
DOCUREBTeRESUME

ED 127 970 IR 003 935

AUTHOR Seidel, Robert J.
TITLE Project IMPACT: Computer-Administered Instruction

Concepts and Initial Development. Technical Report

69-3.
INSTITUTION Human Resources Research Organization, Alexandria,

Va.
SPONS AGENCY Office of the Chief of Research and Development

(Army), Washington, D.C.
REPORT NO HumRRO-TR-69-3
PUB DATE Mar 69
CONTRACT DAHC-19-69-C-0018
NOTE 88p.; For a related document see IR 003 934

EDRS PRICE MF-$0.83 HC-S4.67 Plus Postage.
DESCRIPTORS *Autoinstructional Aids; *Computer Assisted

Instruction; Computer Oriented Programs; *Computer
Programs; Computer Science Education; Evaluation
Criteria; Experimental Programs; Information
Processing; Instructional Technology; *Military
Training; Models; On Line Systems; Post Secondary
Education; Time Sharing; Training Techniques

IDENTIFIERS COBOL; Common Business Oriented Language; Human
Resources Research Organization; HumERO;
Instructional Decision Model; Instructional Model
Prototypes Attainable Computer; Interactive Computer
Systems; Learner Controlled Instruction; Project
IMPACT

ABSTRACT
This report summarizes Project IMPACT activities in

fiscal year 1968. The goal of the project is to develop a
computer-assisted instruction (CAI) training system in the COBOL

language for the U.S. Army. Following an introduction, the report
explains the instructional decision model which is used with an

interactive computer system. The hardware system for Project IMPACT

is then explained briefly. COBOL course development is described in

terms of training objectives and instructional content. Software

developments such as IMPACT CAI LANGUAGE (ICAIL) and future coherent

programing are explained in the last chapter. Appendixes include a

summary of staff development, a checklist for man-hour computation, a .

flow diagram from the preliminary COBOL course, COBOL course
criterion tests, and an explanation of the IMPACT list processor.

(CH)

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *

* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available *

* via the ERIC Document Reproduction Service (EDRS). EDRS is not

* responsible for the quality of the original document. Reproductions *

* supplied by EDRS are the best that can be made from the original. *

Project IMPACT:
Computer-Administered Instruction
Concepts and Initial Development

by

Robert J. Seidel and the IMPACT Staff

Etf4P4'

This document has been approved for public release March 1969

and sale; its distribution is unlimited.

U S DEPARTMENT OF HEALTH.
EDUCATION& WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN.
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Prepared for:

Office, Chief of Research and Development
Deportment of the Army

Contract DAHC 19-69-C-0018 (DA Proj 2J063101D734)

HumRRO Division No. 1 (System Operations)
Alexandria, Virginia

The George Washington University
HUMAN RESOURCES RESEARCH OFFICE

2

Technical Report 69-3
IMPACT

The Human Hesourcrs liesearch Office is o notipvernmental agency

of he Geoge Washington 17niversity. IlumIDIO research for the Department

of the Army is conducted under Contrat DAIIC 19-69-C-0018.

mission for the Department of the Army is to conduct research in the fields

of training, motivation, and leadership.

The findings in this report are not to be construed

as an official Departme l''ct. of the Army position,

unless so designated by oTher authorized documents.

Published
Morch 1969

by
The George Washington University

HUMAN RESOURCES RESEARCH OFFICE

300 North Washington Street
Alexandria, Virginia 22314

Distributed under the authority of the

Chief of Research and Development
Department of the Army
Washington, D.C. 20310

3

FOREWORD

This report summarizes the concepts, approach, and developmental activ-
ity of the first year's effort (through 30 June 1968) on Work Unit IMPACT,
Instructional Model/Prototypes Attainable in Computer Training. IMPACT is
an advanced development project undertaken by the Human Resources Research
Office, designed to provide the Army with a system for computer-administered
instruction. Work on the project is programed for a period of five to
seven years.

The research is being conducted in HumRRO Division No. 1 (System Opera-
tions). Dr. Robert J. Seidel is the Work Unit Leader and Dr. J. Daniel Lyons is
the Director of Research.

The principal contributors to the individual chapters were: for Chapter 1,
Mr. George R. Sedberry; Chapter 2, Dr. Robert J. Seidel and Dr. Felix F.
Kopstein; Chapter 3, Mr. George R. Sedberry and Dr. Felix F. Kopstein;
Chapters 4 and 5, Mrs. Judith G. Compton, Mrs. Beverly R. Hunter, Mrs. Sarah
G. See, and Mr. R.Ichard D. Rosenblatt; Chapter 6, Mr. Roy M. Proctor.
Mrs. Lola M. Zook provided assistance in organizing and editing the
report materials.

The IMPACT project follows on earlier HumRRO work in the same general
area undcr Work Unit METHOD, Research for Programed Instruction in Mili-
tary Training, and Exploratory Study 42, Organization of Instruction. Principal
publications under these research efforts include: The Application of Theoretical
Factors in Teaching Problem Solving by Programed Instruction, by Robert J.
Seidel and Harold G. Hunter, HumRRO Technical Report 68-4, April 1968 (1);
Programed Learning: Prologue to Instruction, by Robert J. Seidel, HumRRO

Professional Paper 17-67, April 1967; and Computer-Administered Instruction
Versus Traditionally Administered Instruction: Economics, by Felix F. Kopstein
and Robert J. Seidel, Professional Paper 31-67, June 1967.

Permission has been obtained for the use of copyrighted materials quoted
in this report.

HumRRO research for the Department of the Army is conducted under
Contract DAFIC 19-69-C-0018. The research in Work Unit IMPACT is conducted
under Army Project 2.706310113734, Computer-Administered Instruction.

Meredith P. Crawford
Director

Human Resources Research Office

4

SUMMA

Problem
Computer-administered instruction (CAI) is a development of vast promise for Army training.

It permits broad and precise control of the training environment, and extends the possibilities for
individualized instruction beyond those offered by any systems for instruction now available.
However, a basic principle in training is the fact that the only justification for using any training
device or medium, no matter how promising it may be, is its demonstrated capability for enabling

a trainee to perform well. Premature or inappropriate attempts to use and evaluate CAI may well
hamper or preclude the full development of its potential and the soundly based evaluation of its
effects on training. The problem therefore is to devise a system that will provide a controlled
training environment and permit appropriate evaluation of CAI for the Army.

Objectives
Project IMPACT is an advanced development effort designed to provide the Army with an

effective, efficient, and economical computer-administered instruction system. The objective is
to (a) develop two generations of prototype CAI systems with (b) accompanying prototype multi-
path (branching), individualized programs of instruction.

The system of instruction is to be capable of adapting to the capabilities, at the moment,

of each individual trainee. This adaptiveness will be based both on the "entry characteristics"
of the trainee and on his long-term and immediate response patterns within the course, so that
each step in the instruction will be fitted directly to his needs at that point in the instructional
process. The instruction will also be made directly relevant to his specific job requirements.

Courses are to be selected for development on the basis of two,...ectiteria: (a) being critical
for the Army, and (b) representing widely varied kinds of learning tasks or behavior.

This report summarizes the conceptual and functional activities in the various phases of
the research and development plan during the first year of operation for Project IMPACT. The

period reported carries through 30 June 1968; information on plans and schedules for the ensuing
months is recorded where especially relevant.

Approach
An integrated, interdisciplinary approach is being used in four phased development cycles.

Each cycle will produce a number of useful products, designed to provide the Army with its own

capability for developing computer-administered instruction. During each of the cycles, develop-
mental activities will be carried on in four interrelated meas: Hardware, Software, Instructional

Content, and the model of the Instructional Decision Process.
Work in IMPACT Cycle I was undertaken at the beginning of FY 1968. The research and

development effort for the total project was originally programed for a five-year period, but atten-

uation of funding has resulted in tentative reprograming over six and one-half years. Cycle I
completion is now forecast for the end of FY 1970.

During this initial stage, the IMPACT work is dealing with construction of a CAI course in

the COBOL computer programing language. This course was selected for prototype development
because of indications from many Army sources of the great need for informed use of computers
and greater sophistication in data processing. HumRRO already had subject matter expertise
through earlier development of a programed instruction course on computer programing fundamen-

,Wls in Work Unit METHOD.
IMPACT Cycle I efforts are directed toward integrating many different kinds of developmen-

tal activities to produce a provisional, first-generation CAI system. In IMPACT Cycle II, the

"breadboard" model will be tested for training effectiveuP.ss and revised into an operationally
implementable CAI system. In IMPACT Cycle III, a second-generation CAI system will be
designed, incorporating improvements in hardware and software, and especially in the Instruc-
tional Decision Model (IDM), and developing additional prototype courses with a wider variety of
training content and learning tasks. During IMPACT Cycle IV, the effectiveness of the second-

generation CAI system will be tested, and a third-generation system with expanded and upgraded

capability will be designed.

Progress During FY 1968
A professional and technical staff from the fields of behavioral science, applied mathemat-

ics, computer science, and instructional programing was formed. Their deve/opmental activities
on the various facets of a CAI system during FY 1968 may be summarized as follows:

instructional Decision Model. This model, the heart of a computer-administered
instruction system, will be a set of rules for matching presentation of specific content (selecting
and sequencing) with trainee capabilities (student characteristics and responses to earlier
material). During this year, "breadboard" development of the model began to take shape. Various
aptitude, achievement, and other diagnostic tests were surveyed and a suitable set selected.
Concepts, methods, and techniques from the psychological literature were selected for adaptation

to IMPACT requirements. The analysis of the subject-matter structure of COBOL was begun

according to rigorous formal (mathematical and logical) techniques. These and other source
materials allowed work to begin on the preliminary formulation of decision rules for use in indi-

vidualizing instruction. (See Chapter 2.)
Hardware.' Hardware being used in Cycle I is basically an IBM model 360/40 com-

puter and, at the studenc terminals, Sanders 720 cathode ray tubes with light pens. A secondary
visual display is being supplied at the terminals by means of the Perceptoscope, a type of 16mm

projector. One sensitized electronic tablet with an electronic pen has been procured for experi-

mental use at one terminal; this tablet provides a natural handwriting(block printing) input device.

Initial developmental work in the early stages was carried on with typewriter terminals. (See

Chapter 3.)
Instructional Content. Detailed behavioral objectives for the COBOL instructional

course were developed, and the portion of the instructional content to be used in the first student

testing of the prototype development was completed. An analysis of the Army jobs for military

and civilian COBOL programers provided the basis for the development of the behavioral objec-

tives, and the instructional content was then prepared on the basis of these objectives. Criterion

tests related to the objectives wr,-e developed. (See Chapters 4 and 5.)
Software. Software development was designed with the view of satisfying both the

initial requirements of the project and, with modifications, the requirements of the later develop-

mental cycles. A computer-administered instruction language, IBM Coursewriter, was modified to

run IBM 1050 typewriter terminals for the IBM 360/40 computer disk operating system. Develop-

ment of a limited list-processing capability was begun within Coursewriter as a major project

effort. Modification of Coursewriter for use with the cathode ray tube was virtually completed.

(See Chapter 6.)

'Identification of products is f or research documentation purposes only; this listing does not consti-
tute an official endorsement by either HumRRO or the Department of the Army.

vi

CONTENTS

Chapter

1 Introduction

9

Page

3

Objectives 3

Background and Rationale 3

Plan of Development 4

Summary of Progress During FY 1968 6

Preliminary Conceptualization of the Instructional
Decision Model (IDM) 8

Approach and Rationale 8

Some Issues in Designing an IDM 10
A General Overview of Dtrision Models 10
The Student Image 11

The Subject-Matter Map 11

Issues Addressed in First Implementation 12

Subject-Matter Structure 12

Student Knowledge States 14
Empirical Study of First IDM 17

Iterative Elaboration of IDM 18

3 Description of the Hardware Base of the IMPACT System 22

Hardware Subsystems 22
Information Processing Subsystem 22
Data Storage Subsystem 22

Communications Subsystem 22
Developmental and Experimental Stations 24

4 COBOL Course Development I: Objectives 96

Introduction 26
Establishment of Training Objectives 26

Tasks 27
Terminal Objectives 28

Characteristics of the Job 29
COBOL in the Army 29
Job Specifications of COBOL Programers 30

Standards and Evaluation 31
Characteristics of the Programer Trainee 31

5 COBOL Course Development II: Instructional Content . . 36

Introduction 36

Outline of Content and Organization 37

Tests of Proficiency 38

Criterion Tests 38

On-Line Multiple-Choice, Constructed-
Response Subtests 38

7
vii

Chapter
Page

Response Analysis and Data Collection in
Preliminary COBOL Course 39

Definitions 39

General Design Considerations 40

Specific Plan: Response Analysis 40

Specific Plan: Data Collection 41

Preliminary Data Collection and Expansion of Content 49

Subject Selection for Preliminary
Data Collection 42

Entry Characteristics Testing Program 43

Individualization of Instruction 43

6 Software Developments and Projections 44

Introduction 44

Major Software Development Efforts 44

Technical Introduction 45

ICAILCRT Conversion 47

Functions 50

Instructional Decision Model Data Structures 53

Future Systems and CAI Software Development Plans 57

Coherent Programing 58

Other Factors 59

Literature Cited 63

Appendices

A Summary of Staff Developments by Quarter 65

B Supervisor's Checklist for Manhour Computation 67

C Flow Diagram From Preliminary COBOL Course 69

D COBOL Course Criterion Tests 76

E The IMPACT List Processor 78

Figures

1 Planned Schedule of Development 5

2 IMPACTDevelopment Activities During Cycle I 5

The Instructional Situation 9

4 Hypothetical Knowledge Space 13

5 Data Structure 15

6 Valid Confidence Scoring of Constructed Responses 19

7 HumRRO Hardware Configuration 23

8 General Overview of ICAILList Processor Translator 49

9 Similarities and Differences Among Four Functions 52

10 The Projected IMPACT Software System 58

Chapter 1

INTRODUCTION

OBJECTIVE:-'

Project IVPACT is an advanced development effort designed to provide the
Army with nn effective, efficient, and economical computer-administered instruc-
tional system (CAI'S). The system being developed will include prototype indi-
vidualized (brzinching) programs at instruction. Ultimately, the project will
provide the Army with its own capability for developing computer-administered
instruction; the system will be designed and documented for use by technically
unsophisticated personnel, such as instructors or subject matter experts, so
that they will be able to modify or develop materials for their own purposes and
for new courses.

.This system for instruction will be able to adapt to the capabilities, at the
moment, of each individual trainee. This adaptiveness will be based on both the
entry characteristics of the trainee and his long-term as well as immediate
response patterns within the course; each step of instruction will, thus, be fitted
to his needs at that point in the process. The instruction will also be made
directly relevant to his specific job requirements.

During the first stage of the development effort, the research has dealt with
construction of a CAI course in the COBOL computer programing language. Addi-
tional prototype courses selected for later development will meet the same cri-
teria by which the original subject matter was selected: (a) being critical for the
Army. and (b) representing unique kinds of behavior.

This report summarizes the conceptual and functional activities in the vari-
ous phases of the development plan during the first year of operation for Project
IMPACT. The period reported carries through 30 June 1968; information on
plans 'and schedules for the ensuing months is recorded where especially relevant.

BACKGROUND AND RATIONALE

One of the fundamental principles of training is that the only justification
for use of any training device or medium, no matter how promising it may
appear to be, is a demonstrated capability for enabling a trainee to perform
well. Computer-administered instruction is a development of undeniable and
vast promise. However, premature or inappropriate attempts at using or eval-
uating CAI can only arrest or preclude the full development of this potential.
No matter what the capacities of the information processing machines, they do

not guarantee relevant decisions that will lead to effective instruction.
Project IMPACT is therefore pursuing an evolutionary approach toward

developing an effective and operationally implementable CAI system. The key
factor in such a system is its potential for extending the possibilities for indi-
vidualized instruction beyond those offered by available methods of instruction.
The computer provides an immense capability for information acceptance, for

9 3

rapid storage and retrieval of vast quantities of data, and forlipid, continub
coordinated execution of multi-factored decisions. It thus becomes possible .

adapt instruction far more precisely to the needs of each individual trainee than
can be done with existing systems for instruction.

For example, efficient instruction must seek to teach a trainee at any given
moment that which he has not yet learned and that which is a next step in his
training. Programed instruction can adapt the instrUctional presentation to the
gross characteristics of a specific individual, CAI, however, can potentially
adapt the instructional presentation not only to much more detailed character-
istics of the trainee but also to his precise requirements of the moment
provided that the decisions that govern the selection, sequence, and manner of
presentation of instructional "units" are soundly based on the fundamental
principles of human learning. It must always be rememhered that it is the
instructional process that determines the efficiency of training; computer hard-
ware and software are merely implements for setting the process into motion.

The essence of CAI is therefore the instructional decision model (IDM)a set
of rules for matching presentation of specific content (selecting and sequencing)
with trainee capabilities (student characteristics and responses to earlier mate-
rial). However, since the computer is the instrument for gaining broad and pre-
cise control of the training environment, the capabilities and limitations of the
computer's hardware and software do provide constraints on the decision modeL

Selection of portions of a course in computer programing for the initial CAI
developmental work was based on indications from many Army sources of the
great need for informed use of computers and greater sophistication in data
processing. The computer language chosen for the course was COBOL because
it appeared to be the language with the greatest range of applicability to general
Army problems, and has the flexibihty for use both in small- and large-
COre computers.

PLAN OF DEVELOPM ENT
An integrated, multi-faceted. and interdisciplinary approach is being used

in the CAI developmental plan, which involves four phased development cycles.
The developmental aetivities during each of the cycles are grouped under four
major classifications: Ha rdwa re, Software. Inst ructional Content. and the
Instructional Decision Model.

Work in Cyclt. I was undertaken at the beginning of FY 19(18. The develop-
ment effort for the total project was originally programed for a five-year period,
but attenuation of funding has resulted in a tentative reprograming over six and
one-half years. Under this schedule, completion of Cycle I is forecast for the
end of 1970. The long-term schedule as presently envisaged is shown in
Figure 1.

Work in Cycle I is essentially devoted to the assembly of a "breadboard"
version of the initial CAI system. Developmental activities on the Instructional
Decision I\lodel, the Instructional Content, the Hardware, and the Software com-
ponents of the system are under way, and the initial versions of the various
products are being provisionally integrated and adjusted to each other. These
activities have been facilitated by being able to draw upon subject matter exper-
tise gained by HumBRO in previous research (Work Unit METHOD) which dealt
with development of a linear programed course in fundamentals of computer
programing. The nature and interrelationships of the various activities in
Cycle I are illustrated in Figure 2; the expected products of the cycle are also
listed there.

4
10

Planned Schedule of Development

Cycle I
Hardware

Software

Instructional Content

Decision Model

FY 68 FY 69 FY 70 FY 71

-2-13

FY 72 FY 73 FY74

1 2

...4,..,-0

.044:

1-1---

401

/

1

/v.,

.454SM

4
P4wy/,v

1 2

, .44'4sw

3 4 1

1

4 1 2 3 4 1 2

,--

3 4

Cycle II

_ .
Hardware

Software

l C tinstructionaonent
_

Decision Model

r 7
r Ar ai'

A
AI A RN

t

._

I

//;i7,,4r,in
A's' t /PEN

/
IN

Cycle III
Hardware

Software

Instructional Content

Decision Model

i

i
7

44/A

704/3

Cycle IV
_

Hardware,--.
Sor tware

Instruction al Content

Decision Model

r:rTi
f

1 ,

1

I
t

. -
I- r

4

f 47

Aa/

I AA

; ,//,4
Preparation of specifications I or purchase of second generation hardware.

Figure 1

IMPACT Development Activities During Cycle I

INSTRUCTIONAL DECISION MODEL

Literature &
Theory Survey

Prelimary
Conceptualizations

Mathematical
Formulations

INSTRUCTIONAL CONTENT
Behaviutul
Requirements &
Specifications

Subtect-Motter
Analysis

Criterion
Test
Development

Instructionol
Content-Structure

esign

Instructional
Content Development
& Production

SOFTWARE COBOL Course
Adaptations from Fix Regular

Compiler (Computer)
Existing CAI Language

Feasibilities Object-Progroms
Languages Conventions

HARDWARE
Hardware Hardware

Survey & Selections 8.

Evaluation Procurements

Hardwore
Subsystems
Integrations

Figure 2

1 1

Development System
Cycle I Output

INSTRUCTIONAL
DECISION
MODEL
BREADBOARD
VERSION

COBOL
CRITERION
TESTS

COMPUTER
ADMINISTERED
COBOL
COURSE

SOURCE
LANGUAGE
COMPUTER
PROGRAM

CAI LANGUAGE
I st LEVEL

ADMINISTRATIVE
INFORMATION
SYSTEM

5

Cycle II involves a test of the "hreadhoard" version of the CAI system
developed in Cycle I, to determine its effectiveness in training. On the basis
of evaluation expe Hence, this ve rsi on w ill then be revised into the fi rst-
gene rntion prototype of an operationally implementahle CAI system.

Cycle III and IV activities will depend to a considerable extent on the expe-
rience gained in Cycles I and II. In general, during Cycle III. in coordination
with ope rat ionn I tests and evaluation of installations of the initial prototype
course, designs for a second-generation CAI system will he developed. This
design will incorporate improvements in hardware, in software, and especially
in the model of the instructional decision process (to include improved indices
of decision factors, additional decision factors, and an expansion in range and
depth of the operating decision rules). In choosing instructional content for the
development of additional prototype courses, emphasis will be placed on choos-
ing instruction reflecting a wide variety of learning tasks (e.g., instruction in
a psychomotor skill). Operational implementation of a provisional second-
generation CAI system may be feasible.

During Cycle IV. there are plans for tests of the effectiveness of the
second-generation CAI system, and designs for a third-generation system with
upgraded and expanded capability. Effectiveness tests will begin to assess
long-range effects of CAI use, to p !(5-v-ide feed-in for improvements in the third-
generation system.

SUMMARY OF PROGRESS DURING FY 1968

In the first year of work on Project IMPACT, a major activity was that of
recruiting an interdisciplinary staff to meet the varied requirements of the
project. Gradually, as the various elements of the work were activafed, a staff
was assembled representing the fields of behavioral science, computer science,
applied mathematics. and instructional programing. A summary of staff devel-
opments through 30 lune 1968, by quarter, is shown in Appendix A.

