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Acknowledgements and Overview

The Georgia Center for the Study of Learning and Teaching Mathematics
(GCSLTM) was started July 1, 1975, through a founding grant from the
National Science Foundation. Various activities preceded the founding
of the GCSLTM. The most significant was a conference held at Columbia
University in October of 1970 on Piagetian Cognitive-Development and
Mathematical Education. This conference was directed by the late Myron
F. Rosskopf and jointly -ponsored by tne National Council of Teachers of
Mathematics and the Depa tment of Mathematical Education, Teachers
College, Columbia Univer. ity with a grant from the National Science
Foundation. Following t c October 1970 Conference, Professor Rosskopf
spent the winter and spr ng quarters of 1971 as a visiting professor of
Mathematics Education at the University of Georgia. During these two
quarters, the editorial ork was accomplished on the proceedings of the
October conference and a Letter of Intent was filed in February of 1971
with the National Scienc Foundation to create a Center for Mathematical
Education kesearch and In ovation. Professor Rosskopf's illness and
untimely death made it i ossible for him to develop the ideas contained
in that Letter.

After much discessiop among faculty in the Department of Mathematics
Education at the University of Georgia, it was clear that a center devoted
to the study of mathematics education ought to attack a bro3der range of
problems than was stated in the Letter of Intent. As a result of these
discussions, three areas of study were identified as being of primary
interest in the initial year of the Georgia Center for the Study of
Learning and Teaching Mathema:ics--Teaching Strategies, Concept Develop-
ment, and Problem Solving. Thomas J. Cooney assumed directorship of the
Teaching Strategies Project, Leslie P. Steffe the Concept Development
Project, and Larry L. Hatfield the Problem Solving Project.

The' GCSLTM is intended to be a long-term operation with the bread
goal of improving mathematics education in elementary and secondary schools.
To be effective, it was felt that the Center would have to include.
mathematics educators with interests commeniurate with those of the
project areas. Alternative organizational patterns were available--
resident scholars, institutional consortia, or individual consortia.

/The latter organizatiunal pattern was chosen because it was felt maximum
participation would be then possible, In order to operationalize a
concept of a consortia of individuals, five research workshops were held
during the spring of 1975 at the University of Georgia. These workshops
were (ordered by dates held) Teaching Strategies, Number and Measurement
Concepts, Space and Geometry Concepts, Models for Learning Mathematics,
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and Problem Solving. Papers were commissioned for each workshop. It

was necessary to commission papers for two reasons. First, current
analyses and syntheses of the knowledge in the particular areas chosen
for investigation were needed. Second,.catalysts for further research
L.nd development activities were needed--major problems had to be
identified in the project areas on which woi-k was needed.

Twelve working groups have emerged from these workshops, three in
Teaching Strategies, five in Concept Development, and four in Problem
Solving. The three working groups in Teaching Strategies are: Differential

Effects of Varying Teaching Strategies, John Dossey, Coordinator;
Development of Protocol Materials to Depict Moves and Strategies, Kenneth
Retzer, Coordinator; and Investigation of Certain Teacher Behavior That
May Be Associated with Effective Teaching, Thomas J. Cooney, Coordinator.
The five working groups in Concept Development are: Measurement,Concepts,
Thomas Romberg, Coordinator; Rational Number Concepts, Thomas Kieren,
Coordinator; Cardinal and Ordinal Number Concepts, Leslie P. Steffe,
Coordinator; Space and Geometry Concepts, Richard Lesh, Coordinator; and
Models for Learning Mathematics, William Geeslin, Coordinator. The

four working groups in Problem Solving are: Instruction in the Use of
Key Organizer, (Single Heuristics), Frank Lester, Coordinator; Instruction
Organized to use Heuristics in Combinations, Phillip Smith, Coordinator;
Instruction in.Problem Solving Strategies, Douglas Grouws, Coordinator;
and Task Variables for Problem Solving Research, Gerald Kulm, Coordinator.
The twelve working groups are wurking as units somewhat independently
of one another. As research and development emerges from working groups,
it is .envisioned that some working groups will merge naturally.

The publication progrum of the Center is of central importance to
Center activities. Research and development monographs and school mono-
graphs will be issued, when appropriate, by each working group. The

school monographs.will be writtcn in nontechnical language and are to be
aimed at teacher educators and school personnel. Reports of single

studies may be alsO published as technical reports.

All of the above plans and aspirations would not be possible if it
were not for the existence of professionai mathematics educators with
the expertise in and commiiment to research and development in mathematics

education. The professional commitment of mathematics educators to the
betterment of mathematics education in the schools has been vastly under-
estimated. In fact, the basic premise on'which the GCSLTM is Fredicated
is that there are a significant number of professional mathematics
educators with a great deal of individual commitment to creative scholar-
ship. There is no attempt on the part of the Centyr to buy this scholar-
shiponly to stimulate it and provide a setting in which it can flourish.
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The Center administration wishes to thank the ip.iividuals who wrote
the excellent papers fov the workshops, the participants who made the work
shops possible, and the National Science Foundation for supporting
financially the first year of Center operation. Various individuals have
provided valuable assistance in preparing the papers given at j.i.z workshops
for publication. Mr. David Bradbard provided technical editorship; Mrs.
Julie Wetherbee, Mrs. Elizabeth Platt, Mrs. Kay Abney, and Mrs. Cheryl
Hirstein, proyed to be able typists; and Mr. Robert Petty drafted the
figures. Mrs. Julie Wetherbee also provided expertise in the daily
operation of tho Center during its first year. One can only feel grateful
for the existence of such capable and hardworking people.

Thomas J. Cooney
Director
Teaching Strategies

Leslie P. Steffe
Director
Concept Development

and

Director, GCSLTM

ix

Larry L. Hatfield
Director
Problem Solving



Overview!

J. Larry Martin

Missouri Southern College

Since the 1960's there have been many questions raised and statements
made in the professional literature about what geometry should he in the
curriculum, why (or if) it should be there, when it should be taught, and
how it should be taught. As a result, "more" geometry is now inciuded
"earlier" and "informally" or at an "intuitive level." Feelings of
Uneasiness among mathematics educators remain. Answers, it indeed they
can be so called, such as "more," "earlier," and "informally" are
inadequate. Alterai:ions of the geometry content in the curriculum have
tended to be tentative .-opings toward some ideal of educational pragmatism.
Pragmatism is not inhe.t ntly bad. Admittedly there is merit in a curriculum
that is both teachable and learnable. However, attempts at developing
such a curriculum would be less labyrinthine if they would be made within
a theoretical framework that took into account both the nature of the
child and the structure of the mathematiCs involved.

It is not surprising that applications of an underlying theory of the
child's conception of space cr the child's conception of geometry have been
minimal. Existing theory itself is minimal. Some mathematics educators
have turned to Jean Piaget's work to provide such a theory. Piaget has
carried out a great number of experiments dealing with the child's cunception
of space and/or geometry. His research is within the broader context of
his theory of cognitive development and the nature of knowledge. Yet
there is not unanimity among mathematics educators about how his work
should ba interpreted nor, indeed, even if it is relevant to mathematics
education.

The research workshop on space :Ind geometry Rponsored by The Georgia
Center for the Study of Learning and Teaching Mathematics was intended

,

to stimulate dialogue among mathematics educators with the objectives of
synthesizing existing knowledge concerning the child's conception of space
and geometry and identifying. coordinating, and generating related sti;dies..
The papers contained in this monograph were presented at the workshop and
provided the stimulus for what is hopefully only the initial dialogue.

Edith Robinson presents a historical sketch of the development of
geometry and demonstrates that there are many alternate approaches for
selecting the geometry content for the elementary school. In fact, there
are many different geometries from which to choose.

10



2

One basis for choosing would be the nature of physical reality; this
is, select the geometry which is most nearly isomorphic to the "external
world." But Charles Smock warns that such a choice of a mathematical model
may be self-fulfilling. He points out that a literal interpretation of
Piaget's theory necessitates viewing reality as a black box. The child
constructs his universe and then experiences it as though it were external
to himself. Thus we could never know what is "real," only what we have .
constructed as real. It is a startling but intriguing idea. At the very
least, it focuses attention on the child rather than treating him as the
black box. In hts paper Smock provides a summary of much of Piaget's
early space and geornetry research and describes critical features of
Piaget's thinking concerning the child's development of space and geometry
concepts.

lzaak Wirszup notes that the Russians have accepted many of Piaget's
tenets. However, the work of the van Hieles has inspired Russian research
more directly. Professor Wirszup reviews the van Hiele levels of development
in geometry and discusses the new Soviet geometry curriculum.. The reader
will notice obvious similarities between Piaget's theory and the van Hieles'
theory. Piaget has stages; thu van Hieles have levels. The van Hieles have
isolated networks of relations; Piaget has figurative knowledge. Yet there
are also notable differences. The van Hiele levels appear to deal more
with geometric forms; Piaget deals more with transformations. Piaget
provides age guidelines for his stages; are there similar age guidelines
for the van Hiele levels? Also in comparison with Piaget's research, both
the van Hieles and the subsequent Russian research are oriented more
towards "curriculum" and "teaching."

While Smock reviews the early work of Piaget, Jacques Montangaro
reviews more recent Genevan research. Two experients by Greco focus on
.the chilx;'s organization of spatial representations. One study utilizes
Euclidean transformations and the other transformationson a Moebius strio.,
Two experiments by Vinh Bang deal with the relations between perimeter and
area. In addition to reporting these studies, Montangero discriminates
between the figurative and operative aspects of knovledge and between logico-
mathematical knowledge and physical knowledge, two quite different
distinctions. As Montangero points out in his paper, these distinctions
have impLications for the classroom.

Directions for further reseazch on space are suggested by Montangero
and Smock from the perspective of the Geneva group. They suggest that if
new research results are to be added to those that exist in space, a change
in research method is necessary. In this view, four advantages and four
limitationq of a structural approach to the study of space are presented.
GapitaLzirw -,r1 the limitations, they suggest programs of research, through
exampl,, which hold promise for new results. The authors point out
envtIa al I y :hat an "intermediate" body of research is necessary for the
t-sults of th,,- Genevans to be applied to educational practice.

1 1
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Cro3s-cultural studies related to the child's geometrical and spatial
concepts based on Piaget's work are few. In fact, as Michael Mitchelmore
points out, .there is little cross-cultural research on geometrical concepts
per se of any sort. Mitchelmore does provide, hrwever, a thorough review
ut the rather extensive cross-cultural research an perception. Since there
are so many a!ibpopulations in the United States alone, this review should
be of special'..,Lnterest. Mitchelmore speculates on the causes of the
differences foC.,,Jd in different cultures. He also warns that alternative
explanations are.usually available.

Readers should note that often it is difficult to dctermine whether
a given task is perceptual, in the Piagetian sense (see Smock's paper),
or requires spatial representation. Borderlines are not always well-defined.
Ane not all investigators use the word "perception" in the same sense..

Thus careful analyses of the studies Which Mitchelmore -reviews could yield
clues about conceptualization as well as perception.

Richard Lesh uses transformation 'geometry as a context within which
to discuss relarionshipsomong mathematical structures, cognitive structures,
and instructional structUres. He examines proposed justifications for
including geometry in the elementary school curriculum. But these justifi-
cations frequently rely on assumed, albeit unverified, relationships between,
for example, mathematical structures and cognitive structures. Lesh suggests
research techniques appropriate for investigating the nature of such
relationships.

The intent of the preceding paragraphs has been to provide the reacler
with a brief overview of the papers in the monograph. What follows is a
collection of observations, comments, suggestions, and questions generated
by the papers and the resulting discussions. Some are reiterations cf
what is cortained in the papers. Other portions may Lppear only obliquely
related to the papers. All are impressions presented here in an attempt
to capture the spirit of the workshop. To that end, not all the ideas are
developed thoroughly, nor are all questions answe,ed. But hopefully they
will help to give the reader a sense of the rich potential for researeh
in space and geometry.

What is the purpose of geometry in tAit elementary schOol? Should
int.truction be aimed at developing the %%ild's concept of space or the
child's concept of geometry? My opinion is that the instruction should
be aimed at assisting the child develop a wOl-organized concept of space.
This does not mean that there.would not be mans geometrical concepts in
the curriculum. But the concepts would be those necessary for achietiing
the primary objective. 0

Mathematics educators must distirgAish between perceptual, represen-
tational, and conceptual space. Ouce we have made these distinctions, we
need to act like we have made them. Recognizing that at the pre-operational
level perceptions may dominate conceptions, we must also allow that perceptions
do not stand alone. Conceptions influence perceptions. Currently the
curriculum contains mostly perceptual tasks. Honest efforts to study the
child's representational,and conceptual space are necessary.

1 2
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It is also imperative to distinguish between the figurative and
operative aspects of knowing. It appeared to me that the term "figurative
thought" was often used with a somewhat negative connotation at the work-
shop. Such connotation is not inherent to figurative thought. While
Piaget emphasizes operative thought, he recognizes that figurative thought
is especially important when space conception is involved. Figurations
can serve as an aid to operations. Yet liLtle is kaown about the role
that figurative thought plays in the child's construction of space.

Invariance through transformation should be emphasized in research and
in the curriculum. This does not necessarily mean emphasizing the trans-
formation itself. As Lesh points out, focusing attention on the transfor-
mation may only serve to confuse the child. Do children think in,terms of
transformations? ,Does he think in terms of results (end points) or does
he actually consider how he might get from one point to another?

It is obvious that mathematical and psychological uses-of the same
terms do not always coincide. Much more needs to be knownlabout the rela-
tionship between cognitive "structures" and mathematical "structures" and
how one may assist in developing the other. Do physical "transformations"
pr mathematical "transfortiations" effect mental "transformations"? When
PlPget speaks of topological'concepts what does he mean? Studies are needed
which analyze from a mathematical point of view the mathematics involved
in Piaget's tasks, for there is much mathematics there.

The Erlanger Program has been appealed to as a model--a model for
what? The child's construction (process) of space? For research? In

what sense is it a model? It definitely can be used to formulate research

questiuns. The Program speaks of a set X, a group of transformations
and invariants. Research need not be restricted to a paticUlar group of
transformations nor even to a specific set X.. The Progcamm does a nice
jot of organizing transformations and displaying the invariants. By

the resulting structures many researchable questions arise
(se Martin, 1976) about ideal points, sequence of development, neighbor-
hoods, continuous functions, etc.

Mathematics educators must ask our own questions. We must not expect
psychologists, for example, to ask the questions of importance to as, let
alone answer them. But this does not mean we should ignore their findings.
Lines of communication must be kept open, indeed strengthened. Piagetian
theory, if it cannot be accepted in toto, need not be rejected in toto.
Can it be adapted and expanded upon to fit our needs? How do the Soviet

studies come in? Most of us cannot answer this last question benause we
haven't read them. We need to. Analytical comparisons between Piaget's
theory and van Hiele's theory could prove fruitful.1

1David Cilley at Northwestern University is currently studying the
van Hiele levels and is trying to fin(.: ages for each level.

13
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The frequency of examples, irlustrations, anecdotes, and analogies
drawn from the real number system 1_ make a point was striking during the

first day of the conference. The tvhcr of such illustrations drawn from

space and geometry was comparativey ,r,A11. This was dismaying at a

conference whose main concern was E;-) ,. and geometry. But it demonstrates

how little we know about the child't. ,struction of space.

1 4
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Mathematical roondations of the Development

of Spatial and Geometrical Concepts

Edith Robinson

University of Georgia

in considering the mathematical basis for elementary school geometry,

we are faced with the difficulty that there is no consensus, either in

.:heory or practice, as to what geometry should be taught in the elemen-

tary school. Although the inclusion of more geometry has been advocated
for decades, implementation has taken a variety of directions. The

curriculum has been augmented by such diverse alternatives as additional
vocabulary (new and old), modified content from high school (Euclidean)
geometry, puzzles of antiquity, and new games and hardware. Moreover,

grade placement of topics has shown comparable diversity: The study of

area, for example, has beer introduced as early as grade 1. To some

extent, the current situation reflects our lack of knowledge as to what

geometry elementary schobl children can learn, but it seems unlikely

that this will soon be remedied unless there is a strong commitment about
both the amount and kind of geometry that elementary school children should

learn.

Since the matter is as yet Unresolved, this paper will be separated

into two parts. In the first part, the history and current status of
geometry will be discussed; in the second part, impliations for the°

elementary school will be considered.

Historical Development of Geometry

There seems little doubt that as early as 2000 B.C. some geometry

was known to Babylonians and Egyptians. They were familiar with means

of computing areas of rectangles, right triangles, isosceles triangles,

and possibly the general triangle: What is now known as the Pythagorean

Theorem-was also known. Some of the accepted facts were incorrect.

For example, the area of the general quadrilateral was taken to be

ty (a + c)(b + d) where a, b, r, and d are lengths of consecutive sides.
On the other hand, if an obscure passage- in Herodotus is interpreted to

mean that the area of each triangular face of the great Pyramid (erected

c. 2900 B.C.) is the square of the vertical height, a relationship close-

ly supported by present-day measurement, then the builders may well have

been familiar with the Golden Section. Herodotus, together with the

Rhind and Moscow papyri, furnish considerable information about the

procedures devised for computing areas and volumes.

16
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Thales (c. 640-550 B.C.) is frequently credited with perceiving
the deductive possibilities in geometry. A wealthy merchant, he made
numerous trips to Egypt, and upon his retirement at an early age, took
up the study of philosophy and mathematics. During his visits to Egypt,
he had become acquainted with geometry and had calculated tbe height ot
the Great Pyramid from the length of its shadow. He also estP.blished
that an angle inscribed in a semicircle is a right angle, that the base
angles of an isosceles triangle are the same size, and he s believed
to be the first to recognize the imi.ortance of studying leci. In his
later years, he advised. one of his pupils. Pythagoras by name, to .1 to
Egypt to study mathematics. From the Pythagorean school came much jf the
geometry that later appeared in Euclid's Elements. AccordinF o Froclus,
writing in the fifth century A.D., it was Hippocrates of Chios, a

Pythagorean, who attempted the first logical organization of geometry.
Somewhat better attempts were made later by oth.irs of the Pythagorean
school. All in all, these efforts spanned some three hundred years.
The overall plan was to develop a "sequence of statements obtained by
deductive reasoning from a set of initial statements assumed at the
outset of the2 6if:course" (E-res, 1963, p. 12). Aboui, 300 B.C., Euclid,
the first professor matnematics at the famec! University at Ale:andria,
collected, organized, ..ind_supplemented known tesults in geometry into the
thirteen books of the Elements. The Elements was hat c,rte of the several

- books by Euclid. There was one on geometric fallacius, ene un spherie.11
geometry, one o surface loci, one on optics (whi.61 treated perspective).
one on conics, and one with the mysteriouL title, All of these
are mentioned ,N ?rocius. but all have beer lost ex. .pt the flements.
The descripiiens, hoi.:ver, testify to the fact that by Euclid's time, a

considerable amuuat ef geometry had been explored.

The days of the Roman Fmpire and rie Dark Ages saw little new
activity in geometry. During this tim . :here were several translations
of the Elements into Latin: some of these from the Arabic, some from
the Greek. The 1572 translation from the Greek became the source of the
English translation.

The revival of learning, however, brought with it a new interest in
Euclid's famous fifth postulate. From earliest times this had been
thought to differ in character froni the other postulates.1 Writing in
the fifth century A.D., for example, Proclus, after stating the postulate,
says, "This ought to he struck from the postulates altogether. For it is
a theorem" (Proclus, 1970, p. 150).

1
Euclid distinguished between axioms and postulmtes. No such dis-

tinction will be made here: the two words will be used interchangebly.
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This view had been espoused by many over the centuries, but attempts to
prove this "theorem" always resulted In the discovery of some flaw in

the argument. Finally in 1733, the Jesuit priest Girolamo Saccheri,
Professor of Mathematics at the University of Pavia, and an accomplished
logician, published a book entitled Euclides ab omni. naevo vindicatus

(Euclid Freed oE Every Flaw). In this, he attempted, by the method

of.reductio :1 absurdum, to prove the parallel postulate. The sequence

of theorems he ,eveloped-for this purpose include many which have now
become c1,sics of so-called non-Euclidean geometry. The "contradiction"

which h irallychtained,however, was based on a vague observation that

lines cica't !ichave that way. The diagram used by Saccheri is shown

ia In diagram, angles A and D are right angles, and

sides A'. am; LI)" are same length. He was able co establish that angles

A

Figure

B and C were the size, and that they were nct both obtuse. He was

unable to prove, however, without the parallel pcstulate, that they could
not both be acute, except by the weak argument cited above. Later it was

shown thai Euclid's parallel postulate was equiwilent to postulating that
a rectangle exists--it will be noted that Saccheri was unable to prove
satisfactorily that the quadrilateral shown was a rectangle.

Saccheri's book was withdrawn from the mark.at reratively early.
During the eighteenth century, two other mathema:icians, Lambert and
Legendre, also made attempts to prove the fifth postulate by the method

of reductio ad absurdum. 'loth encountered the sime difficulty as

Sacrheri, namely that of disproving the'acute angle case.

The fifth postulate, as stated by Euclid is:

If a .straight line meets two straight lines, so as to
make the two interior angles on the same side of it
taken together less than two right angles, these'
straight lines, being continuously produced, shall at
length meet on the side on which are the angles which

are less than two right angles. (Todhunter, 1955, p. 6)

The version which is more familiar is the Playfair axiom:

Through a given point A not on a given line m there
passes at most one line which does not interset m.
(Eves, 1973, p. 445)

1 8
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Between 1792 and 1813, the Prince of Mathematicians, Gauss, attempted
a proof of the Playfair axiom. Failing in al1 of his attempts, he
developed a geometry in which this did not hold, but apparently fearing
ridicule from the mathematical community, never publiAhed his results.
Upon his death in 1855, however, his interest in the problem was dis-
covered, and attention thus drawn to two other papers. One of these, by
the Russian Nicolai Ivanovitch Lobachevsky, had been published in 1829, and
the other, by the Hungarian JclUos Bolyai, had appeared in 1812. Both
Lobachevsky and Bolyai had independently developed geometries in which
it was taken as a postulate that through a given external point, at
least two lines can be drawn parallel to a given line. One consequence
of this axiom is that thc sum of the measures of the interior angles
of a triangle is less than two right angles, whereas by Euclid's
postulate, the angle sum is exactly two right angles. Which is true? Reputedly
both Gauss and Lobachevsky attempted ta settle the matter "in the large"
Gauss by taking a triangle formed by three mountain peake, arid Lobachevsky
with astronumical distances. Both got results that differed from 1800,
but by no more_than...conid_ha accounted for-by experimental-error; Thus-
the matter was not settled.

The furor caused by the discovery of non-Euclidean geometry
resulted in close scrutiny of the foundations of mathematics. The whole
question of formal axiomatics was explored, with emphasis on consistency--
that is, freedom from contradiction.. In 1868, Beltrami exhibited a con-
sistent model for Lobachevsky-Bolyai geometry within Euclidean space, thus
showing it to be consistent if Euclidean geometry is. The new interest
in foundations gave rise to several new sets of postulates for Euclidean
geometry which remedied the various logical flaws. (For example, using
Euclid's postUlates, it is possible to prove that all triangles are isos-
celes.) Of the dozen or so such sets of postulates, these of Hilbert
(1899, subsequently revised) and Birkhoff (1932) are probably best known.
As aa indication of the continuing interest in this aspect of geometry,
another vet of postulates for Euclidean geometry was deveioped,by Levi
in 1960.

In 1854, Riemannshowed that another consistent geometry could be
based on the assumption that any two lines in a plane meet; that is,
through a given external point, no lines can be drawn parallel to a
given line. With this development, there were now three geometries bsed
on three different parallel postulates, and a choice of:

1. The angle sum for the triangle is greater than 1800.

2. The angle sum of the triangle is equal to 140°.

1 9
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3. The angle sum for the triangle is less than 1800.

All have useful models. As to which truly describes physical reality,
we simply do not know. There is some evidence (Tuner, 1967, p. 18) that
the binocular vision of normalfy sighted individuals is best described

by the hyperbolic model (Lobachevsky-Bolyai). However, as Poincard

pointed out at the beginning of the twentieth century, physical experi-
mentation, as with mathematics, rests on axioms. For example, it is

assumed that light travels in straight lines.

The development of geometry was not restricted to the study of the
joundations. In 1639, an.engineer named Desargues published a treatise
on conic sections in which he used the notion of an "ideal point" and
an "ideal line" added to the Euilidean plane. At the time the only
attention the book received appears to have been ridicule. For one
thing, Desargues' style of writing was, by all accoants, tedious (all
printed copies of the original manuscript have been lost), anj the termi-

,nology he employed baffling. For another, Descartes' book in which he
described his analytic geometry had appeared in 1637 and this, together
with new results in the calculus, served to direct attention away from geo-
metry. The Napoleonic era, however, saw a lively group of mathematicians
at the Ecole Polytechnique in Paris, among whom was Gaspard Monge. To

solve certain military problems, Mange developed descriptive geometry--
the geometric theory of representing three-space figures in two-space.
One of Monge's pupils was Jean-Victor Poncelet. Poncolet was later an
officer in the Napoleonic army and was taken prisoner during the rtreaL
from Moscow. During the year he was imprisoned in Saratoff, he survived
the rigors of prison by recalling and rearranging all that he nad,learned
of mathematics, and he returned to France with material for ":leven manuscript

notebooks." One of these, published originally in 1822, was a book on pro-

jective geometry. The turn of the century had seen the rediscovery of a
manuscript copy of Desargues' work, prepared earlier by one of his students.

Also, a work by Pascal_ (another student of Desargoes) was rediscovered in
which he credited Dusargus with having suggested the methodology for the
proof of a theorem. Projective geometry now came into its own. The

Origins of the ideas of projective geometry date back to the Greeks.
Apollonius (?262-200 B.C.), for example, wrote on conic sections including
cases in which the cone is oblique: Menelaus (?100 A.D.) established the

cross ratio property of a transversal drawn across a pencil of lines: and

Pappus (7300 A.P.) established the theorem which still bears his name.
During the Renhis,:ance. painters had struggled with the problems of
perspective: DUrer, writing in 1525, investigated the problem scientifi-
cally (i.e., geometrically). DUrer, as a matter of fact, should probably,
be givep much more credit for his role in the development of projective
geometry. One of the more intuitive aspects of early projective geometry
was the recognition of invariant properties--the viewer of an object per-
ceives different images from eifferent points of- view, yet there are cer-
tain similarities which enable him to recognize these as images of the

same object. At a later time, these similarities were to be more pre-
cisely described as "the set of properties preserved under projective

2 0
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transformations." Ati"first, projective-geometry developed as an extension
of Eucli:ean geometry; that is, rhe paral!el postulate of Euclid was in-
cluded. However, during the-era of interest in foundations, it was
shown that projective geometry is independent of the parallel postulate.
Henceforth it was developed as an abstract geometry based on its own set
of axioms. Within this framework, Euclidean geometry became a particular
case of projective geometry.

The nineteenth century argli saw one other important development in
geometry. In 1872, upon his appointment lo a professorship at the
University of Erlangen, Felix Klein presented his definition of geometry
as the study of properties which remain invariant under groups of trans-
formations. The nineteenth century had seen the development of the theory
of abstract groups; models (that is, realizations) of groups include the
symmetries of regular polygons and polyhedra. The Erlanger Program, as
Klein's proposal came to be known, represented another link between algebra
and geometry (Descartes had provided an earlier link).

Geometry Today

The historical sketch presented above is just a sketch; many important
persons and contributions have been omitted. What was included was back-
ground information to illustrate three main dirc:tions, or themes, which
seem to have predominated:

1. Axiomatics. Modern axiom schema must meet certain criteria:
Most important is consistency; in addition, independence,
completeness, and categoricalness must be met.

2. Geometries, not geometry. There is, in addition to Euclidean
geometry, projective geomotry, hyperbolic geometry, elliptic
geometry, several Riemannian geometries, inversive geometry,
and so forth.

3. Methodology. A gross classification here would be synthetic
or algebraic. The former ricludes sets of axioms with only
Pflometric content; the latter includes "metric" axiom schema,
group structures, and vector methods.

These directions, of course, are interdependent. They serve to under-
score, however, the flexibility which characterizes "geometry" tnday.
The present day mathematician, attempting to solve a geometric problem,
has at his command a variety of methods of attack, and, for a given
problem, one of these methods may.be substantially easier than another.
There are, for example, theorems which are easy to prove with analytic
method:, but difficult to prove synthetically; there are theorems which
are difficult to prove synzhetically but easy to prove using groups of
transformations; there are also theorems which are easy to prove synthe-
tically but difficult to prove analyrically. The present day mathemati-
cian may also "borrow" results from one geometry to assist in the solu-
tion of a problem in some other kind of geometry; the clarification of

2,1
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axiom systems enables him to determine when this can be done with impunity.

Geometry today may be studied by any one of a variety of approaches.
As a matter of fact,.the debate that wages today over whether high school
geometry should be taught traditionally (a synthetic approach), by vector

methods by transformations, or by some eclectic method (including the
coordinate plane) , reflects both the availability of multiple approaches
and the desirability of the attendent flexibility for problem
solving.

Some classifications of geometries. The flexibility alluded to
above permits several schemes for classification of geometries. Some

of these are diagrammed In Figure 2. Figure 2a is from Meserve (1955,
p. vi), and Figure 2b is from Coxeter (1965, p. 19). A scheme for classi-
fication which incorporates the Klein definition of geometry is shown in
Figure 2c (modified from Coxeter & Greitzer, 1967, p. 101). It should

be noted that in Figures 2a and 2b, Euclidean geometry is considered
to be a special case of projective geometry.

r
projective elliptic affine hyperbolic

I 2
affine non-Euclidean Euclidean Minkowskian

Euclidean

(a) (b)

topological transformations

linear transformations

similarity transformations Procrustean stretch

isome ries dilatations

reflections rations translations

(c)

Figure 2

central dilatations

7
-Hermann Minkowski developed a "world geometry" from the general

theory of relativity.

2 2



14

To illustrate the first two of these genealogical trees, some axioms
for projective geometry are:

P-1: If A and B are distinct points, there is at
least one line containing both A and B.

P-2: If A and B are distinct points, there is not
more than one line on both A and B.

P-3: If A, B, and C are points not all on the same
line, and D and E q.re distinct points such that
B, C, and D are on a line, and C, A, and E are
on a line, there is a point F such that A, B, and
F, are on a line and also D, E, and F are on a line.

P-4: There exists at least one line.

P-5: There are at least three distinct points on every
line.

P-6: Not all points are on the same line. (Meserve, .1955, p. 26)

Since all of these postulates hold for Euclidean and non-Euclidean geome-
tries, any theorem derived from these six axioms holds in .?!.ther subgeometry.
For example, both of the following theorems hold for Fuclidezn, hyperbolic,
or elliptic geometry:

Theorem 1: If two points of a line are on a given
plane, then every pcint of th line is on
that plane.

Theorem 2: Any two distinct coplanar lines intersect
in a voique point.

On the other hand, because of the differences in the postulates for
parallels in the non-Euclidean and Euclidean geometries, we have the
following theorems:

1. For Euclidean geometry. Two lines in the same plane
which are perpendicular to the same line are parallel.

2. For hyperbolic geometry. Two lines in the same plane
perpevdicular to the same line are hyperparallel.

3. For elliptic geometry. Any two lines in the same
plane intersect.

3
In Euclidean geometry, the point F may be the "point of infinity."

9, A
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With respei.lt to the classification by transformations, in Figure 2c,

there are definitions such as: "A topological transformation is a mapping
of the plane onto itself which is 1-1, continuous, and with a continuous
inverse" (Gans, 1969, p. 190), and theorems such as:

1. There is a unique similarity transformation that sends a
triangle ABC into a similar triangle A'B'C so that A, B, C

goes to A', B', C', respectively. (Gans, 1969, p. 75)

2. Every rotation is the resultant of reflections in two lines
throuph its center. (Gaas, 1967, p. 55)

These two types of classification illustrate the flexibility of
approach which is possible for the study of geometry today. However,

regardless of their seeming dissimilarity, in any formal approach, the
geometry is organized into a sophisticated chain consisting of: definition,

axiom, theorem, proof. Furthermore, in essenLe, this situation has
obtained since Euclid write the Elements. One must go back to the days
of the early Egyptians and Babylonians4 to cind much geometry that is of

anempiricalnature. This is in contrast to the situation which charac-
terized algebra, in which axiomatic structure came late upon the scenc

(19th century). Prior to that time, solutions to general classes of
problems (e.g., cubic equations) were determined outside of any axiomatic

system. Generalization, rather than formalization, characterized
developments in algebra. As a consequence, in school we meet the integers
first as solutions to equations of the form a + x = b; later they can become
a "concrete" wdel for the algebraic structure known as an integral domain.

Some Curricular Considerations

Implications from the Subject

Obviously, the formal definition-axiom-theorem-proof approach to
geometry is not suitable for elementary school children. Also, as just

mentioned, the historical development of the subject does not provide
the nice curricular model furnished by algebra. Nevertheless, the history

and present status of the several geometries do suggest some alternatives
for selecting geometric content for the elementary school. (These alter-

natives are not intended to constitute an exhaustive list!)

4 Some historians believe that much of the sane geomttry was known

to the ancient Chinese and Indians, but that these were not written on

materials which could survive the ages.

I
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First, there is the historical route. This has been the traditional
one; to the extent that geometry has been taught at all in the elementary
school. Mensuration formulae are studied first. Then, in :he upper grades,
some work is done with similar triangles and indirect measurement. In
high school, classical Euclidean geometry is studied; then, in college,
other geometries (if an) geometry at all) are studied. One problem with
this approach is that elementary school children nave difficulty with
measur'meut of all kinds, and this serves to delay the introduction of
geome:_ry.

'1 1, there is the route of material axiopatics. In contrast to
forma: ayiowitics, in which objects may have only the properties assigned.
to them by axiom or definition,.material axiomatics assumes the objects
of study to have, in some sense, been known prior to the setting forth
of the axioms. Essentially, this was the Greek notion as exemplified by
Euclid in the Elements. As applied to the elementary school curriculum,
the children would be "led" to "discover" such axioms as:

Given two distinct points, there is one and only one
line containing them.

. Two lines in the same platte can meet in at most one
point.

Some contemporary textbooks seem to take this app'roach ,and ask leading
questions, the answers to which are essentially the Euclidean postulates.

Third, there is an approach in which children learn certain theorems
by experimentation. Activities based on paper folding, for example,
seem to illustrate this approach. By folding paper, or by drawing a suit-
able number of pictures, children can convince themselves that the base
angles of an isosceles triangle are the same size. By fitting a rectan-
gular piece of cardboard, or a carpenter's square, into a semicircle, the
"truth" of the theorem that an an,le inscribed in a semicircle is a right
angle can be demonstrated. Tearing triangular sheets of paper substan-
tiates the Euclidean angle sum theorem. Studying equatorial lines on a
sphere generates cer9in theorems of elliptic geometry. Some examples
of this kind are to be found in the literature for elementary school
mathematics.

Fourth, there is the route suggested by the Erlanger Programm. When
considered formally,'this route may seem to be impossible. However, the
invariants under the various groups of transformations include many of
the properties and relations for which definitions are given in any formal
course in geometry, viz., parallelism, perpendicularity, congruence for
triangles, congruence for angles, congruence for segments, similarity.
and betweeness. (Betweeness, of course, may be taken as a "primitive
notion" in a synthetic approach, but it iS defined in a metric approach.)
Transformatioas themselves can be easily illustrated in an experimental
setting. Rotations can be illustrated, for example, by turning a sheet
of paper about a point, and projeztive transformations by casting shadows.
Since this approach seems not to have been tried, a few examples may not
be out of place here.
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The formal definition of a topological transformation given earlier
may seem formidable, but it is easily illustrated. If a rubber band is

stretched, whether uniformly or not, so as it is not broxen or made
to cross itself, that deformation is an of 3 "continuous trans
formation" whose "inverse is also continuouC that is, it models a topo
logical ':ransformation. Sometimes c:Alled "elastic motions," topological
transformations can be modeled with kindergarteners' clay, with balloons,
and with elastic thread. Two of the invariants are: order along a curve,

and interior (exterior) of a simple closed curve ("being a simple closed
curve" is also an invariant). Size and shape are not invariants: Circles

can be deformed into triangles, into larger (smaller) circles, or into
any other kind of simple closed curve. Strhightness is also not an
invariant under topological transformatidn5; that is, in the same sense
that all simple closed curves are "topological equivalent," a line, an
angle, and parabola are also equivalent.

Under projective transformations, straightness is an invariant: The

shadow of a straight stick will always be straight. Size and shape, however,
are not invariants. ThE shadow of a stick may be longer than, shorter than,
or the same length as the stick, and the shadow of a circle (ellipse) may
be an ellipse (circle). Moreover, any topological invariant will be a
projective invariant, since projective transformations are particular kinds
ot topological transformations. The isometries (rotations, reflections,
and translations) have size and shape as invariants in addition to all
Lovarian;i mentioned so far.

It was Mentioned earlier that the idea of an invariant property arose
in the context of a viewer recognizing an object from different images
received as he viewed it from different angles. Apparently, the viewer
is attentive to certain visual "cues" in making such judgments. Possibly
childen could learn for themselves the cues which tell them whether a
particular figure could result from a projection (or rotation or
reflection, etc.) of some given figure and, in this way, develop some
meaning for terms such as "congruence," "perpendicularity," and "similarity"
prior to the introduction of these words. It should be noted that one
of the difficulties encountered by students in a course in Euclidean
geometry arises wieh cases of "overlapping triangles," as, for example,
triangles ADC and CEA (or triangles ABE and CBD) in Figure 3. In each of
these pairs, one is the image of the other under a reflection, and
perhaps a transformation approach might alleviate the difficulty.

ow'

Figure 3
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Artl.z!lation with High School Geometry

One argument for articulation between elementary and high school
geometry is that of preventing compartmentalization of content into unrelated
collections of "facts.." Such compartmentalization neither reflects the
nature of mathematics nor contributes to the mathematical development

. of the student.

In view of the deductive nature of the usual high school geoMetry
. course, articulation may not seem to be possible unless by "articulation"
one means a kind of duplication--duplication of the simpre<and easier)
parts of the course. As a matter of fact, it has sometimes been recommended
that some of the easier parts of the high school geometry course be moved
down into the elementary school. However, there are some well-known
difficulties with traditional high school geometry, one of which (recog-
nizing overlapping triangles) was mentioned in the previous section.
Perhaps articulation could be aimed not so much at preparing students for
the easy parts of the course, but for the more difficult.

The example of recognizing overlapping triangles was cited as a
possible outcome from studying transformations. The typical method for
handling this difficulty in high school is to make it the specific
goal for One or more lessons. The lessons might begin with teacher or
textbook asserting that there are more than three triangles'in Filure
4a, or demonstrating by drawing Figure 4a separated as in Figure 4b.

After more examples, the students might be asked to name all the triangles
in a fiEure such as Pigure 4c. No outcome for the lessons is expected
other than that students be able to recognize inatances of overlapping
triangles. Furthermor-, within this necessarily compact settingand
with only a small number of instances, not all students acquire the
requisite proficiency.

a

Figure 4

2 7



19:

In contrast', if learning to recognize images of figures under

transformations is the aim of a series of lessons, and if the pace can

be more leisurely, students might not only learn to recognize instances

of overlapping triangles (images under reflections) but also to make

correct identifications in other slippery cases. In Figure 5, for example,

triangle HJK can be the image of triangle KLH, and triangle BMC the image

of triangle DMA under (separate) rotations of the plane. In this setting,

the student may gain experience with not just one, but three interrelated

competencies, lack of any of which can prove troublesomein'formal geometry:

1.

2.

3.

recognizing pairs of congruent triangles,

recognizing pairs nf overlapping congruent triangles, and

identifying corresponding parts of congruent triangles.

With respect to the third, corresponding parts are those which are images

of each other under the transformation, and this, of course, is true

when the transformation is a similarity as well as when it is an isometry.

Figure 5

It may be instructive at CAJ poinr to look at some of the other

_____AtfficultiAs and misoonooptioAs of studen.:s of high school geometry5 to

see if there are other implications for the elementary school. The most

obviouS difficulty, of course., is vIth writing proofs. Another is

difficulty in using algebra where needed for solving numeri,:al problems.

A third difficulty,is with definitivns--believing, for example, that

any scalene triangle has a hypotenuse. Aside from these, however,, there

5 For the remainder of this section, the term "high school geometry"

will mean traditional ''uclidean geometry taught deductively.
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are others which are either more subtle or whose resolution is less clear-cut, but which, nevertheless, impede the student's progress. In thefollowing outline some of these are listed and classified, with no claimthat the six categories shown are either mutually exclusive or ekhaustive.

I. There are difficulties with the relational aspects of geometry.
Four examples are:

A. Codfusion with the meaning of the word "equidistant."

1. BC AD -> AB 5 because "parallel lines are .

everywhere equidistant." /

2. 13-6* bisects 4. ABC => DA =4 DC because a "point on the
bisector of an angle is equidistant from the sides."

E3

3. For locus problems, "equidistant" is often taken to mean
"at a given distance."

B. Confusion with the words "complement" and "complementary."
For example, a student may say "A complementary angle equals
a right angle."

C. Not understanding proportionality. For example, if the
problem is te partition a segment into parts proportional
to three, given segments, many students do not know what
this means, and even when shown the "correct" solution, do
not understand why it is correct.

D. Confusion with perpendicularity. For example, when required
to construct a perpendicular to BC from D, some students draw
DC, and others construct a perpendicular to AB at D.

2 9
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II. Difficulties with measurement. Two examples are:

A. 'Not believing that a square a)d a triangle can bound regions
having the same area.

B. Not believing that the ratios of the areas bounded by similar
polygons is that of the squares of the corresponding sides.

III. Drawing unwarranted conclusions
6

from a theorem or from a sequence
of theorems. Five examples are:

A. Assertins Lhat when two parallel lines are cut by a transversal,
the interior angles on the same side of the transversal are
congruent.

B. Asserting that AB 2' DE because "If a series of parallel lines
cut off congruent segments on one transversal, they cut off
congruent segments on every transversal."

C. Believing that two triangles are congruent be SSA.

D. Believing that two triangles are congruent by AAA.

E. Believing that any two equilateral triangles are congruent
by SSS.

IV. A theorem is not used when needed, or it is used incorrectly.
Two examples are:

6
These unwarranted conclusions do not appear to be logical difficulties,

but rather inability to perceive the "truth" of the situation.
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A. The theorem, "The segment joining the midpoints of two
sides of a triangle has half the length of the third
side" is not used when applicable.

B. When using the theorem, "The side opposite the 300 angle
in a 30-60 right triangle has half the length of the
hypotenuse," the student takes that side to be one-half
the length of the other Isg.7

Before proceeding to the last two categories, it may be noted that the
examples so far have to do/with the students' belief system, for they
are cases of mis-belief or dis-belief. That is, it appears that the
mysterious entity called "intuition" is at work. In the case of "comple-
mentary angle," the intuition seems to be lacking; in the case of thg
side opposite the 300 angle, the intuition seems tp be faulty. Perhaps
in each of these cases we might say that the student "does not undera.tand
the theorem," but that does not tell us very much. Furthermore,"Af
we look at the "interior angles on the same side of the transversal"
situation, who could believe that a and (3 are the same size in Figure 6a?
So why would a student aay the angles were congruent? One might argue
that he does not know the meaning of thephrase,"interior angles on the
same side of the transversal," yet Figure 6a does not,assist the student
in arriving at the correct relationship. On the other hand, Figure 6b
convinces students DE 11 AC, but not that DE = LI AC.

4

Figure 6

The last two categories seem to support the lack-of intuition theory.

7
Here it appears that the proof ofthetheorem is not convincing.

What is revealing about the first example is that the other half of the
theorem, viz., that the segment is parallel to the third side, Is used.
So the theorem doe'not seem to entirely agree with "truth" as the
student perceives it.
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V. Difficulties with orientation. Although these apply only
to a very few students, they are still revealing. Three
examples are:

A. In%Figure 7a,' the line is noc etraight because
it'is neither horizontal tor vertical.

B. In Figure 7b, the angle is not a right angle because
the vertex is on the left.

C. In Figure 7c, the angle is not a right angle be,:ause
the sides do not have a horizontal-vertical alignment.

0

Figure 7

VI. Other common misconceptions:

A. Big triangles have bigger angles than small
triangles. Thus if tlic sides of one tri-
angle are odice the length of the sides of
another, the angles have the same ratio.

B. The diagonals of a parallelogram always bisect
the angles.

C. The diagonals of any-,parallelogram are congruent.

D. The bisector of an angle of a triangle always
bisects thd opposite side.

E. A median to one side of a triangle always
bisects the opposite angle.

F. An altitude to one side of a triangle always bi'sects
that side.

-

C. It is always possible to draw a line which bisects one
angle of a triangle and is also the perpendicular bisector
of the opposite side.
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j. An arc of a circle is equal to its chord.

i. There are many misconceptions about ratios;
in general, students have trouble setting up
correct ratios between sides of similar triangles.

Difficulty with writing proofs has already been mentioned. What

is apparent, however, is that no amo.l.t of instruction devoted to the
theory of proof construction will gua antee that a student will give
a correct proof if, for example, he believes that the diagonals of a
parallelogram bisect the angles. The above list of mis-beliefs and
dis-beliefs, then, displays factors which can effectively interfere
with a student's achievement in high school geometry. A natural question

is whethee the study of geometry in the elementary school might contri-
bute to the development of this thing called "intuition."

Nearly all of the rwenty-five difficulties just listed involve a:
relation in the mathematical meaning of the word; for example;

is parallel to,
is perpendicular to,
is supplementary to,
is complementary to,
is in the same ratio.as,
is congruent to,
bisects.

Appare.ntly'some relations are obvious--a scalene triangle, for example,
has a'Iongest side, and the segment joining the midpoints of two sides
of a triangle is'parallel to the third side. But some are not so obvious.
Perhaps the implication for the elementary school is that the focus be
shifted from properties to relations.

Properties are descriptions of point sets which serve to qualify
(or disqualify) those sets for class membership. Thus, we have such pro--
perties as,_

having x number of sides,
being a polygon,
being a polygon with s number of sides,
having a measure of 900,
having measure less than 900.

Relations, on the other hand, always involve pairs of point sets, of which
"belonging to the same class as" is a fairly simple example. One of the

.advantages of the Erlanger Program is that certain relations are invariant
when the space is transformed by any member of some group of transformations.
Thus, under the topological group, the rectangle labeled X in Figure 8 may
look like any of the figures on the right but can never look like a figure
on the left. Under the,group of similarity,transformations the rectangle
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labeled X in Figure 9 may look like any of the figures on the right but
cannot look like any of the figures on the left.

07 1

Figure 8

Figure 9

p

To explore the relation, "Y is the image of X," the student must
be attentive to some perceptions and ignore others. In something of the

Gestalt sense, the invariant becomes ihe figure,.the irrelevant features
the ground. In mathematical terms, under the topological group, for the
relation"Y isthe image of X" (the rectangular set X shown in Figures 8 and 9)
to hold, it is necessary and sufficient that Y be a simple closed curve.
Under the group of similarity transformations, "being a simple closed
curve" is necessary, as is "having four sides and four right angles."
But neither condition is sufficient--sufficiency requires the propor-
tionality relation for sides. Furthermore, it is not essential that
the viewer know the words, "rectangle," "right angie," "simple closed
curve," or "proportion," in order to recognize point sets whiCh could
be the image of X. As suggested in the previous section of this
paper, the transformations are easY to model using hands-on materials,
so that the student can obserye results. Then with the right sort
of questioning.he can predict whether some other figure could or
could not be an image. The importance of the relation is Xhus established
as an integral part of the problem situation, and need not be introduced
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in isolation because its importance will be understood "later" or because
"that's what mathematicians study."

"Intuition" is one of those undefined terms, like "mathematical
maturity," which is probably well noderstood in the trade,,but which is
hard to describe. Whenever used, hoWever, it does seem to include
such characteristics as ability to imagine c:(rcumstances different from
those given, and to predict what would happen under the new circumstances;
for example, being able to predict what would stay the same and what
would change if the figure were larger, or smaller, or of a different
shape. Such ability would seem to be what is needed in high school geo-
metry to forestall such unwarranted cmclusions as "a bisector of an
angle of a triangle always bisects the opposite side."

We tend to think of geometry as a mathematical model of space, and
perhaps the appeal that Euclidean geometry has long enjoyed is that it
characterizes space as we perceive it. But that means that the relations
we recognize as being "true" turn out to be valid consequences of the
axioms. However, geometry cannot have that appeal if we fail to recog-
nize certain relationships as being true. Thus a student is unlikely
to find hi0 school geometry very appealing if he is lacking in the kind
of intuition that tells him, "but of course, that has to be."

Summary

The history of geometry has been unique in mathematics in that it
was formalized as a deductive system very early. Thus if there were
intuitive roots such as characterize the history of the study of number,
these have been lost in antiquity. Furthermore, geometry has not always
been viowed as being as necessary as arithmetic in everyday life. Yet
geometries constitute an honorable branch of mathematics and deserve a
place in the education of children.

The rise of the non-Euclidean geometries showed that a theorem is
no more true than the axioms on which it is based. Hence it makes
little sense to enquire which geometry is "true"; it does, however, make

, sense tb enquire whico geometry (or which approach to geometry) would
be more pedagogically sound for children.

Some students study geometry in high school, and for these students
some.articulation between the content of high school geometry and rhat
of the elementary school would seem desirable. At the present time,
the high school geometry course is under attack, with heated -lebates
among the proponents of z. vector approach, a transformation approaah,
an electic approach, and those who favor the traditional clurse. Yet
regardless of how the matter is resolved, Euclidean space will most
likely be the central core. Thus anything the student already knows
about the nature of Euclidean space will be of help. Facts are nice
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to know; vocabulary is also nir:e to know. But what is even nicer is to
be able to visualize altered circumstances and arrive at a sound conjecture
about what "has to be the case." As a matter of fact, this is nice to
know even if you nev4r take another course in geometry.
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Piaget:s Thinking

about the

Development'of Space Concepts and Geometry
1

Charles D. Smock

University of Georgia

For the genetic espitemologist, knowledge results from
continuous construction, since in each act of understanding,
some degree of invention is involved . . .

Jean Piaget

The conceptual revolu/ion for psychology and education required by
Piaget's epistemology isArthink, more appreciated than understood.
That is, Piagetian ideas pass around as common currency, among researchers
and prictitionerS alike, but all too often turn out to be only vague
facsimiles or counterfeit copies. If we are to benefit fully from
Piagetian ideas of psychological development and learning of mathematical
concepts, we must translate those ideas with as little transformation
as possible. In this paper, I hope to do just that in the context of
the purpose of this workshop, i.e., review selected theoretical and
methodological issues relevant to research into the development and
learning of space and geometry concepts. Specifically, I will (a) review
certain critical features of the epistemological and theoretical aspects
of Piaget's positions vis-a-vis the development of space concepts, (b)
review the available evidence concerning the construction of the "perma-
nent object" which is the fundamental invariant of our spatial world, and
(c) summarize Piaget's early work on space and geometry, and (d) offer
some methodological suggestions and guidelines for inquiring into cogni-
tive development in general and space and geometry in particular.

