
ED 118 130

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY
Cto-,PORT NO

PUB-DATE
NOTE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

IR 003 035

Stonebraker, Michael; And Others
The Design and Implementation of ING;ES.
California Univ., Berkeley. Electronics Research
Lab.
Army Research Office, Durham, N.C.
UCB-ERL-M-577
27 Jan 76
74p.; Not available in hard, copy due to marginal
quality of original document; Best copy available

MF-$0.83 Plus Postage. HC Not Available from EDRS.
Computer Graphics; *Computer Programs; Computers;
Data Bases; Electronic Data Processing; *Man Machine
Systems; Programing; Programing Languages
*Data Base Management Systems; INGRES

The currently operational version of the INGRES data
base management system gives a relational view of data, supports tvo
high level, non-procedural data sublanguages, and runs as a
collection of user processes on top of a UNIX operating system. The
authors stress the design decisions and tradeoffs in relation to (1)
structuring the system into processes, (2) embedding one command
language in a general purpose programing language, (3) the algorithms
implemented to process in interactions, (4) the access methods
implemeAed; (5) the concurrency and recovery control provided, (6)

support for views, protection and integrity constraints, and (7) the
data structures used for system catalogs and role of the data base-
administrator. (Author/CH)

Documents acquired by ERIC include many informal unpublished . *

* materials not available from other sources. ERIC makes every effott *
* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hirdcopy reproductions ERIC makes available *

* via the ERIC Document Reproduction Service 4EDRS). EDRS is not
* responsible for the quality of the original document. Reproductionge
* supplied by EDRS are the best that can be made from the original.

1

41,

;:THE-DESIGN. AND IMPLEMENTATION OE-INGRES

by

Ifichael.Stonebraker, Eugene_ Wong,

1..yeter Kreps and Held

U.S DEPARTMENT OF HEALTH,
EDUCATION ILWELFARE
NATIONAL' INSTITUTE OF

EDUCATION`-
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

.Memorandum No. ERL=M577

27 January 1976 4

1.

177,4 17-7

ELECTRONICS 'WEAR LABORATORY

College of E ineering
University of Ca fornia, Berkeley

20

THE DESIGN AND IMPLEMENTATION OF INGRES

Michael Stonebralger, Eugene Wong and Peter Kreps

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Gerald Held

Tandem Computers, Inc.
Cupertino, California

ABSTRACT

This paper describes the CURRENTLY OPERATIONAL version of the INGRES

data base management system. This multi-user system gives a relational

view of data, supports two high level non-procedural data sublanguages

and runs as a collection of user processes on top of the UNIX operating

system for Digital Equipment Corporation PDP 11/40, 11/45 and 11/70 com-

puters. Stressed here are the design decicions and tradeoffs related

to 1) structuring the system into processes, 2) embedding one connand

language in a general purpose programming language, 3) the algorithms

implemented to process interactions, 4) the access methods implemgnted,

5) the concurrency and recovery control provided, 6) support for views,

protection and integrity constraints and 7) the data structures used for

system catalogs and role of the data base adminiitrator.

Research sponsored by Army Research Office Grant DAHC04-74-G0087, the
Naval Electronic Systems Command Contract N00039-76-C-0022, the Joint
Services Electronics Program Contract F44620-71-C-0087, the National

Science Foundation Grants DCR75-03839 and ENG74-06651-A01, and a Grant
from the Sloan Foundation.

.1 INTRODUCTION

INCZEL; (Interactive Graphics and Retrieval System) is a relation-
,

,

al data base system /which is implemented on top of the UNIX

operating system developed at Bell Telephone Laboratories

. [RITC74] for Digital Equipment Corporation. PDP 11/40, 11/45 and

11170 computer systems. The implementation of INGRES is primal-46-

ly programmed ir. "C", a high level language in which UNIX itself

is written. Parsing, is done with the assistance of YACC, a

compiler-compiler available on UNIX [JOHN74].

The advantages of a relational model for data base management

systems have been extensively discussed in the literature,
/

[CODD70,CODD74,DATE74] and hardly require further elaboration.
1

In choosing the relational model, we were particularly motivated

by (a) the high degree of data independence that such a model

affords, and (b) the possibility of providing a high level and 7,/

entirely procedure-free facility for data definition, retrieval,

update, access control, support of views, and integrity verifica-

tion.

In this paper we will describe the design decisions made ir.

INGRES. In particular, we will stress the design and implementa-

tion of:

a) the embedding of all INGRES commands in the general purpose
programming language "C"

b) tree access methods implemented

c) the catalog structure and the role of the data basO adminis-
trator

-2-

F

d) support for views, protections and integrity constraints

,e) the decomposition procedure implemented

f) implementation of updates and consistency of secondary indices

7) recovery and concurrency control

Except where noted to the contrary, this paper describes the

INGRES system operational ir. January, 1976.

To tdiS end we first briefly describe ir. Section 1.2 the primary

query language supported, QUEL, and tne utility commands accepted

oy tne current system. The second user interface, CUPID, is a

graphics oriented, casual user language which is also operational

and described in [11CD075a, MCD075b]. jt will not be discussed

further in this paper. Then ir. Section 1.3 we describe the

relevant factors in the UNIX environment wnicn nave affected our

design decisions.

Ir. Section 2 we discuss the structure of the four processes (see

Section 1.3 for a discussion of this UNIX' notion) into wnicn

INGRES is divided and the reasonin7 behind tne choice implement-

ed. The EQUEL (Embedded QUEL) precompiler, wnicn allows the sub-

stitution of d user-supplied C program for the "front end" pro-
s

,60

cess is also discussed. This program has the effect of embeddin7

all of INGRES in the general purpose programmin7 language "C".

Then in Section 3 we indicate the data structures which are im-

plemented ir. INGRES, the catalog (system) relations which exist

and the role of tne data base administrator with respect to all

relations in a data odse. The implemented access methods, their

-3--

5

calling conventions, and the actual layout of data pages in

secondary storage where appropriate,, are also presente4.

Sect.ions 4, 5 and 6 discuss respectively the various functions of

eacn of the three '!core" processes in the system: Also discussed

are the design, and' implementation strategy of each process.

Lastly, Section 7 draws conclusions, suggests future extensions

and indicates the nature'.of the current applications run or.

INCHES.

1.2 QUEL AND TiIE OTHER INGRES UTILITY COMMANDS

QUEL (QUErY Language)_ has points in common, with Data

Language /ALPHA (CODD71J, SQUARE [BOYC73J and SEQUEL [bHAM74] in

that it is a -complete [C0DD72] query language which frees the

programmer from concern for how data structures are implemented

and what algorithms are operating on stored data. As such it

facilitates a considerable degree of data independence [STON74a].

