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Chapter .7
PERMUTATIONS AND SELECTIONS

7-1. The Pascal Triangle

Five students form a club. We shall call them by their
initials A, B, C, D, E. Naturally, the first order of business
in the club 1s to choose a refreshment committee. It is agreed
that the committee should have three members. How many possibil-
" ities for the membershlip on the committee do you think there are?
One possibllity would be a commlttee consisting of B, C,

" and E, We might abbreviate this possible committee by the
symbol (B,C,E}.

Class Exerclses 7-la

1. Another possible membership list consists of A, D, and E.
Write the abbreviated symbol for this case.

2. Does the committee {B,E,A} have the same members as the
committee (E,A,B}?
3. Gilve two other symbols, each of which names the committee

mentioned in Problem 2,
I, Make a 1list of all the‘pggsible éommittees of three members,
5. How many committees aféqin your list?
6. Of how many of these committees is D a member?

7. Comﬁafe the number of committees of which B 1is a member and
the number of those which include D.

(Answer the following questions without doing any more counting.)

8. How many of the committees do not include A?

9
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9. What is the ratio of the number of committees including E
to the number of possible committees? (Did you answer this
question without further counting?)

*.10.. How many committees have both A and C as members? We may
gﬁsily answer this question without looking at our 1ist of
all the possible committees. We observe that since a
committee (A,C,?} has two members specified, then there 1is
only one vacancy to be filled. How many possible choices are
there for the third member? Thus three of the ten possible
committees include both C and A,

11. What is the ratio of the number of possible committees
" "including both B and E to the number of committees

including B?

Whenever three of the five students are chosen for a special
purpose, such as membership on a committee, then the remaining two
have also been chosen--chosen, in the sense of not serving on this
particular committee. In other words, the seleztion of a committee,
'in effect, separates the club members into two sets. One method
for selecting the membership of a committee is to decide which
club members will not serve. For example, if it 1is decided that
a committee shouid not include C and D, then we know that the

committee is {A,B,E).

12. Name the committee determined by the condition that A and
E have been chosen to be non-members,

Pl

13. Which two students are picked as being non-members in (E,B,C}?
The selection of a committee of three members also means a
choice of another committee with two members, namely the other
two of the five club members. For example, the selection cf
{E,B,C} determines the two-member set or committee (A,D}.

14, Since there are ten possible committees with three members

each, how many possible committees with two members each are
there?

10
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15, Since six of the possible three-member committees include B,
how many of the possible two-member committees exclude B?
16, How many of the possible two-member committees include C?

17. Find the answer to Problem 16, using the method of filling
the vacancy in (C,?]).

Exercises 7-la

1, From the club (4,B,C,D,E}, one vossible committee with four
members is {A,B,D,E]}.
(a) Make a 1ist of all the possible committees, each with
four members.

(b) How many in the club are excluded each time a committee
with four members is formed?

(c) Make a 1ist of all the possible committees with one
member each.

(d) Wnat relationship is there between the number of
possible committees with four members each and the
number of possible committees with one member each?

(e) How many committees are there with all.five as members?
2, A club has four members whom we may call K, L, M, N.

(a) How many possible committees in this club could have
four members?

(b) How many possible committees could be formed with one
member each?
(c) Name each of the possible one-member committees.

(d) To each one-member committee there corresponds, in a
natural way, a committee with three members. What is

that natural way?

(e) Use parts (c) and (d) to make a 1list of the possible
committees with three members each,

11
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(f) Make a list of the possible committees with two members
each.

3. Make a list of all the possible committees, and note how many
committees there are of each size in & oclub with three
members, (Call the club members P, Q, and R.)

§. Do as directed in Problem 3 for a oclub with two members.
Name the members U and V.

5. Do as directed in Problem 3 for a e¢lub with Just one member,

6. A family would enjoy each of four vacation spots., It is
decided to choose two of the four and spend part of the
vacation time at each of the two. How many possible choices
are there for th% pair of vacation places?

7. 'The refrigerator holds two cartons of ice cream, The dairy
has five flavors, and the family always likes to buy two
different flavors. How many times can the family go to the
dairy and bring home a different pair of flavors?

Let us make a table showing the number of possible committees
with a given number of members from a club with five members.
This table will summarize several of the results we have obtained
in previous problems, 1In a club with five members, there are 5
possible committees with one member, 10 committees with two
members, 10 committees with three members, 5 committees with four
members, 1 committee with five members. The selection of a
committee which includes all five club members (sometimes referred
to as the 'committee of the whole") means that there are zero club
members not serving. Thus we may balance our table by saying that
there is one possible committee with zero members. (You may wish
to compare this agreement with the remark that there is Just one
empty set.)

If we arrange our data according to increasing size of
committees, we have the followlng sequence:

1 5 10 10 5 1

[sec. 7~1]
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These six numbers tell us how many possible committees of various
sizes can be chosen from a club membership of five,
The same type of data, for a club membership of four, is the

following:
1 4 6 4 1
Be sure that you understand the significance of each of these five

- entrles. | .
We riow have two of the rows in the table we are constructing.

sl Class Exerclses 7-1b

1. In particular, what does the last 1 1in the data
1, 4, 6, 4, 1 mean?

2. What does the first 1 mean?

3. What is the corresponding listing for amplub membership of
three? - o

4, How can you interpret the data
1 2 1 2

5. What data of this type do we have for a club.with only one
member? ; .
. Let us collect into a table the dxta for the various
clubs. Each row of the table belew shows the information for
a club of a certain size,:

1 1
1l 2 1l
1 3 3 1
1 4 6 b 1
1 5 0. 10 5 1

Let us examine again the entry in the table telling how many
‘possible committees of thrée members each can be named from the
13
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club (A,B,C,D,E}. In the table the entry is which of the 10%s?
A committee of three may include E or it may not. We will
--8tudy these two cases 1n more detail.

6. How many possible committees with three members include E?

7. A committee including E 1s of the type (E,?,?}. How many
vacancies appear? From how many members can these vacancies
be fllled?

8. In view of Problem 7, compare the answer to Problem 6 with
the number of possible two-member committees in a ¢lub of
four members, ‘

9. How many pdssible committees with three members exclude E?

10. A committee excluding E 1s of the type {?,?,?} where no
blank may be fllled with E. How many vacancles appear?
From how many possibilities can these vacancies be fillled?

11. In view of Problem 10, the answer to Prcotlem 9 1s the same as
" the number of commlittees with (how many?)v l_ members
from a club of (how many?) members,
By enclircling we show in the table below the three
entries we'have been studying.

1 1
1 2 1 -
1 3 3 1
1 4 1
1 5 10 5 1

The éntry 10 1is the sum of the two numbers, 6 and 4,
nearest it on the preceding line. :

The table we have been studylng 1s a part of the array known
as the Pascal ‘triangle. (The i‘rench mathematician, Pascal, seven-
teenth century, contributed to geometry and the theory of
‘probability.) The table would resemble even mecre an edqullateral
triangle if we supplied a vertex at the top; this 1s sometimes

14
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done, .but we shall not be concerned with it. In our version of the
Paséal triangle, the first, second, third, fourth, and fifth rows
show the numbers of possible committées from a club of one, two,
three, four; and five members, respectively. Copy the "triangle"
and add the row corresponding to a club with six members.

Exerclses 7-1b

1. Check that (except for the ones) every entry in the table is
the'sum“of,the two numbers nearest it on the pzeceding line.

2. (a) Wwhat does the 6 1in the fourth row mean?
(b) ‘What does the first 3 in the third row mean?
3. (a) What does the second 15 mean in the sixth row?
(b} What does the second 10 mean'in the fifth fow?

4. (a) which entry indicates the number of possible committees
with two members formed from a club of six members?

(b) Wnich entry indicates the number of possible committees
with one member formed from a club of five members?

5. A-club has six members, which we denote as A, B, C, D, E, F.

(a) Some of the possible committees with two members are
{(a,B}, (A,Cc}, {C,E}. Make a 1ist of all fifteen of
these committees. (Write your 1ist down a page, using
fifteen rows.)

(b) ©On the right-hand side of your answer to (a), make a 1ist
of all the possible committees with four members.
Specifically, for each committee in the 1ist for (a),
write beslde 1t the committee whose four members are
excluded from the committee with two members. As an
example, one line on Yyour answer sheet will be:

{a,c] (B,D,E,F)

(¢} After you have written your list of commlittees with four
members each, how can you obtailn the number of these

[sec. 7-1]
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possible committees by adding two numbers obtained.from
the fifth row of the Pascal triangle?

(d) Make a complete list of all possible committees with
three members each. :

(e) Does the number of committees listed in (d) agree with a
number obtained from the fifth row of the Pascal
triangle?

6. Find the seventh row of the Pascal triangle.
7. Find the elghth row of the Pascal triangle.

8. What are the first two entries (on the left) in the twenty-
third row of the Pascal triangle?

9. What are the last two entries (on the right) in the fifty-
seventh row of the Pascal trlangle? '

7-2. Permutations

Suppose that the ciubt whose five members are A, B, C, D, and
E chooses an executive cc.uilttee to conduct the business. The
executive committee has three members and is composed of B, D,
and E. These three members, in a meeting of the committee,
decide that they should assign responsiblilities. One should be
chalrman, another be secretary, and the third be treasurer for the
club., In how many ways do you bellieve these jobs can be given to

"the three?

Class Exercises 7-2a

1. If D is chosen chalrman, in how many different ways can the
other two jobs be distributed betveen B and E?

2. List each of these ways in detail, by telling which Job each
one would have. )
- 16 ;
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If E 1is chosen chairman, in how many different ways can the
other two be given jobs?

In how many different ways car the three offices be assigned
to the three if B 1is chairman?

In how many different ways can the three offices be assigned
to the three members of the executive committee?

Exerclses 7-2a

A club has eight members whose initials are A, B, C, D, E, F,
G, H. An executive committee (A,F,i) distributes its Jjobs
among 1ts members. One possible way is:

Chalrman A, Secretary H, Treasurer F,

(a) Make a 1ist of all possible ways of assigning these three
Jjobs to the three members of the committee so that each

person has a Job.
(b) How many ways are there?

Four boys--Paul, Ron,'Sam, and Ted--wlll participate, one

-af'ter another in a relay race.

(a) One possible order of running is as follows:
First, Paul; second, Sam; third, Ron; fourth, Ted. Make
a 1list of ali the possible orders of performance, Note:
One way to make this 1list is to fix attention on the
position and tabulate how the boys can be fitted in (use
P, R, S, and T to represent the boys). Such a- table
might begin like this:

17:
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‘;UE‘;U‘;U

1234 123% 1234 1234
PRST RPST "SPRT TPRS
PRTS RP T S. .. T. . .
PSRT R... S... T ...
PSTR R. .. S... T ...
PTRS R... sS. .. T . .
PTSR R. .. s. . . ...

* Complete the listing. Save it for further use.

(b) How many different teams are in your list?

Assume that a group of people are asked in a poll to express
their preferences concerning potatoes. The possible cholces
are baked, mashed, and frerich-fried potatoes. They are to
indicate which they like best, next best, and least. How
many different orderings of preferences are possible?

Three different presents are given to three children. In how
many different ways can the gifts be distributed among the

children? -

Four horses are to be assigned positions at the post in a
race. In how many ways is it possible to distribube the
horses among the first, second, third, and fourth positions?,
If you prefer, you may use the answer to another problem in
this set of exercises rather than making a new list.

A salesmandyorks five days'during the week. He has customers
in five cities. He spends one day each week in each city.
Clayville is only six miles from his home and he goes there
each Monday. Since he does not enjoy routine in his
traveling, he likes to match the other weekdays with the four

18
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remaining cities in as many ways as possible; How many weéké_
can he work without being obliged to repeat any route for a
week? '

 ?.‘_A stenographer has four envelopes addressed to Adams, Brown,
Clarﬁ;’and Davis, respectively. She has four letters written
to these four men. She puts one letter in each envelope. In
how many ways might she do this so that one or more of the
letters is placed in the wrong envelope? Is 1t possible to
place just one letter in the wrong envelope? .

. There is an obvious difference between the problems you have
Just been working and the problems of Section 7-1. In Section T7-1
the order in which you named individuals did not matter. For
example; the committee (A,B,C} was the same as committee {Cc,B,A}.
There, we were interested only in the set containing the three -
elements A, B, and C. :

In the last group of class exerclses, we were forming
executive committees of the individuals B, D, and E. Let us agree
that, when we name such a cbmmittee, the first-named will be
chairman, the second will be secretary, and the third treasurer,
Thus (B,D,E} would represent B as chairman, D as secretary and
E as treasurer. For example, the executive committee (E,B,D}
would be different from the executive committee (D,E,B}. In the
relay race problem, the relay team PTRS would be different from
the team RTPS, because the order in which the boys run 1is
different. In Problem 3 of the last set, the preference listing
{mashed, french-fried, baked} is different from the listing
{frenéh-fried, mashed, baked} because of the order in which the
ltems are listed. Such problems in which the order is important
are called permutation problems.

Different arrangements (or orderings) of the objects or
persons are of interest in a permutation problem. We would say
that PTRS and RTPS are two different permutations (or arrange-
ments) of P, R, S, and T. So, in:f e relay race problem, we want

[sec, T7-2]
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to count the number of permutations of four things, namely P, R,

~.8, and T. In the preference-poll problem, we needed to count the
number of permutations of three things; namely, threce ways of
cooking potatoes.

Definition. A permutation of a set of elements is
an arrangement of the elements of the

set in some order.

How to Ccunt Permutations

Up to this time you have been counting the number of permuta-
._tions merely by listing them. You had to be careful to list them
in an orderly fashion and not to miss some permutations. A faster
and more efficient method of counting is needed, especlally if a
large number of objects 1s involved..

Suppose you want to indicate your prefererce for three flavors
of ice cream--vanilla, strawberry, and chocolate (name these by
letters V, S, and C). You want to designate first, second, and
third preferehces. Your possible listings are, by columns:

1 2 3
vsS¢ceC SVEC CSV
ves SCV CVs

' Notethat V 1is first preference in Column 1; S 1s first pref-
erence in Column 2; C 1is first preference in Column 3. This
indicates that you could choose your first preference in any one
of three ways. Suppose now that you have chosen first preference
as V. There were two ways of choosing the second preference,
either S or C. (You can see this in Column i.) If your first
preference had been S, how many choices were there for second
preference? If your first preference had been C, how many were
there for second choice? For each possible first preference there
were two possible second preferences. Since the first preference
could be chosen in any of 3 ways, and for each of thess, the second
could be chosen in 2 ways, ‘the total number of choices for the

20

[sec. T-2]

s




293

first two preferences 1s what number? It 1s hoped that you said
3:2 ways, There remained then only one éhoice for the third.
preference. Hence the total number of choices for all 3 pref-
erences 1s 3+2-1.

Another way of thinking about this problem 1s to use boxes to
indicate the three preferences.

3(2]1

For your first preference you have 3 possible choices, which you
may indicate by a 3 in the first box. Once this first preference
has been given, you have only two possible choices for second pref-
érence. This 1s indicated by placing a 2 in the second box.

Now, having chosen your first preference and also your second
preference, there is only one possible third preference, which you
indicated by a 1 in the third box. Thus, the total number of
preferences is 3.2.1, Agaln,we observe that, for each choice for
first position, there are two choices for second position.

As another 1llustration of this box device, let us look at the
possible different running orders for the relay team of P, R, S,
and T discussed in Problem 2, Exercises 7-2a. For first runner,
we may choose any one of the four boys. We indicate this by a 4
in the first box of the dlagram below:

ENENEREN
Having chosen the first runner, we may choose any of the 3
remaining boys to run in second position. With any specified
cholce for the first two positions, we have two possible choices
for the third position. Finally, having chosen three boys, there
remains only 1 choice for the fourth position on the team. Hence,
the total number of possible running orders is 4:3-2-1 = 2,
These are the 24 orderings of PRST which you enumerated in the

last paragraph.

B
oy
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Exercises T7-2b

Two-digit numerals are to be formed using the digits 6, 7,
and 8, No digit is to be used more than once (that 1is,
numerals like 77 are not permitted here). '

(a) How many choices are there for the first digit?

(b) The first digit having been chosen, how many cholces are
there for the second digit?

(c) How many two-digit numerals of the type permitted can be
written? (Leave the answer as an indicated product.)

In the following problems leave all answers as indicated products
(9:8 should not be written as T72).

2-

3.

Use digits 1, 2, 3, 4, 5, 6, 7, 8, and 9 and form two-digit
numerals as in Problem 1. How many such can be formed?

How many different two-letter "words" can be formed using the
letters of our alphabet? No letter is to be used more than
once. (The "word" formed need not make sense--the two-letter
arrangement tg 1s a "word" in this sense!)

Use the digits 6, 7, 8, and 9, not permitting the repetition
of any digit (as in Problem 1), How many four-digit numerals
can be formed? :

Use digits 1, 2, 3, 4, 5, 6, 7, 8, and 9; repetition of a
digit .1s not permitted. '

(a) How many three-digit numerals can be formed?

(b) How many four-digit numerals can be formed?

- (e¢) How many six-digiﬁ numerals can be formed?

Four persons enter a room which contains 15 chairs arranged
in a row. In how many different ways could the persons be

_seated in this rdw?

Suppose there are n chalrs placed in a row. Two persons are

to be seated.

(a) How many choices does the first person have?
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(b) After the first person is seated, how many different
cholces remain for the second person?

(¢) Is your answer to part (b) the same for each chailr the
first person may choose? Why?

(d) How many different pailrs of chalrs can the two people
choose?

(e) - Find the number of ways three persons can choose chalrs
from the n chairs placed in a row.

(f) FPind the number of ways four persons can choose chairs
from the n chairs placed in a row.

In Problem 1 above you found the number of permutations (or
orderings) of 3 different things arranged two at a time. We will
use the symbol Pj3 ,o for this number. In Problem 3, you were
asked to find P26 o> the number of permutations of 26 different
things arranged 2’ at a time. Uslng this notation in Problem 7(d)
we wished to find P , o3 in Problem 7(e) we wanted to find P n,3’
the number of permutations of n different things arranged 3 at
a time.

In general, we say:

Pn,r = the number of permutations of
n different things arranged
r at a time.

According to your results in the preceding problems:

Py p = 43 < 9.8
Py g5 = 4:3:2 Pog,2 = 2625
Py y = 4:3:2:1 fls,u = 15-14.13+12
Pn,2 = n(n-1) Pn,3 = n(n-1)(n-2).
The symbol P n,r makes sense only when n and r are counting

numbers and r < n.

[sec. 7-2]
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There is a speclal case of P ,r which 1s of considerable
importance. In Problem 4 you were finding "the humber of peruiti-
tations of "4  things arranged 4 at a time," or, in abbreviated
form, Pu y- The answer was Py , = = 4.3:2:1., This number is the
product of all the counting numbers in succession from 1 to 4.
Similarly, P5,5 = 5.l 2.1 1s the product of all counting
numbers from 1 to 5. Such products using successive counting
numbers as factors occur frequently in mathematics and we have a
special symbol for them. We write 5! = 5.4.3.2:1 and we read
51 as "five factorial." Similarly, "four factorial" 1s 4! =
4.3.2:1, - .

In general, n factorial (written n!) means the product of
all counting numbers in succession from 1 to n. Thus,

n! = n-(n-1)+(n-2)- ... +3:2:1.

A

Note that it is equally'correct to write:
b1 = 1.2-3:4
51
n! =1-2-3+ ... *(n=1)-(n).

1-2:3:4%-5 and

In much of your work here 1t 1s probably more convenient to write

n! as n-(n-1)- ... *2+1, but you may write n! = 1-2-3* ... *°n
if you wish, .
You should check, on a separate plece of paper, that

1 =1

21 = 2.1 =2

31 = 3.2.1 =6

Bt = 4.3.2.1 = 2b

51 = 5-4.3.2.1 = 120

61 = 6+5-4+3-2-1 = T20

71 = 7+6-5-4.3.2.1 = 5,040

81 = 8.7.6-5-4.3.2.1 = 40,320,

24
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As you see, n factorial increases at a truly remarkable rate as
n increases. Hence the exclamation point "!" ig an appropriate
symbol to use. (To express the same sentiment, British mathema-
ticians sometimes read n! as "n admiration™t)

In our work on permutations we noted that:

P different things arranged 3 at

the number of permutations of 3
3,3 = 3!, and
’ a time

different things arranged 4 at
a time

: the number of permutations of &4
P}"‘ 4 4' ]
2

By using arguments like those of the previous paragraphs you should
be able to convince yourself of the truth of the following:

If n 1s a counting number, the number of per-
mutations of n different things arranged n
at a time is n factorial. In symbols, we write

= n!
Pn,n

Exercises 7-2c

Express the following in product form:

“(a) 61 (b) 71 . (e¢) 10! (d) 151'

Notice that 41 = 4:3:2:1 = 4(3-2-1) = 4(3!1). .a a similar
fashion, write each of the followlng factorials in terms of a
second factorial.

(a) 7! (b) 61 (c¢) 10! (d) 12t

Find the quotient of 14! givided by 13! (without performing
any multiplications).

Show, without performing any multiplications, that 6! is the
product of 6, 5, and (4!).

The- factorial of 10 is the product of 10 and 9 and
another factor. What is this third factor?

Show that 62! 1is the same as 62-61+(60t),
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7. How many different batting orders are possible for a baseball
team of nine players? '

8. 1In a racing boat there are 8 seats, one behind another. In
how many ways can the 8 members of a university crew take

these seats?

9. How many permutations .are there of the letters of the word
"scholar"?
10. If one of the members of a baseball team always pitches, in
how many different playing arrangements can the other team

members be distributed among the other playing positions?
There are only nine members available for the team.

A General Multiplication Property

In our thinking about arrangements and selections we have
often made use of the following:

Multiplication Property. Ig_gg‘operation can be done
in m ways and, aftefiig has been performed in
any one of these ways, a second operation can be
performed in n Wways, then the two successive

~operations can be performed in m X n ways..

As a pleasant illustration of this property, think of the
problem which faces you in choosing a sundae at a dairy or drug
store. You have a choice of 3 flavors of ice cream (strawberry,
vanilla, and chocolate). After you have chosen the flavor of ice
cream, you may choose either of 2 toppings (marshmallow or nut).
You may perform the first selection in 3 ways and then, after you
have chosen any particular flavor,‘the second choice. may be made in
2 ways. Thus the total number of different sundaes 1s 3+*2 or
6. In words,

The number the number . the numbér

of different = of different X of different

sundaes flavors . toppings
26
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. As a second 1llustration, we ask: How many possible license
pPlates are there consisting of a letter followed by 2 digits?
" Do not allow zero as a first digit.
We think of the problem in terms of a box diagram.

Las [ o [ 10 ]

The first position on the license plate can be filled in 26
possible ways, since we may use any one of the 26 letters of the
‘alphabet. The second box may be filled in 9 ways,'since we do
not allow a zero in this positlon. In the third position we may
use any one of the 10 digits. 1In all, then, there are

26:9-10 = 26-90 = 2340 different license plates possible.

‘ Note that in the preceding eéxample we have used the multipli-
cation property for three successive operations. Indeed we often
use this type of thinking for a number of successive choices.

Exerclses 7-2d4

1.--A boy has seven shirts and four pairs of trousers. How many
different combinations of a shirt and a palr of trousers can
he choose9

2. A baseball team has five pitchers and three catchers. How
many batteries (consisting of a pitcher and a catcher) are
possible?

3. If the first two call letters of a television station must be
KT, how many calls of four different letters are possible?

b, A disc Jjockey has 50 records in his collectlon. He wants to
make a program of two different records. How many possible
programs are there? (Count different orderings of the same
records as different programs.)

5. A signalman has six flags. The emblems on the various flags ~
are: a stripe, a dot, a-triangle, a rectangle, a bar, and a’
circle. By showing two different flags, one after the other,

2 7 : X
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the signaiman can send a signal. How many different signals
are possible?

6. How many possible 1license plates. are there consisting of one
letter followed by 3 digits? (The first digit may not be
Z€ero. ‘Aslin the illustration above, repetition of digits is
allowed for the 2nd and 3rd digits.)

7. A set of fiyg flags has one of each of the colors red, green,
yellow, blue, .and white as a signal. Three flags are to be
hoisted, one above the other on the same mast. How many dif-
ferent signals are possible?

8. How many different lidense plates are possible using two
letters followed by two digits? The first diglit may not be
Zero.

9. How many license plates would be possible using 4 digits,
the first of which may not be zero? '

10. A student has 10 different books, 5 of which he wishes to
arrange between book-ends on his desk. How many different

arrangements are there?

A General Permutation Formula

Suppose we have a set of seven flags, each one a different
color. How many different signals may we form from 3 flags,
hoisted vertically on the same mast?

A signal thus means an arrangement of 3 of the 7 flags,
or, as we have sald, a permutation of 7 things arranged 3 at a
" time. We use the symbol Py 5s YOU recall. The first flag may be

E)
selected from any one of the .7 possi-

bilities. After it has been selected, »7
there remain 6 possibilities for the 6
second flag. After both these choices 5

have been made, there remain 5 ways.
of selecting the third flag. By the multiplication prOpefty, the

23
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total number of permutations 1s 7-6-5, or
| P73 = 7°6°5.

This way of thinking allows us to write a general formula for
the numbef of permutations»of n things taken r at a time.
There are . N  possible choices for the first selection, then since
there are (n-1) objects lert, there are (n-1) possible choices
for the second selection, '(n-2) for the third and so on. There
will be r stages in this procedure, one for each of the objects
being used in the permutation. Hence, there 111 be r factors in
the final product. Accordingly, -

Ph.p =n(n-1)(n-2) ... to 'r rfactors, where 1 < n.
t

As an illustration of. this, we see that.

7,5 = (8543, when n-7, r=5

5 factors

I
n
=
-
H

It
N

and P24’3 = g&;fz;gg, - when n

3 factors

Exerclses 7-2e

1. Write the product Ug-LUB-UT7-UE-U5- 4443 using the form P oo

3
2. (a) wWrite the number Pyp,3 1n factored form (but do not
3
multiply).

(b) Write the product of P 3 and 9! in expanded form
(but do not multiply). ’

(¢) Is P12’3-(9!)=P12’12? Why?

3. Express P12 3 a8 the quotient of two numbers, each of which
I
1s a factorial. Hint: See Problem 2(e).

4. (a) write the number P5y.y 1r product form (but do not
E)
multiply). :

(b) Write'the product of Poo.yp and 16! in product form
3
(but do not multiply). 29
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(¢) What convenient name do we have for the product in (b)?

5.. Express on y @as the quotient of two numbers, each of which
' is a factorial.

6. . Problems 2, 3, 4, and 5 suggest a way of expressing Pn r in
terms of factorials. Write Pn p 282 product as 1s done in
3
the paragraph preceding these exercilses.

(a) By what factorial must we multiply P, ,, to obtain (nt)?
ot

(b) Express P, » as the quotient of two numbers, each of
! 3

< which 1s a factorial.
7. A monkey sits at a typewrliter and types a "monkey-word" of
five letters by touching 5 different keys in Succession.

(a) How many possible "monkey-words" of five letters are
there?

(b) How many different "monkey-words" of 26 letters each
would be possible? (Leave your answer in product form. )

*(c) How many days would he need to type a complete list of
the 5-letter "monkey-words" if he typed a new word every
second? (Assume the monkey to be an ideal typlst who
makes no mistakes and takes no banana-break until the Job
is donet) '

8. A telephone dial has a finger hole for each of the ten digits.

(a) How many telephone numbers, each with five digits buﬁm
wlth no digit.repeated, are possible?

(b) How many telephone numbers, each with five digits, are
possible°

9. Five players on a football squad car. play either: left end or
right-end. The five players may be 1n the lineup in how many
different ways as left-end or right-end?

#10. Suppose we want to send messages 1n code. We use ceqtain
symbols, say n of them. (The symbols might be letters, or
flags, or sounds, or designs, or any other type of symbol. )

[sec. 7-2]
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Each message is compoéed of four different Symbols, arranged
in order. The number of possible messages which we may wish
to send is 1600. What is the smallest number that n can be
in order to meet the requirement?

7-3. Selections or Combinations

Whenever we have been using the word "permutation," we have
been concerned, not only with the elements, but also with the
arrangement or the ordering of the elements. At the very beginning
of this chapter, we discussed committees in a club. Tn a committec
such as we studied there, the members are not arranged in any par-
ticular manner. The choosing of a committee from a club 1is an
1llustration of a selection or combination.

.Definition. A selection of a certain set of n
obJects taken r- at a time is a set

et

of r members from the total set of
n obJjects with no regard to ordering
the chosen members,

Here,” n 1s a counting number and r is a whole number no
greater'than n. The number of selectidns of a set of n objects
-taken r at a time is often represented by the symbol (;). In
this unit you may read this symbol by saying: "the number of
Selections of n things taken r at a time," or, "the number of
combinations of .n things taken r at a time."

In terms of sets, we may say that (g) 1s "the number of
-r-subsets in an n-set." By an n-set we mean simply a set of n
elements. An r-subset 1s a set of r elements, each of which is
one of these n elements.

The entries in the Pascal triangle are values of (g). For
€xample, from the fifth row of the Pascal triangle we find, reading
from the left, that

(g) =1, ' (;) =5, (2) = 10, (g) = 10, and so on.

[seé. 7-31]
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You will want to note that the new symbol we have ‘introduced
can be easily distinguished from a fractional symbol, because the
new Symbol does not have a bar between the two numbers and the
parentheses are always written as part of the symbol.

gggg: Other common symbols for the number of selectlons

of “n. things taken r at a time are Cn,r and _C..

vou will want to be familiar with these symbols, although

(?) is to be preferred.

Exerclses T7-3%a

1. Write the special symbol for each of the following:
(a2) The number of selections of 12 objects taken 7 at a
time

(b) The number of permutations of 12 objects taken 7 at
a time |

(¢c) The number of combinations of m things taken 3 at a
time

(d) The number of selectlons of n+ 2 objects taken k at
a time '

2. wWrite in words the meaning of each of the following symbols:

€y: mgys 52t (D Pgps o

3. Use the Pascal triangle to find each of the following:

(@) (§) ana ()
(o) () ena (])
() (§) ana (D)
(@) (2) ana (3)

() (8) ana (&
2
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4. Suppose that a and b are two counting numbers and let §
be the sum a + b. What important relationship between (2)
and (g) 1s suggested by Problem 3? (Use some ideas in
Section 7-1 to convince yourself that this relationship is
true in every case.)

5. (a) Find each of the following:
4 6y 124
O )} (3)> (1547)-
(b) What general notlon do these examples iilustrate?

6. (a2) Find each of the following:
| Y 6 2L
(3)s () (), (%57).
(b) What general notion do these examples i1llustrate?

7. 8Show that if n 1is a counting number different from one, then

.(g) - ngn-l! .

2

Suppqse that a club of seven members picks three officers.
With the aid of the Pascal triangle, we learned that the number of
possible selections of an executive committee is 35, This
number 35 ‘we may now call (;). Our study of permutations tells
us that the three offices may be matched with the three officers in
P3:3 =31 ways. We may apply the Multiplication Property and see
that the numbgr of possible officer assignments is (;).P3:3' The
first event 1s the selection of a group of 3 from 7 members.
The second event is the arrangement of these 3 1in the offices.

On the other hand, we may apply the Multiplication Property to
find that the number of choices of three memberé, arranged by-
office, from the club of seven members is 7:6°5, namely 210.

This number, 210, is P7, .

Both viewpolnts yield the same count. Each expression repre-

sents the total number of possible officer assignments. Therefore,

33
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= P or

Ty.
(3)P5 5 = Py 5
Tyozt —
(3):3! = By 5

This last equation gives us a way to calculate (;), the num-
ber of selections of 7 different things taken 3 at a time. For
we can see from the preceding equation that

(7) = P7:2
3 31
The same fype of argument shows that for two counting numbers
n and r, with r < n, we can write =

(g)'Pr,r = Pnr
(?)-(r!) =Pnp

" n
In words, this expression. Pn,r = (r)'Pr,r simply states that

the number of the number of the number of
permutations of selections of n permutations of
n different = different things . r different
things arranged taken r at a things arranged
r at a time time r at a time

From this general equation we see that

(n) Pn,r
r r!
-and since
P =n(n-1) ... (to r factors)

we obtain the formula

M) = n(n-1)(n-2) ... (to r factors)
r r!

In this fraction, the number of factors in the numerator is I,
the same as the number of factors in the denominator. For example,

when n =11 and r =5 we have

(11y _ 11:10-9-8-7
5 5.4.3.2.1

[sec. 7-3]
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Notlce that thefe are’ r, five, factors in both numerator and
denominator. The first factor in the numerator is n, eleven; the
first factor in the denominator is r, five,

Exercises 7-3b

Ten men are qualified to run a machine that requires three
opefators at a time. How many different crews of three are
possible?

A disc Jockey had a set of 15 records. Each night he
Selects 5. records to make a program. How many nights can he
do this without repeating an entire program? ' Disregard the
order in which the individual records occur within a program.
(You do not need to perforh any multiplications, ~but may leave
your answer in whatever symbols you think are convenient. )

Eight points are given in space, and no four of them lie in
the same plane. (Remember that any three of them determine a
plane.) How many different planes are determined by the eight
points? -

On a certaln railway there are 12 stations. How many dif-
ferent kinds of tickets should be printed to provide tickets
between any two stations:

(2) 1In case the same ticket is good in either direction?
(b) 1In case different tickets are needed for each direction?

A restaurant has prepared 4 kinds of meat, 3 kinds of
salad, and 5 kinds of vegetables. A platter consists of a
meat, a salad, and a vegetable. How many different kinds of
platters are possible?

A girl has four skirts, six blouses, and three pairs of shoes.
How many weeks can pass while she wears a different costume

every day?

39
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7. In a game of bridge, a hand consists of 13 cards from the
playing deck of 52 cards. The number of possible bridge
hands is 635,013,559,600. Write this number, using a special
symbol you have studied in this unit.

8. A salesman has customers in eight cities away from his home.
He wishes to plan a travel route which will take him to each
of the elght cities in turn and afterwards back to his home.
How many possible routes are there?

*9, There are elght teams in a baseball league. During the season
each team played every other team five times. How many games
are played 1in the league altogether during one season?

#10. Either one bulb or two bulbs of a string of eignht Christmas
" tree lights wired in series are burned out. Suppose you have
two good bulbs and suppose you try, first one at a time, then
two at a time, to locate the burned out bulb (or bulbs). How
many trials might 1t be necessary for you to make 1n order to
find the bulb (or bulbs) that need replacement°

#11. A man has six bills, one each of the amounts of $1, $5, $10,
$20, $50, $100. How many different sums of money may be
formed by using one or more of these six bills together?

7-4%. Review of Permutations and Selections .

In this chapter we have studied ways of counting all possible
arrangements, or permutations, of a set of elements and of counting
" all possible subsets of a given size. We have called one such sub-
set a selection, or combination. It 1s important that you keep 1n
mind the terms, permutations and selectlons, and that you under-
stand the principles on which the counting methods are based. It
.18 not so important at this level of your study of mathematics that
you remember particular formulas.
In the exercises of this section the basic ldeas associated
wilth permutations and selections'méy be applied.

[sec. T-4]
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Exercises 7-4

How many "donkey" words of six letters each can be formed from
the letters of the word THEORY? ("Donkey" words need not
make sense, )

A girl bought two new skirts and three new sweaters. How many

~ different outfits consisting of a new skirt and a new sweater

can she wear?

Ten years after graduation a class held a reunion to which 096
bersons came. If each person shook hands with everyone
present, how many handshakes were there9

A certain make of automobile has 3 Dbody types, 7 choices
of upholstery, and 5 color schemes. In order to show all
possible cars at an exhibit, how many cars are necessary?

Filve Indians walked one behind the other in the woods. Into
how many different orders could they place themselves?

From 14 men how many different committees of 5 can be
formed?

A troop of Sea Scouts has 8 different flags How many dif-
ferent signals can they send by flying 3 flags at a time on
a pole? :

The call letters of a certain broadcasting station begin with

W. How many different call letters using only 3 1letters can
be used? Repetition of a letter is allowed.

How many automobile license plates bearing just 5 digits can
be made 1f O 18 not permitted as the first digit?

A housewife wishes to arrange 5 books on her desk. She has
8 books from which to choose. The 8 books have different
colored covers and are of different size. Does she have a
problem involving permutations or selections? What is the
number of different patterns that she can look at?
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11.

12.

A housewife wishes to read 5 books in the next two weeks.
There are 8 books from which to choose. Does she have a
problgm involving permutations or selections? How many dif-
ferent sets of five books may she choose to read?

Three points determine a plane and 2 points determine a
line. From five points no four of which are in the same plane
and no three of which are on the same line,

(a) How many planes will be determined?

(b) How many lines will be determined?

338
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Chapter 8
PROBABILITY

8-1. Chance Events ,

This chapter will be concerned with chance events. For ex-
ample, a weatherman makes a forecast of the future weather., His
forecast, "Rain," is more accurately a probability statement, "It
will probably rain." Similarly, you may predict that "The Green
Shirts will win the pennant," but what you mean to say 1s "1t
1s likely that the Green Shirts will win the pennant ."

Pfobability has many practical uses. For example, federal
and state governments use probablilty in setting up budget require-
ments; military experts use 1t 1in making decisions on defense
tactics; Sclentists use it in research and study; englneers use
~probability in designing and manufacturing reliable machilnes,
planes and satellites; bilg business companies use it in mathemati-
cal studles to help make difficult declsions; insurance companies
use 1t 1n setting up 1ife expectancy tables.

Some examples of games of chance will be used to help you
understand what pProbability means and how it may be used. Such
games give us excellent mathematical models for use in studying
probabllity. The exXamples are not used with the idea that gambling
1s to be encouraged. Rather, the information in this chapter
should help you begin to understand why "most gamblers die broke."

In Section 1 we shall study'some ldeas about statements involv-
ing chance events, like "The Brown Sox will win," or "Sandlot will
win the race,"” or "If I toss a coin and allow it to fall freely, it
will show heads." We will concern ourselves with a' "measure of
chance" that an event will happen. This measure of chance is also
called the probability that the event will occur., At first we will
use a mathematical model where we can count the possible outcomes.
The game of tossing a coin can be used as a model. If we toss a
coin and allow it to fall freely, either a head will show or a
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tail will show. We assume the coin 18 perfectly balanced and that
neither side is weighted in any way. Such a perfectly balanced
coin is sometimes called an "honest coin."

Consider the question, "What is ; measure of chance that if we
toss a coin and allow it to fall freely a head will show?"

In probability it is useful to use a number to indicate the
measure of chance that an event will happen. If we toss a coln we
consider two possible outcomes: (1) a head will show or (2) a tail
will show. That the coin will show a head is one favorable out-
come out of two possible outcomes. We say the measure of chance
that the coin will show a head is %.

If an event is governed by chance, then it has a certain prob-
ability of happéning. If we use the letter "A" to represent the
event that the coin will show a head, then we can call %- the
probability of the event A. This is the same as saying that the
measure of chance that the event will occur is B We can rep-
resent the probability of the event A as

P(A) = %

If we use the letter "B" to represent the event that the coin
will show a tall, we are concerned with the probability of B. We
can represent this with the symbol P(B). Thus,

P(B) = %
It is important that you understand that in the above case
"P(A) = P(B). .That 1is, each event is equally likely to occur.
Any two statements which predict events that are equally likely
have the same probabllity.

Suppose you have tossed an honest coin five times and it show:
a head each time. What 1s the probability that the coin will show
a tail on the next toss? Some people believe that the odds will
change, that the "forces of luck" will act to force the coin to
show a tail until a balance is restored between the showing of
heads and tails. Not so! The probability that the coin will
show heads remains % for each toss. In probability we do not
say that if the coin shows a head >n the first toss 1t must show
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a tail on the second toss.

Suppdge you use two pennies., What is the measure of chance
that if two coins are tossed, one head and one tail willl show?
That is, what is the probability that the event of one head and
one tail showing will occur? The table below shows that there
are four possible outcomes:

Possible Outcomes

First Coin Second Coin
Head Head
Head Tail
Tail Head
Ta1l Tail

There are two outcomes showing one head and one tail. Two out-
comes out of four posslble outcomes are favorable. The probability
that the.event will occur is %- or %. If we use the letter

"E" to represent the event, we may write

, 1
P(E) = e
‘What 1s the probability that exactly two heads will show 1if
two coins are tossed? It does not make any difference whether
the colns are tossed at the same time or one following the other.
Of the four outcomes, how many ways are there for this event to

occur? If we use the letter "G" to represent the event that
two heads show, we may write the probability of the event G as

1
P(G) = T
Note that in thils example, events E and G are not equally

likely. Their probabilities are different,
We may write the formula:

P(E) = i;"

t=

" where P(E) 1s the probability that an event will occur,
t 1s the number of possible outcomes in which E occurs, 8 1is

the total number of possible outcomes. If r 1is the number

[sec. 8-1]
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. of possible outcomes in which E does not occur, then we may say
;P(not E) ='§-.
Since'eithér. E occurs or E does not occur, t‘+ r = s, and
 P(E)+ Plnot E) =E4L-Etr_s_ g

On the assumption that an event E either occurs or does not
occur, then
P(E) + P(not E) = 1.
If an event K 1is certain to happen, P(K) = 1.
If an event L cannot occur, P(L) = 0.
Thus, we conclude that for any‘event"M

0 < P(M) < 1.

This number sentence is read "P(M) is greater than or equal to
zero and less than or equal to 1."
Why is P(M) never greater than 1°

Exercises 8-la

1. Two black marbles and one whlite marble are in a box. With-

out looking inside the box, you are to take out one marble.
Find the rrobability of the event that when, without looking,
one marble 1s taken out of the box, the marble will be black.

.2. Using the data in Problem 1, find P for the event that if
one marble is taken out of the box, it will be white.

3. Suppose you hazve tossed an honest coin nine times and it

has shown a head each time.
(a) Consider the above as one event. Is this event likely

. to occur? Explaln your answer.
(b} What is the probability that the coin will show a taill

on the tenth toss?
(¢) Does the outcome of the first 9 tosses have any
effect on the outcome of the tenth toss?

4 -24'}~

1
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There are 25 students in a class, of whom. 10 are girls and
15 are boys. The.teacher has written the name of each pupil
on a. separate card. If a card is drawn at random, what is
the probability that the name written on the card is:

(a) the name of a boy? :

(b) your name (assuming you are in the class)?

Suppose a box contains 48 marbles. Eight of the marbles
are black and forty of the marbles are white. Find P for
the event that if a marble is picked at random (without look-
ing in the box), it will be white.

Using the data for Problem 5,‘consider the event: "If, with-
out looking, nine marbles are taken out of the box, all of
the marbles will be black." i

(a) Is the outcome in this case possible?” -

(b) What measure of chance can we as%ign to such an outcome?

From a large amount of evidence, we know that boys and girls

are born in about equal frequencies. On the average, half

of -all bables born are boys, and half are girls. In a given

birth, then, the probability of a baby being a boy is % .

Likewlse the probablility of its belng a girl 1s %,, since

no other outcomes are possible. (We exclude for the moment

the possibilities of twins, triplets and other multiple

births.) Then, P(boy) = % and P(girl) = %-. Let us assume

that these measures of chance hold for any particular family

as well as in general. ' _

(a) -Mr. and Mrs. Jones already have one bdy when the second

baby arrives. What is ‘the probabllity of its being a
.boy? A girl? (It is important to remember that each
birth is an independent event, and not influenced by
previous blrths. We agree that the fact that the
Joneses already had a boy does not affect the probabil-

1ty of the second baby being a boy or a.girl.)

43
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10.

11.

(b) Mr. and Mrs. Richards have eight children, all girls,
when the ninth baby arrives.  What 1s the probability
of 1ts not being a girl?

In a newspaper you read: "He has a 50-50 chance of winning
the election."
(2) What is the probability that he will win?
(b) Suppose a measure of chance is less than %u What
does thls mean in terms of the outcome of an event?
Is the outcome very likely or not very likely to occur?

If a whole number from 1 to 30 (including 1 and 30) is

Sselected, what 1s the probability that the number will be a
prime number? Assume that the selection is made so that one

‘ number 1s just as likely to be chosen as any other,

Three hats are in a dark closet. Two belong to Mr. Smith
and the other to his friend. Being a polite person, when
his friend is ready to leave with him, Mr. Smith reaches in
the closet and draws any two hats. What i1s the probability
that he will pick two wanted hats, his friend's hat and one
of his own hats? '

Suppose you have five cards, the ten, jack, queen, king, and
the ace of hearts.

(2) What is the chance that the first card you draw 1s the
ace?
(b) Assume that you draw the jack on the first draw, and

put it aside. What 1s the chance that the second
card you draw 1s the ace?

(c) Are your answers for (a) and (b) the same? Why?

(d) After drawing the Jack, and putting it aside, assume
that the second card you draw-1is the ten. Put that
aside also. What 1is the chance that the third card

you draw 1s the ace?
(e) What 18 true of the measure of chance of the drawings
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In some of the problems you determined the measure of chance,
which we call probability, by listing all possible outcomes. This
is easy when there are only one or two coins, but as the number of
coins increases, it is difficult to remember all the possibilities,
Iet us see 1if-we can discover an, easy, accurate way to make these
listings, “ ' o

The tabIé for two coins shows this pattern:

Possible Outcomes

First Coin Second Coin
H H
H T
T .~ H
T T

("H" represents heads and "T" represents tails.)

