EUTHOR
TITLE

INSTITOTION
pOB DATE NOTE

EDRS PRICE DESCRIPTORS

TDPNTTPTPRS

Burt, Gordon J.
The Detailed Evaluation of Mathematics Courses at the Open University. Heport No. 1: The Unit on "Functions" in the Matbenatics Foundation Course. Open Unit., Walton, Bletchley, Bucks (England) Inst. of Educational Technology.
Apr 76
28p.; Contains some blurred and light type
$\mathrm{MF}-\$ 0.83 \mathrm{HC}-\$ 2.06 \mathrm{Pl}$ us postage. *College Mathematics; *Course Evaluation; Curriculum; *Curriculum Evaluation; Evaluation: *Pormative Evaluation; Higher Education; Instruction; International Education; Mathematical Concepts: * Wathematics Eaucation; Research; Student Reaction; Textbooks mitud Kingdoa

ABSTRACT

As a part of the two-year process of revising the basic mathematics course at the open University (Britain) an in-depth survey of students completing the first unit of the course was conducted. A sample of 120 students was divided into three groups of 40; group members receiyed a juestionnaire concerning concepts covered, a questionnaire about sections of the unit, or a test on the material. Approximately half of the students in each group returned the questionnaires. The concept questionnaire asked students to rate their prior familiarity, effort needed to understand, and current understanding of each concept identified in a conceptual analysis of the unit. These ratings were submitted to a multivariate analysis of variance. The sections of the unit vere rated, and data analyzed similarly. Several relationships were uncovered: difficulty of concepts fas predicted by amount of effort, and the time needed per section of a unit was related to level of concepts, number of diagrams, and number of lines in the text. The rating instruments and summaries of responses are included. (SD)

* Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are of ten encountered and this affects the quality * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original. ***

ENUE EIGIALNATIONAI NETITHIt AF

The Detailed Evaluation of Mathomatics Courses at the Open Condersity

Report No. 1: the unit on "Functions" in the Mathematies Foundation Courge
by

Gordon J. Burt

> Detailed Eviiuation iryolves obtaining infurmation fon students on inany detaled aspects of the learning materials, analysing the content of the materials, and carrying out a statigtical analysis of both the content and the student-bascd informations This method is applied to the first unit of the Mathenatics Fondation Course.

```
Sering
    (i) Entrod stron
mathod
studonta' recotorg to Fhe questionnaino
stu:y patterma
nomegpt nnd sertion rabimgs
    %, the conccptual anelysis of unit 1
    { t, memutivariate analyeis of concept ratirga
    ; the multiviniate anmlyais of aection ratinge
    8 wesessmen* questions
    4) Un, validisy o: the mamaghs
:! corclusion
```

Introduction
The dutailed aviludion of unit 1 involved asking atudente 158 questions about vasious aspects of unit 1. A sysiematic analysis of the quastitavive chatactoristics of the text and of tts conceptual structure has been carried out. Mitiple segression anslysis hes been used to establish the relationships which exist between the students' ratinge and the content variables. The hierarchical level of a concept or of a sestion proves to have a powerful relacionstip with the students ratings.

Other resulte of the cvaluation include path diagrams illustrating studerits study paterns, and the studente' comaents on the questionnaires themed ves.

1. method

Three questionnai res were designed asking students about the concepts, sections and assessment questions, respect-vely, for unit 1 of M100, (see Appendix l). Three similar letters were desigried to go with each quegtionnaire (see Appendix 2). A sample of 120 F -year, M100, students was split into three groups each with 40 students. The first, second and third groups received copies of the concepts, sections, or assessment questionnaire respectively. Table 1 illustrates the time-table associated with all three questionnaires.
$12+10$
Decmber, lyts
fombay, 1 y
. Tanas:y :
fobramy 6
Fubativ i
Februay y 4
Merch l:

Mareh 3) \& 5

ARPD

Whlton Hall
aefcotod romido
desighed quesciomairea
sent quesvjontatres
(recomiended start to study)
received returns analyzed reaults
Mathematics Faculty Workshop
wrote Report
gudent
received unit?
gim CVO

Scw TVI
due date
cut-of date
received summary of tes:r

111 then questimmaines produced a resporse form 21 out o the to gturets. quegtionnatras started coming back amost immetingely. Guph i plets the number of students wo hed respcnded over a seven-week period.

