DOCUMENT RESUME
Eh 129 271 IR 204 G653

AUTHCER z
TITLE

2018 TATTE

:«:i
Sybrou=ine in Information Handling.

NOTE

Generalized computational subroutines can Teduce
prograning repetitions and wasteful computer Storage use. The most
useful are those tha+t are flexible enough to handle a vide variety of
situations. Subroutines may have details open to change in order <o
blend into +he main program. They may be built into the conmputer
library or supplied by the programer as part of +his program deck.
library subroutines have limiting specifications and ranges, entry
and exit compands and addresses which should be designed to fit into
any program. Operating routines, the post prominant type of which aze
the input-outpu* sets or "packages," differ from other subroutines in
+hiat they partially contrcl the computer and Teturn control to the
main program when their work 1s completed. Basic subroutines of
particular value in a chemical library include basic arithmetic
computations, function evaluations, numer ical analyses plus collating
and sorting progranms. Service routines—-compilers, assenblers,
debugging and machine testing programs—-are also useful, (KB)

s o e ok ok ok ol s ok R Aok ok ok ko sk ool ok ok R kol ook ok ook ool ok kol sk kol kol koo SRk skl e ok kol X

Documents acquired by ERIC include many informal unpublished *
naterials not available from other sources. ERIC makes every effort *
to obtain the best copy available, Nevertheless, items of marginal *
reproducibility are often encountered and this affects the quality *
of the microfiche and hardcopy reproductions ERIC nakes available *
via the TRIC Document Reproduction Service (EDRS). EDRS is mnot *
responsible for the guality of the original document. Reproductions *
* supplied by EDRS are the best that can be pade from the original. *
58 sk ok o ok skl o ook o ol otk sl sl sk ook koK ok ook ook sk alok ko sk koo ok skolok ok sk sk ok kool s ok kokok

R R N R X E

»*

US CEPARTMENT OF HEAL T m
EDUCATION A wE Fawe
WATIGNAL INSTITYTE DF

EDUCATiON

One of the most used and most abused parts of computer tech-

ED129271

commands which form sums, products, ekc. Each time he wishes

to form a preduct. it will be necessary to carry ot a certain

fired seqguence of additions, multiplizati@ns, and groupings which
will produce the desired result. All such products will be form-
ed in an identical manner, and it will be ornly the operands which

dif fer. A possibility for handling this problem is to incorpo-

rate the needed instructions into the main program, simply re-

:ln

[L

e 5

.

vperating wherever ired.

If a sot of n commands is required te form and store a pro-

47

Aduct of two complox numbers, 2ne might arrive at program stor-
age pattern possibly named complex product code. This is prob-

ably the technique which is most conservative of machine time

but is wasteful of storage capacity, sinCe it requires one to

duplicate what is essentiaily the same code in various storage

locations. 1t is also wasteful of effort, since the codes arc

a function of storage location and one cannot exactly duplicate

R004 035 3

_L

@)

E

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

Tl

Fhem o in owaols vort of the program. It will be essential 0

mod i€y each sec of n oinstructicns to make 1t suitable for its

A botror schene 15 to wrikte a sincie code which will foxm

~c of any two designated complex

“he main program. Subsecuently, cach

il onoe o ls orogulred o form

Seete, and. on its completion,

or subprogram. [t is ap auxi

a code 1 cal le

izry routine uzed in conjunction with, put not as part of, the

2
o
)

.n routino

1t was the purpose of this study (1) to reveal the impoxr-—
tance of computers ubroutines relative to the handling of in-

foarmatior: (2) to relate the use of subroutines to a comput-

erized chemical library; and (3) to provide an overall view Of

of subroutines upon the daily activities of librar-

)
i
]
]
=
ja
-
o]
Hh
i
H
E
ot
’f
i
=
)
]
o
I
)
!
iy
s
i
o
i
W
iH
-
a
W
D
”"LJ
C
st
(o]
Ia
n

DEFINITION

Theoretically, anything that is written which

makes a "positive™ contribution to the prcgramming field could
be considered a subroutine. From a working standpoint, however,

in this study subroutine means more. To be adequately define

m
=T

it must meet the following requivements:
1. It must make a positive contribution to the existing

program Library, for the basic programmer's vocabulary is thus

,’4
o
[
a1
i
ped
]
]
o)