Note that the first column is grouped by twos;. H, H, T, T. The
second column 1s grouped alternately; H, Ty~H,  T. Compare the
pattern in the table for two coins with the paﬁtern in the table
for three coins shown below:

Possible Outcomes

.Firét Coin Second Coin Third Coin
H H H
H A H . T
E T H
“ H T T
T H H
T H T
T T H
T T T
[sec. 8-1]
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Note how each column is grouped: the first by fours; the second
by twos; the third alternately, H and T.- This 1is one systematic
way in which the number of possible outcomes might be listed in
order to count the possibilities. K

How many possibilities are there for one coin? VYou know that
there are only two, H or T. What did you find for the
possibilities when two coins are tossed? There were twice as
many possibilities because for each possibility’for one coin
there were two possibilities for the second coin. This is
pictured in the following diagram.

One Coln Second Coin

If a third coin is added should the number of possibilities be
doubled again? The followlng dilagram may help you decide.

Two Colns - Third Coin
H
(H, H)<_/' -
\’T —

H
(T, H)<: ,
T
' H
(T, T)<
: T

For each possible arrangement for two coins, there are two possi-
bilities for the third coin. Thus, the number of possibilities

[sec. 8-1]
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for three coins is equal to 2 X (the number of.-possibilities for

2 coins). In general you should now understand that each time one
more coln 1s used the number of possibilities is then doubled. How
many possibllifies would there be 1f four coins were used? Recall
that there were eight possibilities with 3 coins.,

In summary:
Number of coins Total number of possibilities
1 2
2 - 2.2 = 22 = 4
3 2.2.2 = 25 = 8
il
L 2:2¢2+2 = 2 = 16
' . "10 )
10 202020202¢202e2022 = 2 = 1024
) 5 )
n 2220, .02 = 2

(Notice that each entry in the right column 1s twice that above it.)

We can express this result as a formula::

T =20

T. 1s the total number of possibilities,

2 1s the number of possibilities for one coin,
- n 1s the number of colns.

. *Some of you may want to try to Justify the general formula
of this type:

n
> ) T=s

T 1s the total number of possibilities,
s 1s the number of possibilities for one object,
n 1s the total number of objects used.

[sec. 8-1]
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If the possibilities of an object are A, B, and C, what would
be the number of possibilities for two of these objects?

T = g"
T = 32

There are nine possibllities for two objects, each having
three possibilities. ‘ |

In making tables, as in the cases of tossing two or three
colns, all possible outcomes of events were listed. The probabil-
ity 1s based on the outcomes listed in the table. In the tables
discussed we assume that each separate possibllity, or outcome,
has the same chance of occurring. We say that each outcome 1s
"equally 1ikely". to occur.

In thls sectlion we have been+cenc¢érned with some simple
events governed by chance. We assigned measures of chance,
which we called probabilities, for the outcomes of these events.
The numbers we used to represent "P" were numbers like one-half,
two-thirds, one-fourth, and so on. If we actually toss an
honest penny once, we cannot predict whether it will show a head
vor a tall. But if we toss an honest penny a mlllion times, then
it 1s almost certain that the number of heads will be between
"490,000 and 510,000. The fatio of heads shown to the number
of talls shown almost certainly will be between T%% and Tg%'
We cannot 1in thils chapter study all the mathematics that .1s
required as a basls for such conclusions.

It should be kept in mind that probabllity 1s not the
tossing of coins or drawing of cards. Probabllity 1s a part of
mathematics which has been found gxceedingly useful in describ-
ing chance aspects of games, selections, sclence, buslness, and
activities of government whilch are not completely predictable.
In this chapter we will study some of the more elementary 1ldeas
of this mathematical theory.

48 N
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Exercises 8-1b

L T e N S R e e

1. If three honest coins are tossed, what 1s the probability
that three heads will show? Refer to the table in the Previous
section showing 8 possibilities for 3 coins.

2. If three honest coins are tossed, what 1s the probability
that two heads and one tail will show?

3. Without listing them, determine the number of possible
outcomes 1in tossing filve coins

4., There are 35 bricks, of which five are gold. What 1is the
chance that 1if you pick a brick at random you will plck a
gold one? ("At random" in this case means "without looking
and without 1lifting.")

5. (a) If one penny is tossed, what 1s the chance that a head
will show?

(b} How many heads might you reasonably expect to get if
the penny 1s tossed 50 times?

A 6. A bowl cqntains five white marbles, three black marbles and

two red marbles.
(a) What is the chance that you will pick a white marble in
one draw?

(b) Assuming you pick a white marble the first time and
do not replace 1t, what 1s the chance that you will
plck a black marble the second time?

(c) Assuming you pick a white marble the first time and a
black marble the second time and do not replace them,
what 1s the chance that you will pick a red marble
the third time?

7. The letters A, B, C, D, E, and F are printed on the faces

of a cube (one on each face).
(a) If one cube is rolled, how many possible outcomes are
there? We willl consider the side facing up as the

outcome in this case.
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(b) If two cubes ave rolled at the same time, how many
outcomes are there?

(¢) What 1is the chance that B will show if one cube is
rolled?

(d) What is the chance that two E's will show if two cubes
are rolled at the same time?

8. A regular tetrahedron is a solid having four faces. The
letters A, B, C, and D are printed on the faces.

(a) If a regular tetrahedron is rolled (or toéséd in the
air and allowed to fall freely), how many Bossible
ways are there for it to stop (or fall)? Note that
in this case we wlll consider the side on which the
object rests as showing the outcome. That is, the
face that is the base may be marked A, B, C, or D.

(b) Find the measure of chance for the following statement:
"If the tetrahedron. is rolled it will stop on side A."

(c) How many possible outcomes are there if two such tetra-
hedrons are rolled?

.- (d) How many possible outcomes are there if three such
tetrahedrons are rolled? '

+ 9. Notice the pattern that is involved in a count of the number
of outcomes in tossing coins. H 1s a head; T i1s a tail;
(H,T) is a head and a tail in either order.

1 coin 1(H) 1(T)
2 coins 1(H,H) 2(H,T) 1(T,T)
3 coins 1(H,H,H) 3(4,T,T) 3(T,H,H) i(T,T,T)

Add a fourth and fifth 1ine in this table.
Why does this remind you of Pascal's triangle?

10. Use Prqblém 9 to find the probabllity of getting two heads
and two tailils if four coins. are tossed.

50
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1l1. Give the ﬁrobabilities of each of the six possible outcomes
when five coins are tossed. Is their sum one?

12. If five coins are tossed, what combinations of heads and
tails are most likely to occur? Why? Hint: See Problem 9.

*¥13. When six -coins are tossed, what is the chance that one and
only one will show heads?

8-2. Empirical Probability

Among the most important applications of probability are those
in situations where we cannot 1ist all possible outcomes. For
‘example, the table shows a sﬁéll number.of weather forecasts, only
those from April 1 to April 10. The actual weather on these dates
1s also given.

"Yes" indicates the forecasted
event did occur, "No" that it

Date Forecasts Actual weather did not.
l. Rain Rain Yes
2. Light showers Sunny } - o No..
3. Cloudy Cloudy | . Yes
4, clear Clear . “ Yes
5. Scattered Warm and sunny No
showers‘ . '
6. Scattered Scattered Yes
: Showers showers
7. Windy and Overcast and Yes
cloudy windy
8. Thunder- Thundershowers ' Yes
showers
9. Clear Cloudy and rain No
10. Clear Clear Yes

51
{sec. 8—2]

.-



324

Observe that forecasts 1, 3, 4, 6, 7, 8 and 10 were correct.
We-have observed ten outcomes. The event of a correct forecast
has occurred seven times. Based on thils information we might say
the probabllity that future forecasts will be true 1is f%. This
number 1s the best estimate that we can make from the given
information. 1In this case, since we have observed such a small
number of outcomes, 1t would not be correct to say that our
estimate of P 1is dependable. A great many more cases should be
‘used if we expect to make a good estimate of the probabillity that
a weather forecast will be accurate. You will understand, of

. course, that there are a great many other factors which affect
the accuracy of a weather forecast. The example here merely
indicates something about how successful a particular weather
office has been in making weather forecasts--in this case, only
for a small number of days. .

On September 15, a maJor league player A had a batting
average for the season of 0.387 and player B had a season
average of 0.208. Based on these averages, we would expect that
there is a better chance that A would make a hit the next time
he 1s at bat, than that B would make a hit. We might even say
that a measure of the chance (probability) that A would make‘a
hit 1s 0.387 and that a measure of the chance that B would
make a hit is 0.208.

A physiclst cannot trace the motion of a single molecule of
oxygen in a room, but he can estimate the probability that an
- oxygen molécule willl hit one of the walls in a room in the next
second. To draw such a conciusion requires an understanding of
much more mathematicé thaﬁ.we can s@yd& in this chapter.

In modern industry probabilitjfnow plays an lmportant role
in many activities. Quality control and the rellabllity of a
manuféctured article have becorwe extremely important considera-
tions in which probability is used. Questions of reliability
can become very complex. A basic idea related to reliabllity,
however, can be illustrated as follows. Many thousands of articles
of a certaln type are manufactured. The company selects 100 of
these articles at random and subJects them to very careful tests,
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In these tests 1t is found that 98 of the articles meet all
measurement requlrements and perform satisfactorlily, This
suggests that T%g is a megsure of the reliabllity of the article.
One might expect that about 98% of all of the articles manu-
factured by this process will be satisfactory. The probability

or a measure of chance that an article made by this process will
be satisfactory might be said to be 0.08.

All of these examples of empirical probability are different
from examples and problems in Section 8-1 in one very important
respect, In Section 8-1 we could 1list and count all possibilities
except in Problem 7 of 8-la. 1In this section, we cannot or it is
not practical to try to do so. We draw conclusions in the first
sectlion from counting what might be called the total collection of
all pOSSibilities. In this section we draw conclusions about what
may happen in the future from information we have about a sample.
The selectlon of a sample and the size of a sample that should be
used are problems of statistics. In this kind of application the
selection of a sample is very important, Mathematical theofiesbof
sampling are too advgnced for our consideration here.

In the problems of this section you are asked to find
measures of chance or probabilities from observed data, In-
each case the observed data may be said to be a sample of a
total population, or a sample of possible outcomes,

Exerclses 8-2

1., A teacher has taught eighth grade mathematics to 1600 students
during the past 10 years. In this period he has given A's
to 152 students. ‘

(2) Based on these data what 1s a measure of chance that
a student selected at random will receive an A in
this teacher's class?
(b) If this teacher will teach 2000 students in grade 8
mathematics during the next twelve years, how many A's
- might you expect the teacher to glve?
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2. The batting average of a baseball player is 0.333. Using this
information as a measure of chance, what 1s the probability
that this man will make a hit the next time he 1s at bat?

3, The record of a weather station shows that in the past 120
days 1its weather predictlion has been éorrect 89 times., Use
this information to state the probabllity that its prediction
for tomorrow wlll be correct.

4L, A manﬁfacturer of pencil sharpeners tests carefully a sample
of 500 sharpeners to see if a pencil of a certain type can

 be sharpened without breaking the point, In the test 489
of the tested sharpeners worked satlsfactorily. There were
20,000. sharpeners in this job lot.

(a) wWnhat is the-probability that a sharpener selected at
random from the remaining 19,500 sharpeners will
perform satlsfactorily?

(b) If your school buys Uu40 of these sharpeners, are all
of the sharpeners likely to be satisfactory?

5. Car insurance rates are usually higher for male drivers under
the age of 25, Explain how by collecting data on accidents,
insurance companies have found 1t advisable to charge a higher
rate for young male drivers.

6., Life insurance and life annuity rates are based on tables of
mortality. A table of mortallty includes statistical data .
presumably giving data on 100,000 people who were alive at
age 10, The followlng are ten lines from _the Actuaries Table
of Mortality. '

Number.dying Number dy-
during next ing during
Asg Number living year Age Number living next year
10 100,000 676 40 78,653 518
12 98,650 672 So 69,517 1,108
13 97,978 671 60 55,973 1,698
14 97,307 671 70 35,837 2,327
21 92,588 683 99 1 1
[sec. 8-2]
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According to the table, 676 of the 100,000 will not be
alive at age 11. 97,978 of the original 100,000 are
alive at'age 13, but 671 .of these persons, according to
_the table, die within one year.

(a) How many are alive at the age of 507
(b) How many are alive at the age of 1007

(c) Would improved knowledge of health and medicine tend
to make a table of mortality out-of-date? Why?

In Problems 7 through 10, use the Actuaries Table of Mortality
glven in Problem 6. Find answers correct to the nearest 0.01.

’7. (a) What is the probability that a person who 1s 13 years
of age will be alive at the age of 21? : ‘
2,588

. -9
Hint: | P W.
(b) What is the probability that a person who is 13 years
of age will be alive at the age of 707

8. (2) What year was 90 years ago?

. (b) Do you think a table of mortality would be very useful
if it actually were ceonstructed by selecting 100,000
people at age 10 and keeping data on them for 90
years? '

*(¢c) By what method other than that suggested in (b) might
" such a table be constructed?

9. (a) wWhat 1is the probability that a boy who is 10 years
of age will live to the age of 99?

. (b) What is the probability that a man who is 40 years
of age will 1ive to the age of 507

10. One kind of life insurance policy guarantees to pay §1000
to a man's wife if he dies within a certain ten-year period.
Would such a policy be more expensive for a man aged MO; 50,
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11. Consider the following .events:
Event A. It rains on Friday, the 13th.
" Bvent B. The sun shines all day on Friday, the 13th.

The followlng table shows the weather on twenty Friday,
the 13ths. Using the information listed in the table, find P
for the events A and B. Based on the information in the
table, which is more likely to occur over a great number of
Friday, the 13ths, A or B ? Note that it is possible that
neither event occurs. '

Weather on Twenty Friday, the 13ths

1. Heavy rain 11. Cloudy, no rain

2. Light rain 12, Partly cloudy

3. Sunny ‘ 13. Cloudy with some showers
4,  Sunny 14, Showers

5. Sunny 15. Sunny

6. Scattered showers 16. Sunny

T Showers 17. Hot and sunny

8. Sunny . 18. Sﬁﬁﬁ&“

9. Sunny ) 19. Cloudy and some showers
10. Sunny 20. Sunny |

8-3. Probability of A or B

In mathematics we are always looking for general principles
which deseribe a certain situation. In this sectlon and the next
we will identify two of the most important general principles of

ppobability. o
56
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Consider the following problem.

A dial and a pointer 1ike the:zene
1llustrated will be used for the prob-
lem. The pointer spins and we can tell
whether it stops at 1, 2, 3, 4, or 5. 4 >
What is the probability that the
pointer will stop at an even
number?

3

In the figure the pointer is at 3. ‘We shall say the pointer
is at 3 1if it stops between the marks on eilther side of 3. 1In
_order to have each spin of the pointer count we shail say the point-
~er 1s at 3 1if it stops on the mark separating 3 and 4. Sim-
ilarly,if it stops on the mark separating 5 and 1 we shall say
it is at 5.

There are five possible outcomes The pointer can stop at
1, 2, 3, 4, or 5. The event, the pointer stops at an even number,
occurs if the polnter stops at 2 or 4 that i1s--the event occurs
in two out of five possible outcomes. Thus the probability of the
hand stopping)at an even number is gu

5
The event that the polnter stops at an even number is actu-
ally a combination of two other events. ILet A be the event
of the pointer stopping at 2, and B be the event of the pointep
stopping at 4. If we use the symbol "A or B" to stand for
the event® either A or B occurs, then "A or B" is the event
of the pointer stopping at an even number. We have found that

P(A or B) = %

Could we find this probability by considering events A and
B separately? We know that

(2]
’

P(A)

5
3

and P(B)

[}
UyH L?H

5

<

Ton
-
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If we add % and %3 the result is %. How can we obtain

P(A or B) from P(A) and P(B)?

In this example P(A or B) = P(A) + P(B).

Our intultlon certalnly tells us that the probabllity that
the polnters will stopat 2 or at 4 1s gfeater than the
probablility that the pointer willl stop at 2 and greater than
the probability that the pointer will stop at 4. Many times
(as in the above case) we can add probabilities of individual
events to find the probabiiity of another event. Notilce that
in the case above, the polnter could not stop at 2 and 4
at the same time. (as a result of one spin). For one spin it
had to stop at one or the other. Events A and B could not

both occur at once. This 1s one of the conditions that must be
met before we can add probabllities. Two events which cannot occur
at once are called mutually exclusive events.

Let us consider another example.

The seven numbers are
equally spaced.

The pointer spins freely. What 1s the probabllity that it
will stop at an even number?

There are 7 possible outcomes. Three of the 7 are favorable
outcomes. We shall call these favorable outcomes évents A, B,
and C: A, the pointer stops at 2; B, it stops at 4; C, it stops
at 6. The event whose probablllty we seek 1s A or B or OC.
Events A, B, and C are mutually exclusive, since the hand can
stop at.qnly one of the numbers as a result of one spin.
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[
Therefore,
P(A or Bor C) = P(A) + P(B) + P(C)._

P(A) =%— why? Also P(B) ='97 and - P(C) = -%—
P(A or Bor C) =%‘-+%+%@=%.

Note that we draw the conclusions, P(A or B) = P(A) + P(B)
and P(A or B or C) = P(A) + P(B) + P(C), each from a single
example., You could check these conclusions by solving some of
the problems in Exercises 8-3 by both .of the methods considered
in the example at the beginning of this section.

, . Exercises 8-3
l. On the dial, the numbers , .
are equally spaced around
the dial.

What 1s the probability that the spinning pointer will stop
at an odd number?

2. (2) What 1s the probability of obtaininga 6 ora 1 on
one roll 9f a cube with faces numbered 1 through 6%

(b) What is the probability of not getting.a 6 or a ﬁi
on one roll of a cube with faces numbered 1 through 6?

3. (a) What is the sum of the probabilities in Problem 2(a)
and (b)? Can you interpret this as the probability
of an event that 1s certain to happen?

(b) cCould you use the probabllity which you have obtained
in Problem 2(a) to solve Problem 2(b)?

4L, In a bag there are eight white marbles and two red marbles.
If a marble 1s selected at random, what is the probability
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. of not selecting a red marble in one draw?

Iet A be any event. Let B be the event "A doeg not occur.”

Write an equation which relates P(A) and P(B).
y . .
In a bag there are four red, three white, and two blue marbles.

If'éAmarble-is selected at random,

(a) What 1s the probability of getting a red marble?

. (b) wWhat is the probability of getting a white marble?

(¢) What is the probability of getting a red or a white
marble?

In a neighborhood pet show there are ten dogs, eight cats,
three canaries, and six rabbits.v A speclal prize will be

glven to an owner of a pet by drawing one name of an owner
from the set of entry blanks.

(a) What is the probability that the cwner of a dog or a cat
wlll get this prize?

(b} What is the probability that the owner c¢f a four-legged
ret will not get this prize?

Mutvally exclusive events are events which cannot happen

at the same time. If one event happens, the other cannot.
With this in mind, which of the following events are mutually
exclusive:

(a) The event of throwing a head or a tail on a single toss

cf a coiln.

(b) The event of your solving exactly six problems on a test
or your solving eight problems on the test.

(¢) The event ot rolling an odd number or of rolling a 3
cn a die.

(d) The event of rolling a € or a 3 on a cube with
faces numbered 1 to 6.

(e) The event of driving the car or golng to the store..
60
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(f) The event of going upstairs or going downstairs.

(8) The event of drawing an ace or a Jack from a deck of
cards on a single draw.

(h) The event of running or sitting.

(1) The event of talking to your teacher or of talking to
- your mother, 1f you talk only to one person.

(J) The event of stalling the car or of starting the car.

9. The dial is divided so that one-

half of the circle 1s allowed /4
for 2; 1, 3, and 4 are equally
spaced.

What 1s the probability that the spinning pointer will stop
at an even number?

10. 1In a bag there are four red cards and five black cards'

(a) How many different pairs of cards are there in the bag°
Hint: (3).

(b) How many different pairs of red cards are there in the
bag?

(¢) How many different pairs of black cards are there in
the bag?

(d) How many different pairs are there in the bag consisting
of a red card and a black card?

(e) How does the sum of the numbers of pairs in (b), (c)
and (d), compare with the number of pairs in (a)?

11. Find the probability of the following drawings of cards-
from the bag in Problem 10,

(2) A pair in which both cards are the same color.

(b) A pair consisting of a'red and a black card.
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12, Call C the event of getting a head on at least one of the
coins when two coins are tossed. Call A the event that a
head wlill show on the first coin and B the event that a
head wlll show on the second coin. Then

P(A) = 4 and P(B) = %.

() why is P(C) = 22
(b) Can event A and event B happen at the same time?
(¢) In this problem why is it true that |

P(A) + P(B) # P(C)?.

8-4. Probability of A and B

In Section 8-3 we found the probability that either event
A or event B occurs, If it is impossible for A and B to
happen at the same time (A and B are mubtually exclusive events)
the probability of A or B 1is the sum of the probability of
A and the probability of B. In symbols, we write

P(A or B) = P(A) + P(B).

We now want to find the probability that both of two events
will occur. What is the probabllity that if two coins are tossed
both will show heads? The possible outcomes are: (H,H), (H,T),
(T,H), and (T,T). Hence, the probability that both coins will
be heads 1is %; If we call event A the event that one coin
shows heads, and B the event that the other coln shows heads,
then

P(A) = 4 and P(B) = 3.

P(A and B) = §. Note that & = (%) ° (%).
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A and B 1s the event that both coins show heads. For this ex-
ample, we see that P(A and B) = P(A).P(B). It should be observed
that events A and B are independent events. Whether one coin
shows.heads or talls has no effect whatsoever on the other coin,
Consider the tossing of a coin and the spinning of a pointer
on a dial with 1, 2, 3 and 4, equally spaced. If the coln is
'tossed, no matter what side of the coin appears up, this outcome
has no effect upon.the outcome of the spinning pointer. This is
another example of independent events. If we let A be the event '
that a head will show when the coin is tossed and B be the event
that the pointer stops at 4, then A and B are independent
events. :
If we wish to find the probability of a head appearing and
the pointer stopping at 4 we are looking for the probabllity
that two events will occur. If we let "A and B" stand for the
event "both A and B occur" then we are looking for P(A and B).
By listing all possibilities we obtain the following:

H,1 H,4 T,3
H,2 T,1 T,4
H,3 T,2

H,1 means that coin will show heads and the pointer will stop

at one, .
The desired event i1s H,4 which is one of elght possible outcomes.

Thus
P(A and B) = § .

We can also solve the problem by finding P(A) and P(B).
' 1 1 :
P(A) = 5> P(B) = 7

Notice that % X %-= %, which 1s the probability that we found for
event (A and B). '
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Another way to think of this as a product is to notice that out
of the favorable outcomes for A only one of the possible ocutcomes
for B (or T of the possible outcomes for B) ls favorable.

Hence, the probability of A and B is E of P(A), and thus
P(A and B) = P(A) = (n) (g)

Let us think about one more example:

You are taking a test of multiple-choice questions where there
are 5 choices of answers for each question. You have answered
\all the questlons except Questions 7 and 9 which are troublesome.
By éiimination, you know that the correct answer for 7 1s one
of 2 selectlions, and the correct answer for 9 1is one of 3
selections. You decide to guess. Find the probability of getting
both 7 and 9 correct, assuming your guess on Question 7 does
not affect your guess on Question 9.

Let A Dbe the event that you choose the correct answer for
Question 7, and B be the event that you choose the correct answer
for Question 9, Events A and B are independent. Why? We
want to know P(A and B). By the property observed in the two
earller examples,

P(A and B) = P(A) - P(B).
We also know that P(A) = % . Why? What does it mean to "guess"?
Also, P(B) = %.
1 1 1
P(Aand B) = (3) + (3) = %
The probability of getting both Questions 7 and 9 correct by
guessing is % .

dur intuition tells us that the probability that two events
will happen, P(A and B), is less than the probability that one
or the other will happen, P(A or B). Our intultion also tells
us that P(A and B) 1s less than both P(A) and P(B). In
this statement it is assumed that neilther of the events can have

a probability of 1.
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Exercises 8-4

1. You toss a coin twice in succession Let A be the event that
a tall shows on the first toss of the coin. 1et B be the
event that a head shows on the second toss,

(a)\‘Are events A and B independent?® Explain,
(b) Find the Probabllity that the coin will show heads on
both tosses.

2. (a) If A, B, and C are independent events, then
P(A and B and C) = P(A) x P(B) x P(C). State a
similar property which holds for four independent events.

(b) PFind the Probability of a head showing on each of nine
Successive tosses of a coin.

3. Your basketball team is to play team A and team B on two
successive dates., It 1s estimated that the probability of
winning over A is §- and over B is 5

(2) What is the Probabllity of your team winning both games?

(b)  If your team won the first _game, what is the probability
of winning the second?

b, The four The six
sections Sections
are equal. are equal.

Dial A Dial B

Both pointers are made to spin, Assume both are honest.
(a) What is the probability that both will stop on red?
(b) What is the probability that both will stop on green?

(c) What is the probability that A stops on white and !
A stops on blue? _ ’
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5. If you have a bag‘bf five black marbles and four white marbles,
what is the chance of drawing two white marbles from the bag
if one is drawn and then replaced before the second drawing?

6. In Problem 5, what 1s the chance of drawing two white marbles
if the first one 1s not replaced before the second drawlng?

7. (a) Are the events in Problem 5 independent events?
(b) Are the events in Problem 6 independent'events?

8. Assuming that the probability of the Greens having a boy 1is
%, and of having a girl, 1s %,

(a) What 1s the probability of the Greens having a boy and a
girl as their first two children?

(b) Wnat is the probability of the Greens having first a boy,
then a girl? .

‘(¢) wWhat is the probability of théir having first a girl, then
a boy?
(d) If the Greens have a third child, what 1s the probability
that it will not be a girl?
9. Which of the following pairs of events arc independent?

(a) Picking a black marble both times *r .wo draws from a
' bag containing black and white marbies if you do not
replace the first marble drawn.

(b) Picking a black marble both times in two draws from a
bag containing black and white marbles 1f you replace
the first marble drawn.

(¢) Going to school and becoming a lawyer.

(d) Throwing a 3 on a cube with numbered faces and getting a
head when a coin is tossed.

(e) The event of a day being sunhy and the event of the next
day being partly cloudy.
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A certain problem is to be solved, The chance that one man will
solve the problem is g. The chance that another man will solve

the problem is Tg .

(a) What is the chance that the problem will not be solved
when both men are independently working on it?

(b) What is the chance that it will be solved?

If a committee of 3 is to be chosen from a class of 20
pupils and each pupil is as likely to be chosen from a class
as any other pupil,what is the chance that you and your two
best friends will be chosen?

When six coins are tossed, what is the chance that at least
one head will be obtained?

Almost a hundred years ago a monk named Mendel did many experi-
ments in breeding plants, especially garden peas. The results
of these experiments were so important that our modern knowl-
edge of heredity is bused on his findings.

We_now know that inherited traits are controlled by genes,
and that these are located on the chromosomes., Just as a person
has two chromosomes of a particular kind, such as A, he also
has two genes for a particular trait. These genes need not be
exactly the same. They can affect two different appearances of
the same trait: brown eyes and blue eyes, or curly hair and
straight hair, for example.

It is important to know that a parent will pass along to
a child only bne gene of the two he has of a particular kind.
Each child W111 receive one of the two possible genes for a
trait from his mother, and one of the two possible gengs for
the same trait from his father. The probability of getting
either one of the two genes from a parent is % . |

What these genes turn out to be, by chance, in the child

'will affect the trait. In carnations, for example, .red flowers
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are produced when & plant has two R genes (RR), and white
flowers result when a plant has two r genes (rr), But, if
a plant has one R gene, and one r gene, then the flowers
are pink.

(a) What is the probability of red-flowered plants producing
R genes?

(b) what is the probability of white-flowered plants producing
R genes?

(¢) what is the probability of getting red‘flowers when pink-
flowered plants are crossed with pink-flowered plants?

(d) What is the probability of getting red flowers when red-
flowered plants are crossed)with pink-flowered plants?

*14  There are ten sticks. One is an 1nchlong, one 1s 2 inches
long and so on up to ten inches long. A person picks up three
of these sticks without looking. What is the probability that
he can form a triangle with them? Remember the sum of the
lengths of two sides of a triangle 1s greater than the length
of the third side.

*15. Ten slips of paper numbered 1 to 210 are put in a hat and
thoroughly mixed. Two slips of paper are drawn by a blind-
folded person. What 1s the probability

(a) That the numbers on both slips are even?

(b) That the sum of the two numbers is even?

(¢) That the sum of the two numbers is divisible by 3?
(d) That the sum of the two numbers is less than 20?

(e) That the sum of the two numbers is more than 20°?
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16. BRAINBUSTER. )
' (a) A penny, a nickel, a dime, and a quarter are ﬁhroWn
and exactly two come up heads. What is the probability
that one of those coming up a head is the dime?

(b) If the same four coins are thrown and exactly three
come up heads, what is the probability that one of the
three 1s the dime? .

17. BRAINBUSTER..Agive different coins are thrown, a half dollar
in addition to those in Problem 16. What is the probability
of each of the following?

(a) 1Ir exactly three come up heads, one is a dime and one
1s a quarter.

(b} If exactly two come up heads, one 1is a dime.

(¢) That exactly two come up heads and one of these is the
dime.

(d)'/That exactly three come up heads and two of these are
"a dime and a quarter. '

8-5._ Summary )

In this chapter you have studied some elementary ideas of
Probability, solved problems involving applications of these
ideas, and made use of. probability notation such as P(A). You
have observed that, by definition,

0 L P(A) < 1.

P(A) 1s the probability, or measure of chance, thaf svent A
willl happen. .

Two types of situations in which probability can be applied
have been considered. On one, you can 1list and count all possible
outcomes. In the other you cannot, or do not because of the
tedious work involved, count all possible outcomes. In this
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the sample rather than on the total.
You have also solved problems, illustrating

(1) P(A or B) = P(A) + P(B) where P(A or B) is the
probability that event A or event. B will
happen, provided that A and B cannot w~ouh
happen (A and B - are mutually exclusive).

(2) P(A and B) = P(A) - P(B) where P(A and B)
1s the probability that both event A and event
B will happen, provided that the success or fall-
‘ure of A has no effect whatsoever on B (A and
B are independent),

Exercises 8-5

1. The numerals for the numbers 1 through 16 are placed on
16 disks. If one of the disks 1s selected without looking,
what 1s the probability that the number named is: L

(a) divisible by

(b) divisible by 3?

(¢) a prime number?

(d) a two-digit number?

(e) divisible by 4 and 3?

2. A -pencil box contains 5 hard pencils and 12 soft pencils.
If you pick out one pencil what is the probability that it

will be:
(a) soft?
(b) hard? .

(¢) hard or soft‘7

3. At a signal, each of five boys tosses a penny irto the air.
What 1s the probability that all the coins wi:l sume down

heads?
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A card is drawn from an ordinary deck (52 cards),
(2) What is the Probability that the card is a diamond?
(b) What is the Probability that the card is an ace?

(¢c) What is the probability that the card is a diamond and
an ace? '

(d) What is the probability that the card is a diamond or
a spade? ' '

A father brought home a set of alphabet blocks for his
two-year-old son. Each block had the same letter on each

of its faces, The father selected the blocks necessary to
spell the child's name, YA L B E R T," and gave them to the
boy, who did not know one letter from the other. After play-

" Ing with the six blocks for.a while the child arranged them

in a line. What is the probability that the arrangement
spelled his name? o

. A bag contains 4 times as many red marbles as black marbles

(identical except for color). If one marble is drawn what
is the probability that it is red?

If there are two black marbles and one white marble in a box,
We can say that there are three possible pairs of marbles in
the box. Find the probability that when, without lcoking, a
palr of marbles is taken out of the box,

(2) both marbles will be black?
(b) one marble will be black and one marble will be white?

Find the sum of the probabilities in Problem 7 (a) ‘and (b).
Explain the meaning of the sum.

. You are to be placed in a line with two girls (or boys) one

of whom is your favorite. If the line contains exactly three
persons including yourself, what is the Probability that you

will stand next to your favorite? In such a probiem we assume
that you are not placed according to any plan (1ncluding your
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1k,

own). If you crowd in next to your favorite, chance would

not play a role.

in Disco Junior High School students have been divided into
sections alphabetically. In Section D the numbers of students
counted by the first inlitlals of thelr last names are as
follows: )
K-5 L-4 M-8 N-4 O0-2, P-5, Q-1.
(a) Find the probabllity that a student selected at random
will have a famlly name beginning with K or L.

(b) Find the probability that a student selected at random
will have a family name beginning with O, P, or Q.

(¢) What is the probability that a student selected at
random will not have a last initial of M or N?

Based on the season's records on September 1, the batting
average of A 1s 0.313, of B 1s 0.260, and of C is
0.300. If A, B, and C bat in order, what 1s the pProbabll-
ity that all three men will get a hit? (Round your answer

to the nearest thousandth.)

Based on data available,‘biologists consider the probabllity

.of the birth of a boy %, and of a girl, %. In the birth

of three children,
(a) What is the probability that all will be boys?
*(b) What is the probability that at least two wlll be boys?

Suppose on a regular dodecahedron, a sqlld having twelve
plane faces, 5 faces are tolored white and 7 faces colored
black. It you toss it, what 1s the chance that 1t will stop
with a white side down?

If there are 225 white marbles and 500 black marbles
in a box, what is the chance of picking a black marble on
the first draw?
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15. On Monday the Panthers play t.1e Bears and on Tuesday the
" . Panthers play the Nationals. Based on the season's record
it 1is sa;d that the probability that the Panthers will win
the Bear's game 1s 0.4, and the probability that the Panthers
will win the National's game is 0.6. Assume shat the results»
of the first game have no effect on the outcome of the second

game.
(2) Wwhat is the probability that the Panthers will win both
games?
(b) what 1s the prdbability that the Panthers will lose
both games?

(¢) What 1is the probabllity that the Panthers will win the
Bear's game and lose the National's game?

(d) What is the other possible outcome of playing both
games? What 1s the probability of this event?

*16. ‘A cube with faces numbered 1 to 6 and a coin are tossed
at the same time.

(a) What is the probability that both a head and a 6 will
show? ’

(b) What 1is thé probability that a head or a 5 will show?

(¢c) What is the probablility that a head or a number divisible
by 2 will show?

*IZ ‘Suppose you have'six letters to be delivered in different
parts of town. Two boys offer to deliver them. In how many
different ways can you distribute the letters to the boys?
Include the possibilities of one boy having 0, 1, and 2
letters to distribute as well as the possiblility that each
boy will have 3 1letters to distribute.
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Chapter ¢
SIMILAR TRIANGI.ES AND VARIATION

S-1l. inlirect Measurement and Ratios

You read in Chapter 3 that the sun 1s 93,000,000 miles away
from the earth, and that the distance from the earth to the nearest
star (other than the sun) is & ilght-years. You probably know
that the diameter of the earth is about 8,000 miles. Do you
“think that anyone has actually stretched a tape measure from the
earth to the sun, or drilled a hole through the center of the earth
to measure its diameter? Of course not. These distances are
measured indirectly. We measure certain lengths and angles that
are within our reach. Then we calculate the lengths we are interw
ested in. In order to do this, we may use the relations between
the parts of a triangle.

We can also use indirect measurements in problems closer to

. our everyday experlences. Suppose on a sunny day we wish to find

the helght of a bullding. We can measure the length of 1its shadow,
which turns out to be 40 feet. Now we ask the help of a friend
who is 6 feet tall, We find that the length of his shadow is
8 feetf Thus, his height 1is six-eightbs, vy

or three-fourths, of the length of his "?

shadow. We can write the ratlo like this: _i

his height =6 =3 . ‘>
ength of shadow 8 % 8
It would seem that the ratio of the height ?: ' i
of the bullding to the length of the shadow

[—— < —

ot
of the building would also be %u Thus we ' gégéi
obtain the following proportion: s
. 3 _ -[] ‘
o = =
Using the multiplication property
of equality, .

7i
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:
+

ro(s) = k0(3)

thus, ¥y = 30. The height of the building i1s 30 feet.

Class Exercises 9-la

In the foilowing_drd&ing, the ordered pair (4, 0) 1is named
with the letter A, (4, 3) 1s named with B, and so on. OB
passes through points D and F. The length of one slde of one
of the small squares will represent one standard unit of length.
Use the figure in answering the questions as indicated.

| 4y debict
v A
) ] \
- \
\
\
/1 \‘ %7
2) 1 A \
N \ 2
\ \
’ \
Ty y \
A
»
0 Al4,0} '*(a:l_o u|:,o X

1. AB is 3, and OA 1s 4. (Recall that AB wilth no symbol

above 1t means "the measure of segment AB.") Therefore the
’ AB _ 3 o ‘

ratio of AB to OA is OR°=T °
(a) Wwhat is the ratio of CD to 0C?
(r) Wnat 1s the ratio of 'EF to OE?

2. The dotted, curved lines through B, D, and F were drawn
with a compass. Thus we can determine that. OB 1is 5, OD
is 10, and so on.

(a) What is the ratio of AB to O0B?
(b) What is the ratio of CD to 0D?

[sec. 9-1]
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3. () Find the value of %% ]
o L |
4.  Copy and complete the table %%Iﬁ %- %% = ? %% = ?
' at the right The completed O _, |CD_, |oc_,
‘table will show ratios from o~ " {op_ ' |op "¢
the previous drawing. . EF _ o, |EF ., |OE_,
OE : OF : OF ~ °

5. (a) Compare the ratios in Column 1. You should find that

these ratios are equal. Thus éE %2 %% -%g = —3—

(b) Compare the ratios in Column 2. Are they equal° Which
' of the ratios is in the simplest form?

(¢) Wnich of the ratios is in the simplest form in Column 32
Are the ratios in this column equal?

6. A part of the previous drawing

1s shown at the right. _ge Ay [ ]
select a polnt N on OB, : ‘
A line through N perpendicular I\
to the X-axls intersects the >
X-axis at M. The length of ) Sy e
MN is' y. The length of OM ‘ : ;:
i . o // . x‘.
S Xe -
) ' 1 $ 4 [

(a) y 1s about 43 or 4.5, - N/

What is x? T

W _ 3y ?
®) M =%=—> .
T Suppose we select any point R on OB, A line through R
1s perpendicular to the X-axls and intersects .the X-axis
at 8.

(a) Wnhat kind of a triangle 1s determined by the line segments
Joining O, S, and R?

(b) Does it appear that the ratio of the "y" side to the
"x" slde of such a triangle will always be E’ if we

use this particular ray?
[sec. 9-1]
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10.

(a) In AOMN, ON is the longest side. What name is given
to the longest side of a right triangle?

(b) sSince A OMN is a right triangie, the Pythagorean
Theorem may be used to find the length of ON. ‘Find ON
using this theorem. '

In the drawing at
the right, note
Eggt the angle that v s
OB makes with the Netialasl A
X-axls 1s different \
from the angle in vd N ‘
the drawing for the ¥*# Pd \ v
first problem. For jBk/' 1 y 1
AOAB 1in this draw- I\ y| | |
ing, AB 1s y, OA 4
is x, and OB 1s [ A
r. Similarly in X M%Q) ' C([P. ) E(15.D)
AOCD and A OEF, ! '
the measures of the
lengths of the vertical sides are ¥y, the horizontal sides

X, and the third sides r. For the three triangles we cannot
obtaln the exact measure of r, the hypotenuse. For these
triangles, r 1s about 6.4, 12.8, and 19.2. Using the -
information given above, complete the table:

a'\5| 2 7/

I

P

=

e
—— 1
—

z = z = e
For A OAB
— == — —-—
For A OCD ,3_ rb -
|Fc. A OEF X i

(a) What kind of triangles are A OAB, AOCD, and A OEF?

(b) Explain why the measure of the angle at O 1s the same
for each of the triangles. '

(¢) 1Is % ‘equal to the same number for each of the triangles?

[sec. 9-1]
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(d) For each triangle, does '% equal the same number?
(e) 1Is ¥' edual to the same number for each of the triangles?

©1l. Use the Theorem of Pythagoras to verify that the measure of the
length of the hypotenuse for each triangle 1s about 6.4, 12.8,
and 19.2.

Exerclses 9-la

L. On a sheet of graph paper draw a figure similar to those in
the class exercises. The coordinates of point A are (3, 0)
and the coordinates of point B are (3, 4).

(2a) Find the values of %, %, % for- A OAB.

(b) The coordinates of point D are (6, 8) and the

coordinates of point C are (6, 0). Find the values

of %, %, % for A OCD. Compare your answers for (b)

with those for (a). ‘
(¢) Select fwb different points on 53 and find the values

of the three ratios. Compare youf answers for (c) with
those for (a) and (b). AY 4

2. In the drawing at the right, the g/

ray through 0 18 drawn so that /

it forms with the X-axis an /

' angle of - 60°, Lines through

B, D, and F are drawn perpen-

dicular to the X-axis, inter- 7

secting the X-axis at points A yR15.6

A, C, and E with coordinates

as Indicated. The approximate B

~«
2
143
Q
D

lengths of y are shown in the

drawing. For the three triangles, /

¥
r, the hypotenuse, has a measure ;/ y o2

6, 12, and 18 respectively. - "%

[sec. 9-1]
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(2) Find the values of %,' %, and é' for each triangle
and complete a table similar to that in the class
exercise. .

'(b) Compare the values of % for each triangle. Are they
equal?

'(c) Are the values of for each triangle equal?

HiK Rl

(d) Are the values of for each triangle equal?

(e) Select any other point of 0B. Find the lengths of x,
¥, and 'r. Then determine the three ratios for this
new triangle and compare them with the ratios you found
in the first part of this problem.

t

8

3. In the drawing at the right, A AOB ~N|
is a right triangle. / AOB 1s a

60° angle as in problem 2.
(a) From problem 2, what is the

value of %? y
(b) Let T represent the value of

L. Then, ¥ =T. urtite L=,

replacing "T" with your answer o A

from (a) and replacing x with
45, Find the approximate height
of the flagpole, Y.

g, The drawing at the right shows a
ladder extending from a flre truck
to the top of a building. A AOB
*s a right triangle, and / AOB 1is

o
a 60 angle.

(é)” From problem 2, what is the.
- value of %?

79
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{b) Replace "K" 1in % = K with your answer from (a), and
replace r with 75, Disregard the height of the fire
truck and find the approximate length of Y.

5. Use the drawing at the right
to answer the following ]

questions.
(a) A0 ¥ AB and CO 2 CD.
What kind of triangles

are A OAB and A 0CD? B
(b) Find the measure of :
/ AOB without using a I /‘
protractor. 0 + 2 X
3 Al (4,0 € (8,0)

(¢) Wwhat is % for each of e !
the triangles? ‘
- .
(d) Select any point on OB and find %. Then compare your
answer with that in (c).
(e) 1Is the value of % the same when the angle the ray makes
with the .X-axis is 30° and when the angle is 450?

6.  Using the drawing for Problem 5, show that in A OST, the
value of % may be written as

VA

From the answers to the questions in the previous exercises
it would appear that the ratios %, %, and %- depend on which
ray 1s selected through the origin., If the angle the ray makes
with the X-axis 1s 600, % is about 1,73 for any point on the-
ray. If the angle the ray makes with the X-axis is 459, % is
1.00 for any point on the ray. Thus, the ratio depends on the
angle the ray makes with the X-axis and not oh the point chosen
on fhe ray. You willl now consider why this must be so.

.
—iy

.80
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Class Exercises 9-1b

1. In the drawing, the
coordinates of Polnt . 4
A are (a, 0) where
a 1s some positive
number. . The coordi- F(/////’
nates of Point B
are (a, b) where D
b 1s some positive

S

number. The angles - ' R
at A, C, and E
are right angles,
Eﬁ and 55 are par-
allel to the X-axis.

v

A (a,0) C (2a,0) E (3aq,0)

(a) The measure of the length of OA is a. What other
" segments are congruent to O0A?

(b) Show that A 0AB, A BRD, and A DSF are congruent.

(c) AB is b uniﬁé long. What other segments are congruent
to AB? -

(d) What is the measure of the length of CD?

(e) What is the measure of the length of EF?

2. Copy and complete the followlng table. Note that ¢ is the
length of the hypotenuse for each triangle.

For A 0AB £ 3 - = = ?
.3.’.=.2_1_). X-—‘? ..J.c.—’)
For A 0CD " 5 =2 = = 7
/ L=-3b ¥Y_o|X_,

81
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3. (a) Does the ratio % = %—}{%? Explain.
a_2a, ’ 2a _ 3a,
(b) Does the ratio b = 557 Does == 57

(¢) Does %» have the same value for each of the triangles?

What about the value of %? or %?

: -
4, Select a point on OB having the coordinates (x, ¥), such

(a) What is the value of y?
(b)  What is the value of the ratio %?

N .
5. Select a point on OB having the coordinates (x, ¥), such

that x = %a.

(a) What is the value of y?
(b) What is the value of the ratio _%?

It would appear Eg?t for every point having coordinates (x, Y)
on a particular ray OB, all 1 represent the same number.
Similarly, all X represent the same number, and also, all %
represent the same number. Thus, the ratios are determined only
by the angle formed by the’ray from the origin through the point
(x, y) and the positive X-axis.

82
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"(a) Determine the value of £,

Exercises 9-1b

Usé the drawing at the right to
find the answers for the follow-
ing questions:

(a) Determine the value of %.

(b) Use the Pythagorean Theorem
to determline the length of
OB.