1
This report is based on activities supported (in part) by the

Mathemagenics Activities Program-Follow Through, C. D. Smock, Director,
under Grant No. OEC-0-8-522478-4617 (287) Department of HEW, U. S. Office
of Education. However, the opinions expressed herein do not necessarily
reflect the position or policy of the U. S. Office of Education; and no
official endorsement by the U. S. Office of Education should be inferred.
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First, as I argued in an earlier paper (Smock, 1973) a coherent,
accumulative body of "facts" based on psychelogical research on the
development of space is necessary but not sufficient for building a
theory of instruction. Our observation and interpretation of facts are

- heavily prestructured by our epistemological belief and kmowledge base
or cognitive structures. Understanding of the relevance and implications
of Piagetian concepts and data for educaticn depends on each of us
starting at the beginning--i.e., with his theory of the nature of know-
ledge and knowledge acquisition and then building up our personal know-
ledge base of empirical findings and demonstration of ideas generated
from appropriate experimental settings. Until recently, American
researchers' contribution to an accumulative body of knowledge relel,ant
to Fiaget's theory was limited to replication of Genevan studies. Current
research indicates that the methodological implications (of which I will
speak later) of the theory are more ciearly recognized (e.g., Forman',
1973; Overton & Jackson, 1973; Toyssaint, 1974)- But, n any cait:, the

, mathematics education researcr heeds to build his' understanding of the
implications of psychological research findings gn a firm understanding
of the epistemological considerations that are the foundation of Piaget's
theory of cognitive development and'learning.

Piaget is characterized as a "natural genetic epistemologist." The
adjectives may be interpreted with little ambiguity, i.e., "observations
of the crigiite (of knowledge). however, the specific epistemolcgical
position of Paget is not so rattily lobated, even from his own writings,
but -e are strong indications that he represents d "radical construc-
t', view (Smock, 1973; Smock 6 von Ciasersteld, 19i4; von Glasersfeld,
L. That is, the environment is, and must remain, a "black box."
Al. ,-- ever "know" is our own cognitive structures. Knowledge is no
mo ,g less, than constructed'invariants of organism-environment
relati..., but this construction

0

involves the adjustment of, for instance, percepts to
conceptual structures which the perceiver has already
assembled; and this adjustment of the new to the old is
called 'assimilation.' But cognitive equilibration also
involves the adjustment of concepts to percepts, and
this second type of adjustment, which can take the form
of creating a novel structure or of combining sf-Yeral
already assembled structures to form a larger conceptual
unit, is called 'accommodation. (von Glasersfeld, 1974, p. 4)

The process of development and learning (cp-ottime recrieniganion) is
then, t response to conflict' among internal functional structures'(Smock,
1969, 1974).

The genetic epistemology of Piaget assumes that spatial concepts are
constructed through commerce with the perceived environment and are only

4 0
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one aspect of the development of general cognitive structures. Expectedly,

then, three theaes characterize the Genevan research on space. First, the

primary concern is on conceptual and representatioaal space not P erceptual

space. Thus, acquisition of concepts of the spatial werld(s) Is a product

of general intellectual developent. The genesis of- space perception is
treated separately; the series of experiments on perception is used to high-
light-the contrasts of perception with that.of space representation.

A second theme emphasizes that spatial representations are_huilt up
through the process of organization of actions and/or legico-mathematical
experience. Initially these are sensory-motor actions (resulting in
"practical" space) which later are internalized actions that culminate
in operational (infra-logical) systems. The active manipulation of the
spatial-temporal environment (objects, empty space, intervals, duration,
movements), rather than a passivecopyingby the perceptual system,
generates representations of space.

Finally, a third theme is. the characterization of spatial concept
acquisitions according to th, vpe of geometric concepts involved--tepo-
logical, projective, or Euclidean. According to Piaget the historical
order (Euclidean, projective, topological) is reversed logically and
ontogenetically.

Object Permanence

The construction of space representation emerges at the beginning
. :he concrete operational period (ages 5-7) from preceding preopera-

tional cognitive acqu4itions of the '!practical grouP of displacements"
and the even earlier construction of the sensori-motor,period. In the

beginning, there is an "object"--the origin of, and basic unit for, the
development of spatial relations as well-as tfie starting point of Piaget's

analyses of the nature of knewledge.2 Thus, an Ithderstanding of the

development of object permanence is essential for "knowing" Piaget's
epistemblogy as well as his psychological theory of the concepts of
space.3

2 Citations of Piaget's ..Jrk will be used only as necessary to iden-
tify specific sources,of ideas (e.g., quotations). A selective set of

primary sources in,listed in the references.

3See E. von Glasersfeld's (1974) discussion for more details on the
epistemological aspects of the notion of the constructed permanent

"object."

41



34

The infant is at first not aware of any lermanent objects, but
merely "perceptual pictures," which appear, disappear, and perhaps
reappear. In its simplest form, attainment of object permanence means
that the infant knows the object continues to exist when it is outside
of the perceptUal field. The indicator of this knowledge (object
permanence) consists in "true search" on the subject's part. A true
search is a search for the vanished .object independent of subject's
on-going actions and perceptions.

The simplest procedure Piaget used to test the "object permanence"
is as follows:

1. E shows the child the object (e.g., a doll).

2. E grasps the object in his hand so that the child no longer
sees the object.

3. E puts his hand under a coverlet.

4. E withdraws the hand closed.

5. E extends the closed hand to the child.

If the child opens the hand, finds it empty, goes on to search for the
object under the coverlet and gets it, then he is considered to have
attained the concept of object (i.e., object permanence).

The "logic" supposedly necessary for the attainment of object
permanence by the child is as follows:

1. There is an object.

2. A and B are the only possible places the objcct could be.

3. The object is not a A.

4. Therefore, the.object must be at B.

According to Piaget: the inLant's conception of external objects as
permanent, independent entities is acquired in six distinct stages during
the sensory motor period (0-2 years). Evidence for the stages was based
primarily on Piaget's observation of his three children's reacIons to
objects which disappear from view. The behavior pattern characteristics
of each stage, along with the estimated age ranges reported by Piaget,
are summarized below.

During Stage I and II the infant has the ability for recognition,
has intercoordination of schemata, and shows simple expectations. How-
ever, the ability to recognize the mother's face, or to look at the

4 2
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object from which the sound comes from, or to continue to look at the
place where the object has just.vanished and to continue with the sucking
response after removal of the nipple, is not a manifestatjon of the attain-
ment of object permanence.

11S_c1S1121-Ijon

Conceptually, recognition of an object means that the S knows that
object he sees now is the same object that he saw previously. Recogni-
tion is operationally identified by the fact the subject can respond in
the same way when the same object is presented at two time points. For

Piaget, recognition is at first only a particular instance of assimila-
tion: The thing recognized stimulates and feeds the sensorimotor schema
which was previously constructed for its use. In order that the recog-
nized representation or "picture" become an externalized "object," it
must be dissociated form the action itself and the causai relations
dependent on the immediate activity.

Intercoordination of Schemata

From the second month of life and the beginning of the thira, the
child tries to look at the objects he hears, thus revealing the rela-
tionships being established between sounds and visual pictures. Does

this mean that by presenting certain sounds, the anticipation of a
certain image of an object is elicited and thus that the child has
already an 'object concept? Piaget argues that simple intercoordination
of schemata between sight and hearing, at the outset, does not generate
an objective identity of the visual image and auditory image, but simply
a subjective identity, i.e., the child tries to see what he hears because
each salma of assimilation seeks to encompass the whole universe.
Discovery of the visual picture announced by the sound is only the
extension of the act of trying to see. It is not the same case as that
of an adult when his act of searching with the glance is accompanied by
a belief in the firm existence of the object looked at.

Simple Expectation (Anticipation)

True search is an indication of the beginning of the object concept
but, again, simple expectation is not. Simple expectation refers to
those behavior patterns in which the search for vanished objects is
only a continuation of the earlier act of accommodation. The child only
preserves the orientation rnerated by tne earlier perception, e.g., in
the case of the disappeLring visual image, the child limits himself to
looking at the place where the object vanished. Tf nothing reappears, he

quickly shifts attention.
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In simple expectation, the vanished object is not yet for the
:hild a permanent object which has been moved, it is a mere image which
re-enters the void as soon as it vanishes, and emerges from it for no
Dbjective reason. True search is an active search and includes inter-
vention of movements which do not solely extend the interrupted action.
In this case, the child will find out where the "thing" could have been
put, he will remove obstacles, change the position of the presenting
objects at hand, and so on.

One could, perhaps, argue that the child's failure to engage in
active search (i.e., simple expectation) is due to lack of motor skill
at this early age. Hix.over, if the child, while not knowing how to search
(motorically) for the object, nevertheless believes in its permanence,
then "true search" should begin as soon as prehension skills have been
acquired. Such is not the case as the child's behavior in Stage III
indicates.

Stage III is a transition period from prehension of an object at
hand to true search for a missing object. In this inte,mediate stage,
five types of behavior are cli.stinguishable: (1) visual accommodation
to rapid movements, (2) interrupted prehension, (3) deferred circular
reaction, (4) the reconstruction of an invisible whole from a visible
fraction, and (5) the removal of the obstacle preventing perception.
rhe first of these behavior patterns merely extends those to the second
stage, and the fifth fulfills those of the fourth stage.

All the behavior patterns enumerated hitherto merely extend the
action in progress. Clearly, visual accommodations to rapid movements,
interrupted prehension, and deferred circular reactions, all consist merely
in returning to the mome9tarily suspended act--not in complicating that action
by removing the obstacles which arise. The reconstruction of invisible
totalities and the removal of obstacles preventing perception both seem

to involve such differentiation, but this only appears to be true. That
is, when the child tries to get to a half-hidden object and, to do this,
removes the obstacles which cuver the hidden portion, the action is by
no means as complicated as that of removing a screen masking the
entire object. In the latter case, the child must momentarily give up
the attempL at direct prehension of the object in oraer to raise a
screen which is recognized as such. On the contrary, in the former case,
the child sees part of the object and tries to grasp it; he only recon-
structs the totality as a function of this ongoing action and not
because a new action pattern, consisting of removing the screen, has
been differentiated. Removal of obstacles preventing perception requires
knowledge of an object in relation to the subject and not in relation to
the object, i.e., the obstacle-screen and the object as such are not yet
related. From this point of view, the object is still only the extension
of the action in progress.
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True Search

Stage IV marks an important transition. Prior to Stage , the C\

infant lacks object permanence and knows a thing and its loc tion only

in the context of his ongoing actions. He either cannot fi hidden

things or can only find them when he has begun to reach for them before
they disappear. In Stage IV, the infant is aware of the object's per-

manence. If he observes an object disappear, he searches for it even
when he has not begun to reach for the object before it disappeared.
However, his objectivity has an important limitation which indicates
that his ideas of things continue to be bound up with how he acts upon
them. An object is not localized in terms of where it has moved, but
in terms of where it was found in the past.

Piaget employed the following procedure to test children for Stage
IV behavior. First an object was hidden in place 4 and then in place

B. Piaget noted that after the children had found the object at A, they
attentively watched the object being hidden at B. However, when the

object disappeared in view, the children searched at A. This pattern

of success at A and failure at B uas referred to as AB.

Three possible explanations are offered for the Ai behavior: diffi-
culties in memory, in spatial localization, and in object conceptuali-
zation. Plaget (1954) makes it clear however, that the first two are
considered but different aspects of the difficulty in object conceptuali-
zation: "Faced with the disappearance of the object, the child immediately
ceases to reflect: in other words, he does not try to remember the
sequence of positions and thus merely returns to the place where he
was successful in finding the object the first time" (p. 61). The

memory explanation is simply a way of saying the child has trcuble
keeping track of places, and the second, or spatial localization
.explanation, provides reasons for this difficulty. Further, P!aget
argues that the infant localizes objects in terms of a scheme based upon

the inlant's prior actions. Accordingly the AS error occurs because there
has been no previous action at B, and therefore the infant has no "memory"
of that place. On the other hand, he is able to localize A because it
was at that locale that his practical action brought him a toy. When he

sees a toy being hidden at 13, he registers only that a toy is being hidden at

a "place" and so searches at the only place-he is able to localize.

When talking about the third explanation, Piaget points out that
adults are able to think of particular objects only because of the
assumption that objects are independent of the many places they may
occupy. However, if we did not distinguish thing from place, the adult
would be aware of "ball-under-the-armrchair," "ball-under-the-cushion,"
etc., which is what Ehe infant does in Stage IV. The child endows
objects with only a few special positions without being able, consequently,
to consider it as entirely independent of them. Piaget (1954)

concludes: "In a general way in all the observations in which the child
searches in A for what he has seen disappear in B, the explanation should
be sought in the fact that the object is not yet sufficiently individualized
to be dissociated from the global behavior related to position" (p. 63).
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The first acquisition of Stage'V is signified by success on a task
where an objecr is hidden under a first screen which the child finds
then under a second screen, and the subject no longer searches for the
object under the first screen, but only under the second one. As mentioned
above, the childsucceeds in keeping track of only the visible displacements
of the object and ncates it only when he has actually seen it. From,
repeated experiments, Piaget found that when an invisible displacement
of object intervenes, the child relapses into the same difficulties
which he has already overcome when visible displacements were involved
These findings furnish us with a good example of the law of "temporal
displacement," i.e., when an operation passes over from one plane to
another, it has to be relearned on this new plane. In particular, the
groups of displacements of object which, at the:beginning,of the fifth
stage, had been constituted on the plane of direct perception of relaticki-
ships of position, must be formed anew as soon as it has been transferred
to the plane of representation of these relationships.

In the final (VI) stage, the object is not as it was during the
first four stages, i.e., merely an extension of various accomodations.
Nor is it, as in Stage V, merely a permanent body in motion whose move-
ments have become independent of self but only to the extent and scope
of perception. Instead, in Stage VI the object is definitely now freed
froni perception and practical action.

It should be emphasized that a subject's search for an object under
a screel, after the subject has seen the object disappear under the
screen (Stage IV and V) , does not necessarily presuppose that the subject
"imagines" the object under the screen. Rather, the search simply
indicates that the subject understood tne relation of the two objects
at the moment he perceived it (at the moment the object was covered)
and, therefore, interprets the screen as a ign of the actual presence
.of the object. It is one thing to assume -2 permanence of an object
when one has just seen it or when some other object in sight recalls
its presence. It is quite another thing to imagine the first object
when there are no perceptual signs to confirm its hidden existence.
True representation begins only when no perceived sign commands belief
in permanency, that is, from the moment when the vanished object is
displaced according to an itinerary which the subject nay deduce
but not perceive. With regard to the infant at the fifth stage,
the objects are not "permanent" to the extent that he does not know
how to imagine or to deduce the invisible displacements of bodies as
objects truly independent of the self. On the contrary, the representa-
tion and deduction characteristics of the sixth stage result in disasso-
ciating the object from action and perception and objects in motion become
real objects independent of the self.
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Review of Recent Studies

A revieo of studies of object permanence revealed that most are
concent,-ated on Stage IV, because Stage IV is considered by Piaget to
be the critical period where the "true searph" behavior begins. The

procedures used in these studies generally are the same, as those Piaget
used except for additional control of critical variables such as the
length of interval between hiding the object and permitting the child
to search (usually a 3-second delay was used), and the number of times
the object is hidden at A before it is hidden at B (usually the object
waE hidden twice at A before it is hidden at B).

Gratch and Landers (1-71) observed infants biweekly until they were
between 6 and 12 months of age in order to replicate and elaborate on
the observations Piaget employed to define State IV of object concept.
Their observations suggest that the Stage IV phenomenon *.s part of an
age-related sequence of responses to hidden objects. &fore the infants
found an object hidden out of their reach, they were able to find it
when partially hidden (P) and were able to find objects that_were
grasped before they were covered (G). The Stage IV error (AB) phenomenon
occurred repeatedly over a period of 1-3 months. During that period,
however, the character of AFF changed. Initially, infants seemed to ignore
the displacement of the object to a second position. Later, they
appeared to be in conflict over whether to use the cues pyovided by
their prior s'iccessful searches or their awareness of the displacement
of the object. Finally, they came to rely on the cue of object displace-
ment.

Landers (1971) studied the effects of "active experience" (i.e.,
searching for the hidden toy) versus "passive experience" (i.e., observing
but not searching) on the AB behavior. Using infants between the ages
of 7 and 101:i months, !le found that infants who had more experience
finding an object at the A position tended to have more difficulty finding
the object w'ren it was hidden at the B position. This suggests that simply
watching the expeiimenter hide and uncover a toy at A does not establish the
A side as a "special" place, which active search does. The results seem
to clarify and establish empirically Piaget's argument that the Stage
IV infant's behavior and object concepts are dependent upon "context"
and "action." The previously reinforced motor response seems to be a
more potent aid LJ memory than the most recent visual input when repra-
sentationai processes are just beginning.

4T111-.2,2 groups were used: (GI)--"low active A-experience group"
two activ.2 experiences at A; ((II)--"high active A-experience group"--
10 active searchings at A; (GIII)--"high passive A-experience group"
two searching trials at A plus 8 observing trials.
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Evans and Gratch (1972) studied the Ai error to evaluate the relative
merits of place (spatial localization) and thing-of-place (object clan-
ceptualsization) arguments Piaget offered for explaining the AB error.
Infants between the ages of 8ind 10', months sr!rved suLjects.

Half of the infants were assigned to "same toy' condition and the other
half to "toy change" condition in which different toys were used on B-place
test trials than those used'on the A-place trials. The result showed no
difference between subjccts' performance on the two conditions. This result,

Evans and Gratch concluded, supported the notion that the AB error occurs
because A has somehow become "a place where hidden toys are found," rather
than because, as Piaget has argued, the particular object belongs at A.
/f Piaget's thing-of-place argument were correct, then the fact that the
child sees a new object hidden at B should increase the probability that
he will search correctly since no,previous action by the child has endowed
the new object with a place.

Lecompte and Gratch (1972) investigated directly the development of
object identity in infants by varying the objects instead of its spatial
position. This involves tricking the child by hiding one thing and having

him find another. The assumption is that if a child is aware of the
permanent nature of the object being hidden, in the sense in which adults
are and which Piaget attributes to infants at Stage IV, he will be
surprised when he is tricked because his belief ii permanence will have

been violated. Subjects consisted of infants at three different age levels:
9, 12,and 18 months. Two rating scales, both with seven categories were
devised to evaluate the child's immediate reaction to the trick (levels of
puzzlement) and his subsequent behavior (what he was surprised or puzzled

about). The result showed that infants at all age levels reacted differently
on the trick trials than they did either before of after the trick (two
trick trials were inserted among a total of nine trials). Older'infants
reacted with high puzzlement and searched for the missing toy and for the

cause of the disappearance. Younger infants were mildly puzzled and only

focused on the new .,y. The autho,...-; concluded that these results conformed

to Piaget's account of the development of the object concept.

As has.been mentioned previously, Piaget has not controlled the time
interval between ohje,-t being hidden at A and the tine the subject is

allowed to search. Larris (1973) studied the role of delay and compared
the subjects' performance on a 0-sec. and 5-sec. delay task. Infants 10

months of age served as subjects. The results indicated that infants at

this age search cot% to?, but errors are pore likely with delay and if cues
previously associate, with finding the object distroct the infant after its
disappearance. Harri3 draws attention to the similarity between this
behavior of the hun.:m ;infant and the frontally lesioned primate. He

propos,ts that maturnt4 n of frontal cortex may be important for the develop-
ment of search beho,. &. The argument is based on the fact that Harlow, H.,

Ear"..w M., Ruavi.,). 2nd Mason (1960) found that prior to 5 months, training
on Aelayed-rpor- ozasks led to little or no improvement. After 5 months,

leatnin3 w.: ,..ct,...Jagly more rapidly with increasing age. The learning

curlies :or J- and ::asks were similar, but the ability to solve the

dela.), task developed more slowly. Harris (1973) concludes that these data
demonstrate that the infant's immaturity makes him susceptible to pro-
active interference in short-term memory.
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Webb, Massar, and Nadolny (1972) observed the behavior of 14- and 16-

month-oId children in searching for hidden objects. A three-choice,

instead of two-choice, task was used, and the subjects were allowed to

search for the object on each trial until it was found. The major

finding was that the second-choice behavior of the 14-month-31d children

was essentially random but that of the 16-month-old children was predomi-

nately correct after an initial error. The interpretation of these authors

was that the child knows the location of the object in two distinct and

relatively independent ways. That is, ne remembers both past actions

in locating the object, and the location of where he saw the object

hidden. In the search, first credence is given to the past location of

the object whereas the immediately prior perception becomes functional

only after the other cues prove unreliable. Thus, the child knows the

correct location of the hidden object in some sense even while making

the error on the initial choice. The interpretation applied to these

data has an interesting analogy to several recent attempts to reformulate

Piaget's conservation problems, i.e., that perceptual strategies interfere

with the child's use of other solution processes. lebb et al. suggest

that an overdependence on action-marked cues and past success overrides

a functional memory for visually presented events.

Gruber, Girgus, and Bannasisi (1971) modified Piaget's methods of

studying object permanence in children in order to study development of

object concepts in cats. Eight behavioral tasks were constructed: .

(1) an auditory stimulus (click) off to one side; (2) an object swung

in a circle around the kitten; (3) an object placed in front of the kitten

and then moved slightly; (4) an object and kitten placed on a stool; (5)

a kitten playing with an object and auditory distraction introduced; (6)

a kitten playing with an object and visual distraction introduced;
(7) a kitten playing with an object and object is covered while.

kitten is distracted; (8) an object is covered while the kitten is playing

with it. The data indicated that cats reach only an early "developmental"

limit. Unlike children, the kittens were unable to follow an object

through a series of invisible displacements. Interestingly, house-reared

cats showed similar limitations but advanced more rapidly than cage-reared

animals. Finally, the longitudinal data suggested that cats go through

four stages, rather than the six found in children. In 24 weeks kittens

develop as far as children do in the first year, but the child's behavior

eventually becomes more complex and more general.

Uzgiris and Hunt (1966) constructed a series of scales for assessing

infant psychological development. For each of the series of "eliciting

situations," certain infant actions were selected as indicative of
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sign!ficr_t steps in that branch of psychological development.
5

To give
a concrete idea of the scales, the "noticing the disappearance of a
slowly moving object" item is a good example:

Noticing the disappearance2f a slowly moving ob ect.

Location: The infant may be supine on a flat surface,
in an infant seat, or sitting up by himself.

Object: Any bright object that attracts the infant's

Directions: Once the infant has focused on the object, move
it slowly to one side and away from the infant,
making it disappear below the edge of the infant's
Seat or the surface on which he is placed. After
a few moments, bring the object back in front
and slightly above the infant's eyes from the
opposite side. Always move the object in the
sane direction and have it disappear at the same
point.

Repeat-: 3-4 times.

Infant Action....: -4. Does not follow object to ,point of dis-
appearance.

b. Loses interest as soon as P1,ject disappears
(eyes begin to wander and then focus on any
intevesting object within view).

*c Lingers with glance at the point where the
object has disappeared.

*d. After several presentations, returns glance
to the starting point or the point of
reappearance before the object has reappeared.

e. Searches with eyes around the point where the
object has disappeared.

5
Escalona and Corman (1967) also constructed a scale for assess-.

the degree of object permanence. The administration condition and
responses are described which enabled the examinar to score the child
as belonging to a particular level of a particular stage.

*Actions marked with an asterisk (*) lre considered critical
this particular step of development.
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Miller, Cohen,and Hill (1970) replicated the ordinal scales of
cbject permanence constructed by Uzgiris and Hunt ,:ith 84 infants (ages

6, 8, 10, 12, 14, 16, and 18 months). Consistent age changes were
found that suggested Ywo overlapping developmental dimensions:
(1) the ability to deal with visible versus invisible displacements
and, (2) the ability to handle nonsequential versus sequential displace-
ments. However, the tiend of data suggested, contrary to previous
evidence, that the infant caa cope with single invisible displacements
not involving movement before he can handle complex visible displacements
that do involve movement.

Bell (1970) studied the development of the concept of object as
related to infant-mother attachment with infants between tae ages of WI.
and 11 months. Two scales, closely comparable to those constructed
by Escalona and Corman (1967) and Uzgiris ':nd Hunt (1966) were devised.
Seventy percent of the infants showed "positive ddcalage,"Le., they
tendeci to be more advanced in the development of "person" permanence
than in the development of the concept of inanimate objects as permanent.
Another important finding was that the development of the object concept
was intimately associated with the attachment of a baby to his mother.
The babies who manifest strong evidence of "de'calage" elsplayed more active
efforts to establish and maintain interaction with the mother through
approaching, reaching and/or initiating interaction.

Bower (1971) has raised the question as to whether object permanence
could be a built-in property of the nervous system (as is the case with,
so many other kinds of perceptual knowledge) . During the experiment with
20, 40 and 80 day old infants, a screen moved in.from one side and covered
the object. After various intervals (1.5, 3, 7.5, or 15 sec.) the screen

was moved away. In half of the trials the object remained as the screen
moved away, and in the oth6r trials the object was removed prior to
removing the screen. The results showed that when the object had been
occluded for 1.5 sec. all the infants manifested greater surprise at
its nonreappearance than at its reappearance. The index of surprise
here was determined by a change in heart rate. Thus, it would seem that

the infants expected the objet to be present. However, while the oldest
infants "expected" the object to reappear, i.e., showed the greatest -

heart rate deceleration afte: the longest occlusion period, the youngest
infants exhibited a reverse effect after the longest occlusion period,
i.e., showed more surprise at the object reappearance than at its non-
redppearance. Itseems that even very young infants know that an object
is still there (built-iL str_cture) after it has been hidden, but if
the time of occlusion is ir.:olonged, they fo-z,...t the object altogetller.

Bower (1971) suggested that while the older infants identify an
- object by its features, the younger infants (less than 16 weeks)
identify objects by place or movement. To test this idea, a group
of infants between 6-16 weeks and a group between 16-22 weeks were
examined in four situations: (1) An object moved along a track,
went behind a screen, emerged on the other side, moved on for
a short distance, stopped and then returned to ,_ts original position.
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(2) The object moved along the track, weni: behind the screen and at
the moment when the object should have emerged on the other side of the
screen a totally different object emerged, moved on for a short distance
before reversing and repeating the entire cycle in the opposite direction.
(3) The object moved along a track as before, except at the time when
according to its speed before occlusion it should still have been behind
the screen, an identical object moved out. (4) The object moved along
the track as before, and at the time when it should have been behind the
screen a totally different object moved out. The results are summarized
in Table 1.

Table 1

Infants Reactions to Bower's
Object-Movement Situations

l'onditions

(1) One object, one movement

Younger Infants 01c1.-!r Infants

(6-16 weeks) (16-22 weeks)

Continued to
follow the path of
movemert when the
object stopped

(2) lvo objects, one moveme (Same response
as above)

(3) One rbject, two movements Upset and
refused to look
any more; infants
did not continue
to follow the
object's path
when it stopped

(4) Two objects, two movements (Same response
as above)

Stopped track-
ing the object
when it
stopped

25% of the
times infants
would look to
the other side
of the screen
when the object
stopped

On every trial,
infants would
look to the
other side of
the screen when
the object
stopped

(Same response
as above)

From these results, Bower argues that the younger intants responded not
:o moving objects but to movement per se. Simihrly. their responses were
lot to stationary objects, but to places. On thE contrary, older infants
identify a:. object by its features rather than b.: its place or movements,
tor them different features imply different objects that can move indepen-
lently.
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Conclusians

Goject permanence means that an infant knows.the object continues tn
exist when it is outside of the perceptual and action field. "True search"

is the indication of object permanence. y true searcl Piaget means that

the subject engages in an active searc for the vanished object indepen-

dent of his action and perception.

Six stages in the development of t ncept of object permanence
have:been identified with Stage IV marking an important transition. Prior

tr Stage IV, the infant knows a thing only in the context of his ongoing
actions; he is concerned with his objeAive as one and ehe same thing as

his desire. In short, before Stage IV the action is the source of

external world. After Stage IV the object beomes detached from the infant's
activity and gradually acquires an independent status.

Recent stalies of object permanence have concentrated on the infant's
Stage IV concept of object and, in particular, on the AB phenomenon. AB

means that after the infant has experience of successful searches at place A,

though he has watched tne object being displaced to place B, his search
for the object is at A. The implication is that the iniant conceives

the object as heing the product of his action: The toy does not exist by

itself, but is the end result of the reaching of his hand at A. At the

end of Stage IV, the infant's search for object begins to oscillate
between place A and B, and this is the mark of the beginning of the
object being detached from the action. Studies of infant concept of

Stage IV generally have confirm.' the developmental sequence observed and
theoretical interpretations reported by Piaget.

Landers' (1971) study showed the influence of prior motor experience
on the subsequent search behavior of the infant. Evans and Gratch (1972)

argue against Piaget's thing-of-place interpretation of AB behavior but

do not take the role of action into consideration. The "thing-of-place-
A" concept cf object that Piaget offered is simply the result of the
"action-at-place-A." If the subject has only had the experience of
"action-at-A" there is no reason to expect'that the infant would search
at B even when the infant has noticed the object being hidden at B is
different from what was hidden at A in the former trials.

The critical point in Lecrmpte and Gratch's (1972) study is that
while the older infants were engaging in a search for the missing toy, the
younger infants were only focusing LAI the new toy. The younger infants' behav

only indicaced that the "toy change" had been noticed, or, the ability
to identify the object by its features had already been demonstrated.
rower's (1971) study showed that the ability to identify the object by
its features was present at the age of 16-22 weeks. Since this

'behavior does not fulfill the criterion of "true search," there is no

reason to believe the object ti11 exists for the infant once it

vanishes from the infant's perceptual field.
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Harris (1973) suggests a physiological basis for lack of object
permanence. For him the inability to solve delayed reaction tasks is
the basic source of difficulty for infants. It might be possible as

i

he indicates that the ability to solve such delay tasks is relat d to
maturation o frontal cortex.

ebb et al. (1972) used a new procedure, in which the infonts
4.e jallowed to correct errors and make a second choice on a three-
choice task. The results of the study showed predominant corrdcr second
choice of the 16-month-old infants. It is clear that 16-month-old infants
do not forget prior relevant perceptual input; theerror on the first
attempt only shows that, at this age, "action" overrides prior percep-
tions at this cognitive developmental stage. It seems, therefore, that
the development of any conservation. (object, area, weight, etc.) goes
through the same process with action being predominant initially, then
perceptual factors and finally the representational (logico-mathematical)
system.

Gruber et al. (19 demonstrated that cats never go beyond the
Stage IV concept of o ject. This result seems to suggest that there
is a corresponding c.ange in nervous system (e.g., in. frontal cortex)
along with the devel6pment of object concept.

0

lhc scales that Uzgiris and Hunt (1966) and Escalona and rman (1967)
developed to standardize tests of infant's object concept shou prove
valuable. Piaget always allows great latitdde of procedures in i-
ments .and in T:lany cases it is the best way to find out about what a child
knows'. kwever, standardization of procedures are, at least, necessary
for comparative analyses.

Bell (1970) found that the development of person permanence was more
advanced than that of inanimate object concepts. Though Bell did not
emphasize the role of experience in the development of object permanence,
infants who had more interaction with the mother were significantly more
advanced in the development of person permanence than those with less
interaction. Piaget (1954), in interpreting the transition from Stage
IV to Stage V, emphasizes the role of such experience.

Construction of Space

The analysis of the nature of space has preoccupied philosophers and
scientists for centuries. Piaget and Inhelder (1967) were intrigued by
the fact that the historical and logical sequences of geometry (measurement
of space) were in conflict. Geometry primers are alrkast unanimous in
presenting the fundamental ideas of'space as restiffilLe Euclidean
concepts such as straight lines, angles, squares,_ ir es, measurements,
and the like. On the other hand, abstract geometrical analysis tends
to show that the fundamental spatial concepts are not Euclidean at all,
but 'topological', i.e, based entirely on qualitative correspondences
involving concepts like proximity and sepa'ation, order and enclosure.
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With his studies of the child's conception of space, Piaget has success-

)

fully demonstrated that the child's space invariabl begins with simple
(basic) topological types of relationships long bef re it becomes pro-
jective or Euclidean in tiature.

The misconception that space concepts begin with simple Euclidean
characteristics arises primarily from ignoring the fact that the evolution
of spatial relations proceeds at two different levels. There is an

interval of several years between perceptual and conceptual construction
of space (despite their pursuing a similar path of development).
Children's perceptual space has reached projective and quasi-metric
levels during the first year of life, when their conceptual space
hasbarely begun.

The present review concerns only conceptual space. But since the
perceptual and sensori-motor structures constitute both the point of
tleparture and the foundation of the entire conceptual construction of
space, we will start by going over briefly the development of perceptual
space as seen in the child's perception of shape.

In the experiments of the child's perception of shapes, Piaget and
Inhelder (1967) identified three stages. During Stage I, the only shapes

recognized, and drawn, are closed, rounded shapes and those based on
simple topological r2lations such as openness or closure, proximity and

separation, surrounding, etc. These relations express the simplest
possible eoordinations of actions, e.g., following a contour step by
tep, surrounding, separating,, and so on. With Stage II the reccigni-

-tion of Euclidean shapes begins based on the distinction between straight
and curved lines, angles of different sizes, parallels, and relations
between equal or unequal sides of figures. At this lewl, the coordi-
nations of actions is of a more complex type in that the child now
recognizes a straight line by the action of following--with hand or
eye--without changingrdirection, and recognizes an angle by two such

intersecting movements. r'inally,at Stage III the child is able to
return systematically to a fixed point of reference while exploring an
object. That is, he now catrrJ1,-dinate all his mcvements into a single

whole according to a system reference. For example, if the object
is a figure of a starfish eng-.. '4 on a surface, and the child is asked
to identify the figure through haptic exploration, a child at Stage III
is able to touch each arm in turn, exploring the angles between the arms,
and returning syst.matically to the center where the arms meet.

Perceptual organization of space proceeds through a developmental

stage sequence. At first it is o,sed on topological relationships, and
later on projective and Euclidean relations. Does conceptual space, after

s6me year's interval, pass through the same phases?

The most important difference between topological relations and the
projective and Eli: lidean relation:, :3 in the-way in which different
figures or objects ar, related to one another. Psychologically,
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topological relations are the most primitive ones; the relations of
proximity, separation, order, enclosure At.A continuity are built up
empirically between the various parts of figures or patterns which they
organize. These relations.are independent of any contraction or expan-
sion of the figuresand, therefore, do not conserve features such as dis-
tances, straight lines, or angles during changes of shape. Hence,
-we may say that topological space is purely internal to a particular
figure whose intrinsic properties it expresses, and it ir impossible
lor relationships of this type to lead to comprehensive systems linking

,-rent figures together. It is in this sense that topological rela-
--jps are considered primitive.

Projective space begins psychologically at the point when the object
,u pattern is no longer viewed in isolation, but begins to be considered
in relation to a 'point of viewS; the viewpoint of the subject (in which
case a perspective relationship is involved) or that of other objects on
which it is projected. Because of this property concerning viewpoints,
the'study of projective space can be called the 'geometry of viewpoints'.

Euclidean space is diffel..ent from projective space in.that the
concepts of distance and measurement dre introduced. It deals with
the orienta,-Lon of objects relative to each other and to a system of
reference point.-; arranged along different dimensions. Because of its
concern with the objects as such; the study of Euclidean space may be
called the 'geometry of objects'.

In short, topological space deals with the internal relations of the
isolated object, projective space deals with relations of objcts to
the subject,and Euclidean space deals with relations o objects to
objects.

The evolution of the conceptual spaces can be clearly demonstrated
in children's drawings of-geometrical figures. Three distinct stages
can be identified from the drawing of children when they are asked to
copy figures.H During Stage I (0-1 years), lhe circle is drawn as.an
irregular closed curve, squares and triangles are not distinguished
from circles, and the drawing is of two more or less intersecting lines.
While there is no distinction as yet between straight-sided and curved figures,
depending on the complexity of the figures, there is correct copying of
the topological properties.

Stage II (4-6 years) marks the beginnings of the differentiation
of what Piaget designates as Euclidean shapes. Thus, a square is distinct
from a triangle, j ,c-ircle from an ellipse. Two types of crosses are
distinguished which marks the discovery of oblique lines. Finally,
the rhombus (as distinct from the square)is reproduced correctly.

0 6
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At Stage 11 (6 to 7 years) , the child's idea of shapes is at the

perational level. hildren draw figures quickly and correctly and these
const:uctions refleLt ,Inticipation through mental images (advanced organi-

zatior) L. terms of potential measurements, coordinations, etc.

Development of Topological Space

The study of drawings has shown that the simplest topological rela-
tionships such as proximity and separation also are the first to emerge
ia the course of psychological development. This order of appearance

is also maintained when space is treated axiomatically by geometricians.
In the case of a linear series, the relationship of proximity subsisting
between separate elements A, B, C is sufficient to provide a basis for

the relation of order. This may be perceived intuitively at an
equally early stage of development. The notion of order or sequence

is thus a third basic topological relationship.

The relation of order exemplified by three elements arranged in a
series ABC also entails a specific relationship expressed by the word

'between.' Thus B is between A and C, and at tha same time between

C and P. This relationship, Aose invariance re-airs a mystery to children

who have not yet learned to reverse a series, concurrently with

the notion of order itself. The relation between i one particular

instance of the more general relationships of 'suf., )unding'. These are,

of course, elementary spatial relationships, just as much as proximity,
separation, or order. Indeed, as regards the construction of space, they
are even more important, since it is most probably these relationships

which lead the child by the most direct route to differentiate and build
up the three initial topological dimensions.

E

If the location of a point between two others designates a one-dimen-
sional surrounding (i.e., a line), and the location of a point inside or
outside a closed figure designates a two-dimensional surrounding (i.e.,
a surface), then the relationship of a point, whether inside or outside

a closed box, designates a three-dimensional surrounding (i.e., 3-dimen-

sional space).

It appears that in the case of 'surrounding', there is one area in
which perceptual relationships have not yet been developed and hence
is ideally suited for studying the main features of representation.
Knots have the added advantage of having been the subject of extremely

detailed geometrical analysis. From the standpoint of mental develop-
ment, the knot is something which the child learns to form at an early

age,and is therefore eminently suited to psychogenetic investigation.
The tasks consist of asking the child to (1) .eproduce an 'overhand'
knot (an ordinary single-looped knot), a circle, a figure of eight, or
a pseudo-knot (homeomorphic with the circle when the ends of the string

are joined); (2) to compare left vs. right overhand knots, taut vs. slack

knots, and an overhand knot vs. a circle, a figure of eight, or a pseudo-
knot; and ( to predict the shape of the knot following certain transformati,
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Stage I (up to 4) can be divided int-, substages. During Substage
IA the children could not copy knots. Either one end of the string is
wound around the other without inserting either end in the loop or one
end is inserted in a half-loop without superimposing it. In neither case
is there the necessary 'surrounding' and, consequently, no knot. During
Substage IB the children learn how to copy the knots but are irable to
follow the various sections of a slack knot with one finger, nor were
they able to distingnish true from pseudo-knots.

At Substage IIA the child perceives the identity between a pair of
taut knots, or between a pzir of loose knots, but this identity is lost
if one of the knots is tightened (or slackene4) even though each of the
pair is hnmeomorphic to the other.

A paz,illelism between the concept of number and the concept of
space cln be found at this transitional period. At about 5 or 6 years
of age, a child can establish intuitively the correspondence between a
number of objects and a -,narate but equal number of other objects, but
only when the arranger. ' objects produces a similar-visual pattern
(such as two straight As soon as the intervals between conse-
cutive items in one of rovs is altered the equivalence of number is
no longer' recognized. Similarly, in the experiment reported above, the
child at 5 or 6 can recognize either tight or slack knots when com-
p-ared with visually identical models, but is unwilling to grant their
equivalence without the perceptual equivalence. At Stage IIB the
correspondence between the taut and slack knot is establighed through
motor anticipation. For example, the child might say: "If I pull,
I'll get the one before." In other words, the child at this stage
can imagine the knot in terms of actual transformational motor
activites, rather than perceptually Atatic patterns.

Finally, at Stage III (8-10 years), the actions become internalized
and completely reversible in nature. Whatever happens to the perceptual
patterns, the relationship of the surrounding remains unchanged.

DevelopmeRt of Projective Space

As has been pointed out earlier, topological space only furnishes
the basis for that type of analysis which operates from the standpoint
of each figural object considered in isolation. In projective space,
however, the object is considered in relation to the viewpoint of the
subject (perspective) or that of other objects (projective). Thus, pro-
jective relationships presume the intercoordination of objects separatel
in space.

Piaget's reports of his investigations concerned with projective
lines and perspective attempt to show that the precondition for forming
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projective straight lines is a progressive discrimination and coordina-
tion of different viewpoints. Next he takes up projection of shadows
and provides a demonstration that projection of shadows is understood at
the same level of development as perspective transformations relating to
the same object. In the study on "viewpoints" (of a group of mountains)
the problem of the overall coordination of perspectives, such as arises
when the observer moves around and about a number of interrelated objects,
is analyzed. The mutual implications of projective and Euclidean space
notions are then studied with the rotation and development of surfaces
and the distinction between perceptual anci conceptual space is
considered. This review will be specifically concerned only with the
problems of construction of a straight line and coordination of perspec-
tives. The former involves perspective of a single object, while the
latter with perspective vis=a-vis a group of objects.

The concept of straight line results from the child's first attempts
to relate objects spatially in a system of projective viewpoints or co-
ordinates. Strictly speaking, the topological idea of a line does not
include the straight line at all. To transform an ordinary line (the
only kind of line recognized by topology) into a straight line requires
the introduction, either of a system of viewpoints such as the elements
of a line masking each other to form a perspecti,,e, or else a system of
displacements, distances and measurements.

The task of constructing a straight line will illustrate clearly the
critical difference between perceptual,und conceptual space. The task

consists of asking the child to use match-sticks to form a straight
line parallel to the edge of a square table, lying at some angle to the
two adjacent.sfdes of the square table, or across a section of a round

table.

The results show that at Stage 1 children ca'n recognize a straight

line and distinguish it from a curve, but they are unable to construct
such a line parallel to the edge"of a table, except when allowed to do
so where an existing model or edge of the table is spatially very close.
Otherwise, the performance reflects the formation of a topological line
with successive elements very close together and curved in various ways..
When the line to be imagined and constructed conflicts with perceived
straight or curved lines lying adjacent,.such as on the ground offered
by the table top, the,child is no longer able to form a straight line.
In this case, the line no longer consists of merely imitating a past or
present perception, but entails creliting new relationships within an
existing pattern distinct from those sought after. Such an achievement
requires a projective operation based on the action of 'taking aim', or
else a Euclidean operation based on change of position.

At Substage ITA (4-6 years), the child arranges the matches parallel
with the edge of the table, and can even arrange them against a neutral
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ground. But, he is unable to resfst the influence of an edge (of the
table) if the required line is no longer parallel to it. Two distinct
types of spatial concepts need to be recognized at this point. The first,
intuitive, is no more than an internalized imitation (a mental image) of
-previously perceived events. Consequently, it can be either favored or
discouraged by current perceptual configurations. The second, not
evolved as yet, is based on operations, and therefore is freed from the
influence of such configurations. At Substage IIB (6-7 years) the child
is able to free himself from the influence of the surrounding perceptual
configuration and to form lines independent of the edges of the table.
At Stage III (8-11 years) the child discovers a nuw technique cf visual
alignment, i.e., the operations of 'sighting or 'taking aim'. The child
discovers the projective straight line, Lhen, when the fact that two points
X and Y can be rerated to the observer 0 through the agency of the line
OXY is grasped. ihe conceptual straight line thus differs from the per7
ceptual straight line (and from the topological line) by virtue of the
awareness of the part played hy different points of view. To join X and
Y together in a direct line, the child must, at the same time separate
them from the perceptual ground, join X and Y either Ly means of a
movement or else by visual inspection. The second procedure can only
be carried out be discriminating between clifferent pnints of view, and
it is choice of the point of view OXY that enables the child to correct
his alignment.

The perspective of a group of objects as viewed by an observer from
different positions, or alternatively by a number of observers, ts
examined with two aims in mind. First, to study the construction of a
global system linking together a number of different perspectives, and
second, to examine the relationships which die child etablishes between
his own viewpoint and those of other observers.

The task used by Piaget consists of three clearly distinguishable
model mountains on a pasteboard. The child is asked to imagine; or to
identify from pictures, the various views ',Jr 'snapshots') of the group
of mountains when it is seen from different positions.

Che results show that throughout Stage II (5-7 years) the child
does not distinguish between his viewpoint and that of other observers.
At Ilubstage IIA, performance is confined to reproduction of his own
point of view.,6 In Substage JIB the child makes, some attempt to distin-
guish between different viewpoints, but usually lapses into the egocen-
tric constructions of Substage 11A. The child does not yet think in
terms of 'groupings' of projective relations and correspondences or the
invariance of the correspondences amid, the endless transformations of the
projective relationships.

6
It is the egocentric illusion which prevents these children from

reversing left-right/before-behind relations and thereby rotating the per-
spectives along with the changing viewpoints, a continuation of the illu-
sion which is responsible for absence of shape constancy in 'young babies'
perception.
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At Stage III (7-8 to 11-12 years) the child shows a progressive dis-
crimination and coordination of perspectives. At Substage TIlL .7ertain

relationships are varied with changes in the positiod of the observer,
but there is still no comprehensive coordination of viewpoints. In most

cases, the before-behind relationship can be reversed, but the left-right

relationship retains its rigidity. At Substage IIIB the child achieves

a complete relativity of perspectives as demonstrated by the discovery
hat: (1) to each position of the observer there corresponds a particular
set of left-right, before-behind relations between the objects constitu-
ting the group of mountains, i.e., the point to point correspondence
between position and perspective; ana (2) between each perspective view-
point valid for a given ocsition of the observer and each of the others,
there also is a correspondence expressed by specific clianges of left-

right, before-behind relations. It is this correspondence between all
possible points of view which constitutes coordination of perspectives.

From the point of view of both mathematical construction and psycho-
logical development, projective and Euclidean space are closely related
and both dvive from topological space. In addition, projective and
Euclidean space are related in another way, i.e., it is possible to
construct a series of transitional stages between projective and Eucli-
dean soace by considering affinities and similarities. Affinities may

be defined mathematically as projective correspondences coaserving
parallelisms, similarities as affinities conserving angles, and Eucli-
dean displacements as similarities conserving distances.

The conservation of parallels can be demonstrated in the study of
reactions in a very simple case of 'affinitive' transformations, namely,
the increase and decrease'in the width of the rhombuses in a set of
"Lazy Tongs" (see Figure 1).

Figure 1. The transformations of rhombuses seen id "Lazy Tongs."

The task consists of asking the child to predict and draw what will happen
when the handles are opened or closed.

The results show that the child at Substage IIA (4-51/2 years) is
unable to anticipate any transformation when the apparatus is stationery.
If he sees the beginning of a change, he can imagine the continuation of
it, but only in the form of endless enlargement of the 'windows.' At
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Substage IIB (51/2 - 7 years), the child foresees that the rhombuses will
gm.; longer,and he is also prepared to admit that they will eventually
get smaller again. Bur this prediction remains global and inadequata,
for the transformations appear to him not as a continuous (quantitative)
series but as abrupt, disjointed changes (qualitative).

At Stage III (7-11 years), all the transformations are predicted
correctly,and the necessary parallelism of opposite sides of the rhom-
bils is recognized, i.e., the paral:olism of the sides is operationally
aligned with the transform;Ition of flit- figure as a whole and is no longer
simply perceived or imagined intuit.ivety.

The next task is to examine the discovery of the similarity of angles,
such as in triangles or rectangles, in order to analyze similarities.
To do this, children were asked to draw, or compare, pairs of similar
or dissimilar triangles.

The results show that at Substage IIA (4-6 years) the child faced
with the task of drawing a triangle larger than the model is con-
tent with producing any Sort of triangle, i.e., all triangles are
treated as the same in contrast to nontriangular figures. During Sub-
stage IIB years) the enlargements begin to take account of.paralle-
lism between the pairs of sides, but only in a few special cases, such
as when the enlargemet.t is relatively small and the parallelism is
apparent.

Stage III (7-11 years) marks the appearance of operations facili-
tating general comparison of parallels, angles and simple dimensional
relations, such as the ratio of 1:2. At this level, the child is able
to draw and compare Similay triangles, but not similar reitingles. The
latter requires some knowledge of dimensional proportions, whereas
recognition of similarity of triangles depends only on elementary quali-
tative operations. At Stage IV, the child attains a concept of pro-
portionality for all dimensional relations.

Development of Euclidean Space

Elementary topological relations arc concerned with the object as
a thing-in-itself and/or with various features taken successively. Pro-
jective concepts, in contrast, imply a comprehensive linking together
of separate objects into a single system based on coordination of
different viewpoints. Concurrently with the develorient of an orvnized
xomplex of viewpoints, coordination of objects as such emerges. Ulti-
mately this latter development provides for the transition to Euclidean
space, with the concepts of parallels, angles and proportion providing
the link between the two systems. Such a coordination of objects re-
quires conservation of distance together with some notion of 'displace-
ment' (ur congruent transformation of spatial figures) which culminate
in the construction of systems of reference or coordinates.

At the outset, the coordinates cf Euclidean space appear to be no
more than a network embracing all objects and consist of relations of
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order applied simultaneously to all three dimensions. Within this network,
each object is linked simultaneously with the rest in three directions;
left-right, above-below and before-behind, along straight lines parallel
to each other along one dimension and intersecting those belonging to
the other two dimensions at right angles.

A reference frame proper, however, is not simply a network composed
of relations of order between the various objects. It applies equally
to positions and enables the relations between objects to be maintained
as invariant and independent of potential displacement of the objects.
Thus, a frame of reference constitutes a Euclidean space after the
fashion of a 'container'; and is relatively independent of the mobile
objects contained therein, just as projective coordination includes the
totality of potential viewpoints.

:he simplest and most natural reference frame available to the
child is probably that provided by the physical world in the shape of
vertical and horizontal axes. On the empirical level, the horizontal
is given by the plane on which everyday objects rest, the earth itself
(where flat), or the artificial planes of floors, terraces, and so on.
Another important factor is the surface of a liquid, e.g., surface of
a lake or level of water in a glass. Walls of rooms and houses,
posts, chimney stacks, trees, etc. provide experience with verticality.
The study of the construction of horizontal and vertical axes.provides
a suitable way to understand the construction of coordinates in Eucli-
dean space.

The task for studying horizontality uses two narrow-necked
bottles: one with straight, parallel sides an/i the other with rounded

sides. Each is partially filled with colored water and the children are
'asked to "guess" the position of the water when the bottle is tilted.
The study of the vertical involves floating a cork with a matchstick
placed vertically in it on the surface of the water in the jars.
The child is asked to draw the position of the "mast" of this "ship"
at different inclinations of the jar. In addition, the child is shown
a mountain of sand and asked to plant posts "nice and straight" on
the summit, on the ground nearby, and on the slopes of the' mountain.

The results show that at Stage I (up to 4-5.years), the child is.
unable to represent either the water orthe mountain as a plane surface.
At Stage IIA the child realizes the water as a plane surface, but always
parallel to the base of the bottle even when the bottle is tilted. It

is surprising, but children at this level not only fail to note that the
water level is always horizontal in their everyday observations but also
do not use the results of the experiment when it is performed (i.e.,
with complete perceptual information available)!
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During Stage IIB, the child no lolerdraws the water level parallel
to the base of the jar when the jar is lted, but he still fails to
coordinate his predictions with any fixed reference system outside the
jar (i.e., with the table or the stand). Also, children at this' level
are usually able to stand the posts upright when planting them in the
sides of the sand hill, but continue to draw them perpendicular to the
incline.

At Stage III (7-8 to 9 years), the child ig able to predizt the horizon-
tal and vertical in all cases which requires a system of coordinatioq, or-
series of comparisons between objerts in different positions and orienta-
tions. These comparisons are made by linking the various objects together
in a. system where' stationary cbjects (the table) serve as reference
points for mobile ones (the liquid surface).

