AUTROR<br>TITIE<br>INSTITUTION

PUB DATE
NOTE

Ball, Samuel: Bogatz, Gerry Ann
A Summary of the Major Findings in'"The First Year of Sesame Street: An Evaluation".
Children's Teleyision Horkshop, New York, N. Y. : Educational Testing Service, Princeton, N.J. Oct 70
33p.; for a related docusent, see ED 047823 and IR 003 417. Tables may be marginally legible

MF-\$0.83 HC-\$2.06 Plus postage
Audiences: Basic Skills; Broadcast Industry;
Disadyantaged Youth; Early Childhood Education; *Educational Television: Language Skills; Media Research; *Preschool Children; Preschool Education; *Preschool Learning; Program Evaluation; Programing. (Bfoadcast) ; Rubifc Television; Rural Youth; Tabies (Data): *Television Pesearch; Television Viewing; Viewing Time"
Childrens Television Workshap: *Sesame Street

## IDENTIFSERS

ABSTRACT
The Educational Testing service evaluated the sesame Street educational television series, to determine the extent to which it accomplished its staited objectives during its first year. Research results shoved that sesame street benefited children from'low-income inner-city areas and iselated rural areas as well as children from midde-class suburbs. Children who watched most frequently learned the most änd this held true across age, sex, geographical location, socioeconomic status, mental age, and viefing location. It was also found that the skills gifyen the most time and attention on the program.' were the skills learned best.' Three-yearipld children gained the most from watching the program, and disadvantaged children who watched a great deal surpassed middle-class children who watched only a littlé. Sesame street was less successful in promoting. some of its. goals due to an initial underestimate or overestimate of children's prior knowledge. (CH)
)


Documents acquired by ERIC include many informal unpublished

* Docuan nts acguired by FRIC include many informal unpublished *
* to obtain the best copy available. Nevertheless, items of marginal
-     * reproducibility are often encountered and this affects the quality
* of the microfiche and hardcopy reproductions ERIC makes available
*. via the ERIC Document Reprotuction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original! *


SCOPE 'OF INTEAEST NOTICE
The ERIC Faciltt has assigned
this document for processing
$10:$
In ous judpernent, thus documen
In ouf judgernent, this document is also of inter ost to the clearinghouses ripted to the raght. Index points of view
a SUMMARY OF THE MAJOR FINDINGS
N

* THE FIRST YEAR̉ OF SESAME STREET: AN EVALUATION "

A report by: SAMUEL BALL
GERRY ANN BOGATZ

US OEPARTMEHT OF HEALTH
S DEPARTMON W WELIFARE
EDUCATION WWETUTE OF
NATIONAL INSTION

- HAS EEEN REPROTHIS DOCUMENT HAS GEEN REROM DUCED EXACTLY AS RECEIVEO FRIGINHEPERSON OR ORGANIEMOR OPINIONS ATINGIT POINTS OF VIEWOR OPREPRE, STATED DO NOT NECESSARINSTITUTE OF SENT OFFICIAL. NATIONAL POLICY EDUCATION POSITION OR POLIC


EDLCATIONAL TESTING SERVICE
Princeton. New Jersey

DEMEASSION TO REDAOOUCE THIS COOY. RGGTED MATERIAL HAS GEEN GRANTED BY

- Childnen's Telovisian Workshop
to efic ano organizatons operating UNDER AGAEEMENTS WITH THE NATHONAL ITM. - stitute of educatio's fugther repro DUCIION OUTSIDE THE ERAC SYSTEM AE DUCTION OUTSIDE THE ERAC SYSTEM PE
OUIAES PEAMISSIOH OO THE COPYPIGHT OUNAES
CWVER
('opyright © 1970 by Educational Testing Service. All rights reserved.

BACKGROUND.

In the summer of 1968, the Children's Television Workshop (CTW) .began planning its Sesame Street program. All concerned.recognizedt that * : the plans should provide for an independent evaluation of the program's impact. CTW asked Educational Testing Service (ETS) -- a nonprofit educational measurement and research organization in Princeton, New Jersey -- to conduct an evaluation to determine the extent to which Sesame Street. accomplished lits stated objectives during.its first year on television." Among the questions the research tried to answer are these:

What, overall, is the impact of Sestame Street?
What are the moderating effects of age; sex, prior achievement tevel, and socioecormic.status (SES) on the impact of Sesame - Street?

Do children at home watching Sesame Street benefit in comparison with children at home who do not watch it?

Do children in presthool ciassrooms benefit from watching Sesame Street as part of their school curriculum?

Do children from Spanish-speaking homes benefit from Sesame Street?
What are the effects of home background conditions on the impact of Sesame Street?

The Children's Television Workshop's innovative educational program received substantial support from both public and private agencies. The original agencies included the Carnegie Corporation of New York, the Ford Foundation, the National Center for Educational Research and Development in the U.S. Office of Education, the U.S. Office of Economic. Opportiunity, and the National Institute of Child Health and Human Development. Other agencies that subsequently provided súpport included the Corporation for Public• Broad-

- casting, the National Foundation of Arts and Humanities, and the John \& Mary R. Markle Foundation.

The results of ETS's research study are described in dotail. in the report entitled "THE FİRST YEAR OF SESAME STREET: AN EVALUATION.: This Summary brings together a few of the major findings in the full report.

