
. DOCUMENT RESUME

ED 130 617 IR 004 148

AUTHOR Jacobs, Paul I.
TITLE Some Implications of Testing Procedures for

Auto-Instructional Programming. Final Report.
INSTITUTION Educational Testing Service, Princeton, N.J.
SPONS AGENCY Air Force Human Resources Lab., Wright-Patterson AiB,

Ohio.
REPORT NO MRL-TDR-62-67; P-1710
PUB DATE Jun 62
CONTRACT 7F-33(616)-7795
NOTE 79p.: Archival document

EDRS PRICE M7-$0.83 HC-$4.67 Plus Postage.
DESCRIPTORS *Autoiustructional Programs; Formative Evaluation;

*Instructional Design; *Material Development;
Programed Instruction; Programing: *Test
Construction

ABSTRACT
Although there are fundamental differences in thee

objectives of the two activities, the programing of instructional
materials bears many similarities to the construction of tests. A
_systematic comparison of the problems and procedures reveals
important implications-for-programing from the older field of
testing. Theory and experience,iu test construction can be especially
useful in the selection of valid criteria for assessing the
effectiveness of a program, the ordering of instructional subject
matter, the writing of instructional frames, and the formal
evaluation of a program. Adaptive programing implies measurement of
both aptitude and achievement in order to assign trainees to
appropriate individual sequences of instruction. Possible
applications resulting from examination of these and other issues are
explored, and necessary further research is suggested. (Julthor)

Documents acquired by ERIC include many informal unpublished

* materials rot available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS)..EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be wade from the original. *

MAL-WI-624r $ DEPARTMENT OP REALM
EDUCATION &WELFARE
NATIONAL INSTjTuTE OP

EDUCATION

THIS DOCUMENT sia,S SEEN REPRO-
DUCED ExAcTLy A$ RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN.

V."4 ATING IT POINTS Or vIEw OR OPINIONS
STATED DO NOT NECESSARILY
SENT OFFICIAL NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

SOME IMPLICATIONS OF TESTING PROCEDURE
FOR AUTO-INSTRUCTIONAL PROGRAMMING

TECHNICAL DOCUMENTARY REPORT No, MRL-TDR4247

JUNE 1962.
4.,

BEHAVIORAL SCIENCES LABORATORY
6570th AEROSPACE MEDICAL RESEARCH LABORATORIES

AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND

TRIGHT-PATTERSON AIR FORCE BASE, OHIO ,

Contract Monitor: Alvin Ugolow, Ph.D. *-
Project No. 1110, Task No. MOW

2

(Prepared under Contract N.. AF 83(610795
by Paul 1. *Kobe of

Educational Tooting SorvicPyleatlon, N.

-

4 vi

A.

FOREWORD

This work Was performed by Paul I. Jacobs) Blucational Testing
Service) Princeton) New Jersey) under Contract No. AF33(616)-7795
with the Aerospace Medical Research Ldboratories. The contract was
initiated by Dr. Alvin Ugelow, Operator Training Section) Training' '

Research Branch) of the Behavioral Sciences Laboratory. The work was
performed in support of Project 1710) "Training) Personnel and
Ftychological Stress Aspects of Bioastronautics)" Task 171007)
"Automation of Training Systems" and was carried out from January 1961
to Decenter 1961.

The author is grateful to Drs. Rdbert M. Gagne; Shared Ehlkarni)
Milton Maier) James C. Terwilliger) and Alvin Ugelow) all of whom
helped to clarify his thinking on the topics covered in this re;ort.

3

ABSTRACT

Although there are fundamental differences in the objectives of the
two activities, the programming of instructional material bears
many similarities to the construction of tests. A systematic
comparison of problems and procedures reveals important implications
for programling from the older field of testing. Theory and experience
in test construction can be especially useful in the selection of
valid criteria for assessing the effectiveness of a program, the
ordering of instructional subject matter, the writing of instructional
frames, and the formal evaluation of the program. Adaptive programming
implies measurement of both aptitude and achievement in order to
assign trainees to appropriate individual Jequences of instruction.
Possible applications resulting from examination of these and other
issues are explored, and necessarf further research is suggeJted.

PUBLICATION REVIEW

4:;WieL.A.artm/

WALTER F. WIENER
Technical Director
Behavioral Sciences Labweatory

4

iii

TABLE OF CONTENTS

Section

.1

Page

1 - Introduction 1

Purpose and Plan of this Report . 1

Tests and Programs: Similarities, rdfferences and
Relationships 2

2 - Procedures in Programming 7

3 - Steps in Test Construction and their Implications
for Programming 10

Specifying Objectives 10
Determining the Resources Available 19
Planning and Developing Items (Frames) 21
Pretesting (Tryout) and Revision 29
EValuation 35
Providing Information to Test (Proiram) Users 39

4 - Some Se1ectedRelationships between Testing and
Programming 42

Item (Frame) Ordering 42
Adaptive Programming 47

5 - Summary 59

Bibliography 61

Index of Names 70

Stibject Index 72

5

iv

Section 1. Introduction
Birpose and Plan of This Report

. Almost every person in America has had some contact with tests. People
aie given tests in school to determine what may be expected of them and what
.they have already learned, they are given tests so that employers can select
the best qualified, applicants, they are tested for voter registration, for
driver's licenses, etc. Because of this first-hand experience in test-taking,
most people have some Mess, correct and incorrect, about what tests are, the
purpose of using tests, the value of tests, and their limitations.

In recent years psychologists and. educators have paid a great deal of
attention to printed materials and to devices which seem to closely resemble
tests, but which are called auto-instructional programs, teaching machines
self-instructional devices, automated tutors, etc., and which are used for
quite a different purpose than that for which tests are used. We will call
these printed materials auto-instructional programs, or, simply, programs.
Most people have probably not had first-hand experience with programs, although
they may have read about them in newspapers and. magazines.

The purpose of this report is to examl.ne the extent to which what we know
about tests can te applied to the development of programs. Because this pur-
pose is a relatively restricted one, no attempt has been made to deal with
either testing or programming in a comprehensive way; the emphasis is on
applications of testing to programming.

The report 13 intended primarily for people now engaged in training and
programming activities. For the benefit of those readers who are just becoming
acquainted with programming, this section and Section 2 provide general back-
ground information on testing and programming. Sections 3 and 4, which consti-
tute the main body of the report, deal with how we can,use what we know about
testing when ve set out to construct a program. Section 5 provides a summary
of the raport.

6

Tests and Programs: Similarities, Differences, and Relationships

We use tests to help us decide how to sort out or classify people. We
may want to sort them into those who will succeed in college and these who
will not; those who should be given a driver's license, those who should be
given a license sUbject to certain restrictions, and those who should not
be given a license; those who should be given school grades of "A," of "B,"
of "CI" of "Dy" and of "F"; etc. In general, tests tell us what people do
in certain situations (on test questions or "items"), and we may use this
information for such purposes as predicting what they will do in other situ-
ations.

.0n the other hand, we xse auto-instructional programs to teach people,
or, as a psychologist might say, to modify their behavior so that their
performance on some class of tasks is different because of having been through
tbe program. We must keep in mind this fundamental difference in reasoLs for
using tests and for using programs: we use tests to measure present behavior
so that we can predict future behavior, while we use auto-instructional
programs to modify or produce future behavior.

While tests and programs do differ in what they are used for, there are
certain similarities and relationships between tests and programs which sug-
gest that it would be worthwhile to look at our accumulated knowledge of
testing to see what implications for programming might exist.

To begin with, tests and programs are similar in appearance. Both tests
and programs basically consist of sets of questions. The technical term for
a test question is an item, while the technical term for a program question
is a frame. It is very frequently difficult to tell from inspection whether
an individual question is meant to be a test item or an auto-instructional
frame. Which of these questions do you think are meant to be items and which
do you think are meant to be frames?

6. You have purchased 7 chances in a lottery for a new car. A, total of

10,000 chances were sold. What is the possibility that you mdght win?

6. What is the sum of 7 and 3?

8. A precursor of Vitamin A is a .1(

Often a test question is accompanied by some expository material, that
is, some information not in the question itself which the examinee will need
in order to answer it. An auto-instructional frame may also be accompanied
by expository material. It is difficult, therefore, to tell from the pres-
ence or absence of expository material whether a question in want to be a
test item or an instructional frame.

While it may be difficult to tell whether an isolated question is meant
to be a test item or auto-instructional frames the context in which the
question occurs will probdbly enable one to make this distinction. An auto-
instructional frame will usually be preceded. by other frames which "lead up

All three questions are frames. From Barlow, Calvin, and Glaser,
respectively, as reproduced in Rigney

7
and Fry (ref. 111).

-2-

to it" and make it easier to answer it. Atest item, however, will usually
stand by itself; the test constructor will try to avoid having other items
in the same test which help the examinee answer a given item.

An additional clue as to whether a given question is meant to be a test
item or an auto-instructional frame is this: after the learner responds to
an auto-instructional frame he will usually be exposed to the correct answer.
In this way he can find out whether the answer he gave was correct, that is,
he can receive knowledge of results. After the examinee responds to a test
question, he usually does not receive knowledge of results in those tests
that are currently available. This does not mean, however, that providing
the examinee with knowledge of results would necessarily defeat the measure-
ment purpose of using the test, or that future tests will not provide knowl-
edge of results to the examinee. In fact, Severin (ref. 119), Pask (ref. 1(4),
and Pressey (ref. 106) have suggested that under certain circumstances tests
which provide knowledge of results can do a better job of measurement.

Suppose we found ourselves in the improbable situation, atter looking at
a set of questions, of not being sure whether it constituted a test designed
to measure people's behavior or an auto-instructional program designed to
modify people's behavior. Could we not just use the set of questions in order
to see how it functioned?

Since we define a program as a set of questions which serves to modify
behavior, perhaps the simplest way to collect data in order to classify an
unknown set of questions as a test or program is to administer the set of
questions twice to the sane group of people. If people get substantially
more questions right the seAond tine than they do the first time, the set of
questions has modified behavior and may be called a program. Numerous studies

. have shown, however, that when people are repeatedly given sets of questions
that are already known to be tests (they have allvady been successfully used
to measure and predict behavior), they get more questions right each succeeding
tine.

A second way we might collect data in order to classify a given set of
items as a test or a program is to see whether the earlier questions affect
performance on the later questions. If so, then presumably the set of
questions constitutes a program. Unfortunately, certain studies have shown
that for sets of questions that are already known to be tests, the presence
of some questions affects the performance on others.

The two possibilities vs have considered above for collecting data in
order,to be able to classify a set of questions as a test or a program will
not work. In each case sets of questions which are designed to be tests
and which are useful as tests have certain characteristics which we might
expect only programs to have.* FUrthermore, tests have these characteristics
when they are administered without providing the examinee with knowledge of
results (without telling him whether he is right after each response).

*We shall see in Section 4 that sets of questions which are designed to
be programs and which are useful as programs may have certain characteristics
which we might expect only tests to have.

8

-3-

It appears, then, that although a test constructor may intend his set
of questions to merely measure behavior, the actual use of his questions
will often (if not always) modify behavior also, and the test constructor
will find hinself with a program on his hands. If he wanted to construct
a program) he night) of course) proceed differently than if he wanted to
construct a test. Tb take one obvious procedural difference, in constructing
a program he would arrange for the learner to receive knowledge of results
following his responses. But questions which are not accompanied byknowl-
edge of results may also have an instructional function) that is, they nay
also nodify behavior. An interesting example of this has recently been
reported by Estes (ref. 36) p. 220). Re compared the performance of two
groups of Ss who were repeatedly given a set of questicnn under the knowl-
edge of results (L) and no knowledge of results (T) eondltions shown below:

Group 1

Group 2

Note that the two groups differ only in that Group 2 was given the set
of questions without knowledge of results one additional tine. Xet this
additional opportunity, which one would expect to have only a testing
function, had also an instructional function: Group 2 showed 78% retention
while Group I showed only 52% retention.

All of the preceding discussion maybe summarized as follows: not only
is it difficult to distinguish bet4een tests and programs upon inspection,
but it is also difficult.to_dtstinguish between them by collecting data.
(uestions may both measure and modify behavior (at the same time), even if
they are intended merely to measure behavior. It is reasonable to expect)
therefore, that our knowledge of test construction will be useful in program
construction.

An additional sinilarity between testing and programming suggests that
our knowledge of test construction will be useful in program construction.
This similarity is in the general steps one takes or should take in the con-
ception) construction, and evaluation of tests and auto-instructional pro-
grams. For both tests and programs, these stages may be labelled Specifying
Objectives) Determining the Resources Available) Planning and Developing
Items (Frames), Pretesting and Revision) Evaluation, and Providing Infor-
mation to Test (Program) Users.*

In addition to the similarities between testing and programming which
have been noted above) there are two general relationships between testing
and programming which also suggest that test construction knowledge will be
useful to the programmer. It will be helpful to look briefly at one way of

,

*
In Section 2 these stages will be elaborated upon for auto-instruc-

tional programming and in Section 3 they will be elaborated upon for
testing.

-4-

9

subdividing the category "tests" and one way of subdividing the category
"programs" before discussing these relationships.

Avery common type of test is the achievement test. The achievement
test is used to determine how much has been learned. One use of achievement
tests in school settings is to see whether each student has mastered the
material he needs in order to master material in higher grades. One may
also use achievement tests in school settings to see how much groups of
students have learned under different teadhing methods. In the first case,
one is interested in making a decisiontabout students, and in the second
case, one is interested in making a decision dbout teaching methods. In
both cases, the achievement test gives information ou how much has been
learned.

Achievement tests may also be used in two ways in conjunction with auto-
instructional programming. We my want to find opt whether a student has
mastered the material to which he has been exposed so that we then can put
him in a position to utilize what he has mastered, either in further formal
instruction or in a Jo* situation. Or we may want to see how well auto-
instructional teaching compares with, say, classroam leettire and discussion
teaching. Whenever ve use 64o:1nstructional programming we are concerned
with both of these questions0'and the key to answering them lies in the use of
an achievement test. For this reason knowledge about achievement testing
is important in the construction and evaluation of auto-instructional
programming.

We have focused our attention on a particular type of test, the achieve-
ment test, and we have consequently seen that there was an important relation-
ship between testing and programming. We will now focus attention on a par-
ticular type of auto-instructional program, and will uncover another important
relationship,between testing and programming.

One way that auto-instructional programming may be more effective than
conventional instructional modes (such as traditiona). classroom teaching) is
that with auto-instructional programming all students need not be presented
with the same sequence of material. Students differ in how much they initially
know of a given subject matter, in how quickly they can acquire new knowledge
and skills, and in the extent of their misconcertions. A teacher, vho in-
structs many students simultaneously, may not be able to provide just the right
amount and sequence of materia1 for the most .ficient learning of each
student. So the teadher may decide (consciously or unconsciously) upon a
sequence of material which he hopes will be both adequate for the slower
learners to grasp the essentials and interesting enough to keep the faster
learners from becoming bored. He is often unsuccessft-; the pace may be too fast
for some students and too slow for others; misconceptions maybe cleared up
for some, while others may become confused. We may expect this to happen not
only when one teacher provides instruction for many students simultaneously,

Other ways of subdividing these categories will be mentioned later in
this report as the distinctions are needed. Cronbach states "Although sone
scheme of classifying tests is a convenience, all such divisions are arbitrary.
One of the striking trends is the breakdown of traditional division lines"
(ref. 21). For a discussion of "typed'of programs, see Blaney and Fry
(ref. 111).

1 0
-5-

but also when one textbook or film or auto-instructional program provides
instruction for many students simultaneously.

For this reeson, many people who develop auto-instructional prograws
in order to make learning more efficient have been interested in providing
each individual learner with a sequence of material tailored to fit his
particular needs and abilities, or at least in approximating this condition
insofar as limitations in devices, developmental costs, and operational
costs allow. The programmer may provide some learners with more frames,
with different frames, or with a different ordering of frames than other
learners. In general, when the programmer does not provide each learner
with an identical sequence of material, we will refer to this as adaptive
programming. At this point, the significance of adaptive programming is
this: in order to assign different learners to different sequences of
materials, we need to first have scse information on the basis of which we
can classify them. If we wish to use rather different sequences of material
for "fast" and "slow" learners, we must first know who the "fast" and "slow"
learners are. If we wish to provide supplementary information to correct a
misconception, we must first knou which students have this misconception.
In general, adaptive programming involves getting some information about the
learner so that we can give him material especially suited to him. The pro-
cedure of getting this information is, of course, a testing procedure. When
adaptive programming is used, therefore, there iS an additional relationship
between testing and programming.

1 1

-6-

Section 2. Procedures in Programming

Auto-instructional programming is relatively new, and there are still
many unanswered questions associated with it.* There is no general agree-
ment, for instance, as to whether the student should be prevented from
making wrong responses, or whether the student should be required to nake
any overt responses. There is no agreement on whethe:: a single program is
best for all students. The progranmers who appear to represent different
"schools" or "philosophies" of progranuing (e.g., Skinner, Crowder, Pressey)
differ in how explicit they are in descritdng what steps they follow in
developing a program. They also differ in how explicit they are dbont what
they do at each of these steps.

For these reasons it is impossible to present a general yet accurate
picture either of how programs are written or of how programs shoal-be
written. Instead, we will list and discuss the steps in what, at the moment:
appears to be an over-conplete and idealizei procedure for developing a
program.

Stating one's objectives has been mentioned as a first step by Glaser
(ref. 57), Rolland (ref. 70), Skinner (ref. 123), Stolurow (ref. 127), and
others. It has not been mentioned by Crowder (ref. 27), in his expositions
of bds "intrinsie" programming philosophy and technique.

What is neant by a statenent of objectives and why is it needed?
everal writers have suggested that a statement of objectives should. be a
set of itene that the programmer wants the students to be able to pass.
"One night think of these as answers to questions which might appear on a
final examination for a given course" (ref. 15, p. 550). When one person
commissions another to develop an auto-instructional program, he must, of
course, state what he wants the program to accomplish. In order for this
statement to be useful, it must be specific.

Statements such as "proficiency in electronic troubleshooting" and
"facility with symbolic logic" are not sufficiently specific. Mae programmer
must state just what it is that the person who is proficient in electronic
troUbleshooting or facile with systolic logic can do.** Skinner, for
example, has analyzed and further specified the "ability to read" as follows:

II ...a child reads or 'shows that he knows how to read' by
exhibiting a behavioral. repertoire of great complexity.
He finds a letter or word in a list on demand; he reads
aloud; he finds or identifies objects described in a text;
he rephrases sentences; he obeys written instructions; he
behaves appropriately to described situatione; he reacts
emotionally to described events; and so on, in a long list"
(ref. 124, p. 383).

Some general sOurces of information on progranmed instruction are
Kopstein and Shillestad (ref. 88), Iunedaine and Glaser (ref. 95), fagney
and Fry (ref. 111), and Stolurow (ref. 127).

**
For fuither discussion of how to specify objectives, see Niger

(ref. 97). 12
-7-

If the programmer is developing the program on his own behalf and has
previously taught the subject matter, he may feel that the writing-down of
his Objectives is unnecessary, and, if it must be done, it might be done
more easily after the program is written. There is no evidence that a
teaeher who knows what he wants to teach will do a better job of programming
the material after writing down his objectives. But certain logical con-
siderations suggest that it may be a good idea for him to do so.

One of these considerations is that the next step in program construction
depends on the prior step of stating one's objectives. This step is to find
out where the students stand now, that is, to find out how competent they
initially are in the directions desired. One way of getting this information
is to administer a test of subject natter achievement to them--a test of the
proficiency which the program will be designed to develop. As we shall see
again in the next section, the programmer can only construct such a test
after he first states his instructional objectives.

Once the programmer has decided what is to be taught and has found out
what the students already know that is relevant, the next steps are to
organize the subject matter, to spell out the relationships among the com-
ponents of the subject matter, to specify what must be taught before what,
and to decide upon a method of programming which is best suited to the par-
ticular material. Among the available methods are Skinnerian programming
(re1s.1231 125), intrinsic programming (ref. 27) and Buleg programming
(ref. 40). Samples of these and other methods or "styles" of programming
are given by Rigney and Fry (rer. 111).

When the programmer has organized the sUbjeet natter and decided upon
a suitable style of programming, he can then start the actual writing of the
program. General suggestions for program writing are offered by Gilbert
(ref. 55),*

According to Higney and Fry (ref. 111), the programwriter does not
have an easy or'reutine task. He does not (or should not) merely add detail
to an already existing textbook organization, break down the printed matter
into one or two sentence segments called. frames, and then delete one word
at random from each frame and replace it with a blank to be filled in by
the learner. Rather, he must first organize the material in a way that
seems best, considering what the learner can initially do and what he wants
the learner ultimately to be able to do. Then the programmer must devise
expository material and questions which are meant to have specific functions
in getting the learner where he wants him. Above all, his writing of the
program must be sensitive to feedback from the learner at all times. This
means that he must repeatedly present the program to learners, in order to
find out whether they are, in fact, learning what he wants them to learn.**

*5aber, Glaser, and Schaefer (ref. 129) are preparing an extensive
treatment of program writing.

**
Neither the writings of Crowder (ref. 27) nor of others who have also

used intrinsic programming and scrambled book format (e.g., Gorow, ref. 60;
Lawson, ref. 90) are very explicit on whether the provisional frames written
by the programmer are tried out on students.