The conclusion to be drawn is that Euclidean relations, completed
by the construction of reference frames, are essentially relations
established between,nambers of objects and serve to locate them within
an organized whole. Thus, horizontal-vertical axes are constructed at
the same time as perspectives and are coordinated since these latter also
constitute overall systems linking together objects or patterns. But

projective space is in essence a coordination both of viewpoi"ts, actual
or virtual, and of the figures considered in relation to these view-
points. Coordinates, on the other hand, link together objects, as such,
in their objective positions, displacements, and relative distances.
The age of 9 (approximately) is midway in the period during which con-
crete operations first eake shape and thus marks a decisive turning point
in the development cf spatial concepts, i.e., completion of the frame-
work appropriate to both Euclidean and projective systems.

Conclusions

Piaget maintains that the evolution of spatial relations proceeds
at the two distinct levels: perceptual and operational (conceptual).
Several years of experience separate the full ievelopment of perceptual
and conceptual construction of space, but sinlIr paths of development
(topological, f011owed by projective and Eucli-iean) are observed.

Topological relatic,is (proximi,.y, separation, order, enclosure and
continuity) are the most elementary spati,l relationships both from the
genetic-psychological and mathematical point of view. The topological
relations, with which the child begins to construct his concept of
space, are transformed concurrently into projective and Euclidean con-
cepts. Projective space introduces a 'point of view',and Euclidean
space introduces 'distance' and 'meo9urements" into topological space.
The first of these, embracing perspective, section, projections, and
plane rotations, results from the coordination of ..ewpoints, while
thel.second derives from the conservation of straignL lines, parallels,
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angles, and lastly, general coordinate systems.

In psychological terms, topological space relations consist of such
.elements as 'A is near, beside, far f:om, in(side) , out(side) B," or
"A is between B and C." Projective space introduces relations such as
"A is before/behind, above/below, or to the right of/to the left of B,"
and Euclidean concepts r.cE quantitative aspect to these projective rela-
tionships; EucliderlI r:,...lations consist of the additional -.Incepts

such ap "How far is A before/behind, above/below, or to the right/to
the left of .B,"

Elementary topological relationships subsist between neighboring
parts of a single object, or between an object and its immediate environ-
ment. Such a space is merely a continuous collection of elements which
may be expanded or contracted; neither straight lines, distances, nor
angles are conserved. Consequently, topological concepts do not lead to
the construction of a stable system of figures, nor to fixed relations
between such figures. Topologically, each continuous domain constitutes
a space, and thus there is no universal spaca operating as a frame
and enabling objects or figures to be located relative to one another.
There are, for the child, as many spaces as there are objects or distinct
patterns, the imtervals between more distant elements either belonging
to the elements themselves or not being spatial at all. In this connec-
tion, projective concepts perform a vital role in bringing about a
global coordination of space.

Projective concepts take account, not only of internal topological
relationships, but also of the shapes of figures, their relative posi-
tions and apparent distances, though always in relation to a specific
point of view. Unlike the coordinate system implied in Euclidean space,
a projective system does not conserve distances and dimensions, but does
rulserve the relative positions of parts of figures or of figures rela-
tive to one another and the whole in relation to the plane corresponding
to the observer's visUal field. From the psychological standpoint, the
essential feature here is the inclusion of the observer (or a 'point-of-
view') in relation to which the figures are projected. Elementary pro-
jective concepts are therefore based on the same operations as are topo-
logical concepts, but with the addition of a 'viewpoint'. The linkin_;

this 'viewpoint' with operations of order is basic for the construction
of the projective straight line. A straight line is a series of points
so arranged that from the 'end-on viewpoint they are in alignment and
are reduced projectively to r single point. Similarly, the notion of
spatial dimensions can be defined more clearly in terms of certain sets
of conditions specified by a given viewpoint. Topologically, the first
dimension corresponds to a linear series, the second to the notion of
inside and outside a closed linear boundary, and the third to the notion
of inside and outside a closed two-dimensional boundary (surface). The
addition of a perspective viewpoint to which the figures are related
permits these same relationships to embrace relative orientation as
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expressed by 'on the left or on the right', 'above or belovi, and 'before

or behind'.

Intermediate between the projective and Euclidean relatior,L4s,
there arise certain relationships (affine and similarity) which children
begin to understand at about the same-t:;.me as they master the pr3jec-
tive relationships. Projective relationships conserve neither parallels,

angles, nor distances. Affine relationships, on the other hand, conserve
parallels while angles and distances continue to vary. In the 1-e of

Similarities, however, the figure retains its ahape unchanged !stidight
or curved lines, parallels and angles) but changes in size according to
relations of proportionality. Finally, Euclidean relationships add the

notions of distances and measurement.

To conclude, topological and projective geometry are concerned with
qualitative properties of space, whereas Euclidean geometry introduces
quantitative properties to space.

Child's Conception of Geometry

.The techniques Piaget (Piazet, Inhelder,& Szeminska, 1960) used to
study conservation and measurement of length, area, and volume will first

be described briefly. Second, some general findings will be presented.
Finally, processes assumed to be involved in the child's construction
of metric properties of space will be considered.

Methods

The results obtained from studies of children's spontaneous measure-
ments and comparisons of two straight lines are described in some detail
so as to clarify the general context in .,hich measurement and conser-
vation behaviors develop.

SpontaneOus measurement was studied by showing a tower made of
twelve blocks of cubes and parallelepipeds. The tower was 80 cm in
height, and the child was asked to build a similar tower on another table.
The instructions deliberately avoided mention of measureMent; the experi-
menter used phrases such as: "You make a tow- the same height as mine."

For conservation of length the child first was shown two straight --

sticks identical in length and with the ends aligned. One of the sticks
was then moved forward 1 or 2 cm, and the child was asked wl.ich of the two

was lonker or whether they were the same length. In a second task, twelve

to sixteen matches were arranged in two parallel rows and 1-2 cm apart.
One of the rows was then modified by placing the matches at. an angle.
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The question to be answered was always whether the two lines were still
the same length. Finally,'mostrips of paper each 30 cm long and about
1 cm wide were placed before the child, and he was asked to assure him-
self the two strips were identical in length. One of the strips was
cut, first in two parts, then in several, and parts arranged in an arc,
etc. The same questions as those in the first task were asked.

The technique for studying measurement of length was a direct exten-
sion of that used in the conservation of length task. The child was asked
to judge between strips of paper in a variety of linear arrangements,
involving right-angles, acute angles, etc., but these were now pasted
on cardboard sheets. After his replies ("equal" or "one is longer") ,
was shown several movable strips and asked to verify his judgment: "Have
a kok with this and see if you're rIght. Try-and measure." Finally,

he was given short strips of cardboard 3 cm, 64cm, (these lengths corre-
sponding with those of segments on the mountedjstrips) to aid in verifying
his judgment: The experimenter also demqnatrdted by applying the 3 cm
card two or three times along the mounted strips, beginning with the
point of origin, and explained "a little man is walking along a road and
these are the successive 'steps' he takes as he walks." In this latter
case, the child was asked to finish the task as he was shown.

The conservation of area tasks were composed of several separate
sections which permitted a modification of the arrangement of parts to
test whether or not the child considered the whole to remain constant.
For example, two cardboard rectangles, each made up of 6 squares, might
be used., The twelve such squares were all equal,and each of the rec-
tangles was two squares wide and three high. After constructing the
rectangles, the experimenter transferred the top right-hand square on one
to the bottom right-hand corner, which yielded a pyramid of three squares
in the bottom row, two in the second, and one at the to0. The child
was asked whether this figure had the same area as the Other rectangle
which was left intact. In a seLond task the child was shown two rec-
tangles, recognized as congruent, from which the experiemnter cut off a
portion of four corners, putting them against the sides to produce an
irregular polygon, etc. (any congruent figures can be used instead of
rectangles if desired). The questions were always: "Are these the same
size?" "Is there the saMe amount of room?" etc.

Measuremmt of areas was studied by using two tasks: (1) Measure-
ment by superposition involved likLobiects consisting of a large right
triangle (A), an irregular fighT117151), and Ariangles (squares cut diagonally

in half). There were sufficient smaller Aapes to cover the whole of
B and more than enough to cover A. The child was asked to use the
smaller shapes to cover the large figures. (2) For measurement by unit
iteration, the child was shown a number of shapes equal in area but
differing markedly in shape. One (A) was a square that could be composed
from the nine smaller squares, and the others (B and C) were irregular
figures made up of the same number of small squares. The child was
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given a cardboard square representing one unit together with a pencil
and was free to examine the material, and to draw on it. If he did
not know what to do, the experimenter demonstrated how to use the unit-
square to cover the large square if necessary. When finished with A,
B, and C, the child was given two mc):! shapes that were more heterogeneous
and not equal (D and E). The child was offered a choice of three counters
to use for measuring: a square, which was a quarter of D, a rectangle
double the squares (so that,two would fit into D), and a triangle equal
to a square cut diagonally in half. The child was asked to use tfie small
squares or triangles to fit into the large figures.

Consetvation and measurement of volame was observed by showiiig the
child a block measuring 4 cm in height with 3 cm x 3 cm base (volume
= 36 cubic cm). The block was presented as "an old house" built on an
island, (a square cardboard, 3 cm x 3 cm pasted on a sheet cf corrugated
card). The house is "threatened," so the inhabitants decide to build
-another which is to have exactly as much room. The child is shown these
oth.:r islands which are also pieces of card but which differ trom the
fitt,t in size or shape or in both, the,ir measurements being 2 x 2 cm,
2 x 3 cm, 1 x 2 cm, 1 x 1 cm, and 3 x 4 cm. The problem consists in
reproducing the volume of the first block while altering its form to
comply with the new base. The equal volume must be built from wooden
cubes of 1 cm? (the original block is solid). Equality of volume was
expressed by "as much room," with further explanation as necessary.

Results

The results are presented here in three sections: first, results
from the study of children's spontaneoug measurements; second, the
results from the stUdy of the comparison of two straight lines: and
third, a summary of the results of studies of conseryation and measure-
ment of length, area, .::11.% volume.

Spontaneous measurement. The responses made by children in the study
of spontaneous measurement are summarized in Table 2.

- Table 2

Levels of Development in Childrens' Spontaneous Measurement

Stage 1 (4 - 41/2 years) Visual transfer

Stage II - 7 years) IIA: Manual transfer
IIB: Budy transfer

Stage III (7 - 81/2 years) IIIA: Transiti7e congruence
ITIB: Unit iteration
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At Stage I, visual transfer is the only basis of comparison between
the two objects (e.g., towers). Comparison of the heights of two towers
is made entirely by moving the line of vision; the subject makes no
effort to move one of the towers closer to the other.

4

SubStage IIA is characterized by visual transfer being supplemented
by manual-transfer. The towers to be compared are now brought together
so that an appraisal of "neighboring" objects is made. In Substage IIB,
children use"their bodies, e:g., the span of hands or arrs to "transfer"
the height of the tower from one to another (body transfer). Such
behavionis considered the beginning of the use of a middle term, but
the transitivity involved here is still intuitive.

During Stagg III transitivity in the operational sense is understood.
The smaller as well as the larger object (term) is used as the midrlle
term. For example, the length required is noted; if the "rule" is too
short, they stop and go back and forth between the towers. Eventually,

any object available is used as a commorcmeasuring rule. Such an object
is stopped as often as necessary, which is the equivalent of assigning
a "untLvalue" to a given length. This operation of unit iteration marks
the appearance of a metric system.

Comparisons of lengths. The results of comparing two straight lines
are summarized in Table 3.

Table 3

Level3 of Development in Children's Comparisons of Two Straight Lines

Stage 1 6, ILA

Sfage IlB

Stage III

Nonconservation

Intermediate responses

Conservation

Stage I and IIB behavior is characterized by no conservation of

length, i.e. judgements depend exclusively on the perceptual characteris

tics of the setting. Thus, when the child visibly focuses on the leading
extremity of a moving stick, that stick will he judged longer and the
progressive changes at the other end of the stick are ighored.

The beginniLg of Stage IIB is observed when intermediate responses
occur, i.e., the child's responses oscillate between nonconservation and

conservation. For 1Yample, the child concentrates first on one end of the

pair of sticks and jAges the top stick to be longer (because it pro
jects beyond the other) , but the next moment he focuses on the other

6 9



62

end-point where the lower stick projects beyond the top one and he now
decides that the lower stick is longer.

Conservation of length defines the Stage III level and results from
the operation of compensat:ion. When the sticks aze being staggered, the
child often responds: "The sticks are still the same length; there's a
little space here (difference between the leading extremeties) and there's
the same little space (difference between the trailing extremeties)."

Summary_

The development of conservation and measuremeuc in length, area,
and volume follows similar courses as those'observed in the studies
of straight ltne comparisons and spontaneous measurement. The only
differunces lie in: (1) Content, i.e., the number of dimensions involved.
(2) The measurement of volume is relatively inadequate at level IIIB as
compared to that of length and area at the same level. One cannot apply
a unit-volume over the total-volume to be measured in most cases as is
possible for length and area, i.e., often many elements are hidden
from view. (3) Cal,ulation of length based on linear units appears
complete at level lIIB, but not so for arca and volume. Again, the
child can perform unit iteration at IIIB level but "multiplication"
(e.g., for a rectangle, 2 cm x 3 cm = 6 cm) operations are not realized
until Stage IV. Responses of the children in the experiments ot conservation
and measurement cf length, area, and volume are summarized in Table 4.

Discussion

. To measure requires sce "thing" as a base unit and transposing of
that unit in a systematic way to the whole of the object to be measured.
Underlying the Piagetian concept of measurement are the concepts of
"conservation of size," "subdivision," "change of 1,,,sition," and a
"coordinate system." The measurement of space, thus, is not possible
without the establishment of conservation of size, and of the coort:i.-
nation between change of position and subdivision.

The achievement of conservation of size depends on recognition of
the distinction between empty space as "container" and solid moveable
objects as "contained." If, for example, two straight sticks of equal
length are first laid end to end and then slightly staggered in rela-
tion to one another, Stage I and II subjects say that the lengths are
equal, but at Stage III they are :onvinced of the equality because now
it is "recognized" that newly occupied "sites" compensate for places
left empty by the change in position. This awareness of compensation
is based on the discovery that properties of length, area, or volume
remain invariant when position is changed. But, the discovery of these
invariants in turn depends on knowledge that when an object undergoes
a slight change of position the space left unoccupied by the change is
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Table 4

Summary of Children's Responses in Conservation and Measurement

Conservation Measurement

Stage I & LIA Nonconservation Perceptual comparisons

Stage IIB Intermcdiate Intuitive transitivity*
Responses

qtage IIIA Conservation Operational transitivity*

SLage IIIB Melf-2 measurement: unit
iteration***

Stage IV** Met.:ic measurement:
mathematical multipli-
cation***

*Transitivity is intuitive when the transferring of a middle term in
comparison is limited only to some certain favorable situations (e.g.,
when objects to be compared are neighboring each other), and the comr
parison is still not free from percepptual influence and thus is still
only approximate. An operational transitivity,on the other hand, is not
restricted by the situational factors; it dep.mds solely on logical
inference, thus, if A-B, and B-C, then A-C.

**Stage IV applies only to the development in the measurement of area
and volume.

***The operatinn of unit iteration is not equivalent to mathematical
multiplication. The former consists in measuring the size of an object
by moving a unit measure of the same dimensions stepwise over the total
object (i.e., using unit-length to measure length, unit-area to measure
area, unit-volume to measure volume). The latter allows one to measure
area using linear units (e.g., 2 cm x 2 cm = 4cm2); or one can measure
volume usinR linear units (2 cm x 2 cm x 2 cm 8 cm3), or linear and
two-dimensional units (e.g., 4 cm2 x 2 cm = 8 cm3).

71



64

exactly equivalent to the newly Occupied space. While the argument is
circular--since compensation between spaces and newly occupied spaces
depends on the invariance of area and volume despite change in position,
and the latter depends on the awareip-ss of compensation--it is this
reasoning which enables the child to recognize the conservation of size
when objects undergo changes of position.

Conservation of size is but a precondition for measurement. Measurement
also depends on the coordination of subdivision and change of position.
The operations of subdivision and change of position and their relations
to measurement are as follows.

Operations of subdivision. Let us suppose a straight line C with a
given length. By the operations of subdivision and composition the line
may be-broken into a number of contiguous parts and these in turn can be
reunited to compose the original whole. Such parts may be represented
by a length A which, together with another A' to which it is contiguous,
yields a more inclusive part B (= A + A'), while B in turn is completed
by a final part e, so that together they yield the whole line (B + B' = C).
A child at Stage IIIA understands composition and can therefore deduce
the following relations: A + A' + B' = C; B A' = A; C. - B = B1; etc.
Here the quantification is derived only from part-whole relations and
not from relations between one part and another: The subject is aware
that A < C; A/ C; B C; B/ < C; A < B; etc., without needing to know
the precise lengths of A, Al and B'. Between these elementary parts,
A, A' and B , there can be no relation other than that of qualitative
equivalence which is derived from their common membership of C.

Operations of change of posit a. In the linear series above, the
initial order of its three elementary parts was AAle. Any change in
their relative position is simply a matter of altering that order to
A/AB or AB'A etc. Similarly, to change the position of the total line C
amounts to an alteration in the order of C relative to a series of
reference elements. On the other hand, any change in the ler of its
owu parts will not affect the total length (C) because A/ + A + BI =
B/ + A + Al = A + A/ + = C. Likewise, the forward movement of the
line C does not affect its length; i.e., the compensation is between
newly filled spaces and vacated spaces. But, compencation also can be
expressed in the language of qualitative subdivision: by moving forward,
the stick C is increased by a new element C at its forZard end; at the
same time it loses a part C which it leaves behind. But since change
of pLsition is a change in the order of things, the new part C / and the
old part of C" are regarded as equivalent, i.e., C'= C4', and the child
argues C + Cl - C/1= C just as C + C' - C/ = C.
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Thus, both subdivision and change of position az-c. 4eal_tative in
character, and each taken alone is not sufficient to rise to measure-

ment. This fact is clearly seen in the study of children's spontaneous
measuremeut. A change of position without subdivision evokes intuitive
judgements based on movement. The most elementary form of thi.: response
is for the subject to ruh his finger along the two lines and Make a
motor comparison. A slight advance is noied when the child transfers
a span or the width of two'or three fingers. However, all these response
types are limited because subdivision is approximate; there are no defi-
nite "marks" for guidance. Subdivision without change of position also
cannot result in measurement. The most elementary form is exemplified
by responses of a child when asked to judge the length of two outlines.
He lays a strip of paper along one part only of a single'outline. Later,

he lays another strip along part of the second outline and passes judge-
ment on the relations between the two, without comparing the two measuring
strips. What he calls measuring is simply comparing two outlines by
splitting each one separately into sections, without transferring these
sections from one outline to the other or comparing them with each other.
Thus, when subdivision without change of position occurs, two objects
cannot be compared in terms of metric unit, and there is not true
measurement.

Meas; :.ement begins when one part (A) belonging to a whole (C) is
compared with the remaining parts of the same whole by change of posi-
tion (either its own or that of a common measure, used transitively) so
that A (or its equivalent) is superposed on these other parts. This
implies subdivision and change of position are fused into one single
operation and no longer simply complementary. The operations alluded to
above involve the alternate use of subdivision and change of position
and not the two together. Thus, subdivision antecedes change oi posi-
tion and is not its consequence; but change of position itself also is
quite independent of subdivision. This fact is illustrated in the ,:on-

servation of size. There is always an initial subdivision of the whole
into parts, and the relative position of parts is then changed so the
various parts take one another's positions. The operations do not in-
volve any direct or indirect comparison between the several parts. But

when one part (A) is applied to the remainder of the whole (C) , the sub-

division is not independently given, it is generated by the change
of position effected either by A itself or by its transitive equivalent.
Thus, A is moved stepwise along C-A, giving first A=A' (so that B=2A),

then A=A'=B' (so that C=3A). In this case the subdivision cannot be
dissociated from the corresponding changes of position. The subdivision
depends wholly on change of position, but the reverse is also true. It

is this synthesis of qualitative oporations which gives rise to unit
iteration and so constitutes meas;rement. By applying one section over
and over until the whole has been .,)vered completely, the whole is
effectively reduced to a multiple o. that section and tne section becomes
a unit. Since the unit can be subdivided in turn, using one of its
fractional elements as a sub-unit, it follows that any size whatever
can be compared with any other by means of whole and fractional units.
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The nrtion of unit iteration to this point, however, is not yet
completel, developed in the metric notion of space. Areas are measured
only in terms of units which are themselves areas, and volumes in terms
of unit-volumes. It is not until later that the child learns to cal-
culate areas and volumes by linear units. This ability to apply mathe-
matical multiplication to the measurement of space evolves, according to
Piaget, from.the realization of the continuity of space. Thus, surface
can be reduced to line when it is thought of as an infinite series of
lines; volume can be reduced to surface when it is thought of as an
infinite series of surfaces. It is with this achievement (mathematical
multiplication) involving area and volume that the child has reached
dhe final phase in the construction of Euclidean space.

To summarize, geometry is the science of space. The child's notion
of space changes with development. Nt first, the child only is able
to conceive of space in terms of such relationship as neighborhood, order,
betweeness and closure. Later, he learns to construct space by a 'point
of view' of the observer(s), and to describe space in terms of left-righ
before-behind, and above-below. At the final stage, the child can con-
serve distance, and with the aid of a coordinate system, begins to
conceive space in metric terms.

The three stages in the evolution of the child's notions of space
correspond to spatial relationships constituting three branches of
geometry. The conceptualizations that appear first in psychological
development ari, the ones constituting the topological space; those
appearing nexc constitute projective space; and those appearing last
in psychological development are ones that constitute Euclidean space.
The evolution of these notions of spatial relationships constituting
topological and projective spaces has been treated in The Child's
Conception of Space (Piaget & Inhelder, 1967). The development of
the child's understanding of Euclidean space was left to a separate
volume because it involves the complex notions of distance and
measurement. The Child's Conception of Geometry (Piaget, Inhelder,
Szemdnska, 1960) continues the work by treating these problems. In
die latter volume, it was argued that conservation of distance
is based on the distinction between movable objects and fixed sites
as reference points. Measurement of space presupposes the notion
of the conservation of distance and actually begins as the operations
of subdivision and change of position are fused into a single operation.
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Final Thoughts and Directions for Future Inquiry

A theory as comprehensive as Piaget's quite naturally draws much
attention. Replications are attempted, discrepancies are found, and
research' based on the theory tends to, initially, be multi-directional.
It woufd be surprising, indeed, if no findings contradictory to the theory
were reported. What is surprising in this case, is that so mucii of
Piaget's findings have withstood the empirical onslaught. Piaget's

(1970) more recent distinction between figurative and operative thought
gives the theory more flexibility for dealing with a broader range
of psychological problems,,including "real life activity." Youaiss and

Dennison (19,71) have confirmed sone of the implications of the figura-
tive and operative distinctions. They have shown that the two processes
are complementary within development levels but with operative thought
dominating the figurative processes. Also, Piaget's theoretical
structure too often has been considered without the role it gives to

' experience, which varies from one individual to another; thi critical

point is that modes of dealing with experience are similar among persons.

Piaget's biclogical tradition has often been contrasted with the
psychometric, tradition in the U. S., but the mo approaches may not be

so far apart. Laurendeau and Pinard's (1970) extensive study of five
Piagetian tasks, which confirmed many of Fiaget's findings using a great
many subjects, made gooduse of scalogram analysis. The technique is
gaining in popularity, since_it supposedly answers the questicn of:
whether a set of behaviors occur in an orderly (developmental) sequence.
Laurendeau and Pinard's research also sets an important preaedent, that
is, using the same children for many tasks within the same study.. The

analysis of interrelations among task performance of the same children
is necessary to describe the common underlying cognitive structure.
For example, Kaufman (1971) examined the factor structure 0' some cf
Piaget's and Gesell's tests, and the Lorge-Thorndike test,,
old children. Tha Piagetian tasks reflected three factoc.. .--: ding

to the oderatiou of number, classes, and relations. Bart reported

a general formal operational factor and a seconi factor r task

context. Berzonsky (1971) found five separate facto s
with first-grade children). Shantz (1966) did not L.- .

but did study the.interrelationsUip among tests of cl ation

of asymmetric logical relations and spatial muitpica-c H rete

operational children. :illy tasks were found to intercc.:-;c1:1t,
but exhibited a varietPof morn _!pecific complex rel,
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A point often neglected is that a moderate correlation between
scores on tests of multiplicati abilities, for example, not to say
that the relationship between n, _tiplicative abilities iE m..,ieral.e. The
latter statement could be made if all relevant variables. jiu considered,
but it is difficult to know when this has been achieved q:q,le aciequate
dataare still not available. Researchers, undersCandabi, qish to develop
their own tasks, but contradictory results lead to queti.,1 ot 0-e validity
of the instruments. Even the van, ty of the Piagetian t.-,sks (since pri
macy does not imply validity) is not known. It does se^fq, however, that
too many new tests are developed prior to a thorough un..t.rstanding of the
theoretical imperatives for tasks that might provide a ..,st of the theory.
There is the nagging suspicion that some tests are &-ve.sped with a
hopeful eye toward being able to test a child and, wit,. .....!rtainty, place
him in Stage X. The dangers of assessing a child's structure(s)
on the basis of a few "tests," especially using standardki.edysychometric
methodology, was pointed out early by Inhelder, BoveL Sinclair, and
Smock (1966).

One further thought. Gagne (1968) would leave rievoid of arY
hope for Piaget's theory. "I believe that many cf' pAnciples m':tioned
by Piaget, including such things as reversibilit. . . aro abstracts. . .

obviously in Piaget's mind. But they are not in chfls min (p. 188).
Surely what Gagnimeans is that an (external) observer attaches P
to mental operations. It really is unlikely that Piagei 1-1A!,; child
goes azound saying, "I am practlzilg t71,en 1 to

the brass tacks of a counter theory, GagnEC c-in only ot.i ific
"euthenics" which are learned are generalized by combining rt'.er

"euthenics," "by- means of a little understood, but nevethec,
mechanism of .-!arning tradsfer" (p. 189). Our only comment ,s ';.at this

phantom mechanism also has gone unnamed by all childcen

What onv does when two theoretical positions 1 :("nflict is
rarely a matter of empirical or logical compulsio;t. rcing and
developm.m.:ai approaches often speak of the s'i hr menot,, using
different terms, leaving one searching fo: a nguage which would
make everyone happy. What one does about a c,a1 of the data on
the concept of space, contradictory to or requirf ,f,; comment by Piaget's
theory, is also largely a matter of choice': Cll.:en our current state of
knowledge, the theory, if one believes it, cl, be made to account
for most al of th i.ndings discussed here. ';elevcnt systematic inquiry
into Piaget's foundation has a relatively short history.

The directior of future inquiry is spt by the critical concepts
and nethodologica: imperatiws of Piagetv.i theory. Psychological research
by and large has been, until about l96'.;, 1;nited to psychological
analysis ,C "stage" rather than "chan based on response choice

7 ii
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rather than actions and transformations. For example, most studies of

development of concepts of spac are concerned with what cues are per-
ceptible, i.e., is the chi1 0 able to discrimiaate between a form or

object and its mirror image. The important question, from the ?iagetian

perspective, is whether th l can identify an object that is h 1800

change from the standard o5;..".t, More generally, can the child

distinguish a change in f...om a change in state? Thus, the

strategies used by the chil( to al.tinguish various transfotmations
constitutes the bases for describing developmental change. The main
"point of Piagetian theory is the shift from analysis of "features" to
the coordination of input and action (Inhelder et al., 1966).

Each advance in science is accompanied by methodological and/or
technical innovations made "realizable" by the new ideas. Piaget's

contribution in this area is his refined observational procedures designed,
as much as possible, to give the child opportunity for "spontaneous

construction." Psychology has beer a psychology of controlled choice
and not a psychology of transformations. Piaget's epistemological
imperative to psychology is that learning occur: by making transforma-
tions on objects and, further, that learning results from self-generated
transformations:

[In manipulating] besides learning something about the
object in the cou se of such an experiment, the hi1d also
learns something if the way actions are coordinated and how
one determines zaother. (Piaget & Inhelder, 1967, pp. 453-454)

The usual method of pSychological research is to present successive
exposure to stimuli controlled the experimenter. The structuralist

(Piagetian) approach, on the other hand, requires situations that per-
mit self-regulation of patterns.of action sequences. Of course, many

psychological researchers believe that such procedures, while theore-
tically rerevant, are too imprecise and not appropriate for the science
of psychology. If, for excmple, input variables are determi led by

the "whim" of the subjeci,how can "causes" be identified? The answer

depends on our definition of "explanation." If the concept of "cause"
involves the issues of "antecedents-consequent" relations, then the
structuralist approach appears naive and out-dated. However, if formal

(as contrasted to efficient) causality is accepted as ajype of
"explanation," there is no problem.

Research involving the psychology of transformations, including
those conr:erned with space-time, requires a much finer grain analysis than
the analysis that is typical of past behavioral studies. The microanalysis
of development a la Piaget is essential to further our knowledge generally an

for testing Piaget's theory. Aside from the latter, microanalysis of
action patterns under controlled conditions will fill in apparent
discontinuities in cognitive development (i.e., to discover and
explicitly dei.cribe :he nature of the functional interactions th...t give

rise to the hypothesized emergent functions):
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As Forman (1973) suggests, microanalysis has the further advantage
ot placing the focus on the child rather than,on the task. It is not

sufilcient to know the developmental ,rder of a task; rather the experimenter
must observe, record and analyze the process (action pattern) of task
solution. Otherwise, the investigator can only make indirect interpre-
tations, i.e., those derived from his reasoning of whatis logically required
to solve the particular problem. An example from Forman (1973) follows:

It has 'een reasoned that the child can distinguish a two
dimenFLonal 'convexity by using the convention that shadows
come from above (Y,7az, 1973) Another reader could enter
with his 'yeah, but' at poirt to other features of the
task which might have been the cues of response. If the

researchers would take a closer look at the child, say
with high-speed photography, they may find something in
the natt.-e of the research that would mak::: the conclusions
firm. What if the child extendel a single finger toward
the 'concavity,' as if to place his firger 'insidc,'.but
when approaching the 'convexity' he maintained an infant:le
thumb-forefinger opposition as if to 1:,rich at the 'protrusion'.

That microanalysis of behavior can add significantly to the urderstanding
of spatiai development is clear from the work of Forman (1973) and the
study of visual scanning patterns by Vurpillot (1968), among others.

Emphasis on transformation -:apability, microanalysis of behavior
(i.e., logic action patterns) and open-ended response conditions all
require a s;-:ft in our basic parad:gm about experimentation (Smock, 1973).
The full me .ing and implications of this Fiagetian "revolution" are

now becoming cl:ar (Smock & von Glasersfeld, 1974).

7 8
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Breakthroughs in tht4 Psychology of

Learning and Teaching Geometry

Izaak Wirszup

The University of Chicago

Russian mathematicians and mathematics educators newe always been

very fond of geometry. To some-extent, this fascination is due to their

pride in the achievements of Lobachevskii. Whatever the reasons, geometry
has always played a central role in the Russian school mathematics curri-

culum. But even in Russia children traditionally began .their study of
geometry as a separate subject rhlatively late, namely in grade 6 (that is,

at the age Of 12 or 13).

This late start occurred largely because the development of the studene3
deductive and logical reasoning powers had been inappropriately considered
to be a principal goal of school geometry instruction. And yet, the course

constructed on the basis of this objective demanded of the students a high

level of general development which they had not attained in their previous

instructton.

In the Soviet Union and in the rest of Europe, the absence of this

necessary development posed the problem of preparing students for the

beginning of geometry study and, as a result, a preparatory course in
geometry was developed -- a course sometimes called visual, concrete,

intuitive, heuristic or propaedeutic geometry. Thus, two approaches to

geometry have been used in Soviet Schools: the intuitive for grades 1

through 5 and the systematic (semideductive) beginning in the sixth grade.

Soviet educators who had been teaching either goemetry sequence
experienced acute dissaasfaction with the conditions of knowledge pre-
vailing in most of their students, as had their counterparts in the rest

of the world. Extra hours ,)f in6iv:dual work and supplementary lessons

with slow learners did net v,d%ce the desired results. The pupils

committed errors again nod agin, showing i:heir basic inability to solve

the simplest problems th,ir An obvious question presented itself:

Why was it that so many children ,,ho mastered most school subjects got
nowhere in their study of gemetry?. Over the past thirty years Sovie-.
mathematics educators and psychologists 'lave been making a thorough
analysis of the content and methois of teaching both the intuitive and
systematic courses, and have trikd to find answers to this question.
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Excellent rcsearch indeed has been conducted at the USSR Academy of
Pedagogical Sciences in order to improve the situation. Some of the
Academy's work is included in Soviet Studies in the Psv7ho1ogy of Le.arning,
and Teaching Mathematics ((ilpatrick & Wirszup, 1969-15: :; Kilpatrick, Wirszup,
Begle, & Wilson, 1975), the series published jointly by the Slool Mathematics
Study Group (SMSG) of Stanford University and the Survey of Recent East
European Mathematical Literature of the University.of Chicago. Volume 1 of
'this 14-Volume Series contains samples of the research by Zykova on the
Learning of Geometric Concepts and studies by Galperin and Georgiev on The
Formation of Elementary,Mathematical Notions. Volume 4, entitled Problem
Solving in Geometry, ineludes papers by Kabanova-Meller, Talyzina and
Yakimanskaya. Volume 5, on the Development of Spatial Abilities, offers

.,research by Chetyarukhin. interesting studies by Artemov (The Composition
of peosetric Skills), and Mashbits (The Formation of Generalized Operations
as-a Method for Prqaring Pupils to Solve Geometry Problems Independently)
appear in Volume 13, and a paper by Tishin (Instructing Auxiliary School
Puli)s in Visual Ceometry) is included in%Volume 10.

Still, this very significant research has inflhenced the improvement
in the Leeching of geometry only slightly. The troLy radical changes and-
far-reuching innovations in the new Soviet geometry curriculum have, in fact,
been Introduced thanks to Russian research inspired by two Western psycho7
logists ard educators.

Fitst, the RussianA have accepted as a fundamental principle the well-
known lnd c:ucial discovery hy Jean Piaget (and his Co-worker, Barbel
Inhelder' containi in a paper by.Piaget entitled Les structures mathd-

structuresollt:ratoiresde rintelli,gynce, (1955) and in the book
Lc getise des structures logiques 6l6mentaries, by Piaget and [nhelder
(1959). Piaget asserts that traditional geometry instruction begins too
late and then takes up the concept of measurement right away, thus omitting
,the qualitative phase of transforming spatial operations into ]ogical ones.
This is to say that instruction is realized in a sequence corresponding to
the historical development of geometry -- from the "geometry of measure-
ments" to the "geometry of shape" -- from geometry of position to theoret-

g,ometry, ht:t development oi geomtric operations in children
actually proceeds in the opposite direction -- from the qualitative to the
quantitative.

However, it it -.he life work and research by two Dutch mathematics educa-
1 tors which cuutasis the most profound psychologi.cal and mathematical ideas,,,
and has_ formed the basis for designing'the new Soviet curriculum and
methods of teaching geometry in the r.s.s.R. Unfortunately, this work has
remained unnoticed in the.United States,, and probably would have been
ignored in Western Eerope as-yell, were it not for Professor Hans Freudenthal,
the famous matliematician and edhcator.

P.M. ...an Hiele, a teacher at the Lyeee of Bilthover in Hollahd, is
the author of a dissertation (1957) on intuition, particularly orithe
role of intuition in the teaching of geometry. His late wife, Dina van
Hjele-,Gel.dof, defeaded her doctoral thesis on didactics.in geometry before

8 3
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the University of Utrecht ,lso in 1957. That same year P.M. van Hiele

delivered a talk at a mathematics education conference at Se-yres near

Paris, and in 1959 he published it in a pnper entitled La_p,!nsee de

l'enrant et la geometrie (The Thought of the Child and Geometry). Here

he discusses five revels of thou6hc' development in geometry.

Mathematics educators, methodologists
and psychologists at the

Soviet Academy of Pedagogical
Sciences hastened to organize intensive

research and experimentation on the levels of development outlined by

van Hiele, and between 1960 and 1964 they verified the validity of his

assertions ind principles. We offer here the van Hiele levels as given

in the more elaborate Russian post-experimental description (Pyshkalo,

1968; Stolyar, 1965).

Van Hiele Levels of Development in Geometry

Level I

This initial level is characterized by the ri,erception of geometric

figures in their totality as entities. Figures are judged according to

their appearance. The pupils do not see the parts of the figure, nor

do they perceive the relacionships among components of the figure and

among the figures t!!emselves. They cannot even compare figures with

common properties with one another. The children who reason at this

level distinguish figures by their shape as a whole. They recognize,

for example, a rectangle, a square,.and other figures. :hey conceive

of the rectangle, however, as completely different from the square.

When a si-.-year old is shown what. a rhomSus, a rectangle, a square, and

a parallelogram are, he is capable of reproducing these figures without

error on a "geoboard of Gatt4gno," even in difficult arrangements.1 The

child can memorize the names of these figures relatively quickly, recog-

nizing the figures by their
shapes alone, but he does not recognize the

square as a rhombus, or the rhombus as,a parallelogram. To him, these

figures'are still completely distinct.

Level II

The pupil who has reached the second level begins to discern,the

components of the figures; he also establishes relationships among these

components and relationships between lAdiiridual figures. At this level,

1The van Hieles have used the "geoboard" in their research'so that

the child will not be hindered,by difficulties resulting from drawing

the figures.

8 1
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he is therefore able to make an analysis of the figures perceived. This:lakes place in the process (and with the help) of
observations, measurements,drawings, and m-,dal-making. The properties of the figures are established

experimentally; they are described, but not yet formally defined. Theseproperties which the pupil has established serve as a means of recognizingfigures. At this stage, the figures act as the bearers of their properties,and the student recognizes the figures by their properties. That a figureis a rectangle means that it has four right angles, that the diagonals areequal, and that the opposite sides are equal. However, these propertiesare still not connected with one another. For example, the yupil noticesthat in both the rectangle and the parallelogram of general type theopposite sides are equal to one another, but he does not yet conclude thata rectangle is a parallelogram.

Level III

Students who have reached this level of geometric development establishrelations among the properties of a figure and among the fiiures themselves.At this level there occurs a logical ordering of the properties of a figureand of classes of figures. The pupil is now able to discern the possi-bility of one property following from another, and the role of definitionis clarified. The logical connections among figures and properties of
figures are established by definitions. However, at this level the
student still does not grasp the meaning of deduction as a whole. Theorder of logical conclusion

is established with the help of the textbookor the teacher. The child himself does not yet understand how it couldbe possible to modify this order, nor does he see the possibility of con-structing the theory proceeding from different prmises. He does not yetunderstand the role of axioms, and cannot-yet see the logical connectionof statements. At this level deductive methods appear in conjunction withexperimentation, thus permitting other properties to be obtained by rea-soning fromsoaw experimentally obtained properties. At the third levela square is already viewed
as a rectangle and as a parallelogram.

Level IV

At the fourth level, the students grasp the significance of deductionas a means of constructing and
developing all geometric theory. Thetransition to this level is assisted by the pupils' understanding of therole and the essence of axioms,
definitions, and theorems; of the logicalstructure,Of a prent and of the analysis of the logical f=elationshipsbetween concepts E:tatements.

The students can now see the various possibilities for developing atheory proceeding from various premises. For example, the pupil can nowexamine the whole system of properties and features of the parallelogramby using the textbook definition of a parallelogram: A parallelogram isa quadrilateral in which the opposite sides are parallel. But he can also
construct another system based, say, on the following definition: Aparallelogram is a quadrilateral, two opposite sides of which are equaland parallel.

85
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Level V

This level of intellectual development in geomerry corresponds to the

modern (Hilbertian) standard of rigor. At this evel, one attains an

abstraction from the concrete nature of objects Lnd from the concrete

meaning of the relations connecting these objects. A pez,on at this level

develops a theory without making any concrete interpretation. .Here geometry
acquires a general character and broader applications. For example,

several objects, phenomena or conditions serve as "points," and any set of

"points" serves as a "figure," and so on.

The use of these levels permits us to isolate (and study) the essential

aspects of the development of geometric thought from the large complex of

int,,..~related factors characterizing the development of thinking in general.

Discontinuity of the Learning Process

The van Hieles Hiele & van lliele-(;eldof, 1958) rviLiced the

discontinuity of the learning process:

The discontinuities are . . . jumps in the learning curve,

[and] these jumps reveal the presmice of levels. The

learning process has stopped; later on it will start itself

once again. In the meantime, the pupil seems to have "matured."
The teacher does not-succeed in further explanation of the

subject. He and . . . the other students who have reached
the new level seem to speak a language which cannot be under-
stood by the pupils who haw: not yet reached the new level.
They might aCep, Zhe exi.lanation of the teacher; but the
subject taught will not sink into their minds. The pupil

himself feels helpless; perhaps he can imitate certain actions,

but h has no view of his own activity until he has reached

the new level. At that time the learning process will

take on a more continuous characck'r. Routines will be

formed.and an algorithmic skill will be acquired as the pre-

requisites to a new jump which may lead to a still higher

level. (pp. 75-76)

These levels are inherent in tl-e development of the thought processes.

Van Hiele stated and Soviet research has shown that the passage from one

level to another is n9t a spontaneous process concomitant with the student's

biological growth and dependent only on his age. The development which

leads to a higher geometric level proceeds basically under the influence

of learning and therefore depends on the content and methods of instruction.

However, no method not.even a perfect one, allows the skipping of levels.

The passage from one level the next requires a certain amount of time;

but various methods allow the regulation of this time period. It is also

possible that certain teaching methods do not permit the attainment of the
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highar levels, so chat the modes of thinking chat would be used at these
levels remain inaccessible to the student.

Freudenthal drew special attention tc the work of Lis students and
colleagues, the van Hieles, not only because he consideod their work to
be d truly revolutionary development in the teaching of geometry, but also
because of the underlying pedagogical and didactic the:,r, In his opinion,
their theory of leVels of thought, as well as their masterful experimental
courses in concrete geometry, are achievements of educational research which
should be recommended to all who are interested in mathematics education.
In his monumental work, Mathematics as an Educational Task (1973), Freudenthal
writes about the van Hieles' theory of discontinuities in the learning pro-
cess as follows:

When the van Hieles started teaching they were just as
unprepared as many other young teachers;.nobody had told
them how to do it. Of cource they had passively under-
gone teaching, maybe even observed their teachers' perform-
ing, but this was not enough. As time went on, they cad
the opporunity to discuss their teaching with ,each other
and with others. They subjected their own actions to
reflection. They observed themselves when teaching, re,-alled
what they had done, and analyzed it. Thinking is continued
acting, iadeed, but there are relative levels. At the
higher level the acting of the lowet ones becomes an object
of analysis. This is what the van Hieles recognized as a
remarkable feature of a learning process, tiamely of chat
[process] in which they [themselves] learned teachin6. They
transferred this feature to the learning process that was the
goal of their tt.rehing [that is] to the learning procdsses
of pupils who were learning mathemat:Ls. There they dis-
covared similar levels. To me this seems an important
discovery. (p. 121)

Tbis is how Freudenthal (1973) describes tl,e reasoning of a child who is
at the :third level:

If the child know what a rhombus is, what a parallelogram
is, he can visually disc, ver properties of these shapes.
There ate a lot of them; during the class discussion the
children count them up. In the parallelogram opposite
sides are parallel arm equal, npposite angles are equal,
adjacer-: angles sum up to 180°, the diagonals bisect
each other, the parallelogram has a center of symmetry,
it can,be divided into congruent triangles, and the plane
can be paved with congruent parallelograms. This is a
collection oi visual properties which asLs for organization.
I explained earlier how deductivity starts at this point;
it is not Imposed but unfolds itself from its local germs.
The propetties of the parallelogram are connected with each
other; one among them can become the source from which the
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oLhers spring, so does a definition arise, and now it

becomes clear why a square shall be a rhombus and a

rhombus be a parallelogram. In this course the student

learns to define, and he experiences that defining is
more than describing, that it is a means of the ueductive

organization of the properties of an object. (p. 417)

After analyzing a typical lesson in a geometry class, P.M. van Hlele

(1959) writes:

The teacher reasons by means of a network of relations which

he comprehends, but his students do not. On the basis of this

network he presents the mathematical relations which the
students end up manipulating out of habit. Or, rather, the

student learns to apply -- out of habit -- these relations
of whose source he is unaware and which he , ',ever seen.

Apparently everything is completely acccr...n!. to

expectation: the students nill eventually hav2 their

disposal the same network as the teacher. The lion

of a network of relations which is identical frT who

make use of It and ideal for expressing reasoning --
work in which all of the relations are connected ' a

)ogical and deductive manner; is this not the proo:: euu

of the teaching of mathematics?

Let us not be too optimistic. First, a net,;,:rk of

relations composed in this way is not founded upon the

sensory experience of the students. Although iL is possible

that the network of relations itself has inspired sum_
experiences for the student, the mathematical experieaces

that the student has been able to have:are based complateiy

on he network imposed by the tew:her. This netwoik,

imposed and not understood, forms the basis of his reason-

ing. A network of relations whi,'h is not founded on
previous experience risks, as we .0.1 know, being forgotten

in a short Lime.

Thus, the network of relatio i:!. is an autoLomous con-

struct: it has no connections ./ch t:,! other experiences

of the child. This means preciselj tta the studern: knows

only what he has been taught and utat is t'afled to it de-

ductively. He has no learned to establish the connec-
tions between the nr.:.;(,-k of relations and th, real

sensory world. He 1 not know how to apply what he

has learned to new .:.tuations.

Finally, the _LI has learn. J to apply a network of

relations which one nas offered him ready-made: he has

learned to apply them Ln certain situations specially

8 8
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designed for him, but he has not learn:d to construct sucb
a network himself in a domain as yet unexplored. On the
other hand, if as a result of our teaching the students
should obtain the capacity to construct a deductive rela-
tional network in a now domain, we will have achieved an
optimal mathematical training. (p. .10)

The following points made by van Hiele (195, pp. 201-203) may contri_-
bute to a more precise understanding of the .ovels of thought:

A) At each level there appean-, in an extrinsic manner
what was intrinsicon the preceding level. At the first level
the figures were in fact just as determined by thei- properties,
but one who is thinking at this level is not conscious of these
properties.

B) Each level has its own language, its own set of
syrools and its own network of relati.ons uniting these
symbols. The transition from one level to the aext is
related to the broadening of language -- the appeirance of
new geometric and'logical terms, defitions, and symbola.
A relation which is "exact" on one level can be revenlcd to
be "inexact" on another. Think:, for example, of the relation
between the rectangle and the square. Numerous
symb)la appear on two successive levels; thcy establish,
more ver, the connection between the difrarent lev Is and
assure the continuity of thought in this discontinuous
domain. But their meaning is different: It is ',hown by
other relations among these symbols.

C) Two people who are reasoning two different
levels cannot understand one anOther. This is what often
happens with teacher and student. Neither of them
succeeds in grasping the progress of the other's tl ght,
and their discussion can be continued only when the
teacher tries to get an idea of the pupil's thought pro-
cess and to conform himself to it. Certain tea-7.he:'1 give
an explanation at their own level, inviting the students
to answer questions. This is, in fact, a monologue, for
the teacher is led to corsider all the answers which ao
not belong to his level ot alations as silly or beside
the point. True dialogue be established on the
level. In this case, the techer must often, after
question himself about his students' meanings and strive
to understand them.

D) The maturation process which leads to a higher
level unfolds in,a characteristic way; one can distingu.
several phases. (This maturation must be considered pria,
pally as a process of apprenticeship and not as a ripening

8 0
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on the biological order). It is then possible and desirable

for the 'eacher to encourage and hasten it. It is the goal

of didactics to ask how these phases are traversed and how
to furnish effective help to the student.

The ph.tn; which in the course of apprenticeship lead to a higher level

of thought co according to van Hiele (1959), as follows:

Information: The student learns to recognize the field
of investigation by means of the material which is presented

to him. This materiai causes him to discover a certain

structure. One could say that the basis of human knowledge

consists in this: Man appears in a position to uncover a
structure in all material, no matter how disordered it is,
and this structure is perceived in the same way by many
people -- as a result of the conversation on this subject in
which they can engage.

In the second p:lase, that of directed orientation, the
student explores the field of investigation by means of the

material. He knows then in what direction the study is
geared; the matter is chosen in such a w.:,y that the charac-

teristic structures progressively appear o him.

Explanation takes place in the course of the third

phabe. The acquired experiences are linked to exact lin-
guistic symbols, and the students learn to express them-
selJes in the course of uiscussions about these structures
wh:::h take place in class. The teacher sees to it that

the customary terms are employed in the discussions. It

io dnring the course of this thied phase that th: network

rv. tions is partially formed.

The fourth phase is that of free orientation. The

field of investigation is in large part known, but the
student must still rapidly find his way around this field

of investigation. This is achieved by assigning tasks

which can be carried out in different ways. All sorts

of signals are placed in the field of investigation.
They show the way to follow in order to reach the symbols.

The fifth phase is that of integratton: The student

has been oriented, but he must still acquire an overview of.

the methods which are at his disposal. He then t ies to

condense into a whole the domain which his thought has 0

explored. At this moment the teacher can encourage this
work by providing global insights, but it is important
that these insights bring nothing new tu the otudent:

They ought only '^ summation of what he already knows.

9 0
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Az a result of this fifth phase, the new level f thought
is reached. The student arranges a network of rcla,ions which
connect with the totality o: the domain explored. This new
domain of thought, which has acquired its own intuition, Iv.,
been substituted for the earlier domain of thought which .4sessed
an entirely different ir.uition.

The objectivity of mathematics rests on the fact that
new symbols and networks of relations are understood in the
same way by a number of different people. If one were to
determine as the end of education the oneness of the relational
network, one might confine himself to having this network
assimilated. The student would then seem to understand the
reasoning process perfectly, for he would come up with exact
conclusions by taking this relational network as his base.
But that would not mean that he would attach the same meaning
to it as his questioner. This meaning cannot be extracted
only from the language used; it dcpends on the experiences
which have led to the formation of the relational network;
that is, it depends on what has taken place on the lower
levels of thought.

If one does not take the content of the symbols into consid-
ration, but only their relations, one can say that, from the
mathematical point of view, everything is perfect. The student
is capable of manipulating the relational n.:twork of deduction with-
out error, liut from t:le pedagogical or didactic,point of view,
and from the social point of view, one has wronged the student.

The pedagogical fault lies in the fact that the student is
deprived of the opportunity to become aware of his creative
ability. From the didactic point of view, the student is
preverc.ed from discovering how new domains of thought are
explored. Society has been wronged because the teacher has
placed in the student's hands a tool which he can manipulate
only in the specific cases which he has studied. (van Hiele,
1959, pp. 201-203)

The Soviet Geometry Curriculum

Need for Changes

As mentioned above, since 1960 the Russians have been conduct'
experimental studies of their students' levels of development in
study of geometry. In order to design a new geometry curri .aum, Vhey
determined to what extent the van Hiele levels reflect the ictual pro-
cess of the pupils' develo.inent and to what extent the tradiaional
system and teaching methods have helped or hindered their development
in seometry. The following represents only a few of the mai,y interesting

91
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conclusions contained in lengthy Soviet reports on this research (Pyshkalo,
1968; Stolyar, 1965).

Under the old curriculum only 10 to 15 percent of the students who
finished fifth grade reached the second level. This delay appeared to

be even greater in relati.,n t..) the pupils' familiarity with geometric

solids. An appreciable leap was not noted here until the seventh grade.

At the same time, it was established that the familiarity of an
experime-Atal class of.second-graders with the geometry'of solids enabled
them to reach the indispensable second level and even to surpass, in this
respect, the level of development of sevehth-graders in the traditional
school. lable'l records the results of assignments on classifying solids
(cylinders, cones, pyramids, prisms). In the last column are data on the

performance of the assignments by pupils in the experimental second grade.
,ese classes spent one month on a study of solids and a description

of the shapes of objects, in the form of independent study.

