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CHAPTER 1

INTRODUCTION

.The basic premise upon which this report rests is that the devel-
opment and advancement of theory in education, the generation of data
and theory -direetly relevant to school programs and individual class-
rooms, and the opportunity to examine complex educational. questions
await the developmént of an appropriate methodology. ‘Such a premiseé
is similar to thaé made by George Mandler (1967) in discussing con-
temporary épproag es to the experimental study of learning processes.
He ,suggested, for example, that contemporary research on human learn-
ing emphasites an-'"active,'" rather than a "passive" organism, and a
shift to the study of "complex' processes —-- without the necessity of
conducting "complex experiments.' The latter coup was attributed to
the development of and advances in our knowledge concerning research
_methods. . : '

‘  Similar types of comments Have been made by Fiske (1973) in’
discussing the need for process-type research in the personality
area. He suggests, "the\central but only vaguely recognized need is
for intensive work on the basic strategy of psychological research,
especially in the personality domain," and further asks, "can we
study the important psychological processes in the laboratory or
testing room? How can we be sure of the occurrence of the postulated
process? Or do we definé each specific process simply as that which
we presume to occur between a particular stimulus and a designated
type of response." Fiske also suggests that laboratory research, in
addition to facing problems regarding the replicability of process-—
type phenomena, faces an almost insurmountable problem == th?t of
determining the degree to which the findings are generalizable to
behavior in general. - |

. {

Wohlwill (1973) has also addressed such questions from/the per-
spective of developmental psychology. In addressing the question
whether developmental research belongs in an "experimental' or "dif:
ferential camp, he suggests, "it turns out that the study of develop-
mental change does not readily fit either. of the two models, at least
in their simplest form. On the one .hand,.the study of age changes
in behavior differs, in certain important respects, from lcomparative,
differential investigations involving other interpersonal ‘characteris—
tics, e.g., the study of sex differences. On the other hand, even
when development is subjected to direct experimental attack by mani-
puiating the conditions of experience ih a controlled manner, the
situation still deviates in some critical ways from that which ¢bn-
fronts the experimentalist dealing with nondevelopmental problems. ¥
Thqs,‘gp oncern with development gives rise to very P
requirements and considerations as regards experimental me
research design, and scientific inference. To put it succin
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The canons of the scientific method, as‘they-have been worked out for
the field of psychology at large, requiré.modification when applied
* to dé&flopmental problems." '(16-17) . .
] . \ !
o S Tﬁ%ﬁpomments of Mandler (1967), Fiske (1973), and Wehlwill (1973)
::ﬁ\\ are & uaigqugg;opriate to educational research, not only because of
+ " the ;gkﬁiéf~ox§flap of content across these disciplines, or the common
_call for\the devélopment of ‘new methods, but also because €ach has
called for 3 Q¥SEudy,of’the respective phenomena in the environmental
contexts in W <ch they occur and because each calls for the fur ther
develobmen'foﬁgfé earch methods which provide for direct, unconfounded,
) and genexaliz }e\s?timates of these Pprocesses as they change with time.

) i S .
. MNAL AND CROSS—SLCTIONAL METHODOLOGY

’
3

. 5 -

Some History of shd the Interdisciplinary Character of Léngitudinal Research
As “Sontag (1971) has noted, longitudingl méthodology is by no means
under the exclusive purview of develdpmental psychology. Its roots are -
found in a variety of disciplines including. demography and multiple
social 'sciences, life sciences, and phy&ical sciences. Yet, he »
suggests that the term longitudinal research evokes freé associations
of a "womb—to-tomb" research plan, indHequate research“design,’’ inexact -
measurement, and an inadequate and inordﬁnately expensive research
product. Yet, and somewhat paradoxical, the longitudinal method and the
superiority of longitudinal datq\iver cross=sectional datay réemains K
essentially unquestioned in educational *and developmental research;
e.g., Hilton & Patrick (1971). Similarly, cross-sectional\Ekthodology
is seen primarily as a convenient but approximate substitute for
longitudinal measureméent. ™ ™ ' S~y

°

The qualms of scientists regarding the\tée\of\iongitudinal designs’
can be traced to a number of relevant problkems. Far example, the use )
» 'of a,longitudinal design usually requires that the experimenter "age)
with his subjects, the fact that the exper{menter canqu control the
subjécts' experiences between the several times. of testing, subject.
aftrition, and perhaps more important, the fact that the longitudinal
method commits the experimenter to a specific design and the use of AN
specific measurement instruments over the duration of the study. . :’-\-\; .

Such difficulties have been noted as early as 1741 by Sussmilch who
also, by the way, commented on the problems of. generalizability of -
using what we now call cross-sectional methods . .

Quetelet (1835) and Galton (1883) were advocates of the cross— _
sectional method, yet it was not until the 1920's that the terms
longitudinal (Blatz & Blott, 1927) and cross-sectional (Gesell, 1925)

. were used to designate the different methods, and it was Anderson
(1931), in his classic cortribution to developmental methodology,
who affirmed their use as EEChpiEal terms. :

-

-
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Cons1dering the 1mportance and use .of longitudinal and cross- <7

sectional methodlology in educational ahd developmental research it .
is unfortunate, and surprising that comprehensive and satisfactory
' "discussions of the problem are unavailable in the educational literature.
As an exampl€, it is in demography where significant advances have N
been made (e. g., WVhelpton, 1954). The lack of consideration of these
advances in other disciplines is partiqularly unfortunate s1nce as
one case, in point, large-scale educational research related to student
. development has borrowed conventional des1gns only. from developmental

- C “designs used by .the demographers.

: "Experihental” and "Descriptive" Designs and Variables

Paral;el types of criticisms have been directed to studies
utiiizing longitudinal and cross-sectional samgiing des1gns. The
o primary criticism relates to the difficulty in assigning causality
. or the directionality of relationships in Such studies (Campbell & )
. , Stanley, 1963; Russell, 1957; Spiker, 1966) and the inability to
subscribe fully to the principles of experimental design when these (
procedures are used. As an example, chronological age is a biotic
\\>\s\\%\\;§iizole not amenable.to random assignment, replication, etc, Yet,
ting the principle that only properly randomized experiments
can lead seful estimites of-causal treatment effects, is a po-
tential trap for educational rese hers. As examples, it may lead edu—
cational researchers to reject one o the primary (if not the primary)
problem in the field -- iLe., the estimation of the influences of
. , educational (e.g., "classroom) expetiences on performance; it can
lead to the design of educational research blindly following~the prin-
ciples of experimental design at the expense of the crucial focus -—

. the critical-agalysis of educational environments, and the attendant = - .
individual-environment interactions. It also encourages ''laboratory" .
investigations rather than studies which take place in the less—
controlled educational context. .And, it encourages investigations
where data” are collected at ‘one time of measurement rather than

, . longer-term studies and p0551ble sacrifices in ‘external validity

foF gain in 1nternal validity

e

tl*( In addition the costs, in terms of time and money are indeed
prohibitive when experiments are conducted "(Rubin, 1972). This
is true since it is imposs1b1e to perform equivalent experiments to :
test all treatments on even a single educational question (e.g.,
'\\\ ex ining 100 reading programs). &nd, the above argument has not :
.. 1included the argument that the exclusive use of experimental variables
Lo ) precludes the study of .certain educational questions or that rnadom
'aSSignment cannot be ethigally used as a proeedure in certain types of
studies. ’ ) . L
€ e . . * & 'y
Several of the questions and issues discussed above relate to
questions 6f research design and methodology and are addressed in Chap—

« terd 2 a«nd 3.

¢

. .
] . ‘ v

f . ! . 5 »




b

ERIC

Aruitoxt provided by Eic:

k)

-

_problem is reported. )

i N ‘ ’ * 1"'4

s -

Specific Methodological Problems in, Longitudinal Research
- v -
L ‘ * .
Longitudinadl gqﬁaies confront numerous difficulties, only a

fraction of. which'were addressed wjthin the confines of this project.
A variety of issues involved in the peasurement of change are considered
in Chapter 4. Of particular concerr in Chapter 4 are difficulties
caused by characteristics of scales commofly used for standardized
achievement tests. - ’

Studies, whether longitudinal or cross—-sectional, wh{ch focus on
student achievement over a period of several years typically require
different measures of achievement at different gradessor ages. In
order to make comparisons of athievement' over time such tests must
be put qn a common scale, i.e. they “must be vertically equated. - In -
Chapter 5 the adequacy of the vertical equating-of some existing
standardized achievement tegts 1is investigated and a study exploring
the potential jutility-of the Rasch model for .the vertical equating

- fl

- R f

Several attempts’at using analytical techniques'devéloped by Jores-
kog fop* the analysis of covariance structures are discussed in Chap-
ters 6 and 7. 1In Chapter 6 the*focus is on the fit of several sets of
data to-a Simplex model and in Chapter 7 the focus is’ on the usgﬁpf -
these techniques .to evaluate the constancy of constructs over time.

0

.

Time-Series Analysis in Longitudinad. Research
° *

[ .

* ' Frog its very name, time-series analysis seems (o be a ;echniqué4
especia M

suited-to longitudinal research. A gasual study of its
methodology reveals, however, that——as traditionally conducted--it
is‘applicable more to sequential cross sectional research. 1In
d 8 we first present an elementary exposition of time-sgries
analysi®y then indicate the difficulties in applying it to data from

“longitudin studies as frd;narily conceived, and finally proppse &
new m oq\fo estimation o. Rarameters in time-series 'models that is
especial Ty 8d. to longitudinal data.

ik :

. In brief, th ~£}g gtleswﬂ£§h~the traditional procedures for
parameter-estimatjon im ie-series analysis are that (a) they require
a large number (> §0) of ti *noint observations, and (b) they ignore
the correlatedness ta across time. A procedure which
avoids these difficu s is propose and¢5uhcessfuLLy ﬁested by means
of two nuheriéal‘exam e other using °

Qqe bésggwgz\rea; data and th
simulated data. ‘”QQ\‘\\\\ Sy * 7
| 3 |

- t
Measurement Jf Change .

._" . )
The time-honored problem of measurement of time change is

revisited in Chapter 9. Difficulties with the traditional assumption

of "universally uncorrelated errors" are discussed in this context,

.

(

¢
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. and a relaxed ass;gption of "homogeneity of error covariances" is .
proposed. Under #he latfer assumption, lower and upper bounds for es=—.
timated time change are derived, utilizing the mathematics of operator
analysis. .
. N . . L
' .An example ba¥ed on real data is«presented,.and it is shown that
the ‘uncorrelated-errors assumption leads to an absurd result (a '
multiple-R greater than unity), while the relaxed condition yields
. reasonable and useful bounds, : ) ’
. t”& . ) . .
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S CHAPTER 2

o
.V

» THE STUDY OF BEHAVIOR'CHANGE OVER TIME )

. OVERVIEW-

- &y - ~

The study of time-related behavior change comes in varied forms.
To the developmental psychologist, such a research focus most typically
implies the study of. behavioral development, For the sociologist, such
a purpose more likely wduld imply the, study of social or saciocultural

change. UThe educational researcher is concerned with each of these in °

a very direct way. We are concerned with how the populatlon of school
children changes across time, e.g., years or decades, and with the per-,
formance chanées of specific groups of children as they pass through
suctessive school grades. The first two purposes notwithstanding,

the educational regearcher is often confronted with a third and wmore
specific questioncg? e., the _assessment of the influences of schooling
or educatlonal intervention. The differences, similarities and-inter-.
relatlonshlps among these various research ﬁuestlons are discussed

in detail in.various sections of Chspters 2 agd 3. It is our intention
to examine various research designs and theoretical models which fit
such estions. Several theoretical assumptions which underly these
questiogns are also examined most specifically as they apply to longi-
‘fudinal methodology. - These questions and designs are discussed in
“this chapter in the context of conventional procedures and sampling
methods. Modific¢ations and extensions of such designs proposed by |
Bell, (1953), Schaie (1965) and Baltes (1968) are presented and dis~
cussed. In Chapter 3 general sampling procedures are presented ’
which can be adapted CG the theoretlcal model .and assumptions adopted
by the researcher.

. v

% :

Many of the inferences of. this paper rest on the assumption that

educational researcgylike developmental research, can be described -
by problems which take the form :

‘B = fSTL’ . .

where "B" refers to the behavior or behavior changes to the studied,

and "T" refers to the time period over which the assessments are made

(Baltes and Goulet, 1971). As will be stown, most designs used in
educational research can be described by the above paradigm even though
‘they represent only the simplest cast of a more general model for
research concerned with charges in behavior associgted with time.

These research designs- are discussed and their limitations in the
contekxt of educational research are noted in the next section.
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- SIMPLE DESIGNS FOR EDUCATIONAL RESEARCH

. Schaie (1965) has noted that the paradigm B = f(T) described
" above spawns three alternate research designs, generally known. as

the cross-sectional method, the lomgitudinal method, and the time-
c- . lag method. These three designs differ in terms of thé procedures
used to draw the samples of interest and the time period over which . N
measurements are taken. With the cross-sectional design, for
example, samples of different ages are tested at,the same point in
time. As will be shown, such a design has limited usefulness in edu-
cational research. The longitudinal method requires the testing of
samples with the same birthdate (or alternately samples who are in
the same school grade) at different points in time. Such a design-
is perhaps the most popular of the three in’'the context of educational ,
research since the <hildren can be followed over periods of time when ’
they are enrolled in schoel. \ )

It is important at this point to mention that the longitudinal
design is amenable to both between—S and within-$ (i.e., repeated
measurement) testing procedures. A$ mentioned above, the basic

. requirements of the longitudinal design are met if Ss with the same

birthdate are tested at two or more points in time. This may be -
accomplished through the repeated testing of the same sample of Ss;
. i.e., a within-§ longitudinal design. With a between-S longitudinal
desigm, samples of Ss can be randomly drawn from a population born
] within the same period, with each sample being assigned to testing
at one of the times of measurement represented in the investigation.
lv
The time-lag design, the least used in edugational research,
yet perhaps the most powerful of the three designs for educational
purposes, requires ‘the testing of samples with different birthdates ’

' at the same chronological age. This, of course, requires testing the

samples in t?e order in which they are born:
e .

These,thfee designs are represented in Figure 1, with the cross-
sectional {X<) design conforming to the vertical (cross-row) compari-
sons, the longitudinal (Lo) design* conforming to the horizontal
(cross—column) comparisons, ‘and the time-lag (Tl) design conforming
to the diagonal comparisons. As Figure 1 also illustrates, a par- .
ticular sample of Ss is fully described:.by three components, date of
birth (cohort), age, (A) and time of testing (Schaie, 1965). Note,
however, that the sampling model described in Figure 1 makes o ref-
erence to the level of educational attainment (e.g., school-grade)

! of the respective samplés of subjects defined by the model. It is
apparent that_any prototypic design for educafional research must '
provide for the estimation.of such a parameter and this is discussed
in later sections of the chapter. However, at this point it is most
relevant to contrast the three alternate designs as they incorporate -
this parameter into one of the three already described.
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. Educational Attainment and the Cross-Sectional Design -

Studies concerned with educational phenomena and utilizing’ the
cross—-sectional sampling procedures implicitly or explicitly incorporate
educational experiences as part of the age component. Examples are
stud1es where the samples of Ss tested differ in CA by a minimuﬁ of
one year or a minimum of one. 'school grade. As is apparent, such’a pro—
cedure yields results which confound amount of schooling and other com-

. ponents of CA-related behavior change and, thus, the effects of educa-

‘tional experiences can be estimated only in conjunction with  these

other factors. Furthermore, the cross-sectional method requires the

added assumption that the effects .of schooling for children in com-

parable grades are the Same 1rrespect1ve of the’ year in which the
children are enrolled. Thus assumption is similar to that made in,
developmental research; i.e., that heasures of performance utilizing
cross—sectional sampling procedures will provide results identical to
those involving 1ongitu4inal sampling procedures (Wohlwill, 1970).

Similarly, within-grade cross- -sectional contrasts (where between-
CA contrasts are made for .Ss in the same grade) have little use in
educational research since this design does not provide for variation
in the educational experiences of the samples.

Educational Attainment and the Longitudinal Design o

* 4 Y >

The 1ong1tud1nal design suffers- frbm the same limitations as the

cross—sectional method, except that the limitation holds when both

ERIC

Aruitoxt provided by Eic:

within- and between-grade contrasts are made. Again, amount of school
experience and other CA-related influences on beliavioral development
are. inextricably correlated. In facty the case has .been made (Goulet,
Williams, & Hay, 1974) that, because of the confounding of CA-related |
and school—related 1nf1uences on development, the longitudinal method |
will normally provide estimates of behavior change which’ exceed those

. involving the cross-sectional method when w1th1n-grade cohtrasts are

made « , N ,
. . ) . A o o

Educational Attainment and the Time-Lag -Method K ’ .

.

_ In contrast,to the éross-sectional and longitudinal methods, the
use of the time-lag methods, perhaps more‘properly, identifies school
expefience with the time-of-testing component in Figure 1. The use

of this design in educational research, although somewhat limited by

the age-graded nature of the schools, nevertheless permits both with-
grade and between-grade contrasts to be made for samples of varying

CAs. The design capitalizes on two simple facts; i.e., that children -
withih a grade differ in CA, and that the CA of a sample of Ss increases
over the period of a school year. Thus in reference to Figure 1, if
testing takes place in October and April within the same academic

year, it is possible to contrast matched CA samples within a grade .
(e.g., at age A ) or between matched CA samples in adjacent school
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grades (e.g., at age A,). Such contrasts permit the estimation of
" the effects of school éxperiences independently of other CA-related
factors, e major limitation of using the time-lag methéd is that
. the contrasts may only be made for Ss in adjacent grades or for within-
- L, grade contrasts. Neve;tbeiéss, many such contrasts can be made.

It is apparent. that the use of a cross-sectional sampling sitrategy
is inappropriate when .the purpose of the researcher is in assessing
education-related performance changes associated with time. The dif-
ficulty is further, compounded when it is taken into consideration that
cross-sectional differences in performance are as ;ikély attributable .
to population (i,e., cohort) differences as to age differenges, Bell ’
(1953) and Kessen (1960) have each noted this possibility and have
advocated the use of longitudinal sampling whenever population differ-
ences/changes are a possibility. However, longitudimal sampling, where

. Ss are repeatedly, tested, suffer from poten}ial contamination due -
) : to repeated observation, attrition,-.etc. Jongitudinal measurement
, also"tikes time" since the researcher mus¥ wait between successive test-
ing periods. In addition, it is eviden ih Figure 1 that -longitudinal
changes ‘in pefformance may be attriputable to factors associated with =
age, time-of-testing, or both. . .

P

" Bell's Convergence Method

/ ‘ '
Such difficulties in inté;pretation of the B = f(T) functions have <iii
led to several suggested modifications of the above’éampling procedures.
-t R The first of these was presented by Bell (1953) and called the Con-
vergence Methpd. A prototype of the (onvergence Method is presented
in Figure 2. - -

" Figure 2 desgribes'four samples of children (cohorts 1962, 1964,
1966, 1968) each tested in three consecutive years=(1974, 1975, 1976) -
and involves combining the longitudinal and cross~sectional sampling
methods in such a way that "developmental changes for a long period

] may be estimated in a much shorter period (Bell, 1953, p. 147)." In

~ other words, the age function from %-14 in Figure -2 can be described

by using three testing points (spanning-a two-year period) for each
of the four cohorts. The overlap im. CA for the successive cohorts
(e.g., cohorts 1968 and 1964 aregeach tested at the age of eight) is

< built into the design in such a fashion as to permit the possibility
of assessing population differences. In other words, in the absence of
performance differences across different cohorts matched on CA,  ° N
Bell (1953) suggested that the longitudinal function estimated using
the convergence method would overlap with the longitudinal function
which would have been obtained if the 1962 cohort would have been

. tested at the age of six and yearly thereafter. ~

Bell's (1953) Convergence Method was suggested as an alternate

" sampling procedure (replacing longitudinal or cross=-gectional methods)
to reduce some of the difficulties 'associated with longitudinal, samp~ ™ .
ling. Implicit in suggesting the method was the suggestion that A

L R > ‘ o
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'longitudinal sémpling was clearly the method of choice when the )
purpose of the researcher.is to describe developmental-age functiong
for a specific cohort or population of subjects.

4

Furthermore, Bell clearly anticipated recent refinements in longi-

" tudinal methodology by suggesting that combinations of longitudinal

and cross—-sectional sampling have merits which clearly exceed those

using either sampling method alone. And, his suggestipns have been
tacitly accepted by Schaie -(1965), Baltes (1968),Buss (1973), Goulet,

Hay, & Barclay (1974), in recent papers which hWave had the primary -
purpose of identifying the components of tine-related behavior change.

*. SEQUENTIAL METHODOLOGY

" Schaie (1965) has criticized the availggie sampligg methods and has
suggested that longitudinal and crossssectional methods are only special
cases of a general model for research on behavior change over time. '
He argueq that performance is a function of tnree factors, the age (CA)
of the organism, -the cohort (C), to*which the organism belongs, and .
the time (T) at which measurement occurs, i.e., R = f (4,C,T). A
cohort, accérding to Schaie (1965) refers to the population of organisms
born at the same point ar interval in, time. In short, Schaie (1965).
suggested that differences associated with age which are obtained using
longitudingl and 'cross-sectional sampling procedures would accurately
reflect behavioral development (and provide identical estimates of age-
related behavior change) only.if there .%ere no populatiom (i.e., gen-
eration) or environmental (culture) changes over time In 'the absence
of -evidence to the contrary, cross—sectional differences in performance
must be assumed to reflect ‘the combined influences of developmental
(i.e., age).and population (i.e., cohort) changes associated with time.
Similarly, longitudinal differences in performance reflect influences
of age~ and time-of -méasurement-related factors.

In view of the potential confoudding, Schaie proposed a model for
the conduct of developmental resegrch which provides the opportunity to
examine the influences of each of these components op performance. The
general model generates three different sequgdtial research designs
which permit CA, cohort, and time of measurement to be simultaneously
varied, two at a ‘time. The general;mod%l is summarized in Figure 3. .

As'Figure 3 indicates, sam§1e§ of Ss %epresenting five levels of
age and nine cohorts are tested at five times of measurement. Between-
row ¢ontrasts represent ¢onventioral cross-sectional (x-s) comparisons.
Diagonal contrasts. conform to a time-lag (T1) design, and those between—
colqap.comparisons represent longitudinal (Lo) contrasts. As is
‘apparent, cross—sectional cqmparisons confound age and cohort dif-
ferences, loﬁgiyﬂdinq; comparisons confound age and time of measure-
ment differences, and time~lag comparisons confound cohort, and time-of-
measurement dif ferehces. In view of such confounding, Schata(1965)
suggested the use of sequential sampling designs which separate sources
of variance associated with the three components. THus, a cohor t-
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Figure 3

A Prototype of Schaie's General Developmental Model
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’

sequential design, represented by samples b; c,.e, and f in Figure 3
provides an estimate of age differences controlled for céhort dif-
ferences and for cohort differences controlled for age. Similarly,‘

a time sequential design represented by samples a, b, c,  and e in
Figure 3 provide for estimate of age differences with time of measure-

~ ment controlled, and for time of measurement differences with age
"" _ controlled. The cross-sequential design, represented by samples b, .
4. ¢, d and e in Figure 3, provide for estimates of cohort| changes uncon- y

founded by time and for time differences unconfounded b& cohort dif-
ferences. Schaie (1965) suggests further that a sampling plan con-
forming to the example provided in Figure 3 provides the opportunity to
assess the independent effects of ‘each of the three co¢ponents with
a minimum'of six samples of Ss, e.g., samples a, b.++g/ in Figure 3.

|

5

The primary ability of Schaie's model is that it/provides methods
for separating sources of developmental change. That is, unlike the
cross—-sectional method, the use of the cohort—sequent&al design pro-
vides the opportunity to examine age differences in the absence of
confounding with the cohort variable. Similarly, the time-sequential
design. provides the possibility of identifying age-related effects
without the confounding of time-of-neasurement®(as with the longi-
tudinal method):

]

Nevertheless, the model as discussed to this point remains exclus-
ively descriptive and T theoretical meaning can be ascribed to either
age, cohort, or time-of-testing effects obtained when using the model.
Schaie (1965) has, in_fact, suggested that the three components are ‘
o subject to theoretical interpretation that'is, age differences esti-

{ mated from the model may, according to Schaie be interpreted as the
"net effect of maturational change," time differences as 'net changes .
within the -environment" _and cohort effects as ''met changes between
generations" (1965, p. §E3V Schaie suggests further that these effects
may be estimated simultaneously, wheneversdata are available which con-
form to the general model; e.g., the &ix samples (a - g) in Figure .3,

tions of age, time, and cohort effects -
ed considerable controversy (e.g., Baltes,
111, 1973). Baltes (1968), for example, has
fhree components, age (A), Time (T) and Cohort (C)
do not exist jardependently of one another; i.e., that Schaie's model
can be desefibed adequately by two rather than three components. In
other words, once two of the components are specified, the third is
unequivocally fixed. This fact can be demonstrated by recourse to a
simple example; i.e., that the cohort for any particular sample of

Ss may be determined by subtraction of age (years) from the time of
measurement; i.e.,

_The theoretical interpr
proposed by Schaie have

' 1968; Buss, 1973; Wo
suggested ‘that t

-\

‘

C=T-4A ' 2.1

i

Similarly it can be shown that the following two relationships exist:
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T-C F \ . 2.3

T=A+C

2.2

' A
Baltes (19§8) suggested that the existence of the mutual dependen--
cies reduce the model to a bifactor rather than a trifactor model and
that one of the components in Schaie's (1965) formula, R = f (4, C, T),
can be replaced by sﬁbstitution. As an .example, the substitution of '
A+ C in' formula 2.2 Schaie's formula becomes R= f (A, C, A + C).
Further difficulties relating to the theoretical 1nterDretation of

=.f (T) phenomena are discussed later in this chapter. )

. It is, however, important to consider the‘implications of Baltes'
suggestions as they relate to research methodology and the adequacy of
available sampling methods. First, in the absence of the possibility
of ﬁuhctldnally separating age from time-of-measurement effects, or
cohopt frqm time-of-measurement’ effects, the longitudinal and time-
lag éﬁ&plﬂng methods immediately become (contrary to Schaie's sug-
gestiops) acceptable research designs for the study of B = £ (T)
phenomena.‘ These two designs are only limited in their generallza-
bility, i.e., longitudinal data collected qQn a single cohort provide
"true" estimates of age-related development for the cohort and.time
intervadl belng studied.» Similarly, performance differences estimated
using ‘the time-1lag method provide true estimdtes of cohort-related
change for \the ages and time interval being studied. Only the cross-
sectional sampling method is unacceptable since it confounds age and
cohort effefts. ¢

The problem-of generalizability is also reduced, according to
Baltes (1968), if the'lbngitudinal method is supplemented by: (1)
obtaining longitudinal measurements for more than one cohort; i.e.,
by using th cohort-sequent1al design (pr what Baltes calls longitudi- ..
nal sequences); or (2) obtaining cross-sectional measurements across

. several t1me§ i.e., using Schaie!s time- sequentlal design (or what
Baltes calls longitudinal sequences). Most important, both Schaie and
Baltes recommend the use of sequential designs for tlie study of B = £ (T)
phenomena and their use is most strongly recommended here-whenever the
intent of the| researcher 1s to obtain acceptable (and gener izable)
estimates of Lge or generation effects. It is apparent, hp ever, that
the. estimatesAof B=f (T) phenomena u51ng sequential methods remain
descriptive and subject to differing theoretical interpret tions. The
Baltes (1968) land Schaie (1965) controversy is a case in point.

SEQUENTIAL -DESIGNS AND EDUCATIONAL %ﬂéEARCH /'/
\ )

The above\discussion has highlighted the difficuLtiés in using'con—
vential sampling methods in research oriented to the asgesgment of the

influences of egucational experiences. This discussion/leads to three
questions concerned with these problems.
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‘1. Do chlldren of the varying CA's enter a schpol grade with
varying proficiency?

2. Vhat are the non-CA-related inflyences of'schooling?
) R

. 3. - What s the nature of the interaction bétween amount of
- schooling and CA in performance?

4

r . s . .
Unfortunately, none of the above designs previously discussed
provide information concerning these questions. Nevertheless, it is

possible to sét up a sampling procedure which when sused, permits these

questions to be addressed directly. Figure 4 prgvides a protdétype of
! such a sampllng plan. In the figure, samples of Ss Varying in CA

(Al, A2°v°A8);:amount of schooling (Sl, Sz,°"S7), and school grades

are tested at different points in time durifg the period of a school
year and permits cross-sectignal contrasts (between-row comparisons)

longitudinal contrasts (diagonal comparisons) and time-lag contrasts
- . . . oo

! 4 (between-column comparisons).

.

oo " The cross-sectional contrasts (relevant to question 1 above) pro-'
' vide comparisons of performance for samples of children varying in CA
. but who have had the same amount of formal schooling.. FQr the time-
lag contrasts (relevant to question 2 above), the comparisons are
for samples matched on CA who vary ‘in amount of schooling. The longi-
tudinal contrasts, (where sdmples of Ss born during the same period
. are tested at dif ferent points in the school year) inextricably con-
- found CA and amount of schooling. Fortunately, the cross-linking of
. appropriate samples (as exemplified in Figure 4) permits comparisons
,which provide information to be collected ré@arding each of the above
three questions in the same analysis. For example, statistical con-
trasts, involving samples a, b, ¢, and d in Figure 4 permit the
behavior changes related to the first four months of schoollng, A,
and their interaction to- be estimated for children in first  grade.
~ An. anglysis -involving samples d, e, f, and g from Figure 4 permits
®imilar comparisons for the last four months of the school year.
Finally, an analysis -involving samples g, h, i, and j from Figure 1 -
permits educational growth during the latter part of first grade
and the early part of second grade to be estimated. Each of the
statisticll analyses outlined above represent simple 2 x 2 factorial
; .designs with CA and time of testing as the two factors. Furthgrmore,
each analysis permits two independent assessments of the influences
of schooling (one at each of two levels of CA) and two estimates of
the relation between CA and performance (one at each of two times of
‘testing in the school year). Additional discussion of the statistical
analyses which follow from the use of the sampling plan in Figure 4 is

presented later in this paper. However, it 1s Aimportant’ at this point
v 6 .
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to note that the samples of Ss represented in the present model are
independent groups. Thus all comparisons conforming to cross-—
sectional, time-lag or longitudinal designs are based on between-§,
(as opposed to within-§) comparisons. Such contrasts may be made
across the entire perlod of formal schooling and, interestingly, data
conforming to the sampling plan in Figure 4 and spanning several school
grades may be collected over the period of a single school year (e.g. N
1975) or multiple school years, e.g., 1975, 1976+..,

Descriptive Uses of the Sampling Procedure in Figure 4

‘

The sampling procedure outlined in Figure 4 was developed on the
premise that research designs and educafibnal research methods must
serve both analytic and descriptive purposes. In an analytic sense,
the use of the above sampling procedure for either within- or between-
grade contrasts permits the independent influences of schooling and
other CA-related factors to be estimated. However, the above sampling
procedure has an added utility, that of permitting amount of schooling-
performance functions to be generated in much the same manner that CA-
performance functions are generated in research 'concerned with
developmental phenomena.

That is, the use of the sampling procedure outlined in Figure 4
permits the cumulative influences of schooling to be estimated across
grades., Such a schoo;ing—perforﬁance function would be represented
by adding the differeﬁces in pegformance for matched CA samples over

different times ef~the school year for Ss in different gr;des, i.e.,
\ the estimate of the 1nfluences of schoollng for the first educational
period would be représented by. §£ - X-a + (Xd —-Xc)uor by
— j— — — ’ 2 n . 4 ' )
Xb + Xd - (Xa + Xé)*. The estimate of the educat%onﬁllexperiences for
— > .

the second period of schooling would be represented by i; +:ié - Kia + i&)u

T2
The cumulative infrﬁeﬁces of schooling across edqgétional periods and
grades would be represented by pooling the estimates across these.
periods, This sampling ﬁrocedure also permite CA-performaﬁce functions
to be estimated»independently of the *nfluences of schooling. This
would be accomplished by pooling performances differences for samples
varying in CA who have equivalent educational experiences; e.g.,
XC-X +(x xb)orx+x;(x +xb)
2
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Within- and Between-Grade Contrasts in Educéticnal Research \

* limitations of CA from different théoretical perspectives, especially

It is emphasized that all educational problems and issues do not
require a sampling plan as eldborate as that specified in Figure 4.
In fact, most research problems probably require.that only a section-of
the total sampling plan be ‘used. Such a determination must be made
by the individual researcher after taking into consideration the'!
nature of the research problem, past empirical findings andlﬁhp theo-
retical model or hypotheses to be investigated. However, & is of
interest to note some of the additional phenomena which may‘be studied
when within-grade contrasts and/or between grade contrasts are made in
conjunction with the above sampllng plan. For example within-grade
contrasts would be espec1ally appropriate when the researcher is
interested in cross<seasonal behavior changes in the children. For
example, the amount of time spent in study may vary with the season
of the year or the prbx1m1ty to important holiddys (e.g., Christmas).
Similarily, between-grad contrgsts for matched-CA samples at the end
of one grade and the beginning of ahother may provide information -
concerning the (non-CA related) impact of changing school grades on
children's behav1or

CA, ALTERNATE DEVELOPMENTAL SCALE%s ) .
AND RESEARCH METHODOLOGY 2

There has recently been con51derablé contyoversy and discussion
concerning the role and use of CA in studies concerned with describing
the nature and course of behavioral development (Baltes, 1968; Baltes
& Goulet, 1971; Bijou, 1968; Birren, 1959, 1963; Goulet, 1970, 1973;
Kessen, 1960 Neugarten 1968 1973; Neugarten & Datan, 1973; Schaie,
1965; Wohlw1ll 1970, 1973).- chever nost of these papers have been
concerned with the llmltatlo ;pf~GA rather than considering the role(s) .
that it - ‘does play in developme ntal inquiry. Furthermore, the gemeral
concerns regardlng the llmitatlons of CA as a variable in developmental
research are shared, ‘but the reasons for "this concern vary w1dely The ;
present sections represents an attempt to cla551fy the various uses and

as they relate to attempts to identify developmental (as opposed to
generation-related or secular change-related) changes in behavior.

Age Scales and Development

A

- Kessen's (1960). statement defining the subject matter of developmental

. psychology provides an excellent base from which to describe the various

uses of CA in developmental research. le proposed: "A characteristic
is said to be develapmental if it can be related to age in an orderly or
lawful way," (p. 36). cApart from occasional and periodic Yeminders that
age does not, qualify as an experimental variable (e.g., Baltes, 1968),
the functional statément R (respgnse) = f (Age) has been generally
accepted [even with its limitations (Birrenm, 1959; Wohlwill, 1973)], b
most developmentalists as defining the subject matter of the field.

k’\,‘
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While not rejecting the importance’of CA as an index of behavioral

chaﬂge, Neugarten and Datan (1973) suggegt, "It is a truism that
chronological age is at best only a rough indicator of an-indiyidu- >
al's position “on any one of numerpus physical or psychological dimen-

. sions. The significance of a given chronological aggé:-+when viewed
from a sociological or anthropologlcal pérspective, is a direct fun-"
tion of the socialwdefinjtion of age." Similarly, Baer (1970) sug-
gests that CA is useq raéﬁer grossly ‘as, a cataloging device in order
to manage the apparently unmanageable diversity and heterogeneity y .
which exists among chifiren. His comments highlight a number of
important elements regarding the use of CA in develdpmental research~
ers. We suggest that the conventional methods of subject selection N
and matching in developmental research rarely consider the "'point
of origin" as a nominal property. Rather, the major concern is to
describe and explain the behavior ‘changes or differences which occur
across time for selected populations. For example, researchers using
Ss enrolled ih school typically select and differentiate samples by
“school grade rather than chronologlcal age. The CA range of the
children within a specific ‘'school grade, however, typically meets
or ¢xceeds 12 months. Thus, eéven though the average difference in
CA for Ss selected from successive grades will approximate 12 months
(as the metric of time) the use of birth as a functlonal defining
characteristic has been Sacrificed.

-

Similar conventions exist in the literature concerning adulf
development and aglng where the performance of Ss falling within
« specific CA ranges, e.g., 26-35, 36-45, 46-55, etc., ‘are compared.
Agaln such a convention maintains ehual time (or age) intervals
, ‘ between successive groups but scarifices the point of origin as one "
of the formal characteristics of a CA-based scale.of development.
In other words, the concern of the researcher has been to describe
. the developmental changes which occur across the time or age range
ifcluded in the study using the developmentally “youngest' sample
for comparison. One possible reason for this is ,that developmental -
and educational research does not, as yet, require a high degree of
precision in matching variables (e. g., Baer, 1970). However, a
central premise of this paper is that matching criteria are 1m§ortant
, since different uses of the point of origin serve as convenlent cata-
’ loging devices to diffetrentiate among various "types'" of developmental
rgsearch. )

.7 3 i

| Three Usas of CA 1n Developméntal Resegrch

- Wohlwill (1973), Baer (1§70) and others suggesg that CA, as an’
index along which to measure behavior change can be used as a purely
descriptive (and thus causally neutral) scale. We suggest that such
‘a position is appropriate only if the point of origin (e.g., birth)
is disregarded as a functional characteristic in developmental inquiry.
In other words, if time sihce birth isagunctionally irrelevént then
the only-:operative characteristic is the metric of time (in this
case calendar time). However, a developmental 'scale must involve

Ve
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both nominal characteristics::iié., poing or origin and metric of
time. Chronological is no excéption. When TA is used as an index
of .development the investiggtor accepts birth by fiat as a signifi-
cant life event against which to describe the course of behavioral
.development. Furthermore, birth, as a point of origin, specifies
the manner in which Ss are to be matcheg or differentiated as to
level of development,

\

A second use of chronologidal age by developmental researchers
has been aptly discussed by Birren (1959) and Wohlwill (1973). °
Birren (1959) suggests that the aging process takes three forms;
biological, psychological and social aging. Biological aging desig>
nates the position of the individual along his/her natural life span
in ordinal units. Psychological aging refers to the’ achievements
ard potentials of the individual. Social aging refers to an indi~
-vidual's acquired social habits and status —- a composit of the .
individual's performance in social roles.: Birren acknowledges the
substantial degree of overlap between these three "types" of aging
but suggests that these are tle most likely candidates for alterdate
age scales. Since these scaleg currently do not ex1st, CA is used
as a convenient substitute for underlying biological,’ psychological

. or sociological processes and is assumed to correlate with each of

them. Given that CA is used as a measure reflecting some underlying
process, several assumptions have to be made: first, the "point of
origin" of the process must be correlated with birth, and; second,

a linear relation exists bétween the underlying process and CA at
least over the ages or period of interest.

The third form of a CA scale mqy'be designated as a state or
stage scale. Such a scale may take different forms, but the defining
characteristic is“that a particular period within the life-span of
an individual is charted by points (designated by CA) of trafisition
from one developmental status to another. State-oriented scales
are similar to process-oriented scales discussed a?ove in that the
theoretical basis of such a scale may have biological,ksoc1olog1cal
"or psychological underpinnings. The major difference between the
two types of scales is that state~ or stage-oriented developmental
scales assume at least some degree of discontinuity of processes
between adjacent developmental periods. !

Neugarten and Datan (1973) point out that, "Although anthropolo-
gists+-+have pointed to discontinuities in cultural conditioning at
various points.in the life cycle, the recognition of the need for
resocialization in adulthood is relatively new." They suggest that
"new learning" across the life span occurs in respons to, or antici-
pation of, the succession of life tasks (or social roles) which
individuals adopt. For example, familiar "transition' points on a
sociological scale are entry into school, marriage, retirement, etc.
The criterion for selecting important tran51tion points is that the,

N ~
. i
) !

23




Q

ERIC

Aruitoxt provided by Eic:

o : ’ ) . 2-17

social role .in question be accompanied by a relatively circumscribed
set of behavioral expectations. In this rpegard, there is strong
agreement among members of a society concerning the salutatory sig-
nificance of life events (Neugarten & Datan, 1973).

Discortinuous state scales have been developed from a psycho-
logical and biological perspectlve. For example, the major periods
in Piaget's theory (e.g., sensory-motor, preoperational, concrete |
operations, and formal operatlonq) constitute fundamenﬁally discon-
tinuous stages in the individual's life span and describe a specific
set of behaviors. Similarly, puberty Qonstltutes a biglogically '
related transition perlod

Iq‘\ «

The use of CA to mark transitions between stages requires that
CA and the succession of social, psychological, or physical states
be highly correlated. WNeugarten and Datan (1973) hawe provided such
evidence from a sociological perspective by noting a high degree of
consensus regarding the’ timing (in terms Jf.CA) of major life events
in an individual's life span. Similarly, there is general agreement
among diverse sets of respondents regarding the chronological age
boundaries dlfferentlatlng life peridds, (e.g., English and.English,
1957; Ieugarten, Moore, and Lowe, 1956).

Reconsideration of the Longitudihal Method and Behavioral Development

The study of developmental changes in behav1or spawns a single, '
basic research paradigm —- thz longitudinal method. The defining
property of the method is that a single individual is tested at two
or more,points in time. It 1s}§I§3~}mportant to note that the method
is theoretically neutral since,its us¢ does not require the ‘investi-
gator to'adopt a specific deveflopmental scale ‘along which to chart
the sequence of human development. If longltudlnal measurements were
collected for several individuals the resultant data permit conclusions
to be drawn regarding the interindividual similarities in the sequence
of behavioral development. When marked similarities in the sequence
of occurrence of behaviors are observed among the individuals studied,
the regularities cannot be charted on a developmental scale since the
longitudinal method makes no reference either to the point of origin
or the metrig of change. The developmental scale adopted for this
purpose should be the one which is most highly.correlated with the
behavior studied. «Once adopted the scale speclfles The manner in
which the data of individual Ss are to be grouped and the nature. of
thé time intervals across which the behaviors are to be described.

: . ’

Theréfore, alternative developmental research methods are
derivable only after the investigator adopts a theoretically -
meaningf&l scale.l For example, cross-sectional measurement
is often used as a convenient substitute

\ .
'

lIn this paper, the subsequent use of 'developmental scale'" is to be
taken in the above described genetic sense and not in reference to
any specific metric.

”
-’
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" involve selecting and matching Ss according to a biological,
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for longitudinal measureient. The “selection of the diffetent groups
of Ss for testing requires that the researcher choose a specific
developmental scale. Once the scale is chosen, the criterion for
subject selection and matching become apparent. Additionally, it
is now possible to specify the alternate longitudinal and cross-
sectional design specified by the scale.

In short, the, longitudinal method is a Eheoreticélly neutral
,Further-
more, when used in its generalized form, it provides data concerning
the sequence but not the temporal course of behavioral development.
Special cases of the longitudinal method (along with"their cross-
sectional counterparts) are derivable only when the researcher adopts
a developmental scale, . For example, if CA is selected as the scalar
metric, Ss are matched or differentiated according to CA and¢ can
therefore be selected and tested according to either longitudinal

or cross—sectional sampling procedures.

Each develaopmental scale spawns its own unique loﬁgitudinal
method. A process-oriented developmental scale, for example, may
socio-
logical, or psychological process (e.g., skeletal age, Shuttleworth,
1937) and testing the Ss at selected points in time (defined by either
calendar units or process-related criteria) thereafter. Similarly,
stage- or state-scales of behavioral development would specify
matching criteria defined by the stages or states in question.
Neugarten and Datan (1973), for example, have described an alternate
longitydinal paradigm in which the point of origin differs from a
CA-based scale but which retains the same metric of time. 1In this
regard, the functional point of origin of a particular behavioral
sequence may be the acceptance of a particular social role (e.g.,
fatherhood) and the patterns of behavior change following this event
can be'charted on a scale of calegdar time, e.g., fatherhood, father-
hood +' one unit, fatherhood + two, units, etc.

The striking parallels between CA~based and process—oriented
scales are readily apparent. : In both cases, behavior change is charted
in terms of proximity (measured in units of calendar time) to an
important life event. In additdon, birth (or a descriptive CA-based
scale) and fatherhood (on a process-oriented sociological scale)
provide the only "benchmark" or point of origin. This suggests an
underlying continuity of behavior change across time marked from the
point of origin of the behavior being studied. The scales differ,
however, since Ss are matched (and differentiated) according to
criteria defined by the different ”functional" points of origin for
the two scales.

Parallels to the longitudinal paradi%m proposed by Neygarten
and Datan (1973) also exist utilizing theories focused on biological/
psychological processes. As an example, the classic study by

P~
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Shuttlesworth (19?7) provided data concerning the correlation between
puberty and the "growth spurt" in adolescence. This was accomplished | ¢
by matching Ss for the onset of puberty (rather than CA) and charting (/
physical growth from this point forward. Within a psychological 3
framework, Piaget (e.g., 1928) also accepts this method by suggesting

that the sequence of behavior change follows a universal order start-

ing with the onset of psychological periods and stages. Interest- .
ingly, Bijou and Baer (1961, 1965) follow a very similar line of

reasoning to that of Neugarten and Datan (1973) by suggesting that
environmental "setting events" influence behavior throughout life.

The preceding discussion has highlighted several important
points related to subject selection and matching in developmental
research. First and foremost, the adoption and use of a specific
'developmental scale requires the researcher to’'adopt certain assump-—
tions relating to point of origin and the metric of time. However,
as has been suggested, the nominal properties of the point of origin
are rarely considered in developmental research. Rather, the concern
in most research is with the study of a developmental process and how

.it changes with time. Subjects are cHfbsen and tested.on the basis

of representlng the ages or time periods over which the process is
thought "'to change. In such cases, the functional point of origin

fop the developmental study in question is the developmentally o
"youngest" sample. In such cases the nominal and functional point

of origin for the researcher may be dlfferent e.g., birth vs. six-

year-olds; yet the nominal and functional metric of time may be | “
identical (e.g., units of calendar time such as ‘months, years, etc.).

It is important at this point to discuss add1t10nal limitations
of the sampling model proposed by Schaie (1965). First, Schaie
limited his model to situations where the researcher has adopted a

CA-based scale of behavioral development. This is an unnecessary
restriction of the model. In addition, two additional limitations
of the model are at issue here.

The first limitation discussed earlier, has received considerable
attention by others (e.g., Baltes, 1968; Baltes & Nesselroade, 19743
Buss, 1973, Schaie, 1965; Wohlwill, 1973) concerns the functional
independence of the components of age, cohort, and time. ‘For ex-
ample, Baltes' (1968) suggestion that the three components are not
mtually independent, i.e., onte two components have begen deflned the
third is fixed, is relevant here. As Buss (1973) and Wohlwill (1973)
‘have argued, such criticisms relate to methodological rather than
theoretical concerns. Even though any two of the components cannot
be functionally varied independently of the third, the concepts of
developmental (age) generational (cohort), and secular (time-related)
change to indeed qualify as separate theoretical concepts (e.g., Buss,
in press; Troll, 1973).

~

o




2-20

"It is imporﬁant to highlight two additional aspects of the issue
concerning the independence of the three components. The first
aspect concerns the manner in which the threg components ate defined
and the way in which populations are matched.  First, Schaie's model,
by adopting CA as a developmental scale not only restricts the
researcher to indexing behawioral development from birth as a point
of origin, but also confines the definition of cohort to data of
birth rather than some alternate definition, such as, the popuyla-
tion of children who entered first grade in September, 1975, etc. -

Any deviation from a CA-based scale requires modification of’ the

_general model proposed by Schaie (1965). As an example, if subjects
.to be tested were in terms of a sociological state (as a lewvel of

development) and time of testing, e.g., all subjects who were married
for the first time in September 1975, the third component, cohort,
would lose all functional meanlng when defined in terms of blrthdate.
Similarly, if cahort is defined in terms of "family lineage" or one
of the alternate accepted definitions of generations and generational
change (e.g., Troll, 1973), time of measurement may be specifiéd, but
CA loses theoretical and functional mbaning. The point is; if a
developmental scale other than a CA-based one is selected for use,

all three components must be re—examinéd both" methodologlcally and
theoretlcally.

The second limitation of Schaie's developmental model concerns
the restrictive manner in which the second formal characteristic
of time-related scales ¢the metric of change) is defined. That is,
the use of Schaie's model restricts the investigator to a scdle of
calendar time rather than one which might more properly fit the

phenomenon under study. While it would be possible for example, to

. identify samples of subjects on a scale of biological development

(e.g., skeletal age) and to the samples’ at selected testing p01nts
(e.g., September 1975, and September, 1976) the ‘second testing point

_ would have to occur after an equal time interval for all subjects

or else the functional meaning of time of measurement (as defined
by Schaie) would be lost. In addition, even though the above
research design (skeletal.age x time) conforms in some respects to
Schaie's (1963) cross—sequential design, the main effects of time
of measurement would more properly reflect developmental change
than secular change for the two populations.

The above discussion is not meant to discount the importance
of the concepts of age, cohort, and time of measurement in the study
of behavioral development. Indeed, the present analysis reaffirms
the need to incorporate variants of Schaie's sequential analyses as
necessary paradigms in developmental research. In fact, the present
analysis sugggsts two additional types of variants of Schaie's
sequenfial paradigms, and leads to the conclusion that Schaie's model
itself is restricted in its generalizability. , These points are dis-
cussed in Chapter 3.

L]
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CHAPTER 3 )
GENERAL SAMPLING STRATEGIES FOR B = f(T)  RESEARCH ' }
General Sampling Designs for B = f(T) Research \1>\\\

In Chapter 2, the discussion highlighted the fact that Schaie's
general developmental model represents only one of a family of
sampling strategies amenable to the study of behavior changes
associated with time. Other models, similar in form to the one
Schaie (1965) proposes, may be derived whenever the researcher
adopts a developmental scale other "than CA. h ‘
”
The first variant of Schaie's (1965) sequential analyses paral-
lel his general developmental model with the exception that a
developmental scale other than CA is used.' Figure 1 provides an . t
example of the model using a developmental index based on sociologi-
cal criteria. Samples’of Ss (cohorts) who were married fér the
first time in 1970, 1975, and 1980 are tested at the time of marriage
and in increments of five years thereafter. ¢ '
‘ ®
: " The use of Schaie's developmental model requires that,the age
and cohort variables share the same nominal and/or flnctional point
of origin. The choice-of a,sociological scale of development (time
since marriage) leads to a redefinition of the cohort variable (year
of marriage) in the same manner that CA as a developmental index
- presupposes a definition of cohort based on date of birth. Never-
theless, a sampling design such as that provided in Figure 1 permits
cohort-sequential, time-sequential, and cross-sequential analyses to
be perfoérmed if a minimum of six samples of Ss conforming to the sam-
pling design in Figure 1 are represented.

