A OTHOR	Owens, Janet
tITLE	A Field Study in Human Ecology. [Aids to
	Individualize the Teaching of Science, Mini-Course
	Onits.]
INSTITJTION	Frederick County Board of Education, Md.
POB DATE	
NOTE	24p.; For relateả Mini-Course Units, see SE 021
	624-656; Not available in hard copy due to marginal
	legibility of original document
AVAILABLE FROM	Frederick County Board of Education, 115 East Church
	St., Frederick, MD 21701 (no price quoted)
EDRS PRICE DESCRIPTORS	MF-\$0.83 Plus Postage. HC Not Available from EDRS.
	*Biology; *Ecology; Individualized Instruction;
	Instructional Materials; Process Education; *Science
	Education; Science Materials; Secondary Education;
	*Secondary School Science
IDENTIFIERS	Human Ecology; Maryland (Frederick County);
	Minicourses

ABSTRACT
This booklet, one of a series developed by the Frederick County Board of Education, Frederick, Maryland, provides an instruction module for an individualized or flexible approach to secondary science teaching. Subjects and activities in this series of booklets are designed to supplement a basic curriculum or to form a total curriculum, and relate to practical process oriented science instruction rather than theory or module building. Included in each booklet is a student section with an introduction, performance objectives, and science activities which can be performed individually or as a class, and a teacher section containing notes on the science activities, resource lists, and references. This booklet outlines activities for utilizing a cemetary to investigate population trends, life expectancy, and causes of death. The estimated time for completing the activities in this module is one week. (SL)

[^0]
Human Ecology

Aids to Individualize the Teaching of Science

S OEPARTMENT OF HEALTH. EDUCATION G WELFARE NATIONALINSTITUTE OF EDUCATION
 -15 DOL VEN P "SS HEEN WEPWO- THE PERSCRDNGRG NIXATION GKIGIN. UNE T PLV + IOF WEW OW OPINIONS ATED DC NOI VECESSAKIV WE.FNE EOCSTONBMIION OH BOI ICY
 MINI-COURSEUNITS

BOARD OF EDUCATION OF FREDERICK COUNTY

$$
1974
$$

1
 A FIELD STUDY IN HUMAN ECOLOGY

Prepared by
Janet Owens

Estimated Time for Compietion

1 week

Frederick County Board of Education

Mini Courses for

Physical Science, Biology, Science Survey,

Chemistry and Physics

Commit: \pm ミ A mbers

Dr. N1Fred Thackston, Jr.
Assistant Superintendent for Instruction

```
Marvin Blickenstaff
    Charles Buffington
    -Beverly Stonestreet
    Jane Tritt
    Paul Cook
    Janet Owens
    Sharou Sheffield
    Juhn Fradiska
    Fol:n Geist
    Rcss Foltz
    Walt Brilh rrt
    Marvin Spencer
    Supervisor of Science
```

Frederick, Maryland

The writing of these instructional units represents Phase II of our scionce curriculum mini-course development. In Phase I, modules were written that involved the junior high disciplines, life, earth and physical science. Phase II involves senior high physical science, biology, chemistry, pliysics and science survey.

The rationale used in the selection of topics was to identify instructional areas somewhat difficult to teach and where limited resources exist. Efforts were made by the writers of the mini-courses to relate their subject to the practical, real world rather than deal primarily in theory and model building.

It is anticipated that a teacher could use these modules as a sipplement to a basic curriculum that has already been outlined, or the; ou..d almost be used to make up a total curriculum for the entire year in a coupis of disciplines. It is expected that the approach used by teachere will vary from school to school. Some may wish to use them to individualize instruction, while others may prefer to use an even-front approach.

Primarily, I hope these courses will help facilitate more process (hands on) oriented science instruction. Science teachers have at their disposal many "props" in the form of equipment and materials to help them make their instructional program real and interesting. You would be remiss not to take advantage of these aids.

It probably should be noted that one of our courses formerly called sen ior high physical science, has been changed to science survey. The intent being to broaden the content base and use a multi-discipline approach that involves the life, earth and physical sciences. It is recommended that relevant topics be identified within this broad domain that will result in a meaningful, high interest course for the non-academic student.