Another major activity during the first year was that of developing the
specialized physical facilities required for various aspects of the IMPACT work.
In addition to providing aPpropriate facilities for the professional and the tech-
nical support staffs, design and construction were begun for 12 student .stations
for use in the later developmental phases of Cycle I. The cubicle construction
was scheduled for completion in the first quarter of FY 1969.

Activities in developing the four major components of the CAI system,
during the first year of Project IMPACT's existence (through 30 June 1968),
are summarized in the remainder of this report:

Chapter 2 deals with the progress that has been made in conceptualiz-
ing the Instructional Decision Model, which is the heart of the computer-
administered instructional system.

Chapter 3 is a brief description of the computer and related hardware
that has been selected for the first-generation IMPACT work. A chart of the
hardware configuration is included. This chapter provides a framework for the
discussions of instructional content and software in the remaining chapters.

Chapters 4 and 5 deal with the instructional content component of the
system. Development of objectives for the COBOL course is described in
Chapter 4, and the preliminary work in the development of course content is
described in Chapter 5. Appendices provide various types of illustrative or
documentary material for these activities.

6 1 2

Chapter 6 describes the activities that have been directed toward meet-
ing the software needs for the current developmental work on the Instructional
Decision Model and the COBOL course. At the same time the software staff has
begun to project needs and develop programs for future activities, so that these
facilities will be available as they are needed at progressive stages of model
and course development.

1 3
7

Chapter 2

PRELIMINARY CONCEPTUALIZATION OF
THE INSTRUCTIONAL DECISION MODEL (IDM)

This chapter deals with the development that is the key to the work in Project
IMPACT, and to the products that may be expected from itthe construction of
a model to guide the making of decisions on presentation of instruction. The
chapter describes the rationale of the IMPACT approach to concptualizing the
instructional process in a form that will be implementable via a computer. It
summarizes some major issues raised by the chosen approach, and describes
the progress that has been made in solving the major problems in terms of both
current and projected implementation. Finally, both immediate and long-term
prospective improvements in the IDM are described.

APPROACH AND RATIONALE

The essential premises underlying the IMPACT approach to the develop-
ment of computer-administered (or -implemented) instructional systems are
summarized below. The rationale is discussed further in Seidel and Kopstein (2).

Traditional psychological learning theory includes the notion that a learned
connection between stimulus and response is a simple, stable, functional rela-
tionship, and that the purpose of instruction is to establish such relationships in
order to guarantee that presentation of a stimulus uniformly leads to the execu-
tion of the desired response.

The instructional situation is viewed from a different perspective in the
IMPACT work. The concept is that of an open information-exchange system,
in which there is continual interaction between the student and his environment.
and in which the effective environment for the student changes as his charac-
teristics change with continued experiences.

This view of the instructional situation provides IMPACT with its general
framework for the development of the instructional model. It take,s into account
(a) the information made available to the student, (b) the information he assimi-
lates, and (c) the information he actually puts to use within the constraints of the
problem-context imposed on him. He receives information (including error
feedback) from the environment, and he transmits information (including error
output) to the environment. The information-exchange instructional model
encompasses the adaptive requirementsthat is, change as a consequence of
interactionpertinent to efficient development of performance capabilities by
the student.

Carrying this thought a step further, with reference to developing a model
of the instructional process: Research on human learning, including programed
instruction, has generally dealt with small-scale, artificial laboratory environ-
ments where the student learns to repeat a list of simple materials (e.g., lists
of nonsense syllables); many studies have compared various conditions for
learning such material. Behavioral science has provided a store of experi-
mentally established generalizations (i.e., regularities) relevant to instruction,

8 14

but most were established in laboratory settings, not for an interactive, adaptive
environment. The store of knowledge in such settings does not deal with instruc-
tional information as it is usually encountered and used by the studenta highly
complex, structured set of interrelated concepts, commonly in paragraph-
like format.

The information interchange approach is schematized in Figure 3. An
instructor (instructional agent) sends instructive messages over the "teach
channel"; his objective is to engender and control a gradual change process in
the student that will lead to a final proficient state. The student, in turn, sends
messages to the instructor over the "test channel"; these communications always
report his state or his progress at that moment toward specified instructional
goals. The dotted line cutting through both channels serves to identify the regions
in which the communicative process is under direct control by the instructor or
under direct control by the student.

_

The Instructional Situation
(Schematic Representation)

"Teach Channel"

IN

OUT

A

A

OUT

\I

"Test Channel"

A

A

IN

Subject-
Matter
Structure

Instruc.
tional

Student
Image

Agent

\. A l
,...---

Process Region Process Region

Under Under

Student Control Instructor Control

Figure 3

The instructor's direct control over the "teach channel" is limited to dis-
playing information. The student may read, transform, accept, or reject none,
some, or all of this information; the instructor cannot absolutely determine
which will be the case. Similarly, for the "test channel" the student can display

as much of the information about his momentary state as he wishes, but he can-
not assure that all of this information will be assimilated by the instructor.

1 5 9

The object of instruction is maximum end-of-course proficiency. At the
end, one might say, the student can do anything the instructor asks and the
instructor knows this true. For effective and efficient instruction to take
place, the information flow within each instructional step must be optimized
that is, the "best" strategy for transmitting information must be followed.

This requirement for an optimal inforination-flow strategy provides the
specifications for an instructional decision model (IDM). An IDM is simply a
set of rules for action over time under a range of circumstancesin other
words, an IDM provides the basis for repeated decisions to select appropriate
courses of action. For purposes of evaluation and progressive improvement,
the rules that guide action choices must be minutely explicit.

SOME ISSUES IN DESIGNING AN IDM

This summary report must be confined to presenting only a few of the
major (at present) issues in devising an optimal strategy for transmitting
informationor an effective and efficient IDM. In this section, some general
characteristics of decision models, the nature of the image of a student, and
the importance of establishing a structure of subject matter will be (1.:;cussed.
In the following section; first attempts at the solution of these issues will
be described.

A General Overview of Decision Models
For purposes of discussion, a decision model may be viewed in terms of

three aspects:
(1) Decision factors
(2) Decision options
(3) Decision rules

Decision factors are the conditionals. They are the things that would fol-
low the "if" in a statement such as: "If a (or b or c or d) is the case, then x_
(or y or z) . . .". They are the a, 13, c, dto be considered. In the context of
instruction, we may loosely group the decision factors as:

(1) The kind of subject matter to be taught.
(2) The kind of student to be taught.
(3) The circumstances under which the teaching is to take place.

Decision options are the available actions. In the "If. . , then .
sentence, they can be equated with x, z. These option..; refer only to courses
of action under the direct control of the acting agent; considering courses of
action over which only indirect control may be exercised is largely futile. For
instruction, the decision options are choices such as:

(1) The substantive information to be presented.
(2) The amount of such information.
(3) The form in which it will be presented.
(4) Auxiliary (e.g., attention directing) information to be presented.
(5) The form of the auxiliary information.
((i) The channel(s) of information presentation (e.g., auditory, visual).

Decision rules are the link between decision factors and decision options.
They are the way(s) the decision factors are to be separated or linked to deter-
mine the grouping and connections among decision options; for example, "If a
and b but not c or d . . . , then x or y (but not both) and z." If the instructional
process under examination changes over time, then a sequential decision-making
model is needed. It may be necessary to assign differential importance to

1 6
10

certain decision factors and options at different times. Through iterative, devel-
opmental testing, the possible ways of grouping will be reduced to a formal set
of rules.

The Student Image
While the above outline suggests how an IDM can be used to reach and exe-

cute instructional decisions, it does not show how the IDM ascertains what "kind'
of student" is being taught. The answer is a model within a model; it will be
termed "the student image."

Returning to Figure 3, let us assume that the instructor will be not a human
being but a computer program. This program (the instructional agent) initially
has no direct knowledge about the student (ignoring, for the moment, the fact
that information could be prestored). Its only available means for determining
the student's characteristics is to observe the relationships between informtion
it (the computer program instructional agent) displays and the informatior it
receives in response from the student.' The fact that the instructional agent's
knowledge of the student must be indirect makes it necessary for the instruc-
tional agent to form a representationan imageof the student, in order to be
capable of interacting with him in a planned and effective fashion.

The image for a particular student is formed over time and gradually
becomes more and more precise and reliable. It is possible to prestore infor-
mation about a student's entry characteristicshis aptitudes, his prior achieve-
ments, his personal attributes. However, such a prestored image cannot contain
details about current characteristics because such information does not exist
until a sequence of iastructional interactions has begun.

The instructional agent needs information as to how the student character-
istically copes with information being presented, and what information he
requires in order to cope successfully. As will be seen later, the work of
Guilford (4) suggests the way to describe how the student copes. The work of
Harary, Norman, and Cartwright (5), as well as that of Gagne (6), suggests the
way to describe what information is required.

The Subject-Matter Map
A parallel to the problem of the non-specific student exists for the subject

matter to be taught. Simply storing an encyclopedic stock of information about
the subject does not solve the problem. The material must be organized in a way
which will provide the decision model with a basis for deciding which facts,
principles, or procedures, are built on which other facts, principles, or pro-
cedures, what interrelationships exist among them, and which topics may be
best presented before or after which other ones. There must be a consistent
"map" to represent the subject matter and its organization, and it must be more
abstract than the subject matter itself. Without a map, the IDM cannot tell
where it is starting, where it is going, where it has already been, and how it
will get to where it wants to go.

Actually, there is a dual requirement: first, for an abstracted representa-
tion of the subject-matter organizationthe subject-matter map; second, for a

'We see this perhaps even more clearly if we apply the te!:t proposed by A.M. Turing (3), in which the

human student is replaced by a computer program culpable of mimicking his behavior. In these circumstances

the program that roust it utes the instruct iona l agent could not distinguish between die "real" student and the

"artificial" student.

1 7 11

set of clear, consistent, and concise rules to provide each specific student with
his individual route for traversing this map.

The term "map" is used to refer to a model or independent image of subject-
matte r organization (structure), because it is applicable in the ordinary sense
of the word as well as being technically correct. The subject-matter maps (see
the following section) will be mathematical graphs and nets, which consist of
points (also called nodes) and of lines (also called arcs) connecting the points
in various ways. In a mathematical sense, roadmaps that show roads connecting
points representing cities and towns are actually graphs. In the roadmap, it is
very clear what the points and lines represent; this is not so clear in the ease
of subject-matter structure. Clarifying this structure and translating it into a
proper model is one of the most challenging problems in applying topological
mapping to instruction.

ISSUES ADDRESSED IN FIRST IMPLEMENTATION

From establishing a rationale for the basic design approach in Project
IMPACT. we now turn to describing preliminary approaches and progress made.
The information that follows is a record of progress in conceptualization or
developmental application. With further experience, some of these approaches
will be found faulty or inadequate; they arc most usefully viewed as points of
departure or "best estimates."

First, the representing or "mapping" of subject-matter structure will be
discussed. Second, the first attempts at lorming the student image via a more
sensitive probe of the student's knowledge states will be described. Next, imple-
mentation !(' th.(' inquiry technique, and finally, the initial decision strategies to
be used will bc described.

Subject-Matter Structure
Two broad prerni:z.,es provided the starting point for the effort to develop a

way of representing and organring the structure of subject matter to be taught.
First, ;my given subject matter is an arbitrarily delimited portion of human
knowledge. Second, just as knowledge in general is incomplete and is con-
stantly increasing, so is knowledge of a specific subject matter. Increase
in knowledge taks place when new facts are discovered or new concepts
arc established, or when new relationships among facts and/or concepts
are discovered.

Thus, we need to distinguish among several levels of knowledge: (a) the
potential knowledge existing in the universe, (b) the portion of that knowledge
that is possessed by mankind so far, (e) an arbitrarily delimited subject-matter
area within the totality of existing human knowledge, and (d) the knowledge
about a given subject-matter area possessed by a specific individual or group
(the instructor or instructional sto IT). The information about a subject matter,
such as COBOL. possessed by even the most knowledgeable instructor is a
finite and even quite limited'structure.

Further. instruction is concerned only with communicable knowledge. Pri-
vate knowledge that cannot be communicated or independently verified is of no
use in designing an instructional decision model. For knowledge to be commu-
nicable, it must first be stored by the instructor or instructional agent in mem-
ory (human or computer), and it must be selectively retrievable. The ''map"
ir index of the subject-matter structure is what makes it possible for selective
retrieval to take place.

18
12

Instruction can be defined as transferring the instructor's (instructional
agent's) knowledge structure to the student. For a delimited knowledge struc-
ture (the "arbitrary" requirements for a course), instruction has been a suc-
cess when one cannot distinguish (in a loose sense) between the instructor and
the student. That is, ideally the student should have learned all that the instruc-
tor knows about the subject matter in the course, and should be equally able to
answer questions or perform tasks pertinent to the course requirements.

Even an approximation of this ideal state is not readily attained. The knowl-
edge structure of the instructor is communicated to the student over a period
of time. In the early stages of instruction, only a small portion of the instruc-
tor's knowledge structure will be transferred to the knowledge space of the
student; it will be limited in extent (i.e., awareness of interrelations). Efficient
instruction transfers those facts and concepts that have not yet been effectively
stored by the student, and establishes those interrelationships that produce maxi-
mal strength in minimal time. The instructional strategy to accomplish this
transferthat is, the instructional decisions made sequentially over timeis
determined by the nature of the subject matter, by the characteristics of the
student (viewed as a system for accepting, storing, and retrieving information),
ari:1 by the specific history of the instructor-student interaction.

The distinctions to be made among the several versions of a subject-matter
structure can be viewed as in Figure 4. The circles (nodes) represent the con-
cepts of the knowledge space, and the lines (arcs) represent the relations among
the concepts. The "Current Ideal" label reflects the fact that knowledge of any
given subject matter is incomplete and constantly "growing." As for the "Instruc-
tor Understanding": This instructor does not have all the knowledge about the

subject matter that can be possessed currently, but he has enough to serve the
"Course Requirements"; he also has more relational awareness than is needed
to convey the course properly to the students. Finally, "Innovative Student" has
successfully completed the course requirements; in addition, he has independ-
ently discovered a new relation, not known to his instructor, and not even exist-
ing within the "Current Ideal" structure of the subject matter.

This example illustrates the necessity for taking into account (a) relative
states of knowledge about a given subject matter (e.g., COBOL) for instructor
and student, and (b) potential individual differences among students. Implicit
in it is the notion of generalizationa transfer capability that will engender
proficiency in tasks not yet encountered. This capability is important because
the course requirements, as depicted, provide only a subset of the relations that
could be required if a more complete mastery of the subject matter were desired.

Hypothetical Knowledge Space

Current

Ideal

f'nstructor

Uoderstanding

Figure 4

1 9

Course

Requirements

Innovative

Student

13

The next question is precisely how to express the notion of conceptual
points (nodes) and relationships (arcs) among these concepts, in order to spec-
ify subject-matter structure or organization for an instructional decision model.
If a subject-matter structure can be expressed precisely, it can be expressed
mathematically. If it is expressible mathematically, there is an adequate form
of expression for the computer; that means the subject-matter structure can be
implemented within the instructional decision model and within the computer.

The type of mathematics that seems most useful for this purpose is topology
more specifically, the mathematics of nets and graphs, of which maps are a
special case. Representing subject matter in terms of nets and/or graphs has
advantages. First, nets and graphs consist of points (nodes) and lines (arcs);
points can be used to represent concepts, and lines used for relations. Second,

nets and graphs can be converted directly into set theoretic notation, and into
matrix algebra.'

For IMPACT's IDM, the problem is how to interpret graphs in terms of
subject-matter structure or to impose graph and net formal structures onto
empirical reality. Looking at it in another way, it is the problem of establish-
ing valid coordinating definitions between nodes and arcs in a graph and the
empirical (or subject-matter) structures they are to represent.

Communicable knowledge (e.g., the structure of COBOL) is itself an abstrac-
tion of an underlying empirical reality. Acceptance of this basic proposition
implies that, for IDM use, factual statements about a subject-matter (e.g.,
COBOL) must be capable of being framed according to the principles of the
predicate calculus, a branch of mathematical logic. It is evident that in order
to be able to do this, we need more rigorous and more powerful analytic proce-
dures than those which have hitherto been employed in the analysis of subject
matter (e.g., Taber, Glaser, and Schaefer (9).

This search for the needed procedures is taking the form of an effort to
provide a basis for ordering the relations among the concepts of the COBOL
subject matter being explored in Cycle I of Project IMPACT. Digraph and net
theory is being applied to hierarchically ordered sets of terms and relations in
that subject matter. In addition, a way of measuring the distance between con-
cepts is also being explored.2 In other words, the objective is to specify the
mathematical basis for establishing a potentially meaningful, instructional dis-
tance between any two sets whose elements are interpreted as subject-matter
terms (e.g., concepts of "file name" and "data division" in COBOL). Implica-
tions of this approach for studying linguistic structures in softw.ave for CAI are
also being considered.

Student Knowledge States

The heart of computer-administered instruction is an Instructional Decision
Model that makes it possible to determine which information should be presented
how and when to a particular student. CAL with its potential for total control of
the instructional envir nnment, is viewed as a logical extension of programed
instruction, but it can adapt itself much more precisely to the studentespecially
with respect to his informational requirements of the moment.

Tor an introduction to the mathematics of graphs. and particularly directed graphs or digraphs, the reader

is referred to Ilarary. Norman. and Cartwright (5), Flament (7), and Berge (8).
2The approach is based no the set theoretic principle that the symmetric difference between two finite

sets with denumerable elements meets the axiomatic requirements for a metric (10).

14

Central to this premise is the degree to which the adaptive IDM accurately
describes the student's knowledge states over time. For the present IDM(s),
the data elements and their structuring for analysis will be as indicated in Fig-
ure 5. The data structure will be studied within the following comprehensive
framework for examining the student's (a) dimensions of information processing,
(b) dynamic organization of the subject matter, and (c) confidence in his responses.

Doto Elements

Data Structure

Latency 2

3

Errors %Item
Leorning Meosures Error Pattern

Latency

Criterion Meosures
Rspe:npsaen j/tlttermn

Level of Aspirotion Index {
etC

Programmer Apt: ude
Educational LevelEntry Biographical Information

Chorocteri sties Structure of Intellect
Factor Scores

etc.

Students

Figure 5

Learning Item (i,j)

hem (i,f)

Tht ,inds of data to be gathered and the framework within which they will be
analyzed are indicated in Figure 51 The vertical dimension represents the spec-
ific characteristics of the individual studentthe measures mentioned earlier to
describe each person with respect to his abilities (including structure of intellect
factors described hereafter), achievements, response latencies, error patterns
and rates, and so forth. Where feasible within the constraints of the software/
hardware subsystems, the response latencies will be broken down into three
components: reading time (Latency 1), start-response (Latency 2), and stop-
response (Latency 3). The horizontal dimension in Figure 5 represents all of
the individuals i.ncluded within the student group. The remaining dimension
represents segments or slices (such as item i,j) through the course of instruc-
tion in serial order.

It will be seen that this data structure makes it possible to relate any one,
or all, of the mtasures representing a given student, either to the comparable
measures for all of the students, or to the comparable measures within prior
course segments, or both.

'The data management software syslerns being worked out for analysis of these data are described in

Chapter 6 of this report.

2 1 15

Dimensions of Information Processing by the Individual. The framework
for this approach is the recent theoretical and experimental work of J.P. Guilford
and associates (4, 11). Guilford has developed a model of human intellectual
functioning based upon an ordered array of abilities, which are acquired (learned)
and relate to the processing of information. The model is three-dimensional
Content, Operations, and Products. In essence these dimensions correspond,
respectively, to form of information input, types of operations to be performed
upon this input, and the type of output (end-state, product) to be produced as a
result of the processing.

Subdividing the dimensions according to the array of abilities results in
120 cells, each representing a specific ability component in human intellectual
functioning. Any individual will possess each of these abilities to a particular
degree. Since the Guilford approach characterizes the particular types of proc-
ess by which the student handles or transforms particular types of transmitted
instructional information, it is an excellent complement to the structural
approach to subject matter described earlier.

Empirical support for Guilford's model for the structure of intellect
comes, first of all, directly from his ai.d his co-workers' data substantiating
the existence of over two-thirds of the abilities predicted by the model. In addi-
tion, past experimental work on instruction (Seidel & Hunter, 1) has shown that
aptitude tests administered prior to instruction predict performance progressively
less well in successive course segments. However, predicting performance in
the next course segment on the basis of achievement test scores on the current
segment progressively improves.

Observations such as the latter led Bunderson (12) to hypothesize that
different abilities are active at different stages of learning (or at different stages
of progress in mastering the task). Bunderson as well as Dunham et al. (11)
have produced considerable evidence in support of this hypothesis.

The above analysis implies that an instructional decision model should
match the particular instructional presentationat any given stage of progress
toward masteryto the individual's configuration of abilities with respect to the
kind of information processing (intellectual functioning) involved at that point.
There is, thus, a requirement for a model of the subject matter from which to
determine the kind of intellectual functioning that will take place, when, and where.

Dynamic Organization of the Knowledge Space. At any moment, the IDM may
be required to make a decision on how to present the next instructional "slice."
For every action of the student, there is a "best" reaction (or class of reactions)
that the instructional agent can make. The problem of making these decisions
of the moment, consistently and in an optimal manner, makes it clear that the
student needs to have a good capability for making inquiry. To the extent that
"action" by the student is restrictedthat is, he cannot inform the system ade-
quately of his state and his needs of the momentdecisions by the instructional
agent will be less than optimal.

As a first step for this facet of the IDM, a glossary technique (termed
INFO) has been developed. As the student is exposed to each conceptual unit, he
may ask about unfamiliar terms. He will then be given information about the
terms as requested, and the IDM will be given information concerning the stu-
dent's structure or organization (or the lack of it) of the material as it is presentee

Response Confidence. In conventional testing, the student is usually trying to
'make a high score rather than to indicate his knowledge about the subject matter.
His intereats (graduation, honors, awards) are not best served by revealing a
lack of knowledge; thus, under such circumstances potential remedial action is
not pursued. Traditional testing thus is often viewed.as a purely competitive

16 22

interaction between student and instructor. Moreover, scores on traditional
types of tests primarily relate the student's performance to that of other students
(norms) and give little information about the degree of the student's subject-
matter mastery. In contrast, the IMPACT 1DM uses all measures as sequential,
diagnostic estimates of the student's knowledge state to guide subsequent instruction.

