

ABSTRACT
Burton，Nancy $\quad \mathrm{R}$. ；And Others Thé Effect of Position and Format on the Difficulty． of Assessment Exercises．
［Apr 76］
14p．；Paper presented at．the Annual Heeting of the American Educational Research Association（6．0th．Sain Prancis̀co，California，April 19－23，19．76）

MF－\＄0．83 HC－\＄． 1.67 P1us Postàge。
EDRS PRICE Age Differences；＊Complexity＇Level；Educational Assessment；Guessing（Tests）；＊Multiple Choice Tests； National Surveis；＊Response Mode；＊Response Style （Tests）；Statistical Analysis；Test•Bias；Testing P＇roblequs
＊I Dont Know Response Optign（fests）；National Assessment of Educational Irogress；Test format． formats－multiple－choice with an：＂I don＇t known（IDK）option， mpltiple－choice without the IDK，and open－ended－－werf placed at the beginning，midde and end of 45 －minute assessment packages ： （instruments）．．A•balanced incomplete blocks analysis óf variance was computed to determine the biasing．effects of position or format on the national percent correct．Format was found to create a bias，but position did＇not，except for 9－year－old respondents：（Author）
＊reproducibility are of ten encountered and this affects the quality．
＊of the．microfiche and hardcopy reproductions ERIC makes available
＊via the ERIC＂Document Reproduction Service．（EDRS）．．EDRS is not＂
＊responsible for the quality of the original document．Reproductions＊
＊supplied．by EDRS are the best that can be made from the original．

EDUCATION

- THIS DOCUMENT HAS BEEN REPRO. DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAESNATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY
- THE EFFECT OF POSITION AND FORMAT ON THE DIFFICULTY OF ASSESSMENT EXERCISES \& ".. by

Nancy W. Burton, Robert .C. Larson and Alex M. Pearson
National Assessment of Educational Progress
PERMISSOON TO GEPRODUCE THIS COPY RIGHTED MATERIAL-HAS GEEN GRANHED BY

to ERIG and ORGXNIzations operating UYDER AGREEMÉNTS WUIL, THE NATIONAL IN. SIITUTE OF EOUGATION FURTHER REPRO DUCIION OUTSIDE THE ERIC SYSTEM RE QURES PERMISSION OF THE COPYRIGHT

Paper prèsentëd at annual convention of American. Educational Research Association, 'San Francisco, April: $1976 .$.

Näncy W. Bứrton; Robert.C. Larson and Alex M. Peàrson
Naitional Assessment of Educational Progress

Perspective.

The National Assessment of Educational Progress has the charge \therefore of gathering and reporting educational achievement data that are

- an accurate representation of absolute performance now: e.g. ${ }^{2}$. $\%$ of the nation's nine-year-olds can multiply
3 x 0 (NAEP, January 1975)
- a precise representation of performance now relative to perfofmance three to seven years ágo: : e.g., in 1973 , 47% of 17 -year-olds knew the purpose of an electrical transformer. 4 This is a 13\% decline since 1969. (NAEP, May 1975)
i
The baseline measure of absolute performance must be reliable. though not necessarily in the accepted psychometric sense. "It may 'be better to say, that the measures pust be "accurate." A measuré maý be reliable without being accurate: a scale that consistently - adds ten pounds to ône's weight may be perfectly reliable.

For the relative change measures, reliable biases are unimportant, since the difference between two biased measures is the same as the difference between two unbiased measures, if the bias is simply a cofftant that cancels out. However, the bias in a measure may also change ovet time. Suppose, for example, one saw an increase of $2 \%^{1}$ in 13 -year-olds' performance on a certain reading task. Suppose, however, that there was also a 6% declind in the non-response hate: suppose, that is, that 6% more respondents were guessing rather than leaving the item blank. Even iff children could guess no better, than chance, one would expect $1.5 \%^{\prime}$ more shildren, on a four-alternative item, to get the correct answer because of that change in response patterns. This would change a statistically stable'2\% improvement to a non-spignificant . 5% improvement.

