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r- Abstract

Strategies for Rotating Canonical Components

Robert M. Thorndike

Western Washington State College

Rotation of canonical components is contrasted with factot rotation

and the concept of communalitie in canonical analysis is considered.

Three possible strategies for rotating canonical components are

described : single rotation of all components, separate rotation of each

set, and sequential rotation of 'Ile set then the other. Constraints,

conditions and consequences of rotation by each procedure are discussed.

It is concluded that single rotation is logically inconsistent, and the

other strategies may be appropriate in some situations.
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Strategies for Rotating

Canonical Components

ROBERT M. THORNDIKE
Western Washington State College

When listening to discussions between investigators who use canonical anal-

ysis, one o.:.casionally hears speculation about the possibility of rotating the

canonical components to ease and clarify interpretation of the results. The

realization of this possibility 17an probably be traced to the work of Bartlett

(1948), who pointed out the similarities between factor analysis and canonical

analysis, and of Meredith (1964), who developed the idealof canonical component

structure coefficients. Since rotation is a standard and useful procedure in

factor analysis and since there are substantial similarities between factor anal-

ysis and canonical analysis, it would seem that rotation procedures might fruit-

fully be applied to the canonical components as an aid to interpretation. (For

the purposes of this discussion we will assume that the diagonal entries in the

correlation matrix are all unity, so we are technically dealing with rotation

of principal components.)

However, the problem of rotation is more complex in canonical analysis

because there are two sets of variables. The concepts of simple structure and

psychological meaningfulness are relatively straightforward in a principal

components analysis because there is only one set of variables. The criteria

for the location of factors, both original and rotated, are contained within

the single set, and the interpretations refer only to that set. Canonical

analysis provides two sets of component loadings, each determined by relations

existing between the sets as well as within the sets. Interpretation of the
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components ma, involve both between-set and within-set relationships.

A multitude of criteria and procedures have been advanced for the rotation

of factors, but all have as their objective simplicity of structure and increased

meaningfulness. These criteria might be applied to the problem of rotation in

canonical analysis as well. However, none of the existing approaches address

the problem of how to handle the relationships between the two sets of variables.

Rotation in canonical analysis is logically different from the factor matching

problem.

Before attacking canonical rotation, it is first necessary to consider some

Jf the conditions which exist at the outset of any rotation problem. In both

factor analysis and canonical analysis a decision must be made regarding the

number factors or components to retain for rotation. This decision determines

the proportion of variance of each variable which is to be intluded in tht analy-

sis, and hence, the total variance available. A large array of rules of thumb,

some statistical in nature, some psychometric, and some logical, exist to aid

in making this important decision in factor analysis. In contemplating the

rotation of canonical components, it would seem reasonable to retain only those

pairs of variates which have statistically significant canonical correlations

since one of the objectives of canonical analysis is to identify pairs of

components which are correlated.

Using this decision rule has an important consequence. It limits the range

of correlations among pairs of rotated components. Selecting the number compo-

nents defines the space available for rotation, which of course, is also true in

principal components analysis. We may view canonical analysis as similar to a

principal components analysis in the sense that in either case the selection of
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a particular number of components defines the common variance of each variable.

The difference is that in canonical analysis there are two of these "communal-

ities" associated with each variable, one given by the sum of squared loadings

on the composites within its set (which I will call intraset communalities), and

one given by the sum of squares of its loadings on the composites of e other

set (which I christen interset communalities). Thus, if there are 2 variables

in one set and a variables in the other, there are 2 (,+a) constraints or con-

stants restricting any rotation, with 212 of them affecting either set of com-

ponents.

These communality conditions have an additional consequence for rotation.

The total redundancy of the first set wit'. the second and of the second with the

first must remain constant under rotation because each is the mean of the sum of

its respective interset communalities. Since an alternative definition of re-

dundancy (Stewart and Love, 1968) is the sum of the means of the sums of the

intraset loadings multiplied by their respective squared canonical correlations,

and the intraset communalities must be constant, then the sums of squared canon-

ical correlations must be constant. Given this restraint, and since the original

canonical correlations are successively maximum correlations within the conditions

of orthogonality, the canonical correlations between pairs of components after

orthogonal rotation will fall in the range between the highest and lowest sign-

ificant original correlations.

With these limits and assurances, we may consider three possible approaches

to the rotation of canonical components. For purposes of illustration, let us

assume that there are three significant canonical correladons, and, therefore,

three pairs of components. The first approach might be to rotate the entire

set of six components to some more satisfactory solution. Second, one might



rotate each set of three components independently to new locations. The third

possibility would be to select one of the sets for rotation to an improved solu-

tion and then rotate the second set to the location which yields successive max-

imum correlations with the components of the first set. Let us consider each of

these strategies in somewhat more detail.

When the components of both sets are rotated simultaneously to a single

overall solutiun, the rotation is constrained by both the interest and intraset

communalities. This complex set of constraints may make the rct Lion difficult.

However, the more important question is whether this type is logically

defensible. The two sets of variables presumably nave been p. pt separate for a

reason. If an investigator is interested in the structure of the combined sets,

then he probably should have performed a traditional factor analysis in the Oast

place. Given that the sets are logically distinct, ignoring this distinction in

the rotation step would seem to be an error. A combined simple structure for

the canonical components is a logical contradiction.

The second strategy, that of rotating the components of each set to an

independent solution, is logically consistent with the separation of sets in

canonical analysis. Once a satisfactory structure is found vithin the set, the

new canonical correlations may be computed. However, the new components in one

set may now have complex relations with the components of the other set. The

criterion of maximum relationship must be sacrificed for clarity of structure

within set. One may reasonably ask whether it might not be better to factor

analyze the two sets independently and, after separate rotations, compute the

correlations between factor scores. The major difference between these two

proposals is that in the first case the overlap between the sets is put to

maximum use in determining the spaces defined by the composites, while in the
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second it is ignored. Either procedure could be defended; however, the former

would seem preferable where overlap between the sets is being considered.

In those situations where the structure of one of the sets is of primary

interest and the structure of the other set is desired with reference to the

first, and would seem advisable to use the third rotation strategy outlined above.

Assume, for example, that one has data from several measures of achievement as

one set of variables and sJdie personality measures as the other set. It might

be desirable to find an interpretable structure for the achievement measures and

then determine the composites of the personality variables which best predict

those components which were significantly correlated. Then, the components of

the achievement set would be rotated, perhaps by varimax or some other algorithm,

to their new positions. Finally, the components of the personality set would be

rotated to new positions, subject to the constraint that each component have

the highest possible correlation with one of the already rotated achievement

components. The necessary equat-ions are presented-in-the-handout.

There are two major advantages which would accrue from this procedure. First,

although the criterion of maximum relationship between pairs of components would

no longer hold precisely, this criterion would be met within the limitations

imposed by the positions of the components in the first-rotated set. Second,

giving the rotation of the first set, this procedure would provide a unique solu-

tion for the second set.

Of the three approaches discussed, the third seems most in keeping with the

spirit of canonical analysis. The first may be rejected outright as logically

inconsisteat with fundamental assumption that two sets of variables are being

analyzed. Traditional factor analysis of the combined data would be the appro-

7



priate procedure. The second approach disregards the criterion of maximum

relationship. It may be appropriate in some situations while independent factor-

ings may be the method or choice in others. Only the third strategy retains the

fundamental principles of canonical analysis while at the same time seeking

descriptive clarity.



The basic equation of canonical analysis is
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