ALFRED THACKSTON, JR.
Assistant Superintendent for Instruction

ACKNOWLEDGEMENTS

Mrs. Judy Fogle, Typist
Mrs. Helen Shaffer, Printing Technician
Mr. Carroll Kehne, Supervisor of Art
Mr. Gary Dennison, Printer
Mr. Bryant Aylor, Art Teacher

CONTENTS

Page
A. Preparation for Trip 1
B. Field Trip to Cemetery 3
C. Tabulation of Data 3
D. Graphing the Total Class Data 4
E. Conclusions from Graphs and Field Study 4
Teacher Section Blue Pages 8

A cemetery provides many clues to the past of a community, including many ecological and population-related trends. A field study may offer information about trends in mortality, life expectancy, and causes of death. From your data, you should be able to di'scuss the reasons for these trends and the possible consequences of them.

OB.JECTIVES

The student should be able to:

1. collect data in a local cemetery, by reading the information recorded on the headstones.
2. illustrate the total results by graphing the data.
3. analyze the collective data, explaining the possible reasons for any changes in mortality or life expectancy and possible consequences of them.
4. discuss the validity of the field study, compare assumptions to facts, and identify variabies affecting the data.

ACTIVITIES

a. Preparation for Field Study

Instructions: Our trip to a local cemetery will permit us to collect data representing the local community from the years 1820-1970. Since we obviously cannot record data from all the headstones, random sampling is very important. Therefore, do not look for the oldest ombstone or the small ones for infants. Simply record data from every second or third stone you see. Only one member of a family, however, should be included, that being the first one to catch your eye.

It is also important for each team to stop at a different location within the cemetery and for each team member to cover different areas within that location. This prevents any overlapping of data so two people do not read the same headstone, thereby recording it twice.

The teacher will assign your group to a particular section of the cemetery before leaving. on the trip, so that both old and new sections will be included. Approximately one hour will be spent collecting the data in the cemetery.

Look at Handout \#l. This will be the paper you will use to collect your data. Data will be collected by recording the individual's age category when he died (1831-40, etc.) not the year in which he was born.
ion each headstone, you will have to record or identify two facts:

1. how old the person was
2. year of death

Sample Exercise:

Here is a reading from a headstone:

James Linthicum
May 28, 1838
December 18, 1867
How old was the individual?

$$
\begin{aligned}
& \text { By subtracting } \begin{aligned}
& 1867 \\
& \frac{1838}{29} \text { years old }
\end{aligned} . \\
&
\end{aligned}
$$

He was 29 years old. Look at Handout 非1 and find the correct age category for him (21-30).

Now for the last fact: The year of death - 1867
Find the corrict decade on the vertical axis: 1861-1870
*To record this individual data, start at the bottom of the chart, right there at the correct age category, 2l-30. Move up that column until you reach the block directly across from the correct decade in, which the individual died - 1861-1870. In that block, place one tally mark for this individual.

In your field study, you may have several tally marks in certain blocks sipce many individuals will probably be in the same age and decade categories.

Now see if you can successfully record the tally mark for this reading:

James Jones
Born June 6th, 1830
Died Jannary 18th, 1879

$$
-2-
$$

Sometimes you will find readings that are easier like the following:
Elizabeth Jones
September 24, 1896
in the 73rd year of her age
The validity of this study depends on the accurate recording of the data, so take your time and use scrap paper for subtracting to find the individual's age. The total class data depends on you, the independent collector.

One final reminder: Bring the handout, pencil or pen, scrap paper, and a clipboard or something to write on for: the field study.
b. Collection of Data: Field trip to nearby cemetery
c. Tabulation of Data:

Team Data: Today each member of the team will give his data to the team leader. You will use an easy, quick method of totalling your team data.

First, the team leader should obtain another Handout \#l from the teacher. He should then label the horizontal and vertical blocks to make it easier in tallying the number of marks in each block.

