
4

DOCUMENT RESUME

ED 118.365 SE oli 894

AUTHOR Abelson, 3a1; And Otheti,
TITLE b LOGO Manual. Draft.
INSTITUTION MassachUsetts Inst. of Tech., Cambridge. Artificial

Intelligence 'dab.
REPORT NO 'LOGO -7

PUB DATE Jun 74
NOTE 85p.; For related documents, see ED 077 236, 24-243

SE 019 893, and 896-900 1

EDRS,PRICE MF-$0.83 HC-$4.67 Plus Postage
DESCRIPTORS Artificial Intelligence; *Computer Programs;

Computers;'*Computer Science Education; Instruction;
*Manuals; *Mathes tics Education; *Programing.
Languages

ABSTRACT .

Th16 manual describes the LOGO system implemented. for
. the PDP 11/45 at the MIT Artificial Intelligence Laboratory. The
Itsystemn includes a-LOGO, evaluator, a dedicated time-sharing system,
and various special devices related to output such as robot turtles,
tone generators, and cathode ray tube displays. (Author/SD)

4

#************************A***********************************44********
4c, Documents acquired by ERIC include'many informal unpublished *
* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *
* reproducibility are dften encountered and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original. *
**********************.*************************************************

0



LOGO - MEMO I.*

DRAFT

t
.

U.S. DEPARTMENT OF HEALTH,
EDUCATION R WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
*TING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

D /R A F T

LOGO MANUAL*

by

Hal Abelson
Nat Goodman'
Lee Rudolph

Revised June, 1974

Jim Adams

-PERMW,ION TO REPRODUCE THIS COPY.
FICHTE ' MATER/AL HAS BEEN GRANTEE, 8 y

.MITI Ai c i C jai Iriiiii6(800
i Lab's LOGO eritifit
TO ERIC AND ORGANIZATIONS OPERATING
UNGER AGRumENT0 WITH THE NATIONAL IN.
OTITOTE OF EDUCATION FURTHER REPRO.
cmiTior, OUTSIDE THE URIC flaGiem EIE-
GUINES PERMIrLION GE THE COPYRIGHT
OWNEG

June, 19

A F T



a

V

1. INTRODUCTION'

This document describes the LOGO system implemented for the POP 11/45 at

the M.I.T. Artificial Intelligence Laboratory. The "system" includes not

only the LOGO eValuator, but also a dedicated time - sharing system which

services about a dozen users. There are also various special devices such

as ropot turtles, tone generators, and CRT displays.

We feel obliged to begin with some disclaimers. This manual is

intended only as a language description and not as a primer.' We hope it

will be useful as a reference for users of our system and as a source of

comparison for users of other LOGO systems. Decondly,'.we believe that the

syntactic details of a computer language are of insignificant importance,

compared to considerations of how the language is used. Anyone who reads

this paper to find out "what LOGO is like" ehouldpotileglect the papers of

Papert and Solomon. Finally; the LOGO language is part of an ongoing

research project. It is to be fully expected that the language

specifications will change with our experience.

While there have been numerous contributors to the development of

the LOGO language, those specifically concerned with the POP 11

implementation are:

Ron Lebel, time-sharing system; Made Williams, LOGO evaluatori Joe

Cohen, time- sharing input/output; Nat Goodman and Hal Abelson, display and

music box; Ron Lebel and Roger Hale, filing system. As, part of the PDP11

programming project we have deteloped a POP 11 debugging program which is

similar but more plowerfut than.DEC's OUT program. This was done by Radii

IA 0
Perlman. Our display controller pas deeignad and built by' Tom Knight.

4

3



c

I

,LOGO MANUAL

There is also an essentially compatl,le LOGO evaluator Which hair been

implemented in iM.1.T.'s version oil LISP '114.1ra Goldstein and Henry

Lieberman. We must also cite the contributions of-Richard Greenblatt on

matters of system design and, of course, Seymour Papert and;Cynthia Solomon

on language specification.

Hal Abelson
Nat Goodman
Les Rudolph

4".



Ct

2. BASICS

LOGO MANUAL 4

This section introduces some basic LOGO vocabulary. LOGO

statements are'typed in at the console. You type a line of instructions

acid the computer executer it (or types an error message). The computer

indicates that it is ready for an instruction by ty0ing a question mark.'

Your line of instructions will not be executed until you end the line by

typing a carriage return.

The basic "built-in" wordi that the computer understands are carted

-LOGO primitives. These ars described in this manual. The most important

primitive is TO; which allows you to teach the computer new words. These

private words that you teach the computer are called procedures.

Primitives and procedures often take one or more Inputs. For

example, PRINT is a primitive which takes one input and prints it on the

console.

PRINT is an example of a command. A command is an imperative. It

tells the computer to do something.

Other primitives may output. They provide a value which can be

used as an input for another LOGO word, SUM, for example, takes two

numeric inputs and outputs theli. sum. Procedures which output are called

operations.

All complete LOGO statements are,h4mratives, El that an operation

cannot standby iteelf.,, If you types

SUM 17 26

LOGO will respond with the error messages

YOU OON'T SAY WHAT TO DO WITH 43.

4-



in contrast:

PRINT SUM 17 26

. is a complete statement' The computer Will print 43.

If you make a typing mistake you can press the "delete" or "rubout"

key. This causes LOGO to ignore the pr

'

lous character. It indicates this

1by retyping the ignored character with ashes'around it. Pressing rubout

again will cause LOGO to ignore the chariots:it before that, and so on.

Another feature is the "panic button" ctl-G tcontrbl G). Typing ctl-G

in the middle of a command line causes the entire line to be ignored.

Typing ctl-G while LOGO is executing a command causes it to stop and

returns control to the teletype. This is especially useful if you write

,procedures which do no) stop by themselves.

Note: The "ctl".key is like

a shift.key. In order to

type ctl-G, hold down the

mot!! key and type G. In

this manual we sometimes
use A to indicate "control."
Thus "G.stande for Control G.

Some primitives have abbreviations. If you type the ebbrev4ation as

part of a procedureline,,LOGO will expend it, to the full form.

.1,



LOGO MANUAL G

3. DEFINING AND EDITING LOGO PROCEDURES

3.1 TO and EDIT (abbreviated ED)'

Both commands put you into editing mods. Their inputs are

restricted as follows:

3.2 END

e.

1) NQ LOGO primitives

ii) For EDIT - -one input, the name pi a procedure

which is already defined

or TOvariable number of inputs; all but

the first are dummyoariables which stand

' for eventual, inputs-to t procedures

the first input may be any name Ch is

not already the noes of a procedure.

For more on Inputs, **Section 3)'bolou.
.

Takes you out of editing mode.

3.3 RESTRICTIONS IN EDITING IIOQE

While y6u are defining/editing a procedure you can still do Most

of the things you usually can do in the LOGO world: use a display,

) turtle, a music box, or other device: evaluate procedureb - -even the vne you

are in the midst of defining/editing. However, you cannot define/edit mi

other procedure: That ii, TO and EDIT are invalid commands once you are in

editing mode.



3.4 THE EDIT BUFFER .

Lines you typo plow into the procedure-definition via an edit

buffer. A line 41,put into the edit buffer if the first word on the line

is a line numbor (a whole number greater that 0 and less than 32768). If a

line numbers not present, what you type in will be regarded as standard

LOGO input, with the above restrictions. Every character and space you

type after a line number is put into the buffer until you type a carriage

return. (A machine-executed carriage return - -Which happens automatically

if you type too many thiracters on one line for the console, or whatever.

to accommodate-- doesn't have this effect). The succeeding carriage return

will then empty that buffer into the procedure definition.

Warning: The buffer can only accommodate 190 characters and spaces, a

little over three lines on the teletype: putting in more than that
will jam things up and leave you no recourse but "G.

Three other ways to gat things into the edit buffer se. EDIT LINE,

'EDIT TITLE and ^Y. EDIT LINE (abbreviated EDL), a single command despite

the space, takes one input, a line number, and if that line exists it is

put in the buffer. EDIT TITLE (abbreviated EDT) takes no inputs, and puts

the title of the procedure you are defining into the buffer. "Y puts the

previous line you typed into the buffer (handy if you forgot to type a line

nt,mbar,l- for example).,

When you have something in the edit buffer, you can manipulate it

with these special control characters:

"C prints out and stores the next character in the buffer

^N prints out and stores the next word

A skips -.:1.e.,deletes the next word

8



40:

"LOGO MANUAL,

AR prints out and_stores the rest; and at any4time (not just lg..

editing mode) you can use, besides the rubout or delete key which deletes

the previous character,

"U which deletes the previous cord.

3.5 ERASING

When you are not in editing mode, ERASE (abbroyiated ER) takes one

input, a procedure name, and removes that procedure from your workspace.

When you are in editing mode, it does the same, but you are not allowed t

ERASE the procedure you are defining/editing. In editing mode only, you

can use the coismand ERASE LINE (abbreviated ERL). its input. Is a line

number, and it erases that kjne.

3.6 PRINTING OUT

When you are not in editing mode, PRINTOUT (abbreviated POI takes as

input any procedure name, and prints out the definition of that procedure.%

By default, if it is given no input it prints out the definition of the

last procedure you defined or edited. When you are in editing mode, it

works the same; its default input is the procedure you are

defining/editing.

In editing mode only, the commands PRINTOUT LINE (abbreviated POI) and

PRINTOUT TITLE (abbreviated POT) can be used; the first takes (me input, a

line number, and prints out that line; the second takes no inputs, and

prints out the title of the procedure being edited. Neither command puts

anything in the edit buffer.

9

0



LOGO MANUAL 9

3.7 DUMMY VARIABLES FOR INPUTS

After its first input, TO can take further inputs of the form ocword>,,'

Each of these stands for an InOut which the defined procedure will have to

be given. See examples throughout the manual.

3.8 PROCEDURES WHICH EDIT PROCEDURES

It is possible to use any of the commands discussed above Othin a

LOGO procedure. They work the same, with a single exception; if the uler,

working at top level, types END to finish defining aprocodure, LOGO

replies FOO DEFINED (where FOO is the title). This Is 021 printed out when.

the editing procedures are rolled by other procedures; a great convenience.

Note, however, that the restrictions of Section 3.3 simays'apply - -you

cannot be defining'more than one procedure at a time (See Section 18.2

for more details).

3.9 COMMENTS

Text enclosed between exclamation points or between an exclamation

point' and the end of the line is ignored and can be used for comments.

0

10



4

A

A

LOCO mix. is

4. WORDS AND LISTS OF WORDS

4.1 WORDS.

In LOGO strings of characters are called weirdo. A word may be

indicated by prefixing it with a quote, as ins

?PRINT "WHOOPIE
WHOOPIE e

The word consists of all the characters between the quote and the

°following space. (A carriage return also terminates words.) Therefore a

word may not contain a space as one of its characters.