-8-

13

Generally, this involves trying out seta of frames on learners as they are
written, or perhaps after sone editorial revision by subject matter experts
or by colleagues of the programmer.

After the programmer tries out his provisional frames, his next step
is to revise them on the basis of the information he gets from the tryout.
He may revise particular frames because students indicate they cannot under-
stand what is required of them, because students cannot do what is required
of them, because the frames do not provide enough background for the atudent
to handle later frames etc. The programmer then tries out the revised
(and probably expanded) set of frames. He may repeat this tryout and revision
process several times before he is ready to evaluate the program in a more
formal manner.

For the formal evaluation the programmer works with a somewhat larger
group of students than before. Ideally, this group is representative in
both abilities and motivation of the still larger group for which the
program is intended. If the programmer merely wants to know how well the
program teaches, he sends the students through it, and then administers an
achievement test (a "posttest") to the students. The achievement test,
which measures how competent the students are in the area for which the
program was designed, will have teen developed as a by-product of the steps
of specifying objectives and measuring the learnerst initial competence.
The programmer will then be able to make a statement of the form "When
students having these (specified) characteristics go through my program
they are then able to get a mean score of with a range of scores of
from to on this achievement test."

.1.1.10.1111. =11111.,

In general, however, the programmer will be concernei not merely with
how well the program teaches, but with how well it teaches relative to how
well some alternate presently usei method teaches, and relative also to the
cost of each_of these methods. He may, therefore, directly compare the
,program with the presently used method.

A final step in evaluation, one whidh programmers have not yet taken,
is to determine how well the program teadhes students whose characteristics
(sueh as aptitudes, abilities, etc.) are known to be different from the
characteristics of the group of students on whom the programwas originally
evaluated. One approach to determining this will be discussed in Section 3
under the heading "Providing Information to Test (Program) Users."

14

Section 3. Steps in Test Construction and
Their Implications for Programming

In this section we will see what the steps are in the construction
of tests, how these,steps are relatei . to the ..c.eps in the construction of

programs, and what implications we can derive for the construction cf
programs.

Specifying Objectives

When a test constructor sets out to build a test for his own use, or
at the request and for the use of some other person, his first step is to
spell out the specific purpose of the test. In Section 1 we saw that tests
are used to classify people. The test constructor must, therefore, specify
who the people are that he is interested in, and what his purpose is in
classifying them.

The basic reason for specifying who the people are that he is in-
terested in is that a test which is useful with one population is, in
general, not equally usefUl with other populations. A test consisting of
questions on arithmetic facts (e.g., Three times four equals 7) may bn
useful in sorting out "more competent in arithmetic" from "less competent
in arithmetic" third graders, but may not be useful in sorting out "more
competent in arithnetic" from "less competent in arithmetic" college stu-
dents. FUrthermore, if the test constructor wants to see if an already
available test can be used for his purposes, he must look at the population
at which the test is aimed and compare it with his own target population.*

When it cones to programming, we would also expect that a program
which is useful with one population is, in general, not equally useful
with other populations. A program designed for use by high school students
might not be appropriate for use by elementary school students because the
elementary school students do not have the appropriate background, that is,
they do not know the facts, generalizations, concepts, etc., that are needed
to benefit from the program. The same program might not be appropriate for
use with college students because they might already know the facts, gener-
alizations, and concepts which the program covers.

We do not now have a body of reliable knowledge that we could use in
judging how useful a given program is with a population different from tilt
one for which the program was designed (see ref. 120). One approach to
this problem is based upon testing considerations, and will be discussed
later in this section. The procedure of using different programs to teach
the same material to different learners will be discussed in Section 4.

Once the test constructor has chosen the people he wishes to classify,
he can turn to what his purpose is in classifying them. If he is developing
a selection test, then his purpose is to classify them according to how
adequately they would perform in a given situation. With applicants to
college, it may be whether they would succeed if admitted to college; with

Thorndike (ref. 131) discusses some considerations in deciding whether
to use existing tests or construct new ones.

-10-

15

applicants for drivers' licenses, it may be whether they would, be good
drivers; with job applicants, whether they would be good machinists, etc.
We will refer to the future performances of examinees which the test
constructor wishes to predict as criterion behaviors, or sometimes,
criteria.

14.e, In order for the test constructor to proceed with the deveiopuent of
-11). selection test he must ultinately specify the criterion behaviors in
operational terms. If he is interested in "success in college" he might
measure this success by grade-point average. He might measure "goo&
driving" in terms of accident records, and "good machinists" in terns of
amount produced. Tpere may, of course, be several alternate ways for the
test constructor to operationally specify what he is interested in. Be
might, for example, choose to measure success in college by disciplinary
record rather than by grade-point average, or by both disciplinary record
and grade-point average.

'If, rather than a selection test, the test constructor is developing
an achievement test, he is interested in classifying people according to
how much they have learned. In this case his test defines the criterion
behavior, and again, the definition must be in operational terms.

The reader will recall that a first step in programming is for the
programmer to specify his objectives. This specification should also be
in operAtional terms, that is, the programmer should state exactly what
it is that he wants the learners to be able to do. These tasks constitute
the criterion behaviors for the program. The nature of test Ciiterion
behaviors and program criterion behaviors is essentially the same, and
sone tasks may indeed serve as both. We may think of the diffekence be-
tween tests and programs'in this way: tests are used to predict-dr-define
criterion behaviors, and programs are used to modifr criterion behaviors..

What, then, do we know about the choice of criteria.for tests that
we can use in choosing criteria for programs?

To begin with, we know that the choice of criteria has a fundamental
importance in selection testing. If a poor selection test is developed,
this will be discovered when it fails to predict the criterion, and, if
the budget allows, abetter test may then be prepared. If, however, poor
criteria are selected, there is no opportunity for empirical evaluation--
no feedback from the data--to warn the test constructor.

Similarly, if a poor program is developed, this will be discovered
when the criterionlbehavior is examined. If, however, poor criteria are
selected, there is no empirical evaluation, no way for the programmer to
discover the inadequacy of the criteria. Whether a given criterion is
relevant to the programmer's purpose ultimately does not depend on
empirical evidence, but rather on a statement by the progranner and/or
the person who requests the production of the program as to what he is
interested in. Saverin (ref. 119); for example, working with a correction
procedure and utilizing a Pressey multiple-choice punchboard, was inter-

. ested in total nunber of errors made on a set of itens (each item could
contribute more than one error), while Stephens (ref. 126), also wc.rking
with a correction procedure and utilizing a Pressey multiple-Choice punch-
board, was only interested in the nuMber of errors made by subjects on
their first attempt at each item.

1 6

Given that the choice of criteria is extremely important, how can
the test constructor (and the programmer) choose "good" criteria? We come
now to a distinction betueen ultimate and proximate, criteria (ref. 92).
The ultimate criteria are what the test constructor is really interested
in. The ultimate criteria for a scholastic aptitude test might be measures
of the extent to which the student attains the goals of the educational
institution; the ultimate criteria for a driver's license test night be
how safely and courteously the driver manipulates his car in his everyday
driving. Ultimate criteria for an auto-instructional program designed to
teach good citizenahipmight be measures of the extent to which the learner
uses his opportunities to vote, of how he participates in community affairs,
etc. Proximate criteria are what, for any of a variety of reasons, the
test constructor is willing to settle for. One reason for using proximate
criteria is that it may be too impractical, too costly, to measure the
ultimate criteria. While it would be extremely difficult, or perhaps im-
possible, to measure a driver's everyday driving behavior, it ib relatively
easy to collapse the frequently encountered driving experiences such as
turning, parking, driving in traffic, etc., into a more-or-less standard-
ized five-minute road examination.

Another reason for using proximate criteria is that the ultimate
criteria may not be measurable until long after the tester is interested
in measuring them, or perhaps they may never te measurable. While the
ultimate criterion for an instructional program on civil defense may be
whether the learners can perform adequately in a disaster situation if the
occasion arises, the occasion may never arise. For this reason the proxi-
mate criteria of how well learners do in a simulated disaster situation
may be used. While the ultimate criteria for a scholastic aptitude test
may be measures of the extent to which the student attains the objectives
of the educational institution, the proximate criterion which is likely to
be used for convenience is grade-point average.

Still another reason for using proximate criteria rather than ultimate
criteria is that the ultimate criterion behavior of each person may be
different, and so measures of each person's criterion behavior will not
be directly comparable. In such cases, the use of a proximate criterion
may provide a relatively standardized set of tasks on which measures of each
person's behavior will be directly comparable. We may, for example, want
a test which will predict the ultimate criterion of how well a salesman
will sell. We know, however, that a salesman's sales record will depend
upon what territory he is assigned to as well as upon how good a salesman
he is. If we have no good estimates of the sales potentials of different
territories, we may use, as proximate criteria, neasures of the salesman's
behavior in an artificially constructed sales situation. We might ask each
salesman questions (e.g., What would you do if the prospect says he wants
the product but doesn't think he can afford it?), or we might see what he
does when confronted with a stooge as a prospective customer.

We can see in this example the usefulness of proximate criteria; if
we want our criteria for a salesman selection test not to be confounded
with the territories to which the salesmen are assigned, we can assign them
all to the sane "territory," that is, ask them the same questions, confront
them with the same stooge, etc. At the sane time we can see in this ex-
ample a danger in the use of proximate criteria: the proximate criteria
may not be related to the ultimate criteria; how well a salesman answers

questions about what he would do in certain situations and what he does
when confronted with a stooge may not be rOated to hom well he can sell.

It seems that both the test constructor and the programmer face a
dilemma in choosing criteria for their tests and programs; the ultimate
criteria are what they are really interested in, but it mey be impossible
in practice to obtain measures of them. The proximate criteria may be
convenient and relatively inexpensive to measure, but they may or may not
be related to the ultimate criteria.

How might this dilemma be resolved? In any situation in which
measurement of the ultimate criteria is not possible, one is not forced
to choose between ultimate and proximate criteria tmt rather one may choose
from among different sets of proximate criteria, any set of which may have
particular advantages and disadvantages. /,:lchoosing a set of proximate
criteria we should try to choose a set which,we know is related to the
ultimate criteria. When it is impossible to find out whether the proximate
and ultimate criteria are correlated, we might see whether the proximate
criteria are correlated with other proximate criteria. If we cannot do
this, then we must satisfy ourselves that the proximate criteria we choose
to work with are logically related to the ultimate criteria, which is just
anothei. way of saying that the proximate criteria should appear to be re-
lated to the ultimate criteria.

Several instances have been reported in programming in which the
proximate criteria have not reflected the ultimate criteria of amount
learned. Stephens (ref. 126) used the number of errors during training as
a proximate criterion. He found that changing the order of frames and of
mmltiple-choice alternatives within frames produced more errors during
training, but made no difference on a posttest. Fry (ref. 49) also used
errors during training as a proximate criterion. For one group of learners
he terminated training on a list of paired-associates after two consecu-
tive errorless runs through the list. A posttest (used as ultimate cri-
terion) showed that this group learned no more than a group given five
minutes of training during which no meMber of the group made two consecu-
tive errorless runs through the list.

Gagne'and Dick (ref. 52, p. 4o) also found that a proximate criterion
of errors during training did not reflect their ultimate criterion of
transfer:

"Regardless of the internal criterion measures which were
employed (number of errors, time to learn), the transfer
test scores make one reluctant to state that the learning
program has truly taught 'equation-solving'."

In the above instances the programmers were fortunate in being able
to collect both proximate and ultimate criterion data, and in this way
see the inadequacy of the proximate criteria. But what can the programmer
do to insure a more adequate proximate criterion in situations where
ultimate criterion data cannot be collected?

One point to remeMber is to avoid what Brogden and Taylor (ref. 10) 4

call the error of illation. One commits this error when one fails to
distinguish between direct and inferential evidences of the achievement

18

a
aM01.1.11. Ibmw.

in which one is interested. Broaden and Taylor cite as an example of the
error of illation the rating of the carpenter's"skillful movements" rather
then the products he turns out. In programming, the evidence cited above
(ref. 49, 52, 126) suggests that under some circumstances measures of

,learning during training may provide rather poor inferential evidence of
actual achievement.

In addition to the error of illation, there are various kinds of
bias in criterion selection which both the test constructor and the pro-
grammer should avoid (ref. 10). One is called criterion deficiencyz-ig-
noring some aspect of behavior in which one is actually interested. The
programmer seeks to male learning more efficient, so it is generally
essential for him to measure both amount learned and tine taken to learn,
and possibly sone other things. When he finds that program A produces
more learning than program B, he also wants to know how the two programs
compare in amount of tine taken by the learners. Goldbeck (ref. 58), for
example, found that a comparison of three versions of a program with
regard to amount learned, led to different conclusions than did a com-
parison of the same three versions with regard to amount learned per unit
tine.

Nachman and Opochinsky (ref. 102) found that the variable of class
size made a difference in amount learned in class (classes containing
fewer students learned more), but that the students in the larger classes
apparently studied more on their own time t(compensate for this difference.
If one were merely interested in amo t learned, one might conclude thatcstudents would wind up with the same amount of knowledge whether they were
in small or large classes. If, howeve one is also interested in time
taken by students to learn, both within and outside of the formal class-
room situation, one would conclude that the smaller class size led to re-
duced learning time and, hence, greater learning efficiency. ln many
educational, industrial, and military training situations, fn which trainees'
time for independent study outside the formal training situation is limited,
it may be important to know how much time needs to be devoted to study in
conjunction with an auto-instructional program. Failure to consider this
would result in criterion deficiency.

Another type of criterion bias is criterion contamination--when irrele-
vant considerations enter into the measurement of the criterion behavior.
The reader may have recognized an opportunity for criterion contamination
to occur in an earlier example: when salesmen are assigned to territories
which differ in "sales potential," then their volume of sales, as %cri-
terion, will reflect both their selling ability and the sales potential of
their assigned territory. At best, if salesmen are randomly assigned to
territories, the criterion measure will merely be imprecise; if salesmen
are assigned to territories in some systematic way (e.g., on the basis of
test scores or performance during training), the criterion measure will
be biased.

A classical example ,pf criterion contamination in testing occurs when
the criterion measure is a rating, and the person doing the rating knows
the examinee's score on the predictor test. A supervisor, for example,
may know that a particular snbordinate obtained a high score on a selection
test, and this knowledge might influence the supervisor (consciously or
not) to rate the subordinate higher than his on-the-job behavior would

1 9

otherwise merit. In such a case the test would appear to be spuriously
better than it actually was.

A study by Hughes (ref. 73) illustrates a possible opportunity for
criterion contamination to occur in programming. He used both program-
trained and *traditionally" trained groups of students, and evaluated
the effectiveness of each type of training by means of an essay-type
posttest. If the judges who marked the essays were aware of the group
from which the writer of eadh essay came (as seems likely), then cri-
terion contamination may have been introduced. Hughes is not explicit
on this point.

Another programming situation in which criterion contamination may
occur arises when the programmer is interested. both in a measure of
learning just after training is completed and in a measure of how well
the learning is retained. One design he might use to compare programmed
and traditional instruction groups on both learning and retention is
shown below as Design (1).

Programmed instruction
Traditional instruction

Design (1)

POsttest
Posttest

Time

Retention Test
Retention Test

The programmer would randomly assign learners to either programmed or
traditional instruction and test them after instruction and again some
time later. If he used this design, the collection of posttest data
night produce contamination of retention test criterion data. This con-
tamination might cone about if the posttest sensitized the learners to
the test itdms which they would again be exposed to on ie retention test.
As a result of such sensitization, they might discuss and think about the
test items during the time between the posttest and the retention test.
This extra experience with the items could then be reflected in retention
test performance. If the programmer did not intend to give the posttest
and retention tests in operational use of the program, the trainees would
not get this extra experience during operational conditions, and the
evaluation of the program would have presented too favorable a picture
of it.

One way for the programmer to avoid criterion contamination in this
situation would be for him to use Design (2):

Design (2)

A Programmed instruction
Programmed instruction
Traditional instruction
Traditional instruction

Posttest

Posttest
Retention test

Retention test

lime

Design (2) differs from Design (1) in that in Design (2), after train-
ing, each group in randomly subdivided into two subgroups; one of these
subgroups receives a posttest, and the other subgroup receives a retention

20

test. The programmer would compare Group A with Group C in order to
determine the relative merits of yrogrammed and traditional instruction
for learning, and Group B with Group D in order to determine their
relative merits for retention.

Another way for the programmer to avoid criterion contamination
in this situation would be to use an alternate form of the posttest as
a retention test. The study of Gagndand Dick (ref. 52) illustrates
the use of alternate forms of a test in conjunction with a yrogram.
For further discussion of "parallel tests" and "equivalent tests" see
Gulliksen (ref. 65) and Thorndike (ref. 132)/ for a discussion of
randomly parallel" tests, see Lord (ref. 93).

In addition to criterion deficiency and criterion contamination.
a third type of bias is criterion scale unit bias. Suppose that one
were interested in using the sales records made by salesnen as a
criterion for a test designed to select good salesmen. If one merely
counted how nany sales each salesman made, these criterion data might
not be too neaningful. This is because each sale would not be of equal
value to the company employing the salesmen. On the other hand, the
total volume of sales made by each salesman or, better still, the total
profit to the company in the sales made by each salesman would provide
more meanincful criterion data. Such data would be more maaningrul
because the company is not ultimately interested in the'ilubber of sales
made by eadh salesnan, but rather in the profit each salesnan produces.
It does not care whether Salesman A made more sales this year than he
did last year, but rather whether his sales resulted in more profit this
year than last. It does not care whe'dter Salesman B made more sales
than Salesman C this year, but rather Whether Salesman B's sales resulted
in more profit than did Salesman C's sales. Any one sale is not neces-
sarily as equally valuable to the company as any one other sale, so the
use of the number of sales made by the salesman as a criterion measure
would result in what the test constructor would call scale unit bias.
Since any dollar of profit is as equally valuable to the company as any
other dollar of profit, the use of the amount of profit produced by
each salesman's sales would provide a criterion in whidh each unit
(dollar of profit) produced 'by a salesman was just as important to the
conpany as any other unit produced either by the same or by-a different
salesman (see Brogden and Taylor, ref. 11).

In many sitliations the programmer may also find the dollar criterion
will be useful in providing him with an equal unit criterion scale. If,

for example, he wantei to develop a programwhich would train people to
be good salesmen, he would use total profit in the sales made by each
trainee (not nunber of sales. nade) as an equal unit criterion measure.
In some situations, however, the programmer. (and the test constructor)
may not find it easy to use a meaningful equal unit scale such as money.*
Consider a case in which his only available proximate criterion is the
number of items right on a 50-item achievement test. The programmer
could consider this measure to be on a meaningful equal unit scale if
it were equally important to him for Trainee A to get question 1 right

Sone of the complexities of this problem of unite in learning
situations are discussed by DuBois (ref. 30).

-16-

21

as for Trainee B to get it right, and for Trainee A to get question 1
right as for Trainee A to get question 2 right, etc. In one programming
study, Jones (ref. 80) apparently felt that a gain from pre- to posttest .

of 10% of the group on one item was equally inportant to hi m. as-a gain
from pre- to posttest of 10% of the group on another item. In,nany
cases, however, the programmer may have considerable difficulty in
deciding whether gains on different items or by different learners are
equally inportant to him. One meaningful basis he might use for such
decisions is how costly it is to bring about gains on different itens
or for different people by the best available alternative training
nethod. This information, unfortunately, may seldom be availdble.

We have seen that in dhoosing a criterion measure for either a test
or a program there are several types of bias to be avoided. When one is
confident he has avoided these, and has a measure or measures which he
is interested in, he is ready to consider the relidbility of his measures.
The reliability of a test neasure refers to the consistency with which
it yields results. This consistency may be over time, as when the test
on different occasions yields similar results; or alternate-ft= con-
sistency, as when different versions of a test yield similar results;
or internal consistency, as when the component itens of a test yield
similar results.*

If our criterion measure is a rating, as when a supervisor judges
the quality of a worker's performance, we would want the rating to be
the sane whether it is made at 8 a.m. or at 4 p.m., and perhaps whether
it is made this month or next month. This would be consistency over
time, or "test-retest" reliability. We would also wamt the rating to be
the same even if the worker had had a different supervisor to rate him.
Similarly, if a total score on a test is a criterion measure, neither
would we want the total score to vary greatly depending on when it is
given, nor, if alternate forms of the test were availdble, would we want
the total score to vary greatly depending on what form of the test is
taken. For a discussion of factors influencing the reliability of a
test, see Thorndike (ref. 131); for a discussion of the reliability of
performance tests of an essentially nonverbal nature, see Ryans and
Frederiksen (ref. 116).

We have seen that the test constructor (and the programner) nust
concern himself with questions of relevance, possible bias, and relia-
bility of criteria. In the happy eve9t that he finds himself with more
than one relevant, bias-free, and reliable criterion, how night he
proceed?

In 15014B oases criteria of the same general nature may correlate
rather highly. In these cases one may choose to work with one of several
possible measures on the basis of convenience or economy. French
(ref. 47), for examplel found that average freshman grades in college
were highly correlated with average four-year grades in cbllege. This
meant that average freshman grades, which become available three years

*
This is a rather simplified view of reliability. For fUrther

discussion, see Gulliksen (ref. 65) and Thorndike (ref. 132).