For instance, on the top of the handout, start lettering each block from A to K. (See the example on the blackboard) Then number the vertical blocks, starting at the top, 1-15. (Again, look at the example on the blackboard)

Now it will be easy to simply call out individual blocks by their letter-number combination For example, find the top left-corner block. This would be block "A-1". The block di.rectly below it would be block "A-2", and so on.

The group should be sitting together, with. each member having labeled his or her collecting handout in the same way. Once everyone has the correct labeling of letters and numbers, the group can assemble the data.

The team leader will call out block "A-1". Each member of the team, in :.rn, will rell the leader how many marks he has in that block. The number can simply be called out with each member taking his turn. The team leader will then add up the numbers and record the total in that block on his handout.

Continue using this same procedure with all the blocks until the entire handout is completed．Your group may be slow at first in adding the marks for each block，but you will speed up as you catch on to the procedure

Tabulating Class Data：All the team leaders，once the data from all the groups are tallied，will use the same procedure as with the smaller groups to add and record the class total．One person will record the data for each block， as the team leaders call out their individual group＇s data for it，and all the numbers are added up for each block．

The total class data will be given to each student to use as a reference for the graphs that he will make and the questions on the worksheet．
d．Graphing the Class Data
Instructions：First，take your handout of the class data and draw a line under the decade 1861－1870．Next，draw a line under the decade isil－1920．You have now divided the 150 －year pericd into three 50－year time periods：

1820－1870
1871－1920
1921－1970
You will make a graph，plotting the data for each ime period．Thus， you will have three grarhs：

G1aph 非1－Time Period of 1820－1870
Graph 非2－Time Period of 1871－1920
Graph 非3－Time Period of 1921 － 1970
For each graph，you will use the same labeling for the horizontal and vertical lines．See the sample graph，showing the correct procedure for labeling the graphs．Use this procedure for each graph．

Graph $⿰ ⿰ 三 丨 ⿰ 丨 三 一 4$－Comparing the Three Time Periods
Instructions：Use the same labeling procedure for this graph and plot each of the three lines on it．You will have to color－code them so you can tell the time period of each line．Include a key shrwing the color matched to the time period．
e．Conclusions：Analyze the Data
Complete Worksheet 非，using your graphs before the class discussion．
Data Collected from Frejerick County
Han:

> Age Category of Individual at Death
$\frac{\text { Decade in rinich }}{\text { Individual Died }}$
$1821-30$
$1831-40$
$1841-50$
$1851-60$
$1861-70$
$1871-80$
$1881-90$
1891-1900
$1901-10$
$1911-20$
$1921-30$
1931-40
1941-50
1951-60
1961-70
-5-
11

Graph

践				

Time Period of

H- -

AGE CATEGORY OF INDIVIDUALS AF DEATH

\qquad Period \qquad Date \qquad

1. How does this field trip relate to the topic of population?
2. Compare the three lines on Graph 非.
3. What general trends, if any, are present reiating to infant mortality and death control?
4. Could you identify causes of death in certain time spans?
5. What other conclusions can you draw from the data?
6. Where else could one obtain similar and perhaps more exact records?
7. List ways in which the data may be biased.
8. Are you:- conclusions, assumptions or facts?
9. Select a cemetery with the following characteristics:
u. large enough to collect sufficient data without any repetition (students should be able to spread out and thus, avoid any chance of reading the same tombstones)
b. has old and new sections that range from the dates of the study, from 1820-1970.

SUGGESTED CEMETERY: Mt. Olivet Cemetery in Frederick, Marvland meets the above requirements. Also, the lettered sactions within the cemetery enable the teacher to organize the trip, by assigning teams to the lettered sections before arriving on the day of the study. This procedure eliminates any confusion on the siudent's part as to what area of the cemetery he will cover.

In the past, student teams have been started at the outside sections of the cemetery and ail groups then work their way back to the front of the cemetery where the bus usually waits. The teacher may, the day before the study, draw a map of the cemetery on the board, showing the roads and lettered sections; explaining the assigned areas, where they are, and how to work back to the meeting place at the end of the hour spent collecting data.
3.

