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A Model for Assessing the Effects of

Departures from Reality in Performance Testing

David T. Morse and Linda W. Morse

Career Education Center
Florida State University

ABSTRACT

Performance testing often entails the usage of expensive,

time-consuming measures in the quest for determining the level

of performance on some desired behavior. This paper presents a

model for assessing the loss of information due to using a measure

which may be less realistic, but more feasible, than the desired

behayior. The method is based on the concept of generalizability

theory. An example is included along with a brief discussion of

relevant considerations in performance testing, a background on

generalizability theory, and a discussion on decision-making.
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A Model for Assessing the Effects of

Departures from Reality in Performance Testingl

The ideal measrement strategy in a performance-based learning

situation is to have the learner attempt the desired behavior by

demonstrating his competence in a performance setting. For instance,

if the behavior is to "successfully overhaul and rebuild a V-8 en-

gine: or to "successfully navigate on land from an unfamiliar point

to base using only compass and relief map," the most desirable per-

formance test for the first would be to supply an automobile with

an engine in need of overhaul and supply the required tools and

equipment. For the second example, the potential navigator should

be placed in unfamiliar surroundings with only compass and relief

map. Certain overriding considerations, however, may prohibit use

of such direct measures of performance. For both examples, fac-

tors such as lack of time, money, equipment, and supervisory pe onnel

might dictate that the test actually used be a measure as indirect

as a short paper-and-pencil test covering selected aspects of en-

gine rebuilding or land navigation. Clearly, this is not as desirable

as use of the direct measure of performance. When decision-makers

are confronted with the necessary use of a less direct measure of

performance, however, how should they select which one to use, and

how much loss of fidelity to the actual behavior must they accept?

These questions should be asked and answered in situations where

a less direct measure of performance is being utilized.

The purpose of this paper is to present a method of assessing

the effects of departures from reality using a generalizability the-

ory approach. Once the effects of changes in fidelity have been de-
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termined, instructional designers and/or measurement specialists

have a basis for the rational selection of measurement strategies.

Further, if costs of testing and costs attached to losses of infor-

mation concurrent with departures from reality can be determined,

the selection of a measurement strategy can be based on a cost-

effectiveness decision.

The remainder of this paper is divided into three sections: a

brief discussion on contraints and fidelity in performance testing;

a brief background on the rationale and mechanics of generalizability

theory; and the methodology for the model, along with an example

and discussion on decision-making.

Preliminary Considerations

Constraints in Performance Testing

A method for determining losses due to departures from reality

in performance testing has not been adequately explored. This is

an extremely crucial issue since the basic premise of performance

testing lies in the measurement of presumably actual behaviors.

Therefore, the only perfectly valid performance test would be one

involving observation of the student's natural behavior. This hould

prove impossible in all but a few situations. Lindquist (1951) has

identified several difficulties in direct measurement. First, the

nature of the objective which is being assessed often makes it im-

possible to measure. Many objectives in the affective domain are

examples of this situation. Secondly, a natural series of events

may not be easily observable or either maybe inaccessible. Third,

observing some behaviors may be exceedingly difficult or impossible

because of the relative infrequency of occasions when the behavior



is naturally elicited. Lindquist also points out the problem of

lack of comparability in accessible behavior samples for different

students. Perhaps one of the most constraining obstacles in making

direct measures lies in the difficulty of constructing such mea-

sures. Even simple performance objectives may yield complex be-

haviors which must be analyzed in order to develop appropriate and

valid performance tests. The additional effort required for de-

signing performance tests means their development is more costly

in time and energy, yet they still may be plagued by one or more

of these problems.

Lindquist outlines four basic types of tests: (a) giving the

learner the opportunity on special occasion to perform the behavior

specified in the objective; (b) having the student exhibit behavior(s)

similar to the specified performance, making the assumption that a

relationship exists between the behaviors desired and elicited; (c)

giving the student a situation in which the desired behavior would

be necessary and asking what should be done and/or how he would

do it; and (d) testing the student on his or her knowledge of facts,

rules, principles, etc. which are necessary for successful demonstra-

tion of the desired performance. These test types parallel succeeding

levels of reality. For this paper, these four test types will be

considered as: (a) actual; (b) simulated; (c) verbal; and (d)

subordinate knowledge or skills. These last three types of measures

represent departures from reality.