22
-17-

before average four-year grades) could be used as criteria for new tests
or scholastic aptitude.

In the above example) average freshman grades and average four-year
grades were of the same general nature) that is) in each case the measure
was based upon grades assigned. by instructors. When) however) criteria
are not of the same general nature) they may not correlate highly at all.
Consider the dissimilar criteria of speed of performance and quality of
performance. The fastest workers may not, of course) do the best work.
Bow) then, can the test constructor) who attempts to predict performance,
and the programmer) who attempts to produce performance) deal with both
speed and quality of performance?

Brogden aDi Taylor (ref. 11, p. 141) suggest that the cost accounting
principle may be useful in combining dissimilar sub-criterion measures
into a single criterion measure. "A LtracingotA of the exact nature and
importance of the effect of each sdb-criterion variable on the efficiency
of the organization is the essential step whidh differentiates the dollar
criterion from the more conventional techniOes." Once again the dollar
is suggested as a meaningful unit. Not only may it provide the programmer
with an equal unit scale, but it may also permit him to compare and com-
bine measures (such ac time and qua).ity of performance) which do not
appear to otherwise be comparable.

How might the dollar criterion be used? In an industrial setting
employee time can be given a dollar value in terms of wages) benefits)
equipment costs, overhead) etc. It a product is being:produced, it too
can be given a dollar value in terms of the margin of profit in its sale.
Then) when a faster worker also is a less accurate worker) that is, when
he turns out more units in a given time but they are of inferior quality
to those of other woe-ers, we can combine these two different aspects of
his performance into a single measure of cost which will be directly com-
parable with the single measures of cost of other workers. For a dis-
cussion of this procedure with numerical examples, see Brogdenath Taylor
(ref. 11).

As we saw in the discussion of obtaining meaningful equal unit cri-
terion :males) sometimes the inogrammer will find it harder to apply the
dollar criterion than other times. The dollar criterion will not be so
easily applicable within the industrial setting when what the worker does
cannot be directly related to a tangible product) or again, in educational
and military settings. As Cronbach and Glaser put it: "The assignment
of values to outcomes is the Achilles heel of decision theory" (ref. 23)

p. 109). They point out, however) that any procedure for evaluating
outcomes and making decisions involves this assignment of values, and so
it may well be desirable to make thisliSsignment explicit to one's self
and to others.

23

Determining the Resources kailable

%he test constructor who has spelled out his objectives and has
developed critericm measures is in a position to assess the resources
available to him for test construction. If he is developing a selection
test, be will first want to consider how well he can presently predict
the behavior of interest to him, and then consider how this prediction
can be improved upon. He may already know, for example, that good sales-
men have above average verbal ability. He may wonder what personality
traits can be used to Characterize successful and unsuccessful salesmen.
Me may proceed to first-hand observations og salesmen's behavior, he nay
talk to salesmen and their supervisors to find out what they feel leads
to success and failure in selling, and he may look at existing records
or collect new information on the Characteristics of successful and un-
successful salesmen. Fbr a more detailed discussion of job analysis
procedures, see Thorndike (ref. 131, pp. 12-31).

The programmer faces a somewhat different problem at this stage.
Since he wants to modify behavior, not predict it, at this stage he-wants
to assess how close his trainees now are to having the terminal (criterion)
behavior. Carr (ref. 15, pp. 557-558) has said,

4The programmer must also specify precisely the initial
S-R connections, i.e., those connections already in the
learner's repertory which approximate the terminal S-R
connections and from which the transitional S-R con-
nections are to be developed....To the writerts knowl-
edge, no research has been done on the problem of
specifying the initial S-R connections on which the
program is to be btdlt."

The problem is this; of the large number of S-R connections which
the learners possess at the beginning of training, which ones are rele-
vant to the programmer, that is, which ones need to be built upon to
produce the criterion behavior? For example, in the programming of auto-
mdbile driving, the learserst initial knowledge of French and of archi-
tecture may be obviously irrelevant, and their knowledge of traffic laws
obviously relevant. But what about their knowledge of how the car's
engine works, of how to use the meters on the dashboard, and of their
verbal knowledge of the relationship between driving speed and stopping
distance? In the latter cases it may not be so obvious whether these
behaviors are relevant to the criterion, and, if so, what other behaviors
are to be built upon them. Ore approach to this problem will be discussed
in Section 4.

Both the test constructor and the programmer face certain limitations
in their respective efforts to predict and to modify behavior. These
limitations can be grouped into (a) limitations during test or program
development, and (b) limitations during operational use of the test or
program.

(a) Limitations During Development

The limitations the test constructor or programmer will usually
encounter during development are limitations of time, personnel, and

-19-

24

eqpipment. When a test or program is needed in a hurry) or when the
needed personnel or equipment are not available) the test constructor
(or programmer) may be forced to do an inadequate job of such things
as specifying objectives) pretesting) revision) and the collection of

criterion data. As we have already seen) the specification of objectives
is an extremely important aspect of test and program construction) and if
the test constructor or programmer does an inadequate job here he cannot
usually correct this on the basis of later information.

When pretesting and revision are curtailed) the implications for
testing nay not be as severe as the implications for programming. In
testing) if the population of test-takers is large enough and the time
available for test-taking long enough) the test constructor can administer
more items or tests than will eventually-prove useful. He can then ascer-
tain from a sample of the examinees' test papers which are the useful items
and tests; from another sample he can check on the usefulness of these items
and tests (cross-validation); and then for the remainder of the examinee
population he need score only-those items and tests which have been found
to be useful. In programming) however) the items (frames) are not conceived
to be independent) but rather are cumulative; that is) in programming the
effects of exposure to individual frames on criterion behavior cannot
usually be isolated. Since frame revision on the basis of tryout with
students is considered to be a vital part of programming (refs. 69) 86))
we may expect that limitations in resources which curtail tryout and re-
vision will seriously affect the usefulness of programmed instruction.

(b) Limitations During Operational Use

Limitations on time available for testing during operational use are
also somewhat different from the limitations on time available for students
to go through a program. In tasting) we conceive of the measurement as tak-
ing place at one instant in time) although the actual test administration
nay last several hours. In programming) we conceive of the instruction as
taking place over a finite period of time. Wen testing tine is limited)
the test will consist of fewer items) and we may expect the reliability of
the test to suffer. When learning tine is limited) it is not clear whether
the program should consist of fewer frames. Drans) Olaser) and Homme
(ref. 39) reported that when more frames were added to a. program) the amount
of time taken per frame decreased. This presundbly reflects the fact that
when more framts were used) the "steps° between the frames were made smaller
and therefore could be taken more easily and quickly.* Holland (ref. 69)
also reports that when a program was revised and lengthened on the basis of
student responses during tryout) total time to go through the program was
reduced.

If training time is limited so that fewer frames are used and larger
steps mast be taken) some learners may not be able to take these steps) and
after some point in the program they will be unable to benefit from the later
frames. If the revision suggests that additional frames are needed) tut time
limitations prevent their being used) a major advantage of programmed in-
struction may be lost.

*For a thorough discussion of the concept of size of step) see
Lumsdaine (ref. 90. 25

-20-

A second possible limitation during operational use of tests and
programs is a limitation on supervisory personnel. In testing, when a
test is intended to be given by many relativelysmtrained proctors, the
test constructor nust make the administration a simple process. In such
an instance he night not have separately tined sections of the test, for
example. In programming, if no proctor is around and programmed texts
are used, it may be possible for the learners to "cheat" by looking ahead
at the answers before deciding upon their own answers. We do not know
whether this inpedes learning; research is needed on this question. The
use of machines may prevent cheating but may introduce the need for person-

nel to maintain the machines. The programmer should anticipate the need
for some supervisory personnel with "auto"-Instruction.

A third possible limitation during operational use of tests and
programs is a limitation in scoring facilities. Tests may be scored by
machine, by the examinee himself, or by another person. Wexler (ref. 135)
gives detailed considerations in the decision to have machine or human
scoring. In programming, the learner's answer is compared with the "cor-
rect" answer not for the purpose of scoring but for the purpose of providing
him with knowledge of results, that is: for the purpose of telling him
whether he was right or not.* This comparison can be made by the device
(from progrummed textbook to computer-controlled instructional system) if
the format of the frane is multiple choice, that is, if the learner is to
choose from a specified set of alternatives. If, however: the format of
the frame calls for a constructed response which the learner is to compose
himself: a problem arises in the comparison of his answer with the correct
answer. The nature of this problemwill be discussed in a later section
on item and frane writing.

Planning and Developing Items (Frames)

When the test constructor has sufficiently specified his objectives
and noted what resources are available to him, he is ready to prepare a
preliminary version of the test. One of the first considerations will be
that of the.scope, or extent of coverage: of the test. If the test is in-
tended to predict success in college as measured by grade-point average,
should the test include itens intended to get at certain personality charac-
teristics (e.g.: perseverance: skill in interpersonal relations) as well as
at certain cognitive dharacteristics (e.g., verbal ability, mathematical
ability)? The test constructor will attempt to cover those areas which
seem important and which his resources allow him to cover.

When a test is intended to measure achievement in an academic area,
a procedure is sometines followed from which we can derive a precaution
for programming. This procedure ispased upon a distinction made between
"subject matter" on the one hand and "dbility" or "process" on the other.
Ferris (ref. 41): for example: in working out specifications for a new
physics achievement test with subject matter experts, considered such

*
An additional purpose may be to provide information which can be

used to determiae what material the learner is to be presented with next.
This will be considered further in Section 4.

26
-21-

things as tine, mass, geometric optics, and conservation of energy as
sdbject matter topics, and the ability to demonstrate qualitative under-
standing of fundamentals, to apply knowledge to umfamdliar situations,
and to draw valid conclusions from observation and data as abilities.
The subject natters and abilities are laid out in a two-way grid or
matrix (see Vaughn, ref. 136). The procedure involves specifying the
nuMber of achievement test items which are to be developed for each of
the intersections of sdbject natter and ability categories (e.g., geo-
metric optics and ability to apply knowledge to umfandliar situations).
Thlse nunbers should reflect the test constructor's relative interest
in the various subject matter and ability categories. Such a specifi-
cation may be useful to the test constructor because it prods him into
writing items to cover that in whiCh he is interested, rather than merely
writing itens for those categories in which item-writing is easy. The
specification may also be useful to other people who may wish to use the
test, since it communicates the coverage of the test to them.

An important point to remember is that although the test constructor
denotes his relative interest in each category by the number cf itens he
assigns to it, the nuniber of itens gives no more than a rough indication
of the actual contrfbution of each category to total test score. This
contribution will depend not only on the nunber of items in the category,
but also on the standard deviation of the sdbscores from the category and
on the correlation of these subscores with the subscores from the other
categories in the test.

How is this related to programming? Evans, Glaser and Homme (ref. 40)
have suggested that in setting up specifications for a pTogram, one should
alao make use of a matrix--a "Ruleg" natrix. Presumably this matrix would
also serve the functions of insuring that the progranner cover that which
he intends to cover, and communicating to others what it covers, as well
as the function EVans et al. mention of getting the programmer to inter-
relate the concepts in the program. An inTortant point for the programmer
to renenber is that the numbers of frames devoted to each rule may only
be roughly proportional to how well each rule is learned. It would seem
that different concepts will require different numbers of frames to be
thoroughly understood. We already know that in the relatively sinple case
of learning paired-associates that different pairs require different
amounts of practice (e.g., see ref. 85).

Item (Frame) Format Specifications

The test constructor who has spelled out the specifications for his
test is ready to consider the item format or fornats which he will use.
His dhoice among different item formats nay already have been limited if
his assessment of resources indicated that the test must be scorable by
machine. The choice of formats he nakes will probably reflect what, for
him, is an unhappy merging of both "practical" considerations, e.g., ease
of writing itens, ease of scoring, and certain "theoretical" considerations,
e.g., "I don't think I can test writing ability with multiple-choice ttems."
While theoretical rationales might be developed for using or for not using
any format for any purpose, we do not know whether certain formats are in-
herently more desirable than others in all situations, or even inherently
more desirable than others In a particular situation:

-22-

27

...any such characteristic differences (in reliability
and validity) as may exist among item forms are of
trivial consequence when compared with the extrene dif-
ferences observed among items of the same form."
(Ref. 331 p. 189.)

In programming, it appears that characteristic differenceslimong frame
formats may also be of trivial consequence when compared to the 4ifferences
observed among frames of the same format. The available evidence on multi-
ple choice vs. constructed response frame formats (e.g., see refs. 37, 49,
113) does not show outstanding differences between these two formats.*
Nor wouldlit be clear what it meant if, say, each of these studies showed
the conszructed response format to be clearly superior. We cannot specify
the relevant dimensions along which multiple-choice and completion formats
might differ, so we cannot sample these dimensions to obtain generalizable
results.

Writinc Items and Frames

For the most part, the suggestions available in the literature for
writing test items are based upon informal, uncontrolled observations,
"folklore," "common sense" considerations, etc. In one study Dunn and
Goldstein (ref. 31) tried to systenatically evaluate sone of the tradition-
ally accepted rules for writing test items. The rules dealt with "incom-
plete statement versus question lead, absence or presence of specific
determiners or cues to the correct alternative, alternatives of equal length
versus extra-long correct alternative, and consistency or inconsistency in
grammar between lead and alternatives." Their findings gave no support to
any of the four rules with which they worked.

Suggestiors for writing auto-instructional frames which are derived
from informal, uncontrolled observations, "folklore," "common sense" con-
siderations, etc., are also available (e.g., see refs. 55, 86). These
suggestions, like the suggestions for writing test items, are of unknown
validity. Furthermore, just as the finding of Dunn and Goldstein had
rather negative implications for test item writing, there is a study which
has rather negative implications for frame writing. Newman (ref. 103) comp-

pared a group of students whose study materials were sequenced and con-
trolled in accordance with principles derived from learning research with
a group of students who used their own study techniques, and found that
the group using their own study techniques learned more. We do not know,

of course, how far we can validly generalize this finding. But the finding
should serve to caution programmers against a rigid adherence to insuf-
ficiently tested rules for the construction of program franes, just as the

*Frederiksen (ref. 45) has worked with a new response mode in testing
which incorporates features of both multiple-choice and constructed response
formats. S coLstructs his answer, then views E's alternatives and "chooses
the one which best approximates his response." In this way any advantage
of S constructing his response is obtained, while the problem of scoring
constructed responses is minimized. Gilbert (in ref. 95, pp. 545-546) has
suggested that such a response mode be developad for progranming.

28
-23-

study of Dunn and Goldstein should serve to caution test constructors in
a similar way. With this background of caution and skepticism, let us
look at some suggested rules of unknown validity for writing test items,
and see what implications they might have for writing program frames.

Discussions of how to write test items are available in Ebel (ref. 33)
and Travers (ref. 134). According to Ebel, the most important suggestion
is to "express the item as clearly as possible." In this context "clearly"
means unaMbiguously and understandably. "lest items should not be verbal
puzzles. They should indicate whether the student can produce the answer,
not whether he can understand the question" (ref. 33, p. 213).

It would seem that,in writing a program it is also important to strive
for clear, unambiguous frames. The programmer might use certain available
procedures which have been developed to assess the "readability" of his
frames. The Flesch count (ref. 44) measures readability by combining
measures of average sentence length and number of syllables per word, while
the Dale-Chall count (ref. 28) measures readability by combining measures
of average sentence length and relative frequency of words not on a list
of 3000 easy words. Both counts yield similar results, and the choice te-
tween them may be made on the basis of convenience. Dale and Chall point
out some limitations in the use of this type of count.* The programmer
might use such a count to make his program more readable before he tries
it out on students. Research is needed to establish whether this is a
feasible way to improve programs. One group of students might be given a
first draft of a program, and another gfoup of comparable students given
a draft of the program which has been revised on the basis of readdbility
count. The two groups would then be compared on time taken to go through
the program and on posttest achievement.

One difference between test items and program frames that we should
keep in mind when we try to apply item writing suggestions to frame writing
is that in general each test item is self-contained, that is, it must he
understood by the examinee when it occurs alone; while each program frame
occurs in the context of other frames, and these other frames may serve to
clarify its meaning. Consider this frame: "Some errors possible in at-
tempting a(n) response are errors in Content, Language, Depth, and
Waning" (from Ellison et al., in ref.111, p. 99).

If this were a test item, it would not be too clear what is called
for. In the context of the program in which it actually occurs, however,
the preceding frames serve to clarify its meaning. This example suggests
that some of the more specific suggestions for writing tests (for which
the empirical basis is not too secure) may not be directly applicable to
writing frames.

Let u,A, look at sone of these suggestions.

1. "Avoid including two or more ideas in one statement" (ref. 134, p. 56).

*An additional limitation for the programmer is that a readability
measure may be inappropriate when technical vocabulary is to be taught.

29
.

In testing, when an examinee cannot answer an item which deals with
several ideas, we have no way of knowing which of the ideas he cannot
handle. From this point of view it nay be undesirable to use such an item.
In one progranning study, however, Severin (ref. 119) found that the use
of "two pairs" frames, which contained two Russian-English vocabulary word
pairs per frame, resulted in more learning than did the use of a two-
alternative multiple-Choice frame) which contained only one Bussian-English
vocabulary word pair per frame. an this specific instance, therefore, the
suggestion for test item writing does not seem to hold for program frane
writing.

2. "Avoid the inclusion of nonfunctional words in the item" (ref. 33, p. 215).
ibel considers a word in a test item to be nonfunctional "when it does

not contribute to the basis for choice of a response." Rolland makes a
similar suggestion for program writing: "It is probably an adequate rule of
thumb to say that any portion of an item which is not necessary for the
student to arrive at a correct answer cannot safely be assumed to be taught
by the itee (ref. 70).

Sone suggestions are specific to constructed-response items:

3. "Direct questions are probably preferable to incomplete declarative
sentences, especially for younger, less 'test-sophisticated' pupils, because
the former are more similar to the forms in which ordinary discourse is
carried on.

Faulty: America.was discovered in the year

Improved: In what year was America discovered?" (ref. 110, p. 81).

This is one of the four points for whichann and Goldstein found no
empirical support. We will not consider its implications for writing frames.

4. "Keep the ratio of words given to words omitted very high because, if
too many words are omitted, the meaning of the whole will be obscure"
(ref. 134, p. 41).

This suggestion would seem to also apply to programming. Below are two
examples of frames written by progranners who aim at little or no learner
error. In each case the substantia). proportion of errors made may be due
to the violation of the above suggestion.

"A child has a Itenper tantrum' screaming for candy. The mother gives
the child the candy, and the tantrum ceases. The motherls response of hand-
ing the candy to the child is by the of the tantrum" (ref.,68,
p. 78). Fifty-six percent of all the learners got both answers correct.

"LEARNING is indicated by any 'change' in to a situation which
is the result of responses to the same or similar a
nct nullified to any degree by an extended of ----laWing which
neither that nor any similar situation is piaafia" (ref. 5, p. 190). The
percentages of all learners who correctly filled in these blanks were 96%,
43%, 86%, 57%, 86%, and 80%, respectively.

The ratio of words given to words omitted may be a rather coarse index
of how obscure a frane is. "...one nation, under God, with

725-

3 0

Th

may be an easier-to-complete frame than the frame from Barlow quoted above,
yet such an index would rate it as more obscure. Perhaps rather than trying
to formulate a rule regarding the ratio of words given to words omitted, we
should only conclude that when a frane gives students trouble, the programmer
should consider the possibility that too many important words are omitted.

5. "The blanks should refer only to omitted key words" (ref. 134, p. 42).
Holland (ref. 70) comFared a group given a program with key words omitted

in each frame with a group given a program with "trivial" words omitted in
each frane. Sample frames from each of these versions of the program were:
At technical term for "reward" is reinforcement. To "reward" an organism with
food is to it with food. (key word omitted) A technical term for
II reward" is reinforcement. TO "reward" an organism with food is to reinforce
it with . (trivial word onitted) The group with the key words omitted
did better on the posttest. Similarly, Jones (ref. 80), working with a
multiple-choice format, concludes that the correct answer should not be
"trivial." "The good itent may be characterized as...one which cannot be
answered by reasoning or knowledge of vocabulary alone" (ref. 80, p. 99).

6. "Specify the terns in which the response is to be given.

Faulty: Where is the world's tallcst building located?

Improved: In what city is the world's tallest building located?" (ref. 110).

The reasoning behind this suggestion is that it is hard to anticipate
all possible answers to a completion item (e.g., "North America" might be
an answer to the faulty version of the above item), and so it is useful for
the test constructor to state the form the answer is to take (in the above
item, the improved version specifies that the name of a city is wanted). With
mathematical subject matter it may also be necessary to state the degree of
precision wanted in the answer, e.g., the number of significant figures.

In following this suggestion, however, the test constructor is not to
choose just any method of specifying the terns in which the response is to
be given: "Hints concerning the correct answer, in the form of the first
letter of a word, or a number indicating the nuMber of letters in a word,
should generally not be employed. Such hints may tend to confuse pupils when
the answer upon which they have decided, although it is a correct synonym,
does not coincide with the given hint. Guessing and responses to superficial
cues may also result from this practice" (ref. 110, p. 82).

