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A Computer Simulation Investigating the Applicability of
the Rasch Model with Varying Item Discriminations

In the classical model of item analysis, two principle

characteristics of an item merit attention--these are, of

course, the item difficulty and item discrimination. In many

situations, these indices seem to offer the test user important,

non-redundant information about his test. Most champions of

the classical model would be careful to admonish the user to

be sensitive to the interdependency of his results and the

subjects who have yielded them.

In 1960, however, Rasch (Probablistic Models for Some

Intelligence and Attainment Tests, cited in Lord, F. and Novick,

M., 1968; Whitely and Dawis, 1974; Wright and Panchapakasn,

1969) presented three models to explain misreadings, number

of words read, and genera' achievement; each of these is a

two parameter model, encorporating only the ability of the

person and the difficulty of the measurement to explain the

observed data. The most impressive implication of the models

is that item calibration and individual measurement are inde-

pendent of both each other and the situation in which they take

place.

The suggestion that an examinee's item score depends on

only his ability and the difficulty of the item is an inherently

pleasing one to many people. Without test artifacts like item

discrimination to get in the way, the individual is pitted

clearly against his criterion, and would thus, one might expect,
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supply us with neatly interpretable data. Whether the picture

is as clear as this has yet, of course, to be shown.

The present research artificially generated the results

of several hypothetical tests for which the effects of item

discriminations varied. Fit to Rasch's assumptions was pre-

dicted on the fact that his third model may be understood as

a two-parameter logistic function. With this bridge to more

general models, then, the Rasch assumption of equal discrimin-

ability could be tested.

The clearest demonstration of the relationship between the

person and the item is the item characteristic curve. Here

one theorizes the latent ability of the person (or class of

people) plotted against the probability of getting a particular

item correct. At least since Guilford (1936), it has been

assumid- fliafT vircwra -the -Will-ry r-rwe- of-the t est-,--th+s-pro--------

bability is best described by the normal ogive function. How-

ever, the assumption of normality has been seen by some to

be delimiting. By positing the logistic test model,

40(x) ex

TWg one can neatly avoid the restriction sinceT
Haley (cited in Birnbaum, 1968), has shown that if 4(x) is

the cumulative normal distribution function 10(x)- 44(1.7),0140.01

for all X. Within the context of test theory this model takes

on a specific form credited to Birnbaum, Pg(0) = *(0(0-0], where

a is the difficulty of the item, B is the item discrimination,

and Othe examinee ability. The probability density function of

this model is:
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where U is 1 if the examinee responds correctly on item g

and Ug is 0 if he does not (Birnbaum, 1960. This, then, is

the most general statement of the logistic model encorporating

maximum information about the item and the examinee.

Rasch (1966 a,b) has presented a model which can be seen

as a simplification of this, one in which X=0(0-a) can be

explained in terms of eand aalone, the item.dliscrimination (B)

having been assumed constant across items (hence, here equal

to one). The implications of this lie in the fact that one

can estimate e independently of aand vice versa. As Wright

Pinchapaltatali 1T96St 'have tndfcattli, oweve-r,

implies that:

1. the model is unidimensional;

2. there are no strong relationships among persons
or items other than those specified by the model
so.that responses of persons to items are
stochastically independent given their parameters
in the model;

3. items and persons do not differ substantially with
respect to other response factors not represented
in the model such as item discrimination, person
sensitivity, guessing, or indifference. (p. 2)

The author added that since few can write items as a predeter-

mined discriminating level, it is most feasible to discard

"grossly dissimilar items (p. 4), resulting in a set of
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Items with "similar discrimination and minimal guessing". If

one were to have a decision rule for doing this, he would then

be assured a fortiori of building a test in conformity with

the Rasch model.

The present discussion describes one solution to the

establishment of such a criterion. A Monte Carlo computer

program using the Rasch model was designed to input person and

item parameters, generate probabilities of success, simulate

a test-taking situation, produce the raw item score matrix, and

estimate the parameters of the Rasch item characteristic curve.

