R " DOCUNENT RESUNE -
'ED 118 367 A | szo13e97

" AUTHOR . Goldstein, Ira P. S |)
TITLE. . SummaTy of MYCROPT: A 5ystem for Understandlng Simple
S Ricture Prograns. Artlflcial Intelligence ueno ‘Number
o T K : 305- . ;
' INSTETU?;ON V ~uassachusetts Inst@,of Tech., Cambridge.. Artificial r

o . Intelligence Lab. . S
- SPONS AGENCY = Advanced Research Projects Agency (DOD),- Washington, "
o ° DeCes National sc1ence roundatzon, Hashington.) ’

-

REPORT ¥O . 1060-1C) , , f
- PUB DATE . May 74 e '
- NOTE ’ 63p.; For relatea documents, see “D 071 236, 2#0 - 243,

SE 019 893—89“, and 896-900

'EDRS PRICE MF-$0.83 HC- $3 50 Plus Postage

DESCRIPTORS *Computer Assisted Instruction; *Conputer Gnaphlcs. ‘
' *EducatiqQnal Eesearch; *Elementary Secondary : '
e " Education; Instructional Materials;
' o *Photocomposition. Plctorlal Stinuli* SGience : .
. PFducation , . , oy ‘

;'IDENfiFIERS’ - Research Reports ',v Y _

_ ABSTRACT o o | PSR O
This- neport describes the operation of a conputer g

monitor: called MYCROFT, a system which can debug elementary prograns T

for drawing pictures. The basic skills which are fundaméntal to N

~debugging skill (description, plan, linearity, insertionms, . global

knowledge, and imperative semantics) are exanined. These prograns are ' “\‘
. aritten.for LOGO turtles, (Author/CP) .) :

N Y

& . i)
p -t
. _:\ s
L
s '

e s e o ok o ok e sl o skl e o sk s sl ok sk Akl o sk sl ksl Sk o ok ok Aok o ekt ok ok ok o ok ok e
*. Documents acquired by ERIC include many informal unpublished *

* materials not available from other Sources. ERIC makes:every effort *

* Yo obtain the best copy available. Nevertheless, items of narqinal *
* reproducibility are oftqn encountered and this affects the quality - *

* of the microfiche and hardcopy reproductions BRIC makes dvailable *

'* yia the ERIC Document Xeproduction Service (EDRS). EDRS is not *

* respgnsible for thé quality of the original document. Reproductions *

*

*

supplied by 2DRS are the best. that can be made from the original. *
*******************************a**************************************

N
- a C US. OEPANTMENTOF HEALTH, . .
! . EDUCATION & WELFARE ,
B ’ : < LT NATIONAL INSTITUTE OF . |
. w5 . ’ EDUCATION RS .) ‘ ‘ . |

b) ») THIS DOCUMENT HAS BEEN ‘REPRO- . . A
o - DUCED EXACTLY AS RECEIVED FROM : | L)
. THE PERSON OR ORGANIZATION ORIGIN= L : A L
1 ‘ : o : ATING JT POINTS OF VIEW OR OPINIONS o . 3 -
s : : ‘ %> STATED, DO NOT NECESSARILY REPRE-~ o i ,
! T ' © 7 SENTOFFICIAL NATIONAL INSTITUTE OF S o b "
bl ' ' - ' EDUCATION POSITION OR POLICY. Coe) \ 7 .
i . L . . N
) ' :) - : . r - s \

3

HASSACHUSETTS INSTITUTE UF TECHNOLDGY o T

L

- o ARTIFICIAL INTELLIGENCE LABURATDRY
- ' . . ‘ : .
O | . . u\
Mmoo . | May 1974
oo DU A 1. M) - ! , -
—h . . VB'ﬂQb3as L oLOQO‘ "emo 19 _
— . . - :
E-") SUMMARY OF MYGROFT: = ’
) . A SYSTEH FOR UNUERSTANUING SIMPLE PICTURE PRUGRANS*
] } Ira P. Goldstein o R
.
: : TR ‘ . S - ‘ /PERMISION TO REPRODUCE THIS. COPY-
. . f" L : ‘w . RIGHTED MATERIAL HAS BEEN GRANTED, BV
. , o - Mits Avtiicial Tufellgence.
~ L ° T : ‘ : - \-&bs LOGO P'DJC‘-'I-

TO ERIG AND ORGANIZATIONS OPERATING . .
, : : ' * UNDER AGREEMENTS WITH THE NATIONAL IN.
' o - . STITUTE OF EDUCATION. FURTHER REPRO. ' ¢
/ . : : DUCTION OUTSIDE THE ERIC SYSTEM RE.
¥ . GUIRES PERMISSION -OF THE COPYRIGHT
: QWNER."

T ¢ ABSTRACT ’

A collection of pouerful |deas--descr|pt|on. plans, linearity, A b .
.insertions, global knowuledge and imperative semantics~-are explored Ce e e e
- Which are fundamental to debugging skijl. To make these concepts -
precise,” a computer monitor calied HYCFIDFT is described. that cam debug
elementary programs for drauing puctures. The programs are those

uritten for LOGO turtles. .

"%The furst section of this paper nill appear in the Proceedmgs of the :
Conference on Artificial Inteliigence and the Simulation of Behavnor to
be held at the Umveranty of Suasex. Julu 1974.
[PN . : . -
' This uork uas supported in part by the Natnonal chence Foundation under,\
. grant number GJ-1849 and conducted at the Artificial -Intelligence o
Lalzoratorg. a Massachusetts Institute of Technology research program o .
suppor ted in part by, the Advanced Research Projects Agency of ‘the . (*
‘Departme-t of Defense and monitored by the Office of Navai Research . .
under Contract Number N80014-70-A-0382-9095. .

™~

9~ . Reproduction of thns document, in whole or in part. is permtted for ang
%o purpose of the United States Govornment. : , .

Q, R

.\) ' A 2

Table of Contents

1. Introduction . . | v -
1 Flowchart of the System ST
2 Picture Models o
3 The NAPOLEON Example

.4 Plans .

5 Linear Debugging ‘
6 Insertions » : . .
7 Geometric Knowledge .

1
1
1
1
1
1
1

y T

2. The Annotator o | S

2.1 Process Annotation o

2.2 Semantics for Tuftle Primitives
2.3 Plan~Finding Advice -
2.4 Debugging Advice } >

N
1 PlanaFinding as Sea ;E% _
2 Linear Plan Space | . ‘
3 Finding the Plan for Stickman
4
5

3. Theyplaaninder

L]

3.
3
3.
3.4 Non-Linear Plans apd| Self Criticism
3

-

L Summary of the Plan- o

v 4. The Debugger n ;o (

') Model Violations ! .

Debugging as Search |
Ordering Multiple Violati
Finding The Proper Repair-Point SN
Imperative Knowledge
Assumption and Protection,
Deciding Between Alternative Debugging Strategies ’

Summary of Debugging Concepts ~
Classification o{ Bugs '

. e w

OO NS O D WN -,

E = R - N TN S S

. 5, Conclusidns

.5 1 Top- Level Debugging Guidance °~ °®)
. 5.2 Generalizability of Debugging Tochniques
5.3 Extensiors

‘- 6. Bibliography =+ o/

L]

?

: o : : I
'Goldsta;n : 7 4 2 . Introduction

- DEBUGGING SIMPLE PICTURE PROGRANS
? . . L iNTRODﬂCT;BN : f - v;g-,'

This paper reports on progress in tho dovolopn&nt of a'munitor for
debugging elementary prograns. Such rosearch is inportant both for its
pract%gal applications as well gs for its inVistigation of concopts

' wuich are fundamental to progranning‘skill. A computer monitor called

MYCROFT has been dgsiunud that can repair simple programs for drhwiuo

/ pictures [Goldstein 1974]. The roisons to dovolop;such uonitors ara§

a

1. to provida a more precise understanding of the nature of '
programming skills; . L

] I € ’ v
-) . .
2. to facilitate the davolopnent of n&chines capable of

debugging and expandina'upon the prograns givon them by
humans, and

I3 F
’ <
3 %

“

T 3. to prodice insight into the problem solving proéess.so
- ' that it can bo described more constructivoly to students.

HYCROFTois intondod,to supply occasional advice to a stude t to aid . -
/ in the debugging of prograus that go awry. © (Just as the»systeu's
namesake. Hyccoft Holues. occasionally suppliod’advicu to. his younger 3
brother Sherlock oq‘particularly difficult cisos.) In tuis interaction,
.thé‘usdf supplius.stntequutg that ddScribouaspech of the intenued
picture and plan, and the system fills in details of this commentary,” .
diunnoses bugs and suggests corrections. In this paper, howevé;, 1
) shali“not emphasizo this interactive role., Instead my primary purpose
| will be to describe HYCROFT as a uodel of the debugging process. This
‘ is reasonable sinco MYCROFT's utility as an advigbr stems directly from
its underitanding of debugging skill.,
. ,‘ MYCROFT is ablo to correct the programs responsible'for*the bugged
o picturus shown in figures 1.1, 1.3, 1.4 and 1.5 so that the intended

i .] o |
"pictures are achieved. In this paper, the debugging of figure 1.1, a

Goldstein . - 3 o -Introductiom . B
“ o ; . . ' »
e . . ‘, J o N } ,
e typical example, will be thoroughly: explained. Figures 1.3, 1.4 and 1.5 :
L.) plain : .
are corrected in analogous ways: see [Goldstein 1974] for details.’ -
, . ‘ : .
¥ » '
" d 1 |
. - o .
- —
v . l P
*Intended MAN " Picture drawn by NAPOLEON .~
FIGURE 1.1 © FIGURE 1.2
[4
M -
. J
’ . -’
: ' Picture drawn by
INTENDED TREE o bugged TREE program
’ FIGURE 1.3 : 7"

Goldstein L _ 4 Introduction

el e
. " Picture drawn.by bugged WISHINGWELL
o , _ program
~ Intended WISHINGWELL \
. . | FIGURE 1.4

- » . 7
N Intended <) -
« Picture drawn by bugged
' FACEMAN , FACEMAN program ‘
FIGURE 1.5
™4
. 6

A) A)
Goldstein -5 . . Introduction~ «

£

These pictures are drawn by program manipulation of a graphics

the turtle's path. Turtles play an important role in tho LOGO
| envirdnment where children lqgrn_problsm solving and mathematics by

programming display turtles, physical turtles with various sensors. and
music boxes [Papert 197}. 19721. Turtle programs hsva proven to be an o
excéllent starting point for teaching_progrqnming to children of §11‘
ages, and therefore provide a reasonable initial problen domain.for
building a program understanding system. - | _ v

The context of MYCROFT's activity is the interaction of three kinds
of description: graphical (i.e the picture actuatf§ drawn), procedural
(the turtle program used to gonerate the picture) and predicative éthe
collection of statements used to doscribe the desired scene) For
MYCROFT, debugging is making the procedural description produce a
graphical result that satisfies the set of'prodicutes describing intent. .
Thusi &ebﬁgaing hgre is a process that mediates betwaen différent
representations of the same object.

| A

1.1 FLOWCHART OF THE SYSTEM

The organization of the monitor system is illustrated 1n’figure 1.6.

Input to MYCROFT consists of the user's programs and a model of the
intended outcome. For the qrnphics uorld;,thn model is a conjunction of
geomet;ic predicates describing important properties of the intended
picture.s}H?CROFT then annlyzas the prdgran, building both a Cértesian
‘annotation of the picture that is actually drawn and a plan explaining

thcfrelationsﬁip betwsen the pnoaran and model. (Any or all of the plan

can be supplied directly by the user, thereby siuplifyina HYCROFT's
~ task.) |

et

¢

-

WYHOOUd
A34ivd3y

-®

A
1l 33Nn914
. ~
.
yoiokw jo seppow =
wep =~
. S}RIAED «~ 82iApe Burlbngep
ES -ﬂ
= DULAR263
JUNIONd
L nd NVISZL¥YD
. bsnouvoia]
TEQEW | Su0 yeeBBne Buruund
ued mau ._uc..m — BuiSngep
: , _ ~
140HOAN 40 LHVHOMOY :

1300W

Goldstein - 7 . Introduction

The next step is for the system to interpret the program's
performance in terms of the modol and produce a doscription of the

discrepancies. These discrepancies'ure exprosscd as a list of the '
.« * . ‘4' .) 1]
violated model statements. The task is then for the dobuab‘r to repair-

each violation. The final output is an odited turtle program (with _

v
3

copious commentary) which satisfies the modcl (Occasionally, the,plan

that MYCROFT hypothesizes raquircs implausiblo ropairs*-for example.

1

major deletions of user code--resultinn in the debugger asking the plan-
N

- finder for a new plan.)