In programming, it may be particularly imyortant to specify the terms
in which the response is to be given. As we have seen in the discussion of
limitations during operational use of the program, the problem of how to
tell the learner that he is correct may arise when a constructed response
format is used. Programmers have generally left it to the student to compare
his response with the "correct" response. This leaves it up to the student
to recognize that his response, which may be stated in different terms than
the "correct" response, is essentially equivalent to it. This extra burden
on the student may be relieved. b7 specifying the terms in which the response
is to be made, e.g.,

If A = 1, 2, 3 and B = 4, 5, then A is not equal to

(Use one letter for your answer) 31 .

-26-

(from ref. 35, p. 15) or by using interchangeable synonyms when providing
knowledge of results, e.g., "Latency is the between the onset of an
energy change and the onset of a response which it elicits." Time (interval,
period) (from ref. 71, p. 4).

Some suggestions are specific to multiple-choice items.

7. If you want to increase (decrease) the difficulty of an item, make the
distractors more homogeneous (heterogeneous). Renners and Gage (ref. 110)
give this example: "Which city is nearest to Chicago? (1) Los Angeles,
(2) New York, (3) St. Louis, (4) Miami, (less homogeneous); (1) Minneapolis,
(2) St. Louis, (3) Cleveland, (4) Milwaukee, (more homogeneous)." The
programmer who is interested in a gradual "shaping" of behavior within a
multiple-choice format might progressively increase the homogeneity of the
alternatives in a series of frames.

8. When it is difficult to anticipate what mistakes will be made in answering
an item, do not use "none of these" as the correct answer, since bothpeople
who are correct and people who make unanticipated mistakes will choose it
(see ref..33, p. 237). Consider the following frame:

X2Y-3 means the same as:

(A) x.x y.y.y (B) (x.yr.6 (C) (D)
none of these

Y.Y

(from Evans, ref. 38).

The learner who makes any mistake other than (A), (B), or (C), e.g.,
X.X

(XY)-1 , as well as the learner who knows the correct answer, will
2 2

bcth choose (D). If mistakes other than (A), (B))and (C) are at all common,
this night be a poor frame.

9. "Make all distractors plausible and attractive to examinees who lack the
information or ability tested by the item"* (ref. 33, p. 2310.

Pressey feels that in an instructional test (auto-instructional program),
the distractors might be more than just plausible and attractive.

"Each wrong answer should be one against which a warning
is needed, or which elucidates the question in some way.
No alternative answer should confuse the student or tntro-

- duce ways of construing the question which are not edu-
cationally profitable to consider. Poor alternatives waste
time bcth in taking the test and in discussion after, and

*
Those who reject the multiple-choice format would find the use of this \

test construction rule in programming to be particularly objectionable:
"...effective multiple-choice material must contain plausible wrong responses, 4
which are out of place in the delicate process of /shaping' tehavior because
they strengthen unwanted forns " (ref. 123, pp. 140-141). As we saw earlier
(pap 23), we have no firm basis for favoring either aultiple-choice or com-
pletion formats in all situations, and it is not clear that we ever will.

32
-27-

night confuse the learner rather than help hie
(ref. 106, p. 422).

Presseyss statenent suGgests that the nunber of alternatives for a
multiple-choice frame should depend on the content of the particular frame,
and that all the franes in a program need not have the sane number of alterna-
tives. On the other hand, some research in programming (refs. 81, 119) has
attempted to compare differing nmabers of alternatives as an independent
variable. Since this "variable" may actually be a complex of variables (e.g.,
popularity of alternatives, similarity of alternatives), the results of these
studies should be cdutiously interpreted.

The suggestions for test item writing given here, which do not exhaust
the supply of all possible suggestions, indicate that test construction is
a complex, highly skilled. activity. This, in turn, might suggest that it be
carried out by a professional test constructor. Unless the subject matter
is very sinple, however, the professional test constructor may emphasize
relatively trivial, easily testdble aspects of it and neglect its basic
structure (ref. 136). Collaboration with a subject matter expert may help
to eliminate this danger.

Good progranning is also thought to involve both sdbject matter mastery
and progranming dbility (ref. 111). Because of the relative newness of
programming, talent for it may be unavailable, or perhaps unknown to those
possessing it.

Rigney and Fry indicate that one skill the progranmer mmst develop is
that of going slowly, of proceeding in small steps, "...(the beginning pro-
grammer) is quite likely to write the first version of his program with steps
that are inappropriate, too difficult, and too few for the material"
(ref. 111, p. 14). Other programners have expressed similar sentiments.

The taxonomy of educationel objectives prepared by Bloom et al. (ref. 8)
may be helpful in this connection. The taxonomy is based upon aix major
classes of objectives: Knowledge, Comprehension, Application, Analysis,
Synthesis, and Evaluation. As just given, they are assumed to be in hier-
archical order, that is, the objectives in one class are l!likely to make use
of and be built nn the behaviors found in the preceding classes in thia list"
(ref. 8, p. 18).

Bloom et al. present sample itens and invite the ieader to classify them
as to objective, using their taxonomy. This type of task might be useful as
a test item in a test used to select programmers. Potential progranners who
consistently underestimate the level of objectives, woula presunably write
items that were too difficult. This type of task might also be useful in
training programmers.

Research is needed on the extent to which "experts" agree in classifying
itens in this taxonomy, and, of course, on whether the classes of objectives
are actually hierarchically ad-a:al...Me will further discuss the question of
ordering behavioral skills 412 Section 4.

33

Pretesting (Tryout) and Revision
.4 -

When the test is constructed, the next step is to pretest it, or to
try it out. The test constructor should first try it out on his col-
leagues, who nay offer suggestions concerning format, editorial considera-
tions, ambiguities, and inaceuracies. The term "pretest," however, usually
refers to the trying out of the teat material on melbers of the population
for which it is intended. Such a pretest may serve several purposes. It

may uncover weaknesses in instructions and format, and provide information
for establishing time limits, for establishing a desirable test length, and
for improving and selecting items.

In programming, several recent reports (refs. 19, 59, 122) indicate
that when the learner is not required to male any overt response in going
through the program, learning does not suffer and learning tine maor be
decreased. While we do not know whether this finding will hoa 'up mith
learners not highly motivated by taking part in an experiment, it does sug-
gest that under certain circumstances the learner's overt responses are not
necessary during operational use of the program. It would still seam to be
highly desirable for the learner to make overt responses during the tryout
of the program, however, so that they could serve as a basis for revising
the program.

We will now look at various aspects of pretesting and revision in test
construction. In each case we will see what implications may be derived
for programming.

Instructions and Format

The test constructor may use a small nuiber of people and perhaps a
typewritten draft of the test when he attempts to uncover weaknesses in its
instructions and format. Conrad (ref. 17) refers to this stage as a "pre-
tryout." During pretryout the instructions may prove to be incomplete,
anibiguous, or otherwise deficient.

A pretryout stage seems desirable in program development too. The
learner, who may or may not be familiar with some of the more commonly used
testing procedures, will almost invariably be unfamiliar with the programming
procedure (which will include the novel feature of knowledge of results, and
possibly other novel features, such as branching). The programmer's in-
structions will aim at acquainting the learner with programming procedures,
but various misunderstandings on the part of the learner may occur and be
revealed by a pretryout.

In addition to format weaknesses in instructions, a pretryout may also
uncover weaknesses in how the test was put together. For example, the infor-
mation needed to answer a question may be on the previous page in the test
booklet, or one particular respanse position maybe correct much more than
its proportionate share of the time, etc. These weaknesses in putting the
test together will te called weaknesses in format.

A test may also be considered weak in format when response sets are
allowed to operate. Response sets may be defined as tendencies of subjects
to respond in ways which defeat the purpose of the measurement. For example,
one response set, "acquiescence," is the tendency to agree with a statement

34
-29-

regardless of its content. The set to gaMble is the tendency to'guess
when the answer is not known. For a discussion of the operation of
response sets in personality assessment, see Jackson and Messick (ref. 76).

Since response sets make the interpretation of test scores atbiguous
because they measure things the test constructor is not primarily inter-
ested in, their influence should be minimized. Response sets tend to
occur in situations which are somewhat unstructured and/or too difficult
for the examinee. Their influence may therefore be minimized by a re-
structuring of the test.

Let us look at some response sets which might occur in programming
and see what night be done about them.

The learning of paired-associates is a fairly common task with which
a program might deal.* In such a task the student must learn to associate
particular responses with particular stimuli, e.g., state capitals with
names of states, telephone nunbers with people, names of symbols with
symbols, etc.** If a program always presents the stimulus terns of paired-
associate items in the sane order, the student may learn a chain of
response terms without paying attention to the stimulus terms. This would
permit a response set to operate which night lead to the premature termi-
nation of training, since the student would appear to be learning.the
paired associates as paired-associates. The programmer could prevent the
formation of this response set by scranbling the order in which the stimulus
terns are presented on successive occasions.

In this example, the tendency to learn the response terns as a chain
without regard to the stimulus terms may or may not ultimately nake it
easier to learn the response terms as responses to their respective stimuli.
This is a question which might be answered by research on the learning
process. The point made here is that the response set in question may
interfere with the measurement of the student's proficiency, that is, how
well the student does when the stimulus terms remain in a constant order
may not be a good predictor of how well he would do if the order were
scrambled.

In the learning of "continuous discourse" nateria3;5, the programmer may
make considerable use of "prompts." In a prompted frame the student is
enabled to respond correctly on the basis of knowledge of syritactical
restraints, pat verbal associations, etc., for example, "Just as smoke rises,
warm air will also " (ref. 94, p. 535). Such proppting techniques
are assumed to facilitate learning. It is important, however, to distinguish
between frames intended to promote learning and frames intended to see if
learning has taken place. The former might be called instructional frames
and the latter, criterion frames. The sane prompting techniques which may
enhance learning on instructional frames should not allow response sets to

..In fact, some devices are designed for paired-associate learning
material exclusively.

it*
The associations need not he one-to-one (see ref. 127).

-30-

35 ';

operate on criterion frames. The programmer will detect the nore obvious
opportunities for response sets to operate by inspecting the criterion
frames.

For those frames in which numerical responses are to be given in a
nultiple-choice format, a special response set may operate. Ebel (ref. 33)
notes the "...strong tendency for the examinees to confuse the absolute
valve of the answer with the response position used to indicate it." This
tendency might,be reduced (but probably not eliminated) by using letters
rather than nunbers to indicate the response positions. Shay (ref. 120)
reports that some learners showed this tendency in going through his program
on Roman numerals, and unfortunately this was not corrected when the program
was pretested. Perhaps a color coding of the response alternativs would
have eliminated this confusion.

Establishing Tine Limits and Length of-Tdst (Program)

The question of how much time to allow for a test is, of course, insepa-
rable from the question of how long the test should be. Administrative con-
siderations usually serve to limit the amount of time available for testing,
and in this way indirectly limit the length of the test. For a fixed amount
of testing time, the test constructor tries to provide a sufficient nunber
of items to adequately sample the behavior in which he is interested. If,

however, he includes too many items, the test may overemphasize speed of
responding when the test is intended to measure something else (ref. 135).
When time permits and enough items are available, the test constructor may
add itens to his test to increase the precision of his measurement. Under
the proper conditions, the amount of increase in the test's reliability may
then be predicted by means of the Spearman-Brown formula (ref. 65).

In programming, we cannot state any precise relationship between length
of program and time taken by learners. In the earlier section on limitations
during operational use, we saw that adding frames to a program may nake each
frame easier to respond to, and in this way decrease the anount of tine
needed to go through the program, while increasing the amount learned. It

does not seem reasonable, of course, that adding frames to a program will
always decrease the amount of time needed by the learners and increase the
amount learned. It may be, however, that whenever frames are added to a
program so that the time needed to go through the program decreases, this
is always accompanied by an increase in learning. If research supported
this hypothesized relationship, it would suggest that during tryout the
programmer should pay attention not only to whether frames are responded to
correctly but also to'how much time is required to respond to each frame.
When a frame requires an unusually long time, this might indicate that
additional frames are needed prior to it.

An additional timing consideration can be resolved during tryout of a
program. There appear to be large individual differences in the amount of
tine learners take to go through the sine program. Rothkopf (ref. 115)
reports that a range of times needed on one program is from 23 to 60 hours;
Shay (ref. 120), from 31 to 176 minutes; and 0agnd'and Dick (ref. 52), from
190 to 380 minutes. Since the fastest learners may take only about one-
fifth to one-half as much time as the slowest learners, the programmer must
make some provision for occupying the time of those who finish first. Try-
out'data can provide some idea of the range of times to be expected with
a particular population of learners using a particular program.

-31-

36

Selecting Items (Frames)

finally, a major purpose of pretesting a test is to improve and select
items. The basic data the test constructor may get from pretesting items
are their difficulties and their correlations with other items and with an
outside criterion.

Item difficulty is used for two basic purposes. One is to select items,

and the other is to order the items selected in the final form of the test.
If the test constructor wants to make the maximum number of discriminations
among the people in the group tested, and the available items are completely
uncorrelated, then he selects items which have p values of .50.* If the
items were perfectly correlated, he would choose items spr?ad over the
entire range of difficulty. If he wanted merely to divide the group into
two subgroups, he wculd choose items with Evalues which corresponded to the
woportion of people he wanted in each group. If, for example, he wanted the
higher scoring subgroup to constitute 20 percent of the population tested, he
would choose items with p values of .20. When he uses the item difficulty
information for ordering the items in the final form of the test, he generally
arranges them from easiest to most difficult.

In wogrcmming, frame difficulty information obtained during a tryout
may also be very useful in selecting, rewriting, and, perhaps, reordering the
frames. Carr (ref. 15) has listed what he considers to be five possible
sources of error in program writing. They may be paraphrased as follows:
(1) Incorrectly specifying criterion behavior; (2) Incorrectly e;ecifying
initially available behavior; (3) Providing an inadequate amount of training
material; (4) Improperly sequencing the material; and (5) Moving too
quickly. (It is not quite clear how this differs from the third source of
error.)

It would seem that each of these sources of error except for the first
could be revealed by pretest data on frame difficulty. Unfortunately, it
may be hard for the programmer to determine just which source, or sources,
of error is operating in a given situation.

A general procedure might be to periodically place in the program what
we have called criterion frames--frames which allow the students to demon-
strate mastery of some particular aspect of the subject matter. The pro-
grammer could obteCa data on the difficulty of these frames outside of the
context of the program, and compare them with the difficulty of these frames
within the context of the wogram. If a criterion frame is easier within
the context of the program than outside it, then the programmer may assume
that the frames previous to it in the program contribute toward the learning
of what the criterion frame tests for. If the criterion frame is as ecually
difficult within the context of the program as outsidelthe frames previous
to it in the program may not be adequate. aim

In addition to item difficulty, the correlations of an item with other
items and with an outside criterion are other data which are obtained during
tryout and which can be usef,11 in selec.ing items. We have already seen how

The p value of an item is the proportion of examinees attempting it
that answer it correctly.

37
-32-

information about the intercorrelation of the items is used in conjunction
with information about item difficulty to maximize the numbers of discrimi-
nations made by the test. Now we will see how item-test and item-outside
criterion correlations can be used by themselves.

When the test constructor vents his test to measure an ability or trait,
e.g., anxiety, then the correlations of each item with total test score
become important. Since each item is intended to measure the same charac-
teristic as every other item: the homogeneity of the items, as may be measured
by the correlation between each item and total test score,* becoms a basis
for item selection. On the other hand, the test constructor might be inter-
ested in developing an achievement test to define'some criterion behavior
in which he is interested: and the correlation of each item with total test .

score may not be important to him. Finally: he might-be-interested in pre-
dictindan outside criterion, without regard to the "purity" of the test that
will behk enable him to do so. In this case: he may see hou well each indi-
vidual item discriminates between two groups of people who are high and low
on his criterion measure: and then select those items which best make this
discrimination. Thorndike (ref. 131, p. 232) points out that the test homo-
geneity and individual item validity viewpoints are two extremes; in actual
practice both considerations may be of some importance to the test constructor.

Can some concepts analogous to those of test homogeneity and individual
item validity be useful to the programmer in revising his program?

When one sets out to construct a homogeneous test, then item-test cor-
relations are logically relevant as a basis for item selection. In program-
ming: if we consider each frame to be a test item: there is no logical reason
for using item-test correlati ls as a basis for selecting items-TITZ;;S). As
an empirical matter, however, this may turn out to be a useful procedure.
Hook::: (ref. 72) used test items with high item-test correlations as frames
for a Crowder-type program. Jones' data (ref. 80), on the other hand: showed
a tendency for those items which correlated lower with total test score to
have higher instructional value. Jacobs (ref. 77) has discussed some of the
difficulties in interpreting Jones' results. We obviously need some research
on the usefulness to the programmer of a concept analogous to that of test
homogeneity; we will see now one direction such research might take.**

While an individual test item might be judged by the discriminations it
makes: an individual program frame may be judged Inr its instructional effec-
tiveness. The basic paradigm for evaluating an individual frame might be to
construct two versions of a program--one including the frame to be evaluated
ahd one omdtting it--and to compare the criterion performance of otherwise
comparable groups of learners given the two versions. As an operational
procedure, however, the application of this paradigm would be extremely im-
practical with a program of even moderate length. The paradigis might be used

Other'neasures of test homogeneity, those of Loevinger and Guttman, are
discussed by Guilford (ref. 64, p. 363-364).

**
In a discussion in Section 4 of the appaication of Guttman scaling to

programming, we will see another direction such research might take.

38

-33-

in a research study to obtain criterion measures of the instructional
effectiveness of a set of frames. We could then determine how well item-
test correlations could predict these neasures of instructional effectiveness.

As an alternative) one might construct a criterion test whose items can
be identified in one-to-one fashion with instructional frames or sets of
instructional frames in the program.- The test would then be adninlstered
bah as a pre- and posttest. An instructional frane or set of frame which
failed to increase the proportion of learners getting the corresponding test
item right from pre- to posttest would be revised. Here the problem is
whether instructional and test items can actually be matched in a one-to-
one fashion without cross-eontanination. For a continuous discourse or
structured subject natter) that is) one in which certain toydcs nust neces-
sarily precede others) this matching may be impossible.

Revising Items (Frames)

Both the test constructor and the programmer nay wish to use the infor-
nation obtained in a tryout for revising itens (frames)) as well as for

*selecting them. In both test construction and program development the suc-
cessful revision of items or frames may be pretty much of an art) which means
that a complete set of rules cannot be explicitly stated for this activity.
In test construction only two rules have been found) both of which deal with
the revision of multiple-choice items.

(1) Eliminate or revise lternatives which attract very few examinees.

(2) Blininate or revise alternatives which fail to make the proper
discriminations. If the examinees who are highest on the criterion measure
choose a particular incorrect alternative more frequently than the examinees
who are lowest on the criterion measure) or if they choose the correct alter-
native less frequently) then the alternative involved is not making the prop-
er discrininations (ref. 131) p. 256).

One might apply both these rules to programming. Rule (1) might not
be valid in a programming context) since an alternative which few people
choose could still conceivably serve some instructional function by its mere
presence among the alternatives. Rule (2) night be rephrased: If high
aptitude learners choose a particular incorrect alternative more frequently
than low aptitude learners) or if they choose the correct alternative less
frequently) then the frame is poor. In such instances there may be a subtle
ambiguity in the frame of which only the high aptitude learners are aware.

Further Pretesting and Revision

The amount and kind of pretesting for.a test will vary with the available
resources. Conrad (ref. 17) recommends a three-stage tryout procedure. The
first stage would be intended to reveal gross defects in the test and) as was
mentioned earlier) night use the test constructor's colleagues as examinees.
The second stage would be for the purpose of item selection and revision and
would utilize exaninees from the population for which the test is intended.
The third stage would provide infornation on tine limits and serve as a
"dress rehearsal."

In programming, the mount and kind of pretesting or tryout would also
be determine& to sone extent by the available resources. bit in programming

39

a multiple-stage tlyout and revision may have much greater importance than
in testing. If the test constructor starts with a sufficiently large number
of items, he can discard those which fail to make the desired discrimlnatiors
and retain those which make the desired discriminations for operational use.
In programming, however, when a frame fails to teach what it is intended to

teach it, or perhaps earlier frames, must be revised, replaced, or reordered.
The veruion of the pmgram which emerges from this revision must then be
tried out, and this process may have to be repeated many times.

Evaluation

.When the final form of a test becomes available after pretesting and
revision are completed, the next step is to evaluate it. Since tests are
used to classify people, when we evaluate a test we try to find out how well

it classifies people. Then, before putting the test into operational use, we
compare how well the test classifies people with how well the best available
alterncte procedure classifies people. Similarly, in evaluating a program,
we want to know how well it produces the desired criterion behavior and how
well it compares with the best available alternate training method in pro-
ducing the desired behavior. As we shall see, there are many considerations
in evaluating a test which also apply to evaluating a program.

The specific way in which we determine hov well a test classifies people
depends on our purpose in classifying them. In testing educational achieve-
ment, we are inteted in what the test constructor calls content validity,
that is, "how w the content of the test samples the class of situations
or subject matter about which conclusions are to be drawn" (ref. 3, p. 13).
Content validity is determined by comparing the content of the test with the
content of the instructional or training course and/or the statement of
objectives for the course. The test items shoUld not only bc derived from
the course objectives but also should adcquatelysample the range of tasks
for which the training was intended. A, common mistake in preparing a test
of educational achievement is to include items which indeed present the
examinee with tasks for which the training was intended, but which

"...limit the test series to the elements of the criterion
series that are most conveniently and most easily repro-
duced, or most easily and objectively observed and evalu-
ated...(so that)...many of the more unmanageable but more
important and crucial elements tend to be neglected in, or
omitted from, the test" (ref. 92, p. 1,3).