All four subsections may be used independently of each other,

parameters can be read in or generated internally, and link-

ups with other subsections are determined only by the Intent

of the user. The subsection which estimates the parameters of

the Raschrelm-Ziiiri-a-trific-di.1-61-141-1-1-IFaijita-sriii31.1-tieitliir

a raw item score matrix or a matrix of probabilities of success.

In addition, the data-generating function follows Birnbaum's (1969)

three parameter model, and the data calibration follows Wright

and Panchapakesan (1969); this allowed the present methodology:

generation of data using Birnbaum for simulation, and analysis

of this data using Wright and Panchapakesan is calibration

based on Rasch's model. Poor calibration would then suggest

lack of robustness of the Rasch calibration to departures from

homogeneity of item discrimination.

The Simulation Program

There are three general foci in the present FORTRAN

simulation. The first reads item difficulties, discriminations,

6
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or person abilities, or generates them according to user speci-

fications. Following this, the parameters are combined according

to the Birnbaum formulation into a person x item matrix of

probabilities. In the second (and actual simulation) phase,

a series of random numbers is generated, each number being

between 0 and 1; these numbers are compared with the probabili-

ties generated in phase one and the "raw data" matrix is

generated according to the rule:

al =4 1 if P(ai=1) > random number

ai = 0 if P(ai=1) < random number

The matrix of airs could have been read in at this point

instead of being generated.

The third phase involves item calibration based on either

the matrix of raw item scores or the person X item matrix of

'in fht fIrst tifth-e-

Rasch (1966 a, b) has shown that, assuming the double parameter

model, total lonwelghted scores, that is lain for person (or

score group) n are sufficient statistics for latent ability,

which Is estimated by the person (or score group) parameter B.

Wright and Panchapakesan (1969) have elaborated Rasch's original

least squares approach; in addition, they have presented a

maximum likelihood estimation which is more precise.

Several points need to be made about this estimation.

First, there is one and only ability level for any one score

(or score group). Second, item calibration (that is, determining

the alpha or item difficulties) generally precedes person



measurement (determining the thetas or person abilities).
n

Third, if E a.. = n, that is, if any item is got-ten correctly
i=i Ii

by all n people, it is useless for calibration. Similarly,

if E
k

a = k, i.e., all items were gotten correctly by person
i=1 in

I, that person's ability cannot be esti-mated, and his responses

contain no information concerning the relative difficulties

of the items.

The least squares and maximum likelihood methods are

briefly treated here; the discussion follows Wright and Pan-

chapakesan closely. The estimation of the item difficulty

is based upon the assumption that, within any score group,

the probability of success on item i is approximately the pro-

portion of people within that score group who produced a

correct response to that item. With the estimate of the dif-
_________

ficulty scaled so that the mean difficulty equals zero, the

standard error of estimate is derived from the variances of

these probabilities using the assumption that the actual re-

sponses to a given item within a given score group are binomi-

ally distributed. Estimation of person measurement.is exactly

parallel to this.

The maximum likelihood estimates are necessary only for

item calibration; the item estimates, generated first, can be

used to calculate directly person abilities. Initially, the

implicit equations for item difficulties and person abilities

are solved simultaneously, using an iterative procedure. Once

the items have been calibrated, the ability estimate for any

examinee depends upon nothing but his total raw score. More-

8
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over, any set of calibrated items may be combined to form a

new test, and a similar set of implicit equations may be solved

iteratively to.determine the ability estimate corresponding

to any possible raw score on the new test. Additionally, these

estimates of theta and alpha are used to calculate the standard

error of estimate of the estimated difficulty.

For each item its goodness-of-fit to the Rasch model is

computed by forming a standard deviate

ail E(aji)

v(a..)1/2
J I

where aji is the obtained item score for person j on item i,

E(aji) is the estimate of aji based on item difficulties (ai)

1/2 .

and person ability (es), and 11(aii) is the standard devia-

tion of the aji. The squares of the standard deviates summed

over people yield an approximate X2 with N - 1 degrees of

freedom which can be used to test the fit of item i to the

model.

Procedure

The central concern of the present research was the effect

of Item discriminations on fit to the Rasch model. It was

believed that a certain tolerance is allowed in the application

of the theory. Exactly how much, of course, was not known.

