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Four monte carlo simulation studies of Owen's Bayesian sequential

procedure for adaptive mental'testing were conducted. Whereas previous
simulation studies of this procedure have concentrated on evaluating it in
terms of the correlation of its test scores with simulated ability in h
normal population, these four studies explored a number of additional

properties, both in a normally distributed population and in a distribution-

free context. Study 1 replicated previous studies with finite item pools,

but examined such properties as the bias of estimate, mean absolute error, .
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and correlation of test length with ability. Studies 2 and 3 examined the
same variables in a number of hypothetical infinite item pools, investigating
the effects of item discriminating power, guessing, and variable vs. fixed
test length. Study 4 investigated some properties of the Bayesian test scores
as latent trait estimators, under three different configurations (regressions
of item discrimination on item difficulty) of item pools. The properties of
interest included the regression of latent trait estimates on actual trait
levels, the conditional bias of such estimates, the information curve of the
trait estimates, and the relationship of test length to ability level. The
results of these studies indicated that the ability estimates derived from
the Bayesian test strategy were highly correlated with ability level.
However, the ability estimates were also highly correlated with number of
items administered, were non-linearly biased and prov...ded measurements' which
were not of equal precision at all levels of ability.
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SOME PROPERTIES OF A BAYESIAN

ADAPTIVE ABILITY TESTING STRATEGY

Adaptive or tailored ability testing subsumes a number of different
strategies for adapting the difficulty of test items to the examinee's
ability level. All the adaptive testing strategies have as one objective
the improvement of the psychometric properties of mental test scores
throughout the range of the trait of interest (e.g., ability). This is
accomplished by adapting test item difficulty to each examinee's ability,
during the test itself. Ideally the adaptive selection and administration
of test items would result in each examinee answering only those items
which are most informative for his own ability level. Additionally, where
items can be answered correctly by random guessing (e.g., multiple-choice
items), an optimally efficient adaptive item selection technique would
have the effect of equalizing the effect of guessing on test scores
throughout the ability range.

The different item selection techniques of the various adaptive
testing strategies have been described by Weiss (1974). One of the most
elegant of the adaptive strategies is a Bayesian sequential technique
proposed by Owen (1969, 1975) and studied empirically by several investi-
gators including Wood (1971), Urry (1971) and Jensema (1972).

Owen's Bayesian Sequential Adaptive Testing Strategy

Owen's technique is a general one for the sequential design and
analysis of independent experiments with a dichotomous response. Its

application in mental testing is to the problem of estimating ability by
means of sequential selection, administration, and scoring of dichotomous

test items. The mathematical details of the method arise from latent trait
theory, with the item characteristic curves all assumed to take the form
of the normal ogive. The properties of the normal ogive item characteristic
function and its logistic approximation have been described by Lord &
Novick (1968) and Birnbaum (1968), respectively.

Owen's procedure involves the individually tailored sequential design

of a test by appropriate choice of available item parameters' and estima-
tion of ability (0) via a Bayesian-motivated approximation. At each step
m in the ability estimation sequence a normal prior distribution on 0 is
assumed, with parameters pm and am, where m indicates the number of items

already administered in the sequence. A test item to be administered at
step m+1 is selected so as to minimize a quadratic loss function on 0.
With no guessing (i.e., c =0) and the discrimination parameters ag constant

over items, the appropriate item is the available one which minimizes the

absolute value of the difference (6
g
-p
m
). With c >0 the optimal difference

'Each item g can be characterized by three parameters--a g, bg, cg- -which

are, respectively, the item discriminating power, item difficulty, and item

guessing parameter. The guessing parameter, cg, is simply the probability

of answering the item correctly by chance alone.
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is somewhat negative; that is, optimal difficulty is somewhat "easier" than
examinee's ability.

Following item administration at step m+1, the parameters um and 02m

of the prior distribution are updated in accord with the examinee's perfor-
mance on the item. In the case of a correct answer:

and

a2
a S)

Pura E(011) u
m
+a-o

1 2 0 +(1-0 )
O

(-D)
[1]g

+ in) g g

= var(011) = a2
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Following a wrong answer:

and

a2m
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a2M
) (
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[31

[41

In Equations 1 through 4 (taken from Owen, 1975)

4(D) is the normal probability density function,

(D) is the cumulative normal distribution function, and

b-
D

11

[5]
If

+
02

a2 m

A = 0g + (1-0 ) (-D) . [6]
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The parameters plo.
1
and 02

+1
of the Bayes posterior distribution on 0 are

used as the parameters of the next step's prior. At each step the prior
distribution is assumed to be normal. Testing may be terminated when 0:

becomes arbitrarily small or when In becomes arbitrarily large, or when some
other criterion has been reached. At termination the latest pm is the

estimator of 0, and 02 is a measure of the uncertainty of the estimate.

Urry (1971) and Jensema (1972, 1974) have interpreted 0! as the squared

standard error of estimate (S.E.E.) of O. Owen (1975) gives a theorem

showing that as a*, um* 0; that is, the posterior mean is a consistent

estimator of an examinee's ability.

Practically speaking, of course, the number of items administered will
never approach infinity; but if the pool of available items is sufficiently
large and appropriately constituted, 02 will diminish rapidly, permitting

valid estimation of 0 using a small number of items. Urry (1971, 1974) has
specified the requirements for a satisfactory item pool for implementing
Owen's testing procedure and has shown in computer simulation studies that
Owen's sequential test can achieve in 3 to 30 items the validity of a much
longer conventional test, with the number of items needed diminishing as
item discriminatory power increased.

Urry's (1971, 1974) and Jensema's (1972, 1974) monte carlo simulation
studies of Owen's Bayesian testing strategy have evaluated its merit solely
in terms of the "fidelity" (or "validity "} z of the resulting ability estimates

and the mean number of items required to achieve any specified value of the
fidelity coefficient. Although the fidelity coefficient is of great interest,
Lord (1970, p. 152) has pointed out that evaluating an adaptive test by
means of a group statistic such as the correlation coefficient presumes some
knowledge of the group's distribution on the trait being measured, and
ignores information relevant to the accuracy or goodness of the ability
estimates at any given level of the trait.

The correlation of test scores with the simulated underlying ability is
only one criterion by which to evaluate a proposed adaptive testing strategy.
Since the Bayesian sequential test scores are actually estimates of underlying
trait level, in the same metric, the accuracy of the estimates is also of
interest. "Accuracy" refers to the closeness of the estimates to actual
ability; it may vary systematically with ability level. Another interesting
property of estimates is bias, or error of central tendency. Two kinds of

bias should be of some concern: 1) unconditional bias, or group mean error

of estimate; and 2) conditional bias, or mean error of estimate at a given
level of the parameter being estimated.

2By "validity" here is meant the correlation of the ability estimates with

actual ability. Green (1975) suggested use of the term "fidelity" in this
context to denote validity coefficients obtained from monte carlo simulation

studies. Green's convention will be followed here.

8
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Purpose

The purpose of the present paper is to report the results of a
series of simulation studies designed to investigate the influence of
guessing and item pool characteristics on the bias, accuracy, and other
properties of the trait estimates derived from Owen's Bayesian sequential
testing strategy.

The studies reported below were motivated by results obtained with
live testing of Owen's strategy. Using Owen's testing strategy with 603
college students and a 329-item pool of vocabulary knowledge test items, a
correlation of .84 was obtained between estimated ability level and number
of test items to termination. Simulation studies then were designed to
investigate the influence of item pool characteristics on that unexpectedly
large correlation.

The simulation studies reported here were intendad to explore both
the properties of the Bayesian sequential testing method itself and
properties of the resulting ability estimates. The former properties are
investigated best by sampling from "populations" of simulated examinees
whose distribution on the ability dimension approximates in form and
parameters (mean, variance) the population assumed by the testing procedure- -
here, a normal population with mean 0 and variance 1. The first three
studies reported sampled examinees from such a population. These studies
were designed to investigate the effects of guessing, of item discriminating
power, and of two different test termination criteria on certain group
statistics. The independent and dependent variables of interest in each
study are described separately below.

