constructed on the basis of this objective demanded cof the students a high’
level of general development which they had not attained in their previous
instruction. b

Tn the Soviet Union and in the rest of Europe, the absence of this
necessary development posed the problem of preparing students for the
beginning of geometry study and, as a result, a preparatory course in
geometry was developed —- a@ course sometimes called visual, concrete,
intuitive, heuristic or propaedeutic geometry. Thus, two approaches to
geometry have been used in Soviet Schools: the intuitive for grades 1
through 5 and the systematic (semideductive) beginning in the sixth grade.

Soviet educators who had been teaching either goemetry sequence
experienced acute dissatisfaction with the conditions of knowledge pre-
vailing in most of their students, as had their counterparts in the rest
of the world. Extra hours 2f 1nélv;dual work and supplementary lessons
with slow learners did nct pvodice :he desired results. The pupils
committed errors again zud agein, showing iheir basic inability to solve
the simplest problems o thcir awn. An obvious question presented itself:

_ Why was it that so many children o mastered most school subjects got
nowhere in their study of genmetvy?. Over the past thirty years Sovie*
mathematics educators and »sychologists have been making a thorough
analysis of the content and methods of teaching both the intuitive and
systematic courses, and have tricd to find answers to this question.

o
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Excellent research indeed has been conducted at the USSR Academy of
Pedagogical Sciences in order to improve the situation. Some of the
Academy's work is included in Soviet Studies in the Psvchology of Learning:
and Teaching Mathematics (Kilpatrick & Wirszup, 1969-1s. @, Kilpatrick, Wirszup,

Begle, & Wilson, 1975), tie series puklished jointly by 1he S*hool Mathematics
Study Group (SMSG) of Stanford University and the Survey of Recent East

, European Mathematical Literature of the University of Chicago. Volum~ 1 of
"this l4-Volume Series contains samples of the research by Zykova on the

Learning of Geometric Concepts and studies by Galperin and Georgiev on The
Formation of Elementary Mathematical Notions. Volume 4, entitled Problem

- Solving in Geometry, includes papers by Kabanova-Meller, Talyzina and
 Yakimanskaya. Volume 5, on the Development of Spatial Abilities, offers
: reseafch by Chetverukhin. Interesting studies by Artemov (The Composition:

of Geopetric Skills), and Mashbits (The Formation of Generalized Operations
as a Msthod for Preparing Pupils to Solve Geometry Problems Independently)
aprear in Volume 13, and a paper by Tishin (Instructing Auxiliary School
Pupiss in Visual Ceometry) 1is included in\Volume 10.

.

Stiil, this very significant research has iniluenced the improvement
in the teaching of geometry only slightly. The trily radical changes:-and
far-reaching innovations in the new Soviet geometry curriculum have, in fact,
been introduced thunks to Russian research inspired by ‘two Western psycho=
logists ard educators.

Fitst, the Russiand hLave accepted as a fundamental principle the well-
known and crucial discovery by Jean Piaget (and his co-worker, Barbel
Inhelder® contuined in a paper by Plaget entitled Les structures mathd-
MU vt el structures opdratoires de Uintelligence (1955) and in the book
L: penése des structures logiques dlémentaries, by Piaget and Inhelder
(1959) . Piaget asserts that traditional geometry instruction begins too
late and then takes up the concept of measurement right away, thus omitting
(the qualitative phase of trausforming spatial operations into logical ones.
This is to say that instruction is realized in a sequence corresponding to
the historical development of geometry -- from the "geometry of measure-
ments" to the "geometry of shape” -~ from geometry of position to theoret- <
feal geomerry. Hut the development ot peometric operations in children
actualily proceeds in the opposite direction -~ from the qualitative to the
quantitative,

However, it ir <he ljife wcrk and research by two Dutch mathematics educa-

. tors which conta'is the most profound psychological and mathematical ideas, -

and has- formed the basis for designing 'the new Soviet curriculum and
methods of teaching geometry in the [.S.S.R. Uniortunately,\this work has |
remained unnoticed in the United States, and probably would have been

_ignored in Western Evrope as well, were it not for Professor lans Freudenthal,

the famous mathemutician and educator.

P.M. -2n Hiele, a teacher at the Lycée of Bilthover in ﬂollahd, is -~
the author of a dissertation (1957) on intuition, particularly on the
role of intuition in the téaching of geometry. His late wife, Dina van
HielcwCelﬁuf, defeinded her doctoral thesis on didactiecs: in zeometry before
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the University of Utrecht also in 1957. That same year P.M. van Hiele
delivered a talk at a mathematics education conference at §é-rres near
Paris, and in 1959 he published it in a paper entitled La_punsée de )
1'enrant er la géometrie (The Thought of the Child and Geometry). Here
he discusses five Yevels of thouphy development in geometry.

Mathematics educators, methodologists and psychologlists at the
Soviet Academy of Pedagoglcal Sciernces hastened to organize intensive
research and experimentation on the levels of development outlined by
van Hiele, and between 1960 and 1964 they verified the validity of his
assertions and principles. We of fer here the van Hiele levels as given

in the more elaborate Russian post—experimental description (Pyshkalo,
1968; Stolvar, 1965).

IS

van Hiele Levels of Development in Geometry

Level I

This initial level is characterized by the perception of geometric
figures in their totality as entities. Figures are judged according to
their appearance. The pupils do not see the parts of the figure, nor
do they perceive the relacionships anong components of the figure and
among the figures twemselves. They cannot even compare figures with
common propertias witl: one another. The children who reason at this
level distinguish figures by their shape as a whole. They recognize,
for example, a rectangle, a square, and other figures. chey conceive
of the rectangle, however, as completely different from the square.

When a si~-year old is shown what-a rhombus, a rectangle, a square, and
a parallelogram are, he is capable of reproducing these figures without
error.on a 'geoboard of Gattégno,” eveu in difficulr arrangeuents.~ The
child can memorize the names of thesc figures relatively quickly, recog-
nizing the figures by theix shapes alone, but he does not recognize the
square as a rhombus, or the rhombus as a parallelogram. To him, these
figures are still completely distinct.

Level II

The pupil who has reached the second level begins to discern the
components of the figures; he also establiishes relationships among these
components and relationships between jmd%yidual figures. At this level,

’

The van Hieles have used the "geoboard" in their research so that
the child will not be hindered by difficulties resulting from drawing
the figures.

84 ,
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he is therefore able to make an analycsis of the figures perceived. This
~akes place in the process (and with the help) of observations, measurements,
drawings, and m~del-making. The properties of the figures are established
experimentally; they are described, but not yeiL formally defined. These
Properties which the pupil has established serve as a means of recognizing
figures. At this stage, the figures act as the bearers of their properties,
and the student recognizes the figures by their properties. That a figure .
is a rectangle means that it has four right angles, that the diagonals are
¢qual, and that the opposite sides are equal. However, these properties
are still not connected with one another. For example, the pupil notices
that in both the rectangle and the parallelogram of general’cype the
opposite sides are equal to one another, but he does not yet conclude that
a rectangie is a parallelogram,

Level III , N

and of classes of figures. The pupil is now able to discern the possi-
bility of one property following from another, and the role of definition
is clarified. The logical connections among figures and properties of
figures are established by definitions. However, at this level the
student still does not grasp the meaning of deduction as a whole. The
order of logical conclusion is established with the help of the textbook
or the teacher. The child himself does not yet understand how it could
be possible to modify this order, nor does he see the possibility of con-
Structing the theory proceeding from different pPrgmises. He does not yet
understand the role of axioms, and cannot-yet see the logical connection
of statements. At this level deductive methods appear in cconjunction with
experimentation, thus permitting other properties ro be obtained by rea-
soning from souwe experimentally obtained properties. At the third level

a square 1is already viewed as a rectangle and as a parallelogram.

\ L

Level 1V

At the fourth level, the students grasp the significance of deduction
as a means of constructing and developing all geometric theory. The
transition to this level is agsisted by the pupils' understanding of the
role and the esgence of axioms, definitions, and theorems; of the logical
struccureldf a prent and of the analysis of the logical felacionships
between concepts .- ctatements,

The students can now see the various possibiiities for developing a
theory proceeding from various premises. For example, the pupil can now
examine the whole system of properties and features of the parallelogram
by using the textbook definition of a parallelogram: A parallelogram is
a quadrilateral in which the opposite sides are parallel. But he can also
construct another system based, say, on the following definition: A
parallelogram is a quadrilateral, two opposite sides of which are equal
and parallel.

8o
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Level V

This level of intellectual development in geometry corresponds to the
modern (Hilbertian) standard of rigor. At this level, one attains an
abstraction from the concrete nature of objects und from the concrete
meaning of the relations connecting these objects. A person at this level
develops a theory without making any -concrete interpretation. Here geometry
acquires a general character and broader applications. For example,
several objects, phenomena or conditions serve as "points,' and any set of
"points" serves as a ''figure," and so on.

The use of these levels permits us to isolate (and study) the essential
aspects of the development of geometric thought from the large complex of
int-~related factors characterizing the development of thinking in general,.

Discontinuity of the Learning Process

The van Hieles (vdn Hiele & wvan Hiele-Geldof, 1958) nuticed the

discontinuity of the learning process:
pe

The discontinuities are . . . jumps in the learning curve,

[and] these jumps reveal the presence of levels. The

learning process has stopped; later on it will start itself

once again. In the meantime, the pupil seems to have "matured."

The teacher does not-succeed in further expianation of the

cubject. He and . . . the other students who have reached

the new level seem to speak a language which cannot be under-

stood by the pupils who have not yet reached the new level.

They might accep. the extianation of the teacher, but the

subject taught will not sink into their minds. The pupil

himself rfeels helpless; perhaps he can imitate certain actions,

but h¥ has no view of his owu activity until he has reached

the new level. At that time the learning process will

take on a more continuous charactu«'r, Routines will be

formed and an algorithmic skill will be iacquired as the pre~

requisices to a new jump which may lead to a still higher

level. (pp. 75-76)

Thesé levels are inherent in the development of the thought processes.
Van Hiele stated and Soviet researcn has shown that the passage from one
level to another Is not a spontaneous process concomltant with the student's
biological growth and dependent only or hig age. The development which
leads to a higher geometric ievel proceeds basically under the influence
of learning and therefore depends on the content and methods of instruction.
However, no method not .even a perfect one, allows the skipping of levels.
The passage from one level :c the next requires a certain amount of time;
but various methods allow the regulation of this time period. 1It.-is also
possible that certain teaching methods do not permit the attainment of the

K
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highar levels, so that the modes of thinking that would be used at these
levels remain inaccessible to the student.

Freudenthal drew special attention tc the work of 1is students and
colleagues, the van Hieles, not only because he conside->d their work to
be a truly revolutionary development in the teaching of geometry, but also
because of the underlying pedagogical and didactic theiry. 1In his opinion,
their theory of levels of thought, as well as thzir masterful experimental
courses in concrete geometry, are achievements of educational research which
should be recommended to all who are interested in mathemacics education.
In his monumental work, Mathematics as an Educational Task (1973), Freudenthal
writes about the van Hieles' theory of discontinuities in the learning pro-
cess as follows:

\

When the van Hieles started teaching they were just as

unprepared as many other young teachers; nobody had told

them how to do it. Of cource they had passively under-

gone teaching, maybe even observed their teachers’ perrorm-

ing, but this was not enough. As time went on, they nad

the opporiunity to discuss their teaching with cach other

and with others. Theyv subjected their own actions %o

reflection. They observed themselves when teaching, re~alled

what they had done, and analyzed it. Thinking i< continued

acting, indeed, but there .re relative levels. At the

higher level the acting of the lower ones becomes an object

of analysis. This is what tke van Hieles recoenized as a

remarkable feature of a learning process, namely of :hat

[process] in which they [themselves] learved teaching. They

transferred this feature to the learning Brocbss that was the

goal of their tciching {that is] to the learning procusses

of pupils who were learning mathemat:.s. There they dis-

covired similar levels. To me this seems an importanc -

discovery. (p. 121)

This is how Freudenthal (1973) describes tiie reasoning of a child who is
at the chird level:

If the child know. what a rhombus is, what a parallelogram
is, he can'visually disc-ver preperties of these shapes.
There are a lot of them; during the class discussion the
children count them up. In the parallelogram opposite
sides-are paratlel ang equal, ~pposite angles are equal,
adjacer.. angles sum up to 180°, the diagonals bisect

each other, the parallelogram has a center of symmetry,

it can,be divided into congruent triangles, and the plane
can be paved with congruent parallelograms. This is a
collection of visual properties which asks for organization.
I explained earlier how deductivity starts at this peint;
it is not imposed but unfolds itself from its local germs.
The proper:ies of the parallelogram are connected with each
other; one among them can become the source from which the
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ochers spring, Su does a definition arise, and now it
becomes clear why a square shall be a rhowbus and a
rhombus be a parallelogram. In this course the student
learns to define, and he experiences that defining is
more than describing, that it is a means of the ueductive
organization of the properties of an object. (p. 417)

After analyzing a typical lesson in a geometry class, ¥.M. van Hiele
(1959) writes:

The teacher reasons by means of a network of relations which

he comprehends, but his students do not. On the basis of this

network he presents che mathematical relations which the -

students end up manipulating out of habit. Or, rather, the

student learns to apply -- out of hebit -- these relations

of whose source he is unaware and which he ‘. * r.ever seen.

Apparently everything is completely acccr..ne t9

expectation: the students will eventually havz their
disposal the same network as the teacher. The . .3, =ilon
of a network of relations which is identical frr «:: who
make use of it and ideal for expressing reasoning -- .. met-
work in which all of the relations are connected "y 2
Yogical and deductive manner; is this not the prou::s ead

of the teaching of mathematics?

Let us not be too optimistic. First, a netviurt of
relations composed in this way is not founded upcn the
sensory expurience of the students. Although iL is possible
that the network of relations itself has inspired Ssomc
experiences for the student, the mathenatical experieaces
that the student has been able to have-are based complately
on he network imposed by the teazher. This netwoik,
imposed and not understood, forms the basis of his reason-
ing. A network of relatjons whi~h is not founded on
previous experience risk:s, as we all know, bzing forgotten
in a short time.

Thus, the network of relatio... 418 an autonomous con-
struct: it has no connections with ti« other experiences
of the child. This means precisel, that the studen: knows
only what he has been taught ard vhat is t'a.ed to it de-

ductively. He has nct learned to ectablish the connec- .
g tions between the rs:wi .k of relations and th.. real
sensory world. He ...l not know Low to apply what he

has learned to new ..tuations.

Finally, the ~L..d has learn J to apply a network of
relations which one nas offered him ready-made: he has
learned to apply them in certain situations specially
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designed for him, but he has not learn.d to construct such
4 network himself in a domain as yet unexplored. On the
other hand, if as a result of our teaching the students
should obtain the capacity to construct a deductive rela-

‘tional network in a ncw domain, we wi'l have achieved an

optimal mathematical training. (p. .40)

The following points made by van Hiele (1959, pp. 201-203) may contri-
to a more precise understanding of the .cvels of thought:

A) At each level there appears in an extriusic manrer
what was intrinsicon the preceding lavel. At the first level
the figures were in fact just as determined by thei: properties,

“ but one who is thinking at this level is not conscious of these

properties,

B) Each level has its own language, its own set nf
syrools and its own network of relatons uniting thase
symbols. The transition from one level to the aiext is
related to the broadening of language -- the appeircnce of
new geometric and logical terms, defiitions, and symbols.
A relation which is "exact" on one level can be reverled to
be "inexact" on another. Think, for example, of the relation
between the rectangle and the square. Numerous lingui:<ic
symb 13 appear on two successive levels; they establish,
more ver, the connection between the diffarent lev 1s and
assure the continuity of thought in this discontinuous
domain. But their meaning is different: Tt is ~hown by
other relations among these symbols.

C) Two people who are reasoning oii two different
levels cannot understand one ansther. This is what ~ften
happens with teacher and student. Neither of them
succeeds In grasping the progress of the other's t! - zht,
and their discussion can be continued only when the
teacher tries to get an idea of the pupil's tliought pro-
cess and to conform himself to it. Certain teache:s give
an explanation auv their own level, inviting the students
to answer questions. This is, in fact, a monologue, for
the teacher is led to corsider all the answers which ac
net belong to his level ot clations as silly or beside
the point. True dialogue m.-: be established on the :. 3il's
level. 1In this case, the teicher must often, after c.:ss,
question himself chbout his students' meanings and strive
to understand them.

D) The maturation process which leads to a higier
level unfolds in,a characteristic way; one can distingu. .h
several phasecs. (This maturation must be considered priu i-
pally as a process of apprenticeship and not as a ripening

/
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on the biological order). It is then possible and desirable
for the *eacher to encourage and hasten it. It 1s the goal
of didactics to ask how these phases are traversed and how
to furnish effective help to the student.

The ph: 'es which in the course of apprenticeship lead to a higher level
of thought ure, according to van Hiele (1659), as follows:

Information: The student learms to recognize the field
of investigation by means of the material which is presented
to him. This material causes him to discover a certain
structure. One could say that the basis of human knowledge
consists in this: Man appears in a position to uncover a
structure ian all material, no matter how disordered it is,
and this structure is perceived in the same way by many
people -- as a result of the conversation on this subject in
which they can engage.

In the second phase, that of directed orientation, the
student explores the field of investigation by means of the
material. He knows then in what direction the study is
geared; the matter is chosen in such a wuy that the charac-
teristic structures progressively appear o him.

Explanation takes place in the course of the third
phase. The acquired experiences are linked to exact lin-
guistic symbols, and the students learn to express them-
selses in the course of ulscussions about these structures
wh:t take place in class. The teacher sees to it that
the customary terms are employed in the discussions. It
i¢ Juring the course of this third phase that th: network
o -.-' tions is partially formed.