Visit the selected cemetery before the actual study to be sure that a high school group may use it for the purpose of the study. Also decide at that time, where the teams will be working and that both old and new sections will be covered.
3. Teams usually consist of four or five students, with a team leader being responsible for the group, and the tabulation of team data.

4 . Mention to the students before going on the trip to be aware of uther visitors in the cemetery and to avoid collecting data near them.
5. The day before the study, discuss the method of collecting data indicated in the student's section "a". Some students might be confused about how to use Handout fly.
6. They should bring the handout, clipboard, scrap paper, and pen or pencil with them on the field study.

Duriut the Field Study:

1. The teacher should move around the cemetery, helping students with the data, and supervising. Also, students may become interested in just lookin!, at the headstones, reading the epitaphs or studyins; lle designs. \because on mav need to remind them to continue their tallying of the individual ande and decade of death.

Tabulation of Data：
1．Cover the instructions with the students as described in part＂c＂．

Included in hits section are sample copies of the handouts used in la！nlating leam and class data．You will have to run off many copies of Handout 非1 since each student will need one for collecting，each ＇cam will need for for tabulation of data，one is necessary for the total class data，and then each student should have a copy for writing down the class data for graphing．
！Llustrate on the board the correct method（see sample Handout ${ }^{\prime \prime} 1$ ， copy 2）uf labeling their collection sheets for easy tabulation．

Craphing the Total Class Data：
L．Discuss all instructions with students and individuals mav need assistance in graphing．Included in the student section is a sample rraph showing the correct procedure for labeling and setting up their graphs．Notice for each 50－year period，the student must add up the total number of individuals who died in each age category．

2．Be sure that all students are using the correct procedures for the graphs．Graph $\#_{4}$ comparing the three 50 －year periods is perhaps the most important for analyzing the data．Sample graphs from a previous study in Mt．Olivet Cemetery are included in this section for your reference．You may want to use these graphs for comparison with your results，attempting to explain any differences．

3．For class discussion，cover the questions on Worksheet 非 1 and you may want to make a transparency showing the results of graph 排．

-10-
16

Total Class Data

\qquad

7. Which level of student used this unit? \qquad
8. How did you use this unit - class, sunall group, individuai? \qquad
\qquad "

PFASE RETURN TO SCTENCE SUPERVISOR'S OFFICE AS SOON AS YOU COMPIETE TUE COURSE.

SCIENCE MINI-COURSES

PHYSICAL SCIENCE
ELECTRICITY: Part 1
(Types of Generation of Electricity)
ELECTRICITY: Part 2
(The Control and Measurement of Elertricity
ELECTRICITY: Part 3
(Applications for Electricity)
CAN YOU HEAR MY VIBES?
(A Mini-course on Sound)
LENSES AND THEIR USES
WHAT IS IT?
Identification of an Unknown Chemical Substance

BIOLOGY

A VERY COMPLEX MOLECULE:
D.N.A. The Substance that Carries Heredity

Controlling the CODE OF LIFE
Paleo Biology - BONES: Clues to Mankind's Past
A Field Study in HUMAN ECOLOGY
Basic Principles of GENETICS
HUMAN GENETICS - Mendel's Laws Applied to You

Prepared by
Marvin Blickenstaff
miarvin Blickenstaff

Marvin Blickenstaff

Charles Buffington
Beverly Stonestreet
Jane Tritt

Paul Cook
Paul Cook
Janet Owens
Janet Owens
Sharon Sheffield
Sharon Sheffield

SCIENCE SURVEY

WEATHER Instruments
TOPOGRAPHIC Maps

CHEMISTRY

WATER
Ross Foltz
PHYSICS
PHYSICAL OPTICS
Walt Brilhart

[^0]:

 * Documents acquired by ERIC include many informal unpublished *
 * materials not available from other sources. ERIC makes every effort *
 * to obtain the best copy available. Nevertheless, items of marginal
 * reproducibility are often encountered and this affects the quality
 * of the microfiche and hardcopy reproductions ERIC makes available
 * via the ERIC Document Reproduction Service (EDRS). EDRS is not *
 * responsible for the quality of the original document. Reproductions *
 * supplied by EDRS are the best that can be made from the original.