Since we use an achievement test to evaluate a program, the above con-
siderations cwicerring the content validity of an achievement test are quite

relevant. Many programs may be intended not just to provide the learner
with certain "terminal" skills but rather to serve as a basis for learning
more advanced subjects. In these cases many problems arise in the proper
measuring of "achievement." It maybe relatively easy to test what tmhaviors
the learner who has gone through the program can now nerform, but this may
not be related to how he will learn new material. Kendler (ref. 83) and
Cagnef(ref. 51) have discussed the problem of measuring how well the learner
who has gone through a piogram can deal with the range of situations in which
the programmer is interested. In the terms which we will discuss next, an
achievement test which can provide this measurement is said to 'nave predic-

tive validity.

-35-

4 0

In contrast with content validity, in which performance on the test may
be of interest in itself, there are three other types of test validity whici.
are established by relating test scores to criterion scores, namely, pre-
dictive, concurrent, and construct validity. Predictive validity.refers to
how well a test can predict future performance. Concurrent validity refers
to how well a test tan discriminate among presently identifiable groups.
The test constructor who attempts to establish either predictive or concurrent
validity faces thcse problems of collecting criterion data that were mentioned
in the earlier section on specifying objectives. Construct validity refers
to how well the test measures some trait or quality (construct) which is pre-
sumed to be reflected in test performance. The test constructor attempts to
establish construct validity by hypothesizing and verifying certain relations
between the test and other variables.*

In trying to establish predictive, concurrent, or construct validity,
the sample of examinees cannot be as haphazardly assembled as in certain
stages of pretesting and tryout. The sample of examinees should be.repre-
sentative in abilities of the population for which the test is intended, and,
as far as is possible, representative in motivation as well. This point
would seem to appay directly to the evaluation of programs, also.

The test constructor may also be interested in "face validity": whether
a test looks like it will do the job for which it is intended.** This con-
cept may also'be important to the programmer: if the program does not look
like it will do the job for which it is intended, the learners may simply
refuse to go through it. We do nct yet know what characteristics a program
must have in order to possess face validity; for a sampling of some students'
reactions, see Roe (ref. 113).

Earlier, in our discAission of insuring the adequacy of a criterion, we
mentioned the consideration of criterion reliability, or consistency of
criterion measurement. Consistency of measurement is, of course, also desir-
able in tests which are used for prediction, as well as in tests which are
used as criteria, and so test reliability may be looked for in evaluating a
test. Thorndike, however, suggests that

"If anything, the significance of reliability has been
overestimated. It must be remetbered that precision in
a measurement procedure is a necessary condition only
for obtaining significant relations between different
measures and is not an end in itself" (ref. 131,
pp. 104-105).

The programmer may generally want the changes ia behavior his program
brings about to be lasting rather than temporary, and he might speak of this
characteristic as in some way analogous to "test-retest" reliability. Un-
fortunately, the available knowledge of test reliability does not suggest

For more extensive discussion of construct validity, see Cronbach and
Meehl (ref. 24), APA Technical Recommendations (ref. 37).

**
For further discussion of fate validity, see Mosier (ref. 101).

41
-36-

any technique's for the programmer to use in order to promote the retention
of what his program teaches.

Relative Costs and Benefits

We have discussed some considerations in evaluating how well a test
classifies people and the implications of these considerations for evalu-
ating how well a program proauces the behavior desired. Now we will look
at the question of costs of tests and programs and at comparisons with the
best available alternatives to tests and programs.

When the test constructor has gathered. Validity data on his test, he
must then reach a decision as to whether it is profitable to put the test
into operational use. For a selection test, this decision can be nade by
considering the validity coefficient of the test (the correlation coef-
ficient between test scores and criterion scores), the relative number of
people to be teste& and positions to be filled (the selection ratio), and
the cost of.administering and scoring the test. The higher the validity
coefficient, an& the lower the cost of the test, the greater the benefit
to the test constructor using the test. The selection ratio has a more
complicated relation to the benefit obtained through use of the test (see
ref. 23, pp. 36-37). When information on-these variables becomes available,
it can be combined according to formulas given by Cronbach and Gleser. The
basis of combining what may be rather diverse neasures i8 a cost anal -is.

Cost analyses were previously discusseain the section on selecting cl_:eria.

When a measure of the benefits due to the use of the test is computed,
it should then be compared with a measure of the benefits due to using the
best available alternate selection procedure. _The best available alternative
may be to use sone already available piece of information (e.g., highest
grade of school completed, interviewer's impression of applicant, etc.),
or it may be merely to randomly select applicants. In any event, the test
should be put into operational use to replace or to be use& in conjunction
with the best available alternative only to the extent that doing so makes
a distinct contribution to the test constructor's goals.

In programming, there are also a variety of diverse elements which must
be combined to get a measure of the benefits of using a program. We have
already seen that there may be several different criterion measures of post-
test performance (e.g., rate of performance, quality of performance) which
must be combine& to yield a single criterion measure for each individual.
Criterion measures must further be coMbined. with certain items of cost to
arrive at a measure of gain to be expected through the use of the program.
Ttoto major items of cost may be learning time and the expense of preparing a
program. Ferster an& Sapon have statei:

"...a series of materials could probably be constructed
in which each item is scientifically designed so that
the students will progress from a zero knowledge of
German to a complicated repertory of the level of a year
of college German without ever having made an error"
(ref. 42, p. 185).

While this may be so, the programmer will want to know such things as how
long it would take to go through such a program and how expensiVe such a
program would be to develop.

-37-

42

Bigney and Fry (ref. 111) have outlined the following items which they
feel should enter into a cost evaluation:

1. Cost per unit

a. For program
b. Fer student
c. Per machine

2. Investment

a. Initial
b. Long term

3. Training time per student

4. Quality of students required (aptitude, experience, etc.)

5. Quality of instructors required (credentials, experience, etc.)

6. Logistics involved

a. Space, power, maintenance requirements
b. Program reusability, useful life

7. Practical effectiveness of method

a. In relation to training objectives
b. In relation to competing methods

8. Acceptance of method

a. By students
b. By instructors
c. By administrators

An additional cost consideration in many educational, industrial, and
military settings is how quickly the subject matter may be expected to
become obsolete and how expensive it would be to make changes in the pro-
gram to cope with this obsolescence.

As in evaluating a test, the basis of coMbining rather diverse measures
in order to evaluate a program is a cost analysis. Kershaw and haean
(ref. 84), although they do not deal explicitly with programmed instruction,
present a detailed discussion (with hypothetical examples) of the application
of cost accounting procedures to an educational system.* The decision as to

*
Such cost analyses, in addition to providing a basis for evaluating

programs, may also suggest research designed to reduce costs. Rothkopf
(ref. 114), for example, compared two methods of dropping items in the
learning of paired-associates, and found that they did not differ in trials
to learn or in amount retained per trial to learn, although one method was
presumed to involve more expensive equipment.

43
-38-

whether a program should be put into operational use may be made by com-
paring the net cain to be expected from using the program with the net
gain to be expected when the best available alternate training method is
used. The best amilable alternative may be the use of another program,
unguided self-study from books, or, perhaps, no training at all. The best
alternative most commonly available at present is probably "conventional"
or "traditional" instruction (e.g., lectures, recitation classes).

Ttio major methodological problems arise in comparing a program to be
evaluated with the best available alternate training method. One basic
paradigm for comparing any two instructional methods is to use one of the
methods with one group of students and the other method with a "comparable"
group of students and to compare the achievemsmt of the two groups. Con-
ceptually, "comparability" of groups means that the conclusions reached
would be the same no matter which group was assigned to which instructional
method. Operationally, one tries to obtain comparability by either a random
assignment of individuals to methods or by a random assignment of intact
groups (classes) to methods. This type of procedure, however, may often not
be administratively feasible, and has not always been used in studies of
programmed instruction. In some of the pioneering work of Pressey and his
students (e.g., refs. 119, 126), as well as more recent work (e.g., ref. 73),
the experimenters have resorted to nonrandom assignments. Although they may
demonstrate that the groups used did not differ initially on mean aptitude
or pretest scores, this may o- may not indicz.te comparability. The evalu-
ation of a program must be based upon experimental comparisons of comparable
groups, so that any differences or lack of differences in achievement may
be ascribed to differences in programmed and conventional instruction rather
than to pre-existing differences in groups.

Another methodological difficulty which comes ul in comparing programmed
and conventional instruction is this: while rrogrammed instruction may be
"standardized" (that is, the material presented 0 the student does not
depend on what class, school, or city he Is in), conventional instruction is
not standardized. We know that teachers differ markedly in what they do in
the classroom, although we know little about teacher differences in the
effectiveness of what they do (ref. 100). For this reason, the programmer
who wants to compare programmed and conventional instruction must in some
way sample the variety of conventioual instruction available so that he may
have greater confidence that the results he finds will apply to his partic-
ular situation. Some programmers and research workers have raised the
question as to whether the sane program which is useful with "dull" students
is also useful with "bright" students. The programmer should also be inter-
ested in knowing whether the same program which is useful when "poor" con-
ventional instruction is available is also useful when "good" conventional
instruction is available.

Providing Information to Test (Program) Users

In order to use test scores, one needs to know, of course, how the
test scores are distributed among the meMbers of a relevant population of

examinees. The test user who wants to compare an individual's or group's
test scores with those of other individuals or groups can often make a more
useful comparison by referring to score distributions from rather specific

reference groups. A high school principal, for example, may find it more

-39-

44

useful to know how the achievement of his ninth-grade students on anstandard-
ized" mathematics test compares with the achievement of other ninth-grade
students in cities with populations of less than 25)000 in the Mid-west)
rather than how it compares with a reference group randomly drawn from around
the country. For this reason) the test constructor may make available score
distributions for various sub-populations. Similarly) the potential. user of
a program may find it more useful if the learning times and posttest scores
are broken down for various sub-populations.

A second way in which the test constructor might present data) so as
to make his test more useful to others) is to establish the equivalence
of scores from his new test with scores from other tests of similar use.
For example) a potential test user may know that 60 is a useful cutting
score for his purposes when the test given is Mathematical Aptitude Test A.
If) however) Mathematical Aptitude Test B is the test from which he is given
applicants' scores) bow can he tell what will be a useful cutting score?

This type of problem arises in institutional testing programs) such as
are carried out by the College Board) in which the test items used on suc-
cessive forme of the tests must be continually changed. The problem differs
from the one of providing detailed data on the performance of sub-populations
on a particular test in that here one has to deal with a new test given to a
new (and potentially different) population.

A basic mechaniam in determining or producing "equivalent" scores is
to have some overlapping items common to bcth of two forms to be equated)
so that both examinee populations have a common "core" of items. Dyer and
King (ref. 32) pp. 101-104) give more details on this procedure as it is
carried out by the College Board) and Flanagan (ref. 43) also discusses a
number of ways of obtaining comparable or equivalemt scores.

The potential user of a program will often find that his intended
population is not the same as the population used in evaluating the program.
He may specifically want to know up to what level of proficiency the program
will bring his learners and how long it will take them to complete the
program. The technique of equating test forms discussed above may suggest
a procedure for estimating the values of these two variables. While a basic
mechanism in test equating is to provide some overlap in the test items
given to the two examinee populations) a useful analog of this technique
in programming might be to obtain scores for the potential learner popu-
lation and for the population used in evaluating the program on the same
tests) namely) those tests which predict time to learn and posttest scores
in the latter population.

Can such tests be found? Carr has stated:

"One might hypothesize that effective instructional
devices might wipe out differences in achievement
measures associated with intelligence or aptitude
test performance. The findings of a nuMber of experi-
ments seem to support this hypothesis" (ref. 15) p. 561).

He goes on to cite the studies of Porter (ref. 105)) Irion and Briggs
(ref. 75)) and Ferster and Sapon (ref. 42)4.:

45

The evidence from the studies Carr cites is not too clear-cut. In4
Ferster and Sapon's study, for example, only six out of the 28 students
who started the course, finished it. It may be that the aptitude test
which could not predict the ordering of the achievement test scores of
the six, could have predicted which students would drop out. FUrthermore,
the studies of numerous other investigators (e.g., refs.20, 59, 82, 99, 120)
have since shown that aptitude and pretest measures could be used to predict
time to go through a program and/or achievement on a posttest. The cor-
relations reported have generally ranged.between .30 and .50. Since the
potential user of a program may be interested in predicting group means of
time to learn and p.isttest scores, such correlations may indeed be adequate
for his purpose.

The success of tne proposed procedure will depend on the extent to
which the basic assumption of homogeneity of regression is met, that is, the
extent to which an aptitude or pretest measure, which correlates with
achievement or time to go through the program in the evaluation group of
learners, shows the sane correlation in the new group of learners in which
the potential program user is interested.

46

Section 4. Some Selected Relationships Between
Testing and Programming

ln this section we will deal with two topics which do not usually get
much attention in testing but which are qUite important in programming:
the ordering of frames within a programand the assigning of different
learners to different sequences of material. We will explore the extent
to which testing considerations may prove useful for each of these topics.

Item (Frame) Ordering

In testing, the ordering of the items is considered only for "moti-
vational" purposes. In general, the test constructor tries to arrange the
items in ascending order of difficulty, that is, from easiest to hardest.*
If the reverse order is followed, a lower test score may reault (ref. 96).
While the test constructor nay be concerned with how the items are ordered
and with the general difficulty level of the itens ...round a given item
(ref. 67)1 these do not appear to be "cognitive" variables, that is, an
ascending order of difficulty may facilitate getting the-harder items right,
but without giving any aids to answering specific items. This is because
the test constructor, in choosing items for the test, has followed the rule
that "if an itemdepends in any way upon the preceding one, neither mmst
reveal the answer to the other (ref. 71 p. 63).

In rwogramning, however, it is commonly believed that there should be
a'hierarchical relationship between each frame and the next: "At each step
the programmer must ask 'what behavior must the student have before he can
take this step?' A sequence of steps forns a progression from the in-
itially assumed knowledge up to the specified final repertoire. No steri

should be encountered before the student has mastered everything needed to
take it" (ref. 1251 p. 164).

There is little evidence available on this point. Gavurin and Donahue
(ref. 54) compared a "logical" with a random sequence of frames, but it is
not clear in what way the "logical" sequence was "logical," or how other
programmers can provide "logical" sequences for their subject matters. Roe
(ref. 1131 p. 13) mentions the following anecdote concerning the effects of
order of franes on learning:

"Cme student, who failed to read the instructions at the
beginning of the programmed textbook, read down the page
instead of from page to page with the result that the
sequence of items he saw were numbered: 11 401 791 1181
157; 21 411 801 1191 158; 31 421 811 1201 159; and so on.
This student atill managed to get a high score on the
criterion test:"

While the anecdote is certainly amusing, one wonders whether the learner would

*The test constructor will, of course, arrange together those itens which
depend on the same reading passage, diagram, etc., and also group together
those itens which are in the same format.

.42.

4 7

have received an even higher score on the criterion test if he had read the
instructions. We certainly cannot conclude that the ordering of frames is
unimportant.

If we grant that the programmer should ask what behavior a student rust
have before he can take each step, how can the programmer answer this
question? Ic many cases the programmer can resort to a detailed task-
analysis. If the programmer is attempting to teadh "dividing fractions,"
he must obviously be concerned with the sOordinate goal of "multiplying
fractions." If he is attempting to teach long division, he must first be
concerned with teaching addition, subtraction, and nultiplication. In such
cases the learning of some skills rust precede the learning of others be-
cause the skills to be learned first are component parts of the skills to be
learned later.

In other cases, however, there may le no such part-whole relationships
among the sUbskills, or, if there are sone they may not be immediately
apparent. Suppose, for example, one is learning to drive a car. Consider
the sUbskills of maneuvering in traffic and parking. Must one of these
skills be taught before the other, and, if so, which should be taught first?
We will examine whether testing can contribute toward the answering of such
questions. But before we can proceed to explore this possibility, it is
necessary to know something about a type of reasuring instrument called a
Guttman scale.*

With many tests, when we are told only that a given person gets 7 of
the 10 items correct0** we cannot say which of the 7 items theywere. Or,

if we are told that each of two people bcth got 7 items, we cannot say
whether they bcth got the same 7 items right. If, however, the items in the
test form a perfect Guttman scale, then we could, when told how many items
a person got right, say just which items they were.

What would such a test look like? We can diagram a generalized scheme
of the possible different ways in which people could respond to the items in
a Guttman scale. For convenience, let us consider a Guttman scale containing
only 4 itens. In the diagrattlmlow we will let a "1" mean that the person
gets thajtems right and a'"CP mean that the person gets the item wrong.

For more information on Guttman scaling, see Guttman (ref. 66),
Eiwards (ref. 34)0 Torgerson (ref. 133)0 Riley, Riley &Toby (ref. 112)0
Green (ref. 61).

**
%he Guttman scale was developed in the field of attitude reasurement

in which the terms "get an item right" and "get an item wrong" are replaced
by "endorse a statement" and "fail to endorse a statement."

43-

48

Items

Response Total Nunber
Patterns (1) (2) (3) (4) Right

A 1 1 1 1 4

B 1 1 1 0 3

c 1 1 0 0 2

D 1 0 0 0 1

E 0 0 0 0 0

The items night conceivably be:

(1) 3 4. 7 . 7

(2) 8 x 6 . ?

(3) 130 5 = 7

(4) 1041 i 26 - ?

If items (1), (2), (3) and (4) form a perfect Guttman scale, then a
person answering these items must fall into one of the Response Patterns
Al B, Co Do or E. If he gets only one item right, it must be item (1);
if he gets two items right, they must be items (1) and (2); etc. In general
in a perfect Guttman scale one can reconstruct perfectly from a person's
total score exactly which items were gotten right.

Now let us return to see how Guttman scaling may be related to a
decision as to whether either maneuvering in traffic or parking must precede
the other in a training sequence. In most, if not all, training situations
the trainees do not start off with absolutely no background, with no partial
knowledge of what is to be learned. We saw in the previous chapter that it
is the programmer's job in assessing the available resources to find out
just what relevant knowledge and abilities the trainees start with. Suppose,
then, that a person in charge of training people to drive automobiles tests
eath of a large group of trainees on their initial ability to maneuver in
traffic and on their ability to park. Suppose further that each trainee is
scored pass or fail, 1 or 00 on each of these abilities, and that each of
the trainees is found to fit into one of the Response Patterns Al Bo or C
shown below.

Response Neneuver In
Patterns Traffic Park

A 1 1

B 1 0

C 0 0

4 9
,.

Re notice that some people can both maneuver in traffic and park
(Response Pattern A), some people can neither maneuver in traffice nor
park (Response Pattern 01 and some people can maneuver in traffic but
cannot park (Response Pattern B), but that no one can park without
being dble to maneuver in traffic. Ability to maneuver in traffic and
dbility to park, therefore, form a two-item Guttman scale. What can the
person in charge of training validly conclude from this.?

It may be quite tempting to conclude that in learning how to drive a
car, one nust learn how to maneuver in traffic before one learns how to
park, but it is not legitimate to conclude this. The fact that "maneuvering
in traffic" and "parking" may form a Guttman scale might indeed reflect
sonething about the "inherent structure" of the learning-to-drive sUbject
matter. On the other hand, it night merely reflect the prior learning
history of the trainees, that is, it might reflect what has preceded what;
not what must precede what. It might be that driving instructors always
teach how to maneuver in traffic before they teach how to park, and that
people of type B are people who discontinued some prior training after
learning how to maneuver in traffic but before learning how to park. Or,

people of type B might be experienced drivers who are used to diagonal
parking, and the test may have called for parallel parking. If either or
both of these explanations were-correct, it would not necessarily follow
that people of type CI who can neither maneuver in traffic nor park, must
be taught how to maneuver in traffic before they are taught how to pair.-

Of what value, then, is information on whether certain subskills form
a Guttman scale to the programmer? MS have seen that he cannot use such
infOrnation to prescribe a necessary ordering of a set of tasks which form
a Guttman scale for trainees who initially possess none of these skills.
Such information can be useful if the programmer wants to arrange training ,

on various saskills into a given sequence and then allow different trainees
to enter this sequence at different points. If, for example, a programner
finds that a set of saskills form a Guttman scale, he nay sequence training
on these subskills according to how they are ordered on the scale. What a
trainee can initially do would be.represented by a string of l's followed by
a string of O's, and he would begin training on the subskill represented by
the first O. The potential economic advantage of this procedure would be
that each trainee would not waste tine in being taught to do ybat he can
already do, while the ordering of training tasks into a single sequence would
greatly simplify administrative matters.*

Whether such a procedure would actually pay off would depend on the
relative costs of (1) determining the scaldbility of sUbskills, (2) determi-
ning eadh trainees' place on the scale, and (3) training time. It would
also depend, of course, on whether a set of subskills which scale were found.

*
If, for example, six sUbskills formed the aoale, and a trainee needed

instruction on only three of them, they would be the last three in the
training sequence. If the 3ub8kills did not form a Guttman scale, they
might be the first, fourth and sixth slibskills. If the programmer rear-
ranged the training sequence so as to make these sUbskills consecutive for
this trainee, in doing so he may destray the consecutiveness for another
trainee.

