
BD 129 271

AU7H_
TITLE
7DrIR PAT7
NOTE

DOCUMINT

PiggG Dcnald F.
7he Co pu, 3ubrcu-7:-ne

11 7-6

22D.

IR 104 053

Information }aricUinq.

s -$o .83 HC-$1.67 Paus Posta
DESCRIPTORS Computer Programs; *Information Processing;

Libraries *Programdng
IDENTIFIFRS *Subrouti es

ABS--ACT
Generali2ed computational subroutines can reduce

programing repetitions and wasteful c,onputer storage use. The most
useful are tho3e that are flexible ennlgh to handle a wide variety of
'tuations. Subroutines may have details open to change in order to

blend into the maim program. They may be built into the computer
library or supplied by the programer as part of this program deck.
Library subroutines have limiting specifications and ranges, entry
and exit commands and addresses which should be designed to fit into

any program. Operating routines, the most prominant type of which are
the input-output sets or opaokages,'T differ from other subroutines in
that they partially control the computer and return controa to the
main program when their work is completed. 5asic subroutines of
particular value in a c17emical library include basic arithnetic
computations, function evaluations, numerical analyses plus collating
and sorting programs. Service routinescompilers, assemblers,
debugging and machine testing programsare also u eful. (EB)

* DocumentS acquired by ERIC include many informal unpublished
erials not available from other sources. ERIC makes every effort

* to obtain the best copy available, Nevertheless, items of marginal

*

*

*

* reproducibility are often encountered and tilis affects tte quality *

* of the microfiche and hardcopy reproductions ERIC makes available *

* via the 72PIC Document Reproduction Service (EDRS) . EDRS is mot *

* responsible for the quality of the original document. Reproduction *

* supplied by EDRS are the best that can be made from the original. *

**

E,PAT:rhiE Air OF HEAL T

OTJCATON Tte+ti_FAst
NA TIONAL IT,/ST+ turt

EpucATiON

D :" . , ED r- OV

THE CO:1PUTER SUBR, TINE IN INPORmNTION HANDT-TN(.7,

Donald E. Riggs
Diretor oC Auraria Libraries

(Communitv College of Denver-Auraria, Metropolita
State College and University of Colorado at Denver)

One of the most used and most. abused parts of computer

nr---Icy is the subroutine. Many times one finds it necessary to

rereat the same set of instructions at different points in a

computer program. 7or example, if one is dealing with complex

quantities, he will find that mos t computers do f-tot have direct

commands which form sums, products, etc. Each time he wishes

to form a product, it will be necessary to carry wIt a certain

fi:.:ed sequence of aiditions, multiplications, and groupings which

will produce the' desired result. All -uch nroducts . ill be for

ed in an identical manner, and it will be only the operandn which

differ. A possibility for handling this problem is to incorpo-

rate the needed instructions into the main program, simply re-

po,lting wherever desired-

if a sot of in commands is required to form lnd store a pro-

dlict of two comple:.: numbers, ono miAlit arrive at a program

age pattern possibly named complex product code. This is prob-

ably the technique which ost conservative of machine time,
, /

but is wasteful of storage capacity, since it reguires one to

duplicate what is essentially the same code in various storage

locations. It is also wasteful of effort, since the codes arc

a function of _t-racle location and one cannot exactly duplicate

-2-

then in eJch cf: the program. it will he essential to

noalfy a ec. of It instructions to make it suitable for its:

final location.

hottc-r Eichcmo is to write a. sinoio co(which will form

nroducL of anv two designate0, complex numbers, dnd

IT;-;terc it separate:inz from the main program. Subsequoltly, each

ono i reuirmd. any-m iicli ro1oc L ho will solect iiS

ar:Cl, on its completion, return to the inain program. Such

o codo is calld a subroutine, or subprogram. It is an arixil-

ler/ routino used in conjunction with, but 1-lot as port of, the

main routino -or m-slin -,110,4-177am

TUE PURPOE

it was the purnose of this stud (1) to reveal the impor-

tance of computers' subroutines relative to the handling of in,-

formatior; (2) to rlate the use of subroutines to a coripub-

orized chemical libraryl and (3) to provide an overall view af

the ,17:Ffect of 5-:vlbroutinos upon the daily activities of libtar-

ies and infornation centers possessing. computers.