The PRINT command (abbreviated PR) can-be used to print words as

indicated above. PRINT takes one inputnand prints it followed by a

carriage return. A very similar command is TYPE, which acts just like

PRINT except that it does not include the carriage return. A word may

include any printing character except space, carriage return and left and

right square brackets [ and ]. gln particular, a word may contain quotation

marks;

?PRINT "A"
AN

?PRINT NM

A word mayalso contain no chi:ratty:. Such a word is called "the

empty lord" and is indicated by a quote followed by no characters:

?PRINT "

A percent sign in a word is printe44s a ewe.° :This is useful in drawing

patterns on the teletype, as

11

tik



LOGO MANUAL

TO BOX ,

18 PRINT WON
28 PRINT "X%V.X

30 PRINT "XMX
40 PRINT "MIX
58 PRINT WOO(
ENO
?BOX

XXXXX
X X,

X X
X X

XXXXX

4.2 LISTS OF WOO

Ordered collections of words.are called lists. (LOGO also allows

sore generals lists as described in Chapter 15.) A list say be indicated by.

giving the words in the list, separated by spaces and enclosed in square

brackets. t'

.?PRINT 6 AM A LIST)

1All A LIST

Notice that the words in the list are not quoted and that the

surrounding brackets are not printed. The spacei between the words serve

only to separate the words end, strictly speaking, arenot part of the

list. Extra spaces are ignored by LOGOs

?PRINT (EXTRA SPACES)

EXTRA SPACES

A carriage return within a list is equivalent to a specel

?PRINT MORE THAN

ONE
LINE)

MORE THAN ONE LINE

Going along with the empty word we have the empty Iket which con-

tains no words:

12



<,

LOGO MANUAL 1Z

Note that ,the empty ktord le.a word and the empty list is a 11st and they

are not the same. (See also Section 4..5.1

4.3 MANIFyLATIK WKS AND LISTS

There are a number\b&` operations.-for manipulating words and lists:

COUNT

Taket,mni input. If the inpliti-le a ttord it oetputs the nustei" of

#otttrs inthe word.

!,i An the list.'

N

;3

If the inpUt is allot it outputsthe,number of. 'fords

FIRST (abbreviated F)

. .

Takes one input. If the input ,liva word it outputs the:first

letter of the word,' If the input 1. a list it outputs the first .word of

the list.

LAST

Similar to FIRST. Outputs the last letter (rasp. aOr a word
,

(rasp. list)

BUTFIRST (BF)

.
Outputs all but the first letter of a word; all but the 114t word

of a Irst.

pulAst (BL}

SiejIar:te BUTFIRST. FIRST, LAST, BUTFIRST: and BUTLAST.eag riot be

applied to the empty mordflor the empty llit.

These operations take words and flits apart. Ior putting thee



114

C

together we have:

WORD
r a

LOGO MANUAL 13

Takes tno inputs, both of mhich4must billwords and puts them

together lo make a longer word:

4

a longer list: If one is a word and one is a list it adds the word to the

?PRINT WORD "NOW "HERE

NOWHERE

SENTENCE (abbreviated SE! .

Takes two inputs. If both are lisis it puts them together to make

list. If both are words it makes a list out of them:

SENTENCE [THIS IS] [A LIST] outputs [THIS IS A LIST)

SENTENCE "MANGO "CHUTNEY outputs (MANGO CHUTNEY]

SENTENCE [MATH IS] "YECCH'outputs MATH IS YECCHI

Example:

TO REPLACE :LET :L1 1L2

10 IF :LET 14.1 OUTPUT s12 ELSE OUTPUT :LET

END,

TO LISP :W
18 IF :W OUTPUT "
20 OUTPUT WORD REPLACE FIRST :N'S "TH LISP BUTFIRST

END

TO MULTILISP 6
18 IF :S r I I OUTPUT I

28 OUTPUT SENTENCE LISP FIRST sS MULTILISP BUTFIRST :S

END

?PRINT MULTILISP (THIS IS A RECURSIVE PROCESS]

THITH ITH A RECORTHIVE PROCETHTH

4.4 REQUEST AND TYPEIN: MULTIPLE INPUTS

The LOGO operatien REQUEST waits for the user to type in a list and

then dutpths'ihst list.

.

.14



TO AGREE

10 PRINT (TYPE SOMETHING YOU LIKEI

28 PRINT (SENTENCE II LIKEI REQUEST IT00)I

ENO
- ,

?AGREE
TYPE SOMETHING YOU LIKE
>PICKLE JELLO WITH PEANUT BUTTER

I LIKE PICKLE JELLOWITH?F.AIWT BUTTER-T00

th the above example the prompt Character > indicates that LOGO is

waiting for a REQUEST to be typed in. The list typed into a REQUEST is not

LOGO MANUAL 14

enclosed in brackets, and is terminated by a carriage-return.

The above example also illustrates that the SENTENCE operation can .

be made to take more thad two inputs by enclosing the word SENTENCE and all

the inputs in parentheses. SENTENCE. then coshing. all the inputs ..into one

list. WORD. PRINT and TYPE can also take 'multiple inputs. in this may.

Note: Do not confuse pai.entheiis and

square brackets. Parentheses indicate

grouping, of inputs. Square brackets
are more like quotation marks. 'They

indicatethat something is to be taken
literalWas a list.

REQUEST aluays'outpute a list, even if it-is a list containing one

(Or no) words. The operation TYPEIN is. like REQUEST except that it outputs

a word. TYPEIN is equivalent to FIRST of REQUEST. ,

e.

6.S.FAttNT

Under the LOGO printind conventions the ?lotto word and the empty

list both print as a blank line. Likewise a word and a one-Word list print

the same;
A

?PRINT "MUMBLE

MUMBLE
?PRINT 011MDLEI

MUMBLE

15



LOGO MANUAL, 15

While this is convenient for writing convirsational programs itcan
r

also be millleading, especially when tracking, owp bUgs,WhIch may come from

coniusing words and lists. Jo help hero, LOGO provides, the command PRINT

("Full PRINT") which is just like PRINT except that it prints the brackets'

surrounding lists,r MOLE)M
=MOLD



5. NUMBERS AND ARITHMETIC

5.1 INTEGERS

LOGO MAW& 16

The largest integer that.is accepted by LOGO arithmetic is

2,147,483,647. The smallest number is -2;147,483,647. (Note, hcWever,

,!(r

that numbers are written in LOGO without commas.)

S.2 INFIX FORMS a.

Eacifof the.basic arithmetic coerations has an Infix fori1infix

because the symbol, goes between the operands)*

+ for addition 1+2

- for subtraction, 1-2

* for multiplication, 1*2

/ foe the quotient of integer division, 3/4 outputs 9

for the remainder of integer division; 34 outputs 3

- for unary minus. (This is not technically an infix operator, but

its use is effectively the same as subtracting the operand from zero.)

5.1 PRECEDENCE

*,/,and have a higher preiedence than + and -; that means that

and are evaluated before + and -*

?PRINT 4*5-4*5

is equivalent to

?PRINT .(4*5) -(4*5)

29 - (4*5)
20 - 29

0
9

As opposed to

17



?PRINT 4*(5 -4i*5

4* 1' *5
4 *5

28
28

All these infix operators have higher precedence than 'prefix ones which is

why all the' arithmetic get; done before-any PRiNTIng happens.

5.4 NUMERICAL CONDITIONALS

< , > :and are infix forms of qperations that compare two

numbers. < means "less". < outputs TRUE 14 the first number Is less than

the second, FALSE otherwise. means "equal". > means greater".

These work in the same manner as <1

?PRINT 1081 18$
TRUE

?PRINT 188 > 188

:FALSE

< , > , and have lower precedence than the other,aritheet c

operations, so when performing a caparison the arithmetic is done first.

Thescoperations are usually used with the LOGO conditionals, IF and TEST

(see "C ter 9).

And > require that their inputs be numbers.

"APPLE > "PEAR

is considered nonsense and will generate an error.
, however, can be used to compare any two LOGO objects. For example

"FOGEY "FOGEY

'does make sense and will work.

18

41.



4

;of

5.5 PREFIX FORMS ,

Each of the arithmetic operations his a prefix form (prefix because

it comes before the operands)f

SUM
DIFFERENCE -

PRODUCT *
QUOTIENT /

REMAINDER V
GREATER

LESS
EQUAL

SUM and PRODUCT make use of.the variable number of inputs feature

(see Section 4.4).

?PRINT (SUM 96)

.96

?PRINT (SUM 1 2 3 4 6 6 7 )

5.6 RANDOM

.Takes no inputs, outputs a single digit random integer.

5.7 FLOATING POINT NUMBERS

In addition to the integer nueeric form already mentioned, LOGO

also accepts floating point numbers. These numbers can be expressed in two

different formats for both input and output. Theme forms are standard
1
decimal notation and exponential notation. Exponential notation is of *he

following form: rf

<number><E or N><expnonot>

where <number> (called the mantissa) is either a floating point number in

standard decimal form or an integer, and <exponent> is an integer

19



-LOGO MANUAL 13

(representing a power of Ii). If the exponent is positive, the letter Els

used to separate the number fro* its exponents if the exponent is negative,

the letter N is used. -There should be no spaces between these throi_\

elements of exponential notation. For decimal notation, a number le'

written in almost the come form as an-integer, but there must be a decimal

point at some positiod in the number. If this decimal point is not

present, the number will be regarded as an integer. Nora are some examples

of valid floating point numbers in exponential forms

3E4- 5N2,
3.4E4 446303
-4E4 -4N5

=2.592553 -259.269N2

The following are not in correct-exponential form:

)36.1 / (The exponent is,not ma integer)

2.7E-1 (The litter should be NI

18 El -(There should be no space)

The following numbers are examples of floating point numbers in

decimal notations

4.

4.56

259.299
.88888080259

The output of a floating point number will always be In one of

these two formats. Usually the output will be in decimal notation with

non-significant and trailing zeros removed. If the number is too large or

too small to be represented with.7 digits and a Oecimal point, it will be

automatically converted to exponential notation (with one digit of the

mantissa to the left of the decimal point). The maximum magnitude of a

floating point number in LOGO Is approximately 1.7014E38. The minimum

magnitude is approximately 2.3387N39 (however, this cannot be entered from

20



LOGO MANUAL 21

a console-- the smallest magnitude that can be 'Poems, input to LOGO is

1.N38). These limits are the same for both positive and negative numbers.

All arithmetic operations on floating point numbers yield floating
4,

point numbers. In order tot force conversion of a floating point number to

andeptsger, the INTEGER operation is used. INTEGER takes one input. a

floating point number in decimal or expons teal form, and obtputs this
4t 9

number converted to an integer. (Remember that INTEGER is subject

to the standard LOGO limits on integer size, and conversion of floating

point numbers exceeding this size will fell.) In order to force the

convesibn of an integer to a floating point number,* simply multiply by 1..

. 5.8 NUMBERS AS WORDS

Numbers "are considered to be LOGO word; see Chapter 4)t all word-.
, %.;,.

mapipu i ating °mations work on numbers, too.-

..,? PRINT FIRST 45678

?PRINT BUTFIRST 45678
$678
?PRINT (WORD 12 34) (110R0 56 78)

6912

Integeri or floating point numbers exceeding their respective size

limits are still treated as words but cannot be usedAn arithmetic. Evin

though numbers are words they do not have to be quoled when typed in.

5.9 NUMBERP

Takes one input. If the input is a number in the allowable range

for its rettpective type, NUIIBERP outputs TRUE. If the input 1$ a number

outside that range, or isn't a number at all, -NUMNERP outputs FALSE.