The remaindor of this first section describes the debugging of

NAPOLEON (figure 1.1) and introducos some important ideas abouﬁ the

‘nature of plans. Section 2 describes tho annotntor used to document ‘the

| performance of turtlo programs. Section 3 intrdducos the glan-finger

[

SRS

i

suggestions for future research., ‘g
< .

e

"1 .2 PICTURE MODELS
To Judge tnzasuccess of a progranm, HYCROFf requires as input from
the user‘a.descriﬁ%ion of intent. A declarative language has been
designed to dqfina picture modols. These models specify fmportant
proporties of the desired final outcome without indicatinq the details
of the drawing process. Tho prinitives of the model language are
geometric predicates for such proportics_as connectivity, relative
position, length and location. The following models orovtypical of

those that the user might provide to doscribo,figuro 1.2.

’

. example, the actual size of th7 pictures. The. user has lafoqu in his

deucrxpt1on of rneent because ﬁYCROFT is - designed only to debug programs

Goldstein . 'g» - '//E‘ S Introduction
3 . "'.' s 7 : o . w)
MODEL MAN ' ' , X
‘M1.PARTS HEAD BODY ARMS LEGS ' g ' T
M2 EQUITRI HEAD - . :
M3 LINE BODY . N
M4 V ARMS, V LEGS ' h
M5 CONNECTED HEAD BODY, CONNECTED BODY ARMS, CONNECTED BODY LEGS
M6 BELOW LEGS ARHS, BELOW ARHS HEAD
END - : -t

MODEL 'V

M1 PARTS L1 L2

‘M2 LINE L1, LINE L2
M3 CQNNECTED L1 LZ (VIA ENDPOINTS)
END :

. MODEL EQUITRI

. MI1TPARTS (SIDE 3) tROTATION 3)
M2 FOR-EACH SIDE (= (LENGTH SIDE) 100) o . :
M3 FOR-EACH ROTATION (= (DEGREE ROTATION) 120) -
M4 RING CONNECTED SIDE
END.

Tho MAN and V models are un erdetermined- they do not describe, for ‘

-

-

that are almost correct. Thefefore, not only the model, but also-the

picture drawn by the progran ‘and the. definition of the procedure provide

i

I

- clues to the purpose of the proqral.

+

B
1.3 THE ngPouaou EXAMPLE

HfCRbFT 1; designed to repair a simple class of proceuures called
Fixed~Instruction Programs. These are procedures.in'which the
primitives are‘restricted to constant inputs. Sub-procedures are

allo@od?/bowever. no conditionals, variables, recursions or iterations

‘are permitted. Given below gre the three programs which drew figure |
EQ .

l.l--NAPOLEpN, VEE, and TRICORN. The "<-* commentery‘is called the plan
and was generated by MYCROFT to link the picture models--MAN, V and

S
EQUITRI--to the programs.

10

Goldsteih

TO NAPOLEON
10 VEE .
20 FORWARD 100
. 30 VEE

~ 40 FORWARD 100
50 LEFT 90
60 TRICORN
END

TO VEE

10 RIGHT 45

20 BACK 100 .
30 FORWARD 100
40 LEFT 90

50 BACK 100

60 FORWARD 100
D END .

TO TRICORN

10 FORWARD 50

20 RIGHT 90

30 FORWARD 100
40 RIGHT 90

50 FORWARD 100
GO RIGHT 90

70 FORWARD 50

END

9 ' Introduction

<= (accomplish man)

<{- (accomplish legs) ‘

<~ {accomplish {piece 1 body))
<~ (insert arms body)

<~ (accomplish (piece 2 bsdy))
<{- (setup heading (for head))
<~ (accomplish head)

<~ (accomplish v)

<~ (setup heading for 11)
<{- (accomplish 11) , ,
<~ (retpace 11) : .
<~ (setup heading for 12)

. €~ (accomplish 12)

{- (retrace 12)

4

<~ (accomplish equitri)

<~ (accomplish (piece 1 (side 1)}))
<~ (accomplish (rotation 1))

<~ (accomplish (side 2))

<- (accomplish (rotation 2))

<~ (accomplish (side 3))

<- (accomplish (rotation 3)}

<~ (accomplish (piece 2 (side l{/}\\v/f

' The turtle command FORWARD moves the turtle 1n the direction that it

is currently pointed: RIGHT rotates the turtle clockwise‘arouhd its
RS .]

axis.

but is not needed here.

bl

. A complete description of LOGO can be found in LAbplson 1974},

A Cartesian representation of the*pictufe 1s generated by the

/

o annotator that describes the performance of the turtle program. The

plan is used to bind sub-pictures to model parts.

This allows MYCROFT

to 1nterprot the program with repect to the model and produce a list of

violated model statements.

discrepancies forFNAPOLEON:

(NOT ¢(LINE BODY)) .

(NOT (BELOW LEGS ARMS))
(NOT (BELOW ARMS HEAD))
(NOT (EQUITRI TRICORN))

HYCROFT produces-thg following list of

;The body is not a line.

;The legs are not below the arms.

;The arms are not below the head.

;The head is not an equilateral trxanch.

MYCROFT is able.to correct_these bugs and achieve the intended picture

11

- o e T ST R

Goldsteiﬁz ".;‘ ' : 10, . : - !ntro&uction‘

b4

‘using both:planning and debugging knowledg%;"

1.4 PLANS | . B g

[§

This coction'introducos & vocabulary for tiikinq obout tho structure -

of a procedurs which is useful for undorstanding both tho desiun and
debugging of programs. A nain-step is defined a3 tho code required to
achieve a particular sub~goal (sub-picturo) A grepnratory-step
consists of code needed to setup, cleanup or intorfuce between main-
steps. Thus, from this point of viow. a prograu is undnrstood as a -
soquence of main-;teps and preparntory-stopt. A similar point of view
is found in [Sussman 1973]. The olaﬁ consists of:the purposes linking
‘main~ ard proﬁaratoryjsteps to the model: in the turtle WOPId,(thd « ‘
kpurpose of main-steps is to ggggnpiiih.(draw)'partc of the model; and
the purposerf proparutory-steps is to properly setup or cleanup the
?urtle state hotwion main-steps or.'porhaps. to retrace over some

4
previous vector.

G

A hodulag main-step is a sequence of contiguous code intended to
accomplish a particular goal. This is as apposod to an interruptoda
main-step whoso code #s :cattorod in gioces throughout the progranm. in
‘NAPOLE;N.ptho main-steps for the legs, arms and hoad are modular°
however, the code for the body is interrupted by the insortion of tho

code for the arms “into its midst. The utility of nakina this

distinction is that modular Iain-stops can often bo debugged in private ;

(i.e. by being run indopondontly of the remainder of the procedure)
. W .
while interrupted main-steps commonly fail because of unforseen—

<

interactions with the interleaved code associated with other steps of

’ ‘. . .

.the plan.

Linearity is an inportant design strategy for creating programs. It

- | 14

L]

. .

‘,vl::'l

©
Py

\
|
goals and design solutions (main-steps) for each. The second is then to’ T ﬁ

y 'dombine these main-steps into a single procedure by\concatenatingwthem '."

‘des1gn can fa1l to recogn1ze opportunities for sub-routinizing a segment

‘preparatory steps. a non- linear plan may include interrupted main steps. o

2
‘ designing programs._ MYCROFT pursues the following linear approach Yo

" @oldstein ‘. . . ¥ 11 introduction . .

. - . . - . . B ’
N o . . o o - . . Vi
L0 . o ‘

,g‘ . o) R . rs ,';. .. . Av. e * . h
. D : s . ' ’ o ’

Ji (has'tﬁo stages; The first is ‘to break the &ask into independent sub-

oy i - . ' B

l R

into some sequence, adding (where necessary) preparatory-steps to 9.. L :’,'

Vprov1de proper interfacing The virtue of this approach is that itu o ___}‘;L

-

'”divides the problem into manageable sub-problems. A disadvantage is

. \

.~Vthat occasionally there may be constwaints on the dpsign of some main~

step which are not recognized when that step 'is- designed independently"

?

- of the rema1nder of the problem. Another disadVantage is that linear

R . *

of code useful for accomplishing more than one main-step A linear l‘n _ y

»~

will bevdefined as a plan consisting only of modular main-steps and

-

. \"_

1.5 LINEAR DEBUGGING -

. :4. Linearity is a powerful concébt for debugging as well ‘as for -

correcting turtle programs. the debugger s first goal is tb fix each ,'; e

‘main-step 1ndependent1y S0 that the code satisfies all intended

*properties of the model part being accomplished. Following this, the

LY

main steps are treated as inviolate and relations between model parts '

are fixed by debugging preparatory-steps This 1is not'the'only
; ’"debugging technique available to the system, but it is a valuable one'

" because it embodies important heuristics (l) concerning the order in

‘!4

’wh1ch violations should be repaired and (2) for selecting the repair~_ o

'point (location in the program) at which the edit for each violation

should be attempted R _Hf i_-. o]_ . - | ;“;1"

: Eollowing.this linear approach;;thROFT'repairs‘the;crooked_body and

15

- Goldstein - ‘. . . R !2‘ S

EE =

“Introduction

4

the Open head of NAPOLEON beﬁore correcting the BELOW relations . |

¢
Repairing th2£e parts is done on the basis of knowledge described in the
A\

"next _two sections. Let us assume for the rémainder of this section that

: these pr0perty repairs have been made - NAPOLEON“appears as in figure
. Y

l 7 - and concentrate on the debugging of the violated relations..
. . m -

. . . . P . @

NAPOLEON with parts corrected. NAPOLEON with statement 15

"+ as RIGHT 135
' . FIGURE 1.8

v

FIGURE 1.7 "
. -

Treating main-steps as inviolate and fixing relations by modifying

-setup steps limits the repair of (BELOW LEGS ARMS) to three Dossible
I3

‘ repair points' (1) béfore the legs as statement 5, (2) before the %irst

.piece of the body as statement 15 and (3) before accompiishing .the, arms -

as statement 25. HYCROFT understands enough about causality to know

-

that there is no point in considering edits following the execution of

statement. 30 to affect the arms or legs. The exact changes to be made'

- are determined by imperatiVe semantics for the model primitives.

=

is procedural-knowledge that generates, for a given predicate and -

This

location in the program, Some possible edits that would make true the

14 S

/,

.

- R . 4 *,
- L Y

! - T

W Gol&dstﬁginf B 18. o o * Introduction

e

\ﬁ A

- ~ "
s , . - " : o o . Lo

violated’ prediCate HYCROFT generally considersalternatiVe strategies 3

’

for c&rrecting a given violation -it prefet‘s those edits which produce
the most beneficial side effects, make minimil changes to the user L v.
“code or most closely satisfy the abstract form of the plan.. a » .

. ,

' For BELOW the imperative, semantics direct \DEBUG to place the legs :
below the arms by adding rotations at the setup }teps More . drastic -
"modifica"tions to the user's code are possible such\as the addition of Ffai
posﬁ.ion setups which a1ter the topology of the pict\gre however.
HYCROFT tries to be gentle to the turtle progra:n {using the heur1st1c 0
that the ‘user's code is. probably almost correct) and cp siders larger |
' changes to the program only if the simpler edits do- not iucceed.a The R

‘first setup location considered is the one imnediately prior to
accompliShing the arms. Inserting a rotation as stateme'nt 25, however‘.-
does, not correct the violation and is therefore rejected. The,next;, _
possible edit point is as statement 15 Here, the additio;/pf_'RIGHTlaS
makes the legs PARTLY-BELOW the arms__and;, produces figure 1.8. This edit

is possibla but is not- preferred both because tlf8 legs and arms now

' overlap and ‘because the legs4are not COHPLETELY-BELOW ,the arms. MYCROFT

is caiitious, beirg primarily a repairman rather than a q,signer, end is
reluctant to introduce new connection‘s not described in the model.
Also, given a choig:e, HYCROFT prefers the most constrained meaning of
the model)redicate. If the user. had intended figure 1. 8 -then one

{
would expect the model description to include additional declarations !

such as (CONNECTED LEGS ARMS), and (PARTLY-BELOW LEGS ARHS) ' (, '
Adding RIGHT 90 as statement 5 achisves (COMPLETELY-BELOW LEGS ARMS)
and the NAPOLEON program now‘produces the intended picture (figure 1.2).
This correction has beneficial side effects in also establishing the
proper relationship between thie head and arms, confirming for MYCROFT
.l S | | 15

-

+ . L W - o Y TP T
 Goldstein - . 4 T - . Introduction
Ty B |
’ that the edit is reasonable, since a particular underlying cause is o \\\‘
often responsible for many’ bugs. Thus the result of (DEBUG (BELOﬁ LEGS - AV T
LR ‘ P o A
ARNS)) is: . - S o .