DEFINITION

Subrellrine. Theoretically, anything that is written which

makes a "positive" coritribation to the programming field canad

be considered a subroutine. From a working standpoint, however,

in this study subroutine means more. To be adequately defined,

it must meet the followdnq requi-f:ements!

1. It must mak o a positive contribution to the existing

program library, for the basic programmer's vocabulary is thus

It must be general e-ough so tat it will 'be used by

ofteol used many t irxs WiLhin the sane program-

repr-,sent r wise choice of tho toal number of

cap-ble of -arryin outs because one cannot per-

ibiii m0.1c? it 4i_ffi ult ur inefficient to use

in any' specific application.

ADVANTAGES, AND DISADVANTACES OF THE. SUBROUTINE

ADVANTAGES

One of th. baler advantages of subroutine usage is

saving in time. This savi-4 occurs in the calendar

pari a program for a c nputer and in the actual. comput

of pre-

e.

thor ughly tcsted :tub: u ine can Je regarded as corr ct.

Therefre if subroutine's are e ployed in a newly developed pro-

thei

ain p

Inc

n-e ho-Ilps to horne in om errors

-easing e voca ula

devel,oping with-

ui-h the u-- of subr utines4

the programmer is providod with a stimulus to Hew ideas and t--h-

nictues. In any language there is an important correlation between

the comprehensiveness oF the vocabulary and the formation of ideas.

1 01 this g_ater variety comes greater Ele ibility.

The many fields employing computers have specialists and ex-

perts wbo are applying their knowledge to the creation of out-

standing subr iti (Wen-heit p. 486). A. large library of sub-

routines -from alL fields has become available and is still rapidly

gro ing. Such a wealth I
E autput gives a tre-endous impetus to

4

uLs Jn, for the subroutines of today may well bee

he foundation for the basic vocabulary o the a -_.ed Com-

pU e of tomorrow.

What Can this library of subroutines do for a new com- ter

user? it is possible for a new cornouter ganization to start

'ickly, h a rnintmuni of waste and with a minimum

staff of pro ossional ogro -ers and machine operators. It is

somotimes possible to go into some produ-tion without having to

create wholly new pr gra_ basing a system entirely ur

atlo -r-utinc- just as the basic instru tions are the building

blocks of the subroutines, so are the subroutines the building

blocks of such programmed systems. In a similar manner, one has

the ability to chain his subroutin_ (i.e., o e can have subroutine

within subroutine within another suhri-tine). Therefore, one can

increase his programming system in depth as -ell in breadth by

em iloying o ly procedures.

B. POSSIBLE DISADVANTAGES

Posses:inq all the aforem ntioned advantages, what are the

pract cal diffic.-ities which could substantially reduce the effec-

t' eness of th,, subroutine? In broad terms, the pitfalls are mis-

Use, overuse, misdirection, carelessness, poor logic, the unln-

ticipated uncalled-for duplication (thcluding creation of

-out dis-arded methods), and misleading or unavailable d

scriptions of working subroutines.

Too oft n, in an atte-pt to pr duce ": " methods or mate-

rials an installatioo or programming gro_p will tend to value

(:ruantitv over Quality. No matt2r how impressive their aims

may have been, they make n- real contribution. Today, he -ever,

tho production of quality is be-o ing much mor- critical where

we now have a workable foundation of techniques and applications.

It is simply becomina more difficult to formulate good ideas

and techniques which are absolutely new.

A much more wasteful, thou h loss frequent, occurrence is

the production of a major system, such as an assembly system,

doh incorporates ideas and techniques which have already been

proved in c_quate. This waste -f time, talent and capital is

son -thing that should be eventually rooted out completed.

Oft n an excellent s_broutine is not used because only a

poor write-up, Cr Perhaps no ite-up at all, exists. Many fine

of ork =re buried by their write-ups; it is amazing how

many misconceptions and misdirections cn _ cur in such a

scription.

Next to oper write-ups, the most irritating and expen-

sive difficulties are caused by errors in the subroutines them-

ivos. One type of error, the uncalled-for error, will always

e:ist to sonic de Poor use of flow diagrams poor training,

(Dor supervision, or just poor attitude will cause these errors.