The fourth phase 1s that of free orientation. The
field of investigation is in large part known, but the
student must still rapidly find his way around this field
of Investigation. This is achieved by assigning tasks
which can be carried out in different ways. All sorts
of signals are placed in the field of investigation.

They show the way to follow in order to reach the symbols.

The fifth phase is that of integration: The student
has been oriented, but he must still acquire an overview of .
the methods which are at his disposal. He then t-ies to
condense into a whole the domain which bis thought has o
explored. At this moment .the teacher can encourage this
work by providing global insights, but it is important
that thesc insights bring nothing new to the student:
They ought only ¢~ °° 1 summation of what he already knows.
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As a result of this “ifth phase, the new level »f thought
is reached. The student :rranges a network of rc¢l..ions which
connect with the totality ol the domain explored. This new
domain of thought, which hag acquired its own intultion, hae
been substituted for the earlier demain of thought which | :sessed
an entirely different ir -uition.

t The objectivity of mathematics rests on the fact that
new symbols and networks of relations are understood in the
same way by a number of different people. If one were to
determine as the end of education the oneness of the relational
network, one might confine himself to having this network
assimilated. The student would then seem to understand the
reasoning process perfectly, for he would come up with exact
conclusions by taking this relational network as his base.
But that would not mean that he would attach the same meaning
to it as his questioner. This meaning cannot be exctracted
only from the language used; it dcpends oa the experiences
which have led to the formation of the relational network;
that is, it depends on what has taken place on the lower
levels of thought.

If one does not take the content of the -symbols into consid-

ration, but only their rejations, one can say that, from the
mathematical point of view, everything is perfect. The student

is capable of maripulating the relational n:twork of deduction with-
out error. But from the pedagogical or didactic, point of view,

and from the social point of view, one has wronged the student.

The pedagogical fault lies in the fact that the student is
deprived of the opportunity to become aware of his creative
abilits. From the didactic point of view, the student is
prevented from discovering how new domains of thought are
explored. Society has been wronged because the teacher has
placed in the student's hands a tool which he can manipulate
only in the specific cases which he has studied. (van Hiele,
1959, pp. 201-207%) '

The Soviet Geometry Curriculum

Need for Changes

As mentioned above, since 1960 the Russians have been conduct”’ .z
experimental studies of their students' levels of development in ¢(. >
study of geometry. 1In order to design a new geometry curri “:lum, ¢hey
determined to what extent the van Hiele levels reflect the ictual pro-
cess of the pupils' developaent and to what extent the tradiiional
system and teaching methods have helped or hindered their development
in geometry. The following represents only a few of the mauny interesting

i
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conclusions contained in lengthy Soviet reports on this researca (Pyshkalo,
1968; Stolyar, 1965). :

Under the old curriculum only 10 to 15 percent of the students who
finished fifth grade reached the second level. This delay appeared to
be even greater in relatinn to the pupils' familiarity with geometric
solids. An appreciable leap was not noted here until the seventh grade.

At the same time, it was established that the familiarity of an
experimeutal class of.second-graders with the geometry’'of solids enatled
them *c reach the indispensable second level and even to surpass, in this
respect, the level of development of seveath-graders in the traditional
school. Table'l records the results of assignments on classifying solids
(cylinders, cones, pyramids, prisms). In the last column are data on the
performance of the assignments by pupils in the experimental second grade.
Tuese classes spent one month on a study of solids and a description
of the shapes of objects, in the form of independent study.

Table 1
Percent of Success on Classifying

Sulids by Students in Traditional

and Experimantal Sections

Grades
Assignments EXperimental
i1 11 111 v v VI V1l 1L
forted out all solids - 1 4 3 19 >0 73
correctly
Ilsnlated one group of 49 54 50 52 62 100 100 100
solids correctly )
Correctly named each group
of solids - - - 2 1 3 37 49
Correctly named one group
of solids . 1 3 3 20 40 69 10 100

As a result of ‘arious experiments and analyses, Soviet educators
have termed their troi/tional instructfon in grades 1 through 5 a "pro-
longed period of geom: ric inactivity.' Here one can observe a violatica

)
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of the most important conditions for the development of any kind of think-
ing == rontinuity of study and versatility. The following is a striking
illustration of the situation under the old curriculum: During the first
five years of instruction, the pupils became familiar with 12 -~ L5 geometric
objects (the names of the figures and their elements; terms designating
srelationships and properties; apparatuses and instruments, etc.). On the
other hand, in the first topic ("Basic Concepts") alone of the grade 6
geometry course, to which only 16 class hours were allotted, the pupils
were required to assimilate nearly 100 new terms, including the names of
figures and their parts (approximately 60), terms designating relations
and properties (approximately 20), and the names of apparatuses, instru-
ments, and their parts (approximately 20).

A detailed analysis of the standard textbooks in mathematics for
grades 1 through 5 revealed the absence of any systematic choice of
geometric material, large gaps in its study, and a markedly late and one-
sided acquaintance with many of the most important geometric objects.

The investigations showed jumps across levels (primarily from I to III)
with respect to a significant majority of the concepts studied and marked
gaps. In addition, the study of geometric concepts encountered in each
of the first five vears of instruction continued at Level I, and then ouly
from the quantitative aspect, like measuring length and area. It was
evident that in the traditional geometry course for grades 1 through 5, “
preference was given only to those concepts that could be measured.

0Of great value as a quargtitative jecription of the beginning period
in the study of intuitive geopetry is the number of exercises in the
standard mathematics problem-books in which actual geometric objects are
eramined. Column III, in Table 2, lists the number of problems containing
ceometric terms. The problems referred to in the table as "effective' are
important in that their solution 1s related to the pupils' geometric
development. Their number 1is insignificant indeed and amounts to
approximately 1 percent of all prohjems.

Table 2

Exercises in the Standard Mathematics Problem-Books

Total Problems containing Effective geometry JZ:
Grade Exercises geometric terms problems among them
Number Percent Number Percent /

I 929 | 27 2.9 12 1.3

11 1181 40 3.4 10 0.8

111 1300 102 7.8 25 2.

v 1142 160 14.0 15, 1.3

\ 1157 53 4.6 6 0.5
Total 5709 382 6.7 68 1.2
693
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The studies demor-:rated that in the sixth grade, beginning with the
very first lessons, tle teachers were required to do work corresponding to
the first three levels of geometric development simultaneously:

1. To familiarize the pupils with geometric figures in order that
they recognize them according to their shapes (Level T).

2. To study the properties of figures in a practical way and enable

the students to reccgnize figures according to their properties
(Level 1II).

3. To preceed with the main task of grade 6; that is, to order the
properties that had been discovered experimentally and to give
these properties a meaning. The students now had to formulate
definitions, and should already have been able to connect pro-

perties and t» logically derive some properties from othe.s
(Level III).

Obviously, this was an fimpossible task.

Table 3 illustrates the change in the number of geometric concepts
studicd in the experimental as opposed to the traditional courses. It
should be noted that this marked increase occurred not so much because of
an increase in the number of geometrical figures that were studied and
used for measuring purposes, but becaus2 the relationship of geometric
figures and their properties was sy«iematicaily studied in the experimental
courses. Table 4 gives the number of problems with geometric content in
the new geometry program, and Table 5 gives a comparison between the
traditional and experimental courses in this respect.

Table 3
A Comparison of the Number
/ of Geometric Concepts Studied

in the Traditional and the
Experimental Programs

Ndef; 1 I . T v v

Courses —
Traditional course 7. 4 13 23 37
Experimental course 24 51 84 100 , -

O
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Tuble 4

Total Problems Containing Geometric
Grade Exercises terms Effective Problems
Number Percent . Number Percent
I 1100 200 18 . 180 16
II 1200 230 19 200 17
ITI 1300 260 20 240 18.5
IV 1300 300 23 290 22
4900 290 20 910 18.5
Table 5
"Effective Problems with Geometric Content
Grades I III iv
Traditional 1.3% 0.8% 2% 1.3%.
Experimental 16% 17% 18% 22%

A New Geometry Course

The various Russian investigations led to the conclusion that radical

to build a new geometry curriculum.
following elaboration of a geometry c

The firstpart of a geometry course naust insure the attainment
of the second level of :thought, wh':n we shall call the

aspect of gecmetry.

follows:
their properties.

Th: aim of the iastruction is as
Geometric figures must become the bearer of

|

une uses a set ot concrete geometric shapes and

materials the manipulation of which will lead the students

to work out geometric figures on the.r cun.

The cperatione

which the studénts carry out with this material will become

9o

-.and qualitative changes in character, structure, and direction were needed

P.M. van Hiele (1959) suggested the
ourse:
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the base of a new relational network.

The second part of this course must insure the
attainment of the third level of thought, which we
shall call the essence of geometry or the aspect of
mathematics. Here the aim of instruction is to absorb
the relations which link properties of figures; for
example, that the sum of the apgles of a triangle
equals 180°; that the alternate-interior angles formed
by iwo parallel straight lines and a secant are equal.
In addition, one begins during this period to logically
order the properties of figures. The first property
cited above becomes the antecedent of a new property:

“that the sum of the degree measures of the angles' of
a convex quadrilateral is 360°.

The materials used c:1 include a series of con-
gruent triangles or quadrilaterals with which the ¢
students attempt to construct a 'pavement’ or covering
cf some part of the plane. Here again the students
discover an underlying structure through the manipu-
lation of concrete materials. They see systems of
parallel straight lines, parallelograms, trapezoids
and hexagons appear with centers of symmetry in the
pavement constructed by means of congruent triangles.
This material later furnishes a natural construction of
the straight line which permits the demonstration by
means of alternate interior angles that the sum of the
angles of a triangle is 180°,

'The third part of the course must insure the
at+ainment of the fourth level, that of discernment
in geometry, of the essence of mathematics.

The purpose of this instruction is to understand
what the expression "logical ordering” means: For
example, what is meant by some property preceding
another.

The material is made up of the theorems of geometry
themselves. Underlying the ordering of these theorems
will be links between theorems. and their converses
and inv rses, reasons why certain axioms and defini-
tions are indispensible, and clear reasons for
the necessit; and sufficlency of certair conditious.
The students will now be able to logice.ly order new
concepts. For example, when they study the cylinder
for the first time, their analysis of w'at they per-
ceive will teach them that the cylindrical surface
contains straight lines and circles. After formulating

<.
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a precise definition, they will be able to demonstrate the ®
existence of straight lines and circumferences.

If the course could be pursued further (though that
would generally be impossible in secondary education),
it would reach the fifth level, that of discernmment in
mathematics. At this level, the goal of instruction
would be to analyze what the mathematician's activity
consists of and how it differs from that of other scholars.

‘One can attain this fifth level only when he is so familiar

with the steps of the mathematician that he executes them
automatically; that is, he has established habits which
force one step to inevitably follow another. Only chen
is an integration of these steps possible, allowing

the person to grasp the structure of the activity

in mathematics.

But a parallel integration has already been produced
at the time of the transition from one level of thought
to a higher level. In the course of passing from Level I
to Level II, it is the manipulation of figures which
brings the structure into the light. Manipulation
nourishes thought on the second level. Thus, the
figures become new symbols defined .by their relations
with other symbols.

On the second level the conceit differs from that of

‘the first; the process undergone in this new context

provides an integration which makes access to the second
level possible, and so on.

The teacher who deliberately leads his students from
one level to another allows them to develop a deductive
system by themselves and to discover the faults in ‘'eductive
reasoning. By acting thus, the teacher does not imposc
the domains in which the thought will be exercised, but
helps his studentq to specify these domains themselves.
This does not mean, as has been pointed out above, that
he will leave the student the burden of discovering every-
thing, but he will demand of him a particular activity
which, in each of its five phases, is differently directed.
An application of the principles presented here certainly
does not imply a lightening of the teacher's task. It does,
however, carry the satisfaction of knowing what one is
doing and of better understanding the reactions of the
students. ’

)

The teaching of a deductive system demands ‘patience
above all. Such a system exiSts only at the fourth level
of thought; but its essence is perceived only at the

fifth jevel. (pp. 204-205)
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Here is how van Hiele views the axiomatic method in teaching geometry,
from the point of view of his levels of thought:

One makes a serious mistake in trying to construct a system
of axioms by using symbols characteristic of a level of
thought which is too low. Systems of axioms are in the

s province of the fifth level, whert. the question of what
points, lines, surfaces, etc. are, is no longer asked. At
this level the figures are defined exclusively by symbols
connected by relations. To find their proper interpreta-
tions it would be necessary to return to the lower levels
where the content of these symbcls can be perceived. But
with such concrete interpre~ations, these symbols belong
to a relational network which cannot be axiomatized because
it cannot have direct connections with logic. (1959, p. 203)

/

Soviet research (Pyshkalo, 1968) has concentrated on the van Hiele
scheme for constructing a geometry course and on implementing the necessary
drastic modifications of the forms and methods of instruction. This was
accomplished over a period of years in a most organized and painstaking
way, and led to the introduction of the new Soviet geometry currieculum.

One fundamental question was that of what -“nuld be studied in school:
geometry or deductive systems with geometry as a: example? Evidence was
convincing that there was no basis for making tY. lopical demands of the
school course in geometry (as to a deductive system) any higher than those
of arithmetic, algebra, grammar, and other subjects.

The research concluded that the most important factor in the improve-
ment of curricula and teaching methods lies in establishing a single sequence
in the formation of mathematical concepts for the entire eight-year school,
beginning with the first grade.

Investigations indicated that the students in experimental grades 1
through 4 were able to develop a firm understanding of geometry without
deductive formalization in its exposition, and that this period could
serve as the beginning of a study of che semideductive (systematic) course.

BN On the otter hand, the Russians claim that the period of accumulating
fdcts inductively should not be extended too long. One may and must use
deduction. There must be a timely introduction of a theory around which
to unite the accumulated facts. In'theé new curriculum, elementary deduc-
tive conclusions are systematically reached by the pupils.

It wzs found that a marked economy in the further study of geometry
could ' * achieved by fand on the basis of) the study of geometric trans-
format. ,ns ~-- for example, of axial symmetry -- at an earlier time. . (This
would be the first topic for grade 5 -~ 20 hours). In aduition, the
opinion was advancud that the study of geometry in an algebraic framework
{the method of cocrdi-ates, vectors, elements of analytic geometry) could
be of great value in the mathematics course.

98

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

92

In order to activate geometric deveiopment, research was conducted
on 2ethods of independent study, primarily with the use of workbooks
based on the printed word, and carefully devised visual aids such as
collections of mndels, tables and posters, films and slides. Special
attention was given to these didactic materials from the point of view
of individualized instruction. Excellent research was done in this area
by a team headed by V.G. Boltyanskii, a well-known topologist.

The great bulk of independent work in mathematics in school has been
intended as a kind of trainiug in, or control of, the knowledge previously
acquired by the pupils. 1In view of this, the students acquire hardly any
skills in the independent study of new materials. It is well known that
the role of the book as a source of information is rapidly expanding.
Theretore, one of the principal tasks of Soviet instruction is to accustom
the pupil to reading scientific literature on his own. However, one can-
not read even the most interesting mathematics book as if it were a capti-
vating story. Because of the laconic language and the high 1evel of
abstraction of mathematical concepts, the reading should be accompanied
by drawing, construction of models, calculations, reproductions of proofs
and- conclusions.

It was verified that special films are an effective means not only
of developing geometric concepts but also of forming spatial conceptious.
Movies enable the student to-analyze more complicated shapes, to establish
the elementary ones, and to synthesize the more complicated ones from the
individual solids. A’

Experimentation has shown that in grades 1 through 4 it is inadvisable
to. isolate the study «f geometry material from the entire system working
towards the students' mathematical education. In particular, in grades
1 and 2 one should not set aside special lessons for the study of geometry.
In grades 3 and 4, the need does arise for the organization of separate
lessons, entfrely devcted to the study of geometry material.

Soviet investigations hawve also concentratec on devising specisal
methods of teaching the new geometry course. "he scudies were aimed at
finding detailed methods that would secure =2 -~urse's basic content to
be presented at the appropriate level of gecn.t::ic thought development.
Level T in grade 1, Level II in grades 2 and 2.

Listed among the chief goals in the study of geometry in the Soviet
Union were:

Forming geometric notions

Developing thought (inductive and deductive thinking, analysis and
synthesis, comparison, abstraction and generalization)

Forming spatial notions and imagination
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Securing a connection between the study cf geometry and other
branches of elementary mathematics (arithmetic, algebra)

Developing skilis |

Using the visual principle (concrete object, model, drawing)

Methodological approaches were defined for every level of geometric develop-
ment and involved taking the students' individual traits and potential into
cunsideration. '

Among the necessary modiffications in the geometry curriculum and the
principles underlying them were: the determination that the students'
familiarization with geometric objects should begin with qualitative
geometric operations (the study of shape, mutual position, relatioms, etc.)
and that quantitative uperations (measurements) should only be gradually
developed somewhat later; the conviction that geometric studies should be
continuous, allowirg no gaps or periods of inactivity -- they should be
uniform, allowing no overloading at any of the stages, and they should be
diversifiad, treating many aspects of the study of spatial relations. This
diversity should be also understood in the sense of a simultaneous familiari-
zation of the students with two- aand three-dimensional geometry. Since the
student does not master isolated facts taken separately, but, instead,
masters a system of interrelated facts; it is necessary to teach at each
stage the interrelations among these facts and to contribute to the mastery
of general principles. It is of great importance here to insure an orgamic
connection between geometric objects and basic arithmetical concepts (i.e.,
to use the one to illustrate the properties of the other).