5 RIGHT 90 <--(setup headinq such-thet (below legs arms)
: (below aris head))
(essume (i (entry heading) 270))

The assume comment records the entry state with respect to which the - -

H L]

edit was’ nade : lf the progran is run at a future tine in a new

enVironment -then debugging is sinplified. The cause of a BELOW- -

-violation will now immediately be seen to be an incorrect assumption,

- . t Y

" and the corresponding repair is obvious - insert code to satisfy the

entry requireqents described by the- a§$Umption. This illustrates the S

existence of levels of cbmmentary between the_model and the program,

~ each layer'beinp more specific,'but also more-elosely'tied to the

particular code and runtime environnent of the program. _
Linear debugging greatly restricts the possibilities that must be . ’ f

considered to repair a violation. It is often successful and | '

constitutes e powerful first attack on the problen'of findinn thegproper Lo

edit; however, it is not infallible. Non-linear bugs due to. unexpected

'interactions between main-steps would not be;ceught by this technique. ’
.Figure 1.9 illustrates a non-lineer buq.. (INSIDE HOUTH HEAD) is .

viglated but it °‘““v”§?° repaired by edjusting the interface between

'these two perts (indicated in finure l 9 by the dotted line oP) since

~ythe mouth is longer than the diameter of the head. The imperative

semantics' for fixing INSIDE recognize this. Consequently. MYCROFT

resocts'to the non-linear technique of” modifying main-steps to repair a z
N . . N I N N
relation between parts. The imperative semantics suggest changing the I

- . -

. Size of one of the parts because this transformation does not affect the . ';';‘ -

shape of theﬁpart and consequentlyawill probably not introduce new

16

Y
s e .

Goldstein : BRI T ' "~ Introduction

" FIGURE 1.9)
u B - - \
vzolations in properties describing the part. Advice is required fron
the user. to Kknow whether shrinking\the mouth is to be preferred to
i
© expanding the head Two nore non-lineer debugging techniques are

discussed in the next two sections. one is based upon knowinq the - ’

~.:abstrect form of plens. end the other uses douein-dependent theorens

about globel effects. i :7

. 1.6 mssnnous |

- - .
v

In programming, an interrupt is a break in nornel processing for the

purpose of servicing a surprise. Interrupts represent an inportent type 'J

of .plan: they are a necessery proble-‘solvinq strategy when a process
must deal with unpredictable eVents Typicel situations where
interrupts prove useful include servicing a dynamic displey. and,
arbitreting the conflicting demands of a time sherina system. In the
.reel world, biologicel creatures must use an- interrupt style of
processing to deal with dengers of‘their environment such as. predators.
A very simple type of interrupt is one in which the program
associated with the interrupt is perforned ror its side effects and is

! stete-trensperent, i.e. the nechine is restored to its pre-interrupt

1%

o~

£

ﬁold;tein' o 16 ’ o Introducsion
state be(ore ordinary processing is resumed ﬁAs n'result %he main

process'never notices the interruption. In the turtle world, an

74

-

analogous type of ‘orgynization is that- of an ingggtgd-main7;t“p‘*
(insecxiin)u It naturally arises when the turtle, while accomplishing
one part of a model (the interrupted,nain-step), assumes an appropriatP :
entry state forvanother part (the-id%ertion). An obvious planning'
s!Fategy is.to insert a sub-procedure at such a point in the§execution
of the interrupted main-step. Often, the»insertion will be state-
transparent for turtles. this is achieved by restoring the heading,.
position and pen state. The insertion of the arms into the body by
statement 30 of NAPOLEON is an enample of a position- and pen- but not
heading- transparent insertion. .

Insertions do not share all of the properties of interrupts. For

‘ example. the insertion alweys occurs at a fixed point in the program
rather than at some arbitrary and unpredictable point in time. Nor does
. the insertion alter the state of the main process as happens in an error -

fihandler prever, if one focusses on the planning process by which the'

.

- user's code was written, then the insertion as an intervention‘in

accomplishiué’a main-step does have the 41avor of an interrupt.

The FINDPLAN module alds the debugger in a second way beyond just
the generation of the plan. This is through the éreation of caveat
comments to warn the debugger of suspicious code that fails to satisfy
expectations based on the abstract form of the pian.‘ In particuiar. if
%IHbPLAN]observ%s an insertion that is not transparent. then the;

. o)
follewing caveat is generated: -

#

30 VEE <- (caveat findplan (not (rotation-transparent insert))).

*

<The -non-transparent insertion'may have been intentional, e.g. the

preparation for the next piece of thefinterrupted main-step may have
16

)

. =

_Goldstein . _ 17 ' o Introduction

been placed within the insertion. The user'saprogramvmay have prepared
for the next main-step withinvthe insertion; Hence, FINDPLAN does not
immediately attenpt to correct the enonalous code. Only if subsequent |
debugginp of some model violation confirms the ceveat is the code ' ; rvi
corrected. Therevuiil often be many possible corrections for a ‘
particu}ar model violation. The caveat is used to increase the
: plausibility of those'bditsbthat eliminate FINDPLAN' s compleint In
this way, the abstract form of the plan helps to quide the debugging.
For NAPOLEON analvsis of (NOT (LINE BODY)) leeds HYCROFT to

.consider (1) adding a rotation as statement 35 to eliqn the second piece T !
of the body with the . first or (2) placing this rotation into VEE as the
final statement Ordinarily. linear debquino would prevent the latter ;
- as it does not respect the inviolability of main~-steps. However, it is ;

chosen here because of the corroborating coupleint of FINDPLAN. The | -
underlying cause of the bug is a main-step error (non-trensperent
insertion) rather than a preparatory-step failure. Thus, . ;\\ ‘
" (DEBUG (LINE BODY)) produces: '
_70 RIGHT 45 <~ (setup heading suoh-thato(trensperent vee))

1.7 GEOMETRIC KNOWLEDGE *

!

Linearity. preparation and interrupts are general problem~solving
strategies for orgenizing'@oels into programs. Howeverg it isﬁimportant
to remember that domain-dependent knowiedqe must be:eveilable to a
debugging system. a Thetf§stem must know the semantics of the primitives
if it is to describe their effects.

The debugger must alsokhave'eccess to domain-dependent information
to repair mein-steps in w%iph the sub~parts must satisfy certainnplobal
reletionships; For exanple;*TRICORN has the bug that the triangle is

—

Goldstein *© =~ 18 | ‘ Introduction

not closed. Each mein-step independently achieves a side but the sides
do not have thp proper global relationship. Debugging is simplified by
the explicit statement i; tne model that: - : R k2
' (FOR-EACH ROTATION (= (DEGREES ROTATION) 120)) |

- But suppose the model imposed no constraints on the rotations. Then the
design of the rotations would heve to be deduced from such geometric
knowledge as the fact thet N equel vectors forn a regular polygon lf%\‘(
each rotation equals 360/N degrees. = . ot ‘

The pieces of an interrupted-step such as the f{rst side of TRICORN
are not always separated by a state-transparent %nsert; ‘(This would be

- -7

a local interruption.) Insﬁeed. it is possible fhat more global
knowledge is needed to understand the properties of ‘the intervening code .
‘which” justifies the expectetion that the pieces will properly fit
together In TRICORN & the second !piece (dravm by statement 70) must be
collinear with the first (drawn by stetenent‘lO). The gIobel property
of the code which Justifies this is thet'equel sides and 120 degree '
rotations'results'in closure. Thus. debugging violations of globally
interrupted-steps requires domain-dependent knowledge.

Geometric knowledge does not replece the need for general debugging
strategies: these are.still very 1lportent to narrow the space of

possible repair-points for correctinq & given violation and to choose

between alternetive corrections. Section 4 discusses both types of

3

 knowledge in greeter detail

Goldstein | v ~ Annotation
2. THE ANNOTATOR " . -\

Da;uggln; is 1mpossible w1tho:t good description of a prngr;:‘:\\‘ .

purpose and performance. MiCROFT begins with the program and a model

describingfits intended result. Two formé'of additiénal commentary are
L“then Jenerated Performance Annotation documené% the effect ‘of running
the program vhile the Pldi -exploins the intent. This commentary is |
organized as sets OfOGSu“FtIOHS ina databa&e, bound together into
sequeices represent fuy v hat- hanplned and why. Figurc 2.1 shows part of
the databaca qgenccated t@ dpscrihe VADOLEON. The nodes are organized 50
that the horizanta? axts 'epsesents time and is used to answer such
causal. questions as what cﬁanJes oc.urred to which ;tate‘variables and

L]

which core was respons’ b‘f for those Lhanges. Similar data structuros

for deacr1b1nq DFOUFuﬁw Ao used by Fahlman [1973] and Sussmnn L1973].-
The vertimul u”is veprasent tglenlogical ahstraction and -

explaiius the purpose of the qudo. Hbdelé fitlinto this descriptive -
\framedbrk as the‘hiuhest level ci abstrastion. They describe the final’
‘goed without ties to “beitae plans or chronolegical performance. The
nest invel is the p ar in<.cating the snbuﬁoai ‘organization for
accomplishing th ros lt, Finaliy, the te(golpgy rqsns‘on a description
of the ~ tual pert: rivae y of th v *7y, prnnran when egecnﬁed in a
'Durticv’:f'inlﬁanﬁ naviom ot .

| HY&ROFT tialyzes a pregram by first building‘a complete
'performunce annotation and then app]ying the plan-finder to assign

purpouns to the QOdG Periornance annotatlon is accomplished by runninJ

the user's turtle program in-a "cas eful mude" which produces three kinds

of descriptinn. o : s

Coe

\, INITIAL ANNOTATION EOR NAPOLEON | :

£ e
-t K) - . _ ’) - .
5 1 MODEL MAN | . -
o , PARTS %EGS ARMS BODY HEA ~
s MODEL 'V ARMS, V LEGS
_ _ . EQUITRI HEAD
LINE BODY
L ‘ v - -
U e
- R . . .
P _ =
(ACCOMPLISH (ACCOMPLISH {SETUP HEADING| .| (ACCOMPLISH .
o f § PN maN) [|- Lees) | | (ACCOMPLISH V) ~ FOR L1) L1) :
[‘ , P s
. - E l._' ¢ - o‘ ,“/N ¢
© 0 . At
= 0T -
0 > - . .
mﬂ m POINT PO STRUCTURE .S1 | STRUCTURE S1 ROTATION RO VECTOR V1
Y F STRUCTURE.SO | |~ - -+ || pecreEs=45 - | POINT P1 ‘
2 PROCESS|:POSITION=(0,0] A :HEADING=135 LENGTH=100
“M :HEADING=270 | | . | %omzszuﬁw .
’ > . T it .) ’ IN.~
N *PEN="DOHN > | 1 | pIRECTION=315
C M .
. E- xb .) .—) . — : , a '
l—u F1: Entering. . F2: Executing F3: Entering F4: Executing F5: Executing
B . NAPOLEON statement 10 VEE - Statement 10 Statemént 20
e | | VEE . " RIGHT 45 ~ BACK 100
- 4 _Time sequence of frames of program
(=4 . . : : -
O T o - L , causality : , . V
- . FIGURE 2.1 . ‘ - s |
. - ~Of
. , 2=

L

.

Goldstein | 21 | | Annotation

’

1. Process Annotation is a description of the output of the
program. It consists of a record of.the effects of executing }
each program-statement. For turtles, this consists of the "
creation of vectors, vector structuros. rotations and points.

2. Planning Advice sugnests the segmentation of the program with
respect to accomplishing the model on the basis -of such
criteria as global connuctions.

3. Debugging Advice describes suspicious code by caveat comments ,
~ which aid in subsequent dobugging. , ‘ .

Details of thesaathroo kinds of porforuanco annotation are given‘below.

The FINDPLAN algorithm is then described in section 3.

2.1 PROCESS ANNOTATION m | | o o

* Process annotation provides a doscription of the output of a
‘program and its sub-procedures in terms of some language appropriato to.
the purpose for which the pragram was designed. For oxulple. tho .
performance annotation for an arithmetic progral'night be in terms of
mathematical equations to bo:satisfiod at various peints in the .
computation LFloyd 1967]. -For turtle prograls. an obvious choica is to
produce a Cartesian description of the picture drawn by_tﬁo’program.
Annotation should reveal the basic‘effocts of the code, froo of vagaries
of individual programming stylo. Thls would include knowing the
doscription‘of & vector, regardless of whether the aetual command is
FORWARD, BACK or ssrxt. (The last command moves the’turtle to an |
absolute position on the screen.)

Annotation produces-a sequence of franost A frnue is uén%rated
to describe the execution of each pri-itivoiand sub-procedure call,
Each framo is a set of assertions specifying (1) any changes to‘the E

turtle's state and (2) the properties of any picture oiomunts which have

/

' been_croated. The turtle's state consists of the values of the globaln

variables :HEADING, :POSITION and :PEN. Picture elements (created as

2

‘performance of the turtle command.

Goldstein o 22 - | .Annotation

~

*

side'e%feqts of executing turtle commands) are voctori, rotations,) ' -

points and structures (vector sets drawn by recognizable code segments

i

such as sub-procddure#). S . ‘ ' . ,
s ' - - - ‘ . - 3
’ "

2.2 ‘SEMANTICS FOR TURTLE PRIMITIVES

The_process»annotation is generated by imperative ssmantics

associated wigh each turtle primitive. These semantics describe the

‘ P ' »
-, ° . . :
SEMANTICS FOR (FORWARD :DISTANCE) ;Draws a vector.
(tVECTOR <=~ (GENERATE-NAME 'V)) RN
;All vertices, rotatigns, vectofs and structures
;are given unique names to facilitate later debugging.
" ;If subsequent investigation reveals that ‘the
;particular object has been given &, label by.
;the user, then the system name 1s”fﬁp1acod by the
iuser's 1dontifiar. . '

;Describe tha Vector in torus of its direction and length.

