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Four monte carlo simulation studies of Owen's Bayesian sequential
procedure for adaptive mental 'testing were conducted. Whereas previous
simulation studies of this procedure have concentrated on evaluating it in
terms of the correlation of its test scores with simulated ability in a
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properties, both in a normally distributed population and in a distribution-
free context. Study 1 replicated previous studies with finite item pools,
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and correlation of test length with ability. Studies 2 and 3 examined the
same variables in a number of hypothetical infinite item pools, investigating
the effects of item discriminating power, guessing, and variable vs. fixed
test length. Study 4 investigated some pruperties of the Bayesian test scores
as latent trait estimators, under three different configurations (regressions
of item diserimination on item difficulty) of item pools., The properties of
interest included the regression of latent trait estimates on actual trait
levels, the conditional bias of such estimates, the information curve of the
trait estimates, and the relationship of test length to ability level. The
results of these studies indicated that the ability estimates derived from
the Bayesian test strategy were highly correlated with ability level.
However, the ability estimates were alsc highly correlated with number of
items administered, were non-linearly biased and prov.ded measurements which
were not of equal precision at all levels of ability,
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SOME PROPERTIES OF A BAYESIAN
ADAPTIVE ABILITY TESTING STRATEGY

Adaptive or tailored ability testing subsumes a number of different

' strategies for adapting the difficulty of test items to the examinee's
ability level. All the adaptive testing strategies have as one objective
the improvement of the psychometric properties of mental test scores

. throughout the range of the trait of interest (e.g., ability). This is
accomplished by adapting test item difficulty to each examinee's ability,
during the test itself. Ideally the adaptive selection and administration
of test items would result in each examinee answering only those items
which are most informative for his own ability level. Additionally, where
items can be answered correctly by random guessing (e.g., multiple~choice
items), an optimally efficient adaptive item selection technique would
have the effect of equalizing the effect of guessing on test scores
throughout the ability range.

The different item selection techniques of the various adaptive
testing stratefies have been described by Weiss (1974). One of the most
elegant of the adaptive strategies is a Bayesian sequential technique
proposed by (iwen (1969, 1975) and studied empirically by geveral investi-
gators including Wood (1971), Urry (1971) and Jensema (1972).

Owen's Bayesian Sequential Adaptive Testing Strategy

Owen's technique is a general one for the sequential design and

. analysis of independent experiments with a dichotomous response. Its
application in mental testing is to the problem of estimating ability by
means of sequential selection, administration, and scoring of dichotomous
test items. The mathematical details of the method arise from latent trait
theory, with the item characteristic curves all assumed to take the form
of the normal ogive. The properties of the normal ogive item characteristic
function and its logistic approximation have been described by Lord &
Novick (1968) and Birnbaum (1968), respectively.

Owen's procedure involves the individually tailored sequential design
of a test by appropriate choice of available item paramet:ers1 and estima~
tion of ability (@) via a Bayesian-motivated approximation. At each step
m in the ability estimation sequence a normal prior distribution on 0O is
assumed, with parameters L and Um’ where m indicates the number of items

already administered in the sequence. A test item to be administered at
step ptl is selected so as to minimize a quadratic loss function on @,
With no guessing (i.e., cg=0) and the discrimination parameters ag constant

over items, the appropriate item is the available one which minimizes the
' absolute value of the difference (bg-um). Wich cg>0 the optimal difference

1Each item ¢ can be characterized by three parameters--ag, bg, cg-—which

are, respectively, the item discriminating power, item difficulty, and item
guessing parameter. The guessing parameter, cg' is simply the probability

of answering the item correctly by chance alone.
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is somewhat negative; that i3, optimal difficulty is gsomewhat "easier" than
examinee's ability.
Following item administration at step m¥l, the parameters um and czm

of the prior distribution are updated in accord with the examinee's perfor-
mance on the item. TIn the case of a correct answer:

02
- - m $ (D)
Mgty = FOID = ugdley) ‘i_L_.+ 22 (cg+(1-cg) 2 (~o)) 1]
2 m
@ g
and
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Following a wrong answer:
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In Equations 1 through &4 (taken from Owen, 1973)
¢(D) is the normal probability density function,

$(D) is the cumulative normal distribution function, and

b -u
pe B B [5]
Vi
m
g
= + -
A cg (l-cg) ¢ (-D) . [6]
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The parameters Mokl and 0: of the Bayes posterior distribution on O are

+1
used as the parameters of the next step's prior. At each step the prior
distribution 1s assumed to be normal. Testing may be terminated when oi

becomes arbltrarily small or when m becomes arbitrarily large, or when some
other criterion has been reached. At termination the latest "m is the

estimator of ©, and 0: 1s a measure of the uncertainty of the estimate.
Urry (1971) and Jensema (1972, 1974) have interpreted oﬁ as the squared
L Owen (1975) gilves a theorem

showing that as m =+ =, Mo -+ 0; that 1s, the posterlor mean 1s a consistent

standard error of eotimate (S.E.E.) of ©

estimator of an examinee's ability.

Practically speaking, of course, the number of items administered will
never approach infinity; but if the pool of available items is sufficiently
large and appropriately constituted, 0: will diminish rapidly, permitting

valid estimation of © using a small number of items. Urry (1971, 1974) has
specified the requirements for a satisfuctory item pocl for implementing
Owen's testing procedure and has shown in computer simulation studies that
Owen's sequential test can achieve in 3 to 30 items the validity of a much
longer conventional test, with the number of items needed diminishing as
item discriminatory power increased. .

Urry's (1971, 1974) and Jensema's (1972, 1974) wonte carlo simulation
studies of Owen's Bayesian testing strategg have evaluated 1ts merit sclely
in terms of the "fidelity" (or 'validity")# of the resulting ability estimates
and the mean number of items required to achieve any specified value of the
fidelity coefficient. Although the fidelity coefficlent 1s of great interest,
Lord (1970, p. 152) has pointed out that evaluating an adaptive test by
means of a group statistic such as the correlation coefficlent presumes some
knowledge of the group's distribution on the trait being measured, and
ignores information relevant to the accuracy or goodness of the ability
estimates at any given level of the trait.

The correlation of test scores with the simulated underlying ability is
only one criterion by which to evaluate a proposed adaptive testing strategy.
Since the Bayesian sequential test scores are actually estimates of underlying
tralt level, in the same metric, the accuracy of the estimates 1is also of
interest. "Accuracy" refers to the closeness of the estimates to actual
ability; it may vary systematically with ability level. Ancother interesting
property of estimates 1s blas, or error of central tendency. Two kinds of
bias should be of some concern: 1) unconditional blas, or group mean error
of estimate; and 2) conditional bilas, or mean error of estimate at a given
level of the parameter beilng estimated.

2By "validity" here is meant the correlation of the ability estimates with
actual ability. Green (1975) suggested use of the term "fidelity" in this
context to denote validity coefficients obtalned from monte carle simulation
studies. Green's convention will be followed here.

. 8




Purpose

The purpose of the present paper is to report the results of a
series of simulation studies designed to investigate the influence of
guessing and item pool characteristics on the bias, accuracy, and other
properties of the trait estimates derived from Owen's Bayesian sequential
testing strategy.

The studies reported below were motivated by results obtained with
live testing of Owen's strategy. Using Owen's testing strategy with 603
college students and a 329-item pool of vocabulary knowledge test items, a
correlation of .84 was obtained between estimated ability level and number
of test items to termination. Simulation studies then were designed to
investigate the influence of item pool characteristics on that unexpectedly
large correlation.

The simulation studies reported here were intendad to explore both
the properties of the Bayesian sequential testing method itself and
properties of the resulting ability estimates. The former properties are
investigated best by sampling from "populations" of simulated examinees
whose distribution on the ability dimension approximates in form and
param ters (mean, variance) the population assumed by the testing procedure--
here, a qgrmal population with mean 0 and variance 1. The first three
studies réported sampled examinees from such & population. These studies .
were designed to investigate the effects of guessing, of item discriminating
power, and of two different test termination criteria on certain group
statistics. The independent and dependent variables of interest in each .
study are described separately below.