National Assessment has always used an "I don't know" föil on all, cognitive multiple-choice items'to discourage 'respondents from guessing. Guessing not only, inflates the estimation at one, point in time of the percent of respondents who can do the task, but also, a change in guessing behavior, (as illustrated above) can affect the interpretation of a change in percent of success over time. Unfortunately, the pattern of response to an "I don't know" (IDK) foil

[^0]can also differ for different groups. Sherman (1974) found that - some southeasterners, females, blacks, and rural persons use the IDK poorly. Thus the "I don't know" can contribute to bias'in a. 'measure at one point in time or change measures over time, as much as a differential tendency to omit items.

Other potential sources of bias over time include changes in procedural matters,. such as training for experience of test administrators, or school cooperation, or type of print used, in packages (test bookletss), or the voice which reads the exercises on tape. - One of the most, serious potential sources of bias arises because National Assessment releases some exercises for, publication and does not, reuse them. The remaining unreleased exercises are then repackaged ánd reassessed for change. Since they have been repackaged, thiey are presented for the second time in different orders, different contexts, and different positions. Any of these variables may affect performance and thus, either mask, or exaggerate the change in performance over time.

Thus; National Aşsessment measures ọf change as well as baseline performance must be extremely accurate. From the first, Nationall Assessment has devoted great resource's to precise sampling desigh. In the last few years, it has also begun to devote resources to locating sources of non-sampling error. Many of these non-saproling, errors have been dismissed'as unimportant on conventional tests. Conventional, tests are collections of items, thés sum of which is taken to measure a rather globally-defined trait-̈̈such as "intelligence" or "arithmedic achiévement"--and, then only relative. to some norm group. Inaccuracies due to individual items and the examinees' response to them can, to some extent, be supposed, to average out in the total score. Because of NAEP's item-by-item reporting, thése errors once again become important.

Objec'tives.

The purpose of the present study was to determine the effect of two sources of non-sampling error: position in package (beginning, middle or end of the assessment instrument) and exercise format - (multiple-choice with an "I don't know" alternaṭive, multiple choice without IDK, and openrended).. Obviouisly', position in package is a source of error that one cannot eliminate, since some exercise or other always must be first, middle ar last in a package: It. is a source of error that can be held constant over time, however, if it is found to be important.. Further study of the IDK foil may show that it shoul"d be dropped (in future item development: it cannot be dropped from change exercises even though bias is strongly suspected); replaced, with corrections for guessing; retained; retained but supplemented. with corrections for guessing. The present study can provide some data to answer these questions; however, i.t must be emphas'ized that the present data were allcollected at one time and so questions about change analyses cannot bé fully aṇswered.

The present study was included in the 1973-74 assessment of Writing and Career and Occupational Development. It is, therefore, based on national probability samnles of 2,500 9-year-olds, 13-year-, olds or 17 -year-olds fior each item. At each age, nine different packages were involved, and thus nine different samples of 2,500 respondents. Each package was a block in the 3^{3} balanced incomplete blocks design used at each age. The three factors in the design were

- exercise content - three different science questions were developed, such that exactly the same stem was used for both multiple-choice and open-ended formats;
format - multiple choice with IDK, multiple without IDK, and open-ended; ${ }^{*}$
- position in package - beginning, middle, end.

Each of the nine packages contaxned three exercises which represented each content, each format and each position. For example, package \#l at age 9 :contained

Beginning

Exercise about bloôd circulation.
Multiple-choice without IDK.

Middle
Exercise about.
largest living animal',
Ophn-ended

End

Exercise about lightning and thunder, Multiple-choiće with IDK

See attachments 1,2 , and 3 for the wording of the exercisses in .the multiple-choice and IDK format. Attachments 1, 2, and 3 also give the natiqnal percents for each foil (including IDK and no response) for each exercise, format and position.

Results.