The QUEL examples 'in ,tnis section all concern the following rela-

tion.

NAPE DEPT SALARY MANAGER AGE

Smith toy 10000 Jones 25
EMPLOYEE Jones toy 15000 Johnsoi-, 32

Adams candy 12000 Baker 36
Johnson to 14000 Harding 29
Baker a. in 20000 Harding 47
Harding a min 40000 * no-ne 58

Indicated nere is a EMPLOYEE relation with, domains -NAME, DEPT,--

:ALAVY, MANAGEV a'nd E. Each employee has a manager (except for

-4-

6

Harding wtio is presumably the company preside?,t),'a salary, an

age, and is in a department.

A ,QUEL. interaction includes at least one RANGE statement of the

form:

RANGE OF variable-list IS relation-name

The symbols declared in the range statement are variables which

will be used as arguments fpr tuples. These are called TUPLE

MIABLES.Thepurposeofthi'st statement 'is to specify the rela-
2

tion over which each variable ranges.

7.

Moreover, an interaction, includes one or more. statements of the

form:

Command [Result-name] (Target-list)

[WHERE Qualification]

Here, Command is either RETRIEVE, APPEND, REPLACE, or DELETE.

,--
For RETRIEVE and APPEND, Result-name is the name of the relation

which qualifying tuples will be retrieved into or appended to.

For REPLACE and DELETE, Result-name is the name of a tuple vari-

able which, through the qualification, identifies tuples to be

modified or deleted. The Target-list is a list of the form

Result-domain = Function, ...

Here, the Resultdomaln:s are domain names in the result relation

which are to be asigned the value of the corresponding, function.

et

f

The following suggest valid QUEL' interactions. A complete

deriptiOn Of'the language is presented in. EMELD75a).

I

Example the birth year of employee Jones
. .

TA%?at-Gg-E.......1S EMPLOYE
RETRIEVE INTO A4 (BYEAR = 1975 - E.AGE)

.WHERE E. NAME = "JgAes"4-

$

Here, 'E is a tuple variable. h ranges over the EMPLOYEE f,ela-
.

tion and all tuples in that relation found hich sa isfy, the--

qualification'.E.dAME-= "Jones". The result of tie query is a new

relation, ii,\whiCh has asingle;fdomain, BYEAR, th t ha been, cal-:

culated' for each qualifying tuple. If the res t elation is

omitted, quaifYing tuples, are written in display fo mat on thg

user
'

s
lz

terminalT!or returned to a calling program in prescribed
4,

t .

format as discussed in Section 2. Also,,in the Targ t; the

"Result-domain =!" .may be omitted if Function is the right hard

side is an existing domain (i.e. NAME = E. NAME may be written as

.NAME -- see example 1.6).

\ .

Example 1.Z Insert the tuple ;(Jackson,cardy',13000,Baker,30)

into EMPLOYEE.

APPEND TO EPLOYEE(NAME = "Jackson", DEPT !'candy"
SALARY = 13000, MGR "Baker", AGE = 30)

Mere,'the result relation. EMPLOYEE is modified by adding the
v

indicated tuple to the relation. If not ell domains' are

fied, the remainder default to zero numeric'domains and null
/-

for character strinis.,

Example 1..3 If a, second relation DEPT(DEPT, FLOOR #) contains

0

0

:tne floor# of each d artment that An emp .might work in,

tnen one can fire everybody onzthe first floor as lb ws:

RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPT
DELETE E WHERE E.DEPT = D:DEPT

AND D.FLOOR# = 1

V
Here:'E specifies that the EMPLOYE§ relation is to be modified.

All tuples are to be removed which have a value for DEPT which is

';the same as-some department of the first floor.

Example 1.4 Give a 10 percent raise to Jones if he works on

the first floor

RANGE OF E IS EMPLOYEE
RANGE of D is DEPT
REPLACE,ESALARY'BY 1.1 * E.SALARY)
WHERE E.NAME = "Jones" AND

E.DEPt = D. DEPT. AND D.FLOOR# = 1

Mere, E.SALARiis to be replaOed by 1.1*E.SALARY for those tuples

in EMPLOYEE where the qualification is true. (Note thatjhe key-

words IS 'And BY"'may be used .interchangeably with "=" in any QUEL

statement.).

Also, QUEL contains aggregation operators including COUNT, SUM,,

MAX, MIN, and AVG. Two examples of the use of aggregation, foi-,

low.

Example 1.5 Replace the salary of all toy department employees

by the average topdepartment salary.

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY BY AVG(E.SALARY WHERE E.DEPT = "toy"))

WHERE E.DEPT = "toy"

C.

Here, o be taken of the salar domain for those tuples

satisfying the qualification 'EDEPT = "toy". Note that

AVG(E.SALARY WHERE4 E.DEPT= "toy") is scalar valued (ire this in-

stanee, $13,000) an sequentl will be called an AGGREGATE."

More general aggregations are posible as suggested by the fql-

lowing example.

Example 1.6 Find those departments whose average salary

exceeds the company wide average salary, both averages to be tak-

..'en-only for those employees whose salary exceeds $10000.

RANGE OF E IS EMPLOYEE
RETRIEVE INTO HIGHPAY (.E.DEPT)
WHERE- AVG(E.SALARY BY E.DEPTNHERE E.SALARY > 10000)

AVG(E.SALARY WHERE E.SALARY > 10000)

o

Here, AVG(E.SALARY BY E.DEPT WHERE E.SALARY>10000) is 'an

AGGREGATE FUNCTION and takes a value fqi" each value of E.DEPT.'
, = '16

This value is the aggregate AVG(E.SALARY WHERE E.SALARY>10000

itl

ND E.DEPT = value). (For the toy, candy and admin departments

is value is'irespectivelk. 14,500, 12,000 and 30,000.) The qual-

ification expression for the statement is then true for depart-

111111N

ments for which this aggregate function exceeds the aggregate

AVG(E.SALARY WHERE E.SALARY >10000). k

Addition to the above QUEL commands INGRES also supports a

vari ty,of utility commands These utility commands can be classi- .

fled i to seven major categories.

a) invocat on of INGRES

1 0

or

*

J

INGRES data-base-name

This command executed from UNIX "logs in" a User to a given data

base. (A data base is, simply a named collection of relations with

a given data base administrator who has powers not available to

ordinary users.) Thereafter, the user may issue all other 'corn-

mands (except those executed directly from UNIX) within the en-

vironment of the invoked data base,

b) creation and destruction. of data bases

CREATEDB data-base-name

DESTROYDB data-baSe-tame
ti

A

These two commands are called .froM UtIIX. The invoker of CREATEDB

must be autnorized,tp,create data, bases (in a manner to be

de,scribeti presently) .and'11-4 automaticaaly becomes the data base

dry nistrator. DESTROYDB succe's'sfully

if-invoked by the data base administrator.