7. I+ must be gencral enough so that it will 'ke used by

mony prograns and often used mnany

Y, 1t rust represent a wise the
furct.ions it is capable of carrying out, because one cannot per-

miv its flewibility to make itz difficult or inefficient to use

ADVANTAGES AND DISADVANTAGES OF THE SUBROUTINE

A. ADVANTAGES
One of the major advantages of subroutine usage s the

saving i time. This saving occurs in the ,calendar tine of pre-

paring a program for a computer and in the actual computing time.

s

A thoroughly tosted subr@utlné can be regarded as correct.

Therefor if subroutines are employved in a newly developed pxo-

iy g‘

gram, their presence halps to home in on errors developing with-
in the main program.

By increasing the vocapulary through the use of subroutines,
the programmer is provided with a stimalus tc new ideas and tech-
niques. In any language there is an important correlation bhetween
the comprehensiveness of the vocabulary and the formation of ideas.
With this greater variety comes greater flexibility.

The many fields employing computers have specialists and ex-
perts who are applying their knowledge to the creation of out-
standing subroutines (WarheiﬁE p. 486)y. A large libraxy of sub-
routines from all fields has become available and is still rapidly

growing. Such a wealth of output gives a tremendous impetus to
o .

ERIC

Aruitoxt provided by Eic:

computer desian, for the subroutines of today may well become
rhe foundation for the basic vocahulary of the advanced com-
puters of tomorrow.

What can this library of subroutines do for a new computer

user? [t is possible for a new computer organization to start

production quickly, with a minimum of waste and with a minimunm

staff of profossional programmers and machine operators. Tt is

somotimes possible to go into some production without having to

ystem entirely upon avail-

i

create wholly new programs, basing a

instructions are the building

rt
U‘

asi

wr”*.u

able subroutines. Just as the
blocks of the subroutines, so are the subroutines the building
blocks of such programmed systems. In a similar manner, one has
the ability to chain his subroutines (i.e., one can have subroutine
within subroutine within another subroutine). Therefore, one can

system in depth as well as in breadth by

0

increase his programming

plo

T

21

o
g

ing orderly procedures.

<

B. POSSIBLE DISADVANTAGES

Possessing all the aforementioned advantages, what are the

m

practical difficulties which could substantially reduce the effec-
riveness of the subroutine? In broad terms, the pitfalls are mis-

use, overuse, misdirection, carelessness, poor logic, the unan-

L

g

ticipated error, uncalled-for duplication (including creation of
worn-out discarded methods), and misleading or unavailable de-
scriptions of working subroutines.

Too often, in an attempt to produce "new" methods or mate-

rials an installation or programming group will tend to value

b3

ERIC

Aruitoxt provided by Eic:

ctuantity over guality. No matter how impressive their aims

may have bean, thev make no real contribution. Today, however,

the production of cuality is becoming much more critical where

i
0

>chniques and applications.

»]"“r‘

we now have a workable foundation of te

Tt is simply becomina more difficult to formulate good ideas

and techniques which are absolutely new.

W
m
I_.I
j]

susth le

1T
Ay

il
m
I U
Ko
o
g
=
rt
D
)
rj

“currenc

z
m
j=ia
E
H
IWI
<
i
iy
rt
I
by
=
e
i
joy
D

i
n—u—

the production of a major system, such as an assembly sy:

which incorporates ideas and techniques which have already been

-3

his waste of time, talent and capital is

i

proved inadequate
something that should be eventually rooted out completed.

Often an excellent subroutine is not used because only a
poor write-up, or perhaps no write-up at all, exists. Many fine

ieces of work are buried by their write-ups; it is amazing how

s

many misconceptions and misdirections can occur in such a de-

ciption.

i

C

ot

-

Next to improper write-ups, the most irritating and expen-
=ive difficulties are caused by errors in the subroutines them-
selves. One type of error, the uncalled-for error, will always

exist to some degree. Poor use of flow diagrams, poor train ning,

poor supervision, or just poor attitude will cause these errors.
The particular error that probably causes the most trouble
is the unanticipated error. Especially in complex subroutine
systems where one has a great variety of data that must be han-
dled, a particular data combination may occur that is not treated
correctly. Such a data combination may not be encountered during

months of use. What happens when such an error occurs depends

O

ERIC

Aruitoxt provided by Eic:

in setting up error routines

I

upon how careful the programmer wa

e
[

L

I .