Croph 1
Ho. of studems

9-13
FEE
fis
(28)

8-12
macm
$15-19$
Mader

已. sturdents' reactions to the guestionnalices

On two of the questionaires I asked the student if the instructions were ciear... what dificulties he had completing the quegtionnaire ... the tine he spent on it. Table 2 gives the number of students saying the instructions were clear, the number who indicated difficulty, and the modian and range of times spent. Appendix 3 gives the verbatim comments of studente. Completing a quegtionnaire is not an easy task, and i have redegigned iater questionnaires, giving fuiler ingtructions which meet some of the difficulties mentioned.

Table 2

Qaire	$\frac{\text { Instrustions }}{\text { clear? }}$	$\frac{\text { Difficulty }}{\text { fillingit in? }}$	$\frac{\text { Median }}{\text { time }}$	Range
Quire	clear.			
concopts	$Y_{65}=22 / 22$	$\mathrm{Yes}=11 / 22$	20 min	7-45
		No $=11 / 22$	10 min	2-15
sections	Yes - $17 / 21$	Yea $=13 / 21$	15 mln	5-35
		No $\Rightarrow 0 / 21$	10 min	3-30

3. study patterme

As well as providing detailed information on the assessment questions, the assessment questionnaire provided some information on study patterns. Diagram 1 below gives the students' anewers to the question: "when did you atart studying unit 1?" These students were new (F-year) students and so recoived the materials in early December. The main point to notice is that the starting date varied from 8 th December to 3 rd February. In all cases the actual starting date was earlier than the reconmended starting date and earlier than the transmission of TVI.

Diagram 1

Diagram 2 below gives the time spent by the students on each of the components. The total time of 13 hours was spli betveen text ($8 \frac{1}{2}$), fssessment (2), tutorials (1娄), and broadcasts (1). These figures should be token to indicate rough orders of magnitude. Furthemore, in many study situations, it must have been difficalt for the student to decide whether to include the study time in the 'text' eategory or in the 'assessment' category.

Diagranis

Table 3 shows the number of students who first read the CMA (TMA) questions at various stages of their study. The pattern is the gane for both CMA and TMA questions. The most common time to look at the cuestions is after the first reading of the text. However a good number of students read the questions before this stage.

Table 3 The number of gtudents who first read the (CMA/TMA) questions:

	before any study	during firgt reading	after first reading	during later readings	\|after later readings
CMA	3	4	11	2	1
TMA	3	4	11	2	1

Chb. I shows the number of students who rirst attempted the CMA(/TMA) qui lions at various atages of their study. The pattern is similar for huin CMA and TMA questions. The most common time to first attempt the quebions is again aftor the fiast reading. Very few students attempt the fumetions betore this etagen

Tinblel The numbet of stucents who attempt the (CMA/TMA) questions:

TMA

before any ntudy	during first reading	after first reading	during later readings	readings - 1
1	11	4	5	

Table 5 shows the number of students who completed the CMA(/TMA) questions at ver"ons thans in their study. Again the pattern fs similar for both CMA and TMA questions. The most common time to complete the questions is after mbsequent readings - athough some students manage to complete the questions after the firgt readitig.

Table 5 The number of students who attempt the (CMA/TMA) questions:

CMA
TMA

after first reading	during later readings	after later readings
5	7	9
6	5	10

The above tables represent slices through the students' gtudy patterns. Diagram 3 illustrates the patterns themselves for the CMA questions. The numbers in the circles are the numbers of students who followed that pattern. So, for example, 3 students first read the CMA questions before any study (A) of the unit of these 3,1 attempted the questions during his first reading (B) and completed the questions after his firgt reading (C) ... of the other 2, they both attempted the quegtions after their first reading (C), and 1 of them completed the questions after his first reading (C) while the other 1 completed the questions diring subsequent readings (D).