0)-creation and destructior: of relat ons

to base only

CREATE relname('domain-name IS format, domain-name IS format,...),

OESTROY relr.ame

TheSe commands create and destroy relations within the current

d ta base. The invoker of the CREATE command becomes the "owner"

- of the relation created. A user may only destroy a relation that

he owns. The current formats accepted by INGRES are 1, 2 and 4

byte in egers, 4 and 8 byte floating point, numbers and fixed

(

;1

length ASCII character strings between f,and 255:bytes.

d) bulk copy of data

COPY relname(domain-name IS ,format, ali;ain-.name. IS format,...)
direction "filename"

PRINT relname

The command COPY transfers an entire relation, to or from a- UNIX

file whose name 'is "filename". Direction is either "TO" or

"FROM". The .format for each domain ib a description of how it

appears (or is to appear) in the UNIX. file. The relation relname

rust exist and have domain names identical- to the ones appearing

in the COPY command. However, the formats- reed riot agree; and

COPY will automatically convert data types. Also,. support is_-

provided for dummy and variable length fields in a UNIX file.

PRINT copies a relation onto the user's terminal formatting it,as

a report. In this sense, it is stylized version of COPY.

.e) storage' structure modification'

)

MODIFY relrame TO storage-structure OH key2,...)

INDEX ON relname IS indexname(keyll key2,..j

(

;4

ti 4

The MODIFY command' charges the storage structure of a relation

from one access method to ano'her. The five access methods

currently supported are discusSed in Section 2. The indicated

Keys .are domains in relname which are concatenated left to right

to form a combined key which is used in the organization of tu-

ples ,in allIbut one of the access methods. Only the owner of a

12 -10- 4

relation may modify its storage structure.

INDEX- ra saseCondary index for a rel tion . It -has domains

04000F
of keyl, key2,...,pointer. The domain, pointer, is the address

of a tuple in the r,dexed relation having the, given values for

xeyl, key2,.... An index named AGEINDEX for EMPLOYEE would be

the following binary relation

AGE POINTER

- '25 address of_Smith le
--32 address of Jones' pile

AGEINDEr- 36_ address of Adams'' tuple
29 address of Johnson's tuple

,.--

47 address of Baker's tuple
58 address of Harding'sstuple

Tne relation indexname is in turn treated and accessed just like'

any other relation except that it is automatically updated whe

the relation it wlexes is updated. This is discussed further in
,4

Section 6. Naturally, only the owner of a relation may create

and destroy secondary indexes for it.

) consistency and integrity control

INTEGRITY CONSTRAINT' is qualification

INTEGRITY CONSTRAINT LIST relrame

INTEGRITY CONSTREINT.OFF relname

k-

INTEGRITY CONSTRAINT OFF (integer, ... ,integer)
ti

RESTORE data-base-naMe
4

The first four commands.support the insertion, listinR, deletion,

and selective deletion of integrity constraints which are to be
I

3

enforced for.'all interactions with a relation. The mechanism for

handling this enforcement is diCussed in Section 4. 111,e last

command restores a data base to a consistent state after a system

crash t must be executed from uafx and its operation is dis-
.

cdssed, in Section 6. The RESTOR,E-6ommand is only available to

tne data-bse, administrator.

cellaneous

HELP [relnameimanual-section]

;;Ave,' relname UNTIL-,expiration-date

RELKILLER data-base-name

d

HELP provides information about the system or the data base in-

yoked. When called with an optional argument which is a corns and

name, HELP will return, the appropriate page from the MORES

reference Manual [ZOQK75]. When called with a relation name as

an argument, it returns all information about that relation.

With,no argument at all it returns information about all rela-
-.

tions in the current data base.

SAVE is the mechanism by,which a user car. ,declare his, intention

to keep a relation until a specified time. RELKILLER is a UNIX-

comMand which can be invoked by a data base administrator to

delete all relations whose "expiration-dates" have passed. This

sh uld be done Wh-en space in a data base is exhausted. (The data
f.

base administrator can also remove any relations from his d ta

, base using the DESTROY command, regardless of who their

/ are!)

14 -12-

owners

Two comments should be noted at this time.

a) The system currently accepts the language specified s QUEL1

in [HELD75a). Extension is in progress to accept QUEL

b) The system currently does not accept views or protection

statements. Although the algorithMs have been 'specified

[STON74b,STON75], they have riot yet been i plemented. For this

reason, no syntax for these statements\is given in this section;
\

nowever the subject is dicused further in Section 4.

1.3 THE UNIX ENVIRQ,NMENT

Two points concerning UNIX are ,worthy of mention in this section.

a) The UNIXfile system

UNIX supports a tree structured file system similar to that of

ilUWICS: Each file is either a directory (cOntaiking references

to descendant files in the file system) ore data file. EaCh

data file car. be 'viewed as an array 1 byte 'aide anal 2**24 bytes

long. (It is expected that x1mum length W.11 be increased

by the UNIX implementors.) Addressing in a file \is similar to

referencing such an array. Physically, each file is divided into

512 byte blocks (pages). In response to a' read request, UNIX

moves one or more pages from secondary memory 'to UNIX core

bufferS then. returns to the user the the actual byte: string

desired . If the' same page is referenced again (by.the same or

another user) while it is still in a core buffer, no disk I/O

takes plvitce.,

-13-

It, is important to rote that UNIX pages data from the file system

into and out of system buffers using a "least recently u ,sed"

replacement algorithm. In this way the entire file system is

managed as a large virtual store.

In part because'the INGRES designers believe that a data base

system should appear as a user job to Unix and in part because

they believe that e e operating system should deal with all space

management issues or the .mix of jobs being run, INGRES contains

. NO fac'lities to do its own memory'management.

Each f le ir, UNIX can be granted by its owner any combination of

the following protection clauses:

a) owner read
b) owner 1,rite
c) non-owner,read
d) non owner write
e) execute
f) special execute

f

When. INGRES is ttiti'ally generated, a UNIX user named INGRES is

created. All data files managed by *e.,INGRES system are owned

by this "super- user." ,and- "Ave' their protection status set to

"owner read, owner write, no oth access". Consequently, only

the INGRES super-user can direct-Y--tamper with INGRES files.