RS

&

Figure 1 provides an example of an alternate model based on
sociological criteria and parallel models may be derived using
psychological or biological ctiteria. .

The paradigms basically conform to Schaie's model, and share
some of the same attributes and limitations. The attributes have been
fully documented by Schaie (1965), Baltes (1968) and in the present
paper. The major limitation of Schaie's (1965) model is that the
three components of developmental change (age, cohorxt, and time-of-
testing) cannot be defined independently of one another and this,
limitation is shared by the variant of the general model «presented
in Figure 1. As was mentioned in Chapter 2, such difficulties arise
when the scales used to define the age and cohort variable share the
same nominal and/or functional point of origin.

D .o N ;

However, it is pgssiblelto generate sequential paradigms analo-

gous to time-; cohort~, or cross-sequential sampling strategies which

.
, . .
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,do not share this limitation. Figure 2 provides one example of a
variant of a cohort-sequential design. Cohort is defined by family
lineage and developmental level . by the sociological state of
marriage. ¢ P )

The second variant® of Schaie's sequeﬁtial analyses is derivable
if the assumption is made that age (maturation), cohort (generation)
and time (secular change) are defined independently of one another.

. The research paradigms parallel the sequential designs proposed
by Schaie in that generational, secular, and age changes are the
focus of the investigation. The paradigms also adopt calendar time
as the metric. However, since the components of age, cohort, and
time—of-measurement -are by definition uncorrelated, the paradigms
differ from those proposed by Schaie (1965). . :

\
CA and Other Age Scales of Development

The previous discussion has highlighted the similarities between
CA- and alternate developmental scales. It was shown that each
scale generates its own prototype of longitudinal and cross-sectional
sampling strategies and its own variant of the sequential strategies

., proposed by Schaie (1965). -

.

]

. The final type of design to be proposed here examines the rela-
- tionships between CA-, sociological-, biological-, and/or psychological-
scale(s) of development. ’ '

* Such inVestigétions could take the form specified in Figure 3a;
where Ss representing different levels of CA are tested at the point
of marriage and five years thereafter. The differences between thg
row means represent effects attributable to CA, whereas differences
between the column means reflect’ effects whith covary with time since
marriage. Both "independent' variables are developmental in nature
and the results from such an ‘investigation pérmit inferences to be -
made regarding the degree to which performance varies with CA, time
since marriage, or both. And, as such, the design provides Informa-
tion regarding the sensitivity of two alternate age-scales to the
phenomenon of interest. * Nevertheless, the design, even though
calendar time of measurement is controlled as withlany cross-sectional
sampling procedure does not permit the cohort influences to be
separated from those related to development. P

Figure 3b represents another variant of such a design. It conforms
in some respects to.Schaie's time-sequential design in that CA and $
time of testing are facto;ially varied. However, in this case, both
CA and time of testing are factorially varied. However, in this case
both CA and time since marriage correlate perfectly with calendar time
(1970,.1975), i.e., Ss from both cohorts were married in 1970.

.« oy,
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+ The merit of designs such as those described in Figures 3a and
3b firom the framework of afl educationa)l perspective is best illus-.
trated by a reconsideration of the sampYing model for educational
research presented in Chapter 2 (Figure 4) and presented in another
form in Figure 4. - -

»

There is a paucity of data avdilable utilizing the paradigm C L

: .exemplified in Figure 4. However, scrutiny of literature reveals '

a set of studies (Bdltes & Reinert, 1969; Schaie, 1972) conducted

for other purposes but which nevertheless provide for comparisons

in which CA and amount of exposure to school curricula are, ortho-

gonally varied. * Furthermore, there are several sets of data emanat-

ing- from our laboratory which were conducted for the primary purpose

of testing the utility of the sampling procedures presented in Figure 4.

These data provide for within-grade contrasts (Goulet, Wtlliams, &

Hay, 1973, in press; Goulet, Williams, Bozinou & Hexner, 1973; Wood & |

Goulet, 1973a), and between-grade contr§§t§ (Wood & Goulet, 1973).

In view of the recent availability of such data, it is considered
important to present the results in summary form and to discuss the -
studies themselves in considerable detag}. The studies provide infér-

‘mation regarding the independent\behavioral correlates of schooling
and CA for children across the range of CA from four to nine years and )
from nursery school to fourth grade. Also, data are available across
.a variety of behavioral domains inclpding intellectual growth (Baltes .
& Reinert, 1969; Goulet, Williams & Hay, 1974; Schaie, 1972).visual- B
- perceptual performance (Woogzézgpu%eﬁf/l973a, 1973b) for single-trial
+  free Tecall performance, subjective estimates of recall ability
'&, + (Goulet, Williams, iy, 1973), and the utilization of rules of
f addition (Goulgty Williams, Bozinou & Hexner, 1973),

Sumfiaries of each of the sets of data providing within-grade con-
trastd arefpresented in Table 1 and are identified by author and the
available measure of performance. Table 2 provides the data from the
single study (Wood & Gbulet, 1973b)where between—grade contrasts are
ﬁpssible. In each instance except where noted, CA and time of testing
oted, CA and time of testing in the school year are varied and

" superior performance is reflected by higher scores. = The row and

‘golumn means for each of the matrices in Table 1 represent performance

. For the main effects of Time of Testing and CA, respeetively. In each

case, 'the data represent means based on independent samplesgand the
data are amenable to analysis within a 2 x 2 factorial desiﬁwith CA
and Time of Testing as the two factors. In addition, with the exception
of parts of the Baltes and Reinert (1969) data or where noted, the

main effects for CA and for Time of Testing are statistically signifi-
cant. No interactions were evident in the data. )

In each case the data\gepreseng.thj performance‘of children who
were enrolled in the appropriate grade for their age. To eliminate “

the possibility of a selection bias related to grade placement, the.
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, . Table 1 (Continued) \.W
' ’ . . N
Schaie (1972) : Goulet-Williams-Hay .(1974)
. ' . Mental Age i’ .“\ )
Boys , Girls "o ’
' . ’ ’ t i *®
CA ., . CA . X cA
‘ 6-6  6-10 o 6-6 .6-10 - 4=4 4-9 _
. X ‘ _ X : . X
Fall 72.8 82.0 77.4 Fall 78.9 77.8 78.3 Oct, 66,9 69.3. 68.1
TT ] .
Winter 84 .._N 91.5 87.9 Winter 81.3 92.7 87.0 March 69¢3 mm.w 73.7 ‘
. — . _ — \ >
. X 78.5 86.7 . X 80,1 85.3 . . X 68.1 73.7 -
.. - ' ) L4 r / “ !
Goulet-Williams—-Bozinou-Hexner (1973) . ,/
N &
" Errors to Criterion L ) '
: . ,
C Treatments -l - .
Rule _Inrerfereggce * :
, } -
CcA . cA .
__— 6-5 6-10  _ 6-5° 6-10 _
. , X . X
Nov. 18.0 22,8 20.4 Nov, , 29.8 24,4 - 27.1 d
April 10.2 7.1 8.6 April  37.5 29.1 33.3 . OB
— EY - Q o\ o=
X 1l4.1 15.0 .X 33.7 26.7 ~ \ m

E




“

Oct.

o

Table 1 (Continued)

*
-

C Goulet—Williams-Hay (1973)

mmnHanwon
CA .
b=t 490
X
8.5 © 9.1, 8

Wood~Goulet (1973a)
Errors .
CA
5-4  5-10

12.0 13.9

April 9.6 . 9.7

.

X 10.8 11.8 4

-
v

Recall Span

CA
. bely  4=9
x .
.8 Fall 10.2 9.1 9.7
.5 Winter 6.0 7.7 6.9

-\ X 8.1 8.4

e

13.0

9.6

O

Aruitoxt provided by Eic:
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Table 2 .
. Summary Means for Research Permittidg
Between—-Grade (Matched-CA) Contrasts
T, . Wood-Goulet (1973b) ’
. s ' Errors :
¢ Grade
- a1 ) ) . .
_ ok 1 o -
(3410)  (5-11)  ._
: X
Oct. 13.8 9.5 11.7
TT : >
April 7.6 6.5 7.0
X 10.7 8.0
» L 3
.
~d ’
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the chiidren were selected for testing from the middle 70 percent 4
of the age range within a class; i.e., the youngest and oldest
children.within a grade were not sampled.

Table 1 provides data taken from Baltes & Reinert (1969). The
data represent raw score performance on each of four subtes®s of
intelligence (including letter series, word completion, basic arithme-

tic, and letter counting) which tiere collected in the months of March T
and July for samples ranging in CA from 8-4 to 8-8 (third grade) . ' :7i§§§
years in Study I, and '9-4 to Q-8‘¥gags (fourth grade) in Study II. SN

Therefore, only the directionality of results is discussed. As 1is
erzleft anf lower-right cell means)
provides data represerting lopgitudf}él changes in performance, the
vertical (cross-row) contrast represents a time-lag comparison, and the
horizontal '(cross-solumn) contrast represents a cross-sectional compari-
son. Only the longitudinal comparison involves mean differences which
confound CA and length of schooling. “As may be seen from these data,
the longitudinal contrasts provide an estimate of change which exceeds
that of the cross-sectional and time-lag contrasts. Also, with the
exception of the letter-counting measure, the column and row means
suggest that amount of school experience and CA are each positively
correlated with performance. With the letter—counting measure, the
relationbetween CA and performance is positive and the relation

between amount of school experience and performance is negative. Such

opposing effects of the two variables leave a longitudinal function .

which suggests no (or even slightly negative) changes in performance
over the four-month-ynterval which separated the two testing periods.

N
"

The second sets’ of data in Table 1 are taken from studies by
Schaie (1972) and Goulet, Williams and Hay, 1974. The cell means
represent the Mental Age of first-grade (Schaie, 1972) and nursery-
school children (Goulet, Williams, & Hay, 1974). Intellectual per-
formance was found to relate poskfively to amount of schooling and to
CA for both samples ofr measuresywhich Were taken in 1933 (Sghaie,

.1972), and 1973 (Goulet, Williams, & HayR® 1974) and for both boys

and girls (Schaie, 1972).

. The third set of data were taken from Goulet, Williams, Bozinoy,
and Hexner (1973)., The cell means represent performance oh a paired-
associates transfer task. In the Rule condition, rapid. acquisitdon
was expected if the children (first-grade) used an addition rule of
"add 1" te learn’the individual paired associates in the list. Nonuse
of the rule would interfere with performance. Thus, superior per-
formance is reflected by fewer errors toscriterion. In the Interfer-
ence condition, the children learned a transfer list of paired associ-

ates where no rule was possible and inte;ferencex(negative transfer) &\\\\

was expected. As the data suggest , superior performance was posiLQZEiz\\\\v

f
'
» [V o) *. ’ »
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s related to amount of schooling in the Rule condition, whereas the

¥ reverse was true in the Interference condition. Chronological age
was unrelated to performance in the Rule condition, and the older
children learned the transfer task faster (fewer errors) in the
Interference condition. '

The data provided by Goulet, Williams, and Hay (1973) take two
forms. The first set of data refer to childrens' estimates of their
ability for immediate recall. The children were shown up to 10°
familiar, but unrelated, pictures and they were asked to judge how
many they could remember if they were shown once. The secoqﬁ set
of data refers to the childrens' actual recall span; i.e., the long- .
est series of pictures they could remember without error after one
presentation. As may be seen from these data, subjective estimates
of recall ability relate positively to CA and negatively to amount
of schooling. For the data on recall span, null effects of ‘CA and
negative effects related to amount of schooling are found.

The.data taken from Wood and Goulet (1973a) represent raw score
performance on the Bender-Gestalt Visual Motor Test. The data
represent error scores so superior performance is represented by lower

M scores. Again, amount of schooling is positively related to better
performance, with null effects related to CA.

.. The last set of data (presented in Table 2) deviate substantially
from those contained in Table 1. First, the data provide for between-
grQ§§ contrasts of matched-CA children. Second, the data provide for

- loppii tudinal measurement for these samples across the period from
October to April. Thus, the main effect related to school grade repre-
sents performance differences for samples who differ by one year in
amount of schooling. The main effect- for time of measurement, as with

“~~ - all longitudinal ﬁﬁntraéts confounds CA and time of testing and thus
- Tthe results cannot be unequivocally attributed to factors related to -
CA or schooling. Nevertheless, the between-grade.effect suggests '
pronounced facilitative-dinfluences of schooling even though the Ss '
are matched on CA. ]
4

Data—such as those presented. Tables 1 and 2 provide support
for.the util¥ty of.utilizing sequential sampling strategies when age
(developmental leyel) is varied 51multaneously with two developmental
scales. ¢

There are, a number of issues which warrant further consideration.
The first point of concern is that most gmall-scale studies and cer- '
tainly all available large-scale studies of student development have
relied on simple cross-sectional or longitudinal sampling procedures.
Examples here are the Survey of Equality of Educational Opportunity
(Coleman, 1971) which used a cross—sectdional design and the Growth
Study conducted at the Educational Testing Service (Anderson & Maier, ,
1963; Hilton & Meyers, 1967) which involved a longitudinal design.
As Hilton and Patrick (1970) have noted, the results of both of these
studies confound the developmental changes of primary interest with
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generational or secular change factors, respectively, which occurred
for‘the samples tested. Just as important for present purposes, the
above studies were initiated for the purpose of explicating the
influences of school experiences across grades and yet provide np
estimates of these.effects. '

The data provided in Tables 1 and 2 uniformly provide support for -
23 - the assumption that influences of schooling exist-independently of
those which may be expected from normal aging; i.e., from the cumula-
tive, influences of past experience and/or maturation (Baltes & Goulet,
1971; Schaie, 1965), and also suggest the utility of providing inde-
pendent estimates of performance associated with nonschool-related
changes in chronological age. Such estimates become ‘especially
important under conditions where the factors associated with CA and
school experience may have opposing effects, (e.g., Baltes & Reinert,
) 1969; Goulet, Williams, Bozinou, & Hexner, 1973; Goulet, Williams &
Hay, 1973). 1In this regard, the suggestions offered here parallel
those of Schaie (1965), Baltes (1968), Hilton and Patrick (1970) B
and, others who have been primarily concerned with separating sources
tﬁf%ﬁriance associated with generational, %ecular,\and age change in
student development.

Nevertheless, it is not the intent here to elevate either chrono-
logical age nor amount of school exptrience to the status of an, experi-
mental/independent variable. Chronological age remains a descriptive,
biotic variable (as indeed does school experience in the context in
which it is used here)' since it cannot be experimentally manipulated,
nor replicated. That is not to say that CA is a useless variable.

It remains one,of the most useful ways in which to classify or cate-
gorize children, (Baltes & Goulet, 1971; Kessen, 1961; Wohlwill, 1970)
and by which to chart behavioral change in research of a developmental
nature. In the context of the present paper, CA-related changes in

~ behavior are divided into two components, those which vary with school-
ing, and those associated with nonschool-related changes associated

with CA,
) ] . v

A second point is that none of the problems in educational research
are vitiated by the use of school grade, rather than chronological age,
in such studies. Such distinction is obviously fﬁportant in educational .
research but only to the extent that it is made meaningful through the
assessment of the behavioral changes which occur over the school year
for the grade samples tested and to the extent that other CA-related
factors are controlled.

v

1t is also important to- mention that the sampling strategy sug-
gested in Figure 4 is similar to certain popular designs used in
educational research. Onegsexample is the time by treatment design
. where two or more randomly selected greups of children matched in CA,
school grade, etc., are exposed to different school curricula.over
some instructional period and the performance of the groups is

\ | ' : |
5 i
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contrasted at the end of the instructional period. Such a design,
which involves elements of both longitudinal and experimental methods,
controls for CA between the two groups of children. Unfortunately,
the design suffers from the fact that the children are both older and
have undergone the instructional sequence at the end of training.
Thus, the performance differences among the experimental groups re=
flects not only the independent influences of the instructional sequence
but also the interaction between CA and the instructional treatments

in influencing performances (Goulet, 1970). This inference holds even
though Campbell and Stanley (1963) refer to such a design as a "true
experimental design." It is not until CA is incorporated into the
design that the interaction of CA and instructional treatments and the
independent influences of the instructional treatment upon performance
may be separated. As is apparent, this modification of the design

has each of the elements of the sampling plan exemplified in Figure 2 --
of course, with the desirable addition of an experimental treatment.

-

-

The primary issue considered in this paper concerns the assessment
of the effects of educational intervention (used in the broad sense)
on performance over the period of a school year or shorter interval.
However, as has alrea@y'been.mgntiongd,/ghe influences of schooling
are usually not discqrﬁible from other CA-related influences on per<x
formance. That is not to say that the impact of or effects of exposure
to the school curriculem can be considered to be independent ‘of behav-
ioral development. Rather, schoel learning must be considered to be
one of the components in the developmental process. It is for the
latter reason that alternate experimental designs have been developed
in developmental psychology to provide estimates of the effects dof
educational experiences on performance unBiased by behavioral devel-
opment. One such design involves th® simulation or "acceleration" of
the process through the provision of massed training or practice
(Baltes & Goulet, 1971; Goulet, 1968). Such an experimental strategy
is used very often in contemporary studies concerned with cognitive
development (e.g., Sigel & Hooper, 1968; Gellman, 1969). However, .
such approaches, although appropriate for the study of developmental
phenomena, cannot be generalized directly to school situations. This
is true because: (1) It is not possible either to identify the range
of experiences acquired in or as a direct result.of the interaction
in school; nor is it possible to simulate them in their entirety in ,
controlled or laboratory situations; and, (2) Behavioral change induced
through massed practice over a short term must, of necessity, be
l1imited in scope. Also, attempts to generalize the findings to school
situations are severely limited because of the possibility of an inter-
action between time and the acquisition of the behavioral phenomena ‘of
interest. In other words, the product of school experieﬁues are
acquired over a long period 3gnd through a variety of media, including
the teacher, age-mates, and non-school situations pfqmpted by school
curriculum. There is no reason to expect that the éﬁfects of massed
practice on specified tasks have effects which are ‘isomorphic with
those which are acquirednas‘a result of schooling over 'the school year.
Finally, studies using such a design focus (implicitly or explicitly)
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on the identification of variablés which influence student learning
rather than on the description of education-related behavior change.
While such research is needed, it doeés not lead to the ‘types of
information provided when using the sampling plan suggested here.

) There is a second way to provide direct estimates of the effects .
of school experience which are unbiased by independent time or age-

., r@lated components of behavioral change. In the most simple case,
the procedure would involve the comparison of two groups of children
across time (e.g., the school year) under conditions where both groups
were eligible for acceptance into school but where one of the two
groups was enrolled in school and one wasn't. However, it is extremely
difficult to find "random" samples of children who are of school age >
but who have not been enrolled in schodl. And, even if such a sample
were available in the general population it would be impossible to
ratch them with children who were enrolled. The very cdenditions which
precipitated the lack of enrollment would bias the sample. Campbell
and Stahley have discussed these issues in detail. As is apparent,
the sampling plan presented in Figure 2 utilizes a research strategy
which capitalizes on the latter method while avoiding the potential,
sources of confounding when it is used. -

\\

£~ SCHOOL EXPERIENCES, CA, AND THE DIRECTIONALITY OF BEHAVIOR CHANGE
N > - .
LS
The intent of this paper is not to ‘comment directly on either
the nature of the influences of schooling or the relation bétween
performance and amount of schooling. Nor is it possible to specify

a priori within the context of the sampling plan exemplified in ..
Figure 2, either the magnitude or direction of the influences of . ~- -

‘factors related to CA and school experience on:performance. Never—
theless, it is appropriate at this fime to reiterate some of the general
inferences which may be drawn from the data presented in Tables 1 and

- " 2 and other sections of the paper. These inferences are provided

below and appropriate discussion follows each point. :
1. Available data suggest the utility of adopting .the sampling
plan in Figyre 4 for educational zesearch purposes and, although -

only few avg\§able studies permit contrasts of the type required, each

provides evid&nce suggesting independent effects associated with CA

and amount oflschooling over periods as short as four months. . -

2. The relation between CA and performance and amount of %chooling
and performance may be complementary {either positive ot negative) or

i th iod.
opposing over the same ﬁgﬁh

\ The point of interest here is .that the relation between CA and per-
Yormance is not uniformly positive’dﬁ?ing the years of formal education.

In fact there is a substantial amount of evidence suggesting, for .
example, that the relati between CA and performance- in problem-solving

tasks i% curvilinear ove? the age range from three to eighteen (e.g.,

.Goulet & Goodwin, 1970; Weir, 1964). :While the series of studies from

which sych inferences were drawn have involved cross—sectional sampling
P .

[

.
T 51 S .
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procedures, there are probably many instances of behaviors which cor-
relate positively with CA and negatively with amognt oft schooling

(or vice versa) over the same time period. ¢

1%
L 3

3. A basic premise here is that designs used in educational
research require sampling and testing at’ least at two points within
the school year for Ss in the same grade. It is only with such a
sampllng plan that the behavior changes which occur over .this period
can be assessed. Such suggestions have already been made (e.g., -
Campbell & Stanley, 3) and further reiteration regarding this
point is unnecessary. Nevertheless, within-year®as opposed to between-
year times of testing should also minimize‘confounding due to attri-
tion in educational research (e.g., Hilton & Patrick, 1970)ﬂ

a

4, A central assumption is that the non-schfol related correlates K
of behagioral development (as indexed by vari
controlled before the influences of educaticnal intervention can be

. assessed. This assumption is similar to that made by Schaie (1965)
and Baltes (1968) in their attempts to differentiate age change from
generational and secular change in developmental research. . e

b -

.

¢ 5. Although measures of achievement over periods of schooling
. generally show at least modest gains, reviewers of such research have
— been quick to mention that the achievement gaips observed are as likely
LB attributeblg to "maturation" as tohe influences of ‘instructton -
(Austin, Rogers, & Walbesser, 972"”Furthermore, Suth reviewers- . -
‘ have lamented the fact that educational research directed to assessing
. ~ the infiuences of schooling haverrOV1ded n6 data demonstrating that
: the gains were maintained over time, espe¢ially in contrast to groups
: not exposed to instruction over the same period. The use of the B
_sampling plan in Figure & provides for such?estimates. o
: — .
“ % 6. The suggestions contained in the present paper also hold in
the context of the norming and standardization'of achievement tests.
That r;é most standardized tests have utilized either cross-sectional —
or longitudinal sampling Qrocedures in obtaining their normative sample.
The piases which resull from such a sampling procedure will vary as
a re&ult of date of_ tEStlng, type of sampling procedure used, and the
relation between amount of schooling, CA and performance on the
standardized test. These biases have been demonstr@ted by Goulet,
Williams and Hay (1974) and readers are referred'to®this paper for a ’
complete discussion. of this point.

I3

’ Some f1na1 comments concerning the influences of schooling are -
warranted. First, there is_no intent' tq "imply that the results attrib-
uted’ to the 1nf1uences of sthool _experience in the present study are . )
directly or\exclusively attributable to the "in-classroom”, experiences
of the children. Rather, such influences may take many forms, ranging -
from the effects of the different forms of social interactions,
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environmental contexts, and parental or peer demands which confront
the children while they are'enrolled in school. Such potential
caveats do not vitiate the use of the ,proposed sampling model since
it is appropriate for use in conjunction with designs incorporating
experimental methods which are available for educational research
and for designs concerned with the evalyation of the influences of
educat ional programs, ’ :

A Reconsideration of, the Cohort Variable . .

v

!
* We have suggested previously that the definition of the cohort

_variable need not .be restricted to date of birth as Schaie (1965)

has adsumed. Such a definition is most appropriate, perhaps for
studies concerned with the behavior and development of infants (e.g.,
Weatherford & Cohen, 1973). However, even in these instances, the

" definition can be galled into question. As an example, Fantz, Fagan

and Miranda (1975) have suggested that date of conception, rather

than date of birth, is a more appropriate index by which to identify

the "origin" of life. Similarly, genetic influences on behavior
assuredly profit from a definition of cohort based on family lineage.
Baltes and Rienert (1969) and Buss (in press), and others have also
provided compelling .discussions which question the interpretations

of "cohort" effects drawn from studies adopting Schaie's definition. © -

. Like age, e cohort variable can take many forms having a biologicaly—

socdological, or psychological basis. ,?on example, cohort can be defined
by social or environmentat-factors which are sharéd by a specific
segment of setiety at the same time (e.g., ntrihce into school, g?adu— ’
ation, etc.) or by a society 9s a whole (eiz., war, depression). Mat-
ters ate made even more complex when it is, considered that many,of
these eventg are correlated with CA, time of measurement, and date of :
birth. For example, the social state q% tarriage_ is correlated with

. ey

‘agé in the general population but nevertheless may havegpronounced N

behavioral correlates which exist either independently or in inter-
action with age. . . ‘ 3
LONG-TERM DEVELOPMENTAL RESEARCH

Birren (1959) noted the absence of"developmentéi scales which
reflect biologieal, psychological, or sociological "age" over the
long term, 4nd Wohlwill (1973) has receéntly reiterated this cdonclusion.
For this reason chronological age continues ta serve as the predomi-
nant criterion for subject selection and matching in developmental
research.- It is important to note that the ;eésoﬁs for using chrono-*
logical age vary widely across different researchers and different
studies. For example, CA may bg used bacause our Society is "age
é;aded," because CA correlates with biological, or psychological |,
development, etc. Nevertheless, such relationships are not neces-
sarily stable over the long term (e.g.,,Neugarten & Moore, '1968) . -

x

* A second point is that very little developmental research is con-
cerned with behavior change over a large segment of the life span.
Impedigents to life-span research have included the artificial segmen-
tation of the life-span as well as the failure of developmental
theories to encompass a whole-life perspective. .

v

r3
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. In addition, it has been noted here that developmental res aghhers/ \
rarely attend to the point of origin as a nominal property of ayCA~ ‘
based scale. Rather, develcpment (i.e., behavior change over ti
is examined in relation to the developmentally 'youngest' sample
included in the investigation. The suggestion here is that developmental
change is most properly assessed in relation to a sample selected 1]
and defined in terms of process-defined criteria directly related to_
the thqgry\or hypotheses central -te the investigation. Thus, the seg-
ment of the life span which is sampled in 4 developmental study -may
be restricted to the period over which the process is assumed to
influence behavior. Aneother implication is that the construction and
use of developmental scales based on process-related criteria need not
encompass the life-span unless the process itself is assumed to be of
central importance across this period. Lang-term developmental changes
in behavior may not be properly represented using a single developmental
scale, More important fpr present purposes, however, As that shorter- Y '\
term changes may be efficiently described through the selection of ‘

a scale defined by a functional point of origin and a metric of time
in the manner illustrated in Tables 2-5.

»

SUMMARY g

Chapters 2 and 3 have highlighted the methbdologfbal complexities

involved in the conduct of research concerned with studying B = £(T)
phenomena.” The attempts to resolve the complexities through the use
. . of sequential sé&pling strategies such as those provided by Scahie
' (1965)and Baltes (1968) must be viewed as very significant advance-

ments. - ioWwever, it.has been shown that the use of a sequential design

(as a replacement for‘the longitudinal, cross-sectiofial, ‘or tgme-lag :
design) is mo panacea unless the hypothesis guiding the study of the -

B = f(T) phenomena of intefest aré firmly grounded in theory. Fur-
thermore, the tHeory guiding the Envestigation should specify the under-
lytng scale along whicl“the B_= f(T) phenomena change and the major i
factors (e.g., age, time-of-measurement, ox cohdrt) influencing behavior
and performance for the time period, social context, and populati%n .
- being studied. The theory should also provide strong directign to the -
researcher it"selecting the times of,tgstingéand the ages of children
from which to* collect data. Finally, the theory must specify the
relatioh between the factors of age, time=of-measurement, and coh
It is only when this is accomplished that a sampling model conforfing

to Schaie's general developmental model or the use of one of the $cHaie
(1965) and Baltes (1968) can be selected as the optimal sampling strategy
for the behaviors being studied. ' The controversy between Schaie (1965)
and Baltes (1968) as to whether Sbh?d€$§ model conformg to a trifactor
or bifactor model is a cdase in poin't whiich can only be settled in the
context of a theory which speaks directly to these issues and those
discussed in this section. ~ {)

t,
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waHE DETERMINATION OF THE SIGNIFICANCE OF CHANGE
LAl

) « BETWEEN PRE AND POSTZESTING PERTIODS

o
o v @ R B
www”\ The measurement of change has been a favorite topic of psychometri-
Lo cians. for years. It is a topic with considerable problems many of which

are best avoided by following the advite of Tronbach andQEurby (1970) to
"...investigators who ask questions regarding gain scoress<.' that théy
"...frame their qyestions in other ways™—(p, 80). .
~In many situations, gain scores appear to be the natural measure to
be obtained. I4 some instances, hovever, the formulation of the questions
in ts;msrof gains introduces unnécessaryriroblems. In pther instances
t::§/~—the gain formulation gives the-illusion that certain types of inferences
can be made when in fact fhey are not justified. In the latter case,,
- the gain.formulation conceal3 limitations that are inherent in the data.
S \ o _‘/
- In this chapter some of the major issues that arise in the mea
- :7§;nt of change are reviewed and, where possible, alternative approaches
“gre discussed. The measurement of individual differences Eﬁfconsidered
Bz first. This is followed by.a discussion of some of the concerns involved
L — in inferring treatment effects from group differences. The chapter is
then concluded with a section~on accountability systems based on student
achievement.

'

’

. INDIVIDUAL DIFFERENCES

Some of the best known problems in the measUrement of change Ariée
in situations where there is an interest i measuring individual differ-
ences. "It may be desired to identify~ individuals who gain unusually
large (or small) amounts so that these individuals may be given special
treatnent. In the case of sope performance contracts, individual gain
scores have been used as the”basis of determining payment to contractors.
In other situations there fiay be an interest in identifyiqg the correlates
of change. VWhile not j#volving ifndividual change scores, as such,
correlational uses of/change scores are also considered under the heading
of individual diffgfences. b e '

Difference Sc

The p0st natural measure of change from one point in time to, another
is the #imple difference score. The ‘dieter quite naturally is interested

& .
th several major defects.

Nggative correlation with pretest (e.g., Bereiter, 1963; Thorndike,
- 1966>:: A major disadvantage of the simple differemce score is that it
typically has a negative correlation with the pretest. The correlation

- L)
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of a pre medsure, X, with the difference between a post measure, Y, and
that pre measure is

< < = Pxy Oy - Ox

—

—

PxD ’ 4.1)
V/°x2+0k2‘29xy Ox Oy (4. y

where D = Y - X, Oy and Oy are the standard deviations of X and Y respec-
tively, and'oxy is the correlatiod between X and Y., It is clear from an .. -

inspection of the numerator in equation 4.&hthat the correlation between

D and X will be negative unless Pxy Oy is. greater than 0x. Typically,

- Pxy oy will be smaller than 0, because the gorrelation between X and X: .,5‘4L‘_~

A

must be less than one and the standard deviations of thé pre and post
measures are often of relatively similar magnitude., Although there is
. " a tendency for the correlation to be negative it is, of course, possible
for the correlation to be positive but only if the standard deviation of
the post measure, Y, is larger than that of the pre measure, X, and
generally substantially so. It should also be noted that since the two ~ .
terms in the numerator of equation 4.1 are of opposite sign, the magnitude’
of the correlation will usually be small in absolute value. .

LR

An implication of the negative correlation between D and X, is that
~._large positive D's are more likely to be observed for.persons with 1low X
scores whereas persons with high X scores would have large positive D's
only rarely. Thus, if individuals with high D scores are to be selected,
there will be an overrepresentation of people with low X’'scores as an
| artffact due to the negative correlation between D and X.

> - o
Low Reliabttity—(e.g.y Lord, 1963): Given the standard assumptions
of classical/iii;,&héﬁry, the reliability of a difference score is

1 -
e

2 : 14 ' . 2,
where pyx! and Oy are the pretest reliability and varlggce, Oyy! and Oy
are the posttest reliability and variance, and Pxy is the correlatiop

+
between pre and posttests. Consider the special case of 4.2 where

; Ox = Oy and p v = Pyy? =P

. then Pppt can be written R

pDD' = p - pxy
1 - pxy

.* (4.3)

.
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1
Although 4.3 appli&éfonly for a specialized situation it may be instructive
to consider values of Cpp* for seleqted values of p and pxy' This 1is

— = .

done in Table 4-1 and as can be seen there, the value of Ppp? is dis-

couragingly low.when ¢y, is at all large.
Of course, one way to obtain more reliable difference scores is to

have a low correlation be®ween pre and post sc¢ores. Under such circumstances,

however, it is questionable that the pre and post measures are getting at’

the same construct which would seem to be a‘Ererequisite for the difference

score to be interpreted as an index of groyth.

. .

An implication of the low reliability of difference scores is that it
- is quite risky to wmake any important decisions' about individuals on the
hasis of gains from prevto‘bost tésting periods. A practical situation
where the low reliability of a difference score causes problems is that
of performance contracting. Even without any real change it is possible
to find substantial numbers of individuals with large difference scores
. due simply to the low reliability of these scores. Stake (1971) has
illustrated this problem. He concluded that "...owing to unreliability,
gain scores can appear to reflect Tearning that actually does not occur' , °
(p. 587). . o . -
: - 7
Lack of Common Trait and Scale (e.g., Bereiter, 1963; also Chapters
S and 7 of this report): It would hardly be sensible to ®stimate a
person's gain in weight by subtracting the number of pounds he weighed
at time 1 from the number of ources he weighed at time 2. To make sense
the same scale units musq:?e~usgd at both points in time. Simil3tly,
it would make no sense to subtraéE\i‘pfe\mgasure of ﬁeight.from a post
measure-of weight to get an estimate of weight i It is necessary to
measure weight at both points in time. ) T

——

The .need for a common scale and trait at pre and posttes ’ngperiods
which is so obvious with the above physical ekqulee*iﬁ’gﬁﬁgiiées less
. obvious, but no less essential, in an educational context. For example,
if arithmetic test A was used as the & measure and arithmetic test B*
+ + " as the post measure ‘it might be forgotten ‘that the units of the two tests
o are unequal. Even. more likelz,/{grmight be forgotten that test A consists
primarily of addition proble while test B consists largely of subtraction
problems. Under such con tions the difference scores would hot necessarily
be measuring gains alomg the dimension measured by test A any more than
the difference scoresé in the two examples involving weight measure weight
gain. Even where the same test (or parallel forms) is used as the pre
and post measufes it is sometimes the case that different constructs
are measured at the two points in time. For example, an item WhiChififigfgs
problem.solving skill at one point in time may measure memory at a Iater '
point in time.

Residuall Scores

Problems inherent to difference scores have led a number of peoplé
to seek altenatives. One of these is the residual score which is largely
motivated by the desire for a score that has a zero correlation with the
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Difference Score Reliability as a Function of the

Reliability of the Parts a

(3

Correlation
of Pre and

Post Score

Table 4-1

N

*

nd Their Intercorrelation

Reliability of Pre and of Post Scores
(assumed to be equal)

.7 .8 .9
40 .7 .60 80
.25 .50 .75
.00 .33 267
L+ —  ..00 .50

*
Assuming I pyy' and ¢ =0 .

6i
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pretest (DuBois, 1957; Manning & DuBois, 1962). As noted by Croabath
and Furby (1970) "One cannot argue that the residualized score is a

‘corrgcted' measure of gain..." rather it "...is primarily a way of '
singling out individuals who have gained more (or less) than expected"
(p. 74). . .

A residual score, R, is obtained by subtracting the predicted post-
test score, Y, from the correspondinp observed posttest score, Y. The
predicted posttest score is obtained\from the linear regression of Y
on the pretest, X. The zero correlation between X and R follows imme-
diately from the way in which R is derived and is seen as a major adyvan-
tage over difference scores because residuals do not give an advantage to per—,
sons with certain values of the pretest scores whereas difference scores do.

While solving the problem caused by the correlation between differ-
ence and pretest scores residuals, like difference scores tend to be
unreliable. As indicated bv O'Connor (1972) the reliability of a re-
sidual score can be written as '

3

- —\ . -
p v — P 2(2-0\1) ' .
, pRR' = 7 XY XX j; . -
’ . ‘ — 2 e .
Lt T :

~
Values of the reliability of resi 1 scores a reported in,I? e 4-2

for selectted values of o and c und the assumption that pr;n“: vy
= p. The values of p and p__ used in Table'4-2 are the same szihose

v \\‘\ R '\"'E:‘-.,
used in Table 4-1. ~— . .

. RN ~ A

Although. the residual score reliabilities shown in Table =22 %§\
somevhat better than the correspording difference score reliabili;£E§Wa "
shown in Table 4-1, they are still disappointedly s@all whenevet the -
‘correlation of pre and post scores is large. Furthermare,,residuals
are usually of most interest in situations where the\pre-post correlation ’ .
ig large relative to the reliabilities of the parts. “thus, the sane
cautions due to unreliability of difference scores also apply to resi-
dual séores. ¢

-
.

Estimated True Chéhge
: ; )
A
Another alternative to the raw difference score approach is to . .
estimate "true" change. In other words, the change that would be
obtained if there were no errors of measurement is estimated. ‘The’
true change is presumably the quantity of real interest whenever an .

at’tempt is made to measure change. °

In the case of a single measure there is a perfect correlation
between the est{mated true scqgge for that measure and the observed
gscore. Hence, fot most purposes the observed score serves just as
well 7as the estimated true score. Whenever two Or more measures are
available, however, the estimated true score based.on all available
inf6%$htion'will ordinarily have a less than perfect correlation with -
the observed score of the measure. In the case of a difference
score both the pretest and the.posttest,.and if available’; éther
scores as well provide information about the ﬁrqe difference score
and the resulting estimated true score may result in noticeably .

\ .
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Table 4-2

»

Residual Score Reliability as a Function of the‘

*
Reliability of the Parts and Their Intercorrelations
‘ AN
Correlation Reliability of Pre and of Post Scores
oftg%ng\ (assumed to be equal)
\ Post-Scores .7 .8 .9
. L .50 .67 .83
¢ > . - 4
.6 *. .36 .58 .79
o7 .12 W42 .71
| .8 — »09 .54

.9 — - .05

* o !

( Assuming P = pyy' .
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different'fanking of individual th uld be obtained from raw dif-
ference scores. ’ Y

- ,

. ~ -
\\Fiégression Estimates (Lord, lgﬁéﬁ 1958, 19633 McNemar, 1958; Cronbach
an rby, 1970; Marks & Martin, 1973%: Givida é?timates of the reliabili-
ties of the pretest and.of the.posttest as wel) as their variances and ,
thé&r\cha(;énce, it is possible to cbtain estimates of true gain using
multiple rgghgésiopwprocedures. The basic formula 2 be found in Lord
(1963, p. 28). Cronbach and Furby (1970) extgnd th formulas by dis~-
tinguishing between linked measures (i.es, ones with ortelated errors)

and independent measures. They also tonsider the p0551bIit:tig*aging§gfher

available measures as predictors.

As Lord €¢1963) has shown with an empirical example, persons
largest estimated true difference scores are not necessarily those with
the largest observed difference scores. An pafffzaiar, persons with™
relatively large pretest scores are pore apt te be among those with "large"
gains when estimated true difference scores (Lord, 1963, equation 3) are-
used than %hen raw difference scores are used. Thus, the estimated true
,difference scores obviat% the objection that difference scores tend to -
favor persons with low pretest scores. - > . he

As noted by Crogbach and Furby (1970), it is not necessary to limit
the estimation to tHe measures involved in the difference, score. Any
‘measures that are available may be used along with the pre and the post
measures to estimate the true difference\score. As shown by Tatsuoka
(1975), the additional measures will improve the prediction of the true
difference if they are correlated with the errors of measurement on X
and/or Y. In practice, the addition ofsmore predictor variables would
probably improve the acturacy of the estimate- relatively little unless
the pre and post measures were of low reliability.

-
he .

The reliability of estimated true change is equal to the squared
multiple correlation of true change with the predictor variables, i.e.,
with X, Y and possibly other measures. It will always be as large or
larger than the reliabiliry of a simple difference score (Tatsuoka, 1975).

When pyy! = Oyy! and 0x = Oy the-reliability of the estimated true

vdifference scores equals that of the raw difference scores (see equation 4-3).
*If the pre and posttest reliabilities and/or the pre and posttest variances

aré unequal then the reliability of.the estimated true difference scores .
will exceed that of raw difference scores but typically only slightly.
For example, if“ﬁxx|_=;.85, Oyyt = .90, oy = 1.5, oy = 1.7, and pyy = .7

then the reliability of the raw difference score computed from (2) is
.600 which can be compared to the reliability 'of the estimated true
difference score of ,613.

Linked vs. Independent Observations (Crombach & Furby, 1970; Werts,
‘Jéreskog & Linn, 1972): All of the preceding discussion depends on the
usual-assumptions of clésgical test ;heo:y“ In particular, it és(implicitly
assumed that the pretest errors of measurement are uncorrelated\yéfh the
“

- ‘ ¢
N

~

ith the = ° -




‘variables that predict the amount of change. Measures of change may :

" More generally, the correlation of a raw difference score with gnother

TN

> > . 4"8

posttest errors of measurement. Where the same instrument is used to

obtain both pre and post measures the assumption of uncorrelated errors

of measurement may be especially dubious. Thus, it is desirable to use

estimation procedures that allow for the possibility of correlated errors .

of measurement on the pre and posttest. To do so, however, requires the

avatlatility of more information in the form of multiple measures than"m\‘§\\\\\\\§\\

is often available in practical settings. ,
Qronbach'and Furby (1970) have formalized the distinction between

linked and independent observations. They distinguish two types of

error components. sFor linked observations (e.g., the same form of a

test used as both the pre and the posttest) one type of error component

would be assumed to have a nonzero correlation. On. the other hand, inde=

pendent observations uld be assumed to,&;gg\;;;&réépei/gf exror components

uncorrelated. The dis¢inction between lin ependent obsetrvations’

leads to different fo las for estimating the reliabilities of difference

scores and true change. Basically the formulas require that a.distinc-

tion be made between the correlation of X and Y where X and Y are lipked

and where X and Y are independent observations.?* Furthermore, separate

estimates of the linked Qxy ‘and the independent observatlons‘pXy are

required.

.~

Correlates of Change

-

El

«Frequently the focus in measuring change is not on the individual
difference scores but* on their correlates. The interest is in finding

sometimes be computed for individuals as a means to the end of cofrelatlng
these measures with other variables. Frequently; however, the *change
measures need not actually be cctputed to obtain thef de51red correlations
of these measures 'with other variables. . '

The alternative approaches to measuring change*result in different
correlations of these measures with other variables. The different es- //
timates have different theoretical and practical 1mp11cat10ns.

'

Spuriotis Gorrelations (Lord, 1963). Earlier the tendency for a differ-
ence score to have a negative correlation with the pretest -was noted.

variable that is partlally a function of the pretest or posttest is

usually considered spurious (Lord, *1963, p. 33). The spuriousness is .
the result of the same errors of measurement occurring in the difference .
score and in the variable with which it 'is correlated. In the case of

the correlation of D = Y - X with X the same errors of measurement that 3

are positively weighted for' X are negatlvely weighted for D and the

result is usually a spurious negative correlation.

.

Attenuation _(Lord, 1963): .Unreliability has the effect of attenuating
correlations., This is tryk of all fallible measures but becomes of major |
importance when the reliagbility of a variable is quite low as is typlcaliy
the case for measurEs of {change. The practical 1mp11cat10n of the large
. degree of attenuatxon that is typically encountered with difference scores

.1s that/;o;pel%tlons involving a difference score will tend to be quite

N -
v
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13
low’whié;\IE\Ta er discouraging for someone who is interésted in finding
correlates of change~ . e N

* . LY ~
Part and Partial é;;;éigpioﬁs:~ If residual scores rather than ’

difference scores ‘are used in\bqgrelatidnal studies, the result is ‘the
same as, a part correlation. That is, the pretest score, X, is partialled
out of the posttést score, Y, and the residual is correlated with a_third
variable, W. Note that X is not partialled out of W but only out of Y. L
The result is called a phrt correlation. Thus, X is held constant statisti- ’
cally with respect to Y but not with respect to We o o, * O\ ; . i

7 A more fami oryelational approach is to partial ;\jtz\qf both
Y and W. The result is calle artial correlation and has a somewhat
I lation since X is héld constant
statistically with respect to both Y'and W in ad for just one of them
as in the case of part correlation. If X,'Y and ave a-ﬁﬁ;tivariate
nofmal distribution, thenvthe partial correlation.af nd.W with X
partialled out is simply equal to the correlation between { and Y for
any fixed value of X. This would often seem to be-a coefficient™ .
interest where the focus is on correlates of change from pre to-posttestimg’
periodggg As previously noted, however, residual “scores caRnot be ‘sonsid-~
ered afbetter measures of change. They merely represent tihRt-part oL
score that is not linearly predictable from the variable that™is partia
out. -Nonetheless, the partial correlation provides a2 means of identifyin
variables that cen predict posttest scores of individuals with equal )

“The problem of unreliability that runs throughout thé'measuremeh{\Dﬁ, \\\
change is also a,major concern with partial correlation. The directiom
of the effect of unreliability on a simple correlation is known in advance. 3
Unfortunately, this is not true of partial correlations (Lord, 1963, p. 36). =
In the case of .partial correlations, the effect of errors of measuremett ‘ ..
may -be to change the sign of a partial correlation. As shown by Linn and . w i
Werts (1973) it is possible for errors of measurement to result in a
partial correlation of zero where the partial coerelation among the error
free ‘measures is non-zero. For these reasons, it is particularly important = .
to make corrections for attenuation when using partial correlations. ¥

(2 *
N

: f
" Partial Regression Weights: Withig the context of a Tinear model, ]

the relationship of a variable, W, with'change might be evaluated in terms
|-

of the regression of the change on W and the pretest. Werts and Linn (1970)
have shown that the resulting partial regression-weights can be readily
obtained from the partial regression ccgfficienté in the regression of

the posttest on W and X. Hence, there is no need to actually use difference!
scores. This is true with or without corrections for unreliability of the
measures. ! )

«

4 .
Recommendations (Individual Differences) "~ ~ . . -

-
1

- e .

One of the most common uses of change measures is as criteria in
correlational studies. The goal of such studies ig the identification -
of variables that predict who will gain the most ih a particular situation.

4 t

g -
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_ Cronbach and Furby (1970) argue that it is preferable to phrase such

\_ questions in terms of partial correlations rather than correlations
" invQlving difference scores or in terms of part coggelations. We concur
with this recommendation. Regardless of the way igwhich such questions
aré phrased, however, it is important to take the unteliability of the
measures into account.

In the case of partial correlations, taking, the unreliability into
account "...poses somewhat of a dilemma, since, first, it is often hard ~
to obtain the particular kind of reliability coefficients that are
... required for making—the.appropriate correction, and, further, the partial

corrected for attenuation.may be seriously effected by sampling errors.
These obstacles can hardly justify the use of an uncorrected coefficient
that méy‘have the wrong sign, however, (Lord, 1963; 36)."

Two other possible cases of change measures relating to individual
differences that are discussed by Lronbach and Furby (1970) are the
identification of individuals with ‘'unusually large (or small) gains and
the use of change measures as thedretical constructs. In neither case
are change scores needed. In the former case the regression approach
outlined by Crombach and Furby is preferred. 1In the -latter case, linear
combinations other than simple difference scores, with the arbitrary .
ghts of plus and minus one, should be allowed (Cronbach and Furby, .

GROUP DIFFERENCES (INFERRING TREATMENT EFFECTS)

Questiong about the effects of eXperimental treatments or of variables

" involved in obdervational studies are frequently phitased in terms of gains.

For example, does treatment A result in a larger gain thah\greatment B?
Do students in integrated échoo;s gain more than‘students in“segrédgatad
schools? Do studepts in 'open" classrooms gain more than those“in "
tional"™ classrooms? Although these questions seem‘intuigiVely redson
it does not follow that the best approach® to trying to answer them ill
involvé the use of measures of change as dependent variables. Indee >
" ..There appears to be rfo need to use measures of change as dependent '
variables and mo virtue in using them (Cronbach and Furby, 1970, p. 78).‘“§\

“

" An important distinction among investigations'aimed at inferring
treatment effects must be made between studie§“g?at;haxe_:aadpm-assigameng;\
- and those that don't. For studies with random assignment a pretest serves
primarily as a means of increasing statistical power. Where treatment
groups are not formed by random assignment it is!ofﬁen hoped that the ™
pretest will provide a means of allowing for‘Preexisting diffgiences.

. ‘

Random Assignment : ‘ S -

v o

. , ~ - =

When treatment groups are formed by randomﬂy assigning individuals
(or more generally units) to treatment conditions, the posttest alone_ is
perfectly suitable as a depéndent variable. A test of the null hypothesis
of equal posttest means for the trcatment group$ 1is appropriate'for eval-
uating treatment effects.  If pretest measures are available in this
context their potential usefullness is best evaluated in terms of the
effect of each use on the power of the statistical test.

€
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_not the only ofe. Feldt (1958) compared three potential

pretest 1nformat10n is used as well as on the nature and &
pretest-posttest relationship. Differencd scores are on

variables: (1) blocking, (%) analysis of variénce on difference s
and (3) analysis of covariance. Hle clearly shows that among these thxe
approaches that tlie difference score approach has the least precisio
Thus, on‘thé basis of precision the choice would ord1nar11y be betwéen
blocklng and. the analysis of covariance with the analysis of covariance \\
being the most precise where the correlatlon betwe t pre and posttesb\
is gredater than .6 (feldt, 1958). o . -
. . o ~

In pretest-posttest designs the correlation between the pretest and
the posttest is frequently .7 or higher. Thus, the analysis_ of ¢
would seem to be an attractive approach to the analys1s of such data
Before this technique is wholeheartedly accepted, however, several lim'ta-
tions of the technique néed to be considered. As Elashoff (1969) has
argued, themranalysis of covariance is a'”dellcate instrument" Elashoff
notes that the analysis of covariance 1nvolves a number of relatlvely
strong assumptions and violations af some of these assumptions may invali-

date the technique. ,Where the assunptions of linearity or of homogenéity |

of regression seen qucstlonable it may be preferable to use ‘the prekest
.as a blocklng variable rather than a covariate. In any event, however,
there seems to be llttle Justlflcatlon for using difference scores.