(ASSERT (= (DIRECTION :VECTOR) :HEADING))
., (ASSERT (= (LENGTH :VECTOR) :DISTANCE))
(ASSERT (= (VISIBILITY .VECTOR) (PENUP, PENDOWN, RETRACE))

;Update the Stato of th| Turtle

(:POSITION -~ (FORHARD °DISTANCE)) g
;FORWARD :DISTANCE outputs coordinates of the new O
;position. Set the turtle state variable :POSITION i
;to this new location of tho turtlo.

(POINT =~ (GENERATE NAHE ‘P))
;If the coordinates are unique, bind :POINT to
;& new name for this position. If not, use the
;01d name for the position. If a name already
. +exists for this position, record the connections | o
;joccurring at this point botwoon :VECTOR and : Lo
;previous vectors.

N

14

. 3 Goldstein . I ' .23 . A L VAnndtation

EECEE o S

-« : ’

'QEHANTICS FOR (RIGHT :ANG.LE) . A -Rotates the turtle.
o ROTATION L= (GENERATE -NAME 'R)).
;Describe the'Rbtation in terms of its vertex and degrees.

* (ASSERT (= (DEGﬁEES :ROTATION) :ANGLE)'. S : ’
(ASSERT (= (VERTEX :ROTATION) :POSITION) : : :

(4

;Update the State’bf thé Turtle

3 . f

{ :HEADING {~~ (RIGHT‘:ANGLE))_ ;RIGHT outputs the new heading.

At the level of the process, actual numerical values are ..
determined -for the above properiies. Because these assertions depend

upon tﬁe particular state of the initial environment, thisiis the most : .o
‘specific;_least abstract level of commentary wﬁen'cogpaéed with the

“Jx/) model and plan.

2.3 PLAN-FINDING ABVICGE
vﬁ‘ .
7 Alth:‘ugh pvrfurn3nco annotation does not examine the model, it
can reveal clues to the q»ouplng of the user's proarum into main- and
preparatory-stepu which aidg‘in finding the plan. ’\ .
1. Sub-prbcedures that draw visible sub-pictures - R :
are hypothesized to be mawn-steps that accomplish)
some moidel part.
-2, Maxim.l s «priences of “invisible“'primiﬁives such
as (a) veetors Jravn either by retracing or with the
pen up, (b) rotations, and (c) PENUP commands are
grouped tugether as possible preparatory~steps.
3. Maximul sequeiicis of visible vector instructions
-plus any inter.ening rotations are grouped as
possible main-steps.
4. Global connections suggest code boundaries. Thus,
maximal seqeences of visible vectors ca? be segmented
on the Dbasis of such cornections.,
This segmentation is tentative and may be revised in the light of later
| consideratinn of thie model.

f , Suppose NAPCLEON wes not subroutinized and, instead,' the arms,

- ERIC | - '.2{)

Goldstein ' L | Annotation
¢ . ' . ~) '

L .
Tegs and head were open -coded (i.e. coded as inLlino,sequences of .

pr1m1t1ves rather than subroutinized). The a?ove clues would be quite
&
useful by utilizing the global,connections between the.body;and limbs in

L - »
the picture to suggest main-step boundarjes.

2.4 DEBUGGING ADVICE S |
Oddit{es in the form of ;hc.prbgran can create a'suspicion.of
bugs. The annotator notices tzese violations usiné Rational fprm
Criteria which are sensitive to unexpected_aqd apparently e;roneous '
code. -Caveat qgmmgggg';re generated describind these comﬁliin;;1

. ﬁatidnal Forn.Criteria are based upoh expectations of sipplev,

efficiency and consist of noting sequences of cbntiguous_usesvof the
same primitive, such as FORWARD, RIGHT of PENUP. Tﬁa»lnnotator |
considers the code to bo odd: why didn't tho uscr simply coalesce them
into a single calk with a laraor input or, in the case of PENUP. 1nc1ude
only the: first instructioh?v The answer may be that'tho user has
forgotten to insert additional iﬁstruétions@7.Aﬁ;ox;mprc would be where
the user had forgdtten to ihsert s;v.ral RIGHT.conmands into a sequence
of FORWARD instructions. A caveat‘Q;ating=thqf'¢odé may be missing is
-placcd betﬁeen each pair of elements in the s;quonce of FORWARD's. A

“AViolation of rational form occurs in the following trilngle procedure
“ because the user has forgottqn the first rotation.
' T0 TRI - | o
10 FORWARD 100 <~ (caveat annotator RATIONAL- FORH-V‘OLATION

(saquential-primitive 10 30))

30 FORWARD 100 \

40 RIGHT 120

END
An edit that inserts a rotation into such a sequence of FORWARD

’

instructions would eliminate the rational ?orm violation and therafore

26,

~

50 FORWARD 100 | R o

‘ E ,GoidStein R L el IR 3 Annotation
. ‘ L / {" .‘ . '_ .) : ‘ i ‘
L 'be preferred 1n competjition with other corrcctions whtch .do“not explainv i
the annotator s complaint If the dehuyger corrects the program by }
.eliminatina the annotation caveat then the underlying cause of the)
‘error is considered to be "Hissing Codo" . |
. . ° \ . - ~ ». . .
) -) :
. o \‘ - “ | . ’\.' T
e) - *
. r/’ _ ' , /
-
e
\ 0 B . : .
Prad -
L
- ° .Q ‘ 4 '

.

Goldstein 26 . Finding the 'Plan

3. THE PLAN-FINDER
After performance annotation. the next’ step in describing the
program 1is to find .the plan. The strategy is topattempt initially to
find a linear plan, i.e. to‘metch model parts with modular main-steps
;and relations between model parts with preparatory-steps. This approach .
serves to limit the search space. but it is not adequate to recognize
interrupted main-steps and insertions.g These 'non linearities" are
_ suggested by suspigigns about the cause of violations implied by the
conjectured 1inear plan. lhese suspicions arevthat the cause of ‘the
'violation is not an error in the user s program but a mistage in the'
'plan finder s linear interpretation of the plan. If additional evidence
confirms the suspicion. the plan-finder corrects its ldnear analysis and.'.
finds the correct global or insertion type of plan. This approach of
| first pursuing a lineer interpretation and only 'debugging' this. c '_ : .;“
approach in response to anomalies is a powerful reasoning mechanism for
searching complex spaces., As was noted in section 1, the debugger uses
a similar analysis to simplify finding fhe proper repairs. ' : ?
Plan-~ finding obtains some guidance from the picture and some
K. from the program. The pictur supplies such clues as:
{a) global.connections which~suggest sub-picture boundaries;
(b) retracing which suggests inserts- | |
and (c) violations of model statements which are then used both as
plausibility criteria (to distinguish between alternative

. interpretations) and to_generate suspicion demons (which look
for non- linear.planning stnuctures)

The program supplies quite different clues about intent. This includes: \

(a) sub-procedure structure which aids in recognizing main-steps;

and (b) the order in which the picture is drawn which, when.combined
. awith_program-writing criteria, suggests'the order in which the

=8

| ,V' ‘ 1'235;. S . p

Goldstein . 7 1/ Finding the Plan

7

model parts are accomplished.

3.1 PLANAFINDING AS SEARCH

Finding the plan can be conceptualiied as a search of & space of-

-~

“partial plans' ‘The search hegins with-the'uodel. the program and the
performance annotation. A E artial plan is an explanation,of some

fraction of the model in terus of the program. Given a partial plan,
Ve

f,itS'daughterS‘are the result of generating alternative explanations for

one of the remaining unassigned uodel parts. A’terninal node is reached

when all of the model parts have been e&pdained and a conﬁlete plan is a

o path from the root to a terminal’ node, wherein an explanation is

s

provided for how each model part is achieved

A partial plan qonsists of PURPOSE comaents which assign model

- predicates to coda, unassigned nodel parts. expectations. the implied

partial interpretation. and demons.

PURPOSES - These are the basic statements of a plan and appear as.
-m¢-" commentary in the NAPOLEON procedures. Five kfnds of purposes
are generated by FINDPLAN: accomplish. insert, setup. cleanup and
retrace.

UNASSIGNED MODEL PARTS - The model Specifies a listwof parts. These
are either primitivé picture objects (vectors or rotations) or sub-
models. An unassigned part is one without a PURPOSE statement
indicating how it is to be accomplished.

"EXPECTATIONS - These are predictions of which part is expected to be
accomplished by the-next main-step. They are based on applying
program-writing criteria of efficiency and simplicity to the model.
See the discussion of Analysis by Synthesis in the next section

| PARTIAL INTERPRETATION - Model predicates can be eva¥aated by

ordinary Cartesian geometry using the binding of model parts to code *

(which the plan implies) and :an annotated description of the code's
effects. A.partial interpretation consists of those model -
predicates whose truth Value is known given the current partial
interpretation.

DEMONS ~ Demons are used to explain subsequent code in such a way
that violations in the partial interpretation are eliminated. The

2 elinination results fron debugging the system's linear analysis and

- 29

- L4

[2

e
' Gdldstein ’ ‘ - 28 B Finding the Plan
. ‘ . “) . . .
’ AN . : 7 o i
recognizing the ekistence‘of an'jnterfhptod-or 1nserted_n¢in-step.
" .Ihé partial plan is complete when all of tho‘unqssigned parts
are explained by PURPOSES. Debugging is fixing the violations of the

 resulting complete interpretation. -
. (: Q - @

3.2 LINEAR PLAN SPACE
ﬁ The seﬁrch is neither a standard breadth nor depth first

exploration of the space. Ins%oad, the systep'initially‘assuhés a

v

linear structure to thé user's plan, looking'to assign the parts to

: A Y ’ . <X . : .
" sequential code segments. The possibility that a part is being /

-

'vacéﬁmplished by disjoint segments of\ﬁode_or by-insertions is not
considered. This greatly constrains the search space. Branchinﬁ,

however, is not eliminated: for algivin program, more than one linear

plan will hsqally bé possible. To choose among thn,altefnativesnin'this

linear plan space, several plausibility criteria are used.

1. (Advice) The first is to take advantage of user, annotator or
debugger advice to initialize the partial plan space. Annotator
advice originates in noticing (1) -sub-procedures that have been

- -previously associated with a model and (2) open-coded sequences
identified as having a common purpose on the basis of non-model clues
like penstate changes and retracing. (See section 2.3.) The first
produces PURPOSE assertions which form the initial partial plan: the
second SUGGESTIONS which have the effect of causing open-coded ‘
sequences to be treated as sub-procedures. Debugging advice is in
the form of a request that the plan-finder supply a new plan that
does not make certain hypotheses about the program. This interaction
‘arises when the debugger finds all editing strategies for the current
‘plan implausible. ‘ , . o

2. (Analysis, by Synthesis) Another method is to consider the model from v
‘the point of view of program writing. This leads to two forms of
advice. The first is to assign sub-procedures to model parts if
" possible (on the-grounds that the model parts constitute a likely
plan for breaking the picture into sub-goals). The second is to
generate expectations for the order in which the parts are to be
~accomplished. This is done by observing transitive sequences . of such
predicates as BELOW and CONNECTED in the model. The heuristic is
that.that these sequences represent-the probable order in which the
parts are accomplished, ‘thereby minimizing retracing. '

30

Ll

Goldsyein .

29 .. " Finding the Plan

. (Static Evaluation Function) W third nathod is a plausibility
estimate of partial plans. This estimate is simply the number‘of
satisfied model statements and expections minus the nunber of
violated model statements and oxpectations. If the program is bug -
free and the plan is correct, then the plausibility number will be

maxjmal. At any instant in time, only those plans with the highest .

plausibility number are explored. Afte:}analyzina .a statement of

code, the plausibility number is recomp .
rechosen. Inactive plans are "hung" and are riot resumed unless their,

ed and the active plans are

active ‘brethren become less plausible. _ ' »

3§F NDING

IHE PLAN FOR STICKMAN

As an example, - let us consider the problel of finding‘the plan

for NAPOLEON. Recall that the procedure is:

TO NAPOLEON
10, VEE
20" FORWARD. 100"
30 VEE
- , K * 40 FORWARD 100
. » : 50 LEFT 90
' 60 TRICORN
END -
1 W

. ; ; A
7» .Su figura l l |
o

‘.
P
I
b
}

v

We shall assume that the VEE sub-procedure fias been previOUsly annotated

and assdtiated with the V model but that TRICORN and NAPOLEou have Just

been defined and their purpose is unknown. By considerlng sub-

2 \

procedures as candidates for. accomplishing modal parts (analysis by

synthesis), TRICORN 4is bound to the EQUITRI ‘model. The result is two

possible initial partial plans.'