21



G. ARRAYS

Arrays in LOGO ere of one,two or. threeidimensions. There are

three types of arrays -- integer, floating point, and pointer,

6.1 DEMEARRAY

To create an array, the command OEFINEARRAY (abbreviated OEFARI 'is

used. Depending on the number of dimensions, DEFINEARRAY takes up to five

inputs: the name of 911 array, the dimensions of the array, and the array

type (eLfor integer, 1 for floatingpoint, 2 for pointer) If the array

has *ore than one dimension, the command OEFINEARRAY and its inputs must be

enclosed In parentheses,

6.2 ARRAY SIZE and SPACE ALLOCATION

The *aximum size of *traves dependent up6n the current amount of

array space; Array space is(normally allocated to allow approximately 2600

elements in pointer arraVi, and half this amount in integer and floating

,point arrays. The total amount of space used le approximately equal to' the

sum of the fltomber of elements in each array, with pointer array elements

only using4holf as much space as integer and floating point. (However, it

should be noted that every time an array Is created some extra space is

used to *fore the description of that array, making it more efficient

regar**2 space to use single large arrays whenever possible.)

'4,1t is possible to allocate extra space for arrays by using

suktui command. SETASIZE takes one argument, the amount of space tb be

allocated, in words (every word stores one pointer array element, every two

22



words stores os'n integer or floating point array element). The maximum

input to SETASIZE is approximately 111611, which makes it possible to expand

array space by a factor of three. One important note about SETASIZE -- the

use of this command involves a re-initialization of the size of the user's

wOrksoce,'which means that a new "WELCOME TO IMO* message will be

printed upon coepletion ofthe command. Thus, any use of SETASIZE should

be invoked before using the filing %Atom in order to save the trouble of

having o rOad Again, etc.

Arrays are not saved in the filing systemless Section 11.11. They

are automatically Erased when you type REMO or ;ppm to LOGO, and so

they must be re-creipla each time you use LOGO. However, they can be

erased at any time ',trussing the Command ERAW AMP& labbreviated ER ARRAY).'

This command takes es input an array name and arises it from your workspace

(see Section 10.21-. The comprodERASE ARRAYS (ER ARRAYS) takes,no inputs

and erases all arrays from your workspace.

6.3 GET and STORE
4

When an array is created,. all the elements are set to zero. In

order to assign values to specific elements of the array, the STORE command

is used. GET is an operation used to reference the value of a specific

e lement. STORE takes the saes number of inputs as the corresponding

DEFIAEARRAY commands its inputs in order ass the array name, the

coordinates of the desired element, and the value to be assigned to the

e lement.. GET takes one less input than the corresponding STOICC-CMmands

its inputs eras the array name, and the coordinates of the desired element.

2i



Unlike STORE and OEFINEARRAY, GET outputs a value. As in OEFINEARRAY, GET

and STORE and their respective inputs must be enclosed in parenth4ies if

the array is of more-then one dimension.

.

It is important to remember in using the GET and STORE operations

that LOGO uses 8-origin indexing, i.e. for any dimension of length n, the

elements are numbered A to n-1. For example, the fourth element in a

single dimension array is given coordinate number 3; the element in the.

fourth row, `third column of a two- dimensional array FOO is addressed "FOO

3 2 ; and so,on.

6.4 PRINTING. OUT ARRAYS

ASIZE is an operation which takes one input, an array name

(quoted), and outputs the dimensions of the array. The command PRINTOUT

ARRAY (PO ARRAY) takes as input an arynome and prints out its type and

dimensions. PRINTOUT ARRAYS (PO ARRAYS) tikes no inputs and performs PO

ARRAY for all arrays curentlydefined in your workspace.

Examples of array operations:

?(OEFAR"i2 2 0)

?PR (GET I 1 1)

0
?(STORE "8 1 1

PR (GET "B 1 11

7
A

?PR (GET "B 1 2)

INDEX REFERENCE OUT OF BOUNDS

?OEFAR "A 2800 8

NOT ENOUGH ARRAY SPACE

?SETASIZE 6000 -



WELCOME TO 111.0130,
?WAR "A WM
?PO ARRAYS -
A SIZE 21NNI TYPE INTEGER

A



7.1 MAKE

The LOGO-ogpmand MAKE is used four naming. MAKE takes two inputs:

the first is the nazis, and the second is"the thing being named.

MAKE 'lc 7 ,

will assign the name X to 27. LA name sust be a LOGO mord Wee Section 4.1

about words): 27 is the value or thing, and may be a number or a oord or a

LOGO MANUAL :25

, 1

list or anything ilse.

The Use of the symbol r 1pronOunded "dots") as a prefix:toil used

retrieves the thing Or.value.of'a mord.

. ?PRINT

27 .

?MAKE "XYZ . 27 .

(The NAPE) (The THING)

?PRINT :XYZ

27

THING is snlexplicit LOGO primitive that does what does, .46, it

extracts the thing from a oord.

?PRINT THING "XYZ

27
?MAKE "RABBIT "HARE

WRINT'IRABBIT
HARE

?PRINT THING :RABBIT

mill generate an error, because the word HARE has no thing.

LW' givi HARE. value:

?MAKE "HARE IABIa
?PRINT :HARE

IA B CI

?PRINT THING :RABBIT

IA B CI

26
0



LOGO HAM& 26

The backarrom symbol f«.) is an infix 'form Of MAKE

? "NAME ,,',11EA1,14NE

?:NAtE +-27
?PRINT :REALNAME'

27.

?(Wono "REAL "NNE) 4,` 27

works, too. So does:,

+ 8
?WORD "ARRAY :NM + "ROSE
?PRINT THING 010R0 "ARRAY #110
ROSE

IA is also possible to use...the-MAKE command to give multiple -names
r

to the same value.. This it doios the 'following marnarto givetm0 nails

A and '13 the same ue' say

NA +"8 +(value>

This can be done for *arbitrary numbqr of names (sub)ect only to

the limitation on the length of one line in,LOGO). Multiple HAKE can be

,!74.,

Performed only with the infix form of the MAKE command C+I.

1 :2 LOCAL ANO GLOSAL*AMES

The Inputs 'to a procedure are local names, that is, the name it the

pr.ocedure'e own private name. For examples

?TO INC tA

>18 HAKE *A :41
>20 PRINT :A

- >ENO

INC DEFINED
?tIAKE'"A

ntic $
ft
?PRINT sA.

3

27



LOGO MANUAL 27

In the 'above example, the nom. A in the procedure. has nothing to do

:With the name A at the top level.

In Contrast, names Which erepotinputs to a Procedure are global.

Compare with the previous example.

?TO INC'

*18 MAKErNA :A+1

>28 PRINT :A

>ENO
INC OEFIKE0
?MAKE "A 3"

?INC'

4
7PRINT:A
4

Both' uses of # refer to the same MOW variable.

'it is possible to cause a name to be locil to a procedure even it

it'iapot an input. This is done with the LOCAL command. LOCAL takes one

input. the name-to be declared

Example:--

TO.COUNTSOUARES :X

10 IF :X O STOP
20 HAKE ICSO :X * tX

30 COUNTSQUARES tX-1

48 PRINT :XSO

END
1C011NTSOUARES 4

1

1

1
1

Hare XSO is a local variable. Compare with

TO COUNTSOUARES :X

5 LOCAL "XSO
10 iF 4X8 STOP
28 'HAKE "XSQ :X,* :X'

38 COUNTSOUARES :X-1

40 PRINT IMO

ENO

28



LOGO MANUAL 2r

MOUNMIIMFES 4
1

4

16

4

Here each invocation of cOuntscpares has-its own XSO.

Names local to a procedure are defined in that procedure and in all

subaroceduresfionless the subprovakrs has its pan local %Ireton of the.

. sae' name).

29'



E. CONTROL

8.1 GO

This command must be part of a procedure. it takes one input, a

line number in that procedure, and transferf control to that line.

8.2 STOP

This also belongs In a procedure. It terminatecexicutiont of a

procedure and returns control to the calling procedure.

8.3. TOPLEVEL

This returns control in a procedure Immediately to the top. level.

8.4 OUTPUT

This command can only be used in a procedure; it returns control to

thi calling procedure, and outputs its argument. 8y using OUTPUT the user

Can define procedures which are operations:

30



LOGO ANAL 3S

9. CCNOITIONALS AND RELATED COMMANDS

9.1 Conditionals are operations which output either TRUE or FALSE.

You'can make'your own, if you want. LOGO has three classes of readipsecle

conditionals:

a) Numerical'conditionsis, e.g. LESS. (See chapter S.) But note

that EQUAL and can elsortake nowliumeriOnputs.

b) Logical conditionals. These take inputs which evaluate

either to TRUE or to FALSE, and'perform logical operations on them: thus

they are used in conjunction with other *conditionals. They arcs

BOTH-- takes two inputs: outputs TRUE if both evaluate to

TRUE.coutputs FALSE if one or both evaluate to FALSE.

EITHER-- takes two inputs: outputs TRUE!if one or both

evaluate to TRUE, outputs FALSE if both evaluate to FALSE.

NOT-- takes one input; outputs TROE if the input evaluates

to FALSE, and vice verse.

c) Predicative conditionals. These see whether or not their

inputs evaluate to a specified kind of thing. They are:

MOP-- outputs TRUE if the input evaluates to a word,

FALSE otherwise.

LISTP -- outputs TRUE if the Input 'value!** to a list,

FALSE otherwise.

EMPTYP- outputs TRUE if the input evaluates either to the

empty word. or to the empty list, FALSE otherwise.

NUM3ERP--.outputs TRUElf the input evaluates to a number.

FALSE otherwise.

-31

4



ExaMples:

MAKE "X I I MAKE "Z 37

?PRINT UOROP :X
FALSE

?PRINT LISTP :X

TRUE,

?PRINT LISTP 1.2

FALSE

?PRINT EMPTYP :X
TRUE

?PRINT NUMBERP COUNT ex
TRUE

LOGO MANUAL. 31

9.2 Conditionals canCbe iterated, that is, their inputs can be
conditionals:

TO ANYOF sA :0 sC

10 OUTPUT EITHER :A EITHER se sC

STROKE:

k

ENO

TO STROKE :A

10 OUTPUT EITHER BOTH :A NOT 15 BOTH se NOT :A

Parentheses can be inserted, if desired. They might ciean up

10 OUTPUT EITHER (BOTH :A NOT :B) (BOTH :II NOT :A)
ENO

There are also s number of standard commends which are used In

conjunction with conditionals: they:Ali demand that their inputs evalUate

to TRUE or FALSE.

a)IF and ELSE. IF takes one input; if the input evaluates to the word

TRUE, the rest of the LOGO line is evaluated: if the input evaluates to

(FALSE, the rest of the line is skipped. However, if ELSE appears in the

fine, this behavior is modified in the obvious way.

32



1

LOGO .11ANUAL 32

TO CHECK sU

18 IF WOFIOP sW PRINT "WOAD ELSE PRINT "NOUORO
ENO

?CHECK "F00
WORD.

?CHECK (THIS LISTI

NOWORD

IFs (or IF--ELSE pairs) can be stacked within themselves.