To aid diagnosis, a recent development known as "Valid Confidence
Testing" (VCT) will be incorporated in the current IDM implementation. (The
bases for these procedures have been described by Shuford, Albert, and Massen-
gill, 13.) With this approach, the student answers each question by expressing
his degree of confidence in the correctness (on a scale from zero to 100%) of
each of the alternatives, if the question is multiple choice, or if the question is
an open-ended one, in the correctness of the answer he has written. Since the
obtained total score is not directly related to the number of correct answers, it
is in the student's best interest, in this case, to reveal the true state of his con-
fidence; his best strategy is to maximize his subject-matter mastery rather than
his score. Incorporating an adaptation of this technique in the IDM provides a
more sensitive diagnostic probe of the student's knowledge space.

In selecting an appropriate strategy, it is initially reasonable to weight
this factor in the developing student image in accordance with the degree of
experience the student has had with the specific course material and with the
Valid Confidence Testing technique. At the beginning of instruction, a student's
confidence estimates will be given little weight, since he has little or no infor-
mation about the course at hand. However, as he becomes more and more famil-
iar with the course materials, the weighting of this factor will be increased.
Empirical support for the VCT approach kRs already been obtained by Shuford
and Massengill in their success within school systems in the Boston area. Both
students and teachers indicated that the technique promotes rational study
behavior. Preliminary experience with Project IMPACT's students is similar.

Empirical Study of First IDM
Fundamentally, the exploration of the weighting of decision factors in the

IDM is concerned with the ability to predict performances (problem solutions)
at end-of-course proficiency testing. The initial developmental IDM will be a
realistic, simple, empirical attempt. A very limited number of factors will be
used for determining decisions during this cycle, with the remaining factors
used only for their correlational value. Relationships will be examined between
certain characteristics of students and their performances within course levels
and on the various criterion tests of performance requirements. By the nature
of the student's tasks in the problem-solving COBOL course,' the performance
requirements are for writing and debugging increasingly complex COBOL
programs.

Preliminary testing of the initial COBOL course material was scheduled
during the summer of 1968. The objective of this testing was to have the stu-
dents generate cues for potential branching materials of differing levels of dif-
ficulty which are then to be used in the later model testing. This information
was to be developed in a non-automated environment via question-answer
exchanges with a first group of 12 students. All instruction was to be recorded
and subsequently edited for use in the automated testing of the first iteration of
the model (i.e., the first of a long series of tests of the developing model). Stu-
dent glossary (INFO) development is proceeding in a like manner.

'A detailed description of the students' tasks is presented in Chapter 4.

17

During the first iteration, the instructional decisions will-be based on the
state of the student's knowledge as measured by our adaptation of the Shuford-
Massengill Valid Confidence Testing technique. Use will be made of recent find-
ings regarding the varying value in different circumstances of "stimulus support,"
that is, confirmation or prompting (Seidel and Hunter, 1). Such stimulus support
will be given each student in a manner depending upon his state of knowledge as
shown by the confidence testing. For purposes of the initial model iteration, six
states of knowledge will be defined; these can be expanded or collapsed if
obtained data indicate this to be desirable. Figure illustrates the plan for
open-ended (constructed) responding. The levels are:

State One (Well Infornw(I) will be operationally defined as a fully correct answer for an item
with 80"i-100'i confidence. In this state, the inost accelerated and diffkult (highest) options of
material will be presented for the next instructional material, and no stimulus support with respect
to the material will be provided (no prompting or confirnuition of the problem solution).

State Two (Informed) is defined as giving a highest confidence of riric'i-79% for a fully cor-
rect answer. In this case. the individual will not be shifted to a higher or hmer Option and will
not he given :my stimulus support.

State Three (Partially (nformed) is operationally defined by an incorrect answer which he
feels is incorrect (i.e. less than 46 `'. confidence). Roth of these reflect some partial knowledge of
the concepts being tested. In this case. the subject will not be shifted to higher or lower options.
hut stimulus support will be provided.

State Vour (Vninformed) is defined as a correct or incorrect answer with 46%-54% confidence.
or a correct answer with less than .1.6 confidence. In this case the individual is given "confirma-
tion" support regarding the problem solution and his progress is decelerated to option-IL a simpler
form Of the materials.

State Hve (Misinformed) is defined as giving an incorrect answer with the 55(7-79% confi-
dence assigned to the answer. In this state. the individual is decelerated to option-M, which incor-
porates remedial materials (different from option-U). and the individual is given confirmation or
prompting stimulus support. ("Remedial" may mean reducing the information the student must handle,
thereby making the material simpler, rather Own repetitious presentation of the sante material.)

State Six (Highly Misinformed) is defined as giving an incorrect answer with RO("0-100% con-
fidence. This will also result during the first iteration of the model in deceleration to option-M
with support.
The other factors used only for correlational purposes during the first IDM

iteration will involve the student's use of the glossary, the generating of his
unique glossary, the information on intellectual functioning at various stages of
learning deriving from an adaptation of the Guilford and Bunderson techniques,
information on subject-matter structure, and finally the the various historical
data (i.e., error rate and patterns, response latencies, etc.).

ITERATIVE ELABORATION OF IDM

The basic development strategy of IMPACT calls for the testing of a series
of IDM versions. We have already referred to a "first iteration" of the IDM and
to its empirical study, the first in the series. Beginning with a very small num-
ber of decision factors, simple decision rules, andfor lack of completed facil-
itieshighly restricted decision options, ihe IDM will be progressively expanded
and its sophistication increased. This will occur as a concomitant of selectively
increasing the number of decision factors, elaborating the decision rules, and
having more and more decision options. Each successive version of the IDM
will be tested empirically in order to diagnose and isolate the most appropriate
combinations of elements for the next version.

In the second iteration of the IDM, those empirical data that will have been
obtained as a purely correlational output of the first iteration will be shifted to

18 2

Valid Confidence Scoring of Constructed Responses

ANSWER
CORRECT

NO
46-54

ASSIGNED
TO

CORRECT

NO NO NO
CLASSIFY

AS
.PARTIALLY

INFORMED

YES

46-54
ASSIGNED

TO
CORRECT

NO

80100
ASSIGNED

TO
CORRECT

CLASSIFY
AS

UNINFORMED

DECELERATE
PROGRESS (U)

WITH
SUPPORT

YES CLASSIFY
AS

WELL
INFORMED

CLASSIFY
AS

MISINFORMED

YES

CLASSIFY
AS

HIGHLY
MISINFORMED

ACCELERATE
PROGRESS
WITHOUT
SUPPORT

NO

55-79
ASSIGNED

TO
CORRECT

YES CLASSIFY
AS

INFORMED

MAINTAIN
PROGRESS
WITHOUT
SUPPORT

NO

CLASSIFY
AS

UNINFORMED

DECELERATE
PROGRESS(U)

WITH
SUPPORT

Figure 6

2 5

V

DECELERATE
PROGRESS (M)

WITH
SUPPORT

MMNTAIN
PROGRESS

WITH
SUPPORT

19

/input and now used as decision factors. Preliminary weig1tings will be assigned
to the Guilford-Bunderson structure of intellect data and to the course-historical
data deriving from Valid Confidence Testing, with this assignment of weighting
serving as a dynamic, rather than static, factor in the development of the next
IDM version.

Traditional psychometric practice has assigned fixed weightings to given
test or test battery scores (often in terms of factor loadings) used to predict
success on a criterion test. In these cases the purpose is selection (Le., elim-
ination of those least likely to succeed). Within the IDM the purpose is to adjust
the character of the instructional presentation continually throughout a course,
to the optimal compromise between the kind of intellectual functioning demanded
by the subject matter and the degree to which the requisite abilities are pos-
sessed by the individual student. In order to achieve this, the relative weighting,
given to specific abilities must also be continually readjusted to conform to the
actual demands for them that are being made at a given time.

Correlational data from the first IDM iteration will help to establish the
shifting requirements for intellectual functioning imposed by COBOL course
material. However, for this approach to be used, each prospective student has
to take a large test battery so that his personal configuration of abilities can be

knownand this pretesting is expensive and time-consuming. The possibilities
of reducing, or even eliminating, pretesting will be explored. In essence, if
"loadings" of the items on each factor in Guilford's structure of intellect model
can be established, each presented substantive instructional display could serve
simultaneously as a test item. In effect, these tests would be administered
sequentially, and, over time, the IDM would build up an increasingly precise
and accurate image of any given student's ability structure.

The possibility of this sequential "testing" serves to illustrate the necessity
for a statistical capability within the IDM. With sequential testing the image is
compiled statistically over time; however, unless the IDM can compute the rele-
vant statistical indices, it cannot test sequentially.

A statistical capability for the IDM is now being developed. Initially, this
will be a modification of existing packages consisting of such techniques as fac-
tor analysis, correlations, cross tabulations, discriminant analyses, and so forth.
Primarily, it will consist of a large number of computational subroutines that
may be linked in various ways. In an ultimate version, this package of sub-
routines will be available to the operating IDM for on-line sequential diagnosis
and presentation of materials for the individual student and in real time. The
IDM will need only to specify the statistical hypothesis it wishes to test and the
relevant parameters; the appropriate subroutines will then be selected automat-
ically and a resultant probability will be stated to the IDM as a decision index
(factor). Interim versions of the statistical capability will be limited in number
of subroutines, and will not operate in real time or even on-line. However, the

growth of the statistical capability clearly enhances and expedites the possibili-
ties for testing the IDM, and it will constitute a by-product for application in
general use.

With respect to subject matter, efforts will be continued to devise mathe-
matical techniques for characterizing its structure. For example, existing
syntactic charts of COBOL will be brought up to date and will serve, along with
other analyses of COBOL concepts, as another benchmark for further evolving
n-dimensional graphs of COBOL structure. Concurrently, efforts to devise a
metric by which distances in this structure can be established will continue.

26
20

Success in both efforts implies, among other things, the ability to select for
each student the most efficient path through the structure. It also implies a
capability for a precise matching of the relevant portion of the instructor's
knowledge space (re COBOL course requirements) and the student's, so as to
detect discrepancies. At another level, this goal will be pursued via a more
refined use of the glossary technique (see above and Chapter 5) aimed at probing
the student's knowledge space more sensitively. It is primarily this probing
approach that will be incorporated in the iterations of the IDM that will take
place over the next year.

Mention must be made of one key theoretical effort that is in prospect,
evolving from initial work with the student image. Complementary approaches
to the student image are suggested by the work of Guilford and of Gagne. Theo-
retical work will be undertaken to attempt to formalize and develop the relation-
ships between the how of intellectual functioning (e.g., Guilford) with identifiable
units of informational requirements, or the what of such functioning (e.g., Gagne).

27
21

Chapter 3

DESCRIPTION OF THE HARDWARE BASE OF THE IMPACT SYSTEM'

HARDWARE SUBSYSTEMS

. For purposes of discussion, the IMPACT hardware base may be divided
into three major subsystems:

(1) Information Processing Subsystem
(2) Data Storage Subsystem
(3) Communication Subsystem

The three subsystems are described below and are schematized in a chart of
the HumRRO hardware configuration (Figure 7).

Information Processing Subsystem
This phrase applies, in essence, to the central processing unit (CPU),

which furnishes the information processing capability for the Instructional
Decision Model and for various other purposes. The selection of the CPU was
dictated largely by the fact that an IBM 360/40 computer system was being
delivered to HumRRO as IMPACT was initiated. In part, the decision to order
that system had been influenced by the consideration that it might serve both
the i. rmation processing requirements of HumRRO at large and of a then
highly restricted CAI effort. The CPU originally delivered contained 65K of
core; this core capacity was increased to 128K in September 1967 and is cur-
rently being increased to 256K bytes.

Data Storage Subsystem
For permanent storage, four IBM 2401-5 tape drives are available. These

tape drives have a relatively high speed and a relatively high data packing
densit:r. For IMPACT, their primary function is that of permanent data record-
ing. Operating systems of various types, instructional content, and other types
of information to which rapid random access is required are resident on disk
packs. Originally four IBM 2311 disk drives were used; they are being replaced
with nine IBM 2314 disk drives.

Communications Subsystem
This is the system by which students communicate with the instructional

decision model resident within the CPU. For computer-administered instruc-
tion it may be viewed as the interface between machine and student, and is
therefore of great importance. For initial development purposes, there are two
essentially different versions of the communications subsystem.

'Identification of products is for research documentation purposes only; this listing does not constitute
an official endorsement by either FlumRRO or the Department of the Army.

22 28

us

tt,'E
l,:-..::::_-,'

..---.
--

-,:,,
y,

-0,3,,,k1=
\--,,,:o,.:,..s.

-s..i
\-...-

cr.!, -,,o

frii-V
ii,

,,..-3
A

t'
..+

..- V
.,-",.,,,,,,

l'''''
iA

 ty.
4,ftnint,...,1

-_:,,,...t..7.,....1-... .., ..-, ,,,,
-

,
...,,,,.

;77;17=
V

-Fr.4144.6:7;;;:::-.77:.:4:
cl.rz,..1.r.t.',.

pi..,:T
e.34.-

.1...tes ,-,-.5.'S
,--,....:.

qp:rti*A
.,

..--:%
.f.., ``elT

:,1W
 '''')k!-,$ -'-' ' '

-
14..

--c- -
---.-, ,-4-490---,

,'

1

The first and interim type of communications subsystem involves the use of
IBM 1050 typewriter terminals through the IBM 2701 Data Adapter. Three of
these terminals are currently in use. The first is used primarily for software
development and for debugging. The second terminal, which incorporates the
visual feature (i.e., a random access Carousel projector), is being used to con-
vert to CAI format, a preexisting programed instructional course in basic com-
puter programing (Seidel and Hunter, 1968, 1). A third terminal is located
remotely at HumRRO's Division No. 3 in Monterey, California, and is being
used to develop the IMPACT statistical capability (see Chapters 1, 2, and 6).

The major communication subsystem has as its core the Sanders Associates
720 Data Display System. A total of 12 student stations will be built initially
and two hard copy (teletypewriter) facilities will be provided for these 12 stations.
The 12 stations operating in Alexandria, Virginia, as well as the West Coast
station, will operate in the remote mode so that the system will accommodate
student terminals at any geographic location having standard telephone lines.
This means that the computer software being developed for the in-house capa-
bility will not have to be revised for remote field operations.

The Sanders 720 system consists of the 731 Display Communication Buffer,
the 701 Control Unit, the 708 Cathode Ray Tube (CRT) display, and the 722 Key-
board together with the 737 Light Pen. The student has immediate contact with
only the last three items (708, 722, 737). Printed messages appear on the cathode
ray tube face. The messages may be generated either from the keyboard by a
student, by a course author, or by the program resident in the CPU. Responses
may be made either via the Icyboard or via the light pen (which has passive
recognition capability only).

Each 708 CRT will be augmented with an auxiliary visual display. In effect,
this will be a rear projecting screen onto which images will be projected by a
Perceptoscope, a type of 16mm projector that will be controlled from the 701
Control Unit through a special interface and digital device controller.

The Perceptoscope is capable of displaying 16mm film (silent only) at any
of 18 speeds from 0 to 24 frames per second. A single frame of film may be
selected and held on the screen indefinitely witt,iit damage to the film or dimi-
nution of the transmitted light. Films may be moved either forward or backward
at a maximum speed of 24 frames per second, so that at any time a block of 48
frames is available for a semi-random access within a period of one second.
Brief motion sequences may also be shown. A unique feature is the existence
of a second film. While the back film cannot be focused simultaneously with the
front film, it can be used to obscure portions of the front film, to highlight
particular areas, to provide curtain effects, and so forth. The back film is con-
trollable independently of the front film. All film movement in the Percepto-
scopes will be entirely under program (IDM) control.

DEVELOPMENTAL AND EXPERIMENTAL STATIONS

The 12 planned stations will be divided into 10 developmental and two exper
imental stations. The developmental stations will be equipped as described
above. The experimental stations will contain, in addition, special features
whose desirability will be evaluated to establish whether their general adoption
(i.e., in the remaining stations) appears warranted.

For example, one of these experimental stations will be equipped with the
Sylvania Tablet, an electronically sensitized sheet of glass in a metal frame

24 30

over which paper may be placed. The student writes on this paper, using a ball
point pen that is electronically connected to an analogue to digital (A/D) con-
verter, which provides a digital output to an interface incorporating character
recognition software. In other words, so long as the user follows certain mini-
mal conventions in printing capital letters and Arabic numbers they will be
recognized by the equipment.

Thus the Sylvania Tablet provides an alternate input to the keyboard. It will
enable student COBOL programers to write directly on COBOL coding sheets
much as they will do laterIon the job. Moreover, images may be projected by
the Perceptoscope directly onto a screen underneath the transparent Sylvania
Tablet so that, with proper registration, identification of portions of the pro-
jected images, or even tracings of paths within the images can be recognized.

For the future it is hoped that it will be possible to test within the experi-
mental stations audio-output and voice-input features. Another possiblity being
considered for the experimental stations is a closed circuit TV capability.

31

25

Chapter 4

COBOL COURSE DEVELOPMENT I: OBJECTIVES

INTRODUCTION

One stated aim of Project IMPACT is to develop a course to teach COBOL
computer programing specifically oriented toward training for the Army data
processing jobs. This chapter will deal with (a) the rationale behind the devel-
opment of the training objectives; (b) the characteristics of the job focused on
for IMPACT course construction; and (c) the attributes of the potential trainee
population. The chapter following this one will describe the development of the
instructional content for the course.

A succinct description of COBOL is found in its name, an acronym formed
from the phrase COmmon Business Oriented Language. Its "commonness"
derives from the fact that COBOL was designed to run on practically any com-
puter, given a few minor language or system modifications; in other words
COBOL is "machine-independent".

The language is "business oriented" in two respects. First, COBOL's
functional capabilities are oriented toward the data-processing operations per-
formed in business and industry, such as record-keeping, account up-dating, and
file maintenance. It is distinct from algorithmic programing languages such as
FORTRAN, which is designed for such purposes as the solution of complex equa-
tions or the analysis of experimental statistics.

The other aspect of COBOL's business orientation stems from its designers'
wish to make it maximally understandable to management. To accomplish this
goal, the sentences or statements of COBOL have been constructed to conform
as closely as possible to ordinary English. For example, the statement "OPEN
INPUT SALES-FILE, OUTPUT BILLING-FILE" is easily read as analogous to
the business operations of pulling file folders on sales and billing preparatory
to updating a customer's account.

ESTABLISHMENT OF TRAINING OBJECTIVES

In developing training objectives for the course, the following groups of
questions had to be answered by project analysts:

(1) Who will be taking the course: What is to be expected in terms of
prior experience, education, aptitude, and attitudes on the part of the trainees?

(2) What are the tasks the trainees will be expected to perform on the
job? Which of these tasks are suited to formal, as opposed to on-the-job, train-
ing? Which of the tasks should take prioritythat is, which parts of the course
should be developed first?

(3) What criteria should be used to evaluate proficiency of the trainees?
What should be the standards for determining whether training objectives have
been met?

32
26

Two other related questions are involved as well:
(4) What channels could be used in getting regular feedback from the

Army on the value of the course?
(5) Flow will the COBOL course fit into overall Automatic Data Proc-

essing (ADP) training programs found in the Army?
Answers to these groups of questions were determined by collecting data

from various Army sources. Findings are presented in the remainder of this
chapter. Because the field of data processing is continually changing, the infor-
mation presented can be considered current as of the third quarter of FY 1968.
The analysis had to be terminated durint; that period in order to fit the results
into the overall development schedule of IMPACT. A further qualification to
the representativeness of the data lies in the fact that in many instances appro-
priate information was not readily available in meaningful form and inferences
had to be made from secondary sources.

Tasks
Information on tasks performed, relative importance of the tasks, and tasks

that are suited to formal training was obtained by project analysts by telephone
and personal interviews from the following sources:

(1) Programers and programer-analysts at Army data processing
inStallations.

(2) Programer and analyst supervisors at Army data processing

(3) Data processing managers.
(4) Documents, cited in the text of this paper.

For initial coi.rse development attention was focused on the programers,
although eventually it is planned to develop course modules appropriate for
supervisors, managers, and operators.

It became quite apparent as contacts were developed at various ADP instal-
lations that extreme heterogeneity of jobs and job structures existed from base
to base. Thus, any overall generalizability of COBOL course modules could
arise from only two sources: (a) sampling representatively the types of pro-
graming problems that are worked on at the various ADP installations and
(b) restricting the initial course modules to "third generation" computing con-
figurations and concepts (i.e., COBOL 360).

An IBM 360 is a type of computer referred to as third-generation equipment;
the difference between it and earlier machines (first and second generation) lies
in more efficient design of core storage, the introduction of more intrinsic
functions (i.e., capabilities now a part of the computer, that can be called upon
rather than written by the programer), and a more efficient coupling of periph-
eral devices (e.g., disk drives) with the computer itself.

In general, third-generation equipment can perform a given task more effi-
ciently than second generation, provided the programer and systems analyst are
aware of and can utilize the improved capabilities. For the analyst it is neces-
sary to acquire a general knowledge of the system's capabilities plus some
knowledge of the language (or languages) used; the programer must not only
learn these capabilities (and in more detail) but also must learn or update his
knowledge of the programing language (or languages) in use on the system. In
COBOL, the advent of third-generation equipment caused a considerable increase
in the number and variety of language "macros" (a macro is essentially a group
of commands that accomplish in one word what first- and second-generation
equipment did as subroutines).

3 3 27

TerMinal °bjectives
TerrOMal objectives, (sometimes called end-of-course objectives), are state-

menta of what the student is to be able to do (behavior) upon completion of the
course. Tests to be administered at the end of the course are derived from this
list of objectives, and the content and organization of the course itself are in
part derigeti from the statement of terminal objectives.' Naturally the student
must achieve many subobjectives during the course.

TerrOMal objectives are from time to time re-examined by Project IMPACT
personnel and may be revised in accordance with new information. The objectives
now' being used are as follows:

Obiective I: Program Writing
Given the types of specifications listed below, the student writes in

each case a program to produce the specified output. The student has
aeeess to COBOL programing manuals and the definitions of terms he
ilas learned in his course. No constraints are placed on time to pro-
duce the program, or number of compilations, or efficiency of object
c°Qe generated. The student must also prepare Job Control Language
cat'ds and operator instructions needed to run his programs. The

5t4dent also prepares program documentation. (Note that the specifi-
cations described below are derived from several actual Army data
Processing programs.)