Table 1

Percent of Success on Classifying

Solids by Students in Traditional

and Experim2ntal Seetions

Grades
Assignments

I II III IV V VI
lixperimentai

VII IL

Forted out all solids
zorrectly

isolated one group of
solids correctly

49 54

1

50

4

52

3

62

19

100

50

100

75

100

Correctly named each group
of solids

Correctly named one group
of solids 1 3 3

/

20

1

40

3

69

37

l '0

49

100

As a result of .arious experiments and analyses, Soviet educators
have termed their trtional instruction in grades 1 through 5 a "pro-
longed period of geom. ric inactivity." Here one can observe a violation

9 2
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of the most important conditions for the development of any kind of tlunk-
ing -- continuity of study and versatility. The following is a strik,mg
illu4tration of the situation under the old curriculum: During the first
five years of instruction, the pupils became familiar with 12 - 15 geometric
objects (the names of the figures and their elements; terms designating
\relationships and properties; apparatuses and instruments, etc.). On the
other hand, in the first topic ("Basic Concepts") alone of the grade 6
geometry course, to whic,1 only 16 class hours were allotted, the pupils
were required to assimilate nearly 100 new terms, including the names of
figures and their parts (approximately 60) , terms designating relations
and properties (approximately 20), and the names of apparatuses, instru-
ments, and their parts (approximately 20).

A detailed analysis of the standard textbooks in mathematics for
grades 1 through 5 revealed the absence of any systematic choice of
geometric material, large gaps in its study, and a markedly late and one-
sided acquaintance with many of the most important geometric objects.

The .investigations showed jumps across levels (primarily from I to III)
with respect to a significant majority of the concepts studied and marked
gaps. In addition, the study of geometric concepts encountered in each
of the first five years of instruction continued at Level I, and then only
from the quantitative aspect, like measuring length and area. It was
evident that in the traditional geometry course for grades 1 through 5,
preference was given only to those concepts that could be measured.

Of great valne as a quanitative decription of the beginning period
in the study of intuitive geometry is the number of exercises in the
standard mathematics problem-books in which actual geometric objects are
examined. Column III, in Table 2, lists the number of problems containing
seometric terms. The problems referred to in the table as "effective" are
important in that their solution is related to the pupils' geometric
development. Their number is insignificant indeed and amounts to
approximately 1 percent of all problems.

Table 2

Exercises in the Standard Mathematics Problem-Books

Total
Grade Exercises

Problems confanini,1 Effective geometry
geometric terms problems among them

Number Percent Number Percent
I 929 27 2.9 12 1.3
TI 1181 40 3.4 10 0.8

III 1300 102 7.8 25 /.

IV 1142 160 14.0 15, 1.'3

V 1157 53 4.6 6 0.5

Total 5709 382 6.7 68 1.2

q ;A



87

The studies demorLrated that in the sixth grade, beginning.with the
very first lessons, 00, teachers were required to do work corresponding to
the first three levels of geometric development simultaneously:

1. To familiarize the pupils with geometric figures in order that
they recognize them according to their shapes (Level I).

2. To study the properties of figures in a practical way and enable
the students to reccgnize figures according to their propenies
(Level II).

3. To proc-ed with the main task of grade 6; that is, to order the
properties that had been discovered experimentally and to give
these properties a meaning. The students now had to formulate
definitions, and should already have been able to connect pro-
perties and to logically derive some properties from othe:s
(Level III).

Obviously, this was an impossible task.

Table 3 illustrates the change in the number of geometric concepts
studiej in the experimental as opposed to the traditional courses. It

should be noted that this marked increase occurred not so much beeause of
an increase in the number of geometrical figures that wero studied and
used for measuring purposes, but because the relationship of geometric
figures and their properties was sy,.-Aematically studied in the experimental
courses. Table 4 gives the number of problems with geometric content in
the new geometry program, and Table 5 gives a comparison between the
traditional and experimental courses in this respect.

Table 3

A Comparison of the Number
of Geometric Concepts Studied

in the Traditional and the.
Experimental Programs

Grades

Courses

Traditional course

Experimental cdurse

IV V

4 13 23 37

24 51 84 100

9 ,1
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T,ible 4

Exercises in the Experimental Program

Grade
Total

Exercises
Problems Containing Geometric

terms Effective Problems

Number Percent Number Percent

I

II

III

IV

1100
1200
1300
1300

200

230

260
300

18

19

20

23

180
200
240

290

16

17

18.5
22

4900 990 20 910 18.5

Table 5

Effective Problems with Geometric Content

Traditional

Experimental

1.3% 0.8% 2% 1.3%

16% 17% 18% 22%

A New Geometry Course

The various Russian investigations led to the conclusion that radical
and qualitative changes in character, struciure, and direction were needed
to build a new geometry curriculum. P.M. van Miele (1959) suggested the
foflowing elaboration of a geometry course:

The firstpart of a geometry course .ust insure the attainment
of the second level of :thought, wh4:n we shall call the
aspect of geometry. Thc aim of the iastruction is as
follows: Geometric figures must become the bearer of
their properties.

One use:; a set t concrete geometric.shapes and
materials the manipulation of which will lead the students
to work out geometric figures on their own. The operations
which the students carry out with this material will become

9 5
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the base of a new relational network.

The second part of this course must insure the
attaJmment of the third level of thought, which we
shall call the essence ofgeometry or the aspect of
mathematics. Here the aim of instruction is to absorb
the relations which link properties of figures; for
example, that the sum of the angles of a triangle
equals 1800; that the alternate-interlior angles formed
by Lwu parallel straight lines and a secant are equal.
In addition, one begins during this period to logically
order the properties of figures. The first property
cited above becomes the antecedent of a new property:
that the sum of the degree measures of the angles'of
a convex quadrilateral is 360°.

The materials used c;.7.1 include a series of con-
gruent triangles or quadrilaterals with which the
students attempt to construct a "pavement" or covering
cf some part of the plane. Here again the s.tudents
discover an underlying structure through the manipu-
lation of concrete materials. They see systems of
parallel straight lines, parallelograms, trapezoids
and hexagons appear with centers of symmetry in the
pavement constructed.by means of congruent triangles.
This material later furnishes a natural construction of
the straight line which permits the demonstration by
means of alternate interior angles that the sum of the
angles of a triangle is 1800.

'The third part of the course must insure the
attainment of the fourth level, that of discernment
in Tgometry, of the essence of mathematics.

The purpose of this instruction is to understand
what the expression "logical ordering" means: For

example, what is meant by some property preceding
another.

The material is made up of the theorems of geometry
themselves. Underlying the ordering of these theorems
will be links between theorems and their converses
and inv rses, reasons why certain axioms and defini-
tions are indispensib!e, and clear reasons for
the necessity and sufficiency of certain conditions.
The students will now be able to logien ly order new
concepts. For example, when they study the cylinder
for the first time, their analysis of u'at they per-
ceive will teach them that the cylindrieal surface
contains straight liaes and circles. After formulating

9 6
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a precise definition, they will be able to demonstrate the
existence of straight lines and circumferences.

If the course could be pursued further (though that
would generally be impossible in secondary education),
it would reach the fifth level, that of discernment in
mathematics. At this level, the goal of instruction
would be to analyze what the mathematician's activity
consists of. and.how it differs from that of other scholars.
One can attain this fifth level only when he is so familiar
with the steps of the mathematician that he executes them
automatically; that is, he has established habits which
force one step to inevitably follow another. Only then
is an integration of these steps possible, allowing
the person to grasp the structure of the activity
in mathematics.

But a parallel integration has already been produced
at the time of the transition from one level of thought
to a higher level. In the course of passing from Level I
to Level II, it is the manipulation of figures which
brings the structure into the light. Manipulation
nourishes thought. on the second level. Thus, the
figures become new symbols defined.by their relations
with other symbols.

On the second level the context differs from that of
the first; the process undergone in this new context
provides an integration which makes access to the second
level possible, and so on.

The teacher who deliberately leads his students from
one level to another allows them to develop a deductive
system by themselves and to discover the faults in 'eductive
reasoning. By acting thus, the teacher does not imi.ose
the domains in which the thought will be exercised, but
helps his studentl to specify these domains themselves.
This does not mean, as has been pointed out Above, that
he will leave the student the burden of discoveiing every-
thing, but he will demand of him a particular activity
which, in each of its five phases, is differently directed.
An application of the principles presented here certainly
does not imply a lightening of the teacherls task. It does,
however, carry the satisfaction of knowing what one is
doing and of better understanding the reactions of the
students.

,

The teaching pf a deductive system demands'patience
above all. Such a system ëir only at the fourth level
of thought; but its essence is perceived only at the
fifth level. (pp. 204-205)

9 7
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Here is how van Hiele views the axiomaLic method in teaching geometry,
from the point of view of his levels of thought:

One makes a serious mistake in trying to construct a system
of axioms by using symbols characteristic of a level of
thought which is too low. Systems of axioms are in the

/ province of the fifth level, when., the question of what-
points, lines, surfaces, etc. are, is no longer asked. At
this level the figures are defined exclusively by symbols
connected by relations. To find their proper interpreta-
tions it would be necessary to return to the lower levels
where the contenp of these symbols can be perceived. But
with such concrete interpreations, these symbols belong
to a relational network which cannot be axiomatized because
it cannot have direct conneCtions with logic. (1959, p. 203)

Soviet research (Pyshkalo, 1968) has concentrated on the van Hiele
scheme for constructing a geometcy course and on implementing the necessary
drastic modifications of the forms and methods of instruction. This was
accomplished over a period of years in a most organized and painstaking
way, and led to the introduction of the new Sov.!et geometry curriLulum.

One fundamental question was that of what -",nuld be studied in school:
geometry or deductive systems with geometry as a: eNample? Evidence was
convincing that there was no basis for making 0, ipeical demands of the
school course in geometry (as to a deductive system) any higher than those
of arithmetic, algebra, grammar, and other subjects.

The research concluded that the most important factor in the improve-
ment of curricula and teaching methods lies in establishing a single sequence
in the formation of mathematical concepts for the entire eight-year school,
beginning with the first grade.

Investigations indicated that the, students in experimental grades 1
through 4 were able to develop a firm understanding of geometry without -

deductive formalization in its exposition, and that this period could
serve as the beginning of a study of che semideduetive (systematic) course.

On the otl.er hand, the Russians claim that the period of accumulating
facts inductively should not be extended too long. One may and must use
deduction. There must be a timely fritroduction of a theory around which
to unite the accumulated facts. In.the new curriculum, elementary deduc-
tive conclusions are systematically reached by the pupils.

It wzs found that a marked economy in the further study of geometry
could ' achieved by (and on the basis of) the study of geometric trans-
format Jris -- for example, of axial symmetry -- at an earlier time. (This
would be the first topic for grade 5 -- 20 hours). In aduition, the
opinion was advanc:Id that the study of geometry in an algebraic framework
(the method of cocrdi?ates, vectors, elements of analytic geometry) could
be of great value in the mathematics course.

9 8



In order to activate geometric development, research was conducted
on methods of independent study, primarily with the use of workbooks
based on the printed word, and carefully devised visual aids such as
collections of models,'tables and posters, films and slides. Special
attention was given to these didactic materials from the point of view
of individualized instruction. Excellent research was done in this area
by a team headed by V.G. BoltyansKii, a well-known topologist.

The great bulk of independent work in mathematics in school has been
intended as a kind of training in, or control of, the knowledge previously
acquired by the pupils. In view of this, the students acquire hardly any
skills in the independent study of new materials. It is well known that
the role of the book as a source of information is rapidly expanding.
Therefore, one of the principal tasks of Soviet instruction is to accustom
the pupil to reading scientific literature on his own. However, one can-
not read even the most interesting mathematics book as if it were a capti-
vating story. Because of the laconic language and the high level of
abstraction of mathematical concepts, the reading should be accompanied
by drawing, construction of models, calculations, reproductions of proofs
an&conclusions.

It was verified that special films are an effective means not only
of develowIng geometric concepts but also of forming spatial conceptions.
Movie:: enable the student to.analyze more complicated shapes, to establish
the elementary ones, and to synthesize the more complicated ones from the
individual solids.

J/

Experimentation has shown that in grades 1 through 4 it is inadvisable
to . isolate the study cl geometry material from the entire system working
towards the students' mathematical education. In particular, in grades
1 and 2 one should not set aside special lessons for the study of geometry.
In grades 3 and 4, the need does arise for the organization of separate
lessons, entirely devoted to the study of geometry material.

Soviet investigations have also concenttee on devising special
methods of teaching the new geometry coursy. The studies were aimed at
finding detailed methods that would secure 'Irse's basic content to
be presented at the appropriate level of gecl.r.:.c thought development:
Level I in grade 1, Level II in grades 2 ane.

Listed among the chief goals in the study of geometry in the Soviet
Union were:

Forming geometric notions

Developing thought (inductive and deductive thinking, analysis and
synthesis, comparison, abstraction and generalization)

Forming spatial notions and imagination

9 9
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Securing a connection between thE study cf geometry and other
branches of elementary mathematics (arithmetic, algebra)

Developing skills

Using the visual rinciple (concrete object, model, drawing)

Methodological approaches were defined for every level of geometric develop-
ment and involved taking the students' individual traits and potential into

consideration.

Among the necessary modificationq in the geometry curriculum and the
principles underlying them were? the determination that the students'
familiarization with geometric objects should begin with qualitative
geometric operations (the stndy of shape, mutual position, relations, etc.)
and that quantitative uperations (measurements) should only be gradually
developed somewhat later; the conviction that geometric studies should be
continuous, allowing no gaps or periods of- inactivity -- they should be
uniform, allowing no overloading at any of the stages, and they should be
diversified, treating many aspects of the study of spatial relations. This
diversity should be also understood in the sense of a simultaneous familiari-
zation of the students with two- and three-dimensional geometry. Since the

student does not master isolated facts taken separately, but, instead,
masters a system of interrelated facts; it is necessary to teach at each
stage the interrelations among these facts and to contribute to the mastery
of general principles. It is of great importance here to insure an organic
connection between geometric objects and basic arithmetical concepts (i.e.,
to use the one to illustrate the properties of the other).

Special research was conducted to determine criteria for selection of
geometry material for grades 1 through 3, especially from the standpoint of
attaining an appropriate level of development. The criteria may be summarized

as follows:

1. In grades 1 through 3 the students should be deliberately familia-
rized with most of the geometric concepts they will study in the eight-year
school. These studies should first be qualitative and thus not limited to

measurements. -

2. The material for grades I through 3 should form a complete.entity
and play an independent role, insuring the students' formation of spatial
conceptions and spatial imagination.

3. One must not only be concerned with the accumulation of a stcck
of geometric concepts and skills, but also with the attainment of an
appropriate logical development, with achievement by all students of the
second level of geometric development by the end of grade 3, and with
mastery of the necessary geometric and logical terminology.

4. One must proceed from the fact that the students possess a signi-
ficant store of conceptions of the properties of material objects
(geometry as physics). Abstraction from some properties of material objects

1 0 0
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allows clarification of the general quality basic to.geometric concepts.

5. The point of departure of the geometry material must consist in
relying upon a stock of geometric terms, in using correct terminology, and
in working to discover their proper geometric content.

6. The curriculum should provide work in determining the shape of
objects in the environment, based on a previously created sLock of geometric
concepts.

7. The study of relations between figures and of relative positions
of figures should be undertaken.

8. It is essential to take into account the requirements of the
disciplines studied concurrently in grades 1 through 3 and to include
questions which apply to the study of these disciplines.

9. "In planning work in the formation of measuring skills on an applied
level, one should be concerned especially with forming conceptions of
geometric quantities, and should use these skills and concepts in forming
conceptions of number, of the properties of operations, and operations
on numbers; this work should be correlated with the study of figures.

In the experimental geometry curriculum for grades 1 through 3 the
following general elan was devised: an initial acquaintance with figures
(grades 1-2), the study of properties of the figures (grades 2-3), the
study of relations among figores (grades 2-3) , measumment of geometric
magnitudes (grades 1 through 3), the use of geometric figure,: and measure-
ments in the study of numbers and operations on numbers (grades 1-3), and
an introduction to concepts of set theory (grade 3) . A model vocabulary
and list of skills for each student to master were set up for each grade.
The study of geometry was allotted 25 hours in grade 1, 30 hours in grade
2, and 40 hours in grade 3.

In 1963 the Sector for Mathematics Instruction rf thc Institute for
General and Polytechnical Education (of the USSR Academy of Pedagogical
Sciences) began experimental instruction in which a ,iemideductive course
in arithmetic was given in the fourth grade. It was established that at
least the beginning of a semideductive geometry course could also be
introduced in at least the fourth or fifth grade intead of the sixth
grade (as in the old curriculum).

The Russian studies clearly show advantages of a practical direc-
tion in instruction and the need for 'hasis on the close relationship
between practical life at each stage - curriculum. They have thus
envisioned a wide range of skills in scnoot work, each of which would
contribute to more rational prjgress in the students' studies and could
constitute a reliable means for the pupils to teach themselves, thus
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creating a quantity of primary concepts which are indispensable for under-
standing phenomena vital tu the development of their thought.

The Russians have concerned themselves with developing skills in using
various drawing and measuring instruments (in ar'.dition to the straightedge),
as well as skills in modelling and constructing geometric figures and
forming notions of their accuracy.

Systems of practical tasks (laboratory work) were devised at each stage.
of instruction. This material provides for the rtudy of geometric objects .

not only in mathematics lessons, but also in other school subjects (such as
drawing, manual work and athletics) connected with the pupils' academic
and practical activity.

A system of exercises was worked out in conformity with the aims of
the curriculum. As the experimental instruction showed, a need for an
increase in the number of exercises usually arises as difficulties develop
in learning new skills (such as skill in using instruments), in forming
mathematical discourse, and in mastering special mathematical phraseology.
These difficulties are surmountable when a sufficient number of specially-
prepared exercises are done.

While space does not permit us to even sketch the extent of the Soviet
research, or the quantity of their valuable results, we can say that in
their experimental curriculum all pupils approaching the end of third
grade completed work corresponding to thc second level of thought develop-
ment in geometry. This made it ,:ossible to begin studying semideductive
geometry (at Level III) in grade 4, a course of study roughly corresponding
to the first half of their traditional curriculum for grade 6. Also, enough
evidence was accumulated to assume that students in the eight-year school
are capable of reaching the same level of geometric development as has
been attained in the traditional eleven-year school.

The experiments, research and studies mentioned above have had a
decisive influence on the design and form of the new Soviet geometry
curriculum, which has been introduced gradually since 1969. The USSR
Academy of Pedagogical Sciences provided the geometry curriculum for
grades 1 through 3; while the world-famous A.N. Kolmogorov, in close
cooperation with such outstanding mathematicians as I.M. Yaglom,
V.G. Boltyanskii and others, was most actively involved in curriculum
design, text preparation, and formation of teaching methods and materials
for grades k through 10. Again, space permits us to mention only some
of the most striking features of the new curriculum:

The geometry course is given in three stages, and as a separate
subject, starting at grade 4 and continuing for the next seven years.
In all stages emphasis is placed on geometric transformations, and ia the
upper grades the course is based on vector representations. Beginning in

grade 4, geometty is taught by a specialized mathematics teacher. The
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new curriculum is clearly the most radical change in Russian mathematics
educaticn in nearly a century.

As a result of unsuccessful experience and convincing evidence, the
so-called axiomatic methods of initiation into geometry have been recognized
by modern educators the world over as unpedagogical. A review of the
teaching of geometry in the United States indicates at once that only a
very small number of the elementary schools offer any organized studies
in visual geoMetry, and where they are done, they begin with measurements
and other concepts which correspond to Levels II and III of thought develop-
ment in geometry. Since Level I is passed over, the material that is
taught even in these schools does not promote any deeper understanding and
is soon completely forgotten. Then, in the 10th grade, 15 and 16 year old
youngsters are confronted with geometry for almost the first time in their
lives. The whole unknown and complex world of plane and space is given to
them in a passive axiomatic or pseudo-axiomatic treatment. The majority
of our high school students are at the first level of development in
geometry, while the course they take demands the fourth level of thought.
It is no wonder that high school graduates have hardly any knowledge of
geometry, and that this irreparable deficiency haunts them continually
later on.

1 0 3
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kec.ent Research on the Child's Conception of Space and

Geometry in Geneva: Research Work on Spatial Concepts

at the International Center for Genetic Epistemology*

Jacques Montangero

University of Geneva, Faculté de Psychologie

et les Sciences de L'Education

About a decade aft.er the original work of Piaget and Inhelder on
the development of sn_;ial notions was published (Piaget & Inhelder,
1948; Piaget, Inhelder, Szeminska, 1948), Jean Piaget once again took
up the study of space within the research carried out at the International
Centre for Genetic Epistemology, hereafter called the Centre. The
research then carried out had three interesting aspects. First, it
naturally threw light on epistemological problems, since indeed the
research was aimed at studying the nature of knowledge in space and
covered in particular the following problems: Where does such knowledge
take root? What is the role of mental imagery or physical experience
in the development of space? What is the relationship between geometrical
knowledge and other spheres.of cognitive activity? Second, whereas
epistemologists were concerned with the concepts developing in children
and their relationship with the formal science of geometry, psychologists
on the other hand can find in this research work varied and interesting
information on the psychological processes involved when a child endeavors
to surmount cognitive difficulties of a geometric nature. Last, to
the extent that education should be based on a deep knowledge of psycho-
logical processes, the research work of the Centre can contribute
substantially to improviag teaching of spatial concepts.

The particularities of the problems studied will-be summarized at a
later juncture in this paper. But since they are based.on a number of
Piagetian theoretical concepts, it is deemed useful to refer briefly to
them now.

*The author wishes to thank J. Larry Martin for his critical
reading of the manuscript.
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First, a diStinction must be drawn between the figurative and
operative aspectS of knowledge. The function of the figurative aspect is
to furnish an aPproximate imitation or copy of reality. Under this heading
fall perception!, imitation, and mental imagery. The latter, which Piaget
considers to be' an internalized imitation, has thus an active component,
but it is basially suited to symbolize static astlects of reality. The
function of the operative aspect of knowledge is to transform reality, and
this transforMational character is specific of intelligence. The elementary
operative forms are concrete actions, and the advanced forms are mental
operations which develop into systems that can be analyzed in terms of the
"grouping" 6r group-like structures.

Two kincls of operations appear in children's thinking after the age of
seven. First, logico-mathematical operadons deal with discrete,elements
and consiist, for instance, in gathering el...lents into classes and including
subclasSeA into a total class, in relating the differences between elements,
in add/ p-Ig or subtracting the elements, etc. Second, spatial operations deal
with continuous objects (spatial figures or ei,ace considered as a whole)
that/they partition and then reconstruct. The two kinds of operations
are/analogous but not identi,al. For example, to the logico-mathematical
operations involved in class inclusion correspond operations of partition
which divide the whole into parts and establish proximity relationships
be aen parts. To the logico-mathematical seriation of relations correspond
operations of spatial ordering, i.e., direct order, inverse order and
conservation of the position "in between."

-Another distinction, which permeates all Piaget's wOrk, must be made /
between the logico-mathematical and 16hysical poles of knowledge. At the/One
pole, the logico-mathematical structures are drawn by re'flexive abstraction
from the subject's actions and allow for inference and ultimately deduction.
Theyconstitute structures which do not exist in the objects. For example,
the number or the class of objects in a collection is introduced by/the
subject who counts or classifies them, but they are not attributes of the
obiects. At the opposite pole, the causal structures, or physical knowledge,
are in part drawn from empirical observations in tiie child's endeavor to
explain reality. These stiuctures give account oi structures of the outer
world, such as spatial properties of objects or/relations between'physical
variables (e.g., relation of speed, temporal oreler of starts and stops and
distance covered). It must be stressed that Rhysical knowledge does not
stem from mere empirical observations, but also involves reflexive abstraction.
Reflexive abstraction consists in abstracting something out of/the organization

the subject's own actions (e.g., the rule of commutativity):and in
rearranging the elements or rules abstrlyed on a nea level (e.g., the level
,z) representation opposed to the level 0 actions). The construct of
reflexive abstraction plays two roles in Piaget's theory. First, it implies,
ontrary to empiricism, that somethig/new can be learned which is not

uirectly abstracted from outer reali/ y, i.e., from the properties of objects,
the laws to which objects are submit/ted, the ideas or models of actions of
other individuals. Second, the canstruct of reflexive abstraction contri-
buces to explanations of the continuity of development, from the biological
organization of the individual up to the higher forms of intelligence. In
effect, at each level of organization, something is kept from the level
immediately inferior and is organized into new structures. Voluntary .

1 O 6
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actions, for instance, are self-regulated like the activity of the nervous
system, but they are progressively combined into more and more r3mplex
structures. At a level superior to the one of concrete actions, intelli-
gence consists in combination of actions, but these actions are internalized
and progressively orgaaized into structures which are more complex and
better "cluilibrated" than the structures of actions. The continuity of
intellectual development implies that complex scientific concepts such as
those of geometry partlyderive from the elementary spatial concepts of
children. '

Four specific characteristics of spatial knowledge should be mentioned
at this stage. First is the fart that mental imagery is particularly
adapted to spatial representation. Second, space is both physica4 and
logico-mathematical in nature. Indeed, there exists a form of object-
space which can be known'through empirical observation. For,example,

one can superimpoge two geometrical figyres,to ascertain whether they
are equal in area. However, geometrical concepts finally go beyond
empirical experience and fall within deductive activity. Spatial
coordinates (horizontality, etc.) are a good example of'the logico-
mathematical or geometrical nature of spatial concepts. The coordinates

are not directly perceived properties of objects. An object is horizontal

or vertical only if a relationship is.established between this object
and other objects, including the subject's own body. Coordinates are

applied by individuals to spatial reality in order to organize it, i.e.,
to localize objects in relaticn with one another. Though essentially
logico-mathematical and not directly perceived, spatial coordinates are
also, to a certain extent, physical in nature, like most spatial concepts,
since they corref.pond to sore properties of objects, such as the verticality
of a standing body or horizontality of the water level in a tilted
container.

A third characteristic of spatial knowledgc ".es in t.:%c fact that
two distinct modalities can be used for solving spatf61 problems. First,

spatial intuition which, although based on mental Zmagery, in fact goes
beyond this latter in that It results in anticipation of transformations
and the solving of simple problems. For example, spatial intuition can
be more or less elementary, as it is in the 7-year-olds who can apprehend
correctly proximay relations. There are also more evolved forms of
spatial intuition, e.g., intuition of ancient geometricians who discovered
theorems without being able to demonstrate their foundations. The second
modality is deductive geometry, i.e., a chain reasoning allowing for
demonstrations and deductive discoveries. In order to conclude-this list
of the specific characteristics of spatial knowledge, one further
distinction should be made between two types of relationships introduced
by the subjects: On the one hand an in,rafigural analysis comparing the
various elements of a single figure, without any external spatial
reference; on the other hand, an interfigural analysis which is develop-
mentally much later (approximately 9 to 10 years) and which results in
the construction of spatial coordinates.
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Theve were three major epIfrreMological issues raised by this research
at the Centre. The first deArs with the role of mental imagery in the
geometrical sphere. Imagoey may be fuadamental due to the fact that
mental images are spap-di in nature. Can it be postulated that the mental
image Is the principn generator of geometrical intuition? The second
issue concerns.,t6e relationship between physical space and logich-
mathematic.atspace. Can it be said that one engnders the other (i.e.,
that 16gico-mathematica1 spatial concepts are drawn from physico-spatial
concepts or vice-versa)? Or, on the contrary, should it be surmised
that these two forms of spatial kno,1edge either develop in Interaction
or autonomously, merely corresponding structurally? Another impo7tant
issue raises the/question of the relationship between spatial operations
on the one hand/(used in solving geometrical problems) and, on the other
hand, the logical operations which are involved in nunioer and class
reasoning, eta. Arc there specific spatial operatiOns or does geometrical
reasoning merely constitute an application of logico-mathematical operations
to the spatial reality? In fact, when the research on space began at
the Centre, this question had already been ansWered; indeed, the data
reported in The Child's Conception of Geometry (1960) demonstrated that
measurement, for instance, does not represent a direct application 'Of
number to space.

Solutions to the probiems raised above, as well as some cAments that
are soMewhat less epistemological in nature, will be summarized at.the
end ef this paper. But first and foremost, four of. wh"at constitute probably
the Most'!nteresting experiments in the Centre space research will be
disdussed. Brief reference As made also to a few other experiments In the
fo0owing two remarks and in the concluding rc,marks.

Two Remarks on the Oiigin of Spatial Knowledge

At rhe Centre symposium on space, a discussion took place on the'
problem of what were the basic elements upon which geometrical thought is
founded. Greniewski, Po1ish logician, distinguished two trehds in the
history of geometry. ne trend was to consider poihts as the basic
components and lines and W.anes as classes of points. The second tendency
was to consider bodies the basic components and areas, lines and
points as abstractious of these bodies. It is the second tendency which
seems to be in conform.ty with data drawn from developmental psychology.
An experiment reported in the ild's Concejltion of Space (Piaget & Inhelder,
1956, chap. 5) shows that to co ceivejpoints as the smopest elements
of geometrical figures requires be.Aeriation of figures and Lne parti-
tioning of lines. .As of 7 years, the child begins to represent points
as the smallest elements of figures, but these points are conceived of
as having an area and being in finite number and related to the shape of
the whole figure.

On the other hand, some results of the research work on space carried
out by Piaget's Centre indicate that bodies or physical objects seem to ,

be the basic elements of the knowledge of space, from a psychological
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point of view. In eff.2ct, tlie cognitive activity of the 4- to 5-year-

1J1d in space is characterized by a lack of differentiation between the

geometrical an6 physical aspects of space. This was striking in research

done by Vurpillot (1964) on the child's materialization of geometrical

figures. She based her experiment on the well-known test of discovering
simple figures (i.e., a square or a triangle in a complex figure such as

shown in Figure 1). The children's drawings showed that, until 5 years,

Figure I. Simple figures ,'ontained in complex figures.

all figures are conceived of as material objects: Straight lines are

totalities within which no segmentation can be made. Moreover, one line

cannot belong simultaneously to two figures. In summary,'each figure is
treated as a material object, rather as if it' were a sheet of metal,

constituted by both lines and enclosed areas. The intersection of lines

is beyond the child's comprehension since he:interprets it as the super-

imposition of two material objects. For sone problems, such a tendency

can even be found in the 8-year-old.

TWO EXPERIMENTS BY P. GRECO ON THE OPERATIONAL
NATURE OF GEOMETRICAL REPRESENTATION

The progressive achievement of a complex intellectual organization
allowing for the anticipation of spatial transformations has been studied

by P. Greco in two research studies that will be reported now.

Developmental Study of a System of Mental Imageries
of a Spatial Group of Transformations (Greco, 1964a)

This experiment studied how representation of displacements are
organized over the course of cognitive development until they finally

form a logical system (the group-like Kleinian structures). The task

involved mental imagery and not operational deduction. The spatial

transformattons that the child has to represent involve everyday activities,

e.g., turcln, pages, placing a drawing upright, opening a lid, etc. .

Three transformations are involved: R, a 1800 rotation; H, reflection in

a horizontal axis; and,V, reflection in a vertical axis.
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Method

The subjeLlr: iderv. divided into 5 age groups with 20 children in
each: 6-7 years. g years, 8-9 years,. 9-10 years, and 11-13 years.

The material. 'e cardboard letters representing the letter p, a
grey cardboard rectangle, and a sheet of paper where the subject drew
his replies. The same experiment was carried out with different materials
(a star, a box whose sides were different colours). But the conclusions
that can be drawn from the results are analogous, and therefore we shall
merely deal with the material "cardboard letters."

The experi,,71t involved 2 types of problems:

1. Anticipation of the result of transformations. A letter is
presented to the child, and both the experimenter and the child describe
the letter whizh is then placed in front of the subject. Then the trans-
formation (either R or H or V) is both described by gestures and by
actually carrying out the transformation with the cardboard rectangle.
The subject is then asked to draw (or as of 7-8 ears to.describe ver-
bally) the letter as it would be after the transformation. The oubject
is asked to anticipate the result of V, H, R, and of the combination of
H and V, each time using the letters p, b, d, q.

.2. Reconstitution of transformations. Two letters, for example
p and d, stuck on a piece of paper are presented to the child who has to
discover which sort of transformation has been carried out in order to
obtain the second letter from the first. In order to give a reply, the
child is invited to "turn" or "rotate" a letter similar to the letter
before the tranSformation has taken place. Fo," the initial figure p,
the child has to reconstitute the transformations which have been given
in order b, d, q. A similar problem is used with theinitial figure
d, in order to result in b, q, p.

Summary of,Results and Discussion

In general, the errors, which consist in substituting one trans-
formation for another, can be classified into the following three
categories:

1. The child confuses the axes around which the displacements-were
made (V instead of H, or H instead of V).

2, The transformation comprises only one of the inversions (left-
right, V, or top-bottom, H) instead of both of them, that iS, the
transformation R.

3. The inverse of error 2 occurs: A unidimensional inversion is
generalized to both dimensions. It should be noted moreover that some-
times the subjects leave the figure unchanged.
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The proportion of successes increases regularly with age. As far

as anticipations are concerned, success frequencies are the following:

for the V transformations, 60% at 6-7 years; for the other trans.formations,

40% at 7-8 years; for single transformations, 75% as of 9-10 years;.and

for the double transformation, 65% as of 11-13 years.

As far as reconstitution of the transformations is concerned, 80%

of success level can be oIserved at 6-7 years for the transformation V.

An regards the other trausformations, success levels are of 20 and 30%

at 7-8 years and still only 40% at 9-10 years. Around 11-13 years,

the frequency is over 60%.

Anticipation or reconstitution of the trancformation V can be seen

to be earlier than the other transformations. When a change in the

material is made (box cr star), the results are also different. However,

it is difficult to decide which material is easier.

Greco analyzed the behaviour Observed into six stages during which

the representations of displacements are gradually coordinated.

Stage 1 (6-7 years). Type 1 errors are rather frequent. The child

is .awav, that "it changes Fddes" without being able to discern whether

it is fr n left to right or from top to bottom.

Stage_II (7-8 years). On the one hand a quantitative progress is

observed and on the other a new type of error appears: Ai-7 tar as antici-

paticns ar concerned, errors of type 2 and 3 predominate. This denotes a

higher level of organization of figural intuition, but when a child

analyzes figures, he tends to understand what changes and not what remains

invariant.

Stage III (8-9 years). At this stage significant progress is observed

simultaneously with striking regressions. The success levels with the

different items are much more homogeneous, and children are able to

describe the trajectory of a part of the transformed figure (i.e., the

loop of the p). These two factors indicate that transformations are
conceived of as changes of position instead of specific physical actions

such as turning around or-turning over as was the case with younger

children. However, the interfigural point to-point relation introduced

by the child sometimes renders the problem more complicated and results

in a greater number of errors for certain situations as compared to

younger subjects.

Stage IV (9-13 years). Su.7cess rates for all items indicate the

existence of a system in which a simultaneous representation of the

three transformations is made. All the compositions between the
various transformations are possible (in Stage II, only H composed with

V was sometimes understood). Greco then undertakes a formalized

1 1 i
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deqcription of the transformations, and he shows that they involve a
group-like structure of four transformations (R, V, H, and the identity
operation).

In conclusion, this experiment does not make it possible to trace
a frontier between the role of mental imagery and the part played by mental
operations during the developmental steps that lead to the comprehension
of spatial transformations. It is also impossible to dissociate in all
cases what is due to he material, to the transformation, and to the
developmental level of the subject, though it is evident that the three
factors play a role. Therefore, in some respects, the results of this
experiment are not very clear. However, Greco's experiment did show
that the child gradually becomes systematic or in other terms that his
analysts of figures becomes more and more organized during development.
This analysis can be looked upon as a gradual coordination of represented
transformations. When completely developed, the child's organization
of spatial representations is isomorphic to the logical operations of the
formal stage, since the transformations V; H, and I (where I is the
identity transformation that causes no change of position to the figure)
form a group uf four transformations some of whose properties are
the followinv:

1. Involution. V x V = I; H x H = I; R x R = I.

2. Commutativity. VxH=HxV;VxR=RxV;HxR=Rx H.

3. Composition. VxH= R; VxR= H;''ExR= V;VxHxR= I.
There is no indication that the formal logical operations, which alsoform a group of 4 transformations, are merely applied to a spatial
context (e.g., static images of various figures). Several facts tend _to prove the contrary. First, the development is very gradual. More-
over, the subject's behaviour is different according to the type of
figure involved. Last, the gradual coordination of transformation runs
parallel to the gradual passage from intrafigural analysis to interfigural
analysis.

The Gradual Organization of Spatial Representations
Of a Complex Figure: The Mbebius Ring (Greco, 1964b)

This research is aimed at problems similar' to the preceding one,
i.e., studying the nature of representations (images) within a spatial
context and their gradual organization. Greco endeavored to discover
whether figural intuition is sufficient to organize spatial representations,
or whether these latter involve coordinations analogous to those constructed
by logical -mathematical operations. The subject is asked to represent
the order of a series of colours on a Moebius ring (which is made by
twisting a strip of paper and_then joining its ends) , this representation
being asked to the subject after the ring is cut and laid flat in front
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of him. The Moebius ring transforms a ribbon which has two sides into

a surface witha single side.

Method

The subjects were distributed inr.o eight age groups between 6-7
years to 13-14 years. The experiment was divided into two parts.

Part one. The subject is presented with a Moebius ring with one
single twist, the surface of which is di.idea into four equal areas
but different in colour, i.e., A (blue), B (green), C (yellow), and

D (red), The child describes the ring, manipulates it, and names the
colours. Then the ring is placed in front of Cie child who can see
colours Con his left and B on his right. The child is tolethat the
ring will be cut along the line which divides C and B and then unfolded
and laid flat on the table. This is demlnstrated to the child with

another ring which is not colo_!,?d. Then the child is asked to draw the
:*rder of the colours as 'le antipates they will be on a strip of paper.

Part two. The procedure is the same as the first part except for

two variations: (a) the questiuns are asked for a two-colour ring and

then againfor four-colour rinv; (b) after each reply (the child actually
makes a drawing), the ling is cut and the child can verify his answer.

Figure 2. ColouredMoebius ring, uncut and cut.

Summary of Results and Discussion

In the description of the results, each colour will be reprvsented
by a letter. The alphabetical order corresponds to the order of the

colours on the unfolded ring. The sign / makes a distinction between the

front and the reverse side of the drawing. It should be recalled that

the subject sees in front of himcolours C and B. The correct solution

is AB/CD. All solutions correct from a topological point of view are

considered as successful (CD/AB, BA/DC, DC/BA).
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The success rate curve shows an increase as of seven years and a
temporary regression at 10-11 ycars. Around 9-10 years there is a 50%
success rate for the first ring and 70% for the following rings (second
part of the experiment). Between 11-13 years.the success rate increases
to 80% for the first ring and at least 90% for the.following ones.

As far as progress in the course of the experiment is concerned,
the presentation of the two-colourring and the empirical verification
on the cut ring is of no help up to 8 years; as of 8-9 years. however,
60% of the subjects gave better answers after the verification and
che presentation of the two colour ring item.

Greco classifies the responses into 5 types of increasing complexity
and correctness, some of which are very dispersed in the various age
grcups.

Type O. (6-7 years) Purely figural copy. In order to decide on
where to place colours, the subject looks at the ring and follows the
perceptive order, without making a distinction between the apparently

ernal and external sides. Examples are, CABDB (since one and a sane
!.ourcan occur several times in the young children's drawings), or

(which is a literal translation of the order observed visually).

Type I. (7-11 years, still 50% at 10 years) Proximity and succession.
The child takes into account one of the spatial properties of the ,i,Liect,
i.e., succession, and studies that aspect systematically on the lAng,
7:xamples are: ABCD or CBAD.

Type II. (Above all at 7-8 years of age, but not very frequent)
Distinction between side-up and side-down.. The.coloursare distributed
on both sides of the strip. This,means that a distinction is made
between both sides of the unfolded ribbon, but still without coordination
between the regioos of the ring and those of the ribbon. Examples are:
BC/AD or AC/DB.

Type III. (As of 7 years, but involved in many age groups) The
beginning of coordination. The subject takes into consideration the
place where the ring is cut and the contiguityof colours, but not the
side-up/side-down relationship. An example is AB/DC.

Type IV. (Maioritv of subjects as of 11 years) Cobrdinarten of
relations. Solutions are correct and-obtakned through a trip:A.
coordiration of th: dichotomy (colours on two different sidet-.,--esulting
from the transformations of the proximity relations and the side-up/side-down
relation. These correct solutions usually involve a systematic exploration
)f the ring, e.g., taking each region between thumb and index finger.
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Greco was surprised at how difficult this experiment turned out to
be, i.e., it is not solved around 9 years, although at that age many spatial

notions are acquired. At first sight, th ,.! correct solutions did not seem

to require very complex operations. Indeed, the rPasoning involved concerna
pro,simity and separation relations, which are recognized very early by

children. Furthermore, the solution seemed to ask for a mere multipli-
cation of relations (e.g., A is simultaneously next to B and on the back
of C). Finally, the task seemed to involve figural rather then geome-
trical procedures.

However, the difficulty of the task is not due, according to Greco,
to the unusual figural properties involved, but rather to the need to
build up a system which wou1t1 coordinate all the relations. Certain

relations are not easily noticed (for instance that A and C are actually
on. the same portion of the ribbon but on different sides of it), and,
above all, there are no interrelations between these and other ones which
are apparently also simple (for example, that A and B are contiguous).
The hierarchy of solutions proposed by the subjects bear witness to the
fact that there is a gradual 'coordination of spatial relations ',:hose
composition must be operational in nature before a correct solution can

be reached.

TWO EXPSAIMENTS BY V1NH BANG ON THE RELATIONS
BETWEEN PERIMETER AND AREA

By proposing problems dealing with the relationship between the
conservation of'perimeters and the conservation of enclosed area, Bang .

endeavored to study the relationship between geometrical intuition (i.e.,
the early inferences on a geometrical content, based on mental images)
and the operational deductive activity which, at some stage, goes beyond

the observable spatial properties. These experiments were aimed at
understanding ine role of mental imagery in intuitive solutions to
geometric problems.. Bang endeavored to discover whether geometrical
-intuition depends.merely on mental imagery and whether it stimulates
progress in geometrical reasoning or, on the contrary, hinders such
progress. Problems of representing the transformation of a geometrical
figure with a constant perimeter give rise to conflicts between spatial
intuition and operational deductive activity, as Bang puts it. (What he

means is aconflict between empirical evidence and partially or totally
logical deduction.) Furthermore, such problemi shed light on the nature
of the geometrical operations which are necessary for understanding the
transformation of any given space. Such operations are the ones which

allow the child to understand the following: (a) the continuity of the
transformation, which calls for iatermediate states between the initial
figure (e.g., a square) and the limit of the transformation (e.g., the
disappearance of the area when both longer sides of the rectangle touch
each other); (b) seriation of states of the transformation according
to the relations smaller than or larger than; (c) the limit of the
transformation, e.g., the area of the initial square gradually becomes
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reduced to zero if the perimeter remains unchanged and if two parallel
sides of the.initial square are lengthened; and (d) the reLAienship between
the conservation of certain elements (e.g., the perimeter) and the variation
of other elements (the area) across the transformations. Bang studied
these spatial (or geometrical) operations and the problem of the rela-
tionship between geometC.cal intuition and operational deduction in two
experiments.

Representation of the Transformation of a Geometric
Figure Whose Perimeter Remains Constant (Bang, 1965a)

This experiment was aimed at studying how the child represents
successive transformations of a figure F into another figure F' which
is obtained gradually by modifying the shape of the perimeter of F, the
length of which remains unchanged. For instance, a square, which is
shaped with a 40 cm long thread placed around four pins, is gradually
transformed into rectangles which are carried out until the area is nil,
i.e., when the longPr sides of the rectangle touch Gae another.

The subject is asked to anticipate, to observe,and to explain on one
hand the displacements of certain points of the figure a&ross the trans-
formations, and on the other hand the size of the enclosed area. The
problem is to see how the child manages to disasbociate the properties
of area and perimeter. Although the two are physically linked, each

.

has distinct geometrical properties, the perimeter being conserved
during transformations whereas the area varies.

Method

The population covered children between 8 and 14 years. The inter-
view with the child is of an exploratory nature, and the procedure
Vhries somewhat according to the situation presented. Generally speaking,
the child is shown in which direction the variation will take place by
saying that "one is going to move these pins which are holding the peri-
meter towards thisside,"and the subject is asked either to draw the
position of the pins (i.e., the angles), the form of the transformed
figure, or both of these. The child must also state whether the area
i.emains unchanged or not. Then he is shown an initial state of the
traasformation., after which the questions deal with the ensuing trans-
formations, up to the limit state, which,has area zitro and back to the
initial figure. Bang used eight differet situations, but did not
present all of them to the same subjects.\The situations were the
following:

Situation I. The transformation is as follow : The thread around
one pin is pulled, in order to study the compensation of complementary
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length and the conservation of.the total length.

Figure 3. Situation I.

Situation II. Here again the problem does not yet deal with area.
A thread forming an angle is held in place by three pins. Ihe child must
anticipate the successive positions of the pin at the summit angle if it
is displaced on one side and if the thread remains tight and attached
to the base AB (see Figure 4). Apart from drawing the positions (which
shows whether he represents correctly the displacement accordilig to an
elliptical curve), the child must decide whether the length af the

thread is conserved.

Figure 4. Situation II.

Situation III. In this situation, there is an elliptical displacement
of the summit of a triangle (see Figure 5). The initial tigur i the same as

in Situation II, but here the triangl itself is taken int,, consideration

and questions on the conservation of the area after transformations are asked

to the child. Cardboard triangles which represent certain intermediate
states of the transformation are at the subject's disposal. The situation
makes it possible to see whether the child is aware of the fact that the
conservation of the perimeter does not imply the conservation of areas
and that, since the triangle keeps the same base line, the height iF
graudally decreasing until the nil limit.
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Figure 5. Situation III.

Situation IV. In this situation, a diamond is flattened. The initial
figure is a diaMond made out of brass rods held together by rings; it is
gradually flattened (see Figure 6). Each of the sides remains unchanged,
and the situation is meant to discover whether erroneous conservations of
area are provoked, either because the perimeter remains unchanged, or
because the child thinks that there is a compensation of the dimensions
of the diagonal lines.

Figure 6. Situation IV.

Situation V. The square is transformed by displacement into a -

parallelogram. The initial figure is a brass wire square, one side of
which cannot be moved; the square is transformed into a parallelogram which
is gradually flattened (see Figure 7). The child can check rather easily
that the area is decreasing (for example, the triangle OB'C is smaller
than the part which is not covered by the parallelogram in the area of the
square).

Figure 7. Situation V.
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Situation VI. The square is drawn out into a rectangle (see Figure 8).
The initial figure is formed of a brass chain,and the subject has available
squares of four cm in order to measure the areas'. Both the areas and the
perimeters (number of rings in the chain) can therefure be decomposed into
separate units.

o o o 0 0 9
ci,8=8=8=8::so

Figure 8. S.Ituation

Situation VII. A square made of a thread is drawn'out into a rectangle
until the limit area is nil, as in the previous situation (see Figure 9).
Here the comparison of the area is carried out by cutting up the areas/
in cardboard.

Figure 9. Situation VII.
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Situation VIII. Constant areas are constructed with a varying
perimeter (see Figure 10) . The perimeter is constituted by a string with
a sliding knot which makes it possible to vary the available length. The
problem is to obtain rectangles which have the same area as the initial
square. After the subject has made anticipations, he is shown a series of
rectangles of equal area (100 cm2) and decreasing height. This situation
makes it possible to see whether the understanding of the relations
between perimeter and areas in Situation VII allows a correct solution
when theterms are reversed (constant area, varying perimeter) . Further-
more, the subject should be able to discover that iinally, at the limit
state of the transformation, the perimeter is of infinite length.

Figure 10. Situation VIII.

Summary of Results and Discussion

The behaviour patterns observed can be classified in three major
- stages.

Stage I A (5-6 years). Geometrical figures are conceived of as a
static physical onjects, and all transformations are represented as
displacements.

Stage I B (7-8 years). Problem I is successfully solved. As far
as the other ones are concerned, the transformation implies for the
child a variation of all the dimensions of the figure (see Figure 11),
in general all of them becoming smaller. 11-w child cannot
accept the limit of the transformation (i.e., the area does not
disappear, but "it remai hidden under the tring").
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Figure 11. Stage I B response to change in one dimension--
changes all dimensions.

Stage II A (8-10 years). (The notions of conservation of length
and area are already acquired.) Tne subject has a tendency to think
that the area remains constant, since the perimeter does not vary.
Sometimes areas are classified into two types: (a) those which are
equal to the area of the initial figure, "because the string is the same";
and (b) the areas of states very close to the limit of the transformation.
The latter are conceived of as smaller than the initial area "because
the string has been drawn (or flattened) too much,"

Moreover only a partial series of the states of the transformation
is const,tuted, i.e., a few states at the beginning or at the end ot,f the
transformation are linked together. As regards Situation II, the sUbjects
anticipate the displacements of the summit parallel the base, and
then they discover that the thread has become too long and therefore
they decrease one of the sides (see Figure 12).

Figure12. Progressive variations of length of one side to
discover maximum area.

S*.age II B (10-11 years). In the drawings, the child respects the
invariance of the length of the sides of the figures which are being
transformed (Situation IV and V) as well as the compensation of the
dimensions of the figure, i.e., the height and the length. In general,
areas are concoived of as invariant because on the one hand the length
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of the perimeter has n, !.,en modified; and on the other hand the child
deems that the dimensi,-, i:ompensate each other. In fact, the compensation
is very qualitative in nature and involves\an addition and a subtraction:
"If we take away ...inat is Th excess and add it there where it is missing,
we will have the same area." None of the aspects aimed at facilitating
the solutions (change in height only, fOr the triangle, or empirical
verification of the size of the area, or the use of units) helps the
child in finding a correct solution. When the child observes empirically
the disappearance of the area at the limit of the transformation, this
usually gives him the idea of a progressive decrease of areas, but only
as concerns states near the nil state. In other words, this is merely
a partial seriation, the remaining transformations still do not affect
the area.

Stage III (as of 11-12 years). Subjects are able to completely
seriate thetransformed figures, becauSe they can represent the continuity
of the transformation and anticipate the nil limit. As far as Situation
VIII is concerned (when the area remains constanc while Ole perimeter
increases),childrenare still encountering difficulties in representing
the limit of the transformation, i.e., the pertmerer can be infinitely
long.

In conclusion, the development of behavioral patterns with age
reflects the different levels of logical deduction. First, the role of
the notion of conservation can be witaessed. The 5-6 year old, lacking
this hotion, is not able to imagine the transformation, that is, the
modification of the initial figure with a possibility of returning to
that figure._ At 6-7 years, the variation of one parameter leads to the
idea of nonconservation, except ili the case of opposite variations
(Situation I). As of 8 years, since the notion of conservation has
just been acquired, this is generalized and implies that when the peri-
meter remains constant, the area will be too. It is only towards 11-12
years that the compensation through multiplication of dimensions enables
the child to quantify areas.

As far as the nil limit ot the transformation is concerned, repre-
sentation of this is only possible as of 8 years, whereas at 10 years,
the children can conceive c.,F it as the final state of a limited series
of a continuous transformation. Ttwards 12 yeaA:-..ihe limit figure
becomes a logical nece,:sity enahling the child to deduce that perimeter
P and area are disassociated paramet:s; if with a perimeter F one can
obtain a limit figure with a nil area, then a constant perimeter does
not imply a constant area. The limited role of empirical evidence is
striking .n this experiment. Indeed, such evidence is insufficient
to suggest the idea of a seriation of the transformational states.