50

On this last point, Schultz and Siegal (ref. 118 po. 142) have recently

found that "Check lists for use in evaluating task performance in several
related naval job specialties (ratings)...meet the...Guttnan scalability
requirements." In their work they did not test each person for various
subskills but rather asked his supervisor whether he was "checked out"
on each skill. Research is needed to find out if actual performance tests
rather than ratings would yield the same result; if not the scalability
of the subskills nay only be in the perception of the supervisors doing
the rating.

Looking ahead to still later developments we may find some situations
in which the subskills do not at first appear to form a Guttnan scale but
when the population of trainees is subdivided into two or more subpopu-
lations the sUbskills form different Guttman scales for each sapopulation.

Suppose for example in one school system the "topics" in French
classes were taught in the order; listenin& speaking reading, grammlar,

writing and French civilization and in another school system they were
taught in the order; French civilization grammsr, reading4 uTiting listen-
ing and speaking. If the prograuner in charge of increasing the "knowledge
of French" of students who cone from these two school systems (and who may
have ended formal instruction at different stages within each school) tests
them on the various stibskills the subskills would not appear to form a
Guttman scale. He may therefore feel that in order to avoid teadhing students
what they already know, he would need to use many different sequences of
material. If however, he analyzed the test data from students coming from
each school system separately, he would find for each school system that the
snbskills did form a Guttman scale. He could then use this information by
providing two different sequences of instructiona material and pernitting
students to enter the appropriate sequence at the appropriate point.

In applying Guttman scaling to progranning what units of.analysis should
the programmer use? It probably would be nore profitable to lump together
a set of criterion frames which all deal with the same subskil4 score each
trainee dichotomously "pass" or "fail" on the basis of his responses to the
set of frames and see whether such snbskills form a Guttman scale than to
attempt to scale individual criterion frames. Using the sitskill as the
unit of analysis will reduce the data to a more manageable anount and in-
crease the reliability of the measures used.

We started by discussing how testing !debt help in discovering what
training material must precede what other materia4 in the sense of being
necessary for the learner to benefit fram the later material. We have
shifted our emphasis to the question of how testing mii3ht help in determining
what training material might best preceie what other material in the sense
of increasing the efficiency of learning.

If there are a set of distinct sUbskills to be taught and. , by their

nature each of them could precede each of the others the direct approach
to deternining the best way to sequence thee would be to try out all

One night object to the notion that there is a single best ordering

for all trainees. We will disregard this.complication here.

-46-
51

possible orderings of the sUbskills with comparable groups of learners.
With as few as six subskills, however, there are 720 possible orderings,
and Gagne'and Dick (ref. 52) have isolated as many as 21 subskills in the
relatively limited major skill of solving simple linear equations. It

appears, then, that the direct approach to the optimal ordering of sub-
skills will not usually be feasible.

Jones (ref. 79) has worked on the use of simplex theory as a more
feasible approach to the problem. Basically he postulates that the pattern
of intercorrelations among scores obtained on subskills can suggest now
training on these subskills should be sequenced. Jones cites one instance
(pp. 90-91) in which he feels this approach paid off. Bao (ref. 108,
p. 252), however, suggests that in such a procedure "...the particular
conclusions reached for the best sequence of such a training program may
well be drawn from actual experience with the problem at hand and not
from the loose theory offered." There appears to be a need for an explicit
statement of how the theory should be coordinated with observed events, as
well as a demonstration of its alleged utility in determining the optimal
sequencing of training on subskills. Specifically, there is a need for:

(1) EVidence in a wide variety of training situations that simplicial
forms result from the particular abilities needed for various subskills,
rather than from the order in which the sUbskills are taught when data are
collected.

(2) Evidence in a wide variety of training situations that changes
in the ordering of subskill training which are suggested by simplicial
analysis result in more efficient learning. In discussing the instance in
which a recommendation based upon simplex considerations vas carried out and
in which evaluation showed "generally facilitative" effects, Jones (ref. 79,

p. 91) states:

"In this particular instance, therefore, simplicial analysts
would have recommended the same course of action without
either the expense or the delay of an experimental study.
If this result can be generalized, even if only a little
bit, the uses of simplex theory in curricula development
are very real indeed."

By "generalized, even if only a little bit" Jones seems to mean "generalized,
sometimes validly and sometimes not." Unfortunately, unless one can accu-
rately predict when recommendations from a simplicial analysis will or will
not be valid, such recommendations will remain of unknown usefulness.

Adaptive Programming

In the previous section on item ordering we saw that under certain
circumstances Guttman scaling could be quite useful to the programmer.
These circumstances included the condition that different learners could
enter the training sequence at different points. The purpose of this was
to take advantage of the individual differenced that initially exist among
the learners; they should not be taught what they already know. In this
section we will explore other ways in which the programmer might take
advantage of individual differences among the learners, and see what testing

considerations night be relevant.

52
-47-

In general, the programmer may try to capitalize on individual dif-
ferences among the learners by not presenting all learners with the same
sequence of instructional material, but rather by giving different learners
different sequences of material which he feels are especially appropriate
for them. In order to do this he nust somehow make distinctions among the
learners, either before or during training, or both. We will refer to the
procedure of differentiating among the learners in order to assign them tO
different sequences of material as "adaptive programming." As we shall see,
there has been some uork done in the testing area on "adaptive testing,"
that is, testing in which the examinees are previded with different sequences
of test items on the basis of their responses to prior test items. It is
not, however, because of this work that testing considerations are relevant
to adaptive programing. Rather, it is because in adaptive programming the
test programer must make sone measurement of the learners in order to
assign them to different sequences, of instructional material. If measurement
is made, tben measurement (testing) considerations apply.

Perhaps the most important testing considerations that apply to adaptive
programing relate to validity. As we examine various types of adaptive
programing we will ask in each case how the costs and benefits of using
adaptive programing compare with the costs and benefits of not using adap-
tive programing.

While the purpose of using adaptive programming rather than linear pro-
gramming (in which every learner gets the same sequence of material) is to
increase training efficiency, this purpose nay not always be realized. We
have already seen that whether Guttman scaling information is useful will
depend on the relative costs of differentiating learners and of instructional
tine. We must also be concerned with the validity of the test used to dif-
ferentiate learners. When thc test lacks sufficient validity, we cannot
expect adaptive programming to pay off. Cronbach has said "The person who
attempts to differentiate individuals on inadequate data introduces error
even when the inferences have validity greater than chance" (ref. 22, p. 181).

"Recognizing an optimum degree of differentiation makes it necessary to
re-examine and qualify statements commonly made in training teachers, to the
effect that every pupil has his oun pattern and the teacher must fit methods
to that pattern, not treat the pupil in terms of the statistical average.
...the teacher who is poorly informed regarding the unique patterns of his
pupils should probably treat them by a standard pattern of instruction, care-
fully fitted to the typical pupil. Mbdifying plans drastically on the basis
of limited diagnostic information may do harm" (ref. 22, p. 183).

While adaptive programing may have potential benefits, the programmer
must realize that just as progranned instruction is not necessarily superior
to "conventional" instruction, adaptive programing is not necessarily
superior to linear programing. With this warning in mind, let us turn to
examine sone types of adaptive programming.

Fixed-Treatment Placement

The first major type we will consider is that in which on the basis of
some pretest, learners are assigned to different but fixed se_.ances of
material. Following Cronbach and Gleser (ref. 23), we will refer to this
type of adaptive programing as fixed-treatment placement. in fixed-treat-
ment placement the programmer prepares different fixed sequences of material,

-148-

5 3

and believes he can identify "types" of learners who will learn most ef-
ficiently with each of these sequences.

Under what circumstances would this type of adaptive programming pay
off? We can say that it will pay off when the assigning of different learners
to different seqpences of material resuats in more efficient learning than
would be obtained by assigning all learners to the best single sequence of
material. Suppose, for example, the programmer wants to classify all learners
as either Zole A, or Type B, and then give all Type A learners Fixed Sequence
of Material I and all Type B learners Fixed Sequence of Material II. It may
help the reader to think of Type A and Type B as high and low aptitude people,
and Sequences I and II as "large step" and "small step" programs respectively,
although the analysis given here will be more generally applicable.

In order to assess whether this adaptive programming pays off, the pro-
grammer would first identify who the Type A, and Type B ,le are, then
expose randomly chosen subgroups of Type A and Type ? ile to Sequences I
and II. Suppose he found the type of interaction J is shown in Table 1,
that is, an interaction in which Type A people let -..ee efficiently with
Sequence I and Type B people learn more efficientl Sequence II. Men,
if the testing and administrative costs were smaller than savings he would
achieve, he would give Sequence I to Type A people and Sequence II to TYpe B
people when he pot the program into operationaluse. On the other hand, he
might find no interaction, or an interaction such as is shown in Table 2, in
which both Type A and Type B people learn more efficiently with Sequence I.
In such a case, he would give Sequence I to all people when he put the pro-
gram into operational use.

In this procedure for determining the payoff from fixed-treatment place-
ment, the procammer must assign half of the learners to a treatment uhich
he thinks is less than optimal. He must keep in mind that the primary purpose
of this apparently inefficient procedure is to find out how valid his test is
for fixed-treatment placement; it is not to train learners. The test con-
structor must also use an apparerely inefficient procedure in validating a
new selection test when he accepts all the applicants: his primary purpose
is to validate the test; it is not to discriminate among the applicants.

Can the programmer hope to find interactions of the type shown in Table 1?
Stolurow (ref. 127) has summarized much of the experimental literature on
human learning and concludes "The studies have provided few specific inter-
action effects between learner variables and methods variables..."

In a recent study of "adaptive" training procedures Cline, Beals and
Seidman (ref. 16) showed that on the basis of aptitude test ecores, trainees
in a military setting could be assigntd to different training saquences aimed
at the sane goal, with the result being a more efficient operatioli than if
all trainees had. been put through the "standard" sequence.

In en auto-instructional setting, however, Shay (ref. 120) found no inter-
action between three levels of student aptitude and three programs differing
in number of frames and "difficulty level." Shay himself points to a number
of aspects of his procedure which may have reduced. his chances for finding
such an interaction. His measures of student aptitude were taken from al-
ready available scores on the "...Kuhlmann-Anderson, Detroit Primary, and
PUblic School Primary tests in all loot the few cases where recent Bizet IQ's

were available "(pp. 37-38). He admits "...the possibility that the lors for

54

0

Table 1

An Interaction Which Is Useful

for Fixed-Treatment Placementa

SEQUENCE
II

TYPE OF
PERSON

A

100

70 90

Table 2

An Interaction Which Is Not Useful

for Fixed-Treatment Placementa

SEQUENCE
II

TYPE OF
PERSON

A

100 90

70

afligher nuMbers denote greater learning efficiency.

-50-

the several tests used were not commensurate and may have obscured any
real relationship that existed" (p. 59). Another consideration is that
because of machine defects, nany students were given ambiguous knowledge
of results on at least one frame. Finally, as we saw in the last chapter
under the tordc of pretesting and revision, some students confused the
numerical labels. FOr these reasonsil. we should be reluctant to conclude
that one could not find the desired interaction using Shay's programs and
student populations.

Regardless of what Shay found and how one might choose to interpret
his finding, we must, of course, decide in each training situation separately
whether it is worthwhile to use a fixed-treatment placement procedure. We
may expect this type of programming to pay off when we have some insight
into a good choice of tests for differentiating among types of people and
among programs to use.

At present, programers have chiefly, if not exclusively, concerned
themselves with measures of general aptitude as a basis for differentiating
learners for this type of adaptive programming. Stolurow (ref. 127, p. 59)
has pointed out, however, that the "...available research on the relationships
between the learner's ability and his gains in learning do not justify the
assumption that different programs have to be written for high and low
ability groups."

Three general conclusions seem to emerge from the research relating
aptitude to learning: (1) Aptitude is positively related to learning;
(2) Aptitude is not related to learning; (3) Aptitude is negatively related
to learning. Among the possible sources of contradiction in this research
are the Use of different intelligence measures, the use of different types of
learning scores (gain scores, final achievement scores; tine per unit scores,
units per time scores, number correct scores, etc.), different degrees of
experimental control over data collection (E paced; S paced;laboratory setting,
school setting), different aptitude measures, and different types of learning
tasks (veebal, psychomotor, etc.). EVen if the available evidence consistently
plowed high positive correlations between aptitude and learning neasures, this
should not lead the rrogrammer to use measures of general aptitude for fix1d-
treatment placement, since he is primarily interested in the differential
payoff from various treatments, rather than in predicting achievement within
one treatment. °General mental ability...is likely to be correlated with
success in mathematics no matter how the subject is taught. If the alter-
native teaching procedures are an abstract deductive method anl an applied
inductive method, the bright students should do better with either approach.
...On the other hand, there may be other qualities of the individual (say,
interest in abstract problens, or liking for rigorous reasoning) which would
have quite different relations to the two treatments. A measure which pre-
dicted success under one treatment and not the other would be a much better
aid to placement than a measure which predicts both" (ref. 23, p. 68).

Stolurow (ref. 127, p. 51ff) provides a good discussion of the "qualities
of the individual" suggested by the literature on human learning. A number

of rather recent studies suggests sone additional qualities of this kind.

*
For a discussion of another, somewhat more technical reason, see

Shay (ref. 120, pp. 59-60).
56
-51

Allison (ref. 2) reports that "Measures of learning and neasures of
aptitude and achievenent, which have generally been treated experimentally
as separate entities, have factors in common with each other." The seven
interpretable learning factors he found were Verbal Conceptual Learning,
Spatial Conceptual Learning, Mechanical-Nbtor Learning, three Rote Learning
factors, and an "Early vs. Late" learning factor. In sone cases it may be
pcesible to alter a training situation which involves primarily mechanical-
motor learning so as to involve spatial-conceptual learning. Then trainees
with high mechanical-motor or spatial-conceptual factor scores could be
assigned to the more appropriate version of the training situation.

Bruner (ref. 13) reports that subjects who are provided with material
to learn which contains their own ;referred type of mediator (thematic,
generic, or part-whole) remember better than subjects who are not given
their ;referred type of mediator.

Messick and Hills (ref. 98) have shown that there are characteristic
individual differences in the anount of information needed to make "inductive
leaps." This may be important for programs which require the student to
induce rules.

Jenkins (ref. 78) found that stibjects who give common word associations
learn lists of high and nedium built-in associatioris faster than sUbjects
who given uncommon associations, but they learn lists with low built-in
associations more slowly.

Finally, we should note the recent work in testing on "moderator"
variables (e.g., refs. 46, 48, 117). In this work a preliminary test is
used to classify subjects into two or more groups. For each group the fur-
ther tests to be given can be weighted in such a way so as to provide maxi-
mum validity for that group. Frederiksen and Gilbert (ref. 46), for example,
first classified engineering students as being either high or low in interest
in accounting. They found that a measure of interest in engineering could
better predict grades for those who had a low interest in accounting than for
those who had a high interest in accounting. Ftrther work in this area
night suggest to the progranner what test variables would be useful in fixed-
treatment placement.

Branching Programs

Now we turn to the second major type of adaptive programming, the branch-
ing program. In this type of program the material ;resented to the learner
is always contingent upon his response to the previous training material.
The reader will recall that in fixed-treatment placement the learner iS as-
signed just once to a fixed sequence of frames on the basis of his respouses
on a pretest) in a branching program, the learner is periodically reassigned
during training on the basis of his responses during training. Mese reas-
signments may occur as frequently as once per frame.

In the branching program as it has been developed by Crowder, the burden
of instruction is placed upon relatively lengthy expository material. This
material is then followed by what is essentially a test item, to determine
whether the learner has grasped the point of the expository material and can
proceed, or has failed to grasp the pcdnt and nmst receive sone remedial
material. Following any necessary remedial material, the learner is returned
to the missed item to attempt it again.

-52-

57

The branching program is sonetiues spoken of as involving a "two-way
interaction between instructor and student," a "communication process," or
a "close& loop," as contrasted with an "open loop" Skinner-type linear
program. This language is used to stress the fact that in a branching pro-
gram not only does the learner get feedback (knowledge of results) from the
programmer, but the programmetalso gets feedbadk from the learner. Perhaps
this point is overemphasized -In both a branching program and a linear
program the programmer gets feedback from the learner: in a Skinner-type
linear program the pro amner uses the feedback during a tryout stage to
minimize errcrs durin training, while in a branching program the progranmer
uses the feedbac sung training to determine what material the learner
should be exposed. to next.

In testing, sone work has been done on making the item given to the
exaninee next depend on how he responds to the preceding item, Hutt (ref. 74)
studiet.: the effectiveness of a branching testing technique with the Stanford-
Binet. For an "Adaptive" group of Ss, failure on a given item meant that a
relatively easy item was given next, so that failure on successive itens was
rare. Among poorly adjusted Ss, theoadaptive group achieved higher scores
than a group administered the test under standard conditions.

Krathwohl and Huyser (ref. 89) and Bayroff, Thomas, and Anderson (ref.6)
have also developed branching tests. So far no generalizations that might
be useful to the programmer have emerged from this work in adaptive testing.

How can the programmer determine whether a branching program pays off?
Once again, the basic procedure is to compare the costs and benefits of
using a branching program with.the costs and benefits of using the best
available alternate procedure, which presumably will be a linear program.

Silberman et al. (ref. 121) have suggested a refinement of this procedure
in order to determine if any instructional effect which may be attributed to
branching is due to the diagnostic-remedial effect of branching or merely
to the extra material a group given a branching program gets. Branching had
no diagnostic-remedial effect in the particular program with which they
worked.

In another study Coulson and Silberman (20) found no difference between
branching and nonbranching groups on a posttest dealing with the elementary
psychology subject natter of the program. Just as we cannot conclude from
Shay's work that fixed-treatment placement will never be useful, we cannot,
of course, assume from this finding that branching will never be useful.
Whether a branching program will be successful will obvicesly depend, among
other things, on the programmer's skill in drawing inferences from the
learner's wrong responses. In a Crowder-type branching progxam, the pro-
grammer attempts to infer Why a particular error was made, so that the under-
lying nisconception or faulty process can be cleared up. In this approach
the Programmer assumes that the particular errors learners nake convey some
information, that is, that different wrong responses reflect different proc-
esses in the learner. He further assumes that to sone extent learners are
similar in the misconceptions they initially holi or develop while going
through the program, and in the way in which their misconceptions manifest
themselves in errors.

Are these assunptions justified? We turn to the testing literature
for an answer. Fram his clinical experience, Rapaport states that "...many

-53-

58 .

of the intelligence test responses are highly conventionalized; and that a
subject knows who vac President of the United States before Roosevelt merely
adds to his general score. But where the response deviates from the con-
ventional) the deviation does not merely fail to add to his score; it met
also be considered as a characteristic which nay give us material toward the
understanding of the stibject".(ref. 109, p. 40).

Davis and Fifer (ref. 29) found that the particular wrong responses
made by examinees did convey information; when scoring weights were developed
for the misleads in multiple-choice items, the predictive rower of the test
was increased. The progranmer, of course, is not interested in measuring the
learner's aptitude from his errors but rather in inferring the processes
which lead to his errors. Can the information conveyed by wrong responses be
used for this purpose?

Findley and.Read (in ref. 9) showed that errors made in answering
arithnetic questions nay be classified in a way which shows differences in
mean total test score among the examinees making errors in different cate-
gories. Apparently, then) the errors made by different examinees on dif-
ferent questions can be categorized in a meaningful way. From the nature
of the categories (e.g., "interchanging the unknown with whatever lies on
the opposite side of the equation," "an error resulting from the confusion
of division with subtraction") we nay assume that they reflect different
processes in the examinees.

Some other studies which also deal with arithnetic errors suggest that
the inferences one can draw from individual errors nay be rather limited.
Orossnickle (refs. 62, 63) found that in general students were not consistent
in the types of errors they nade in division. In one of his studies only
four of the 21 types of errors made were at all persistent.

Brueckner and Elwell (r.lf. 12) studied errors made in the multiraication
of fractions. They found that a student who made an error on one example
did not necessarily make errors on similar examples, and, if he did, the
errors were often not of the same tyre. "The pupil should be given at least
three or four orportunities to solve examples of one type since single errors
may be largely chance or accidental" (p. 177).

In both the Orossnickle and the Brueckner and Elwell studies the experi-
menters assuned that when a student nakes an error on one example and does
not nake the sane tyre of error on other examples wHich afford him the
opportunity to do so, the error nade was a "chance" error. An alternate
explanation is that the experimenters were not classifying errors into "types"
in the most fruitful way and that sone other classification schemes would
show that certain types of errors did occur consistently across samples of
behavior. In any event) Orossnickle and Brueckner and Elwell presented their
problems in fornats which may have enphasized rapid, relatively "medhanical"
work. Under such circumstances what we may call "chance" errors may result.*
We should keep in land, of course, that the "chance" error category is a
residual category for left-over errors which may in the future be better
classified in yet-to-be-developed error classification schemes.

46.! fhis rossibility was pointed out by Leighton Price in a personal

communication.

The analysis of data in laboratory studies of human learning has
also sometimes involved the classification of errors (e.g., 50). Recently
Cook (ref. 18, p. 2) has developed a generalized scheme for classifying
errors which occur in paired-associate learning experiments. He makes a
basic distinction between a legitimate response (a response which is "...
any one of the...response terms in the experiment, whether this response
has been elicited by its proper stimulus term or by some other"), an
extraneous response (any response other than a legitimate response), and
an omission (no response). He then further subdivides the legitimate and
extraneous response classes.