“

Another assumption of the analysis of covariance is .that the covariate'

is measured without error. Violations of this assumption are most*troe?le—
some In situations where groups are not formed by random assignment and

will be considered again in that context. Even with random assignment N

errors of measurement linit the value of traditiopal analysis of covariance,
‘But, tééﬁplques are available for allowing for erroxs of measurement in

the covariate (Lord, 1960; Porter, 1967).

Preformed Gr ggg\ ) . i}

Random assignment is seemingly impossible in nany‘s}tuations where .
,answers to questions about treatment effects are sought. Children cannot
ordlnarlly be randomly assigned to schools or to major programs Such as
" Head Start.’ Lven if such random assignment were administratively feasible,®
it might not be desirable on grounds other than ‘the desire for a clean
experimental design. Without random assignment it is, of coufSe possible
that differences -that may be observed in the posttest score are" the result
of preexisting group differences rather than- treatment effects, What 1is
desared is a means of allowing for preexisting group differences. t is
the hope of achieving this goal that often leads to ¥Yhe use of diffe ence
scores or the analy51s of covariance. \

d\(l967 1968) has provided a compelling analysis of the use og\
difference scores or_ the analysis /of covariance to infer treatment effect
£rom studies rnvolv1np preformeﬂ'groups. He has clearly shewn thatthe . \
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two approache% can lead to contradictory results. The basic problem is
one of making the proper adjustment for any Jreexisting differénces.
”.ynfogtunately, there is wo way of knowing which of these or any other
techniques provide the proper adjustmengs. Pccording to”Lord "...there
simply is no logical or statistical procedure that can be counted on to
maké proper allowances for uncontrolled preéxisting differences between
groups (1967, p. 305)." «

This discouraging conclusion is also,reached by Meehl (1970) and by
Cronbach and Furby (1970) among others. Without assurance of proper
adjustments for preexisting differences, there is-necessarily a concern
about the possibility that treatment effects), however obtained, may be
subject to major, sources of bias. In order 'to evaluate the bias in
various nopexperimental research situations it is important to have a
clear understanding of what is meant by a treatment effect. Rubin (1972)
has provided a definition which is useful from a formal point of view
as wellras beipg consistent with intuitive notions af a "causal effect."
His bgsic definition of an dffect is specific to each unit® (e.g., individ-
ual gtudent, classroom, school) under consideration, to a particular time
interval (t; to ty) and to a particular pair of treatments (e.g., experi-

)

mental and control). The effect of the experimental versus the control
treatment on a dependent variable, X, is the difference between the score
on X that would have been obtained by the unit at t, if the experimental

treatment had been introduced at ty and the score on X that woyld have

been Obtained by the unit at t, if the control treatment had been intro-
duced at tg. . o
M B ¢

[S T

u‘ " W
In practice it is impossible to measure the effect defined i%ove
for any unit because only one treatment can be introduced at tj and it is

iﬁpﬁssible to return to that time to introdude thg other treatment. Nor
is® it possible to meadure theé average effect of all units for the same
reason. Nonetheless thise formulation is useful because under random
assignment of units. to treatments, the expectegd-value of the difference

in megn scores on.X is equal to the average difference that would be
observedgii all units could be obsegved under both treatment conditions
during the same time interval. Thus, the sense in which the randomizeda
experiment provides an unbiased esfimate of the treatment effect is -
clear. Futthermore, a framework is provided for considering factors 'in
nonexperimental designs that result in biased estimates. - In this way it
may sometimes be possible to specify conditions under wich estimated
treatment effeqts may be biased in ome direction or the other or to clearly
specify tite a priori assumptions that would have to be satisfied for the
estimate to be unbiased. ’ ﬁ '

—a .

\ : - ?
One of _the many potential sources of bias in estimated treatment <

effects from the analysis of covariance is due to errors of measurement

in ‘the pretest (Porter, 1967; Werfs and Linn, 1971). The effect of un-

reliability ih the covariate is'a teduction in the slope of the regression
~of the dependent variable on the covariate. Where there are preexisting

B
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differences in the group means on the covariate the reduction in slope
leads to bias in‘the estimated magnitude of the treatment effects.

The direction of the bias due to unreliability of the covariate can
be-determined and if adequate edtimates of the cavariate reliability
can be obtained, the procedures outlined by Porter .can be used.

N w

Single Group Designs

For a single group such as a school or classroom there ma&y be an
interest in the amount of change that occurs during a given time inter-
val. Once again there is no real virtue to difference scores (Cronbach

.and Furby, 1970). A simple t-test for dependent samples will provide a

test of the null hypothesis that the mean pretest score equals the
mean posttest differences: i ’ .

While such differences may be due to the school experience they
might also be due to a host of non-school experiences that students have
during the interval between the pre and posttests.' An observed differ-
ence may be attributable to variables associated with increased chron-
ological age which have nothing to do with %chopl effects per se. It
would be desirable to separate differences in test scores that are
associated with chronological age. Goulet (in press) has proposed an
approach tirat is specifically designed for this purpose.

«Goulet (in press) suggested a sampling procedure that wopld -provide
for independent estimates of effects associated with chronological
age and those associated with amount of schooling as well as their in-
teraction. His design would require that nonoverlapping random samples
of students be tested at different points in the school year. The )
students' scores would then be categorized according to chronological
age and time of testing. A siwple desigm-involving four different
samples of children is shown™below. ,‘

r

Ake at . Time of testing

Testing Date - Sept. Jan. N
' 7-3 A - B
v i . * .
7-7 c D

. ~
The means based on subsample% A, B, C and D above pyrovide the basis
for estimating effects associated with”schooling that are .independent
of affects associated wfth'age, As indicated by Goulet, (in press)
the desired estimate is simply T ) N -

4

v
-~

: .
. Ve . ‘

wheré,the'i's refer to the subshmple means. G6ulgt's suggested approach
- does not guarantee that the estimated effect is due to school. It still

might, for example, be-the résylt of factors outside the school experience

. ‘ Co N
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whicheovary with that experience. It.demanstrates, however, an ap-
proach for separating two major sources of competing hypotheses about
clusters of variables that might influence pupil performance. By hold-
ing constant $ources of variance associated with age, the estimates of
"school effects" are much more compelling than when the estimates in-
volve a combination of school associated and age asseciaged effects.

A more complete discussion of sampling designs such aszggi above 1is
provided in Chapter 2.

<

P

There may be fairly general agreement with the conclusion stated
by Lord (1967) that there is generally no way of knowing what adjust-
ments should be made to allow for preexisting group differences. None-
theless many practical decisions must be made without the aid of ran-
domized experiments. These decisions must be made on some basis. Even *
with all”of the pitfalls that are encountered in trying to interpret
information that can be gleaned from data collected for preex1st1no
groups, it still often seems-to be the best alternatlve. g )

Responses to pressunyés to be accountable have taken ﬁany forms.

‘Educatiohal accountabilitiy has many meanings. and as Glasd (1972)

has indicated not all of the uses of the term .require the measurement +
of student performance. One of the more common intérprefations, héwever,
is that educators should be accountable for what student$ learn. For
this interpretation of accountabilify the results of stapdardized
achievement tests would seem a natural source of information not only
for assessing current status but for evaluating progressf Unfortun-
ately, there is great potential for misuse of standardizpd test results
for purposes of educat10na1 aécountability., .. . \

‘ ‘ S s < v
¢ -

Norms as Standards , ‘

Knowing only a student's raw score on a. test would provide essen-—
tially no information. To derive meaning the content of| thé items must

be known in some detail. If the content is descrlbed in suff1c1ent

detail then a statement thdt a student got 20 of 40 item$ correct would

begin to take on some meanlng but would stygll not be a syfficient basis

for answering a parent's question about whether that was good There

are two major approaches that are commonly taken to answdaring this ques-

tion: criterion referenced and norm referenced., * The mort commontof

these is the norm referenced approach which s1mp1y prov1d s a comparison

of the student's performance to some specified group. Thi norms may

take the form of percentile ranks, grade equ1valents or some other type

of scaled score but bas1ca11y the ngrms provide a means of interpreting , .
a students' performance relatlve “to that of other students. ™

—
A}

Grade Eqpivalent Scores: A problem with the_use of norms is that the
norm is sometlmes confused with thé standard or ideal. It is obvious
that not all children can be above the 50th percentjile; It should be . -
just as obvious that not all schools can be above the 50th percentile

of school mean norms. When grade equivalents are used it is still the
case that not all children (or schools) can be above grade level but -
this may be less obvious with grade equivalent scores than With some;
other types of scales. . =

. . . <
. . -7
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The grade equivalent score suffers fron a number of defects (see
for example Angoff, 1971). Most of these defelts stem from the surplus
meaning that is attached to the label. Because of these defects iw the
grade equivalent the latest version of the Standards for Educational and
Psychological Tests recormends that they be discontinued or their use
discouraged (APA, 1974). ’

. . -

Change on Achievement Test Scales.L Regardless of the nature of the
scale that is used, scores at a sing int in time could hardly be ex-
pected to provide information aboutfthe gffectiveness of a school. The
notion that educators should be acgountable for student learning has
implicit in it the notion of change. True, a measurement at a single
point in time may provide informgtion about strengths or weaknesses but
it cannot be expected tlo indicgfe by itself the amount of progress that
was made in any giyen inte { of time. To do this something must be known
about past as well present performance. The desire to know sometning
about progress brjrgs us Back tosour concern about change from pre to
posttesting periods. '

Probably the most widely used scale for purposes of evaluaEing pupil
growth is the grade equivalent scale (see for example, Vargo, et al.,
1972). The deceptive simplicity of. grade equivalents makes them appear .
particularly useful for the purpose of measuring growth. Lindquist and
Hieronomous, for example, say that "Grade equivalent scored are best
suited for %easuring growth from year to year (1964, p. 13)." !

Although Lindquist and Hieronomous go on to discuss limitations of
grade equivalent scores, thesg limitations are often overlooked. One of
the potentially nisleading characteristics of grade equivalents is that

—the} seen to provide a standard of "mormal" growth. If educational
accountability is interpreted to mean that someone should be responsible
for the progress or lack of progress displayed by students, then some
notion of satisfactcry progress is needed.. To many people, the grade »
equivalent seems to provide the standard. That is, the gain of one grade
equivalent in a year's ‘time becomes the standard to be expected. Un- ’
fortunately, however, "...a year's progress in a year's time means dif-=
ferent things to a teacher whose class begins the year .near or above
grade level and a- teacher whose class begins two or three years below
grade level (Rosenshine and cGaw, 1972, p. 640) ." ' f

Some of the probﬂ!ﬁs encountered in trying to interpret gains on -
standardized achievement scales may be {llustrated by the following
example results from a school system. An attempt was,made to look at
the gain in achievenent test performance for students in three broad
categories of ability as measured by IQ test scores. Standardized
cachievement test data were obtained for students in grades 3 and 6. Re-
sults were also obtained for these same students the following year when
they were in grades 4 and 7. Grade scores.or grade\equivalents were then
reported in reading and in‘arithmetic at each peint in time and gain
scores wera computed over the one-year interval. The mean scores and
mean gains were reported separately by school and for students with
IQ's of 114 or above, those with I scores of 98 to 113,-and those with
1Q's of 97 or less. This was done for each school and for the school

system as a whole. ‘
. -
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For the school system as a whole, the gains for each of the IQ
levels (L, M and H) are plotted in Figure 1 for reading and for arith-
metic. Section (a) of Figure 4-1 shows the results for 3rd to 4th grade
gairs on the lletropolitan Achievement Test "’ (Harcourt Brace Jovanovich,
1970). The gains ogserved for 6th to 7th grade are based on the'Edu-«)
cational Developmer™ Series' (Scholastic Test Service, 1969; 1971).

From section (a) of Figure 4-1 it can be seen that from grades 3 to
4 the largest gains in both reading and arithmetic were made by the high
1Q group and the smallest gains by the low 1Q group. As would be ex-
pected, the high ability students had a higher mean test score on the.
pretest than the low ability students. At the time of the second test
the gap between the two extreme groups of students had®widened. In
reading, the gap between the two groups was 1.5 GE units at grade 3
and 2.4 GE units at grade 4, The result is quite consistent with the
expectation that '"the rich get richer and the poor get poorer." It is
also consistent with the results that have been reported indicating
that, as measured by standardized tests, the gap in achievement between
high and low SLS or between minority and majority groups ‘tends to in-
crease with grade level. v

The increasing gap in achievement between different SES or ethnic
groups has been interpreted to imply that the schools, are differentially
effective. The counter part for the illustrative school. system is that .
the system is more efifective with high than low ability students.
However, there are many reasons why such a conclusion may not be jus-
tified. Some of these reasons*are discussed below but first the 6th
to 7th, grade results need to be considered. P

Between grades 6 and 7 the mean gains in grade scores on the reading
test of the LCducational Development Series-were: .6 for the high IQ group,
.7 for. the middle group, and 1.3 for the low group (see Figure 4-1).

The pattern is just the reverse of that found for grades 3 to 4. In -
arithmetic, the grade 6 to 7 pattern was again opposite that of the grade
3 to 4 pattern with gains of .7, .8, and 1.3 for the high, middle, and
low ability groups, respectively. Consider the naive interpretation of
these data--at grades 3 to & the schools might be considered to be’

more effective with the more able children but at’éraqes 6 to 7 they
might be considered to be more effective with the less able. Further,
imagine the sort of comparison that might be made among school buildings
or among teachers with a predominance of children from different ability
levels if the school building mean gains were compared.

In the example just given theré are many diffetrences between the
data at grades 3 to 4 and those at grades 6 to 7. They are based on t
tests from different publishers,which nhave different content specifi-
cations and different norm groups, .and they are based on different types
of scales (grade equivalent in one case and grade scores in the other).
They also differ in that the same test form spans grades 3 and 4 but dif-
ferent levels which had to be vertically equated were used at grades 6 ‘
and 7. These differenses may be more than sufficient to explain the seem-
ingly strange results that are shown in Figure 4-1 (Linn, 1974).

_—
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Gains th Grade Lquivalent Scales. The above results which indicated
that students with high pretest scores at grade 3 tended to gain more than

their coudterparts with low pretest scores may seem contrary to what would

be expected from knowledge f correlations of gain scores with pretests.
As indicated early in this paper galn scores tend to have a spurious
negative correlation with the pretest score. The negative correlation of
pretest with gain comes about when the pretest standard deviation is
greater than the posttest standard deviation times thé correlation be-
tween pre and posttests. This will necessarily be the case whegever the
pretest and posttest have equal standard deviations. A property of the
grade equivalent scalé, however, is that the standard deviation of Erade
equivalent scales tends to“increase with grade level and this increase
in standard déviation. is sufficient to result in a positiye correlation
between pretest scores and gain scores.

The property of increasing standard deviations for grade equi-
valent scores at successive grade levels is illustrated by approxima-
ting these standard deviafpions at two grades and for two subtests of.
three widely used achievement test batteries. The standard deviations

" were calculated by assuming a normal distribution of grade equivalent

scores and subtracting the grade equivalent corresponding to }he fif-
tieth centile from the one.corresponding to the eighty~fourth centile.

. The test-batteries that were utilized are the California Achieve-

ment* Tests (CTB/McGraw Hill, 1970), the Stanford Achievement Tests
(Harcourt, Brace Jovanovich, 1973) ‘and the Metropolitan Achievement

Tests (Harcourt Brace Jovanov1ch, f$70).,;For the reading subtdsts of thg’

three test batteries, the estimated standard deviations forsgrades two

and six for the above tests batteries changed from .925 to 2.27, from

1.70 to 2.65, and from 1.0 to 2.4. The grade two and six standard de-

viations fot the arlthmetlc subtests of the thrée batteries changed from
.773 to 1.57, from 1.0 to, 2, 05'and from .7 to l.4. In~general,’the

estimated'standard dev1at1®ns for grade six are roughly' double those

for grade two and the necessary condition for anposftlve correlation

bétween pretest and gain 1s seen to exist. 7 -

Thus, the naive expectation of a gain of ene grade equivalent unit‘
in a year's time 1gnores the positjve correlation between gdin and pre-
test that has been observed for the grade equivalent: scale. M...nor—
mal or typical growth is often defined as One year, (1. O) in grade, -~ * .
equivalent units for every school year .of instruction. However,. 1.0
year of growth is typical only for students near the middle of the dis-
tribution (Prescott, 1973, p.,55)." As shown *by Prescott, by Qolenan
and Karweit (1970), and by Wrightstone, Hogan and Abbott (undated) »
students who maintain a constant percentile rahnk over several years would
show-average .gains that are considerably different than 1.0 when the
constant percentile rank deviates substantlally from 50

“

o .

In order to investigate the generallty of the above tendency, the
grade equivalent score deviations from grade level fqor hypothetical $tu-'
dents with constant percentile ranks of 20 and of <80 were plgatted for
several différent tests for grades 2 through 6. These results. for the
reading and arithmetic tesé§ of three widely used’ ach nent test bat-
teries are shown in Flgure "4-2. The tést batteries for which data are
plotted in Figure 4-2 are the Metropolitan Achievement Tests (Harcouﬁt
Brace Jovanovich, 1970), the California Adhievement Tests (CTB/McGraw,

1970) and the Stanford Achievement Tests (Harcourt Brace Jovanov1ch A973) \\\\
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The graphs shown ;ﬁ\Eggure 2 provide the basis for several general-
izations: (1) the average égowth'réquir d to maintgin a constant per-
centile rank of 80L1} considderably more ?han 1.0 gfade equivalent unit
per year, (2) the average grgwth required to maintain a constant per—
centile rank of 20 is gubstantially légé\{giz 1.0-grade equivalent
unit per year, (3) tle average gain in prade™equivalent units required
to maintain a constant percentile rank of 80 is less for arithmetic
tests than for reading tests, and (4) the average gain in grade equi- .
valent units required to maintain a constant percentile srank varies sub-
stantially from one test publisher to another.

N © \\
.

- Based on the results shown in Figure 4-2 the 3rd to 4th grade gains_
for the illustrative school in Figure 4-1 are quite consistent with what ~>
would be expeéfed. The results for grades 3 to 4 certainly are dependent
on particular characteristics of the grade equivalent scale that are not
really fundamental to notions of student performance. Thus, the result
that the more able students tend to gain the most may simply be an arti-

- > fact of the grade equivalent scale and thie naive interpretation that the
schools are relatively more effectiVe for high ability than for low
ability students is suspect.

A possible conclusion based on the difficulties with the gradé
equivalent outlined above is that percentile ranks might provide a
better scale for cpmparing growtir of groups of students that start at
v different levels initially. Percentile ranks, however, suffer from

other limitations. They tend to spread raw scores out in the middle of
the distribution and squeeze them together at the extremes. A dis-
tributign of percentile ranks 'is necessarily rectangular and the raw

L

-~ score distance between the 50th and 55th percentile ‘is much less than
the raw score distahce between the 90th and 95th.percentile. Due to
thi® limitation of percentile ranks, Coleman and Karweith (1970) conclude
- that they are not a useful type of score for measuring the amount of change
but they may be useful for measuring the direction of change.
-
S . According to the test manual, the grade -scores fhat were used to

. summarize the test results for the school system at grades 6 and 7

(Figure 4-1) were "... develdped in-an attempt to utilize the strong

' points inherent in percentile rank and grade equivalent norms while min-
imizing the inherent limitations of such norms scores" (Scholastic Testing
Service, 1971, p. 12). Grade scores are obtained from standard scores
at each grade level with the mean set equal to the grade placement level
and the standard deviation sat equal to 1.0. According to the publisher,
"Score changes [in grade score units] of, more than one unit indicaié
relatively rapid growth as compared with other pupils; score changes
less than one unit indicate relatively slow growth as compared to pther
students" (Scholastic Testing Service, 1971, p. 13). '

A review of grade score scale properties (Linn, 1974) revealed
several undésirable characteristics of this type of scale for purposes
- of measuring change. The most obvious disadvantage of this type of scale
) is that constant raw scores_oVet deveral points in time will result in
~increasin§‘grade scores and ''apparent grovth." Furthermore, the magni-
. tude of the apparent change varies from fne raw score level to another.

ERIC - | N ‘
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. As far as the results in section b of Figure 4-1 are concerned,
there are two factors which may readily account for the rg}gtively large
gains for initially low scoring students and relatively small gains for
initially high scoring students. First, by.setting the standard devia-

< . .
tions at different grade levels equal a negative correlation between

pretest and gain is insured. The second factor that is relevant to the
particular situation of the grade- 6 *to 7 results is that different levels
of the test were used at grades 6°%nd 7. As shown by Linn (1974)
difficulties in vertically egﬁating tests and the large increase in the
scaled score equivalents of 'nimug and chance level raw scores when

the level of the test is changed could easily account for the apparently
larger gains of initially low scoring students than their initially
high scoring counterparts. Again‘the results of Figure 4-1 do not
provide a basis for generalizatiohs about the relative effectiveness
of the school system with different gPoudps of students.

One d¥fficulty withvertically equated tests is the large increase
in scaled score equivalents of minimum and <Chance level raw scores when
the level of the test is changed is not limited to grade scores. It
is also a potential problem when grade equivalent scores are used with
vertically equated tests. Reported in Figure 4-3 for grades 2 through
6 are the grade equivalent scbres associated with "chance level" per-
formance on the reading and arithmetic subtests of the three previously
used achievement test batteryes. As seen from Figure 3, the increase
in grade equivalent scores from one*level to the next for hypothetical
students who respond at random, varies considerably across each pub-
lishers' test and across the two sqbtestsf However, even the mimimum
increase oﬁs*éhgiide equivalent units would result in apparent growth .
for students w espond at the chance level.

e ™ .'. . .

The Wrong Norms. A number -0f other difficulties with using norms A
as standards for' evaluating student progréss might be mentioned but the -
{llustration of pne other problem should suffice. Longitudinal data
are often thbught to be preferrable to cross-sectional data because of .
the possibility of cohprt differences and because if you are interested ‘
in the effectd of a school it seems reasonable to look at students who :
hav:{igfn in the school for a g@ven period of time. However, phé availe

able n rmative data on standardized achievement tests are cross—-sectional.
Longitudinal samples often suffer from considerable attrition. . Con- .
sequently the differences between data for a longitudinal sample and the - .
test norms are apt to be differentially affected by selection factors .
at different levels. This can be illustrated by data from a pational study

of academic growth.conducted at Educational Testing Service under the di-

rection of Tom Hilton. The data for the, following illustration were-

taken frdm the extensive Set of Tables reported by Hilton and Beaton

(1971) and have previously been discussed by E}nn (1974) .

The longitudinal sample of approximately 3600 students was divided
into two groups accordipg'to high schoof curriculum: academic and nonaca-
demic. The scaled score means on one of the tests and the correspondirfg
percentile .ranks of the means are plotted in Figure 4-4 for these two
groups. The test was the Quantitative Test of the School and College
Ability Tests, SCAT (Educational Testing Service, 1957). At the fifth
grade the academic group is well ‘above the median of the norm group and
the nonacademic group is slightly above the median of the norm group.

\ K . . ' . \
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Scaled Score Means and Gentile Ra
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The percentjile ranks of the means\or both gé:gps drop sLigﬁtly from -
grade 5 to, grade 7 and more sharply {rom graée 7 to grade 9. DBetween )
grade 9 and grade 11 the academic grou maintqin§ about the same .per-
centile rank while the nonacademic group shows another drop.

The initial impressions.from Figure 4-& are that the nonacademic
students are -falling further and further béhind the academic students
and both groups of students are losing ground relative to the mational
norm. BDoth of these feksults, however, may be the consequence of a
common problem encountered in longitudinal studies, namely attrition.
The initial tTS grow&h study consisted of about 9,000 5th grade students.

Only about /40 percent of these students had test score data at grades

.’5, 7, 9, and 11 and the nonrandom nature .of the attrition is apt to
. have different implications at 5th grade than at 11th grade. "For ex-
ample, studerts' who drop out of school between the 5th and 1lth grades
are available for the norms group at grade. 5, but not at gra&e 11.
- for the longitudinal sample they are excluded at,both points in time

(Linn, 1974)4 ‘ ’ ‘ : '
\ ; ,

) Prpblems due to using cross-sectional norms_cén i;i;é even where
the ‘longitudinal data cover only two points in time withine,a single
school year. Data from two points in a singfﬁ year usually do not have

‘ a major attrition.prcblem such as.was encountered for the data in
. - Figure 4-4. Nonetheless, using.fall data to interpolate the norms for
other points in the year may result in misleading "grdwth expectations.”
For example, Beck “(1975) has recently shown that norms based only on
. fall testing tend to underestimate the actual spring performance of a
longitudinal sample that is tested i the\fali‘and again in the spring.
‘ ) N ?
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Regression’ Approaches to Accdﬁnﬁabili;y N

- T e

One of the better known approaches to developing an accountability
. .systen is the one proposed by D?Er ¢1970;.Dyer, Linn & Patton, 1969).
His approach, which was ‘irst described before the term "accoun;abilitxr
came into pepular use (Dyer, 1966), is based on what.he calls "'the
pupil-cliange model of a &chool." Actudlly student change per se is .
never assessed in Dyer'stapproach,:instead, regression equations are
used to compute residual| mean performance for a schoopl. The§e residuals

form the basis for obtaiping 'school effectiveness indices."
[ « B * '

.

. As initially conceiﬁed, the qiir approach\would distinguish four
major ategories of variables call input, surrounding conditions,
educational process, and output. The input and output categories of
variables refer to student characteristics measufed'before apd after-
a given period of schooling. While these groups,of.yariables were
broadly conceived to include a wide array.of measures, as implemented -
the input category is apt to consist of pretest scores and ‘the output
of posttkst.scores.

Surrounding condition variables consistof the. variety of home,
scheol and community characteristics that describe the conditions within.
which the school operates. Dyer (1970) distingulishes betwéen surrounding

_ .condition variables that are relatively "Rard to change' and those that’
" are relatively '"easy to change." Finally, the education process vari-
) ables consist of activit;es’of the school that may influence student
. Q achievenent. ) ’
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" With the four categories of variables in hand regression analyses -
] . ’ . .
involving the input, output apd hard to change surrounding conditions'
would be used to obtain "school effectiveness indices' for each output

~;-—.~_1L\\§;2iure. Specifically, using school means, a given output or posttest
g

re would be regressed on the input measures and-hard to.change sur-
roﬁnging conditions would be used to obtain ''school effectiveness indices"
for each output measure. jgpecifically, using school means, a given outgut
© or posttest.score would be regressed on’the input measures and hard to

change surrounding condition variables. Schools with observed mean scores

on the.posSttest that were above the value predicted for that school would

receive relatively high school ef{ectiveness indices. Schools with

. \

posttest means lower than predicted would receive relativeiy low indices?“' .

. ~
- . 4

Only afEer‘the school effectiveness indicéé are obtained Qquld the .’
easy to change\surrounding gonditions and the school process variables
come into play. The focus would be on outliers, i.8., thasevschools
that have posttest means much better (or worse) than predicted from the
pretests and hard to change surrounding conditions. The extreme out-
liers, which in another context would be called Moverachiever® and under— =
achievers" (Thorndike, 1983), would then be compared in terms of the

eagy to change,surrodﬁding condition variables and the eduqationai pro-
cess variables.

\

b3

.

Dyer was well aware that his proposed approach give& no'guaranteg
of fihding the characteristics_of schools that produce the maximum
achievement. Rather the approach was conceived of as a kind qf search
strategy for identifying variables that might be_instrumental to better
-student performange, The: actual efficacy of these variables could then
be investigated in qxperimentak studies.’ -,

There are a number of questions that might’ be rdised concerning
Dyer's approach. As indicgted in the first section of this paper,
residuals.still may he queéiionable. ‘Dyer,, Linn and Patd!. CL969)
provided results that* ame relevant to one: type of reliability Qi,the
school residuals. School systems were subdivided into two randbm
halves and residuals computed for each half sample. The corfelations of
the half,sample residual scores fanged from .73 to .88 for six different
~posttests. Mhilé thése results suggest reasonable stability,‘less
encouraging results were obtained by Forsyth (1973) when he investigated

.+ another«type of reliability. . ’

-

Forsyth (1973) obtained school residuals according to the Dyer“ .
modgl’ for two successive time intervals (posttests obtained in’ 1968 and
»in 1969}% The correlations between residuals obtained for schools at the

two different points in time ranged from- .1l to .50 for 10 posttests with
3 median correlation of only .28. Thus, it would ‘appear that the resi-
" duals may be relatjvely stable for.-ome subsample of studehts to another
within a single year but relatively unstable frqm one year to the next.
Thils ‘instability.over time is seen-as a major limitfation on .the poten~
tial usefulness of this approach. L . .
o~ ' .

/ Recently, Marco (1974) compi;ed'four different methods of obtaining
, school effectiveness indices in addition to the one originally suggested

i .

o
.




- ’ m\ ) - <
, : 4-26 ,
P
. . . ' . < B

by Dver. He, found that all-five meﬁhpds yiel&ed indices that were
. ' ‘highly intercorrelated and relatively stable from one half sample to
- andther. His study does not.address the isspe~of'stability over time

or the practical\utility of the indices, however.

L4
.

. o~ “
N N

. CONCLUSION . 5. ’ ,
. . o . ‘ .
A > This paper- has ranged over a fairly broad spectrum of topics that 4

_ share as a common thread concern about measuring change from pre to
posttesting periods. _Problems in measuring change abound and the vir-
- tues in doing so are shard to find. Majar disadvantages in the use of
change scores are that they tend to conceal conceptual difficulties and
they give mislgading results. The former tendency is apparent when change
A @ scores are used to compare preexisting groups which tends to conceal

to the arbitrariness of this particular form of adjustment. The latter
tendency is apparent where various standardized test scales $uch as
equivalents or percentile ranks dre used to assess gains of dif—
groups- of students.

.

s

To-conclude with Crohbach and Furby (1970) "...that investigators

. "who ask questions regatding gain sgbres would ordinarily be better
advised to frame their questions in other ways (p. 80)" may seem very
discouraging. If So, however, it is probably because more is expected

= “ from gaim scores than they can reasonably be expected te provide.
They cannot, for instance, be expected to make up for the lack of random
assignment, nor can other adjustment techniques. For most purposes, ° )
a pretest score is best treated on the same footing as other measures ’
that are obtaified at the time of the pretest. Where appropriate, :

. regression, analyses that treat the pretest no different&y than other
indeBendent varigbles (or predictors) and the posttest as the dependent
variable avoids many of the difficulties that aré introduced by gdin

. scores.
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CHAPTER 5 ) l . .
VERTICALLY EQUATED TEST FORMS
In large scale testing piograms it- is frequently necessary and /

desirable to have several forms of a test. Multiple forms are essential
for admissions tests .such as the College Board's Scholastic Aptitude
Test or the American College Testing Program's Tests! The purpose “of
the equating is to convert the raw scores obtained from twg forms of
the test "...so that scores derived from EHE two forms after conversion

sy

will be directly equivalent (Angoff, 1971, p. 562)" In the case of .:>
adm}ssions tests, equating is essential because comparisons are made .
between persons who take different forms of the test and without the o~

equating persons who happened to take one form of the test that ¥as ~ |
inadvertently more difficult than another form would be at a dis- ~< _
advantage relative to their peers who happened to take the easie{\sgffl\ -

Equatitg test forms that are designed to measure the same thing
for thggsame population is sometimes referred to as horizontal equating
(see, for example, Educational Testing Service, 1957, pp. 7-9). Vertical
equating, on the other hand refers to the process of converting scores of
forms of a test designed for populations at different educational levels
to a single scale. In horizontal equating, different forms of the test -]
~ would normally be designed to have comparable ‘item content and similar
distributions of item statistic$. The equating adjusts for unintended
differences in difficulty of the tests or differences in distributions of
the examinées. 1In contrast, form§ to be vertically.equated differ ' e
intentionally in the difficulty of the items for a single population of ' 4
examinees and in their content specifications as well. For example, an
appropriate arithmetic item might be 4 + 3 = 7 at grade 1, 155 - 62 = ?
at grade 3, 7 x 4 = ? at.grade 5, and 5.45 + .25 = 7 at grade 7. To
be sure, such items are all in the general domain of ‘arithmetic but -
they are not necessarily indicators of a single common trait. In
other achievement areas even greater‘diversity of item type, diflicuity,
and cbntent' frequently can be found as chaﬁ%es in the level of a test .
occur while a common name and supposedly common scale is maint&ined.
It is no surprise that the problem of vertical eqpatiné is substantially’
more difficult than thaQ of horizontal equating.

4 - -

.

Ip this section, the two most commonly used equating'ﬁfoceﬁures will
be bfiefl& reviewed. The adequacy of these methods for the vertical " .
equating problem will then be considered. Firally,.consideration will be -
given to alternative equating methods with special emphasis on the use
of the Rasch model. : g

” , LINEAR'AND EQUIPERCHNTILE MLTHODS | A
} .

- WTwo scores, one pn form and the other on form Y ,(where X and
¥ meadure the lsame function with the same degree of reliability),
may be considefred equivalent i their corresponding percentile ranks in
any gilen group are equal (Angaff, 1971# p: 563)." This commonly accepted |

1

definition suggests inmediately the equipercentile method ¢of 'equating.

All tHat is rehuired for the equipercentilé method of equating is the v

.

-
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, . . . ; th
cumulative frequency distribution for each test., The k— score level
< . e | th
on‘ffrm X, Xk’ is converted to the same scaled scores as the 1— score

level og test Y, Yl’ if the percentiles/gf

ang Yl are the same. In
practice, smoothed frequency Mstributidns are typicaldy used and raw
.scores on the tests corresponding to some predeter ined sét of .per-

qentile ranks are found by interpolation. Also, there are a variety

of different study designs that might be used for tpg equating. For
example,- both tests may be administered to a single group, the tests ..
_may be administérea to a different randéﬁ*éample from the same population,
or the tests along with a common archor test may be administered to a sam-
\ ple from dif ferent populations. For a detailed description of these

C;:\\\\\>\ and other possible designs see Angoff, (1971). Iqﬁbring thesewpﬁecedu- ) }

* v A o~ I 3 * 3 3 I L
ral details, however,_ the equipercentile method is quite straight forward.

¢

kY ~ kd
\Si>w Linear equating wodiata§§ign the same scaled score to scores Xk and

Yl if they correspond to the same standard score, that is if

i ‘ ,

Xk -X - Yl - Y . .
- oo — e
X y '

* . , { .
and Sy are thée means and standard deviations of X and Y

Nl 7 a—
\wheggzﬁ'Y, >

respectively. A} no
. e > - SR .
\\\\\\\\\\!ZZfatlng methods c01nc1€fy;?'the two marginal dIstributions differ
' ly in their first and second ﬁcménts, More genekally, .the two methods

will yield-similar results when the raw score frequency digtfributions

by Angof'f (1971), the equipercentile and linear

are similar. g -

\
. < A

For purposes of.J%iﬁical équating there are two important aspects of
the above paragraphs tilt need to be corsidered. (1) Linear equating ’

- might be expected to be.less adequate than equipercentile equating for = *
the vertical situatjon/because, there is less reason to expect-X and Y
to have distributionsjof about the same shape. (2) & key aspect in the =~ .~
definition of equiva%gnt scores given above is the requirement that'the‘
percentile ranks\be3 qual."...it any given group...., Lf‘this requirement
‘{s not; met then the conversion will not be~ynique, More will be said
about his‘seconﬁ point below but first a few comments are of fered | ‘

regardfing the likely utility of thé? linear method in vertical equating.‘

3
i

o , _ THE ANCIOR TEST,STUDY o S

Y ' N N |
. Uﬁhbubtedly the largesf equating study ever conducted was the |
Anchor Test Study (Bianchinf and Loret, 1974). (For a more complete

review of the,Anchor ‘Test 'Study see Appendix A.) This study, and its
supplement equated eight widely used standardized reading tests at -

»
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'grades 4, 5, and, 6., °‘Although the equatlng was done saparately within
*€ach- grade, and thus the equating might naturally‘be “viewed as hori-
‘zontal, ‘the'results are in fact quite relevant to the problem of - e
vertical equating. The tests being equated differed substantially , .
in difficulty level as well as in chntent specifications. Furthermore;
there were a variety of patterns of comuon versus different forms
used at grades 4, 5, and 6 which make it possible «to compare .equated

'~scores at one’ grade level with those at another.

' . The various pairs of tests involved in the anchor test study
wete _equated by botli the equipercentile. and linear methods. These -
methods were ,compared in terms of the estimated errors of equating )
which were obtained by the use of McCarthy's balanced half—sample .
replication method (1966) . The equaying design consisted of a set of
‘2ight balanced. half-samples. Thesg half-sample replications were used
to compute the root-mean squared deviation of equ1valent scores on
the anchor.test for each ?alf sample reEllcatlon about gre .anchor . '
test equ1valent scores for the full samble. BEased on' thle estimated
errofs the equipercentile method was judged to be clearly superior .
to the llnear method. Furthermore, the degrge of superiority was ¢
greatest for those tests which differed .most from the anchor test in
their level of difficulty. Based on these results "and logical con-
siderations ‘about the likelihood that distributions of forms to be
vertically equated will differ in noments higher than the-second, the
' equipercentile method seems preferable to the linear method in the ‘

) vert1cal situation. . ) . -

. The Anchor.Test Study-also provides-another_ferm of evidence that
is relevant fof therproblem of vertj equating., Two tests involved
in the study changed levels betweeé grades 4 and 5, three tests changed :

.levels between grades 5 and 6, .two\tests involved a single level over

all three grades and- one'stest - chané@d levels at each grade. These

different patterns of levels-make possible a variety of comparisons

of the equatings of two levels of one test to q single level of. another

test. For example, the'same level of California Achievement Tests,

CAT, (CIB McGraw-Hill, 1970) was used-at grades 4 and 5 but different

levels of the\Ietropolltan Achlevemedt Tests, MAT, (Harcourt, Brace,,

Jovanovich, 1970) were used at those grades. us1ng the CAT equi-

valéncies of the MAT, it is possible to' convel he MAT Elementary Level - ~
Reading scores to equivalent Intermediate Level Reading scores. For )
purposey of illustration, a few scores of the CAT at grade. 4 were
'selep d and’ the equivalent Elementary Level MAT scores were mnoted.

The same CAT scores were then used at grade 5 to find the equ1valefb
Internedlate Level MAT raw scares. These scores are shown in Table 5-
1. The publlsher s norms were used to convert the equated MAT Ele-

. mentary andaInternedltte raw-scores to grade equivalent scores. The ’
resulting grade equiValent scores are also reported in Table 5-1, Fi- ]

nally, the grade equlvalent score at grade 4 was subtracted from'the
corresponding score.at grade § and the difference was recorded in the

] .

’last column, of Table 5-1. . i - , e
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If the two columns of grade equivalent scores in Table 5=1 a‘é com-
pared, some non-trivial differences in the grade equivalents cane ob-
served. The largest of the differences in corresponding grade equivalents
shown in Table 5-1 occurs for MAT raw scores that are equivalent to a
CAT raw score of 60. At this level, the grade equivalent scores are 6.6
at grade 4 and 7.4 at grade 5 for a difference of 0.8 grade equivalent
units which.would presumably be interpreted as almost a "year's gain."
Except at the extremely high end of the distribution, the grade equi-
valénts tend to be larger 'at grade 5 than at grade 4. ’

A number of other test combinations could be used to produce tables
such as Table 5-1. For example, the grade 4 and graie 5 MAT ggores‘céﬁld‘
be equated through their links to the Comprehensive{ ests of Basic Skillé,
CTBS, ((IB, McGraw-Hill, 1968) rather than through the CAT. This was
dong and the regults are reported in Table 5-2. As can be seen ipn Table
5-2, the grade equivalents at grade 5 again tend to be higher than.the
.corresponding grade equiYalents at grade &,

h N

¢ The results‘in Tablés 5-1 and 5-2 sufgest that changes in grade
" equivalent units might differ substantiafly depending on whether a
single levél of a test or two vertically equated levels of a test are
being used in, say, a longitudinal researcn study. In particular,
larger gains would be expected .using the Elementary level of the MAT
at grade 4 and the Intermediafe level of the MAT at grade 5 than would
be expected if either level 2 of the CIBS or level 3 of the CAT were
used at the two grades. ’
In addition to the grade equivgent scores, vertically equated
"standard scores" were also comparéai The standard scores reported
by the test publisher of the MAT test are scaled to Tange from grade 1
to grade 9. At grade 4, the mean scaled score is about 66.and the
associated standard deviation is about 14. By grade 9, the mean and
standard deviation are .approximately 96 and 17 respectively.
The grade 4 and g;ade 5, standard scores of the MAT were compared
by converting equivalent raw scores on the Elementary and Intermediate
Levels of the MAT to stdndard scores. When the CAT was used to define
equivalent raw scores on the MAT, the results in Table 5-3 were obtained.
The results in Table 5-4 were obtained by using the CTBS to define equi-,
valent MAT raw scores for the two levels of the MAT. For all but rela-
* tively high scores, the Intermediate Level MAT standard scores are some-
what higher than the "equated" Elementary Level standard scores. This
is true whether the equating is accomplished via the CAT (Table 5-3)
or via the CTBS (Table 5-4). Furthermore, the pagnitudé of the difference
in standard scores is relatively large”fh some parts of the score dis-
tribution. ) »

ft mféht be noted that 'the largest differences in standard scores
reporﬁed in Tables 5-3 and 5-4 occur at the extremes where relatively
few oHéeivatiods are expected. Even in. the central part of the score™
range, |however, the differences are as large as;a tyird og a within
grade standard deviation. A difference as big gs a third of a standard
* deviation is apt to.loom large rélative to the pagnitudegf "effects" -

that 'are being evaluated. ‘Thus, wpether grade 'equivalent scores or other
V 0y - \
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N n " . TABLE 5-1 -0
—ing . . ‘ §
T&tal Reading Equivalent Scores on: the MAT Elementar
. and Intermadiate Levels (Grade Equivalents via-.CAT) (\ -
Equivalent MAT Raw ‘Scores and et
Corresponding Grade Equivalents
Y -
" Level 3 ’ Elementary Level Intermediate Level Difference in
CAT Raw s (Grade 4) (Grade 5) GE Scores
. Scores { | ' (Grade 5 minus -
(Grades\ & 5) Raw | . GE Raw, * GE Grade 4) '
80 94 9.9 91 ©9.8 -0.1-
70 89 8.4 76 . 8.4 , 0.0
. 60 84 6.6 - 63 . H4 0.8
50 ° 76 5.2 51 5.5 0.3 ! !
40 63 3.7 39 T b4 0.7
30 * . 45 3.2 29 3.5 0.3
20 26 2.3 20 2.6 0.3
10 12 1.3 8 1.4 0.1 T
—_ \
oL
. . \ , .
) , \ . . \\ ‘
. \ \‘ ,
:\ ; .‘:@‘w\ i \\ : ,
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TABLE 5-2
Total Reading Equivalel:xt Scores on‘the MAT"Elementary ’ e
d and Intermediate Levels (Grade Equivalents via CTBS) *
* 14 ¢ *
" Equivqlent_bLA,T Raw Sﬂcg%es and _ o
Corresponding ‘Grade Equivalents ,
Level 2 Elementary Level Internediaté Level . Difference in *
¢TBS Raw R (Grade 4) (Grade 5)° . . . GE Scores
, Scpres A . . ' (Grade 5 minus
(Grades 4 & 5) Raw GE Raw GE Grade 4)
B i ’ . -_—r
' 780 93, 9.8. 87 9.8 S+ 0.0
© 70 . 86 7.3 - 69 : 6.9 ., -0.4
60 78. 5.4 ; 55 5.7 B 0.3
50 ‘ 68 4.3 44 4.9 0.6
e 40 ‘ 56 3.5 35 4.2 .. 0.7
' 30 . 41 2.9 28 - 3.5, 0.6 -
20 24 2.0 20¢ 2.6 . 046"+ °
10 0 e 12 e 1.3 10., e, e v 0.3
. - . _ . . 1
. A ' v
v Q(} - "
'ﬁ. . | ) . ) .
4 - .
- " @ ‘
& - . . ] L
. . < i :
’ ’ .
f ! - \
% | . . ‘ ‘
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Total Reading Equivalent Scoresyon the "MAT Elementary

f

)
TABLE 5-3

»

4

and Intermediate Levels (Scalled Scores* via CAT)

< .

Equivalent MAT Raw Scorﬁand
. Corresponding Scaled- §cores

-

.:\

e Level

Level 3 Elen?;ntary’LeVel Ifxtermegiia?
,CAT Rau . (Grade 4) ‘(Grade
Scores .« .
(Grades 4 & 5) - Raw _Scaled Raw
- ’
. 80 94 119 91
- - 70 - 89 ' 94 76
60 i 84 . 84 63
50, . 76 75 51
. 40 ' 63 . 66 . \39 :
30, 45 + .58 129 .
20 26 47 20 -
10 12 26 ~ 8
« s ., ‘ < Y
' \ .
*MAT Standard Scores  * . ‘
L 4 v “
Y
R o™ ¢ L4 . \.
. ¢
\ . ’ :
i R
5 i g - N . 1)
e i ' .
o - ;
’ ‘ ’ - ’ ’ \
. ' ” T , . ,!v
' ‘ R i . ‘: .
' * ’ ]
. 4
. 94

5)

[

‘Scaled .

117
. 91.
83
- 77
70
62
" 52
29,

Prd

Difference in

Szalpd Scores -
(Grade 5;minus
Grade 4)




Level 2
CTBS Raw
Scores

P

TABLE 5-4

" Total Reading Equivalent Scores on the MAT Elementhy
and Intermediate Levels (Scaled Scores*.,via CTBS)

. Equlvalént ?ﬁ Raw qures and “

-«

(Gyades 4 & 5)

70

50
40
30
20

\ i ’

80

60{.

- 10,

’fMAT'Sténdard”Scores

. . Corregpond; ScaleqLScores
, ) B N
_ Elementary Levgl Intermedlate Level
- (Grade 4), (Grade 5)
\\' . |
Raw Scaled. Raw Scaled
93 12 87 T 105
86 88 | 69 86 .
78 i 77 55 79
68 69 " b4 73,
) 56 62 35 67
R 41 56 28 . o 61
24 “45 2 . " 52
12 26" 10 . 34
. ‘~d_,_,r'“1
LN
ae .
‘/. - : ‘
'd
‘ “»

+5-8

&

Differerice in
Scaled Scores
(Grade 5 minus

Grade 4) - ’
-7 . * .
“ =2 o
v 2 \ N
L4 .
5 .
5
7 ]
8 -
/-
» \
. t
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scaled scores are used, change observed on the same.level of a tést is

" apt to yield different results than chiange observed over two vertically

q%?ated levels of a'test,
In. Tables 5=1 through o= 4, except "for very hlgh scores, there is a,

consistent tendency for the " ed" scores based on the hlgher level

form'to be larger’than their countFrparts based on the lower level

form., If this was a general tre » then it might be possible 'to compen-

sate for the tendency. Unfortunately, thlS trend does not hold for all

test gombinations,

. \s e
. - Additjonal comparisons of vertically equated scores based on the
results' of the Anchor Tegt Study are reported in Tables 5-5 through

-5-8. The. results in Tables 3-3 through 5-8 provide comparisons of

resilts’ for grades 5 and 6., At those grades, the same level (Inter-

'medlate II) of'the Stanford Achievement Tests, "SAT, (Harcourti Brace,

Jovanov1ch 1973) was'used while different levels of the CAT {Levels .
3 and 4) mnd of the CTBS (Levels 2 and 3) were used. .In Table 5¢5, '
selected raw scores on the SAT are reported along with equivalent: CAT
Level,3 and CAT Level &4 ray ;cores and gssociated grade equivalent ..
scores.* The differences in equated" grade equivalent scores are also 5
reported in Table 5-5,, A similaTr set of results for CTBS Level.2 and

Lewvel 3 grade equivalent scores are reported in Table 5-7. The results

in Tables 5-6-and 5-8 were obtalned in parallel faghion except- that ~
other vertically equated scaléd scores ‘that are. reported by thé7publlsher
are usé&d. N !

“ v

: The results for thesCAT grade equivalent scores (Table 5- 5) have
a pattern just the .opposite of the one previously:encountered for the

“MAT, That 1is, except for the highest scores, the higher level form

tendd to yield lower grade equival#nt scores than the "equated'" score

‘of the lower level form: It should also be noted that the magnitude of

L

the grade equivalent scorefﬂifferénces in Table 5-5 tend to be smaller- -
for scores in the middle of the range than were the dif ferences iu )
Tables 5-1 or 5 2 N . ; ., / - .i Y

The results 1n Table 5-6 are based on the CAT Achievenent Develop—
ment Scale Scoref: .These gcores are scaldd to span grades 1 to 12 with
a range of scores, from 100 to 900. The mean at grade 10 is set at’ 600
and the standard. dev1at10n at 100. ‘At grade 4, thg mean is about 400
and the standard deviation. about 5. ;THe results in Table 5-6 are
similar to those in Table.5-5. The %chievement Development Scale Scores
are lowgr for Level 4 than for Level 3 except at the very high end of
the score distribution. The magnitude of the difference for :the middle
range of seores.is only about an elghth of a w;thln grade standard
deviatlon or less., :

. ' ﬁ | .

In Table 5 -7, the CTB$ Level 2" and Lgvel 3 rade equlvalent scores
that correspond to common $AT scores are reported. In the middle part'
df the score range, the Level 2 grade equivalents are hlgher than their
Level 3 counterparts and thie opposite is true at both'extremes of .the
score dlStflbutﬁ&ﬂ. The mﬂgnxtude,of the dlfferenqe in the middle ,part
of the score distribution is 0.3 or 0. 4 grade equlvalent unjits. Slnllar

N Vo .
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N TABLL 5-5 . :
/\\S .~ Total Reading Equivalent. Scores on.the CAT :
v Lev:el 3 and Level 4 (Grade Equivalents via SAT) : ' ;
Equiyalent CAT Raw Scores and o
' Corresponding Grade Equivalents C G —
- . - o
’ Intermediare Level 3 Level 4 Difference in v
II SAT Raw , (Grade 5) (Grade 6) . . - GE Scores .
Scores T - , (Grade- 6 -minus
(Grades 5 & 6) . Raw GE Raw GE Grade 5) -
- ¢
110 . 82 12.9 82- 13.6 0.7
100 . 80 11.4 71 11.5 0.1
,_90 . 77 10.1 62 9.8 -0.3
80 72 8.5 55 8.5 - 0.0
70 _ 68 7.7 48 ° 7.5 3 -0.2
. 60 y 63 7.0 42 6.8 T -0.2
-1 56 6.1 . 36 5.9 -D.2
- =40 - 7 47 - 5.1 29 4.9 -0.2
X 30 35 3.9 22 3.5 -0.4 .
20 .22 2.4 16 2.2 ©-0.2
1.1 9 0.6 -0.,5

10, ©'13




/

/

/intermediatef
IT SAT Raw ,
Scores

(Grades 5 & 6)

110
100
90
80
70.
60
.50
40
30
20
10 iy

&

€

.