PARTIAL.PLAN.1:

*10 VEE <~ (accomplish legs)

30 VEE <~ (accomplish arms)

60 TRICORN <= (accomplish head)

Ihese are:

PARTIAL.PLAN. 2 4
10 VEE <~ (accomplish arms)
30 VEE <~ (accomplish legs)
60 TRICORN <~ (accomplish head)

i Further constraints are iuposed by FINDPLAN's prooran-writing

. expectations On the basis of BELOW, FINDPLAN expects:

(accomplish legs) <->»(accomplish arms) <-> (accomplish ﬁeadd

The double arrow indicates that the sequence may happen in Qithar

forward or reverss order. On the basis of connectivity, the

Goldstein + . | ‘30 ¢ Y - Finding the Plan

.
_eibectatibns are:
(accomplish legs) <=> (acco-plish body) < p (acconplish head)

Taken together, the result is that stlte-ent 10 is believed to

Aaccomplish the LEGS and statancnt 30 the ARHS. Thus, PARTIAL.PLAN.1 is

[CS

preferred.

s

The- code. of the program is than considorod statement by

statement, .Statement 20 draws a vector lnd is tharefore believed to be

the BODY. it might be only a pioce of the body but this is not p&(§ued '

until the linear assulption thatathe body is acconplishad by a modular _
main-step is rejected.

Statements 30 and 60 have aiready'ﬁnon asiigﬁed to the'arms and
hedd, roquctivoly. As a result, a11 of the model parts hava been
assigned but statenont 40 remains unoxplainod FINDPLAN consequently
backtragks and intorprets statomant 20 as only piece pf the body. A
demon is created for recognizing tho body s conplntion and plan~ finding
recommences at statement 30. State-ent 40 ;atisf&os'this demon since 1t
“draws a vector thitrbeginsAat.thi qndpoint‘of tho first ﬁioco'of the
bodﬁ. The result is that it is considorod (piece 2 body). Thus, with

almost no search, the plan for NAPOLEON is correctly deduted. .

TO NAPOLEON --€= (accomplish man) v
- 10 VEE , : <{- (accomplish lags) '
20 FORWARD 100 ' - <= (accomplish (piece 1 body))
30 VEE : ‘ o <- (insert arms body) /
40 FORWARD 100 : <~ (accomplish (piece 2 body))
. 50 LEFT 90 . <~ (setup heading)
" 60 TRICORN A <-- (accomplish head)
~END ,

Goldstein - a1 . Finding the Plan

3.4 NON-LINEAR PLANS AND SELF CRITICISH

A This section explains how intorruptod and insortod nain-stops
are recognizod.. When FINDPLAN binds an unassigned nodol part M to a
segment of code C and tho resulting intorprotation inplios nodol
violations, thorl are threo possiblo gxplanations. ’ h

2. C is not intondod to acconplish H Choose another interpretation

for C -

1. The code is in»error. a bug has boon discov.red.

3. C lcconplishes only a PIECE of M. The ronaindor of M is achieved
: in piecos. '

Possibility 1 roquiros no spocial action by FINDPLAN. the a

'violation will ovontually bo passed to DEBUG for. corroction. _" //j
Possibility 2 requires that the a different linear plan be cnoscn.‘ This 7
will occur ifvthc current linoar‘plan bocones loss'pliusible than
alternative linear interpretations whnn co-parod in torns of the static
plcusibility function described earlier, Possibility 3, howcvor.

represents an error in the plan-findor s linoar analysis of the program.
Hence, to take account of possibility 3, demons are gonorated. Theso i
demons are looking for bottor intorprotations than tho current linear |
plan (1i.e. interprotations which do not imply as many violltions) " The
following paragraphs describe the creation of such a demon in the plan~-
finding process for TRICORN.
Suppose FINDPLAN has just decided that statement C achieves
mooelnpart‘ﬂ and that this results in a violation bocau;o M is too

small. FINDPLAN suspects that M may be, boing accomplished in'pieces. A

COMPLETION domon is croatod looking for subsoquont code CC which would

eliminato tho violation if CC is intorprotod as another PIECE of M. If
such code is found, the action of the donon ix to edit the original

partial plan so that M is now considorod as boinq achieved by an

. . 3'5 . _ ' .’

_Goldstein ' z . . Finding the Plan
‘ ‘ ~ .
- interrupted main-stop:’ If,the code between the pieces of the main-step

returns the turtle to tho exit state of the first piece, then it is i

1nterpreted as boing an insertion. COMPLETION denons*are'also created
when a vector»is too short to accomplish an intonded connection. An e
example occurs in the linear interpretation of TRICORN‘shouﬁ'belowév

TO TRICORN ;Incorrect linear plan initially deduced. (_
10 FORWAND 50 <~ (accomplish (side 1)) '
20 RIGHT 120 <~ (accémplish (rotation 1)) -

./ 30 FORWARD 100 <~ (accOmplish (side 2)) e

3At this point in the plan-finding process, the violation .
;of unequal sides occurs. A COMPLETION demon is created
;that is looking for a vector of length 50 that could be
iinterpreted as the remainder of (side 1). ‘

40 RIGHT 120 <- (accomplish (rotation 2))
50 FORWARD 100 <=~ (accomplish (side 3)) .

/
;Here the violation of (side 1) not being connected to
- 3(side 3) occurs.. A ,second COMPLETION demon is created _
.that is looking for another PIECE of (side 1) that connects
;to (side 3).

\k 60 RIGHT 120 <- (accomplish (rotation 3))
70 FORWARD 50 <~ (accomplish ?7)
END- ’

Both of the COMPLETION demons are triggered by statement 70. The result
is that statement 10»13 rointorprotod to accouplish onlxén\ ' . ' o
(piece 1 (side 1)) and statenont 70 is assigned the purposs of '
accompliShing (piece 2 (side 1)) * This producoilthe correct plan.

’ (Other'uimons are creatcd in tho plan finding process for TRICORN

- However, they are never triggered and are therefore not nontioned.)

Goldstein . o . 33 . Finding the Plan
3.5 SUMMARY OF THE PLAN-FINDER o J
The calgorithn for plaﬁ-—%nd':lnq pcrf'drls well when: .
(1) The user supplies advice in the form of a partial plan;

(2) The procedure has subroutines; _ .
(3) The procedure has few bugs. S N

1r f;he :rogru is not Wsubroutinizod and is full of bugs, the search
grows unuianagublq and_di_fficu‘ltios arise in_selecting the most
lyﬂplau"sible “candidatg. This performance is quite reasonable ir! .f;he sense
'th;a't similar stitomnts are trdo of a human problem solver 1nvostigating

163
- & strange program.

e

Goldstein ’ k7 | i Debugging
4. THE DEBUYGGER

4.1 MODEL VIOLATIONS

The monitor is designed to debug -odo’i Vv;olntion#. Thess are

rgcta\'gnized b; the INTERPRET module (see again figure 1.6) which cou.parotr

‘the output of a syntactically and semantically co'rrocJ turtle program

*

(i.e. a program that is ‘able to run tg completion without roquos'tinq any |

illegal computations) to the description of intent provided by its
picture model, usi‘ﬁﬁ the plan to bind sub-pictures to model parts. The
result s a/list of violated model predicates. The program.is -

considered correct when all of these violations have been eliminated.

Correcting model violations is accomplished by using two types r.

of procedural knowledge: (1) a collection of general debugging
strategies for repairing progrns and (2) directions for fixing

particular goomtric nnd\\ogicnl prodicntes. Bocauso overall guidnnce

. 1s derived from the model, we shnil/cnll}this type of nnnlysis model-

“driven debugging.

P

_ T~
‘!2 DEBUGGING AS SEARCH ’

_- A debugging strategy 1: a sequence of gditing conmands whose
afi"ict is to modify the program so thnt" it uﬁs‘fios 1tsmodol.‘ There
are’ generally nultf%:lo debugging' st?tegios' for c;r/r;cting a given set
of violations. These alternative debugging strategies arise from choice
of the reperr-points at which the corrections are to be made as well as
of the exact nuning thnt the user 1ntondod. |

To clnrify the issues which nriso 4in selecting the best

" dabugging sequence, it is useful to conceptuanzo the problem in terms\

of & search metaphor. The space is that of all possible debugging

. It

Goldstain ¢ . 35 ﬂ Debugging |

strategies for corroqting ‘the progran.‘ Each nodo is a set of modol
violations' the origin of the spaco is thq initlal output of INTERPRET.
An arc is an edit which which leads to & node containing the new (and
cpresumably smaller) set of violations which are produced by tho patched
code. Branching occurs for each possible patch for corrocting a
violation. A path through the space constitutcs & series of edits that = .
transform the program to an acceptable form. .
~-&ecognizino the existence of nuitiplo possibilitios qu
correcting a program, it.is appropriate to ask what knowledge is used
to: T |
(1) choose the next model violation to be debugged?
(2) generate the possible corrections for that violation?
(3) choose the most plausible correction?
The following sections answer these questions. g;geging’
Criteria are introdocod for choosing the sequence in'whicn the
. violations are dobqued. A linear approach curtails tho number of . __Jg
possible edit points which are initially considored. The imperative
semantics of the modol predicates are usqd to generate possible
corrections. Plausibility criteria are dosiqnod for selecting among
alternative debugging strntogios.

e 4. 3 ORDERING HULTIPLE VIOLATIONS _ i

ES Multiple bugs are difficult to fix. Guidolinos are required to

order the sequenco in which the violations are debugged. These - &\
. guidelines reflact an understanding of dopondency rolationships between.
violations. thereby serving to minimize the unfortunato occurrance of a

Icorrection undoing pravious ropairs or introducing new violations. The

ordorinq is done on the basis of preferring to rapair'

87

Goldstein ' : s . Debugging

(1) bugs in properties of model parts befbre bugs .
in relations between model parts;

(2) bugs in.intrinsic properties (or relations) before
bugs: in extrinsic properties (or relations);

and (3) bugs occurring earliest in the temporal sequence
of execution. . ¥

The following paragraphs describe these criteria and sxplain their

rationale.

L
o

" 4.3.1 Debug Properties Before Relations

The system debugs violations of properties of nodolAparts'befpro
repairing violations of relations botween nod§1 par&s. This is ﬁasgdkon
the importaﬁt heuristic of first having a successful theory of the‘ﬁﬁrts
before attempting aﬁ‘oxplanation of their interactivns. This is more
than good style. The bdﬁavior of fho interfaces is dosignodlrelative to
the entry-ex;ﬁistites of th‘ code for the main-steps acconplishihg}the

parts. To detirmine_the specific state ch&ngos to be made at an

interface, the perforhance of adjacent main-steps must be established.

Thus the code for sub-pictures must’be fixed prior to deciding on the

préﬁer edits to the preparatory-steps.
| Properties of individual model parts include unary model
primitives (e.g. VERTICAL,'HORfZONTAL and LINE) as well as user-defined
sub-models (e.g. EQUITRI and V). The most common relations between.
model par}s are prpdicatCs'such as ABOVE, BELOW, and CONNECTED.
4.3.2 Debug Intrinsic Befors Extrinsic Predicates
| The idea behind the next ;rdoring criteria 1s.to estimate the

range of possible locations in the program at which the repair might be

:amade for 'each violation. The heuristic is then to fix those violations

3%

Goldsgein - .37 ' 7. Debugging
.b.' : . j ' . ‘,t:_)

of most-limited scope first; both because they are easiest and because . -

of dependency relationships. - , o | .(.

Let the scope Qg a g;g;ggggg bo_th(cddo*bitwoon the repair-

~ point and the manifestation-point. For a property (P M), H}l‘model
:part. the ggg;;gggég;gg;gg;gg is the location in the pronr&u‘at which M
is completed and_tﬁQ truth of the statement (P M) can be ;Vlluated. The
- Lgpg;;;gg;gg_is the location in the Srogrin at which the edit is |
eventually made to correct the violation. For a relation (RM N), tﬁe
manifestation-point¥is the location in thé program at which both M andFN
 have been completed and the rollﬁion R can be evaluated. ' . - ¥

This criterion would be pointless if there were no way to ”
estimate the scdpe of & violation before entering into the detaiis of ~ . ' .
debugging. However, this is not the caso.v One method for estimating |
the scope 6f & violation is to know whether the property of rolltioﬁ is
intrinsic to the responsible code.’ | ‘

A property (P A) is intrinsic to the code for A if it is
independentqog preceding code and entirely due to the pyin-;tep for A.
Similarly, the relation (R A B) is intrinsic if it is independent of
code preceding A; assﬁninq that A is achiayod before B. - Repair is
simplified by fixing 1ntrinsic-bradicatos.boforu extrinsic ones since
(1) for intrinsic violations, the possible repair-points.are sasier to
find since the& cannot occur prior to_th code for A, and ?2) the propers
corrections for extrinsic predicatos depends upon the the code being
iﬁffinsically‘correct. |

In the woz}d of turtle goo;otry. intrinsic errors are
distinguished by being independent of the frame of reference: they | ,

cannot be corrected by translating or rotating the picture. This is

because in thi simplified envigonment of fixed-instruction turtle

ERIC o | 34

Goldstein R s - Debugging
s * . .

Y
T

programs, code groups draw rigid bodies. The initial- interface of a
2
g

- code group has the effect of ostablishing tho origin and orientation of

the sub:picture but does not affect the local rolations among voctors.