TO BETTERCHECK .

it IF NOT EMPTYP IN THEN (IF NORM aTHEN PRINT "ONO
ELSEPRINT "NOM) ELSE PRINT "EMPTY

END

Here, THEN is 4 "noise wird" which does not in itself affect the

evaluation of the LOGO expression in which'it appears, but helps to snake

the syntax of the expression more "natural". The parentheses are also

optional, but help to make the expression easier to reed.

b)TEST, IFTRUE, and IFFALSE. TEST evaluates its argument (to TRUE or

FALSE) and puts the result in a "test box'. Until the next TEST, IFTRUE

(abbreviated IFT) and IFFALSE (abbreviated IFF) will look into the box and

cause conditional execution of the rest of the line in which they appear.

There is ,0 device analogous to ELSE which allows conditional execution f

only a partA of the rest of the line. Some non-obvious properties of the

.test box are: first. if no TEST has been made, the box contains ALSE by

default: second, the box is unique, a new TEST, although.it may have been

executed conditional(y. changes the contents,bf the box absolutely.

Each procedure has its own "test box., which is strictly.local. to

Mit procedure. TEST, which are rode in a subprocedure do not affect the

-test box of the calling procedure, lend conversely.

IFTRUE and IFFALSE can appear anywhere in a procedure, and they do

33



LOGO MANUAL 33

not have to be on the same line (indeed a comsand such as IFTRUE "FOO

IFFALSE "BAR can never cause BAR to be evaluated.)

4

94.3 TRUE and 'FALSE are LOGO words. It it perfectly valid to say

TEST "TRUE

or

TEST IMO "TR

Remember that all words which rig to be taken literally must be

quot d on typein (except for numbers):
A

TEST TRUE

will expect you to have a procockre nemed.TRUE. Also

TEST ITRUEI

is an error. (The input to TEST must be a word.)

34



111. 110103PACE

When you define a procedure or create a name by using MAKE. It

becomes a part of your workspace. You can think of your workspace as a

chalkboard or scratchpad containing all the procedures you are using. The

LOGO file system allows you to store everything that is in your workspace

and retrieve it at some later time Nee Chapter 11). Before a procedure or

name can 14 used it must al In your workspace. To get something into the

workspace, ou must either type it in at the console orread it in from a

LOGO file. TR:re are also commode for examining and getting Hie

various parts of the workspace.
4

10.1 WHAT'S IN A WORKSPACE?

PRINTOUT (abbreviated PO) is a command which prints out various
s

parts of your workspace. To see the text of a procedure, type PRINTOUT

folloWed by the procedure noes. (The procedure name is not quotid.)

PRINTOUT TITLES (abbreviated PO TITLES or POTS) prints out the

o

titles of all procedures in your workspace.

PRINTOUT NAMES (abbreyiated PO RAMS) prints out all the names in

your workspace.

PRINTOUT PROCEDURES (PO PRO S) prints out the text of all

defined procedures.

PRINTOUT ALL (PO ALL) prints both names and procedures..

(The PRINTOUT LINE and PRINTOUT TITLE commands are discussed under

editing. PRINTOUT FILE and PRINTOUT INDEX are discussed under filing. The

PRINTOUT ARRAY and PRINTOUT ARRAYS commands are discussed under arrays.)

35



LOGO M+3,NUAL

4
The operation CONTENTS outputs a list containing the titles of all

procedures in your workspace. Note the distinction between CONTENTS and

PRINTOUT TITLES. The former is an operation, while the latter is a

command.

A similar distinction exists between the command PRINTOUT and the

operation TEXT. TEXT takes one input, a procedure name (not quoted), and

outputs the text of the procedure as a list. The lines of the procedure

appear as sublists. The END statement is not included.

10.2 GETTING RIO OF PARTS OF TIE WORKSPACE

The basic command is ERASE (ebbreyiated ER). ERASE followed by a

procedure name (not quoted) removes the procedure from the workepacei.

There ate oleo:

ERASE AU. Gets rid of all names and all

procedures.

ERASE PROCEDURES Gets rid of the procedures-- leaves the

names.

ERASE NAMES Gets rid of the names- leaves the

procedures.

ERASE NAME" Takes one input, a name (quOt0d), and

gets rid of that particular name.

(ERASE LINE is discussed under editing. ERASE FILE and ERASE INDEX

are discussed under filing. ERASE TRACE and ERASE STEP are discussed under

debugging. ERASE ARRAY and ERASE ARRAYS are discussed under arrays.)

38



19.3 BURY

The BURY command effectively "hides* a procedure and protects it

from accidental deletion. BURY takes one input, the name of the procedure

to be buried (the command BURY ALL can also be used). Once a procedure has

been buried, it will not appear in any PRINTOUT command unless it is named

explicitly. For example,* file FOO which hes been been buried will not

appear under the commands POTS and PO ALL, but the command PO "FOO will

print out the contents of FOO. This property also holds for ERASE

commands. ERASE ALL will not erns buried procedures, but if the name of a

buried procedure is specified in an ENKE commend it will be erased. To

unbury a procedure, the commemIERABE BURY followed by the procedure name

(or ALL) is used.

3 7



11. THE FILE SYSTEM

The LOGO file system allows you to swfii (on disk) phat is in your

workspace and read it back at a later time. A user may have many files at

once. The files are distinguished by the fact that they are named. All

files belonging to a single user are grouped under that user's index.

11.1 USE, READ, and WRITE

The command USE specifies the index under which LOGO should

reference files. All subsequent READ or WRITE commands will refer to that

index, until the next USE. USE takes one input, the quoted name of an

index, which is a word of up to ten characters. For example, to reference

the files under the index ELOISE, type

USE "ELOISE

The WRITE command creates files. It takes one input, the name of

the file to be created (a word of up to ton characters). Into the file

goes everything that is currently in the user's workspace.

This is a common source of confusion. Many users often think that

if they have, for example, a procedure neeed.BEETLE, then

WRITE "BEETLE.

will somehow save only that one procedure. This is not the case. All the

procedures in the workspace will be saved. The file will merely have the

same name as one of the procedures in it.

If the user already has a file with the same name as*the one to be

created, LOGO will first ask if the old one should be erased and then wait

for a response Cif or N) to be typed in. The old file must be erased before"

3



a new file with the same-name can be'created.

The READ comMand takes a file name as input and reads the contents

of the file into the workspace. All procedures and names saved in the file

will then become defined in the workspace. If the workspace already

contains a proCedure with the same name as one of the procedures in the

file, the procedure will not be redefined and the definition, in the file

will be skipped.

SNAPS (see Section 13.3) cannot be saved in files: If PIC. for

. example, is the name of a snap, then writing out the workppece and reading,

it back will cause :PIC to become the empty word.

11.2 POI and POF

These are commands which allow you to examine files without reading

them into the workspace.

s.
PRINTOUT INDEX (abbreviated POI) takes no inputs and prints the

names of all the files in the.index. (The index is specified by the

previous USE command.) PRINTOUT FILE (PD FILE) takes a file name as inpUt

and types the contents of the file. Moines not read the file into the

workspace, i.e., procedures, in the file will not become defined in the

workspace.

ERASE FILE (ER FILE) takes a file name as input and gets rid of the
A

file.

11.3 FILE SUBTLETIES.

The,description of the filing system so far, though accurate and



LOGO MANUAL 39

adequate for ordinary use, is incomplete. In fact, the RGO file system
.

,

has a tree structure. The commands USE, READ, WRITE, etc., as described so

far, make use of that Structure only implicitly. But they can be made to

usethefilingtreemuchmoreexplicitly, and there are other commands not

yet discusled which allow a user to manipulate the trim -- pruning it,

adding branches, etc.

Each user's index can be the root of a general tree structure of

files. This weans that the index *nowt only contain files, bUt also sub-
'

...

indices which contain files and sub-indices and soon. For example, the
i.,

index ELOISE might contain the files DAY1,,MARBLEp.and the sub- index.

DISPLAY which contains files dealing with Eloise's display projecti. In
. .

this case, the Jile structure would bet

I ELOISE

DAY1

MARBLE.,

I DISPLAY. ....

WALK HI

DRAW

POLY

etc.'

The l's specify indices. (Normally a number will appear after each

4

file name:' This is just the number of storage blocks that the file

occupies.)' This tree structure., is printed out by the PO TREE command.

(Note that the tree is actually upside down, with the root it the top.' For

this reason, the root of a tricis often referred to as the "top level" of

the file system, while the branches are called the.")ower levers". where

Ach reprowts a new level.) POI does not print out the

viitetitv welubinoices. In the above cies. It Would print:



ELOISE

DAVI,

MARBLE

I DISPLAY

#
(The root index does not have an I printed before it.)

Each file in this tree structure is specified by a flit sfarting
k

uith,,the user name. This list gives the spofk* down the tree from the user

name to the file. For exerts, to read the file DM1 in Eloise's sub-index

. LOGO MANUAL AO

DISPLAY We could skit

USE "ELOISE

READ (DISPLAY DRAW

or we could say.

USE (ELOISE DISPLAY]

In general. the input to the READ crimmend is tded onto the input

, t

of the previous USE command and the whole string becomes the file

specification. What happens is that the USE command establishes the level

from which all following commands ars to be carried out. Thus, if Dre USE

command refers only to the user name, the"path to a file contained under a

sub-index will be longer than if the USE command rears to the the desired

sub-index( We,will see later how this level can be changed without

repeating the USE,,command.) The inputs to WRITE, POF, and ERASE FILE all

work in the same way. While POI print, out the index specified by the

previous USE command, PO TREE prints out a more complete version,

consisting of all of then tree contained below this index, including sub-

indices.
1,

To create a Ub-index, the WINDEX command is used. This adds on



LOGO MANUAL 41

to the branch specified by the previous USE. For example, ELOISE'S sub-

index DISPLAY was created by typilig:

USE "ELOISE

CRINOEX "DISPLAY

il

To then create a sub-index of DISPLAY named PLOTTER, we could
simply say:

CRINDEX [DISPLAY PLOTTER]

To get/rid of an index use the ERASE INDEX command. This takes one

input which specifies, in the same manner as the above commands, the index

to be erased. An index may not be erased unless it its empty, i.e.,

contains no flies or sub-indiCes.

Once an index has been created, it is possible to adjust the root

of the file tree so that all filing commands refer only to those file, and

indices contained in the tree below a specified index. The command which

dges this ids SETINDEX. SETINDEXJabbreviated SETI1 takes one input

specifying an index which will be the root ofa new tree forming some part

of the, whole file tree of the workspace. As before, the input specifies,

the path taken down or up .the tree from the current root to reach the

desired index. If more than one level of indices is involved in the path,

a. list is 6ecessary to specify the whole path. However, if the'desired

iqdix is just one level above or below the current root, a single word is

sufficient to.specify the path.