(¢) Find the value of %.

(d) Find the value of

] bt

(e) Using a protractor, find
the measurement of / AOB.

In the drawing at the right 0B
is congruent to the OB in the
drawing for Problem 1. Note
that the angles formed by the
rays with the X-axis are not
the same. .

_ S X
(b) Use the Pythagorean Theorem
to determine the length of

OB.
(¢) Find the value of % and
S X

T and compare the results
with problem 1{c) and 1(d).
Arz they the same?

!sec. g-1]
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3. In the drawing at the right the JJ??\\\
helght of the buillding is y. 7|
When the angle of the sun's rays / =l]
with the horizontal is 60°, the /o
length of the shadow of the / 0 ,'y=.?
building, x, 1is 95 rret. ¢ ,/ :
Find y 1if % is at .73. // ' O

Lo
/R
/ .’Q§
W7

4, A television antenna is mounted on an 80-
foot pole. % % .87. Replace "y" 1in B
the open sentence with 80 and find the
approximate length of the support wire
from O to B, 4

1
LI

5. In the drawing for Froblem 4, when the measurement of é AOB
‘ is 60°, what 1is the measurement of / ABO?

3
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6. In the drawing at the righv OB
represents a ladder leaning against
the wall. The top of tue ladder
reaches a point 12 f{eet above
the ground. Use the following values
in answering the quésﬁions:

In2.36; L% .92,

(a) How far 1s the foot of the
ladder frow. the base of the
wall?

(b) How long i the ladder?

(c) Assume the foot of the ladder
~1s five feet away from the base
of the bullding. Use the
Pythagorean Theorem to check
your answer for (b)

67
¥ [

9-2, Trigonometric Ratios

In the drawing, consider a partic-

ular ray 6% through the origin. On A

this ray, for any point P, whose
coordinates are (x, y), &a right tri-
angle is determined with the right
sngle at a point on the X-axis.

In the previous sectipn you learned

OL_
X —>

that % is the same for all points

—_—
on OB. In other words, % depends
only on“the angle AOB and not on

x A (x,0)

the particular point P chosen. We call this ratio the tangent

of the angle AOB. The tangent of angle
tan / AOB.

[sec. 9-2]
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-y ; AP _ length of the oppoglte side
tan / AOB X OA ~ Iength of the adjacent side®

You also learned that the value of % 1s the same for all .
points on the ray 5%, where r 1s the measure of the length of
OP, that 1s, the hypotenuse of A AOP. We call this ratio the’
8ine of angle AOB., The sine of angle AOB is abbreviated
sin / AOB. | '

AP _ length of the opposite side
) = X = e = o
sin / A0B r OP length of the hypotenuse

Finally, you learned that the value of % 1s the same for .all

_9
points on the ray OB. We call this ratio the cosine of the angle
AOB, and we abbreviate this cos / AOB,

cos / AOB - X _ 0A _ length of the adjacent side
~r OP length of the hypotenuse

In Exerclses 9-la, we found the following ratios for an angle
of 60°; '
tan 60° X 1.73; sin 60° X 0.87; cos 60° = 0.50.

Class Exercises 9-2

+

1. In the figure at the right, the _:_ﬁ_J i f
line throdgh A 1s perpendicular ‘, J | J
to the X-axls. Rays_through the ' 'nL—-tL
origin intersect the line. Call ~r i
the point of each intersection B. J_—

(
l

(a) For each of the triangles,

what is the measure of the ,’

|
length of OA? 1
o : —' [/
(b) For the ray marked 60°, what rji“;
1s the measure of the leng-h JFg :Zr
of AB? » V%N
)4 A
(c) Use your answers for (a) and /1 LA
y L
I /
(o) to calculate the tangent stA

of / BOA., (Calculate your
results to 2 decimal places.)
[sec. 9-2] -
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(d) Similarly, calculate the tangents of 45° ang 30°.

2. In the drawing at ﬁﬁ;‘right,.the

‘radius of the arc is 10 units. 1 ly €0

Let B be the polnt where each + 1/ a5’

ray through the origin intersects :]

the circle. A line through B ) /

1s perpendicular to the X-axis. - T“L // //,’ 30°

For evrch line the polnt of inter- 2

section 1s A. Calculate your // P \

results to two decimal places. }{ ,,// \

(a) For each of the triangles, 0 //’// x|
what 1s the measure of the ] | th -

length of OB?

(b) For the triangle determined by.$he yay marked 60° what
is the measure of the lengti of AB?

(¢c) Use your answers for (a) and (b) and calculate the sine
of [/ BOA.

(d) Similarly, calculate the sine of 145° and of 30°,

(e) For the triangle determined by the ray marked 60°, what
is the measure of the length of OA?

(f) Use your answers for (a) and (2) and calculate the cosine
of é BOA. (Calculate your . .lts “o 2 decimal places.)

(g) Similarly, calculate the cosine for the rays marizd 45°
O o
and 307,

3. (a) How does the sine of a 30° angle compare with the
cosine of a 60° angle?

(b) Compare the sine of a 45° angle with the cosine of a

kSO angle.

87

[sec. 9-2]

o




l’l’o

Sob

361

Using your answers for Problems 1 and 2, copy and complete
tne followling table. Keep a copy of the table, since it will
be needed in Exercises 9-2,

m(/ BOA) | sin / BOA | tan / BOA
30 60
45 . 45
60 -] 30

cos / BOA|(Use the column at
tre right for the
measure of the

~ angle when using
coslne of the
angle.)

Conslder the right triangle in the

drawing. / BOA has a measurement B
of 300, and the measurement of
OA 1s 6 reet.

~(a) Wnich one of the trigonometric

ratios lnvolves the opposite

and adjacent sides? 0. A.
(b) From your table, what is the measure of the ratio %%
for [/ BOA?
(¢) Let y represent the measure of the length of AB.
Then,

% = tan / BOA.
Sol~ 5 find the measure of the length of AB.
When we say that "tan (/ AOB) = %," we also mean that
"% = tan (/ AOB)." That 1s, we can go from left to right or
from right to left with our definition of the trigonometric
ratios. Or, you might say that the ratios are used "forwards

and backwards." You should learn them in both ways. In
each case below, state which trigonometric ratio is defined

[sec. 9-2]
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. in terms of the two stated sides of a right triangle:
(a) hypotenuse and opposite side.

l(b) adjacent side and hypotenuse.
(¢) adjacent side and opposite side.

{d) hypotenuse and adjacent side.

7. For this triangle:

(a) For [/ RST, the opposite side is . T
(b) For / RST, the adjacént side is .
(c) For / SRT, the opposite side is .
S
(d) For [/ SRT, the adjacent side is .
8. For this triangle:
F

~(a) The sije opposite / EDF 1is .
The side adjacent to / EDF is .

)
(¢) The side opposite / DFE 1s .
) The side adjacent to / DFE 1s -

9. For the triangle, iirst name the opposite side for the given
angle, and then name the side adjacent to the given angle.

(a) For [/ LJK.
(b) For [/ JKL.
(e¢) The hypntenuse is .

K

10. For the right triangle OAB L

” assume that you are gilven the B
trigonometric ratios for the
tangent of / AOB, sine of
/ AOB, and cosine of / ACB.
Which trigonometric ratio
would you use to find each of
the remalning two sldes of the 0 , ‘ A

[sec. 9-2]
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triangles when you know

(a) oa =7,
(b) OB = 6.
(¢) AB= 2.

the following:

363

For the previous problem, answer each of the questions for
/ ABO instead of / AOB.

Exercises 9-2

The polnt A 1is 50 feet from the foot
of a flagpole. Find the height of the

= 60°. (/ PAB 1is
called the angle of elevation of the

flagpole if m(/ PAB)

top of the pole.)

A 25-foot ladder is placed against

the side of a bullding.

an angle of U45° with the ground,

at what height does it
building?

If 1t makes

2

touch the | //_T
A ]

ey —

Use the drawing for the previous problem to determine how far
from the foot of the bullding the foot of the ladder is placed.

isec, 9-2]
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b, To find the measure of the width of
a river two boys set up stakes at
E and F, using a trce on the
opposite bank for D. DEF 1s a
right angle. The measure of angle
DFE 1s 30. If the distance from
E to P 1s 150 feet, how wilde
1s the river?

5. (a) The side of a square has a measurement
of 4 feet. Flnd tre length of the
diagonal uslng one of the trigonometric

ratios. 4

(b) Check your answer for (a) using the _
Pythagorean Theorem.
' o o L_—' 4'——_J
6. 'Find the ratios: EEE—QQE and EEE_éQa
: sin 30 tan 30

State in your own words why you think these ratios ar¢ not 2.
Te A regular hexagon 1s inscribed

in a clrcle of radius 10 inches.

(a) What i1s the measure of / PCQ?

(b) What is the measure of [/ CPQ?

(¢) Find CM.

(d) Find PQ.

[sec. 9-2]
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8. e figure ABCD consists of the union B
of two equilateral triangleg _ABC and
ACD., The sides of the triangies are
10 inches long. '

(2) What is the measure of ,/ AED?
() What is the measure of / DBC?
(¢) why 1s BD | AC?

(d) Find the approximate measure of
. the length of ED.

9-3. Reading a Table

You used a table of square roots in Chapter 4, and in Class
Exercises 9-2 you made a table of the values of the trigonometric
ratlos for the followlng three angles of measurement: .300, 450,
and 60°. Perhaps you noticed that sin 30° = cos 60°. Do you
think this might be true for other zngles?

You may have noticed that for any rignt triangle, the sum of
the measures of the two smaller angles is 90. The sum of 30°
and 60° 1s 90°. Similarly, the sum of 45° and 45° 1is 90°.
Two angles, the sum of whose measures 1s 90, are called comple-
mentary angles. A 30O angle and a 60O angle are complementary
angles. Similariy, a 200 angle and a 70O angle are ¢omplementary
angles. 1In fact, the two non-right angles of a right triangle will

always be complementary angles.

Look at the following figure, and refer to the trigonometric

ratios below: B

[sec. 9-3]
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length of the opposite silde CB
A\B = -
sin / CAB = SooF=0F the hypotenuse ~ = AB

length of the adjacent side . CB
cos / CBA = Tength of the hypotenuse AB

We have shown that the sin/ CAB = cos / CBA. Angles CAB and CBRA
are complementary angles. Thus 1t would appear that for any pailr of
complementary angles, the sine of one of the angles would be equal
to the coslne of the other angle. Does sin / CBA = cos / CAB in
the drawing? Note that both of these ratlos are the same, %%.
Thus, 1t i1s no acecident that sin 30° = cos 60°. It would also be
true that sin 20° 1is equal to cos 700, cos 10° = sin 800, and
80 on.

We used thils property to shorten the table we made for three
angles. In the same way, thils property 1ls used in the table of
trigonometric ratios on page 368. In thls table, the measurements
for angles from 1° +o 450 are listed on the left. The measure-
ments for angles from h5° to 89O are listed on the right, read=-
ing from the bottom o7 the page toward the top. The ratlo head=-
ings are shown at the top of the page for all angles from 1° to
450. For angles 45°  to 89° the ratio headings are shown at the
bottom of the page. '

To find sin 20° 1in the table, first look for 20° 1in the
column on the left since 20 ¢ b5, Next, find the column headed
"sine" at the top of the page. The number in the sine column and
the 20° row is .3420. Thus, sin 20° % 0.3420 correct to four
decimal places. Notice that the approximation sign 1s used indicat-
ing that we know only that the decimal 1s correct to four places.

To find cos 700, look for the angle measurement in the right-
hand column since 70 > 45. Because you are using the right-hand
column, look for the ratio headings at the bottom of the table. In
the column headed "cosine" at the bottom of the page we find 0.3420
in the row for TOO, 'ihus, cos 70o ~ 0.3420 to the nearest cou-
thousandths. Notice that this is the same as sin 20°, Find
sin 70°. It 1s about 0.9397.

Notice that there 1s another ratio listed in the table, that

[sec. 9-3]
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of cotangent. Just as we call the sine of the complement of an
angle the cosine of that angle, so0 we call the tangent of the
complement of an angle the cotangent of the angle. For the tri-
angle a‘ the right,

tan / AOB = ¥ = cot / ABO B
and, y

tan / ABO = % = cot / AOB.

0 ‘A

Notice that the "eco" in cosine and *

cotangent are suggested by the "co" in "complementary " Angles

AOB and ABO 1in the brevious drawlng are complementary angles.,
You can find more complete and more accirate tables of

trigonometric ratios in a library. People who use mathematics in

their work usually own books containing various sets of mathema-

ﬁical tables.

94
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TRIGONOMETRIC RATIOS

Angle Sine Tangent Cotangent Cosine
13 L0175 ,O175 55.290 .9998 893
20 .0349 .0349 28.636 . 9994 88o
35 .0523 .0524 19.081 .9986 87o
4 .0698 .0699 14.301 .9976 86
52 .0872 .0875 11.430 .9962 852
6o 1045 .1051 - 9.5144 .9945 8uo
o .1219 .1228 8.1443 .9925 83o
8o .1392 L1405 7.1154 .9903 82o
9 L1.,64 .1584 6.3138 L9877 81
108 .1736 .1763 5.6713 .9848 80°
117 .1908 .194Y 5.1446 .9816 793
127 L2079 L2126 4, 7046 99781 78o
13 .2250 .2309 4,3315 L9744 7o
14 .2419 .2493 4,0108 .9703 76
158 .2588 .2679 3.7321 .9659 758
16o .2756 .2867 3.4874 .9613 7uo
175 L2924 .3057 3.2709 .9563 735
18o .3090 .3249 3.0777 .9511 725
19 .3256 L3443 2.9042 .9455 71
208 .3420 .3640 2.7475 .9397 708
217 .3584 .3839 2.6051 .9336 69o
22 L3746 .4olso 2.4751 .9272 68o
237 .3907 L4245 2.3559 .9205 67o
24 L4067 QIR 2.,2460 .9135 66
250 4226 L4663 2,145 .9063 658
268 4384 L4877 2.0503 .8988 62
272 L4540 .5095 1.9626 .8910 63o
28 L4695 .5317 1.8807 .8829 62o
29° 4848 .5543 1.80L40 .8746 61
30° . 5000 .5TT4 1.7321 .8660 608
318 .5150 .6009 1.6643 .8572 59
32 .5299 .6249 1.6003 .8480 580
33 L5446 L6494 1.5399 .8387 5T
34° . 5592 .67ks 1.41826 .8290 56
352 .5736 .7002 1.4281 .819z 55°
362 .5878 .7265 1.3764 8090 5“8
37, .6018 .7536 1.3270 7986 53
38o L6157 .7813 1.2799 7880 525
39 .6293 .8098 1.2349 7771 51
uog 6428 .8391 1.1918 7660 508
ulo .6561 .8693 1.1504 7547 490
427 .6691 . 9004 1.1106 7431 u80
uso .6820 .9325 1.0724 7314 ”70
uuo L6947 . 9657 1.0355 7193 u6o
45 L7071 1.0000 1.0000 7071 45
Cosine Cotangent Tangent Sine Angle
[sec. 9-3]
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Exercises 9-3

Use the table to find the following:

(a)
(b)
(c)
(a)
(e)

sin 10° (f) tan 40°
tan 10° (8) tan 50°
sin 41° (h) tan 60°
sin 63° (1) +tan 70°
sin 82° (J) sin 88°

Check the statements below by studying the numbers in the
table. Do you agree with the statements?

(2)

(b)

(c)

{a)

(e}

The ~ine of an angle in the 5able is always between O

an. ‘',

. of an angle increases with the size of the angle
t. 1° to 89°,

The slne of an angle less than 30° i1s less than éu

The diffefences between consecutive table readings variles
Lvroughout the table,

The difference between the sines of two consecutive angles
in the table is greater for smaller consecutive angles
than for larger consecutive angles.

Use the tangents of angles glven in the tables to answer the
following questions: '

(a)

(v}

()

(a)

Is the tangent of an anglc always between O and 1°?

Does the tangent of an angle between 1° and 89O
increase with the angle?

Do the differences between consecucive readings in the
table vary throughout the table?

Is the difference between the tangents of two consecutive
angles 1n the table greater for smaller consecutive angles
than for larger consecutive angles?

[sec. 9-3]
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4, Find the followlng products:

(a) 100 = (sin 32°) ~ (e) o0.27 + (sin 73°)
(b) 81 + (tan 48°) (d) 0.05 «(tan 80°)
un )

5. The diagonal of the rectangle shown at 20

the right makes an angle of 40° with ‘j‘aoo

the longest sides.. Find the width of

the rectangle if its length 1s 20 w

inches. g 4qo '

6. Triangle ABC 1s a right triangle with / ACB the right

Y- AC _ 5
(2) - what trigonometric ratio of / BAC 1s w5 = §?

(b) Use the table of trigonometric ratios to find the
approximate measure of / BAC. '

Te The length of a shadow of a 30-foot tree
1s 10 feet. What is the approximate
measure of the angle of elevatlon (Z KIM)
of the sun? (Recall that the angle of
elevation of an cbject from a point L

"1s the angle between a horizontal line
through I, and the line through L
and the givea object. In thils case the
glven object is the sun.)

8, Suppose in the previous problem, the length of the shadow had
been 20* feet instead of 10 feeC. Would your answer be
one-half of the previous answer? If so, why? If not, what

. would the approximate measure of the angle be?
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10.

11.

An observer sees that the angle of
. elevation from where he stands to
the top of a cliff'is 59°, I

the cliff is 200 feet high, find,
to the nearest foot, the distance
from the observer to the foot of
‘the cliff.,

371

The tangent of the complement of an

angle has been called the cotangent

of the angle. In the drawing,

(a)

(b)

cot / POQ =.tan / PQO
Show that:

_ 1
cot [ POQ = gz Fog- 0 h.

this.would be a different way to define tne cotalgent:
the cotangent of an arigle is the reciprocal of the tangent

. of the .angle,

Is the sine of an angle the reciprocal of the coSlng of
the angle? Explain your' answer using thg dpawing.

The navigator on a ship sailing due

south observes a-lighthouse due - g:::s}':~"~""§3€ 3 PMlﬁ

west at 3. p.m. At 5 p.m., the \\ A

lighthouse is 52° west of north. N
.- The ship 1is moving at a speed of \

\
15 miles per hour. : \?5én
(2) How far from the lighthouse N
was the ship at 3 p.m.? . | \ s‘P.M-

- (b) How far from the lighthouse ' v

was the ship at 5 p.m.?
(compute your answer. to the nearest tenth of a mile,)

‘ 98
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1o, Triang] e 0BC at’ the right is an
equilateéal triangle. Each side of
the trianglé has a measure of 2.

(a) Whay js the measurement of
Angyes BOC, OBC’. and BCO?
Expyain your answer,

|

l

[

I

[

|

!

!

(b) The vertex B 1s joined to o IA
the pigpoint A of 0OC. Show —2 —

thay A OAB ¥ A 0aB,
~(e) Shoy tnat AOAB is a right triangle.
(a) Fing tne measurement of / OBA.
(e) Find the leﬁgth of AB using a trigonometric ratio.

13. Refer g4 the drawing from Problem 12 m{/ COB) = 60°. The
measure (.~ 0B = 2, and the measure of OA = 1.

a) C = ° _ .9& = -?‘.
( Og / AOB = cos 60" = 0B = 7

() I srder to find the sin / AOB and ~tan / AOB we must
fing tnhe measure of AB which we shall call y. By the
Pythagorean Theorem, .

(08)2 + (aB)? = (0B)?
ox, 12 442 = 2P
thus’ : ” y2 = ?
anq’ y =2

(c) Use.your results for part (b) to find sin 60° and
tan go® and check your results with the values given
irl the table.

99
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14, The square shown at the right has a
measure of 1 for each side.

(a) Verify that the measure of DF

is Va2,
(b) If DF = /2, then
1
sin 450 = —=—, You can
. J2

determine a decimal expression
fo by dividing 1 by

1
O \/-2-
1l.4142, but this 1s a tedious computation.. Recall that
any number divided by itself (except for 0) is 1.
Thus,

v2 1, and -L.. Y2 _V2_ V2

Y2 /2 /2 J/F B
It 1s much easier to divide 1.4142 by 2 than to
divide 1 by 1.41%2. Find the sin 45° using the
above computation and then verify your answer with the .
table.

5. In the figure at the right / ABC
"~ has measure 60, / ACB has
measure 32, 1in degrees, and
AB = 100, Find (a) m(AD) and
(b) m(BC). ' -

100
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9-4, Slope of a Line y
The drawing at the right 1is ' B (x,y)

similar to those used in Sectlion 9-1.
You learned that for a particular ray
63 from the origin through the point
(x, y), all % are equal. For a
particuiar ray then,

L=m
X s

where m 1s anothexr name for the
rgtio. However, you learned that % is the tangent of the angle
which the ray makes with the X-axis. Thus, m 1s the tangent of
the angle AOB. The number m depends on the papticﬁlér ray which
is chosen and not on any particular point on the ray.

Using the multiplicatlon property of equallty,

0 X
X A (x,0)

L(x) = m(x)
and, _ y(&) =mx,  but =1,
S0, . Yy = mX.

Thus, an equivalent equation for % =m 1is y =mx. If the
tangent of an angle is 2, then,

% =2 or y = 2X.

If the tangent of an angle is %, then,

y_ 4 = L
£=35 or y 3K

eianeid

Each point on the line which an equation represents will have
coordinates which satisfy the equation, and each point whose coordi-
nates satisfy the equation wil. lie on the line. The number in
this equation is called the slope of the line. In the equation
y = 2x, the "2" 1s the slope. In the equation ¥y = %x, the
"%? is the slope, and in the equation y = mx, the "m" 1is the
slope. Slope 1s another name for, the tangent ratio of the angle
made by a particular.ray and the X-axis.

[sec. 9-4] - _
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The word "slope," when used with 4y 1,
reference to a hill, refers to the
steepness of the hill, The slope of 7
a hill is measured by dividing the / /
measure of the change in elevation by /]
the measure of the corresponding I/
horizontal change. In the drawing VA4
at the right the rays are named with /
Roman numerals. The tangents or slopes
of the angles the rays make with the /
X-axls are as follows: . Y/ %

//
s ' Alis]o xi’

N

\L N

Jwo
\

For I, m %; for II, m =

U

for III, m = 33 for IV, m =

and for V, m = %g. As the y 1increases, the tangent of the angle,
or slope increases. The steeper the ray, the greater '
the tangent of the angle or the greater the slope.

Class Exercises 9-4

1, (2a) In the drawing, what is the
tangent of the angle the ray

makes with the X-axis? 117
. ‘ ' 74
(b) Use your answer from (a) as -
a replacement for m in the VT Bf4{3
general equation y = mx. S Pd 1
(¢) Your answer for (b) is an ! A >

equation for the line OB. 3

102
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2.

(a) Write an equation for the line YAl
Joining the origin to the point /
(4, 1). )LB\LH
(b) Write an equation for the line { 1
. 1
Joining the origin to the point of —Tcla.n | X
(1, ). ] TR ’
(c) What is the tangent of angle
COR?
(d) What is the tangent of -angle
BOR?
Name the line through the ay
" origin which is described |
bf each of the followlng }NB
equations. Note that some c
of the equations are )é/
equivalent equations. // A
q q 7 /./;
(a) v =(1)x : 7
21 JAS
(b) v = i L3 I
(¢) y=3x or
(@) v = 17;x
y.1
(e) =3
L=
(£) L-1
y_T1
(8) £=1
YL .3
m -1 -

Use the drawing for Problem 3 and find the slope for each of
the following lines,

(2)

<>
0A

(b) OB ©(e) O¢ (@) ob

[sec. 9-4]
103



377

There is another ratio that is sometimes used to designate the
steepness of a line, You may have heard of a '"road having a 2%
grade"., This refers. to the ratio %, that is, the sine of the
angle which the road makes with the horizontal. A road that rises
2 feet for every 100 feet measured along the road has a 2%
grade. For roads which are not very steep, the grade is very close
in value to the slope.

Exercises 9-4

1, Find equations for the lines joining the origin to each of
the following points.

(a) (%, 1) (@) (1, 2) (g) (5, 7)
(v) (3, 1) . (e) (1, 5) (h) (6, 2)
(e¢) (1, 1) (£) (5, 3) ‘ (1) (5, 0)

2. A conveyer belt is used to
"1ift" materials to a loading
platform. A box placed on the
conveyer belt 1s lifted 5
feet while it is moved a hori- 5
zontal distance of 10 feet,

’
(a) What is the slope of the )

()
fe—

path along which the box 10'

is carried?

(b) What is the approximate measurement of the angle of the
path along which the box is carried and the horizontal?

3. The drawing at the right
shows a partial side view
of a stailrway. The slope
of the stairway is defined
as the slope of the dotted
line.

[sec, 9-4]
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4,

. (a) Wnat is the slope of this stairway?

(b) What 1is the approximate measurement of the angle formed
by the dotted line and the horizontal line (tread)?

The drawing at the right

shows a 5% ‘“grade", . —"B i
00

That is, in a distance of h::::::::::;l,__——————"’—'] 5

100 feet tliere 1s an 0 - A

elevation 5 feet. The horlizontal distance in this case is
about 100 feet. It would actually be a little less than
this distance.

(a) What is the sine of ahgle BOA?
(b) What is the tangent of angle BOA?

(¢) Wnat is the approximate measurement of the angle BOA?
>

(d) Approximate.y, wnat is the slope of OB?

Using the drawing for Problem 4, assume the measurement of

BoA 1s 2°.

(a) vhat is the sin / BOA?
(b) Wwhat i1s the tan / BOA?

(c) Wwhat is the approximate measure of the rise (or elevation)

if the horizontal distance 1s 100 feet?
<>

(d) Wwhat is the grade of OB?
<«—> H /
In the drawling at the right, DE = =  —-——9-—=--—-
1s the approxlimate slope of the
hillside. .The tangent of [/ DEF

is about 2.05.

(a) what is the approximate
measurement of / DEF?

(b) Wwhat is the approximate
vertical height of the
hill 1f the measurement
of DH 4is about 500!?

[sec. 9=4]
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9-5., Similar Triangles

Refer to the drawing at the
right which 13 a copy of the draw-
ing used in Class Exercises 9-1b.
Recall that triangles AOB, RED,
and SDF are congruent}

Look at AAOB and ACOD,
These triangles are not congruent,
but there are a number of relation-
ships between the two. We can set
up a one=to-one correspondence
between the vertices of the two
triangles as shown at the right,
The following angles also correspond:

/ AOB «<—> / COD;
/ OAB <—> / 0CD;
/ OBA «<——> / ODC,

Because AAOB and ACOD are
right triangles, we know that the
corresponding angles with vertices

379

.AV
F(3a,3b

D(au.ab) S

8(a,b) R

LY

0

A(Q,0) Cl(2a,00 E(3q,0)

at A and at C are congruent, The corresponding angles with
vertices at O are the same angle, and thus / AOB = / CoD.

Since AAOB = ARED, the corresponding angles with vertices at
B and D are congruent. . The corresponding angles of these two

triangles are congruent.

In view of the correspondence
between the vertices, we have the
following correspondence between
the sides:

OA «—> OC
AB «——>CD
0B «—> 0D

[sec. 9-5]
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It does not appear that these corresponding sides are congruent.
However, we know that the measure of OA 1s a, and we know that
the measure of OC 1s 2a. Aléo, the measure of AB is b, and
that of CD 1s 2b. WLith the Pythagorean Theorem it can be shown
that the measure of OD is two times the measure of OB, Thus,
each of the sides of ACOD 1s twice as long as the corresponding
slde of AAOB. The ratios of the lengths of the corresponding
sldes are equal:

oC“Co-0b" 2
We express this relationship by saying that for these triangles

"the corresponding sides are proportional,"
So far we have consldered only right trlangles. In the draw-

ing below are two triangles, AABC and AA!B'C!,

0]

OA L AB _ OB _1
D

c

A B A' B

The corresponding angles are congruent. That is,
/AZ /Ay, /BE/B', and /C=/cC\.
Each side of AABC has twice the length of the corresponding side
of AA'B'C!'. That is
AB=2(Aa'BY), aAc = 2(Atc'), and BC = 2(B'C!).

These are examples of what we call "similar triangles."

Definition: Two triangles are said to be similar 1f there

is a one-to-one correspondence between the vertices so that
corresponding angles are congruent and the ratios of the
measures of corresponding sides are equal (that is, correspond-

“{ng sides are proportional).
" [sec. 9-5]
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This definition means that any two triangles ABC and A'BIC!?
are similar if the following two conditions hold:

l. [LAS/AYy, /BE/BY, and [CW/c,
It 1s possible to prove that if condition 1 holds, ‘then condition
2 must hold, and if conditiovn 2 holds, then condition 1 must hold,
(You might try showing that this statement is true.) We will accept
the statement here without proof., It follows from the statement
that only one of these conditions need be used in defining similar
triangles, ‘

The only similar figures we shall consider in this chapter are
triangles. For other figures, such as squares and rectangles, both
of the conditions listed above are
necessary for establishing similar- rectangle
ity. For example, the square and
rectangle at the right have con-
gruent angles, but the sides are
not proportional. The square and rhombus
the rhombus have congruent sides, Square
but they are not similar.

Class Exercises 9-5 ¢

1. AABC and AA'B!C! are
similar triangles in which
A and A!', B and BV, A 8
C and C?! are corresponding c'
vertices. Supply the missing
information where it is
possible. Where it 1s not
possible, explain why.

[sec. 9-5]
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-(a)

(v)
(c)
(a)
(e)

il
-5

m(/ &) =30, m(/ B) =75, m(/A"Y)
AB=3, AC =14, A!B! =6, AlCt = ?

?, m(l B')

1
)

%CE =2, A®B! =35, BIC! =2, AlC!
EC—:-;-, A'CY = 3, A'B! = 2, BIC! = ?
m(/ A) =30, m(/ B) =73, m(/A?) =2, m(/C})

0

Find which of the following are true statements. Give reasons
for your answers. '

(a)

(v)
(c)
(a)

(e)

(a)

(b)

If one acute angle of one rigii: triangle is congruent to
an acute angle of another right triangle, then the
triangles are similar.

If two sides of one triangle are congruent to two sides
of another triangle, then the triangles are similar.

AB AC AB BC
I —ATET = FE—,- and W = BioT then triangles ABC and
A'BIC! are similar.
I %:Kﬁ,—%— then triangles ABC and A'B!C! are
similar.

AB _ _AC ASB! _ BIC!
If 7T = {icT and —p— = =g then triangles .AE

and A'B!'C?' are simillar.

If the corresponding angles of two guadrilaterals are
congruent, must the ratios of the measures of corresgpond-

' ing sides be equal?

If the ratios of the measures of the corresponding sides
of two quadrilaterals are equal, will corresponding
angles be congruent?

109
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Suppose that A ABC and A-A'B!IC' are two similar trianéles
such that AB=3, AC =6, and BC = 7. Find the measures
of the lengths of the remaining two sides of A A'B!C! when
the measure of one side is as follows: :

(a) A'B'= 6,
(b) aAtct = 2,
(¢) BIC! =5,

Let AABC and A TSR be two triangles such that

LAZ/T, [BE/S, and /RE/C. W1l the triangles

be similar? Explain,

Suppose in the previous problem we knew only that /A 5 /R
and that / B g‘£ Se Would it be necessary that’the-triangles
be similar? Explain. :

Exerclses 9-5

Draw a triangle ABC. Let D be the midpoint of side AB
and E the mldpoint of side AC. Which of the following
pairs of ratios are equal? Give reascns for your answers.

(2) AB AD (b) AB AC (c) AD AB (a) AD AB

! AC’ BE D’ 1E DE’ BC AC’ BE

Would your answers in Problem 1 be different i1f you had
started with a different triangle ABC? Why or why not?
Draw a triangle ABC and let DE be a line segment parallel
to BC, where D 1is on AB and E 1s on AGC. Then answer
the questions in Problem 1.
Suppose ABC 1s a right triangle and the angle at A 'has a
measure 1in degrees of 31. What is the measure of the other
acute angle? '
Suppose ABC 1s a triangle for which m(é A) = 35 and
m(/ B) = 47. Find m(/ C). -

110
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6. Draw a triangle ABC and choose E as some point on the side
AB. Draw a line through E parallel to ﬁE and let it inter-
sect AC 1in the point D. Show that triangles ABC and AED
are similar and point out which angle in the triangle AED
corresponds to / ABC in triangle AEC.

7. Let ABC and A'BIC! A'
be two triangles in
which angies A and A? A E' F
are congruent,
A'BY = 2(AB), A'C' = 2(AC). Z//\\\\\\\\
Let E!' and F! be B ¢ 8

the midpoints of the
'§;Qes A'B!' and A'C!'! of the second triangle. Show that
triangle ABC 1s congruent to triangle A'E'F!. Use this to

show-that triangle A!B!C! is similar to triangle” ARC.

8. Draw trlangles ABC and A'B'C' as in Problem 7. Angles A
and A' are congruent, but A'!'B' = 3(AB), A'C! = 3(AC).
Show that triangles ABC .and A'B!C! are similar.

*9. Suppose ABC and A'BI!C! are two triangles and that

AB_ AB!  AB_ AlB!
AC ~ ATCT BC -~ BIC

(a) If the given equalities hold and A'B! = 3(AB), show

that A'C' = 3(AC). and B!C! = 3(KC).

(b) If the given equalities hold.and A'B! = s(AB), show

that AfC!' = s(AC) and B!C' = s(EC).

9-6. Scale Drawings and Maps

In the previous section you learned to define two triangles as
similar 1f there 1s a one-to-one correspondence between thg vertices
such that corresponding angles are congruent and corresponding sides
are proportional. '

[sec. 9-6]



You are familiar with maps. What do you expect from a mape
If it 1s a map of a stape,?for example,
you need to have a one-to-one corre-
soondence between the important cities
and the points on the map; that is,
each clty is to be represented by one
particular point on the map as shown
at the right, Then, corresponding
angles should be congruent; that is,
"if A, B, and C are three cities,
the angle ABC on land should be
congruént to the cbrresponding angle
ABC on the map. '

Should corresponding distances be equal? This would be tog
much to expect since then the map would be too large. Ryt if City
A 1s twice as far from city B as city C 1is, then the corre_
sponding distance on the map, AB, should be twlce vhe corr€Spgngin
distance BC. In other words, corresponding distances spould. be '
proportional in the same way that the sides of two similgr triangies
are proportional. '

Since the earth is a gri;»re, and there are hills ang valleys,
no map on a fiat»sheep of puiny' can exactly meet the requireménts
we have set down. In fact, the size of a city is not usyally
proportional to the size of the dot which represents ¥t on the mgp,
Nor are the widths of a road or a river proportional go the Width
of the lines which represent them. However, our usua) myps aPProx-
imately satisfy the requirements we gave above, '

You have heard of scale drawings. Scale drawingy ave a King -
of map. Such a drawlng in a plane must show angles agcupately. To
make distances the same in the drawing as in the actuyl object wouild
result in an unmanageable drawlng due to size. Hence, wy make dis-
tances on .the érawing smal;ef than the actual object. Ryt we keep
"the ratio of the distance on the drawing to the correyponding
distance on the object the same. That is, 1if cne length on
the object 1s twice another length, then, on the drawing, the Coprpe.

—

>
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sponding lengty, will be twice the other. This ratio is called the

Ngcal€ ® uppgse we make a drawing and decide to let one inch on
“the grawing Coppespond to one foot on the object. We have chosen

one inch «—— c¢ne foot'

to pe The SCale and We must be careful to use this throughout the
QrawifB* S9Ch 5 scale 1s usually written "one inch = one foot."
Ir we are Carerul to make the.drawing accurate we can measuré dis-
tance® on the drawing and thus find approximately what the corre-
spondiPé di8tanees are on The object itself,

me first step 1n scale drawing is to select a scale so that
the drawing Wlly rit on the paper and yet not be too small to use
fo actual Meagyrement. Suppose you are to make a scale drawing of-
a fo otbal field that 1s, the portion marked by lines within which
t e plad takeg place- A football field 1s a rectangle that is 300

g (that 1s, .45 yards) long and 160 feet wide. We might try
a"scalé of 0.1 ,m to a foot; that is, 0.1 cm on the drawing
wyyl cOTTESPong 5 1 foot on the rield. Then on the scale draw-
ing, °F ™Ps the 1ength of the field will be represented by a
Q1 s£ance Of 30 om. But this is too 1ong for the usual sheet of
Notebol¥ PaPer . we decide to use a "smaller" scale. "Smaller"
hepe MBS We yy.7 use a shorter distance on the scale drawing to
Cor respond to a root on the field. We select a scale, B

0.05 em = 1 foot.
Ty 0919 @lsg e written as

1 em 20 feet,

Using P18 SCale, the length of the football field in the drawing
wy1l e’ o
(0.05) * (300) = 15.00, or 15 cm
: or
320 = 15, wnich 1s also 15 em.

Slmilarly’ We oan multiply 160 by 0.05 (or we can divide 160
by 20) to determine that the width of the fileld will be represented
by a 1iné 8 om 1ong in the drawing.

[sect 9-6]
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Class Exercises 9-6

Make a scale drawing of a football field. Use the scale
0.05 em =1 foot or 1.cm = 20 feet. The length of the
field on your drawing should be 15 cm, and the width of

' the field on your drawing should be 8 cm.

(a) Draw a line from one corner of the field diagonally
across to the opposite corner. Measure the length of
this dlagonal. What is its length in centimeters?

(b) Using your scale, determine the measure of the corre-
sponding distance on the football field.

(c) Verify your answers for (a) and (b) using the Theorem
of Pythagoras. '

- Assume you are to make a‘scale drawlng of a football field
‘using the scale f% inch = 1 foot.

(a) What would be the length of  the field on a scale
drawing? '(Determine your answer to the nearest tenth

of an inch.)
(b) What would be the width of the field on a scale

drawlng? )

- What length would a line segment on a scale dréwing be

to correspond to a measurement of 50 feet for each of
the followlng scales?

(2) 5 inch =1 foct, (d) ‘1 inch = 10 feet.
(b) 1 mm=1 root, o (e) % inch = 5 feet,
(c) % inch =1 foot. (f) 0.05 cm =1 -foot.

On a scale dréwing, the measurement of a line segment is
10 inches. What is the length of the corresponding line
for each of the following scales?

(a) 1 inch = 10 feet. (a) % inch = 2 feet.

(b) % inch = 1 foot. (e) 1- inch = 0.5 feet.

(c) % inch = 1 foot, (f) % inch = 10 feet.
[sec. 9-6]
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An illustration in a dictionary may indicate a scale of 5%5‘
Similarly, the scale on a map may be —5_555 The first scale means
that one unit of measure on the illustration represents 300 units
of measure on the actual object. Similarly, the second scale means
that one unit of measure on the map represents 50,000 units of
measure on the actual object. _ ‘

A picture of "a“whale indicates. the scale 5%5. The length of
the whale in the picture is about li inches. This means the
actual length of the whale is about '

300 + 13 = 450, that is 450 inches or about 37 feet.

A line segment on a map has a measurement of 5 1inches. The
scale on che map 1is ———l—h-h-What 1s the corresponding measurement
on the earth?

50,000 » 5 = 250,000, that is, 250,000 inches.

Dividing 250,000 by 12 we find that the corresponding
distance on earth has a measurement of about 20,866.6 feet.
Dividing this by 5,280 we determine that this is about 3.9 miles.

Exercises 9-6

l. It is indicated on a map that % inch represents 50 miles.
How many miles are represented by 4%"inches°

2., If 1t 1s indicated on a map that E inch represents 25 miles,
how many incnes would you use to represent 750 miles°

3. A plot of ground i1s in the form of a parallelogram. The
longer sides measure 92 feet and the shorter sides measure
40 feet. The acute angles have a measurement of 70° and
the obtuse angles have a measurement of llOO, Make this
scale drawing. Iet i% inch represent 1 foot.

4, City B 1s 40 miles east of city A and city C 1s 30
miles north of city B. Using 8 inch to represent one mille
draw a map in the form of a scale drawlng of these distances.
How many miles is 1t from city A toclty C 1n a direct
line?

e [sec. 9-6]
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Make a scale drawing of a tennis

court, A tennis court 1s a rec- . oHey
tangle having a length of 78 ‘q3?'1
feet and a width of 36 feet. , T
The alleys are 4% feet wide. 78’ 2! .
The service courts are 21 feet l '\\xservice
in length and 13- feet in width. court
Let B‘ inch represent 1l foot. -

4%30 —
The scale on a map 1s ————E;———. To the nearest tenth of a

1,200,000
mile, what measurement on earth is represented by a line

segment 1 inch long on the map.

A regulation baeeball dlamond

is in the.shape of a square,

the length of whose side is

90 feet. The pitchert?s box .
is on the line through home

plate and secohd base and is

60— feet from home plate.

Make a scale drawing of a

pltcher?ts box as a polnt. Use
measurements from your drawing
to answer the following questions,

(2a) What is the approximate measurement of the distance
‘from the piltcher!s box to second base? (Measure to the
vertex of the angle at second base.)

(b) If a person runs directly frém first to third base, about
how close to the piteher's box does he come?

[sec. 9-6]
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10.

(¢c) If the shortstop stands 6n the line from sedond to third
base and 1s halfway between them, about how far is he
from home plate?

(d) If a player runs from third base to home plate, what is
the measurement of the least distance to the pltcher?s
box?

A ship is seen from two different points, A and B, on the
shore. This distance between A and B is 100 feet. If
S represents the point where the ship 1s, the measuremnents
of the followlng angles are found:

m(/ SAB) = 30° and m(/ SEA) = 70°.
Make a scale drawing making AB = 5 inches,
(a) Why is the triangle you drew similar to the triangle ABS?

{b) By measuring your drawing, f£ind the approximate distances
from A to the ship and from B to the ship.

Suppose A, B, and C represent three cities the followlng
dlstances apart:

AB = 100 miles, AC = 75 miles, BC = 60 miles.

City C 1s due west of clty A, and city B 1s north of the

line AC. Make a scale drawing in which 1 1nch corresponds

to 20 miles.:

(a) What are the corresponding distances on your scale draw-
ing for AB, AC, and KC? ..

(b) What is the approximate measurement of the angle between
AC and AB, (/ BAC), on your drawing?

¢fc) Determine the approximate direction from city A to
city B.

If in the prévious problem, the scale had been chosen so.that
1 inch corresponds to 10 mlles, what would be your answers
for (a)? What would be your answers for (b) and ()2

[sec. 9-6]
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A cow and a barn are on ﬁfﬂ
opposite sides of a small N
broock which flows along a AN
straight line. Suppose 50" AN

the cow 1s 40 feet from 90° \\\

the brook and the barn is .4;;§:::::m:§£ _____ __34_“
50 feet from the brook, 1
both distances being N
measured perpendicular to : \
the brook. Iet 100 feet : : .
be the distance between the ) \Cv

polnts on the stream from
which these other two distances are measured. Make a scale

o,

drawing and use this to find the following distances: i

(a) The approximate length of the shortest path from the cow
to the barn, B to C.

(b) If this path crosses the stream at A, f£ind the distance
from S to A and from A to R. -

Devise some method to do Problem 9 without a scale drawing
and then verify your answers.
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.9=T. Kinds of Variation
Earlier in this chapter
you learned about similar right e
~ triangles. In the drawing at '
the right the graph of the - Ri24
equation y = 2x 1s shown. '
‘From the points P, Q, R, and
S, perpendiculars are dropped : 2 10 >
to the X-axis forming four
"similar right triangles. For ‘fg
each of these triangles, the
ratio of the Yy-coordinate to
the x-coordinate is equal to 3°8)
%u Thus, 2 1s the slope of 7
the line. There is a relation '
between the y-coordinate and
the x-coordinate for each point
on this graph, and this relation 1s expressed by the equation

yig

N
I\

¥y = 2%X.

For each ordered pair associlated with a point on the graph the
y-coordinate 1s two times the x-coordinate. We say that these twb
coordinates are related in a particular way. In the world around
you there are many situations where two quantities are related.

When you buy peanuts, the amount you pay depends on two things,

the amount you buy and the price of the peanuts. If you hang a
mass on a spring balance, the distance that the spring stretches

is related to the strength of the spring and the weight of the mass.

.Class Exercises 9-T

1. Suppose peanuts cost. $.60 per pound. Make a table showing
the cost of various amounts of peanuts as shown below:

Amount in pounds o|l1]| 213 | 4 5167181 9]10
Cost in dollars '

[890- 9-71]
119



393

Now make a graph showing how the -

..... let L

cost 1s related to the weight, : 7

Iet w be the weight in pounds o e

(X-axis) and ¢ be the cost in % -

dollars (Y-axis) as shown at the i

right. = :

(a) If *thé number of pounds § ' R
purchased 1s increased, 0 234 5% 4 Y
what happens to the. cost? weight in poLnds] t

(b) What is the slope of the line?

(¢) write an equation expressing the relation between the
y-coordinate and the x-coordinate for each point on the
line.,

At the right we have pictured a

¢ylinder filled with air. Pressure

can be exerted by placing a weight ‘m)
on the platform P which is connected =
to a piston in the cylinder. The
volume occupled by the air depends
on the amount of pressure, which, in
turn, depends on the weight at P,
Masses of various weights are piaced
on the platform P of the piston.