## HIGHLIGHTS OF THE FINDİNGS

In its first season of 26 weeks, Sesame Street showed that television can be an effective'medium for* teaching 3-to-5-year-old children important simple'facts and skills, such as recognizing and labeling. le ytyers, and

* numerals, and moré complex higher cognitive skills, such as classifying and sorting by a variety of criterta. The ETS research results reveal that ${ }^{\circ}$ Sesame Street benefits children from disadvantaged inner-city communities, middlenclass suburbs, and isolated rural areas -- aill the groups studied in this evaluation.

The potential of educatíonal television as a teaching medium is suggested by three primary findings of the research:

First, children who watched the most learned the most. The amount of learning that toold place -- that is, the gains a child showed between being tested for certan skills before watching Sesame Street and being tested for the same skills after -- increased in relation to the amount of time. the child.watched the program.

Second, the skills that received the most time and attention on the 'program itself were, with rare exceptions, the skills that were best 'learned. An analysis of the content of the show evealed, for example, that more time ( 13.9 percent) "was devoted to ${ }^{\prime}$ ' letter-related skills' than to any other single subject; it was in the areas of letters and numbers that the children's gains were the most dramatic. In addition to acquiring skills that were directly and deliberftely taught, it appears that there was some twansfer of learning, that some children learned to do thirgs -- such as recognize full words or write their own names -- which were not taught on the program.

Third, the program did not require formal adult supervision in order for children to learn in the areas the program covers. Children yiewing Sesame Street at home showed gains as great"as, and in some cases greater than, children who watched in school under the supervision of a teacher. This finding has special significance in light of the fact that more than four-fifths of all children 3 , and' 4 years of age do not attend any kind of school, and, more than a, quarter of all 5-year-olds domot.

The major finding -- that children learned more the more they watch - holds true across age, sex, geographical location, socíoeconomic status (SES), mental age (intelligence), and whether children watched at home or at school. In all eight goal areas in which the children were tested, gains in leărning increased steadily with amount of viewing. Gains were'greater on certain tests and subtests, howéver, and some groups of children showed greater gains lthan others.

The, 3-year-old children gained the most; 5-year-olds gained the least. That is, 3-year-old children who vieved the show a great deal had higher. attainments at postres,t than these $4-$ and 5 -year-olds who viewed the show less, ewen though the younger children scored lower at pretest than the older children. This finding has important implications for education in general, for it suggests that 3 -year-old, children are able to learn many skills that have traditionally been introdụced at later ages.
$\dot{A}$ similar phenomenon appeared with advantaged and disadvantaged, chil-. dren. Although the disadvantaged children staried out with considerably" lower achievement scores on the skills being taught, those who watched a great deal surpassed the middle class children who wat'ched only a little. It thus appears that such television programs can reduce the distinct •
: educational gap that usually separates advantaged and disadvantaged children. even by the time they'enter first grade.

An extremely provocative, although highly tentative, finding suggests that Sesame Street may be particularly effective for teaching-some skills to children whose first language is not English. and who do not test well or perform well in school. A very small sample of children from Spanish-speaking homes in the Southwest made more spectacular gains than any other subgroup 'of children.'

Sesame Street was more successful in promoting certain of its educational goals than others. The research suggests why, and provides clues for improving the programing. It appears that in some cases the relative lack of success resulted from an initial underestimation of children's prior knowledge and skills, and in other cases from an initial overstatement of prior knowledge It was also found that learning was greater when skills were presented in direct fashion (as letters were) rather thar-indirectly (as initial sounds were).

THE SAMPLĖ AND THE TESTS

Approximately 1,200 children were originally selected from five different locales: Boston, Massachusetts; Durham, North Carolina; Philadelphia, . .Pennsylvania; Phoenix, Arizona; and a rural area in the Northeastern part of California. The sample, which finally numbered 943, included disadvantaged children' from the inner city, advantaged children from suburban areas, chil'dren from rural areas, and disadvantaged Spanish-speaking chipldren. overall, the researth sample included more boys than girls and more 'lower class than middle class children. More of the disadvantaged were black than white; most
of the children were 4 years old, although some were 3 and some were 5 ; and rre of the sample's chi-ldren viewed Sesame Street at home than at school. -

The producers of Sesame Street established specific educational goals for the program. Measurement instruments, all developed by ETS specifically ior this evaluation, were used to assess progress toward those goals and. "transfer of learning" effects. The eight major tests and their subtests were:

BODY PARTS TEST
Pointing to Body Parts
Naming Body Parts
Function of Body Parts (Point)
Function of Body Parts (Verbal)
LETTERS TEST
Recognizing Letters
Naming Capital. Letters.
Naming Lower Case Letters
Matching Letters in Words
Recognizing Letters in Words
Initial sounds
Reading Words.
FORMS TEST
Recognizing Forms
Naming Forms
NIMBERS TEST
Récognizing Numbers
Naming Numbers
Numerosity (See sample Item 2.)
Counting
Addition and Subtraction
(Matching Subtest for letters, numbers, and forms)
RELATIONAL TERMS TEST
Amount Relationships
Size Relationships
Position Relationships (See sample Item 5.)
SORTING SKILLS TEST
CLASSIFICATION SKILLS TEST (See sąmple Item 6.)
Classification by Size
Classification by Form
Classification by Number Classification by Function

All of the 'tests followed the samé basic format. The test materials were simple and were administered to the children individually, by a trained adult from the child's neighborhood. Information was also collected on each child's home background and on how much he watched Sesame Street during the season.