The fourth study focused on certain properties of the test scores
as estimators of the ability underlying the item responses under varying
conditions. This area of inquiry required sampling large numbers of
examinees at regular intervals throughout the normal range of the trait.
The details of this study are likewise described separately below.

Study 1: An Ideal Item Pool with Variable Test Length

Background and Purpose

Jensema (1972) simulated Bayesian test administration to examinees
sampled from a normal [0,1] distribution using two different "ideal"
100-item pools. These pools were "ideal" according to Jensema's prescription
that items for use in this testing strategy should have high discriminations
and should be rectangularly distributed in their difficulties. The first
pool had four items available at each of twenty-five equally spaced
difficulty levels in the interval -2.41b$2.4; all items had guessing

parameters of c=.20 and discriminations of a=.8. A second item pool was
identical to the first except for the value of the constant discrimination
parameter, which was a=1.60. The Bayesian test was simulated as proposed by
Owen (1969), with the parameters of the initial ability distribution set
at [0,1] for each examinee. Testing terminated for each examinee whenever
the posterior variance 02 of the ability estimate diminished below a

9



predetermined value or after thirty items, whichever occurrea first.
Jensema set C.le critical posterior variance value at .0625, which corres-
ponds tc a standard error of estimate of .25, and hence to a fidelity
coefficient exceeding .968 (Jensema, 1972, p. 114). Jensema's obtained
fidelity coefficients and mean test lengths, obtained from simulations
using random samples of 100 examinees, are listed in Table 1.

Table 1
Mean Test Lengths and Obtained Fidelity Coefficients for

Two Simulated Bayesian Sequential Tests,
Distinguished by their Item Discriminating Power (a)

(from Jensema, 1972)

Mean Fidelity

a Test Length Coefficient

.80 30* .93

1.60 17.5 .97

*No tests achieved the posterior variance termination
criterion in this condition.

Jensema (1972) did not report, however, some properties of the Bayesian
sequential testing procedures which are of practical interest. The
purpose of the present study was to replicate Jensema's research with
these same two "ideal" item pools, while studying some other properties
of the ability estimates in addition to fidelity and mean test length.

Method

A Variables. Dependent variables were the individual ability estimates
(0) and the number of items (k) required to satisfy the posterior variance
termination criterion of 02 s.0625. Independent variables wsre the simulated

examinees' abilities (0) and the discriminating power (a=.80 or 1.60) of the

items in the simulated item pool.

Examinees' abilities were simulated by computer-generation of 100
random numbers (0 ) from a normal population with mean 0 and variance 1.

The same 100 " examinees" were tested with both item pools.

Item pools. Two 100-item "ideal" item pools were simulated,
corresponding to the ones used by Jensema (1972). In each pool there were

four items at each of twenty-five difficulty levels (b) equally spaced
in the interval (-2.44<42.4]. The guessing parameter (c) was constant

across items; for both pools, c=.20. The item pool for the first test had a
constant discrimination parameter of am.80 across items; the second pool
employed a constant item discrimination parameter equal to a=1.60.

10
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Thus, for each test administration an item pool containing 100 distinct
item' was simulated; each item g could tie characterized by its parameters

a,b,c

Response generation and test administration. Item responses were
simulated by calculating, for each item-examinee administration, the
probability of a correct response to the item given the simulated ability
(0 ) and the item parameters a

g
, b

g
, cg, using equations presented by

Betz & Weiss (1974) and Vale & Weiss (1975). This probability Pg(0i) was

compared with a random number r
gi

generated from a uniform distribution

in the interval [0,1]. A score of 1 ("correct") for examinee i on item
g was assigned if F (0

i gi
; otherwise a score of 0 was assigned.

Test administration was simulated exactly as proposed by Owen
(1969). For each examinee an initial ability 0170 was assumed, and the

prior distribution was assumed to be normal [0,1]. The optimal item in
the pool was selected based on the item parameters, and its administration
to the examinee was simulated. Based on the item score (1 or 0), the
parameters (u

m
, '32 ) were updated, and another item was selected and

administered. This recursive procedure was repeated until 30 items
had b.en taken by the "examinee", or until 41 was smaller than .0625,

whichever occurred first. Once any particular item had been taken by
the examinee it was not reused At test termination, the examinee's
simulated ability (0i), tJe Bayesian estimate (gym), and the number of

items taken (k) were recorded.

Evaluative criteria. For each of the two test administrations,
after all 100 examinees' tests were simulated, the following properties
of the sequential test were estimated from the data:

a. the bias, or mean algebrair error of the ability estimates;

1

N Z (81.-ei)

b. the accuracy, or mean absolute error of the estimates;

1
E
1

le
ii-eil=

171

[8]

c. r
Ok

, the correlation of test length with ability;

r-
Ok

, the correlation of test length with estimated ability;

11
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d. roe, the correlation of the algebraic errorQ of estimate

(ei-0i) with ability;

rile, the correlation of (0i-6i) with estimated ability;

e. rie, the fidelity coefficient;

f. the mean, minimum and maximum test length required to achieve
the posterior variance termination criterion.

Results

Table 2 contains the results from Study 1. As Table 2 shows, there
was positive bias (.06 and .05) in the group scores for both tests,
indicating that ability was overestimated, on the average. Mean absolute
error was .26 for the a=.80 item pool and .19 for the more discriminating
item pool; in these data, then, the more discriminating item pool estimated
ability with smaller average error.

Table 2
Properties of the Bayesian Sequential Test for Two Values of Item

Discrimination, with Corrected Guessing and Ideal Item Pool

Property
Item Discrimination (a)

.80 1.60

Test Length
Mean 30* 18

Minimum 30 12

Maximum 30 30

Errors of Estimate
Mean (Bias) .06 .05

Mean Absolute Error .26 .19

Correlates

roe -.35 -.40

ee -.07 -.21
r
ok ** .84

re* ** .85

roe .96 .98

*An arbitrary maximum test length of 30 items was imposed.

**There was no variance on test length in the a =.80 test.

However 0 and § correlated .81 and .84 with posterior

variance.

Mean test length for the a=.80 item pool was 30 items, with no
variance, indicating that the posterior variance termination criterion
never was reached using this item pool. The higher discriminating pool

12
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(2=1.60) required a mean test length of 18 items, with a range of from 12
to 30. For this item pool test length correlated .84 and .85 with ability
and the ability estimator, respectively. This strong positive correlation
was essentially the same as was found in the live-testing results. It
indicates that despite the "ideal" construction of the item pool, the test
required substantially larger numbers of items to achieve the termination
criterion as ability increased. (Since there was no variance in test
length for the a=.80 item pool, the test length correlations cannot be
evaluated under that item pool configuration.)

Errors of estimate (0
i
-0 ) correlated -.35 and -.40 with ability

for the two item pools, which could indicate a tendency to underestimate
ability at high levels and to overestimate it at low levels. This, of
course, is a phenomenon typical of regression estimates; the Bayesian
test scores seem to be acting like regression estimates in this regard.
This same tendency was evident to a smaller extent in the correlations
between errors and ability estimates (rde).

The fidelity coefficients (pee) were .96 and .98, respectively,

for the a=.80 and a=1.60 item pools. These were slightly higher than those
obtained by Jensema (see Table 1). The differences are likely due to
random fluctuations resulting from the relatively small sample size of
100 simulated testees (see Betz & Weiss, 1974, pp. 20-21 and 24-25).