,4
,
vv‘l
.
fas
[
—
r
i
o
]

e
i

there is a tendency to use a subroutine where

¥
i

,W
pas
i
m
3
T
e
=3
]
]

'!d

- L. R, I, e P = e .
sqramming is much more effective. Improper use

o]

simple basic pr

of subroutines do not weigh in their favor.

THE SUBROUTINE LIBRARY
With the production of subroutines increasing, it becomes

much harder for the individual programmer to keep up with all

FHh

the developments. It requires considerable effort to be familiar

il

with so many routines to the point of being able to use’ them all

by

properly. Actually, it 1s généfally unnecessary for a program-
mer to be this proficient. How, then, does he decide which sub-
routines sound or look interesting enough for him to pursue then
further? This responsibility is normally delegated to the 1li-
brarian. The librarian is usually someone with a fair knowledge
of the computer (or computers) being used in the organization,
an” able to understand technical terminology to the point of
properly classifying each subroutine (Computers, p. 58).

I{s it an input-output type, an arithmetic type, or perhaps
a technique for solving a specilal set of equations? The computer
organizations help in this area by submitting abstracts of the
subroutines tc all installations. The librarian normally pre-

ares lists »f new subroutines together with brief descriptions

]
P

for distribution within the organization. He answvers questions
concerning the availability of subroutines meeting certain qual-

ifications and is responsible for verifying all new subroutines

ERIC 7

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

for accuracv. If he does not understand particular techniques
or avplications, he may assign them to knowledgeable vrogram-
mers. He is also responsible for keeping current copies of all

When a computer has magnetic tape as one of its inputs,

certain subroutines are kept on this medium. Usually a selection
of the most-used subroutines 1s placed on a special-purpose nmag-

D.-‘

netic tape, which is kept up to date by the librarian. During
the assembly-program procedure, when the programmer's language
is being translated into its equivalent machine lancuage, the

al udo-instruction inform-

[’J
n
W
T
3
o
ot
g
T
vt
]
0
I
it
=
n
T
9]
O
[a
o]
H
il
D
[
]l
w,:u\
-
m

2cognizes spec
ing it to retrieve the desired subroutine from the magnetic tape.

Automatically the subroutine will combine with the main program

Pt

that is being assembled.

One does not p.. all subroutines on the library tape because

too much time would, therefore, be consumed in searching the ta

P
m
m

ss popular subroutine is being used which is not found

b

n

the tape, then one can obtain a copy of the routine on punched

- F

cards from a file maintained for this purpose. Cards, however,
do not provide the same degree of convenience or speed as the

tape.

IC CONCEPTS AND PRINCIPLES

o

BA

A, GENERALIZING A SUBROUTINE
The most useful subroutines in the library are the ones that

will handle the widest variety of situations. A routine for

O

ERIC

Aruitoxt provided by Eic:

solving a system of precisely five simultanecus linear equations

Ly

is far less useful than one that will handle any number of equa-

tions from two to thirty., Such flexibility is somewhat offset

o
[
rt
-
4y
pal]
L#¥
lmi
r+

-hat a general routine of this kind may not be as
efficiont as one written to accommodate five equations, no more

and no less. If an installation is expected to run four equa-

m
et
rt
T
W
y!

tions one day, twenty the ne: flexibility 1s to be pre=

ferred. On the other hand, if a large fraction of the time 1s

spent solving systems of a fixed size, it is worthwhile to develop

Many times with a small amount of effort a program can be
generalized to include others useful cascs. For example, the for-

mula for sinh x 1is

IRy
It
b
juy
"
il

which differs from cosh x only in having a minus sign in the
numerator. One can generalize his previous subroutine to compute

either one.