A pressure gauge 1s used to measure
the pressure p in pounds per square
inch of the air in the cylinder. The height of the piston is
measured each time and v, the volume, in cubic inches, of
air in the cylinder is determined. Here is a table showing
the results:

Platform

p.| 15 | 20 25 | 30
v [ 250 | 187.5 | 150 | 125

[sec. 9-7]
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A
' Iy
Make a graph showing the relation
between p and v and use the :
graph in answering the following. 1007
751
(a) Predict the measure of the 50
volume if p = 40, 25%
(b) As the weight increases, what — S
o 5105 TP

happens to the volume of the
ailr?

(c) If the pressure is 10, predict the measure of the
volume.

(4) As the volume increases, what happens to the pressure?

These are but two . examples of the many situations where two
quantities are related. = In these examples you saw that when one of
the quantities changes, then the other one also changes 1in a certain
definite way. Mathematiclans sometimes say a quantity "varies"
when the quantity changes. In the rest of this chapter we shall
study some of the simplest properties related to changes. These
properties are sometimes called laws of veriatioﬁ.

Exercises 9-7

1. The distances through
which a spring is Welght in pounds o} 1 2 3 4

stretched when Stretch in inches | O % 1%- 2% 3

masses of various
weights are hung on 1t are given in the table. Make a graph
showing the relation between the

weight w 1n pounds and the 4S

stretch s 1n inches. 24

(a) As w increases, what L
happens to s?

1214 o | 2 3.+ W
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(b) As s 1increases what happéns to w? -

(c) Predict the measure of s when the measure of w 1is 8.

2. A scale in inches is marked off on a board, like this:

olr|2]|3|4s|5(|6|7]8|9|10] 12

Then 1t is propped up like this:

<+«— Board
Support —»p

Table

Suppose one places a marble at various distances from the
bottom and, with a stop-watch, measures how long it takes
for the marble to roll to the bottom. Here are the results,
‘with the time measured to the nearest f% of a second:

(measure of the
.d distances in tnches)| %[ 2|3 415161 7|8[9]10

¢ {peagure of the uine | o) s lslul.al.s|.5)6]6 [ .6

Make a graph showing the relation

between 4 and t.
0,2

(a) As the measure of d variles
(changes), does the measure of ©' 4
t vary? Explain. Yyo2 g

(b) Can you predict about how long it will take the narble
to roll 12 inches?

122
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¥

3. Consider a box, with a.square base,

of volume 100 cublc inches. Make h
a table showing the relation between
the measure 8 of the length of the S
side of the base and the measure h .

' . g V=100

of the helght.

—_—

s |1 2|3 |4 |56 17|18 ]|]9]210
) -

(a) Make a graph showing the

relation between s and h. 'T
4
(b) Give a formula expressing h
in terms of s. 204
10T
| 2 .

9-8, Direct Variation

. In Problem 1 of the last set of exercilses, how would you find
the cost of 15 pounds of peanuts? Of course, you would say, "Cne
pound of peanuts costs 0.60 dollars. To find the cost of 15
pouads I must (add, subtract, multiply, or divide?) the

cost per pound by the number of pounds. The answer 1s
(What is 1t?)." - You can express this process of calculatlion by

means of an equation:
¢ = (0.60) (what operation muSt be performed?)

When you graphed this relation, you obtalned a straight line
through the origin: '

T [sec. 9-8]
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(,0.60)

—> W

- (0.0)

What is the equation of this 1line? What is the slope of this line?
If you increase the amount you buy by 10 pounds, how much does
the cost lncrease? What is the change in the cost for each unit
change in the weight?

We say that c¢ varies directly as w, or that the cost is
proportional to the weight. In this relation, the ratio of the
measure of the cost to the measure of the weight 1s always. 0.60.
Because this number does not change, we call it a constant. We
say that 0.60 is the constant of proportionality.

If your father drives along a straight road at the speed of .
50 miles‘per hour, how far dces he go in 1 hour? 2 hours?
3.5 hours? t hours? The w#asure d of the distance traveled
ls given 1n terms of the measure + of the time by the formuia:

d = 50t.

We see that the measure of the distance is a constant times the
measure of the time. The ratio ~% of the measure of the distance
to the measure of the time is a constant. The distance varies
directly as the time. We may also say that the distance 1s pro-
portional to the time. The constant of proportionality is 50.

In the graph of the equation y = 2x, the y-coordinate of
the points on the graph is a constant times the X-coordinate. In
other words, y varies directly as x. We can also say the
y-coordinate 1s proportional to the x-coordinate and the constant

of proportionality is 2, ~the slope of the line.

[seg.]978]
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Class Exercises 9-8

1. According to Hooke's law of elasticity, the amount that a
spring stretches 1s proportional to the weight;of the object
hung on it. Suppose you know that when a mass having a weight
of 2 pounds is hung on the spring, the spring stretches 3
inches. How much stretch would be produced by an object
weighing 5 pounds?

(a) We may express Hooke'!s law by means of the equation:
s =k °*w
where k 1s some constant of proportionality,

8 1s the measure of the stretch of the spring
in inches,

w 1s the measure of the weight in pounds.

Replacing 8 and w with 3 and 2 results in the
following equation,

3=k 2.
Solve to find the constant of proportionality, k.

(b) Replace the k in the equation s =k * w with your
answer from (a) and solve to find s when w = 5.

(¢c) Copy and complete the following table using your answer
from (a) as the constant of proportionality.

w [[O0 |1 213 4 5

S

(d) Does the measure of s vary directly with the measure
of w? ' : N

2. Assume the cost of gasoline is 32 cents per gallon.

(a) VWrite an equation in mathematical terms showing the total
cost in cents, t, of n gallons of gasoline.

(b) Write an equation showing the cost as a number of dollars,

d, for n gallons of gasoline at 32 cents per gallon,
[sec. 9-8]
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(v)

()

~(b)
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(a)
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Does the measure of ¢t vary directly with the measure
of n?

Does. the measure of n vary directly with the measure
of +t?
What 1s the constant of proportionality in this problem?

Exercises 9-8

Write a sentence in mathematical terms about the total
cost, t cents, of n gallons of gd8oline at 33.9

cents per gallon.

In this statement the coét may also be stated as d
dollars,., , Write the sentence a second way, using d

dollars,

If your pace is normally about 2 feet, how far will
You walk in n steps? :

Use d feet for the total distance and write the formula.
If n increases, can d decrease at the same time?

Write a formula for the number 1 of inches in f
feet.

As f decreases what happens to 1°?

State the value of the constant, k, 1in each of the equations
you wrote for Problems 1 to 3. ' ‘

Can you write the equation in Problem 2 in the form

= 2?

1T

What restriction does this form place on n?

Find k 1f y varies directly.as x, and y 1s 6 when
x 1is 2. ‘ .

Find k 1f ¥y varies directly as x, and y 1s ~3 when
x is T12.

[sec. 9-8]
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8. (a) Sometimes it is required to write
an equation from a given set of a o
values. From the information in 1 20 2
the table, does 1t appear that a 50 5
varies directly as b? Why? o | 77
(b) What equation appears to relate _lOO -10
a and b? 110 11

9. Suppose that d varies directly as t and that when t 1s
6, d 1is 240. Write the equation relating d and 't.

10, (a) Use the relation y = %; to supply the missing values in

the following ordered pairs: ("4, ); (73, ); (T2, );
(-l: )3 (0, )3 (2: )3 (5: )- I

(b) Plot the points on graph paper.

1l. (a) In the }elation of Problem 10, when the number x 1s
doubled, 1s the corresponding number y doubled?

(b) Wher x 1s halved, what happens to y?

(¢c) Wwhen the number y 1s multiplied by 10 what happens
to the corresponding number x?

(d) Are your statements true for negative values of x and ¥
12. (a) In the equation ¥y = kx what happens to the number x
if y 1s halved?
(b) what happens to y 1if x 1s tripled?
13. (a) Give an example Of.direct variation when the cor tant of
proportionality is a large number.

(b) Give another example where 1 > k > O.

127
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9-9. Inverse Variation

Suppose you have 12 quarts of punch for a party, and you
want ﬁo be perfectly fair to your guests and serve each one exactly
the same amount. How does the amount for each guest vary with the
number n of guests? For example, i1f the number of guests is
doubled, what 1s the change in the amount that each one gets? ILet
q be thée number of quarts of punch per guest. Then, the total
amount of punch, which 1s 12 quarts, is equal to:

(the number of quarts per guest) * (number of guests).,

;

e relation between q. and n can be expressed by means of the

equation;
q*n=12,

where the constant of proportionality is 12.

A table of values for the equation q + n =12 1s shown below.
A table of values for the equation ¥y =3+ x 1s shown for compar-
1son. Check the tables and compare the values shown.

qe*n=1J312 Yy=3 « x
112356l |x|1la[s]x]5 |e
n 12 |6 |43 %? 2 y {3 (6 |9 |12 |15 |18

In the table of values for y = 3 . X, ¥y increaseé as x
increases. Actually, there i1s a more definite relationship: ifr
any entry for x 1is doubled, so is the corresponding entry for N
1f the entry for x 1is tripled, so is the corresponding entry for
Y. In fact, if an entry for x 'is multiplied by any number, the
corresponding entry for y 1is mhltiplied by this same number.

This is what we mean by saylng "y varies directly as x." This,
then, 1s an example of divect variation. ‘ '

The first table of values is qulte different, Here, n
decreases as q increases. There 1s a more definite relationship:
if any entry for a 1s doubled, the corresponding entry for n is
divided by 2; if an entry for g is tripled, the corresponding

[sec. 9-9]
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entry for n 1s divided by 3. In fact, 1f an entry for q 1is
‘multiplied by any number, the corresponding entry for n 1is
w.. divided by this same number. We express the relationship
.. Q..n =12 by saylng: ' '
"qg varies inversely as n."
Another way of saying the same thing 1s:
"q 1is inversely proportional to n."
The graphs of q « n =12 and y =3 * x are shown below for
positive values of q, n, ¥y and X. Notice how what we have said
above 1s shown 1n the graphs.

n . P ' y
/
~ /
\
\ )
\ : o/
ANE
% /
, N .
/ >
q X

Exercises 9-9

1. (a) The table below, as it 1s now filled in, shows two
possible ways in which a distance of 100 mniles can be
traveled. Copy and complete the table.

Rate (mi. per hr.) | 10 |20 [25 | 50 | 60 | 75 80 | 100

Time (hours) 10 5

(b) From part (a), use r for the number of miles per hour
' and t for the number of hours and write an equation

connecting r and t and 100.

[sec. 9-9]
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(c) When the rate 1s doubled what is the effect upon the
corresponding time value?

(d) When t increases in rt = 100 what happens to r?

2. (2) Suppose you have 240 square patio stones (flagstones).
You can arrange them in rows to form a variety of rec-
tangular floors tor a patio. If s represents the
number of stones in a row and n represents the number
of rows, what are the possibilities? Copy and f£ill in
a table like this one.

Total Number of Stones: 240
Number of stones in a row 10 12 15 16 30 40
Number of rows 24

(b) Write an equation connecting n, s, and 240. (If you
cannot cut any of the stones, what can you say about the
kind of numbers n and s must be?)

3. (a) A seesaw will balance if .
wd = WD when an object F;_ d 7 D Fﬁ]

welghing w pounds is
d feet from the fulcrum and on the other slde an object

welghing W pounds is D feet from the fulecrum. If
WD =36, find D when W is 2, 9, or 18 and find
W when D 1is 1, 6, 12.

(b) What can you say about corresponding values of W as D
1s doubled if wd remains constant? As numbers substi-
tuted for W increase, what can you say about correspond-
ing values of D provided wd remains constant?

4. Write an equation connecting rate of interest r and the
number of dollars on deposit P with a fixed interest payment
of $200 per year. Discusg how corresponding values of
are affected as different numbers are substituted for p. If
the interest rate were doubled how much money would have to be
on deposit to give $200 interest per year?

Ao [SeC. 9"9]
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5. Give the constant of proportionality in each of the Problems
1 to 4. e

6. State your impression of the difference between direct varia-
tion and inverse varilation.

7. Find k if y varies inversely as x and if y 1is 6 when
X 1s 2.

8. Find k if x varies inversely %s y and if y is 10
' when x 1s° %.

9. From the information ln the table does 1t appear that a
varies lnversely as b? Explaln your answer.
a | ", 1 3 8 19 M

b |8 "2 2 6 16 38 82

10. Study the number pairs which follow: (72, 8); (71, 2);
.(O: O)i (1: 2)§ (2: 8): (3: 18)5 ()-l-, 32)-

(a) Does it appear that y varies directly as x?

(b) Does it appear that. y varies inversely as x?

11. (a) Supply the missing values in the table below where
xy = 18. '

x|" 73 T2 11 2 3 4 5 6 7 8 9 18

(b) Is it possible for x or ¥y to be zero in xy = 182
Why ?

(c) Plot on graph paper the points whose coordinates Yyou
found in (a) and draw the curve, You may wish to find
more number palrs to enable you to draw the burve more
easily. Does your curve look like the one followlng

(a)?

1:§1¢_
[sec. 9-9]




405

(d) Some of you may have met thls curve in the seventh grade
in connection with the lever, or balance. The curve, of
which your graph is a portion, is called a hyperbola. It
has two branches. A hyperbola shows variation.

PNPOP LN
—"'A——_

-+ p N b

NP 4

<

1

b0 4a

-t

P

l2. On graph paper, draw the graph of xy = 6.

132
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Notice that ;p the discussion of direct and inverse variations,
the letters x and y may be used interchangeably. In y = kx,
if k 1s not zero, we say that x varles directly as ¥y and ¥y
varies directly as x. In xy = k, k cannot be 2ero and we say
that x varies inversely as y or that y varles inversely as
X. In these st@tements x and y can represent different pairs
of numbers while k represents a constant, that is, a fixed number,
In the general equation the letter "k" 1is used rather than a
particular numeral, in order to include all possible cases. Since
for x ¥ 0, the equation xy = k may be written y =k ° %- which
says that y varies directly as the reciprocal of Xx.

Occasionally you may see direct variation represented by the
statement l k. There are times when this form 1s useful, but
from your work with zero you know that 1 k excludes the pos-

sibility of x Dbeing zero. ‘
The graphs of y = kx and Xy = k include points with nega-

tive coordinates. In many problems it doesh 't make sense for x
or y to be negative., In the p;oblem of serving punch at your
party, the number n of guests must be a counting number. In such
cases the equation is not a completely correct translation of the
relation into mathematical language. The correct translation of
your punch-at-the-party problem is the number sentence

(1) "pn =12 and n 1is a counting number."
The correct translation of Boyle's law is
(2) "ov=k and p >0 and Va> 0."

When you graph the number sentence (1) you obtain a set of isolated
points in the first quadrant. The graph of the relation (2) 1is the
branch of the hyperbola '

pv = K

which lies in the first guadrant.

[sec. 9-9]
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9-10. Other Types of Variation (Optional)

If we make a table of the measure d of the distance in feet
through which an object (such as a watermelon) falls from rest in
t seconds, we obtain results l+ke this:

t 0 1 ! 2 3 L
d 0 16 64 1k 256

Sketch a graph of the relation between d and t. Since the

numbers for d are large, you may wish to use a different unit on
the d-axis from that used on the t-axis,

d
4
150 +
100
w..
04
[] 1 1 L
ol | 2 3 st

You obtaln a part of a curve called a parabola,

If the number ¢t is doubled, by how much is the number 4
multiplied? If t 1is tripled, by how much is d multiplied? .As
you see, d varles directly as . te. We can express the relation
by means of the equation

d = kt°,

where k 1s constant. What 1s this constant? How far does the
object fall in 10 seconds?

Gallileo discovered this law many years ago. He started with
experiments like that with an inclined plane (see Problem 2 of 9-7).
From the table we gave, 1t would be hard to guess the law. More
accurate measurements would form the basls for a correct guess,

[sec. 9-10]
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Exerclses 9-10a

1. (a) What is the area of each face of a cube whose sides have
length 2 i1nches? How many faces are there? Wwhat is
the total surface area, the total area of all faces?

(b) Make a. table showing the relation between the lengths of
each side of a cube and the surface area.

6

s I 1 I 2 ' 3 l 4 | 5
EEREE

2. ILet S be the measure of the area in square centimeters of a
square with edges e .centimeters long.

(a) Find an equation connecting S and e.
(b) Tell how S varies with e,

(c) Plot the graph of the equation you found in {a). Use
values of e from O to 15 and choose a convenlient
scale for the values of S.

(d) From the graph you drew in (c), find:
(1) The area of a square with edges 3 cm. long.

(2) The length of the edges of a square of area 604
square centimeters,

(3) The area of a square with edges 5.5 cm. long.

(4) The length of the edges of a square of area
40 sq. cm,

(e) Prom the equation you found in (a), find:

(1) The area of a square with edges 3 cm. long.

(2) The area of a square with edges 5.5 cm. long.

3. For each of the observations in Problem -2 of Exercises 9-7
calculate the ratio i%u Find the average of these ratios.
Make a graph of the equation
d = kt?
[sec. 9-10]
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Using for k the average of the ratios 5% which you have
t

Just calculated, mark off the points representing the obser-
vations. Does the "theoretical curve" fit the experimental

data fairly well? Does it seem that —g is nearly constant
according to the data?

If E 1is proportional to the squafe of v and E 1is 64
when v 1s 4, find:

(a) an equation connecting E and v.

(b} the value of E when v = 6.

(c) the value of v when E = 16.

Suppose grass seed costs TO0 cents per pound, and one pound
will sow an area of 280 sq. ft.

(a) How many pounds of seed will be needed to sow a square
plot 10 [ft. on a side?

(b) How much will 1t cost to buy seed to sow a square plot
10 feet on a side?

(¢) 1 ¢ cents 1s the cost of the seed to sow a square
plot s feet on a side, find an equation connecting

C and s.

"(d) How much will 1t cost for seed to sow a square plot 65

feet on a side?

(e) If $15.00 1is avallable for seed, can enough be bought
to sow a square plot 75 feet on a side?

A ball 1s dropped from the top of a tower., The distance, d
feet, which it has fallen varies as the square of the time,
t sec., that has passed since 1t was dropped.

(a) From the information above, what equation can you write
connecting d and t°?

(b) PFind how far the ball falls in the first 3 seconds.

[Sec o 9-10]

136



410

(c) If you are also told that the ball falls 144 feet in
the first 3 seconds, write an equation connecting d
and t.

7 (d) Using the equation you wrote in (c), can you find how far
the ball falls ;n the first &5 seconds?

Newton'!s law of gravitation says that the force with which
two objects attract each other varies inversely as the square of
the distance between them:

X

P = 2,

where k 1s a constant.

The problems in this chapter glve you some idea of the many
different ways in which tWo varying quantitles may be related to
~ each other. In most of the cases we have dlscussed, the relation

can be expressed by an equation of the form

y = kx"
or
k
y==
X

s

where n 1s a counting number and k 1s a certain constant. As
we have indicated many of the laws of nature are of this type.

Exercises 9-10b

Use the followine notation: e cm. 1s the length of one
- edge of a cqbe; P cm. 1s the perimeter of onec face of the cube;
S sg..cm, is the total area of all faces of ihe cube; V cu., cm.
1s the volume of the cube.

1. Find an equation connecting P and e; S and e; V and e.

137
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2. Complete the following statements:

(a) P vartes 1 .

(b) & varies .

How would you describe the way V varles with ¢9

3. On one set of axes, plot the graphs of the three equatlions
' ‘you found in (a). Use the values O, 1, 2, 3, 4 for e.

4, From the graphs you drew in Problem 3, find P, S, and V
when e 1isg 2§ Check by using the equations you found in

Problem 1,
5. Use the graphs you drew in Problem 3 to estimate which of P,

'Sy, and V will be greatest and which will be smallest when
e 1s 10, Use the ‘equations you found in Problem 1 to test

your guess,

O9-1l. Summary and Review

Our work on right triangles in this chapter'was based on the
property: If a palr of corresponding acute angles in two triangles
are equal in measurenent, then the ratios of the measures of the
lengths of correspording sldes are equal, -

In mathematical language: :

If angles BAC and B!A'C' are equal in méasurement

and . .
angles ACB and A'C'B!' are right angles, B N

1'\ ¢ Al CI
[sec. 9-11]

138



412
then in the triangles ABC and A'B!C' we have
' AC BC AB

ATCT ~— BfCT ~ ATBT
The following pairs of ratios are also equal:

AC _Afct BEC_ Blg! B¢ Blo!
AB ATBT* AC ~ AIC!’ AB AtBtI*

Two triangles ABC and DEF, whether they are right triangles
or not, are sald to be similar if there 1s a one-to-one corre- -
spondence, '

A<——> D, B<—>E, C «<——F
between the vertices such that

(1) corresponding angles are congruent, and

(2) corresponding sides are proportional.

Tt is stated, though not proved, that either of these conditions

implies the other,
In a right triangle the following trigonometric ratios are

Important

B
//
/
)4
N
1 1) .
A ¢
sin / caB=S2  tan £ CAB =SB  cos [ CAB =g

The equation of a line through the origin has the form-
¥y = kx, where k 1s a constant. The number
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)
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7/

4

k 1s called the slope of the line. If © (read "theta") is the
measurement of the angle which the line makes with the positive
ray of the X-axis, then
' = tan © .
If Q (x, y) 1s any point on the line other than the origin,
then
L=
X

As a point Q moves along the line, then

Change in* y -k
Change in x’

= Slope.

Direct application of the idea of 51milar figurés 1s made to

scale drawings and maps. .
 This relation betieen two quantities 1s one of the types of
varlation considered in this chépter. The three kinds of variation
conslidered in thils chapter are direct variation, inverse variation,

. and direct variation as the square.
(1) Direct variation: y = kx

(a) If x and y are related by the equation y = kx,.
: where k 1s a constant not zero, we say that y
varies directly as - X. We sometimes omit the word

"directly."”

.(B) The number k dis’'called the constant of proportion-
ality. ‘
.[sec. 9-11]
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(c) When k 1s positive, as x 1increases y must
increase and as x decreases Yy must decrease.

(2) Inverse variation: xy =k

(a) If x and y are related by the equation xy = k,
where k 1s a constant (not zero), we say that y
varies inversely as' X. '

(b) The number k 1s the constant of proportionality-
between ¥y and the reciprocal of x as shown in
the form y =k -« %.

(c) When k 1s positive, as x 1increases y must

decrease, and as x decreases Yy must lncrease.

(d) The graph of xy = k 1s not a straight line, but
a curve with two branches. The graph does not go
through the origin, and there is no point on the
graph for x =0 or for y = 0.

The exercises below review the different types of varlation

. discussed in this chapter.

Exercises 9-11

" If y varies directly as X, and f y 1is 16 when x 1is

2, find y when x 1is 5.

If y varlies inversely as x, and if y 1is 16 when x
i1s 2, find ¥y when x 1s 5,

If y varies directly as the squareyof X, and if y 1is
16 when x is 2, find y when x 1is 5.

The areas enclosed by two similar polygons are proportional
to the squares of any two corresponding diagonals. The
polygons on the next page are similar and point C 1s 2
centimeters from point A; point G 1is 3 centimeters from
point E. Find the ratio of the measures of the reglons
enclosed by the polygons. - ‘141
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The distance, d inches, a spring is'étretched varies

directly as the pull, P pounds, which is applied to the

spring. :

(a) If a pull of 10 1lbs, stretches a certain spring 5
inches, what pull 1s required to stretch it 14 inches?

(v) Por the spring in (a), how far will it be stretched by
a pull of 14 1bs.?

The pressure, p 1lbs. per 8q. in., exerted by a certain
amount of hydrogen gas varies inversely as the volume, v
cu. in., of the container in which it is kept. If the
pressure is 7 1bs. per sq. in. when the gas is in a
gallon jug, what would be the pressure if the gas were
enclosed in a half-pint Jar?

Show that, in x + y = k, y does not vary inversely as x.

Ir A 1is 24 in A = 4/’w, what kind of variation is
indicated between /# and w?

What kind of variation is represented by C = wd? What is
the constant of proportionality?

Suppose V = vrah, and suppose the number r is multiplied
by 5 while h 1s unchanged. What happens to V? What is

.the constant in this case?
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11,

Make a table showing~the relation between the measure h of
the length of the altitude and the measure b of the length
of the base 1n an equilateral triangle. Calculate your resulfs
correct to 1 decimal placé. »

AN
|2|u|6|8 10

b:, |
nl [

This table can be completed by measurement. Construct equilat-

" eral triangles of base 2 units, 4 units, etc. Your results

12.

13.

wlll be more accurate 1f your triangles are not too small.
Make a graph showing the relation between b and h. What
simple'geometric figure is formed by the graph?

Gi?e a formula expressing h 1in terms of b in Problem 5,

You may wish to use tan 60° = h + g.

Make a table showing the relation between the measure b of .
the length of the base and the measure A of the area of an
equilateral triangle. Use the values of b which you used
in your table for Problem 5. Make a graph showing the rela-
tion between b end A, Give a formula for A 1n terms of
b. ‘

[sec., 9-11]
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Chapter 10
NON-METRIC GEOMETRY

lQ-l. Introduction

Our earller work in geometry has been concerned largely with
geometric figures in the plane, although a few solids 1like cubes
and cylinders have been considered. The world we see around us
1s very definitely a 3-dimensional one. Your desk and chair are
rather complicated solids. Buildings illustrate numerous curves,
surfaces, and solids in 3-dimensional space. To describe the
flight of a plane, or of a rocket, or of an artillery shell re-
quires a rather precise knowledge.of geometric space.

' A common automobile gear illustrates a complicated 3-dimen-
Sional object that at present we are unable to describé in mathe-
matical terms. The sky, with 1its planets; stars, satellites, and
Jets; the earth with 1ts various humps, hollows, and canyons (all
placed on top of a more or less "spherical® shape); our roads and
superhighways, your own house, school, church, and museum—~these
"all suggest a myriad of geometric figures, forms, and solids which
the geometer seeks to describe.

In this chapter, and in Chapter 11 and 12 which follow, we be-
gln some further work in the study of 3-dimensional geometry--the .
geometry of the space in which we live. Of course, we cannot im-
.mediately develop satisfactory methods of describipg all the things
we use or see or read about. You will learn ways to think about
'geometric properties 1n space in terms of simple components and in
terms of their similarities to simple figures in the plane. You
will learn how to relate space properties to those properties we
“have learned about points, lines, and circles. You will learn how
to investigate and discover some of these properties on your own.
In the process you will get a better idea about how the mathemati-
clan works to break down complicated geometric figures into simpler

144



418

components that are easily studied. This type of approach is a
valuable one in many respects--valuable alike to ' the future
mathematician, engineer, housewife, businessman, or carpenter.

10-2. Tetrahedrons

A geometrlc figure of a certain type 1s called a tetrahedron.
A tetrahedron has four vertices which are points 1n space. The
drawings below represent tetrahedrons. Another form of the word
"tetrahedrons" is"tetrahedra." "Tetra" 1s the Greek word for four.

S

B

The points A, B, C, and D are the vertices of the tetra-
hedron on the left. The points P, Q, R, and S are the vertices
of the one on the right. The four vertices of a tetrahedron are
not in the same plane. The word "tetrahedron" refers either to
the surface of the figure or to the "solid" figure--that 1is, the
figure including 1ts interlior. From some points of view the
distinction is unimportant. Usually, we shall use the term "solid
tetrahedron" when we mean the surfaée together with the interior.
We can name a tetrahedron by naming its vertices. Usually we shall
put parentheses around the letters 1like (ABCD) or (PQRS) 1in
naming solid tetrahedrons. The vertices may be named in any order.

The segments AB, BC, AC, AD, BD, and TD, are called edges
~of the tetrahedron (ABCD). We sometimes will use the notation
(AB) or (BA) to mean the edge AB. What are the edges of the

? -
tetrahedron (PQRS) ? 145
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Any three vertices of a tetrahedron are thé J;rtices of a
triangle and lie in a plane. A tfiangle has an interior in the
plane in which 1ts vertices 1lie (and in which 1t lies). Let us
use (ABC) to mean the triangle ABC together with its interior.
In other words, (ABC) 1is the union of A ABC and its interior.
The sets (ABC), (ABD), (ACD), and (BCD) are called the faces of
the tetrahedron (ABCD). What are the faces of the tetrahedron
(PQRS)?

We introduce length or measurement here, and occasionally else-
where, for convenience in making some uniform mddels and because
of greater ease in visualizing the solids. This chapter deals
fundamentally with non-metric or "no-measurement" geometry. You
will be asked to make some models of tetrahedrons in the exercises.
The easiest type of tetrahedron of which to make a model is the
so-called regular tetrahedron. Its edges are all the same length.
On a piece of cardboard or stiff paper construct an equilateral
triangle of side 6". You can do this with a ruler and compass or
with a ruler and protractor. '

Can you see how the drawing on the left above suggests the
construction with ruler and compass? The arc through Q and R
has center at P. The other arc through R has the same radius,
but its center 1s at Q. The segments PQ, PR, and QR have the
same lenéth and are cohgruent. :

Now mark the three points that are halfway between the pairs
of vertices. Cut out the large triangular region. Carefully make
three folds or creases along the segments Jjoining the "halfway"
points. You may use a ruler or other straightedge to help you
make these folds. Your original triangular region now. looks like
‘four smaller triangular regions. Bring the original three

[sec. 10-2]
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vertices tdgether above the center of the middle triangle. Fasten
the loose edges together wlth tape or paper and paste. This 1s
easler 1f you add flaps as in the third figure. You now have a

model of a regular tetrahedron.
How do we make a model of a tetrahedron which 1s not a reg-

ular one? Cut any triangular region out of cardboard or heavy
paper. . Use this as the base of your model as shown below. Label
~1ts vertices A, B, and C. Cut out another triangle with one of
1ts edges the same length as AB. Fasten these two triangles
together with tape alopg edges of equal length; for 1nstahce, use
edge (AB). Two of the vertices of the second triangle are now
consldered labeled A and B. ILabel the other vertex of the sec-
ond triangle D, Cut out a third triangular region with one edge
the length of AD and another the length of JAG. If the angle
between these edges 1s too large or too small, the model 1s more
difficult to put together. Now fasten the edges of the third tri-
angle to AD and AC with tape so that the three triangles fit
together in space. The model you have constructed so far will look
something l1ike a pyramid-shaped drinking cup 1f you hold the vertex
A at the bottom, as 1n the drawing below. Finally, cut out a tri-
angular region which will fit the top and fasten it ‘to the top.
You now have a model of a tetrahedron.

(n (2) (3)

B B .
B —-—
: . :
taped 7
"edge
!
A A
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Exercises 10-2

1. Make two cardboard or heavy paper models of a regular tetra-
hedron. Make your models so that each edge is 3" long.

2. Make a model of a tetrahedron that is not regular.

3. In making the third face of a non- -regular tetrahedron, what
difficulties would you encounter if you made the angle DAC

too large or too small9

10-3. Simplexes

A single point is probably the simplest set of points you can
think of. A set consisting of two points 1s probably the next most
simple set of points. Any two different points in space are on
exactly one line, and are the endpoints of exactly one segment
' (which 1is a subset of the 1ine) A segment has length but does
not have width or thickness, so 1t does not have area. We speak
of a segment or a line as belng l-dimensional. Either could be
considered as the simplest l1-dimensional obJect in space. In this
chapter we will think about the segment, not the line.

. A éet'consisting of three points-is the next most simple set
of points.in space. If all three points are on the sane line, we
get only part of a line. This 1s the same object that we got with
Just two points. ILet us agree, therefore, that our three points
are not to be on the same 1line. Thus, there is exactly one plane
containing the three points and there 1s exactly one triangle with
the three points as vertices. There is also exactly one triangular.
region which, together with the triangle that bounds 1t, has the
three points as vertices. This mathematical object, the triangle,
together with its interior, is what we willl think about. It has
area and it 1s 2- dimensional. It can be considered as the simplest
2-dimensional‘object in space.

148
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The next most simple set of points in space would be a set
of four points. If the four points were all in one plane then
the figure determined by the four points would also be i1n one
plane. We want to require that four points are not all 1n any one
plane. , This requirement also guarantees that no three dan be on
a line. If any three were on a line, then there would be a plane
containing that line and the fourth point, and the four points would
be 1in the same plane. We.have four points in space, then, not all
in the same plane. This suggests a tetrahedron. The four points
in space are the vertices of exactly one solid tetrahedron. A
solid tetrahedron has voiume, and it is 3-dimensional. It may be
considered as the simplest 3-dimensional obJject in space.

Here we have four sets, each of which may be thought'bf as
the simplest of 1ts kind. Among them are remarkable similarities;
they should have names sounding alike and reminding us of their
basic properties. We call each of these a simplex., We tell them
apart by labeling each with 1ts natural dimension. Thus, a set
consisting of a single point is called a O-simplex. A segment is
called a l-simplex. A triangle, together with its interior, is
called a 2-simplex. A solid tetrahedron (which includes its
interior) 1s called a 3-simplex.

Let us make a table to help us keep these ideas 1in order.

Ty
c;:ﬂ_‘_v o
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Simplest object
Number of points determined To be called
1 point O-simplex
2 segment . 1-simplex
3 triangle together
with its interior 2-simplex
4 solld tetrahedron 3-simplex

There is another way to think about the dimensions of these
"8ets-—=the notation of betweenness, or of a point belng between
two other points.

Let us start with two points. Consider these two polnts and
all points between them. The set so formed is a segment. Now take
the segment together with all polnts that are between any two
points of the segment. We get Just the same segment. No new points
were obtalned by "taking points between" again. The process of
"taking points between" was used Just once. We get a 1-dimensional
set, a l-simplex.

Class Exercise 10-3

1. Mark three points A, B, and A;
" C, not all on the same line,
about the same distance apart
as in the figure at the right. . .
B Cc
(2) Draw line segments includ- A
ing all points between A
and B, between B and
C, and between A and C.
What does the figure re- ' 8 - c

present?

[sec. 10-3]
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(b) Shade or color all points
between any two points of
the set determined in (a)
What does this figure
represent? ) B S é

(¢) 1If the process in (b) 1is applied again will you get any’
«~new points? How many times did you use the prccess? The
figure you have obtained represents a 2-dimensional set,

a 2-simplex.

2. Think of four points A4, B, C, and D, not all on the same
plane. It will be better in this problem to use your model of

. a non-regular tetrahedron than to try to draw a figure. ‘

(a) Shade or color (or draw a segment) which will include all
points between A and B. Also, shade in (or draw the
segment) édﬁﬁaining all points between B and 2, between
A and C, and so on, until all points between any two
vertices are included in your drawing. Describe the set of
points you have drawn.

(b) Shade or color all points between any two points of the
set determined in (a). Describe the set of points which
are shaded or colored.

(€) Think of the union of the set of points which are shaded

- ‘or colored and all polnts between any two of the shaded
or colored points. Describe this new set of polnts as a
unlion of two sets.

(d) 1If the process is repeated again, will you get any new
points? How many times did you use the process? The set
of points obtained in (c) is a three dimensional set, a
3-simplex. ' '

3. Let us consider Jus€ one point.

" (a) 1If you start with just one point and apply the process
used in Problem 1 and 2, what set will you obtain?

[sec. 10-3]
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(b) How many times Will you need to apply the process of
"taking all points between any two points"? The set of
- points obtained is a O-dimensional set, a O-simplex.

Finaily, let us consider a 3-simplex again. Iook at one of
your models of tetrahedrons. It has four faces, ‘and each face is
-a 2-simplex. It has 8lx edges and each edge is a 1- simplex, it
has four vertices and each vertex 1s a O- -simplex.

Exercises 10-3

1. (a) A 2-simplex has how many l-simplexes as edges?

(b) It has how many O-simplexes as vertices?
2. A l-simplex has how many O-simplexes as vertices?

3. Draw a figure showing how two'l-simplexes can have an inter-
sectlon which 1s exactly an endpoint of each.

4., Draw a figure showing how two 2-simplexes can have an inter-
section which is exactly one vertex of each.

5. Draw a figure showing how two.2-simplexes can have'an inter- -
sectlon which is exactly one l-simplex of each.

6. Using models, show how two 3-simplexes can.have an intersection
that is exactly one vertex of each,

7. Using models, show how two 3- -Simplexes can have an intersection
that is exactly one edge of each.

8. Using models, show how two 3-simplexes can have an intersection
Which is exactly one 2-simplex of each.
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10-4. Models of Cubes

'‘Most of you already know that 1f you want to make an ordinary
box you need six rectangular faces for it. The faces have to fit
and have to be put together correctly. There 1s a rather easy way

to make a model of a cube.

e

Draw six squares on heavy paper or cardboard as in the drawing
above. Cut around the boundary of your figure and fold (or crease)
along the dotted lines. Use cellulose tape or paste to fasten it
together. If you use paste, 1t will be necessary to have flaps as
indicated in the drawing below. '

p_———

4

(
I
[}

| S

et

(
!
{

e

Nt .
- In the exercises you will be asked to make several models of

‘a cube.— |

o Can the surface of a cube be regarded as the union of
2-simplexes (that 1is, of triangles together with their interiofs)?
Can-a.solld cube be regarded as the union of 3-simplexes (that is,
of solid tetrahedrons)? The answer to both of these qﬁestions is
"ves." We shall-explain one way of thinking about these questions.

Each face of a cube can be considered to be the union of two

2-simplexes. The drawing on the left below shows a cube with

[sec. 10-4]
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two of its‘faces subdivided into two 2-simplexes each. The face
ADEH appears as the union of (ADE) and (AEH), for example.

The other face, which 1s indicated as subdivided, is CDEF. It
appears as the union of (CDF) and (DFE). The other faces have
not been subdivided, but we can think of each of them as the union
of two 2-simplexes. Thus the surface of the cube can be thought
o’ as the union of twelve 2-simplexes.

H 3

8 Cc B

With the surface regarded as the union of 2-simplexes we may
regard the solid cube as the union of 3-simplexes (so0lid tetra-
hedrons) as follows. Let P be any point in the interior of the
cube. For any 2-simplex on the surface, (CDF), for example,
(PCDF) 1is a 3-simplex. In the figure on the right above, P 1is
indicated as inside the cube. The l-simplexes, (PC), (PD), and
(PF);, are also inside the cube. Thus with twelve 2-gsimplexes on
the surface, we would have twelve 3—simplexes whose union would
be the cube. The solid cube is the union of 3-simplexes in this
"nice" way. '

Exerclises 10-4

1. With cardboard or heavy paper, make two models of cubes,
Make them with each edge 2" 1ong.

2. On one of your models, without adding any other vertices, drg@‘A
segments to express the surface of the cube as a union of
‘2-simplexes. Label all the vertices on the model A, B, C, D,
E, F; G, and H. Think of a point P in the interior of the

[sec. 10-4]
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cube. Uéing this point and the vertices of the 2-simplexes on
the surface, list the twelve 3-simplexes whose unioun is the
solld cube.

3. On the same cube as in Problem 2, mark a point in the center
of each face. (Each should be on one of the segments you draw
in Problem 2.) Draw segments to indicate the surface of the
cube as the unlon of 2-simplexes, using as vertlces the verti-
ces of the cube and these six new polnts you have mafked. The
surface 1ls now expressed as the unlion of how many 2-simplexgs?

4, Think about a geometric figure formed by putting a square-
based pyramid on each face of a cube with the base of the
square congruent to the face of the cube.A This 1s one example
of 2 polyhedron. How many trlangular faces has the surface of
this polyhedron? Can you set up a one-to-one correspondence
befween this polyhedron, vertex for vertex, edge for edge, and
2~-simplex for 2-simplex, and the surface oi a cube subdlvided
into 2-simplexes as i? Problem 3°?

10-5. Polyhedrons

A polyhedron: is the union of a finite number of simplexes. It
coﬁld be just one simplex, or perhaps the union of seven simplexes,
or perhaps of 7,000,000 simplexes. What we are saylng 1s that a ‘
polyhedron is the union cf some particular number of simplexes. In
the previous section, we observed that a solid cube could be con-
sidered as the union of twelve 3-simplexes. The figures below
represent the union of simplexes.

[sec. 10-5]
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The figure on the left represents a union of a l-simplex and
2-simplex which does not contain the l-simplex. It is therefore
of mixed dimension. In what follows, we shall not be concerned
with polyhedrons of mixed dimension. We assume that a polyhedron
i1s the union of simplexes of the same dimension. We shall speak
of a 3-d;mepsional polyhedron as one which is the union of 3-sim-
plexes., A 25dimensional polyhedron is one which is the union of
2-simplexes. A l-dimensional polyhedron is one which is the union
of l-simplexes. Any finite set of points could be thought of as a
. O-dimenslonal polyhedron, but we won't be dealing with such here.

. A polyhedron does not necessarlly consist of one connected part,
although most of our examples will be of this type.

The figure on the right above represents a polyhedron which
 Seems to be the union of two 2-simplexes (triangular regions) but

they do not intersect nicely. We prefer tc think of a polyhedron
as the union of simplexes which intersect nicely as in the middle
two figures. The third figure shows two 3-simplexes with a 2-
simplex es their intersection. Just what do We mean by simplexes
intersecting nicely? There is an easy explanation for it.

If two simplexes of the same dilmnension intersect nicely, then
the intersection must be a face, or an edge, or a vertex of each.

Let us look more closely at the union of simplexes which do
not intersect nicely. In the figure D
on the right the 2-simplexes (LEN)
and (HJK) have just the point H

in common, They‘do not lntersect 0 F
nicely. While H is a vertex of E
(HJK), it 1s not of (DEF). How-- : V)J

ever, the polyhedron which is tho »:
union of these two 2-simplexes 1is

also the union of three 2-simplexes which do intersect nicely,
(DEH), (DHF), and (HJK). '
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The figure on the left rep-
resents the union of the 2-sim- -
plexes (ABC) and (PQR). They
do not intersect nicély. Their
intersection seems to be a quadri—
lateral together with its interiorn -

On the right we have 1lndicated
how the same set of points (the
same polyhedron) can be conslid- .
ered to be a finite union of 2-
simplexes which do intersect
nicely. The polyhedron 1s the
' union of the eight 2-simplexes,
(acz), (cz¥), (pzw), (x¥2z), (WX2),
(BWX), (X¥R), and (YQR). 3
_These examples suggest a fact about polyhedroné. If a poly-
hedron is the union of simplexes. which intersect any way at all,
then the same set of points (the same polyhedron) is also the
union of simplexes which intersect nicely. Except for the exercilses
at the end of thlis section, we shall always deal with uniohs of
simplexes which intersect nicely. We will regard a polyhedron as
having associated wlth 1t a particular set of simplexes which
intersect nicely and whose union it i1s. When we use the word
"polyhedron," we understand the simplexes to be there.
. Is a solid cube a polyhedron, that is, 1s it a union of 3-
simplexes? We have alreédy seen that 1t is. Is a solld prism
a polyhedron? 1Is a solld square-based pyramid? The answer to
all of these questions is yes. In fact, any solid object each of
whose faces 1s flat (that is, whose surfaces does not contain any
curved portion) is a 3-dimensional polyhedron. It can be expressed
as the union of 3-simplexes. o .
As examples let us look at a solid pyramid and a prism with

a triangular base.

[sec. 10-5] . : .
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In the figure on the left the solid pyramid is the union of
the two 3-simplexes (ABCE) and (ACDE). The figure in the middle
- represents a solid prism with a triangular base. The prism has
three rectangular faces. Its bases are (PQR) and (XYZ). Here
Wwe see how 1t may be expressed as the union of elght 3-simplexes.
We use the same device that we used for the solid cube. First we
think about the surface as the union of 2-simp1exes. We already
.have the bases as 2-simplexes. Then we think of each rectangular
face as the union of two 2-simp1exes. In the figure on the right
above, the face YZRQ 1is indicated as the union of (Y2Q) and
(QRZ), for instance. Now think about a point F 'in the interior
of the prism. The 3-simplex (FQRZ) 1s one of eight 3-simplexes
each with F as a vertex and whose union ‘is the solid prism. In
the exercises you will be asked to name the other seven.

Finally, how dq we express a solid prism with a non-triangular
base as a 3-dimensional polyhedron--that i1s, 2s a union of 3-sim-
plexes with nice intersections? We use a little trick. We first
express the base as a union of 2-simplexes and therefore the solid
prism as a'union of triangular solid prisms. And we can then ex-
press each triangular solid prism as the union of elght 3-simplexes.
We can do this in such a way that all the simplexes intersect nlcely
It may help you to understand this solid if you think of a prism as
‘a solid with flat faces such that two faces called the bases, are
congruent and in parallel planes. :

There 1s a moral to our story here. To do a harder-looking
problem, we first try to break it up into a lot of easy problems,
each of which we already know how to solve.

[sec. 10-5]
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Exercises 10-5

Draw two 2-simplexes whose intersection 1s one point and

(a) the point 1s a vertex of each.

(b) the point is a vertex of one but not of the other.

~-Draw three 2-simplexes which lntersect nicely and whose unlon

is 1tself a 2-simplex. (Hint: start with a 2-simplex as the
union and subdivide it.) '

You are asked to draw various 2-dimensional polyhedrons, each
as the union of six 2-simplexes. .Draw one such that

(a) no two of the 2-simplexes intersect.

(b) there 1s one point common to all the 2-simplexes but
no other point is common to any palr. ‘

(c) the polyhedron is a rectangle together with 1ts interilor.

The figure on the right rep-
resents a polyhedron as the
union of 2-simplexes without
nice intersections. Draw a
similar figure yourself, and
then draw 1n three segments
which wlll make the polyhedron
the union of 2-simplexes which
intersect nicely.