‘e

Topological predicatas (invariant under transformations thdt preserve

connectivity) and geomotric prodicatos (invariant under translation and
rotation) aro indopondent of the frame of roforonco and thereforo yield

intrinsic vioigtions. Bugs in the followinn model pri-itives are always g

: rntrin31c to tho codo group to which they refer: OVERLAP.JINSIDE.

© . OUTSIDE, PARALLEL and CONNECTED.

Extrinsic errors are those affected by the initial environment .

in which the code group is executed. The initial environment consistc

of the bindings of the turtle state variablos - :HEADING. :POSITION and
:PEN. These variables control tho oriontation. origin and visibility of
tho sub- picture as well as its relation to previously drawn parts of the
picture. Hodol predicates which depend on the ‘initial state are
VERTICAL, HORIZONTAL, BELOW, and ABOVE. |

Debugging intrinsic Yiolations first tends to ostaplish the

proper connections at “interfaces. Debugging extrinsic relations like

 ABOVE then becomes simply a matter of establishing the proper heading at

interfaces.

- e

- In the turtle world, the distinction between intrinsic and
extrinsic predicates is particularly easy to make: howover. it remains a

useful debugging distinction in other domains. If i property of a

* program is due to some local data structure (such as a bound variable)

=

or local control structure (such as a loop) and is independent of the
preceding code, then it is intrinsic and worth debugging in private
before oxtringic properties (whose causes are less easy to isolato) are

\

repaired.

qu

IR Gdiﬂstein _ S N ; 39 T Debugging

N~ 4.3, 3 NAPOLEON's Violations , _ ,
' B The f‘ollowing list. of violationg for NAPOLEON is ordered by the
.above criteria. LT R '“ ' - ; ‘ LT .

"~ . {Violations of Properties of Parts of NAPOLEON)
\a -0 'f -(An Intrinsic Violation -- Hantfested in Private)
' . S {NOT (EQUITRI TRICORN)) ’ : , .
(An Extrinsic Violation -= Not Hanifested in Private)
- (NOT (LINE BODY)) Y
4 : :

. ‘\'._p‘

(Violations of Relations between Parts of NAPOLEON) .
(Temporal Qrder -- {legs, arms} nccomplished before {arms. head})
(NOT (BELOW LEGS ARMS)) . r s . .
(NOT (BELOW ARMS HEAD)) - :

4.4 FINDING THE PROPER REPAIR-POINT -

%,

For each violation. DEBUG must find tho proper regair-point in

the prooram at which to insert the correction. or course. the debugger
knows that the repair-point. cannot follow the code for the parts f

'mentioned in the violation but this is hardly a sufficient constraint

Consequently, DEBUG uses two heuristics--Private and Linqar Debugging-~

to limit ‘the possible locations for the correction.
. 4 s _ VA‘». 5 - o . .
3 ' _ S

4 5 l Private Debugging

An 1nitial heuristic for constraining the possible repa1r~p01nts
; for'a‘violated_property is to limit consideration to the code directly
responsible-for“the model part in questionlv This 1is done by running the e

responsible code independently of the larger prOCedure of which it is a

part. Specifically, the responsible code is executed with the turtle j
started ‘at the entry state. The violcted properties will be manifestedi
in thisrprivate encironment'it the main-step is modular.’ However. if .

;there is intervening code, i.e. the nain-step is interrupted,lthen the

Goldstein . - Debugging

linear aSsumption'that the cause is intrinsic to the‘responsible code
‘and not due to interactions may be wrong. o L |

| If the violation is manifest. tha code group is: then debugged in'b
this simplified context, free of the effects of the remainder of the
original program. Private debugging is used to repair the three | ' '}
incorrect rotations of TRICORN. There are ng complications when the v !
edited sub- procedure is. rejoined to the NAPOLEON super-procednre.

The relationship between the pictu;e drawn in private and in

‘public is simple for fixed-instructionmturtle programs since the picture

is a rigid body and only its orientation and origin is affected by the

initial e?vironment. For more comglex programs, difficulty occurs in.
1kfinding a representative private environment and further research is
.necessaryf‘ This is similar to the. problem of diagram generation in
b'_geometry theorem proving and to the problem of case analysis in
automati: program verification. | |

. The-private repair may make assumptions'about the’entry state to
- the code, If this happens, it will be reflected in ASSUHE comments
regarding the entry state to the hain-step.‘*ﬂhen run again in the reaI
context, any conflicts between assumptions made in private about the
initial environment and the actual entry stata are themselves debugged.
This is accomplished by adding code to accomplish the assumptions in the
super-procedure or, if this proves impossible without causing additional
violatiéns, backtracking and attempting an alternative correction in
.private; . | - | N v

; An example o; this would occur if the model for:dAPOLEON had ;
declared that thefbody must be vertical. Debugging'the body (statements
.:20 and 40) in private would rpsult in the assumption being generated -
that the entry heading must. be 0 or 180 degrees The code for the body

-,?,4‘2 N

Goidstein o o A_ . 41 A _ Debugging

is then reconsidered in the context of the NAPOLEON super-procedure. A
~ The actual entry state to statement 20 does not have :HEADING equal to 0 _
\\~or 180 degrees. Consequently, the debugger now attempts to add a 7
.rotation at. some preceding point in the program to achieve this entry “
 state. This addition will most likely occur inmediately prior to
tatement 20 or, perhaps. as. the initial setup to the NAPOLEON program. | -

L]

The debugger chooses whether to. prefer 0 or 180. and at which repair-

point, on the basis of side effects, ninimal Change to the user's
program and planning caveats. This set of pleusibility'criteria is .i .
described.in section 4.7. 7 | |
| The system also checks for had side-effects'on‘code"following
the'edited sub-group due to a neu,exit staté for the edited code. A
qleanup.step may be neededito eliminate undesirableiconseduences of the
private repairs; Thé modified main:step ney violate protection or
o assumption commentary generated by other edits. If L0, the standard
practice is to either (1) modify the offended edit in light of the new
structure for/the main-step or (2) backtrack and correcting the main-
step in‘private in some alternative way. . See section 4.6 for details on
~ the protection'nechanisn. ‘ o
- ‘ Occasionally, when the code is run in private,.the violation
- does not occur. This happens because the main-step is not modular and
the violation is due to code appearing between pieces of an interrupted
main~step Private debugging remains useful, however, because it
clearly indicates that the cause of the error is in the intervening

o

code. _(NOT (LINE BODY)) is an example- ‘the body when run in private is

indeed a linew The bug is in the effect of the inserted VEE on the

7.
o

heading of the second vector.

Private debugqing is also used to~correcttintrinsic violations

43

~—

Goldstein . v : 42 : e Debugging

of relations. Recafi that the definition of an 1ntrinsic're1ation is

that it is entirely due . to the code betweeh the nodel parts mentioned in

the relation. *Hence, the repair-point“nust occur there. The same

- precautions required when the code is rejoined to the super-procedure--

i.e. satisfjing assumptions} and possibly cleaning up--must be taken.

Outside the turtle world where it may not be so easy to decide if a
gelation is intrinsic. rivate debugging can still bq attempted. Just

as ‘for properties, if the violation does not appear in private, then it

(Y

_is known that it is not intrinsic and the'system can.look for causes in

preceding code.

glgzg near Debugging of Relations

Linear Debugging is a technique for limiting the possible

'repair—points for correcting violated relations ‘of both the intrinsic

and extrinsic kind. It is based'upon the assumption that DEBUG has
already privately repaired the nain-steps to.satisfy their properties.
The linear debugging technique is to consider editing corrections only
at.preparatory-steps and not'internal to the.code'for the main-steps.
Main-steps are treated as'inviolate,blackéboxes: their contents need

neither be known nor changed This is based upon the assumption that

'the main ~-steps are independent and that the only corrections necessary

to repair relations is to make adjustments at interfaces. This was the

’ technique used to debug (BELOW LEGS ARHS) DEBUG limited the search for

the proper edit by not considering the addition of a rotation to the
interior of the VEE sub-procedure.' Instead, it restricted itself to an
analysis‘of possible corrections at the level of the NAPOLEON super-
procedure. |

[4

Linear debugging fails when the underlying cause of the

44

Goldstein - 3 _ ~ Debugging
‘it

viblation is due to the code for ¢ne of the pirts. In such a case, it
\

is necessary to remove the restriction against uodifying lain-steps, Anv

example whera this occurs was shown in figure 1.9. “The violation of the
mouth not being inside the head is caused by the size of the lduth, not
by the interface. | | |

. [] .
4.5 IMPERATIVE KNOWLEDGE

\
i
|
i

How is the set of possible edits for repairing a violation

generated? The answer lies in the use of procedurtl knouledge f

associ;ied with the model primitives which providos direction on how to
make the predicate true The system has imperative knowlcdge fpr
logical-primitiveg like equality aﬁd-conjunction as well as for
geometric primitives appropriate to the turtle world. . This imb?raiiveA
knowledge 6ufput$ a set of possible edits whose effect is to eiiminate
the Qidlation.' . | . A

In the NAPOLEON example. (NOT (EQUITRI TRICORN)) is a v;olation

of a user-model. Such violations are fixed'by recursive entry to the

~ debugger and analyzing the code for the model in private. Suchy

recursion ultimately“reducas the debugging to fixing violations -of model

primitives.

4.5.1 Imperative Knowledge for Geometric Primitives |
The following discussion describes in a simplified way the

imperative knowledge associated with several of the model primitives.

Let X and Y be vectors and assume that X is accomplished before Y.

(LINE X Y) <=> (AND (PARALLEL XYy) (CONN;QTED XY))

The imperative semantics for AND directs debug to establish the two
relations of PARA FL and CONNECTED. These are defined below.

4!)0

o [

- Goldstein R AR ‘ v Debugging
N\
(PARALLEL X Y) <=> (= (DIRECTION A) (DIREETION B).(MOD 180))

The annotator records the DIRECTION .of vectors. The repair is to
insert rotations between the code for X and the code for Y so that
the direction of Y becomes equal to the direction of X (mod 180)

(VERTICAL X) <=> (OR (= (DIRECTION X) 0) (= (DIRECTION X) 180))
Alten preceding rotations so as to make the direction of X0 or 180.

(CONNECTED X Y) .
Choose a connection point on X (P1) and a connection point on Y
(P2). The connection point is sometimes specified in the model: for
example, the user may have indicated that it should occur (AT .
(MIDDLE (SIDE vs+))). Then compute the vector V from Pl to P2. The ®
"edit is to add code for V into an interface between X and Y. This
. will have the effect of translating Y so that Pl is moved to .
coincide with P2. o
If the exact position is unknown, deduce it from constraints such as e
preferring to effect the code in minimal ways.- This is done by ”
manipulating individually the length and angle inputs to translation
and rotation interface steps (occurring between the code for X and
the code for Y) and observing if X and Y intersect as a result. -
Branch in considering alternative allowable connection positions.

(ABOVE X Y) -~ (similar technique for BELOW, RIGHT-OF, LE?T-OF)
. To compute the required correction for a given interface: assume) -
~ that, the figure has already been debugged to be topologically
" correct--e. g. all of the connections are correct. This implies that '
the .only degree of freedom in interfaces is the heading. :

In considering a given 1nterface, find the range of headings which

e satisfy the predicate. The range is determined by first finding the

Ak heading of most restrictive meaning of ABOVE -- CENTERED-ABOVE o
‘wherein ‘the center of gravity of X is directly ‘above Y. Then relax -
this heading to find the maximum range in which less restrictive oo

true. To select a specific heading to actually edit into the cod
choose the value that satisfies “the most restrictive meaning of
ABOVE. If there is still a range of possible headings, use the
average value. Record the range considered in case later debugging
results in conflicts and another heading must be chosen.

meanings of the predicate--COHPLETELY-ABOVE and PARTLY~ABOVE--rem§:n

4.5.2 The Rigid Body Theorem

)

Fixed-instruction turtle programs draw rigid bodies,ri.e. tﬁe
only effect of the initial runtime environment is to alter the
visibility, oyigin or orientation of the frame of reference. This

ERIC T | .

e

- Aif the edit is made immediately prior to the code for the side, the '

triangle‘shape will be destroyed. The rotation, however, can be added -

'reference. the edit can be added anywhere prior to the code group ‘to be

~Thus, fixing the sub-picture which occurs first commits the system to

Goldstein ° o 45 | : Debugging

| o o ' " , ' |
theorem simplifies the,generation of possible repair edits by allowing
computation of the requifed rotation for HORIZONTAL. VERTiCAL and ‘ *
PARALLEL to be MQEZ‘EE‘y once, independently of the point in the code at
which the edit is to be added. This is useful since there are usually
many points at which patchino the code must be considered to fix these
violations. | ‘

For example, suppose the side of a trilngie is to be made

horiibntal The required rotation is computed for the'side However.

i~

tO_Préceding code, rotating all subsequent vectors the same amount and
consequently still meking the sie::;orizontal.

In generai. if the correction is a rotation of the frame of

rotated If the rotation is to change tﬁc relation between two sub-
pictures. then it can often occur anywhere in ‘the code occurino between

the main- steps which accomplish the sub-pictures.

