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MATHEMATICAL FORMALITIES AND ENGINEERING'STUDIES

Many engineering schools have incorporated a mathematics

department in their units with the explicit objective to

teach "engineering mathematics", as opposed to pure or rigor-

ous mathematics. The subjects in mathematics are taught for

direct application and "unnecessary or tedious" pioofs are

omitted or at best presented ai-unimportant. As a conse-

quence, engineering students do not have much opportunity to

acquaint themselves with carefully presented mathematical de-

velopments.

Since the engineering applications presented in class

are already well developed and tacitly assumed to be cor-

ect, it may appeAr that no need exists to proceed carefully

through mathematical proofs. The instructor, omits such

proofs in his lectures, often unintentionally "to save,time",

or,sometimes intentionally because he considers them "irrele-

vant" mathematical formalities. For example, no explicit

requirement may be state4,that before dividing by a factor,

this factor should not be zero, or no mention may be made. /*

that a series expansion may be convergent onl j in_a

range.

The objective of this paPer is to discuss personal

teaching exneriences in which the lack of a basic'under-

standing of mathematical principles precluded a clear

1-



2

comprehension of some engineering concepts.

The consequence of too much confidences
r

Too much confidence in "proven" engineering methods may

lead to inadmissible errors as demonstrated in this. first

case presented. In the finite element method for the dynamic

analysis of framed structures, the axial, torsional, and

fle)Eural actions are expressed in terms of the elastic and

inertial forces constituting respectively the stiffness and

mass matrices. These matrices relat4 the forces to the,

displadements or to the accelerations of a basic beam element

and are derived from assumed displacement functions. Specifi-

cally, it is assumed that the static deflection curve of a

beam element also reptesents the deflection for &dynamic

situation. This approLch permits discretizing of the continuous

member by. means of its elastic properties as given in the
1

stiffness matrix, and its inertial characterfstics as given

in the consistent mass matrix 1
. A more crude and simple method

of disgretizing the inertial properties of a beam element is

to simply allocate half of its total mass to each end as a

concentrated lump mass.' The discretizing proce-ss has also

been carried out mathematically by means of the apprqpiate

differential equation, From this is derived the dynamic stiff-

ness matrix which expresses the exact relation between harmonic

forces and displacements in terms of tranpcendental trigonometric

I ( 4



3

and hyperbolic functions.

Some time ago I proposed 'as a topic for a Master's' Thesis,

a parametric comparative study of the three methods of discre-

4rt
tizing a beam element. The student working on this subject

wrote a computer program and proceeded to test the program

selecting simple numerical values. Specifically, he gave unit

values to the modulus of, elasticity, moment of inertia, ad

ottier parameters. It happened that all these three methods

which normally produce relatively close results, for the

simple unit values gave widely different answers. This

unexpected result certainly added more interest to the subject

of this thesis and resulted in a technical paper2 in which it

was shown that so-called stiffness and mass matrices were

,nothing other than the first two terms of the power series

expansion of the exact dynamic stiffness matrix. The mathe-

matical approach Used to obtain these matrices, in contra-

'distinctiondistinction to the
.

engineering approach, allowed the specifi-

cation of:the range convergence of the resulting series. It

was found that.the unitarynumerical values used in testing

the computer program were outside the range of convergence of

the series. Consequently, the fact that these values led to

divergent res lts with large errors was no longer surprising

or unexnect d.

+
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Make the determinant equal zeros

The experience described above led to the following second

case. As has' already been stated the use of the exact equation

fo'' the discretization of framed structures yields the dynamic

stiffness matrix containing trigonometric and hyperbolic func-

tions. The common procedure to find the natural frequencies

of such structures is to set the determinant of the dynamic

stiffness matrix equal to zero. In the search for.zeros, the

determinant is evaluated for a series of values of frequency

in the region of interest. A change in the sign of the value

of the determinant indicates the presence of bne.or, more natural

frequencies. In other words, to find the natural frequencies,

the analyst sets the determinant equarto zero and searches

for its roots. As it happens, the searching process is not

possible for certain values of the argument)'fq.r these values

the determinantal function is not defined. This difficulty

occurs in the study of flexural vibration as well as for tor-

sional or axial vibration. The situation can be'illustrated

for the simple case of an axially-loaded rod. The governing

equation in this case, 'as given in referenae3, is the wave

equation

2u m a
2u

= 0
a xz AE TTZ

C
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mhere m is the mass per unit of length, A the cross sectional

area, E the modulus of elasticity, and u the displacement at

coordinate x and time t.