The group of 943 children was divided into quartiles according to how much they had watched Sesame Street during the course of the study. All subsequent analyses were based on these quartiles. They ranged from Q1, in . which children watched Sesame Street rarely orqnever, through Q4, in which children-watched the program an average of more than five times a week. (Sesame Street was so popular that there were few true nonviewers; many children in $Q i^{\circ}$ watched the program occasionally.)
overall results

For twe sample as a whole, children in the highest viewing quartiles performed better on all the tests than children in the lowest quartiles. Children who watched the most (Q4) had the highest pretest scores (that is, they started out ahead)", had the highest posttest scores, and gained the most from pretest to posttest. The general tendency -- to gain more with more viewing -- was greater on some tests than on others, however. It was especially pronounced on the Letters, Numbers, and Classification tests; it was least marked on the Body Parts Test.

DISADVANTAGED CHILDREN

Of the total sample of 943 children, 731 were considered to be from disadvantaged backgrounds. For them as for the total group, gain scores increased in relation to the amount they viewed Sesame Street,

In terms of the grand total score for the, 203 test items common to, both pretest and posttest, Q1 children gained 19 points, Q2 children geined 29 points, Q3 children gained 38 points, and Q4 children gained 47 points. (See Table 11 and, Figure 2a.) Some of the gains made by Ql children are assumed to be largely a function of maturation, since many of them never watched. the show. However, the greater gains of chaldren in other quartiles are largely a function of their viewing frequency. The same sort of relationship was observied among the separate totals for all of the eight major tests. The greatest gains were in'the Letters, Numbers, and Classification tests. (See Table 11 and Figures $2 b, * 2 c, 2 d$, and 2e.)

Complex statistical analysés were conducted to detemine whether the observed degferences could have occurred by, chance, were significantly. affected by other factors, or were - as they áppear̀ed to be -- largely a function of amount of viewing. (See full report for description of statistical techniques used.) Amount of viewing proved to be by far the most important variable .- that is, its effect was equally felt irrespective of sex and whether the children watched" at home or at school.

In order to isolate sharply the effect of amount of viewing, two matched groups of children were the subjects of a special study (the Age Cohorts Study). Group 1- was 53 , to 58 months of age at the time of pretesting; Group 2 was 53 to 58 months of age at. the time of posttesting. In addition to being of the same chronological age, at the point of comparison, they were of comparable mental age and they lived in the same communties. There were, in short, no observable differences between the two groups in important matters previous aftainments, $I Q$, and home background. There " were more than 100 disadvantaged childrên, who mere not attending school; in each group.

The pretest scores of Group 1 (before the hildren could have watched Sesame Street) were comparired with the posttest scores of Group 2 after the Group 2 children had watched the program, The frequent viewers in 'Group 2 -- children in Q3 and Q4, scored about $40^{\circ}$ points, higher on the 203 , common items than the comparable children "in Group " 1 who had never watched the show. (See' Table 45 aṇd Figure $10 a$. ) Equally ,significant is the fact that infrequent viewers (Q1) in Group 2 differed by only 'about $12^{\circ}$ points from comparable children in Group 1 who had not viewed Sesame Street at all. In short, holding maturational effects, Iq, previous attainments, and home background ${ }_{4}$ constand, the frequent viewers made large and important gains.

Although the amount of viewing did not vary markedly accerding to age of the children, test scores did. At the time of the pretest, as wourd be predicted, 3-year-olds did less weli than 4-year-olds, and 4-year-olds did less well than 5-year-olds. In terms of gains, however, the results were -reversed. Although the most-frequent-view $\neq 1$ g 3-year-old group started out, at pretest, lower than any 5-yeari-old group, by the time of the posttest
 than 4-year-olds in Q1, Q2, and Q3, and higher than 5-year-olds in Q1 and Q2. Eten 3-year-olds who viewed only two or three times a week gained a great deal compared with, other age groups. (See Tables 12a, 12b, 12c and Figure 3a.)

Some test results were clearly related, to age. Among frequent viewers, the largest gains on the Body Parts Test were made by 3-year-olds; 3- and 4-year-olds gained more than 5-year-olds in Numbers; and 5-year-olds showed higher gains than the pthers. in Reading Words (which. indicates a tranisfer of learning and in Initial Sounds (which was taught indirectly on Sesame

Street). In short, goals that were indirectly taught were better learned by older viewers, and transfer of learning was more apparent among them, as would be expected. Generally, where specific knowledge and skills were taught"directly, young children gained more than the others.

ADVANTAGED CHLLDREN

There were 169 children in the stuky; who were considered to be advantaged. They scored higher on the pretest than other groups, and they watched more of the show, on the average, than any of the groups of disadtantaged children. Relatively small amounts of viewing produced relatively large gains among these childreṇ. (See Table 24 and Figure $7 \%$ )

## SPANISH-SPEAKING CHILDREN

There were only 43 Spạnish-speaking chilldren included in the study, and there was considerable variation among them in the extent to which they had been exposed to English before watching Sesame Street. Owing to this variability and the small size of the sample, conclusions must be drawn with great caution.

The largest concentration of Spanish-speaking children was in Ql, leaving only 18 in frequent-viewing groups. Thege frequent-viewing children gained almost incredible amounts; in fact, the gains among Q3 Spanish-speaking children were as high as those for $\mathrm{Q}_{4}$ children in the rest of the study. In the Letters Test, the Q4 Spanish-speaking children started lowest at pretest and scored highest at posttest. Other Letters subtests, and tests of Numbers, Forms, Sorting, Relational Terms, and Classification, showed the same phenomenon: a low start with subsequent very high gains for the children who viewed most.