4.5.3 Imperative Knowledge of Logical Predicates

The general advice for fixing (= (P A) (P B)) is to use the
imperative semantics for property P to either nakov(P A) equal to (P B)
or vice versa. For the simple cqse of fixed-instruction turtle)
programs, the chenge is usually made to A or B on the basis of which
occurs last. This is preferred because of the anid body nature of sub~

pictures. For example, suppose A occurs before B. Then adding RIGHT

:ANGLE before A rotates A but it also rotates B. An opposite rotation

must be edded after'A if B is not to be affected by the first edit.

47

N L o
Goldstein - . 46 - Debuggirig

TN <

two changes of the program.5.0f course, editing the code before B may ﬂ
also require a cleapup because of bad side effects but this is not
inevitable as it is in the first case. This preference is reflected in

the general debugging criteria of avoiding conflicts, minimizing change

4

to the user's program and greferring beneficial ;ido effeacts.
. Thus, fixing eduality consists of:

General Knowledge: Either A or B can be fixed. Profpr to alter the
unprotected element (section 4.6).

Bgéyln-Dopendent Knowledge: Inparativo semantics are provided for

. relating primitives to their effects. These semantics are used by
the :annotator to document the effect of a statement of code, and by
the debugger to add the correct code to achieve a desired effect.
For example, to alter the direction of a vector, the annotation
semaptics - for FORWARD (section 2.2) indicate that the DIRECTION
property of vectors is equa¥ to the current heading. The annotation
senantics for RIGHT- indicate that :HEADING is incremented by :ANGLE -
following execution of "RIGHT :ANGLE". The conclusion drawn by the =
debugger, then, is that either "RIGHT :ANGLE" is needed to fix the ..~ 3
direction of B or "RIGHT ~:ANGLE" is needed to fix the direction of N
A, where :ANGLE equals the differernce’ botwccn the desired direction
and the actual direction.

To fix (AND Cl c2 ..,), correct all df the bOnJuncts.' Order the
ldebugging attack on the basis of the Sumo critiria used to order the
initial set of violations. Correct- properties of“-ain-stops before
c0(recting-ra1ations botwoen'-ain-itops; COrEect intrinsic before
extrinic predicate#. Debug a given group of conjuncts at the same levﬁl
(with respect to the preceding criteria) in temporal order.

See [Goldstein 1974] for a doscription of imperative semantics
for other model primitives sych as INSIDE, OUTSIDE, OVERLAP, OR, NOT and
FOR-ALL. | |

L

-

4.6 ASSUMPTION AND PROTECTION

DEBUG generates assumption and protection commentary gifoéiated

with each repair to aid in resolving difficulties where an edit causes

4o

~Goldstein - 47 : Debugging

new violations or undoes the effects of sone'proViOUS edit. 5§§umpgnqu’

~about the entry state at the roplir-point”do;cribd?lxpoctations on whi%h

the imperative seuintics baséh their analysis. !rotoction cdmmentary

guards the cogde from 'the repair-point to the manifestation-point (the

placewin the ‘code at which fhi sub-pictures referrsd to by-the viqlatedf

modei'predicato'woro completed), again because the details of the repair
depend upon the state manipulations of the code between the edit and the

manifestation-point. Protection 1s introducod by Susslan in the context

)

of debugging blocks world programs [Sussman '’ 1973].

A simple example arises for the followirig tree program:
MODEL TREE ;See figuro'-dl ’
M1 PARTS TOP TRUNK
MZ LINE TRUNK
M3 EQUITRI TopP :
M4 VERTICAL TRUNK . _ nw
M5 COMPLETELY-BELOW TRUNK TOP 7 :
M6 CONNECTED TOP TRUNK
M7 HORIZONTAL (BOTTOM (SIDE TOP))
END .

TO TREE4 <~ (accomplish tree)
10 TRIANGLE <~ (accomplish top)
20 RIGHT 60 <~ (setup heading such-that
' ’ . (overlap (interface stntoncnt 30) (side 3 top)))
30 FORWARD 50 <- (retrac# (side 3 top)) ,

40 RIGHT 45 <~ (setup heading for trunk) B4
50 FORWARD 100 << (accomplish trunk) :
END ;

TO TRIANGLE €~ (accomplish equitri)
10 FORWARD 100 <~ (accomplish (side 1 triangle))
20 RIGHT 120 <{~ (accomplish (rotation 1 triangle))
30 FORWARD 100 <~"(accomplish (side 2 triangle))

> 40 RIGHT 120 <~ (accomplish (rotation 2 trianglse))
50 FORWARD 100 <- (accomplish (side 3 triangle))

(cleanup_ position) v
60 RIGHT 120 <~ (accomplish (rotation 3 triangle))
' (cleanup heading)

¥

END

Ses figure 4.2 for the pibture drawn by TREE4 with tho,tuftle starting

‘at the center of the scrodn and with a hcadihg of zero degrees.

4y

S .
N N R ‘

Goldstein ./ T am _ Debugging

TOP

TRUNK . , |
- TREE 4 ' .
‘ : : VERSION 1
- Intended TREE- Slanted Base and Trunk
FIGURE 4.1 FIGURE 4.2
¢)
w» . .
TREE 4 | x TREE 4 “~
VERSION 2 . . VERSION 3 :
Base Made Horizontal , Trunk Made Vertical
FIGURE 4.3 | | FIGURE 4.4
‘ .

Goldstein 9 | Debugging
Debugging the base of the TOP to bo horizontll results in the i
- addition of statement 5 to rotate the trianqle so that Khe nocessary
orientation is established. This produces figure 4.3. .
5 RIGHT 30 <- (setup heading such~that (horizontol (side 3 ton)))
Debugging the TRUNK to be vertical by -odifyin; the initial setup,
however, undoes this correction (figure 4.4).
J3 RIGHT 45 <~ (setup heading such-that (vertical trunk)) -
. | The solution is for the initial correction of (HORIZONTAL (SIDE 3 TOP))
to include commentary explaininu.its purpose, scope and assumptions. v
Specifically, this commentary is:

1. an assumption that the kntry»state to statement 5 is HEADING 0._‘
(ASSUHE (TREE4A STATEMENT 5) (= :HEADING 0)).

2 a protection to any modifications of :HEADING from statement 5, the
repair-point, to statement 50 of TRIANGLE, the lanifostation point -
of the error:

(PROTECT :HEADING UNTIL (TRIANGLE STATEHENT 50)). ‘
Statement 50 is the manifestation-point of the error since it
accomplishes (side 3) and INTERPRET is then able to recognize that
& violation exists-sthe base of the triangle is not horizontal. =

These‘comments forco the debugger to profer the alternative repair
strategy of making the trunk v:r'icll by editing the rotation of
statement 40 to be RIGHT 90. |
v A Second use of this commentary, in addition to preventing
conflicts between édits, is to simplity debugging th: procedure if it is
ever run in a new environment. Unsatisfactory initial state values are
" immediately noticed by the assumption commentary. For oxample. iaP
statement 5 of TREE4 contains the assumption that.the entry heading
should be 0, then being run in iny other environment will generate a

violation. This violation then directs the debugging.

Thus, previous debugging sessions produce connenti”g whose
specificity eliminates complex questions of responsibility and
interpretion. The system has, in effect, generated the ,
snapshots of performance which Naur and Floyd utilizo to verify

[RIC - 51

Goldstein B . Debugging

, -

programs [Floyd 1967, Naur 19671.
The~assumption comment is plsiod tq the dobdbﬂqr as In'instructibn and
the result is that code is added prior to statoiont 5 which converts the
heading to the desired value. _ 7 H

‘ Often.a protection conflicé can be resolved. The debugger is 'Q
simﬁi& recalled to achiovﬁvtho edit which gave rise to ;he protection, -
taking into consideration the new entry or exit state requirements.

This second call to the debugger involveslloss effort than the fifst;'
TheAcommentary from the first ren‘ins and indicntes the desirad
Cartesian state to be achieved at the manifestation-point.. If the
second édif'succoods without causing unfixable violaﬁions as side
effects, then the system has patéhod its own edit and need not reject
the basic Sorﬁ of its curron;,ahalysis. |

.

4.7 DECIDING BETWEEN ALTERNATIVE DEBUGGING STRATEGIES

wmmem paees e

More than one debugging strategy is usually available to fix a
given violation. The strategies differ with respect to their e;timate
of the failure point and with respect to the type of correction they
apply to fix a given model violation. For example, the imperative
semantics for BELOW indicate the desired direction but allow the
correction to be added into any prior interface. In NAPOLEON, the arms
can be made abovi the legs by adding the appropriétc rotation to tﬁo
'beginning of the NAPOLEON procedure or immsdiately following statement
10; the code for the LEGS. The preferred debugging strategy is the one

that does nfnilai violence to the user's code, reflects the abstract

plan, and fixes the greatest number of violations.

td

. Goldstein o - 51 I Debugging .

4.7.1 Plausibility on the Basis df Side Effects

‘Thd‘first criterion fqr.judgina the success of a partial

debugging Strategy is an analysis of the side effects of the

corrections. . The dobugging stratogy with uaxi-al beneficial side
effects is preferrqd. Beneficial sido effects occur by oliuinating
additional model violations, satisfying planning~oxpoctations or’
»Qliminatina,violations of rational form. N ‘ 1 -
One might ask why ;; edit might have any baneficial side e;;§§ts
-at all. Isn't it more likely to have bad side effects and cause
other violations? The answer is that often several violations.
are caused by the same error in the code. Then orie debugging
strategy will stand out from its brethren by fixing th}s error
- and thereby simultaneously curing several violations.

On the other hand, sometimes a correction causes additional
mode1 vioiatiohs. In this case, either thg_n;n violations can
themselves be debugged or the debugging strategy must be abandoned.
As#umption and protection comnentiry are-used to help in understandin§
those bad side effects wherein one edit undoes the sffect of some other
debugging edfl. If the bad side effect cannot ‘be oli-inatod, then the
debugging stratégy must be rejected. This is the case with a linear =
debugging of GOOGLY.EYES (figure 4.5). . °

The eyes cannot be brought into the head by shéinkinq'thq,in;erface
without causing them to overlap the nose. Thus this debugging strategy
eliminates one violation (OVERLAP EYE HEAD) only to imtroduce another
(OVERLAP EYE NOSE) The .system is forced to consider non-linear ' \S>

Pl

debugging and fix the parts thenselves.

4.7.2 Plausibility on the Basis of Minimal Change

Another plausibility~criterion is that of minimal change to the

user's code. A debugging strategy that changes an input is preferred to B I~

. r: o
(’\I ‘ o) ~ ‘)!‘ ’ ‘ .

Goldstein -

GOOGLY EYES - :
FIGURE 4.5 '

. . -
Bl 1y

» , ' . S o ' ~ ~ : .
" one that adds statements; and a strategy that adds statements is in turn

preferred to one that deletes them, Tho.rationiiotis that a repairman
should make hinim;l changes. to a sysﬁo;.- The goal is to fix the program -
‘in harmony with the usor's”intoht..not to redesign it. This caution is
further justified by the fact that the system does not fully know the

programmer's intent or plan. Hence, it must be hesitant to make major

‘revisions to éis program,

- 4,7.3 Plausibility on the Basls of Cavoat Comments
A third basis for choosing botwoan alternative dobuggino
' stratégies is pdvlcc from the annotator and plan-finder on likely
:-errOrs. The annotator alerts the debugger tg_odditios'in program
structure wh%ch may be the underlying cause of :6;0 semantic violation
(section 2.4;, The plan-finder fulfillsvtho same purpose with respoctﬁ'

to code that'contradicts oxpoctations arising from the typo of plan.

The&?echanisu of inforuing the debugger of the possibly erroneous code
is through *caveat® connonts. The comments are noticed when the
d debugger considers the associated code in the cour?’*of dobugqing some

model violation. A repair edit 1s accorded oxtra Plausibility by the

“ o | 51

_‘ Goldstein S . ' - 83 o 'h - .'Debugging’ .

. debugger if the correction eliminates the complaint that initiated the .

.

: caveat.
s Caveats generated by the plan-finder are created by noting

: insertions which are not transparent, interrupted-steps which depend on |
f

,specific runtime environments and linear plans in which main-steps use

- the ‘same resource such as an assumptioi?“ibout a particular state

variable. In an extended system, caveats would be generated by such

j'oddities as iterative programs which fail to halt and shared free L

[

. variables. As an example. recall that the arms in NAPOLEON represented

q

a non- transparent insert and that this information advised‘the debugger “ T
to edit the correction into VEE rather than directly into the NAPOLEON ,":
L 4 /
super procedure. '
Comments are used--rather than the Annotator or Plan-Finder o ,fsé
immediately calling the Debugger to correct the violation--because a -
N . AN
violation of rationa1 form 1is not a guarantee of a bug. the oddity may .
be harmless or even intended/by the programmer . An example in which a
sequence of FORWARD instructions arises naturally is the following
'triangle program: ‘ - ‘ AR ‘ /(ﬂx\k*f/
TOTRI - ° .
10 FORWARD 50
. .20 FORWARD 50
A -30 RIGHT 120
40 FORWARD 100
50 RIGHT 120 : - .
BT A ‘ 60 FORWARD 100 . - T -
o ot - - END _ , : ' ' ’
: The first two FORWARD's' are surprising. HOWBVOF, if this TRI is being. .
debugged in preparation for being converted to'a triangular head with. = . oo

the remainder of the stick-man inserted as statement 15, then the
apparent violation of rational form is explained The utility of
_comments is that if the code’ is not suspected of being in error by the

, S ' . rE

,'Gol;dstein . s T o ~ Debugging
'.?é. a_debugger; thercomment has no effect. It plays a role only if DEBUG
o finds a model violation that €an possibly be corrected byuchqnging the)
. odd code. Only then does the comment enter into the analysis by |
supporting such adding pleusibility to debugging strategies that
eliminate its complaint of non-transparent insert or sequential

r) . . -

. .) N -
-commands. - - o : ; .

