AOTHOR
TITLE

PGE DATE
NOTE

Calfee, Robert C.; Calfee, Kathryn Hoover Reading and Mathematics Observation System: Description and Measurement of Time Usage in the Classrooli.
[Apr 76]
19p.; Paper presented at the Annual meeting of the American Educational Research Associatioh (60th, Sar Francisco, California, April 19-23, 1976): For related documents, see ED 127 364-375 and TM 005 839-844

EDRS PRICE DESCRIPMORS

IDENTIFIERS

ABSTRACT

The Beginning Teacher Evaluation Study, Phase II, owas a research project on effective teaching behavior--what teachers do that significantly affects what and how pupils learn. The purposes of Phase II were to (1) develop an assessment system for measuring teacher and student behaviors and other factors which could influence each of them and their interrelationships and (2) generate hypotheses about the interrelationships among teacher and pupil behaviors and related factors. Subjects were 41 second grade and 54 fifth grade experienced teachers in eight school districts in California. The Reading and Mathematics Observation System (RAMOS) was one of two observational systems used in the study. With RAMOS, a trained observer can record continuously the events in a regular classroom in comprehensive detail and in real time. The system permits the observer to focus either on the teacher, a group of students, or a small number of target stadents, depending on the purpose of the observation. "Scores" from the observations were used as measures of teacher performance for the analyses done in the study. (RC)

[^0]Reading and Mathematics Observation System:
Description and Measurement of Thre-
Usage in the Classroom*-
by
Robert C. Calfee
Kathryn Hoover Calfee
Stanford University
 UNDER AGREEMENTS WITH THE NATIONAL IN. UNDER AGREEMENTS WITH THE NATIONAL IN.
STITUTE DF EDUCATION. FURTHER REPRO. STITUTE DF EDUCATION. FURTHER REPRO.
DUCTION OUTSIOE THE ERIC SYSTEM RE: DUCTION OUTSIOE THE ERIC SYSTEM RE:
OUIRES PERMISSION OF. THE COPYRIGHT OUIRES PERMISSION OF. THE COPYRIGHT OWNER:-
U.S. DEPARTMENT OF HEALTH.

EOUCATION E WELFARE
NATIOHAL INSTITUTE OF EOUCATION.
THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN. ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL. INSTITUTE OF EDUCATION POSITION OR POLICY
$:$
*Speech presented at the American Educational Research Association Meeting in San Fransicso, California, April 1976.

Feading and Mathematics Observation System:
Description and Measurement of
Time Usage in the Classronm*
by
Robert C. Calfee
Kathryn Hoover Calfee
Stanford University

The Reading and Mathematics Observation System, RAMOS, is designed for real time documentation of classroom activities of teachers, student groups, or individual students. It is best suited to observation of classroom instruction in the areas of reading and mathematics at the elementary level. With it, a trained observer can record continuously the events in a regular classroom in comprehensive detail and in real time. The"system pernits the observer to focus either on the teacher, a group of students, or a small number of target students, depending on the purpose to the observation.

Once an observation interval (generally between 30° minutes and an hour) is initiated, the observer records the events that transpire as a series of "line," each line containing categorical entries describing the nature of the event. These lines provide answers to such questions as:

Who are "the students being observed? How many are there in the group? Where are they located in the room? Which target students, if any, are in the group?

Who are the adults in the classroom? How many adults are there?. Where are they, and with what student groups are they associated? :

[^1]Ca1fee/Calfee - RAMOS Description/Measurement of Time Usage in Classroom

What is going on at any given time? What is each student group and adult doing? If engaged in an instructional activity, how many students and adults are involved, and where are they?

Who is doing the instructing? What is the nature of the instructor (teacher, aide, volunteer, tutor, etc.)? What role is the instructor playing (direct instruction, discipline, class management, etc.)?

What is the content of instruction? What subject matter is being taught? What skills and activities are involved? What materials are being used? What kinds of feedback are available to the students?

What is the response of the group to instruction? What kind of responses are required or expected of the students? What is the judged level of attention to instruction? Relative adequacy of performance? Amount of social interaction between students?

From the records obtained in this manner, several measures were extracted for the purposes of the BTES project. The primary aim of these measures is to describe the manner in which time is used in the classroom. The measures included (1) total time spent on activitier directly or indirectly related to reading and mathematics. (2) the character ind variety of those activities, and (3) the relative distribution of time spent in various activities.

Procedures for Conducting a RAMOS Observation
A RAMOS observer used several forms while observing in Phase II classrooms: a Start Form, an Event Form, a Debriefing Form, a Classroom Summary Record, and General Descriptive comments. The Event ${ }^{\circ}$ Form is most basic to the results described in this paper.
\because
Calfee/Calfee - RAMOS Description/Measurement of Time Usage in Classroom 11/76

The Event Form. (Figure 1) is a labeled coding form used for recording

Figure 1 about _here _-

Figure 2 about here each classroom event or change in real time. The initial condition of all existing groups is fully described, the instructor and the content of instruction is documented, and certain aspects of the student response are recorded. After the first lines have been completed, further lines are added as necessary to document any discernible changes in a group or in a target student within a group. Movement of students between groups or the formation of a new group also requires a line.

