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I, INTROPUCTION

The individualization of instruction throughout the American
educational system contiinues to increase at an accelerating pace,
reflecting an increase in concern that every student receives the
maximum potential benefit to be derived from that system, The very
nature of that individualization requires a continuing input of
information about the student to the instructional manager so that
the individualization can be managed effectively., The source of that
informational input is typically a short criterion-referenced test,
specific to one or more behavioral objectives being taught in the
particular training module that the student is currently undextaking.
The project upon which we are reporting here is one that has been
concerned with the development and implementation of some new
statistical techniques, that make it possible to provide this
informatlonal input in a more efficient mwanner. The fundamental issue
1s one of test length, Every minute devoted to testing is now a
minute less that is devoted to instruction, Thus there is a
continuing desire to minimize the time allocated to testing in each
instructional unit.

This report comes in seven parts. Part I, this Introduction, is
a very brief and broad structuring of the problem and work that has
been done to solve this problem, Part II consists of a broad
overview of this projeet in which the contribution of each paper
prepared for the project is stated in concise form s¢ that the reader
will have available a broad relief map of the territory to be explored.
This overview is then flushed out in Part III with an integrated
discussion of these papers and a more detailed indication and
discussion of the new techniques and methods provided by each paper.
Throughout this discussion we attempt to keep the technical language
at a most moderate level, even at the expense at times of ignoring
some technical difficulties and detail, It is our hope that this
section will be readable, mot only by specialists in educational
measurement and statistics, but by the broader range of people who
are directly concermed with the inmstructional-decision process.
Following this discussion, the technical developments made on this
project are presented in detail in four appendixes, each focused
around one major aspect of the instructional decision problem,  The
four headings for these appendixes are discussed and integrated as
part of the discussion in this introduction, Those concerned with the
actual implementation of the instructional decislon procedure will
need to study these technical papers in great detail,

It 1s generally recognized that, taken on their own, scores from
short tests do not provide adequately definitive iInformation about
student competency, so that sufficiently accurate instructional
decisions can be made consistently, On the other hand, there is
enormous interest within the group of instructional managers to keep
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testing time low and specifically to keep test lengths below the 20-item
mark, and preferably within the 6 to 12~item range. If this desire is
to be satisfied, and at the same time we are to assure ourselves that
accurate decisions are being made, on the average, then most of the

time there will be a need to bring some further information into the
decision-making process.

There 1s no difficulty in recognizing that such information exisats,
in the background, and 1s available for use. The difficulty is one
of finding the technology for quantifying this information and
incorporating it into the decision-making process. One of the things
that we know about individuvalized instructional programs, for example
the University of Pittsburgh's Individually Prescribed Instructional
(IPI) Program, is that students take very short curriculum embedded
tests within each module, and continue to receive instruction until
such time as there 1s good reason to believe that they can pass the end
of module posttest. Thus the very nature of the IPI module 18 such
as to reduce the variability of posttest performance levels, and to
suggest that there is reasonable prior probability that any particular
student will pass the posttest. It is precisely this information
which can and needs to be incorporated in the decision analysis which
has a short criterion-referenced posttest as its direct data input.

These considerations clearly suggest that Bayesian metheds which
combine prior (that is, background) information with direct observational
information, may be useful in sharpening IPI decision making. We shall
therefore turn to the technical problems of quantifying this background
information for a Bayesian analysis. If IPI proframs were unifoxrmly
administered throughout the country, it would be possible to gather
background information at various locations and thus to construct
data~based prior distributions for adoption at all IPI installations.
Unfortunately, from the decision making point of view, but not
necessarily from the educational point of view, IPI methods are
administered with substantial local flexibility. As a result, data
gathered from one installation may not necessarily be relevant to the
implementation of IPI at another installation.

At a particular IPI installation at which the instructional
Process has stabilized and made uniform and where historical records
are available, it will be possible to use standard Bayesian methods
to develop an Instructional decision making process. However, as a
fast growing and evolving entity, IPI is finding itself being
modified continuously in current schools and being introduced into
new schools where such background information has not been gathered,
and therefore standard Bayesian techniques cannot be used with any
expectation of guaranteeing high decision-making accuracy. It
therefore becomes necessary to devise and implement new Bayesian
methods that make it possible to simultaneously gather the background
information necessary to provide prior information and at the sawe
time, gather and integrate the direct information concerning the
performance on each individual student. It is this requirement for
simultaneous data gathering that demanded the development of new and
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complex statistical methods, that make it possible to simultaneously
incorporate both direct observations and collateral group information.

A gross statistical methodology for accomplishing this has been
available in embryonic form since the early days of Tyuman Kelley's
Statistical Methods text (1923)., Kelley concerned himself with the
estimation of true score for a group of individuals and showed, by a
standard application of regression theory, that improved estimates of
true score could be obtained through a2 simultaneous estimation
procedure, based both on the direct ohservations of the particular
individual and estimates of the group mean and true score variation
across individuals, all made simultaneously. The celebrated Kelley
formula is of a form which estimates each person's true score as a
weighted average .f his obsexved score, and the mean of the observed
scores throughout the population. Thus, each individual's true score
estimate is regressed from his observed score towards the overall mean
observed score in the population. A specific formula was given by
Kelley which showed the extent to which improvement i3 estimation
could be accomplished using this technique. 1In 1956, Charles Stein
used & similar kind of logic to show that in most situations, when a
group of individual parameters are being estimated simultaneously, the
standard estimates, which here correspond to the mean scores for
each of the individuals, are inadmissible in a strict statistical
sense in that there are always available estimates with better mean-
squared error. Stein proposed a class of estimates of a form
remarkably similar to those given by Kelley. 1In fact they differ from
Kelley's estimates only to the extent that the regression to the mean
is statistically somewhat less than with the Kelley estimates. Stein's
work opened up the whole field of simultaneous estimation, and his
ideas stimulated similar developments from other classical, from
Bayesian, and from empirical Bayesian points of view. From a Bayesian
point of view the first comment on this possibility was made by
Lindley (1962) in the discussion at the Royal Statistical Socilety of a
second paper by Stein (1962). A paper by Box and Tiao (1968) on the
Bayesian Estimation of Means for the Random Effects Model, provided
a specific Bayesian methodology, though Box and Tiao did not directly
confront the simultaneous estimation problem. Recently this approach
has been taken up in great detail by Lindley and his associates, and
a general formulation has been provided in a paper by Lindley and
Smith (1972). The possibility of application of these methods in
educational research was noted several years earlier by Novick (1970).
Building upon the work of Lindley (1971), Box and Tiao (1968), Stein
(1956, 1962), Kelley (1923), and others, Novick, Lewis, and Jackson
(1973) specialized the Bayesian simultaneous estimation procedure to
the problem of the estimation of proportions in m-units and shortly
after doing this, as indicated in that paper, it became clear that
this method might have useful application in the field of criterion-
referenced tests. Stimulated by discussions with Ronald Hambleton,
who was an ACT postdoctoral fellow during the Summer of 1971, a
proposal was forwarded to the Office of Education for the funding of
a project to further develop and tallor these Bayesian methods for




potential implementation within TPI. In this proposal it was pointed
out that, in theory, these methods could increase the effective-test
length the equivalent of 6 to 25 observations through the use of
collateral information. To put it the other way around, this allows
a reduction in the required test length anywhere from 6 to 25 items
while maintaining the same level of precision.

It was also noted in the proposal that the primary new statistical
development would focus on a shift in strategy from the point estimation
of individual ability levels, or true performance levels, to the
determination of the probability that a particular individual mastery
level is larger than some specified criterion level. From an
educational point of view, this represented a talloring of the theoiy
to criterion~referenced testing ratl.er than norm-referenced testing.
Statistically, this meant that the output of the Bayesian analysis would

not be a joint-point (modal) estimate of ability scores for students,
but rather for each student, the aposteriori determination of the
probability that his mastery score is larger than some specified
criterion level. The strategy as noted in the proposal would be to use
these aposteriori probabilities in a standard Bayesian decision
theoretic context for deciding whether or not an individual student
should be advanced to the new unit of instruction or retained for
further work in the current module. In the proposal it was suggested
that the simplest reasonable approximation to reality would be to
assume a.threshold loss function which specified zero losses fox
correct positive and negative decisions, and losses & and b,
respectively, (a, b > 0), for false positive and false negative
decisions. Tor the most part this loss structure is assumed throughout
the work on this project though in one paper we do indicate that this
is only a first approximation to reality, and that other more
reasonable approyimations should be considered in future work. We

do expect that procedures developed here, based on threshold loss,

will be a very good and workable first approximitions indeed.

In developing our materials for this project we have been
cognizant of the fact that several different kinds of technical
questions would need to be resolved, and that several different kinds
of audiences would need to be addressed in our final report. This has
led us to seek collaboration with persons more experienced in IPI
methods and the preparation of several somewhat overlapping expository
papers, in addition to our technical papers. First let us consider the
technical questions. The primary problem was to work with the Bayesian
simultaneous decision model for the estimation of proportions in
m~units, and to derive from the joint posterior distribution on these
parameters, the marginal distributions for each individual element.
Beyond this there was a further desire to use this posterior
distribution in & full decision-theoretic analysis. TFurthermore, there
was a2 desire to utilize in the analysis, not only a general level of
collateral information concerning the general level of performance of




other students in the instructional unit, but also the performance of
the particular student on other instructional units. This would be
particularly useful in placement testing, where a student takes short
tests on several possibly highly related instructional objectives. The
technical results required for these znalyses are contained in

papers by Novick, Lewis, and Jaeckson (1973, Appendix 3.1), Lewis,

Wang, and Novick (1973, Appendix 3.2), Lewis, Wang, and Novick (1973,
Appendix 3.3), Wang (1573, Appendix 3.4), Wang and Lewls (1973,
Appendix 3.3), and Wang and Lewis (1973, Appendix 3.6}, as listed in
our overview summary that follows shortly. These papers tend to be
rather tachnical in nature, and if one wishes to read more than the
introductory and summary sitatements, one will need to follow some
detailed statistical and mathematical arguments. Nonetheless, it was
necessary to present this matevial in a rigorous technical foym so

that researchers wishing to extend these results would have a basis for
such extension. These papers can be found in Appendix Number 3 to

this report.

The general question of the application of statistical-decision
theory would, in an JPI context, be one which we felt required fairly
extensive discussion, W¥hile the threshold~loss function that we have
adopted is certainly a useful one, and indeed we mean to have the
results derived from it taken seriously, we do beiieve further
gsignificant improvements nay be possible, using more sophisticated lossc
functions. To make this further work possibl:z, we have included a
rather lengthy primer on decision analysis for Individually Prescribed
Instruction which comprises the content of Appendix Number 2. It is
our hope that persons within IPI, and those associated with other
individualized instructional programs will give this paper some study,
and hopefully a dialogue will ensue among such people discussing the
relative merits and demerits of vzrious possible loss functions.

We have also, in this project, been cognizant of the fact that
the procedures we are proposing are extraordinarily complicated, both
theoretically and practically. Yet we intend that these procedures
b adopted for classroom use by persons whose professional skill lie
in instruction and not in theoretical-educational measurement or
statistical decision theory. Thus we knew we would need to provide
means for making these procedures available in a simple format for
classroom use. We have attempted to accomplish this in two ways.
First of all, in our theoretical appendix (Appendix Number 3), we
have provided a set of tables (Wang, 1973, Appendix 3.4) which indeed
drastically simplify the computational work in Bayesian IPI decision
making. We might also refer to a paper in development by Millman
(in preparation) which gives a detailed numerical example applying
our methods and these tables to an IPI decision-making problem.

However, we did not feel that this approach would be entirely
satisfactory. Our feeling has been, and remains, that the whole
arithmetic process required for decision making will best be done, in
toto, by a computer. We note that mini-computers are now in use




within IPI, and with the continuing reduction in costs of such
aquipment, we can speculate that in the future IPI will, in its
atandard form, be monitored in a computer-based enviromment. The
question then was, could :e take our decision making procedures and
computerize them in such a way that this enormously complicated and
sophisticated machinery could be used by persons having a verbal-
theovetical understanding of what was being done, but little precise
understanding of the sophisticated mathematical and statistical
theory underlying the given formulas.

Fortuitously, the principal investigator has been involved,
concurrently, in a project concerned with the interactive conversational
analysis of data using Bayesian methods, It therefore seemed
appropriate that some additional efforts be made in this area, and
that the result from this additional effort be reported as part of
this project. The problems faced in attempting to provide
conversaticnal language programs to monitor IPI are identical with
those in other conversational sctatistical applications. These are
discussed in detail by Novick (1973, Appendix 4.1), Isaacs (1972,
Appendix 4.2), Isaacs (1973, Appendix 4.3), and Christ (1973,
Appendix 4.4).

Y

In summary then, Appendix Number 2 deals with possible further
developments in decision-theory application, Appendix Number 3 deals
with the core-mathematical theory underlying our proposed applications,
and Appendix Number 4 deals with the computer problems involved in
such applications. For most readers however, the papers of greatest
interest will be those contained in Appendix Number 1. Here four
papers are given which are concerned directly with the implementation
of these new methods within Individually Prescribed Instruction.

These papers should probably be read in the order in which they appear.

The paper by Novick ané Lewis on Prescribing Test Length for
Criterion-Referenced Measurement (1973, Appendix l.1), in fact is much
more general than its title would indicate. It is rather a careful
laylng out and consideration of all the factors which must be taken
into account, both in the actual decision process sand in the
consideration of necessary length for criterion-referenced tests. One
of the difficulties, we think, in attempting to apply decision theory
in IPI, is that gome of these considerations have not been discussed
in the literature, and therefore there is insufficient guidance on
these matiers, Specifically isolated for consideration are: 1) the
current level of functioning of the student, 2) the minimum a2cceptable
criterion level to certify mastery, 3) the prior probability that a
student has attained mastery, 4) the loss ratio for faslse positive
and false negative decisions, and 5) the premium on testing time
within the instructional process. Following a discussion of these
topics it becomes possible (¢ intelligently investigate the test length
problem and te give some tentative recommendations. Hambleton and
Novick (1973, Appendix 1,2), explicate some of the ideas contained
in the paper of Novick, Lewls, and Jackson (1973, Appendix 3.1),
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in a less theoretical language and provide a brief introduction to

the threshcld loss paradigm. Ferguson and Novick (1973, Appendix 1.3),
give some details on precisely how these methods can be implemented
within Individualiy Prescribed Instruction, and Hambleton (1973,
Appendix 1.4), broadens the perspective by indicating the relevance

of these methods both within IPI and for other instructional programs
such as Project Plan.

11




II. OVERVIEW

In Janvaiy of 1972, the United States Department of Health, Education,
and Welfare awarded a grant of $99,492 ¢o Dr. Melvin Novick, Director
of ACT's Psychometric Research Depictment for a study on 'New
Staristical Techniquaes to Evaluate Criterion—Referenced Tests Used

in Individually Prescribed Instruction." The focus of the project
has been on cthe application of certain Bayesian methods introduced

by Professor D. V. Lindley of the University College Lundon whose
research has been supported in Part by ACT for the past three years.
Work by Melvin R. Novick, Charles Lewis, and Paul H. Jackson, on the
Bayesian estimation of proportions im m groups, released as ACT
Technical Bulletin No, 1, and subsequently published in Psychometrika.
has been the initial take-off point for applications in this project.
This work suggests that in a criterion-referenced measuremcnt
situation, an increase in precision equivalent to adding from six

to twenty~five items can be attained by using the Bayesian method.

In this newly defined approach, the estimation of mastery scores is
replaced by the determination of the probability that the true
mastery scores are larger than some specified critcrion level. The
result of this research i1s the creation c¢f a new test theory for
Individually Prescribed Instructicen, and a8 statistical and compu-
tational technology for implementing this theory.

4 bibliography of the papers completed for this project, with

annotations indicating how each pap.. fits jnte the ovsrall project
development fullows,

Annotated Bibliography

1.1 Novick., M. R., & Lewis, C. Prescribing test length for
criterion-referenced measurement. ACT Technical Bulletin
No. 18. Towa City, Iowa: The American College Testing
Program, 1973,

This bulletin demonstrates the effectiveness of the eight to
twelve item criterion~referenced tests in placement pre and
posttesting when the new Bayesian methods of analysis are used,
It is also noted here that Bayesian techniques can be applied
sequentially without modification, and thus all of the benefits
of sequential analysis are available without further complicating
the analysis. In phe introduction, work of Millman is used to
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1.2

1.3

1.4

demonstrate the inadequacy of classical analysis. Specific test
length recommendations are given dependent upon (1) the loss
ratio, (2) prior probabilities, and (3) the specified criterion
level.

Hambleton, R. K., & Novick, M. R. Toward an integration of
theory and method for criterion-referenced tests.
Journal of Educational Measurement, 1973, 10(3), 159-170.

This article dascribes, in nontechnical language, the ideas and
methods introduced in Reference 3.], and elaborated in Reference
3.2, to take acccunt of the collateral information on (m-1)}
students to hely estimate the probability that the mastery

level of each aw~th student is greater than the required
criterion level. The central concept taken from References 3.1
and 3.2, and exposited here, is thai irn Individually Prescribed
Instruction decisions must be based on the aposteriori probability
that the student's level of functioning is greater than the
pruscribed criterion level. This approach is illustrated using
a simple thresiold loss function and a posterior marginal
distyvibution that depends on sample, prior, and collateral
information.

Ferguson, R. L., & Novick, M. R. Implementation of a Bayesian
system for decision analysis in a program of Individually
Jrescribed Instruction. ACT Research Report No. 60.

Towa City, Towa: The American College Testing Program,
1973,

This report provides some precise detail of how the new methods
can be used in placement testing, pretesting, and posttesting.
The various decision modes of IPI are identified and the precise
way in vwhich the new techniques can be implemented at each need
are discussed in detail.

Hambleton, R. K. A review of testing and decision-making
procedures for selected individualized instructional
programs. ACT Technical Bulletin No. 15. Towa City,
Iowa: The American College Testing Program, 1973.

This bulletin discusses the similarities and differences among
several approaches to individualized instruction and concludes
that the new Bayesian methods will be useful in each of these
approaches. Included in the survey are svstems used in
Individually Prescribed Instruction, Project Plan, Mastery
Learning, and approaches to computer assisted instruction.

13




2.1

3.1

3.3

3.4

Davis, C. E., Hickman, J., & Novick, M. R. A primer on decision
analysis for Individually Prescribed Instruction. ACT
Technical Bulletin No. 17. Towa City, Iowa: The American
College Testing Program, 1973,

This bulletin provides an overview of how the utilities of various
outcomes can be logically combined with the aposteriori
probabilities of these outcomes to provide a coherent basis for
decision making. This paper 1llustrates in detall, results for
several important utiltiy functions, thes going beyond the

simple threshold loss situation. For each of these loss
functions, an illustration is given of how to determine the
advance~retain observed cut-score.

Novick, M. R., Lewis, C., & Jacksen, P. H. The estimation of
proportions in m groups. Psychometrika, 1973, 38, 19-46.

This is the fundamental theoretical paper which provides the
basls in Bayesian methodology for all of the methods, theory

and applicaticns discussed In the remaining project papers. This
paper was produced prior to the commencement of the project and
was the basis for the project proposal.

Lewis, C., Wang, M., & Novick, M. R. Margimal distributions
for the estimation of proportions in m groups. ACT
Technical Bulletin No. 13. Towa Clity, Towa: The American
College Testing Program, 1973,

This paper provides the key methodological development of the
project —— a procedure for obtaining the aposteriori probability
of mastery for each student individually from the m~group
proportion method, using a well established computational
approach to warginalization due to Box and Tiazo.

Lewls, C., Wang, M., & Novick, M. R. A proper prior for Wp

in estimating proportions in m group:. ACT Technical
Bulletin Supplement No. 13~-1. Towa City, Towa: The
American College Testing Program, 1973,

This supplement introduces an lmprovement to the basic theory
of Reference 3.2 that makes it possible to incorporate prior
information on the average of the group means.

Wang, M, Tables of constants for the posterlor marginal estimates
of proportions in m groups. ACT Technical Bulletin No. l4.
Iowa City, Towa: The American College Testing Program, 1973.

These tables make it possible to monitor Individually Prescribed
Instruction without dependence on & computer.,

14




3.5

3.6

4.1

4.2

Wang, M., & Lewis, €. Estimation of proportions in a two-way
table. ACT Technical Bulletin No. 16. TIowa City, Iowa:
The Amevican College Testing Program, 1973,

This work makes it possible to take .iccount of the collateral
information contained in the test scores on t-1 objectives as
well as m-1 students in estimating the proficiency of each
m-th student on each t-th objective. Following transformation,
a full two-way analysis of variance is used, though it is also
shown in the following paper that a two-way no interaction
model consistently provides almost identical results.

Wangz, M., & Lewis, ¢, Marginal distribution for the estimation
of proportions in a two-way table. ACT Technical Bulletin
No., 19, Towa City, Iowa: The American College Testing
Program, 1973,

An extension of the previous paper, this bulletin provides a
method of assessing the probability of a student's mastery of
that objective. A no-duteraction model is used here because
of computational difficulties encountered in attempting
marginalization with the interaction model.

Novick, M. R. High school attainment: An example of &
comput er~assisted Bayesian approach to data amalysis.
International Statistical Review, 1973, 41, 264-271.

Prepared prior to the beginning of this project, this paper
demonstrates how a nonstatistician can use compleX statistical
techniques with the step-by-step conversational guidance of

a system of Computer Assisted Data Analysis (CADA). As a
result of this finding, we believe that CADA can make it
possible for the classroom teacher to use the sophisticated
statistical procedures developed in this project.

Isaacs, G. L. Interdialect translatability of the BASIC
programming language. ACT Technical Bulletin No. 1l.
Iowa City, Iowa: The American College Testing Program,
1972,

4 study of the BASIC programming language showing how it

is possible to program in one dialecr in such a way as

to facilitate translation into other dialects, and thus

make it possible to transport CADA programs to many different
kinds of computer installations. This research makes it
possible to implement CADA mode IPI programs on any

adequate computer system.
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4,3 Isaacs, G, L. A tabular survey of basic computer systems.

4.4

ACT Technical Bulletin Supplement No. 11-1. Iowa City,
Iowa: The American College Testing Program, 1973.

These tables provide a feature by feature comparison of BASIC
language dialects as implemented on various computer systems
with an evaluation of the adequacy of each dialect for CADA
implementation. Particular emphasis is placed on chaining,
string handling, and formatted output capability, as these

are the BASIC features most needed in CADA., This report,
completed in March, 1973, shows that a large number of computar
systems are adequate for CADA applications. An on-going survey
of DASIC systems indicates that many of these are being
substantially improved. Most of these system updates should
be completed within the next ninety days, shortly after which
a revision of Technical Bulletin Supplement No. 11-1 will be
prepared.

Christ, D. E. The CADA moniter. ACT Technical Bulletin No. 12.
Iowa City, Iowa: The American College Testing Program,
1973.

This is a description of the Monitor used to organize the CADA
package of programs. The interrelationship of the programs
currently available on the Monitor is shown. Also the

design philosophy, which enables the programs to be easily
interconnected and used by unsophisticated investigators, is
discussed. Much of the design philosophy is applicable to many
other interactive situations, since 1its main thrust is the
improvement of the man-machine interface, while minimizing
programming effort.
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III. SUMMARY OF RESULTS

A. The Structure of the Statistical Monitoring System and Its
Implications,

The prerequisite for the introduction of a statistical monitor for
IPI is a clear statement of the problem and an understanding of the
evaluations that would need to be made for input into the decision-
making process. In the paper entitled, "Prescribing Test Length for
Criterion-Referenced Measurement" by Novick and Lewis (1973, Appendix
1.1), each of the kinds of information required for prescribing test
length and making decisions based on criterion-referenced tests is
discussed. The five major considerations in structuring IPI decisions
aret

(1) The current level of functioning (%) of the student,

(2) The minimum advancement score (%,) required for defining
mastery of a module,

(3) Background infcrmation available on each student and on the
instructional process,

(4) Relative losses incurred in making false positive and false
negative decisions, and

(5) The premium on testing time within the instructional process.

In criterion-referenced testing, we think of a hypothetical
(infinitely large) pool of test items relevant to a single behavioral
objective. A student is considered a master of a behavioral objective
if the percentage of items he would get correct over the entire pool,
his level of functioning (%), exceeds a specified criterion level (wo).
Because a test contains only a small sample from that pool, errots
in decision making must be expected.

As a first approximation it may be assumed that a loss a 1is
incurred if a student is deemed a master when he is not (a false
positive) loss b is incurred if he is deemed a noumaster when he is
not (a false negative), and zero loss if a correct decision is made.
A coherent system of decision making is based on the aposteriori
probability that the student's level of functioning is above the
specified criterion level and the ratio a/b of losses associated with
false positive and false negative decisions. The rule is that a
student is advanced if the ratio of the probability that he is a
master to the probability that he is not, exceeds the ratio of false
positive to false negative losses. This is equivalent to choosing
that action (advance or retain) which has the highest expected utility.

Given a prior distribution for a student's level of functioning and
a given test length (sample size) it is possible to determine a
minimum advancement (test) score required to indicate proficiency.

This is the lowest score that will yield an aposteriori probabilitcy of
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mastery large enough to justify an advancement decision. The details
of this analysis are given in this paper (Novick and Lewis, 1973;
Appendix 1.1). Consideration is given to specified criterion levels
of .70, .75, .80, and .85. The loss ratios are assumed to take

the values 1.3, 2.0, 2.5, or 3.0. Thus it is assumed that typically

a loss incurred for a false positive decision will be at least one and
one~half times that for a false negative decision. Various prior
distributions are considered for each specified criterion level.
Generally it is assumed that the prior distribution will have 2 mean
value near the specified criterion level and typically and desirably
slightly larger. For each analysis with a particular expected value
for the prior distribution, four different priors are considered with
varying degrees of certainty in the prior distribution. The results
of these analyses are summarized in a set of tables, seven through
eleven (Appendix 1.1, Pages 20, 23, 26 and 28). Fer each combination
of specified criterion level, loss ratio, and prior distribution, a
reconmended test length and minimum advancement Score are given. At
the end of each table, some general recommendations are given which seem
to be reasonable for a wide range of prior distributions for the
particular specified criterion levels and loss ratios. For example,
with a wgy value of .70, and a prior distribution having expectation of
.70, the general recommendation for a loss ratio of 1.5 is a test of
eight items with the requirement of six out of eight correct for
advancement. For a loss ratio of 2.0, a test of 13 items is recommended
with a score of ten being required for advancement. The ratio of 2.5
requires a test of 14 items with eleven correct for advancement, and

a loss ratio of 3.0 requires a test of 15 items with 12 correct for
advancement.

We suspect that these particular recommendations will be pleasant
news for 1PI people. If the loss ratio is as small as 1.5, as it may
well be in some situations, the indication here is that an 8-item
test wili be satisfactory. Even with a loss ratio of 2.0, a 13-item
test will do. Loss ratios of 2.5 and 3.0 do not call for greatly
increased test lengths, however loss ratios as high as this may indicate
that the structure of the unit and its relationship to other units
could profitably be reevaluated. We shall discuss this and similar
questions later in this report. With a wy value of .73, and a prior
distribution with expectation .75, and a loss ratio of 1.5, the recom-
mended test length is 10 items with a minimum advancement score of 8.
While this will likely be thought of as a very acceptable test length,
the situation does not remain as favorable when the loss ratio rises
to 2.0. Here the test length recommendation is for a test of 25 items
with a minisum advancement score of 16. As i8 indicated later in the
paper, this situation can be improved by training the group to a
higher average level of performance. For a w, value of .80 and a
prior expectation of .80, reasonably satisfactery test length specifi-
cations are obtainable provided the loss ratio does not exceed 2.0.
Specifically, for a loss ratio of 1.5, a seven-item test is deemed
adequate with a minimum advancement score of six. The loss ratio of
2.0 on an eight~item test will be adequate with a winimum advancement
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score of seven. With loss ratios 2.5 and 3.0, tests of length 20
and 22, with minimum advancement gceres of 17 and 19, respectively,
are recommended.

When the situation does suggest the appropriateness of high loss
ratios, a considerable reduction in the required test length can be
obtained by seeing to it that the means of the prior distribution is
rather higher than the specified criterion level. For example, with a
Ty value of .80 and a prior expectation for m of .85, 12 and 13-item
tests will be adequate for loss ratios of 2.5 and 3.0. This compares
with test lengths 20 and 22 where the prior expectation of 7 was .80,
The Novick-Lewls paper contains detailed discussions of the relation=
ship of the various input variables beyond that which we shall not
cover here, though we urge readers to study that paper carefully.

We shall consider here only some of the broad implications of this
study for the very structure of Individually Prescribed Instruction.
First we would note that there has been a definite tendency in IPI
to require relatively high criterion levels; typically, the walue
.85 is used. One might well speculate whether this really reflects
a perceived need for a high criterion level, or whether it is, in
fact, a function of a high loss ratio combined with a desire for a
short test length. Only when we get to the point that required loss
ratios and criterion levels can be independently evaluated will it
be possible to use tables such as the ones presented in this paper.
We might speculate, and indeed hope, that for most situations a
specified criterion level of .75 will be adequate, but that a loss
ratio greater than one, possibly 1.5 or 2.0, will be appropriate.

The tables presented in this paper also have a great implication
for the amount of time that might best be put into an individual
training unit. When loss ratios are high, it may well be highly
advantageous to strengthen the training program to the extent that
the mean output is well above the specified criterion level. This
will make it possible to use short tests, or alternatively, will
generally reduce the risk of incorrect classification. This will of
course be more expensive and this investment must be balanced out
against the reduction of cost of testing and the reduction in the
expected loss due to incorrect decision.

Another implication of these tables is that the training module
should also be structured so that very high loss ratios are not
appropriate. This will be accomplished by seeing to it that individual
modules are not overly dependent on preceding ones. Here again, one
is balancing off changes in the module itself against changes in the
criterion-referenced testing.

We would emphasize again that the primary purpose of this paper
is to provide a structure for an intelligent discussion of decision
makiag within IPI, including the question of prescribing test length.
The results contained here,.we think will be useful, but they should
in no way be considered to be definitive. We do not know what loss
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functions or specified criterion levels are appropriate. We do know
that the loss function adopted here is only a first approximation to
reality, We are reticent to consider more complicated loss functions
at this point, because of the difficulty of getting reliable judgments
as to which of these may be appropriate. Our hope is that this paper
will initiate some substantial discussions among IPI people, so that
further papers of this kind can be attempted, based upon more defini-
tive evaluations of loss ratios, specified criterion levels, prior
distributions, and loss functions. Some of these points are touched
upon in the summary of the Novick-Lewis paper.

The paper entitled "Toward an Integration of Theory and Method
for Criterion-Referenced Tests" by Hambleton and Novick (1973, Appendix
1.2}, provides a first attempt at tying previous discussions of
criterion-referenced testing and Individually Prescribed Instruction
to formal decision theory., Generally definitions given by Glaser and
Nitko (1971) are taken as starting points for this marriage of theory
and practice, According to Glaser and Nitko, "a criterion-referenced
test is one that is deliberately constructed so as to yield the
measurements that are directly interpretable in terms of specific
performance standards.” The performance standards are usvally specified
by defining some domain of tasks that the students should perform.
Representative samples of tasks from this domain are organized into
a test. Measurements are taken and used to make a statement about
the performance of each individual, relative to that domain., Thus
the quantity of interest here is the level of functioning of the
individual student, which is defined as the proportion of items that
he would answer correctly in a hypothetical infinitely large population
of items reievant to the specific behavioral objective wnich this
test examines. It is ther further assumed that as a first approximation,
it is appropriate to specify some value on this scale, 0 to 1, defined
by this level of functioning, and to call that point the minimum
criterion level. Persons with levels of functioning above this level,
are considered to be masters and those below it are considered to be
nonmasters. The decision process is thought to be one of deciding
in which of these two categories an individual person belongs. It
is recognized that this arbitrary dichotomization is somewhat unreal,
however under certain circumstances it will represent quite a reasonable
first approximation to reality,

The third papev in Appendix Number 1 is entitled “Implementation
of a Bayesian System for Decision Analysis in a Program of Individually
Prescribed Instruction" by Ferguson and Novick {1973, Appendix 1.3).
This paper should be particularly useful to those persons who have
some knowledge of IPI, but require some further details in order to
understand how our new statistical procedures would be implemented,
The paper begins with a brief description of the structure of IPI,
with a detailed description of the IPI mathematics program, There
then follows a specific description of how the instructional decision-
making process would function. It is pointed out that in IPI there
is a great deal of information available about the instructional
program, Quite specific information is available concerning the
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distribution of the percentage of items answered correctly by students,
and it is thus possible to make inferences about the true level of
functioning of each student and the mean and standard deviation of
these true values in the population of students. It is further pointed
out that if tle instructional program were completely efficient and
the students were without human frailty, there would be no variation
in true level of functioning of students pon posttests. A student
would remain in a unit only until that instant at which his level of
functioning attains a prespecified criterion. However nothing
approaching this is possible with present instruction technology. 1In
the real world of IPI there will be some variation of true levels of
functioning among students on posttests. And it is pointed out that
this background information can be combined with direct observational
information to improve the decision-making process. It is also noted
that other background information can be used, namely that involving
the performance of the student on tests of other skills., It is argued
that surely a person scoring highly on t-l subtests, and a little

less highly on t-th would, we suspect, have a true score on the t-th
test higher than his observed score, and that this somewhat lower
observed score might be due in part to bad luck or carelessness, It

is pointed out that the method for performing these analyses is
available from the work of Wang and Lewis (1973; Appendix 3.5 and 3.6).

The report ends by illustrating the kind of format that can be
used to transmit information to the instructional manager, Currently
following an IPI posttest, the manager receives a skill profile on
each student. On this profile the percentage correct that the student
got on each of the skills is reported. And from this the instructional
manager decides which skills the student must redo. Under the
proposed change the posttest profile would not consist of these
percentage correct scores, but rather, for each skill, the probability
that the student's true level of functioning is greater than the
specified criterion level. Thus while the information to be fed
to the instructional manager is somewhat different than it has been
in the past, it is certainly no more complex. It will be necessary
to teach instructional managers what these new numbers are, what they
mean, and how they are to be used. But this process should not
be terribly difficult. Indeed there may well be enough instructional
material in this particular report to accomplish this task.

The fourth paper appearing in Appendix Number 1 is "A Review of
Testing and Decision-Making Procedures for Selected Individualized
Instructional Programs" by Hambleton (1973). While the current
research effort has been directed primarily at one particular
individualized program, namely IPI, our view is that these same
methods can be used in other programs, namely Project PLAN and the
Mastery Learning Program, as well as in various approaches to computer-
assisted instruction. The survey by Hambleton gives us enough of a
picture of each of these programs to confirm this belief, and
furthermore suggests that none of these programs currently has any
sort of well-developed decision process. Undoubtedly a major under-
taking would be required to implement the Bayesian decision-theoretic
system in each of these. There is no question in our mind but
that this would be useful.
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B. Statistical Decision Theory for Individually Prescribed
Instruction

The papers in Section A have proposed a statistical monitoring
system for IPT in the framework of statistical decision theory. 1In
particular, a threshold loss structure for the problem was proposed
and the implications of that loss structure were investigated. At
the same time it was pointed out that this is only one of many
possible loss structures for this problem and that indeed it should
only be considered as a first approximation to an appropriate loss
structure.

In Appendix 2 we present a paper entitled "A Primer on Decision
Analysis for IPI". The purpose of this paper is to provide a brief
semi~technical presentation of decision theory set within the context
of IPI, so that persons concerned with IPT can learn enough of
decision theory to understand how such methods can be applied. The
paper begins with a formal statement of decision theory in a two
decision situation and demonstrates the application of normal and
extensive form analysis. Computations for both types of analysis
are presented in complete detail so that the reader can see how each
operates, It is then pointed out that under geuneral conditions, both
normal and extensive form of analysis will always lead to the same
decision, and since extensive form analysis is the easier to do, it
therefore becomes possible and desirable to adopt it as the standard
procedure.

In extensive form analysis the first task is to compute the
posterior probability distribution of the unknown parameter given the
prior distribution and the data. Once this is done this probability
distribution can be combined with the statement of the loss structure
to arrive at an extensive form decision. The discussion then turns
to the use of extensive form analysis with continuous posterior
distributions and specific applications and examples relevant to
IPI are given. This continuous form for the prior distribution is the
one that has been discussed previously in the expository papers.
Particular emphasis is placed in the discussion here on procedures
for determining cutting scores, that is the point in the observed
score continuri above which a student should be deemed a master and
below which he should be deemed a nonmaster. This complements the
work in Appendix 1.1,

There then follows a reasonably complete discussion of utility
theory which indeed makes a generalization of threshold loss possible.
In this way it is possible to have different utility for true positive
and true negative decisions. The paper then discusses a linear
utility function which may be useful in some situations followed by
a discussion of quadratic utility and exponential utility.

The most reasonable appearing utility function and one which may
indeed be most appropriate for IPI application is the squared
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exponential utility function. A brief description of this utility
function is given. There then follows a discussion of a thrze action
problem in which the possible decisions are

(1) The student should be sent back one module,
(2) He should be retained in the present module,
{3) He should be advanced to the next module.

A complete analysis for this situation is discussed within the
framework of threshold utility. It is then discussed in the
framework of linear utility.

The final section of the report deals briefly with the question
of deciding whether or not it is useful, at a particular point in a
sequential testing environment, to take another observation, Lhat is
have the student answer ancother item.

It is a general property of Bayesian inference that the analysis
is identical whether cbserw:tions are taken all at once or taken
sequentially with the possibility of stopping whenever a decision
can legitimately be made. For example, if the appropriate rule is
that a student can be advanced if he gets seven out of eight and the
items are being administered sequentially, he could terminate test
taking if he were to answer the first seven items correctly or if,
at any time, his total of incorrect responses exceeded one. In a
more general framework when exact Bayesian snlutions are used rather
than the approximate ones discussed here and in Appendix 1.1, the
formal procedure for deciding whether or not an additiomal item
should be administered involves comparing the eXpected value of
information to be obtained from that item with the cost of
administering this item. This, of course, is that the value of
information and the cost of administering an item have been put on
a common scale. In practice this is a very difficult thing to do.
We have not in this report, therefore, considered costs involved in
testing but in theory this could be done.
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C. Theoretical Developments

The thrust of the theoretical development for this project is
based on a specialization to the “Estimation of Proportions in m
Geoups" by Novick, Lewis and Jackson (1973, Appendix 3.1), of the
methods of simultaneous estiwation developed in a Bayesian context
by Lindley (1971) and in other contexts by Stein (1962), Robbins
{1955), and others, The Bayesian model employed here begins with the
assumption that each student is administered a random sample of items
from a population of items and that the scoring is binary right/wrong.
It is assumed throughout that all studenis received the same number of
items. In order to greatly simplify the analysis, the random variatle
X, which is the numbey of correct responses of a student, is trans-
formed to a new variable, G. The transformation employed is the
well-known root arcsine transformation which in its simplest form is
the arcsine of the square root of the ratio x/n. This transformation
in a more complex form due to Freeman and Tukey (1950} has the
advantage of providing a random variable which for even moderate
values of n (eight will generally do for our purposes) is such as to
have a known variance as a function of n alone, Thus the data then
consists ¢f m observations from m different normal popualtions
(persons) with known variances, but unknown means Yi- The mean
value, y; in each of these populations is the corresponding arcsine
transformation of the level of functioning wy for the individual
student. The problem then is to simul taneously estimate the m
values Yy -

If it can be assumed that no prior information exists which
cAan differentiate one student from another, then our joimt prior
distribution on the set of parameters Y will be exchangeable and this,
mathomatically, will be equivalent to the assumption that these students
were randomly sampled from some population. If we make this assumption
and further strengthen the model by assuming that the population is
normal with mean up and variance ¢p the model is complete.

The Novick, Llewis, and Jackson paper (1973) shows how it is
possible to introduce prior information on the variance ¢y of this
distribution and the later note (Appendix 3,3) shows how it is possible
to incorporate prior information on Hp -

When this is done and the data are put into Bayes theorem, the
result is a joint posterior distribution on the set of ability
parameters y. In the Novick, Lewis and Jackson paper (1973), the
strategy at this point was to obtain a joint nolel estimate of the
Y whose elements are the y; and to then transform these elements
into estimates for the individual values my . This solution is
consistent with what is usually required in norm-rnferenced testing
but is inadequate for the criterion-referenced requirements of Indi-
vidually Prescribed Instruction.
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The central technical development of this project is contained
in Appendix 3.2, In this paper, the work of Novick, Lewis and
Jackson (1973) is extended by taking the posterior joint distribution
of the y{ aud obtaining from 1t the marginal distribution ¢f each
Y{ . The approach here is entirely numerical, as it is noi possible
to obtain a closed form expression for these marginal distributions.
After several unsuccessful attempts, an approach used originally by
Box and Tiao (1568) and by Hill (1955) was found to be adequate,
This approach involved obtaining tie marginal distribution of Y;
conditional on ¢p, and the marginal distribution of ¢p alone, and then
obtaining marginal distribution of Y; (unconditional) by numerically
integrating with respect to ¢r . A computer program of some complexity
was written to accomplish this numerical integration.

If we assume that IPI is being monitored in a computerized environ-

ment, this computer program can be incorporated as a subroutine and

ts complexity becomes a matter of no concern Since the user need

have no direct contact with it. On the other hand there is often
a desire to monitor IPI offline, in which case it would not be
possible to make the necessary computations of the marginal distributions.
In order to make this possible an asymptotic expression for the marginal
distribution of Yji was obtained, It turned out that Y; can be well
approximated by a normal distribution provided the number of items

is eight or more, and 7, is not too near zero or one, Unfortuunately

the mean and variance of this normal distribution cannot be obtained
as closed-form expressions and must in facc be calculated numerically.
It turned out, again, that these computations are complex. Therefore
in order to make it possible Lo do offline IPI monitoring, it was
necessary to construct a set of tables for the mean and second raw
moment of this asymptotic distribution, With these tables (Wang,

1973; Appendix 3.3) there is little difficulty in performing the
necessary calculations.

It may be appropriate at this point to make some remarks concerning
the force of the exchangeability assumption, This assumption requires
that when the analysis is performed, we have no differential information
about students. This assumption may not be valid for some students,

It may flrst be violated in that we have a record of prior performance
on each student and it may be the case that some students are typically
repeaters, In that they typically must take posttests two or three
times, while others may typically get a pass on a posttes: the first
time through, If this is the case, it may well be useful t. categorize
stuvents in this way and to do separate analyses for these subgroups

of students, However, where no consistent pattern can be found, it
should be satisfactory to do the analysis on all students at one

time,

A second situation in which this assumption may be invalid is
for students who have in fact already failed this examination on one
occasion, and are retaking it as repeaters. If it is known that
repeaters differ from first time test takers in any particular way,
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it may, in fact, be necessary to treat repeaters ag a separate group.
These considerations can of course only be determined by studying

data from a particular IPI application. Nevertheless, it is important
that this assumption be well understood by tliose attempting application
of this technique.

Appendix Number 3.5 and 3.6 by Wang and Lewis (1973 a, b),
represents a significant advance in statistical technology for IPI
monitoring. W¥While the theory ccntained in these papers is complete,
it has not been subject to even the modest empirical study that the
simpler theory lhas been, and as a result we do not have as clear an
indication at this point as to what further practical improvement<
on the simpler theory are made possible here. The 1dea behind the
work in these references is that it is possible to gain information
about a particular student's ability on a particular behavioral
objective not only from the fact that he was in an instructional
program with a group of other students, all of whom received the same
training and that therefore they can be expected to be at a roughiy
similar level, but also it is possible to note that this student has
been trained and is now being tested on other behavioral objectives
at the same time, and that his ability on the t-th bzhavioral objective
will surely be reflected to some extent by his perfc:zmance on the
other t-1 objectives. This will be true if there is any relationship
at all between the t objectives, as there typically is. Thus the
whole Kelley (1923) approach can be used to adopt collateral information
from these other objectives for estimatlion of the t~th objective on
each student.

The mathematical approach here, following root arcsiae transformation,
is to utilize a full two-way analysis of variance model, which in the
first instance was studied with possible interaction. The first
Wang and Lewis paper (1973 a) shows how to analyze this model, and
shows how to get out point estimates. The work here is in a way
similar to some previous work done by Lindley though the special-
ization here yields wuch more simple results dvz to the fact that the
variances known.

In these papers, a two-way no—interaction model is alsn used and
it is found that on the data sets investigated almost no difference
in point estimates were obtained from the interaction and no inter-
action models, A possibly wild speculation here 1. that the arcsine
transformation not only gives homogeneous variance, and to Some excent
normality of distribution, but also has the desirable side effect of
tending to yield additivity.

In the second Wang and Lewis paper (1973 b), the no-interaction
model 1s employed in order to get out marginal distributions for the
Y; in a mpanner very similar to that used in Appendix 3.2. These
posterior marginal distributions of the Y{ can then be used in a
decision analysis in precisely the same way as posterior distributions
from simpler analyses. It proved impossible to obtain marginal
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distributions numerically with the interaction model and so the
no-interaction model was used.

The work in Appendix Number 3.5 and 3.6 should be uyseful both
in posttest and placement applications where infe.ence needs to be
made simultaneously on several behavioral objectives for each student.
From the work in Appendix 3.1 we have a reasonably good idea of the
benefit to be gained from the collateral information on other students
taking the test. However, we have not as yet been able to give
sufficient thought to have any idea of how much information is gained
and how much resultant decrease in testing can be accomplished by
using information on the t-1 other behavioral objectives for each
student. In any event there 1s some limitation here, in that in order
to use the arcsine transformation thecry with a normality assumption,
a sample of eight items seems to be almost necessary if we are to work
at all away from the center of the distribution. Thus even with a
m, value of .75,.an n of 8 seems Jesirabie, if not absolutely necessary,
while with a Ty value of .85, an item sample of size 8 seems at best
to be barely adequate to justify the assumptions of the model.

At this point it seems clear that the theory will be extremely
useful, but that it will be necessary to study and determine the Kinds
of distributions that are to be found in practice and to determine
as a result of this what test lengths and decision rules will be
appropriate. The discussion in Appendix 1.l barely begins to tap
the question of test length specification. However, it will be
exceedingly difficult to do any further work on this without & close
look at real data.
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D. Computer ammrsupcmm

Both the complexity of the solutions provided in {C) and the
desirability of maintaining continuously updated records on each
student, virtually necessitates the implementation of the statistical
monitoring system for IPI within a computer environment. We therefore
wish to discuss certain issues that arise once this position is taken.
First we wish to indicate that we feel that a computerized application
is feasible without the existence of highkly technical computer personmel
at each installation.

What we have in mind is that it should be possible to centxally
develop fully conversational interactive programs for monitoring IPI
which are such that the instructional manager will need to know almost
nothing about the mechanics of the monitoring system beyond that
contained in the references in Appendix Number 1.

The possibility of using a computer to lead a researcher or manager
through a complex statistical analysis on a step-by-step basis as in
computer-assisted instruction has been demonstrated by Novick {(1673).
His system of Computer Assisted Data Analysis (CADA) {(Appendix 4.1},
has been used to make available some very highly complex Bayesian
statistical methods, and these methods have been demonstrated as being
usable by relatively unsophisticated users. Appendix 4.1, developed
outside this project, shows one application of CADA, and we believe
it is such as to demonstrate that the typical IPI instructional manager
could do the kind of complex work we are discussing here with very
lictle training. In order to mouitor his IPI class, he would need
only to respond to questlons put to him by the computer and to use
the computer output in much the way he has used other information in
the past. This is described briefly in Appendix 1.3.

Once this position is accepted, it then becomes a question of
preparing IPI management programs for use on a variety of computer
hardware. This introduces a major problem, in that various computers
have rather different interactive capabilities. Two possibilities
were ¢xamined. One involved the use of interactive FORTRAN and the
second, the use of the BASIC programming language. Interactive
FORTRAN has the advantage of being somewhat more highly standardized
from one computer to another, whereas BASIC seems to have rather
different dialects for each hardware system. The disadvantage of
interactive FORTRAN is that it operates only on large scale computers
and not on mini-computers, and furthermore it is not, in practice,
available on very many computers at present. On the other hand,
every mini-computer manufacturer has one or more versions of BASIC
available for their machines. Therefore, a close look was made at
the BASIC programming language and its various dialects, to see if it
would be possible to write in one dialect of BASIC and to reprogram,
or translate, into other dialects, A survey undertaken by Isaacs
(1972; Appendix 4.2) came to the conclusion that it would be possible
to select one dialect of BASIC as the core dialect, to ignore some of
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the sophisticated features of that dialect, and to then write programs
which could be very easily translated into any other dialect. At
present we have been working with the Hewlett Packard HP2000C dialect
of BASIC, but we could equally well work with the Digital Equipment
Corporation PDPLl1/40 dialect. In either case, if care is taken in

the writing of the program, translation to the other dialect or

indeed to any other dialects would be very easy.

The second report written by Isaacs {1972, Appendix 4.3), carefully
surveys all of the BASIC dialects available in March of 1973, and
indicates the strength and weakness of each of these., The conclusion
is that most dialects have sufficient capability for CADA application,
and that therefore IPI monitoring could be accomplished with them.

It should be noted that BASIC dialects for mini-computers are under
constant states of revision and that by the time this report is filed,
many of the surveyed dialects will be much stronger than they were

in March of 1973. 1In particular, we would note tha: the Wang 2000
super desk calculator would seem to come very close to having the
capability for CADA application. If this ls true, then the cost of
the computerized IPI management becomes almost trivial.

The final paper in this report is a technical description of the
CADA monitor indicating how subroutines can be chained to the monitor
in BASIC and how it 1s possible to continually update and improve
the monitor without disturbing the system in operation.

The statistical methodology developed here, the availability of
relatively inexpensive computational machinery, and the clear under-
standing and explication of a theoretical structure for IPI, we think
now makes it clearly possible and highly desirable to introduce a
structured management for IPI, The theory presented here is still
just that, theory, To make it work it is now necessary to implement
these decision-making procedures within an ongoing IPI operation.,

No doubt such application will result in the refinement of the theory
and hopefully in its improvement,
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Prescribing Test Length For Criterion-Referenced Measurement

I.- Posttests

by
Melvin R. Novick and Charles Lewis
The American College Testing Program The University of Illinois
and
The University of Iowa
Introduction

In a program of Individually Prescribed Instruction (IPI), where a
student's progress through each level of a program of study is governed by
his performance on a test dealing with individual behavioral objectives,
there is :onsiderable value in keeping the number of items on each test
at a minimum. The specified test length for each objective must, however,
be adequate to provide sufficient information regarding the student's degree
of mastery of the behavioral objective being tested. Just what the minimum
acceptable length will be depends on the manner in which test information
is used to make decisions about individual studenis, the level of
functioning required for defining mastery of an objective, the relative losses
incurred in making false positive and ifalse negative decisions, the background
information available on the student and on the instructional process, and

the premium on testing time within the instructiomal process. Our purpose in

. The research reported herein was performed pursuant to Grant No.
OEG-0~72-0711 with the Office of Education, U. S. Department of Health,
Education, and Welfare, Melvin R, Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct
of the project. Points of view or opinions stated do mot, therefore,
necessarily represent official Office of Education position or policy.

We are grateful to Charles Davis and Nancy Petersen for helpful comments
and computations. This paper will be published in the CSE Monograph Series
in Evaluation, Number 3, a publication supported in part by the National
Institute of Fducation and by the American Educational Research Association.
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this paper is to discuss these issues and provide some broad guidelines for
test-length specification for IPI posttests. These specifications will be
tentative because of unresolved substantive and methodological issues, bui
we believe that they should provide some improvement on current practice.

A separate, and rather more complex treatment will be required for placement

and pretest length specification.

Background
In a criterion-referenced measurement approach to Individually
Prescribed Instruction, we imagine a population of test items, having mixed
item difficulty, dealing with a particular objective and an ideal decision
which advances a student past this objective if he is able to answer at least
a given percentage of the items in the population. This minimum passing

percentage, the so-called criterion level, simply reflects the degree of

mastery deemed sufficient for this objective (although it implicitly involves
the difficulty of the items as well), The actual percentage of items that
a person would answer correctly in the population of items is called his
level of functioning. In practice, the advancement-retention decision must
be made from a small sample of obsexrvations (test items), and, hence, errors
in the decision process must be expected.

One common treatment of the test length problem in a criterion-
referenced measurement context has been given by Millman (1972). He
studied a standard decision rule which advances the student if the
percent of items correctly answered on a test equals or exceeds the
required criterion level. Here it is assumed that the jtems on the test
may be treated as a random sample from the population of interest, so
that the obtained percentage correct is a useful estimate of the true

population percentage for the student. Using binomial probability
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Table 1

Percent of Students Expected To Be Incorrectly

Advanced or Retained

Specifieu Criterion Level .70

Student's True Level of Functioning

Advancement No, of

Score Test Ttems ; 50 55 60 65 : 70 75 80 85 90 95
6 7 6 10 16 23V 67 55 42 28 15 4

6 8 15 22 32 43V45 32 20 11 4 1

7 9 9 15 23 341554 40 26 & 5 1

7 10 17 27 38 s510'35 22 12 5 1 -

8 11 11 19 30 43'43 29 16 7 2 -

9 12 7 13 23 35)5 35 2 9 3 -
10 13 5 9 17 28!5s58 4 25 12 3 -
11 14 3 6 12 22V 64 48 30 15 4 -
12 15 2 & 9 17 : 70 54 35 18 6 -

Specified Criterion Level .75

Student's True Level of Functioning*

Advancement No. of

Score Test Ttems | 50 55 60 65 70 { 75 80 85 90 95

6 8 15 22 32 43 55032 20 11 4 1

7 9 9 15 23 34 46' 40 26 14 5 1

8 10 6 10 17 26 38! 47 32 18 7 1

9 11 3 7 12 20 31.!5 38 22 9 2

9 12 7 13 23 35 49V 35 20 9 3 -

16 20 1 2 5 12 24'58 33 17 4 -

17 21 - 1 4 9 206 @ 20 5 -

18 22 - 1 3 7 17 : 68 46 23 6 -
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Table 1 (continued)

Specified Criterion Level .80

Student's True Level of Functioning*

Advancement No, of )
Score Test Items 30 55 60 65 70 75 : 80 85 90 G5
6 7 6 10 16 23 33 451 42 28 15 4
7 8 4 7 11 17 26 370150 34 19 6
8 9 2 4 7 12 20 3056 40 25 7
8 10 6 10 17 26 38 s3l32 18 7 1
9 11 3 7 12 20 31 4b3w 22 9 2
10 12 2 4 8 15 25 39l 44 26 1 2
11 13 1 3 6 11 20 3!ls5 31 13 2
12 15 2 4 9 17 30 46!'35 18 6 -
17 20 - 1 2 4 1 23059 35 13 2
19 22 - - 1 3 7 16 [ 67 42 17 2

Specified Criterion Level .85

Student's True Level of Functioning®

Advancement No. of
Score Test Items | 50 55 60 65 70 75 80 : 85 90 95
7 8 & 7 11 17 2 37 500 3% 19 6
8 9 2 4 7 12 20 30 4! s 23 7
9 10 1 2 5 9 15 24 38 46 26 9
10 11 1 1 3 6 1 20 32035 30 10
11 12 - 1 2 4 9 16 28l 56 34 12
17 19 - -« 1 2 5 11 24!35 20 7
19 21 - - « 1 3 8 18 : 63 35 8

#The true level of functioning is the percent of items a student
would be able to answer correctly if he were given the entire universe
of items.

Students having true level of funztioning values less than the specified
criterion level should fail a test composed of all items from this universe.
However, on auy given test of finite length, some of these students will get
more than the minimum advancement percent of the items correct and be
congidered as “passers". The expected percent of such Incorrect advancements
are given in the body of the table to the left of the dotted line.

Students having true level of functioning values equal to or greater
than the minimum advancement percent should pass such a test. The percent
of these students who will be incorrectly retained are shown in the table
to the right of the dotted line.
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tables, Millman obtained the probability that a student with a given
true level of functioning weuld be incorrectly advanced or retained by
this procedure.

Table 1 expands on some of Millman's computations and gives the
conditional probability of incorrect advancement or retention for a variety
of true levels, test lengths, and minlwum passing percentages. The first
?mpression this table provides is that a substantial proportion (sometimes
more than half) of the students with true levels close to, or at the
criterion level, will bé incorrectly advanced or retained, at least for
the test lengths considered. There appears to be a slight improvement
in accuracy of decision as the test length increases from 8 to 22 items,
although this effect is largely hidden by fluctuation in the probabilities,
due to changes in the percentage correct required for advancement. For example,
with a criterion level of .7, the percentage correct required for advancement
is .75, .78, .70, .73, or .75 for test lengths of 8, 9, 10, 11, or 12 items,
respectively. This brings up a question as to the optimality of the decision
procedure assumed in Table 1. To provide a framework for answering this

question, let us consider some of the issues involved.

Suppose seven out of eight were taken as the minimum advancement score

when the criterion level os .75; the probability of incorrect advancement
would decrease substantially for all students with true levels below

the criterion level. This is shown in Table 2. On the other haad,

those above .75 suffer a substantial increase ip their chances of being
incorrectly retained. Apparently, a more genmeral framework is required
before even the decision procedure can be chosen, much less any judgment
made concerning minigum test length. This framework would need to take
into account on which side of .75 small expected errors were considered

to be more important.
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Table 2

Percent of Students Expected To Be Incorrectly

Advanced or Retained

Criterion Level = .75 Test Length = 8

Advancement True Level
Score 50 55 60 65 7C L 75 80 85 90 95
6 15 22 32 43 55 : 32 20 11 4 1
7 & 7 11 1 26 : 63 50 34 19 6

A Framework For Specifying Test Length

Table 1 is very helpful in identifyingz the seriousness of the problem
of short tests. From a practical point of view, however, a solution to the
problem must involve looking at a different conditional probability, and
abandoning the simple decision procedure that Millman has 80 convincingly
demonstrated to be inadequate. Instead of the probability that a student
will attain a particular test score, given his true level, it 1s the
probability that a gtudent's true level of functioning exceeds the specified
criterion level, given his test score, which is tequired in making a decision.
In other words, it is the test score=--not the true level--which is given
(1.e. observed), and which is the basis for any decision to advance or
retain the student. Thus, a student should be advanced only if the probability

that he has attained or surpassed the criterion level, given his test score,

is sufficiently high. To obtain the necessary probability, an application
of Rgyes theorem is required. In such an analysis, prior knowledge
(expressed in probsbilisti: terms) of the student's true level of functioning
is combined with the (binomial) model information relating the observad

test score to true level; and, the rec:..t is a posterior probability
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distribution for true level of functioning, given test score, The
probability this distribution assigns to levels above the criterion
is the quantity of interest, In this formulation, the problem can be
described as selecting a minimum sample size and an advancement score, so
that students attaining that score will then have a sufficiently high
pr.bability of having at least the minimum required level of functioning.
As a first approximation, let us suppose our knowledge of a student's
true level of functioning is vague, prior to having his test results.
If this state of knowledge is characterized by selecting a uniform
distribution on the interval from zero to unity for true level, w, Bayes
theorem provides the posterior probabilities listed in Table 3 for various
scores and test lengths. The posterior distributicns on which these
probabilities are based all belong to the Beta family, and the parameters
in each case are those given in the table, primarily for future reference.
To generate a decision procedure on the basis of Table 3, we
must select a criterion level (ﬂo) and & minimum acceptable probability
that a student's true level () exceeds this criterion. Thus, for example,
we might take LI .80 and the minimum acceptable Prob(w 2.“01“’ n) = .50,
where x is test score and n is test length, We would then be saying that
we wanted to advance the student only if we were at least 50%
sure that his level of functioning was above ,80. Then, using Table 3,
we see that with n = 8, all students having x > 7 would advance to the

next objective, but not those with x = §, For a test of 12 items, the

minimum advancement score would be 10 correct,

Note, however, that if we required 80% assurance that the true level

of functioning was above .80, [Prob(m > .80) > .80}, then even those with

eleven correct responses to twelve items would not be advanced. We think
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Table 3

Probability Student's True Level Of Functioning Is

Greater Than uo Given A Uniform Prior Distribution

Minimum Criterilon Level——no
Advancerment No. of Posterior
Score Test Items Distribution| 50 55 60 65 70 75 80 85 90 95
6 8 8(7, 3) 91 85 77 6£ 54 40 26 14 5 1
7 8 8(8, 2) 98 96 93 88 80 70 56 40 23 7
8 8 8¢9, 1) 100 100 99 98 95 3z 87 77 61 37
7 9 8(8, 3) 95 90 83 74 62 47 32 18 7 1
8 9 89, 2) 99 98 95 91 85 76 62 46 26 9
9 9 (10, 13 |100 100 99 99 97 94 89 80 65 40
7 10 B(8, 4) 89 81 70 57 43 29 16 7 2 -
8 10 8(9, 3) 97 93 88 80 69 54 38 22 9 2
9 10 8(10, 2 99 %9 97 94 89 8C 68 51 30 10
8 11 8(9, 4) 93 87 77 65 51 35 21 9 3 -
9 11 8(10, 3) 98 96 %2 85 75 61 44 26 1) 2
10 11 (11, 2) J100 99 S8 96 92 84 73 56 34 12
9 12 8(10, 4) 95 91 83 72 58 42 25 12 3 -
10 12 8(i1, 3) 99 97. 94 89 8G 67 50 31 13 2
11 12 8(12, 2) 1100 100 99 97 94 87 77 60 38 L4

43




*
that it is unreasonable to require perfect performance as a standard for

advancement, and therefore, we need to improve upon this analysis. One
way 1s to use a longer test, but we Ean, at least, hope to find a procedure
in which a twelve-item test will be adequate.

The results in Table 3, although they provide relevant information
for mastery decisions about students based on test scores, do not
take full advantage o” the power which is available through the use
of prior knowledge. 1n psrticuiar, it will seldom be the case that our
knowledge of a student's crue level is adequately described by a uniform
distribution. For example, our prior probability that a student is
functioning above a criterion level of .8 might be approximatel® .75.
This would be the case if historicai data suggested that about 75% of
the students who completed a unit of Individually Prescribed Instruction
proved to be at or above mastery level. Moreover, we might judge the
strength of our knowledge to be roughly equivalent to that based on a
score from a l2-item test. (A method for wmaking this assésment will be
referenced shortly.)

¥hen working with a binomial model, it is convenient and generally
very satisfactory to select a member of the Beta class of distributions to
characterize prior beliefs (Novick and Jackson, 1974). If this is done, the
posterior distribution is easily obtained, and in every instance will again
be a member of the Beta family. In fact, if the prior distribution is
B(a, b) and x success in n trials are observed, then the posterior distri-
bution is B(x + a, n - x + b). This can be seen in Table 3, where it is
noted that the uniform distribution is B(L, 1). If we i.strict ourselves
to prior distributions in the Beta family, the beliefs specified in the

previous paragraph are characterized by B(10.254, 1l.746). Given this prior
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distribution 2nd the indicated test results, the posterior distributions
and posterior probabilities of exceeding various eriteria are provided in
Table 4, The precise stipulation of prior distributions must always be
done carefully, but extensive aids (Novick and Jackson, 1974, Novick,
Lewis, and Jackson, 1973) are available, and indeed an elaborate system
of Computer Assisted Data Analysis (CADA) is available (Novick, 1973) to
help an {nstructional decision maker specify his prior distribution. A yet
more sophisticated way of getting prior and posterior distributions for
each person is derived by Lewis, Wang, and Novick (1973) and the required
tables are given by Wang (1973). For the present, we shall suppose that
this work has been done carefully and that the prior distribution used in
the construction of Table & is appropriate.

Tables 3 and & demonstrate clearly the impact of prior knowledge
on our Interpretation of test results. In Table 3, for example, the
posterior probability that a student with & score of six out of eight
items correct has a true level greater than .80 is only .26, whereas
in Table & this probability has Increased to .60. This result should not
be surprising, in view of the fact that we have now set this probability
to be .75, apriori as compared to ,20 in Table 3. If we felt the chances
to be very good that the student had mastered an objective (to a level above
.8) before we saw the test results, then & score of six out of eight will
not substantially change our beliefs; it will lower the probability, bvut
aposteriori may still leave the odds in favor of mastery. In many
applications, a prior probability of mastery may be no more than .60, but
the results will still differ sharply from those obtained, assuming vague
prior information. Note that if we were to adopt the rule that e will

advance a student 1f the aposteriori probability of mastery is at least
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Table 4

Probability Student's True Level of Functioning Is

Greater Than LN Given A B(10.254, 1.746) Prior Distribution

Minimum Criterion Level-~mu
Advancement No. of Posterior °

Score Test Items Distribution } 50 55 60 65 70 75 80 85 90 95
6 8 B(16.254, 3.7463100 100 98 96 90 78 60 37 15 2

7 8 B(17.254, 2.746)Y100 100 100 99 97 92 81 62 36 10

8 8 B8(18.254, 1.746)X100 100 100 100 99 98 94 85 66 32

7 9 B(17.254, 3.746)100 100 99 97 92 82 65 41 17 2

8 9 8(18.254, 2.746)100 100 100 99 98 93 84 66 39 1l

9 9 B(19.254, 1.746)100 100 100 100 100 98 95 87 69 34

7 10 B(17.254, 4.746)(100 99 97 93 B84 68 47 24 7 1

8 10 B(18.254, 3.746¥100 100 99 98 93 84 68 45 19 3

9 10 g(19.254, 2.746)1.00 100 100 99 98 95 86 69 42 12

b 11 8(18.254, 4.746)100 99 98 94 87 72 51 27 8 1

9 11 g(19.254, 3.746)100 100 100 98 95 87 72 48 22 3

10 11 8(20.254, 2.746){100 100 100 100 99 96 88 72 45 13

9 12 8(19.254, 4.746)[100 100 39 96 89 76 55 30 10 1

10 12 8(20.254, 3.746)100 100 100 99 96 89 75 52 24 4
11 12 8(21.254, 2.746)100 100 100 100 99 96 90 75 48 14

Note: The mean and mode, respectively of 8(10.254, 1.746) are

.855 and .925 and for chis distribution Prob(m > no) for m = .70, .75,
.80, .85 are .92, .86, .75, and .59, respectively. A close loock at these
distributional characteristics will help a decision maker determine if

this prior distribution is a realistic characterization of his beliefs.
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.50, then in this example, we will advance him if the prior distribution

were that of Table 4, but not if it were that of Table 3.

When the decision maker specifies an informative prior distribution,
he 1s saying, in effect, that he wants a decision which will have a high
probability of being correct in that portion of the decision space in which

he thinks the student's ability truly lies. For example, referring to

Table 2, a decision maker with a high prior probability that the student had

a true level of functioning below ,75 would, by virtue of his analysis,
require a minimum passing score of seven correct out of eight items. This
would assure him a low probability of wisclassification for all values
below .75, Another decision maker with high prior probability that the
student was above criterion level would likely require only six out of
eight correct, and thus have low probability of an incorrect decision for
values of .75 or above,

Once we have decided to work with the posterior probability that a
student's level of functioning exceeds some criterion, given his test
gcore, and have made use of our prior knowledge in obtaining this
probability, another issue remains to be settled before we can turn
to the question of test length., Simply stz :.ed, we need to know how sure
we should be that a student has mastered an objective at the chosen level
before wa make the decision to allow him to advance to the next objective.
For instance, 1s a posterior probability of at least .5, as was used in
the last example, a reasonable choice in all cases? Almost certainly
this last question should be answered in the negative. The point at
isgsue here comes down to an understanding of the relative disutilities or

losses associated with the false positive and false negative errors.
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If it were no more serious to advance & student whose level was below
the criterion than to retain a student who was above, we would be behaving
optimally if we were to advance students with posterior probabilities above
.5 and retain the others. In many situations the prior probability will be
this high, and hence an advancement decision could then be made on an apriori
basis. On the other hand, we might consider the loss to be twice as great
for a false advancement than for & false retention. In this case, we should
only advance those students whose posterior probability for being above the
criterion exceeds 2/3. The general result is that we shall achieve the
smallest expected loss if we match the posterior odds to the loss ratio.
Thus, 1f the loss ratio is 2 to 1 (false advance to false retain), a
probability of 2/(2 + 1) gives matching odds of 2/3 to 1/3 above criterion to

below criterion).

Table 5

Losses Associates With Imcorrect Decisions

True Level
>R T <W
-0 o
Advance 0 a
Decision
Retain b 0

To express the result symbolically, consider the notation of Table 5.
Here a is the loss associated with advancing a student whose true level is
below LI and b is the loss for retaining a student whose true level c«ceeds

LI The decision rule which minimizes expected loss in this situation is
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to advance a gtudent if his test gcore 1s such that
b Prob(w i_nolx, n) > a Prod(m < nolx, nj,

and to retain him otherwise. This comparison is equivalent to comparing

the loss ratio a/b to the probability ratio Prob(w 3_n°|x, n)/Prob (x < n0|x, n).

If a = b in our analysis, the decisfon procedure reduces to comparing
the median of the posterior distribution with the specified criterion
level. 1If the median is at least at this level, the student is advanced,
otherwise he is retained. 1In this situation, the de;ision procedure is
very similar to that used by Millman (1972). Though the procedure uséd by
Millman is not Bayesian, it is equivalent to comparing with the mode (rarher
than the median) of the posterior distribution based on a uniform prior.
Thus, in effect, the sampling theory approach gives equal weight to all

equal intexvals throughout the range of m; that 1s, effectively, to take 7 to

be uniformly distributed apriori. This is seldom a reasonable prior
specification. We might also remark that the formulation in Table 5 c¢an be

generalized to provide for differential utilities for correctly identifying
true positives and true negatives as well .s differential disutilities

(or losses) for false positives and false negatives as is done in Table 5.
To do this negative quantities (negative disutilities = utilities) would
need to replace the zeros in Table 5, and a slightly more complicated
analysis would not be used.

It may be worthwhile to summarize the situation at this point. An
instructor wishing to use test results in the context of Individually
Prescribed Instruction should be ready to supply three kinds of information.
First, a criterion level--the minimum degree of mastery required--must be

set, In Individually Prescribed Instruction this seems to run from about
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.70 to about .85, Second, prior knowledge of the student's true level of
functioning must be translated into probability terms, namely a prior
probability distribution for ¥ , Typically, a carefully monitored program
will be such as to suggest a prior probability distribution that assigns a
provability of just more than ,50 to the region above the criterion level.
If this is not the case, the general efficacy of the program should be
re-evaluated, A program that results in a much higher probability may be
wastefully long and one that results in a lower probability may require
strengthening, Finally, the relative losses associated with the two types
of incorrect decisions must be assessed. A ratio of more than 1/l is the
rule (we are told) with ratios of 1,5/1 and 2/l being common, and ratios
as high as 3/1 not being rare,

It should be clear that all three of the above determinations will
have an influence on the minimum necessary test length, As the criterion
level approaches unity, the test must be longer in order to provide adequate '
information about a student's level of functioning in the neighborhood
of the criterion, If prior probabilities of mastery are sufficiently high,
very short tests become possible, but this is not and should not be the
typical case., Finally, higher loss ratios require longer tests to allow
the possibility of high posterior probability of mastery., We shall also
see that greater test lengths are sometimes required because of the obvious

restriction to integer valued sample sigzes,

A Design For Test-Length Specification
The characteristics of the group of students being tested must now

be considered as they relate to test-length specification, Each member
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Table 6

Selected Prior Distributions For IPI Advancement Decilsions

*
Effective Prob(ﬂg <m j_nu)

16
Prior Prior

No. Dietribution Sample Size Mean .00-.70 .70-.75 .75-.80 .80-.85 .85-.90 .90-1.00

1 B(5.6, 2.4) 8 70 .46 .12 12 .12 .10 .08
2 (6, 2) 8 5 .33 .12 .13 .14 13 .15
3 (6.4, 1.6) 8 .80 .21 .10 .12 .15 .16 .26 |
4 p(6.8, 1.2) 8 .85 .12 .07 .09 .13 17 42
5 8(7.2, .8) 8 .90 .05 .04 .06 .09 .14 .62
6 B(7, 3) 10 70 .46 14 14 12 .09 .05
7 B(7.5, 2.5) 10 J5 0 .32 .13 .15 .15 .13 .12
8  B(8, 2) 10 .80 .20 .10 14 .16 .17 .23
9  B(8.5, 1.5 | 10 .85 .10 .07 .10 14 .19 .40
10 B(9, 1) 10 90 .04 .03 .06 .10 .16 .61
11 p(8.4, 3.6) 12 70 .47 .15 .15 12 .08 .03
12 B(9, 3) 12 J5 0 .32 .14 .16 .16 .13 .09
13 B(9.6, 2.4) 12 .80 .18 11 W15 .18 .18 .20
14 B(10.2, 1.8) 12 .85 .09 .07 il .16 .20 .37
15  B(10.8, 1.2) 12 .90 .03 .03 .06 11 17 .60
16 B(10.3, 4.5 15 70 47 17 .16 .12 .06 .02
17 B(ll.25, 3.75) 15 .75 .30 .16 .18 17 .13 .06
18 (12, 3) 15 .80 .16 12 17 .20 .19 .16
19 pg(12.75, 2.25) 15 .85 .07 .07 12 .18 .23 .33
20 p(13.5, 1.5) 15 .90 .02 .03 .06 11 .19 .59

*Note: All entries have been rounded to two decimal places and smoothed so that the

row totals add to 1.00. -
o1
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of the group of students tested h2s been exposed to the same instruction
program under identical local conditions. If a particular student is
not consldered atypical for this group, then our prior beliefs about his
true level of functioning should closely reflect the true distribution
of levels of functioning found in that group. Indeed, elaborate formal
procedures for, effectively, bootstrapping a prior distribution using,
for each examinee, the scor;s on the remalning m - 1 examinees are
described by Wovick, Lewls, and Jackson (1973). Thus, a group characteristics,
through their effect on our prior distributions, do affect test-length
specification. If the average test score of the group 1s high (i.e.,
above the criteriou level) and there 1s little variation among individuals,
shorter tests become feasible.

Since, in practice, prior distributions will be based upon on-site
experience, there will, of course, be different prior distributions
for different sites. What we shall attempt to do here 1Is to show what
sample sizes will be required for a broad range of prior distributions
and loss ratios. What we need to do now, therefore, is to consider certain
combinations of prior distributions, criterion levels and loss ratios,

and see what sample size u:1ll be adequate In each case.

Frr our analyses, we shall consider 20 different prior distributions
for the level of iunctioning m, four specified criterion levels, and four
loss ratios. For e¢ach criterion level, we shall consider all four loss
ratios and four of the prior distributions. The four loss ratios we
shall use are 1.5, 2.0, 2.5, and 3.0. The respective probabilities

P = Prob(m > no) required for advancement [given by setting P/(L - B)

equal to the loss ratiocs, a/b] are .60, .67, .71, and 75, Thus, with a
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loss ratio of 3.0, the posterior probability that the student's level of
functioning is greater than the specified criterion level must be at least
.75, 1if he is to be advanced.

The twenty prior probability distributions we shall be considering
are given in Table § where they have been grouped in blocks of five, with
each block having a distribution witk the respective mean values .70, .75,
.80, .85, and .90. The blocks differ with respect to the concentration of
the prior distributions. Within block, the distributions differ with
respect to their mean values. Note that in the first block the arguments

of each Beta distribution sum to 8, e.g., 5.6 + 2.4 = 8. This indicates

that the amount of prior information contained in each of these distributions
is equivalent to what would be gained from a test containing eight items. If

given one of these prior distributions and some criterion level and loss ratio,

we specify an eight—item test, our posterior distribution will contain
information equivalent to that contained in 16 observations. This contrasts
with the classical procedure which uses no prior information. It is this
increment in information that 1s equivalent to prior observations which
permits a reduction in test length when a Bayesian procedure 1is used.

The first problem in doing an analysis is that of selecting a reasonable
prior distribution. For the present application, we would first need to
ask ourselves what we would expect to find as the mean level of functioning
in our p-sttest group. With a aspecified criterinn level of .70, we might
hope for a mean level of functioning of .70. Thus, we would have people in
training until such time as we would “expect” them to be qualified. Since
loss ratios are typically greater than one, some overtraining may be thought

to be useful, but as we shall see, axcessive overtraining may be wasteful.

&
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Suppose, for concretieness, that we believe the mean Fopulation level
of functioning to be .70, Distributions 1, 6, 11, and 16 satisfy this
condition, and, hence, we may choose from among these. We note that
these distributions are in an iIncreasing order of tightness, as may most
convenlently be seen in the probability assignment given in the last column,
to the interval (.90, 1.00). These probabilities are respectively .08,
.05, .03, and .02, We need to ask ourselves which of thece values seems
most reasonable, and this then will give us some preference among these
prior distributions. We might consider the relative welght of prior
information ar med by each priox distribution (8, 10, 12, and 15 equivalent
prior observations, respectively), and this should help to narrow our
focus to 9ne or two adjacent prior distributions for this, or any other
application., Since the authors of this paper cannot know what an appro-
priate prior distribution will be in applications they have not seen,
it will be most helpful, we think, to work out sample size allocations
for several prior distributions and leave the final selection to be made
"in the field". We believe that the prior distributions, loss ratios,
and spezified criterion levels usad here are typical of those found in
practice, and, therefore, that the specific results we shall obtain will
be useful. However, if cther combinations present tiemselves, we believe
that the general methodclogy that we are demonstrating should be adequate
to the problem. Actually we shall find that most of our specifications
are very robust with respect to the cuelce of prior distribution wichin the

range we have considered.

Some Specific Test Length Recommendations

In Table 7, we give recommended sample gizes and minimwn advancement
scores for no = .70, (a/b) = 1,5, 2.0, 2.5, 3.0 and prior distributions

1, 6, 11, and 16. The values that we have settled on for the body of
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Distributicn

B(5.6, 2.4)%

8(7, 3)
B(3.4, 3.6)

8(10.5, 4.5)

Table 7

Recommended Sample Sizes and Advancement Scores

20

T, " 0
Loss Ratio
Sy 1.5 (60) 2.0 (.67) 2.5 (.71 3.0 (.75)
(.70) 6/8(.62) 10/13(.70) 11/14(.74) 12/15(.78)
(.70} 6/8(.61) 10/13(.69) 11/14(.73) 12/15(.77)
(.70) 6/8(.61) 10/13(.68) 11/14(.72) 12/15(.78)
(.70) 9/12(.62)2 10/13(.67) 11/14(.71) 12/15(.75)
General Recommendations
6/8(75%) 10/13(77%) 11/14(79%)

12/15(80%)

lApriori, Prob(z > .70) for each of the four prior distributions is

.54, .54, .53, and .53,

2por 6/8, Prob(s > .70) = .598.
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this table are not, in every instance, optimum in any statistical sense,
though we are confident that the risks associated with these decision rules
are in every case insignificantliy different from the risks of the optitum
procedures, In selecting values for this table we have sought sample

sizes and minimum advancement scores that would be very efficient over

a wide range of prior distributions. That we have been successful in this
endeavor 1s confirmed by our ability to give general recommendations

that hold throughout the range of prior distributions studied. Actually in
only one instance have we cheated (see footnote 2, Table 7), but again

the increase in expected loss will be rrivial. We would also note that

the required percentage correct and the number of required observacions
increases as the loss ratio increases, which "makes sense" on intuitive
grounds,

A rough indication of the near optimalicy of any of the individual
specifications can be gained from the closeness nf the aposteriori
probability (indicated in parentheses following the specification) with
the value required by the particular loss ratio (given in parentheses
at the top of the‘column). Thus, with the prior disctribution R(7, 3), the
decision rule "six out of eight”, abbreviated 6/8, leads to the aposteriori
distribution B(13, 5) and to Prob(w > .70) = .61l which is just .0l greater
than the required level .60 for the loss ratio 1.5 (1.5 to 1). 1In this
instance, the spec!fied decision rule may be very good. On the otler
hand, consider the prior distribution B(5.6, 2.4). Here the rule 11/14

leads to a value .74 when only .71 is required for a 2.5 to 1 loss ratio.
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Actually, the specification 8/10 is somewhat better giving a posterior
probability of .729. Also for the prior distribution B(7, 3), the posterior
probability with 8/10 is .718. With the loss ratio 2.0/1 and with the
prior B(5.6, 2.4), the rule 7/9 leads to the posterior probability .68 as
compared to desired value of .67. In every case where we have specified
an "almost best" decision rule, the result has been an increase in the
specified sample size and the purpose has been to obtain uniformity of
specification over a reasonably wide range of amounts of prior information.
Considering our general ignorance concerning what might be an appropriate
prior distribution in specific applications, the specifications we have
given should be the more generally useful.

Another indication of how good a particular specification is can be
inferred from the closeness of the percentage correct required by the

advancement rule to the specified criterion level. Clearly, if the

percentage required by the advancement rule is Very much larger than the
specified criterion level, a large percentage of qualified students will

be retained and this is undesirable, particularly for small ioss ratios.

For large loss ratios, this ig less important and hence higher advancement
ratios can, and will need to be tolerated. This feature is exhibited in

Table 7, where the advancement ratios increase with increasing loss ratios.
One can, of course, keep the advancement ratic down very close to the
specified criterion level even for higher loss ratios, but only by having much
larger eample sizes. For example with the prior distribution B(5.6, 2.4)

the specified criterion level LA .70 and the loss ratio 2.0, the advancement
ratio 72/100 is satisfactory since Prob(s > .70[72/100) = ,675, but

the indicated sample size is unacceptable.
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Table 8

Recommended Sample Sizes and Advancement Scores
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Lapriori, Prob(m > .75) = .56,
four prior distributions used in Table 8.