5

4.7.4 Guessing the Culpable Interface

Even with the restriction to linear edits, fixing a-predicate
relating two main-steps may produce many possible edits. FOr-example.:

making the head above the legs in NAPOLEON could be done by adding a

]
rotation at any of several places in the program preceding the execution

of the TRICORN sub-procedure. Consequently; the system initially
- .
-considers edits to only two interfaces -- the interface immediately

2

.

preceding’ the second main-step (i.e. .code for the model part

accomplished last)ﬂ‘nd the initial setup to the program. The immediate

1

interface is preferr“?

already been protected in the course of debugging. The global setup is

considered because 'Unexpected Runtime Environment' is a common cause of

errors. The plausibility of these editino points is then aue{yzed byf
the criteria“descrihed in the preceding sections -- beneficiel side
effects. minimal change, end caveats as well as the protection criteria

~described in the preceding'section. If they are found implausible.

,x"

additional interfaces are considered in order, proceeding backwards from

the second main-step. ,///

3 D -

on "the expectation that preceding interfaces have

~

Goldstein & © 85 . " Debugging . .

a

4.8 SUMMARY OF DEBUGGING CONCEPTS | .;-':\ _
o ' , - S .

"The debugger's knowledgé;é)videsinto two categories: general

debugging technique and specific -imperative knowledge of logic and

-

geometry. . o . o
vDebugging Tdchnique | o D R

1. Linear Attack -- First verify main-steps privately. Then analyze
© ~ relations.in terms of interfaces. Only if all else fails, modify
main-steps to fix relations. : R . '
2. Plausible Search -- Compare alternative debugging strategies using °
plausiblity criteria of minimal change to the user's code and
maximal beneficial side effects. o ’

3. Culpable Interfaces ~-- Prefer either the initial interface or the .. - 7
interface immediately preceding the bugged module. This is based ’

. v on the assumption that the temporal attack has already verified

i : intermediate interfaces. : o . :

4. Caveats -- Use caveat comments generated by the Plan-Finder and
Annotator to suggest the location of the repair. o

\ 5. Intrinsic versus Extrinsic Errors -- Classify model violations as

I intrinsic or extrinsic on the basis of whether the error is
internal to the code being examined:. Intrinsic errors have limited
scope and can be debugged privately.

{ 6. Handling Multiple Bugs_Q- debug those vibquions of most-limited °
- scope first: that is, debug properties before relations; then
intrinsic predicates before extrinsic ones, and finally in temporal
order. ‘ :
w8 -

7.1Comﬁph¢&ry ~=- lUse commentary‘to_express the purbose; assumptions
< and scope (protection) of a correction and to notice conflicts
- between different corrections. '

Knowledge of Geometry and EOQic‘ .

. 1. Imperative Semantics of Predicates - In addition to standard
verification code, primitives have semantics’ that suggest what to °
do to make the predicate come true. T 'siconsists of procedural
knowledge which examines code and generates edits to make a
particular geometric predicate true. ' :

2. Rigid Body Theorem - This theorem is a precise statement of the
effect of the initial environment on a segment of code for Fixed- :

. Instruction Turtle Programs, namely that the code produces a rigid '
body and that the initial environment affects only the orientation
and position. ' .

Golﬁgtetﬁ o R 56 o Debugging

3. Imperative Knowledge for Logical Predicatas - Procedures for making
conjunction, disjunction, ncgation. equality and set membership-
. true with minimal effort.

!

4.9 g;assification of Bugs
The following taxonony ‘of bugs su-arizes the types of errors
which “the system corrects. . o

Linear Hain-Step Failure:
Manifestation: Failure of main-step to acconplish lodel
part in private, i.e. when run independently. : , w
- Fix: (Private Debugging) Repair in privato, rejoin and . o
satisfy any initial assumptions. - o :
Ex: (NOT (EQUITRI TRICORN)) in NAPOLEON.

Preparation Error:

Manifestation: Violation of relation betweésn model parts.

Fix (Linear Debugging) Find culpable 1nterface. make
edit suggested by the imperative % tics for the

predicate, and protect assumptions-alM -behavour until -

the point at which the error was manifest.

"Ex: See Unexpected Runtime Environment and Local '
Preparation Errors

Unexpected Runtime Environment (type of preparation failure)
Manjifestation: Violation due to false assumptions of »
the entry state-to program. (Proyra- does succood in e
certain environments).
Fix: Add an initial setup which converts the actual ontry
. state to the desired entry state. -
Ex: (NOT (BELOW LEGS ARMS)) in NAPOLEON. .

Local Preparation Error' (type of proparation orror)
Manifestation: Violation intrinsic to the program,
and not dependent on the initial environment.
Fix: Modify state appropriate to the imperative scnantics '
hd for the.violated predicate. :
Ex: (NOT (VERTICAL TRUNK)) dn TREEG.

Non-Linear Main-Step Failure: . ‘
Manifestation: Main-step succeeds in private.
Fix: See resource conflicts, insertion errors,

and global errors described bslow.

/C7 Goidstein A _ 57 o . ‘Debugging oo

Unconsidered Second-Order Constraint on Main-step: |

(type of non-linear main-step failure)

Manifestation: Violation of a property of model part
not detected in private. Manifested by analysis
of a relation between the main-step and some '

_ other model part. =~ S

Fix: Modify main-step in such a way that violation is C
corrected while the first-order description of properties o
asserted in the model is still satisfied. Guidance is °

" provided by the imperative semantics for the predicate.
“Examples of such transformations are dilation and
. reflection. R o . //J '
- Ex: (NOT (INSIDE MOUTH HEAD)) in BIG.MOUTH. S ' -

Resource Conflict: (type of non-linear main-step failure)
(Mentioned for completeness: not handled by debugger.)
Manifestation: Violation of property of part .

described in model which was not exhibited in private.
Fix: Some assumption made when run privately is being
violated in public. Such-an assumption:could be the.
.. availability of a given resource, e.g. a free variable.
EX: Attempt to correct both, (VERTICAL BODY) and : o
(HORIZONTAL (SIDE TOP)) in TREE4 by modifying the
initial interface statement 5 (section 4.6) -

Insertion Error: (type of non-linear main-step failure)
Manifestation: Main-step failure not indicated in private
with the additional element that a caveat comment
generated by, the plan-finder informs the debugger

. ‘that the code group for the main-step surrounds an

P insert which is not transparent. . K
Fix: Make insert state-transparent. R
}(. Ex: (NOT (LINE BODY)) in NAPOLEON.) L

Global Error: i o o '
Manifestation: Model part accomplished non-locally fails.
Fix: Find relevant theorem which was the basis of expecting
the global plan to succeed. Find' assumptions made by
- theorem which were not justified. Make these assumptions
" . true, : : : ~
Ex: (NOT (LINE (SIDE 1 TRICORN))) in NAPOLEON.

¢

=%

.) -) L
- Goldstein \;% o ' Conclusions

5. CONCLUSIONS

.

.1 TOP-LEVEL DEBUGGING GUIDANCE
The top-level organization of model-driven debugging is to order

the model violeioni,and then proceed to fix them in turn. ‘This

can be obtained by analyzing the sgecifig details wherein the picture
failed to Satisfy its desbripf&on. ‘Altornativély, top~level guidance'

can be obtained through:

1. structure-driven debugging - insight into the form of programs,
' ‘e.g. such structural considerations as recursive and iterative
control patterns and global vorsus local variable scope.

2. evolution-driven debugging - the ovolutionary or editing history
~of the usar‘s code. , :

3. process-driven debugging - the abstract form oé7tho process at
the time of the error [Sussman 1973].

A more‘complete debugging system would exhibit all of these forms of

direction.

5.2 GENERALIZABILITY OF DEBUGG ING TECHNIQUES

| The niﬁi-world of prqgrqis againsfléhich this ﬁnalysis of
debugging is tested is that of ;1x§d-instruction,turtlc pfocodure;;
TheSe-are. of 6ourso, a particéularly simple form of brogrnn. Th61r>'
simplicity allows tﬁo imperative solantici for the geometric primitives
to utilize the Rigid Body Theorenm, justifying the same ;tatq-change to
different interfaces to cor;ect a given bug.

The debugging techniques used to handle even these simple
o \

. programs are by no means oxhaustivé. Nevertheless, it is worth noting

that many of the techniques utilized by the model-driven debugger are of

broad‘application: an initially linear analysis, the need to'%rder the

60

..technique nako$ iho basic’assuiption»that guidanco'in fixing the program

#

Goldstein I | Conclusions

attack on multiplo bugs, conpotcnco to cope with altornativo dobudﬁing
strategies--thpse are useful regardless of the naturo of tho top-level ‘
direction or the complexity of the program.

The thoice. of plane geometry as the scnantic donain‘for ﬁYCROFT_
was'not accidental. Goonotry allows the use of a Cartesian annotator
and a powerful nodel language for specifyinq spltinl relations. Other
domains may not be susceptible to a'HYCROFIilikn approach chauso of the
1ack of’powerfﬁl ways in which to document the offocti of the program
and the lack of a good madel language. However, it is worfh-noting two
points: | | | C '

1. spatial models are very important for programming in
applications beyond graphics. (This is reflected in the way
programmers refer to memory, stacks and data structures in
spatial ways.) .

and 2. program planning and debugging involve techniques of broad

applicability but cannot be entirely done in the absence of
domain-dependent knowledge.

]

5.3 EXTENSIONS |

The design of HYCROFT‘required an investigation of fundamental
problem solving issues including descfiptioh. simplification, linearity,
planning, deﬁugginq and annotation. hYCROFT. however; is only a first
step in understanding the#e'ideas. Further investigatioh,of more .
complex programs, and of the semantics of different problqy domains is
' necessary. It is also essentiai to analyze additional planning concépts
' ‘such as ordering, repetition and recursion as well as the corresponding
debugging techniques. Ultimately, such research will surely clarify the

learning process in both men and machines by providing an’' understanding

of how they, correct their own procedures. N

61

o a

Goldstein e 60 - Bibliography
-) : . . N .
6. BIBLIOGRAPHY -
LAbelson 1973]
_ Abelson, H., Goo%, N. and Rudolph. 1.
- - LOGO manual
LOGO Memo 7 LOGO Project, HIT Al Laboratory (August 1973) ‘ .
LFloyd 19677 LE P - o
- Floyd, R. W. ' - ' - '

"Assigning Meaning to Programs"
Proc. Symp App. Math ANMS vol. XIx (1967)

[Fahlhan 1973]

Fahlman, Scott

A Planning System For Robot Construction Tasks
,AI TR-283 MIT Al Laboratory (May 1973)

x

. LGoldstein 1974] ' R B
Goldstein, I..
Understanding- Simple Picture Programs

- Al=- TR-294 MIT Al Laboratory (March 1974)

[Hewitt 1971}

Hewitt, C. '

“Procedural Embedding of Knowledge in PLANNER'
Proc. IJCAI 2 (Sapt 1971)

{McDermott 1972] '

McCermott, D.V. and G.J. Sussman

The CONNIVER Reference Manual v

ml Memo 259 MIT AI Laboratory (July 1973)

\\[Naur 1967]

Naur, P. .
"Proof of Algorithms.by General Snhapshots”

) BIT 6' 1967l 310.316 0
LPapert 1971] . -

Papert, Seymour A.
*Twenty Things to Da with a Conputor'
" AI Memo 248, MIT Al Laboratory (June 1971)

L Papert -1972]

Papert, Seymour A. ¢
"Teaching Children Thinking"
Programmed Learning and Educational Technology, Vol.9, No.5 (Sept 1972)

//7

[Sussman 1970] ‘

Sussman, G.J., T. Winograd, and E. Charniak .o™
‘Micro-Planner Reference Manual
~ AI Memo 203, MIT Al Laboratory (Dacember 1971)

HAC-TR-'?O MIT Al l.lboratory (Sept 1970)

Goldstein o 61 B Bibliography - . '

[Sussman 1973] '

Sussman, G.J. ’ ‘) : s
A Computational Model of Skill Acqulsition, ' '
AI-JTR-297 MIT AI Laboratory (Sept 1970)

[Winston 1970] ’)
Winston, P.H. '
Learning Structural Descriptions from Examples

»)

IS