Conclusions

The replication of Jensema's study of the Bayesian sequential
test using these two item pools corroborated his findings with regard to
fidelity and mean test length. The fidelity coefficients obtained in the
present study were slightly higher than his, while mean test lengths
were almost identical. It seems clear that Owen's adaptive testing procedure
has the potential of achieving measurement of high fidelity with relatively
short tests. However, the strong correlation between ability and test
length suggests a potential problem if the Bayesian test is used in a
group of higher ability than is assumed beforehand. Additionally, the
overall positive bias of the trait estimates suggests that additional
study of the testing procedure is required before its scores are used
directly as estimators of ability. However, the generality of the results
of Study 1 is limited to "ideal" item pools with rectangular distributions
of the difficulty parameters and with the same discrimination and guessing
parameters as in the present study.

Study 2: Effects of Guessing and Item Discrimination

in a Perfect Item Pool

Background and Purpose

The discovery in Study 1 of positive bias in the Bayesian trait
estim^tes, and of a strong positive correlation between ability and test

13
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length in the aw1.60 item pool, raises the question of the generalizability
of these phenomena. These results might be due to sampling fluctuations,
to the specific item parameters employed, to the effects of random guessing,
or to characteristics inherent in Owen's sequential testing procedure.
Study 2 was designed to test the generality of the results of Study 1.

In Study 2 many sequential tests were simulated by varying the
discriminating power of the item pool and the effect of guessing.
Further, in order to avoid loss of generality due to a specific range
of the distribution of item difficulty values in the item pool, Study 2
simulated a "perfect" item pool--one behaving as though it contained an
unlimited number of items at any specifiable difficulty level. The results
of Study 2, therefore, should reflect the best attainable results under the
Bayesian procedure, given the guessing and discrimination parameters of
the items.

To evaluate the effects of guessing on testing strategy characteristics,
test administration was simulated under the three different guessing condi-
tions described below--no guessing, uncorrected guessing, and corrected
guessing. Under each of these conditions fourteen "perfect" item pools
were simulated. These differed from one another only in their item discrim-
inating powers. Thus, fourteen values of a were used; a was constant within
any test simulation, but varied across tests. The same properties of the
test procedure studied in Study 1 were of interest in Study 2.

Method

Variables. Dependent variables in Study 2 were the same as in Study
1: ability estimates (0) and test length (k). Independent variables were
simulated ability (0, discriminating power of the item pool, and the
effect of guessing and of scoring for guessing.

To study the effect of guessing, three different conditions were simu-

lated:

1. No guessing; in the item response model, a was set to 0,
and was assumed to be zero in the Bayesian scoring formulae
(Equations 1 through 4).

2. Uncorrected guessing; c was set to .20 in the item response
model, but was assumed to be zero in the Bayesian scoring
formulae.

3. Corrected guessing; c was set to .20 in both the item
response model and the Bayesian scoring formulae.

Under each guessing condition, fourteen test administrations were
simulated. These differed only in the constant value of the item discrimi-

nating powers in the respective item pools. The fourteen values used were
ais .5, .6, .7, .8, .9, 1.0, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, and

3.00. For each test administration, the same 100 simulated ability values

used in Study 1 constituted the examinee "group".

14
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Item pools. The "perfect" item pools were simulated by calculating,
for each examinee after each item response was scored, the optimal diffi-
culty value of the next item, given ag, c and the current ability

estimate. This optimal item difficulty was determined using a formula
given by Birnbaum (1968, p. 464) for calculating the aifficulty level at
which maximal item information occurs, given a, c, and assuming that
6
i
-e With ag constant and when no guessing is assumed (c r0 in the

scoring formula), the optimal item is one with baleen. When guessing is

assumed, the optimal difficulty (bbl} is smallei than ow by an amount

which is inversely proportional to ag.

After the "optimal" item difficulty value was calculated, the
computer simulation program generated a hypothetical item with that
difficulty value, then "administered" it to the examinee. Thus, the
hypothetical item pool literally had available an unlimited number of
items of any difficulty value specified by the sequential testing
procedure.

Response generation and test administration. Item responses were
simulated in the same manner described in Study 1. Test administration
was identical with Study 1, except for the item difficulty generation
procedure. The same posterior variance criterion (o11.0625) was used as

a test termination rule. Unlike Study 1, test length was free to exceed
30 items; a maximum length of 100 items was imposed. At test termination,
ability (0i), the ability estimate (0i), and the number of items adminis-

tered (k) were recorded for each examinee.

Analysis. A total of 42 test administration conditions were simu-
lated--14 "item pools" under each of the three guessing conditions. For
each test administration, the same sequential test properties estimated
in Study 1 were estimated:" bias, mean absolute error, rek, rek, ree,

roe, roe, and the mean and range of test length.

Results

No-guessing condition. As Table 3 shows, test length was constant
within item discrimination level under no-guessing, and diminished
inversely with level of item discrimination. The posterior variance
termination criterion was reached for all examinees using every item pool
except the one having a*.50. As a point of comparison with Study 1, test
termination was achieved in fewer than 30 items for item pools having

al1.00. There was no corrfiation between test length (k) and 0 or 0,
since there was no variance in test length for any test administration.

The overall bias of estimate under the no-guessing condition was
practically zero for all but the highly discriminating item pools (see

Table 3 and Figure 1). Mean absolute error was .17 for am.5 and increased
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fairly steadily to .22 for the aa3.00 item pool. For the no-guessing
corAition, then, there is a tendency for the highly discriminating item

Table 3
Teat Length, Mean Errors of Estimate, and Correlates of Ability (0) and Test Score (8)

tat a Funttion of Item Discrimination (a) in the Perfect Item Pool, with NO Guessing

Item Discrimination a)
Property .5 .6 .7 .8 .9 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Test Length
Mean 100 71 52 41 13 27 18 13 11 9 7 7 6 5
Minimum 100 71 52 41 33 27 18 13 11 9 7 7 6 5
Maximum 100 71 52 41 11 27 18 13 11 9 7 7 6 5

Errors of Estimate
Mean (bias) .00 -.01 .02 .01 .00 .01 .00 .02 .04 .06 .04 .05 .03 .04

Mean Absolute Error .17 .17 .19 .19 .18 .19 .18 .21 .20 .21 .21 .20 .21 .22

Correlates*
With Error

Oc
-.35 -.27 -.31 -.36 -.39 -.35 -.37 -.37 -.30 -.37 -.39 -.36 -.32 -.35

P.
Oe

-.17 -.08 -.10 -.16 -.20 -.15 -.17 -.14 -.07 -.15 -.16 -.14 -.09 -.10

*idelity (validity)

00
.98 .98 .98 .98 .98 .98 .98 .97 .97 .97 .97 .97 .97 .97

*Correlations with test length (rok and Pak) were not computed since test length (k) vas constant.

pools to yield larger average errors than the moderately discriminating

item pools.

.40

.30

.20

w
2
w
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0-

Figure 1
Bias and Mean Absolute Error as a Function of Item

Discriminations, for the Perfect Item Pool with No Guessing

mean absolute error Wel

bias (440

.5 10 15 2.0 25 ao
DISCRIMINATION (a)

As in Study I, errors of estimate (61.-0i) correlated negatively with

0 (-.27 to -.39) and with 6 (-.08 to -.20). Again, these correlations

suggest a regression effect.
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The fidelity coefficients were all .97 or .98, as "predicted" by the

posterior variance termination criterion value. Interestingly, the lower

fidelity coefficients occurred at the higher item pool discrimination

values.