The part cular error that probably causes the most trouble

is the unanticipated error. Especially in complex subroutine

systems whore one has a great va 'ety of data that must be han-

dled, a par icular data combination may occur that is not treated

correctly. Such a d ta combination may not he eneoun ered during

mon ths of use. Khat happens'when s ch an error occurs depends

upon how careful the preammer was in setting- up errOr routines

within the sys

Othe::- times _ there is a tendency to use a subrouti e where

si)le basic r-ogrammi q is much more effective. I4roper use

_b7outines do not weigh in their favor.

THE SUBROUT1ME LIBRA

Hith t production of subroutines increasing, it becomes

much harder for the individual prcqramme to keep up with all

the developments. It requires considerable effort to be familiar

with so many routines to the point of being able to usethem all

properly. Actuially, it is generally unnecessary for a prog

mer to be this proficient. How, then, does he decide which sub-

routines sound or look interestinct enough for him t_ pursue them

further. This responsibility is normally delegated to the li-

brarian The librarian is usually someone with a fair knowledge

of the computer (or co buten:.) being used in the organization,

an--7.1 able to understand technical' terminol gy to the point

pro 2 ly cla sifying e_ h subroutine (Computers, p. 58).

Is it an input-output type, an arithmetic type, or perhaps

a technique for solving a special set of equations? The computer

organizations help in this area by submitting abstracts of the

subroutines to all in-tallations. The librarian normally pre-

pares lists ci new subroutines toqether with br_ef descriptions

for distribution within the organization. He answers questions

concerning the availability of subroutines me ting certain qual-

ifications and is responsible for verifying all new sub outines

7

for accuracy. If he does not understand particular techni_ques

or CC) lications, he may assign them to knowledgeable program-

mors. .

He is also respons ble for 1-,--eeping current co ies of all

sub -utines for immcdiate usac-

When a computer has magnetic tape as one of its inputs,

c'irtain subroutines are kept on this medium. Usually a selection

of the most-used subroutines Is placed on a special-purpose ao

nor ic

the

which is kept up to date by the librarian. During

ly-program procedure, when the programmer's language

----Islated into its equivalent machine lanciace, the

assembly program recognizes - special pseudo-instruction info

inu it to retrieve the desired subr _tine from the magnetic tape.

Automa ically the subroutine will combine with the main 1_1:-gram

being assembled.

One does not p_L. all subroutines on the libr ry tape because

too much time would, therefore, be consumed in searching the tape.

If a less popular subrouti e is being used which is not found on

the tape, then one can obtain a copy of the r utine on punched

cards from a file maintained for this pu Dose. Cards, however,

do not provide th- sa e degree of convenience or spe d as the

tape.

BASIC CON PT-P :',ND PRINCIPLES

A. GENERALIZING A SUBROUTINE

The most us-ful subroutines in the library are the ones that

will handle the -idest va_ *ety of situations. A routine for

solving a system of precisely five simultaoous linear equations

is far less useful than one that will handle any number of equa-

tions from two to thirt. such flexibility is somewhat offset

by the fact that a gener 1 rout ne of this kind may not be as

efficie t a. one written to accommodate five equations, no more

and no less. If an installation is expected to run four equa-

tions one day, twenty the next, etc., flexibility is t- be pre-

terred. On the other hand, if a larcje fraction of the time is

spent solvinc systems of a fixed size, it is worthwhile to develop

a specific program to deal with that number of equations (Wrubel,

p. 91).

Many times with a small amount of effort a program can be

generalized to include other useful eases. For example, the for-

mula for sinh x is

which dif-

sinh x

from cosh x only in havinq a minus sign in the

numerator. One can generalize his prvious subroutine to compute

either one.

B. OPEN SUBROUTINE

As already mentioned, the subre tine is co

her of in true _ons used as a unit to perform a given function.

One m thod of using subroutines is to insert this unit at every

point in the pr gram where it is needed to have this particular

function performed. As one makes the ins--tion, he must modify

certain instructions in the routine in order to adapt it to its

-ised of a num-

9

partic lar use at that point. One miht, for example, have to

modify some addresses in order for them to refer to thE2 p-oper

(intl. In ethcl,r u;ords, the deta ls of the subroutine m-_,st be

open to scrutiny in order to make it a part of the main program.