B. OPEN SUBROUTINE
As already mentioned, the subroutine is comprised of a num-
ber of instructions used as a unit to perform a given function.
One method of using subroutines is to insert this unit at every
point in the program where it is needed to have this particular

function performed. As one makes the insertion, he must modify

certain instructions in the routine in order to adapt it to its

vwarticular use at that point. One might, for example, have to

0

L
i
I

modify some addrasses in order for them to refer to the proper

of the subroutine must be

1
[
—
e
]
i
N

he deta

i

data. In othor words,

open to scrutiny in order to make it a part of the main program.

P

e

i

il

it i

jno!
o
Y]
iy
il
o

thus open to change, this type of program is often

ot
‘,m
jol

all

[

an open subroutine. Subroutines do not have to be in

A

n

losed form (Scott, p. 400).

The open subroutine loses it separate identity once it has

n inserted into t program. It simply becomes another set

—
w

be

Wit
m

50, it 1s necessary to recopy such a sub-

R._.I\
iy

of instructions. A

rt

used. TFor this reason open subroutines

i

L woutine esach time it 1
are often not used where they might provide the most efficient
method. For example, one wants a subroutine which clears a block
of storage. Using the instruction STORE FERO (STZ) which clears
the designated storage word, the following simple routine could
be constructed:

AXT N, 1

5TZ A+N, 1
TIX *~1, 1, 1

In the above routine N is the symbol for the number of words in
the block, and A is the symbol for the first location in the block.
If one wants to clear three blocks of, say, 100, 150 and 75 words
starting with locations R, S and T, he could write

AXT 100, 1 TIX ¥-1, 1, 1
STZ R+100, 1 AXT 75, 1

TIX *-1, 1, 1 STZ T+75, 1
AXT 150, 1 TIX ¥*-1, 1, 1

STZ S+150, 1

10

-10-

C. SUBROUTINE WRITE-UP

~d that every subroutine would be de-

X
i)
o

e
L
P
s
i
P

It should be exp
scribed properly, since a proaram cannot bes considered as a sub-

routine unless there is an accompanying useful write-up. Cer-

0

tainly any device or tool, regardless cof expense, is truly
worthless if one cannot figure out the way to operate it. Such
a tool can be damaging if improperly used. Nevertheless, every
vear finds too large a number of subroutines, many of which cost
a considerabie amount of money to prepare, being discarded be-

cause of inadequate write-ups and inadequate up-dating. Often

o

the description accompanying the program is accurate only for an

[3

-lier version of the program.

ha
[y
[
[

A proper solution to such waste is the establishment of a
set of standards. The good write-up must impart all the required
information to the user in an easily digestible form. Further-
more, it must avoid the inclusion of irrelevant material which
will obscure the meaningful. Is it possible to determine a set
of rules and regulations that will effectively direct the pro-
grammer to create such an adequate write-up? Programming asso-
ciations, e.g., SHARE, have always considered the question of
write-up standards one of their prime reasons for existence.

Such organizations can establish rules and refuse to distribute
material which does not conform to the rules, although these steps
are not necessarily sufficient to solve this problem. The price-
less ingredient, which rules cannot supply, is the programmer's

attitude.

ERIC 11

Aruitoxt provided by Eic:

cimncy in writing programs. The other main simplification that

ma be used in preparing proygrams is the incorporation of pre-

writton subprograms effect operaticns that are used re-

veatedly. For example, if one needs the value of the square

root of a qguantitv, he may direct the computer to calculate this

o]
n
I

“t

wq—-1

L

5 pa his program. However, because this operation is so

frequently carried out, it is much more efficient to write the
steps of the operation in the form of a subprogram that could be

is the purpose

o

W

called by the main program whenever needed. Thi
of svbroutines and function definitions.
Subprograms (or subroutines) are of two types: (1) those that
are built into the computer as part of its library of programs, and
(2) those supplied by the programmer as part of his program deck.
The former type will be considered first because of its ready
availability. We need to only know the form by which the required
subprogram is called. A typical example follows:

A

SORTF (B)
If the above statement is incorporated into a program, A will take
the value of the square root of B. This is an example of a func-
tion statement. All function names contain six or less alphabetic
or numeric characters; they do not start with a number and end with
a letter (Wiberg, p. 37).