The fourth study focused on certain properties of the test scores
as estimators of the ability underlying the item responses under varying
conditions. This area of inquiry required sampling large numbers of
examinees at regular intervals throughout the normal range of the trait.
The details of this study are likewise described separately below.

Study 1: An Tdeal Item Pool with Variable Test Length

Background and Purpose

Jensema (1972) simulated Bayesian test administration to examinees
sampled from a normal [0,1] distribution using two different "ideal™
100-item pools. These pools were '""ideal" according to Jensema's prescription
that items for use in this testing strategy should have high discriminations
and should be rectangularly distributed in their difficulties. The first
pool had four items available at each of twenty-five equally spaced ‘
difficulty levels in the interval -2.4%b%52.4; all items had guessing
parameters of &=.20 and discriminations of a=.8. A second item pool was
identical tc the first except for the value of the constant discrimination .
parameter, which was ¢=1.60. The Bayesian test was simulated as proposed by
Owen (1969), with the parameters of the initial ability distribution set
at [0,1] for each examinee. Testing terminated for eacn examinee whenever
the posterior variance oﬁ of the ability estimate diminished below a
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predetermined value or after thirty items, whichever occurred first.
Jensema set the critical posterior variance value at .0625, which corres-
ponds tc a standard error of estimate of .25, and hence to a fidelity
coefficient exceeding .968 (Jensema, 1972, p. 1ll4). Jensema's obtained
fidelity coefficients and mean test lengths, obtained from simulations
using random samples of 100 examinees, are listed in Table 1.

Table 1
Mean Test Lengths and Obtained Fidelity Coefficients for
Two Simulated Bayesian Sequential Tests,
Distinguished by their ITtem Discriminating Power ()
(from Jensema, 1972)

Mean Fidelity

a Test Length Coefficient
.80 30% .93
1.60 17.5 97

*No tests achieved the posterior variance termination
criterion in this condition.

Jensema (1972) did not report, however, some properties of the Bayvesian
sequential testing procedures which are of practical interest. The
purpose of the present study was to replicate Jensema's research with
these same two "ideal" item pools, while studying some other properties
of the ability estimates in addition to fidelity and mean test length.

Method

~ Variables. Dependent variables were the individual ability estimates
(@) and the number of items (k) required to satisfy the posterior variance
termination criterion of 0; £.0625., Independent variables were the simula:ed

examinees' abilities (®) and the discrimianating power (a=.80 or 1.60) of the
items in the simulated item pool.

Fxaminees' abilities were simulated by computer-generation of 100
random numbers (01) from a normal population with mean 0 and variance 1.

The same 100 "exa.ninees™ were tested with both item pools.

Item pools. Two 100-item "ideal' item pools were simulated,
v corresponding to the ones used by Jensema (1972). 1In each pool there were
four items at each of twenty-five difficulty levels (b) equally spaced
in the interval [-2.4<b<+2.4]. The guessing parameter (¢) was constant
across items; for both pools, ©=.20, The item pool for the first test had a
constant discrimination parameter of a=.80 across items; the second pool
employed a constant item discrimination parameter equal to a=1.60.

10
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Thus, for each test administration an item pool containing 100 distinct
itemn was simulated; each item g could te characterized by its parameters

b -
Gg» Pg* %y

Response generation and test administration. Item responses were
simulated by calculating, for each item-examinee administration, the
probability of a correct response to the item given the simulated ability
(Gi) and the item parameters ag' bg’ cg, using equations presented by

Betz & Weiss (1974) and Vale & Weiss (1975). This probability Pg(ei) was

compared with a random number rgi generated from a uniform disctribution

in the interval [0,1]. A score of 1 ("correct") for examinee 7 on item
g was assigned if Pg(@i)zrgi; otherwise a score of O was assigned.

Test administration was simulated exactly as proposed by Owen
(1969). For each examinee an initial abilicy ei=0 was assumed, and the

prior distribution was assumed to be normal [0,1]. The optimal item in
the pool was selected based on the item parameters, and its administration
to the examinee was simulated. Based on the item score (1 or (), the
parameters (um, oi) were updated, and another item was selected and

administered. This recursive procedure was repeated until 30 items
had b.-en taken by the "examinee", or until 0; was smaller than .0625,

whichever occurred firsi. Once any particular item had been taken by
the examinee it was not reused At test termination, the examinee's
simulated ability (Gi), t.:e Bayesian estimate (ém), and the nuamber of

items taken (X) were recorded.
Evaluative criteria. For each of the two test administrations,

after all 100 examinees' tests weve simulated, the following properties
of the sequential test were estimated from the data:

a. the bias, or mean algebrair error of the ability estimates;

1 v
= £ (0,-0.) 7]
N =1 i71
b. the accuracy, or mean absolute error of the estimates;
1 ¥
Pl 1
=1

C. P the correlation of test length with ability;
s the correlation of test length with estimated ability;

i1
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d. Toe? the correlation of the zlgebraic errore of estimate

(éi-ei) with ability;
g, the correlation of (éi-ei) with estimated ability;

rae, the fidelity coefficient;
f. the mean, minimum and maximum test length required to achieve
the posterior variance termination criterion.

Results

Table 2 contains the resules from Study 1. As Table 2 shows, there
was positive bias (.06 and .05) in the group scores for both tests,
indicating that ability was overestimated, on the average. Mean absolute
error was .26 for the ¢=.80 item pool and .19 for the more discriminating
item pool; in these data, then, the more discriminating item pool estimated
ability with smaller average error.

Table 2 .
Properties of the Bayesian Sequential Test for Two Values of Item
. Discriminztion, with Corrected Guessing znd Ideal Item Pool

item Discrimination (a)

Property .80 1.60

Test Length
Mean 30* 18
Minimum 30 12
Maximum 30 30

Ecrors of Estimate

Mean (Bias) .06 .05
Mean Absolute Error .26 .19

" Correlates
roe -.35 -.40
ree -.07 -.21
rgk *k .84
e *% .85
28 .96 .98

*An arbitrary msximum test length of 30 items was imposed.
**There was no variance on test length in the ag=.80 test.

However 6 and & correlated .81 and .84 with posterior
variance.

Hean test length for the ¢=.80 item pool was 30 items, with no
var.ance, indicating that the posterior variance termination criterion
never was reached using this item pool. The higher discriminating pool

12
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(a=1.60) required a mean test length of 18 items, with a range of from 12

to 30, For this item pool test length correlated ,84 and .85 with ability

and the ability estimator, respectively. This strong positive correlation

was essentlally the same as was found in the live-testing results., It

indicates that despite the "ideal" construction of the item pool, the test :
required substantially larger numbers of items to achieve the termination
criterion as ability increased. (Since there was no variance in test
length for the a=.80 item pool, the test length correlations cannot be
evaluvated under that item pool configuration.)

Errors of estimate (éi-ei) correlated —,35 and -,40 with ability

for the two item pools, which could indicate a tendency to underestimate
ability ar high levels and to overestimate it at low levels, This, of
course, is a phenomenon typical of regression estimates; the Bayesian
test scores seem to be acting like regression estimates in this regard.
This same tendency was evident to a smaller extent in the correlations
between errors and ability estimates (rée).

The fidelity coefficients (rﬁé) were .96 and .98, respectively,

for the ¢=.80 and g=1,60 item pools. These were slightly higher than those
obtained by Jensema (see Table 1). The differences are likely due to
random fluctuvations resnlting from the relatively small sample size of

100 simulated testees (see Betz & Weiss, 1974, pp. 20-21 and 24-23).