The scheme may not be as content-free as it appears. Cook assumes that
the set of legitimate responses is part of a larger class of respOnses. He,
therefore, subdivides the extraneous responses into those whidh are and those
which are not members of this larger class. For examFae, if 444 B, C, 111 and
E constitute the set of legitimate responses, he would consider titan to come
from the same larger class that the legitimate responses Al 11, CI D, and E
come from, and he would consider "3" not to come from that class. But one
could conceive of the legitimate responses AI B, CI D, and E as coming from
the class of the first 13 letters of the alPhebet, rather than of the entire
alphabet. In that case "Q" would not come from the same class as the legiti-
mate responses cone from.

It seems #met the experimenter must have some intuitive idea of the
larger class to which the legitimate responses "belong" in order to use Cook's
scheme. Presumably this intuitive idea would come from his knowledge of the
mediational processes common to his learners.

As it now stands, Cook has found the scheme useful in reanalyzing the
data of Kopstein and.Roshal (ref. 87) and of others. The scheme could be use-
ful to auto-instructional programmers if remedial actions were specified for
learners who make responses falling into the various categories. Up to now,
adaptive programming in the learning of paired-associates has been limited to
the dropping of pairs from a list when the learner's responses indicated they
were mastered (e.g., ref. 114).

In general, if different wrong responses do convey information concerning
the particular misconceptions held by the learner, how can the programmer use
this information to provide the learner with remedial material? 'The program-
mer's task is to determine what errors are commonly made, and what misconcep-
tions or faulty thought processes they reflect. In some cases the programmer
may be sufficiently familiar with the subject matter and with the characteris-
tics of the learners for him to know what errors are commonly made and what
they reflect. In other cases he can determir.e what errors are commonly made
by pretesting his frames in constructed-response format. He would then use
the commonly given wrong responses as alternatives in the multiple-choice
format of the program. This procedure is sometimes useful to the test con-
structor (see Adkins and Toops, ref. 1) who selects as multiple-choice alter-
natives those answers which not only are rather commonly given but also which
tend to be given by examinees with lower total test scores. Research is needed
to determine whether the mean aptitude or variability of aptitude of those
learners choosing a particular multiple-choice alternative is related to the
usefUlness of providing remedial material for that alternative.

Nis The programmer who has determined what the commonly given wrong responses

are must then find out what they reflect. Buswell and John (ref. 14) found

-55-

60

4.1!

that they could get at the mental processes that children go through in
doing arithmetic problems by interviewing them and asking them to "think
aloud." Pressey and Campbell (ref. 107) report that interviews were useful
in getting at the reasons for spelling errorn in the capitalization of words.
The programmer may also find interviews useful in finding out what wrong
responses reflect.

The programmer who has identified common errors, and gone on to determine
their source and to provide remedial material, has done the necessary pre-
liminary work in writing a branching program. He can now go on to the
writing, trying out, and revising of branching material.

Neasuring Achievement in a Branching Program

The programmer might do well to make branching in his program contingent
upon the learner's responses to several frames, rather than to a single frame.
This recommendation is in line with Brueckner and Elwelles previously cited
finding, and also Gilbert's suggestions (ref. 56). Aftxther rationale for
this recommendation is that in most cases it is impossible to adequately
sample a domain with a single test item. "An item wIth a validity coefficient
as high as 0.25 or 0.30 usually represents an outstendingly valid item"
(ref. 131, p. 245). flnally, Crowder (ref. 26) has recently Pointed out that
the relatively inexpensive screlbled book can be used even when the programmer
wants to make branching contingent upon the learner's responses to several
frames rather than to a single frame.

In SONO existing branching programs (e.g., ref. 25), the learner is
given remedial information when he gives a wrong response to a frame and then
he is returnei to the frame he missed. The frame is now called upon again
to serve as a one-item achievement test. Where initially this frame may have
been inadequate for this purpose, it is now even more Anadequate for this
purpose since the learner may be able to remeMber and reject the previously
made incorrect response. This would increase the likelihooi that he will
choose the correct answer merely by guessing.

In addition to using responses to several frames as a basis for branching,
the programmer may use "alternate forms" of the branching frames to help
resolve this difficulty. After he receives remedial information, the learner
should te presented with frames which cover the same concept as was covered
by the previous frames used for trenching, but in which some specifics are
altered. Again if the programmer uses several alternate form frames he would
have a better basis for further branching.

Consider this example: After presenting a definition of "factors,"
Crowder (ref. 25, p. 14) asks, "Which of the sets of nuMbers below are the
factors of the nuMber 15?

3 and 4 Page 19
3 and 5 Page 25
2 and 13 Page 31."

An alternate form criterion frame which reads as follows might be given
to the learner who has turned to page 19 or 31 and received remedial material:

61

-56-

I ,04+.

Whidh of the sets of nukbers below are the factors of the nuMber 21?

3 and 7 Page 6
5 and 7 Page 9
7 and l4 Page 10.

The programmer could also use the alternate form frame technique in
frame revision. If, following remedial information, the learners do not
choose the correct answers on the alternate form frames substantially more
often than chance would allow, the programmer should check over his diagnosis
of the original error and the remedial information he has provided, since
revision is indicatad.

puessing

It has probably occurred to the reader that whqn the learner in a
branching program guesses, the potential advantages of a branching program
over a linear program are reduced. The recommendation to use responses to
several frames as a basis for branching will help minimize the effects of
guessing. A second way the programmer might minimize these effects might
be to instruct the learners not to guess. Swineford and Miller (ref. 328)
studied the effects of such instructions in a vocabulary testing situation.
They found that instructing the subjects not to guess reduced but did not
completely eliminate guessing. They measured guessingby the number of tines
the subjects attemptedto provide synonyms for nonsense words.

Their technique of measuring guessing suggests a way to train learners
not to guess: learners could be given nonsense frames for whiWill alter-
natives lead to negative knowledge of results ("wrong"). These frames would
be interspersed with legitimate frames. The nonreinforcement of guessing on
the nonsense frames would be expected to decrease the future occurrence of
guessing. Successfll guessing on legitimate frames would mean that guessing
on frames-in-general would be intermittently reinforced, but this intermittent
reinforcement is always present. The nonsense frames would serve to decrease
the percentage of tines that guessing is reinforced.

The reduction of guessing through instruction or through training can
only be effective, of course, if the learner who realizes he has no idea of
the correct answer to a frame is given the opportunity to say so. The pro-
grammer can provide this opportunity by using "I don't know" as a response
alternative. A "don't know" response may also provide useful information
during tryout and revision. If it tends to be chosen by learners of higher
aptitude, a subtle aMbiguity nay be present in the frames.

up to now we have confined ourselves to considering only the particular
errors made by learners as a basis for branching. Wow we will turn to a
theoretical formulation which will lead us to consider the use of response
time as a basis for branching.

Response Time and Branching

Amsel (ref. !Ohm provided a theoretical framework for identifying
situations in which it may be qpite desirable to have errors committed. during
training. When the learner starts out with a strong (superthresholi) correct
response tendency and a strong (superthresholi) incorrect response tendency,

-57-

62

the programmer who merely elicits and rewards the correct response may not
produce'a sufficiently great difference in strength between the correct and
incorrect response tendencies. Ansel hypothesit..ls that in these situations

the programmer must also elicit (but not reward) the incorrect response in
order to be certain that the incorrect response will not be given after
training is complete. It would seem that Ansel's analysis, if valid, would
apply more generally to all situations in which there is initially a super-
threshold incorrect response tendency, whether or not there is also a super-
threshold correct response tendency.

How could a programmer detect these situations? In some cases, a super-'
threshold incorrect response tendency may obviously be present, e.g.) in the
context of learning binary arithnetic, the tendency to respond 12" to the
frame "One plus one equals ?" ln less obvious cases, the programmer
night detect such tendencies by pretesting frames in a constructed response
format on a population compardble to the learner population. This procedure
might be useful in detecting tendencies which were common to many of the
learners. The programner would then write into the program several frames'
designed to elicit and not reward the commonly given incorrect response.

The progranner could also deal with superthreshold incorrect response
tendencies which are idiosyncratic, but this would, of course, require a
branching program. It would also require a more flexible teaching device.
Specifically, the teaching device would have to be sensitive to the "response
latency," that is, the tine interval between the presentation of the frame
and the learner's response to it. Any response made with a latency shorter
than a given value could be considered to indicate a superthreshold tendency.
The teaching device might be set up to repeatedly expose the learner to any
item on which this occurs but to only repeat once an item on which an in-
correct response with a longer latency was made, or on which no response was
made.

There is sone evidence which suggests that if the above procedure were
used, then the critical response latency should be set at different points
for different learners. Tate (ref. 130) gave arithnetic reasoning, nunber
series, sentence completion, and spatial relations test items at each of
three difficulty levels to a group of subjects. He found that each $ had a
characteristic speed of response which was relatively independent of the
subject matter of the item, the difficulty level of the item for the group,
and whether or not he got the item right. Research is needed to explore the
dAsgnostic value of response latency information in general and the useful-
ness of adjusting the critical latency to the individual.

Finally, in addition to branching on the basis of the particular error
made and on the basis of tine taken to make an error, there is the possibility
of branching at the discretion of the learner. Silberman et al. (ref. 121)
found that a branching program was not superior to a fixed-(137Testr) program
when the conditions for branching were prescribed byl, but a program in
which $ had the option of branching was superior to a fixed program. At the
moment there appear to be no specific applications of testing considerations
to this type of branching.

63

-58-

Section 5. Summary

This report is concerned with the implications of testing for auto-
instructional programming.

In Section 1 we saw that tests were used for predicting behavior and
programs were used for modifying behavior. We noted that in spite of this
difference in purposes, the steps one goes through in developing a test and
in developing a program were similar. We further noted two relationships
between testing and programming: (1) Tests are used in the evaluation of
programs; (2) Tests are used in adaptive programming in which different
learners are assigned to dIfferent sequences of material, to differentiate
among the learners.

In Section 2 we briefly went over the steps in the construction of a
program. These steps are Specifying Objectives, Determining the Resources
Available, Flanning and Developing Frames, Pretesting and Revision, Evalu-
ation, and Providing Information to Program Users.

Section 3 was organized aroufid a more extensive discussion of the
steps in the construction of a test and some implications for programming
that emerge at each of these steps. In both testing and programming the
first Oep is the specification of objectives, and this ultimately involves
a choice of operationally defined criteria. Various considerations that
the test constructor takes into account in choosing criteria are relevance,
possible bias, and reliability. The importance of these considerations for
the programmer was discussed. The point was nade that the programmer was
apt to look for Internal criteria, that is, measures during training of how
well the learners were doing, and that such criteria may be rather poor.
The necessity of combining criteria and the dollar criteria technique for
doing so were both discussed.

The assessment of the available resources was then discussed, and we '

saw how the significance of this step differed for the test constructor and
the programmer. Item writing suggestions were examined with the purpose of
seeing how they might apply to programming. We saw that specifying the
terms in which a constructed response is to be given, which may facilitate
scoring in testing, may be more crucial in programming since it may a-feet
whether the learner gets knowledge of results. It was suggested that the
task of classifying test items as to educational objective may be usefUl
in the selection and training of programmers. Sone research necessary
before implementing this suggestion was pointed out.

We went on to consider the differences in selecting test items and
program frames and the greater importance in programming of further pre-
testing. Under evaluation, we saw a basic bimilarIty of approach: both
tests and programs are compared as to costs and benefits with the best
available alternate procedure. In order to carry out this comparison,
many diverse elements need to be combined, and again the dollar criterion
is usefUl. Finally, both the potential test user and the potential program
user need to know how well a test or program developed for use with one
population of people will work with a different population. The possible
use of a procedure analogous to test equating, for estimating how useful
programs will be for different populations, was discussed.

64
-59-

Section 4 was concerned with two programming problems which do not
usually occur in testing, but for which testing considerations are relevant.

The first problem concerns the optimal ordering of the instructiona-
material. It was pointed out that Guttman scaling may be useful if the
programmer wants to start different learners at different points, in order
to capitalize on initial differences in their capabilities, and at the same
time keep the same sequence of instruction. Simplex theory may also prove
useful in the ordering of instructional materials but at present it needs
further'development.

The second problem was that of adaptive programming, the providing of
different learners with different sequences of material. One type of
adaptive programming is what the test constructor would call fixed-treatment

selection. Testing considerations may be used in its evaluation. Possible
variables which might prove useful in assigning learners to different
sequences of material in fixed-treatment placement were pointed out.

Another type of adaptive programming is branching, making the learner's
sequence of material depend on his responses during training. The tryout of
frames in the completion format may provide the programmer with information
as to what errors are commonly made; these can then be used as alternativys
for the multiple choice format of the branching program. Interviews may be
helpfUl in finding out what misconcertions or faulty processes are reflected
by these errors. Alternate form criterion items may be useful in testing
the effectiveness of remedial sequences both during revision and during
operational use of the branching program. Nhking branching contingent upon
responses to several frames may increase its effectiveness. Response laten-
cy may have diagnostic value in a branching program; some research possibil-
ities based upon Amsel's theoretical views were pointed out.

-6o-

65

REFERENCES

1. Adkins, D. C., & Toops, H. A. Simplified formulas for item selection
and construction. Psychometrika, 1937, 2, 165-171.

2. Allison, R. B., Jr. Learning parameters and human abilities. ONR
Technical Report and Doctoral Dissertation, Princeton Univer., Princeton,
N. J.: Educational Testing Service, 1960.

3. American Psychological Association, Technical recommendations for
psychological tests and diagnostic techniques. (Stviplement to

psychol. Bull., 1951; 51.)

4. Ansel, A. Error responses and reinforcement schedule in self-
instructional devices. In A. A. Lumsdaine and R. Glaser (Eds.),
Teaching machines and programmed learning: a source book.
Washington, D. C.: National Educational Association, 1960.

5. Barlow, J. A. Conversational chaining in teaching machine programs.
Psychol. Rep., 1960, 3, 187-193.

6. Dsyroff, A. G., Thomas, J. A., & Anderson, A. A. Construction of an
experimental sequential item test, Res. Memo. 60-1, The Adjutant
General's Office, 1960.

7. Bean, K. L. Construction of educational and personnel tests. New
York: McGraw-Hill, 1953.

8. Bloom, B. S. (Ed.) Thxonomy of educational objectives: the
classification of educational goals. New York: Longmans, Green, 1956.

9. Brigham, C. C. A study of error. New York: College Entrance
Examination Board, 1932.

10. Brogden, H. E., & Taylor, E. K. The Theory and classification of
criterion bias. Educ. psychol. Measmt, 1950, 10, 159-186.

11. Brogden, H. E., & Taylor, E. K. The dollar criterionapplying
the cost accounting concept to criterion construction. Personnel
Psychol., 1950, 2, 133-154.

12. Brueckner, L. J., & Elwell, H. Reliability of diagnosis of error
in multiplication of fractions. J. educ. Res., 1932, 26, 175-185.

13. Bruner, J. The act of discovery. Ham educ. Rev., 1961, 31, 21-32.

14. Buswell, G. T., & John, L. Diagnostic studies in arithmetic,
Suppl. Educ. Monogr., Univer. of Chicago, 1926, No. 30.

15. Carr, W. J. A functinnal analysis of self-instructional devices.
In Lumsdaine and Glaser, alachirig machines and programmed learning:
a source book. Washington, D. C.: National Educational Association,
1960.

16. Cline, V. B., Beals, A. R., & Seidman, D. EXperimenting with
accelerated training programs for men of various intelligence
levels. Educ. psychol. Measmt, 1960, 20, 723-735.

6 6 -61-

17. Conrad, H. S. The experimental tryout of test materials. In

Lindquist, E. F. (Ed.) Educational measurement. Washington, D. C.:
Amer. Council on Education, 1951.

18. Cook, J. O. Response analysis in paired associate learning
experiments. Raleigh, N. C.: North Carolina State College, 1960.

19. Cook, J. 0.1 & Spitzer, M. E. Supplementary Report: Prompting
vs. confirmation in paired-associate learning. J. exp. Psychol.,
1960, MI 275-276.

20. Coulson, J. E., & Silberman, H. F. Results of an initial experiment
in automated teaching. In A. A. Lumsdaine and R. Glaser (Eds.)
Teaching machines and programmed learning: a source book. Washington,
D. C.: National Educational Association, 1960.

21. Cronbach, L. 3. Essentials of psychological testing. New York:
Harper Bros., 1949.

22. Cronbach, L. 3. Processes affecting scores on "Understanding of
Others," and "Assumed Similarity." Psychol. Bull., 1955, 52, 177-193.

23. Cronbach, L. 3., & Gleser, G. C. Psychological tests and personnel
decisions. Urbana: Univer. of Illinois Press, 1957.

24. Cronbach, L. 3., & Meehl, P. E. Construct validity in psychological

tests. Psychol. Bull., 1955, 521 281-302.

25. Crowder, N. A. Sue arithmetic of computers. Garden City, N. Y.:
Doubleday, 1960.

26. Crowder, N. A. Intrinsic and extrinsic programming. Paper given
at Conference on Application of Digtal CcmPuters to Automated
Instruction, Washington, D. C., Oct., 1961.

27. Crowder, N. A. Automated tutoring by intrinsic programming. In Lumsdaine

and Glaser, Teaching machines and programmed learning: a
source book. Washington, D. C.: National Educational Association, 1960.

28. Dale, E., & Chall, J. S. A formula for predicting readability.
Educ. res. Pull., 1948, LT, 11-20.

29. Davis, F. B., & Fifer, G. The effect on test reliability and
validity of scoring aptitude and achievement tests with weights
for every choice. Educ. psychol. Measmt, 1959, 12, 159-170.

30. DuBois, P. H. The design of correlational studies in training.

In H. Glaser (Ed.) Traininkresearch and education. Pittsburgh,

Pa.: Univer. Pittsburgh, 1961.

31. Dunn, T. P., & Goldstein, L. G. fAst difficulty, validity, and
reliability as functions of selected multiple item conetieuction

principles. Educ. psychol. Measmt, 1959, 12, 171-179.

67

-62-

32. Dyer, H. S., & King, R. G. College Board scores: their use and
interpretation, No. 2. New York: College Entrance EXamination
Board, 1955.

33. Ebel, R. L. Writing the test item. In Lindquist, E. F. (Ed.)
Educational measurement. Washington, D. C.: Amer. Council on
Education, 1951.

34. E&wards, A. L. Techniques of attitude scale construction. New
York: Appleton-Century-Crofts, 1957.

35. Eigen, L. D. Sets, relations, and functions: Book L. New York:
Center for Programed Instruction, 1961.

36. Estes, W. K. Learning theory and the new "Mental Chemistry."
Ptychol. Rev., 1960, 67, 207-223.

37. EVans, J. L. An investigation of "Teaching Machine" variables
using learning programs in symbolic logic. Deztoral dissertation,
Univer. Pittsburgh, 1960.

38. EVans, J. L. The TMI-Grolier contributions. Aver presented at Amer.
Ptychol. Assoc. Convention, 1961.

39. EVans, J. L., Glaser, R., & Hommel L. E. A preliminary investigation
of variation in the proierties of verbal learning sepences of the
"Teaching Machine" type. In Lumsdaine and Glaser, Teaching
machines and programmed learning: a source book. Washington, D. C.:
National Educational Association, 1960.

40. EVans, J. L., Glaser, R., &Hommel L. B4 The RULEG System for the
construction of programmed verbal learning sequences. Univer.

Pittsburgh, 1960.

41. Ferris, P. Testing for physics achievement. Amer. J. Physics, 1,160,
28, 269-278.

42. Ferster, C. B., & Sapon, S. M. An application of recent developments
in psychology to the teaching of German. In Lumsdaine and Glaser,
Teaching machines and rogrammed learning: a source book. Washington,

D. O.: National Educational Association, 1960.

43. Flanagan, J. D. Units, scores) and norms. In Lindquist, E. F. (Ed.)

Educational measurement. Washington, D. C.: Amer. Council on

Education, 1951.

44. Flesch, R. A new readability yardstick. J. appl. Psychol., 1948,
RI 221-233.

45. Frederiksen, N. Development of the test "Formulating Hypotheses":
a progress report. ONR Technical Reporti Princeton, N. J.: Educational
Testing Service, 1959.

46. Frederiksen, N., &Gilbert, A. C. P. Replication of a study of
differential predictability. Educ. psychol. Measmrt., 1960, 20

759-767.

6 8
-63-

47. French, J. W. Validation of the SAT and new item types against

four-year academic criteria. Research Bulletin 57-4. Princeton,

N. J.: Educational Testing Service, 1957.

48. French, J. W. A machine search for moderator variables in massive
data. ONR Technical Report, Princeton, N. J.: Educational Testing
Service, 1961.

49. Fry, E. B. Teaching Machines: An investigation of constructed-

response versus multiple-choice methods of response. Doctoral
dissertation, Oniver. Southern Calif.,-1960.

50. Gaga, R. M. The effect of sequence of presentation Of similar
itenm on the learning of paired associates. J. exp. Psychol., 19%,
40, 61-73.