The 2-dimensional figure on
the right can be expressed as@m
a unlon of simplexes with nice”
intersectlons in many ways.
Draw a similar flgure and

(a) by drawlng segments ex-
press 1t as the union of
8lx 2-simplexes without
using more vertices. -
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(b) by adding one vertex near the middle (in another drawing
of the figure), éxpress the polyhedron as the union of
eight 2-simplexes all, having the point in the middle as
one vertex,

X Zz
6. (a) List eight 2-simplexes 7]
whose union is the -surface /
of the-triangular prism on V]
the right. (The figure is ,
like that used earlier.)

(b) Regarding F as a point in pkl__\ & ' R
the interior of the prism '
1ist eight 3-simplexes Q
(each containing F) whose union is the solid prism.

(c) The figure shows the trlangular prism PQRXYZ as the
union of three 3-simplexes which intersect nicely. Name

them.

10-6. One-Dimensionai Polyhedrons

A 1-dimensional polyhedron is the union of a certain number of
l-simplexes (segments). A 1-dimensional polyhedron may be contained
in a plane or it may not be. Look at a model of a tetrahedron.

The union of the edges 1s a l-dimensional polyhedron. It is the
union of six l-simplexes, -and does not lie in a plane. we may
think of the figures below as representing l-dimensional polyhedrons
that do 1ie in a plane (the plane of the page),

LN
NP 0, SRS

N -
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There are two types of l-dimensional polyhedrons which are of
special interest. A polygonal path is a 1-dimensional polyhedron
in which the l-simplexes arranged are in order as follows: There
is a first one and there 1s a last one. Each other l-simplex of the
polygonal path has one vertex in common with the l-simplex which

precedes it, and one vertex in common with the l-simplex which
follows 1t. There are no extra intersections. The first and last
vertices (points) of the polygonal path are called the endpoints.

Neither of the l-dimensional polyhedrons in the figures above
is a polygonal path. But each contains many polygonal paths. The
union of (AB), (BC), (CD), (DG) and (GH) 1is a polygonal path
from A to H. The union of (JD) and (DE) 1is a polygonal
path from J to E, and consists of just two l-simplexes.

In the drawing of a tetrahe-
dron on the right, the union of
(PQ), (QR), and (RS) 1is a
polygonal path from P to S
(with endpoints P and S). The
l-simplex (PS) 1s itself a
polygonal path from P to S.
Consider the l-dimensional poly-
hedron which is the union of the
edges of the tetrahedron, and find
another polygonal path from P ¢to
S in it. (Use a model if it helps
you see_it.) How many such poly-
gonal paths are there from P ¢to
S?

The union of two polygonal paths that have common endpoints
is called a simple closed polygon (1t 1s also a simple closed
curve). The 1l-dimensional polyhedron on the

161
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right is not a simple closed A
polygon, but it contains exactly '
one simple closed polygon, namely
the union of the polygonal paths
ABC and ADC which have end- c
points A and C in common.

Another way of describing a
simple closed polygon 1is to say
that 1t is a l-dimensionsl polyhe-
dron which 1is in one piece, and has the property that every vertex
of '1t 1s in exactly two l-simplexes of it. ' The simple eclosed
polygon ABCD 1s then looked on as the union of (AB), (BC), (cD)
and (DA).
The union of the edges of the cube c D
_1n the drawing is a l-dimensional
polyhedron. It contains many

|
Simple closed polygons. One is the 8 ; E
union of (AB), (BE), (EG), and ’
(GA). Another is the union of (AB) ,. }lt_______ F
(BC), (cD), (DE), (EG), ana (Ga). A e ¢

List the vertices, naming at

least two more Simple closed poly-
gons containing (BE) and (GA). (Use a model if i- helps you see:
1t.) ‘

There 1s one very easy relationshiplon any simple closed poly
gon. The number of l-simplexes (edges) 1s equal to the number of
vertices. Consider the figure on
the right. Suppose we start at
some vertex. Then we take an
edge containing this vertex. Next
we take the other vertex contained
in this edge and then the other
edge contailning this second vertex,
We may think of numbering the vertices

and edges as in the figure. We - @i
continue the process. We finish

[sec. 10-6]
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with the other edge which contains our original vertex. We start
with a vertex and finish with an edge after having alternated
vertices and edges as we go along. Thus the number of vertices

18 the same as the number of edges,

Exercises 10-6

1. The figure on the right repre- A
sents a l-dimensional polyhe-
dron. How many polygonal paths
does it contain with endpoints
A and B? How many simple
closed polygons does it contain?

2. (a) The union of the edges of
a 3-simplex (solid tetra- S
hedron) contains how many
simple closed polygons? R

(b) Name them all, -

(¢) Name one that 1s not con-
tained in a plane.
(Use a model if you wish,)

3. Let P and @ be vertices of D Q
a cube which are diametrically
opposite each other (lower
front left and upper back
right). Name three polygonal
paths from P %to @Q -each of /}"““"'
which contains all the verti- /
ces of the cube and is in the P A
union of the edges. (Use a
model 1f you wish.)

(o)
@

1863
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4., Draw a l-dimensional polyhedron whieh is the union of seven
l-simplexes and contains no polygonal path consisting of more
than two of these simplexes,

5. Draw a simple closed polygon on the surface of one of your
models of a cube which intersects every face and whiech does
not contain any of the vertices of the ocube.

10-7. Two-Dimensional Polyhedrons

A 2-dimensional polyhedron is a union of 2-simplexes. As
stated before, we will agree that the 2-simplexes are to intersect
nicely. That is, 1if two 2-simplexes intersect, then the inter-
seotion is either an edge of both, or a vertex of both. There are
many 2-dimensional polyhedrons; some are in one plane but many
are not in any one plane. The surface of a tetrahedron, for
instance, is not in any one plane. Let us first consider a few
2-dimensional polyhedrons in a plane. 1In drawing 2-simplexes in
& plane we shall shade their interiors.,

- >
Every 2-dimensional polyhedron ’;//
in a plane has a boundary in that ﬁg,/f:;;ggg?
plane. The boundary is itself a ,;,{///
1-dimensional polyhedron. The gﬁ?//é

&%}

——

boundary may be a simple closed
polygon as in the figure on the
right. 1In the figure on the right below, we have indicated a poly-
‘hedron as the union of eight 2-

simplexes. (ABC) is one of them. A
The boundary is the union of two

simple closed polygons, the inner B Cc
Square and the outer square.
These two polygons do not inter- :7
sect. : E?
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. sents a2 2-dimensional polyhedron
* -~ which 1s the union .of six 2-sim-
'plexes.

“have exactly one vertex of each 1ln

which 1s a

models (or both).

Ly

The figure on the right repre-

————] P

The boundary of thils poly-
hedron in the plane 1s the union of
two simple closed polygons which

common, the polnt P.

Suppose a 2-dimensional polyhedron in the plane has a boundary
simple closed‘polygon (and nothing else). Then “the
number of l-simplexes (edges) of the boundary is equal to thé .
number of O-simpiexes (vertices) of the boundary. You have already .
seeh,‘in the previous section, why this must be true. '
There are many 2-dimensilonal polyhedrons which are not in any
one plane. The surface of a tetrahedron is such a polyhedron.
The su“face of a cuue is another. We have seen that the surface
of a cube may be considered to be expressed as the union of 2-sim-
plekes. Here we have some 2-dimensional.polyhedrbns which are
themselves surfaces or boundaries of 3-dimensional polyhedrons.
Let us consider these two surfacés, the surface of a tetrahedron
and the surface of a cube. |

You may look at the drawings above or you may look at some
Let us count the number of vertices, the number
The surface of a cube can

of edges, and the number of faces. _
We can think of the

be considered in at lzast two different ways.
[sec. 10-7]
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faces as being square regions (as in the middle figure), or we may
think of each square face as subdivided into two 2-sinmplexes (as
in the figure on the. right). We will use F for the number of
faces, E for the number of edges and 'Vv‘for the number of
vertices. If you are counting from models and do not observe
patterns to help you count, it is usually easler to check thinre
-off as you go aldng That is, mark the objects as you count uﬂem
Let us make up a table of our results.

F E \

Surface of
tetrahedron ? 6 ?
Surface of cube '

(square faces) ? ? 8
Surface of cube

(two 2-simplexes : 12 ? ?

on each square face)

It is not easy from just these three examples to observe any
relationship among these numbers. What we are looking for is a
relationship which will be true not only for these 2-dimensional
polyhedrons but also for others 1like these. See 1f you can dis-
cover a relationship whiech is true in each case,

Exercises 10-7

1. Make up a table as in the text showing F, V, and E for the
'2-dimensiqnal pPolyhedrons mentioned there,

2. (a) Draw a 2-dimensional polyhedron in the plane with the
polyhedron the union of ten 2-simplexes such that its
boundary_is a simple clused polygon.

(b) Similarly draw another such polyhedron, such that its
boundary 1is the union of three simple closed polygons
having exactly one point in common.

(¢) Draw another, suzh that its boundary is the unic" = two
simple closed polygons which do not intersect.

[sec. 10-7]
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Draw a 2-dimensional polyhedron in the plane with the nunber
of edges 1n the boundary

(a) equal to the number of vertices,
(b) one more than the number of vertices,

(¢) two more than the number of vertices.

Draw a 2-dimensional polyhedron which is the union of three
2-simplexes, with each pair having one edge in common.
Do you think that there exists in the plane a polyhedron which

is the union of four 2-simplexes such that each pair has
only one edge in common? Does one exlst in space?

On one of your models of a cube, mark six points, one at the
center of each face. Consider each face to be subdivided into
four 2-simplexes each héving the center point as a vertex.

‘Count F (the number of 2-simplexes), E {ihe number of l-sim-

plexes), and V (the number of O-simplexes) for this subdivi-
sion of the whole surface. Keep your answers for later use.

Do Problem 5 without using a model and without doing any actual
counting. Just figure out how many of each there must be. For
instance, there must be 14 vertices, 8 original ones and 6

added ones.

Express ﬁhe polyhedron on the right ;
as a union of 2-simplexes which /<;%;5;;;;;/,
intersect nicely (in edges or :;;:

vertices of each other). |
777,

U

_—_

N
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*8, State whether the following statements are true or false. If
the statement 1s not true, correct it so that it 1s a true
statement.

(a) Any O-simplex (not an endpoint) contained in a given 1-
simplex, determines two distinct l-simplexes whose union
i1s the original l-simplex, and whose intersection 1s the

glven O-simplex.

(b) Any 1-simplex (not a boundary) contained in a given 2-
simplex, determines two distinct 2-simplexes whose unicwn
is the original 2-simplex, and whose intersection 1s the
glven l-simplex.

(c). Any 2-simplex (not a boundary) contained in a given 3-
simplex, determines two distinct 3-simplexes whose union
is the criginal 3-simplex, and whose intersection is the
‘glven 2-simpléx.

10-8. Three-Dimensional Polyhedrons

- A 3-simplex is one 3-dimensional polyhedron. A solid cube is
another 3-dimensional polyhedron. A 3-d1ﬁensional polyhedron is
any union of 3-simplexes in which the simplexes of .a polyhedron
intersect nicely. That is, if two 3-simplexes intersect, the,
intersection is a 2-dimensional face (2-simplex) of eabh,or an edge
(l?simplex) of each,or a vertex (0-simplex) of each.

168
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Any 3-dimensional polyhedron has a surface (or boundary) in
space. This surface is itself a 2~dimenslional polyhedron. It is
the union of several 2-simplexes (which intersect nicely); The
surface of a 3-dimensional polyhedron is represented by the drawing -
on the right. The surface consists
of the surfaces of three tetra-

hedrons which have exactly one
point in common. \ ﬂ

The simplest kinds of surfaces
of 3-dimensional polyhedrons. are
called éimple surfaces. The surface
of a cube and the surface of a
3-simplex are both simple surfaces. There are many others. Any
surface of a 3~dimensional polyhedron obtained as follows will be
a simple surface. Start with a solid tetrahedron. Fasten to it
another, so that the two tetrahedrons have an intersection which is
a face of the tetrahedron you are adding. You may continue adding
solid tetrahedrons, in any combination or of any size, provided
that each tetrahedron added has, with the polyhedron you have
-already formed, an intersection which is a union of one, two, or
three faces of the 3-simplex you are adding. The surface of any
polyhedron formed in this way will be a simple surface.

The figure above does not represent a simple surface. Vhy?

Class activity. Take rive models of regular tetrahedrons of
edges 3". Put a mark on each of the four faces of one of these.
Now fasten each of the others in turn to one of the marked faces.
The marked one should be in the middle and you won't see it any
more. The surface of the object you have represents a simple sur-
face. You can see how to fasten a few more tetrahedrons to get
more and more peculiar lookinz objects. Suppose it is true that
whenever you add a solid tetrahedron the intersection of what you
add with what you already have 15 one face, two faces, or three
faces of the one you add. The surface of what you get will be a

simple surface.
One can also fasten solid cubes together to zet various
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3-dimensional polyhedrons. 'If Jou wilsh them to have simple sur-
faces, you must follow g rule like the one glven oefore The cubes
must be lastened together in such a way that the intersection of
the polyhedren you already have with the cube you are adding is a
set which 1is bounded by a simple closed polygon., For example, the
intersection might be 2 face, o the union of two or more ad,jacent
faces, of' the cube you are adding, or the 1ntersection might -consist
of parts of one or more faces. ' Thre Important thing is that the
intersection 1s bounded by 2 simple ciosed polygon.

Finally we mention an interesting property of simple surfuces.
Draw any. simple closed polygon on a simple surface. Then this
polygon separates the simple surface into exactly two sets, each of
vhich is connected, l.e., 1s in one piece.

Class activity. On the surface of one of the peculiar 3-
dimensional polyhedrons (with simple surface) that you have con-
atrvéted above, let one student draw any simple closed polygon (the
wider the better). It need not be on just one face. Then let
another student start coloring somewhere on the surface but away
from the polygon. Let him color as much as he can without crossing
the polygon. Then let another student start coloring with another
color at any previously uncolored place. Color as much as possible
but do not cross the polygon. When the second student has colored
as much as possible, the whole surface should be colored.

If you do not follow completely the instructions for con-
structing a polyhedron with a simple surface, you may get a poly-
hedron whose surface is not simple Suppose, for instance, you
fasten eight cubes tooether as in the drawing on the next page.

The polyhedron looks something 1ike a square doughnut. Note that
in fitting the eighth one, the intersection of the one you are
adding with what you already have 1s the union of two faces which
are not adjacent. The boundary of the intersection is two simple
closed polygons, not just one as it should be.

There are many simple closed polygons on this surface which
do not separate it at all. The polygon J does not separate the

[sec. 10-8]
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surface. The polygon K does. Illustrate this for J and for
K by coloring as much as you can‘of the surface without crossing

. the polygon. -

xercises 10-8

Using a block of wood (with corners sawed off if possible),
draw a simple closed polygon on the surface making it inter-
sect most of all of the faces of the solid. Start coloring
at some point. Do not cross the polygon. Color as much as-
you can wilthout crossing the polygon. When you have colored
as much as you can, start coloring with a different color .on
some  uncolored portion. Again color as much as you can wiéh-
out crossing the polygon. You should have the whole surface

colored when you finish.

Go through the same procedure as in Problem 1 but ‘with another
3-dirier:sicnal solid. Use one of your models or another block
of wood. DMake your simple closed polygon as complicated as

you wish. . 3
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3. How meny different kinds of polyhedrons (in terms of their
intersections) can you construct from Just'two cubes of the
same size that intersect nicely, i.e., whose intersection is a
face, and edge, or a vertex? Iliustrate by sketches or models.

4. Take three cubes of the Same slze. Place them together so that
their union has a simple surface. How many different polyhe-
drons can you construct 1n thils way?

5. Three cubes of the same size are to be placed together so that
they intersect nicely. '

e
e A

(a) Construct at least 5 different polyhedrons formed in
this way

(b) Do they all have simple surfaces?
(c) Could more than 5 such polyhedrons be constructed?

#*C. Show that it is possible to fit 7 cubes together so as to
form a2 polyhedron without a simple surface.

10-9. Counting Vertices, Edges, and Faces - Euler's Fornula

In Section-10-7 you were asked to do some couhting. We now
look at the problem in another way. A few of you may have dis-
covered a relaﬁionship between F, E, and - V. Consider the tetra-
hedron in the figure below. Its surface 1s a simple surface.v What
relationship can we find among the number of its vertices, edges,

and faces?
A A
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There are the same number of edges and faces coming into the point
A, three of each. One may see that on the base, there are the same.
~number of vertices and edges. We have two objects left over; the
'vertex A at the top and the face (BCD) at the bottom. Other-
wise we have matched all the édges wlith vertices and faces. So
V+F «-E=2, Now let us ask what would be the relationship if
one of the faces or the base were broken up into several 2-simplex-
es. Suppose we had the base broken up into three 2-simplexes by
adding ‘one vertex P 1n the interior of the base. The figure on
the right on the previous page 1llustrates this. Our counting .
would be .the same until we got to the base, and we would be able
" to match the three new l-simplexes which contain P with the

three new 2-simplexes on the base. Ve have lost the face which

is the base, but we have picked up one new vertex P. Thus, the
number of vertices plus the number of 2-simplexes 1s again two

rmore than the number of l-simplexes, and V + F -« E = 2.

. Next let us look at a cube.

We have a drawing of one on the |
right. The cube has how many faces? :
How many edges? How many vertices? '
Is the sum of the number of vertices j_
and the number of faces two more than ;
the number of edzes? Let us see why
this must be.

(1) The number of vertices on the top face is the number of

edzes on the top face.

(2) The number of vertices on the bottom face is the number
of edrses on the bottom face.

(3) The number of vertical faces 1s the number of vertical
edg-

(#) (Th: number of vertices ) -+ (the number of vertical faces)
- (%he number of edges) = 0. We have counted all vertices,
edges, and faces except the top and bottom faces. Hence,

V+F-E-=2.

[sec. 10-9]
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What would happen if each face were broken up into two 2-simplexes?
For ea:h face ol the cube you would now have two 2- -simplexes. But
ior each face you would have one new 1- -simplex iying in it. Other
things are not changed. Hence V + F - E 1is again 2. L

Suppose we have any simple surface. Then do you suppose that
V+F~-E=2? In the exercises you will be asked in several ex-
amples to verlfy this formula, which is known as Euler's formula.
Euler (pronounced "Oiler") is the name of a famous mathematician
ol the early 18th century.

Let us now observe that the formula does not hold in general
For surfaces which are not simple. Consider the two examples bvelow.

<
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In the figure zbove on the left (the union of the two tetrahe-
drons having exactly the vertex A 1in common), V + F - L = 2
Count and see. Use models of two tetrahedrons if you wish.
V+F-E should be 3. On each tetrahedron, separately, the number
~of faces plus the number of vertices minus the number of edges is A
2. But the vertex . would have been counted twice. So V + F
is one less than E + &, '

The figure on the right above is supposed: to represent the
union of eight solid cubes as in'the last section. The possible
ninth one in the center is missing. Count all the faces (or
cubes), edges and vertices which are in the surface. For this
flgure V + F - E should be 0. (s a starter, V should be 32)

Finally we put the Euler Formula in a more general setting.
Suppose we have a simple surface,and 1t is subdivided into a number
(at least three) of non-overlapping pieces. We require that if two

[sec. 10-9]
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of these pleces 1lntersect then the intersection be elther one point
or a polygonal path. The'number E 1s the number of these inter- '
sections of palrs of pleces which are not just points. The number
V 1is the number of points each of which 1s contained in at least
 three of these pieces. Then V + F - E = 2, = '

Exerclses 10-9

1. Take a cardboard model of a non-regular tetrahedron. In each
face add a vertex near the middle. Conslider the face as the
union of three 2-simplexes so formed. Give the count of the
féces, edges, and vertices of the 2-simplexes on the surface.
How do the faces, edges, and vertices of this polyhedron com-
pare with those of the polyhedron you get by attaching four
regular tetrahedrons to the four faces of a {ifth?

Take a model of a cube. " Subdivide 1t as follows. Add one
vertex 1n the middle of each edge. Add one vertex in the
middle of each face. Join the new v2rtex in the middle of
each face-with the elght other vertices now on that face.
You should have eight 2-simplexes on each face. Compute F,
V, and E. Do youget V + F - E = 27

o

3. DMake an irregular subdivision of any simple surface into a
number of flat pieces. Each piece should have a simple closed
polygon as its boundary. Count F, V, and E for this sub-
divigion of the surface.

4, Take ¢ cardboard model of a tetrahedron. Mark the midpoint of
each edge. In each of the four faces draw the lines jolning
the 1. Ipoints of the edges. 1In thils way each face has been
s2bdivided into four 2-simplexés. Count the number of faces,
vertices, and edges of this simple surface and determine the

value of* V + F - E.
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Three solid cubes can be placed together in two different ways
to form the two polyhedrons sketched below. In each case find
V, F, and E by counting and then compute V + F - E.

(a) ' (b)

Place four solild cubes together as in the sketches beiow.
Find V + ¥ - E 1n each case.

(a) ) (b)

176
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. Chapter 11
VOLUMES AND SURFACE AREAS

11-1. Areas of Plane Figures

In your earlier work with measurement you studied ways of finé-

~1ng areas of the interiors of various Plane figures. This section
will largely be a review, but several new geometric figures will be

introduced. )

You recall that area of a surface is the number of square
units contained in it. When we Speak of the area of a rectangle,
for instance, we will mean the area of the rectangular closed
region.

To find the measure of the area of a rectangle you multiplied
the measures of the length and width.

Stated as a formula, A:= bh. h

B .
A symbol-such as the rectangle in "AE:] " will sometimes be

used. This’ identifies further the particular figure which is being

discussed,
If adJacent sides of a rectangle are congruent, the figure is

a square. s

-

Thus, in this case, A = 8.8 or A = s2.

O , a

A parallelogram has the same area as a rectangle of the same
helght and base, as shown in the followlng figure:

VNV h
b

Stated as formula A = bh.
? 7
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Suppose adjacent sides of the parallelogram are congruent as in
the followlng figure. Such a figure 1is called a rhombus. '

LA

b
Since it 1s a parallelogram, its area can be found by the formula
A ___ = bh. '

Y 4 '
The area of a triangle is found by comparing it with a
arallelogram. :
P 8 c D
_______ 7
| /
Z/ﬁ:\\\\\\\dl
A b B

In any triangle, ACB, if CD i1s drawn parallel to AB, and BD
parallel to AC, then ABDC 1s a parallelogram. CB separates
the interior of the parallelogram into two reglons of equal area.
The area of the parallelogram is found by multiplying b and h.
Thus the area of the trilangle can be found by the formula
A =% bn.
A 2

Fron- your study of circles you learned by one or more methods
that 1f r is the measure‘of the radius of a circle, the measure
of the area is found by multiplying the square of r by w. That

is,

Exerclises 11-la

Find the area of each of the following figures after:
(a) first making a rough drawing of the figure, and

(b) 1indicating the measurements on the drawing.

.Figure Measurements
1. Rectangle ABCD 1B is 4" long; BC is 12" long.
2. Rectangle ABCD 75 1s 2 £t. long, D 1s 5 ft.
: “Tong.
[sec. 11-1]
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3. Square ABCD AB is 13 in. long
4. Square XYZW Y2 1is 3% ft. long."
5. ParélléIogram ABCD AB 1s 16 in. long; the height
is 15 in. _ N
6. Rhombus ABCD CD 1is 6.5 cm. long; the ,heigh
is 5 em, . '
7. Rhombus RSTU ST 1s 5.2 ft. long; height is
4.6 rt.
8. Right triangle ABC Angle A 1s the right angie, and
' IB - is 14 cm. long, AC 1is
9.3 em. long.
9. Triangle XYZ The base ¥7 i 38 rt. long,
. the height XW is 37 rt.
10. A cirecle Length of radius is 4.5 in.

1i. Determine the area of the interior of each of the following
blane figures:

5

7

4ll ' ‘.“
' 12
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12. Find the area of the shaded portion.

"?"//

Anoi:. geometric figure with which we need to become familiar
is a trapezoid, such as ABCD below. A trapezoid 1s a quadrila-
teral, only two of whose sides are parallel.

AARAARARARNANNY

D b, c

_

A b, B

If a didgonal (such as AC) is drawn, the interior of the trapezoid
is separated into %tw: triangular regions. Note that the altitudes
shown of both triangles are congruent, but the bases bl and.

b2, of the two triangles have different measures. The area of the
trapezoid is the sum of the areas of the two triangles:

Area of ABC + Area of ADC

Area of ABCD

— l‘. A !‘. RN
Appep =3 hpy + 5 hb, "

Notice that the lengths of BD and BC =zre not involved in the
computation for obtailning the area of the trapezoid.

[sec. 11-1]
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Example:' In the'trapezoid ABCD find the area by finding the
sum.ot' the areas of the two triansles into which the diagonal &AC

separates 1t.

D " c

' - 1.z, - i
Bappe = 5° 615 =45
- 1 _
Aaapc = 30T =22
A = 45421 =7

The area of the trapezo’sd is 66 square inches.

The above method of finding the ar.a of a trapezoid can be

simplified by using the distributive property.
D b, c

Apep =

Then by the distributive property,

1 .
Apmep 5 b (b +by)
The formula may also be written:
h h(bl + b2) by + b,
= §(bl + b2) or 5 or h( )

*ABCD

This shows that we can also think of the area of a trapezoid
as beilng obtained by multiplying the measure of the height by the
average of the measures of the bases.
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Exerclses 11-1b

In Problems 1 to 5, find the area of trapezolids having the
_ glven measurements:

Height Upper Base Lower Base
1. 8 in. 6 1in. . 13 1in.
2. 14 irn. 35 in. 37 in.
3. 13 cm. 11 cm. 27 cm.
4, 5.4 ft. 9.8 ft. . 12.7 ft.
5. 25 ft. 3% ft. 6 rt.

*6, The area of a trapezoid 1s 696 sq. in. The lengths of the
bases are 23 in. znd 35 in. Find the. height of the trape-

zold.

#7 A plece of land between two streets s the shape of a tripezola.
374’
|3ow
// 418' “

It 1s to be sold at 30% a square foot. Uslny th¢ meas.remernts

glven in the flgure,
(a) -Find the area in square feet.

(b) Find the selling price of the land.

[sec. 11-1]
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" Area of a Regular Polygon

&

A b B

Recall that a regular polygon is defined to be a polygon whose
Sldes have equal measures and whose angles have equal measures.

Join the center of the regular polygzon to each vertex of the
poly:rnn. (The center 1s the point in the interior which is equally
distant from the vertices of the polygon and also equally e
distant from the sides.) If there are n vertices there will be-

n congruent triangles. -

The area of any such regular Polygon will be the sum of the
areas of the triangles. 1In Figure (a), for instance, we will first
find the area of triangle APB:

1
Ap == hb

There are five such triangles, so:

‘O

1
2hb +'§'hb+§hb +—2-hb +-§hb
=Zh(b+b+b+b+b)

But (b +b+ Db+ b+ d} i1s the measure of the perimeter of the
polygon. Thus A(} hp

Suppose the regular polygon had ten sides instead of five.
Then the lines from the center to the ten vertices would divide the
polygon into ten congruent triangles and the area of the polygon
would be equal to

1 1
5 h(10b) = = hp,

where p s the perimeter of the polygon.
From this we can see that the area of any regular polygon 1s
cqual to
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where p 1s its perimeter and h 1is the altitude of one of the
congruent triungles into which the polygon 19 divided by lines
from 1ts center to its ﬁbrtices.

»

I Exercises 11l-lc

r

Find the areas of the following regular polygons:

Kind of Polygon Length of Perpendicular Length of a

from Center to Side. Side
1. Hexagoﬁ 17.3 inches 20 inches
2. Pentagon 27.5 inches 40 1inches
3. Octagon 72.5 feet 60 feet
4, Decagon 30.8 inches 20 inches

Area of a Circle

Now we show how the formula we have just found can be used
to derive the foimula for the area of a circle from the formula

for the circumference of a circle.

Consider cifcle. 0 1in the figures below.

(b) ()

We say thnt a3 regular polygon of n sides is inscribed in a
circular region 1. the vertices of the regnlar polygon are points
on the circle. It is clear from the figures above that the nnre
sldes the inscr:' -1 polygon has the shorter will be the length of
each side. Also you will notice that as n gets larger and larger

[sec. 11-1]
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it will be more and more difficult to distinguish between the regu-
lar polygon and the circle.

We could say that the area of the interior of the inscribed
polygon is approximately equal to the area of the interior of the
circle. It will always be less than the area of the circle since
there will always be points on the circle that are not vertices of
the inscribed regular polygon. Therefore there is always some
portion o* tihe area of the circle which 1s not contained in the
interior of an inscribed regular polygon. However, for large
values of n, the areas are almost equal. We can think of the
area of the interior of the circle as the "upper limit" of the area
of the inscribed polygons, that is

(Area of circle) - (Area of polygon)

_is greater than zero but is very small if the number of sides of
the polygon is very large. 1In fact; by taking the number cf sides
large enough, the difference may be made as small as you please.

_Also,as n becones larger and larger, the distance from the
center of the polygon to a side will become closer and closer to
the radius of the circle; likewise the perimeter of the polygon
Will become closer and closer to the circumference of the circle.
We have seen that the number of square unlts of area in the polygon
is % hp. But we have just observed that when n gets very large
h gets close to r and P gets close to 2 1 r so we are led
%o. conclude:

If r 1s the number of linear units in the radius of a circle,
and A <he number of square units of area in its interior, then

A = 5 r(2mr)
A = vrz.
0 0
r r
[sec. 11-1]
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Exercises 11-1d

1. Compute the area of the lnterior of each of the following
circles. The measurements in each case are in inches.
Express the answer 1n terms of .

(a) r=5 (a) r =43
(b) r =10 (e) d =30
(¢) r=20 (£) d =28

2. By examlning the results of (a), (b), (c) in Problem 1
above tell the effect on the area of a circle if 1its radius is

doubled.

3. (a) BRAINRUSTER. Imagine that you have inscribed a regular
polygon of 20 sides in a circle and that you have divided
this polygon into 20 congruent triangles by joining .its
center to each vertex. Show that these triangles can be
rearranged into a parallelogram whose height is almost
the radius of the circle and the length of whose base is
almost one half the circumference of the circle.

(b) BRAINPUSTER. Imagine that you have ci.cumscribed a regu-
lar polygon of n sgides (n very large) about a circle
0. (This means that each side of the regular polygon
contains exactly one point of the circle.) Develop a
plausible argument to support the following statement.

(Area of circle) < (Area of circumscribed polygon)
Together with our discussion above this would show that

(Area of inscribed polygon) < (Area of circle) <
(Area of circumscribed polygon)
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11-2. Planes and ILines

In the following sections of this chapter you will be concerned
with surface area and volume of solids. As an aid in this study
you will find patterns for models at the end of the chapter. Your
teacher will explain to you how these models are to be made. Refer-
ence will be made to these models in this section and also
throughout the remainder of the chapter.

‘PBefore studylng this section, make Models %, 5 and 73 directions
found at the end of the chapter. Notice that if you actually
measure the indicated segments in the drawings, you will find that
what 1s marked 4", for instance, is not in fact four inches long.
But the drawings are to scale, that is, since l% is three-eighths
of 4, the length marked 13" 1is three-elghths of the length
marked 4", .

Before golng on, let us review briefly some of the simple
1deas about planes and lines. You are already somewhat familiar
with parallel planes. These are planes which do not have any points
in common, that is, whose intersection is the empty set. Such a
palr of planes is suggested by the floor and ceiling of some
classrooms, or by different floors of an apartment house, or by
the covers on a book when the book i1s closed. Find at least
five examples of pairs of parallel planes suggested by things in
your classroom, '

Imagine a flagpole standing in the middle of a level play-
ground, and think of the lines on
the playground which run through
the base of the pole as shown. . Eg%%?

What relation does there appear

to be between the 1line represented.

by the flagpole and these lines \\\\\
drawn on the playground? Our

experlence certainly suggests that

the pole 1s perpendicular to each

of these lines. 1In fact, if it

187

[sec. 11-2]




Y62

were not, then from certain posi-
tions the pole would appear like
this, which is not at all in
accord with our observation. We
describe this relatlionship by
saying that the pole is perpen-
dicular to the playground. In
general a line which meets a plane
in a point A 1s said to be perpendicular to the plane i1f the 1line
is perpendicular to every line in the plane through A. If a
segment lies on a line perpendicular to a plane, we will say that
the segment is perpendicular to the plane.
" Now try the following simple D R
_experiment. Teke a plece of note- :
book paper as shown and fold it :
over so AD falls on BC. The I
!
1
Q

C .

crease you have made 1., represent-
ed by the dotted segment QR. A
Then / AQR and / BQR are both

right angles. How do you know? R~

Now take the paper and set 1t on ¢
your desk as shown, in the posi- D ,
tion of a partly opened book, so ‘
that segments AQ and BQ 1lie
on the plane of the desk top. 1\\\\\\
Would you agree that Eﬁ' is now d B
perpendicular to the desk top?

If so, notlice that you have found
a line perpendicular to a plane
by making it perpendicular to Just two different lines in the plane.
This illustrates the following property of perpendiculars.

desk

Property 1. If a line is perpendicular to two distinct inter-
secting lines in a plane, it is perpendicular to

the plane.

[sec. 11-2]
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If you help to put up a Christmas tree, check to see whether
or not 1t is perpendicular to the floor by seelng 1f it is perpen-
dicular as viewed from two different points. If these two points
and the tree are not in the samelline, the tree is perpendicular
from all points of view. This is an application of Property 1.

As another example, examine Model 5 and look at one of the
segments which connects a vertex of cne hexagonal end with a vertex
of the other. As you see, this segment 18 a part of two rectangles.
It 1is therefore perpendicular to two Segments in each hexagon. By
Property 1 the segment is therefore perpendicular to the planes of
both hexagons. Examine Model 4 similarly and satisfy yourself in
‘the same way that every edge of the solid is perpendicular to the
planes of two of its rectangular faces. Notice the line where two
walls of your classroom meet. What relation does 1t have to the
planes of the ceiling and floor?

| EXamine Model 7 to satisfy yourself that the result actually
applied tc this also.

Now try another experimeni:. Tie one end of a string to some
convenient point @ in your classroom which has a clear space
below it. If nothing else is avallable tie 1t to a yardstick
placed over the back of a couple of chairs, and have someome hold
the ends so théy won't move. Now select a point R on the floor
and notice how much string it
takes to Join Q to R. By

varying R +try to find the point Q

S on the floor which requires r

the least amount of string. When floor
you have located the point S,

notice the position QS of the 5 .

‘string. What reiation does it
seem to have to the floor? Would
you agree with the following statement?

Property 2. The shortest segment from 2 point Q outside a
plane r to the plane r 1s the segment perpen-

dicular to that plane.

[seec. 11-2]
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This shortest distance 1s called the distance from Q o r.

Imagine now several nalls in the celling of your room, to each
of which 1s attached a string. In each case the string 1s then
attached to the nearest point of the floor &s in our experiment
above. Wh-t do you know about the lengths of the different
strings? Will they be all the same? This 1illustrates the follow-

ing fact:

froperty 3. If two planes are parallel, the (perpendicular)
aistances from different points of one plane to
the other plane are all the same.

The constant distance in Property 3 1is called the distance
between the parallel planes. Actually the segments involved 1n
Property 3 are perpendicular to both planes. We have already
noticed this for the lateral edges of a right prism.

Exercises 11-2

1. Gilve five examples of pairs of parallel planes with lines
perpendicular to both planes in each example.

2., Examine Models 4 and 7. Note the sets of parallel planes and
the distance between them.

3. Make Models 9 and 10. Note the sets of parallel planes and
the distances between them.

4, If two parallel planes, Py

and P2, are intersected by

/i
a plané r 1n lilnes 1 and |
,[2,ﬂmn[1 muat be l”'—];—_
parallel to 4’2. Explain why ‘/4 P, /
this 1s true. V

190
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Q
5. We actually could have proved P

Property 2 instead of observ-
ing 1t by experiment. Give

the reasons in the following
proof. S R

Let S be the point r so
that QS 1s perpendicular to r. Draw Segment 3R.

(a) / QSR 1is a right angle. Why?
(b) QR is the hypotenuse of a right triangle. Why?
(¢) QR 1s longer than Q5. Why?

But since R was any point of r except S, this shows that
QS 1s the shortest segment, :

6. BRAINBUSTER. A segment [*:) Q
has. 1ts-ends on the parallel P i
planes P, and P,. If @B ! :
is perpendicular to . Py, prove’ }
i1t must also be perpendicular ,
to Pl‘ Hint: Draw two planes % S
through TGS,

11-3. Right Prisms

Since you have already studied some €Xamples of right prisms,
this section will be in the nature of a re&iew. Do  you remember
what kind of a figure is a right prism? Let us review its
description.

Imagine . two congruent polygons so placed in parallel planes
that when the segments are drawn joining corresponding verﬁices
of the polygons, the Quadrilaterals formed are all rectangles.

These rectangles and the original polygons determine ciosed regions,

The union of these closed reglons is called a right prism. The

[sec. 11-3]
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segments are its edges, and the points where two or more edges
meet are vertices. The rectangular closed regions are called
lateral faces (or faces). The original polygonal closed regions
are called the bases. The segments Jolning corresponding vertices
of the two bases are called lateral edges. It 1s well to point
out that the edges are perpendicular to the bases, and that, in
{act, 1f the edges are perpendicular to the bases, the faces are

automatically rectangles.

A right prism is triangular, rectangular, hexagenal, and so
on, according to the shape of 1ts bases." Consider Models 1, 2, 3,
4, 5, 6, and 7 (making those of this setiwhich you have not already
made). These are examples of right prisms.

You remember low Lo find the surface area and volume of right
prisms. The sur’.~e area 1s the sum of the areas of the bases
and taces. The Tume 1s the produci of the measure of the surface
area of one b. the measure of the altitude. '

~Rectangular Ri, _risms
One righ. prism with which you are rather familiar 1s the rec-

tangular right prism. A good example is a cereal box. The filgure
below reprs- :..s such a prism.

Yeemerm|mue-
1
i
!
!
i
'
:
]

We shall let the measure of its length, width, and helght be
represented by,ﬂ ,2W and h, respectively. Furthermore, we shall
let S represent the measure of its surface srea and V repre-
sent the measure of its volume. Recall the followlng formulas:

192
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S 2(,pw+jh+wh) .
"VZ Jwh or V = Bh whepe B 1s the measure of the
‘area of the base (B B= Jw). You will notice that in a prism of
this type all faces are rectangles, so any palr of parallel faces
can be considered as the bases. Can you state these formulas in
words? Try it. '
Cubes -
A cube 1s a special case of the rectangular right prism in
that all of its edges are congruent. Let us designate the measure
of 1ts edges by s as in the figure below. Study again Model 1.

) ST I

Since a cube is a right prism its surface area and volume are
obtalned in the same manner as you used for the rectangular right
prism. The formulas, however, can be shortened since, for a cube,

/ﬂ = W = h = s;

- The formula for surface area may be developed as follows:

S=2(fw+ _/n + wh)
S=2(s+s+s.5+s8-.s)
S =2 (32 + 82 4 32)

S =2 (332)

S = 652

The formula for the volume of a cube may be developed in a
similar manner as follows:

V = wh
V=8.8.8
V =83
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As an example consider a cube having.the measure of 1ts edges.

2.  Since '8 = 2, then .
: S =622 =64 = 2k,
2

v = 23 - 8. ;

Priangular Right Prisms

This is another prism which you have studied. -Again study
Model 6. The bases of Model 6 are right triangular regions; how-
ever, the bases of a trilangular right prism may be any type of
triangular region. . Consider the figure below. Let the measures of
the edges and one altitude of the triangular bases be b, ¢, d,
and a respectively. Also, let the measure of the lateral edges
of the prism be h. Now let us develop the formulas for surface

area and volume of this type of prism.

Since the area of the surface is the sum of the areas of the
bases and the faces, we have:

S = 2(3 ab) + (b + he + ha)
S =ab + h(b + ¢ + d)
S = ab + hp,

where p 1s the measure of the perimeter of the triangular base. -
You have used the volume formula before, but it 1s given below

by way of review.

V=-é—abh or V = Bh,

where B 1s the measure of the area of the base.

[sec. 11-3]
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Ty

Hexagonal Right Prisms

" You are also familiar with this prism. Study your Model 5.
The bases may be any six-sided polygonal regions; however, we will
consider only regular hexagons, Consider the following figure, ‘

|
a
bl ||
BEi
RoT A
4 \ l / \
/ \Jé/
- ¥t
VRN
/ \

Let the measures of the lateral edges be h, the edges of the
bases be b and the altitudes of the triangles into which the
" bases are divided be a. The formulas for 8 and V are now
as follows:
S =ap + hp
where, as you remember, P 18 the measure of the perimeter of the
hexagon.
V=3%aph or V=B
where B 1s the measure ofAthe area of the base.

Right Circular Cylinders

A right circular cylinder, which you have studied before, is
not a prism. It is being-introduced, however, because the formula
for finding its volume has the same general form as does the right
prism. fThat 1s: V = Bh, where B 1is the measure of the base.

[sec. 11-3]
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Recall that B =T rz, where r 1s the measure of the radius
of the circular base. The formula then is:
v = 7rn.
The formula for the area of the surface will be remembered as:
S S = orrh + 2mr°

which may be writien as S = orr(h + r).

Exercises 11-3

1. Compute thé volume of each right rectangular prfsm whose
measures are as follows:

() fJ=1, w=2, n=2
(b)) J =25 w=2, h=2
() J=13 w-=

. calculate the surface area of each right rectangular prism of
\Problem 1.

i

|
"l

a3

|

N

_Find the surface area and volume for Model 6.

4, Suppose the base of a right rectangular p:.*'ism is left unchanged
and the measure of its lateral edge doubled, what is the effect
on the volume? What is the effect on the sum of the areas of
the lateral faces? ‘

5. Suppose,] and W of a right rectangular prism are each doubled
and the lateral edge left unchanged, what is the effect on the
volume? What is the effect on the sum of the areas of the
lateral faces?

6. If each of J , w, h are doubled for a rectangular prism, what

'is the effect on the volume? What is the effect on the sum of
the areas of the lateral faces? On the surface area? '

7. Construct Model 8. Find the area of its surface and its

volume.

[sec. 11-3]
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! -

8. (a) Refer to patterns for Models 4, 5, 7, 8 and find the
perimeters of the bases.

(b) Are these perimeters all equal to each other?

(c) Find the volumes of these four models. Use your ruler
to find any additional measurements which you need.

(d) Are the volumes equal?

(e) List the models in the order of the measures of their
volumes from smallest to largest.

(f) On the pasis of your experience in this problem, what
conjecture ("conjecture" is a big word for what we hope
is an intelligent guess) would you make about the area
of the interior of a circle as compared with those of
polygons whose perimeters equal the circumferences of

the circle?

9. . (a) When you computed the volumes of Models 4 and 6, did you
find them equal?

(b) Check (a) by filling one with salt and pouring it
‘ into the other. ‘

(c) Find the perimeters of the bases of these models. Are
the perimeters equal?

11-4. Oblique Prisms

Now that we have reviewed right prisms, we will study general
prisms of which right prisms and oblique prisms are speclal cases.
Models 9, 10, 11, and 12 are examples of oblique prisms. The
description of oblique prisms is quite similar to the one you
studied in Section 11-3 of right prisms. An oblique prism may
be described as follows.

Again, consider two congruent polygons. Imagine them so

[sec. 11-4]

197




Y72

placed in parallel planes that when the segments are drawn Jjolning
corresponding vertices of the polygons the quadrilaterals formed
‘are all parallelograms, of which, at least two must be non-rectan-
gular. This means that the lateral edges are not perpendicular to
the bases. These parallelograms and original polygons determine
closed regions. The union of these closed regions 1s called an
oblique prism. The segments are its edges, and the points where
two or more edges meet are vertices. The closed regions formed by
the parallelograms are called lateral faces (or faces). The
original polygonal closed regions are called bases. The segments
joining corresponding vertices of the two bases are called lateral .

edges.
Whepein does the above description differ from the one for

the right prism?
An oblique prism may be 1llustrated by the following figure.
The triangles ABC and DEF, 1n parallel planes, are the bases.

' The parallelograms ABED, ACFD, and CBEF are the lateral faces.
The lateral edges are AD, BE, and CF. Models 9, 10, 11, and 12
will help you to understand this better. In particular, compare
Models 6 and 11 by pointing out the bases; lateral faces and lat-
eral edges.

Now do the same for Models 7 and 9. In these last. cases did
you have any difficulty identifying the bases? How did you decide?
The difficulty here illustrates an interesting property of Models
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4, 7, 9, 10. In these models all ‘aces are parallelograms.
(Recall that a rectangle is a special case of a parallelogram.)

In these figures a any pair of opposite faces may be considered the
bases and the other faces are then the lateral faces. Such figures
can really be thought of as prisms in three ways. DBecause thelr
faces are all parallelograms, such prisms are given the mouth- .
f1lling name parallelepipeds. The rectangular prisms which you
studlied earlier are the special parallelepipeds where all the faces
are rectangles.

As in the study of the right prisms we are interested in
finding the surface area and volume of oblique prisms. There is
no problem in finding the surface area, since this is obtained
by finding the sum of the areas of the bases and lateral faces.

Of course, in finding the areas of the lateral faces, you will be
finding the areas of the parallelograms rather than rectangles.

Now let us consider the volume of an oblique prism. This will
require a bit more study. As a beginning, let us consider a stack
of rectangular cards which are congruent. You may make such a
stack or use a deck of pPlaying cards. When you have the cards
stacked so that all adjacent cards fit exactly you have an
i1llustration of a right prism similar to the following 1llustration

in cross gection.