Specification 1: Personnel Accounting
This Program involves one input file and one output file. The

problem is to extract information based on three conditions. The
layout of the input and output records is defined in detail in the
specification. All data exceptions must be handled by the program,
with explanatory error messages. But the ease of maintenance and
of future modifications is not considered.
Specification 2: Personnel Accounting

This Program involves editing input file with one and two out-
put files. The criteria for editing are based on data in pre-stored
tables. The layouts for input and output records are defined in
detail in the specifications. The program is to be organized for
ease of modification of editing criteria.
Specification 3: Supply

This Program updates a file involving two input files and one
outPUt file (the updated master).. The input files have already been
edited and sorted into proper sequence.
Specification 4: Operations

This Program involves solving algebraic equations, storing
intermediate results in tables, and processing a printed report of
computation results.

ective II: Style
1. The student is asked to list aspects of programing style which

affect readability and modifiability of programs, and lists all of the
following:

(a) Meaningful data and procedure names.
(b) Frequent comments.

'Terminal nbjectives do not always consist of an job behaviors. Some skills are acquired most effee-

tivelY throu0 't)-the-job training or practice.

31
28

(c) Simple (as opposed to complex) compound COBOL statements.
(d) Program organized into separate logical subroutines or modules.
2. When the student is given a previously written "procedure

division," which does not meet any of the above criteria, he can iden-
tify all the violations and make appropriate changes.
Objective III: Debugging

1. The student, when asked, can list all the sources of debugging
information shown below:

(a) Compiler diagnostics.
(b) System messages when the program hangs up.
(c) Output of a TRACE.
(d) Printout of output data.
e) Printout of input data .
(f) Explanations in the reference manual of compiler diagnostics.
(g) Information in the reference manual, on language requirements.
2. Given detailed file layouts and a pre-written data division, the stu-

dent can locate and correct ail the errors in file and record descriptions.
3. Given the specifications for a program and a pre-written proce-

dure division the student can locate and correct all of the errors in
syntax and logic.

4. The student can locate and correct errors in his own programs (from
Objective I). The standard for his performance is error-free output.
Objective IV: Using Reference Materials

Given the reference manual on COBOL (IBM DOS COBOL Refer-
ence manual), the student can answer correctly the majority of ten
multiple-choice questions on COBOL elements not taught in the course
in the 30 minutes.
Objective V: Documentation Standards

For each program listed in Objective I, the student completes
documentation according to certain standards. (These standards will
be derived from existing Army data processing installations standards.)
Objective VI: Modifications

Given a change in the editing criteria for Specification 2 above, the
s'zudent can modify his program to meet the changed specification.

CHARACTERISTICS OF THE JOB

COBOL in the Army

Nine Army i)stallations have been visited (1 July 1967 30 June 1968) to
find out how COBOL is actually used, and to determine the major tasks per-
formed by COBOL programers and analysts. A number of representative Army
ADP installations were able to provide program specifications and program
listings. Project IMPACT analysts interviewed 36 programers, analysts,
trainees, and data pr ocessing supervisors at the installations visited, and addi-
tional information wa .? collected through telephone interviews with personnel
at eight more installations. Thus, a total of 17 major Army ADP facilities
were contacted.

Initially, the plan was to develop three separate sets of job descriptions
(for programers; for analysts, supervisors, and managers; and for computer
oper..tors),. with the course then containing separate "modules" of instruction,
depending on the trainee's objectives. However, as information was collected

35
29

on the tasks performed by personnel at the various installations, it became
apparent that these jobs vary from installation to installation, depending pri-
marily on the following factors:

) Size of the installation in numbers of personnel.
(2) Type of computer hardware used.
(3) Programing languages used.
(4) Type of applications (personnel, accounting, supply, etc.).

Hence the decision was made to focus primarily on programers.
Since computer technology is changing rapidly, Army data processing

installations are in different stages of technological development. There are
major Army efforts under way to standardize some of the applications that
apply to many installations, such as NAPALM (National ADP Program for AMC
Logistics Management) and COCOAS (CONARC Class One Automated Systems).
Such large integrated systems, with their centrally written and maintained
programs, are another factor leading to change in the job of an installation pro-
gramer. This is one facet of the evolution toward third-generation computer
systems; another is the continuing activation of computer hardware with third-
generation facilities.

Given the dynamic nature of the data processing field in the Army, it is
important to ensure that training objectives of any COBOL course will not
become obsolete in a short time or, worse yet, teach outdated concepts from
the beginning. Therefore, Project IMPACT analysts focused on:

(1) Tasks performed in installations that seem to be more advanced
technologically.

(2) Tasks common to the job of the programer in all or most data proc-
essing installations, that is, tasks that are not peculiar to a par-
ticular hardware or software system.

Job Specifications of COBOL Programers
The tasks common to the job of programer in COBOL in many different

Army installations, based on information collected from Army data processing
installations, are:

(1) Study the specifications of the problem.
(2) Plan the logical flow of the solution.
(3) Plan for dealing with missing or erroneous input data.
(4) Write the program in COBOL and have it keypunched.
(5) Review the program cards as punched by the keypunch operator

and interpreted by the interpreter.
(6) Have the program compiled; study the diagnostic messages from

the compiler; correct any errors in the program cards; repeat
this process until no diagnostic errors occur.

(7) Write operator instructions for running the program.
(8) Choose test data for running the program, and have the compiled

program run with the test data.
(9) Diagnose errors in the program from the test runs, correct them,

and recomplie; repeat this process until no test run errors occur.
(10) Check to see if there are any changes in the original specifications,

and if so, modify the program.
(11) Check to see whether pre-stored environment or data divisions

(technical terms in COBOL) are available for the program; if so,
write COBOL instructions to call them.

30 36

(12) Check to see if standardized data names are to be used for the pro-
gram data; if so, use those names in the program.

(13) Prepare any Job Control Language cards (if the computer system
has an automatic job scheduling system) that are required to run the
program to draw on any system software facilities (sorts, merges,
file formating, printing) that are to be integrated with the program.

This then comprises the job specifications for programers using COBOL at
this time.

Some tasks from the above list were selected as appropriate for of end-of-
course objectives. That is, they were to be taught formally as part of the COBOL

course. Only those tasks directly involved in writing COBOL programs were
involved. Those tasks that could be readily learned through on-the-job train-
ing and not requiring formal school training were omitted. Special emphasis
was placed on (a) tasks supervisors cited as very important but often neglected
or poorly performed by programers and (b) tasks cited by new trainees as
being most difficult.

STANDARDS AND EVALUATION

Criteria for evaluating the proficiency of programers are not well defined
in data processing organizations. Objective, quantifiable criteria are available,
such as number of compilations needed, amount of time spent writing the pro-
gram, or efficiency of the object code as measured by running time, or amount
of storage used. However, these items are not typically used as criteria by
supervisors and are not regarded by programers as important. Most supervisors
stated, in effect, "Gets the job done" as the main standard. This means that the
program runs, producing output satisfactory to the customer. It also means that
the programer was able to handle any constraints which might apply, such as
externally imposed time deadlines, limited core storage available, poorly defined
specifications, or erroneous input data.

One of the installations sampled has compiled a list of the considerations
involved in estimating time required to perform a programing job (Appendix B).
This supervisor's check list helps define the elements involved in the job and

the conditions under which the job is to be performed. Hence it provides a first
step towards establishing performance standards.

CHARACTERISTICS OF THE PROGRAMER TRAINEE

The development of a course of instruction that effectively prepares the.
trainee for the responsibilities of a given job calls for detailed knowledge about
(a) the behaviors required to perform the tasks coniprising the job, and (b) the
relevant characteristics of the persons to be trained for the job.

The first type of information provides the basis for the content of the course,
that is, "what shall be taught." With the aid of a job description, the instruc-
tional designer prepares a set of "terminal objectives" which consist of impart-
ing to the student those behaviors deemed necessary for job performance at
some level of competence. He additionally prepares a set of "enabling objec-
tives" which comprise teaching behaviors necessary to the attainment of the
terminal objectives. For example, if a terminal objective is to teach the pro-
graming trainee to debug IBM 360 programs at the machine language level, an
appropriate enabling objective would be to teach him the hexidecimal system
since core dumps (which contain the necessary information) are printed out in
this notation.

3 7
31

The second type of information, the characteristics of the trainees, is an
important determiner of the strategy and tactics used in presenting the course
contentthat is, "how shall we teach?" A COBOL trainee with experience in
another programing language may need to be taught only the COBOL conventions
of conditional branching, while the novice will most certainly require prelim-
inary instruction in the purpose and logic of this technique. The student who has
difficulty handling figural and spatial representation of concepts may, during
instruction on flowcharting, require considerably more verbal explanation than
the student who is not limited in this way.

Both of these situations are examples of trainee "entry" characteristics
relevant to the teaching of COBOL. However, the second instance represents
a class of traits highly specific to the research aims of the project, and mea-
sures of them would normally be available only from psychological tests admin-
istered on-site; it is not to be expected that they would be found in the back-
ground records of potential COBOL trainees (although this might not be the
case in the future if the tests are highly predictive of performance in training).
Thus assessment of these variables as contributors to the manipulation of
IMPACT:,instructional materials must await the testing of sufficient numbers
of trainees to ensure the stability of whatever relationships are obtained.

The first instance, prior experience, is one of a number of entry charac-
teristics frequently employed by industry, government, and the military in
selection and training of personnel. The current efforts in Project IMPACT
are directed at these variables with the expectation that sufficient data will
become available on existing incumbent and trainee groups to permit inferences
to potential student populations.

To familiarize the reader with the kinds of information being sought and to
provide a framework for presenting the data obtained to date, the projected set
of trainee entry characteristics and its organization will be presented first.
For those elements of the set on which data are available, either a description
or an estimate of its distribution over the population will be made, depending on
the completeness of the data at the present time.

The potential trainee population is being categorized along the follow-
ing dimensions:

Category 1Job-Trainee. Programer or Systems Analyst'
Category 2Military Status. Civilian or Soldier
Category 3Rank or Grade

(a) Civilian: GS-5 through GS-7, or GS-9 and above
(b) Military: Enlisted or Officer

Category 4Trainee Sources.
(a) Military (Officers and Enlisted Men)

(1) Enlistment or Commissioning
(2) Draft
(3) In-service applications

(b) Civilian: Within or outside government
Category 5Prior ADP Experience.
Category 6Educational Background.
Category 7 Skill- R elated Aptitudes.

Each job category is being broken down into numbers of civilians and
soldiers, then further subdivided by rank or position and again by source

'It is recognized that jobs in either one of these groups may involve functions found in the other; how-
ever. emphasis is to be placed on j.obs that are primarily programing or primarily analysis.

32 38

of trainee. Further partitioning occurs on the basis of prior experience and,
finally, data on vocational aptitudes and educational level would be obtained for
each of the 144 "cells". The purpose of this rather extensive categorization is
to provide the IMPACT staff with data sufficiently flexible to permit whatever
combinations of traits become meaningful as the project develops. It would
additionally provide information concerning those background groups tending
not to enter the ADP field (since it is expected that some cells would contain
zero or only a few entries).

The first three breakdowns will provide information on an important aspect
of the student population: the number of civilian programers and systems
analyststrainees and professionalsemployed by the Army relative to the
corresponding number !. military personnel. Since these two groups differ in
selection criteria, priur ADP experience, and, to a lesser extent, the nature of
the job, the training they receive in our CAI COBOL course would also differ.
Which of the two groups to emphasize in the development of the course depends
in large measure on knowing their relative numbers, both current and projected.

The fourth categorization, trainee source, is important in two respects.
Particularly for military personnel, an individual's status as draftee, enlistee,
and so forth provides a gauge of the amount of time he can be utilized by the
Army, which in turn indicates the training expenditure appropriate to his ser-
vice period. Thus, the relative proportions of trainees expected from each
source will affect the number and complexity of skills taught in the COBOL
course. Secondly, trainee source reflects to some extent the reasons for an
individual's presence and his attitudinal and motivational make-up with regard
to his task.

The remaining three categoriesprior work experience, educational level,
and skill-related aptitudesare clearly related to the pedagogical tactics of any
course of instruction, regardless of subject matter or presentation medium.

The prior experience entry characteristic, unlike the others, can be mean-
ingfully discussed in direct relation to the subject matter now under development
in Project IMPACT, that is, COBOL for the IBM 360 computer system.

An IBM 360 is a type of computer referred to as third-generation equipment;
as noted earlier, third-generation equipment can perform a given task more
efficiently than second-generation, provided the programer and systems analyst
are aware of and can utilize the improved capabilities. The analyst must have
a general knowledge of the system's capabilities plus some knowledge of the
language or languages used. The programer must know the system in detail,
and have knowledge of the programing language or languages in use on the sys-
tem. These characteristics of "generations" of computers provide the basis
for organizing background experience as follows:

(1) No ADP experience whatever or in early stages of training
(2) Programing experience

(a) Second-generation systems
1 COBOL
2 No COBOL

(b) Third-generation systems
1 COBOL
2 No COBOL

(3) Systems analysis experience
(a) Second-generation 'systems

1 COBOL
2 No COBOL

3 9
33

(b) Third-generation systems
1 COBOL
2 No COBOL

Individuals in subcategory (1) would, naturally enough, require COBOL
instruction in a context that also imparts that basic knowledge of the logic and
design of computers requisite to minimally acceptable use of the language; how
much of the basic knowledge is indeed requisite remains a topic for research.
Subcategory (2) first contains programers with experience on second generation
equipment. Those with COBOL experience would need instruction and practice
in employing the third generation conventions of the language (e.g., the new
macros) and the new capabilities of the hardware; those with no COBOL experi-
ence would, of course, have to learn the language completely.

Neither group, however, would require any instruction in basic programing
concepts (e.g., conceptually, a loop is still a loop regardless of the programer's
specific machine and/or language experience). Third-generation programers
would, of course, be even better prepared to work with 360 COBOL; those who
know the language are in most cases "ready to go"; those who do not, will have
to learn it. Both groups are presumed familiar with the general hardware
features of the third-generation machines.

Systems analysts, subcategory (3), can be considered in the same manner.
Their skills in conceptualizing a problem are relevant regardless of the hard-
ware and software; what remains for second-generation analysts is to become
generally familiar with the language and the computer's capabilities. Third-
generation analysts who do not know the language need only to become generally
familiar with it; those who have COBOL experience are, again, nearly "ready
to go."

Data obtained to this time on the characteristics of the trainee population
are briefly summarized below:

Category 1 Job Trainee. The most recent information available indicates
that the Army employes approximately 2,800 programers and approximately
2,000 analysts.

Category 2 Military Status. Approximately two-thirds of the programers
(about 1,900) are civilian personnel. Similarly, about two-thirds of the analysts
(over 1,300) are civilians. A third job category of civilian ADP personnel
encountered in the survey is that of Computer Specialist, of whom there are
about 650; more data will be gathered on this position.

Category 3 Rank or Grade. About one-third of the civilian programers
are in grades GS-5 or GS-7, in training as ADP Interns; the remainder, mainly
GS-9 through GS-11, function largely as programers although they also have
some administrative duties. Approximately 300 hold higher-ranking specialized
or managerial positions.

Little information is yet available for the military personnel. There are
about 1,000 military programers and assistant systems analysts, all of whom
are enlisted men. All military systems analysts are officers.

Category 4 Trainee Source. The only information yet available has come
from interviews and correspondence with several data processing installations.
This category of information will be expanded as more data become available
from such sources as the U.S. Army Data Support Command.

'One qualification must be made; while all third-generation computers exhibit the same sorts of features,
they have varying idiosyncrasies. A programer or analyst going from one make of hardware to another will

have to learn these quirks and how they affect system performance and program writing.

34 40

Category 5 Prior ADP Experience. The findings in the several experience
subgroups vary in representativeness; most of the present data come from
telephone interviews with a sample of 15 data processing installations, to be
followed by more thorough surveys. Twelve of the 15 installations surveyed
have second-generation equipment; nine of the 12 use COBOL, and all of their
programers and analysts have COBOL experience. At the three third-generation
installations, all of which use COBOL, 88% of the civilian and all of the military
programers had COBOL experience.

Category 6 Educational Background. No information is currently avail-
able on the distribution of educational background over the Army ADP employee
population. For working purposes, information on the minimal educational
requirements for admission to training and similar indirect sources on educa-
tional background of military ADP personnel and related civilian occupations
are being used.

Category 7 - Skill-Related Aptitudes. Here also, no data concerning dis-
tribution of aptitudes are yet available; information on the pertinent aptitude
tests and minimal qualifying scores are being used in planning operations.

4 1
35

Chapter 5

COBOL COURSE DEVELOPMENT II: INSTRUCTIONAL CONTENT

INTRODUCTION

The development of a COBOL course is one of the objectives of the first
cycle of Project IMPACT. The Instructional Programing staff has begun devel-
oping preliminary course content (hereafter called the Preliminary COBOL
course). The primary basis for course development was a survey of Army
ADP installations.

The development of the ultimate course will be based not only on the objec-
tives resulting from the Army survey, but also on the actual testing and revision
of preliminary materials in a controlled situation, on groups of students whose
entry characteristics have been measured and whose performance is monitored.

During the year of development work ending 30 June 1968, several types of
activities entered into the selection of material for the first data collection
sessions with students, which were scheduled for August 1968:

(1) After establishment of course objectives, the director of Instruc-
tional Programing trained the staff in COBOL.

(2) Each instructional programer developed, on the basis of his COBOL-
learning experience, a technique for teaching COBOL in a tutorial setting. Each
instructional programer taught at least one student.

(3) On the basis of the tutorials, the Instructional Programing team
developed an outline of the basic elements of COBOL, establishing the behav-
ioral objectives required for writing simple COBOL programs.

(4) On the basis of the tutorials, the Instructional Programing team
developed an outline for the content and organization of the Preliminary
COBOL Course.

(5) The Preliminary COBOL Course was prepared. Tutorial students
were used at each rough-draft stage as an aid in refining the content.

(6) Independently, criterion tests were written for the various levels
of the course (these levels are described below). The criterion tests are admin-
istered to students at the various rough-draft stages of development.

The Preliminary COBOL Course was to be tested with 12 students in July-
August 1968. Subsequent instructional content activities were planned as follows:

(1) On the basis of the Preliminary Course test, the course will be
modified and additional material will be added to provide for greater individu-
alization of instruction.

(2) The expanded course will be programed to be administered by com-
puter, incorporating the other features of the system described elsewhere in
this report (response analysis, data collection, decision rules, the various
input-output media, etc.).

(3) The course will be tested at HumRRO in Alexandria, Virginia, in
its computer-administered form, with at least 50 students. It will then be evalu-
ated, modified, and retested with a larger sample both at HumRRO and in the field.

36 42

This chapter first outlines the organizational rationale for the content (the
interactive procedures of the Preliminary COBOL Course are illustrated in
Appendix C). The criterion test development is then described. Finally, the
specifics of the planned response analysis will be given, including overall
design considerations of the preliminary formating as well as plans for revision
following initial data collection during July-August 1968.

OUTLINE OF CONTENT AND ORGANIZATION

One of the most important concepts underlying the Preliminary COBOL
Course organization and content is that of functional context. The following
summary of the approach is taken from Shoemaker's (14) The Functional Context
Method of Instruction:

The main feature of the functional context method is its advocacy of a topic sequence
horein the functienal significance Ilf each topic is firmly established for the learner

prior to. and as context for. the learning Of novel and more detailed material relating
to the topiu. I'%%) requirements govern the choice of the learning context for any topic.

irst. the ClIntext :mist have significance for the learner. i.e.. it must be meaningful to
hire the if previous learning in the cmuse and ultimately his pre-course exper-
enee. Second. a context must have functional significance. ix.. it must be directly
relevant to the goak of the instruction.

The functional context method of instruction has been demonstrated to be
effective in the field of electronics maintenance (15). Applied to COBOL lan-
guage programing, it means that the language is taught in the context of overall
programing logic and Army data processing problem-solving tasks.

The Preliminary COBOL Course is organized into levels. The term "level"
is uged to suggest a hierarchy of skills, in the context of COBOL program
writing. Each level is designed to achieve behavioral objectives that are pre-
requisite to the next level and to attaining proficiency in the terminal objectives
discussed in Chapter 4 (and implemented by the criterion tests described later
in this chapter).

At the beginning Of each level, a typical Army data processing problem is
presented. The material taught in that level is presented in the context of
solving the problem, and only information which the student needs to solve the
problem is presented. If a student wants to know more about a topic than the
authors thought was needed at that point in the problem solution, he can ask for
INFO. For c.imple, the student might feel he needs to know more about how
the card reader works before he uses the COBOL READ statement.

A request for INFO is made by the student entering the word INFO, followed
by the word to be defined. This gives him access to the course glossary, which
contains such material as definitions (other than the short definitions that appear
with the text), diagrams, and samples of COBOL coding formats. For compre-
hensive displays the student is referred to the auxiliary visual device such as
the Perceptoscope screen. The instructional programers stipulate the terms
to be included in the glossary by listing, for each text display they write, the
terms that are being introduced for the first time.

Each request by a student is to be "tagged" so that an individual record
will be maintained for each student. This. unique history will provide a further
probe of the student's organization of the presented material. The various
records will be used correlationally to upgrade subsequent iterations of the 1DM.
Student requests for terms not included in the glossary will also be used to
update and revise the glossa ry and to provide input to 1DM development. Thus,
the information gathered from the use of the glossary in the preliminary course

4 3 37

will contribute to the data gathered on student performance as well as to the
final determination of the structure of the course.

As the student progresses from one level to the next, the problems increase
in complexity. Hence the concepts and skills he learned earlier are further
refined, and new concepts needed are introduced. In this way, emphasis is
placed on solving problems, developing skills, and learning to use new tools,
rather than mernorizing rules and components of the COBOL language.

A flowchart describing student-system interaction for Level 2 is presented
in Appendix C. This flowchart is designed solely to illustrate the content and
organization of the preliminary course. Since the course is continually revised
and improved on the basis of data collected from test students, the flowchart is
not a completely accurate representation throughout. The flowchart also varies
in level of detail. At some points, a detailed description of student-system
interaction is shown, to illustrate various techniques. At other points, only the
general topic is indicated.