51. Gagne', R. m. Teaching machines and transfer of training. Paper
Vresented at Amer. Psychol. Assoc. Convention, 1959.

52. Gaga, R. M., & Dick, W. Learning measures in a self-instructional
program in solving equations. Princeton Oniver., 1961.

53. Galanter, E. (Ed.) Automatic teaching: The state of the art.
New York: Wiley, 1959.

54. Gavurin, E. I., & Donahue, V. M. Logical sequence and(random sequence.
Automated Teaching Bulletin, 1961, 1, 3-9.

55. Gilbert, T. F. On the relevance of laboratory investigation of
learning to self-instructional programming. In Lumsdaine and Glaser,
Teaching machines and_programmed learning: a source book. Washington,
D. C.: National Educational Association, 1960.

56. Gilbert, T. F. Some recent attempts at the partial automatiOn of
teaching. In Lumsdaine and Glaser, Teaching machines and programmed
learning: a source book. Washington, D. C.: National Educational
Association, 1960.

57. Glaser, R. Principles and problems in the weparation of programmed
learning sequences. Univer. Pittsburgh, 1960.

58. Goldbeck, R. A. The effect of response mode and. learning material
difficulty on automated instruction. Santa Barbara, Calif.: Amer.
Institute for Research, 1960.

59. Goldbeck, R. A., Campbell, V. N., & Llewellyn, J. E. FUrther
experimental evidence on response modes in automated instruction.
Santa Barbara, Calif.: Amer. Institute for Research, 1960.

6o. Gorow, F. F. Do it yourself statistics. Long Beach, Calif.: Long
Beach State College, 1560.

61. Green, B. F. Attitude measurement. In Lindaey, G., Handbook of
Social PeclyA_Es.oz, Cambridge, Mass.: Addison-Wesley,-IT54-7----

69

62. Grossnickle, F. E. Constancy of error in learning division with a
two-figure divisor. J. educ. Res., 1939, MI 189-196.

63. Grossnicklel-F. E. Kinds of errors in division of decimals and
their constancy. J. ethic. Res., 1944, 111 110-117.

64. Guilford, J. P. Psychometric methods. New York: McGraw-Hill, 1954.

65. Gulliksen, H. Theory of mental tests. New York: Wiley, 1950.

66. Guttman, L. A. basis for scaling quantitative data. Amer. sociol.
Rev.,l949, $ 139-150.

67. Heim, A. W. Adaptation to level of difficulty in intelligence
testing. Brit. 3. Psychol., 1955, 46, 211-224.

68. Holland, J. G. A teaching machine program in psychology. In
Galanter4 E. (Ed.) Automatic teaching: The state of the art.
New York: Wiley, 1959.

69. Holland, J. G. Tbaching machines: an application of principles
from the laboratory. In Lumsdaine and Glaser, Tbaching machines
and programmed learning; a source book. Washington, D. C.:
National Educational Association, 1960.

70. Holland, J. G. Desilp aml use of a teaching machine program.
Paper rresented at Amer. Psychol. Assoc. Convention, 1960.

71. Bblland, J. G., & Skinner, B. F. The analysis of behavior.
New York: McGraw-Hill, 1961.

72. Ammer, C. L. Payoff in programing of tutoring units. Paper
presented at Amer. Ptychol. Assoc. Convention, 1961.

73. Hughes, 3. L. The effectiveness of programmed instruction:
experimental findings for 7070 training. IBM, 1961.

74. Hutt, M. L. A clinical study of "Consecutive" and "Adaptive"
testing with the revised Stanford-Binet. 3. consult. Psychol.,
1947, 111 93-103.

75. Irion, A. L., & Briggs, L. J. Learning task and mode of operation
variables in use of the stibject matter trainer. Tech. Report
AYPTRC-TR-57-81 1957.

76. Jackson, D. N., & MessickiS. Content ind style in personality
assessment. psychol. Bull., 1958, 55, 243-252.

77. Jacobs, P. I. Item difficulty and programmed learning. Research
Memorandum 61-5. Princeton, N. 3.: Educational Testing Service, 1961.

78. Jenkins, 3. 3. In R. 0. Collier, Jr., and S. M. Elam (Eds.),

Research design and analysis. Bloomington, Ind.: Phi Delta Kappa,
Inc., 1961.

-65-

70

79. Jones, M. B. Simplex theory, Monograph 3, U. S. Naval School
of Amiation Medicine, 1939.

80, Jones, R. S. Integration of instructional with self-scoring
measuring procedures. Unpublished doctoral dissertation, Ohio
State Univer., 1950.

81. Kaess, W., & Zeaman, D. Positive and negative knowledge of results
on a Pressey-type punchboard,. J. exp. Psychol., 1960, 60, 12-17.

82. Keislar, E. R. The development of understanding in arithmetic
by a teaching machine. In Lumsdaine and Glaser, Teaching machines
and programmed learning: a source book. Washington, D. C.:
National Educational Association, 1960.

83. Kendler, H. H. Teaching machines and psychological theory. In
Galanter, E. (Ed.) Automatic teaching: The state of the art.
New York: Wiley, 1959.

84. Kershaw, J. A., & McKean, R. N. Systems analysis and education.
RM-2473-FF, The Rand Corporation, 1959.

83. KiMble, G. A., & Dufort, R. H. Meaningfulness and isolation as
factors in verbal learning. J. exp. Psychol., 1955, 50, 361-368.

86. Klaus, D. J. The art of auto-instructional programming. Audio-

Visual Comm. Rev., 1961, 2, 130-142.

87. Kopstein, F. F., & Roshal, S. M. Verbal learning efficiency as
a function of the manipulation of representational response
processes. Tb appear in A. A. Lumsdaine (Ed.) Student response
in programmed instruction. Washington, D. C.: National Academy
of Sciences, National Research Council (in press).

88. Kopstein, F. F., & Shillestad, I. J. A survey of auto-instructional
devices. USAF, Aeronautical Systems Division, Wright-Patterson
AFB, Ohio, ASD Tech. Rep. 61-414, 1961.

89. Krathwohl, D. R., & Bhyser, R. J. The sequential item test. Paper
presented at Amer. Psychol. Assoc. Convention, 1956.

90. Lawson, C. A., Burmester, M. A., & Nelson, C. H. Developing
a scrambled book and measuring its effectiveness *3 an
aid to learning natural science. Science Educ., 1960, 44, 347-358.

91. Lindquist, E. F. (Ed.) Educational measurement. Washington, D. C.:

Amer. Council on Education, 1951.

92. Lindquist, E. F. Preliminarrconsiderations in objective test
construction. In Lindquist, E. F. (Bd.) Educational measurement.
Washington, D. C.: Amer. Council on Education, 1951.

93. Lord, F. M. Estimating test reliability. Educ. psychol. Measmt,
1955, 15, 325-336.

71
-66-

91. Lumsdaine, A. A. Some issues concerning devices and programs
for automated learning. In. A. A. Lumsdaine and R. Glaser (Eds.),
Teaching machines and programmee learning: a source book.
Washington, D. C.: National Educational Association, 170.

95. Lumsdaine, A. A., & Glaser, R. Teaching machines programmed
learning: a source bbok. Washington, D. C.: National. Educational
Association, 1960.

96. Lund, K. W. Test performance as related to the order of item
difficulty, anxiety, and intelligence. Unpublished doctoral
thesis, Northwestern Univer., 1933.

97. Mager, R. F. Preparing objectives for programmed instruction.
San Francisco: Fearon PUblishers, 1961.

98. tokssick, S., & Rills, J. R. Objective measurement of personality:
cautiousness and intolerance of ambiguity. Educ. Tsychol. Measmt,
1960, 20, 685-698.

99. Meyer, S. R. Report on tha initial test of a Junior High School
vocabulary program. In Lumsdaine ami Glaser, Teaching
and programmed learning: a source book. Washington, D. C.:
National Edumtional Association, 1960.

100. Mitzel, H. E. Tlacher effectiveness. In Harris, C. W. (Ed.)
Encyclopedia of Educational Research. New York: Macmillan, 1960.

101. Mbsier, C. I. A critical examination of the concepts of face
validity. Educ. psvhbl. Maasmt, 1947, 7, 191-205.

102. Nachman, M., & Opochinsky, S. ThL effects of different teaching
methods. J. educ. Ptychol., 1958, 120, 245-249.

103. Newman, S. E. Student vs. instructor design of study metfiod. J.

educ. Psychol., 1957, Y1, 328-333.

104. Pask, G. Electronic keyboard teaching machines. In Lumsdaine and
Glaser, Teaching machines and_programmed learning: a source book.
Washington, D. C.: National Educational Association, 1960.

105. Porter, D. Some effects of year long teaching-machine instruction.
In Galanter, E. (Ed..) Automatic teaching: The state of the art.
New York: Wiley, 1959.

106. Pressey, S. L. Development and appraisal of devices providing
immediate automatic scoring of objective tests and concomitant
self-instruction. J. Psychol., 1950, 251, 417-447.

#

107. Pressey, S. L., & Campbell, P. The causes of children's errors
in capitalization. The English journal, 1933, 121 197-201.

108. Rao, R. C. Review of simplex theory. Psychametrikal 1961, 26,
252-254.

72

-67-

109. Rapaport, D. Diagnostic psychological testing, Vol. 1. Chicago:

The Year Book Publishers, Inc., 1945.

110. Remmers, H. H., & Gage, N. L. Educational measurement and evaluation

New York: Harper, 1943.

111. Rigney, J. W., & Fry, 1 E. B. Current teaching-machine programs
and programming techniques. A-VComm. Rev. 1961, Supplement 3.

112. Riley, M. W., Riley, J. W., Jr., & Toby, J. Sociological studies
in scale analysis. New Brunswick: Rutgers Univer. Press, 1954.

113. Roe, A. Automated teaching methods using linear programs,
Report No. 60-105, UCLA, 1960.

114. Rothkopf, E. Z. Autamated teaching devices and a comparison
of two variations of the method of adjusted learning. Psychol.
Eta., 1961, 8, 163169.

115. Rothkopf, E. Z. Criteria for the acceptance of self-instructional
programs. Ptper read at Educational Records Bureau Meeting,
New 'York, 1961.

116. Ryans, D. G., & Frederiksen, N. Performance tests of educational

achievement. In Lindquist, E. F. (Ed.) Educational measurement.
Washington, D. C.: Amer. Council on Education, 1951.

117. Saunders, D. R. Moderator variables in predication. Educ.

psychol. Measmt, 1956, 16, 209-222.

118. Schultz, D. G., & Siegel, A. I. Generalized Thurstone and
Guttman scales for measuring technical skills in job performance.
J. appl. psychol., 1961, 45, 137-142.

119. Severin, D. G. Appraisal of special tests and procedures used
with self-scoring instruction testing devices. Unpublished
doctoral thesis, Ohio State Univer., 1951.

120. Shay, C. B. The relationship of intelligence to size of step
on a teaching machine program. Doctoral dissertation, UCLA, 1960.

121. Silberman, H. F., Melaragno, R. J., Coulson, J. E., & Estavan, D.
Fixed sequence vs. branching auto-instructional methods. J.

educ. Psychol., 1961, 52, 166-172.

122. Silverman, R. E., 8:Alter, M. Response mode, pacing, and
motivational effects in teaching machines. Tech. Rep. NAVTEADEVCEN 507-3,

1961.

123. Skinner, B. F. Teaching machines. In Lumsdaine and Glaser, Teachirls
machines and programmed learning,: a source book. Washington, D. C.:
National Educational Association, 1960.

124. Skinner, B. F. Why we need teaching machines. &try. Educ. Rev.,

1961, a.,/ 379-398.

-68-

73

125. Skinner, B. F., & Holland, J. G. The use of teaching machines in
college instruction. In Lumsdaine and Glaser, Teaching machines
and programmed learning: a source book. Washington, D. C.:
National Educational Association, 1960.

126. Stephens, A. L. Certain special factors involved in the law of
effect. Unpublished doctoral thesis, Ohio State Univer., 1950.

127. Stolurow, L. M. Teaching by machine. Washington, D. C.: U. S.
Office of Education, 1961.

128. Swineford, F., & Miller, P. M. Effects of directions regarding
guessing on item statistics of a multiple-choice vocabulary
test. j. educ. Psychol., 1953, 44, 129-139.

129. Taber, J. I., Glaser, R., & Schaefer, H. H. Instructional programming--
a handbook of instruct!onal procedures. Univer. Pittsburgh,
draft, 1961.

130. Tate, M. W. Individual differences in speed of response in mental
test materials of varying degrees of difficulty. Educ. psychol. Measmt,

1948, 8, 353-374.

131. Thorndike, R. L. Personnel selection: test and measurement techniques.
New York: Wiley, 1949.

132. Thorndike, R. L. Reliability. In Lindquist, E. F. (Ed.) Educational
measurement. Washington, D. C.: Amer. Council on Education, 1951.

133. Torgerson, W. S. Theory and methods of scaling. New York: Wiley,

1958.

134. Travers, R. M. W. How to make achievement tests. New York: Odyssey
Press, 1950.

135. Wexler, A. Administering and scoring the objective test. In
Lindquist, E. F. TEd.) Educational measurement. Washington, D. C.:
Amer. Council on Education, 1951.

136. Vaughn, K. W. Planning the objective test. In Lindquist, E. F. (Ed.)
Educational measurement. Washington, D. C.: Amer. Council on
Education, 1951.

74
-69-

INDEX OF NAMES

Adkins, D. C., 55
Allison, R. B., Jr., 52
Alter, M., 29
American Psychological Association
(APA), 35-36

Amsel, A., 57-58
Anderson, A. A., 53

Barlow, J. A., 21 25-26
Bayroff, A. 0.1 53
Beals, A. R., 49
Bean, K. L., 42
Bloom, H. S., 28
Briggs, L. J., 40
Brigham, C. C., 54
Brogden, H. E., 13-141 161 18
Br4eckner, L. J., 541 46
Bruner, J., 52
Burmester, M. A., 8
Buswell, 0, T., 55-56

Calvin, A., 2
Campbell, P., 56
Campbell, V. N., 291 41
Carr, W. J., 71 191 311 4041
Chall, J. S., 24
Cline, V. B., 49
Conrad, H. S., 291 34
Cook, J. 0.1 291 55
Coulson, J. E., 411 531 58
Cronbach, L. J., 51 18, 36-371

481 51
Crowder, N. A., 71 81 52-531 56

Dale, E., 24
Davis, F. B., 54
Dick, W., 13-141 161 31, 47
Donahue, V. M., 42
DuBois. i. H., 16
Dufort, R. H., 22
Dunn, T. F., 23-25
Dyer, R. S., 40

Ebel, R. L.. 23-251 271 31
Edwards, A. L., 43
Eigen, L. D., 27
Ellison, F. S., 24
Elwell, M., 541 56
Estavan, D., 531 58
Estes, W. K., 4
EVans, J. L., 81 20, 22-231 38

*Ferris, F., 21
Ferster, C. B., 371 40-41

75
-70-

Fifer, G., 54
Findlay, W. G., 54
Flanagan, J. D., 43
Flesch, R., 24
Frederiksen, H., 171 231 52
French, J. W., 171 52
Fry, E. B., 21 51 7-81 111 141
231 281 38

Gage, N. L., 25-27
Gagne', R. M., 13-14, 16, 31,
471 50

Gavurin, E. I., 42
Gilbert, A. C. F., 52
Gilbert, T. F., 81 231 56
Glaser, R., 21 -81 201 22
Gleser, G. C., 181 371 481 51
Goldbeck, R. A., 291 411 58
Goldstein, L. G., 23-25
Gorow, F. F..1 8
Green, B. P., 43
Grossnickle, F. E., 54
Guilford, J. P., 33
Oulliksen, H., 161 171 31
Guttman, L., 331 43-481 6o

Heim, A. W., 42
Hills, J. R., 52
Holland, J. G., 71 201 25-271 42
Hommel L. E., 81 201 22
Hosmer, C. L., 33
Hughes, J. L., 151 39
Hutt, M. L., 53
Huyser, R. J., 53

Irion, A. I., 40

Jackson, D. N., 30
Jacobs, P. I., 33
Jenkins, J. J., 52
John, L., 55-56
Jones, M. B., 47
Jones, R. S., 171 261 33

Mess, W., 28
Keislar, E. R., 41
Kendler, H. H., 35
Kershaw, J. A., 38
Kimble, G. A., 22
King, R. G., 40
Klaus, D. J., 201 23
Kopstein, F1 F., 71 55
Krathwohl, D. R., 53

iawson, C.A., 8
Lindquist, E. F.) 12, 35
Llewellyn) J. E.) 29, 41
Loevinger, J., 33
Lord, F. M., 16
Lunsdaine, A. A., 7, 20, 94
Lund, N. W., 42

Mager, R. F., 7
.MOCean, R. N., 38
Meehl, P. E., 36
Melaragno, R. J., 53, 58
Massick, S., 30, 52
Meyer, S. R., 41
Miller, P. M., 57
Mitzel, H. E.) 39
Mosier, C. I.) 36

Nachman, M., 14
Nelson, C. H.) 8
Newman, S. E.) 23

Opochinsky, S., 14

Pask, G., 3
Porter, D., 40
Pressey, S. L., 3, 7, 11, 27-28,

39, 56
Price, L., 54

Rao) R. C., 47
Rapaport, D., 53-54
Read) D. N., 54.

Banners, H. H., 25-27
Ripley, J. W.) 2, 5, 7-8, 28, 38
Riley, J. W.) Jr., 43
Riley, M. W., 43
Pbe, A.) 23, 36, 42
Aoshal, S. M., 55
Rothkcpf, E. Z., 31, 38, 55
Ryans, D. G., 17

Sapon, S. M., 37, 40-41
Saunders, D. R., 52
Schaefer) H. H., 8
Schultz, D. G., 46
Seidman, D., 49
Severin, D. G., 3 11, 25, 28)

39
Shay, C. B., 10, 31, 41, 49, 51,

53
Shillestad, I. J., 7
Siegel, A. I.) 46
Silberman, H. F.) 41, 53, 58

.76

Silverman, R. E.) 29
Skinner, B. F., 7, 8, 27, 42, 53
Spitzer, M. E., 29
Stephens, A. L., 11, 13-14, 39
Stolurow, L. M., 7, 30, 49, 51
Swineford, F., 57

Taber) J. I., 8
Tate, M. W., 58
Taylor, E. K., 13-14, 16, 18
Thomas, J. A., 53
Thorndike, R. L., 10, 16-17, 19,

33-34, 36
Tbby) J., 43
Toops, H. A., 55
Torgerson, W. S., 43
Travers, R. M. W., 24, 26
Traxler, A., 21, 31

Vaughn, K. W., 22, 28

Zeeman, D., 28

SUBJECT INDEX

Achievement tests and testing, 5, 11,35
and branching, 56-57
"subject matter" vs. "ability", 21-22

Adaptive Programming, 47-58, 60
validity, 48-50
fixed-treatment placement, 48-52
branching programs, 52-58

guessing, 57
measuring achievement in, 56-57
validity, 53

Aptitude, 49-52

Benefits, 37

Comparison of instructional methods, 15, 39
Conctructed-response format, 23, 25-27, 55
Conventional instruction, 5, 39
Cost analyses, 18, 37-38
Criteria

behavior, 32
combining of, 18
contamination, 14-16
deficiency, 14
defined, 11
proximate and ultimate, 12-13
reliability, 17
scale unit bias, 16

Dollar criterion, 16-18

Error of illation, 13-14
Errors node by learner, 11, 37

Fixed-treatment placement, 48-52
Frames

criterion, 32, 56
difficulty of, 32
evaluation of, 33-34
interdependence of, 20, 24, 42
ordering of, 42-47
size-of-step, 20, 28

Guessing, 57
Guttman scaling, 43-46

Individual differences, 47-58

in achievement, 40
in time to go through program, 31, 40

Item
correlations, 32-33
difficulty, 32-33, 42
ordering, 32, 42
validity, 33

-72-

77

Knowleaga of results, 3-k, 21, 51, 53

Learner "types", k6, 49
Learners' inittal knowledge, 19, 32, 37, k2-k7
Logistics, 38

Mltiple-Choice format 11, 21, 23, 27-28, 55

Obsolescence, 38

Paired-associates, 30, 55
Programmers, selection and training of, 28
Programs

distinguished from tests, 2-k
procedures in programming

specifying objectives, 10-18
determining the resources available, 19-21
planning and developing frames, 21
pretesting (tryout) and revision, 29-35
evaluation, 35-39
providing information to program users,
39-k1

Prompts, 30

Readability, 2k
Reference groups, 39-40
Reliability, 17, 31, 36
Response

latency, 58
patterns, 11.4-11.5

sets, 29-31
tendencies, superthreshold, 57-58

Retention, 15-16, 36-37
Ruleg matrix, 22

Scale unit bias, 16
Score equivalence,
Selection ratio, 37
Sequencing, 32, k2-k7
Simplex theorY, 47

Tests
distinguirned from programs, 2-k
relationsLips with programs, 4-5
steps in construction

specifying objectives, 10-18
determining the resources available,
19-21

planning and developing items, 21
pretesting (tryout) and revision,
29-35

evaluation, 35-39
providing information to test users,

5941
uses, 2, 59

-73-

78

Time

testing, 20, 31
training, 14, 20, 31, 38

Validity
concurrent, 36
construct, 36
content, 35-36
face, 36
predictive, 36

79

-711-