Table 4
Test Length, Mean Errors of Estimate, and Correlates of Ability (0) and Test Score (41

as s Function of item Discrimination (a) in the Perfect Item Pool, with %%corrected Guessing

Item Discrimination (4)
Property .7 .8 .9 1.0 1.25 1.5 1.75 2.0 2.25 2.5 :45 3.0

Test Length
Mean 100 71 52 41 33 27 18 13 11 9 7 7 6 5

Minimum 100 71 52 41 33 27 10 13 11 7 7 6 5

Maximum 100 71 52 41 33 27 18 13 11 7 7 6 5

Errors of Estimate
Mann (Dias) .57 .40 .47 .42 .37 .14 .30 .27 .29 .31 .12 .11 .29 .29

Mean Absolute Error .58 .48 .48 .46 .42 .34 .37 .37 .36 .40 .39 .38 .37 .39

Correlates*
With Error

POe
-.51 -.46 -.49 -.4k -.48 -.43 -.44 -.36 -.31 -.11 -.32 -.12 -.12 -.32

P4 -.29 -.23 -.23 -.19 .-.20 -.13 -.16 -.04 -.01 6', .05 .05 .07 .02

Fidelity (validity)
.97 .97 .96 .95 .95 .95 .96 .94 .95 .91 .91 .91 .42 .91

*Correlations with test IltngW (rat and rok) were not ronpoted Glace test (arat-71 wag constant.

Uncorrected-guessing condition. As Table 4 shows, the test length data
were identical with those obtained under the no-guessing condition. Table 4
and Figure 2 show that both mean algebraic errors (bias) and absolute errors
were quite high (.57, .58) for the a=.50 item pool and decreased as a in-
increased, to about a=1.25. For a>1.25 the mean errors seemed ro level
off, with moderately large values for both bias and absolute error.

.60-

.50-

40-

.30

20

10

0

Figure 2
Bias and Mean Absolute Error as a Function of Item
Discriminations, for the Perfect Item Pool with

Uncorrected Guessing

mean absolute error Wel

lb t5 20 2a 30

DISCRIMINATION (a)
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As before, errors of estimate correlated negatively with ability; the
magnitude of the correlations were large for aw.50, then decreased as a
increased, until approaching a constant value at a>1.75. Again, these
correlations suggest a regression effect. The correlations of errors with
ability estimates, r-

ee
, followed a different trend under this condition

thanwassemprodoway:r.Oe was -.29 for a-.50, then showed a steady

algebraic increase with a, to a value of .07 at c.2.75.

Fidelity coefficient values were everywhere lower with uncorrected
guessing than with corrected guessing, and decreased steadily from .97 to
.91 as a increased. As expected, fidelity increased with test length.

100-

80-

60

40

20

0

Figure 3
Number of Items to Termination, with .20 Guessing
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MEAN
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to 15 20 2:5

DISCRIMINATION (a)

Corrected-guessing condition. Figure 3 graphically depicts test

length as a function of item discriminatory power (a). The vertical bars

in Figure 3 indicate the range of test length at a given a-level; the dot
indicates the mean test length for that level. As Table 5 and Figure 3

show, some variance in test length was present for all a levels except
(where the termination criterion never was reached). Mean test length

to termination varied inversely with item discrimination, as in the other

conditions. Even with this perfect item pool, the termination criterion
was achieved in fewer than 30 items only for a>1.00.

As Figure 4 shows, the bias of estimate was small but positive under
the corrected guessing condition, increasing to meaningful levels only as

item pool discrimination exceeded a'2.25. Mean absolute error was almost

constant across levels of a.
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Table 5
Test Length, Mean Errors of Estimate, and Correlates of Ability (0) and Test Score (0)

as a Function of item Discrimination (a) in the Perfect Item Pool, with Corrected Guessing

Item Discrimination (a)
Property .5 .6 .7 .8 .9 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Test Length
Mean 100 99 77 60 48 40 27 20 16 13 11 10 9 9
Minimum 100 93 66 52 42 33 21 14 11 8 7 6 6 5

Maximum 100 100 SS 69 57 49 32 26 21 19 18 16 15 14

Errors of Estimate
Scan (Bias) .04 .03 .02 .03 .02 .04 .01 .01 .01 .02 .04 .06 .07 .08

Mean Absolute Error .22 .18 .16 .18 .19 .19 .16 .17 .19 .20 .18 .20 .19 .21

Correlates

With Error

"e4
-.39 -.36 -.25 -.39 -.42 -.35 -.37 -.37 -.38 -.39 -.25 -.37 -.33 -.33

P.
Oe

-.17 -.18 -.09 -.20 -.19 -.18 -.18 -.19 -A4 -.14 -.10 -.08

With Test Length
P
Ok

...* .54 .80 .78 .78 .81 .81 .82 .85 .88 .85 .88 .90 .88

Ok
...* .56 .82 .81 .80 .83 .82 .84 .87 .89 .86 .90 .91 .90

Fidelity (validity)

Poo .97 .98 .99 .98 .98 .98 .98 .98 .98 .98 .98 .97 .97 .97

*Correlations not computed since test length (k) was constant.

As was seen in Study 1, test length correlated strongly with ability
(and ability estimates) where it was free to vary (Table 5). Since test

termination takes place only after a specified reduction of the posterior
variance has occurred, the large positive rok correlations indicate that

the rate of posterior variance reduction is a function of ability level,
with more rapid reduction taking place as ability (0) decreases.

AO-

.30-

tx

2
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Figure 4
Bias and Mean Absolute Error as a Function of Item
Discriminations, for the Perfect Item Pool with

Corrected Guessing

mean absolute error li-el
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As seen under the other conditions, Table 5 shows that errors of
estimate correlated negatively (-.25 to -.42) with ability and with ability
estimates (-.09 to -.23). As in the no-guessing condition, all fidelity
coefficients were .97 or .98, with the lower value occurring at the higher

item discrimination levels.

Conclusions

Study 2 supports the findings of Study 1 and extends them somewhat.
As in Study 1, the Bayesian testing strategy resulted in very high fidelity
coefficients with relatively short tests, provided the item discriminating
powers were 1.0 or greater. The Study 1 finding of positive overall bias
of estimate was corroborated here: Only one of the forty-two bias estimates
was negative. Especially noteworthy was the effect of uncorrected guessing
on both the ability estimates and the fidelity coefficients: Bias was
severe, and fidelity actually decreased as discriminating power increased.

Under the corrected-guessing condition, the finding of a strong

positive correlation between test length and 0 or 0 was replicated consis-
tently. It is important to note that this condition was obtained under
conditions of a "perfect" item pool; this implies that the high correlation
does not result from inadequacies of the item pool. Since there was no
variance in test length when no guessing was assumed (i.e., for the no-
guessing and uncorrected-guessing conditions), the phenomenon would seem
to be due to the scoring formulae in some way. The phenomenon by itself
is of little concern unless it results in different measurement properties
at different levels of ability. This may be the case; some of the proper-
ties of the sequential test seem to improve with test length. If test
length is consistently greater as ability increases, then the test may be
measuring less well as ability decreases, due simply to the effects of test
length.

Study 3: Effects of Fixed Test Length

Background and Purpose

The results of Study 2 make it obvious that with guessing a factor,
test length increases with ability level when the posterior variance cri-
terion is used to terminate testing. It was suggested that some measure-
ment properties of the test may suffer as a consequence. Two properties
which seem to be affected adversely by short test length are bias and mean
absolute error, both of which increased as item discrimination became very
high (and test length very short) in the no-guessing and corrected-guessing
conditions (see Tables 3 and 5). Another property which should be
adversely affected by very short test lengths is fidelity. Study 2 noted
a small but consistent decline in fidelity at the very high discrimination
levels (see Tables 3, 4 and 5). Additionally, Jensema (1972) noted a
similar phenomenon, which he termed "correlation drop-off".

This study explored the effect of administering the same number of items
to all examinees, on the same properties which were of interest in Studies
1 and 2. This was done by means of simulating fixed-length Bayesian tests
for the corrected-guessing condition, under various item discrimination

20
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levels. To avoid loss of generality, the "perfect" item pool was again
employed.

