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DEBUGGING SIMPLE PICTURE PROGRAMS

1. INTRODUCTION

This paper reports on progress in the developmint-of 'Monitor for

I

Introduction

debug0ging elementary programs., Such research is important both for its
.

.

practical applications as well as for its investigation of concepts
of

. .

which
1
are fundamental to programming skill. A computer monitor called

MYCROFT has been designed that can repair, simple programs for drawing

pictures [Goldstein 1974j. The reasons to develop such monitors are:

1. to provide a more precise understanding ot the nature of
programming skills;

2. to facilitate the development of machines capable of
debugging and expanding upon the programs given them by
humans; and

3. to produce insight into the problem solving process so
that it can be described more constructively to students.

O

MYCROFT is intended, to supply occasional advice to a sttict to aid .

in' the debugging of programs that go awry. °(-Just as the' system's

namesakO, Mycroft Holmes, occasionally supplied advice to. his younger

brother Sherlock on particularly difficult cases.) In this interaction,

the user suppliesstatements that describe aspects of the intended

picture and plan, and the system fills in details of this commentary,'

diagnoses bugs and suggists corrections. In this paper, however, I

shall not emphasize this interactive role. Instead, my primary purpose

will be to describe MYCROFT as a model of the debugging process. This

is reasonable since MYCROFT's utility as an adviiir stems directly from

its underttanding of debugging skill.,

MYCROFT is able to correct the programs responsible for the bugged

pictures shown in figures 1.1 1.3,.1.4 and 1.5 so that the intended

pictures are achieved. In this paper, the debugging of figure 1.1, a

4 4

to,
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typical example, will be thoroughly/explained. Figures 1.3, 1.4 and 1.5
e

are, corrected in analogous ways: see [Goldstein 1974] for details.'

'Intended MAN

FIGURE 1.1

INTENDED TREE

Picture drawn by NAPOLEON

FIGURE 1.3

FIGURE 1.2

.40

Picture drawn by
bugged TREE program

'

J
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Intended WISHINGWELL

Intended

FACEMAN

Picture drawn. by bugged WISHINGWELL
program

FIGURE 1.4

Picture drawn by bugged
FACEMAN program

FIGURE 1.5
10
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These pictures- are drawn by program manipulation of a graphics

device called the.turtle which has a peg that can leave a track along

the turtle's path. Turtles play an important role in the LOGO

environment where children learn problem solving and mathematics by

programming display turtles, physical turtles with various sensors, and

music boxes papert 197,1, 1972j. Turtle programs have proven to be an

excellent starting point for teaching programming to children of all

ages, and therefore provide a reasonable initial problem domain for

building a program understanding system.

The context of MYCROFT's activity is the interaction of three kinds

of description: graphical (i.e. the picture actuat drawn), procedural

(the turtle program used to generate the picture) and predicative (the

collection of statements used to describe the desired scene), For

MYCROFT, debugging is making the procedural description produce a

graphical result that satisfies the set.of predicates describing intent.

Thus, debugging here is a process that mediates between different

representations of the same object.

1.1 FLOWCHART OF THE SYSTEM

The organization of the monitor system is illustrated in figure 1.6.

Input to MYCROFT consists of the user's programs and a model of the

intended outcome. For the graphics worldifthe model is a conjunction of

geometric predicates describing important Ooperties of the intended

picture. MYCROFT then analyzes the program, building both a Cartesian

annotation of the picture that is actually drawn and a plan explaining

therelationsilip between the program and model. (Any or all of the plan

can be supplied directly by the user, thereby simplifying MYCROFT's

task.)
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The next step is for the system to interpret the program's

performance in terms of the model and produce a description of the

discrepancies. These discrepanc4s4are expressed as a list of the

violated model statements. The task is then for the debugger to repair-

each violation. The final output is an edited turtle program (with

copious commentary) which satisfiei the model. (Occasionally, the,plan

that MYCROFT hypothesizes requires implausible repairs--for example,

major deletions of user code--resulting in the debugger asking the Plan-

finder for a new plan.)

The remainder of this first section describes the debugging of

NAPOLEON (figure 1.1) and introduces some important ideas about the

nature of plans. Section 2-describes the annotator used to document the

performance of turtle programs. Section 3 intrdduces the gah-finder

and section 4 diTcusses the debugger. -Section 5 concludes with

suggestions for future research.,

1.2-PICTURE MODELS

To judge the success of a program, MYCROFT requires as input from

the user a description of intent. A declarative language has been

designed to 'define picture models. These models specify important

properties of the desired final outcome without indicating the details

of the, drawing process. The primitives of the model language are

geometric predicates for such properties.as connectivity, relative

position, length and location. The following models are typical of

those that the user might provide to describe figure 1.2.
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MODEL-MAN
MI PARTS HEAD BODY ARMS LEGS
M2 EQUITRI HEAD
M3 LINE BODY a '\
M4 V ARMS, V LEGS
M5 CONNECTED HEAD BODY, CONNECTED BODY ARMS, CONNECTED BODY LEGS
M6 BELOW LEGS ARMS, BELOW ARMS HEAD
END

MODECV
MI PARTS LI 1.2
1112 LINE LI, LINE ,L2

H3 CONNECTED LI L2 (VIA ENDPOINTS)
END

MODEL EQUITRI
P11' PARTS (SIDE 3) (ROTATION 3)

MZ FOR-EACH SIDE (z (LENGTH SID ) 100)
M3 FOR-EACH ROTATION (i (DEGREE ROTATION) 120)
M4 RING CONNECTED SIDE
END.

The MAN and V models are un erdetermined: they do not describe, for

.
example, the actual size of the pictures. The user has lat e in his

descripticin of *tent because iilYCROFT.is,designed only to debug programs
/

that are almost` correct: The efore, not only the model, but also the

, . \
picture drawn by the programiand the/definition of the procedure provide

clues to the purpose of the program.

1.3 THE OWOLEON EXAMPLE

MYCROFT is designed to repair a simple class of procedures called

Fixed-Instruction Programs. These are procedures. in which the

primitives are restricted to constant inputs. Sub-procedures are

allow ; owever, no conditionals, variables, recursions or iterations

are permitted. Given belowlre the three programs which drew figure

1.1--NAPOLEON, VEE, and TRICORN. The "<-" commentary, is called the plan

and was generated by MYCROFT to link the picture models--MAN, V and

EQUITRI--to the programs.



Goldstein 9 Introduction

TO NAPOLEON
10 VEE .

20 FORWARD 100
30 VEE
40 FORWARD 100
50 LEFT 90
60 TRICORN
END

TO VEE
10 RIGHT 45
20 BACK 100
30 FORWARD 100
40 LEFT 90
50 BACK 100
60 FORWARD 100
END

TO TRICORN
10 FORWARD 50
20 RIGHT 90
30 FORWARD 100
40 RIGHT 90
50 FORWARD 100
60 RIGHT 90
70 FORWARD 50
END

-<- (accomplish man)
<- (accomplish legs)
<- (accomplish (piece 1 body))
<- (1nsert'arms body)
<- (accomplish (piece 2 WO))
<- (setup heading (for head))
<- (accomplish head)

<- (accomplish v)

<- (setup heading for 11)
<- (accomplish 11)
<- (retrace 11)

<- (setup heading for 12)
<- (accomplish 12)
<- (retrace 12)

<- (Accomplish equitri)

<- (accomplish (piece 1 (side 1)))
<- (accomplish (rotation 1))
<- (accomplish (side 2))
<- (accomplish (rotation 2))
<- (accomplish (side 3))
<- (accomplish (rotation 3))
<- (accomplish (piece 2 (side 1))_

The turtle command FORWARD moves the turtle in the direction that it

is currently pointed: RIGHT rotates the turtle clockwise' around its

axis.,, A complete description of LOGO can be found in [Abelson 1974J,

but is not needed here.

A Cartesian representation of the picture is generated by the

annotator that describes the performance of the turtle program. The

plan is used to bind sub-pictures to model parts. This allows MYCROFT

to interpret the program with repect to the model and produce a list of

violated model statements. MYCROFT produces-the folloWing list of

discrepancies for NAPOLEON:

(NOT (LINE BODY))
(NOT (BELOW LEGS ARMS))
(NOT (BELOW ARMS HEAD))
(NOT (EqUITRI. TRICORN))

;The body is not a line.
;The legs are not below the arms.
;The arms are not below the head.
;The head is not an equilateral triangle.

MYCROFT is able to correct these bugs and achieve the intended picture

a
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'using both planning and debugging knowledge.

PLANS

This section introduces a, vocabulary for taking about the. structure

of a procedure which is usefUl for understanding both the design and

debugging of programs. A main-step is defined as the code required to

achieve a particular sub-goal (sub-picture). A preparatory- step

consists of code needed to setup, cleanup or interface betweeri me n-

steps. Thus, from this point of view, a program is understood as a

sequenci of main-steps and preparatory-steps. A similar point of view

is found in (Sussman 1973j. The pleb consists of. the purposes linking

-main- and preparatory-steps to the model: in the turtle world, the

/purpose of main-steps is to accomplish (draw) -parts of the model; and

the purpose of preparatory-steps is to properly setup or cleanup the

turtle state between main-steps or, perhaps, to retrace over some
I

previous vector.

A Modulap main-step is a sequence of contiguous code intended to

accomplish a particular goal. This _is as opposed to an interrupted

main -step whose code is scattered in pieces throughout the program. In

90 P
NAPOLEON, the main-steps for the legs, arms and head are modular;

however, the code for the body is interrupted by the insertion of the
P

code for the arms'into its midst. The utility of making this

distinction is .that modular main-steps can often be debugged in private .

(i.e. by being run independently of the remainder of the procedure)

while interrupted main-steps commonly fail because of unforseen--

interactions with the interleaved code associated with other steps of

the plan.