TABLE 556 « .

N

»

C -

Equivalent CAT Raw Scores and
Corresponding Scaled Scores

Total Readifg Equivalent Scores on the CAT
Level 3 and Level 4 (Scaled Scofeg* via SAT)

Level 3 |

Level 4
"(Grade 5) (Grade 6)
Raw Sbaled Raw Scaled
Y . . ,

82 665 82 757

80 625: ¢ 1 , 626

77 580 ~+ 62 566

72 530 " 55 H 528,

68 . 503 48. 497
. 63 . 480. 42 474

56 454 36 ) 450

47 424 29 415

35 380 22 . 364
" 22 . 318 16 306

13 259 9

.

)

*CAT Achievement Development Scale Scores

N
i

94

-

Difference in
Scaled Scores
Grade 6 minus
Grade 5)

u\

\,
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: ' TABLE 5-7 : ’
2 Total Reading Equf{zalgnt Scoré,s on the CTBS
Level 2 and LeVel 3 (Grade P‘Jquivaler}’t via SAT)
‘Equi'vélent CTBS Raw Scores and
, X [ Corresponding Grage Equivalehts:' - .
S . » .
Intermediate. Level. 2 £ Level 3 .. Difference in
I1 SAT Raw . (Grade.5) . (Grade 6) - GE Scores .
Scores s ' : ‘ X . (6rade 6 minus
(Crades 5 & 6): .Raw ' .GE +_Raw GE Grade 5)
110 . 85 11.9 84 12.9 1.0 °
100 ¢ 82 11.5 75 11.5 0.0 '
90 79 9.7 .66 9.4 -0.3
80 .76 8.7 © “59 8.3 -0.4
.70 . 72 7.6 52 7.3 -0.3
.60 68 6.9 45 6.5 <0.4 -
50 — 62 6.0 37 . 5.6 0.4 .
40, 53 5.1 -30 ., 4.7, 0.4
;30 o .« 38 3.9 22 3.6 -0.3
20 T3 . : 2.\16 2.5 -0.2
10 a2 1.2 ~.9 V2.0 0.8
> -‘\ ‘ -y ‘ . Bt
,’-I , | N . :
5 —“ CF 't." - o . N
. ) - e . A . \ " . 8 o
" . * . , ‘. \.‘ . R —
) 4 - ' b - ™~ s
\\ / . ’ - . )
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o TABLE 5-8 . . \
- ' . Total 'Re:ac,ling Equivdlent Scores on the. CTBS |
Level 2 and Level 3 {(Scaled'Scores* 'via'-SAT).
; . Equivalent CTBS Raw Scores and ,
' ",Cofxeé'bond;‘._rlg Scaled Scores - .
ihtgrmedia:te ; Level 2 ° : Level 3 Di‘.fferénce in
11 SAT Raw {Grade 5) (Grade 6) Scdled Scores
Scores o _ R - (Grade 6 minus
. (Grades § & 6) Raw Scaled Raw -Scaled - 2 Grade 5)
N . 3 . S R °
110 85 744 84 786 42, -
100 82 660. 75 ° 641 -19.
-— L 90 ¢ 79 612 66 579 . =33
80 - - 76 . . %554 59. - 543 -£11 K
.70 . , 72 523 52 ' 513 =10 .
60 68 | 497 .45 483 I LA
50 62 - “465 .37 " 451 . =14 4, .
40 - 53 433 30 © 421 =12 .
30 38 - 386 22 370 -16
20 ¢ 23 325 16 314 -11
1p .12 236 9 247 .-
[ “’ ‘ - t Q
" *CTBS Expanded Standard ‘Scores
4 ? c{‘ ) -
- " - ' x‘ﬁ *a
& D . .
N - ' ' \ A8
N N \ 3 3 ‘ : N
S . :
¢ - ) N T I
e )
' : {° - \Q“ %
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’ . results are reported in Table 5-8 u31ng the CTBS Expanded Standard *» v
Scores which range from 100 tp 900 with a mean and standard deV1at10n m"ﬂfdﬂﬁﬂﬁq
) at grade 10 'of 600 and 100 respectively. The magnitude of the differenc Mmm¢;::: ,
P in Table 5-8 tends to be about one fifth of the standard deV1at10n ”

L observed at grade 5 (which is about 72).

, In summary, the results in Tables 5-1 through 5- 8*raise ddﬁhts
about the adequacy’ gf the vertical equating. Change observed on a ’
. single level of a test is apt to have a different neaning than the same
= change. observed on vertically equated levels of ‘the same test.” Un-
fortunately, the direction of the difference is apparently not consistent,

~e

. THE RASCH MODEL ; )
An important aspect of the definition-of equivalent scores that was -

) mentloned above is that the cortesponding percentilé ranks be equal . :
. for "any given group. With presently used-methods of ecuatlng, this ™ - T
ideal is only roughly approximated for vertically equated test forms. -
This may simply be a reflection of the difficulty of the task rather .
than a fault of the methods. It is possible, however, that a rather, *
different approach to the Droblem would yield better results. If, e
so, that would be a valuable contribution to longitudinal research ) i
. studies. An approach that appears particularly promising for the problem

. ,of vertical equating is.one based on the Rasch (1960, 1966a 1966b)-
N ‘model. - . . o co-
o ' ’

The appeal of the Rasch model:is apparent in Wright's (1968)

descrlptlon of the model- as Drov1d1ng 'person-free test calibration"
and "iten—free person measurement.'' What is meant by person-free test .
calibration is that the item parameters that® are estimated are invariant
for all groups of persons. Item+free persoh measurement, on the other

" hand, means that once items have been calibrated that except. for errors
of measurement, the same score would be obtained for an individual '
regardless of wh1ch s\bset of items is used for the measurement.

These properties are Dr8c1§S;y what is needed for the vetrtical equating
problem. N

Rasch's model is a particular instance of a latent trdit model and
presumably. the comments about the potential use of the model in achieving '
invariant item parameter and person scores could apply to other latent
“trait models. The primary "potential advantage of the Rasch model is
its relative simplicity in that items are characterizeqg by a'single
_parameter. This characteristic may at the same time be the primary
‘potentjal disadvantage of the model, however, 1f it proves inadequate )
for characterizing item response data. '

,  The Rasch mcdel is a special case of Birnbaum's (1965) fogistic
model. Three types of lOngth models might be dlstangu1shed according

_ to the number of parameters. Birnbaum's three~parameter model assumes
that the item charactbrlstlc curve can be specified in terms of a

. locatlon naraneLer, an item discrimination parameter, and a parameter
allow1ng for & non-zero lowver asymptote. In the two paraneter,model
it is assured that onlv the location and discrimination parameters are’
required, and in ‘the Rasch model, it is assumed that only the location para-
is required. Thus.a natural question that needs to be addressed if the

- Rasch‘model were fo be used for the problem of vertical equating is whether one

\)‘ S ' ' * . -
ERIC . -
wiéﬁﬁn - ‘ ' 1v } o
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or both of the other parameters are necessary,, Regardless of the number
of parameters, all three logistic models assume that a unidimensional
trait underlies the items.

~
-

Ignoring estimation problems, the three parameter logistic m;EET“iS\
undoubtedly more adequate than the two parameter model or the Rasch model
with only one parameter per it¢n. ,Recent work by Lord (1975) suggests that
in the long run the three-para tef&IBgistic model may prove to provide
'a much improved means of vertical .equating. The main disadvantages of

the approach. are .the’ demands’ for very large sample sizes to achieve

stable estimates and the considerable computing costs. The Rasch model

is much simpler computationally than the three-parameter logistic model-.
which would be a substantial éaqantage if the model provides an adequate
.appraoximation to real sets of data.

e

~ .
'Fol%ow the notation of Wright and Panchapakesan '(1969); the

Rasch model spebi i

that the probability of a correct response to the

iEE item by the nEE-indiﬁidugl is .

where a_y is the item score which takes anﬁalue of 1 if the response is
correct and zero otherwise, 2n is t?e ability score:for the ng-l person,

and Ei is the igem easiness. For md§t purposes, it is more convenient

to deal with log abilit:y"(bn = log Z;) and log easiness (di = log Ei) -
which make it possible to”eXpreis the log oads, Lni’ in the simple fofm -

N

_ ni ' ° =b +d,.
Lni = lOg l—_——r;r—'e n i

<

As previously indicated, there are three assumptions of the Rasch
model that may have questionable validity for typical multiple choice
test items. That is, (1) the test y be multidimensional, (2) the
items may vary in discriminating posgib and (3) there may be a non-zero
probability due to guessing of getting an'item right regardless of the
ability of the examinee. Wright (1968) acknowledgéd these three problems
but argues that test construction should purposefully try to minimize them.

- i .

«
N

~
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. ) . . 3
Some investigations of the robustness of the Rasch model under
) violations of the assumptions of equal ‘discriminating power and lower .
" asymptotes of zero have been conducted. Hambleton and Traub (1971)
" generated item response data bdsed on the Birnbaum three-parameter
logistic model. They\then compared the results based on an assumed
Rasch model and an az:;ﬁeq\Birnbaum two-patameter model to‘ those re-
sults based on the three parameters used to generate the data.. Both
thie Rasch and the twvo-paramete \Qérnbaum models became noticeably less
. efficient when guessing was introduced. The two parameter model was
\*\\\\ géngrally nore efficiént than the  Rasch model except at low ability
- levels under conditions of no guessing.
= . » . 4 - . - . . k4
' One of the potential ‘advantages of the Rasch or other latent trait
¢ modéfls over conventional equating procedureé is the possibility that
.the item parameters and therefore the test calibration are invariant., .
_That is, the estimates of the item parameters should hot depend on the
© s ¢+ sample used to obtain the estimates which is what Wright (1967) refers
T to as "person-free test calibration." Several studies (e.g., Andersdn,
Kearney, and Everett, 1968; Tinsley and Dawis, 1975) have found that
the Rasch item parameter estimates have relatively good invariance for
particular sete-of jtems. As might be expected, the invariance is )
improved when eonsidgration is limited to those items that are found ™ °
it *the Rasch™“model within a given confidence interval.

\ ~ kS
3

Partigularly relevant for the vertical equating problem are results
such as thode reporteg by Wright (1968)-which compare estimates of ability
«rd® and "easy" tests. This approach was used to investigate '
"w=:>ggg?i§?quacy"~\ be "item-free person meaSurement" claim. Using test
responges of 97/% sestudents to a 48-item test, separate Scores were
obtained for eachstient based on the 24 easiest items and on the 24

- +  hardest items. As ;led be expected, there was a substantial difference
s in the mean raw number sht scores for the easy and hard tests
<. )

When estimated log ability scores were

(17.16 vs.10.38 respective V\i\\
~obtained,. the means of the two 28§ were ‘quite similar (means of 0.464

and 0.403 on the easy and hard testS~xespectively). To make a comparison
tween. the: difference in raw score meaitmand the difference in log p
” ability means, the différences in means. can Bg qompared to the'‘corres-
™N ponding standard deviations of 'the differénces. or raw scores, the
mean difference is 6.78 and the standard deviation of the difference )
is 3.30; thus, almost all the raw score differences are™positive. For
log ability on the other hand, the mean difference is 0.061, while the
N\ correSpondi:g\standard devidtion is 0.749. The log ability differences .
' are significantly greater than zero (t = 2.54) but the magnitude of thei-

\S\\ difference is small.

~

.
&

ubjects on“QQ0, verbal ~
rd subtests.

analogy items.
- r the dif ence in raw score on the ea

42.52 whereas
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fotHer comparison bétween "easy" aﬁ% "hard" test§ wds made in both

the Wright (1968) and Whitely and Dawis (1974) studies by(éopverti;g sgd%esf‘

i . . N Sy * .. Y
' to "standardized differerce scores.".” The standard errors associjted with

a given individual's ability es%}mate on. the hard andueaéy tests~é{i{jsed

-along with the twg ability estimates'to obtain a "standa:di%gd diffegence

score", D_, as follows: R N v ‘
n . .? , - Y

' b_-b ‘
: ne nh s S
o LRI \
. ‘*_ M i : v
. S ne S nh S -

b

. ¢
= L]

s ~
wherecbn and bne are the log ability estimates for indiwidual n on the

héfd andheasy tests respectively, and 82nh aﬁ%,szne are“tﬂﬁingimated
variances of the error of measurement associatgdjwith the individual's

log abifity‘estimate on the hard-and easy tests. Wright and Panchapakesan
(1969) provide am algorithm for obtéiqing the.necessary est;ﬁated error

variances in addition to thg ability and item estimates of the Rasch oY

N ~

. ‘ i \——-t"’ ~ \‘ :

- Usi?g the Dn sc?res shown ab0ve2'Wright (1968)» computed means and’
standard deviations and nofed that if the log.ability estimates from the
hard and eésy tests were sta;isticai&y equivalent, the mean should be
zero and the stapdard deviation 1.0. The values actually obtained by
Wright were 0.003 and 1.014 for the mean and stapdard deviation respective-
ly. . Th%s result was judged to provide strong eJ1~ence fog’the‘equivaleﬁce

of the hard and easy tests. .Although the mean of 0.057 and the standard

*deyiaﬁion of 1.146 reported by Whitely and Dawis (1974) are not as good..

- ¢ LY
as the values obtained by Wright, they do lend some support for the item-

free peréon measurement claim of the Rasch model.

- . ‘ *
. The, results obtained by Wright and by Whitely and Dawis are very
éncouraging because of their .potential significance for the, vertical
equating problem. There remain questions, however, about the generaliz— *
ability\of these results. It would be desirable to have more infor-
,nation about the consistency of the relative-standing of a group of
individuals on-two equated tests that differ 'sybstantially *in difficulty.
It would alsc be_desirable to have information about the stability of
the results when estimates are obtained from one sample of examinees
and .then applied to a different Sample ®f examinees. Finally, it would
be helpful to have information on vliether hard and easy tests are uniquély
equated *if divergent groups-of examinees.are used to perform the equating.
Analyses of some existing item response data were undertaken in an attempt »
to provide just such information. ' A

<
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N ceptions, items 37-50 ;_nad\ éélues less than 0.15 and the ones which

\\\\\\. "difficult" fpst consisted of the 18 items with .the lowest p values. In

EMPIRICAL ANALYSES USING THE.RASCH MODELL \\
. ?roce&urg ‘ ¢ , o S <o . 'T )
' Item reSponse~ﬂata for 1 365.students on. 50 items off a’ retired 3 R
ﬁorm of the CGollegesEntrance Board's Mathematics Achieverjent Test Level .
I'were obtalned from the files of the Office of Instruct;onaI Resourtes, i

Measurement and Research D1v181on of the Uniyersity of Illinois.* This-
itest was.used as the intermediate mathepatics proflciency and placement i
examination for af1 1973 incoming freshmen at the Univérsity of Illinois

" who have not previously had aatrigonometry course.  Based on the 1,365 -
students, items 37-50.were discarded Jpecause of possgble sbeededness

or because. the proportion of ‘students correctly responding. to a given
~item, p, was less thdn 0.20 or greater than 0.80. With but a few ex-

did not were very close tg 0 and had associated proportlons omitting
" equal to 0.40-or greater. the 36 items retained, the p values ranged
from 0.22 to 0.77 except for two ‘temé which had p values of 0.82 and o
0.81 with agsociated proportigns omlttlng eqpal to 0.01 and 0.0%4, res- \‘\ © T
pectlvely. The p values were 'also used tq.create twe subtests.: (An
"easy" tesks Q\p igisted of the 18 items with  the. hlghesﬁ p values and a

addition to eliminating several items, any S \ﬁt who responded
- correctly or incorrectly to ,all 36 items or to the two"18 item subtests
was ellmlnated from all analyses This was done behause no 1nformat16n
can be obtained for the item dnalyses from students w respond at thesg
two extremes. Of the 58 students eliminated; it is, :?kECuzae, possible
_that a student could have a score of 0 or 18 on one of the EWQ subtests ~
but be usefully included in the total test apnalyses, but fpr simp11c1ty o
these’ few students\were also ellmlnated - S~ . °
The _complete sgn ef group/test comblnatlons that were utili i his
study is summarlzed in'Table 5-9. Nine sets of parameters were obtalned
corresporiding to the.crossing of the three possible tests (dlfflcult
easy, .and tota}) and Tthe threge examlnee groups used ‘for estimation (hlgh
low, and total). As indieated in Table 5-9, these group/test combina-
tiOns will be referred to by twd letters 1dent1fy1ng the test, then the
group. ~For:example, estimates based on the difficult test and the low
group are labelled DL The other possible labels are specified in Table
5-9. - N ™~
“ ' L
¢ ) e
Ihe division of items inte-—easy, and difficult subtests‘is in llne with
the subtests used by Wright (1967) and one of .the pairs of subtests in-
vestigated by Whitely and Dawis (1974) aand therefore some’of the analyses {
_presented here parallel their analyses. However, in addition to using' the\\\\
total sample, three nggopulatlons of examinees were formed according ~
"to their ' abillty 1 . The examlnees were assigned to a "hlgh" group .
if they liad 21 ex “iéy\ifomq oorrect on the total 36- itdm test. ' With
16 or fewer items correct) examinees were assigned to a "low" group. The
remaining examinees who had scores between 17 and 20 were retained in
a ''middle" group: This split "4ssigned-~490 examinees to the high group,
483 to the l&ﬁ‘group, and the’ remalnlng 334 to the middle group. .

.
.
. ‘ ) . .. ° - 2
@

¢ A}

* We wish to thank Dr. David'Frisbe&for providing ,us with access. to these
data.’ . '
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Item parameter estimates for all.36 items were obtained ‘for each,of.
the three groups via the Uxight and Panchapakesan (1969) computer pro-
gram, These three sets of 36-item parameter estimates were then used
. as 'the values of the item parameters for the easy and difficult tests for -
each of the three appropriate groups. For éxample, the 18-item,¢ara; T
meter estimates corresponding to the 18 easiest items obtained for TT ° ‘ .
¢ were used for LT and the other 18-item parameter estimates were used A
for DT. Ability estimates were then computed by the iterative Newton-
-Ralphson procedure - given that the items were already calibrated. )
However in addition to obtaining ability estimates that used previously,
' calibrated items, it was decided to compare these ability estimates
, with ones that used no prior information for the iten parameters. The
Pearson-product moment correlation between the two ability estimates ,
was 1.0 for the total, high and low groups. Because of these three per— ¢
fect correlations, only theé results based on the ability estimates ob-
tained by using the previously calibrated items are reported. Thé
C - . middle group was not used to obltain estimates Yother than as part of the -
total group) but it was used to.compare the equivalence of the easy and
dtfficult tests by using the ability estimates based on the high group ‘,;
(and also the low group) and applyihg them to the middle group.

- . ‘

4

“

[ -

RESULTS
The'resuits for the comparisonwpf the difficult and easy tests. °
for the.total sample (DT and ET) are reported in Table 5-10. These ; v

- results parallel those reported by Wright (1968) and by Whitelyland

~ Dawis (1974). As would be expected, the means on the two tests are

. quite different for the numbér right scores, but quite similar for the
log,ability. scores. A t test for the difference.in means on: the number
right score yields a value of 65.74, while the t for the difference in
means on the  estimated log ability score is bnly 1.82. Fdrthermore,

" the ‘mean and standard deviation of the "standardized difference scores"
are near 0.0 and 1.0 respectively as would be expected for statistically )
equivalent tests. Thus, based op the total sample the easy and diffi- o

L cult tests appear ‘to be well equated on the log,ability scale. )

ﬁ%/ The above comparison of easy and difficult tests wa!'repeatéa or

' 'both the high and low grotips. These results are reported in Tahle 5>11. -«

The results for the estimated log ability scores for the high and low !
groups are less favorgg}a\than those for the total group butwthey still
ptovide reasonably good support for the claim that the scale provides Ty ’ ¢
equivalent measurement. The main exceptions to the support for,equi%q; :
lent measurements come from two- sources: (1) the relatively large ) ;
mean of the standardized difference scores obtained for the high group,
and (2) the relatively large discrepancy between 1.0 and the standard »
deviations of 0.932 and 1.115 obtained for the stagdardized difﬁerepcg

scores for the high and low groups respectively. . . & .

“
3

One of the requiréments‘stated early in this section for equatingﬁi%;
that the conversion from raw to scale scores be unique for different * ¢
subpopulations. "To investigate this assertion, the independent cdpn-

‘ versions for the high and low groups werée compared. If.the log'abilétﬁ .l‘ -
estimate associated with a particular number right $core for the High group” *
. ’ .q‘. . . - - ~ , . - £

» . ., e - R . 2
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x\‘. o~
) . Comparlson of Difficult wand Easy
! \ ' Test Results for the. Total Group
\% \‘ . ¥ - ' " \ ' * S
<, . |
\ N . \\ " \,& . ) .
Stai\ic \Eaiy Test Difficult Test ™~ \\Difference StandardizZed
e o } ; Difference
-~ ~ ~"Number Right Score N
N L » \\".
" ) - ‘
‘Mean 11.975 6.514 | 5.461 e :
Std. Error 0,098 0.086 10.083 .
Std. Dev. 3.539 3,127 .003
N . R
\?\ | _
. TN
. Estimated Log Ability - -
Mean . 0.114 -0.069 0.045 ©-0.023
Std. Error 0.030 0,025 .025 0.029
Std. Dev. 1.090 ", 1.039
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TABLE 5-11 ‘
Comparison of Difficult and Easy
Test Results«for the High and Low Groups
Statistic ¢ Easy Test Difficult Test "Difference Standardized”
’ ) - ‘Difference
{ Number Right Score (High Group) .- b 3
Mean 15.131 / 9.500 . ‘. 5,631
Std. Error 0.063 0.108 . ’ 0.119 _
Std. Dev. }.402 ‘ 2,387 22,634 .
‘ . . "Q’ / .

/)

Number nght Score (Low Group)

R

I | '
Mean ' 8.453 3.797 . 4,656
Std. Error 0.126° 0.072° .. . ' 0.149,
Std. Dev, . 2.773%, . 1.591 3.271 .
d -
Estimated- Log Apility (High Group)
v . . . }
I e v
Mean - 0.995 = .~ 1,005 -0.010 R -0.093 v
std. Efror 0.030 . 0.028 0.037 © 0,042
Std. Dev. 0.662 ; -0.611 - 0.828 . .\° '0.932
/ e C . ‘
' Estimated Log Ability (Low Group)
‘Mean’ ~0.809 . ' -0.832 0.023 7 -0.037.
std. Error 0.034 6.029 - 0.045 04051
Std.. Dev. 0.745 - 0.631 . 0.978 1,115 °
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is plotted against the estimate for the low group, the points-should -
fall on a straight ane through the origin with a slope of one if the/*/
conversion is unique. The results of such a plotting 'of ability es-
timafes are given in F1§ures 5-1 and 5-2 for the easy and dffficult’
tests respectively. .

~ 4 m

Inspection of Figures 5-1 and 5-2 shows that with the notable
exceptlon of the lowest scores on the easy test (Figure 5-1), the
points fall very nearly on a 45° line through the origin. Bngar the®
largest exception is for the lowest raw score on- the easy test (Figure
5-1) where the estimatéd log ability based on the high group is much too
low compared to the estimated log ability based on ‘the low group. This ex-
ception occurs at the ldwest score on’ the easy test where the standard er- .
ror of estimate for the igh group is very large. Lhui;/;he exception may )

not be considered very ‘serious. In general the results/in Fisrutes 5-1 and
5-2 are in close agreemen} with the results previously feported by Anderson,
- et al (19635) and by Tlnsley nd Dawis (1975). . o © .

The uniqueness of the e;:;?zhgé f easy an&\diffidﬂlt tests for
different groups may be evaluated Jno directly by comparing the equating
lines obtained for different groups._ A 1in .equatiﬁg of the estimated
log ability estimates based on the ea and difficult tests yields
the solid line .shown in Flgure 5-3 for the high group and the dashed
line for the low group. These two lines would coincide if the same
conversion applied to both groups. While the lines in Figure 5-3 are .
reasonably close, there are noticeable differences at the high abiiity -
levels, For example, an estjmated log ability of 2.0 on'the difficult
test would be linearly equated to an estimated log'abilit§ of about 2.1

J on the easy test when the equating is based on the high group (solid line). *

The cogparable values when linear equating is based on the low group,
however, are 2.0 and 2.5. The reason for this discrepancy can be seen
byfrefepring.to the values of the standard deviations reported in Table
3>-11. As noted in Table 5-11, the standidrd deviations of the log ability

. Scores are more disbrepant from easy to difficult tests for the low

L group than are the corresponding standard deviations for the high group. \

4
"The"fesulgs discussed so far suggest that the Rasch model provides

at least a rough equating of the twq sybtests which differ markedly in

difficulty level. Since the subtestw dif fer more in diffidulty than

would adjaceht levels of a test to be vertically equated, it might still

be argued that the approach has potential value for the vertical equating

problem: It should:be recalled, however, that while the easy and difficult

‘tests may be roughly equ1valent statlstlcally, they differ substantlally .

‘< in their precision for the dlfferent levels of abiljty.

\

| As a final comparison of éhe Rasch resultz/;zi/tests.of different.

. difficulty and groups of different ability, the rameter estimates
obtained for high and low groups were applied t#0'the examinees in the
middle group.” This provides an evaluation of the adequacy of the eq(eting’

- of tests of different dif 1culty when the estlmates‘
group are applled to a grdup an adjaient ability

i
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"The means, standaxnd errors and - standard dev1at10ns for the middle

grcup on the easy and difficult tests are’ .reported in Table 5- 12. The - Lo

_ three’ sectloﬁs of Table 5- 12 provide the resultSJfor number rlght scores,

estimated log ability based- on high group dB%ar and estimated log ab111ty »
_based on low gyoup data. As'was the case ear11er the means. on the two

tests age juite different ,for the'n ?er right scores (t = 41.51).

However, the results based on the logiapility estimates are not as ’

good as the.‘eorresponding _results reported when ability. estrmates were

applied to the jsame group. The value of t for thé dlfference between

. means on the eaBy and +difficult tests 1s -3.38 when the ab111cy estimates

1 ' needed..
B ; s\?p“ (i \

the ab111ty estinates obtained from the low, group. were a

middle group, t = 7. 34. The umgnltudé of these, differendes between.

means is not trivial which leads to the follow1ng ‘generalization. A :
_middle group ‘examinee would go better to take the hard test when ability

estimates are obtained from the high grodp, but would do better-to take

the easy test when the estimates are obtained from the low group. This

is not a very desirable feature for two tests that are.to be vertically )

equated.. In additibtn, even though the standard deviations of the standar-'

obtained from ‘the: high group were’applled to the middle §roup When

dized difference scores are near 1.0 when either type of ability esti- '

'mates are used, the means do differ significantly from 0.0 in both cases.
Clearly, the two tests tarmot be regarded as statistically equivalent.
Therefore, ‘baséd on the results of obtalnlng ability estimates from one
. group and applylng these same éstimates to a different group, the
easy and difficult tests do not seem to prov1de equivalent measurements
which are so necesSary for longitudinal” research Y

[y “b ¥ .
4 . A * *
. .t *

c ; ,coucwszoms ) 2

Based on a. loglcé analy51s as well as the emplrlcal comparisons of
scaled scores on different levels of standardlzed tests,. which accordlng ’
to the results of the Anchor Test~» Study have "equivalent" raw scores, .!
it must be concluded that the vértical equating of existipg tests is .
often less than satisfagtory. Lord (1975) has suggested ‘that .among cur—
rent methods of equating, only those based on item characteristic
curve theory (i.e., latént-trait models) are approprlate for the task

of vertical equating. f these, the, Rasch model is probably the sim-
plest. " But, our empirical results faise doubts about the edequacy of !
this model, at least, for some'sets of test items. \ ] ‘ ; \

- The empirical analyses involving the"Rasch model that are presented
above do not suppoert the dual claims of item-free person measurement and
person-free test calibration. It may be tHat. the comparisons reported
above were more extreme, in terms of the wide separation of the high and
Jow g oups than are apt to‘be encountered when equating tests over ad-
jacent| grades:’ Also, bet, er results‘mlght ‘bé ekpected by use of an -
anchor, test’ procedure. Thus, fhe’test may be oyerly severe. It is alsaq
'possiiig lselpction of items t aF'flt t mbde% z
necessary, éro ch "that .seems to e‘$ugge t ? Fy Ke:

Bild lasg re rted by fmgo ‘\197 pp. 529-530).| \‘ \ '

ts and /

D ’ )
a1t trait
; 1 ;t o \ N /

quatin probleJ ing la
sﬁshould 1nilude tests of"

+ !
)

plied to thi o -
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TABLE 5-12- .,

- Comparison of.Difficdit and Easy ‘
'Y Lot . . Test Results for- the Middle Group
Statisfic ‘Easy Test * Difficult Test - Difference ’ Standardized
L . - Difference
v o . Number *Right Score %
© Mean 12.437° 6.063 * 6.374
std. Error 0.082 , 0.083 . 0.154
" Std. Dev. . 1,495 1.510 2,806

\ .~ . .
L3 ¥l —

Edtimated Log Ability
Based on High Group Data

Mean' . -0.020 ° _ 0.124 ' - -0.154. ~0.276 \
., Std. Error ' 0.026 ., 0.023 0.046 0.057
std. Dev. 0.474 , - . 0.420 0.835 1.040 K
Ceten - :ﬁlw
] . . - Estimated Lag Abil‘fty/ . .
: ’ Based on Ld% Group Data com '
B m; & * . . ‘
: Mean 0.233. . -0.090 ©0.323 "~ 0.356.
# Std, Ervor ~  0.023 ‘ "0.023 0.044 - 0.054. .. o

o

“std. Dev. 0.448 0.415 - 0.804 0.978

< B ~ v
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applicablllty of the Rasch model as well as investigations of models invol-
ving more parameters. Additional work involving overlapping groups and the
use of ‘an anchor test approach is currently underway.
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. : CHAPTER 6
APPLICATIONS OF THE SIMPLEX MODEL IN‘

LONGITUDINAL STUDIES

- In a_variety of situations where repeated measuremenés are obtained
over several poiats in time, the intercorrelation matrix has been observed
to have particular characteristics. Typically the.correlatians between
measures obtained at adjacent points in time are found to be h@gher
than the correlations between measures that are further apart 1n time.
This pattern of correlations is also charactegistic of Guttman' s  Siaplex
(1955) and a number of authors have sdggested that the §1mp¥ex is a
good model for explalnlng change over time (e.g., quphreys 1960,'1968;
Jones, 1962). N ) < ,

- J .. .
~One of the difficulties that 1nvest£éators have had in evaldatlng
the adequacy of. the simplex model for a set of correlational data is

" that the cqrrelatlons are attenuated due to errors of measurément.

While the simplex model may be appropriate for error free measures, the

fit te-eerrelations of ﬁalllble measures may_be poor due to the errors

of measuréﬁéﬁf?““qumvhrejs (1960) recognized this p@oblem and tried

to deal with it by estlmatlng rellablllty coefficients. Ny
Another dlfflculty 1n.evaluat1ng the fit of a simplex model t0'

a set of empirical data is, of coufse, sampling error, Joreskog

. (1970) developed eStimation tecﬁnlques for a variety of simplex models
" including the model most comonly postulated for growth data which he

refers to as a quasi-arkov simpleX. For example, the qua51—Harkov
simplex corresponds to the one suggested by Humphreys (1960). Joreskog S
estimation procedures (e.g.,.Joreskog, Gruvaeus, and van Thillo, 1970;
Joreskog and van Thillo, 1972)3brov“de maximum likelihood estimates which
allow for errors'bf measurenent and yield large qample chi square .

tes%s based on an’aSSumptlon of m" ivariate ﬁ?rm?llty.

o -

&Recently ﬁérps Linn and_Jbére og 'n prkss 'a) have shown that the

N !
simpiex model pr?v1d d a Rxeasonabl goo gh the 1ntercorrelat10ns
of achievement*tést “esufgt\zfport d by Bracht!

and Hopkins (1972)

Those data were obtalned op a~yearly basis qyer grades 1 through 9.
Werts, Lind and Jore kog (in press, b) have \ldo used the simplex model
t‘anal‘%e the intercorrelations of grades ify tpllege ovér 8 semesters '
that. were reported by Humphkéys (1968). Th Yeanalysis confirmed
Humphreys' assertion that the data fit a simﬁie\ model. Humphreys' be-
lief that the reliabilities of grades adcross’ semesters were equal was
also! supported by the ‘analyses. ’ . | "

context of longitudinal studies. Procedures! for estimating model para-.
meterd as well as correlations of gain with \status at|an earlier point in
time will be discussed. Finally, the results of application of the
simplex wodel to several sets of lonéitudinal data wil} be reported.

[y

’téln this chap%er the simplex model will e briefly reviewed within the

4
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has sometimes been assumed. Still dealing with the error free measures,

folllows: ' i
\ ' i \\
- ! be +1 2 t+l.“J
7

i }

. f | N6-2 \ d
THEMODEL ' \' ,
N 1 <t ) \ N
The simplex model cdn be represented in several ways (see for AN

example Corballis, 1965‘ Jgreskog,\l910). A conceptually appealing
form for growth data however, is to assume that, in the absence of T
errors of measurement, a score ‘at time t + 1 is a function of the score

at time t plus an uncorrelated ‘increment. More specifically, a person's

®

true score at time t + 1, Zt'+ 1, is assumed to be \
B I8
- Z +.=b2 +U_. -
et 1705 YU (6.1)
where Ut =1 is assumed to be uncorrelated with Zt' “If, for convenience,

the 2's are all standardized, then the correlation between&Zt and Zt t

~a

is simply b and the ‘correlation between Z and Z (i > j) 1s the

product of the b for t'=3j, J + 1, couy i. .

.

ould be noted that the assumption that Ut £ 1 ané/é are uncorre-

imply that ‘growth is uncorrelated w1th previous status as

Zt’ efinition of growth from time t to time t + l is, LN
{ ’, . ) -
Nt hp, . (6.1)
2N Ny ’ ,
where A ¢+ l'is the change thh" .The change in equatlon 6.2,

At*+ 1> can be expressed in termbs of the components of eqtation 6.1 ?s . l

\
4

t

L dpz
’ rom ehuatlon g 3 the covariance A and Z‘

\ v

tl& +1 5 iy obtained
N e 477 \ ‘ ‘ . .
‘\k o \ Il (Z At 4 l ‘\( . ]\ (Zt)( , -‘- / \;\C‘\ {6.4) L

where 02(2 ) is the variance of ‘ﬁ‘ . : po NN Al
From equation (6. 4) it is clear thaF the correlation|between ™ |
status at \time t .and grqwth w1ll be z r9 only vhen b 1. Typically, \ \!n“
b will noS equal 1. O\‘hence the corr létion between Statu at time X e
t and growth will be nFn-zero. . A . . 7x
. : \
The fa&lible observed measures arle assumed to follow a claSchal -

test theory model at any point in time. Thus, can observed scorq§ X,

4 N . N . -
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at time t may be repfesented by. L . -
4 = + ! «
. X =2t e o o6

where e is assumed to have an expected value of zero and to be uncor-
related with Z at all points in time and uricorrelated'with e at points in
time other. than t. The model may be deplcted by a path analysis <dia-
gram as shown in Figure 6-1

&

The usual observed gain score, D is simply the dlfference be-

t+1°
tween the observed.score at time t # 1 and the observed score at tlme €.
- 'Thus’ $ . . ) £ M
L (6.6)

and errors of meagurement .is

which in terms of the tZ?ue change, At To1e

3 « A

e ) .

D =4 + (et +1  °t

t+1 t+1
Equatioﬁs (6.6) and (6,7) are the standard equations for ; siﬂg}
score expressed respectively in terms of observed scores and in\te
true gain and errors of measurement. As such, equations (6.6) ;hg (
are independent of the assumed underlyin;\slmplex model on the error free

~ \\\ measures. The relatlonshlp of D to the parameters of the 51mplex

t+ 1
model caQ be seen by substituting equatlon (6.3) into ‘equation (6.7).

"

_MATRIX FORMULATION .
tlined abowve Jimplies a particular structure ‘for the
and_cova iances. This structure is most cop- "
(see for gxample Joreskog, 1970}

\’:

z"—[z |
\ 2’ b . 3\ . \ ; .
row vector 'of true scores.\ Eﬁe vecto of obser%ed scores {g simpl
\ | R (6.8) :.

" X = 2
, AN ‘ - : I~
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: o Figurg' 6-1 ! | '\ \
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ysis iagrél\n of |Qudsi-§implex \\Mk)del ‘
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In_prder to reglatet the observed scores to the parameters of the
simplex model let/ - 5 ' .

Ut = (U, Uy,
w0 . ]
be a row vector ,of the tncorrelated increments and let B be.a p x p '
matrix, with un1t1es down the main diagonal, with elements —bl, -b2, ®
ees =b next to- the main diagonal on the lower left hand side, and:

.. op-1 NI
zeros elsewhere. For exam@le, with p = 5, the B matrix is

. ' 1 o o o. o] =+ - -
b, 1 ‘0o o (; -
D L N
«/ 1o o. b, 1 .0 ; B
. ‘ L‘o o 0y 1]

With tHbse deflnltaons and equatlon (1) the relatlonshlp of Z and <

U is glven by~

>

|

«

“

-

“assuming Zg = O.
3 -

now ‘be written as

Since B~

.

.

, ’-Bg=u

" The simplek model on the error free parameters can

]

»

z2=81t0

[

(6.9)

1 is a lower triaggular matrix with entries as illustrated beléy

*

fot the case of p = 33 ‘ ’ “
(1 b o | © 0‘7
, bl .1 0 : o o 1
T ‘ = . b, by 1 Q 0 ‘
\ bbby bpby v by 1 0 l
| Phoobsbyr PaPaPs byb, P L] -
it can Pe-seen that this formulatlon is equivalent to sett1ng Z = Ul but
exceptjgnt this‘qdditional‘specifititx eqdations (6.1)”an§ (6.9) are oy

-équivalent. = .




?Unfortunately, several of the elements of the three matrices on the right

6-6

The variance covariance matrix among the p observed variables, I,

can now be specified in terms of the parameters of the simplex model-and
the variances of the errors of measurement, ) T :

- 2 ‘
2A1z3'1+e ,

ror
!
&

(6.10)

[

where Y is a diagonal matrix with the variances of the U as entries,

.,____('

(U ), and O is a dlggonal matrik with Variances of the errors of

estlmate as entries, ¢ (et). 4 . . ‘ " v
N - ? /
ESTIMATES o Y

) &
Estimates of-matrices fnvolved in (6.10) will be denoted by a hat

over the corresponding population matrix in (6.10) Thus,

+ 02, ‘ ¢6.11)

hand side of (6.11) are not identified (Jsreskog, 1870). To achieve

identlflcétlgn some additional restnictlons are requlred One possibility

is to arb1trar11y assign fixed values to 02(e ) and 02(e ). When this

. -Was done by Werts, L1nn, and Joreskog (in press, a) the parameter estimates

for thé remaining elements provided a good fit to tle observed variance

o

covariance matrix.

———

An alternat1ve approach to obtalnlng unique estimates is to add a
restr1Ct10n to the model that the var1ances of the errors of measurement
are constant over tlme. That 1s, it -is assumed that 02(e ) equals a2 (e)
for all t. With thlS assumptlon, maximum likelihood estimates of the.
bﬁ‘ the cz(ut) and of o2 (e) may be obtained using th'e ACOVS program
(qpréskbg; Gruvaeus, and van Thillo, 1970). Also obtained is a chi-
square test.of the model based on an assumption of multivariate normality.‘

th this formulation there are p(p 4 1)/2 unique elements in £ and 2 p
parameters to be .estimated (i;e., p + 1 values of the bt’ p values of
2(U ), and one value of 02(e) ). his leaves (p? - 3p)/2 degrees of

'

f%eedom for the ch1-square test | | '

v

. i l
| With largg samples, the chi-squhre test will often be of less interest

than the magnltude qf the d1screpancies between the varlance-covarlance

matrix implled by the parameter estimates of the model, Z and the observed

" sample variance-covariance matrix, S. With variables that have arbi- -

trary variances as is frequently the case in the social sciences the sam\\\\v/)
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ple correlatlon matrlx R and the correspondlng matrlx 1mplied by the~”

model R ~will often be of greater interest, The res1dual matrix is

simply the difference between the observed correlation matrix, R, and Do

the estimate of the observed cqQrrelation matrix, R, that is implied by
the model parameter estimates. With large sample sizes the residual
matrix is of soec1al ‘interest since the chi-square test will typlcally
" lead to a reJectlon of the model. A significant chl—square is to ‘be
expected for any a prlorl model such as the above éiven a sufficiently
large sample size, For evaluating the adequacy of the'ﬁodel it is im- ¢
/// portant also to consider the magnitude of the deviatipns’from the model.
The residual matrfk’prevides this information. If a single index of
fit is &esired the root mean square of the residuals is sometimes useful

(see for example, Linn and Werts in press)-.
GROWTH STATISTICS ’»

If it is decided tﬁat the fit of the data to the model ig adequate,
the paraneter estimates may be used to estimate a variety of statistics
that are ordinarily considered to be of interest in longitudinal studies.
For example, the estimated correlation between true change from time t

t to time t + 1 with status at time t is

- o(Zt)
p (A Zy) = G, -1
t+ 1 t 7
» ‘ T O(At + l) ’ . (6012‘)
where o(At + l) is the estimated standard deviation of true change which
isigdven by
P ’ - hhz 1A2 Al _ A' L
. O(At + l) 1/0 (Zt) + 0 (Zt + l) - 20(2t Zt + l) .
" The estimatedarellablllty of the simple gain scores is ) .
(3
N A2 ) ’ s
. o< (A ) . 6
p |- .13)
o2 (4, D) = ;

. ‘ Lot 2(A)+02(e>+o<e )

. t]-1
A potentiil. dvantage of formulas such as (6.12) and| (6.13) ¢ver the tra-,
; i .
ditional és Fmates i that they are based on all data points| rather than
i

Just two po jts in t{ime. This is only an adva}tage, however] to the degree-

that the mo

] is adequate for the data. ‘ ‘
\




Estimated coVarlances ,0r correlations betwe¢n true status at any two

< points in time, say't and t + k, may be obtained{from the ‘model paraneter .
-~ ? «
estimates as follows: ‘ T .
~ - A A - A»("z ) ) ‘
c’(zt;+k, Zt) 'bt +k—1bt +k -2 °° bt<j ,(zt) I
Y . . :(
’ and
L0 p(Zt + k, zt) - bt+k—l bt+ k=-2"°"" bt <j(Zt)/c(zt + Kk’
The covariance of Z £ 4k and Z along with the variahee of Z can in ¢

turn be used to est1mate the covariance of the true change from time t to

t + k, At + K and 1nit1al status:

, PN -~ ~ -
ag(a iy 2.) = . - g2 ..
| (B, 4 &) =002, A RN N RN o '
. . = i . '
'a . Pt ' K'“ ,/
i If there were no errors of measurement the measures at time t and ’
time t + 1 would contain all the information &bout A i With errors

oﬁ.measurement,.however, the observed scores at t1mes other than t and

t + 1 may contribute to the predlctlon of A Thus, if there were an

t + 17
interest in obtaining estimated trué gains between t and t + 1 then all

[N

S.. X_might be used as prediétors as is
X,, , mig

w implied by C ronbach and Furby (1970). and Werts, Joreskog and Linn

the obsenved scores X

(1972). Estimated covariances of observed scores with the true change
may be obtained using the model parameters. These covariances along

k] “

with the observed score‘vargancenpovariance matrix could|then be used

to obtain ﬂultiple regresszon estimates of A The resulting estimate

, t+ 1°
would have to be at least as good as the more natural estimate obtained

! from X and Xt'+ 1 alone. This result is|of little comfort, however, o ,
. , i .
because, as shown by Tatsuoka (1975) elmultiple regression estimate
> of A £ +1 based Xl’ gs e

Xt +1 only if the errors of measurementﬁare correlated, which, of course,

violates the assumptions of thé model. - o » X .

XP will be be.ter'than the one based on Xt and

- v
Al
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‘ ., . o7 j Tab]je‘6 l. . A
\ q ngb SchooI Rank and’ G%adé POlI.lt Averages fo//
Eight Semesters of College
@‘, : ? R ‘al. ;ntercorrelations ( h
- Semes ter .HS 1 al 7 - C 3 4 7 “ . 5 ) 6. v 7 *V 8
HS 1.000 R ﬁj LEL E .
1 .387 . .
2 .341 —
3 .278 L
4 » 2270 ;439 445 0562 1,000 ¢ , ‘ e
5 200 L399 418 “4gs’ S 512 1,000 S
6 .256 . 415 ° .383 . 456 '.:.4&9-' .551 1ﬁoﬁb'“' .
7 .40 387 364 445 442 .500 ,544‘=_1q066 .
8 222 342 .33?$ .345  .416 3 .gg51:\ 482 c:§41 ; 1.000,
b. Residuals {R-R) ’
a Se:mester HS ‘ 1 2 ‘3 ‘ 4 . 5 6 - 7 % B 8(
s .000
E | .013 009 ) B
2 ~.010 .00 .00
3 _.016 -.008 .007 .00 ‘ ‘ e
4 -.012 -.006 =-,018 .007 009
5 ~.012 .00l .004 Z.001 -.001 .001 )
6 ‘ .019 .041 -.006 -.010 =-.013 .005 .000
7 021 .041 003 013 -.005 -.006  .004 -.dog/
T8 ' . .024 029 013 -.045 013 -.00f -.005 .06 .000
|- , |
v ,
;o ’

"
N [
v 127
. 5
.




y | . .
. 8 .
l, 3 ' ~ v
o f
[_ 610 |
o . Table 6-1 (Continued) e I o
C. Pa:'cameter ES‘timateIs
N N ,“ - '. Semester Beta J‘ Var (u)
4 . HS , et .583
1 : .642 " 350 Co
2 S .939 .057
3 .836 .175 - T .
A .958 .041 '
. 5 .84 1122 .
6 . 940 .070
7 .926 092 - 3
L
8 2904 -+ -,100
var(e) = .417 7
) L
. ~d
Chi-Square = 40.07 with 27 d.f. (p = .051) .
. 3 N
r F
f .
j ,
| | z
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*EXAMPLE OF FIT, (ACADEMIC ACHIEVEMENB). ‘

[N -

Humphreys (1968) observed that the intercorrelations of high
s¢hool grades and grades jn eight semesters of college followed a
pattern typical of a simplex. Werts, Linh, and J&reskog (in ress,;b)
reanalyzed Humphreys data using a simplex model and found a gpod fit.

For illustrative purposes another pnalysis of these data, whigh are based
on a sample of approximately 1,600 students is reported bélow£ The -
model differs ‘slightly from that used by Werts, Joreskog and [Linn.

v »

% "

¢ N

The specific model ‘used with these data is the same as equation (6.11) '

_-except that the procedure used the sample correlation matrix rather

than a variance-covariance matrix. The restriction that the variances of
the errors of estimate are equal was used. A total of 9 variables (high
school grades plus 8 semesters of college grades) were used in the analysis.

The observed correlation matrix, R, is reported in sec¢tion "a" of,

Table 6-1. As can be seen there is a clear tendency for the correlations

among adjacent semesters (entnées next to the main diagonal) to be higher

than the correlations between grades in more distant semesteTs. There are

some reversals in the pattern, but generally the correlations get smaller

as you move down a column, from right to left in a rodﬁ or from the main

diagonal to the lower left hand corner of the iriangular~seétion'of the

correlation matrix shown in Table.la. ‘ : Lo
Based on the-observation of the correlation pattern a reasonably

good fit to the simplex model might be expected. That this is the case

is supported by the chi-square value of 40.07 which with 27 degrees of

freedom has an associated p of approximately .051. While almost sig- T

nificant at the .05 level, with such a large sample size this would appear

to be a quite good fit. Further support for the goodness of fit can

be obtained from an inspection of section "b'' of Table 2 which lists the

rbsidual elements (i.e., R=R). None' of the 45 residuals in Table 1b exceed

.05 in absolute value and the root mean square of the residuals is only

.015. Thus, these data fit the simplex model quite well even with the

added assumption that the error variances are equal at all nine observa- ",
tion points.

The estimated correlations between tr status at|time t and true
change from tife t to time t + 1,are reporgskg*n Table[6-2. Also
reported in Table 6-2 are the estimated relia 1lit§és f the observed
difference scores for each time interval. All of the orrelations of J
true status with true change are negative. It should be noted, however,
that this resulf is a consequence of two features of this particular
analysis: (1) using standardized observed scores (i.e., a correlation
rather than a variance—covariance matrix) and (2) restricting the error
variances to be equal, Under these conditions the estimated variances
of the true scores will be nearly equal and the value of b _will be less
-than 1.0 which yields a negative correlation between true’ status and
true change (see equation 6.12).

12 -
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Table 6=2
Estimated Correiations Betwéen Triie Change with Previous
Status and Reliability of Change (Grade Data)
) Correlation - ;o
f of & ‘
‘ Time t+1 Reliability
Interval of Change rwith 2, , ' _of Change
lto2 ° SR 36 !
v ]
- 2 to 3 G . - .19 .07
g 3toé - .29 : .19
4tod ' - .16 .05
5tob - .22 .13
\ - L]
6 to-7 - W17 g .08
\ ' 7 to8 - .18 .10
. .
¥ . 8to9 -.23 - 11
s . . s
r,
o ; }

) , 1,‘}0
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_ The reliability of th change scores reported in Table 6-2 are all

quite low. As would be expected, the reliability of the cliange is
highest for time 1 (High School Rank) to time 2 (first semester college
grades) which has the lowedt correlation between adjacent times. The
saw tooth pattern of the rgliabilities for changes from adjacent semes-
ters in college is gslativ ly consistent with the pattern of same
versus different academic jears for the adjacent semesters. The re-
liability of change from ode semester to another tends to be slightly
lower if the two semesters are in the same academic year than if they
involve two academic years.| This corresponds to a tendency for grades
in adjacent semesters in a single academic year to correlate somewhat

_ higher- than those involving different academic years. The most notable
feature of these reliabilities, however, is their extremely low
magnitude.