Conclusions

The replication of Jensema's study of the Bayesian sequential
test using these two item pools corroborated his findings with regard to
fidelity and mean test length. The fidelity coefficients obtained in the
present study were slightly higher than his, while mean test lengths
were almost identical. It seems clear that QOwen's adaptive testing procedure
has the potential of achieving measurement of high fidelity with relatively
short tests. However, the strong correlation between ability and test
length suggests a potential problem if the Bayesian test 1s used in a
group of higher ability than 1is assumed beforehand. Additionally, the
overall positive bias of the trait estimates suggests that additional
study of the testing procedure is required before its scores are used
directly as estimators of ability. However, the generality of the results
of Study 1 is limited to "ideal" item pools with rectangular distributions
of the difficulty parameters and with the same discrimination and guessing
parameters as in the present study.

Study 2: Effects of Guessing and Item Discrimination
in a Perfect Item Pool

Background and Purpose

The discovery in Study 1 of positive bias in the Bayesian trait
estim~tes, and of a strong positive correlation between ability and test
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length in the g=1.60 item pool, raises the question of the generalizability
of these phenomena. These results might be due to sampling fluctuations,
to the specific item parameters employed, to the effects of random guessing,
or to characteristics inherent in Owen's sequential testing procedure.

. Study 2 was designed to test the generality of the results of Study 1.

In Study 2 many sequential tests were simulated by varying the
discriminating power of the item pool and the effect of guessing.
Further, in order to avoid loss of generality due to a specific range
of the distribution of item difficulty values in the item pool, Study 2
simulated a "perfect" item pool--one behaving as though it contained an
unlimited number of items at any specifiable difficulty level. The results
of Study 2, therefore, should reflect the best attainable results under the
Bayesian procedure, given the guessing and discrimination parameters of
the items.

To evaluate the effects of guessing on testing strategy characteristics,
test administration was simulated under the three different guessing condi-
tions described below--no guessing, uncorrected guessing, and corrected
guessing. Under each of these conditions fourteen “perfect" item pools
were simulated. These differed from one another only in their item discrim-
inating powers. Thus, fourteen values of g were used; g was constant within
any test simulation, but varied across tests. The same properties of the

. test procedure studied in Study 1 were of interest in Study 2,

Method

Variables. Dependent variables in Study 2 were the same as in Study
1: ability estimates (©) and test length (k). Independent variables were
simulated avility (©), discriminating power of the item pool, and the
effect of guessing and of scoring for guessing.

To study the effect of guessing, three different conditions were simu-
lated:

1. No guessing; in the item response model, ¢ was set to 0,
and was assumed to be zero in the Bayeslan scoring formulae
(Equations 1 through &).

Z. Uncorrected guessing; ¢ was set to .20 in the item response
model, but was assumed to be zero in the Bayesian scoring
formulae.

3. Corrected guessing; ¢ was set to .20 in both the item
response model and the Bayeslan scoring formulae.

Under each guessing conditjon, fourteen test administrations were
simulated. These differed only in the constant value of the item discrimi-
nating powers in the respective item pools. The fourteen values used were
a= .5, .6, .7, .8, .9, 1.0, 1,25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, and
3.00. For each test administration, the same 100 simulated ability values
used in Study 1l constituted the examinee "group"”

ERIC 14
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Item pools. The "perfect" item pools were simulated by calculating,
for each examinee after each item response was scored, the optimal diffi-
culty value of the next item, given ag' cg and the current ability

estimate. This optimal item difficulty was determined using a formula
given by Birnbaum (1968, p. 464) for calculating the aifficulty level at
which maximal item information occurs, given ¢, ¢, and assuming that
éi-ei. With ag constant and when no guessing 1s assumed (cg=0 in the

scoring formula), the optimal item is one with bm+l=ém' When guecsing is
assumed, the optimal difficulcy (bm+l) is smaller than ém’ by an amount
which is inversely proportional to ag.

After the "optimal™ item difficulty value was calculated, the
computer simulation program generated a hypothetical item with that
difficulty value, then "administered" it to the examinee. Thus, the
hypothetical item pool literally had available an unlimited number of
items of any difficulty value specified by the sequential testing
procedure.

Response generation and test administration. Item responses were
simulated in the same manner described in Study 1. Test administration
was identical with Study 1, except for the item difficulty generation
procedure. The same posterior variance criterion (0&5.0625) was used as

a test termination rule. Unlike Study 1, test length was free to exceed
30 items; 2 maximum length of 100 items was imposed. At test termination,
ability (ei), the ability estimate (01), and the number of items adminis-

tered (k) were recorded for each examinee.

Analysis. A total of 42 test administration conditions were simu-
lated-~14 "item pools” under each of the three guessing conditions. For
each test administration, the same sequential test properties estimated
in Study 1 were estimated: bias, mean absolute error, Tok? rék’ ree,

T5e Yob? and the mean and range of test length.

Results

No-guessing condition. As Table 3 shows, test length was constant
within item discrimination level under no-guessing, and diminished
inversely with level of item discrimination. The posterior variance
termination criterion was reached for all examinees using every item pool
except the one having =.50. As a point of comparison with Study 1, test
termination was achieved in fewer than 30 items for item pools having
az1.00. There was no corre¢lation between test length (k) and O or O,
since there was no variance in test length for any test administration.

The overall bias of estimate under the no-guessing cvondition was
practically zero for all but the highly discriminating item pools (see
Table 3 and Figure 1). Mean absolute error was .17 for a=.5 and increased

15




=11~

fairly steadily to .22 for the «=3.00 item pool. For the no~guessing
coptition, then, there is a tendency for the highly discriminating item

I3

Table 3
Teat Length, Mean ¥rrors of Estimate, and Correlates of Abllity (0) and Test Score (0)
s¢ a Funttion of Ives Discrimination {g) In the Perfect Item Pool, with No Guesslng

Item Discriwminstion (a)

Property 5 .6 ¥ 8 .9 1.0 1.25 1.5 L7% 2.0 2.2%5 2.5 2,75 3.0
Test Length
Mean 100 71 52 41 3 27 18 13 11 9 ? 7 6 5
Minieum 100 1 52 41 33 27 18 13 11 9 1 7 6 5
Haxieum 100 n 52 4l i 21 18 13 11 9 1 7 6 5
Ervors of Eacimate
Mean (Biss) .00 -,01 .02 .01 .00 .01 00 L0z 04 06 .04 JOF .03 .04
Mean Absolute Error A7 0 .19 .19 .18 19 L& .21 .20 .21 W21 L2000 L2100 .22
Corvelstes™
With Error
r&e =35 =27 =31 =-.36 -39 =-.23% =-,37 =37 =30 =37 -.39 =36 -.32 -.35
Pée =17 =08 =10 =16 =-.20 =15 =17 =14 =-,07 =-.153 =16 =-.l& =-.09 =.10
Fidelity (valldity)
Yoh .96 .38 .98 .98 .98 .98 .98 9% .97 .97 9F .97 .97 W

*Correlations with test length (:'Ok and Pék) wvere not computed since test length (%) was constsnt.

pools to yield Iarger average errors than the moderately discriminating
. item pools. '

Figure 1
Bias and Mean Absolute Error as a Function of Item
Discriminations, for the Perfect Item Pool with No Guessing
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As in Study 1, errors of estimate (61—91) correlated negatively with

® (=.27 to ~.39) and with & (~.08 to -.20). Again, these correlations
suggest a regression effect.
16
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The fidelity coefficients were all .97 or .98, as "predicted” by the
posterior variance termination criterion value. Interestingly, th? lower
fidelity coefficients occurred at the higher item pool discrimination
values. . ]

Table & N
Test Length, Mean Errors of Estimate, and Correlates of Abillty (0) and Test Score (M)
as & Function of Ttem Discriminatlon (2) in the Perfect Tcem Pool.s with Uncorrccted Guessing

Ltem Discrimination (1)

Property T .7 .8 2 b L2 s RS 2.0 2,35 2.5 475 Lo
Test Lengeh
Mean 100 71 52 41 33 27 18 13 1t 9 7 7 [} 5
Hinlmom 100 71 52 4l 3 7 18 13 11 a 7 7 [} 5
Maximum 190 71 52 41 33 27 18 13 11} 9 ? ? b 5
Errors of Eatlmate
Menn {Blas) +57 A | W62 37 JH W30 +27 .29 1 32 1 +29 29
Mean Absolute Error .58 48 48 N1 W62 39 .37 a7 6 Al .39 .34 Y Je
Correlates®
with Ercor
Poe =51 w46 =49 =48 <48 =83 =44 =36 =31 =0t = 32 =012 =032 =32
réc =29 =23 23 =19 =20 =43 =16 =04 =-.00 N 015 05 07 02
Fidetlty (validiey)

Pad

*Correiations with reat length (r'ck and l’ék) wore not forpated slnce test Lenrih (F? wie conatant.