Because it is thus open to change, this type of program is ofte

called an open subroutine. Subroutines do not have to

closed form (Scott, p. 400).

The open subroutine loses it separate identity once it has

been inserted into the program. It si_ply becomes another set

f instru tions. Also, it is necessary to recopy such a sub-

jne each tim it is used. For this reason open subrouti es

e often not used where they might provide the most efficient

methnd. For example, ore wants a subroutine which clears a block

of storage U-ing the i struction STORE 5ERO (STZ) which clears

the designated sto-age word, the following simple routine could

be constructed:

AXT N, 1

STZ AA-N, 1

TIX *-1, 1, 1

In the above routine N is the symbol for the number of words in

the block, and A is the symbol for the first location in the block.

If one wants to clear three blocks of, say, 100, 150 and 75 words

starting with locations R, S and T, he could write

AXT 100, 1 TIX *-1, 1, 1

STZ R+100, 1 AXT 75,
TIX *-1, 1, 1 STZ TA-75, 1

AXT 150, 1 TIX *-1, 1, 1

STZ 5+150, 1

10

C. SUBROUTINE t,1RITE-UP

It shou - expected that every _-broutine wouici be de-

sc_ibed properly, since not be co-si as a sub-

routine unless there is an accompanying useful e-up.

tainly any device or tool, reaardless of - [_ense, is truly

worthless jf one cannot i.igure out the way to ope ate it. Such

a tool can be damaging if improperly used. Nevertheless, every

,,oar finds too large a number of - bro:tines, many of which cost

a consideraLie amount of money to prepare, being discarded be-

cause of inadequate write-ups and inadequat up-dating. Often

- description accompanying the proqram is accurate only for an

earlier version of the program.

A pr per solution t- such waste is the establishment _f a

set of standards. The good wr t--up must impart all the requiri'd

info -ation to the user in an ea ily digestible form. Further-

more, it must avoid the inclusion of i _elevant material which

will obscure the meaningful. Is it possible to determine a set

of rules and regulations that will effectively direct the pro-

grammer to create su-h an adequate write-up. Progra- ing asso-

c ations, e.g., SHARE, have always considered the question of

te-up standards one of their prime reasons for existence.

Such organizations can establish rules and refuse to distribute

material which does not conform to the rules, although these steps

are not necessarily sufficient to solve this problem. Itm price-

less ingredient, which rules cannot supply, is the pro- waiter's

attitude.

D. FUNCTION STATEMENTS

estlncr nr.:)cedures qreatly increase the pr

ciency in

ram 's effi-

.ti j programs. The other main simplification that

DO usL,_ in)repar --S i tiie incorporation of re-

-as that nv effect operations that ae used re-

_satedly. For example, if one needs the value of the so-uare

rnnt of a civantitv, he mav direct the co ,-- to calculate this

as part of his pro:IL-am. Howe er, because this operation is so

freqw-mtly carried out, it is -_-ch more efficient te the

steps of the operation in the form _f a subprogram that c uld be

called by

arTh

main program whenever needed. This _is the purpose

sub _utines and function definitions.

Subprog. AS (or subroutines) are of two types: (1) those that

built into the co puter as part of its library of programs, and

(2) tho e supplied by the programmer as part -f his program deck.

The termer type will be considered first because of its ready

availability e need to only know the form by which the requir-d

subprocjrani is called. A typical example follows:

A = SQRTF (B)

If the above statoirent is incorporated into a program, A will take

the value the square root of B. This is an example of a func-

tion statement. All function na- s con ain six or less alphabetic

or num! ic characters; they do not start with a number and end with

tter (Wiberq, p. 37).

The function of definitiorc- may be modified as part of a pro-

gram (Kuo, p. 72). For example, one may wish to evaluate both

2

common and natural iogarithrris, whereas the built-1n rora1ns

give only the natural log rithm. Before one calls fcr a 1

ithm the first time, he may write the statenen

LOG1OF (X) 2.303 * LOGF (X)

and whenever the statement

A - LOG10F(

appears, the common logarithm would be cal ul- d xl y ,

if one wished to deal with angles in degrees rather ttarl iii radians

(as the subprograms do) , he might include statement5 such as

SIMAF (X) = SINF (X/57. 2958)
ASINAF (X) 57.2958 ASINF

in the program.