Although for many situations it is difficult to attempt to elicit

the actual behavior, sometimes it is possible to do so. In Lindquist's
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identical elements test, the elements of the actual performance must

be identical to the critical elements in the criterion behavior even

though they may be differently distributed in the natural or criterion

situations. An example of this would be the applicant for a clerk/

typist position who is asked to type a business letter as part of

the job application process. This letter may differ in degree of

difficulty from One typically typed on the job but the critical

aspect of typing a letter in a business format is identical.

The second kind of test is the simulation. In a simulated test,

the elements should be substantially related to the actual desired

behavior. There should be considerable relationship between the

elements in the simulation and in the actual test. This kind Of

test could be illustrated with the example of pilot simulator train-

ing machines.

The verbal description test type requires the student to respond

to a situation based on how he would or ought to behave. The pre-

sentation of the situation may be oral or written and the pattern

for response may vary from free response to selection between alter-

native answers. An example of this would be the vocational student

who is presented with a situation describing a stalled car and is

asked how he would diagnose the problem.

The fourth test type requires the student to exhibit his com-

petence in a particular subject by demonstrating mastery of perti-

nent facts, rules, principles, etc. Although least desirable of the

four types of tests in terms of fidelity, this format has been the

most widely adapted type for measuring educational achievement.

However, the demonstration of prequisite knowledge of a behavior
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is not a sufficient condition for exhibiting a desired behavior due

to.large disparity between the two conditions.

Fidelity

Fidelity must be considered as the test designer moves from the

real world to a simulated test environment. Fidelity is defined in

terms of the degree of relationship between the real situation and

the test conditions. This relationship is not entirely dependent on

the face validity of the test conditions but instead depends on how

well the skills and knowledge exhibited in the simulated (and lower)

testing conditions transfer to the real world behavior (Branson,

Rayner, & Epstein, 19/4). However, one expects high fidelity when

the test situation incorporates the highest level of reality possi-

ble (i.e., actual, simulated) and low fidelity with lower levels of

measurement reality.

A valid performance test has been assumed to be one which has

complete fidelity and comprehensiveness (Fitzpatrick & Morrison, 1971).

But as tests more closely approximate the actual behavior they be-

comes harder to control because of the difficulty of observing the

students under the same conditions. This difficulty over control

leads to less reliable measures. Thus, it would appear that the

more closely a test approximated the actual performance the dif-

ficulty with controlling the situation could cause a loss of reli-

ability. This apparently paradoxical situation means that the de-

pendability of different performance test scores from tests pur-

porting to measure the same behavior may differ. Hence, the need

for empirical determination of the interaction of degree of task fi-

delity and reliability of scores cannot be overemphasized if decisions

are to be made from performance test results.
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Rationale and Mechanics of Generalizability Theory

Classical Concerc of Reliability

The rationale underlying the concept of generalizability theory

can be more easily understood in one is familiar with the classical

notion of reliability. This definition of reliability of measurement

is that of consistency or stability of a set of test scores. The

important question in this definition lies in how the dimensions of

score stability are interpreted in the traditional estimates of

reliability. Before discussing the traditional reliability estimates,

an overview of the types of variability which can affect test results

should be outlined. Thorndike (1951) outlined the following:

1) Lasting and general characteristics of the individual

(e.g., general level of intellect, ability to understand instructions)

2) Lasting but specific characteristics of the individual

(e.g., knowledge of the snbject specific to a set of test items)

3) Temporary but general characteristics of the individual

(e.g., general state of health, fatigue, etc.)