97 .97 9% 95 .95 .95 96 L% .95 91 .91 .9Y .s2 L9l

Uncorrected-guessing condition. As Table &4 shows, the test length data :
were identical with those obtained under the no-guessing condition. Table &
and Figure 2 show that both mean algebraic errors (bias) and abdolute errors
were quite high (.57, .538) for the 4=.50 item pool and decreased as ¢ in- *
increased, to about ¢=1.25. Tor a>1.23 the mean errors seemed ro level
off, with moderately large values for both bias and absolute error.

Figure 2
Pias and Mean Absolute Error as a Function of Iten
Discriminations, for the Perfect Item Pool with
Uncorrected Guessing
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As before, errors of estimate correlated negatively with ability; the
magnitude of the correlations were large for a=.50, then decreased as q
increased, until approaching a constant value at a>1.75. Again, these
correlations suggest a regression effect. The correlations of errors with

_ability estimates, rée’ followed a different trend under this condition

than was seen previously: Yge Was ~.29 for a=.50, then showed a steady
algebraic increase with a, to a value of .07 at g=2.75.

Fidelity coefficient values were everywhere lower with uncorrected
guessing than with corrected guessing, and deereased steadily from .97 to
.91 as a increased. As expected, fidelity increased with test length.

Figure 3
Number of Items to Termination, with .20 Guessing
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Corrected-guessing condition. Figure 3 graphically depicts test
length as a function of item discriminatory power (a). The vertical bars
in Figure 3 indicate the range of test length at a given g-level; the dot
indicates the mean test length for that level. As Table 5 and Figure 3
show, some variance in test length was present for all a levels except
a=.50 (where the termination criterion never was reached). Mean test leugth
to termination varied inversely with item discrimination, as in the other
conditions. Even with this perfect item pool, the termination criterion
was achieved in fewer than 30 items only for a>1.00.

As Figure & shows, the bias of estimate was small but positive under
the corrected guessing condition, increasing to meaningful levels only as
item pool discrimination exceeded @=2.25. Mean absolute error was almost

constant acrcss levels of a.




Table 5
Test Length, Menn Errora of Estimate. and Correlates of Abflity (B) nnd Teat Score {3}
43 & Function of Item Dlscriminatlon {#) in the Perfect Item Pool, with Corrected Guesasing

iten Discrimination {a)

Property .5 3 .7 .8 9 1O 1.25 LS L7 2.0 2.25 2.5 2,75 Lo
Test Length
Mean 160 ¥ 71 60 48 40 27 20 16 13 11 [ 9 9
Minimum 100 %3 66 52 42 13 2l 14 1L 8 i [ 6 5
Max{mum 100 100 as 69 51 49 32 26 21 19 18 16 15 14 .
Errors of Estimate
Mean {Biaa) .04 .03 .02 O30 .02 W04 .al .01 .0l .02 .04 06 .07 .08
Mean Absolute Error 22 .18 .16 .18 19 .19 .16 .17 19 .20 .18 .20 19 .21
Carrelaces
Hlch Error
“ae =39 =36 =.28 =09 =42 =35 =37 =30 =38 -39 =25 =37 =33 -33
LN =17 =18 ~.09 =20 =.2) <16 ~.19 =-.18 =-,18 =19 -0 =14 - 10 -.08
With Test Length
or a0 34 80 78 78 .81 .81 .82 .85 .88 .85 .88 .90 .88
r‘ak vauk 56 82 .81 80 .83 .82 84 .87 .89 .86 .90 .91 90
Fidelicy {validlty)
rad 97 .98 .99 .98 .98 .98 .98 .98 .98 .98 .98 .97 97 .9}

*Correlations not computed since test length {k) was constant.

As was seen in Study 1, test length correlated strongly with ability
(and ability estimates) where it was free to vary (Table 5). Since test
termination takes place only after a specified reduction of the posterior
variance has occurred, the large positive pE}k correlations indicate that

the rate of posterior variance reduction is a function of ability level,
with more rapid reduction taking place as ability (8) decreases. :

Figure 4
Bias and Mean Absolute Etrot as a Function of Item
Discriminations, for the Perfect Item Pool with
' Cortecred Guessing
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As seen under the other conditions, Table 5 shows that errors of
estimate correlated negatively (-.25 to -.42) with ability and with ability
estimates (-.09 to -.23). As in the no-guessing condition, all fidelity
coefficients were .97 or .98, with the lower value occurring at the higher
item discrimination levels.

Conclusions

Study 2 supports the findings of Study 1 and extends them somewhat.
As in Study 1, the Bayesian testing strategy resulted in very high fidelity
coefficients with relatively short tests, provided the item discriminating
powers were 1.0 or greater. The Study 1 finding of positive overall bias
of estimate was corroborated here: Only one of the forty-two bias estimates
was negative. Especilally noteworthy was the effect of uncorrected guessing
on both the ability estimates and the fidelity coefficients: Bias was
severe, and fidelity actually decreased as discriminating power increased.

Under the corrected-guessing condition, the finding of a strong
positive correlation between test length and © or ® was replicated consis-
tently. It is important to note that this condition was obtained under
conditions of a "perfect™ item pool; this implies that the high correlation
does not result from inadequacies of the item pool. Since there was no
variance in test length when no guessing was assumed (i.e., for the no-
guessing and uncorrected-guessing conditions), the phenomencn would seem
to be due to the scoring formulae in some way. The phenomenon by itself
is of little concern unless it results in different measurement properties
at different levels of ability. This may be the case; some of the proper-
ties of the sequential test seem to improve with test length. 1If test
length 1s consistently greater as ability increases, then the test may be
measuring less well as ability decreases, due simply to the effects of test
length.

Study 3: Effects of Fixed Test Length

Background and Purpose

The results of Study 2 make it obvious that with guessing a factor,
test length increases with ability level when the posterior variance cri-
terion is used to terminate testing. It was suggested that some measure-
ment properties of the test may suffer as a consequence. Two properties
which seem to be affected adversely by short test length are bias and mean
absclute error, both of which increased as item discrimination became very
high {and test length very short) in the no-guessing and corrected-guessing
conditions (see Tables 3 and 5). Another property which should be
adversely affected by very short test lengths is fidelity. Study 2 noted
a small but consistent decline in fidelity at the very high discrimination
levels (see Tables 3, 4 and 5). Additionally, Jensema (1972) noted a
similar phenomenon, which he termed "correlation drop-off".

This study explored the effect of administering the same number of items
to all examinees, on the same properties which were of interest in Studies
1 and 2. This was done by means of simulating fixed-length Bayesian tests
for the corrected-guessing condition, under various item discrimination

20
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levels. To avoid loss of generality, the 'perfect" item pool was again
employed.

Method

Variables. Dependent variables were the ability estimates (é) and the
posterior variance (oi) after a fixed number (k) of items had been adminis-

tered. Independent variables were simulated ability (0) and item discrimi-
nating power, Nine levels of discriminating power were studied: ag=.6,

.8, 1.0, 1.25, 1.50, 1.75, 2.02 2.5, 3.0, Examinees were the same 100
simulated ability values (Bi, 1=1, 2, ... 100) used in Studies 1 and 2.