Method

Variables. Dependent variables were the ability estimates (5) and the
posterior variance (4) after a fixed number (k) of items had been adminis-

tered. Independent variables were simulated ability (0) and item discrimi-
nating power. Nine levels of discriminating power were studied: a =.6,

.8, 1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0. Examinees were the same 100
simulated ability values (0i, 2=1, 2, ... 100) used in Studies 1 and 2.

Item pools. "Perfect" item pools were simulated, as described in
Study 2; i.e., the locally optimum item difficulty was calculated after each
item response, and an item having that difficulty level was artificially
generated and administered.

Response generation and test administration. Item responses were simu-
lated in the same manner as in Studies 1 and 2. Test administration was
identical with Study 2, except that all "examinees" were administered 30
items. After 30 items, the individual ability (Oi ), the estimate (6

i
), and

the posterior variance (440) were recorded for each examinee.

Analysis. A total of nine test administrations were simulated (one at
each item discrimination level). For each administration these sequential
test properties were estimated as described in Study 1: bias, mean absolute
error, roe, r- , and x40. Additionally, for each administration, the corre-

lations of the posterior variance with 0 and 6 were calculated.

Results

Table 6 and Figure 5 contain the results of Study 3. To facilitate
comparing the 30-item test length with the posterior variance termination
criterion, comparable data from Study 2 are included in Figure 5.

As Figure 5 shows, the overall bias of estimate was virtually zero in
all item pools, except for the asg.60 aad a=2.5 item pools. Mean absolute
error decreased steadily as a function of a, and was lower for fixed test
length than for the variable test length conditions for all discriminations
larger than a=1.50. As in Studies 1 and 2, error (61.-01.) correlated

negatively with 0 and 6, suggesting a regression effect.

As Table 6 shows, the posterior variance correlated positively with

0 and é, with the magnitude of the correlation generally diminishing as

a increased (e.g., r"
2 was .86 for a=.6, and .74 for a=3.0). This trend

30
corresponds to the one seen in Studies 1 and 2--test length correlates

strongly with ability when posterior variance is held constant.
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Figure 5
Mean Absolute Error and Bias for Two Different

Test Termination Criteria
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The fidelity coefficients increased with the item discriminating
power, from .93 ab aa.60 to .99 at amm1.5 and higher.

Table 6
Errors of Estimate and Correlates of the Bayesian Sequential Test Ability
Estimates as a Function of Item Discrimination, for 30-Item Test Length

and Corrected Guessing, with Perfect Item Pool

Item Discrimination (a)

Property .6 .8 1.0 1.25 1.5 1.75 2.0 2.5 2.75

Errors of Estimate
Mean (Bias) .09 .01 -.01 .02 -.01 .00 .01 .04 .01

Mean Absolute Error .33 .28 .21 .17 .15 .12 .12 .12 .09

Correlates
With Error
r
Oe

r-
Ge

-.41

-.04

-.30

.01

-.36

-.13

-.34

-.15

-.40

-.24

-.32

-.19

.32

-.18

-.51

-.36

-.36

-.23

With Posterior Variance
I'
03

2

m

roa2

.86

.93

.85

.90

.89

.90

.81

.84

.82

.82

.77

.79

.69

.69

.76

.72

.74

.73

Fidelity

roe .93 .95 .97 .98 .99 .99 .99 .99 .99
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Conclusions

It is apparent that some improvement in the properties of the
Bayesian testing procedure can be realized by setting test length constant,
provided that item discriminatory power is sufficiently high (e.g.,
greater than a=1.5). Bias seems to be diminished, and absolute error
decreases as discrimination increases.

Study 4: Effects of Ability Level
and Item Pool Configuration

Background and Pur)ose

Simulation studies of Owen's Bayesian sequential test procedure
typically have concentrated their attention on group statistics. For

example, Urry (1971, 1974) and Jensema (1972, 1974) evaluate their results
in terms of fidelity coefficients and mean test length (using a posterior

variance termination criterion). Studies 1, 2, and 3 above have extended
Urry's and Jensema's work by examining additional properties of the sequen-
tial testing procedure, but they also concentrate on group statistics.
With any group statistic, such as a fidelity coefficient, a bias estimate,
or a mean test length, there is a lack of invariance across groups. A

change in the shape of the distribution, or the central tendency and varia-
bility, may alter the magnitude of the group statistic markedly. Therefore,

some distribution-free methods for evaluating the Bayesian sequential
adaptive test are needed. One general method for this is to examine char-
acteristics of the test as a function of ability level.

Given that some properties are to be evaluated as a function of
ability level, it is necessary to select the properties of interest. The

results of Studies 1, 2, and 3 suggest some characteristics of Owen's
procedure which bear further investigation. For instance, there was a
tendency in the preceding studies for positive bias to occur, i.e., for
the group average ability estimates to be larger than the average ability.
Additionally, there was consistently a moderate negative correlation
between ability and the errors of estimate, indicating a regression effect.
The negative correlation between the estimates themselves and their error
further suggests that the regression may be non-linear. The strong positive
correlation between test length and ability indicates that the posterior
variance estimate is being reduce° more rapidly at low ability levels than
at high ones, despite the use of the "perfect" item pools and the presence
of constant item discrimination across all difficulty levels.

Based on the findings of Studies 1, 2, and 3, the present study
examined appropriate properties of the Bayesian sequential testing strat-

egy as a function of ability level. These properties include the form of

the regression of ability estimates on 0, the conditional bias of the
ability estimates, and mean test length. In addition, this study included

estimation of the "information" (Birnbaum, 1968) in the Bayesian test
ability estimates at various levels of ability.
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In addition to estimating the regression, bias and information in the
Bayesian test scores as a function of ability, this study examined the
effect which different item pool "configurations" might have on these
properties. Item pool configuration here refers to the regression of item
discrimination (a) values on the item difficulty (b) values in the item
pool. Studies 1, 2, and 3 above, and all previous research using "ideal"

item pools, have simulated item pools in which a was constant across items
or in which a was statistically independent of b. The presence of no
statistical association between a and b implies that the same item infor-
mation (Birnbaum, 1968, p. 449) is available at all levels of item
difficulty. On the other hand, if there is a statistical relationship
between the discrimination and difficulty values of the items in a given
item pool, there will be'more information available in some ranges of the
ability continuum than there is in others.

Although in theory it is desirable for adaptive testing to assemble
an item pool having equally discriminating items at all the difficulty
levels represented, in practice this has not always been achieved. For
instance, the 58-item pool used by Jensema (1972) to simulate adaptive
testing based on some items from the Washington Pre-College examinations
had very highly discriminating items in its upper difficulty ranges and
low-to-moderately discriminating items in the easy range of difficulty.
Similarly, Lord (1974) reported that the discrimination parameters of his
item pool correlated positively with the difficulty parameters. Practical
implementations of adaptive testing are likely to use item pools in which
the configuration of the item parameters is less than ideal. Therefore,

the effects of different item pool configurations on the psychometric
characteristics of the test scores (or trait estimates) need to be inves-
tigated.

This study investigated three different configurations of the item
pools. Each configuration was characterized by a different slope of the
regression of item discrimination parameters on item difficulty, which in
turn can be characterized approximately in terms of the correlation, rab,

between item discriminating power and difficulty. Identical test simulation
studies were conducted under all three configurations in order to evaluate
any differential effects.

Method

Variables. Dependent variables were the ability estimates (8) and the

number of items (k) required to satisfy the test termination criterion.
Independent variables were the simulated examinees' abilities (0i) and the

configuration of the simulated item pool. Examinees' abilities for each
test administration were simulated by 3100 values of 0i, 100 at each of 31

equally spaced levels in the interval [-3.0404+3.0]. This examinee distri-
bution was used because of the need for relatively large numbers of obser-
vations at each level of 0 in order to estimate accurately the regression
of ability estimates on ability, the conditional bias, and the information
curves.
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Item pools. Three "perfect" item pools were simulated- -one for each
configuration. The three configurations studied included one with a
moderate positive correlation of a with b (referred to hereinafter as
rab +), one with a moderate negative correlation (r

ab
-), and one with no

correlation (r
ab

0). The r
ab

+ configuration favored the more difficult

items with higher discriminating powers, the rab- configuration favored the

easier items, and the r
ab

0 configuration favored no difficulty levels.