Most of the students posted their assignments between loth February and 1st March. The due date was 27 th February and the cut-off date was the 12 th March. Graphs 2 and 3 show the number of students who had already posted their assignments by various dates through February. The two graphs show this for TMAs and CMAs respectively. The two curves are at their steepest (ie, the volume of returns per day is greatest) over the period 23 rd to 27 th February $=$ the latter being the due date. It is surprising that students appear to be working to the due date, when, in fact, it is the cut-off date which is important - perhaps this is something these new students have still to learn.

4. concept and section ratings

Table 6 gives the mean rating (averaged over the students) for each concept in the glossary of unit 1. The three questions were:
(1) How familiar were you with the concept before you studied the unit? (friof')
(2) How much effort was required to gain your current undergtanding of this concept?
(3) How good is your current understanding of the concept?

The concepts are listed in the order in which they are presented in the unit. Of the firgt twelve concepts, 'mapping' and 'function' demanded the most effort from the student, and 'function' was the least understood despite the fact that it was relatively familiar to the students beforehand. A study of the text showed that the concept of 'function' was defined without any supporting discussion or examples.

Equality of mappings demands much effort and is poorly undertstood. The discussion of this concept in the text seems rather confused and no exercise is set on it. The definition of dumny variable is slipped into the solution of an exercise $=$ hence the low underetanding rating.

The concept of graph has the greatest prior familiarity, the second lowest effort, and the greatest undergtanding. This familiarity could well have been capitalised on to teach some of the eariier concepts.

The concepts of "function of 2 variables" and "operator" demand a rulative'y high amount of effort and are relatively poorly understood. Nrither of those concepts are essential to the aims of the unit. The rhoupt: which arg mentioned in the objectives are asterisked in table 1 .

The arithmetical combination of functions $(+,-, x,-)$ caused few problems. However the quotient of twi c functions required rather more effort and was less well understood $=$ with this concept one needs to be careful about defining the domain.

The remaining concepts demanded much effort and were poorly understood. Simpler examples might aid the understanding of composition of functions. None of the examples on reverse mappings contained real functions and there wort no exercises at all. The diagram for classification of mappings is confusing. Finally, inverse function depends on the student understanding reverse mapping.

Table 6
Concepts, Unit 1

10 decimal points omitted high values denoife: very

Tablo 7 givos tho mean rating for undergtanding and the mean time for anch subsection of the test. This information contimms the above discussion of the concont ratinge.

Tuble 7
Sections, Unit 1

Unit		time	understanding
1.0	Introw	(\%iocter	
1.1	Mape function		
1.2	Combine fn.		
110	Intro.		
111	\Rightarrow Defn.	11	44
112	Set	13	45
113	Map.	18	42
114	More def.	21	42
115	Specify map;	25	42
116	Graph	32	40
117	More defo	22	43
020	Intro.		
127	Arithmetic	14	45
128	Composition	29	38
153	Decomposition	15	41
$\mathrm{H}^{2} \mathrm{t}$	Reverse	22	39
025	Classify	33	39
026	Inverse	30	36
127	Inverse Composite	24	39

11
5. the conceptual analysis of unit 1

Each concept is defined in the glossary. With the exception of the definition of set, these definitions refer to other concepts in the glosgary. The level of a concept ig taken to be one higher than the level of the highest-level concept in the definition.

Example:

SET:	the definition does not con concepts	in any unit 1	- LEVEL 1
ELEMENT :	the definition mentions SET	(level 1)	*. LEVEL 2
SUBSET:	the definition mentions SET	(leve1 1) and	
	ELEMENT	(level 2)	. LEVEL 3
EQUAL SETS:	the definition mentions SET	(1evel 1) and	LEVEL 3
	ELEMENT	(1evel 2)	
PROPER SUBSET:	the definition mentions SET	(1evel 1),	
	ELEMENT	(level 2),	
	SUBSET	(level 3).	
	QQUAL SEIS	(1evel 3)	LEVEL

Although the analysis does not require this, we may illustrate the hierarchical levels of concepts in a diagram. Diagram 4 shows this for the example diagram 5 for the entire unit.