Special research was conducted to determine criteria for selection of
geometry material for grades 1 through 3, especially from the standpoint of
attaining an appropriate level of development. The criteria may be summarized
as follows:

1. 1In grades 1 through 3 the students should be deliberately familia-
rized with most of the geometric concepts rhey will study in the eight-year
school. These studies should first be qualitative and thus not limited to
measurements. i

2. The material for grades 1 through 3 should form a complete entity
and play an independent role, insuring the students' formation of spatial
conceptions and spatial imagination.

3. One must not only be concerned with the accumulation of a stcck
of geometric concepts and skills, but also with the attainment of an
appropriate logical development, with achievement by all students of the
second level of geometric development by the end of grade 3, and with
mastery of the necessary geometric and logical terminology.

4. One must proceed from the fact that the students possess a signi-
ficant store of conceptions of the properties of material objects
(geometry as physics). Abstraction from some properties of material objects
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allows clarification of the general quality basic to-geometric concepts.

5. The point of departure of the geometry material must consist in
relying upon a stock of geometric terms, in using correct terminology, and
in working to discover their proper geometric content,

6. The curriculum should provide work in determining the shape of
objeets in the environment, based on a previously created siock of geometrie
© concepts.

7. The study of relations between figures and of relative positions
of figures should be undertaken.

8. It is essential to take into account the requirements of the
disciplines studied concurrently in grades 1 through 3 and to include
questions which apply to the study of these disciplines.

9. 'In planuing work in the fornation of measuring skiils on an applied
level, one should be concerned especially with forming conceptions of
geometric quantities, and should use these skills and concepts in forming
conceptions of number, of the properties of operations, and operations
on numbers; this work should be correluted with the study of figures.

In the experimental geometry curriculum for grades 1 through 3 the
following general plan was devised: an initial acquaintance with figures
(grades 1-2), the study of properties of the figures (grades 2-3), the
study of relations among figures (grades 2-3), measurement of geometric
magnitudes (grades 1 through 3), the use nf geometric figures and measure-
ments in the study of numbers and operations on numbers (grades 1-3), and
an introduction to concepts of set theory (grade 3). A model vocabulary
and list 'of skills for each student to master were set up for each grade.

. The study of geometry was allotted 25 hours in grade 1, 30 hours in grade
2, and 40 hours in grade 3.

In 1963 the Sectur for Mathematics Instruction ¢f thec Institute for
General and Polytechnical Education (of the USSR Academy of Pedagogical
Sciences) began experimental instruction in which a semideductive course
in arithmetic was given in the fourth grade. It wis established that at
least the beginning of a semideductive geometry counrse could also be
introduced in at least the fourth or fifth grade instead of the sixth
grade (as in the old curriculum),

The Russian studies clearly show advantages of a practical direc-
tion in instruction and the need for - - “hasis on the close relationship
between practical life at each siuage ¢ - curriculum. They have thus

envisioned a wide range of skills in scnoor work, each of which would
contribute to more rational prugress in the students' studies and could
constitute a reliable means for the pupils to teach themselves, thus
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creating a quantity of primary concepts which are indispensable for under-
standing phenomena vital tuv the development of their thought.

The Russians have concerned themselves with developing skills in using
various drawing and measuring instruments (in acdition to the straightedge),
as well as skills in modelling and constructing geometric figures and
forming notions of their accuracy.

Systems of practical tasks (laboratory work) were devised at each stage-
of instruction. This material provides for the rtudy of geometric objects
not only in mathematics lessons,. but also in other school subjects (such as
drawing, manual work and athletics) connected with the pupils' academic
and practical activity.

A system of exercises was worked out in conformity with the aims of
the curriculum. As the experimental instruction showed, a need for an
increase in the number of exercises usually arises as difficulties develop
in learning new skills (such as skill in using instruments), in forming
mathematical discourse, and in mastering special mathematical phraseology.
These difficulties are Surmountable when a sufficient number of specially-
prepared exercises are done.

While space does not permit us to even sketch the extent of the Soviet
research, or the quantity of their valuable results, we can say that in -
their experimental curriculum all pupils approaching the end of third
grade completed work corresponding to thc second level of thought develop-
ment in geometry. This made it jossible to begin studying semideductive
geometry (at Level III) in grade 4, a course of study roughly corresponding
to the first half of their traditional curriculum for grade 6. Also, enough
evidence was accumulated to assume that students in the eight-year school
are capable of reaching the same level of geometric development as has
been attained in the traditional eleven-year school.

The experiments, research and studies mentioned above have had a
decisive influence on the design and form of the new Soviet geometry
curriculum, which has been introduced gradually since 1969. The USSR
Academy of Pedagogical Sciences provided the geometry curriculum for
grades 1 through 3; while the world-famous A.N. Kolmogorov, in close
cooperation with such outstanding mathematicians as I.M. Yaglom,

V.G. Boltyanskii and others, was most actively involved in curriculum
design, text preparation, and formation of teaching methods and materials
for grades / through 10. Again, space permits us to mention only some

of the most striking features of the new curriculum:

The geometry course is given in three stages, and as a separate
subject, starting at grade 4 and continuing for the next seven years.
In all stages emphasis is placed on geometric transformations, and ia the
upper grades the course is based on vector representations. Beginning in
grade 4, geometry is taught by a specialized mathematics teacher. The
/
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new curriculum is clearly the most radical change in Russian mathematics
educaticn in nearly a century.

As a result of unsuccessful experience and convincing evidence, the
so~called axiomatic methods of initiation into geometry have been rccognized
by modern educators the world over as unpedagogical. A review of the
teaching of geometry in the Unifted States indicates at once that only a
very small number of the elementary schools offer any organized studies
in visual geometry, and where they are done, they begin with measurements
and other concepts which correspond to Levels II and IYI of thought develop-
ment in geometry. Since Level I is passed over, the material that is
taught even in these schools does not promote any deeper understanding and
is soon completely forgotten. Then, in the 10th grade, 15 and 16 year old
youngsters are confronted with geometry for almost the first time in their
lives. The whole unknown and complex world of plane and space is given to
them in a passive axiomatic or pseudo~axiomatic treatment. The majority
of our high school students are at the first level of development in
geometry, while the course they take demands the fourth level of thought.

It is no wonder that high school graduates have hardly any knowledge of
geometry, and that this irreparable déficiency haunts them continually
later on.

o
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Kecent Research on the Child's Conceptian of Space and
Geometry in Geneva: Research Work on Spatial Concepts
at the International Center for Genetic Episte@ology*
Jacques Montangero
University of Geneva, Faculté de Psychologie

ot les Sciences de L'Education

About a decada zr:er the original work of Plaget and Inhelder on
the development of sr.::ial notions was published (Piaget & Inhelder,
1948; Piaget, Inhelder, » Szeminska, 1948), Jean Piaget once again took
up the study of space within the research carried out at the International
Centre for Genetic Epistemology, hereafter called the Centre. The
research then carried out had three interesting aspects. First, it
naturally threw light on epistemological problems, since indeed the
research was aimed at studying the nature of knowledge in space and
covered in particular the following problems: Where does such knowledge
take root? What is the role of mental imagery or physical experience
in the development of space? What 1s the relationship between geometrical
knowledge and other spheres'of cognitive activity? Second, whereas
epistemologists were concerned with the concepts developing in children
and their relationship with the formal science of geometry, psychologists
on the other hand can find in this research work varied and interesting
information on the psychological processes involved when a child endeavors
to surmount cognitive difficulties of a geometric nature. Last, to
the extent that education should be based on a deep knowledge of psycho-
logical processes, the research work of the Centre can contribute
subctantially to improviag teaching of spatial concepts.

The particularities of the problems studied wil?-be summarized at a
later juncture in this paper. But since they are based. on a number of
Piagetian theoretical concepts, it is deemed useful to refer briefly to
them now. '

*The author wishes to thank J. Larry Martin for his critiral
reading of the manuscript.
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First, a digtinction must be drawn between the figurative and
operative aspects of knowledge. The function of the figurative aspect is
to furnish an approximate imitation or copy of reality. Under this heading
fall perceptionL imitation, and mental imagery. The latter, which Piaget
considers to be an internalized imitation, has thus an active component,

. but it is basiﬁally suited to symbolize static aspects of reality. The

func=ion of the operative aspect of knowledge is to transform reality, and
this transformational character is specific of intelligence. The elementary
operative forms are concrete actions, and the advanced forms are mental
operations which develop into systems that can be analyzed in terms of the
"grouping" 6r group-like structures. :

Two 4nds of operations appear in children's thinking after the age of
seven. First, logico-mathematical operirions deal with discrete, elements
and cons}st, for instance, in gathering el::ients into classes and including
subclasges into a total class, in relating the differences between elements,
in add‘@g or subtracting the elements, ¢tc. Sucond, spatial operations deal
with continuous objects (spatial figures or space considered as a whole)
that /they partition and then reconstruct. The two kinds of operations
are ;analogous but not identical. For example, to the logico-mathematical
operations involved in class inclusion corfespond operations of partition
which divide the whsle into parts and establish proximity relationships
be aen parts. To the logico-mathematical seriation of relations correspond -
operations of spatial ordering, i.e., direct order, inverse order and /

’
’
i

; /

‘Another distinction, which permeates all Piaget's work, must be made /
between the logico-mathematical and physical poles of knowledge. At the o6ne
pole, the logico-mathematical structures are drawn by réflexive abstvaction
from the subject's actions and allow for inference and ultimately deduction.
They constitute structures which do not exist in the objects. For example,
the number or the class of objects.in a collection is introduced by, the
subject who counts or classifies them, but they are:/not attributes of the
obiects. At the opposite pole, the causal structu;és, or physical knowledge,
are in part drawn from empirical observations in the child's endeavor to
explain reality. These stiructures give account of structures of the outer
world, such as spatial properties of objects or relations between’'physical
variables (e.g., relation uvf speed, temporal order of starts and stops and
distance covered). It must be stressed that physical knowledge does not
stem from mere empirical observations, but a;éo involves reflexive abstraction.
Reflexive abstraction consists in abstracting something out of /the organization
of the subject's own actions (e.g., the rulé of commutativity) and in '
ivearranging the elements or rules abstra;;éd on a nes level (e.g., the level
o representation opposed to the level of actions). The construct of
raflexive abstraction plays two roles 14 Piaget's theory. First, it implies,
ontrary to empiricism, that something new can be learned which is not
airectly abstracted from outer realify, i.e., from the properties of objects,
the laws to which objects are submip{ed, the ideas ar models of actions of
other individuals. Second, the construct of reflexive abstraction contri-
buces to explanations of the continuity of development, from the biological
organization of the individual ‘up to the higher forms of intelligence. In
effect, at each level of organization, something is kept from the level
immediately inferior and 1s organized into new structures. Voluntary

L
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actions, for instance, are self-regulated like the act{vicy of the nervous
system, but they are progressively combined into more and'more complex
structures. At a level superior to the one of concrete accions, intelli-
gence consists in combination of actions, but these actions are internalized
and progressively orgeuized into structures which are more complex and
better "equilibrated" than the structures of actions. ’ The continuity of
intellectual development implies that complex scientific concepts such as
those of geometry partlyderive from the elementary spatial concepts of
children. ° -

Four specific characteristics of spatial knowledge should be mentioned
at this stage. First 1s the fart that mental imagery is particularly
adapted to spatial representation. Second, space is both physicat and
logico-mathematical in nature. Indeed, there exists a form of object-
space which can be known through empirical observacion. For example,
one can superimpose two geometrical figures,to ascertain whether they
are equal in area. However, geometrical concepts finally go beyond
empirical experience and fall within deductive activity. Spatial
coordinates (horizontality, etc.) are a good example of ‘the logico-
mathematical or geometrical nature of spatial concepts. The coordinates
are not directly perceived properties of objects.- An object is horizontal
or vertical only if a relationship 1s established between this object
and other objects, including the subject's own body. Coordinates are
applied by individuals to spatial reality in order to organize it, i.e.,
to localize objects in relaticn with one another. Though essentially
logico-mathematical and not directly perceived, spatial coordinates are
also, to a certain extent, physical in nature, like most spatial concepts,
since they correcpond to sore properties of objects, such as the verticality
of a standing body or horizontality of the water level in a tllted
container.

A third characteristic of spatial knowledge ‘les in zhe fact that
two distinct modalities can be used for solving spa:iwi problems. First,
spatial intuition which, although based on mental imagery, in fact goes
beyond this latter in that it results in anticipation of transformations
and the solving of simple problems. For example, spatial intuitlon can
be more or less elementary, as it is in the 7-year-olds who can apprehend
correctly proximity relations. There are also more evolved forms of
spatial intuition, e.g., intuition of ancient geometricians who discovered
theorems without being able to demonstrate their foundations. The second
modality is deductive geometry, i.e., a chain reasoning allowing for
demonstrations and deductive discoveries. In order to conclude this 1list
of the speciflc characteristics of spatial knowledge, one further
distinction should be made between two types of relationships introduced
by the subjects: On the one hand an inirafigural analysis comparing the
various elements of a single figure, without any external spatial
reference; on the other hand, an interfigural analysis which 1is develop—
mentally much later (approximarely 9 to 10 years) and which results in
the construction of spatial coordinates.
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Theve were three major cpistemelogical issucs raised by this research
at the Centre. The first dep¥s with the role of mental imagery in the
geometrical sphere. Imagory may be fundamental due to the fact that
mental images are spa;&él in nature.  Can it be postulated that the mental
image is the pringiﬁﬁl generator of geometrical intuition? The second
issue concerns .tlie relationship between physical space and logico-
mathemat@gai’%pace. Can it be said that ore engrnders the other (i.e.,
that lofico-mathematical spatial concepts are drawn from physico-spatial
concepts or vice-versa)? Or, on the contrary, should it be surmised |
that these two forms of spatial knowledge either develop in interaction
or autonomously, merely corresponding structurally? Another imporstant’
issie raises the/ question of the relationship between spatial operatious
on the one hand/(used in si>lving geometrical problems) and, on the other
hand, the logical operations which are involved in numoer and class
reasoning, etc. Arc there specific spatial operations or does geometrical
reasoning merely constitute an application of logico-mathematical operations
to the spatial reality? 1In fact, when the rescarch on space began at
the Centre, this questicn had already been answered; indeed, the data
reported in The Child's Conceprion of Geometry (1960) demonstrated that
measurement, for instance, does not represent a direct application of
number to space.

e

Solutions to the probiems raised above, as well as some comments that
are somewhat less epistemological in nature, will be summarized at. the
end of this paper. But first and foremost, four of, what constitute probably
the ﬁost'inccrusting experiments in the Centre space rescarch will be
disdussed. Brief reference .is made also to a few other experiments in the
fo}ﬁowing two remarks and in the concluding remarks.

3

/ Two Remarks on the Origin of Spatial Knowledge

At the Centre symposium on space, a discussion took place on the-
problem of what were the basic elements upori which geometricai thought ig
founded. Greniewski, : Pol)ish logician, distinguished two trends in the
history of geometry. ne trend was to consider poihts as the basic
components and lines and planes as classes of points. The second tendency
was Lo consider hodies &= the basic romponents and areas, lines and
points as abstractious of these bodies. It is the second tendency which
seems to be in conform.ty with data drawn from developmental psychology.
An experiment reported in the Child's Concegtion of Space (Piagut & Inhelder,
"1956, chap. 5) shows that to co cciv;/polnts as the sﬁﬁglest elements
of geometrical figures requires e Feriation of figures and ine parti-
tioning of lines. .As of 7 years, the child begins to represent points
as the smallest elements of figures, but these points are conceived of
as having an area and beirg in finite number and related to the shape of
the whole figure. s : )

On the other hand, some results of the research work on space carried
out by Piaget's Centre indicate that bodies or physical abjects secem to
be the basic elements of the knowledge of space, from a psychological
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point of view. In effect, the cognitive activity of the 4- to 5-year-
vld in space is characterized by a lack of differentiation between the
geometrical and physical aspects of space. This was striking in research
done by Vurpillot (1964) on the child's materialization of geometrical
figures. She based her experiment on the well-known test of discovering
simple figures (i.e., a square or a triangle in a complex figure such as
shown in Figure 1). The children's drawings showed that, until 5 years,

Fipure L. Simple figures ontained in complex figures.

all figures are conceived of as material objects: Straight lines are
totalities within which no segmentation can be made. Moreover, one line
cannot belong simultaneously to two figures. 1In summary, each figure is
treated as a material object, rather as if it'were a sheet of metal,
constituted by both lines and enclosed areas. The intersection of lines
is. beyond the child's comprehension since he,interprets it as the super-
imposition of two material objects. For some problems, such a tendency
can even be found in the 8-year-old.