It is sometimes useful to write a FUNCTION type Of Suloprogram.

A program of this type starts with a statement -such z-3s

FUNCTION NAX (A ,B)

Here the name of the function is MhX and its argurnerrts Eire A and

B. The function would be called in the main program by a statement

such as

X MAXF (A ,B)

Suppose the function subprogram ere to deteriajrie hich of

the two variables, A and 5, were the larger. X be

given the value of the larger of the two. The subpr0g m ould

be writt

FUNCTIOV VIA (A1B)
IF (A-B) 1, 2, 2

1 MAX B
GO TO 5

2 MAX A
5 RETURN
END

No to t tro narn of tbe f -notion in the precedinq example must

be set eq-ual to th c,==luamtity to be returned to the main pro-

h. re, %%X is set al to A or B, whichever is the la _er.

The 1a5t stotement FurEJRN, effects a return to the main program=

1. SCIBEOUTINE ASSEMBLY

Ir u sing libram/stibroutinos one must have a knowledge of

the vay- t bey funct ion (fi'<ed point, floating point , etc.) and

ar range L40 14:eep within th _ limits of their specifications and

ranges. (Jno. must reriemner that the actual code for the sub-

routiri is functaon o f its operating locations in storage. To

be ii-gefful libraiy subroutine must be designed to fit into any

grarm,

cont.

of the subroutine. The subroutine must be stored in such a way

ovided only that sufficient storage space is available

h instruct ors , parameters and intermediate results

that a copy of it cerlbe assembled in a correct form for operation

in arly stcrg e regjon tile coder wishes to specify. The assembly

operati n cem be corrie4 out easily by the computer itself, if

proper co rwentions of acIldre s not tion and format are employed in

the file coy of title subroutine,

The computer j11 arry out the assembly ope ation u der the

control of n as segbly program. Most computing laborat ries will

ke ep asembly programs in the service library (Stein,

p. 2 7) .

1Senibly progxanls will most likely vary from one in

stal1a -dom to anottev.

AI1 uroutines to he assembled must be wr _t -n in a proper

diet- e d by Ole paxtdcular asseMbly program to be us d. This

1 4

will per it the assembly prog am to distinguish between those

parts of the subroutine which *Ii_11 remain fixed and those which

will be modified. That is, it must be able to discri inate be-

tween q antities which are independent of storage and operation

locations (..g., constant operands and fixed addresses) and those

which are in a direct function of these locations.

F. ENTRY AND EXIT

Subroutines require an entry and exit. The entry of the sub-

routine may consist of a few rorniiiands which cre- e an exit com-

mand and then transfer to the working part of the subroutine_ The

exit is a planted transfer of control command. A dummy transfer

of control command is created by the entry of the subroutine and

placed at the end of the subr utine. The entry and exit are lo-

cations where any routine 11 s its sequence of operation interrupted.

The entry to a subroutine is the location to which control is trans-

ferred from the exit of the main routine. The exit of the sub-

routine is the point where control is transferred from the end of

the subroutine hack to an entry to the main routine.

G. RELATIVE ADDRESS

When a subroutine is written the addresses used generally

assume the first command of the subroutine located in cell zero.

That is, all the addresses are written relative to cell zero.

When the subroutine is actually used and the region in memory

around cell zero is not available (certainly not more than one

subroutine could be placed in the area of cell zero) , 't becomes

1 5

necessary to move the entire subroutine tø some oter 1oction

in the memory.

ACWAL OR ABSOLUTE ADDRESS

The relative addresses of the subroutine merely have added

the amount by the -ubro tine is to be shifted in mem ry,

thereby becoming the actual or absolute add esses. Techniques

for perforninq this shift are available within the actual hard-

war _f the computer in some cases, or certain assembly routines

are available which makes it possible to move these subroutines

around.