Item pools. "Perfect" item pools were simulated, as described in
Study 2; i.e., the locally optimum item difficulty was calculated after each
item response, and an item having that difficulty level was artificially
generated and administered,

Response generation and test administration. Item responses were simu-
lated in the same manner 2as in Studies 1 and 2. Test administration was
identical with Study 2, except that all "examinees" were administered 30
items. After 30 items, the individual ability (91), the estimate (91), and

the posterior variance (0%0) were recorded for each examinee.

Analysis. A total of nine test administrations were simulated (one at
each item discrimination level). For each administration these sequential
test properties were estimated as described in Study l: bias, mean absolute

error, Poe? Pe? and Pag Additionally, for each administration, the corre-

lations of the posterior variance with © and & were calculated.
Results

Table 6 and Figure 5 contain the results of Study 3. To facilitate
comparing the 30-item test length with the posterior variance termination
criterion, comparable data from Study 2 are included in Figure 35,

As Figure 5 shows, the overall bias of estimate was virtually zero in
all item pools, except for the g=,60 and a=2.5 item pools. Mean absolute
error decreased steadily as a function of g, and was lower for fixed test
length than for the variable test length conditions for all discriminations
larger than a=1.50., As in Studies 1 and 2, error (91-01) correlated

negatively with @ and 6, suggesting a regression effect.

As Table 6 shows, the posterior variance correlated positively with
6 and 5, with the magnitude of the correlation generally diminishing as
a increased (e.g., Pos2 Was .86 for a=.6, and .74 for a=3.0). This trend
30 :

corresponds to the one seen in Studies 1 and 2--test length correlates
strongly with ability when posterior variance is held constant.
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Figure §
Mean Absolute Error and Bias for Two Different
Test Termination Criteria
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The fidelity coefficients increased with the item discriminating
power, from .93 at a=.60 to .99 at a=1.5 and higher.

Table 6
Errors of Estimate and Correlates of the Bayesian Sequential Test Ability

Estimates as a Function of Item Discrimination, for 30-Item Test Length
and Corrected Guessing, with Perfect Item Pool

Item Discrimination (a)

Property 06 .8 1.0 1.25 1.5 1.?5 2.0 2.5 2.?5
Errors of Estimate
Mean (Bias) .09 .01 -.01 .02-.01 .00 .01 .04 .01
Mean Absolute Error .33 .28 .21 .17 .15 .12 .12 .12 .09
Correlates
With Error
Poe .41 -.30 -.36 =-.34 -.40 -.32 .32 -.51 -.36
P8e -.04 .01 -.13 -.15 -.24 -,19 -.18 -.36 -.23
' With Postericr Variance
”e:: .86 .85 .89 .81 .82 .77 .69 .76 .74
”éa: .93 .90 .90 .84 .82 .79 .69 .72
Fidelity
T80 .93 .95 .97 .98 .99 .99 .99 .99




Conclusions

It is apparent that some improvement in the properties of the
Bayesian testing procedure can be realized by setting test length constant,
provided that item discriminatory power is sufficiently high (e.g.,
greater than @=1.5). Biag seems to be diminished, and absolute error
decreases as discrimination increases.

Study 4: Effecte of Ability level
and Trem Pool Configuration

Background and Puriose

Simulation studies of Owen's Bayesian sequential test procedure
typically have concentrated their attention on group statistics. For
example, Urry (1971, 1974) and Jensema (1972, 1974) evaluate their results
in terms of fidelity coefficients and mean test length {(using a posterior
variance termination criterion). Studies 1, 2, and 3 above have extended
Urry's and Jensema's work by examining additional properties of the sequen-
tial testing procedure, but they also concentrate on group statistics.

With any group statistic, such as a fidelity coefficient, a bias estimate,
or a mean test length, there is a lack of invariance across groups. A
change in the shape of the distribution, or the central tendency and varia-
bility, may alter the magnitude of the group statistic markedly. Therefore,
some distribution-free methods for evaluating the Bayesian sequential
adaptive test are needed. One general method for this is to examine char-
acteristics of the test as a function of ability level.

Given that some properties are to be evaluated as a function of
ability level, it is necessary to select the properties of interest. The
results of Studies 1, 2, and 3 suggest some characteristics of Owen's
procedure which bear further investigation. For instance, there was a
tendency in the preceding studies for positive bias to occur, i.e., for
the group average ability estimates to be larger than the average ability.
Additionally, there was consistently a moderate negative correlation
between ability and the errors of estimate, indicating 2 regression effect.
The negative correlation between the estimates themselves and their error
further suggests that the regression may be non-linear. The strong positive
correlation between test length and ability indicates that the posterior
variance estimate is being reducea more rapidly at low ability levels than
at high ones, despite the use of the "perfect" item pools and the presence
of constant item discrimination across all difficulty levels.

Based on the findings of Studies 1, 2, and 3, the present study
examined appropriate properties of the Bayesian sequential testing strat-
egy as a function of ability level. These properties include the form of
the regression of ability estimates on @, the conditional bias of the
ability estimates, and mean test length. In addition, this study included
estimation of the "information" (Birnbaum, 1968) in the Bayesian test
ability estimates at various levels of ability.
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In addition to estimating the regression, bias and information in the
Bayesian test scores as a function of ability, this study examined the
effect which different item pool "configurations" might have on these
properties. Item pool configuration here refers to the regression of item
discrimination (@) values on the item difficulty (b) values in the item
pool. Studies 1, 2, and 3 above, and all previous research using "ideal™
item pools, have simulated item pools in which ¢ was constant across items
or in which a was statistically independent of b. The presence of no
statistical association between ¢ and b implies that the same item infor-
mation (Birnbaum, 1968, p. 449) is available at all levels of item
difficulty. On the other hand, i1f there is a statistical relationship
between the discrimination and difficulty values of the items in a given
item pool, there will be 'more information available in some ranges of the
ability continuum than there is in others.

Although in theory it is desirable for adaptive testing to assemble
an item pool having equally discriminating items at all the difficulty
levels represented, in practice this has not always been achieved. For
inetance, the 58-item pool used by Jensema (1972) to simulate adaptive
testing based on some items from the Washington Pre-College examinations
had very highly discriminating items in its upper difficulty ranges and
low~-to-moderately discriminating items in the easy range of difficulty.
Similarly, Lord (1974) reported that the discrimination parameters of his
item pool correlated positively with the difficulty parameters. Practical
implementations of adaptive testing are likely to use item pools in which
the configuration of the item parameters is less than ideal. Therefore,
the effects of different item pool configurations on the psychometric
characteristics of the test scores (or trait estimates) need to be inves-
tigated.

This study investigated three different configurstions of the item
pools. Each configuration was characterized by a difierent slope of the
regression of item discrimination parameters on item difficulty, which in
turn can be characterized approximately in terms of the correlation, Pab’

between item discriminating power and difficulty. Identical test simulation
studies were conducted under all three configurations in order to evaluate
any differential effects.

Method

Variables. Dependent variables were the ability estimates (6) and the
number of items (k) required to satisfy the test termination criterion.
Independent variables were the simulated examinees' abilities (Oi) and the

configuration of the simulated item pool. Examinees' abilities for each
test administration were simulated by 3100 values of 91, 100 at each of 31

equally spaced levels in the interval [-3.050s543.0]. This examinee distri-
bution was used because of the need for relatively large numbers of obser-
vations at each level of © in order to estimate accurately the regression

of ability estimates on ability, the conditional bias, and the information

cuxves.
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Item pools. Three "perfect" item pools were simulated--one for each
configuration. The three configurations studied included one with a
moderate positive correlation of a with b (referred to hereinafter as
rab+), one with a moderate negative correlation (rab-). and one with no

correlation (rabO). The rab+ configuration favored the more difficult

items with higher discriminating powers, the ra -~ configuration favored the

b
easier items, and the rabo configuration favored no difficulty levels.