Diagram 4

LEVEL 1

LEVEL 2

LEVEL 3
LEVEL 4

6 . the multivariate analysis of concept ratings
Regression analyses were carried out on five variables:

1. LEVEL the level of the concept in the hierarchy (see Diagram 5),
2. FREQUENCY the number of times the concept was mentioned in the text,
3. PRIOR the mean rating for each concept on 'prior familiarity',
4. EFFORI the mean rating for each concept on 'effort',
5. UNDERSTANDING the mean rating for each concept on 'current understanding'.

First of all I used variables 1, 2 and 3 to predict the effort denarided by a concept. Diagram 6 shows the correlations between the three predictor variables. The variable 'prior familiarity' enters the regression first with a correlation of $0.68(n=29)$. Next, level enters the regression and increases the multiple correlation to 0.81 . The variable "frequency". does not increase the multiple correlation significantly. The regression equation is therefore:

Diagram 6

The Fesiduals are interesting: 'operation', 'composition', 'function', and 'inverse' require much more effort than predicted... 'dummy variable', 'proper subset', 'image', 'domain', and the arithmetic of functions require much less effort than predicted. These residuals suggest the unmeasured effects of presentation, inherent difficulty (given conceptual level), and new terminology.

The next regression used variables 2 and 3 to predict the 'current understanding' of each concept. In fact, only 'prior femiliarity' was significant, and the equation was:

$$
\begin{aligned}
& \text { UNDERSTANDING }=3.6+0.29 \text { PRIOR } \\
& \mathrm{C}_{\mathrm{Z}=.75}
\end{aligned}
$$

The next regression used variables 2,3 and 4 to predict the 'current undergtanding' of each concept. 'Effort' had the highest correlation (.87) with underatanding. Next to enter the regression was 'level' increasing the multiple correlation to 0.90 . The equations were:

Studying the above three equations, it seoms clear that EFFORI can be regarded as a measure of conceptual difficulty - hence the paradoxical result that greater effort leads to less understanding Then we have the paradoxical result that an increase in conceptual level is apparently associated with an increase in understanding. This is an artifact of the corfelation between effort and level. Diagram 7 (a) shows the positively correlated vectors 'effort' and 'level', (b) shows the underitanding projection on this plane, and (c) shows the resolution of the effort vector into a component in the level direction and a component orthogonal to the level direction.
(a)

(b)

(c)

7. the multivariate analysis of section ratings

Regression analyses were carried out on 11 variables:

1. UNDERSTANDING
2. TIME
3. LINeS
4. SyMbols
5. REPCONCEPTS
6. DIFCONCEPTS
7. EFFORT
8. EXERCISES
9. DIAGrams
10. PRIOR
11. Level
the mean rating for each section on 'understanding'
the mean rating for each section on 'time'
the number of lines of print in each section
the number of lines of print with symbols in each section the number of times mathematical concepts are mentioned in each section
the number of different mathematical concepts mentioned in each section
12. EFFORT
the mean effort rating for concepts mentioned in each section
the number of exercises in each section
the number of diagrams in each section
the prior familiarity of the corcept with lowest prior familiarity in each section
the level of the concept with the highest level in each section.

First of all, I ignored the data on introductions and summaries. Some preliminary analyses suggested that these short sections behaved very differently from the basic teaching sections and that their presence emphasised a general 'length' effect. However, their omission meant an even smaller sample size of 14 .

In the first analysis, I used all the variables 3 to 12 to predict underetanding. In fact, only 'level' entered the equation significantly:

Abstract

In the next analysis I used all the variables 3 to 12 to prediet time. An examination of the T values for the regression coefficients suggested that 'lines', 'diagrams', 'prior' and 'level' were the variables which gave the greatest contribution to the prediction.