The function of definition: may be modified as part of a pro-

gram (Kuo, p. 72). For example, one may wish to evaluate both

ERIC

Aruitoxt provided by Eic:

common and natural logarithms, whereas the built-in programs
give only the natural logarithm. Before one cails for a log-
arithm the first time, he may write the statement

LOGLlOF (X) = 2.303 * LOGF (X)
and whenever the statement

A

LOGIOF (X)

appears, the common logarithm would be caleculated. Shnjlajly,

if one wished to deal with angles in degrees rather tham im radians
(as the subprograms do), he might include statementg such as

SINAF(X) = SINF(X/57.2958)
ASINAF (X) = 57.2958 * ASINF(X)

in the program,

It is sometimes useful to write a FUNCTION type 0f subprogram.
A program of this type starts with a statement such =5

FUNCTION MAX (A,B)
Here the name of the function is MAX and its arguments are A and
B. The function wouald be called in the main pf@gfam by a statement
such as

X = MAXF (A,B)

Suppose the function subprogram were to determjre which of

the two variables, A and B, were the larger. X would then be
given the value of the larger of the two. The subprogdran would
be written:

FUNCTION MAX (A,B)
1 MAX =B
GO TO 5
MAX = A
RETURN
END

b

=] 3=

Note that the name of the function in the preceding example must
be set equal to thé cuamntity to be returned to the main program,
Thus , here, MAX is set equal to A or B, whichever is the larger.

The last statenent, RITURN, effects a return to the main program.

E., SUBROUTINE ASSEMBLY

Iz usirg library sauproutines one must have a knowledge of
the way they function (fixed point, floating point, etc.) and
ar range to keep within the limits of their specifications and
ranges. One must rermember that the actual code for the sub-
routine i s & funcriomo f its operating locations in storage. To
be useful , & library subroutine must be designed to fit into any
program, provided onldy that sufficient storage space is available
to contain the instruct lons, parameters and intermediate results
of the subroutine, The gubroutine must be stored in such a way
that a copy of it cam be assembled in a correct form for operation
in ary storage region the coder wishes to specify. The assembly
operation can be carried out easily by the computer itself, if
proper conventions of address notation »and format are employed in
the file <copy of the subroutine.

The <ormputer will caxry out the assembly operation under the
control of an asserbly program. Most computing laboratories will
keep ome or nmore asSsernbly programs in the service library (Stein,
p. 227). Assenbly progxams will most likely vary from one in-
st al Xation £0 another.

ALl suprout ineés to be assembled must be written in a propex

form dictated by the paxticular assembly program to be used. This

14

~14-

will permit the assembly program to distinguish between those
parts of the subroutine which "vill remain fixed and those which
will be modified. That is, it must be able to discriminate be-
tween quantities which are independent of storage and operation

locations (e.g., constant operands and fixed addresses) and those

which are in a direct function of these locations.

F. ENTRY AND EXIT

Subroutines require an entry and exit. The entry of the sub-
routine may consist of a few commands which create an exit con-
mandé and then transfer to the werking part of the subroutine. The
exit is a planted transfer of control command. A dummy transfer
of control command is created by the entry of the subroutine and
placed at the end of the subroutine. The entry and exit are lo-
cations where any routine has its sequence of operation interrupted.
The entry to a subroutine is the location to which control is trans-
ferred from the exit of the main routine. The exit of the sub-
routine is the point where control is transferred from the end of

the subroutine back to an entry to the main routine.

G. RELATIVE ADDRESS
When a subroutine is written the addresses used generally
assume the first command of the subroutine located in cell zero.
That is, all the addresses are written relative to cell zero.
When the subroutine is actually used and the region in memory
around cell zero is not available (certainly not more than one

subroutine could be placed in the area of cell zero), it becomes

15~

necessary to move the entire subroutine *o some otler location

in the memory.

H. ACTUAL OR ABSQLUTEvQDDRESS
The relative addresses of the subroutine merely have added
the amount by which the subroutine is to be shifted in memory,
thereby becoming the actual or absolute addresses. Techniques
for performing this shift are available within the actual hard-
warc of the computer in some cases, or certain assembly routines
are available which nmakes it possible to move these subroutines

around.

jalt

I. RECORD COMMANDS
To facilitate the use of subroutines, record commands are
available which enable the computer to store temporarily the
address of the main program from which entry is made to the sub-
routine. It is then a part of the subroutine to take this stored
address and create with it an exit from the subroutine back to

the main program.