I. RECORD COMMANDS

To facilitate the use of subroutines, record commands are

available which enable the computer to store temporarily the

address of the main program from which entry is made to the sub-

routine. It is then a part of the subr_utine to take this s ored

address and create with it an exit from the subroutine back to

the main pr

3. SUERO_TINE OBLIGATIONS

One o_ the first important obligations of a subrouti e to

a main lorogram becomes apparent. The subroutine must do everything

in its power to preserve the status of the computer as it is before

the entry of the subroutine. If it is i possible or undesirable

to perserve some part of the status, such as a regster1s contents

or a switch oosition, notice m-st be given to the user.

Another obligation of the subroutine is to protect itself from

use in the sense of inc-r or insu fficient data from the

main program. The main program should be able to correct errors.

TYPES OF S BROUTI

A. OPERATING BROUTINES

Up to this point in this paper subrouti es have been de-

scribed as subservient to the main program, being given COM

at its pleasure. There are, twever, sets of subroutines

partially cont -31 the co -uter through the trapping mechanisms,

returning control to the main program only as their worn i2

pleted Megner, p. 188). Such subroutines are known as operatinci

subroutines. The most prominent type of suc routines is the

input-output sot, or "paokag fl

Even though such mackagea usually corisisi. of an elahoritte

and comprehensive set of subroutines for input, output, editinq

and ennversior" mention he:e will be made relative to a mu h

simpler package whose functions are restricted to the transmission

of input and -_tput data. The write-up of-such an imaginary pack-

age w-Ald include: name, author, purpose, rest ictions, calling

sequence, method, physical description, timin9, che_k-ou- proce-

dures and a double check.

B. PROCESSING SUBROUTINES

A compUter must have the ability to carry out the basic

arithmetic operations of addition, substraction, multiplication

and division. Nevertheless, without any detailed knowledge of

these instructions, it is poss ble to carry out a great deal of

arithmetic through use of subroutines.

Of basic importance in mathe atics is the con ept of "func-

tion. A f 1-t _n is simply a rule for obtaining one set of

bers from anothcr set. As such, the function bea s an imp

tant relationship to the pr c-ssing subroutine, whic_ can be con-

sidered a, "rule" by which one set of computer io±mation

transformed into anuther set. Notice that this comm n use of the

word "function" is perfectly consistent with the mathematical use.

In fact, when mathematicians e tables, they speak of the "argu-

ment" (par number) and the. "fun tion" (price

The irnDortance of procesing subroutines is that they enable

us to ca y out the rule implied by either a mathematical func-

tion, like square root a MDft athematical function like with-

holding tax (McCalla, p. 34) . Although one may not have the

vag-est notion of what t "'Cudermannian" of a number -ans, if

given a subroutine and a calling sequence he can certainly calcu-

late Gudermannia s as well as anyone. The process of writing the

necessary subroutines do-s of course, require special knowledge

h case; hut so does the

According to Hassitt (p. 220) , V

not restricted t_

of building a computer.

-cessing subroutines are

alu ting functions of single arguments nor

are they restr cted to yielding single results. Again, the means

f using the subroutine are independent of the particular type of

process=

USE OF SUBROUTINES IN A CHEMICAL LIBRARY

Perhaps the first question that comes to on-'s mind is that

18

relative to how does a subroutine being utilized for a chemical

library purpose differ from any other subroutine? It is true

that more similarities than differenc:es occur among subr utines.

evcr, in this case the nature of the library (chemi t y-ori-

P Lcd) is unique in itself. lu the follOwing state ents this

iter briefly reveals _ how subroutines are used for such, specific

1 i brary purposes, plus explains some of the unique factors pos

sessed by subroutines des_gned for chemical libraries.

Before - ing any further in thought along this line, it

must be understood that the uter or computers will be oper-

ated in this particular libra y by a competent person possessing

full understanding of the library's objectives and purposes.

Based on the foregoing information in tlia paper, it is

e ident that a subr utine will aid the librarian or che ist in

solving a chemi -1 equation. One may know what particular equa-

tion to use, but may have no Idea as to the methods of solution

for such equation. With the necessary subroutine, he may proceed

lout any diffi ulty.