Linearity is an important design strategy for creating programs. It

12
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has tito..stages.. The first is to break the .task intoAndependent'sub-,
,

goals and design solutions (mkin-stepg) for eaCh,;. The second is then to

troduction .

4ombine these main-stepS into a single;procedure\brcohcatenatingthem

into-some sequence, adding (wheredecessary) OreParatory-steps to

provide proper interfacing. The virtue of this approach is that it

divides the problem into manageable sub-problems. A disadvantage is

that occasionally. there may be constraints on the *sign of some main-
,

step° which are not recognized when that stop'is designed independently

of the remainder of the problem. Another disadvantage is that linear'

design can fail to recognize opportunities for sub-routinizing a segment

of code "useful for accomplishing more than one main-step. A linear plan

only of modular main-steps and

may include- interrupted main-steps.

Will be defined as

preparatory steps: a

a plan, consisting

non - linear plan

1.5 LINEAR DEBUGGING

Linearityjs a powerfUl concept forAebugging.as well as for

designing programs. MYCROFT pursues the-following linear approach ro

correcting turtle programs: the debugger's first goal-is tO fix each ,

main-step independently so that the code satisfies all intended

properties of the model part being accomplished. Following this, the

. main-steps are treated as inviolate and relations between model parts

are fixed by.debugging preParatory-steps.: This is not the only

debugging technique available to the system, but it is a valuable one
.0"

because it embodies important heuristics (4.concerning the order in

which violations,should be repaired and (2) for selecting the repair-
.

point (location in the program) at which the edit for each violation

should be attempted.

Followingthis linear approach, MYCROFT repairs the:crooked body and

3
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the open head of NAPOLEON before correcting the BELOW relations.

Repairing these parts is done on the basis of knowledge described in the

next two sections. .Let us assume for the.rimainder of this section that

these property repairs have been'made MAPOLEONappearsas in'figue'
: .

. ,

1.7 -- and concentrate on the debugging of the violated relations.

NAPOLEON with parts corrected,

FIGURE 1.7

NAPOLEON with statement 15

as RIGHT 135

. FIGURE 1.8

Treating main-steps as inviolate and fixing relations. by modifying

setup steps limits the repair of (BELOW LEGS ARMS) to three possible
e'

repair-points: (1) before the legs as statement 5, (2) before the {first

.piece otthe body as statement-15 and (3) beforeTaccomp14shingthearms

as statement 25. MYCROFT understands enough abOut,causality to know

that there is no point in considering edits following the execution'Of

statement. 30 to affect the arms or legs. The exact changes to be made

are determined by imperative semantics for the model primitives. This

is precedural knowledge that generates, for a-given predicate and

location in the program, some possible edits that would make true the

14
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violated predicate. MYCROFT generally contiders_alternatiVe strategies

for correcting a given violation:it prefers thtse edits which produce

the most beneficial side effects, mike &ROal changes to the user's A

. ,

code or most closely satisfy We abstritt forst of the plan.

For BELOW, the Alliterative semantics direct DEBUG to place the legs

below the arms byadding retations at the setup steps. More drastic

modificttions to theuser's code are possible suchas the addition of

position setups which alter the topology of the pictre; however,

MYCROFT tries-to be gentle to the turtle program (usitg the heuristic

that the user's code is probably almoit correct), and cn siders. larger

changes to the program only if the simpler edits do not:succeed:0 The

first Setup loCation considered is the onejmmediately'priOr to

atcoMpliShing the arms. Inserting a rotation as statement 25, however,

does, not correct the violation and is therefore rejected. The next

possible edit point is as statement 15.. Here, the addition f RIGHT 135

makes the legs PARTLY-BELOW the arms andiproduces figure 1.8. This edit

is possible but is notpreferred both because thi legs and arms now

overlap and'because the legsare not COMPLETELY-BELOW,the arms. MYCROFT

is cautious, being primarilyra repairman rather than a designer, and is

reluctant to introduce new connections not described. in the model.

Also, given a choiEe,, MYCROFT prefers the most constrained meaning of

the model predicate. If the user, had intended figure 1.8,'then one

would expect the model deicription to include additional declarations
'

such as ('CONNECTED LEGS ARMS), and (PARTLY-BELOW LEGS ARMS). I

Adding RIGHT 90 as statement 5 achieves (COMPLETELY-BELOW LEES ARMS)

and the NAPOLEON program now produces the intended picture (figure.1.2).

This correction has beneficial side effects in also establishing the

.proper relationship between the head and arms, confirming for MYCROFT

1'
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that the edit is reasonable, since a particular underlying cause is

. Introduction

often responsible for many bugs. thus the result of (DEBUG (BELOO LEGS

ARMS)) is:

.

5 RIGHT .90 <- (setup heading-suChthat (below legs arms)
(below .arms head))

(assume (entry:heading) 270))

The assume'comment records the entry state with respect to which the

sk. .

$1 - edit was made. If the ptogrim is run at a future time in a new
1 .

,

,

), environment, .then debugging is simplified. The cause of a BELOW

violation will now immediately be-seen to be an incorrect assumption,

and the corresponding repair is obvious -- insert code to satisfy the'

entry requirmeents described 14 the assumption. Tis illustrates the
4

existence of levels of commentarybetween the model and the program,

each layer being more specific, but also more,klosely tied to the

particular code And runtime environment of thprogram.

Linear debugging greatly restricts the possibilities thatmust be

considered to repair a violation. It is often successful and

constitutes a powerful first attack on the problem of finding the proper

edit; however; it is not infallible. Non-linear bugs due to unexpected

interactions between main -steps would not be caught by this technique.
4,,

.Figure 1.9 illustrates a non-linear bug. (INSIDE MOUTH HEAD) is

vid:ted but it cane be repaired by adjusting the interface between
\-

these two parts (indicated in figure 1.9 by the dotted line OP) since

the mouth is longer than the diameter- of the head. The imperative

semantics for fixing INSIDE recognize this. Consequently, MYCROFT

resorts to the non-linear technique of modifying main steps to repair a

relation between parts.- The imperative semantics suggest changing the

size of one of the parts because thii'transformation does not affect the

shape of the part and consequently,will probably not introduce new

16
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violations in properties describing the part. Advice is required fromn
\

the .user, to know whether shrinking\the mouth is to bi preferred to

expanding the head. Two more non-linear.debugging techniques are

discussed in the next'two sections: one is based upon knowing the

abstract form of plans and the other uses domain-dependent:theorems

about global effects.

1.6 INSERTIONS

In programming, an interrupt is a break in nort41 processing for the

purpose of servicing a surprise. Interrupts represent an important type

of plan: they are a necessary problemisolving strategy when a process

must deal with unpredictable events. Typical situations where

interrupts prove useful include servicing a dynamic display, and

arbitrating the conflicting demands of a time sharing system. In the

,real world, bidlogical creatures must use an interrupt style of

processing to deal with dangers cletheir environment such as predators.

A very simple type Of interrupt is one in which the program

associated with the interrupt is performed for its side effects and is

' staWtranspireet, i.e; the machine is restored to its pre-interrupt

1. 7
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state before ordinary processing is resumed. As a'result, ihe main

r
Process never notices the interruption. In the turtle world, an

analogous type oforgrization is thatof an insertedmain.

(inset n).. It niturally.arises when the turtle, while accomplishing

one part of a model (the interrupted main-step), assumes an appropriate

entry state for another part (the insertion). An obvious planning

stfategy is to insert a sub-procedure at such a point in the execution

of the interrupted main-step. Often, the insertion mill be state-

transparent: for turtles, this is achieved by restoring the heading,

position and pen state. 'the insertion of the arms into the body by

statement 30 of NAPOLEON is an example of n poiition- and pen- but not

heading- transparent insertion.

Insertions do not share all of the properties of interrupts. For

example, the insertion always occurs at a fixed point in the program

rather than at some arbitrary and unpredictable point in time. Nor does

the insertion alter the state of the main process as happens in an error

handler, ,However, if one focustes on the planning process by which the

user's code was written,-then the insertion as an intervention'in

accomplishint a main -step does have the 41avor of an interrupt.

The FINDPLAN module aids the debugger in a, second way beyond just

the generation of'the plan. This is through the dreation of caveat

comments to warn the debugger of suspiCious code that fails to satisfy

expectations baied on the abttract form of the plan. In particular, if

FINDPLAN observ'es an insertion that is not transparent, then the

A
following caveat is generated:

30 VEE <- (caveat findplan (not (rotation-transparent insert))).

The non-transparent insertion may have been intentional, e.g. the

preparation for.the next piece of the. interrupted main-step may have

h

4
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been placed Within the insertion. The user's program may have prepared

for the next main-step within the insertion: Hence, FINDPLAN does not

immediately attempt to correct the anomalous code. Only if subsequent

debugging of some model violation confirms the caveat. is the code

corrected.

particular

Therc.wal often be many possible corrections for a
ir&

model violation. The caveat is used to increase the

plausibility of those 'edits that eliminhte FINDPLAN's complaint. In

this way, the abstract form of the plan helps to guide the debugging.

For NAPOLEON, analysi4s-of (NOT (LINE BODY)) leads-MYCROFT to

consider (1) adding a rotation as statement 35 to align the second piece

of the body with the first or (2) placing this rotation into VEE as the

final statement. Ordinarily, linear debugging would prevent the latter

as it does not respect the inviolability of main-steps. However, it is

chosen here because of the corroborating complaint of FINDPLAN. The

underlying cause of the bug is a main-step error (non-transparent

insertion) rather than a preparatory-step failure. Thus,

(DEBUG (LINE BODY)) produces:

70 RIGHT 45 <- (setup heading such-that0(transparent vee))

1.7 GEOMETRIC KNOWLEDGE -

Linearity, preparation and interrupts are general problei-solving

strategies for organizing` oals into programs. However, it is important

to remember that domain-dependent knowledge must be available to a
0

debugging system. The System must know the semantics of the primitives

if it is to describe their effects.