J. SUBROUTINE OBLIGATIONS
One of the first important obligations of a subroutine to
a main program becomes apparent. The subroutine must do everything

in its power to preserve the status of the computer as it is before
the entry of the subroutine. If it is impossible or undesirable
to perserve some part of the status, such as a register's contents

or a switch position, notice must be given to the user-

Another obligation of the subroutine is to protect itself from

16

misuse in the sense of incorrect or imsufficient data from the

main program. The main program should be able to correct errors.

TYPES OF SUBROUTINES

A. OPERATING SUBROUTINES
Up to this point in this paper subroutiries have been de-

upservient to the main program, being given control

scribed as

W
iy

at its pleasure. There are, however, sets of subroutines that
partially control the computer through the trapping mechanisns,
returning control to the main pf@gram only as their work i=m com-
pleted (Wegner, p. 188). Such subroutines are known as operating
subroutines. The most prominent type of suc’ . routines is the
input-output set, or "package."

Even though such packages usually c@néizu of an elaborite
and comprehensive set of subroutines for input, output, editing
and conversion, mention here will be made relative to a much
simpler package whose functicns are restricted to the transmission
of input and output data. The write-up of such an imaginary pack-
age would include: name, author, purpose, restrictions, calling
sequence, method, physical description, timing, check-out proce-

dures and a double check.

B. PROCESSING SUBROUTINES
A computer must have the ability to carry out the basic
arithmetic operations of addition, substraction, multiplicatign
and division. Nevertheless, without any detailed knowledge of

these instructions, it is possible to caxry out a great deal of

17

arithmetic through use ©f subroutines.

Of basic importance in mathematics is the concept of "func-
tion." A function is simply a rule for obtaining one set of
numbers from anothexr get. As such, the function bears an impor-
tant relationship to the processing subroutine, which can be con-
sidered a "rule" by which one set of computer information is

the

[

transformed into another set. Notice that this common use o
word "function" is perfectly consistent with the mathematical use.
In fact, when mathematicians use tables, they speak of the "argu-
ment" (part number) and the "function" (price).

The importance of processing subroutines is that they enable

M

us to carry out the rule implied by either a mathematical func-
tion, like square root or a nonmathematical function like with-
holding tax (McCalla, p. 34). Although one may not have the
vaguest notion of what the "Gudermannian’ éf a number means, if
given a subroutine and a calling sequence he can certainly calcu-
late Gudermannians as well as anyone. The process of writing the
necessary subroutines does, of course, require special knowledge
in each case; but so does the process of building a computer.
According to Hassitt (p. 220), processing subroutines are
not restricted to evaluating functions of single arguments norxr
are they £25tri$ted to yielding single results. Again, the means
of using the subroutine are independent of the particular type of

process.

USE OF SUBROUTINES IN A CHEMICAL LIBRARY

Perhaps the first guestion that comes to one's mind is that

18

-18-

relative to how d@és a subroutine being utilized for a chemical
library purpose differ from any other subroutine? It is true
that more similarities than differences occur amonyg s&br&utinesi
t.owever, in this case the nature of the library (chemistry-ori-
ented) is unique in itself. 1In the following statements this
writer bricfly reveals how subroutines are used for such specific
library purp@seé; plus explains some of the unique factors pos=
sessed by subroutines désiéned for chemical libraries.

Before going any further in thouéhﬁ along this line, it
must be understood that the computer or computers will be oper-
ated in this particular library by a competent person possessing
full understanding of the library's objectives and purposes.

Based on the foregoing information in tﬁiﬁipaper, it is
evident that a subroutine will aid the 1ibrariaﬁ or chemist in
solving a chemical equation. One may know wh;i_particular equa-

S
tion to use, but may have nou idea as to the “methods of solution
for such equation. With the necessary subroutine, he may proceed
without any difficulty.