2por 18/22, Prob(x > .75) = .744.
Table 9

Recommended Sample Sizes and Advancement Scores

m o= .75
0
Prior Losg Ratio

Distribution 4:(n) 1.5 {.60) 2.0 {.67) 2.5 (.71) 3.0 {.75)
B(6, 2)1 {.75) 8/10({.65) 16/20(.70) 17/21({.74) 18/22(.77)
B(7.5, 2.5) {.75) 8/10(.64) 16/20(.69) 17/21(.73) 18/22(.76)
B(9, 3) {.75) 8/10(.63) 16/20(.69) 17/21(.72) 18/22(.75)
B(LL.25, 3.75)  (.75)  8/10(.62)  16/20(.68)  7/21(.71)  19/23(.77)°

General Recommendations

8/10(80%) 16/20(80%) 17/21(81%)

18/22(82%)

.55, .55, and .54, respectively, for the

Prob{(s > .80) = .54; for 8.5/10, Prob(m > .80) = .67; for 8.3/10,
Prob(x 2‘.80) = .62; for 9/10, Prob{m > .80) = ,78.

2por 17/20, Prob( > .80) = .70,
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= .80
0
Prior Logs Ratic
Distribution é;(n) 1.5 {.60) 2.0 (.67) 2.5 (.71 3.0 (.75)
8(6.4;-1jg)1 (.80) 6/7{.66) 7/8(.70) 17/20(.72) 19/22(.78)
B(8, 2) {.80) 6/7(.65) 7/8(.69) 17/20(.72) 19/22(.77)
B(9.6, 2.4) {.80) 6/7(.64) 7/8(.68) 17/20{.71)  19/22{.76)
B(12, 3) (.80)  6/7(.63) 7/8(.67) 18/21¢.73)%  19/22(.75)
General Recommendations
6/7(86%) 7/8(88%) 17/20(85%)  19/22(86%)

Yopriori, Prob(s > .80) = .57; for 8/10, Prob(s > .80) = .55; for 16/20,

e
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Note that for each of the prior probabilities used in Table 7,
Prob(s > ,70) > ,50. Thus, on an apriori basis, advancement would be
indicated with a loss ratio 1.0. This will generally be true for the prior
distributions we shall be adopting for our analyses. The point is that
loss ratios of 1.0 are not (we are told) typical of IPI applications, and
if test lengths are to be kept reasonable it will be necessary to use
training programs that give mean output at or above the criterion level.

There has been a definite tendency in IPI to require relatively high
advancement ratios; typically, the value .85 is used. One might well
speculate whether this is a function of a high loss ratio combined with
a desire for a short test length, or whether it really reflects a perceived
need for a high criterion level. (For example an advancement ratio of 6/7
with the prior distribution B(5.6, 2.4) would yield with x = 6 a posterior
Prob{x > .70) = .77 which would be just right with a loss ratio of 3.0.)

The authors of this paper do not know the answer to this question, but hope

that those within IPY will want to consider it carefully. Only through

such serious consideration can the test length problem be “solved".

Some recommended test lengths for v = .75 and four prior distributions
with E;(ﬂ) = ,75 are given in Table’B. Again we have been able to specify
one generally satisfactory advancement ratio for each of the four loss
ratios. We note that the required test lengths for LN .75 are rather
larger than for ﬂo = ,70. In Table 8, we find very short required test
lengths for a 1.5 loss ratio and rather long ones for loss ratios of 2.0,
2.5, and 3.0.

In Table 9, we provide recommendations for “o = .80 when (g(ﬂ) = 80,
The results here parallel those of Table 8, except that the advancement

ratios are very high as compared to the criterion lévels. This is

59




25

relatively unsatisfactory. In Footnote 1 to Table 9, we indicate the formal
results for the prior distribution B(6.4, 1.6) and the sample result
"8.5" correct and "1.5" incorrect and also for "8.3" correct and "1.7"
incorrect. These provide very nice results for loss ratios of 2.0 and 1.5,
respectively. Unfortunately, these are unobtainable sample results. This
demonstrates that in part, large required test lengths may sometimes be
due to the discreteness, and hence, digcontinuity of our possible experi-
mental outcomes. This also suggests that the precise specification of the
advancement rules may be highly sensitive to the mean value of the prior
distribution even 1f 1t is proving to be relatively insensitive to the
total amount of information contained in the prior distribution, which is
indicated by the sum of the two parameters of the Beta distribution.

For example, given the prior distribution B(6.4, 1.6) and the
impossible sample result x = 8.3, n = 10, we have the posterior distri-
butiom 8{14.7, 3.3) which, as we indicated previously, gives

Prob(w > .80) = .62 which suggests that the advancement ratio 8.3/10

might be very favorable with a loss ratio of 1.5. But suppose we had
just a slightly different prior distribution, namely, g(6.7, 1.3) with
é?(n) = .84, then the sample result x = 8, n = 10 would yield the posterior
distribution 8(14.7, 3.3) and thus, for the reasons given above, indicate
that the advancement ratio 8/10 might be attractive. This advancement
;atio is clearly more attractive than the ratio 6/7, despite the fact that
it requires three additional items, because this ratio 8/10 = 80% is closer
to the criterion level than is the advancement ratio 6/7 = 86%.

Because of this yvelatively high dependence of the results on the
expected value of the prioy distribution, it seems important to attempt

some study of the variation of our results as a function of changes in
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Table 10

Recommended Sample Sizes and Advancement Scores

7 = .80
o

Prior Loss Ratio
Distribution dg(n) 1.5 (.60) 2.0 (.67) 2.5 (.71) 3.0 (.75)

g(6.8, 1.2)5 (.85) 8/10(.64) 9/11.(.69) 10/12(.?2)1 11/13(. 76)
g{8.5, 1.5) (.85) 8/10(.66) 9/11(.70) 10/12(.?3)2 11/13(.76)
g(10.2, 1.8) (.85) 8/10(.67) 9/11(.71) 9/11(.?1)3 11/13¢.77)
B(12.75, 2.25) (.85) 8/10(.69) 9/11(.72) 9/11(.?2)é 11/13(.78)

General Recommendatinns

8/10(80%) 9/11.(82%) 10/1.2(83%) 11/13(85%)

For 5/6, Prob(s > .80) = .72.

2For 5/6, Prob(m > .80) = .73.

3For 10/i2. Prob(n > .80) = .74,

“For 10/12, Prob(m > .50} ~ .75.

5For the four prior distributions, the apriori probabilities of = > .80
are .72, .73, .74, and .75. With these prior distributions and with 7/10,
the posterior probabilities of @ > .80 are .41, .43, .46, and .48.
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our prior distribution. For this reason, we have in Table 10 redone our
sample size recommendations under the assumpticn that the mean of our
prior distribution is ,85 instead of .80,

Surely the practitioner will find the sample size recommendecions
of Table 10 to be attractive. Apparently with these prior disbributions,
test lengths need be no greater than 13 for any of the listed loss-ratios.
With the prior distributions having E;(ﬁ) = ,B0, a sample size of 22 is
required when the loss ratio is 3.0.

What is happening is that we are beginning with fairly strong beliefs
that 2T, so that not much data, in confirmation, 1s required even for
high loss ratios. 1In fact, even on an apriori basis, an advancement
decision would be made for all loss ratios up to and including 2.5.
Indeed, we see that the function of the sample data here is to provide
the possibility of obtaining some information that might change the
decision to retention, For example, an observed performance ratio of
10/13 with the prior distribution B(6.8, 1.2) would give aposteriori
Prob(v > .80) = .72, and hence, the student would be retained if the
loss ratio were 3.0 (see also Footnote 5, Table 10).

We believe that the comparison of the specifications in Tables 9
and 10 have important implications for IPI management. When loss ratios
are high, it may well be highly advantageous to strengthen the training
program to the extent that the mean output is well above the specified
criterion level. This will make it possible to use short tests or.
alternatively will generally reduce the risk of incorrect classification.
This will, of course, be more expensive, and this investment must be balanced
out against the reduction in the cost of testing and the reduction in the

expected loss due to incorrect decision. The final Table, Table 11, looks
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Recommended Sample Sizes and Advancement Scores
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T = .85
o
Prior Loss Ratio

Distributions Qf(n) 1.5 (.60) 2.0 (.67) 2.5 (.70) 3.0 (.75)
B(6.8, 1.2)1 (.85) 7/8(.62) 9/10(.70) 17/19(.73) 18/2‘{3(.1"6)3
B(8.5, 1.5) (.85) 7/8(.62) 9/10(.69) 17/19(.72) 19/21(.77)
B(10.2, 1.8) (.83) 7/8(.61) 9/10(.68) 17/19(.72) 19/21(.76)
B(12.75, 2.25) (.853) 7/8(.60) 9/10(.67) 1?/19(.?1)2 19/21(.75)

General Recommendations

7/8(87.5%) 9/10(90%) 17/19(89%) 19/21(90%)
l’l‘he apriori probabilities for m > .85 are .59, .58, .58, and .57.

2por 10/11, Prob(m > .85 = .695).

3For 19/21, Prob(x > .85 = .78).
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very much like Table 9 as far as test lengths are concerned. Here again

some robust length assignments are obtained, though again, the lengths for
the high loss ratios border on being discomfurting. This can be corrected

by training to an average level of functioning of .90. With the prior
distribution B(7.2, 8), we find that Prob(w > .85) = .76, apriori. Observing
6/7 ylelds Prob(w > ,85) = .70, while 5/7 ylelds a value of .4l. Observing
8/9 ylelds .77, while 7/9 ylelds .493. Thus, clearly, very short test
lengths are 2gain possible if the students are trained to a sufficiently

high average standard.

Some Summary Remarks
The test length recommendacvions given In this paper are meant to be
taken seriously and hopefully they will soon be adopted on a provisional and
experimental basis, so that more experience can be gained while some of
the theoretical and substantive issues raised in this paper are debated. The

questions of level of functioning required to define mastery and the

relative losses incurred in making false positives and false negative decisions
require serious discussion and concensus. We also need to get some clear
plcture of what kinds of distributions of outcomes are to be expected as this
determines the amount £ prior information available in making individual
assessments. This third issue 1s, as we have Indicated, intimately related
to the\expected level of functioning that 1s sought in the group being trained.
Hopeful and possible outcomes of such discussions could be a consensus that:

1, In most situations a level of functioning of something less than

.85 1s satisfactory. A value as low as .75 would be highly

desirable. This could be accomplished by redefining the task

domair slightly to eliminate Very easy items.
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2, Training should be carefully monitored so that expected group
performance will be just slightly bigher than the specified
criterion level. This will keep training time and testing time
relatively low.

3. The program should be structured so that very high loss ratios are

not appropriate. That is to say, individual modules should net
be overly dependont on preceding ones.
One problem that does not arise_with Bayesian methods is any complication
if sequential methods are used. Items can simply Le acdministered until
it is clear that a student will definitely, or cannot possibly, attain the
minimum advancement score. Thus with 8 minimum advancement score oi 8/10,
testing can cease as soon as light successes or three failures are observed.
Two issues have been treated in a rather gross way in this paper and
on these important issues further research needs to be done. First it
must be recognized that while the threshold loss function we have adopted
here is a better approximation to reality than, for example, Livingston's
criterion centered squared-error loss (see Hambleton and Novick, 1973),
it is only a gross approximation to be used while better and more complicated
approximations are being investigated, Threo thai immediately come to mind
are:
1. A threshcld loss function with an indifference region in which
there 1s zero loss for false positive or false negative errors.
2, A negative squared-exponential loss used with the root arcsine

transformation parameter

Y = sin-]'/; .
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3. A cumulative Beta distribution loss function,
We expect that these loss functions will give somewhat different and surely
better length specifications than those obtained here, but the overall
decrease in expected loss may or may not be great. We should also remark
that these recommendations are specifically made for first time through
decisions. We have yet to consider the problem of decisions for students

rapeating & unit.

Finally, we would remark that one of the important issues that we
identified at the outset of this paper has been handled in & most casual
and informal manner. To do other éhan this would have enormously complicated
the analysis and delayed substantially the appearance of our recommendations.
We refer explicitly to the premium on testing time within the instructional
process and implicitly to an implied trade-off between training and testing
time, A completely general analysis would consider an available time T and
an allocation of T into instruction and testing times 1 + t = T, so as to
maximize a payoff function which would have a (possibly differential) positive
payoff for each module successfully completed, and a (differential) negative

payoff for an incorrect decision of either type. We are peluctant to undertake

such a sophisticated analysis until such time as the operating conditions

of IPI are more clearly defined.

For the present paper we have implicitly adopted some guidelines which
effectively say that it is very desirable to have test lengths of 12 or
less, tolerable but undesirable to have test lengths as high as 20 and
discomforting to have tests that are longer than this. We have also taken

the position that a decision should not be made on the basis of prior and
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collateral information alone but that mastery must be confirmed by a test
that‘permits demonstration of nonmastery. As in all of the judgmental
decisions made in this paper we have been gulded by counsel from experienced
IPI personnel, particularly Richard Ferguson and Anthony Nitko to whom

we are much indebted. The value of this paper will largely be determined

by the quality of the discussion engendered by it among such people.
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IMPLEMENTATION OF A BAYESIAN SYSTEM FOR DECISION ANALYSIS
IN A PROGRAM OF INDIVIDUALLY PRESCRIBED INSTRUCTION

Richard L. Ferguson
Melvin R. Novick

INTRODUCTION

The leasibibty of instructional programs designed
to adapt to the individua! needs of learners has been
adequately demonslrated by educational systems
hke Indwidually Prescribed Instruchion (Glaser.
1868) and A Program for Learmng in Accordance
with Needs (Flanagan. 1967). Although these
programs accomphsh individualization in somewhat
different ways., each includes componenis which
can be descnbed by the following sequence of
operations:

1. Specification of the learning objectives in terms
of observable student behavior

2. Assessment of the student's entering compe-
tencies.

3. Assignment or election of educational materialk
and/or experiences fitted to the student’s
individual needs.

4, Continuous assessment and monitoring of the
student’s performance and progress

Since programs like IPl and PLAN call foradaptation
of the learning environment to meet individual
requirements, they necessarily rely heavily on the
systematic assessment of sludent progress, Glaser
{1968} has gbserved thal, in }Pl, tést data serve as the
primary source of information enabling teachers to

instruction. Thus. steps (2) and (4) play a prominent
role 1 the successful implementation of IPl A
review of current decision-making procedures lor
lour selecied individuahzed instructional programs
has been given by Hambleton {1973)

The fundamental purpose for testing in In-
dinduahzed instructional programs like 1Pl and
PLAN 15 to ascertain whether or not the student has
attained some prescribed jevel of proficiency in a
specified learmng objective. Hambleton and Novick
(1973) have observed that, “Questions of precise
achievement levels and comparisons among indi-
viduals on these |evels seem to be largely irrel-
evant.” Because test data are usedimitially toplace a
student at the appropnate pomt within an
instructional program or sequence, and thus to
dentily appropnate learmng matenals or ex-
penences gwven his needs. the test models which
have emerged to serve this function are very dif-
ferent from those used ior standard nstructional
models. Because these tests relate a student’s per-
formance on items drawn from a carefully specified
domain to a prespecified criterion or standard. these
tests have come to be called domain or criterion-
referenced lests.

It is not the purpose of this paper to contrast the
differences between norm-referenced tests and
criterion-referenced tests Suffice 1t to say that

make differential decisions regarding student 73: criternion-referenced tests are dehberately con-
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structed so as to yield measurements which are di-
rectly nterpretable in terms of specified pes-
formance standards (Glaser and Nitko, 1871). The
process of constructing such tests involves the
specification of 2 domain of tasks that the student
should be able to perform and the selection of
samples of these tasks representative of that do-
main. The student’s competency in the skill is
judged in terms of his performance in respondingto
the sample of the tasks which is drawn. Performance
on this sample is used to infer that his fevel of
functioning in the domain either does or does not
meet some prescribed standard,

Because student performance ontests usedin IPI
and PLAN is used as the basis for making decisions
affecting placement and advancement,and because
it is crucial that these decisions be accurate. major
importance is attached to the precision with which
each person’'s true domain score (level of
functioning) can be related to the prescribed
proficiency level However, due to time constraints,
the tests are often comprised of a very small number
of items, usually 10 or less, Thus, the precision of
judgment from such tests must be open to question.
Because of the important role which testing plays in
the instructional decision making within IPI, im-
provement in the quality of the decision process
would be greeted with considerable enthusiasmiif it
could be accomplished without a corresponding in-

crease n the length of the tests. This paper is
addressed to the problem of showing precisely how
some new developments in statistical theory make
this goal atiainable. More specifically. the present
paper ndicaies precisely how these Bayesian
meihods coutd be integrated into an ongoing IPI
program, In order to lay a proper foundation, one
describing the exact nature of the measurement
problem in IPI, we propose to confine discussion to
one major component of the system, the math-
ematics program, To this end, a general de-
scription of the assessment instruments used n 1PI
mathematics is contained in the next section.

The mathematical and statistical models which
form the basis of the proposed apphcation, and the
outline of this application, are based on the work of
Novick, Lewis, and Jackson (1973), and the ampli-
fications contained in Lewts, Wang, and Novick
(1973). Wang (1973), and Wang and Lewis (1973a.
1973b). A theoretical discussion of these methods 1s
contained in Hambleton and Novick {1973). The
Bayesian methods of statistical inference developed
in these papers combine direct observation
information on each student with certain
background information, to permit more accurate
decision-making than would be possible withoutthe
use of this background information. The use ¢i this
background information makes possible the gainin
accuracy without additronat testing.

THE IPI MATHEMATICS PROGRAM

Ferguson (1970a) provides a detailed description
of the IPI Mathematics program. Highlights of that
description are provided in subsequent parts ¢f this
section In particular, attentlon is given hoth to the
structure of the curriculum and to the test model
which plays such an important role in the
management of the program.

The Curriculum

Figure 1 conveys the general organization of the
mathematics curriculum. Ten content areas,
Numeration/Place Value, Audition/Subtraction,
Multiplication, Division, etc., are identified; each
occurring at various Jevels of difficulty. The ten
areas are listed in a hierarchical order that is
followed in instruction The intersection ¢l each
level with a specific content a ‘ea determines a unit
that consists of a set of Lehaviorally defined
objectives or skilis, Each number in the table

indicates the number of skills in the unit, Thus, €
level-Systems of Measurement s aunit that consists
of a set of five behavioral objectives (skills) which
share a similar content but are less difficult than the
skitls contained in the F leval-Systems of Mea-
surement. The absence of a number at any position
in the chart indicates that no unit exists for the
corresponding content area and level. Atthe bottom
of Figure 1, we have listed the specific behavioral
objectives for E level-Systems of Measurement,

The Test Model

As previously indicated, the assessment instru-
ments in IPl perforin a dual role in the program,
serving both a placement and a dragnostic function,
The tests are placement oriented in the sense that
they locate a student’s position in the curnculum
with respect to the skills forwhich he jacks sufficient
proficiency, but for which he has the necessary




Level

A B C (M) E F G
Numeration/Place Value 15 9 14 5 6 7 6
Addition/Subtraction 17 12 13 10 4 4 6
Muitiplication 4 7 9 7 4 3
Division 3 4 7 9 5 6
Fractions 3 3 6 7 11 8 B
Money 1 1 5 5
Time 6 6 4 4 2
Systems of Measurement 3 6 6 5 5 6
Geometry 3 2 4 6 4 2
Applications 3 B 9 s 4 6

Behavioral Objectives

£ Level-Systems of Measurement

. Gwven aruler, the student measures a line segment with the indicated degree of precision LIMIT smaliest unit

of precision 1/8 inch; line segments to 10 inches.

. Given 20 cut-out regions that are each 1-inch squares and anillustration of a rectangular region. the student

uses the 1-inch squares to determine the area of the given rectangular region LIMIT areas < 20 square
inches. Length of sides of rectangles must be multiples of 1 inch.

. Given the measures of the sides of a rectangular region, the student determinesthe area ofthatregion LIMIT:

integral measures., one umt of measure per problem; units of measure—inches, feet, yards. miles

. Given the measure of the sides of a rectangular region, the student determines the perimeter and the area of

that region. LIMIT. At least one of the measures (length. width) must be integral: both measures must
be < 100: one measure may be acommon fraction <1 withdenominator < 10,1 unit of measure per problem;
units of measure—inches, feet, yards, miles.

. Given a weight measurement, the student completes a statement to show an equivalent measurement in a

different unit of weight measure. Given a word problem that requires conversion of a given weight
measurement expressed 1n standard umits to an equivalent weight expressed in another standard unit, the
student solves the problem and wnites the answer with the appropriate label LIMIT® units—ounces, pounds.
tons.

Flg. 1. Matrix of Units in the IPl Mathematics Curriculum.
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prerequisite skills so that he ¢an begin work. The
same tests are diagnostic in that they provide
information that identifies skills in which the student
has not achieved sufficient proficiency and also
provide insight as to specific facets of these skills on
whichinstructionis required. Areview of the various
tests utilized 1n the mathematics program foliows.

Curriculum Placement Tests

Upon entrance to the mathematics program. the
placement tests provide a global picture of each
student regarding bhis level of proficiency with
respect to the skills in each unit of the curriculum.
The data generated by the placement tests are used
to develop aprofile for each student indicating those
units in which he has sufficient proficiency in all of
the skills and those in which he has insufficient
proficiency For example., the outcome of a
placement test might yield a profile indicating
sufficient proficiency in all of the skitls in level D of
the curriculum, and insufficient proficiency in the
skills of units at a higher level of ditficulty. In this
case. the student would begin work in units at level E
of the curriculum More typically, a student might
demonstrate proficiency at level D-Numer-
ation/Place Value, level F-Addition/Subtraction,
tevel E-Money. level C-Time. and perhaps level Din
all other areas Such astudent would probably then
begin instruction in level C-Time, this being the
lowest level in the area hierarchy at which
instruction is prescribed,

Because of the global nature of placement lests,
they must assess a very large domain of math-
ematics skills Consequently, practicality demands
that the tests include only a small number of items
on key objectives in each unit of the curriculum.
Thus, important placement decisions are
necessarily dependent on tests with a small number
of items.

Unit Pretests

Once a placement test has been usedto determine
a profile for a student, a decision can be made, as
indicated in the previous section, regarding the unit
on which the student begins his work. At this point, a
unit pretest is administered to identify the specific
objectives in the unit for which the student has
sufficient (insufficient) proficiency. Each pretest
consists of several short subtests, one for each
objective in the unit.

It is possible for a student t0 demonstrate
sufficient competency on all objectivesin the unit. 1
this were to occur, the student would continue

working at the same level, but proceed to the next
unit in the area hierarchy where ne would be given
another unit pretest. Thus, the pretest provides
additional information about a student, information
which is focused at the level determined by the
placement test.

The pretest decision can and sometimes does
override a part of the placement decision. This
occurs when proficiency is demonstrated by the
student in areas and at levels not indicated by the
placement test. Thus, the Pl testing paradigm
initially involves a two stage semisequential testing
programwiththe placementtestlargelydetermining
the Jevel at which more intensive testing is to take
place.

After the unit pretest has identified the specific
skills for which the student requires instruction,
student test performance on each of these
objectives 15 examined by the teacher to 1dentify
particular types of errors Or patterns oferrors. In this
manner, learning materials and/or experiences
consonant with the individual's needs can be
prescribed.

The typical pretest ncludes between six and
{preterably) ten Hems for each objective. Qbviously,
the size of the domain of items varies with the
particular skill. Usually, however, the domain is
quite large. Thus, important insiructional decisions
are often based on student performarice on a small
number of items that have been representatively
sampled from a very large domain. The relative
shortness of the tests can certainty be justified from
a practical point of view. Longer tests might be
considered repressive and would certainly exceed
reasonable bounds interms ofthe proportionoftime
given over to them within the total instructional
process, Thus, it would appear that the key 10 more
eftective and more reliable decisions ties not in
in¢reasing the length of the tests beyond, say. eight
or ten items, but rather in making better use of the
data available within the present system.

Curriculum Embedded Tests

These short "quizzes™ measure the student's level
of proficiency in a single skill within the curriculum,
The written instructional material for each skillin a
mathematics unit contains two cumctlum em-
bedded tests (CETs). The tests are self-evaluation
devices used by the student as a check on his
progress as it relates to his work on a given skiil.
Thus, the sludent who has completed several
learning activities related to the development of his
proficiency in a particular sigll might take a CET to

Fdeterrnine whether he has attained sufficient




proficiency at this point or whether he needs to
complete additional steps in the nstrucuonal
process,

The CET typically consists of from four 10 six
items. Because these short tests serve primanly as
self-checks for the student, and because no crucial
nstruchonal decision 15 dependent upon student
performance on these tests, they seem to be ade-
quate for the task which they serve.

Unit Posttests

These instruments are equivalentforms ofthe unit
pretests. They are generally administered after the
student has concluded learning activities for all
skills for which he was identified as being

insufficiently proficient on the unit pretest. On the
basis of the student’s performance on the postiest,
he is either advanced to the next unit or required to
work with additionalinstructional materials on those
skills for which his test performance did notindicate
that he achieved a sufficient level of proficiency A
student generally does not advance 10 a new unit
until he has demonstrated sufficient proficiency for
all objectives of the current unit.

As with the pretests. decisions resulting from an
analysis of posttest data rely upon tests which gen-
erally contain a small number of items. Becausein-
correct proficiency decisions can be detrimental to
the student’s progress, a procedure which could add
substantially to the accuracy of the decision with-
out increasing the length of the test would be most
worthwhile,

THE INSTRUCTIONAL DECISION PROCESS

In this section, the process by whichtest dataare
used to make instructional decisions is briefly
summanzed. In addition, a discussion of the nature
and consequences of decision errors resulting from
the analysis of test data is presented.

A Summary of the Decision Process

Gross placement tests which sample a broad
cross sechion of the important skills in each unit of
the mathematics curriculum are administered upon
eachstudent's entry into the IPl program. Scoredata
resulting from these tests are used to determine a
profile suggesting the student's leve) of proficiency
In each content area of the curriculum,

At this point, the student completes a pretest for
the first unit in the currrculum continuum in which
his level of proficiency is insufficient, The profile
resulting from the pretest dentifies those skills for
which learrung matenals and/or experiences are
required 1If the student 1s to achieve the specified
level of performance. Dunng the instructional
process, curriculum embedded tests are availableto
the student as a means of self-evaluation and an
estimate of progress as he works on the skilis. Afer
he has completed work on all skills in the unitand is
satishied that he has sufficient competency in all of
the unit skills, he 1s administered a posttest which
verifies his progress or identifies those skills for
which additional instruction is indicated. Once the
unit 15 successfully completed, the student ad-
vances to the next unit on his prescription where he
15 administered a pretest and the cycle 1s repeated,

ERIC
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The Nature and Effect of Decision Errors

The placement tests. pretests, and posttests are
used primarily to verify that a student either has
sufficient proficiency. i.e. mastery, in a given set of
sxills or that he has an inadequate leve! of pro-
ficiency inthose skills. Clearly, itis desiable thatthe
mastery decisions for a student be as accurate as
possible. The importance of accuracy of the mastery
decision for a student is perhaps best emphasized
by a discussion of the consegquences of an incorrect
decision.

As previously indicated, the IP! tests are con-
structad by samplingitems irom the domain of items
for the objectives included on the tests. Since any
sampling which does not exhaust ttf e population of
ttems for an objective can [ead ¥ an incorrect
mastery decision and since exhaustive testing is
impossible, it is necessary to tulerate the risk of
making wrong decisions. In an IPl context, a Type |
(o) error occurs when an examinee has sufficient
proficiency in a skill but the outcome of the testing
suggests that he does not. As a result, he is
prescribed work lessons which may serve no sig-
nificant function. A Type It { # } error occurs when-
ever the examinee, in fact, lacks proficiency in a skill
but on the basis of test results is said to have
sufficient proficiency. The consequence ofa Typell
error is that needed remedial instruction is not
provided. A Type |l error is perceived to be poten-
tially more serious than a Type l errorsince the Type
Il error could easily resuit in the student having
difficulty proceeding through a unit and might
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eventually lead to an impasse in instruction;
whereas, the Type | error wil! at worst require that
the student pursue a review-like study of skills in
which he is already proficient,

Although it j5 clear that the magnitude of the
consequences of an incorrect proficiency decision
for a student vavies with the direction of the error, it
is equally clear thatin both casesthe errormayhave
detrimental effects for the student. The fact that the
tests on which these decisions are based have a
small number of items per skill suggests that such
errors probably occur quite frequently. Given the
constraints imposed by a program which already
has a heavy testing component, increasing the
length of the tests is not a tractable method for
achieving increased accuracy in the mastery
decision process. However, it may very well be
possible to incorporate additional information into
tha decision process and \ws improve the overall
accuracy of the decisions being made. It is this
hypothesis to which the remainder of this paper is
addressed.

In IPl, as in all individualized instructional
programs, decisions are focused around the
individual student. If a statistical procedure that
uses information other than that contained in the
immediate direct observations on the student is
contemplated, then a Bayesian procedure incor-
porating prior information ¢n each student comes to
ming This information would consist of results of
the student’s performance on previous instructional
units. In this way, interindividual variability on prior
test performance would be helpfulin making current
decisions.

The problem with this thinking is that the entire
thrust of individualized instructicn works toward a
reduction of interstudent variability of test resulis. A
student moves ahead to a new unit of instruction
only when, it is thought, he is prepared to do so.
Indeed, he is encouraged not to take the unit
posttest until there is strong evidence that he is
prepared to perform well on it. A great deal of
posttest score variability is in fact observed, but
much of it, though not all, results from unreliability
due to the necessarily short length of these tests.
Thus. realistically, there is little or no useful
differential prior information about the individual
student.

On the other hand, there is a great deal of
information available abo.t the instructional
program Quite specific information is available
concerning the distribution of the percentage of
items answered correctly by students (Nowvick,
Lewis, and Jackson, 1973}, and it is thus possible to
make infe.ances about the true level of functioning

of each student, and the mean and standard
deviation of these true values in the population of
students. Of course, if the instructional programs
were compleely efficient and the students were
without human frailties, there would be no varation
in true levels of functioning of students on postiests.
A student would remain in a unit only until that
instant at which his level of functioning attained the
prespecified criterion. Nothing approaching this 18
possible with present instructional technology.
However, if we knew this were the true state of
affairs, then we would ignore individual test scores
and use our information on the group mean and
variance to make a positive proficiency decision for
all students.

In the real world of Individually Prescribed
Instruction there will be some variation intruelevels
of functioning among students on posttests. The
delicate inanner in which backgroundinformationis
combined with the direct observational data in the
Bayesian decision process, and the increment in
decision-making accuracy resulting therefrom is
detailed in Novick, Lewis, and Jackson (1973) and
Lewis, Wang, and Novick (1973).

Finally. we may nole one additional source of
background information that ¢can be utlizeg when,
as in IPl, testing involves joint measurement on
several skills, simultaneously, 'n this situation and
assuming some relationship among the skills, 1t 15
possible to use the collateral information contained
inthet - 1 of t tests scores for each person to help
estimate each t-th test score. Thus, if a person
scored highlyint - 1 subtests and a hittle less lughly
inthe t-th, we would suspectthatthis mightbe due in
part to bad luck or carelessness, and we would be
inclined to make some adjustmant in our estimate of
his proficiency on that skill. The Bayesian theory
and methods described by V/ang and Lewis (1973a,
1973b) provide the rationale and prescription for
doing this.

Implementation Procedures

The decision analysis procedures employed by
teachers and students in the IPl program must not
be overly consplex. Thus, the final output of the data
analysis procedures used to judge the level of
proficiency of a student must be s0 simple that
teachers, aides, and even Students can read the
results, interpret them, and then iake whatever
action is indicated. It will be permissible to use
sophisticated statisticai methods, but teachers,
aides, and students must not be required to
understand much more than is contained i this
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paper. In short, although it 15 not necessary that
teachers and students understand the details of the
analysss, they must be provided information which
faciitates their instructional decision making. In the
following section, procedures for dealing with the
preceding concerns are discussed.

The coltection and analysis of data. During the
past seyzral years, considerable investigation has
been underway nto the feasibility of using a
ccmputer as an integral part of the IP1 program. A
thorough discussion of the most recent devel-
opments is available in a progress report {Block,
Carlson. Fitzhugh, et al.. 1973) recently released by
the Learning Research and Development Center at
the University of Pittsburgh. Earlier reports include
Cooley and Glaser (1969}, Ferguson (1970b, 1971),
and Ferguson and Hsu (1971). The aclivities
described in these reports emphasize somewhat
visionary ideas for how the computer can hest be
employed in an Individualized program of

instruction. Although these studiesinclude the more -

conventional moades of computer-assisted
instruction, they extend far beyond into such areas
as computar testing and instructional management.

It is in this latter area, instructional management,
that Bayesian procedures for determining pro-
ficiency decisions would best seem to reside. Work
jn this area has been concerned with how the
computer can assistin the planning and subsequent
monitoring of both short- and long-term instruction
for individual students. Thus, it would seem
approprnate to incorporate a decision-making pro-
cedure concerned with individual proficiency level
in some skill, or set of skills, as an element of the
instructional management component of the IPI
program, Specifically, the computer might be used
10 recewve test data on a student and combine this
with previously acquired information on other
students in this IP1 program, analyze the data using
Bayesian analysis techniques, and then printouta
report indicating the confidence which one could
place in deciding that the student is proficient in a
given skill at some prespecified fevel of
performance. A more detailed discussion of how this
procedure might work is now provided in the context
of IPl positests. Procedures simiiar to those
described below would apply for placement tests
and pretests as well,

Development and use 0! a posttest profile. The
primary purpose for administering a placementtest,
a pretest, or a posttest s to acquire data which can
be used to evaluate a student’s instructicnal needs.
When a student is administered a posttest, he is
presumed to have had instruction in those skills for
which he 1acked sufficient proficiency at the timehe
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was administered the unit pretest. The posttest
either affirms the student’s success in acquiring the
skills or calls attention to those skills in which
additional work is required betore he can proceedto
the next umit. Thus, the only information which the
teacher and student need is a simple statement
regarding the level of proficiency at which the
student has performed on each skill in the unit,
Figure 2 shows an IPI posttest profile based onatest
consisting of five, eight-item subtests, each
measuring proficiency level on a particular skill.

Level E-Multiplication/Division

Percent Correct

“ 87.5
87.5

75.0

100.0

67.5

Skill

W -

Fig. 2. Sample of Posttest Profile Currently in Use
in IPI.

Presently, the posttest profile names each skill in
the unit and lists the percentage of items which the
student answered correctly. Given the sample
profile in Figure 2 and a criterion {cutoff} score of
85%, itis likely that the studentwould be called upon
to undertake additional work in the 3rd and Sthskills
of the unit.

Under the proposed change. rather than
evaluating student proficiency solely onthe posttest
results, additional data would be incorporated
within the decision analysis process, and
furthermore, the quantity reported would be an
index retating the student’s estimated proficiency to
a stipulated standard, However, it should be
emphasized that although the nature of the data
reported in the student profile would change, the
procedures employed by the teacherand/or student
to judge proficiency would remain *the same
Specifically. the posttest profile, which presently
contains a statement of the percentage of items
correctly answered foreach skill, would be alteredto
report the probability that the student has achieved
some prespecified level of proficiency in each
objective. As far as the teacher or student is
concerned, the proficiency decision process is
exactly the same—judgments are based on the




evaluation of a single number or "indéx” for each
skill Figure 3 provides an example of such a profile.

Level E-Systems of Mei..arement

Skim Mastery Index

80
90
76
92
40

[4 LI AV I L I

Fig. 3. Proposed Sample Posttest Profile Using
Bayesian Decision Analysis Procedures.

In Figure 3, the column labeled Mastery Index
actually represents a probability statement. If, lor
example, the criterion or cutoif score for sufficient
proficiency is .85, the Mastery Index column gives
the probability that the student’s [evel of proficiency
is above .85 for each skill. In this case, the mastery
index for skill 1 is .80. We see that the actual test
performance wasonly 75%. This might suggest, very
roughly, a probability of .50, a 50/50 chance, for the
true level of functioning being above .75. However,
the Bayesian analysis, using the collateral
information has raised 10 .80 the probability that the
student's level of functioning is above .85,
Therefore, it we would want to move a student on if
the odds were better than three to one in favor ol his
actually being proficient, we would advance this
student since his probability of mastery is greater
than .67.

implementation mode. A profile similar to the one
described In Figure 3 could be provided in at leasl
two ways. One method of delivery would require the
availability of tests which are administered by
computer Presently, test administration by
computer is very much a part of the feasinility study
underway in IPI Given the existence of a unit
posttest on some specified unit. it would 3eem quite
possible for sample da‘a generated by the computer
test 10 be merged with a file containing collaterai
data on student success in the system. For example,
the computer te. | program could be designed. upon
student completion of the test, to call a subroutine
which would access the collateral data file, combine
the two sets of informaticn, compute the mastery
indices (aposterion probabilites), and print out a
profile similar to Figure 3. Inthis case, the collateral
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data would be in a file permanently maintained on
the computer and pernodically updated. This
function could be perlormed automaticaily by the
computer.

Since it is very likely that many schools using IPI
will not have ready on-line access to a computer, an
alternative procedure for providing the same
decision analysis would calil for the construction of
simple “Mastery Index” tables. These tables would
permit the teacher, the aide, or a student to
determine the probability that the student has
sufficient proficlencyin a skill by simply entering the
table with the number of items answered correctly
on each skill of the posttest. Figure 4 serves as an
example of such a table.

Level E-Systems of Measurement

Skill 1

Number of items

answered correctly Mastery Index

98
93
.85
73
.60
.34
27
a2
.03

O =MW NOHh-3wm

Fig. 4. Sample of Proposed "Mastery Index” Table
for IPI.

Given knowledge of the number of items which
the student answered correctly out of a possibie
eight on skill 1 of the level E posttest for Systems of
Measurement, the teacher or student would enter
the 'Mastery Index” table with that number. For ex-
ampie, if the student responded correctly to seven of
eight items, he wouid enter the tabie in the left hand
column with the number seven and consequently
determine that the probability that the student has
the prespecilied level of proticiency, say .85, 15 93,
The decision as 10 wnether 10 move 2 student
forward or not would depend on this probability and
the relative disulilities associated with the two kinds
of errors. The simple methods for accomplishing
this are described by Davis, Hickman, and Novick
(1973},




The indices ieported in the tables would have
been generated at some carlier time and wouid have
included consideration of relevant prior data
regarding student success on the skills contained in
the unit. The tables would be updated on a regular

basis ws increased numbers ol students procueded
through the system. thus making more priol
information availlable. Such an updating might
QCCUr once or twace a year.

SUMMARY

Individuaized learming programs like IPl generate
substantial amounts of data related to student
success on Skills in the system. Given these dala. it
seems reasonable to suggest that they should be
used o improve the quahty of instructionai decison
making. In particular. prior data should be combined
with sample test data to form & more complete
intormation base on which to evaluate sludent
proficiency. By using such data jointly, instructional
decisions regarding a student's neads as they relate
to a given skill or set of skills will be deserving of
more conhdence than present decisions which are
curiently based soiely on the student’s performance
on a short test.

Two procedures for implementing such a plan
have been proposed. One calls for the marriage of
the Bayesian decision analysis procedures with
computer administered tests. whereas. the other
would rely on the teacher or student to consult a
tuble to translate student test perfoimance o a
Proficiency Index”™ which would incorporate both
the test data and prior dala regarding student
success In the system. The ultimate criterion for
success of such a planis the extent to which it leads
to improvements in the instructional decision
process. To this e€nd, the next step is to implement
the procedures and evaluate their impact on
students within 1P,
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A Review of Testing and Decision~Making Procedures

for Selected Individualized Instructional Programs]

Ronald K. Hambleton2
University of Massachusetts

i

I. Iuntroduction

1.1 Background

While the 1dea of developing jinstructional programs in our Schools
to meet individusl student needs 1s not a new theme in American education
(see, for example, Washburne, 1922; and Wilhelms, 1962), it has only
been In the last decade that such programs have been Implemented on any
large~scale basis in the schools.

The basic argument In favor of individualizing instruction comes from
a multitude of research studies that suggest that students differ in
interests, motivation, learning rate, goals, and capacity for learning
among other things; and, therefore, grouped-based instruction on a common
curriculum l¢ Ilnappropriate to meet thelr educational needs. That change
in our schools 1s obvious when oue notes that schools provide successful

learning experlences for only about on.-third of our students (Block, 1971).

1The research reported herein was performed pursuant to Grant No.
0EG-0-72-0711 with the Office of Education, U.S. Department of Health,
Education, and-Welfare, Melvin R, Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct
of the project. PFoints of view or opinions stated do not, therefore,
necessarlly represent official Office of Education position or policy.

2The author would like to acknowledge the insightful comments and

constructive criticisms of Melviu R. Novick of The American College
Testing Program on earlier drafts of the manuscript. 1In addition,

Richard Ferguson and Roy Williams provided many yseful Suggestions.
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On the basis of Project TALENT data, Flanagan, et al., (1964) reported

that our current instructional programs are inadequate to handle the

lirge individual differences in any age or grade group. In additiocn,
schools generally fail to help the student develop & sense of
responsibility for his educational, personal, and soclal development

or to make realistic educational decisions and choices about his future.

This trend toward individualization of instruction in education has

resulted in the development of a diverse collection of attractive alternative
models (see,‘for example, Gibbeons, 1970; and Heathers, 1972} that, according
to thelr supporters, offer new approaches tc student iearning which ¢ .
provide almest all students with rewarding school experiences. These

include: Individually Prescribed Instruction (IPI} (Glaser, 1968, 1970},

Program for Learning in Accordance with Needs (PLAN) (Flanagan, 1967,

1969}, Computer-Assisted Instruction (CAI} (Suppes, 1966; Atkinson, 1968;

Atkinson and Wilson, 1969), Individualized Mathematics Curriculum Project

(De Vault, Kriewall, Buchanan, and Quilling, 1969), and Mastery Learning

{Carroll, 1963, 197(% Bloom, 1968; and Block, 1971}. All of the medels,
as well as many others, represent significant steps forward in improving
learning by individualizing instruction. They strive to actively involve-
the student in the learning process, allow students in the same class
to be at different points in the curriculum, and permit the teacher to
glve more individual attention.

In important aspects of these individualized instructional programs
such as the construction of instructional materials (Popham, 1969;
Smith, 1969), curriculum design (Wittrock and Wiley, 1970) and computer

management (Paker, 1971; Cooley and Glaser, 1969), there are substantial

bodies of knowledge, It 1s perhaps surprising to note tuen that the
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amount of Informationm Currently available on the testing methods and
declsion procedures for these programs is quite limited. It is this
component that, in principle, facilitates the efficlent movement of
studgnts through the 1lnstructional program.
One reason for a lack of information 1s that measurement requirements
witnin the context of many of the new programs require new kinds of tests.,

These are the c¢riterlon-referenced tests which are constructed and

interpreted in ways quite different from the norm-referenced tests which are
more familiar to most practitioners in the field (Popham and Husek, 1969;
Glaser and Nitko, 1971; Hambleton and Novirk, 1973).

Since onp of the major purposes of ‘adividualized programs is to
maximize the opportunity for all students to learn, it follows that tests
used to monitor student progress should be keyed to the instruction.
Further, they should provide information that can be used to measure
progress along an absolute abllity continuum. Norm-referenced pests uare
constructed specifically to facilitate making comparisons among students;
hence, they are not very well suited for making most of the instructional

decisions required in individuvalized instructional programs.

1.2 Criterion-Referenced Testing and Measurement

Much of the discussion in the area of criterlon~referenced testing
and measurement (for example, see Block, 1971; Ebel, 1971; Glaser and
Nitko, 1971; and Hambleton and Novick, 1973) stems from different
understandings as to the basic purpose of testing in the instructilonal
models described in the previous sectlon. It would seem that f{p most
cases the pertinent question 1s whether or pot the individuwal has attained
some prescrited degrece of compatence on an Instructional performance task.

Questions of preclse achievement levels and comparisons among individuals
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on these levels seem to be largely irrelevant. In maay of the new

Instructional models, tests are used to determine on which instructional
objectives an examinee has met the acceptable performance level standard
set by the model designer. This test information is usually used
immediately to evaluate the student's mastery of the instructional
objectives covered In the test, so as to appropriately locate him for
hig next instruction (Glaser and Nitko, 1971). Tests especially designed

for this particular purpose have come to be known as criterion-refereaced

tests., Criterion-referenced tests are specifically designed to meet

the measurement needs of the new instructional models. In contrast, the
better known norm-referenced tests are principally designed to produce
test scores sultable for ranking individuals on the abllity wmeasured by
the test. A very flexible definition of 2 criterion-referenced test has
been proposed by Glaser and Nitko (1971): "...[a test] that 1s deliberately
constructed so as to yleld measurements that are directly interpretable

in terms of specifisd performance standards.' According to Glaser and
Nitko (1971), "The performance standards are usually specified by defining
some domain of tasks that the student should perform. Representative
samples of tasks from this domaln are organized into a test. Measurements

are taken and are used to make 2 statement about the performance of each

1

individual relative to that domain." Distinctions between norm-
referenced tests and criterion-referenced tests have been presented by
Glaser (1963), Glaser and Nitke (1971), Livingston (19/:}, Popham and
Husek (1969), Ebel (1971), Block (1971), Hambleton and Gorth (1971),
and Hieronymous (1972).
Hambleton and Novick (1973) have discussed the evaluation of crlterion-

referenced tests in practical situations. In their formulation, reliability

takes the form of an index Indicating the consistency of. decisicn making
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across parallel forms of the criterion-referenced test or across repeated
measurements., Validity takes the same form except, of course, that z new
test or some other appropriate measure serves as the criterion. Both
reliability and validity concepts are reformulated in straightforward
decision~theoretic terms. However, at this stage of the development of

a theory of criterion-referenced measurement, the establishment of
cut-off scores is primarily a value judgment. [Further clarification is
provided by Hambleton and Novick (1973), Millman (1973), and Block

(1872).]

1.3 Instructional Models Under Consideration

The major concern in this paper is with instructional models that
include a specification of the curriculum in terms of behavioral
objectives, detailed diagnosis of the entering competencies of students,
the availability of multiple instructional resources, individual pacing
and sequencing of material, as well as the careful monitoring of
student progress.

In the programs under consideration, Compu[gr*ﬁanaged instruction

(CMI) s an optional feature. Under CMI the g8oal is for the computer to
service classroom terminals which assist the classroom teacher in
assessing a student’s strengths and weaknesses, and to prescribe
instructional sequences (Cooley and Glaser, 1969). Project PLAN and
CAI are implemented in 2 CMI mode whereas IPI and Mastery Learning are
not,

In summary, the goals of individualized instructional programs
developed along the general lines of the specifications above are to

enable students to work through the units of instruction at a pace

91




reasonable for them, to develop self-direction and self-initiation, to
encourage self-evaluation as well as motivation for learning, and to
demonstrate mastery In a variety of skills.

Cronbach (1967) reported on three major patterns of dealing with
individual differences which ppovide a framework for the models considered
in this paper. Patterns of dealing with individual differences in the
school can be described 1n terms of the extent to which educational goals
and instructional methods are varied. In one pattern, the educationsl
goals and instructional methods are relatively fixed and inflexible.
Individual differences are handled mainly by dropplng students from the
program when they begin to encounter difficulty. In a second pattern,
goals are selected for students on the basis of interest and potential.
They are then channeled Into one fixed program or another. TIndividual
differences are handled by providing multiple optional programs. The
wodels we describe in this paper fit into a third pattern where goals and
instructional resources are individualized for the purpose of maximizing

learning.

1.4 Purposes of the Investigation

The success of individualization depends to a considerable extent on
how effectively teachers and studants make decisions as to the mastery of
speclfic instructional objectives, the development of individual
prescriptions, the selection of instructional resources, etc. However,
various writeés including Baker (1971) and Glaser and Nitko (1971) have
commented rather critically on existing testing techniques and procedures.
Relevant background for improving such a sltuation would certalinly include
a review of the testing modéls of some of the more commonly used

individualized instructional programs. Such a review would assist in
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defining the kinds of decisions that are made, and the information on
which the decisions are based. This should provide 2 basis for developing
testing methods and decision procedures specifically designed for use
within the context of these models. (Althaugh it would be ideal to
develop a general measurement model to cover all the instructional
models, we are not prepared 4{n this paper to advance such a model;)

The first purpose of the investigation was to provide a description
of the testing models that are currently being used in sSelected
individualized instructional programs. Three programs yere selected

for study: Individually Prescribed Instruction, Program for Learaing in

Accordance with Needs, and Mastery Learning. [(These models as well as

others are also discussed by Baker (1971); however, he was concerned
with thelir computer-based instructional management systems which are of
only secondary interest in this paper.] These programs yere Selected
in this study because they are among the best known and because there
is a substantial amount of information available on each., In the
following sections, an introduction is provided for each instructional
model. The introduction includes a brief history of the program, the
content areas covered, and an indication of the extent of implemertatiou.
Also, a description of each instructional paradigm and details on the
testing model is provided. An attempt 1Is made to pinpoint the decision
points in each model, spelling out the consequences of the various
possible actions in relation to each of the "possible true states of
nature."

The discusgsion of the modgls is based on descriptions found in
books, papers, and Yreports; on-site visits; wnd meetings with many of
the developers. It should be noted however that programs are often

implemented by teachers quite differently than they are reported in
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the literature. Also, it should be remembered that these programs are
constantly changing; hence, it 1s possible that certain features of
the models are not exactly as they are described here. In particular,
it 1s our impression that PLAN is being implemented in a way quite
different from how it has been described in the literature. This 1s
because Westinghouse Learning Corporation has now taken over the
development and implementation components.

A second purpose was to compare the three programs and the four
component parts of the testing model; namely, selection of a program
of study, criterion-referenced testing on the unit objectives,
assignment of instructional modes, and final year-end assessment.

A final purpose was to briefly outline several promising lines of
research In connection with the testing methods and decision procedures

for individualized iInstructional programs.
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11, Individually Prescribcd lnstruction (IPIL)

2.1 Background

The Learning Research and Develosment Center (LRDC) at the Univcrsity
of Pittsburgh Initiated the Individually Prescribed Instruction Project
during che early 1960's at the Oakleaf School in cooperation with thc
Baldwin-Whitehall Public School District near Pittsburgh. Major contributors
to the project over the years include Robert Glaser, John Belvin, C. M.
Lindvall, and Richard Cox. Initial activities concentrated on producing
instructional materials and training materials. More recently, research
and evaluyation activities have assumed an increasingly important role in
Center activities.

As of 1972 the IPI program was being implemented in over 250 schools
around the country. Distribution of materials and other information on the
program is managed by Research for Better Schools, 1nc., a United States
Of fice of Education Regional Laboratory located in Philadelphia. At

present, instructional materlials are available in elementary mathematics,

reading, science, handwriting, and spelling.

2.2 Description of the Instructional Paradigm

While we will discuss the instructional paradigm and the corresponding
test model in the context of the IPI mathematics program, the procedures,
techniques, etc., described, are in no way limited to that content area.

In fact, it should be noted that the mathematics program as implemented
is probably somewhat different from what we descrite here, since the LRDC
is constantly refining and lmproving the program (Lindvall, personal
communication)., Fortiunately, for our purposes the basic structure of the

program remaings as described.
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It is instructive first of all to describe the structure of the
mathematics curviculum. Cooley and Glaser (1969) report that the mathe-
matics curriculum consists of 430 specified instructional objectives.

These objectives are grouped into 88 units. (In the 1972 version of the
program there were 359 objectives organized into 71 units.) Each unit is

an instructional entitry which the student works through at any one trime.
There are 5 objectives per unit, on the average, the range being | ta 14,

A collection of units covering different subject areas in mathematics com—
rrises a level; the levels may be thought of as roughly comparable to school
grades. For illustrative purposes, Table 2.2.1 presents the number ol

objectives for each unit in the iFI mathematics curriculum.

The teacher is faced with the problem of locating for each student,
that paint in the curriculum where he can most prof{itably begin instruc-
tion. Also, the teacher is responsible for the continuous diagnosis of
pupil demonstrating proficiency in each skill prescribed in hig particular
instructional sequence as he moves along.

At the beginning of each school year the teacher places the student
within the cuxriculum; that is, he identifies the units in each content
area for which instructicn is required. After completing the gross place~
ment, a single unit is selected as the starting point for instruction, and
a diagnostic instrument administered to assess the student's competencies
on objectives within the unit., The outco&e of the unit test is information
appropriate for prescribing instruction on each objective in the unit.

In addition it 18 also necessary to select the particular set of resources
for the student. In theory, resources that match the individual's "lesrvn-
ing style" are selected. Within euach unit, there ave short tests to

monitor‘the student’s progress. [Finally, upon completion of initial In-




r

Number of Objectives for Each Unit in the

1
Table 2.2.1

IPI Mathematice Curriculum

11

Content Area Levels

A B C D E F G H
Numeration 12 10 8 8 8 3 8 &
Placa Value 3 5 10 7 5 2 1
Addition 3 10 5 8 6 2 3 2
Subtraction’ 4 6 3 1 3 1
Multiplication 8 11 10 6 3
Division 7 7 9 5 5
Combination of Procasses 6 5 7 4 5 6
Fractions 3 2 4 6 6 14 ] 2
Money 4 4 6 4 1
Time 3 2 7 9 5 3 1
Systems of Measurement 4 3 5 7 3 2
Geometry 2 2 3 9 10 7 9
Special Topics 1 3 3 5 4 5

lReproduced, by permission, from Lindvall, Cox, and Bolvin (1970).
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struction in each unit, assessment and diagnostic testing takes place.
In the next section, we review the tests and the mechanisms for making these
decisions. Suffice to say here that 1t has been found that teachers differ

in the extent to which they follow prescribed decision-making rules (Lindvall,

Cox, and Belvin, 1970).

2.3 Detalls of the Testing Model
Various reports over the last couple of years have dealt with the
testing model and its develcpment (Lindvall, Cox, and Bolvin, 1970; Glaser
and Nitke, 1971; Cox and Boston, 1967). A flow chart of the testing medel
is presented in Figure 2.3.1. To monitor a8 student through the program
the following tests are used: placement tests, unit pretests, unit post-
tests, and curriculum-embedded tests. All of the tests are criterion-
referenced with performance on the tests compared to performance standards
for decision-making.
How sophisticated is the decision-making process utilizing the scores
from the various tests? According to Glaser (1968):
At the present stage of our knowledge, the decision rules
for going from measures of student performance to instruc-
tional prescriptions may not be very complex, but little
is known about the amount of complexity required, although,
the individual monitoring cf student performance provides
us with a good data base to study this process.
Promising developments in the last couple of years include incrcased
knowledge about constructing and evaluating criterion-referenced tests. Also,
the research on branched testing strategies (Ferguson, 1969, 1971) has much

potential for improving the efficiency of the testing model. This gecond

point will be discussed in greater detail in a iater section.

Placement Tests

When a new student enters the program, it ls nccessary to place the

student at the appropriate level of instruction in each of the content arcas.
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Figure 2.3.1. Flow chart of steps in monitoring student progress in the

IPI program. (Reproduced, by permission, from Lindvall and Cox, 1969.)
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[Glaser and Nitko (1971) called this stage-one placement testing.}
Typically, this is done by administering a placement test which covers
all of the subject areas at a particular level (see Table 2.2.1). Factors affect-
ing the selection of a level) for placement testing of a student include
student age, past peiformance, and teacher judgment. Generally, the placement
test covers the most difficult or most characteristic objectives within each
arez, Placement tests are administered until a unit profile identifying a
st ident's competencies within each area is complete. At present, Lhe somewhat
arbitrary 80-85% proficiency level is used [or most tests in the IPI system.
Scores for a student on items neasuring objectives in each unit and area
in the placement test are used to define an individual program for him. ‘The
standard procedure is to ascign instruction on units in which placement test
performance on items measuring a few representative objectives in the units
is between 20% and 80%. If the score is less than 20% for a given unit,
the unit test in the area at the next lowest level is administered and the
same criterion is applied. If he passes the unit test, he receives instruc-
tion in the unit in the next level. In the case where & student has a score
of 80% or over, he ig tested on the unit in the area at the next highest
level. [Further information is provided by Lindvall, Cox, and Bolvin (1370),
Weisgerber (1971) and Cox and Boston (1967).]
For example, suppose a student were to achieve scores on level £ of
607%, 90%, 60%, 60%, 30%, 30%, 25%, 90%, 50%, 10%, 0%, 30%, 30% in the thirteen
areas indicated in Table 2.2.1. It is likely that he would Le prescribed
instruction at level E in the areas of numeration, additiown, subtraction, -
multiplication, division, combination of processes, money, gecmetry, and
special topics. He would receive the level F placement tests in place
value and fractions. If, for example, he scoreg 60% and 10% respectively,

he would receive iustruction at level F in place value and probably at
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level E In fractions. . He would also Le administered the level D placement
tests in the areas of time and systems of measurement. If, for example, his
sc: res were 0% and 407, he would recelve a still lower placement test in

the area of time and would be prescribed instruction at level D in systems of
measurement. If he scores 85% on the level C placement test in the area

of time, he would be assigned te level D for instructien.

In order to acquire some information on the average length of the tests,
the level E placement tests of the 1972 edition of the IPI program were selected
and examined. Analysis revealed that on the average there are 12 items
measuring the objectives in each area (with a range of from six to 20),

In summary, we note that the placement test has the following character-
istics: provides a gross level of achievement for any student in the
curriculum, and provides informnation for proper placement of students in

the curriculum.

Unit Pretests and Posttests

Having received an initial prescription of units, a student proceeds
by taking a pretest for a unit at the lowest level of mastery un his profile.
[Glaser and Nitko (1971) call this stage-two placement testing.] A unit
pretest includes cne or more items LO measure each objective in the unit. A
review of the unit pretests and posttests in level E revealed that the
approximate number of items on a test 1s 37 (the range is from 21 to 64) and the
average number of items measuring each objective is six (the range 1is from four
to seven). Lindvall and Cox (1969) report that the length of a pretest is
determined by the number of objectives in the instructiomal unit and by the
number of items used to test each objective, No fixed number ol items to
measure each objective s used becausc of the diverse nature of the
objectives., For example, they note that, "an objective like-~the pupil

can solve simple addition problems iuvolving all number conbinations--will
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require more items than would an objective like--the pupil must select

which of three triangles is equilateral-~."

A student is prescribed instruction in each objective in the ynit for

which he fails to achieve an 85% mastery level.1 In the case where the

student demonstrates mastery of each objective, he is moved on to the next

unit in his profile, where he again takes a pretest,

The unit posttests are simply alternate forms of the unit pretests and

are administered to students as they complete instruction on the unit. A

student receives a mastery score for each objective in the ynit. He is

required to repeat instruction on any objective where he fails to achieve
an 85% mastery score. He is directed to the next ynit in his profile if

he demonstrates mastery on each objective covered in the ynit posttest.
Those who repeat instruction on one or more of the objectives must take the

unit posttest again before moving on in their program.

In Summary, pretests and posttests are available for each unit of
instruction.. The proper pretest is administered on the basis of student's

curriculum profile, and learning tasks for each skill are assigned (or not

assigned) on the basis of 2 student's performance on items measuring the

skill.

Compared with students in many other types of mathematics programs,
it is clear that the student in the IPI program spends more of his time
taking tests. However, to some extent this can be justified on the
grounds that testing is an integral part of the learning process in the

IPI model. Nevertheless, there seems to be good reason for researching

techniques to reduce testing time.

1
A mastery Score on each objective for a student 1is calculated as the

percentage of items on the test that measure the objective that the student
answers correctly. ! :
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Hsu and Carlson (1972) point out several problems associated with the
current version of the unit pretests and posttests. The existing systcm
requires that every objective he tested; hence, the time a student spends
taking tests is considerable. Also, because of management and scoring
problems, feedback to the student on his results is not immediate. Furcther,
students are occasiondlly required to take the same posttest on a second
occasion. This raises a question about practice effect.

One very promising way to reduce the testiug tiwme with the correlated
result of producing better instructional decisions is suggested in the
branched testing work of Ferguson (1969, 1971). Ferguson showed that by
using a tailored testing strategy, a computer terminal to monitor the
selection of test items, and information on the hierarchicai structure of the

items, he was able to significantly reduce unit testing time without auny

loss in decision-making accuracy. A comprehensive review of the work in
branched testing is out of place here; suffice to say here that wajor
contributions to the area include Ferguson (1969, 1971), and Lord (1970).

A review of some of the work in the area is provided by Bock and Wood

(1972).

Curriculum-Embedded Tests

As the student proceeds through a unit of instruction, his progress
must be monitored. This is done by curriculum-embedded tests (CET),
As used in the matcthematics IPI program, a CET is primarily a measure ¢f
performance on one specific objective. There are usually several test items
to measure the objective. A review of the CETs in level E of the program
revealed that there are on the average about three items weasuring the primary

objective covered in the CET. The range is from two to five. Tf a studeut
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receives a score of 85%, he is permitted to move on to the next prescribed
objective. Otherwise, he is sent back for additional work and then he
takes an alternate form of the CET when he is ready.

A secondary purpose of the CET is to pretest, in a rough way, the next
objective in the learning sequence. {Objectives in a ynit are arranged
into a learning sequence.) Students may pretest out of the next Skill in
the sequence by achieving 85% or higher on the short test which makes up
the second part of the CET and on part one of the CET for that skill. It
would appear from a review of level E tests that there ara about two items
measuring the Secondary objective. In cases where a student does not need
instruction on the next skill, he can skip part two of the CET and move on
to the part two of the CET that tests the next skill he needs for his
program. This additional pretesting of an objective in the CET gives
students a chance to demonstrate mastery of new skills not Specifically
covered in the instruction po that point and to eliminate that instruction

from his program.

Student Diagnosis

Once the student has been assigned to a unit of instruction and the
objectives for which he needs instruction have been identified by the unit
pretest, there still remains the problem of deciding which of several
instructional methods is Yoptimal"” for hiim. That is, of the available
instructional methods for a particular instructional unit, in which of them
would a student with a known background in the program and specific goals,
interests, and aptitudes stand the "best" chance of learning the material?

Glaser and Nitko (1971) call this a diagnostic decision.
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I1I. Program for Learning in Accordance with Needs (PLAN)

3.1 Background

Project PLAN is a major ungraded, computer-supported individualized
instruction program in education developed by the American Institutes for
Research over the last seven years. (For background, ser. Weisgerber, 1971.)
The project was initiated by John Flanagan to handle many of the short-
comings of our educational systém as revealed by Project TALENT (Flanagan,
et al., 1964).

The PLAN program is currently being used in over 70 schools with more
than 35,000 students in prades one through twelve, Instructional materials
are available in four areas: social studies, language arts, mathématics,
and science. Westinglhouse Learning Corporation is now responsible for the
monitoring and marketing of Project PLAN materials., They also operate the
computeér installation necessary for the proper functioning of Project PLAN
in a school.

Unfortunately, the implementation of the model in 1972-73 involves far
fewer features than was originally described by the proponents of the program

a few years ago. Nevertheless, we will describe the more elaborate version

of the program in this paper.

3.2 Instructional Paradigm

The basic unit of instruction in PLAN, called a module, is an instruc-
tional package :ade up of about five behavioral objectives. Tt normally
takes a student about two weeks to complete a module of iInstruction. Also,
there'are many objectives classified at the higher levels of Bloom's (1956)

taxonomy that do not fit nicely into the regular modules. These are
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named module-set objectives, and examples include concept development and
problem-solving skills., They are worked into the regular modules and prog-
ress is measured by PLAN acilevement tests adminlstered periodically through-
out the program. According to Rhetts (1970) there are more than 1100
modules in PLAN. For each module, there are several different teacher-
learning units (TLU) assigned individually on the basis of aptitudes,
interests, learning style, etc. All modules in the secondary school
curricula are coded ag to whether, 1) they are part of a state or local
requirement, 2) essential for a given educational or occupational area,

3) highly desirable for that area, 4) essential for minimum functioning

as a citizen, 5) highly desirable for all citizens to know, or 6) would
make the student a particularly welil informed citizen.

TLU's are coded according to: 1) reading difficulty, 2} degree to which
it requires teacher supervision, 3) its media richness, 4) degree to which
it requires social involvement and/or group learning activities, $) the
amount of reading involved, and 6) variety of activities in the module.

There are, on the average, two TLU's for each module. Along the lines of
Dunn (1970), we will describe the most complex version of the
program=--the version currently being used in the secondary school.

At the beglnning of each year, a program of study Ls prepared for each
student. This includes a list of modules, suggested TLU's, and a recommended
sequence In the four content areas. To really provide individualized
instruction, it 1s necessary to know about student needs, goals, abilities,
and interests and to use the information in developing a program of study
(P0s) for him. As part of the PLAN system then, ithe following information

1s collected:
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1. parent and student educational goals

2, parent and student vocational aspiratilomns

3. student level of achievement and vocational interests

4, student abilitles (such as raading comprehension and arithmetic

reasoning)

5. past performance of student in program

6. student's learning style.

A variety of questlonnaires and testing instruments have been developed
to collect the above information.

Abilities are measured each year with the Developed Abilities

Performance Test (PAPT)., This test consists of 18 scales (see, for example,
Jung, 1970) such as those to measure arithmetic reasoning, reading

comprehension, abstract reasoning, mechanical comprehension, and ingenuity.

On the basis of the above information, a program is developed and the
student is monitored through it by continuous module posttesting aml PLAN
achievement testing. Let us look now at the testing phase of the program

in more detail.

3.3 Testing Model Details

Within a PLAN school, there exists a multitude of decisions to make on
each student. These include development of a program of study, pericdic
assessment of module-set objectives, performance oﬂ the modules of
instruction, assignment of TLU's, and yearly monitoring of important
skills. The major decision points are shown in Figure 3.3.1.
Unfortunately, there 18 little avallable information on how these

decisions are made.
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Flgure 3.3.1 Flow chart of steps in monitoring student progress iun
Project PLAN.
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Development of a Program of Study

On the basls of DAPT scores which are matched to Project TALENT
data of people in different occupatlons, the students and parents selxct
a long range goal [(LRG) (une of 12 families of occupations)]. Information
on the long range goal along with parent and student information described
in the last section 1s used to develop a program of study. The DAPT is
also used in the determination of the number of modules a student will
study in a year. Jung (1970) reports that on the basis of welghts derived
from regression analyses, a quota 1s identified for each PLAN student
in sach subject area. Modules are then assigned to him on the basls of
his LRG group merbership until this quota 1s filled.

Developed Aptitude Performance Tests

These test:y are gilven at the beginning of each school year. Informa-
tion on the length, kinds of test 1ltems, reliability and validity does not
appear to have been published. Also, we do not know whether a different
version ¢f the test 1s used in each year, or whether the same version is
used for several years. Regardless, unless comparability of the score
scales for the differemt versions has been carefully done, we doubt whether
the change gcores (for individuals or groupsi on each varlable from year
to year have very much meaning.

PLAN Achievement Tests

Mastery of the module~set objectives 1s measured at specific points
in the curriculum using PLAN achlevement tests. However, we are also
unclear on the make-up of the PLAN achlevement tests. Apparently, they
are measured at "specified points" in the curriculum and the format of

these testg 1s gometimes something other than the paper and pencil variety.
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Module Tests

When the 3tudeni feels he has mastered the materials covered in a
module, he can take a criterion-referenced module posttest which has on
it several items measuring each objective In the module. The items are
presented usuvally in a selection format to facilitate computer scoring.
On the basis of his performance, the computer using built-in decision rules
makes one of four decisions. If he answers all items corractly, he is
giver. a "complete” on the module and the computer print out tells him where
to go next. If he makes a "few'" errors, he 1s given a result of '"Student
Review". The computer specifies his performance on each objective and
indicates the ones he should review before beginning his next module,

Students who miss a large number of items cn the test but stil] score
high enough to pass, receive a result of "Teacher Certify”. He is instructed
by the teacher on which objectives to review and/or restudy. He is not
given his next module until, in the judgment of the teacher, he has mastered
all of the objectives. An alternative is to have the student repeat the
module posttest. The fourth possibility is student failure to pass
the test. In this situation, he is instructed to restudy the module with
the same TLU or another. In the case where he misses the test again, the
teacher intervenes and takes some appropriate action to clear up the problenm.

Assignment to Instructi®nal Modes .

The basic problem was described in a discussion of the TPI program,
i.e., what particular instructional mode {or in this case, TLU), should the
student take to study the module so as to maximize his changes of learning |
the material? Dunn (1970) notes, "that the computer, from a complex
set of decision rules, matches the student with specific TLY's". We wonder
what those rules would be, pgrticularly since there is no theory of instruction

to guide in developing optimal assigoment rules. To this point in time
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educational psychologlsts have only been able to find a handful of
interactions between background variables and instructional method. A
partial answer 1s provided by Weisgerber and Rahmlow (1971). They nated
that teacher-~learning units are based upon different assumed learning
styles of students #nd are gulded by a philosophy of education (Flanagan,

1970) and a theory of learning (Gagné, 1963).
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IV. Mastery Learning

4.1 Background

The mastery learning concept was introduced to American Schools in the
the 1920's with the work of Washburne (1922). However, because technology
was not developed to the point that the program could operate efficiently,
interest in the concept steadily diminished until it was revived in the
form of programmed instruction in the late 1950's. (Programmed instruc-
tion was an attempt to provide students with instructional materjals
that would allow them to move at their own pace and receive constant
feedback on their level of mastery.) The work by Carroll (1963, 1970)
and Bloom (1968) and Bloom's students (Block, 1971; Airasian, 1971 and
others) was instrumental in bringing mastery learning to the attention of
instructional designers and f;;earchers.

Since Bloom's paper in 1968, a great deal of research has been conducted;
and the results suggest that the mastery learning model "can be easily and
inexpensively implemented at all levels of education and in subjects
ranging from arithmetic to philosophy to physics (Block, 1970). The
model has been used now with more than 20,000 students.

4.2 Instructional Paradigm

This model is quite different from IPI and PLAN in chat it attempts
to individualize instruction within a group-based instructional
environment. The curriculum is organized jinto units of instruction
defined by homogeneous clusters of behavioral objectives. For each
unit one or more criterion-referenced tests is used to measure mastery.
Individualization is handled via supplemental materials, feedback,
and corrective techniques applied to students who do poorly on the

posttests.
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Mayo (1970) in describing the mastery learning model uotes that:

1. Students are made aware of course and unit expectations, so that
they view learning as a cooperative rather than as a competitive
venture.

2. Standards of mastery are set in advance for the students, and
grading is in terms of absolute performance rather than relative
performance.

J. Short diagnostic tests are used at the end of each instructiounal
unit.

4. Additional learning is prescribed for those who do not demonstivate
unit mastery.

5. Additional time for learning is prescrihed to students who seem
to need 1it.

The mastery learning mode) is less impressive in scope than PLAN, and

the requirements for an effective testing plan are less stringent than with

IPI or PLAN. Teatures of mastery learning appear cto be that it is easily
implementable, does not require the use of a computer, and is appropriate
for almost any content area. Also, if mastery learnlng is carried out
properly, previous research suggests that gtudents will achieve higher
scores and have more interest in school and a better attitude toward school.
Unlike the other two models, with mastery learning much of the work has been
on research related to the correctness of the model of school learning.
An extensive number of content areas have been studied.

It should be noted that there are many varistions on the basic mastery
model as originally proposed by Bloom (1968). Some of them are summayized

by Block (1971), and an example would be the work of Kim (1971).
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4.3 Test Model Details

Block (1971) notes that, "To individualize instruction within the

context of ordinary group-based instruction, mastery learning relies
. heavily on the constant flow of feedback information to teacher and
learner.” 1t does not sSeem however that there i; as much testing in
mastery learning as in IPI or PLAN. A flow chart of the testing component
is shown in Figure 4.3.1.

The mastery learning testing model as described by Airasian (1971)
represents a speclal case of the IPI testing program. There is no place-
ment testing, and unit pretesting and curriculum-embedded testing are not
emphasized. Unit posttesting and final assessment represent the two major
kinds of testing in the program. In the spirit of Scrivem (1967), these
two areas are known as formative and summative tests. It should be noted,
however, that formative tests or unlt posttests, as they are ¢alled in IPI,
are not used for grading. They are used for diagnosing learning difficulties
only.

Formative Tests

A formative test is designed to cover the objectives over a short unit
of instruction in the ﬁastery learning program. It is used to determine
whether or not a student has mastered the paterial and to serve as a hasisg
for prescribing supplemental work in areas where the student is weak
(Airasian, 1971). Implementers of the mastery learning wodel have set
the passing standard anywhere from 75% to 100%. There 1s no set number of
items or format suggested to measure each objective; however, there is a
suggestion that instructional decisions gare made on the basls of responses
to individual items.

The formative tests in mastery learning represent the key to indi-

viduallzing instruction since it 1s on the basls of these scores rhat
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Figure 4.3.1 Flow chart of steps in monitoring student progress in a typical
version of a mastery learning model.
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individualizatién of instruction can take place. Units are kept small
so that unit testing takes place frequently to increase the effectiveness
of the individualization of instruction component of the program.
Summative Tests

The primary purpose of the summative test in the mastery learning
model is to grade students on the basis of thelr achlevement of course objec-
tives. The items in the test are keyed to objectives and representative of
the pool of course objectives. A criterion-referenced interpretation of
the scores 1s recommended. It is proposed that cutting polnts be located
on the abiiity continuum and grades should be assigned on the basis of a
student's position on the continuum and not relative to other students in

the course. A norm-referenced interpretation of the scores is also possible.

Final Cdgments
Mastery learning 1s probably the least different from traditional
instructior since the principal instruction is always group-based and

final grades are assigned. (However, it is expected tbat because of various

features built Into the program that the final assessment testing will not
be as threatening a sitvation for the student as it is in more traditional
programs.) Differences with traditional instructional models include
features such as individual pacing, and the big difference 1s the use of
frequency tests on small units of instruction to diagnose learning problems.
Important features are the feedback/correcting-review techniques. It

would appear, however, that there 1s little in the way of sophistication
concerning the testing model. For example, there appears tc be no
guldelines for determining the optimum number of items to measure each

objective on a unit posttest. An exception 15 the excellent work of




3l

Block (1970) in jinvestigating, among ocher things, the problem of setting
cutting scores on criterion~referenced tests to separate students into
twe groups--masters and ncen-masters. His results éuggest that setting
cutting scores high (95%) may be best for cognitive learning but in the
long run peositive attitudes and interest in the subject are less likely
to develop. With a reduction in the cutting score to B5% there was a

reduction in cognitive learning, but selected affective cutcomes were

muximized.
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. V. A Comparison of the Testing Models

5.1 Introduction

In the three previous sections ye have highlighted the basic testing
and decision-making features in three individualized instructional
programs—-IPI, PLAN, and Mastery Learning. Within all three models,
instruction 1s self-paced although mastery learning 1s somewhat more
structured since the initial instruction on 2 unit is group-paced. With
each of the models, the content 1s érganized into units or modules.
Cenerally, in IPI and ML the student 1s expected t¢ demonstrate mastery
on all the units before completing the program of study although by his
performance on unit pretests, it is possible for him to avold instruction
on any of the units. (One variation that does come up 1s the availability
of “enrichment materials" which are an optional part of the curriculum.)
In PLAN, at any grade level there are far more units than any student could
or would ever want to master. Thus, it 1s first of all necessary to
define a content domzin of study for each student.

In the remainder of the section, we shall limit discussion to testing
and decision-making issues. In order to develop a framework for the
discussion, we have chosen to focus on the following issues:

1) selection of a program of study;

2) criterion-referenced testing on the unit objectives;

3) assignment of instructional modes;

4) final year-end assessment.

These vepresent the extent of the decision paradigms within the
three models. The importance and sophilstication used in handling each

component varies from one model to another.
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5.2 A Compendium of Decision Paradigms

Selection 0f a Program of Study

A program of study 1s that collection of units which a curriculum
designey deems necessary for the appropriate education of the student.

All three models are designed for utilization with a curriculum
defined in terms of behavioral objectives arranged into blocks, units, or
modules around a common toplc or theme. Generally in IPI and ML, students
are expected to demonstrate mastery in zll of the avallable course
objectives. The avallable course objectives define the program of
study for the student. However, on the basis of high pretest results
students may avoid instruction of selected units of instruction.

In PLAN, each student receives a unique program of study. The more
advanced the gtudents the more varied their programs of study become.

For reasons described above, selecting a program of study for a
student in IPI or Mastery Learning 1s relatlvely easy. The decisions to

be made reduce, basically, to determining whether students have mastered

particular objectives. They will recelve instruction only on course
objectives they have not mastered. In IPI, placement tests are used

to determine the level of Instruction In each area for the students.
Here the error of giving the student credit for units he has not mastered
(a false-positive error) seems to be somewhat more serious than
mistakenly assigning him to instruction he does not need (a false-
negative error). This follows since a student has & gsecond chance to
demonstrate mastery of the objectives iIn a unit through the unit pretesr
if he ié mistakenly assigned to study a unit he has already mastered.

On the other nand, to incorrectly assign credit for mastering & unit

to & student, particularly 1if it 1s an important unit, will plague him

in his future studies.
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In theory at least in the PLAN program, developing a program of study
is a complex affair. Done once a year it requires a wealth of information
described in section 2.3 to develop the program. The danger of locating
a student in the wrong program because of misjudgment on the part of the
parents, teachers, oi the student or because of a "less than 100% prediction
system" are great; towever, this is the same risk we take with selection of a
program in a traditional school. This is particularly serious in the high
school where there is more cholce than in the elementary school programs.
However, the flexibility of the PLAN program makes switching from one
program to another easier.

Criterion-Referenced Testing on the Unit Objectives

There are three kinds of testing appropriate here: unit pretesting,
unit posttesting, and curriculum-embedded testing. All three kinds of
testing are used in IPI and PLAN although unit pretesting is not stressed
in PLAN. The possibility existed for all three kinds of testing in
Mastery Learning; however, unit pretesting is not emphasized and a student
can avold the curriculum-embedded testing by passing the unit posttest and
thus avold the remedial instructional materials. (Also, it is quite
possible that curriculum-embedded tests are not available in the remedial
materials.)

Let us briefly look now at the losses involved in making different
kinds of decisions. It should be recalled that the unit tests (or module
tests) measure performance on each objective or skill with several items.
On the unit pretests, a student recelving credit for non-mastered objectives
will likely be "caught" gn the administration of the posttest and correct
instruction can be assigned at that time. However, to the extent that
these objectives are prerequisites to others in the unit we have a case

of instructional mismanagement. (Perhaps, this is a\place where Bayesian
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st;tistics might be helpful in producing an "improved" profile of scores
across objectives measured by the unit pretest. This would undoubtedly
improve the overall decision-making accuracy. Likewise this strategy
could be used on the unit posttests.)

To assign a student instruction on the basis of pretest score results
to objectives which he has previously mastered will undoubtedly prove to
be frustrating to himj however, it should be noted that the majority of
errors of this type occuv because Stduents are clese to the cutting score.
Thus, the problem does not seem to be one that needs to be taken too
seriously.

Recelving credit for non-mastered objectives on the posttest to the
extent that the objectives are prerequisites to others in future units will
interfere with the rate of learning at that point. This error seems to be
less serious In terms of program efficiency if the objectives are terminal.
Falling to receive credit for mastered objectives would Seem to be less
serious Since the student could move through the remedial materials quickly
and retake the test.

Since any decisions on the basis of curriculum-embedded test score
results affect the student for only a limited amount of time and there
exlst checks on any decisions with the unit (or module) posttest, there
is little concern for developing more appropriate testing decision guide~
lines at this level.

Assignment of Instructional Modes

An integral component of nearly every iniividualized instruction pro-
gram Is the feature whereby there exists several alternate instructional
modeg for the various units of Instruction that can be assigned in some
optimal way to students. In theory anyway, with IPI and PLAN, past perform-

ance and background aptitude variables are used to assist the students In
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selecting the "best" mode of instruction. With Mastery Learning, this
feature can be operationalized following the group—based instruction and
the unit posttests. 1t 1s at this polnt that decisions on the proper
corrective feedback techniques to use need to be made.

Investigators of the possible interactions between instructional methods
and aptitudes are conducting what has been termed Aptitude-~Treatment
Interaction (ATI) research (Cronbach, 1967). Disappointing is the fact that
while nearly all developers of individualized programs include this feature of
utilizing ATI results in assigning instruétion, there are few real demon-
strations of significant Interactions between aptitudes and instructional
modes {Bracht, 1970; Cronbach and Snow, 1969)., Authors such as Glaser
(1972) have attempted to explain these results and suggest some new
directions for this line of inquiry. However, 1t youll appear that we are
far from a "theory of imstruction” to guide the instructional decision maker
in the assignment of "optimal"” instructional modes to students.

The benefits (assuming equal treatment costs) of the ATJ classifica-
tion scheme for improving the quality of instruction depend directly on
the differences among the slopes of the regression lines for predicting
criterion scores with different aptitude variables in the different instruc-
tional modes. The blgger the difference in slopes the greater is the
potential benefit to the student for assigning one instructional mode or
another. However, in looking at the overall benefits and losses of such a
system, it would seem that the appropriate baseline for comparative furpuies

would need to be data derived from a traditional instructional progran.
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Final Year—End Assessment

This particular feature seems to be handled in much the same way in
IPI and PLAN. Information is reported op the number and nature of units
rhat a2 student has mas:aréd. little or no information is provided by the
school to students and parents that could be ysed for norm-referenced
asgessment. In the mastery learning model, a score is reported to measure
achievement on the year-long activities. Both norm-referenced and

criterion~referenced interpretations are possible.
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VI. Some Directions for Further Research

6.1 Concluding Remarks

A review of IPI, PLAN, and Mastery Learning programs as well as many
other objective~based curriculum programs not reported in this paper re-
veals that there are many lmportant questions remaining to be answered
in regard to individual assessment models. In this concluding section
a few of the more important problem areas are discussed.

In order to develop an Instructional model that is sensitive to.
individual needs, abilitles, interests, and goals in a way that yill

allow the student to maximize his learning, we need a theory of instruction.

A theory of instruction should Set down rules on the most efficient way
of achieving knowledge (Bruner, 1964). This theory would provide guidelines
on how to ‘prescribe instruction to increase Jsarning. One paper that
addresses the problem is Groen and Atkinson (1966)., Current reports on the
related topic of aptitude~treatment interactions are by Cronbach and Gleser
(1965), Cronbach and Snow, (1969), Bracht (1970), and Glaser (1972).