TWO EXPERIMENTS BY P. GRECO ON THE OPERATIONAL
NATURE OF GEOMETRICAL REPRESENTATION

The progressive achievement of a complex imtellectual organization
allowing for the anticipation of spatial transformations has been studied
by P. Greco in two research studies that will be reported now.

pevelopmental Study of a System of Mental Imageries
of a Spatial Group of Transformations (Greco, 1964a)

This experiment studied how representation of displacements are
organized over the course of cognitive development until they finally
form a logical system (the group-like Kleinian structures). The task
involved mental imagery and not operational deduction. The . spatial _
transformat ions that the child has to represent involve everyday activities,
e.g., turcin, pages, placing a drawing upright, opening a lid, etc.
Three transformations are involved: R, a 180° rotation; H, reflection in
a horizontal axis; and, V, reflection in a vertical axis.
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Method
The subject: were divided into 5 age groups with 20 children in
each: 6-7 years. & vears, 8-9 years, 9-10 years, and 11-13 years.
The material. .. e cardbuard letters representing the letter p, a

grey cardbnard rectangle, and a sheet of paper where the subject drew

his replies. The same experiment was carried out with different materials
(a star, a box whose sides were differeat colours). But the conclusiens
that can be drawn from the results are analogous, and therefore we shall
merely deal with the material "cardboard letters.” ’ '

The experi- nt {nvolved 2 types of problems:

1. Anticipation of the vesult of transformations. A letter is
presented to the child, and both the experimenter and the child describe
the letter which is then placed in frontof the subject. Then the trans—
formation (either R or H or V) is both described by gestures and by
actually carrying out the transformation with the cardboard rectangle.
The subject is then asked to draw (or as of 7-8 vears to describe ver-
bally) the letter as it wuuid be after the transformasisn. Tho subject
is asked to anticipate the result of V, H, R, and of tne combination of
B and V, each time using the letters p, b, d, q.

. 2. Reccnstitution of transformations. Two letters, for example
p and d, stuck on a piece of paper are presented to the child who has to
discover which sort of transformation has been carried out in order to
obtain the second letter from the first. In order to give a reply, the
child is invited to "turn" or "rotate" a letter similar to the letter
before the transformation has taken place. For the initial figure p,
the child has to reconstitute the transformations which have been given
in order b, d, q. A similar problem is used with the initial figure
d, in order to result in b, q, p-. -

Swmmary of “Results and Discussion

In general, the errors, which consist in substituting one trans-
formation for another, can be classified into the following three
categories:

1. The child confuses the axes around which the displacements-were
made (V instead of H, or H instead of V).

2. The transformation comprises only one of the inversions (left-
right, V, or top-bottom, H) instead of both of them, that is, the
transformation R.

3. The inverse of error 2 occurs: A unidimensional inversion is
generalized to both dimensions. It sHould be noted moreover that some-
times the subjects leave the figure unchanged.

\ 11
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The proportion of successes increases regularly with age. As far
as anticipations are concerned, success frequencies are the following:
for the V transformations, 60% at 6-7 vears; for the other trans.ormations,
40% at 7-8 years; for single transformations, 75% as of 9-10 years; and
for the double transformation, 65% as of 11-13 years.
As far as reconstitution of the transformations is concerned, 80%
of success level can be ohserved at 6-7 years for the transformation V.
As regards the other trausformations, success levels are of 20 and 30%
at 7-8 years and stil) only 40% at 9-10 years. Around 11-13 years,
the frequency is over 60%.

Anticipation or reconstitrution of the trencformation V can be seen
to be earlier than the other rransformations. When a change in the
material is made (box cr star), the results are also different. However,

it is difficult to decide which material is easier.

Greco analyzed the behaviour observed into six stages during which
the representations of displacements are gradually coordinated.

Stage . (6-7 vears). Type 1 errors are rather frequent. The child
is ‘awarc that "it changes nides'" without being able to discern whether
it is from left rto right or from top to bottom. '

Stage 11 (7-8 years). On the one hand a quantitative progress is
observed and on the other a new type of error appears: As far as antici-
paticns are concerned, errors ol type 2 and 3 predominate. This denotes a
higher level of organization of figural intuition, but when a child
analyzes figures, he tends to understand what changes and not what remains
invariant.

Stage II1 (8-9 years). At this stage significant progress s observed
simultaneously with striking regressions. The success levels with the
different items are much more homogeneous, and children are able to
describe the trajectory of a part of the transformed figure (i.e., the
loop of the p). These two factors indicate that transformations are
conceived of as changes of position instead of specific physical actions
such as turning around or turning over as was the case with younger
children. However, the interfigural point to point relation introduced
by the child sometimes renders the problem more complicated and results
in a greater number cf errors for certain situations as compared to
younger subjects.

Stage IV (9-13 vears). Success rates faor all items indicate the
existence of a system in which a simultaneous representation of the
three transformations is made. All the compositions between the
various transformations are possible (in Stage IT, only H composed with
V was sometimes understood). Greco then undertakes a formalized

. 11
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description of the transformations, and he shows that they involve a
group~like structure of four transformations (R, V, H, and the identity

. operation).

In conclusion, this experiment does not make it possible to trace
a frontier between the role of mental imagery and the part played by mental
operations during the developmental steps that lead to the comprehension
of spatial transformations. It is also impossible to dissociate in all
Cases what is due to the material, to the transformation, and to the
developmental level of the subject, though it is evident that the three
factors play a role. Therefore, in some respects, the results of this
experiment are not very clear. However, Greco's experiment did show
that the child gradually becomes systematic or in other terms that his
analysis of figures becomes more and more organized during development.
This analysis can be looked upon as a gradual coordination of represented
transformations. When completely developed, the child’s organization
of spatial representations isg isomorphic to the logical operations of the
formal stage, since the transformations V, H, and I (where I is the
identity transformatioa that causes no clange of position to the figure)
form a group of four transformations some oi whose properties are
the followinw:

1. Involution. V x V = I; HxH=1; R xR=1,

2. Commutativity. V x H = H x Vi VxR=RxV:HxR=RxH.

3. Composition. V xH=R; VxR=H;H%xR=V; VxHxR=I
There is no indication that the formal logicii operations, which also
form a group of 4 transformations, are merely applied to a spatial

context (e.g., static images of various figures). Several facts tend
to prove the contrary. First, .the development is very gradual. More-

over,- the subject’s behaviour is different according to the type of

figure involved. Last, the gradual coordination of transformation runs
Parallel to the gradual passage from intrafigural anaiysis to interfigural
analysis.

The Gradual Orzanization of Spatial Representations
of a Complex Figure: The Moebius Ring (Greco, 1964b)

This research is aimed at problems similar to the preceding one,
i.e., studying the nature of representations (images) within a spatial
context and their gradual organization. Greco endeavored to discover
whether figural intuition is sufficient to organize spatial representations,
Or whether these latter involve coordinations analogous to those constructed
by logical -mathematical operations. The subject is asked to represent
the order of a series of colours on a Moebius ring (which is made by
twisting a strip of paper and. then joining its ends), this representation
being asked to the subject after the ring is cut and laid flat in front
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of him. The Moebius ring transforms a ribbon which has two sides into
a surface with 3 single side.

Method

The subjects were distributed int.o eight age groups between 6-7
years to 13-14 years. The experiment was divided into two parts.

Part one. The subject is presented with a Moebius ring with one
single twist, the surface of which is di.ided into four equal areas
but different in colour, 1.e., A (blue), B (green), C (yellow), and
D (red). The child describes the ring, manipulates it, and names the
colours. Then the ring is placed in front of t'e child who can see
colours Con his left and B on his right. The child is told’that the
ring will be cut along the line which divides C and B and then unfolded
and laid flat on the table. This is demonstrated to the child with
another ring whichis not colo.red. Then the child is asked to draw the
srder of the colours as he antiipates they will be on a strip of paper.

Part two. The procedure is the same as the first part except for
two variations: (a) the questicns are asked for a two-colour ring and
then again for four-colour ring-; (b) afrer each reply (the child actually
makes a drawing), the iing is cut and the child can verify his answer.

/ '/’5;3\9 AETe

C

Figure 2. ColouredMoebius ring. uncut and cut.

Summary of Results and Discussion

In the description of the results, each colour wiil be represented
by a letter. The alphabetical order corresponds to the order of the
colours on the unfolded ring. The sign / makes a distinction between the
front and the reverse side of the drawing. It should be recalled that
the subject sees in front of himcolours C and B. The correct solution
is AB/CD. All solutions correct from a topological point of view are
considered as successful (CD/AB, BA/DC, DC/BA).

113 «
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The success rate curve shows an increase as of seven years and a
temporary regression at 10-11 ycars. Around 9-10 years there is a 50%
success rate for the first ring and 70% for the following rings (second
part of the experiment}. Between 11-13 years.the success rate increases
to 80% for the firsr ring and at least 90% for the: following ones.

As far as progress in the course of the experiment is concerned,
the presentation of the two-colour ring and the empirical verification
on the cut' ring is of no help up to 8 years; as of 8-9 years. however,
60% of the subjects gave better answers after the verification and
the presentation of the two colour ring item.

Greco classifies the responses into 5 types of increasing complexity
and correctness, some of which are very dispersed in the various age
groups.

Iype 0. (6-7 years) Purely figural copy. In order to decide on
where to place colours, the subject looks at the ring and follows the
perceptive order, without making a distinction between the apparently
irternal and external sides. Examples are, CABDB (since one and a same
¢ lour can oceur several times in the young children's drawings), or
Cu4lrA (which is a literal translation of the order observed v{;ually).

«

Type I. (7-11 years, still 50% at 10 years) Proximity and succession.
The child takes into account one of the spatial properties of the .viect,
i.e., succession, and studies that aspect systematically on the ving.
Ixamples are: ABCD or CBAD. '

Iype II. (Above all at 7-8 years of age, but not Gery frequent)
Distinction between side-up and side-down. The .colours are distributed

on Loth sides of the strip. This'means that a distinction is made
between b.th sides of the unfnlded ribbon, but still without coordination
between the regions of the ring and those of the ribbon. Examples are:
BC/AD or AC/DB. .

Iype III. (As of 7 years, but involved in many age groups) The
beginning of coordination. The subject takes into connsideration the
place where the ring is cut and the contiguity of colours, but not the
side-up/side-down relationship. An example is AB/DC.

Type IV. (Majoritv of subjects as of 11 years) Coordinatricn of
relations. Solutisns are correct and obtained through a trip. .. )
coordiration of th: dichutomy (colours on two difrferent sides, resulting
from the transfommations of the proximity relations and the side-up/side-down
relation. These correct solutions usually involve a systematic exploration
>f the ring, e.g., taking each region between thumt and index finger.
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Greco was surprised at how difficult this experiment turned out to
be, 1.e., it is not solved around 9 years, although at that age many spatial
nctions are acquired. At first sight, the correct solutions did not seem
tc require very complex operations. Indeed, the reasoning inveolved concern:
proaimity and separation relations, which are recognized very early by
children. Furthermore, the solution seemed to ask for a mere multipli-
cation of relations (e.g., A is simultaneously next to B and on the back

of C}. Finally, the task seemed to involve figural rather then geome-
trical procedures.

However, the difficulty of the task is not due, according to Greco,
te the unvsual figural properties involved, but rather to the need to
build up a system which would coordinate all the relations. Certain’
relations are not easily noticed (for instance that A and C are actually
on. the same portion of the ribbon but on different sides of it), and,
above all, tnere are no interrelations between these and other ones which
are apparently also simple (for example, that A and B are contiguous).
The hierarchy of solutions proposed by the subjects bear witness to the
fact that there is a gradual coordination of spatial relations whose
composition must be operational in nature before a correct solution can
be reached.

TWO EXPERIMENTS BY VINH BANG ON THE RELATIONS
'~ BETWEEN PERIMETER AND AREA

By proposihg problems dealing with the relationship between the
conservation of perimeters and the conservation of enclosed area, Bang
endeavored to study the relationship between geometrical intuition (i.e.,
the early inferences on a geometrical content, based on mental images)

-and the operational deductive activity which, at some stage, goes beyond
the observable' spatial properties. These experiments were almed at
understanding the role of mental imagery in intuitive solutions to
geometric problems. Bang ¢ndeavored to discover whether geomet}ical
-intuition depends merely on mental Imagery and whether it stimulates
progress in geometrical reasoning or, on the contrary, hinders such
‘progress. Problems of representing the transformation of a geometrical
figure with a constant perimeter give rise to conflicts between spatial
intuition and operational deductive activity, as Bangputs 1it. (What he
means 1s aconflict between empirical evidence and partially or totally
logical deduction.) Furthermore, such problemé shed 1light on the nature
of the geometrical operations which are necessary for understanding the
transformation of any given space. Such operations are the ones which
allow the child to understand the following: (a) the continuity of the
transformation, which calls for latermediate states between the initial
figure (e.g., a square) and the limit of the transformation (e.g., the
disappearance of the area when both longer sides of the rectangle touch
each other); (b) seriation of states of the vransformarion according
to the relations smaller than or larger tham; (c) the limit of the
transformation, e.g., the area of the initial square gradually becomes

1io

O

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

110

reduced to zero if the perimeter remains unchanged and if two parallel
sides of the.initial square are lengthened; aud (d) the relationship between
the conservation of certain elements (e.g., the perimeter) and the variation
of other elements (the area) across the transformations. Bang studied
these spatial (or geometrical) oparations and the problem of the rela-

tionship between geometrical intuition and operational deduction in two
experiments.

Representation of the Transformation of a Geometric
Figure Whose Perimeter Remains Constant (Bang, 1965a) .

This experiment was aimed at studying how the child represents
successive transformations of a fipure F into another figure F' which
is obtained gradually by modifying the shape of the perimeter of F, the
length of which remains unchanged. For instance, a square, which is
shaped with a 40 cm long thread placed around four pins, is gradually
transformed into rectangles which are carried out unti! the area is nil,
i.e., when the longer sides of the rectangle touch sae another.

The subject is asked to anticipate, to observe, and to explain on one
hand the displacements of certain points of the figure across the trans-
formations, and on the other hand the size of the enclosed area. The
problem is to see how the child manages to disassociate the properties
of area and perimeter. Although the two are physically linked, each
has distinct geometrical properties, the perimeter being conserved
during transformations whereas the area varies. )

Method

The population covered children between 8 and 14 years. The inter-
view with the child is of an exploratory nature, and the procedure
varies somewhat according to the situation presented. Generally speaking,
the child is shown in which direction the variation will take place by
saying that "one is going to move these pins which are holding the peri-
meter towards thisside," and the subject is asked either to draw the
position of the pins (i.e., the angles), the form of the transformed
figure, or both of these. The child must also state whether the area
+emains unchanged or not. Then he is shown an initial state of the
transformation, after which the questions deal with the ensuing trans-
formations, up to the limit state, whick has area zéro and kack to the
initial figure. Bang used eight differeﬂ; situations, but did not

present all of them to the same subjects. \The situations were the
following: \\\

N
Situation I. The transformation is as f:ITEEB: The thread around
one pin is pulled, in order to study the compensation of complementary
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length and the conservation of .the total length.

\
\
o]
Figure 3. Situation I.

Situation Il. Here again the problem does not yet deal with area.
A thread forming an angle is held in place by three pins. The child must
anticipate the successive positions of the pin at the summit angle if it
is displaced on one side and if the thread remains tight and attached
to the base AB (see Figure 4). Apart from drawing the positions (which
shows whether he represents correctly the displacement accordirng to an
elliptical curve), the child must decide whether the length of the
thread is conserved.

Figure 4. Situation IIL.

Situatior IIf. In this situation, there is an elliptical displacement
of the summit of a triangle (sec Figure 5). The initial figure iz the same as
in Situation 11, but here the triangle itself is taken into consideration
and questions on the conservation of the area after transformations are asked
to the child. Cardboard triangles which represent certain intermediate
states of the transformation are at the subject's disposal. The situation
wakes it possible to see whether the child is aware of the fact that the
conservation of the perimeter does not imply the conservation of areas
and that, since the triangle keeps the same base line, the height is
graudally decreasing until the nil limit.
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Situation IV. In this situation, a diamond is flattened. The initial
figure is a diamond made out of brass rods held together by rings; it is
gradually flattened (see Figure 6). Each of the sides remains unchanged,
and the situation is meant to discover whether erroneous conservations of
area are provoked, either because the perimeter remains unchanged, or
because the child thinks that there is a compensation of the dimensions
of the diagonal lines.

Figure 6. Situation IV.

Situation V. The square is transformed by displacement into a
parallelogram. The initial figure is a brass wire square, one side of
which cannot be moved; the square is transformed into a parallelogram which
is gradually flattened (see Figure 7). The child can check rather easily
that the area is decreasing (for example, the triangle OB'C is smaller
than the part which is not covered by the parallelogram in the area of the
square).

Figure 7. Situation V.
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Situation VI. The square is drawn out into a rectangle (see Figure 8).
The initial figure is formed of a brass chain, and the subject has available
squares of four cm in order to measure the areas. Both the areas and the

perimeters (number of rings in the chain) can therefore be decomposed into
separate units.

NS Eoocee FUDINS

Figure 8. Sl tuation VI. !

Situation VII. A square pade of a thread is drawn out into a reccﬁngle
until the limit area is nil, as in the previous situation (see Figure 9).

Here the comparison of the area is carricvd out by cutting up the areas:
in cardboard.

Figure 9. Situation VII.
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Situation VIII. Constant areas are constructed with a varying
perimeter (see Figure 10). The perimeter is constituted by a string with
a sliding knot whick makes it possible to vary the available length. The
problem is to obtain rectangles which have the same arca as the initial
square. After the subject has made anticipations, he is shown a series of
rectangles of equal area (100 «m?) and decreasing height. This situation
makes it possible to see whether the understanding of the relations
between perimeter and areas in Situation VII allows a correct solution
when the terms are reversed (constant area, varying perimeter). Further—
more, the subject should be able to discover that [inally, at the limit
state of the transformation, the perimeter is of infinite length.

Figure 10. Situation VIII.

Summary of Results and Discussion

The behaviour patterns observed can be classified in three major
. stages.

Stage T A (5-6 years). Ceometrical figures are conceived of as a
static physical objects, and all transformations are represented as
displacements. -

Stage T B (7-8 years). Problem I is successfully solved. As far
as the otherones are concerned, the transformation implies for the
child a variation of all the dimensions of the figure (see Figure 11),
in general all of them becoming smaller. The child cannot
accept the limit of the transformation (i.e., the area does not
disappear, but "it remai -5 hidden under the string'”).
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Figure 11. Stage I B response to change in one dimension--
changes all dimensions.