Ideally, with the subrout nes the computer's "knowledge" is

expandLd and it is able to do many more complex chemical related

calculations, at the same time requiring less programming on the

part of the user. The basic computat: ns, which are of great value

to the chemical field, performed by the subroutin s include:

sic A ithmet

ing point add, subtract, multiply, divide

Complex number operations

Multiple precision routines

Functio- Evaluatio_

Squaro root

Trigononotric: x, cos x, tan x

Expone_tial: in x, log

Numerical

_X y
e , or a

Solution of n simul aneous equations

Matrix operations

Eigenvalue solutions

Numerical integ--_ ion

Numerical differentiation

Roots of polynomials

Logical

Sor.ting

Collating

Without further elaboration one can detect the significant

contribution that the subroutines can make to computing chemical

knowledge.

Effective roles are played by the service subroutines as

compilers, assemblers, programming aids (e g., debugging sub-

routines) and machine-testing routines. The functions performed

by these service subr utines are numerous.

The up-to-date chemical librar!, depending on size and demand,

may possess a "library within a library." Today it is very im-

por_ant to have a knowledgeable library of subroutines. Most of

the subroutines will probably be maintained on a special-magnetic

tape in lieu of punched cards which do not provide the same degree

of convenience Or speed as the tape.

20

CONCLUSION

What is informati_ Webster defines it as "Timely or

speclfic Knowledge acquired or derived; f s; data." From

this 1- narration, but mea ingful throughout, one is led to

con lude that subroutines enlarge the importance of computers

n regard to the handling of information. Niccur-11y, much more

than given in these past few pages exists on the significance

of subro-ti-e0 However, the "highlightE' have been presented.

Advantages greatly outweigh the disadvantages of the function

_f sub outines.

What does the future hold for subroutines? Most of the

world's knowledge will soon be in machine-readable form. It will

be much like a game with subroutines; always interesting, occa-

sionally frustrating, but never dull and the subr utine al-

ways wins Rhynas, p. 20).

REFERENCES

Comp_ ers in 1984. Sp cial Libraries, 56 (January, 1965), 58.

Cowan, Russell A. Computer Software: Problems and Solutions.
qREE.Rnign, 6 (September, 1967), 16-22.

Cutler, Donald I. Ihtroduction to Computer Ems=unina. Engle-

wood Cliffs, New Jersey: Prentice-Hall, 1964.

Ha-sitt, Anthony. Computer naL,nnIart and c2TER_t_qL Lytems.
New York: Academic Press, 1967 .

ellerman, Herbert . Com uter yem Performance. New York:

McGraw-Hill, 1975-

Kuo, Shan S- Computer Applications of unierica1 Me hods.

Reading, Massachusetts: Addison-Wesley, 1972.

Lapidus, Leon. Digital Com utations for Che al En ineers.
New York: McGraw-Hill, 1962.

f,ondon, Keith. Teohni ues for birect Access. New York:
Petrocelli Books, 1973.

McCalla, Thomas. Introduction to Nume-ical met_hods and
FORTRAN Programming. New York:

n, B. Alno. Computer Programming for Science, and Engi-
neering. Chemistry and IDILIAEly, (July 22, 1967), 1248-49.

Musk, Fred I. One Man's Meat; It's All Good Gr- t That Comes
to Our Mill. Compu er Journal 10 (August, 1967), 126-27.

Rhynas, Phillip. Computers and Programming.
Libraa QuarteL-ly, 30 (April, 1967) , 13-20.

ish Columbia

R senbrock, Harold H. Computational_ Techniques for Chemical
Engineers. New York: Perganon 1965.

Scot Norman R. Electronic calpIsti 'chnology. D.V- York;

Graw-Hill, 1970.

Stci , Marvin. Computer Progrnnial. New York: Acade
1964.

Trends and Forecast, '68 and Beyond; Computer Aid to Solve Intri-
cate Problems. Product Engineering, 39 (January 29, 1968),
29-31.

Warheit, Ira A. The Principles of Computer Operation. S-ecial
Libraries, 51 '(November, 1960), 465-492.

Wegner, Peter. Introduction to S_ymbolic Programming. Ne- York:
Hafner, 1963.

Wiberg, Kenneth B. Computer Esl_s_Earlaial for Che s. New York:
Benjamin, 1965.

Wrubel, Marshall H. Primer of npa=ina for 0_94.a_i.
New York: McGraw-Hill, 1959.-

2 2