## RURAL CHILDREN

The rural children in the study scored relatively low on pretests and ;iade great gains with viewing. Their parents tended to be better educated than those of the disadvantaged city children. The large gains they made suggest that Sesam= Street holds great promise as an educational medium for children who live "on remote farms or in small villages.

## SESAME STREET IN THE SCHOOLS

1. $J$

The teachers whose classes watched Sesame Street as a part of the studyc were asked to indicate their reactions to the program. Although they admired Sesame Street for its effectiveness as one meats of teaching young chillaren, 1 they were divided in theif opinions about the appropriateness of itṣ, use in the classroom. Some felt strongly that the show took up valuable time that could better be given to other activities; others felt that ity was a worthwhile addition to the school day.

CHIĹdREN, PARENTS, AND SESAME STREET

Children who watched Sesame Street the most -- and hence". learned the most -- tended to have mothers who often watched the show with them and often talked to them about i.t. In these same homes, the parents tended to have somewhat higher expectations for their children.

OVERALL CONCLUSION

In terms of its own stated goals"; Sesame Street was in general highly Tuccessful. The ETS study shows that 3-to-5-year-old youngsters from a

## 1

variety of backgrounds acquired important simple and complex cognitive skills *
as a result of watching the program. Those who watched the mast gained the most.

The overall conclusion is that the potential of educational Eelevision as an effective medium for teaching certain skills to very young children - has been demonstrated by Sesame Stireet.
*


Note: The sample test items, tables, and figures referred to in this Summary appear, on the following pages. They are also in the full report, 'which contains many more tables and figures.

## 15

## Item 2

Look at the ladybugs here, here, here, and here. Which box has five latiybugs?


16

Item 5
Here are children in line. They are waiting to go to a movie. Which one is last in line?
*. This is a picture of gratpes, a bahana, and an apple. One picture is missing. Let's find the one that goes here.


Here's a telephone, strawberries, pants, and a book. 'Which one belongs (goes) with the grapes, banana, and apple?



Figure 2a
Pretest añ G̈ain on Total Test Score for, All Disadvantaged Chilaren (by viewing guartiles)

$$
\mathrm{N}=731
$$



Selected Pretest and Gain Sçores for All Disadvantaged Children (by viewing quartiles) $\quad Q 1=198 \quad$ ind $2=197 \quad Q 3=172^{*} \quad 04=164$
Dashed ines beneath test tities indicate maximum possible scores. *


FIGURE 2c
in Selected Pretest and Gain Scores for All Disadvantaged Children
(by viewing quartiles) $\quad Q 1=198 \quad Q 2=197 \quad Q 3=172 \quad Q 4=164$
Dashed lines beneath test titles indicate maximum possible scores.

fig̀ure
Selected Pretest and Gain Scores for AIL Disadvantaged Children
(by viewing quartiles) $\quad Q 1=198 \quad$ Q2 $=197 \quad$ Q3 $=172 \quad$ Q4 $=164$
Dashed lines beneath test.titles indicate maximum possible scores.


Selected Pretest and Gain Scores for, All Disadvantaged Children (by viewing quartiles) $\quad Q 1=198 \quad Q 2=197^{\prime \prime} \quad Q 3=172 . \quad Q 4=164^{\circ}$ 。
Dashed lines beneath test titles indicate,maximum possible scores.