The 9-10 year old still feels that there are two categories of transformed
figures, those with an unChanged area and those with a decreasing area.
The notion.that a se.ziation is involved runs together with the notion
of the continuity of the transformation, this latter being deduced from
rational thought and not abstracted from empirical observation.
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Construction of the Largest Area Possible With
a Constant Perimeter (Bang, 1965b)

A geometric figure of n sides (n = 3, 4, etc.) witl- a constant
perimeter was to be constructed which enclosed the largest area possible.
First, the child must find what are the conditions which enable him to
obtain the largest area for one type of figure. (These conditions are:
convex character of the figure, equality of sides, .nd equality of angles.)
Then the subject must compare the maximal areas of different types of
figures and this comparison should lead to the inference that the greater
the number of sides, the greater the resulting area. The maximal area
is thus that of a regular pqlygon of which the number of sides tends
towards infinity. Consequently, the area of a circle is the limit area.
A prerequisite to such reasoning is to understand that conservation of
a perimeter does not imply conservation of the enclosed area.

Method

The population is composed of subjects between 7 and 14 years. The

exploratory interview method has been used with most of them, with the
exception of a small number of subjects interviewed with a standardized
method.

The material is composed of spaghetti 20 cm long. This constitutes
the perimeter which, broken into pieces, is used to construct the shapes.
A rigid material is used in order to provoke awareness of the variability
of the angles and the relative length of the sides. The subjects were
olso given paper on which to draw the shapes constructed with the
spaghetti. The shapes can then be cut out and their areas compared.

The subjects were given the following problems, in order:

Construct an area with a minimum number of sides.

2. Construct a triangle with maximum area (having verified that
the area can vary). The comparison is made by cutting out the figure
deemed the smallest and covering the area of the figure deemed the
largest with the pieces obtained.

3. Construct a four-sided figure (the length of the perimeter
remaining constant) and find the conditions for obtaining maximal
and minimal areas.

4. Compare the maximum uf three-sided and four-sided figures.

5. Same problem as 3 but with a six-sided figure.

6. Compare the sizes of maximum areas of figures with various
number of sides and anticipate the maximum area of five- and seven-sided
figures.

123



118

7. Discover which geometric,figure with the'given perimeter results
in the largest area possible.

Summary of Results and Discussion

Generally speaking this experiment sheds light on the contradictions
which arise between intuitive constructions (seekiag Gestalts) and.
deductive reasoning or at least actions guided by hypotheses (e.g.,
the relationship between conservation of perimeter and conservation of
area or between length of sides and size of areas). Up to 9-10 years,
the child mo..,.t of the time relies on his intuition whereas around 10
years and oftLn later a conflict develops between the intuition based
on mental imagery and deductive reasoning. At around 13-14 years, subjects
no longer rely on intuitive images, because of the coherence of their
reasoning as they systematically relate the various parameters. But
even at this age, the child's first --1.itions are intuitive in nature
when he endeavors to construct and disccter maximum areas. However,
after comparing various maximum areas, the child is able to Aeduce that
with a constant pprimeter the greater the number of sides of the polygons,
the greater the area.

Maximizing area with a constant.number of sides. Almost all the
subjects first think that the area of figures of the same type (e.g.,
squares) and same perimeter is conserved. Discovery of its variation
develops with age. At 7-8 years, variation of.areas emerges due to the
lack of the notion of conservation. Each new construction, even when
the sides of the triangle are merely permuted, implies for the child
a variation in the area "because we have cut the spaghetti differently"
or "because there are more pieces." As of 8 years, Conservation of the
perimeter impliet conservation of the area. Between 8 and 10 years the

.child does not vary the length of the sides and almost always constructs
an equilate.Tal triangle. Furnished with empirical evidence, he does
admit thdt there may he exceptions to his rule: constant perimeter
implies contant rtcea. Getween 10 and 12 years subjects discover alone
but empirict.11y that triangles with the same perimeter can have different
areas. When askeo to construct a triangle with the largest area possible,.
the child's underlying hypothesis is a larger areaimplies longer sides.
Thus, he breaks the spaghetti into one or two long segments, which in
fact results in a smaller area: At this point, 'the child is very perplexed
and does not ,know how to correct his errors. Without such a hypothesis
and using an empiricalmethod, such subjects sometimes are successful
in discovering maximum area. It should be stated that children's
spontaneous tendency is to break the perimeter into equal segments.

Around 13-14 years, the maximum surface is discovered by systematic
variation of the length of the sides. The initial reactions are similar
to those of the 8-12 year gld group: erroneous conservation of areas
and the idea that the maximum area will be obtained by using a long side.
However, the contradictory results lead the subject to use a systematic
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method; he progressively varies the length of one side.

-NAV
Figure 13. Progressive variation of length of one side to

"increase" area.

The first condition for obtaining a maximum area, i.e., equal length
of sides is, as we have already pointed out, sometimes discovered
intuitively, but as of 10 years some subjects can formulate this
discovery conceptually. It is only around 12-13 years that children ,

discover the second condition, i.e., that the angles must be equal, or
in the child's terms that the segments muSt be placed "regularly."

Maximizing area with the number of sides varying. At 7-8 years the
child relies on perceptive comparisons between two figures. A figure
is deemed larger because the subject "sees" it so. The result of this
kind of comparison is often wrong. As of 9 years, the subject's comparisons
cqver-all the series of the polygons, but the child is unable to deduce
the law that the area increases with the number of sides. There are
sometimes contradictions between perceptual estimations and inferential
judgments such as the triangle is larger than the square because itr.
sides are longer. Perceptually, the square if often deemed to have a
larger area. The relation between area and number of sides is discovered
as of 12-13 years, either by expet4menting on one figure or by drawing
conclusions from the differences observed between figures. An example
of the first approach is as follows: The child constructs an equilateral
triangle made up of 6 segments (two per side), and he er...arges the area
by rearranging the segments in order to obtain a hexagon and discovers
that the ne%-f figure has a larger area. He then transfers this experiment
to a square which he transforms into an octogon and thus by induction
arrives at the law, "if each piece is broken into two, then the new area
will be larger." An example of the second approach is the following:
Subjects compare the different figures constructed (i.e., triangle, square,
etc.) and note that the area increases. They hypothesize the case of
other figures (for instance that a hexagon's area lies between that of
the square and octogon previously compared). This hypothesis verified,
they then understand that "the greater the number of pieces (of spaghetti,
i.e., of sides), the greater the area obtained." No subject can generalize
the law and extend the deduction so as to anticipate that a circle would
be the figure with the maximum area.
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In summary, it can be seen that an inituitive approach does lead
to correct solutions lround 9-10 years (constructing maximum,area) but
that a more reasoned Approach leads, at this age, to less successful
replies. The conflict_ between intuition and reasoning is only surmounted

\ late in development, since well developed deductive capacities are
necessary to discover the geometric properties. Bang concludes .that the
latter ,:apacities are not discovered directly through mental imagery. -

GENERAL DISCUSSION

The results of the 'different research on space conducted at Piaget's
Centre for Genetic Epistemology will be discussed first from an episte-
mological point of view then with regard to some of their psychological
and educational implications.

Epistemological Implications

Mental Imagery and Operational Development

Mental imagery, which is not well adapted to represent either
temporal aspectsof reality or logical concepts, is particularly fit
for representing the spatial aspects of reality and thus plays a definite
role in spatial knowledge. The similarity of nature between signifiers
and significates, in the spatial field, makes the development of geometric
intuition possible. This latter enables subjects to solve problems before
they are able to apply a systematic method. In Bang"--Ydsearch on maximum
area, for instance, success based on intuition is observed up to 9 years.
The subject constructs a maximum area thanks to his search of Gestalt,
,without being able to furriish the rules behind his construction. Taward
10 years of age, subjects either succeed through an intuitive method,
or fail when they use inferences not based on mental imagery (the inference
being "in order to obtain a large area, you need a large side").

Proof that geometric intuition is largely based on imagery is given
by an experiment of Hatwell (1964) who compares the results of blind
chillren with those of seeing children, in a task involving the repre-
sentation of spatial order after displacements.1 Blind children are
generally between 4 and 6 years in rrears of normal children, and this

1
For example, children were asked to reconstitute a "train" made cf

three pieces of wood of different shapes, at different spots of a non-
regular circuit. At some spots, the order of the "carriages" (from a
right-left point of view) is the inverse of the initial order. The
material was conceived so as to make pc -de replieF based solely on
tactile perception.
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can be attributed to their deficit in the field of.imagery (or, more
generally, a deficit in figurative functions). In logico-mathematical
tests as well as in verbal reaconing, these blind children are only some
one to three years behind seeing children. The latter, even when using
tactile perception, with a screening procedure, nonetheless remain in
advance of blind children. In fact, their results are the same as when
they can see the material. The understanding of changes in spatial order
thus relies heavily on the capacity to represent reality spatially.
Although Piaget has not stressed this point, it seems evident that even
the operational solution to spatial problems--such as the Moebius ming--
requires, even for adults who are not geometricians, the assistance of
a representation through mental imagery.

In spite of the preceeding remarks, it must be admitted that mental
imagery is not alone sufficient for solving spatial problems. Work on
the development of mental imagery (Piaget & Inhelder, 1970) showed that
the young child's images only represent static configurations. Represen-
tation of transformations is only possible when the child's operational
development interacts with the image (clear progreso as of around 7 years).
Besides, geometrical intuition cannot be r:onceived of as a mere utilization
of mental images, since it implies an important intellectual activity of
the subjects, e.g., establishing relationships. Briefly speaking, this
intuition is operative in nature and mental imagery cannot give a good
"translation" of this operative character.

The Centre's researeh particularly established a relationships between
notions of con ervation, which are operational in nature, and the repre-
sentation of e variations of area. Once the conservation of length and
area is acqu red, for instance, children make deductions which transform
their repre ncation of spatial phenomena. They overgeneralize the con-
cept of co ervation which has just been acquired and are often incapable
of even ta ing note that, in fact, the area diminishes witn the change
in shape f a figure with constant perimeter. The four main experiments
which ha e been summarized clearly demonstrate the need for operational
activity in order to solve spatial problems which involve neither arithmetic
calculaf ion nor deduction. Thus, it is not until around 9.1-10 years that
the ch Id can anticipate correctly the result of rotation's and not until
aroun 11 years that he can reconstitute the transformations and understand
the r sult of multiplying two transformations. The subject needs, in
effe.t, to construct a method which will allow him to coordinate the
tra sformations (e.g.,.Greco's experiment on the letters p, b, d, q).
Th same applias to Ole Moebuis ring experiment when, although the.-
various spatial rclations (proximity, side up, side down, etc.) are
easily representable, the transformation can only be represented through
a very complex mental activity connecting these various relations.

Physical and Logico-Mathematical Space

To touch on the problem of the relationship between physical and
logico-mathematical space, account must first be taken of an experiment

Thy Vurpillot (1964) , who shows that geometrical felationships are
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conceived of by the young child as relations between physical objects.
From these results, Piaget concludes that the two types of space are
not differentiated at this level. It could not be Postulated that geo-
metrical spare develops out of physical space. The insufficiency
of empirical _vidence is particularly obvious in Bang's,experiment on
the variation of areas with constant perimeter. Geometrical concepts
are acquired through the enrichment of the relationships the child
establishes (intrafigural as well as inte;ligural relationships) and by
a coordination of representations. In L'Epistemologié de L'Espace
(Bang, Greco, Grize, Hatwell, Piaget, Seagrim, & Vurpillot, 1964), Piaget
deems that there is no interaction between physi-al space (i.e., concepts
and images drawn from the experience of objectE) and logico-mathematical
space (the spatial operations and the geometric concepcs they underlie).
He merely feels that there is a structural corre pondence betwcen these
two types of spatial knowledge. More recently, Piaget (1974) has stressed
the role of spatial operations or preoperations in physical space: Spatial
properties of objects are known through spatial operations applied to
objects. An interaction between the two forms of space is therefore not
excluded, but it is not clearly defined. In my opinion, it would be
heuristic to look upon these relations as an interaction sometimes
resulting in a reciprocal assistance, sometimes leading to conflicts and
een blockages, as is the case for the relations between causal explanations
of physical phenomena and logico-mathematical deduction.

Geometrical and Logico-Mathematical Operations

If the.relationships between geometrical and logico=ftiathEmatiral
operations are now envisaged, the first striking fact is that they are
isomorphic. Piaget had already shown how measurement of length could be
analyzed in terns of partition and inclusion operations which are
isomorphic to the grouping of operations involved in number. Greco
demor-trates that at the formal operational level, geometric reasoning
(which makes possible understanding of rotations, etc.) can be formulated
in terms of operations which are isomorphic to the "group" of operations
involved in propositional logic.

However, spatial operations cannot be conceived of as,metely an
application of logical operations to space, since they are acquired
progressively without direct synchronism with the development of logical
operations. Furthermore, geometrical reasoning seems closely linked
to the specific spatial context.

Psychological and Educational Implications

Most of the questions discussed from an epistemological poTht of
view can now be extended further with a special regard to their psychological
and possibly educational implicattons.
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As regards the necessity of improving representations of spatial
transformations through operational mental activity, a more detailed
example is brought to mind here. In order to anticipate, or even merely
observe adequately, the progressive transformations of a geometric
figure (Bang's Experiment 1), the child must understand the continuity
of the process, and this understanding stems from tjle idea that some
parameters remain invariant whereas others vary. The child muut also

seriate the sta.- of the transformation according to the-relation
Psnmller than" (or "larger than"). Furthermore,he must have some idea
of the limit of the transformation and relate this limit state to the
other states of the progressive change. Not only in this experiment,
but also in all the other studies carried out at the Centre, the development
of spatial representation is explained in terns of improving the under-
standing of transformations, such an understanding being obtained through
a systematic organization of representational imagery.

As fa as the distinction between physical and logico-mathematical
space is concerned, it must first be noted that it does not correspond
to the distinction between figurative and operative aspects of knowledge.
It is true that perception, and more generally empirical observation,
as well as static mental images (the figurative aspects) are mainly
the product of the'experience that the child acquires of the concrete
spat,ial environment in which he lives. However, such a spatial environment
is in turn understood thanks to the child's activity, that is, thanks to
the operative aspects of knowledge such as displacements of one's own
body or of objects, and thanks to-mental activity allowing for the
abstracting of certain relations or the establishing of a relationship
between various points of view. Physical space therefore has an operative
as well as a figurative aspect. Logico-mathematical space is essentially
operative in nature, but it deals with relations specific to space, which,
in their elementary forms, can easily be represented through mental images
and are therefore based on figurative functions.

This distinction between physical and logico-mathematical space is
of great interest concerning the learning of spatial notions. It suggests
that two types of experience, or activity, should be practiced by children.
First, children should engage in empirical activities where they manipulate
objects in order to become familiar with their shapes, observe transformations,
and make actual comparisons (like superimposing figures). The second
type of activity, logico-mathematical in nature, should result in going
beyond what is empirically observable. Such an activity would consist
in building up a systematic method in practicing deductions and in
dealing with notions that do not correspond to empirical entities. The

two types of activities are coordinated at a final,stage, ag can be seen
in the older subjects of the Moebius ring experiment: They coordinate
all the spatial relations involved and have a systematic method
(logico-mathematical aspec;), but they also investigate thoroughly the
ring (spatial properties Are also discovered as physical properties
wotild be):

1 9
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At an earlier stage, the two ways of solving spatial problems, i.e.,
by empirical observation and action or through inferences of more or
less logical nature, can give rise to conflicts. This is exemplified
in Bang's experiment on maximum area.

With regard tc geometric intuition, it must be stated that this
concept is rather ambiguous since, even among the authors mentioned in
this paper, it can convey different meanings. For some it is an insighl
based on Gestalt, while for others it is a nonoperational or an opera ional
way of solving problems. The latter implies important inferential
activity but no preciAe measurement nor theoreths. This concept must
therefore be used with caution. Geometric intuition will be defined
here as a mental activity concerning space essentially based on figurative
aspects, but Involving inferences (see introduction to this paper).
This geometrical intuition is necessarily involved before 11 years,
since neit rigorous abstract deduction nor a very systematic method
can be used by the child. Even after this age, it could be useful
to rely on intuitions to in..-roduce new spatial notions to the child.

Toconclude this paper, a summary of the procedures used in the above
experiments which have a training effect will be made. Generally speaking,
learning spatial concepts seems strongly related to the child's attempts
at representing spatial transformations.

The successi,,e steps of certain of the Centre's experiments dealing/
with these transformations must undoubtedly have a training effect. These
steps are thn following: The child is asked to anticipate the transformation,
then to observe them empirically, and then to make anticipations and
observations about simpler problems before getting back to a more complex
situation. A few remarks can be made about these different steps. First,
asking for anticipations triggers off the mental activity of the child,
whereas simple observation can induce a rather passive attitude. Further-
more, it may lead to a confrontation of the anticipations with the empirical
observations. About the latter, it must be noted that their effect
on the child's understanding of spatial concepts is limited. Most'of the
time this effect is nil, for the problems involved, before the age of 8
(e.g., Muebius ring). Even after this age when the observation becomes
acc-rate, it is not sufficient to solve problems. However, this fact
musr be taken advantage of, namely that spatial problems can, contrary
to temporal coos, for example, give rise to observations and confrontations
between different situations.

The changes in the material used (e.g., a simplification of the
situation by asking questions about a two-colourring in Greco's experiments)
is of training value maidly because it elicits comparisons between
different situations. The very choice of the material of each situation
presented is also important. Thus, Bang's use of a rigid material to
construct the perimeters in certain situations, as well as the use of the
thread suggesting continuous transformation, sometimes seems to help
the children become aware of the rules of constructions.
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As far as the hierarchyof difficulty of the probleMs presented is
concerned, two points should be stressed. First, it seems favorable to
make the child reflect upon simpler elements, like the compensation of
the length of sides or the trajectory of one angle during the change
in shape, before he is asked to represent all the aspects of a complex
transformation. But th.!s procedure should not suggest that a kind of
programmed learning, evenly developing step by step, can be elicited.
The fact that the child reaches a new stage of development in the under-
standing of spatial relations implies a new structuration of the problems
and results from the coming back to previous problems and statements
and from the con'lictS that this comparison may provoke. A first form
of conflict can occur between the anticipation of the child and his
subscluent observation. The anticipations may be drawn from intuitive
figurative representation or from mainly inferential processes. A
second iorm of conflict, the most important according to Piaget's theory
of equilibration, occurs between different ways of tackling the same
problem. For example, one of the most effective training procedures
used by Inhelder, Sinclair, and Bovet (1974, chap. 6) consisted in
eliciting two different types of judging length, i.e., a judgment based
on the spatial correspondence scheme and a judgment based on counting.
The two types of judgment were then confronted, and they often led to a
new solution of the problem. The solution was at first incomplete and
consisted in a compromise between the two types of judgment. However,
the solution was eventually correct and resulted from a new type of
intellectual activity which can be described as a synthesis of the two
previous ways of solving the problem.

The training procedures described above are consistent with the
Genevan conception of learning, which entirely differs,from the common
views on education. According to these views, education aims at
"printing" certain cognitive structures or bodies of concepts in the
child's mind. There seems.to be li-tle necessity to know how this
mind works and develops when it is not trained, because intellectual
growth is deemed to be elicited by training experiences.

Actually, even in order to create new habits, like following the
right itinerary in a maze or counting up to 100, the cognitive diffi-
ulties that the subject must surmount and the behavior patterns that

he can assimilate must be taken into consideration. When the goal of
learning is to help the child create new structures of knowledge which
will be applied to a more and more extended field of reality and which
might in turn generate new cognitive structures, it is absolutely
necessary co subordinate learning to the laws of intellectual development.
For examplP, the training of a concept 14ke horizontality or duration .
can be efficient only at a certain stage of development, and it could
not be done in any lapse of time. Learning procedures must take account
of psychological processes that have their own speed. In stimulating
certain processes observed in cognitive development, such as conflicts
between schematas, Genevan training experiments have yielded good
results. One interesting fact must be noticed: The subjects who find
their own "wrong" solution to the problems in the course of these
experiments give the best answers at the end.
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The reason learning must be subordinated to the laws of development
is that operational structures do not derive from structures that might
exist outside the child but stem from the coordination of internalized
,actions. As far as logical necessity is Concerned, it cannot be
demonstrated empit-ally. For example, a preuperational child who fails
to conserve number or to perform a class inclusion task cannot be "shown"
that he is wrong. The same holds true for complex spatial notions, as
is evidenced in the research reported in this paper. It is necessary to
study the processes of mental coordination which lead to logicomathe
matical and geometrical operations before undertaking training experiments.
In brief, training, according to the Genevan conception, cunsists in
trying to accelerate cognitive development.

These remarks on learning touch upon a problem which the Centre's
research on space was not aimed at studying. However, the particularity
of the work done by Piaget and his collaborators is to be of general
interest. It allows for epistemological as well as psychological conclusions
and for developments in different areas of psychology. This is what the
present paper was aimed at suggesting.
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Research on space concepts needed to complement that which has
been completed in Geneva should involve those aspects'that have been
overlooked as a result of the inherent limitation of the Piagetian
approach. The Piagetian approach has permitted an immense step forward
in the science of psylipogy. We do not want to imply that Piaget
should have considered all the points and problems which remain to be
studied. His method was, and is, the best suited to the study of
basic epistemological problems as far as space is concerned. We do not
question the value of the prior work by Piaget and his collaborators.
Rather, if something new can be added to this work, it will require
a change of method. The method suggested is not entimly different
than the Piagetian method, but is an adaptation to the problems that
remain to be studied. It needs to be stressed also that the structural
approach of Piaget is inseparable from a developmental approach that is
to be Constructivistic and that implies equilibration processes.

The Piagetian explanation of spatial notions in children is mainly
based on the concept of adaptive equilibration structure's. A structural
explanation has the four main advantages that will be listed below
before discussing certain implicit limitations.

1. The genetic structural approach does not deal with the super-
ficial level of behaviol (i.e., the level of "performance"), but sheds
light on the underlying mental activity. For example, instead of
giving a mere descrip,ion, such as "sone children can construct a tower
the same height of a mc.del tower because they know how to measure
heights," the structural analysis endeavors to give account of procedures
for knowing, i.e., the operations of partition, seriation, iteration,
etc.
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2. A structural explanation thus gives an account of the
operational nature of knowledge. A concept is not described as a
more or less static idea, but in terms' of mental operations which
consist in transforming what the subject observes (e.g., imagining
the reverse of the action observed, or finding ,4ifferent ways which
would lead to the same result). -These transformational capacities
enable the child to apprehend the transformations of the outer world.
It is only when children can begin to understand physical or spatial
transformationsby knowing what changes and what remains invariant--
that one can be sure that they have reached an operational level.

3. The interrelation between the different inferences of a child
dealing with a certain type of problem appear clearly. For instance,
the different arguments a child C.ves in order to justify a conserva-
tion judgment correspond to different o)erations all within the sit:se
cognisive structure. The explanation of spatial abilities in terms
of systems of transformations sheds light, for example, on the close
relation between different aehievements of seven-year-olds since these
achievements all derive from the capacity to establish topulogical
relationships.

4. The strLctural mcthod points out the resemblance between
different fields of knowledge that seem heterogeneous when not studied
with this perspective. The similarity of spatial abilities, such as
length measurement, and logico-mathematical abilities, such as con-
servation of small nLabers, app.:ars through an analysis of these
behaviors in terns of the group:Ings of operations. On the other hand,
a precise description of the differences between notions can be given,
e.g., of what is not alike in space measurement and number, or between
topological and projective spatial notions.

The genetic structural approach also implies a search for what is
common to children of the same developmental level and what is common
to different ideas or judgments. Because of this particularity of
intent and the generality of the structures used to give account of
children's cOgnitive processes, the approach leaves some gaps in our
knowledge of the psychology of space. The main limitations of the
Piagetian approach to the study of space appear to be the following:

1. The role of the object of knowledge or what the subject assimi-
lates as external reality does not appear clearly from previous studies.
Though Piaget's theory stresses the fact that knowledge stems from the
interaction between the subject and the object, the role of the object
seems most unclarified (see Smock & von Glasersfeld, 1974; von Glasersfeld
1975). A careful analysis should be made of this interaction. In such
an analysis, the parameters of a situation must not be studied per se,
but with reference to the conceptual framework of the subject facing the
situation.
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2. Piaget's approach accounts for a very limdted number of
stages of cognicive development. It is necessary to describe many more
substages in that development in order to clearly understand the process
and to gain better knowledge of the different notions constructed during
childhood and adolescence.

3. Th mental operaticns forming groupings or group structures
give a model of the abilities of children, i.e., all the possibilities
of reasoning they have, but not the actual process (strategies) of
solving problems. A study of the process itself would clarify the
interrelation between the child's cognitive structures and the attributes
of a situation; also, it. would give invaluable information for eduaca-
tional purposes.

4. A metaphor can best specify the results of the cognitive
studies conducted in Geneva. A forest of scattered trees, each tree
representing a particular concept, has been found. We now need, beside
studying the growth of more concepts, an understanding of the connec-
tions bL,:ween these concepts. These types of studies are particularly
importo ;ince there is strong evidence that the relations between
d1ffere:1:. .,otions (or fields of knowledge) are major factors in promoting
intellectual development (Inhelder, Sinclair, & Bovet, 1974; Piaget, 1974).

T6 make the'prior body of research on space more complete the next
pha.:e should use some of the new methods developed in Geneva and should
be applied to the study of this domain. In addition, types of experi-
ments that have not been conducted in Geneva are necessary. The aim and
the methodological principles of three main types of research will be
suggested.

Interaction of Cognitive Structure and Context Variatioas

The aim of this type of research would be to determine how the
child assimilates different aspects of spaCe,'i.e., 'which spatial
parameters influence his spatial judgments. The procedures would
include both techniques for facilitating correct answers and, on the
contrary, eliciting errors by providing materials which may stimulate
the development of spatial notions. One example relevant to these
problems (i.e., varying the parameters of the situation) is the
experimeut on the concepts of duration by Montangero (in press). A

summary of this experiment is presented in order to exemplify the
nethod suggested.

In his book on time Piage-t- (1969) demonstrated that operational
judgments of duration are based on the speed of observed changes
lnd the amount of "work" done (,!istakce covered, number of objects
handled, etc.) during the duration which is evaluated. Further,

it was hypothesized that, in addition to considerations of speed
and var.,, the relationship established between the relative temporal
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order of starts and stops
1
played au important role in operational dura-

tion judgments and in their elaboration. One of the experiments designed
to test this hypothesis as well as to define substages of the devolop-
ment of the concept of duration, consisted in varying the parameters
speed, work done, and temporal order. The design is summarized in
Table 1.

Table 1

Summary of Design for Studying Variation
in Context and Judgments of Durations

Speed and
work done

Temporal

Order .,

No cinematic
aspect: turn-
ing lamp !. on

and off

Speed consists in
frequencies: dis-
crete actions:
putting beads in-
to a container

Speed cons sts in
displacements: con-
tinuous mo ements
of dolls or toy cars

Perceptible
results:
glass con-
tainer

Nonper-
ceptible
results:
opaque
con-
tainer

Distance
covered
comparable
cardboard
tracks

No perma-
nent trace
of distanc4
covered

Synchronism:
.!vents start

and stop
simultaneously

1 4 7 10 13

One event starts
before the other;
,simultaneous L..

stops
2 5 8 11 14

Same duration,
no simultaneity:
same time
interval between
relative starts
and stops

.

3 6 9

.

12 15

.

Note: The numbers in the table refer to 15 different experimental situa-
tions.

1
For example, the awareness that two events began simultaneously but

one of them ended before the other.
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Each subject was presented with 15 different situations (Table 1)
and was asked to give a relative duration judgmemt2 ,ind to justify it.
The variations of the duration judgments and their justifications were
then related to the parameters of the situations in order to see what
kind of relation the subject introduces (or constructs) between the
different parameters. As already stated, the goal of such an analysis
is not to study the import e of the parameters per se. Indeed, the
results of this experiment indicated that the same situation is often
evaluated very differently according to the stage of cognitive develop-
ment of the subject. The presence of a certain parameter (e.g., a
difference of speed without difference of work done) may haVe no in-
fluence on younger children's judgments but may become an important cue
for the older subjects when they evaluate duration. Therefore, compar-
ing the subjects answers for different situations does not exclude
developmental analysis or comparison of answers at different levels of
development.

The analysis in term of relations established by the subject
permitted a better understanding of the child's reasoning about dura-
tion. Different modes were used to solve the temporal problems, and
the possibilities and limitations of the children's judgments at
different substages of conceptual development were assembled at the
same time. Similar methods applied to spatial judgments should yield
the same kind of information about space concepts. The varying para-
meters could be different geometrical relations or different types 'of
presentation allowing for different ways of apprehending similar rela-
tions. Such a method would be particularly suited to the study of the.
interrelation between "physical space" (spatial properties of objects
discovered through active observation) and "logico-mathematical space"
(spatial properties constructed by the subject and discovered through
deduction).

The method of varying the context sheds light on what underli each
child's particular judgments. Comparisons can be made between con-
texts with other judgments and with behaviors observed at different
levels of development. These comparisons facilitate the discovery of
the status and causes of apparent regressions in intellectual growth.
For example, in the study of time, three types of regression were
observed, which in every case obscured actual progress in cognitive
capabilities.

1. The early correct answers do not indicate the presence of a
real understanding of the problem; they stem from a simplifyinkassimi-
lation of the problem. For example, five-year-olds tend to judge
duration from only one aspect of the situations, namely the final
temporal order. This simplification sometimes leads to correct answers

2' The subject was asked "Did the two events take the same time or
did one of them take a longer time?"
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which, acturlly, are not duration judgments and therefore should not
he considered as correct answers.

2. At a certain level of development, children may encounter more
difficulties in solving a problem than they had previously because of the
progress in an element (concept) of the "field" of ideas related to the
specific concepc under study. For example, as the concept of length develops,
a temporal situation becomes more complex for the subject, i.e., whereas,
before he only took into consideration the places of starts and stops.

3. Apparent regression may also be due to the fact that children
vacillate between two different modes of evaluation to solve a problem.
In the duration studies, children often would alternate between a mode
c! eval)lation based on the comparison of temporal orders and one based
c: the Fqatio-cinematic content of events. These altering centrations
explain the fact that certain situations correctly evaluated by a child.
using, for example, comparison of temporal orders, are incorreczly
evaluated a feW months later because of exclusive centration on other
parameters. All such regressions diappear as the evaluations achieve
the operational level.

The question of regression ls discussed here because in several
Piagetian spatial tasks a depression of performance is observed around
the age of nine. Yet cognitive progress appears to be continuing. Thus,

these regressions should be inveFAigated and the method of contet varia-
tion appears the best method for teasing out the relevant variables.

Interaction Between Spatial and Logico-mathematical Operations

Geometrical abilities can undoubtedly help to understand mathematical
problems. On the level of scientific thought, it seems that mathematicians
often have recourse to spatial intuition (Beth & Piaget, 1961). As far
as the child's thought is concerned, the research completed in Geneva
shows that spatial and mathematical notions are undilferentiated in
young children (which is one reason for the failure to conserve small
numbers). Later in development, the two types of notions are dissociated,
but their structural aspects are isomorphic (Alonzo, 1970; Bruce, 1968;
Leskow & Smock, 1970). There is evidence of ability to solve certain
spatial problems without a rigorous deductive method, with the aid of
imzged representation (i.e., spatial intuition) in the child when
mathematical intuition is very limited. Consequently, it is not
unexpected that many teaching methods of mathematics rely heavily on a
spatial representation of mathematical problems.

On the other hand, geometrical abilitis, though they are based on
specific spatial operations, also deped on general logico-mathematical
operations such as seriating, represontion of all the possible
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cembinations, etc. The possibility of using a systematic method is closely

related to the logico-mathematical achievements of t,e formal operational

stage (Inhelder & Piaget, 1958). When children reach this developmental

level, they are able to apply such systematic methods to spatial problems

(Alonzo, 1970; Bang, 1965; Greco, 1964; Leskow & Smock, 1970).

The study of the relations between logico-mathematical and spatial

concepcs should Fiat overlook either of the following points:

(a) influence of progress in geometry on logical or mathematical

notions, and

(b) influence of prugress of logico-mathematical notions on the
development of spatial notions.

The bi-directional influence could be studied by methods comparable
to the learning studies reported by Inhelder, Sinclair, and Bovet (1974)

concerned with the reciprocal influence of mass conservation and class

inclusion. Progress in inclusion (comparison of the subclass and the

total class) obtained through induced improvements in conservation of

mass, but the reverse did not hold. It would be very interesting to

test, by a similar method, the reciprocal influence of mathematical and
spatial acquisitions which normally take place approximately at the

same time in cognitive developmept change.

The first step of such research would be to find suitable training

procedures, i.e., exercises which are eEEicient in accelerating the
acquisition of a concept because they take account of the laws of

development.3 The elaboration of a suitable training procedure for a
concept goes through the following three steps.

1. Cross sectional developmental stdies are needed to define the

different components (i.e., the set of ill:',.rences and operations) and

stages of acquisition of the concept.

2. Different strategies that children use to try to

solve a problem involving the concept need to be identified. For

conservation tasks, Inhelder, Sinclair, and Bovet (1974) presented the
problem sometimes as discontinuous, and sometimes as continuous. The

authors could distinguish in the young child two ways of evaluating the

relative length of segments:

(a) by comparing the extremities of the segments (ordinal evaluation

based on the "frontier" effect) or

3Development is considered (according to Piaget) as a gradual
coordination of schematas achieved due to the child's orgar'-Ing

activity and, is always regarded as an equilibratien proces
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(b) by counting the number of discontinuous elements forming
the segments.

3. Exercises need to be devised comprising actions, or preopera-
tional inferences, or operations that the subjects can perform. This
implies that the optimal level of development of the subjects has first
been determined and the operative capabilities of thesubjects are known.

As the main goal of a training procedure is to stimulate che
subjects mental activity vis-à-vis a particular problem, the best
procedure consists in presenting different situations or types of
exercises under conditions that permit comparison among those gitua-
tions. In the learning study of length mentioned above, subjects had
to perform the same task (constructing a segment with matches whose
length had to be equal to the length of a model segment) in three
different situations. The first tended to elicit an ordinal compari-
son of length (evaluation type (a) above), while the second situation
tended to promote a numerical comparison (evaluation type (b)), and the
third allowed for the discovery of the difference of units.used in the
model segment and in the child's construction. The expetimenter asked
the subject to return to the first situation immediately after he
finished the second task, and to return to the second and first
situation after the third task was completed (the three situations
always remained in the child's perceptual field). Such a procedure
which permits comparisons between different ways of evaluating a para-
meter, often elicits conflicts between these modes and consequently
important improvements in the comprehension of the problem.4

Space and time, which are reunited in a single concept in relativist
physics, are interrelated during the course of intellectual development.
Piaget's book on time (1969) demonstrated that the operational notion of
duration involves a consideration of the distance cnverad as related to
the speed. On the otI hand, the notion of length seems to be first
grasped due to a repre. ntation of displacements. Thus, Piaget defines
space as the coordination of displacements. At least rwo kinds of
problems concerning the relation of space and time should be further
investigated.

The first concerns the notion of distance and its interaction with
the concepts of speed and time. The research conducted up to now in
Geneva showed how these concepts become progressively coordinated near
che beginning of the concrete operational stage (between the age of 6
and 9). The acquisition, around eight to nine years, of an operational
notion of duratinn allows for correct temporal comparison between

'4
To these main principles for elaborating a training procedure must

be added other considerations, such as the necessity to evaluate as pre-
cisely as possibla the subject's developmental leve.1 (pretest) and the
status of the progress observed (generalization at the posttest,
stability of acquisition, or coasolidation at the second posttest).
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different events, but 14-year-olds still encounter great difficulty in
establishing correct relations between distance, time, and speed when
the two latter parameters iust be deduced from spatial datum in a double

reference system (CrePault, 1975).5 No research evidence is yet avail-

able, however, concerning the effect of progress in cinematic notions
on the concept of distance,or other spatial notions. This effect, there-

fore, should be investigated thoroughly.

A second type of experiment is needed to determine how children can
understand s:)atial relations (relative distance, directions) in situations
involving points of referPnces, or observers, moving at different speeds.
Here again, spatial relations would depend on cinematic cues. This type

of prclalm--which could be understood only at the formal operational
stage--is now under investigation at Paris VII University by a team of
physicists interested in the psychological foundations of physical
concepts. One situation presented co:sisted in imagining two parachutists
falling from a plane at different spE ds; one of them drops his eyeglasses
that the second one manages to catch. Questions are asked about the
duration, distance, speed of the fall of the eyeglasses relative to both
parachutist number one and to number two.

Cinematic situations are interesting for the study of spatial rela-
tions even when no questions are-asked about the temporal and cinemati

parameters. 'Many experiments could be designed on the,theme of trajec-
tories of moving objects in a plane or within a three-dimensional space
A first example of such an experiment is Inhelder and Piaget's (1958)
research on the equality of the angle of incidence and the angle of
reflecEion in a game of "billiards." In this experiment, there is a

close connection between physical relationships (causality relationship
of the position of the propelle7 with the impact of the ball thrown on
the aim, which consists in a wooden block) am., spatial relationships
(thp subject can understand the physical law only by spatially structuring
the game board and by comparing the angle of incidence and the angle of

reflection of the ball trajectory). Similar experiments, requiring
aomparison of geometric figures, could be done within a football game

context. The study of trajectory should provide many suggestions of
experiments where both the physical and logico-mathematical aspects of
space are involved. In a recent study by M. and I. Fluckiger (1975) subjects

5A vibrating stick prints dots on a strip of paper moved by the

experimenter. In one situation, the frequency of the stick is even,
whereas the strip of paper is moved first slowly, then rapidly. The

subjects are presented with the printed paper and must evaluate the
relative time and speed of the displacement of the strip of paper between

two dots close together compared to two dots at a wide interval (end of

the strip).
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were asked to imagine the trajectories of a tennis ball haning by a long
thread fixed to a hook in the ceiling. First, the children were required
to anticipate the trajectorv of the ball when the experimenter, who had
removed the ball from the vertical axis where it normally hangs, would
release it from a predetermined place. The question was: Where should
one place a wooden pin so that the ball would knock it down? At the
end of the experiment, children were asked to imagine the bowl-like
figure (i.e., a portion of a sphere) formed by all the. possible displace-
ments of the hanging tennis ball.

Research Relevant to Applications to Education

Some people incorrectly assume that results of the research in
developmental psychology conducted in Geneva allow for direct appli-
cations to education. Those who understaad the Riagetian studies know
very well no such direct application to edu-ation is possible. An
"intermediate" body of researrh is necessary for purposes of application.
Riaget has endeavored to find out the general processes of knowledge
acquisition or how bett2r forms of knowledge evolve from early more
limited forms and what underlies our basic scientific concepts. Thus,
he has had to make abstractions from the individual characteristics of
his subjects. Due to these abstractions, general developmental pro-
cesses (such as equilibration) were discovered and the potentialities
of children at different levels of development were defined in terms
of cognitive structures.

When it comes to the elaboration of "good" teaching methods, the
knowledge of these processes and potentialities is of great help, but
certainly does not suffice. Teaching deals with unique individuals
and, therefore, it is necessary to base teaching methods on the results

research air. at specifying individual cognitive characteristics and
at describing the actual process (performance strategies) involved in the
utilization of cognitive structures. Two kinds of research are most
lielpful to serve these purposes.

First, differential studies should be conducted, not only to show
that there are differences in the acquisition of spatial concepts, but
also in order to analyze these differences. One question which must be

-1:-with is, "Do children of the same developmental level solve a
g' en spatial problem in different ways?" As a matter of fact, even
diYferential studies of the usual type can give useful information
f'ir establishing teaching curricula.

The second type of research can be based on the analysis of children's
Aaulzation of action in order to solve spatial problems. A team of
search workers directed by Barbel Inhelder is undertaking such a stUdy
Geneva, without focusing on spatial problems. These researchers are
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attempting to shed light on the processes of discovery in action and

on the interplay between the processes of goal oriented activity and the

child's concepts and representations.

For example, Montangero (1975) has conducted an experiment involving

both physical and spatial notions. In this study the materials used con-

sisted of objects similar in shape (cubes or balls) but of different

weight or different volume. There were, for instance, five-face empty

cubes and normal "closed" cubes loaded with plasticine or plasticine

balls and leaden balls of the same diameter. The glass containers

were half filled with water, and the child was asked to put whatever he

liked into the water in order to find out which objects noticeably
raised the water level and which ones have little or no visible effect

on the water level. In a second part of the experiment, the water level
had to be raised up to a certain point by immersing objects. This point

could not be reached unless the children made some changes to the

material, namely by loading empty cubes with plasticine or with a

leaden ball.

The actions observed and the few comments made by the subjects

were analyzed with the aim of speci:ying:

(a) how sequences of actions can be delimited by considering the

successive immediate goals of the subject,

(b) what are the relations between the different sequences, and

(c) what can explain the changes of goals and of action organiza-

tion.

On the one hand, the subject's actions were related, for each

sequence, to the notions or particular representatiun which seemed to direct

the actions. (For example, children up to 9 years of age hypothesized that

the weighz was the cause of the raising .f water level, or the children

constituted couples of objects, differing by one parameter, in order

to compare their effect when immersed.) On the other hand, the analy-

sis tried to specify which aspect of the situation (characteristics of

the objects, effect produced, experimenter's intervention) were taken

into consideration by the subject and how each influenced the

course of his activity. In this respect, this investigation asked a
question which often has been overlooked in the research on cognitiVe

structures, i.e., what is the role of the object of knowledge?

The general implications of the results of the water level experi-

ment, briefly summarized, are as follows. First, there is a rather

large variety of action patterns among chilaren whose conceptual level

sq.eas similar. Second, this type of experiment clearly reveals how the
successive sequences of actions are guided by an interaction between con-

ceptual representations and the different cues of the situation. Third,
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the discovery of a means to reach the goal, in the second part of the
experiment, is often preceded by successive practice of the isolated
schematas which, once they are combined, allow for success. Finally,
the influence of the results of the child's actions (raising of the
water level) is limited and depends on whether the anticipations are
confirmed or not, and corresponds very much to what appeared in a pre-
vious study on goal oriented activity (Karmiloff & Inhelder, in press).

In the experiment discussed here, the subject's conceptual level
concerning the main notions involved

(dissociation between weight and
velume) were preoperational. In the field of space, similar research
on how children use an operational spatial

conc,pt when trying to solve
problems which'require the acquisition of higher concepts would be
most helpful.

These suggestions for research are, of course, very general. It
is hoped that many research workers, knowing well the previous develop-
mental studies of space, will transform these suggestions into actual
experiments. The results of such experiments should be very beneficial
to the teaching of geometry as well as for cognitivl psychology.
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Cross-Cultural Research on Concepts of Space and Geometry
1

Michael C. Mitchelmore

Ministry of Education, Jamaica

Apart from studies on the conservation of length, cross-cultural
research on geometric concepts can be enumerated very quickly: Geometric

vocabulary and measurement and estimation skills have been investigated
by Gay and Cole (1967) anu Ohuche (1973) in Sierra Leone, angles by
Okonji (1971) in Uganda, and coordinates also by Okonji (1971) in
Uganda and by Page (1971) amongst Zulus in South Africa. I have been

able to find no studies dealing with geometrical reasoning or with school
achievement in geometry.

By contrast, there is considerable cros:i-cultural research on the
perceptual abilities which presumably underlie the development and

application of geometric concepts. Many of the relevant results have

spun off the effort to devise culture-free tests of intelligence, which
have perforce used abstract visual materials. Other relevant results
come from investigations of the unlversality of Piagetian stages of

intellectual evelopment and from studies of pictorial depth perception

and representation. From these various fields of research, certain

clear results have emerged. For e::ample, whereas native Africans of
all nationalities appear -.to be considerably retarded in perceptual
development relative to Europeans of the same age and length of schooling,
even illiterate Eskimos and North American Indians do not differ markedly

from Europeans of the/same age.

Although no research relating perceptual development to geometry
achievement has been reported from developing countries, it is obvious
that perceptual retardation would cause difficulties in learning

elementary geometry. Skemp (1971) r .ports the case of a Uganda school
student who, attempting to illustrate Pythagoras' theorem, produced
the diagram shown in Figure 1; this child's inability to deal with
obliques would certainly make it difficult for him to comprehend this
particular int.tapretation of the theorem. Some time ago, the writer

1 The author's previously unpublished research reported in this review
vas mostly carried out while he was a doctoral candidate at the Ohio
State University (F. Joe Crosswhite, advisor). The studies were supported
by an Educational Development Award from the Ministry of Overseas Develop-
ment, London .and a grant-in-aid from the Society for the Psychological
Study of Social Issues. The cooperation of students, teachers and educa-
tional authorities in Jamaica and Columbus, Ohio is gratefully acknowledged.
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found that most Ghanaian grade 11 students did not know how to show depth
in a sketch of a cuboid (rectangular prism), a deficiency which made the
application'of plane geometry and trigonometry to 3-dimensional problems
virtually impossible. Even if there were no connection.:between percep-
tion and geometrical ability, such blatant representat.ional Tailures as
these would point up the need for reme'dial measures as part of a student's
general education.

Figure 1. The above diagram was drawn by a Ugandan secondary school
'student who was instructed to construct squares on the three sides of
the triangle (Skemp, 1971, p. 33).

Without apology for the poc.- coverage of strictly geometric concepts,
this review:will therefore be concentrated on cross-cultural research in
related areas which are, or should be, of concern to anyone interested
in the teaching or learning of geometry in developing countries. These
areas cover the factors of intelligence known collectively as spatial
ability, which I take to mean the ability to predict specified trans-
formations of given geometric figures. More loosely, the abilities to
be treated might be called "geometric intuition." Studies of figural
reasoning (cognition of figural classes and relations in Guilford's,
1967, theory) and in the experimental psychology of perception (e.g.,
susceptibility to geometric illusions in Segall, Campbell, and Herskovits,
1966) will be omitted because these subjects have far lower face validity
relative to geometry ewcation.

151)



145

Nonverbal Tests of Intelligence

Over ! past fifty years, considerable effort has gone inio che
development of nonverbal intelligence tests. The major need has been
to predict the relative achievement in education or employment of sub-
jects who differ widely in reading ability, native language, or cultural
background. Many of these tests, notably most of the performance tests
developed for use in cultures where even paper and pencils are rare,
appear to measure iatuitive understanding of the geometric properties of
2-dimensional shapes, especially the way in which simple shapes fit
together to make larger shapes. A test of this latter type is'regarded
as a good measure of general intelligence in a primitive population if
it has a satisfactory reliability and a high loading on the first factor
in factor analyses of batteries of similar tests (Ord, 1970). But one =

might equally regard such a test as a good measure of general spatial
ability.

Before looking at some of thc more relevant performance tests, it
is mandatory to warn that cross-cultural comparisons are fraught with
difficulties. There are so many reasons why mean scores should be
different in different cultures (general levels of education, economy
and health: familiarity 'with shapes used in the test and with the entire
ethos of the testing situation, etc.) that it is never possible to deduce
that populations differ in innate spatial ability, still less in innate
intelligence. Comparisons between different unacculturated groups are
safer than comparisons of Western and non-Western cultures, but still
point to cultural 'differences before racial superiority, Also, one

cannot be sure that a test which m asures spatial ability in one population
will necessarily do so in another Jrvinc, 1965). To avoid a lengthy
discussion of these problems, we shall treat each test at its face value
and concentrate on qualitative rather, than quantitative comparisons.

Elock De,,,I4p Tests

In C.r. original block design test (Kohs, 1923), the subject is pre-
sented vib a number of identical cubes each of which has four faces
colored red, white, blue, and yellow and two divided diagonally and
colored red/white and biue/yellow (Figure 2a). The test is to assemble'

a numbe r. of these cubes so that the top faces form a series of given
designs (Figure 2c, 2d). The designs are all symmetrical and vary in

size from ? 2 to 4 x 4; each design .is either red/white or blue/yellow.
The test W4. adapted for clinical use by Goldstein and Scheerer (1941)
and as a snbtest of general intelligence batteries (Wechsler, 1949;
Matarazzo, 19-:). A 2:-dimensional version which employs red/white tiles
(Figure 2b) has recently been developed by Ord (1970).
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a

\,A .b

\R

Figure 2. In block design tests, the subject is required to use cubes
(a) or tiles (b) to copy designs such as (c) ane (d).

The perceptual skills required for successful performance in a
block 'design test may be demonstrated by describing the behavior of
elementary school children as they attempt to copy the design in
Figure 2 using tiles (Figure 2b). I have observed the following
amongst both Jamaican and American students: Almost all students
correctly select two white pieces and two "diagonal" pieces, and almost
all show some difficulty in copying the orientation of the diagonal
pieces. Amongst thase who copy the design correctly, a few insert
the diagonal pieces correctly the first time, without hesitation; some
insert the pieces wrongly and then correct their orientation by trial
and error; and some turn the pieces around and around in their hand
to- find the correct orientation before inserting them. Amongst
students who fail this item, some try all orientations of the diagonal
piecesobut are unable to recognize the correct position; others simply
insert the pieces at random, apparently unaware of the need to copy
their orientation. Both the slow and the erratic efforts appear to
reflect stages in the development of the capacity to deal successfully
with oblique lines. In North American children, this development is

152



147

marked by several achievements which suddenly appear at about age 6-7

years, e.g., the differentiation of left- and right-facing oblique lines

& Teuber, 1963), the formation of the concept of diagonal (Olson,

1);0), and the more accurate copying of acute angles (Campbell, 1969).

A large part of the variance in block design test score variance is thus

attributable to differences in development of the perceptual concept of

orientation.

Relatively poor performance on block design tests has been reported

for several African samples. For example, Burry (1966) found that

Temne (Sierra Leone) village and town adults scored significantly lower

than comparative Eskimo and Scottish samples; Kellaghan (1968) found that

Yoruba (Nigeria) village and city children aged about 11 years scored

significantly lower than an Irish town sample; similar results have been

obtained for 11-year-old schoolboys by Jahoda (1955), who compared

Ghanaians with British farmworkers, and Vernon (1967), who comapred

Ugandans with English schoolboys. Biesh&ival (1949, 1952a) found

several Zulu and Bantu samples significantly i -ior to white South

Africans of the same age. Some investigators : regowski, 1972b, MeFie,

1954, 1961; Shapiro, 1960; Vernon, 1967) comment specifically on a greater

i

tendency amongst Africans to rotate the entire pattern to a preferred

orientation, for example, Fisure 20 may be cop ed upside-down. Others

(Dastocr 5 Emovon, 1972; Jahr-la, 1956) have re arked on the difficulties

which subjects have in copying .. a orientation,of individual pieces. It

is safe to deduce that Africans are on average significantly retarded in

perceptual development as regar s urientItion. The dramatic effects this

retardation can have on the learning of geometry have already been noted

(see Figure 1).

There is another 'aspect of the pattern-copying task which has not

been noted by psychologists but which is relevant to geometry teaching.

Compare the designs in Figures 2c and 2d: In 2c, the "diagonal" pieces

are isolated, whereas in 2d they fit cogether to make new shapes.

Although orientation difficulties are still present in 2d, even subjects

who solve 2c quickly have problems' with the extra constructive require-

ments of 2d. The constructive element comes into most_of the larger

designs,and could account for their greater difficulty. However, the

construction of all such designs can be broken down into two problems:

how to construct a large right triangle from two small ones (as in the

upper and lower halves of 2d), and how to construct a'parallelogram from

two congruent triangles (as in the left and right haives of 2d). Often,

the two problems must be solved simultaneously, for example, when fitting

the last piece into the design in 2d. It would thus appear that part of

the variance on block design test scores may be attributable to ulemen-

tary geometrical knowledge (there must be many elementary mathematics

textbooks that include the open-ended exercise, "What figures can you

make by fitting together two congruent triangles?"). This it; a further reason

Lo regard the poor block design scores of must African samples as predictive
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of difficulties in their learning of geometry.