(The 'protection sYsten is currently being altered to optionally

require the consent of the data base administrator before unres- .

tricted access by the super-user is allowed.)

Tne INGRES object code is stored in files whose protection status

is set to "special execute, no other , access". When a user

18-14-

invokes tne INGRES system (by executing command a) above), UNIX

creates the INGRES processes operating temporarily with a user-id

of INGRES._ _iinen a user exits from INGRES these processes are

destrfoyed and tne user is restored -to __pnerating with bis own

userLid.

Using this mechanism, tne only way a user may access an 'INGRES

data base is to execute INGRES object code. This "safety lath."*

effectively isolates users from tampering directly with INGRES

data.

O

lb) The UNIX process structure

A process in UNIX is an address space (64K bytes or less or. an.

11/40, 128K bytes or less on 11/45s and 11/70"s) which is asso-

elated with a user-id and is the unit of work scheduled by the

UNIX scheduler. Processes nay "fork" subprOcesses; consequently,

a parent process can be the root of a process subtree. FUrtherll

more, a process can request that UNIX execute a file in' a-'eescen-

dant process. Such processes may communicate with each other via

an inter-process communication facility called "pipes". A pipe

may be dec(17aNd as a one direAion communication link which is

written into'by one proce8s and read by a second one. UNIX nain-

tains syncnronization of pipes so no messages are lost. Each

process has a "standard input device" and a "standard output dev-

ice". These are usually the user
,

s terminal but may be redirect-

ed by the user to be files, pipes to other processes, or other

devices.

-15-

w.

e

Lastly UNIX provides a facility for processes executinp, re-

entrant code to share procedure 'segments if possible. INGRES

takes advantalle p-f- this facility so the core space overhead, of

Multiple concurrent users is only that reqir_edb-yd-a-t-a- segmett-s-.

Wjturn in the next section. to the process structure in Which

INGRES runs.

1.0

9

2, THE INGRES PROCESS STRUCTURE

INGRES can be invoked, in two wayg: First, it car be directly

invoked from UNIX' by executing INGRES data-base-name; second it

can be invoked by executing a program,written using the EQUEL.,

precompiler. We discuss' each in turn and then comment briefly on

why two mechanisms exist.

2.1 INVOCATION FROM UNIX

Issuing INGRLS as a UNIX comtand causes the process structure.

shown in Figure 1 to be created.

1

user --=->I
term,
inal <--T-i

A 1,

I

ti

',process process process . prpCess
1 2 3 '4

INGRES Process Structure

Fi4 gt,re 1

. 1.1t1

Process 1 As an interactive, terminal monitor which allows the

user to formulate, print
! :

edit and execute collections of INGRES

commands. It Maintains a worlapace with, which the user interacts

until he is satisfied withiis interaction. The contents of this

workspace are passed down pipe A as a string of ASCII chaacter,,

when execution is desired.

As noted .above, UNIX a11ows a.user.to alter the standard input

and output devicei for his processes when executing a doMmand.

As a result-h-e invoker of INGRES may direct the terminal monitor

tp take, input from a\aser file (in which case he runs a "canned"

tollectiOn of interactions) and direct output to another device

(such as the line printer) or a file.

The current terminal monitor accepts the following commands.

Anything else is simply appended to the user's workspace.

1/ : Erase the previous character. Successive uses of this
instruction will erase back to, but not beyond, the
beginning of the current line.

@ : Erase the current line. Successive uses or this. in-
struction are ignored.

\r : Erase the entire interaction (reset the Workspace) The
former contents of the workspace are irretrieveably lost.

Print the cuOent work-space. Its contents are printed
on the user's terminal:.

\e : Enter .the UNIX text editor and begin accepting editor
commands. The editor allowR sophisticated editing of the
user's workspace. This command is executed by simply

, "forking" a subprocess and executing the UNIX editor in it.

Process the current query (go). The contents of the
workspace are transmitted to process 2.!

\g

\q-,
Exit from INGRES.

41.

Process 2 contains a lexical analyzer, a parser, query ,modifica-

tion routines for integrity control (and in the future support of

views and protection) and concurrency control. -When process 2

Finishes, it passes a string of tokens to pr9cess 3 through pipe

B. Proce's6 i is discussed in Section 4.

Process 3 accepts this token string and contains execution.

-18-

2Q

routines for the commands RETRIEVE, REPLACE, DELETE and APPEND.

Any update is turned into a RETRIEVE command to isolate tuples to

be'changed. Revised copies of modified tuples are spooled into a

special file. This file is then; processed by a "deferred update

processor" in process 4 which is discussed in Sectidn 6.
/

Basically, proc ss 3 performs two funOltions, for RETRIEVE commands.

a) A multivari-ble qUery is DECOMPOSED into a sequence of in-
\

ter actions in6lving only a single variable. -b0 A one- variable

query is'exe uted by a one variable query processor (OVQP9. OVQP

In, turn performs its fUnction by making calls on the access

)methods. -These two functions are- discUt-sed in Section 5; the

access methodare indicated in Section-3.

In process 4 resides, all code to 'support utility ,commands

(CREATE, TESTROY, INDEX, etc.). Process 3 simply passes to pro-

cess 4 a.ny commands which piocess 41t4iil execute. Process 4 is

;

organized as a collection of o*erlays which accomplish the vari-

ous%' functions. The structure of this process will he discussed

in Section 6.

Error messages are passed back through pipes D; E and,F to, pro-

cess :1 which returns them to the user. If the 4Amand is a
;,

RETRIEVE with no result relation specified, process returns

qualifying tuples in a stylized foPtiat directly to thd standard

output device" of process 1. Unless redirected, 'thik i -the

use4.1 s terminal.

,le now turn t the operation of INGRES when Invoked by

21

the precompiler.
4

2.2 EQUEL

AlthoUgh ,QUEL *alone provides the flexibility for most data

management, requirements, there are many applications ,which re-

quire a customized user interface in place of the QUEL language.

For this as well as other reasons, it is often useful to have the

flexibility of a general ptirpose programming language in addition

to the data base facilities of QUEL. To -this end, a new

language, EQUEL (Embedded UEL), has beer. implemented which con-
,

sisti of QUEL embedded in the general purpose pr'ogramming

language "C".

In this section we describe the EQUEL lAguage and indicate, how'

it operates in the INGRES environment. 7

In the design of EQUEL, the following goals were set:

1) The new language must have the full capabilities of both "C"

anal QUEL.
'c

2) The' C program should have the capability for processing each

tUple,individu.11y which satisfies the' qualification, in a

QUEL RETRIE statement. (this 1. the "piped" return facil4

ity described ir. Data Language /ALPHA ECODD71i).