4) Temporary but specific characteristics of the individual

(e.g., subject interaction with a certain item or set of items)

5) Systematic or chance factors affecting the administration of

the test or appraisal of test performance

(e.g., noisy conditions for taking a test) a grader being given

an incorrect answer key, etc.)

6) Chance or random variation

(e.g., lucky guessing)



Depending on what is being measured, the sources of variation that

should be accounted for should differ. Sources of variation included

in the scores, but not measured as "true" variation introduce error

into the measurement process.

Two traditional estimates of reliability, coefficient alpha and

KR-20, are popular internal-consistency indices which tap the third

source in Thorndike's.list. That is, they reflect the degree to

which a person's performance is consistent over a single set of

items. Note that the variability attributable to sources 1 or 2

cannot be assessed using alpha or KR-20. Also, sources 1, 2, 4, 5,

and 6 will be present in the set of scores, but alpha and KR-20

cannot detect them. Test-retest reliability considers the stability

of scores across administrations of similar or alternate forms of

a test. Thus, it is able to tap source 2. Sources 1, 2, 4, 5, and

6, however, will be present in the set of scores, but test-retest

reliability will not be able to detect them. Reliability estimates

derived from the Spearman-Brown prophecy formula can tap source 4.

Although all the other sources of score variability may be present,

the Spearman-Brown formula cannot detect them.

Thus, the particular estimate of reliability used can cause

a difference in the estimated consistency of the scores. It is

also likely that the characteristics of the examinees which should

be measured are often not being measured as intended with these

reliability estimates.
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Rationale for Generalizability Theory

Instead of yielding a reliability coefficient peneralizability

theory can yield a set of generalizability coefficients, :nd does so

for an important reason. One is forced to question to what siv.:qtion

is he generalizing. That is, how consistent is a set of scores

obtained under certain conditions? Here, the concept of universe and

universe score is useful. Assuming that a population or domain of

admissible observations of examinee performance can be defined, then

this defined population constitutes the universe to which one could

generalize. For instance, consider the following universe.. Selected

spelling words from the Kelly-James 10th grade spelling book, adminis-

tered orally by one teacher on a Thursday afternoon in April.

Assuming the measurements used were error-free, a true score could

be obtained for each examinee for this universe. This score would be

the examinee's universe score. Note that, for this example, if the

universe of admissible observations is changed to include performance

on two Thursdays in April, this would be a new universe, and each

person could well have a different universe score. Thus, generaliza-

bility theory is concerned with the relationship of a set of

observed scores to the corresponding universe scores for the

examinees. The universe of conditions for performance assessment

is necessarily specified. This is the fundamental difference between

traditional reliability theory and the theory of generalizability.

In generalizability theory, the universe that is being generalized

to must be specified along with the admissible conditions of

11



observation for that universe. Hent.e, the sources of variation

considered true variation, and the sources considered error are

alio specified.

Generalizability theory can help provide answers to a number of

questions which a person using or building a test may ask. Some of

the more fundamental of these questions are: (a) What is the

examinee's universe score?; (b) What amount of error is there in

the estimation of an examinee's universe score?; (c) What are the

sources and relative sizes of variability in examinees' scores?;

and (d) What changes can be made in the measurement process in order

to reduce the error in estimating an examinee's universe score?

Each of these questions will be discussed in greater depth later in

this paper. The model in this paper draws from the work in generaliza-

bility theory by Cronbach et al. (1963; 1972).

Mechanics of Generalizability Theory

Conditions which serve to describe the universe of admissible

observations are termed facets. Facets are analagous to factors in

analysis-of-variance (ANOVA) designs. The basic determinations of

generalizability analysis are achieved via an ANOVA approach. For

example, consider a one-facet universe of different spelling words,

with the population of words being all those in Webster's Third Edition.

What this one-facet universe (i.e., of words, or items) means is

that one is only interested in making an estimate as to how well a

person can spell all the words in one dictionary, and this deter-

mination is made by observing performance over a single sample of

12
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words from the dictionary. Suppose 100 words were randomly selected

from the dictionary and administered to a group of 100 people. The

resulting scores could be displayed in an array such as Table 1, below.