Not all of the course logic is shown in the flowchart. For example, positive
feedback is indicated after each correct student response. Sometimes this
feedback is simply a comment such as "good," "well done," or "exactly right."
These comments are to be programed as a course option. That is, by turning
off a switch, an experimenter may, for selected students, delete those comments
from the course.

TESTS OF PROFICIENCY

Criterion Tests
Criterion tests are being developed for each of the four levEls of the Pre-

liminary COBOL Course. Each of these criterion tests will consist of two parts:
(a) an on-line test consisting of multiple-choice and constructed-response test
items; and (b) an off-line test requiring the student to write a program.

For the off-line program writing subtest, the student receives written pro-
gram specifications appropriate to the level of the course he has just completed.
His task is to write a program and have it run successfully from these specifi-
cations. The student has access to reference materials he might need to help
him write the program.

The on-line multiple-choice, constructed-response subtest focuses on
programing concepts, specific programing techniques, COBOL vocabulary, pro-
gram loric, and flowcharting as well as on segments of program writing. It
seeks to measure the student's ability to deal with the many elements that make
up a program, while the off-line test focuses on his ability to combine these
elements into a functioning program.

On-Line Multiple-Choice, Constructed-Response Subtests
Presently, all test items are being designed for presentation to the student

via the Cathode Ray Tube (CRT), the Perceptoscope screen, or a combination
of the two media. At a later date, presentation of some of the test items will be
adapted to utilize the Perceptoscope projection on the Sylvania Tablet capability.

Test items currently require student response via either the light pen or the
CRT keyboard. When the Sylvania Tablet becomes available, a number of the
keyboard response test items will be converted to tablet response.

The multiple-choice, constructed-response subtests for Levels 1 and 2
have been constructed, tested on students, and revised. Revisions of format,

38 44

content, wording, and response form have all taken place. A brief description
of these two tests appears below. Development of criterion subtests for subse-
quent levels is under way. The Level 1 and Level 2 subtests were to be admin-
istered to students during the Summer 1968 COBOL Course.

The Level 1 on-line criterion subtest consists of 24 items, of which 18 are
multiple choice and six constructed response. The glossary option is inopera-
tive during the test and no constraints are imposed on response time. The
estimated average on-line testing time is 15 minutes. A short description of
each test item and its course concept reference appears in Appendix D.

The Level 2 on-line criterion subtest consists of 23 items-16 multiple
choice and seven constructed response. The glossary option is inoperative
during the first part of the test. During the second part of the test, the glossary
is operative and the student can use INFO to request any reference material he
feels he needs to enable him to answer a test item correctly. There are no
constraints placed on response time. The estimated average on-line testing
time for this subtest is 25 minutes. Appendix Table D-2 gives a short descrip-
tion and course concept reference for each item in this test.

RESPONSE ANALYSIS AND DATA COLLECTION
IN PRELIMINARY COBOL COURSE

Several purposes will be served by collecting data on student responses in
the Preliminary COBOL Course. The data collection system to be described
here is designed to meet the needs of the following users:

Course Authors
(1) To evaluate the instructional content.
(2) To revise the content.
(3) To plan for alternative methods of presentation.
(4) To evaluate and revise criterion tests.
(5) To develop feedback displays based on actual student

performance.
Behavioral Scientists

(1) To relate pretest factors, learning behavior, and criterion
performance.

Coursewriter Programing Staff
(1) To provide further response analysis requirements.
(2) To determine hardware and software requirements.
(3) To improve the data collection system itself.

Definitions
Response is defined as the contents of the input buffer in the computer, after

a student has transmitted a message to the computer. With the Sanders CRT,
this means that the student has pressed the SEND button which causes the mes-
sage to be sent from the CRT buffer to the computer input buffer. Any student-
initiated SEND is considered a response even though it may consist of only the
SEND code with no text.

Response analysis is used to mean the computer-programed techniques and
conventions for recognizing, classifying, or interpreting the student response or
a sequence of student responses.

Data collection is used to refer to the conventions and techniques for stor-
ing information about student responses.

45 39

Data available on-line in this context means data stored on random access
disk or in core storage, in a form accessible to the Coursewriter system while
Coursewriter is servicing student stations (Chapter 6 contains further informa-
tion on Coursewriter).

Off-line processing refers to either manual or computer processing of
data which is not part of the Coursewriter system operations while Coursewriter
is servicing student stations.

General Design Considerations
The task was to design a system for response analysis and data collection

that would provide the required information in a form most easily used for all
the above purposes. In most cases, "easily used" means that the information is
available to the user in a specific, already interpreted form. Data that could
not be easily used by any of the groups, for example, would be a verbatim list,
in order of input, of all students' responses throughout the course.

On the other hand, to develop a system of highly interpreted and classified
data collection would mean that a number of a priori assumptions would have to
be made about the anticipated student responses. For example, an attempt could
be made to choose five or six categories that seemed to reflect the major con-
cepts involved in the subject matter being taught, or five or six categories that
seemed to reflect the major information processing activities the student would
be performing. All responses could then be classified according to these cate-
gories and the interpretation provided along with the data collection system.
However, to prejudge the data in such a gross way would clearly not be an
acceptable approach. The system described here is an attempt to find a middle
ground, between two extremes, for clustering responses in ways and to a degree
that will be both meaningful and efficient.

In the preliminary course, decisions about alternative presentations to the
student (feedback, review, etc.) are based only on the preceding response and/
or specific student request. At this stage of development the decisions are not
based on response patterns or summary data or pretest data. In fact, the main
purpose in the preliminary course is to collect data that will provide a basis
for making these more complex instructional decisions. Hence the data collec-
tion system is not required to provide summary data available on-line for deci-
sion making during course operations; this eliminates the need to make a priori
judgments about summary categories. Great flexibility could thus be allowed
in the off-line processing and analysis of the response data.

Specific Plan: Response Analysis
For each level of the preliminary course (see course outline earlier in this

chapter), a list has been compiled of all terms, concepts, and skills the student
is to learn. Course authors specify, for each response a student is to make,
which of these terms, skills, or concepts is related to that response. They
designate what specific characteristics of the response are to be associated
with which terms, skills, or concepts. For example, a student's Data Division
entry might be analyzed for errors in level number designation, picture clause,
punctuation, and margins.

A student response may also be categorized in terms of:
(1) Level of confidence rating.
(2) Gross latency (from presentation of display to receipt of-student

response), including reading time and response time as well as

40 4 6

information processing time. (As noted in Chapter.2, this will be
further subdivided in the next iteration as is feasible.)

(3) Student requests for information on terms.
(4) Student requests for information on compiler diagnostics.
(5) Student comments about the course, or requests for information

that could not be recognized and satisfied by the present system.
(6) Level of aspiration indications.

Computer programing tools required for performing the above response
analysis are discussed in Chapter 6.

Specific Plan: Data Collection
Pre-course data and student response information will be collected. Pre-

course data will include biographical and pretest information (aptitude, motiva-
tion, and structure of intellect indices).

Data about the student response are recorded on magnetic tape, after the
analysis of each response. The record is 404 characters long and contains the
following information:

Course name.
Course segment number (in this case, level number).
Student name.
Student number.
Registration data (date student first signed on the course).
Number of days since last sign-on.
Current label-problem-sequence number (a tag which indicates the

point in the course at which this response was made).
Last executed major operation code (used by Coursewriter programers

for debugging purposes).
Current date.
Time student signed on today.
Label before last question.
Last question number.
Time student has spent on the course to date (in minutes).
Gross latency.
Error identification counters for this response.
Status of registers and switches (for programer use in debugging).
Switches reflecting experimental variables for this student.
Present time in minutes.
Actual text of student response.
100 supplemental characters of error identifier information (buffer 1).

Data on the student response tapes may be categorized and summarized as
required by specific userscourse authors, researchers, or systems pro-
gramers. This involves the development of highly organized and compacted
data structures that can be used by anyone who requires access to the data
base. For example, examination of the above recording indicates that the infor-
mation which is contained in a recording might profitably be reorganized so that
specific items are grouped generically. The following list is an example of such
a grouping.

T ime
Registration date (date of first sign-on).
Number of days since last sign-on.
Current date.

'4 7 41

Time the student has spent on the course to date.
Present time in minutes (time of day when recording was initiated).
Gross latency.

Course Location Identifiers
Current labelproblem sequence number.
Label before last question.
Last question number.
Last executed major OP code.

5tudent Scores
Count of unanticipated answers made by a student (per problem).
Error identification (for this response).
Actual text of student response.
Supplemental error scores.

In addition, some scores that will be useful in analyzing a student's progress
through the course have been identified. These scores are not currently devel-
oped tinder the initial response analysis system, but can easily be obtained from
the Present recording mechanism. The following list is a representative sam-
plc ef th05e items derived thus far:

(1) Total number of questions answered correctly on the first response.
(2) Total number of problems attempted in a session.
(3) Total nurnber of standard exits from a problem sequence.
(4) Total number of non-standard exits from a problem sequence.
(5) Total number of textual pages displayed.
(6) Total number of unique problem displays.

There will -e many other statistics defined and devised as more experience is
gained with both course and student data analysis.

In addition, several complete statistical packages are being studied for use
in the actual analysis of data. Current plans call for data analysis to be per-
formed in batch mode, with the gradual integration of statistical routines for
on-lihe analysis. The actual analyses of IMPACT course and student data will
be describecj in subsequent reports.'

pRELImiNARY DATA COLLECTION AND EXPANSION OF CONTENT

The intruction in COBOL which has been devised by the instructional con-
tent tear"). °f Project IMPACT has been administered tutorially to a small num-
ber of tralriees. The first test of the material was to be carried out in July-
August 1968 on a group of students selected to represent varying abilities and
whose entry characteristics have been measured.

SUbject Selection for Preliminary Data Collection

Stude nts for the suinrner 1968 COBOL course were selected on the basis
of level of education, RI-low ledge of computer programing, and programer apti-
tude. Initially, 35 subjects, at the high school graduate or college freshman
level in edtication and naive with respect to computer programing, were recruited
in the earlY summer of 1968. These subjects took the IBM Aptitude Test for
progranirner persoruiel and filled out a Personal Data Form, which provides a
check the subject's educational level and data processing background as well
a5 routine administrative information.

t..\ more '=ninpIcte description of the on-line In is presented in Chapter 2. The list processor required

to build the datu structure above is described in Chapter 6.

42
4 8

On the basis of the programer aptitude test scores a group of 12 subjects
was selected with test scores distributed as follows: "A" range-3 subjects;
"B" range-2; "C" range-3; "D" range-4. These 12 subjects w(to take part
in the Entry Characteristics Testing Program.

Entry Characteristics Testing Program
Subject entry characteristics will be measured in the following four areas:

(a) structure of intellect factors, (b) motivation, (c) verbal skills, and (d) com-
puter programing aptitude.

The Entry Characteristics Test Battery is made up of 42 timed tests that
can be administered in group testing sessions. The tests range from two min-
utes to 60 minutes in testing time, with the majority requiring less than 20 min-
utes. Most of the tests are of the paper-and-pencil variety but a few require
special visual or auditory presentation of test items.

For the first group of 12 subjects, all entry characteristics testing was to
take place off-line. The schedule called for five hours of group testing per day
for three days.

At the end of the Entry Characteristics Testing Program, four students
were scheduled to start the COBOL course immediately, receiving six half-days
of instruction. The remaining eight, in successive groups of four, will be
scheduled to take the course later.

Individualization of Instruction
The Summer 1968 testing program was planned, in part, to try out a single

version of a portion of the COBOL course on students whose entry characteris-
tics have been measured in detail. On the basis of their performance, modifi-
cations will be made to further tailor the instruction to the individuaPs needs.

Under this plan there has been minimal effort, so far, to individualize the
course material. However, the following exceptions have been incorporated
into parts of the course:

(1) Student's entering information
a. Less than expected. He may call for definition of terms

assumed to be in the basic vocabulary of the target population.
b. More than expected. When a pretest, taken at student's option,

reveals that he is informed in a basic area, he may skip cer-
tain displays.

(2) Student's feeling about his need for information
a. Extra information is available at student's option, even though

that information does not serve a functional purpose at the
moment.

(3) Student's responses to instruction
a. Variety in feedback is provided.

4 9

43

Chapter 6

SOFTWARE DEVELOPMENTS AND PROJECTIONS

INTRODUCTION

The Project IMPACT development plan calls for the Computer Software
staff to perform several roles. They are to develop a foundation for future CAI
systems (referred to for planning purposes as Generation II); to satisfy current
needs, they must also act as "tool makers" for the Instructional Programing
group and other CAI research personnel, so they are concurrently involved in
shorter-term course development.

The longer-range plans call for work in the areas of language development
and overall system design, including the design of Time Sharing systems for
CAI and other users. Meeting the more immediate IMPACT goals requires
working within the constraints of the CAI language currently in use on the Proj-
ect, ICAIL (IMPACT CAI LANGUAGE), which is a dialect of IBM's Course-
writer. Satisfaction of current needs entails extending the capabilities of the
language and supporting systems, including removing some of the constraints
which Coursewriter, and hence ICAIL, imposes on instructional development
and the psychological research required to accomplish the goals of IMPACT.

A major consideration in all activities is the relative amount of carry-over
from one Project generation to the next. Shorter-range activities are being
designed so that the future system will evolve, without a sharp break, as the
Project passes from one generation to the next.

Major Software Development Efforts
For most of this presentation, a certain degree of technical sophistication

is presumed on the part of the reader, especially in regard to the IBM System
360. The purpose here is to present in some detail activities undertaken in
CAI software systems as part of Project IMPACT, not to present basic infor-
mation on the System 360. Some technical sophistication in concepts of the
computer sciences, such as list-processing techniques and the design of inter-
active systems, is also assumed.

The major tangible efforts of the Software group to date are:
(1) The modification of ICAIL to operate from a cathode ray tube

(CRT) display rather than strictly from a typewriter terminal.
(2) The enrichment of the ICAIL author language through design and

implementation of functions, using the existing function capability in Coursewriter.
(3) The definition, design, and implementation of a set of list proce-

dures to be used in conjunction with ICAIL and with the Instructional Deci-
sion Model.

(4) Preliminary efforts toward definitions of data structures to be
used in both student and course analysis studies (i.e., the Instructional Deci-
sion Model).

44 5 0

(5) Preliminary definition and design of a generalized system to work
toward for future developments.

In planning toward future systems, several guidelines have been established:
(1) First, in examining CAI systems and languages that are most fre-

quently publicized, and in using Coursewriter, the conclusion has been reached
that the single language approach dedicated to CAI is quite likely doomed to
failure because all users need and require a multiplicity of facilities.

(2) Secondly, the current "state of the art" in the computer sciences
almost demands that consideration be given to a time-sharing base for systems
that are intended to be operable within a two- to five-year time frame. It has
been recognized that within the context of a true time-sharing computer system,
CAI users must share the system facilities with others.

Both of these considerations lead to the notion that in a truly viable system,
nearly all computer programs in a public library should have at least some
interactive capability. That is, one should be able to build programs for problem-
solving purposes which can draw upon and use all of the available system pro-
grams. This, furthermore, presumes that these programs may have to interact
with each other as agents of a human user. The time-sharing base or any other
operating system per se cannot accomplish this because of the large system
overhead involved.

To have such a system, some concepts of software are required that extend
the state of the art. The concept of "Coherent Programing" first proposed by
J.C.R. Licklider (16) and currently most fully developed by Lincoln Laboratories,
Massachusetts Institute of Technology (17), is thought to be most appropriate in
this regard. The final section of this chapter presents a brief description of
Coherent Programing.

Technical Introduction
The ICAIL system was operational in late February 1968. The system was

generated to run in both the Background and Foreground partitions under DOS,
on the IBM 360/40. The Foreground system is used by the Instructional Pro-
graming group in course development. The Background system is used by the
Software group for experimentation.

Several modifications were made to the system to reflect the particular
hardware configuration being used, specifically the number and type of tele-
processing lines. They specify the type of lines (remote), the number of lines
(two), and the type of control unit (IBM 2701) which are currently in use. As
additional terminal devices are added to the system, similar modifications will
be made. These modifications have been made to allow the system to run as
originally designed, and do not reflect modifications or additions made or
intended with respect to the use of CRT's. The CAI language development being

.undertaken as part of Project IMPACT is also not reflected in the changes
mentioned above.

A set of procedures for initiating the ICAIL system in the Foreground par-
tition at execution time was compiled for the Instructional Programing group.
These procedures include instructions for loading the disk packs and tape drives,
for initiating DOS, for starting the Foreground partition, and for terminating
the execution of the ICAIL program. A card deck for starting the ICAIL pro-
gram in the Foreground partition was also provided.

The ICAIL System was originally designed to operate using the IBM 1050
Typewriter terminal as its only input/output device. Since the IMPACT devel-
opment plan calls for the use of CRT display terminals, ICAIL must be modified

5 1. 45

to accept these terminals. While the CRT may be used more like conventiona'
visual aids, the typewriter is a strictly serial device. The fact that the term
nal may be used in this manner has other important ramifications. For example,
instructional programing may be affected, especially with regard to the form
and manner of presentation. Use of a CRT also affects the use of languages,
and this has clear implications in the development of a total systems approach.
The following section of this chapter includes more details of the researchers'
approach to the general problem of making an existing language operate using
foreign devices.

While the Coursewriter system on which ICAIL is based tends to be some-
what static, the language is open-ended to the extent that a user (author) may
add nonresident subroutines, called functions, to the system. The purpose of a
function is to allow a course author to accomplish a specific objective within
his course development where this capability does not already exist. Functions
for ICAIL are written in Assembler Language Coding (ALC) to specifications
developed jointly by the computer programei;s and instructional programers.
A later section of this chapter contains details on those developed thus far with-
in Project IMPACT.

Much of the work in development oi CAI languages and systems concepts
has come about through using ICAIL frAr immediate course development. There
is also an obligation to evolve a better CAI language. These aims are both
explicit and implicit throughout thi. report. However, studies of Coursewriter
(ICAIL) and other similar CAI languages suggest that what is really required in
CAI is a different approach. Rather than thinking of a specific language for CAI,
a functional view of the orations to be performed by both author and student
needs to be taken.

Basically, an author must have a means to store text and have it retrieved
for the student in some specified order.' A student, however, may need to
retrieve certain information that is pertinent to his learning process, but not
necessarily part of the text being presented in a predetermined instructional
sequence. Both author and student may need to rely on computational facilities,
such as matrix routines, which are not really part of the CAI package or the
instructional sequence.

Toward this end, a concept of the visibility of various languages (and their
processors) and other tools which are included in the system has been developed.
This concept includes the notion that not all users of a system need, nor should
they have access to, all of the programs available in the system. It has been
found that having list-processing capabilities available allows a pedagogical
freedom heretofore unattainable within the constraints of Coursewriter.

Recognition of a need for some list-processing capabilities in ICAIL is a
major step in the progress of the IMPACT CAI software development. It will
faci ! nie recording of student response information (including background
studis. :Iorm usable by course authors and researChers who are unskilled
in developing computer system software. No claim is made that the list-
processing primitives explicated in this report constitute a language. They do
not, because there are no rules for linking together the operators to comprise
well-formed expressions in an open system which is consistent. There is no
syntax other than that used in passing parameters to a primitive call, and no
semantic context. Any meaning stems solely from the user who issues the

'Questions are really a special form of text, and need not be considered separately here.

46

calls, and hence the use of such a processor is meaningful only in a specific
context. Those acquainted with current list-processing languages will, how-
ever, see a similarity between the process just discussed and SLIP (18).
Appendix E of this report includes the implementation details of the IMPACT
list processor.

The Software group has also undertaken some preliminary work on the
IDM, particularly on data structures to be used in collecting and storing the
information to be used in the model. The efficacy of using list-processing
techniques for these purposes has been shown. They are particularly appro-
priate because a user, without being a computer programer, can use the list-
processing primitives effectively. That is, the researcher who is not a pro-
gramer can have easy access to the required data without too much difficulty,
and without having to acquire sophisticated programing skills. A preliminary
version of the work on data structures for the IDM is given later in this chapter.

ICAILCRT CONVERSION

The ICAIL system based on the IBM Coursewriter is designed to handle
only the IBM 1050 Typewriter terminal as the author-student input/output device.
A fundamental decision that typewriter terminals would not be sufficient to
attain overall Project IMPACT objectives was made at the outset of the project.
This decision, of course, has many ramifications for instructional programing
as well as for a computer software development. Orderly development of this
phase of the project called for a critical examination of the nature of both the
CRT and the typewriter terminal devices, to gain a clear understanding of their
fundamental characteristics and differences.

First, it should be noted that a typewriter is a strictly serial device and
forces an order of course presentation that is, in effect, superimposed on the
sequencing of instruction. That is, any typewriter or similar terminal forces
a sequential presentation of text, no matter what presentation might be dictated
by the logic of the course. Another critical difference is the fact that a type-
writer line is not necessarily analogous to a full display on a CRT when data
are transmitted. A single transmission either to or from a CRT terminal may
contain many more chaeacters than a single transmission using a typewriter as
the terminal. That is, the number of characters transmitted is a function of the
display capability of the terminal device. In addition, data to be displayed on a
CRT can often take on additional structure (e.g., blocks and pages), which is not
possible when a line-at-a.-time device such as a typewriter is used.

The Sanders 720 Terminal which is being used by IMPACT allows the for-
mating of text in a page-block structure, as well as a line at a time. This is
partly due to the 1024-character (maximum) delay line storage that holds all
characters to be displayed at any instant in time on the CRT face. The addi-
tional structuring capability is built into the hardware logic of the terminal.
This capability seems to be the major distinguishing feature between the two
devices. Thus the CRT can be used like a blackboard or other visual aids in a
classroom instructional situation.

The first (and most naive) approach to the CRT conversion was to increase
the size of the line control block (LCB) in the ICAIL programing system for
each terminal. This area contains the buffers that hold the student responses.
The primary student response buffer could simply have been recoded to hold
1024 characters. However, upon further examination, it was found that this
area is referenced by many routines and from many different places in ICAIL.