In making decisions on the basis of criterion-referenced test sScores,
one assumes & good match between items and the behavioral objectives
they are intended to measure. To the extent that test items do not
accurately peasure the objectives, any decisions basead on test performance
wlll be inaccurate. To date a satisfactory methodology-for item validation
does not exist although several useful papers provide partial solutious
(Dahl, 1971; Rovinelli and Hambleton, 1973).

A theory of criterion-referenced tests and measurements is also

needed to gulde the users of the tests in the context of programs
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described here. This theory should probably be based on a threshold loss
function rather than 2 Squared-error loss function as has been done in
classical test theory (Lord and Novick, 1968; Yambleton and Novick, 1973).
This theory would Include reliability, validity, test scoring, and item
validation procedures for criterion-referenced tests. It would also provide
guidelines and techniques for setting test lengtis 2nd cutting scoreg, and
allocating testing time. A recenc¢ paper by Millman (1973) provides scume
excellent guldelines on this latter set of problems.

Another problem which has to be reckened with for criterlon~referenced
tests 15 an instance of the bandwidth-fidelity issue (Cronbach and Gleser,
1965). When the total testing time is fixed and there is interest in
measuring many competencies, one may be faced with the problem of whethe:
to obtain very precise information about a smzll numbexr of skills or less
precise information about many more skills. Time allocation algorithms
(analytical procedures for deciding how many items on a test should measure
each objective) of a rather different kind than those preserted by Woodbury
and Novick (1968), and Jackson and Wovick (1970) %ill be required. The
problem of how to determine the number of items to measure each skill so
as to maximize the percentage of correct decisions or some Simildar measure
of overall decision~making accuracy on the basis of test results has yet to
be resolved.

Estimation of mastery 1s & problem that Is encountered frequently in
individualized inatructional programs. Bayesian methods have been
suggested (Hambleton and Novick, 1973), but there has been no empirical
demonstrations of their usefulness in this context nor are guldelines
for the use of Bayesian methods available at the present time. Prior

information for a Bayesian solution might include student mastery svores
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on other skills covered on the test or student performance on skills
measured on previous tests. (In the case of posttesting, pretest
information could be used as the prior.) Also, just as data from
other examinees can improve the precision of estimation of achievement
in a norm-referenced testing situation for an indiv .dual (Lord and
Novick, 1968), so perhaps the same can be done with criterion~
referenced measurement problems.

Within many objective-based programs the strategy of branched testing
would seem to be an approprilate technique, at least In situations where
the objectives 1n a content area can be arranged into hierarchical
sequences. Some of the practical problems have been resolved in the
Pittsburgh IPI Program so that the technique c&n now be used on a limited
basis. Nevertheless, many problems remain before adoption should or can
proceed with other programs. For example, it would be necessary to develop
a non-automated modified version of branched testing for schools without
computers, Also, Wwe need to know much more abovt starting places, step
sizes; storping rules, etc., before we can effectively use branched

testing in an instructional setting.
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1. Introduction

If you are lucky, and certain that your luck will hold, you should read
no further. Our subject is decision making and those who are inherently lucky
will have no need to attempt to take advantage of a logical system for decision
making. However, we feel that logical thought has been successful in so many
areas of human activity that it deserves a chance even in those areas where
arbitrary rules or intuition seem to have prevailed, and perhaps been moderately
successful. In particular, we feel that the implementation of Individually
Prescribed Instruction can be glven a greater payoff 1f a coherent system of
decision making is incorporated into the instructional sequence to provide a
supplement to the experilence-honed judgment of the classroom teacher.

In the currently popular language of systems engineering, the decision
waking process might be viewed as a black box. The black box containg an
input hole for prior information about the environment in which the decision

will be made and evaluated, a second hole for new experimental results designed

lThe research reported herein was performed pursuant to Grant No. QEG-
0=72-0711 with the Office of Education, U. §. Dep:r'ment of Health, Education,
and Welfare, Melvin R. Novick, Principal Investigaror. Contractors under—
taking such projects under Government sponsorship are encouraged to express
freely their professional judgment in the conduct of the project. Points of
view or oplnlons stated do not, therefore, necessarily represent official
Office of Education position or policy. We are grateful to Nancy S. Peterson

for carefully reading and correcting this manuscript.
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explicitly to cast more light on the uncertain environment, and finally a hole
for the decision maker's preferences for the possiv.e consequences of decisions.
The oﬁtput of this black box 1s a decision or action that will ultimately

lead to a distr’'».ion of consequences that will, hopefully, be high on the
decision maker's preference scale. Our business will be to get enough

of a look at what goes on inside the black box so that we can see how the
teacher and student can use prior information, experimental results, and
preferences in a reasonable way to generate decisions having favorable
consequences.,

Building an all-purpose black box for decision making has been a major
project in recent years. Contributors to the project have included economists,
mathematicians, philosophers, psychologists, and statisticlans. It would
take a major treatise to adequately trace this project. We must, therefore,
limit our survey to the major references in psychology and education relevant
to our task. Those elements of decision analysis which require that existing
information about the process under study be quantified in order that new
experimental information may be coherently combined with the existing
information, have already been persuasively presented in the literature of
psychology and education [Edwards, Lindman, and Savage (1963)]). However, the
requirement that preferences for various possible distributions of consequences
be formulated coherently and expressed as a numerical.valued utility function,
has not been emphasized in the literature of education with the singular

excep~lon of the prophetic text, Psychological Tests and Personnel Decisions,

by Cronbach and Gleser (1957, 1965).
Many decision makers in education may feel that business managers, with
the market at hand to evaluate the outcome. assoclated with their decisions,

are in a more favorable position to make value comparisons among tlie
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distributions of consequences .han they are. For example, the values attached
to the consequences of a decision to implement a spe:ific education program,
or to advance or retailn a particular student at ¢ given lz’el, seem to them
to defy simple quantification. Such decisions appear to have so many
possible ramifications that to formulate preferences with any degree of
consistency 1s simply impossible.

Nevertheless, it is our position that most data-collecting activities in
education are designed to influence decisions. In fact, to simply collect
data without the objective of ultimately modifying a cov. e of action, would
seem wasteful, We further assert that despite all the perplexities, decisions
are regularly made in education based on an informal mixture of recently
collected information, prior information, and the preferences of the decision
maker. Xf these declsions are to be rational in the sense that they are
derived from a logical program for decision making that provides for the imput
of prior information, new data, and preferences, we claim that decision theory
is required. There 1s no magic in the formal structure of decision theory.
The theory contributes only what mathematics does to any problem; an orderly,
systematic, and precise framework for formulating a problem, plus the ecouomy
of mathematical reasoning in tracing the consequence:c of the formulation.

The main difficulty in implementing dec'sion theory arises from the
necessity to quantify basically subjective or personalistic quantities, and
this difficulty is real. However, we believe that within the framework of
some of the newer and very highly structured modes of instruction, it is
possible to provide relatively simple yet conclusively meaningful methods of
decision analysis. The decision machinery that we shall build will be
appropriate for a wide band of decision problems. However, we will consistently

illustrate the ideas with examples from individualized instructional procedures.
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2. Fundamental Ideas and Notation

The main purpose of this section 1s to illustrate the rudiments of
decision analysis with a varlety of straightforward examples. Thus, we
begin Section 2.1 with a2 rather trivial example. 1In later sections, this
example will be modified and extended to make 1t both more realistic and

interesting.

2.1 The Bagic Example

The environment of our example 1s very simple. A student has either
mastered or not mastered the topics in the current unit of his individually
prescribed instructional program. The state of the student being a
uonmaster will be denoted by 91 and the state of his being a master will be

denoted by 0 Two actions are open to the decision maker, who could be

20
the teacher or even, i some arrangements, the student himself. The decision
may be to retain the student for additional work at the present level of

his prescribed program. Tkis "retain' decision will be denoted by d The

1’
complement of this decision 18 to advance the student to the next unit.
This decision will be denoted by d2.
We now 1dentify the three basic Ilnputs into the decision analysis.
(a) Prior information. In Individually Prescribed Ingtructiom, a
student begins az unit of instruction only when he 1s decemed to be prepared
for that unit. For this reason, the variation in posttest results tend tc be
relatively small, except to the extent that they are due to sampling variation.
Therefore, the main input of prior information will involve our beliefs about
the relative success of the Instrrctional unit with qualified entrants.
Thus, on the basis of an examination of the success which other students
have had on this training unit, and before administering a test at the end of

the present unit, the decision maker assigns prior probabilities to the

two posrible states.
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Prior
Probability

p(8)
This information 1s relevant
ignore it is to waste useful
The symbol p(8) denotes
symbol will continue to play

(b) Experimental plan.

Table 1

State of the Student

Bl (nonmaster) 02 {master)

N .6

to the decision under consideration and to
facts.

the prior probabillity mass function. This
the same role throughout our discussion.

The decision maker may ask the student one

test guestion to learn more about which state prevails. The result of this

short test will be denoted by X . If the student answers corréctly, X = 1,
and 1f he answers Incorrectly, X = 0 . The probabllity assignments to these
two outcomes, 1f the mastery state 1s known, is given in the following short
table where p(xlﬁ) = PriX = xIB] is the probability mass function of correct
(x = 1) and incorrect (x = 0) responses given that the mastery evel is

known to be & .

Table 2
plx|e)
x = 0 (wrong) x = 1 (right)
81 {nonmaster) .8 .2
02 {master) .2 .8

This table states that iLf{ a person 1s a master, then the probability that he
will give a correct answer 1s .8 and {he probability that he will give a
wrong response Is .2. TIf he 1s a nommaster, the probabilities are reversed.

Note that those are probabilities of experimental outcomes given the true

state of the student (master, nonmaster).
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(c) vPreferences. The decision maker can make one of the two types of
errors. If he retains the student at the current level when, in fact, the
student is a master, the student will probably repeat the current unit with
only minimal gain. On the other hand, if the student 1s advanced when he has
not mastered the topiecs on the current level, ultimately he may have to repeat
both the current level and the one to which he had prematurely been advanced.
With these facts in mind, the decision maker designates the nonnegative loss

function L(d, 6) defined in Table 3.

Table 3
L(d, @)
91 (nonmaster) 92 (master)
dl (retain) 0 1
d2 (advance) 2 0

In specifying a logs function of this type, the decision maker assumes that
no less occurs 1f a correct decision 1is made and that the loss assoclated
with advancing a nmoumaster is twlce that associated with retaining a master.
We do not suggest that this simple loss function is appropriate in all or
even any situations. However, the simple assumptions seem realistic enough
to maintain our attention for a while.

Three reasonable decision rules for selecting decisions d, or d2, after

1
obsefving the test score, are possible.

Table 4
Rule x = 0 (wrong) x = 1 (right)
5l(x) dl dl
62(x) dl d2
53(x) d2 d2




In thds trivial example, decision rules Gl(x) and 63(x) really tell us to
ignore prior information and the current test result; in the case of Gl(x)
to take action d1 {(retain) invariably, and in the case of 63(x) to stick
with action d2 (advance). Nevertheless, each 1s a serious candidate
because certain loss structures and prior probability distributions could
make one of them the preferred decision rule.

There are two ways that the analyses carried on within the black box
labeled “decision process" have historically beem organized. <The first,

which 1s called normal form analysis, involves a three step process.

(1) Compute the average or expected loss for each c¢rdered pair (61, Bj)

composed of a decdsion rule 61 and a state parameter value 6 This

g
averaging 1s performed with respect to the probability distribution of
possible experimental outcomes, p(xlej).

The expected value that emerges from this computation 1s called a risk
function and it is denoted by R(Gi, Bj). As the notation suggests, It is a

function of both the decision rule 61 and the state parameter § In

j -
symbols, we have

R(S;, 6,) = LIS, G, 6, Tp(x[o))

j

where 1 indexes the various decision rules and j identifies the various values
of the state parameter ¢ . Once we have the risk function, we have the

expected loss for each possible (51, ej) pair, and can possibly decide that

a decision rule is good (bad) if its risk is small (large) for all values

of 6 (2) This kind of analysis, however, is typically inconclusive

j -
so we must compute the average or expected value of the rigk function for
each decision rule. This averaging is done with respect to the prior

probability distribution of the state parameter 0{6) . This
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expected value. is called the Bayes risk function' and will be denoted by

r(Gi, p), where the symbol p 1s inserted to stress that the Bayes risk depends
on the prior probabdlity distribution. This recipe may be expressed in

symbols as

r(ﬁi, p) = gR(Gi, Gj)p(ﬁj) .

The effect of this averaging 1s to weight the effect of a decision rule

highly for those values of 8, that we think, apriori, are highly probable

i
and, hence, important to consider. (3) With this computation completed for

each decision rule, we select and subsequently use the decision ryle that has

the smallest Baves risk.

Now let ue carry out this three step normal form analysis using the
logsses and prior probabllities from our example. First, we will compute
the risk of decision rule 62 when the true state of the person is 61 .
Recall that with 62, we retain the student if x = 0 and advance him if

x =1 . The risk 1s

R(3,, el) = iL[Gz(x), al]p(x|al)

= L[5, (0), &;1p(0]6)) + LL6,(1), &, lp(1fs,) ,

i.e., the risk of using decision rule 62 when the true state 1s 6, 1s the
simple average or expected loss for the (62, 61) pair. The expectation 1s
performed with respect to the probability distribution p(xlel) of the two
poseible test gcores x = 0 and x = 1, when it 1g given that the student is
a nonmaster (L.e., & = Bl). Let us evaluate this risk. From Table 4, we

know that 62(0) = d; and 62(1) = d Thus,

2 L]

R(6,, 8)) = L(d,, el)p(olel) + L(d,, Gl)p(llel)
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From Table 3, we have L(dl’ 91) = 0 and L(dz, 91) = 2; from Table 2, we
have p(0]0,) = .8 and p(1{6,) = .2. Thus, using the symbol * to indicate

multiplication, we have
R(Gz’el)‘0*08+2*.2..4’

i.e., when the true situation 1s 91, decision rule 62 has a risk (expected
or average loss) of .4, Similar computations have been made for the

remaining (61, ej) palrs. The computations have been summarized in Table 5.

Table 5

RSy, 0,) = intaicx), ejlpcxlej)

State Result p(x| ) 51 (x) 52 (x) 63 (x)
91 x=0 .8 0« .8 0« .8 2% .8
x=1 .2 0=*x,2 2 % ,2 2 % 2
R{Gi, 91) 0 A 2.0
92 x=0 .2 1,2 1% .2 0=*,2
x=1 .8 1% .8 0% .8 0% .8

R(S,, 6,) 1.0 .2 0

If we knew that 0, (noumaster) prevailed, decision rule Gl(x) which
always retains the student would minimize the risk function. It has an
expected loss of zerc which 1s as good as cne can do. Xf we knew that 92
(master) prevalled, decision rule 63(x) which always advances the student
would minimize the risk function. Again this rule would have po risk. 1 43

Q .
EMC)f course, 1If we knew which state p?'évailed there would be no need to apply

IToxt Provided by ERI
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decision analysis to the problem, At this point, ncone of the three decision
rules are judged to be uniformly supericr, i.e., superior for every state of
nature. If one were, we would certainly adopt it, but ncne is, so we must
find some way of choosing the best decision rule, We, therefore, move to

Step (2) in aormal form analysis before identifying the winner. The
computation of the Bayes risk must.now be made for each of the three decision
rules. The idea is simply this. We do not know the true state of the person,
but we do have a prior opinior concerning the true state, Therefore, it makes
sense to average the risk for each decision rule with respect to our prier
opinions, in effect, to put more weight on those values of 6 that seem more
probable to us., For example, to compute the Bayes risk r(§, p) for 62 (the

average risk with respect to cur prior probabilities for 9. and 82), we

1
compute the follewing:

r(629 p) = R(GZ’ el)p(el) + R(Gz’ 62)9(92)

Substituting values from Table 5 and Table 1, we have
(.4 % .4) + (.2 % ,6) = ,28 .

The computations of the Bayes risk for 61 and 63 are alsc easily made and

are given, together with these for 62, in Table 6.

Iable 6
3 Efe_) R(8;, 8)p(8) R(8,, 0)p(8) R(¢,, 8)p (8)
8, 4 0% .4 ok 4 2 % .4
8, .6 1* .6 2 * .6 0 * .6
r(8;, 0) .6 .28 .80
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The final step in normal form analysis directs us to select action
rule 62 because it has the smallest Bayes risk. Thus, we have stated and
exhibited in detail a precise and coherent procedure for decision-making
in the presence of uncertainty. We have further demonstrated a simple
application in the context of Individually Prescribed Instruction. To see
that the cholce of decision rule really depends on prior prvbabilities,
the reader should redo step (3) in the analysis first with p(&l) = .1,
p(Bz) = .9, and then with p(ﬁl) = .9, p(ez) = ,1.

A second way of organizing the analysis within the decision process

black box 1s called extensive form analysis. Since this type of analysis

has some computational advantages over the normal form, our subsequent

illustrations will, with one exception, employ extensive form analysis.
Extensive form analysis also involves a2 three step process.

(1) Determine the posterior probability distribution of the state parameter

8, given the experimental result x . That is, we must determine

p(8|x) = p(x}8)p(8)/p(x), where p(x) = Tp(x]8)p(6) is the unconditional

probability mass function of X . The pgsterior distribution p(BIx) summarizes

our knowledge and beliefs about 8, incorporating both our prior beliefs and

the sample information. (2) Compute the expected value of the loss function

for each decision rule with respect to the posterior distribution of 8 .

That is, we must compute ZL(Gi, B)p(8|x) for each decision rule. (3) Select
the decision that will yiild the smallest posterior expected loss in Step (2).
The advantage of extensive form analysis arises in Step (2) and is a

bit hard to appreciate when expressed only in words. The heart of the

matter is that Step (2) does not have to be carried out for every possible

value of X . If we adopt this system, we can wait and perform Step (2) only

e
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[or the result x that 1s actually observed. Once X 1s observed, the decision
rule 63 specifies the decision di to be made, and the lpsses under each state
0 can be taken immedliately from Table 3.

The amazing thing 1s that under very general conditions, normal and

extensive form analysie will lead to the same decision. This point will be

illustrated in our example. Later, a methematical argument will be presented
for those who can only be persuaded by such demonstrations (Raiffa and
Schlaifer, 1961, p. 15).

The first step in vxtensive form analysls requires us to determine the
form of the posterloxr probability distribution of & . For our example,
we will do more and actually exhibit the two possible postevior distributions.
But first, we nead to exhibit the jolnt probability distribution of X and 9,
and the marginal distribution of X . These probabilities are given in Table 7
where the entries in the body of the table are the joint probabilities,
and the entries in the margins are the marginal probabilities. In computing

fable 7, we have used P(6) from Table 1 and p(x|6) from Table 2.

Table 7

p(x|8)o(8) = p(x, 8)

x=0 x =1 p(6)

91 .32 .08 .40

92 A2 48 .60
p(x) 44 .56

Then the posterlior probability distribution of 6 for given values of x
is given by Bayes Theorem p(ﬁlx) = p(x, 8)/p(x) . These conditional prob-
abilities for 6 given X are summarized in Table 8. Note that the conditional

distribution of 6 given x = 0 18 very different from that given x = 1 .
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Table 8
p(e|x)
x =0 x=1
6, .73 14
8, .27 .86
1.00 1.00

The second step in extensive form analysis calls for the computation
of the average or expected value of the loss function for each decision
rule with respect to the posterior distribution of & [i.e., we must compute
?L(Gi’ ej)p(ejlx)]. We will carry out this computation for each of the three
decision rules specified in Table 4. Suppose x = 0., Then from Table 8, we
gee that p(ﬁl|x =) = .73 and p(92|x =0) = .27. 1f we adopt 61, then we
shall make decision dl when x = 0 (see Table 4). Thus, 1f 0 = 91, our loss

will be zero, and if 6 = 92, our loss will be one (see Table 3). Therefore,

our average or expected loss given x = 0 ig¢

£, 0, 01lx = 0) = LLs (0), 0,1p(®; |x = 0)

= (0 % .73) + (0% .27) = .27

as given in the first column of Table 9.
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Table 9

€ {L{s (o, 81]x}

8 5
8, 8, 64 6 2 3

8. 0% .73 0% .73 2* .73 0% .14 2 % .14 2 % .14

6, 1 *.,27 1% ,27 0 % .27 1% .86 0 % .86 0 % .86

.27 27 1.46 .86 .28 .28

In this table, similar computations are made for each of the. three decision
rules for both x = 0 and x = 1. Observe that decision rule Gz(x) produces
the smallest expected loss for each value of x and may be judged as the
optimum decision rule. However, 1if x = 0, rule 61 is equally as good, and

1f x = 1, rule 6, is equally as good. More importantly, however, this

3
observation indicates that the second and third steps can be simplified

still further. Note that if x = 0, Gl(x) and 82(1) lead to the same decision
(dl) and, consequently, must necessarily have the same expected loss. Vhat
this emphasizes is that once we know X, ye are really interested.only in

the best decisjon (dl or dz), rather than the decision rule (81, 82, 83) that
will lead to the best decision. Consequently, we need only compute the
expected or average valw2 of the loss function for the available decisions.
That decisjon (not decigion rule) with the smallest posterior loss will

then be selected. This is done in Table 10.
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Table 10
EL(d, 8)p(8]x)
;]
x=10 X =1
dy d, dy d,

31 0% .73 2% 73 0* .14 2% 14

1% .27 0 * .27 1 * .86 0 % .86

.27 1.46 .86 .28

Our action rule is the same as indicated previously; 1f we observe
%x = 0, we will take action dl (retain), and if we observe x = 1, we will
take action d2 (advance). This is, in effec:, the same as adopting
decision rule 82 . As pointed out previcusly, in extensive form analysis,
only that half of Table 10 which corresponds to the actual result observed
{(x = 0 or Xx = 1) needs to be calculated.

So far, we have illustrated two forms of analysis which we claim will
lead to ldentical decisions. These forms combine prior Information,
experimental results, and preferences using the machinery of probability
theory to trace the consequences of the inputs. The example that helped
to illustrate these ideas was kept at a trivial level so that the arithmetic

would not obscure the essence of the process.

2.2 The Formal Structure of Decision Theory

Although mathematical symbols may seem forbidding, they are an
indispensable tool in conveying ideas precisely. Therefore, both for
completeness and for precision we will retrace the key ideas of decision
analysis relying on symbols rather than numbers. Although integral signs,
S, will be used, we remind our readers that this is merely a continuous

analogue of the summation operator, & .
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We laet L[4(x), 6)] be a nonnegative }oss function defined on

thhe set of palrs of the parameter vaiues, § and 6 . The sywbol

a(x) iy used to emphasize the fact that the decision rules usually
depend on observed values of the random varliable X; the observation
being obtained to elicit information about 8 . In some contexts it
may help to think of 6 as the mean of some probability distribution,
and 4(x) as an estimmte of @ . Then L{&6(x), 8) 1s the nonnegative
numerical value of the loss assoclated with using §(x) as an estimate
»i the wean, when, in fact, the mean is @ .

In the first stage of normal form analysis, we need the expected
or average value of this logs function, where expectation is raken with
respect to the conditional distribution of X given 6 . This expected
value was referred to as the risk function and was denoted R{S, 8) .

That is
R{§, 8) = SL[6(x), o]p(x|e)dx .

For this integral, the symbol p(xle) denotes the probablility density
of the random variable X, given the value of the state parameter 8 .
If X 1s a discrete random variable, p(x]B) is to be Interpreted as a
probability mass function, and Integration is then replaced by summation.
As the symbols suggest, the risk function is similar ro the loss function.
The major difference rests on the fact that the risk function no longer
derande ypon 'the observed value of our experimental variable X; X has
been averaged out. This fact 1s emphasized by the absence of an x in
our notation for the risk function, R(é, 8) .

If one adopts a Bayesian view of statistics, and one 1s compelled
to embrace this view if he accepts any of several comprehensive axiom

syatems for decision making, it becomes necessary to quantify previous
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or collateral information about the state parameter 8, which we summarize
in p(8). In the second stage of normal form analysis, the expected or
average value of the risk function from stage one is then calculated with
respect to this prior distribution, p(6). We referred to this expected
risk as thn Bayes risk associated with &, and denoted it, r(§, p) . And so

we have,

r(s, p) = JR(S, 8)p)de

F{ruls(x), elp(x|eddxlp(e)de .

Then, the third and final stage of the normal form analysis consisted of
selecting the decision rule which minimizes the Bayes risk.

As was pointed out above, extensive form analysis follows a slighely
different route, but under rather general conditions, leads one to the
same decision. In extensive form analysis, we begin by evaluating the

posterior distributicn of 6

p(8)p(x|e)
8 =
p(8]x) e I
and then determine the expected loss with respect to this posterior
distribution. In the continuous case, this expected or average loss can

be represented by the integral,

Eo 1166, 613 = L0560, elp(odd

Naturally, in the discrete vase, we merely replace the integration operation
with that of summacion. The decision making criterion in extensive form
analysis is then to choose that decision rule §(x), which minimizes this

expected loss., The reader should take special note at this point, that
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although this expectad loss depends uPon the random variable X, it needs to

be evaluated only for that value x which is actually obtzined.

In order to make clear the relationship between normal form and
extensive form analyses, let uz compare the decision ¢riteria in the two

cases, Under normal form analysis We are to choose the decision which minimizes

the Bayes rigk,

r(§, p) = S{fL[&(x), 0]p(x|0)dx}p(B)de .

Now, if these integrale are suitably well behaved, we may interchange the

order of integration and so write the Bayes risk in the form,
£ (8, p) = S{/LES(x), 0p(x]|0)p(0)dB)dx .

Since by Bayes theorem p{(x|9)0(0) = p(9|x)pix), we may rewrite this last

equation in the form
r(8, p) = S{/LI8(x), 0lp(o|x)dolp(x)dx . (2.1)

The observant reader will of course already have recognized the integral

in brackets as the expected loss which must be minimlzed under the extensive
form approach. This equation illustrates the crucial difference between

the two approaches. Extansive form analysis chooses the decision rule

which minimizee the expected loss for the particular value of x oghserved.

In contrast, normal form analysis chooses the decision rule which minimizes

the average of those expected losses for all possible values of x. Clearly,

i1f one particular decision rule minimizes the expected loss criterion of

152




19

extensive form analysis for every x, then the average of those expected
logses under that decision rule must also be a minimum. In this case, it is
clear that the decision taken under extensive form analysis will coincide
precisely with that taken under normal form analysis. However, in those
instances where extensive form analysis apparently leads to different
decision rules depending upon the value of x observed, the equivalence of
the two approaches may not be obvious.

Although the possible non-zquivalence of these two approaches may
ceen to pose a dilemma for users of decision theory, in fact, it is a
non-problem which has been set merely for the pedagogical purpose of
underscoring some fundamental differences in the two approaches. Consider,
if you will, the following. Since we are admitting for consideration all
reasonable decision rules, we must allow that rule G*(x) which, for each
x, minimizes the expected loss criterion of extensive form analysis.
Since G*(x) will be selected by the extensive form approach irrespective
of the value of x obtained, it will also be chosen under the normal
form procedure. How do we construct G*(x)? We do this in a straight~
forward operational manner: We use extensive form analysis for
the x obtained and choose that decision (not decision rule) which minimizes
the expected loss.

For a concrete example of the relationship between normal form and
extensive form analysis, consider Table 1l which summarizes the eXpected
losses under extensive form analysis for the three decision rules. This

table is merely a modified version of Table 9.
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Table 11
éf {L[6i(x), 81}
elx
% % 5
x=0 | .27 .27 1.46 1
x=1 | .86 .28 .28 |

We found in Table 7 that the marginal distribution of X is given by

pr(X = 0) = .44 and pr(X = 1) = ,56, Thus, as inc ‘cated in Equation (2.1),
the Bayes risk assoclated with decision 61 is given by the welghted average
of the entries in the first columpn of Table 11, wyhere the weights are

the marginal probabilities of X . And so we have,
r(61, p) = (.27 % 44) + (.86 % ,56) = .6
as we saw in Table 6.

2.3 Extensive Form Analysis with & Continuous Posterior

Let us now turn to an example of extensive form analysis which uses
a continuous model density. This example is only a slight modification
of that used previously; the primary difference being that we now assume
that both the state parameter © and the random variable X are continuous.
It should be noted that rhis example 1s merely a reformulation of one
considered by Hamdleton and Novick (1972), As before, two decisions are
open to the decision maker who 1s gulding a student through an ordered
sequence of instructienal units. At the end of each unit, the decision
maker, based on his knowledge of the student's past performance, the

performance of similar students, and current test results, must decide
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to advance the student to the next unit in the sequence or to retain him
at the present level, If the decision maker knows the student’s mastery
level (0), he would be willing to advance the student if B 3_60 and to
retain him 1f 6 < 90 + Thus, the number 90 1s a cutoff (or selection)
point on the mastery scale with respect to the actions advance or retain,

In selecting 00, caveful consideration of the objectives of the
training program, and previous experience with the training and evaluation
materials must prevail. If for example, Bo is Intended mevrely to glve
at least an even chance of completing the next lesson, éo might be set
equal to that level of functioning which has historically had a 50% success
rate on the next unit, If, on the other hand, the decision maker is very
concerned about the ill-effects of the frustration of a poorly prepared
student reading advanced material, perhaps 00 ought to be somewhat
higher. 1In any case, once 90 is specified for the test, prior and collateral
information about the student will be combined with the test result (x)
for the purpose of estimating 0 .,

Assume that for this two-action (advance or retain) problem, the decision
maker specifies a threshold (or step) loss function which can be described

by the following table: (Compare with Table 3)

Table 12
L(di’ 8)
B <B B >0
0 0
d1 {retain) 0 b
d2 {(advance) c 0
o
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where b and ¢ are both nonnegative. 1In the literature, losses associated
with falling into tﬁe lower left cell of this table are frequently referred
to as arising from "false-positives', since the declsion maker has wrongly
presumed that the parameter B lies in the region yhich has positive ethical
value (l.e., has wrongly presumed that @ 3_90). Similarly, losses associateq
with falling in the upper right cell are commonly veferred to as arising
from "false-negatives'". The nonnegative numbers, b and ¢, reflect the cost
of making these two types of errors. Because the decision envisaged in this
example is rather local, affecting only one step in a program which ig only
a small part of the student's total learning experience, a massive effort
to determine b and ¢ exactly would seem inappropriate. In some cases, it
might seem reasonable to assume that ¢/b = 2, if for example, a false
positive results 1In repeating two steps in the sey.-uce, as compared with
the repetition of only one for a false negative.

Following the general scheme for extensive form analysis outlined
earlier, our goal is to determine the action which will pinimize the

expected or average posterior loss
Sy, 0)p(e)x)de .

This integral is equal to b{Pr{s 3_90[x]} if i = 1 and 1s equal to
cl{Pr[6 < 9o|x1} if i = 2. Therefore, we may minimize this expected loss

by making decision d1 for those values of x such that
b{Pr[6 > Bolx]} < ¢lprie < 90|x]}
and by making decision d2 for those values of x where

bler{e > o |x1} > clprfo < 6 |xI} .
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Although such a situation is unlikely in practice, when the two possibie
values of the integral are equal, we will be indifferent about which decision

to take.

In many applications of this type, the range of test scores may be

cut into 2 decision d, region and a decision d, region by considering the

1 2
posterior distribution of &[i.e., p(ﬁlx)] as a function of x . Doing this,

we see that the critical point lividing the two regions can be represented

by that point X, in the set of possible test results such that

c{pr[o < 8 |x 1} = blpr[o >0 |x 1}
or
clpPr(e < eolxol} = b{l - Pr6 < 0 {x 1}

80 that

c 3 5= Prle <o |x] : (2.2)

What this equation says is that if we consider the class of possible posterior
distributions {p(6]x)} to be indexed by x, and if we can find that member of this
class which is identified by x = x_, say, such that Pr(0 < eOIxO] = b/(c + b),

then for all x < X s We will choose decision d, and for all x > x s we will

1
select decision d2 .
We will illustrate the computation of the cutting score X on our

observation scale with an example. Suppose that the test score X has a
normal distribution with unknown mean 6 and known variance 02 . Further,
suppose that all existing information about the parameter 0, which measures

the mastery level of a certain skill, may be summarized by a normal distribution

with mean T and variance ¢ . Then, a simple application of Bayes theorem

2The uniqueness of the point X, satisfying this equation is presumed.




vields a posterlor distribution of & which 1s normal and has a mean of
('ro2 + x¢)/(02 + ¢) and a variance of 02¢/(¢ + 02). Transforming this

posterior distribution on 8 into standard form, we see that

102 +x ¢
§ - — ©

o 2
G+ ¢ x ,

[062/ (0% + 1% | ©

Pr(6 < eo|xo] = Pr|z <

where z has 2 normal distribution with mean zero and variance one.
Therefore, the cutting score X, on the observation scale may be determined
by finding that point z, in the standard rormal distribution which has
percentile rank lOO[b/(c + b)], and then solving the equation

2

w + % ¢
e_—o__

o 02 + 4

° 462/ (e? + §)]°

z

for X, - Thus,

b + o> 2
= + 0 - 2 2 ’;5 TQ .
X 3 {o, =z [$07/(4 + 6717} - + - 2.3)

In order to convey some feeling for how this loss structure and the
normal data and normal prior distributions jinteract to produce cutting
scores, Table 13 has been provided. 1In this table, the desired proficiency
level 00 » 75 and the prier mesn t = 80.

As we would expect with ¢ and 02 held constant, the cutting gcore X,
increases with c/b, the relative loss for a false positive as compared with
a false negative error. From an intuitive point of view, this relationship
makes sense. As ¢/b increases, false positive errors become.relatively more

expensive than those of the false negative varietv. Consequently, our
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Table 13
Loss Constants Variances Posterior |Posterior Cutting | Critical Posterior
¢ b Prior ¢ | Data 02 Variance Score xo Mean
2
80 ¢° + xo¢
02 + ¢

1 9 9.0 9.0 4.5 64 .57 72.28
1 9 9.0 16.0 5.8 57.58 71.93
1 9 9.0 25.0 6.6 48.67 71.71
1 9 16.0 9.0 5.8 67.39 71.93
1 9 16.0 16.0 8.0 62.76 71.38
1 9 16.0 25.0 9.8 56.94 71.00
1 9 25.0 9.0 6.6 68.72 71.71
1 9 25.0 16.0 9.8 65.24 71.00
1 9 25.0 25.0 12.5 60.95 70.47
3 7 9.0 9.0 4.5 67.77 : 73.89
3 7 9.0 16.0 5.8 62.61 73.74
3 7 9.0 25.0 6.6 56,01 73.65
3 7 16.0 9.0 5.8 70.22 73.74
3 7 16.0 16.0 8.0 67.03 73.52
3 7 16.0 25.0 9.8 62.99 73.36
3 7 25.0 9.0 6.6 71.36 73.65
3 7 25.0 16.0 9.8 69.11 73.36
3 7 25.0 25.0 12.5 66.29 73.14
5 5 9.0 9.0 4.5 70.00 75.00
5 5 9.0 16.0 5.8 66.11 75.00
5 5 9.0 25.0 6.6 61.11 75.00
5 5 16.0 9.0 5.8 72.19 75.00
5 5 16.0 16.0 8.0 70.00 75.00
5 5 16.0 25.0 9.8 67.19 75.00
5 5 25.0 9.0 6.b 73.20 75.00
5 5 25.0 16.0 9.8 71.80 75.00
5 5 25.0 25.0 12.5 70.00 75.00
7 3 9.0 9.0 4.5 72.23 76.11
7 3 9.0 16.0 5.8 69.61 76.26
7 3 9.0 25.0 6.6 66.21 76.35
7 3 16.0 9.0 5.8 74.16 76.26
7 3 16.0 16.0 8.0 72.97 76.48
7 3 16.0 25.0 9.8 71.39 76.64
7 3 25.0 9.0 6.6 75.04 76.35
7 3 25.0 16.0 9.8 74.49 76 .64
7 3 25.0 25.0 12.5 73.71 76.86
9 1 9.0 9.0 4.5 75.43 77.72
9 1 9.0 16.0 5.8 74.64 78.07
9 1 9.0 25.0 6.6 73.55 78.29
9 1 16.0 9.0 5.8 76.99 78.07
9 1 16.0 . _16.0 8.0 77.24 78.62
9 1 16.0 25.0 9.8 77.43 79.00
9 1 25.0 9.0 6.6 77.68 78.29
] 1 25.0 16.0 9.8 78.36 79.00
O 9 1 25.0 25.0 12.5 79.05 79.53
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decising maker decreases his chances of making false positive errors by
increasing the cutting score, LI
Since the mean of the posterior distributicn of € 1s a linear function

of x, we may reformulate the question of the critical cutting score x  into

1
a question concerning the critical posterior mean M ® (102 + x0¢)/[¢02/(02 + aj>)]'ﬁ

where xo‘is determined by Equation (2.3). In this case, we solve the

equation
s = % " %
°  (46%/ (o’ + 911
for L And analogous te Equation (2.3) above for X We have

2,,2 1
M, O -2 [$07/ (0" + $)1° .

In preparing Table 13, we also calculated values of u, which appear
in the last column. Thege results can be understood by referring to Figure 2.1.
Our procedure says that the critical posterior distribution of @ must be such
that 100[b/(c + b)} percent of the probability lies below 90 . In order
to maintain this constant percentage, ag the posterlor varlance increases,
the critical posterior mean of 9 must necessarily decrease for b

c+o) "
and increase for ?E_%_ET < .5, That is, as the posterlor variance of ©

5

increases, the critical posterior mean moves away from 90 » From an intuitive
point of view, this makes sense. It implies that as 2 declsion maker
becomes Increasingly uncertain about the posterior mean as an estimate of
@, he becomes pore cautious, moving his critical mean in the direction of the
J~38 costly errors.

The effect; of changes in parameter values on X, 1ls a bit more
complicated gince we must consider not only the posterior variauce, but

also the ratio of the prior variance (¢) to the variance of sampling
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(1) (11)

Mean = 72.28 Mean = 77.72
Variance = 4.5 Variance = 4.5

(1v)

/]

e RE uw AR PR WME mR EF OW  ma

ne Ll
eo
Mean = 71.0 Mean = 79.00
Variance = 9.8 Variance = 9,8

Mean = 70.47 Mean = 79.53
Variance = 12.5 Variance = 12.5

. Figure 2.1. This figure illustrates the necessary change in the critical
posterior mean as the posterior variance increases. In the figure, we let
b/(b +c) = .9 in (1), (111), and (v). We let b/(b + ¢) = .1 in (i1), (Iv),
and (vi). The figure illustrates that for b/(b + c) > .5, the critical
posterior mean of O must decrease with Increasing variance, while for
b/(b + ¢) < .5 it must increase.
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2
distribution of x (i.e., 7). One can get some notion of what is going on by

examining the definition of ”o .
2
L. Tg + xo¢
o 02 + 4

Since o 1s the weighted average of T and xo, for given s xo must inc.ease
as the ratio ¢102 increases. This relationship 1s clearly indicated in
Table 13.

At this point let us look at a numerical example of some of the theory

we have developed in the last few pages. Assume that we have the following

situation:
(1) p(®) ~ N(80, 25) {(Prior Distribution)
(2) p(x|®) ~ N(o, 16) (Distribution of Test Scores)
(3)
) L{d,, 8) Loss Function
& < eo 0 > BO
dl {(retain) 0 1
d2 {advance) 2 0

(4) 8 =75 (Pass Level)

Before collecting our observation on this subject, we can write the

posterior probability density function p(B]x) as a function of x . Thus,

-

oolx) - N |:80(16) + 25x 25(16) ] .

16 + 25 ' 25 + 16
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Since this is a completely general description of the posterior distribution
no matter what value x ig observed, it should be possible to determine those
values of x which lead us to decision d; and those which lead us to d, .
This is what we did symbolically before when we determined the critical score
X, We defined x as that point such that if x happens to fall below X s

then applying our criterion of minimum expected loss, we would be led to choose
d1 » And of course, if x falls above X » we would choose u, . The previous
theory tells us that the next svep is to calculate the expected loss under

each decision. Doing this we find:

£ Ly, 0] = I35 1 p(0]x)ds

o]
and

g l [L(dy, 8)] = 573 2 peolxrae .
Olx

By equating these two expected values symbolically and solving for that value

x for which equality obtains, we previously found that

2 2
b+ 0" - 2 2,4y _ L0
X, = (6, -z, (40 /(p +07)1} 3

where z, is the ¢ Elgg%-)th percentile of the unit-normal distribution.

Substituting into the equation for Xy we find:

x, = 25—2"5‘1—6 (75 = (=.43) [25(16)/(25 + 16)1%} - 80 %

?&.003 L

Therefore, we are certain that if we observe an X (test score) which
is greater than 74.003, extensive form analysis will lead us to advance the

student. Similarly, Lif the observed test score is less than 74.003, extensive

form onalysis will cause us to retain the student for additional training.

Although, obtaining a score of precisely 74.003 will be somewhat ambiguous

163




30

since the two decisions will have the same expected loss, in practice this
will not be a problem. We will seldom find a test score which falls
precisely on an indifference point. Suppose that we observe X = 73, Since
73 is less than X, = 74.003, we can be certain that extensive form analysis
will lead us to retain the student (decision dl)' However, for the sake of

those who doubt mathematical arguments, we will calculate the expected losses

for comparison.

A, L =
Ly, 8)fx = 73] = £ 1 p(6|x = 73)d6 = 1 ~ Pr(s < 75}x = 73)

75

[ -3

1Ly, 8)]x = 73] = .7 2 p(6jx = 73)d8 = 2(Pr (s < 750x = 73] .

since
p(8lx = 73) ~ x(75.73, 9.756),
we have
Pr(6 < 75lx = 73) = .409 ,
and so
&1L, 8)}x = 731 = .591
and

&L, 8)fx =731 = .818 .

Clearly, we would choose dl and retain che gtudent as predicted.

A more realistic model than that just described would recognize the
fact that in educational settings the model variance as well as the mean
is usually unknown. In most situations, the decision maker will have
some information concerning the variation and the region in which the

observations will fall; total ignorance would preclude even the proper




31

cholce of & measuring instrument. However, except in very special situationms,
one's knowledge about the model variance 02 is typicaily not sufficiently
precise to warrant the application of the known variance model.

The sclution to the Inference part of the unknown mean and unknown
variance pfoblem has been provided by Novick and Jackson (1974), Beginning

with a normal model density with location parameter & and variance paraumeter

¢, and 2 gamea-normal prior density proportiocnal-to

1 m(d - w.)2 + Rz:}
exp =26 R
2+1

¢2

by (9, ¢) «

they are able tn show that

[m(m + 1)]%[9 ~ (mw, + x)/(m + 1)}

t(e) = 3

(2.4)

[R® + m(x ~ w.)2/(m + 1)];i

has a stugent’s t distribution on m degrees of freedom. In this equation,
R?/(m + 1) i3 the prior modzl estimate of ¢; w. 1s the prior modal estimate
of 8 given that ¢ = szﬁm + 1); and, the parameter m 1Is a weight factor
which describes the decision maker’'s degree of confidence iIn his estimates.
For the details of this development, the reader 1s referred to Novick
and Jackson {1974, Chapter 7).

From Equation (2.4), we see¢ that t(9) is linear in 8 , Thus,
Pr(o < Golx) = Prit(6) < t(90)|x]. And by using Equation (2.2), we
can partition the observatilon scalz into two disjoint regions; one which
-will lead to decision dl and the other which will lead tc decision d2 .
The process 1s practically the same as in the known varlance case. The

only important change 1s tlz2Z we now use the t table with m degrees of
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freedom instead of a table of the unit normal distribution. Thus, we
determine the point to which has percentile rank 100b/(c + b) and then solve

the eguation
(o(m + 1)];’{9o - (mw., + x )/ (m + 1))

t = (2.5)
° [n? + m(xo - w.)zl(m + 131%

for X, . Although the procese of solving this equation will ordinarily
lead to two results, only one of the results will solve Equation (2.5) as
stated, The other will be associated with Equation (2.5) with -t_ on the

left~-hand side.

2.4 An Example with s Binomiel Model

Let ug gxanine this same basic problem using a different, and in some
ways, a more gen¢¥al woddel. For pedagogical purposes, this analysis will
initially be of the pormal form varlety, for we will actually exhibit the
Bayes rigk function. Later we will redo the analysis using the much

simpler extengive form. Rather than assuming that the mastery level 6 takes

oh values in an interval, let us return to the original situation where only

two values ard possible. 4s before, we use the symbol 6. to denote the class

1
of nonmasters and 82 the class of masters at any point in time. On the

banis of prlor iniormation about the gtudent and his training, the decisien
maker formulates a prior probability distribution on the two-point state
space, p(Bl) =1 ~ p and p(Bz) = p, where 0 < p <1 . Thus, p represents

the "prior" probability that a given student is a master. Clearly, if p

were equal to zaero or ore, no uncertainty would exist and no decision problem
would remain. As before, two actions are open to the decision maker: dl’

declare the atudent a nommaster and retain him at his present level or, dz,

declare the studeat a master and advance him to the next level. Analogous
to Table 3, our decieion maker adopts the familiar threshold loss function:
163
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Table 14
L(di’ ej)
e1 e2
d1 (retain) 0 b
d2 (advance) c 0

where b and ¢ are nonnegative,

It will be convenient in this and many applications to conceptualize
a hypothetical population of tasks for which the mastery judgments are
relevant. This done, we define @ and 8 as the conditional probabilities
of acceptably completing a randomly selected task from this population,
glven that the student is a master or nommaster, respectively. In most
applications & will be large and 8 will be small. Our decision maker
plans to construct a mastery test by selecting t tasks from our hypothetical
population. For the purposes of this example, we will assume that the
tasks are experimentally independent and that the probability of success
on each task depends only upon the mastery class to which the student
belongs. e denote by X the discrete random variable associated with the
number of tasks successfully completed. These assumptions imply that,

given 6, the random variable X has a binomial mass function given by

| ¢ t - X%
(x)B (1 - 8) for 6 = 91

plxfe) = (2.6)

O -0t "% fore=o

where X = 0’ l’ 2’ Ny t »
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[f we are to follow the plan of normal form analysis previously
outlined, we should now write down all reasonable decision rules. With
t + 1 possible outcomes (i.e., x =0, 1, 2, ..., t), an exhaustive list of
decision rules for even moderate t, would be cumbersome, indecd. However,
in the opinion of these writers the totality of reasonable decision rules

for this problem can be summarized by the relationship

retain 1if x < s
8§ (x) = (2.7)
& advance if x > s
for s=0,1, 2, ..., t +1, what this set of decision rules boils down to

is the following: Choosing a decision rule Gs(x) is equivalent to choosing

a cutting score 8 on the test score gcale such that, if the observed number
correct (x) lies below s, tlie student is retained at the present level,
otherwise he is advanced. Selection of the decision rule 610
would lead one to retain the student if he completes 9 items or less
correctly, and advance him, if he obtains a total score of.at least 10.

For this problem, the risk R(GS, 0.) associated with each (65, Bj)

b

pair can now be symbolically represented by
(¥
R(GS’ ej) = éXle{L[GS(x)’ ej]} .

Inserting the loss function and model density into this relationship,

ve find that
R(S e)-;(t *a t-x (2.8a)
s’ 1 c X)B - 6) . *
xXxg
and
s-1 £, x t -x
R(Gs, 92) = F b(x)u (1-a)
x=0
t £, x t-x
= bl - ¥ (x)u (1-a) | (2.%0)
xX=g

" 1638

(x), for example,
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Thus, the Bayes risk for each 53 may be represented by
r(sg, 0) = {ﬁbtncas, 0]

t £, .X £t - x € £, x t - x
= (1 -p)ck (x)B (1 - B) +bpfl - L (x)a 1- o ]

X=8 X=5
t
=bp+ L ((1-peOBa-m" " * -ppHda - w7,
X=s

(2.9)

Now it 1s clear that 1f the expression inside the summation sign has a
structure such that 1t 1is positive for all x less than Ssome value xo and
negative for all x greater than X s We could minimize the Bayes risk,
r(Gs, p), by choosing Gs(x) where s 1s the smallest Integer such that
8 E.xo + In fact, this expression has the nec2ssary form. To see this, all
one needs to do 1s set the expression of interest equal to zero and solve
X t -x X t -x
c@-pIBea-p  C-bp(fre’U-0 =0
O O

for the value{s) of X, A few routine manipulations yleld the root

_&n{c/b) + 2n[QQ -~ p)/p] + ¢t n[(1 -~ BY/(1 - ¢)]
o tni(l - B)/(1 - 0] + Enle/(B)) )

(2.10)

Since there exlsts only one root X the expression, thought of as a continuous
function of x, can cross the X axis at only one point. Therefore, 1t must

be true that there is exactly one region of the x scale where the expression

1s positive and exactly one reglon where it 1s negative. Although this
argument assures Us that there 1s exactly one root, it does not reveal in
which region the expression 1s positive and in which it is negative. We,

therefore, re-examine the expression in brackets in Equation (2.9).
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For notational convenience, we define Q to be the expression of

interest. Thus,
t, % £t - L, x -
Q= (-pPe(IEA-8" T b - f T,
Also for convenience, we define a quantity R by the equation

@ -peea -t x

R =
bp(H)e*@ - @) 7 ¥

t X
< i-p 1-8 81 - a)
b P l1-a a(l - B) '
Our purpose in the following development is to determine that region in

which Q is negative. As a first step, we assume that Q < 0 and determine the

implications of that assumption. If Q < 0, then by merely manipulating

the inequality, Q < 0, we see that R < 1 and, therefore, %n R < 0 , Thus,

c 1 -p 1 -8 a1 - 8)
£nR=m(g) 4+ 2n (p ) + t &n (-i-_—a) - x &n |_B(].J-—a£|<0

and so,

1-28 1 - 1 -8
x &n M> &n (%) + in (—“P—p-) + t in (1 - G) . (2.13)

Comparing Equation (2.10) and Equation (2.11), we see that if

en{fa(l - 8)3/{8(1 - @)]} > 0, the condition that Q < 0 is satisfied whenever

x >x . And if fn{{a(1 - 8)]/[6(1 - «)]} < 0, the condition that Q < 0 is
satisfied whenever x < X, » But the condition that fnl{{a(l -~ 8)]/[R(1 - )]} < O
is satisfied if and only if [a(l - B)]/[B(1 - ¢)] < 1, which is equivalent

to a< B, Admitting that the foregoing is a bit confusing, we summarize

the results in the following table.
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X <X x> X

o] . [o]

e <BlQ<O Q>0
a>BQ>0 Q<0

The implications of the statements in this table for the decision-making
process are two.

(1) If o> B, then the decision maker will minimize the Bayes risk
r(GS, p) by choosing Gc(x) where s 1s the smallest integer such
that s > x .

(2) 1f o < B, the decision function (2.7) 1s inappropriate. The
condition ¢ < B implies that the decision maker's model asserts
that a nonmaster is more likely to get a particular item correct
than a master. Such a model would certainly lead the decision

maker to consider a decision function of the form

advance if x < s
54(x) =
tretain if x> s
as more appropriate than Equation (2.7).
Since under normal conditions ¢ will be considerably greater than B,
implication number one above will usually apply,

Perhaps the most important characteristic of the expression for the
critical or cutting test score, Equation (2.10), is its dependence on the
probabilities ¢ and B . When ¢ and 1 - 8 are both near one, the cutting
score will tend to La small, Crudely speaking, in this case it does not
take many satisfactory performances to decide whether a student 1is a
master or not., On the other hand as ¢ and B approach one another, 1t

becomes ever more costly Lo separate the masters and nonmasters. If s
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is greater than t, the number of tasks in the test is too small po permit
any judgment other than dl (retain). If s < 0, the only feasible decision
1s to advance the student. This might occur 1if p, the prior probability of
state 82, 1s very close to one. Table 15 gives some examples of critical or
cutting ascores for some selected parameter values, with the loss function
constants ¢ = 2 and b = 1 in Table 14.

Returning now to familiar ground, we review the implications of the
latest wrinkle in our decision making scheme in the context of our initial
numerical example. The only structural difference between the present
situation and that of Section 2.1 is that we now have t tasks instead
of one. TFor the purposes of this example, let us assume that we have a test
of length elght (1.e., t = 8), Then, following the Procedure outlined for
normal form analysis problems, we identify the values of the inputs to the
black box.

(a) Specification of Prior Information. From Table 1, we see that
our prior beliefs about 6 may be summarized by 0(91) = ,4 and
p(ez) = .6, Thus, in the notation of this example, we have
P = .6, or the odds we would be just willing to give that this
student 1s & master without resort to current test score
information are 3/2.

(b) Indicating the Experimental Plan. As we pointed out in the
previous development of this example, the plan is for the decision
maker to give the student 2 test composed of 8 tasks. On the
basis of this test, the decision maker 1s to give the student a
score which 1s equal to the number of tasks correctly answered.
The aasumptions are, of course, that the tasks are equally difficult
and experimentally independent, given @ , The distribution of X

given © can therefore be described by the binomial mass function
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Table 15
Cutting Scores
(Classify as a master (62) if the number

correct equals or exceeds the cutting score)

Prior Prob  Number of Prob. of success for master (a), Prob of success for nonmaster (B8)
of master test tasks ) B ) B ) B o B
p t .8 .2 .8 .1 .9 .2 .9 A
.9 10 5 4 6 5
20 10 8 . 12 10
30 15 i3 17 15
7 10 5 5 6 5
20 10 9 12 10
30 15 13 18 15
.5 10 6 5 6 6
20 11 9 12 11
30 16 ' 13 18 16
Q. 173
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£, X £t -x
pixe) = 4 0F AP for © = 0

L, X t - x _
(x)a‘(l - a) for 6 = 62 .

From Table 2, we see that for this example o = .8 and B = .2.
This states that 1f our student is a master, the probabllity that
he will give an acceptable response to any task is a = .8, If

he 1s a nonm;ster, this probability is B = ,2,

(¢) Specifying Preferences and Decision Rules. From Table 3, we see
that in the notation of the previous theoretical development, our
threshold loss may be described by ¢ = 2 and b = 1. In words,
this implies that we would be twice as unhappy (in terms of some measure
of loss) if we were to advance a nonmaster than we would be if we
retained a master--L(dz, el)/L(dl, 62) = 2,

Following the procedure indicated in our general development, we identify

10 reasonable decision functions.

d (retain) x < s
Gs(x)=
d2 (advance) x > s

for s =0, 1, 2, ..., 9.

The ramlfications of these decislons are summarized in the Following table.
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Decision Retain Advance
) Gd(x) Never Always
Gl(x) ifx=190 if x> 1
62(x) if x <1 if x> 2
63(x) if x <2 if x > 3
Gé(x) if x <3 if x > 4
65():) if x < 4 if x> 5
66(x) ifx <5 if x > 6
§,(x) if x < 6 if x > 7
68(:{) if x <7 if x > 8
Gg(x) Always Never

Our problem, then, will be to select from these 10 reasonable decisions, that

one which will winimize the expected or Bayes risk, Substituting into

Equation (2.8a) and (2.8b), we indicate the risk of each (68, Gj) combination by:

8
_ 8 .,x ,8~-x

R(GS’ 61) - 2 E (x)-z 08

x=g

and
RS, 0)=1- g Sy g%.08 - x
st 2 x )
Xag

Thus, £rom Equation (2.9), we have the Bayes risk given by

(5 , p) = .6+ g .8d.2%.8
S’p + oxl.

=8

8 - x x .8 -x

- .eci).a 2°7% L @a

Qur theory tells us that this function is a minimum if we take s to be the

next integer greater than xo, where xo is given by:
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_ 4n(2) + 20(2/3) + 8 ¢n(4)
Xo tn(4) + n(4)

= 4,104 .

And, therefore, the Bayes risk r(Gs, p) will be a minimum if we choose &5 (x)
Substituting s = 5 into Equation (2.12), we see that the minimum Bayes risk
is r(Gs. p) = ,042. To convince the still skeptical reader that 85 does,

in fact, lead one to the minimum Bayes risk, in Table 16 we have exhibited

r(és, p) for each of our decision rules.
Table 16
r(asn p)

forc/b=2,p= .6, and t = 8

8 r(3., p)
0 .800
1 .666
2 .397
3 .163
4 .051
5 042
6 .123
7 . 298
8 499
9 .600

-
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As promised, we shall now reconsider the preceding problem using

extensive form analysis. It will be recalled that analyses of the extensive

form have two major advantages. First, it is unnecessary to exhibit all
reasonable decision rules. And secondly, in minimizing the expected loss,
it is necessary to consider only that value of x actually obtained.

As we shall see, these simplificatidns will make this analysis almost
trivial.

Recall that the likelihood of X given @ is given by

(;)Bx(l -pt X for 6 = Ql (nonmaster)
pix]8) =
(;)ax(l - G)t - for 6 = 32 (master)

Combining these two probabilitles we see that the joint probability density
of 9 and X 1s given by
Oa-pefa-ptTF 3=
x, 8,) =
P ¥ j)

Cypa®(l - @)t ~ ¥ 3 =2

where =0, 1, 2, ..., t . Therefore, by Bayes theorem, the posterior

distribution of 6 1s given by

(L-p)B-p)

= — for 1 =1
(L - p)s*( - Bt "X 4 pa* - @)t T

p(ﬂjlx) = (2.13)

pa QL - a)t T

for j=2 .

A - -8t " *apaf -t T F
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Combining Table 14 with Equation (2.13), we see that the expected posterior

loss under d1 is given by

ég bpa (1 ~ )t 7 ¥
{L{d,, 8)) =
olx % (1-p)E*L - B " X4 pa¥(1 - ) "X

and that under d2 by

<§ : . el - p)a*(L- )t " X
L(d., 8)] =
olx 2 A -p)EL - ) T ¥4 p - )t T

Therefore, extensive form analysis leads one to the decision rule given by

1f bpo™(1 - )% " ¥ < c1 - pygt@Q - p*F "

§ 0 =
dy 1€ bpa®(L - )% ~ ¥ > c(1 - p)g¥a - Bt 7 X

or equivalently,

b 1-

d if x fn M:I<£n(-c—) +i?,nl—-;-:—-x'1 +t2n(1-

s¥ () =

d, 1f x n gﬁl_:_ﬁé] > tn (%) + tn (i_g_é) >t in (1 =

81 - «) 1

By the aigument following Equation (2.11), we see that when « > 8 this
decision rule is equivalent to that reached under analysis of the normal

form. Thus, when § > B,

d, 1f x < x
i o

*
§ {x) =
'\\?2 if x > xo
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gn(c/b) + enf@ -p)/p] + £ an{(1 - 3)/(1L - a)]
x - -
° anf(l - g)/(1 - a)] + 2nfc/B)

Consider again this last experimental siteation. A moment's reflection
will confirm that increases in the number of tasks in the test will increase
the overall loss in the decision problem. Each task included in tue¢ test,
for example, increases the time the student must devote to testing and
involves some commitment of facilities and, perhaps, time on the part of a
teacher. If wc can assume that a certain fixed cost k i1s incurred for each
task in the test, we can reformulate our decision problem into ryo parts to
take account of this adaltional loss: The first belng the selection of the
critical number of items I to be amswered correctly, and the second being
the gelection of the optimal number of tasks T to minimize the total Bayes
risk r[é(t)*, p] + tk [where 6(:)* denotes the optimum decision rule when
the test contains ¢ items]. The final term, tk, may be thougnt of as the
cost of testing.

Within the framework of normal form analysis, we would Seck a cutting

score (8) and a number of test tasks (t) that would minimize the total Bayes
risk
-1

£
bp I ) - T ¥ rea-pz Ogfa- ot T ¥k
x=0 X=s

The constant unlt cost or unit losi k must be on the same scale as the
orizinal loss function, if we are to have a valid total Baye., risk.
For each fixed value of t, we already know how to select the critical

+

number of ftems I to be answered correctly. Consequently, with the aid

*
of a computer, it is easy to determine values of =[8(t) , p} + tk for a

renge of test lengths £ . We can then séarch the display of values of the

179




46

total Bayes risk, searching for T, the optimum level of t . An analcgous
approach applies within the framework of extensive form analysis.

In our example, withc =2, b=1, a = .8 B= .2, and p = .6, suppose
‘ the loads assoclated with administering one item is k = .0l. This could
happen, for example, if we think of each test task as taking up .0l as much
time as au instructional unit. If the loss constant ¢ = 2 was selected
because it is agsoclated with the time loss that will result in repeating
two instructional units and b = 1 because it is asgociated with the time
loss that will result in repeating one unit, then k will be on the same
scale, From Table 17, we can gee something of the shape of the total Bayes
risk function for this example. As the':able clearly indicates, In thia
case the decision maker would choose a test length of £t = 7 and a cuitical

test scorae I = 4,
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Table 17

Display of Total Bayes Risk

for Various Values of t

*
Wo. of Items (t) Critical x[é(t), p) + .01 ¢t

Score
(1)

] o] 1 6000
1 1 +2900
2 ' 2 .2680
3 2 1756
4 3 .1702
5 3 1311
5 4 .1329
7 4 J167
g 5 Jd221
9 5 ' 1174
10 6 1248
11 6 1263
12 7 +1348
13 7 +1398
14 8 «1489
15 8 .155¢
16 9 ) .1654
17 9 1736
18 10 .1833
19 16 (1922
i 20 11 . 2020

b=1l; ¢= 2; a= ,8; =.2; p= .65 k=,01
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3. Utility Theory

In this section, we turn our attention to a theory which is much
stronger than that illustrated in the previous examples. We will now abandon

the notion of loss yhich we relied upon so heavily in Section 2, in favor of

the more generally applicable notion of utility. The major difficulty with
using loss functions as previously described, lies in the fact that we have
slmply assumed thelr existence. Because of the aprarent reliance of the
loss function on some scale, be it economic, social, political, or other,
it 1s by no means obvious that such & function should exist.

In marked contrast, utility notions do not require that we invent
a different and in some sense arbitrary scaling procedure for each problem
we meet. Instead, utility the;ry uses the notions of ordered personal
preferences or desirablility of outcomes to scale the consequences of each
(d, 9) pair. Although several axicm systems have been proposed to insure
the existence of utility functions, these axloms generally require only
the very basic relationships between preferences which rationality demands.
Although these axioms contain many structural details concerning the
naéure of outcomes, preferences, and rewards, the most important
characteristics of these axioms for applicatlons seem to be the require-
ments for the comparability of any two outcomes and the coherence of the
set of possible comparisons.3 The first requirement merely assures that
for any two outcomés A and B, precisely one of the following situations
must obtain:

1) A is preferred to B, or

2) B is preferred vo A, or

3The interested gnd wathematically able reader 18 referred to De Groot
(1970, Chapter 7) for a detailed consideration of these axioms.
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3) A aad B are equally desirable outcomes and, we are, therefore,
indif ferent as to which occurs.

The second requirement is one‘of transitivity. It merely asserts that for
any three outcomes A, B, and C, if A i1s preferred to B and B is preferred to
C, then it must be that A is preferred to C. The point is that these
requirements of comparability and coherence are both simple and reasonable.
They are incorporated into our system of preferences without question,
for it is generally agreed that any violation of these axioms in practice,
if exposed, would be deemed ridiculous and one's system of preferences
reconsiderc”,

As an aside, we note that those readers who like the notion of loss
described in the previous section need not despair. As Lindley (1972) points
out, in applications it typically seems true that one can define a2 suitable

loss function by

L{(d, 8) = Maxju(d, Bi}- u{d, 6) (3.1)
d
if the number of outcomes is finite.
Although we will not devote a great deal of space to the problem of
assessing one's utility, we will consider one method which will work in

problems where there are a finite number of outcomes.

We can represent the set of outcomes by the following table:

Bl 62 63 L] » » Bn
. 1
4 C1 2 3 S Cin
d2 C21 C22 C23 . . . C2n
dm le Cm2 cm3 ’ ’ ’ cmn
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Where 022, say, 1s the outcome or consequence associated with making decision
d2 when 92 1s the true state of nature. Let C* be the most preferred gutcome
and C; be the least preferred in the table, and assume that You are given

a lottery ticket with a v percent chance of "winning" c” and a 100 - v

percent chance of "winning” C,. FPurther, assume that someone has offered

to take the ticket ¢ff vour hands in exchange for cij' Your task 1s to

discover that value of Vv such that You would be willing to flip a fair
c¢oin to decide between the alternatives

*
1) A ticket with a v percent chance on ¢ and a 100 - v percent

chance on C,, or

2) Selling your ticket for outcome Cij'
The utility of outcome C*j can then be defined by u(Cij) = v/100.

This procedure can then be followed for each Cij in turn until utilities

have been coherently assigned to each of the outcomes.
We now return to our initial example to illustrate this procedure.

Recalling that we have two states, nommaster and master, and two reasonable

decisions, retain aad advance, we summarize the outcomes 1n Table 18,

Table 18
possible gutcomes Cij
el {(nonmaster) 0, (master)
d1 {retain) C11 C12
d2 {(advance) 021 C22

Surely the most desirable outcomes are cll and 022. In either of
these cases, we correctly classify the student, so 1t 1s probably unreasonable
to believe that one should be preferred to the other., Furthermore, on the

presumption that 1f a nonmaster is advanced, he will not only lose.the
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time required to complete the next unit, but may also become frustrated
and discouraged, let us assume that misclassifying a master is much more
desirable than misclassifying a nonmaster. So in terms of our notation,
we have C11 = 022 = C* and 021 =C, . In this simplified example, the only
remaining problem is to determine u(CIZ)' What we need to determine is that
value v such that our decision maker would be willing to flip a fair csin to
decide which gamble he will take:
1) A lottery which pays off C* (a correctly classified student)
v percent of the time and C, (a misclassified nonmaster)
(100 = v) percent of the time; or
2) A sure C12 (misclassified ma=ter),

Admittedly, specifying v is not an easy task, but it can be donme. In
order to accomplish this, our decision maker might be aided by considering
"how much better" or more desirabie correctly classifying a student is than
misclassifying a nonmaster and compare this with how much better correctly
classifying a student 1s than misclassifying a master. If, for example,
correctly classifying a student gives you 10 "utiles" more than misclassifying
a nonmaster and only 5 "utiles" more than misclassifying a master, then v
for 012 would be 50 percent. This says .hat misclassifying a master is
half-way between misclassifying a nonmaster and correctly classifying a
student on a "utiles" or desirability scale. Assuming that, in fact, v = 30
then u(CIZ) = v/100 = .5. Carrying out the above procedure for Cll’ 021, and

022, we See that 1t must be true that u(Cll) = u(sz) = 1 and u(021) = 0,

Summarizing this in Table 19, we have
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Table 19
Utilities of (di’ ej)
91 {(nonmaster) 92 (master)
d1 {retain) 1 .5
d2 {advance) 0 1

In the next section, we will examine some classes or families of utility
functions which may be used to describe a decision maker's preferences
iu the dichotomous or two-action decision problem. Analogous to the
minimization of expected loss in extensive form analiysis, decision theory
with a utility function requires us to select that decision which will
maximize the posterior expected or average utility. That ls, we seek that

di(i = 1, 2) such that

fud,, 8)p(8|x)de

is & maximum. As usual, 9 is the parameter which summarizes the state of
nature and p(ﬁlx) is its posterior density,

In what follows, it will be important to recognizc that if

. [ud,, 0} > [udd,, 83,
89‘:(“ 1 eﬁlxu 2

then for b > 0

[bud,, ) + c] > [bu(d,, 8) + ¢} .
ét9|x ! ‘felx 2

That 18, 1if d1 1s preferred to d, using the utility function qui, 8y,
then d1 will still be preferred using any positive ®inear transformation

of u(di, 8). A similar demonstration is valid when the direction of .
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the inequalities is reversed. So positive linear transformaticas of
utility functions will not alter the ultimate decision. This means that
for decision purposes, a utility function needs to be determined only

up to a positive multiplicative constant and an additive constant.
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4. Utility and the Two Action Problem

As we saw in the last section, utility functions are imprecise
things. 1In practlical situations, we are often unable to speclfy our
utility assoclated with various (di’ 8) pairs with anything approaching
mathematical precision. Generally, the best we can do is find some
approximation which agrees falrly well with our subjective gvaluation
of the payoffs.

Qur Purpose in this section will be to illustrate a variety of
families or sets of utility functions which have proven yseful in
applications. In selecting familles of uti;ity functions for inclusion
in this section, we have usasd two principal criteria. First of all, we
have scught to include families which are mathematically tractable in the
sense that thelr expected values are easlly calculated for standard
distributions. Secondly, we have sought families which permit an acceptable
compromise between having too many parameters for the decision maker to
convenlently specify, and being so restricted that significant aspects of

the decision maker's preferences cannot be expressed.

4.1 ‘Threshold Utility

With threshold utility, like threshold loss discussed in Section 2,
we separate (or partition) the possible values of our state parameter
6 into a number of mutually exclusive Subsets. For continuous ¢ we might
consider the partition {Al, Az} where Al = {ele < eo} and AZ = [ole > eo}
for some Go . Thus, for decision purposes, those values of & which are |
less thar -“ome point, 00, will be considered as a set and denoted A, .
Those values of O which are gredter than or equal to 00 will be grouped

together as Az + This partition would be analogous to our previcus
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examples yhere 9 was a measure of student ability and 90 was that point
which separated the masters from the nonmasters on an educational test.

Another possibility with threshold utility would be to use a slightly
finer partition of & . This might be accomplished, for example, by preselecting
three points instead of one: 91, 92, and 93, say. We could then use the
partition {B), 5,, B,, B,) where B, = {so < 8,); B, = {elel <6< 8,);
33 = {9[92 LA 93}; and 54 = {o]o 3_93}. Such a gcheme might be useful
if we needed to differentiate those masters who "just barely made the
grade" from those who had truly assimilated the material, with analogous
distinctions for the nonmasters. Naturally, even finer partitions could
be used if the situation warranted it.

Returning to our dichotomous partition {Al, A2}’ let us consider it
in more detall. If we denote the utllity associated with each (di’ Aj)

pair by u(di, Aj)’ then in the two action problem, we may represent the

threshold utility function as in Table 20.

Table 20
u(di, Aj)

A(B<8)  A(6208)

a
d2 ¢

Decision or actiou dl is then to be preferred whenever

Ee]x[u(dl’ Aj‘)] > £ |

[u(d’A)} ]
o|x A

or whenever

alPe(o < 6 1} + b{Pr[6 > 6.1} > c{Pr(6 < 61} + dlPr[6 2 61} . (4.1)
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In decision problems similar to those discussed earlier in the context of
educational testing, the d's involve decisions about the true state of
nature 6: 'Is he a master or 2 nonmaster?" When this is the case, it
will usually happen that either a and d or b and ¢ will be asgsociated with
“"correct' decisions, and therefecre, ought to be larger than the other
utilities in their respective columns in the table. 8Since the labeling

of dl and d2 is arbitrary, we will assume that a and d are the correct
decisions in this analysis. Furthemmore, since we demonstrated at the

end of the last section that rescaling utility by a positive linear
transformation does not affect our decisions, we gill assuyme that all

utilities in the table lie in the interval between zero and one. Applying

these stipulations to Equation (4.1), we see that decision dl will be
preferred whenever
(a - o){prris < eo]} > (@ - b){rrle 3_901}
or alternatively,
Pr(o < 6 ]
d:b < 0 . (4.2)
8°C prre> 0]
-0
Since
Prie >0 1=1-Pc(0<6],
we ha e
d -b
TS F =D < Pr[e < eo] ' (4.3)

By a similar argument, d2 will be preferred whenever

d -b
(a~c)+(d-b)

> Pr[e < eo] .
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The reader should note the similarity between Equation (4.3) and Equation
(2.2). 1In fact, 1f a = d = 1 and one considers the loss as specified in
Equation (3.1), then it 1s clear that the equations are identical. And so

by simply rephrasing the example of Section 2.3 in terms of utility instead

of loss, we see that the posterior cutting score is given by

1-b _

Consider the following numerical example previously discussed in

Section 2.3. Suppose that the test score X has a normal distribution with

unknown mean ® and unknovm variance ¢ . Further suppose that after careful

consideration of all collateral information available, our decision maker is
able to adequately summarize his prior beliefs about 0 and ¢ for the student
under study in terms of a gamma-normal distribution with parameters m = 9,
w., = 80, and R2 = 144. By Equation (2.4), we see that

[9(10)1%[0 - (9480 + x)/10]

t(6]x) = (4.4)

{144 + 9(x - 80)%/10)%

has a student t distrvibution on 9 degrees of freedom.

In order to apply Equation (4.3), we need two additional pleces of
information: A critical true score Bo’ and 4 utility function u(di, 9).
As before we let 90 = 75. For purposes of.Fhis example, we describe

our utility function by the followinz table.

<o 6 > 9
o - 0
dl (retain) .9 .5
d2 (advance) 0 1
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Applying Fquation (4.3), we see that we will retain the student if
Pr[o <« 60] > .5/(.9 + .5) & .36, And by Equation (4.4), this is
equivalent to Prit(6]x) < t(75|x)] > .36, where t(6]|x) 1s distributed
as a student’s t with 9 degrees of freedom. If we have already collected
our data so that x is known, this decision criterion can be applied
directly. However, 1f X 18 not yet known, we can apply the same argument
used in Section 2.3 to determine the now familiar cutting score, X s which
divides the observation scale into two disjoint decision regions. There
are two 8teps iIn the determination of X, . First, we must locate the
point co in a table of the 2entral t distribution with 9 degrees of
freedom, which has percentile rank equal to 36. Secondly, we must solve
the equation

(90)%(75 - (720 + x,)/10]

t = —03? -

o (4.5)

166 + 9(x - 30y2/107*

tor X, - Working out the algebra, we find x, = 43.5 and x, = 635,
Substituting these two possible golutions into Equation (4.5), we see
that only x, = 43,5 gatisfies the equation as stated. Thus, whenever
the observed x 1s greater than 43.5, extensive form analysis will lead
the decision maker to advance the student. Of course, whenever x is
less than 43.5, the student will be retained.

We turn now to another class of utility functions. This time, we will
treat utllity as a continuous function of 0 rather than a disciste one.
Continuous utility might be considered as the limiting case of threshold

utility as the partition grows increasingly fine.
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4.2 Linear Utility

We direct our attention first to the simplest of continuous utility
functions, that is, those which are linear in 6 ., In the “inear two-

action case, we define utility ty functions of the following form.

e + fo i=1
u(di’ e) = (4‘6)
g + ho i=2

The reader should note that what we have done here is define utility

as a separate linear function for each possible decision, d Thus, if

i L]
decision one ir chosen, the payoff or utility is to be a linear function
of the state parameter 8 with slope f and intercept e . For deeision
d2, the slope is h and the intercept is g .

The existence of a breakeven or indifference vaiue 60 of the state

parsmeter 9 imposes the condition that

e+ f6 =g+ho,ore =(e-g)h-£ .

In our attempt to maximize expected utility, we will select action dl if

Sle+o)x > L ie+nnlx .

If Hg = uﬁ]x denotes the posterior mean of 9, this implies that action d1

is taken if
e + f ue >g+h ue .

In other words, with linear utility, the action taken depends only upon the
mean of the posterior distribution of the state parameter €, other attributes
of the distribution are irrelevant for decision purposes.

If we index our decisions so that h - £ > 0, we take action dl

whenever Hy < 90 and action d2 whenever He > 90 . Figure 4.1 illustrates this
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Figure 4.1

Linear Utility
= 30;2, f = "‘a4’

Figure (a) above illustrates linear utility of the form of Equation (4.6) with constants e

*
g = =59, and h = ,8, Reparameterizing (a) according to u (di’ 8), Equation (4.7), the utility of 90 is equated

to 90 and the axes are rotated go that the d2 branch has a slope equal tc one, This reparameterized form of (a)
*
) > ou (dl’ ue), extensive form analysis will . ead

*
is illuctrated in (b). In this illustration, since u (dy ug
n

O
.Rdﬁjhe decision maker to gelect actiocn dz.

A ruiToxt provided by ER
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situation graphically. When linear utility is used, one needs to calculate only
the Ptilities of each decision at the posterior mean kg - The decision with the
highest utility at My should then be selected.

As the general linear utility function now stands, Equation (4.6), we
need to determine the four constants e, f, g, and h before it is completely
specified. However, if we employ the flexibility afforded by the requirement

that a utility function needs to be determined only up to a positive linear

transformation, we can reduce the number of unknown constants to two.
Thus, 1f h > 0 in Equation (4.6), we may redefine u(di, ej by making the

following positive linear transformation

u"(d,, 0) = [u@d,, @) - gl/n .

And so

(;' + £19 i=1
* .
u (di’ 8) = 3

(‘ 0 i=2

where e' = (e -~ g)/h and f' = f/h .

4.7)

The nature of our assumption that h > 0 for this transformation to be
valid cannot be overemphasized. The condition that h > 0 is equivalent
to the statement that for decision d2, utility is a strictly increasing
function of the state parameter © . In terms of our previous examples where
we considered © to be an ability index, h > 0 would make sense only if d2
were the decision to advance the student. For if d2 were the decision to
retain him at the present level, we would be in the untenable position of

asserting that as ability increases, the utility or desirability of

retaining the student at the present level also increases.
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If one ls careful about making such transformations, this limitation
will not cause serious problems. 1In applicatioms, it is usually the case
that the utility or desirability of one of the decisions will increase
with the state parameter & . Thus, all one needs to do 1s label that

decision d2 and result (4.7) is completely general.

Ve turn now to an 1llustration of one of the most direct methods available
for determining the consiants e’ and £’ of Equation (4.7). In order to make
this method work, the decislion maker must be able to speclify two ordered

pafirs (Gl, 82) and (Gi, ei) such that

u(dl, 81) = u(dz, 82)
and

t o t
u(dl, el) u(dz, 82) .

Substituting the equivalents of these expressions from Equation (4.7), we

have
] A =
e’ + f 81 82
and
’ ral - Ay
e +¢f 81 = 92 .

Solving this system of equations, we find that

] -eé
1 1

and

My -%—ﬂ-ez-f'e
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To 1llustrate the simplicity of using linear utility, consider the following
example. After completing a unit of Individually Prescribed Instruction,
a student 1s given a 16 item test to determine whether or not he has mastered
the material. From considerable past experience, our decision maker knows
that 50% of those students obtainins scores of 12 on the test are able to
satisfactorily complete the next sequence. On the basis of this information,
he feels that a "true score" of twelve 1s the minimum necessary for advancing
the student to the next unit. Reparameterizing this true gcore in terms of
proportion correct, we find that eo = ,75,

THe next stage in our decision making process consists of determining
the posterior distribution on the state parameter 8, where in this problem
@ denotes the true proportion correct. Using the techniques described in

e
Novick, Lewis, and Jackson (1973), in Lewis, Wang, and Novick (1973), and in

Wang (1973), our decision maker is able to determine a posterior distribution
on Y * sin-ng . Although this distribution 1s rather complicated and
apparently does not exist in closed form, its precise specification is actually
irrelevaﬁt for the decision-making process when linear utility is used.

Under linear utility, if we can determine or at least approximate the expected
value of 6, we will have gleaned all the information from the posterior

distribution necessary to make our decision.

Lewls, Wang, and Novick (1973) estimate Mg by transforming E%(Y|x)

according to the equation
est of u, = sinz[é?(yix)]
@ ‘ '

Since this estimate of g is, in fact, equal to the medlan of the posterior
distribution of 9, it is likely to be a poor estimate only in those cases
where the posterior distribution of & is highly skewed. Furthermore, this

4s likely to be the case only when the true proportion correct 1s near elther
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Zero or one. Thus, as long as the critical criterion score 60 is not

too close to either zero or one, errors in estimating W, are unlikely

0

to lead to incorrect advance or retain decisions of major consequence.

It 1s true that 1f the true proportion correct, &, is very close to 90,

an incorract decision is likely. However, linear utility implies that
differences in the utility of the two decisions are not great, for points

near the point Go‘. What this means for the decision making process is

that with a linear utility function, the output of a readily available

and easy to use c;nputer program [see Lewis, Wang, and Novick (1973)] will enable
our decision maker to determine a8 useful estimate of the posterilor mean Mg

at which to evaluate his utility function.

At the next stage Iin the process, our decision maker must specify his
utility function. Actually in this example, very little needs to be done.
For most reasonable linear utility functions, the utllity associated with
the decision to retain the student will have a smaller slope than that
assoclated with the decision to advance the student. Since the two
branches of u(di, 9) must intersect at 90, he will retain the student if
Mg < Go and advance him if Mg 3_90 . Thus, as long as our decision maker
is certain that he will be satisfied with a linear utility function, in the
dichotomous decision problem, all he really needs to determine 1s the
ordinal relationship between £ and h . If f > h [i.e., the slope of
u(dl, 8) is greater than the 8lope of u(dz, 8)), hewill select decision
dl whenever Mg > @ and select d2 whenever Hg < Go « Of course if
f < h, the gituation is reversed.

The "catch" to the foregoing simplicity is that the decision maker 1is

usually not certain that he will be satisfied with a linear utility function

until he tries to specify one. In practice the utility function should be

overspecified by indicating at least three pairs (Gi, aj) such that
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u(di, Bi) = u{d,, 6,). By overspecification, the decision maker is forced

e R
to carefully weigh the implications of a linear utility function.

In applications, linear utility functions seem to behave more reasonably
in the neilghberhood of the breakeven point, 30, than do threshold functions.

In this region, the rewards and penalties for correct and incorrect decisions
frequently change smoothly rather than abruptly.

The fact that linear utility functions are not bounded when 8 1s unbounded
creates some problems. Severz. of the axiom systems that have been used to
construct decision analysis require that utility functions be bounded. To
this theoretical objection must be added the practical fact that uabounded
utility functions simply cannot be interpreted far from the breakeven point.
These objections are partially removed 1f the posterior probability distribution
of the state parameter 6 1s fairly closely packed around the breakeven point.

If there is almost no probability attached to extreme values, unbcunded

utility is of little practical importance.

4.3 Quadratic Utility

As we saw above, decisions involving linear utility functions depend only
on the mean of the posterior distribution. Quadratic utility functions on
the other hand, result in making decisions that depend on both the mean and the
variance of the posterior distribution. We begin by defining quadratic

utility by a function of the form:

~a{f - b)(8 ~ ¢) i=1
u(dy, 6) = (4.8)
~e(0 ~ £)(0 - g) i1=2 .