3) The implementation should make as much use as possible of

the existing C and QUEL language processors. ('the implemen-
.

-%\

tation cost of EQUEL should be small).

With .these goals ir. mind, EQUEL was defined as follows:

-20-

(1;

1) Any C language' statement is a valid EQUEL statement.

. 2) Any QUEL statement (or INGRES utility command) is a valid

EQUEL statement as long as it ip prefixed by two number

signs,("W).

3) C program variables may be used ir. QUEL statements in place
.44

of rielation names, domain nam s target list. elementsl or

domain values.' The declarat statements oT Cvariablea_

used fir. this manner must also be s fiiced by double number

signs.

4) RETRIEVE statements without a result relat on have the form

RETRIEVE(Target-list)

[WORE Qualification] ##{ C-block

which- results ir. the C-Block ,being execute

qualifying tuple.

Twoshort xamples illustrate EQUEL syntax.
1

Example 2.1, The following section of code implements a small

front end tq4INGRES which, performs only one, query. It reads in

the name of an employee and prints out the emplbyee's salai'y in a

suitable format. It continues-to do-his_as_long as there are
4

more names toZlea,dit,. The functions READ and PRINT are as-

,

sumed to have the obvio,us meaning.

once for each

main()

,char NAMEL20];
int SAL;
while (RAD(NAME))

{
U RANGE OF X IS EMP
RETRIEVE (SAL = X. SALARY)
ilk WHERE X.NAME = NAHE

23 -21-

##
{

PRINT("The salary of ",NAME," is ",SAL)
;

.}tilt

}

In' this example the C-variable NAME is used in the,glalifica-

6 tion Of tne QUEL statement and for each qualifying tuple, the.

C-variable SAL is set to the,appropriate value and then the

Print statement is executed. (note:, in C '"{" and "}" are

equivalent to 1-EGIN and END in ALGOL).

asst4

2

Read in a relation. name and two doMain names.

ection of values,which the

do'someStio,

a

Then
k

cocci domain is to

essing on all values whichethe first domain

(We ume the functions READ an4 PROCESS exist and

nave tne obvious meanings.) A more elabOrate version of this pro-

gram could serve as a simpie\report generator.

WI int VALUE;
char-RELNAME[13], DOMNAME[13], DOMVAL[80];
4/4 char DOMNAME_2[13];
READ(RELNAME) ;
READ(DOMNAME);
READ(DORNAME2)4-------
tt-RA-NGE OF X IS RELNAME
while (READ(DOMVAL))

{

r ## RETRIEVE (VALUES= k.DOMNAME)
WHERE X:DOMNA9E°2 = DOMVAL

{

PROCESS(VALUE);
}

Any RANGE declaration (in this case the one for X) is assumed by

INGRES to 'tiold Atli redefined. Hence, only one RANGE statement

z-±2-

24

is required regardless of the number of times the RETRIEVE state-

ment is executed.

In order to implement EQUEL, a translator (pre-compiler) was

written which converts an EQUEL program into a valid C-'progr.am

with QUEL statements converted to appropriate C 0 and calls to

INGRES. The resulting C-program is then compiled by the normal

C-compiler producing an executable module. Moreover, whe;n'In
4

EQUEL program is run, the executab1e'module produced by tt* C-'

compiler is used as the front end process in place of the A-

teractive terminal monitor as noted in Figure 2.

C process process process,
program 2 .3 4

The Forked Process Structure

Figure 2

During execution' of the front-end program,' data base requests

(QUEL 'statements inthe EQUEL program) are passed through pipe A
4GI

and proceSsed,blflINGRES. If tuples must be returned for tuple at

a tine processing, then.they are returned through a special data

pipe ,set up.betwetn process 3 and the C program. A condition
4

code As also returned through pipe F to indicate success or the

type,of.error encountered.

-23- 25

O

O

r

Consequently, tne EQUiL,translator must perform the following

five,functiOns:
11.

1) insert system calls to "spawn" at run time the process

structure snon ir. Figure 2

2) note C-variable declarationS prefaced byp as ldgal for ,

inclusion in INGRES commands.

). process other lines prefaced by 14. These are parsed to

isolate C-variables. In adddition, C st Cements are insert-

d to write tne Sine down pipe A in AS II format, modified

so that values are substituted for any Cam-variables. The

rationale for not completely parsing a QUEL statement in

EOM, is given ir. [ALLM76].

4) insert,C statements to 'read pipe F for completion infor-

mation and call tne procedure Ilerror. Tne user may Ldefino
or

IIerror, himself or ,have-EQUEL include as stanYard ersion

wnicn prir.t,s tne error message (for abnormal terminations)
, a ,

and continues.

5) If data is to be returned tnrougn to d 1ata pipe 1(by, a
e.

RETRIEVE witn no result relation specifiedY,'EOU4^must

also:
1

a) insert statements tp read the .data pipe for a'

tUDle formatted as typevalue A

b) insert C statemen

ff

2,8

o substitute/ values into C-

p.

A0.1-

,

var les declared in the target 'list. If necessary,

values are converted to the'typeS,Of the -declared C.

variables.
M.

Z4, ,

c) insert C statements to pass control to the 'C-block

followii,ethe RETRIEVE.

d) insert C statements fIllowing the bloCk to return to

step a) if there are more tuples.

a

2.3 COMMENTS ON' THE PROCESS STRUCTIME

The process structure Shown in-tigures 1 and 2 is the fourth dif- -0

ferent process structure implemented. The following considera-

tions suggested this ,final choice:

a) -Simple control flow. Previous process structures' had a more
,

, -

4

omplex interconnection of processe hick made debugging harder.R\I

b) Command6 mar ssed to the right only. :ProcesS 3 must issue

commands to various overlays'in process 4 to execut eractions

as .discussed in Section 5. Hence, process 3 must be to the left,

''Of process 4.

4

ci The utility commands are expected to be called relatively N
b

infrequently compared the activity in process 2 and 3. Hence,

it .appears appropriate to overlay- little used code in a Single

process. The alternative is to create addi6.onal processes (and

pi#s) which are quiescent most 'of the time. This would requir'e

/ . -
added space'iil UNIX core.tables for 4:& particular advantage.