53 47

Ordinarily this might not make any significant difference, but in the IBM Sys-
tem 360 assembly language it would cause potentially serious code displacement
(instruction alignment) problems. It was then realized that modification of the
entire data management system, including disk addressing, as well as cylinder,
track, and record organization, would be necessary.

The ICAIL data management system iS closely related to the author lan-
guage, a situation that exists in any interactive system. These interrelation-
ships, and those between internal modules and subroutines, were examined in
detail; the intricacy of the programing system led to the conclusion that modifi-
cation of ICAIL internals was not a feasible course of action.

In a final analysis, central processor and storage considerations make
terminal interface in this case a problem of data management. In particular,
the data management problems are those associated with variable length records.
This stems from the page-block structure of the CRT. Since the interface is
with ICAIL, there are serious implementation problems, because ICAIL is
built around a data management system for fixed length records of only 100
characters, and a CRT transmission can be up to 1024 characters long.

Further study indicated that it was not sufficient to be concerned only with
the nature of the devices and/or the ICAIL data management system. Since
ICAIL is a monolithic system, it was necessary to work with some of the exter-
nals of the system, for example, the author language. This permits a system
design taking into account consideration of three major functional components,
CAI user language, data management, and terminal language. Viewing the sys-
tem in terrns of these major functional components and placing them in their
proper perspective in the overall system led to the conclusion that course
management should also be modified.

Introduction of the user-language factor also led to the realization that use
of the CRT as a visual aid gives credence to the notion that presentation of text
is logically separable from the remainder of CAI programing considerations,
such as response recording. Asking questions and subsequent checking of the
student response is also logically independent of textual presentation. Separa-
tion of text and course logic will be noted to have influenced a large portion of
the design to implement the software development for the CRT conversion.

The notion of separating textual material from course decision-making
operations was, therefore, adopted as being the most meaningful and compre-
hensive solution to the ICAIL-CRT conversion problem. At a superficial level,
this amounts to the recognition by an intermediary translator of certain Course-
writer operation codes, namely, QIJ, RD, and TY.

The text is perceived by ICAIL as part of the command. It is important to
remember that a question is simply a special form of text. Therefore, the
capability of making the distinction between the imperative and the interrogative
is needed only at course execution time.

The decision was to build a translator that would recognize these operation
codes and then interface with the list processor. This means that the list proc-
essor becomes a tool to be used immediately in two areas: (a) in the general
area of separating text from the remainder of the instructional program; and
(b) as the agent through which ICAIL can most easily and comprehensively be
converted to operate using CRT terminals rather than typewriter terminals.
Data management problems are solved because linkages in a list handle variable
length records. The translator in this case is simply a recognition device, used
to intercept certain ICAIL operation codes and access the list processor before
the ICAIL subsystems are activiated. What the process amounts to is "fooling"
the system into thinking that it is receiving an acceptable string of text, when

48
5 4.

General Overview of ICAIL
List Processor Translator

.LATOR

t+1,,,eeen,i

4

St:it:TA:re
Etty t.tessaee

Nag /
CRT

Ttanslate
Lst

Fer,at

14
Wade

CRT
'Rear. Enter

C '

Yes Task
CoVele

Figure 8

what it actually receives is a call on the list processor. Figure 8 indicates how
this scheme works. The details of the IMPACT list processor are described in
Appendix E.

The translator intercepts text from the terminal before it is received by
the ICAIL data management system. Our concept is not, however, to intercept
and then accept text per se. Since the list processor is being used as an inter-
face, what we must receive along with any textual operation code is an author-
defined call on a list primitive. That is, instead of an author typing text, his
input is of the general form:

<operation code> <delimiter> Oist primitive call>.
The design is such that any ICAIL operation code is amenable to the treat-

ment afforded those which most specifically deal with text. It also means that
the translator does not work simply on the basis of operation code recognition.
Rather, it will activate the list processor upon any occurrence of the delimiter
followed by a list primitive call. Further, it allows the list processor to func-
tion in the CAI programing system as a nearly stand-alone module, which can
be operable outside of the ICAIL context.

Throughout this discussion, it must also be remembered that the original
system has not been modified or completely bypassed. As shown in Figure 8,

49

the tex-tual string (i.e., the delimiter and the list primitive call) do get passed
to ICAIL, and ultimately stored as part of the course. In this way, ICAIL gets a
string, which it expects, but not one which exceeds 100 characters. The data
management modules in fact remain inviolate.

The specific calls appear as follows:
Operation code [Parameter 1, Parameter 2, Parameter 3, Parameter 4,

Parameter 51 where:
(1) The brackets [] indicate the string delimiter.
(2) Parameter 1 is the list name.
(3) Parameter 2 is the list position number or the entry name.
(4) Parameter 3 is the cursor position. This is a block number

within which the cursor is to be positioned.
(5) Parameter 4 is an optional "no clear" condition code. If it is

present, the screen will not be cleared before displaying the text associated
with the operation code and list primitive call. If it is not present, the CRT
face is to be cleared before display of the associated text.

(6) Parameter 5 is a "Roll-On" block number indicating the num-
ber of the block in which the text specified by the previous parameters is to
be inserted.

It should be clear that what ICAIL receives is the string beginning with the
first character of the operation code and ending with the right hand bracket.
That is, the list procedure calls are built in the course in the same manner as
the operation code is normally coded. During course execution in student mode,
the operation codes are checked before they are executed to determine whether
the list procedures are to be called. If so, the normal execution of the course
is interrupted and the list procedures execute the command.

The following provides an example of a list of displays to be entered and
displayed, where LISTNAME=LIST: ENTRYNAME=ENT

CREATELIST [LIST]
ADDTOLIST [LIST,ENT]
DATUM IS ENTERED HERE
DISPLAYS ILIST,ENT,31

LIST,ENT schematic
#AAAAAAAAVTAAAA#VTVTBBBBB#VTVTVT _ _

where A = characters in Block 1
B = characters in 13lock 2

= blank spaces in Block 3
The cursor will be positioned in the first noncontrol type character position in
Block 3 see t .

FUNCTIONS

In order to gain a fuller understanding pf the ty-,e of functions in ICAIL, it
should be noted that there are some fundamental differences between 1440
Coursewriter (on which ICAIL is based) and ICAIL itself. The major differ-
ence is that, in 1440 Coursewriter, functions are availatble as a standard part
of the language, while in ICAIL, the authOr must desigu rind code his own func-
tions. In addition, ICAIL permits the use of up to So counters, while only 10
are provided in 1440 Coursewriter.'

'Some knowledge of 1440 Coursewriter and its use is assumed.

50 56

ICAIL author language gives a user the ability to extend the power and use-
fulness of the language to fit specific requirements. This is accomplished pri-
marily through the FUNCTION (FN) operation code. Functions are nonresident
subroutines that are designed and then coded by the user in ALC. The use of
functions gives the author capabilities that are not normally available with the
standard operation codes. ICAIL, unlike 1440 Coursewriter, has no functions
that are a standard part of the language. The author must determine which
necessary capabilities for his particular instructional environment are not avail-
able with the standard operation codes. The Software group is responsible for
working out a viable design with the course author, and for all of the actual
implementation details.

The author uses the FN operation code in his course just as he would any
other minor operation code. The operand field of the FN operation code speci-
fies the name of the function. Any parameters or arguments that are needed
are coded in the manner prescribed by the actual implementation. To the ICAIL
system, parameters or arguments are simply text.

When the course is being executed and the FN operation code is encountered,
the subroutine designated by the function name is called and executed.

It will be observed from the following descriptions of functions LIST, SEEK,
AND SEEKP that functions SEEK and SEEKP provide essentially the same capa-
bilities, and that they both fully incorporate all of the capabilities provided by
function LIST. A convention has been adopted whereby functions will be left in
the system once they are there, even though a function that is written later may
incorporate the services provided by the earlier function. This approach gives
the author the additional capabilities required without having to re-code portions
of the course that make use of the earlier functions.

The function LIST which has been developed for use in ICAIL was written to
enable carry-over of the course in basic assembly language programing devel-
oped under the Work Unit METHOD. This course was originally developed using
the 1440 Coursewriter system. It has now been converted to ICAIL and hence
requires compatible software support.

It should be noted that function LIST has no relationship to the list proces-
sor discussed in the preceding section and in Appendix E. This function is one
which was written to solve a specific problem encountered in coding the METHOD
course for the 1440 Coursewriter system. It is usable and meaningful only
within the context of the Coursewriter language and the ICAIL dialect.

Function LIST for 1440 Coursewriter is really two functions, function LIST
"old" and function LIST "new." Function LIST "new" compares a student
response with a list that is the textual part of a CA instruction. After the
response is compared with the list, the list which is part of the CA instruction
is written on a work disk. Function LIST "old" retrieves the list from disk,
compares the response with the list, and then writes the list on disk again. In
either case, if the student response matches one of the list items, that item is
deleted from the list and the up-dated list is written on disk. If no match occurs,
the list written on disk is the same as it was originally.

Each item in the list has a one-character alphanumeric identifier. When a
match occurs, this identifier is placed in a student counter where it can be ref-
erenced by the author in a determination of the sequence of student responses.
Counter 9,2,1 has been arbitrarily specified as the counter that will contain the
identifier of the matched item.

Function LIST for ICAIL also compares a student response with a list of
anticipated responses, deletes the matched item from the list, and places the
identifier of the matched item in a counter. However, there is only one function

57 51

LIST for ICAIL. The list is neither the tex-t of a CA instructor nor is it retrieved
from disk. The author loads the list of anticipated responses into one of five
student buffers via an LI) operation code. The list is not written on disk. Coun-
ter 29 has artibrarily been chosen as the counter that will contain the identifier
of the matched list item.

Functions SEEK and SEENP are like function LIST (for ICAIL) since they
compare a student response with a list of anticipated responses that has been
loaded into one of the five student buffers. These functions neither retrieve
lists from disk nor write lists on disk. Unlike function LIST, both SEEK and
SEEKP will compare a student response consisting of nlore than one response
item with the list of anticipated responses. These functions accumulate the num-
ber of response items that match list items. The author may specify that
matched items are to be deleted from the list or he may elect to leave the
matched items in the list.

Function SEEK allows the author to specify which counters he wishes to use
as depositories for the identifiers of matched list items. If the author does not
choose to specify these counters the function will place the identifier of the last
matched item in counter 28. The author may also specify which counter he
wishes to use to accumulate the number of correct response items. If he does
not specify a counter, the function uses counter 29 as the accumulator.

Function SEEKP was written to give the authors the capabilities provided by
function SEEK without having to use counters, since the counters are often
more urgently needed for use as counters as such, rather than as depositories
for list item identifiers. Thus, function SEEKP uses positions in the buffers to
hold identifiers and as accumulators. The author must specify which buffers
and which positions in the buffers are to be used. The function has no default
characteristics.

Figure 9 shows the major similarities and differences between functions
LIST (for 1440 Coursewriter), LIST (for ICAIL), SEEN, and SEEKP.

Similarities and Differences Among Four Functions

52

Compares a one-word response with a list
of responses

Compares a response of more than one word
with the list

The list may be text of CA op code

The list may be retrieved from disk

The hst is written on disk

Deletes matched items from the list

Author may choose to leave matched items
in the list

Places identifier of matched items in a counter

Author specifies counter for identifier

Accumulates number of correct items

Author specifieS counter for accumulator

Author specifies buffer position for accumulator

Author specifies buffer position for identifier

Figure 9

58

List List SEEK SEEKP
(1440) (ICAIL)

A function RECORD has been developed to allow recording of student
response information upon author demand, rather than have it always accom-
plish implicitly within the system.

INSTRUCTIONAL DECISION MODEL DATA STRUCTURES

The purpose of this section is twofold. First, it will serve to illustrate
the manner in which it is envisioned the data used by the IDM will be structured.
Second, it w.11 address the operation of the model itself. While the model is
clearly viewed as ultimately being implemented by means of a set of computer
programs, the data structures developed can be used externally to these pro-
grams. That is, computer implementation is not a prerequisite, nor will all
data in this structure comprise all active parameters of the initial IDM. The
fact that there are some defined data structures for the model means that the
operational implementation of the model's characterization has been seriously
considered. However, there is no computer implementation yet.

The 1DM has a central role in the IMPACT system, and it is to be equated
to the instructional agent. However, it is not to be the only instructional agent,
since it will be invoked by course authors and researchers as well as by the
instructional programer, especially during these early cycles of the Project.

The aim is to provide, as well as possible, individualized instruction for
each student, based on his current state of learning and taking into account
individual and personal characteristics affecting the learning process. There-
fore, there must be.a store of information about the student that is pertinent to
his learning process. For many operations of the IDM, this information will
consist of quantifiable data (it is also quite likely that IDM data will be floating
point numbers, but this is not a requirement). This is not a prerequisite, how-
ever, for the str -turing and storage of student data. What is required is
either that the information be stored in the form in which it is to be processed,
or that necessary and sufficient transformation rules be supplied to the system.
It will be assumed for the time being that the researchers will in fact store
data in such form as to facilitate immediate processing.

There are essentially two classes of data that are to be structured, collected,
and stored: student data and course data. Obviously it is necessary to have
the student data to make the IDM work. Course data (e.g., sequencing infor-
mation) is also required, at least in part, in order to proceed with instruction.
It is also not beyond reason to consider the possibilities of joint data collection
of both student and course responses to be used in course analytic studies,
which may be extra-systematic to the 1DM.

Most of the information to be stored for the IDM will be stored in some
form of a list structure. The list structure provides the most flexibility, and
can be modified either externally (conceptually) or internally (in the computer)
more easily than can rigidly fixed structures such as arrayF;. From the
researcher's point of view, lists can be created, modified, and deleted almost
at will. At this time, what has been provided is some naming capability, so
that related data can be put into lists which have names meaningful to a
researcher (the names used here should be considered as examples only). Also
provided is a capability for the user to access lists freelythe pointer mecha-
nism is useful regardless of where the data are stored. The mechanics of these
operations will not be discussed here, however.

At the present time, student identifier information to be stored in a list
called Student Identification Data (SID) will be considered. Each entry in this

5 9 53

list is really a student number, and points (relatively) to a
sublist that will contain either actual data about the i-th stu-
dent or pointers to the data on him. For conceptual pur-
poses, however, we consider the SID list to contain all of
the data regarding all students registered for the course.
The SID list is shown in Figure A. The entries in the list
are really pointers to the collected data for each student,
and are called Student Data (SD). The pointers would in
reality point to lists named SD SD and so forth, but
these are shown as empty in order to indicate, simply, the
construction of the main student identifier list. Opera-
tionally, this list can be derived from the ICAIL list of
registered students, which provides a point of departure to SD,
set up a data collection mechanism. That is, ICAIL main-
tains a list of all students registered for each course, so EC

this is used. It does not provide the list structuring mech-
anisms that are required for building the structures we M EC,

have in mind.
The pointers SD SD SR

. . . , and SDi are themselves
names of lists, and in fact are main lists that point to spe-
cific classes of data entries. The following entries in the EC

list have been identified to date: Entrance Characteristics
(EC), Motivational Data (M), and Student Response Informa- Figure B

tion (SR). These entries are themselves lists. Figure B
shows how each SD list is constructed. Even though there are currently only
three entries in each SD list, the structure is flexible enough to contain as many
or as few entries as might be required for each student. Figure C shows how
the structure indicated in Figure B is expanded. Henceforth, however, we shall
concern ourselves with only the student, so that detail will not obscure the
relationships.

It has been determined that the EC list will have several components. Some
have been identified, and others have not. Figure D shows how this structure
will be represented, independently of any identification except for generit names.

SID

SD,

SD,

.1111 SD,

Figure A

...

EC

SID

Figure C

54

EC

SR 10-

60

SD,

I EC

HSR

EC

EC,

EC,i

Figure 17)

EC,

EC,
Set

"4' EC,,

Set"

As an example, one of the ECn components, (the first, EC,) can be used. In
the current structure, the EC, set becomes the Guilford Model (3, Frontispiece).
This model has been conveniently represented as a three-dimensional array by

Guilford; and it is useful to maintain this representation occasionally in order
to decrease the number of parameter names to be considered. The data struc-
ture currently being devised will in fact allow this representation to be main-
tained, since the Guilford model is a sub-structure, and a means of getting to it
has been developed. Figure E shows both the Guilford model as displayed in the
frontispiece of the book, and the linkages by which the information contained
therein is stored and retrieved.

Thus far, the discussion has been limited to only a fraction of the SID, list.
Even though Entrance Characteristics are crucial, they do not constitute the
whole of student identifying information. Sub lists of various other (quantifiable)
information must also be created. For example, there is a Motivational Data

Guilford Model or Structure of Intellect1

SD,

EC

OPERATION:
Evaluation
Convergent production
Divergent production
Memory
Cognition

Units

Classes

EC

i--

sRelations0
0 Systemsrea

Transformations

Implications

CONTENT:
Figural

Symbolic

Semantic

Behavioral

'Permission to use this copyrighted
material has been granted by
.1. P. Guilford.

Figure E

61 55

SD,

EC

SR

Stress

Aspiration

Aspiration

a,

EC

Stress

Si

s,

SD,

SR,

SR

Figure G

EC

category. For purposes of the
example, we call this list M. We
have included in this category
closely related items such as stress
levels, level of aspiration, etc.
Figure F shows how the.IDM Data

Figure F Structure might look after this
information has been added.

For purposes of exposition, the s . . . si and a1, . . . an merely represent
the data collected and stored in sublists which we have called Stress and Aspira-
tion, respectively.

The last item (currently identified) in the SDi list is a pointer to a student
response list. This set of lists should, for operational purposes, have the sta-
ture of a main list. For reference purposes, however, we must consider this
set of lists as a sublist under each SIDi. The basic structure of this now more
complete notion of IDM data structures is illustrated by Figure G. The name of
the student response list is SR.

As examples of some of the data which can be collected under the SR list,
it is considered that data currently collected under ICAIL are prime candidates
for the SR list. Since there are currently 28 separate items being recorded, it
is easy to see how the SR list will grow, and the items need not be enumer-
ated here.

Figure H is an illustration of the entire data structure as we have defined
it throughout this section.

It should be noted that nothing has been said about operations on this struc-
ture. From a computer software point of view, the currently perceived opera-
tions are the list operations defined in the second section of this chapter. In
addition, some means of naming variables and parameters will be needed in
order to make tbe structure itself accessible by the research staff. Decision-
making logic external to ICAIL is also thought to be imperative, and is in fact
implicit in the creation of abilities to deal with named variables. It can be seen

56
62

SR

SR,

SR,,

SR:,

Aspiration,

a.

Oil

EC/n

EC

EC,
Set

Figure H

Stress,

that there will have to be other information processing modules, and routines
will be developed within the context of the IDM. Chapter 2 of this report indicated
the general nature of these requirements.

FUTURE SYSTEMS AND CAI SOFTWARE DEVELOPMENT PLANS

As stated earlier, the Project IMPACT development plan calls for the devel-
opment of two generations of CAI systems. The first generation is based on an
existing CAI language and its processors, modified to reflect changes in the
hardware configuration and requirements of the research staff. It is planned to
have Generation II evolve from Generation I as smoothly as possible. To do
this, however, requires consideration of future directions during the initial
design phase of Generation I.

One of the conclusions reached at this early stage is that CAI is an obvious
candidate as a user of time-shared systems. However, the user of a CAI sys-
tem, whether he is a course author or student, is likely to make use of other
systems facilities, such as conventional compilers, text editors, and so forth.
He should be able to use them without recourse to either a complex job control
language or the more difficult alternative of having to terminate a process in

63 57

order to perform a relatively trivial operation. One way to avoid these prob-
lems is the notion of "Coherent Programing" discussed below. Seeing these
things during Generation I does in fact give some overall direction to the Proj-
ect's software design.

Coherent Programing
Coherent Programing is basically a set of conventions and techniques

designed to shape tho growth of a library of programs to enable the user to draw
upon them freely with minimal concern about the details of their compatibility.
This is a point of logical design of programing systems which underlies much of

our basic philosophy. That is, each module in the system is designed with its
own primary purpose in mind; and even though the potential of the module is a
primary consideration, it is not a principle in the design of the module.

Coherent Programing has two objectives: (a) to provide an environment in
which it is easy to add to a library of programs without disrupting what already
exists, and (b) to facilitate communication between on-line services for the non-
programer. Coherent Programing is also very useful to the professional pro-
gramer. When a programer uses an on-line system, he is seldom operating the
program on which he is working. He uses editors, debugging packages, compilers,
etc., from the system library. If these programs are coherent, the programer
has greater flexibility in their use and his task is simplified. For purposes of

illustration, the system we have in mind is illustrated in Figure 10.
All of the systems programs which are commonly used are in a coherent

public library. The Mediator is a program which allows one to achieve coher-
ence by building the required directories, program stacks (queues), and so forth.
It is also a primary goal of such a system to allow a terminal user to work in
several languages, without the time delays currently encountered in a "compile,
load, and go" process in a job stream under conventional operating systems.

The Projected IMPACT Software System

On-Line
Computational

Foci lity

38

CAI
Medi ator Language

(Author)

Time-Sharing
Supervi sor

Base

Text
Editor

Figure 10

6 4

CAI
Language
(Student)

Compiler
A

Compi ler

The design of a Mediator system requires that particular attention be paid
to the role each of the major component subsystems is to play. This is espe-
cially important in developing the required communication facilities between
system modules. It is also important in those instances where programs are to
act as agents for a human user, insofar as they may call on other programs or
modules without human intervention.

As a simple example of this concept, consider the use of "HELP" routine
which is invoked whenever a program module finds that it does not have the
required input or input form. It is up to the HELP module to try to determine
whether the information required by the processing module which got into trouble
does in fact exist somewhere in either the public files or the human users' pri-
vate files. If the information is available in the system, HELP must determine
whether it can be put in proper form for the processing module, and then go
ahead and attempt it, or else call another routine to perform the required
transformation. In this case, both HELP and the transformation routine are
acting as agents for the human user.

The notion of Coherent Programing as currently conceived, however, could
itself become a subprojecta luxury which Generation I cannot afford. There-
fore, the concepts are being used in a slightly modified form to accomplish
current Project objectives, and at the same time provide the necessary tools
and building blocks to assist in a smooth transition between Project generations.