Stage IT A (8-10 years). (The notions of conservation of length
and area are already acquired.) Tne subject has a tendency to think
that the area remains constant, since the perimeter does not vary.
Sometimes areas are classified into two types: (a) those which are
equal to the area of the initial figure, "because the string is the same';
and (b) the areas of states very close to the limit of the transformation.
The latter are conceived of as smaller than the initial area "because
the string has been drawn (or flattened) too much."

Moreover only a partial series of the states of the transformation
is const.tuted, i.e., a few states at the beginning or at the end f the
transformation are linked together. As regards Situation II, the subjects-
anticipate the displacements of the summit parallel 2o the base, and
then they discover that the_thread has become too long and therefore
they decrease one of the sides (see Figure 12).

Figure 12. Progressive variations of length of one side to
discover maximun area.

.

S;sge II1 B (10-11 years). 1In the drawings, the child respects the
invariance of the length of the sides of the figures which are being
transformed (Situation IV and V) as well as the compensation of the
dimensions of the fipure, i.e., the height and the length. In general,
areas are conceived of as invariant because on the one hand the length
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of the perimeter has w.: *.:en modified; and on the other hand the child
deems that the dimensi. - compensate each other. 1Ia fact, the compensation
is very qualitative in nature and involves\an addition and a subtraction:
"I1f we take away w~hat is Ih excess and add it there where it is missing,
we will have the same area.' None of the aspects aimed at facilitating
the solutions (change in height only, for the triangle, or empirical
verification of the size of the area, or the use of units) helps the
child in finding a <correct solution. When the child observes empirically
the disappearance of the area at the limit of the transformation, this
usually gives him the idea of a progressive decrease of areas, but only
as concerns states near the nil state. In other words, this is merely

a parrial seriation, the remaining transformatiens still do not affect
the area. )

Stage II1I (as of 11-12 vears). Subjects are able to compleately
seriate the transformed figures, because they can represent the continuity
of the transformation and anticipate the nil limit. As far as Situation
VIII is concerned (when the area remains constanc while the perimeter
increases), children are still encountering difficulties in representing
the limit of the transformation, i.e., the perimeter can be infinitely
long. ) .

In conclusion, the development of behavioral patterns with age
reflects the different levels of logical deduction. First, the role of
the notion of conservation can be witaessed. The 5-6 year old, lacking
this notion, is not atle to imagine the transformation, that is, the
modification of the initial figure with a possibility of returning to

2, At 6-7 years, the variation of one parameter leads to the
idea of nonconservation, except iu the case of opposite variations
(Situation I). As of 8 years, .since the notion of conservation has
just been acquired, this is generalized and implies that when the peri-
meter remains constant, the area will be too. It is only towards '1-12
years rhat the compensation through multiplication of dimensions enables
the child to quantify areas.

As far as the nil limit of the transformation is concerned, repre-
sentation of this is only possible as of 8 years, whereas at 10.years,
the children can conceive «f it as the final state =f a limited series
of a continuous transformatien. Tiwards 12 yeari—the limit figure
becomes a logical nece<sity enahling the child to deduce that perimeter
Pand area are disassociated paramet.-rs; if with a perimeter P one can
obtain a limit figure with a nil area, then a constant perimeter does
not imply a constant area. The limited role of empirical evidence 1is
striking in this experiment. Indeed, such evidence is insufficient
to suggest the idea of a seriation of the transfnrmational states. ' :
The 9-10 year old still faels that there are two categories of transformed
figures, those with an unghanged area and those with a decreasing area.
The notion *that a secviation is involved runs together with the notion
of the continuity of the transformation, this latter being deduced from
rational thought and not abstracted from empirical observation.
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Constructlon of the Largest Area Possible With
a Constant Perimeter (Bang, 1965b)

A geometric figure of n sides (n = 3, 4, etc.) with a constant
perimeter was to be constructed which enclosed the largest area possible.
First, the child must find what are the conditions which enable him to
obtain the largest area for one type of figure. (These conditions are:
convex character of the figure, equality of sides, and equallty of angles.)
Then the subject must compare the maximal areas of different types of
figures and this comparison should lead to the inference that the greater
the number of sides, the greater the resulting area. The maximal area
is thus that of a regular polygon of which the number of sides tends
towards infinity. Consequently, the area of a circle is the limit area.
A prerequisite to such reasoning i§ to understand that conservation of
‘a per¥meter does not imply conservation of the enclosed area.

Method v

The population is composed of subjects between 7 and 14 years. ‘The
exploratory interview method has been used with most of them, with the
exception of a small number of subjects interviewed with a standardized
method.

The material is composed of spaghetti 20 cm long. This constitutes
the perimeter which, broken into pieces, is used to construct the shapes.
A rigid material is used in order tco provoke awareness of the variability
of the angles and the relative length of the sides. The subjects were
2180 given paper on which to draw the shapes constructed with the
spaghetti. The shapes can then be cut out and their areas compared.

The subjects were given the following problems, in order:

1. Construct an area with a minimum number of sides.
g

2. Construct a triangle with maximum area (having verified that

the area can vary). The comparison i3 made by cutting out the figure

deemed the smallest and covering the area of the figure deemed the

largest with the pieces obtained.

3.  Construct a four~sided figure (the length of the perimeter
remaining constant) and find the conditions for obtaining maximal
and minimal areas.

4, Compare the maximum uf three-sided and four-sided figures.

~/ 5. Same pfoblem as 3 but with a six-sided figure.

6. Compare the sizes of maximum areas of figures with various

number of sides and anticipate the maximum area of five- and seven-sided
figures. N
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7. Discover which geometric, figure with the ‘given perimeter results
in the largest area possible. '

Summary of Results and Discussion

Generally speaking this experiment sheds light on the contradictions
which arise between intuitive constructions (seeking Gestalts) and.
deductive reasoning or at least actions guided by hypotheses (e.g.,
the relationship between conservation of perimeter and conservation of
area or between length of sides and size of areas). Up to 9-10 years,
the child most of the time relies on his intuition whereas around 10
years and often later a conflict develops between the intuition based
on mental imagery and deductive reasoning. At around 13-14 years, subjects
no longer rely on intuitive images, because of the coherence of their
reasoning as they systematically relate the various parameters. But
even at this age, the child's first ~~lutions are intuitive in nature
when he endeavors to construct and disccver maximum areas. However,
after comparing various maximum areus, the child is able to .deduce that
with a constant perimeter the greater the number of sides of the polygons,
the greater the area.

Maximiziug area with a constant .number of sides. Almost all the
subjects first think that the area of figures of the same type (e.g.,
squares) and same perimeter is conserved. Discovery of its variation
develops with age. At 7-8 years, variation of:areas emerges due to the
lack of the notion of conservation. Each new construction, even when
the sides of the triangle are merely permuted, implies for the child
a variation in the area "because we have cut the spaghetti differently”
or "berause there are more pieces.”" As of 8 years, conservation of the
perimeter implies conservation of the area. Between 8 and 10 years the
child does nat vary the length of the sides and almost always constructs
an equilateval triangle. Furnished with empirical evidence, he does
admit that there may be exceptions to his rule: constant perimeter
implies comstant nrea. Getween 10 and 12 years subjects discover alone
but empiricz'ly that triangles with the same perimeter can have different
areas. When asked to construct a triangle with the largest area possible,-
the child's underlying hypothesis is a larger areaimplies longer sides.
Thus, he breaks the spaghetti into one or two long segments, which in
fact results in a smaller area. At this point, 'the child is very perplexed
and does not know how to correct his errors. Without such a hypothesis
and using an empirical method, such subjects sometimes are successful
in discovering maximum area. It should be stated that children's
spontaneous tendency is to break the perimeter into equal segments.

Around 13-14 years, the maximum surface is discovered by systematic
variation of the length of the sides. The initial reactions are similar
to those of the 8-12 year ald group: erroneous conservation of areas
and the idea that the maximum area will be obtained by using a long side.
However, the contradictory results lead the subject to use a systematic
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method; he progressively varies the length of one side.

A M

Figure 13. Progressive variation of length of one side to
"increase" area.

The first condition for obtaining a maximum area, i.e., equal length
of sides is, as we have already pointed out, sometimes discovered
intuitively, but as of 10 years some subjects can formulate this
discovery conceptually. It is only around 12-13 years that children .
discover the second condition, i.e., that the angles must be equal, or
in the child's terms th@t the segments must be placed "regularly."

Maximizing area with the number of sides varying. At 7-8 years the
child relies on perceptive comparisons between two figures. A figure
is deemed larger because the subject "sees" it so. The result of this
kind of comparison is often wrong. As of 9 years, the subject's comparisons
cqver -all the series of the polygons, -but the child is unable to deduce
the law that the area increases with the number of sides. There are
sometimes contradictions between perceptual estimations and inferential
judgments such as the triangle is larger than the square because i:3
sides are longer. Perceptually, the square if often deemed to have a
larger area. The relation between area and number of sides is discovered
as of 12-13 years, either by expexjmenting on one figure or by drawing
conclusions from the differences observed between figures. An example
of the first approach is as follows: The child constructs an equilateral
triangle made up of 6 segments (two per side), and he ew.arges the area
by rearranging the segments in order to obtain a hexagon and discovers
that the new figure has a larger area. He then transfers this experiment
to a square which he transforms into an octogon and thus by induction
arrives at the law, "if each .piece is broken into two, then the new area
will be larger." An example of the second approach is the following:
Subjects compare the different figures constructed (i.e., triangle, square,
etc.) and note that the area increases. They hypothesize the case of
other figures (for instance that a hexagon's area lies between that of
the square and octogon previously compared). This hypothesis verified,
they then understand that "the greater the number of pieces (of spaghetti,
i.e., of sides), the greater the area obtained.”" No subject can generalize
the law and extend the deduction so as to anticipate that a circle would
be the figure with the maximum area.
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In summary, it can be seen that an inituitive approach does lead
to correct solutions nround 9-10 years (constructing maximum.area) but
that a more reasoned approach leads, at this age, to less successful
replies. The conflict between intuition and reasoning is only surmounted
late in development, since well developed deductive capacities are
necessary to discover the geometric properties. Bang concludes that the
latter capacities are not discovered directly through mental imagery. .

" GENERAL DISCUSSION .

The results of the "different research on space conducted at Piaget's
Centre for Genetic Epistemology will be discussed first from an episte-
mological point of view then with regard to some of their psychological
and educational implications. ‘

Epistemological Implications

Mental Imagery and Operational Development

Mental imagery, which is not well adapted to represent either
temporal aspects of reality or logical concepts, is particularly fit
for ‘representing the spatial aspects of reality and thus plays a definite
role in spatial knowledge. The similarity of nature between signifiers
and significates, in the spatial field, makes the development of geometric
intuition possible. This latter enables subjects to solve problems before
they are able to apply a systematic method. In Barg's résearch on maximum
area, for instance, success based on intuition is observed up to 9 years.
The subject constructs a maximum area thanks to his search of Gestalt,
ﬂwichout being able to furnish the rules behind his construction. Toward
10 years of age, subjects either succeed through an intuitive method,
or fail when they use inferences not based on mental imagery (the inference
being "in order to obtain a large area, you need a large side").

.Proof that geometric intuition is largely based on imagery is given
by an expariment of Hatwell {1964) who compares the results of blind
children with those of seeing children, in a task involving the repre-
sentation of spatial order after diSplacements.1 Blind children are
generally between 4 and 6 years in urrears of normal children, and this

’

lFor example, children were asked to reconstitute a "train" made cf
three pieces of wood of different shapes, at different spots of a non-
regular circuit. At some spots, the order of the "carriages" (from a
right-left point of view) is the inverse of the initisl order. The
material was conceived so as to make pc >le replier based solely on
tactile perception.
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can be attributed to their deficit in the field of imagery (or, more
generally, a deficit in figurative functions). In logico-mathematical
tests as well as in verbal reaconing, these blind children are only some
one to three years behind seeing children. The latter, even when using
tactile perception, with a screening procedure, nonetheless remain in
advance of blind children. In fact, their results are the same as when
they can see the material. The understanding of changes in spatial order
thus relies heavily on the capacity to represent reality spatially.
Although Piaget has not stressed this point, it seems evident that even
the operational solution to spatial problems--such as the Moebius ging--
requires, even for adults who are not geometricians, the assistance of

a representation through mental imagery.

In spite of the preceeding remarks, it must be aimitted that mental

imagery is not alone sufficient for solving spatial problems. Work on
the development of mental imagery (Piaget & Inhelder, 1970) showed that
the young child's images only represent static configurations. Represen-
tation of transformations is only possible when the child's operational
development interacts with the image (clear progresc as of around 7 years).
Besides, geometrical intuition cannot be ronceived of as a mere utilization
of mental images, since it implies an important intellectual activity of
the subjects, e.g., establishing relationships. Briefly speaking, this

" intuition is operative in nature and mental imagery cannot give a good
"translation" of this operative character.

The Centre's researrh particularly established a relationship between
notions of congervation, which are operational in nature, and the repre-
sentation of the variations of area. Once the conservation of length and
area is acqujred, for instance, children make deductions which transform
their represencation of spatial phenomena. They overgeneralize the con-
ervation which has just been acquired and are often incapahle

calculation nor deduction. Thus, it is not until around 9410 years that

1d can anticipate correctly the result of rotations and not until

11 years that he can reconstitute the transformations and understand
the result of multiplying two transformations. The subject needs, in

various spatial rclations (proximity, side up, side down, etc.) are
easily representable, the transformation can only be represented through
a very complex mental activity connecting these various relations.

2

Physical and Logico-Mathematical Space

To touch on the problem of the relationship between physical and
logico-mathematical space, account must first be taken of an experiment
“by Vurpillot (1964), who shows that geometrical relationships are
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conceived of by the young child as relations Between physical objects.
_From these results, Piaget concludes that the two types of space are

not differenriated at this level. It could not be postulated that geo-

metrical spare develops out of physical space. The insufficiency

of empiricxl -:wvidence is particularly obvious in Bang's’experiment on

the variation of areas with constant perimeter. Geometrical concepts

are acquired through the enrichment of the relationships the child

establishes (intrafigural as well as interfigural relationships) and by

a coordination of representations. In L'Epistemologié de L'Espace

(Bang, Greco, Grize, Hatwell, Piaget, Seagrim, & Vurpillot, 1964), Piaget

deems that .there is no interaction between physi-al space (i.e., concepts

and images drawn from the experience of objects) and logico-mathematical

space (the spatial operations and the geometric concepis they underlie).

He merely feels that there is a structural corre:pondence between these

two types of spatial knowledge. More recently, Piaget (1974) has stressed

the role of spatial operations or preoperations in physical space: Spatial

properties of objects are known through spatial operations applied to

objects. An interaction between the two forms of space is therefore not

excluded, but it is not clearly defined. In my opinion, it would be

heuristic to look upon these relations as an interaction sometimes

resulting in a reciprocal assistance, sometimes leading to conflicts and

even blockages, as is the case for the relations between causal explanations

of physical phenomena and logico-mathematical deduction.

Geometrical and Logico-Mathematical Operations

If the-relationships between geometrical and logico-mathematical
operations are now envisaged, the first striking fact is that they are
isomorphic. Piaget had already shown how measurement of length could be
analyzed in terms of partition and inclusion operations which are
isomorphic to the grouping of operations involved in number. Greco
demor~trates that at the formal operational level, geometric reasoning
(which makes possible understanding of rotations, etc.) can be formulated
in terms of operations which are isomorphic to the "group" of operations
involved in propositional logic.

However, spatial operations cannot be conceived of as:merely an
application of logical operations to space, since they are acquired
progressively without direct synchronism with the development of logical
operations. Furthermore, geometrical reasoning seems closely linked
to the specific spatial context.

Psychological and Educational Implications

Most of the questions discussed from an epistemological po‘nt of
view can now be extended further with a special regard to their psychological
and possibly educational implications. )
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As regards the necessity of improving representations of spatial
transformations through operational mental activity, a more detailed
example is brought to mind here. In order to anticipate, or even mezely
observe adequately, the progressive transformations of a geometric
figure (Bang's Experiment 1), the child must understand the continuity
of the process, and this understanding stems from the idea that some
parameters remain invariant whereas others vary. The child must also
seriate the sta". : of the transformation according to the-relation
"smaller than" (or "larger than"). Furthermore, he must have some idea
of the limit of the transformation and relate this limit state to the
other states of the progressive change. Not only in this experiment,
but also in all the other studies carried out at the Centre, the development
of spatial representation is explained in terms of improving the under-
standing of transformations, such an understanding being obtained through
a systematic organizatiorn of representational imagery.

As fax as the distinction between physical and logico-mathematical
space 1s concerned, 1t must first be noted that it does not correspond
to the distinction between figurative and operative aspects of knowledge.
It is true that perception, and more generally empirical observation,
as well as static mental images (the figurative aspects) are mainly
the product of the experience that the child acquires of the concrete
spatial environment in which he lives. However, such a spatial environment
is in turn understood thanks to the child's activity, that is, thanks to
the operative aspects of knowledge such as displacements of one's own
body or of objects, and thanks to mental activity allowing for the
abstracting of certain relations or the establishing of a relationship
between various points of view. Physical space therefore has an operative
as well as a figurative aspect. Logico-mathematical space is essentially
operative in nature, but it deals with relations specific to space, which,
in their elementary forms, can easily be represented through mental images
and are therefore based on figurative functions.