Ideally, with the subroutines the computer's "knowledge" is
expanded and it is able to do many more complex chemical related
calculations, at the same time regquiring less programming on the
part of the user. The basic computations, which are of great wvalue
to the chemical field, performed by the subroutines include:

Basic Arithmetic

Floating point add, subtract, multiply, divide
Complex number operations

Multiple precision routines

19

=-19=

Function Evaluation

Square oot

Trigonometric: sin x, cos x, tan x

Exponential: 1ln %, log ., 1Dxex, or aX

Numeg@gﬁliA@a;lgis
| Solution of n simultaneous equations
Matrix operations
Eigenvalue solutions
Numerical integration
Numerical differentiation
Roots of polynomials
;CELE—}' ca :,L
Sorting
Collating

Without further elaboration one can detect the significant
contribution that the subroutines can make to computing chemical
knowledge.

Effective roles are played by the service subroutines as
compilers, assemblers, programming aids (e.g., debugging sub-
routines) and machine-testing routines. The functions performed
by these service subroutines are numerous.

The up-to-date chemical librars, depending on size and demand,
may possess a "library within a library." Today it is very im-
portant o have a knowledgeable librafy of subroutines. Most of
the subroutines will probably be maintained on a special-magnetic
tape in lieu of punched cards which do not provide the same degree

of convenience or speed as the tape.

20

=20-—-

CONCLUSION

what is information? Webster defines it as "Timely or
specific knowledge acquired or derived; facts; data." From
this long narration, but meaningful throughout, one is led to
canciuda that subroutines enlarge the importance of computers
in regard to the handling of information. Nacurally, rmuch more
than given in these past few pages exists on the significance
of subroutines. However, the "highlights” have been presented.
Advantages greatly outweigh the disadvantages of the function
of subroutines.

what does the future hold for subroutines? Most of the
world's knowledge will soon be in machine-readable form. It will
be much like a game with subroutines; always interesting, occa-
sionally frustrating, but never dull and the subroutine al-

-

ways wins (Rhynas, p. 20).

REFERENCES

Computers in 1984. Special Libraries, 56 (January, 1965), 58.

Cowan, Russell A. Computer Software: Problems and Solutions.
Computer Design, 6 (September, 1967), 16~22.

Ccutler, Donald I. Introduction to Computer Programming. Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1964.

Hassitt, Anthcny. Computer Programming and Computer Systems.
New York: Academic Press, 1967.

Hel lerman, Herbert. Computer System Performance. New York:
McGraw-Hill, 1975.

Kuo, Shan S. Computer Applications of Numerical Methods.

rReading, Massachusetts: Addison-Wesley, 1972.

U

a; Computations for Chemil ical Engineers.
w-Hill, 1962. o

21

gi

Lapidus, Leon. =
ard

New York:

3\
W‘\rr

=21

London, Keith. Techniques for Direct Access. New York:
Petrocelli Books, 1973. '

McCalla, Thomas. Introduction to Numerical Methods and

FORTRAN Programming. New York: Wiley, 1967.

Moon, B. Alno. Computer Programming for Science and Engi-
neering. Chemistry and Industry, (July 22, 1967), 1248-49.

Musk, Fred I. One Man's Meat; It's All Good Grist That Comes
to OQur Mill. Computer Journal, 10 (August, 1967), 126-27.

Rhynas, Phillip. Computers and Programming. British Columbia
Library Quarterly, 30 (April, 1967), 13-20.

Rosenbrock, Harold H. Computational Techniques for Chemical
Engineers. New York: Pergamon, 1965.

Scott, Norman R. Electronic Computer " chnology. New York:
McGraw-Hill, 1970. i)

Stein, Marvin. Computer Programming. New York: Academic Press,
1964. - B -

Trends and Forecast, '68 and Beyond; Computer Aid to Solve Intri-
cate Problems. Product Engineering, 39 (January 29, 1968),
29-31, - o

Warheit, ira A. The Principles of Computer Operation. Special
Libraries, 51 (November, 1960), 485-492.

Wegner, Peter. Introduction to Symbolic Programming. New York:
Hafner, 1963.

Wiberg, Kenneth B. Computer Programming for Chemists. New York:
Benjamin, 1965.

Wrubel, Marshall H. Primer of Programming for Digital Computers.
New York: McGraw-Hill, 1959.

oo
b