Observe that in order to use this utility function, we must specify

the six constants: a, b, ¢, e, f, and g . The constants b, ¢, f, and g have
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special meaning in the present parameterization of the utiliky function.

These constants correspond to those values of 0 where the utility of the
respective decisions 1s zero. In the example which we considered extensively
in Seetlon 2, 1t might be argued that one reasonable and convenlent point
which might be used to fix the location of our utility function would be the
indifference point Bo » If we can use the permissible linear transformation
of u(di, 8) to force the utility of Bo equal to zero, we will have established

& reference polnt upon which to judge the utilities assoclated with other

values of 8 . In fact, this task can be accomplished by defining

o4y, 8 = uld;, 8 +ale, - b) (o, - <)

or equivalently

u*(di, 8) = u(di, 8) + e(Bo - f)(eo -g) .

-

i

Recognizing that at the indifference point Bo’ u(dl, Bo) u(dz, Bo), we can

*
rewrite u (di’ 8) in the form ‘

~a(6 - Bo)(ﬁ -c") 1=1
%*
u (di’ 9) =
-e(6 - Go)(ﬁ -g") i1=2

where ¢’ =b + ¢ ~ Go and g' = f + g - 60 . Since our permissible linear

transformation allows us to specify a scale for utility as well as a

location, we may ¥educe the number of constants to be specified even further

by a transformation of the form

fesk % .
u (di’ B) = 1 (di’ 9:/3

for a > 0 ., Thus,
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-8-06)@B-¢" 1=1
*k o

u (d,, 8) =

i’
—e'(6-6)(6 -g") 1=2

where ¢' = b + ¢ - 90, e! = 33 and g' = f + g - 90 + In oxder to determine
the remaining constants, c', e', and g', the decision maker needs to specify
other points on the two branches of the utility function. Although this
could be done directly by actually specifying the utilities associated with
{d, ) pairs, we describe a method which is probahly easier to use in most
situations. This method will frequently work in situvations where the utility
of each decision seems to approach a maximum asymptotically as the deviation
between © and 90 increases. In this case, 1t seems reasonable to situaée

our quadratic curves so that the convex side 1s up as illustrated in

Figure 4.2, This 1s equivalent to specifying that both a and e in our
original model, Equation (4.8), are positive. We can now fix two of the
remaining constants by ldentifying 91 and 92 such that 91 is at the lower

, end and 8, 1s at the upper end of the feasible domain of 8 . Since we have
indicated that the utllity approaches a maximum aaymptotically as e.approaches

these peints, 6, and 92, it seems reasonable to require that the maximum

1

on the d1 branch occur at 91 and that the maximum on the d2 branch occur

at 62 . This requirement 1s equivalent to the following system of

equations?
d *k - _ _ ooty =
5 u (4, 0 (20, -8 -¢c') =0
0=0
*k
L gy, of= -et(20, -0 -8 =0 .
6 =0,
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(a) (b)

uld;,
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Ueilicy

b
o
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B
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2 -2 z 2 2 i by pi 3 % ) ST S s 5
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Figure 4.2

Quadratic Utilicy

Figure (a) illustrates a.quadratic utility function of the form of Equation (4.8) with constants a = 3,

*k
bew-1, c= .85, e=8.4, f= .7, and g = 2.0, Reparameterizing {a) according tec u (di, 8) leads to (b).

*
Reparameterization u (di, 8) changes the zero poiat on the utility scale sc that the utility of 60 is zero.

This is equivalent to specifying b = f = 60 € = ~.92, and g = 1.95 in Equation (4.8). Reparameterization

I
u (di’ 8) then alters the scale of utility so that a = 1, forcing e to equal 2.8.7
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Thus, c¢' = 20, - Bo and g' = 202 - Bo . This procedure assumes, as 1s true
in our examples, that large values of © make action d2 more desirable and that
small values of © make dl more favorable. Since the indexing of the decisions
is arbitrary, however, this restriction 1s not serious. .The remaining
constant €' may now be determined by specifying a pair of state parameters
(03, 34) such that u(dl, 33) = u(dz, 04)° Since e' is the only unknown in
this equation, 1t can be easily determined.

To i1llustrate these computations, let us reconsider the example used in

the previous section with linear utility. 1In this example, the point at which

the decision maker would be indifferent whether he advanced (d2) or retained (dl)

the student was Bo = 75, Since 9 1s the "true' proportion correct, the
minimum feasibie © 1s Bl = 0 and the maximum 1s 02 = 1.0. Thus, solving
c' and g' in the equations above, we find c' = ~,75 and g' = 1,25, 1If, in
addition, the decision maker feels that qul, ) = “(dz’ .85), say, then

e' can be found by solving the equation

(.7 = .79)(.7+ .75) = e'(.85 ~ .75)(.85 - 1.25)

or

e' "loao

The utility function is illustrated in Figure 4.3. In general, the final

decision wil1l be for action dl if

En*a, o1 > ™, o)

where the expectation 1s taken with respect to the posterior distribution of

8 . Thus, d1 is to be preferred yhenever

2 — - 1 | 1 | 2 r ] - - 1
oy + (uy B g = ch) < e 0, '+ e'(1y Bo)(ue g')
or
S 4 ) 2 Ak . 2
( 1? pe - Ue >u (dz. ue) —eq 4

6
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o, 0

=2.0

fisilicy
LT A1

1.5 ~5.T

-9.0

-10.5

=-12.0

Figure 4.3
Quadratic Utility

kk

This figure illustrates quadratic utility ag transformed by u (di’ 8), In

this example, o' = -.75, g' = 1.25, ' = 1.8, 6, = .75 61 = 0.0, and 92 = 1.0,
*k kk

Observe that u (dl, @) approaches its maximum at zero while u (dz, 8)

approuches its maximum at one. Also note that u(dl, W) = u(dz, .85).

20
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where g and og are the mean and variance of the posterior distribution of the
state parameter ¢ . This result wmay be interpreted as calling for action

dl whenever the utility of d1 at g ils greater than the utility of d, at

2
Hg plus a correction factor. The correction factor depends upon the posterior

variance of © snd consequently 1s a measure of the probable deviation of ©

from g - For our Individually Prescribed Instruction examples, this relation-
ship has important consequences. It indicates that for decilsion purposes,

all we need from the posterior distribution of 8 is its mean and its varilance.

In applications, we can often readily obtain these values, or approximations

to them, even when the posterior distribution of 0 does not exist in closed

form.

4.4 Exponential Utility

Linear and quadratic utility functions have played important roles in
applicatiecns of decision analysis. As we have seen, linear utility requires
only that we evaluate the posterlor mean, while quadratic utility requires
both the posterior mean and varlance. These simplifications of the decision
process are extremely important, especiully when the posterior distribution
of © 1s of a complicated form. Qften we are able to estimate the mean and
sometimes the varlance of 6, even when the posterior density itself does
nPt exist in closed form. As we shril see in this section, exponential
ézility also has a simplifying property which makes it particularly useful
ﬁith many of the standard posterior density functions. Before 1llustrating
this special property of exponential utility, we will exhibit the form of
the function and perform our usual simplifications. We define exponential

utility by a function of the following form:
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c - a % exp{bd} i=1
‘u(di, f) = . (4.9a)

¢ = £ % expi-gd} i=2

shere the conatants a, b, f, and g are positive. Notice that this is not
the most general form available, since we require that a, b, f, and g be
positive and that the same constant c appears under each decision rule.
Although this simplification is made so that the estimates of the constants
are more easlly obtdéined, it has certain implications which the would be
user should keep in mind. This particular formulation requires that for
decision dl, utility is a decreasing function of the stace parameter 8 .

On the othar hand, for decision d2, utility must increase with increasing

8 , To see this, all we need to do is rewrite u(dz, 8) in the form

u(dz, 8) = ¢ - f/exp{gd}. Clearly as 8 increases, f/exp{gdl approaches zero.
That is, as 0 increases, the contribucrion of the second term to utility
decreases rapidly, with u(d2, 8) approaching c from below as an asymptote,

A similar argument with respect to u(dl, 8) shows that the utility of
decision dl also approaches ¢ from below, but this time with decreasing 9 .
This relationship is depicted graphically in Figure 4.4, Using our now
familiar permissible linear transformation to eliminate some of the unknown

congtants, we let

1

*
u (di’ 8) = — —— -
a % exp{beo}

fudg, 8 - (c -~ a4 exp{beo})] .

Since a % exp{bﬂo} = £ % exp{—geo}, we have

1 - explb(s - eo)} i=1

u'@,, 0 = . (4.9b)
1 - expi-g(® - Bo)} i=2
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Exponential Utilicy

Figure (a) illustrates u(di, ®) from Equation (4.9) with a = 0.1, b = 3.5, ¢ = 2.0, £ = 3.5, and g = 1.24,
%
Figure (b) is u (di’ 8), the reparameterized form of figure (a). Upon reparameterization, the utility of

*
@ is zerc and the scale is changed se that ¢ = a = f = 1.0, 1In its reparameterized form, u (di' 6), au

expenential utility function is conpletely determined once eo and the slopes at 80, -b and g, of its two

branches are specified.

€L
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When the decision maker turns to f£ixing the two parameters of the utility
tunction, b and g, he must specify the precise utility of at least one point
ou each branch of the utility function in addition to Bo . That is, he must
specify a pair of points {(Gl, cl), (92, °2)}’ such that u(dl, Gl) =< and
u(dz, 92) = €, + The reader 1s cautioned that this is not equivalent to what

we have done in the past when we specified points (91, 89) such that
u(dl, 01) = u(dz, 92). With exponential utility of the form of Equation (4.9),
we must actually specify the values <y and <y (although they may, of course,

be equal). Once this is done, the parameters b and g are completely determined,

for we have

1 - exp{b(el - 30)} =c

and

1 - exp{-g(@, - eo)} -c, .

Upon taking logarithms of both sides and solving, we have

¢n (1 - cl)
75 -8 (4.10)
' (91 90)

and

wa(l - c,)
g - —— - (4.11)

(2_ 0)

From these equations snd the restriction on our model that b and g

be positive, we see that 1f & <& and 6, > 8 _, then ¢, and c, must‘lie
between zero and one. This is completely reasonable, however. 1In examining
the transformed utility function, we see that it is zero at Go and increases

to one as 0 approaches either - ® or + = for decisions dl and d.z, respectively

(see Figure &.4).
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Probably the easiest way to specify 1 in applications is to determine
91 such tﬁat the utility of (dl, 91) is half way between the maximum possible
utility under dl and the utility of (dl, eo). By specifying a similar point
92 under d2’ the decision maker can check his coherence by observing whether
u(dl, Bl) = u(dz, 82) subjectively. Having established his utility function,

the decision maker will prefer decision d, whenever

1

8{1 - exp{b(e ~ BO)} jx] > 3’,[1 - exp{-g(6 ~ 90)} Ix] .

But since expectation is a linear operator, this condition is equivalent to

preferring dl whenever

1~ g[exp{b(e - 90)} |x} >1 - (ﬁ[exp{-g(e - BO)} | %

or
expl-b8 } & [explbo} |x] < exples } Elexpl-go} |x]

or

exp{-(g +b)e°} g[exp{be} |x1 < g[exp{—ge} |1 .

But 8[exp{te}] = M(t) has special significance for mathematical statisticians.
In the statistical literature, M(t) is referred to as the moment-generating
function for 6 . And because of the importance of these moment-generating
functions, the integration necessary to evaluate the expected value has

been worked out for most standard density functions. Therefore, 1f the
posterior. distribution of 8 ig one of the standard densities (Normal, Uniform,
Triangular, Gamma, and others), the final stage in the decision-making process
is merely a matter of "plugging in" the parameters of the posterior distribution
on 6 and those of the utility function. By reformulating the decision eriterion
in terms of moment-generating functions, we see that decision dl will be

preferred whenever exp{-(g + b)ef} M(b) < M{-g).
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Returning to an example considered in Section 2.3, we assume that the
2 2
posterlor distribution of @ 1s normal with mean uy = (10" + x¢)/(¢” + ¢) and
2
varlance Og =0 ¢/(¢ + 02)- Since the moment-generating function for a normal

variable is given by M(t) = exp{tu9 + tzo§/2}, decision dl will be preferred

whenever

22 22
exp{bue +b 0812 - (g + b)Bo} < exp{—gue +g 09/2]

or

2
l.le < 90 + (g - b)Oe/2 . (4012)

That 1s, the retain decision is preferred if the mean of the posterior
distribution of 6 is less than 60 plus an adjustment which depends upon the
variance of the posterior distribution and the relative utilities of the
two decisions. Whether that adjustment is positive or negative, depends
upon the sign of gl- b . Since b and g are the magnitudes of the slopes of
the utility function at @ for dl and d2, respectively, the difference is
a measure of the relative speed with which utlility is changing on its two
branches as 9 moves away from 90 « Thus, if g > b, the utility of d2 is
changing more rapidly in the vicinity of 90 than the utility of dl . That
1s, when g > b, making a false, positive error will be relatively more
expensive than an error of the false, negative variety for equal distances

from 90 » Consequently, the decision maker adjusts his critical point for Mg

in a positive direction.

Let us reconslder a slight modification of the known variance numerical

example presented in Sectlon 2,3, As before, we assume that:

(1) e(0) ~ N(80, 23) {prior on ©)
(2) p(x}o) ~ N(e, 16) (11kelihood or model density)
(3) Bo = 75 {(critical criterion score).
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Figure 4.5
Exponential Urility

This figure illustrates expouential utility in the form of Equation (4.9b).
In this example, we assumed that Bl = 70 and 02 = 82. Applying Equations
(4.10) and (4.11), we concluded that b is equal to .14 and that g is equal

to .10. The posterior distribution of ¢ is normal with mean ¢qual to 83

and varlance equal to 9.76.
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We further assume that the student obtains a test score of x = 85, Thus,
tho posterior distribution of & is normal with mean equal to 83 and variance
equal to 9,76,

Next, our decision maker must specify his utility function. On the
presumption that he would be satisfied with an exponential description like
Fquation (4.9), our decision maker would follow the procedures outlined in
this section. His first task would be to subjectively detetmine 91 such that
the utility of (dl, 61) is half-way between u(d,, 90) and the maximum possible
utility on the d1 branch. HNext he must similarly determine 92 » Assuming
that 91 = 70 and 92 = 82 and that these are coherent, Equations (4.10) and
64.11) indicate that b = .14 and g = ,10, Applying Equation (4.12), we see
that the student will be retained if Hg < [75 + (~-.08)9,76/2] = 74.61. Since
By = 83, the decision maker will certainly advance the student. This situation

is 1llustrated in Figure 4.5,

4,5 Squared Exponential Utility

!

The final family of utility functions that we will consider fof the
two-~action problem, will seem somewhat restricted in the amount of flexibility
that it permits the decision maker. However, it 1s very compatible with
normal posterior distributions and 1s frequently useful when other posteriois
may be approximated by normal distributions. It 1s also a rather natural
family of utility functions when the problem 1s an estimation problem and the

act and parameter spaces coincide., The model for squared exponentlial utility

is
- a(d - 8 y2
1 - exp — i=1and § <8
" b(o ~ 0 )z
u(d,, 8) = ¢ 1 ~expl——>—>— 1=2and 6> ¢ (4.13)
i 2 o
0 otherwise
]
whera a and b gre positive. 2 j 2
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Turning tc the specification of the parameters a and b, we follow the
same procedure as in the case of exponential utility. That is, we specify
the utility of at least one point other than 00 for each branch of the
utility function. If these points and their ucilities are represented by

the pairs {(Bl, cl), (92, cz)}, then

a 2
1~ exp{~ E‘(Bl - Bo) } = ¢y

and

b 2
1 - exp{- 5 e, - Bo) } = ¢,

Upon taking logarithms and solving, we find that

~

e 2 ¢n(l - cl)
2

(8, - 8)

and

2 ¢n(l - ¢,)

2
b= - EE—Y

(92 = eO)
From these equations and the restriction on our model that a and b are both
positive, we see that cl and C, must lie in the interval (0, 1). Examining
Figure 4.6, we see that this is reasonable, for squared-exponential utility

as described by Equation (4.13) is bounded between 0 and 1.
As with exponential utility, one way to determine (91, Cl) and (92, cz)

is to look for those points on the dl and d2 branches such that

u(di, Bi) - u(di, 00) =

{ (d s e)} - U(d Y 8 ) .
g’“‘i it “i
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Figure 4.6
Squared Exponential Utility

This figure illustrates squared exponential utility in the form of

Equation (4.13). 1In this figure, a equals .05 and b equals ,0l.

Hote

that the utility function is bounded between cero and one, with u(dl, 8)

equal to zero for 6 > 6  and u(d,, 6) equal to zero for 8 < 0,
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That is, try to determine those points (di’ ei) which have desirability

approximately half-way between the desirability of (d eo) and the maximum

i!
possible desirability under that decision. It wi'l then be possible to

verify the consistency (coherence) of these spacifications by comparing
u(dl, 91) anu u(dz, 92), subjectively. Tf large differences are believed
to exist in the payoff of these two situations, then some reconciliation
will be necessary.
Action d1 will be preferred if the expected or average poste.lor utility

under dl is greater than that under d2 + That is, 1if

+Feo o
u(dl, 8)p(e}x)de > u(dz, o)pofxydae .

Since u(dl, 8) and u(dz, 8) are non-zero ouly in the reglons 6 < 8  and

8> eo, respectively, .his inequality may be rewritten in the equivalent

form
8, oo
u(d,, 8)p(8|x)de > )u(dz, 8)p(8fx)de .
e 8,

These integrals will be tractable if the posterior den.ity of 8, P8 ix),

2
is normal with mean Mg and variance Og o In this case,

a(e - 0)° @ - u)?

9
1l -~ exp e e exp | -

u(d,, 8)p(8lx) =

2
Jﬁﬁog 209

which may be rewritten in the form
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u{d,, 6)p(s]x) = exp |- 25 (6 - u,)?
1 3 6
o 204
6
2 2| T
(a+0.) ab + o zu ag2
8 6 Yo 6 2
- exp| - 0 - —— exp|l- %] ————} (6 - u)
2 2 a+ 0-2 a+ 0"2 ° 6
"2’“’3 9 )

The first term, of course, ig nothing but a normal density with mean Mg
and varilance og . Ignoring that part of the second term which does not depend
upon 6, we gee that the second term ie proportional to a pormal distribution
with mean (aGo + ogzue)/(a + 0;2) and variance (a + 0;2)—1 . Therefore,

é?[u(dl, 0)|x) may be written as

6
2
° (6 = uy)
g[u(d , 9)Ix] = exp{ - ———} db
21r0e 8
-
80—2
- —1_ exp - ;i _e (e -y )2
./2(0--2_'_ ) a.-l-o;2 ° 6
CAACH a
eo
G, + a a+o ab 40,y
. 9 exp| = (=) {6-—=—22) fao .
V21 a+ 0,
0

But each of these integrale is nothing but the probability in a tail area
f a normal distribution. Therefore, we may express these integrals in
terms of the percentile rank of 00 . Thue, by standardizing 6 In each

integral so that each distribution is unit normal, we see that

e
b""
<o
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0 -y
x] = PR _-c_‘..a——-e—

2
'/"e

100 & fu(d,, 0)

-2

aeo + ce ue

g -

-2 -

1 ady 2 o at °92

- —=—— enp|-% [ | (0 -up?| m -
/03(032 + a) a+a, (a + Gg )

where PR(z) 13 the percentile rank of z with respect to the unit normal
distribution.

Replacing a by b and reversing the limits of integration, we have a
similar expression for the posterior expected utility under d2 + Therefore,

our decision criterion may be written in the form: '"Choose dl if

PR(z,) cgza 5
PR(ZO) - exp| - % 5 (90 - !-le)
) ¢ a

2, =2 +
cre(oe + a ]

(100 ~ PR(z,)] a3’b 2
> (100 ~ PR(z )} - exp| =% | (8 - )|,
& b

Arg (cr'(;2 + b)

-2
o - beo + ce ue
° b+ 032 032
L = [ (e -u) N
2 ot + 032)”& b + cr'e'z)ls ° 0
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We prefer d2 when the direction of the inequality is reversed. Although
Equation (4.14) looks rather frightening, it is really rather simple to use
once you know the parameters of the utility function and of the posterior

distribution on 8 . Of course, those decision makers with access to a

computer will find its application trivial.
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5., A Three Action Fxample

Section 4 was built around the analysis of a decision problem in which
two actlons were avallable to the decision maker. Several families of utility
functions were studied and the ideas were {llustrated with an example involving
the decision to advance or retain a student at a certain level in a sequential
chain of instructional steps. Although the notation becomes more complex and
the computation a bit more tedious, there are no fundamentally new ildeas when
we assume that thers are three (or any finite number) of options open to the
decision maker. In this section, we will illustrate this somewhat mors general
problem by using natural extensions of two of the families of utilicy

functions discussed earlier.

5.1 Threshold Utility

Consider the following slight modification of the Individually Prescribed
Instruction example discussed in Section 2.1. 1In the previous example, when a
student completed a unit of Instruction, he was considered a master or a
nonmaster and was advanced or recalned on the basls of expected utility.

In this example, we merely extend the number of levels of mastery by further
partitioning the nonmasters into two groups. The first group contains those
nonmasters whose abllity 1s close to the cutoff point separating the masters
from the nonmasters. The second group contains those who apparently missed
the whole polnt of the lesson. The state of a student being a nonmaster of
the poorer variety will be denoted by 61; the better nonmasters will be
denoted by 62; and, the masters by 63 '

For purposes of thls example, we assume that there are only three accions
avallable to the decision maker. The student may repeat b th thc present aund
the previous instructional units; he may repeat o: 'y the present unit; or, he

may advance to the next unit,
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With these specifications, we may now define the usual utility function by

the following table.

Table 21
u(di, ej)

01 02 03
dl(back one) uyy U9 ul3
dz(retain) Usq Uy, Uyq
da(advance) ugy ug, g,

As we have mentioned before, determination of these uytilities is not an easy
matter, In Section 3, we described one paradigm for their determination
which might be helpful. However, we do not claim that it is the last word

in utility specification. Nevertheless, in what follows, we will assume that

the decision maker has coherently specified the utjlities.

After the te3t score X is available, the decision will be made by selecting
that action di’ i =1, 2, 3 which maximizes the posterior expected ntility

3
L uld, Bj)p(ﬁjlx) .

i=1
We might think of this problem in terms of specifying two cutting test scores
x and X,, where X <X . Then for x < x_, action d; will be taken; for
X <X <Xy action d2 will be taken; and, for x > X action d3 will be taken.
To determine the critical points X, and Xy which will divide the range of
test scores into a dl’ a d2’ and a d3 region, we return to a technique described

in Section 2. We consider the posterior distribution of 9, p(6|x). as a
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function of x . Since x, 1s the indifference point with respect to decisions

d1 and d2, at x_ the expected posterior utility under d, must equal the expected

1

posterior utllity ynder d That 1is,

5 -
3 3
=1 uljp(ej'x°) i j£1 Usz(ﬁjlxo) '

J

Simplifying this, we see that X, should be determined so that
(ugy = upg ¥ gy = upIP(Og X)) + (upp = upy = g+ uy ) (0, ]x)
+ (u13 - u23) =0 . (5.1)

Similarly, x, should be determined sc that

1
(ugy = gy +upy = upp )P0y %)) + (ugy = upy = ugy + uyadp(eylx))
+ (u33 - u23) =0 , (5.2)

In order te illustrate how to use Equations (5.1) and (5.2) in applications,

we return to the example in Section 2.3 where posterlor to our observation x,
the abllity parameter © was continuous and, in fact, normally distributed.

There we described the posterlor distribution of € by

p(ﬁlx)~N 102+x¢’ ¢o2 :I .
02 + 3 02 + 4§

For purpeses of this example, we also redefine the mastery levels el, 02, and

63 in terms of critical peoints Tl and T2 on the ability scale (6). We let
6, = {p]e < Tl}, 8, = [(aIT1 <6 <T,), and 0, = (efe » T,}. Then transforming

the posterior p(e[x) into & posterier on the normal deviate z, we see that
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Pr(ellx) = Pr{z < Z(Tl’ x) 1,
Pr(82|x} = Prfz < z(Tz, x)] - Prz <« (Tl, x)],
and
Pr(93|x) =1 - Pr{z « Z(TZ’ x)]
where 2
r - + x¢
2
z(Tit X) = g+ @

[662/ (¢ + 6D)T%
S0 we may rewrite Equations (5.1) and (5.2) in the form

(ugg + Uy = Uy = uypIPrlz < 2(Ty, x )]

+ (u12 - Upy = Uya + u23)Pr[z < Z(TZ’ xo)]

+ (ul3 - u23) =0

and

(ugy + ugy = uyy = ugdPrlz < 2(Ty, x,)]

+ (u32 = Uy, - 433'+ u23)Pr[z < Z(TZ’ xl)]

+ugg = uyg) = 0

Each of these e€fuations now needs to be solved iteratively for X and X
It is recommended that T1 and T2 be used as first approximations to X and
Xy regpectivaly.

We now turn to a modification of an example considered in Section 2.3

to illustrate these ideas. AssSume that we have the following situation:
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(1) p(8) ~ N(80, 25)
(2) px|8) ~ N(o, 16)

(3) T, =60 and T, = 85

1 2
(4)
u(di, Bj)
6 < Tl Tl <8 < T2 8 > T2
dl (back one) 7 4 0
d2 (retain) 2 6 1
d3 (advance) 1 3 5

Thus, by applying Bayes theorem, the posterior distribution of § as a

function of x may be written in the form:

p®]x) - N[:8°(16) + 25x 25(16)_1 .

16 + 25 ' 25 + 16

Substituting into our equations for Z(Ti’ %), we have

1280 + 25x
S
z(Tl, X) = 3,123 9,214 -~ ,195x
and
a5 - 12804T 25%
Z(Tz, x) = 3.123 = 1?0218 - .1951{ .

And we must solve the equations

.07 PR(9.214 ~ .195x0) - .01 PR(17.218 - .195x0) ~1=0

.02 PR(9.214 -~ .195x1) ~ .07 PR(17.218 ~ .195x1) +4 =0,
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where PR(z) equals the percentile rank of z . Iterating to a solution,

we find that x, = 52.7 and X, = 87.4. So the decision maker will choose
decision d1 and have the student repeat two units 1f x < 52; will choose
decision d

1 and have the student repeat the current unit if 53 < x 287

and, will choose decision d3 and advance the student if x > 88.

5.2 Linear Utility

Analogous to the situation in the two-action problem (see Section 4.2),
we define linear utility to be linear in 8 for each decision separately.

Thus, linear utility in the three decision situation 1s defined by a

function of the form:

e + fo i=1
u(di, 8) =4 g+ ho i=2 {5.3)
k + m@ i=3

If we assume that our decislons can be indexed so that decision d1 is most
desirable when & 1s small, so that decision d2 1s most desirable when © takes
intermediate values, and so that decision d3 1s most desirable when 6 is
large; then the solution of the three action problem is a straightforward
extension of that offered in Section 4.2, Applying our permissible positive

*
linear transformation, for m > 0, we let u (di’ 8) = [u(di, 8) - k)l/m .

Thus,
e' + £'9 i=1
~ u*(di, 8) = g' +h'o 1=2
8 i=3

where
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And since we have four constants to estimate in specifying our linear
utility function, we need four ordered pairs (Gi, Gj) such that

* *
u (di’ 61) =u (dj’ 8.). Two of these pairs are provided by the

i

breakeven points T1 and T2. At these polnts, we have

el + f'Tl g' 4+ h'T

1

and

g' + h'T T

2 2"
Thus, we need only two additional pairs to completely specify the utility
function. The resulting linear system of four equations in four unknowms
can then be solved for e', £', g', and h'.

When we turn to maximizing expected utility, we now have three equations
to consider. In fact, depending upon whether e' + f'ue, g’ + h'ue, or ug is

largest, we choose decision d d2’ or d3, respectively. Graphically, this

1!
is clearly illustrated in Figure 5.1. All the decision maker needs to do 1is
examine the utility of each decision at the mean of the posterior distribution

of 9, choosing that decision with the highest value.
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Figure 5.1
Linear Utility in a Three-Action Problem

This figure illustrates linear utility in the form of Equation (5.3) with
constants e = 60, f = -9, g= 15, h= -2 k= .90, and m = 1.2, As in the
two action problem discussed In Section 4.2, the decision depends only upon
the utilities of each decision at the posterior mean Mg - In this
illustration, since u(da, ue) > u(dz, ue) > u(dl, ue), extensive form analysis
will lead our decision maker to choose action d3. In terms of TI and Tz.
action dl will be taken whenever By < Tl; action d2 will be taken whenever

Tl <Hy < T2; and, action d3 will be taken whenever Wy > Tz.
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6. Preposterior Analysis

Information 1s never free. For example, information about the mastery
level attained by'a particular student is obtained by testing, Interviews,
or class recitation. Such activities spend the time of the studgnt, spend
the time of the teacher, and tie up facilities. If there are only meager
rewards and penalties for correct and incorrect decisions, it may be wasteful
to purchase information whose cost may exceed the gain in expected utility.

Suppose that a decision maker has (1) a prior distribution on 8, p(0),
(2) a utility function u(di, 8), and (3) a potential experiment which, 1f
carried out, will have outcomes X with model density p(x|B). Before
colle.ting the data, the decision maker wants to know the esxtent to which
his efforts are likely to be rewarded. That is, he wants to know whether
the additional information contained in the potential experiment is likely
to be sufficiently '"valuable" to justify obtaining it. Bayesian decision
analysis provides the framework of preposterior analysis for studying this
question.

The logic of preposterior anglysis is simple and can be readily under-
stood by considering the folléhing outline:

(1) The decision maker can attach a 'value" to the information

_ contained in his prior, p(8), by calculating the expected utility
of the optimal decision. That is, |
Value [p(68)] = max fu(d;, 8)p(8)dd .
di
(2) Assume for the moment that the experiment has already been carried
out and the result x obtained. If this were the case, then
analogous to the above, the decision maker ciruld attach a value

to the information contained in his posterior. That is,

g)p(0|x)dx .

value [p(8|x)] = max U(di
d
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(3

(4)

(s)

Continuing as if the data had already been collected, our decision
maker could now calculate the "value added” by the experimental
results (1.e., the increase in expected utility after the addition
of the data).

Value Added = max [ u(d,, e)p(e|x)dé - max u(d,, ®p(e)de .

di di

Since, in'fact, the experiment has not as yet been executed, of
course, the value added cannot be determined. WNevertheless, the
decision maker may consider the value adced to be a function of

the observation random variable X. In the jargon of decision
theory, value added consldered as a function of the random varizhle

X is referred to as the conditional value of sample (experimental)

information and is denoted:

v{e, X) = max u(di, o) p6|x)de ~ max [ u(d

4 4

i’ B)p(0)de .

It is conditional because it can be calculated only when x is known.
Now since X 1s a random variable with a probability dist:ibution
p(x)= [ p(e)p(x|8)de, it is clear that v{e, X) is also a random

variable. If the density of v(e, x) were a simple function, it

would be useful at this point to examine its location parameters

and even credibility intervals. These statistics would describe
the decision maker's prior beliefs about the probable increases

in utility to be galned from sampling. 1n most applications,
however, the density of v(e, X) is not a simple function. Although
this complexity precludes most descriptive indices, in many
instances, it will be possible to determine the mean of the

distribution of v(e, X). In the decision theory literature, this
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mean 1s commonly referred to as the expected value of sample

information and i1s denoted

v(e)‘f(e, x)p(x)dx

where p(x) 1s the marginal prior density of X,

(6) The decision maker may now compare the expected value of sample
information with the "cost" of performing the experiment and
judge whether or not the experiment is likely to be worthwhile.

Before illustrating preposterior analysis with a numerical example,

one central point must be made. In step (6), the decision maker must
compare an expected utility with the cost of obtaining experimental infor-
mation. It is critical that these two quantities not only be measured in
the same units, bur also that their respective scales have the same origin.
If the expected value of experimental information, v(e), is measured in
arbitrary "utile" units while the cost of that information is in dollars
and cents, a sensible comparison cannot be expected.

We will illustrate preposterior analysis with an example. We let

-(3/5)(8 - 75) i=1

u(di,.B) =

/5 -75 1

]
[pt]
.

As 1n our previous examples, 75 has been selected as the indifference point
between the acts of retaining (dl) and advancing (d2) the student. As
expected, the advance decision (dz) is positively related to ability (6)
while the retain decision (dl) has a negative relationship.

Suppose further that the prior information about 6 has been quantified
in the form of a normal distribution with mean 78 and variance 36. Recall

that in Section 4.2, we demonstrated that with linear utility, the optimum
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decision depends only upon whether or not the mean of 0 is greater than Bo .
Obviously in this coSe, with only prior information at the decision maker's

disposal, the advance action Wwill result in the highest expected utility.

Thus,

vValue([p(8)]

(7/5)(8 -~ 75)p(0)de

u(dZ’ ue(prior)) = (?/5)(u9(prior) = 75)

where ue(prior) is the mean of the prior on 6 . If the experimenter had carried
out the experiment, the highest expected utility using the experimental
results to help select the action would be

14[73/5)(9 - 75)p(8{x)de if Mg (post) < 75
value [p(8]x)] =

J[}?/S)(e - 75)p(8]x)do if Mg (post) > 75,

Since the utility function is linear in 6, the expected utility of decision

di is merely the utility of the expectation or mean of 6 . Thus,

u(dl’ ue(post)) = -(3/5)(ue(post) = 75) if ue(post) <

Value [p(elx)] -

ud,, ue(post)) = (?/5)(u9(post) - 75) if Mo (post) > 75

The conditional value of sample information may be given by

-

u(dl' ue(post)) T u(dZ’ ue(prior)) if uB(post) <13

vie, x) =
u(dZ' ue(post)) - u(dZ’ ue(prior)) it ue(POSt) AR

And the expected value of sample information is given by
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vie) = [ [uldys Mg(por)) P X)X

all x
such that

uG(post) <73

+ [U (d2! uB(pOSt))]p(x)dx

all x
such that

uG(post) 275

- | u(d (¥)dx .

2° “e(prior))p

Thus, in order to evaluate v(e), all our decision maker needs to do is
partition the range of X into two subsets: The first containing all x
which will lead to a posterior mean which is less than 75, and the second

containing those x which force ue(p to be greater than 75. 1f, for the

ost)
purposes of this example, we assume that the likellhood of our sample may
be described by a normal distribution with mean 6 and variance 25, then

applying Bayes theorem, we see that the posterior distribution of 6 is of

the form

36 x + 25%78 I6%25
JCIEY "“[ 25 + 36 ’36+2_‘] '

And so the relationship ”G(post) < 75 is equivalent to the relationship

x < 72,92, Thus, the expected value of sample informgtion is

72,92 +®
v(e) = [uldy, Mgrpogry)PORIX + [(0ldy, g o yIPERNR = aldyy Wgpr o)

oo 72.92
Let us pause here for just a moment and examine this equation. The first
thing o0 notice is that we are integrating vver a range of test scores X
from - ® to + ® . Conceptually, this may seem a iittle troublesome, for in

most applications, test sco.es are bounded within a relatively small range.

p(x)dx .
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Recall, huwever, that we assumed the model density was normal in form.

This assumption implies that every x (from - @ to + =) ,as positive
probability. Therefore, each x must be considered when taking the expectation.
Although admittedly, trls is a problem conceptually, in applications it is

not very important. As long as the prior distribution on @ is carefully
specified, there should be effectively zero probability that x will lie
outside its permissible range.

In this particular example, we have p(8) ~ N(78, 36) and P(x|0) - N(o, 25).
Therefore, p(x) ~ N{(78, 61). So that in this case, X has very little proba-
bility of falling outside the range (53, 101). Returning to our expression
for the expected value of sample information, we find two integrals of the -

form:
u(d, ue(post))p(x)dx '

We know that U(di, ue(post)) is linear in ue(post)' Since ue(post) is linear in
%, this implies that u(di, ue(post)) is also linear in x . In fact, by

= *
substituting ue(post) (36 x + 25 * 78)/(36 + 25), u(di, ue(post)) may be

written in the linear form

-(3/5)(0593 - 43003) if i=1
(775 (.59% - 43.03) ifi=2,
and so, v(e) can be written as
o 72.92
vie) = | (7/5)(.59%-43.03)p(x)dx - { (3/5)(.59x-43.03)p (x)dx ~ u{d,, ue(prior))
72.92 -«

where p(xf - N[78, 61]. It can be shown that the following relationship helds.




929

a
ﬁcx - )p(xX)dx = %-'-CD- PR{a) + bonI:Lg—g- 3 0, ];I

where

p(x) ~ N[y, 02]

PR(z)
e
o

Using this relationship, we may rewrite v(e) ounce again

percentile rank of z

the ordinate or height of the unit normal

u-a
0 L]

curve at

v{e) = (7/5) (.59-?816043.03)

[100 - PR(72.92)) + (7/5)-/61 u[-.65: O, 1]

100 PR(72,92) - (3/5)+/61 u[~.65: O, 1)

_{3/5) (.59'?8 - &3.03)

~(7/5)(78 - 75)

.46
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l. Introduction

In Individually Prescribed Instruction it has been proposed (No;ick,
Lewls, and Jackson, 1973; Hambleton and Novick, 1973) that the decision
as to whether or not the j—th student has successfully mastered a unit of
instruction should be based on the aposteriorl probability that his mastery
proportion (nj) is greater than some specified proportion (ﬂo) and on the
losses assoclated with false-positive and false-negative decisions. It

was also proposed that the posterior distribution for each w, should

j
benefit not only from the prior and sample information on each person j,
but also on the collateral information galned from the observations on
all other persons.

The rationale for this kiid of analysis was first given in an
educational context by Kelley (1923, 1927) and later reproposed by Novick
(1970), Wovick and Jackson (1970), and by Cronbach, Gleser, Nanda, and
Rajaratnam (1972). The mathematical structure for the required Bayesian
Model II solution was glven by Lindley and Smith (1972).

In thelr recent paper, Novick, Lewls, and Jackson (1973) developed
the specific solution for the problem of estimating binomial proportions
in m-groups. The observable random variables--proportions of "successes"

Py = X /n,, 3 =1, 2, ..., m, where X, and n, are respectively the number

33 3

of successes and the number of observations--were first mapped into a

set of new variables gj by an arc sine transformation. The variables

The research reported herein was performed pursuant to Grant No.
QEG-0-~72-0711 with the Dffice of Education, U.S. Department of Health,
Education, and Welfare, Melvin R. Wovick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely thelr professional judgment in the conduct
of the project. Points of view or opinions stated do not, therefore,
necessarily represent official Office of Education position or policy.
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gj were then assumed to have a normal density function with mean

Yj = Sin—l/;; and varlance vj = (4nj + 2)-1, where Yj is the corresponding

transformed value of the population proportion of "successes" n Then

g
the Bayesian Medel II methed which is based on the exchangeability
theorem of De Finetti (1937) was applied to the analysis of the indirectly
observable gj. In the Individually Prescribed Instruction application,

the individual person is treated as the "group” and the test items as the

n replicaticns,

The validity of the normality assumption on the distribution of the
transformed variables gj depends on the sample size nj. If nj is very
small, the ncrmal appreoximation to the distributien cof gj will not be
good. 1In practice, it was felt that for n:l > 8 this assumption will be very
satisfactory except for the tails. It may also be noted that the domains
of the distribution on gj and Yj are bounded between 0 and %-, while the
normal distribution has unbounded domain. We recall that with a uniform
prior Yj’ the pesteriecr distribution of Yj 1s normal with wean gj and
variance (fm:l + 2)-'l under the above appreopriate assumptions. Thus, we
may wish to check whether the points which are + 2 standard deviations
from gj exceed 0 and /2, respectively. It was found that for n:l > 6
and 1 j_xj‘i ng - 1, the points which are *+ 2 standard deviations from
the posterior mean lie within the (0, %‘) range. This implies that the
bounded domain of the distribution of Yj should not be a maicr
disturbance in considering a normal appreximatien to its form. We
contend that in the m-group procedure, the collateral information
provided by other groups would have an equivalent effect of adding more
sample observations to the estimation of an individual group's propeortion.

For this reason, we expect that the wiclation of normality in the cases

of small sample size will not be serious, provided all n > 8. For

smaller sample sizes, a logistic transformation introduced by Lecnard

i should be considered, though this will require study.
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Regarding the problems of variauce stabilizatiosn, the Freeman-Tukay

(1950) transformation was considered superior to Anscombe's (1948)

transformation or the simple arc sine transformation, especially for

small sample size n , The condition for the Freeman-Tukey transformation

to stabilize the variance 18 ma{(l - ) > 1 . Namely, the trué proportion

-1,% ~1.%
L] , L]
ﬂj should lie between % - Sl—z}u and % + £1—24n—L « In general,

this analysis should be very satisfactory provided m > 13, n > 8,
$p < .05, and the above condition is satisfied.

The Bayesian procedure begins with an assumption that the set of
transformed values Yj is a random sample from & normal distribution with
mean Wp and varlance ¢r . The analyst's prior beliefa conceruing the
parameters up, ¢r are partially incorporated into the analysis by specifying
prior distributions for them. Specifically, Hp and ¢r are assumed to be
independent, having a uniform and an inverse chi-square (with v 4.f, and
parameter 1) density function, respectively. The assumption of a uniform
distribution for Hp is more convenlent than realistic but does not
significantly affect the analysis, provided m is reasonably large. We
shall consider this point later.

Under the above distributional assumptlons and the Bayeslan specifications
of one's prior knowledge, the joint probability density function tp.d.f.),
b{(g, ¥, Hps ¢r), of the vector variables g' = (gl, ceer By ree gm),

!' = (Yl, veey Yj’ vrey Ym) and scalar variables Mp and ¢r is obtained as:

b(g, Y» ¥ps ¢p)
¢;%(v +m+ z)exp{-% ivIl(Yi - 81)2 + ¢;1(1 + S(Yi - ur)zl} . {(1.1)
i

Novick, Lewis, and Jackson (1973) arrived at an explicit expression for the

posterior defsity fumction of y given g:

-
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k(v +m -1

balg) = O+ 5v, - v 2 dexplliv ey, - g% (L2

where Y. = EYi/m . Following Lindley's approach, the joint posterior mode i
i
was taken as the Bayesian modal estimate for y . The components ?i of ¥

were then used to provide estimates for the group proportions nj .

The modal estimates of the proportions in m groups taken from the joint
posterior distglbution from a Bayeslian Model II analysis are thought te be
more accurate {han other estimates obtained from conventional methods.
Specifically, the vector estimate of ¥ should be such as to maximize the

probabilicy that al)l of the components ?j are near the true values y_, i.e.,

j!

the medal estimates minimlze zero-cne loss 1 m dimensions. TIn many applications,
however, one's primary concern is to be able to reach certain decisions
concerning individual groups (or persons). This would be the case with a
component additive~squared error or absclute-error loss function or component
threshold loss. Rather than be satisfied with a set of jolnt estimates,

one would, in such situatlons, like to have marginal means and variances

and to make some probability statements about each individual's ability

(or a group's level of achievement, etc.)., In this context, it is desirable

to have knowledge of the marginal distribution eof each ¥ In the present

g
paper, Wwe theref.re address ourselves to the problem of describing the
posterior marginal distributions of Yj + To maintain certain mathematical
simplicity, the present paper will deal only with the case of equal n .
Even with this restriction, the results will still be found applicable in
many educational situations {(e.g., 1n assessing students' achievement in a

course or instructional unit by administering the same test to each member

of a class).
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2, Marginal Posterior Distributions for Gammas

An explicit expression for the marginal posterior density function for
Yj does not seem to be obtainable from the joint posterior p.d.f., b(I|§),
of y . However, the joint p.d.f. b(y, g, Hps ¢r) given by (1.1), with v
replaced by v = (4n + 2)_1 for equal n, can be integrated with respect to
each fi (14# j,1=1, ..., m) and ur to obtain the conditional posterior

p.d.f., b(le¢r, g), of Yj given ¢r and g:

b(vyfép, &) = bly;s o B

2
n(d, + v) b8, + vg.
« exp _2_1'____ g, -4 NI
v(m¢r + v) j ¢r + v

wvhere g. = %-2 gi + This expression 1s readily recognized as the kernel of
1

a normal distribution. Thus, the conditional distribution of y, given ¢r

i
and g is normal with mean
pog, + vg.
Ealop, g« TA—
3T ¢P +v

and varlance

vy +m v
Var(Yj|¢r. g) -_‘bl""_v_' i=1, ., m.

Now 1f ¢r can be considered to be known rather precisely, use of the conditional
distribution will be justified and requisite constants can be obtained from

normal distribution tables. This will occur when m, n are large (e.g.,

m > 50, n > 30), as indicated by the compuiations presented in Table 8 '
(see section 6). MNote that the normal integrations with respect to Mp

and the Yi will be valid, provided the likelihood for these quantities is

each near zero outside the admissible range. With respect to Mps this means

that m the number of groups must be. large, perhaps m > 15. In the latter

~ case, this means that the nj must be moderate, nj > 8.

243

I




Similarly, we can integrate b{y, g, Ypo ¢r) w.r.t. Yy and ¥p to obtain

the conditional p.d.f., b(¢r|§), of ¢r given g (Will, 1965; Leonard, 1972):

_m-1 o
bloplg) = @ +v) 2 explhGe, + 0T T (g - 807
) 1=1
-G+ 1) -1
* ép exp(-}spp A1 . (2.2)

Note that the second factor comes from the prior inverse chi-square distribution
of ¢r, and the first factor is derived from the likelihood of ¢r given its
sufficient statistic E(gi - g.)z. This first factor is the kernel of an
inverse chi-gquare dezsity displaced by an amount -v . A convenlent way to
obtain analytically the normalizing constant, mean, and variance for this
distribution of ¢FI§ does not seem to exist. Hence, direct numerical
integration methods will be used for this purpose.

In order to obtain the marginal posterior p.d.f. for y., one would
multiply the conditional p.d.f. of Yj given ¢r and g and that of ¢r given g,
as formulated in (2.1) and (2.2), and integrate the result yw.r.t. op Again,
an analytical solution to this problem does not appear to be pussible. 1t is
necessary, therefore, to resort to numerical integration methnds for computing
the marginal pasterlor means and variances of leg . For this task, the simple
form of b(Yj|¢r, g) is hel-ful in reducing the required computational efforts,

The computational procedure we propose begins with the fuct that thc r-th
moment of 71|g equals the expected value (taken over ¢r given g) of the

conditional r-th raw moment of y, given ¢r and g, viz,

j
¢ aflp = &4 plE it o1 (2.3)

In terms of (2.3), the marginal posterior niean of ¥, is computed by the

J
following equation:
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$. g, + vg.
. - . r j

g) - p*gj +-pDs.,
(2.4)

. bp
h *
where p é% ¢r+v

) ¢I‘ v
5)'1'0(?;—_'__?) b(¢r|§) d¢r. and 1-pt = gqu(F;

We note that 0 < p® < 1, hence, (2.4) 1s in fact a weighted average of the

values gj and g. . For notational convenience, we shall write ¢p for ¢r|g in

the sequel. Likewise, the expression Ef £(¢p) 1s understood to be the

bp
conditional expectation of the function f(¢r) given g -

The posterior variance of Yj is obtained from the relation:

2 * . Al
cj = Var(’fjlg) - eq’rtvar(.fjiq,r! E)] + z}r{{_(TJ|¢ri g)] + (2-5)

Thus, computationally, we use:

-1
vip, +m V)

- . - O r
C_¢r[\'d1‘("(j‘¢ra §)] (_¢r[_——'_¢r F v ]

- ‘/f ¢r -1 hig
v CL¢I,( = +v) tmov 8"1‘("1‘"‘ v)

=o*v+ (- D*)mhlv for all j = 1, ...,
(2.6)
and

vl rylan, 91 = & (Eoyle 9 - &, 1€ trylop, 1’

bp
¢ ¢r31+vao_u\ 2
AN T

¢ . o7 2
= 61’1‘[31‘—_'_—; (gj - llj) + ¢[‘ T v (g. - "j)‘

t):

uH




8
» A 3
- _ 2 ¢ T _ 2.2 . 1
(g5 = uy) é"r . +v) :l g mud d‘pr[—“‘r_"' v}zl
¢
. o £l
+ 2(“j uj)(s uj)V Cor o v)2

(2.7)
To study the characteristics of the marginal posterior distribution of

Yj’ one would also like to compute its coefficient of skewness. For this, we

first find the third central moment Q(leg) of 13 given g from the general

formula:

atvylg) = .z‘f ér(vjls)]

£y 00lop 1 40, 1 £ tylep o1

+ 3 e;v[Var(Yj[¢P, g}, éi(Yj|¢P, g)] , (2.8)
I

where Cov denotes a covarlance, In the present case, Q(Yj|¢r, g) =0

since the conditional posterior distribution of y, given ¢P and g 1s normal

3

[see equation (2.1)]. Furthermore,

[E‘:‘ (Yj|¢l\! g)] = (f_‘d,r[&(le‘bP; E) - “‘- ¢P Ll': (le‘pr! g)]3

3
. ¢P31 + vg. .
“"cbr ¢p + v h|

3

3 2 3 -2
O TCREIO R (TCTIEI T ) R
NP B M ] éf¢r

r

(2.9)
where Q¢ [ EL(Y ]¢P, g}] is the third central moment (w.r.t. ¢r) of the

conditional expectation Si(le¢P, g), and
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C;V[Var('fjl%’ g) €(Y Id’r’ 8)]
r

v(¢r + v/m) ¢rgj + vg.
é?¢ dp + v prv Y

¥ (12 2 ¢
v(aj uj) gq,P( ) + tn L, (gj-uj)-l'v (g.-uj) 8¢P —L—f

)

-13

+m vi(g. - é?¢ . (2.10)
T (¢r + v)

Hence, in terms of equations (2.5) to (2.10), one finds for the coefficient

of skewness Gj of the marginal posterior distribution of Yj given g:

= Q(vjlg)/[Var(Y 18)]3,2

In summaiy, 1t is seen from equations (2.4) to (2.10) that given the
expectations with respect to ¢r of the Functions ¢§(¢r + v)nk
(0<2 <k, k=1, 2, 3) of ¢r and the Indirectly observable vector g, the
descriptive statistics of our interest--the mean uj, varlance di, and index
of skewness Gj--for the marginal posterior distributions of the Yj can
be easlily computed. To obtain the values é;¢ [¢§(¢r + v)-k], we use numerical
integration methods. First, the right-hand side (r.h.s.) of (2.2) is
integrated w.r.t. ¢r 0 < ¢r < »), and the reciprocal of the resulting value
i1s taken to glve the proportionality constant for b(¢rI§) in (2.2). The
.particular integration algorithm adopted here 1s one which applies Simpson's
rule and uees local parabolic fitting to the curve belng Integrated in
computing the partitioned integral over a small range of the argument (in
thils case, ¢r). For detaliled information, the reader may refer to Ralsten

(1965, p. 119).
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The next step involves computing the expectations of fi,k(¢r) =
¢?(¢F + v)-k . The same integration algorithm described above 1s employed
to obtain €i¢rf£’k(¢r) = f:fg,k(¢r)b(¢r|§)d¢p . The mean, variance, and
index of skewness for the marginal posterior distribution of Yj are then
obtained via equations (2.4) to (2.10). A Fortran 7V program, MARPRO, was
written to carry out all these computations.

Finally, the exact posterior probability prob(nj > “Olg) that the j-th

group's proportion is greater than or equal to some Prespecifred cutting

polnt L given the observed vector g can also be calculated., Expiicitly,

prob(nj 3_ﬁol§)

prob(y; > v,l8)

f7ob(¥ ;18 av;
J’:o £oCrglops @bloplgIderdy,

=1, [fyob(*j“’r' g)de:I < bepledden

where Yo © sin-l(JF;) is the arc sine transformation of L The inner
integral for given ¢P is recalled to be the upper end cumulative normal
probability since b(Yj|¢P, %) is a normal density. The outer integral
{(w.r.t. ¢F) is obtained using the same numerical integration algorithm
described earlier in this gsection. The program MARPRO also provides
these probabilities with various values of L {for .95 zw > .05 in’

steps of .05, terminating with a value LA for which prob{(m , > ﬁo) > .99),

J
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3. Marginal Mean Estimates as Compared to Joint Modal Estimates

In the Novick, Lewis, and Jackson (1973) paper, the joint posterior

modal estimate (?1) for y, (the arc sine transformation of the proportion

i

nj) is obtained as a weighted average of gj (the corresponding transformation
of the observed proportion pj) and the average ?. of the estimated values %j

in m-groups. Explicitly,

Y = + l" .)-'o 3.1)
Yy = P48y ( Py s (
where . . .7 .. . 2
A+ (Y, - ¥.) A+ ECy, ~ v
i 1 it 7. = ot 5§
1T T mrv-1 mrv -1t Vyeamdy.=mToY

In the case where all m groups have same Sample sizes, n, = n, equation (3.1)

can be simplified as

Y 1-p)Y. = - . .
Yy = esy ¥ (1L - p)y pg; + (1-plg. , (3.2)

since now ?. = g, . Here p can be obtained as the solution of a ¢ubic equation
[Novick, Lewis, and Jackson, 1973, p. 37, (6.18)]. It may be recalled that a

parallel expression for the marginal posterior mean (uj) of Yj[equation (2.4)]

was obtained in the previous section. There the weight p* is the conditional
¢

mean (w.r.t. ¢T) of 3——£—; given g . (All estimates concerning us hereafter
r 2
are understood to be the posterior estimates so that the word "posterior" will

be omitted in the sequel.)

Returning to (3.2), we may write
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where $P = [A + i(?i - ?.)2]/(m + v - 1) is an estimate of ¢F . Thus,
both equations (3.2) and (2.4) are special forms of the Kelley type
formula (Kelley, 1927). The only difference is that p is an estimate
of the reliability R{ = ¢r(¢r + v)"ll based on an estimate of the
variance ¢r, while p* is the expected value (over ¢P) of R given g
{(i.e., a Bayesian mean estimate of R w.r.t. ¢r).
At this point, we are interested in comparing the marginal mean estimates
§j = "j of Yj {or equivalently %j of the proportions ﬂj) with their joint
modal estimates (§j, or, equivalently, ij). This comparison relies sclely on

the relative magnitudes of p and p* . e have found rom our numerical

investigation that p* is substantially larger than p for moderate n .

This means that the marginal mean estimates are less regressed towards the
common value g. than the jolnt modal estimates. Similarly, we would expect
that the marginal wmodal estimates would be less regressed to the common 3.
than the joint modal estimates. In particular, the marginal modal estimates
colncide with the warginal mean estimates when the marginal distributions

are unimodal and symmetric. In the present context, the marginal distributicn
of Yj given g 1s unimodal and nearly symmetric. More discussions on the

shape of these distributions will be given in section 5. To elaborate the

above results, let us rewrite equations (2.4) and (3.2) as:

;h (leg) = :-{;j = g» + D*(gj - g») »

and
by = . + - .
Tj g D(Sj g+)

Then it is obvious that if for a particular group j its observed gi is greate

than g., we have §j > ?j, conversely for gj < g owe rind ;i . ii .l terms

of proportions, we obtain
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i3
ij if gj > g.

%, if g, < g. .
" g <2, (3.3)

where ﬁj and ;j are egtimates of the proportion ﬂj based on $j and §j'

respectively.

section 6.

Numerical 1llustrations of the relaticn (3.3) are given in

The reader is again reminded that the problem of estimation is clesely

linked with the concept of loss function.

different loss functions.
joint modal estimates and
defined loss function and

groups or decisions to be

Different estimators are chosen for

The substantial discrepancies found between the

the marginal mean estimates of y, suggest that the

]

the kind of decision {an overall décision for all

made on individual groups separately) are important

in the present estimation problem. If one is primarily interested in making

an overall decision for all groups {persons, in many applications to the
educational assessment practices) and zero-one loss is chosen, he would take
the joint modal estimates. On the other hand, if individual decisions
are the main concern and squared-error loss 18 considered appropriate, he
would choose to use the marginal mean estimates. For individual decisions
with zero-one loss the marginal modes would be the ideal estimators. However,
in the present context, these marginal modes would likely be clese to the
marginal means.

One final comment on the effect of sample size n . The reliability
R = ¢r(¢r + v)”l increases as N becomes larger, since v = (4n + 2)“'1 decreases.

Hence, both p and p* (being estimators of R) are also expected to increase

with n . In the limit (n + ®), both will approach unity. That is, our

estimates will be based completely on the observed values gj . For this
same reason, the estimate ij and Qj {or, ;j and nj) will differ less for
larger n . On the other hand, as m increases, more collateral lnformatiou
is available. One would then be likely to shift more weight to the common

value In obtaining estimates for Yj . Detailed numerical examples are

l £y -
I:IK‘[C provided in section 6. 2u1
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4, Some Limiting Distributions for Gamma

In the Bayesian estimation of m-group proportions, it is said that the
remaining m - 1 groups In effect provide some sort of “prior information"
(strictly speaking, collateral information since it is not obtained prior
to analysis) for estimating the proportions in an individual group. In view
of this statement one may hope to find an approximate expression for b(yjlg)

by first working with the postevior p.d.f. b(yj|!*, g) of vy, given g, assuming

3

"= (Yl. Yor toes Yj -1, Yj + 1 0 ym) is known. This posterior

the vector y*

distribution can be obtained from equation (1.2) by making the substitutions:

- -1 _ ok
Yy oY (Yj ¥7)
and
2 * 2 -1 2
By, = vd7 = Ly -y )T+ = — (y; - YO°
i 1#3 J
where

* -1
1#3

Thus, we arrlve at

z (Yi - yf)z 41 vy, - Yf)2]"%(v +m-1)

b(v,|Y: g) = [A +
i 1#] nod

. {exp[-!svj-l(vj - 81)2]} 4.1)

since

bevyly*, @) = biyle)

The second factor of the r.h.g. of (4.1) 1s the likelihood of vy, given

3

gj and the first factor can be regarded as the contribution from Lhe prior

*
provided by y (in addition to X and v, of course).

252
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Therefore, the posterior distribution of Yj glven g is explicitly available

if I* is indeed known. In reality, it is unlikely to know I* beforehand.

At first thought, one may be tempted to substitute the joint modal estimates
?1 (which are relatively easy to obtain as given in Novick, Lewls, and Jackson,
1973) for Yy (1 #3) in (4.1) to find an approximation for b(Yj|§). This
expedient step 1s appealing because only the mean 7? and sum of squared

deviations I (Yi - Yf)z enter to the density function (4.1). This approach
1#]
was tried but found to be insufficlently precise,

Returning to equation (4.1), it 1s noted that the first term of its

*

r.h.s, 1s the kernel of a nonstandardized t-distribution with d.f. v" =z v + m - 2

* - *

and parameters § = Y., k = m{m - 1) l[x + I (y, - Y,)z
4y 1

and Jackson, 1974.) When m » ®, this t-distribution approaches & normal

]. (See Novick

distribution with mean Yf and variance ¢* = {2+ Ty - Yf)z}/(u o4,
Consequently, b(lexf gy m > w), being proportion:fjto the product of a
normal likelihood and a normal prior density, is itself a normal densicy.
We conclude from this standard Bayeslan result that the limiting (m -+ »)
posterior distribution of Yj given g, fo¥ known I*, is a normal distribution
with mean 8 (lel'*’ gy mH ) = (¢'*gj + vjvf)/(tb* + vj) and variance
Var(vjlx*, gy > @) = vj¢*/(¢* + vj). Unfortunately, thig limiting
distribution is not very useful in practice since I* is not typicallly
known. )

A second related limiting distribution which might be of interest is
that of Yj given g when both m and n tend to infinity. PFor equal sample size n,
integrating the Joint p.d.f. b(I’ s Mps ¢P) [equation (1.1)] w.r.t. each LA

(1 ¥ J) and then w.x.t. Mps we obtain the jolnt posterior p.d.f. of Yj and

¢P given g:
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blrys ¢plg) = expl-tev™ (v, - 80°) £/ ¥) £ £468p (4.2)

where

£ G 1y = Gp + D7 ey Bt (o + By - gD
_m-2
(40 Gp+v) 2 el T (g - DY),
1]
and
=k{v + 2)

-1
53(¢r) = b(¢p) = ¢p exp(-srd ) .

* -
(Note: g. = (m ~ 1) 1 g, and b(¢) is the prior p.d.f. of $.).
i# | ' r

As n > «, the contribution of v{+ 0) and m_lv(+ 0) to f, and £,

in (4.2), relative to that of ¢F will become negligible, It follows that

fl(¢r, Yj)f2(¢r)f3(¢r) may be approximated by

4V +n+ 1)
¢p

expl-tgb T+ 5 (g - gD+ BT ¢ - gt

1% mod
so that

To E10ps ¥ £5000) £3(4p) doy

R R Y - & I

i# "o

as n -+ ® , Thus, b(yjlg) = f: b(y., ¢r|g)d¢r is approximately proportional

|
to

oyl _ 2 o 2 . m-1 Loyt m- 1)
exp(-*v vy - &) ] U+iij(gi g + 0= (*rj g.)°) ,

4.3

when n + @ |
If we further let m »+ =, the second factor of the expression (4.3),

being the kernel of an unstandardized t density, approaches a normal density

ERIC 29
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with mean g? and variance ¢ = {A + & (gi - g?)z}/(v +m-4). The
expression {(4.3) 1s parallel to theit?h.s. of {4.1) with Yi(i # j) and

Y? replaced by 84 (1 # 3) and g? « 0n the same ground discussed in
connection with b(ij]*, g, M+ w), it 1s then obvious that, when m, N <+ ®,

the posterior marginal distribution of vy, given g is normal with

]
mean éi(vjlg, m, n+ ®) = ($gj + vgf)($ + v)—l and varlance
Var(leg. m, o0+ =) = du(} + v)"l . This simple form of the limiting
distribution for b(leg) suggests exploring the possibility of a
normal approximation to the exact posterior marginal distribution of
Y (see section 5).

In passing, we note that another attempt to approximate b(leﬁ) by substi-

*
tuting the kernel of inverse chi-square densities f1(¢r) and f;(¢r) of ¢r,

having modes same as the modes of ¢r in fl and fz, for f1(¢r, Y.) and f2(¢P)

3

in (4.2) was also made. In this case,
* ~b -1l m -1 ©w2 _ vy
£,(ép) = &5 exp{—& op [ m (g -8 - ;]K.

m - 2

o) =y 2 exploy ¢r—1[i§j(gi -89 - - v .

and

Thus, we have

w * *
57 LER o) MES (0 HE, ()] dg,

_ytm-1
O N A LR R N R O L) 2
1] {4.4)
The result of replacing EI and f; for fl and f2 in b(yjlg) 15 then
by, |g) « exp (v ley, - g%
3= | |
k(v +a - 1)
04D gy - g - av 425l oy - Y
1 ‘ (4.5)
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Examining (4.5), we find that b*(y |§) is of the same form of b(leg*, g)
in (4.1) except an extra term 2'and that I (Yi Yf)z is replaced by the
quantity £ (g - g.) - (m - 2)v . Agaiifjas W, N> o, b*(yj|g) approaches
a normal 3§isity.

The approximation of b(yjlg) by b*(¥j|§) is in effect a special case
of those by b(y |Y*’ g). This is s0 because if we adopt Jackson's (1972)
proposed estimates of E(gi - g ) - {m - 1)v for E(Y - Y. ) and g. for ¥v.
(in the present context, iiJ(Yi - Y*) is estimat:d by :i.:';’ij(g:I - gf) - (m- 2)v
and y. by &%) and ignore the term v/m (which should be negligible even for
moderate m and n), we can treat b (yj|§) as derived from b(yjly y 8).
Though seemingly appealing, this effort to obtain an approximation for
b(vjlg) also fails. However, it is a comfort to learn that a normal

approximation to b(yjlg) has been found satisfactory. This approximation

is discussed in the next section.
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5. A Normal Approximation to the Posterior Marginal Distribution of Gamma

Searching for an approximation to the posterlor marginal distribution
of Yj' we carefully studied the shape of its exaet form. The index of
skewness shows that 1t 18 only slightly skewed and that the skewness can

therefore be ignored. In general, the marginal distribution of vy, given

3
g is positively skewed 1f the observed gj 1s greater than g., and negatively
skewed 1f gj < g. . The exact ordinates b(yjlg) of 1ts density curve at
those polnts within the range of * 2 standard deviations (g,) from its mean

]

(uj) in steps of .5 0, were evaluated by numerical integrations. The

]

results Invariably indicate a pattern of unimodality. The density is

higher in the central reglon around the mean and decreases as Y, moves

]

away from This suggests a good possibility of approximating this

j°
density curve by a normal curve except perhaps in the talls. A4lso, we recall
that indeed 1t has a normal density as 1ts limiting form. We, therefore,
compared these exact ordinates b(vj|§) with the corresponding ordinates of
a normal curve whose mean and standard deviation coincide with uj and oj of
the exact distribution for Yj glven g . These comparisons did bear out our
conjecture that the normal approximation is a promising approach.

As an example, a data set which was the result of a test of 12
items administered to 35 children was used. There were 3, &4, 5, 12, and
11 persons with 8, 9, 10, 11, and 12 correct answers, respectively.
Columns 2 and 3 of Table 1 contain the ordinates b(leg) of the exact
distribution of leg for the persons j having 10 correct answers, and

those of the corresponding normal curve. The polnts Y. =Y + coj, where ¢

j
takes the values from -2.5 to +2.5 In steps of .5, were included. We
remark that in making decisions, the relevant information is often

based on the cumulative probabllity rather than the density itself.
Q EZ:J,7
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For this reason, columns 4 and 5 present the exact cumulative probabilities
Prob('rj E_Yclg) and the corresponding normal approximations. LIt is seen
that the discrepancies between the exact and approximate figures are less
than .01, 1In most practical applications, this accuracy should prove to
be entirely satisfactory.

The currently available program MARPRO provides the exact probability
Prob(nj > 110|§) = Prob(\fj 3_70|§) as well as its_normal approximation.
This normal approximation has been found to pe very adequate. The differences
are, in fact, less than .005 in nearly all cases. More numerical illustrations
are given in the next section.

Frequently, one is interested in finding the 100¢ percentage points
for gamma. They are difficult to evaluate directly from the exact
distribution of leg . However, one could find the approximate 100«

percentage point Yo for Yj using the unit normal curve, since the normal

3

approximation is usually expected to be sufficiently accurate. For this

. 2
purpose, wWe now derive an expression for Uj [% Var(Yj[gi] in temms of

* op
g“br‘ b+ v E
¢F
g~ = Var ( W ]g) . (5.1}

First, we find

Var [t (vslep, 8]
bp
$.g, + vg.

= oy
Var ( Y /
¢I‘ r

¢P .
¢r + v (Sj = g’)]

= Var [g. +
¢r
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¢
= (g - g.)% [var ( 3 — o)}
op r

= (g, - g0 o*?% . (5.2)

Applying equations (2.5), (2.6), and (5.1), we then have

- * 2 %2
a§=1’ar(yj|§)=vl:(m 1319 +1}4431--3.) a*c . (5.3)

The advantage of using the formula (5.3) is that in order to find the approxi-

mate 100a percentage polnts of Yj for all groups, we nead only to compute

p* and 0*2 »  Given b(¢p|§) in equation (2.2), p* and 0*2 are easy to compute
by numerical integrations, for known m, n, A, v, and E(gi - g.)z.
i
*
Now, 1f one has p and 0*2 available, the 100a percentage point y for

oj
leg can be obtained with the help of a standard normal table. Thus, let

prob(z i_za) =qa,
where z 1s a standard normal varilate, one finds

1+ (m - 1)p" 2 47"
Yaj“zal: (:S::+2;::+(33"3') 0*] +p*(gj-s.)+g.

such that

prob(Yj i_Yajlg) * q .

The sine~squared transformation of Y“? can then be taken as the approximate 100«
= sin? -
percentage point for ﬂj, viz., ﬂaj = sin Yaj for which prob(nj i_wajlg) =,
*
Similarly, knowing p~ and 0*2. one could evaluate the approximate probability

of Yj XY, given g from the normal table:
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Prob(yj f-Yolg) « Prob(z <z)

where

Y, - 0" (8, - 8.) - 8

Z
o 13k %
[1<Zn‘$ T * gy - g.)20*2J

Before leaving this discussion, we note that one can write

=W - p (5'4)

$ 2
2 ’ T
Wt é"r[(ﬁ ) I % ’ (3.5)

In tabulating constants for the normal approximation, it turns out (Wang, 1973)

where

2 *2 2 2
to be more convenient to tabulate p* and o than p* and a* as a function

of the prior and sample estimates of ¢r (Av and Z(gi - g.)zfm, respectively)
i

*
given fixed values for m and n . This 1s so because ¢ 2

*2
the arguments but ® = {g monotone.

is not monotone in
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In addition to performing all the computations outlined in sections Z
and 5, the Fortran program MARPRO also provides the joint modal estimates ?1
of the proportions m, based on

3

» respectively, are both avallable from

for the gammas. The estimates %j and ;j
?j and the marginal mean estimates §j
MARPRO for comparisons. Hence, the program MARPRO is recommended for analyzing
m-group binomial data with equal n . This program uses the Freeman-~Tukey (1950)

transformations for binomial data; i.e.,

g = li(sin-l ,n I 7 + sin-l v’ﬁ_t_l ), (6.1)

where X is the observed number of successes. In accord with this transformation

(6.1), the proportions %, can be estimated by:

h|
- 1 2- 1
“j = (1 + 30 ) sin Tj el (6.2)

(See Novick, Lewis, and Jackson, 1973). Note that gj 1s also obtained
from §j by equation (6.2).

With the help of this program, we yere able to reanalyze the data
presented in Table VI of Novick, Lewls, and Jackson (1973). These data
were collected for the estimation of item difficulties for six social studies
items, For a comparable analysils, we chose to set v * 8 and t = 6 (which
is equivalent to let X = Zz%—i—%y * .214 1in the current program). In Table 2,

estimates of these item difficulties “j based on ?j and ? were presented.

h|
For the joint modal estimates, both the present results (labeled FT) and
those of the previous analysis (labeled B, following the cited source) were
given, Notice that for some groups slight discrepancies between these two
values were found due to ii.ferent transformations employed [in Novick,

Lewis, and Jackson, Anscombe's (1948) transformations were taken]. Both

p(= .8B856) and p*(= .8906) are quite big because of the fairly large sample
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sizes (n = 57) for these data. Accordingly, no substantial regressions of
individual wj estimates towards a common value (u. corresponding to y.) were

expected. Similarly, for this large n, the marginal mean estimates do not

differ significantly from the jolnt modal estimates.

In the present analysls, the probabllity that the item difficulty w, is

3
greater than some specified value n, was computed from the marginal distribution
of Yj . The exact (posterior) probabllities and their normal approximations
(given in parenthesis), for L .95(-.05).50, are presented in Table 3.

The normal approximations were excellent 1n this case. Thus, having the
marginal distributions avallable, we can now make explicit probabllity
statements about the ltem difficuities of these six items. For example, one
finds the probability that the item difficulty of item 1 1s greater than .85

1s .9616. These statements should prove to be useful in Selecting items for

a test. Tt 1s Interesting to note that the posterlor distribution for item

one assigns a probability of only .18 to the event LI +95, even though the
observed proportion was .9474. On the other hand, the probability that

" < ,90 is ,28. Thus, we see that the posterior distribution of %, is highly

1

asymmetric, (note that posterior marginal mean estimate of 7, 1s .925 in

1
contrast to the posterior distribution of Y which is quite symmetric.

For reference, the descriptive statistics (mean, standard deviation, and
index of skewness) for the marginal distributions of gamma are also
provided in the same table. We noted earlier that a uniform distribution
on g had been assumed in the derivation when in fact Hp 15 restricted to
the range zero to w/v . To demonstrate that this does not materially
affect the analysis we numerically computed, the aposteriorl probability
that Mp lie in the range O to 27 for each of the data sets presented here.
In each instance that probability was unity with an accuracy of 10_5.

The point, of course, is that provided m is moderate the prior distribution

on ur will have little effect on the results of the analysis.
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To illustrate the differences between the marginal mean and the joint
modal estimates when the sawple gsize n 1s smaller, our second example involves
some artificial data sets. Binomial data of m groups were randomly generated

from a normal distribution of gamma with mean p_ = sin-l /u“ and variance ¢r .

)
First, m values of gj were generated by randomly sampling Y, from the

3
specifiea normal distribution. These gj were mapped into pj by sine-squared
transformations (pj = sinzgj). Then the neurest integers of npj were taken
as the observed number of successes xj to be analyzed by MARPRO. All the
analyses reported hereafter adopt v = 8 and A = .25 (which 1s equivalent to
a value of t = 5) for the prior inverse chi-square density of ¢r .

We have thus generated nine sets (for m = 10(5)50 and n = 8) of data.
The values My = 1.1731, which matches an average of the proportions My = .85,
and ¢r = ,029 which happens to be (4n + 2)“1 for n = 8, were used. Fach data
set was processed by MARPRO. The results demonstrate consistent patterns
for all data sets and with only minor differences for the different values
of m . We, therefore, chose to report only the results for m = 10, 20,

30, 40, and 50,

In Table 4, the estimates %j' baced on the marginal mean estimates ;j
and ﬁj' (given in parenthesis) based on the joint modal estimates §j were
presented. Since there were many groups having the same observed number
of guccesses x_, and thus, sharing the same estimates of %

3 i’

these estimates T, and %, for different values of x instead of for

3 3

each group. The analyses of these generated data invariably result in

we present

*
significantly bigger values for p than p, so that the general conclusion
(3.3) follows. It is also seen that there are substantial differences

- ®
between 9, and

] i
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As the number of groups (m) increases (for fixed n), both p and p* decrease.

This weans that the estimates of Yj wre more regressed when more groups are

used. However, one gshould bear in mind that sampling fluctuations in these
generated data result in smpll variances in chis trend. It was also found

that the decreasing rate of p* as m increases 1s not as high as that of ¢ .

This confirms the expectation that the jolnt modal estimates are subject to

more influences from other groups. Ou the other hand, the marginal wmean
estimates, associated with a squared-error loss for each group Separately,

place more emphasis on the individual observations. Thus, they are less

affected by the inclusion of more groups.

For the marginal probabilities Prob('n'j > Iolg), we arbitrarily selected
those for groups with the number of successes Xy = 5 and 7 to ba reported in
Tables 3 and 6, The values of LA from .70 to .95 by steps of .05 were
included in the tables. The normal approximations are agailn sufficiently
precise. The trend of increases in the prooaclilities as m increases 1s
consistent with the results in Table 4. Since the marginal distributions
are relatively stable w.r.t. the 8ize of m, we suggest that the observed
differences are largely due to sampling fluctuations in our generated data.
In passing, we note that other data sets gencrated in the same way
described earlier for n = 6 and various sizes of m have also been analyzed.
The results reveal the same patterns found in the above example.

Our last example used the result of a 12-item test administered to
35 children. The outcome was that 1l persons scored perfectly, 12 persons
missed only one icem, and 3, 4, and 5 persons gave correct answers to 8, 9,
and 10 items, respectively. The estimates ﬁj and ﬁj and the posterior
rarginal probabilities prob(.’rj > wolg) were presented in Table 7. Again,

. - 3
conziderable dffferences Letween T and 1 were recorded. The posterior

j )
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probabilities enable us to reach a more specific judgment on the individual's
performance. For example, a person j having 8 correct answers (Pj = .6667)
in the test 1s considered to have an ability greater than .55 with high

certainty [prob(m, > .55|§) e ,9912].

3
The analysis in Table 7 demonstrates the force of the Bayesian m-group
method. Consider a class performance as indicated in the data for Table 7
and a situation in which 2 mastery level of LA +85 seemed appropriate.
We note that a person answering 10 items correctly has a Py “score" of
.832, and hence, has failed the L criterion valde of .85. As a result,
we would not pass the person. The Bayesian analysis, however, yields a
different picture. First, the point estimates of his  are .8829 and .8657
relative to joint zero-one loss and either joint or component squared-error
loss, respectively. Thus, on an informal basis, we would probably decide
to pass the person. Secondly, the probability that his score 1s at least
.85 1s .5082., Therefore, with roughly equal losses associated with false
positives and false negatives it would essentially be a toss-up as to whether
he was passed or not.
In passing, we also note that for a person j with 11 correct answers,

the joint estimate %j is identical to the marginal estimate %, (= .9036).

3
This 1s so because, for this person, his observed g score (gj = 1.2288) 1is
equal to the average g score over 2ll persons (g. = 1.2287), 1t is also
clear that, from equation (2.9), the posterior marginal distribution of the

corresponding vy, 1s symmetric {L1.e., the coefficient of skewness Gj = (),

Finally, posterior conditional means and standard deviations of ¥

3
given the marginal mode $P of ¢P|g were computed for the data of the gix

gocial studies items and some of the randomly generated data sets (see Table

8). These conditional mean estimates f Y, were compared with their marginal

L
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mean estimates to provide some idea about how large the values of m and n

would warrant the use of conditional estimates [which are of much simpler

form as indicated by equation (2.1)] as approximations to the posterior

- -

estimates of Yj » It appears that for m = 50 and n = 30, the conditional

mean estimates di(yjl$r, g) and standard deviations a(vj|$r|g) are rea
close to theilr marginal statistics é?(vjlg) and'c(yjlg). Wote that
referring to equation (2.2), the marginal mode $P of ¢r given g can be

=

obtained by solving the following cubic equation for ¢

r

m+v+1) 3,3+{(m+2v+3)v—}:(gi—g.)2—l] 312.
‘ i

+ [(v + 2)v2 - 2av] ir - sz = { .

sonably

(6.3)
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7. Summary and Conclusions

The knowledge of the posterior marginal distributions of‘

gammas should ald in making our decision when 1t is concerned about

individual persons. There 18 little doubt that the normal approximations
to these marginal distributions are very successful, judging from
comparisons with the exact probabilities obtained by integrations. Thus,
we recali from section 5 that once p* = é%¢r ( 3;—£—; §) and 0*2 =

Var ( ET_E_; §) are computed by Integrations, the interesting descriptive
r

4
r
statistics (mean, standard deviation) for Yj given 8 are readily avallable.
*
Moreover, given p and 0*2, the relevant probabllities for making

individual decisions and the percentage points for Yj {or ﬂj) given g can be

satisfactorily approximated using a standard normal table.
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Table 1: An Example of the Posterior Densities and Cumulative
Probabilities for Yj given g
c Posterlior Density Cumulative Probability

Exact | Normal Approximation Exact Normal Approximation
~-2,5 .1834 .1736 .0071 .0062
~2.0 .5346 .5346 .0239 .0228
-1.5 |1,2577 1,2825 L0674 .0668
-1.0 |2.3558 2,3961 .1575 .1587
- .5 13.4708 3.4863 .3058 3085
0.0 |3.9806 3.9505 L4976 5000
.5 13.5292 3.4863 .6911 .6915
1.0 |2.4118 2.3961 .8426 .8413
1.5 11,2726 1,2825 .9345 .9332
2.0 .5215 .5346 L9779 ,9772
2.5 .1676 .1736 .9939 .9938

*
0 =

3

The prior distribution of ¢, In this analysis 1s an inverse chi-
P T ¥

12 observations in each.

corresponding to
35 persons 1s g.
is p = ,2757 and
.4920, The
given g are: uj

§, = coefficient

1
= E,(leg) = 1,1746, o

of skewmess = -.0035,

3

[square with d.£f, v = 8 and parameter A = .25,

There are 35 persoms,

The number of persons having 8, 9, 10, 11,
and 12 successes are, respectively, 3, 4, 5, 12, and 11, The value gj
10 successes 1s gj = 1,1187 and the mean of gj over
= 1,2287. The weight for the modal estimates of ¥
the welght for the marginal mean estimates is

descriptive statistics of the distribution for Yj

= [var(yj[g)]15 = ,1010 and

263
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Table 2: An Analysis of Item Difficulties for Six Social Studies Items

Joint Est.(ﬁj) Marginal Est,

Item -
%
Number n P FT B j

1 57 947 924 .922 .925

2 57 .386 423 423 421

3 57 .526 .546 .546 .546

4 57 .842 .825 .823 .825

5 57 772 . 762 .761 .762

6 57 .614 .623 622 " .623

Prior distribution of 4>I.: v=8, t =6 (equivalently, A = .214);
*
p = .8856 and p = .8906.
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Table 3;: Posterior Probabilities prob(nj > no|3) for the

S8ix Social Studies Items

Items prob(‘n’j > nolg)
T
° 1 2 3 4 5 6
| ——
98 .1802 e o .0005 0, .——
* (.1803) {.0005) (0.)
90 .7193 e . 0372 .0013 e
' (.7200) (.0369) (.0012)
' (.9611) - - (.2789) (.0346) (0.)