Once an .index below the user name has been established as the

4

current root, all commands refer only to that part of the 'tree below this

new index,. For example, let's con3ider Eloise's file system again, only

this time with a few more branches added:

42



ELDISE
I DISPLAY

WALK
DRAW
POLY

I ALGEBRA

FACTOR
I MATRIX

INVERSE

In order to make ALGEBRA the new root index-, the command SETI ALGEBRA is

used. The new tree (printed out by PO TREE) looks like this:

ALGEBRA
FACTOR

I MATRIX

INVERSE

Notice also that files not in this pert of the tree cannot be read

without going back *the "branch" and down another until the appropriate

index under which the file is contained is reached. For example. typing

READ."POLY will return an error message. "FILE NOT FOUND". since the path

name'has not been fully specified.

imorder to move the current root back up the tree towards the main

directory name, the input used. The up -arrow can be used in lists

. just like index names, so that a list containing n ^'s used as input to

SETI moves the current root up n levels. Thus, in the above example. in

order to read POLY, the command READ I^ POLY) Is used.

11.4 OPEN FILE MANOLATION

.015ENW takes one inputo desired file name (quoted). (This file

.does not have to already exist in the file system.) .00EM1 opens the

selected file (or creates one if it does-not already exist) and allows It

43



to be written into, starting at the beginning of the file. If the file

already exists in the filing system, the user will be asked to delete it,

before writing, since the old information contained in the file will be

written over by the new input to the command 'FILEN

.FILEP is used, once the file hair been opened for writing, to

perform the actual writing. .FILEPlakes as input a list containing thee

desired information to be written into the file. Each time .FILEP is used,

a newline (with a maximum length of 198 characters)-is created in the

file. The input to .FILEP can also be a procedure name (unquoted), in

which case the procedure is executed and its output is written into the

file. If there is no output, nothing is written.

.OPENA opene a file for writing much like .OPENW, but all

information written is added (appended) to the end of the file. None of

the original contents of the file are altered. .FILEP works in the same

manner as before.

.OPENR is used to open a file for reading. It takes one. input, the

desired file name (quoted). The command used with .OPENR to do the actual

reading is .FILER. Unlike .FILEPFILER takes no inputs but returns an

output. This output is the Current line of the file being read. Every

time a file is opened for reading, an internal pointer is set to the first

fine of the file. Each Aims .FILER is used, this pointer is incremented so

that the next line will be read with the next use of .FILER. When the end

of the file is encountered, one blank line will be printed out by .FILER,

and then the file will be automatically closed. In order to read the file

again, .OPENR must be used again. If the current line of the file is a



LOGO MANUAL 44

procedure name, that procedure will be executed. (This fact enables a user
Mk

to execute procedures "implicitly" while reading a file. It is utilized

by the INIT file; see the LOGIN command.) Any'word encountered which is

not part of a proced6re definition or is not a LOGO command is assumed to

be a procedure neIf such a procedure does not exist, an error will be

returned.

.CLOSEF is used to close any open file. .CLOSEF takes no inputs

and closes the )file currently open (only one file at a time can be open).

If no file is currently open; the command is ignored.

11.5 LOGIN

LOGIN takes one input, your user name (quoted). This "tells the

system who you 0.0", and this information is used by the PEEK command.

LOGIN also Oerforms an automatic USE. .However, LOGIN is most"Usoful for

initializing certain conditions in the workspice'and for printing out mail,

When LOGIN is used, the system looks in the user's file system to

see if there is a file named INIT in the top level of the file tree. If

this file exists, the system reads the file and performs all commands

written directly into the file (through the use of the commands

.OPENA, and .FILEP). This facility allows the user to do many useful

things. For instance, the INIT file can be used to read all the files in

the, user's file system "automatically" when logging in, or to print out

messages upon logging. in.

The LOGIN command also causes the system to search for the file

named MAIL. If this file is found, the contents are printed, and the user

14i

7" 1



;
LOGO MANUAL. 46..e.

O

is then asked if the mail should be deleted.

11.6 PAPER TAPE

LOGO procedures may also be stored on paper tape. The user may

pass information between paper tape and the workspace using the following

primitives.

WRITEPTP punches out the contenti of the workspace onto paper tape.

It-does not involve the file system.

RETTR reads into the workspace from the paper tape reader.

Neither REAOPTR nor WRITEPTR take any inputs.

You should have someone show you the mechanics of using the reader

and punch before you use the paper tape commands.

a

46



12. TURTLES

This section is about the physical turtles that run around on the

floor. (See Chapter 13 for display turtles.)

,12.1 You must tell the system which turtle you want to use before issuing

turtle commands.

TURTLE .

Takes. one input which should be the number of-the turtle you want

. to use. The.numbore are marked above the plugs on the controller box, and

are 1. 2, 3 or 4. Normally only 1 and 2 have turtles plugged into them.

NOTURTLE

Takes no inputs. NOTURTLE releases the turtle from your control so .

someone'else can use it.

"r"
12.2 BASIC TALE COMMANDS

FORUARO (FO)

BACK (BK)

These commands take one input which must be a number between -32768

and 32767 inclusive. They command the turtle to move (input> units forward

(in the direction it is pointing) or backward.

RIGHT (RT)

LEFT (LT)

These take one input which must be gnawer between -32768 and

32767 inclusive.- They command 'the turtle to rotate <Input; degrees

. clockwise or counterclockwise, respectively.



*

PENUP Mi-

PENDOWNAPOI
4

Raises or lowers the pen holding mechanism of the turtle. When the

en is down the turtle will draw a line as it moves.

12.3 SOME TURTLES HAVE A HEADLIGHT

TAMPON

LAMPOFF

Awns the headlight on and off.

,12.4 SOME HAVE A WHISTLE

TOOT

Tikes one inpUt which must be a number between -32768 and 32767

inclusive. It blows the whistle that number of times.

12.5 TOUCH TURTLES

There, is a variety of turtles that have sensors that can'tell when

A

the turtle is bumping against an object. The following primitives are used

to test whether sensors are on or off.

FTOUCH

Outputs TRUE if the front of the turtle is touching something;

FALSE otherwise.

6TOUCH means back touch

RTOUCH meaty; right touch

LTOUCH means left touch



Here's a procedure to* bounce the turtle between two molls:

TO BOUNCE

18 TEST FTOUCH

28 IFTRUE LEFT 10$

38 FORWARD 18
49 BOUNCE

ENI1

TURN MOM

r.

If the turtle is hitting an object at an oblique angle two touch

sensors may be TRUE at the' sable ties.

12.6 SEEING EYE TURTLE

We have a prototype turtle-with-an-rye. The eye is extremely

simple - it tells the amount of tight it is seeing in a very nmrrou field.

LIGHT

Outputs the light level. This is a number between and 63.

LAMPON

LAMPOFF

Seeing eye turtles don't have headlights (yet). These commands

currently enable and disable a mode whereby the eye can rotate. LAMPON

enables this mode, LA11POFF disables it.

FORWARD, BACK, RIGHT, LEFT

When in the mode described above these commands change the angle of

elevation of the eye. When not in that mods these commands perform their

normal functions.

12.7 THE LIGHT eqx

It is convenient to use the light box in conjunction with the

seeing-eye turtle. The light box can supply current to any subset of up to



LOGO MANUAL

six light bulbs (at the moment only four light bulbs are plugged in). The

light box is controlled by sending it a number via the .Ti.0 command (see

Chapter-19). The light box is specified by the input "LIGHT , so to send

the number 28 to the box type

.TYO "LIGHT 28

What the box does when it gets a number i.e determined as follows:

Write the number in binary. Then the

1's place specifies whether light number 1 is to be on

or off, the 2's place light number 2, the 4's piece

light number 3,'etc.

Note: The controller to which the light box

is attached traps 17 (octal 21) as its reset

character. Thus 17 sent to the light box

will not be seen. If you desperately want

to send 17 (to turn on lights five and one
together) you can use the fact that the light
box ignores More than six biti and send it

64+17.81 (octal 1311.

12.8 THE SWITCH PANEL

The switch panel is a "blue box" which has on its front 16 small

ti

light bulbs. Each of these lights represents the status of one of 16

hardware switches. When a switch is set, the corresponding light is turned

on; when it is cleared, the light is turned off. The following LOGO

primitives can be used to test and manipulate the status of these switches.

SWITCH

Takes ode argument, the number of a switch (8-15) and outputs TRUE

if the switch is set, otherwise FALSE.

RELAY

Takes two input', the number of a switch and a value to be assigned

(1



to it (8 or 1). If , the switch is turned off, if 1, it iii turned on.

BI TOUT

Takes one input. a number which is converted into a 16- digit binary

value. Each digit of this value is then toed to determine the condition of

the corresponding switch (effectively the same as performing a RELAY for

each switch).



A

13. DISPLAY TURTLES

LOGOIwo& 51

The display screen is 480 turtle units high by 41$ wide. The

center of the screen has coordinates (8,101 the bottom left hand corner is

( -200, -208); and the top.right hind corner is(280,201). When the turtle

is pointing straight, up its heading is 8. Heading is Measured clockwise

(i.e. RIGHT) from that position.

13.1 INITIALIZING THE DISPLAYS

CLEARSCREEN (CS)

Erases everything on the display screen and places the turtle at

the center of the screen pointing up. You should do CS first, before

issuing any other commands to the turtib.

WIPECLEAN (WC)

Erases everything on the display screen but leaves the turtle 'there

it is.

NOOISPLAY

.Turps off the display.

STARTOISPLAY

Takes one input, which must be $ or 1. starts up a half-size

display, 1 starts a full size display. STARTD1SFLAY 1 is4le same as

CLEARSCREEN.

13.2 BASIC COMMANDS

FORWARD (F0),.

BACK (BK)

52.



LOGO tWIlAL S2

C

Takes one input which must be either an integer orlioating point
111,

number. Moves the turtle <inputs'units forward (in the direction it is

pointing) or backward.

RIGHT CRT)

LEFT (LT)

Takes one input which must be either an integer or floating point

number. Rotates the turtle <input> number of degrees clockwise or

counterclockwise, respectively.

. KNOWN (PO)

PENUP (PO)

Lowers orjraises the turtle's Metaphorical pen. If the pen is down

the turtle drawi a line as it moves.

Per

Outputs TRUE if the pen is down. FALSE if it is up.

WRAP

NOWRAP

*WRAP enables a mode en that if you try to move the turtle beyond

the edge of the display it wraps around to the other edge. NOURAP turns

off this mode; if you try to move beyond the edge ipou get an error.

H1OETURTLE (HT)

SHOWTURTLE (ST).

HIOETURTLE tells the computer to stop showing the little-triangle

that represents the display turtle. The turtle will still draw fines (if

the pen is down) even though you cannot see him. SHOUTURTLE brings the

turtle out of hiding.



LOGO flAtliAL S3

13.3 SIAPS

SNAP

Takes no inputs. Outputs a reference to "the stuff on the display

screen." For example:

MAKE "PIC SNAP

causes :PIC to refer to whatever is currently on thi screen. Later you

can cause another copy to appear by saying:

DISPLAY :PIC

or.erase it by slaying:

WIPE :PIC

Each SNAP has associated with it a "starting location" which is

normally the center of the screen (but see-also NEWSNAP). SNAPS cannot be

.saved with the WRITE command (see Section 11.1).

DISPLAY

Takes one input WIWI must be a SNAP (i.e. a reference created by

SNAP). The SNAP is displayed at the current turtle position and the turtle

is then moved to the end of the SNAP, as if the turtle had just drawn the

SNAP explicitly. The turtle's heading hes no effect on the displayed SNAP.

The SNAP always appears in the orientation in which it was originally

drawn.