RIC

FIGURE 10a

The age Cohorts Study


```
TABLE \(1 .: 3\)
```


(ty y ltartilus)
$\because=12 i$

|  | $\begin{aligned} & \text { Maximum } \\ & \text { Possible } \\ & \text { Score } \\ & \hline \end{aligned}$ | $Q_{N}^{2}:$ |  |  | $\underset{N}{2}$ |  | $\begin{aligned} & 0 \\ & 0^{\circ} \\ & N^{3}+2 \end{aligned}$ |  | $\begin{gathered} 0 \\ 4 \\ \mathrm{~N}=31 \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Pretest <br> Mean <br> SD$\|$ | Gean |  | $\begin{aligned} & \text { Pretent } \\ & \text { Mean. Sb } \\ & \hline \end{aligned}$ | $\text { Gain }_{\text {Mean }} \text { SD }$ | Pretest Mean SD | Gain | Pret Meán | $\begin{array}{r} \text { est } \\ S D \\ \hline \end{array}$ | $\begin{gathered} \text { Gai } \\ \text { Mean } \end{gathered}$ | $\stackrel{i n}{S D}$ |
| Grand Total | 203 | $60.76 \quad 20.34$ | 12.42 | 25.67 | $62.42 \quad 20.82$ | $\left[\begin{array}{ll}30.71 & 21.14\end{array}\right.$ | $65.48 \quad 15.76$ | 37,20 $\quad 28.28$ | 75.81 | 25.14 | 57.23 | 25.66 |
| Body Parts Total | 32 | $13.88 \quad 5.21$ | 3.03 | 6.26 | 15.76. 5.77 | $4.79 \quad 5.91$ | $\begin{array}{lll}16.72 & 5.44\end{array}$ | $6.64 .6 .94{ }^{3}$ | 18.84 | 6.26 | 8.06 | 5.52 |
| Pointing to Body Parts | 5 | 2.551739 | 0.39 | 1.30 | 2.581 .35 | $0.82 \quad 1.54$ | 2.881 .30 | $0.92 \quad 1.32$ | 3.44 | 1.27 | 1.00 | 1.15 |
| Naming Body Parts. | 15 | $6.85 \quad 2.50$ | 3.18 | 2.72 | - 7.873 .03 | $1.13 \quad 2.88$ | 8.52 2.38 | 1.68 3,59 | 9.53 | 2.49 | 2.32. | 2.63 |
| Function of Body parts (Point) | 8 | 3.272 .36 | 1.00 | 3.46 | 3.922 .28 | $1.66 \quad 2.58$ | 3.722 .01 | $2.64 \quad 2.20$ | 4.09 | $2.3 t$ | 3.06 | 2.24 |
| Function of Body Parts (Verbal | 14 | 1.21 1.47. | 0.45 | 2.11 | 1.391 .41 | $1.18 \quad 1.86$ | 1.60 1.55 | $3.40 \quad 1.71$ | 1.78 | 1.60 | 1.68 | 1.66 |
| Letters Total | . 58 | 10.735 | 3.79 | 9.20 | 10:18 4.95 | $7.53{ }^{1} 8.99$ | 11.323 .99 | 10.52 9.71. | 11.91 | 6.65 | 20.13 | 12.14 |
| Recognizing Lefters | 8 | 2.061 .95 | 0.82 | 2.69 | 1.471 .66 | 1.452 .23 | 2.281 .59 | $1.32 \quad 2.53$ | 1.63 | 1.58 | 3.74 | 2.65. |
| Naming Capital Letters | 16. | $1.03 \quad 2.51$ | 0.55 | 4.04 , | 0.58 2.61 | 2.03 5.06 | 0.401 .00 | $4.36 \quad 4.39$ | 1.00 | 12.78 | 8.90 | 6.38 |
| Naming Lover Case Letters | 8 | 0.331 .43 | 0.18 | 1.94 | 0.371 .38 | $0.45 \quad 2.30$ | 0.120 .33 | 1.36 2t.08 | r 0.44 | 1.46 | 2.77 | 2.80 |
| Matching Latters in Words | 4 | 2.12 .1 .22 | 1.00 | 1.27 | $2.45 \quad 1.50$ | 0.921 .60 | $2.32 \cdot 1.55$ | 1.121 .56 | 2.59 | $1+36$ | 1.23 | 1.52 |
| Recognizing Letters in Words | 4 | 1.03 \%.98 | 0.36 | 1.27 | 1.051 .01 | 0.79 1.21 | 1.081 .08 | $0.84 \quad 1.72$ | 1.00 | 1.02 | 1.55 | 1.46 |
| Initial sounds | 4 | 0.480 .62 | 0.21 | 0.99 | 0.68 0.70 | $0.16 \quad 1.13$ | 1.041 .02 | -0.16 1.21 | 0.83 | 0.82 | 0.03 | 1.14 |
| Reading Words | 6 | $0.06 \quad 0.35$ | -0.06 | 0.35 | $\because 0.00^{-} \quad 0.00$ | $0.03 \quad 0.16$ | $0.00 \quad 0.00$ | 0.08 0.40, | 0.00 | 0.00 | 0.17 | 0.40 |
| Forms Total | 20 | 7.703 .16 | 1.03 | 3.83 | 7.843 | 3.39 .3 .46 | 7.362 .81 | 5.004 .25 | 9.1 .3 | 3.50 | 6.29 | 3.59 |
| Recognixing Forms | 4 | $2.24 \quad 1.09$ | -0.18 | . 1.57 | 1.841 .26 | $0.47 \times 1.81$ : | 1.80 | 0.60 - 1.50 | 1.97 | 1.12 | 1.23 | 1.54 |
| Naming Forms | 4 | 0.521 .00 | 0.30 | 1.55 | 0.841 .05 | $1.031 .3{ }^{1}$ | 0.520 .82 | $1.76 \quad 1.13$ | 1.22 | 1.43 | 2.26 | 1.55 |