A stepwise regression was carried out using these four variables as predictors. "Level" entered the equation firgt, its correlation with time being 0.64. "Diagrams" entered next, increasing the multiple correl ation to 0.84. "Lines" entered next, giving $R=0.95$. "Prior" did not add significantly to the equatíon. So the equation is: $$
\begin{gathered} \text { TIME }=-8.2+3 \text { LEVEL }+ \text { DIAGRAMS }+0.08 \text { LINES } \\ \mathrm{R}=.95 \mathrm{~T} \underset{\mathrm{~T}=7.0}{ } \boldsymbol{q}_{\mathrm{T}=5.8} \boldsymbol{T}_{\mathrm{T} \equiv 4.4} \end{gathered}
$$

It is interesting to compare this equation with the previous one. The variable 'level' is the most powerful gingle predictor of both understanding and time. However time is also deperdent or 'diagrams' and 'lines'. These latter two variables can be interpreted as measures of "length". Table 8 shows that all measures of length (ie. variables giving the number of times something occurs in the section) have higher correlations with time than with understanding.

Tatle 8 Correlations of other variables with "understanding" and with "time"

* 'length' variables

LINES SYMBOLS REPCONCEPTS DIFCONCEPTS EFFORT EXERCISES DIAGRAMS PRIOR LEV

UNDER- STANDING	02	-22	-05	-38	-51	-40	-27	27	-71
TIME	27	35	39	70	30	57	57	-40	61

The residuals for the last equation are interesting: the sections on composition, reverse and inverse mappings have greater times than predicted, while the sections on specifying mappings, arithmetic of functions, and decomposition have lower times than predicted. These residuals suggest the effect of the umeasured variable: inherent difficulty (given conceptual level).

8. assessment questions

Table 9 deta out the mean time for each of the assessment questions. The time for the IMA was 81 minutes while the time for the CMA was 43 minutes.

Table 9

	minutes	individual questions	minutes
TMA question 1 (assessed)	45	, UL	2.5
TMA question 2 (non-assessed)	36	2	2.4
	43	3	3.3
CMA		4	3.4
		5	$3.3\}$
		6	3.6
		7	3.5
		v1	3.9
		2	3.2
		3	3.6
		4	4.8
		5	5.2

The above table also gives the times for individual CMA items: Items which are bracketed together test much the game skill. The time for individual items do not vary much. 'the two shortest questions (Ul and U2) required recognising whether two simple functions were ono-one or not. The longest question involved the concept of modul s function and of composition, (V).

9. the validity of the ratings

Many people ask me why I use ratings as opposed to looking at the students' actual performance. My answer follows. I do intend to set performance items on one of the units later in the course. I do not belíeve that it is feasible to use only performance itens:
(1) Students have to spend a greater amount of time on performance items as opposed to ratings (cf. Tables a and 9).
(2) So the cover of traditional cMas is less than the cover of my ratings.
(3) I can ask rating questions about the presentation directiy, whereas some doubtful reasoning needs to be applied if we are to use CMA results to diagnose faults in the presentation.
(4) Often traditional CMAs test a number of different skilis at once eg. is the item $V 5$ time-consuming because of the modulus function or because of composition?
(5) It is possible to construct easy or difficult items on the same skill - e.g. items Ul and U2 required applying the one-one concept to very simple functions.

My investigations have already demonstrated to some extent the validity of the ratings:
(a) at the Mathematics Faculty Seminar, people's guesses of the "top 3 concepts" and the 'bottom 3 concpets" were 'right' about 2 out of 3 times;
(b) in sections 6 and 7, I have demonstrated significant relationships between measures of content and mean ratings;
(c) the ratings for concepts were consistent with the ratings for sections - but these two types of ratings were given by two completely separate groups of students;
(d) graph 4 plots the facility index of CMA items (1974 $\times 1975$) against the mean effort rating for that concept in the question requiring most effort.

Graph 4

Facility Index for CM items

This evaluation of Unit 1 has not been a full-scale "Detailed Evaluation" I have asked only 158 questions as opposed to the 589 I am asking about Unit 7 . Even so, this report demonstrates the importance of many of the features of Detailed Evaluation:
(a) the detail provided by information on individual concepts and sections enabled me to consider principles of presentation. This would not have been possible with information at a grosser level - indeed, I felt a need for information on specific examples and exercises.
(b) the large number of questions meant that this detail was available for a number of different objects (concepts/sections) and for a number of dimensions (prior familiarity, etc.). By making the appropriate comparisons, 1 could reach important interpietations of the information.
(c) the content analysis of the unit made explicit one very important variable (i.e. level) and enabled the testing of hypotheres about the relationship between content and ratings.
(d) the multivariate analysis enabled me to select the most powerful predictors of various criterion variables - in doing so, to set up plausible models of student learning.
(e) although I have not interviewed any of the students; the request fer comments on the questionnaire has given useful information about how the students have approached this task.
(f) the report on the Mathematics Faculty workshop has indicated how the results may be applied to the design of new courses. (Appendix 4).