WIPE

Takes one input which must be a SNAP. It erases all appearances of

that SNAP from the display 'croon.

NEWSNAP

Takes no inputs. It causes the image currently on the screen not



to be part of subsequent SNAPS. Also sets the starting location of
, 7

-subsequent'SNAPS to the current position of the turtle rather than the

center of the screen:

13'.4 LOCATING THE TURTLE

HERE

SETTURTLE (SETT)

HERE outputs a list of the x-coordinate* y- coordinate and heading.,

of the turtle. You can use HERE to.nalie a Place on the cileplag. SETTURTLE

takes one input, a list of three nuebers between -32768 and 32767

inclusive. The first is assigned tolhe x-coordinate. the second to the y-

coordinate and the third to the hosicipg. You can use SETTURTLE to eoya.the

turtle to a plate that was named using HERE. Atoll! nrair.i line if the

pen is down.

HOME

XCOR

YCOR

HOME is equivalent to SETT -)cog outputs .a number which is

the current x-coorclirlet, of the turtle. YCOR'outputs a number which is the

current g-coordinateof.the turtle.

SEtX

SETY

SETXY

SETX.takes one numerical input and moves the turtle horizontally.

that.X-cobrdinate 'SETY takeifrne numerical Input and moves the turtle.



"Or

4

LOGO MANUAL 55

vertically to that Y-coordinate SETXY takes tuo numerical inputs and

moves the turtle to the designated position. Each of these commands will
.

draw a tine if the pen is down.

HEADING

SETHEADING

HEADING outputs a number which is the heading (in degrees) of the

turtle, i.e.,.the direction in which it is pointing. SETHEADING takes one

number as.input and points the turtle in that direction.

13.5. PLOTTER

The plotter is often used in conjunction with displays. To use the

plotter, type PLOTTER. When you are thro.ugh.eing the plotter, type

NOPLOTTER. -All other plotter commands are the same as diSplay commands.

However, certgin,die'play commands do not apply to the plotter and will be

ignored-if typed to the plotter. These are all fairly obvious; they

include; CLEARSCREEN, WIPECLEAN,.WRAP, HIDETURTLE SHOWTURTLE, SNAP, WIPE,

and. DISPLAY. The plotter also has a more restricted argumentrange than

the displays.

13.6 MULTIPLE DEVICE CONTROL

It is possible to control more than one device at at time on LOGO.

This can be done through the use of the commands ALSO and ONTRL.' If you

are already using one device and wish to use mother withoutIgiving up.the

first, type

ALSO <device>

56



L

where <device> is the device you. wish to use. ALSO gives you access to

additional devices, but it is necessary to specify to which device a

specific command is directed. This is done with the CNTRL command. CNTRL

takes one input, the name of a device which you currently "own", and

specifies that device as the object of the.next command you type. For

example, suppose you are using a display and you decide you want to use a

floor turtle also. First type . J.

ALSO TURTLE <number>

Howeverj_if you now' type

type

TOOT

LOGO will respond

TOOT ONLY VALID IF YOU NAVE A TURTLE

Before you'an direct commands to the turtle, it is necessary to

CNTRL TURTLE <number >.

All valid floor turtle commands will now be accepted. If you want to use

the display again, you must say,

CNTRL DISPLAY

LOGO now will accept display coemands, but not /low turtle

commands. Each time you want to Oohs)* between devices, the CNTRL command

'referring to the device that.you want to use must, be typed. However,

subsequent commands can only refer to one device at a time.

r h1



14. MUSIC BOX

LOGO has pcimitives which supply output for the music box. A LOGO

user can specify parts for up to 4 simultaneous voices, each voice having a

range of five chromatic octaves. Igiorder to avoid timing problems the

music is compiled into temporary storage and then output 'to 'the, box at a

constant rate, rather than played in "real time".

14.1 NOTE

The-NOTE command generates one note of music. NOT takes two

numericrinputs, the first specifies "(he pitch and the second the duration.'

Pitches are numbered chromatically from -24 to 36 with 8 being middle C.

There are also three special "pitches":

-28 is a silence

-27, -26 are the percussion sounds "booms and "ssh"

-25 is net a valid pitch

Durations must be between 0 and 127 units. Each unit is normally

about 1/8 second (but tee NVOICES below).

The actual output of NOTE :P :0 is determined as follows:
,%.

if :0 0 NOTE generates nothing.

If :D 1 NOTE generates a pitch 1 unit long

If :0 > 1 NOTE generates a pitch :0 -1 units long followed by 1 unit (7-1

of rest. Therefore, music will not sound "slurred".

If :P is -26 or 727 NOTE generates a sound for one unit followed by

:0-1 units of rest. This makes-it convenient to use the percussion sounds

to "generate a beat".

58



LOGO maw. 68C.

NOTE can also take multiple inputs . The format is (NOTE-WI :01

:P2 :02 etc:) where each pair specifies the pitch and duration for orie

note; (The Aotal number of inputs must* :Wm)

14.2 PM

The command PM (stands for PLAY MUSIC) takes no inputs. It causes

the output of previous NOTE

/commands

to be played on the music box. As the

music is played it is erased from temporary storage and must be regenerated

if you wish to hear it again. Typing a cti-G while music is being played

causes an immedi'ate break and also clears out temporary storey,. MCLEAR

can be used to clear out the music buffer. (Temporary storage is allocated

fin the same area as the user's procedures, variables, etc. The amount of

music that may be compiled at one time depends therefore on how much other

stuff is in the user worksPace.)

14.3 VOICE

The music system can generate up to four simultaneous voices. The

VOICE command
*
directspe output of subsequent NOTE commands to the various

voices. PM then plays the voices simultaneously.

Example:

TO SEVENTH :TONIC :0

leVOICE 1 NOTE :TONIC :0
28°VOICE 2 NOTE :TONIC+3 sO

38 VOICE 3 NOTE :TONIC4S :0

48 VOICE NOTE :TONIC+9 :0
58 PM
ENO

o will play a chord.



VOICE takes one input which must be a.number between 1 and 4. This

becomes the current voice until the next voice command is Ovine* If no

VOICE command is given, the - system outputs to voice number 1.

14.4 VLEN and MLEN

These are operations which take-no inputs. VLEN outputs the total

length of the music compiled for the current voice. MLEN outputs the

length for the largest voice.

For instance, if we have generated a melody in voice number 1 we

can provide it with an accompaniment:

TO OOMPAH
10 VOICE 2
28 (NOTE 0 4 I-5)_4)

38 IF VLEN « MLEN STOP ELSE GO 29

EAU

This will generate oompahs for as long as the melody lasts.

14.6 NVOICES

The music system normally multiplexes output among four voices.

Voices for which no output has been generated are fed silences. It is also

possible to send output to only one or two voices. This is done with the

NVOICES command:

NVOICES 1 output only to voice 1

NVOICES 2 output to voices 1 and 2

NVOICES 4 output to all fowl'. voices (the normal, mode)

Since the music box is fed at a constant rate ICES 1 tromp.

NVOICES 2) causes the basic unit of duration to be one-fourth 0140. half)

6 O



LOGO MANUAL 6$

as long as with NVOICES 4. NVOICES also clears out temporary storage and

resets the current voice to voice 1.

14.6 NOMUSIC

Orily one user at a time may have access to the music box. When a

user gives amusic,coomand, LOGO assigns the music box to him if no one

else if using it. A user say release the music system by giving the

NOMUSIC command.

14.7 MUTYO AND MUCTRL

These commands are a contibution toward rPil-time music generation.

They enable the user to bypass,the muusic buffer, and the P11 command, and

hence have a chance at least to generate real -time music.

MUTYO takes 2 inputs, each one a music box pitch; and makes the

music box play the pitches. Pitches to MUTYO ars the same numbers as

pitches in the regular music system -- middle C le , rest is -28. and so

'forth. MUTYO automatically converts those pitch numbers into the numbers

the music box hardware requires.

MUCTRL stands for music control. Its main purpose is to specify to

the.music box hardware how many voices you wish to load. This is similar.

to the NVOICES command in the regular music system.

14.8 SYSTEM CONSTRAINTS

The music system has been designed with specific uses in mind.

(See,.pi.g, the papers of Jeanne Bamborgerd Users who are hampered by this



LOGO MANUAL 61

should bear in mind that the .TYO command can be used to output arbitrary

characters to the music box. (See Chapter 19.)

1/

62



7 AP

LOGO MANUAL 62

A IS. LISTS

LOGO is equipped to handle general lists, i.e. lists whose elements

may themsilves be lists. For example:

[(THIS IS) A [LIST STRUCTURE))

is a list of three elements, two of which are lists.

PRINT does not prInt the outer brackets around a list.

?PRINT ((THIS IS) A LIST STRUCTURE))
[THIS IS] A BAST STRUCTURE)

All of the list operations described in Section 4 work with general

lists, e.g.:

MAKE "A ((THIS IS) A MIST STRUCTURE]]
COUNT :A output 3

FIRST :A outputs [THIS IS)

BUTFIRST :A outputs (A LIST STRUCTURE))
LAST :A outputs UST STRUCTURE]
BUTLAST :A outputs ((THIS IS) A]

SENTENCE generalizes as follows:

If all of its inputs are lists, it puts their elements together to

make one big list:

(SENTENCE (PIECES OF) (A BIG) LIST])'

outputs (PIECES OF A BIG LIST)

If any of the arguments to SENTENCE are words it first converts

each word to a one-word list and applies the above rules

(SENTENCE "PIECES (OF] "A "BIG LUST])

outputs (PIECES OF A BIG LIST)

LOGO has some other list operations. LIST takes two inputs and

outputs a 2- clement list:

LIST (THIS IS) (A LIST)

outputs ([THIS IS) (A LIST])

LIST can also take multiple inputs. It outputs a list whose

03



LOGO IWIUAL E3

S"'"./-

4

elements are the inputs:

(LIST ILOTSI "OF !LISTS])

outputs ((WS) OF (LISTS))

Notice that if all inputs to LIST are words. then LIST is equivalent to

SENTENCE.

FPUT is another list operation. It takes two Inputs of which the

second must beta list. It sticks the first input onto the front of the

second to make a new list:

FPUT "THIS [IS HOW FPUT WORKS]

outputs [THIS IS HOW FPUT WORKS]

FPUT (THIS IS) 01014FPUT WORKS]
outputs ][THIS IS) HOW FPUT WORKS)

LPUT is similar. It sticks its first input onto the end of the

list.

LPUT "THIS [IS HOW LPUT WORKS]

outputs [IS HOW LPUT WORKS THIS)

LPUT [THIS IS] LPUT WORKS]

outputs [HOW LPUT WORKS [THIS IS]],

FPUT and LPUT can also take multiple inputs. The last input must

always be a list:

1FPUT "MAKE (THIS] LA LIST])

outputs [MAKE (THIS] A LIST)

ILPUT "MAKE (NISI [A LIST])

outputs [A LIST MAKE [THIS))

Lists may also contain SNAPS as eleftents. e.g.:

MAKE "A SENTENCE "WOW SNAP

then it is perfectly valid to say:

PRINT FIRST :A

or
DISPLAY LAST :A

but

4



PRINT :A

will 'giltt an error.

s

%

65



16. DEBUGGING FEATURES

LOGO includes features which aid users in debugging their pro-

grams.
Thi'simplest such feature is cti-G. Pressing ctl-G will stop

execution of any program. If)Ot is not much help as a debugging feature.

it-at least can serve as a panic button.