Table 1

Amy of Hypothetical Administration of Spelling Words

ITEMS

1 2 3 4 . . . 99 100

1 1 0 0 1 0 1

2 0 1 0 0 0 1

3 1 1 1 0 1 1

. . . .

98 0 0 0 0 1 0

99 1 1 0 1 1 0

100 0 1 0 1 0 1

Note: 1 indicates correct response, 0 indicates incorrect response

These results can then be analyzed in a two-way ANOVA design, in

which persons and items could be set up as factors with no person-

item replications. The ANOVA results would yield three distinct

sources of variation: (a) variation attributable to persons; (b)

variation attributable to items; and (c) residual variation. A

sample table of output from an ANOVA analysis for this example is

displayed in Table 2.

13



Table 2

Sample Output for Hypothetical Example

Source SS df MS E(MSI

Persons 193.05 99 1.95 o2(res) + 100o2(P)

Items 148.50 99 1.50 o2(res) + 100a2(I)

Residual 490.05 9801 .05 o2(res)

Total 831.60 9,999

The coefficient of generalizability, or the relation between observed

and universe scores is an intraclass correlation estimated

A
by: G z(P) The reader will note that these estimated

(res)

variance components are derived using the E(MS)1s. In calculating

i 1a tres,, we can use MS(res) as an unbiased, maximum-likelihood estimetP.

Thus, a
A
l(res) = MS(res) = 0.05. The variance component for items is

calculated in a similar manner: MS(I) MSfres) = 1.50 - 0.05 =
100 100

02(I) = .0145. Likewise, the variance component for persons is

calculated as: MS(P) MS(res) = .0195. The coefficient of general-

100

A
izability is: G = .0195 = .0195 = .281. This figure gives

.0195 0.05 .0695

the estimated ratio of universe score variance to observed score

variance, assuming the items selected are a random sample from the

population of items, and the persons are representative of those

which the scores are to be used for decision-making. For the one-

facet case, using items as the facet, the. coefficient of generaliza-

bility, here .28, is the same figure than would be obtained if the

14
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data were analyzed for determining coefficient alpha or KR-20.

Thus, alpha and KR-20 can be thought of as a special case of a

generalizability coefficient for a universe of one facet. However,

__keep in mind the limitation that this coefficient refers only to

administrations of similar sets of items to similar persons under

exactly identical conditions. If the conditions of the test adminis-

tration are to differ in the future, for instance, if tests are to

be given before and after instruction, or at extremely different

times of the day, or after long intervals of time, or given by d

different teacher; any or all of these conditions might cause some

variation in scores which will not be accounted for in the ene-facet

case. To remedy this, a multi-facet model is used. This is one

advantage generalizability theory enjoys over classical reliability

theory. To see the difference, we shall discuss a slightly more

complex model.

Consider a two-facet nodel of alternate toms and occesim.

That is, how stable are the spelifng scores obtained if differhnt

sets of randomly selected words (the eltarnalm forms) cre used, and

scores are taken across time (say, from week to week)? Once ayain,

an ANOVA approach would be used. For simplicity, assume that each

examinee takes each of three tests on each of three testing occasions

one week apart, and order of tests is randomized. The analysis

would proceed as though it would be done for a fully crossed

factorial design. Total score variation in this example can be

partitioned into seven components: (a) person variation;(b) test

form variation; (c) occasion variation;(d) person X test interaction;

15
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e) person X occasion interaction; f) test X occasion interaction; and

g).residual variation. Thus, if three tests (10 items each) were

administered on three different, occasions to 100 examinees, the

source table might look like the one presented in Table 3, below.