Now push the cards a bit so that the deck will have the following
appearance in cross section.

| S—— —.
L —
| S—
| — —
| S— . |
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You now have an illustration of an oblique prism. Of course
it is not a perfect prism due to the thickness of the cardi. The
cards no longer fit smoothly. VYou can easily feel the effect by
running your fingernall over the edges, and 1t can be apparent to
' thé’eye also if the stack of cards gets far out of the vertical.
Still the lrregularities seem to be rather small, especilally if
we imégine we have very thin cards, perhaps made of tissue paper.

Next let us consider a similarity between the two stacks
illustrated above. You note that the bases are congruent and the
distances between the bases are equal. In view of this discussion
it would seem that we have the basis for making the following
conjecture. 4

ConjJecture: If two prisms have congruemnt bases and equal heights,
they have equal volumes.

To test this conjecture look at Models 6, 11, and 12. Do they
appear to have congruent bases? Do they have equal heights? For
this it may help to stand them on their bases and lay a ruler
across their upper bases to see 1f 1t seems level. Do you agree
that these models have congruent bases and equal heights? Now
£111 Model 6 with salt and pour into Model 11. Did you have too
" much salt or not enough, or did it seem to be Just right? (This
sounds like the three bears!) Do your results on this experiment
confirm the conjecture above?

Carry out the same experiment with Models 7, 9, and 10. (For
this experiment treat the small parallelograms as the bases since
otherwlse you do not get congruent bases.) Does the result con-
firm the conjecture? '

Since the conjecture seems to be borne out in practice, we
will 1list it now as a property.

Property 4. If two prisms have congruent bases and equal
heights, they have equal volumes.

From Property 4 the volume of any prism is the same as that
of a right. prism whose base 1s congruent to the given one and .

[sec. 11-4]
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having the same helght. But since we know how to find the volume
of the right prism, we obtain at once the following formula:

The number of cubic units of volume in any
prism is obtained from the formula
V = Bh
where B 1s the number of square units of area in its base and h
‘the number ¢f linear units in its height.

For example, the base of Model 11 is a right triangle with
sides having lengths approximately 2 inches and 2% inches. Check
these measurements on your model. The number B of square inches
in the area of the base 18 therefore '

1 1
B =3(2)(2f) = 7
Thus the area of the base is %, 8q. in. Why? You should find
the height is 4 in. (Note this 1s not the same as the length of

the lateral edge which is about 4% in.,) Thus h = 4,
V= (=9

and the volume is S cu. in.

Exercises 11-4

1. Check the accuracy of the last calculation by taking your cubilc
inch measure, Model 1, and see if 9 fillings of it will Jjust
£111 Model 11. :

2. Is a lateral edge of a right prism an altitude of the prism?
Why?

3. Is a lateral edge of an oblique prism an altitude of the prism?
Why?

4., In finding the volume of an oblique prism a student accidentally

used the length of a lateral edge in place of the heilght of the
prism. If he made no other errors, was his answer too large or

too small?

[sec;.ll-4]
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5. Must all the lateral edges of a prism be congruent? Why or
why not?

6. Two faces of a prism are called adjacent !f they have a lateral
edge in common. Show that if two adjacent faces of a prism are
rectangles, the prism is a right prism.

7. Show that if a lateral edge of a prism is congruent to its
altitude, the prism is a right prism.

8. 1If the altitude of a prism is doubled, its base unaltered and
all angles unchanged, how does this affect the volume?

9. If all edges of a rec“angular prism are doubled and its shape
left unchanged, how is the volume affected?

11-5. Pyramlds

. Make and examine carefully the five Models 13, 1%,.15, 16,
and 17. These are examples of pyramids. What common property do
you observe of these five models?

You should see in each case a flgure obtalned by Jolining the
vertices of a polygon to a point not in the plane of the polygon,
thus forming triangles. The pyramid consists of the closed tri-
angular regions and the closed region of the original polygon.
The closed region of the original polygon is called the base of
the pyramid and the other faces its lateral faces. The point to
which the vertices of the polygon are Jolned we shall call the
" apex of the pyramid. (Many books call this the vertex of the
pyramid, but we have chosen the term apex since each corner of the
polygon is also called a vertex.) The edges meeting at the apex

202
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are called lateral edges. For example, in the figure, the base is
the interior of quadrilateral
ABCD; the lateral faces are the
‘closed regions of the triangles A
ABQ, BCQ, CDQ, and DAQ; the later- D
al edges are AQ, BR, CQ, DQ; and
the apex 1is Q.
Point out the bases, lateral B8 o
faces, lateral edges, and apex on each of the Models 14 and 16.
Notice that in Models 13, 15, and 16 the bases are closed
square regions. These are called square pyramids. Similarly Model
14 1s a hexagonal pyramid. What kind of a pyramid is Model 17°?

Why ?

Although there probably was no argument about the answer to
the last question, there might be disagreement over identifying
the base. All the faces are triangular closed regions, so how do
we distinguish which one 1is the base? The answer of course is that
we can't. Any one of the four faces can be considered as the base,
so this figure can be looked at as a triangilar pyramid in four
different ways. (Compare the case of the parallelpiped which could
be considered a prism in three ways.) Because it has Just four
faces this figure 1s generally called a tetrahedron. A tetrahedron
with 1ts interior is sometimes called a 3-simplex, this was dis-
cussed in detail in Chapter 10.

Now look again at the five pyramid models. In each case
imagine the segment drawn from the apex perpendicular to the plane
of the base. This segment is called the altitude and the length
of the altitude is the height of the pyramid. Compare the heights
of Models 13, 14, 15, and 16.‘ Laying a ruler across them may help
in estimating heights. Do you find the models have equal heights?
Model 17 has four heights, depending upon which face is taken as
the base. Take the smallest triangular regions as the base and
compare the height with that of the other models. Do all five of
these models seem to have the same height?

It 1is not always easy to imagine jJust where the foot of the
altitude will be for a pyramid. In one of the models the altitude
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coincides with one of the lateral edges, so the foot of the alti-
tude is a vertex of the base. Find the model and the edge. In
another model the foot of the altitude is entirely outside the
base. Which model? For the other three the foot of the altitude
is somewhere in the interior of the base.

The most symmetrical pyramids are called regular pyramids,
To be regular, a pyramid must meet two conditiona. First, its
base must be the closed region of a regular polygon. (A regular
polygon is one whose sides are congruent and whose angles are
congruent.) Which of the models meet this first condition? Sec-
ond, the foot of the altitude must be at the center of this regular
polygon. Which of the models appear to be regular pyramids?

It is shown in the proulems below that the second condition 1is
really the same as saying that the lateral edges all have equal
lengths, a fact much easier to recognize by looking at the model.

Exercises 11-5

1. Look at the figure. It is
supposed to show a regular
pentagonal pyramid with apex
A and altitude AQ. Since Q
i1s the center of the pentagon,
it 1s the same distance from
S and from T. Suppose AQ
is 4 inches long and QT
and @S are each 3 inches long.

nnnnn ‘

(a2) How can you find the lengths of AS and T7AT?

(b) What are these lengths?
(¢) Do B and AT have equal lengths?
(@) Is triangle AST isosceles?

(e) Can the reasoning above be used to show that all five of
the lateral edges have the same length?

[sec. 11-5]
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Does the reasoning in the last problem depend on the
fact that the base 1s a pentagonal region or would it
work for any regular polygonal region?

Does the reasoning depend on the particular lengths given,
or would it apply to any lengths?

Complete the following statement:
If a pyramid is regular then its are all
congruent.

Look agaln at the flgure of Problem 1, with the base a regular
pentagonal region, but this time suppose we know that the lat-
eral edges all have the same lengths but do not know where *“he
foot Q of the altitude is located. To be definite, suppose

the height of the prism (i.e. length of AQ) 1S 12 inches, and
that each of the lateral edges A5 and AT 1s 13 inches long.

(a)
(b)
(e)
(a)

(e)
(f)

(a)

(b)

How can you find the lengths of Q5 and ~QI?
What are these lengths?
Are they equal?

Can this reasoniﬁg be used to show that the distances
from Q to all five vertices of the polygon are equal?

Does thils show Q 1s the center of the regular polygon?
Is the pyramid a regular pyramid?

Does the reasoning of Problem 3 depend on the particular
measurements and the fact the base is a pentagon?

If not, complete the following statement:

If, in a pyramid with the closed region of a regular
polygon as base, the are all equal in
length, then the pyramid is .

Construct a model of a tetrahedron in which ail four faces are
equilateral triangular regions. Such a figure is called a
regular tetrahedron.
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6. (a) How many altitudes does a regular tetrahedron have?
(b) These altltudes of a regular tetrahedron are
7. The base of a regular pentag- A

onal pyramid is 16 in. on a
side. If the lateral edges of

the pyramid are each 17 in., "

find the lateral area of the

pyramid (the sum of the areas — M

of all five lateral faces). ' 16" fo__

Hint: Draw segment AM from

apex A to a midpoint of a side of the pentagon. This 1s the
altitude of this triangular face. Its measurement 1s called
the slant helght of the regular pyramid. ~In the figure

(a)° + 82 = 172

‘or,
s2 + 82 - 172
where 8 designates the slant height.

- 8. A regular square pyramid has a base which is 10 inches on a
side. Its slant height (see problem above) is 12 inches.

(a) Find its total area (sum of area of lateral faces and
the base). '

(b) Find the lengths of the lateral edges.

9. The base of a regular square pyramid is 10 feet on a side.
The altitude of the pyramid is 12 feet.

(a) Find the total area.

(b) Find the lengths of the -
lateral edges. Hint: How
far is it from @ to. M?
Use this to find thne slant
helight. ———+— 10' ——»
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11-6. Volumes of Pyramids

Can we do anything now about finding voiumes of pyramids?

In the section on prisms we found it useful tc consider models
made up of stacks of cards. Perhaps you and your classmates would -
like to make a similar model for a pyramid. If so, get some heavy
cardboard (such as grocery cartons) and make a series of square
pleces to pile on each other. As a suggestion make the. bottom one
6 inches on a side, the next one _5% inches on a side, etc., going
~down by % inch each time. Theoretically you will have 48 square
pleces, but actually you will have to omit the very top ones as
they gef‘too emall to work with. However, you should be able to
g0 up at least to the 1 inch by 1 4inch square. To avoid having
the square pieces fall apart when you move them, make a hole in~“the
center of each one and run a cord through them, preferably an
elastic cord to hold them firmly together.

If you want a larger model, start with a square one foot on a
side. This will take twice as many layers and eight times as much
cardboard. A deluxe model might be made by cutting the square
regions out of % inch masonite or something similar in your wood
shop. The larger model would take a little over 32 square feet
of material, the smaller a little more than & square feet.

Such a model should convincingly remind you of a square pyra-
mid, though of course there are irregularities 2t the edges as in
the case of the prism. By shoving the square pleces around you
can make this model-assume approximate shapes of all kinds of
square pyramids. When the square pieces are piled up with the
center holes directly above each other it appears as a regular
pyramid like our Model 13. By pushing it to one side the apex
1s no longer above the center of the base. You can very prbbably
push it far enough so that the apex is over a corner of the base
as in Model 15, and posSibly even into the position of Modei 16
where the perpendicular from the apex 1s outside the base.

In all this moving around we clearly have not changed the base
of the pyramid or its height, which is after all Jjust the thickness
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of-our stack of square ‘pleces. Moreover, we have not changed the
amount of cardboard in the pile. It looks like a good guess then,
that any two pyramids with congrusnt bases and congruent altitudes
have equal volumes.

Let us try this out on Models 13, 15, and 16 which clearly
have congruent square bases and whose heights are the same, as we
saw earlier. Fill{ﬁgdel 13 with salt and try emptying it into
Model 15,and then iﬁ£o~l6. Do your results confirm the guess above?

On the basis of this experiment and the evidence of our card-
board model we write the followlng property:

Property 5. If two pyramids have congruent bases and congru-
ent altltudes they have equal volumes.

To find what the actual volume of a pyramid is however; we
must eventually compare it with some figure whose volume we know.
As an experiment take Model 13, the regular square pyramid and
Model 4, the rectangular right prism. How do the bases of these
two models compare (if we take the small square as the base for
Model 4)? How do their helghts compare? Do you agree they have
congruent bases and ~cnal helghts? The interior of Model 4 is
clearly largef 'Ehan - ;. interior of. Model 13, but how much larger?
Fill Model 13 with salt and pour it into Model 4. Keep on doing
this until Model 4 is full. According to your results the interior
of Model 4 is how many times that of Model 13?

Repeat the experiment with Model 14 and Model 5. Did you get
the same multiple in this case? Make a third trial with Model 17
and Model 6. On the basis of these experiments do you agree with

the following property?

Property 6. The volume of a pyramid is one third that of a
prism whose base is congruent to the base of the
prism and whose height is the same as that of the

prism.

Since we know how to find the volume of a prism, this leads at
once to a formula for finding the volume of any pyramid:

208
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V= 2
—'3'Bh

where B stands for the number of square units of area in the base
and h the number of linear uniis in the height.

Exercises 11-6
—

1. Find the volume of the pyramids, the measurements of whose
bases and helghts are as follows:

12 square inches, height = 7 inches.

(a) area of base

100 sq. cm., height = 2% cm.
14,400 sq. ft., helght = 60 ft.

(b) area of base

W

(¢) area of base

2. Model 13 has a square base of 12 inches on a side and a.
helght of 4 inches. Check these measurements with ydur
model, Then find the volume of Model 13.

3. What is the height of a pyramid whose volume is 324 cu. m.
' and whose base 1is a square, 9 m. on a side?

4. The Pyramid of Cheops in Egypt is 480 ft. high, and its
square base 1s 720 ft. on a side. wa many cu. ft. of
stone were used to build 1t? (Assume that the pyramid was
solid.) How many cu. yards?

*5. Find the total surface area of the regular triangular pyramid
whose lateral edge is 12 inches.

*6. The side of the square base of a pyramid is doubled. The
height of the pyramid i1s halved. How i1s the volume affected?

209
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11-7. Cones _

Anyone Who has eaten an ice cream cohe has at least a rough
i1dea of the flgure called a cone, or more strictly a right circu-
lar cone. Let a circle be drawn as shown below, with center C,
and let V be a polint not in the plane of the circle so that
segment VC 1s perpendicular to this plane.

If all the segments from V were drawn to the péints of the cifcie,
the union of all these segments, together with the closed circular
region, forms a right circéular cone. The closed circular region
.1s called the base of the cone, and the union of the segments is
its lateral surface. The polint - V 1s called the vertex of the
cone. In the description right circular cone, the word circular
indicates that the base is the closed circular reglon, and the'word
right means VC 1s perpendicular to the plane of the circle.
Here we consider only right cilrcular cones, and when the word "eone"
is used it will mean this type. ' .

‘Segment VC 1is called the altitude of the cone, and the
leﬁgth of this segment 1s the height of the cone. If Q 1s a
point of the circie, what kind of triangle is VCQ? Why? If you
know the height of the cone and the radius of its base can you find
the length of VQ? How? If R 1s another point of the circle,
do V@ and VR have the same length? This constant distance
from vertex V to the different points of the circle is called the
slant height of the cone. ' ‘

If h 1is the number of linear units in the helght of the
cone, r the number of linear units in the radius, and s the
number of linear units in the slant height, write an equation
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relating h, 'r, and s. If you know any two of these numbers
- can you find the third one from this equation? .

As an example, suppose the
radius of the base of a cone is
10 -1n. and the height is 24 in.
What 1s the slant height of the
cone? Did you find the slant
height to be 26 in.?

Make and examine Model 18.
Point out the base, the vertex,
and the lateral surface. Approxi-
mately what 1s the slant height?
Do you find 1t 1s about 4%- inches?
Do you find the radius a 1little less than an inch? Writing these
as decimals and rounding to one decimal place, we may take the
slant height as 4.1 inches and the radius as 0.9 1inches. What
1s the height of the model? It should be a nice counting number.

How can we find the volume of a cone? Suppose we use the
method used on pyramids and compare a cone with a cylinder having
the same helght and same size base. Take Models 18 and 8. Com-

pare their bases. Are the circles the same size? Do the two models

appear to have equal heights? How did you test this?
Now fill Model 18 with salt and empty it into Model 8. Con-

tinue until Model 8 is full. On the basis of this experiment, the
volume of Model 8 Is how many times that of Model 182 This illus-

‘trates the following property.

Property 7. The volume of the interior of a cone is one third
that of a cylinder having the same helght and
whose base has the same radius.

Since we have already learned how to find the volume of a
cylinder, this leads at once to the formula for finding the
volume of a cone:

V = gmr° h.-
Since vrz is B, the number of square units of area
[sec. 11-7]
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in the base, the formula could be written as
V=% Bh
Comparing thié with Property 6‘shows that we have the same rule for

finding the volume of a ‘tone as for 2 pyramid.
As an example, refer back to the cone mentioned above where the

radius of the base was 10 inches and the height 24 inches.
Then r = 10, h = 24; so by the formula above,

v =17 (10)2 24 = 8oor

and the volume is 8007 cu. in. or about 2512 cu. in.

[—
Prve

Lateral Area of a Cone

To find the lateral area of a cone, look at Model 18. If we
take it apart agaln, the lateral surface goes back into a sector
of a clrcle as shown in the pattern for the model. (Notice that
a sector of a circle is bounded by two radil and a part of the
circle.) That is, the model which looks like this,
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flattens out into a sector of a circle that looks 1ike this.

//_\\

/ N

27r

The lateral area of the cone has the same measure as the area

of the shaded part we are trying to find. The two points marked
Q@ 1n the filgure come from the same point of the model. The rest
of the large circle 1s shown 1in dotted ;;nes tb help you follow
the reasoning. Let s be the number of units in the slant height
.of the cone and r be the number of units in the radius of 1ts

base.
Now, in a sector of a circle, such as we have above, the area

is proportional to the arc. For example, if the arc between the
two points marked Q 1s one quarter of the circle. then the shaded

reglon 1s one quarter-of the interior of the ecircle. The circum-
- ference of the circle 1s 2ws: 1ts area is ws%. If I, repre-

sents the number of square units in the shaded region, we find

the following proportion:
‘ 2rr _ _L

| s = -2

If you multiply both sldes of the equation by Wsz, what value do

you find for L% :

213
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This reasonling Justifies the following conclusion:

Property 8. If the slant height of a right circular cone is
s units and the radius of its base r units,
the number L of square units in its-lateral
area is given by the formula:

L = 7rs.-

As an example, refer agaln to the cone where the radius of the
base is 10 1inches long and the héight. 24 inches. You recall ‘
we found the slant height to be 26 inches. In this problem we
have, therefore, r = 10;. s =26, so

L =m 10 +26 = 260 1 = 816.4

and the lateral area is about 816.4  square inches.

Exercises 11-7

1. If T stands for the number of square units in the total areé
of the cone (counting the base) write a formula for T 1in
terms of r and s.

2. The slant height of a cone is 12 ft. and the radius of 1ts
base 3 ft. Find its lateral area and its total area in terms
of .

3, A cone has a height of 12 ft. and its slant height 1s 15 ft.
Find the radius, the lateral area, the total area, and the
volume.

4, The fadiué of the base of a cone is . 15 inches and the volume
1s 27007 cubic inches. Find its height, slant height, and
lateral area.

5. Let c¢. stand for the number of units in the circumference of

the base of a right circular cone. Show that the lateral area
of this cone is glven by the formula:

L = % cs,

where s stands for the slant height.
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6. Look back at Problem 7 in Exercises 11-5 and show for a regu-
lar pentagonal pyramid that the lateral area is

L1
L-2ps

where p 1s the number of units in the perimeter of the base
and s 1s the altitude of each face.

7. Show why the formula in problem 6 holds for any regular pyramid.

8. Find a relationship between the formulas in problem 5 and
problem 6.

9. Suppose that in the diagram for Model 18, the angle is 216°
instead of 83°30', and that the slant height is 5" instead of

4%”. Find the lateral area of the cone. Find its volume.

10. .Construct Models 19a, 19b, and 19c. Actually 19a and 19b are
ldentical except for the lettering and can be cut out at the
same time. . Be sure to put the letters on, as we will need
them to identify the different vertices. Notice that the
letters do not refer to particular angles but identify a
particular vertex after the model is assembled.

11-8. Dissection of a Prism

According to our experiments with pyramids, the volume of
a pyramid is one third that of a prism having the same helght as
the pyramid and having a base which is congruent to the base of
the pyramid. It is natural to ask whether we could see this by
putting together three identical pyramids to form the prism.
Unfortunately, a 1ittle experimentation seems to show this 1s not
possible. However, we can get a kind of substitute, as we shall
see. ' .

Examine Models 19a, 19b, and 19c. They are all tetrahedrons,
or triangular prisms. First compare Models 19a and 19b. How
does face ABC of Model 19a compare with face SRQ of Model 19b?
How do their helghts compare if we consider these faces as bases?

-~
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(Actually these questions are a little ridiculous since we have
already notlced the batterns are identidal for the two models so
all thelr measurements must agree.) In any case the two tetrahe-
drons ABCQ and QRSC (that 1s, Models 19a and 19b) have inte-
riors with equal volwnes. '

Now compare Models 19a and 19c. We find these models defin-
itely do notliook alike. However, compare face ABQ of Model
19a with face BCR of 19c. Do you find them congruent? Place
the models on the desk with these faces in contact with the top of
the desk. Notice that 1n these positions you can push the models
together so that the two faces marked BCQ coincide. What can
you say of the heights of these two models when placed in this
position? Models 19a and 19c, when looked at in this way, are
triangular pyramlds with congruent bases and congruent altitudes.
What can you say about their volumes? What property are you using?

You should have concluded that the three Models 19a, 19b, 1dc
have equal volumes. Now put the three models togethér so that
faces BCQ of Models 19a and 190 coincide and so that faces QRC '
of 19b and 19¢ coincide. What 1s the resulting figure? 1Is 1t a
triangular prism?

These three models with equal volumes can thus be aséembled,
to form a prism whose base 1s the same as the face ABC of Model
19a, and whose height 1is the same as that of 19a. This shows
again the result stated in Property 6. Actually the work is Just
discussed in Chapter 10 except that here we have been particularly
interested in the volumes of the pleces. 4

If we 1magine Model 192 as origlinally given, we can think of
Modsls 19b and 19c¢ as two more tetrahedrons which have been Invented
having the same volume as 19a, and so that they can be combined
with 19a to produce a prism of the same base and height. In this
particular case the base of 19a 1s an equilateral triangle, and
one of the lateral edges 1s perpendicular to the plane of the base.
Could this still have been done i1f ABCQ were any trilangular
prism? The answer 1s, yes.
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Model 1. Inch-Cube

Model 2, Half Cubic Inch
(not half-inch cube)

1
L\__

Model § Half-inch Cube
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Model 4. Rectangular Right Prism

I n
¥
| | 1
I2 I2
I_|_n
] 2
L] |"|'" L |l" ] L] 1w
2 ~ 2
4" 4ll 4ll 4" 4"
s ]
) I_l_ll
2
. o
. . ’C_’ lln . lln _oq
(Note to student: you 2 c
may find 1t easler to '
complete the model by |%"
making the tab on the Tab
right wider than .

shown in the drawing.)
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.T'HSQEl.é- Right Hexagonal Prism

493

\

(Note to student: you
may find it easier to
complete the model by
making the tab on the
-left wider than

shown in the drawing.)
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Model 6. Right Triangular Prism (Make an extra copy of the tri-
angle for the top base. Use only one tab so the top can
be opened.)

] 4||
2" 2" K _
L 4u
N
. 2"
3ll 3"
-'-ll
27
S
il
4ll
| |
22- 2_4_
" 4" A
\ < Tab .
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 Model 7. Right Prism with Rhombus as Base (also, Parallelepiped)

l. "
13
L L
2 2
60° 120° )
| _| " _| " _|_ " | n o
I2 I2 I2 LE F
'4n 4n 4n 4n 4n
| n | n | n | u
I2 I2 '2 IE |
“7\\60° 120°
15" 1L"\2
(Note to student: you 6\6 2 2 ]
may find it easier to |
complete the model by \\ |5
N\ Tab  /

making the tab on the
right wider than
shown in the drawing.)

.
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Model 8. Right Circular Cylinder (Draw the circular bases with
your own compass, using the radius of the circle below.
Make an extra copy of the circle, since there are two
bases. Attach the lower base firmly (with tape) but
attach the top base only at one point so it can be
readily opened.) '
Tab
4ll
r
6 (1] 6“
4 n
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Model 9. Oblique Prism with -Rhombus as Base (also, Parallelepiped)

- qoy

13n ' .
42 _ 13 13n i3 u {30
64 YR oy dea 4=

74°30' 7403'0'/

[sec. 11-8]

223...




498
Model 10. Oblique Prism with Rhombus as Base (also, Parallelepiped)

qol

|-

(Note to student: you
may find it easier to
complete the model by
making the tab on the
right wider than
shown 1in the drawing.)
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Model 1l. Oblique Triangular Prism (Make an extra copy of the
triangle for the other base. Use only one tab in
attaching 1t so the top can be opened if desired.)

o ] l_ "
75930 48
2||
[+) ' (D
99920 al
A
2u 06
3" 3u
| u
L] [ |
45
_'Il | "
23 ry
| n
48
Tab
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Model 12. Oblique Triangular Prism (Make an extra copy of the
triangle to use for the other base. Use only one tab
in attaching 1t so the top can be opened if desired.)

83° X
32
2"
o' 5 n
84°15 435
3"
5 u
433
104°
|
'y
S n
. 433
‘i\ Tab
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Model 13. Regular Square Pyramid
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Model 14, Regular Hexagonal Pyramid

228"
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Model 15, Square Pyramid

229, .
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Model 16. Square Pyramid

930
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Model 17. Triangular Pyramid (Tetréhedron)

231
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. Model 18. Right Circular Cone (Draw the circle and arc with your
own compass using the radil shown. The radius of the
small circle 1s suppose to be the same as in Model 8.)

[sec. 11-8]
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. Model 19a

o>
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Model 19b

234
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" Model 19¢

Q 2
2“
C Tab

The remaining segments not labeled for length are the same
lengths as the segments in Models 19a and 19b Joining the same end-
-points. That is, segment BQ here has %the same length as segment
BQ in Model 19a.
f’ [sec. 11-8]
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Summary of Properties given in Chapter 11

Property 1. If a line is perpendicular to two distinct intersect-
ing lines in a plane, it 1s perpendicular to the plane.

Property 2. The shortest segment from a point @Q outside a plane
r to the plane r 1s the segment perpendicular(to that plane.

Property 3. If two planes are parallel, the perpendicular distances
from different points of one plane to the other plane are all the

same.

Property ﬂ, If two prisms have congruent bases and equal heights
they have equal volumes, ' )

Property 5. If two pyramids have congruent bases and congruent
altitudes, they have equal volumes.

Propertyié. The volume of a pyramid is one third that of a prism
whose base is congruent to the base of the prism and whose helght

.18 the same as that of the prism. (V = % Bh, where B stands for
the number of square units of area in the base and h the number

of linear units in the height.)

Property 7. The volume of the interlor of a cone 1s one third
that of a cylinder having the same height and whose base has the
same radius. (V = %»wrgh or V = %-Bh)

Progertx'g. If the slant height of a right circular cone 1is 8
units, and the radius of its base r wunits, the number L of
square units in 1ts lateral area is glven by the formula,

L =7 rs.
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Chapter 12
THE SPHERE

12-1. Introduction

If . you were asked to describe the shape of a coin, you'might
say that i1t is "round." But this definition is vague. To describe
1t more accurately, you might say that it is "circular." This is
more accurate because you have already learned a careful definition
of a circle:

A circle is a set of points in a plane such that all
points of the set 1ie at the same distance from a
particular point, P, called the center.

Recall how you use a compass to draw a circle with a given
center and radius. The point of the compass is placed at the cen-
‘ter. The compass holds the point of the pencil at a constant
distance (the radius) from the center as you draw the circle. We
call the drawing a circle, but the drawing merely represents the
circle, Just as.a draWing of a line segment represents a 1line
segment. ' ' .

' When we talk about circles, we talk about points in a plane.
Suppose we consider all the points in space. What subset of points
is suggested by the following description: "A set of points in
space, each point of the set at the same distance from a particular
point"? This set of points would be more than a circle. We would
have a surface, like the surface of a ball. Such a surface we call
a sphere. The point from which the distances are measured is
called the center of the sphere. Some people might call such a
surface "pe: “ectly round" but this is not as definite a term as
"sphere." 4 e

The surface of the earth is a falrly good representation of a
sphere. But it is not exactly a sphere because of its mountains
and its valleys. Also, the earth is somewhat flattened at the
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poles. (The length of the equator is 24,992 miles and that of a
gredt circle through the poles is 24,860 miles--like most mature
bodies, 1t is slightly larger around the middle!) The surface of a
basketball is a better representation of a sphere. The surface of
some Christmas tree ornaments, or the surface of a BB shot, are
even better representations of a sphere because they are smoother.

Many objects are spherical, that is, have the shape of a
sphere. Some of these objects, such as ball bearings, are impor-
tant to industry. Some, like rubber balls, are used as toys. It
is because of these many spherical objects and, most of all,
because of the shape of_the earth, that i1t is important to know
some of the properties of spheres. i

Before we go any further we should emphasize that it is the
surface that we call the sphere. On a ball, only that portion that
we could paint represents the surface. In a gas-filled weather
balloon, only the portion of the balloon exposed to the air'is the
. surface.

A very interesting representation of a sphere is a soap
bubble. Have you ever wondered why a soap bubble takes the shape
of a éphere? There is a very definite physical reason for this.
We will learn more about this property at the end of this chapter.

Exercises 12-1

1. List as many games as you can 1n which a spherical object,
such as a ball, is involved.

2. List as many spherical objects as you can which are used as

containers.

3. Fishing 1s a popular sport and an important industry. Can you
think of any spherical objects which are very useful in cer-

tain kinds of fishing?

L, List some objects, useful in a home, that are shaped like

spheres.
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_“ébnsider @& coin such as a fifty-cent plece. Assume the coin

has no thickness.

(a)
(b)

(c)

What geometric figu55 does the edge of the coin suggest?

Suppose you use one finger
to hold the coin in an
upright position as shown
at the right. When hit
sharply on one edge the
coln rotates very rapidly.
What geometric idea is
represented by the edge of
the rotating coin?

Does the geometric idea represented by the rotating edge
have any thickness? '

object as having only two dimensions. Name an object which
has three dimensions.

Refer to the text, and review the definition of circle. Urite
a definition of sphere.

(a)

(b)

Suppose all the points of a sphere are a distance v
from the center, C, of the sphere. How can you describe
the set of all points which are located at distances less

than v from C?
- "
How can you describefthe set of points which are located

at distances greater than v from (9

[sec. 12-1)
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12-2. Great and Small Circles

) Suppose we let a ball represent
“a sphere. Arrows, shot at the ball,
plerce the surface, or skin, as
" shown at the right. It would be
possible to shoot many_such arrows,
plercing and passing through the
ball. Assuming that each arrow
pierces the surface of the ball, as
shown in the drawing, in how many
distinct points must each arrow plerce the surface if the length of
the arrow is greater than the diameter of the sphere (see below for,
definition of "diameter")?

Each arrow that plerces the ball may be thought of as a line
which intersects the sphere. Let us think about all such lines
which intersect a particular sphere in two distinct points. Some
lines will pass through the upper part of the sphere, some through
the lower part, and some through both parts. We can imagine
infinitely many such lines passing through the sphere. Every line
which passes through the sphere intersects the sphere in two dis-
tinct points. -

Each of these lines contailns a line segment whose endpolnts
lie on the sphere. Let us consider this set of line segments. Are
all such segments congruent, that 1s, do they have the same length?
No, but there 1is one subset of these segments which are congruent--
namely those segments which pass through the center of the sphere.
A line segment with both endpoints on the sphere and passing
through the center of the sphere 1s called a diameter of the sphere.
Will each line segment whose endpoints are on the sphere have the
same length as a diameter? Do you see why 1t 1s necessary to
include "passing through the center" in our definition of a
dlameter? ‘

The line passing through the poles of the earth is called the
axis of the earth. This is approximately the line about which the
earth revolves. If we think of the earth as a sphere, the diameter

[sec. 1242]
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contained in the axls intersects the sphere at the North Pole and
at the South Pole. We think of these two points, represented by
the poles, as being "directly opposite" each other. Since the pre-
fix "anti" means opposing, we could call these points "anti-polar"
points. But the poles are not the only polnts on earth having this
property, since each diameter of the earth wiil contain two such
‘points. So, we use a different name. The endpoints of any diam-
eter of a sphere are called antipodal points. (This is pronounced
"an - tip'- o - dal.") We say, then, that each endpoint of a diam-
eter of a sphere is an antipode of the other endpoint. (In "anti-
pode" the accent 1S on the first syllable.) Thus, the North Pole
represents a point which is an antipode of the point represented by
the South'Pole. Every point on a sphere has one antipode, To find
the antipode of any point P on a sphere, connect P to the cen-
ter C of the sphere. The line through these two points will
intersect the sphere in the antipode of point P,

As an example of antipodal points, think of the point on the
surface of the earth on which you are standing. The antipode of
this point would be on the far side of the earth. You might think
of a hole dug straight down through the center of the earth, coming
out on the other side. Where would it come out? You might find it
interesting to locate the antipode of the place where you live, To
do so, use a globe representing the earth.

Now think of the earth as a ~ North PO‘G/
sphere with a vertical axis as >
.shown at the right. Consider the 41?2% "—T!ii /7/’/)7
horizontal planes represented in
the drawing. One plane just
touches the sphere at the North
Pole, and one just touches the 4
sphere at the South Pole. A plane, E
which just touches, or intersects South Pole
the sphere at one point is said to be tangent to the sphere at that
point. At each point of a sphere there will be a plane tangent to
the sphere at that point.
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Suppose we lower the horizon-
tal plane as shown in the second
drawing at the right. Will the
plane intersect the éphere in Jjust
one point? The intersection set
of a sphere and a plane as shown
at the right will be a circle.
What happens to the length of the
circle as we move the plane lower?
The circ1es will increase in size
until we reach the "middle" of the —=== ,/’/,

sphere. We call this circle at
the middle the equator. From that ,///éézz:====jiti3£}__j:;;7
- position, we move the plane lower, \ s )

the circles decrease in length
until the intersection set again
consists of one polnt at the South
Pole. Thus, a plane which inter- =
sects a sphere may have an intersection set with the sphere which
is a circle or consists of only one point. Of course, It is also
possible that the plane and sphere do not intersect at all. Then
the intersection set is the empty set.
. Suppose we consider the set of circles on the surface of the
" earth which are intersections of the earth with planes parallel to
the equator. In this set, the equator has two properties which
none of the other circles of the set have. First, its length is
greater than the lengths of the other circles. Second, 1ts plane
passes through the center of the sphere. We call the equator a
great circle and the other circles small circles. ‘

Of course, any plane through the center of the sphere cuts the
sphere .in a circle of the same maximum size. Any one of these
circles is a great circle.

N4
1

Definition. A great circle on a sphere 1s any inter-
section of the sphere with a plane
through the center of the sphere.

[sec. 12-2]
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Definition.  All circles on a sphere which are not
a great circles, are called small circles.

All great circles on a éphere have the same length since their
radii are equal to the radius of the sphere. The length of every
great circle on a sphere is greater than the length of any small
circle on that sphere.

Again, think of the earth as a sphere. We can imagine many
great circles of this sphere. A o
particular set of great circles of
the earth is the set conslsting of
‘those great circles which pass
through the North Pole and the South
Pole. On such a great circle, con-
sider the half-circle which runs
from one pole to the other. Such a
half-circle with the poles as end-
polints is called a meridian. We
sometimes use the term "semi-circle"
in talking about half of a circle. Thus, all meridians are seml-
circles,

The small circles whose planes are parallel to the plane of
the equator are called parallels of latitude. Each parallel of
latitude has its center on the axis of the earth and its plane per-
pendicular to the axis of the earth. ,

You know that when you face north, east will be to your right,

west to your left and south at your back. On the surface of the
earth,-east and west from the point where you stand will be along
the parallel of latitude through this point.. When we want to
emphasize that a direction is exactly east, we sometimes say "due
east," .
Parallel circles of latitude and meridian semi-circles will be
discussed more carefully later. At that time we shall discuss how
points on the surface of the earth can be located by means of these
great and small circles.

You already know that, in a plane, the shortest distance
between two points is along a straight line. On a sphere this is

[sec. 12-2]
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not true, although it may appear to be true when you think of two
points rather close together on the earth. Can a plane, flying
from New York to San Francisco travel along a path which 1is a
straight 1ine? Of course not, 1t must follow the curvature of the
earth. On a sphere, it turns out to be true that the shqrtest dis-
tance between any two points is a path along a great circle that
passes through the two points. (You may have heard of "the great
circle route" for airplanes and ships.) The proof of this impor-
tant fact is much too difficult to be given here. However, by
using a string stretched around a globe you may test this statement.

Exercilses 12-2

Do your best to answer each question in Problems 1 to 6. When-
asked to explain your answer give what reasons you can, but do not
feel that you have to prove that your answers are correct. You
should be prepared, however, to supply reasons for your answers in
most cases. The purpose of these questions 1s to help you start
thinking about some of the properties of spheres. You will find it
extremely helpful to make drawings on a large ball or some other
spherical object. Such drawings will help you "see" the things we

talk about.

1. (a) Is there an antipode of any given point on a sphere?

(b) 1Is there more than one antipode of any gilven point on a
sphere? ’

2. In the drawing at the right, C
is the center of the sphere. A
and B are antipodal -points.
The great circle passing through
A and B 1s shown as a curve.
D 1s é point on this great
circle passing through A and
B. The part of the great circle
not seen from the froht is shown as dotted lines.
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(a)
(v)

(c)

(a)

(a)

(v)

(2)
(b)
(2)
(b)

(c)

519

Measuring along a straight line through the interior of
the sphere which distance is greater, AB or AC?®
Measuring along the surface of the sphere, is it farther
from A to D or from A to B? '

Is there any point on this great circle farther from A
than B, measuring either on a line through the interior
or along the great circle on the sphere? Explain.

Do all great circles containing A pass through point
B? Explain.

Do any other great circles passing through A also pass
through point D¢ Explain,

How many great circles pass through a given point, such
as the North Pole, of a sphere?

How many small circles pass through a given point of a
sphere?

Can a small circle pass through a pair of antipodal
points on a sphere? Explain.

On a sphere, does every small circle intersect every
other small circle? Explain.

On a sphere, does every great cirecle intersect every .
other great circle? Explain.

In how many points does each meridian cut the equator?
Explain, -

In how many points does each meridian cut each parallel
of latitude?

Does a parallel of latitude intersect any other parallel
of latitude? Explain.
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6. In the drawlng shown at the right,
"¢ represents the center of ‘a

sphere with point A on the sur-
face of the sphere.

(a) Assume that D 1s a point
between A and C on AC.
Where is D 1located with
respect to the sphere?

<> —
(b) E 1is a point on AC but is not on AC. Must E be
inside the sphere?

: <>
(¢) B 1is a point on AC and 1s on the sphere. What 1s the
relation between points A and B? Explain.

(a) Assume a point E 1is the antipode of point A. Will E
be on AC? Explain.

(¢) If EB is a diameter of the sphere, what name can we
give to AC or BC?

7. In the chapter on Circles in Volume I, the interior of a
circle of radius r and center C was defined as the set of
all points at a distance less than r from the center C.
(This set includes the center C itself.)

(a) Using the above definition as an example, define the
interior of a sphere.

(b) Similarly, define the exterior of a sphere.

(¢) Similarly, define a sphere.

12-3. Properties of Great Circles

Can you remember when you learﬁéa that the earth is spherical?
Some young children are amazed when they learn that the earth 1s
spherical. This 1s not strange, however, for we know that at the
time Columbus was living many intelligent adults believed the earth
was generally flat, much like a plane. -Suppose this were true.
How then could a person go 'around the world"?

[sec. 12-3]
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We use the term navigate" to describe the process of
directing our movements on earth. Deciding what course, or
direction, a ship or alrplane 1s to rollow is the responsibility of
‘the navigator. To avoid unnecessary expense, the navigator must
try to direct the movement of the shlp, or airplane, along the most
direct route between stopping places. :

Suppose you want to take a short trip. By a short trip we
mean keeping within the boundaries of one of the smaller statés,
such as Connecticut. For such a trip you can use a road map as a
“gulde. Most road maps are flat, like planes. Let us assume that
the actual surface of the country is flat and that the roads
Jolning cities are all straight segments. Or, we can assume you
will use a small plane. and can travel along straight line segments.
For such a trip it would be easy to decide‘on the shortest route,
and it would be easy to decide which direction to follow.

However, if you are planning a trip from San Francisco to —
London or from New York to Buenos Aires, a road map is of 1ittlé
"help. For planning such a trip, a model of the earth, such as a
globe, would usually be more helpful than a map in the form of a
plane, You will sometimes find that things are not what they seenm
to be.

To understand travel on the globe better, let us review some
fundamental properties of spheres, 1In Exercises 12-2 two fundamen-
tal ideas about spheres were introduced. These ideas deal with
great circles. The first idea may be stated as a propertyﬁ '

Property 1. Every pair of distinct great circles
intersect in two antipodal points.

This property is easily proved as
follows:

(1) Every great circle of a

' sphere lies on a plane
through the center of the b
sphere.

(2) All planes containing a
great circle have the

[sec. 12-3]
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center in common, and thus any two such planes must
‘intersect.

(3) The intersection set of any two intersecting planes 1s a
line. -

(4) This line intersects the sphere in two antipodal points
since the line passes through the center.

(5) Thus, these antipodal points are the polnts of intersec-
tion of the two great circles on the two planes.

We will use this property in discussing distances between points on

a sphere.
In the previous section we stated that the shortest distance

on the surface of a sphere between any two-poinds on the sphere 1s
measured along the path of a great circle. In the study of geometry
in high school mathematics this statement 1s proved. We will not do
so now but we shall use the result as a fact.

Assume you are to f£ind the shortest route between two points on
the globe. Suppose you are to travel from the North Pole to the
South Pole. Is there one shortest route? No, for you can. easlly
find as many "shortest" routes as you please. Each meridlan is a
possible route. If we think of the earth as a sphere, the meridlans
are congruent. Thus, 1t does not matter which meridian is selected
as your route. For any two,antipodes, there are any number of paths
one can take, namely any of the-great circle paths determined by the
two antipodal points.

But, what 1f the two points are not antipodes? How many pos-
sible paths along a great circle route are there? We can show that
there are only two possible great circle paths between two such
" points. Moreover, both these paths 1ie on the same great circle.
This 1s the next important property.

Property 2. Through any two points of a sphere,
which are not antipodes, there 1s

exactly one great circle.
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We can prove this property as follows:

(1) on a sphere consider any two points, A and B, which
are not antipodes, g

(2) Since A and B are
not antipodes, a line
through A and the
center of the sphere,
C cannot pass through
B. (Similarly, ﬁl)
does not contain A.)

(3) Through the three points
A, B, and C there can pass exactly one plane, because
these three points are not contained in one line.

(%) The one plane containing A, B, and C, contains only one
great circle with center at ¢, : .

(5) This great circle is thus the only great circle passing
through A and B.

This property tells us that. if two points on the sphere are
not antipodes, there is exactly one shortest route between these
two points. Of course, there are
two directions one can travel along Axis
a great circle containing A and
B. 1In the drawing at the right we
"see that one route, ADB, would
pass through D, the other, ACB,
through C. Since A and B are
not antipodes, one route must be
shorter than the other. e natu-
rally choose the one which is
shorter., Can you pick the shortest route in the drawing?

From the point of view of shortest distance, the great circles
on a sphere behave like straight lines on a plane. We have shown
also that through any two points there is Just one great circle.
unless the points are antipodal. But great circles on a sphere do
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not behave like straight lines in all respects for any two great
circles intersect in two points. There are no parallel great
circles on a sphere.

Exercises 12-3

Use a globe and length of String and a ruler to answer Problems 1

to 3.

1. Locate Nome, Alaska and Stockholm, Sweden on the globe.

(a)

(b)

(c)

(b)

(e)

Place one endpoint of the string on the location of Nome.
Place the string on a northern path, passing through the
North Pole. Continue until you reach Stockholm. Care-

- fully mark on the string a point which falls on the loca-

tion of Stockholm. What is the distance on the globe in
inches from Nome to Stockholm as represented by the seg-
ment marked on the string? :

Using a string and ruler, what is the distance from Nome
to Stockholm along a route directly east from Nome?

From your resylts above, what is the shorter distance
between the two points represented by Nome and Stockholm:
a path following a great circle;-or a path following the
small circle whichxas the parallel of latitude? ’

What is the distance from Nome to Rome along a great
circle route which passes through a point near the North

Pole?
What is the distance from Nome to Rome along a south-

easterly course passing through the southern tip of
Hudson Bay, and through a point on the border between

Spain and France?

How do your results in (a) and (D) ~Eompaire?

3. A merchant living in Singapore, Malaya, plans to take a non-
stop flight to Quito, Ecuador. What is the best route between

these two points?

[sec. 12-3]
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4. . Explain why going due north would be the shortest although not .
necessarily the safest or best, route in traveling to a point
on the earth directly north of your starting point.

5. (a) Explain why going due east is not always the mcst
efficlent way of getting to a point directly to the east.