Anotter set of academic achievement data that illustrate the use
of the simplex model were originally regported by Bracht and Hopkins

(1972). Their data consisted of achievement test scores obtained at

eight points in time (grades 1, 2, 3, 4,5, 6, 7, and 9). The scores

were reported in grade equivalent units. Thus, the scores at least

have the superficial appearance of a common scale.

A previous attempt to fit these data to a simplex model (Werts,
Jéreskog, and Linn, in press, a) resulted in a significant chi-square
with p = .035. Due to the relatively large sample size (over 300)
the significant chi~square is probably of less interest than the magni-
tude of the residuals. Based, on the residuals and the root mean e
square of the residuals, however, the fit was judged to be reasonably 5¢§§?
good. , L3

L

Since the detailed analysis of the Bracht and Hopkins data will
be reported elsewhere (Werts, Linn, & Joreskog, in press, a), they
will not be repeated here. One aspect of the results that stands in
sharp contrast to the above results for college grades is worthy of
special note, however. The correlations of true status with true gain
and the reliabilities of the gains were quite different in the Bracht
and Hopkins data than they were in Humphreys' grade data.. These cor-
relations and reliabilities ate’ reported in Table 6-3. As can be
seen in Table 6~3, the correlations between true status and true-gain
are positive in all cases which contrasts with the negative correla-
tions reported in Table 6-2. Also, the reliabilities ¢ the differ-
ence scores reported in Table 6-3 are higher than the #jes reported
in Table 6-2.

\; “\

As previously noted, the negatibe correlations of status and
change reported in Table 6-2 are a result gf analyzing correlations
rather than covariances and of restrictions of the model. Since the
variance-covariance matrix was analyzed for the results in Table 6-3
the estimated correlavions might be either positive or negative.

The fact that they are all positive is a result of a particular prop-
erty of the grade equivalent scale which was discussed in Chapter 4
in this report. That is, the variance of the grade equivalent scale
2 ) .
\ - N
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Table 6-
Estimated Correlations Betyeen True Change with Previous

Status and Reliability of Thange (Bracht and Hopkins data)

’
1

Correlation
x _ sy iqs
% Time of At +1 Reliability
Interval of Change with Zt of Change
2 tO 3 s 067 042
3 to 4 . , .12 .56
4 to 5 .59 /.39
5 to 6° .09 .51
6 to 7 \ .22 . .43
. “ \ i - % .
Vo \
¢
4
. 4
‘| i N ‘ 0
' |
| v - -
- 5

-
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increases with grade level. This.increase in varian@g with grade level
not only [results in positive correlatiofis between observed initial

» status a%éhobéerved change but between true initial status and true
change. Whether substantive meaning should be attached to these posi-
tive correlations depends on one's view of the meaningfulness of
increased variance with grade level. 7

- -

The higher reliabilities of the'chaﬂgq scores in Table 6-3 than
in Table 6-2 are primarily due to the higher reliabilities of' the
achievement tests than of the grades. The achievement test reliabili-
ties are in the 80's and 90's whereas the assumed common reliability

.of grades is estimated to be only .58. N

At least for the two examples mentioned above, the simplex model
appears to yield estimates that fit the observed data reasonably well.
When this is true, the model has the advantage of requiring only a
single measure of a construct at each point in time. Alternative
models which are considered elsewhere in this report generally require
multiple measures at each point in time. As will be seen below, the
simplex model, at least in the simple form uséd to analyze the data
proves to be relatively good for some sets of longitudinal data but
relatively poor for others) .

3
-

’

-t ABILITY MEASURES
, Although the distinction between‘éptitude,and achievement is one
{  more of degree than of kind, it remains of interest to test the fit
of the simplex model for- tests that are closer to..the basic aptitude
end of the continuum Ethan the achievement end. ‘Aptitdde tests may
be distinguished from achievement tests primarily in terms of breadth
_ of relevant experience and recency of learning with measures at the
\_ achievement end of the continuum being narxower and more recent
f"’@ﬁmphreys,,1973). There is no good basis §Bx\postulating that apti-
tude is fixed: Indeed, as impligd by Anderson (1939) and more formally
specified by Humphreys (1960), "there is reason to believe, that the
simplex’ model might be quite appropriate for aptitude measures. An
attempt was made to fit two sets of data involving ability measures at
the aptitude end Sf the continuum to the simplex model. The matrices
of intercorrelations for both sets of data were obtained from
Humphreys (1967). ~ [

The first set of data involves vocabulary test scores for 278
chiildren obtained yéarly from grades 2 through 6. The incorrelations
among the vocaBulary scores over these five points in time are reported
in 'section "a'" of Table 6-4. Inspection of the correlation matrix sug-
gests that the.simpiek model may not be very adequate for these data.

THibk is suggested by a number of instances where the correlation bet®een
sdobes obtained for grades separated by more time are as kigh or higher
t those obtained for grades that are separated by less time.

I ‘ .
" . I'¢

&
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, .Table 6-4
£ Vocabulary Scores fronm C;‘rac}e to Grade
©o ‘ N (N = 278) .
; ‘ —\ \ \ . a. , Intercorr lapion;
| - Grade 2. i 3 . . 4 ’ 5
\ ‘ 2 1.00 -
3 .65 1.00 “
4 .58 .65 1.00
5 .63 .73 .:72 1.00
6 .56 .68 .65 .76 1.00
e . b. Residuals (R-R)
) ‘ Grade 2 3 4 5
; 2 .oop ‘
. ‘ 3 .005 -.005 Ny
. \ Y
- 4 ~.010  -.027 %044
5 .018 .027 .001 -.039
, 6 .: ~.021 .013 -.032 1024
, A‘ ¢c. Parameter Estimates
2 — 737
37 .876 ﬂ . 176
' Vo 913 074
5 ©1.039 ( 030
6 ’ .948 038
. Var(e)l = 263 ~ ,
Chi Square = 17.76 with 5df (p = .0Q3)

i
|
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section "c" of Table 6-4 along with the chi-square t ‘The residuals
- (i.e., R-R) are reported in section "p" of Table 4. T ¢+ thi-square
‘ . value is significant at the .01 level which suggests that'khé'model
may not be adequate for these data. Given the relatively large sample * )
‘ size, however, it may still be of interest to consider the residuals.
\‘ All of the residuals are less than .05 and the root mean sfuare of

| ;
éﬁ% parameter estimates for the simplex model,gg:h:%porged in
t.

the residuals is .023. Thus, the model provides a reasonably good .
_fit to the data although the model can be confidently rejected sta-
tistically. ’ <7 ! .
. - ) ' N
* Odg possible difficulty with the model in this particular instance
. is the hssumption that the variance of the errors of measurement are
constant across time. -Judging from the correlation among adjacent
grade€ and the general tendency fér measures to be less reliable at

the early grades than at the higher grades, one might suspect that \
Oz(ei) should be less at grades 4, 5 and 6 thah at grades 2 and ‘3. This

problem may contribute to the relatively large residuals in the diégonéﬂ

at grédgg 4 and 5.

- The second set of data is based on intelligence test scores obtained
at 10 points in time for boys atfages 8 through 17. The interval
between testing was one year:” Tge correlations which weze obtained from
Humphreys (1967) were based on data originally collected as part of the
’ Harvard Growth Study. The scores that were intercorrelated are mental N
age scores. These correlations are reported in section "a" of Table 6-5.
Residuals of observed correlations minus correlations estimated from
.- the model are reported in Table 6-5 section "p", and the parameter esti-

SUSURNE
"n_

mates and chi-square test are reported-in Table 6=3 section.’c’. - e

. The chi-square is again significant. An inspection of the matrix
of residuals, however, reveals that the fit is reasonably good wi h
several notable exceptions. The root mean square of the residuals is
.035, the largest encountered so far. The magnitude of the root mean
square is substantially influenced by a few large residuals. The
four largest. residuals all involve correlations with scores obtained,
at age 8. Removing the scores obtained at age 8 would greatly improve
the fit. For example, if at age 8 scores were deleted and the remaining
variables had the same values of R, the root mean square redidual

would be reduced to .026. \

I y ' PHYSICAL MEASURES |
Ny .

K Data were aléo available for |the weight and height of 275 girls
obtained on a yearly basis af ages 7 through 16 (Humphreys, 1967).
Using the results pbt*ined every sEcond year starting at age 7 an
atﬁegpt was made t? it these two sets of data to the,simplex model. (

'

. \ ~

| \

|
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e - TLble 6-5 .
' ’ ' Mental Ages;, of Boys at Various Chronologi al Ages
' a. éInterco;:re,lagions Tl i
Age | 8 9 10 11 12 13 14,15 16+ 17
8  :1.000 | . 3 &
9 721 1.000 | ; ) o \
10 L7120 .751 1.000 ; ) - 2
1. 47 .21 816 1.000 ‘ S \‘é
12 729 714 .%69 . .859 1.9003_’ ) \\\
13 .657  .696  .704  .787  .854 1.000 |
"""""""" 14 ' 598 -.634  .726 745  .778  .864 .1.000 ‘
™ 15 648, 615 .73 .80 .78  .783 839 1000t \
16; ' .652 609 . .699 .802 * .806 .770 .718 .868 11000 v.'
o 1 : .
17 556 .588  .604 .73  .775° .780  .750  .778  .848  1.000
b. Residuz;ls (R—-?Z) ’
Age B 9 10 11 1 13 14 15 16 1]
8 .ooow N < |
9 -.029 | .03L N\ v “
" 10 .'og3 L-_-.c_)z'é. .012 . ( | g
11 091 -.017  .004c =-.009
To12 093 -.001 -.018 ,013  -.012 ; .
\ 13 . .053 | .016 -.04& '-.‘018 .021  -.003 1, .
' ,
14 .010 -.028 -.003 -.\?’39 -.033  .020 .010 - ’
. i
‘15 079 -.025 .033  .052 *© .002 |-.031 .013 -.004 ’!
16 .097 ~ -.015 :.012  .Q64  .042 |-.025 -.027 .02l -.015 ’
x 17 .028' =-.006 - -.050 . 047 | .023 -.017 -.028~ .01I . .000
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\ Table 6-5 (Continued) < . '
oo R T
o . c. » Parameter Estimates’ ) . T T ..
Age Beta S £t 7C) N
. L2y .,v,',‘ . ' "-‘V - \, s , R
' .o 8 TR | S P
A ] F - - . v , Lo
- 9 .867 ( .193 .
~ 10 ©.919 Coas N
. 11 9520 . LI0O. - T .
. .. ~ i . 1 L. N N 4
. .12 .970 TUL056 S Tt e uh
o B t 5 N - N
‘ 13 .950 875, T
» . R . 200 ’ 1 = ’ Sk )
. . o » .
14 - v 974 033 . % o :
! N . W \ . .o . .
15 966 070 B

I N 16 976 * .054 R T G

- 17 . .952 .068 N S

v . .
¢ . - °

Chi-Square = 200.98 with 35 df (p < .001)
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The results are reported in Tables 6-6 and 6-7 for weight and height
respectively. In section "a" of each table the intercorrelations are
. .reported. The residuals are reported in section "b" and the parameter
-0 _estimates and chi-square test are reported in sgcﬂgon "e" of 'each Table.
o, "~ For both weight and height the chi-square tes% leads to a rejec-
stion bf “the model.. The residual matrices, however, show a relatively
o good fit for ages 7,-9, 11, and 13 with a relativel& much poorer .fit
to the corfelations involving height or weight at age 15. .The esti-
N mated variance of the errors of measurement is zefaffor both height
.. and yeight which reflects the high reliability of these physical
. mesaures but is necessarily gn underestimate.
o - ’ -
: " The apparently systematic nature of the residuals for the two sets
. of physical measures suggests that the simplex model is not adequate
for these data. -In both cases, the fit is exceptionally good for pairs

<+ " - of measure$ tha? are close in time but it becomes less and less ade--
quate for pairs of measures that are further separated in time. For
“ weight (Table 6-6) the average residuals for correlations are .098,

1,030, .013, and point .000 for measurements separated by 3, 2, 1, and
. 0 intervening measures: respectively. A similar, though' less pro-
* + mnounced tréhgjcan be seen for height (Table 6~7). This pattern of
K residuals %tands in contrast to those that were observed above for the
~ aptitude and achievement data. TFor example the averages of the
, + absolute values of the.residuals for the vocabulary data (Table 6-4)
, were.:021,.013, 023, and .014 for measures with 3, 2, 1, and O inter-
' vening measures respectively. )» .

-

. ‘ DISCU)SSION

. - .

v - The above examples illustrate several points? (1) the simplex
model appears to pfovide a reasohably good fit to at least some sets
of academic aptitud€ .and achievenent data, (2)*where the data do not
fit the model very well elements of residual matrix may identify par-
ticular problem areas, (3) for the physical measures the pattern of
the residuals suggests a general inadequacy of the one step model of

. the simplex. When: the fit is judged to be adequate, the simplex
model provides a powerful tool for estimating characteristics of the ‘s

unobserved error free measures as well as growth statistics of interest.

i

h
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Table 6-6 ¢

Weight of 275 Girls at Various Chronological Ages

a. Intercorrelations

’ Age 7 9 - - 11 13 15 .
7 1.000 )
- - - ~
9 .880 1.000
11 .810 - .906 1.000
’ 13 755 840 .921 1.000 .
15 :744 .7173 .790° .880° 1.000

A
b. Residuals (R-R)

Age 1 _ 9 - 11, 13 15,
7 .000 - '
9 .000 .000 , i
11 .013 .000 o0 (////’///
13 .021 .006 . .000 .000 ' ‘
15  .098 03 .02 .000 .péo

c. Parameter Estimates

Age Beta Var(u)
/ | 7 ~ ‘ \1:099 |
9 .880 TN L2225 .
11 .906 ] 79, .
, . . i S . L s
G "/ ‘13 Y3 .151 \j\\\TL‘
15 880 225 |

Var(e) =,.Q00

A ‘ . ¥ v
Chi-Square = 40,92 with 5 df (p < .001)

, . N
'
. i t 3
. o :
- A ¢
[y
£ - -
5 .
.
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Age
7
9

11
13

15

' Age

“ll\

13~

15

C mmer o
S:tandiné ‘l_leigbt’.: c")f“275»cirls at Various Cl"lron‘ologic:al:Ages
‘ a. Intarco‘rrelatigns ; \
7 -9 “11 13 15
1.000 o
.980 1.000
.920 954 ©1.000
887 ©.909. .923 1.000 ~
836 844 .790 .901 1.000
b. Residuals (R-R)
7 g 1 13 , 15
.000 -
:.000 .000
-.015 7,000 000 .
024 028 000 000 ™
058 .051 -.042' .000 .000 .
C. Paraqeter Es\timates
". Age. e Beta bovaNu)
7 ) Z 1.000
9 ..o 0 © .039.%.
R AR .
11 .954 .090
13 C .93 .148
15 .902 .188

6-22

Var (¢) = .000

-

Chi-Square = 122.34 with 5 df (p <« .001)

Pl

L
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' . CHAPTER 7
|
I

CONSTANCY OF CONSTRUCT VALIDITY OVER TIME
Whenever fest scores are compared over time the extent to which they
are measures of a single common dimension is of concern. This is obvious-
ly true when the level of the test is changed and is a prerequisite for
vertical equating. Hence, the concerns of this section are @losely tied
. to those that are discussed in the chapter of this report on vertical

‘equating. Even where the same form of a test is used at all ‘times, N
however, it is possible that different traits are measured by the test ,j:&ij
[ ——

at different points in time. An example of such a test might be one that
meaSures problem solving skil]l at one age and memory or computational
accuracy at a later age. - , :
~ The problem of deciding what is measured Ey an instrument is basical-
ly a problem of construct validity. An important issue for longitudinal
- studies is the extent to which measures gét at the same underlying con=
) structs in a constant’ fashion over time. If this formulation is accurate,
. then all of the proce@ﬂ?es'and considerations involved in the ongoing
) task of construct validation would apply to -the concerns of longitudinal
measures of change. Thus, the variety of correlational, experimental,
” and logigal procedures discussed by Cronbach (1971) are relevant vhen
attempts are made’ to measure the same trait at two ér more points in
time. But, the problem.is complicated by the addition of the time di-
mension. .
’ ~ .
e , PATTERN OF INTERCORRELATIONS .

When plotting trends or calculating change scores it is’ typically
assumed~that the same thing is being measured at each point in time.
From the cbservation that scores change from one test adminlstratlon to
the next, however it is not clear whether -the people have®changed’ along
a given dimension or what is measured by. the test has- changed. .

"If the correlation between pretest and posttest is
reasonably high, we are inclined to ascribe change
scores to changes in the individuals. But if the
correlation is low, or if the pattern of correlations
with other variables is different on the two occasions,
wé may suspect that the test does not measure the same
thing on the two occasions. Once it is allowed that
the pretest and posttest measure different things, it
. becomes embarrassing to talk about change (Bereiter,

1963, p. 11)."

N .

Bereiter's comments suggest that the pattern of correlations of
the focus variable with other variables is highly relevant as evidence
that the measures are getthg at the same thing. Although this conten-
tion is closely related to the approach that is discussed below, it
must be acknowledged at the outset that even the existence of identical
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correlations of the fogus variable with a host of other variables would
not guarantee that the same thing is being measured. At best, the simi-
larity of the pattern of correlations- can improve the plau51b111ty of
the claim that the same thing is being measured by making alternative
explanations seem less likely. The logical difficulty of concluding that
similar correlations implly measurement of the-.same dimension is easily
ignored.

\ -
Suppose, for example, that at time 1 measure Xl correlates .35,

15 and .18 with measures XZ’ X3 and X4 respectively. At time 2 the

correlatlons of Xl with X2, X3 and X4 are .51, .44 and .49 respectively.

These results might lead to a suspicion that measure Xl was measuring
somewhat different things but that is not necessarily the case. Im fact,
both sets of correlations were derived from the same model with two

4

latent traits.—At.both points in time it was assumed that each th

was a linear function of two latent traits, Zl and 22, and an uncor-

. . e
related error of measurement, ejt’ where j indexes the measures and

t indexes the time of measurement. . .

.More formally the model that was used to derive the correlations

at a particular point in time can be expressed

X=p+BZ+e (1) .

. ~

where X is a column vector of observations on the p observed variabies,

~

!
p is a colamn vector of p means, Z is a column vector of scores on the
k latent traifs,'B is a p by k matrix of weights, and e is @ column

vector of errors of measurement on the p measures. It is assumed that

\

the elements in e are mutually uncorrelated and uncorrelated with the

latent. traits. The above model is, of course, simply a factor model

B

except that the errors of measurement'would normally be replaced by

specific factors. -

With the above model the variance-covariance matrix among the ob-

served variables is

IS

. 2 .
. £=BTB'+ 6 - Q)

where I' is the variance—covariance matrix among the latent traits and

62 is a diagonal p x p matrix with the error variances in the diagonal.




Returning to the example of correlations of Xl with XZ’ X3 and

X4 at time 1 and time 2, the correlations at both points in time were

generated with the same B and ez.matrices. In both cases B was

P

s .
and "all the error variances were assumed to equal 1.0. At both points

in time the variance of Zl was also assumed to equal 1.0, Thus, at

both points in time

’
~

- ) Xlt=.7Zl+elt N

- where t refers to time. Tﬁ\t>i\\ precisely the same thing is being -
measured w1tolthe _same degree of acburacy. Only the variance of Z, and

2
the covariance oP‘fuNEhd“Z were changed from time 1 to time 2.~All

observed measures remalned the same linear function of two latent traits

R

o plusran uncorrelated error ‘of méasurement w1th the sage variance and

. Bttty . . J7

2 Z .

while AP 11

Without belaboring this admittedly artificial example further the
main point is simply the one stated originally. Namely, the similarity
of the pattern of correlations of a measuré with a variety of-gother mea-
sures at two points in time does not imply whether the same~§;>di££erent

things are being measured.

v
N ~-

A similar approach to making inferences. about the constancy of what \\\
is being measured by a variable is to compare standardized factor load-
ings. If two sets of standardized factor loadings are equal or pro- \\\
portional it is sometimes inferred that the.variables are measuring the )
same things at different points in time. Given the above arguments about
intercorrelations, it is hardly surprlslng that such an inference or its
converse based on non-proportional standardized loadings is not justified .
(see Werts, Joreskog and Lifh, 1972, pp. 673-675). //

5 A better approach to the problem is to compare unstandardized factor
weights. If the same latent trait is being measured then the unstandardized
factor weights should be constant assuming a linear factor model. This of

ERIC B
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‘course is a strong assumption which may not be justified. . Within the
model, however, different weight matrices would imply that different
things are being measured. Unfortunately, the same B and I' matrices
do not necessarily imply the same factors. Speaking in a slightly ° -
dif ferent context, McGaw and Joreskog note that "...there is no mathe-
matical basis for the'inference of identity of common factors across
populations, even in the case where common... [B and T'} can be fitted
to all populations. Tt is clearly possible...that identical dispersion
matrices could be obtained from different test batteries...(1971, p. 165)."
The same statement would apply within our context of the same population

measured at two or more points in time.

Although common B and I don't conclusively imply the identity of
common factors at different points in time it is still of value to be
able to reject the proposition that the common factors are the same
when the matriges are different. Furthermore, "...the inference of
identical factors seems reasonable if the ...[B and T'] midtrices are the
same... (McGaw and Joreskog, 1971, p. 165)". Even if only the B
matrices are the same as in the example used above, the same substan-—
tive interpretation seems reasonable albeit with different variances
and interrelationships among the latent variables. e

CONGENERIC MEASURES OVER TIME

A &

A relatively simple yet conceptually appealing“model for measures
of the same trait over time is provided by the notioff of congeneric
measures (Joreskog, 1968, 1971). Except for errors of measurement,

_congeneric tests measure the same trait.and their true scores are
linearly related. As applied to the longitudinal situation an obser-
vation on measure j at time t, X N would be given by )

3 .

.

P

=y, _+b, Z +e,
je - je 3 jt

jt is the weight for variable j at time t, Zj is \\\\\;
- the latent variable for variable j, and e . is the error of measu(smenfﬁ-

~ j ¢ .
on‘Vatigble j at time t. The lack of a t sdﬁgtf;pt Qg\the Z corresponds

Xjf

where ujt is the mean, b

R to the éggﬁmpgion that measure j measures the same trait at all point§\‘

< in time. As ugﬁal, the errors of measurement are assumed to be mutually

~ S .
~ uncorrelated and uncorrelated with the latent traits. >

~

Even with only observations on a single measure the hypotﬂzgis\ghat
the measures are congeneric may be tested assuming multivariate normality

- .providing observations on four or more occasions are awvailable (Joreskog,
1968). There would still be advantages to having sevezsl sets of measures,
however, since this would provide a more powerful test of the model,
especially the assumption that the errdr tégms in the model are uncor-
‘related with all other variables. Although the above approagh is
attractive with measures available ah numerous\points in time, by far
the most typical situation encounteredin longitydinal studies is where
the same measufes are obtained at only two points\in time. Also, for'
most data sets involving measures of academic achiewvement, the simplex

. - 146 S
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4

N

model discussed in another chapter of this report is apt to provide a
better fit, With only two points in time and with only a single measure
at each occasion, no test of the model ‘is possible,

With three or more measures available at two points in time, models
can be constructed to test whether each measure is congeneric over the
two time points. The test would not be specific to this hypothesis
alone, however, The model would also involve specifications of the
fagtor structure of the latentﬁtralt dispersion matrix, I'. Following
Joreskog (1968, 1971) the factor model for T maybe spec1f1ed

T =76 A+ V¥

where A is a matrix of factor loadings for true scores, ¢ is the variance-

covariance matrix among the factors underlying the true scores and Y is

a diagonal matrix of uniquenesses. With this structure of I' the full model

day be expressed '
<

= B(A @ A" + ¥) B' + 62

. -
——

which may be analyzed following procedures described in Joreskog (1970).
To illustrate this approach two small examples each involving three
tests w1th scores at two points in tlme were selected.
. -
.+ Example 1: For the first example data on “two arltﬁemetlc tests and
an attitudinal measure were used. These measures were used for 75 chil-
dren before and after an instructional program in arithmetic. The
variance—covaridance matrix for the .6 variables is reported in Table l
. The model specified that a given measure at two points in time is
congeneric and that there is one common and three specific factors under-
lying the three true scores. Thus, w1th the tests ordered tests 1,
2, and 3 at time 1 then tests 1, 2, and 3 at time 2 as they are for the
variance-covariance matrix in Table 1, the model specifies that the
B matrix will have four zeros and two values to be estimated in each
column, The pattern is

\ -/
e o o
\\
: 0~ % 0
0 0 %
B = .
*x 0 0
0 * 0
N -i/o 0 *

N
where the asterisks are, the values to ?e estimated.
- : ®

- -
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TABLE 7-1 -0,‘
‘ -
Variance—Coygriance Matrix
. 4
(Example 1, N = 75)
.
Variable 1 2 3y 1 ‘2 3
Time 1 1 1 2 & 2 2

1, Arith, 1 1 118,50
‘ i f

2. Arith. 2 1 45.33  46.68
3. Attitude 1 257.46  135.38  2555.80
1: Arith. 1 2 73.66 . 39.82 239.62
(2. cRYith, 20 2 N 56,990 7 39.40 TR
3. Attitude 2 238.21  126.62  1166.40

(

7

v

[

94,00

48.29 58.17

3
’ ! ‘L =

159.15  152.25  1683,00

AN
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The A matrix has three rows and one column with all entries free,
¢ is just a scaler of 1.0, ¥ is a 3 x 3 diagonal matrix with all diagonal

entries free. The maximum likelihood solution for the variance-covariance

matrix of "example 1 is presented in Table 2,

-
4

All three variables have substantial weights on the general factor.

Y

For each varidble the weights in B are reasonably similar at the two

boints in time. The attitude measure has an apparently large variance
of the errors of measurement but the trué score variance is also very’ ’
large on thﬁs variable in comparison to the other two variables. The
critiéal question regarding the above results is the adequacy of the
model for the data. This is answered in two wa§s: by a chi-square

test .of fit and by an inspection of the matrix of residuals. The chi-

. square for these data is 5.95 w%th 3 degrees of freedom which is, not
significant at the .10 level. 1 )

-
'

(/ " The matrix of residuals; i.e., the observed variance-covariance
matrix minus the variance-covariance matrix estimated by the model .s

: reported in Table 3. The residuals shown ipﬁfghle 3 are generally spall

compared to the corresponding elements'iq Table 1. The largest residual

not only in abgolyte magnitude but as a ratio of-the corresponding ele- ,

ment in Table 1 is for the rovariance of variable 1, time 2 with variable

3\t 2. All of the larger residuals involve variable 3 which may not
: be syrpri¥sing given that variable 3 is an attitude measure whereas the
other \wo a?g\aghievement tests. v e }

' r

Although the above model provides a reasonaﬂly satigfactory fit it
is not a very severe test of the hypothesis tﬁ@t each measure measures the
same thing at both points in time. A total of i§ ﬁarametgfs (6 in B,

. 61in 62 , 3 in A, and 3 in ¥) were estimated from a total of éﬁly 21 dis-
£inct elements in the observed variancer~covariance matrikx. A more severe
test would be provided with more measures, more points in time or fewer
parameters. One way to reduce the ﬁumber of parameters is to make the
model more restrictive. For example, the variance of the errors Ef .

/s measurement .0f a given measure mgght be assumed to be equal at both poin?;

in time. This would .reduce the number of parameters to be estimated in

62 from 6 to 3 and requiré a total of 15 rather than.18 parameters tc be

estimated. '

With the equal error variance restraint added, the parameter esti-
mates rgported in Table 4 were obtained for the variance-covariance matrix

.
> A
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TABLE 7-2 . . »
Maximum Likelihood Solution (Example 1)

3
<

é L
- Diagonal - -
B Matrix ° Entries :
it 1 2 3 in 6°
1 1 3.30 0% .0 5.50
2 1 .0 1,51 . .0 .  3.82, , R
3 1 - .0 .0 6.32 34.71 .
: .Y L, . . - ' }'Jqf
N Nup F 2% 2,76 ° " L0° R 5.69 ’
2 2 .0 1.86 0 312
3 2 .0 0 5.46 26.00 .
¢ “'u" - \ '
N ' . , - Entries
i — o A Matrix in ¥ ) ol
1 ' 2385 ' ” .00
- ; - N
2 73427 : .1.82° X
\ - o
3 4.38 ' 3.82
. \ -y . 4 .
.y s ' (\

*Fixed by hypothesis
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TABLE 7-3 . .
. l
. , Residual Matrix (Example 1)
~— ‘ \
i r 2 3 At
! N\
. t 1 1 1 ‘2
£ \ ‘ _l -1 .00 .
‘ il To1.16 100
N . \
3 1 -2.70 .. -1.69 .01
L 1 2 - .07 - .99 22.29 .00
V2 2 ~ .15 .00, 7 -18.79 * .56
" .3 2 %13.65 8.34 - .01 ~28.45
. - '*
L -
Ol ‘ .
) | } . & |
e 14 . L
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\ TABLE 7-4 :
Maximum Likelihosd é&lutiqn With‘Cogstant | _-\\.
Error Variances for Each Mqas?fe (Example 1) \
P ‘2 \\\ ‘ ) \ ‘
) i ﬁatfix‘ i Entries ‘
3 t 1 2 ‘ 3 \. ﬂ%n 62 )
11 2.5 .0% 0 5.59%% -
2 1, .0 197 .0 3.55+
3 1 .0 .p S5.68 7 29.59
1 2 216 0 0 s
2 é .0 2,31 .0 ‘ 3.55 : L.
3 -2 _ .0 U 0 7415 29.59 '
) /8 & . g
’ Entries
Hj_ K Matrix - in ;
“ 1 3.68 . .00
) ™
K 2 2,57 ' . 1,42 *\“j:\\\\\\ ‘
3 5.20 4.82 v '
. T -

* Fixed by hypothesis

*% The pairs of elements 1 and 4, 2 and 5, and 3 and 6
are restrained to be equal.




"over time may be much too restrictive in most longitudinal situations. The

-

T {

f'} N .
in Table 1. The solution ghown in Table 4 yields a chi~square_of 8.07
. . . . . . ‘e \
with' 6 degrees of freedom which is not significant at the .20 lewvel.
While the resulting residuals agre slightly larger than those shown in
Table 3, the- model even with the restriction of equal error ‘variance
for a given/beasure at the two points in time appears reasonable.

-
»

A still more restrictive model for the above data is provided by
requiring that not only the error variances but the entries in B be the
same for a given measure at:the two points in time. This is equivalent
to the hypothesis that each measure at time 2 is parallel to the corr
ponding measure at time 1 except for a possible additive constant
time 1 to time 2: This is a very restrictive model for longitudi i
measures. It says, in.effect, that the only two possiblé diffgfences ,
between time 2 and time 1 measures are different means and dif?irent
errors of measurement. The underlying true scores are identfcgl within
an additive constant ahd'the errors of measurement are uncorrelated and
have equal variances. With these additional restrictions the estimates
reported in Table 5 were obtained. ~

- .

The chiwsquare for the rather highly restricted solution shown in \\\‘\\
Table 5 is 16.33 which with 9 degrees of freedom (21 separate elements
in the variance-covariance matrix minus 12 parameters to be estimated)
has an associated p value of .06. Although not significant, this increase
in the chi-square suggests that the model may be too restrictive., A
test of the additional restriction of equal regression weights is
provided by the difference in the chi-squares associated with the solu-
tions in Tables 4 and 5. This difference is 8.26 and with 3 degrees of
freedom is significant at. the .05 level. This, suggests that the restric-
tion of equal entri?s in B is.not reasonable. J o

Example 2: As a sgcond example, data available on three arithmetic
subtests (subtraction, multiplicatipn, and division) at two points in
time were used. The variance-covariance matrix for a sample of 47 fourth
grade students on these six variables is shown in Table 6. The maximum
likelihood solution for the model specifying congeneric measures over
time and one factor underlying the true scores is shown in Table. 7. The
chi-square test of the model is 11.52 which with¥ 3 degrees of freedom is
significant at the .01 level. Thus, in contrast to the results for example
1, the least restrictive model can be confidently rejected for the data in
example 2-

< T

Part of the problém with the model may be suggegted by the entries
in the vesidual matrix which is shown in Table 8. Three of the four largest -
residuals all involve the multiplication test. It may be that the hypothe-
sis that a test is congeneric over time is least reasonable for the mul- ~
tiplication test.

v

i . LESS RESTRICTIVE MODELS - (
As was previously indicated,. the hypothesis of congeneric measures

notion of growth does not|normally involve the strong assuption that the
true score at time t is merely a linear function of the true score at
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TABLE 7-5
! 2
Maximum Likelihood Solution with=Constant Error Variance
and Regression of Observed on True Score for Each Measuré ~
. (Examﬁfé 1) 1
v o Ta , i .
~ B Matrix _ Entries, .
i t 1 2 3 in 62‘
1 1 2.67% JOF* .0 5.69%
- ~
2 1 .0 t2.47 .0 3.61
3 1 .0 .0 5.79 30.87
=~
1 2 2.67 .0 .0 5.69
a< 2 .0 2.47 .0 "3.61
. 3 2 .0 .0 5.79 30,87
Entziés
i A Matrix in V¥
<1 g 3.22 .00
2> 2,24, 1.20 )
3 4,46 3.85
* Pairs of entries for a given measure are restrained
a to be equal

- —_

** Fixed by hypothesis” ' -
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. : /TABLE 7-6
Variance-Covariance Matrix - [ ,
\ (Example 2, N = 47) “
Varidble 1 2 ? 1 2 3
Lo _ Time 1 1 1 2 2v o2 ¥
1 Subtraction 1 2,35 T
. - - 4
2 Multiplication 1 1.24 2.54
. 3 Division . 1 .63.- .58 2.47
. 4
1 Subtraction 2 .70 . .39 10 1.56
2 Multiplication 2 .96 .41 Al .93 2.52
3 Division 2 1.52 . ..95 1.02 1.10 1.83 3.37
>
- .
E \\'
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e
L
N ¢
t

Ly

&

- : ~ , S y
, ) . TABLE ¥-7-

Maximum Liklelihood 'Soiution (’Example 2)
v~ % . £ v -

.

" B Matrix
j N | 2 3 in 82

— — ——

Entries

1 1 92 0% .0 1.17
/ .02 1 0 - .59 .0 1.46
3 a1 .0 " .0 .46 1.5 +
1 2. .67 0 .0 1.02

A e 2 2 .0 1.0 .0 1.12

Y
w
[\S)
o
1 4
o
[
[V ]
=

.70

j ' Entrikes

1 A Matrix ‘ in ¥ -
i
2

3.07 V. " 00

’ 1AL ©L00
. . . 3 . 1.20 “ .50
* Fixed by hypothesis \
. Z ‘
. - f‘ - -
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TABLE 7-8 ‘
|
& !
Residual Matrix (Example.2) M, BT
1 2 3. 1 2 3|
i ,;.—///’//
£ 1 1 1 2 2~ T2
1 .00
1 .60 .00
1 .08 .22 .00 )
2 ~.01 -.08  =.30 .00 )
-2 +,15 -.32 .09 .12 .00
I
2 -.03 -.07 .00 -.02 .06 .00
\ | ﬂh’h:
= € )
TR : .
l: - // \\
\‘ N
\\\
A
157 .
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time t — 1. Rather, we would normally like to assume that the rank order
of indiViduals along a given dimension may change over time. Onte the
rank order 'on the underlying dimension is allowed to change, however,
there is a difficulty in establishing whether it is the trait being
measured or the people that aye changing. Thus, the fundamental problem
with which ve started this chapter still remains.
—— :
if complete model can be specified it may sometimes be tested
within the context of the general procedures for the analysis of covar-
iance structures (Joreskog, 1970). In most instances, the theory is |
apt to be lacking to make this more than an approach to testing the
reasonableness of a variety of possibilities., With three or more oc-
casions and several measures the procedures described by Joreskog (1969)
for factoring a multitest-multioccasion matrix should be of value. ¢
When\}e§tricted to twa points in time as is typically the case, however,
strong assumptions about the causal structure of the ummeasured variables
are apt to be needed.

An approach to the problem inéglving multiple measures of a trq};
at time 1 and again at time 2 as well as multiple measures of a second
variable that is thought to be a determinant of growth is discussed by”
Werts, et al. (1972). While potentially useful, their approach makes

_ heavy practical demands for a closed model with all intercorrelated -

_determinates for final status on the®trait of interest included. It
also requires multiple measures (at least three) of each trait.

-

Several attempts were made to illustrate the approach described
in Werts, et al. using Project TALENT results reported by Shaycoft '
(1967). We were not successful, however, in finding examples for which
the fit was gquhgggggh to'provide fuseful illustrations of the agproach.
This failure-i% probabidw due, in large part, to the artificial nature of
the examples that were att®mpted. The Project TALENT data collection .
was not designed with such™T® ‘analytical model in mind and the’ needed
multimethod approach to the measurement of each trait was not psed. #s.
a result the identification of "methods" factors and of a causal model
for analysis were too crude to be succeﬁsful.

CONCLUSIONS : .

The problem of deciding if it is the people or the natuxe qf the
dimensien that is changing is basically a problem pof construct validity.
As such, it is an unending process for which theory, logical analysis
and a variety of empirical procedures are relevant. Assuming linearity,
the procedures for the analysis of covariance structures (J8reskog, 1970)
provide a potentially powerful analytical toel in this effort. But,
there are two major obstacles to the application of this approach.

These are the lack of theory to guide the testing of specific hypotheses
and the requirement of multiple measures for all but the simplest of
hypothesess . { -

?

s
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| Chapter 8
~ \ " .
_— s TIME-SERIES. ANALYSIS APPLIED TO LONGITUDINAL STUDIES
¢,
INTRODUCTION )

L4

) " Time-series anelysis refers‘to the body of kmowledge and ’
techniques that deals with the fitting of stochastic models to a series
of observations made at successive, equally spaced time points. It

thus differs from techniques for fitting deterministic models such as

polynominal and multiple‘feg;gssibn equations. Developed primarily in
v v Lt . . .
the context of industrial engineering, economics, aﬁd\Eﬁsi@ess manage-—
ooy
- . .. N
ment, its primary purpose heretofore has been forecast and ntrol.

.. (Box and Tiao, 1965; Box and Jenkins, 1970; Nelson, 1973.) \

~

The applfcation of time-series analysis to behavioral and \\\\
N & N ~ \
social sciences in general, and to educational and psychological re~ )

search in particular, has been pioneered by Campbell (1969) and Glass,\\

Willson and Gottman (1975), among others. The main objective of Ehgse .

N\
works has been the application of the technique to "interrupted time-

series experiments," i.e., studies in which series of observations both
before and after the introduction of some experimental intervention are

-
\ . - - . .
involved, and whose aim #s fo examine the nature and significance of
N S

the effects of th intervention,\if any. v
. The purpose of thie chaﬁter are threefa;d._ Firét, to present
T , N \» .- N
N 7ewmore.elementgry,exposition of\theimethedology of tige:serles a%flysis
than is available in the literature to date; second, t:\bdint eut that,
N \

as currently used, the method does. not take\i o account the longitu-

. dinal nature of the data, but rather treats th%;\ds sequential

| 100
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cross-sectional data; third, to suggest some modifications to make the

. . . ‘
technique specifically applicable to genuine longitudinal studies.

t
2

el
‘ .* THE BASIC MODELS
w Within the rubric of linear models, the-most general stochastic’

. model .for dlscrete tlmerserles obseryations is one which postulates

that the observa t time t is expressible as a linear combination

o

of an overall "leve ﬁaraméter L and randém disturbances (or white

A 1'Sn01se) at time t and all prior ti points, a 3,_1» ét-é .+. « That

N . i\,_m ' ~
isy— N .
e ! - . .
. !'= + ~ . 4' R -
[l} <E; L+ a, + wlat-l wzat-Z + -

S b
. which is called the genergl discrete linea} stochastic process mbdel, or

the "linear filter" model for short. srder to achieve anything re-

f

% sembllng tractablllty, we must assume that the random dlsturbances a,

are 1dent1ca1ly and 1ndependenglz dxsnglbuted random_zarlables with
N / . . e -

« that the common diStribut%ﬁn is normal; iye.,

. . ) .
. n, . N
at IND (0,0a)

- LV .
.

At first glance it may seer that for any stochastic process

expressible'by Eq. [1], it should. follow that,

* -

N . E(zt) =L + E(at+wlat-l+w2at-2+5")

= -
.

=L+ E(a,) + ¥E(af ) + bECa, )+ ..

\;%\r SL+0+0+0+... .

RIC T / 16l
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N ‘ :
This fallacious, however, in that the transition from the first to

‘
. u

the second step is not valid unless the infinite series a, + wlat-i +
wzat_z 4+ ... is convergent. The necessary and sufficient condition for
’ : P —_

o
this to be the case is‘that the coefficient ‘series, Z wi (where
i=0 -

.4 . .
¢0 = 1), itself be convergent. If, and only if, thig is true, we tan ¢

il '

. ' assert that E(Zt) = L fér all t. Thus, as a first principle, we have:

0]
b, =K <.
1

(2} ) é(zt) = L, for all t, iff
, i=0

-/

When this condition holds, process [1] is said to be stationary through

the second moments, for‘;;\he\i?all immediately;see, the condition also
/ P

impfggt that the variance Var(zgi\ags\éovariances between staggered
F s

zt's are independent of t. Together Qith the normality assumption for
. ,

»

* .

the distfibution of a stationarity through the second moments 3ssures

‘comﬁlete étationarity-—i.e., that the probability distribution ofA;t ..

is invariant with respect to t. Intuitively, a stationary process is
) ) + o
one in which the successive observitions, although ''meandering” in time; e

always centers around a fixed mean, E(Zt) = L.

-

=

‘ g Let us now verify the above-assertion that the condition .

s;}pulated“iﬁ [2] is sufficient also to guarantee that Var(hé) exists

. _and is independent of t. ¥

Var (z,) E(zt-L).z

2 .

E(at+wlat_l+¢2at_2+...)

-
]

‘22 22 : L :
E(at+wlat_l+w2at_2+...) )

..’

+ zg(wlatat-l+w2ftaﬂ—2+°°°

. ‘ . . +¢l¢zat_lat_2+...) N . :

e

T R

. . ’
- Ve
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<

-

2 2 2 0T
oa(1+<p1+q)2+. o)y

. i ] . 3 \
sinee E(atat') =0 for t # t because the a, are -assumed to be indggszi:4
hS . o
ently distributed. Obviousl}, the convergence of E ¢i assures |
© 9 NN ié\o\_
E‘wi also to be convergent. We have thuag shown that

1=0~ 8 .
2 S e k,
{3] Var(z.) = 0 ] ¥, for all t, iff Y b, =K< e

3y 1=0

8

Il £~

0
X \
Similarly, it can be shown that

=

. . - 2 © © e ’ ,
- = i = < . .

[4] Covlzfryg) oy L Ugbyyge 1EF Ly, =Kkse

-i=0 i=0 N
' . , - .
~In the literat§§§s§£‘time—series analysis, Var(zt) for station-
¢ .

ary pr&cesses is denoted By Yo and Cov(zt,zt_j) by yj, the latter being'

called the autocovariance of 155&1.

* A simple example of a stationary process is one for which the
‘ - ) . v
coefficients ¥, in [1] are given by ' _ .\\
. | “ ~

n -
? d . e
~ © _ﬂ“j"
j j+2 j+b R e
LUghipg =@+ 07 107+ ey 5.
=0 . 1-¢
. : ﬁ >
Hence, Eqs. [3]-and [4] specialize to_ - . .
. ' ' ' /
2 2 :
* = -
[3*] ¥, o /(1-¢7)
and : )
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*

L. .- . 2.1 , 2' 5 . . ~ ‘ '
[4%] Y. * P -6, e R : .
J a X : . .
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Moving-Averagd Processes . L ISR "

-~

e § E

PO ' e [ N v
&n even simpler way in which Eq. [1] can represent a station- <ﬂ\\\)

v e v T e

"ary process is when the coefficients wi are all zero for i > q. The

- i +y.a o+ + ... i L ) .
' x series a wlat-l\ wZat-Z N then terminates/with e term!bqat_q,
v and the coefficient series z Y, = z Y. necessarily converées. The i
.. ‘ 1 1 A
, i=0 i=0 i
resulting process, '
1 « . N . .
T = +ya .+ A -
.. ) 3 ~LTa w,lat/—l Ve Fer ¥ Y?t-q .

/

process of order q, abbreviated MA(q).!

/

is called a moving-average

|

>

R 1The phrase,ﬁmoving-sverage" does not 'mean that the average of z
-7 ' " M \
"moves' or varies with t--otherwise the process would be non-stationary. |

t

. \

It simpfy means that z, - L is a weighted composite of the set of dis-

. ' 5 .

o> . . R ] .
turbances through q time points back, which of' course moves with t. For

example, ‘with q = 2, z2g - L is a weigééed composite of agy 2y, and 43;@

z,. - L is a weighted compasite of aj0’ 29 and a,. It is the set\of$

. %o
3

" a's of which'z_ 1is a weighted composite that moves with t. ' Note alsc¢
. .

8

.
v
€

L " - o N ‘\.
. i i + .o i
/, that the welghté%xgpmp051te, a, /ﬂiat_l + + wqat—q’ is not really .
/ ’ ' -

- ) a weighted average, since the coqfficiegp i, wl’ wz, RN q do not, in

L

, general, sul to unity [as Box and Jenkins (1970, p. 10) points outl—— ——

the phrase "moving-average" is retained even -

—

For historical reasons,

o~

though it is, strictly speaking, a misnomer.. e %
| . . //// . . /
g . -
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For purely historical reasons again, the coefficients ¢i

(i>0) are replaced by -ei, so the conventional equétion for an MA(qQ)

process is

z =L+ a -0O.a -9 .- 8

(6] t t 1 tj'l

Zat_z e qat_q.

Thus, éhg simplest case (which turns out to be adequafé for many situa-

tions) is written as

o 1

(7] Ve 2 = L(+ a, = 0,a 1 | i ~ .

: FOZ!MA( is follows from Egs. [3] and [4] that ‘ ,
. i
. 2 2 ’ »
(8] ‘ Ua(l+el) .
-5
énd: . . . '
[9] = o%(=8)) o
MU S R PR RS ¢ A "
while ) . . . . ‘.
] l= ¢ iS5 ‘.
110; Y; 0 for j; 1 /

/ L e ‘
/oo 4 .

Tn addition to the variance and autocovariances of various

@

-

]

* / ’ : r) 3 (3 - -
# lags, another impamtant parameteg, for stationary time-seriles models is

the autocorrelat{on of Iag j. Its/importadbe lies in the fact that its
g .

.
£ -

sample counterpart is one of the main.statistics used for identifying
.4 .

.

~ the apptopriate model for a given serieqﬁof observed data, as we shall

see later. The autocorrelation of lag jJ, denoted by pj, is computed

in the usual way, as . . .
¥ s .
p. 3 Cov(zt,zt+1} .
. //,///”j::i;/,Qj i /Var(zt)JVJr(zt+j) L L

et

>

e
.

”
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But, since Cov(zt,zt+j) = Yj anq Var(zt) Var(z ) Yoo pj may be -

expressed as , ¢ . \f>

. et
[11] p, = Yj/YO~
v‘.. ' -

Thus, for MA(l) wé'have

E

= 2 _ .
[12] Py = -94/(1+61) and,pj =0 for j > 1.

In general, for MA(q) the autocorrelations of lags less tﬁan

&

or equal to q arg non-zero, and those of lags greater than ¢ are zero.

For imstance, for MA(2) we have Egs. [3] and (4]

. 2 2.2 . ‘
. Y, = oa(1+el+82) N
Y, = 62(—6 +0:6.)
1 a 17172
-2
Y, = oa(-ez).
Hence, ’
. p
[13] Py = ( Ql+6162)/(l+6 +6 )
- e 2,2
Py = 82/(1+el+9
=0 for j > 2.

P

Autoregressive Processes .

4 ' . ° -
Another 1mportant.class of processes is the autoregre551ve

1

Erocess (AR) The equatlon for AR is obtalned by g01ng back to the
V4
general 11nearvfilter of Eq. [l] and rewriting the right- hand side in
)
terms of the current dlsturbance and all past ebseftvations. To do so,

d KN
-

we first transpose the ‘terms in Eq. [1] to get’

.
& : g
v .

‘. r »
v
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A
a.t =z, - L - 1%t-1 wZat-Z - ...
LY Y .
v and, noting that this holds for any time point, we, have, e.g. for t-1, *
" . \
) 8,1 % Zeeg T W T V1R T VoPeg T e
‘substituting this in Eq. [1] in its original form, we get
. Ve
z =L +a_ +y:(z -L-Y.a_,-V,a_,—...) + P2 + ...
t. t 1e-1 17t-2 ¥27t-3 272
. ] —
= - + oo 27472/ + - / ces
LA-9)) + 9z e ¥ WAtag o + Wybpppla 4+
) . > . /// . <
from which a1 has beerd eliminated. Similarly, we may suceessively
Co S .o .
eliminate a9 a€;3;.e ., and ultimately'get'an equation of the fqrm‘
- ‘—— ’ - _J
FIA} £, = B + LT ‘+ “gzt--z + . tag, . i N
where the coefﬁicipnts ﬁi are functiopslof the wi’s and the constant ) .
B is a function of L and the wéis. _The nane “aUQOregressivg atdel"
“ 4 . ) ?
comes from the fact that Eq. [l4] resembles a multiple regre§sion equa-
tion wit;h'zt as the criterion variable, the past observations zo.10 .
Z o vt as predictors, and a, as the error of estimate. ' _ ~ o
" e i . B ' ‘\ v . ~ o .
Of course the serres\ﬂlzt_l + 2%e_ + /.. .must converge be- >

I'es

fore [14] has any chance of répresentimg a stariomary procgss. But, -~

as we shall see below, such convergence is only a necessary é;t in-

[

sufficient condition for staﬁiona&ity. As before, the simplest way to

assure convergence of the series is to require .that all the coefficients
A g -

beyond the pgh, say, shall vanish: ‘When Yhis is the caseé, we have an. '
i \ . Y/ oy \’u . v .
autoregressive process of order p, symbolized AR(p). ‘Again for | . - N

" “y * -
historical 'redsons, the coef’ficients,ni are rewritten as Qi, and the

-

, conventional equation for AREp) 4s

.
~ N - -
_ ) - e . ‘
N . vl . .
- " /' v




+ a

" .
w[lS] 2 T 8",'" ¢1zc—1 + ¢22c—2 o q>p"‘c-—p t’

.
~y .~

For the simplest case, AR(1l), we hav

[16] z, = B + ¢1zc_1 + a,.