This distinction between physical and logico-mathematical space is
of great interest concerning the learning of spatial notions. It suggests
that two types of experience, or activity, should be practiced by children.
First, children should engage in empirical activities where they manipulate
objects in order to become familiar with their shapez, observe transformations,
and make actual comparisons (like superimposing figures). The second
type of activity, logico-mathematical in nature, should result in going
beyond what is empirically observable. Such an activity would consist
in building up a systematic method in practicing deductions and in
dealing with notions that do not corresvond to empirical entities. The
two types of activities are coordinated at a final stage, as can be seen
in the older subjects of the Moebius ring experiment: They coordinate
all the spatial relations involved and have a systematic method
(logico-mathematical aspect), but they also investigate thoroughly tne
ring (spatial properties are also discovered as physical properties
would be) .

Pk
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;
" At an earlier stage, the two ways of solving spatial problems, i.e.,

by empirical observation and action or through inferences of more or

less logical nature, can give rise to conflicts. This is exemplified

in Bang's experiment on maximum area.

With regard tc geometric intuition, it must be stated that this
concept is rather ambiguous since, even among the authors mentioned in
this paper, it can convey different meanings. For some it is an insight
based on Gestalt, while for others it is a nonoperational or an opera. ional
way of solving problems. The latter implies important inferential
activity but no precise measurement nor theorems. This concept must
therefore be used with caution. Geometric intuition will be defined
here as a mental activity concerning space essentially based on figurative
aspects, but involving inferences (see introduction to this paper). )
This geometrical intuition is necessarily involved before 11 years,
since neitfee rigorous abstract deduction nor a very systematic method
can be used by the child. Even after this age, it could be useful
to rely on intuitions to in*roduce new spatial notions to the child.

To conclude this paper, a summary of the procedures used in the above
experiments which have a training effect will be made. Generally sreaking,
learning spatial concepts seems strongly related to the child's attempts
at representing spatial transformations. ‘

The successive steps of certain of the Centre's experiments dealing/
with these transformations must undoubtedly have a training effect. These
steps are th~ following: The child is asked to anticipate the transformation,
then to observe them empirically, and then to make anticipations and
observations about simpler problems before getting back to a more complex
situation. A few remarks can be made about these different steps. First,
asking for anticipations triggers off the mental activity of the c¢hild,
whereas simple observation can induce a rather passive attitude. Further-
more, it may lead to a confrontation of the anticipations with the empirical
observations. About the latter, it must be noted that their effect
on the child's understanding of spatial concepts 1Is limited. Most of the
time this effect is nil, for the problems involved, before the age of 8
(e.g., Muebius ring). Even aftér this age when the observation becomes
accrate, it is not sufficient to solve problems. However, this fact
must be taken advantage of, namely that spatial problems can, contrary
to temporal cncs, for example, give rise to observations and confrontations
between different situations.

The changes in the material used (e.g., a simplification of the
situation by asking questions about a two-colourringin Greco's experiments)
1s of training value mainly because it elicits comparisons between
different situations. The very choice of the material of each situation
presented is also important. Thus, Bany's use of a rigid material to
construct the perimeters in certain situations, as well as the use of the
thread suggesting continuous transformation, somctimes seems to help
the children become aware of the rules of constructicens.



O

ERIC

Aruitoxt provided by Eic:

125

As far as the hierarchyof difficulty of the problems presented is
concerned, two points should be stressed. First, it seems favorable to
make the child reflect upon simpler elements, like the compersation of
the length of sides or the trajectory of one angle during the change
in shape, before he is asked to represent all the aspects of a complex
transformation. But this procedure should not suggest that a kind of
programmed learrning, evenly developing step by step, can be elicited.
The fact that the child reaches a new stage of ‘development in the under-
standing of spatial relations implies a new structuration of the problems
and results from the coming back to previons problems and statements
and from the con‘licts that this comparison may provoke. A first form
of conflict can occur between the anticipation of the child and his
subsequent observation. The anticipations may be drawn from intuitive
figurative representation or from mainly inferential processes. A
second rorm of conflict, the most important according to Plaget's theory
of equilibration, occurs between different ways of tackling the same

-_problem. For example, one of the most effective training procedures
used by Inhelder, Sinclair, and Bovet (1974, chap. 6) consisted in

eliciting two different types of judging length, i.e., a judgment based
on the spatial correspondence scheme and a judgment based on counting.
The two types of judgment were then confronted, and they often led to a
new solution of the problem. The solution was at first incomplete and
consisted in a compromise between the two types of judgment. : However,
the solution was eventually correct and resulted from a new type of
intellectual activity which can be described as a synthesis of the two
previous ways of solving the problem. :

The training procedures described above are consistent with the
Genevan conception of learning, which entirely differs from the common
views on education. According to these views, education aims at
"printing" certain cognitive structures or bodies of concepts in the
child's mind. There seems to be liitle necessity to know how this
mind works and develops when it 1is not trained, because intellectual
growth is deemed to be elicited by training experiences.

, Actually, even in order to create new habits, like following the
right itinerary in a maze or counting up to 100, the cognitive diffi~
culties that the subject must surmount and the behavior patterns that
he can asSimilate must be taken into consideration. When the goal of
learning is to help the child create new structures of knowledge which
will be applied to a more and more extended field of reality and which
might in turn generate new cognitive structures, it is absolutely
necessary to subordinate learning to the laws of intellectual development.
For example, the training of a concept l'ke horizontality or duration:
can be efficient only at a certain stage of davelopment, and it could
not be done in any lapse of time. Learning procedures must take account
of psychological processes that have their own speed. 1In stimulating
certain processes observed in cognitive development, such as conflicts
between schematas, Genevan training experiments have yielded good
results., One interesting fact must be noticed: The subjects who find
their own "wrong" solution to the problems in the course of these
experiments give the best answers at the end.
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The reason learning must be subordinated to the laws of development
is that operational structures do not derive from structures that might
exist outside the child but stem from the coordination of internalized

.actions. As far as logical necessity is concerned, it cannot be

demonstrated empir:-ally. For example, a preuperational :child who fails

to conserve number or to perform a class inclusion task cannot be "shown"
that he is wrong. The same holds true for complex spatial notions, as

is evidenced in the research reported in this paper. It is necessary to

.study the processes of mental coordination which lead to logico-mathe-

matical and geometrical operations before undertaking training experiments.
In brief, training, according to the Genevan conception, consists in
trying to accelerate cognitive development.

These remarks on learning touch upon a problem which the Centre's
research on space was not aimed at studying. However, the particularity
of the work done by Piaget and his collaborators is to be of general
interest. It allows for cpistemological as well as psychological codclusiqns
and for developments in different areas of psychology. . This is what the
present paper was aimed at suggesting.

1

132



127

References

Bang, V. Intuition géoméﬁrique et déduction opéra:oire. In V. Bang &
E. A. Lunzer (Eds.), Conservations spatiales. Paris: Presses
Universitaires de France, 1965. (a)

Bang, V. De l'intuition geometrique. In V. Bang & E. A. Lunzer (Eds.),
Conservations spatiales. Paris: Presses Universitaires de France,
1965. (b)

Bang, V., Greco, P., Grize, J.B., Hatwell, Y., Piaget, J., Seagrim, G.N.,
& Vurpillot, E.  (Eds.). L’épistémologie de l’espace. Paris: Presses
Universitaires de France, 1964.

Greco,-P. Etude d'un systéme de représentation imagée concernant un
groupe de transformations spatiales. In V. Bang, P. Greco, J.B. Grize, Y.
Hatwell, J. Piaget, G.N. Seagrim, & E. Vurpillot (Eds.), L'éqpistémologie
de l'espace. Paris: Presses Universitaires de France, 1964. (a)

Greco, P. L'organisation progressive des :epré%entation spatiales relatives
a une figure complexe (Anneau de Moebius). 1In V. Bang, P. Greco,
J. B. Grize, Y. Hatwell, J. Piaget, G. N. Seagrim, & E. Vurpillot
(Eds.), L'ébistého;ggie de l'espace. Paris: Presses Universitaires
de France, 1964. (b)

Hatwell, Y. ROle des éléments figuratifs dans la genése des opérations
spatiales. In V. Bang, P. Greco, J. B. Grize, Y. Hatwell, J. Piaget,
G.N. Seagrim, & E. Vurpillot (Eds.), L'épistémologie de 1'espace.
\Paris: Presses Universitairesde France, 1964.

Inhelder, B., Sinclair, ﬁ., & Bovet, M.. Learning and the devélogment of
cognition. Cambridge, Mass.: Harvard University Press, 1974.

Piaget, J., & Inhelder, B. [The child's conception of space] (Translated

by F. J. Langdon and J. L. Lunzer). New York: Humanities Press,
1956. (Qriginal French edition published, 1948.)

Piaget, J., Inhelder, B., & Szeminska, A. [The child's conception of
geometgx] (Translated by E. A. Lunzer). New York: Basic Books,
1960. (Original French edition published, 1948.)

Piaget J., & Inhelder, B. Mental imagery in the child. London: Routledge
and Kegan Paul, 1971. .

ERIC

Aruitoxt provided by Eic:



128

Plaget, J. Understanding causality. New York: Norton, 1974.

Vurpillot, E. La matérialité du trace figural chez l'enfant. In V. Bang,
P. Greco, J. B. Grize, Y. Hatwell, J. Piaget, G.N. Seagrim, &
E. Vurpillot (Eds.), L'épistemologie de 1'espace. Paris: Presses
Universitaires de France, 1964. L

N

o

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

-129

Needed Research on Space in the Context of ché Geneva Group
+ Jacques Montangero
University of Geneva, Faculté de Psychologie
et des Sciences de L' Education
Charles D. Smock

University of Georgia

Research on space concepts needed to complement that which has
been completed in Geneva should involve those aspects :that have been
overlooked as a result of the inherent limitation of the Piagetian
approach. The Piagetian approach has permitted an immense step forward
in the science of psyc gy. We do not want to imply that Pjaget
should have considered all the points and problems which remain to be
studied. His method was, and is, the best suited to the study of
basic epistemological problems as far as space is concerned. We do not
question the value of the prior work by Piaget and his rcollaborators.

_Rather, if something new can be added to this work, it will require

a change of method. The method suggested is not entir:ly different
than the Piagetian method, but is an adaptation to the problems that
remain to be studied. It needs to be stressed also that the structural
approach of Piaget is inseparable from a developmental approach that is
to be Constructivistic and that implies equilibratiqn processes.

The Piagetian explanation of spatial notions in children is -mainly
based on the concept of adaptive equilibration structures. A structural
explanation has the four main advantages that wiil be listed below
before discussing certain implicit limitations.

1. The genetic structural approach does not deal with the super-
ficial level of behavior (i.e., the level of "performance"), but sheds
light on the underlying mental activity. For example, instead of
giving a mere descrip.ion, such as '"some children can construct a tower
the same height of a mcdel tower because they know how to measure
heights," the structural analysis endeavors to give account of procedures
for knowing, i.e., the operations of partition, seriation, iteration,
etc.

N
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2. A structural explanation thus gives an account of the
operational nature of knowledge. A concept is not described as a
more or less static idea, but in terms of mental operations which
consist in transforming what the subject observes (e.g., imagining
the reverse of the action observed, or finding “ifferent ways which
would lead to the same result). " These transformational capacities
enable the child to apprehend the transformations of the outer world.
It is only when children can begin to understand physical or spatial
transformations-~by knowing what changes and what remains invariant--
that one can be sure that they have reached an operational level.

3. The incerrelacion/becween the diiferent inferences of a child
dealing with a certain type of problem appear clearly. For instance,
the different arguments a child g'ves in order to justify a conserva-
tion judgment correspond to different oerations all within the same
cognitive structure. The explanation of spatial abilities in terms
of systems of transformations sheds light, for example, on the close
relation between different achievements of seven-year-olds since thesre
achievements all derive from the capacity to establish topulogical
relationships.

4. The structural method points out the resemblance between
different fields nf kneowledge that seem heterogeneous when not studied
with this perspective. The similarity of spatial abilities, such as
length measurement, and logico-mathematical abilities, such as con-
servation of small nuibers, app..ars through an analysis of these
behaviors in terms of the groupings of operations. On the other hand,
a precice description of the differences betwecn notions can be given,
e.g., of what is not alike in space measurement and number, or between
topological and projective spatial notions.

The genetic structural approach a#lso implies a search for what is
common to children of the same developmental level and what is common
to different ideas or judgments. Because of this particularity of
intent and the generality of the structures used to give account of
children's cognitive processes, the approach leaves some gaps in our
knowledge of the psychology of space. The main limitations of the
Piagetian approach to the study of space appear to be the following:

1. The role of the object of knowledge or what the subject assimi-
lates as external reality does not appear clearly from previous studies.
Though Piaget's theory stresses the fact that knowledge stems from the
interaction between the subject and the object, the role of the object
seems most unclarified (see Smock & von Glasersfeld, 1974; von Glasersfeld
1975). A careful analysis should be made of this interaction. In such
an analysis, the parameters of a situation must not be studied per se,
but witn reference to the conceptual framework of the subject facing the
situation.

3
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2. Plaget's approach accounts for a very limited number of
stages of cognitive development. It is necessary to describe many more
substages in that development in order to clearly understand the process
and to gain betcter knowledge of the different notions constructed during
childhood and adolescence.

3. Th=2 mental operaticns forming groupings or group structures
give a model of the abilities of children, i.e., all the possibilities
of reasoning they have, but not the actual process (strategies) of
solving problems. A study of the process itself would clarify the
interrelation between the child's cognitive structures and the attributes
of a situation; also, it would give invaluable information for eduaca-
tional purposes.

4. A metaphor can best specify the results of the cognitive
studies conducted in Geneva. A forest of scattered trees, each tree
representing a particular concept, has been found. We now need, beside
studyiny the growth of more concepts, an understanding of the connec-
tions bcerween these concepts. These types of studies are particularly
importao: since there is strong evidence that the relations between
differen: .otions (or fields of knowledge) are major factors in promoting
intellectual development (Inhelder, Sinclair, & Bovet, 1974; Piaget, 1974).

T¢ make the-prior body of research on space more complete the next
pha:e should use some of the new methods developed in Geneva and should
be applied to the study of this domain. In addition, types of experi-
ments that have not been conducted in Geneva are necessary. The aim and
the methodological principles of three main types of research will be
suggested.

Interaction of Cognitive Structure and Context Variatioas

The aim of this type of research would be to determine how the
child assimilates different aspects of space, 'i.e., which spatial
parameters influence his spatial judgments. The procedures would
include both techniques for facilitating correct answers and, on the
contrary, eliciting errors by providing materials which may stimulate
the development of spatial notions. One example relevant to these -
problems (i.e., varying the narameters of the situation) is the
experiment on the concepts of duration by Montangero (in press). A
summary of this experiment is presented in order to exemplify the
rechod suggested.

/

In his book on time Plaget (1969) demonstrated that operational
judgments of duration are based on the speed of observed changes
and the amount of "work' done (/!istahce covered, number of objects
handled, ete.) during the duration which is evaluated. Further,
it was hypothesized that, in addition to considerations of speed
and wor:, the relationship established between the relative temporal

-
-
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order of starts and scopslplayed an important role in operational dura-
tion judgments and in their elaboration. One of the experiments designed
to test this hypothesis as well as to define substages of the develop-
ment of the concept of duration, consisted in varying the parameters
speed, work done, and temporal order. The design is summarized in

Table 1.

\

2

Table 1

Summary of Design for Studying Variation
in Context and Judgments of Durations

Speed and No cinematic |Speed consists in Speed consists in
work donejaspect: turn-|frequencies: dis- displacements: con-
ing lamps on [crete actions: tinuous movements
Temporal and off putting beads in- of dolls or toy cars
Order to a container
Perceptible|Nonper—- | Distance No perma-~
results: ceptiblel covered nent trace
glass con- |results:| comparablejof distance
tainer opaque cardboard |covered
con- tracks
tainer
Synchronism:
2vents start
and stop 1 4 ) 7 10 13
simultaneously
One event starts
before the other
.simultaneous ‘. 2 5 8 11 14
stops
Same duration,’ .
no simultaneity:
same time ’
interval between 3 6 9 12 15
relative starts .
and stops

Note: The numbers in the table refer to 15 different experimental situa-
tions.

1 .
For example, the awareness that two events began simultaneously but
one of them ended before the other.

133



133

Each subject was presented with 15 different situations (Table 1)
and was asked to give a relative duration judgmemt2 4and to justify it.
The variations of the duration judgments and their 3ustifications were
then related to the parameters of the situations in order to see what
kind of relation the subtject introduces (or constructs) between the
different parameters. As already stated, the goal of such an analysis
is not to study the import: ce of the parameters per se. Indeed, the
results of this experiment indicated that the same situation is often
evaluated very differently according to the stage of cognitive develop-
ment of the subject. The presence of a certain parameter (e.g., a
difference of speed without difference of work done) may have no in-
fluence on younger children's judgments but may become an importaut cue
for the older subjects when they evaluate duration. Therefore, compar-

~ing the subjects answers for different situatione does not exclude
developmental analysis or comparison of answers at different levels of
development.

The analysis in term of relations established by the subject
permitted a better understanding of the child's reasoning about dura-
tion. Different modes were used to solve the temporal problems, and
the possibilities and limitations of the children's judgments at
different substages of conceptual development were assembled at the
same time. Similar methods applied to spatial judgments should yield
the sume kind of information about space concepts. The varying para-
meters could be different geometrical relations or different types iof
presentation allowing for different ways of apprehending similar rela-
tions. Such a method would be particularly suited to the study of the
interrelation between "physical space" (spatial properties of objects
discovered through active observation) and '"logico-mathematical space"

(spatial properties constructed by the subject and discovered through
deduction).