The debugger must also have access to domain-dependent information

to repair main-steps in wych the sub-parts must satisfy certain global

relationships. For example,*TRICORN his the bug that the triangle is
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4
not closed. Each main-step independently achieves a side but the sides

do not have the proper global relationship. Debugging is simplified by
11

the explicit statement in the model that:

(FOR-EACH ROTATION (DEGREES ROTATION) 120)).

But suppose the model imposed no constraints on, the rotations. Then the

design of the rotations would have to be deduced from such geometric

knowledge as the fact that N equal victors form a regular polygon ii

each rotation equals 360/N degrees.

The pieces of an interrupted -step such as the first side of TRICORN

are not always separated by a. state-transparent insert. (This would be

a local interruption.) Instead, it is possible that more global

-knowledge is needed to understand the properties of-the intervening code

which'justifies the expectation that the pieces will properly fit

together. In TRICORN4ithe second piece (drawn by statement 70) must be
./

collinear with the first (drawn by statement 10). The global property

of the code which justifies this is that equal sidei and 120 degree

rotations
.

results in closure. Thus, debugging violations of globally

interrupted-steps requires domain-dependent knowledge.

Geometric knowledge does not replace the need for general debugging

strategies: these are still very important to narrow the space of

possible repair-points for correcting a given violation and to choose

between alternative corrections. Section 4 discusses both types of

knowledge in greater detail.

2u
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2. THE ANNOTATOR

DIOugting is impossible without good description of a program's

purpose and performance. MCRQFT begins with the program and a model

(
describing its intended result. Two form of additional commentary ane

411(then. generated: Performance Annotation documents the effect'of running

the program %bile the Ploa explans the intent. This commentary is

organized as sets of as5erticnis in'a database, bound together into

sequences repre5..ent'uty -!lat-hanponed add why. Figure 2.1 shows part of

the database gen oatel t5 describe PAPOLEON. The nodes are organized so

that the .horizontal ax!i Lepre3ents time and is used to answer such

pausal. questions as what chlaues oei.urred to which state-variables and
<3,

which code was rcspons:b!( for those Ltanies. Similar data structures

ior def.cribing prooralr, a..a used by FahlmanA1031 and Sussman 11973 J.

The vertitol epresent teleological abstraction and --

explains the purpose of th( code. Models fit into this descriptive

frame144ork as the hi,,,,aw,t level ef abstraltion. They describe the final

"go,q withrJ,ht ties to '4'ci cplahs or chronological performance. The

nowt lovel is the p are incalinj the ralb-goallerganization for

aecemplishing tL Lfic!. Finally, Lhe to ((elegy rests on a description
,

cif thO teri 1-11., 1 of it' ti *7o pregraa when executed in a

initta7 (_1/7,ont t.

MYCROFT unalYA:s a program by first building a complete

.performance annotation and then applyiog the plan-finder to assign

purp(e,es to the code. Pe.1erilace annotation is-accomplished by running

the user's turtle program in a "careful mile" which produces three kinds

of description.

21
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1. Process Annotation is a description of the output of the
program. It consists of a record of.the effects of executing
each program statement. For turtles, this consists of the
creation of .vectors, vector structures, rotations and points.

2. Planning Advice suggests the segmentation of the program with
respect to accomplishing the model on the basisof such
criteria as global connections.

3. Debugging Advice describes suspicious code by caveat comments
which kid in subsequent debugging.

Details of these three kinds of performance annotation are given below.

The FINDPLAN algorithm is then described in section 3.

2.1 PROCESS ANNOTATION

Process annotation provides a description of the output of a

program and its sub-procedures in terms of some language appropriate to

the purpose for which the program was designed. For example, theN7

performance annotation for an arithmetic program might be in terms of

Mathematical equations to biPsatisfied at various points in the

computation [Floyd 1967]. For turtle programs, an obviouS choice is to

produce a Cartesian description of the picture drawn by the program.

Annotation should reveal the basic effects of the code, free of vagaries

of individual programming style. This would include knowing the

description of a vector, regardless of whether the actual command is

FORWARD, BACK or SETXY. (The last command moves the'turtle to an

absolute position on the screen.)

Annotation produces a sequence of frames. A frame is generated

to describe the execution of each primitive and sub-procedure call.

Each frame is a set of assertions specifying (1) any changes to the

turtle's state and (2) the properties of any picture elements which have

been created. The turtle's state consists of the values of the global

variables :HEADING, :POSITION and :PEN. Picture elements (created as

2
RS
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side effects of executing turtle commands) are vectors, rotations,

points and structures (vector sets drawn by recognizable code segments

such as sub-procedures).

2.2"SEMANTICS FOR TURTLE PRIMITIVES

The process annotation is generkted by imperative semantics

associated with each turtle primitive. These semantics describe the

performance of the turtle command.

SEMANTICS FOR (FORWARD :DISTANCE) ;Draws a vector.-

(:VECTOR <-- (GENERATE-NAME 'V))
;All vertices, rotations, veptoPs and structures
;are given unique names to facilitate later debugging;
;If subsequent investigation reveals that 'the
;particular object has been given telabel by,
;the user, then the system name ii emplaced by the
;user's identifier.

;Describe the Vector in terms of its direction and length.

(ASSERT (x (DIRECTION :VECTOR) :HEADING))
(ASSERT ( (LENGTH :VECTOR) :DISTANCE))
(ASSERT (x (VISIBILITY :VECTOR) <PENUP, PENDOWN, RETRACE>)

;Update the State of the Turtle

(:POSITION <-- (FORWARD :DISTANCE))
;FORWARD :DISTANCE outputs coordinates of the new
;position. Set the turtle state variable :POSITION
;to this new location of the turtle.

(:POINT <-- (GENERATE-NAME 'P))
;If the coordinates are unique, bind :POINT to
;a new name for this position. If not, use the
;old name for the position. If a name already
;exists for this position, record the connections
;occurring at this point between :VECTOR and
;previous vectors.

24
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'SEMANTICS FOR (RIGHT LANG7.E) ;Rotates the turtle.

( :ROTAT1ON (GENERATE-NAME 'R))

;Describe the Abtation in terms of its vertex and degrees.

(ASSERT (a (DEGREES :ROTATION) :ANGLE)
(ASSERT (a (VERTEX :ROTATION) :POSITION)

;Update the State 'of the Turtle

(:HEADING <-- (RIGHT :ANGLE)) ;RIGHT outputs the new heading.

At the level of the process, actual numerical values are

determined .'for the above properties. Because these assertions depend

upon the particular state of the initial environment, this is the most

specific, least abstract level of commentary when compared with the

model and plan.

2.3 PLAN - FINDING ADVICE

d Althugh performance annotation ddei not exaMiee the model, it

can reveal'clues to the grouping of the user's program into main- and.

preparatory-steps which airrin finding the plan.

1.,Sub-precodures that draw visible sub-pictures -

are hypothesized to be main-steps that accomplish
some model part.

2. MaxiMA s'grierces of "invisible" primitives such
as (a) vector-. orawn either by retracing or with the
pen up, (b) rotations, awl (c) PENUP,Commands are
grouped together as possible preparatory-steps.,

3. Maximiti seguelicos of visible vector Anstructions
.plus any inter rotations are grouped as
possible main-steps.

4. Global connections suggest code boundaries. Thus,
maximal segrehces of visible vectors can, be segmented
on the basis of such connections.

This segmentation is tentative and may be revised in the light-of later

consideration of the model.

Suppose NAKLEON wes not subroutinized and, instead,the Arms,
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regs andhead were open-coded (i.e. coded as ink-line, sequences of

primitives rather than subroutinized). The al)ove clues would be.quite
'It

useful by utilizing the global connections between the body, and limbs in

the picture to suggest main-step boundaries.

2.4 DEBUGGING ADVICE

Oddities in the form of the program can create a suspicion of

bugs. The annotator notices these violations using Rational Form

Criteria which are sensitive to unexpected and apparently erroneous

code. -Caveat comments are generated describing these complaints:

Rational Form Criteria are based upon expectations of simple

efficiency and consist of noting seqUences of contiguous uses of the

same primitive, such as FORWARD, RIGHT or PENUP. The annotator

considers the code to be odd: why didn't the user simply coalesce them

into a single call. with a larger input or, in the case of PENUP, include

only the first insitructioit? The answer may be that the user has

forgotten to insert additional instructions. An example would be where

the user had forgotten to insert several RIGHT commands into a sequence

of FORWARD instructions. A caveat stating, that code maybe missing is

placed between each pair of elements in the sequence of FORWARD's. A

,-.,vicilation of rational form occurs in the following triangle procedure

,

because the user has forgotten the first rotation.

TO TR1
10 FORWARD 100 <- (caveat annotator RATIONAL-FORM-V LATION

(sequential-primitive 10' 0))
30 FORWARD 100
40 RIGHT 120
SO FORWARD 100
END

An edit that inserts a rotation into such a sequence of FORWARD

instructions would eliminate the rational form violation and therefore
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be preferred in competition with other corrections which do'not explain

the annotator's complaint. If the debugger corrects the program by

eliminating the annotation caveat, then the underlying cause of the

error is considered to be *Missing Code*.
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3. THE PLAN-FINDER

After performahce annotation, the nextstep in describing the

program is to find.the plan. The strategy to. attempt initially to

find a. linear plan, i.e. to match modal parts with modular main-steps

and relations between model parts with preparatory-steps. This approach

serves to limit the search space, but it is not adequate to recognize

interrupted mainsteps and insertions TheSe "nOn-linearities" are
0

suggested'by suspicions about the cause of violations implied by the

conjectured linear plan. These suspicions are that the cause of the

violation is not an error in the user's program but a mistake in the

plan-finder's linear interpretation of the plan. It additional evidence

confirms the suspicion, the plan-finder corrects its linear analysis and

finds the correct global or insertion type of plan. This approach of

first pursuing a linear interpretation and only 'debugging' this

approach in response to anomalies is a poWerful reasoning mechanism for

,

searching complex spacei. As was noted in section 1, the debugger uses

a similar analysis to simplify finding the proper repairs'.