80 .9975 o 0. 6757 .2205 .0008
' (.9974) (0.) (.6762) (.2207) (.0008)
75 .9999 e .0003 9203 .5722 .0135
' (.9999) (.0003) (.9201) (.5725) (.0136)
70 1.0 0. .0054 .9893 .8585 .0937
' (1.0) (0.) (.0056) (.9890) (.8584) (.0939)
65 — .0001 L0448 .9992 .9728 .3198
' (.0002) (.0452) (.9991) (.9727) (.3196)
60 L .0024 .1903 1.0 .9970 ,6379
' J - (.0026) (.1902) [(1.0) (.9970) (.6375)
s r L .0220 4700 L .9998 .8760
. (.0225) (.4692) (.2998) {(.8760)
50 N .1101 . 7629 I .9999 L9743
' (.1104) {.7626) (.9999) (.9745)
ﬁj .9250 4211 .5455 .8254 .7622 .6227
pj 9474 . 3860 .5263 .8421 .7719 .6140
gj 1.3232 6724 .8112 1.1543 1.0674 .B984
E(Yj ) || 1.2865 .7069 .8306 |1.1360  |1.0587 .9083
o(Yj|§) L0643 L0641 .0633 .0632 .0629 .0630
Gj .0011 -.0010 -,0007 .0007 .0004 -,0004
The exact probabllitles were cbtained by numerical integrations. Thelr

corresponding normal approximations were given in parentheses. Those
probabilities less than .0001 and greater than .9999 were regavded as 0
and 1, respectively, pj is the observed sampled proportion and GJ is the
Index of skewness of the conditional distribution of leg . For this
set of data, g. = .9878 and 7(g, = g.)% = .2852.

i
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Table 4: Analyses of Data Sets Randomly Cenerated KK
estimates of “j
mn
x 10 20 a0 40 50
g
3 —— .632 ——— —— 672
4 -— . 685 —_— .718 .J15
(pj = ,500) ——— (.743) -——— (.788) {.791)
5 .720 .735 .735 .759 . 756
(pj = ,625) {.740) (.772) (.772) (.802) (.803)
6 772 . 786 .781 .800 .798
(pj = ,750) (.779) {.802) ' (.794) (.819) (.820)
7 .828 .841 .829 .844 .843
(pj = ,875) (.821) (.835) (.819) (.839) (.837)
8 .913 .923 . 905 - .913 .913
(pj = 1,000) (.889) (.888) {.861) (.871) {.865)
o* L4620 . 4603 . 4068 .3789 .3853
D (.3518) (.2792) {.2079) {(.1679) (.1446)
T g 1 1.0853 1.1146 1.0950 1.1260 1.1238
E(gi - g.)2 .1723 . 7388 .8257 1.0257 1.5945
1
These data were randomly generated from a normal distribution for vy with
mean pp = 1.1731 (v = .85} and ¢P = .029. fThe number of observations in
each group 18 n = 8. The present analyses adopt v = 8, t = §
(equivalently X = .25) for the prior inverse chi«square density of ¢r .
Marginal estimates ﬁj and joint estimateé'ﬁj (given in parentheses)
are presented here. Blank entries indicate there are no values
of the corresponding xj being sampled. pj = xj/n is the observed
sample proportion of group § . Note that p;O (.3853) for m = 50 is
larger than p:o (.3789) for m = 40 due to sampling fluctuations. The
generated data for m = 50 has a bigger mean squared deviatiomns of
g [3(8i - g.)zfm] than that of thezg rg for m = 40 (,03189 as compared
0 | eo Fozs64) 71
ERIC -

_ o
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Table 5: Posterior Marginal Distributions of Yj for Groups with
5 Successes in 8 Trials for the Five Generated Data Sets
prob(nj > no|§)
m

“o 10 20 30 40 50
95 0024 .0028 0016 0022 .0021
{.0027) {.0032) {.0017) {.0025) {.0024)
90 .0207 L0248 .0179 0254 0244
(.02@2) {.0268) {.0192) {.0273) {.0261)
85 .0783 .0933 .0783 .1077 .1037
{.0809) {.0961) (.0809) {.1102) {.1062)
80 1912 «2233 .2063 . 2683 . 2604
{.1923) {.2236) {.2072) {.2677) {.2600)
75 .3514 .3991 . 3906 4773 4667
{.3590) {.3952) {.3876) {.4725) {.4623)
20 .5299 .5839 .5886 6773 6672
{.5248) {.5778) {.5832) {.6720) (.6621)

7, .720 .735 .735 .759 756
éi(yj|g) .9989 1.0149 1.0149 1.0397 1.0369
alyy |g) 1245 1213 1130 .1089 .1093
Gj -. 0091 -.0099 -, 0080 ~.0083 -.0079

parentheses) are presented.

or these groups, pj = ,625 and gj = .8982. The exact probabilities

prob(nj > nolg) and the corresponding normal approximations {(in
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Table 6: Posterior Marginal Distributions of Yj for Groups

with 7 Successes 1in the Five Generated Data Sets

prob(“j > “015)

m
" 10 20 30 40 50
[ ¢]

95 .0335 0390 0230 0273 0271
(.0325) (,0384) (.0220) {.0267) (.0265)
90 1421 1652 .1228 1477 1463
(.1435) (.1671) (.1241) (.1494) (.1479)

a5 .3238 .3678 .3137 3673 .3638
(.3268) (.3701) (.3163) (.3693) (.3658)

80 0327 . 2866 0432 6102 6056
(.5342) (.5867) (.5441) (.6096) (.6051)

75 7171 7658 7421 8000 . 7959
(.7163) (.7641) (.7407) (.7981) (.7941)

20 8493 8841 .8758 9135 9109
(.8476) (.8825) (.8740) (,9123) (.9097)

ﬁj .828 .841 .829 844 843
8(73 ) 1,1177 1.1334 1.1196 1.1371 1.1360
o(yjlg) 1234 .1198 1121 1077 ,1082
6j 0034 0019 0025 0011 0011

" For these groups, Py = .875 and gy = 1.1554.
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Table 7: Analyses of a pata Set Obtained from a 12-item Test Given
to 35 Children
xj =8 xj =9 xj = 10 xj =11 xj =12
py = -6667 |p, = P, = .8333 |p, = .9167 |ps = 1.0000
gy = 9423 gy = 1.0262 gy = 1.1187 g = 1.2288 g, = 1.4303
LN prob(nj 3_50!§)
.95 .0052(.0062)| .0156(.0168) | .0444(.0455) |.1224(.1234) 4275(.4321)
.90 .0557(,0585)] .1174(.1192) | .2298(.2304) |.4193(.4199) |.7808(.7807)
.85 .2035(.2035)] .3348(.3327) | .5082(.5058) |.7110¢.7097) |.9379(.2259)
.80 .4304(.4253)|.5898(.5853) | .7502(.7478) |.8873(.8864) |.9861{.9850)
.75 .6588(.6534)1.7917(.7894) i .8966(.8964) |.9642(.9643) |.9974(.9971)
.70 .8276(.8262)|.9115(,9123) | .9642(.9653) |.9905(.990¢) - ( ~--)
.65 .9258(.9276)| .9680(.9699) | .9895(.9905) — ( == -=-C ==
.60 .9725(.9750)}.9901(.9915) | .9973(.9979) - ( == - ( =)
.55 .9912(.9929)| -- ( - == —( =)| ==(C =-=)
Estimates of Proportions and Descriptive Staéistics
ij (.8468) (.8644) (.8829) (..036) (.9376)
%j .7961 .8657 L9036 2606
Syl 1.0878 1. 1.1746 1.2287 ° 1.3279
a(leg) .1029 .1010 .1007 .1018
Gj -.0089 -.0064 -.0035 0000 0053

bpt

For these data, g. = 1.2287, E(gi - g.)2 =
i

.9175.

cumilative probabilities greater than .999 were cmitted in the table.

Prior distribution of

*
v=8, t =5 (equivalently, X = .25). p = ,2757 and p = .4920. The

figures in parentheses are normal approximatiocns to prob(ﬂj 3_3015). Those

ke

=
n

ke

=
L]

e L L

10 prob(.9766 < ¥
11 prob(1.0313 < ¥

12 prob(1.1284 <

8 prob(.8861 < Yj < 1,2895)

9 prob(.9296 < Tj < 1.3286)

3
k
\l(j

< 1.3726)

< 1.4261)

< 1.5274)

2974

.95 or prob(.5000 < “j
.95 or prob{.6422 < =%
.95 or prob{.6866 < 7
.95 or prob(.7361 < "j

.95 or prob(.8167 < “j

< .9229)

3 < .9425)

3 < .9612)

< .9792)

< .9981)

(4

(4

14
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Table 8: Conditional Distributions of Yj Given the

Marginal Mode $P of ¢r|g

I. The 8ix Social Studies iItems {(m = 6, n = 57)

$r = ,03004

P, 9474 | .3860 | .5263 | .s8421 | .7719 | .6140
ij ) .9250 <4211 .5455 .9254 . 7622 .6227
7|9y €.9219) | Caz6sy | .5u86) | (6233 | (.7610) | C.6242)
éi(leg) 1.2865 | .7069 | .8306 | 1.1360 | 1.0857 | .9083
Esler ) |1 2s08) | (7122) | C.8336) | 1.1332) [(1.0570) | (.9097)
°(*j|5) 0643 0641 .0633 0632 .0629 .0630
°(*j|$r' 8% i (.0824) | (.0624) | (.0624) | (.0624) | (.0624) | (.0624)
II. Randomly Generated Data (m = 50, n = 8)
bp = 01652
p. .3750 | .s5000 | .s250 | .7500 | .8750 | 1.000
§j 6717 7147 .7561 7977 .8427 .9129
AL (.6833) | (.7231) | (.7614) | (.8002) | (.8421) | (.9081)
Eayly 9499 | .9934 | 1.0369 | 1.0829 | 1.1360 | 1.2306
Earylde, g | Co615) [(1.0021) | (1.0427) [ (1.0856) | (1.1352) | (1.2234)
a(v,l8) 1125 | L1106 | .1093 | .1084 | .1082 | .1098
otvy B, g% | C2047) | C2047) | (2047) | (.2047) | (2047 | (.2047)




III was generated specifically for this table.

III. Randomly Generated Data (m = 50, n = 30)
¢r = ,00924
p‘1 .6687 . 7667 .8000 .8333 .8667 .9000 .9333 . 9667
%j L7535 .8031 .8200 .8374 .8552 .8740 .8941 L9167
§j|$r (.7564) | (.8045) { (.8209) (.8377) | (.8550) | (.8733) | (.8928) | (.9150)
8 (v, ) 1.0464 | 1.1048 | 1.1259 | 1.1483 | 1.1723 | 1.1987 | 1.2289 | 1.2660
tf(yj]ir, §) (1.0498) | (1.2065) |(2.1270) { (1.2487) { (1.1720) ((2.2977) {(1.2270) | (1.2630)
G(Tj‘g) .0685 0677 .0675 L0675 L0674 L0675 .0678 .0683
G(YjI;P’ 5)* {.0665) (.0665) | (.0665) | (.0665) (.0665) | (.0665) (.0663) (.0665)
Data eets I and II were used In Tables 2 and 4, respectively. Data set

The sample statistics for

Data set III are g. = 1.1625 and Z(gi - a.)2 = 2927,

*The conditional standard deviations of *j given ¢r and g are ssme for all

groups.
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A Proper brior for Mp in Estimating Proportions of m Groups*
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Charles Lewis Ming-mei Wang
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The American College Testing Program

and
The University of Iowa

Before concluding our discussion of the estimation of proportions in
m groups, we shall briefly consider the effect of assuming a proper prior
distribution for ur, in place of the uniform distribution used up until
now. The form of the prior is specified, if we restrict ourselves to

natural conjugate densities, by
! ~1 2
bluplép) = ¢p° expld k dp Gup - BT, ¢y

where h is the prior mean for ¥, and k the Pprior sample size"™ associated
with our knowledge of p - Combining Equation (1) with b(T]pr, ¢r) and

b("br)! we obtain
b(s up o) = 47T D enptamtiaer, - wp? + Ky - P A0y
(2)

-

*¥TLis note is a Technical Supplement to ACT Technical Bulletin No. 13.

The material coatained here should be considered as inserted prior to the
concluding section of that Bulletin,.
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Now, with some rearranging of terms, we may write

-1 2 2
Ol O e L LRy

(k + m)Q;l(ur -

km
k+m

th - v.)%) .

F o+l -yt

Thus, 1if we integrate Equation (2) w.r.t. Bps we obtain

- +m+ -
by o) « 75 P D it + tir, - vl 4 22— - voPD)
Further Integration, this time w.r.t. ¢P’ yields
5 2 | ko 274 (v + m)
b(Y) « M+ Z(vy -y + = (h-v)7]
2 {v 4 @y - hD)'AGy - hD)TEV F R (3)

where } is the vector of order m all of whose elements are unity and Als

. k4+m=-1, vV ]

the m x m matrix with diagonal elements ——E—;—;r—-) i-and off~diagonal
elements E-ila ) %-. In other words, we have gshown that the unconditional
prior distribution for y is multivariate t, with v degrees or freedom,

wmean hl, and covariance matrix 3—§_E )é-l . In particular, this implies
that the marginal prior density of any Y is univarilate t, with v degrees

of freedom, mean h, and variance { k : 1 ) " i T provided k is greater

than zero. We note that if k * 0, the joint density b{y) in Equation (3)
'
becomes improper because the inverse of A = Im - :ir-does not exist.
Novick, Lewils, and Jackson {1973) discuss the possibility of interrogating

an investigator about his prior bellefs concerning . where i has been

arbitrarily selected. One of their suggestions is to approximate these

2381




beliefs with a beta density. 1f we interpret the parametery of thie density
so obtained as the numbers of “prior successes™ and "prior failures",

respectively, then the gum of the parameters gives the "prirr sample size”,
t, and the mean of the distribution is the "prior proportion of successes”,

M . From these two values, Novick, Lewls, and Jackson (1973) obtain approximate

expressions for the mean and variance of Yy = sin—l/ig, namely

\:.- (Ti) < sinhlvﬁ
and

1

Var(y) = g 41D -

If we now equate these values to the mean and variance for v, found above,

we have expressions for h and for A

ho= sin”TAT (4
and
- kv -2)
e Tkt D D (5)

Novick, Lewis, and Jackson (1973) have argued that v = 8 will, in many
cases, be a reasonable specification of the prior degrees of freedom for
, ¢r » 1f we accept this value, then our only remzining task is to specify k,
the "prior sample size" for Bp e It 1s tempting, and may in some cases be
reasonéble, to assume that our prior knowledge of Hp and of ¢r come from
gssentlally the san. sources and so could be associated with a siugle
hypothetical prior sample. This would allow us to equate k - 1 and v,
giving a value of kK = 9 1n the present circumstances. In many cases,

however, when we have selected our groups (or individuals) to be quite

similar, our knowledge concerning ¢r may be greater than our Rnowledge of

o]
oo
[ 2k




Bp - This would suggest taking k < v + 1. Working with an improper prior
for ¥p represents, in effect, the extreme situation where k = 0. If we
were to work with k = 5, for instance, Equation (3) would reduce to

5

Y s SU

which may often be a reasonable assignment.

Once values have been supplied for h, k, XA, and v, we can work
directly with the posterior distribution for y, which is proportional to
the product of the likelihood z(Ilg) and the prior demsity of ¥y, given

in Equation (3):

b(ylg) = expl-4v (g, - )71 + I+ 20y, - v2P + L, yo 2yl

(6)

If we take derivatives with respect to each Y, and set the results equal

i

to zero, we obtair the following equations for the joint posterior mode

of y:
~ $,8, + v, ii !
V.
7 =L;5L:j_r' 7)
r 3
where
i = kh + my.
r k +m !
and .
R A A T AL R R

These equations are closely related to Equation (3.1), Section 3, of the
main text; the solution obtained with an improper prior for Hp - Indeed,
if h = Y. or if k = 0, the two results are identical except for a difference

of unity in the denominator of $f . At a practical level, making use of our
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prior knowledge ahout Bp increases the effective number of groups in the
study; this will be particularly important in cases where m is relatively
small (say, between 5 and 15), On the other hand, for larger m or in cases
where the prior specification closely agrees wit'. the sample results, there

will be little to choose between proper and improper priors for Hp
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TABLES OF CONSTANTS FOR THE POSTERIOR MARGINAL
ESTIMATES OF PROPORTIONS IN m GROUPS
by
Ming-mei Wang

The American College Testing Program

1. Jeneral Descriptions

For estimation of proportions in m groups, Novick, Lewis, aud Jackson
(1973) have developed a Bayesian Model II solution which provides posterior
joint modal estimates qj of the transformed proportions Y, = sin-l/;. « Tha

values %j (j =1, «.., m), the sine-squared transformations of Y,.sultably

3

corrected by a factor depending on sample sizes n_., were then taken as the

j
Bayesian joint estimates of the group proportions ﬂj . These joint
ectimates are useful in making joint decisions for m groups.

To aid in making separate decisions on individual groups, the posterior
marginal distributions of Yj’ for the case of equal sample sizes n, have

been studied recently by Lewls, Wang, and Novick (1973). They

worked out the posterior marginal mean astinates uj = Ei(Yj]g) of \j to

be
* *
uy = o gy v (L -e)g (1)
* o -1
where p = éi ( -—-—-—-lg) and v = (4n + 2) . The posterio:r varisances
¢r ¢r + v %
0; of Yj were expressed as!

*
2 -1 w1 2 k
9 = Var(yj|g) = v[(m ;—p“] + (gj ~ g o 2 » (2)
¢ i
2
where o = Var¢r( E;T%}:; lg) -

£

The research reported hereln was performed pursuant te Graunt No,
0EG-0-72-0711 with the Office of Education, v.S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely thelr professional judgment in the conduct
of the project. Points of view or opinions stated do not, therefore,

Q necessarily represent official Office of Education position or policv,
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* *
Thus, 1f p and © 2 have been computed, one could easily obtain the

posterior means and varlances of ¥
%

3 from formulas (1) and (2).

% 2 .
To compute p and ¢ ~, one needs tO know the posterior distribution

of ¢p + This was given by Lewis, Wang, and Novick (1973) as

w=- 1

b(¢r|§) « (¢]" + V) 2 exp[“ls(¢r + V“-l 5(81 = g’)zl

“(3+D -1
O exp (-4 $p M) . (3

* *
The values of p and © 2 can then be obtained by numerical integrations:

* o "br
Rl

o¥ =
o -1
=7, $pGp + V)T bleplg)dey (4)
and
% =" -2, )
where
%2 _ o 2 -2
A Mt R B TCH FOT T (6)

* *
Equations (3) - (6) {naicate that P and © 2 would vary for different

m, n, v, A and S: = Z(gi - g.)z. Consequently, a complete set of tables

- Il L

of D*, 0*2 for all practical values of these five parameters would require

a formidable volume. Since previous experiences and theoretical findings

have suggested that v = 8 was a satisfactory choice in most applications

for the priox distribution of ¢P {see Novick, Lewis, and Jackson, }973), wve are,
therefore, content with providing a subset of the tables which set v = 3, The
values m = 10(5)30(10)80 and n = 8(2)30 are included in the tablcs

presented here. For aach palr of (m, n), p* and 0*2 were ecomnputed for
different values of A/v and s; = S:/m (prior and sample estimates of ¢.)+

Values of A/v, sz = ,01(.01).05 are included in the tables. For other
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values of m, n, A/v and s; within their ranges selected in these tables,
* *
corresponding ¢ and ¢ 2 can be approximated by interpolation.

*2
While ¢ ~ is not monotone in A/v and s:, the posterlor expectation

* -
0% of ¢§(¢r + v) 2 with respect to ¢, is monotone. We, therefore,

* * * *0
tabulate p and ® 2 instead of P and 0 . Given a prior estimate A/V and

* *2
a sample estimate 32 of ¢P’ for which p and w = are not explicictly tabulated,

* *
one can obtain p and @ 2 by iInterpolation using the iven tables. The value

of 0*2 thea can be found by subtracting p*2 from w*z (0*2 = w*z - p*z).

It may be noted that these tables include the size of m and n only
up to B0 and 30, respectively. For values of m > 80 and n > 30, the posterior
conditional distribution of Yj given $F fthe posterior modal estimates
of $p obtained from its posterlor density expressed by (3)) and g was found to
satisfactorily approximate the posterior marginal distribution of Yj
given g . This posterior conditional distribution of Yj given $r, g

was shown to be normal (see section 2, Lewis, Wang, and Novick, 1973) with

mean
_ ¢ g, + ve.
Ewiidy g =« T—— Q)
J N $P + v
and variance = _
. v(¢r +my)
Var(Yj |¢I|; g) = ~ - . (8)
o+ Vv

Thus, for large m and n, this conditional distribution provides an
approximate basis for making decisions on indivldual groups. Having
made p* and 0*2 avallable, the probabilities that a group proportion

", 1s greater than some crlterion 1 given observed g [prob('ﬂj = le)]
can be obtained applying the normal approximation to che posterior
distribution of Yj given g discussed in (Lewls, Wang, and Novick, 1973),

That 1is,
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prob(ﬂj 3_n0|§) = prob(yj g_yolg) = prob(z g_zo) (9)

where Yo = sin-lfﬁ; ,

. -t =
2, = by, - p (g - 8) - 3»1[1 t4§m+ 2;'319 + (e - 8.y’ 0*2] .

(10)
Similarly, approximate l00a percentage points ﬂaj of ﬂj can be computed
with the help of 2 standard normal table, For example,
= sin’ an
ﬂaj sin Yaj
where
1+ (m-1) * 2 3] %
= o= =)0 -
Yag = ¥y * Zq I: Gn+m + (85— 8.)0 -J , (12)

and z, is the 100a percentage point of 2 standard normal varilate,
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2. interpolations

In practical applications, one would not expect 82 of his data to be
exactly equal to the tabulated values (sz = ,01(.01).05). Likewise, an
investigator may have reason to choose his prior A/v other than values
included in these tables. In these cases, approximations of p* and m*z
can be obtained by interpolation using available tabular points. For
illustrative purposes, we have computed p* and m*z for az = ,0169, .0256,
.0361, and .0484 withm = 10, v = 8, A/v = ,01 and n = 8, 16 by numerical
integrations. These exact values of p* and m*z are then compared with
those (p;, m;z) obtained by simple linear interpolation. The table
presented below shows that the discrepancles between Interpolated and
exact values are negligible.

* *
Comparison Between Exact and Interpolated Values of p and w 2

(m =10, v =8, A/v = .Ul)

n=28 n =16
sz .0169 | 0256 | .0361 | .0484 | .0169 | .0236 | .0361 | .0484
b (exact) 12538 | 2654 | .2812 | .3029 | .3960 | .4285 | .4730 | 5300
b1 (1nterpolated) (.2540)[C. 2656)|(. 2815)](. 3031)](. 396 63[¢. 4290]¢. 47357 - 5301)
P*z(exact) .o718 | .0787 | 0886 | .1030 | .1674 | .1957 | .2373 | .2953
o2 (1nterpolated)[(.0720)}(. 0789){¢.0888)|(.1031))( . 1681)](. 1966)](.. 238D)( 2955)
X2 = w2 "2 | o072 | .0083 | .0095 | 0113 | 0106 | .0121] .0136 | .0144

Op =8y =Py (.0075)(.0084)(.0096)(.0112)(.01085(.0124)(.0139)(.0145)

*
It may be noted that in this example, the monotone functions of both ¢

*
and w 2 on sz are slightly postively accelerated. Consequently, the values
obtained fyrom linear interpolations consistently overestilmate, though

negtigibly, the exact values as demonstrated in tlie above table. Fowever,
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* *7 )
the characterintic of the monotone functions of p and w on sg varles

with the values of m, n, v and A’ ., For example, given m = 10, v = 8,
A/v = .05, and n = 16, the functions of D* and w*z on sz become negatively
accelerated. Therefore, whether the interpolated value underestimates or
overestimates the exact one depends on other parametric values (e.g.,

m, n, V and A/v) being considered. In general, the discrepancies are

very small when linear interpolation over an interval length of .0l is
*

. *
applied in our present problem. Approximations of p and w 2 for

nontabulated values of m, n, and /v can alsv be obta.ued satisfactorlily

by linear interpolations.

-
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3. A Numericai Example

To illustrate the use of these tables in actual data, the example
presented in Table 7 of Lewis, Wang, and Novick (1973) was reanalyzed
employing these tables. There were 35 children taking a 12-item test.
The sufficient sample statistics for ours analysis were m = 35, n = 12,
g = 1.2287, and s; = I(g, - 8.)%/m = .9175/35 = .02621. The same prior
distribution for ¢r (n:mely, v =8, Afv = ,25/8 = ,03125) was adopted.

*
For notational convenlence, we shall denote p (m, n, A/v, S;) and

* * *
2 2(m, n, x/v, 5;) as the values of p and w 2 for given m, n, A/v and
2

- s *

g
*
Using the table for m = 30, n = 12, we first find p (30, 12, .03,

*
.02) = .4688 and 0 (30, 12, .03, .03) = .5138, so that p (30, 12, .03,

.02621) can be approximated by interpolating between these two values:

(.02621 - ,02)
(.03 - .02)

0¥(30, 12, .03, .02621) = .4688 +

*
similarly, interpolate between p (30, 12, .04, .02) = .5162 and 0" (30, 12,

04, ,03) = 5566, we have
%
p (30, 12, .04, .02621) = 5413 .

) *
The next step 1s to interpolate between P (30, 12, .03, .02621) and

%
p (30, 12, .04, .02621) to obtain:
%
o (30, 12, .03125, .02621) = ,5023 .

*
Following the same procedure, p (40, 12, .03125, .02621) was

approximated using the table for m = 40, n = 12:

* -~
0" (40, 12, .03, .02) = .4449 .
glves o' (40, 12, .03, .02621)

[H

. 4773
P (40, 12, .03, .03) = .4970

*
p (40, 12, .04, .02) = 4900 «
gives p (40, 12, .04, .02621)
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«21923

*
p (40, 12, .04, ,03) = ,5370

%
thus, p (40, 12, .03125, .02621) = ,4825.

+ (.5138 - .4688) = .4967 .

S



Finally, we interpolate between m = 30 and m = 40 to approximate the

value for m = 35:
%
p (35, 12, .03125, .02621) = %(.5023 + .4825) =|.&924|.
This value is very close to the exact value (.4920) obtained from our

' *
previous analysis. In the same way, @ 2(35, 12, .03125, .02621) can be

approxinutes from available tables. First,

w230, 12, .03, .02) = .2255 v
" { gives w 2(30, 12, .03, .02621) = ,2533;
v ©(30, 12, .03, .03) = .2702 )
and
*2 ~
w £(30, 12, .04, .02) = ,2718 x2
" glves o ~(30, 12, .04, .02621) = .2988;
® “(30, 12, .04, .03) = .3153\

-

*
so that @ >(30, 12, .03125, .02621) = ,2590.

Secondly,

*
0240, 12, .03, .02) = .2028)

*
gives © 2(40, 12, .03, .02621)

i

.23363

*2
© “(40, 12, .03, .03)

L2524
and
*2
w (40, 12, .04, .02)

L}

L2647 2
%2 y gives w (40, 12, .04, ,02621)
w (40, 12, .04, .03) = .2932\

n

.2932;

*
a0 that © -(40, 12, .03125, .02621) = .2388.

Finally, we arrive at

*
@ 2(35, 12, .03125, .02621) = %(.2590 + .2388) = [.2489

* *
Thus, the approximate values of p and ¢ 2 for the present data have

been obtained:



Now applying formulas (1) and (2), the posterior marginal mean estimates

(uj) of v, (thus ﬁj of nj) given g and the corresponding posterior

i {or standard deviations Uj) can easily be computed. The

3

variances ¢
Tesults obtained from the present analys.s are compared with the previous
results produced by the program MARPRO described in Lewls, Wang, Novick, 1973,
In the table presented below, estimates from the present approximate method

are glven together with those exact estimates (enclosed in parentheses)

obtained from MARPRO output.

Posterior Marginsl Estimates of Yj’ “j’ and oj
xj = § X = 9 xh = 10 xh = 11 xh = 12
. .7961 .8304 .8656 . 9036 . 9606
" ( .7961) ( .8305) ( .8657) | ( .9036) ( .9606)
1.0877 1.1290 1.1745 1.2287 1.3280
uj (1.0878) (1.1291) (1.1746) (1.2287) (1.3279)
.1033 .1020 .1011 . 1007 .1020
Uj ( .1029) { .1018) { .1010) ( .1007) ( .1018)

These comparisons clearly show that there are pracrically no differences

between the approximate and exact results., Accordingly, the posterior

probabilities prob(nj 3.n0|§) approximated by our present analysls are
not expectad'tﬁ‘ﬁiff;;-;;;;ificantly from the exact probabilities in our

previous analysis. This 1s so because the normal approximations to these

probabilities have been found adequately accurate., The posterior
probabilities for = = .70(.05).90 computed from formulas (9) and (10)

* *2
using the current approximate estimates of p and o ° ara presented below

to compare with the exact probabilities (enclosed in parentheses) obtainad

by numerical integrations with the program MARPRO:
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10

xj = § xj =9 xj = 10 xj = 11 xj = 12
" prob(nj g_nolg)

.0592 .1197 .2306 .4201 .7807
%0 (.0557) (.1178) | (.2208) (.4193) (.7808)

, .2042 3327 .5055 .7096 .9356

% (.2035) (.3348) | (.5082) (.7110) (.9379)

4255 .3850 L7475 8864 | .9848
%0 (.4304) (.5898) | (.7502) (.8873) (.9861)

.6525 .7887 .8960 .9643 .9970
73 (.6588) (7917 | (.8966) (.9642) (.9974)

8249 9117 .9651 .9908 .9995
70 (.8276) (9115) | (.9642) (.9905) (>.999)

The small discrepancies between the exact and approximate probabilities
in the above table will not have effects on our decision making in practical

applications.

Sometimes, credibility intervals may be of interest to an investigator.
They can be approximated using formulas (11) and (12). For our present
example, we have computed the approximate posterior 95% credibility

intervals of w, for each observed x :

3 3

xj | 95% confidence interval of “j
'8 (.5991 .9233)
"9 (.6417  ,9426)
10 (.6863 .9613)
11 (.7361 .9792)
o 12 (.8165 .9982) 296




11

The reader may check the exact postericr probabilities given in Table 7 of
Lewls, Wang, and Novick (1973) to convince himself that these

approximate intervals are sufficlently close to the exact intervals which are
very difficult to obtain directly from the actual posterior wmarginal &ensity
functions of Yj .
In conclusion, it 1s felt that these tables will prove useful in analyses

of m-group proportion data (with equal sample size n) without recourse to

the .program MARPRO.
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TABLE OF RHO STAR AHND OMLGA STAR SOUARE FOR M = 10

MEAN SQUARED DEVIATIONS OF G

LAMBDA/NU .01 .02 .03 .08 .05 .01 02 .03 .0Y .05
(N= B8 (11 = 10}
.01 « 2456 2578 2717 « 2877 « 3060 -2823 « 2997 .3198 .3432 «3702
067¢ 0742 0826 .0928 « 1051 0878 0887 . 1126 .1298 1507
.02 « 3642 3798 .3967 LM150 R ELL: - 8081 4282 4500 «H4735 . 4984
<1813 .« 1537 .1678 . 18234 « 2011 « 1757 . 1934 «2133 . 2357 .3605
.03 LHU25 4584 L4751 4927 5110 L4883 <5077 5279 S8 5703
2008 2197 « 2358 . 2534 2720 -2l 2672 « 2885 L3114 .3355
.04 « 5001 « 5133 «53 11 L5473 56238 « 5HG0 <5639 5821 .6006 «6191
« 2589 o 27UG « 2915 3091 3277 «3065 32686 3476 3695 3921
.05 « 5450 «5593 .5739 . 5887 6036 5902 6065 .6230 .6393 .6555
«3053 .3213 .3381 +3553 .3731 «3560 «3756 3459 «H1G5 .4373
(ti = 12} (N = 14)
01 «3153 «3302 «3650 L3960 L4312 3455 .3739 8072 « 4453 4874
.1078 1243 o 1847 1701 L2008 1284 . 1504 1781 2122 . 2526
.02 LHU50 4702 4964 . 53200 <5527 L4791 « 5071 « 5369 5677 5987
2082 2312 . 2572 24859 ST «23Rg 2672 . 2988 . 3330 « 3690
.03 .5268 . 5491 5721 . 5955 .6188 2597 . 50842 .6094 XLl .6587
« 2862 «3106 . 3366 . 3680 .3922 3217 .3500 . ,23801 L8110 821
.04 « 5833 60237 .6228 .6u37 5633 6156 .6370 .6583 6790 6990
.3l4887 «3725 L3971 LH222 84737 . 864 L0132 U807 . 680 84953
.05 G269 6847 6622 «6795 .6962 6574 6761 .69u4 .7120 \\.qmmw
4001 L4227 LHUS5 L4685 49123 L4387 48635 N Y: 30 .5128 .5367
(¥ = 16) (N = 18}
<01 «3732 8071 LHu66 L1907 .5376 3088 4380 L4829 5319 5816
. 1487 .1768 « 3122 .2547 .1032 . 1688 « 20232 . 2060 . 2964 «3515
.02 « 5085 « 53497 «5723 6054 6377 5347 «SGR7 «6035 .6379 .6707
<2678 3010 .32375 « 3765 1183 « 200G 3328 1736 L8160 JA58C
.03 « 5882 .6147 6013 «H671 6918 «6132 6IT2 6687 .6950 7196
«3540 . 3860 8193 L8527 4859 .383a 4186 U545 L4899 L3202
.04 G283 6653 «6873 L7084 7282 6663 6896 +7120 .7332 .7528
<201 Luugu L0789 . 53080 5362 4504 .u817 «5128 < Su31 « 53718
05 6832 . 7025 . 7211 .7388 « 7554 . 7052 « 7250 .7437 « 7612 « 7775
«H727 . 84991 «5255 5510 .5755 .5028 «533023 « 53580 .5840 6087
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TARLE OF RHO STAR AND OMEGA STAR SOUARE FOR M = 10

MEM! SOQUARED DEVIATIONS OF G

LAMBDA /HU .01 .02 .03 .04 .05 .01 .02 .03 .08 .05
M = 20) (N = 22)
.01 LM3225 L4667 5188 5688  ,6197 L8486 L4933  _.S5870 .6016  .6525
L1885  ,2293  .2793  ,3363  ,395% .2078 2548  .3114  ,3738 4364
.02 .5583 - .5946 .6311 .6662  ,698% .5797 .B178 .6558  ,6909  .7230
.3208  _3628 4071 4521 L4961 .34845  .3902 4377 .8848  ,5294
.03 .6353  .6648  ,6925 ,718% 7431 .6550 .6850 7134  ,73%6  ,7632
_4in8  _uugy 4863  .5230 ,5578 .4358 ,4757 ,5150 .5525 L5875
.04 L6869  ,7107  .7333 7542  .773% L7051 7292 L,7517  .7723 .7909
L4777  .s1q8  ,s430  ,5737  ,6025 .5027 ,5369 ,5699 6008 6298
.05 L7245 7848 L7630  .7802  .7960 L7413 7812 ,7797 .7965  .8118
.5299  .5588 .5866 .6127  .6373 .5541 .5837 .6118  .6380 ,6622
(N = 24) (H = 26)
.01 L4653 .5181  .5750 .6308  .6808 L4RH6  .5012  ,6005  ,6566 ,7052
.2266 .2798  .3423 4088 L4729 .2449  .3080  ,3717  .8411 5056
.02 .5991 .6388 .6771 .7128  ,7438 6169 .6578 .6965 .7318  ,7618
L3670 4161 4661  ,5143 5592 L3888 4403  ,492% 5411 5856
.03 .6728 .7033 .7317 .7576  ,7805 .6887 ,7196  ,7480 ,7733  ,7955
.4591  .5006  .5810 .5790  .6136 L4803 .5234 ©.5846  .6025 L6367
.04 L7212 7855 .7679  .7880  .8060 .7357 .7600 ,7821 .8018  .B192
.5252 .5606  ,5940 .6248  ,6531 L5861 ,5820 6156 6064 6742
.05 .7562 (7760 .7942 810§  .8253 .7694 .789%  .8070 .8229  ,8371
.5760 .6061 .6343 .6602 ,6839 .5659 6262 .6588 ,6800 ,7032
(N = 28) (¥ = 30)
.01 .5028 .5626 ,6236 .6795  .7264 .5198  ,SR25 6487  ,6998  ,7449
.2628 .3273 ,3993 4708 5351 ,2801  ,3497 4254  .8979  ,5615
.02 .6332 .6750 .7138 .7482 7776 L6482 6907  ,7295 ,7632 ,7916
“nons L4627 .5130  .5654  .6094 L4273  .u838  ,5382 .587¢ .6308
.03 ,7032  .7343  .7625 .7873  .8087 L7165 ,7476 7754 ,7996  .8208
-5002 .5448  .5860 .623% L6575 .5%87 .S637 .6055 .6831 ,6762
.04 .7988 .7730  ,7947 ,8139  .8307 .7606  .7846  ,8060  ,8247  .8809
5652 .6015 .6351  ,6656 .6928 .5827 .6193 .6529 .6830 ,7096
.05 .7813 .8008 .8183 ,.8338 ,8478 .7920 L.A112  .8283  .8434  ,8565
L6140 6445  ,$725 ,6978  ,7203 .6306 .6610 .6887 .7136  ,7336
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TARLE OF RIO STAR ANP OMECA STAR SOUARE FOR M = 1§

MEAYN SOUARED DEVIATIONS OF ©

LAMBDA/IU .01 .02 .03 .08 .05 .01 .02 .03 .04 .0%
(M= 8) (N = 10)
.01 L2297 L2047 2625  ,283% 3095 L2602 ,2R858 3121 L3440 L3822
.0582 0663 ,0765 .0898 1068 L0760 ,0R92 1066 ,1294 1592
.02 .3388 ,3578 .3792  .403%1  .0294 L3805 L4086 L4336 L4645 L4977
L1218 1359  ,1527 ,1723  .1952 1523 ,1729  .1974  .2260 2585
.03 L1916 L8313 526 L,B7S4 L4994 L4858 L4803  .5065 .S340 .S5623
L1767  ,1980 2135 ,2352  ,2590 L2183  ,.2388  .2651 ,2941 3252
.08 L4659 L4851 5054 ,5265 .5482 .5108 .5338 .S577 .5821  ,6066
L2266 2430 ,2635 .28%  ,3091 2680 .292¢  .3187 3466 3757
.05 .5089 ,5272 ,S461 ,5655 .5852 .5536 5749  ,5967 .6184  ,6399
.2660 ,2852 ,3057 ,3275 .3502 .3132  ,3373 ,3630 .3893 .4163
(N = 12) (N = 14)
.01 L2956  ,3243  ,3597 4024  .4S16 .3206  ,3606 L4051 4573  ,5143
L0003 1137 .1398 1782 ,2177 .1128  ,1392 .1753 .2218 ,2778
.02 L4170 L4477 8817  .5182  ,5561 .aa94 L4851 ,5281  ,S648  ,6052
L1816 .2090 .281S  ,2785 .3193 L2008 239  ,2839 ,3284 3754
.03 L4935  ,5221 ,s§522 ,S831 .6138 .5261 ,5582 ,5913  .6243  ,6560
L2509 L2805 3131 .3482 3849 L2840 ,3191  .3572 ,3973  ,4374
.08 L5484 ,S733  ,6010  .6275  .6533 .5804 ,6088 ,6372 .6689 L6911
L3075  .3369  ,3663 4008 .®335 L3434 ,3772  .H125  L0AB3 4834
.08 L5906 .6181 .6377 .6608  .6831 6215  .FU69 6716  .6954 7178
L3551 ,383% .8129  ,4u28 5724 .3922 4283  .4566 4889 5202
(B = 16) (N = 18)
.01 L3514 ,3949 4477 ,5075  .S568S L3765 4271 L4873  .5522 .61
L1313 ,1656  ,21%9  ,2700 3352 L1099 L1925 L2490 .3165  ,3876
.02 L0783  .5186 .S616 6049 G462 .S085 5487 .5947  .639%  ,6805
L2366 2778 32642 3745 L4256 L2622  ,3093 .3620 4166 4701
.03 L5547 5897  ,6249  ,6390  .6909 .5801  LR173  ,6539  .6885 ,7199
L3196  ,3588  .397% 4010 4834 L3432 3878 .L381 L4800 ,5236
0% L6081 ,6383 .6680 ,696%1 .7221 L6323 ,6639 ,6942 ,7224 7478
L3759  .6135 .4521  ,8901 ,S5264 Lu056  .6ued  ,4R72  ,5267 .5635
.05 L6482 6747  ,7001 ,7240  ,7460 L6713  .R98S  ,7242 7479  ,7693
L4256  ,8605 0951 ,S5288 L5607 - L4586 40827 ,5290 .5635 .595S
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TABLE OF RHO STAR AND OMEGA STAR SOQUARE FOR M = 15

MEAN SOUARLD DEVIATIONS OF G

LAMBDA /iU .01 .02 .03 .0u .05 .01 .02 .03 .01 .08
(N = 20) (N = 22)
.01 .3999  .4573  .5237  .5915  .6523 L4219 L4855 5567  .6256  .68u2
L1683 .2193  .2855  .3605  .43u5 1865  .2859  ,3205 .4010  .u759
.02 .5282 .5758  .6239%  .6691  .7092 5499  .60M2  .6497 .6948  .7336
.2865 .33%1  ,3970 4547  .5090 .3097  ,3§77  .u292  .u88%  .5435
.03 6027  .6417  .6792 .7137  .7442 6231  .6638  ,7014 7358 .7649
.3696 4181 4672  .5147 5584 3043 6459 4974 .5855 5891
.0l .6537  .6862 .7168  .7uu7 7694 .6727  .7059  .7365 .763%  .7877
.4327  ,8761  .5186  .5580  .5958 L4876  .5031 5067 _5873  .6238
.05 .6915  .7192  .7889  .7582  .7889 .7093  ,7373  .7628 .7856  .8055
.u828 .5216 .5549  .5937  .6256 5074 5476  .5855  ,6208  .6516
(N = 20) . N = 26)
.01 4827 L5119 5866  .6552  J7111 622  .5365 .6135 .6810  .7339
.2046 .2720 .3541 ,u378  .512u .2223  ,2976  .3857 .471u . 5844¢
202 .5697 .6223 .6726 .7171  .7544 .5880  .6423  .6930 .7366 .772u
.3317  .3su8 4589  .5198 5727 3826 6192 0862 .5476  .6006
.03 L6418 .6828 .7208  .7542  .7827 6882  ,7002 .7381 .,7707 7980
4171 L6716 .5245  ,5730  .616" .4387  .5954  .5492  ,5978  .6399
.04 6897 .7238  .7538 .7805 .8035 .7051  .7389%  ,7690  .7950  .6171
.a808 5277 5721  .6326  .6uBS .5017  ,5500  .5949  .6350  .6702
.05 .7252 .7532 .7785 .8006  .B198 .73%89 7679 .7922  .8137  .8321
.5299  .5709 .6093  .6438 .6745 5503  ,5922 .6305 .6646  .6945
(n = 28) (N = 30)
.01 U807  ,559%  .6377  .7034 7535 L4981  .5806  .6594  ,7231 7705
.2397  .3226  .4183  .5015  .5728 .2567 .3462 .u427  .5289  .5981
.02 L6648 6606  .7112  .7537  .7879 L3208 L6772 .7276 7689 8016
L3720 .8327 5113 .5726  .62uu .3013  .8645  ,53u8 5952  .6u58
.03 L6738 ,7159  .7538  .7852  .B114 L6878 ,730%  .5672 .7980  .8231
L4537 L5172 5717 .6199 L6612 L0774 .5378  .5923  .6398  .6800
.04 .7190  .7529 .7826  .8078  .8290 L7317 .7655  .7986  .B191  .8394
.5212  .5706 .6157  .6552  .6895 5393  .S5894  .63u3 6733 7060
.05 .7522  .7801 8048  .8253  .Bu30 .763%  ,7915  .8153  .8355 8525
.5893 6117 .6497  ,6A33 7125 .5867  .%293  .6671 ,7001 .7285
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TARLE OF THO STAR AlID OMEGA STAR SOUARE FOR M = 20

MEAN SQUARED OLVIATIONS OF 6

LAMBDA/MU .01 .02 .03 .08 .05 .03 .02 .03 .04 .05
(W= 8) (N = 10)
.01 .2173  .23482 .2550 2809 3131 L2500 .2786  .3058  .3852  .3533
.0517 .0603 0718 0878  ,1085 0677 0820 .1018 ,1296 16T
.02 L3191 .3806  .3654  ,3937 4255 .3593  .3877 .42/ L8877 4978
L1077 ,1228 1813 .163% 1909 L1383 1876  ,inSs  ,2187  ,2576
.03 .3877  .48%01  .4349  ,4G38  .45907 L4308 ,u5n8 4897 .5226  .5565
L1865  .175%  .1967  ,2215 2485 L1917 .2176 .2878 2811 .3178
.04 L4398 4618 4851 5102  ,5362 L4833 .5102  ,.5385 .5678  ,5372
.1993 2196 2025 ,2678  .2552 .2198  .2669  ,2969  ,329% 3635
.05 L4806 ,5019 .S282  .S474  ,5710 .5248  ,8500 .5760 .6022 6282
.2371  .2583 .2815 .3065 .3330 .2813  .3086 .3380 ,3688 ,%007
(N = 12) (n = 14)
.03 .280%  .3132  ,3557 4085 L4693 .3081  .3500 .4038 4680  ,5359
.08¢3  .10S6 .1360 1784  ,2328 L1012 1307 .1738 2306  ,2987
.02 .3945  .4289 4702 .Sl#x  .5594 L8261 L8673 5184 (5632  .6306
L1622 1928 2296 2734 32195 .1883  .2266  ,2729 .3286 3807
.03 L4674  .,S003 .S368 ,5738  .6104 L4897 .§377  .S778  .6170  .658S
.2209  .2579  ,2955 3366 ,3738 .2560 .2958  ,3403  .3870  _u3w6
.08 .5205 .S5S13  .S832 .6152 6463 .5%25  .5865 .6209  .6543  ,6B56
L2769  ,3102  .3465 ,38u8 4234 L3111 L3488 3914 L4337 4752
.05 .S5616 .S5R99  .6185 .6465 6734 .5930  .6237 .6539  .6828  ,7097
.3210 .3537 .3882 .8238 4587 .356%  .3983  ,4327 4710  .508%
(1 = 16) (0 = 18)
.01 .3343  .3852 .8493  ,S215  ,5913 .3509 8185 4945 ,S683  .6366
.1186  ,1872 ,2125 2830  ,359S .31358  ,In42  ,2520 3330 4136
.02 L4547  .s022 ,.S5536 .6052 .6529 L4807  .%332 .5883  .6811 6477
L2135 .2898 3148 . 373% L4331 .2378  .2917  .3535 4178  _W787
.03 .5283 .S700 .6125 ,6533  ,6906 .5539  .8986 .6429 6840  .7204
.2852  .3313 .3816 4328  ,u822 .3127 3648 8131 4732 5236
.08 .S804  ,6170 .6530 .6870 7179 .GOST  .6836  .6BO6 7145  ,[Tuuk
L3428 3862 -,4317 ,476% .5198 .3713  ,4193 4680 5148 5582
.05 .620%  .6525 ,6837 .7128 ,7392 L6438  ,6774  ,7091 ,7380 .7636
.3804 4306 .8720 ,5%23 ,S502 L4199  .8633 ,.S069 .5483  .SB63
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TABLE OF RHO STAR AND OMEGA STAR SOUARE FOR M = 20

MEAN SQUARED DEVIATIONS OF G

LAMBDA/TRI .01 .02 .03 .0n .05 .01 02 .03 .0 .05

(N = 20} {N = 22)
.01 « 3621 U501 5301 .608u 6736 H041 798 .5648 6827 L7081
.1533 .2118 « 2910 «3791 607 .1708 2390 .3283 U209 .5017
02 50045 5612 6188 L0717 .7167 . 5260 5B66 .6HU5R .6981 . 7810
.2611% «3220 3897 U572 5187 . 2R36 3509 U230 . 4926 «5534
.03 «LB708 6240 5690 .7102 L7454 5976 HUE8 .6925 «7327 76614
.3300 « 3951 U534 .5090 5595 3026 84230 Luguy 5409 « 5908
0l 6270 «6670 . 7084 «7379 .766 8 LHUGE +EB76 «72573 .7579 « 7857
« 3980 Hu97 « 5005 «5H83 5913 U228 L7722 5297 5778 6201
.05 6647 6992 « 7310 . 7593 .7840 6833 .7183 . 7459 7776 .B012
LHUART «49390 . 5381 5797 6175 1709 5197 . 5657 6075 60483

{1 = 24) {N = 26)
.01 +H2u9 «5075 . 5959 .6720 .7205 JHhug «5334 62306 «8697 «7510
. 1881 « 2667 « 3637 «HSRYH «5372 .2053 .2533 .3969 U919 .5683
.02 «SULG «6097 6697 « 7208 .7617 5051 6307 6909 .7805 «7791
+.3050 .3781 U5y 5243 .5839 «3255 .H039 .HUB25 « 5525 .6107
.03 8105 +6669 7129 «7522 .7844 .6337 «6B52 .7310 .7691 «7998
« 3853 G498 .5126 5694 .6183 L4066 U759 .5380 5947 LHU23
0 6603 + 7060 «7833 . 1752 .8018 «60803 « 7224 .7593 .7903 8158
Luu57 .5025 « 5560 .6039 6454 U670 .5256 .5797 6273 6677
.05 6999 «7352 +7665 «7933 +B160 7108 «7502 .7810 «.B0O71 .B288
LU937 5439 .5905 .6318 .6680 5186 5659 6127 .6536 6888

{1} = 28) {N = 33) '

.01 .H633 5571 +6UB3 71089 .7690 AR811 5797 6702 «7378 .7852
2223 .3192 LU275 « 5220 5857 2391 LIHLZ LU557 .5u89 «6197
.02 «5B2H .6498 .7097 .7578 «79U7 5985 .Hh673 .7266 .7730 .B0R80O
«JHGZ LHu279 .5085 « 5780 LH3083 3640 45086 «5322 .6008 6554
.03 6895 7017 .7470 « 7839 8133 L6681 7167 «7613 . 7971 «B251
LH207 U967 .56186 .6174 6638 LHUS56 D177 5829 «6380 .6828
.0H 6989 «7372 . 7736 .B036 0279 L7082 . 7506 .7863 .8153 B384
LHBNLE 5070 6010 5HB2 .6B73 5052 . 5666 .6 209 .6668 .7009
.05 « 7280 «7637 7940 .B192 .B39%9 L7007 « 7759 . 8055 .B299 B4 B
.5339 «5861 .6328 .6731 .7070 .5517 6047 .6510 6905 « 7237
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TARLE OF RHO STAR AND OMEGA STAR SOUARE FOR M = 25

MEAN SQUARED Om.ﬁrn.HOZm OF

LAMBDA /11U .01 .02 .03 .04 .05 .01 .02 .03 .04 .05
n= 8 (N = 10
.01 .2070  .2253  ,2486  .2784 3167 .2384  ,2653 .3006  .3465  .8035
.0866 ,0556 ,0680  ,0855 1104 .0613  .0762 ,0981  .1300 ,1745
.02 .3031 3264 ,3539  .385%9 4225 3817 .3730  .&100  .4523  .4983
.096% 1925  .1322 1570 1876 L1223 .t4s6 1757 .2131  .2572
.03 3683  .3928  .4203 4508  .u83% L4093 ,8872 4760  .5134 5521
-talo  .1604  .1835  ,2107  .2419 L1736 .2010  ,2335  .270%  .3122
.04 L4178 8421 L4686 .4969  .5266 . 4608  .4907  .5228  .5563  .5899
.1800  .2015 .2261 .2538  .2844 .2178 (2467 2796  .315% 3543
.05 4575 L4811 .5063 5326  .5596 .5010 5294  .55%0  .5891  .6189
L2147 2373 .2628 2900 3186 .2562 .2858 .3182  ,3527 .3886
(N = 12)° (N = 18)
.01 .2678  .3038 .3524  .4142  .4B44 .2046  .3412 0030 4773 5529
L0765 .0990  .1331  ,1824 2460 0923  ,123%  .1720 .2384  ,3156
.02 .3761  .8153 4609  .5112  .5625 L4071 4537  .5067  .5622  .8152
472 ,1793 ,2202 L2695 324S5 L1716 2127 .26u3 3237  .3854
.03 L4861 4835 ,5243 5666  .6081 4781 ,5208 .5662 .6114  .6536
.2066 2801 .2816 3278  .3763 2342 .2773 3269  .37%9 4327
.08 4975 5323  .5687  .6054  .6406 5295  .5682 .6077  .6461  .6816
.2529  ,2890  .3293  .3723  .4159 .2856  .3283 3747 4225 4692
.05 5378 .5699  .6027  .635%1  .6659 5693 .6085  .63%%  .6728  .7036
2542  .3300 .3684  .4085  .3u82 .3289  .3703  .8135  .4571 %997
M = 16) (= 18
.01 .3202  .3772 .4511  .5331  .6082 3484 L4116  ,4955  .5809  .6525
.1084  ,1503 .2132 ,2940  .3782 .1248  ,1777  .2550  .3461 4326
.02 L4356 ,u887  .5478  .6057  .6582 L4613 .5205 .5834 6426  .6933
L1956 ,2u57 3068 3737  .43%1 .2188  .2776 .3u71 4189  .4856
.03 5066  .5539  .6026  .GWS0 6906 .5322 ,5833  .6341  .6808 .7211
.2621 3127  ,3689  .M266  .4816 .2R86  .3458 007" 4682 5240
.04 5575 .5995  .6411  .6800  .7148 5825  .6269  -6697 .7085  .T422
L3158 L3685 .u159 (4669 5148 .3am1 3378 L4529  .5059 5543
.05 5967  .6342  .6705  .7041  .7341 .6208  .6600  .6970 .7303  .7593
.3606  .4067  .4539 4997  .523 .3897  .u3%7  .u896  .5367  .57%%
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MEAN SQUARED PEVIATIONS OF G

TARLE OF RO STAR AND OMEGA STAR SOUARE FOR M = 25 °

LAMBDA /WU .01 02 .03 08 05 01 .02 .03 .04 05
(N = 20) (N = 22)
.01 «3674 JAauuh « 5357 6212 6882 .3893 L4753 3717 6557 L7174
L1414 2060 «2%60 .3934 L4792 1582 2344 . 3351 4357 .5194
<02 +4R51 . 5495 6151 .6740 7222 5071 «5758 .6830 7007 L7864
J2u13 +3085 « 3BE5 L4595 .5258 2631 3377 L4190 +A956 «+5607
.03 5554 6095 6617 .7078 . 78464 «5765 6330 +6A57 « 7309 «7676
«3137 .3768 JAU26 .5051 «5605 3374 . H056 U746 .5378 «5921
O 5088 6512 .69485 7327 « 7651 A 2089 6727 « 7162 « 7534 .7843
«3704 4285 L4863 «5002 .5883 .394u8 8566 51685 . 5706 S 176
05 J6H22 .6826 . 7198 « 7525 «7803 H6T1H +T026 .7396 <7714 . 7981
4164 8697 .5215 « 5693 6118 U812 N971 .5501 5877 .6392
(N = 24) (N = 26)
«01 102 5003 « 6035 «6839 L7816 B30T «£313 .6315 7084 « 7621
1751 2626 «3717 .h733 «5540 1919 « 2903 + 8056 +5066 5842
.02 «5274 «5997 «6677 7236 « 7669 .5u64 6215 6894 . 7435 .7843
+2840 «3655 . U509 «.5276 «5912 L3042 .3918 L4799 «5563 .6178
03 -.5958 L6502 « 7069 «7508 +7857 6134 «6732 «7256 .7680 .8013
«3598 L4326 .5037° .5669 .6198 «3809 L8575 . 5301 «5926 6443
.0u L6031 .6918 « 7351 «7713 .8008 6596 « 7090 .7518 « 7869 8109
L4177 4824 « 5437 5976 6435 8390 5062 +568% 6216 6660
.05 +6786 <7203 «7569 .7878 . 8132 L6911 « 7361 71722 .8021 «8263
UG «5220 «5757 .6229 +6632 L4851 .54u8 .5988 .6851 68144
(N = 28} (N = 30)
01 Au9 «5563 «6563 72914 .7796 +A672 5794 6783 L7477 . 79u6
. 2086 «3172 L4368 5362 107 2252 « 3430 U656 «5628 6339
«02 . 5640 AU . 7088 «7608 7094 .5804 .6595 71260 -.71760 8125
«3236 U166 .5066 +5819 6013 3422 L2308 . 5309 +6050 6622
-03 6297 «6900 422 « 7832 8147 6407 « 7061 . 7570 . 7965 8266
LH009 L4807 +5541 +6159 +6656 L1938 5023 53760 6367 6850
Lok 677 + 7245 « 7666 « 8005 .8273 6986 . 7385 7758 «8125 .8381
L4589 «5281 «5904 .6429 6861 L4777 L5084 .6105 6621 .7039
.05 +7083 «7503 . 7857 «81u4% +A378 7212 « 7631 .7978 +8256 .8478
.5048 «5657 +6195 6658 L7034 «5231 5808 .6385 .6832 « 7201
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TARLE OF RHO STAR AND OMEGA STAR SOUARE FOR # = 30

MEAN SOUARED DEVIATIONS OF G

LAMBDA /HU .01 02 -03 0u .05 .01 .02 .03 0u .05
(R = 8) (= 10)
.01 « 1984 2178 . 2830 « 2764 «3202 «22B6 « 2572 « 2961 3480 Lu128
L0827 0517 LO6u7 083 L1122 0862 0715 Looug +1305 3814
.02 . 2897 «3144 3441 3794 4201 3271 3606 LH030 LHu79 + U590
LO883 1041 1248 . 1514 + 1850 1118 «+1359 LIR7] - 2085 «2572
.03 -3521 .3781 LU079 R 779 3927 L4263 JH6a4 .5058 .w:mq
1287 . 1485 L1726 £ 2017 «2358 1582 +1874 2221 262G «3079
.04 « 3997 J4257 L4545 L4858 +.5187 LAu18 U743 5096 5467 .5839
16486 .1866 «2125 L2423 + 2755 «2001 2304 + 2655 .3048 «3467
.05 4381 L4636 L8311 5202 +5501 L4810 5119 5047 «5782 6113
1967 «2201 +2u68 . 2764 .3085 2361 26T +3020 .3396 «378%
(N = 12} (N = 14)
.01 «A567 2958 +38598 L8195 97 «2B32 «3336 +H027 « 4854 .5663
-0703 .0936 1307 + 1861 2574 +OR50 . 1181 712 « 2453 .3293
02 «A607 L4028 8532 . 5090 «5652 «3311 AT «5003 «5617 .6191
1352 . 1685 « 2126 . 2667 «3268 1583 2074 «2573 .3224 .3855
.03 U282 L4688 .5138 . 5607 6064 JA599 + 5066 .5569 .6069 .§531
.1885 «2255 2702 « 3208 «3736 2566 « 2622 +3159 «3739 L4315
.0 4781 5162 «5566 «5973 «6363 5099 «5527 5967 .6394 6780
2334 «2718 «3153 «3622 H099 2647 3105 «3611 +H4135 LAGED
.05 «5175 .5529 . 5895 .6256 .6598 « 5491 « 5881 +6273 « B6UG .6987
« 2724 «3105 «3524 . 3961 397 «3059 L5048 3979 +Hus8 919
{8 = 16) (N = 18)
.01 .3083 .3704 U529 +5427 .620% 3322 LH058 . 4991 . 5909 .6640
1002 .1446 L2182 +3032 . 3925 .1159 1724 2578 « 3567 JHu6e
02 L4191 4773 » 5428 6064 624 LAa48 .5099 +5796 L6584 6376
1810 « 2341 . 3009 «3738 H439 L2032 « 2662 »3421 L4203 + 8909
.03 JHBRZ .5403 5944 L6457 .6908 .5139 5704 6270 .6784 .7217
«A433 2973 « 3587 LU218 La818 7 2690 -3306 « 3980 . 4645 +524u
=04 .5381% «5847 6311 6704 L7125 «5632 6129 .6R0OB . 7038 . 7405
. 29082 «3467 U029 L4509 .5113 «3216 . 3801 LU808 L4989 5513
.05 « 5767 .6186 6594 6970 «7302 L6012 LEUS52 6869 « 7247 « 7560
+3368 . 3869 .B388 LUB9Y +5363 «3654 Lu202 « 4754 5274 «5741
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TARLE OF RHO STAR AND OMEGA STAR SOUARE FOR M = 30

MEAN SQUARED DEVIATIONS OF G

SAMBDA/NU -01 .02 «03 .04 .05 01 .02 03 LOon 05
(N = 20) (N = 22)
+01 «3550 L4397 5406 6310 6986 «3769 4718 <5774 6645 «7267
.1318 «2012 .3003 L404AR LU926 . 1481 . 2304 . 3408 LAau7t «5319
.02 H6B6 « 5397 6123 6759 «7265 L4907 . 5668 « 6410 7029 -7508
« 2250 «2973 +3805 614 5314 L2462 .3270 LU1R0 . 8981 +5664
.03 «5372 «5974 .6555 «7060 7472 . 5586 6217 .6803 «7295 «.7686
«2934 .3618 L4362 +5021 «561%3 « 3166 «39M . 668 +5355 .5933
.08 «5858 .6378 +6865 « 7287 .7638 «6063 -6601 . 7088 «7500 «7833
34748 L4110 L4750 .53 « 5860 «3717 L4396 « 5057 +5652 .6158
=05 «6230 «6686 «7106 7470 .7775 6025 6893 «7311 +7665 « 7957
.3910 4506 «5082 «5607 .6068 U164 L4784 .5374 .589% .6350
{N = 24) {N = 26)
-1 .3978 .5018 6096 6926 «+7501 L8179 «5297 .6378 «7165 . 7698
L1644 « 2595 .3782 L4844 .5659 . 1809 « 2880 L4127 «5174 « 5954
.02 «5113 «5915 +6662 7260 .7707 «5305 6140 . 6885 . 7459 . 7880
2667 «3553 L4884 .5306 5966 . 2866 3821 A782 .5595 6232
.03 «5782 .6435 «7021 . 74938 .7868 .59862 6632 « 7214 « 7673 .B024
.3388 4184 L4965 . 5651 .6213 .3598 4438 « 5237 .5912 6457
.04 «6248 . 6799 .7284 « 7683 .B8000 .6418 6978 7457 . 7842 8103
«3943 « 4659 .5336 .5927 60819 L4156 LA502 .5588 «6171 .66u8
.05 6602 « 7077 « 7491 . 7834 8112 6762 «7242 «7650 .7981 .B2u5
L4393 « 5038 5638 .6158 6597 L6048 «5273 +5875 .6389 .6813
(N = 28} (N = 30)
+.0 JA3T71 « 5555 6626 « 7370 7866 -4555 «5793 -68044 +7548 .8012
L1974 .3156 LAu43 L5467 6211 «2139 3422 L7311 .5728 64480
.02 L5u84 .6345 . 7082 o { 3 4 .B028 +5652 6532 «7257 «7783 .8158
.3058 An74 «+5053 -5852 6865 32044 L2312 « 5300 .6082 6672
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TABLE OF RHO STAR AUD OMEGA STAR SQUARE FOR M = 50
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1. Introduction

In two previous papers (Novick, Lewis, and Jackson, 1973; Lewis,
Wang, and Novick, 1973}, the problem of estimating proportions in m
groups was studied with a Bayesian Model II approach, using the
arc sine variance stabilizing transformation. It was shown that
Bayesian Model II estimates were preferable te the conventional
sample estimates especially when ¢r (the variance of the transformed
variable Yj) is small. This gain can be equated to guybstantial savings
of sample size in data collection. An extension of this work is the
problem of estimating proportions in two-way tahles. For example, a
set of t tests may be given to each of m persons. We are interested in
estinating the level of functioning of each person on each test.

By level of functioning on a test, we mean the percentage of correct
responses that the person would make to a test composed of all of the
items which might have been selected for the particular test. The
model considered is the so-called Model II or random effects model
because the persons and the tests are, respectively, considered to be
rardom samples from larger populations of persons and tests. As in a
two-way analysis of variance design, one can assume that the variations
of performance are due to row effects (persons}), column effects (tests},
and interaction effects. Thus, each of these effects can be separately
estimated and then combined to provide estimation of the proportions.

This estimation procedure would find an application in the area of

The research reported herein was performed pursuant to Grant No.
OEG-0-72~0711 with the Office of Education, U, S, Department of Health,
Education, and Welfare, Melvin R, Novick, Principal Investipator.
Contractors undertaking such projects under Government 8sponsorship
are encouraged to express freely their professional judgment in the
conduct of the project. Points of view or opinions stated do not,
therefore, necessarily represent official Office of Education position

or policy.
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individeally prescribed instruction. After completing a unit of
instruction, each student is given a posttest unit which consists of a
set of teste on related skille. Estimates of the level of functioning of
each student on each skill can be obtained to help make decisions on each
individual's progress.

The Bayesian Model II approach wag proposed by Linﬂley (1971).
Theories and solutions for the general linear model have later been
discussed in some detail by Lindley and Smith (1972). The present
paper proposes to apply the Bayesian estimation procedures to two-
way tables of proportions. Essentially, these procedures incorporate
the collateral information provided by the other persons as well as by
the other tests into the estimation of a single proportion. Consequently,

some advantages are expected over the conventional sample proportion

estimates.

2. Basic Model

The observed number of successes xij for individual 1 on test

j 1s mapped into gij by the Freeman-Tukey (1950) transformation:
A WAL BYATRESE
gij =§'(Sin n_'i‘jT + sin !-lj"'j-_rr ;': s (2.1)
3 i

where o is the number of items in test j . We will assume that the X5 5
are binomially distributed with parameters nj and ﬁij, aud that they

are jointly independent given the ¥ Under these assumptions, the

ij °
g:"j are jointly independent and to a satisfactory approximation are

normally distributed with mean ?ij = sinulfﬂij and variance

vij = vj = (fmj + 2)-1, provided nj > 8. The objective of this and
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related transformations is variance stabilization. Feor further

discussion on this peint, as well a8 on the adequacy of the approximatiocns,
the reader is referred to Novick, lewis, and Jackson, (1973), and
fewis, Wang, and Movick, (1973).

To proceed further, we must specify a distribution for T, the
matrix of cell means Tij . If we treat the persons and tests as
independent random samples from appropriate populations, then we may
follow the standard development of random effects models given, for
example, in Scheffé (1959, pp. 238-242), This development requires
only that the persons and tests be sampled independently of each other
and that the distribution of T be multivariate normal, given the
necessary means and dispersion matrix. It is then possible to define

g, Ay ﬁj, and 6ij such that

= + + ’
Yij 9+ a; Sj 6ij ’ (2.2)

and such that {ai}, {&,}, and {Gij} are independent normal with zero

3

means and variapces ¢a’ ¢5, and ¢6’ respectively, conditional on these

variances and independent of ¢ .

The definitions are given in terms of expectations of YI with

J
respect to the nopulation of persons and the population of tests.

-

L]
We indicate these expectations by!fI and Cor respedtively:

9 =e"’1 C‘J(TU) , (2.3
.1

ap =& tr ) -6, (2. 4)

BJ nt?I(TIJ) - & , and (2.5)

6IJ = Yyg - o - ap - BJ R (2.6)
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In many cases where persons and tests have not been randomly
sampled, it may, nonetheless, be possible to characterize our beliefs
about the values of @, as exchangeable for the group c¢f persons being
tested and for any other group selected from the population of interest.
In addition, a similar statement may hold for Bj and the poPpulation of
tests. Finally, our beliefs about the interaction terms {(really

residuals from a simple additive model)} &, may he exchangeable, at

ii
least in the sense that %2 have no good reason to expect any particular
pattern of deviations from additivity in Tij .

Lindley and Smith {1972), among others, have applied the work of
De Finetti (1937) and Hewitt and Savage (1955} on exchangeability to
situations such as this. If we are willing to express our beliefs
about Tij as described in the previous paragraph, we may conclude that
{ai] have the structure of identically and independently distributed
random variables conditional on some parameter{s}. Similar statements

hold for {B,} and {Gij}'

h|
For mathematical convenience, we introduce the additional assumption
that all the above-mentioned conditional distributions are normal. It

immediately follows from definitions (2.4), (2.5), and (2.6) that the

expectations of a5 Bj, and Gij are zero, Hence, we may write

blaley) = 677 expl- s 47120D), @.7)
o a~t/2 ST W
bBleg) = ¢ " exp(- k5 4g7IBY), (2.8)
and
b(é|¢6) o ¢Emt,2 exp (- % ¢Elzzaij) . 2.9

A final assumption required ot this stage 1s that &, B, and 4 arve

jointly independent, given ¢a’ ¢B, and ¢6 . This assumption will be
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reasonable as regards ¢ and ¢ whenever the choice of persons is unvelated
to the choice of tests. The remainder of the assumption, namely the
independence of 4 from ¢ and § jointly, is less immediately intuitive
but may be considered reasonable by noting that it is equivalent to
the agsertion that knowledge of a and B tells us nothing about the
distribution of 4, which may be a justifiablc assertion on the basis
of ignorance.

We have now reduced the problem of specifying a distribution for
I' (either by standard methods or with suitable exchangeability and
independence assumptions) to that of specifying 6, @a, ¢8, and ¢6 v In
most cases, it will not be reasonablz to assume that the values of
these parameters are known. Consequently, we suggest the following

distributional and independence assumptions: take ¢ and ¢6 to

u’ ¢B’
be independently distributed as inverse xz variables and denote the
degrees of freedom and sum of squares parameters for these distributious
by (va, lu), (vB, lB), and (vG, RG), respectively (see Novick and
Jackson, 1974, Section 7.3). Finally, treat 9 as locally uniform in

the range of interest and jointly independent of ¢u’ ¢B’ ¢6’ ¢, g, and

4 . We believe these distributions will satisfactorily characterize
whatever vague knowledge we may have about the overall mean of Yij

and its component variances. For reasons discussed by Novick (1969)

and by Novick, Lewis, and Jackson (1973}, a uniform distribution for

0 will be acceptable; however, a proper prior will be required for the

variances (¢a, ¢8 and ¢6)‘ Still outstanding is the issue of supplying

2 . . .
values for the three pairs of inverse X parameters. Wwe defer discu-sicn

on this peint until Section 4.




With the above definitions and assumptions, we find the likelihood
function and the joint posterior distribution of ®, ¢, £, 4, ¢a’ ¢ﬁ’ and

¢5 iven G = (Sij) to be:

2
o - ! - - - - \
1(0, o, B8, gl G) « expl- i?(gij 8 - a, Bj Gij) /vJ}

i=1,2,...,mi=1,2, ..., t;

and

BO, @ B B bgr b5 8419

« (0, 9' gv 9'9) . b(g, ﬁ, Qltbav ¢Bv ¢6) ' b(d’as ‘pB’ ¢5)

2
« expf- %X SL(g,, ~ 6 ~-a -~ B, -8 )/}
1 ij i i ij i

(m + v, * 2) )
$ expf- %(ka + iai)/¢a}

*(t + vy + 2)

- 2y16 3
bp exp{ %(XB + LB )/¢B'

j 3

~5(mt + Vs + 2) 2
ds exp{- %(A + iisij)/¢5} y (2.10)

respectively. We may use equation (2.2) to include P explicitly in the

joint posterior distribution (2.10), Specifically, we substitute

Yij -8 - a, - Bj for Gij and leave the other parameters unchanged, Since

the Jacoblan of this transformation is unity, no further adjustments to

(2.10) are necessary, Thus, we have
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b(_{:, e’ g’ B’ ¢a’ ¢B’ ¢G|§)

-

1 9 ~bs(m + Vo ¥ 2) 2
- 4 -t - » - !
expi~ ¥ i?(gij Yij) /vjl ¢ expl O + iai),¢6}
Lt + Vg + 2) 5
* g exp{- O + ;:Bj)/qﬁs}
% {mt + Vs + 2) 2
© b exp{- 50 + zzaij)/¢6} . (2.11)
ij

3, Posterior Joint Modal Estimates

3.1 Joint Modal Estimates for the Basic Model

Integrating b(V, 6, «, 8, ¢u’ ¢B, ¢6|§) in equation (2.11) with
respect to the nulsance parameters ¢a’ ¢B’ and ¢6’ we obtain the posterior

joint distribution of [, 6, ¢, and B:

b(T, 8, o, BI®)

Slslm + v )
2 _ 2
« exp{- % i§(gij = Yyy) /vj} O, + iai)
Lt + v,) 9 s (mt + vé)
g+ iei) B g + ANRLRLRL S _

(3.1}

For the posterior joint distribution of T alone, we need to integrate
expression (3.1} with respect to 6, &, and B from equation (3.1). Explicit
expressions for these integrations do not appear to us to be possible.

Therefore, we obtain the joint mode of [, 6, & and B as estimates of

-

-

the corresponding vector elements, Differentiating f = gn b([, 6, g, g!g)
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with regpect to 9, A Bj, and Tij and setting the derivatives to zeto,
2 gystem of cquations is derived to be solved for the joint posterior

mode of O, w, 4, and ':

~

af ] -1 - y — -'-1 iy — - - - L ]
3';;3 : vy (84 = Vyg) = 45 (yy b -a Bj) 0, (3.2a)
of =1 ~ - -
3 b lvgy -8 - -B)=0, (3.2b)
1]
iﬁi DGR - G - BBy =0, (0
and
of e S B +=1 = 5 =
5@; (bg + b )By - még (Y., -8 - ) =0, (3.2d)
where
1= =2
by T O +BI@ A v (3.3a)
< =2
$g = (gt §Bj)/(t + ), (3.3b)
and
85 = g + I, - 0= & - BO*I/@e + v . (3.3¢)

13

Thus, we find the posterior joint modes:

~ $5 M -

Tgy = W Byt K"."Tj ®+a + Bj) ) (3.4a)

~ * . - R

f Wi ma(Y-;_' - Yeed , (3.4b)

B = ey - ) B G ST, (ko)
b+ £ s+ vy i




(3.4d)

-

o

-~ —lAt '
bt m g

and the dot notation indicates average over the appropriate index, Also,
note that an = En = 0 .

The joint modal estimates of [, 0, a, and B then can be obtained by

~

an iteration procedure. The usual least squares estimates & = g..,

&1 ol FULD TP éj - g.j - gs+v, and §ij = gij can be used as initial values

- -

of &, By Bj’ and Tij « Given these initial values, ¢a’ és, and 96 are

computed from (3.3) and used to obtain improved values of f, o, ?, and
B via (3.2). Substituting these new values in (3.3), the foregoing process
is repeated to refine the estimates of T, &, E, and ® . This iterative
procedure continues until some convergence criterion is reached. It should
be noted that it may converge té some local mode if bimodality or
multimodality exists.

Looking at the expressions in (3,4), we find that these
Bayesian modal estimates ?ij are weighted averages of observed gij and'
the sum 8 + &, + B, . In terms of (3.4b-d), it is seen that 5, P

i P i

are functions of row averages ?i., column averages ?'j and the overall

s and

-

8

average Y.. . Under the basic model described in Section 2, the cell
mean Tij for a specific cell (i, j) was agsumed to be normally distributed

with mean & + «, + B, and variance LY cnditional on 8, a Bj’ and ¢3 .

i i’

¢
Thus, the weight E__1§3_ agsigned to the observed gij is a Bayesian

§ ]
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reliability estimate of gij given fixed i and j. . In obtaining estimates of
LETY observed 814 are regressed towards the value & + &i + Bj . We may

also remark that with the definition of Yij given by (2.2), LT O

and Y'j - Y.. would b. "ecasc squares estimates of a, and B,, respectively,

1 3

* *
provided Yyy were observable. In this case, w, and wg can be regarded as their

corresponding reliabilicy estimates. Accordingly, the estimates &i for a,

are seen to be ?1. - ¥.. regressed towards their common value & = 0 .,
”»
Thic interpretation extends to the case of Bj .
Having obtained the posterior estimates of Yij’ estimates of ﬂij can

be approximated by

= (L +52) sin’ Ty - — (3.5)

i i

following the previous study of the one-way case (Novick, Lewis, and

ﬁij

Jackson, 1973, p. 24). In obtaining estimates 7,, of proportions, the

13

regression of sample proportions pij towards some common value corresponds

to that of gij since ﬁij are monotonic Increasing transformacions of ?ij .

3.2 A Srecial Case Where All Tests Are of Eagua]l Length

In some applications, the set of related tests may have the game number
of items, i.e., nj = n . This means that the error variances within ezch
cell are all equal (vj =y = Z??%fiﬁ' In this case, the solut.ons for
(3.2) can be simplified. The joint modal estimates of T, &, «, and §

given G, can now be written as:

-

Vyg = g g+ (L-w)@+é + Ej)

=ug gyy v (L -uwdiee. +u (g, - 8.) +uglgey - 8] (3.6a)
& = wa(gi. - geo) (3.0b)
ﬁj = “’B(B-j = g") (3.6¢)

2
{
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and
§=g.. = E‘.Egi./mt (3.6d)
ij +J
where
i) = -—¢5_ [N = ¢a i) = ¢8
5 ¢, +v ' a = -1, - R -1,
& ¢a + t (¢5 + v) ¢8 + m (¢6 + v)

(3.7)
and §a, @B, $6 are estimated from (3.3) ,

Equation (3.6) indicates that the Bayesian Model II joint estimates
of the transformed proportions Yij can be written explicitly as linear
combinations of observed values 3ij’ deviation row means By» = Bers
deviation column wmeans g.j - .+, and the overall mean g.. . The ﬁeights

Wy Wgs and wg can be interpreted as reliability estimates of the

components Bir " Bees g.j ~ Ber, and gij . Consider 8, Ay and Sj given,
the basic acsumptions in Section 2 imply
Var(gij|e, %, Bj) = ¢6 + v
and
Var(Yijle, @y Bj) = ¢6 .
Hence, W is a reliability estimate of gij’ conditional on 6, @y and Ej .

Thus, it is seen that joint estiwmates of Tij are obsevved gij regressed

towards O 'k &, + B, .

173
The reliability interpretations of W and wg may be less

straightforward. However, borrowing from the results of classicatl

random effect ANOVA, we obtain

2
. E(gib - gll)
i

' -1
Var(g . - g.) ng, —7 = g, e

(¢6 +v),

since Z(gi. - g..)zI(m - 1) is an unbiased estimate of Var(gi. - g.) and
(FE tz(gi. - g..)2I(m -1 = t¢a + ¢6 + v from the expected mean squares

i
in random effect ANOVA, The sample statistic By = Bee is an estimate
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of the row effect % whose variance is assumed to be ¢u . Thus, €

can be regarded as an estimate of the reliability of ﬁi ='gi. -

Since & = 0, we can write the joint modal estimates & of o, in (3.6) as

i
& = wu(gi. - gee) + (1 - wu)&. = wuﬁi + (1 - wu)u. .

It is clear then that the by being a weighted average of the least squares
estimator ai and the ccmmon value &., are regressed towards a. = 0 .
The same interpretation also extends to the case of the joint modal
estimates B, of =w + (1 = d.

3 °f BylBy = ughy + (1 - wp)B.]

Returniang to (3.6), we can write
Yis ™ 844 t (1~ w)g.. +u (g -g..)+ mﬁ(s-j - 8es) - gij] .
(3.8)

Hence, the regression of gij towards the estimate § + &i + éj =

goo +uw (g0 - g.) wB(g'j ~ g..) dependg on the particular row i ang
column j . For instance, if the observed gij is greater than the value

o+ &1 + éj’ Yij will be smaller than gij . ‘The relative roles of a specific
row i and column j in determining the direction of the vegression of gij

rust ot the reliability estimates w, and w For example, ii oy 1s mueh

B L]
larger than wB’ gij will be regressed mostly towards a combination of 8y

and g..

In passing, it is also interesting to note that ?i' = Iy, ./t
h|

is a weighted average of 8y and g..!

?i. =1~ (1~-w)Q- wu)]gi. + (1 - wa)(l - wu)g..

= wg 84 + (1 - wau)g.. s 3.9

where 1~
b

+ t"l(:ﬁ6 + v)

¢u + t

Wy = 1-(1- wa)(l - wu) -

14

Ju
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Weo is interpreted as an estimate of the reliability of g conditional

on 9 and 8 since Var(gi.le, g) = éa + t:-1(¢‘5 + v) and Var(yi.le, §) =
¢a + t-l ¢ls under the assumptions discussed in Section 2. Therefore,

estimates ?i. of Yy+ are observed row averages 8y - regressed to the overall

average g.. . Similarly,
Yog = wgg8ey + (1 - waﬂ)g.. (3.10)
where
. -1~
¢B tmod

=1-(1-w)(l-e) =z

i
o8 ¢B+m'1(?¢?6 4+ v)

g

is an estimate of the reliability of g.j conditional on ¢ and o .

3.3 A Generalized Case of the Present Model

Although we have discussed the problem of estimating proportlons in
two-way tables in the context of testing, this sawe model can be extended

to a more general case where the indices n,, of tha binomial distributions

13

for xij in cells (i, J) are all unequal. For example, one may be
interested in simultaneously estimating proportions of female students
in t different majors (Science, Art, etc.,) for each of m state

universities. In this case, we may take samples of different sizes nij for each

1

combination of majors and universities. Replacing all vy by Ve = z;;;-;rf
in (3.1), we obtain the posterior joint distributions of T, @, «, and

g f&r this general case. Thus, the joint modal estimates of [, 6, q,

-

and B can be found by solving system (3.2) iteratively eXcept substituting

for vy in (3.2a). The estimates #,, of w , are also obtained from

Vij 1j 1j

(3.5) with n,, substituting foy oy
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Ix may be noted that in this generalized application, our problem
is similar to that treated by Lindley (1972) with two differences.
Firstly, Lindley studies the general two-way ANOVA design so that there
usually are replicated observations within each cell., In the present
case, there 1s only one proportion observed for each cell. Secondly,
we have a simpler case where all within (error) variances (vij) are

known, while Lindley deals mostly with unknown within variances.

4. PFurther Discussion of the Prior Distributions

In Section 2, ¢u, ¢B, and ¢6 are apriorl assumed to have independent
inverse chi~-square distributions with parameters (va, la), (vB, lB),
and (vﬁ, AG), respectively. In practice, the investigator must supply

values for these three pairs of parameters to make the analysis feasible.