As in Studies 2 and 3, after each item response the optimal difficulty
of the next item to administer was calculated, and an item having that
difficulty value was artificially generated and administered. In the
previous studies, the optimal difficulty calculation was based on the
guessing parameter (c) and on the constant discrimination parameter (a) of
the items in the pool. In this study, the same calculation was based on
the mean item discrimination parameter CFO, which was 1.25 for all configu-
rations. In all cases, c was .20.

The item pool configuration was simulated by:

1. Selecting the appropriate bg for the next item from the

perfect item pool as though all ag were equal to ; call

this b* 16 , ag);ggmg
2. Calculating a conditional ag value from a linear transform

of b *g

ag
(S.D. )b*-117

g g ab A g
S. D.B

191

where S.D
'A

is the standard deviation of the ag parameters

in the simulated pool;

S.D.B is the standard deviation of the bg parameters in the

simulated pool;

a
g

, b*
g
, r

ab
,

g
are as previously defined;

3. Adding an error component, es, to the approximate ag, so that

for each item administered a* sa lb* 4e
g g g 2

where a *g is the simulated discriminating power of the item;

a
g
lb*

g
is the approximate discrimination defined above;
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eg is a random number from a normal [0,
e
] population,

such that

0a4ra*S.D.A (1 -r2ab) 1/2. [10]

4. Setting a *g equal to .80 whenever it would otherwise have a

lower value.

Response generation and test administration. Item responses were
simulated in the same manner described in Study 1. Test administration was
identical with Study 1. A posterior variance termination criterion of
021.0625 was used, with an arbitrary maximum test length of 30 items. The

corrected-guessing condition was used. At termination, the ability (0i),

its estimate (ii), and the number of items administered (k) were recorded

for each examinee.

Analysis. For each of the three simulated test administrations, the
following properties of the sequential test were estimated from the 100
observations at each separate ability level (0i):

a. the conditional mean, UiiOi 100E0i [11]

b. the conditional variance, 2 w__Ero
i
_g [12]

c. the conditional bias, bi oI ek-ei [13]

d. the conditional mean test length, klei.

The regression of the trait estimates (6) on ability (0) was estimated
by fitting a third degree polynomial to the 31 conditional means, using a
least squares method. The regressions of bias and test length on 0 were
estimated graphically.

The information in a set of test scores Cr) can be defined as

2

'3c

[116210)
(0) * [14]

0
xle

The "information" value of test scores at any level of ability is an index
of the usefulness of those scores for discriminating among examinees in the

vicinity of that level. A zero information value indicates that the test

scores are useless for making discriminations about a given point; an

infinite information value indicates that error-free discriminations can be
made about that point on the basis of the test scores. Any value between

the two extremes has implications for the probability of making Type I and
Type II errors in classifying persons above or below the point in question.
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The numerator in Equation 14 is the first partial derivative of the
function describing the regression of test scores (x) on the trait (0).
The denominator in Equation 14 is the conditional standard deviation of the
scores. The regression of test scores on 0 can be approximated from
empirical data, if the scores (x) and the latent trait values (0) are known.

Since the Bayesian trait estimates (0) can be treated as test scores,
the numerator of the information function can be evaluated at any point (0")
from the slope of the equation for the regression of 0 on 0. That equation
was calculated from the simulation data as described above. In estimating
the information curves, the first partial derivative (i.e., the slope) of
that polynomial equation was evaluated at each of the 31 0 points used in
the study. The denominator of the information function at each of the
same 31 points was estimated by the square root of the conditional variance
of the trait estimates at that point.

figure 6

Mean Estimated Ability (b) at 31 Ability Poinrs (0)
for the Simulated Bayesian Sequential Test under

Three Item Pool Configurations

Thus for each of 31 points 0", the information at that point, /6(01

was estimated from the test simulation data, as
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[

a

30'E(810']
2%, (15)e (° ')

No'

where E(8I0') is the third degree polyno...ial regression fitted to
the 31 test score means

0(410') is the square root of the observed variance of the
100 test scores at 0'.

Results

Regression of 0 on 0. Figure 6 is a plot of the observed mean ability
estimates (8) as a function of actual trait level (0) differentiated by item
1.col configuration; Appendix Table A-1 shows the numerical values of these
means. For each configuration, then, Figure 6 contains the graphic empirical
approximation of the regression of 0 on 0. The values for each item pool
configuration form an essentially linear plot for levels of 0 between +1 and
-1, with a tendency toward departure from linearity for values of 0 larger
than +1 and smaller than -1. High abilities are underestimated; low abilities
are overestimated. The exaggeration of this effect seems strongest for the
rab configuration, in which the average item discrimination increased as the

ability estimates decreased.
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Figure 7

Mean Error of Estimate (5-0) at 31 Ability Points (0)
for the Simulated Bayesian Sequential Test under

Three Item Pool Configurations
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Bias. Figure 7 contains the plot of conditional bias (mean (8-0)) on
abilliTtnumerical values are in Appendix Table A-1 as 0. For each
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configuration, the curve described by these data is non-linear. As Figure 6
showed indirectly, the conditional bias for all three configurations was
close to zero for -1SOS1, but it increased with increases in absolute values
of 0 elsewhere. A strong tendency to underestimate high 0 was present in
all three configurations, and was severe for rab-, for which the bias was

-.43 at 003.0. The tendency to overestimate low 0 was even more pronounced,
and was severe for all three item pool configurations. For the rab0

configuration the conditional bias at 00-3 was .53; for rab- the bias at

the same point was .61. If the 0 metric is expressed in population standard
deviation units, then, the Bayesian sequential test estimates may typically
err by one-half standard deviation unit at low extremes of the ability range
and by a lesser but still significant amount at the high extremes. Further-
more, this tendency is systematically affected by the configuration of the
item pool.

Figure 8
Mean Number of Items to Termination (Test Length) at 31
Ability Points (0) for the Simulated Bayesian Sequential

Test under Three Item Pool Configurations
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Figure 8 contains plots of mean test length as a function of ability
level for each item pool configuration (numerical values are in Appendix

Table A-1). For the r
ab

0 configuration, test length was constant at 30

items, the arbitrary maximum. For flab+, where the most discriminating items

were available at the higher difficulty levels, test length was constant at

30 items for 0 levels less than .6, then declined gradually to a mean of 23

items at 003. The r
ab

- configuration, which had higher item discrimination

at the lower difficulty levels, showed a trend opposite that for r
ab

+. For
x.
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r
ab
-, test length increased rapidly with 0 from a mean of 14 items at

Og-3, to 30 items at 0=0; for all 0 greater than zero, the test length was
30 items, the arbitrary maximum.

Figure 8 illustrates two interesting trends. First, not only did the
r
ab- configuration use fewer items than the others, but the rate of increase

as 0 increased is noticeably steeper than the rate of decline in test length
for r

ab
+. Second, for rab +, which required the fewest items at high 0

levels, bias (see Figure 7) was least pronounced at high 0 levels; yet for
r
ab

-, which required fewest items at low 0 levels, there is no apparent

advantage at those levels in terms of bias.