[}
It may be fempti

of this equation
=B ~

E(z) =B + ¢1E(zt_1)"*-0o s
and, letting E(zc_l) = Eﬂzc), obtain J

E(z,) = B/ (-0p). .

However, this already assumes the process to be stationary {when we
put E(zc_l) = E(zcj], whereas in fact it may not be. .To sée why Eq.

[16] does not automatically represent a stagionary process despite its
having only two variable terms on the right, we must convert the equa-

e A P ~

Y-
tion back to MA form--i.e.,.a linear combination of present and past

- .

condition for stationarity.

»

disturbances--for wifich we @lready know the'

This i daﬁg by using [16] with t replaced by t-1 to édxpress

zt_l‘in terms of 2. 9 and a1 as‘ . oo
Zpp =B 0% T Pear )
/'’ . 4 -
P
whence : - . ‘ N
" N I'e v - " . ,/ I
o a
2, = Bt 0 (B 2 p489) * 2 // .
! . . 2 v . a/'/ .
= -(1+¢1) B + ¢1zt“'2 + ac + ¢l/t"1; BN .

*

. ' V2 i . /,- 1(5(%




- ) 8-10

then z is expressed in terms of z

=2 and at-2’ and so forth. Con-—

t-3
tinuing in, this vein, we eventually get

‘ L)

. _ 2 2
- . z, = B(tf¢I+¢lf.,.) + a, + ¢lat—l + ¢lat‘2 + ooe.
L 2N

- - JﬂTbus:_Bbtﬁ the series in the at's and the series forming the multiplier
— .
- of B converge if and only if !¢1| < 1. Once this condition is met,

this equation is seen to be equivalent to 4

- CD

[17] 2 =—b— 1+ T ot

wh1ch is precisely the process we ;eferred t; earlier as an example of
a moving-average process of infinite order whlch nevertheless is ¢
stationary; 8((1-@1) here ?1ays the role of L. Thus, an AR(1l) process
is, under the condition stated, equivalent to an MA process of infinite _
order@ We thus conclude that, if and only if |¢l| < 1, Eq. [16] repre-
sents a stationary process with

M [ Y

(18] E(z,) = 8/(1-¢;),

"~ 5

/

and, from Eqs. [3*] and [4%*], ///
2.3 2 . .
623/ (-67) (G =0,1,2,000)
Consequently, the autocorrelation of lag j is -

» ‘— - j
[19] Py = Yj/YO 07 .

\

Unlike for a MA pfbceSS; the autocorrelation does not suddenly vanish

after a certain lag, but steadlly decreases exponentially.

* *

The equation for AR(1) is often written in deviation-score

form, thus: let -7 \
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z, = E(Zt) = a =T =

Then, from Eq. [16],

N
{
7~~~
3
(WA
N
t
Ty
[sV]
t
p -3
[}

i}
©
’_l
~~
N
|
\_‘ib
+
L

Thus, the equation for AR(1l) in deviation-score form,

N
[20] = ¢z, *ta,

z
,.e‘t
is the same as [16] except for the absence of the constant term B.

AR Processes of Order Two and Higher. The model equation

for AR(2) is ,{

[21] z, = B+ ¢lzt-l +-¢22t-2 + a, ..

Once it is ascertained that the stationarity condition (to be specified
later) is satisfied, we may get E(zt) by taking the expected values of
both sides of [21), letting E(zt-l) =~E(zt_2) = E(zt) and solving to

obtain

(221, E(z,) = 8/(1-0,=6)).

., To compute the variance and autocovariances it is convenient

to use the deviation-score form of Eq [21]:

‘2 N
[23] 2, = 912y YO T 2

NS

+
where

zt - 8/(1-¢1-¢2):

170 -

.
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7n, n Y
- E[zc(¢lzc~1+¢22c—2+ac)] .

fro

oA n
¢1E(zczt-l) + ¢2E(ztzt_2) + E(ztac) .

<
(o]
I
=1
~
N
p—
I

Ve Il

, 2
077y + dvy O, :

The last term in the last, step obtains because, from Eq. [23],

¢
.
<

F;(gcac) = El (‘bl%c-lmégc-zﬂz) at{l

Y N 2
¢’1E(zc—l§c) * ¢’2E(zc-2ac) + E(ac)’
4
AN .

u . ! .
and observations prior to time t one, of course, independent of the

_disturbance at‘at time t. Similarly,

v, = EGE, ) = BLOZ BLTLAPL NN

~ 4

“ Al

ACI AL

»

e~

and . PR : oo
v - o . A
‘ . g%% . . .
- - -
.
.

1N,

Yy = E(zt o) = ¢1Y¥ ALY R

- ”
N B . - - M

M ' il
. 5 » v R

We thus have the set of equations

, - PRS-
v . N Yo ."¢1Yl + ¢'.2Y2 + Oa

[24] O AR A

‘ ‘ Y, = 617, F ¢2Y°” ‘ , :

. ©Q R by vz
or, if we are interested omly in the autocprrelatiorﬁh’ge may divide
- N .

»
S

\ . -
both sides of the.last two equations of this set by Yo'to obtain
f \ R L ]

? +

\ . - 5t
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-

)
P T TP .
[25] o

Py = 9Py + &)

These are called the Yule-Walker equatioms.

Autocorrelations of Xag greater than 2 may be computed from

the recursion relation ‘>

< -

which results from

. ' Y., = é(z ¥

J t t'j)

o, LAV N
E[(9)2,_1+dyz o*a )2yl

4

i

Note_that Eq. {26] is formally the same as [23] without the disturbance,

~ tem a, . //*q\\, -

t
?Qr higher-order au;oreg}gfsiye prpcesses, say AR(p), the model

‘equation, in deviation-score form, is

¢ - ~

N N N N
{271 z, = ¢lzu—l + ¢22t-2 + ...+ ¢pzt—p + a,
| h Y o - gt b :
where z, =z, ¢%‘¢2 ces ¢p . . . 4

(N -
.

- - ~

The Yule-Walker equations for computing P> Py +oes pp are p in number,

and may best be displayed in matrix notation. They are:

/ W ) ” —d j
Py 1 Py Py op_lj ¢’1
, . . - 02 pl l pl Ooorpp_z ¢2
[28] .
" Py Py 1 ~r Ppe3
p p p P 1 ¢~ /
L p/ & p-l p-2 p-3 VRN P

:0 ,- | ' - . 1 7.2
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¢
The matrlx on the right-hand 51de is symmetric with (1,3)- and (,1)-
elements equal to pli_.l:- Thus, for 1nstance, whg?(p = 5, Eq. [28]
reads ) - .
¢
r ~N 4 ) ~ ~
Py 10 Py P3 "4"4’1 L
< .
Py pp 1 Py Py Py ¢,
Pl =1 P2 Py 1 P Py ¢y
Py Py Py Py L P ¢,
’ o 0,93, P 1 0. B
[ 73, L 4”3 2 1 J L 5 )
—
Autocorrelations of lag greater than p are given b§ the re-
cursion relation .
\
) "= + . P>
3
i.e., an equation identical in form to the model equation [27] itself,
~ <
except for the absence of a. =
'~ The expected value of z, following a’stationary AR(p) process
. is given by a simfle extension of Egqs. [18] and [22], viz.: ' .
s . . ] 3 . : * i:
[30] - E(z) = B/(L-by=by=-r=0), /
as was alreaqz anticipated when the deV¥iation-score model\equation was
’ \\s ~ !
written. . . - g g
Reciprocity between AR and MA Processes. What Qh\§aw in .

« & .
connection with the AR(1) model above exemplifies an interesting ° . |

AN
4
. reciprocity that exists between autoregressive and moving-average

N

A finite autoregressive process is equivalent to an in-

\ -
\\\\;?ocesses'
. R ’ — ..
. o inite mgving-average process, while a finite moving-average process
- o ~ ‘
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N
,ig equivalent to an infinite autoregressive process. However, there

AN

is a slight/asymmetry in the reciprocal relation.
N
Even for the simplest, finite autoregressive process AR(1) .

to be stationary, it was seen that ¢l had to be less than one in

-~

absolute value. On the other hand, MA(1l) (or any finite moving-average
prosess, for that matter) is automatically stationary, as we saw earlier.

Neveftheless, there is a sense.in which the coefficient -Bl in equatioﬁ«A

1
¢

[7] for MA(1) aeeds to satisfy |81| < @’in order for the process toO be

"reasonable:" To show this, let userewrite the equation for MA(L) Qk N
¢ . [

autoregressive form.

From fiq. [7], with t replaced by t-1, we get

« -

- L+ Bla—‘

a = 2
t-2’

t-1 t-1

which, substituted back in [7] yields

\ z, =L +a - el(zc-l-Efelat—Z) ‘ C .
. . + 9 7 " “
.= L(l+61) - elzx_l + a, - elat_z.

Continuing in this manner, we eventdally get L 4
=62 - 0% - 8% - ...+ L HETHLL) + .
t 17t-1 1%t-2 17t-3 N S | t

Thus, even though MA(l) is known to be stationary, its rewriting in

&
* §

autoregressive form does not make sense unless |61|‘< 1. The right-

hand side would "explode" if |8,| 2 1. Hence, we must require |6.]|. <1
\ 1 e [0,

.
‘
~ \ Fl ~

for MA(1) even though no such condition was necessary for statibnarity '
, . ‘ SN
of MA(1) in its own right. This is called the invertibility condition '

for MA(L). ‘jj7loggusly, the requirement |¢ll < 1 is called the in- ?

”~
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’

: »
i

. . ) :
vertihility.condition for AR(1), even thoygh in this case théﬁcondition
‘ . " . .

. ) N\
is necessary also for an AR(l) process to be stationary. 2"

" For AR and MA processes of higher order, the invertibility

conditions are more complicated, and we merely state them without

derivation. ,

T t

(a) For an AR(p) process to be stationary, the root of the.

characteristic equation

LL=b - b - —¢pxp =0

J o
\\\\\\\\\‘ must lie outside the unit circle. [This anticipates that

_ at least some of the roots will generally be complex. For
- any real root Xy the requirement is simply that |x0| > 1.
Note that, for p = 1, this reduces to the earlier con- °
dition, |¢I1 < 1. TFor then the characteristic equation

. LR - = 1 ;‘°" >
N .lis 1 ¢lx 0, whose root is X 1/91, SO Fhat |x0| 1

~;\\\\\ " is eduivalent to |¢l| < 1.T SN

: 6
1}
(b) TFor a MA(q) process to be meaningfu%}x\%xpreésib;e in

- L}
autoregressive,form, the roots of the characteristics

< -

equation ° ,

t

7

must lie outside the unit circle.

- \ [ N \
.o \ . THE MIXED MODEL: ARMA '

Civen the two basic models, AR(p) and MA(q), for sﬁationary

.t

processes, it is a natural extension to form a combination of the two .
b . .

" resdlting in the ARMA (p,q) model, (an autoregressive moving-average-

-~

; s 179 -
A — A o L.
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model of order p,q), with the equation =~ * N
= + ¢z, - Fa, =
[30]6 e ¢lzt—l ¢’27‘t--2 * _ * ¢pj§—p + 8 f %t elat—l‘
- 0,a - .:./{—9 a - :

. 27t-2 q t-q

»
»

" . \ ,
The advantage»of making such a combination is implicit in the above -

discussion of the reciprocity betiween AR and MA processes. A finjte AR

s

process was shown to‘be~equivalent to an infinite MA process, and vice

A

versa. What is more to the‘point here are the equlvalences in the

opposite directions: an 1nf1n1te MA process (ora finite one W1th~a—————

very large order q) may be expressible as an AR process of very small
order, and, conversely, an AR process of very large order p may be
expressible as an MA process bf low order. Combining the two would,

then, give us the best of two worlds, so to speak. Thus, a.stationary

process which cannot be expressed either by a pure MA or a pure AR

N

model of reasonably low order may be expressible as a mixed ARMA (ps@)
model with quite small orders p and q. The savings in the number of \

parameters to be estimated may be engrmous. - ~

)

. The technicality of deriving the variante, autocovariances

d autocorrelations for the ARMA(p,q) model is\tedléos, although in

-

princ Xe 1t‘involves no more than a combination of the procedures

descri above for MA(Q) AR(p) models séparately. "Since our

'main purpose here is simply to point out the advan%ége of sometimes

considerlng the combined ARMA model, we shall not g0 into these deriva—

tioggi We merely state the results for the simplest case, ARMA(L,1l).
. .\
The model equation for ARMA(1,1) is -

¢ -

e = 9%t B+a —8a -

170 :
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It can be shown that . ' ) '
- , ‘ )
« E(z) = B [the same as for AR(1) ]
, t Lo d .
. 2 . 5 ' »
y = LFN -2 .
o] 2 a . y
1- ¢i .
A N [
-8 08
Y, = ¢
1 1 - ¢2 -Ta
- 1 ’
< i 2
) and . Yj ¢1.YJ_1\_ (J\ 2) . . i
Note tﬂ%t these results reduce to those for MA(I} when ¢ = 0 and to

v
\

o

‘those for AR(i§ when ¢1 > 0. The autocorrelatipns are immediately .

obtainable by d%vjsion: pj = yj/yo, so we shall not list their formula

here. N4
. ) . . ' e

\
! MODELS FOR NONSTATIONARY PROCESSES

K

‘ * . v v

Stationary time series are seldom "literally true' descriptions

S

tions. But sometimes-—perhaps often in behavioral-science
. . ¢ .
applications--they are not even'aqéquate approximatiohs, as when

-

learning or grow} h~1s involved.

. Fortun%tely, however, many nonstationary time-series observa-

tions that pccur in real\life exhiblt what is known as homogeneous
. t

nonstationarity, by which\is meant that even though the series moves
about freely w1thout cente ing around a fixed mean, its behavior is

14

essentially similar “throughout the course of time. When this is true,

it pften turns out that tﬁs series formed by the 'successive differences

between adjacent observatiqgns, v

3




v - " \

[32] ‘w. =z -z

. ) -
“ is a stationary time series.

Sometimes, we fhay have to form second-order differences,

Lo - . i ;
vV =W ~W L=z -2z + z '
.0 t t Nt-l t t-1 t-2> . -
. . t . , .
or even higher-order differences before stationafity'is achieved. At

\

= any rate, the statlonary models prev1ously described for MA, ' AR and
)

. ‘ 4
ARMA processes are usually found to be appL;cable to dlfferences\éfi\sm ‘
. X \'\..‘\

P
PR ¥ + .
L N . ~ . ) v,

N . «
™ " .

suitable_orde:\a\eﬁfobservations following a nonstatlonary:process. ) E
Thus, the most genefal model‘for nonstatlonarszrocesses is one in. e
L] . ~
2 which the d th order dlfferences constltute an ARMA(p q) process. . This -
is known as an integrated autoregressive movlng—averagegprocess of ™
’ N .
" order p, d, q and is symbolized ARIMA(p,d,q). .
’ \ , ] :
" _The qualifier "integrated" simply méans qhaﬁ the terms of the
t “ b . . . t‘ :. : ]
~ original series {zt} are sums {(of order d) of the d h,order d;fferences /
. - . i . ¥ . , -k 1/
which follow ARMA(p,q). For.example, when d = 1, , e »
[ ‘= (z - +.z ® +
20 = (272 ) -1 25-52) (2, 972¢3) * .o .
" - + ! + + .. - : .
e T T Ve V-2 -
. . s - -~ .
Y e o] ’
. _ z o ) -
b}
.. o 120 t-1 ‘ - .
. = Similarlty, when d = 2, since W, is itself the sum of present and all
- _— » “‘ . \' [} ’
. ..past vt's, it follows fthat, “. ( , . .
) . ® ) o ‘.\ i. T T
“+ d _ i
A Zt = Z z { vt i"J \ “a )
. =O T i=0 '= . !
oo / ) . - ‘ } . .
a double sum of the second-order differences. et
. - . . )" R . .
\ . \ . ) .
E TC ‘ . . . o - v . -
RIC. . DS & P I R
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[ 7/

/ ) N ’
The equhition £9r(ARIMA(p,%,q), written in terms of LA is )
simply the ARMA(p,q)/enuation'for v ien, - ’ ‘ ’
/

- 033 /1 -1t ¢2 pep T ROVt AT 9131 - ezat-z

LI ' ) 4
- . / / . - -e ‘ \

- . / o q t_q .
\ ./ e i he | “

4 ~ ¢ " -

Note, However, that there is one ditference between this equation and

; & the equa*tion, [31], for the ARMA(1l,1l) process in z, itself [which can
- . ,P? readily ggneraliged to ARM%(p,q)], in that [33] doés not contain

. ithe‘constant term B. Since the mean of ARMA(RPq) is the sane as that
of AR(p),; as shown for éRMA{l,l) after Eq. [3;], it follows from Eq.

. ¢

over a long period

“

. ‘~ [30] that ngt) =AO° Thus the average of z, = t-l

§ %

of time is approximately zero., For the orlglnal time series {z }, this

“ implies that even though it does not center_around a.fixed mean, nor < T
. : ) ’

‘ does it show a perpetual trend upward or downward. Technically, this’

-

' ‘ istharaeterized by saying that z, shows a stochastic"trend on drift, ‘-
. i [y

but not a deterministic one. This is the situation usually treated v

in time—serles analysis. "In educatlonal research where we usually | .

~

. expect learniqg to be taklng pleé/i it may well be that a deterministic

N
trend “should be 1ncorporated. This can be done simply by addlng a T

non—zere\constant R to the right-hand side of Eq. {33]--although Box

~ .

and Jenkins (1970, p. 93) advise dgainst assuming a deterministic trand °

unless the data give clear evidence of its presepce and form (linear,

quadratic, etc.).: Thus, the burden of the proof seems to be on includ- .o

l R

. ing the constant term B to Eq.\[BBT. -

) ' ‘ From the foreg01ng discussxons, it lis clear that npthlng . f
j " really nrw in the wa of mathematlcal tefhnlques is needed for handlmng

A e ) homogegeous nonstationary time-series. We simply take differences of
A

N » - ‘s / N N 17) ) — T . (\s/
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N .

e}

.-
;

sufficient order to achieve gtatioﬁarity“(aé“judged by methods discussed

bélow), and apply the methods developed for.AR(p), MA(q) or ARMA(p,q)

NG processes, as the case may be. [Noté that when Gi"= 0, [33] reduces to.

A \
€

*the equatlon for-an AR(p) process in W while for @i =0 it reduces’ to

. ' [
- - ‘ ’ . v, ‘. . ., . J

v ﬁhat for. a Mg(q).] ' . . ‘

- i

" : " There is, however, one new equati X it. is sometimes con-.

, Venient to” have iﬁ dealing with ARIMA(p; 4)) proceSses, or thelr spe01a

[ /.

N casgs,'AR}(R,d) aﬁd'IMA(d,q)'processes( This "is a réﬁritlng of Eq [33],
. ‘ ' ’ :. C . .~ T ’ . & LN " ¢ s
o " or one-of its .more speciél'ﬁng;ahces; in terms of zt 1n a form known
. , e B0 oy
as the’ (cumulatlvq) random—shock form. We. 1llustrate this for’ the

’

simplegt cage,,ﬁhe{IMA(lil) proce$s. The equatloﬁ (replac1ng Ve by

' *

. i z -z ) is . - ST -1 ..,'
. t. t-l ° . v T . “ - s e A —

-~ . . i
. . . y .

* + * T . ) v
. © =z F a 6 u ; N o '
. [34]' o 3t= Ct=1 t—l’ T N T . ,f

B . * ’ ‘ N . - Al .
g

> .. which, it’ may be noted 1nC1dentally, formally resedbles an ARMA(l l)

< ® o

‘ ', ! YT ’ °
'equavlon but. nevertheless cannot be so ¢ trued ‘Eince the autotegres- G

. R .
3 , v R , " ¢ : ..

. sfve coefficieﬁt ‘ig ¢1 1 (cf..Eq [31]), thus v1olating the statlonarlty R Y

. 4 . ' . N . e * N
, . et ‘ . C— . . v~
condltlon [¢ | < 1-. ¥, ¢t ¢ ' o Lo SN S
1 i Sy . ,{ ~ : ' e
'y )

U51ng [34] with t replaced by t - l ve have : S ‘“': T t“:

N B %

. . b .
¢ . A4 v . “

. N RN Set o N . , . ” .. , “a L.
. a, . : . . '
\ . ] t-2  t=le l\t-Z’ s . N Ca
s (“\ . x: . al’ ] .. ~°L ‘. - .. \' . N N N ‘,:.', ' |
FREENEN 4 . 4 s 1
whiqp may be substltuted bacK in [34] to elkminane zt 1 S O I IS
* ) 1 " -
* N i . L] ' Lo Y ,\ - N ' ’ £ i
* 1 ' ~ ? N . Ead . * : »
' = (21 . -6.a + a, 9 a ', e W
2e)= (2o t-1 122 S S T

\ .f Z,_o + ay (l-E)]_)zft‘_l -8 a‘_

. .
JAuText provided by ERIC N . . . - = v

. - \ Ve . . XN
e . . 5 . . . o
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s

+

Aruitoxt provided by Eic:

"

-t \:
."get

4‘ P

) where k is an aqbltrary referenCe p01nt.

ERIC . -
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4 "

Succe551vely eliminating z- 2, zt_3,retc. in this manner, we eventually

.
.

A ~

>
-

. : z =1at +.(1-81)(at_¥fat;zh.:.), . L

Ty -
-

. where the sum. df the al 's. extends 1ndef1n1tely into the past. It is

p‘ “' / N

‘cpnvenlent to- break th;s sum down into two parts,

i ' ~,b" l 1"'.t-l E . ' 2 ] \
Y-+ a, and Z az, R

/ ‘i=;‘°° 1 . 1—-k+l ' )
{ - :

.

We miy then write = -

-
’

‘ t-1 ‘
; = (l-e D { A8 ) e tag, ~ .
o L i=“w . ' i=ktl . < '
ngr,‘ubon denoting the first nartial'sum-by Lk’
T e N /
{35} z, L + (1-6 ) 1 a, +a. : ‘
- ? . '. . R 1 * 1 k‘*‘l o
Coe fFrom‘the strict méqhematical,standpoint, the first partial sum
3 i . k ‘ : . N . -
(1481) z a; above mgy not' even'converge, and hence we have no right

§ =00, o P

to demote this by Lk:'

L3

However, from the practical standpoint we may
reasonably assume that the distnrbandes beyond some rempte time in the

- past should nog affect the present observatian, so ‘that aJ 0 for

v .

. those remote time pOlnts.

<

It is- 1mportant to remember, however, that

- - [

how far back is remote enough will depend on whap the present time

point t is. Thus, Lk is notjstrlctly a constant, but depends in an.

’ . L]

LN

indirect way bn t. (This is what keeps Eq [35] fﬁbm representing a

1
.
T

'stationary proceps ) L may be 1nterpreted ag’ the "lebel" of the system |

&

" .at time point k : : ' . ', s

- L -
. v

IS
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IDENTIFYING THE g?bCESS ARD ESTIMATING ITS PARAMETERS

3

. The foregoing concluded our discussion--necessarily fqg:z;iete

* because our aim was to keep it as elementary as possible--of the various

~ . »

models, stationary and nonstationary, f;?‘iime—Series obsérvacions. We
-now come to the practical question: ‘given a sg% of time—series:data, - ‘ ©
how do we iéentiﬁy‘which of the several models is appropéiate, and

how do we estimate the parametetrs of the selectea mo@el}.

Itjis at this point that we part company from the tradftional

s -

! \ .
. . ’ . e sy
procedures of time-series ana1451s and propose alternative methods which b

we believe to be better adapted to data from longituj}yal'studies. But

first we must outline the traditional methods and point odt the dif-

ficulties, in applying them to longitudinal data. \\\

v - - -~

\91
v

Traditional Procedures

T — .
Since, as indicated earliet, nonstationary processes of the . .-
homogeneous variety are adequately modeled by stationary procgsses--AR(p),

MA(q) and ARMA(p,q)-—in the differences of suitable order, we shall -con-
fine our diEEUégZ;;;\;;Emarily to stationary models.

The behavior of the sample counterparts of the autocorrela-

tions of various lags is, as mentioned earlier, the key to identifying

the appropriate model for a given set of time-series data. We therefore
‘2 B .

- 3 N |

first indicate how the sample autocorrelations rj carresponding to the

!theoretical parameters Q. have traditionally been defined and computed.
. 1 il | .-

\

-~ * . |

' Tke Sample Autocorrelation r,. Historic 1ly, there have bebn t

' -+ 1 i A ! / |

several altgrnative Iefinitfbns proposed for rj, ut the b6ne currentl

] i

o

favored is as followk: ~ Y ;”‘?,
| .

I
. ’
v

i

Given arf ob&e;ved’series on&ata 2.y Zay ey Z, at T time
‘ <1 T2 T E
. ,

B | ~ \( N 182 J " I. /// v "‘
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-

points, we compute the sample variance ¢ and sample autocovariances

) ) |
of lag j, Cj’ as

T

.1 -2

cc =7 Z (zt-z)

. t=1 -
[36] ’
T-j :
-1 Sen Oy s o=
cj =T tzl (zt z)(zt+j 2y, J =1, 2, «v.

Where z is the sample mean

' *
l . c )
) & S s
Baded on the sample variance and autocovgfiances, the sample autocor-
’ : AR i
relation of lag j is defined as
. ‘ -
[32] T = cj/co, j=1, 2, ... ‘ - [

Once the sample autocorrelations have been computed, and

possibly plotted against j for visual insgggtion of their behavior, we

check to see if the trend with j corresponds approximately to the trend
.exhibited by the theoretical autocovariancé@ pjvfor any of the models

MATE) , AR(p) or ARMA(P,q). ‘ ” :

‘

Identification of an MA(q) Process. Lf an observed time
series conforms (approximately)to an MA(q) process, this fact is readily
discernible by inspection of the trend ‘of rj with j. Asg stated in the

discussion preceding Eq. [13], the theoretical autocorrelations for an

./,MA(q) process are non—zefo'for lags up to ang including q, ahd then-

[ el ‘ L
Abruptly Jrop tor zero. 1f|the sample autocorrelatiofis' show this sort

of trend with j we' may safely conclude that a moving-avérage model.,
» .

adequatel ,fits thé data, &ith ord%r equal to the ias;fj for which rj {
t. \ : 4 |

is s?bstantially non-zero. For instance, if rl‘alone is,bf considerable .
£ .




-+ fitting of a moving-average model has already been ruled out), things \

'8-25

magni tude while Ty r3,' ... are essentially zero, we conclude that the

L
data are adequately modeled by an MA(l) process; if ry and r, are sub-
- " ! 4
stantially non-zero and the rest (r3,' LRI .) are of trivial magnitude,

we conclude that MA(2) offers an adequate fit.
There are significance testsavailable for judging when a
sample autocorrelation is ''substantially non-zero" and when it is

"essentially zero" within sampling error, but we shall not discuss these

t

in this brief outline. The interested reacler may refer to Box and

Jenkins (1970, pp. 175—78), Glass et al. (1975y pp. 97-98) or;Nelson . j

+

(1973, pf. 71-72).
pp. 71-72) »

identification of an AR(p) Progcess. Except when the observed':

data sequence is adequately modeled by an AR(1l) process, the identific-
Y P

ati;an of the appropriate order p of an autoregressive process fitting
the data 4s much more difficuit, than in the moving-avgrage case, .
, ) s
As shown in Eq. [19], the theoretic;l agtocorrelations for , .
AR(l)\exhi‘bi\t’an éxpo;éntial decay with increasing. lag j. If the
sample .autocorrelations more or J:ess follow ‘thisipéttern--—i.e..., decreas~
ing ge‘ométricaily :rith lag j but not \sudaenly dropping to a near-zero'
<

value from.a certain j on—-we are fairly safe in concluding that an

Ay

“

AR(l)hmodel will fit the da‘tg adequately.

\ »

v

When the above happy circumstance does_pot prevail (and the

v

get much mote éomplicated. Inspectiéhe behaviér of autocorrelations

L . |

" . - »
alomne 1L»zill not suffice, and we must ,examine what are known as partial |
. 4 . P l
| i

R I
3 ' | \ |
autaco&rrelatlons. P ' .

’

, = ' ’ t s I
| "The basic ratipnale hinges on the relation between the'auto-
. £

t

regressive cofficients ¢i and the autocorrelations pj .specified by v

-




%
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kR

M

»‘\‘
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‘

the Yule-Walker equations (see Egs. [25] and [23]). We know that for

p——

. 4
AR(p) the ceefficients Q& for i > p must vanish; the Yule-Walker

-~
. -

equations enable us successively to estimate the ¢ihs by using the .

* 1

sample autocorrelations rj in place of the theoretical pj, and hence

to detect for what i ¢i first becomes essentially “zero.

-

' Assuming that AR(1l) has been ruled'out by the‘rj's.not4deca§ing

approximately exponentially, we w;sh to.check if an autoregressive

process of order 2 or greater will fit the data. We replace the Py and .
J . "o s - .
pz in the Yule-Walker equations [25],by their sample éstimates rl and

Ty thus: ' ) . .
’ \

rz = :blrl + ¢2 & / Lo N e

where we have also replaced the ¢i by 8; to signify that we.are solving

for estimates of ¢i. If the solution for 32 differs siénificantly from -

»

zero, we conclude that the order of the AR process is at least 2, and ¥4

proceed to the next step of checking if the order is 3 ot greater.

That is, we solve the, Yule-Walker equations with p = 3 for ¢3 l‘
. . ‘ \ '
rp = 8+ byr) + 0y7 | ~ .
A ~ " A ’ L - .
r, = ¢ +7¢, + 051y : S,
L. . “ g

T3T 0t ¢2r1 t oy |
B @ . | : |

If the solution for ¢3 is qlgnlficantly dlfferent from zero, v% proceed
- ! (A ©
to Rﬂ; 4, and so on. Eventually, we will comé to a ¢p* that does % \

! [ . i
not differ 31gn1flcantly from zero, and we then concludé that AR(p*-l) !

’ M -
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. * . - D
v ’ ./' ‘ ~ ’
offers an adequate fit of the data (assuming, of course, that a pure

AR model is\appropriaté in the first place). *

«

] . 4 -
‘ Although we have hot used the term ''partial autocorrelation'
. ; ¥ .
- PN
in the above discussion, this is the name given to the ¢j,s01ved from

“t?e Yule-Walker equations with p = j,’and it is conventionally denoted
A . '

¢jj’ the sdmple partial autocorrelation of Oﬁﬂer}j§ This may be com- Lo

puted bx/C?amerfs rule [see Box and Jenkins (1970, p. 64)] without hav-

ing to solve the Yule-Walker equations in their entirely. . v
! | ~ ¢ ) r
Rt The ,significance test for ¢jj‘is quite simple, for it has '
been shown by Quenouille (1949) that the}approximate standard error

of $5j is 1/V/T when,¢j = 0. Thus, we have merely to multiply the com-

-

puted value of ¢ij by /T (T being the number of-data points) and refer

to a normal-curve table.

- * -

Identification of an ARMA(p,q) Process. If a pure MA model
‘ v Q@ . M

has been} ruled out, and the partial autocorrelation ¢jj does not'drop_

to nonsignificance for a long 'time (i.e., until j exteeds 3 or 4, say),
5

: &7 . ' N ~ i ~. \‘\

then we must suspect thaf a mixed ARMA model may offer a better fit to

LIRS

the data ‘with lower prdérs p and q. (See discussion in section on

L3

) ,qhe mixed model.) \Ur}for.'tunately; the identi%;tion bf the orders of

an ARMA process is even more complicated a ta than identifying the

Iy

\ . order of a pure AR process. !
-~ About all we can say is .that,.when,both sample autocorrela- “p

tions and sample partial autocorvelations decline gradually rather
4

than erpping abruptly to‘near—zero, q!mixed brocess is indicated. As . '
' - i
- ~ a working rule, it may be said that it is worth considering an ARMA,
» \ '
° modél only if both orders are no greater tha 2; i.e., ARMA(1,1),

. e L3 { "
7 ARMA(1,2), ARMA(2,1) and ARMA(2,2) are the only modelg that should be

.

o .

\
3 4 .
.
- . ] -
19 BN ‘
’ J :
. .
.
. .
.
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'

entertained seriously after pure MA and pure AR models of reasonably

.
low order have been ruled out. Beyond that, it is probably morewfruit-
%
ful to postulate a pohstationary model.
oo Summary of Process-Identification Rules. We .may summarize
the foregoing procedures for identifying an appropriate statiohary )
ri , -
time-series process.for modeling a sequence of observed data in the form,
of a table listipg the rules-o%-thuﬁb. It should always be borne in
mlnd that the orders should be relatlvely low (no higher than 3 perhaps, /
* for pure MA and AR models, and no hlgher than (2 2) for the mixed ARMA
model) for us to consider a stationary model seriously.: '
» ' i ~ .
Table’l. Behaviors of autocorrelations and partial . -
autocorrelations'in various processes
’ \
o ' Process . Autocorrelations Partial:Autocorrelations k
‘ IMA(q). .Noh-zero for lags 1 through q; (Taper,off; but not neces- :
B then abruptly drop to 0 sary’ to check) -
AR(1) Taper off exponentially ' Ogly'$ll £0
> i : o5 v
Ali(p)_, p>l gapirq)o;f)f acie;d;ng ’ti S fll, $99> , ¢pp £ 0
. sl 1"4-1 2"3-2 ¢ ¢.. =0 for j >p
+¢_p, 3 ' -
; ‘P J-P . . ’
ARMA(p, q) Irregular pattern{for lags 1 _Taper off
: through q; then taper Bif r
) A according to ' ‘ ¢
= . +'.-- -,_'*' . . :
) Py = $1P5 *pP5-p P ; N

¢

¢ Recogni71np Nonstgtloqarlgj, If the samplk autocorrelations
| | . »
0o taper off very gradually,overﬂa long stretch of lagi, we have prima facie-
'] !
, eV1dence that a nons%a ionary process 1s 1ndicated MA(q] is certainly

. \ < E
’ ruled out ‘immediately, {and even if an AR(p) process|shotld be appropriate,

’ - ‘ - ’ 8

A . v

A o . Q>

.
.
- , .
.
~ .

'

JAFuitext provid: c '
. v

‘ - \ B
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it.is likely that the order p will be quite large. If the checking of

thé firét few part;a}nautocofrelations (through $33, say) confirms ghis

by their bein$ of.;onéiderable magnitude (533 Ji > 2, say), A&Cp) may”

be ruled out for practical purposes. ARMA(p,q) should probably not be

considered_unless'the partial autocorrelations taper-off rather rapidi§\ -
Besides the.above considerations, it is*always‘a good idea to

make a plot of z, against t to get a viégal impression of the l;ck o%

s;ationdrity-—although one should not r;ly entirély on visual <impressions.

At any rate, if the data are from an area in educational research such

‘that learning is expected to take place within the period'of observa-
tion, it is more likely than not that the series will display non-

-

stationarity, as mentidned seveg\ times earlier. Such being the case,
it is probébly wise mot to expend_a large amount of time and effort in

seeking to make a Procrustean fit of the data series to some stationary

-

moded . Rathér, one should adopt the standpoint that nonstationarity

~

exists unless clear add quick (i.e., with low orders p, q, or (p, Q)

for the model) evidence is available to the contrary.
) . 3 \\- ) 3 \ 3
Once we decide on a honstatlonary model, we form the first

differences w = Z -z and treat the seriéL W just
eremnces w, = Zp T %1 X 1" J

. " !
as wé did the original observed series. That is, we determine the auto-

W ve ey W
b b Tl

coryelations, and (if nebesggry) the partial autocorrelatioms of this

new series and check if an’MA, AR or ARMA ﬁodel of reasonably low order

will adequately f1t the data. If so, we conclude that the original

. |
s=ries Zl’ Zyy cevs 2T is adequately modeled by an IMA(1,q), ARI(p,l)

~

ok AFIMA(p l,q)\prodkss. If not, it must be concluded that even the

[siries of the first—o:ﬂer dlfferénces eXhlblt nonstatlonarit@. We ﬁhen
"t |

Egke the second differencesvt =‘wt - wt_‘_l and repeﬁt the entire Sedrch

~ -

_ ‘\

180 . I

.
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differences to achieve stationarity. ‘

‘dicated substitutlons in Eq [28] y1eld

v
[

< ¢

* Fortunately, experience

S

.

Vgs +hey vTjé'

shows that we Farely, if ever, need to go'beyond the second-order

. ‘ - ¢

procedure with the series K

’
K .

. ~
-~

'Estimation of ﬁaradeters.' Once an approprlate model has bgen
- %
identified, we may est¥mate the _parameters of’ the moder \y\Q51ng the
N PR AN

sample autocorrelatlons.tiln~5ht11ne what we' do is to substitute the

. ’

[}
o '

< + * . .
sample autocorrelation values for the heoretrqal~autocorrelat10ns in

basic parameters, and solve |
i '

th@ equations relatlng the }atter to™t
5
the resultlng equatlon(s) ¢
/ :

. For pure AR processes, the procedure is“straightforward. In

< >

particaiar;,for‘AR(l) we need only take the j = 1 instance-of Eq. [19]
. AR SN
to‘get\” .

y

. .

-~ PN

[For }omewhat greater accuracy of estimation, we might take -the first

. . . s : . ‘..” 4 . . R d
few inStances,’ A ' ‘ f o
. RS , \ o . . .-
., -’ \ -
. oo~ N A3 e o . ’ . .
- by = Ty &m0y =y, g

”

and.get*h least-squares estimate for Qn¢i1] .

Y .
»

i

For AR processes of higher order, wé ma&‘éubstitute the values

‘

i

of rj for the’corresponding p 's 1nﬁghe Yule-Walker equationi/(see Eq

3

[28]) .and solve the set of linear equatlons for the ¢i Thus, for
[ ®

.'\ \\
example, for p = 3 (béyond wﬁich ve would seldom wish to go),- the 1n-

1

M : LI A "% N "o
;o 'ty Lo 1 ¢y | , '
A ’ " ¥
. { . .
. ol =k ton 7N EEI. »
. r3 r, 5, 1 ¢3 ar L. .
. ‘ N\ J . ¢

[

° . \ . ’ - v

¢
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L > ’ * . . . : "
from which wé immediately get . ) Lo t
< ' \ 2 - ,
PR Y1 3
5 A ‘-’l . L . - .
/ 4\’\ b , LT A 1 EREIEY
\\ " = ) AR '
< ?2 Ny 1o w Ty
- N b‘\ >, LY
.1 % T, 7ol Iy
- ~ A - i -

~

For MA and ARMA processes, the procedures are somewhat more ~
!

complicated because . the, relations between the autocorrelations and the

L +

P

, basic parameters arq‘ﬂoﬁiineaf. Thus, fo# AM(1), we have, upon sub-
. , . |
stitution of 13 for Pl fn Eq. [12}, P AP .
_— 3. ) R K
1 - §2’ i Co , AT
L 1 1 ]
. which is a quadratic in $1 with two solutipns .
| 'I ¥ ’/ . . .
, A - 4l ; o
(38, . &, =— L : °
! A,”l 2r ¢ ” ’ s
. g . 4 ’1 ’ ) ’ ' l ) 1 \
It is easil§ verified that the two solutions ake reciprocals of ‘each ’
. . - ; »
) other. - Hence, *just ‘one of them must satisfy the invertibility con- y
dition, ISIJ *.1. This is the one. we take as our estimate for 61.
ot ) . The equations become much mqre coﬁplicated for MA(2). _Sub- ’
" » ~° ’ * i . . .
gtitution of ry and rz'for 0y and P> respectively,+in Eqs.-[13] yields .
S W ke B ‘- Coee
1~ A2 a2, '
1+ 91 + 92 . . .
‘ and . . .
- I l r2=_‘__'_—2_2__2.1~ C )
- 1 S 1L+087+8 ' oo "
. . . ’ 1 ‘ .
- Y

L) . ,‘ i.‘ Y : . ~ l/\

, _Simultane[us iterative solution of these' two! equations for 61 and eé ;
" ) i , |

he usual approach. The present writer has found, however, .

4 | . B . |

°l

o _has 5een ‘

¢ 4 L 1‘
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- ‘ Y

. v - . Y
after some algebraic manipulations, that we may equivalently, solve for

61 from the ‘equation o o . L ® r
v 'a A‘ I 2r2 . N L ".M""'».“ .
(39} 1 = ef2 { / —— + 1} ,
(¥ . 1-7Y1 - 4r2(l+61) A S
: and then obtain 8 from ., - 3 .
i N Vfi— 4r? (1+e ) Y ‘
(40] 6, =— 2r, -,

-
>

This simplifies the solution in that iteration (by, e.g., ‘t e Gauss—
' . e o
Newton Metfod) needs to be carried out only on Eq. [39], with.one &in- .

%
, known, él' The closed expression [40] then yields @2. Also, the
satisfaction of the )inve!:tibility gndition, that the roots of
" W
a2 ) . o
l; - elx"' ezx —'.0 . D » . . " 4
N . .o P . . * , . * . v
. ‘must lie outside the unit circle, is built into Eqs. [39] and [40]
¥
’ prov;.dqd only that we take the solution of [39] Wlth |9 | < 1.
The procedures for MA process& of order q greater than 2 are,
-«
. / .
¢ - needless to say, even more complica ed. Simultaneous iterative solution,
by .the Gauss-Newton method, of the system of nonlinear equations bt
v : .
(generalized from Egs. ’[13])‘
A - A . ‘ A A \
: =“91+@12+ + + ¥9a1% .o -
P SV e
. 1 2 N .
\ T .. + :\ S .+ A~ by -«
: n 8, +8,0, + ...+ 8 0
\ . r, = :
\ 2 14t e +p° )
| AARRCS A .
. R . ‘
) H 4 .
b , P :
/ J; , ‘ , i
. 8 \ -
rq = A ‘ ( ;2 \(‘ ,: | ;
l+6 ﬁ...+9 s | ‘ el J
, ‘ ! q , - o .
B : . 1s abojn: all-that can be hoped for. * . T ) 1
oy = b4 " - o . |
O i ' ; .

: « Lo - .
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for mixed proceéses ARMA(p, q), the estimation procedure is:

yd S :

AT too complicated to. expound here, except in gross outline, for all but

F the 51mplest case, ARMA(l 1) In the general case, recursion relations

t

(sxmllar ta those for the pure AR process--cf Eq. [29]) exist between

]

0q+1n g2’ ...,opq and thelautocorré?atlons,ef lag q.or less. Fpom ‘
) these relatlons, estlmates’$l, $2’ e, a for ¢1, ¢2,'...” ¢ can be - :

o

comput;d. Then, utilfzing the relatxons between Pi» Pos =ves pq and

«°. . the ¢i'é and the ej s, we may solvekfo; 61, éi’ ooy eq by substltutlng

. . Lo . ) ~ ) ’ ' ; [ * . / ‘
: rj fer 03 and ¢i for ¢i. R i . T ) o [' i

E ) o " For the simplest’case, ARMA(1,1), the details arg as fhllows:
. . - . S ’
# N\ "¢ from the fourth equation after ‘[31], ietting j = 2, we get :
s~ A “ \ .

R T “w

A

from which (aftef ieplacing pl and 02 by r and oy respective%y) . -

. .
0 LA 3

¢, =

5]

S

A4 . v

. .
v . . h
s .

Then, from two other equafhons follow1ng [31], ) ! . T

(1 ¢lel)(¢l el) ‘: . . . ‘-' *r - ,' : . ".'

* r, = .
175 52 ’ :
y L . 2 .
| k- 8] - 28,8 . ,

1

‘oA « .0 . 7 L i.-

~ in which ¢1 =r /r may be substituted and the resulting eqﬁation solved ’
&

for 9 . (Alternatlve solutlons fon 6 w111 again be obta1ned°'aumng RN

»

e whicﬁ’the one satlsfylng the lnvertlblllty conditldh is chodsen.) - ‘ ‘ ,
‘ ,L Now; all the parameter estimates described. above are, in . .
' the trad;tmonql aphroach, taken to be ' ;rellmlnary eetlamtee .only. '
A . ! , “

After theﬁe a! ,obtained, it:is.sustnmary to ase maglmum-likeiihgpd C

N | : . . : ., .

‘. methods [which in this case turns out to be equivalent to minimizing >

e - r
, ? s 4, T & « .
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the sum ,of squérés for lack of fit, Z(zt—gt)z], employing the preliminary

estimates ds the starting values for the complicated iterative.procedures
@

“

”:;%5 have to be used. We shall not discuss this refinement heregbe-
~

) . i ————
4 - 4 - i %
° cause, as will be argued later, it seems to be unnegessary wz?ﬂ;izﬂy
. 4 . #
- .

- use the alternative estimation p:ocedﬁré for longitudinal data to be
1 ‘( .

proposed beloWw. . . s -
: . ? .- L o
) Y ’

Difficulties with the Traditional Procedures When Applied to‘tongitudinal

" Data : . "

’ . v
3

The-reader will have noticed that, throughout the foregoing

<

discussions, it was as§umed‘that there #s but one observation z, at

. I

* each point in timel’ is is necessarily the case in economic or demog-

o ~

‘rgphic applications of time-series andlysis, where, for example, the

/

consumer price index or/the unemployment rate -in successive years (or

- s 2

.

,qua%ters or months) cofistitute the observations Z,- R
N . ‘ AN . |
For longitudinal data ffom an intact group being observed at
L ' Co / ’
. . ’ i -
//ifz/)r a series of time poidts 1, 2, ..t, T, however, the7e are N observations '
B - Y e M

. ) ' . / g : :
210 Zopr et sz at each t1m7 point t(n %, 2, e ?). That-x; to

say, instead of.a vector of d#ta P

LRIC

,") .




03 » s
L3 ‘;.’ﬁ; N 3, (. ! \ ®
j : ¢ ’ . : oL " ot
' : ‘ - . . . 8-35
° . w . e ) . .‘:
as our input Series, True, thevinput data can eijizs,be condensed into -
X 17 *
ﬁ_'—_—w-—.\“‘w R ./ 1.5_ .

a Tow vector by cop51der1ng only the group meep z/x;at each time-poinf ‘

i € r -

as qur input (as we would be forced to dc/ln opder to apply the tradl—

13

/

tional procedures as/A;ey stand) .. But thgg’ghvl\usly does v1olence to
N

the data, -and throws away a lot-of po;entlgfﬁinformatlon contained in the
' -~ . -

/ e e

separate rows of the datamatrix %<-or,*otherwise stated, ignores the .

*éorrelatedness-of the T observations across each row. To ‘draw an

N ) ‘ d / :
analogy with analysis of variance, it is akin to using a randomized- ‘.
groups design when a repeated-measures design is the correct model to

\ -
use. This, then, -is the major difficu}ty the present writer sees with

L]
the ‘traditional procedures of time-series analysis when it is .to be

=

applied to data from longitudinal studies. - s

¢

, o Ano ther difficulty‘with the traditional procedures is.tha

it requires a large number of time points T at‘dﬂich the (single) .
. » ;' " . ‘ .
_observations are taken. Box and Jenkins (1976¥= rt that "o, .to
' . - \""‘zx';; I '
) , obtain a/useful estimate of the autocorrelation’ fUﬂCthﬂ, we would need .
. ) ,
at leasfd%‘f%y observatlons {i.e., T2 50} . . ." (p. '33) It is f ;
~ 7
. obv1ously tas‘EuEﬁ_fﬁ*éivect so many tlmé/pOIHtS of observatlon in a :
— >
longi 1nal study, unless the unit of g&me is as shoxL»as a, day, or’

at most a month. But normally, in educatlonal research, we would not '~ -
be interested in such short time units. An year, a semester, or dt
: least a quarter, would more like}y be ‘the interval between successive
observations. Thus, the number of’time'po;nts will usually be in the v i
,//f’///—r - range 5-20 instead of the minimum ff 50 recommended by Box and Jenkins.
It was precisely in an attempt to resolve the foregoing dif- .
ficulties that the present research was undertaken. It seem d intuitiyely .-
. . , . -HEENS
clear that having; say, N = 30 observations at each of T = 10 time points
) '\ . " ,
O . ' i‘—— .
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.

' _should,-in some sense) yield nearly.as much information (although of

-

coutse, not Just as muchQ as haVing 300 time points, each with ome

observation. To lodk oniy at the lO mean observations! Z‘l’ 2,90 cres

[y

—

.

z seems’ té be a grOSS\wasteﬁof data.

.10’ KR
. . . U

It should be mentioned that Glass, Wills and Gottman (l975)

have implicitly addressed themselves to this prob by:discussing (in,

« . ’ 5

. L
their first chapter),the distigption~between'unit—repetitive and ‘unit-

: , - 2 .
replicative designs. The fQ{mer refers to the 'case when ah intact

group is "observed at several}success1ve points in time'--i.e., the
J ;e .

/ .

The latter’ refers to the case when samples
‘ * *

genu1ne longitudinal study.
from the same conceptual population (e. g., the populatiof of car drivers

in a certain state' in successiye years)ﬁ—but one which,does not comprise

the same set of 1ndiv1duals over. t1me~-are observed at successive time

points. Although they acknowledge the 1mportance of- both des1gns and

even 1nt out that use of the unit—ne licative esign ma sometimes be
po P g y

inval(d (as when a change of c0mpos1tion of the popﬁlation occurs. fromw“
K / »

before to dfter an 1ntervention), they opt to deal,-in thel subsequent

w Y P>
2 -

chapters, solely with pfocedures that are adapted to thgﬂuhit--replicative

‘

S

design. .Thus, the’ substantive eXamples they present concern such

phenomena as the ' percentage of §;udents in Ireland who passed the
intermediate and senior level examinations of the years 1879 1924," "the

0 3 [

number of traffic fatalities per lOO 000 000 driver milas 1n the state

b

»

. - e,

of Ne& York for the 100 months fTommJanuary.l9Sl to April 1960,"

for reconciliation rate. . .in German states. .

vl

the »petiti .prior to

[

T fourteen years after institution of the new Civil Code of the

LI A

German Empire on’ January l 1900 "

. i 14

‘One cannot, of course, - fault the\%uthors for their particular

~s

m— 2

]

“« .
- B
- S
.
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»

. . . . choicge og,design (the unit-«replicative design)!on which to concentrate
v \ -\ : . ’

. *4n their book. But the fact remaing that--valudble as their pioneering
efforts in bringing time-serjes analysis ro the attention of educational

.