It tas been argued by Novick, Lewis and Jackson, (1973), that
in the absence of any specific information, a reasonable choice for
the degrees of freedom parameter of the inverse chi-square distribution
is 8 . 1f we accept this choice, the problem is reduced to that of
specifying Aa’ AB, and 16 .
According to the assumptions made in Section 2, the prior

marginal distribution of Tij conditional on 9, ¢a’ ¢6’ and ¢6 is normal

with

Etrgglen o o5 85 = 0

and

Var(y, (8, 8,4 g #5) = 6, + b5 + &5 - (4.2)
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Now 1if we ask the investigator about what the variance of Yy for a
randomly chosen person-test combination (i, j), we obtain an estimate
of the sum $, * ¢B + ¢6 » This variance would usually be small, for
example, between ,04 and .02, We can further equate this estimate to
the expected value of ¢y * ¢6 + ¢; . Since independent inverse chi-

square distributions are assumed for ¢u’ ¢B’ and ¢6’ we obtain

£ lu XB lG
\-(¢u + ¢6 + ¢6) = v, - 7+ v - 7+ %% . (4.2)

Now, for illustrative purposes, assume the estimate of ¢a + ¢B

5 -3 ) + v -3~ 02, (4.3)
Combining (4.3) with the choice Vo = vB = Vg = 8, we should take
Vg * Vg + V.= W12 . {(4.4)

The investigator can now divide the total given in (4.4) among the three
sum of squares parameters according to his prior beliefs as to the relative
importance of person, test and person by test interaction affects on the
transformed Yij » However, he should not set any of these parameters

equal to zevo for reasons discussed in Novick (1969}, Thus, in the

absence of specific information, he might choose
Au = lB - AG = 04 , (4.5)

In the next section, we shall examine, among other :things, the effect of

these cholces on the estimates of Yij .
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5. Numerical Examples

To i{llustrate the application of the present model, a set of data is
constructed. There are 25 persons taking 5 related tests, each having 8
items, Th2 observed proportions of correct answers are given in Table 1.
These data were analyzed with different prior inverse chi-square distri-
butions for ¢4 ¢B’ and ¢c . In Table 2, estimated proportions (ﬁij) based
on prior specifications Ve T Vg TV = 8 and Aa = AB = 16 = ,028 are
presented. It may be noted that since w6(= .0071) is negligible compared
with W, and mﬁ y the estimates ?ij are nearly completely regressed
towards the combination wa(gi. - 8e.) + wB(g.j - gee) + ge. =B+ &i + éj
(see equation 2.6a). Thus, the individually observed gij plays very little
role in estimating Yij except through its contribution to 8o g.j,
and g.. . Accordingly, the estimates ﬁij are largely dependent on the
combined row, column, and overall averages of observed proportions.

In order to study the effects of prior parameters (va’ lu), (vs, AS),
and (Vs, 16) on the estimates ﬁij’ these data were also analyzed with
Vg = vB = v, =8, ) 8

Aa = AB = AG = ,10. The results were presented in Tables 3 and 4.

respectively. As can be seen from these tables, Bayesian estimates of

4

$ ¢B’ and ¢6 are larger for bigger prior estimates (Au/v&, AB/ve, and
Aafvs) of these variances. However, the increment of 66 is smaller since
its estimate 18 dominated by the sample information (with weight mt

versus “3)' Consequently, as prior estimates of these variance components
increase, Wy and wB become comparatively larger while We does not

change much. In general, there were not substantial differences among

estimates ﬁij given in Tables 2, 3, and 4. They reveal the common
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trend of regressing ?ij towards 8 *+ ﬁi + éj and assigning very little
weight to specific transformed cell proportions gij . As w, and g
increase, estimates ﬁij will increase for those (i, j) cells whose

marginal averages 8y g.j are both bigger than the overall average

ge. . Conversely, if gye and g.j are both smaller than g.., corresponding

P

estimates ﬁij will be lower for higher @, and wg -
Finally, we may remark that for this data set, the classical estimate

of ¢6 is negative. The sample statistic Ei(gij - By " g.j + g..)2,

vhose expected value provides an estimate of ¢6 + v, is 2,1491 , Therefore,

the classical estimate of ¢6 based on expected mean squares is found to be

$5 = [53(31j T Byr T By + B--)2]/(m - 1)( - 1) - v=-,0070. Tor

reference, we also calculated classical estimates of ¢a and ¢6 based on

I, - g..)2 = 6878 and Bgey - g..)% = .00495;

! = —-1 * 2 - 3 - -
and

by = #[m (g - g )%/ (t = 1) - §; - vi = .0003 .

It is suspected that in the present context, the classical estimate of
¢6 + v is based on only one observation per cell so that it is subject

to large variations and thus highly un<table.

335




18
Table 1: Observed Proportions
m=25t=5 n=8
Subject/Test 1 2 3 4 5 Average 8y
1 .875 750  1.000 .750 .875 .850 1.149
2 .750 625 «799 « 500 875 .700 975
3 .875 1.000 1.000 .75  .875  .925 1.254
4 .750 500 .625 .750 .750 .0675 . 947
5 750 875 .625 750 1.000 .800 1.098
6 .875 625 .750 500 625 675 L9501
7 1.000 .875 875  1.000 1.000 .950 1.303
8 .875 .875 .750 .875 .625 800 1.07¢
9 .750 .875 750 1.000 .B875 .850 1.149
10 875  1.000 625 1.000 .750 .850 1.175
11 .875 .875 .750  1.000 .875 .875 1.177
12 1.000 1.000 .875 .875  1.000 .950 1.303
13 1.¢00 1.000 1.000 1.000 1.000 1.000 1.401
14 1.000 1.000 .750 875  1.000 925 1.275
15 750  1.000 .875 625 .875 .825 1.126
16 750 .875 625 .750 .625 «725 .997
17 500 .875 625 .750 625 .675 .951
18 .875 .375 500 625 500 .75 .859
19 500 .375 .375 625 .750 «225 .80¢
20 .625 500 .625 v 500 250 500 184
21 750  1.000 750  1.000 1.000 900 1.248
22 .875 .875 1.000 875 .750 .875 1.177
23 750 625 .625 .750 625 .675 246
24 L7530 875 .750 500 875 .750 1.026
25 1.0060 1.000 .750  1.000 1.000 950 1.324
Average .815 .810 745 .790 .800 .792
g.j 1.115 1.12¢ 1.03%9 1.101 1.112 g.. = 1.099
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Table 2: Estimates of Proportions
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=V R Vg s 8, Au = A, = AG = ,028
Subject/Test 1 2 3 4 5
1 . 843 .850 . 803 .835 . 842
2 .762 .770 714 .752 .761
3 . 886 . 894 .849 .879 . 884
4 . 748 .755 . 699 739 . 746
5 .820 .829 .775 .812 .820
b 751 .758 702 740 747
7 . 906 .911 .868 .899 . 904
8 .811 .819 .765 .803 . 807
9 .842 .851 .800 .837 842
10 .854 .863 .811 .848 .852
11 .855 .862 . 813 .849 .853
12 .906 +912 . 868 .898 . 904
13 939 945 . 907 +934 .938
14 .896 .902 .856 .B88 894
15 .832 842 . 790 . 824 .831
16 .773 .782 .725 .764 .770
17 .748 .760 .701 . 741 747
18 . 704 .710 .651 .693 .699
19 .675 .684 .623 .666 .674
20 .662 .671 .611 .652 .658
21 . 883 .892 . B&4 .878 .883
22 .855 .862 .815 848 .853
23 . 747 .755 .698 .739 744
24 . 787 .796 . 740 777 .786
25 . 914 . 920 .876 . 907 912

el

w = ,5357, w
V]

- .0068, 258 = .0023, ‘35 = . 0002

= ,6620, w, = .0071

B §
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Table 3: Estimates of Proportions
uu = vB =V, = 8, Xa = XB = XG = .06

Subject/Test 1 2 3 4 5
1 849 .856 .801 .838 847
2 .753 .762 .695 .738 .753
3 .897 .508 .855 .889 .895
4 737 745 677 727 .735
5 .821 .832 .766 .811 .824
6 741 748 .65 .725 .735
7 .920 .925 .875 913 .919
8 .811 .821 .756 .802 .806
9 .847 .858 .796 .843 847
10 .861 .873 .808 .855 .857
11 .862 .871 .811 .856 .860
12 .920 .928 .875 .910 .919
13 956 .962 .920 .950 .955
14 .909 917 .861 .899 .907
15 .835 .849 .785 824 .835
16 .766 .778 .707 .756 762
17 .736 .752 .679 .729 735
18 .687 .691 .620 672 678
19 .650 .660 .586 . 640 .651
20 636 .646 .573 .622 .628
21 .893 .905 847 .889 .895
22 . 862 .871 .816 .853 .859
23 .736 745 676 .726 .732
24 .782 794 .726 .769 .782
25 .929 .936 .884 .922 927

$u = ,0100, $B = ,0049, $5 = . 0005

w, = +6256, w, = .8027, u; = .0153
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Table 4: Estimates of Proportions

Ve B Vg = Vg =6, A m Ay = Ag = 10

Subject/Test ! 2 3 4 5
1 .853 .860 .803 .840 .851
2 . 746 .755 .682 729 747
3 . 200 .913 .862 .897 . 904
4 .728 734 .660 .716 .725
5 .821 . 834 .760 811 .827
6 .73 .739 .666 .713 .725
7 .932 .935 .883 .924 .930
8 .812 .822 749 .801 . 803
9 . 850 .863 .795 848 .851

10 .866 .880 .807 . 862 .861
11 867 877 811 .863 .865
12 932 .939 .883 .920 .930
13 .969 .975 932 .963 .968
14 .920 .928 .866 . 907 918
15 .837 .855 .783 .824 . 837
16 .760 775 .694 .749 .755
17 .725 745 563 719 725
18 672 672 .595 .654 .660
19 .628 .638 .55¢€ .618 631
20 .613 .623 .544 .598 601
21 900 .915 .851 .899 .905
22 .867 877 .819 .858 .863
23 727 .736 .659 .7L5 .721
24 .778 .793 717 .762 779
25 .940 948 . 891 .933 .939
$a = .0141, $B = 0095, $6 = 0008

v, = .7001, W, = 8866, and We = 0257
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Marginal Distributions for the Estimation of Proportions in Two-Way Tables

by
Ming-mel Wang
The American College Testing Program
and
Charles Lewis
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1. Introduction

The Bayesian Mode II technique for simultaneous estimation of
proportions in m groups has recently been extended to provide estimates
of proportions in two-way tables by Wang and Lewis (1973). The random
effects analysis of variance technique is applied to the transformed

(observed) proportions

X X, t1
- -1 1 -1/1
By T T e /—n§+—1 ’

where 1,, is the observed number of correct answers for person 1 on test j

13

of nj items (Freeman and Tukey, 1950), The gij are then assumed to

be approximately normally distributed with mean Yij(= sinﬁlfnij, where the

7, . are the true proportions of successes for person i on test j)} and known

1]

variance vj = (&nj + 2)“1 . The next step is to express Yij as a sum of the

The research reported herein was performed pursuant to Grant No.
O0EG-0-72-0711 with the O0ffice of Education, U. S. Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct
of the project. Points of view or opinions stated do not, therefore,
necessarily represent official Office of Education position or policy.
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overall effect ¢, person effect «,, test effect B,, and person by test

1’ 3

interaction effect 61j (these cfiects are defined in terms of expectations
of Yij with respect to the appropriate populatioas of persons and tests, see
Wang and Lewis, 1973, Section 2)}. Applying the exchangeability theorem

(De ¥inetti, 1937), we obtain estimates of Yij by the Bayesian Model II
procedure which incorporates not only the information provided by the
performance of all persons on the test j, but also the information contained
in the performance of the person 1 on all other tests into estimation of a

single Yij + The resulting Bayesian estimates exhibit a regression of the

least squares estimates & = g ;. ~ .., Bj =gy~ ger and

Sij "~ By

d.., which, in the linear model, are each zero. Because we are making

-8y T g.j + g.. towards thelr respective averages 4., B., and

use of collateral information (provided by other tests as well as other

persons)} in estimating a specific proportion 7 it is expected, as in

ij?
the one way m-group proportion case (Novick, Lewils, and Jackson, 1973),
that some advantage will be gained over conventional methods.

The earlier paper (Wang and Lewis, 1973) provides us with the joint
modal estimates of Yij’ @, Bj’ and 9 . However, in applications to
decision making in the context of individually prescribed instruction
(IP1), the posterior marginal distributions of the Yij will be more useful.
What is required in such applications is, for each test, the aposteriori
probability that a person's test score is larger than some prespecified
lavel, and this is required for each person and each test. As in the
case of estimating proportions in m groups, algebraic expressions in closed
form for these marginal distributions do not seem to exisé. Hence, the

marginal distributions of the Yij will be studied numerically in the present

paper. In par.icular, we shall attempt to apply the numerical methods
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developed by Lewis, Wang, and Novick (1973) in connection with estimating
m group proportions to o.. present provlem. Again, we will assume that
all tests concerned are of equal length (nj = n for all }) to retain
certain mathematical simplicity.

In the ANOVA terminology, the model adopted in the previous paper
is the go-called non-additive model which includes interaction effects.
Three variance components ¢a’ ¢B, and ¢6 of person, test, and interaction
effects, respectively, are postulated to account for the variability of
Yij . In gome cases, an additive model, one which assumes no interaction
effects, may be a satisfactory alternative to the more general non-additive
model. Specifically, in the context of IPI, the gtudents are tested on
related skills after studying the prescribed materials on a subject. Thus,
the posttest unit consists of a get of tests which are very similar. If
the tests are sufficiently simitar {(approaching t-equivalence in the
transformed units) go that the interaction variance component ¢6 is
negligibly small compared with the other variance components, it will
be adequate to choose an additive model in our analysis (see discussions
in Lord and Novick, 1968, Section 7.6). In obtaining joint modal
estimateg for Yij’ ai, Bj’ and 9, we have found that the contribution
of individual gij to qij igs negligible in nearly all examples we analyzed.
This indicates that the estimates of Yi5 obtained froﬁ an additive model
vill be very close to those provided by the non-additive model. We may
thus hope the additive model to be adequate for these data. The advantage
of assuming an additive model is that the computational problem in
obtaining marginal estimates for Yij will be much easier to handle while
the amount of computational effort l(especially computer time)} required
for this same purpose in the non-additive case ig beyond practicality.

We might note that while the arc-sine transformation is primarily designed
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for variance stabilization, it also has a strong normalizing effect, which
we have relied upon, and also some tendency to yield additivity. Our
findings in these present applications seem to confirm remarks along these
lines made to us by J. W, Tukey. For these reasons, the addifive case

of estimating proportions in two-way tables will be briefly discussed next,

followed by the topic of marginal distributions.
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2. An Additive Model for the Estimation of Gammas
In this section, we discuss a model which assumes no interaction effect

for Yij . Thus, we may formulate

Tij =8 + a, + Bj (2.1}

-~

where 8 = gifayij, ay = 33*11 - 8, and Bj = GiYij - & are defined in the
appropriate person and test populations. It 1s assumed that the person
effects are exchangeable apriori among all persons in the population.
Similarly, the test effects are assumed to be exchangeable in he test
population. We further assume that the distributions of oy and Bj are normal
and independent of each other. Finally, the prior distribution of & is
assumed to be locally uniform within the range of interest, and independent
of the distributions of a, and Bj (see also discussions in Lindley and

Smith, 1972, and Smith, 1973). Thus, we obtain the likelihood and

conditional prior density of 6, @, and B as:

1 2
(e’ . Gy « - — T - - - .
206, @, B|G) = expi~ 5= ij?- (g5 = 0 - 0oy = 87 (2.2)
and
_ o -t
2 2 2 2
b0, o B4, 0 = 4, ° expl-Toy/20.) 4 ° exp{~28/24,),(2.3)

where G = (gii) contzins the transformed (observed) proportions gij for
m persons on t tests and the vectors o and 8 contain the elements oy and
Bj’ respectively, The corresponding matrix for the elements Yij will be

denoted I' . The zero means for the distributions of o, and 8, are justified

h|
from the definitions of these effects. HNote also that we discuss only
the case of equal length tests so that v = (4n + 2)—1 is used in

Equation (2.2). To complete the model for our analysis, we assume, as

usual, independent inverse chi~square prior distributions for the variances
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¢a and ¢8’ with parameters (va, Aa) and (vB, 18), respectively (see Novick

and Jackson, 1974, Section 7.6). Thus,

-k(va + 2) --55(\;B +°2)
b(¢, ¢8) “ 9, exp{-la/2¢a} b exp{-18/2¢8} . (2.8)

Combining Equations (2.2) through (2.4), and integrating with respect

to ¢a and ¢B’ we derive the posterior joint density of ©, a, and § to be:

“im + v ) (e + v,)
b(6s, o, 8]¢) « I\, + %o1] “ g + 26 8
- T i i i
2
exl- 55 TRA I ST 2.5)

Therefore, the joint modal estimates of 6, a, and B are found to be:

= g.. (2.6a)
G = (8. ~g.), & =0 (2.6b)
By = wplgey - 8.)s B. =0 (2.6¢)
where
= B/ Gy + £, wy = §,/G, + 0N (2.7)
and

By = O+ T/ @4y, by = O+ WD/ +v) . @8

In texrms of Equation (2.1), we obtain estimates for the Yij:

{rij = § + &i + Bj geo 0 (g0 - 80) + we(g.j “g..) o (2.9)

341




Est imates of proportions based on §ij are obtained from the sine-squared
transformations as described in our earlier paper.

It should be pointed out that the §ij are the estimates of Tij based
on the joint modal estimates 8, §, and § which maximize the joint posterior
density of 6, , and 8 . These estimates, %ij, are not joint modal
estimates of the Tij from the full joint posterior distribution of the Tij .
The joint distribution of the mt variables Yij’ in this case, is depenerate
with actual dimensionality m +t - 1 (< mt). To see this, we recall that
the definition in Equation (2,1}, in effect, shows that there can be only
m = t - 1 linearly independent rows (or columns) in the coefficient matrix which
generates Tij from 8, &, and 8 . That means, there exists at least a
suitable subset 9 of m+t - 1 elements of the set { = {Yij} such that all
the other (mt = m - t + 1) elements in the complemeniary subset 9—9* can be
expressed as linear combinations of the elements in 9*. For example, given

Tll’ le’ Yla’ and Y21 for the case m= 2’ t = 3’ we can Write:

il

Y2 200y +8) =¥y Yy~ ¥y

and

=0 +a

Y3 2 ¥ B3 =¥y Yy T Yy

Hence, the joint density can be defined in a space of dimensionality
m+t -1 at most (i.e., for at most m+ t - 1 of the elements Tij)'
However, if we take any suitable subset Q* of m +t - 1 elements from
the whole set 2, the joint modal estimates of the Yij contained in Q*
and the variables a¢. and B. are identical to those §ij obtained from the
joint distribution of 8, o, and § . This can be shown by applying

Lemnma 3.2.3 in Anderson (1958, p. 4#7) and noting that the set of variables
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*
@, «., B.} is a one-to-one transformation of the set {8, ¢, g}. Thus,

. *
the joint mode of {Q , ., B.} can be written as:

-~ =~+... 3
Yij 8 a + Bj ’

*
for all ""13 contained in € , and

& = L& =0, B. = LB, =0 .

In the above example, we can state that the joint modes of Y110 Y120 Y13°
Y12 ©-» and B. are §11, ?12, ?13, ?21, d. =0, and B. = 0 as having
obtained from the joint distribution of 6, &, and B .

To illustrate how this additive modal approximates the more general
non~additive model used in our previous paper, we have re-analyzed the s, ne
data with the present procedure. The data were explained in Table 1 of
Wang and Lewis (1973). The same prior parameters (va = 8, A, = .028)
and (vB = 8, lB = ,028) used in the non-additive case were adopted for the
present analysis. Estimates of proportions obtaZned in the additive case
are presented in Table 1. On comparing the results given in this table

th those given in Table 2 of Wang and Lewis (1973), it is clearly seen

that there are practically no differences between the two sets of estimates

of proportions obtained from additive and non-additive models.




3. Conditional Posterior Distribution for Ganmas
3.1 Additive Case
The additive model described in Section 2 can be summarized by
the following statementst
(1) g|9, ¢, 8 has a multivariate normal distribution with mean
vector Y = Af and dispersion matrix vI, where §{' = (8, a’, B')

ig a vector of order m+ t + 1, and

1 |
:.].'t Ol-]v:t
;e :lt
A= “mt i SV
|
AR/

is an mt by m + t + 1 matrix, where 0 indicate zeros in the
rest of the matrix.
Here g’ and y' are row vectors whose elements are the rows of G and
I', respectively. Note that the notation }k is used to denote a k x 1
column vector, all of whose elements are 1 and Ek an identity matrix of

order k¥ . The likelihood of £ can then be written as
L(Elg) « expl- 5= (g - AD)' (g - AE)) . (3.1)

(i1) The conditional prior distribution of 5 given ¢a and ¢B may be

written in the following form:

2

bElt,, #g) = expl- NlTal/g, + 28]

Jag))
= exp{.. !ig']_?—g}’ (3.2)

where Q— is the diagonal matrix of order (m + t + 1) defined as
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Combining Equations (3.1) and (3.2), the posterior conditional

distribution of § given ¢a and ¢B is found to be:
b(Elé,s 96 8
= 4(g|e) - b(gl4,, ¢
= expl- 3= (g - 45)' (g - 4) - 4E'D7E)
« expl- 2= (£ - BA'g)'BH(¢ - BA'g)) (3.3)
Plmy f2 7 2282 w80 )

where B~ = A'A + vD~ is a nonsingular square symmetric matrix of order

{m + t + 1) and can be explicitly expressed as:

[ mt el ml! ]
~m -wt
-1 '
Ble| el (e +v/e)r 11l (3.4)
t .

From Equation (3.3), we recognize that the conditional distribution
of §, given ¢ , ¢, and g is a multivariate normal with mean vector

L1
& (sléy 45, 8) = Ba'g and dispersion matrix Var(le,, 45, g) = vB .

Thus, the mean vector and dispersion matrix can be obtained if the matrix

-

-1 -
B~ is inverted. Since the inverse of B 1 is not easy to obtain directly

by examining Equation (3.4), we now try to find the posterior conditional

mean vector and dispersion matrix of £ by first considering the conditional

distributions of ¢, B, and © separately.
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In terms of Bquations (2.2) and (2.3), we have

b{e, §|¢G’ ¢8’ 9)

« [ 2(0, oy §|§) b(s, o, §|¢a’ ¢B) do

« -1 . = - z 1 . 2__1 ;.2
exp{ S ﬁ: (gij ge ot ta Bj+8.) - 2% fai 2¢B jmj}

« exp{- %[v-ltz(gi. - Bee - a b a.)z + ¢;1 Zai]}
i i

v exp{~ 4[v 'n Tlgey = g0 - By + 8.)% + o7 1g?

1. (3.9
3 By

Thus, b{a, 8|¢a’ ¢8’ g) can be factored into two parts and each involves
only ¢ or § . This implies that the conditional posterior distribution of
a and B, given ¢a’ ¢B’ and G, are independent of each other. We then

can write
bla, Bloy, bg & = blaley, b4, &) « bCBlay, 85 © . (3.6)

We may now proceed to find the posterior conditional mean vector 8, and
dispersion matrix 9& of g|¢a, ¢8, G by observing:
blelo,s ¢ O
o exp[-&[v-lt T{B.e — 8ee — &, + a.)z + ¢—1 Zazl}
g 1 i o i
2

t 2 2
« exp(- ZvRa [Eai - ZRGZGi(gi. - g.ee) - mR &+ Raz(gi. -g..)°1}

t 2 2
« exp(- §;§; [E(ai - Ragi. + Rag..) - ok, a.]}

expl-5(s - ) 'C (e - u )}, (3.72)




H& = {Ra(gl. = 8'-)’ Ra(gz' - 8")’ ceey Ru(gm- - 8--)] * {3.7b)

R

-1 = _E—- - _E. 1
ga VRa [Em m ;n&m] *
and
- -1
Ra ¢a,(¢a +t V) . (3.7¢)

It follows that g|¢a, ¢B, G has a multivariate normal distribution with

mean vector u  and dlspersion matrix
w [,
"7 [Rtaa-ry | (3.74)

Similarly, the posterior conditional distribution of §I¢a’ ¢B’ G is

found to be a multivariate normal with mean vector

Eé = [Rﬁ(g'l - 8")’ RB(S'Z - g")’ trry Rﬁ(g.t - g")] ’ (3-83)

and dispersion matrix

vR R 11
e _B g¥t~e
¢ = [;t ‘T -RY RB) :1 ) (3.8b)
where
=1
RB ¢B/(¢B +m V) . {3.8¢c)

In order to obtain the conditional mean of B|¢a, éB’ 9, it is easier

to first consider the conditional mean of B|¢a, ¢B’ G, ¢ . Since
b{(8, 9|¢0t’ 4’8’ G)
« [ %0, «, ng) b{(o, &y §I¢C¢’ ¢B) dg

2 _ .t

1 2 ! RY
« exp{- E Eﬂi X i(gi.—g. .—Oti'i-ct.) - m ;:(g.j—ﬁ a.)°} ,
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we find for given g,
(84, o5 G @)
« expl- 72— [0 - (g.. - a.)]%)
2(m¢B + v) v ' *
_This implies
GOlogs ¢ 60 @ = gee - a
Furthermore, referring to Equation (3.7b), we have
£ 1
Cql-lty 0 O =5 18G4 4 O
Rﬂ‘.
= ?i(gi. - Bee)
=0 .
Hence,
* - =
(x_,(e|¢u’ ¢B’ g) &gg(e|¢u’ ¢B’ 9, g-) T Bee o (3.9)

The results of Equations (3.7b), (3.8a), and (3.9) lead us to conclude:
G ysleg 4 O = GO+ o + 80y 45 ©

= g,. + Ra(gi' - gue) + RB(g.j - ge.) « (3.10)

It may be remarked that the conditional posterior mean of Yij given ¢a’ ¢B,
and G takes a similar form to that of ;ij expresged in Equation (2.9) with
Ra, RB replacing W, wB, respectively,

To obtain the conditional variance of Yij given ¢u’ $B, and G, we
have to find the dispersion matrix vB of 5' = (9, g', '), For this purpose

-

we make use of Lhe result(z (§1¢u’ ¢B, G) = BA'g . Since

3514
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(-'A'g)' = (mtg..’ tglo’ tgzo’ ceny tgmo’ l'[lg.l, teey mgot) y

and

[€%§l¢a, bgr G]°

= [ge., Ra(gl.-g..), cery ﬁa(gm.-g..), RB(g.l—g..), ceey RB(g.t-g..)]

as indicated by Equations (3.7b), (3.8a), and (3.9), we may write:

i mtg.r —g.. g
tgl. Ra(gl' - 8..)
B | tg.|=|R(g. -5 (3.11)
mg. RB(g.1 - 2..)
L mé.t R;(S't - 2ee)

The elements of the matrix B are known except those of its first row and

first column. Explicitly, if we denote

Cov(9, ai|¢a, ¢B’ G) = vdi i=1,2, ..., m

Cov (8, sjl%, bgr O = ve, =1, 2, oo, t

[ =1
|

and

Var(e|¢a, ¢B’ G) =va ,

it is easy to verify that

B = vl Var(E|ey, ¢4 ©)

=5 d' ef
= g l:a!v 9 N (3'12)
1 -
e 9 Colv 335
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where d' = (dl, veey dm), e’ = (el, “rey et), Qa and QB are given in
Equations (3.7d) and (3.8b), respectively, and 0 is an m x t null matrix.
Note also that Cov(ai, Bj]¢a’ ¢B, G) = 0 because the distributions of

¢ and B8 given ¢a’ ¢B, and G are independent [see Equation (3.6)]. Entering
all the known elements of B as shown in Equation (3.12) into Equation

(3.11), the unknown elements a, di’ and e, can then be found by solving:

]

. K
di(mtg.-) + e tgi. + WR_&? tgi. = Ra(gi. g+e) 5 {3.13a)

R R2
B B -
ej (mtg..) + (F) mg.j + m? mg.j = RB(g.j - B W) ’ {3.13b)
and
a{mtg..) + ¢t i di g +m § ej g.j - T {3.13c)

1t is easy to verify that the solutions to Equation (3.13) are:

R

- a -1
di - me{l - RCC) v Cov (e, a‘i”’a’ ¢Bv g) (3.148)

R
B v-l

5= - m_t(_l—_R? = (3.14b)

Cov (8, Bj‘%’ ¢Bv g)

and

1 fa Rs -1
a=E 1+1-R+1—R =y Var(Ol%,q;B,g),

(3.14c)

The posterior conditional variances of Yij given ¢a’ ¢B, and G are

obtained from Equations (3.7d), (3.8b), and (3.14a) through (3.14c), and

the fact Cov(ai, Bj|¢a’ ¢B’ g) = 3
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Var(Yij|¢a. bgs ©

Var(o + a, + Bj|¢a, bgs G)

L]

Var (819, og, G) + Var(ey oy, 95, &) + Var(B e , o5, O

+2 Covid, oylo,, o, ) +2 Covie, B0 05, 6) +2 Covlay, By1d,, b ©
R R l1-R -R .

-yl -2+ By o 8

v|:t o=+ — ] (3.15)

As for the distributions of Yijl¢a’ ¢B’ G, they are each known to be
normal with wmean and variance given in Equations (3.10) and (3.15),
respectively. This follows from the definition of the Yij as linear
combinations of 0, ¢, and 8 [see Equation (2.1)], and the result that
0, a, §|¢a, bgs Ghas a (m+ ¢+ 1)-variate normal distribution [see Equation
(3.3)]. 1In passing, we may note that similar results of the conditional
means of 0, ¢, and 8 given ¢a’ ¢B, and G have also been derived by Lindley
and Smith (1972, Section 3.1), in connectlion with a general two-factor

design without Interaction.

3.2 HNon~additive Case

In the non-additive case, the joint distribution of y is mondegenerate
with dimensionality mt ., This can be seen by examining the dispersion
*
matrix C of y given 0, ¢a’ ¢B’ and @6 under the assumptions made Iin the

earlier paper by Wang and Lewls (1973):
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pt ' - —
(¢B+¢5);t+¢altlt: bl : e : %gl¢
———————— S U S (U
*
9L, : :(¢B+¢6);t+¢a%t%t : T : .
x | -—-—-===—-- e —— = R [N R
9 = . I . t . I . (3016)
: I . [ :
———————— e e _ .
bgly : T : - :(¢B+¢6);t+¢alt;; 1

*
The matrix ¢ 1is a nonsingular symmetric matrix of order mt . In contrast,
the dispersion matrix C of y given 6, @a, and ¢B in the additive case as

summarized from the assumptions made in Section 2,

1
Palto il : %l : Cre : %1,
———————— S
éB;t :¢B£t+¢alt}t : " . : .
g =TT T—. _____ TT____:—_——. ______ (3.1?)
. | ' | ' | .
———————— R
¢th : v : " . ; ¢B;t+¢altlt i
. -

is singular, of rank m + t - 1 (< mt). Hence, as mentioned earlier, the
joint distributlon of y in this case is degenerate with actual dimensionalicy
m+ t - 1,

As a result of the above distinction, the posterior conditional
distribution of Tij given ¢a’ éB’ éﬂ, and G in the non-additive case can
be approached in a somewhat different way. Under the assumptions made,
the prior distribution of y can be described in two stages:

(1) Given 9, éa’ éB’ and ¢6’ y is, apriori, assumed‘to have an

mt-variate noxrmal distribution with mean vector 81 and dispersion

*
matrix ¢ displayed in Equation (3.16). Note that for
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convenlence, we have used ] without subscript to denote
an mt X 1 vector of ones (viz, 1 = }mt)'
(11) Apriori, 6 has a uniform distribution.

Combining these two statements with the normal likelihood of y given g,

it can be shown, after a little algebra, that:

blyley ¢ 650 &)

© ] expl= o (y - g)'(y - g) %y - O)'¢" Ny - oL} d

-1 * K- -1 %
« exp{-%(y - v 1§ g)'B 1(1 -v lg g}, (3.18)
where
*e - Ko * Aol = -
g 1 = v 1~mt + 9 1 _ C 11-(}'19 1}) 1}'9 1

is an mt X mt nonsingular symmetric matrix. Thus, we conclude that the

posterilor conditional joint distribution of Y glven ¢a’ ¢B’ ¢6’ and G

k-
is 3 multivariate normal with mean vector 8 = v 1

. *
matrix ? .

*
B g and dispersion

~

Knowing the distributionzl form of Il¢a’ ¢B, ¢6’ G, we now proceed to

* *
find 2 and B without actually carrying out the matrix inversion of

g*_l. Applying a lemma to be given later in Section 4, and referring to
Equation (2.11) in Wang and Lewis (1973, p. 7), we can derive by
integrating the expression w.r.t. 9, @, and §:

b(I|¢G’ ¢B’ ¢6’ 5)

m=-1 _t-1
2 (¢B + m-1¢5) 2

"D, + el

“ ¢g¥(m - 1)t

1 2 _ 1 _ _ 2

. exp{-g-;;ﬁi (gij - Ty --2-4;;3 (Yij Yye = Yoyt Yeu)7}

- expf{- 1 ) z (Yi. - Y..)z - 1 o) E(Y.j - 7..)2} .
2(45a +t ¢6) i ‘2(¢B + m ¢6) h|

Q 359 (3.19)
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Since we have shown that b(1|¢a. ¢gs 450 §) is a multivariate normal
density, the conditional mean of Tij given ¢C¢’ ¢B, ¢6, and g can be found

by solving the set of equations:
3 in b(1|¢a’ ¢B’ ¢6! §)/3Yij = 0

for Yij . After some lengthy algebraic manipulations, this procedure leads

to the result

” S * * * * *
E (Yij!¢a! ¢B! ¢6! §) = Rﬁgij + (1 - Ra) [RClgi. + RBg'j + (1 - Ra - RB)g"]!

(3.20)
vhere
¢ ¢ ¢
Rz = $ . R* = “la , and R; = _? .
bt v by + (b5t V) ¢B +m iyt v)
(3.21)

To obtain the conditional variance of Yij given ¢a’ ¢B, ¢6’ and g,
-1 %
we make use of the result ég(x|¢a. ¢B’ ¢6’ g)=v 1§ g » This implies
-l %
that the mt diagonal elements of the matrix v 1§ are the coefficients of
gij in expressing C?(Yijl¢a, ¢6’ ¢6’ g) in terms of the elements of g .

Thus, we find from examining Equation (3.20)

. . R R; 1- R - R;

(3.22)
because Equation (3.18) indicates that the diagonal elements of the matrix
§* are the variances of Yij|¢a’ ¢B, ¢6’ g . In summary then, we have
shown that the posterior marginal distributions of 10 conditional on
¢y Ogo and ¢;, are normal with means and variances given by Equations

Laan i 3

(3.20) and (3.22), respectively.

360
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4. Posterior Marginal Mean Estimates for Gammas

Having obtalned the conditional means and varlances of Yij given the
variance components (¢a’ $gs and ¢6)’ we new proceed to find marginal
mean estimates of gammas by the same procedure used in Lewis, Wang, and
Novick {1973). We shall restrict ourselves primarily to a consideration
of the additive case as we have not yet been able to develop a practicable

numerical algorithm for the non-additive case.

4.1 Additive Case

4.1.1 Posterior Distributions for the Variance Components
To obtain the posterior jolnt distribution of ¢a’ ¢B, conslder the
function
b{o, «, §I¢G’ ¢B’ g) = %(8, 3] §|§) - b{9, o, §|¢G’ ¢B)’

then,

b(8, g|¢a, ¢B’ g)

f b(a, Gy @I¢a’ ¢B’ 5) dg

t m
-1. 2 T2 2 1 , 2
p (¢B +m V) by exp{- §$; ia - 3% i? (gij-g.j—ai+a.) %
. exp{- % & (g.j -8 - a.)2/(¢B + m-lv)} . {4.1)

3

Thus,

b(§|¢a; ¢B’ 5)

= [ b{e, g|¢a, ¢B’ g) de

t-1 m
. -1, 2 "2 ! 1
(¢B +m V) b, exp{ Zo, iui o Lz(gij . ¥ -0 +a. ) }
« expi~- % & (g.j - g..)2/(¢B + m_lv)} . {(6.2)

3
361
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Also,
ba, Bloy, ¢4 8
= fb(e, q g|¢a, b g) do
_m _t
= ¢, 2 exp(- —3— Ia } . ¢B 2 exp{- 2¢ Ig }
g3 d
'exp{—EE(g v Bee -0, + 0. - B, +8.)° . (4.3)
ij i h| '

ij
Since

baloy, ¢4, 8) = £ bl Blo, 45 ) 4B,

and
2 2
22(3 ] 'Hl -8.,+8. ) = Ez(g -g..~a,ta, ) + mE(g. -£..=B +8.)
eyt 3 o yeyy AR

we find from Equations (4.2) and (4.3):

t -1
2

t
3 1 6% - 2

1““%+mdﬂ
j

. expll i(g.j - g..)2/(¢8 +nty) ap .

Rearranging the above eguation, and making the replacements @B = x, V=g,

m=k ta=g, and n' = (nl, oy eoey "g) = 8', we arrive at the following

lemma:
22
2 1 2 k 2
! x exp(- 7 inj - 3 i(g.j - ge. - nj +n.)"} dn
_t-1
« {(x + k 1c) 2 exp({-~ E(g.j - g..)7}
2+ k Te) 3
(4.4)
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Applying the above lemma to Equation (4.2) and noting tasat

2 2
2I(g, ,~8. .~ +a. )" = —g . g + , _ ro. )2

it is easy to verify

J15 bG8, a, Blo, ¢g» €) d6 du dB

= S blaley, ¢g @) do

_t - 1 _m-1
« (¢8 + m—lv) 2 (¢a + t-lv) 2
« exp{ - 1 T Iy - g. )2 - L - gy - g. )2} .
2(¢B +m “v) i 2(¢a +t Ty i

(4.5)

It is further observed:

b(d,s 0gl8) = S15 b8, @, Blo, 04 @) ¢ Doy, 0) dO do dB

b(o,, bg) SIS (O, a, Blo , 0y, @) 40 dz dE,  (4.6)

where b(¢a’ ¢B) is given in Equation (2.4). Consequently, upon
substituting the expressions in Equations (2.4) and (4.5) into

Equation (4.6), we have shown

b(o,, ¢508) = blo le) - blogle) 4.7
where
m=- 1
1T kv +2) Sy A,
b(¢ lg) « (¢ +t7 V) I + exp{- - },
ol 8 a o 2(¢a e lv) ¢a
(4.8a)
and t -1
- = Ky, +2) s )
-1 2 ] C B
b(dlg) = (¢, +m "v) ¢ . exp {- — - },
8% 6 B 2(¢B +m 1v) 2¢B
303 (6.8b)
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WiER Sy = Dle;. = g0)" and 8¢ = Dlgoy - 804 The face that b(s,, dglg)
can be factored into the product of b(¢a|g) and b(¢B|§) shows that the
posterior distributions of ¢a and ¢8 are independent and their density
functions are given in Equations (4.8a) and (4.8b), respectively. It may
also be pointed out that the mathematical forms of b(¢a|g) and b(¢8|g) are
similar to that of b(¢p|§) in the m-group proportion case [Lewis, Wang,

and Novick, 1973, Equation (2.2}, p. 6].

4.1.2 Posterior Marginal Means and Variances of Gammas

Having discussed the conditional posterior distributions of Yij given
¢a’ ¢8, and g in Section 3.1 and the posterior distributions of ¢a’ ¢B in
Section 4.1.1, the posterior marginal mean ;ij of Yij can be readily

computed as:
Yy = Sagle = &, €, Lorgle, o 9

t

& Y £:¢B (g.. + R (8> = 8) + RB(g'j - g.)]

il

gee + pa(gi' -~ Bee) + pe(g.j -~ Bae) {4.9)

= = L\
where P éf¢ Ra’ Pa b¢8RB, and Ra’ R8 are defined in Equations (3.7¢)
and {(3.8c), respectively,

The marginal variance of Yij can also be obtained by using the relation:
Var(Yijlg) = ‘4, £ ¢ [Var (v, |¢ » b g)l + var [ (Y1j|¢a, b g}l ,
8 ¢ * ¢B
{4.10)

where the Var notation 1s used to denote

¢C(’ ¢B

var [ Glz, 3 = 706 Gl » - £ B Golx, 01786, 3) axdy
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From Equation (3.15), we obtain:

-~

({. ¢a G?¢B{var(YijI¢a’ ¢B’ g)]

R l1-R -R
o

H R
= o B B
é‘.(‘]agq’B[V( t + m + mt )]
e T T S i (4.11)
mt mt b mt g" '

The second term in Equation (4.10) is also easy to obtain:

var (G Or 10y, ¢ 8]

byt ¢B
= Var [g.. + Ra(gi. - geo) + RB(g'j -~ g..)]
P’ ¢B
2 2
= (gi. - g..) Var Ra + (g.j - g..) Var RB
¢ ®
a 8

2

B] . (4.12)

- N 2 2 - 2 _ 2 2 _
(g, - 8.2) [ét¢aRa pa] + (g.j Zeo) [€.¢BRB p

Hence, we have reduced our problem to numerical computations of the values of
L pB,{£‘¢aR§, and éf¢BR§ . The integration problem here is closely related
to that dealt with by Lewls, Wang, and Novick (1973). Thus, the same
integration algorithm described there can be adopted for the present
applications.

In general, we are Interested in providing estimates for the proportions

T This cbjective can be accomplished by applying the sine-squared

1§ °

transformations to ?ijz

2= _ 1
Y:I.j 4n °’

E ]

hy =@ *‘2‘1;’ sin (4.13)

(see Novick, Lewls, and Jackson, 1973). A numerical example will be given

in Section 5 to illustrate the estimation procedure outlined in this section.
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4.1.3 Approximations to Marginal Probabilities

In theory, the posterior cumulative probability that =#,, is less than

13

or equal to some value ™, can be computed by

prob(nij < nolg)

- prob(Yij < yolg)

,

f
= b(v 131@28vy;

- J probz <z )b(s lg) + blsslgrae, ds, , (4.14)
O O

where y_ = sin-lffg , 2 1s a standard normal variate and

- gee mR (g - ger) - Rolge, - g.)
; =0 BT Py 78 B2 5 41s)

o %
R R 1-R ~-R
[; (}JE + £ 4 _____EL___Ji) —l
t m mt -

However, in practice, it is very time-consuming (beyond reasonable time

limit with the algorithms we have tried) to evaluate this probability.

We thus suggest a less fdeal approach which is an extension of the result
in Lewis, Wang, and Novick (1973). There it was found that the

posterior distribution of Yj’ given g, can be satisfactorily approximated
by a normal distribution with mean and variance equal to the posterior
marginal mean and variance of Yj’ respectively. We venture to generalize

this normal approximation to the present case. That is,
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will be evaluated to approximate prob(nij f."0|§)~ While this
approximation may not be as accurate as in the original application
to the m-group proportion case, it should be sufficiently precise for
deciding whether a student should be advanced to the next unit in IPI,

provided the probability being estimated is not in the extreme tails.

4.2 Non-additive Case
Following the same procedura employed in Section 4.l.1, the posterior

joint distribution of ¢u’ ¢B, and ¢6 for the non—additive model can be

derived using Equation (4.4) given in the lemma:

(o, ¢ 94le)

_m=l - t=1

« G4y + 0 THEDED G el 0] T (b ek )
5 5 5
- =X - —~ © By g B4,
206) 204+ T@g] 208k (@) ]
(4.16)

* expi-

where

2
= - . - . + .
J
2
SR = i(gi' - g") ¥

172]
1)

2
C ‘?(g.j = g") ¥

and b(¢u’ ¢B, ¢6) is a product of three independent inverse chi-square

densities with parameters (vu, Aa), (vB, AB), and (vG, 16), regpectively.

It may be noted that a similar result has also been obtained by Box and Tiao

(1973, p. 331) in their discussions of random effects ANOVA.
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In contrast to the case of additive model, it is found from the
Expression (4.16) that the posterior distributions of the three variance
components are not independent of one another. Consequently, triple
integrations are required t¢ obtain posterior marginal means and variances
for Yij + 1t appears, from our empirical experience, that the computer
time needed for a triple integration of a funcfion of the form in Equation
(4.16) 1is at least the cube of what is needed for a simple integration of
the function of the form In Equation (4.8a) or (4.8b). Unless some
efficlient approximations to these triple integrals can be found, this
technique will not be practical for applications. Since we have not been
able to devise an efficient algorithm which wauld complete this analysis

with reasonable cost, we will not further discuss 1t.
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5. A Numerical Example for the Additive Model
The data presented in Table 1 of an earlier paper (Wang and Lewis,

1973) are used for illustrative purposes here. Again, we choose Ve = Vg = 8

and la = lB = .028 to characterize our prior distributions. There are

25(=m) persons, 5(=t) related tests and each test consists of 8(=n) items.

As indicated in Sections 1 and 2, we feel that it is not far-fetched
to assume an additive model for the analysis of these data.

The posterior marginal means and standard deviations of Y4 given g

3

obtained from the procedures described in Section 4.1 are given in Table 2

(the figures enclosed in parentheses are standard deviations). It is
found that both p = .7157 and Pg ™ L7140 (weights used in computing
marginal mean estimates §ij of Tij) are larger than w, = 5444 and

wB = ,6637 (the corresponding weights for obtaining the estimates ;ij of

Yy based on posterior joint modes of 6, ¢, and B), respectively. From

Equations (2.6b), (2.6c), (3.7b), and (3.8a), we find that marginal mean

and B, are accordingly less regressed to their averages

1 3

(zero) than the joint modal estimates. The smaller regressions of o

estimates of &
i

and Bj in this case result in discrepancies between ?ij and §ij . The
directions of these discrepancies depend on the signs of estimated person
effect and test effect (which, in turn, are decided by the signs of

8i+ - 8. and g.; - g..). Specifically, if both g;. ~ .. and By ™ 8o
are positive (or negative), §ij will be larger (or smaller) than §ij .

On the other hand, if g,. - 8.. and Bey = 8. are of opposite signs, their
relative absolute values will decide the direction of the discrepancy and

no general conclusions can be made.

N

The estimates 7., of propertions n

ij 1j
§ij of Yij are presented in Table 3. It is seen that there are sizeable

based on marginal estimates

discrepancies between some ﬁij (based on ?ij) and #

309

i For instance, the

—
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estimates of proportion %50. 3 for person 20 on test 3 are #, . = .60 and
*

1]
%ij =‘.548. To explain this difference, it 1s noted that gy . 784 and

g.j = 1,039 (1 = 20, j = 3) are both smaller than the overall average

g.. = 1.099 in this case. Therefore, the estimated person effect and test

effect are negative. It follows that ﬁij is considerably smaller than

., becausa > w_and > w
¢ 0y & g

i] g’
In closing, an example of applying the proposed normal approximation
to marginal probabilities is given below. From Table 2, we find
- % .
¢~(T20, 3|§) .831 and [Var(vzo’ 3]§)] .0739 for persor 20 on test 3.

Suppose we are interested in a criterion mastery level ao = ,70. Following

explanations in Section 4.1.3, we obtain

prob(x > .70)

20, 3

=1 - prob(Tzo’ 3 < .991)
~ 1 - prob{(z < 2.165)

= .0152
Yo = Glryle) 991 - 831
[vaur(vi_,jlg)f5 .0739

¢, = sin"l#E; = .991 and = 2.165).

Both the estimates ﬁij = .548 and ¥,, = .608 are less than .70 and the

i
posterior probability that 320’ 3 is greater than .70 1is very small.
Thus, for most reasonable loss xatios, the action would be to retéin

" this student in the old unit of instruction. For refercnce, approximate
posterior probabilities of “ij > .70 given g are Prezeated in Table 4.

In this table, we find for person 2;\prob(w21 > .?0|5) » ,666. Thus, we

nay decide to advance him on the basis of a loss ratio 2/1. Inspections of
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Table 1 and 3 tell us both ﬁ21 = ,761 and 521 = ,742 are above the

criterion .70. As anoth2r example, we find, for person 23 on test 4,

both ﬁ23’ 4 = +737 and n23’ 6= +712 are above .70, But we have

prob(n23 e .?Olg) % ,4%8 as given in Table 4. Therefore, we would
r -

advance him if the loss rcatio is about 1 while retain him for any

loss ratie greater than 1.
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Table 1
Estimates of Proportions with an Additive Model
la = AB = ,028 v, = vg = 8
Test
Subject 1 2 3 4 5

1 844 .851 .801 .836 . 842
2 <761 .770 .713 752 «759
3 .887 .894 .849 .880 .886
4 <747 .756 .698 .738 . 745
5 .820 .828 .176 .812 .819
6 . 749 .758 . 700 .740 . 747
7 .906 913 .870 .900 .905
8 .810 .818 .765 .802 .808
9 . 844 .851 .801 .836 .842
10 .855 .862 .813 847 .853
11 .856 .863 .814 .848 .854
12 .906 .913 .870 .900 .905
13 . 940 .946 .908 .935 939
14 .896 .902 .858 .889 .894
15 .833 .841 .789 .825 831
16 772 .781 .725 764 770
17 .749 .758 . 700 .740 747
18 701 .710 .650 .692 .699
19 .674 .683 .522 .664 571
20 .660 .569 .608 .650 658
21 .885 .892 .846 .878 .883
22 .856 .863 .814 .848 .854
23 . 746 .755 .697 .137 . Th4
24 . 786 .795 . 740 .778 . 784
23 914 .920 .878 .908 -9}3

E(gio - 800)2 = 068782’ E(g.j - 300)2 = l00‘495
au = ,00703, $B = .00232, v, = .S444, and wg = .6637

L]
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Posterior Marginal Means and Standard Deviations of Gammas

1.272(.0721)

Tesc
Subject 1 2 3 4 5

1 |1.146(.0704) 1.157(.C705) 1.092(.0706) 1.136(.0704) 1.144(.0704)
2 11.021(.0709) 1.032(.0709) .967(.0711) 1.011(.0709) 1.019(.0709)
3 ]1.221(.0712) 1.231(.0712) 1.167(.0714) 1.211(.0712) 1.219(.0712)
4 1.002(.0712) 1.012(.0712) ,947(.0713) .992(.0712) .999(.0712)
5 [1.110(.0704) 1.120(.G704) 1.035(.0705) 1.100(.0703) 1.107(.0704)
6 11.004(.C711) 1.015(.0712) .950(.C713)  .994(.0711) 1.002(.0711)
7 11.256(.07187 1.266(.0718) 1.202(.0720) 1.246(.0718) 1.254(.0718)
8 |1,094(.0704) 1.104(.0704) 1.040(.0706) 1.084(.0704) 1.092(.0704)
9 |{1.146(.0704) 1.157(.07063) 1.092(.0706) 1.,136(.0704) 1.144(.0704)
10§ 1.164(.0706) 1.175(.0706) 1.111(.0707) 1.154{.0705) 1.162(.0706)
1V 11.166(.0706) 2.176(.0706) 1.112(.0707) 1.156(.0706) 1.164(.0706)
12 1.256(.0718) 1.266(.0718) 1.202(.0720) 1.246(.0718) 1.254(.071i8)
13 11.2268(.0735) 1.337(.0735) 1.272(.0736) 1.316(.0735) 1.324(.0735)
14 1.236¢.0714) 1,247(.0715) 2.182(.0716) 1.226(.0714) 1,234(.0714)
15 |1.229{.0704) 1.140(.0704) 1.075(.0706) 1,119(.0704) 1.127(.0704)
16 11.038{.0707) 1.048(.0708) .983(,0709) 1.028(.0707) 1.035(.0707)
17 1.004(.0721) 1.015(.0712)  .950(.0713) .994(.0711) 1.002(.0711)
18 .939¢.0723)  .949{.0724) .885(,0725) .929(.0723) .937(.0723)
19 .903¢.0732)  .913(.0733)  .849(.0734)  .893(.0732) .901(.0732)
20 .885(.0738)  .895(.0738)  .831(.0739) .875(.0738) .883(.0737)
21 1 1.217¢.0711) 1.227(.0711) 1.162(.0713) 1,207(.0711) 1.214(.0711)
22 1.166(.0706) 1.176(.0706)> 1.112(.0707) 1.156(.0706) 1.164(.0706)
23 1.001(.0712) 1.011¢.0712) .%46(,C713) .991(.0712) .998(.0712)
24 1.058¢.0703) 1.069(.07067 1.004(.0707) 1,048(.0705) 1.056(.0705)
25 2..282(.0723) 1.217(.0723) 1.262(.0721) 1.269(.0721)

la = hﬁ =

E(g.j = Zev)

028, v = vy
2 o
= Q0485

¢

1}

Var Ra = 00492, and Var

B

PPy

ko=
8
¥

———
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Standard deviations are given in parentheses. Prior Specifications:
= 8y Sauple Statistirs. ﬁ(gi. - g..)z = (8782,

= ¢:¢aR“ = L7157, o, = é’¢eR3 = .7140,

.00712.
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Table 3

Posterior Marginal Estimates of Proportions Based on é;(YijIg)

Test

Subject 1 2 3 4 5
1 851 859 .806 .843 .849

2 742 751 .689 732 .739

3 907 913 .867 900 .905

4 723 733 .669 713 721

5 821 .829 773 812 .819

6 725 .735 .672 716 723

7 .930 936 .893 923 .928

8 .808 .816 .759 .799 .806

9 .851 .859 806 .843 .849

10 BE5 .873 .821 .858 864
11 .867 874 823 .859 .865
12 .930 .936 893 923 .928
13 <969 . 974 <939 964 .968
14 917 924 -.879 .910 .915
15 837 .846 791 829 .835
16 757 . 766 705 T47 .755

| 17 .726 <735 672 716 723
i 18 661 .671 .605 .650 .658
| 19 624 .634 567 613 621
20 <605 .616 + 548 .595 .603
21 904 911 864 897 <902
22 867 874 .823 859 865
23 722 732 663 712 720
24 776 785 724 767 T7h
25 939 <945 <904 933 938

Prior Specifications: la =) = ,028, Vo =V

L}
o

8
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Table 4
Approximate Posterior Probabilities of “ij > 70
Test

Subject 1 2 3 4 5
1 986 991 924 .980 985
2 . 666 .716 .368 .613 654
3 .999 .000 .993 .999 .999
4 .559 .615 .270 .503 . 546
5 356 .966 .818 .938 951
6 +374 .629 .282 .518 .561
7 1.000 .000 .999 1.000 1.000
8 .928 946 .755 .907 .924
9 .986 .991 . 924 .980 .985
10 .993 .995 .954 .990 .992
12 .993 . 996 .956 .990 .993
12 1.000 .000 1.000 1.000 1.000
13 1.000 1.000 1.000 1.000 1.000
14 1.000 1.000 .996 1.000 1.000
15 975 .982 .883 .966 .973
16 . 744 .789 456 .697 734
17 574 .629 .282 .518 961
18 v 235 .281 071 .195 .225
19 114 144 .026 .090 .108
20 .075 .097 .015 .058 071
21 .999 .000 .992 .999 .999
22 .993 .996 .956 .990 .993
23 v 554 .610 .266 498 541
24 .829 .864 572 791 .821
25 1.000 .000 .999 1.000 1.090
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Interdialect Translatability of the
BASIC Programming Language
by
Gerald .. Isaacs

The American College Testing Program

Introduction

The BASIC (Beginner's All-purpose Symbolic Instruction Code)
programming language is a mathematically-based conversational problem-
solving language. 1t nas wide application in business, scientific,
and educational environments. It is powerful, efficient, flexible,
and has the precision necessary for most tasks. Also, its syntax
is simple and easy to learn. The BASIC programming language is simple
enough so that an inexperienced programmer can use it and has enough
~ower and flexibility so that the experienced programver can write
his programs efficiently. BASIC was first developed under Professors
John G. Kemeny and Thomas E. Kurtz at Dartmouth College in 1963-1964.
Since then, BASIC has been transformed into more than forty different
major dialects. Each of these transformations has added to or
modified the original la~ uage.

Due to the many differences among dialects of BASIC, unless care is
taken in the initial programming it is both time consuming and difficult
to readily translate a program from one dialect to another. However,
if a few rules are followed, it may ke possible to translate within a
large set of dialects with a minimum of effort. In this paper we

investigate this possiblity in some detail.

The research veported herein was performed pursuant to Grant No.
OEG-0-72-0711 with the Office of Education, U. S, Department of Health,
Education, and Welfare, Melvin R. Novick, Principal Investigator.
Contractors undertaking such projects under Government sponsorship are
encouraged to express freely their professional judgment in the conduct
of the project. Points of view or opinions stated do not, therefore,
necessarily represent'official Office of Education poseition or policy.




The specific purpose of this ctudy is to identify and investigate
in detall those BASIC dialects that would form a set in which
translatability would be high if reasonable programming restrictions
are imposed, Only BASIC dialects that are interactive have been
studied. The following BASIC dialects are examined in this study.

BASIC FOUR BUSINESS BASIC

BURROUGHS 2500 BASIC

RURROUGHS 5500 BASIC

BURROUGHS 3500 BASIC '

BURROUGHS 6700 BASIC (University of California San Diego)

CDC 6600 KRONOS/BASIC

CDC 6600 SCOPE/BASIC

COM-SHARE BASIC

COM~SHARE NEWBASIC

DARTMOUTH BASIC (sixth version)

DATA GENERAL EXTENDED BASIC

DEC PDP/8 BASIC (EDUSYSTEM 25 and 50)

DEC PDP/10 BASIC

DEC PDP/11 BASIC

GE MARK I BASIC

GE MARK II and GE MARK ITI BASIC

GE 255 TIME-SHARING BASIC

GENERAL AUTOMATION ADVANCED BASIC-16

HONEYWELL 200 BASIC

HONEYWELL 400 YBASIC

HONEYWELL 316, 516, and 716 BASIC

HONEYWELL 600 BASIC

HONEYWELL 1640 XBASIC

T HP 20008 BASIC . 33”’




HP 2000C BASIC

HP 2000E BASIC
HP 2000F BASIC
HP 3000 BASIC
IBM CPS/BASIC (University of Towa)
IBM ITF/BASIC
IBM CALL/3603-08 BASIC
IBM 83 MOD 6 BASIC
LEASCO BASIC
MICRODATA BASIC
MULTICOMP BASICX
NCR CENTURY 100 BASIC 1
NCR CENTURY 200 BASIC
Q-DATA BASIC 1
UNICOMP/COMP 16 or COMP 18 BASIC
UNIVAC 1100 UBASIC
UNIVAC 1100 UBASIC VERSION 2.0 (Mankato State}
UNIVAC 1100 (University of Maryland Release 1.3)
VARTIAN 620 or V73 BASIC
WANG 2200 BASIC
WANG 3300 BASIC
WESTINGHOUSE BASIC I1
WESTINGHOUSE BASIC III
XERCX BASIC
Due te the complexity and needs of our applications, we are maialy

interested at this time in a multiuser system supporting a form of mass

storage. Therefore, many single user systems or small systems such as the
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PDP~8 EDUSYSTEM 5, 10, 20 have not been presented. However, most of
the techniques discussed here also apply to many of the smaller svstems.
Some of the dialects are lemmediately transportable from one computer
in a manufacturer's line to another, e.g., the XEROX BASIC runs on the
Sigmwa 5, 6, 7, 8, and 9. Also, several BASIC dialects are upward
compatible on computers in the same line, e.g., the BASIC dialect on
the Hewlett Packard 20008 will run on the 20°0C, 2000E, and 2COQOF. For
most dlalects, some franslation must be done 1f a program written in the
BASIC of one computer is to be run on a second computer. fThis study
was motivated by the desire to produce rzadily translatable conversational
language interactive programs for computer-assisted data analysis and
decision making in an educational environment. The conclusions of the
study will, however, apply quite generally since the aforementioned
applications are very demanding in terms of text handling capability,

computational power, and formatting.

Important Programming Capabilities
There are four programming capabilities that should be present if a
project of any magnitude or complexity 1s to be uyndertaken. The first

of these 1s computational ability and preciéion. 0f the more than forty-

five dialects examined, all were found to provide at least six digits of
accuracy and to support the baskc arithmetic operations plus exponentiatio;.
Some dialects provided accuracy of up to 15 or 16 digits. Obviously,
dialects with only six digit accuracy will not be useful in many

scientific applications. Also, there was a large sariance as to the

largest and smallest absolute number allowed. The smallest maximum
absolute number was approximately 1037 while the largest minimum number

was approximalely 10_37 except for the Westinghouse and General Automation

384




20

BASICS which allowed approximately 1019 and 10 “", For a translatable

system, the questions of accuracy and precision will need to be considered
carefully. A system can only be translated to dialects that provide
the needed accuracy.

) A second necessary capabiiity of any dialect is that it has
the ability to execute & program of the dejired gize., This may be
accomplished in several ways. One method .nvolves mass partition size.
That is, a user is allowed as large a partition as 1is necessary for his
task and is swapped in and out of core with many other users. This method
may substantially add to cost and execution time. Further, when this
method is used, a system that uses a monitor to sequentially execute
several programe is not very feasible, since all the programs and the
wonitor must remain in core. 1In these circumstances, the user would
load and execute each program independently. Such a2 Procedure results
in a tolerable inconvenience.

A second metned that is used by many dialects is program ciaiaing.
This method allows the user to fit a very large program into a small
partition by dividing the program into smal) segments and eXecuting them
separately in logical succession. There are two kinds of program chaining.
The first calls for a complete owverlay of the program in core, and the
second, a chaining In which the user may specify where the overlay may
begin,

The third method for accomplishing the execution of a large program
is through the use of external subroutine calls., In this prccedure, the
user calls a subroutine that is maintained as a separate {lle. After it
is executed, its core 1s released thus allowing additional portions of

the program to be called into core without destroying existing code.

There are_some BASIC dialects such as IBM-CPS-BASIC, NCR-CENTURY-100-BASIC 1,
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MICRODATA-BASIC, Q-DATA-BASIC-1, UNICOMP-BASIC, VARIAN-BASIC,

and WESTINGHOUSE-BASIC~II which only zilow a fixed area of core

and do not permit the user any of the above options for increasing the
size of the program to be executed. These dialects are inmadequate for

most complicated systems,

The third capability ithat a BASIC dialect should have is the means

for accessing and creating external data files, Three levels of fiie
capability are supported by the various BASIC éialects. One group of
dialects offer no data file support, e.g., IBM-CPS-BASIC (UNIV of 10WA),
WESTINGHOUSE-BASTC-IL and III, GENERAL AUTOMATION-BASIC, HONEYWELL-316,
516, and 716 BASICS, MICRODATA-BASIC, Q-DATA~BASIC, BURROUGHS-2500 and
3500-BASICS, UNICOMP-BASIC, VARIAN-BASIC, COM-SHARE-BASIC, UNIVAC-1100-
BASIC (UNIVERSITY OF MARYLAND V, 1,3), and NCR-CENTURY-100-BASIC-1.
Presently, the NCR-CENTURY-200-BASIC hus no file capability although it
is promised in the near future. A second group of dialects supports unly
sequentially accessed data files. The latter group includes IMB-ITF-
BASTC, IBM-S3-MOD-6~BASIC, GE~255-TIME-SHARING~EXTENDED-BASIC, HONEYWELL-
1640-BASIC, WANG-3300 and 2200-BASICS, IBM-CALL/0S-BASIC, CHC~6000
KRONOS-BASTC, UCSD-B6700-BASIC, CDC~6000-SCOPE-BASIC, BURROUGHS-B5500-
BASIC, DEC-PDP-8-BASIC (EDUSYSTEM 25 and 50), and UNIVAC-1100-UBASIC
(MANKATO STATE VERSION 2.0). A third group of dialects supports both
sequential access and random access files. Members of this group are
lP2000F~2000E-2000C~-2000R~BASIC, UNIVAC~-1100-UBASTC, HP3000-BASIC,
MULTICOMP-BAST X, BASIC~FOUR~BUSINESS—BASIC, XDS-BASIC, GE-MARK-I,
MARK-T1, AND MARK-IT1-BASICS, LEASCO-RESPONSE-~I-BASIC, DARTMOUTH-BASIC,
COM~-SHARE-BASIC and NEWBASIC, DEC-PDP-10 and PDP-11-BASIC, HONEYWELL-
200, 400, and 600-BASTCS, and DATA-GENERAL-BASIC. The urgency of the

need for random access files varies with the application. However, -iuce
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some type of file support is needed for nearly all applications, a
minimum of sequential access to files is almost a must,

External files are used to store data that are too complicated and
time consuming to recompute every time they are needed. Files also are
needed to pass data between chained segments c¢f a system; 1f the whole
partition 1is overlayed. Also, files can be used to store results of
computations so that the user may decrease the size of his program. Tn
view of this, the BASIC dialects mentioned in the second and third
groups of the previous paragraph are more adequate than the dialects in
the first group.

A fourth important capability for a BASIC dialect is its
conduciveness to generating formatted output. This is accomplished by
means of the PRINT USING gtatement. This statement allows the user to
deteymine what his output is going to luok like. He may specify the
number of digits to be outputted, the mode of output, and the column(s})
in which the output is to appear. Also, the user may specify carriage
control, e.g., number of spaces between lines. Most of these may also
be accomplished using a PRINT statement. This 15 much less efficient,
requires more programming, and cannot be accomplishad in the case of
spécifying the number of digits. The PRINT USING statement has different
syntax in almost every dialect. Therefore, it should be noted that if
the PRINT USING is used, it must be wodified when trarnslating from one
dialect to another. In some dialects the format to be followed is
specified in the PRINT USING statement itself, while in others the
format is in an IMAGE, FIELD, or format statement. OSome dialects usze
Fortran format for output, e.g., MULTICOMP-BASICX. Others use an

example output line with special characters denoting numeric output.
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Not all systems have formatted output, e.g., HP2000B-BASIC,

HP2000F BASIC, NCR-CENTURY-200-BASIC, CDC-6000-SCOPE and KRONOS-BASICS,
and UNIVAC-1100-RASIC (UNIVERSITY OF MARYLAND), It is felt that a
system should have a capability for formatted output., However, if it

" does not, the PRINT statement can provide many of the features of the
PRINT USING command. Although the results may not be usually as
appealing as with the PRINT USING statement, they provide a satisfactory
alternative,

The translation of most statements in a BASIC dialect will be
trivial or no translation will be necessary. Operands, relations,
names, strings, arrays, functions, input, and branching can be translated
with 1little effort or time., The three difficulties that will be
encountered are file handling, chaining or subroutine calling, and
output formatting. Since there is no exact standard for these areas,

a knowledge of the statement formats in these areas can help to

minimize the expenditure of time and energy.

Comparison of Elements
Operations and Relations:

All BASIC dialects use the same symbols for addition ¥, subtraction -,
multiplication *, and division /. However, there is no standard operator
for exponentiation. Different dialects use the following symbols:

%%, 4, ~ , The most frequent symbol used for exponentiation is % .

If exponentiation can be avoided, translatability in operands is
achieved. The string operation of concatenation is not implemented on
all dialects. For those in which it is implemented, ampersand (&),

plus (+), comma (,}, STR, or CAT$ are used. A few of the dlalects such
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as BASIC-FOUR, VARIAN, COM-SHARE-NEWBASIC, HP2000B, HP2000C, HP2000E,
HP2000F, HP3000, PDP-11, LEASCO, WANG-330(, WESTINGHOUSE, GENERAL-

AU OMATION, and the UNIVAC-1100 implement the logical operands of

AND, OR, and NOT. The PDP-11, COM~SHARE-NEWBASIC, and UNTVAC-1100
BASIC dialects also support logical equivalence (EQV, EQU, and EQU,
respectively), exclusive or (EOR, XOR, and XOR, respectively), and
implication (IMP). GENERAL-AUTOMATION also supports exclusive or {XOR).
The logical relaticns symbols for less than {<), greater than {*),

not equal {<>), less than or equal {<=), and equal (=) are standard
across all the BASIC dialects except for the UNIVAC-1100-UBASIC
{VERSION 2.0 MANKATC STATE COLLEGE) dialect which uses LSS for less
than, GRT for greater than, NEQ for not equal, LEQ for less than or
equal, and EQU for equal, and MICRODATA which uses # for not equal.
The logical relation greater than or equal {>+) is standard across all
BASIC dialects except for the UNIVAC-1100 {VERSION 2.0 MANKATO STATE
COLLEGE) and HONEYWELL-200-BASIC dialects which use the symbols GEQ

and =>, respectively.

Names:

In the BASIC programming language, there can be up to five types
of variable nzmes. These are array variable names, numerlc variable
names, string variable names, integer variable names, and user defined
function names. A numeric variable name should be either a letter oOr
a letter followed by a single digit, While the IBM-BASIC dialects
allow the speclal characters of $, @, and # to be used anywhere a letter
may be used, and IBM-CPS-BASIC allows a single letter or a letter
followed by another letter or a number, for reasons of translatability

these conventions Bhould not be used. String variables are used in

389

e pelebger ey




10

all BASIC dialects except NCR~-CENTURY-100-BASIC-1, BURRQOUGHS-2500
and 3500-BASICS, UNICOMP-BASIC, VARIAN-BASIC, WESTINGHOUSE-BASIC-II,
HONEYWELL-316, 516, and 716-BASICS, MICRODATA-BASIC, and Q-DATA

' BASIC-1.

¢ There are two conventions used for string variable names. The
first is a letter followed by a $. The second is a numeric name
followed by a §. For translatability the first convention, a letter
followed by a §, should be used. Integer variable names are only
allowed in the PDP~L1-BASIC and HP3000-BASIC and should be avoided.
Array variable names should be confined to a single letter that has
not been ysed elsewhere. Some dialects allow any numeric name to be
an array name and allow the same name to be both an array variable name
and a numeric variable name. In the interest of translatability,
array variable names should be confined to a single unique letter.
User defined function names are standard in all BASIC dialects except
the NCR-200-BASIC, UNICOMP~BASIC and PDP-11-BASIC. There are no usoen
defined functions in the NCR-200 and UNICOMP-BASIC dialects. The
PDP-11-BASIC allows the user defined function to be FN followed by auv

numeric variable name. All gther BASIC dialects limit a user defined

Er

function to FN followed by a single letier. The geaeral convention of

t Fil letter should be used.

Strings:

All BASIC dialects for the UNICOMP-BASTIC, BURROUGHS—-2500 and 3500~
BASICS, VARIAN-BASIC, WESTINGHOUSE-BASIC-IT, LONEYWELL-316, 316, and
716~BASICS, MICRODATA-BASIC, Q-DATA-BASIC-Y, and NCR-CENTURY-100-pBASI1( 1
have string handling capabilities., llowever, these dialects still allow

strings in PRINT statements. String constants are onclosed in Juoteon,
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In all BASIC dialects except IBM-CPS-BASIC, IBM-$3-MOD-6-BASIC,
UNIVAC-1100~UBASIC (VERSION 2.0 MANKATO STATE), and XDS-BASIC,

double quotes (")} may be used. In the exceptions, single quotes

(') are used. Therefore, if translation is to take place between
dialects that use the different types of string quotes, a user must

be sure to change all the quotes. Strings vary in length in the BASIC
dialects. The shortest string length is 6 characters and the longest
string length is over 32,000 characters. There are two groups of
dialects, Lanose that allow a maximum of & to 22 characters and those
that allow string length gr2ater than or equal to 72. The Aialects

that provide a string length less than gr equal to 22 characters are
DEC-PDP-8-BASIC (EDUSYSTEM 25 and 50), BURROUGHS-BSS500-BASIC, IBM-CPS-
BASIC, IBM-S3-MOD-6-BASIC, WANG~3300-BASIC, IBM~ITF-BASIC, XDS-BASIC,
IBM-CALL/360~0S-BASIC, HONEYWELL-200-BASIC, GE-255-TIME-SHARING-BASIC,
GE-MARK-T-BASTC, NCR-CENTURY-200-BASIC, and UCSD-B6700-BASIC. Severat
of the BASIC dialects provide string processing functions from which
substrings, positions, lengths, and other data may be obtained. Tt
should be noted that these functions are not translatable and should

not be used if the system 1s to be translated. If string handling is not
needed, then all BASIC dialects can be considered. But if a long string

(greater than 22) is needed, then translatability is limited.

Arrays:

All BASIC dialects allow use of arrays to store data. An array
may have, at most, two dimensions in all BASIC dialects except CDC-
6600-SCOPE-BASIC, BASIC-FOUR-BUSINESS-BASIC, VARIAN-BASIC, CDC-6600~
KRONOS-BASIC and the HONEYWELL-200-BASIC, which allow three dimensions,

UNIVAC-1100-BASIC which allows four dimensions, and COM-SHARE-NEWBASIC,
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WESTINGHOUSE-BASIC, GENER L.-AUTOMATION-BASIC, and HONEYWELL-400, 316,
516, and 716—BASICS which allow as many dimensions as will fit in one
statement. All BASIC dialects have gome limit on the number of cleweuts.
In IBM-CPS~-BASIC the limit is 500 elements per array. But in most BASIC
dialects it is limited only by the amount of core that is available.
Arrays that do not appear in a dimension (DIM) statement arc dimensioued
ten, or ten by ten, or ten by ten by ten dependirs upon use and system,
in all dialects except PDP-B8-BASIC (EDUSYSTEM 25 and 50), BASIC-FOUR-
BUSTNESS-BASIC, GENEKAL-AUTOMATION-BASIC, WANG-3300 and 2200-BASICS, and
NCR-CENTURY~200~BASI(. Therefore, all arrays should be dimensioned for
translatability, Depending upon the dialect, .arcays start at zero or
one, But in matrix (MAT) operations, the zero elements are ignored
anyway. All BASIC dialects have the MAT operations addition, subtractiou,
scaler multiplication, multiplication, transposition, and inversion
except the fDP-B-BASIC {EDUSYSTEM 25 and 50), NCR~CENTURY~200-BASIC,
NCR-CENTURY-100-BASTC-1, BASIC~FOUR-BUSINESS-BASIC, UNICOMP-BASIC,
WESTINGHOUSE-BASIC~IT, HONEYWELL-316, 516, and 716-BASICS, MICRODATA-
BASIC, Q-DATA-BASIC, WANG-2200-BASTC, and UCSD-B6700-BASIC which do not
support MAT operations. Also, there is an identity matrix {(IDN), a
matrix of all ones (CON) and a zero matrix (ZER) in all dialects that
have the MAT commands. All dialects that support the MAT commands alsu
support a form of matrix input and output. In addition, some suprort

a file input aund output for watrices., Whether an array is translatable
or not depends upon geveral factors, including program size and partition
size. The PDP-11-BASIC, HONEYWELL~400-BASIC, and COM-SHARL-BASIC alTow
arrays to yeside on disc in what is called thelr virtual storage. Mt

these are the only dialects that support a feature like this.
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Complex Variables:
Only the HP3000-BASIC and COM-SHARE-NEWBASIC dialects allow the

use of complex variables. Therefore, this capability should be avoided.

Functions:

BASIC functions are divided into two types. The first type includes
all functions permanently resident in the system. All BASIC dialects
support the following system functions:

ABS Absolute value (except UNICOMP-BASIC)

ATN Arctangent {except WESTINGHOUSE-BASIC-II and BASIC-FOUR;

and BURROUGHS-2500 and 3500 and COM~SHARE-NEWBASIC which

use ATAN)
co3 Cosine {except WESTINGHOUSE-BASIC-II and BASIC-FOUR)
EXP Exponentiation {except BASIC~FOUR-BASIC)
INT Largest integer {except UNICOMP-BASIC)
LOG Common logarithm {(except BASIC-FOUR-BASIC)
RND Randomization {except WESTINGHOUSE-BASIC-II, UNICOMP-BASIC,

and BASIC-FOUR-BASIC; and COM-SHARE-NEWBASIC which uses num)

SGN Sign (except UNICOMP-BASIC

SIN Sine (except WESTINGHOUSE-BASIC-II and BASIC-FOUR-BUSINESS-
BASIC)

SQR Square root {(except BASIC-FOUR-BUSINESS-BASIC and WESTINGHOUSE-
BASIC-II)

TAN Tangent [except TBM-CPS-BASIC (UNIVERSITY of IOWA), UNICOMP~

BASIC, BASIC-FOUR~BUSINESS-BASIC, and WESTINGHOUSE~BASIC-II)
The preceding system functions can be used freely unless in one of
the exception dialects. The various dialects also support many other

functions that should be avoided.
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The second type of function is a user defined function. These
functions pass one or several arguments depending on the dialect. Also,
some dialects allow multiple line definitions. To be truly translatable,
only single line definitions that pass at most one variable should be
used. All BASIC dialects allow user defined functions except for NCR-

CENTURY-200-BASIC and UNICOMP-BASIC.

Branching:

There are four types of statements used in BASIC fér branching
purposes. The first type of branching statement is the FOR statemecnt.
This loops control between the FOR statcment and its corresponding
NEXT statement until a counter reaches a limit. The format that is
used in all BASIC dialects is:

FOR variable = initial value TO limit STEP increment.

NEXT variable
Inttial value, increment and limit mav be any expression in all BASIC
dialects except BASIC-FOUR-BUSINESS~BASIC, and COM-SHARE-BASIC., In
COM=SHARE-BASIC limit must be a number and in BASIC-FOUR-BUSTINESS-BAS1C
initial value, increment and limit may be variables. In all BASIC
dialects the loop works in the following manner:

1) The variable is set equal to the initial value.

2) Test if variable is searched or passed the limit,

a) Execute loop if limit has unot been reached.
b) Exit loop if 1limit has been reached.
3) Add increment to variable. -

4) Go back to step 2.
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In all BASIC dialects loops may be nested, but maximum nesting permitted
varies between dialects. If the user picks five as the deepest loops
can be nested, then the System should be translatable.

The second type of branching statement is tiie IF statement. There
are many forms of the IF statement in the BASIC dialects} but there is
one that holds across all dialects. That 1is:

IF expression logical operator expression THEN line number..

The third type of branching statement is the GOTO statement. There
are two forms of this statement, the simple GOTO and the computed GOTO.
The computed GOTO is not implemented in all dialects and should be avoided.
The simple GOTO is standard in all dialects as:

GOTO line number.
The word GOTO may algo be GO TO in some dialects but it is not clear
from the manuals which 1s accepted.

The fourth type of branching statement is the GOSUB statement.

Here there are also two forms, the simple GOSUD and the computed GOSUB.
The computed GOSUB is not universal and should be avoided. The simple
GOSUB has the following syntax
GOSUB line number.
This form 1s standard across all BASIC dialects.
Therefore, if the preceding forms of the branching statements are

used, the users' system will be translatable in terms of branching.

Input:

In the BASIC programming dialect there are two methods for accepting
input. The first method is the READ-DATA statement pair. These two
statements are completely translatable across all BASIC dialects except
BASIC~FOUR-BUSINESS=BASIC which does not allow READ-DATA pairs., The form

of these two statements is:
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READ var 1, var 2, ... var n

DATA constant, constant, ... constant.
The only restriction is that in the NCR-CENTURY-100-~BASIC-1, BURROUGHS-
2500 and 3500-BASICS, COM-SHARE-BASIC, WESTINGHOUSE-BASIC-II, HONEYWELL-
315, 516, and 716-~BASICS, MICRODATA-BASIC, and Q~DATA~BASIC do not allow
string variables‘or constants in the READ or DATA statements. The next
read position in the data list can be reset to the beginning using the
RESTORE command in all BASIC dialects except DARTMOUTH~BASIC which uses
the RESET statement and UNICOMP-BASIC which has ¢ prevision for starting
over in a DATA statement.

The second method for accepting input is via the INPUT statement.

In BASIC the INPUT scatement accepts input from the user’s terminal. The
INPUT statement has che following syntax:

INPUT var 1, var 2, ... var n.
This syntax is constant over all BASIT dialects for this statement, although
the same dialects that do not allow sc¥ings in READ-DATA pairs do not allow

strings here. Thus, these statements are easily translatable.

Files:

The least translatable of all the scatcements are the file handling
statements. Different dialects have different methods for handling viles.
In some dialects the user allocates a file name with a FILE s:atement, a
FILES statement or an ASSIGN statement depending upon the dialec:. Jther
dialects implicitly do this in the OPEN statement or first access.
Backspacing and rewinding of files are allowed in a few dialects. Some
dialects read from files with an INPUT statement while others use a
READ statement. Also, PRINT and WRLTE statements are used for writing

into [fles in differant dialects. Some dialects sense for end of {{]¢
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with an IF END statement, others use a NODATA statement, while others use
an ENDFIL- statement. File names are determined from dialect to dialect
and even from installation to installation within a dialect. Therefo:as,
file handling is not directly translatable and the program writer should
attend carefully to file input and file output statements when designing

translatable programs.

Miscellaneods?

There are several aspects of BASIC that do not fall into any of
the above categories. The first of these 1s the range on line numbers
across the different dialects. The maximum range found was from 0 to
99999999, However, all dialects except IBM-CPS-BASIC and the PDP-8-BASIC
accept line numbers from L to 9999, IBM~CPS-BASIC has a range from 1
to 999 and PDP-8-BASIC (EDUSYSTEM 25 and 50) has a range from 1 to 2046.
Therefore, cne sliould use line numbexrs only from 1 to 9999 for
translatability. Unless either of the two above exceptions are to be used.

Another feature 1s cowments or remarks; these can be fully trans-
latable if the syntax 1is:

RFM message.

Some dialects zero all variables before they are used, but this
should not be taken for granted across all the dialects.

Also, certain dialects gsuch as PDP~11~-BASIC, COM-SHARE-NEWBASIC,
HONEYWELL-316, 516, 716, and 600-BASICS, HP3000~-BASIC, WANG-3300, and
2200-BAS;GS, and the HONEYWELL-200-BASIC allow multiple statements on
a single line. This feature should not be used. .

The keyword LET should nog be dropped from assignment statements
since many of the dialects require it, Also, only one variable should
be assigned at a time even though many dialects allow multiple assignments.

The format appears as:
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LET var = expression.
The following three statements:
STOP
END
RETURN
are completely translatable when used in the above syntax. Some dialects
allow a comment to fcilow. This should be avoided for reasons of trans-

latability,

Summary of Rules for Translatability

1) Avoid the use of exponentiation if possible or yse t in all
dialects where it is permitted.

2) Do not use logical arithmetic (OR, AND, NOT, etc.).

3) Use the following logical relations: <, >, <>, =, <=, and
>= yhenever permitted.

4) Use a single letter or a letter followed by a number for a
numeric variable name,

5) Use a single letter followed by a § for string variable names,

6) Use a unique letter for an array variable name.

7) Use FN followed by a single letter for a user defined function
name.

8) Use double quotes (") whenever possible.

9) Decide on what length strings are going to be allowed and
translate your system yithin the group your striug length
specifies, .

10) Avoid string handling system functions.
11) Use at most two dimension arrays.
12) Start arrays at L.

