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standing of mathematical principles precluded a ciear

)

ITATHEWATICAL FORMALITIES AND ENGINEERING - STUDIES |,

- -
vMan& engineering schoolslhave incorporated a mathematics %
department in their units with the explicit objective to 3
teach "engineering mathematics", as opposed to pure or rigor-

ous mathematic;. The subjecfs in mathematics are taught for
direct application and "unnecessary or tedious" proofs are
omitted or at best presented efaunimportant. As a conse-
quence, engineering students de not have mueh oppoftunity to
acquaint themselves with carefully presented“ﬁathemetical de-
velopments.

Since the englneerlng appllcatlons presented in class
are already well developed and tacitly assumed to be cor-
ect, it may appear that no need exists to.proceed carefully‘
through mathematical proofs. The instructor omits such
proofs in his lectupes, often uniﬁtentiﬁnally "to save .time",
or~sometimes intentionally because he considers them "irrele-
vant" mathematical formalities. For example, no explicit
requirement may ?e stategg that before dividing b& a factor,
this factor should not be zero, 8r no mention may be made =
that a series expansion may be convergen@ onig in. a certain,Lnff”‘%
range. .
. The objective of tﬁiS'péyer is to d;scuss persoﬁal

teaching exveriences in which the lack of a basic'under-
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comprehension of some engineering concepts. N

The consequence of too much confidence!l

7
Too much confidence in "proven" engineering methods may -

lead to inadmissible errors as demonstrated in this first

case presented. In the finite element method for the dynamic
analysis of framed structures, the axial, torsional, and |
flexural actions are expfessed in terms of the elastic and
inertial forces constituting respectively the stiffness and

mass matrices. These matrices relate' the forces to the .
d1splacements or to the acceleratlons of a basic beam element
and are derlved from assumed dlsp}acement functlons. Spe01f1- .
ca}ly, it is assumed that the static deflec§1on curve of a

‘beam element elso representé the deflection for a' dynamic
situation: This~appro@ch permits discrefizing,of the continuous
membe£ py.means of its elastic p?operties as givep ip the
stiffness matrix, and its inertial character%etics as givén
in the consistent mass matrix1.4 A more crude and simple method
of discretizing the inertial preperties of a beam,element is

to sfmply allocate half of its total mass to each end as a .
concenirated lump mass.- The discrétizing process has also

been carried out mathematically by means of the approplate
dlfferentlal equatioh. From this is derlved the dynamlc stlff-

ness matrix.which exnresses the exact relatlon between harmonic

forces and dlsplacements in terms of trangcendental tr}gonometrlc

.
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. and hyperbolic functions.

Some time ago I propgsed'as a topic for a Master's Thesis,

a parametric comparative study of the %hree methods of’discre-
tizing a beam element. The student working on this subggct
wrote a computer program and proceeded to fest the program
selecting simple numerical’values. Specifically, he gavé ﬁnit
values to the modulus of elasticity, moment of inertia,“a%d
otHer parameters; It happened that all these three methods
which normally produce relgtively close results, for the
simple unit valﬁes gave widely different answers. This
unexpected result certainly added more interest to the subject
of this thesis and resulted in a technical paper2 in which it

was shown that so-called stiffness and mass matrices were

‘nothing other than the first two terms of the powef series

expansion of the exact dynamic stiffness matrix. The'méthe—
maticai approach USédNto obtain these matraces, in.contra-
distinction to thé'enéineering approach; allowed the é;ecifi—
catioﬁﬂbf;the range éonvergeﬁce of the resulting series. It
was féund that. the unitaryynumerical values used in testing
the computer program were outside the range of convergence of
the series. Consequently, the fact that these vq}ues led to

“ .

divergent rzjylts with large errors was no lohger surprising

or uhexvected.




Make the.determinant egdgl zero!