16.1 PAUSE, CONTINUE AND ctl -Z

When the PAUSE command is executed in a omcitkre, the procedure is

temporarily halted and control is returned.to the console. Instead of

typing only ? as a prompt character, LOGO also indicates at what level it

currently is. Level refers to "how many proceduris deep" current execution

is. (Commands given from the console are at level 1. Commands given in

procedures called from the console are at level 1. Commands given in

procedures called by level 1 procedures are at level 2. And so on.) While

in a PAUSE the user can access any names which are local Athe procedure.

For example:

TO BLA :A

18 FORWARD :A

20 PAUSE

END

A is a local naive. Running BLA will cause LOGO to pause. We can

then access the value of A,

?BLA 28
PAUSE AT LEVEL 1 IN LINE 21 IN BLA

L1?PRINT :A

28
Li?

There are two ways to get out of it pause. Typing ctl-G will, as

usual, return the veer to the top level.

E;



LOGOl1AMIAL 6S

I

The CONTINUE command (abbreviated CO) will continue executing the

procedure 'starting with the next line after the PAUSE. (Note that for this

reason. PAUSE should be the .last command on a line if the user wishes to

continue.)

Wile it is legal to give any LOGO command in a PAUSEd situation,

the user may get into trouble if he or she erases or edits;the procedure

and then tries to continue. I

CU-2 is similar to ctl-G except that it generates a pause rather

than a break at the top level.

16.2 DEBUG

The DEBUG command changes what LOGO does when an error is

encountered in a user's program. Normally, an error prints a message and

terminates execution. ,The DEBUG facility MIMI errors to generate PAUSES.

The user can then examine local variables and CONTINUE with the next line

of the procedure. DEBUG is a command which takes no inputs. ,Its use

switches this feature on and off.

16.3 TRACE-

'The"TRACE comiand"takes one input, which is the name of

procedure. The procedure name is not quoted. Every time a TRACEd

procedure is run, LOGO prints out a message to that effect and tells what,

the inputs to the procedure ife. LOGO also indicates if the procedure

outputs.

To get rid of a TRACE, use ERASE TRACE as ins

104



LOGO MANUAL. 67

?ERASE TRACE <procedure name>

It is possible to,,trice all procedures by saying TRACE ALL. Thin

is also ERASE TRACE ALL.

16.4 STEP

STEP is like.a "super TRACE". Not only is the procedure TFIACEd but

before each line of the procedure Is execuied, LOGO types out the line and

waits for the user to respond. There are three options:

(1) Typing a carriage return causes the line to be executed

and goes on to the next line.

(2) Typing ctl-G trainates execution as Vous.
(3) Typing ctl-Z generates a PAUSE as described

above. The user may then execute other.commande and later

CONTINUE.
Ar

The syntax for. STEP is like TRACE. ERASE STEP, STEP ALL, and ERASE

STEP ALL are also available.
. a

a

-



The error handli

treats errors.

17.1 ERSET and ERCI.Pr.

The ERSETCOmeand takes one)nput.'s procedure name. As with TO.

EDIT, TRACE, "etc.., the procedure name is not. quoted. tOaEicauses the

facilities allow you to modify thol w

® procedure given as .input to be executed everylitie an error occurs. The

procedure: will 050 beHuneviry time ctl-Gor-ctl-Z is'hit-Aftor the

procedure' has been executed. LOGO takeilhe'follOwing action:

(l) ...if the procedure does not output, LOGO prints. the noraal error
message. :

C2) If the procedure Outputs,. LOGO prints the output instead,of -the
normal error MesSage.'

if an error occurs in theJERSEprocedure itself the
.

2

happen. The various SYSTEM BOG errors cannot be overridden by an ERSET. -.

44
The ERCLR command, which takes no inputs,sdeactiyates ERSET..

17.2 MET-and ERLIN

As described above, an ERSET can provide pertonel.error messages,

but still terminates execution. Another use of ERSET is to allow the

possibility of modifying the condition that caused the error and continuing°

execution. The command ERRET takes one input, a Tins number, and-returns,,
.p

execution to that line of the procedure in which the error occurred.

Useful in conjunction with .this is the ERLIN operation' which outputs the

I Ins number in which the error occurred. Thus for skimp



ERRET.ERLIN

in an ERSET procedure will re-execute the line which ttie error occurred.

Example: N

Here js a way to move a balk.back and forth acoss the: screen.

Suposi :BALL is a SNAP ef a ball and we move the ball by :'

TO MOVEBALL

18 FORWARD 28
28 DISPLAY :BALL

38 WAIT -S

40 WIPE :BALL

$0 GO 18
fRO.

Run MOVEBALL but first ERSET the following procedure:

U69 MANUAL 69
)

TO TURN

18 LEFT 188

20 ERRET 10

ENO

Now every time,the:"OUT'OF BOUNDS" error occurs TURN will turn the

turtle around and keep going.

But this simple scheme has a bad hig. TURN mill be run whenever

and error occurs. Even wrest it will be run when we hit There is

no way to stop MOVER/CA What we really want is to only execute the'ERRET

in the case of the particular error "OUT OF-BOUNDS".

17,3 ERNAIT; ERBRK, and ERPRO

To help overcome the above- Mentioned bug, LOGO provides the ERNill

, operation. The easiest way to find out the nameOf an error, is to

generate the error and then PRINT ERNAM. We can fix the bug In TURN above:

.70

I



LOGO MANUAL 7$

TO TURN.

18 TEST ERNAM-. "008

28 1FFALSE STOP.

38 LEFT 180 ,

4$ ERRET 10

END

("OUT OF SOUNOS"-has error name OM

ERPRO:outputs theltome ofjhe procedure in which the lest error

occurred. so if we. would like. TURN to only take effect during MOVIEBALL us

can TEST to see if ERPRO "MOVESALL.

.08RK handles ctl-G and 01 4. It is an oPeratio.mhich outputs:

1 li'the "error ", was caused. by pressing ct1.4

-1 if the "error was caused by pressingCctl-Z

11..otheroise.

Soeetimes.it is useful to set things t*eo that pressing 014

during a REQUEST re-dpes the REQUEST rather than Mopping the program.

Here is an example of hou.that can be done:

TO SPECIALREIIJEST

18 ERRET TRYAGAIN
28 MAKE "X REQUEST

38 ERCLR

48 OUTPUT :X

ENO

TO .TRYAGAIN

18 IF ERORK 1 ERRET EMIR
ENO

With.TRYAGAIN we can Still stop the show by hitting cti-L

17.4 ERNUM, ERTOK. ERLOC. and MINE

ERNUM Each type of.error has a number as well a a name. ERNUM

,eutpute the number of the.error.

71



F.RTOK outputs the "token number' at which the previous error

occurred in the line. This gives, some indication of exactly where in the

line the error occurred. but it is hard to use unless you are initiated

into the mysteries of the LOGO evaluator.

RUC outputs the location in the POP11's core at which the error

occurred. It is useful mainly to system programmers.

04

MIKE outputs the last line typed in at the console. It is useful

for doing analysis of errors that occurred while the user was typing in

"direct commands ".

72

t.



LOGO MANUAL 72

S. EVALUATING TEXT

18.1 RUN

It is often useful to evaluate oommende that have been computed

rather than typed in. The basic LOGO primitive which does this is RUN.

RUN takes one input, a list, and evaluates It just as if the fist mere

typed in at the console:

?RUN (PRINT-1MM
WON

If the input to RUN specifies an operation, then RUN outputs:

?PRINT RIM (SUM it 51
23

Of course, the input to RUN neednot, be typed in literally

'1PRINT RUN (SE "SUM.1155)
23

For example:

?MAKE "X "PRINT

?RUN SE :X 5
S

. Another example:

If we have procedures called, say. STRATEGY1, STRATEGY2, and

STRATEGY3, one way to invoke the proper one is to says

RUN (SE WORD "STRATEGY :N1

if :N is 1, 2, or 3. We use SE with one argument since RUN'. input must Pe'

a list.

There is a tricky point here. RUN executes the list just as if the

list were typed in. In the example

RUN 'MINT "MOIR

the first character in the second word of the input is a quote. To

7 3



LOGO MANUAL .ff

generate the list we would say,

RUN SE "PRINT "WOW .

In contrast the coamand

RUN SE "PRINT' WOW

is equivalent to

RUN (PRINT 1101)

which would be an error unless there wore $ procedure named 1,1014.

4 18.2 PROCEOURES DEFINING PROCEDURES

It is valid in LOGO to havens procedure which defines soother

procedures

TO DRIB,

10 TO DRAB
20,10 PRINT "WHOOPiE

38 END
END

Running DRIB defines the procedures

TO DRAB

10 PRINT "WHODPIE

ENO

Naturally, we can use RUN in this context:,

vill 'cause

to. create

TO DEFINEAPROC sN
10 RUN SE."TO sPROC
28 RUN SE 110 PRINT) sN

30 ENO

ENO

DEFINE "WHO 7

TO WHAM
10 PRINT 7

END

74

t-

14,



In a eimilir manner, procedures meg edit procedures.

ea



19.1

AS. MISCELLANEOUS COMMAN8S

BELL-takes no inputs. Rings the bell on the console.

CLOCK takes no inputs. Outputs a number which is incremented every

1/68 seconds.

DATE outputs a 3-element list containing month, day, year.

s-TIME outputa 3-oil-ent list containing hour, minute, second.

WAIT takes one input. Causes LOGO to wait fot.that many 1t38

second intervals.

HELLO clears out workspace; "restarts" LOGO for you.

GOODBYE same as HELLO.

LEVEL takes no inputs. Outputs a number which tells "how many

procedures deep" current execution is.

PEEK prints out system status' information.

MAIL The MAIL command enables users to send messages to other users

on LOGO.' MAIL takes one input- the user name (quoted) of the person to

whom the mail is to be sent. The computer responds with a back -arrow (.4

which indicates that anything typed in on the console is regarded as mail.

To end the message, type a line with a single period followed by a carriage

return. The completed message is then placed in the filing system of the

user to whom it is sent, contained in a file named MAIL. The mail can be

read either when logging in, or by printing the file using the POF command.

It is helpful to be logged in when sending mail, mince the user's login

name is used to identify the source of.the mail to the paOson who receives

it.

76



SENO takes two inputs. The first is the number of a console, and

the second is a list which is printed out as a message directly on that

console.

SYSPR takes as input a list which is printed out as a message on

all consoles currently in use.

SIN takes one number (representing degrees/ as input and returns

the sine of that angle.

COS takes one'lhput in degrees and outputs the cosine of ,that

angle.

19.2 IMPLEMENTATION DEPENDENT PRIMITIVES

The following are primitives which refer specifically to this

inplementation of LOGO.

.TYO takes two inputs. The first specifies a device. This may be

either a device number or name. The names that LOGO understands for

devices are:

"LIGHT for the light box

"TUR1 for turtle 1

"TUR2 for turtle 2 when It is piugged in

"MUSIC for the music box

"PLOTTER for the plotter

"TTY for you own console.