20-

16 -

4
z 12 -
0
I-
I
CC

O
z

4

Figure 9
Smoothed Information Curves for the Bayesian Sequentiil
Test under Three Different Item Pool Configurations

0,,
- ral1 0

*." -- no-

-t0 0 to 20
ABILITY (0)

Information. Figure 9 contains smoothed information curves for the
three item pool configurations. (Numerical values of the estimated slopes,
conditional standard deviations, and information valuei at each of the 31
0 levels are shown in Appendix Table A-2.) For the rep configuration the

information curve shown in Figure 9 is convex, reaching its maximum height
very near 0-0; the curve slopes gradually downward as 0 increases above 0,
and more rapidly downward as 0 decreases from 0. At 0 -3 the information
curve is quite low, indicating that despite the availability of test items

at all difficulty levels, the test scores will discriminate very poorly in

the low ability ranges.
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For the r
ab
+ configuration the information value at 0=-3 is even

lower, but it increases steadily--almost linearly--with 0. The rab+

information curve surpasses that of rab0 at 0>+1, as expected from the

availability of more discriminating items in the higher difficulty ranges.
For the r

ab
- configuration, which had its lowest item discriminations in

the higher difficulty ranges, the information curve is quite low at high
ability levels, and it increases steadily as 0 decreases, to about 0=0.
Surprisingly, the information curve thereafter decreases with 0, reaching
its lowest point at 0=-3. This is 'a striking result in view of the avail-
ability of more discriminating items at low 0 levels for the rab- item pool.

It can be partly, but not entirely, accounted for by the shorter test lengths
seen for the r

ab
- configuration at the low ability levels.'

General Summary and Conclusions

Previous research (e.g., Urry, 1971, 1974; Jensema, 1972) Las shown
that Owen's Bayesian sequential approach to adaptive testing has the
potential of achieving very high correlations between ability level and
ability estimate concomitant with a significant savings in test length,
compared to conventional testing procedures. In order for this potential
to be realized, a relatively large item pool was required, with highly
discriminating items (a >.80) rectangularly distributed on the difficulty

continuum (Urry, 1974). Study 1 corroborated the findings of Urry and
Jensema in terms of test length and values of the fidelity coefficients.
At the same time Study 1 revealed an overall tendency for the Bayesian
trait estimators to overestimate group mean ability level. Also, the
results of Study 1 corroborated the finding in live-testing that with
Owen's strategy test length covaries positively with ability level.

The results of Study 1 were not definitive, partly because finite
item pools were employed. Study 2 overcame the specificity of Study 1 by

introducing the use of a "perfect" (or infinite) item pool, having unlim-
ited numbers of independent items at any difficulty level. At the same
time, Study 2 varied the values of the guessing parameter.

The results of Study 2 suggest that the bias problem seen in Study 1
may be largely a result of guessing; under the no-guessing condition bias
was virtually zero, except for the very highly discriminating item pools.
This relationship was confounded with test length, however, since the

highly discriminating item pools reached the test termination criterion in
a very small number of items (e.g., 5 items at amt3.00). Under the
corrected-guessing condition, bias was consistently positive, and increased
as item discriminations increased and mean test length became very short.
Under the uncorrected-guessing condition, both bias and mean absolute

error were pronounced.

The high correlation between test length and ability level was con-
sistently present in Study 2 under the corrected-guessing condition. Under
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no-guessing and uncorrected-guessing, however, there was no such correla-
tion because there was no variance in test length within a test. Under
the latter conditions, test length varied only across tests--i.e., as a
function of item discriminating power.

In terms of fidelity coefficients, there was no appreciable difference
between those obtained under no-guessing and under corrected-guessing,
given the common termination criterion. Under uncorrected-guessing,
however,4here was some loss of fidelity as test length decreased. It

should be noted that the uncorrected-guessing condition was tantamount to
assuming an inappropriate item response model. The result of using the
inappropriate model to estimate ability and to select items sequentially
was to introduce large errors of estimate and some loss of fidelity.

The observation that bias, absolute error, and fidelity seemed to be
adversely affected by the short test lengths typical of highly discrimi-
nating item pools led to using a fixed 30-item test length in Study 3.
The results confirmed the hypothesis that some undesirable psychometric
properties may accompany the use of very highly discriminating item pools
if the posterior variance criterion is used to terminate testing. When
test length remained constant, bias was virtually zero and absolute error
diminished steadily as item discrimination increased.

The interrelationships of test length, item discrimination, bias, and
absolute error would be a fruitful avenue for further research. If the
interdependencies were understood it would be possible for a test user to
control error magnitudes by appropriate choice of test length, given knowl-
edge of the parameters of the items in the item pool.

Study 4 investigated some of the characteristics studied earlier but
as a function of trait level. The curvilinear regression of the latent
trait estimators on trait level illustrates the conservative nature of Bayes
estimators. Fairly accurate estimation is achieved in the vicinity of the
assumed prior mean, at the expense of accuracy in the extremes. In a
sense, the Bayesian procedure gives little "credence" to extreme trait
values; this conservatism results 4n a consistent tendency to underestimate
high .trait level values and to overestimate low ones. With guessing present

the overestimation problem becomes accentuated. This alone may be suffic-
ient to explain the positive bias seen in Studies 1 and 2: The overesti-

mates tend to be of larger magnitude than the underestimates, resulting in
an overall tendency towards overestimation.

More significant than the direction of the conditional bias is its

form. Under all three item pool configurations in Study 4, the bias curves

were non-linear. In ability testing, bias is not usually of concern as
long as it is constant or linear in the parameter being estimated (Lord,
1970, p. 153), since these two cases imply a linear relationship between
test scores and trait level parameters. Non-linear bias, on the other hand,
implies a non-linear relationship, which in turn adversely affects the
utility of the test scores. Other things being equal (e.g., the conditional
variances of the test scores), if the regression of test scores on trait
level is non-linear, the scores will' rake better discriminations at some

trait levels than at others.
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That this is the case with the scores resulting from Bayesian test
administration is evident in the information curves estimated from the data.
Although adaptive testing has the potential to result in equi-discriminating
ability estimates, the Bayesian sequential adaptive test has failed to
achieve this goal under the conditions simulated in Study 4. Under each
item pool configuration, some region of the ability continuum had consider-
ably higher levels of information under any configuration. Even under the
r
ab
- configuration, where the best discriminating items were available in

the lowest difficulty regions, the information curve was very low in the low
ability region.

Lord (1970, p. 152) indicated that evaluating an adaptive test by means
of a group statistic (such as the fidelity coefficient, roe) presumes some

knowledge of the group's distribution on the trait being measured, and
ignores information relevant to the accuracy of trait estimates at any one
level of the trait. The validity of the Bayesian sequential test trait
estimates, as the results show, was quite high under the conditions used in
these simulation studies. The accuracy of the estimates was also favorable
in what corresponds to the middle ranges, of a normal distribution on 0, but

was found to be less favorable in the extremes, especially the lower extreme.
Similarly, the information curves of the trait estimates showed that the
effectiveness of measurement under the Bayesian testing procedure varied
systematically as a function of the configuration of the item parameters
constituting the item pool, but in all three configurations measurement
effectiveness was very low in the low ranges of the trait.

The observed loss of accuracy and information in the extremes of the
"typical" range of 0 are disturbing, since a major advantage of adaptive
testing over conventional testing is the former's supposed potential for
superior measurement accuracy and effectiveness in those extremes. The data

of this series of studies show that with the exception of the rab+ config-

uration, the adaptive test scores behave much like conventional test scores,
at least in terms of the shapes of their information curves. The utility of
the Bayesian adaptive testing strategy may be diminished by results like
those reported for Study 4, if they prove to be general.