Plan-finding obtains some guidance from the picture and some
tr

from the program. Thepicture supplies ,such clues as

'(a) gIobal.connections which suggest sub-picture boundariet4

(b) retracing which suggests inserts;

and (c) violations of Model statements which are then used both as
plausibility criteria (to distinguish between alternative
interPretationS) and to,generate suspicion. demons (which look
for non-line_er planning structures).

The program supplies quite different clues about intent. This includes:

(a) sub-procedure structure which aids in recognizing main-steps;

and (b) the order in which the picture is drawn which, when.coMbined
with program-writing criteria, suggests the order in which the

28
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model parts are accomplished.

3.l-PLAN4FINDING AS SEARCH

Finding the Plan

Finding the plan can be conceptualized as a search of a space of

"partial plans". The search begins with the model-, the program and the

performance annotation. A partial plan is an explanation of some

fraction of the model in terms ofthe program. Given a partial plan,

its daughters are the result of generating alternative explanations for

one of the remaining unassigned model parts. A terminal node is reached

whtn all of the model parts have been Aplained and a comPlete plan is a

path froM the root to a terminal node, wherein an explanation is

provided for how each model part is achieved.

A partial plan consists of PURPOSE comments which assign model

predicates to code, unassigned model parts, expectations, the implied

partial'interpretation, and demons.

PURPOSES --These are the basic statements of a plan and appear as

"<-" commentary in the NAPOLEON procedures. Five kinds of purposes

are generated by FINDPLAN: accomplish, insert, setup, cleanup and

retrace,

UNASSIGNED MODEL PARTS - The model specifies a list-of parts. These

are either primitive picture objects (vectors or rotations) or sub-

models. An unassigned part is one without a PURPOSE statement

indicating how it is to be accomplished.

EXPECTATIONS - These are predictions of which part is expected to be

accomplished by the-next main-step. They are based on applying

Program-writing criteria of efficiency and simplicity to the model.

Seethe discussion of Analysis by Synthesis in the next section.

PARTIAL INTERPRETATION' - Model predicates can be evaluated by

ordinary Cartesian geometry using the binding of model parts to code

(which the plan implies) andai annotated description of the code's

effects. A,partial interpretation consists of those model,

predicates whose truth value is known given the current partial

interpretation.

DEMONS - Demons are used to explain subsequent code in such a way

that violations in the partial interpretation are eliminated. The

elimination results from debugging the system's linear analysis and

29
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recognizing the existence of an interrupted or inserted main -step.

The partial plan is complete when all of the unassigned parts

are explained by PURPOSES., Debugging is fixing tbs violations of the

resulting complete interpretation..,

3.2 LINEAR PLAN SPACE

The search is neither a standard breadth nor depth first

exploration of the space. Instead, the system initially assumes a

linear structure to the users plan, looking to assign the parts to

sequential code segments. The possibility that a part is being

accomplished by disjoint segments of /ode or by .insertions is not

considered. This greatly constrains the search space. Branching,

however is not eliminated: for a given program, more than one linear

plan will usually be possible. To choose among the alternatives in this

linear plan space, several plausibility criteria, are used.

1. (Advice) The first is to take advantage of user, annotator or
debugger advice to initialize the partial plan space. Annotator
advice originates in noticing (1)-sub-procedures that have been
previously associated with a model and (2) open-coded sequences
identified as having a common purpose on the basis of non-model clues
like penstate'changes and retracing. (See section 2.3.) The first
produces PURPOSE assertions which form the initial partial plan: the
second SUGGESTIONS which have the effect of causing open-coded
sequences to be treated as sub-procedures. Debugging advice is in
the form of a request that the plan-finder supply a new plan that
does not make certain hypotheses about the program. This interaction
4trises 'when the debugger finds all editing strategies for the current
plan implausible.

2. (Analysis, by Synthesis) Another method is to consider the model from
the point of view of program writing. This leads to two forms of

.advice The first is to assign sub-procedures to model parts if
possible (on the-grounds that the model parts constitute a likely
plan for breaking the picture into sub-goals). The second is to
generate expectations for the order in which the parts are to be
accomplished. This is done by observing transitive sequences:of such
predicates as BELOW and CONNECTED in the model. The heuristic is
that-that these sequences represent'the probable order in ,phich the
parts are accomplished, thereby minimizing retracing.

30
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3. (Static Evaluatiod Function) Ili third method Is a plausibili,
estimate of partial Plans. This estimate is simply the number of
satisfied model statements and expections minus the nudiber of
violated model statements and expectations. If the program is bug
free and the plan is correct, then the plausibility number will be
maximal. At any instant in time, only those plans with the highest
plausibility number are explored. After4tanalyzing a statement of
code, 'the plausibility number'is recompkgeB and the active plans are
rechosen. Inactive plans are "hung" and are not. resumed unless their
active brethren become less plausible. , p

3.3 FINDING THE PLAN FOR STICKMAN

As'an example, let us consider the problem of finding the plan

for NAPOLEON. Recall that the procedure is:

TO NAPOLEON ;See figure 1.1
1COEE
20'FORWARD.100-
30 VEE
40 FORWARD 100
50 LEFT 90
60 TRICORN
END

We shall assume that the VEE sub-procedure has been previously annotated

and asaciated with the V model but thit TRICORN and NAPOLEON haVit just

been defined and their purpose is unknown. By considering suh-

procedures as candidates for accomplishing model parts (analysis by

synthesis), TRICORN'is bound to the EQUITRI model. The result is two

possible initial partial plans. Th

PARTIAL.PLAN.1:
10 VEE <- (accomplish legs)
30 VEE <- (accomplish arms)
60 TRICORN <- (accomplish head)

ese are:

PARTIAL.PLAN.2:
10 VEE <- (accomplish arms)
30 VEE (accomplish legs)
60 TRICORN <- (accomplish head)

Further constraints are imposed by FINDPLAN's program-writing

, expectations. On the basis of BELOW, FINDPLAN expects:

(accomplish legi)1<-> (accomplish arms) <-> (accomplish h, ead)

The double arrow indicates that the sequence may happen in either

forward or reverse order. On the basis of connectivity, the

:3
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expectations are:

(accomplish legs) <-> (accomplish body) <-> (accomplish head)

Taken, together, the result is that statement 10 is believed to

accomplish the LEGS and statement 30 the ARM. Thus, PARTIAL.PLAN.1 is

preferred.

The codeof the program is then considered statement by

statement. Statement 20 draws a' vector And is therefore believed to be

the BODY:' it might be only a piece of the body but this is not pksued

until thelinear assumption thaththe body is accomplished by a modular

main-step is rejected.

Statements 30 and 60 have already been assigned to tharms and

head, respectively. As a result, all of the model parts have been

assigned but statement 40 remains unexplained. FINDPLAN consequently

backtryks and interprets statement,20 as only piece pf-the body. A

demon is created for recognizing the body's completion and plan-finding

recommences at statement 30. Statement 40 satisfies this demon since it

'draws a vector that begins at the endpoint of the first piece of the.

body. The result is that it is considered (piece 2 body). Thus, with0

almost no search, the plan for NAPOLEON is correctly deduced.

TO NAPOLEON <- (accomplish man)
10 VEE <- (accomplish legs)
20 FORWARD 1.00 <- (accomplish (piece 1 body))
30 VEE <- (insert arms body) J

40 FORWARD 100 <- (accomplishpiece 2 body))
50 LEFT 90 <- (setup heading)
60 TRICORN <-(accomplish head)
,END

32
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3,4 NOM- LINEAR PLANS AND SELF CRITICISM

This section explains how interrupted and inserted main-steps

are recognized., When FINDPLAN binds an unassigned model part M to a
4

segment of code C and the resulting interpretation implies model

violations, there are three possible explanations:

1. The code is in error.: a bug has been discovered.

2. C is not intended to accomplish M. Choose enother.interpretation
for C.

3. C accomplishes only a PIECE of M. The remainder of M is achieved
t in pieces.

Possibility 1 requires no special action by FINDPLAN: the

violation will eventually be passed to DEBUG tor correction.'

Possibility 2 requires that the a different linear plan be chosen. This

will occur if the current linear plan becomes less plausible than

alternative linear interpretations when compared in terms of the static

plausibility function described earlier. Possibility 3, however,

represents an error in the plan-finder's linear analysis of the program.

Hence, to take account of possibility 3, demons are generated. These -
demons are looking for better interpretations than the current linear

plan (i.e. interpretations which do not imply as many violations). The

following paragraphs describe the creation of such a demon in the plan-

finding process for TRICORN.

Suppose FINDPLAN has just decided that statement C achieves

model part M and teat this results in a violation because M is too

small. FINDPLAN suspects that M may be being accomplished in.pieces. A

COMPLETION demon, is created looking for subsequent code CC which would

eliminate the violation if CC is interpreted as another PIECE of M. If

such code is found, the action of the demon is to edit, the original

partial plan so that M is now considered as being achieved by an

33
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interrupted main-step: If the code between the pieces of the main-step

returns the turtle to the exit state of the first piece, then it is

interpreted as being an insertion. COMPLETION demons'are also created

when a vector is too short to accomplish an intended connection. An

example occurs in the linear interpretation of TRICORN shown below:

TO TRICORN ;Incorrect linear plan initially deduced.
10 FORA* 50 <- (accomplish (side-1))
20 RIGHT 120 <- (accimplih (rotation 1))

) 30 FORWARD 100 <- (aCcdmplish (side 2))

;At this point in the plan-finding process, the violation
;of unequal sides occurs. A COMPLETION demon is created
;that is looking for a vector of length 50 that could be
;interpreted as the remainder of (side 1).