(b) When is a route due east or west always the most
efficient?

*6, @Given three points on a sphere. Can a circle on the sphere
(small or great) be drawn through all three points?

7. BRAINBUSTER: A hunter set out walking due south from his
camp. He walked for about two hours without seelng any game.
Then he walked 12 miles due east. At this point he saw a
bear which he shot.' To fetﬁrn to camp he traveled directly
north. What color was the bear? (Note: This problem does
have an answer.)

12-4, Locating Points on the Surface of the Earth

You already know how to locate points in a city by the streets
and street numbers. Suppose, however, that you are planning to
visit a friend who has just moved to a farm. You need some instruc-
tlons to find the location of your friend!s new home. You might be
told: "Start from where you are now. From this point, go east 2
miles, then go north for 1 mile." These instructions glive you
three things: a starting (or reference) point, the directions you
must follow from the starting point, the distances you must travel
in those direction.

Imagine that you are a pilot of a transoceanic airplane, or ..
the captaln of an ocean ship. It is your responsibility to help
navigate, or direct the course, of the ship or plane. The course
will follow various headings, or "paths." Before any directions
for the heédings have any meaning, you must know where you are.
That is, you must know your location on the earth., By keeping
track of the locatlon of the plane or ship on maps, it is possible
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to determine the correcf headings. Your first Job is to find your
location. How can this be done?

To locate points on the earth's surface, we think of the earth
as a sphere and define two sets of curves on the sphere. One set
of curves consists of the
circles called parallels -~
which we mentioned in Sec-.
tion 2. There we had a
set of parallel planes
slicing the earth in hor-
izontal sections as shown
at the right. The top
plane is tangent to the
North Pole, and the bot-
tom plane is tangent to
the South Pole. The inter-
sertion of each of the remalning planes and the earth is a circle,
Thie circles determined by these planes are all small circles except
for the equator, which is a great circle. All such circles are
called parallels of latitude. They are called "parallels" because
they are determined by planes parallel to the plane passing through
the equator. '

The second set o1l curves consists of the meridians, which also
have been described earlier in this chapter. Remember that merid-
"lans are halves of great circles which have the poles as endpoints.
Thus, each great circle through the poles consists of two meridians,
Each meridian has as 1ts dlamccer the axlis of" the earth.
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Let A be some point on the sphere as shown below. There is
exactly one plane through A, per-
pendicular to the axls of the earth.
This plane contains the parallel of
latitude through A. There is N
exéctly one meridian through A >\ ;
because the peint A and the North \ 4
Pole (or South Pole) determine one O
great circle, Since that great
circle passes through the poles,
the arc of the great circle con-
taining A gis‘a meridian., Thus,.
through each point of a spheré,
except the poles, there is exactly one parallel of latitude and one
meridian, : N :
It remains only to find numerical names for the meridians and -
parallels of latitude. How can we do this? We select one of the
meridians on the earth as a reference line. We label this the zero
meridian. The other meridians are east or west of the zero merid-
lan, Just as streets in a town are east or west of the street used
as a reference.

Actually, the zero meridian for the earth has been designated.
It 1s the meridian which passes through a certain location in
Greenwich (pronounced Gren - ich), England. Greenwich is near
London., We sometimes refer to this meridian as the Greenwich
meridian, -even though the meridian itself passes through one par-
ticular point of the town. The meridian at Greenwich 1s sometimes
called the prime meridian. (This has nothing to do with a prime
number, )

The intersection of the Greenwich meridian and the equator is
marked 0° From this point, we follow the equator east, or west,
until we reach the meridian which basses through the antipode of
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the Greenwich point that lies on the great‘circle through Greenwich
and the North Pole. This meridian :
intersects the equator at a poilnt
which is half way around the equa-
tor from the point labeled 0°.
This point is labeled 180°. We
can think of a plane intersecting
the earth in this great circle.
?he plane separates the earth into
'ﬁwo hemispheres, or half-spheres,
as shown in the drawing at the
right. The hemisphere on the left
as you look at the drawing, is
named the western hemisphere. The
hemiéphere on the right is the eastern hemisphere.

The great circle, which we call the equator, ic divided into
360 equal parts as shown at the
right, as seen by an astronaut
above the North Pole. The num-
bers between O and 180 are-
assigned to the points on the

Greenwich

180°
135°,

half equator to the left of 0°. 90 0°’
The same is done for the points

on the other half of the equator. '

Each of these points names the ;:SL\\\ - 4
meridian passing through that 0 &

point. Any point on earth may be
located by the meridian passing through the point. For example,
Los Angeles is approximately on the meridian 120° west of the
Greenwich meridian. Tokyo is approximately on the meridlan 140°
east of Greenwich. We say the longitude of Los Angeles is about
120°W. (west). The longitude of Tokyo 1is about 140°E.

The parallels of latitude are located in the following way.
The equator 1s designated the zero parallel. All points above the
equator are in the northern hemisphere, points below in the
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Ve choose any meridian, for instance that
The part of the meridian from the

intersection with the equator to the North Pole is divided into

equal parts, assuming that the
The whole num-

90
earth 1s a sphere,
bers between O and 90 are
asslgned to these points. Tach
point determines a parailel of
latlitude, A similar pattern is
followed for polnts on the merid-
ian south of the equator. TFor any
point on earth, we may locate the
parallel of latitude containing

- the point. TIor example, New
Orleans 1s approximately on the
parallel 30°
approximately on the parallel 40°

that New Orleans has a latitude of about
latitude of Wellington is approximately
Some of the parallels are given special names.

north of the equator.
south of the equator.

90°
&
, 2
| o
|
|
| A
' )
459/ .S
S
90°

Wellington, New Zealand, is
We say
AA O\

30°N. (north). The
40°s,

The Arctic and

Antarctic Circles are the parallels located about 23— degrees

from the North and South Poles.
degrees north of the equator, and
the Tropic of Capricorn is about
23— degrees south of the equator.
'Portions of spheres between two
parallels of latitude are some-
times called zones. Some of these
zones are also glven special names
as shown in the drawing at the
right. Can you locate the zone in
which you 1live? Can you name the
hemisphere in which you live?
Could there be.two different
correct answers?
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The Tropic of Cancer 1s about 23~

North Frigid
ane Arctic

Circle

North _
Temperate Tropic of
~Zone cancer

Torrid
JEquotor, Zone
South .
Tropicof

Temperate )

Zone Capricorn

Antarctic
south Frigid Circle
Zone
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To locate a point on earth, we name the meridian and the

- parallel of latitude passing through the point. Thus we name the
longitude and the latitude of a point. For example: 90°W., 30°N,
locates a point in the city of New Orleans. We say that New
Orleans is located approximately at this point on earth. Durban,
South Africa; id located at approximately 30°E., 30°S. Note that
the longitude 1s always listed first. Do the longlitude and
latitude of a point help you locate .the hemisphere in which the
point is located? Notice that latitude and longitude give a
coordinate system on the sphere much as the X-axis and Y-axis
glve a coordlnate system in the plane. i

Exercises 12-U

l. Using a globe, find the approximate locatlion of each of the
following cltlies. Indicate the location by listing the
longitude first, followed by the latitude. Be sure to include
the letters E or W and N or S in your‘answers.

(a) New York City (e) pParis

(b) Chicago | (f) Moscow

(c¢) San Francisco (g) Rio de Janeiro

(d) London (h) Melbourne, Australia

2. Greenwich, England, 1is located approximately on the parallel
‘of latitude labeled 52°N. Without getting further infor-
mation, write the location of Greenwlch. ‘

3. Chisimaio, Somalia, in eastern Africa, is located on the equa-
tor (or very near the equator). It is about U2 degrees east
of Greenwich. Without using a reference, write the location

of Chisimaio.

4., Find answers to the following, using such reference materials
as encyclopedias, maps, and social science and history bookﬁin

~(a) What is the parallel separating North from South Koreaé

[sec. 12-4]
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'(b) Find some states, parts of whose boundaries are along

parallels of latitude.

(c) What parallel of latitude was involved in the dispute
between the United States and Great Britain about thelr
boundary in the Northwest?

(d) What parallel of latitude was connected with the Missouri
Compromise?

(e) What parallel of latitude is associated with the Mason
and Dixon l1line?

(f) Can you guess the reason for the name of the country
Ecuador in South America?

Using a map or a globe, find cities located approximately at
the following longitudes and latitudes:

(a) 58°w.,35°s. - (b) 175°E.,%1°s.

Using a map or a globe, find cities located approximately at
the following longitudes and latitudes:

(a) 122°E.,35°N. (b) 5%.,41°N.

(a) Compare the location of the city in your answer for 5(a)
with the location of the city in your answer for 6(a).

() Similarly, compare the locations of the cities determined
by 5(b) and 6(b). ‘ .

(¢) What kind of points do these locations suggest?

(a) Determine the location of your home town.

(b) Determine the antipodal point of this location.

(¢) If you could travel from a spot in your home town through
the center of the earth, would you come out in China?

What point in the United States 1is closest to Moscow, Russila?
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10.

*11.

*12,

. *13.

*1h,

*15,
*16.

Using a map or other reference, find the answers to the
followlng questions:

(a) Is Reno, Nevada, east of Los Angeles? That 1s, does the
meridian through Reno lie east of the meridian through
Los Angeles?

(b) About where would the meridian through Miami, Florida,
strike South America?

(c) Which of the following cities 1s closest to belng on the
same parallel of latitude with New York City: San Fran-
cisco; Portland, Oregon; or Seattle, Washington?

(d) Which of the following cities 1s closest to being on the
same parallel of latitude with New York City; London;
Madrid; or Casablanca, Morocco?

Are there two different points on the earth which have thé
same latitude and longitude? If so, where are they, and if
not, explain why there are none.

Are there any points on the earth that have more than one
location in terms of latitude and lpngitude? Explain why, or
why not.

Determine a way of finding the locatfon of an antipodal point,
say of 90° W.,45° N., without using : ;" .obe or map. Then find
the antipodal points of each of the nilowlng:

(a) 80°%w., 25° s.

(b) 100° E., 65° N.
(c) 180° w., 52° s.

Find the reasons for the location of the Arctic Circle and the
Tropic of Cancer.

Where and what is the International Date Line?

Southeast of Australia, there is located a group of islands
called the Antipodes Islands. They received this name because
they are antipodal to Greenwich. Without using a reference,
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write the locatlon of the Antipodes. When 1t is midnight in
Greenwich, what time of day is it at the Antipodes? When it
is the middle of summer in Greenwlch, what season is it in the
Antipodes? Does this mean that when it 1s June 21st in
Greenwich it 1s December 2lst in the Antipodes?

12-5. Volume and Surface Area of a Spherical Solid

In previous chapters a cube has been discussed in detail,
Remember that 1t is a surface. The volume of a cube is the volume
of the rectangular solid whose surface is a cube, If the measure
of an edge of the cube 1s e then the measure, Vc, of the volume
is e3. The volume of the cube is e3 cubic units. The subscript, -
C, merely means that this refers to the cube,

A sphere is a surface. By the volume of a sphere we will mean
the volume of the solid whose surface is a sphere. 1In this section
we give a formula for the measure, Vs, of the volume, Let »r
stand for the radius (thnt is, the number of units in the length of
the radius) of the sphere and see first how we can get an approxi-
mate idea of its volume. Build around thls sphere the smallest
possible cube. This cube should
touch the sphere as indicated in
the diagram. It looks like a base-
ball in a tight-fitting box.

The edge of the cube has
measure 2r. Hence '

v, = (2r)3 = 8r3.

Since the sphere lies entirely within the cube, the volume of the"
sphere 1s less than the volume of the cube. Hence

vy < 8r3.
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Now think of constructing a cube entirely within the sphere so
that all vertices of the cube lie on the sphere, The points A
and B . are shown as opposite ver-
tices of the cube, and C is the
center of the sphere and of the
cube. You see that C lies on
the segment AB. Hence A and B
are antipodes, ADE 18 a right
triangle, 8so

2 2 2

(AD)” = e + e“ = 202

where e 1s the number of units in
AE, Now ADB 18 a right trlangle and hence

2
(AD)? + (BD)2 = (AB)Z.
But BD=e and AB = 2r. Hence

26% + &2 = (2r)2,

3e° = 4r2,
2_4 2 4.3 2
e~ = 3 r° = 373 r
2 [»]
cre = (43T 2Bx
_2J/3 >
= ————
3
3 _ 2 4.2 243 _8v3 3. 3
Hence, V, =e” =e :e = 3 ro. =3 r = r° ~ 1.53r".
Since the volume of the sphere is larger than the volume of this
cube,
3
Vs > 1.53r>,
Therefore,

1.53r° < Vg < 8r3,
260
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We have obtained two numbers between which the measure of the
volume of the sphere lies. Actually these numbers are not very
close to each other as you can see by letting r = 2 and computing
the volumes of the two cubes. To find an accurate formula for the
volume of a sphere is g task far too difficult at this tim?. But,
it can be proved that the volume of a spherical solild is % T
units, where 7T is the same number we met when working with
circles, and r 1s the measure of the radius of the sphere.

!
Notice that = 7 = 4, so that % T3 certainly lies between

) 3
1.53r3 and 8r3. The nunber 7 is a rea’ number though not a
rational number; it is an irrational number. Its decimal form has

been: computed to many places. To five decimal places/it is .
T = 3.14159 ...

Although we do not prove it in this book, we shall use the
fact that the volume, Vs, of a sphere with radius of measure r

is given by the formula

Vs'= % Wrs cubic units.
If fhe radlus of the sphere is measured in inches,ﬁhen tiie volume

18 measured 1in cubic inches. Other units are handled in similar

Tashion.

Surface Area of a Sphere

We were able to approximate the volume of a sphere by com-
paring it to the volume of a smaller cube inside the sphere and to
. a larger cube containing the sphere. We now ask how to get some
rowrh .estimate of the surface area of the sphere {the area of the
skl of the orange, so to speak). ,

If we look back at the cube which‘we constrzted to enclose
the sphere, we see that the edge- of the cube has measure ar.
Hence, each face of the cube has area (2r) x (2r) = Hrz. There
are 6 faces on the cube. Therefore, the total surface area of
the cube has measure 6 x hp° = 24r2, It seems clear that the area
of the sphere 1s less than the surface area of this cube which

‘encloses it. 261
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Thus,
As < 24r2
where A, represents the area of the sphere of radius r.
Look now at the surface of the enclosed cube. We showed
earlier that the square of 1ts edge e was
2 _ 4 2
e —gr.
But e2 is Just the méasure of -the area of each face of the inner
cube. Then the surface area of this enclosed cube 1is

6 x % r° = 8 r°,
Since the surface area of the sphere is greater than the surface
area of this cube which lies entirely inslde the sphere, we have

8r2 < As.

" .- From these two inequalitieé we can wrilte

8r2 < As'< 2Ur2.

Here, as in the case of the volume of the sphere, we do not have

limits which are very close together, but they dcd give a very rough
idea of the area and the method suggests how to go about getting a
better approximation to the surface area. You wlll prove in one of

your later courses that:

The area of the surface of a sphere is Mvrz
square units of area, where r 1s the measure of
" the radius of ths sphere. If As represents the

surface area, then

A = Mvrz.
s

Note that &g = yrr?  is approximately A = 12.6 r° wyhich is
within the range 8r2 to 24r2 we found eari.ler for As.
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We may think of this surface area in comparison to the aréa
enclosed by a'great circle of the sphere. A great circle of the
 sphere will have radius r and hence an area of vr?m_square units.

Thus,
2

Ay = b x 7r or,
-{surface area} Sy g { area of one of its}
of a sphere - great circles

If the radius of a sphere 1s measured in inches, 1ts surface area
1s measured 1in square inches.

Spherical ‘Sodp Bubbles

Let us now develop 1ldeas which will assist us in discussing
the soap bubble. Suppose, first, we consider a sphere of radius
2 units. Then our formulas glve us

) ~ : 4 3 32
= ) . = C = . =
As = 4.2 1o and Vs 3T 2 —gw

for the area and volume of the sphere reShectively. Suppose we
have a cube with the same volume as this sphere. How would the
area of the cube compare wilth that of the '‘sphere? The volume of
the sphere 1s a little more than 32, since 7T 1s a l1little more
than 3. Hence, if e 1s the number of units in the edge of the
cube, then e3 must be a little greater than 32, =ince e3 is
the volume of the cube. As a result, e is a little larger than
3. In other words, the length of the edge of the cube having the
-same volume as the sphere will be a little more than 3 wunits.
Since the cube has six faces, A, = 6e2. Hence its area will be
greater than 6-3° = 54. This number is certainly greater than
16r, the surface area of the sphere, If we had done this work
more accurately, the areas would be found to be:

A X 50.26, A, R 62,48,
vhich reveals a somewhat greater discrepancy.
263
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~ Suppose we try another example and consider the sphere of
radiuq_ 5 units. Then our formulas give us

a =752 =100r  -and v, = 4re50 = %
Here Vs is about 527 and so, for a cube of the same volume, ,

V_~ 527. Hence e 527, so that e is a little more than 8

since g3 = 512. Accordingly, A, 1s a little more than 6¢82 =
384, 1In this example, Ag % 314.16 and A, % 384. Again the area
of the sphere is decidedly less than the area of the cube of equal.

volume. These are two examples of the followlng fact:

If a sphere and a cube have edual volumes, the
surface area of the sphere is the smaller.

In fact, a stronger statement 1s true:

If any _solia has the same volume as a sphere,
the surface area of the sphere 1s less than
or equal to the surface area of the solid.

“Now to our soap bubble! The soap film has a certaln elas-
_ticity to it. This elasticity "pulls in" the film as much as
possible. A glven volume of air is trapped inside the bubble.
Hence the physical property requires the surface to have as small
an area as possible for the given volume. As stated in the pre-
ceding paragraph this area will be least when the surface 1is a
sphere. This is why soap bubbles are spherical-in shape.

Exercises 12-5

1. “For each sphere whose radius is given below, find the volume
of the corresponding spherical solid. Use %5 as the approxi-
mation for .

(a) r = 3 inches (e) r = 5.6 inches

(b) r = 10 feet ' (£) r =,6.6 inches

(¢) r =4 yards (g) r=8.4 mm,

(d) r = 6 cm. . (h) r=U4.2 feet
[sec. 12-5]
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In Problems'2, 3, 5, and 6 use 3.14 as the approximation for 1.

2.
3.

*8,

For the varlous spheres of Problem 1 find the surface area.

An o1l tank 1s in the shape of a sphere whose diameter 1s 50
feet. The tank rests on a concrete slab.

(a) If paint costs $6 per gallon and a gallon covers 400
' square feet, find the cost of the palnt for the surface.

(b) If o1l costs 13 cents per gallon find the value of the
oll in the tank., Assume that the tank 1is full.
(1 cu. ft. = % gallons)

Suppose your mother has a bowl In the shape of a hemisphere of
radius 8 1inches. She borrows a bowlful of sugar and wlshes
to pay for thevsugaf rather than return it. Assume that sugar
costs: 10 cents per pound .and that 1 pound occuples 32
cublc inches. Use 7 % 3. How much does your mother pay?

A mapmaker wishes to produce 100 globes made of plastic
sheeting. The dlameter of each globe is to be 18 inches.

........

Find the cost of the globes 1f the plastic costs 50 cents
per $quare foot. ' :

A spherlcal balloon has a diameter of 40 feet. How much gas
wlll 1t hold when all the air has been pushed out?

.¢) If the radius of a sphere i1s doubled what effect does
this have on the volume? On the surface area?

(b) 1If.the radius of a sphefe 1s tripled what effect does
this have on the volume? On the surface area? :

Two spheres have radli in the ratio %.
(a) Find the ratio of theilr volumes.
(b) Find the ratlo of thelr surface areas.
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12-6. Findinz Lengths of Smzll Circles

How would we find the length of a circle of latitude? In this
section we will show how this may be done using values of cosines
of angies. First draw a picture of the earth. Call N the North
Pole; C the center of the earth, P some point on the surface of
the earth and E the polnt directly
-south of P on the equator. The
figure shows the great cirple through
P and E. Then the measure in '
degrees of the angle PCE 18 the
latitude of point P. Let A Dbe
chosen so that PAC 1s a right
angle and choose B on the axls of
the earth so that PBC 1s a right
angle. Then PBCA 1s a rectangle
and hence PB 1s congruent to TA&;
that is, the lengths PB and CA are equal., But 3 is equal to
the cosine .of angle PCA. Thus if 1° 1is the latitude of P, we

have

CA = CcOS L°.

CP

The equator 1s the great circle shown in the diagram as being in a
Plane perpendicular to the paper and passing through E. The
radius of the circle is CE. Call e the length of this great
circle. Hence, the length of the equator is 2r(CE) = 2r(CP), or

e = 27(CP).

Why is CP = CE? The circle of latitude at P has center at B,
has radius BP and has its plane perpendicular to NC. Denote the
measure of the ;ength of the circle of latlitude by p.- Hence

p = 2r(BP) = 2r(CA).

Accordingly,

: o _CA 2r(C _
cos L~ = TF = (e =

A
P

oo
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What property justifies the second equality in the last line?
Since cos L° = %, it follows that D = e cos L°.

The length of the equator is about 25,000 miles. This gilves
p % 25,000 cos L°,

where 1° i1s the latitude of the point P. If the latitude of a
point 1is known, the length of the small circle through the point
can be found by using values of the cosines of various angles given
in the table of Chapter 9.

Example. The latitude of a certain city is 350. Find the
approximate length of the small circle through the city. The
length of the small circle is about 25,000(cos 35°) miles, that
is 25,000(0.8192) miles, which is 20,480 miles.

Exercises 12-6

1. Find to the nearest ten miles the length of the circle of lati-
tude which passes through the point with latitude given below.

(a) 15° (b) 75° - (c) 45°

2. City A has longitude 15°E. and city B has -longitude
25°E, The cities are on the same parallel of latitude, 30°N.

(a) Find the length of the
circle of latitude on
which the cities lie.

{b) The diagram represents
the circle of latitude.
Find the length of the c
semicircle OBC.

(c) Find the difference
between the longiltudes
of A and B,

(d) Length of arc . AB is
? (fractional part) of the length of the semicircle.

_[sec.vl2-6]

. 267



542

*4

*5,

.correct fbrmula for the volume of a sphere is V = §-vr .

(e) Find the length of AB.

(f) An airplane travels close to the surface of the earth and
follows the parallel of latitude from A to B. If it
travels %00 m.p.h., how long does it take for the
Journey? ' '

How far is 1t between meridian 10°W. and 70°W. at latitude

40°N. along the parallel of latitude?

By sun-time is meant the time as determined by the position of
the sun. Standard time zones should not enter into this

problem. .
(a) If sun-time i1s 7:00 a.m. at meridian 10°W., find the
~ sun-time at 70°W. ' :

(b) If sun-time is 7:00 a.m. at meridian T70°W., find the
sun-time at 10°E.

Cities A and B both have the latitude ' 40°N. and are in
the same time zone, that 1s, a person does not change his
watch in going from one to the other. The sun rises exactly
one hour later at A than at B. How far apart are the
cities and which direction 1s A from B?

OPTIONAL. In section 12-5 we performed some camputations to

help us determine the volume of a sphere. These computations
gave us only approximate results. It was stated that tge
It was also stated that we would not attempt to prove this
formula at this.time. Later, in more advanced courses in
mathematics, you will learn to prove that the formula given is
correct.

Try the following experiment to verify that the formula
for the volume of a sphere is correct. All measuring for this
experiment must be carefully done.

OBJECTIVE: To verifﬁ that the formula for the volume of a sphere
. 3 .

1s V = §Wr .
268
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MATERIALS: (a) A sphere (a softball will do nicely)

(b) A container (one having an interior shaped in the
form of a rectangular solid, such as a half-gallon,
paper milk carton with top cut off)

(¢) A ruler (graduated in 16ths of an inch or in
tenths of a centimeter)

(d) A container with about one quart of water.

DIRECTIONS:
(1) Measure the diameter as
RULER
shown at the right. Com- | i \\
Ll 1 Lt 1 1 1 L
pute the radius of the ////"\\\\
here. /
sp _ d

the container. Partially
£111 the container with
water. Mark the water
level carefully. Immerse X
the sphere in the water so N
that 1t is completely
covered with water. Care-
fully mark the new water /j/
level. Find the measure of

the distance the water
level was raised,
(3) Find the product of the

measures of the following:

zhe length of the interior

of cthe container; the width of the Interior of the con-
talner; the distance the water level was raised.

(2) Measure the length and
" width of the interior of 20° 590"

Z
%

(4) Is the answer to (3) the volume of the sphere? Explain
why, or why not. '
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(5)
(6)

(7)

Compute the value of r3, using the radius of the sphere,
Is r3 less than the volume of the sphere?

Find the product of T and r3. -Is thls answer less

than the volume of the sphere?

Divide the answer for (3) by the answer for (6). If you
did all of your work carefully, you should obtain an
answer approximately equal to 1% or 1.3. Did you?
How does 1% or 1.3 compare with 5?

[sec.‘lé-6]



Chaptgr 13
WHAT NOBODY KNOWS ABOUT MATHEMATICS

13-1. Introduction

Wilth deily articles and newspaper reports about rockets,
weather satellites, and radio telescopes, to say nothing of new
antibloties and space mediciné, everyone is keenly aware of the
actlve work and the many unsolved probléms in different brancnes of
sclence. Many people, however, have the curious idea that mathe-
matics 1s a dead and completed subject that was embalmed
between the covers of a textbook sometime after Sir Isaac Newton,
Actually mathematics is as active as any of the fields just
mentioned and has a wide variety of challenging problems not
. yet solved.

Not only the amount of new mathematics but the number of ‘
kinds of mathematies is increasing at breathtaking speed. At the
close of this chapter is reproduced the sub ject classification for
the Mathematical Reviews, a publication which contains brief
sumniarles of mathematical research and runs to over 1000 double-
column pages a year. There are 436 topics in the list, which is
more than four times the number of topics in the'previous classi-
ficatlon in 1958. Most of these names are unfamiliar to you. You
may assoclate new mathematics with computing, an Important new
branch of the subject; but you will notice that "Computing
Machines" under "Numerical Analysis" occupies only a small portion

~of the 1list. ' S

Some of the topics have familiar names, 1ike geometry and
alge.ra, but you will find few famiiiar names under these headings.
- A person who graduates from college or even who has a Ph.D. degree
in mathematics cannot hope to have any very deep knowledge of more
than a few of the topics.theré listed. Most of the applications
of mathematics are not even considered in this 1ist but appear in

other journals.
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In this chapter you will become acqualnted wlth a very few
selected unsolved -problems in mathematics. These are, of course,
not really typical of unsolved problems since we must choose ones
which will have some meéning to you and in which we can make a
little progress. But even most of the results we state are found
by much more advanced methods than you know; how the problems will
finally be solved, or whether they will be solved, no one knows.

13-2. A Conjecture About Primes

In this section and the fdllowing, some problems having to do
with prime numbers are considered. The mathematician is chlefly
interested in these for himself, but you may be surprised to know
that even here there are applications. Some of the properties of .
prime numbers are used, for instance, in checking the accuracy of
programs set up on computers. Such properties are also used to
find sequences of so-called "random digits." Roughly speaking, a
sequeﬁce of random digits 1is a sequence of numbers between O and
9, inclusive, in which there is no pattern. A repeating decimal,
for instance, would have a definite "pattern" but there would seem
t0o be no pattern in the decimal for V2.

You have worked with prime numbers before. You remember that
a prime number is a counting number greater than 1 which has no
factors except itself and 1. Very likely you have used a method
called the Sieve of Eratosthenes to find the prime numbers up to
one hundred. At the end of this chapter you will find a list of
prime numbers up to 1000. Most university libraries contain a list
by D.N. Lehmer of primes up to ten million. ("List of Prime
Numbers from 1 to 10,006,721" by D.N. Lehmer, Carnegle Institution
of Washington, 1914.)

The prime numbers have many interesting properties. One
important one which you have used frequently 1s that every counting

[sec. 13-2]
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number except 1 is either a prime number or can be written as a
product of prime factors in only one way except for the order of
the factors. For example, 38 =2 x 19 and 75 = 3 x 5 x 5.

- For instance, no matter how you may write 75 as a product of
primes, there will be two 5's ahd one 3. You use the method of
factoring a number into prime factors almost every time you express
a fraction in simplest terms. One may ask what numbers we can
obtain by adding primes, It is easy to'show that all counting
numbers above 1 can be obtained by cdding primes. To show this,
suppose {iras: tiist n 1s any even number. Then n = 2k, where k
is some counting number. (Why?) But then n=2 +2 + ... + 2,
where 2 occurs k times in the sum and since 2 is a prime this
shows every even number is a sum of primes. Suppose now that n
is any odd number greater than 1. In this case, what kind of a
number is n - 3? Is it either O or an even counting number?
Why? If n -3 1s O then n =3 which is already a prime,
while, if n - 3 1s an even counting number then n - 3 = 2k and

n=3+2+2+ ... +2,

where "2" occurs in the sum k times. Thus every counting number
l1s a sum of primes. 1In fact, we have shown that we can do thils
using no primes except 2 and 3.

Suppose now we ask a harder question. What counting numbers
can be obtained as a sum of exactly two primes? Since the smallest
prime is 2, the smallest number that is a sum of Just two primes
must be 4, because 4 =2 4+ 2, Can we express any counting number
4 or above as a sum of exactly two primes? Try the numbers from 4
to 20. Did you find any that you could not write as a sum of two
primes? How many? Which ones were they? Were they all odd numbers?

Can you think of a reason why it is harder to express an odd
‘number as a sum of two primes than an even numbe®? Perhaps the
following observations will help. Ih the sequence of primes the
only even number is 2. Why 1s this? Now if the sum of two
counting numbers is an odd number, what can you say about the 
two numbers? Is it true that one of them must be even and the
other odd? Then if an odd number is to be a sum of two primes,

[see. 13-2]
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one of the primes 1s even and thus must be equal to 2. Thus the
only possible way of writing 11 would be 2 + 9. -But unfortu-
nately 9 1is not a prime, and hence 11 cannot be expressed at all
as a sum of two primes. ‘ .

Since we have seen that we do not get all odd numbers as a
sum of two primes, let us concentrate just on the even numbers.
Let us ask what even numbers greater than or equal to 4 can be
expressed as a sum of two primes. As an eXperiment try completing
the table below for the even numbers from 4 to 26.

b =2 +2 10 = 16 = 22 =
6 =3+ 3 12 = 18 = ol = -
8=3+5 14 = 20 = 26 =

Were you able to complete the table and express each of these as a
sum of two primes? Incidentally how many of the numbers could be
written in more than one way as a sum of two primes? The smallest
"such number 1s 10, for 10 =5+ 5 =3 + 7.

Exercises 13-2a

1. Continue the above table of the even numbers up to 100.
Were you able to express each of them as a sum of two primes?

2. For the even numbers from 4 to 50 find the number of ways
in which each can be written as a sum of two primes. ‘
Tabulate the results as follows:

274..
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‘Even Number Number of Ways Even Number Nu..ber of Ways
4 1 28
6 1 30
8 1 32

10 2 34
12 1 36
14 2 38
16 4o
18 42
20 ' ‘ 4y
22 46
24 4r
26 =0

On the basis of your experience here would you hazard a guess
as to the Possibility of ex pressing all even numbers alyove 4 as
a sum of twc primes? Specifically what would be your gress about
vhe truth or the following conjecture? (A conjecture 1is just an
educated guess.)

"Every even number greater than or equal to 4 can be

written as a sum of two primes,

If you think this is probably true you are in good company .
This statement is known as the Goldbach Conjecture. Goldbach
suggested 1t 1n a letter to the great mathematician Euler, asking
whether Euler could prove it. Euler was unable to prove it and,
since his time, many mathematicians have worked on this probiem,
However, up to the present no one knows whetherr the statement is
true or false. It is part of the mathematics that; no one knows.

Some progress—has been made, however. In 1936, the Russian
mathematician, Vinogradov, showed that every odd number beyond a
certaln number can be expressed as a sum of three: primes, Why do
we say this 1s getting close to the Goldbach con, jecturet Recause
1f the Goldbach conjecture is true, then Vinogradov's Theorem is an
easy consequence. The proof would go like this.

Let us suppose that Goldbach's conjecture js true. AaAlso let
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n be any odd counting rumber greater than 5.. What can you say
about the number n - 4¢ Is it even or odd? Is 1t greater than
29 According to Goldbach's conjecture what can you conclude about
n -3 If n -3 = (sum of two primes), then n = 3 + (sum of two

primes). Thus, n 1s the sum ¢7 how many primes? This is
Vinogradov's Theorem. _

Because this thec ~ 4 Goldbach's conjecture are so closely
related, many mathemat. .5 thought Vinogradov was on the right

track. 1t is not unlikely that some day he will solve the
Goldbach oroblem, o

You may wonder how one might go about tryilng to prove some-
shing like Goldvach's conjecture. It 1s not enough just to test
it in a lar'ge number of cases, say with a computer, beczuse there
are an infinnite number of even numbers to test, and we cannot
possibiy test all of them. We need a general law aﬁblying to all
even numbers akove 2 showing that they can be written as a sum
of two primesi. If you find such a law, or if you can find an even
number that is not the sum of two primes, your name wlll appear in
headlines in 'the mathematical world. ‘

13-3. Distribution Of Primes

Look at the: list of prime numbers at the end of this chapter.
This 1ist has some interesting properties. For instance, we have
already noticed tthat 2 1s the only even prime number. This means
that once we are beyond 2 all the prime numbers are odd. Thus
the dirference bet:ween any two consecutive prime numbers of the
sequence is always even. (Why?) Find a pair of consecutive primes
whose difference is 4. Do the same for each of the difflerences
2, ¢, 8, 10, 12, 14, Is there a difference larger than 14 in the
part of the sequence from 2 to 307? As a matter of fact, if
you examine the sequence of priries as far s 500, there is still
no gap greater than 14. On the basls >f this evidence you might
guess that there are no Zaps greater than a certain number, perhaps
14,

i [sec. 13-3]
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This conjecture, however, 1s false. In fact as far back as
300 B.C., Euclid proved that there are gaps as large as
ease 1in the sequercc ol primes. For instance, let N be

the result of multiplyinz all the éounting numbers from 2 to 101

N=2.3.4.5.6 ,.. 101.

You had better not take time to multiply out his product, since

C1if yo

U exXpress N 1n the usual decimal notation, it would be a

numeral of about 160 digits!!

to 1
look

where
Then,
where

prope
prime
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where
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The number N is divisible by each counting number from
Ol, since N has each of those numbers as factors. Now
at the numbe. N + 2. We can always write,
N=2"-(3- 4" ... 101) = 2s,
S stands for the product of all the factors of N except 2.
'N+2 =25 +2 =2(35+ 1),

the last statement is obtained by using the disiributive
rty. Then N + 2 1is divisible by 2 and therefore is not a

Now consider the number N + 3, By use of the commutative
ssoclative properties we can write

N=3(2-4-5-6,,.101) = 37
T stands for the number in the parenthesis. Thus
N+3=23T+3=23(T+ 1).

again we have used the distributive property. This shows
N+ 3 has a factor 3 and so is not prime. 1In the same way
Yy show that N + 4 has a factor L, N+ 5 a rsctor 5, and

» until N + 101 has a rfactor of 101. Thus none ol the

ed numbers a
N+2, N+ 3, N+ 4, ..., N + 101

ime so there is a ;ap of at least 100 bebween successive

S. It should be clear h.w this method can be used to show
there are gaps as large zs we wish,
Now that we have looked for lerge gaps, let us consider small
What is the shortest possivle gap between two prinmes
[sec. 13-3]
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greater than 27 Two odd primes whose diflerence is 2 are called
twin primes, or simply twins. A prime which belongs to such a
palr is called a twin. ©o get an idea of how frequently twin
primes occur, examine the following table comparing the number of
twins less than some number n with the total number of prines

"less than n.

number of v number of number of twins < n
n primes < n twins < n number of primes < n
20 8 7 L~ .88
. a 9 _
40 12 ¢ 15 .75
50 17 12- %% ~ .71
80 22 15 2~ .68
100 25 15 %% = 50

Verify this table by checking it with wour 1ist of prim.s.
Does the taple seem to indicate that tre iw.ns are becoming rarer
in comparison with the number of primes? Test this conjecture
further by completing the table in Froblem 1 of the exerci.cs
below. On the basis of this evidence, would you conje~’ure that
the twins are rare in comparison with the aunb=zr of primes: As a
matter of fadt, it is known that in a certain sense the twins 3o
become rare as we continue the sequence of primes, althoﬁgh we will
not try to pursue this topic 1n detail he.e. How rare do tizy
become? For example, Jo they stop altogether after a certaln point?
Here again we come to some of th¢ mathemati s nobodr knows. The
answer to this question is not yet known.

As you have seen, meny g estions and ¢onjecsures sugnest
theriselves with respect to the counting numbers and a fubtistantial
number of these have not yet been settled. The branch of
mathermatics dealing with these subjects 1s called Number Theoy .

If you wish to go more deeply into this you may read the tws
booklets on this subject, called "Essays on Number Theo-y . "
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published by SMSG. PFurther references may be found there and in
"Study Guide in Number Theory" publisheq by SMSQTJ
A few other ideas and conjectures in the area orf Number

Theory are suggested in the eéxercises below.

Exercises 13-3a

1. Complete the table below.

number of number of nunber of twins <n

n brimes <« n twins < n humber of primes <n
100 25 15 —é% = .60
200 46 29 2~ .63

300 62 37

4oo - 78 41

500 95 47

500
700 r
800

900
1000

For each row in the table of Problem 1 calculate the product
of the numbers in the 1st ang 3rd columns divided by the

Square of the number in the secong column. For the first row

you caleulate A100)(15 :  for the second row 129911221 s

(25)% 46°

and so on. Do your results sSuggest a conjecture?
€
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3. Complete the following table s..0wing the number of primes

between successive perfect squares.

Interval Number of Primes
1 - 4 e 2.
4 - g T .2
9 ~ 16 2
16 - 25
25 - 36
36 - 49
continue this to
225 - 2506 \
\\\-n.Egr example, there are 2 primes betwsen O and 16

prime between any two consébup;Vewsquares. Here again is a
‘bit of the mathematlcs nobody kriows . '

4. You may classify the odd prime numbersaccording to their
remainders when they are divided by 4. “EPr example,
5, 13, 17 have remainders of 1 while 357, 11 have |
remainders of 3. If the remainder is 1, QPe number c%n be
written in the form 4k + 1 for some k. If the remaihdeﬁ
is 3, it can be written in the form 4r + 3.: List your
résults by completing the following table. } //

/
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number of primes of number of primes of
form U4k 4+ 1 which form U4k + 3 which
n are less than n are less than n
10 1 , 2
20 3 ' 4
30 4 5
%0
50
60
70
80
90
100

What conjecture does this table suggest to you? Test
your conjecture by continuing the table to 200. Does this
prove the :onjecture is true?

Il you examine the 1ist of primes you will notice a case in
which three consecutive odd numbers are primes. What are the
primes? . Do you find any other example of this? Would you
guess that this never happens again? Try to show that this
conjecture is correct by showling that for three consecutive
odd numbers one of them is always divisible by 3. The
number divisible by 3 cannot be prime except when it equals
3. Thus three consecutive odd primes occur only in the case
osf 3, 5, 7, which ..as already been found.

231
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13--4. Problems on Spheres

Let us now turn to a problem in a different field. Everyone
who has ever held a bag under the nozzle of a coffee grlnding
machine at the store knows that when the grinding 1s finished
the bag seems very full, but that on shaking it the coffee
wrounds settle considerably. The vibration causes the particles
of coffee to pack together more closely and hence to fill less
volume. This experience suggests the followlng packing problem,
which has several inportant applications. Suppose you have a
large number of perfectly spherical marbles which you propose to
pack into a barrel. How should you pack the marbles so that you
get in as many as possible? We imagine here that the barrel 1s
so large in comparison to the marbles that its exact dimensions
'do not matter and we are really just asking, "How do you pack the
marbles So you have the greatest number of marbles per cubic foot?"

Perhaps we should btegin with the corresponding plane problem.
If you have a number of identical clrcular disks, say pennies,
how do vou arrange them on the plane without overlapping so as to
get 2s many as possible in a given large plane region, say a
large vectangle? For convenlence, suppose the diameter of the
pennles 1s taken as a unlt of distance.

One way of arranging the pennies would be as shown below,

i1n which each penny except those on the edge touches iour others.
This really amounts to thinking of each clircle as inscribed in a

square one unit on a side, like this (i)' and then fitting

the squares together sc that their interiors fill out the plane
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region.

What 1s the area of the interior of each square? What is the area
of each disk? Show that the ratio of the area of the disk to that
of the square is %. Show that this 1s approximately .785, so that
-each disk covers about 78.5% of the corresponding square reglon,
Since squares fit togethéfwwithout overlap to cover the plane, this
means that the disks in this arrangement cover about 78.5% of the
plane region, or about 21.5% 1is left uncovered.

Can:you think of a better way of fitting the pennies together?
Probably the following arrangement has already occurred to you as
a good possibility.

In this arrangement eacr. inner disk touches how many others? It
i1s as though each disk had been inscribed in a regular hexagon and
the hexagons fitted together as shown by the dotted lines in the
following figure. 4

Each of the hexagons may be thought of as made up of six

[sec. 13-%4]
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equllsteral triangles aé in the figure below. The altitude of
each such triangle has a length equal to the radius wh{&Q is %.
Show that the interior of each hexagon has an area of -ﬁ% square
units. (The length of a side opposite a 30° angle 1n a right

triangle is equal to the length of the side adjacent to the angle,
divided by +3.)

Since the area of the disk is %, the ratio of the area of the

V3

dislk to thet of the interior of the hexacon is %;+—§- =

qE

—27-,3 =2—% . §_§= 161/—5 . Show that this is approxi-
mately .907. This shows that the disl: ~cvers 20.7%of the
hexagon. Since we have observed that hexagoas fit together to
cover a plane regilon without overlapplng, in this arrangement some
¢0.7% of the plane regilon is covered by disks. This is far better

IO
3¢
4+

than our previous arrangement.

Can you think of other arrangements of the pennies which
might be better than this? Actually the arrangement above can be
shown to be the best one, though we will not try to give a proof
of this fact.

Now let us return to the problem of packing the marbles 1ln
the barrel. Do you have a conjecture about the best way to »nack
them? Experiment with some marbles before you éo_on and see if
you can make a conjecture as to the most efficient packing.

One possible procedure would be to start by putting a layer or
marbles with their centers all in a plane parallel to the bottom--
that 1s, a layer on the bottom of the tox or barrel or whatever we
are filling. From the top, they will look Just like a covering of
a plahe reglon with circles, and in the light of our discussion
about circles it seems that we should arrange our spheres in the
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Same way, as shown below.

Now 1t seems plausible that we should try to make a second layer
of marbles. Do you think it would be a good idea to place this
layer of marbles such that each marble is directly above one in
the first layer? No, 1t appears that we would get a better packing
by trying to place the marbles of the second layer over the
"pockets" or "holes" in the first layer. Actually there is not
room to put a marble above each hole, but we can place a layer
~bove half of the Loles, say those shaded in the figure above.
Then a third layer can be placed on the second, covering half of
the "holes" of the second layer. This can be done in two ways,
depending on which set of "holes" we choose to £111. The spheres
of the third layer may be exactly above those of the first or may
be abovc the unshaded "holes" of the first layer.

This seems to be a reasonable conjecture about the best possi-
ble packing. It can be shown that for this method of packing the
ratio of the volume of the marbles to that of the region 1is

T .
3 /5 0.T405, so this packing fills about 74% of the space

with spheres. No one knows whether or not .thls 1irs really the

best packing. The best result known so far was obtained by a
British mathematician, Rankin, in 1947, who showed that there is no
packing in which the spheres fill more than 82.8% of the volvi.ic
of space.

If you feel certain that vsu know the correct answer to this
problem, even 1f' you cannot prove 1it, consider the problem of
packing a mixture of marbles of different sizes. ror example, you
may have some marbles with a diameter of two inches and others
with a dilameter of one inch. Suppose you want to- pack a barrel
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with three tlmes as many one-inch as two-inch marbles. How do
you get in as many as possible? So far, nobody has even a good
idea as to how to attack this problem.

The problems we have Jjust dealt with are theoretical and the
mathematician is interested in them for themselves, but there are
applications here also. In lnsulating material,one 1o 1lnterested
in having airspace in the form of small "pockets" or ailr which are
not large enough to permit circulation. One way to simplify such
protlems is to consider the packing of small spheres between two
layers of hard material. Sometimes the surface area ol the spheres
must be taken into account, as well as the physical propertles of
the materials themselves. Similar problems occur in the design

and testing of plastlcs.

Exerclises 13-4a

1. Talke the diameter of a penny as a unit of length. Draw a
square 8 units on a side (areq'= G4 square units). Try to
arrange pennies to fit as many as possible into the regilon.
How many dld you get? Find the ratio of the total area of
the circles to the total area of the rqgion. How does this
coripare with the theoretical result of 0.907 obtalned above?
Take a square reglon 14 units on a side (area = 196 square
unlts) and try the experiuent again. As the regjon gets
larger the approximation to the theoretical result should

iniprove.