The method of varying the context sheds light on what underlie each
child's particular judgments. Comparisons can be made between con-
texts with other judgments and with behaviors observed at different
levels of development. These comparisons facilitate the discovery of
the status and causes of apparent regressions in intellectual growth.
For example, in the study of time, three types of regression were
observed. which in every case obscured actual progress in cognitive
capabilities. 3

1. The early correct answers do not indicate the presence of a
real understanding of the problem; they stem from a simplifying assimi-
lation of the problem. For example, five-year-olds tend to judge
duration from only one aspect of the situations, namely the final
temporal order. This simplification sometimes leads to correct answers

The subject was asked ''Did the two events take the same time or
did one of them take a longer time?"
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which, acturlly, are not duration judgments and therefore should not
be considered as correct answers.
2. At a certain level of development, children may encounter more

difficulties in solving a problem than they had previously because of the

progress in an element (concept) of the "field" of ideas related to the

specific concepc under study. For example, as the concept of length develops,

a temporal situation becomes more complex for the subject, i.e., whereas,

before he only took into consideratien the places of starts and stops.

3. Apparent regression may also be due to the fact that children
vacillate between two different modes of evaiuation to solve a problem.
In the duration studies, children often would alternate between a mode .
¢! evvaluation based on the comparison of temporal ordars and one based
¢: the spatio-cinematic content of events. These altering centrations
erplain the fact that certain situations correctly evaluated by a child.
using, for example, comparison of temporal orders, are incorreccly
evaluated a few months later because of exclusive centration on other
parameters. All such regressions diappear as the evaluations achieve
the operatioual level.

The question of regression ;s discussed here because in several
Piagetian spatial tasks a depression of performance is observed around
the age of nine. Yet cognitive progress appears to be continuing. Thus,
these regressions should be investigated and the method of context varia-
tion appears the best method for teasing out the relevant variables.

Interaction Between Spatial and Logico-mathematical Operations

Geometrical abilities can undoubtedly help to understand mathematical
problems. On the level of scientific thought, it seems that mathematicians
often have recourse to spatial intuition (Beth & Piaget, 1961). As far
as the child's thought is concerned, the research completed in Geneva
shows that spatial and mathematical noticns are undifferentfated in
young childien (which is one reason for the failure to conserve small
numbers,). Later in dJdevelopment, the two types of notions are dissociated,
but their structural aspects are isomorphic (Alonzo, 1970; Bruce, 1968;
Leskow & Smock, 1970). There is evidence of ability to solve certain
spatial problems without a rigorous deductive method, with the aid of
imzged representation (i.e., spatial intuition) in the child when
mathemat ical intuition is very limited. Consequently, it is not
unexpected that many teaching methods ot mathematics rely heavily on a
spatial representation of mathematical problems.

On the other hand, geometrical abilitics, though they are based on
specific spatial operations, also depead on general logico-mathematical
operations such as seriating, represention of all the possible
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combinations, etc. The possibility of using a systematic method is closely
related to the logico-mathematical achievements of t.e formal operational
stage (Inhelder & Piaget, 1958). When children reach this developmental
level, they are able to apply such systematic methods to spatial problems

. (Alonzo, 1970; Bang, 1965; Greco, 1964; Leskow & Smock, 1970).

The study of the relations between logico-mathematical and spatial
concepts should not overlook either of the following points:

(a) influence of progress in geometry on logical or mathematical
notions, and

(b) influence of prugress of logico-mathematical notions on the
development of spatial notions.

The bi-directional influence could be studied by methods comparable
to the learning studies reported by Inhelder, Sinclair, and Bovet (1974)
concerned with the reciprocal influence of mass conservatirn and class
inclusion. Progress in inclusion (comparison of the subclass and the
total class) obtained through induced improvements in conservation of
mass, but the reverse did not hold. It would be very Interesting to
test, by a similar method, the reciprocal influence of mathematical and
spatial acquisitions which normally take place approximately at the
same time in cognitive developmenrt change.

The first step of such research would be to find suitable training
procedures, i.e., exercises which are efficient in accélerating the
acquisition of a concept because they take account of the laws of
devalopment.3 The elaboration of a suitable training procedure for a
concept goes through the following three steps:

£
1. Cross sectional developmental sti.lies are nceded to define the
different components (i.e., the sct of inrcrences and operations) and
stages of acquisition of the concept.

2. Different strategies that children use to try to
solve a problem involving the concept need to be identified. For
conservation tasks, Inhelder, Sinclair, and Bovet (1974) presented the
problem sometimes as discontinuous, and sometimes as continuous. The
authors could distinguish in the voung child two ways of evaluating the
relative length of segments:

(a) by comparing the extremities of the segments (ordinal evaluation
based on the "frontier" effect) or

3Devalopment is considered (according to Piaget) as a gradual
coordination of schematas achieved due to the child's orgarn’ -ing
activity and, is always regarded as an equilibraticn proces
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(b) by counting the number of discontinuous elements forming

the segments.

3. Exercises need to be devised comprising acrions, or preopera-
tional inferences, or operations that the subjects can perform. This
implies that the optimal level of development of the subjects has first
been determined and the operative capabilities of the .subjects are known.

As the main goal of a training procedure is to stimulate che
subjects mantal activity vis-a-vis a particular problem, the best
procedure consists in presenting different situations or types of
exercises under conditions tthat permit comparison among those Situa-
tions. In the learning study of length mentioned above, subjects had
to perform the same task (constructing a segment with matches whose
length had to be equal tu the length of a model segment) in three
different situations. The first tended to elicit an ordinal compari-
son of length (evaiuation type (a) above). while the second situation
tended to promote a numerical comparison (evaluation type (b)), and the

‘third allowed for the discovery of the difference of units .used in the

model segment and in the child's construction. The experimenter asked
the subject to return to the first ‘situation immediately after he
finished the second task, and to return to the second and first
situation after the third task was completed (the three situyations
always remained in the child's perceptual field). Such a procedure
which permits comparisons between different ways of evaluating a para-
meter, often elicits conflicts between these modes and consequently
important improvements in the comprehension of the problem.

Space and time, which are reunited in a single concept in relativist
physics, are interrelated during the course of intellectual development.
Piaget's bock on time (1969) demonstrated that the operational notion of
duration involves a consideration of the distance caverad as related to
the speed. On the otl - hand, the notion of length seems to be first
grasped due to a repre. ntation of displacements. Thus, Piaget defines
space as the coordination of displacements. At least two «inds of
problems concerning the relation of space and time should be further
investigated. . h

The first concerns the notion of distance and its interaction with
the concepts of speed and time. The research conducted up to now in
Geneva showed how these concepts become progressively coordinated near
cthe beginning of the concrete operational stage (between the age of 6
and 9). The acquisition, around eight to nine years, of an operational
notion of duratinn allows for correct temporal comparison between

bTo these main principles for elzborating a training procedure must
be added other consideraticns, such as the necessity to evaluate as pre-
cisely as possibla the subject's developmental level (pretest) and the
status of the progress observed (generalization at the posttest,
stability of acquisition, or couasolidation at the second posttest).
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1

different events, but l4-year-olds still encounter great difficulty in
establishing correct relations between distance, time, and speed when

the two latter parameters wmust be deduced from spatial datum irn a double
reference system (Crébaulc, 1975). No research evidence 1is yet avail-
able, however, concerning the effect of progress in cinematic notions

on the concept of distance.or other spatial notions. This effect, there-
fore, should be investigated thoroughly.

A second type of experiment is needed to determine how children can
understand spatial relations (relative distance, directions) in situations
involving points of references, or observers, moving at different speeds.
Here again, spatial relations would depend on cinematic cues. This type
of preblim—~which could be understood only at the formal operational
stage-—is now under investigation at Paris VII University by a team of
physicists interested in the psychological foundations of physical
concepts. One situation presented cocsisted in imagining twe parachutists
falling from a plane at different spe ds; one of them drops his eyeglasses
that the second one manages to catch. Questions are asked about the
duration, distance, speed of the fall of the eyeglasses relative to both
parachutist number one and to number two.

Cinematic situations are interesting for the study of spatial rela-
tions even when no questions are- asked about the temporal and cinemati-
parameters. Many experiments could be designed on the theme of trajec-
tories of moving objects in a plane or within a three-dimensional spuce
A firs:t example of such an experiment is Inhelder and Piaget’'s (1958)
research on the equality of the angle of incidence and the angle of
refleccion in a game of "billiards." 1In this experiment, there is a
close cornection hetwcen physical relationships (causality relationship
of the position of the propeller with the impact of the ball thrown on
the aim, which consists in a wooden block) anu spatial relationships
(the subject can understand the physical law only by spatially structuring
the game board and by comparing the angle of incidence and the angle of
reflection of the ball trajectory). Similar experiments, requiring
comparison of wmeometric figures, could be done within a football game
context. The study of trajectory should provide many suggestions of
experiments where both the physical and logico-mathematical aspects of
space are involved. In a rscent study by M. and I. Fluckiger (1975) subjects

’a vibrating stick prints dots on a strip of paper moved by the
experimenter. In one situation, the frequency of the stick is even,
whereas the strip of paper is moved first slowly, then rapidly. The
subjects are presented with the printed paper and must evaluate the
relative time and speed of the displacement of the strip of paper between
two dots close together compared to two dots at a wida interval (end of
the strip) .
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were asked to imagine the trajectories of a tennis ball hanving by a long
thread fixed to a hook in the ceiling. First, the children were required
to anticipate the trajector- of the ball when the experimenter, who had
removed the ball from the vertical axis where it normally hangs, would’
release it from a predetermined place. The question was: Where should
one place a wooden pin so that the ball would knock it down? At the

end of the experiment, children were asked to imagine the bowl-like
figure (i.e., a portion of a sphere) formed by all the. possible displace-
ments of the hanging tennis ball.

Research Relevant to Applications to Education

Some people incorrectly assume that results of the research in
developmental psychology conducted in Geneva allow for direct appli-
cations to education. Those who understaad the Piagetian studies know
very well no such direet application to edu-ation is possible. An
"intermediate” body of research is necessary for purposes of application.
Piaget has endeavored to find out the general processes of knowledge
acquisition or how bett2r forms of knowledge evolve from early more
limited forms and wha* underlies our basic scientific concepts. Thus,
he has had to make abstractions from the individual characteristics of
his subjects. Due to these abstractions, general developmental pro-
cesses (such as equilibration) were discovered and the potentialities
of children at different levels of development yere defined in terms
of cognitive structures.

When it comes to the elaboration of "good” teaching methods, the
knowledge of these processes and potentialities is of great help, but
certainly does not suffice. Teaching deals with unique individuals
and, therefore, it is necessary to base teaching methods on the results
€ research aimed at specifving individual cognitive characteristics and
at describing the actual process (performance strategies) involved in the
utilization of cognitive structures. Two kinds of reseirch are most
aelpful to serve these purposes.

First, differential studies shaould be conducted, not only to show
that there are differences in the acquisition of spatial concepts, but
also in order to analyze these differences. One question which must be
¢ ~1:-with is, "Do children of the same developmental level solve a
g' .€n spatial problem in different ways?" As a matter of fact, even
divferential studies of the usual type can pive useful information
for establishing teaching curricula.

The second type of research can be based on the analysis of children's
fantzation of action in order to solve spatial problems. A team of
search workers directed by Barbel Inhelder is undertaking such a scudy
. Gemeva, without focusing on spatial problems. These researchers are
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attempting to shed light on the processes of discovery in action and
on the interplay between the processes of goal oriented activity and the
child's concepts and representations.

For example, Montangero (1975) has conducted an experiment involving
both physical and spatial notions. In this study the materials used con-
sisted of objects similar in shape (cubes or balls) but of different
welght or different volume. There were, for instance, five~face empty
cubes and normal “closed" cubes loaded with plasticine or plasticine
balls and leaden balls of the same diameter. The glass containers
were half filled with water, and the child was asked to put whatever he
liked into the water in order to find out which objects noticeably
raised the water level and which ones have little or no visible effect
on the water level. 1In a second part of the experiment, the water level
had to be raised up to a certain point by immersing objects. This point
could not be reached unless the children made some changes to the
material, nameiy by loading empty cubes with plasticine or with a
leaden ball.

The actions observed and the few comments made by the subjects
were analyzed with the aim of specilying:

(a). how sequences of actions can be Jelimited by considering the
successive immediate goals of the subject,

(b) what are the relations between the different sequences, and;

(c¢) what can explain the changes of goals and of action organiza-
tion. '
/

On the one hand, the subject's actions were related, for each
sequence, to the notions or particular representation which seemed to direct
the actions. (For example, children up to 9 years of age hypothesized that
the weight was the cause of the raising of water level, or the children
constituted couples of objects, differing by one parameter, in order
to compare their effect when immersed.) On the other hand, the analy-
sis tried to specify which aspect of the situation (characteristies of
the objects, effect produced, experimenter's intervention) were taken
into consideration by the subject and how each influenced the
course of his activity. 1In this respect, this investigation asked a
question which often has been overlooked in the research on cognitive
structures, i.e., what is the role of the object of knowledge?

The general implicarijons of the results of the water level experil-
ment, briefly summarized, are as follows. First, there is a rather
large variety of action patterns among children whose conceptual level
snems similar. Second, this type of experiment clearly reveals how the
successive sequences of actions are guided by an interaction between con-
ceptual representations and the different cues of the situation. Third,
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the discovery of a means to reach the goal, in the second part of the
experiment, is often preceded by successive practice of the isolated
schematas which, once they are combined, allow for success. Finally,
the influence of the results of the child's actions (raising of the
water level) is limited and depends on whether the anticipations are
confirmed or not, and corresponds very much to what appeared in a pre-
vious study on goal oriented activity (Karmiloff & Inhelder, in press).

In the experiment discussed here, the subject's conceptual level
concerning the main notions involved (dissociation between weight and

‘volume) were preoperational. 1In the field of srace, similar research

on how children use an operational spatial concept when trying to solve
problems which ‘require the acquisition of higher concepts would be
most helpful.

These suggestions for research are, of course, very general. It
is hoped that many research workers, knowing well the previous develop-
mental studies of space, will transform these suggestions into actual
experiments. The results of guch experiments should be very beneficial
to the teaching of geometry as well as for cognitiv~ psychology.
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Cross-Cultural Reseavch on Zoncepts of Space and Geomecry1

Michael C. Mitchelmore

Ministry of Education,'Jamaica

Apart from studies on the conservation of length, cross-cultural
research on geometric concepts can be enumerated very quickly: Geometric
vocabulary and measurement and estimation skills have been investigated
by Gay and Cole (1967) anu Ohuche (1973) in Sierra Leone, angles by
Okonji (1971) in Uganda, and coordinates also by Okonji (1971) in
Uganda and by Page (1971) 2mongst Zulus in South Africa. I have been
able to find no studies dealing with geometrical reasoning or with school
achievement in geometry.

By contrast, there is considerable cross-cultural research on the
perceptual abilities which presumably underlie the development and
application of geometric concepts. Many of the relevant results have
spun off the effort to devise culture-free fests of iutelligence, which
have perforce used abstract visual materials. Other relevant results
come from investigations of the universality of Piagetian stages of
intellectual cveiopment and from studies of pictorial depth perception
and representation. From these various fields of research, certain
clear results have emerged. For example, whereas native Africans of
all nationalities appear to be considerably retarded in perceptual
development relative to Europeans of the same age and length of schooling,
even illiterate Eskimos and North American Indians do not differ markedly
from Europeans of the ‘same age.

Although no research relating perceptual development to geometry
achievement has been reported from developing countries, it is obvious
that perceptual retardation would cause difficulties in learning
elementary geometry. Skemp (1971) r ports the case of a Uganda school
student who, attempting to illustrate Pythagoras' theorem, produced
the diagram shown in Figure 1; this child's inability to deal with
obliques would certainly make it difficult for him to comprehend this
particular interpretation of the theorem. Some time ago, the writer

lT'he author's previously unpublished research reported in this review
was mostly carried out while he was a doctoral candidate at rhe Ohio
State University (F. Joe Crosswhite, advisor). The studies were supported
by an Educational Development Award from the Ministry of Overseas Develop-
ment, London and a grant-in-aid from the Society for the Psychological
Study of Social Issues. The cooperation of students, teachers and educa-
tional authorities in Jamaica and Columbus, Ohio is gratefully acknowledged.
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found that most Ghanaian grade 11 students did not know how to show depth
in a sketch of a'cuboid (rectangular prism), a deficiency which made the
application 'of plane geometry and trigonometry to 3-dimensional problems
virtually impossible. Even if there were no connection -between percep-
tion and geometrical ability, such blatant representagibﬁal'failures as
these would point up the need for remedial measures as part of a student's
general education. ’

Figure 1. The above diagram was drawn by a Ugandan secondary school
- student who was instructed to construct squares on the three sides of
the triangle (Skemp, 1971, p. 33).

Without apology for the poc+ coverage of strictly geometric concepts,
this revieijill therefore be concentrated on cross-cultural research in
related areas which are, or should be, of concern to anyone interested :
in the teaching or learning of geometry in developing countries. These
areas cover the factors of intelligence known collectively as spatial
ability, which I take to mean the ability to predict specified trans-
formations of given geometric figures. More loosely, the abilities to
be treated might be called "geometric intuition." &tudies of figural
reasoning (cognition of figural classes and relations in Guilford's,

1967, theory) and in the experimental psychology of perception (e.g.,
susceptibility to geometric illusions in Segall, Campbell, and Herskovits,
1966) will be omitted because these subjects have far lower face validity
relative to geometry e .ucation.
-
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Nonverbal Tests of I;telligence

!