, .- .researchers have been--they have not.specificallx considered the case

- — ¥
[ "

. of longitudinal“studies, despite their frequent mention of this phrase.

. 7

N .
»
s . v
-

: s
E§tim£%ion:ProcedUres Geared tn Longitudinal Studies

N
¢ .
-

-
%

< . . After a number af trial-and-error attempts at developing

&+ . A

model-identification and parameter—estimation procedures especially

. 4
. 3 -

' geared .tos the application-of time-serids analysis 'to longitudinal data

.. (i.e., the unitr:épeeitive design, in Glass EE.QL.'s~terminology) the

- . . o

!, N . ¢ N . .

onty viable procedure discovered to date was the "obvious" ome of -
utilizing the oidinéry.sample correlation matrix based on the data

”

. . e " ’ ‘ :
maprixléw This is "obwious'" only in retrospect, however, since the use

) ’ of Fhe correlation matrix for estimating the autocorrelations carries
A ’ N ) .
with it the assumption that the observations {zit} for every individual
SR ﬁoli ws ‘the same stochastic process with the same parameters, which is
' s

W R clearly a strong assumption. (More will be said about this later.y .

) .

6;pé.ft is“decided to use the T x T sample correlation matrix -

} . Y

(/”{smbas d‘on the data matrix %.for estimating the athcorrelatidns, the
. 4 \ f N

‘

details of how to de sO remain to be debeioped. The simplest way is
e v . e “ -

;k with subscripts such that

s, _’— [ -
to treat the averagglbf.thg correlations

- ™

4
4

-k \ j as an es:lmate of pj,-the tﬁéoretical autocorrelation of lag j.

a Y -

That ig, the mean of the qprrelétions along thelline parallel and ad-

3

Y . - \ ’ . ’ .
jacent |to’ the main diagonal of is used as an estimate of Py the mean

\ \ \ "of the forrelations along the next line to the left and below this is
A e . . L) J - .
b v

SRR T T ‘

ERIC . |
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.

outlined above for the traditional approach. Details are best rel-
I3
. HE
egated to a couple of numerical examples, one using real data and the
other based on simulated- data. The functions of shese numerical ex-

amples, are twofold¥  first, to provide some evidence of the validity

of the proposed parameter-estimation (and hence also of the model-

identification) procedure; and second, to illustrate thlie’ method for

-
<

detecting and significance-testing an intervention effect as developed

by Glass et al. (1975). The latter is not ekpoqndedhhere except in the

* f

context of the numerical examples for two reasons. First, the present

writer is unable t® improve upon (i.e., expound in a more elementary

fashion than) the original exposition by Glass and his coworkers.

Second, the writler believes that there must be 2 way more consonant

with longitudinal data for detecting and testing intervention effects,

but has so far been unable to discover one. Hence, the method developed

by Glass et al. is here used as a ''stop-gap'' measure rather than some-

.

‘4
thing the writer would advocate\in earnest for longitudinal studies.

(This is not toé detract from its merits as a method used in conjunction
. / .

with unit-replicative as against unit-repetitive designs.)

. . {

2 ! I3
NUMERICAL EXAMPLES® .

Our first example is based on data from a study inveFtigating

g
1

311 computations were done by K. Tatsuoka on the PLATO system

l R .
at the Computer-based Education Research. Laboratory, University of .

l

\

Iuixpwat' Urbana-Champaign.

1948

~
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’

outlined above for the traditional approach. Details are best rel-
} v

) D]
egated to a couple of numerical examples, one using real data and the

+

other based on simulated-data. The functions of shese numerical ex-

amples, are twofold¥™ first, to prdvidg some evidence of the validity

of the proposéd parameter—estimation (and hencé also of the model-

identification) procedure; and second, to illustrate the method for

——
€

detecting and significance~testing an intervention effect as developed

by Glass et al. (1975). The latter is not expounded here except in the

- ' . !
context of the numerical examples for two reasons. First, the present

writer is unable to improve upon (i.e., expound in a more elementary
fashion than) the original exposition by Glass and his coworkers.

Second, the writler believes that there must' be 2 way more consonant

v

with longitudinal data for detecting and testing intervention effects,

but has so far been unable to discover one. Hence,'thé method debeloped

by Glass et al. is here used as a "stop-gap'' measure rather than some-

4

thing the writer would advocate\in earnest for longitudinal studies.

(This is not té detract from its merits as a method used in conjunction
‘ / .

with unit-replicative as against unit-repetitive designs.)
N . ] *

L] ! o
NUMERICAL EXAMPLES® .

Our first example is based on data from a study inve%tigating

w

‘ [}

3A11 computations were done by K. Tatsuoka on the PLATQ system
at the Computer—bésed Education Research Laboratory, University of .

Illirpw at Urbana-Champaign. ’

~ -

-

[}




- -
N ' [ ,

) . ) o 8-40-" 1,

.

“ »

possible learning (or practice) effects in completing cloze pagsages.“

D}

Fifty-two fifth grade pupils were given three cloze.passages (one on

sports, one on music and\one "miscellaneous''--all passages being taken
» -
from :a children's encyclopedia) to complete on each of 16 consecutive

schoél days. The maximum possible score was 30 (10 for each passage).

~CdmpLe§e data were abailable for .45 of the 52;subjec£s, so our input |

-
.

data matrix Z is of order 45 x 16. The column means--i.e., the group N
. & . <o N
- . » * - ..v' o
means for the 16 days—-were as shown below, in Figure 1 shows their
[ ' : 3 * )

¢ plot. No discernible learning effect is present. . . s .

0 ~

b

13.56 12.47 13.11 11.60 17.07 14.13 12300 15.5%——

16.69 13.31 13.&7 10.00 13.13 12.60 12.22 12.47 N

. The correlation matrix based on the data matrix %fis shown
in Table along with the estimated «cotrelations of lags 1 fhrough 15,

-~ s -

calculated in accordance with Eq. [&#l]. It is seen that the ;5'5 de-

cline irregularly and very gradually pvef the entire span of 15 lags,
which is a sign that nonstationarity may be present. (This view is ‘ '
. ) AN .
corroborated by the visual impression provided by Figure 1.) To make
4 «

sure that an autoregressive process of order 2 or 3 will not offer an
. adequate fit, however, let us compute the partial autocorrelation

A~ : \

coefficients ¢33 and ¢44. The Yule-Walker equations for p = 3, with . \\

|

* ! >

Thé\study was conducted by a gfaduate student, Gregory Bell,

'

. under the supervision of our colleague Steven Akher. |We are greatly ‘M\“:\\\i

RN
“indebted to Steve for making the data available to us, K ‘ , + Q\\

%

\
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A\
- the pj replacéégpy ;3 are, from Eq. [28], A\Q
1 .621 .576 ) .621
1,
L6217 1 .621 $2 = | .576
' .576 .621 1 by | . |/-604

since we are interested 6nly in the value of ¢3 (which is the same a§ -

A 2

¢33), we need not solve the entire system of equations for ¢l, $2 and

[}
1

N
. '¢3. Using Cramer's rule, we have -
B \ d

‘ 1 .621 .621
. | "
621 1 .576
v 576 .621 604 - | : ' )
b33 = vy Rt
-1+ .621 .s576], " -
\ : .
621 1 621
. 576 .621 1 L Cr
' . : ’ . j‘:f \\’ -

Although this value is judged iqsignificaht by ghe traditional

significance test, for ) b ’ .

¥ , . 4
' ’ l A -

¢33f5 = (.297)(4) = 1.19,

it should be borne in.mind that the significance test is customarily

dsed in conjugction with fairly large T (2 50, say). For T

és 16, it would require a $33 value of about .50 before it

signi%icanc{.tests. Regardless of its statistical iPsignichance, the

significant. 'In situations like this, one should not rely heavily on l
! ‘value .297 ? certainly a non-negligible one by any gtandarh. If we

were to adopt an AR model, we would certainly not be inclineq to igpore

[ . , . * ) »

2yl -
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o : ‘ S\
the third term with coefficient .297. Thus, the order of the p;esumed

AR process will be at least 3.

-

' ’ ¢ . €
Similarly, by solving the Yule-Walker equations with p = 4

for ¢4, we get $44 = 144, which is still not close enough'.to zero to be
negligible.. Thus, if we were to'fry to fit an AR model to the original

-da;a//ge:;guld need the order to be-at leaSt 4. .
. v N ' ’ N

At this point, both common sense and the principle of parsi-

Fald

mony would suggest that,. instead ofl continuing to try to find a stationary

. model to ,fit.the original data, it would be more strategic to go to the .,

3

. ) . !
first differences, W, = Zo= 2 g The new "data matrix" E is now of

order 45~£ 15. -

‘ _Table 3 shows.the 15 x 15 correlation matrix of the wt's, and

v

the estimated autocorrelations of lags 1 through 14, again computed in

.

accordance with Eq [41]. It is seen that ;3 drops abrubtly to-a near-

v

' zero value for j = 2, although there are a few, sporadic values that are

not quite so small at larger lags. (The value ~-.215 for r14 may be
discounted, since it is based on just one correlation value, r15 l.)

-

Thus, it seems legitimate to entartain the MA(l) model for
the sequence of flrst—order differences (whlch 1mp1fﬁs that the orlglnal

series follows an IMA(l,l) process). I.e., we assyme that

: . Y

. . _ 4t \ l
Ve T 8 e1 -1’ r T

The next step is to estimate 61 by means of Eq] [12] witﬁ'pl Feplaced by

!

.;1.' As ave saw earlier, this <equation has the solutjions |
SR _— 7 ﬁ 2 X ' }? [
. - ! »
U I B ] S
. 9. = — ;
1 2r
1
.,,)

< = :

~
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\

. ' sglven by Eq. [38]. Substitu%ing ;1 = -.440 in this’equation, we gét

i

61 = .5966 or I.6761,

[y

of which the one with-absolute value less than unity, vié.,,él =:,5966 !

7

"is the one we need. . . r

' : Having obtained this estimate, how can we tell whether it is
. ! . - v hd 3
a "good" one? ~Uﬁ1i£§ in the case of 'a deterministic model (such as a
3 ) /

regression equation), we .cannot yéfify the goodhess of fit by°computing

b

\ .
estimated scores ‘from the\model equation and comparing (or correlating)
] - ) y . .

»

. ; . | ‘ .
them with the observed scores, for the model equation confains the un-

R t i *

o \

observable rané;; variable é . There ane some cqmplicated and indirect a
\
| me;hodg g?r checking' the ad?qqacy of the E:PSEn model and estimated
\ p%r;metgr(s). .(See, e:g., Nelson, 1973, Section 5-11.) In ogr numefical
) ,,.exazple it.was deé&ded, after var}ous copsiderationé, @o’use the follow-

B

ing approéch,.which seemed simsler than existing techniques and a&e—,

/ . - ¢

quate for our purpose. (It also has thé édvantaée of illustrating, fn\
» . . R . * \
. - . . ‘V‘ “ B4
* its simplest form, the general method devslqped by Glass et al., 1975, S
- R =T ' , Al . :
Rfor estimating and testing integyention effects.) X
- . - 5o ‘

N *
SupposéaWe imagine a fictitious intervention between days 8 .
and 9 such that leads to an immediate elevation of the "level" of the

)Systgm by a specified number o% units, say 5 .points. The modified plot.

of gro?p means, with all points from day 9 on moved upwards by 5 units .
.. ) ] , L >

from their original positions in Figure 1, is shown in Figure 2. Of

SN g

éburse, this constant elevation of scores will not affect the correla-

tions among either the original zt's or the first differences W Hence,

v

\ the estimate of 91 will remain unchanged. We may then ask the following

\ questién:‘ Using the previously estimatea 61 = ,5966 in the technique

B DN ) ~

N f".}“‘ .
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Figure 2. Mean cloze scores for a group of 45 fifth éraders on 16 consecutive

schobl days, with the last eight means artificially boosted by
5 points, ’ ’
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A
A ) »

.‘.<W ! G 4 "
for detecting an iptervention effect, will we be able to "retrieve" the
¢ '/

i

bd&lt-in change in level of +5 units? 1If so, we may be reasonably

-

assured that both the model chosen and the estimated parameter value

L3

. !
must have”b?en adequate,
. ¢ ° N
/ , -
‘ The appropriate instance of the intervention-effegt ‘estimation
, . - '
Aﬂﬂ/ﬁggka,fl9?2?7”"”’

technique developed by” Glass and hisféoworkers, following
is as follows. Using the random=shock fﬁfﬁrggﬁthe,IMA(l,lY @odél

edﬁation (i.e., Eq. t&S]i y%th'k afbftrarily taken tg be 0, \we write

) : ‘ €§1 .
= ‘-' ] = c vk" =
2o =By hsop T e+ a2, 00

i : :
on for observations from day 1 through day 8.

as the structural equati

(Here "observation' refers to the group mean for each day.) Then, after
- - ~ p b
to result in a

1

an intervention between days 8 and 9 which As assumed

change of level by § unit, theﬂstructural eqﬁatibn will change to
, ) £-1 - ~
z_ + 1L, * (1-6)) ’t§1 a; +a.+ 8 (t=9,...,16)

from day 9 on.
The next step-.is to recursively define a sequence of trans-
-

<
5
L3

formed variables {yt}, as follows:

t

L

>
-

!

1

17 % . :

. {42]
* = | 2

4 Ve ;(ztvzt_l) + elyt-l’/t‘» 2 |

L4 ' o e :
ey, thus defined‘are expressible as linear

"It can be sﬁowﬁfthaf\th
A ‘

i

.functioqs of ii; 8, and a . Namely,.

'
'

.

.

e

"
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X3 ,
) pon e “ |
Yy = relL]: + a,
* y = 67L + a ]
- 8. - 1117 % ¢
v = 6L +6+a
C 9 11 9
y = 991:' + 6.6 -;- a \ T
10 1117 1% 7 %0 \
. . N . ” P t‘ \ . i ' ) .
o _ QL5 7o, \ ' [
. Vi = 9Tl T8 8+ e L &
* - . - / D',
* or, in matrix notatiegn
. ~ 4 r .
yl 1 OW . ‘ ay T </~
, by |
] y 16,° 0 a 7
7 2 1 . %2 4
/ i ' . ' -
VY . ’
4 o/ " < - . .
/‘/7: 3 f : - B
y c 18, O a s a | -
1 78 B! 9 8 | .
431 o =" Frmmm o -
8 w g ~
Vg oy 1 39 6
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“ . v ‘ ‘ . -
- .., _which may symbolically be written s " S
* y= XLB + a, - L U 4
. AoV
: where x and i are obV1o s, X is the 16 x 2 matr1x of succe551ve powers
of 6 and O's, and 8 [Ir, 6] ’ .
. ‘&-.' .
Once the equation is cast in this form the standard least-
. squares estimate % of E for linear models ﬁay be coﬁputéd as
* . ~ ' 1,.! |,( -
[44] B ol ap:
R LY N n '
a hd /) . o . . i \ , i 7 . \
. Here Ehe ‘victor y- s const ﬁcéed, in accordance'with.Eqs. [453&
. ’ 3 .
from QYe "observed" stquence {z } (whlch are the group means plotted Lq
. .. -Figure\2), and the est mated Qi = 5966 replac1ng 6 ) WE‘lllﬁstrate‘ -
- . v“ * b‘ - -
%“ o the calculations in detail for the first/few elements of y. The observed
\ LY ’\J
z vector is: " E e )
Y] M o - “ [ 3
. s £ . . . : , '
ce © z=[13.56, 12.47, 1341, 160, ..., 17.60, 17.22, 17,47]
) . \\’; A -
¥ b ‘ 2
Hence, the vector of first‘differenceg is N . r “'%
’ s N ‘ ) - ¥ -
. . it %i?g
, w = (13.56, -1.09, <64, -1,51, ..., .53, -.38, L.25}3A+ % Li
" . . . - o ¥ N 7
w ’ ’Vv:% - "
' “Then, in accordance with Eq. [42], we- get ] s :
N . - N
— ‘ LY 5% < 13.56 ’ B - T
A >

7y = (zz-zl)'+-61yl

- -1.09 + (.5966)(13.56) = 6.9999 . -

. = .64 +,(.5966) (6.9999) = 4.8161 - .. /
-1.51 + ¢.5966)(4.8161) = 1.3633, : /

t . * ’

233 ‘ " -
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< w
i&\ and so on.| The 6omplete vector K is, with élements rounded to two"

a\ decimal pldces, ’ . C

. y\= [13.56, '7.00, 4.82, 1.36, 6.28, .82, -1.64, 2.53

‘ . ‘ ° B s
_\\ '7.69, 1.21, .88, - 2.94, 1.37, .29, -.21, .12]

] A
.

Wilth this and the 16 x 2 matrix X with 61 replaced by its
A

estimate‘el .5966, we may compute § in accordance with Eq. [44]. The’

’ s ’

result is

‘ » A 4 v
§ | Ll . 13.2652 : ‘ "
"o \- A “_
.12 . :
. \ 8 ]\ | s ‘ :
. N L ‘i R ety ‘ ‘ } . :
The estimatedkvalue, 5.1276,.0f 8§ is seen to be very close‘;ovthe true
' " L . , d X .
"value, 5.0, that we deliberately introduced into the system. Thus, we

) v

o

~ have some evid nce to support the prop051t10nﬁthat the model chqsen and }

*

the estimated rameter value are' adequate. This, in turn, suggests

that ‘the proposﬁd method for estimating pj is a v1able one.
. " However, the skeptic may feely in view 'of the artificial

. . . .
manner in which.an "intervention egfect" was introduced, that we merely

»

. o N
"got out what we put in," and the particular value of 81 was immaterial.

> -

"~

v . LR .
'To check if this could have been the case, computations for & were re-

»

peaééd with thé values of 51 used. in Egs. [42J—[44j systematically

e,
varied from .10 through .90 in steps of .05. The results, abbreviated
ra L]

A

) K .y
to show the values of § only for every other 61 value used, were as

‘fqilowa

8, | 10 .20 .30 .40 .50 .60 .70 .80 .90

T

g | 6.168 6. 089 5 934 5.706 5.425 5.116 4.812 4. 550 4.372
» I / - \ /




#
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These. results effectively refute the hypothétical skeptic's bontentioh.

.

The value used for 61 does make a difference in the walue obtaihed for qoj‘

(3
. "
~

8. And the value .5966 estipmated by the proposed method comes close to

‘e

being a optimél one. (By interpolation in'the finer table, with\@i )
" varied in steps of .05, tﬁe "best"\value of 81 is found to ‘be .6037,

yielding 3 = 5,000 to three deéimal placés.) I . . . .

.
v

. At the same time, however, we note that the obtained value -

of 3 varies fairly slowly with 61' In other words, the estimation of

RN ) v

B . B . \
. .8 seems to be fairly robust with respect to m&nor inaccuracies in the
\ \ .

. T ' .
estimation of 61. This is the ground on which \we earlier asserted that
further refin%ment\of paraﬁeter estimites by maximum-likelihood methods
\ . . ‘ .

\ seemed unnecessary, at least when the main purpose is to estimate the

intervention effect. OQf course, one instance does not prove a-‘general

o I * X \ " . ’ Id
N proposition, ‘and this assertion must remain a working hypothesis unless \\»
, .
- . . . - . .
. and until it is ,confirmed by further research. .
[P . N * £
‘ f Second’ Example: Simulated Data ” \ oo
& %; o ' . M - '

‘ v
. -
.

. In order to check the performance of the proposed method for

. a model of order higher than 1, simulated data following an AR(ZX prbc-

L)
»

ess were generated as follows. K -
1

Taking ¢1'= .6,’¢2 = .} and B = 3-in Eq. [2%]; the par-

ticular AR(2) model used was‘ A :

» »

2. = 3+ .6zt_l + .3zt_

[
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°
Yy €
L L
. .

Qere generated by use df the above equation, except for t = 1 and 2,

for which - , '
= 3+
3 3 2,
L L ]
" and - = 3+ .6z, + '
an z, 3 621 \ a,
'
were used since there are no observations prior to z; .
v The result was a 100 x 16 data matrix Z, whose column means
. A . no N
u were as follows: \\ .

S 21128:\18.71 22,41 22.14 22.96 23.9& 24.79, 24.90 24.9%

~

16: 24.98 26.24 25.86 26.74 27.33 27:81 28.28* 28.51 .

Y ’
‘.

\

That these.show a monotone increase with t reflects the fact our choice '

-

of Ua6=4) was, in retrospect, too'small relative to ¢l = .6, ¢2 = .3 to
11

produce an oscillitating series in the short run of 16-time points.

' This does not, .however, vitiate the results of further analysfs. /

A

' , The cOrrelatlon matrix based on this s1mulated data matrlx

’ : i 0!- - »

"
. % {s/shown in Téble %, along with estimated autocorrelatlons of lags 1-15,

! ‘ﬁ“l , /
. calculated in acccrdance, 1th Eq [41] ' ) .
/ f ) Now let us pre enﬂ we d1d not know that these est1mated auto-
, ‘ﬁ‘ . e

N ' vy

co&relations were base on simuiated data fbllow1ng a particular process,
End go through the mqfé:ns of identifyimng an appropriate model and ,

y , ‘estimating the araéeter(s).. First 'of all, we observe théé’there‘is

no abrupt drop of the sample autocorrelatlons to near-zero; so an MA
, [ »é
{
process is ruled out. Next, ngQOte that there is a steady and fairly

rapid dec11n1n bf r with j—wuslike the ve radual and irre ular
P g j J Qgﬁ ne ry g g

‘ declining found in Table 2. So a statfonary’AR process of some order

-

B} o “ ., . . %
f

‘_ . = o QL2 * :

'
A, . . . )
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alr - - . , '

., is suggested (cf. Table-1 for the behavior,of autocorrelations for

b4

: . . -
.o ’ ggr%ous processes). The question {E; what' order? \ 5

. E
- -+ B N v .
. 2

The rate of decline doeg not seem quite as rapid as to suggest

AR,

g

1
)

tHe successive ratios ;3/%5_1 (which should all estimate ¢l if an AR(;)h
) A Y * - ~ -

whichwghows an‘exponentiél decay of the p,. However, taking '

model is adopted), it seems barel&bbbssébxe that an AR(1l) model with

A s
. ¢l ® .90 might fit the data. .(We say "barely possiblé" becaysecthe

\

value .90 for ¢, estimated from the sueeesgige ratios is considlerably \
N A i . \

larger than T, = .81%, which shbulg also QS ﬁq\estimaxe 0f'¢1 if Aﬂ(l5

1
R [ . \
is in fact the-correct model.) We therefore need to look at the es- ¢
- \ R l’
timated partial autdgorrelations to "decide the issue. ' -

Setting p = 2, the Yule-Walker equations (cf. Eq. [25]) with
ahd p2 replaced by ;i and T , respectively, are e

Py 2

LA

- A £
b, + .816 ¢, = .816

.816 ¢l + ¢2 = ,760
whose solutions are .
’ ¢l = ,586 and ¢2 = 282, . . ~s

(. Clearly, $2 is not small enough to conclyde that ¢2 = 0. That is, an

AR(1) model is ruled out as inappropriate.

~

) Next, let us compute $33 (=$3)~from ;he\Yulé-Walker equations

‘ with p=3; i.e.,
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Using Cramer's rule, we get

, - . 1- .816 _816
& ' -7 . . s o
l.e16 1 .760
et
- o .760 .8@\1685 001 .
s 1 .86 760 | 0%

.816 © 1 .816 : \ .

N : ‘ . .
. ‘- \ .760 .816 . \
. £
4 K N 'g R

? . x

. . -t
.

which is negligibly different from 0. We may therefore conclude that

-

AR(Z)hoffeﬁé an adequate fit to the data.
. . Once*we\édnig‘AR(iz, our estimates of ¢l_and ¢2 are as pre-

viously computen~fxggl he Yule-Walker equatigns with p = 2; namely:

« ‘\\

@

oo 3 = -
‘ ¢1 c .586 and ¢2 2824\ p | i

: . / .
. . - . ' /! -
v 3

-

© Abandoning our make-belief that we do ot know 7he "génealogy"

of our data the estimated values for ¢ “and ¢2 ar qu1te close to the
- < ’\ . i /

actual va 60 and 30, that were used to geh rate Ehe 51mu1ated f

e
4 L

data. We ma erefore conclude that thf proposed metho@ for'paramet r

|

cond-order processes as well as 'the first.

o

estimation "works" for

-
.

e ‘ . SUMMARY AND REMARKS & : !
23 v " ) [
The bulk of . this chapter is admittedly exposi Ory in nature,

-

3 T -
67

- . but it is® belleved that the exposition was’ "made in a m re elementary

¥ ot

N

manner than found in currently available books on the

¥ ‘
\ YD
by the Same token,” the treatment was necegsarily incomplete in s

. Eechnlcal detall i;‘ / T /
‘ ‘ . _,‘ . Lom \ . ,/// /
// The one original contributiogwmade 4in this hapter yas /

ﬂ . / / . /.// // o /./
;N ' ‘/ 5 )/ ' ’ / . . . ,

D ) /€ } ' / //

/ X /oy
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Y \
.

. )
proposal of aQ alternative method for estimating autocorrelations of

f

various lags--the key to model identification and parameter estimation
in time-series analysis. This meﬁhod is based on the ordinary sample

»

correlation matrix which is computable whene&er genuine loggitddinal
data are to‘ge‘analyzed (i.e., when a single intact, group has been
obgerved at several time points). The traditional.methoi\EBY estimating
autocorrelations (b;sed on a single observation at each pdiﬁ; in {E;

such as group means on the several measurement occasions)d, it was

4 . ) AU
argued, Li\not appropriate for two reasons. First, it ignores the

¥ ©

correlatedness inherent in longitudinal data, just as though we were to

-

o use a randomized groupé design ANOVA when a repeated--measures design
is proper. Second, the traditional method reqﬁires such a long series
, of observations in time (at least 50'observations, accordiﬁg to Box and

. ' Jenkins, 1970) as is almost never available in longitudinal studies.

N The proposed method was put to a test by means of two :

, numerical examples,.‘one based on real data and the other, on simulated™
~ t ]

. . 3y
data. The outcomes of these analyses aquately confirmed the 'validity" N )
. ' A
of - the proposed method.

o 4

Directions for Future Research
$ C o , .

M

t
‘l
-

Obv{busly:\further‘stddy of the efficacy of the proposed o,
method is needed; whatdwés accomplished within the contract period has,

only sérapched the surfa;e in this respect. One thing which uréently. '

needs to be done is to relax the aésumﬁtion, inherent in the method o
: S .

* W -

"as it stands,,thaf the parameters are identical for all indiviaualézin
a group. This clearly an unrealist;claSSumption—-althohgh, in-one

f -
. s .

sense, an inngfuoug one. When this asshmptibp is untenable, what we

:fm; Z . / / /

= ]
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»

) -

)

get as‘parameter estimates are some sort of averages of the respective

v

individual.parameters. However, it would be much more satisfactory if

N

individual differences in the parameters could be explicitly considered.) .

For instance, by assuming some particular distribution of each parameter

over a population of individuals, the’ autocorrelations could probably

be related to the moments of this distribution. ‘
- s
. —

Another matter which requires further research is the method

o

of estimating and testing intervention effects. “The techniques developed

7 ’ ) . A}
by Glass, Willson and Gottman (1975) are,perfectly satisfactory in

f

.situations where there is but one observation per time point. But,

v

somehow, one feels that they-are wasteful of information when applied 7

to data from genuine longitudinal studies.

.

It is regrettable that the present researcher could make no
L) 5

A \

inroads into the above-mentioned problems within the contrast period,
. S 3
mainly because he was a relative novice in the discipline of time-series
- \
. .

analysis at the outset of the period--a novice who was disgatisfied°

with certain aspects of the traditional methods of time-series analysis
) c.

_when they are sought to be appliedwéo longitudinal data. however, he

intends to follow up this line of research in the future.

.

-y
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TION OF TRUE (HANGE: |UPPER AND LOWHR BOUNDS |

.
_—
—
v

. ’ , A .«
f / / / . | / . . . |
// Ip Chapter A’df this Report, Linn and Sliride have presented

: . //
S frod / ¥ P Iy
—-a suryey of the liteta?ure on the tozﬁc of meagurement of change and its
/

-

. many problems--seem;ngly insurmountable problems ‘that led Crpnbacﬁ and
| a

Furby|(1970) to recommend against
‘ ' 1
instead that researchers ''frame their questions in other ways."

| ‘. - ¢ *

" Without discounting thé seriousness of the problems surround+

the use of ghin scores, and advise

7

ipg the measurement of change, the present writers wish to propose °

: ®
that at least some of these problems can be traced to an unjustifiable

assumption in classical test theory: that the error components of any

»

pair of test scores are uncorrelated. In this chapter we explore new

<

i .
' ~vistas that ﬁay be opened if the assumption of "universally uncorrelated’

»

' measurement.errors' is dropped. The aropping of this assumption, how-

’

ever, leads to mathematical problems that are insurmountable unless

techniques hitherto not utilized in test theory--in particular, operator
] FA

.

analysis——are introduced. This approach, pioneered in the first

H
.

quthor's recent doctoral dissertation (K. Tatsuoka, 1975), is used in

»

, this chapter.

* NOTATION AND DEFINITIONS

s

By and large, the notation used in this chapter follows

that of Lord and Novick (1968), but there are some peculiarities.

,
4 4 > B3

So we set forth a complete ‘notationgl guide in this section, even

3

though many of the symbols are in universal use and need no explanation.

| >

I - , ’ i
| ‘ { ‘q Ay / o | [, i \\ /:’ N . /
J ./' . INTRODUCTION — ° ~— R

",

A
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oo " / . . '
’ !/ All lower-case Roman letters (except }hosg used as subscripts
y .
444

l.an perscripts) stan¢ or person-space ve9£brs in, deyiation form,
. i K . K . )
, / ;

'/rgscaléd by the facd!h]J/N-i, where N'is the séﬁpl%/sﬁze. Thus, e.g.,
/ ’ '
X

’ ,/r ?(':I, l-xl XZ—X : _X,l—_f ' J ’

,"/ , _ ,lm-l'msxal . "(N—.l /’ : ; -

N ~

~ ) >

/ is the N-vector whosd elements are the deviation scor?s on test X for
/ N . ] - T | , .
a sample of N personé, e#Fh divided by N - 1, < .

1]

° .
All Greek lett%rs stand for scalars, while upper-case Roman
i . i ’-Q

letters either stand for!égalars (like N) pr are generic symbol$s for

tests (like X and Y) {or ther random variables.
» v, L
- < ]
An -immediate cq sequence of the ébove definition of the test
d i - .

. vector x“is that its squared norm (i.e., the scalar product of x with

.

itself) represents the variance of test X:

— -2 )
N -(Xi—X)Z _ L(x;-%) 5

N-1  Jx

2\
x,x = |xl|"= 1 |—=
=k \/N-1/
: l : ‘
Ve sy *
Similarly, the scalar prodgct’between two ?ifferent Aest vectors x and
. ’ - Y * “
y represents the covariance between tests X and Y:

N (xi—x\{*xi—'f) _ L(X-X)(¥,-Y) )

(x,y)' = I\ [Z—j—=— = 9(x,y) .
1=1 . /N—l)\/N—l N-1 :

+ ¢
\J

Note that (x,y) is psedginstead of the more cystomary x y for a scalar

* |
. .product. This is because we will never have occasion to used the.

f v

. . > ¢ ‘
matrix product xy of two vectors, and scalar products will mostly -occur

|
- 1 . .
as coefficients in a linear combination of vectors so it is convenient
\ :

to set theq apart with parentheéks.
-4 ! i

. In this Aotation the slimple regressidn coefficiedt byk of
|

Y on X, whose usual formula is y - ) .

a




5

| S
. ~ .
% > 9 . .
2 SR PR S
L ¥yX ‘zxz ‘ _VargX). . "

g ‘ *; ) . ¢ . s \
) J c - ¥ o

. :

_L_,_\L:Z or sibply ) .
=l . .

t

‘ # b
L "Yx “X” : ‘
/ 2 -, < F A R
““‘ « & 144 . “.1 1
s which further Eeduces to - - '
3 ~
' A y P et . ' .
\" % = * 1 ;- b ! * o
f Aw fbyx o(x,y)- or S%mpli‘(xzﬂ).y
. . - - . Y \
, I|x]l = D} This form will repeatedly ° .o
. W
PN

| when % is of-unit norm (i.e.
e,
Also, the correldtion coefficient -
sy o

occur in the sequel.
‘ -
' 2xy - Cov(X,Y)

oo
* ’ *
’ \
. . ‘/Zx?/z . /Var(X?/Vaf(()~ ‘
becomes ' b ) . - o
oL T F " - ‘ | - 1
) Ve X, w . t e t .
5 ’ oGy _(y) : .
L rxyﬁ— = . «
S I
Hence, orthogonallty of Fwo vectors.x and y [i.e., (x,y) 0] is
v v . f
"synonymofis with tha un%orrelatedness of the two tests X and Y which
.. they represent’(r O)i We shall often us > the terms orthogonal"
and "uncorrelated” interchangeably--even though, strictly speaklné,

ftors‘while the latter

»

the former is a geometric progerty of two ve
“F

oL« :
« 1s a statistical propermy of the two tests represented by-the vectors.
‘ The component of a vector y in the direction of another B
A ~

.
*

[ .
\
>

’

toe
Vecror‘x is given-by

(y,x)/[]xll, or simply.(y,x) if |]x[

“[Thls follows from the cosine law,

.

Axy) = ”k” ”y” cos 6,

221

.
oW *




‘

(where 6 is the-angle between the vectors x and y) and the fact,

verifiable by elementary geometry, that the component imr gquestion is

”yl[ cos 6.1‘_. . .

-

&

The Qrojection(more precisely orth;gonan of a vectgr y onto
.vector X is a vector whose norm (length) is equal to the component of

- y'in.tﬁe direction x, and whose direction is that of x. In other words,
it is the com%fnent (as defined above) mhltiplied by the unit vector

in the direction of x; i.e., |

. _yex) o x _ (y.x
v Proj 0bO = T T 7 )2
P R ' .

. Not%‘that the coefficient of x here isiﬁrebisely the fegression coef-
i !

x gicient b af y on x, def%eed eaflie‘j"Thds, the projection of y on X
75 -

A
e ! '
[/48 the same thing as the regres$ion o 'test Y on test X, and may be

‘

ﬁenoted ‘ C . ’

o SeRglo =l
. [l =l : :

. ' This interpretation of regression as the outcome of applying the "pro-
jection operator'" to a vector is what.enables us to-utilize the various

7

theorems and techniqdes of operaﬁor}analysis alluded to in the Intro-

‘

- duction.

'

' The multiple regression of test Y on tests‘Xi, XZ,:..., Xp is”

.

. denoted by

;;= R(Yl?{is xza‘"“s xp)°
' \

»

Geometricall&,)§ corresponds to the projection of y onto the space

spgnned by X» x2, ceey X ‘ i

P - S -
Finally, two symbols which probably need no explanation are:

v




“}

. Py = .reliabidity of test,‘Xi
. : . .

and

.
~ » . . <
~

) p(x,y) =.correlation between X and Y. ’
|
{
H

N ) .
™ ESTIMATING TRUE CHANGE FROM PRE- AND POST-TEST SCORES
. ' v, 3

| The multiple regression equatiod for estimating‘Té - :k from\%s o
! .

2
s -

the observed pre- and post-test scores, Xl and XZ’ may be written as

[1] oty -ty s R(t,t, [%),%,).

1
LY

P However, it is more convenient to use as predictors a pair of uncorrelated
- . ’ ’

" variables (such as tﬁe principal components, for example) ihStead the
origiéal Xl and X2 themsglves. A further convenience is to have tﬁe
derived predictor variables'staqdardized so their vectors will be of
unit norm. It is‘wg;l-known that mulkiple’fegression is invariantaof !

/
any nonsingular linear transformation of the predictor variables; i.e.,
if tﬁé derived predictors are linear combinations of the original pre-
dictors¢S?ch tHat the coefficient determinant is non-zero, then uéing
. ’
the multiple regression equation with the transformed predictors will
yielé predictions ideni&cal to those using the original Epltiple re-

-

. ‘
gression equation. For example, if the original predictors are Xl and

. "_ :;‘,V' &
X2, a new pair of ‘pedictors Y1 and Yzhdefineq by .
. Ty = Y% F Y%
- .
i Ty = Yk + ¥Xy .
’ ‘will leave the predictions unchanged so long as
- ‘ 4
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%or the above reasons,‘we propose -to replace Eq. [1] by an

equiralent multiple regression equatioﬁ using a pair of uncorrelated,

°©

unit-norm vectors {cl,cz} (mathematically known as an orthonormal base

of the space spanned by X1 and XZ) as the, predictors,’i.e.,

N 4 -~ 4

T

[2] - tl = R(tz-tllcl,cz),
- where the exact nature of.c1 and cz(i.e., how they are derived from X
e .
y . and xz)’is to be specified later. Since c; and c, are uncorrelated and

L3

- have unit norms (i.e«, the standard deviations of Cl and C2 are unity),

Eq. [2] may further be rewritten, sdcceési&ely, as <
{ .
' -/\ N
[3'] , ty -t = O(tz-tl,cl)cl + O(CZ-tl,cz)cz . ,

= [0(t),c;) = 0ty e ]ey + [0(tg,e)) =Bl ep)le,

[The first step follows from the facts that, when the predictors are

3

\ .
uhcorrelated, the partial regression coefficients are the same as the _

simpleﬁregreséion coefficients, and that ¢y and c, are of unit norm—-

e

. .
see Section 2. The second step follows from tﬁL fact that the covariance

of the difference between two variables with a third equalé the dif-

ference between their respective covariances with the third variable:

B} »

Cov(A-B,C) = Cov(A,C) - Cov(B,C).]

From the last member of Eq. [3] it is apparent that, in order

»
» t

to be able to use Eq. {2] im ﬁractf%e,,we must know (i.e., be able to
v B

a

. »

calculate) .

. - .




A
- -~
* i

o(tl,cl), o(tl,cz), o(tz,cl) and o(tz,cz).

-

Recalling that ¢y and" c2“ are to be defined as linear combinations of

x, and x i.e.,

1 2’ A -~
) ' Y . ? "
Lo Rty (BLD, :

< . it follows that

o(tj,ci) = ci(tj,ailxlmizxz)

+ v 4
O(tj*é"ilxl)' o(tya;, %)

ailo(tj,xl) + aiZO(tj_’XZ) (i=%,2; J‘—"l,Z)I.

4 .

Therefore, to use Eq. [2]<we myst know .
a(ty»x4)s o(ty,%,), 0(t,,%,) and 0(tys%,).
0f these, however, we already knovg the like-subscripted covariances,
S' o(tl,xl) and o(tz,xz); i.e., )
' [4] o(t.,x) = ||x || %, and 6(t,,x) = ||x nz;;
: 1’71 1 1 2272 2 2’
where pl and p, are the reliabilities of the pretest Xl and posttest Xz,

respectively.’ \

A

L4 —=

1Each of ~Eqs. [4] may be derived as follows:

? 4 4 , _ 2 - 0 X t 2, ‘ ]
2 ) px—p(x,t) = —L’—loo ] \ €
t
.o o(x,t) = oxot/px. | N
s .
But @ =3 e:,o o, ox@
. i 2 Fl
a(x,t) o}i(?x@:)@ = Oy Py
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-

Hence, we need only show how to find the corss-subscripted covariances,
O(tl,xz) and O(tz,xl). 3

L 4
It turns out that these connot be determined exactly, but their

3 e

upper and lower bounds can be computed. Toward this end, Qe‘first

discuss some mathematical preliminaries.
BOUNDS FOR (tj,xi) WHERE" (i # j)

A powerful mathematical tool for obtaining bounds on scalar
products of the sort we are interested in is Bessel's Inaquality:

Given an orthonormal set {al, 8oy ees av} (i.e., a
- L 4
set of mutually orthogonal vectors all of unit norm)

.

and any vector y, it is true that

(LR

A
(5] I waap?< vl .
i=1

y

It may be noted tﬁat, in any finite dimensional space, this inequality |

e’

follo@s Feadily from the Pythagorean theorem. The equal sign holds

when w'is the dimensionality of the space in which y lies (i.e., when
)
{al, a2, ceny av} is a complete orthonormal set, or an orthonormal base

of the space), for the sum on the left is then the sum of the squares -

-
-

of the components'of y along all of the ofthogonal axes. If v is less

than the‘a;ﬂégsionality of the space, the left-hand sum will lack the

"

. i ' . .
" squares of some of the components of y, and hence the "less than" sign
f . -

’ may hold. (We cannot say that the "less than" sign necessarily holds,

)

L . because the components whose squares are missing may happen to be zero
any&ay.) The reason why inequality [5] i$ given a celebrated name is
: ~ that Bessel proved it to hold even for a vector space of infinite

dimensionality (i.e.,*a Hilbert space), in which case V itself may bjﬁ

1 - \ .
"

220 ‘
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.

infinite and yet {al, a ..} may fail to be a complete orthonormal

2’

o

set. ) .

For our particular aég}ication, we choose the orthonormal set

' K (N-2)

{al, g cees av} as follows: Lég\xl, Xp s oeees X ‘be the ob~

. | B A |
served—score vectors of N - 2 parallel tests of.Xlz and €1s €1 5 et

(N-2)

ey be the corresponding error-score vectors. Then, since the error

components of any two parallel tests are by definition uncorrelated, it

o

follows_that
0 v (0 v e C(N-2 N-2
O e eyl ey lley T voes e 2 7llef 21D

is an ofghonormal set compr1s1ng N - 1 vectors (one less than the total

‘ (0)

dimensionalityy N, of our space). Here & is the error-score vector
of X1 itself,:the superscript '(0)' being added for consistency of
notation.
Using this particular orthonormal set as the {al, o5 sevs
avj inAéessel's inequality [é]; we get
N-2

i=0

Now, from the definition of reliability, we know that -

N

(1)
e = e 12a-ep

for all1i=0,1, 2, ..., N - 2.Y Therefore [6] becomes

oy 1), 2 2, ,

I ool IVEe < 1, , '

i=0 , .

or, upon factoring out i/]h{ﬂ|2(l-pt5 from the summation on the left and

dividing by it on both sides,

: N-2 S

~ ¥ ). 2 2 e 112

(7] 1 Gl < Iy ll® Myl ase.
~ i=0 : C

227
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i
L

This relation, as it stands, is clearly intractable. We,

therefore introduce a simplifying assumption: that the error component

4

" of each of several parallel tests has the same covariance with t@s

error component of a given external test, or the assumption of "homo-

" for brevity. Syﬁbolically, we assume

geneity of error coveriances" for parallel measures with another test,
- ]

’

(0)

{8] . Olese (1)) = N-2)y =

) = O(e ,€ = ,,. = O(ey,e 1 = O(ey,el), say.

+

This assumption is not as far-fetched as it may seem at first glance,

for it merely requires that the observed-score ‘covariances between Y

+ . " (N-Z)

Ky ones X

and- each of Xl’ are all equal.? Furthermore, o(y,xl) =

1 N
JO(Y,Xl) = ey together—with the, assumption that ox = 0 t = ...
' 1l - 1.
(since Xl’ Xl’ «.. are parallel measures), implies and:is 1mp11ed by

LJ

AR
.

! ’ N .

2%his may be seen as follows: ¢ KR
' . oL . o
o O(y,xl) = O(y,xl ; ' .
— o(t +e ,tl+el) = O(t +e ,t +e
[because any observed score is, by deflnitlon, equal to the sum of the
. - 1

true score and the grror sgoré, and since‘xl‘and Xy haye the same true-

l)

- I3
.

score component |- . . '

— . ol Hal ,eﬁ_+ﬂe ,tp) + Oe se) ) s
. R O(ty,t ) + o(t ,e ) + O(e »ty ) + g(e 1y ) o
- ' O(ey:el) = O(ey,el) . L.
[since O(tx,el)~= 0(@y,el) = 0] ' ~ § . ’

&
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. O(y}xl)/=lp(y,xi)‘= ceee &hus, the homogeneity of error covariances

[

assumption [8] is seen to be equivalent to assumipg that all members of

a set of parrallel tests correlate equally with a given external test,

o

/

L]

wHich\§eems to be a reasonablelassumption.

]

| It should be noted‘that [8] represents a liberalization df

*

. the traditional assumption in classical test theory, in that [8] merely

states that the N - 1 error covariances are equal while .the traditional
3 é equal g
- 57

\ " e,
assumption requires that these covariances all be equal to zero (the 53
) i bl
"universally uncorrelated measurement errors' assumption). Fh other

words, the traditional assumption is a special case of [8], wfith
2

. G(ey,el) = 0, .
When we introduce Eqs. [8] into inequality [7], the summands

" on the left all become equal, and the sum reduces to (N-1) (ey’el)'

¥

- ,\Hence, inequality [7] reduces to s

. ' ‘ 1-0p
; 2 . 2 2 1
B N 4 B e

Note, incidentally, that this imglies that if pi =1 of N > o,
(y,el) = O-—in agreement withs the traditional assumption. It is,clear,'
-ho#ever, that the "homogeneity of'érfor cévgfiaﬁces" és;umption {81 is
inébmpatibié with‘letting‘N > o, for then ﬁhg infinite series on the

! left-hand side sf inéﬁuaiity [7] must diverge (Since it is the sum of
an infinite number of constant positive terms) and cannot be bounded.

We therefore exclude the possibility that N + o, and conclude that the

only condition under which [9] leads to the classical assumption,

(y,el) = (0, is when pl = 1, That is, within the realm ©f perfectly

reliable tests, the error components of any two tests are always




. \ .
uncorrelated--which is triyia ly true since the

Note, again that if pl = 1, this.yields ) ' ;

N

: 3
stantly equal to zero anyway. .

~ ! “

Next, from the definition . s

and hence that . ’
b /

/ ,e)‘=v(y,x = (y,t,) .
A& 1 | 1 P

+

Subsfitut}ng this: in [9], we get

N -1

«

. . l1-p
2 2
AN e ] e T e T

*

or o

) 1-py . 1- '
Syl e My o= @oxp) s Gaep S Il - sl R -
. ‘ | |

o

1A

whence

N : - ‘ ]__pl
[10] Goxgd = Iyl = Mgl fim

|

, .
1
ot £ Gaxp + vl o gl 5215

|
K
- 4

N

L) = %)

¢

which is the classical test-theory result under the assumptipn of ‘un-
. 3 - L ° } ‘ -
vorrelated errors of measurement for, any pair of tests. \ ’

N6w,recalling that y was an arbitrary test vector (other than .
. { "

one of the parallel measures of xl), we may let y = Xy the post-test’
S .

~

| . 950




\

Y ’ >

4

vector. In this instance [10] becomes

| N \y '
el Gy - el /

U ‘ o
Iy ll - sy

-

i

and,similarfly, .by interchanging the roles of X and Xy, We get

. | 4 .
. é/ \ )
[11b] .‘xl,xz) - ||x1” . “lel T (‘tz,xi) $ (xq5%,)
_.p )
2
™ + ”x]_” ¢ ”XZ” N~-1 " °

2

Ve

— M v

o)
1
%, o= S (eo3p) S (xpuxy)

¢

~

7/

Thus, Qe have’established upper and\ lower bounds for U(tl,xz)
and G(tz’xx)’ the cross—subscripted covarié%ces which were all that
remained to be known in order to be able to use Eq. [2] in practice. It

is true that we have not detprmined these covariances exactly (which
seems impossible to|do in principle), and hence an exact estimate of.

. ]: N
However, by suitable substitutions of the upper

. t, - t. is infeasible.

2 1
" and lower bounds of G(tj,xi)--depending on whether they appear with a
. - 1% ‘

" positive or negative sign in the regression equation after c, and ¢,

haye been specified--we are ‘able to obtain upper and lower bounds for
' v -

. . ,
A computer program for implementing the foregoing developﬁents

is being written, but .it could not be completed within fhe contract
> _ L

pefiod--mainly because it seeks to permit a larger set of predictor -

variahles than just {xl,xz}‘in estimating t2 - tl' For it stands to
2 . . ,
reason (as, indeed, Cronbach and Furby, 1970, have suggested) that the .

-

more predictors--including demographic variables--we employ, the bé?ter

- will be the accuracy with which we can estimate t, = tl:

As this point, we can only present coasbigi\ifSults for a
Y

-~

C 4 S




. principle, we must be sati§ﬁ&ed with finding a lower bound for

‘For the case at hand, we have

e |
f, ' ¢ ! ’ . ) )
| o’ -
NoET ’ .L/\
lower bound of the accuracy of the estimate to which we address
ourselves in the next. sectlon T N ) ' J'
& N 5

4 . . . .',$ . . '/
| « . . ACCURACY OF ESTIMATE N

| ' . o \,

. . / N ~

The/accuracy of any estimate made by mﬁ}{iple regression may-
be guaged by the/multiple correlation coefficient. Im the presknt

/\ . .~
), where t2q t, i defined

context, we wish to calculate p(t 1

AN
27t 7Y

by Eq. [2]. However, since its exact value cannot be determingd in

<
l

p(tz-rl, ti—-‘t ). .

»

*t is well—known that, when the predlctor ‘'variables are un-

correlated, “the squared mulélple -R is the sum of the squares ofrthe

C
zero-order .correlations between the several predictors and the criterion.

2.\ , _ 2 ’ 2
eyt ty7t)) = 0 (Eymty,ey) +p ftz"tlfcz)’

-

or, since ¢y and—c2 are of-unit norm besides being orthogonal (uncor-
o . . ’ N .

bt

related%, ) , . .