Looking ahead, I want future evaluations to have more questions about more detailed aspects of the unit. I would like to see relationships established between ratings and other content measures besides 'level'. Finally I would like to see much stronger applications of the results.

19

When you have finished your tudy of unit 1 , please complete this rating sheet by putting a circle round the appropriate number for each of the thre questions and each of the concepts.

Your reactions to thi: method of teedback:

(1) Were the instructions clear?
(IC 2) Hov long did it take to $f 111$ in the rating eheat?

GActions, Unit 1

Whase complote this shent by putting a circla round the appropriate number (o) fulfot your understanding of the general development of fideas in the su, lions and bv writing in how many minutes you spent on ehch section. You can "ilhei moll. Yo,i study times as you work through the unit or you can just try and -s timite thom after you have completed your study.

understanding of general development of ideas.	time (mins)
(approx.)	

(4-7)

$$
\begin{align*}
\text { section } & 1.0 \\
& (p . \operatorname{vii} i) \tag{6}\\
& 1.2
\end{align*}(p .1)
$$

$$
\operatorname{section} 1.1 .0 \quad(p .1)
$$

$$
1.1 .1 \quad(p .1)
$$

$$
1.1 .2 \quad(\mathrm{p} .4)
$$

$$
1.1 .3 \quad(\mathrm{p} .6)
$$

$$
1.1 .4 \quad(p .11)
$$

$$
1.1 .5 \quad(p .14)
$$

$$
1.1 .6 \quad(p .19)
$$

$$
1.1 .7 \quad(p .27)
$$

$$
1.2 .0 \quad(\mathrm{p} .30)
$$

$$
1.2 .1 \quad(p .30)
$$

$$
1.2 .2 \quad(\mathrm{p} .32)
$$

$$
1.2 .3 \quad(\mathrm{p} .37)
$$

1	2	3	4
1	2	3	4
1	2	3	4

5	1	1
5	-1	1
5	1	1

(8-10) (11.13)
$(14-16)$

$$
1.2 .4 \quad(\mathrm{p} .38)
$$

$$
1.2 .5 \quad(\mathrm{p} .40)
$$

$$
1.2 .6 \quad(p .44)
$$

$$
1.2 .7 \quad(p .47)
$$

Summary and conclusions ($\mathbf{~} 49$) (24)

Try to give as accurate an answer to the questions as possible but don't worry if you can't remember the exact dates (questions 1 to 3) or the exact times (questions 10-15) - just give the best approximation:

1. I started my study of unit 1 on
2. I posted TMAO1 to my tutor on
3. I posted CMA41 to Walton Hall on

| Day | Month |
| :--- | :--- | :--- |
| | |
| | |
| | |\(\left(\begin{array}{l}(1-3)

(7-6)\end{array}\right.\)

For each of questions 4 to 9 circle the option ($A / B / C / D / E$) which applies:
4. I first read the CMA questions for unit 1 ...
5. I first attempted the CMA questions for unit 1 ...
6. I completed the CMA questions for unit 1 ...
7. I first read the TMA question for unit 1 ...
8. I first attempted the TMA question for unit 1 ...
9. I completed the TMA question for unit 1 ...

Options

A. before any serious study of the unit 1 text B. during my first serious reading of the text
C. after my first serious reading D. during subsequent readings E. after subsequent readings

Please indicate roughly how many minutes you spent on the following components of this unit:
T.V. broadcast and associated materials...