Over .. past fifty years, considerable effort has gone inio che
development of nonverbal intelligence tests. The major need has beun
to predict the relative achievement in education or employment of sub-
jects who differ widely in reading ability, native language, or cultural
| background. Many of these tests, notably most of the performance tests
developed for use in cultures where even paper and pencils are rare,
appear to measure iatuitive understanding of the geometric properties of
2-dimensional shapes, especially the way in which simple shapes fit
together to make larger shapes. A test of this latter type is regarded
as a good measure of general intelligence in a primitive population if-
it has a satisfactory reliability and a high loading on the first factor
in factor analyses of batteries of similar tests (Ord, 1970). But one -
might equally regard such a test as a good measure of general spatial
ability.

Before looking at some of the more relevant performance tests, it
is mandatory to warn that cross-cultural comparisons are fraught with
difficulties. There are so many reasons why mean scores should be
different in different cultures (general levels of education, economy
and health: familiarity with shapes used in the test and with the entire
ethos of the testing situation, etc.) that it is never possible to deduce
that populations differ in innate Spatial ability, still less in innate
intelligence. Comparisons between different unacculturated groups are
safer than comparisons of Western and non-Western cultures, but still
point to cultural differences before racial superiority, Also, one
cannot be sure that a test which m asures spatial ability in one population
will necessarily do so in another (Irviac, 1965). To avoid a lengthy
discussion of these vroblems, we shall treat each test at its face value
‘and concentrata on qualitative ruther than quantitative comparisons.

Block Design Tests

In t% original block design test (Kohs, 1923), the subject is pre-
sented wit. 3 number of identical cubes each of which has four faces
colored red, white, blue, and yellow and two divided diagonally and
colored red/white and biue/yellow (Figure 2a). The test is to assemble:
a numbe; of these cubes so that the top faces form a series of given
designs (Figure 2c, 2d). The designs are all symmetrical and vary in
size from ? x 2 to 4 x 4; each design.is either red/white or blue/yellow.
The test wa. adapted for clinical use by Goldstein and Scheerer (1941)
and as a subtest of general intelligence batteries (Wechsler, 1949;
Matarazzo, 1977). A 2-dimensional versicn which employs red/white tiles

 (Figure 2b) has recently been developed by Ord (1970).
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Figure 2. 1In block design tests, the subject is required to use cubes
(a) or tiles (b) to copy designs such as (c) and (d).

The perceptual skills required for successful performance in a
block design test may be demonstrated by describing the behavior of
elementary school children as they attempt to copy the design in
Figure 2 using tiles (Figure 2b). I have observed the following
amongst both Jamaican and American students: Almost all students
correctly select two white pieces and two 'diagonal" pieces, and almost
all show some difficulty in copying the orientation of the diagonal
pleces. Amongst those who copy the design correctly, a few insert
the diagonal pieces correctly the first time, without hesitation; some
insert the pieces wrongly and then correct their orientation by trial
and error; and some turn the pieces around and around in their hand
to find the correct orientation before inserting them. Amongst
students who fail this item, some try all orientations of the diagonal
pleces jbut are unable to recognize the correct position; others simply
insert the pieces at random, apparently unaware of the need to copy
their orientation. Both the slow and the erratic efforts appear to
reflect stages in the development of the capacity to deal successfully
with oblique lines. In North American children, this development is
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rarked by several achievements which suddenly appear at about age 6-7

years, e.g., the differentiation of lefr- and right-facing oblique lines
npdel & Teuber, 1963), the formation of the concept of diagonal {(Olson,
1Y/V), and the more accurate copying of acute angles (Campbell, 1969).

A large part of the variance in block design test score variance is thus

attributable to differences in development of the perceptual concept of

orientation.

Relatively poor performance on block design tests has been reported
for several African samples. For example, Berry (1966) found that
Temne (Sierra Leone) village and town acults scored significantly lower
than comparative Eskimo and Scottish samples; Kellaghan (1968) found that
Yoruba (Nigeria) village and city children aged about 1l years scored
significantly lower than an Irish town sample; similar results have been
obtained for ll-year-old schoolboys by Jahoda (1955), who compared
Ghanaians with British farmworkers, and Vernon (1967), who comapred
Ugandans with English schoclboys. Bieshduval (1949, 1952a) found .
several Zulu and Bantu samples significantly §. " sior to white South
Africans of the same age. Some investigators :i. regowski, 1972b, McgFle,
1954, 1961; Shapiro, 1960; Vernon, 1967) comment specifically on a greater
tendency amongst Africans to rotate the entire|pattern to a preferred
orientation, for example, Ficure 2d may be copled upside-down. Others
(Dastocr & Emovon, 1972; Jaheda, 1956) have remarked on the difficulties
which subjects have in copying i..2 orientation of individual pieces. It
is safe to deduce that Africans are on average'significantly retarded in
perceptual development as regar 8 oriectution. The dramatic effects this
retardation can have on the learning of geometry have already been noted

- (see Figure 1).

There is another aspect of the pattern-copying task which has not
been noted by psychologists but which is relevant to geometry teaching.
Compare the designs in Figures 2c and 2d: In 2¢, the "diagonal” pieces
are isolated, whereas in 2d they fit together to make new shapes.
Although orientation difficulties are still present in 2d, even subjects
who solve 2¢ quickly have problems with the extra coastructive require-~
ments of 2d. The constructive element comes into most_of .the larger .
designs and could account for their greater difficulty. However, the
construction of all such designs can be broken down into two problems:
how to construct a large right triangle from two small ones (as in the
upper and lower halves of 2d), and how to construct a parallelogram from
two congruent triangles (as in the left and right hallves of 2d). Often,
the two problems must be solved simultaneously, for example, when fitting
the last piece ipto the design in 2d. 1t would thus appear that part of
the variance on block design test scores may be attributable to clemen-
tary geometrical knowledge (there must be many elementary mathematics
rextbooks that include the open-ended exercise, "What figures can you
make by fitting together two congruent triangles?"). This is a further reason
to regard the poor block design scores of most African samples as predictive
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of difficulties in their learning of geometry.

Outside Africa, Vernon (1965) feound that 11-year-o0ld Jamaican boys
scored at about the same level as the Ugandan boys (vernon, 1967) on the
Kohs test. It was because of the low scores generally obtained by )
illiterates in Papua New Guinea on the 3-4imensional test that ord (1970)
developed his. 2--dimensional version (Fig..m 2b); ne also used this test
with Australian Aborigines. Mitchelmore (1974) found that high-ability
Jamaicans aged 7-15 years made no pattern rotation errors; their scores
were significantly higher than average students of similar ages in
Columbus, Ohio (Mitchelmore, 1975).

In startling comparison to previous results is the finding that
scores not very different from those obtained by sophisticated European
and North American samples are obtained by both literate and illiterate
Canadian Eskimos and Indians (Berry, 1966, 1971; MacArthur, 1973; Vernon,
1966) and by Mexican Indians (McConnell, 1954). It may therefore be
expected that Eskimos and American Indians will have special talents for
goviorry and other spatially-loaded pursuits (Kleinfeld, 1973).

Emy -lded Figures Tests

In the original embedded figures test or EFT (Gottschaldt, -1926),
the subject was shown a simple figure for a certain length of time after
which he had to locate and trace the figure embedded in-a complex back-
ground (Figure 3). The test has been developed and used extensively by
Witkin and others (Witkin, 1950; Witkin, Oltman, Cox, Ehrlichman, Hamm,
& Ringler, 1973). The reason for the widespread use of this test is the
finding (Witkin, Dyk, Faterson, Goddenough, & Karp, 1Y(2) that scores are
significantly correlated with performance on other perceptual disembedding
tasks and with a more objective and self-reliant personality; persons
high on these characteristics are said to be field independent.

Disembedding is clearly relevant to geometric problem-solving, where
the first step is often to isolate appropriate figures (usually triangles)
in a diagram of intersecting lines and curves—-a step which Bright (1973)
found was surprisingly difficult for elementary age school children. I
have observed that students who do well on EFTs possess efficiept strate-
gles of searching for the distinctive corners snd edges of a figure; this "’
impression isstrengthencd by eye-movement studies (Conklin, Muir, &
Boersma, 1968).

Embedded figures tests have been widely used in cross-cultural
research, especially after Witkin's research on field independence
became known. Again, relatively poor scores have been reported among
African samples (Berry, 1966; Dawson, 196725 Schwitzgebel, 1962; Vernou,
1967) and good scores among Eskimos (Berry, 1966; MacArthur, 1973;
Vernon, 1966). These results would also tend to predict difficulties
for African's leaming of geomerry, but not for Eskimos'. ’
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In Jamaica, I have also observed that young students often respond
without hesitation but draw a shape which is slightly different from
the given figure (Figure-3)., By contrast, older students prefer not to
respoad at all if they cannot locate the given figure. Reuning and-
Wortley (1973, pp. 48-49) report behavior similar to that of the younger
Jamaicans amongst primitive Bushmen in South Africa. I suggest that
EFTs measure conservation of shape in low-scoring subjects. Failure to
conserve shape would also clearly limit geometric learning.

Figure 3. 1In a typical embedded figures test item, subjects are required
to find a given shape such as (a) hidden in a complex pattern such as (b).
Young Jamaican students were often found to copy the given shape
incorrectly, as at (c). Copyright @ Educational,Test Service, 1963.
Adapted and reproduced by permission.(see French, Ekstrom, & Price, 1963).

155

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

150

Othe%_Tests

Several other performance tests of intelligence include elements
of what I have called geometrical intuition. The most relevant of these
are the various formboards, in which one or more geometrical shapes have
to be fitted into a space to complete a larger shape. One series has
been used extensively in South Africa (Biesheuval, 1949; Grant, 1970;
Kendall, 1971) and another inPapua, New Guinea and in Auscralia (Ord, 1970),
but they do not appear to have been used in cross-cultural studies.

Another interesting test is tie Form Detection Test (Hector, 1964),
in which subjects must find in a given array of dots sets of points
which form the vertices of squares. Comparing Belgian Caongolese illite-
rate yorkers with Belgian schoolchildren, Ombredane, Bertelson and Beniest-
Noirut (1958) found that although the Africans were sluwer than the
Belgians, their specd was not a function of task difficulty. The authors
suggested that Africans' relative slowness therefore reflected cultural
influences rather than innate differences in speed of mental processes.

In the Pattern Completion Test (Hector, 1958), three rectangles are
given and a fourth must be placed to make a symmetrical pattern (mirror
symmetry in half the items, rotational symmetry in the other half).
Although illiterate Africans do not score as high as Europeans on this
test (Fridjhon, 1961), they do not respond randomly ev:n when the test
task is demonstrated entirely in mime (Tekane, 1961). Interestingly,
Tekane (1963) also found that, given a free choice, illiterate adults
preferred a mirror-symmetrical completion whereas high school students
used mirror and rotational symmetry equally often.

The Porteus Maze Test (Porteus, 1965) is another visual test which
has been widely used in cross-cultural research. However, both its
item type and the results of factor analyses show that whatever skills
it measures are not directly related to geometry. Other tests which
do measure relevant skills but which have not been used so extensively
are reviewed by Ord (1970).

Piagetian Testing

There is now an extensive cross-cultural literature based on Plaget's
model of intellectual development (Dasen, 1972). The usual finding is
that children in non-Western cultures pass through somewhat similar
stages as Western children, but at a slower rate and often without reach-
ing the final stage at, 3ll. Retardation in the development of conserva-
tion of length, which would have obvious implications for the teaching
of measurement, has been reported by Dasen (1974) and de Lemos (1969)
amongst Australian Aborigines, by Isaacs (1975) and Vernon (1965) in
Jamaica, by Ckonji (1971) and Vernon (1967) in Uganda, by Page (1973)
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amongst Zulus in South Africa, by Prince (1948) inPapua, New Guinea, and

by Vernon (1966) amongst Canadian Eskimos and Indians. In the saue studies,
retardation in conservation of area was reported by Prince and Vernon, but
Goodnow (1962) found no retardation in unschooled Chinese of low socio-
economic status in Hong Kong.

There have been few cross-cultural studies of the development of
geometrical and spatial concepts following Piaget and Inhelder (1956)
and Piaget, Inhelder, and Szeminska (1960) . Page (1971) reported the uwsual
retardation for Zulu subjects in the use of coordinates for copying
position, and Okonji (1971) found that very few Ugandan children aged
6-11 -cars used measurement in that task or in copying angles. Cowley and
Murray (1962) studied the drawing of geometrical figures, haptic perception,
the construction of the projective straight line, perspective, the coordi-
nation of persnectives, and the similarity of triangles and rectangles
amongst Zulu and white South African school children. They found sequences
of development similar to those described by Piaget with the usual retarda-
tion on the part of the Zulus. Dasea (1975) gave tests of linear and cir-
cular order, localization of topographical position, and representation
of water levels to subsistence-level samples of Eskimos, Australian
Aborgines, and Ebrié Africans in the Ivory Coast. llis finding that
Eskimos were superior to Aborigines and Aborigines superior to Africans on
these tasks parallels the results obtained by Berry (1971) using block
design, embedded figures, and other spatial tests. Once again, the con-
clusion is that African school children are likely to experience perceptual
difficulties which could hinder their learning of elementary geometry.

Representation of water levels has also been studied by Dagnall (1970)
in Papua, New Guinea and by Isaacs (1975) and Mitcheimore (1974) in
Jamaica. The last-mentioned also studied the representation of the
vertical. Before dismissing these representational skills as irrelevant
to geometry, note that Mitchelmore found them highly correlated.with
other spatial skills and that Isaacs found only small correlations
between :iem and conservation and school achievement scores.

Pictorial Depth Perception

Since Hudson (1960) founc that Bantu primary school chi. ven had
difficulties interpreting the depth dimension in a drawing of a 3~
dimensional scene, pictorial depth perception has received considerable
attention from cross—cultural psychologists. As excellent reviews have
recently been published by Kennedy (1974) and Miller (1973), no details
will be presented here. Findings for young children and illiterate
adults in many developing countries all over the world may be summarized
as follows:

s
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1. Except in extremely isolated communities which have no
experience cf pirctures, familiar objects can be identified fairly
accurately frcm a simple line drawing or photograph (Deregowski, 1968b;
Fonseca & Kearl, 1960; Holmes, 1963; Shaw, 1969; Spaulding, 1956).

2. Couventional signs such as those used to express movement are
not very well understood (Duncan, Gourlay, & Hudson, 1973; Spaulding,
1956; Winter, 1363). .

3. Cues used to represent depth in a 3-dimensional scene are poorly
understood (Dawson, 1967a; Deregowski, 1968a; Hudson, 1967; Mundy-Castle,
1966; Shaw, 1969; Vernon, 1969).

4. The frequency of correct interpretation increases with age,
education, urban influence, and cultural stimulation (Dawson, Young &
Cnoi, 1974; Duncan et al,, 1973; Holmes, 1963; Hudson, 1960; Kilbride
& Robtins, 1968; Shaw, 1969; Sinha & Shukla, 1974).

5. Depth cues of size ahd superposition are the most easily inter-
preted, and perspective is the most difficult (Dawson, 1967a; Hudson,
1960; Kilbride & Robbins, 1968; Mundy-Castle, 1966; Shaw, 1969).

A child who is unable to ''see the depth" in a drawing of a 3-dimen-
sional scene is clearly going to have difficulties dealing with any
school subject (e.g., solid geometry, science, geography) in which
informatlon is presented largely through '3-dimensional” pictures and
diagrams. Although, as will be se2n in the next section, secondary
school students in developing countries have rany difficulties making
such drawings, the research literature cited above strongly suggests
that they have few problems interpretisg 3-dimensional diagrams drawn
by others. However, the literature aiso warns elementary school teachers
in developing countries that their children may well have some unexpected
problems interpreting pictures, especially if they come from an impoverished
bacliground.

Pictorial Depth Representation

At the higher levels of technical 2nd scientific education, it
becomes necessary not only to interpret 3-dimensiona: pictures but also
to draw diagrams tc represent complex 3-dimensional configurations. To
a lesser extent, the depiction ox 2imple solid shapes is also reguired
in many subjects in lower grades. Because drawing is so much more
difficult than interpretation, the developmental process takes longer
and its effects are much more visible. However, research on the drawing
skills which are relevant to 3-dimensional geometry and the application
of mathematics in physical space protlems is rather sparse, both in the
United States and cross—culturally. This topic will therefore be treate:l
in greater detail.
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" The development of depth depiction in children's drawings of 3-
dimensional scenes has been studied extensively by some art educators
(Arnheim, 1954; Eisner, 1967; Eng, 1954; Lowenfeld & Brittain, 1966;
Luquet, 1927; Munro, Lark-Horovitz, & Barnhart, 1942). Although thers
are differences in detail, four stages are generally reported in studies
of Western children:

1. objects'float in space, not properly related to each other
or to any base line (age 4-7 years),

2. objects snown in correct topologi:zal relation to each
other but without any depth depiction, often shoving
mixed viewpoints (age 6-10 years),

3. attempts to show depth by multiple base lines, over-
lapping and even size difference, from a single viewpoint
(age 8-12 years), and

" 4. correct representation,'objects related to a base plane,
horizon in background (from about age 10 years).

Studies of single objects are much rarer. Kerr (1936), attempting
to produce an intelligence test similar to the Draw-a-Man scale (Gocdenough,
1926), found an increase in the proportion of children who drew a '"solid"
house, as opposed to a simple front view, from 10% at age 7 years to 602
at age 13-14 years, Butonly half of these drawings used oblique lines to
Show depth. .Lewis (1962, 1963) studied drawings of a transparent sphere
and a cubical house. For the houuse, she predicted five stages: <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>