, 40 RIGHT 120 <- (accomplish (rotation 2))
50 FORWARD 100 <- (accomplish (side 3))

;Here the violation of (side 1) not being connected to
;(side. 3) occurs., A.second COMPLETION demon is created
;that is looking for another PIECE of (side 1) that connects
;to (side 3).

60 RIGHT 120 <- (accomplish (rotation 3))
70 FORWARD 50 <- (accomplish 4)
END

Both of the COMPLETION demons are triggered bistatement 70. The result

is that statement 10 is reinterpreted to accomplish only,..,7N

(piece 1 (side 1)) and statement 70 is assigned the purpose of

accomplithing (piece 2 (side 1)). 'This produces the correct plane

(Other-dimons are created in the plan-finding process for TRICORN.

However, they are never triggered and are therefore not mentioned.).

1
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3.5 SUMMARY OF THE PLAN-FINDER-

The'algorithm for plan-finding performs well when:

(1) The user supplies advice in the form of a partial plan;
(2) The procedure has subroutines;
(3) The procedure has few bugs.

41r

If the program is not subroutinized and is full of bugs, the search

grows unmanageable and difficulties arise in!electing the most

plausible candidate. This performance is quite reasonable in the sense

that similar statements are true of a human problem solver investigating

a strange program.

33 Finding the Plan
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4. THE DEBT GGER

4.1 MODEL VIOLATIONS

The monitor is designed to debug model, violations. These are

recognized by the INTERPRET module (see again figure 1.6) which compares

the output of a syntactically and semantically correci turtle program

(i.e. a program that is'able.to run to completion without requesting any

illegal computations) to the description of intent provided by its

picture model, using the plan to bind sub-pictures to model parts. The

result is a)list of violated model predicates. The program, is

considered correct when all of these violations have been eliminated.

Correcting model violations is accomplished by using two types

of procedural knowledge: (1) a collection of general debugging

strategies for repairing programs and (?) directions for fixing

particular geometric_and4agical predicates. Because overall guidance

is derived from the model, we shall /call this type of analysis model-
.

driven debugging.

442 DEBUGGING AS SEARCH

A debugging strategy is a sequence of editing commands whose

effect is to modify the program so that'it satpfies itsemodel. There

are generall multiple debugging'strategies. for correcting a given set

of violations. These alternative debugging strategies arise, from choice

of the repOr-points at which the corrections are to be made as well as

of the exact meaning that the user intended.

To clarify the issues which arise 4n selecting the best

debugging sequence, it is useful to conceptualize the problem in termsu

of a search metaphor; The space is that of all possible debugging

3i;
0;
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strategies for correcting the program. Each node is a set of model

violations: the origin of the space is thq, initial output of INTERPRET.

An arc is an edit which which leads to * node containing the new (and

presumably smaller) set of violations which are produced by the patched

Code. Branching occurs for each possible patch for correcting a

violation. A, path through the space constitutes a series of edits that
.

transform the program to an acceptable form.

Recognizing the existence of multiple possibilities for

correcting a program, it.is appropriate to ask what knowledge is used

to:

(1) choose the next model violation toobe debugged?
(2) generate the possible corrections for that violation?
(3) choose the most plausible correction?

The following sections answer these questions. Ordering

Criteria are introduced for choosing the seqUence in which the

violations are debugged. A linear approach curtails the number of

possible edit points which""are initially considered. The imperative

semantics of the model predicates are used to generate possible

corrections. Plausibility criteria are designed for selecting among

alternative debugging strategies.

4.3 ORDERING MULTIPLE VIOLATIONS

Multiple bugs are difficult to fix. Guidelines are required to

order the sequence in which the violations are debugged. These °

guidelines reflect an understanding of dependency relationships between.

violations, thereby serving to minimize the unfortunate occurrence of a

correction undoing previous repairs or introducing new violations. The

ordering is done on the basis of preferring to repair:

3 7
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(1) bugs in properties of model parts before bugs
in relations between podel parts;

(2) bugs in intrinsic properties (or relations) before
bugs in extrinsic properties (or relations);

and (3) bugs occurring earliest in the temporal sequence
of execution.

The following paragraphs &Scribe those criteria and explain their

rationale.

4.3.1 Debug Properties Before Relations

The system debugs violations of properties of model parts before

repairing violations of relations between model parts. This is based on

the important heuristic of first having a successful theory of the parts

before attempting an explanation of their interactions. This is more

than good style. The behavior of the interfaces is designed relative to

the entry-exit states of the code for the main-steps accomplishing the

parts. To determine the specific state changes to be made at an

interface, the performance of adjacent main-steps must be established.

Thus the code for sub-pictures mustibe fixed prior to deciding on the

proper edits to the preparatory-steps.

Properties of individual model parts include unary model

primitives (s e. VERTICAL, HORIZONTAL and LINE) as will as user-defined

sub-models (e.g. EQUITRI and V'). The most common relations between

model parts are predicates such as ABOVE, BELOW, and CONNECTED.

4.3.2 Debug Intrinsic Before Extripsic Predicates

The idea behind the next ordering criteria is to estimate the

range of possible locations in the program at which the repair might be

made for each violation. the heuristic is then to fix those violations

36
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1,

of most-limited scope first; both because 'they are easiest and because

of dependency relationships.

Let the scope of a violation be the code between the repair-

point and the manifestation-point. For a property (P M), M a, model

'part, the manifestation - point is the location in the program at which M

is completed and the truth of the statement (P M) can be evaluated. The

repair-point is the location in the program at which the edit is

eventually made to correct the violation. For a relation (R M N), the

manifestation-poinePis the location in the program at which both M and N

have been completed and the relation R can be evaluated.

This criterion would be pointless if there were no way to

estimate the scope of a vplation before entering into the details of

debugging. However, this is not the case. One method for estimating

the scope of a violation is to know whether the property of relation is

intrinsic to the responsible code:

A property (P A) is intrinsic to the code for A if it is

independent of preceding code and entirely dui to the main-step for A.

SimIlarly, the relation (R A B) is intrinsic if it is independent of

code preceding A, assuming that A is achieved before B. , Repair is

simplified by fixing intrinsic predicates before extrinsic ones since

(1) for intrinsic violations, the possible repairpoints.are easier to

find since they cannot occur prior to the code for A, and (2) the proper'

corrections for extrinsic predicates depends upon the the code being

intrinsically correct.

In the world of turtle geometry, intrinsic errors are

distinguished by being independent of the framo.of reference: they

cannot be corrected by translating or rotating the picture. This is

because in the simplified enviionment of fixed-instruction turtle
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programs, code'groups draw rigid bodies. The initial interface of a

code group has the effect of establishing the origin and orientation of

the sub picture but does not affect the local relations among vectors.

Topological predicates (invariant under transformations that preserve

connectivity) and geometric predicates (invariant under translation and

rotation) are independent of the frame of reference and therefore yield

intrinsic vickitioris. Bugs in the following model primitives are afways

intrinsic to the code group' to which they refer: OVERLAP,,INSIDE,

. OUTSIDE, PARALLEL and CONNECTED.

Extrinsic errors are those affected by the initial environment

in which the code group is executed. The initial environment consists

of the bindings of the turtle state variables -- :HEADING, :POSITION and

:PEN. These variables control the orientation, origin and visibility of

the sub-picture as well as its relation to previously drawn parts or the

Picture. Model predicates which depend on the initial state are

VERTICAL, HORIZONTAL, BELOW, and ABOVE.

Debugging intrinsic violations first tends to establish the

proper connections at'interfaces. .Debugging extrinsic relations like

ABOVE then becomes simply a matter of establishing the proper heading at

interfaces.

In the turtlp world, the distinction between intrinsic and

extrinsic predicates is particularly easy to make; however, it remains a

useful debugging distinction in other domains. If a property of a

program is due to some local data structure (such as a bound variable)

or local control structure (such as a loop) end is independent of the

preceding code, then it is intrinsic and worth debugging in private

before extrinsic (whose causes are less easy to isolate) are

repaired.

o
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4.3.3 NAPOLEON's Violations

The following list of violations for NAPOLEON is ordered by the

above criteria:

(Violations of Properties of Parts of NAPOLEON)
(An Intrinsic Violation -- Manifested in Private)

NOT (EQUITRI TRICORN))

(An Extrinsic Violation.- Not Manifested in Private}
(NOT (LINE BOO))

4

(Violations of Relations between Parts of NAPOLEON)
(Temporal girder -- (legs, arms) accomplished before (arms, head))

(NOT (BELOW LEGS ARMS))
(NOT (BELOW ARMS HEAD))

4.1 FINDING THE PROPER REPAIR-POINT

For each violatior4 DEBUG must find the proper repair-point in

the Progrim at which to insert the correction. Of course, the debugger
.

knows that the repair - point cannot follow the code for the parts

mentioned in the violation but this is hardly i sufficient constraint.

Consequently, DEBUG uses two heUristics--Priiate and Linear Debugging--

to liMit the possible locations for the correction.

4.4.1 Private Debugging

An initial heuristic for constraining the Possible repair-points
0

for a violated property is to limit consideration to the code directly

responsible for the model part in question. This is done by running the

responsible code independently of the larger procedure of which it is a

Part. Specifically, the responsible code is executed with the turtle

started at the entry state. The violated properties will be manifested

in this private environment it the main-step is modular. However, if .

there is intervening code, i.e. the main-step is interrupied,Athen the
1

I
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0

linear assumption that the cause is intrinsic to the responsible code

and not dile to interactions may be wrong.