Each event line records the time an event begins and indicate the group involved. Notations specific to instructors or target students are coded with the group association. Five major categories are recorded on each event line in RAMOS: Time, Group, Instructor, Content, and Response. Within each category, codes are entered in fields from the RAMOS Summary Codes sheet (Figure 2).

The fields for the TIME category are time an event begins, recorded to the nearest minute on a 24 -hour clock, and status, an indication of the focus of the observer at this time.

The GROUP category fields are the ID number indicating to which group the line applies, the number of students in the group, grid or relative position within space, location within room, and density of students in the group.

The INSTRUCTOR category describes the activities of the instructors at a given time by the following fields: instructor ID shows the specific. instructor, followed by his classification, the role he is now assuming; his availability to students, how student-instructor interactions aré being conducted, and mobility of the instructor.

$$
\begin{aligned}
& \text { Calfee/Calfee - RAMOS Description/Measurement of Time Usage in Classroom } \\
& 11 / 76 \text {. }
\end{aligned}
$$

The CONTENT category fields include the subject being studied, reading main and second skill, math main and second skill, main and secondary material, aim of instruction, activity used for instruction, feedback pattern of instructor, and feedback sign to students.

The RESPONSE category fields indicate the task assigned to the group of students, the focus of attention of the students, their level of social interaction, output rate, quality of performance, level of attention and involvement, physical activity, and noise level. There is also a column to record a code indicating when a specific target student is referred to by this line.

Analysis of RAMOS Protocols
The basic unit of analysis for the RAMOS protocols is the student minute--a slngle number minute of student time during a class-period. The RAMOS analysis prcgram computed, within each category of the system, the number of student minutes falling within each of the codes assigned to that category. For instance, suppose that, during a given episode, one group of ten students spends 20 minutes reading, 5 minutes in class business; a second group of six students spends 12 minutes in mathematics, 8 minutes in reading and 5 minutes in class business. Then under the SUBJECT category, the distribution of student minutes would be 248 for the Reading code (20×10 for the first group, plus 6×8 for the second), 72 for the Mathematics code. (6×12 for the second group), and 80 for the Business code (10×5 for the first group, 6×5 for the second group). Of the total 400 minutes in the episode, the Reading code has the highest percentage, 62%, followed in second place by Business with 20% and
\because
Calfee/Calfee - RAMOS Description/Measurement of Time Usage in Classroom -5-

Mathematics with 18\%. The analysis program computed the quantitiesstudent minutes and percentages--for each code, and arranged the results in rank order from highest to lowest. The series of observations for each of the 95 teachers were then combined into a single record for use in various analysis. Each teacher-class Mas observed on two to eight occasions. The data are averages over all observational occasions, so we are dealing with a single cumulative observational record for each teacherclass.

The primary interest in this study was to uncover any strong relations of teacher characteristics and practices to student outcomes in reading and mathematics. Accordingly, time usage in the areas of reading (and other closely allied language arts) and mathematics was chosen for analysis. Within these subject matter areas, four major categories were selected: role of the instructor, aim of instruction, instructional activities, and main materials. These categories answer the questions: What was the teacher doing (Role), to what purpose (Aims), by what means (Activities), and with what resources (Materials)? These categories were chosen a priori as most likely to bear a relation to the overall pupil measures of reading and mathematics.

The relative distribution of time usage by the target teacher (the "main instructor") in the variety of roles in the RAMOS data set is shown in Tables 1-6.

Table 1 about ${ }^{*}$. heré -

Table 1 shows the breakdown of time usage in the different subjectmatter codes. This table gives the proportion of teacher-class units in which the code was observed at least once, the, mean percentage of student minutes falling in that code, over all teacher-class units, and the mean

Calfee/Calfee - RAMOS Description/Measurement of Time Usage in Classroom

student minutes for the subject of teacher-class units in which the code was observed at least once. For example, in grade 2, the subject-matter code "Language" was observed in 70% of the classes. The mean percent of student minutes falling in that code over all classes was 8.7; the mean percent of student minutes falling in that code for only classes in which the code was observed was 12.4 .

The most noticeable result was the variation of direct instruction
Table 2 about here.

Calfee/Calfee - RAMGS Description/Nieasurement of Time Usage in Classroom 11i76

Table 4 about here
time was spent on new ideas or topics, and orly in fifth grade language arts was any substantial amount of time spent in the application of knowledge, skills on concepts to practical probiems beyond a school context.