It should be recalled that even in the design of the programs to accomplish
the immediate task of the ICAIL-CRT Conversion described in the second sec-
tion of this chapter, the major functional components of the current system were
isolated and their role or position in the system carefully analyzed. The point
of taking this approach for meeting current objectives is that it allows one to
begin achieving some degree of coherence even now. It should also be recalled
that, through the list processor and translator mechanisms described in the
second section of this chapter, a communication link has been established
between the CRT input mechanism and ICAIL. This is more than just a link,
however; it is a decision mechanism and communication region that allows the
author input to determine the exact calling sequence and invoke the proper sys-
tem module for execution of ICAIL input statements. The fundamental difference
here is that the system modules are considerably larger than those normally
conceived in a time-sharing environment. In this case, ICAIL is itself a system
module, as well as being a complete system.

The relationship between the future Coherent Programing system and the
current CAI software development effort should be clear.

Other Factors
Factors other than Coherent Programing and time sharing also enter into

Project IMPACT software development plans. Language studies are under way
to help determine a direction for CAI languages and processors. The notion of
taking a functional view of CAI system components has already evolved from
this study, even though it is not fully completed. This has led in part to some
of the current implementation design, and is also related to the concept of
Coherent Programing.

Another notion that is just sthrting to take form is one of viewing CAI as a
communication system. This involves determining the logical flow of informa-
tion from an author to a student and using the Instructional Decision Model as
an extension of and complement to the human author. This means, of course,

6 5 59

that the concept of a very complex instructional agent is involved in the total
communication system. We know that information flows in general from:
(a) Author to student; (b) author to model; and (c) student to model and author.
It can also be seen that information will flow between modules of the IIDM,
even though explicit details have not yet been formulated.

All of these concepts relate not only to software development as such, but
also to the CAI research being done in the Instructional !Decision model and in
course organization and development. Future directions for Project IMPACT
CAI software will take into account the needs in all aspects of CAI activities.

6 6
60

LITERATURE CITED

L Seidel. R.J.. and Hunter. II.G. The Application of Theoretical Factors in Teaching Problem

Solving by Programed Instruction, IlumRRO Technical Report 68-4, April 1968.

Seidel, Robert J.. and Kopstein. Felix F. "A General Systems Approach to The Development

and Maintenance of Optimal Learning Conditions," IlumRRO Professional Paper 1-68, January

1968; based on presentation at American Psychological Association convention, Washington,

September 1967.

3. Turing. A.M. "Computing Machinery and Intelligence," in Computers and Thought,
E.A. Feigenbaum and J. Feldman (eds.), McGraw-Hill Book Company, Inc., New York, 1963.

4. Guilford.J.P. The Nature of Human Intelligence, McGraw-Hill Book Company, Inc., New York, 1967.

5. llarary, F., Norman. R.Z., and Cartwright, D. Structural Models: An Introduction to the

Theory of Directed Graphs, Wiley Press, New York, 1965.

6. Gagne. Robert M. The Conditions of Learning. Holt. Rhinehart and Winston, Inc., New

York. 1965.

7. Flament, C. Applications of Graph Theory to Group Structure, Prentice-Hall, Inc., Englewood

Cliffs. N.J., 1963.

8. Berge, C. The Theory of Graphs and Its Applications, Wiley Press, New York, 1964.

9. Taber, J.1., Glaser, R.. and Schaefer, 11.11. Learning and Programmed Instruction, Addison-

Wesley. Reading. Mass.. 1965.

10. Restle, F. -A Metrie.and an Ordering on Sets," Psychometrika, vol. 24, no.3.1959, pp. 207-220.

11. Dunham, .1.L., Guilford. J.P., and Hoepfner, R. "Multivariate Approaches to Discovering the

Intellectual Components of Concept Learning," Psyehol. Rev.. vol. 75, 1968, pp. 206-221.

19. Bunderson. C.V. Transfer of Mental Abilities at Different Stages of Practice in the Solution

of Concept Problems. Educational Testing Service Research Bulletin RB-67-20. ONR Techni-

cal Report. Contract Nonr 1858415). 1967.

13. Shuford. E.11., Jr.. Albert. A.. and Massengill, H.E. "Admissible Probability Measurement

Procedures." Psychometrika, yol. 31. no. 2, 1966, pp. 125-145.

14. Shoemaker, Harry A. The Functional Context Method of Instruction, HumBRO Professional

Paper 35-67. July 1967.

15. Shoemaker, Harry A., Brown, George H., and Whittemore, Joan M. Activities of Field Radio

Repair Personnel with Implications for Training, flumRRO Technical Report 48, May 1958.

16. Licklider, J.C.R., "Language for Specialization and Application of Prepared Procedures,"

in Second Congress of the Information System Sciences, J. Speigel and D.E. Walker (eds.),

Sparton Press. Washington, 1965.

17. Wiesen, R.A., Yntema, D.B., Forgie, J.W., and Stowe, A.N., "Coherent Programming in the

Lincoln Reckoner," Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,

Mass., [undated].

18. Smith, Douglas K.. "An Introduction to the List-Processing Language SLIP," reprinted in

Programming Systems and Languages. S. Rosen (ed.). McGraw-Hill Book Company, Inc., 1967,

pp. 393-417.-

67 63

Appendix A

SUMMARY OF STAFF DEVELOPMENTS BY QUARTER

First Quarter - FY 68 (July - September 1967)

Position

Senior Behavioral Scientist
Senior Behavioral Scientist
Behavioral Scientist
Junior Behavioral Scientist (1/2 time)
Junior Behavioral Scientist
Mathematician
Senior Software Expert
Software Expert
Senior Systems Programmer
Computer Programmer
Computer Programmer
Computer Programmer
Director of Instructional Programming
Instructional Programmer
Instructional Programmer
Instructional Programmer
Electronics Engineer
Electronics Technician
Computer Operator
Research Manager
Chief of Production & Clerical Support
Secretary
Secretary

Second Quarter - FY 68 (October December 1967)

Position

Senior Behavioral Scientist
Senior Behavioral Scientist
Research Manager
Behavioral Scientist (3/5 time)
Junior Behavioral Scientist
Junior Behavioral Scientist
Senior Software Expert
Computer Programmer
Computer Programmer
Computer Programmer
Director of Instructional Programming
Instructional Programmer
Instructional Programmer
Instructional Programmer
Secretary
Secretary

6 8

On Board Prior Added During

to 1 July the Quarter

On Board Prior
to 1 October

Added During
the Quarter

65

Third Quarter - FY 68 (January - March 1968)

Position

Senior Behavioral Scientist
Senior Behaviora' Scientist
Research Manager
Behavioral Scientist (3/5 time)
Junior Behavioral Scientist
Junior Behavioral Scientist
Senior Software Expert
Computer Programmer
Computer Programmer
Computer Programmer
Director of Instructional Programming
Instructional Programmer
Instructional Programmer
Instructional Programmer
Secretary
Secretary
Secretary
Secretary

Fourth Quarter - FY 68 (April - June 1968)

Position

Senior Behavioral Scientist
Senior Behavioral Scientist
Senior Behavioral Scientist (1/2 time)
Research Manager
Behavioral Scientist (3/5 time)
Junior Behavioral Scientist
Junior Behavioral Sciertist
Mathematician
Senior Software Expert
Senior Systems Programmer
Computer Programmer
Computer Programmer
Computer Programmer
Director of Instx-ctional Programming
Instructional Programmer
Instructional Programmer
Instructional Programmer
Instructional Programming Technician
Instructional Programming Technician (1/2 time)

Secretary
Secretary
Secretary
Secretary (1/2 time)

6 9
66

On Board Prior Added During
to 1 January the Quarter

On Board Prior Added During
to.1 April the Quarter

Appendix B

SUPERVISOR'S CHECKLIST FOR MANHOUR COMPUTATION 1

1. Coordination and Research

a. How much customer coordination must be performed before, during, and

after the program or report directive is written?

b. How much does the program or report directive relate to other

projects or runs?
c. Must it be checked for compatibility?

d. Are inputs and outputs well defined?

e. Are all data elements and codes well defined?

f. Does the worker have adequate subject matter knowledge?

g. Has the worker ever done a job similar to this?

h. Are there current COBOL data divisions available?

2. Worker Skill: What level of skill best describes worker?

a. Basic trainee.

b. Advanced trainee.
c. Junior journeyman.

3. Work Environment
a. Is guidance readily available for the worker?

b. How many other projects must he work on in parallel with this one?

c. Will he be interrupted excessively while working on this project?

4. Quality of Work Desired
a. What are the consequences if the program or report directive is not

correct when published or when declared operational?

b. Will any documentation be furnished to persons outside the Data

Processing Department?
c. If work order pertains to a report directive, is there a requirement

for a step-by-step punched card machine procedure?

d. If work order pertains to a program, is it important that the pro-

gram operate efficiently?

S. Nature of Work

a. To what extent must data elements be integrated? (How many different

input formats and codes are used to update how many master files or records to

produce how many outputs?)
b. To what extent must logical processes be formulated?

c. To what extent must complex machine sequences be devised or traced?

d. To what extent does the project relate to new work as distinguished

from revisions of previously prepared programs and report directives?

e. To what extent must exceptions be handled by machine versus

manual methods?
f. Must the project be done in such a manner as to facilitate future

changes and ease of maintenance?

1From Systems Branch, Fort Sam Houston Data Processing Department.

67

Subjective criteria most often cited by supervisors for evaluating pro-
gramers are:

1. Produces programs that are easily read and easily modified. This is
a matter of programing style and technique, involving at least the following:

Uses meaningful (to others) data names.
Organizes the program in separate logical units or modules.
Includes many comments in the source program.
Writes straightforward COBOL statements and routines as opposed to

complex routines, or routines which take advantage of compiler idiosyncrasies.
Where core storage limitations are not critical, prefers a straightforward
routine which is less efficient to a complex one which would produce more
efficient object code but would be harder to read and modify.

2. Adheres to installation's standards and conventions.

3. Can debug and/or modify existing programs, especially programs written
by someone else.

4. In many cases, solves technical problems by using reference materials
(manuals, installation memos), rather than asking for supervisor assistance.

5. Uses generalized programs and library routines where applicable.

All of the above, with the exception of the last, are incorporated in the
behavioral objectives for the COBOL course. (The latter was thought to be
outside the scope of the COBOL course, particularly since the generalized
programs available vary greatly from one installation to another.)

71
68

Appendix C

FLOW DIAGRAM FROM PRELIMINARY COBOL COURSE1

OUTLINE

FLOWCHART OF STUDENT-SYSTEM INTERACTION, LEVEL 2

Content Topic Flowchart Section

Review of Level 1 A

Specifications for Problem 2

Flowchart Logic for Problem 2, C - D

Student Control

Flowchart Logic for Problem 2, E - G

Tutorial

Data Division, Problems 1 and 2 H - J

Identification and Environment K - L

Divisions

Procedure Division, Problem 2

Level 2 Test, Program Debugging N - 0

DATA
01-LECTIOr)

LEGEND

A display on the cathode ray tuhe.

Student input, via Leyhoard or light pen.

Auxiliary display (Perceptowope),
documents, or student-generated papers,
depending on context.

Data collected on student responses.

Student information retrieval subroutines,
as described in Chapter S.

'At the time the report was ready for publication, the "preliminary" inter-

active procedures had already been revised.

72
69

F
LO

W
 D

IA
G

R
A

M
 O

F
 S

T
U

D
E

N
T

S
Y

S
T

E
M

 IN
T

E
R

A
C

T
IO

N
, L

E
V

E
L

2
P

R
E

LI
M

IN
A

R
Y

 C
O

B
O

L
C

O
U

R
S

E

(
m

an
)

(Object
iv

es
.

Le
ve

l 2

A
-I

n
th

is
 s

eq
ue

nc
e,

 s
tu

de
nt

 r
ev

ie
w

s
Le

ve
l I

S
el

 o
f g

re
st

io
ns

 b
as

ed
 o

n
st

ud
en

t's
er

ro
is

 in
 L

ev
el

 t
ci

ite
tio

n
te

st
01

 .
O

n
ar

e
as

ke
d

on
e

at
 a

 li
m

e
Q

ue
st

io
n.

 R
es

po
ns

e.
 a

nd
 A

ns
w

er
su

bs
cr

ip
ts

 a
ie

 d
et

er
m

in
ed

 b
y

va
lu

e

of
 C

ou
nt

er

(Revie
w

)
P

rin
to

ut
,

pr
in

to
ut

pr
og

ra
m

 I

(f
.k

is
liv

e
F

ee
db

ac
k

B
-I

n
th

is
 s

eq
ue

nc
e,

 s
tu

de
nt

 s
tu

di
es

sp
ec

ifi
ca

tio
ns

 fo
r

P
ro

bl
em

 2

S
pe

ci
fic

at
io

ns
lo

t P
ro

bl
em

 2

{S
tu

de
nt

In
pu

t

D
is

c
ss

io
n

of
pe

ci
fic

at
io

ns

I es
fio

n
I

on
 p

 o
bl

em
lo

gi
c,

flo
w

ch
ar

t

A
tte

r
th

is
 p

oi
nt

 in
 th

e
flo

w
ch

aa
. t

he
sy

m
bo

ls
 to

1
tN

F
O

 a
nd

 D
A

T
A

 C
O

LL
E

C
T

IO
N

w
ill

 b
e

in
di

ca
te

d
by

 'I
 a

nd
 'D

. r
es

pe
ct

iv
el

y
P

os
iti

ve
 fe

ed
ba

ck
 1

01
 c

or
re

ct
 a

ns
w

er
s

is
in

di
ca

te
d

by
 *

1

or
-i

S
pe

ci
fic

at
io

ns
,

F
lo

w
ch

ar
t A

id
s

S
pe

ci
fic

at
io

ns
,

F
lo

w
ch

af
t A

id
s

S
tu

de
nt

R
es

po
ns

e

N
o

C
-D

-I
n

P
us

 s
eq

ue
nc

e,
 s

tu
de

nt
be

gi
ns

 p
la

nn
in

g
th

e
!to

rt
ill

a:
I

fo
i P

ro
bl

em
 2

, w
ith

ou
t h

el
p

A
s

so
on

 a
s

he
 m

ak
es

 a
n

he
 is

 b
la

nc
he

d
fo

 th
e

po
in

t i
n

th
e

co
ui

se
 e

hi
ch

 h
el

ps
 h

im
pl

an
 h

is
 ll

oy
ch

ai
l (

se
e

S
ec

tio
ns

E
 G

1
T

he
 b

la
nc

h
po

in
t p

ic
ks

hi
m

 u
p

al
 th

e
st

ag
e

in
 h

is
 H

oe
ch

ar
tin

g
w

he
re

 h
e

be
ga

n
to

ha
ve

 d
iff

ic
ul

tie
s

.o
c)

Y
es

 'D
 F

e
lio

n
2

on
 p

lo
bl

em
I g

ic
,

flo
w

ch
ar

t

S
tu

de
nt

R
es

po
ns

e

N
o

D

Y
es

 '0
 F

Q
ue

st
io

n
3

on
 p

ro
bl

em
lo

gi
c,

flo
w

ch
ar

t

S
tu

de
nt

R
es

po
ns

e

N
o

D

Y
es

 'D
 F

F
l

S
pe

ci
fic

at
io

ns
.

F
lo

til
la

!!
A

id
s

S
pe

ci
fic

at
io

ns
.

F
lo

w
ch

ai
t A

id
s

4:
0

S
tu

de
nt

R
es

po
ns

e

I

3

<
Y

es
 0

/Q
ue

st
io

n
\

on
 p

io
bl

en
i

lo
gi

c,
flo

w
ch

ai
t
)

S
tu

de
nn

R
es

po
ns

e

Q
ue

st
io

n
4

on
 p

ro
bl

em

lo
gi

c.
flo

w
ch

ai
t F

2

E
-G

In
 th

is
 s

eq
ue

nc
e,

 th
e

st
ud

en
t e

nl
ei

s
on

ly
 w

he
n

he
 h

as
 m

al
e

an
m

ix
 in

 fl
ow

ch
ar

tin
g

th
e

pr
ob

le
m

II
he

 c
an

 c
om

pl
et

e
th

e
H

ow
ch

ar
tin

g
(C

. D
, Y

id
 H

)
su

cc
es

sf
ul

ly
, t

hi
s

re
m

ed
ia

l s
er

pe
nc

e
w

ill
 n

ot
 a

pp
ly

-

E
2

E
l

xp
la

na
tio

of
 P

ro
bl

em
 2

lo
gi

c.
 S

te
p

I.,
Q

ue
st

io
n

/

F
lo

w
ch

at
t

S
tu

de
nt

R
es

po
ns

e

<em
ed

ia
l

ex
pl

an
at

io
n,

an
sw

er
,

E
xp

la
na

tio
n

of
 S

te
p

2,
qu

es
tio

n

R
em

ed
ia

l
ex

pl
an

at
io

n,
an

sw
ei

F
l

F
lo

w
ch

ar
t

F
l

E
. ;

pl
an

at
io

n
of

 S
te

p
3.

qu
es

tio
n

S
tu

de
nt

R
es

 o
ns

e

Y
es

 1
.1

F

R
em

ed
ia

l
ex

pl
an

at
io

n

)
an

sw
er

F
lo

w
ch

ar
t

S
tu

de
nt

R
es

po
ns

e

C
on

ec
t,

E
xp

la
na

tio
n

of
 S

te
p

4.
qu

es
tio

n

N
o

D

Y
es

 D
 *

1

R
em

ed
ia

l
ex

pl
an

at
io

n.
an

sw
er

/

(R
em

ed
ia

l \
ex

pl
 n

at
io

n.
co

lle
ct

an
sw

er
 /

I'D

L1
1.

)

R
em

ed
ia

l
\

ex
pl

an
at

io
n.

'H
y

ag
ai

n"
/

R
ee

nt
ry

 p
oi

nt
 lo

r
st

ud
en

ts
w

ho
 s

ol
ve

d
S

te
ps

 I-
5

on
th

ei
r

ow
n

F
irt

he
r

w
in

k
on

flo
w

ch
ar

tin
g,

P
ro

bl
em

 2
ab

ou
t 3

0t
ra

m
es

)

O
ve

rv
ie

w
 o

f
D

at
a

D
iv

is
io

n

D
at

a
D

iv
is

io
n

In
tr

od
uc

tio
n

C
on

te
xt

:
P

ro
bl

em
 I

R
e

or
d

D
es

cr
ip

tio
n:

P
ro

bl
em

 I

R
e

ou
t

D
es

cr
 p

tio
n:

P
ro

b
em

 2

C
ou

nt
er

 i-

Q
ue

st
io

n
Q

j
ic

tu
te

 C
la

us

S
tu

d
nt

R
es

po
ns

e
R

A
l Q

s
an

sw
er

ed
,

H
-1

-E
ac

h
of

 th
es

e
bl

oc
ks

in
co

rp
or

at
es

 s
ev

er
al

fr
am

es
 o

l s
tu

de
nt

-s
ys

te
m

in
te

ra
ct

io
n,

 s
im

ila
r

to
A

 th
ro

ug
h

G
 a

bo
ve

M
or

e
de

ta
il

is
 s

ho
w

n
he

re
, t

o
ill

us
tr

at
e

us
e

ot
 e

xe
rc

is
es

 in
 th

e
co

ur
se

.
Q

ue
st

io
ns

 Q
g

%
ra

te
as

ke
d

on
e

at
 a

 ti
m

e.

N
o

"D
R

em
ed

ia
l

ex
pl

an
at

io
n

J

R
ev

ie
w

E
xe

rc
is

es
 o

n
Le

ve
ls

.
P

ic
tu

re
 C

la
us

e

C
od

in
g

S
he

et
lit

us
tr

at
i

S
tu

de
nt

 c
od

es
]

or
ne

 D
at

a
D

iv
iln

en
tr

ie
s

(o
ft-

lin
el

le
m

 2

C
ou

n
er

i .

Q
u

sh
oo

Q
j o

n
ud

en
l's

 c
od

S
tu

de
nt

R
es

po
ns

e
R

E
xp

la
na

tio
n,

co
rr

ec
t

an
sw

er
 /

m
ar

gi
ns

 lo
r

D
at

a
D

iv
is

io
n

Q
ui

on

M
or

el
 a

m
es

on
 D

at
a

D
iv

bi
on

S
tu

de
nt

re
st

 o
f D

at
a

D
iv

is
io

n

C
ou

nt
er

 j
I

Q
ue

st
io

n
Q

 O
n

st
ud

en
t's

C
or

re
ct

,
N

o
'D

R
em

ed
ia

l
ex

pl
an

at
io

n

Y
es

 'D
 'F

Y
es

S
tu

de
nt

 c
or

re
ct

s
hi

s
co

di
ng

(0
11

-li
ne

)

K
41

-I
n

th
is

 s
eq

ue
nc

e,
 th

e
st

ud
en

t s
el

ec
ts

th
e

or
de

r
in

 w
hi

ch
 h

e
co

de
s

th
e

re
m

ai
ni

ng
 d

iv
is

io
ns

LJ

/C
ho

os
e

to
st

ud
y

E
nv

iro
nm

en
t

an
d

ld
en

ti
ic

at
io

n,
 o

r
P

ro
ce

du
re

 D
iv

is
io

n
ex

t7

S
tu

de
nt

R
es

po
ns

e

Y
es

 'D

N
o

'D

Id
en

tif
ic

at
io

n
D

iv
is

io
n

M
or

e
on

us
e

of
C

od
in

g
S

he
et

In
tr

o
(f

am
es

on
E

nv
iro

nm
en

t
D

iv
is

io
n

C
ho

os
e

to
co

py
 o

r
ge

t
ex

pl
an

at
io

ns

S
tu

de
nt

R
es

po
ns

e

S
tu

de
nt

 w
rit

es
 h

is
ow

n
Id

en
tif

ic
at

io
n

D
iv

is
io

n
of

f-
lin

e,
af

te
r

se
qu

en
ce

 o
f

ex
pl

an
at

or
y

fr
am

es
.

A
ns

w
er

s
qu

es
tio

ns
on

-li
ne

.

A
t t

hi
s

po
in

t,
st

ud
en

t
m

ay
 c

ho
os

e
to

 s
im

pl
y

co
py

 a
n

E
nv

iro
nm

en
t

D
iv

is
io

n
fo

r
hi

s
pr

o-
gr

am
, u

nd
er

 g
ui

da
nc

e,
or

R
ec

ei
ve

 e
xp

la
na

tio
ns

on
 E

nv
irc

om
en

t D
iv

is
io

n
en

tr
ie

s
to

r
P

ro
bl

em
 2

.