Outside Africa, Vernon (1965) found that 11-year-old Jamaican boys
scored at about the same level as the Ugandan buys (Vernon, 1967) on theKohs test. It was because of the low scores generally obtained by
illiterates in Papua New Guinea on the 3--limensional test that Ord (1970)
developed his,2-dimensional version 2b); he also used this test
with Australian Aborigines. Mitchelmore (1974) found that high-ability
Jamaicans aged 7-15 years made no pattern rotation errors; their scores
were significantly higher than average students of similar ages in
Columbus, Ohio (Mitchelmore, 1975).

In startling comparison to previous results is the finding that
score's not very different from those obtained by sophisticated Europeanand North American samples are obtained by both literate and illiterate
Canadian Eskimos and Indians (Berry; 1966, 1971; MacArthur, 1973; Vernon,1966) and by Mexican Indians (McConnell, 1954). It may therefore be
expected that Eskimos and American Indians will have special talents for

,ry and other spatially-loaded pursuits (Kleinfeld, 1973).

Eni ,Sccl Figures Tests

In the original embedded figures test or EFT (Gottschaldt, 1926),
the subject was shown a simple figure for a certain length of tirrie afterwhich he had to locate and trace the figure embedded in'a complex back-
ground (Figure 3). The test has been developed and used extensively by
Witkin and others (Witkin, 1950; Witkin, Oltman, Cox, Ehrlichman, Hamm,& Ringler, 1973). The reason for the widespread use of this test is the
finding (Witkin, Dyk, Faterson, Goodenough, & Karp, 19(2) that scores are
significantly correlated with performance on other perceptual disembedding
tasks and with a more objective and self-reliant personality; personshigh on these characteristics are said to be field independent.

Disembeddin& is clearly relevant to geometric problem-solving, where
the first step is often to isolate appropriate figures (usually triangles)
in a diagram of intersecting lines and curves--a step which Bright (1973)
found was surprisingly difficult for elementary age school children. I
have observed that students who do well on EFTs possess efficiept strate-
gies of searching for the distinctive corners and edges of a figure; this
tmpression isstrengthened by eye-movement studies (Conklin, Muir, &
Boersma, 1968).

Embedded figures tests have been widely Used in cross-cultural
research, especially after Witkin's research on field independence
became known. Again, relatively poor scores havek been reported among
African samples (Berry, 1966; Dav;on, 1967a; Schwitzgehel, 1962; Vernon,
1967) and good scores among Eskimos (Berry, 1966; MacArthur, 1973;
Vernon, 1966). These results would lso tend to predict difficulties
for African's learning of geometry, hut not for Eskimos'.
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In Jamaica,I have also observed that young students often respond
without hesitation but draw a shape which is slightly different from
the given figure (Figure 3). By contrast, older students prefer not to

respond at all if they cannot locate the given figure. Reuning and
Wortley (1973, pp. 48-49) report behavior similar to that of the younger

Jamaicans amongst primitive Bushmen in South Africa. I suggest that

EFTs measure conservation of Ethape in low-scoring subjects. Failure to

conserve shape would also clearly limit geometric learning.

a

Figure 3. In a typical embedded figures test item, subjects are required
to find a given shape such as (a) hidden in a complex pattern such as (b).

Young Jamaican students were often found to copy the given shape
incorrectly, as at (c). Copyright q) EducationaLTest Service, 1963.
Adapted and reproduced by permission.(see French, Ekstrom, & Price, 1963).
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Other Tests

Several other performance tests of intelligence include elements
of what I have called geometrical intuition. The most relevant of these
are the various formboards, in which one or more geometrical shapes have
to be fitted into a space to complete a larger shape. One series has
been used extensively in South Africa (Biesheuval, 1949; Grant, 1970;
Kendall, 1971) and another inPapua, New Guinea and in Auszralia (Ord, 1970),
but they do not appear to have been used in cross-cultural studies.

Another interesting test is te Form Detectiun Test (Hector, 1964),
in which subjects must find in a given array of dots sets of points
which form the vertices of squares. Comparing Belgian Congolese illite-
rate workers with Belgian schoolchildren, Ombredane, Bertelson and Eeniest-
Noirt (1958) found that although the Africans were slower than the
Belgians, their speed was not a function of task difficulty. The authors
suggested that Africans' relative slowness therefore reflected cultural
influences rather tnan innate differences in speed of mental processes.

In the Pattern Completion Test (Hector, 1958), three rectangles are
given and a fourth must be placed to make a symmetrical pattern (mirror
symmetry in half the items, rotational symmetry in the other half).
Although illiterate Africans do not score as high as Europeans on this
test (Fridjhon, 1961), they do not respond randomly evm when the test
task is demonstrated entirely in mime (Tekane, 1961). Interestingly,
Tekane (1963) also found that, given a free choice, illiterate adults
preferred a mirror-symmetrical completion whereas high school students
used mirror and rotational symmetry equally often.

The Porteus Maze Test (Porteus, 1965) is another visual teSt which
has been widely used in cross-cultural research. However, both its
item type and the results of factor analyses show that whatever skills
it measures are not directly related to geometry: Other tests which
do measure relevant skills but which have not been used so extensively
are reviewed by Ord (1970).

Piagetian Testing

There is now an extensive cross-cultural literature based on Piaget's
model of intellectual development (Dasen, 1972). The usual finding is
that children in non-Western cultures pass through somewhat similar
stages as Western children, but at a slower rate and often without reach-
ing the final stage at,all. Retardation in the development of conserva-
tion of length, which would have obvious implications,for the teaching
of measurement, has been reported by Dasen (1974) and de Lemos (1969)
amongst Australian Aborigines, by Isaacs (1975) and Vernon (1965) in
Jamaica, by Ckonji (1971) and Vernon (1967) in Uganda, by Page (1973)
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amongst Zulus in South Africa, by Prince (1948) in Papua, New Guinea, and
by Vernon (1966) amongst Canadian Eskimos and Indians. In the sa:ae studies,
retardation in conservation of area was reported by Prince and Vernon, but
Goodnow (1962) found no retardation in unschooled Chinese of low socio-
economic status in Hong Kong.

There have been few cross-cultural studies of the development of
geometrical and spatial concepts following Piaget and Inhelder (1956)
and Piaget, Inhelder, arid Szeminsko (19h0). Page W)71) reported the usual
retardation for Zulu subjects in the use of coordinates for copying
position, and Okonji (1971) found that very few Ugandan children aged
6-11 years used measurement in that task ar in copying angles. Cowley and

Murray (1962) studied the drawing of geometrical figures, haptic perception,
the construction of the projective straight line, perspective, the coordi-
nation of perspectives, and the similarity of triangles and rectangles
among!:t Zulu and white South African school children. They found sequences
of development similar to those described by Piaget with the usual retarda-
tion on the part of the Zulus. Dasea (1975) gave tests of linear and cir-
cular order, localization of topographical position, .and representation
of water levels to subsistence-level samples of EskiMos, Australian
Aborgines, and Ebrie Africans in the Ivory Coast. His finding that
Eskimos were superior to Aborigines and Aborigines superior to Africans on
these tasks parallels the results obtained by Berry (1971) using block
design, embedded figures,and other spatial tests. Once again, the con-
clusion is that African school children are likely to experience perceptual
difficulties which could hinder their learning of elementary geometry.

Representation of water levels has also been studied by Dagnall (1970)
in Papua, New Guinea and by Isaacs (1975) and Mitchelmore (1974) in

Jamaica. The last-mentioned also studied the representation of the

vertical. Before dismissing these representational skills; as: irrelevant

to geometry, note that Mitchelmore found them highly correlated,with
other spatial skills and that Isaacs found only small correlations
between .'tem and conservation and school achievement scores.

Pictorial Depth Perception

Since Hudson (1960) found that Bantu primary school chi. ::.en had
difficulties interpreting the depth dimension in a drawing of a
dimensional scene, pictorial depth perception has received considerable
attention f,rom cross-cultural psychologists. As excellent reviews have
reCently been published by Kennedy (1974) and Miller (1973), no details
will be presented here. Findings for young children and illiterate
adults in many developing countries all over the world may be summarized
as follows:

5 'i



152

1. Except in extremely isolated communities which have no
experience cf pictures, familiar objects can be identified fairly
accurately frcm a simple line drawing or photograph (Deregowski, 19686;
Fonseca & Kearl, 1960; Holmes, 1963; Shaw, 1969; Spaulding, 1955).

2. Conventional signs such as those used to express movement are
not very weil understood (Duncan, Gourlay, & Hudson, 1973; Spaulding,
1956; Winter, 1963).

3. Cues used to represent depth in a 3-dimensional scene are poorly
understood (Dawson, 1967a; Deregowski, 1968a; Hudson, 1967; Mundy-Castle,
1965; Shaw, 1969; Vernon, 1969).

4. The frequency of correct interpretation increases with age,
enucation, urban influence, and cultural stimulation (Dawson, Young &
Choi, 1974; Duncan et al 1973; Holmes, 1963; Hudson, 1960; Kilbride
& Robtins, 1968; Shaw, 1969; Sinha & Shukla, 1974).

5. Depth cues of size and superposition are the most easily inter-
preted, and perspective is the most difficult (Dawson, 1967a; Hudson,
1960; Kilbride & Robbins, 1968; Mundy-Castle, 1966; Shaw, 1969).

A child who is unable to "see the depth" in a drawing of a 3-dimen-
sional scene is clearly going to have difficulties dealing with any
school subject (e.g., solid geometry, science, geography) in which
information is presented largely through "3-dimensional" pictures and
diagrams. Although, as will be seen in the next section, secondary
school students in developing countries have raany difficulties making
such drawings, the research literature cited above strongly suggests
that they have few problems interpretiLg 3-dimensional diagrams drawn
by others. However, the literature also warns elementary school teachers
in deVeloping countries that their children may well have some unexpected
problems interpreting pictures, especially if they come from an impoverished
background.

Pictorial Depth Representation

At the higher levels of technical and scientific education, it
becomes necessary not only to interpret 3-dimensional pictures but also
to draw diagrams to represent complex 3-dimensional configurations. To

a lesscr extent, the depiction ol ,.qmple solid _Mapes is also required
in many subjects in lower grades. Because drawing is.so much more
difficult than interpretation, the developmental proeess takes longer
and its effects are much more visible. However, research on the drawing
skills which are ,relevant to 3-dimensional geometr:, and the application
of mathematics in physical space proLlems is rather spars.t, both in the
United States and cross-culturally. This topic will therefore be tre:,ted
in greater detail.
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The development of depth depiction in children's drawings of 3-
dimensional scenes has been studied extensively by same art educators
(Arnheim, 1954; Eisner, 1967; Eng, 1954; Lowenfeld & Brittain, 1966;
Luquet, 1927; Munro, Lark-Horovitz, & Barnhart, 1942). Although there
are differences in detail, four stages are generally reported in studies
of Western children:

1. objects float in space, not properly related to each other
or to any base liae (age 4-7 years),

2. objects snown in correct topologiLal relation to each
other but without any depth depiction, often showing
mixed viewpoints (age 6-10 years),

3. attempts to show depth by multiple base lines, over-
lapping and even size difference, from a single viewpoint
(age 8-12 years), and

correct representation, objects related to a base plane,
horizon in background (from about age 10 years).

Studies of single objects are much rarer. Kerr (1936), attempting
to produce an intelligence test similar to the Draw-a-Man scale (Gocdenough,
1926), found an increase in the proportion of children who drew a "solid"
house, as opposed to a simple front view, from 10% at age 7 years to 60%
at age 13-14 years. Butonly half of these drawings used oblique lines to
-show depth. Lewis (1962, 1963) studied drawings of a transparent sphere
and a cubical house. For the houuse, she predicted five stages: (1)

an isolated square face; (2) mixed viewpoints, no depth; (3) mixed view-
points, some depth; (4) depth represented by drawing parallel sides parallel;
and (5) depth represented by drawing parallel sides convergent. She found
that the modal methods of representation were her Stage 1 in grades K to
3 and her Stage 4 in grades 7 and 8, being rather indistinct in grades

4 to 6.

Many of the spatial investigations of Fiaget and Inhelder (1956) are
also relevant to the study of pictorial depth representation, although
the authors.did not interpret their results in this way. They report

stages in the drawing of a tree-lined road, poles on a hillside, and
water levels in a tilted bottle. In all of these, an early stage in-

volving the depiction of localized relations (perpendicularity), with
consequent mixing of viewpoints, corresponds closely to the second stage
of representation noted above. Stages in the drawing of a slanting cir-
cular disc and of receding railway lines illustrate the development of the
perspective method of representing depth by foreshortening.

Several writers have noted that the preferred artistic style varies
across cultures (Gombrich, 1960; Thouless, 1933). It seems likely that, .
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in cultures where the prevalent style does not employ oL-spective,
students would have extra difficulties learning to use the depth cues
employed in the West (which are dictated by the centra" projection model
of pictorial representation). Hudson (1962a) used this argument to
explain why ILdians in South Africa were less able than Europeans to pick
up depth cues in line drawings of 3-dimensional scenes. Hudson (1962b)
also found that illiterate African mineworters drew cows, elephants, and
cars using mixed viewpoints (Stage 2 above); they felt that a feature
,should be omitted from a drawing only if that feature was missing from
the object depicted and not if it was merely hidden from view. The same
principle is reported held by certain Australian Aborigines (McElroy, 1955).
Deregowski (1969) obtained similar results when he asked Zambian servants
and primary school children to draw a wire model of parts of a cube (the
edges of the front and back faces, and one of the edges joining them);
there was a clear tendency to draw the two square faces side by side
instead of overlapping. In view of his further finding (Deregowski, 1970)
that uneducated Zambian women actually preferred drawings which showed
mixed viewpoints, it is difficult to say whether a person who makes
such apparently primitive drawings is perceptually retarded Or merely
subject to a strong cultural influence.

I have seen only two cross-cultural studies which have examined the
drawing of 3-dimensional scenes. Deregowski (1972a) estimated that rural
Zambian children were 5-6 years behind English children in their drawings.
Lester (1974) made a more careful comparative analysis. School children
in Lagos, Nigeria and New York, New York, were presented with models
of a simple domestic scene, which they then drew from three mutually per-
pendicular directions% Drawings were scored for overall spatial arrange-
ment, for articulation of contiguous objects, and for consistency of
viewpoint. There was a significant cross-cultural difference only for the
first category, with .dgerian 10- to il-year-oid children scoring lower
than America,. 6- to 7-year-olds.

None of the above studies gives very much information about the
more specifically geometrical aspects of pictorial representation. I

recently completed two sen-ys intended to fill this gap (Mitchelmore,
1974), which I shall now de:;cribe.

A Ja.aaican Developmentql Study

Besides the work of Lewis (1962, 1963) cited above, only two pre-
vious investigations of the development of drawings of mathematical
solids have been reported (Chetverukhin, 1971; Petitclerc, 1972). These
papers include drawings of a cuboid, cube, andpyramid said to be typical
at various ages, but give no supportive data. My first task was there-
fore to establish the developmental sequence and to develop a reliable
test of a child's position in llat sequence.
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Eighty high-ability students (40 boys. 40 girls) aged 7-15 years
in Kingston,Jamaica,were set individually to draw five small wooden
models which were displayed at a fixed distance and orientation. The
modals were a cuboid, a cylinder, a pyramid, a cube, and a cone. Each
solid was drawn twice, once after exposure for one second and once during
an indefinite exposure. Stages obtained for the first four solids are
ilias:ratea in Figure 4; drawings of the cone were unscorable. The five
stages of representation may be descCoed as fcllows:

1. an outline of the solid or the face viewed orthogonally;

2. several faces snown but not in correct relation to each other,
often both visible and invisible faces shown, usually no depth
depiction;

3A. only visible faces shown, in correct relation to each other, but
with poor depth depiction;

3B. all appropriate faces distorted in an attempt to show depth,
but not correctly; end

4. correct drawing using parallel or slightly convergent lines
to represent parallel edges of the solid.

The stages correspond fairly closely to those obtained for sketches of
3-dimensional scenes reported earlier, the third stage dividing clearly
into two substages. Except for the cylinder, very few drawings combined
depth depiction with mixed viewpoints (see Stage 3 of Lewis, 1963). The
difference may be attributable to the fact that Lewis used a group
administration procedure.

The validity of the test (called the Solid'Representation Test) was
established from several considerations. First, students rarely made

-
more advanced drawings under the short exposure than under the long
exposure condition (less than 10%'Of all drawings) . Secorl, there was
a fairly clear stage progression from grade to grade (Table 1). Third,
a paramatric analysis was made by assigning the five stages 1, 2, 3A, 313 and

4 scores of 0, 1, 2, 3 and 4 respectively; the reliability of the total
\ score for the eight drawings was 0.96, shuwing a high consistency across

solids, and correlations with block design and embeddod figures test
scores were 0.84 and 0.81, demorstrating satisfactory concurrent validity.
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Figure 4. Typical drawings at each stage of solid representation.
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Table 1

Frequency of,Stages on.Solid Representation Test Combined

Across Solids and Conditions in Jamaican Sam?le, by Grade

Stage Grade

1 3 5 7 9

1 90 47 52 13 1

2 32 28 23 18 3

3A 6 26 19, 28 21

3B 26 22 52 61

4 1 12 17 42

The Solid Represeitation Test was later administered to 64 average-
ability students (32 boys and 32 girls) aged 9-15.years in Columbus,

_Ohio. The cone was replaced by a triangular prisM, for which stages
were predicted as shown in Figure 5. A high reliability (0.93) was
again obtained, showing both that the sequence derived in Jamaica was
also valid in Columbus and that the sequence was general enough to allow .

predictions to new solids. Table 2 shows the scores obtained by the two
sets of students on the first four solids. The trend was highly linear

across grades (2. < 0.001), and the Jamaican scores were significantly
higher tban the American (2. < 0.05). However, since the Jamaicans were
chosen from high-ability classes and the U.S. students from average-
ability classes, it is difficult to form any very definite conclusions
from this result. A clearer comparison is available from a survey mnde

using a group test of 3-dimensional drawing ability, to be described
next.

2 3A 38 4

Figure 5. Typical responses predicted for each stage of development in
drawings of a triangular pyramid.
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Figure 6. Selected items, correct completions and typical errors from
the Three-Dimensional Drawing Test.
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Table 2

Results of Kingston and Columbus Students On Four Common

Solids of Solid Representation Test, by Gradea

City Grade

3 5 7 9

Kingston Mean 1.29 1.37 2.33 3.09

S.D. 0.92 1.21 0.92 0.43

Columbus Mean 0.88 1.45 2.10 2.38

S.D. 0.61 0.84 0.71 0.74

aN = 16 per cell; score is the mean stage of representation on
a 0 - 4 scale.

A Jamaican School Survey

For my second survey, I developed a Three-Dimensional Drawing Tett
for group administration at the grade 9 level. (For provisos on the use
of group tests in developing countries, see the next section of this

paper). The following four exercises were selected after item analyses

of pilot versions: draw telegraph poles alongside a road winding into
the distance; draw the water level in four titled bottles; draw lines
on the faces of four blocks to make each block look as if it was made
from cubes stuck together; and draw the hidden edges of four blocks

(Figure 6). The entire test was given in several different types of
secondary schools in various regions of Jamaica, and the first WO items
were also given individually to the developmental sample mentioned above.

The four exercises all involve parallels and perpendiculars. To

complete them successfully, the subject must draw parallels (or near-
parallels) to represent parallels in space and ignore the perpendiculars.
But as Piaget and Inhelder (1956) found, the youngest subjects drew
perpendiculars to represent perpendiculars and ignored the parallels!
The same tendency was responsible for most of the errors made by older
subjects (see Figure 6). For example, in drawing an oblique view of a

square network, lines still tended to be drawn perpendicular to the longer

sides instead of parallel to the shorter sides. Even in subjects who

apparently knew what to draw, there was a residual effect "pulling" the
lines toward the perpendicular (Campbell, 1969). The reliability of this

drawing test was estimated at 0.85.

165



160

The Three-Dimensional Drawing Test was also given in Columbus, Ohio
to a sample of students from two average grade 9 classes. Again, the
same scoring system proved applicable and there was only a slight drop
in reliability (to 0.77). The scores of the Columbus and Jamaican
stadonts from two types of schools (the selective high schools, which
are similar to British grammar schools, and the junior secondlry schools,
which are the nearest Jamaican equivalent to U.S. junior high schools)
are presented in Table 3. Analysis of variance for the data in Table 3 showed
highly significant main effec.:s for stx and school type, and a non-
significant interaction. (The sex difference will be discussed later).
Post hoc tests 5y the Sheffe method showed that, for both sexes combined,
the Columbus mean score was significantly different from the means for
each type of Jamaican school (ja < 0.01). The superiority of the Jamaican
high school students confirms the result obtained using the Solid Repre-
sentation Test and merely reflects the greater selectivity of Jamaican
high schools. The comparison with the Jamaican junior secondary school
students is more interesting. The junior secondary schools in Jamaiea..
receive over 407 of the students who are not admitted to high schools,..
and their mean scores are very near to the estimated mean of all
Jamaican grade 9 students (22.86 for boys, 17.69 for girls); they are
therefore the nearest thing to "average" schools in Jamaica. It may be
concluded that averace grade 9 U.S. students are better at representing
3-dimensional geometrical relations than average Jamaicans in the same
grade. A similar result was obtained in a preliminary study comparing
West Indian and American samples of mathematics teachers (Mitchelmore,
1973).

Table 3

Three-Dimensional Drawing Test Results for Jamaican

and Columbus Students, by Sex and School Type

Sex

Columbus Jamaica

Junior
high

schools

High
schools

Junior
secondary
schools

Boys Mean 25.95 31.33 23.57

S.D. 5.85 6.25 6.77

N 21 54 54

Girls Mean 22.33 24.59 17.15

S.D. 6.22 6.36 6.35

N 33 73 75

1. 6
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It may be said in passing that the Columbus students' performance
on this test, though better than the "average" Jamaican's, was nothing to

feel complacent about. In the first exercise (Figure 6a), even allowing
for +8° drawing error, only 2 out of the 54 students drew the telegrapn
poles upright alongside all three sections of the road. Only 8 drew
water levels consistently within 6° of the horizontal (Figure 6b). In

the item shown in Figure. 6c, more than half the students made the error
illustrated, and the item in Figure 6d was completed accurately by only
5. The relevance of these statistics to mathematics teaAers is that
students' drawing ability could probably be much improved by teaching
one simple principle, namely that an acceptable drawing results when
parallel lines in space are represented by parallel or nearly parallel
lines on paper and other angles are deformed to maintain this invariance.

papter_and Pencil Tests of Spatial Ability.

The problems experienced when Western paper-and-pencil tests are
administered without modification to studeats in developing countries
are well described by Schwarz (1963),In samples which are not test-
sophisticated, "finding the correct answer may be no more of a challenge
than finding the spot where it should be marked" (p. 675) . Even when

instructions are read in the native language, a large percentage of
students do not understand what to do (Schwarz, 1961). It is therefore

not surprising that there have been very few cross-cultural studies in
which Western standardized tests of spatial ability have been used.

If one may assume that adults educated in the Western tradition will
not differ greatly in test sophistication from one country to anotner,
then two studies indicate that natives of developing tropical countries
do not reach the same level of spatial ability as Europeans. Smith (1971)

measured aspects of intelligence in 359 foreign students attending colleges
of f,a-ther education in England. He found significant differences in
spat.al and verbal test scores when students were divided into six groups
by geographical area of origin: Students from Africa and the Caribbean
ranked 5th and 6th in spatial ability, but 1st and 4th in verbal ability.
Mitchelmore (1973) administered four of the National Longitudinal Studies
of Mathematical Abilities (NLSMA) tests of spatial ability (Wilson, Cahen,
& BegIe, 1968a) to a group of mature West Indian mathematics-teachers and
a comparison group of student teachers at the Ohio State University. On

all tests, the West Indians scored significantly lower than the U.S. stu-

dents. However, the fat that the West Indian score on the first test
taken (unfortunately, the only highly speeded test) was significantly
lower than the mean reported for U.S. fifth-grade students (Wilson,
Cahen, & Begle, I968b), whereas the other three scores were significantly
higher, throws doubt on the initial assumption of this paragraph.
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Hendrikz (1973) gave several standardized tests, including the PMA
Space Test, to African and European students in Forms

J. and III
(approximately grades 7 and 9) of Rhodesian academic secondary schools.
She found that ri.te Europeans' mean score was only a little below the U.S.
norm (47th percentile),but the Africans' was much lower (24th percentile).
Hendrikz fails to take any account of differential test-sophistication

between Europeans and Africans, who are educated in Rhodesia in completely
separate systems below the university level. In this writer's view, her
use of unadapted Western tests makes cross-cultural comparisons impossible.

In my pilot investigations in Jamaica, unselected grade 7 students
faced with printed spatial tests i.howed the same signs of bewilderment
which Schwarz (1963) reported. This finding throws doubt on the results
of Vernon's extensive cross-cultural study (1969); about half of his
tests were group tests, but he makes no mention of any special procedures
used to ensure comprehension of the test task. Schwarz showed that it
was possible to teach test tasks effectively using oral explanations,
visual aids, and supervised practice (Schwarz, 1963; Schwarz & t'rug, 1972).
I used these techniques in Jamaica and never (well, almost never) found
any students who did not know what to do when given the test paper.
MacArthur (1973, 1975) also took care to include adequate practice and
feedback in his group testing of Inuit Eskimo and Nsenga Zambian school
children. Incidentally, both Vernon (1969) and MacArthur (1975) found
that although Africans scored far lower than Europeans on the spatial
tests, they scored near the European norms on the verbal-educational tests
(cf. Smith, 1971), whereas Eskimos showed the opposite pattern, being
near European norms on the spatial tests but far below them on the
verbal-educational tests.

Schwarz %1963) notes an additional problem in adapting paper-and-
pencil spatial .isualization tests for African and similar populations:
Subjects' difficulties with pictorial depth perception may contribute so
much variance that the manipulative aspect of visualization -2.s swamped.
For example, in the usual type of surface development test, a different
solid shape has to be imagined for each item. The I-D Boxes Test
(Schwarz & Krug, 1972) reduces this va ance by using the same shapes
(two cubes) in all items and by supplying small wooden models of the
cubes to each testee. I gave this test along with the Three-Dimensional
Drawing Test to my Jamaican and American samples described in the last
section and obtained very similtr results (Mitche1alure, 1975).

Even with appropriate administrative modification, it is by no means
certain that a test will measure the same thing in the new target popula-
tion as it did in the country of origin. Irvine (1965) cites a case
where an intended mechanical ability test apparently measured general
reasoning. However, for the I-D Boxes Test, Schwarz (1964) reported
validit!2s of 0.30 - 0.47 for predicting achievement in the technical
trades in Africa. In a sample of teacher's college men in Jamaica, I
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found a correlation of 0.34 WilA :,ndut:_rial arts grades. These validities
are comparable with those obtain ,k surface development tests in the
U. S. (Chiselli, 1955). So -ill is not lost. Paper-and-pencil tests
can still be useful in developing countries, provided they are treated
with due care.

Spatial Training Programs

In view of the well-documented perceptual retardation of most African
populations, and its probable effect on their learning of the spatial and
mechanical elements of Western culture such as geometry and engineering
which are seen az vital to economic development, it is surprising that
very little research exists concerning the possibility uf improving
spatial ability by specially-designed training. What research there is,
is just as ambiguous in its implications as the corresponding research
carried out in the U.S. (For a summary of U.S. spatial training studies,
soe Mitchelmore, 1974.)

Two studies have dealt specifically with instruction in pictorial
perception. Dawson (1967a) successfully taught 12 Sierra Leonean males
aged about 18 to use depth cues in pictures. Meeting one hour a week for
eight weeks, subjects were taught the standard depth cues by looking at
outside scenery through a small hole, copying dominant lines on the win-
dow pane, and gradually learning to sketch directly onto paper. Their
scores on Dawson's test of pictorial depth perception improved from 4% to
42% over a six-month period spanning the instruction, while a control
group made only small gains. Serpell and Deregowski (1972) were less
successful with Zambian grade 7 students. Three classes were given
various treatments combining study of depth cues in photographs and films
for four class periods, while a fourth class was a control group. Perhaps
because of the short treatment period, many post hoc analyses had to be
made before any significant difference was found. Duncan et al. (1973)
report the successful use of similar methods, but cite no experimental
verification.

A frequently cited study is that of McFie (1961), who reported
significant gains on block design and other spatial test scores amongst
a group of Ugandan technical school students between the beginning and
the end of their 2 -1 year course. However, no control group was used, and
the gains reported are well within the range of test-retest gains for
control groups in.other studies.

. Severai mathematics teachers in West Africa (McCrae, 1973; Mitchelmore,
1971) have sii,ested that secondary school students need many elementary
practical-manilative spatial experiences, apparently missing in most
African homes, if they are to acquire a secure basis for later geometry
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teaching. One group ocorporated many such activities into a "new math"

textbook series (Mitchelmore & Raynor, 1967-75). Part of this latter

program was recently subjected to experimental testing (Mitchelmore, 1974).

Subjects were all 414 prospective elementary school teachers in a
Jamaican college (194 men and 220 women), who were found to have a level
of geometrical knowledge which was very similar td that of the Ghanaian
first-year high school students for whom the course was originally
designed. Six first-year classes and eight second-year classes were each
randomly divided into two groups. The experimental groups studied a
unit in which they designed, constructed,and sketched models of the basic
solids, while the control groups studied a unit on statistics. Both units-

were individualized; first-year classes spent 4 weeks (16 periods) on

each unit and second-year classes spent 3 weeks (12 periods) on each unit.

Although there were highly significant differences on a unit achievement
test, no significant differences could be found between experimental
and control groups in pasttest scores on the Three-Dimensional Drawing
Test or the I-D Boxes Test. It seemed that students in the experimental
groups learned mostly the names of shapes with which they were already

familiar and learrwd little new about their spatial )7operties. Possible

explanations far the lack of gains in spatial abilty were the age of
theSe students (mean 22.8 years) and their conservdtive attitude to indi-

vidualized instruction.

Sex Differences

The well-known superiority of boys in Western cultures on tests of
spatial ability (Buffery & Gray, 1972; Garai & Scheinfeld, 1968; Maccoby,
1967; Sherman, 1967; Tyler, 1965) has been replicated in many African
countries, e.g., in Sierra Leone on block design and embedded figures
tests (Berry, 1966), in Kenya on various performance tests (Monroe &
Monroe, 1971; Nerlove, Monroe, & rIonroe, 1971; Olson, 1970), and in
Rhodesia on thE: PMA Space Test (Hendrikz, 1973). Stewart (1974) has
recently proviced an extensive review indicating the regular superiority
of males over females in cross-cultural studies of psychological
differentiation (especially when measured by block design and embedded
fugures tests). By contrast, no sex differences in spatial ability have
been found in Eskimps (Berry, 1966; MacArthur, 1967, 1973), Canadian
Indians (Berry & Annis, 1974) and Australian Aborigines (Berry, 1971).

In my Jamaican studies described earlier I found males significantly
superior to females on the group tests in grade 9 in all types of schools
and in the teacher's college; the grade 9 difference was also found in
the U.S. (see Table 3). On the individual tests, there was a peculiar
developmental pattern in Jamaica which was not replicated in Ohio; it
is illustrated in Figure 7 for the Solid Representation Test. I was so
surprised at the pattern obtained in Jamaica that I tested a second
sample of grade 5 students; the difference was still there. In Jamaican
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elementary schools, girls attend much more regularly and do better both in
their regular school work and in the mainly verbalnumerical high school
sel'ction test taken in grades 5 and 6, so much so that in order to rqualize
the numbers of boys and girls admitted into high schools different pass
marks have been used for the two sexes. This wellknown situation makes
the considerable superiority in spatial ability of the grade 5 boys even
more impressive. The disappearance of this superiority by grade 7 could
have been due to the fact that the older samples were drawn from high
schools, where girls are probably of higher general intelligence than
boys.

C olurrem, Ohio

Kingstal, J an.:a
Boys

Grode 3 7 9

Figure 7. Results of :olumbus and Kilton subjects on Solid Rcn-eserv..:iAm
Test, by grade and sex.
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There are two conclusions which can drawn. First, if an
elementary teacher in a country like J:?.maica finds that the self-concept
of the boys in her class is being ha i by the consistently better perfor-
mance of the girls, she could coutite- Ls tendency by usir:g more spatial
manipulative-Lnstructive activitic.3 1-21-t or mathematics lessons.
Second, although girls may he lower ..n boys in average spatial
ability, chere are still many gir;s hi3h spatial ability and many boys
of low spatial ability. In Jamaim foune that, of the grade 9 students
who scored over 507 on the I-D Boxe.. -est, 36% were girls; yet in schools
where technical courses were offer less than 2% were girls. It seems
that many boys and girls (and not t!y in Jamaica!) are wasting their
talents taking courses for which ire unsuited or not taking those
for which they are suited.

Causes of Crohs-c-ltural Differences

It is valuable to specuUie o;. ...he causes of the cross-cultural
differences reviewed above, siac .h speculin can point to factors
influencing perceptual deve l-m. ht in our own ',..ure (whichever that
may be). The big problem is crkss-cultuniL studies are inevitably
correlational, so that there ara alw.ts alto%...--,vive explanations. For
example, Eskimos may be superio7 in .eati2. zd. .;ity to Africans because
their environment requires higi h :igational skills, because
they are brou;.ht up to bP more 1,!eoe-.J.v: children and are less
specialized as adults, ;,...cause thci.c lan.,..uaoc contains more spatial terms
and their art is more intricate, becau diet contains a greater
proportion of protein, or because they. a lighter skin. Let us
examine each of these possibiiiti i, th-n.

Physical Environment

That a person's inte...;M:. with the world outside his home affects
his perceptual developir,.. ..-own by two studies in which African farm
children who travelled during their work and spare time tended
to score higher on spat.,-.. -,sts (:/onro.: Menroe. 1971; Nerlove et al.,
1971). More recently, and Annis (1974), omparing three Eskimo groups.
,.0.ind that the group wh -Jas most migratory had the highest block design
scores. It is easy to understand why the need to navigan ... in apparently
uniform snowfields (Kleinfeld, 1973) leads to increased perceptual
differentiation, especially when compared to the sedentary agricultural
existenc..! of most African groups studied. Australian Aborigines, faced
wlth naelgational ..:..%7-,ems similar to those of Eskimos, appear to be
intermediate in ability (Berry, 1971; Dasen, 1975). As far as
is known, no studie been made of hunters who live in tropical rain
fores,ts, whose navigational skills ma :. also be highly developed.
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Some researchers have proposed a more passive environmental influence
on perceptual development. Segall et al. (1966) showed that the amount
of rectertgulerity (present in man-made objects) and openness in the
visual environt were related to susceptibility to certain geometric

CelL.roell (1969) suggested that Western students would be less

inclined ''c; tilt oblique lines towards the perpendicular (cf. Figure 6)

becaw, lreater frequency with which they have viewed rectangular
object.,, ....,31q14,..ty. Many have argued that the lack of pictures and manipu-
lative toys in poor homes retards children's perceptual development
(Biesheoval, 1943; Hudson, 1960; Vernon, 1969). My own view is that
perceptual learning is an active process (Gibson, 1969) and that a poor
environment is likely to be another result of the same social conditions
which restrict the child's active exploration of his environment. Unfor-

tunately, Vernon's hypothesis (1967, p. 341) that Africans are percep-
tually cetarded by being bound to their mother's backs in infancy tas not
yet been tested.

Sccial Environment

Anthropologists (Barry, Bacon, & Child, 1957; Barry, Child, & Bacon,
959; Berry, 1975; Cole, Gay, Glick, & Sharp, 1971) have found that
zertain types of economic activity are associated with particular prac-
tices in child-rearing, role specialization, and social stratification.
At one end are migratory peoples, like the Eskimos,wh,) acquire food by
hunting; they do not store food ,and are :onstantly moving to new grounds.
In this type of society, children are brought up to be self-reliant, there
'is little specialization of activities, and no elaborate authority struc-

ture. At the other end are the sedentary agricultural societies typical
of traditional Africa, where food in plentiful supply at certain times
must be stored to provide for the rest of the year. Here, the emphasis

in child rearing is on responsibility and obediance, certain classes
and both sexes have well-defined economic and social roles, and there
is an elaborate structure of authority d dicated to the observation of

prececent. There are several ways in which these social differences
could cause differences in mean spatial ability.

Witkin et al. (1962) showed in Western sampLes that fie1a indepen-
dence (which includes high scores on embedded figures.tests) was
associated with an upbringing which encouraged independence Jf thought
and action. It SEZIRS reasonable that a child who is encouraged to explore
and find out things for himself instead of accepting the authority of
adults may be expected to achieve greater perceptual differentiation and
therefore spatial ability. The relation was confirmed in Sierra Leone by
Dawson (1967a), who compared two adjacent tribes which differed markedly
in child-rearing practices. Further evidence for the strong influence of
the home is provided by the finding that sex differences in spatial
ability are lower or nonexistent in cultures where both sexes are
brought up to be independent (Stewart, 1974). Encouragement to be
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independent, objective and progressive would clearly be rarer in a
society where roles and behavior are fixed by convention. Irvine (1969)
has suggcstec: tnat, if "intelligence" is the ability to get ahead in a
given society, then it may be quite different in different societies.
Amongst Eskimos, it would be physical and intellectual (planning and
obtaining adequate food and shelter), but among African agriculturalists,
it would be social and cultural (following the correct social practices).
Therefore, we oughtnot to expect African's to perform as well as Eskimos
on spatial tests; their musical, dramatic and linguistic abilities are
likely Le much more developed (Biesheuval, 1952b).

Cultura. Influences

Several researchers have noted that African languages contain rela-
tively few worth- for shapes or spatial r.alations (Cole et al., 1971; Gay
& Cole, 1967; Ohuche, l973; Olson, 1970: Stewart, 1971), whereas Eskimos
have a rich sratial laaguage (Berry, 1966; Kleinfeld, 1973; Whorf, 1956).
The radical wew Caat 'we dissect nature along lines laid down by our
native language" (Whorf, 1956) has been used by some to explain observed
cross-cultural differences on spatial-petceptual tests (du Toit, 1966;
Greenfield & Bruner, 1966; Littlejohn, 1963; Whorf, 1956). It is more
consistent with the differentiation theory of perceptual learning
(GibsOn, 1969) to suppose that a people's language expands to match the
perceptual differentiation which are important n their society
(Deregowski, 1968a; Hudson, 1967; Olsen, 1970). The same influences
could cause the observed differences in artistic activities (Berry, 1966).

Cross-cultural studies have usually tried to equate samples for
length of education. There is consistent evidence that experience of
Western-style educatioa is associated with greater perceptual ability
(Dastoor & Emovon, 1972; Fonseca & Kearl, 1960; Gay & Cole, 1967;
Kilbride & Robbins, 1968; Okonji, 1971: Olson, 1970: Shaw, 1969). it

may be assumed that school attendance causes children to make differentia-
tions required in Western culture but not in the native culture, for
example while learning to read, write, interpret pictures and make
drawings.

Nutrition

It has been reported (Dawson, 1971) that the daily food intake of
the East African Kikuyu consists on average of 22 g fat, 390 g carbohy-
drate, and 100 g protein; for the Canadian Eskimo, the corresponding
figures are 162 g, 59 g, and 377 g. However, although malnutrition is
often associated with poor intellectual development, no causal relation
has been demonstrated in humans (Vernon, 1969). Only Dawson (1967b)
has sliow6 any specific link between nutrition and perception. He found
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that a small group of Sierra Leonean adult males with a history of
kwashiorkor (a disease resulting from protein deficiency) were signi-
.ficantly lower in spatial ability than their co-workers.

Skin Color

The possibility of a causal link between skin pigmentation and per-
ceptual development was suggested by findings, in a U. S. samp7e, that
the black children showed denser macular pigmentation in :Ile fovea of
'the eye than the white children (Silver & Pollack, 1967) and that dense
macular pigmentation was associated with decreased contour sensitivity
(Pollack, 1963). Smith (1971) gave another explanation. He noted the
association in northern latitudes of lower levep of 'Sunlight, less syn-
thesis of vitamin D, 19d less absorption of calcium into the blood,
and showed that the latt,.!r condition might promote vivid visual imagery.

Pollack's hypothesis was supported by Jahoda (1971), who found that
the difference betweea the performance on a spatial task of equivalent
Scottish and Ugandan samples was greater when the test was printed tn
blue (where the macular pigmentation shows the greatest absorbency) than
when it was printed in red (where the absorbency is practically zero).
However, Bone and Sparrock (1971) found no difference in the macular
pigmentation of light- and dark-skinn@d West Indians. In my Jamaican
study referred to earlier, correlations between skin color (rated on a
5-point scale) and scores on block design, embedded figures, and four
drawing tests were all small and never approached significance. The

relation between skin color and spatial ability must therefore remain
an open question.

Needed ReseaTch

In the above review, I have described several ways in which students
in developing countries differ in perceptual development from students
in industrialized nations and suggested some reasuns for those differences.
One use of such cross-culturai studies is to warn visitors froul the

majori'7y culture in Europe and North America (especially teachers of
geometry, writers of textbooks, and constructors of aptitude tests) of
possible obstacles to pictorial communication in the tropics (Selden,
1970 and of the intelLectual strengths of certain apparently backward
groups elsewhere (Kleinfeld, 1973). However, quite apart from the
psychological questions left unanswered, much more research needs to be
done on the educational implications of the known differences acro....s

cultures.

It is my feeling that geometry achievement is rather low in develop-
ing tropical countries. Tn J:utnica, the few geometry questions in th9
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national Grade Nine Achievement Test have to be extremely simple, yet even
so the most unlikely distractors are frequently chosen (Isaacs, 1974). As
noted earlier, prospective elementary school teachers' knowledge of geometry
is approximately equivalent to that of first year (grade 7) high school
students. Geometry is infrequently taught outside tlw high schools, has
only'recently been introduced into the teacher's college curriculum, has
little emphasis in the many public examinations, and is generally regarded
with fear and suspicion by sLudents and teachers alike. The small number
of studies of geometry in developing countries may indicate that the sub-
ject is accorded similar law priority all over the third world. Yet
geometry is importdnt and should become more so as a country develops
economically and requires a greater number of workers with minimal tech-
nical expertise. Teacher education is going to be particularly vital at
such a time.

The standard of geometry achievement in developing countries should
be investigated. The difficulties of conducting research in this area
(sample selection, curriculum differences, language problems, testing
procedures) are far greater than any so far tackled by the International
Association for the Evaluation of Educational Achievement (Husen, 1974),
but even a small-scale investigation could be useful. The Solid Repre-
sentation Test shows high validity and reliability and could be very
useful in uncovering difficulties in the 3-dimensional drawing which
is so essential in many practical applications of geometry. It could
now be used to test the oft-stated accusat7ion that Africans are "unable
to think in three dimensions" by comparing performance of Africans with
that of Jamaican and American students.

At this pcin( 1 shall reveal my cross-cultural prejudices by pre-
dicting that Engl students would do better than corresponding American
students on tests o( geometrical and spatinl ability. English ,and
American schools tend to follow quite different approaches to geometry
teaching. Geometry in England is rather informal. In elem.,ntary schools,
the major empltasis is an active explorati,n !if the visual environment
and the study of spatiai patterns; in secondary schools, many different
systems (Euclidean, trarsformation, veteriLil) are used to develop
understanding of these patterns and the techniques for handling them.
The use of manipulative materials in teaching elemencary arithmetic
probably contributes to perceptual development (Bishop, 1973), and
diagrams and geometrical models are frequently used in ither branches
nf mathematics at all levels. The emphasis i8 much more formai in
American schools. In elementary schools, it is on abstract concepts
almost exzlusively in plane geometry; in secondary schools, on logical
structure.- Manipulative materials are rare (thoegh becoming more common),
and erbal and symbolic methods are used where..:er di,1rams
My prime exhibit the "Sesame Street" strip for January 5, 1975. The
Cookie Monster calls pies, cakes and.cookies "circles," when they are
definitely 3-dimensional and nearer to cylinders. Moreover, the pies
and cakes are poorly drawn, as Stage 35 in Figure 4. And why do Thu
Arithmetic Teacher, The Mathematics Teacher, and must Ametican mathematics
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textbooks, insist on using isometric drawings instead of the visually
more pleasing (and more accurate) perspective method of representing
rectangular objects? Wh!, is it necessary to carry out sophisticated
research to show that problems are significantly easier when accompanied
by illustrative diagrams and significantly harder when the diagrams

are misleading (Sherrill, 1973)? I hope someone will test more rigorously
my hypothesis that Americans are underdeveloped in spatio-geometric concepts.

There is a desperate need for much more research into the develop-
ment of geometric concepts. Such investigatinns should attempt to

assess the involvement of spatial, verbal. i reasoning abilities in

the learning of the selected concepts, te c Id reasons why that concept

is difficult and to suggest methcs of ov- --al those difficulties.

For example, my studies of 3-dimensional d; .winr, suggest that poor
drawing stems from ignorance of the fact that parallels in space are
best represented by parallels (or'near-parallels) on paper. Instruction

on this principle should lead to better drawings--at least amongst
students who are young enough to learn new tricks. Some time ago, I
noticed that Ghanaian grade 8 students had considerable difficulties with
rbtations and reflections; the fault of drawing reflections as shown in
Figure 8 reminds one of Skemp's student (Figure 1), and once again
illustrates difficulty with obliques. What sort of perceptual experiencs

would help students overcome this difficuty? There is clearly much scope,

in developing countries for close clinical investigations into the develop-
ment of a wide range of geometric concepts, the construction of theories
of geometric concept formation, and the testing of instructional sequences
intended to accelerate geometric concept fornation.

1

I

\

P

Figure 8. Ghanan;,. high school students have frequently !leen observed to

draw the reflectr of P at P1 or P 2 instead the corrE.t P 3 .
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However, the greatest need 'is foy the development of practical
geometrical and spatial teaching programs and for their experimental
testing. Most urgently iequired is the geometrical'enrichment of the
mathematics curricula in primary schools and teacher's colleges, pre-
viously almost exclusively arithmetical. For reasons just stated, I
believe the English model would be more suitzble.for most developing
countries; however, like everything else, this hypothesis is open to
testing. Where the vernacular language has a limited geometrical
vocabulary, it is possible that a program which emphasizes the names
of concepts might be most effective, provided the concepts concerned
shapes and relations in the environment and not diagrammatic abstrac-
tions. Also, in authoritarian societies, the encouragement of indepen-
dence and self-reliance might pay dividends; attempts are being made
in Jamaica to do this through the use of individualized instruction,
although teachers' conservatism is likely to severely limit its appli-
cation (Mitchelmore, 1974).

All along, it has been assumei that, in developing counties, greater
geometrical and spatial ability is associated with better p'atformance
in the technical trades and professions, as it is in the industrialized
nations. This assumption has a certain amount of ewirical support,
but clearly warrents further investigation. However, current test
administration procedures are lengthy and require specially-trained
testers. In the I-D Boxes Test, for example, the explanation and prac-
tice period is three times as long as the test itself. There is an
urgent need for repearch aimed at producing a satisfactory format for
tests of spatial aptitude which can be administered by school counselors.
For if, as the great body of research reviewed in this paper indicates,
the average'level of spatial ability is lower in de,!eloping than in
industrialized countries, it is doubly important for the future of
industry and technology in the developing countries that students who
are most capable of benefiting from technical education be reli.2bly
identified at the appropriate decision-points in the educational system.
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Transformation Geometry in Elementary School: Some Research Issues

Richard Lesh

Northwestern University

Some General Research Issues Concerning Elementary School Geometry

This papex consists of four parts: (a) an introductory section
where some general issues concerning the development of mathematical
concepts, in general, ancLgeometric concepts, in particular, are dis-
cussed; (J) 1 section where some possible justifications for teaching
gemetry (in the elementary school), in general, and transformation
geometry, 'n particular are discussed (research questions associated
with each type of justification are also indicated); (c) a section
where the use of indirect research procedures for investigating the
kinds of questions that were suggested in part (b) are discussed; and (d) a
section where ways that known mathematical systems can be used to guide
the research procedures mentioned in part (c) are discussed. In parti-
cular, the question of whether (or in what sense) geometric concepts
develop from topological to projective to Euclidean will be discussed
in section (d). Throughout the paper, the emphasis is on transformation
approaches to geometry.

The focus of this article will be on research having to do with
children's concepts in transformation geometry. There are both practical
and theoretical'reasons for taking an interest in transfor:aations. First,

following the lead of seconda,ry school textbooks, geometry chapters in
elementary textbook series ap$car to be changing rom a "traditional" to
a "transformational" approach.L Nonetheless, in spite of the fact that
there are some sound reasons for making this transition, recent studies
by Kidder (1975), Williford (1972), and others, indicate that inherent

1
Following the advise of Weaver (19;1), the Cambridge Conference

(1963), the Ontario Institute (1967), and others, Burt Kaufman's Compre-
hensive School Math.,matics Program project has developed "transformation
geometry" material for elementary school children. Addison. Wesley,

Silver Airdett, and Random House have also included transformation topics
in their elementary textbook series.
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difficulties may be involved in teaching "motion geometry" to children.
But, what art some of the factors that contribute to the deceptive
difficulty of many geometry cwicepts? A growing body of research
(e.g., Freudenthal, 1973; van Hiele, 1959; van Hie:le & van Hiele-Geldof,
1958) i-dicates that, especially in geometry, children make many
mathematical judgments using qualitatively different methods than those
typically used by adults. Yet, the nature of these differences is not
clearly understood. Consequently, research concerning the evolution
of spatial concepts would help mathematics educators better understand
the difficulties that are implicitly involved in a wide range of mathe-
matical concepts.

A second reason for focusing on geometric notions in general is
that most of the models (e.g., number lines, arrays of counters, fraction
bars, Cuisenaire rods, etc.) and diagrams teachers use to illustrate
aritbaetic and number concepts presuppose an understanding of certain
spatial concepts. Consequently, bccause of a lack of understanding
of the spatial concepts,.children sometimes experience misunderstandings
about the models that are used. One of the most important goals of '

geometry research is to furnish information todevise "better" instruc-
tional models for teachitg number concepts.

A third reason for investigating geometric concepts is to isolate
some general principles for anticipating the relative difficulty of
mathematical ideas. For example, if a child is operational (in the
Piagetian sense) with regard to one concept, what does this imply about
the child's ability to learn related ideas? If it is possible to find
techniques to anticipate the relative difficulty of geometric concepts,
then similar techniques may be able to be used to recognize the sequential
presentation of arithmetic ideas--or Instructional models leading tà
arithmetic concepts. For instance, van Hiele and van Hiele-Geldof (1958),
Freudenthal (1973), and several Soviet psychologists (e.g., Sergeevi-ch,
1971; Yakimanskaya, 1971) have explicitly described the way they beiieve
geometric concepts evolve in children., Further, Piaget's theory suggests
it may be possible zo analyze,order, and equate concepts (and models) en
the basis of their underlying operational structures (Lesh, 1975). Yet,

basic controversies and gaping holes occur in each of these theoretical
descripti:on;, and the controversies strike at the heart of many of the
most baiir issues in developmental psychology.

The working hypothesis underlying this paper is4.that spatial and
geometrfc concepts make excellent areas of irvestigaion for studying
the development o'f mathematic. 1 concepts because mary geometric concepts
seem closely relate.' to arithmetic concepts that are in the elementary
school curriculum. Furthermore, children have usuaily nnt received
explicit instructi( ; concerning the geometric notions. ConsequentlY,
it is relatively e_sy to study the "natural" development or spatial
concepts while minimizing the uacontrollable effects ofIspecifie prior
training.