Table 3

Sample Output for Hypothetical Example

Source SS df It E(MS)*

Persons 9875.55 99 99.75 9a2(P) + 3a2(PT) + 3a2(P0) + a2(res)

Tests 163.10 2 81.54 300a2(T) + 3a2(PT) + 100a2(TO) 4a2(res)

Occasions 29.16 2 14.58 30002(0) + 3a2(P0) + 10002(TO) 4a2(res)

P X T 1067.02 198 5.39 3a2(PT) + a2(res)

P X 0 867.83 198 4.38 3a2(PO) + 02(res)

T X 0 17.28 4 4.32 10002(TO) + a2(res)

Residual 1537.67 503 3.06 a2(res)

Total 13,557.61 899

*Using a random effects model

The variance component estimates derived from this example are displayed

in Table 4, below.

Table 4

Component

Variance Component Estimates for Example

Estimate of Variation Proportion of total

02(res) 3.06 .205

a2 TO 0.013 .0008
02 PO 0.44 .029

al PT 0.78 .052

al 0 0.03 .002

02 T 0.25 .017

a2 P 10.34 .690

16
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The estimate of the generalizability coefficient is:

'6
02(p)

10.34
c2(P) ;N PT) ;NPO) c2 (res) 10.34

10.34/ 14.62 = .71. Thus, there is fairly good stability of scores

across test forms and occasions. The relative sizes of the sources

of variation (Table 4) show that tests, occasions, and their inter-

actions account, in sum, for just over 10% of the total variation.

The coefficient of generalizability would not be vastly different if

the data were reanalyzed collapsing over: (a) occasions, making

the one-facet model analagous to alternate forms reliability; or

(b) tests, making the one-facet model analagous to test-retest relia-

bility. Therefore, the two-facet model allows generalization to

several universes--that of two facets, that of the first facet only,

that of the second facet only, and variations on each, such as

nested designs, fixed, and mixed models, and so on. The usage of

generalizability theory allows much more flexibility in the analysis

of performance assessments, thus more realistically reflecting the

real world. There are many other considerations and analyses in

generalizability theory, but for the purposes of this paper, we

may stop at this point.

Description of the Model

Methodology and an Example

In evaluating alternative performance assessment strategies, a

preliminary decision must be made concerning the face validity of

each strategy. If a proposed alternative does not meet this first

1 7
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requirement, then there is little value in attempting to'use it. As

an example, consider the skill of using an electric adding machine.

While verbal aptitude test scores may correlate moderately with a

person's facility in using an electric adding machine, few people

would be satisfied with verbal aptitude tests as an alternative to

performance assessment using an adding machine. Of course, the

face validity determination should be made by those persons who

have to make decisions about the examinees and/or learning situation.

After one or more alternate measures of the desired performance

have been selected, carefully constructed, and tried out with a

few representative examinees, a study of the alternate methods can

be designed. If possible, the actual performance, or the simulation

nearest to it should be included as one of the tasks. The purpose

for inclusion of the actual performance is to provide scores which

are as nearly error-free as possible, for determining the potential

for misclassification in the alternate methods (this is discussed in

more detail later), and for individual comparison of alternate

strategies. In designing the study, the most powerful desi.jn is a

fully crossed one, as in the examples discussed above. In the

fully crossed design, each examinee is administered all tasks under

all conditions deemed relevant enough to be included as a facet

in the design. "Most powerful" refers to the precision of the

Variance component estimates, the G-coefficient estimate, and the

error estimates. However, nearly any nested or mixed design can be

utilized. If this is the case, however, some of the variance com-

ponents which could be estimated in the crossed design may not be

18
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directly estimable.

After the study is designed and carried out, the results should

be analyzed and interpreted. Finally, the potential for misclassifi-

cation should be considered under each alternative strategy. Costs

for the alternate methods should also be taken into account. One

method for using this information is presented by way of an example

given below.