PEERY
4

nr

A~ (-t ,c)) (et ,c,)

. 2 s _ 2 1’+1 L2 12

[12] p (t‘z'tl, tz-tl) = 2 + 2 .
” tz-tl” . “ tz_tl“ ‘

Here {cl,cz} may be‘any orthonormal base of'the shace spanned by, Xy and

It is natural to take as c;

X 1

2° )

(since we are estimating ty) - tl), whereupon cé is the unit vectox

0

orthogonal to'x2 - X in the plane defined by Xy and Xoe This procedure

for construcdting an orthonormal base is called the Gram-Schmidt;proh

cedure (see, e.g., Rao, 1968). The results ere o _

the unit vector ,in the direction Xy = Xy

~ ,Y
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% .. . . 9—. i
\ ¢ |

‘ TS 2 -
< . [ [ 'l.\_ . * " * ".
: = - -x. i1 R L , LT .
oep = G iy i | S AN : '
. . . . ) . . . o 4‘9\“0 v «
’ = - c ey n/ljx,—(x . . ) e .
. ¢ CZ, {x2 (‘xz) l)-\ l}/” 2 ( Z,Cl) Cl” N I e . \: ‘
’ : S - )’ SR : _ R
With this special choice of cq and cy (recall that.any pon*sihguxgr.\ '
v D C N ' R e T
linear transformation of'xl and X, will leave 'the multiple regression,’
~ . x . N T

* : - - = j : iy ~‘ ) - > e . ..' A N
and henceé also the multiple corfelation coefficient, invariant), the . : >
N : : . S NN e o

: : - - S N .
two terms—on the Tight-hand side of Eq. [12} acquire the .following ‘ -
e “, N . N , v “ » . ,;
. : a . - ’ . . S Ty
interpretations: - TR e e N AN
. » - ’ - . ¢ R MR : o N ‘. Lty
~ , - . . oo . Voo . . Y
First term = reliability® of XX=X,  °, , .~ -, 7o
. »
- " - . T L o ¢
v . . A . "t . T .
.o Second term = squared correlation betweén T,-- . T. and the . - ’
) | q I - % : < 2 \Tl R . W" "y f

residualized post-test scoré;‘ﬁaréialling out .. R

.
N K
. . B H
- [Ny - ’
» A [a
. .

. ' Y .o, -

AJ‘ ' - " s -
A Y ¢ - ’
. N
3Because, by definition, . < o "
LA . ’ . - » ’ N S
c e 2 ¢

P, _ v DR 'y
t2 tl’ X2 Xl ) ‘ . N ~ . -

- o 2 S . -
-, . ) < VIS L i L ' . T
. 2 2 F ) . e
. ol _ .
. atzm . . . ‘ ) |
© o (tz'tl’ xz'—-xl) . vt
. <. - » . |
. 4. ¢ Vv - * 2 , ' |
. SRR DN EE ' :
. ., 2 ¥ ' , ‘ T
- - o (tymty, (x2- xl)/”xz'xlu) ‘ ‘
' =7 2 _ ' \ |
, leyee, - :
’ N . C ‘ . ' 1
\ 0 - T . i
- Y : | %\ L. -
‘e ’ Yy : >
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Since cl ‘and <y are linear combinations of Xy and X5 tﬂe

numerators of the fractions on the right-hand side of {12] are quadratic

€
A

" _ .fp?ctions of O(tl,xl), O(tl’XZ)’ O(tz,xl),»gﬁfzﬁxz); of which the like-

. subscripted covariances are, as mentioned earlier; known exactly, and
V. . £

we.hgée obtained .upper and lower bounds for the cross—subscripted co~
- * " variances as inequalities [1la] and [11b] above. Hence, lower bounds
w ' . ., A
of theése numerator expresgions may be calculated by substituting the
. ,u “‘ .

- tan )
*  lower.or upper bounds of (tl’XZ) and (t2,x )--d&ending on the signs

- 1 -
e . ﬁ&th whikh they occur; ) .7 ' TN
. k'. . R \‘, ‘ \
- R The denominator expression (common to both fractions) does
C—— . . p . . o
T ~/ _not immediétely appear to be related to (ti,xz)\and#(tz,xl), but a ‘
. 4 L . ) B K * i ] e
’ .‘. ¥ liftlefﬁigebraic ﬁanipﬁlétion reveals Ehap it actually is related to
. R K R ' '// : ; -. A . . v N
B them. To wit, = 7 S o ! e
S T ¢ | R
L I Lt Pt )/ 2R L N
B a . ‘.. LTN B 2 * 2 i
. > = ”tzll .+ |t1H - z(tlrtz) . .
v R “-( 27 I . Lo i
o o 2 1k 1%, = ~
L ' LT szll p2 + ”X]_” 'pl - zfitl, t'z): . ‘ﬁ
the first two of.the three terms of the last expression being directly
. _' observable. ' But e Co S ¥
. Y M . x
: et = Cempe) -
| . = (tl,gz),Asince (tl,el) = 0. -
. ’ . % ..
\ ‘ ‘Symilarly, v, S g - . ) . N
I (tl’t2?'=‘€xg’t2)' '




. “ V. .
4 L ¢ 2(7“ B
. K ’?: e . ‘
N i . "' . ' ’ 9"17‘

A -

e ' To get a lower bound for p (t;\ti, tz—tl), we need an'ugger

bound of the denominator ]It -tlll,, and hence.a lower.bound of (tl’tz)’

qu this occurs with a negative sign in eﬁpression [13] for Iltz-tluz
/- Since (ti’tz) is equivalently equal to (tl,x29 and to (xl,tz)a%as shdwn

abgve’ (but not equal to (xl,x ) unless the "universally uncorrelated
measurement errors" assumption is 1nvoked), we must use min {2 b. (tl,xz)

¢

l.b.(x t )}—-1 e., the smaller of the lowernbounds of (t XZ) and

(xl,tz)-—to,replace (tl’tz) in expression [13].
The foregoing_completes otr outline of how a lower bound of

pz(tz—tl, 2 l) may be computed Details of_the‘computation are carried-

y

out by a computer program. We no¥w turn to a numerical example utilizing

2

real data. This example not only illustrates the actual calculations

[y

. for the above dgvelopments, but shows how we may introduce other pre-
N . » 1} ~ . ’
dictors besides the pre- and post-tests themselves in order to increase

i . AN
the accuracy of estimating ty =~ tl.

t . ) hd
+

A .- NUMERICAL EXAMPLE ~=  -. -

- ‘ \

1

The data for thls example 4re from an unpubllshed study by

ad v . .

. B

MiSselt (1973), in which (among other thlngs) the Metropolltan Achieve-

ment Test battery was admlnlstered to_a large group f third graders in

the Champaign, Illinois school district in the schood year 1971-72.

- The group was retested in 1972-73 as fourth graders. ~0nly the Reading
/ “ -

test in the battery is considered below,'andﬂouiy the scores for 624

. - -
- [
e
-

«+ “Available on request from the authots. This program accommodates

[

three other variables besides the pre- and post;tests'themselvesw
’ * \"’

ERIC . | 29 :
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pupils who took the test both in- 1971-72 ("pretest') and in 1972-73

("posttest') are utilized. Besides the pretest and posttest scores\ie

¥
reading, IQ scores were available for these pupils, so IQ was used as a
third variable in the computations that follow.

We therefore extend Eq. [2] to
H

L N : N : |
[14] €ymty = R(tz-tllcl‘;,:cz,c:;) - ‘

= (tz“t;’cl)cl t (tymtyscp)e, + (Eymty,cy)e,,

¢

where cyr S and'c3 are constructed by the Gram-Schmidt procedure as

1 = G/ llxgeny | . E ’
, = {xz-(xz,cl)cl}/lez-(xz,cl)cln

\

\ ¢y = {x3-(x3,c1)cl - (x3,c2)c2}qu —(x3,c1)c1—(x3,c2)c2H |

) — “
. , . - VN
- Eq. [12]. for the squared multiple correlation, ﬁz(tzfti, tzjtlz, is
. /‘ . e '
accordingly generalized to
¢ -

2 2 ‘2
[15] 0208 o egtpep) LT O (tp7t1¢3)

(€ =ty t=t,) = +
RS R | 2 2 2,
) T .H,tz-tl_U MH“ . “ tz't1”

- 7

‘
- . - .o
P N . .
’ . =3 - -

Summary statistics for théﬁrhfee‘tescs and some intermediate

resuits necessary for calculating pz(f;:?i, tz-tl) when the assumption
» p(el,ez) = 0 is invokéd, and its lower bound when this assumption is

not used, are shown-in Table 1.

<)
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, Table 1. Intermediate results needed for calculating pz(ézrzi, t2-ti)-
- - . .
° 1-p,
- Mean s.d. Py Nio 1 = 624)
Reading Pretest (Xl) 27.82 . 10.é2 .95 ’ .00895
Reading Posttést (X2) 35.i2 12«@1 %95 - . 00895
' 10 (X,)  104.24 18.75 -~ . f—- ’
k & . . ) v
Covariance matrix for Xl’ X2, X3: - ‘ o .
] 119.19 - 113.02 137.76
- 113.62 ‘153.901 -7 163.67
: . 137.76 - . " 163.67 . 351.51 ‘3/ ’ .
The covariances (tj,ci); [3=1,2;i=1,2,3}, under the assumption that:
‘(el,ez) =01 -- ) - ) »
"~ I 10.3816 2301
’ a -4.8384 : 13.4378 T -2.2270 ?

. Normaliziﬁg divisorg.for Cy> Coo c3:

.

K, = | x)-x, || = 6.8592
, K, = sz-(xz,cl)cl” = %0.8801
’ b Ky = ”x3r(x3,cl)cl-(x3,c2)02” =12.9970"

-’

Baged'on the intermediate results displayed jin Table 1, we
- first calculate the bounds for O(tl,xz) and o(tz,xl),—and note that when
-the assumgtion’o(el,ez) = 0 (an instance of the "universally uncorrélated

measurement errors' of classical test theory) is invoked,

"

— - »
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P

'S 'o(tl,xz) = °(t2’x1) = o(xl,xz). .
A |
From inequality [1la] we get
113.02 - (10.92) (12.41)(.00895) & (t;,x,) £ 113.02
+ (10.92) (12.41) (.00895) o ,
. : = -
or
Ty ’ 4 L d
111.81 £ (t,,x,) S 114.23
* l 2 4
when the traditional assumption c(el,ez) = 0 is not invoked. Whereas v
G(tl,xz) f'o(xl,xz) = 113,02
. . -2 e
When we assume ger,ez) = 0., : P % -

X

In this numerical example, since P, é-'pz (=.95), the bounds for

o(tz;xlf are exactly the same as those for O(tl,xz), as is evident by:
) . d»f’ .

comparing inequalities [11a] and [11b]. This will not be true in

general, when pl # p2. of ﬁourse, under the classical assumption that
{
Ooel,ez) =0, c(tl,xz) and O(tz,kl) are always the same, both being

. e
equal Fo o(xl,xz). - ' T ‘ ‘
\ . > C A~ o
Before calculating the lower bound:for p(tz—tl, t2—tl) nder
. R .. N
the-liberalized assumption of ?homqgeneiﬁy’of error covariances" for

‘-

|
\
|
|
|
|
parallel measures, let:ﬁs calculate the exact value onQCE;;E s t2-tl) ‘ﬂ'
which the classical assumption of universally uncorrelated measurement
‘7.’ P “ i
errors purports to enable us to get. Note that, under this agéumptioé,

the common denominator of the fractions onctheAright—hand side of Eq.

[15] can be exactly computed from Eq [13]: T o L

v ' . - .
. N . P . ..
§::¥\\\_~*//' "% ) o
5 - —
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! : 2 - 2
. "' ”tz-tl = ”XZH pz + ”X1” pl -z(tlstz)

i

(153.90) (.95) +,(119.19)(.95) - (2{(113.02)

i

33.3955. . '
) *

Then, using the 1ntermed1ate results displayed in Table 1, we get the ‘\
f0110w1ng values for the three terms on the rlght—hand side of Eq. [15?,

N\
whose sum should equal p (t 2"t to” 1)

First term (reliability of X, - X; = .7098 . -
Second term = .2781
) /
Third term = .1821
TOTAL 1.1705

/."ub

. 2 s
This result is, of course, absurd since p (tz-tl, 9~ 1) cannot exceed
Y

- unity. This is but one instance of the various difficulties that arise
from the traditional assumption of ‘universally uncorrelated measurement,; )

errors. (See K. Tatsuoka, 1975, for other examples. )

o

We now turn’'to the calculatlon of a lower bound for
}

p(t-t., t.—t.) under the liberalized assumptlon of homogeneity of error
251 ZN\} /

covariances for parallel measures. Table 2 shows the intermediate
results necessary for this purpose, in addition to or in lieu of the

. values displayed in-Table 1. - N
* ¥
Table 2. Intermediate results needed calculating a lower boun&\ﬁgr

p(E;:El, tz-tl) in the absence of the assumption p(el,ez)
- B

Lower and upper bounds for G(tj,ci):

. - .1466, 10.1793 .121/1. . .'207191(').5960 . .2871 . ' -
-5.0151 13.3410 -3.0491 -4.6615 13.5347 . -1.4050.

» 4
. ]
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Table 2 (Continued) ‘ ) )

Lower and upper bounds for Iltz-tlll% from Eq. [13].and the bounds for

T (tl,rz): .

.- 2 \ }7\,,/'\\
30.9687 < ||t -t || 7 < 35.8202 .

! -
st

Based on these intermediate results, we find the lower-bound : -

values of the three terms on the right—hand side of Eq. {15] to be: ___

. - ~

- ~
. R _ P
First term (reliability of Xy Xl) 2 °569i\\\»___

4 M"‘
Second term 2 .2136 ““‘~\\\\\\\\\\\\
. . _ .

>

03

Third term v 720711

2
i p (tz-tl) tz'tl) 2 .8538

N
Hence, a lower bound of the multiple correlation p(f;:Ei, tz—tl), a

measure of the accuracy of estimating ty —"tl by the method proposed

I~ L

. in this chapter 1is, - . .
ﬂv" "ﬁw ’ . ' v ! R )
L /8538 = .9223. , . : "
KA - SUMMARY . .
N
A wector-geometric and operator—analytic approach to deriva-

- - . p—— -

~—

. ti?gilégd,proofg'in test theory, ﬁirst explored by K. Tatsuoka,in her

\
|
|
S o IR ~ 5

o

dissefacion_(l975), was applied in this chaptegr’ to the p%oHlem of
- - - ~

estimating the true change from pre- to post-tests. One advantage of

K"‘

this approach ip that it rénders feasible hitherto intractable mathemat—

ical deveiﬁimeﬂts in the absence of the traditional simplifying assump-

S~

_-,tion that error scores are universally uncorrelated.’

’ . .

That this assumption is inadmissible as aﬁ'uﬁivérsal'posfuléte
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has ‘been argued--with examples of "paradoxes' to which it leads-rby

K. Tatsuoka (1975). Linn and Slinde have also pointed out, in Chapter
4 of this Report, that-—ccpecially in the case when ﬁre- and post~tests

-

are under consideration-—the assumption of uncorrelated errors is un-
el (5 .

- -

v

justifigb%e. ‘ : — o

-

. .
Upper and lower bounds for estimated true change were developed’

without the uncorrelated errors assumption, but with the less restrictive
¢ .

assumptlon that the error covariances of a set of parallel tests w1th

an external v;}iable are all equal (the “homogeneity'of‘error covariances'
A ’ ’ \\
assumption.) In addition, a lower bound for the multiple correlation.
W : .
o(tz—tl, t2 l) between estimated true change and actual change was

& v, R
derived. It was also noted that, under the traditional uncorrelated

¢ -3 =~

errors assgpption,lnot only a lower bound, but the actual correlation

\ value, could be computed. When this was done for the numerical example
(dsfhg real data), however, a value exceeding unity was found--thus

4 N -~ .
providing another piece of evidence of the inadmis&ibility of the

universally uncorrelated errors assumption, With the relaxed asj?

sumption, a reasonable and useful lower bound (.9223) was obtained. -

-~

‘9 '
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APPENDIX A N
COMPARABLE READING TEST SCORES: A REVIEW

OF THE ANCHOR TEST STUDY-

-

Bianchini, J. C. & Loret, E. G.“Anchor Test Study: Final Report.
Képort and Volumes 1 though. 30, available as ERIC Documents
ED 092 601 through ED 092 631. - .

Bianchini, J. C. & Loret, P. G. Anchor Test Study Supplement Final
Report. Volumes 31 through 33, available as ERIC Documents.
ED 092 632 through ED 092 634. ; Ct

~

~

The prospect of reviewing the mammoth report of the Anchor Test
Study (ATS) initially struck me as an overwhelming task. With the
limited space in my office it ™Would have been easy to refuse the
request to review the ATS had it not been'.for the availability of
microfiche. Although I haven't seen it in that form, hard copy of
the 34 volumes of the final report requires about 8-1/2 feet of
shelf space (Loret, 1974). An acquisition of that magnitude would

- require me to part with more of those dusty "should‘read sometime"

i

items on my shelves than my conscience would allow. For better or
worse, however, modern technology which made possible the production

of the over 15,000 page report containing more than 8,000 computer pro-
duced tables and graphs in the-first place also deprived me of m¥y

best alibi by reducing the report to a microfiche file that is only
2-3/4 inches thick, . . -

Fortunately the task of reviewing the ATS for this journal was
greatly simplified by the fact that a very good review of the ATS
has already appeared in another NCME publication. The summer 1973
issue of Measurement in Education was devoted to a description of the

"study (Jaeger, 1973). Jaeger's description appeared more than a year

before the full report was released and before the supplement study
involving an eighth test was available. In -addition to having
directed the development of study specification, he had available at
that time, "all but the three volumes that comprise the supplement
report. —Indeed -the 31-volume final report of the original study
was delivered to USOE in December, 1972. The delay of almost two
years between dellvery of the report and its release is unfortunate
because the value -of norms certainly does not improve with age.

Jaeger's description of the ATS proviEES*a good review of the
history of the study, the planning and conduct of the study as well
as the major outcomes of the study. A more recent overview of the
study has been provided by the project director, Peter Loret (1974).
Due to the availability of these two descriptiops of .the study I

11 try to keepe.my comments about the history and study procedures
latively brief. . \
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OBJECTIVES AND BACKGROUND OF THE STUDY

L3 "The Anchor Test Study had two major objectives: to provide'a

method by which one may translate a child's score on any ‘one of

seven widely used standardized readlng tests into a score on any of

the other tests, and to provide new nationally representative norms - ;

for each of these seven tests" (ATS. .Final ‘Report. Rroject Report,

p. 1). This was subsequently expanded to eight tests but otherwise

this concise statement of objectives needs no revision. Certainly

there were other lesser objectives such,as the emplrical investiga-

tions of different equating techniques, and obtaiping intercorrela-

tionsg among the various tests, but these are minQr in comparison to '

the two maJor objectives.

As noted by Jaeger (1973) and by Lor (1974) the concerns that
led to the ATS have a long history. Du concerns about the adequacy
of national norms provided by test publishers and the desirability of
being able to compare scores obtained on one test with those obtained

on another have been with us for a long time (see for example Cureton,
1941; Lennon, 1964b). . , .

The differences in sampling procedures{that have been used by
different publishers were clearly documented by Lennon (1964b). Even
without differences in initial procedures, however, the relatively
low rate of cooperation among selected schools that is enjoyed by
publishers would make the representativeness of the norms questionable.
The “lack of representativeness and comparability creates difficulties
when schools or grhool systems change from one battery to another or
when an attempt is made to interpret scores of transfer Etué;nts.
Such difficulties, however, were not sufficient to motivate ajor '
norming and equating study across severa publishers. QL\\\

Y

There are many technical and political obstacles to equating
tests acrqQss publishers (see Angoff, 1964; Flanagan, 1964; Lennon,
1964a'\LiS§quist, 1964) > A\strong motivatiqn was needed to attempt
to overcome these obstacles.', This motivation was provided by the
increasing demand for evaluations at the state and national level
that occurred durling the latter part of the 1960's. Early attempts
to obtain achievement test data for the natienal evdluation of
Title I, for example, were faced with a hodgepod of different »
tests with different norms and different scales (Lot et 1974)

> \

A major technical problem in equating tests of different pub-
lishers is that the tests may not measure the same characteristic.
Angoff" (1971) lists two requirements for equating, the first of ‘
which is that the "+-:-instruments in question must measure the same r
characteristic.++" (p. 573). With different content ~specifications

~used by diffetent publishers, the satisfaction of "this requirement -
seemed dubious. Intercorrelations among the tests obtained in a
pilot study were found to be high enough, however, to make the
equating seem worthwhile (Jaeger, 1973).

5 s’ o
Q B ' . ’ . ' 2114' . ‘ !




METHODOLOGY ‘ .

The study was designed with two major phases: the norming phase

 and the 'equating phase. The norming was designed to provide national

norms for individual pupils and for.school'means. The norms were ,

developed for the vocabulary and the reading comprehen51on subtests

as well as total readihg for the Metropolitan Achievement Test, 1970

edition (MAT).. The data were collected in April ‘1972 at grades 4,

5 and 6 and hence provide sprlng norms at those grade levels. -
The sampling design for the norming study was deVelpped by Westatf\ ~

Research, Inc. The design called for a stratified, random sample *w) )

940. schoois. The norms. needed to be as representative of the nation'é

Ath .5th and 6th-grade students as possible and great care and effort;

‘was devoted to the design of the sample. Primary-sample schools were

selected, and for each school in the primary sample five schools with
the same sampling characteristics were randomly selected as secondary
sample schools, to use in place of non-participants in the primary & e
samples Due ‘to careful planning and advance work with the Council of ‘&

"Chief State School Officers and others, relatively little reliance had /

to be placed on the secondary-sample sch0015' (838 primary sample &nd !

80 secondary sample schools with a total of approximately 65,000 p pils /
actually participating in the study). The high part1cipat10n ‘ratd is /

a real tribute to the many‘people involved in the planning and conduct

of the study. It also greatly enhances the value of ‘the ttorms by/ mini-

mizing thé biae due to non-cooperation and is undoubtedly the 51qgle ’ .
most important stinction of the study norms in comparison to the / .
publishers' nori??\\\ / : /

equivalences for total reading, the vocabulary subtest and the readln
comprehension subtest of seven major test' batteries. Subsequently a
eighth test was equated to the original seven in a study condugted i

the spring of 1973. The\t ts, forms and the lévels used at gach

grade level are .summarized 1 Iable 1. 'By equating of each of the ofther
teStS\tO the MAT (the anchor test) the norms obtained for the MAT were
translated to horms for each of the other tests.

The sample characteristics for the equating phase are 1%55 crucial
than in the norming phase of the study but again this phase of the;
study achieved a very high part1cipationxrate. Usable equating data
‘were obtained in April 1972 for a total qg almost 135,000 students . \ b
for the original seven tests. To equate the to the anchdr test
and through it to the otherysix tests, usgglé a were obtained /for
another 14,400- students in April 1973. .

[

The equating phase of the- study was designed to provide ray soo;;

J' The design of the administration of tests in the eﬁuating hase
alled-for a sample of students to take each pair of tests in rder '
AB and sample in order BA. A schematic- representation of the
equating design is -shown in Table 2. As can be seen in Table 2, in

adgttion to the pairing of ‘each test with eve z\ftﬁii test in both .
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, . : Level Used For Grade
. ) ) Abbreviated .
> . ' ‘Title Form 4 < 5 R I
omHHm.oH.SHm Achievement .H.mm.nm 2 . - ., ) . - T
(1970 ed.) d CAT A 3, 3 T th T B
. 7 . . - e
oosvﬁm:msm\f\m; ésts of Basic 4 o —=
Skills \,C.omm ed.) CTBS Q 2 2 3 .
. y . . . . -
; o Gates—MacGinitie Reading L o . P i
Tests (1964 ed.)¥ GMT M "Survey D” . Survey D Survey D_ , X
Iowa Tests of Basic Skills . - o : ‘ ,
. (1971 ed.) ~ ITBS 5 — —- 10 - 11 12 .
. Metropolitan Achievement ) ) ’
M ‘“Tests (1970 ed.) ) MAT F mwma/m/znmnw. Intermediate Intermediate .
_ " Sequential Tests of Eduga- \\ T Y . g . i
tional Progress STEP/ . . T - . ‘
Series II (1969 ed.) STEP A A Jo4 b
A SRA Achievement Seriles ~ ’ . ’ P )
(1971 ed.) SRA , *E. Blue Blue * - Green *
\ . Stanford Achievement Tests e ,.,_ . _ ) . . :
/ (1964 ed.)y SAT - . W Intermediate I Intermediaté IL mﬁnmama\»mnm 56 S
Cw ) ' CT n
.~ Not one of the seven tests in the original 1972 data collection. The GMT was équated. to the other
gseven tests in a separate study conducted in 1973, . \\\ T
. i . e : ’ . \\ .
)
. ' ’ ;




- . ) ==
: A-5 ‘
’ ) Table A-2
. Schematic Repggsentation of Equating Study Design‘
. — Test Administration Order (April 1972)
Test 1 ®2 3 A 5 . 6 7 B
. 1. CAT 1-1% 1-2 1-3 1-4 1-5 1-6 - 1-7 -
* B ‘? -
2 l*_l . . i
< . - (Y .
2. CTBS 2-1, 2-2% 2-3 /} 2-4 2-5 2-6 2-7
& | 2%-2 L
. 3. ITBS | 3-1 3-2 3-3* 3-4 3-5 3-6 3-7
.- 3*-3 | . -
Y . s ~ ‘\
4. MAT 41 P 4=2 4=3 b4=ty® 45 4=6 47
44 s / .
- 3 . //
5. STEP { -5-1 5-2 5-3 5-4 5-5%. 5-6 , -7/
~ 5%_g — 4 A
‘ “ » 7
6. SRA 6-1 6-2 6-3 . 6-4 6-5 6-6% [ 6-7
) ‘ \
: 6%-6
7. saT | 7-1 -2 | 7-3 -4 | 75 7-6 7-7*%
‘ . L) B » ‘ -
! A 7%y
v * ‘ /, +

. s

Test Administration Order (April 1973)

-

" ‘ Test ) 8 4
- “ / \
8. GMT 8~8% 8-4
. ‘ .
) ) 8%-8
' 4, MAT = | 4-8
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3
possible orders, each test was also paired with its own alternate ‘

form in both an AB and a BA order.  Thfs provided for parallel-form
- reliability estimates for each test.

Elght combinations of two equating method
percentile) and four equating procedures
différent subsets of the data from the, design shown in Table 2) were
used to‘ngézzeeach pair of tests. THese combinations of method and
proc compared to each other and also evaluated in terms
of estimated errors of equating. ‘Based on these results, the equi-
percentile method and a procedure that involves pooling all the data
for a given test for each order of admlnlstratlonrand then averaging
the equating results were found to be most satisfactory.

Folldwing, the equéting of raw scores on all of the tests the
percentile norms for individual pupils and for school means were
obtained from the MAT norming study results. Comparisons of these
norms to the norms provided by the publishers were then previded.

Finally, the adequacy of the equating for several subgroups of stu-
dents was investigated.

’
’

v THE REPORT

- - .

Despite the voluminous nature of the ATS report readers should
have relatively little difficulty in obtaining desired information
from it regardless -of the level of detail that is required. The:
needs of most users are amply met/ in a 92-page separate report
entitled "Anchor Test Study: Eqitivalence ahd Norms Tables for
Selected Reading Tests" which is available from the U.S. Government
Printing Office as stock number 1780-01312 at a cost of $1.90.

This report contains a brief description of the study and the primary

tables that resulted from the study. The tables are divided rinto

four major cdtegories: equivalency tables, tables of individual

score "norms, tables of school mean norms, and a table that preseat$s

a comparison ATS percentile ranks with the corresponding percentile

ranks from the publlshers norms. .

. We
For the reader who desires more technical detaiisthe two volumes

containing the "project reports" will usually gOffice. These m-
volumes which have the catchy titles, "Anchop”Tests Study. Final
Report. Project Report" and "Anchor Test Btudy ‘Supplement. , Final
Report. ‘Volume 31, Project Report" m e obtaiged from ERIC as
documents ED 092 601 and ED 092 632 respectively. These reports

» . contain detailed descriptions of the study methodology including the
sampling, estimation ‘and equating procedures. They also contain a
discussion of the major results and technical evaluations of the study
results. At this level the reader may also want to sk1m~through some
of the tables and graphs in Volumes 2 throygh 27 as well as those in
30, 32 and 33 to evaluate the adequacy of the summary and description
of results in the project rgports. I think that a small sampling of

El{llC . S 244 o - /



ness an@)scrupulous accuracy of repotting in thejprojec; reports.
For anyone who wants to dig beyoﬁd the project reports I can
only say that the tables and graphs are available through ERIC in
quantitites that should satisfy even the most heary of appetites.
Volumes 2 through 4% provide equating tables for the 8 combinations
of methods and procedures,~in addition to estimated errors of equating,
* and test’intercorrelagibné for grades 4, 5 and 6 respectively. Vol-
umes 5% through 10 provide graphs which compare the equating lines
for different procedures and for different equating methods at each
grade. Volumes 11, through 21 present subgroup equating tables (boys,
girls, 3 JIQ groups,x3 racial groups, and 3 SES groups). Graphs com-

} .paring the 'subgroup equating results to each other and to those for
the-total group are presented in Volumes 22 through 27. Volume 30 '
psesents a-comparison of the ATS norms with those proviﬁed by the test
pyblishers, and reports conditional errors of equating, (i.e., the
standard deviation of observed scores on test j around the equivalent

! score gf test j for each’value of test j') quality control results

and/ih rmation on the convergence of equdting iterations.
-

¢

The information in the first 30 volumes and in the project report
is all concerned with the 7 reading achievement tests that were in

'/{ ~ the original study. (See Table 1.) ' The Supplement Report (Volusies 31

through 33) gives results of a study condutted a year after the

original study for the purpose of equating an elghth test (the Gates

McGinltle) to the orlglnal seven.

. -

-

»
1
-

SELECTED RESULTS ’ .

~

MAT Norms ¥ ' ) ¢

The norms that were obtained for the reading test of the MAT are '
probably the best national norms that have ever been obtained for a
standardized achievement test. As already noted the school cooperation )
rate was exceptional. The sample design and weighting procedures were -
of very high technical quality. ( /A

. «

-

*Although it is unlikely to cause anyone any real difficulty, it
- - might be noted that the tables that belong in Volume 4 have been
inadvertently put on the Volume 5 microfiche (ED 092 606) under —.
" the title "Equating Procedure Comparison Graphs, Grade 4".
The graphs that belong in Volume 5 are to be found on the s (
Volume 4 microfiche (ED 092 605) under the title "Equating
Tables, Error of Equating and Correlations, Grade 6" .

) . ~




Test Intercorrelations

Despite many reservations about the equating of redding tests with °
different content specifications the tests were all found to have Mkgh
intercorrelations. Generally, the correlations for each test with
each of the other tests fell little short of the correlation of that

"test with its alternate form. When the parallel-forms reliability

estimates were used to obtain disattenuated correlations among the
tests, very few of the correlations fell below .95, which is often
used®as an admittedly arbitrary cutoff for purposes of equating.
Averaging across order of presentation, the disattenuated correlations

at grade 4 involve the MAT, all four at grade 5 involve the SAT and
all four at grade 6 involve the STEP. None of the disattenuated and |
averaged over-order gorrelations among reading tests fell below .89

and the tests with low correlations changed from one grade level to the
next. Although I agree with the judgment made by the. investigators
that the correlations are sufficiedtly high to justify the equating

in ‘all cases one is left with a curiosity about the tests that are
involved in the “low" correlations at each grade.

;////ik/ﬂfor pairs of tests below .95 are listed in Table 3. All three cases

~
In the case of the STEP test at grade 6 it may be that the "low"
corrglations are attributable to the difficulty level of “STEP being

' somewhat out of phase with the other tests. Among the 7 tests in the

original study for which the test intercorrelations are available, STEP

is- the only test that doesn't change levels during™the 4th to 6th .
grade intervdl and by the Sprin§‘bf grade 6 STEP is an easy test rela-

tive to the other tests. Partial support for this interpretation can

be fouﬁd in Lord (1974). Despite the high intercorrelations of the

tests Lord found the 7 tests in the original study to have fairly differ-

-ent patterns of Felative--effigiency at different percentile ranks.

STEP %&s the ofily test to have higher relative efficiency than the
MAT's at low petcentile ranks but lower relative efficiency at middle
and high percentile ranks.

Error of:Eqpatipg . A 8

An important aspect of the equating design was?the provision that
made possible empirical estimation of the,error of equating. This is
accomplished’by the use of ‘McCarthy's balanced half-sample replicatlon
method (1966). The equating design consisted of a set of eight bal-
anced half-samples. These half-sample replications were used to com-—
pute the root-mean squared deviation of the MAT equivalent scores‘for
each half-sample replication about the MAT equivalent scores for the
full sample. These errors of equating were computed for each of the
eight combinations of methods and procedures and provided a means of
judging the relative quality of the methods. The estimated error,of
equating also provided a basis for judging the:overall adequacy of the.
equating for each test. Tor the preferred equating procedure and
method (i.e., the average' of procedures 1 and 2 and the equipercentile
method) the estimated error for all tests was generally less than one
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Table A-3,
Pairs of Total Reading Tests with Disattenyated Correlations
\\ K . . . )
Averaged over Order of Presentation Below .95
(Value of correlation reportef in parentheses) -
4 \SC{:‘:‘?W
Grade & . | Grade 5 Grade\@"
MAT-CAT  (.94) SAT-STEP  (.89) STEP-CAT - &%5)
MAT-ITBS (.93)  SAT-CTBS (.92) =  STEP-CTBS (.91)
. MAT-SRA  (.93) SAT-CAT  (.94)  STEP-ITBS (.92)
*SAT-SRAZ (.94) STEP-SAT - (.93)
»
A N - /, ‘ \
/"/ «
i
. - i
—
! & )
- ." '
s, -
o ')} -
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raw score point (substantially so in most cases) The only major
exception to this is for test scores in the 'chance" range. Based '
on these error of equating estimates, thequating would seem quite
satisfactory for most practical purposes. #

- [

Comparison td Publishers' Norms

~

Once the tests were.equdted the norms obtained for the MAT were
used to convert equivalent raw scores on all other tests to percentile
ranks. Thus, the anchor test norms can be used to obtain nattoﬁai%y———””"//
representative norms for:.all of the tests. With norms for all tests
in hand, the next matural step was to compare the ATS norms to the
norms provided by the publisher. The maximum difference between the
ATS percentile rank (PR) of any test score and the PR of that same
score on the publisher's nordms is listed in Table 4 for each gtest at
each grade. Also summarized in Table 4 is the typical 51gn of the
ATS PR minus the publlsher s PR for scores above and for sdores below
the median. ‘A plus sign’ indicates that a given raw score would
typically have a higher PR on the ATS norms than on the publisher's =~ 7
norms. In other.words, a given score would appear better according
to ATS norms than‘publisher's norns where there is a plus sign. The
converse i3 true of a minus sign and a zero indicates that there is
not a consistent differe?ce in that the PR's are essentially equal.

As can be seen in Table 4, the maximum difference is relatively } .
small for most tests at most grade -levels. The SAT, and to a lesser .
extent the GMT (grades 4 & 3) ang the MAT (grade 4) .are notable ’

exceptions to this statement. The differences for those tests are
substantial. It may be of interest to note that the GMT and the SAT
are the oldest of the eight.tests. As indicated in Table 1 the SAT
and .GMT used in the ATS were both 1964 editions. It should also be
noted that since the ATS was undertaken & new edition of the SAT has
been published. (Harcourt Brace Jovanovich, 1973). Thus, the large
differences for the SAT are somewhat irrelevant., The other large dif-
ference (MAT grade 4) may be attributable to the fact that separate

1 answer sheets.were used in the ATS whereas the publlsher s norms at -
grade 4 a¥e based on scorable test booklets. . N
‘ J
« v o
For use with the interpretation of individual scores most dif- %

ferences between publisher's and ATS norms are not large enough to

cause ggyblems. I1f someone is interested’ ip evaluating trends for

groups f students, however, changing from publisher's norms to ATS

norms might make quite & noticeable difference. To get a better fix

on implications of changing to ATS norms for group data it would be

desirable 'to have a table-like Table 4 show1ng the differences
- between ATS school mean norms ard publlshers school mean norms.

“=-Not all publishers provide such norms, however.

€

Subgroup Results . ' . , ’

L}

The tests were not only equafe@ for:the total sample but also
for eleven special subgroups resulting” from four breakdowns of the

| FRY

-
-

Cr
N
»



r w
' g - ’
A-11
- L ' Table A-4 b
. v éummary of Comparisons of ATS Norms
u‘g ) with Test Publishers Norms
.”_ /
‘ Maximum Pifference Typical Sign of ATS
’ in Percentile Rank . ) Minus Publisher's Rank “
- T;st Grade Vocabulary Comprehension Total ﬁélow Media; Above Median
CAT 4 2 3 3 - - 0
5, 3 2 3 - 0
6 4 2 * 3 - 0 \
CTBS 4 ’4 2 3 - 0
5 3 3 3 - +
6 4 6 5 + +
GMT 4 3 10 * 0 +
- 5 3 8 * 0 .+
6 3 M * 0 0
I1BS 4 5 5 * + i ’
5 6 7 * + o+
6 6 7 * + o +
MﬁT 4 , "3 3 ? + 0
5 3 2 3 f 0
6 3 3 2 + 0
STEP 4 ¥ * 5 + +
5 * Tk 5 + +o -
6 * * 4 " + + i
SRA 4 5 3 3 + , -t
5 5, ’ 2, 3 4+ +
6 4 " 2 2 Lt +
SAT: 4 8 I * _ _ y,
5 15 12 \ * . + . + »
) 6 18° .16 LA +

* . .
Publisher's norms not provided.

»
-
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.sample on the basis of sex, SES, IQ, and race. For the sex break- \
‘down no major differences were found. The results for the three IQ
groups showed some differences but generally the dlfferences were \
small except in regions where the data were relatively sparse. Thus, \
the total group equatlng tables appear satlsfactory regardless of
sex or IQ level.

' The results of SES and for race were less similar. There was a
consistent tendency at all grade levels for the high SES children to

‘score higher on the CTBS than on any of the other tests and for low

SES children to séore lower on the SRA than any other test.

Marked differences in equating lines were also found for sub- .
groups formed on the basis of race. This is particularly true for -
the Spanish-surnamed sub-group which tended to score consistently
lower in the top part of score range on the ITBS and SRA than on the
other tests. The deviations for the black sub-group were not as
large as for the Spanish-surnamed sub-group. Furthermore the devia-
tions for the black sub-group were not consistent over all grades.

There is some tendency at the upper score ranges, however, for blacks -
to score higher on the CTBS and SAT than on other tests at grade 4
and to score higher on the ITBS than:on other tests at grades 5 and 6.

Although 'the sub-group equating results are undoubtedly the most
provacative of the entire study it must be . noted that "e«ethe study
was not explicitly designed to yield stable equating relationships
for the minority sub-group children..." (ATS. Final Report. Project
Report, .p. 196). The -sample size for the minority groups is extremely
small in thie parts of the score range where the largest differences
were observed. Hence, "the advice of the project report against using
the racial sub-group equ1valency score data.is probably sound. But,
this is an area of concern that desenves“ﬁ‘gé intensiye study and such
work is currently under way (John Bianchlnl, ersonal\communlcatlon) .

4

UTILITY

The Transfer Student’ \\\

+  In the announcement of the ATS contained in the fall 1974 issue of
ETS Developments (ETS, 1974) a hypothetical girl named Mary is described.
Mary and her parénts moved. Her 'new" school uses the ITBS but her
old one used the STEP. Thanks to the ATS, Mary's new teacher can con-
vert Mary's raw score on the STEP Reading to an.equivalent raw score oh '~
the ITBS Reading. It might be added that either of these raw scores
can be interpreted in terms of the national norms provided by the ATS,

’

Althofigh the above claim is ‘true it assumes that the teacher will _
(1) know abdut the ATS and (2) have the equivalency tables available.
Both of these assumptions seem questionable to me. A major effort
would be required to make this type of information broadly known by
chers.t One way af accomplishing the, goal might be for the publishers

‘
\

; 204




\. . ‘A 13
to do the. conversion to ATS percentile ranks for the users, and indi-
\\ ate the tests for which the percentile ranks are equivalent. With-

\  out such heavy use by publishers, however, I doubt that Mary's teacher
would know how to convert Mary's score even assuming that she received
raw scores rather than grade equivalents or some othet standard score
for Mary.

’ 3
The need for publisher involvement to make the ATS results maxi-
mally useful prompted me to write to the six publishers that produce
.the eight tests involved in the ATS to ask about their plans. In the
fairly limited time between my létters to publishers and the writing
of this review I received responses from four of the six publishers. |
None of these four publishers plans to routinely provide ATS norms

ko their users. But, they all plan to make the information about the
“gtudy available bzainfd%ming their sales representatives and/or
?escribing‘the study -in their publications. - o —_

e ™ '

The lihited effoxt on the Part of publishers to make ATS normg and
équating results known'may be as much ds~eauld be expected of the ’
ublishers. It seems doubtful to me, however, that the planned level
f'effort will be sufficient to get a very large segment of the test
igers (including Mary's tézcher)’to use the ATS results.

Q-3

b
~

-

T By Wway of explanay{$n of their limited ;1ans'to use the ATS

results the publishers cited several practical limitations of the :

resuTts. These limitations included: (1) the lack of data for tests

Sther than reading, (2) the lack of data for grades other than 4, 5

N and 6, (3) the lack of data for the publisher's alternate forms, and -
(4) the lack of scaled scores. All of these factors were viewed as
limiting the practical value of the ATS results for their users.

\ .
\éhénging Tests - -
;TSehQOIs are sometimes slow to switch from one test to another

because of experience with one test and the compavative value of the

historical data. ' The ATS results make it possible to make a change
and still have the ability to compare current reading test results
to historical results in terms of the ATS norms. Again this assumes

that the knowledge of this capability-is available.to the school.
- » '_’

~

Meaédring Change .

.
3 PROS—

Another use that has been usggested for the ATS data is in the i
measurement of change where one publisher's test is-used at time 1
and another publisher's test at time 2. Presumably this could be -
’do@e in terms of percentile ranks. This might be appropriate for
gauging the direction of change in relative standing as suggested
by Coleman and Karweit (1970) but not for estipmating the Tg@nitude

7/

of change. There are major differences between change 3s m asured~

in térms of percentile ranks and as measured in teyms of a vertically

equated scale such as grade equivalents. (see for example Linn, 1974).

-
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The ATS was not designed to vertically equate tests that change
levels from one grade to the next. It does provide .some indirect
information for this purpose, however. For example, the same level
of the CAT was used at grades 4 and 5 but different levels of the MAT
were used at those grades (see Table 1). By usjng the CAT equiva-
lencies of the MAT it is possible to convert thefMAT Elementary Level
Reading~scores to equivalent Intermediafé Level Reading scores. There
are a number of other ‘tests with a’'constant level over grades 4
and 5 that might be used for this purpose ahd for the best estimate
it would be desirable to use some sort of combination of the various
estimates. For purposes of illustration, however, I selected a few .
scores of the CAT at grade 4 and noted the equivaleﬁﬁ Elenentary
Level MAT scores. The same CAT scores were then used at grade 5 to

, find the equivalent Intermediate Levél MAT raw scores. These scores
» are shown in Table 5. Finrally, the publisher's norms Were used to .
convert the equated MAT Elementary and Intermediate raw scores to .
‘rade equivalent scores. The resulting grade equivalent scores are

also reported in Table 5. . '

%

. . If the two columns of gradé equivalent scores in Table 5 are com-
pared some non-trivial differences in the grade equivalents can be
. obsérved. The largest of the differences in corresponding grade
equivalents shown in Table 5 occurs for MAT raw scores that are equiva-
lent to a CAT raw score of 60. At this level the grade equivalent *
scores are 6.6 at grade 4 and 7.4 at grade 5 for a difference of »
.8 grade equivalent -units which would presumably be interpreted as °
almost a ‘"year's gain." Throughout the range the grade equivalents
tend to be larger at grade 5 than at grade 4. -
The above analysis in terms of grade equivalent scores is admittedly
rather crude and does not begin to scratch the surface of the number of
- possible comparisons of this type that might be made. It is not in-
tended to imply that growth should be measured in terms of 'grade equiva-
N lent units, in fact, I have elsewhere argued to the contrary (Linn,
1974). Furthermore, the results in Table 5 may be an artifact of
the nature of grade equivalent scores and they are not the score
unit to use in equating. But, the person who is interested in measur-
ing change needs some sort of common score and will usually want some-
. . thing besides percentile ranks. If so, some form of the publisher's
scaled scores is still the natural gecourse. The above analysis sug-
) gests that the results of such comparisons may be very misleading at
- least if grade equivalent scores are used. :

3

\

\; , Aggregation of Results from everal\Tests

-\

.o Possibly the most significant use of the ATS may come from making
it possible for a governmental agency to aggregate reading test scores
across several tests. This is a potentially important use in that it
conceivably could greatly reduce the need for special test administra-
tions for information purposés at the state or national level. As noted
previously programs such.as Title I ran into considerable difficulty in

~
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Table A-5
'. e Total Reading Equivalent Scores on the MAT
- Elementary and In—termediate’ Levels . -
. - Equivalent MAT Raw Scores
— and Corresponding Grade Equivalents
: ‘Elementary Level (Gr. 4) Intermediate Level (Gr. 5)
Level 3 CAT N
Raw Scores Grade- . Grade = _
(Grades 4 & 5) Raw Score Equivalent Raw Score’  Equivalent
h{ i ‘. ) '
80 94 . 9.9 . 91 9-. 8
T 70 89 . 8.4 7% 8.4
60 84 6.6 "¢ 63 1.
50 76 '5.2 51 - 5.5
40 63 " 3.7 39 4.4
4 S
' 30 T 45 3.2 29 ‘3.5
20 . - 26 2.3 20 - 2.6
A0 12 1.3 8 1.4
%
] s ¢ / . ‘
- Lo
» y’ - p]
~ ’ }
~ * - 1
- e . ~ ( . .
' . \‘
. . ¢
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b

trying to make sense out of test score data from a wide variety of -

) tests. State agencies have had similar problems which has led to the ;
use of single tests for statewide testing in some cases. Thanks to
the ATS results schools should be free to select their own reading

test from among the eight ipvolved in the ATS while the capability’ L
\ of aggregating data at thikgzstrict, state or national level is still ' /

maintained.
W - 7

. . f
I would not find it sufprisipg jif aggregation is the main use

. that is made of the ATS results. After all, it whs the desire to have
this capability that made the ATS a reality after over 30 years since’

~ Curetot (1941) made his plea for an anchor test study. n A

~ : LIMITATIONS > ' oo

In my opinion, therATS is an extraordinarily sound study from a !

technical point of view. Most of the limitations, some of which have*
en implicitly noted anve, come about mofe from the scope of the -
dy than from the implementation. There are three rather obvious ~
limitations of this nature that I would like to6 mention at this stage.
_ThHese are (1) test content, (2) grade levels, and (3) the absence of

wvertically, equated scaled scores.
\ . .

——a

Although reading would probably be most people's first choice if

a single content area is to be involved, there are obviously other

important, content areas. Many would argue that even a complete achieve-

ment test battery puts the focus on much too narrow'a range of educa-

tional goals.” By making it possible to aggregate only for reading tests —

the emphasis becomes even narrower. Although equating 'of tests in

. other content areas may be desirable it would be unreasonable to expect

one study to do everything and the ATS is already a giant. Furthermore, ¥
the technical feasibility of equating in other areas may be limited due

. to less similarity in what is measured in content areas other than,
reading, from one test battery to the next. . 8 “

a

N The choice of grades 4, 5 and 6 was partially based on high test'~
usage at those grades. They are a reasonable starting place but the
same problems that prompted the ATS remain unresolved at other grade e,

levels. ’ . i

¢

a
-

The absence of an effort to vertically equate tests that change
levels in grades 4, 5 and 6 and create a common scaled score is .-
, regrettable from my perspective. Without doing this the test user

who wants to analyze scores across levels must,revert to the publisher's .
norms. As good ras- the publisher's norms may be, they do not live up
. to the ATS standards. .

4

I also think that the absence of a common scaled score is a missed
golden opportunity. By creating a new scaled score that is common to -
all tests it might have been possible to reduce the diversity in types
of scaled scores which confuse users and more importantly to speed the

‘
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demise of(some undesirable types of scores.| Imithis way the ATS

might have helped achieve standard D5.2.3 ofé!ﬁé 1974 Standards for

Educational and Psychological Tegts (APA, 1974). According to

standard D5.2.3 "Interpretative scores that lend themselves to gross

misinterpretations, such as mental age or grade-equivalent scores,

should be abandoned or their use discouraged. Very Desirable" (APA,

1974, p. 23). The absence of scaledféco@ég could be rectified \

_ through secondary analysis of the data. The data that are requiree;/
are available. . * Lo . .

-

.- A final limitation that I1'd like to mention has to do with time
rather than scope. As noted\above, one of the test batteries (The
SAT) has already been revised, This is apt.to happen to several of
the others within the next 5 pr 6 years. 1In view of this it seems
unfortunate that thete was afdelay of almost two years between the
completion of the final report and its release by USOE. '

Jo—y

CONCLUDING REMARKS .

. The ATS isdé landmark study. It is a tribute to careful planning,
superb execution and high technical capability. ;The goals of obtain-
.ing representative norms and equating several widely used reading tests
at grades 4, 5 and 6 were clearly aécomplished. So too, were the
several minor goals. The results of the study should prove to be of
cohsiderable practical value especially to governmental agencies that
want Toaggregate scores across several tests. The data bank which
was created by the study ehould 'be valuable for a number of secondary
analyses. .

*

Despite sthese major accomplishments, one need only look back  at
Cureton's original plea for an anchor test study to realize that there
is a’long way to go to achieve his ideal. = According. to Cureton, "An ~
ideal system of .norms: should be based on a specially constructed and
. standardized test, and its units should be stable from year'to year,
from test.to test, and from early childhood té old age. They should
alsd be as directly meaningful as possible in terms of the existing
conqeppgdof'the population in general and the teaching populatiqp in
- particular...The ideal anchor test should yield separate scores for
all the major intellectual factors in the school achievement complex"
(1941; pp. 291-292). We'clearly have a ways tp go. Given the expense
of equating tests of reading at three grade levels and the fact that
other content areas and other.gréde levels pose more difficulties it
seents doubtful \to me_that we .will achieve Curetdén's goal.
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