Ifthe violation 13 manifest, the code group is then debugged in

this simplified context, free of the effects of the remainder of the

original program. Private debugging is used to repair the three

incorrect rotations of TRICORN. There are np complications when the "

edited sub-procedure is rejoinewto the NAPOLEON super - procedure.

The relationship between the pitture drawn in private and in

public is simple for fixed-instiliction turtle programs since the picture

is a rigid body and only its orientation and origin is affected by the

initial environment. For more complex programs, difficulty occurs in

finding a representativ'e private environment and further research is

necessary": This is similar to the problem of diagram generation in

geometry theorem proving and to the problem of case analysis in

4

automatic program verification.

The pHvete repair may make assumptions about the entry state to

the code. If this happens, it will be.reflectedin ASSUME comments

regarding the entry state to the wain -step. '"Vhen run again in the real

context, any conflicts between assumptions made in private about the

initial environment and the actual entry' state are themselves debugged.

This is accomplished by adding code to accomplish,the assumptions in the

super-procedure or, if this proves impossible without causing additional

violations:backtracking and attempting an alternative correction in

private.

An example of this Would occur if the model for NAPOLEON had
.1

declared that the-body must be vertical. Debugging the body (statements

20 and 40) in private would result in the assumption being generated

that the entry heading mostlbe 0 or 180 degree*. The code for the body

42
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is then reconsidered_in the context of the NAPOLEON super-procedure.

The actual entry state to statement 20 does not have :HEADING equal to 0

°- or 180 degrees. Consequently, the debugger now attempts to add a

rotation at some preceding point in the program to achieve this entry

state. This addition will most likely occur imiediately prior to

statement 20 or, perhaps, as the initial setup to the NAPOLEON program.

The debugger chooses whether to. prefer 0 or 180, and at which repair-

point, on the basis of side effects, minimal change to the user's

program and planning caveats. This set of plausibility criteria is .

described in section 4.7.

The system also checks for bad side-effects on coderfollowing

the edited sub-group due to a new exit state for the edited code. A

cleanup step may be needed to eliminate undesirable.consequences of the

private repairs. The modified mainLstep may violate protection or

assumption commentary generated by other edits. If so, the standard

practice is to either (1) modify the offended edit in light of the new

structure for the main-step or (2) backtrack and correcting the main-

step in private in some alternative way. See section 4.6 for details on

the protectioniechanism.

Occasionally, when the code is run in private, the violation

does not occur. This happens because the main-step is not modular and

the violation is due to code appearing between pieces of an interrupted

0 main-step. Private debugging remains useful, however, because it

clearly indicates that the cause of the error is in the intervening
0

code. (NOT (LINE BODY)) is an example: the body when run in private is

indeed a line.. The bug is in the effect of the inserted VEE on the

heading of the second vector:

Private debugging is also used to correct intrinsic violations
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of relations. Recall that the definition of an intrinsic relation is

that it is entirely due to the code betweeh the model parts mentioned in

the relation. Hence, the repair-point must occur there. The same

precautions requited when the code is rejoined to the super-procedure--

i.e. satisfying assumptions, and possibly cleaning up--must be taken.

Outside the turtle world where it may not be so easy to decide if a

relation is intrinsic, private debugging can still bq attempted. Just

as 'for properties, if the violation does not appear in private, then it

is known that it is not intrinsic and the system can. look for causes in

preceding code.

4,4:2 Linear Debugging of Relations

Linear Debugging is a technique for limiting the possible

repair - points for correctieg violated relatiOns"Of both the intrinsic

and extrinsic kind. It is based upon the assumption that DEBUG has

already privately repaired the main-steps to satisfy their properties..

The linear debugging technique is to consider editing corrections only

at preparatory-steps and not internal to the.code for the main-steps.

Main-steps are treated as inviolate black-boxes: their contents need

neither be known nor changed. This is based upon the assumption that

the main-steps are independent and that the only corrections necessary

to repair relations is to make adjustments at interfaces. This was the

technique used to debug (BELOW LEGS ARMS).. DEBUG limited the search for

the proper edit by not considering the addition of a rotation to the

interior of the VEE sub-procedure. Instead, it restricted itself to an

analysis of possible corrections at the level of the NAPOLEON super-
.

procedure.

Linear debugging fails when the underlying cause of the
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violation is due to the code for one of the parts. In such a case, it

is necessary to remove the restriction against modifying main - steps. An

example where this occurs was shown in figure 1.9. The violation of the

mouth not being inside the head is caused by the size of the mouth, not

by the interfaCe.

4.5 IMPERATIVE KNOWLEDGE

How is the set of possible edits for repairing a violation

generated? The answer lies in the use of procedural knowledge

associated with the model primitives which provides direction on how to

make the predicate true. The system has imperative knowledge for

logical primitives like equality and conjunction as well as for

geometric primitives appropriate to the turtle world. This imperative

knowledge outputs a set of possible edits whose effect is to eliminate

the violation.

In the NAPOLEON example, (NOT(EQUITRI TRICORN)) is a violation

f a user-model. Such violations are fixed by recursive entry to the

debugger and analyzing the code for the model in private. SuCb

recursion ultimately' reduces the debugging to fixing violations'of model

primitives.

4.5.1 Imperative Knowledge for Geometric Primitives

The following discussion describes in a simplified way the

imperative knowledge associated with several of the model primitives.

Let X and Y be vectors and assume that X is accomplished before Y.
4

a (LINE X .Y) <x> .(ANDPARALLEL X Y) (CONNWED X Y))

The imperative semantics for AND directs debug to establish the two
relations of PARALLIL and CONNECTED. These are defined below.

4 ri
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(PARALLEL X Y) <=> (= (DIRECTION A) (DIRECTION B).(MOD 180))

The annotator records the DIRECTION.of vectors. The repair is to
insert rotations between the code for X and the code for Y so that
the direction of Y becomes equal to the direction of X (mod 180).

(VERTICAL X) <0 (ORA= (DIRECTION.X) 0) (s (DIRECTION X) 180))

Alter preceding rotations so as to make the direction of X 0 or 180.

(CONNECTED X Y)

Choose a connection point on X (P1) and a connection point on
(P2). The connection point is sometimes specified in the model: for
example, the user may have indicated that it should occur LAT
(MIDDLE (SIDE ...))). Then compute the vector V from P1 to P2. The
edit is to add code for V into an interface between X and Y. This
will have the effect of translating Y so that P1 is moved to
coincide with P2.

If the exact position is unknown, deduce it from constraints such as
preferring to effect the code in minimal ways.- This is done by
manipulating individually the length and angle inputs to translation
and rotation interface steps (occurring between the code for X and
the code for Y) and observing if X and Y intersect as a result:
Branch in considering alternative allowable connection positions.

(ABOVE X Y) - (similar technique for BELOW, RIGHT-OF, L6T-OF)

To compute the required correction tor a given interface: assume
that the figure has already been debugged to be topologically
correct--e.g. all of the connections are correct. This implies that
the only degree of freedom in interfaces is the heading.

In considering a given interface, find the range of headings which
satisfy the predicate. The range is determined by first finding the
heading of most restrictive meaning of ABOVE -- CENTERED-ABOVE
wherein'the center of gravity of X is directly'above Y. Then relax
this heading to find the maximum range in which less restrictive
meanings of the predicate--COMPLETELY-ABOVE and PARTLY-ABOVE--re in

true. To select a specific heading to actually edit into the cod
choose the value that satisfies'the most restrictive meaning of
ABOVE. If there is still a range of possible headings, use the

average value. Record the range considered in case later debugging
results in conflicts and another heading must be chosen.

4.5.2 The Rigid Body Theorem

Fixed-instruction turtle programs draw rigid bodies, i.e. the

only effect of the initial runtime environment is to alter the

visibility, origin or orientation of the frame of reference. This
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theorem simplifies the generation of possible repair edits by allowing

computation of the requi ed rotation for HORIZONTAL, VERTICAL and

PARALLEL to be Adrigy once, independently of the point in the code at

which the edit is to be added. This is useful since there are usually

many points at which patching the code must be considered to fix these

violations.

For example, suppose the side of a triangle is to be made

horizontal. The required rotation is computed for the side. However,

if the edit is made immediately prior to the code for the side, the

triangle'shape will be destroyed. TWe rotation, however, can be added

to. preceding code, rotating all subsequent vectors the same amount and

consequently still making the side orizontal.

In general, if the correction is 4 rotation of the frame of

reference, the edit can be added anywhere prior to the code group to be

rotated. If the rotation is to change tile relation between two sub-

pictures, then it can often occur anywhere in the code occuring between

the main-steps which accomplish the sub-picturet.

4.5.4 Imperative Knowledge of Logical Predicates

The general advice for fixing (a (P 410,(P B)) is to use the

imperativ'e semantics for property P to either make (P A) equal to (P B)

or vice versa. For the simple case of fixed-instruttion turtle

programs, the change is usually made to A or B on the basis of which

occurs last. This is preferred because of the siolgid body nature of sub-

pictures. For example, suppose A occurs before B. Then adding RIGHT

:ANGLE before A rotates A but it also rotates B. An opposite rotation

must be added after"A if B is not to be affected by the first edit.

Thus, fixing the sub-picture which occurs first commits the system to
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two changes of the program. Of course, editing the code before B may

also require a cleanup becauie of bad side effects but this is not

inevitable as it is in the first case. This preference is reflected in

the general debugging criteria of.e4oiding conflicts, miniaizing change

to the user's program and preferring beneficial side effects.

Thus, fixing equality consists of:

General Knowledge: Either A or B can be fixed. Prefer to alter the
unprotected element (section 4.6).