Radio broadcast and associated materials.. Tutorial (excluding travel).................
13.
14. CMA questions

U4
time (mins)
(18-20)
(21-23)
(24-26)
(27-29)
(30-32)
(33-35)
($36-38$)
(39-41)
(42-44)
(45-47)
(48-50)
(51-53)
(54-56)
(57-59)
(80-62)
(63-65)
164 6818

The Open University, Institute of Educational Technology, Walton Hall, Milton Keynes, MK7 6AA. Telephone: Milton Keynes 74056

THE OPEN UNIVERSITY

institute of

 educational technology7th February, 1976

Dear

You may be aware that over the next two years we are going to rewrite the Mathematics Foundation Course. Obviously we shall need to make a number of assumptions about how students learn from correspondence materialis. In the past we have tested our assumptions by asking "gtudents" to study draft materials. This method has not been a completa success. So we are trying an alternative: asking Mloo students like yourself about different espects of their study, In this way we hope to establish some guiding principles about how to design the materials for the new Foundation Course.

As you may imagine, we already have a lot of information about etudents' asbesment performance and their overall reactions to the units. But we are still rather ignorant about students' reactions to more detailed aspects of the units.

I would like to agk you the following questions about your gtudy of unit 1 (Functions):
(1) On what dates did you start and finish your work on unit 1 ?
(2) At what stage did you work on the CMA and TMA questions?
(3) How much time did you spend on the varixous components of unit $1 ?$

NOTE: Your answers to these questions will NOT affect your assessment grades in any way; information about individual students will NOT be passed on to the Mathematics Faculty.

I am asking only a limited number of students to answer these particular questions. In this way I can cover many different aspects without asking any student to complete more than one questionnaire in the year.

I vould be very grateful if you would give the answers to these questions on page 2. please return this sheet in the reply-paid envelope. When I have analysed the resulta I shall send a sumpary of my conclusions to all those who have taken part.

Thank you for your co-operation.

> Yours aincerely,

Appendix 3

"Did you have any difficulty giving the (concept) ratings ... if so, what were they?

Having completed unit 1 , I tended to base my Prior Familiarity rating on the difficulty I experienced.

Prior Familiarity dubious ${ }^{\text {to }}$ alien notation.

Having done some of the work before (about 9 years ago), I had met many of the concepts before, but had forgotten many of them. Therefore I could not say I was familiar with the concepts just before opening the book, but of meeting the concepts I found I knew something about them.

It's difficult to say how familiar one was before with'a concept, unlegs of course one knew nothing of it.

Many of my problems in the text stem from adopting a different notation. It is therefore difficult to asgess familiarity as I had met most concepts but often not in the same forms.

The prior familiarity column posed a problem. If you have never met the item before does it mean you are not at all familiar with the concept? For instance the term proper subset was new to me, but Iknew about subsets. This same dilema was posed in No. 14,12 , etc. On the other hand did very familiar mean you had met and studied it before or were very familiar with the text of Unit I. and the terminology uged in it? interpreted this column as very familiar if I had a good prior knowledge, or had met similar work, and the other grades accordingly.

The effort column was difficult to judge in isolation. I would have answered more assuredly if I was answering if the concept was grasped easily etc.

The current understanding column was fairly straight forward,

Assessing effort required.

I do not feel sure what my current understanding is after only just completing one unit.

It is difficult to rate one's own understanding of a situation. The result can only be judged by self examination.

One can only give the ratings using the material (text) read as evidence of understanding. Further material (i.e. Quetione) could devalue one idea of current underetanding,$t+124$

Very difficult to be objective. Difficult to assess degree of knowledge required. Assumed current knowledge to be concerned with unit content.

In some cases the idea was very quickiy dealt with for example reverse mapping and inverge functions when I felt there was a lot of special cases. Perhaps a six-sense but sufficient to make one a little concerned about ones own ability.

Appendix 3 (comid.)

"Did you have any difficulty giving the (section) ratings ... if so, what were they?"

No: I took the average of each section, excluding the introductions and summary, for 1.1 and 1.2.
$3-$ Q. gōod? $4-\operatorname{good} 2$

Having done quite a lot of preparatory reading, famijiarity with notions made it easier.