As in Studies 2 and 3, after each item response the optimal difficulty
of the next item to administer was calculated, and an item having that
difficulty value was artificially gensrated and administered. In the
previous studies, the optimal difficuicy calculation was based on the
guessing parameter (¢) and on the constant discrimination parameter (a) of
the items in the pool. In this study, the same calculation was based on
the mean item discrimination parameter (@), which was 1.25 for all configu-
rations. In all cases, ¢ was ,20.

The item pool configuration was simulated by:

1. Selecting the appropriate bg for the next item from the
perfect item pool as though all ag were equal to Eé; call
* = 3 Y.
this b g (bglems ag):

2. Calculating a conditional ag value from a linear transform
of b*
g

a_|b=r  {5.p., \b*7
g g ab (__A) g [9]

S.D.B

where S.D.A is the standard deviation of the ag parameters

in the simulated pool;

S.D.B is the standard deviation of the bg parameters in the
simulated pool;

* r *
ag, b g P b ag are as previously defined;

3. Adding an error component, eg, to the approximate ag, 80 that

for each item administered a*sﬂaglb*g+eg

where a*g is the simulated discriminating power of the item;

ag|b*g is the approximate discrimination defined above;
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eg is a random number from a normal [0, Uze] population,
such that

a\he = ~p2 1/2
0, °WZ =5.D., (1-r LS [10]

4. Setting a*g equal to .80 whenever it would otherwise have a
lower value.

Response generation and test administration. Item responses were
simulated in the same manner described in Study 1. Test administration was
identical with Study 1. A posterilor variance termination criterion of
035.0625 was used, with an arbitrary maximum test length of 30 items. The

corrected~guessing condition was used. At termination, the ability (Gi),

its ectimate (61). and the number of items administered (k) were recorded
for cach examinee.

Analysis. For each of the three simulated test administrations, the
following properties of the sequential test were estimated from the 100
observations at each separate abllity level (91):

= 1 -
a. the conditional mean, Bilei’Taaﬂei [11]
b. the conditional variance 02 =—l—£(@ -5 ) [12]
> %810, 7100171
c. the conditional bias, b,|6,=8 -0, [13]

d. the conditional mean test length, k|91.

The regression of the trait estimates () on ability (¢) was estimated
by fitting a third degree polynomial to the 31 conditional means, using a
least squares method. The regressions of bilas and test length on @ were
estimated graphically.

The information In a set of test scores (x) can be defined as
2

]
1;(9) - EEEEQEUEL . [14]

x|@

The "information' value of test scores at any level of ability 1s an index
of the usefulness of those scores for discriminating among examinees in the
vicinity of that level. A zero information value indicates that the test
scores are useless for making discriminations about a glven point; an
infinite information value indicates that errcr-free discriminations can be
made about that peint on the basis of the test scores. Any value between
the two extremes has implications for the probability of making Type I and
Type II errors in classifying persons above or below the point in question.
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The numerator in Equation 14 is the first partial derivative of the
function describing the regression of test scores (%) on the trait (©),
The denominator in Equation 14 is the conditional standard deviation of the
scores. The regression of test scores on & can be approximated from
empirical data, if the scores (x) and the latent trait values (0) are known.

Since the Bayesian trait estimates (©) can be treated as test scores,
the numerator of the information function can be evaluated at any point (9°)
from the slope of the equation for the regression of & on 0. That equation
was calculated from the simulation data as described above. In estimating
the information curves, the first partial derivative (1.e., the slope) of
that polynomial equation was evaluated at each of the 31 ® points used in
the study. The denominator of the information function at each of the
same 31 points was estimated by the square root of the conditional variance
of the trait estimates at that point.

. Figure 6
Mean Estimated Ability (§) ac 31 Abilicy Poinrs (&)
for the Simulated Bayesian Sequential Test under
Three Item Pool Configuractions
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Thus for each of 31 points ©°, the information at that point, I@(@‘)

was estimated from the test simulation data, as
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30°E(B]e”)

I.(0°) = |2&E (15]
© %|o*

vhere E(9|6‘) is the third degree polyno.ial regression fitted to
the 31 test score means

U(@[O‘) is the square root of the observed variance of the
100 test scores at ©°.

Results

Regression of & on O, Figure 6 is a plot of the observed mean ability
estimates (0) as a function of actual trait level (0) differentiated by item
tcol configuration; Appendix Table A-l shows the numerical values of these
means. For each configuration, then, Figure 6 contains the graphic empirical
approximation of the regression of © on 0. The values for each item pool
configuration form an essentially linear plot for levels of © between +1 and
-1, with a2 tendency toward departure from linearity for values of © larger

than +1 and smaller than -1.

High abilities are underestimated; low abilities

are overestimated.

The exaggeration of this effect seems strongest for the

rab- configuration, in which the average item discrimination increased as the

ability estimates decreased.

Figure 7
Hean Ervor of Estimate (3-8} at 31 Ability Points (6)
for the Simulated Bayesian Sequential Test under
Three Item Pool Configurations
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Bias. Figure 7 contains the plot of conditional pias (mean (0-0)) on

ability (numerical values are in Appendix Table A-l as e).
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configuration, the curve described by thess data 1s non-linear. As Figure 6
showed indirectly, the conditional bias for all three configurations yas
close to zero for -1<0<1, but 1t increased with Increases in absolute values
of © elsewhere. A strong tendency to underestimate high @ was present in
all three configurations, and was severe for 2.y for which the bilas was

-.43 at 0=3.0. The tendency to overestimate low © was even more pronounced,
and was severe for all three item pool configurations. For the rabo

configuration the conditional bilas at 0=-] was .53; for ?.p~ the blas at

the same point was .61. If the © metric 1s expressed in population standard
deviation units, then, the Bayeslan sequential test estimates may typically
err by one-half standard deviation unit at low extremes of the ability range
and by a lesser but still significant amount at the high extremes. Further-
moxe, this tendency is systematically affected by the configuration of the
item pool.

Figure 8
Mean Number of Items to Termination (Test Length) at 31
Ability Points (0) for the Simulated Bayesian Sequential
Test under Three Item Fool Configurations

0] +++44++4+44+4+4244+4 414 t404m0anancananas
. + 4
+
EE [ ] +
9 " ++
i 25 - +
= . + 4
% +4+4+4
1 .
-
[ ]
% 20- .
g . » + N+
. ’ * b ©
. * G -
15 4 LI
L ]
1] ¥ ¥ T k] ] ¥
=30 20 -10 o 10 20 30
ABILITY (o)

Figure 8 contains plots of mean test length as a function of ability
level for each item pool configuration (numerical values are in Appendix
Table A-1). For the rabo configuration, test length was constant at 30

items, the arbitrary maximum. For rsb+’ where the most discriminating items

were available at the higher difficulty levels, test length was constant at
30 items For © levels less than .6, then declined gradually to a mean of 23
items at 0=3. The 2 .- configuration, which had higher item discrimination

at the lower difficulty levels, showed é trend opposite that for rab+' For

™ T
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rab“’ test length in:reased rapidly with © from a mean of 14 items at

@=-3, to 30 items at 0=0; for all 8 greater than zero, the test length was
30 items, the arbitrary maximum.

Figure 8 illustrates two interesting trends. First, not only did the
Ty configuration use fewer items than the others, but the rate of increase

as O increased is noticeably steeper than the rate of decline in test length

for rab+‘ Second, for Pt which required the fewest items at high 0

levels, blas (see Figure 7) was least pronounced at high © levels; yet for
P which required fewest items at low O levels, there is no apparent

advantage at those levels in terms of bias.