E
xp

la
i a

tio
ns

an
d

in
te

ra
ct

io
n

on
 E

nv
r

on
m

en
t

D
iv

is
io

n

T
hi

s
is

 a
 li

ne
-

by
-I

in
e

in
te

ra
ct

io
n S

tu
de

n
w

rit
es

I

E
nv

iro
nm

e
it

D
iv

is
io

n
of

f-
lin

e

In
st

ru
ct

io
ns

on
 h

ow
 to

 c
op

y
E

nv
uo

nm
en

t D
iv

is
io

n
fo

rm
at

I
fo

r
P

io
bl

er
n

2
I

S
tu

de
n

w
rit

es
 I

E
nv

iro
nm

en
t D

iv
is

io
n

_J

S
tu

de
nt

 a
ns

w
er

s
qu

es
tio

ns
 o

n
hi

s
co

di
ng

as

st
u

en
t

co
m

pl
et

ed
 a

ll
io

ns
7

IY
es

M
-S

tu
de

nt
 s

ys
te

m
 lu

te
, a

zt
io

n
to

(
P

ro
ce

du
re

 D
iv

is
io

n.
 L

ev
el

 2

S
tu

de
nt

's
flo

w
ch

ar
t,

P
ro

bl
em

 2

Q
ue

st
io

n
Q

t

P
rin

to
ut

ot

P
ro

gr
am

 t

S
tu

de
nt

's
D

at
a

D
iv

is
io

n
P

ro
bl

em
?

C
on

ed
'

N
o

D
R

em
ed

ia
l

ex
pl

an
at

io
n

Y
es

 'D
 1

%
de

n
w

rit
es

 I
hu

e
L

of
 h

is
P

ro
ce

du
re

 D
iv

is
io

n
ro

ll

,'P
ro

 e
d

es
D

iv
is

iv
n

co
m

pl
et

e'

In
 w

rit
in

g
hi

s
P

ro
ce

du
re

 D
iv

is
io

n,
th

e
st

ud
en

t i
s

tu
to

re
d

lin
e-

by
-I

 in
e.

W
he

n
th

e
st

ud
en

t-
sy

st
em

 in
te

ra
ct

io
n

of
 th

is
 s

ec
tio

n
is

 c
om

pl
et

e,
 th

e
st

ud
en

t w
ill

 h
av

e
hi

s
en

tir
e

pr
oc

e-
du

re
 d

iv
is

io
n

on
 c

od
in

g
sh

ee
ts

.

(ji
S

tu
de

nt
: O

nl
in

e
te

st
, L

ev
el

 2

8
C

od
rn

g
S

he
et

s

T
o

K
ey

pu
nc

h

S
ou

rc
e

D
ec

k

C
om

pi
le

C
or

n
ile

d
pr

og
ra

m
 a

nd
di

ar
os

tic
s

A
ll

ac
tiv

iti
es

sh
ow

n
in

 th
is

co
lu

m
n,

 e
xc

ep
t

th
e

on
lin

e
te

st
,

ar
e

of
fli

ne
.

Y
es

N
o

R
un

 p
ro

gr
am

N
.0

C
om

pr
ia

lio
n

an
d

de
bu

gg
in

g

S
ou

rc
e

O
ec

k

Ic
..1

 J
C

L
an

d
D

at
a

ca
rd

s

O
ut

pu
t l

is
tin

g

(P
ro

vi
de

d
fo

r
st

ud
en

t a
t L

ev
el

 2
)

<
E

nd
 L

ev
el

 2
)

In
 th

is
 s

eq
ue

nc
e,

 th
e

st
ud

en
t

re
qu

es
ts

 in
lo

rm
at

io
n

N
om

 th
e

sy
st

em
 w

hi
ch

 w
ill

 h
el

p
hi

m
di

ag
no

se
 a

nd
 c

or
re

ct
 e

rr
or

s
in

hi
s

pr
og

ra
m

. S
tu

de
nt

 m
ay

 c
al

l
th

e
hu

m
an

 p
ro

ct
or

 fo
r

as
si

st
zn

ce
if

he
 c

an
no

t l
oc

at
e

hi
s

er
ro

rs
 o

n
th

e
ba

si
s

ol
 s

ys
te

m
 a

id
s.

Appendix D

COBOL COURSE CRITERION TESTS

Table D-1

Criterion Test: Level 1

Test Item

Al0

A20

A30

A40

ASO

A60

A70

A80

A90

A100

A110

A120

A130

A140

A150

A160

A170

.A180

A190

A200

A210

A220

A230

A240

Description
COBOL Concept
Reference

READ - function READ

COBOL program - number divisions COBOL PROGRAM

Record - definition RECORD

Loop - definition LOOP

PROCEDURE DIVISION - function COBOL PROGRAM

Punched cards - function PUNCHED CARD

File - definition FILE

STOP RUN - function STOP RUN

OPEN - syntax requirement OPEN

Processing one by one -
necessarily also understanding LOOP

COBOL coding

WRITE - function WRITE

WRITE - syntax requirement WRITE

Recognizing flowchart symbols FLOWCHART SYMBOLS

GO TO - function GO TO

OPEN - function OPEN

MOVE - function MOVE

CLOSE - function CLOSE

Output device - recognition PRINTER

Flowchart completion BRANCHING

Prompted coding: OPEN statement OPEN

Prompted coding: READ statement READ GO TO

Prompted coding: MOVE statement MOVE

Flowchart - tracing flow FLOWCHART
BRANCH
LOOP

Flowchart - tracing flow FLOWCHART
BRANCH
LOOP

76
7 9

Table D-2

Criterion Test: Level 2

Test Item Description
COBOL Concept

Reference

B10 Flowchart symbol recognition

B20 Picture character use

B30 Reserved words - definition

B40 CLOSE - syntax requirement

BSO ENVIRONMENT DIVISION - function

B60 Extract - definition

B70 Flowchart symbol recognition

B80 DATA DIVISION - function

B90 FILLER - function

B100 Group items - definition

B170 Prompted coding:
IF (EQUAL TO) statement

B180 Prompted coding:
DISPLAY UPON CONSOLE statement

B190 Prompted coding:
ADD statement

B200 Data-name formation:
Glossary Operative

B210 Setting up a counter:
Glossary Operative

B220 Writing a File description:
Glossary Operative

B230 Writing a PROCEDURE DIVISION:
Glossary Operative

FLOWCHART SYMBOLS

PICTURE CHARACTER

RESERVED WORD

CLOSE

COBOL PROGRAM

EXTRACT

FLOWCHART SYMBOLS

COBOL PROGRAM

FILLER

GROUP ITEM

IF ---- ELSE EQUAL TO
NON-NUMERIC LITERAL

DISPLAY . . . UPON CONSOLE
NON-NUMERIC LITERAL

ADD
NUMERIC LITERAL

DATA-NAME

WORKING-STORAGE
LEVEL 77
PICTURE CHARACTER
INITIAL VALUE

DATA DIVISION FORMAT
FILE
RECORD
PICTURE CHARA.CTER
FILLER

OPEN
PROCEDURE-NAME
READ
CLOSE
STOP RUN
GO TO
ADD
DISPLAY
MARGINS
PERIOD

8 0

77

Appendix E

THE IMPACT LIST PROCESSOR

General Introduction and Definitions

Like a set, a list is a collection of objects. These objects are related to

each other only by virtue of the fact that the person who creates the list thinks
about the list entries or members as being related. There s no extra-systematic
logic involved, and there are therefore no prima facie logical relationships
expressed other than the simple fact that the list was created as a single entity

by a user. A list then, for IMPACT CAI system, is to be considered as an exten-
sion of an author's or researcher's memory within some operational constraints.
It is occasionally useful if those individuals who choose to use list structures
think of the lists they create as having the form of a list of things to do as a
degenerate case, while keeping in mind that the forward and backward references

in a list can be used to represent trees and other very complex structures or
organizations. The fact that one can do some relatively sophisticated things with
list structures should not obscure the fact that a list is basically an easy con-

cept to deal with.

The purpose of the list structures which are being implemented is to allow a
user to store and retrieve information relative to some base with which he is

familiar, viz., the list name. All addressing is done by position in the list,

that is, 1st position, 2nd position, or i-th position. The distinction between

positions in a list and the data entry at that position is conceptually trivial,

but crucial to proper use of the list primitives. Data entries are variable
length character strings, with a current limitation of 3250 characters per item.

The list processing capabilities which will be included in the initial IMPACT

software system do not constitut language in the sense that LISP 1.5, IPL-V,

or SLIP do, because operations cannot be concatenated to form expressions. How-

ever, one will be able to use the IMPACT list facilities to deal with symbolic

data in somewhat the same manner that it is dealt with in the more commonly known

languages. The elegance and translation ability offered by these languages will
not be available except through some external manipulation by the user. One will,

however, be able to structure and store alphanumeric information with consid-

erable freedom.

It should be noted that theoretically a data name and a data entry can be con-

sidered as isomorphic when building sublists. That is, if LIST B is to be a sub-

list of LIST A, then the entry operator (an addition operator) should be able to

accept the string LIST B as a data entry per se. For the initial version of these
list primitives, however, where a data name is to be used it will be done so spe-

cifically. Figures A and B indicate what is meant. The instruction is ADDTOLIST

[LIST A 2 LIST 13]. This instruction places in the second position of LIST A a

pointer to LIST B. Figure B illustrates LIST A after execution of the command.

One might easily think of simply storing the course information from the CAI

system in a n-dimensional matrix. Indeed, some preliminary discussions on the
Instructional Decision Modell produced the cube (3-dimensional matrix) in Figure C

1See a later section of the text chapter for a discussion of Instructional
Decision Model data structures.

78 8 1

List A List B

alpha

beta

gamma

Figure A

30

5

List A List B

alpha

LIST B

beta

gamma

Figure B

30

5

as one representatjve data structure that could contain IDM data which had been

defined at that date.

Figure C

One dimension, the X axis, represents the student identification. The Y axis is

used to represent data elements, such as response times and error rates. The Z

axis represents course segments, identifiers, and attributes. There is nothing

sacred about the n-dimensional matrix, except that it is a convenient means of

representing data structures on a piece of paper. This information can, however,

be represented in the form of lists. Figure D shows how this might be done.

Student ID (X) List of Data Elements (Y) Course Segment (Z)

S0001 Response time Phase I

Error rate Phase II

Correlation C,

Snnnn

Figure D

Primitive Operators

There are three absolute primitive operations that must be available in order

to use any data structure:
(1) The ability to add information.

(2) The ability to search for information.

(3) The ability to delete information.

All of the operations currently planned are adaptations of these operations, and

in this sense are here considered as primitives. It should be noted that the

8 2
79

ability to display information either as hard or as soft copy is not a primitive

operation on the data structure itself, and is therefore extra-systematic. For

users of the IMPACT system, however, a set of "primitives" to allow one to display

his list structure is included. A description of the primitives follows.

The first list primitive is CREATE. This takes the form:

CREATE [LISTNAME]

CREATE is the operator, and LISTNAME is an IBM legal name up to 16 characters in

length. This primitive sets up a master directory entry for the named list. A

CREATE command must be issued before a list structure can be operated upon.1 As

an example, consider the list of attributes of course segments. One would say:

CREATE [SEG1]

No operations are performed except creating a directory entry for the list called

SEG1. Or, alternatively, some space is reserved by the system for a list to be

known to it as SEG1.

In dealing with list structures, addition means adding something new to a list

that has been created. Addition in this sense is therefore synonymous with inser-

tion. That is, if one adds an item into position 2 of a list containing two or

more items, the item added on the current command becomes #2, the old #2 becomes

#3 and successively higher numbered items are moved down in the list. If one

considers that access to data entries is gained by directory, there must be direc-

tory entries for positions 1 through j-1, if an item is to be added to the j-th

position in the list. For example, if a list contains 5 items, items can be added

to position 1 6 inclusively. An item cannot be added to position 7 since posi-

tion 6 has not been filled.

There arc three addition primitives designed for very specific functions. As

an example, Figure E shows the status of LIST A before the execution of an

ADDTOLIST A,2 command, and the list after XYZ is presented on the I/0 device and

after the execution of the ADDTOLIST command.

List A (before) List A (after)

Position (1) ABC

(2) DEF

(3) G1-11

Figure E

Position (1) ABC

(2) XYZ

(3) DEF

(4) GNI

The forms of the ADDTOLIST primitives are:
(1) ADDTOLIST [L!STNAME, POSITION]

This primitive allows an item of data -- which will follow on the I/0 device -- to

be inserted in the named list in the specified position. POSITION may be a posi-

tion number or a named entry.
(2) ADDTOLISTDE [LISTNAME, POSITION, DATAENTRY]

This primitive inserts the data entry which is a part of the command -- into

the specified list in the specified position. POSITION may be a position number

or a named entry

1CREATE is also extra-systematic in the sense that adding something to a given

list in the first position for tIle first time affects the creation of that list.

We give it as a primitive for convenience.

80
8 3

(3) ADDTOLISTDN [LISTNAME, POSITION, DATAXIME]
In this primitive DATANAME is a key word for the address Of the item to be inserted

or for the name of a sublist. The item or list fc'.1nd at thr address specified by

DATANAME is inserted into the specified list at th ,.. sr;.ecified position. POSITION

may be a position number or a named. intry.

There are two DELETE primitives, The forms are:

(1) DELLIEFROMLIST [LISTNAME, POSITIflN]
This primitive deletes the list item in the specified position from the specified

list. POSITION may be a position number or a nar;:ed entry. .

(2) DELETEALL [LISTNAME]
This primitive deletes the specified list from .the ma7iter directory. Deleting an

item from a list does not physically remove the item. The list directory entry

which points to a deleted item is removed. The master directory is ipdated to

reflect the decrease in active list directory entries. Figure F shows the list

before and after the command

DELETEFROMLIST [8,2]

The square brackets around the second item in List B (after) indicate that it has

been deleted, as does the null operator (0) where the entry number would be.

List B (before) List B (after)

Position (1) alpha

(2) beta

(3) gamma

(4) delta

Figure F

Potian is1) alpha

1(0) beta]

(2) gamma

3) c'.!:.

Figure G shows the list directory before and after execution of the same command.

The 16 byte list directory entry foi beta has been removed.

List Direcary (before)

16 byte entry 16 byte entty
for alpha I for beta

16 byte et-0-y
for gamma

16 byte entry n
For delta

List Directory (after)

16 byte entry 16 byte entry[
For alpha t,or gamma

16 byte entry
for delta

Figure G

Deleting an entire list does not physically remove the list from the disk.

The master directory entry for the 'list is flagged. When the master directory is

searched this entry will not be scanned. The entry and its associated list are

erefore nonexistent to the list processor.

Figure 11 shows the master directory before and after the command

DELETEALL [B]

A description of the master and list directories is presented in the section

on "Implementation Detail."

84
81

Master Directory - Before

36 bytes 36 bytes 36 bytes 36 bytes,....sa",,,....:..,,,......^,
r)7:100'.

Entry for
list A X'00,

Entry for
list B X'00'

Entry for
list C X'FF'

t....-----,..../ t ----,---" t--,......., t si.......,,,...,
code 35 bytes code 35 bytes co,.le 35 bytes code 35 bytes
1 byte 1 byte

(active emy) (active entry) (ortive entry) (inactive
no more entries)

Moster Directory - After

36 bytes 36 bytes

X,00,
Entry for
hst A

X'OF'
Entry for

list B

t ----,,--0 t .-...--....,.....
code 35 bytes code 35 bytes

36 bytes 36 bytes

VOW
Entry for
list C

X'FF

t -----,...........t,........
code 35 bytes code 35 bytes

(active) (deleted) (active) (inactive
no more entries)

Figure H

There are six primitives to display list items or entire lists. The forms are:

(I) DISPLAYS [LISTNAME, POSITION]
This primitive displays on the CRT the item in the specified position of the

specified list. POSITION may be a position number or a named entry.

(2) DISPLAYH [LISTNAME, POSITION]
This primitive displays on the printer the item in the specified position of the

specified list. POSITION may be a position number or a named entry.

(3) DISPLAYALLS [LISTNAME]
This primitive displays on the CRT the entire list which is specified.

(4) DISPLAYALLH [LISTNAME]
This primitive displays on the printer the entire list which is specified.

(5) DISPLAYSOFT
This primitive di$plays on the CRT the master directory.

(6) DISPLAYHARD
This primitive displays on the printer the r-aster directory.

There are two primitives to search the specified list. The forms are:

(1) SEARCHP [LISTNAME, POSITION]
This primitive searches the list directory of the specified list to determine
whether the specified position is in the list. POSITION may be a position number

or a named entry.
(2) SEARCH [LISTNAME, DATA ENTRY]

This primitive searches the specified list t 1ctermine whether the specified data

entry is in the list.

Use

It is anticipated that these list primitives will ultimately be used under the

aegis of the Mediator System outlined in Chapter 6. Therefore, they are designed

82 85

as stand-alone calls on the list processing routines. It is also expected that

these list primitives will be interspersed with ICAIL commands. It should be

noted that a list simply represents a data structure into which information is to

be stored ,ind from which the same information must be retrieved. A list proces-

sor, in its most primitive form, such as the one described above, performs no

operations upon the information that is stored in this particular type of data

structure. These operations are left to other processes that must occur in the

system -- namely, the manipulation of information through computation, arrange-

ment, or editing. Similarly, the movement of.data from one structure to another

is an issue separate from the storage and retrieval of such information.

Thus far, efforts on the list processer have be-n confined to the data struc-

ture and directory design indicated above. It is assumed that the user of the

information will handle his own data manipulation. As examples of how the list

processor may be used, however, consider a possible application within the ICAIL

framework. Assume that student response information is maintained in counters

and ultimately recorded in a list. Assume also flu, for some analytical purposes,

one wished to find the mean of a subset of the counters. This process would

involve:the following logical operations:1

(1) Using a series of ADDTOLIST calls, store the contents of the counters

in a list or set of lists.

(2) Search the lists for the information stored in step (1).

(3) If the information is present, accumulate a total in a counter, and

in another counter record the number of ,LJccurrences of found infor-

mation. Then see step (4) below. If the information is absent,

ignore step (4).

(4) Compute the mean.

Note that steps (3) and (4) are totally independent of the list processor,

and can be accomplished by other processing vehicles. This is a point of Coherent

Programing, which should not be ignored. It is especially related to the notion

of keeping the purpose or end use of a module out of the module itself. More

experience in the use of list processing will come about as the Project develops

more sophisticated needs and techniques. The reader is also referred to Chapter 6

for a brief discussion on the role envisioned for list structures in the Instruc-

tional Decision odel.

Implementation Detail

There will be a master list directory which contains information about the

characteristics of the individual lists. Each entry in the master directory will

be 36 bytes in length. Figure I i!; a diagram of the master directory, followed

by an explanation of the fields.

Each list will contain a list directory as the first 1600 bytes. This di-ec-

tory consists of 100 entries, each entry being 16 bytes in length. Figure J .s a

diagram of the list directory followed by an explanation of the fields.

File maintenance will be accomplished through a separate program. The delete

primitives will merely flag the entries to be deleted -- that is, logical deletions.

Hole-filling will not be done, so a daily condense and update of well-used

files will be necessary.

Each list is a file on disk using the relocatable library of supervisor.

The procedure monitcr is resident and will call the list into a pre-

determined area.

Each instruction will be edited before branching to the primitive function.

1 Assume that the times at which these operations are
performed are disjointed.

8 6
83

Master Directory

I CODE NAME

NAME (cant'd)

NAME (cant'd) FILE

IFILE (cant'd) CYCL E TRKE RECE DELR

IDISP RES

IRES (cont'd)

CODE 1 byte
A code of X'OO' indicates that this is an ri,.tisre entry.
A code af X'OF' indicates that this entry bus been deleted - the associated list is no longer

available far processing.
A code of X'FF' indicates that there are no mare active ent:ies i the directory. Initially all

codes are set to X'FF'.
NAME - 16 bytes

The name of the listup to 16 al mumeric characters.
FILE - 5 bytes

The disk address of the first position in the listgiven as CCHHR (Cylinder, head, record).
CYCLE Number of cylinders far list - 1 byte

A binary number, indicating the number of cylinders which this list encompassesthe extent
of the file.

TRKE - Number of tracks being used - 1 byte
A binary number, indicating the number af tracks currently being used by this list.

RECE - Number of records - 2 bytes
A binary number telling the number of active entries in the list.

DELR - Number of recarck deleted - 2 bytes
A binary number telling the number of deleted list entries.

DISP - 4 bytes
This entry pa:r.ts to the next available position in the list - gives the number af bytes currently

in the list.
RES 4 bytes

Gives the amount of space remaining an the disk track.

Lists will ,consist of physical records which occupy an entire track of the disk.
When a list iS brought into memory an entire track will be brought in, modified,
ana put back on disk.

An entry in a list may be a pointer to a sublist or to a list of lists.

General Register Conventions

Register usage for the list procedures is as follows:

Register Use

0 Used by DOS
1 Registers 1 and 2 will be used mainly for the
2 TRT and TR instructions

84

Register Use

3 Points to LDD

4 LDA interface with Coursewriter

5

6 Base register for master directory DSECT

7 Base register for list directory DSECT

8 Base register for parameter list DSECT

9 Disk address

10 Core address for disk get and put

11 Work register

12 Base register for subroutines

13 Pointer to save area

14 Link register

15 Branch register

Each subroutine

List Directory

tilSPD

save and restore all re2jsters.

SUB DIS

CYL

REF

TRK LENGTH

NAM

NAM (cont'd)

DISPD - 4 bytesCode and displacement
SUB - I byte

A code of X'00' indicates the entry is positional.
A code ofX'OF' indicates a named entry.

A Code of X'FF' indicates a pointer to another list or sub-list.

DIS - 3 bytes
This entry gives the buffer displacement for the list item.

REF - Cylinder and track reference and length of entry

CYL - I byte
Th:s entry gives the number of the disk cylinder which contains
the list item.

TRK - I byte
This entry gives the number of the disk trczk which contains the

list item.
LENGTH - 2 bytes

This entry gives the length of the list item.
NAM - 8 bytes

This entry gives the name of the list.

Figure J

8 8
85