The design was set up so that the analysis of variance estimates for the main effects were unconfounded with blocks, but all interactions were partially confounded. ${ }^{2}$ To get some independent estimate of these block effects, a marker exercise was placed at the end of each of the nine packages. This marker exercise allowed an empirical estimate of the sampling variability; it also contained variation due' to the accumulated effect of differing contexts of presentation, since.the nine packages all contained different Writing and COD exercises. This marker exercise contained five parts. (five different questions aboút reading a map). The variance component due to parts within blocks--that is, the natural variation in the difficulty of the five questions--was at least 50 - times"greater than the component due to the block effect. Thus the-block effect, though

[^1]in some cases statistically significant because of large sample sizes, was very small compared to the normal variation among exercises. There is a second reason for disregarding possible block éffects. Inspection of the analysis of variance tables (attachments'4, 5 and 6) shows that the mean squares for confounded interaction parts were about the same size as the mean squares for the unconfounded interaction parts. Both of these pieces of evidence indicate that the main within blocks analysis can be interpreted sțraightforwardly.

At all ages, there was a large main effect for exergise contents-which is simply tg say that some questions were harder than others. There was also a main effect forformat. Qnly at age 9 was there a significant position effect. It did not appdar to be a fatigue effect, which might be expected with these young children, but rather a disadvantage in performance to the beginning-of-the-package exercises.. It should be noted that these beginning exercises were never first in package, but simply occurred within the first five minutes of testing. Again at all ages there were conten't by format interactions, which can basically be interpreted as proving that some tasks are more difficult than others in the open-ended format.

- The significan't format effect deserves'further discussion. Exhibit 1 displays the mean percent correct (averaged over the three positions) for each exercise in each format at each age.

Exhibit l. Means and Standard.Deviations (in parentheses) for Three Different Formats of Exercises

Age 13

*Standard deviations in the "average" column are the square roat of pooled within-cell variances.

The "overall average (the last line in the table) shows a large difference between open-ended and multiple-choice formats and a smaller--but still statistically significant ${ }^{3}$-difference between the two multiple-choice formats. . Having the "I don't know" foil does reduce the overall, percent correct. Having the "IDK" may slightly increase the variance, but this experiment was not sensitive enough to detect it. ${ }^{4}$

Importance of the Study.

This is one of a series of studies to locate sources of nonsampling errors in the estimates of performance on assessment tasks. The goal is to increase the accuracy of baseline and change estimates. Considering that, in the first assessment of change in Science, the average deqline in g'year-olds' performance was 1.8%; 'in $13 \mathrm{~s}^{\prime}$, 1.9\%; and in 17s', 2.3\% (NAEP, February 1975), it is obvious that great precision. is required to detect chapges.

This study has resulṭed in several further investigations. Because of the stability of the small block (package) effect, NAEP staff is now looking at methods of adjusting sampling weights to make packages more comparable. Because of some indonsistency in performance of IDK vs no-IDK multiple-choice exercises, staff is continuing to examine the use of i.tem-scoring formulas fersions of correction-for-guessing techniques) as an alternative to the "I don't know" foil: These"investigations will hopefully lead to new techniqués for increasing, the accuracy of assessment results.

REFERENCES

NAEP Reports.
Math Fundamentals, Selected Results from the First National Assessment of Mathematics, Report 04-MA-01, 1972-73 assessment. Washington, D.C.: Goverñent Printing Office, January, 1975.

Na'tional Assessments of Sciéence, 1969 and 1973, A Capsule Déscription of Changes in Science Achievement, Report 04-S-00. . Washington, D.C.: Government Printing. Office, February 1975:-
-Selected Results from the National Assessments of Science: Energy Questions, Report 04-S-01. Washington, D.C.:' Government Printing Office,'May, 1975.'

Sherman, Susan W. Group Differences in Responding "I don't know" as an Alternative in Multiple-Choice Exercises. Unpublished doctoral dissertation: Chapel Hill, N.C.: 1974.

Winer, B. ${ }^{-}$. Statistical Principles in Experimental Design, second edition. New York: McGraw-Hill, 1971.

Attachment $4 \cdot$ Analysis of Variance'Table for Age 9 Design

[^2]- Attachment 5."Analysis of Variance Table for Age 13 Design

Attachment 6. Analysis of Variance Table for Age 17 Design

[^0]: ${ }^{1}$ A 2% increase, since, there are 3.6 million l3-year-olds in the

 $$
 \text { nation, means that } 72,000 \text { more children can perform the reading }
 $$

[^1]: ${ }^{2}$ Components of the interactions were calculated by the modular arithmetic method described in Winer (1971, p. 606ff).

[^2]: $*_{\alpha}<.01$