Figure 9 ,
Smootted Information Curves for the Bayesian Sequential
Test under Three Different Item Pool Configurations

20

// Tt

164 fometaee [ia*

()
X
5 12
0
:
a_
2
Z
4 4

-30 20 -10 o 10 20 30
ABILITY {8}

Information. Figure 9 contains smoothed information curves for the
three item pool configurations. (Numerical values of the estimated slopes,
conditional standard deviations, and information values at each of the 31
© levels are shown in Appendix Table A-2.) For the rabO configuration the

information curve ghown in Figure 9 is convex, reaching its maxfmum height
very near 9=0; the curve slopes gradually downward as O increases above O,
and more rapldly downward as © decreases from 0. At 0=-~3 the information
curve 18 quite low, indicating that despite the availability of test items
at all difficulty levels, the test scores will discriminate very poorly in
the low abllity ranges.
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For the ”ab+ configuration the information value at 0=-3 1s even

lower, but it increases steadily--almost linearly--with 0. The rab+

information curve surpasses that of r, 0 at 03+l, as expected from the

b
availabilitv of more discriminating items in the higher difficulty ranges.
For the rab- configuration, which had 1ts lowest item discriminations in

the higher difficulty ranges, the information curve is quite low at high
ability levels, and it increases steadily as © decreases, to about 0=0.
Surprisingly, the information curve thereafter decreases with 0, reaching
its lowest point at ©=-3. This is a striking result in view of the avail-
ability of more discriminating items at low O levels for the b item pool.

It can be partly, but not entirely, accounted for by the shorter test lengths
seen for the rab- configuration at the low ability levels. -

General Summary and Conclusions

Previous research (e.g., Urry, 1971, 1974; Jensema, 1.9?2) Las shown
that Owen's Bayesian sequential approach to adaptive testing has the
potential of achieving very high correlations between ability level and
ability estimate concomitant with a8 significant savings in test length,
compared to conventional testing procedures. In order for this potential
to be realized, a relatively large item pool was required, with highly
discriminating items (a>.80) rectangularly distributed on the difficulty
continuum (Urry, 1974). Study 1 corroborated the f£indings of Urry and
Jensema in terms of test length and values of the fidelity coefficients.
At the same time Study 1 revealed an overall tendency for the Bayesian
trait estimators to overestimate group mean ability level. Also, the
results of Study 1 corroborated the finding in live-testing that with
Owen's strategy test length covaries positively with ability level.

The results of Study 1 were not definitive, partly because finite
item pools were employed. Study 2 overcame the specificity of Study 1 by
introducing the use of a "perfect" (or infinite) item pool, having unlim-
ited numbers of independent items at any difficulty level. At the same
time, Study 2 varied the values of the guessing parameter.

The results of Study 2 suggest that the bias problem seen in Study 1
may be largely a result of guessing; under the no-guessing condition bias
was virtually zero, except for the very highly discriminating item pools.
This relationship was confounded with test length, however, since the
highly discriminating item pools reached the test termination criterion in
a very small number of items (e.g., 5 items at a=3.00). Under the
corrected-guessing condition, bias was consistently positive, and increased
as item discriminations increased and mean test length became very short.
Under the uncorrected-guessing condition, both bias and mean absolute
error were pronounced.

The high correlation between test length and ability level was con=~
sistently present in Study 2 under the corrected-guessing condition. Under
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no-guessing and uncorrected-guessing, however, there was no such correla-
tion because there was no variance in test length within a test. Under
the latter conditions, test length varied only across tests—-i.e., as a
function of item discriminating power.

In terms of fidelity coefficients, there was no appreciable difference
between those obtained under no-guessing and under corrected-guessing,
given tng common termination criterion. Under uncorrected-guessing,
however,\there was some loss of fidelity as test length decreased. It
should be noted that the uncorrected-guessing condition was tantamount to
assuming an inappropriate item response model. The result of using the
inappropriate model to estimate ability and to select items sequentially
was to introduce large errors of estimate and some loss of fidelity.

The observation that bias, absolute error, and fidelity seemed to be
adversely affected by the short test lengths typical of highly discrimi-
nating item pools led to using a fixed 30-item test length in Study 3.
The results confirmed the hypothesis that some undesirable psychometric
properties may accompany the use of very highly discriminating item pools
if the posterior variance criterion is used to terminate testing. When
test length remained constant, bias was virtually zero and absolute error
diminished steadily as item discrimination increased.

The interrelationships of test length, item discrimination, bias, and
absolute error would be a fruitful avenue for further research. If the
interdependencies were understood it would be possible for a test user to
control error magnitudes by appropriate choice of test length, given knowl-
edge of the parameters of the items in the item pool.

Study 4 investigated some of the characteristics studied earlier but
as a function of trait level. The curvilinear regression of the latent
trait estimators on trait level illustrates the conservative nature of Bayes
estimators. Fairly accurate estimation is achieved in the vicinity of the
assumed prior mean, at the expense of accuracy in the extremes. 1In a
sense, the Bayesian procedure gives little "credence" to extreme trait
values; this conservatism results *n a consistent tendency to underestimate
high trait level values and to overestimate low ones. With guessing present
the overestimation problem becomes accentuated. This alone may be suffic-
ient to explain the positive bias seen in Studies 1 and 2: The overesti-
mates tend to be of larger magnitude than the underestimates, resulting in
an overall tendency towards overestimation.

'More significant than the direction of the conditional bias is its
form. Under all three f{tem pool configurations in Study &4, the bias curves
were non-linear. In ability testing, bias is not usually of concern as
long as it is constant or linear in the parameter being estimated (Lord,
1970, p. 153), since these two cases imply a linear relationship between
test scores and trait level parameters. MNon-linear bias, on the other hand,
implies a non-linear relationship, which in turn adversely affects the
utility of the test scores. Other things being equal (e.g., the conditional
variances of the test scores), if the regression of test scores on trait
level is non-linear, the scores wil' pake better discriminations at some
trait levels than at others. 32
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That this is the case with the scores resulting from Baye3slan test
administration 1is evident in the information curves estimated from the data.
Although adaptive testing has the potential to result in equi~discriminating
ability estimates, the Bayesian sequential adaptive test has failed to
achieve this goal under the conditions simulated in Study 4. Under each
item pool configuration, some region of the ability continuum had consider-
ably higher levels of information under any configuration. Even under the

?ob” configuration, vhere the best discriminating items were available in

the lowest difficulty regions, the information curve was very low in the low
ability region.

Lord (1970, p. 152) indicated that evaluating an adaptive test by means
of a group statistic (such as the fidelity coefficient, ré@) presumes some

knowledge of the group's distribution on the trait being measured, and
ignores information relevant to the accuracy of trait estimates at any one
level of the trait. The validity of the Bayesian sequential test trait
estimates, as the results show, was quite high under the conditions used in
these simulation studies. The accuracy of the estimates was also favorable
in what corresponds to the middle ranges of a normal distribution on O, but
was found to be less favorable in the extremes, especlally the lowyer extreme.
Similarly, the information curves of the trait estimates showed that the
effectiveness of measurement under the Bayesian testing procedurc varied
systematically as a function of the configuration of the item parameters
constituting the item pool, but in all three configurations measurement
effectiveness was veryY low in the low ranges of the trait.

The observed loss of accuracy and information in the extremes of the
"typical" range of O are disturbing, since a major advantage of adaptive
testing over conventional testing is the former's supposed potential for
superior measurement accuracy and effectiveness in those extremes. The data
of this series of studies show that with the exception of the Pab+ config-

uration, the adaptive test scores behave much like conventional test scores,
at least in terms of the shapes of their information curves. The utility of
the Bayesian adaptive testing strategy may be diminished by results like
those reported for Study 4, if they prove to be general.