Consider the following example. The behavior of interest is to

diagnose a fault requiring overhaul in a V-8 automotive engine and

to overhaul and repair the engine. Relevant conditions might include:

exercise to be completed within 150% of manufacturer's recommended

flat-rate time; and each learner to execute the task alone. The

criterion for successful performance is all operational checks on

finished engine meeting manufacturer's specifications. Now,

possible factors prohibiting such an exercise might be: lack of

ample automobiles equally in need of engine overhaul; lack of up

to forty hours "free time" for students to perform such an exercise;

and lack of supervisory personnel to monitor many students. Hence,

the case for some departure from reality is rather strong. Some

reasonable alternative strategies might be: (a) allow the students

to diagnose the fault in engines from five cars as well as describe

the required repairs, or instead perform five small tasks involved

in a complete engine overhaul on each of two engines; 05) verbally

describe to an examiner the proper sequence of steps to follow when

performing an engine overhaul; and (0 respond to a short-answer

paper-and-pencil test composed of items dealing with diagnosis and

19
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overhaul of an automotive engine. These alternatives correspond to

levels b, c, and d of Lindquist's levels of measurement reality,

respectively.

Suppose each of the ten learners selected were examined in

each of the methods outlined above as well as being given a car

in need of an engine overhaul and told to diagnose and repair the

problem. Suppose further that the actual measure was scored

0 or 1, depending upon whether the rebuilt engine ma all the

manufacturer's operating specifications, alternatives a and b were

scored 0 to 10, and the paper-and-pencil test was twenty items

in length, each counting as one point. The order of these tasks

could be randomly determined for the examinees so order effects

would be minimized. Note that the assumption was made that all

the alternatives met minimum face validity requirements. This

describes a one-facet generalizability model. Suppose the score

matrix in Table 5, below, resulted from the *study.

Table 5

Hypothetical Score Matrix nor Ten Examinees on Four Different Tasks*

Task

Exaoinee/ 1

1 1

2 0
3 1

4 0

5 0
6 1

7 1

8 1

9 1

10 0

2 3 4

10 (1) 10 (1) 20 (1)

9 rIll 14 RI
15 (0)
18 (1)

2 0) 4 12 (0)
2 0) 17 (1)

11 i(11 9 1) 16 (1)

10 (1) 10 (1) 20 (1)
10 (1) 20 (1)1 W
5 (0) 16 (I)

8 id 8 (1) 16 (1)

*Numbers in parentheses are binary results given an arbitrary 80%
criterion for "success" on each task. Task 1 is actual task, and
tasks 2, 3, and 4 are alternative strategies a, b, and c, above.

20
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Table 6, below, lists the results of a two-way ANOVA, using the

binary scores from Table 5.

Table 6

Results of ANOVA

Sourcn SS df MS E(MS)*

Persons 6.6 9 0.73 a2(res) + 4a2(P)

Tasks 0.3 3 0.10 a2(res) + 10a2(T)

Residual 2,2 27 0,08 a2(res)

Total 9.1 39

*Using random-effects model

The resulting variance component estimates are listed below, in

Table 7.

Table 7

Variance Component Estimates for Example

Component Estimate % of Total

Persons .1625 66
Tasks .002 01

Residual .08 33

The G-coefficient, the measure of the degree of consistency of

A " I%
performance across tasks is: G r-v2(P)/(02(P) a2(res)). ,1625/.2425

= .67. Since between-task variation accounts for only 1% of the total

variation, if the cost of using the actual task is too great, the

less realistic tasks could be used with little loss of information.

The G-coefficient of .67 can be interpreted as the ratio of universe-
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score variance to observed-score variance. Further analyses could

be performed repeating the above, comparing individual tasks to the

actual behavior. For instance, the G-coefficients for comparing

alternate tasks two at a time are: .59, .59, and .82, corresponding

to comparing tasks 1 and 2, 1 and 3, and 1 and 4, respectively.

Interestingly enough, for this example, the usage of the paper-and-

pencil test with an 80% criterion yields the least loss of information.

The study could have been performed without setting criterion levels

on the alternate tasks, and the resdlting coefficients would not

be drastically changed. The reason for the binary scores is for

discussion of misclassification, in the next section. Finally, any

study like this example would strive to include as many examinees

as possible. The greater the number of examinees and levels of

facets, the more dependable are the variance component estimates.