D4ain-Dependent Knowledge: Imperative` semantics are provided for
relating primitives to their effects. These semantics are used by
the:annotator to document the effect of a statement of code, and by
the debugger to add the correct code to achieve a desired effect.
For example, to alter the direction of a. vector, the annotation
semantics for FORWARD (section 2.2) indicate that the DIRECTION
property of vectors is equallto the current heading. The annotation
semantics for RIGHT. indicate that :HEAD/NG is incremented by :ANGLE
following execution of "RIGHT :ANGLE". The conclusion drawn by the
debugger, then, is that either "RIGHT :ANGLE" is needed to fix the
direction of B or "RIGHT - :ANGLE" it needed to fix the direction of
A, where :ANGLE equals the difference between the desired direction
and the actual direction.

To fix (AND Cl C2 ..,), correct all of the conjuncts. Order the

debugging attack on the basis of the same criteria used to order the

initial set of violations. Correct,properties of main-steps before

correcting-relations between main-steps. Correct intrinsic.before

extrinic predicates. Debug a given group of conjuncts at the same level

(with respect to the preceding criteria) in temporal order.

See [Goldstein 1974] for a description of imperative semantics

for other model primitives sch as INSIDE, OUTSIDE, OVERLAP, OR, NOT'and

FOR-ALL.

4.6 ASSUMPTION AND PROTECTION

DEBUG generates assumption and protection commentary associated

with each repair to aid in resolving difficulties where an edit causes
V

4
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new violations or undoes the effects of some previous edit. AsSumPtion

about the entry state at the repair-point describe expectations on whith

the imperative semantics based their analysis. Prdtection.cdmmenpary

guards the cosle fromIthe repair-point to the manifestation-point (the

place in the code at which the sub-pictures referred to by the violated

model predicate were completed), again because the details of the repair

depend upon the state manipulations of the code between the edit and the

manifestation- point. Protection is introduced by Sussman in the context

of debugging blocks world programs (Sussman'19731.

A simple example arises for the followidg tree program:

MODEL TREE ;See figure,4.1.
M1 PARTS TOP TRUNK
M2 LINE TRUNK
M3 EQUITRI TOP
M4 VERTICAL TRUNK
M5 COMPLETELY-BELOW TRUNK TOP
M6 CONNECTED TOP TRUNK
M7 HORIZONTAL (BOTTOM (SIDE TOP))
END

TO TREE4 <-
10 TRIANGLE <-
20 RIGHT 60 <-

30 FORWARD 50 <-
40 RIGHT 45 <-
50 FORWARD 100
END

TO,TRIANGLE <-
10 FORWARD 100 <-
20 RIGHT 120 <-
30 FORWARD 100 <-.

40 RIGHT 120 <-
50 FORWARD 100 <-

60 RIGHT 120 <-

END

See figure 4.2 for the picture drawn by TREE4 with the.turtle starting

at the center of the screen and with a heading of zero degrees.

4ii

(accomplish tree)
(accomplish top)
(setuR heading such-that

(overlap (interface statement 30) (side 3 top)))
(retraca (side 3 top))
(setup heading for trunk)
(accomplish trunk)

I

(accomplish equitri)
(accomplish (side 1 triangle))

(accomplish (rotation 1 triangle))
(accomplish (side 2 triangle))
(accomplish (rotation 2 triangle))
(accomplish (side 3 triangle))
(cleanup. position)

(accomplish (rotation 3 triangle))
(cleanup heading)
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Intended TREE

FIGURE 4.1

TREE 4
VERSION 2

Base Made Horizontal

FIGURE 4.3
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TREE 4
VERSION 1

Slanted Base and Trunk

FIGURE 4.2

TREE 4
VERSION 3

Trunk Made Vertical

FIGURE 4.4
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Debugging the base of the TOP to be horizontal results in the

addition of statement 5 to rotate the triangle so that Aike necessary

orientation is established. This produces figure 4.3.

5 RIGHT 30 <- (setup heading such-that (horizontal (side 3 top)))

Debugging the TRUNK to be vertical by modifying the initial setup,

hOwever, undoes this correction (figure 4.4).

)3 RIGHT 45 <- (setup heading such-that (vertical trunk))

The solution is for the initial correction of (HORIZONTAL (SIDE 3 TOP))

to include commentary explaining its purpose, scope and assumptions.

Specifically, this commentary is:

1. an assumption that the ntry-state to statement 5 is :HEADING =O:.
(ASSUME (TREE4 STATEMENT 5) (a :HEADING 0)).

2. a protection to any modifications of :HEADING from statement 5, the
repair-point, to statement 50 of TRIANGLE, the manifestation-point
of the error:

(PROTECT :HEADING UNTIL (TRIANGLE STATEMENT 50)).
Statement 50 is the manifestation-point of the error since it
accomplishes (side 3) and INTERPRET is then able to recognize that
a violation exists-/the base of the triangle is not horizontal.

These comments force the debugger to prefer the alternative repair

strategy of making the trunk ver ic.l by editing the rotation of

statement 40 to be RIGHT '90.

A second use of this commentary, in addition to preventing
I

conflicts between edits, is to simplify debugging the procedure if it i3

ever run in a new environment. Unsatisfactory initial state values are

immediately noticed by the assumption commentary. For example, it

statement 5 of TREE4 contains the assumption that the entry heading

should be 0, then being run in any other environment will generate a

violation. This violation then directs the debugging.

1 3,,

Thus, previous debugging sessions produce comment6, whose
specificity eliminates complex questions of responsibility and
interpretion. The system has, in effect, generated the
snapshots of performance which Naur and Floyd utilize to verify
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programs (Floyd 1967, Naur 1967j.

The assumption comment is passed to the debugger as an instruction and

the result is that code is added prior to statement 5 which converts the

heading to. the desired value.

Often a proteCtion conflict can be resolved. The debugger is

simpfY recalled to achieve the edit which gays rise to the protection,

taking. into consideration the new entry or exit state requirements.

This second call to the debugger involves less effort than the first.

The commentary from. the first remains and indicates the desired

Cartesian state to be achieved at the manifestation-point. If the

second edit succeeds without causing unfixable violations as side

effects, then the system has patched its own edit and need not reject

the basic for", of its current analysis.

4.7 DECIDING BETWEEN ALTERNATIVE DEBUGGING STRATEGIES

More than one debugging strategy is usually available to fix a

given violation. The strategies differ with respect to their estimate

of the failure point and with respect to the type of correction they

apply to fix a given model violation. For example, the imperatiim

semantics for BELOW indicate the desired direction but allow the

correction to be added into any prior interface. In NAPOLEON, the arms

can be made above the legs by adding the appropriate rotation to the

'beginning of the NAPOLEON procedure or immediately following statement

10, the code for the LEGS. The preferred debugging strategy is the one

that does minimal violence to the user's code, reflects the abstract

plan, and fixes the greatest number of violations.

r
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4.7.4 Plausibility on the Basis Jr Side Effects

The first criterion for judging the success of a partial

debugging strategy is an analysis of the side effects of the

corrections. .1he debugging strategy with maximal beneficial side

effects is preferred. Benefitial side effects occur by eliminating

additional model violations, satisfying planningexpectations or'

eliminating violations of rational form.

One might ask why an edit might have any beneficial side effects
at all. Isn't it More likely to have bad side effects and cause
other violations? The answer is that Often several violations
are caused by the same error in the code. Then oho debugging
strategy will stand out from its brethren by fixing this error
and thereby simultaneously curing several violations.

On the other hand, sometimes a Correction causes additional

model violations. In this case, either the new violations can

themselves be debugged or the debugging strategy must be abandoned.

Assumption and protection commentary are used to help in understanding

those bad side effects wherein one edit undoes the effect of some other

debugging edit. If the bad side effect cannotte,eliminated, then the

debugging strategy must be rejected. This is the case with a linear

debugging of GOOGLY.EYES More 4.5).

The oyes cannot be brought into the head by shrinking the interface

without causing them to overlap the nose. Thus this debugging strategy

eliminates one violation (OVERLAP EYE HEAD) only to introduce another

(OVERLAP EYE NOSE). The.system is forced to consider non-linear

debugging and fix the parts themselves.

4.7,2 Plausibility.oa the Basis of Minimal Change

Another plausibility-criterion is that of minimal change to the

user's code. A debugging strategy that changes,An input is preferred to

5:3
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GOOGLY EYES

FIGURE 4.5

Debugging

one that adds statements; and a strategy that adds statements is in turn

preferred to one that deletes them. Therationale is that a repairman

should make minimal changes to a system. The goal is to fix the program

in harmony with the user'sintent,.not to redesign it. This caution is

further justified by the fact that the system does not fully know the

programmer's intent or plan. Hence it must be hesitant to make major

revisions to his program.

4.74 Plausibility on the. Basis of Caveat Comments

A third basis for choosing between alternative debugging

strategies is advice from the annotator and plan-finder on likely

errors. The annotator alerts the debugger to oddities in program

structure which may be the underlying cause of some semantic violation

(section 2.4). The plan-finder fulfills the same purpose with respect.

to code that contradicts expectations arising from the type of plan.

The mechanism of informing the debugger of the possibly erroneous code

is through "caveat" comments. The comments are noticed when the

debugger considers` the associated code in thi courlitaf debugging some

model violation. A repair edit is accorded extra plausibility by till
6
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debugger if the correction eliminates the complaint that'initiated the

caveat:

Caveats generated by the plan-finder. are created by noting

insertions which are not transparent, interrupted-steps which depend on

.specifit runtime environments and linear plans in which main-steps use
w .

the same resource such as an assumptio*lhout a particular estate

variable. In an extended syitem caveats would be generated by such

oddities as iterative programs which fail to halt and shared free
0

variables. As an example, recall that the arms in NAPOLEON rep 'resented'

a non-transparent insert and that,this information advised-the'debugger

to edit the correction into VEA rather than directly into the NAPOLEON

super-procedure.