192
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Piaget and Transformations

Although a variety of theoretical perspectives could be taken
to develop the above themes (e.g., van Hiele, Freudenthal, Yakimanskaya,
or Sergeevich), for the sake of continuity, comments in this paper will
generally be made using Piagetian theory as a perspective. There are
several reasons for adopting a Piagetian point of view in this paper.
First, PiageL's theoretical perspective is more familiar to mathematics
educators in the United States than several alternative points of view.
Sucond, Professor Wirszup (in this monograph) develops some alternative
theoretical petspectives; Third, Piaget's theory, more than any other,
is currently being used (often unjustifiably) to support the adoption of
d transformational approach to elementary school geometry, and, more
generally, a "laboratory" form of instruction.

It is not odd that Piaget's name has been used to help justify the
transformation geometry movement. Piaget's emphasis on cognitive
activity, together with his claim that logical-mathematical operations
are 'abstracted from interactions with concrete materials, seems to
furnish natural justifications for a transformation approach to geometry.
In fact, according to Piaget and Beth (1966), cognitive growth can be
viewed as the child's gradual mastery of invariant properties under
progressively more complex systems of transformations. Furthermore,

Piaget's "Space" (Piaget & Inhelder, 1967), "Geometry" (Piaget, Inhelder,
& Szeminska, 1970), and "Imagery" (Piaget & Inhelder, 1971) books have
prompted some mathematics educators to claim that the "natural" develop-
ment of spatial concepts in children may be analogous tc the "transfor-
mational" development that is given in Klein's Erlanger Programm.2 .For

instance, Inskeep (1968) has claimed "children understand topologi,:al
concepts first, followed by proiective, and finally Euclidean concepts"
(p. 423). However, many of these-kinds of generalizations, are open to
question in the opinion of most mathematics educators (e.g., Martin, 1976b;
Steffe & Martin, 1974). Piaget (1973) himself has rejected many of the
assertions that have claimed the support of his theory (see Furth, 1969).

,Even, though Piagetian theory has been used to help justify a trans-
formation approach to the teaching of geometry, educators have tended
to select only those aspects of the theory that support their pre-
conceived biases, and have neglected other Piagetian points of view.
Furthernore, many highly relevant aspects of Piagetian theory (which
have been published under titles that do not reflect the mathematical
nature of their content) have been ignored by mathematics educators.
For instance, few mathematics educators are familiar with Piaget and
Inhelder's "Imagery" (197]) book. While their "Space" and "Geometry"

2The Erlanger Program (Klein, 1974) orders and compares geometries
on the basis of invariance properties under various transformation groups;
the theoretical construction proceeds from topological to projective to

Euclidean.
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books are most relevant to the acquisition of spatial concepts, the
"Imagery"'book also contains many insights into the nature of children's
ideas about transformations. On the other hand, at the same time that
large portions of Piagetian theory have been ignored hy mathematics
educators, it has also become easy for people with widely divergent
points of view to become self-appointed spokesmen. for Piaget. In fact,
the name "Piaget" has alwst become a psychological counterpaLt of
"Bourbaki". in mathematics--that is, a fictitious personality repreSenting
a whole group of people.

Theory Building vs. Theory Borrowing

Discussions that took place at the "cognitive development" sessions
of the most recent International Congress on Mathematical Education made
it clear that there are ufcen marked disagreements among scholars who
have worked with Piaget (e.g., Papert, ReMy Droz, etc.). In fact, there
were clear disagreements among "Piagetians" who attended the research
workshop in which this paper was presented. Such disagreements are
healthy for a robust 'Theoretical Model. Hewever, the trend in educa-
tion has typically been to use cognitive psychology to help justify
prconceived instructional biases, rather thln to loolc at a theory in
order to derive a consistent set of implica,t,is. Consequently, when
a method of instruction is not effective in --.7tain situations, the
theory may be unjustifiably discredited (or ,-,.cted) rather than modi-
fied or extended to cope with the new diff1lis. For example, E.
the name "Piaget" is replaced by "Dewey," most senior mathematics
educators will be able Xo point out striking similarities bet!Yeen the
"activity curriculum" movement of the 1920s and the "mathematics
laboratory" movement of the 1970's. This cyclic history of curriculum
change (i.e., enthusiastic adoption. followed by disillusionment, followed
by rejection) indicates that theory building has not realiy been taken
seriously by mathematics educators. For this reason, befole going into
the specific issues I wish to develop ia this papei, it seems important
to describe what I believe to be one of the major purposes of this
research workshop. The objective has to do with "theory building" in
mathematics education.

Perhaps it is unrealistic for mathematis educators to continue to
search for "outside" theories that can be "lifted" and used without
modifiCation. Perhaps the emphasis should shift from "theory, borrowing"
to "theory building." One of the main benefits to be derived from
theory building is that the theory seldom has to be completely rejected
when conflicts are detected or when difficulties occur.

Theory Snilding does not necessarily have to conjurecp images of
. "ivory tower" activities that make no real differencr anyway.

Fot a beginning, theory building can simply involve orrAnizing a point

4 I" .!
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of view that can form a basis for communication among. mathematics
educators. In this way, individuals can profit by (and extend) the

work of others. However, to avoid errors and inconsistencies, theory
building inevitably attempts to describe the range.of applicability of
its major principles and to reconcile major conflicts within its point,

of view. Consequently, when difficulties arise, a theory should be more

than a point of view that is simply accepted or rejected; it should be
an explanatory and predictive "model" that can (and must) be gradually

modified and reorganized to deal with progressively more complex situations.

Widle the history of science is filled with examples to illustrate
the power of theory building, many mathematics educators would point out
that mathematics education is more of a professional than a scientific
discipline and that "the best practice of the best practitioners is still
better than the best theories of the best theorists." However, this

observation does not mean that theory building could not be helpful, it
simply re-emphasize the point that theory,building in mathematics educa-
tion is in a very primitive state. Certainly no currently available
psychological theories, including Plaget's, is ready for wholesale adop-

tion by mathematics educators. In fact, it seems unlikely that a lasting
theory, which can be adopted (without modification) by matheaties
education, will ever become,available. Even when a particular theory seems

to be especially relevant to the acquisition of mathematical concepts,
the mark of a useful theory is measured as much by the questions it
generates as by the questions it answers. Vor this reason, every theory
carries with it the seeds of its own destruction .411/ch soon require it
to be modified and incorporated into a more comprehensive theory. But,

continuous modification in mathematics education cannot take place by .

continuously bor-owing LlIcoric from outclide maLhemaLiv!-; eduration.

The major objective of this series of research workshops is, in
my opinion, to bring together people who are interested in theory

building--not just people who are interested in collecting and analyzing

data. Some questions that seem central 'o the concerns of this workshop

are:

1. What is the mathematical sta, ,4 af geometric concepts studied

by Piaget and other psychologists? Fox .ance, Martin (1976a),

Steffe and Martin (1974), and Kapadia 0: have claimed that some of

the "topological" relationships stueied by liaget (e.g., proximity,
separation, order, continuity, etc. %re either not really topological
properties at all (mathematically speaking) or else their mathematical

meaning has been distorted. Deciphering the mathematical meaning of
the concepts Piaget has studied is crucial for an accurate interpreta-
tion'of his work as it relates to the acquisition of mathematical

concepts. For example, Piaget's analysis of "continuity" seems to be

especially questionable (see Taback, 1975).

Even though many of Piaget's tacks have been replicated and sub-.

jected to exhaustive psychological'criticism (e.g., 'ladwell., 1963;

Laurendeau & Pinard, 1970; Lovell, 1959, 1961; Lovell, Healy, & Rowland, 1962)

19 5
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rarely have any of these replications questioned the validity of Piaget's
mathematics.. Furthermore, even though some Pinetian tasks have been
Almost over-replicated, other tasks have been largely ignored. For
example,/ Piaget and Inhelder's "Imagery" book (1971) contains many tasks
that are highly relevant to the acquisition of concepts pertaining to
transformation geometry. However, these tasks have been neglected by
mathematics educators, and so have many other "difficult to interpret"
studiesby Freudenthal, van Hiele, and various Soviet psychologists.

the developmental status of geometric concepts that have
not been studied by Piaget or other psychologists? For example, to
analyze the development of logical-mathematical thinking in children,
Piaget has concentrated his efforts on children in the 5-7 and 10-12 year
old ranges. Consequently, Piagetian research has focused on the cogni-
tive processes used by first-graders (i.e., groupings) and sixth-'graders
(i.e., INRC groups), while neglecting children at interthediate grade levels.
For this reason, and since Piaget has avoided mathematical ideas that are
typically taught in school, it is only possible to make relatively crude
inferences about how children's mathematical thinking gradually changes
from a concrete.operational mode of thinking to a formal operational mode.
It is tima for mathematics educators to forge ahead to investigate new
concepts and new tasks that have not yet been considered by psychologists.
For example, the Erlanger Programm seems to be a particularly pregnant
source of uninvestigated concepts.

3. Can the Erlanger Programm or some other familiar mathematical
system be used in some sense to model the development of children's
geometric concepts? For example, Steffe.(1973) has argued that certain
mathematical structures may be able to describe the transitional phases
through which elementary school children must pass in the development of
geometric concepts, and he has suggested that these mathematical stcuc-
tures may be even better models of children's logical-mathematical
thinking than Piaget's groupings or INRC groups. If Steffe's hypothesis
is correct, this fact could be tremendously useful to mathematics educa-
tors who would like to construct curriculum materials which are
consistent with the "natural" development of logical thinking in children.

4. In what sense is it true that geometric concepts develop from
topological to projective to Euclidean? Martin (1976a), for instance,
has analyzed some of Piaget's writings, and has concluded that Piaget's
language in the area of space and geometry is not always consistent with
common mathematical usage. Consequently, because of differences bLcween
mathematical and psychological terminology, it is not always legit!...nate to
draw strong inferences from the psychological literature concerning the
way mathematical concepts develop.

1 9 13
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Justifications fur Teaching Transformation Geometry

Even though this research workshop is primarily: interested in
organizing a theoretical model for research, it should not lose sight
of pragmatic questions related to the development of instructional
materials. In this section several types of justifications for teaching
transformation geometry in elementary school -rill be consider- and

examples of geometric topics that psychologists have tended t
will be given.3

UsLskin (1974) has given a numl,er of reasons for adopting a trans-
fotmation approach to high school geometry. First, he argues that a trans-
formation approach is closer to the intuition of the student because it
relies on simple symmetry arguments and on other familiar transformations.
As evidence to support his claim, Usiskin points out that many proofs
are significantly simplified when transformation techniques are used,.
Furthermore, he claims that evaluations of his own materials (Coxford-&
Usiskin, 19,71),University of Illinois Committee on School Mathematics
(UICSM) materials (1969), and materials that are used in many European
schools (Jeger [German], 1966; Modenov & Parkhomenku [Russian], 1965, 1966;
Troelstra, Habermann, Groot, & Bulens [Dutch], 1965; Yaglom [Russian],
1962), indicate that the transformation approach is especially well suited
for slower students. In fact, the UICSM material's were written especially
for slow eight-graders.

Second, transformations can be used as a unifying theme in high
school mathematics. For instance, most second year algebra concepts
(e.g., real numbers, complex numbers, linear relations, systems of
equations, algebraic systems, trigonometric functions, quadratic func-
tions, logarithms, inverse functions, periodic functions, matrices,
vectors,etc.) can be related to work in transformation geOmetry.

Third, transformation geometry is able to deal with a much wider
variety of figures than more traditional approaches. For example a .

"Mira" construction instrument can be used to perform many constructions
that cannot be aczomplished using a Compass alid straight edge (Gillespie,
1973). Basically, the Mira's advantage is that it can perform rigid
motions on many other figures besides polygon.q.

The major problem Usiskin identifies iD teaching transformation
geometry is that teachers are not as familiar with the approach. However,

this problem is becoming less imr ,nt because new teachers are taking
college geometry courses which , p geometry using the "tranafor-/
mation" approach. Consequentl- )e desire to be "modern," plus the

3
J. N. Kapur the noted Indian mathematics:educator, has given 27

reasons for including transformations in the elementary school curriculum
(Kapur, 1970).
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desire to present geometry in a way that is consistent with higher level
courses, furnish sound reasons for high school geometry courses to con-
vert from a "traditional",to a "transformational" approach. Nonetheless,
the success of transformation geometry in high school does not necessarily
mean that such an approach is appropriate for elementary school children.
In fact, it is not even clear r many teachers that any kind of geometry
should be taught in elementary :-hool. Too often, the geometry chapters
that are included in most eler.en:ary school textbooks are either skipo,id
or skimmed over by teachers. On? explanation is that teachers view
geometry as a disjoint sequence of facts that does not lead anywhere but
takes time away from their more important goa1s, namely teaching
arithmetic:.

Elementary school is different, than secondary school. Its students
(who'are called children in elementary school) are different; its class-
room organization'is usually different; its objectives are different. The
goals of elementary school tend to be based on the assumption that time
and effort should be focused on ideas and skills that are absolutely
necessary for a minimally educated citizen to understand. Consequently,
even if Usiskin's justifications are accepted as furnishing adequate
rationale for teaching transformation geometry to high school students,
his justifications are clearly insufficient to support (and were never
intended to support) a similar conversion in elementary school.

Geometry (in general) is not considered to be important in its own
right in the eyes of many elementary school teachers. Few teachers believe
that studying geometry can contribute to the acquisition of arithmetic and
number concepts or that geometry is a subject with a wealth of everyday
applications. However, these attitudes are probably the result of the
rather useless geometry topics that have been included in most elementary
school textbooks and are not necessarily judgements about all'geometry
topics. In the past, the two most common reasons that elementary school
teachers gave for teaching geometry were that many topics were fun or
that they prepared childr i for high school geometry. In general,
elementary school geometry 'tas' been only a "baby" version of high school
topics. In.spite of the recommendations of SMSG, the Cambridge Conference,
and others, little consideration has been.given to developing a diffc.rent
kind of "space experience" geometry for youngsters.

At least the following, five criteria can be used to justify
teaching a topic in elementary school: (a) The topic (e.g., addition,
multiplication, fractions,etc.) may be considered to be important in
its own rightwithout any "outside" justification. (b) The topic may
contribute to, or reinforce, other important topics. (c) The topic may
simply be fun and serve the function of luring children into enjoying
mathematical problem solving experiences. (d) The topic can help to
prepare children for higher level mathematics (e.g., high school geometry).
(e) The topic can have important "real world" applications.

Each of the above five justifications will be evaluated in the
following sections, and research questions associated with each issue
will be considered.
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Is Geometry Important in its Own Right?

Even though few elementary school teachers consider geometry to be
important in its own right, geometry and spatial ability items consti-
tute major portions of most intelligence tests (e.g., WISC, Stanford-
Binet, PMA). Consequently, spatial concepts do seem to have some face

validity as objects of stuay. Nonetheless, it is only, in "special

education" areas, like EMR (educable mentally retarded) or LD (learning
disabilities),.that many teaChers have taken seriously the objective
of providing experiences to cultivate the spatial abilities and
geometric intuitions of children. However, the impact of most of these

training activities is highly questionable. For example, in a study with

normal K-2 children, Williford (1972) concluded that early training in .

transformation geometry may be expected to have little effect on the

general spatial abilities uf children. Shah (1969),on the other hand,

seems to have shown that primary school children can learn transforma-
tions to some degree.. It should be noted, however, that the controls
in Shah's experiment were minimal. More research is clearly needed to
determine which (if any) spatial activities might be beneficial to
young children, and what sort of transfer effects can be expected.
Examples of some potentially beneficial types of geometry activities will
be described in other sections of this paper.

Does Geometry Reinforce Other Important Topics?

\

Many elemantary school teachers consider the geometry chapters of
their texts to e isolated topics having little connection to other ideas
in the book, ani it is true that geometry topics are seldom sele:ted
because of theiT ability to contribute to other concepts. Yet, most of

the instructiondl models4 that are used to teach number ideas presuppose

4 For example, at grade le'rels when teachers are expected to teach
fractions, mvny children become confused by the followirg types of questions.

1. Number line:
How many points are on a line segment? Is it always possible

to put a point between two given points?

2. Flannel Board: (a)P% (b) VM 1 I

If a figure (a) represents one-half and figure (b) represents

one third, how can the shaded portions be the same size?

3. Geoboard: (a) 1:9,11 (b)

Is the nonshaded area of figure (arE;,--i- san- as the nonshaded
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an understanding of certain geometric concepts which may not be
understood. For example, in'the upper grades, "area" or "volume"
models and number lines are used to introduce fractions, and similar
triangles may be used to illustrate proportions. Yet, there is abundant
evidence (e.g., Cal'perin (:eorgiev, 1969; Piaget Inhelder 1967) that
children frequently have problem; understanding each of these models;
Nonetheless, very little work has been done to isolate the geometric
concepts that the models presuppose or to iaentify links between misunder-
standings of models and misunderstandings of the ideas they are intended
to illustrate (e.g., Lesh, 1976).

More than sixty years ago, Dewey and McLellan (1914) wrote abook
whose central purpose was to outline ways that number concepts develop
out of measurement operations involving basic geometric transformations.
Similarly, Piaget (1965) and several Soviet psychologists (e.g., Gal'perin &
Ceorgiev, 1969) have described ways that misunderstandings concerning num-
ber ideas are closely linked to a lack of understanding of certain geometric
notions. .For example, Piaget's number conservation task tests whether'
children realize that the number of objects in a set is invariant undEr
simple spatial displacements (i.e., geometric transformations). Tasks
such as these show that logical, arithmetic, and geometric notions are
not initially learned as distinct categories of concepts for children.
Rather, these three types of ideas exist in a confused and overlapping
state for young children and only gradually become differentiated and
coordinated. For example, young children tend to confuse judgements
about:. (a) the number 9f objects in an array of circles, (b) the density
of the configuration, (c) the area covered by the array, and (d) the
length 9f the rows or columns. Similarly, objects that are logically
alike are often confused with objects that are spatially close together.

Piaget and Beth (1966) claim that logical, arithmetic, and geometric
concepts each arise out of a common source, which is children's 5.nter-
actions with concrete materials. Consequently, because spatial
experiences seem to dominate children's interactions with concrete
materials, it would seem sensible to investigate the extent to which
geometric experiences could facilitate or hinder the acquisition of
arithmetic concepts. However, very little work has been done in this
regard by mathematics educators in the United States.5 Yet, Dewey's
book alone furnishes a number of researchable hypotheses.that could have
significant practical payoff for arithmetic instruction in elementary
schools.

For transformation geometry to reinforce other elementary school
topics (i.e., arithmetic) as it reinforces secondary school algebra
topics, it seems likely that the scope of the subject will have to be
interpreted more broadly than it has been in high school. Transformation

5
A study analyzing figural models for rational number concepts was

recently completed Ly Wagner (1975) at Northwestern University. A series
of follow up studies is currently being conducted.
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geometry is the stuO of invariance properties under systems of transfor-

mations, and the types of transformations that are admissable include more
than rigid motions ti.e., slides, flips, turns), and similarities (i.c.,.

stretches). For example, dissection theory concerns the study of invariance
properties under subdivision and changed p(mItion transformations (see
Figure 1). Perhaps dissection activities could contribute to children's
understanding of area concepts and, inturn, contribute to their under-
standing of rational numbers (or fractions). '

(a) Using soma cubes
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(b) Using a geoboard

Figure 1. Transformations illustrating invariance properties.
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(c) Using sugar cubes
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(d) Using gsaph paper

(e) Using pentominos

(f) Using tangrams

Figure 1. (continued)
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Some instructional develoPment efforts have been made in some
programs (e.g., Developing Mathematical Processes, 1974; Comprehensive
School Mathematics Programs, 1971) to devise measurement activities that
contribute to children's understanding of arithmetic concepts. Nonethe-

less, geometry and measurem2nt chapters of most elementary school texts
/still remain largely unconnected to the arithmetic and number concepts
that are presented. Further, it is still not clear to most teachers how
spatial-geometric (and measurement) concepts contribute to the acquiSition
of arithmetic concepts and number iclas.6

Does TranIsformation Geometry Offer Enjoyable Activities?

Because geometry chapters of elementary school texts often involve
laboratory-type activities that children enjoy investigating, teachers
sometimes use geometry as a -.)reak from usual classroom activities:
because many geometry chapters are fun and can be studied independently,
they can be used as extra activities fur "smarties" or as a morale boost..
for "not-so-smarties." For example, each of the activities shown in
Figure 2 has been shown to be unusually enjoyable for youngsters, and
each can be related to the basic theme of investigating invariance
proper.:ies under various geometric transformations.

Young children's facility with mirror cards, puzzles (e.g., tana-
grams, soma.cubes), tracing and 'drawing activities, and with "Mira"

construction instruments indicate that many first- and .;,,,,nd-Arade
, children have already begun to acquire a number of transformation geo-
metry concepts. But (a) how can these activities be used to gradually
refine children's spatial concepts, ami (b) how can such activities be
used to lcad into other important mathematics concepts?

Even in the case of popular geometry materials. sw:h as geoboards,
remarkably little has been done to analyze ;IA expleit t11. geometric

intui,tions children have acquired. For inst;-,cc!. it ks well known that
children have difficulti,!s dealing with coonlim.te systems like the ones

needed to use rectangular graph paper. Yet, childIen often find it

easy to construct and interpret some kinds of "treasure hunt" maps,
and they often become quite skilled at geoboard games like "battle ship."
Consequently, questions "a" and ''b" become: (a') What geometric con-
cepts are really needed to play games like "treastire hunt" and "battle
ship"? Why are these games so much easier to understand than certain
coordinate graphs? (1).°) How can games like "treasure hunt" and
"battle ship" be used to gradually lead children to an understanding
of rectargular coordtnate graphs? How can primitive graphing concepts

be used to facilitate the acquisition of arithmetic and number
concepts?

6
Several of the papers in Lesh and Bradbard (1976) address this

point, In particular, see Osborne (1976).
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(e) Kaleidoscope (compositions)

(f) Esher diagrams (compositions)

Figure 2 (continued)
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(a) Mirrors (reilections)

2/A\

(c) Paper cutouts treflections)

8
(b) Mira's (reflections

and constructions)
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(d) Tiling (tessellations)

Figure 2. Enjoyable activities for investigating
invariance under transformations.

The goal of studies dealing witt questions like the ones meationed

above is to provide a response to critics who charge that laboratory

activities tend to "make fun topics important rather than makinE impor-

tant topics fun." The exatriples above, an6 the ones that will bt

mentioned in the following sections, seem to have the potential of

being both fun and important. But, their potential must be exploited,

and such exploitation requires further research to reveal the mathe-

matical intuitions that are developed in children when they engage irS

enjoyable activities. Because many interesting activities seem to

involve important mathematical ideas, and because interest often

serves as an accurate rule of thumb to indicate readiness for dealing

with an'idea (Montessori, 1964; Smock, 1968; Standing, 1957), there is

reason for optimism concerning the productivity of such research.

The "arrow diagrams" of the Papys (Papy, F. & Papy,G.., 1970) furnish

one example where simple graphs
and mapping concepts have been used to

teach arithmetic and number concepts tO children. Hbwever, very little

work has been done to determine what geometric concepts these mapping

diagrams presuppose, or what misconceptions could arise if the geometric

prerequisites have not been mastered. It is highly possible that graphs
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furnish a potentially powerful aid to the acquisition of number concepts,
especially with regard to rational number ide(w in the upper grades. Yet,
mathemati' ,-(lucators have tended to avoid usini; graphs partly because
it is diffi lt jr adults to anticipate when their graphing illustrations
involve ,*hat children do not understand.

Two obt, -.ions are striking concerning children's abilities to
deal with spe. .Al concepts. First, children are often able to porform
tasks that seem quite intricate and complex; yet, many tasks that seem
to be quite easy to adults turn out to be deceptively difficult for
children to perform: For imstance, one often finds kindergarteners
surprising fteir teachers by being able tu perfo= the following
task:

a strip of tape on the floor (e.g., ( ) saying,
"Let's pretend this is a road." Put.a chair on its
side on one side of the road (e.g., ) saying,
"Walk along the road, and put a chair on this side
(indicating the side opposite the chair), so that
you can touch the same thing here as here.

After giving an example of the desired response (e.g., H -- the mirror
image of the original chair), many kindergarteners can give solutions to
similar tasks. Furthermore, some kindergarteners can give a correct
response for configurations involving two or more chairs. In fact, some
kindergarteners are even able to perform coMpositions of mirrow image
transformations. For instance, if two "roads" are used, some kinder-
garteners can arrange the chairs as shown'in Figure 3,

ii

Figure 3. A composition of "roads" symmetry.

Modified versions of the above "chair" task can be given on a
desk top by sliding, flipping, or turning paper cutouts old clear sheets
of acetate. Tasks such as these illustrate that primary children have
already developed some fairly sophisticated notions regardijig geometric
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transformations. For instance, it is not difficult to teach many third

graders to write letters on a window so that simple words can be read

from the outside (e.g.,_PRIE)--a reflection) or to teach them to write

letters on a table top so that simple words can be read by a person

sitting on the opposite side of the table (e.g., 1819-a rotation).

However, in spite of the apparent precociousness of the above abilities,

Kidder (1976) demonstrated that sixth-graders have great difficulties

with tasks like the ones in Figure 4.

Which is,like the first?

0

3

0

Are these correct transformations?

Figure 4. Two tasks from Kidder's study (1976).

Because Kidder's tasks are 'very much like the UICSM "motion geometry"

materials (1969), and because the UICSM materials seem to be the prototype

for "transformation" geometry topics in eLlmentary school textbooks, it

is particularly importart to conduct more research to determine which

factors cOntribute to the difficulty of such tasks. Some of these

difficult factors will be reviewed in the lAst section af this paper.

For now, however, it is important to emphasLze that the rules of organi-

zation children USe to organize space are often %Wry different from those

used by high school students. Consequently, it is not always legitimate

to simply offer elementary school children "laby" versions of high school

g,,i2r junior high school toPics. Before junior high materials like those

produced by UICSM are lifted wholesale (with only slight modifications)

to be inserted in elementary school teKtbooks, more should be known about

the geometric capabilities of youngsters. (T,,Jo current studies of this

type are being conducted by Karen Shultz at Nc,rthwestern University and'

and Diane Thomas at Ohio State University).

207



202

Can Transformations Prepare for High School Geometry?

It seems likely thatthe transformation approach will eventually
dominate high school geometry (Coxford, 1973); it already dominates
college geometry. However, even if geometry is included in elementary
school texts with the sole purpose of preparing children for high school
geometry, it does not follow that elementary school children should be
given concrete versions of high school topics. Perhaps some completely
new topics would be more appropriate to develop the spatial intuitions
of youngsters. For example, in the next section of this paper I
will argue that projective geometry offers a particularly ripe area for
instructional development. Few mathematical topics can compare with
the simplicity, power, and elegant beauty of projective geometry, and
few mathcmatical topics are so firmly rooted in concrete experience; yet,
few laboratory activities have been developed to exploit the intuitive
origins of projective geometry.

Often the decision to teach transformation geometry has meant that
:hildren will explicitly learn to deal with the basic rigid motions--
3lides (translations), flips (reflections), and turns (rotations). Yet,
recent research at Northwestern (e.g., Moyer, 1974) indicates that
Nung children do not think of transformations as continuous "motions"
:onnecting two fixed states. Rather, children tend to think of
transformations as changes in certain properties of the end states of
transformations. Piaget and Inhelder (1971) have stated the following:

The data. . . show quite clearly that it is easier for the
child to imagine the product than the process, i.e., the
movement as a trajectory. (p. 160)

When the subjects attempt to imagine and draw in detail the
. . . transformation, they represent the end-product less
well than when it is the main object of the test. (p. 172)

Imaginal representation bears first and foremost on the
product of the transformation rather than on its successive
stages. The image of the end-product is even somewhat
better where there is no attempt to imagine the transfor-
mation itself. (p. 173)

Children are often able to solve problems while being unable to
:xplain the steps that were taken to reach the solution. Simdlarly,
luring the initial acquisition of transformation concepts, children are
isually not explicitly aware of the systems of operations they are using.
:t is one thing to organize reality using operations, relations, and
.ransformations, and it is quite another to become formally aware of
.hese operations.

According to Piagetian theory, performing second order operations
;i.e., operating on operations) is a capability ushering in the period
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of formal operational thinking. For example, an analysis of tasks'like

those in Figure 4 indicates that forma) operational thinking (e..g.,

hypothetical-deductive, if then thinking) is implicitly involved. In

fact, a major conclusion of Kidder's study (from which the icems in

Figure 4 were taken) was that his transformation tasks were not mastered

until the age when formal operational thinking begins to evolve.

Unfortunately, however, Kidder d:d nor carry out a thorough analysis of

the difficulty-causing factors in his tasks.

A child's initial mastery of systems of mathematical transformations
is somewhat analcgous to the acquisition ^f correct rules of grammar.
Childrerceommonly use perfectly correct tules of grammar long before
they are explicitly aware of these reles, and formal analysis of
grammatical rules does not improve their speech. The situation is simi-

lar to Mark Twain's yarn about the centipede who became instantly para,
lyzed when asked to explain how his legs moved.

Thc intuitive mastery of a system of transformations is analogous to
the acquisition of an unconscious habit--what is at first a habitual
pattern for using a system of transformations to achieve some end later

becomes . program in the sease that various substitutes cnn be inserted
without disturbing the overall act. Furthermore, forcing a child to

become explicitly aware of the transformations he is using may only

confuse the child. Formai awareness of cont'nuous movements seems to
occur by piecing tojethei "still life" frames somewhat the way old time

movies were made--the moru frames, the better the motion picture.

Coxford and Usiskin (971), Freudenthal (1973), and others have
clearly demonstrated the unifying power of using a transformation
JiTroach ,n hi!11 ,:ch1 geom, t,y, orojvct!; likk ricsm (1969)

ilav Lh"L man traa,-;itirmation topics be modificd to be
/

;tp rp1'i i1 r hi,611 BnL, St.riotn; qui:stiorni remain

eoncerning che study of transformations in the elementary school. There

is little evidence that children think of Euclidean transformations as

"rigid motions"--moch less as combinations of "slides," "flips,".and

"%urns." In fact, -ha evidence that is available suggests that "motion
geometry" (i.e., the study of movements connecting end states) may be
very different from "transformation" geometry, at least for elementAry

school childTEn. Developing effective instructional materials requires
that more be known about concepts that are confusing to children.

Educators have tended to treat children as though the only ideas
they understand are those that have been consciously isolated and named.
Perhaps more emphasis needs to be devoted to investigations exploring
the intuitive (i.e., nonformalized) acquisition of systems of mathematical

operations, relations, and transformations. There is a popular miscon-

ception that concrete and intuitive mathematics is inferior mathematics
and that the viability of a mathematical topic is measured solely in
terns of its formalization and abstractness. In fact, the situation is

often exactly the opposite. Mathematical activity on the frontiers of
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research bears little resemblance to the kind of formal "problem sets"
and "proofs" that clutter most high school geometry books; it
bears a great deal more resed:-lance to activities that a youngster
engages in when attempting to draw "three dimensional" pictures for a simplestereoscop !Figure 5). Trying to sketch a picture for the right eye
that will coorcinate with a picture for theleft eye to produce the illusionof a three dimensional figure can require a great deal of geometric
thinking.

Figure 5. A simple stereoscope.

r_n)

Premature formalization of subtle mathematical ideas can, in fact,
mislead students into forming ideas that are not correct. For example,
young high school students who repeatedly "prove" ideas that they con-
sider to be obvious from experience often form false and distasteful
impressions of the entire process of logical construction (Freudenthal, 1973).
Yet, such students may be quite capable of formulating intricate
and mathematically correct solutions to concrete problems. For instance,
students who try to make paper models of polyhedral figures (see Figure 6)
may discover insightful generalizations about interesting problems in combi-
natorial geometry. Furthermore, by attempting to isolate the mathematical
essence of concrete situations, youngsters begin to appreciate the real
beauty and pnwer of mathematical modeling.
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Figure 6

It is not the evoteric title of a mathematical topic, nor the con-
creteness of the context in which it is presented, that determine its

mathematical viability. A topology course can be taught in a way that
involves very little real mathematical thinking, or graduate students
can be challenged by basic geoboard dissection problems. However, a great

deal more work needs to be devoted to developing activities in whiTh
youngsters can use concrete materials to intuitively investigate mathe-
matical ideas--and in which the concrete materials are not necessarily
used only as a springboard to immediately soar to the highest possible
level of abstraction (Trafton & LeBlanc, 1973).

Does Transformation Geometry Have Important "Real World" Applications?

Especially in geometry, it iS difficult for adults to re-achieve
preconceptual innocence so that they can empathize with confusions
youngsters experience concerning many spatial concepts. For example.

adults (and-especially mathematics teachers) become so accustomed
to conceiving thc world o..; "tlin,--dhw.iwial," and ult.,: IICCCUM. St)

skilled at organizing their spatial experieaces using rectangular
coordinate systems, that they often feel as though they can "see" three
mutually perpendicular axas built into nature. Furthermore, the "natural"
feeling of rectangular coordinates persists in spite of thp fact that

they are often very awkward to use.7 Adults realize that "the fourth

7For example, points on the surface of the earth are usually located
using a "polar" coordinate system involving reference lines of longitude
and latitude together with measures of distance above or below sea level.
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dimension" (i.e., time) is not obviously a dimension like length, width,
and height, but they forget that the 'up-down" dimension was once consi-
dered to be essentially different than dimensions along the face of the
earth.

The difficulty adults have empathizincj, with children who fail to
"see" coordinate systems is somewhat analgous to the experience people
have when they finally see the disgoised figure in a hidden picture
puzzle. For example, look at Figure 7. Do you see an old woman? Do
you see a young woman?

Figure 7. A hidden picture puzzle.

In much the same way that a hidden picture puzzle needs to be mentally
organized for the picture to be seen, the real world needs to be organized
for a three dimensional coordinate system to be seen. The question is,
"What rules of organization must a child impose upon the world to real
out the various coordinate systems?" Adults often deceive themselves
concerning the nature of their geometric experiences. What they think
they simply read out of tIte world, they, in fact, must read in.

To emphasize the distinction between informa_ion that can be read
out compared with information that must be read into the world, three
observations about Figure 8 follow: (a) Figure 8 shows a hexagon made

8
It was once typical for height to be measured usingdifferent sorts

of unit than measures taken along the surface of the earth (Leach, 1973).
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up of six equilateral triangles. (b) Figure 8 consists of seven dots

connected by twelve line segments of equal length. (c) Figure 8

tessellates (i.e., a plane surface can be covered using nonoverlapping

hexagons).

Figure 8. Hidden configurations.

0

Observation "c" piobably seems more contrived and somewhat
more sophisticated than observations "a" and "b." Observation "c"
obviously requires the observer to read meaning into the figure, whereas
less "reading in" seems necessary in the case of observations "a" and "b."
However,-according to Piagetian theory (Piaget & Beth, 1966) , concepts
like hexagon, twelve, and length also inherently require children to
impose systems of organization on real world situations. In fact,

according to Piaget, it is typical for mathematical concepts to
implicitly require children to master systems of operations, relations,
and transformations. Furthermore, the amount of information a person
reads into (and consequently out of).a figure is limited by the systems
of organization he is able to use. .

Piaget has devoted a substantial portion of his mathematics-related
research toward revealing systems of operations that are inherently
involved in a wide range of mathematical concepts. However, less effort
has been expended trying to dutermine why people sometimes do not use the
organizational systems they are capable of using. For instance, look at
the series of pictures in Figure 9, then reconsider Figure 8. What new

meaning can be read into Figure 8?

Figure 9. Another look at Figure 8.
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The example in Figure 9 illustrates that having a system (or .

concept) and knowing when to use it are two quite different matters; it also
suggasts that the problem of getting a person to use a system he has already
mastered may be quite aifforent than getting.a youngster to make mathe-
matical judgements involvig systems he has not yet mastered.

Perhaps research investigating factors affecting a student's ability
to use previously acquired concepts seems to be poaching on the domain of
interest of problem solving theorists, but such issues are also important
to educators who are interested in concept formation. For instance,
according to Piagetian theory (Smock, 1973), the evolution of mathematical
concepts typically involves both a figurative and an operative component
(at least during early stages of development). However, the interplay
between these two components of thought is by no means clear. It is well
known that two tasks which are characterized by the same operational
structure sometimes differ widely concerning degree of difficulty (e.g.,
decalages). However, factors contributing to these variations have not
been thoroughly investigated (For a discussion of this issue, see the
introduction to Laurendeau and Pinard's (1970) "Space" book)

. Nonetheless,
it is known that situations are facilitating (or confusing) to tne extent
that there is some (is no) immediate connection between the figurative
structure of the task and the operative structure of the concept involved.

Dienes' (1969) "concrete embodiments" furnish examples where
figurative models have been used to facilitate the acquisition of systems
of mathematical operations. But many questions remain concerning the use
of such models. For instance, to understand "regrouping,- children
sometimes find it helpful to work with the following types of
materials: a counting frame (or abacus), building stacks, base 10
arithmetic blocks, base '4 arithmetic blocks, base 4 triangles, or money
(e.g., Pennies, nickles, and quarters). Furthermore, each of these
materials is "good" in some sense and "not so good" in others.. What
materials are most abstract, or concrete,.or complex? What materials
will be easiee for children to uSe? What materials will allow children to
deal most directly with the concept of regreuping? What role does
familiarity play in selecting models? What materials draw upon more
intuitive notions that have typically been acquirt,d by first- and second-
graders? How many different materials should be used, and in what order
should they be presented?

The questions in the preceding paragraph make it clear that even
within the realm of geometric figures and "real world" materials, concrete-
to-abstract and intuitive-to-formalized dimensions must be considered, and
geometry seems to be a perfect context in which to study the relationship
between figurative and operative aspects of thought. Piaget and Inhelder
(1971) have Stated:

Spatial, geometric intuition is the only field in which the
imaginal form and content are homogeneous. (p. 346)
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An image with logico-arithmetical content entails the
conversion of non-spatio-temporal transformations into a
necessarily spatial form. The spatial image, on the
other hand, represents spatial content in forms that
are likewise spatial . . . . The image of a number or
a class is not in itself a number or class whereas the
image of a square is approximately square. (p. 347)

However, even with regard to geometric concepts, there is never
more than a partial isomorphism between the figural representation and
the concept represented. For example, a picture of a cube must distort
sore properties of a cube in order to represent others.

Asking youngsters to draw a cube in perspective ( ) illustrates

the "simili-sensible"9 character of figural representations. It also

illustrates a striking difference between elementary school children
and high school students. To pose the task, ask a child to put his nose

on the edge of his desk. Then put a small (e.g., one inch). cube about

six inches in front of him. Ask the child to look at the cube out of his

right eye first ( 5 ),. then out of his left eye ( ), and then to

describe differences that he sees. (Differences will be obvious if the

sides of the cubes are painted different colors.) Finally, ask the child

to draw (or to select from a set of predrawn pictures) a picture showing
exactly what he sees with his right eye. The rather surprising result
is that most fourTh-graders will not be able to perform the task correctly,
whereas ninth-graders will usually find the task quite easy. In fact,

the picture that fourth-graders select (or draw) may not look anything

at all like what they see. Foc instance, one commonly selected drawing
looks like a box that has been cut apart and unfolded (1 1).

The task above raises the question, "Why do fourth-iTaders and ninth-
graders respond so differently to identical directions?" Fourth-graders'

difficulties with the perspective drawing task cannot simply be attributed
to a lack of drawing ability because: (a) pictures drawn tend to corre-

spond to pictures that are selected from predrawn drawings (Piaget &
Inhelder, 1967), (b) fourth-graders are perfectly capable of copying a
picture of a cube.

An interesting observation about children who produce "unfolded-
cube-drawings" on the perspective drawing task is that such children are
often unable to give a correct drawing if they are asked to "draw what a
paper cube will look like if it is cut along its edges and is unfolded."
In the case of both the "perspective" and "unfolding" problems, children

9The simili-sensible character of figural representations refers to
the fact that some properties of a concept must be distorted to represent
other properties (Piaget & Inhelder, 1971).
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tend to draw what they understand, rnther than what they "see" (Montangero,
in this monograph; Piaget & Inhelder, 1971). That is, drawings are not
so much like photographs as they are like symbolic representations.

Adults become so accustomed to the usual "photograph-like" method of
representing three-dimensional objects on two-dimensional surfaces that
they forget that th., methoi of using hazy background (and foregrounds)
together with lines converging to a vanishing point (,iorresponding to
the eye of the observer) was developed relatively late in the history of
art. Early drawings tended to organize pictures using conceptual rather
than optical relations (Bnnim, 1940). For example, early Egyptian drawings
combined several different points of view within one scene (e.g., heads
were painted in profile, with eyes painted in front view). Further,
size was used to represent the importance of the object rather than
the actual relative size of the objects (e.g., kings looked like giants,
while servants, animals, and inaniMate objects were dwarfed). In fact,
early Egyptian "medley of viewpoints" drawings closely resemble children's
drawings in many respects. Just like many childrens drawings, the objects in
some Egyptian pictures were drawn in a linear sequence, as though the figures
were marching in a parade; objecta that were conceptually related were
drawn close together rather than objects that were actually (i.e.,
spatially) close.

Two-dimensional representations of three-dimensional objects must
always distort some properties of objeits to emphasize others. For
instance, each of the following drawin, is an equally "good representation

MIME
of a cube: (a) op (b) (c)

Figures (a) and (b) distort the measures of the angles an. he length of
the,sides, and figure (c) distorts connectedness to represent the square-
ness of the faces.

Figure (a) is probably more common than figures (b) and (c), but it
is no more accurate. In fact, for, some purposes, figure (c) is best.
For example, blueprints for houses (or directions for model airplanes)
are more like figure (c). Because any representation must distolc some
properties to emphasize others, judgements about "betterness" are always
dspendent upon the function of the representation. But, many children
have not learned to value the geometric properties their elders conside7
to be important. Consequently, chiltren's judgements about the "goodness"
of a representation may differ from those of adults. In the case of
perspective drawings of a cube, children are usually more impressed by the
squareness of the sides than the); are by the measures of the angles or the
way the sides fit together in three dimensions. Consequently, they are
willing to distort properties they do not understand (and therefore do not
consider important) in order to preserve properties they do understand
(the squareness of the faces).

"Pseudo-conservatijns" furnish particularly striking examples of
children's willingness to distort what they "see" in order to represent
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what they understand. For example, if a square is gradually tilted to
look more and more like a very thin diamond (#

many elementary school children are reluctant to draw nonsquares. For

instance, some children's drawings look like progressively smaller squat s

(. )--size being considered less important than shape.

Piaget & Inhelder (1967) have concluded that to perceive,an object
accurately, it is no. necessary to be consciously aware of a Ooint of
view or of relationships between objects in the perceptual field. But to

represent an object (or set of objects) in perspective requires a conscious
awareness of the percipient's viewpoint, and of relationships between.,
objects in the perceptual field. Children who have not mastered the
system of relationships not only center on only the moSt obvious features
of objects that they see, consequently failing to notice certain informa-
tion that is available, but their representations also systematically
distort features that may seem important to an adult in order to preserve
features that are important to the child.

Intuitive activities in projective geometry seem to offer particularly
ripe areas for instructional development. Some examples follow:

1. Children could be asked to arrange blocks so as to agree with
the different viewpoints as illustrated in Figure 10 (Piaget & Inhelder,
1967).

Top View Side View Side View End View

Figure 10. An activity relating to different perspectives.

2. Children could be asked to predict the shape of a cross-section
made by differeni cuts of styrofoam models.

Figure 11. An activity relating to "sections."
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3. Children could be asked to determine invariance properties
nder projections where the projections are constructed by using flash-
lights, sunlight, an overhead projector. Specific questions might
be phrased as: ,es the shadow change when (a) the object moves,
(b) the light sour Alanges, or the screen move's (Dienes & Golding,
1967-1968)?

.T--1
aNCI

s'y

Figure 12; An activity relating to invariance properties under projections.

As far as real world applications are concerned, what could be more
relevant and interesting than activities dealing with the everyday visual
experiences of children? And, as far as mathematical viability is
concerned, experiences with photographs, shaci,ws, maps, and drawings
can involve a level of mathematical thinking that even graduate students
will find challenging. Furthermore, certain projections (i.e., Similarity
transformations) furnish figural models that could contribute to the
acquisition ci concepts concerning rational numbers, ratios, and propor-
tions. In fact, it could prove wise to postpone the study of rational
numbers until a variety of figural models have been investigated. However,
for most concepts in transformation

geometry, including projections, it
is easy to pass from problems that are perfectly accessible to fourth-
graders to problets that baffle many college students. Consequently,
more research is needed to determine factors contributing to the
diffiulty of projective tasks, and more research is needed to investi-
gate the processes that are involved for children to develop progressively
more elaborate coordinate systems.I0

10
A study concerning factors that contribute to the difficulty of

projective concepts is currently being conducted by Naomi Fisher at
Northwestern University, and a sLudy concerning similarity transformations
is being undertaken by Larry Martin at Missouri Sounern State College.
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Indirect Research Techniaues

In the previous section of this paper, concerning possible justifi-
cations for teaching transformation geomeery in the elzmentary school,
a number of geometric concepts were mentioned that could give rise to
important mathematical activities for children. However, in nearly every

case, more information was needed about how children think about the ideas

that were suggested.

The coal now is to examine a class of research techniques (i.e., indirect
techniques) that seem to be particularly appropriate for investi-
gating the nature of children's geometric concepts. Indirect research
techniques are especially relevant to the concerns of this paper because
they draw attention to possible similarities and differences between (a)
the way a child organizes a set of mathematical concepts, (b) the way a
mathematician organizes the set of concepts, and (c) the way teachers
or textbooks organize the set of concepts. Indirect techniques are also

of interest because they furnish a potentially powerful set of research
tools dint cducaeors have frequently ignored, misused, or misinterpreted.

Notice that the goal of this section is not to deal directly with
cognition in the sense of explaining how a child's mind works. Rather,

the goal is to discuss the nature of 'Children's geometric concepts and
the progressive evolutionary stages through which these ideas pass. An

important distinction is being made between (a) investigating a child's
mind ang (b) investigating the nature of childrens' concepts. The distinc7

tion is somewhat analogous to the difference between'discovering how a
computer works apd describing the nature of the programs the computer is

able to handle.

In the same way that a child may organize a set of mathematical
ideas sonewhat differently than a mathematician or a teacher, when a
computer programmer begins tu work with a new system, he may not be
certain that the procedures he believes he has programmed correspond
to the cumputer's interpretations of these procedures. Nonetheless, by

feeding data into the terminal and observing the output, sound inferences
can be drawn about the nature of the program as it is "internalized" by

the computer. And, by investigating the effects of altering'certain
parts of the programs, important predictions can be made abdUt prerequisite
subprograms that must be developed before a more sophisticated program
can be written. Furthermore, by investigating the nature of t'..., programs

that a computer is able to handle, indirect inferences can be made about
the way the computer mechanism works.

In psychological reJearch, there is an important distinction between
research aimed at forming generalizations about the nature of children's
concepts and research aimed at forming direct generalizations about
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cognition in children. For instance, concerning psychological theories
that seem most relevant to mathematics educators, preconceived biases
about the nature of mathematical knowledge appear to account for at
least as much variance among theorists as preconceived biases about, the
nature of cognition. Nonetheless, few theorists have explicitly investi-
gated the validity of their epistemological assumptions--even though
the power of Piagetian theory alone makes it clear that espistemological
research concerning the development of knowledge (and the, nature of
specific ideas) can furnish valuable information concerning the acquisi-
tion and creation of mathematical concepts.

One of the ingenious aspects of Piaget's theories is that they expli-
citly conront the fact 'that ideas (as well as children) develop, that is
(a) a given idea may exist at many levels of sophistication, (b) the
evolutionary development can be,ti.aced, and (c) the more primitive levels
have seldom been investigated or accurately described.

Because of Piaget's strong interests in epistemological issues, his
research has focused on investigacioe, the nature of primitive conceptions
of certain ideas. However, becuse rew psychologists have shared Piaget's
epistemological interests, his research has frequently been misinterpreted.
First, the goal of epistemological research is seldom to furnish direct
data about the way a child's mind works. Second, indirect research_
techniques seem to be particularly effective in epistemological research.
Thus, from a psychologist's point of view, epistemological research is
often indirect both in terms of its goal and its methodologies. For
this reason, it is important to be aware of some of the peculiar strengths
and weaknesses of indirect methodologies.

Twenty Questions

To illustrate some relevant points concerning indirect research
methodolc,.,y, imag;ae a group of people sitting around a table to play
"twenty questions." The "leader" is designated by putting a "black box"'
en his head. The eye, mouth, nose, and ear holes are marked appropriately
ag inp.,t or cntput holes; words like "seven," "addition," "centimeter,"
or "trilAg1;.:" are written on.cards in a file labeled "mystery box #2."
To begin the ome, the leader selects and reads one of the cards from
"mystery box #2," and inserts it into an input hole of his "black box."
The group's task is to guess the idea written on the card by asking the
leader questions. The leader's responses are limited to "yes," "no," or
"uncertain."

After playing the game for awhile, players usually learn to avoid
questions with "uncertain" responses and begin to develop optimal
strategies to "focus in on" the mystery idea. More importantly,
it becomes clear that the procedure the group is using is essentially a
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negative or inairect aiTroach. That is, regardless of whether the
responses are "yes" or "no," the net effect is to center in on what the
idea is by gathering information about what the idea is not, thereby
eliminating alternative possibilities. The only positive step in the
process is made when one of the players actually attempts to guess the
mystery idea. It is never possible to make a guess that is completely
safe, but :reasonably "safe" guesses can be made after tLe likely
alternatives have been eliminated. In this way, it is Fassible to conti-
nue the game until the final guess can be made with considerable confi-
dence.

Clinical Research

Piagetian clinical interview techniques use an indirect approach that
is somewhat analogous to that used in "twenty questions." Twenty -iuestions
is not exactly analogous to the procedure used in clinical research,
but it bears enought resemblance to serve as a basis for discussion.
Certainly the questioning procedure used in."twenty questions" is not
unscientific, even by the most rigid research standards; this is so in
spite of the fact that "standardized questions.," "large n's," and other
common research standards are irrelevant. For the purposes of this
article, Lhe most obvious observation about "tuenty questions" is that
investigating the nature of a young child's conception of a praticular
mathematical idea can involve two distinctly different types of research
procedures: one positive (or direct), and one negative (or indirect).
Further, some of the research standards that are appropriate for one of
the procedures may be quite irrelevant for the other. In fact, each
procedure involves distinctly different characteristic errors, and the
important issue is to be very clear about which method is being used at
a given time in a research project so that errors can be avoided.

As every mathematics student eventually learns, some problems that
are very difficult to solve using a direct proof procedure become quite
easy if an indirect proof procedure is used. Consequently, in solving
mathematical problems, it is important to become adept at identifying
the most appropriate type of procedure for particular questions.
Similarly, researchers who become overly enamored with direct research
techniques may be overlooking ,the power that is occasionally offered by
an indirect approach. Because it is much easier to determine what an idea
does not mean than to determine what it does mean, and because both types
of information are crucial to thoroughly understand the nature of an idea,
indirect research procedures can he of great assistance t educational and
psychological researchers.

"Standardized" QuesCions

It is appropriate to note some obvious dissimilarities between a
game of "twenty questions" and clinical interviews. First, the researcher
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usually has a broader goal in mind than to simply focus in on a
particular child's conception of a given mathematical idea. Usually

the goal is to ma-:e a general statement about the nature of a concept
for a whole group If children. Consequently, if a researcher hopes to
form generalizaticas about a group using data collected from a rela-
tively small sample population, it is important to produce evidence
that the sample accurately represents the group with respect to the
relevant experimental variables. One method of accomplishing this
goal is to randomly select the sample population and to use statistical
arguments to justify the generalizability of results. However, statis-
tical controls are not.the only kinds that can be used, nor are they
necessarily the best ih all situations (e.g., direct experimental con-
trols can be used in many instances).