Errors and Decision-making with Results

The difference in an observed score Xij for examinee i on task

3 and his universe score, pi (e.g., Xij - pi) is the error, A.

8 is analagous to the standard error of measurement in classical test

theory. The size of the error A reflects the amount of information

loss due to departures in task fidelity in the simulated tasks. A

means for determining whether this loss is reasonable or not can

be easily developed. First, the calculation of the error A should

be explained. Since A reflects (average) within-person vfriation,

8 is calculated from the estimates of those variance components

considered to be within persons. For the example, the calculation

of 8 for the study is given in Table 8.
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Table 8

Calculation of Error t

Variance component estimate Observations within
persons

Contribution to
a2(e)

A
a2(T) = .002 4 .0005

A
o2(re) . .08 4 .02

aNA) = .0205

A
a (A) = .145

Using this computation procedure, the expected size of a2(A) for

any future study can be calculated. The same variance component

estimates are used, and the (expected) number of within-person obser-

vations is used. For instance, for scores from five randomly-selected

tasks, instead of four as in the example, the expected size of a(A)

is .13, about a 10% reduction. The same calculation procedure could

be used with any number of different facets, although the variance-

component estimates would be needed for the additional within-person

facets.

The non-symmetrical nature of confidence intervals is aptly

discussed by Cronbach et al. (1972), hence this discussion will only

include the conservative Chebychev approach. For a randomly selected

examinee in the example, a 75% confidence interval is given by

Xi ±.3, where a(A) is used to obtain the .3.

Next, a threshold error level (TEL) has to be defined by the

decision-makers. This is the size of the error t such that any

values less than or equal to it are considered trivial, and any

values greater are considered significant. The determination of the

23



-21-

TEL can be approached by setting a given level of savings desired in

the total testing costs. That is, how much more economical does a

procedure alternate to the actual performance test have to be in

order to justify its use? (In a practical sense, this begs the

question of not using the actual performance itself, for whatever

the reason.) Suppose that in terms of personnel time alone, the

cost was $20 per examinee to use the actual behavior for the

performance test. For a group of ten examinees, the total cost is

$200. Now, consider the cost of misclassification in terms of

testing time alone. Both a false positive and false negative

misclassification would require additional testing, but the false

negative misclassification would constitute the only added cost,

since the false positive misclassification would likely eventually

have to be retested anyway. Suppose the cost for the most expen-

sive alternate measurement strategy was $7.50 per man. Looking

at the original score matrix (Table 5), 4 maximum of two misclassi-

fications can be detected using any of the alternate tasks.

Adding this to the original cost for testing ten persons makes the

alternate task cost $90. Alternate task usage with the presently-

set TEL (A) results in more than a 50% savings. As a general rule,

therefore, once the desired amount of savings is determined (as long

as it does not exceed an error-free cost of testing using the least

expensive alternate measurement strategy), the TEL corresponding to

that amount of savings can be compared with the observed size of the

error A. If A TEL, an alternate procedure is usable, and, according

to this decision process, "reasonable." If A > TEL, then the number
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of individual items required to reduce t to the TEL can be calculated,

as explained above. This result is the desired length of the alternate

task, or, in an analagous fashion, the number of alternate tasks which

need be administered.

Starry

The advantage of the generalizability approach is obvious--not

only can multiple levels of facets be considered simultaneously

(something the product-moment correlation could not do), but it can

incorporate multiple facets, and yields information on the relative

sizes and sources of score variation. Also, between-person variation

is not essential for useful results for decision-makers. The results

of such an analysis can be used to aid in a rational, empirically-

based decision for determining an appropriate measurement strategy.

Cost-effectiveness decisions can also be made if the loss of infor-

mation (expressed as the size of the error of measurement) due to

different measurement approaches can be quantified on the same scale

as the cost of testing.

For the field of performance testing, the authors conclude that a

generalizability theory approach to dealing with departures from

reality in testing can aid in the establishment of empirically-based

choices of measurement strategies.
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