The breakdown of time usage by grade and subject matter for the category of Instructional activities (Table 4) suggested that students spent most of their time at seatwork. Fifth graders were ouserved to do so much more than second graders, and seatwork was observed more frequently in mathematics than in reading. This pattern parallels the variation in facilitation as an instructional role. Discussions and question-answer episodes took up about 20 to. 25 percent of the time. About 10 percent of the reading time in second grade was spent in oral reading recitation and about' the same proportion of the mathematics time was spent in games of some sort.

The breakdown of time usage by grade and subject matter for the category Main materials (Table 5) suggested that there was large shifts in patterns of materials usage which were a function of grade level anis subject matter. Main instructional materials were those that seemed of chief importance to the activity carried out by the student. If other materials also played a significant role, this was recorded as secondary material. Secondary material (Table 6) reflects the extensiveness of the instructional materials being used at the time in the classroom. For example, in mathematics instruction, it is the difference between a lesson in a workbook, and a lesson in which the student also uses a number scale to check his work. An example in reading is the difference between a lesson where the student reads to himself from a book and one in which he records his thoughts and reactions in writing as he reads.

```
a1fee/Calfєe - RAMOS Description/Measurement of Time Usage in Classroom 11/76
```

There were large differences in the patterns of time usage as a function of grade level and subject matter. Books were used more in reading than in mathematics, and more at the later than the earlier grades--an expected result. Workbooks were common everywhere, but especially in second grade mathemtics. They also occupied a surprising amount of the time in fifth grade language arts and reading. About 15 to 20 percent of the time, students were left on their own with paper and pencil. In second grade, students were working with no materials about 20 percent of the time; it seems likely that much of this time was accounted for by class disćussion. Only in second grade mathematics was a considerable. amount of time spent with manipulative (Cuisenaire rods, number scales, etc.) or equipment (film strip projectors, tape recorders, etc.): Generally, instruction in these classrooms was carried out with the old standbysbooks, paper and pencils, and chalkboard.

Two sets of correlations among various combinations of the RAMOS variable! were especially noteworthy. One seems to encompass a pattern of direct instruction in whịch books and workbooks are used by students at their seats for practice and review purposes. The second pattern appears to represent situations in which teachers are more likely to spend their time in something: other than direct instruction. Students are engaged with new concepts and facts ' ${ }^{\text {c }}$ with unconventional mateials and often in group discussion. More detailed examination of the data would be needed to confirm the existence of such patterns but they do seem to parallel descriptions of contrasting teaching styles found in contemporary classrooms.

These are the variables that were entered into the structural analysis. They suimarize a great amount of information, and undoubtedly some useful relationships have been obscured along the way. However. given the thesis that total time usage is one of the more fundamental variables determining instructional effectiveness, these sumary variables represent a reasonable choice for initial stages of hypotheses generation.

References:

Calfee, R., \& Calfee, K. H. Reading and Mathematics Observation System: Description and Analysis of Time Expenditures. Beginning Teacher Evaluation Study, Phase II, 1973-74, Final Report, Volume III. 2. Princeton, N. J.: Educaíional Testing Service, 1975, 1976.

McDonald, F. J., \& Elias, P. J. The Effects of Teaching Performances on Pupil. Learning. Beginaing Teacher Evaluation Study, Phase II, 1973-74, Final Report, Volume I: Princeton, N. J.: .. Educational Testirg Service, 1975, 1976.

RAMOS EVENT FORM

 not to be used tithout the express ;ermission of the authors.
Mnmin

1974 by Robert C. Calfee and Kathryn A. Hoover. All Rights Reserved.

Table 1
Basic Statistics for Time Usage in Subject-Matter Category.

	Code	\% of classes with code observed	Mean \% Student - Minutes	
			Over all classes	Given code observed
Grude 2	Reading	100	38.4	38.4
	Language	. 70	8.7	12.4
	Math	98	21.7	22.2
	Science	18	2.9	16.7
	Soc. St.	13	1.3	9.8
	Art/Music	- 38	2.4	6.3
	Business	85	8.6	10.1
	Free Choice	- 55	4.6	8.3
	Wait	60	3.3	5.5
	Play	50	3.1	6.2
Grade 5	Reading	96	34.2	35.6
	Language	76	13.6	17.7
	Math	98	25.2	25.7
	Science	16	1.2	7.5
	Soc. St.	41	6.8	16.6
	Art/Mửsic	14.	1.4	2.0
"	Business	80	6.9	8.6
	Free Choice	31	2.3	7.4
	Wait	67	3.6	5.4
	Play .	20	1.0	5.0

14

\rightarrow эTqPi

Basic Statistics for Time Usage in Instructional Activity Category

[^0]: *** * Documents acquired by ERIC include many informal unpublished. * * materials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this afrects the quality * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the guality of * * supplied by EDRSGare the best that can be made from the original.

[^1]: *Speech. presented at the American Educational Research Association Meeting. in San Francisco, Aprill 1976.