The experience despribed above led to'the following second
case. As has already been stated th§ use of the exact equation
for the discretization of féamed structures yields the dynamic
stiffness matrix containing trigonometric and hyperbolic func-
tions. The common procedure %o find the natural frequencies
of such structures is to set the determinant of the dynamic
stiffness matrix equal to zero. In the search for .zeros, the
determinant is evaluated for a series of values of frgquency
in the region of interest. ‘A change in the sign of the value
of the determinant indicates the presence of one.or more natural
frequencies. Iﬁ other words, to find thq natural fréquencies,
the analyst sets the deferminant équal'to zeéo and seaféhes
for its roots. As it happens, the searching process is not

. P , ¢ .
possible for certain values of the argument; faor these values

¢

the determinantal function is not defined. This, difficulty -

occurs in the study of flexural vibration as well as for tor-

sional or axial vibration. The situation can be 'illustrated

for the simple case of an axially-loaded rod._ The go&erning
. <

equation in this ‘case, as given in reference”, is ‘the wave - -

equation

2 2 ' '
3°%u - m_ 3%u =0 . (1)
3 x2 . t2 ‘
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where m is the mass per unit of length, A the cross+sectional
area, E the modulus of elasticit&, and u the displacement at
coordinate x and time t. '

\
The solution of equation (1) yields a harmonic motion of

. amplitude

i

u=1C, singx + C, cos gx - - . (2)

where

ﬁ;f(mqf R | . | | 3)’

~ Qis the natural frequency and.Cl, Cz~are constants ,of inte-

A

gration.

< . .
To obtain the dynamic stiffness matrix for the axially
vibrating element, boundary conditions indicated by equations

(&) and (5) are imposed.

u(x = 0) =g, “u(x = L) = 8- (4)
. . i
du{x = 0) = - -PA_ . du(x = L) = PB
ax .- - " AE Co T, dx AE

o

where 6p» 6 and -PA , PB are respectively the displacements
and fdrées;in the beam element as shown in Fig. 1.7

¢ ' + A'E 4

—1.* 8p.Pp
N
’ |

R \

Fig. 1. Displacement .and forces for axially loaded beam
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Substituting the boundary conditions of equations (4) and (5) \\\\‘

. into equation (2) results in .
s T - o 1 o ‘
A - 1 (6)
X GB L sinBL  cosBL _ | Cy | '
and ‘ ) o )
B S -0 Cy '
= AEB v : (7)
. Py _cosBL ---sinBL . Co

“Equation (6) is solved for the constant of integration,

namely

[:Cl.} ) [:-cotBL _-cosec81,1 N J ) o
N C2 1 - _ GB

subjected to the condition

sinBL # 0 o (9)

Subtitution of equation (8) into equation (7) gives equation
(10) which relates .the forces to the dispE%@%ments at the

coordinates through, the dynamic matrix.

Pa . ~ cotBL ~cosecBL 8a
= EAB (10)
_Pp _-cosecBL  cotBL GB

It is interésting to observe that it.,is.not possible to
/

find the natural frequenciesg for an axially l6aded beam by .

simply letting the determinant of the dynamic stiffness matrix
in equation (10) be equal to zero: Subjeéted to the condition

" given by equation (9), the determinant of this matrix has a’

-
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" constant . value, minus one. Furthermore, the condition given

by equation (9), which is required to obtain equetion (10),
precludes the deternination of‘the;néturai.frequendies from
the determinantal function. The zeros of sinlgL are precisely
the natural frequencies of a beam element undergoing axial
vibrations. For sucﬁ an eleﬁent, the natural frequencies may
be found by equating to zero the'determinant of the 2 x 2
matrix in equation (7), but nog by‘using the dynamic stiffness
ﬁatrix as has been demongtratea. Th}s difficulty arises
because the natural frequencies of the system formed by only
one member or’ elenent are obvieusly the seme as the natural
frequencies of tﬂatlmember. In an actual problem where’fﬁeﬁ\
dynamic stiffness matrix for the system is obtained from
several elements, the determinant of this matrix will not be
defined for those values of fréquency equal to any of the
éatural frequencies of the component elements. This fact
which has been illustrated for an axially loaded beam is
equally valid for torsional or flexural modes of vibfation.
JFurthermord, it should be emphasized that any of these critical
values (the natur»l frequencies for isolated members) actually

may or may not be a natural freqdency for the structure as a

whole.
The nature of the difficulty in finding the natural fre-
quencies by equating the determinant of the dynamic stiffness

matrix to zero lies in the mathematical condition (equation (9)

I3
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for axial vibration) required té obtain the dynamic stiffness
mgtrix of the element. FailGre to give due mathematical regard
to conditions of the nature of equation (9) may produce either
a spurious solution or a paradoxical situation such ds the one

described in this article.

Now make the determinant equal to infinity!