The solution of equation (1) yields a harmonic motion of

, amplitude

u = Ci sin ax + C2 cos ax . (2)

where
, ... 1

a (."
6)'

2 2

is the natural frequency and -C1, Care constants,of inte-

gration.
.

To obtain the dynamic stiffness matrix for the axially

vibrating element, boundary conditions indicated by equations

(4) and .(5) are imposed.

u(x = 0) = (5A
v.

du(x = 0) = -.PA
di 'AE

=L) = 6

cm

BJ

du(x L) = PB
dx AE

()

where oleo OB and _PA ; PB are respectively the displacements

and fdrces in the beam element as shown in Fig. 1.--

O

L

1- 6BPB

Fir. 1. Displacement ,and forces for axially loaded beam
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Subdtituting the boundary conditions of equations (4) and (5)

into eauation (2) results in

and

6

[ 6

A

sin$L

1

cos$L 1

[
= AEr3

-1 0

cos$L --sin$L"

Ci

1-C2

-Equation (6) is solved foi the constant of integration,

namely

C1 ]
=

-cota 'cosecr3L- (SA

L C2 J 1 0
- _ 6B

subjected to the condition

sinkL 0

(6)

(7)

(8)

(9)

Subtitution of equation (8) into equation (7) gives equation

(10) which relates .the forces to the disp4Aments at the

coordinates through, the dynamic matrix'.

r PA

I-PB
= EAr3

cot$L -cosec$L (SA

-cosec$L cot$L o
B

(10)

It is interesting to observe that it.is,not possible to

find the natural frequencieS for an axially loaded beam by

simply letting the determinant of the dynamic stiffness matrix

in equation (10) be eaual to zero. Subjected to the condition

given by equation (9), the determinant of this matrix has a.
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constant.value, minus one. Furthermore, the condition given

by equation (9)-, which j,_s required to obtain equation (10),

precludes the determination of'tite:_natu'ral.frQqueno.ies from

the determinantal function. The zeros of sini9L are precisely

the natural frequencies of a beam element undergoing axial

vibrations. For such an element, the'riatural frequencies may

be found by equating to zero the' determinant of the 2 x 2

matrix in equation (7), but no, by using the dynamic stiffness

matrix as has been demonstrated. This difficulty arises
I

because the natural frequencies ,of the system formed by only'

one member or)element are obviously the same as the natural

frequencies of that member. In an actual problem where-The---

dynamic stiffness matrix for the system is obtained from

several elements, the determinant of this matrix will not be

defined for those values of frequency equal to any of the

natural frequencies of the component elements. This fact ,

which has been illustrated for an axially loaded beam is

equally valid for torsional or .flexural modes of vibration.

)Furthermore, it should be emphasized that any of these critical

values (the natur=al frequencies for isolated members) actually

may or may not be a natural frequency for the structure as a

whole.

The nature of the difficulty in finding the natural fre-

quencies by equating the determinant of the dynamic stiffness

matrix to zero lies in the mathematical condition (equation (9)

9
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for axial vibration) required to obtain the dynamic stiffness

matrix of the element. Failure to give due mathematical regard

to conditions of the nature of equation (9) may produce either

a spurious solution or a paradoxical situation such as the one

described in this article.

Now make the determinant equal to infinity!

Another situation in which lack of a correct and careful

mathematical treatment leads at best to embarrassing results

is given by the following case described in detail elsewhere 4 .