The problems of bias which is non-linear in 0, and of convex infor-
mation curves as observed in Study 4, have causes which may be amenable
to improvement. Central to both problems is the effect of guessing, which
generally operates to reduce measurement efficiency at all trait levels,
and especially at low trait levels. Also at the core of the problems
is the Bayesian procedure itself. As was pointed out earlier, the Bayesian
trait estimates behave like regression estimates. Extreme values of 0
are systematically regressed toward the initial prior estimate; the
assumption of a normal prior distribution of 0 ensures this tendency.
On the average, the more extreme 0 is for any individual, the larger
will be the regression effect. Recall that the item selection procedure
selects an item with difficulty somewhat easier than the current 0
estimate. But for high 0 the current estimate is almost always too low.
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Hence the difficulty of the selected item will almost always be too easy
for extremely able examinees. Cumulated over 30 items, for example,
there will be several effects of this inappropriate item selection:

1. Mean proportion correct will tend to increase as a function
of 0, despite the implicit attempt of the tailoring procedure
to make it constant at all levels of 0;

2. 0 will tend to be underestimated for high 0 due to the inap-
propriate difficulty of the test items administered;

3. Information loss will occur at high 0 due to the shallowing
slope of the regression of 0 on O.

For low 6 the initial prior is an overestimate. Hence the first
item selected will generally be too difficult, yet the examinee has a
chance of answering it correctly by guessing. A correct answer, of course,
will cause an increase in 0 and thus result in another inappropriate choice
of item difficulty. Furthermore, as Samejima (1973) has shown, when
guessing is a factor there may actually be negative information in a
correct response to an item whose difficulty exceeds an examinee's
actual trait level by a fairly small increment. Thus it appears that in
Owen's Bayesian strategy, testees in the low extremes of 0 are rather
consistently being administered overly difficult items with several
systematic results:

1. Mean proportion correct tends to decrease with 0 despite the
tailoring process;

2. Posterior variance reduction tends to be more rapid for individuals
of low trait levels, due largely to their sub-optimal proportion
of correct responses, resulting in shorter mean test length;

3. The shorter the test length, the less opportunity the Bayesian
estimation procedure has to converge to extreme trait level
estimates;

4. Non-convergence combines with negative information in some correct
responses to diminish severely the effectiveness of measurement in
the low regions of the trait.

Some of the conclusions just stated are speculative. Specifically,

neither proportion correct as a function of 0 nor the differences (b -0)

were examined in this study. Both of these reflect the effectiveness of

the tailoring process. McBride (1975), however, reported data which
showed proportion correct to be monotonically related to 0 in another

simulation study of Owen's Bayesian strategy.

One goal of adaptive testing should be to achieve a constant high
level of measurement effectiveness at all levels of O. This objective

is equivalent to a high, horizontal information function. The Study 4
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results show that the Bayesian sequential testing strategy failed to

achieve this goal despite an unrealistically favorable set of circum-
stances: the perfect item pool, error-free item parameters, and a scoring
model perfectly congruent with the item response model. The shortcomings
of the Bayesian trait estimate were attributed to the regression-like
tendency of the sequential estimates themselves, which in turn results in
inappropriate item selection for individuals whose trait levels are
relatively high or low.

There are at least two methods of ameliorating this problem, both
of which to some extent should lessen the bias of estimate at the extremes
and improve the information properties of the trait estimates. The first
method involves the assumption of a rectangular rather than a normal prior
distribution of O. The second method would involve replacing the Bayesian
item selection procedure with a mechanical (e.g., non-mathematical)
branching procedure, which would be less sensitive to large errors in the
current trait estimate in its choice of the next item to administer.
Needless to say, both of these alternatives involve a considerable
departure from Owen's elegant procedure.

Implications. In testing persons of any given ability level, an
ideal adaptive testing strategy would select for administration the most
informative items available at that level. If the item pool were adequate,

the result would be that mean proportion correct would be approximately
constant .cross ability levels, and the information curve of the ability
estimates would be very high and almost flat. Such an adaptive test would
make equally good discriminations at any level of the ability trait. It

would also have approximately equi'alent utility at any level at which
discriminations were to be made. It is apparent from the foregoing
discussion, especially from the data of Study 4, that the properties of
the.Bayesian sequential adaptive test fall somewhat short of this ideal.
The research reported here has shown that the Bayesian procedure results
in very high correlations of ability level and test scores but also results
in ability estimates which are strongly biased in the extremes and which
are maximally informative only in the middle region of ability. If a test
user were concerned primarily with ordering examinees as to ability level,
the Bayesian sequential adaptive procedure would seem quite satisfactory.
However, the tendency of the Bayesian procedure to yield accurate measurement
in the vicinity of the prior mean at the expense of relatively inferior
measurement elsewhere, may mandate selecting an alternative adaptive
strategy if the test user requires either equi-discriminating measurement
over a wide ability range or accurate ability estimation for ability levels
not near the mean. Simulation research by Vale & Weiss (1975) on
the stradaptive ability test (Weiss, 1973) shows that adaptive testing
strategy provides measurement with the desired characteristics. Other

promising strategies for adaptive testing have been proposed by Lord

(1975) and Samejima (1975).
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Table A-2

Estimated Value of the Derivative ip Conditional Standard

Deviation 0010 and Value of the Information Function 2.(0)

for Three Item Pool Configurations, at Each of 31 Trait Levels (0)

Item Pool Configuration

ab
0r

ab
+.71 r r

ab
-.71

ae °Ole 10(0)

aO

de40
re(0)

ae °Ole 16(9)

-3.0 .523 .307 2.90 .588 .336 2.58 .450 .353 1.63
-2.8 .566 .353 2.57 .629 .333 3.57 .511 .308 2.75
-2.6 .607 .328 3.42 .668 .304 4.81 .568 .279 4.14
-2.4 .645 .341 3.58 .704 .283 6.20 .621 .264 5.54
-2.2 .682 .321 4.51 .738 .294 6.31 .670 .268 6.26
-2.0 .716 .330 4.71 .770 .284 7.35 .716 .289 6.14
-1.8 .748

.778

.324

.257

5.33
6.26

.799

.826

.228

.266

12.29
9.64

.758

.796

.289

-1.6 .247

6.87
10.37

-1.4 .783 .311 6.34 .850 .265 10.29 .830 .230 13.01
-1.2 .832 .314 7.01 .872 .261 11.16 .860 .251 11.73
-1.0 .855 .278 9.46 .892 .275 10.52 .886 .235 14.21
- .8 .876 .316 7.69 .909 .278 10.70 .908 .244 13.86
- .6 .895 .283 10.00 .924 .260 12.63 .927 .244 14.44

- .4 .912 .282 10.47 .936 .288 10.57 .9 2 .255 l..66
- .2 .927 .308 9.06 .946 .278 11.59 .953 .284 11.96

0 .940 .305 9.50 .954 .249 14.68 .960 .257 1.96
.2 .946 .253 13.98 .959 .248 14.96 .963 .284 11.50
.4 .959 .255 14.14 .962 .281 11.72 .963 .252 14.59
.6 .965 .287 11.29 .962 .275 12.25 .958 .285 11.31
.8 .965 .269 12.85 .960 .248 15.00 .950 .276 11.85

1.0 .971 .228 18.15 .956 .250 14.62 .938 .336 7.79

1.2 .971 .228 18.13 .949 .250 14.42 .922 .294 9.84

1.4 .968 .218 19.71 .940 .272 11.94 .902 .295 9.36

1.6 .964 .246 15.35 .928 .259 12.85 .879 .301 8.52

1.8- .957 .229 17.46 .914 .292 9.81 .851 .317 7.21

2.0 .948 .263 13.00 .898 .289 9.66 .820 .296 7.67

2.2 .937 .230 16.56 .879 .260 11.43 .785 .321 5.98

2.4 .924 .210 19.35 .858 .255 11.32 .746 .294 6.44

2.6 .908 .227 16.00 .834 .270 9.55 .703 .349 4.06

2.8 .891 .258 16.69 .808 .250 10.46 .657 .332 3.91

3.0 .871 .218 16.00 .780 .279 7.82 .606 .293 4.28
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