| Numbers Total . | 54 | 11.21 6.40 | 2.94 | 9.34 | 11.37 6.c8 | 9.3478 | $13.00 \quad 5.39$ | 8.0810 .02 | 16.38 | 8.39 | 14.13 | 9.79 |
| Recogntzing Numbers | - 6 | 0.911 .04 | 0.76 | 1.94 | 1.031 .24 | 1.58 | $2.08 \quad 1.12$ | $1.12 \quad 2.03$ | 1.47 | 3.44 | 2.03. | 2.26 |
| Naming Numbers | 15 | $0.42 \quad 1.92$ | 0.21 | 2.64 | $0.45 \cdot 1.50$ | $1.63{ }^{\circ} \mathrm{C} 3.36$ | $0.16 \cdot 0.37$ | $2.64 \quad 3.04$ | 3.25 | 2.46 | 5.16 | 5.41 |
| Numerosity | 6 | 2.241 .30 | 0.45 | 1.82 | 2.531 .64 | 0.74 - 1.91 | $3.20 \quad 1.76$ | 0.44 - 2.06 | 3. | 1.82 | 1.26 | 1.53 |
| Counting | 9 | 3.092 .23 | 0.82 | 2.88 | $3.13 \quad 2.56$ | $2.32 \quad 2.70$ | $3.32 \quad 1.93$ | 2.32, 3.24 | $4{ }^{4}$ | 2.45 | 1.81 | 2.43 |
| Addition and Subtraction | 7 | 0.8512 .20 | 0.09 | 1.53 | 0.710 .98 | $0.61 \quad 1.31$ | 0.88 | $0.60{ }^{\circ} 1.38$ | 0.64 | 1.24 | 1.10 | 1.74 |
| matching subtest | 11 | $6.94 \quad 2.70$ | 0.94 | 3.43 | 6.53 3.33 | $3.05 \quad 3.64$ | $7.00 \quad 2.68$ | $2.40^{\circ} \quad 2.72$ | 8.25 | 2,53 | 2.03 | 2.74 |
| Felational terms Total | 17 | $\begin{array}{ll}7.42 & 2.46\end{array}$ | 1.39 | 3.55 | 8.453 .13 | 1.79 - 3.46 | $8.242 .6{ }^{\prime}$ | 1.763 .44 | 8.72 | 2.39 | 3.23 | 2.70 |
| - Amount relationships | 9 | $3.70 \quad 1.72$ | 0.88 | 2.23 | $3.61 \quad 2.40$ | 1.322 .80 | 3.52 1.56. | 1.042 .32 | 3.75 | $1.46^{\circ}$ | 1.42 | 1.67 |
| Size Relationships | 2 | 1.420 .56 | 0.03 | 0.88 | 1.74 . 0.45 | $0.16 \quad 0.49$ | 1.640 .49 | $0.24 \quad 0.52$ | 1.72 | 0.52 | 0.23 | 0.62 |
| - Position Relationships* | 5 | 2.031 .42 | 0.24 | 1.90 | $2.76 \quad 1.50$ | $0.13 \quad 1.79$ | $2.00,1.35$ | $0.24 \quad 1.59$ | 2.88 | 1.31 | ${ }^{1} 1.23$ | 1,54 |
| Sorting Total | 6 | 2.331 .29 | -0.12 | 2.73 | $2.21 \quad 1.36$ | 0.42. 1.73 | 2.441 .26 | $0.921 .8{ }^{\text {¢ }}$ | 2.41 | 1.10 | 1.52 | 1.59 |
| Classification metal | 24 | 8.673 .53 | - $1.27^{\circ}$ | 3.59 | $8.50 \quad 4.4 .43$ | $4.53 \quad 4.69$ | 9.123 .48 | 4.44 - 4.81 | 10.56 | 4.68 | 5.71 | 3.68 . |
| clasilfication by size | 2 | $0.94 \quad 0.61$ | -0.18 | 0.81 | -0.50 0.60 | $0.68 \quad 0.96$ | 0.68 0.75 | $0.44 \quad 0.92$ | 0.97 | 0.78 | 0.39 | 0.88 |
| classification by Form | 6 | 1.671 .22 | 0.33 | 1.41 | $1.84 \quad 1.64$ | $0.84 \quad 1.81$ | : 2.081 .22 | 0.801 .76 | 2.00 | 1.37 | 1.48 | 1.31 |
| classification by Number | 6 | $1.18 \quad 1.07$ | 0.61 | 1.78 | $1.45 \quad 0.95$ | 0.871 .28 | $1.84 \quad 1.11$ | $0.44 \quad 1.71$ | 2.16 | 1.42 | 1.19 | 1.94 |
| classification by Function | , 19 | $4.36 \quad 1.95$ | 0.76 | 2.21 | $4.24 \quad 2.48$ | $2.18 \quad 2.82$ | 4.201 .55 | $2.60 \quad 3.98$ | 5.03 | 1.99 | $2.35{ }^{\circ}$ | 1.43 |
| Puzzles Total | 5 | $1.76 \quad 1.28$ | 0.21 | 1.85 | 1.63 .1 .10 | 0.451 .43 | 1.281 .02 | $1.24 \quad 1.48$ | 2,03 | 1.40 | 1.19 | 1.60 |
| Peabody Raw Score (Pretest only) | 80 | 21.69*, 7.53 |  |  | 22.427 .77 | , | 24.689 .38 |  | 31.84 | 11.14 |  |  |
| Peabody Mental Age (Months) | -- | 31.125 .53 |  |  | . 31.397 .22 | - | 33.927 .88 | + | 40.31 | 12.61 |  |  |
| Hidden Trianqles Total (Posttest) | 10 | 9.361 .69 |  |  | $4.11{ }^{1.66}$ |  | 4.151 .46 | $\checkmark$ | 4.77 | 1.52 |  |  |
| Which Comes First Total (Posttest, | 12 | 4.368 .36 |  |  | 4.46 2.0. |  | 5.15 2.17 |  | 5.94 | 2.35 |  |  |