The problems of bias which is non-linear in 8, and of convex infor-
mation curves as observed in Study 4, have causes which may be amenable
to improvement. Central to both problems 1s the effect of guessing, which
generally operates to reduce measurement efficiency at all trait levels,
and especially at low trait levels. Also at the core of the problems
is the Bayesian procedure itself. As was pointed out earlier, the Bayesian
trait estimates behave like regression estimates. Extreme values of 0
are systematically regressed toward the initial prior estimate; the
assumption of a normal prior distribution of © ensures this tendency.

On the average, the more extreme © is for any individual, the larger
will be the regression effect. Recall that the item selection procedure
selects an item with difficulty somewhat easier than the current 0
estimate. But for high © the current estimate is almost always too low.
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Hence the difficulty of the selected item will almost always be too easy
for extremely able examinees. Cumulated over 30 items, for example,
there will be several effects of this inappropriate item selection:

1. Mean proportion correct will tend to increase as a function
of 0, despite the implicit attempt of the tailoring procedure
to make 1t constant at all levels of 83

2. 0 will tend to be underestimated for high @ due to the inap-
propriate difficulty of the test items administered;

3. Information loss will occur at high © due to the shallowing *
slope of the regression of & on . N

For low € the initial prior 1s an overestimate. Hence the first
item selected will generally be too difficult, yet the examinee has a
chance of answering it correctly by guessing. A correct answer, of course,

will cause an increase in © and thus result in another inappropriate cholice
of item difficulty. Furthermore, as Samejima {1973) has shown, when

guessing 1s a factor there may actually be negative information in a
correct response to an item whose difficulty exceeds an examinee's
actual trait level by a fairly small increment. Thus it appears that in
Owen's Bayesian strategy, testees in the low extremes of © are rather

consistently being administered overly difficult items with several
systematic results:

1. Mean proportion correct tends to decrease with 0O despite the
talloring process;

2. Posterilor variance reduction tends to be more rapid for individuals
of low trait levels, due largely to their sub-~optimal proportion
of correct responses, resulting in shorter mean test length;

3. ‘The shorter the test length, the less opportunity the Bayesian
estimation procedure has to converge to extreme tralt level
estimates;

4. Non~convergence combines with negative information in some correct

responses to diminish severely the effectiveness of measurement in
the low regicns of the trait.

Some of the conclusions just stated are speculative. Specifically,
neither proportion correct as a function of © nor the differences (bg-@)

were examined in this study. Both of these reflect the effectiveness of
the tailoring process. McBride (1975), however, reported data which
showed proportion correct to be monotonically related to © in another
simulation study of Owen's Bayesian strategy.

One goal of adaptive testing should be to achieve a constant high

level of measurement effectiveness at all levels of 0. This objective
is equivalent to a high, horizontal information function. The Study 4
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results show that the Bayesian sequential testing strategy failed to
achieve this goal despite an unrealistically favorable set of circum-
stances: the perfect item pool, error-free item parameters, and a scoring
model perfectly congruent with the item response model. The shortcomings
of the Bayesian trait estimate were attributed to the regression-like
tendency of the sequential estimates themselves, which in turn results in
inappropriate item selection for individuals whose trait levels are
relatively high or low.

There are at least two methods of ameliorating this problem, both
of which to some extent should lessen the bias of estimate at the extremes
and improve the information properties of the trait estimates. The Ffirst
method involves the assumption of a rectangular rather than a normal prior
distribution of ®. The second method would involve replacing the Bayesian
item selection procedure with a mechanical (e.g., non-mathematical)
branching procedure, which would be less gensitive to large errors in the
current trait estimate in its choice of the next item to administer.
Needless to say, both of these alternatives involve a considerable
departure from Owen's elegant procedure.

Implications. In testing persons of any given ability level, an
ideal adaptive testing strategy would select for administration the most
informative items available at that level. If the item pool were adequate,
the result would be that mean proportion correct would be approximately
constant ncrogss ability levels, and the information curve of the ability
estimates would be very high and almost f£lat. Such an adaptive test would
make equally good discriminations at any level of the ability trait. It
would alsoc have approximately equiralent utility at any level at which
discriminations were to be made. It is apparent from the foregoing
discussion, especilally from the data of Siudy 4, that the properties of
the. Bayesian sequential adaptive test fall somewhat short of this ideal.
The research reported here has shown that the Bayesian procedure results
in very high correlations of ability level and test scores but also results
in ability estimates which are strongly biased in the extremes and which
are maximally informative only in the middle region of ability. If 3 test
user were concerned primarily with ordéring examinees as to ability level,
the Bayesian sequential adaptive procedure would seem quite satisfactory.
However, the tendency of the Bayesian procedure to yleld accurate measurement
in the vicinity of the prior mean at the expense of relatively inferior
measurement elsewhere, may mandate selecting an alternative adaptive
strategy if the test user requires either equi-discriminating measurement
over a wide ability range or accurate ability estimation for ability levels
not near the mean. Simulation research by Vale & Weiss (1975) on
the stradaptive ability test (Weiss, 1973) shows that adaptive testing
strategy provides measurement with the desired characteristics. Other
promising strategiles for adaptive testing have been proposed by Lord
(1975) and Samejima (1975).
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Table A-2

Estimated Value of the Derivative %%, Conditioual Standard

Deviation 0@10 and Value of the Information Function IG(O)
for Three Item Pool Configurations, at Each of 31 Trait Levels (0)

Item Pool Configuration

' rptl r.,0 rop 71
36 30 26

0 56 %8le 1@ I I 20 ‘8le T6®
-3.0 -523 307 2.90 588,336  2.58 430,253 1.63
-2.8 566,353 2.57 629,333 3.57 511 308 2.75
-2.6 .607  .328  3.42 668  .304  4.83 368 .279 4.14
-2.4 .645  .341  3.58 704  .283  6.20 .621  .264 3.54
-2.2 682  .321 4.51 738 .294 6.31 .670  .268 6.26
-2.0 716 .330 4.71 770 284 7.35 716 .289 6.14
-1.8 48 324 5.33 799,228  12.29 758 .289 6.87
-1.6 L7718 257 6.26 .826 .266  9.64 796 .247 10,37
-1.4 783 311 6.34 .850 .265 10.29 .830  .230 13.01
-1.2 832 .314 7.01 872 .261 11.16 860 .251 11.73
-1.0 833 .278  9.46 892,275 10.52 886 .235 14.21
- .8 .876 .316  7.69 .909 .278 10.70 .908 244  13.86
- .6 .895 .283 10.00 924,260 12.63 .927 244 L4044
- .4 .912  .282 10.47 936  .288 10.57 .92 .255  La.66
.2 .927  .308 9.06 946  .278 11.59 .953  .284 1..96

0 .940  .,305  9.50 L9534  .249  14.68 .960  .257 1..96

.2 .946  ,253  13.98 .959  .248 14.96 .963  .284 11.50
4 «939 L2555 14.14 962  .281 11.72 .963 .252  14.59
.6 .965 .287 11.29 .962  .275  12.25 .958  .285 11.31
.8 .965 .269 12.85 .960 .248 15.00 .930 .276 11.85
1.0 .971  .228 18.15 .936 .250 14.62 .938  ,336 7.79
1.2 .971 .228 18.13 .949  .250 14.42 .922  .294 9.84
1.4 .968  .218 19.71 940  .272 11.94 .902  .295 9.36
1.6 .964 .246 15.35 928 ,259 12.85 .879  .301  8.52
1.8- .957  .229 17.46 914,292 9.81 - .851 .317 7.21
2.0 .948  .263 13.00 .898  .289 9.66 .820 .296  7.67
2.2 .937 .230  16.56 879  .260 11.43 785 .321 5.98
2.4 .924  .210 19,35 858  .255 11.32 746 .29 6.44
2.6 .908  .227 16.00 834 .270  9.55 703 .349  4.06
2.8 891 .258 16.69 808  .250 10.46 657  .332 391
3.0 871 .218 16.00 .780  .279 7.82 606 - .293  4.28
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