This case deals with the dynamic analysis of continuous

beams presented in various texts on structural dynamics

(Timoshenko (3), Biggs (5), Fertis (6)). The analysis consists

1

of establishing the compatibility conditions at the intermediate

supports of the beam. These conditions lead to an equation

relating the redundant moments at three consecutive supports,

of the same form as the well-known Equatio4 of Three Moments

in statics. Using this procedure, one equation may be written

for each internal support of the continuous beam; the result

is a system of linear homogeneous equations. In order for any

free vibration of the beam to be possible, the det6rminant of

the coefficients of the system of equations must be equal to

zero.

To illustrate this method, the particular case of a con-.

tinuous beam of two equal spans invariably is-presented in

10
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texts on structural dynamics. For this case there is one

redundant moment and only one equation. The corresponding

coefficient of this equation is set equal to zero, result)ng

in the equation

where

2(cothXnL - cotX nL) = 0'

4 m w 2

=
n EI

9

(12)

In this equation, L is the length of one span of the beam, An

is the natural frequency corresponding to the n-mode, m the

mass of the beam per unit of length and EI its stiffness.

The roots of equation (11) are then determined numerically, or

graphically by plotting yi = cothxn and y2 = cotAnL as functions

of the argument xnL. The first few of these roots are thus

found to be:

x nL,= 3.92, 7.06, 10.2,.

Up to this point the procedure is a straightforward method

for finding the eigenvalues oZ the syStem and the results

appear to be satisfactory. However, as it is correctly realized

by the authors'ofthe texts on this subject, a whole series of

eigenvalues are not included among the roots listed above.

According to the'se authors, the missing values are then detSi-:

Mined by letting. the exprdsSion on the left side of equation (11)

be equal to infinity, that is

cothX nL - cot XL ='4. co (13)

11



which then gives the missing roots as

A
n
L I, 2ff, 3ff,=

10

The natural frequencies may thenbe found by substituting

into equation (12) values of Xin and solving for wn. Although

the final results give the correct numerical values for the

natural frequencies of the two spans beam, it leaves the reader

in a quandary with no explanation forthcoming for the formula-

tion of equation (13), in which the left side of equation (11)

was set equal to ± co.

The elucidation of the answer to this question requires

"a careful examination of the mathematical development to the

classic Equation of Three i;oments for vibration of continuous

beams. In this derivation it is necessary to divide by the

factor sin AnL, which for this purpose should be assumed as

not equal to zero, thus,

sinATIL 0 (14)

Conseqtlehtty, this assumption precludes, as possible

eigenvalues, the roots of sin AL = 0, which for the particular
o"

case of a continuous beam of two equal spans, are also eigen-

values of the problem. The troublesome, unexplained use of

equatiop (13) can be eliminated ,if .the analysis is carried out

mathematically for the snecial case of the beam of two equal

spans. For this case, the reduction' and expansion of the

determinantal equation is given by

12



sin3 A n1 sinh X
n
L (cos °A

nL.
sinh x nL - sin x nL cosh x nL) = 0 (15)

from which the characterictic roots are found by setting the

, factors' in equation (15) equal to

sinh X nL = 0

sinXnL ='0

zero, namely,

cos X
n
L sinh

n
L - cosh A nL sin A

n
L = 0

Equation (16) gives 2nly the trivial solution AhL = 0,while

equation (17) gives correctly the series of eigenvalues

and equation (18) which may be written as

equation (11)

the series of

(16)

(17)

(18 '

for sir- ,,nL / 0 and sinhx nL / 0 gives, as before,

eigenvalues 3.92, 7.06, 10.2'

Conclusions-

Three cases have been prifsented to illustrate that the

lack of sound mathematical treatment of an engineering probeni

could result in an unacceptable or erroneous analysis. Many

-, other examples from theclaSsroom or professional practice may

be added to the cases presented. Without taking an extreme

position, I am inclined to believe that engineering students

should not be exposed exclusively to applied or "practical

mathematics" bilt also to rigorous presentations by competent

professors of mathematics. In this way the student Would

develop an appreciation and respect for mathematical formulations,

conditions and proofs.
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