Comments are used--rather than the Annotator or Plan-Finder

immediately calling the Debugger to correct the violationbecause a

violation of rational form is not a gdaratee of a bug: the oddity may

be harmless or even intended'by the prograTmer. An example in which a

Sequence of FORWARD instructions arises naturally is the following.

triangle program:

The first

TO TRI
10 FORWARD 50
20 FORWARD 50
30 RIGHT 120
40 FORWARD 100
50 RIGHT 120
60 FORWARD 100
END

4

0#

two FORWARD'v are surprising. However, if this TRI is being

debugged in preparation for being converted to'a triangular head with.

the remainder of the stick-man inserted as statement 15, then the

apparent violation of rational form is explained. The utility of

comments is that if the code'is not suspected of being in error by the

rr
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,< debugger, the comment has no effect. It plays a role only if DEBUG

finds a model violation that can possibly be corrected by the

. odd code. Only then does the comment enter into the analysis by

supporting such adding plausibility to debugging strategies that

eliminate its complaint of non-transparent insert or sequential

commands.

4.7.4 Guessing the Culpable Interface

Even with the restriction to linear edits, fixing a predicate

relating two main-steps may produce many possible edits. For example,

making the head above the legs in NAPOLEON could be,done by'adding a

rotation at any of several places in the program preceding the execution

of the TRICORN sub-procedure. tonseqUentlyi the system initially

.considers edits to only two interfaces -- the interface immediately

preceding the second mitin7ste0 (i.e..codi for the model part

accomplished last11100 the initial setup to the program. The. immediate

interface'is preferrOd,00 the expectation that preceding interfaces have
.-,

already been protected in the course of debugging. 'The global setup is

considered because Unexpected Runtime Environment" is a common cause of

errors. The plausibility of these editing points is then amelyzed by(
(

the criteria Described in the preceding sections -- beneficial side

effects, minimal change, and caveats as well as the protection criteria

described in the preceding Section. If they are found implausible,

additional interfaces are considered in order, proceeding backwards from

the second main-step.
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4.8 SUMMARY Of DEBUGGING CONCEPTS

The debugger's knowledge'divides into two categories: general

debugging technique and specifi -imperative knowledge of logic and

geometry.

Debugging Technique

(

1. Linear Attack -- First verify maiq-steps privately. Then analyze
relations in terms of interfaces. Only if all else fails, modify
main-steps to fix relations.

Z. Plausible Search -- Compare alternative debugging strategies using
plausiblity criteria of minimal change to the user's code and
maximal beneficial side effects.

3. Culpable Interfaces -- Prefer either the initial interface or the
interface immediately preceding the bugged module. This is based
on the assumption that the temporal attack has already verifibd
intermediate interfaces.

4. Caveats -- Use caveat comments generated by the Plan-Finder and
Annotator to suggest the location of the repair.

5. Intrinsic versus Extrinsic Errors -- Classify model violations as
intrinsic or extrinsic on the basis of whether the error.is
internal to the code being examined. Intrinsic errors have limited
scope and can be debugged privately..

6. Handling Multiple Bugs -- debug those violations of most-limited
scope first: that is, debug properties before relationv then
intrinsic predicates before extrinsic ones, and finally in temporal
order. t

7. ComMentary -- Use commentary to express the purpose, assumptions
and scope (protection) of a correction and to notice conflicts
between different corrections.

Knowledge of Geometry and LOgic,

1. Imperative Semantics of Predicates In addition to standard
verification code, primitives have:seinapticSthat suggest what to
dd to make the predicate come true.::Thfslconsists of procedural
knowledge which examines code and generatet,edits to make a.
particular geoMetric predicate true.

2. Rigid Body Theorem This theorem is a precise statement of the
effect of the initial environment on a segment of code for Fixed-
Instruction Turtle Programs, namely that the code prodUces a rigid
body and that the. initial environment affects only the orientation
and position.

rJ!
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3. Imperative Knowledge for Logical Predicates - Procedures for making
conjunction, disjunction, negation, equality and.set.membership'
true with minimal effort.

4.9 Classification of Bugs

The following taxonomyof bugs summarizes the types of errors

which'the system corrects.

Linear Main-Step Failure:

Manifestation: Failure of main-step to accomplish model
part in private, i.e. when run independently.

Fix: (Private Debugging) Repair in private, rejoin and
satisfy any initial assumptions.

Ex: (NOT (EQUITRI TRICORN)) in NAPOLEON.

Preparation Error:

Manifestation: Violation of relation between model parts.
Fix: (Linear Debugging) Find culpable interface, make

edit suggested by the imperative ifigetics for the
predicate, and protect aSsumptionsanatehavour until
the point at which the error was manifest.

Ex: See Unexpected Runtime Environment and Local
Preparation Errors

Unexpected Runtime Environment: (type of preparation failure)
Manifestation: Violation due to false assumptions of

the entry state,to program. (Program does succeed in
certain environments).

Fix: Add an initial setup which converts the actual entry
state to the desired entry state.

Ex: (NOT (BELOW LEGS ARMS)) in NAPOLEON.

Local Preparation Error: (type of preparation error)

Manifestation: Violation intrinsic to the program,
and not dependent on the initial environment.

Fix: Modify state appropriate to the imperative semantics
for the violated predicate.

Ex: (NOT (VERTICAL TRUNK)) 4n TREE4.

Non-Linear Main-Step Failure:
Manifestation: Main-step succeeds in private.
Fix: See resource conflicts,' insertion errors,

and global errors described below.

:1
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Unconsidered Second - Order. Constraint on Main -step:
(type of non-linear main-step failure)

Manifestation: Violation of a. property of model part
not detected in private. Manifested by analysis
of a relation between the main-step and some
other model part.

Fix: Modify main-step in such a way that violation is
corrected while the first-order desCription of properties
asserted in the model is still satisfied. Guidance is'
provided by the imperative semantics for the predicate.
Examples of such transformations are dilation and
reflection.

Ex: (NOT (INSIDE MOUTH HEAD)) in BIGMOUTH.

Resource Conflict: (type of non-linear main-step failure)
(Mentioned for completeness: not handled by debugger.)
Manifestation: Violation of property of part

described in model which was not exhibited in private.
Fix: Some assumption made when run privately is being

violated in public. Such-an assumption'could be the
availability of a given resource, e.g. a free variable.

Ex: Attempt to correct both,(VERTICAL BODY) and
(HORIZONTAL (SIDE TOP)) in TREE4 by modifying the
initial interface statement 5 (section 4.6)

Insertion Error: (type of non-linear main-step failure)
Manifetation: Main-step failure not indicated in private

with the additional element that a caveat comment
generated bypthe plan-finder informs the debugger
that the code group for the main-step surrounds an
insert which is not transparent.

Fix: Make insert state-transparent.
Ex: (NOT (LINE BODY)) in. NAPOLEON.

Global Error:

Manifestation: Model part accomplished non-locally fails.
Fix: Find relevant theorem which was the basis of expecting

the global plan to succeed. Find' assumptions made by
theorem which were not justified. Make these assumptions
true.

Ext, (NOT (LINE (SIDE 1 TRICORN))) in NAPOLEON.

5th
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5. CONCLUSIONS

Conclusions

5.1 TOP -LEVEL DEBUGGING GUIDANCE

The top-level organization of Model-driven debugging is to order

the model violations .and then iproceed to fix them in turn. This

technique makes the basic assumption that guidance in fixing the program

can be obtained by analyzing the specific details Wherein the picture

failed to satisfy its description. Alternatively, top-level guidance

can be obtained through:

1. structure- driven debugging - insight into the form of programs,
e.g. such structural considerations as recursive and iterative
control patterns and global versus local variable scope.

2. evolution-driven debugging - the evolutionary or editing history
of the user's code.

3. process-driven debugging - the abstract form a'the process at
the time of the error [Sussman 1973].

A more complete debugging system would exhibit all of these forms of

direction.

5.2 GENERALI2ABILITY'OF DEBUGGING TECHNIQUES

The mini-world of programs against which this analysis of

debugging is tested is that of fixed-instruction ,turtle procedures;

These. are, of course, a partgularly simple form of program. Their

simplicity allows the imperative semantics for the geometric primitives

to utilize the Rigid Body Theorem, justifying the same state change to

different interfaces to correct a given bug.

The debugging techniques used to handle even these simple
4

programs are by no means exhaustive. Nevertheless, it is worth noting

that many of the techniques utilized by the model-driven debugger are of

broad application: an initially linear analysis, the need to order the

GO
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attack on multiple bugs, competence to cope with alternative debudring

strategies - -these are useful regardless of the nature of the top-level

direction or the complexity of the program.

The Choice of plane geometry as the semantic domain for MYCROFT

was hot accidental. Geometry allows the use of a Cartesian annotator

and a powerful model language for specifying spatial relations. Other

domains may not be susceptible to a MYCROFT like approach because of the

lack of powerful ways in which to document the effects of the program

and the lack of a good model language. However, it is worth noting two

points:

1. spatial models are very important for programming in
applications beyond graphics. (This is reflected in.the way
programmers refer to memory, stacks and data structures in
spatial ways.)

and 2. program planning and debugging involve techniques of broad
applicability but cannot be entirely done in the absence of
domain-dependent knowledge.

I

5.3 EXTENSIONS

The design. of MYCROFT required an investigation of fundamental

problem solving issues including description, simplification, linearity,

planning, debugging and annotation. MYCROFT, however; is only a first

step in understanding these ideas. Further investigation. of more

complex programs, and of the semantics of different problem .doMains,is

necessary. It is also essential, to analyze additional planning concepts

such as ordering, repetition and recursion as well as the corresponding

debugging techniques.. Ultimately, such research will surely clarify the

learning process in both men and machines by providing an understanding

of how they correct their own procedures.
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