|  | Maximum <br> Possible <br> Score | $\begin{aligned} & \mathrm{Q} \\ & \mathrm{~N}=37 \end{aligned}$ |  |  |  | $\begin{aligned} & 0 \\ & 2 \\ & N=40 \end{aligned}$ |  |  |  | $\begin{gathered} \mathrm{Q}_{3} \\ \mathrm{~N}=38 \end{gathered}$ |  |  | $\begin{aligned} & \mathbf{Q}_{4} \\ & \mathbf{N}^{2}=4 \dot{4} \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | PretestMean SD |  | $\begin{aligned} & \text { Gain } \\ & \text { Mean } \mathrm{SD} \end{aligned}$ |  | $\begin{aligned} & \text { Pretent } \\ & \text { Mean SD } \end{aligned}$ |  | $\begin{gathered} \text { Gain! } \\ \text { Mean }: ~ \end{gathered}$ |  | $\begin{aligned} & \text { Pretest } \\ & \text { Mean SD } \end{aligned}$ | $\text { Gean } \mathrm{GD}$ |  | $\begin{aligned} & \text { Pretest } \\ & \text { Mean SD } \end{aligned}$ |  | $$ |  |
| Grathd Total | 203. | 88.68 | 29.20 | 23.08 | 19.14 | 201. 23 | 30.69 | 26.75 | $17.30^{\circ}$ | $104.133 .0 .8 e^{\prime}$ | 38.97 | 25.73 | 120.91. | 29.78 | 37.32 | $26.37^{\circ}$ |
| Eody Parts Total | 32. | 20.38 | 7.15 | 3.92 | -6.68 | 23.35 | 4.34 | 2.93 | 4.98 | 23.186 .02 | 4.08 | 5.37 | 25.73 | 4.40 | 3.41 | 3.55 |
| . . Pointing to Body Parts | 5 | 3.27 | 1.41 | 0.76 | 1.48 | 4.23 | 0.95 . | 0.20 | 0.72 | 4.001 .01 | 0.32 | 1.07 | 4.20 | 0.99 | 0.55 | 0.98 |
| Naming .body Parts | 15 | 9.24 | 3.09 | 1.19 | 3.07 | 10.45 | 1.84 | 0.95 | 2.10 ¢ | 10.16. 2.70 | 1.76 | 2.27 | 11.69 | 1.50 | 1.27 | 1.96 |
| Function of Body parts (Point) | 8 | 5.57 | 2.38 | 1.14 | 2.25 | $5.85{ }^{\circ}$ | 2.14. | 1.05 | 2.58 | 6.05 知2. 31 | 1.26 | 2.55 | 6.53. | 1.90 | 1.14 | 1.81 |
| Function of sody Parts (Verbal | 4 | 2.30 | 1.61 | 0.84 | 1.69 | 2.83 | 1.30 | 0.73 | 1:28 | . 2.971 .26 | 0.74 | 1.18 | 3:31 | 1.16 | 0.45 | 0.95 |
| Letters Totel | 58 | 14.97 | 5.59 | 6.35 | 8.45 | 18.40 | 10.05 | 8.70 | 9.70 | $18.79 \quad 8.98$ | 13.66 | 11.64 | 24.16 | 12.71 | 14.32 | 11.71 |
| Recognizing Letters | 8 | 2.46 | 1.63 | 0.95 | 2.34 | 3.20 | 2.05 | 1.98 | 2.61 | $3.32 \quad 2.04$ | 2.24 | 2.76 | 4.36 | 2.50 | 1.93 | 2.94 |
| Naning Capital Letters | 16 | 1.65 | 2.37 | 2.57 | 3.86 | 2.68 | 4.72 | 4.03 | 4.99 | $2.58 \quad 4.18$ | 6.34 | 5.19 | 5.04 | - 5.66 | 6.55 | 5.32 |
| Naming Lower Carse Letters | 8 | 0.54 | 0.84 | 1.05 | 2.21 | 1.10 | 2.05 | 1.28 | 2.53 | 0.641 .72 | 2.61 | 2.64 | 1.89 | 2.52 | 2.82 | 2.93 |
| Matching Letters.in Words | 4 | 3.05 | 1.20 | 0.73 | 1.15 | 3.28 | 1.20 | 0.50 | 1.20 | $3.64 \quad 0.57$ | 0.21 | 0.58 | 3.58 | . 0.75 | 0.32 | 0.77 |
| Recognizing Letters. in Words | 4 | 1.59 | 1.01 | 0.16 | 1.48 . | 1.43 | 1.17 | 0.80 | 1.36 | $1.42 \quad 1.13$ | 1.03 | 1.68 | 1.82 | 1.39 | 1.07 | 1.70 |
| Initial Sounds | 4 | 0.78 | 0.67 | 0.24 | 1.09 | 1.08 | 0.89 | -0.03 | 1.21 | 1.080 .78 | 0.21 | 1.04 | 1.09 | 0.93 | 0.45 | 1.37 |
| Rasding Words | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.47 , | 0.28 | 0.55 | 0.050 .32 | 0.55 | 0.98 | 0.31 | 0.82 | 0.61 | 0.87 |
| Forets Total | 20 | 9.35 | 3.74 | 2.81 | 3.06 | 11.08 | 4.15 | 3.30 | 3.04 | $17.97{ }^{\prime} 3.15$ | 3.39 | 3.58 | 12.20 | 3.15 | 4.64 | 3.25 |
| Recognizing Forms |  | 2.08 | 1.24 | 0.27 | $1.56{ }^{\circ}$ | 2.38 | 1.25 | 0.20 | 1.42 | 2.421 .15. | 0.68 | 1.69 | 2.11 | 1.09 | 1.18 | 1.44 |
| Naming Forms | 4 | 1.00 | 1.18 | 0.68 | 1.08 | 1.50 | 1.30. | 1.13 | 1.02 | 1.551 .22 | 1.18 | 1.56 | 2.84 | 1.15 | 1.30 | 1.17 |