Degree of fit would be based on the degree to which item

discriminations were the same, that is, did not vary among

themselves. This degree of fit was therefore operatonalized

as the variance of the item discriminations. For the present

simuiations,variances were assumed to be .05, .10, .15, .20,

and .25. One run was also made at a2 = 0 to indicate

9



degree of accuracy of the item calibration. As there was

also some question about the shape of the distribution of

these values, this quality was also varied. Three forms

were used, normal, uniform, and positively skewed. This

latter form is thought to be the most reasonable for a well-

constructed test since discrimination values should never be

negative; with a mean of one, the distribution would skew right.

The actual shape was operationalized as approximately a chi-

square distribution with one degree of freedom. Since the

Rasch procedure automatically scales the person and item param-

eters in such a way as to make the average item discrimination

equal to one, this value was taken as the mean of all distribu-

tions studied. There were thus sixteen simulation runs, one

for the pure Rasch model and three at each degree of discrimin-

__ at-i-on -var+ab4.44.tyl a11-1- hadmeans. e q u al= to.one, A4-4 parameter-s

except item discrimination were held constant. For each run

a test length of 30 items was employed, with item difficulties

randomly sampled from a normal distribution with mean 0 and

standard deviation 1. The obtained random sample which was

used for all runs, had a mean of .113 and a sample standard

deviation of .00, the range being from -1.553 to 2.070.

For each of the sixteen simulation runs, two calibrations

were performed. First, the person X item matrix of probabilities

was calibrated. This approximates the result of administering

the test to an infinite sample and calibrating the data obtained

in the conventional manner. The only difference between this

calibration and calibration on an infinite sample lies in the

10
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fact that when the a priori probability matrix is calibrated

directly, the parameters may vary continuously, while in cali-

brating actual data the ability estimates take on a set of

discrete values, corresponding to each possible total raw score

between 1 and k-1 items correct on a k-item test.

The second calibration of each of the sixteen simulation

runs was performed on a data matrix obtained by simulating

an administration of the test to 75 persons and analyzing the

obtained raw data matrix. The abilities of these persons were

sampled at fixed intervals from a normal distribution with mean

0 and variance 1.5. The obtained sample had a mean of 0.00

and a sample variance of 1.475. While it is known that the

best item calibration is done with a good deal of replicability

within each score group, hence large N (Whitely and Dawis, 1974),

the- computer ti-me and cost-were .prohl.b-i-ti.ve for th4s. The n of

75 was considered sufficient because (1) an additional cali-

bration was obtained on an "infinite" sample, and (2) the

75 "persons" used were "centered on the test", i.e., the test

was of exactly the right difficulty for them, resulting in a

very efficient administration with respect to amount of infor-

mation obtained.

In the computer model, all simulations allow the item

difficulties and discrminations and the Person abilities either

to be read in or generated internally. For the present reseach

all three were generated randomly with the following characteris-

tics. For all runs, the item difficulties were the same, having

been randomly selected form the unit normal distribution. The

11
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person abilities were also normally distributed about a mean

of zero, except they had a variance of four. With these data

fixed, sixteen simulation runs were attempted. The first

used a standard default option built into the program and

generated a unit vector of item discriminations; this, then,

was the run where the precision of the item calibration routine

could be tested since the input was purely Rasch-conforming.

Each of the remaining simulations, however, deviated from the

Rasch assumption of similar discriminations in two ways. Five

of the runs had discriminations uniformly distributed with

mean equal to one and variance equal respectively to .05,

.10, .15, .20, and .25, each run showing increasingly stronger

deviation from Rasch's assumption. For each of these runs,

discriminations were sampled at fixed intervals from the appro-

priate unifOrm distr'ibut'ion. The next f'i've' --ri-muta-ri-ons -had---

discriminations normally distributed around a mean of one and

variances respectively ..05, .10, .15, .20, and .25. Values

were once more sampled at fixed intervals.