13) Take advantage of the MAT command where spplicable.
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14) Only the system functions listed should be used.
15) 1Use only single line user defined functions.
16} MNest loops at most five deep.
. 17) Limit the following statements to the listed format.
FOR variable = variable TO expression STEP expression
NEXT variable
IF expression-operator-expression THEN line number
GOTO line #
GOSUB line #
READ var 1, ...
DATA constantc 1, ...
INPUT var 1, ...
STOP
END
RETURN
RESTCRE
REM message
LET var = expression
18) Do not use multiple statements on a- single line.
19} Line numbers should run from 1 to 9999,
20) Do not expect the system to zero all variables.

21} Avoid integer and complex variables.

Translatable DASIC Dialects
Most of the problems in translating one dialect to another are a
matter of changing s keyword or format. These changes can be made to
the whole program at one time using the edit features of the system.

There are two features that must be changed or at least checked very




20

closely. These are the file handling and formatted output capabilitiecs.
These are not difficult changes to make, but must be considered care~
fully.

It was found that the dialects studied‘fell into three categories.
The first of these categories contains those dialects that are missing

a critical element. These are:

BURROUGHS~2500~BASIC (no data file capability, no capacity for
chaining etc.)

BURROUGHS-3500-BASIC (no data file capability, no capacity for
chaining etc.)

COM=SHARE-BASIC (manual chaining only)

GENERAL~AUTOMATION-BASIC (no data file capability)

HONEYWELL-316, 516, and 716-BASTCS (chain only FORTRAN or
ASSEMBLER routines)

IBM-CPS-BASIC (UNIV OF 10WA) (no data file capability, no capacitv
for chaining etc¢.)

MICRODATA~BASIC (no dats file capability, no capacity for
chaining ete¢.)

NCR-CENTURY-100-BASIC (no data file capability, no capacity for
chaining etc.)

NCR-CENTURY-200-BASIC (no data file capability at this time)

Q-DATA-BASIC (no data file capability, no capacity for chaining etc.)

UNICOMP-BASIC (no data file capability, no capacity for chalning etc.)

URNIVAC~1100 (UNIV OF MARYLAND VERSTON 1.3) (no data file capability)

VARIAN-BASIC (re data file capability)

WESTINGHOUSE~BASTC-TT (no data file capability, no capacity for
chaining eote.)

WESTINGHOUSE~BASIC=11T (no data file capability)
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The second category contains those dialects that only do not have
formatted output capability.
' BASIC-FOUR-BUSINESS-BASIC
BURROUGHS-5500-BASIC
DEC-PDP-8-BASIC (EDUSYSTEM 25 and 50)
GE~255-TIME-SHARING-BASIC
HP2000B-BASIC
HP2000E-BASIC
UCSD-B6700-BASIC (UNIVERSITY OF CALIFORNIA, SAN DIEGO)
UNIVAC-1100-UBASIC (VERSION 2.0 MANKATO STATE COLLEGE)
Also included in this category are those dialects that issue mass
storage in place of chaining or external subroutine capability.
CDC-6600-KRONOS—BASIC (also no formatted output)
CDC-6600-SCOPE-BASIC (also no formatted output)
IBM-CALL/0S-360-BASIC
IBM-ITF-BASIC
The third category contains tho.e dialects which are preferred.
COM-SHARE-NEWBASIC
DATA-GENERAL-BASIC
DARTMOUTH-BASIC
DEC-PDP-10 BASIC
DEC-PDP~11 BASIC
GE-MARK-I--BASIC
GE-MARK~II-BASIC
GE-MARK-ITI-BASIC
HONEYWELL-200-BASIC
HONEYWELL-400-XBASIC
HONEYWELL-600-BASIC !

HP2000C-BASIC
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iIP2000F-BASIC

HP3000-BASIC

1BM~S3-MOD~6-BASIC

LEASCO-BASIC

HONEYWELL -1640~BASIC

MULTICOMP-BASICY (UNIV OF MASS, AMHERST, CDC-3600)

WANG-3300~BASIC

UNIVAC~1100~UBASIC

XDX~BASIC

WANG -2200-BASIC
Therefore, following the recommended translatability rules, a user should
be able to obtain a system tnat is translatable with a minimum of effort
and time within the third category and translatable with greater dJifficuliy
and expense in the second catepory. It should be noted thal a program
usually runs at & slower speed on 2 small machine than on a large wachine.

The informalion provided above is a synopsis of extemsive charts
comparing the above dialects. These charts are available from the author.
All information was obtained frcm manufacturers' manuals and is subject to

change. It can clearly be seen that BASIC translatabilicy is a fact aud

can be performed easily if a few rules are followed.
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The purpose of this set of tables is to supplement the basic report on Interdialect

Translatability of the BASIC Programming Language {(Gerald L. Isaacs, Technical Buliletin Xuo. 11,

The American College Testing Program) and to give a quick, clear, concise, updated view of manv
of the BASIC languages as supported on different computer systems. As shown, each system has
irs own set of commands and its own set of capabilities. Preceding the tables is a listing

of the conventions used in the tables, a summary of file capabilities of the various systems
and a list of references. Immediately following are some late arriving materials that could
not conveniently be included in the tables. The summary presented here includes all information
we have been able to gather as of March 9, 1973. We have given the authors of all dialects
surveyed an opportunity to respond to a preliminary draft, and we have worked closely with
those authors who have responded to redquests. Nevertheless, ye cannot believe that we have
attzined 100% accuracy and even if we did that accuracy would soon decay as a result of the
continuing fast pace of improvement now evidencing itself. We should note #pecifically that
we have not credited various dialects with features that are "promised for delivery in the
aear future” or even those which we are told exist but "are not yet documented”. For this
reason, we urge any potential user to check with the relevant manufacture before dismissing
from consideration any system that seems attractive. At the same time, we urge manufacturers

to supply us with documentation of iuprovements so that we can keep our charts up to date,

Gerald L. Isaacs
March 9, 1973
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The following conventions are used in the tables.

——— s

num or n
var

exp

arg
numlist
val 1list
var list
op

st

param

not available
number
variable
expression
argument
number list
value list
variable list
operator
string

parameter
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O

ERIC

Aruitoxt provided by Eic:

BURROUGHS-B2500
BURRQUGHS-B3500

GENERAL AUTOMATION BASIC-16 ADVANCED
HONEYWELL 316, 516, and 716

IBM4/CcPS (Univ of Iowa)

MICRODATA

NCR CENTURY 100

NCR CENTURY 200

(-DATA BASIC-1

LNICOMP-COMP 16, COMP 18

UNIVAC 1100 (Univ of Maryland)
Version 1.3

WESTINGHOUSE BASIC II
WESTINGHQUSE BASIC TII

BURROUGHS-B5500

£bC 6000-KRONOS

CbL 6000-SCOPE

pEC-PDP8 {Edusystem 25 and 50)

GE 255 Time Sharing Extended BASIC
HONEYWELL 1640

IBM/CALL/360-05

IBM/ITF

IBM S3 MOD &

UCSD-~B6700

UNIVAC 1100-UBASIC (Mankato State)
Version 2.0

WANG 3300
WANG 2200

none
none
nene
noﬁe
none
none.

none

no files as of now

nene
none

none

none

none

sequential
sequential
sequencial
sequential
sequential
sequential
sequential
sequential
sequential
sequential

sequential

sequential
sequential

File Capability

BASIC 4=-BUSINESS BASIC
COM-SHARE BASIC
COM-SHARE NEWBASIC
DARTMOUTH

DATA GENERAL
DEC-PDP 10

DEC-PDP 11

GE MARK I

GE MARK I

GE Mar¥ III
HONEYWLLL 200
RONEYWELL 400
HONEYWELL 600
HP2000R

HP2000C

HP2000E

HP2000QF

HP3ICO0
LEASCO-RESPONSE I
MULTICOMP BASICX

UNIVAC 1100-UBASIC
Version 3.2

ADS-BASIC

sequential
sequential
sequential
sequential
seguential
sequential
sequential
sequential
sequential
sequential
sequential
sequential
sequential
sequential
sequential
aequential
sequential
sequential
sequential
sequential

sequential
sequential

and
and
and
and
and
and
and
and
and
and
and
and
and
and
&sud
and
and
and
and
and

and
and

random
random
random
random
random
random
random
random
random
random

random

access
access
access
access
access
access
acceso
access
access
access
access

disc arrvays

random
random
random
random
random
random
random

random

random
random

access
acCcess
access
RCCERD
access
access
accees

accese

access

access
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ERIC

Aruitoxt provided by Eic:

|

BASIC/Four Lorporation
Reference Manual
Business BASIC
October 3, 1972

Burroughs

B5500

Time Sharing System

BASIC Reference Manual
November 15, 1969, FAa22366

Rurroughs
Medium Systems
BASIC and CANDE
Referenc. Manual
1971, #10Z4905

Computer Center
Universicty of Californiz
San Dego

BASIC User's Manual
February 1972

Computer Science Center
Universicy of Maryland
BASIC for the UNIVAC 1108
September 1968, #800002

Com-Share
BASIC Reference Manual
May 1970, #9005-3

Com=-Share
NEWBASIC
Reference Manual
February 1971

Control Data

6000 Series

Computer Systems

KRONOS 2.0

BASIC Reference Manual
January 27, 1971, {#59150800

Referances

Control Data

Cyber 70 Computer Systems

BASIC Languazge Refercnce Manual
February 29, 1972, #50306200

Data General Corporation
Extended BASIC

User's Manual

1972, £#093-000065~01

Digital Equipment Corporation
Programming Languages

PDP-8 Handbook Series

May 1970

Digital Equipment Corporation
BASIC-PLUS

Language Manual

1972, #DEC-11-ORBPA~-A-D

Digital Equipment Corporation
DEC SYSTEM 10

Mathematical Languages Handbook
1972, #DEC-10-AFDO-D

Digital Equipment Corporation
Rdusystem~25
User’s Manual

Digital Equipment Corporaiion
Edusystem~50
User’s Manual

GE Information Services
MARK II

BASIC Language

June 1972, #3200.01D

GE Information Systems
GE 255 Time Sharing

BASIC Language Extended
August 1969, #CPB-1624

GE Information Systems
MARK I

BASIC Language

February 1970, #202776B

General Automation
BASIC-16

Reference Manual

October 1972, #38A002564

Hewlett Packard Corporation
2000B:

A Guide to Time-Shared BASIC
Auvgust 1970, #HP 0Z000-90010

Hawlett Packard Corporation

2000C: -

A Guide to Time-Shared BASIC
April 1971, ¥HP 02000-90016

Hewlett Packard Corporation

3000 BASIC

External Reference Specification
September 15, 1971

Hewlett Packard Corporation
2000E:

A Guide to Time-Shared BASIC
August 1972, #02000-~-90048

Honeywell

Series 200 BASIC SYSTEM
Language Manual

March 1970, #133.0005.1100.0-082

4
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e

Honeywell

Series 1640

BASIC Language Manual
October 1970, #AD12

Honeywell
Series 400
TSPS BASIC Language
August 1971, #BRO3

Honeywell

Series 600/6000

Time Sharing BASIC

September 1971, #BR36, Rev. 1

Houneywell
Series 16

BASIC Language
March 1972, #AB85, Rev. 1

iBM

£all/360~0S

BASIC Language Reference Manual
January 1971, #GH20-0699-2

IBM System/360-0S(TS0)
ITF: BASIC

Terminal User's Guide
June 1, 1971, #3C28-6840-0

IBM System/3 Model 6
System/3 BASIC

Reference Manual
June 1972, #GC34-0001-2

Kiewit Computation Center
Dartmouth College

BASIC Sixth Editionv

1971, #0-87451-063-5

Leasco

Response 1-BASIC
Refzrence Manual
Jure 1971

Mankato State College
UBASIC VERSION 2.0
Programmers Reference Manual

Microdata
BASIC

User's Manual
1972

Multicomp

Reference Manual/Language
BASIC and BASICX

1970, #5M.0315.01

National Cash Register
Time=-Saaring System

BASIC

General Information
November 1970, #ST-9462-20

Q-DATA Corporation
BASIC-1
November 1970

ENI-COMP
BASIC Manual
#P701110, 038

UNIVAC

1100 Series
BASIC

1972, #UP7925

University Computer Center

University of Iowa
CPS
1971

Yarian
Software Handbook
1971

Wang
3300 BASIC
Reference Manual

1971

Wang
2200 BASIC
Preliminary Copy

Westinghouse
BASIC TII & TIX
Reference Manual

March 1971, #25REF-012

Xerox Data Systems
Xerox BASIC
Sigma 5-9 Computers

Language and Operations

Reference Manual

March 1972, #90-15-46D
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~
BASIC 2.0 18% .
COC 6600 cPS GE MARK 1Y
SCOPE UNIV OF I0WA PARTMRUTH DATA GENERAL GE MARK IY HP200DE HP2000C
ACESS 0 mmmmmmas | mmmmmees | mmcmmeee b mmemmeee ] mmemmmmee | emmmmmes ] adeaaaes
ACQURACY#* 14 DIGITS 14 pIGITS 6-8 pIGITS 6 pIGITS 9 pIGITS &6-7 pIGITS 6-7 pIGITS
P T e kil SECEETECRNN BT L et AND AD
APPRONXIMATELY FQUAL |  ======e= | ==eesees memm——— Pemmmmemee ) =sas === memmmmma ] mmmmm———
ARRAY NAMEW# ’ letter or letter or £ letter letrer letter letter letter
letter num
ARRAY STARTING* i 0 1 Q Q 1 1
ASRIGX 0 | mmmmmmss } mmeeesee see FILE | ======== | meeeeeee see FILES ASSIGN nane,
mm, var, mask
BACYSPACE | eemeeee b s . S - BACKSPACE T exp |  wwmeewen | meeeeeas
BACKSPACES: exp
CALL EE T bl CALL "HME: CALL mun, CALL routine | o ===e==e= }F memeeeees
argl, arg? list nare not
call by ref standard
call by valve
argl
CGUIN pame
PR R SYSTEL CHALN nar HALN GIAIS CHAIN :
aum KT file "me, m GAIN nane, T o
rae2, L, Password
*tComaande aNd glements that can be used.
Q .
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RIC

Aruitoxt provided by Eic:

MULTICOMP
" s | LEASDD PDP 10 PDOP 11 UNIVAC 1100 oR YEROX
ITF UBASIC VERSION 2.0/  tpvpv Mass
MANKATO STATE CLG BASICX

Yo I S o BRE LTI IRETEREEPE ACCESS | eeeeee-

num, code

ACCURALCY #v 15 DIGITS 7 DIGITS 8 DIGITS 15 D}{GITS, 8 DIGITS 11 PIGITS 16 DIGITS

pggc .g ion

M| ememees AMD | eememee- AKD AD{expl, exp2) | mmmmmmen  eeeaeeas

APPROXIMATELY BQUAL | -eeeeeee [ mmeeeees b L kol (RECEEEETE IPEEEREE

ARRAY NAMEA#* letter letzer letter !I}ettel followed | letter letter letter

v

ARRKY STARTENG** 1 1 0 0 o 0 1

ASSEQH ] meeeeeee ASSIGH (hape, | ==meeee- see OPEN  § ceeeees ASSIGN name to | ===-----

man, var, mask) num

BACKSPACE | =m=e- e B e CTCE L E N S LE T Bt

CALL S - R BT CALL name R o

{parameter I13ist)

AN 020200 | memeeaaa CHAIN name CHAIN name CHAIN name, CHAIN name, N OT | CHAIN name CHAIN name;
(}m.\‘,nam, CHAIN nare, exy | line # CHAIY #nare, n | clears storage | passwond: mum
line or

GHAIN: nare, n t
or

» I

i

*#*Cormanda and slaments that ¢an be used.

18
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ERIC

Aruitoxt provided by Eic:

CEC 6000 KCR ucsph
1RM PBP WE HONEYWELL KRONCS CEXTURY BASIC HP2O0OF
CALL/360-05 200 BiSIc 2,0 200 B6700
ACCESS | eeeee s S S e T T T T R S
: 3
ACCURACY# 15 DIGITS 7 DIGITS 10 DIGITS 14 DIGITS 7 DIGITS 11 DIGITS |6 to 7 DIGITS
F . S T T I T N - - AND
APPROXIMATELY BL | ---ee | aeeas L L AT TP SR T TR R
ARRAY NAME®« letter or $ letter letter letter or letter letter Jetter
or # or ¥ . letter nunber
ARRAY STARTING** 3 90 8 t 1 0 1
ASSHN
--------------- e LR m=-- ASSIGN name,
Aum, name,
nask
BACKSPMCE | . | e BACKSPACE gexp|  ----- | ----- e
a4 eeaaea LR CALL name ]  ==cee 1 meaee ) aeees | aaeaa
CALL name
ngm
nupTuser
CHAIN e T T [ CHAIN name |  ==-=-

CHAIN name
CHAIN nane

num
nunTuser ¥

CHAIN nace,
. exp

AIMIVERSITY OF CALIFORNIA, SAM DIEGO, BURROUCHS B6700
#*Comzandy and elementa that can be used.

ic
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ERIC

Aruitoxt provided by Eic:

10

NCR BURROUGHS BURROUGHS BURROUGHS BASIC FOUR UNICOMP VARIAN
CENTURY 100 B5500 B2500 B3500 BusInNESs BASIC [ COMP 16 or 620 or V73
BASIC 1 BASIC BASIC BASIC COMP 18 pASIC BASIC
ACCESS S cvmmmmee | eeeaaaaa cemmmman
ACCHURACY ™0 7 DIGITS 11 p1GITS & DIGITS § DIG1TS - 14 DIGITS 7 DIGITS ~ 7 DIGITS
O R R R S AND: amamman AND
APPROXDMATELY BUAL | mevmvmae b eciaaees b eaeaaeas b cli0 b iaaeas D emrieee ] e
ARRAY NAME" letter num nsme letter letrer letter letter letter
ARRAY STARTING*™ 0 1 1 1 0 0 1
ASSIGH ---------------- tmdmmrmm F  ammewm vem | smnwm vam | sassmmm | mamssamaa
BACKSPACE | eememeee | emmeecae b eaaeeaa N R N T I BT T
o, 2 e e . et ms - mtmma- CALL nanme,
parasz, parapl,
apmwn | eeees N L I . prmvmmmn RUN name |  =ce-aa .} memeees=s

AsCormands and elements that can be used.
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ERIC

Aruitoxt provided by Eic:

rCommands and elements that ean be used.

Fi .
il
1EM 53 GE 255 OM.SHARE Q0M=-SHARE KESTINGIOUSE WESTNGHOUSE GENERAL AUTOMATION IE
MOD 6 TIME SHARING BASIC NIWRASIC BASIC IT Basic 111 AIVANCED -
BASIC BASIC
AASIC-16
ACCESS cmvmemnn T I Lt L L B L CLLC T Speepaer iy [
16 DIGITS
ACCURACYS* 15 DIGITS 9 DIGITS 6 DIGITR or 7-8 DIGITS 7-8 DIGITS 6 DIGITS
18 DIGITS
R SR LEEELEL mmemmmms | memeeea AND AND AND AND
APPROXTMATELY EQUAL ———————- —nmmmrn EEEEREPS I e et T IS —m—--
ARRAY NAMEA* letter, $, &, letter letter letter letter letter letter
or 8
&
e
ARRAY STARTING'* 1 ¢ ¢ 1 0 ¢ 1 -
ASSIGN ALLOCATE see FILES See OPEN see OPEN mememane e
Tame
BACKSPACE = | emmmeee- BACKSPACE # exp | ==mem=e= ] memees S S — N wmmmann
CALL name, 1ine CALL name or CALL (mm, CALL name
CALL mumber operates | smmsmeee ] mmesae- - CALL F4 letter e exp 1, exp 2, (&xp 1, exp 2,
like QiaIN or O ee
CALL § name
QIAIN name SCRATCH LINK "loareln
QHAIN see CALL or PROCEED LOAD "fnare” | mmmmmmee | eeaan - —e——————
CHAIN name, Provides manual
line # chaining
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O

ERIC

Aruitoxt provided by Eic:

.-.
Is3

UNIVAC 1100 FONEYWELL, 1640 HONEYWELL - HONEYWELL 400 HONEYWELL 600 HP2000E {INIVAC 1100
316, 516, and : e NIV OF MARYLAND
UBASIC XBASIC 716 "BAS1E XBASIC BASI RELEASE V 1.3
ACCESS f mmmaees e i I L LT LT Bl BT E R CE TR I p——
AQQURACY 4% 8 DIGITS ~ & DIGITS ~ 6 DICITS 11 DIGITS ~ B DIGITS 6 to 7 DIGITS 8 DIGITS
AND AND(exp 1, exp 2)]  mmmemee- mem - R YT T BN TEEEELE AND - —————
APPROXTMATELY BCHIAL mememems | mmmmmess ] mmmmmmes 0 eme- e=== | mmmm=s==s b mmmmmmes ] seseeaas
ARPAY NAMEM# letter letter letter letter letter letter letter
ARRAY STARTING:® [ 9 0 0 1 1 0
YT (- E [—— B [ ECT I - see FILES | -—--moo-
BACKSPACE 4 ymuem

BGSPACE e ] e e BACKSPACE # nugn | BACKSPACE : mum |  =meeeee- S
CALL CALL FNC(exp 1,| CALL names €ALL(mom, exp 1,| CALL name CALL name | =-s----- CALL FUNC

cer &Xp D) ves @XD D) or or (exp 1, ...

Fortran or CALL name CALL name, exp n)
Asserbler Only options password

CHATH CHAIN pame, | mmmmmmee 0 mmmeeees OIN RUN: CGRAIN name, num { CHAIN oo™ | ====e---

num or name optioms CHAIN name

auiN: or RIN may be any CQHAIN nare,

GUIN* or RUN conmand password,

CGHAIN:® mos

fCommands and elerents that can be used.

if
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i
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ERIC

Aruitoxt provided by Eic:

I
T
MICRODATA Q-DATA HP3000 WANG 3300 GEMNERLAL, WANG 2200
BASIC BASIC-1 ELECTRIC 16
MARK ¥
ALESS ] emmemmmss F emememeae ) emeeeeee ] mmmemeas ] mmesmsmas ) memeeees
ADCURALCY % 9 DIGITS 6-7 DIGTIS 6=7 DIGITS 8§ DIGITS 9 DIGITS 13 DIGITS
11-12 DOUBLE
bRrC STON|
N ] mmmmemes ] mmeaeaes AD AD {exp 1, ... | memmm=== b mmmesees
exp n}
..::.?
—
APPROXIMATELY BQUAL, | ==smemee | mmemmmme b emmmmeee | e e PR S "
i
T
ARPAY NAME® letter letter letter or Ietrer letter leteer
letter digit §
- - - oo ]
ARRAY STARTINGA® 0 0 1 1 0 1 »=f o
-
l}.p-_.
ASSId | mmmmmeas SLLETEEE ASSIGN name, | mmmemmems 0 e - SELECT options e
exp, var, mask
2E.
BACKSPACE e Y S BACKSPACE # exp |  =emmeem- =
o
car, | mmemeeee ] emmmeees CALlL pame ™ | =emmemes CALL name GOSUB* mm
{var 1, ...
var n}
Qw0 ] memmmmss @ =ssssees CHAIN name, exp | CHaIN pame CHAIN nape LOAD name
CHAIN R name CHAIN name, num | LOAD nsme, num
CHAIN num

CHAIN R num

*Commands and elements that can be used.
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ERIC

Aruitoxt provided by Eric

BASIC 2,0 184 A
CIC 6600 CPs AR DATA GENERAL 4GE MARX II 1P20008 1P2000C
SCOPE UNIV OF TOWA GE MARK 111
CHANGE = |  =emmmmma 1 eeeeenas OHANGE pumiist | ===a===- CHANGE mumtist | mee;e;cee | mmeeeaas
to siring BIT te stTing -
CWNGE string CHANGE stTing
to mmlist o mmlist
CLose [ memmmmee b mmmmmmee 0 seeeeees CLOSE FILE exp T BT N
COMDN(FILE) @ | =esssese | seesesee ) cemmmsss ] sssaseas mammmame | mmmmsmmss B mmmmoass
COMDN(STORAGEY @ | =======e  f mmesmeee | mmmmeeee ] memmmmeee ] emeeees oM list O 1ist
CONGATENATION | ====mees ] =mmeeese § . P e [
DATA®* DATA val list DATA exp, ... } DATA val list L'TA val lisc BATA exp, ... DATA val list PATA wval list
DATAFILE | seeemeee | mmmmmeee b ememeeee b e R L. B TETTTTT R NPT PO
DEF** DEF FIRNC BATA ANC DEF FUNC BEF FIRC DEF FIRNEC DEF FUNC BEF FUNC
(var) = exp {var list) = {var list) (var) = exp (var iist) (var) = &p (var) = exp
cne line exp | one or muult one line one or rult one line cone line
one line
DM # (virtusl stor) {  ======== | smmemeee ] mmmmeses ] mmmmeeee [ ees e ek SR LLEL L -
DIMENSTON* * DIM name DI name DIM nare DIM nape BIX nare DIM name BIM name
(dimensions), ... | (Girensions), ...} (dimensions),.. . (dinensions), ... | {mensions), ...} (dimensions), ...J {dirensions), ...
default 10 default 10 defanit 10 dafault 10 defaulr 10 defaule 10 default 10
EXDAs ED Ep D ED EXD ED ot
!
ENDFILE | semmemee 0 mmmmrmma [ mmeeeeas tee IFRD ¥ | seevenes see IF EXD see IF EXD

*alazagnds snd elemenca

that can be used,
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ERIC

Aruitoxt provided by Eic:

Ty

UNIVAC 1100 mgm
g e LEASCO 10 POP 11 UBASIC VERSION 2.0 . XEROX
L P MANKATO STATE CLG U«‘-mfg I’é’t(ss
CHANGE asmesman CONY CHANGE string to CBRANGE num to CHANGE mumlist vo| CHANGE mumlist to] CHANGE string to
.11 .3 string string string nun
CHANGE hua to CHANGE string tof CHANGE string to | CHANGE string to | CHANGE mum to
string nn mmlist mamlist string
CLOSE CLOSE FILE = | ======em | meeceee. CIOSE list of CLOSE mum, ... CLOSE 1, name CLOSE: num
‘name*, ... enp
Too T T (331 13 T e e e N T e e COMDN D ] memmeeea
COMDM(STORAGE) | =scemsae | =scccaae | cccccaas T T LT S P PP P
CONCATESATION ——— ———-- “. . CATS(strl, str2) | -=eeeee- .
DATA &+ DATA val list DATA val list DATA val list DATA wal list DATA val list DATA val lise DATA val list
DATA valivep
MIAFILE | eeemeeee | emmmmeee  emmmeeee ] smsemeee | seeaeees DATAFILE = [ «=eesea-
¥, hame
DEF## DEF AINC DEF PNC DEF RAC DEF FUNC DEF FRC DEF FUNC DEF FUNC
{var list)=exp (var list)eexp| (var list) one| (var list) (var list) (var list)s exp (vaT list)=exp
one line one line or mult line one line one or mult one line one line
DM ¢ (virtuml stor) | eemememe | memeeeee ] esmeeees L3 e ST TETE N IS LPEVE LR
. nare (dims)=exp
DIMENSION ## DM name DIM name DIM name MM name DIM name DIM name DIM name
{dirensions), ... | (dimensions), .. J(dirensions), ...} (dimensions), ...| (dicensions), ... |(dirensions), ... | (dirensions), ...
defaule 10 defaule 10 defaule 10 defaule 10 default 10 defaule 10 defaule 10
EXD** oyl BED Bd D BD B BED
ENDFILE e b T B B L st see ON ENDFILE n ENDFILE: exp.

line #

**Comands and elewments

thaT can be yged,
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RIC

Aruitoxt provided by Eic:

£0C 6000 NeR ycsp*
IBM HOXEYWELL KRONDS CENTURY BASIC

CALL/360-0sS POP 8/E 200 BASIC 2.0 00 B6700 HPZO0OF
TS o [ oo o oo o
QL0SE CLOSE expl,... |  =====-- L B e N TR TR BT PP
OMMON(FILE) 00 | eeeeee | emeeee ] eemeee ] eeeeee | e aeeaes c—a
OOMMDN(STORAGE) @ | ====== | mmmmaa | eecaaa ] ecmmaa | aaa P COM wvarl,...
CONCATEMATION | eeeeee | s S I N . & [ eeeee-
BATA** DATA val list | DATA val list | DATA val list | DATA val lisc | DATA val list | DATA val list | DATA val lisc

no strings
DATA FILE @ | eesaea | edamas D edaara | eaaman ] eaaa T e
DEF ** DEF FUNC DEF FUNC DEF FUNC DEF FUNC P DEF FUNC DEF FUNC
(var)=exp (varl,...}=exp [(varl,,,.)}=exp (var}=exp fvarl,..,)=exp (var)=exp
onz line one line one line one lipe _one line one line

DIM ¢ (virtwal stor) | @ =eee--= | eeeeea 0 seeeee e ammm ] ==eee- temmee | meeme-
DIMENSTON ** DIM nane DIM pame DIM pname DIM name DIM page DIM name DIM pnacs

(dimensions), | (dimensions), [ (dimensions), | (dimensions), | (¢dimensions}: | (dimensions), [ (dimensions),

default 10 ) defau.l.‘t: 1o default 10 T defaule 10 def;t;l:t 10
B END comment END EXD XD END £xp ExND
BODFILE 00000 | mmme== ] == see [F EXND see NODATA LT see IF END see IF END

L SIVERSITY ©F CALIFORNIA, SAN DIEGO, BURROVGRS M6700
"iczmande sgnd elements that esn be uasd,
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ERIC

Aruitoxt provided by Eic:

NCR
CENTURY 100
BASIC 2

BURROUGHS
B5500
BASIC

BURROUGKS
B2500
BASIC

BURROUGHS
83500
BASIC

BASIC FOUR
BUSINESS BASIC

UNICOMP
COMP 16 or
COMP 18 BAS1C

8

VARIAN
620 or V73
BASIC

Tot e S e oLl IR CrE T BT LR LI BN EEEILEE
P S T [, SO ammn- CLOSE (num) | =======s ] sseseeses
COMONCEILE) @ | meeeeeee ] eemeeees | ememeeae | seeeeae | mmmmmmss ) mmmmmees 1 mssmmees
COMON{STORAGE) L B B B et Heieieielebele b Belbeielebebebe Y Bty
CONCATENATION | memeemee ] cececeee ] eeee e et Bt [l It
DATAM* DATA val list [DATA val list [DATA val list | DATA val list| =-=-=----=- DATA val list |DATA val 1list
ne strings ne strings no strings
MTAFIE | eeseeiee | ememeeae | memmmeee ) emeeaee | mmmmmmes | mmmmmss ) mmmmeees
DEF ## DEF FUNC DEF FUNC PEF FURC DEF FusC DEF FUNC
(varj=exp (varl,...)=exp [(var) = exp {var) = exp | (varl,...)sexp| <-------- ?&Ergufce
one iine one line one 1ine one line one line one line ®
DM # (virtupl stor) | ee=e=eeaee ]| seceeeean | eesmasen } aneaaass | ommmmmmee ) mEmsssss | mEmssses
DIMBRSION** DIM var Di¥ var DIM var DIM var DIM var DIM var DIM var
{(dimensions), |(dimensions), (dirensions), | (dimensions}, (dimensions),| (dimensions), (dimensionsJ,
default 10 defauit 10 defanit I0 default 10 o default 10 default B
BD** END ESD END ExD EXD EWD END
s A U S .. see READ # | sese-eee | mesmmeas

see WRITE ¥

*Commands and elements that can be used.

2D
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ERIC

Aruntoxt provided by Eric

GENERA
gnﬂg 53 GE 255 COM-SHARE COM-SHARE WESTINGIUSE WESTINGIDUSE AUTOMATION
LE R
iorthd TDE SHARING BASFC NEKEASIC BASIC 11 BASIC 111 D
(ANGE str TO
GWweE = = | eememee- memmme—— 4Tray var G:‘:'\EE mmmemm=m | mmmmmmmm b memessmees
E’t’;'?'% ;:;‘W L string function
l .
CLOSE CLOSE oy oT | =======- CLOSE 1INPUT CLOSE exp | r=me=ee- cmmmmm- = ] mmeeea- -
StT var, ... CLOSE QUTPUT
cotoN (BRE) | mmememme | mmememes | eeeeeeee ] e i < emeeeee
oMoy (STORAGE) | e e e S ol EENNEECEEEECI EEPPERPERS O var,
. LET STR - | ineee | ool mmeeae e, JE e
CONCATERAT I0% (str var, num, - A
rum) = $tr var
DATA val 1, val
DATAN BATAvaI 1, val | DATAval 1, val | DATAwval I, val | DATAwval 1, ... | 2, ... val n DATA val 1, val § DATA val 1, val
y «x. val n 2, ..-valn 2, ...valn val n no strings Z, ...valn 2, ... valn
no strings L
RN - e Bk ICTECEECER INNEECER R el SRR ECECI T ST
- DEE RMC(var)= DEF RMC(var)= | DEF FNC(var)= |DEF FiNC(var 1, DEF AlNC(var 1, { DEF RUNC(var 1, | DEF FRX(var 1,
exp ep ep ...) = exp or -a) = exp -.) = exp -} " oexp
single line single line single line DEF FlC(var 1, single line single line single line

rultiple 1ine

DDt # (virtual stor)

DISC var{num) ,
... DISC var
(mem, pum) ...

DIMENSION®* DIM var{nm, mom) DM var{mum, PIM varinum, BL‘-!}\':::'(exp, DIM var{n, ...}, |DI¥ var(n, ...), | DIM var(n, ...),
defavlt 10 default 10 defaule 10 defauie 10 defauit nel0 cefanit a0
G ED comrent or Bl BD B END 351 D
END
ENDFILE b emeeeea see JFEO* | seeeeees iC\l ENDFILE  p mmmmmmee ] e "= - m—————

**Cormands and elezents that can be used.
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29

exp GOTD 1line #

UNIVAC 1100 HONEYWELL 1640 nl?EES\’IHG‘ELL 4 HONEYWELL 400 HONEYWELL 600 HP2000E wtlt{(ﬂVAC 1100
an OF MARYLAND
URASIC XBASIC 716'&\51& XBASIC BASIC RELEASE V 1.3 2F
CHANGE CHANGE stripg | eveccece | cecdcaas CHAMGE string { CGHANGE st¥ing | 2 =eesee-- CHANGE string
TO var TO var TO var TO var
CHANGE var TO CQIANGE va1 TO CHANGE var TO HANGE var TO
string string string Strink
CLOSE CLOSE exp 1, ... cmmana wa | meea- vae CLOSE: name: see SCRATCH @ | ====cc== | ==ceeee-
. exp n
oMM (FILE) mvmma—— m————— . T T N e .-
COr™ (STORAGE} tmmmenoa R wmemn e T - CMvarl, ... | cmceceea
varn
CONCATENATICH CATS (ser 2, T B e NRNETEEee R SRS -
str 2}
DATAR® BATA val 1, ..., ]DATAwval 1, ..., |DATA val l, ..., |DATAval 3, ..., DATAval 1, ..., {DATA val ), ..., {DATA val 1, .., o
val n val n val n val n valn val n val n -3
no strinks <
N - e T B I B el Do RN NSRS
DER* DEF FIMC(var), | DEF FNC(var)s | DEF FINC{vor)= | DEF AMChHar)= | DEF ANC(var)s | DEF FINC{var)= | DEF AMC(var I,
v..r vaT n)eexp | exp exp exp exXp or exp -+.# VAT M)CXp
DEF FINC(var 1, | single line single line single line DEF FRC(var), |single 1ine DEF FUNC(var 1,
cass VAT N} ceer VAT ) cees VAT D)
DM # (virtual stor) =} meememems ] ememeeee | eeeeeees DISC var (mm, e T S naae N SN LE LD -
)t name
DIM var{mm,
DDENS IOt mm 1, mm 2, DIM var(riem, DI var{mm, DIy, varimm, DI var (mm, DI var(num, DM var{mm,
race 3), .., oF, mo), ... e dp aas R am), ... nan), ... y sas
gﬁmtm SPeCif  gefauie 10 default 10 defaule 10 default 10 default 10 defoule 10
default 10
Bt 2O BD XD END END BD BD
ENDFILE O ENDEILE see TF END —emveve see IF BEND see IF END see I¥ BEND amvmrm—

**Commands and elements thet €an be uged.
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MICRODATA Q-DATA HP3000 WANG 3300 GENERAL WANG 2200 N
BASIC BASIC-1 ELECTRIC 6
MARK 1
e eeeeeee L aad we- COWERT mum e S
10 string
CONVERT string
T var
[t 7o+ (N puyuyupuui ey i i FILEBD # pum | =meeeeee | cmemeeee
GeMON (FILE) f smsemeee | mmmmeeee | emmsemeee ] msmmmses 0 emmmesee 0 eoe -
COMMN (STORMGE) @ | =esemeee | mmeeeees M list OM var 1, ...,  ======-- CMwvarl, ...,
- varh VET N
CONCATENATION | mmemeeee ] e I B B Tt
DATAM PBATA val 1, PATA val 1, DATA wval 1, ... BATA wval I, .. [ BATA V2l I, ... DATA val 1, ...
val 2, ... valn|val 2, ... val n val n val p val n
no strings no strings 9y
~3
DATAFIE 0 0 mmmmemee | mmmmmmee ] emmmmmee ] mmmmmee ] e - .
DEF** DEF FUNC (var 1, | DEF FUNC (var) DEF FUNC (var 1,| DEF RSNC (var) | DEF FUNC (var) DEF AN (var)
var 2, ... = e . VET N} = QNP = eXp & axp ® &Xp
var n) = exp single line DEF FNC (var 1,]| single line single lipe single line
single lipe .a. var m) -
DM & (virtual stor) = |  cmmmmeme | mmmeeeee ] mmmemene ] meemmmee | eemmmee ] smeemeeas
DDMERSION®* DIM var [dim, B ver (dim, DM var (dim, DM var (Cim, | DB var (dim, DM var (din,
dim), ... dim), ... din}, ... dim)y ... dimdy ... dim, ...
default 10 default 10 default 10 default 10
B D BD END 2 D BD
EXDFILE | memmememm 0 mesmeaas see IF END sce IF XD i b o o L

|

ceCommands and elements that can be used.
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iC2.D T .
cnc*ssno CPs PARTMDUTH DATA GENERAL GE MARX 11 HP2000B $P2G00C
SCOPE IV OF TOMA GE MARX III
ENTER EEEELELE S i A I EE L L memmemn- EXTER var, cxpi..JENTER var, exp,...
ENTER I var, {ENTER # var,
eXPy e eXp, ...
EQUAL ** = - - - = or FQ, = =
BUIVAEE = | memmemee ] ememmmee | ememmmee b eeemmaes ] mmiae. « | mmemmmee | emmaeeas
BHWWGE =00 | meemessss f 0 mmemeeee b mmemmeee ] veeas wem | mmemmmee ] mmmmeees | emeeeeas
EXCtsStVe oR 00 | memmemss ] mmesmeas B mmemmeee ] mesmmees | sesseses ] sssmeses ] esmaees
EXPONENTLATION ** : or wr " - t + or Wk + "
Fieo | eeea- e see IMAGE see USING |  ===e-eeee goe USING @ | ==-ee-e- see LSING
FiLe |  =ees=mm=e f memeseaaa FILE # exp: see QPEN FILE # num, nanxy sce FILES sce FILES
nane FILE: nmim, name
installation 6 characters Dot
FILE NAME MaX determined | mm=mm=e- § char including extensiong 6 char 6 ¢har
)
EILES ¥ memmemmm | amemseas see FILE see OPEN Files name, ... } FILES name FILES nape
[ 22 Y G S L BNEND @000 ] meemmees ENEND @ ] eeemeeee | meemmess
FOR ** FOR var = expl | FOR var = expl |IOR var = expl |[FOR var = expl FOR var = expt | FOR var » expy FOR var = expl
10 exp2 STEP TO cxp2 STEP TO exp2 SEEP |10 exp2 STEP TO exp2 SIEP T0 exp? STEP | TC exp2 sTEP
expl expl expd expl expl exp3 exp3
GETPTR @} e I BT S ——ermman R ) N = | mmemeee-

*kCormands and elementsz that Can be ased.
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INIVAC 1100 MULTI00MP
1M LEASOD POP 10 FDP 13 UBASIC VERSION 2.0 R TERDX
ITF MANKATO STATE €LG ENTV MASS
BASICY
ENEE 00 | emmmmmee | eeemaaa T e e
AL - = - - EQJ(expl , expl} = =
BEUIVAIBCE | mmemeeee ] mmmmmmen | mmeeees B BUlepl, exp?) | mmeeeee 0 aeeen um
EXCHARGE ] mmememms ] eeees wme ] mmmme=ee- FILE exp BXC!!.-%‘GE vi, v2 | mmemeeees OPEN name to:
ol v o2 str, PRINT, ON
EXCLUSIVE QR =~ 1 mmmmmmme | mmmmeee ] meeeees BOR $oR(expl, exp2) | memememe | e
EXPONENTIATION ** + OT an t t or ar t tor t t or a*
FIELD see IMAGE see PRINT USING se¢ PRINT USING | see PRINT USING|  cceeenas FIELD (specl, see PRINT USING
specl...spec n

BILE = | . e=mmmmeee | mmmmemes FILE Y, str... | see OPEXY see OPEN see ASSIGY see OPEN

BILE: N, str...
FILE NAME MAX 3 char 6 char 6 char 12 char 7 char 11 cher
BiteS |  mmmmeea- EILES name, ... FILES name, ... ) see OPEN see QPEX see ASSIGN see OPEN
=11, S [ SR FNEND RED FNEND crmmmmes ] mmmmeaas
FOR ** FOR var * expl FOR var = expl FOR var = expl | FOR var = expl FOR var = expl FOR var = expl FOR var » expl

TO exp2 STEP TO exp2 STEP TO exp2 SILP 70 expl STEP 0 exp? STEP O exp2 STEP TO expl 3TEP
expl exp3 expl exp3 exp3 exp3
FOR var = expl
TO exp3 BY exp3
GETPIR mum, varl

GETPIR | mmmmmmmm b emmmemee b mmmmmmee  memeees bl var? ' d IR

“itormands and elemenite that can be uued.
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"lommands and elements that tan be used,

CIC 6000 NCR ucsy'
IBM HONEYWELL ERONOS CENTURY BASIC
CALL/360-0S ?hy B/E 200 BASIC 2.0 111} . B6700 HP2OQOF
o 1 e e L L R T T T T ENTER ¥ varl,
. ERTER varl,...
B;lm - - - - - - =
e )N o I L B L kA e R A
BCHWNGE S =—===0 ] memmms F mmmmes ) mmmmes b edenee 0 adaaee | saaaia ] mmeaas
EXCIUSIVEOR ] ===e== } mmemau | cmmmme ] =s==== } ====ee ] =s=ss=e== ] em=e=-
SXPONENTIATION® t OT an t t or A or k% ¢ t or Ak +
FIELD see PRINT |  ======- FMT or rusma- #memme | mmeaea see IMAGE
USING sce PRINT
UsSikG
FILE FILE name ,num
not ¢ollegt | ==---- see FELES | ==---= |  ====== see FILES sce FILES
FILE NAME MAX 8 characters | -===-- letier or 7 characters §  ====== 17 characters |6 characters
letter num
FILES see FILE |  ~-====- FILES pnamel,..{ -===== |  we=su-o FILES namel,..|FILES name,...
FNED SR I B R It S
|
FOR** FOR var=expl FOR var=expl R var=cxpl FOR vavzexpl FCR varsexpl FOPR var=expl |FOR varwexpl
™ cxpl STEP 9 expl STEP TO cxp2 STZP T0 expl STEP TO ecxpl TO exp 2 TQ exp
oxpd expl cops expl STEP expl STEP exp3 STEP exp3
GETPTR. | mme=e- gm===== | mmmeea b mmsmee ] mmsmes ] smmses )} mesmees
ACRTIVERSTTY OF CALITORNIA, SAN DIELO, DLRROJGHS ZR7CO :

3

~3
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-

NCR BURRQUGHS BURROUGHS BURROUGHS . BASIC FOUR UNICOMP VARIAN
CENTURY 100 BS500 B2500 B3500 BUSINESS BASIC | COMP 16 or COMP | 620 or V73
BASIC 1 . BASIC BASIC. BASIC ' 18 BASIC BASIC
BTERR | ememeees ] meeeee R L Lt B LR LA BENCECEEL R SR LRl
EQ.'AL“ - = oT “NEQ - - - - -
or +
2ol R v S L L B Lt T S S LT LR LD
ot e B L B T T R B L GECA BECETEETEY
EXCLUSIVE OR | =======- memmeees sormonns R e It Bttt
+ + +
EXPONENTIATION *Y t bodd an bl integer < = 9
FIELD L B e L LT B LT see IMAGE =rmemmnn | eccnenan
FILE |  =eeseces see FILES |  ---cecen  F 0 eennaon see OPEN | --==-=-- -
FILE :AME MAX - & characters Y 1 e ¢ characters | ~-------- 6 characiers
progranr files
only
FILtgs | eeeee--- R O see OPER | =-ccenn- sememaan
71501 S ORI IS R .- camnnnan R R L P LI RS SR
FOR** FOR varzexp 1 FOR var=exp 1 FOR var<exp 1 FCR var=exp 1 FOR var=exp 1 FOR varmexp 1 FOR varexp 1
T0 exp 2 2 exp 2 TO exp 2 TG exp 2 TO exp 2 TO exp 2 TG exp 2
STEP exp % STEP exp 3 STEP exp 3 STER exp 3 STEP exp 3 STEP exp 3 STEP exp 3
GETPIR | cecccaae ] eemeenee f aeeaaaaa B — KEY |} ==sssene ] mmeceen-

*AcCormands and elemants that ¢an be used.
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T8 53 e 255 CON-SHARE COM-SHARE WESTINGKUSE | WESTINGXKSE S
MOD 6 TIME SHARING 5 ATTRATION
A t BASIC REWBASIC BASIC IT BASIC TII ADRCANCED
BASIC BASIC
PASiL-i6
e seeeeeee | esmmmeee [ mmmmmeee ] emmmeems ] mmmesmms ] mmmemmas | mmeemens
SE” Y - - - - a L ]
EQUIVALENCE | memmmmee [ mmemmeee [ eeeees B | meemeems | mmemmene | mmeeeees
e T A, e T IS CETTTEE R NPT TCEECI BENECTIECTT RN I EECEE ——mna-
EXCWSIVEOR | mmssemmm [ mmmmsess 0 mmmmmmes ¥R | mmemmmmm ] mmemmees ¥OR
EXPONENTIATION** t or ** t 1 t pr *® 3 + t or!
FIELD see DUGE | m--mee- ~ | mmeemme- ses PRINT |  =re==m== | wewmewm=e | emmemes
USING
FILE ALLOCATE see FILES see OPEN see OPEN | =eemm=-= | sesmmes ] msemsses
FILE NAVE MAX 8 characters 6 characters 9 characters 9 characteérs | 2 =======s |  smsmssas | memeeee-
FILES see* FILE FILES name 1 see OPEN see OPEN | memmamee | mmmmmeae ] mmemeeeee
name 23
D | memem==s | mmesese= [ mmmmanes sep RETURY | =e=mmemee | sessseee | mmmeeeee
FORY FOR varwexp 1 FOR var=2xp 1 * FOR var=exp 1 FOR var=exp 1 FOR varsexp 1 FOR var=exp 1 FOR var=exp 1
T0 exp 2 ™ exp 2 TC exp 2 T exp 2 0 ewp 2 .H.Ooxvunﬂ .336mxv
STEP cxp 3 mq.mvwmxm.w Lm...u.unﬁ STEP oxp 3 STEP &xp 3 t TP exp 3 STEP exp 3
max |
|
GETPTR | mmemmeme ) emeeeees q ........................................

ssComrands amd elements that can be used,
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28
INIVAC 1100 HONEYWELL 1640 I-DNE;W-‘ HONEYWELY, 400 HREYWELL 600 HPZOO0E URIVAC 1109
UBASIC XBASIC 316, 516, and XBASIC BASIC UNIV OF MARYLAND
716 BASIC RELEASE V 1.3
BNTER 00| mmms==== ] mmsseses ] memsmees | smmssmees ] emmemees | emmemeee ] emeeeaes
LQuALA* EQU (exp 1, - - - EQor » = =
exp 2} or =
EQUIVALENCE EY (expl, | mmememee | meemmmee 0 mmmmemee ] seemeeee | sedsseee ] eseeeeas
exp 2}
EXCHANGE var 1,
EXCHANGE var 2 orvar 1 |  mesmsses | emmeseee | sseseeee ] smeseees SRCEETETINE B LEEEE
== vay 2
EXCLUSIVE OR XOR (expl, | mmmmmmme ] mmmmeees mmmm e PR e e ey—— -
exp 2)
EXPONENTIATICN t OT & oF ** + OT ** % 4 +oor ** % + oy **
FIELD sev PRINTUSING] BMF [ =eeeeees see IMAGE see MMGE = | emme- we= e
specifications
FILE # v, name,
FILE see OPEN see FILES [  =====--- FILE ¥ runm, password ses FILES |  ===-eees
name FILE: mm, nome,
password
FILE NAME MAX 12 characters 6 characters |  -=-=-e-- 6 characters 12 characters 6 characters |  ====-=--
FILES names
FILES see OPEN FILES hame £, |  ----- - FILES name 1;  |passwords ... FILES name, ... m——————
<.y RATE N ... NAmE R or
FILES cptions
RED RED @ | eeemmmeee | emmeeeee | eeaeeaan pRED 00 | eeeeeee- ED
FORvar =exp 1 | FOR vaT 2 exp 1 [FOR var » exp 1 FOR var = exp 1 |FOR var = exp 1 FRwarsep 1l |RIRvaresexpl
FOR** W exp 2 o exp 2 0 exp 2 T exp 2 'O exp 2 O exp 2 TO exp 2
STEP exp 3 STEP exp 3 0T STEP exp 3 OT STEP exp 3 STEP exp 3 STEP exp 3 STEP exp 3
BOR var = exp 1, |FOR var + ep 1, FOR vaT = exp 1
exp 2, exp 3 exp 2, exp 3 O exp 2
BY exp 3
GETPTR N S - N o e [ e P

*Comands and elements that can be used.
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1 1
MICRODATA Q-DATA HPRO20 WANG 3300 g:‘-‘.}":'-‘_ﬂ'-!_:}]'.c ’ TANC 2000 ;
RASIC =g () LR i }
BASIC- MRE T | ;
r L
ir.mza £ var ! H
BTRR0 aeeeaa O T ENTER o i, . P mmmmmema ;
a2, num 3 ; i
CNTER ¢ e 1, !
w2, put 3, var ! i
i 1
EQIALR* - M - " = l - :
! |
EUWALEE 00000 b emmeeee ] e " seevemam | mmmmmmas F mmmmaeas : cemens :
] 4
1 !
o Cac £ -3 e e e e T - 1 ........ : !
! : |
| | ! I '
ECIISMEOR =} mmsmesaa= ! mmmtmmmn ] mEmassea jooommemee HRELELELE i ........ ! '
f | 1 : H
i i ! f :
EPONENTIATION i . ; . ; - or+ : . 5 . -.
i i ! :
: ! : :
FIELD ! mmemm— : -------- see PRINT USING§ see DMAGE see DMAGE sec DMAGE : .
| ! ! i
; f | *; 3
FILE Iy y T F see FILES I see FILFS sec FILES ; seq ASSTON :
. H ; : ;
{ . ] 1 T 1
FILE NOE MAY ! e { s depends on 8 characters & characters {8 characters 1
i ! installation i H :
i : o i
RILLS e - FILES * FILES options FILES pame 1; |see ASSIGN ' '
" H FILLS name : aore 21 ... 4 ! :
i : ! ¥ !
FEND PO ; memmmma- | 5= S Sy A e [ mmmmma i \
: i : :
‘ : ! : !
Fopes L FOR var = CFRvarmexp i {FRvar = eop 1 JPR var wexp ] FOR var = exp } TFOR var mexp 1| t
jor TR ep 2 (T ep? TO exp 2 T ey 2 TC exp 2 b0 ep 2 : .
L S ESTEP exp 3 STER oxp 3 ISTEP e 3 T e T | STREP exp 3 ' !
' ' : i |
' ; ! i : B
GETHTR - - . T TEEEE : bz ‘ ........ i LT e ] R
: ' ! i

*alommands and elements that can ve y:-3,
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3!
BASIC 2.0 [ §: .
¢ 6600 CcPsS BARTMIUTH DATA GENERAL GE MARX 11 HP2000B HP2000C
SCOPE URIV OF ICWA GE MARK III
GOSUm *» G0SUB Iins GOSUB tine # QOSUB line # Q05UB lipe ¥ 0sUB tine GOSUB line # GOSB line #
@IBOF | mmmemees S sec ON see ot | emeas GOSUB exp OF GOSUB exp OF
(computed) nl, o2, ... nl, n2, ..
GoTo ** GOTO line # GO0 num G0 TO line # W 10 Tine ¢ @ TO num OOT0 Tipe ¥ 0) TO Tipe #
G0 TO mum GO TO 1ipe # 00TO exp line f
GIOOF 0000 | eeesmmes | ceemmmes ) emeeeaes see N ] emeeeaes 0010 exp OF 0T exp OF
(corputed) nl, n2, ... nl, nZ, ...
GREATER** . » » » * or ,GT, » =
GREATER EQUAL** »=orw > »mor = > »wor=> > » = or .GE. > = > =
701 SN (R e e o O T
I * IF expl e IF expl exp2| IF expl op expZ| 1F expl op exp2 IF expl op exp2 | IF expl exp?] [IF expl op exp2
'I'I-EN,Tingp' s TIEN lineopl' ® THEN line f oT mxglne + ® THEN line # THEN in:pl it THEN?ine L
IF expl op exp2| IF expl op exp? IF expl op exp?
QT lipne o1 line ¢ GOTO lins f
IF expl op exp2
GOSUB line
IF expl op exp2
THEN statement -
138 -1 18 N (Nuputunupru N S IF END # IF EOF (mum) IF END # exp THEN{IF END # exp IF BND # exp
exp THEN llne #| THEN line # line ¢ THEN line f THEN line #
IF END ¥ exp:
THEN line #
IEMRE? | mememmee | emmeeees IEMBRE #exp | mmmemmee- IF MORE # exp cemmerme | memeaea
THEN line ¢ THEN line #
IF MORE # exp
THEN 1ine ?

axCozwanda and elements

chat ean be used,
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[¥H)

[

UNIVAC 1100 MULTIOMP
I LEASCD e 10 POP I1 UBASIC VERSION 2,6 OR XEROX
ITF MANKATO STATE CLG UNIV MASS
BASICX
COSUpe* QOSUB line ¢ GOSUB line # 8038 line # X SUp 1ine ¥ CO2YB line ¢ GOSUB lipe ¢ wss 1ine ¢
CABOF ] mmmme=ee- COFBexp | mmmmmmmm | mmemmmes [ mmmemews ] ssessees ] seseeees
{computed) 0, line ¥, .,
GoTg* GOTD line ¢ GO0 line X GO TO Iine ¢ GOTQ line GO 10 line GO 10 Eine & GOTO line ¥
GO TO * num COTO exp, line {1
oo 1 meeeeee- 60 exp | mmmmemss | mmmemeee {0 mmseseee ] mmmmeees ] mmemeees
(cooputed) of line ¥, ...
GREATER®* > > > > GTR(expl, exp2) > >
GREATER EQUAL** > - > - > = > - GEQlexpl, expl) > >wore=>
ww ] mmmmmee= | mmemees = ] mmmmmm=s | ssamssee [ ssseeees miey | mmemeee-
IF#= IF expl op exp2 IF expl op exp2 IF 2xpl op exp? | IF expl op exp2 | IF expl op expl IF expl op exp2 | IF exp) op exp?
THEN line # THEN line # THEN line ¢ THEN statement | THEN line ¢ THEN line # orz TI-IENTme 1
IF expl op exp2 IF expl op exp2 | IF expl op expZ | IF expl op exp? IF expl op exp
line ¥ THEN line ¥ THEN Iine ' 2 '{I-I:EN statenentz wmnfm '
IT & op exXp Fe op exp
GO line ¥ G‘.ITOT}M 1
IF exnl op exp2 .
GOSUB line ¢
IEppryr | meeeeees IF END ¢ exp IF BEND #var THEN|  -===---- see QN | mm==s=== | meemeeas
THEN line X line #
IF BND: wvar THEN
line #
IFMRE¢ | ==mmmm-e | mmmmmeem 0 mmmmmeee | mmmeeees ] mmmmeeee ] mmmmmmee ] mmmmmees

*eCoomands and elecents that ean be wvaed,
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1BEM
CALL/360-035

PDP 8/E

HONEYWELL
200

QX 6000
FRONOS
BASIC 2.0

NCR
CENTURY
200

ucsp*
BASIC
86700

HP2000F

-3

GOSUB lines

GOSUB lipe #

GOSIB = GOSUB linet GOSUB lines GOSUB line# GISUB lipe# GOSUB linef | GO SUB lined
oBoF | eeeeee b eeea.d GosuB(tine?, | ------ | eeeveee ] aeeas GOSUB exp OF
(computed) +es liner)exp lipef,...
GOT** GOTO lines COTO liped GO 10 lincs GO TO lines GO TOQ lipes GO TO lineck GO TO line#
. GOTO line# GOTO lined GOTO tinet
GOTO linek,. .. GO TO(line‘
GOT) OF lines o ceslined) c;cp ------------------ GOTO exp OF
(conputed) exp | eemevs or see ON linef,. ..,
CREATZR®* ] 3 ] » 3 3 ]
GREATER Eial =x s OF w3 3= 3 sa Qr =3 sm Qr =3 3= or = 3.
o5 - o e O T e
1A
IF expl IF expl 1F expl IF expl IF expl IF expl IF expl
op exp? .op expl op exp2 exp2 op exp? op exp2 op exp2
THEN line# THEN lines THEN iines THEN line # THEN lines THEN llnet THEN linet
1F expl IF expl IF expl IF expl
op e&xp2 op expl op exp2 og_ exp2
GOTO line # GOTG line # GG TO lluns # GO T0 lipe # .
DL | eeeeee ] eeaa- IF END & pame | see NODATA | =-c--- 1F END £ exp {IF EXD % exp
GO TO lipes THEN lipe# THEN line#
IF END # panpe
THEN lined#
IFMORE®? | eemeee | eaaaa- R A T IR (ppuuptprpt N U

MSIVERSITY OF CALIFORNIA, SAM DIEGO, BURROUGHS B&TOO
eeformands and elemencs chat can be vsed,
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4D

NCR SURROUGHS BURRougHs BURRQUGHS BASIC FOUR UNICOMP VARIAN
CENTURY 100 B5500 B259 B3500 pusiness pasic| .COMP 16 or 620 or V73
BASIC 2 BASIC BASI( BASIC = COMP 18 3aASYIC BASIC
GOSIB 4o GOSUB line # | GOSUB line 1 | GOSUB I.ne# GOSUB line® | GOSUB line’ GUSUB liner GOSUB lined
- 1 v 0 b eieeeas | aeeeaaes GOSUB &xp OF
L (St Bl S Bt linef,...GOSUB
(corputed) linef, param,
GO *» GO TO line # | GO TC line # | GO TO 1ine # GO TO line A[CO TO Yine ! [GO TO line f GO TO line *
. cemcmran | mmmmeres ] eesseae- GO TO exp OF
Grmor | mmmresss ) msserees [ wmmenees linsf,. .
(compured}
GREATER ** H \GT or » > H > > >
GREATER BQUAL** > =0T =2 \GE or »>» or > »= > = OT = > >m >

> Or>

HOLD Cmmmmmn= T oy [ [ [ A
[R** 1F exp op exp |IF exp op exp IF exp op explIF exp op exp {IF exp op exp | IF exp op exp|IF exf op exp
THEN line # THEN line f THEN line # 1 THEN line # statenent THEN line #  [THEN line f
- PO S see READY ) ______... | .. e
FERDY 0| eeseesee ] edscscas ] cmeeaas e i or
NRITE #
IEMOREF | memeeemee ] cemeecas | mmemeeas ) aemeeaan | TS tmameman | eemmeea-

*Coopands and elements that can be used.
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Aruitoxt provided by Eic:

GE 255 COM- SHARE COM-SHARE | WESTINGOUSE WESTINGIOUSE e
TIME SHARING NTKBASIC BASIc It RASIC 111 ADVANCED
BASIC BASIC NCHBAS BTCo16
GOSUB line * CDSUB line # GCOUB Line ¢ O0SUB line # @sYs lire ¥ GOSYUS line #
no recursion
CoSUsoF ] mmmmmeea ] mmseeees ON exp GOSUB O exp GOSUB | =mmmmee- 1 es wmmmme ] mmememeaes
line ¥, ... ke ¥, ...
(Computed)
COTO** GO TO 1ine ¥ GO TO line £ GOTQ line » 3070 line * GoTQ lire * GO0 1line ¢ GO tine #
0 TO line f, o ey 11] oM exp GOTO N exp GOTC ON exp GOTO o exp GOTO NN exp GITO
@ oF wes line ? Iin:q:, line #, ... line *, ... iine #, ... tine #, ... iine #, ...
{cotputed) 0% exp
GREATERA b ] 3 b ] b ] 3 b ] 3
GREATER EUialA« 3 = 3w 3 - 3 = 3 pr ey s mOr w3 3 -
mw -------------- +#m 1 aeeeess=s 1 emsssssss |  essssss=s ]  mssssss=
IE** IF exp IF exp op exp IF exp op exp IF exv ap exp IF exp op exp IF exp op exp 1F exp op exp
mﬁxgg | THEN }ine & THEN line ¥ THEN line # THEN line # THEN lins # THEM line 4
1F exp op & IF exp op exp IF exp op exp IF ¢xp op exp
GO TO line # GOTO 1line ! COTO line # COTO iine ¢
IF exp op exp IF exp op &Xp
line # COSUB 1ine #
IF exo op exp
THEN statement
RO | eeeeeaes 1IF BD I exp
THEN line num | =memeeee see PDFILE | =mmmme=== | mesmesee f memeemes
1530 S e e B = RNCTELD S B U SEECELIEE

**Cormands and elements that can be used.
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Aruitoxt provided by Eic:

UNIVAC 1100 | HONEYWELY 1620 HINEYWELL HONETWELL 400 | SONEYWELL 600 HP2000F UNIVAC 1100
516, 516, and NIV OF MARYLAND
URASIC XBASIC 216 ASIC XRasSiC BASIC RELEASE V 1.3
GLSlnes GOSUB line GO SIB Fine # G0 SUB line » GOSUB line # GOSUSB lipe ¢ GOSUB line # GORIB iine #
GosuB OF L e N B TP L UL L BT el B P LR LR GOSUB exp OF | =---- e
{computed) lie #, ...
COTOA* GOTO 1ine # GO0 line # COT0 dine GOTO line # GO0 line # GOTO 1ine # OOT0 fine #
or GO * £ num
GOTO * mum
ON exp THEN line { ON exp GOTO N exp (N0 N exp GOTO ON exp COTO GOTO) exp OF ON exp THEN
GOTO OF 4, ... line £, ... line #, ... line #, ... line ¥, ... line #, ... line #, ...
{computed) ON exp GOTO line N exp THEN ON exp COTO
, ... line ¥, ... line f, ...
GREATER** GID (exp L, > > > . torGT > >
exp 1) or »
GREATER EQUAL®® GEQexp 1, > O & > > Or e > mOr=> GE or > = > e Dy e >
exp 2)or >=pre>
> = QT ™ =
we 0l eememeee | eees P I (. e | emcdeae ] mmmmmmaa ] ecseaeaa
b IF exp op exp IF exp op & IFexpope IFexp op & IF exp op exp IF exp op exp IF exp Oop exp
'{!EN line # ‘!HEN,?im 'xp nmxgim 'l‘p THEN line 'l‘p THEY line 4 THEN 1ine 4 T;IEN 1ine 4
F exp op IFexp ¢ & IFexpop & IF exp op exp IF exp op cxp
QOTO Yine ¥ Q10 Sine £ 7 | GITO Bime £ GOTO line # COTO 1ine ¢
IF exp op exp IF exp op exp IF exp op exp .
TIEN statement line # 1, THEN statement
lins 4 2, iF exp op exp
line # 3 line * 1,
line * 2,
line » 3
IF END 4 mum
IF BED ¢ see EMDFILE IF BXD * exp cmmmmran IF 2D ! num, THEN line ¥ IFEDdexp |  mmmmem--
THEN line ¥ THEN line # IF END # num THEN line 4
GOTO line #
ftFM®BRESs 00000 | meesesee ] sesssses | adeaes . 2 LORE 4 mum, iF MORE £ mem, remmmsms f sesssees

TeEN line #

TN Yine #
IF MORE * num,
GG line 2

**Cormands and elements that can be usged.
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MICRODATA, Q-DATA HP000 WANG 3300 mc WANG 2200
" RI
BASIC BASIC-1 MARK T
GOSp** GOSUB line # GOSUB line # GOSUB line # GOSUB line # GOSUB line GOSUB line #
GaEamBoeF 000 b emareaer [ areraes- GOSUB exp OF ammma—— R it
(computed) line #, ...
GO GOTO line ¢ GOTO Line # GO0 line GO 1ine # GO TO line # GO line
GOTO CF MNexpOTQ | vmevea- GO exp OF GOTO line ¢, ... ]G exp GOTO |} =cvevves
{computed) Iine &, ... line &, .., Fine # ON exp line #, ...
GREATER?s > > > > » >
CGREATER EIALSs » . > = OF w » > w = > e > e
L wmmmmmva | mesmveas | cmcemeae | emcaaaea P [
b} d IF exp op exp 1F exp op exp IF exp op exp IFexp op & IF e &xp IF exp op exp
THEN Line # THEN line # TEN Line # THEN 1ine ¥ THEM 13! THEM line #
IFEND# —emmea- cemveana IF B5D 7 exp IF D f mm IFEND # exp |  =veew==-
THEN Pine # THEN 1ine # THEN line #
ON BD # exp IF END: exp
THEN Line # THEN line #
IFMORE? ] eeemears b meeeaas vemrmmmr | mveema— B avma—-

*4Commands and elements that can be used.
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g‘g}é‘ﬁﬁﬁa" “PS DARTMOUTH DATA GENERAL GE MARK 11 HPZ000% HP2000C
SCOPE 11V OF [MA GE WARK 111
PETHN-EISE = | eemmmmme b mmmmmeee [ emmmeeee ] mmemeeee [ mmmmmeee | emsmeean | mmmeees
IMGE 0] mmmmeee- TMAGE zoe USING |  ====mee= | mmeas —am see USING see USING
BRLICATION. | meemeeee ) e | mmeees N [ — U I
INPUT ™ ISPUT warl, ... INPUT ARRAY INPUT varl, NPT varl, INPUT varl, .. INPUT varl, INPUT warl,
INUT varl, ...
INUT FROM | emmeeeee ] e B e DL LECL LA NPT PR B PP EES
INUT LIKE = | =esmm==e 1 eas s see INFUT | =eeeeee 0 mmmmeeee ) mememeee ] mmeeeaes
INT (- ) 1ist f  =m=mmmee | mmmmmemn ] mmemmemee b ememeee ] eeeemeee ] eeeeeeee ] e “m-
b (N L ST TEETE INPUT ¥ exp: INTUT FILE INpurT f oexp, MSt | mmmeeeee 0 mmemeees
warl, varZ, ...| [e.p} list INFUT # oxp: lise
INPUT * ", vaT, ... | mmmeeee- mammmmmm | mmmmemes “ammmma- mmmesmm=a | mmmss=ss ) mmemmses
INTEGR QE | === | mmmeemee ) emmeeee | mmemeeee | s [kl NCLEE LD
o {4 A R aunnl EEETEEELEE see SORATCH | ======== |  ===meees [not collect not collsct
LARGEST # ** £337 7.2 B7S 1.70141 E38 7.2 E75 1.70141 E38 E33 E38
LESS'* < < < < < or .LT. < <
LESS BQUALM < ® OT = < < = Or =« <wOf %< <= < % or .LE: <= < =
LET ** LET varl = varz {LET varl, ... LET varl = var2} LET var = exp LET worl = varZ [LET varl = var?| LET varl = var2
;rno :E?‘@ gr&’ @PpOr | = ... exp or no LET " Vard ... © exp ;r.;u.a [-E;Jq: ;r.;u; ;g

*rfonnands and elements that gan be used.
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Aruitoxt provided by Eic:

194

UNIVAC 1100 MILTIOOMP
1M LEASCO PDP 10 PDP 11 UBASIC VERSION 2.0 .3 XEROX
ITF MANKATC STATE CLG UNIV MASS
BASICK
IF-THEN-ELISE =~ |  ==s===== | seseswee | eeeeeee- IF stateremt op | ====eeee ] memmmmmee ] eemeeaes
statement
THEN statement
ELZE statement
MAGE MAGE see PRINT USLNG see PRINT USING | see PRINT USING mmmmme- see FIELD see PRINT ysInNG
DPLICATHN @ |  ======== ] smmesees ] sesseees Mr DMPlexpl, exp2) |  ==mmmm== ] mmemeees
11121 i WPUT varl, ... | INPUT varl, ... INPUT varl, .,. | WEUT varl, ... | INPUT wvarl. ... INPUT varl, ... INPUT varl, ...
INBT FROM | meeeees = ] mmmemmes “avmmmnn LT ELE DPUT FROM ptanz | =====m== ] mmmeeees
list
INPUT LINE =~ | =emeemee | emmemmmee | ameeeaes INFUT LINE mimmwmem ] mmemeae- mmsmvmae
string variable
T ( ) list | mmmmeme=e ] mmmemmee {0 memmmmee ] smeeeees see INPUT FROM INRUT {61, n} e
varl, ...
INPUT # GET name, 1list | = ===-=- .- INFUT #h, list INTUT ¢ exp, see INPUT FROM | ======es INPUT: str;
INFUT: N, list varl, varZ ... key, list
DFUT * *, var, ...] ===ceeee e e INFUT *str; | ==emmees R
Var ...
DVTEGER WRE | mmeemm=ee ] e pebLELE S mEeTic name | =emeeeees wmmmmmee | e wm--
followed by %
[ | seeeeeas KL name | =eeeeee- XL string |  ----- .- see SCRATCH wmmm—————
LARGEST #** 7.2 EIS Els 1.7 E38 17 g38 E33 ES9 7.237 15
LESG** < < < < 155 (expl, exp2) < =
LESS HyML** <= < ® < = <= LEQ(expl, exp2) < = - <morws<
LET ™ LET varl, ... LET varl = ... LET varl = ... LE” varl, varZ, [LET varl = var2 |LET varl, varZ, LET varl, ... = exp
- exp var kt = éxp = &xp oT veo VAT D m BXP {* ... EXp .+- VaT R = &xp or no LET
ro LET or no LET or ro LET

*ACommands and elements that eapn be used.

SB




-

oIy

Q

ERIC

Aruitoxt provided by Eic:

CIC 6000 NC >
CALLY p0-0S 0P 8/E HONEYWELL KRONOS CENTURY Saanc
P BASIC 2.0 200 B6700 HP2OOOF
IF-TEEN-ELSE { _..... o ... 1 ..
™ see PRINT
CE UsIxG | ~"TTTTT L L L ST ar e I IMAGE
1% (o 0 N O S R R Y AN
P INPUT varl,... IKPUT varl,... JIKPUT wvarls... [ INPUT varl.,..] INPUT varl,...] IKPUT varl,...| INPUT varl,...
INPUT FREM
BT e | om0 memmeee b e b e e e L EE LR B
INPUT () 1ist see READ# | --eua- sec READ ! see INPUT # |  =eeeee | meee-- see READ 4
INEUT # see READ ¢ |  ==m-a- see READ # INPUT FILE |  ====== |  ==ee=- see READ #
(name} wvarl,...
BPUT ", T, ... see READ & |  ------ sec READ / see INPUT # |  =eceee | =eeses see READ #
FEY = e B N A S T N N R
KILL-name
S £ S T T T T I I T T R KIL-name
LARGEST #** 1E 7 1E 615 1E 616 1E 337 7.2 E 75 1E 47 1E 38
LESS** < < < < < < <
L
LESSE(IL\L** < = QT B < < = < = < % QT © < < = QT ® < < ® QT m < < =
LEF™ LET varl,... | LET var = exp LET varlavar2= |[LET varievar2s [LET varl=exp |LET varl=,.. [LET varl=...

var B ® exp
or no LET

ve.¥AT D= oXp
or no LET

«..VaT nNnexp
oT ho LET

=yar n=exD

v&T n=e XD

*UKTYERSITY OF CALIFCRNYA, s$AN DIEGO, BBRROUWGHS 36700
dhlomnands and elecents that 2an be vsed,

|




i n

O

ERIC

Aruitoxt provided by Eic:

NCR BURROUGHS BURROUGHS BURROUGHS BASIC FOUR UNECOMP VARLAN
CENTURY 100 85500 B2500 B3500 BUSINESS BASiC| COMP 16 or 620 or V73
BASIC 1 BASIC BASIC BASIC COMP 18 BASIC BAS1C
IF-THEN-ELSE 0 | meeeeeee | aeaaas - wammmmes | mmmas wmm | mmmmmmms . mmmmmmes ] acmaaaa-
172+ (e e e S TABLE mtmmmmmn | esmeeeeaa
a0 I (o o - e e (S e L L
INPUT** ENPUT varl,,.. INPUT varl,...| INPUT varl,... INPUT varl,,..|INPUT expl,...|INPUT varl, ENPUT varl,...
e L 2 N [ o e e T B LT LT T T BT P
DRTLENE 0000 | memmemme ] emmmimes b emeemee  § ammemeae | mee wmme | mmmemmee ] eeaeaaas
T () Bist | memmeee- see INPUT # | weeemcee | ceeeanas see INPGT # | ---oeeee | aeeee---
TRPUT FI o h
name - vat li:'st 1%13?@#5%5?,
BpuTr b meeeeee INPUTkexp, | -mmmmm-- | mmmmmmes EXDznum)expl, | ------=- | mmmemse-
var list exnd, .
------------ tem- see INPUT # EEEEE T mmmm -

INPUT ™, var, ...

see INPUT #

INTEGER NMME =0 | memcemee | mmcmemee ] aemmmems ] eemamaae ] mmmmeeaa [P ——
Kekprr. )} mmemeaaa mmmtemen ] mmeama=a - mmamms ERASE name .| »=======2 |  smeamaas
LARGEST # #» 1E 99 4.314E 68 1E99 1E99 1E99 1.67E 73 1E99
LESS #» < ALT or < < < < < <
LESS EQUAL #» < ® OT = < “.E oT <« = oT <A e < m or = ¢ <m FEY
= ¢ Qr %

LET ## LET var=exp |LET vaTrlavarl=|LET var=exp Let var=exp LET varwexp LET varsexp LET varlsvarle

.« .¥aT n= e&xp or no LET or no LET .. VAT N = eXp

or no LET

**Commands and elements that can be used.
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184 53 GE 255 COM-SHARE COM-SHARE WESTINGRISE | WESTINGOUSE SENERAL |
MOD & TDE SHARING AUTCHATION
- * BASIC NIWBASIC BASIC 11 BASEC LIT ADVANCED
BASIC BASIC
BASIC-16
. IWexpopexp | __L.ioh 0l e oL U
IF-THEN-ELISE =~ J  ======e= { memeeeee A TIEN statenent
ELSE statement
DMAGE stror tmage | smsmeee= ] mmeeeees sec PRINT avmmmmms ] mcmemms | mmemmaas
USING
peLICaTIOY 000 | mmeeeee- R 11 N aT I LCLL LU IR LECLELD
INPUT var I, --. | [ U var 1, ...
INPUT# INUT var 1, ... {INPUT var 1, ... |INWT var 1, .,. |or DISPLAY INPUT var I, ... | INPUT var 1, ...jor INPUT § Input
. or MCCPT device $ var I,
IFUT R =0 | mememmmee T mmmmmees | emeeeas INPUT FROM e L LLLCT B TT LT
exp: wvar I, ...
INUTLRE | e | mmeeeee e B ISR B L e LD
- reuT () list | mmeemaa w ] mmmmmmes ] aaas - sce INPUT FROM mrsmmmmn f mmmmemes f mmeeaees
Wik,
— onmrr | e ] e INPUT EILE See INPUT BROM | =emeemem | mmmeeeen -
var L, ...
pPT " var, ... | e | mmmmmee- see NPT # see INPUT FROM | =emeeeee | seewewes | weeeees -
INTEGER NAME memmeemse ] mmsmmmmes ] meeeeeas num npame 0 [ 0 ====e=ues wmmmmmmn | memEeees -
KILL RS [P, R P . L . wam | mmmmee=-
LARGEST #4» 1E9S S.74960E76 SE?6 SETS 9.23E18 9.23E1a 9.23E18
LESSA < < < < < < <
LESS ECSIAL™® <= <= <= < = < w o ® < < wmQr =« < =
LET var 1, ... LET var » exp LET var lsvar i= {LET var 2, ... LET var 1 = var Z{LET var 1 = var 2{LEF var 1 = var 2
LET» var n = exp ver Varn @ exp [sexpor LETvar 1|» .., var n= exp|= ... var n = expj= ... var n » &xp
or no LET or no LET +wvar 2 ... ~ explor no LEF or no {ET
. or no LET
**Cpmmands and elerents that can be used.
Q
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44
UNEVAC 1100 HOWEYWELL, 1640 mwsum HONEYWELL 400 HONEYWELL 600 HP2000E m%rgéc}&i%oh -
316, 516 v -
UBASIC XBASIC Sie aie ] . XBASIC msic RELEASE V 1.3
IF exp op exp
EF-THEN-ELSE THEN statepent | ======== | = =;;eceee | memmmeee | ssmmeseee ] meesmees ] emeeeees
ELSE statement
DMACE see PRINT USING | see FIELD | ==sece-- format tfommat T | mmeemms= ] memeese-
MPLICATIEN MP(exp 1, exp 2)|  mmmmmmee | smemeeee | memeecae ] sessseee ] mmmmeess f mmeeeess
NPT INUT var 1, ... | RPUT var 1, ...| INPUT var 1, ... JINUF var ), ..., [[NPUT var ), ..., {INPUT var 1, ..., | ENPUT var I, ...
var n varn var n var n ar n Par n var n
NPT FROM INPUT FROM exp: | ======== ] ==ms;ses ] sesseess | smsssees ] mssseses {0 emsssees
var 1, ... varn
o o - I T e L L I e L LT R S L ELELE
INPUT () 1ist see INPUT FROM |  ======== ] semeeees see INPUT # see JNPUT # | ==eeeeee | mmemeea-
INPUT: nare:
v lseenrrr e | meememee | s wm——— var 1, ... INPUT #rem, | mmmmmmme | mmmmeaa-
INPUT see INPUT FRIM BT # pten, listmm'
var 1. ...
INPUT ", var, ... see JKAUTFRIM | -==--=-- [  ====e--- see INPUT {4 see INPUT 4 see INFUTHE | ==eeeees
IMEGRNME 000 | mmmmeees | mmmemmee | mmmmmeee P mmmmmeee ] eeeeeeee b meeeeee ] e
ke | memmeee- S L T A smmmn | mmes ~=-- KILL nare wmmm————
LARGEST #** 1E38 1E38 1E38 5. 7896E76 YE3S 1E38 IE3S
LESS#® LSS{exp 1, exp 2) < < < LT or < < <
or <
LEQ{exp 1, &xp 2)
[ﬂmln orq?or’-ip < mgrm« < mQrw« < mormsg Lfsror-q € m < OT = «
LET#» LET var ¥ = ... |LET var = exp LET var 1, var 2,| LET var = exp LET var ¥ » vor ZJLET var 1 = var 2J1ET var 1 = var 2
VaT I = &xp oT no LET ... varn = exp Jlor no LET = .. vaTn = expl™ ... var L = eXp|= ... VAr 0 = €Xp
or no LET or no LET or no LET or no LET or no LET

**Cermands and elements that can be used.
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Aruitoxt provided by Eic:
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wi

MICRODATA Q-DATA HP3000 "WANG 3300 GENERAL HANG 2200
ELECTRIC
BASIC BASIC-1 MARK 1
IF exp op &Xp
IF-THEN-ELSE mmememmm ) mmeaaaaa THEN statepent | mmmmeess [ | mmeeaaaa
ELSE statement
MACE 00000 ] emeaa wm ] memmemees DMAGE formats % formats ¢ formats ¥ formats
BPLICATION | =e====== ] mmmmsmes {0 aeaas wmm [ mmmmmmes | aaa wmmes | mmmes=e-
INFUT* INFUT var 1, INPUT var 1, INPUT var 1, INPUT var 1, INPUT var 1, INPUT var 1,
Ve VA G wre VRT N er. VAT N i VA N ve. VAR B vee VaAr n
BTS00 | eesmemae b smmseeae | sssssses ] ememmmss | meeaaaas memmaeaa
POT L,eE =00 | mmmmmmms ] mmemmmms | mmmmmean | memmemes [ seeeeees - .-
INPUF () M5 ] mmemsmme ) mmmmmmee ] smmemmee ] mmemeees R wmmaaa
— -
b1 ol L LT T T B L T T S L LLLl
INUT” ", var, ... = |  emmmmmee ] mmmmmmee ] smmemmee | emesemee | emeeeaas cmmm———
INTEGER¥WME = | ======== p mmmeeses letter  y mmmmmm== [ memmemees . mrmm———
L4 1 T L R B L L B e B B
LARGEST #e* 137 1E99 1E77 1E53 5. 78960E76 1E100
[sssﬂt < < < < < <
l_ESSEQQ\L** <. < mgQrac <= <« = <= <« »
LET var = exp LET var = exp LET var I = var J LET var 1, var Z,] LET var = exp LET var 1, var 2,
LET®* * .y VAP R S &xpl ... VAr D = exp ...va{sg-exp
Qor no

or no LET

or no LET

M orends and elements that <ah b¢ used.
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Aruitoxt provided by Eic:

BASIC 2.0 [EB4

D 6500 CPS DARPMOUTH JATA GENERAL GE MARK 1] 1P20008 1P2000C

SCOPE NIV OF 1CWA GE MARK 111
LINE #*" 0 to 99999 1 to 999 1 to 99599 1 to 9959 1 to 99999 1 to 9999 1 to 9959
EENPUT 00000} emmemmes ] e T i S e e e B TREEEP

list of str vur
LONGEST STREMG ** 72 15 4095 256 19 72 72
MARGEN @00 f mmmemmee ] emeaneas MARGIN # N7 exp)  ======-- MARGIN # exp, exp|  ======== | mmemaees
MARGIN # N,
MARGIN # exp: exp
MatT ** MAT MAT MAT MAT MAT MAT MAT
MMM 0000 | mmemmeee | mmmmeeee ] memmeeee ) memmeeee | deaas - MAX MHAX
MAX ARRAY SIZE 500 elements 1024 elements 2500 elepents| 2509 slements
MAX NESTING L0OOP 10 f. 4 20 2 9
HAX # OF DIM IN AN 3 2 2 2 2 2 2
ARRAY
MENRMM 000 | eeeeeeee ] emeaaaas mmmmmmms ) mmmmmees ] aa wmmaa- MIN MIN
MILTIPLE STATRMENTS [ ======== | =wewewss | mmomeees bk Sk e A
HAME AS [R— [ - mmmmma- I T,
NEXT *# KEXT var NEXT var NET var KEYT var KEXT wvar KEXT var NEXT var
NODATA NODATAnma | ======== [ cccsasaa | mmmsmmmea b sseesses | mmmmmmes | emeeasas
NODATA FILE
(name)

#Coengnds and elezents thatl can be uged,
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Aruitoxt provided by Eic:

.