Researchers must avoid techniques that are inconsistent with the
theoretical model they are hoping to develop. For example, to have a
large sample of subjects usually means that each subject is asked the
-"same" question. However, 'a Piagetian researcher who attempts to use
"standardized" questions is immediately confronted with the problem
that the theory challenges the existence of standardized 'questions.
One fact that Genevans have escabIished beyond a doubt is that (especially
at "critical" stages in the developmental process) if all of the children
in a group are asked the sane question, individual chil6ren will nonethe-
less interpret the question in radically different ways.

Educational researchers in the United States have typically con-
fronted the problem of standardized questions in much the same way that
a "twenty questions" player learns to avoid questions with "uncertain"
responses by attempting to avoid any unnecessary ambiguity in the questions
and by shifting from asking single questions to asking clusters of ques-
tions whose responses constitute a behavioral definition of the idea
being investigated. Nonetheless, the central problem is not solved.
If the questions follow a cOmputer-like "branching program" technique
to focus in on an idea (as in the game "twenty questions"), then
standardization is sacraficed because not all subjects are asked the
same questions. On the other hand, if each subject is asked the same
set of questions, the nature of the idea being tested is less clear:

,There are two inherent drawbacks to behavioral definitions, both
of which stem from the fact they are direct (or positive) research tech-
niques. First, a behavioral definition is just what its name implies--
a definition. The definition reflects the researchers' biases concerning
the nature of the idea and does not necessarily correspond to the child's
conception of the idea. Second, a behavioral definition seldom yields
a true definition of mathematical concepts. Davis (1964) referred to this
fact when he wrote:

If one states a specific set of really explicit objectives. . .

this list seems always to be significantly incomplete: it is
always possible to meet all the stated requirements, without
actually achieving what was really desired. (p. 247)
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The point is not that behavioral definitions are "bad." In fact, they

/ probably constitute a necessary component of direct research procedures.
The point is that behavioral definitions run the risk cf being formulated
too soon in a research project. The time when a behavioral definition
can be formulated with confidence is analogous to the time when the
final guess is made in a game of "twenty questions" that is, only after
knowledge from indirect research proceddres has been exploited.

Indirect Questioning

Isolating a child's notion of a particula'r concept is similar to f-he
process a police artist uses to construct a picture of a criminal. The

artist begins with a crude approximation and gradually refines the drawing
using feedback from a witness. In fact, computers can be taught to
recognize faces (from a limited population) using a "twenty questions"
technique based on the identification of salient features (Harmon, 1973). .

Even though it would be nearly impossible to identify faces using only a
direct technique, computers can "focus in on" a particular identity using
a relatively small number of indirect steps.

Fortunately, the number of alternative ways geometric ideas can be
conceived seems to offer far fewer alternatives than the number of forms .

faces can take. Therefore, indirect techniques seem feasible in episte-

mological research. Nonetheless, there comes a time when some form of

direct approach must be used. In "twenty questions," it is when the final
guess is made; in police detection, it is when the artist's sketch is used

to apprehend the criminal; and in computer recognition, it is when the
identification is attempted.

In clinical research, the direct approach usually becomes necessary
when generalizations are to be made about a group of subjects. But,

what group should be considered? One alternative is to consider a group

of children of a particular age range. But there is usually considerable

variation among children who are the same age. In most situations, a
better technique is to form generalizations about children who have
attained some other concept (e.g., children who are "operational" with
respect to conservation of length). In essence, this approach amounts

to a "transfer of learning" task; that is, if the researcher has used
indirect techniques to "focus on" a child's concept of a particular idea,
then fairly confident guesses should be possible about the.nature of
other "related" concepts. To confirm the accuracy of these guesses, one
can again use/indirect procedures to verify hypotheses concerning the
nature of the related.concepts. This "tranpfer of learning" procedure
is a positive (or direct) transfer technique. However, once again,

indirect techniques can be used. That is, negative transfer can be
investigated by demonstrating how misunderstandings about one concept are
related to similar misunderstandings concerning related concepts.
For instance, if a child has difficulty coordinating part-whole
relationships on clussification tasks, and if he has difficulty with
ordering relationships on seriation tasks, then he may have difficulty
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on number conservation tasks--because number concepts involve seriated
classes (Lesh, 1975). Or, if a child has difficulties on "subdivision"
and "change of position" tasks, then he may be expected to experience
difficulties with simple measurement tasks (James, 1975).

Onc 0E the major difficulties with "negative transfer of learning"
studies is that the researcher must be able to generate sequences of
"related" tasks. But, in general, what source of information can be used
to generate hypotheses about possible related concepts, and what source
of information can a clinical interviewer use to generate tasks to focus
in on the mathematical concepts of young children? Certainly one of
the hallmarks of Piaget's research is the se-mingly endless source of
clever tasks and questions he has devised ro investigate the nature of
children's concepts. And, one of the strengtns of Piaget's research
rests on the "negative transfer" data he has glthered colci_rning similar
types of errors children make on tasks he claims ace related. Few
people, including teachers who work with children everyday, would have
predicted that children would perform as they do on many Piagetian tasks.
Thus, for Piaget to correctly predict these surprising sorts of behavior
is truly an important fact supporting the validity of his theory. But,
what method can researchers less clever than Piaget use to generate
tasks and questions to investigate the nature of children's concepts?
The next section of this paper will illustrate how known mathematical
structures can b.2 used to investigate the nature of primitive concepts
of length.

Using Mathematical Structures

A second striking dissimilarity between clinical research and "twenty,
questions" is that the game begins with no knowledge about the mystery
idea. In clinical research, the name of the concept to be investigated
is known, and various mathematical definitions of the concept are usually
available. The goal is to determine which (if any) of the alternative
definitions correspond to the child's initial understanding of the
concept. For example, a researcher interested in investigating the
concept "length" might begin by selecting a simple mathematical
definition to guide his investigations. For instance, one point of
departure would be to use the following definition of a metric space.11

A metric space is a nonempty set S (whose elements are
called points) together with a real valued function defined
on S x S such that for any points x, y, z, in S. the following
four conditions are satisfied:

11
Definitions .of length involving an understanding of wIctor would

be immediately discarded as being too complex.
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M1) d(x,y) > 0

M2) d(x,y) = 0 if, and only if, x = y
M3) d(x,y) = d(y,x)
M4) d(x,z) < d(X,y) + d(y,z)

Because most people are willing to admit that it is possible for a
child to attain a primitive concept of length without making numerical
judgements, the researcher would probably be willing to accept as valid
a concept or length which di( not involve realvalued length judgements.
But, would concept be admissable as "length" if it did not satisfy pro
perties Ma M4?

Problems concerning properties MI and 112 do not seem to arise
naturally in concrete situations, but it is not difficult to devise
tasks in which properties M3 or M4 will be consistently and emphatically
denied by children. Nonetheless, in other contexts, these children may
be able to demonstrate their mastery of a.primitive concept of length.
For example, children who can easily seledt the longest crayon from a
box may look at a path up a hill (see Figure 13) and,conclude that the

__distance from "a"-t6-"b".,(i.e., the length of the path up the hill) in
differentprom the distance from "b" to "a" (i.e., the'length of the
path down the hill) .12 This judgement clearly denies property M3.
imilarly, the child may look at strips of ribbon like the ones in

'Figures 14 and 15, and in each case decide that the lower string is
longer, thus denying property M4.

Figure 13. Figure 14.
1g d(x,y) = d(y,x)? Ts d(x,z) = d(x,y) + d(y,z)?

12
A recent study investigating this phenomenon was conducted by

Judith Mu.4ick (1975) at Northwestern University.
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Figure 15. Is d(x,z) d(x,y) + d(y,z)?

The examples in Figures 13, 14, and 15 illustrate the possibility of
,formulating a primitive definition of length which only applies to a
restricted range of experiences that do not involve judgements concerning
properties MI M4. The problem is to isolate the properties of a viable
(but restricted) concept of length which does not involve properties

M1 - M4. Observing children's behavior in tasks in which length judge-
ments seem to be involved might suggest that the emphasis should be shifted
from "length as a metric" to "equal in length" as a relation. Consequently,

the following definitions of equivalence and ordering relations become
relevant.

1. Equivalence: E ("is the same length as") is an equivalence re-
lation on a set S if E is a set of ordered pairs of elements in S such
that for any elements I, m and n in S the following properties are satisfied:

El) ZEZ.

E2) If 7.Em, then mEZ.

E3) If ZEm and mEn, then ZEn.

2. Order: L ("is shorter than") is a relation (a strict partial
ordering) on a set S if L is a set of ordered pairs of elements in S such
that for any elements 1, m, and n in S, the following properties are satisfied

LI) It is not true that ZLZ.
1,2) ZLm, then it is not true that mLZ.
L3) If ZLm and mLn, then ZLn.

Again, problems concerning properties El and LI do not seem to arise

naturally in concrete Situations. But it is easy to devise tasks in which

properties E2, E3, L2, and L3 will be consistently and emphatically
denied by young children (James, 1975). Fur example, Piaget's famous con-

servation tasks furnish examples in which children will admit that a

stick 7- "is the same length as" a stick m and that m "is the same length
as" stick n but will deny that 1, "is the same length as" n. Similarly,

other conservation tasks can be formulated in which each of the other
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properties is denied. The problem these tasks, pose is to determine
whether an eve- more elementary concept of length exists which does
not involve ..:he transitive and symmetric properties and which does not
involve understanding that length is invariant under simple changes of

position.

Following an indirect "clinical interview" procedure to focus
on children's understanding of the concept of length, a number of famous

psychologists (e.g., Dewey .6, McLellan,-1914; Gal'perin & Georgiev, 1969;
Piaget et al.., 1960) have formed a similar conclusion, that is, that the
concept of length arises only after elementary systems of operations
invol-ing subdivision and change-of position have been mastered. Further-

more, Piaget has concluded that subdivision and change of position opera-
ions in turns arise out of even more basic "proximity-separation" rela-
tIons analogous to the topological concept of "neighborhood."

Some quotes from Piaget, Inhelder, and Szeminska's "Geometry" book
(1960) are:

There can be no measurement, just as there can be no true
representation of change of position, unless the space in
which it takes place is structured by a system of references.
p. 27)

It is anly by grouping relations or order and change' of

position simultaneously that children discover that.
objects which are moved leave behind them stationary
'sites'. This discovery leads them to conceive of space
as a container or reference system which is independent
of its content. (p. 80)

Several observations should be made concerning the clinical inter-
view produces that were used to form the above conclusions: (a) The

interviews involved an indirect method much like that used in "twenty

questions." (b) Mathematical definitions could have been used (and

probably were) to direct the inquiry. (c) The most basic systems of

relations that children use to make mathematical Judgements are globally
analogous to the most general types of mathematical structures.

Mathematical Structures vs. Cognitive Structures

The close correspondence between basic "cognitive structures" and
general "mathematical structures" should not be surprising because the
methods used to isolate each type of structure is nearly the same. For

example, in mathematics,a group of mathematicians publishing under the
name "Bourbaki" isolated a small number of "matrix.structures" which
are fundamental to all of the various branches of mathematics because no
one of them can be reduced to the others, and beeause all other mathematical
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structures can be derived from these by combination, differentation, or
specialization. Regressive analysis isolated three basic types of
structures which can be roughly &aracterized as follows:

1. Algebraic sCructures, the prototype of which is the group.
These structures were distinguished in that their form of
inverse operation was negation.

2. Ordering structures, the prototype of which is the lattice.
These structures were distinguished in that their form of
inverse operation was reciprocity.

3. Topological structures involving the concepts of neighborhood
and connectedness.

Using a procedure similar to the method used by Bourbaki, develop-
mental psychologists or mathematics educators can (a) analyze tasks that
children perform, (b) characterize them on the basis of the systems of
operations or relations they involve', and (c) order tasks on the basis
of the complexity of these systems. In fact, using precisely this
procedure, Piaget and Beth (1966, p. 186) have i:r.olated three basic
types of elementary cognitive structures (i.e., groupings) that
are roughly equivalent to the three matrix structures determined by
the Bourbaki group.13 However, even though there is a global similarity
among the most general types of mathematical structures and the most basic)
types of cognitive structures, there are also some striking dissimilari-
ties.

Basic mathematical structures are simple (i.e., not complex) systems
that apply in the widest possible variety of circumstances, and they
are powerful (i.e., give rise to "nice" theories). However, because
general mathematical structures must be combined and differentiated to
be applied in most situations, they are-also,in a certain sense, the least
specialized and the least refined, and it is primarily in this sense that they
are similar to basic cognitive structures. The first relations children
learn to use to make mathematical judgements are simple and must be
combined and differentiated to be applied in most situations, but they
are also the least powerful because they are highly restricted, highly
specialized, and closely tied to specific content. That is, basic
cognitive structures are the most crude.

Grize (1960) has stated that it is possible for Piaget's "groupings"
to be used to rei.lace the matrix structcres of Bourbaki. But, groupings,
with their restricted combination rules and restricted associative laws,
are "messy" structures that do not give rise to neat, tidy theories. For

13
More recently, Piagetians have even found analogies of some basic

ideas from category theory (PLIget, 1971, p. 26)



223

this reason, mathematicians would not take the trouble to formulate such
awkward structures--especially as building blocks.for a theory. F6r

similar reasons, it seems unlikely that mathematicians will, take the
trouble to formulate most of the structures children use when they first

"come to master a given idea.

To model the thought processes of. children, Steffe (1973) has suggested
that Piaget's groupings can perhaps be replaced by more familiar mathemati-
cal structures. If Steffe's hypothesis is correct, it could be very
helpful to mathematics educators who would like to construct curriculum
materials which are consistent with the "natural" development of logicl
thinking in children. However, on the basis of the inherent differences
that tend to occur between mathematic,11 structures and cognitive structures,
StefFe's point of view also runs the risk of attributing nonexistent
processes to children's thinking.

It seems Likely that mathematical descriptions of many of children's
concepts will involve structures that mathematicians have not bothered to
formalize. Nonetheless, for ii.ithematics educators, the most important
potential power of Piagetian theory will only be tapped if it is possible
to establish lirks between the "natural" evolution of mathematical ideas
and some mathematically viable organization of the concepts. In the mean-
time, mathematical structures can be used to effectively guide indirect
research efforts aimed at isolating children's initial conceptions of
various mathematical concepts; more importantly, indirect research
procedures can be used to investigate the aature of concepts of inter-
mediate levels of development which psychologists have tended to neglect.

Topological to Projective to Euclidean

To trace the evolution of logical-mathematical thinking in children,
Piagetians have focused attention on the beginnings and endpoints of
critical periods of development, e.g., the beginning of the period of
concrete operations and the beginning of the period of formal operations.
Logical infi.rences can then be made concerning intermediate levels of
development. However, it is these intermediate levels of development
that are of most interest to educators, and the inferences that can be
drawn are crude at best. Consequently, more research is clearly needed.

In the previous section of this paper, a method of using mathematical
structures to investigate cognitive structures was described. In this
section Ele extent to which known mathematical structures can be used
as mo6els to describe the "natural" evolution of mathematical concepts
will be discussed. In particular, the issue of whether geometric
concepts develop from topological to projective to Euclidean will be
considered.

From one point of view, it is a tautology to say that geometric
concepts develop from topological to Euclidean. If the various
geometric systems are defined in terms of invariance properties under'
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groups of transformations, then Euclidean geometry is a more restrictive
system than projective geometry, which is, in turn, more restrictive
than topology. Consequentryv two figures which are equivalent under
Euclidean transformations are also equivalent under projective or topo-
logical transformations. Or, stated differently, Euclidean geometry is
included in projective geometry which is included in topology (see Figure
.16).

topology geomeetry

projctive

Figure 16. Topological concepts before projective and Euclidean.

According to Figure 16, there is no way it could fail to be true
that spatial concepts develop from topological to Euclidean. However,
as Figurel7 illustrates, this does not mean that all topological and
projective concepts are mastered before any Euclidean concepts. In fact,
Piaget has explained at length that projective and Euclidean concepts
develop at the same time (rather than in succession as the above argument
would suggest), and that sone topological concepts develop relatively late.
The following remark illustrates Piaget's position:

The concepts of projective and Euclidean space develop together
and are mutually interdependent. . . . The construction of
physical reference frames, the final stage in the evolution of
basic euclidean concepts, proceeded side by side with the
general coordination of viewpoints, the salient feature of
projective space. (Piaget & Inhelder, 1967, p. 419)
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Figure 17. Variability within conceptual categories.

Even though the-above problems do not pose a threat to Piagetian

II'

theory, other related pr ems are more troublesome. For example,

the argument that topolo cal concepts evolve before projective and
Euclidean concepts relies heavily on the psychological viability of
characterizing geometries in terms of invariance properties under
groups of transformations. But, Piagetian theory claims that children are

not capable of dealing with groups of transformations at the beginning

of the period of concrete operations (Inhelder E. 7iaget, 1958). Further+

more, the progressively inclusive system of geomeLries illustrated in

Figure 16 only holds if some conventions are adoptee that deem psycholo-
gically artificial. For instance, the projection in Figure 18 does not
preserve certain topological properties (e.g., continuity) unless
"ideal" points are introduced. When line 1 is projected onto 1 through

the point p, the point a goes to a'', b goes to b', d goes to d°, and e

goes to e-.- But, c becomes a vanishing point (i.e., it goes to a point

at infinity), and a point at infinity goes to point x.

The example in Figure 18 illustrates that it is only in the proJ+
jective plane" (or by making some other equally artificial convention)
that projectivc geometry is a restriction of topology. But, do psycholo-

gists really want to imply that children's early geometry concepts
involve an underi:anding of points at infinity? Do they really belieVe
that children's topological concepts are consistent with the topology
.the Euclidean metric induces on the projective plane? Do they really

mean to imply that similarities are mastered before congruences?

14The projective plane is obtained by adding points at infinity to

the usual Euclidean plane.
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Figure 18. The projection of a line onto a line.

Questions like the ones in the preceding paragraph should not be
dismissed coo quicicly As having obvious answers. For i,nstance, certain
psychologists (e.g., Piaget, Dewey) have suggested that primitive
similarity coLcepts are implicit ia children's early/ideas about congruence,
and it may not be fcolish to invet:tigate the possibiltiy of a primitive
concept cf "poiAts at :Infinity." Nonetheless, it appears that psycholo-
gists have used mathematical structures in somewhat the same way e-luestors
have used psychological theories. That is, they,have referred to
mathematical structures when it is convenient and ignored them otherwise.
In short, systems of mathematical structures have not really been used as
models to guide research or as models to describe the thought 'n.ocesses
of children. Instead, mathematical systems have usually been used simply
as a basis to argue by analogy..

41i

Martin (1976c) has explored some implications of using the Erlanger
Program (or some other "topological to projective to Euclidean" organi-
zation of geometries) as a model for research. In the remainder of this
article, I would like to explore some similarities between the evolution
of isometries (i.e., the rigid motions: slides, flips, and turns) and the
evolution of spatial concepts in general. Then, the "topological to
projective to Euclidean" issue will be reconsidered.

Isometries and Projections

"To understand a system of transformations" meana that a child will
conceive of states as end-products of transformations--and eventually
transformations will be viewed as modifications of states. Initially,
however, end-states tend to be viewed in isolation, as though they
were unconnected to other states. For example, the following "perspective"
task illustrates how young children repeatedly demonstrate an inability
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to take the point of view of another person, or to conceive of their

own point of view as one of many possible points of view.

If a kindergartener is shown three different colored block3 on a

table and if he is shown pictures ( ) depicting various

points of view of the blocks, he can often select t e picture that shoi.is

what he would see at various positions around the table. Nonetheless, if

a doll is seated at'sone position different from the child's, kinder-

garteners are typically unable to select the picture of what the doll

sees. After obvious consideration of the doll',s point of view, kinder-

garteners commonly reselect the picture showing their own point of view

(Piaget & Inheldar, 1967, chap. 8).

Piaget has explained that a child ig.not aware that he has a parti-

cular point of view until he realizes there are others, and he is aware

of this only when he has coordinated all points of view into one opera-

tionally connected structure. To discover his own viewpoint, the child

nu relate it to others, distinguish it-from the others, and coordinate

it ..,th the others. Until this is the case, the child'S reasoning tends

to resemble unconnected "snapshote of beginning points or endpoints of

transformations or operations. Further, he fails i-o,notice information

that becomes significant due to itg invariance under a system of trans-

formations. To illustrate this point, suppose a photograph of an apparent

straight tree ( ) is given to an adult, and the task is to determine

whether the tree was, in fact, straight. By referring to the information

in the photo, the question is unanswerable. From some other point of -

view, the tree might look curved ( it or A ). Straightness

attains significance in the above snapshots only if isolated photographs

are coordinated with the other points of view. Straightness is only

read out of objects after certain information is read in either by

measuring (a Euclidean concept) or by viewing the object from various

points of view (a projective concept),-or by applying some other system

of operations.

To see how the above fact is reflected in the performance of children,

a kindergartener can be shown a straight line on a round table ( ).

I. he is given small telephone poles and is asked to put them along the

straight road, he will usually be able to do so. However, iF the road

is not present and only two endpoints_are in place ( ), the response

is often not a-straight line at all (Piaget & Inhelder, 1967; chap. 6).

Rather, the poles tend to follow the curve of the table ( ). Further,

after placing his teleph ne poles in a curve, the child may recognize the

233



228

line he has cOnstructed is not straight, but be unable to improve
his response. With respect to the develcpment of mathematical-
geometric concepts, what a child perceives is much less important than
the rules of organization he gradually organizes to control and use the
information he receives.

An important point to notice about the above tasks is that movine
around a table is equivalent to remaining stationary and rotating the
table. Consequently, Piaget's "perspective" tasks are closely related
to tasks involving slides, flips, and turns (Piagt, & Inhelder, 1967,
p. 190). Piaget's "topological" concepts are those involving properties
(e.g., touching, next to, etc.) that are important within a particular
point of view--within a particular fixed state--independent of connections
with other states. Piaget's "projective" concepts are those involving
properties which become important when various points of view are con-
nected by a system of transformations. Piaget's "Euclidean" concepts
are those in which the pbserver becomes one of the transformed objects;
that is, all objects are located with respect to fixed points of
reference. Piaget makes the distinction between topological and Euclidean
space as follows.

Psychologically speaking, we may say that space becomes
Euclidean when topological space is structured by reference
elements, since the use of such elements brings about the
distinction between two kinds of spatial reality, these
being fixed 'sites' and space taken up by movable objects.
In topological space, no distinction is drawn between
container (fixed 'sites') and contained (movable objects),
but in Euclidean space that distinction is constantly to
the fore. (Piaget at al., 1960, p. 392)

Piaget's claim that spatial concepts develop from "topological to
projective and Euclidean" is based on the assumption that the first
spatial relations children use are those involving the simplest systems
of transformations, that is, those not involving coordination of various
points of view or the coordination of all objects (including the observer)
within'a single frame of reference.

One of the cornorLons or PidAeLian theory rests on the psycholoL
gical viability of analyzing and equating tasks (and concepts) un the
basis of their underlying operational structures. Yet, transformation
tasks which are operationally isomorphic often vary widely (e.g., the
equivalent of several years) in degree of difficulty. Consequently, if
operationally isomorphic tasks differ "too much," it may be meaning-
less to equate tasks on the basis of operational structure. For instance,
examples will be given in the following three sections to illustrate some
of the characteristics that contribute to the difficulty of translations,
rotations, and reflections. The objective will be to discuss whether it
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is sensible to characterize transformation geomeLry taskF, in terms of

slides, flips, and turns. In the examples that are given: (a) A

represents simple geometric figures that can be moved on a desk top;

(b) LIC=3 represencs configurations of simple figures that can be

moved on a desk top; (c) represents a model village layout that

represents chairscan be moved from one table to another; (d)

(or large flat shapes like those used on desk tops) that can be Moved

around a room. In each case, the tasks are posed by showing an initial
figure (or configuration of figures) and by describing a transformation.
The task is to construct (or describe or select from predrawn drawings)
the final figure.

The examples will show that before a child has coordinated a particular
system of transformations, he will (a) focus on only the most obvious (co

the child) features of the transformed.figure, ignoring other properties,
(b) fail to notice information that only attains significance by being
invariant under the system of transformations, and (c) distort the informatior
he receives due to the influence of concepts that do not depend upon the

system of transformations.

The Complexity of the Figure Transformed

A complex village may be more difficult to rotate than a simple

village (e.g., . However, transformations involving

configurations of two or three figures (e.g.,

are often only slightly more difficult than transformations op simple

figures (e.g., L\-7k ). This fact seems to indicate that , f

difficulties involved in orienting a single geometric figure are very
much like the difficulties involved ia orienting simple configurations

of figures. Nonetheless, if the configuration becomes too comple:: (as
in the village layout), the operational complexity of the task increases.
That is, the task is no longer just a transformation task; it is also a
task testing a child's ability to notice multiple properties of the
original figure.

The more complex a figure becomes, the more active a child must be

to attend to all of the relevant information that is available. For

instance, if a kindergarten child is shown the following array of
counters ( 08 ) the amount of information he will be able to

moo
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extract will be influenced by his level of mastery of certain ordering
relatims and classification operations (Lesh, Elwood, & Hall, 1976).
That is, he could notice that the counters are in rows and columns; that
the number of circles in each column is one, two, and three; that the
overall shape is triangular or like a stair step, etc. If _the child is
not "operational" with respect to elementary seriation and classification
operations, he will tend to center on only the most salient featur,,s of
the dot pattarn, ignoring other properties. Consequently, if the child
is asked to perform a transformation on array counters, the task will
be more difficult than if he is simply asked to recognize a correct
transformation. Similarly, a configuration that a child has constructed
will be easier to transform than a configuration he has watched someone
else construct, ard this, in turn, is easier than a ccmfiguration the
child has been given without watching the initial col,struction (Piaget &

n lder, 1971).

Another interesting phenomenon that occurs when complex figures are
transformed is that properties preserved under simple transformations
may not be preserved under more difficult transformations. For example,.
children's responses to a translation ( . may be .

classified as progressively empnasizing "topological," "projective," and
then "Euclidean" properties (Piaget & Inhelder, 1967). However, a child
who preserves "Euclidean" properties on the translation task may regress
to focusing on "topological" properties. on a rotation task. So this
"topological projective to Euclidean" phenomenon is not as clear cut
as one would hope. Nonetheless, it does seem to be true that properties
preserved under simple transformations may be sacrificed under difficult
transformations, and that the stages through which children progress
(i.e., topological to Euclidean) are roughly the same for most tasks.
However, even this statement will require modification. Some of the
intricacies involved in the phenomenon are currently being investigated
by Karen Schultz at Northwestern University.

Two types of operations are involved in transformation tasks:
(a) operations and relations that are needed to extract information/
from the fixed states and (b) operations that are needed tc organize the
systems of transformations. FurtheTmore, just as preoperational children
will tend to center on only the most obvious aspects of the fixed states,
children who have not yet organizeo a system of transformations will
focus only on the most obvious features of the motions involved. For
instance, if rotations and reflections are taught using examples that
have red flip lines and red centers of rotation, youngsters often fail
to recognize simple transformations where the red dots and lines have
been added inappropriately. That is, for the children, the red dots
and lines become parts of the transformatiods (Lesh & Johnson, 1976).
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The Size of the Transformation

A "large" transformation (e.g.,

difficult than a small transformation (e.g.,.

are other confoundinglactors. For instance, if the transformation is too

sm.:111, the initial and terminal states of the figure may overlap intro-

ducing new uifficulties. For example, if a transparency covering a six
inch squarl is slia four inches (e.g., ), and if a child is

I I

asked to draw what the figure will look like after the transformation,
many children are :nluctant to draw a square overlapping the original

figure (e.g., ). A common response reported by Piaget and

Inhelder (1971) is ., Evidently children are much more willing

to sacrifice squareness than they are "wholeness" (i.e., the fact that

the initial figure was not divided by any lines).

Rotation and reflection.,tasks in which the fixed points are internal

to the figure (e.g., 1 ) also involve "pseudo-conservation"

.problems (i.e., distorting invariant properties that are not
understood in order to preserve properties that are understood but

which are not invariant). In fact, children sometimes refuse
to represent what they have seen in order to represent what they

understand. For instance, if a square (with atransparent interior) is

flipped onto a circle (e.R.,[1]li ) children are often reluctant

to draw the circle inside (or on) the square in the terminal configuration.
For example, one type of incorrect,response is 100 The

properties children tend to pseudo-conserve are often those Piaget has
classified as "topological" (e.g., inside, on, outside) rather than
properties like shape and size.

Sometimes small rotations (e.g., rotations of 300) are simpler than
large rotations (e.g., rotations of 1800 or rotations around centers that

are far from the original figure). But, small rotations can also be
difficult because small rotations tend to involve overlapping figures
(e.g., 0 ). On the other hand, transformations that are "too

Jarge" can also involve confounding factors. For instance, if a trans-
lation is performed on figures in a large room (e.g., a gym), it is
sometimes diXficult for a child to establish frames of reference to
orient the terminal configuration. That is, if several large
geometric figures are slid fifteen feet, it may be difficult for a
child to correctly orient the terminal configuration

). Nontheless, the child may be able to perform relatively
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large translations on a desk top where it is easier to compare the initial
and terminal configurations within one frame of reference (i.e., both are
oriented relative to the child). For desk top transformations, external
frames of reference are almost built into the task and need not be
established by the child. However, even in the case of transformations in
a large room, the influence of external frames of reference is evident
from the fact that environmentally oriented figures (e.g., a chair in an
upright position) are usually somewhat easier to transform than
environmentally disoriented figures, or from the fact that horizontal
(or vertical) slides, flips, or turns (e.g., ALA )

are easier than
cos--A

oblique transformation (e.g., N ).

The Number of Compositions

A single transformation is usually slightly easier than a composition
Uf two transformations (e.g., a flip followed by a flip). However, recent
studies at Northwestern indicate that the difference in difficulty is
often surprisingly small. This suggests that the difficulties involved
in a single transformation may be the same as those involved in compositions
of transformations. An explanation of this rather,surprising phenomenon
can be found in Piaget's hypothesis that mathematical operations (or
relatiOns or transformations) do not exist in isolation. According
to Piaget's wholism concept, to master a transformation implies that a
simple system has been mastered; the simplest system (i.e., a grouping)oinvolv
(a) the transformation, (b) its inverse, (c) the identity transformation, and
(d) compositions of pairs of these three types of trzaisformation6.

A phenomenon even more startling than the une mentioned above is that
children are somerimes more confused abcut the terminal configuration
of a single transformation than they are about the terminal configuration
of a composition of several transformations. For example, if a simple
village layout rotated (e.g., ), and if the task is to

place "x" marker in the appropriate position on the Transformed figure,
the task is often easier after a composition of four or five transfor-
mations (see Figure 19) than after a single transformation. The
phenomenon seems to occur because the child ceases to think about the
continuous motion connecting the end states and seemingly reminds himself,
"The end state is just like the initial state." In short, the complexity
of the composed transformation forces the child to behave like a sensible
adult. Nonetheless, if "too many" transformations are composed, new
difficulties are again introduced. For instance, if the transformed
figure is an equilateral triangle, whose sides are red, white, and blue,
respectively, and if the "x" is in the middle of the blue side, the child
may not,be convinced that the "x" will always be in the blue side. After
100 flips he may believe the "x" could be in the middle of the red side
or the white side (Piaget,& inhelder, 1971). Arbitrarily large numbers of
operations are confusing'ideas for youngsters.
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Figure 19. A comp-Isition of three turns.

A final factor that effects the difficulty of compositions is the
order in which the individual transformations are composed. For instance,

a flip followed by a turn (e.g., AIL ) may involve different diffi-

71
culties than a turn followed by a flip (e.g., 41 ssi

7'
), evQn thou&

the terminal states are identical for each of the compositions.

Slides to Flips to Turns

It is well known that any translation (slide) is equivalent to
a composition cf two rotations (turns), and that any rotation is equi
valent to a composition of bdo reflections (flips) . Consequently, two

figures that are equivalent under slides are automatically equivalent
under turns and flips. So, in a certain sense, slides are included in
turns, which are in turn included in flips.

FLIPS

7' .\

TURNS SLIDES

\.

Figure 20. The inclusive relationship among slides, turns, and flips.
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In the same way tha( Figure 16 gave rise to the conjecture that
geometric concepts deVelop from topological to projective to Euclidean,
Figure 20 might lead one to naively hypothesize that isometries are
mastered in the order flips, turns, and slides. However, there are
three issues which mo, make this conjecture untenable.

1. Just because a relation is mathematically the most general
(or powerful) does not necessarily mean that it will be psychologically
the most basic. For instance, most adults womld probably predict that
isometries are masteled in the order slides, turns, and flips (or slides,
flips, and turns), and the only way to resolve the issue is to do
research with children. Nonetheless, mathematical descriptions of
isometrien could be very helpful to use in directing research efforts.

2. Children often make mathematical judgements using qualitatively
different systems of relations than those used by adults. Consequently,
the researcher who begins with the assumption that children think i
terms of slides, flips, and turns may be just as naive as the theorist
who assumes flips come before Lucas and slides, just because flips are
mathematically the most powerful. It could be that children do not
conceive of rigid motions as compositions of slides,'flips, and turns,
but instead use some entirely different system of relations to describe
spatial transformations. This is why it is important to occasionally
use indirect research techniques. Otherwise, it is very easy to impose
inappropriate mathematical structures on the thought processes of
children.

3. If operationally isomorphic tasks vary too much in difficulty, it
may be meaningless to equate tasks on the basis of operational structure.
Research currently underway at Northwestern indicates that translations
are generally easier than rotations, and reflections may be slightly
easier than some rotations. But, it is quite easy to devise tasks
where translations are more difficult than many reflections or rotations,
or where rotations and translations are nearly equivalent in difficulty.
Consequently, because some rotation tasks seem more closely related to
reflection tasks than to other rotation tasks, the policy of classifying
rigid motions into "slides," "flips," "turns" seems questionable. Perhaps
there is a better basis for classifying transformation tasks.

Without changing the initial and final states of transformation, it
is possible to alter a task simply by varying the description of the
transformation (e.g., slide , flip aE , turr . ).

1

For instance, if a stick is moved from one position to another

(e g , ), children's drawings of the final state will vary
in length depending on whether the stick was described aL; having been
slid, flipped, or turned to the final position. Nonetheless, the appro-
priate way to analyze the tasks may not be to focus on slides, flips,
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and turns. For example, the important properties may be related to
"up-down" and "left-right" position changes (Mayer, 1974).

Topological to Projective to Euclidean

In many respects the question of whether geometric concepts develop
from topological to Euclidean is similar to, the question of whether
children's "rigid motion" concepts develop from slides to flips to

turns. In particular, the same three issues that were discussed in the
previous section can be considered concerning the development of geometric
concepts in general.

One of the most important cornerstones of Plagetian theory rests on
the psychological viability of analyzing, ordering, and equating tasks
(and concepts) on the basis of their underlying operational structure.
Consequently, the biggest threat to Piaget's point of view is not the
fact that some "Euclidean" concepts are easier than some "topological" and'
"projective" concepts, cr that 'children smetimes do not use Euclidean
relations to make judgements about concepts that adults consider to be Euclide,
or that the operational development of children can be accelerated or retarded

by various educational or cultural factors. From the point of view cf the
present article the most Important challenge to Piagetian theory is t:iat
operationally isomorphic tasks often vary so much in difficulty (especially in
upper elementary school) that i may be meaningless to classify concepts on

the basis of operational structure. Or, perhaps we have been investigating

the wrong question?

Summary

The following questions have been raised in this paper.

1. If it is true that children's first spatial concepts involve
"topological" relationships and if upper elementary school children's
concepts begin to be characterized by formal operational structures (e.g.,

INRC groups), what inferences can be made about the sequential evolution
of concepts at intermediate stages of development? Perhaps known mathe-
matical structures can be used to investigate these types of questions.

2. What sorts of qualitative differences may exist between children's
and adults' conceptions of various matehma,lical concepts? Perhaps indirect

research techniques could provide valuable information concerning these
types of questions.

3. What factors influence the difficulty of tasks that are
characterized by isomorphic structures? Piaget (Laurendeau & Pinard,

1970) has described several factors that account for de-calages involving

operationally isomorphic tasks that differ only in figurative content.
However, Piaget generally tended to de-emphasize the importance of
d4ca1ages, prefering to focus on the analysis of ideas rather than on
analysis of concrete materials and figurative models.



236

In the introduction to Laurendeau and Plnard's "Space" book
(Laurendeau & Pinard, 1970), Piaget stated:

Decalages derive from the object's resistances, and the
authors [Laurendeau and Pinard] ask that we construct
a theory of these resistances, as though this were an
undertaking directly parallel to the one concerning the
subject's actions and,operations. It is an exciting project
and it should certainly be considered. But we must
remark at once that if the subject's actions always reflect
intelligence (a condition which greatly facilitates the
analysis), the object's resistances not do so, and inVolve
a much greater number of factors. (P. 0

Nonetheless, Laurendeau and Pinard's charge seems justified that
Piaget makes too frequent use of decalages. For example, it is ironic
that Piaget, who has done as much as anyone to clarify the nature of
concepts like mass, weight, and volume, still continues to speak of
"cicalages" between conservation of mass, conservation of weight, and
conservation of volume--as though such tasks were operationally isomorphic.
No wonder so many psychologists have made the error of attempting to
describe the acquisition of "conservation" as though conservation of
what (i.e , mass, weight, or volume) were unimportant.

Some of the most important goals of space research are: (a) to
tnoroughly investigate the operational structure of a variety of.geumetric
concepts, (b) to analyze relationships between various geometric concepts,
and (c) to clarify some of the relations between figurative and operative
aspects of thought. Even if psyChologists believe they can ignore variations
due to figurative content, the issue isllighly important to educators who
must use concrete materials and figurative models to teach mathematical
concepts:

The goal of this article has been to use transformation geometry as a
context in which to discuss relationships between mathematical structures,
cognitive structures, and instructional structures. By examining justifi-
cations for teaching geometry in elementary school (i.e., instructional
structures), some concepts (i.e., mathematical structures) were mentioned
that psychologists have tended to neglect. To investigate the psychological
status (i.e., cognitive structure) of these mathematical ideas, mathematical
structures can be used to guide indirect research procedures. When these
procedures are used, it becomes clear that children sometimes make mathe-
matical judgements using qualitatively different systems of relations
than those/typically used by adults. That Is, even though there are
striking similarities between mathematical -structures and cognitive
structures, there are also sote important d!,similarities. These
dissimilarities sometimes make it difficult interpret the mathematical
status of concepts Ijsychologists have studi,.. Nonetheless, if information
about children's cognitive structures is eve..- to be useful in organizing
instructional activities forchildren, it is 1..kely that known mathematical
systeus will havL, to be used as a guide.
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Transformation geometty seems to furnish an excellent guide in
which to investigate (a) the extent to which known mathematical systems
can be used to model the sequent.ial development of children's mathematical
concepts, (b) the psychological viability of analyzing, ordering, and
equating tasks on the basis rf their underlying operational structure, and
(c) relationships between figurative ana operative aspects of thinking.

243



238

References

Bunim, M. S. Space in medieval painting and the forerunners of perspec-
tive. New York: AMS Press, 1940.

Cambridge Conference on School Mathematics. Goals for school mathematics.
Bo:Aton: Houghton-Mifflin, 1963.

Compreheasive School Mathematics Program Staff. The CSMP davelopment
of geometry. Educational Studies in Mathematics, 1971 3, 281-285.

Coxford, A. F., Jr. A transformation approach to geometry. In K. B.
Henderson (Ed.), Geometry in the mathematics curriculum. Thirty-
sixth yearbook of the National Council of Teachers of Mathematics.
Reston, Virginia: The Council, 1973.

Coxford, A. F., Jr, & Usiskin, Z. P. Geometry: A transformational
aurpach. River Forest, Illinois: Laidlaw Bros., 1971.

Davis, R. B. The Madison project's approach to a theory of instruction.
Journal of Research in Science Teaching, 1964, 2, 146-162.

Develpping Mathematical Processes. Madison: Wisconsin Research and
Development Center for Cognitive Learning, 1974.

Dewey, J., &McLellan, J. A. The psychology of number. New York:
D. Appleton, 1914.

Dienes, Z. P. Building up mathematics (2nd ed.). London: Hutchinson,
1969.

Dienes, Z. P.,& Golding, E. W. Geometry through transformations (3 vols.).
New York: Herder & Herder, 1967-1968.

Dodwell, P. C. Children's understanding of spatial concepts. Canadian
Journal of Psychology, 1963, 17, 141-161.

Freudenthal, H. Mathematics as an educational task. Dordrecht, The
Netherlands: D. Reidel, 1973

Furth, H. G. Piaget and knowledge. Englewood Cliffs, N. J.: Prentice-
Hall, 1969.

Gal'perin, P.Ya., & Georgiev, L. S. The formatim of elementary
mathematical notions. In J. Kilpatrick & I. Wirszup (Eds.), Soviet
studies in the psy.:hology of learning and teaching mathematics
(Vol. 1). Stanford, California: School Mathematics Study Group,
1969.

244



239

Gillespie, N. Mira activities for junior high school geometry.
Palo Alto, California: Creative Publications, 1973.

Grize, J. B. Du groupement au nombre: egsai de formalisation. In

P. Gr6co, J. B. Grize, S. Papert, & J.Piaget. Problemes de la
construction du nombre. Paris: Presses Universitaires de
France, 1960.

Harmon, L. D. The recognition of faces. Scientific American, 1973.

229 (11), 70-82.

Inhelder, B.,& Piaget, J. The growth of logical thinking from childhood
to adolescence. New York: Basic Books, 1958.

Inskeep, J. E., Jr. Primary-grade instruction in geometry. The Arithmetic
Teacher, 1968, 15, 422-426.

James, K. W. A study of the conceptual structures of measurement of
length in normal and learning disabled children. Unpublished

doctoral dissertation, Northwestern University, 1975.

Jeger, M, [Transformation_geometry] (A. W. Diecke & A. G. Howson trans.).

New York: Wiley, 1966.

Kapadia, R. A critical examination of Piaget-Inhelder's view of topology.
Educ tional Studies in Mathematics, 1974, 5, 419-424.

Kapur, J. N. A new approach to transformation geometry. Paper presented
at the 48th annual meeting of the National Council of Teachers of
Mathematics, Washington, April 1970.

Kidder, F. R. Elementary and middle school children's ,-omprehension of
Euclidean transformations. Journal for Research in Mathematics
Education, 1976, 7, 40-52.

Klein, F. Le programme d'Erlanger: considerations comparitives sur les
recherches geometrique modernes. Paris: Gauthier-Villars, 1974.

Laurendeau, M., & Pinard, A. The development of the concept of space

in the child. New York: International Universities Press, 1970.

Leach, E. Some anthropological observations on number, time and common
sense. In A. G. Howsom (Ed.), Developments in mathematical educa-
tion: Proceedings of the Second International Congress on
Mathematical Education. Cambridge, England: Cambridge University

Press, 1973.

Lesh, R. A. The generalization of Piagetian operations as it relates
to the hypothesized functional interdependence between classifica-
tion, seriatim:, and number concepts. In L. P. StefZe (Ed.),
Research-on mathematical thinking of young children: Six empirical

studies. Reston, Virginia: National Council of Teachers of

Mathematics, 1975.

245



240

Lesh, R. A. Directions for research concerning number and measurement
concepts. In R. A. Lesh & D. A. Bradbard (Eds.), Number and
measurement. Columbus, Ohio: ERIC/SMEAC Science, Mathematics,
and Environmental Education Information Analysis Center, 1976.

Lesh, R. A, & Bradbard, D. A. (Eds.). Number and measurement.
Columbus, Ohio: ERIC/SMEAC Science, Mathematics, andbEnvironmental
Education Information Analysis Center, 1976.

Lesh, R. A., Elwood, K.., & Hall, J. Reconstituted memory on a 4eriation
task. Unpublished manuscript, 1976.

Lesh, R. A, &Johnson, H. Models and app4ications as advanced organ.,zers.
Journal for Research in Mathematics education, 19769'7, 75-81.

Lovell, K. A follow-up study of some asp cts of the work of Piaget and
Inhelder into the 6hild's conception of space. British Journal
of Educational Psychology, 1959, 29, 104-117.

Lovell, K. A follow-up study of Inhelder and Piaget's 'The growth of
logical thinking. British Journal of Psychology, 1961, 52, 143-153.

Lovell, K., Healey, D.; & Rowland, A. D. Growth of some geometrical
concepts. Child Development, 1962, 21 751-767.

Martin, J. L. An analysis of some of Piaget's topological tasks from
a mathematical point.of view. Journal for Research in Mathematics
Education, 1976, 7, 8-25. (a)

Martin, J. L. A tesf with selected topological properties of Piaget's
hypothesis concerning the spatial representation of the young
child. Journal for Research in Mathematics Education, 1976, 7,
26-39. (b)

Martin, J. L. The Erlanger Program as a model of the child's construc-
tion of space. In A. R.Osborne& D. A. Bradbard (Eds.), Models
for learning mathematics. Columbus, Ohio: ERIC/SMEAC Science,
Mathematics, and Environmental Education Information Analysis
Center, 1976. (c)

Modenov, P.S., & Parkhomenko, A. S. [Geometric transformations]
(M. B. Slater, trans.). New York: Academic Press, 1965, 1966.

Montessori, M. [The Montessori method] (A. E. George, trans.).
Cambridge, Mass.: Bentley, R., 1964.

Moyer, J. C. An investigation into tne cognitive development of
Euclidean tranaormations in young children. Unpublished doctoral
dissertation, Northwestern University, 1974.



241

Musick, J. S. Relationship between motoric activity and cc,mitive
development as manifested by children's notions of the .symmetri,a1

nature of distance. Unpublished doctoral dissertati,n, Northwestern

. University, 1975.

Ontario Imstitute for Studies in Education. Geometry: Kindergarton

to grade thirteen. Toronto: The Ontario Institute for F'-udie

in Education, 1967.

Osborne, A. A. The mathematical and 'psychological foundations of

measure. In R. A. Lesh & D. A. Bradbard (Eds.), Number and

measurement. Columbus, Ohio: ERIC/SMEAC Science, Mathematics,
and Environmental Education Information Analysis Center, 1976-

Papy; F., & Papy, G. Graphs.ond the child. Montreal: Algonquin,

Education. Nouvelle, 1970.

Piaget, J. The child'c conception of number. New York: Norton, 1965.

Piaget, J.
Paul,

[Structuralism] (C. Maschler, trans.). Routledge & Kegan

1971.

Piaget, J. To understand is to invent. New York: Viking Press, 1973.

Piaget, J.,&'Beth, E. W. Mathematical epistemology and psychology.

Dordrecht, The Netherlands: D. Reidel, 1966.

Piaget,J.,& Inhelder, B. The child's coriception of space. New York:

Norton, 1967.

Piaget, J., & Inheldcr, B. Men'al imagery in the child. New York:

Basic Books, 1971.

Piaget, J., Inhelder, B., & Szeminska, A. The child's conception of

geometry. New York: Basic Books; 1960.

O. P. The lormation of children's notions Of space in
c.ection with the mastery of elements of geometry and geography.
J. Kilpatrick & I. Wirszup .(Eds.), Soviet studies in the psy-

chology of learning and teaching mathematics (Vol. 5). Stanford,

California: School Mathematics Study Group, 1971

Shah, S. A. Selected geometric concepts taught to children aged seven

to eleven. The Arithmetic Teacher, 1969, 16, 119-128.

Smock, C. D. Children's conception of reality: Some.implications for

educa.ion. Journal of Research and Development in Education, 1968,

1. 37.

247



242

Smock, C. D. Discovering psychological principles for mathemati7s
instruction. In R. A. Lesh (Ed.), Coznitive psychology and the
mathematics laboratory. Columbus, Ohio: ERIC/SMEAC Science,
Mathematics, and Environmental Information Analysis Center, 1973.

Standing, E. M. Maria Montessori: Her'life and work. New York:
Mentor-Omega, 1957.

Steffe, L. P. An application of Piaget--cognitive development research
in mathemtical education research. In R. A. Lesh (Ed.), Cognitive
psychology and the mathematics laboratory. Columbus, Ohio: ERICi
SMEAC Science, Mathematics, and Environmental In_ormation Analysis
Center, 1973.

Steffe, L.P., & Martin, J. L. On children's geometrical representation.
The Australian Mathematics Teacher, 1974, 30, 199-212.

Taback, S. F. The child's concept of limit. In M. F. Rosskopf (Ed.),
Children's mathematical concepts: Six Piagetian studies. New York:
Teachers College Press, 1975.

Trafton, P. R., & LeBlanc, J. F. Informal geometry in the mathematics
curriculum. In K. B. Henderson (Ed.), Geometry in the mathematics
curriculum. Thirty-sixth Yearbook of the National Council of Teachers
of Mathematics. Reston, Virginia: The Council, 1973.

Troelstra, R., Habermann, A. N., Groot, A. J., & Bulens, J. Transfor-
matie meetkunde 1. Gronigen, The Netherlands: J. B. Wolters, 1965.

University of Illinois Committee on SchooliMathematics. Motion geometry.
Books 1, 2, 3, 4. New York: Harper & Row, 1969.

Usiskin, Z. P. The case for transformations in school geometry.
Texas Mathematics Teacher, 1974.

Van Hiele, P. M. La pensee de l'enfant et la geometrie. Bulletin de
l'Association des Professeurs Mathematique de l'Enseignement Public,
1959, 198. 199-205.

Van Hiele, P.M., & Van Hiele-Goldof, D. A method of initiation into
geometry. In H. Treudenthal (Ed.), Report on methods of initiation
into geometry. Groningen, The Netherlandst J. B. Wolters, 1958.

Wagner, H. An analysis of the fraction.concept. Unpublished doctoral
dissertation, Northwestern University, 1975.

Weaver, F. (Ed.). Geometry units for elementary school. Stanford,
California: School Mathematics Study Group, 1971

248



243

Willifotd, H. J. A study of transformational geometry instruction in
the primary grades. Journal for Research in Mathematics Education,
1972, 3, 260-271.

Yaglom, I. M. [Geometric transformations] (A. Shields, trans.). New

York: Random House, 1962.

Yakimanskaya, I. S. The development of.spatial concepts and their role
in the mastery of elementary geometric knowledge. In J. Kilpatrick
& I. Wirszup (Eds.), Soviet studies in the psychology of learning
and teaching mathematics (Vol. 5). Stanford, California: School

Mathematics Study Group, 1971.

249



245

Participants

1. Donald Balka 20. Jacques Montangero

2. David Bradbard 21. John Moyer

3. Thomas Cooney 22. Alan Osborne

4. Arthur Coxford 23. Faustine Perham

5. Carolyn Ehr 24. Sidney Rachlin

6. Theodore Eisenberg 25. Edith Robinson

7. Stanley Erlwangcr 26. Mary Kay Smith

P. Lizabeth Fennema 27. Charles Smock

Karen Fuson 28. Curtis Spikes

10. Robert Hartfield 29. Ronald Steffani

11. Larry Hatfield 30. Leslie Steffe

12. James Hirstein 31. Ernst von Glasersfeld

13. Howard Johnson 32. Hazel Wagner

14. Richard Kidder 33 Relinda Walker

15. Charles Lamb 34. Arvum Weinzweig

16. Richard Lush 39. Harold Williford

17. J. Larry Martin 36. Francis Wilson

18. William McKillip 37. Izaak Wirszup

19. Michael Mitchelmore

250