Suppose a set of dislts each have diameter 1 and we seek to
pack as many as posslible in a region whose area 1is 1000
square units. Using the result that at most ¢0.7% of the
rerion can be covered, what is the largest number of disks
that could be fitted into the region?

n

230
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3. Take a convenient box like a chalk box and a collection c¢r
marbles all of the sane size. See how many you can pack into
the box. Count the number. Find the ratlo of the total volume
of the marbles to the total volume of the boX and compare it
wlth the 0.74 figure noted above.

4, then you use a packing of spheres such as was dlscussed in
this section, each interior sphere in the packing touches
how many other spheres?

13-5. A Problem on’ Coloring Maps

Suppose that we have a map and a box of crayons. We wish to
color the map. In order to distinguish clearly the different
countries, when two countries border each other

along an arc like thils,
we shall color them differently.

If they have a single boundary point in common, we allow them to
have the same color, '

In coloring a map we agree also to color the outside region; you
can lmaglne this is the Surrounding ocean 1f you wish.

It is a reasonable question to ask how many dlfferent-colored
crayons will be needed to color a map. What'would be the smallest

[sec. 13-5]

287




562

number of colors needed for the followlng map?

What about this map?

Can -~ ‘nlor the followiny map in less than four colors?

iscw about this map?

D &

Why could you not get along with less than four colors here?

Notice the inner country and the three in a ring about it. Is 1t

true that each ¢f these countrles has a boundary arc in common

with each of the others? Could any twc of them be colored the

soame color? Does this show why at least four colors are necessary?
Can you think of a map that requires five colors? Of course
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if you could draw a map 1n which there were five countries, each
of which bordered all of the other four this would take five
colors, Jjust as the map above took four colors. Try to find such
a map. Were you successful? Actually it is not too hard.to guess
that it 1s not possible to have flve regions each bounding the .
other four. This does not show, however, that there are not some
maps requiring five colors. Do you think there are maps heeding
five colors?

In a sense your guess about the answer to this questlon is
as good as anyone's, since the answer is not yet known. There is

a legend (of very doubtful authenticity) that a mapmaker proposed

- this question about 100 . years ago to the British mathematician,
ACayley. In any case, the map coloring rroblem is now one of the
classlic unsolved problems of mathematics. 1In 1897 the British
mathematician, Heawood, showed that any map can be colored in five
colors, so that in any case no more tﬁén five colors are neéessary.
In 1941 the American mathematician, Franklin, proved that every
map with less than 38 countries could be colored in four colors.
So if you look for a map which really needs five colors it will
have to be fairly complicated since it must have at least 38
‘reglons.

There 1s one very interesting feature of the problem., If
we consider any map, the number of colors needed clearly does
not depend on the particular shape of the bounding arcs. In fact,
1f we think of the map as drawn on a rubber sheet, then the sheet
may be stretched and twisted continuously in all possible ways
without changing the coloring problem. Thus, for example, the
two maps below may be considered the same since we can always
distort one into the other.
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This 1is what is meant by saying that the problem 1is a topological
one, That'is, the solution of the problem 1s unchanged by any
conﬁinuous distortion of the figure. One convenlent result of this
is that we may always imagine that a map has been distorted in such
a way that all the arcs have been made into unions of line segments
This means that 1t 1s really enough to consider maps 1n which the

rezions are polygons (triangles, quadrilaterals, pentagons, and so
on) as is done in most of the examples below.

Exercises 13-5a

1. Draw a polygonal map which 1s equivalent to each of the

following--that 1s, into which each of the following can'be
distorted.

(2) : (b)

290
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2. Color each of the following maps in as few colors as possible.

(a) ' (v)

(e) | (a)

3. Suppose we have two islands surrounded by ocean. One island
1s divided into countries as shown in the figure for problem
2a and the other as in the figure for problem 2b above. Color
this map in four colors.

4., Suppose you have an ocean with two islands, each divided
into countries, and suppose you know how to color each 1sland
and the surrounding ocean in four colors. Show how you can
color the combined map in four colors.

An interesting related question in map coloring is as follows.
Suppose you have a given fixed number of colors in your crayon bOX:s..
In how many different ways can you color a given map? Of course,
if you don't have enough colors, the answer s zero. As an
i1llustration look atvéggmmap of the figure for problem 2a and
suppose there are five colors in your box. The color schemes for
this map are shown below where rggiqns marked A, B, C, D.

291
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must all be different colors, while the region marked X may be
"any color except those used for B, C, and D. Why are these the
only schemes? Notice that X may be the same color as A or it
may be a color that has not been used at all before.

In this scheme you have five choices for the color to use for
the region marked A. Once you have chosen 2 color for A, how
many cholces do you have for a color for the region marked B? In
how many different ways can you color the regilons marked A and
B? Clearly this is 5 X 4 = 20 ways. For example, if the five
glven colors are red, green, yellow, hlue, and white, the twenty
possible palrs of colors for regions markad 84 and B are:

red-. sreen red-yellow red-blue red-white
green-red green-yellow  green-blue green-white
yellow-red yellow-green - yellow-blue yellow-white
blue-red blue-green blue-yellow blue-white
white-red white-green whife-yellow white-blue

If you are doubtful about this reasoning, look back at
Chapter 7, where you did problems of this kind. For each of these
5 X 4 choices of colors you still have 3 chclces for & color
for the reglon marked C and then 2 choices for a color for
the region marked D. Finally, since region X can be any c¢olor
except those used for B, C, D, there are 5 - 3 or 2 choices
for a color for X. The total number of ways of colorirg map
2(a) in at most five colors is thus 5:4-3:2-.-2 = 240 ways.

The following problems,,which are a continuation of Exercises
13-5a, deal with the number of ways of coloring a map.

292
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Exercises 13-5a (continued)

Show that the different possible color schemes for map
2(b) can be described as follows:

where regions marked A, B, C, D nust be diséinct
colors; regloi X may be taken as any color except
those of B, C, D; and finally , region Y as any color
other than the colors of A or B.

w—

Show that the different possible color schemes for map
2(c) can be described as follows:

B

where colors for reglons A, B, C, D must be distinet,
but X can then have any color except those of A, C, D.

293
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(c) Show that the different possible color schemes for map
2(d) can be described as follows:

A

where reglions marked A, B, C, D must be different
colors; X can be any color other than the colors of

A, C, D; and finally, Y can be ghosen as anything other
than the colors of A, X, D. N

6. Use the results of- Problem 5 and the method shown above to
verify and complete the following -table showlng the number
" of ways of coloring the different maps in n colors for
certain values of n,

! .
n Map 2(2) Map 2(Db) Map 2(c) Map 2(d)
3 0 0 0
4 24 48 o4
5 240 720 480
6 1080 L320

7. Inmap 2(a), if we have n colors to use, there are .n choices
for a cclor for region A, then (n - 1) choices of color for
B, (n-2) for €, (n-3) for D and finally (n -.3)
for X, since X was any color except those of B, C, D. ' The
total number of ways of coloring 2(a) with n colors is there-
fore n(n - 1)(n - 2)(n - 3)%. Verify that this does give the
correct results for n = 3, 4, 5, 6 by comparing with
Problem &.
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8. Use the method of the lasi problem to find formulas for *the
number of ways of coloring each of the maps 2(b), 2(c), and
2(d) in n colors.

We noticed earlier that as far as the map coloring problem is
concerned any map can be replaced by a polygonal map--that is, one
in which all the boundaries are unions of line segments. Thus,
1f every polygonal map can be colored in a certaln number of
colors, then every map can be colored with the same number of
colors. Ve also mentioned that a mathematician named Heawood,
actually proved that any polygonal map (and thus any map) can be
"colored in five colors. Now it 1s clear that to prove a result
that applies to all maps it is necessary to know some properties
that hold for all maps. While we Will not try to show Heawood's
proof, i1t will be interesting to discover a general law about
polygonal maps which was one of Heawood's main tools. This law
applies to all polygonal maps without islands--that is, maps for
which the boundaries make$u5 one connected piece. For example
the given figure has an iéland and 1s not considered.

The property we are golng to state w..s discovered by Euler
about 200 years ago. Actually, it was discovered a hundred years
earlier by the great French mathematician Descartes (pronounced
"day-cart"), but so few people read Descartes' work that when
Euler discovered it again everyone thought it was new. Somewhat
1lloglcally Euler always gets credit for it, as it is called
Euler's formula. "
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Look at Figure 2(a) of Exercises 13-5a. How many vertices do
you see in this map? How many countries or regions are there?
(Do not forget to count the outside region.) How many edges or
segments are there in the bouncdary? Do your answers agree with
the figures in the first column in the chart below? The lettor:.
V, C, E are used to stand for the numbers of vertices, of
countries or regions, and of edges.

Map 2(a) Map 2(b) Map 2(c) Map 2(d)
v 6 | | S
c 5
E 9

Exerclses 13-5b

1. Examine maps 2(b), 2(c) and 2(d) of Exercises 13-5a and
complete the chart sbove.

2. Make at least five polygonal maps without islands. Count the
vertices, edges, and regions and tabulate them in a table 1like
the one above.

3. Examine the tables you have made and see if you can find a
relation between V, C, E which holds for all the maps you
have drawn. Can you make a conjezture as to a reiation that
holds for all polygonal maps without islands?

2906
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4. Make five more polygonal maps without islands and test your
““conjecture on these.

5. Comfafe your results with those of your classmates? What
retation between V, C, E do you conjecture to be true for
T —all maps of the kind discussed.

Notice that the discussion above does not prove Euler's formula.
The proof would still have to be given, but it helps to have at
least a good guess as to what is to be proved.

In Section 10-8, Euler's formula was discussed for simple
surfaces. There we used_.-F for the number of faces in place of
C for the number ofAcountfies. The treatment in this chapter is
for use with plane polygonal paths, while in Chapter 10 we were
studying surfaces. 1In many respects these topics are equivalent.

13-€. The Iravelling Salesman

The firs: problems discussed in this chapter, r'amely those on
prime numbers, could be classed as problems in pure nathematics.
Yet we saw that the properties of prime numbers are often used in
presént-day applications to corputing. Also, the sphere-packiné
problem and the map-colcring problem are not without usefulness
and applications. ‘

In this section we consider a problem which sounds very prac-
tical and is tremendously important in application. It 1s called
"the travelling salesman problem." Although it is really not used
by travelling Salesmen, the essence of the problem can very easily
be described in terms of salesmen who travel. and mathematicians
have come to think of it under this name. In actual applications,
"salesman" could be replaced by "plane" and "city" by "base";
other replacements might be "truck" and "factory," respectively.

Let us suppose you are a travelling salesman with home office
in a city A. It is your duty to make a monthly visit to customers

| 297
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in citles B, C,'D, and return to the home office. Your problen
is to arrange this trip as efficiently as possible--that 1s, to
make the distance travelled as short as possible. On the face of
i%* this is a very simple problem. A1l you need to do is look at

e wh of the possible routes, add up the distances and see which

iy shortest. Let us see how many routes there are. How many
:hoices are there for the first stop after leaving home? Clearly
3, since there are 3 cities to visit. Now that you have visilted
this first city, how manyv choices are there for the next stop?

Can you find the total number of possible routes? You should find
3:2-1 =6 routes to considep. In fact, we can write them down
like this, listing in order the nlaces visited.

ABCDA ADCBA
ABDCA ACDBA
ACBDA ADBCA

As a matter of fact the problem 1s not even as bad as fhis, for
the two routes listed in each row are merely the same route in
opposite directions and clearly have the same length; so it is
only necessary to find the total lengths of three routes and plck
the shortest one. Problem 1 in Exercises 1376a is an example of
this. ,

But suppose your sales territory expands and you are assigned
8 cities to visit. Now now many possible routes are there? A
similar argument this time shows that there are
8.7-.6.5.4.3.2.1 routes or 40,320 possible routes. Even
if you divide this by 2, since you actually have counted a route
’ golng both ways, there are still 20,160 different routes to
check, a formidable task.

In 1954, Dantzig, Fulkerson, and Johnson considered the
travelling salesnan problem for a man based at Washington, D.2.,
who was to visit the 48 state capitals (Hawai . and Alaska hadn't
yet been admitted). The number of possible routes 1s, of course,
by the same reasoning e

L e 4746, +3-2-1.
This 1s a number which, expressed in the usual base 10 notation
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has 61 digits, a computationai problem that is beyond the
capacity of even the best high speed computers.

The reason for the difficulty 1s clear. 1In solving this
problem there are a definite number of cases to consider, but the
number 1s so large that it is hopeless to try to deal with the
cases one by one except in the simplest situations The method
uszd by Dantzig, Fulkerson, and Johnson involved a great deal of
work with high speed computors. A good general method for solving
problems of this kind in a reasonable amount of time has not yet
been found.

Perhaps in working with this problem we should not be so
ambitious. Maybe we should not irsist on the very best result,
but should look for a method with a high probability of coming

‘close to the best answer. If you have any good ideas on the
subject, there are certainly a lot of industries and government
agencies who would be very interested.

Problems of this kind are not only interesting in themselves,
but a number of practical problems involving transpertation,
scheduling of factory operations, and designing communication
networks lead to such questions. A few more examples are suggested
in the problems below. A very readable book on somewhat similar
problems is one by Williams called "The Compleat Strategyst."

You might enjoy examining this.

[sec. 13-6]
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Exercises 13-6

1. This dlagram 1s intended to show four citiles.

B
U C
°

*p

Suppose the distances in miles between different palrs of
citles are " d(AB) = 200, d(AC) = 300, d(AD) = 400, d(BC) = 150,

d(BD) = 250, d(CD) = 180. Solve the travelling salesman
problem for this case by finding the shortest route starting
and endlng at A, and passing through all the cities.

2. In the travelling salesman problem, it ought to be more
important to make the travelling time as short as possible
rather than the actual distance. Moreover, because of plane
or bus connections, the time required to get from A to B
may not be the same as from B to A. Suppose in Question 1
the travelling times in hours are t(AB) = 3, t(BA) = 2,
t(AC) = 4, t(CA) = 4, t(AD) =5, t(Da) = 7. t(BC)
t(CB) = 2, t(BD) = 2, t(DB) = 4, t(cD) = 3, t(DC)
Find the route for the salesman which will take the least
time.

It
[
-

it
i
It

1]
[

3. If there are 10 cities, how many routes begin and end at a
given clty?

4. {(a) 1In the square below, how many sets of three numbers can be
chosen with no two from the same row or column?

N

=
| o|w
I

(b) Which one or ones of these choices gives the largest sum
for the three numbers?

[see. 13-6]
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5. Solve the problem corresponding to Problem 4 for the square

below.
1 9 6 14
7 15 2 10
3 112 ]18] 16
5 13 4 12

13-7. Applied Physical Problems

Some of the most interesting as well .as some of the most
important of the unsolved mathematical problems are related to
physical problems 1ike propulsion of rockets, motion of airplanes,
and behavior of electromagnetic waves. In order to really appreci-
ate most of these problems in science and engineering you need to
know some topics both in mathematics and science which you have
not yet studied. However, perhaps we can give a brief hint at the
meaning of one or two of these questions.

For example, consider the basic problem of radar. We send out
from one antenna an electromagnetic wave. This is reflected from
some obstacle and the scattered wave is picked up on a receiving
antenna; this produces a "blip" on the radar screen,

e
plane §§SS:?\\

////// Scaftgred Wave

s 301

Sending Antenna Receiving Antenna

——— N
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If the shape o the obstacle, here an airplane, 1s known,
mathematiclans have learned falrly well how to figure out what the
scattered wave 1s like. Unfortunately, we do not know how to
examine the scattered wave and to decide whaf the obstacle was like.
Thus, we cannot tell from the appearance of the "blip" on the
screen what sort of an object produced it. You can see why it
would be very useful if we could do this. '

The problem 1s somewhat similar to the following one.

Suppose you are standing by the seashore in a rather heavy fog.
Somewhere out there in the fog 1s some object, perhaps a ship, but
1t 1s hidden by the fog. You plck up a big rock and throw it in
the water creating waves. In a short time you see these waves
corming back having been reflected off the unseen obstacle. You
would like to be able to look at those returning waves and decilde
whether the object out in the water 1s a rowboat, or a garbage

N

" Outgoing Wave A Reflected Wave

Other interesting problems are concerned with the effect of

scow, or the Queen Mary.

the flow of air around a plane, and how to design a.plane with
useful flying characteristics.
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[sec. 13-7]



57T

St11l other examples of unsolved questions in applied
mathematics are:
1. 1Is the solar system stable--that is, will the planets
indefinitely move around the sun in approximately
their present orbits or will they ultimately disperse
“into space or come into the sun? Or, more modestly, what
about orbiting satellites?

2. Which species of animals will survive and which will die
out? Can we develop a quantitative theory of biological
evolution? '

3. How can we design a computer to do a specific job using
the smallest possible number of components of given types?
And can a process for answering this question be put in
the form of a program of instructions for existing
computers, so we could use present computers to design
better ones?

4. How does a given distribution of transportation facilities-
-highways, railroads, airports, etc.--affect the growth
and distribution of population and industry in the future?

13-8. Conclusion

In 1900 an international congress of mathematicians met in
Paris. One of the greatest mathematicians of our century, a
German, named David Hilbert (1860-1942), gave a speech in which
he listed 23 unsolved problems for which he considered the
Solutions to be most important for the progress of mathematics in
the following century. Of course, during the last sixty years a
large number of other major problems have been formulated. sStill,
one of the quickest ways even now for a young mathematician to make
a reputation is to solve one of Hilbert's problems. ' Understanding
many of these problems requires“éd@anced mathematics, but one, for
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example, concerns some readily understood properties of ‘decimals.

We know that any real number has a decimal representation. The

number VG? in particular has such a representation, '
VT = 1.0k, , |

and we know how to calculate any number of diglts in this

expansion. We know that the decimal expansion doesn't end and

is not periodic (See Chapter 6), but beyond that we know almost

nothing about this number. For instance are there infinitely

many 1's or are there seven consecutive 7's? No one knows, and

so far there seems to be no method of finding out. '

At present, about half of Hilbert's problems have been solved,
and the century still has almost 40 years to go. Who will solve
these problems of Hllbert, and the new problems that have come -
to light since Hllbert, and the problems that haven't been asked
yet but will be? No one can say, of course, but it is quite
probable that most of them will be solved by comparatively young
'people{ Most of the great discoveries in mathematics have been
‘made by people in their 20's and early 30's. If a person has
mathematical talent it usually shows up early. The average age for
getting the Ph.D in mathematics 1s lower than in almost any other
field. So, in all probability the problems mentioned in this
chapter will not be solved by 0ld gray-bearded professors (pr do

'professors have beards any more?),'but by youngsters not much
older than you.

But mathematics is not just for those who make discoveries in
the subject for the love of it. It is rapidly increasing in
importance for such fields as medicine, biology, psychology,
soclology, and economlcs, as well as in new fields of physical
sclence. As machlnes take over many of the occupations of unskilled
labor, the demand for trailned personnel increases, and more and
more such training is connected with nathematics. ?urthermore,
the American citizen who goes to the polls today must have a more
extenslve knowledge of mathematics than the American citizen of
yesterday, so that he may be able to make the important decisions
requlired of him in a democracy such as ours. It 1s vital that he
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. must, on the one hand, recognize the role and the importance of
scilentists and mathematicians. but on the other hand he must be
knowledgeable enough to understand and assess, to a certain extent,
theilr claims.

So, whether or not you are among those who advance mathematics
for 1its own sake and your love of it, or are able to apply it %o
other flelds, or use it as a source of puzzle problems in your
recreation, or through your knowledge be aware of its role in
modern clvilization, it will affect your l1life. And, who knows,
you may affect mathematics!
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List of Prime Numbers less than 1000

o] 1 2 3 4 5 6 7 8 9

2, 3, 5, 7s 11, 13, 17, 18, 23,
29, 31, 37, 41, 43, 47, 83, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109,
113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199, 211, 223, 227,
229, 233, 239, 2%1, 251, 257, 263, 269, 271, 277,
281, 283, =293, 307, 311,. 313, 317, 331, 337, 347,
349, 353, 359, 367, 373, 379, 383, 389, 397, 401,
| #09, 419, 421, 431, 433, 439, 443, A4hkg, U457, k61,
463, 467, 479, 487, L4o1, 499, 503, 509, 521, 523,
O| 541, 547, 557, 563, 569, 571, 577, 587, 593, 599,
11| 601, 607, 613, 617, 619, 631, 641, 643, 647, 653,
12| 659, 661, 673, 677, 683, 691, 701, TO9, T19, 72T,
13| 733, 739, T43, T51, 757, T61, T69, T73, 787, T97,
14{ 809, 811, 821, 823, 827, 829, 839, 853, 857, 859,
15| 863, &vr, 881, 883, 887, 907, 911, 919, 929, 937,
16| 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009.

H O O~N oo & WD HE O

Explanation of table of primes: This table 1s arranged so that--
it 1s easy to pick out, for instance, the 47th prime number. To
do this, use the row with the number 4 at the left and 7 at the
top. Then you see that the 47th prime number is 211. This also
can be used the other way around. Since the number 691 occurs
in the row labeled 12 and tne column labeled 5, the number‘691 is
the 125th prime.
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SUBJECT CLASSIFICATION*

FOUNDATIONS, THEORY OF

OO W N

10.

Universal Algebra, Miscellaneous

SETS, LOGIC

Philosophy of mathematics
and physics

Foundations of mathematics
axiomatics

Intultionism

Set theory

Problem of the continuum
Transfinlite numbers
Relations

Syntax, semantics, formal
methods in general, recur-
sive functions

Logical calcull, many-
valued, modal

Applications of logic

ALGEBRA

Algebraic Systems

Combinatorial Analysis

Algebra: Elementary
Linear Algebra
1. PForms and transformation
2. Matrices
3. Inequalities for matrice
4. Eigenvalues and eigen-
vectors
5. Multilinear forms, alter
nating forms, Grassmann
algebra
6. Linear equations, matrix
: inversion, determinants
Polynomials
1. Algebraic equations,
roots
2. Symmetric functions
3. Reducibility
Partial Order, Lattices
l. Lattices
2. Boolean rings and
algebras

Fields, Rings

’

(6218 4=-wn)|—1

Pields

Pinite fields
Galois theory
Valuations
Rings

Ideals

Algebras

1.

2.
3.
u.

Groups
1.

9.

)

O~ oW W

Associative algebras
Non-assoclative algebras
Lle algebras
Differential algebra

and Generallzations

Group theoretic construc-
tions, free groups,
extenslons -

Abelian groups ‘
Nilpotent and solvable
groups

Finlte groups

Ordered groups ‘
Matrix groups, represen-
tation, characters
Semlgroups “
Other generalizations of
groups

Applications

Homologlcal Algebra

s JEEN

- Theory of Numbers:

-
[5]

#1958 Index of Mathematical Reviews.
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THEORY OF NUMBERS

General
Elementary number theory

‘Magle squares

Congruences

Diophantine equations
Representation problems
Divisibility and factor-
ization

Power residues and reci-
procity laws

Porms

Fermat's last theorem
Number-~theoretical
functions

p-adic numbers
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Theory of Numbers:

1.

2.

O U FWw

Analytic .
Analytic theory in number
fields and fields of
functions

Analytic tools (zeta-

- function, L-functions,

Dirichlet series)
Distribution of primes
Additive number theory,
partitions
Equidistribution, statis-
tical number theory
Irrationality and trans-
cendence

Algebraic Numbers

l.

Class filelds

Geometry of *Numbers, Diophantine
Approximations

1.
2.

Dliophantine approximations
Geometry of numbers

ANALYSIS

Functions of Real Variliables -

1.
2
3
4,
5.

6.

7.

One real variable
Several varlables
Calculus, mean-value
theorems, inequalities
Differentiation and
tangents
Non-differentiable func-
tlons; generallzed deriva-
tives

Representation of func-
tions by integrals
Quasi-analytic functions

Measure, Integration

l.
2.

VWO oW W

Measure theory
Measure-preserving trans-
formations, ergodic
theorems

Riemann integrals
StieltJes and Lebesgue
integrals

Denjoy, Perron integrals
Abstract integration
theory, somas

Area, length

Product integrals
Abstract theory of
probablility

[sec.

Funcitions of Complex Variables
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10.
11.
12.
13.
14,
15.

16.
17.

18.
19.
20.
21.
22.
23.
24,

Foundations
Quasi-conformal functions

“Generalizations

Power series

Zeros . .

Singularities

Analytic continuation,
overconvergence

Cauchy integral

Maximum principles,
Schwarz lemma, Phragmen-
Lindeldf theorem
Conformal mapping,
general

Conformal mapping,
special problems

Riemann surfaces and
functions on them

Entire functions
Meromorphic functions
Distribution of values,
Nevanlinna theory
Behavior on the boundary
Univalent and p-valent
functions

Bounded functions, func-
tions with positive real
part, etc. '
Yteration

Normal famllies
Expansion in series of
polynomials and special .
funztions

Contlinued fractlons
Cormplex interpolation and
approximation

Zunctions of several com-
plex variables

Harmonic Functions, Convex
Functions

1.

o w = WM
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Harmonic functlons,
potentlial theory
Subharmonic functions

.~ Biharmonic and polyhar-

monic functlons
Generalized potentials,
capacity

Harmonic forms and
integrals

Convex functions
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Polynomlals as functions,
orthogonal polynomials
Exponential and trigono-
metric functions
Elliptic functions and
integrals, theta functions,
complex multiplications
Automorphic functions,
modular functions

Bessel functions
Legendre functions,
spherical harmonics

Lamé€, Mathieu functions
Hypergeometric functions
and generalizations
Functions defined by
definite integrals, dirf-
ferential and integral
equations, infinite
series

Sequences, Series, Summability

1,
2.
i
5.

6-

Speclal sequences and
series, moments

Power and factorial
series

Dirichlet series
Operations on series and
sequences

Convergence and summabil-
ity

Tauberian theorems

Approximations and Expansions

2.
3.
4,
5.
6

Interpolation: general
theory

Approximations and expan-
sions, general theory
Orthogonal systems,
expansions

Closure

Degree of approximations,
best approximation
Asymptotic approximations
and expansions

. Trigonometric Series and
Integrals

1.
2.

Trigonometric polynomials,
Fourier series
Trigonometric interpola-
tion

ONoWn = W
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Fourier coefficients,
degree of approximation
Convergence, summability
Absolute convergence
Double and multiple series
Fourier integrals

Almost periodic functions

Integral Transforms

2,
3.

Inversion formulas, self-
reciprocal functions
Laplace and Fourier
transforms

Other transforms, Hilbert,
Mellin, Hankel

Differential Equations:
Ordinary

[

2
3
i
5
6
7

11.
12,

Differential equations: Partial ™'~

1.
2,

3.

~N O Ui

809
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Existence and uniqueness
Approximation of solutions
Asymptotic behavior of
solutlons

Singularities of solutions
Linear equations: second
order

Linear equations: other
than second order

Systems of linear equa-
tions, matrix differen-
tial equations

- Stabllity of solutions

Periodicity, oscillations
Boundary value problems,
spectra, expansions in
eigen-functions

Dynamical systems,
topological properties
Special types

Existence uniqueness,
stability .

‘fotal equations, Pfaffls
problem

Analytic and algebraic
theory or systems of
equations '

First order equations
Elliptic equations,
boundary value problems
Hyperbolic equations,
Cauchy problem
Parabolic equations
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8. Mixed equations
9. Classification, charac-
teristics
10. Linear equations of
higher order
11. Non-linear equations,
. Speclal types
12. Elgenvalues, eigen-
functions
13. Approximate methods

Difference Equations, Functional
Equatioris
l. Finite differences and
difference equations
2. Generalizations
3. Functilonal equations

Integral and Integrodifferential
Equaticns
l. Linear integral equations
2 Singular integral equa-
tlons .
3 Integrodifferential
equations
4., Non-linear integral
equations
5 Speclal integral
equations

Calculus of Variations
1. Theory in the large,
topologlcal methods
2. Applications
TOPOLOGICAL ALGEBRAIC STRUCTURES

Topological Laftices

. Functlon spaces: general
Topologlcal vector spaces
Ordered vector spaces
Banach spaces
Hilbert spaces
Special functlon spaces
Distributions
Linear operators
Groups and semi-groups
of linear operators
Non-linear operators
Rings of operators, group
algebras, abstract topo-
loglcal algebras and their
representations

12. Applications of functilonal

-analysis; analysis of dif-
ferential and integral
operatars

HO VOO HFWwN

[

TOPOLOGY

Topolegy: General

1. Sets on a line and in

Euclidean space

2. Covering theorems

3. Poundations, topological
spaces, abstract theory,
limits and generalized
limits
Metric and uniform spaces
Topology of point sets,
curves, continua
Fixed point properties
Topologlcal dynamics
Applications to analysis

OO U &

Topology: Algebraic

1. Homology and cohomology
Topologlcal Groups 2. Homctopy
1. Representations 3. Fibre bundles
2. Groups from geometry 4, Manifolds
3. Semigroups and other 5. Fixed point theorems
generalizations 6. Links, knots
7. Complexes and polyhedra
Lie Groups and Algebras 8. Topology of group spaces
1. Lie groups. A and H-spaces
2. Representations 9. Transformations and
3. Lie Algebras, Lie rings special mappings
10. Dimension theory
Topological Rings 11. Graphs, four color
problem
Topologlcal Vector Spaces,
Functional Analysis
;310
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Geometries, Euclldean and other

o FWw N+

7.
8.

9.
10.
11.
12.
13.

14,
15.

Foundations

Elementary geometry
Triangles, tetrahedra
Circles, spheres, inversive
geometry

Constructions

Finite geometries, con-
flgurations, regular
figures, divisions of
space _

Vectors, quaternions,
tenscr algebra
Coordinates, analytic
methods

Conics, quadric surfaces
Affine =enmetry
Projec¢' ve geometry
Non-Erciidean geometry
n-dimensional and hyper-
complex geometries
Minkowskl geometry
Descriptive gecometry

Convex Domains, Distance
Geometries

1
Le

2.
3.

Convex reglions, Brunn-
Minkowskl theory
Extremum properties and
geometric inequalities
Distance geometries

Differential Geometry

o~ o & W

10.
11.

Direct methods

Classical differential
geometry

Vector and tensor
analysis

Kinematic methods and
integral geometry

Minimal surfaces

Famllies of curves, nets,
webs

Deformation of surfaces
Differential line geometry
Laguerre and other sphere
geometriles

Lineal and higher order
elements

Differential geometry in
the large

Projective differential
geometry '

12.

585

Differential geometry
under other groups:
affine, inversive, con-
formal, non-Euclidean

Manifolds, Connections

1.
2.

3.

Rieumannian geometry
Paths and connections:
general

Non-Riemannian geometry,
conformal, affine, pro-
Jective connections
Finsler spaces, abstract
differential geometry

Complex Manifolds

Algebraic Geometry

1

~NOoy UM+Ew D

Special varieties,
curves, surfaces

General theory of varie-
ties, surfaces

General theory of curves
Intersection theory
Croup varieties, Abelian,
equivalence theories
Algebralc transformations
Algebraic functions

NUMERICAL ANALYSIS

Numerical Methods
1.

5
6
7.
8
9

10.

311
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General mathematical
methods, iteration

Monte Carlo methods
Interpolation, smoothing,
least ssyuares, curve
fitting, approximation of
functions

Computation of special
functions, series, inte-
grals

Linear inequalitiles,
linear programming

Linear equations, deter-
minants, matrices
Eigenvalues, eigenvectors,
Rayleigh-Ritz method
Non-linear systems

Roots of algebraic and
transcendental equations
Numerical differentiation
and integration, mechani-
cal quadrature
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1l. Ordinary differential 9. Multistage decision pro-
equatlions cedures, sequential
12. Partial differential analysis
equations 10. Statistical engineering,
13. Difference and functional quallty control
equations 1l. Sampling surveys
14, TIntegral and integro- 12. Time series
differential equations 13. Applications
15. Error analysis
16. Graphical methods, PHYSICAL APPLICATIONS
nomography :
17. Harmonic analysis and Mechanlcs of Particles and
synthesis Systems
18. Tables 1. Foundations
2. Statics
Computing Machines 3. Kinematics, mechanics,
1. Digital computers: linkages
logic and design 4, Dynamics
2. Digital computers: 5. Oscillations, stability
coding and programming 6. Exterior ballistics,
3. Analogue computers artificlal satellites
4, Results of computation 7. Variable mass, rockets
by machine
Statistical Thermodynamics and
PROBABILITY Mechanics
1. Gases
1. Poundations 2. Lliquids
2. Elementary theory 3. Solids, crystals
3. Distributions 4, Quantum statistical
4. Limit theorems mechanics
5. Stochastic processes: 5. Statistical thermodynam-
general theory ics )
6. Markov processes 6. Irreversible thermo-
7. Stationary processes dynamics
8. Special processes, random
walks ... Elasticity, Plasticity
9. Applications 1. PFoundations of mechanics
of deformable solids
STATISTICS " 2. Plane stress and strain
. 3. Three-dimensional
1. Elementary descriptive problems
statistics 4, Torsion and bending
2. Graduation 5. Beams and rods
3. Distributions of statis- 6. Plates, shells and
tical functlons riembranes
4. Estimation theory (para- 7. Anisotropic bodies
metrlic case) 8. Vibrations, structural
5. Testing of hypotheses dynamics
(parametric case) 9. Stability, buckling,
6. Non-parametric methods and fallure
order statistics 10. Wave propagation
7. Design and analysis of 11, Visco-elasticity
experiments 12. Plasticity, creep
8. Decision theory 13. Soil mechanics

9 i2 14, Thermo-mechanics

[sec. 13-8]




Structure of Matter
1. Liquid state
2. 8Solid state

Fluid Mechanics, Acoustics

1. Foundations

2. Incompressible fluids:
general theory

3. Incompressible fluids with
speclal boundaries

4. Free surface flows, water
waves, Jjets, wakes

5. Viscous fluids

6. Boundary layer theory

7. Stability of flow

8. Turbulence

9. Compressible fluids:

- general theory

10. Compressible fluids:

' subsonic flow

1l.. Compressible fluids:
transonic flow v

12, Compressible fluids:
supersonic and hypersonic
flow

13. Shock waves

14, Acoustics

15. Non-Newtonian fluids

16. Magneto-hydrodynamics

17. Diffusion, filtration

Optics, Electromagnet:’: ‘iteury,

Circults

1. Geomstric optics

2. Physicsal optics

3. Electron optics

4. Electromagnetic theory

5. Electro- and magnetosta-
tics :

6. Waves and radiation

7. Diffraction, scattering

8. Antennas, wave-guides

9. Circuits, networks

10. Technical applications

Classical Thermodynamics, Heat
Transfer : .
1. -Classical thermodynamics
2. Heat and mass transfer
3. Combustion
4. Chemical kinetics

Quantum Mechanics

1. General theory
2. Quantum field theory

313
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3. Atomit and nuclear physics
Elementary particles

Relativity
1. Special relativity
2. General relauv vity
3. Unified field theories
4. Other relativistic

theories

Astronomy

-Celestial mechanics
. Galactlc and stellar
dynamics

Three and n-body problems
Orbits

Stellar structure
Stellar atmospheres,
radiativeé transfer
Hydrodynamic and hydro-
magnetic problems
Cosmology .

Speclal problems

Radlo astronomy

VWO N owWnM+FEWw -

10.

Geophysics
1. Hydrology, hydrography,

oceanography

Meteorology

Seismology

Potentials, p.ocspecting,

figure of the earth

Geo=-electricity and

magnetism :

6. Geodesy, mapping probiems

2
3.
4,
5

OTHER APPLICATIONS

Economics, Management Science
1. Econometrics
2. Actuarial theory
3. Management science,
operations research

Programming, Resource Allocation,
Games
1. Linear and non-linear
programmning, scheduling

" 2. Games
Blology and Socilology
1. Biology
2. Genetics

3. Demography

[;ec. 13-8]
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4. Sociology
5. Psycho;pgy

Information and Communication
Theory :
1. Information theory
2. Communication theory
3. Linguisties

Control Systems
1. Servomechanisms
2. Switching theory, relays

HISTORY, BIOGRAPHY

1. Ancient and medieval
mathematics

2. Modern mathematics

3. 1India, Far East, Maya

L, Astronomy and physics

5. Bilography of

6. Obituary of

7. Collected or selected
works of
MISCELLANEOUS

l. General text-books

2. Collections of formulas

3. Bibliography

4, Dictionaries

5. Recreations
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INDEX

The reference 1s to the page on which the term occurs.

accuracy, 223
addition, 3, 12, 18
property, TH, 31 :
additive inverse, 18. 19, 38, u47, 237
altitude
of ccne, 484
of pyramid, 477
angle(s)
complementary, 365
corresponding, 159
Antarctic Circle, 529
antipodal points, 515
antipode, 515
apex of pyramid, 476
approximation, 276
. arec, 162
Arctic Circle, 529
area, 145
of circle, U458
of regular polygon, 457
of surface of sphere, 535, 536, 538
of trapezoid, 454
assoclativity, 236, 270
average, 243

axes, 2
axls of symmetry, 172
base, 472

of pyramid, 476
bisect, 164

bisector, 164
perpendicular, 191
British Imperial gallon, 153
Cantor, Georg, 262
capacity, 150
centimeter, 139
chance events, 311
circle, 64, 170, 171, 173, 175, 511
Antarctic, 529
Arctic, 529
area of, 64, 458
c*rcumference of, 64
great, 516, 520
interior of, 520
semi-, 517
small, 516, 517
length of, 540
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closed number phrase, 53
closure, 2356, 270
combinations, 303
commutativity, 236, 270
compass, 157
complementary angles, 365
completeness, 271
compound sentence, 68
concurrent lines, 167
condition, 30
cone, 484
altitude of, 484
height of, W84
right circular, 484
slant height of, 484
vertex of, 484
" congruent, 180
triangles, 176
conjecture, 549
Goldbach, 549
constant, 397
of proportionality, 397
construction(s), 160, 163
continuum of real numbers, 276
coordinates, ‘21, 23, 24
corresponding angles, 159
cosine, 359
cotangent, 367
counting number, 3, 235
cube, 467
cubic meter, 148
cylinder
right circular, U469
Dantzig, 572, 573
decimal
..expansion, 246
non-periodic, 267
periodd.c, 248, 250, 265, 267, 275
point, 134 -
repeating, 247
representation, 246, 265, 267, 273
terminating, 247
decimeter, 139
dekometer, 139
density, 240, 244, 271
Descartes, 569
diameter, 514
digit

significant, 220, 231, 232
- "in the product, 231
dimensional, 421

direct variation, 396

directed segment, 3, 12




distance '
between parallel planes, 464
from & point to a plane, 464
distributivity, 236, 271
division, 42, 128
edges, 186
Egyptian, 193
empirical probability, 323
enumerate, 262
equation(s), 58, 60
‘ equivalzant, 75
linear Qg
equality, 73, 3
equivalent equations, 75
error
greatest possible, 216, 219, 228
percent of, 223
relative, 223
Kuclid, 162 -
Euler, 447, 549
Eulert!s formula, 447, 569
event(s) ‘
independent, 335
mutually exclusive, 320, 342
exponsnt, 121, 126, 129, 149, 273
negative, 121, 126, 129
notation, 134
Zero as, 121
factorial, 296, 297
fiducial point, 3
formula, 6O
Franklin, 563
Fulkerson, 572, 573
Galileo, aOT
gallon, 153
British Imperial, 153
Goldbach Conjecture, 549
grade, 377
gram, 155
graph, 30
gravitation
Newton's law of, %10
great circle, 516
greatest possible error, 216, 219
of a sum, 228
Greenwich meridian, 527
half-line, 3, 22
Heawood, 563, 569
hectometer, 139
helght
of, cone, U484
of pyramid, 477
hexagon, 170
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hexagonal
pyramid, 477
right prism, 210, 469
Hilbert, David, 577, 578
hyrarbola, 405
hypotenuse, 194, 195
identity, 236, 270
inch, 143
independent event, 335
indirect reasoning, 259
inequality, 58, 91
integer(s), 3, 9, 225
_interior
of a circle, 520
of a sphere, 520
inverse, 271 -
additive, 237
multiplicative, 237
variation, 401
irrational number, 257, 260, 267, 275
Johnson, 572, 573
kilometer, 139
lateral
edge
of oblique prism, 472
of pyramid, 477
of right prism, 466

of oblique prism, 472
of pyramid, U476
. of right prism, 466
latitude, 529
parallels of, 517, 526
laws of variation, 394
Lehmer, D. N., 546
length, 138
of small circle, 540
light year, 118
line(s¥
concurrent, 167
half-, 3, 22
parallel, 158
perpendicular, 158
real number, 276
linear equation, 97
liter, 150
logarithm, 273 .
longitude, 528
mass, 150
median, 169
mega-, 141
meridian
Greenwich, 527 ,
zero, 527
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meter, 138
- square, 145
metric
system, 137,. 154
ton, 151
micro-, 141
micron, 141
millimeter, 139
multiplication, 34, 125
property, 83 .
multiplicative inverse, 237
mutualiy exclusive events, 330, 342
negative
exponent, 121, 126, 129
number, é, 9
Newton's law of gravitation, 410
~ non-periodic decimal, 267
_notation
exponent, 134
powers-of-ten, 115, 133
number(s)
counting, 3, 235
irrational, 257, 260, 267, 275
line, 1, 2, 3, 5, 255, 275
real, 276
negative, 8, 9
phrase, &2
closed, 53
open, 53
positive, 3
prime, 5&6
rational, 9, 255
real, 267
continuum of, 276
number line, 276
number system, 276
sentence, 51
transcendental, 273
oblique prism, 471, 472
.octagon, 170
one-to-one correspondence, 2, 262, 268, 276
open
phrase, 53
sentence, 59
opposite, 9, 13, 19
order, 237, 271
ordered pair, 25, 33, 9%
origin, 3, 21
pantograph, 158
. parabola, 103, 407
parallel(s)
lines, 158
of latitude, 517, 526
ruler, 158 ,
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parallelo ram, 200
Fascal, 286 '
Pascal triangle, 286
pentagon, 170
percent of error, 223
periodic decimal, 248, 250, 265, 275
permutation, 292

, 8ymbol, 295
perpendicular, 190

bisector, 191

line, 158
to the plane, 462
phrase, 52 -
number, 52
closed, 53

open, 53
pl (r), 6%, 232, 273, 275, 535
plane(s
distance between parallel, 464
distance from point to, 16y
perpendicular to, 462
plotting, 25.
point(2§
antipodal, 515
fiduelal, 3 .
polygon
area of regular, U457
regular, 170
simple closed, 434
polygonal path ﬁ
polyhedron, 42
positive number, 3
power, 272
powers-of-ten notation, 115, 133
precision, 219, 223
prime number, 546
prism
- hexagonal right, 210, 469
lateral edge of
oblique, 472
right, ﬁ
lateral face of
oblique, 472
right, &
oblique, 471, 472
rectangular right, 208
right, 208
triangular right, U468
probability, 312, 313, 341
empirical, 323
of A and B, 334
of A or B, 328
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property
addition, 76, 91
multiplication, 83
Pythagorean, 193, 202
protractor, 15
pyramid, 210
R altitude of 477
apex of, 476
base of, 476
height of, %77
hexagonal, 477
lateral edge of, 477
lateral face of, U476
regular, 478
slant heizht of, 480
square, 477
Pythagoras, 193
Pythagorean property, 193, 202
quadrants, 27.
qQuadrilateral, 170, 206
radius, 163
Rankin, 559
rational number, 9, 255
real number(s), 267
continuum of, 276
_ line, 276
system, 276
reasoning
indirect, 259
rectangle, 206
‘rectangular
right prism, 208
system, 24
regular 7
polygon, 170
pyramid, 478
relative error, 223
repeating decimal, 247
rhombus, 452
right
circular cone, 484
circular cylinder, U469
prism, 208
triangle, 192
root, 272
ruler
parallel, 158
scale, 386
sclentific notation, 114, 221
segment
. directed, 3, 12 .
selections, 303
symbol, 303, 304
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semlcircle, 517
sentence
- compound, 68
number, 51
open, 59
set of solutions, 60
significant digit, 220, 232
in the product, 231
similar triangles, 380
simple
closed polﬁgon, 434
surface, U442
simplex, U422
sin, 366
sine, 359 -
slant height
of cone, 484
of piramid, 4180
slope, 37
small circle, 516, 517
solid ‘
spherical, 533
solution set, 60
sphere, 511
interior of, 520
surface area of, 535, 536, 538
tangent to, 515
volume of, 533, 535, 542
spherical
soap bubbles, 537
solid, 533
square(s)
meter, 145
pyramld, 477
table of, 200-201
square root, 196
table of, 200-201
straightedge, 157
subtraction, 46
surface
of a sphere, 533, 535, 538
simple, 442
symmetry, 172
axls of, 172
table
of square roots, 200-201
of squares, 200-201
of trigonometric ratios, 368
tangent, 35
to the sphere, 515
tetrahedron, 418, 477
terminating decimal, 247
tolerance, 217
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topological, 564
transcendental number, 273
transversal, 159
trapezoid, 206, 454
area of, 554
triangle(s)
congruent, 176
Pascal, ob6
right, 192
- simllar, 380
triangular right prism, 468
trigonometric ratios
table of, 368
Tropic
of Cancer, 529
of Capricorn, 529
T-square, 158
twin primes, 552
variation, 392
: direct, 336
inverse, 401
laws of, 394
varies
directly, 397
inversely, 414
vertex of cone, 484
vertices, 466 :
vinculum, 248, 265
Vinogradov 559
volume, 145
of sphere, 533, 535, 542
weight, 152
of water, 152
Williams, 573
zero .
as exponent, 121
meridian, 527
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