The remaining five analyses were based on the chi-square

distribution with one degree of freedom. This distribution

has a mean of one and a variance of two. Data points were

selected in the following manner. Since thirty item discrimin-

ations were needed, the chi-square PDF was broken into thirty

equal areas; the mean of each area constituted the preliminary

data point. These thirty points, with their mean of one and

variance of two, were then converted to a data set having a

mean of one and a variance of .25 using a linear transforma-

12



tIon. This set of points was adjusted slightly to obtain the

desired range of discriminations while holding the first two

moments constant, and, finally, the obtained set was linearly

transfored to each of a set of points having a mean of one

and the variances used above (.05, .10, .15, .20, .25).

13
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RESULTS

The results indicated that the Rasch calibration pro-

cedure is robust to departures from homogeneity of item dis-

crimination but that any tendency for this robustness to be

lost does conform to Rasch's assumption. Table 1 presents

what are believed to be the salient characteristics of the

calibration upon which one might focus. Both item fit and

person fit are described for P matrix calibration and new

data matrix calibration. The criteria of interest are the

mean fit and the most extreme point of lack of fit. While

they are both self-explanatory, it is felt that the Latter

deserves some explication. The extreme instance of misfit

may be misinterpreted unless it is borne in mind that 1) it

is a single score and by its nature an extreme one and 2) for

many of the simulations, they are belived to be outliers.

As a last point, the standard errors of estimate of person

and item parameters a.e rarely less than .1 logit and can be

quite a bit greater.

Several patterns were noted in the results, and while

there have been no statistical tests to confirm them, they

have been included here.

First, 'as is quite striking in Table i, the average item

fit for both the P matrix and the raw data matrix was identi-

cally zero (including rounding errors). in contrast, the

14



fit of persons was zero or negligible for the fits with zero

beta variance or variance of .05 of the distribution were

normal or skewed.

Second, the poorest fit seemed to be for the uniform

distribution, where both the average and maximum misfits

were quite a bit larger than for either of the other distri-

butions.

Third, the patterns acorss increasing variability are

clearer in the theoretical (P matrix) calibration; as can be

expected, the random error introduced in the simulation of

test-taking clouded the issue. Here, both the uniform and

normal distributions of betas showed the expected pattern:

the fit of item and people became worse as the variance of

the betas increased. The pattern for the skewed distribution

was not so clear.

SUPPLEMENTARY ANALYSIS

13 I 1
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An argument for the use of item discrimination may still

be made in terms of the extraction of maximal information

from the test. in order to assess the degree to which unweighted

total score approximates the mathematically correct scoring

in which each response is weighted by its item's discrimination,

the mathematically correct scoring was correlated with the

unweighted number of items correct for each simulation. The

minimum of these correlations across all sixteen simipl.ating

runs was .8069. The magnitude of these correlations suggests

15
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that whatever loss of information the use of unweighted raw

scores might entail could be compensated for by a slight

increase in test length. This conclusion, unfortunately, can-

not be generalized to the case where a test is of inappropriate

difficulty for the examinees. In this case, a correlation

may be induced between item difficulty and item discrimination,

because items at one end of the continuum of item difficulties

represented in the test will function better, and hence appear

more discriminating, than items at the other end of the dif-

ficulty continuum.

CONCLUSIONS

The present research suggests that the lack of an item

discrimination parameter in the Rasch model does not result

in poor calibration in the presence of varying item discrim-

inations. While the robustness of the model to other departures

from assumptions remains to be investigated, such studies

are also indicated for the normal ogive model, more general

logistic models, etc. Until such time as it is shown to be

either inadequate or inferior to some other model, the use

of the simplist model is to be recommended, if only,on the

basis of mathematical elegance and the sufficiency of total

number of items correct as a statistic for subject ability.

The substitution of equal item discriminations, rather

than maximum item discriminations as a goal in item writing,

appears counter-intuitive to the test construction expert

steeped in classical test theory. While it is true that

16



a highly discriminating item is capable of providing more

information concerning the placement of an individual on

the continuum of some latent trait, the highly discriminating

item functions over a narrower range of abilities than a

less discriminating item. An item with perfect discrimination

would provide complete information about a single point on

the ability continuum and no information about any other point.

Therefore, for any given test, there will exist an optimal

range of discrimination. If the test characteristic curve

is to rise steeply through a narrow range of abilities, more

highly discriminating items will be desirable than if the

test is to function over a broad range of abilities.