Another situation in which lack of a correct and careful
mathematical treatment leads at best to embarrassihg results
is given‘by the following case described in detail elsewhqreu.
- This caée deals with the dynamic analysis of continuous
beams presented in various texts on sfructural dynamics
(Timoshenko (3), Biggs (5), Fertis (6)). The analysis consists
13f establishing the compatibility conditigns at the intermediate
supports of the beam. These conditions lead to an equation
relating the redundant moments at three consecutive supports,
of the same form as the well:known Equation of Three loments
in statics. Using this procedure, one equation may be written
for each internal supporttgf the continuous beam; the result
is, a system of linear homogeneous equations. In order for any
free vibration of the beam to be poséible, the determinant of i/
the coefficients of the system of equations must be equal to
iero.

To illustrate this method, the particular case of a con-

tinuous beam of two equal spans invariably is -presented in

’

10

-
T W




texts on structural dynamics. For this case there is one
redundant moment and only one equation. The corresponding

coefficient of this equation is set equal to zero, resulting

in the equation

2(coth\ L - cotr L) = 0 (11)
where‘
4J mw? -
A = j—_—_1n :
n -~ EI y (12)

~In this equation, L is the length of one span of the beam,An

is the natural frequency corresponding to the n-mode, m the
mass of the beam per unit of length and EI its stiffness.

The roots of equation (11) are then determined numerically, or

graphically by plotting'y1 = cothxn and y2’= cotAnL as functions
of the argument ) L. The first few of these roots are thus
%ound to Dbe: |

A L= 3.92, 7.06, 10,2, crurrroessonssansens

Up to this point the procedure is a straightforward method

L)

“for finding the eigenvalues of the system and the results

appear to be satisfactory. However, as it is correctly realized

by the authors of the texts on this subject, a whole series of

Sy

eigenvalues are not included among the roots listed above.

According to these authors, the missing values are then detér-
mined by letting. the expréssion on the left side of egmation (11)

-

be equal to infinity, that is

cothi L - cot AL =t e ) _ : (13)

11




10

which then gives the missing roots as‘
AnL = 1, 27, 3ﬂ,‘.. ......... ceecee
The natural frequencies may then.be found by substituting
into equation (12) values of A, and solving for y . Although
the final resu;ts give the correct numerical values\for the
ina%hral frequencies of the two spans beam, it leaves the reader
in a quandary with no explanation forthcoming for the formula-
tion of equation (13), in which the left side of gquation (11)
was set equal to t 0 B
The elucidation of the answer to this question requires
"a careful examination of the mathematical development to the
classic Equatioﬁ of Three i.oments for vibration of continuous
beams. In this derivation it is necessary to divide by the
factor sin,&nL, which for this purpose should be assumed as
not equal to zero, thus, -
sinA L # 0 - (14)
Consequently, this assumpfion precludes, as possible
eigenvalues, the roots of siqgnL = 0, which for the particular
case of a continuous beam of two equallspans, are also eigen-
values~of the problem. The troublesome, unexplained use of
equation (13) ;an be eliminated Aif.the analygis is carried out

mathematically for the smecial case of the beam of two equal

4 -
%

spans. For this case, the reduction’ and expansion of the

determinantal equation is given by

)




%

ST DA . N i . _ '
sin’ A L sinh AL Scos AnIiSlnh AL - sin ) L cosh AnL) =0 (15)

-

b - . .
from which the characterictic roots are found by setting the

. facths'in equation (15) equal to zero, namely, -
O . .
sinh ¥ L = 0 . , ' (16)
sinA L = S (17)
\ )
cos A L sinh A L - cosh ) I:SiIlA 1 =0 . (18)

Equatlon (16) glves iny the trivial solutlon.x ;L = 0, while
equatlon (17) glves correctly the serles of elgenvalues

T,2T,3T.. -+esesss and equation (18) which may be written as

equation (11) for sim. L # 0 and sinhy oL # 0 gives, as before,

4

the series of eigen{falues 3-92, 7-06, 10-2'--00009.01-.0-0-'

?

Conclusions.-

Three'cases have been pn;éentéd to illustrate that the
lack of soundh;athematical treatment of an engineering probléﬁ
could result in an unacceptable or erroneous analys1s. Many
other examples from the classroom or professional practice may
be added to the cases presented. Without taking an extreme
position, I am inclined to believe that engiﬁééring students
should not be exposed exclﬁsivély to applied or ”prgctiéal

mathematics” but also to rigorous presentations by competent

professors of mathemat}cs. In this way the student would

develop an appreciation and respect for mgthehatical formulations,

conditions and proofs.
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