725.- 2

".2r,t,

d) -The firSt 3 processes are used' frequently. Overlaying code in

these .processes was tried in a previous version, and slowed' the

system considerably.

e) To run or an 11/40, the address space limitation must be ,

adhered to.i.,Processes 2 and3 are nearly their maximum size and

hence carrot be combined. (For 11/45 and 11/70 versions we may

experiment with. such acombination.).

f) The C program ,which replaces the terminal monitor as a front

end must run with a user-id different from that of INGRES for

protection;reasons..(0therwise it could tamper directly with data

managed by INGRES.) He..ce, either it'muat be overlayed into a

'process or run in its own process. For efficiency and conveni-,

ence, the latter was chosen..

g) The interactive terminal monitor could haVe been -written

(albeit clumsily) in "EQUEL. Such a strategy would have avoided

the existence of two process structures which differ only by the

treatment of the data pipe. This was not done because response

-time would nave degraded and because EQUEL does type conversion

to predefined typeS. This feature would unnecessarily complicate

the terminal monitor.

h) The processes- are all synchronized (i.e. each waits for an

error return from the next process to the right before continuing

to accept input` from the process to the left. This is done be-
.

cause it simplifies the flow of control. Moreover in many in-

stances the various processes MUST be Synchronized. Future

O

-26-

e

/

...

versions of INGRES may attempt to exploit 'parallelism where pos-

i

t 0

-, ,

45 /

4p

ft

v

29
-27-

V

?

5

t.

4

k 4

'3 DATA STRUCTURES AND ACCESS METHODS

Ue begin this sectiot_wiUi....a_Ciscussicn_af_the files_thAkt....INGRES

manipulates and their contents. Then we sketch the language ,used

to access all non directory files. Finally, the five possible

file formats are

3.1 THE INGRES FILE STRUCTURE

Figure 3 indicates the subtree of the UNIX file system that

INGRES mranipulates.

SYSIen binory source (C-
initi-ization code cod. files

Pies files

catalog DBA other user
relations, relations relations

The INGRES Subtree

Figure 3

The root of this S'ubtree is ,a directory made for the UNIX user

"INGRES". It has six descendant directories. The AUX directory

contains descendant files containing tables which control the

spawning of processes showy. in Figures 1 and 2, and an authoriza-

tion list of users who are allowed to create data bases. Only

30 -28-

7

..

the INGRES "super-user" may modify these files (by using the UNIX

editor. BIN and SOURCE are directories indicating descendant

frreslof respectively Ob-j-ectLald source code. TM? contains tern-

por'y files containing the workspaces used by thiittEra-CtrVe--

terminal monitor. DOC is the root of a subtree with system dcu-

mentation and the reference manual. Lastly there is a directory

entry in DATADIR for each data base that exists in INGRES. These

directories contain the data base files in a given data base as

descendants.

These data base files are of four types:

a) 'an adhinistration file. This contains the user-id of the

data base administrator (DBA) and initialization information.

b) System relations: These relations have predefined names- and

are created for every data base; They are owned by trie DBA and

constitute the system catalogs. They may be queried by a

knowledgeable user issuing RETRIEVE statements, however, they may

b,a. updated only by tne INGRES, utility commands (or directly by

the INGRES "super-user" in an emergency). (When protection

statements are implemented the DBA will be able to selectively

restrict RETRIEVE access to these relations if he wishes.) The

form and content of some of these relations will be presently

/discu sed.

6) DBA relations. These are relations owned by the DBA and are

snared in that any user may access them. When protection is

implemented the DBA can "authorize" other users by 'inserting'

-29-

6

protection predicates (which will be in one, of the system rela-

tions) and fflaeautnorize" them by'removing such predicates.

d) Other relations. These are relations created by other users

by RETRIETini611-6F-GRE-AiE) and are NOT SHARED.

Three comments should bepade at this time.

a) The DBA has the followi;vpower not available

users:

ordinary

61) the ability to create shared relations and to specify

access control for them

2) the ability to run RELKILLER

3) the ability to destroy any relations in his data base

(except the system catalogs)

This system allows',!oLelevel sharing" in that only the DBA has

the powers in a) and he cannot delegate any of these poWers to

others (as in the file systems...of most time-sharing,systems)'.

This. strategy was imilemented'for three reasons:

1) Tne need for added generality was not perceived.

Moreover, added generality .would have created tedious

problems (such as making revocation of access privilegei

non trivial).'

2) It seems appropriate to entrust to the DBA the duty

(and power) to resolve the policy decision whicfrmust be

32

ti

n

made when space is exhausted and some relation's must be

destroyed (or archived). This policy decision becomes

much harder (or impossible) if a data base is not in the

control of one user.

3) Someone must be entrusted with the policy decision

concerning which relations to physically store and which

to define as "views". This "data base design" problem is

bst centralized in a singleDEiA;

b) Except for the single administration file in each data base

every file is treated as a relatiA. Storing system cataloas as

relations has the following advantages:

1) Code is economized by sharing routines for accessing

both' catalog and data relations.

2) Since several storage structures are supported for

accessir.g data relations quickly and flexibly under vari-

ous interaction mixes, these same storage choices may be

utilized to enharAe access to catalog information.

*

3) The ability to execute QUEL statements to examine (ar.d

patch) system relations where necessary has greatly aided

system debugging.

c) Ea th,relation is stored in a separate file, i.e., no attempt

.
is madeo "cluster" tuples from different relations which may be

:accessed together on the same (or a nearby) page. This decision

is based olnthe..Vollowing reasoning.

3 3 -31-

1) The access methods would be more complicated if clus-

'tering were' supported.

2) UNIX has a small (512 byte) page size -Hence it, ,is

expected that the number of
- tuples which, can -be grouped.

.

on the same page is small; Moreover, logically adjacent

pages in a UNIX file are NOT'NECESSARILY'physically adja
cent. Hence clustering tuples on ii,earbyg-pages has GP

meaning in UNIX; the next.logical page in a_ file-may be

further away :(in terms -of disk arm motion) than a page in

a differentile. ,In keeping with -the design decision of:

ROT modifying UNIX, these consideratiohs were incorporat

ed in the design decision not to support clustering.

3) Clustering of tuples only makes sense if associated

tuples, can be linked together using "sets" [CODA71) or

"links" ,(TSIC751. Incorporating these access-paths into

the decomposition Scheme would have greatly increased its

complexity.

3.2 SYSTEM CATALOGS

We turn tow to a discussion-of the sysiqm catalogs. We discuss

two relations in detail and indicate briefly the contents of the

others..'