UNIVAC 1100 MILTICOMG
UBASIC VERSION 2,0 R
it LEASCO 07 10 7P 1 MANKATO STATE CILG | UNIY MASS YEROX
BASICX
LINE #** 1 to $9999 1 to 9999 1 to 99949 1 to 32767 1 to 99999 1 to 99999 i to 99999
BT 000 ) emmmmmee b emmmmeee ) aaa N B e [T e
LONGEST STRING 4 18 198 char size of core size of core 512 B 22
MARGIN 0000 ] mmm=e=me= b mmmmeeas MARGIN exp | e=e=mm=== b mmmemeee ] meemeeee 0 mmemeses
MAT ** MAT MAT MAT MAT MAT MAT MAT
MMM | meeeeas - Y75 G [ ——— S T [ SR
MaX ARRAY SIZE
MAX NESTING LOOP 15 on 32 26
storage
MAX # OF DIM IN AN 2 2 2 z 2 2 2
ARRAY
MINDMM @000 | eeeeaee MIN | emmeeeee e « ] emmemeas eremmmen | s
MUALTIPLE STATRMENIS |  ======== | ==s====== | =e=mesees separated by : | = ===mse=- | mmmeees - mmem———
MMEAS =} meemmea- S T L] NMMEstr | 0 mmmmemee  emmmmeee ] ameaaaas
AS str protection
NET Y NEXT var NEXT var MNEXT var . | XEXT var NEXT var NEXT NEXT vat
NODATA U [ IR I [ S R

*Commands snd elements that can be yged,
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6000 NCR ucsy'
1EM HONEYWELL KRONDS SENTURY BASIC
CALL/360-08 PDP 8/E 200 HASIC 2.0 20p B6700 HPZOOOF

LINE #*¢ 1 to 99999 1 to 2046 1 to 99999 "} to 99099 1 to 9999 0 to 99999 1 to 9999
LINPUT L e T T S I N
LONGEST STRING ** 18 char |  ------ 63 char 72 char 14 char 15 char 72 char
2T e EGLLE L C T BN L LT BT TETE I TEET I TSR B
MAT ** MAT | emeea- MAT MAT | memeee ] aeeaaa MAT

. MMM P emsses 0 eieaas MAX(varl,...) [  ==mme= e memeaa MAX

[Py

) MAYX ARRAY SIZE 28,668 bytes [coTe restrictedcore rescricredcore restricted 4096 by 4096 4095 by 4095 4900 elements
MAX KESTING LOOP 15 8 10 10 10 no limie 9
MAX ¢ OF DIM IN A8

ARRAY z 2 3 3 2 . 2 2
MMM eeemme | mmaeao MINGraT1,...) | ===-== | eeeeee | eeeaas MY
MULTIPLE STATEMENTS |  ====== |  =====- Beparated by N}  ------ 1 ceeeee ] mmeeen 0 emaaas
. S [ O S S [ SR
NEXT ** NEXT var NEXT var NEXT var 1'EXT var NEXT var NEXT var BEXT var
NODATA narme
e 1 S N tmmm== | mmsaea NODATA FILE | ==esaa | eceeas see IF END
(rane) nun
UNTVERSITY OF CALIFORNIA, SAN DIECO, BURROUCHS 56700
y **Cor=aads and @lerenca that can be uaed,
O
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Aruitoxt provided by Eic:

50,

N BURROUGHS BURROUCHS BURROUGHS BASIC FOUR UNICOMP VARIAN
CENTURY 100 B5500 B2500 B3500 BUSINESS BASIC COMP 16 or 620 or ¥73
BASIC 1 BASIC BASIC BASIC COMP 18§ BASIC BASIC
LINE # ™ 999999 999995999 99959 9999 I to 9999 1 te 9099 1 to 959%%99
[ 1 S R L eeaL A BT ET T A BPPT FEP TR Sy e e e
15 characiers |15 characters
LOSGEST STRING™ | wne--- --- 15 characters [(in PRINT) {in PRINT) Fore determinied] ==-=---- | ---- -
MRGIN 00| mmeemeee ] e N T TR IR epnprep i S e A
MAT®™® | eeeeeeas MAT MAT MAT @ | memmmmws ] mmeeeee- MAT
MupeM 000 f mmemes=vs ] mmmsmsmee ] semecees | sececeeee ) memsmmmsmse ] omssmsees 0 mew -
MAX ARRAY SIZE 1512 elements { 1023 by 2024 1000 elcments| 1000 elements| 999 elements ? 255 by 255
MAX NESTING LOOP 10 core dependent 5 5 5 ? ?
MAX # OF DIM IN i 2 2 2 2 3 2 3
ARRAY
MINPMM 0202020202000} m=smseee ] aeamaas - wammmmme | ammmamas | mmmemmaae | emmemaes ] eaaaaaas
MULTIPLE STATRMENIS @ | ======== | ==ss=eee | mmsmeeeee | cemeeees | m==sssee ] sssseees | ===esmeee
b S L B B S e Y L LR EECTYY tmmmm | mmmmeea-
NEXT ** NEXT wvar NEXT var NEXT var NEXT var NEXT war REXT wvar NEXT var
ey Y S i B L L L B L L L LR BECE LT B Ll

*Cormands and elements that can be used.
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Aruitoxt provided by Eic:

ERIC

3!

18 S3 GE 255 COM-SHARE COM-SHARE WESTINGHOUSE | NESTINGHOUSE L
MOD 6 TRE SURIG RASIC 111 ADVANC
BASIC BNSIC BASIC NEWBASIEC masIc 1t &s?c-?sn
LINE huk 0 to 5999 1 to 99999 0 ro 59999 1 to 99599 1 to 9999 1 ro 9999 1 to 9999
PR e T: N IR IR E e e NLLLCCCE TR BRNNCCTTTTT TR BENELEEELEE
LONGEST STRING** 18 characters 15 characters core dependenz | core dependent | me------ 72 characters 72 characters
Ly L DL GG I EEETEE N IR CLLLCE LR I EETECCCRN SR LELEEEC I
MATH MAT MAT MAT MAT mmmm——— MAT MAT
wxpat 0000} memmeees e el MAXvar 3, ...} | mmmemeee D mmeeemee ] meeee
is function
MAX ARRAY SIZE set by system 2074 core dependens core dependent 32,767 2,767 core dependent
definition
MAX NESTING LOOP 9 26 core dependent core dependent 7o Yirmit ne limit core dependant
MAX ¢ OF DIM N AN 2 2 2 limited by 1imited by limited by limited by
ARR.-\\O'F statersnt length ] 1line length line length line length
Mixpmw 0 b mmm == ] e rmmmme | memmmeea MIN (var }, ... T T meemmee-
is functich
MULTIPLE STATRMENTS m¢mmmmma | memsmssee= ] ==eseee- YESBer,or; | memmmmmm {0 mmemmmes | mmsssses
- IR N SRR TCTCET TR (RNECECIECCNN INNEEELECTEI SNCEE ACECEIN SRR LR it
(WEXT var or
B NECT vatr KIXT var KEXT var NEXT line * HEXT var NEXT var YEXT var
or NFEXT var, ...
e e W PP PPTPEI R e BCLTTCTIE SEPPPPEFTI SRR e} memeeaas

*Corrunds and elemsnts that can be used.
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Aruitoxt provided by Eic:

52

UNTVAC 1100 HONEYWELL 1640 HONEYWELL HONEYNELL 400 HONEYRELL 600 HP2000E UNIVAC 1100
316, 516, and UNIV OF MARYLAND
VBASIC YEASIC 716 BASIC XBASIC RASIC RELEASE V 1.3
LINE fan 0 to 99999 i to 32767 1 to 9999 1 to googg 1 to 99999999 i to 9999 0 to 99939
1 . S R T e B B [ i o R
LONGEST STRING*# 511 characters depends on core] | -eceee-- 132 characters 132 characters 72 characters 60 characters
8 £ S e MARGIN # m;r,  |MARGIN # num, |  s=ewmees | emeeeees
exp exp
MAT®® MAT MAT | mmmmeeee MAT MAT MAT MAT
MAXIMUM MOl(exp 1, | meemmeee ] mmmemmee | eeeeees ememeen v S
exp 2) function
2000 elements
MAX ARRAY SIZE determined by | depends on depends on core | in core depends on core {2000 elements dapends on core
installaticn available core 2200 on disc avitilable
MAX NESTING LOOP 32 -1 depends on 6 26 6 32
installation
MAX & OF DM 1 AN 4 2 depends on depends on 2 2 2
ARRAY line length line length
MINDMM MIN fexpl, | =-mcea- - B T T B MN | eeeceaa-
exp 2) function -
MULTIPLE STATEMENTS L I PTE T separated by: |  --ec---- separated by \ ——————— S
NAME AS ————— N e I el R B T S
NEXT #» NEXT var NEXT var KEXT var KEXT var KEXT var KEXT var NEXT war
NODATA ——————— cemamaan B e [ .

*Comminds and elewwnts that can be ysed,
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Aruitoxt provided by Eic:

v'3

66 °

MICROBATA Q-DATA 1P3000 KANG 3300 GENERAL WANG 2200
BASIC R ELECIRIC
BSIC-1 MARK | .
LIKE #n* 1 to 9959 1 to 909998 1 to 9599 1 ea 9999 1 to 99999 1 to 9999
LY 0§ wmmmmm== ] mmsseees LINPUT string | ===s==== ] =ss=sssee ] mmmmeeee
variable
LONGEST STRING** = | ===ss=e= | =s;eseees 255 characters 18 characters 15 characters 64 characeters
MRGEN 000 f wmmmmees | mmmmeee b mmmsmmee ] mmmssmes | mmemseee 0 eemaeeen
My ] mmmmmmes ] ememeas AT MAT MAT ] ememmeas
MMl ] memmms== f mmsmeeees MY F mmemsses b emmsaees ] mmmmeees
MAX ARRAY SI?E depends on 1512 elements depends on core | dimensions < 255 | 2074 elements dimensions ¢ 255
core
MAX NESTING LOOP depends on core 10 depends on core | depends on core 26 depenvds on core
MAX f OF DM N AN
"hRAY 2z 2 2z 2 2 2z
MispaM ] mmmmmses 1 mseeeeas MY memmmmes | eemmmees | ssesees
MILTIPLE STATEMENTS @ | ====ee== mamm - in LET staterent| separated by @ mwmm——— separated by :
separated ty ,
NMMEAS b esmmeees 1 ameaaes T Y [ e BT LT
NEXT*+ NEXT var NEXT var NEXT var NEXT var NEXT var NEXT var
MDATA 0} mmmemsces ] ssmsssse | ssssssss ] s=mesess - ] mmmmmmaa ] aaa wmman
i

faCormands and elemenss that can be used.
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Aruitoxt provided by Eic:

s
i
BASIC 2.0 1B
oc p16=60° Cps DARTMOUTH FATA GENERAL GE MARK 11 HP2000B HP2e00C
SCOPE UNIV OF 10WA GE MARK 111
T | eemmmeee | eememaeee ] aaan N N LI B TET LT Nat NOT
NOT EQUAL #* <> OF »< T uogr <> <> <> <> or .NE. <> or ¢ ! < or?

NPMRIC VARIABLE NAMG "™

latter or letter

letter or 'letter

letter or letter

letter or letter

letter or lerter

letter or letred

letter or letter

USING str exp.
list

HUS™NG "soring™,
1ist

VSING stT, list

digit alphaneric digit dig.t digit digit digit
o ONep G0 | ====---- N exp GOTO o8 exp GOTO (% exp GATO
N .- line £, line ¢ |Hpe ¥, ... lire ¥, ... | eccemeee ) eeeeeaes
ON exp TIEN
0N exp GOSUB line ¥, ...
bipe *, line & JON oxp GOSUBD
ine f, ...
WEROR GOT0 | emeeeeee | eeeeeeee | e e b R e .
' OPEN see READ or v mmama- soe FILE OPEN FILE [ memememees OPEN=nare, mm | OPEM-name, nom
WRITE FILE N, nem, hane QPE =nare, mosm | OPE -nase, mun, mug
oR T e e TR P OR oR
pause e - S B B B T s ST BT
71 S o BRI TETECR EEFTEEP TP ENNFTTETTEEI — N e BT
PRINT** PRINT Iist of exp | PRINT list PRINT list of |PRINT list of exp |PRINT list FRINT 1ist of | PRINT list of exp
oxp or; list of exp exp
FRINT ¥ see WRITE FILE |  ====w===- PRINT # cxp: FRINT FILE iexp] [PRINT ? cxp, 1list| PRINT f exp: PRINT ¥ expl;
list of exp List of exp PRINT 4 exp: 1list| list, BND PRINT ¥ exp: list,
PRINT # expX: 22
list, BD
PRANTA USPNG 32— ] mmmmmmms f pmnmamams PRINT # cxp: PRINT EILE l'-‘NP'—" PRINT ¢ exp, | mmmmmeme b amaaal.

*spamrands and clesents

that con Le ysed.
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Aruitoxt provided by Eic:

ITH

USIVAC 1100 ml-glnm
Ee: | LEASCO PP 10 P 11 UBASIC VERSICN 2.0 Lo XEROX
ITF MANKATO STATE CLG USIV ssg
BSICK
T S T eeeees - NOT NOT{exp) |  =msmmmmee | meeeieas
NOT AL ** < < < < NEQ(expl, exp?) <> < oF »<
NMERIC VARIABLE letter or letter | Ictter or letter Tetter or letter| letter or Ietter| letter or letter §letter or letter | letter or letter
R digit digit dpgit digie digit digit digit
N GOTO warl, ... |  ===meee- ON exp GO T0 O exp GO N ENDFILE ON exp GOTO O exp GOTO
var n ON exp Hne #, ... line ¥, line # mm GOTO line # iine #, line # Iine ¥, ...
ON exp THEN e “ae
1ine &, ... ON ex) GOSUB
line #, linc #
ONERROR GOTO | =msmmmme= ] mmmmmmee ] emeeeees NERROR DT | =eemem==e | mmeemree ] emeeeees
oPEN 00000 | =e=eeeaa- OPN-name, mm, | 2 ======-- OPEN name OPEN name OFFN o, Name, m | OPEN name, TO:
nLm IUT SPEOLIC INPUT str, GET, T FILE
OR —mmmmmn- O0R 1 mmemmees OR IorR(expl, exp2) | ===m==== | ememeees
PAUSE BAISE @ | mmmmmmee ] mmmmmmee b meemmmmes ] mmmmmsss | emeeeees PALISE
PLOT e Y [ ce ] emmmmmae 1 emaiiaan PLOT expl = |  =eeceees
ﬂcxpzn
PRINT** PRINT list of exp| FRINT list PRINT list PRINT list FRINT list of exp [PRINT list of exp| PRINT list
PRINT # see WRITE £ PRINT # exp, exp; | PRINT # W, list | PRINY # exp, lisy PRINT ON numi list|see WRITE PRINT: numi key,
list END PRINT: N, list list
---------------- PRINT USING PRINT ? exp, me—————— see WRITE EEEEELEE

PRINT # USING

string
¥ var, line #,
Iist

USING str exp,
list

ArZommanda snd elements That can be yaea.
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Aruitoxt provided by Eic:

€OC 6000 NCR yesp*
IBM - HONEYWELL KRONOG CENTURY BASIC
CALL/360-08 POP 8/E 200 BASIC 2.0 200 p6700 HP2000F
NOT R L L L N B L L L L L L S L L L NOT
NOT EGUAL** <> or § <> <> <> <» OF »«< <> OT »< <» or /
letter,$,8,for letter or letter or letter or letter or letter or letter or

MMERIC VARIABLE NAME™*

letter,$,.a,¢

lecter digit

leteer digitc

letter digit

letter digit

letter digit

Tetter digit

digit
' mmmsima ] mmamas 0N exp 08 exp oN exp | =e=-=== | meme=-
GOTO line*,... |60 TO lined,...J50TO line?,...
linet lines ON exp
LYHEN liner,...
0N ERROR GUTO R T TS A R e T e
OPEN OPEN exp,var, | ====== |  smeee- ] memeee | mmeeee 0 mesees OPEN-name ,nun,
INPUT bib-r]
OPEN exp,var, OPE-name,num,
OUTPUT rm
- S e BT TR I A TP e e oR
PAUSE PAUSE comment |  ====== |  ccewe. I eeewes ] emmees | eemeee ) mmmeee
72 N e e T e Y oL TP T T S P T
PRINT #% PRINT 1ist PRING list PRINT list PRINT list PRINT list PRINT list PRINT list
PRINT # see WRITE & | =---w- see WRITE * PRIXKT FILE |  ====-- PRINT ¥ exr PRINT & exp.,

{name) lisc

1ixs

Iist

PRINT # USING

-k

SUNIVERSITY OF CALIFORNIA, SaN DIEGD, EURAROVGHS 26740
Milozmands and elezents that can be nsed.

)




3%
KCR BURROUGHS BURROUGHS BURROUGHS BASIC FOUR UNICCMP VARIAN
CENTURY 100 B5500 52500 33500 BUSINESS mASIC| COMP 16 or 620 or V73 |m
BASIC 1 BASIC BASIC BASIC COMP 28 BASIC BASIC
X' 1 [ L L LT I I B B XoT
NOT BQUAL FES YNF gv <~ or <> <> < gp *< <> <
>< or #
MMERIC VARIABLE NAME ™* latter or letter or letter or letter er Ietser or letter or letter or
lereer digit | Ietter digit [letter diglt [lecter digit lotrer digit]| letter digit| jetter digit
- F I 0oy & COTO |  ===meeee | secae-as ON- var GOTO | =====e==e | ceeaanas
o lin:P',... line #,... 1
o~ |
________ eeennan 0N STATUS PR i
ON ERROR GOTO GO TO liner,., -t
(2 N L A B B OPEN faum) | =~---- wem ] mmmmeeas
nane
OR ................................ OR “““““ OR
pPAISE ] meeeseea ] mmmesess b aeaa e S SAIT exp
15752 B T A L . S R B L L . T BT .- |
PRINT ** PRINT 1list PRINT 1ist PRINT list PRINT list PRINT 1ist PRINT 1ist PRINT 1ist
[PRINT (mam, INDeex
PRINTY exp,lisg  ---e-cnane 1 cecaaaan P Remen ENDeRon) | mmmemaan
PRINT # | mmeeeees PRINT FILE el
| nagpe, Iist
L] . ¢J [ e e T, see WRITE # | ==ceceas
PRINT 7 USING USING
J. L ‘[ I3

*Cormands and elerwnts that can be used.
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ERIC

39
194 53 GE 255 COM- SHARE COM-SHARE WESTINGHOUSE | NESTINGHOUSE ﬁacr%\’\:i%m
MDD 6 TIME SHARING ¥ o 2
PASIC BASIC BASIC NLWRASIC BASIC 11 RASIC 111 gﬂéalﬂ.giﬂg
NTl eemmeeee e et T Mo BT | eeemen
NOT EQUAL#* < or f < 139 < or # <> OT »< Or # <> OT »< or # <
letter, @, #, $1 [ letter or letter or letter or letter or letter or letter or

HNMERIC VARIABLE NAME®s

or 3 letter, @

i or § digit

letrer digit

letter digit

letter digit

lotter digit

letter digis

letter digit

oN EEEEL R ON exp GOTO see GOTO OF ON exp GOTO OX ¢xp GOTO N exp GO0 ON exp GO0
lino ¥, ... line ¢, ... line », ... line *, _., line &, ...
ox ¢xp GOSUB
line £, ...
ONERRORGOTO | mmmmemee ] mmmmeses | memeeaes CW ERROR | m=mmmmm= ] mmemmmee F eeaoaas
GOTO line #
OPEN [namef, b
D S QUTPUT OPEX | file|, e S
OPEX [name|, oprions, exp
INIUT
OR L N iR BN LEELEEE OR a2} OR CR
PAUSE PALISE comment or]  ======== | esmeeaa- PAUSE | mmmmmmee | mmsmmees | eeseeeas
PAUSE or SUSPEND)
m ------- - mesmbtmmm |  msssssss | essssssss ] ssssssas ] ssssssss ] mmm rmmm-
R PRINT list or PRINT 1ist or
PRINT#* PRINT list PRINT list PRINT list D1SPJAY or PRINT list PRINT list PRINT § output
LT ™ or TYPE device § lise
PRINT # sce WRITE mememmn- PRINT FILE, PRINT O expr | =mmsmsmemm ] mmememee -] emeeeeas
var 1, ... Iist
PRINT # USDNG tmmmm——- = | mmmmmea- vemeemnn FRINT INFORM § mmememe= ) meeees - mevmmm——

strem: exp 1,

e

**Commands and elements that can be used.
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Aruitoxt provided by Eic:

(f.

H{
UNIVAC 1100 HONEYWELL 1640 i!él‘fE;‘h‘glL a IDNEYWELL 400 HONEYWELL 600 HP20008 o UNIVAC 1104

3 16, an IV OF MARYLANTY

UBASIC XBASIC 736 BASIC XASIC msic RELEASE V 1.3
NOT NOT{exp) 000 f memememmee | emeseeas mmmmiamn | mmmmeaa- NOT -

KEQ(exp 1, axp 2

NOT EQUALAM~ or <* or ;-: ) <* OF #< <> OF »< <r OF #% NE or <» Or »«< ¥ or < <> or ¥
NMERIC VARIABLE NAME®~ letter or letter or letter or letter or letier or letter or letter or

letter digit

letter digit

letter digit

letter digit

letter digit

letrer digic

letter digit

oN ON exp GOTO ON exp GOTO ON exp GOTO 0N exp GOTO ON exp THEN | ===-m-e- ON exp THEN
linc 4, ... line 1, ... line 4, ... line @, ... line 1, ... list 4, ...
ON exp THEN ON exp GCTO ON exp GOTO
line £, ... line #, ... iine #, ...
L v+ S [ N T I LT T e N BECTTerres
OPEN name FOR
OPEN - options A FILE see FILES |  ======== see FILES see FILES OPEN name, mm | ===--- .-
num
oR Tor(exp 1, axp 2) “emmman “mmmmean sepmmmae | eeemees oR | eeeeee.
PAUSE PAISE or BRK |  =cesceee | sceeceee ] mmedmeee ] seeseees | ssemeeee ] eeeeees
PLOT R . T e
PRINT®* PRINT tist PRINT 1ist PRINT 1ist PRINT 1ist PRINT 1ist PRINT 1ist PRINT 1ist
PRINT # PRINT ON exp: cee WRITE# |  ==ccee-- PRINT: name: PRINT 7 mum, PRINT # exp; | ==eeeces
1ise list 1ist list
FRINT # mm,
list
PRINT & USING see PRINT USING [see WRITE # USING|  ===-==-- PRINT 7 men, PRINT # mem, | ======== |  ce;ceaaas
USING list USING pum,
list

*AComands and elements that can be ysed.
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Aruitoxt provided by Eic:

6l
MICRODATA Q-BATA HP3000 KARG 3300 GENERAL WANG 2200
.BASIC BASIC-1 mm
SNt meemeees | weeeees - L o et T I L A el
NOT EQUAL** H < OT P & or < < < <
NMERIC VARTABLE HAME** letter or letter or letter or letter or letter or letter o1

letter digit

letter digit

leteer digit

letter digit

leteer digic

letter digit

N Wexp GO0 | se=ces=s see GOTO OF see GOTO OF ONep GOTO0 | ===ce=--
line #, ... see GOSUB OF iine ¥, ...
EmORGOMO 000 | eeeeeses | meesccee | mscdeeee ] smesseae | esdceeee | ceseeee-
L) o L see ASSIGH see FILES see FILLS see ASSIGN
oRr msmmmna | mseeeee- OR OR (exp 1, .vo | ======== ] emeeeea-
exp n)
PAUSE ------------ - ubwrmrmm 00 ssssssss | easssssss | esssssaa
7+ R e I Trrr e PP E R TSR P I TR R B
PRINT®* PRINT 11st PRINT 1ist PRINT 1ist PRINT list PRINT 1ist PRINT 1ist
PRINT & smmmmmms | eseeaaas PRINT # exp; | =scsmecee | csmeecmee | seeceea-
list
PRINT § cxp,
exp I; 1ist
PRINT # USING . Y S R (e B

**Conmands and elements that can be used.-
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Aruitoxt provided by Eic:

BASIC 2.0 18
D 6600 s RARTMUTH DATA GENERAL GE MARK 11 HP2000B 122000C
SCOPE UNTY OF 10WA GE MARK 111
PRINFUSING |  =m==mmaa PRINT USING 1n, | PRINT USING PRINT USING P‘RI!:.T USING  §  memmmee- PRINT USING
eXp, .. string var, list| “string, 1ist string var, Iist string exp; list
PRINT USING
line #, list
RUDOMIZE 000 | eeeeeeeeF memeaes RANDOMIZE RANDCM RASDOMIZE [ mmmmemee [ mmeeeeas
RANTOM
el
READ 44 READ varl, ... READ varl, ... |READ varl, ... READ varl, ... READ varl, ... READ varl, ... | READ varl, ...
READ FORMARD | =mms;smee 1 seeeeese | semsmeee ) meseeeas READ FORWARD | ---eceee | mmmee-as
exp, list
READ # READ FILE (name) |  =======- READ # exp: READ FILE {exp) READ # mm, list| READ # exp; READ F exp; list
Hist varl, ... varl, ... READ: num, list | list READ # exp, exp;
READ FILE [exp, READ # exp, expy list
exp) varl, ... list
READ (,) | =mmmemm== ] mmmeeeas see READ # mmmemmmn [ =mmeeaa- sec READ # see READ #
18 e e T T T B e e s
REM ** REM message REM message REM message REM message EEM message REM message REM message
REZET ] eeeeeeas see RESTORE RESET # exp: |  =====-=-- mmmnnma- see REWLND see REWIND
exp
RESTORE** : RESTORE see RESET RESTCRE RESTORE # exp  |RESFORE RESTORE
RESTORE FILE (name) RESTORE RESTORE 1ine # RESTORE line F#
RESTORE: exp
RESME  } mmmmeees SNSRI . - O T - -
RETURN** RETURN RETURN RETURN RETURN RETURN RETURN RETURN

a+lormands and elements that cap be wvsed.
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Aruitoxt provided by Eic:

S

UNIVAC 1100 MILTICOMD
M LEASCO PDP 10 PP 11 URASIC VIRSION 2.0 CR XEROX
ITF MANFATO STATE CLG UNEV MASS
BASICX
PRINT USING |
PRINT USING PRINT USING PRINT USING string e list | PRINT USING |  =seceees PRINT USING PRINTUSENG
mm, 1ist num, list PRINT USI) string exp, list n, list num, list
ntm, 1ist
RANDOMIZE @ | ==m=eeee —Famaana FANDOM RANDMIZE RADOMEZE RANDCMEZE @~ | =mmemmmee
RANDOME2E
READ ** READ 1ist READ vatl, ... READ vatl, ... | READ varl, .,. | READ varl, ... READ varl, .. READ varl, ..
READ FORMARD @ ] seseesee | mmewmeea | emmeeees L Y T P TT TR I cmmman
REDE | e READ # exp, &xp; | READ # X, list |[see DT | --ceeee see READ () | GET: rum; key,
list READ: N, list list
READ (,} |  =mmemeem | mmmmmmes ] meemeees see INFUT | @ mmmmmmes READ (60, n) ]  ====mee-
list
RELEASE |  =me=mme=e ] mmeesas a ] mmemeaea see KILL @ | eseeese- RELEASEw | ==m==ess
REBM ** REM message REM message REM message REM message REM message or # | REM or # messape | REM messag® oT a
nEsSape
RESET RESEF nams | 2~ ==ssseee 1 cccecaa- see RESTORE =~ |  =secceae- see RESTORE, | = ===secea-
SETPTR
RESTORE == RESTORE RESTORE RESTORE 1ist RESTORE RESTORE RESTORE RESTORE
RESTORE 1ine # - RESTORE = RESIORE line F
RESTORE RESTORES
RESME = |  sessemae | cdecsaane ] ssasaaes RESME 1ine # |  sscce;cee | sasea L
RETURNA= RETURN RETURN RETURN RETUTRN RETURN RETURN FETURN .

saCommands and e¢lements that can be used.
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CIC &000 NCR ycso”
IBM HOKEYWELE KRONIS CENTURY BASIC
CALL/36D-05 POF B/E 200 BASIC 2.0 200 B6700 HP2DDOF
PRINT USING PRINT USING |  ------ PRINT,line?, | =eceec | mmeeee b aaaea PRINT USING
line# ,expl,... varl,... stringivarl,...
NDOM - RANDOMIZE |  =-=--- ] ------ RANDOM
RANDOMIZE BANDOMIZE | =-=--= | meeea-
READ™ READ varl,... | READ varl,... | READ varl,... | READ varl,... | READ varl,... | READ varl,... | READ vari,...
READ FORWARD @} mmeee= ] mmmmms 0 mmeees {0 meeeee ) mmmmes ] mmmees ] mmeme
READ # GET exp: READ # exp, READ FILE READ ¥ exp, READ # exp,
- varl,... | m----- varl,... {name)varl,...] ===== - varl,... varl,...
READ () see READF |  --==-- see READ # see READ # mmm—-- see READ F see READ #
RELEASE | ======} mmmeee | mmmee= @ mmemm= | mmsmmes ] mmmmme | mmmmes
REM* REM message REM message REM message REM message REM message |- REM message REM message
REMARX message| REMARK message
RESET RESET RESTORE FILE RESTCRE # exp | READ F num, 1
exply... | ------ see REWIND {name) | mmmm--
RESTORE™* RESTORE RESTORE RESTORE RESTORE RESTORE RESTORE RESTORE
commeat RESTORE * RESTORE rumn
RESTORE $
RESAE | mmeeee} mmemse | emmees R N e BT EE N SR
RETURN"* RETURN RETURN RETURS RETURN RETURY RETURN RETURN
conment

*UNLIVERSITY OF CALIFORNIA, SAN DIEGO, BURROUGHS RE70D
*sCoprands gnd elements that cin be used.
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My

NCR BURROUGHS BURAROUGHS BURROUGEHS BASIC FOUR UNICOMP YARI N
CENTURY 100 85500 82500 83500 BUSINESS BASIC COMP 16 or 620 or V73
BASIC 1 BASIC BASIC BASIC + COMP 18 BASIC BASIC
BRINTUSIG @000 b ememeaee b mmmmeeee D ddideaee b eemmmmee b mmeeeeee  memeeeee ] e
TNT's 1 2SN ST TETT TR S FTTTET R S LS SR I e
READ **# READ varl,...| READ varl,...{READ varl, ...|READ varl, ...} =-=------ READ varl,... [READ warl....
T ey T o L e e e e
READ {num, IND=
RED?F 000 | memmeee- see INPUT # |  cccecece b meccaae- exp,ERR*pum, | ======== | =======-
EXND=nun)
Iist
or
- EXTRACT
READ(C,) |  mmmmeee- see INPUT # |  =====e=c 1 ceceaaa. see read # | mmmmee=s | ==-- -———
RELEASE @ . | ======== ]  ========s |  meesaaaa ] memesa--- ERASE name | ======== |  mme====-
REM ## REM message REM message !§ message & message I message s
REM mesSage REM message REM Dessage REM message REM message
RESTORE | I eeeeaaas S T
L FILE page | 77777777} TTTTTTTT
RESTORE ¥ eXp
RESTORE ## RESTORE RESVORE RESTORE RESTORE = | ======ee ]| meceeee=- RESTORE
RESIME RESUME line #]| eeeeeeee | eemeeen | emmeeea. f 7mmTmEmmmo ptTmmETRTo ) TTTETOCS
RETURN ** RETURN RETURN RETURN RETURN RETURN RETURN RETURN

*2Comnands and elements that can be used.
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EL

7
Im sy LTSS COM-SHARE COM-SHARE WESTINGHOUSE | WESTINGHUSE w%m
T SHARTY . o
BASIC e BASIC KEABASIC BASIC 11 BASIC JIT %,Dé'}t?%
PRINT USTNG PRINT USING | =-eeeee- o7 Do v S I B T T
line ¢, 1ist not really epl, ...
formatted prirt
RANDOMIZE memmvese | mmessses b =s TEmm== | memmss== b mmmssm=== ] mmmme=s= ) mmmmmemes
READ# READ var 1, .. READ var 1, READ var t, . READ var 1, READ var I, READ var 1, READ var 1, .
READ RORWMD ] ======== | ==ss==e= ] msmssmmes ] mmessees ] sssseses ] mssseees 0 msssssss
READ # GET name, var, READ £ exp, READ FILE see INFUT FROM |  ==emeeee | ;e | mmeeaes
var 1, ... varl, var 2, ...l var t, ...
READ ( , ) see READ # see READ # see READ # see INPUT FROM L N G LL LI B LT
RELEASE ] mmmmmme= | mmmmemee ] mmeseee- see INPUTFROM |  ======== | ==e;s;eeee ] meeeeeae
RMas |8B4 comment REM corment B cemment OT REM coement o RPM corment REM corment REM corment
! coment ! Comment
RESET ReSET name, ... [see REWIND @ | ======-= ] -- ammmmm | mmmss=== ] msmsmsses ] msssssee
RESTORE** RESTCRE comment  [RESTORE RESTORE RESTORE RESTCRE AESTORE RL TORE
or RESTURE *
RESTORE RESTORE §
RESIME RESME 0T G0 |  =s=eeeees PROCEED AGAIN |  ======== |  ==mceeea | ===eeea- memenman
RETURN** RETURN comment REIURN RETURN RETURN RETURN RETURN RETURN

or
RETLRN

stCormands and oclements that can be used.
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(!:s

UNIVAC 1100 HONEYWELL 1640 3{163}\'55\';\?&“ HONEYWELL 400 HNEYWELL 600 HP2000E UNTVAC 1100
UNIV OF MARYLAND lgr
UBASIC XBASIC 716 BAdIC XASIC BASIC RELEASE V 1.3 |
FRINT USING FPRINT ON exp PRINT, mum, list| — =eeccees PRINT USING FRINT USING
™ FORM str: nm, list mam, list Y 2
IMAGE *
var 1, ...
RANDCMIZE RADXMIZE @ | =m=sse==a | ssssssss ] sssssses | sssssdaas b sessaaaa mammmmns
READ*® READ var 1, ..., |READ var 1, ..., |READ var1l, ...,{ READvar1, ... |READwvar 1, ... {READvar1, ... |READwvar 1, ..
var n yar n var n vaTr n var n var n var n
READ FORWaRD | ==ee- was | esssseas ] esscsses ] esscssee 0 ececssaas READ} ¥ exp, exp |  ======--
READ # see INPUT FROM READ & &xp, ¢  ======== READ * ntmm, READ # num, 1ist |READ # exp; |  ==ese=ss
var 1, var 2, ... warl, ... READ: mow, Iist fwvar 1, ... var a
READ ( , ) see INPUT FROM see READ 4 | =emecaa. see READ # see READ # sce READ g ERELSSTE
RELEASE ] ==ae- L L e T e B S e B A e een T SRR T O S
REMnA REM comment may | REM comment or REM comment REM comrent REM comment REM comm.nt REM comment miy
follow statements * comment follow statements|
after special after special
character character
RESET 00| m==sss== ] essseees | aseas L) see REWTND see REWIND READ # cxp, 1 —mavana
RESTCREA* | RESTORE or RESTORE RESTORE RESTORE RESTCRE RESTORE RESTORE
RESTORE * or RESTORE * RESTORE * RESTORE line # RESTORE *
RESTORE $ RESTCRE $ RESTORE $ KESTORE §
RESSIME | mee=see o ecsseeee 1 eseeee B B L temamsas | ssscesee
RETURNAA RETITA RETURN RETURN RETURN RETURN RETURN RETURN

*aCorrands and elements that can be used.
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MICRODATA S-DATA 123000 WANG' 3300 GENERAL WANG 2200
ELECTRIC
BASIC BASIC-1 MARK I
PRINT USING
PRINTUSING = ] ==m====- e me, list FRINT USING PRINT USING PRINT USING
PRINT USING o, list mm, list mey, list
str var; list
PRINT USING
str: list
RANDOMIZE RANDOMIZE | mmmmmmmm | mmmemeee RawbOM ] msemmee | mmeeses -
READA* READ var 1, +.. |READ var1, .,., [READwvar 1, ... |READ var1, ... |READ var1, ... |READ var 1,
var n var n var n var n var n var n
READ FORWARE = | ==mmee=e ] mmmeeeaa ADVAMCE ¥ exp;, | ====me= 7 =m wmmmmm { memeee—-
exXp, var "
oy D - P S . AD F exp; var 1, FILE READ # nun, | READ # exp, DATALOAD
L. varn var 1, ..., var 2, ... Vvarn
A exp, exp; | varn READ: exp, var 1,
var 1, ..., varn reey VAT R
READ (, ) memmmm—- mmm————— see READ # see READ # sce READ A | me---a- -
RELEASE e - IR I EPETTEE R e
RENp* REM comment REM comment RIM comment REM ¢orment REM comment REM comment
RESET | mmmmmee= ) mmmmemes | ames wmmm ] mememes- see RWEKD | ----- ---
RESTORE** RESTORE RESTORE RESTORE RESTORE RESTORE RESTORE
RESTCRE mm RESTORE mum RESTORE num
BB e RESME |  ce-ee--- B e T T e TR
RETURNA® RETURN RETURM RETURN RETMN RETURN RETURN
RETURN exp

467
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BASIC 2.0 M
CDC 6600 cPs DAATMETH MATA GENERAL GE MAFY 1T HP2000R HPZOGCC
SCOPE UNIV OF ICWA GE MARY 117
REWIND ] mmmms=e= ] mmmmeeee ] eeeenees mmrmimme ] emmmeeas READ Fexp, 1 [ REMD F oexp, 1
[]
SCRATCH f meememee | emmeeees SCRATCH # exp crem—— SCRATCH # eap S IR
SCRATCH: exp
SElPPR | emmmmee | mmeees S LT I SETW exp TO exp | sce READ # see READ ¢
SMAULLEST #** E-368 £.4 E-79 1.46937 E-39 5.48-72 1.36937 £-39 £-38 £-38
stop* STOP STOP STOF STOP STOP S0P S70P
mlmm‘. [ [ ] [N ] [ " *r LAl
STRINGS | meeemme ] mmememme ) ememmen | emmemeee | e L T BENCTTELEED
STRING VARTABLE NAME **| Jetter § letter § Mum name letter § letter § leteer & letter $
followed by § .
QHE | mmmemmes ] memmeeas SBnae: | ememmee= o] mmeemeee | saa remmm | e
arg list
s 00 | ememeeee b e SBBD 00 | emmmmeem ] e PN [
L]
™ | mmmmeee= ] mmeeeees TIMEn [  =mes;ses ] msmmsseee | sssssess ] sssesees
UNLESS - mecemn wmmmeenn N T T L .
1.7 7 /R e B R et T T B B B e IECELLETT RN EEERT PP
USER‘_‘QgFIm FUNCTION N letter EN letter FN letter N l:ater FN letter FN letter FN letter
RAMES

afCormanda and elemenes chat ¢an be used,
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. MILTIOMP
™ LEASCO POP 10 POP 11 ool iat 1100 R XEROX
T IC VEPSION 2.8 ypory wass
MAKKATOD STATE CLG BASICX
RENIMD ] mmmmas - smmmmmma | emmmeeas smmmmmmn | mmemmaaa REWMINMInum @ ] seemeeee
scratat 0 | eeeeeeee ] e SCRATCH 1ist see KILL | -eeeee- SRATCHwm | e mmme
SETPlTR | mmmmemee ] mememeeeas SET N, exp our | mmmmmmee | emeeeaas SETPTR nund, var; ==essa- -
SMALLEST #*s 5.4 E-79 E-38 * 4 F-39 .14 E-38 E-39 E-99 $.36R E-T79
STOpH® STOP or STOP sTOP sT0P sop SToP S0P S0P
message
Smn:sqms.’ L] or [N ] e e [ 1 (X} ]
SINGS 000 | eeeemeee | e R - STRINGS man =~ | mmememem ] mmeeeees
defaulr 60

STRING VARIABLE NA&EI':‘I aly habetic § letter § Nureric pame $ Weeric name $ theeric name £ Heeric nare $ letter §
SIB B 1 I v . wmmmse § mumm B e T R—
SUBEND e R T Btk ummeman e TR TTTT LT SRR
b e T T T T R B e smreme b dmeaaaan
waess 00 | memmmeee b emmeeee ] e U-LESS condition S [ —— N
UNTILL memmnmen R wmmma- DL cendizion | mm--e-e = ] memmmmas ] memaaeas
USER DEFINED FBCTION| FH letter N letzer FN letter TN follwved by Fi tetter BN 1etter B letter e
KAMES #4 sarrable )

*sCommanda and elementa that can be ueed.
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CDC 6000 NCR ucsp*
iBM HONEYWELL SRONOS CENTURY BASTC
CALL{360-0S by B/E 200 BASIC 2.0 200 bs700 HP2000F
REWIND See RESET | @ ==s==- RESTORE # exp See RESET |  ==--r=-- see RESET see RESET
scRATCH | memme=e | = SCRATCH * exp|  ====== 1 ====== [ meemeee ) semeees
£1y ¢ 1 - (ppupupu e e N e T T T LR T ILE L T I BT
SMALLEST #** 1E-78 1E-615 1E-616 1E-365 5.4E-79 1E-47 1E-38
STOp** $TOP zomment stop stop STOP STOP STOP Top
STRING QUOTES** N " " " " "
SIRING b eameea 0 aaaaae b memmeee ] mmmmes ] mmmmee ] mmmees ] eeaoee
STRING VARIABLE :AME** lerter $ |  ------ Numeric nape $ letter $ Numeric name 3 {Numeric name $ letter $
= 1 25 2 o e I L L L T T T T T . N L
[-17:15% I . R e e e i
TIME - R 2 e T T - [
LESS e [ R S v R S
UNTIL e e e T e e
g FN letter |  ===-=- SN letter FN letter

USER DEFINED FUNCTION
NAMES ##

FN letter

N letter

FN letter

sURTVERSLITY OF CALIFORMIA, SAN DIEGO, BURROUGHS 34700
*4loemands gnd e'ements that can be used,
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oty oo | VT | wmmes | wmows | e | o, | e,
BASIC 1 BASIC BASIC BASIC USINESS BASICl covp 18 BASIC | BASIC
REWENP 0000 | emsmmsems ] emmsseam | mmmmmees ] meemrees | omme-eeee ] eeemmese | eeseeaas
SCRATCH @ | m=es=sese | mmsmmemeee ] mmmmemes ] eeeeeaas ERASE mame | ======== [ ===e=ea-
SEFPRR. | seesseee ] mmmemmmen ] mmmmeees | eemeeees REXKEY | ======== | =eemeee-
QULLEST # ** 1E-99 8.758E-47 1E-99 1E-99 1£-99 1.67E-57 1E-99
stop ** sTOP STOP sTOP sTOP STOP | ~mvmme-- sTop
STRING QUOTES ** " " " " " " "
STRINGG = + ] aemmmmmme | mmmmaaae ] ammmaeee b ammmmmms | memmmmmee | mmeemeees | eeeaeaas
STRING VARIABLE NAME ** |  ---e-n--- letter § |  mmmmmme= | meeeeees num name $§ | seeeee-e ] mmeeeees
£, ] eereaaa e}  mmmmmmme } mmmemmes | aeeemaa. | TEEEEEEs o ommEmmEEt o REEEEEES
=T S B e R T T T I CLEEE TR I CLEEEE LT S A e "
£ 527 - I pepuyapapay el - e e T ppeepepap ceemmaa mmmmmvam-
LT L R LT T TR B EEEEECC R SR LEL LR LI INEEEEEEEEIN IICLELEEEL I bbbl
wittk. | e ] e O e L LA Ei N i A
q\gﬁésnfflﬂm FUNCTION EN letter EX letter EN letter EN letter EN letter | see-e--- EN letter
**Cormands and elements that can be used. )
‘
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-
4

3

I S3 GE 755 COM-SHARE OOM-SHARE WESTINGXUSE KESTINGHOUSE il
P R Aot BASIC NEWBASIC RASIC 11 BASIC 111 AVANCED
BASIC-16
REWIND see RESET RESTORE ¥ exp |  =wmmemmee | semmemee p semeseee | swwmsees | e
SCRATCH ----- SCRATCH # exp SRATCH f meeemeee b eeeeee | meeeees e
SEPTIR | emmmeeee | maaes O TR R O I TT T T I RS
SMALLEST Fan 1E-99 ‘ $.78960E-76 $8-76 SE-76 2,71E-20 2.71E-20 2.718-20
STOpaw STOP corment S0P S0P STOP STOP STOP sToP
or STOP

STRING QUOTES** ' " " “or " o "
smives | e ] e e | e ] s | e emae
STRING VARIABLE NAMEr* ??ﬁ?f&:& g;, csar letter § num name § mmpame § | meeemea- letter § letter §
e ememeeee | meeeeee Rt S SECELECCE I INNNCTTECEECIN BENNECTEEPEES
SUBE'D A ------------------------------------- e BT
T™ME mmmmmmme ] eeemmses ] eseeeaes TEME mmmmmvan smmmmmmms ] essasses
1% = b LG T SN PEPPEER BT EEEE PR NN TTEPTET I R —— S
UNTIL wemmmmmn | mmemmmes ] e wm—— UNTiL exp | ==sme=me= [ mmmmmeee | aeeeaeas
USER DEFINED FUNCTION ¥ letter, $, 9, ¢ FN letter ™ letter EN 1etter FX lstter FN letter Fy letter

.\AMES"

cr #

" Cormands and elements that can be used.
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76
INIVAC 1100 HOMEYWELL 1640 l'rHE;\fELL HONEYWELL 400 HONEYWELL, 600 HP2000E Il‘.!NIVAC 1100
UBASTC XBASIC . 316, 316, :nd XBASIC BASIC INIV OF MARVLAND
716 BASIC RELEASE V 1.3
11 171 S oy RESTORE # exp |  -------- RETORE # mon | RESTORE # ramm | wrveeeer | coecenes
RESTORE: num
SCRATH | emeeeaes T SCRATCH SRATH I o | mmemeeee f ceeeaee-
mames SCRATCH: jum
. SCRATCH #

Lt oy 4 1 - B T L B LT TR e SET: mem TO exp |  =sccveee | meecaae-
SMALLEST #es 1E-39 1E-38 1E-38 5.7896E-76 1E-38 1E-38 1E-3%
STOpet SToP STOP STOP ) STOP STOP STOP STOP
mlm WES” " L1 L1 . [1] " n "
STRINGS STRIGpum |  =====r== | mmeemees | emeceeee b cmmceeee b e et ks
STRING VARIABLE NAMEA® mm name $ letter 3 | eem-e-e- letter § men name $ letter $ letter $
sy | eesmmaaa | asacaaea B TP TR R [pavayevetu i [ epuvuup o S ————
L S e Rt SRR CEE T TR SR TOCOerr Y SR TERReS s f memeemes ] smeeeee-
L1 = o Lt T B B e T [
magss 00 [ meeeeees LU B e IR S S womsa-
TIL UNTIL conditlon)  ===---ee | cmveevee | mesmmmee | memmseees b cmccemae | emeeeea-
USER DEFINED FUNCTION NAMES®** | FN letter FN letter ¥ letter F4 letter FN letter FN letter FY letter

**Comnands and elerents that can be used.”
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MICRODATA Q-BATA HPICIO WANG 3300 GENERAL WANG 2200
: ELECTRIC 9G
BASIC BASIC-1 MARE 1
RENIND T I G T EELLTH KESTCRE f exp |  =meeese-
RESTORE: exp
SCRATCH emmmmmmn | emeaaas - PURGE rtane FILZMOD & exp, SCRATCH # exp | =======- oy
option SCRATCHE: exp T
L kS I-
SEfPTR,.  }  mmmmmeas ] aaa L B LT T S B T TR SET: exp, var [  ====eees . <
;.
SMALLEST fo* 1E-37 1E-99 1£-77 iE-0S &.31809E-78 1E-100 -
;r‘ .
STOP - o]
STOp#*= sTop STOP sTop sTop Ss1op STOP “'comment'
STOP digir ’
£ .
mlm qms,. n [ [1] L (1] L] % ! -'!g"
_| b‘ \‘ [
S Il e r R S R  BENECCCE N s o
STRING VARIABLE NAME®* | =ceceeee | mmeeees lerter § or lerter § letrer § num name 3
. lerter digir $ g
DEFFN'
s | mmmmeee= 1 mmmmeeee ] mmmeesee ] aee smmmef mmmmmeee (var 1, ... var
DEFFN" (string)
SBEND 1 mmeem===f memmes== ] mmmmsms= ] mmmmmm== | mmmmmm== | mmmmmees
™ |  ommmm==== ] mmmmm=== | mmmmemmee | mmemmemmme ] mmemmees == -
meESS 20200} mmm===== 1 mmessses 0 msmseses ] msmmmmees ) msssesss | mmmmmmee
wri,. | mmmmm=== 0 mmmmm=e= ] mmmmmmes | mEmmm=s= ) e smmmm= | mmmeeeee
USER DERFINED FNCTION FN letter N letter j 2 lc;*.tcr . EN letter EXN letter Fl letter
KAMESe* . .
O
E lC *aComands and elements thar ¢an be used.
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BASIC 2.0 1M .
00 CPS DARTMOUTH DATA GENERAL SE MARK T1 HPZ000B He2000C
G 66 UNIV OF I0%A
SCOPE GE MARK 111
WHILE tmmm— - rmmm——a—— L tmmm— P i
WRETE # WRITE FILE =~ |  ceccen-e- WRITE # expr TisY WRITE FILE WRITE # exp, Iist [see PRINT 4 see PRINT &
(name) 1ist lexpl list WRITE: exp, list
oY
WRITE FILE [exp,
expl list
WRITE FUSING | smmmmmae D semaseae ] aeaa - ot WRITE # exp - -
USING str, lis:
WRITE (, ) =}  ===eee-- TR see WRITE ¢ ——— - }see PRINT 4 see PRINT 4

*.

104
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80

MILTICOMP
. UNIVAC 1100
{.E‘F‘ LEASCD PDP 10 e 11 UBASIC VERSION 2,4 UN[,?R,.,,SS XEROX
MANKATO STATE CLG BASICY.

wILE 0 b emmeeeee | mmeeeeee | - O WHILE cordition |  =cceceee | ccccaaea ——eeeeea

WRITE ¢ PUT 'name! r——— WRITE # N, list | see FPRINT WRITE ON num: see WRITE (, ) PUT: num,

list WRITE: N, list list key, 1ist
WRITE § USING |  ==wmevee | mmemmeme | eeeee .- e B BT
WRITE ( , ) S S R see PRINN | =vecmees WRITE (, n) R

list

108
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5L

CBC 6000 NER vcso?
TBM HONEYWELL KRONOS CENTURY BASIC
CALL/360-05 PDP 8/E 200 RASIC 2.0 200 B6700 HPZ000F
witée | ... R o Y RO I S
WRITE # PUT exp: |  memee- WRITE ¢ exp, | WRITE FILE |  ------ see PRINT # see PRINT &
varf,... varl,... (name )expt,...
L a0 (S SRR L LD B LT LEE S B CE L EE N BT L L I e B LE DD
WRITE (, ) see WRITE # | ------ see WRITE # see WRITE # |  ------ see PRINT # see PRINT #

SUNIVERSITY OF CALIFORNIA, SAN DIEGCO, BURROGUGHS B6700

10C
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NCR BURROUGHS BURROUGHS BHRROUGHS BASIC FOUR UNICOMP VARIAN
CENTURY 100 85300 B2500 83500 PUSINESS BASIC] .COMP 16 or 620 or V73 | 10D
BASIC 1 BASIC BASIC BASIC = COMP 18 BAS:C BASIC
WHILE =] eeeaaa B T [ e mmmmmmms | emmmm===
WRITE # R see PRINT # | =sceeeee | meeeaa WRITE (num, | =======- cmmmee-
IND=exp ,ERR=
nun , END=num)
list
WRITE USING mm
WRITE#USING  }  =memeeoe | mmeeeeee | e cememcme |(mum,INDmexp ERRe | eeneee-- —————
L'n.m,ENDnmn 1ist
WRITE ( , ) —emameas see TRINT # oo mreesas see WRITE # —nmmenn T

418
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1M 53 GE 255 Ca-SHARS COM-SUARE WESTINGHOUSE [ WESTINGHIOUSE G‘-’-W‘-v
MOD 6 TIME SIARING AUTOM.TION
8 BASIC NEWRASIC BASIC 1] Rasic 111 AIFVANCED
BASIC BASIC
BASIC-16
WIE | ememmmee | emmmmmee | ameaaa- WHILE exp SO IR S —
KRITE ¥ RJT name, var 1, | SRITE # exp, see PRINT £ see PRINT FROM mamtemne | emmmmeaa | e .-
var 2, ... var 1, var Z,

WMITESUSING @ | ememmmee | e} el SO S U .-
wrRITE( ., )} sec WRITE ¢ see WRITE ¢ sec PRINT £ see PRINT FROM | =cccccee | cecccaas e

0E
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UNIVAC 1100 HONEYWELL 1640 HONEYWELL HONEYWELL 400 HONEYWELL 600 HP2000E UNIVAC 1100
WHILE WHILE condition]| ceccecee | ccmcceae b dmdcecce | dmmeeees | eemmee | eemasaa-
WRITE # WRITE OH exp: WRITE ¥ exp, |  ======-- WRITE ¥ men, WRITEf mm, |  =ecscee== |} ecceeaas
list list list list .
WRITE: muem, list
WRITE ¥ USING see WRITE 1 WRITE ¥ exp, |  wemmeeee | cmmmmeae | eecmmeee b eddmeeee e vaman
num, list
WRITE (, )} see WRITE # Sce’WRITEXF |  ccmmemee | ceceeees see WRITEA |  cccccaca f smeceae-

ERIC

Aruitoxt provided by Eic:
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MICRODATA Q-DATA HP3000 KANG 3300 GEXERAL WANG 2200
. ELECTRIC
BASIC BASIC-1 NARK T
Wi | omEEEEEE= 0 me wmmm== ] mEEEEEER | mEsmSsEes ) mEEEREss ] mEmEmess
WRITE® | =emm=e=== ] ees wu—-- see PRINT ¥ FILEWRITE WRITE ¥ exp, DATASAVE
f num, list vari, ... varn
¥RITE : exp,
varl, ..., varn
WRITE # USING =essmm=s p messsess ] memmesss | mssssess | mmmms=== 40 mmmmmees
WRITEC,) | ======== | mmmmmees sec PRINT # sec WRITE # see WRITE ¥ see WRITE #
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The following 4 tables are 2 list of the BASIC built-in functions where:

Absolute value
Ascii
Arcsin

Arctangent

I = Returns true value of relation

Time of day
ﬁext’print position
Cosine

Cotangent

Cosecant

Returned statuscode
Date

Degrees from radians
Determinent

Digital part from scientific notation
Integer division

End of file

Exponent part
Exponentiation
Truncation

Selects bits
Fractional part

Field data equivalent
Hyperbolic cosine
Hyperbolic tangent
Integer part

Converts to binary integer
Largest integer

Next available positZon of file

LIN: =
LoC: =
LOF: =
LOG: =
LDOG10:
LTW: =
MAR: =
MOD: =
M{L: =
NUM: =

Skips lines

Location of file pointer
Length of file

Natural logarithms

= Common logarithms
Logarithm base 2

Margin for file

X =~ YxINT(X/Y)

Maximum length of string

Number of data input

PI: = 3.1415927

PIX: =
PoS: =
RAD: =
REKEY:
RND: =
RUN: =
SEC: =
SGN: =
SIN: =
SPA: =
SPC: =
8QR: =
TAB: =
fAN: =
TIM: =
Tis: =
TYP: =
XPT: =

7 times argument

Location of string o7
e
Padians <H

= Change position number of Egcord in file
Random number

Elapsed time

Secant

Algebraic sign

Sine

Skips spaces

Outputs a number of spaces
Square root

Tabulation

Tangent

Elapsed time

Time of day in milliseconds
Type of file

Exponent part




Q

ERIC

Aruitoxt provided by Eic:

‘CSIASN'A’{N

9EG |peY nmlnw

ABS acOL jcLx| coL| cos{0oT|CSC{CSE paT EDF BEP|FIX GET [HCS HIN{INP JINS |INT [XEY
0% §680.SCOPE X X X X X X
UNIV GE TORA X X X X X
DARTMOUTH X X x| x X X X
DATA GENERAL X X X X X X
GE MARK 11 § 111 X X x | x X X X
}P2000B X X X X X
HP2000C X X X X X
1B ITF x [x[x]x x[x{x x | x X X X
LEASCO X X X X X
PDP 19 X X x | x X X X
POP 11 X X X x |x X
g{&%lé‘gémaé.o X X x[x}x X X X X X
MULTICO® OR X X X
UNFV MASS BASICX
XEROX x [xfx]|x x|x|x
1BM CALL/360-0S x [xpx|x x fxlx
POP 8/E X X X
HONEYWELL 200 X X X X
oo msc 2.0 | X X X X
NCR CENTURY 200 X X x | x
UCSD BASIC B5700 X X X
HP2000F X X X
NCR CENTURY 100 X X X |
BURROUGHS- BSS0D X X X
BURKOUGHS - B250D X ATAN X
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Aruitoxt provided by Eic:

ERIC

88
I .
ABs | acs | asw jarv {moou|cLxooLices. oatioec|pET| 16| DEv|Eor | Epr|exp| Frx | FpFRe{GET | 1S sy | ey Inp s i

MIRROUCHS- R350/s Y AT X X X
BASIC-4 .
BUSENESS BALIC X T X
UNICOMP-B/SIC X X X

VARIAN-€20, V73 X X X X X
18M 51 MOD 6 x | x X | x X X X x| x| x X
GE 255 TIME SHARING X X X X X X
COH-SURE BASIC X X X X X
CO9-SHARE NEWRASIC x | Arccos|arcsin|aran X X |x cosi [stvn [rana X
WESTINGHOUSE BASIC 1T | X X X
WESTINGHOUSE MasIC 11| x X X X X
GENERAL AUTCMATION X X X < X
BASIC-16 ADVANCLD 3

R TAC 1300 umasIc X X x |x |x X x |x X X x [x |x
mﬂl. 1640 X X X X X
FONEYWELL 316, 516, 726] X X X X X
HONEY TLL 400 X X X X X
TONEIWELL 600 X X X X X X
1P2000E X X X X X
UNIVAC 1100

UNTV OF MARYLAND X X X X X ! X X
MICRODATA X X X X ‘ X
Q-DATA BASIC-1 X X X X X
13600 X X X X cz. |=owm [nw x
WANG 3350 X x |x X X . X
GE MARK [ X X X X X X
HANG 2200 x [arocos|arcsis| x X X X
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ERIC

LN 106] LOG10 mrlmn mlm PIX POS‘RADI REXEY lmlm SN {STN [sPa [spe [sar [TAB [zan [TMi T 18| TYe| xpr
- : T L ET T
Ly 1084 x |aor X x | x X
DARTMOUTH X X X X x | x X x | x
BATA GEVERAL X X x | x X X
GE MARK 11 & III X X XX XIx|x|x
HP2000B X X x [x x [x [x [x X
HP2000C X X K x Ix [x |x
1BM ITF X | wr{x . X x |x X X
LEASCO X X x |x x [x [x [x X
PDP 10 X X X x [x x [x [x
8P 11 x| x X X X B E x Ix Ix
e R .0 x | wr X X x |x x |x |x is| | x
&{g’;‘% ggs o X X X |x x |x X {(x |x
XEROX X | W6 | X X X |x X [x [x [X
1BM CALL/360-0S X | Wt X X X X X 1x X X
PDP 8/E X X X | X [x | X
HONEYWELL 200 X X X |x X X |x
Tiss0s MSIC 2.0 X X b X k
NCR CENTURY 200 x | om X x |x x |x [x
UCSD BASIC 86700 X X X X |x |x
HP26OOF X X x {% x [x [x
NCR CENTURY 100 X X X |x X X
HRROGus-BS500 X X X |x x |x jx |x X
BIRROUGHS - B2500 X X X X
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Aruitoxt provided by Eic:
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LIN 106 har PI |prx{pos(rAD RD sGx| sry; spaj sec| sor| Tas] TAn| T¢ [Tis
BURROUGHS-B3500 X X x| x x|x|x
DUSINESS RASIC X
UNICOMP-BASIC X X X
VARIAN-620, V73 X X x |x x [x |x
IBM $3 MOD 6 x |uer jx spt X X x Ix|x X X
GE 255 TRME SHARING X X X x__ ‘; X|xx
COM-SIARE RASIC x §Ler X X x| x x [x [x
COM-SHARE NEWBASIC x| x X X MM x |x X x e
WESTINGHOUSE 8aS1C 11 X X X X
WESTINGIOUSE BASIC 111 X X X x |x x |x [x
‘Esﬁl%}’i&mg" X X X x | x x |x |x
GIVAC 1100 URaSIC < | 1er x {x X x |x x [x {x [x {x
HONEELL 1640 X X x {x x [x [x |x
HONEYWELL 316, 516, 716] X X x |x x |x |x
FONEYRELL 200 X {cLG X x Ix x [x fx |x
f&s\'f‘c"'ﬂ[' 600 x |as X x |x x*Ix |x |x
1P2000E X X x |x x Ix |x |x
A LAND x |wer X X X x |x x |x |x
MICRODATA X X x |x x [x Ix
Q-DATA BASIC-1 X X X Ix X X
1R300 X X X X X X jx |x X Ix |x |x
KNG 3300 X X x |x x [x |x
GE MARK 1 X X x Ix x |x Ix {x
KANG 2200 X kPl X x [x x [x |x

99
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The following table refers to matrix operations and built-in functions where:

CON: = Matrix of al . ones
iDN: = Identity matrrix
INV: = Inverse

NULS$: = Matrix of null strings

TBN: = Transpose

ZER: = Zero matrix
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ERIC

Aruitoxt provided by Eic:

I
AB AB| 2B | Kaa] con | 18 |TW ™y | zer | aek | v | prINT | PRINT 0SNG | READ | wRiTE | cer § ot | DM
g‘:glgegﬁum X X X X X X X X : ¥ X X X X
u%cgg 1OKA x| x ! x| x{ x| x x | x | x X X
DARTMOUTH sl xpx] x| x| x |x x | x | x X X X X X
BATA GENERAL x| x i x [ x| x| x [|x x {x }x X X X
GE MARK 11 § 111 x | x Px | x| x| x |x x | x | x X X X
HP20008 x I x P2 l x ! x| x |x x |-x Ix X X X
HP2000C x | x| x| x| x| x |x x 1 x |x X X X
IM ITE x| x| x x| x 1 x |x x tx | x X X X X x | x
LEASCO tlxpxlx b x| x fx x | x {x X X X
POP 10 x | x | x| xPx | x Ix x Ix Vx X X X
POP 11- x | x [ x| x| x| x [|x x |x X X X X
; r
IR MOOVERZY x Fx I x | x| x | x |x x | x | x X X X
MULTICOMP OR
o R s x | x I x P x x| x }x x | x X X X X
XEROX x I x [ x § x| x| x 1x X X X X X x |x
18M CALL/360-0S x [ x [ x| x| x| x }x x | x |x X X X
POP 8/E
HONEYWELL 200 x | x |x I x x| x |x x | x |x X X
€DC 6000 s | prow]
KRONOS RASIC 2.0 X x | x{x | x|x |x X px |x X X X X IFuE |FiLE
NCR CENTURY 200
UCSD RBASIC B6700
HP2000F x | x [ x [ x x| x |x x x |x X X X X
NCR CEXTURY 100
BURROUGHS- B5500 x | x |Ix | x| x|x Ix x |x |x X X X
BRROUGHS- B2500 X X X X X X X X X X X X X )

o0




Aol | A-B | Ans | xea | cont | on | nov | s | TRV | Zem | A=B | 1vPUT | PRINT | PRINT USING | REA® | WRITE | GET| out | Dne

BURROUGHS-B3500 x P x [ x| x| x| x| x x | x | x X X X

BASIC-4

BUSINESS RASIC

UNFCOP-BASIC
VARIAN-620, V73 x | x [ x| x| x| x| x x | x [ x X

TBM S3 MOD 6 x | x [ x [ x| x| x| x x | x | x X X X X x | x
GE 255 TIME SHARING x | x [ x| x| x| x| x x | x [ x X X

OOM-SHARE BASIC x| x [ x| xtx]x]x x | x | x X X X

COM-SHARE NEWBASIC x [ x I x| x| x| «x x | x X X X

KESTINGHUSE BASIC 11

westivaouse sstc 111l x | x | x | x | ox [ x | «x x x| x X X

GENERAL AUTCMATION

A . x | x [ x Vx| x| x| x x | x| x X X X

USIVAC 1100

e oy 5.2 x | x P x ]l x | x| x| x x | x | x X X X X
HONEYWELL 1640

e x | x | x| x| x| x| x x | x| x X X X X

HONEYWELL 316, 516, 714

HONEVAELL 400

ot x | x| x| x| x| x| x x | x| x X X X

HONEYKELL 600

ey x | x [ x| x| x| x| x x | x | x X X . X

}P20GOE x | x [ x| x| x| x| x x [ x | x X X X

UNIVAC 1100

UNIV OF MARYEAND X x| x| X X X X X X

MICRODATA

Q-DATA BASIC-1

HP3000 x | x | x | x x| x| x fme | x| x| x X X X X

- FIlE [FILE
WG 3300 x | x [ x | x x| x | x x | x | x X X X X PILE JEILE
GE MARX 1 x | x | x | «x x| x [ x x | x | x X X

KANG 2200

489
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Aruitoxt provided by Eic:
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The next table shows various string built-in functions. These functions
are sometimes quite complicated and their descriptions should be

referenced in the appropriate manual.
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CHRS (X)| ASCIE(AS) _LEFI‘(!.$,B.‘) RIGHT(AS, N} MID(AS N, M} { LEN(AS Y CLKS | DATS | PER] POS! STR [SEG| TYP| VAL CNT| DTS$| PADS] TRMS EXT$| CPY$| ADDS |SPACES

MSIC 2.0
(C 5600 SCOPE

IM CPS
UNIV OF TOWA

DARTMOUTH X

DATA GENERAL

GE ¥aRk T1§ 114 ASC

HP2000B

AR R ]
E]
E]
42
E]

HP2000C

Im ITF .

Hod

LEASCO

Ppp 10 X ASC LEFT$ RIGHTS MIDg X X

Hod
Hod
b
Hod
Hod
2
-2

POP 11 X

UNTVAC 1100 VER 2.0
MANKATO STATE CLG stre xIx [x Jx |[x |x |x

MULTIOOMP OR
HHIV MASS BASTOX

491

XEROX X X X

I CALL/Z60-05

PDP 8/E

HONEYWELL 200

CHC.5000
KRONGS BASIC 2.0

NCR CENTURY 200

UCSD BRASIC BE700 R LNG X |X M

HP2000F X

NCR CENTURY 100

BURROUGHS- BS500

BURRDMIGHS- B2500

ERIC

Aruitoxt provided by Eic:




m-
.

s RS (X) | ASCTTEAS) | LEFT (AS, M) | RIGT () o I 4ineas, x 00 | LEN (AS) [ cLKs nmlm ros| 5P SEG| TYP{vaL| ovr| orss| eans | Tevs | xS | cpys faDDs [seaces [ixnsTrs

BURRIGHS - B3500

BASIC-4
BUSINESS BASIC aR | ASC X M

IPNICOMP-BASIC
VARIAN-620, V73
1B S3 MOD 6 X
GE 255 TDME SHARING
CCH-SHARE BASIC

CLM-SHARE NEWBASIC CHAR X X X SUBSTR X X X
WESTINGHOUSE BAS.C I
WESTINGHOUSE BASIC 111 X

HONEYWELL 1640
XBASIC

HONEYWELL 316,516,716

HONEYWELL 400
XBASIC

&
3

HONEYWELL 600
mSIC HPS

HP2000E X

UNIVAC 1100
USRIV OF MARYLAND

MICRODATA }
Q-DATA BASIC-1
3000 X X X X X |

&
g

WG 3300 X

GE MARK 1
WANG 2200 X X

ERIC ,

Aruitoxt provided by Eic:

492




15.
16.
17.
18.
19.

20.
21.
22.
23,
24,
25.

COM-SHARE NEWBASIC extensions

LET VAR = ZERO--zeros #ll variables.
Statements may contain up to 256 characters.

Complex varizbles .

97

Data type declares--INTEGER, DQUBLE INTEGER, COMPLEX, REAL, DOUBLE REAL, STRING, TEXT

Very much less than <<

Very much greater than >>

Binary operators—--BAN conjunction, BOR disjunction, BEX exclusive or
Logial operation--BUT

Allows mixed data types and converts.

Comments may be added after any statement.

Suffix modifiers may be added after any non declarative statement.
Keywords may be abbreviated.

LET var = exp 1 = exp 2

NORMAL MODE IS

DIM var (exp: exp) as in ALGOL

LINK saves variables, LOAD does not.

May LINK or LOAD BINARY

APPEND in execute mode

FOR var = exp 1, exp 2, ...

FOR ... UNTIL or WHILE

May use brackets [ ]

ON ESCAPE GOTO line #

ERASE exp FROM exp TO exp deletes material on random file
Formatted input--INPUT IN FORM, INPUT IN FORM FROM
Serting BASE

Suffix modifiers FOR, IF, UNLESS, UNTIL, WHILE




26.

27.

28.

String functions: IEQIV--searches for substrings

Functions:

CTI-~character to integer
ITC~~integer to character
SPACE--returns Sspaces
LITRIM--removes leading blanks
TRIM~--removes trailing blanks
INDEX--returns position of substring

DIF--positive difference

FLOAT-~floating point of integer

SNGL--single precision from double

LSH--left shiftc

RSH~-right shift

TMAG--imaginary part of complex number

REAL~-real part of complex number

COMPLX~-complex number

CONJG~-conjugate

WAIT-~halts for time

PASS——number of times statement 1s executed

REPASS~-resets PASS

DATE-~12 character date

TEL--tells 1if terminal buffer empty

SI1ZE--length of file in words

Catalyst functions

98
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10.
11.
12.
13.
14,
15.

l6.

929

Extensions of HP3000 BASIC

Continuation of statements by placing & as last character
Double precision variables

Complex variables

Integer variables

TYPE statements INTEGER COMPLEX LONG REAL

Redimensioning by REDIM

IF ~ DO and DOEND pairs

For loops in READ statements -
May save extra INPUT's in a buffer and BUF function

Complex functions CEIL, CPX, REA, IMG, CNJ

495

String functions WRD, UPS, DEB

Matrix furctions ROW, COL

Functions UND, CPU, REC

May define type functions

Call axternal procedure in other libraries by EXT

LPDATE allows file to be modified.
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THE CADA MONITOR

David E. Christ

The University of Iowa

Several elements go jinto a Bayeslan statistical analysis. Some are
skilled tasks requiring the expertise of a professional and others are
purely mechanical. The former include such tasks as cholce of model,
specification of the prior, and interpretation of the posterior distri-
bution; whereas the latter include such things as the arithmetic necessary
to take statements about the prior and combine them with the data to
produce the posterior distribution and to produce probability statements
about parameters using the posterior distribution. Unfortunately, it is
all too often the case that the arithmetic gets in the way of the pro~
fessional's decision-making task by breaking concentration and line of
thought; and at times the sheer bulk of computation precludes the use of
advanced techniques by the unaided researcher. For these and other reasons,
a system of Computer~Assisted Data Analysis {(Novick, 1971) was developed
at The University of Iowa. Further investigation-into avallable computer
technology coupled with expansion of the theoretical base on which the
original cystem rested has regulted in the refinement and expansion of
the available programs and the coustruction of a monitor to facilitate
their use.

Since CADA {Computer-Assisted Data Analysis) was meant as a research
tool for general application, a search was made to find the most effective
meane of facilitating wide distribution of the monitor for use on many
computing systams. Dua to limitations in time, manpower, and money,
reprogramming on & system~by-system basis was rejected as a viable

method of implementing CADA. Since no entirely transportable language
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for all Interactive systems existed, it was decided to pursue a strategy
which would permit interdialéct translation rather than actual repro-
grauming. Exawination of available hardware and software pointed

toward the BASIC progremming language as the only possibility for
translatability scross several manufacturers. A study was then made

by Isaacs (1972) which showed that programs written in one dialect of
BASIC could easily be translated into that of many other manufacturers'
dialects provided certain specified constraints on the initial programs
were observed. The first BASIC version of CADA was then written by
Isaacs and Christ in the BASICX dialect for the CDC 3600 at The University
of Massachusetts. This was then easily and quickly translated Iinto
versions for the Hewlett-Packard 2000C and the Digital Equipment
Corporation PDP-11, thus validating the assertions made by Iszacs.

The detailed outline of the current monitor was developed based on
considerations falling in three basic areas--user interaction, systems
constraints, and programming considerations. The user interaction is
by far the most important consideration. Although the user may be
highly skilled in his own subject area, he may be quite unsophisticated
in terms of computer skills. The first design rule was then that the
user be required to have no programming skills. He need know only three
system-related commands: (1) how to sign on the system; (2} how to

start the monitor running; and {3) how to sign off the System.

The second design rule was that the monitor be self-documenting
in terms of options available. The momitor should be modifiable to
include new models, new techniques, and improvements to current programs
without the user having to wonder whether he has the latest 'newsletter"

or update sheet.
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The third design rule was that the user should not he left
“"hanging". If a numericél integration fails to converge, an error
message followed by the stopping of the program 1s not enough. Control
must branch to a point where the unsophisticated user can proceed on the
information available to him. Furthermore, whenever possible, input from
the user must be checked for wvalidity to avoid system errors such as
division by zero, taking the root of a negative number, etc.

The constraints of any language implementation limit what can be
programmed In that language. When programming for translatability across
seversk systems, the constralnts become somewhat more demanding and at
times preclude the use of features that may be present on one system
only, or that differ radically from one system to the next. This, with
the three design rules mentioned above, has governed most of the design
of the monitor and the programs.

While the monitor 1s currently avallable for operation on only
three systems, an attempt has been made to minimize the dependence on
features not available in BASIC ciialects for other computers. The two
features used which might be the most limiting are chaining and formatted
print statements. However, the systems in wvhich we are most interested
have thegse features available. The formatted print statements were used
to present the output and textual material in a visually pleasing way.
This is not necessary, per se, but is desirable to facilitate the man-
machine interaction since the intended user is not presumed to be a
computer expert. The formatted print statements do have analogs In the
other dislects we propose to usej however, they will be the ones needing

the most chenge from machine to machine.
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Chalning, which 1s necessary 1n some larger machines and most
smaller machines, 18 much more central to the logical design of the
system. The first consideration was that the user need only know
how to sign on the system and would not need to know the names of the
individual routines. This implies either a main routine-subroutine
syster: or a monitor program which causes the loading of the propes program.
The latter 1s the system used by us, dictated by the design of most
BASIC systems. The maln routine~subroutine system has the advantage of
ease of parameter passing, However, the number of paiiameters to be passed
in our system 18 few and the values are values known to the user, usually
understood by him, and normally recorded, to be used in any published
record of the analysis; thus, it 1s reasonable to ask the user to reenter
the parameters when necessary. This also allows the user to easily do
an analysis in steps at different times. The chaining as used here has
the advantage of having in core only the program in use and thus reducing
system overhead. A second consideration for the system 1s that it should
be 2xpandable with little effort on the part of the programmer and with no
operational change visible to the user. The monitor system used here
permits this. The only change seen by the user 1Is that he 1s given the
cholce of choosing among a larger set of routines and techniques. The

programmer need add only about three lines of coding to the monitor to

make a new routine available to the user. A third consideration 1s that
the user should never be left dangling after he makes an error. In the
CADA monitor, when a program falls, the system chains to & routine in
which the user la told to save the output for use by the person maintaining
the system and is then returned to the monitor to continue the session 1if

he B0 wishes. #All user input 1s screened for validity. Since string
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handling capability is not highly developed in all BASIC dialects and
handling a finite set of responses can be done by much simpler coding,
user responses to questions within the program segments have been forced to
nuneric form.

Programming ease was also considered. A wodular wmethod was used
1 building the routines themselves. Many routines were common across
programs (e.g., lntegrating a beta distribution, calculating an inverse
chi highest density region) and were assigned specific line numbers above
5000, These routines were coded only once and after being debugged were
ugable without further effort on the part of the programmer. The programmer
then referenced these routines by GOSUB statements to predetermined line
numbers with no need to worry about where to put them. Unique portions
of programs were then programmed with line numbers below 2000. As noted
above, the monitor system used enables new programs to be added with little
programming effort.

The accompanying appendices show a sample of the monitor output,
give a listing of the currént package contents, and cutline the chalning

sequence,
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APPENDIX 1

Monitor Output

RUW CBCADA
COMPUTER ASSISTED DATA ANALYSIS

IF Y01} WISH AN EYPLANATION TYRE !, ELSE TYRE 2

7?1

THIS "ACKET OF PI0OGRAMS “ROVIDES A GROUNDING IN THE
FUNDAMENTALS OF BAVZSIAN METHONS OF STATISTICAL INFERENCE.
THESE RQUTINES ARE DESIGNED TO GUIDE TLE RESEARCHER WED IaS
ONLY A MINIMAL ACRUAINTENCZ WITE BAVESIAN MITHODS, STEP-3V-
STE® THRJUGH A COMPLETE 3AYVESIAN AMALYSI5. A LIST OF THE
ROUTINES FOLLOYS:

}. PRIOR BETA-BINOMIAL MODEL

2, POSTERIOR BETA-BINOMIAL MODEL

3. PRIOR TWO PARAMETER NORMAL--MARGINAL DIST FOR STANDARD DzV
4., PRIOR TWO 2ARAMETER NORMAL--CONDITIONAL DIST FOR HEAW
5. DPOSTERIOR TWO PARAMETER NOTMAL

6., PRIOR M-GROUP PROORTIONS

7. POSTERIOR M~-GROUP PROPORTIONS

¢. EVALUATE STUDENT-DISTRIBUTION

9. EVALUATE BETA-DISTRIBUTION

12, EVALUATE INVERSE CEI-DISTRI3UTION

{l. EVALUATE NORMAL DISTRIBUTION

14, CALCULATE MEANS,STANDARD DEV., SUMS OF SQUARES

IF YOU WANT TO RUN ONE OF THE A30VEZ ROUTINES,TY?E ITS NUIJER
OTHERWISE TY?E A ZERO.

7?71
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III.

v,

APPENDIX I1

Package Contents

Supervisory Routines
A, CADA - Monitor

B. ERROR - Gives instructions when a program falls

BETA - Binomial Model Routines
A. PRIORB - Assists in fitting prior knowledge to the beta class
B. POSTR -~ Combines a beta class prior with binary data to give

a beta posterior

Two Parameter Normal Model

A, PRIORS - Fits prior knowledge (marginal) on the standard
deviation to an inverse chi distribution

B. PRIORM - Fits prior knowledge (conditional) on the mean to a
normal distributicn

C. POSTN - Combines the inverse chi and normal priors with normal

data to give posterilor distribution

m-Group Proportions
A, PRIORP - Evaluates exchangeable prior information on any of a
set of proportions for use in an m-group proportion routine

B. PROPOR - Solves the Lindley equations for a set of binary data

Evaluation Routines
A, 7TDIST ~ Evaluates the probability integral of a nonstanderd
gtudent t-distribution

B. BDIST ~ Evaluates the probability integral of a beta distribution

003
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C. ICDIST - Evaluates the probability integral of a nonstandard
inverse chi distribution
D. NDIST - Evaluates the probability integral of a nonstandard

normal distribution

Service routine STAT calculates the mean, standard deviation, and

sum of squared deviations from the mean for a set of data
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ERIC

Aruitoxt provided by Eic:

Errvor mway be called
from any module vpon

Chaining Sequence

APPENDIX III

detection of an” ERFIR .
erTor or sbnomal \HOL\HOI\
condtLon. &\\\
!
¥
E
A .
l i
! : !
N !
L]
PRICES P05T3 PRIORS PRIORH = peam PRIORP PROPCR ¥DIST ;
|
k
L]
¥
, H
" t
!
" poist DIST 1¢015T i
I {
i
" L}
+ i
i !
| »
w \ 1 . ! A i
Note: Any program can chain to error upon detection of an abnormal conditiom,
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