| Numbers Total | 54 | 21.00 | 10.71 | 5.95 | 6.87 | 23.59 | 11.37 | 7.58 | 6.54 | 25.8911 .87 | 11.18 | 9.41 | 31.89 | 10.12 | 9.66 | 9.93 |
| * Recognizing Numbers | 6 | 2.11 | 1.54 | 0.70 | 1.68 | 2.10 | 1.69 | 1.08 | 1.70, | 2.45 1.83 | 1.95 | 2.22 | 3.42 | 2.02 | 1.45 | 2.26. |
| Haning Numbers | 15 | 1.92 | 3.59 | 2.19 | 3.00 | 2.35 | 3.62 | 2.73 | $2.94 *$ | $3.26 \quad 4.41$ | 4.66 | 4.19 | 5.31 | 4.82 | 4.89 | 4.71 |
| Nwerrosity | 6 | 3.65 | 1.64 | 0.92 | , 1,38 | 4.23 | 1.91 | 0.75 | 1.72 | $4.11 \quad 1.56$ | 0.84 | 1.39 | 4.93 | 1.29 | 0.68 | 1.20 |
| Counting | 9 | 5.65 | 2.66 | 0.54 | 2.18 | 5.93 | 2.47 | 1.45 | 2.16 | 6.661 .91 | 1.11 | 1.67 | 7.20 | 1.83 | 0.73 | 2.31 |
| , Addition and Subtraction | 7 | 1.84 | 1.72 | 0.51 | 1.82 | 2.45 | 2.04 | 0.68 | 1.31 | 2.63 - 2.88 | 1.11 | 1.83 | 3.29 | 1.80 | 0.39 | 1.71 |
| Matching Subtest | 11 | 8.84 | 2.61 | 1.05 | 2.84 | 9.48 | - 1.7 .2 | 0.70 | 81.64 | 9.97 i.05 | Q. 32 | 1.49 | 9.96 | 1.19 | 0.66 | 1.27 |
| Relational Terms Total | 17 | 10.81 | 3.28 | 0.97 | 2.85 | 11.28 | 3.44 | 1.18 | 3.56 | 11.112 .66 | 1.58 | 2.34 | 12.022 | 2.62 | 1.25 | 3.05 |
| Naount Relationships | 9 | 5.32 | 1.76 * | 0.41 | 1.71 | 5.35 | 2.17 | 0.53 | 2.36 | $5.24 \quad 2.87$ | 0.76 | 2.01 | 5.87 | 1.70 | 0.61 | 1.90 |
| Sizt Relationships | 2 | 1.76 | 0.4 .4 | 0.03 | 0.50 | 1.78 | 0.48 : | 0.13 | 0.56 | 1.820 .46 | 0.08 | 0.43 | 1.87 | 0.34 | 0.14 | 0.35 = |
| position Relationships | 5 | 3.35 | 1.55 | 0.35 | 1.67 | 3.48 | 1.30 | 0.45 | 1.68 | $3.53 \quad 1.06$ | 0.50 | 1.08 | 3.82 | 1.01 | 0.25 | 1.28 |
| Sorting Total | 6 | 2.89 | 1.33 | 0.62 | 2.74 | 2.83 | 1.50 | 0.95 | 1.85 | $2.74-1.67$ | 1.71 | 1.63 | 3.27 | 1.57 | 1.36 | 1.87 |
| Classification Total | 24 | 12.05 | 5.07 | 3.19 | 4.08 | 14.28 | 4.74 | 2.45 | 5.080 | 14.054 .98 | 4.13 | 4.64 | 15.49 | 4.24 | 4.18 | 4.66 |
| Classification by size | 2 | 1.24 | 0.76 | 0.19 | 0.88 | 1.35 | 0.74 | 0.18 | 0.90 | $\begin{array}{lll}1.37 & 0.79\end{array}$ | 0.24 | 0.85 | 1.36 | 0.71 | 0.48 | 0.88 |
| Classification by Form | 6 | 2.22 | 1.49 | 0.78 | 1.34 | 3.05 | 1.69 | 0.88 | 1.91 | 3.181 .37 | 0.89 | 1.72 | 3.31 | 1.24 | 1.30 | 1.61 |
| Clessification by Number | 6 | 2.49 | 1.71 | 0.70 | 1.54 | 2.88 | 1.47 | 0.25 | 1.89 | 2.89 1.64 | 0.84 | 1.52 | 3.47 | 1.52 | 0.70 | 1.76 |
| Classification by Function | 9 | 5.73 | 1.91 | 1.27 | 2.01 | 6.50 | 1.77 | 1.00 | 2.18 | 6.03. 2.02 | 1.95 . | 1.92 | 6.87 | 1.47 | 1.36 | 1.73 |
| Puzzles Total | 5 | 2.05 | 1.39 | 1.00 | 1.83 | 2.33 | 1.46 | 1.08 | 1.65 | 2.451 .37 | 0.92 | 1.62 | 3,02 | 1,45 | 0.73 | 1.60 |
| Peabody Raw Score (Pretest only) | 80 | 37.81 | 9:87 |  |  | 39.10 | 11.54 |  |  | 43.6810 .44 |  | : | 45.82 | 9.29 |  |  |
| Peabody Mental Age (Months) | -* | 46.08 | 12.29 | ? |  | 48.63 | 16.15 |  |  | 53.87, 15.00 |  |  | 56.62 | 13.51 |  |  |
| Hididen Triangles Total (Posttest) | 10* | 4.65 | 1.55 |  |  | 4.61 | 1.60 |  |  | 5.05 . 1.45 | - | , | 5.09 | 311.58 |  |  |
| Which Comes First Total (Posttesti) | 12 | 5.16 | 2.93 |  | , | 6.17 | 2:88 | . |  | $6.63 \quad 2.89$ | - |  | 7.62 | 3.20 |  |  |

cal (Posttest.

FIGURE 3a
Pretest and Gain on Total Test Score for All Disadvantaged 3, 4, and 5-Year-old Children
(by viewing quartiles)
$\begin{array}{ll}\mathrm{N}=127 & \text { 3-Year-olds } \\ \mathrm{N}=433 & 4 \text {-Year-01ds } \\ \mathrm{N}=159 & 5 \text {-Year-01ds }\end{array}$



Pretest and Gain on Total Test Score for Àll Advantaged Children


## SESAME STREET: FIRST̛ YEAR REPORT CARD