The RELATION relation contains one tuple for 'every relation in

the data base (including all tie system relations.) The dobains
, _

of this relation are:

-32-

. 3 4

110

re id the name of, the relation

'owner'

spec

indexd

the UNIX user-id of the relation owner;,

_when appended to. relid it produces a

unique file rave ,for' storing tne rela-

tion.

indicates one of.5-possible storage

schemes or else a Special code indicatin

a virtual relation (or "view").

flag set if secondary index exists for

this relation. (Thif

lowing two are present to imprOve, perfor

-'-mance by avoiding catgiog lookup's when

possible during query modification and

,one variable query processing.)

protect flag set if this relation has.protection

. predicates.
. -

1,nteg flag set it there are integrity con-

.straints.

save scheduled life time of relation.

tuples, number of tuples in relation.

atts number of domains in' relation.

width 'width (in bytes) of a tuple..
. .

prim number of prim y file pages for this

relation.

The ATTRIBUTE catalog contaiFs information relating to individUaa

domains of relations. TuplpS of the ATTRIWITE catalog contain

5 -J3-:
ki

the following items for each domain of every relation in the data

base:

relid name of relation,in which attribute ap-

pears

owner relation owner

domain-name domain name

domainno domain number (position) T. relation. In

offset

type

processing interactions INGRES uses this

number to reference this domain.

offset in bytes from beginning of tuple

to beginning of domain.

data type of domain (integer, floating

point or character string).

length' lengtn (in bytes) of domain;

keyno if this domain is part of a key, then.

"keyno" indicates the ordering of this

domain witnin the key.

These two catalogs together provide information about the struc-

ture and content of each relation in the data base. No doubt

items will continue to be added or deleted as the system under-

goes further development. The first planned extensions are tne

minimum and maximum values assumed by the domain. .These will he

used by a more'' sophisticated decompoSition scheme belnj,

developed ,'which is discussed briefly in the next section and in

detail in (UONG76).- The representation of the catalogs as re]a-

ions has allowed.tnis restructuring to occur very easily.

-34-

36

rat other system relations eCist which provide auxiliary
r" .

inforMation about relations. The\VIDEX catalog contains a -tuple

for every secondary index in the data base. Since secondary

0

indices are themselves relations they are independently cataloged

the RELATION and ATTRIBUTE relations. ,However, the INDEX

catalog provides the association between a primary relation and

the secondary indices for it including which domains of the pri-

mary relation. are 4 the index.

Tne PROTECTION and INTEGRITY catalogs, contain_ res vely

protection and integrity predicates for each atior in the data

base. These predicates are stored in a partially rote d form

as character strings. (This mechanism exists for INTEGRITY atd

Will be .implemented in the same way for PROTECTION.) The VIEW

Catalog will contain, for each virtual relation, a partially pro-

cessed QUEL-like description which can be used tb construct the

view from it component physical relations. The use of these

4

last three catalogs will be described in Section 4.. The ex-

istence of any of this auxiliary information. for a given relation

is Signalled by the appropriate flag(s) in the RELATION catalog.

Yet another Set of system relations are those used by the graph.:

ics sub-system to catalog and process maps, which (like every-
.

thing else) are stored as relations in the data base. This topic

'has been discussed separately,in [G075].

3.3 ACCESS 1'/ET ODS INTERFACE (AMI).

We will now discuss in more detail the AMI which handles all

actual accessing of data from relations. The AMI language is

implemented as a set of functions whose calling conventions are

indicated below.

Each access method must do two things to support the following

'calls. First it must provide SOME linear ordering of the tuples

in al relation so that the concept of next tuple" is well de-

fined. Second it must assign to each tuple a tuple-id (TID)

which uniquea-yidentifies a tuple.

The nine implemented calls are as follows:

a) .openr(descriptor, mode, relation_name)

Before a relation may be accessed it .must be " pened". 'This

,function, opens the 'UNIX file for the relation and fills in a

"descriptor" witn information about the relation, from th'e

RELATION and ATTRIBUTE catalogs. The descriptor, which must be

declared in the calling program, is used in subsequent calls on

or routines as an input parameter to indicate what relation is

involved. Consequently, the AMI data accessing routines reed not

themselves check the system catalogs for the description of a

relation. "Mode" specifies Whether the relation is being opened

for update or for retrieval only. "

b) get(descriptor, tid, limit_tid, tuple, rext_flag)

This function retrieves into :tuple; a single tuple from the

\relation indicated by "descriptol.,". 'tid' and "limit_tid" are

3s -36-

tuple-identifiers. There are two modes of retrieval, "scan" and

-
"direct". fin "scan" mode "get'' 'is intended to be called suedes-

' ively to rttrieve all tuples within a range of An

initial value of "tid"sets tne lo4 end of the range desired and

"limit_tid" sets the high end. 'Each time "get!, is called with

tneXt_flag" TRUE, tne tuple- following "tid' is retrieved and

its tuple-id placed into 'tid' in readiness for the- next call.

Reaching "limit_tid" is indicated by a special return code. The

initial setting of, "tid" and 'limit_tid" is done by the "find"

fUnction. In'"direct" mode ("next_flag" FALSE) the function

retrieves tne tuple.with tuple-id "tid:.

c) find(descriptor, key, tid, match_mode)

"Find" places in "tid",the-tuple-id at the low or high erd of the

range of tuples which match the, key value supplied. The matchinft:

condition' to be'applied depends on "match-mode-",

If the relation does rot have a keyed storage structure or if the

key supplied does not correspond to the correct key domains, the

-tie returned will be as if no key were supplied. The objective

of "find" is to restrict the scan of a relatiOn by elimit",atinc

from consideration those tuples kndwn from their)placement 15 the

relation not to satisfy the matching.c,dndition with the key.

Calls to- "find" occur in,pairs, ore to set the low erd of a scan,

the ` other for the high end,,and,the two tuple-id 's'obtained are

used in subsequent calls on "get".

'No' functions' are available for determining the accesi

7

%-39 -37-

1

00'

ft

characteristics of the Storage structure of a primary data rela- A.

tion or secondary index, respectiVely.

d)' paramd(descriptor, access_characteristics_structure)_

e) parami(descript access_characterist4cs_structure)

These functions fill in the access characteristics_structure

With information regarding the 'type of key which may-be co,n-.

Structed to optimize access to the given relation. This Includes

whether exact key values or ranges of key 1:41ues can be used, and
.