The second input specifies a number which is relayed to the given device as

output.

The obvious use of this feature is with regard to the light box.
4)

7



o.

.TYOing to a turtle is sligh

by the turtle har

becau

LOGO MANUAL 77

tly useful: certain camsands that can be done

duare have never been impleeented.in,LOGO software (mainly

se they are only very slightly useful). The turtle can for instance,

waddle instead of walk.

Try this program:

TO WADDLE :STEPS

18 IF :STEPS - 0 STOP

28 .TY0 "TUR1 94

38 .TYO NTUR1 9S

48 WADDLE :STEPS - 1

END

The interested reader is referred to the TURTLE GENERAL Engineering

Handbook, Appendix A.for more details.

.TYI takes one input which specifies a device in the same manner as

A
.TYO. The next piece of information (interpreted is a number) received

from the device is given as output.

.CLOSE If you use .TV1 or MO. LOGO assigns the device to you so

that no one else can use it. To release the device the :CLOSE command is

used, taking as its input the given device specilication.

.CTYI and .C110 are similar to.TYI and .TYO except that the

specified device is the user's console. .CTVO takes one Input. .CTYI takes

none.

CTYOWAIT and TYCUAIT

o
These commands are a species of WAIT coeeand like WAIT 611 -- but

instead of waiting a fixed amount of time, they ualt until a teletype hes

finished typing out.

A simple use of CTYOWAIT is to synchronize a procedure that draws

78



LOGO MANUAL 73

on the display and also prints stuff out. Suppose you wish to draw a POLY

and print the turtle's heeding at each corner. Normally in such a program

the displaying gets further and!further ahead of the printing. But,

CTYOUAITwill force the procedure to wait for the'printing to be completed

before going on:

18 FORWARD :SIDE
TO.POLY $SIDE :ANG

20 RIGHT :ANGLE

38 PRINT HEADING

48 CTYOWAIT 18 !The number is how much time to wait in
addition to witing'for the teletype.
SO POLY :SIDE :ANGLE

END

TYOWAIT is like CTYONAIT, except that you" specify which device to

wait for. TYOWAIT understands the same device names that .TYD and company

understand. It also accepts teletype. numbers. A good use for TYOWAIT is

to synchronize the floor turtle with the display turtle.

. GUN takes one input, a user number, and restarts that user's LOW

(equivalent to typing HELLO at his console). Thrs is used when someone's

consle gets hopelessly hung up.

CASESW On consoles etpipped to handle lower case, LOGO normally

converts characters to upper case. .CASESU is icommand which takes no

inputs and turns this feature on and off.

. ECHOSW takes no inputs.. Turns off and on a feature which inhibits,

echoing of characters typed at the console.

79

(r-

'

.



4

Law WIWI. 79

20. MAINLY FOR SYSTEM PROGRAMMERS

The following primitives deal with the maintenance and debugging of

the LOGO system. They are useful vainly to system programers.

.STF and .CTF set and clear a trace of the evaluator.

.SGCF and .CGCF set and clear i feature which causes a garbage

collection each time a node is allocated.

.SPNF and .CPNF set and clear printing the number of free nodes

left when garblge collections are run.

.STATUS unlock protected commands.:

.P$JRCLR do a reset of the POP 11 and.all devices.

Not tab. used casually.

'RUG halt LOGO and start the debugger

.SETTV set the system tile variables,

.GCOLL run a garbage collection.

'EXAMINE examine locatimin.P01111 care.

.DEPOSIT deposit into core.

.NODES output number of free-nodes.

'.VERSION output which version of LOGO this is.

.VALUE output the item on top' of the S-POL.

.USRTIME output the amount of user time run by the system.

8()



21. AN INDEX OF LOGO PRIMITIVES

The pages that follow are a listing of present LOGO primitives,
'

'with thmexception of special commands listed in Chapter 211. Along.

;

with each primitive is the folkoMing informations

ADO: -.- Abbrivispons and infix forms. Infix forms are indicated by

NUMBER OF INPUTS-- The Indication nY Means the primitve may use the

variable input feature'(See Section4.4l,iimhere n is the standard number of

inputs.'

OUTPUT- Y means. it dose outpu Nome it does not.
1.

PAGES) -- The primary pagmle) On which the primitive Is discussed,

'plus any important suppleilentary.Information.'

4
.

a

x.
'v*. t

a

81.

4

AO'



PRIMITIVE ABB NUMBER OUTPUT PAGE(S)

OF INPUTS

ALSO 9
. 1

ASIZE 1

BACK BK 1

BELL . 0
BOTH 2

BTOUCH 8

BURN' 1.

" ALL . 8

BUTFIRST BF 1

BUTLAST BL 1 .

.CASESW 1

CLEARSCREEN CS 8

CLOCK 0

.,CLOSE 0

.CLOSEF. 0
CNTRL . 1

CONTENTS 0

. CONTINUE CO 8

COS 1

COUNT 1

CRINDEX 1

.CTYI 8

.CTY0 1

CTYOWAIT 8,1

DATE 0
DEBUG 0

DEFINEARRAY DEFAR 3,4,5

DIFFERENCE - (I) 2

DISPLAY 1

,ECHOSW 1

EDIT ED 1

" LINE EDI 1

" TITLE EDT 0

EITHER . 2

ELSE . 0

EMPTYP \ 1

END 0
iN EQUAL (i) 2

ERASE ER ' 1

" ALL 0

" ARRAY I

"'ARRAYS 8
" BURY 1

" BURY ALL e'

" FILE

". LINE 1

" NAM 1

8.

N 55 -56

Y 23

, N
. N

46.48,51.
75

.. Y 38
Y 47

N 36
N 36
Y 12,62

Y 12,62

N 77

N 51

Y 75
N '. 76
N 44

N 55 -56

N 35

N 66

Y 76
Y 12,2 '

N 48 -41

Y 77

N 77

N 77
y 75

N 66
N 21-24

Y . 16-18

N 53

,N 78
N 8,73

N 7

N 7

Y , 38
N 31-32
Y 30
N 6

Y 17 -18,38

N 8.35

N 35

' N 22

N 222

36'
35
38
a
35



4

" NAMES

"-PROCEDUWS
" STEP

STEP ALL
" TRACE

" TRACE ALL
ERBRK

ERCLA
ERLIN
ERLOC
ERNAM
EPINUM

%5RPRO

ERRET
ERSET
ERTOK
.FLLEP

vFILER
FIRST
FORWARD
FPRINT
FPUT

FTOUCH
PET
GO
GOODBYE
GREATER > (i)
.GUN
HEADING
HELLO
HERE°

HIDETWRTLE HT
HOME
IF .

IFFALSE IFF
IFTRUE IFT
!LINE
INTEGER

LAMPOFF
LAMPON
LAST
LEFT
LESS
LEVEL
LIGHT
LIST
LISP)

LOCAL
LOGIN
LPUT

LOGO MANUAL 82,

L

LT
4)< (i)

0.

1

1

0 ,

0,
0
8

0

1

8
1

0
1

1

IV

2V
0
2,3,4

1

e
2
1

8.

1

8'

8
8
1'

,t0
0

1

2
t

ZV

1

1

1

83'

N
N
N

N
N.
Y'

N.

t(1

71

71
Y o :70

N
N.

Y
N

-10

Y
Y

N

35:

67
67'

66-67
. 67

78
68-

sa-si

N

Y 17-18
N 78
V "54-55
N 75

54.0.

N vc,/ 52
It

Y 54-

Y 31 -32
N 32
N 32
Y° 7
Y

N
N
Y

Y
'Y

N,

Y

68-69"

68
70-71
43
43-44
12,62
46,48,51

14- 15,40

63
47
22,24

0. 29
7s

,7,48

47,48-
,42.62

.46,48.51,

17-18
75

48
62-63
38g
27
44
61



a

LTOUCH.
MA IL

MAKE , (1)

MCLEAR

MUCTRL
MUTYO
NEWSNAP
NOD I SPLAY

NOMUSIC
NOPLOT TER

NOT
. NOTE
NO TURTLE

. NOWRAP
NUMBERP

NY0 CES

.13PENA

.OPENR

.OPENW.

OUTPUT
PAUSE
PEEK
PENDOWN
PEW
PENUP
PLOTTER
PM
PRINT
PRINTOUT
"'ALL

" AARAY
"I ARRAYS

" FILE

INDEX POI .

" LINE POL.

". NAMES

PROCEDURES.

" TITLE POT .

" T I TLES POTS

" TREE:

PRODUCT * Ii)

QUOTIENT / (1)

RANDOM
'READ

READPTR
'REMAINDER (I)

REQUEST
RIGHT RI

RTOUCH
0

,.8--4,
21% -.

0
0 ,

1

2

0
0

8
1

2
-0

1

.1

1

1

1

1

0
0
0 ,
1V

1 or, 0
0

a
1

8
1

0

a
0

`1
2V

w2
0
1

0
2

`13

. 1

kk.3

'84

Y

N
sometimes

N\
Y

48
75

25-26
58
59

''\N 60
N, SO

N '-,N, 53
N 51
N 59-68
N 55

30
N .5/

N 46 .

N 52
28,38

N 59
N 43
N 43-44
N 42-43
N za
N . 65
N ? 75
N .47,52
Y 52 .:

N '47,52
. N ', . 55
N
N

58
5.10,62

N 8,34
. N 34'

N 24
24

. 38
38-40 . .

,$. .

34
34 Ir

8
24
39-40
16-18
1648

TIN .tst

1$
_38,48,42

N

Y

1St
°

'45(

Y 13-14
46, 48.,51.

./0

2.



04f

RUN
SEND
SENTENCE -SE
SETASIZE
SETHEADING
SETIINDEX SETI
SETTURTLE SETT
SETX.

40 'SETXY
SETY

SHOWTURTLE ST .

SIN
.

SNAP

STARTDISPLAY
STEP-
" ALL

STOP
STORE

SUM +
SYSPR
TEST

TEXT.

THING

TIME
TO

TOOT

TOPLEVEL
TRACE

" ALL

TURTLE
.TYI

.TY0

'TYOWAIT

TYPE

TYPED;
USE

' VLEN
VOICE
WAIT
WIPE
WIPECLEAN WC
WORO
WOROP
WRAP
WRITE
WRITEPTP.

XCeR
YCOR

LOGO MANUAL 84

l'' mmotiles 72-74
2 N . 76
2V Y .1342
1 N 21-22
1. N 55
1 N 41:42

.

44 54
1 N 54
2 N 54
1 N 54
8 N 52
1 Y 76
e_ Y. 52-53,38
1 N 51
L N -67
0 N 67
a N 29
3,4,5 N 22-24
2V Y

..

16-18,

1 N 76
1 Y 32
1 Y

rs-t. 0 0 ,. .Y

0 Y '75

1 or-more N
.'

6,73
1 N 47
8 N 29.
1 o N 66
8 N 66,

. , 1 , N 46
1 Y 76-77
2 , N 77,49,61
4,2 N 78
IV N 18
a Y 14
1 N 37,40
8 N 59
1' N 58 ,

.. 1
' 'N 75

1 N 54
e N 51
2V Y 13 -
1 Y 30
8 N
1 N
a N 45
8 Y 54 .

8 Y 54

ro