No guidelines can be provided indicating a specific

range of item discriminations which may be tolerated, first,

because the model is highly robust to differing discriminations

and, second, because in the actual application of the model

the true values of the discriminations are unknwon. Item

discriminations are estimated following calibration, by re-

gressing probability of success of ability in the (linear)

logistic metric. The wrote the fit of an item, the larger

the standard error of estimate of its discrimination may be.

In the light of these considerations, the authors suggest

Wright's (1969) approximate X2 statistics for the evaluation

of fit.



TABLE 1

Degree of Misfit of Item Calibration For All

Fit of Items Fit of Persons

Run a28

P Matrix Data Matrix* P Matrix Data Matrix*

Dist.
Mean

Misfit
Maximum
Misfit

Mean
Misfit

Maximum
Misfit

,

Mean '

Misfit
Maximum
Misfit

Mean
Misfit

Maximum
Misfit

1 .00 - 0 - .1127 0 .5113 .000C .1132 .0600 -1.2834

2 .05 u o -2.8300 0 -3.3306 -.0406 3.0608 -.0893 1.7688

3 .10 u o -3.0390 0 -3.3803 -.1203 2.748i -.1363 2.1622

4 .15 u o - 3.1833 0 -3.5172

7

-.1696

7

3.0961 -.2436 -2.6026

5 .20 u o -3.2942 0 -3.7293 -.2058 3.0978 -.2277 1.4506

6 .25 u o 3.3843 0 -4.3912 -.2358 3.0981 -.3614 -2.5156

7 .05 N o .1453 0 .6251 -.0027. .1310 -.0075 .6004

8 .10

. ..

N o .2203 0 .8546 -.0049 .2628 -.0772 .7857

9 .15 N o .2827 0 .7216 -.0071 .3882 -.0607 .8206

10 .20 N 0 .3387 0 1.0069 -.0092 .5054 -.0543 .8114

*computed by score group



TABLE 1 (continued)

Degree of Misfit of Item Calibration for All

Fit of items Fit of Persons
........

Run o2
o

Dist.

P Matrix Data M Matrix 1 Data Matrix* f

Mean
Misfit

Maximum
Misfit

Mean
Misfit

Maximum Mean Maximum
Misfit

Mean
Misfit

Maximum
Misfit

12 05 S 0 .3011 0 .1016 -.0560 1.0583

1.1696 -.0287 .1139 -.0656 1.5914

.9101 .0237 .3542 .0543 1.7754

.6427 .0247 .4361 .0336 .3533

16 .25 S 0 .6251 0 1.0491 -.0246 .3434 -.0451 .6491



TABLE 2

Correlations Between the Unweighted Total Score
Approxiiations and the Weighted Total

Scores for All Simulations

Simulation

L.

2

3
if
5

6

7
8

9
10

11

12
13

1.4

15
16

2a 0 Distribution

.00. MI,1NO .9.84

.05 U .8123

.10

.1-5
U

U

.8195

.806a
.20 U .8547
.25 .8183

.0.5 N .9921

.10 N .9875

.15 N .9877

.20 N .9885

.25 N .9887

.05 S .9888

.10 S .9851

.15 S .9827

.20 S .9872

.25 S .9786

20
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Limitations of the Present Research and
Suggestions for Future Research

In this study, the only source of misfit which was in-

troduced into the data was nonhomogeneity of item discrimination.

The calibration procedure proved quite robust to perturbations

of this kind. Actual data, however, are influenced by a wide

variety of effects, e.g., guessing, carelessness when items

are too easy, practice effects which distract the shape of

the item characteristic curve and/or induce violations of

the assumption of local independence of persons and items.

These additional sources of misfit raise several questions:

1. If more than one parameter is to be estimated
for each item, is discrimination the best choice
to accompany difficulty, or would more variance
be accounted for by a parameter representing,
say, level of asymptote of the item characteristic
curve (sensitivity to guessing)?

2. Would the Rasch calibration procedure be less
robust to variation in item discrimination if
those variations occured in the context of other
sources of misfit?

3. if variations in item discrimination alone do not
preclude the use of the Rasch model, what evidence
is there that the normal ogive model is superior
to the Rasch model in fitting actual data?'

21
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