Yes $=1$ have done the work in Unit 1 before so it was just revision therefore I am not represtentative.

Over simplification caused boredom, as with lack of explanation, lack of continuity. Deciding which region a rating was generated from.

I spent a lot of time going back in the unit and re-reading parts whose definitions I was not clear about.

Yes already worked through unit 1 two or three times " difficult to recall time spent.

Timing estimates very difficult - kept picking up and re-reading.

It would have been easier if the form had been received earlier so that (68) could be done. I presume these results are analysed by computer, could not boxes 4, 687 be programmed.

Had gone through unit before receiving this form and so had to estimate, would have preferred to note infomation while firgt studying unit. Consider estimates, done approx four weeks later, unreliable.
estimating study time at a later date.

The data I am supplying is very inaccurate, due to the length of time after study. I would have preferred to tick box 68.

Not in ratings, but timings impossible to calculate since this questionnaire was received after I had finighed the unit.

Trying to think back after auch a long time. Unit firit read in December.

Date 26th March 1976

The first workshop concentrated on the results for the concepts in Unit. 1 , discussing the interpretation of these results and their implications. The second workshop studied each sub-gection of the unit in turn, giving a critique of the presentation, and then relating the critique to the results on that section and on the concepts in that section. Drawing on the discussions at these two workshops, I have written the section "implications for Mol" below. The section following that gives a brief account of the result e (1 can give the full report to anyone who wants it).

I think we should hold other Detailed Evaluation workshops - in a number of guises. These are described in "suggested activities". Both workshops ran into time trouble: This might be avoided in future, if i give a quick overview of the results, using them to point to specific problems which we can then concentrate on (see the final section on "improved plan for Detailed Evaluation workshops").

Implications for M101

1. The presentation of concepts in the unit:

- how many different concepts do you use in the unit?
- how familiar will the students be w th each concept before they study the unit?
- how many concept levels have you stacked on top of one another?
- what is the inherent difficulty of each concept?
- have you provided the right sort of examples and exercises to enable the student to understand and apply each concept?
- are your explanations clear and simple?
- has your presentation become confused and bogged down in unhelpful qualifications?
- have you structured the concepts in the sections in a clear and simple manner?
- is each concept essential to your aims = "if in doubt, throw it outing

Unless we allocate some time to tacking these pacific questions they will tend to be ignored.
2. How much time do you think the students will spend on each section?

I shall provide an estimate based on an analysis of your unit and the application of the statistical results for units 1,2 , and 7. But you should have your own estimate too.

The resulte

I have obtained equations illuatrafing the following relationshigs:

- the effort required to underatand a concept ia function of how familiar the students are with the concept before they getrt and of the hierarchical level of the concept.
a students have 1 ess undergtanding of concepts which are at a higher level and which have required greater effort.
- the average study time for each section in a furnction of tha conceptual level of each bection and of the dangth of each nection.

Much greater diecuseion centred on the text itaelf and on the regulte for individual concepts. For example:

- the concept "graph" was not introduced till half way through the unit - despite the fact that it was the concept which students were most familiar with.
- students ware relatively familiar with the concept "function" before gtudying the unit but had relatively little understanding of the concept after the unit - we noticed that Und 1 (Functions) had no teaching about functions!
- the concept "operator" required much enfort and was little underetood - yet this concept is in no way essential to unit 1 .

Suggested activities

- M101 Blocks which have overlap with M100 unita 2 to 7 fight hold similar workshops to relate a textual criticism of these unita to the Detailed Evaluation of these units.
- M101 Blocks which have overlap with M100 units 9 onvards might carry out a textual criticigm of these units and use that as a basim for designing a Detailed Evaluation of the relevart unit.
- textual criticism workshopyight be run for MiOl units - addressing the questions on page 1.
- We might carry out Detailed Evaluation of those M100 units (e.g. 22) which have implicationg for the remake of the fecond-l evel courses.

Improved plan for Detailed Evaluation workshops

- quick five=minute presentation of general findings.
- hand out results for individual concepts (or sections etc.) - for reference.
- select just a few items for closer examination.
- carry out a textual criticism on these fev items.