. \ 4(
whether a partially specified key may be-used. This will deter-/ .

mine the 'match-mode' used in a subsequent call ,to,"find". The'

ordering of,domainsin the key is also indicated. These.func-

tions relieve optimilation routines executed during theprocess-

ing of an),Interaction of the need,to know directly about specific

storage structures. ;

e

Other Atli functions provide a facility ,for updating relations.

f)' Insert(descriptor, tuple),

114 tuple is added to '. the relation: in its "proper" place accord-

,in,g to it'.14y value, anti the storge=alOde of the relation.

replace(desCriptor, tid nevL.tuple)
r

h) -delete(descriptor, tid)

The tuple indicated by. 'tid' is either 'replaced by new values or

deleted from the/ Aek:tion altogether. The tdpie-id of the af-

'fected tuple will,' have been obtained-by a previous, "get".'

40 -38-

Fihally, mnen a.lfl access to a relation is complete it must be!'"

Closed: * 4
ft

i) closer(descriptor)

This loses the relation's UNIX file and rewrites the information

. in the descripto.rback into the system catalogs if there has beet

any change. ,

!?, (

3.4 STORA ',!/TRUCTUgES WV/IAM:E: le
..,,i

« .

.

.

-----N,
N.

tie will now describe ,ttle five storage structurescurrently avail?

able in INGRES. Four of the schemes are keyed, i.e., the storage.
...

location of a tuple within tn file is a fUnction of the value 'of
2
key domains. 'These schemes allow rapid access

socific po tions of A relation when key values are sup led., the
.4Y*.

for scheme stones tuples in the file independent-

lves and irovides,a low-overhead storage structure,
--.

es attractive :when the, entire relation must be accessed

0 - v *
The nor. -keyedr storage structure i:t; INGRES Is,a randomly ordered .

i , ,- .

sequedtial filesFixed-leng;kh'tuples.are simply placed, sequen-.
. . .

.

tially. ino-the file iG the order supplied. iJew turilks added tbe

the relaio:are merely appended to the 'end, of the file. The

tuple-identifiem..for each tuple, is its byte-o'ffset within
,

,

the -file. This mpde is inters d mainly f

0

\ery small'relations, for which tn overhead of other sohemes

unwarranted ,

4.1

Cr

r

-b) transitional storage of data being moved into or out of the

system by COPY;

,, a') certain temporary relations created as ,intermediate results
, 4 .

during query processing.

7-10
In the remaining schemes, the,key-va e of a tuple determines the

13age of'Ute file or which tne tvple, 11 be placed. Cle- schemes'
t'

share,-a cominon "page-s uctur.e"ISSr:itanaging tuple.s or file paes

s s h()vitt in , Figu're. 21'.

1101.01.

I. C
J.

kE
RIMARYI

xu
CN OF LOW uNE
NEXT IXT

PAE MOE

/

TUPLEAREA.

4
44104"30 Allaaam

111

1 h7-T-1

'.htT.2"..\CELOW

War-,

Page Layout for Keyed Storage Structures
.

Figure 4%

A ,tuple mutt fit entirely on a single' page. Its uniquejdentif-
, . .

.ier'(TID) consists.of a page.n)mper (the ordering of its page in
. .

the ..UNIX' file) ,plus a "lire tumber" indicating its po ition on
N6

the page. Jh "lite table", which.groA upwards from the bottom of

the palpe, contains as an entry for each tuple, a pointer to the

beginning of the tuple. In this way a page can be reorganized

'without affecting

. ,

42. -40-

C

' ;

Initially the file will contain all its tuples On a number -or

"primary" pages. If the relation grOWs and these pages fill

"overflow" pages 'are a/located and chained 4y pOinters ,to the{
,

primary pages' with which .they are associated.. vWithin, a chained

group of. pages no special orderillgof tuple's 14 Maintained. Thus_

in a keyed access which locate's a particular primary page, tuples
. , J.

matching the key may be on any, page irr the chain. .-s,

. .,

As OiscusPed-in [HELD75b] two modes of key-to-address tranSforma-*
,

tion are used -- randomizing and order pmeservimg. Tn. a -"hash"

,
.file tuples ar4,d1-Atribdted rakdomly,throughoUt-the ,primary pages

. /f
of the,ftle,according to a4haShingfunction on a key. This- mod

. - .
.

is well Suited for -situations in which'access is to be Condi-
, .

. .
' '

tioned-xn,a'specific key value.

.
.

/As an order-preservitg mode, a'-scheme-. similar to IBM's ISAM
, _...

/ -
[IBM66] is used. The'relatior./is sorted to produce the ordering-,--
.

- .

on a particular. key. A mAi-leVel'directory is created which

record's-441e high .key or. each primAry page. The directory,. whic

is static,- resides on several.page within the:fil441tself 1-
.

,lowing,tne primary pages. ,A prim'ary page and "its, overflow pages
.

s r
are 'not maintained in sort'o4e24. This decision is .discussed it

.

the'seCtion on concurrency: mode' is useful ,in

cases where. the key value is"likely to be specified as falling

withit,a, range of values; since a rear ordering of the.,keys is

preserved; The' .index Compression Scheme discussed-iajflELD75b)

. is eurrently,under implementation.

A

,-

43 -14-

In the above mentiongd keyed modes, fixed length tuples are

stored. In
-

addition, both schemes can 'be used in conjunCtion
. -,. .

. .

with data
.

compression tedtniques, [GOTT75]. in cases where in-

creased Storage utilization outweighs the. added cost Of. encoding

a decoding data during access. These mddes- are known as
4

ssed hash" and*"compressed ISAM".

,he current c mpressior. sot)pme/suppresses,blankt and portions of

a tuple which match tn __egeding tuple. . This compression ,i
. -

_applied ta each independently.' Other schemes are bein,7
--

experimented witrr

3.5 AppiTia 'OF BEd ACCESS METHODS

One of the goals of the AMI design was to insulate higher level

software from the actual functioning of the accessojmethods'and

thereby" to ake'it easy to add different ones.

r----- . .

, In. order to add a new access r' one need only extend the AMI

routines to haele the new case, If the new method, uses the same

4

page layout and TID scheme, only find, parami, and.paramd need to

be extended, Otherwise ne procedures to Perform these i'unctions

must'be e by gqt
j
.'insert,, replace and delete,

-42-

. . ,

4 THE STRUCTURE OF PROCESS 2

0 -

Process 2 contains ,code to perform fdur main functions

a) a lexical analyzer

b) a parser (written-in YACC LJOHN741)

-c). qUAry modification routines to support protection, yie.ws and .

.integrity control

Concurrencrcontrol

se: are diseussedr in turn

4

'4.1 LEXICAL ANALYSIS AHD PARSING
a

9

The lexical analysis and parsing phases of INGRE8have,Ceen or---'
. .

rr around
''

anized around the YACC translator writing system available ir.

.
.

,UNIX [JOHN74]: YACC takes a input a description:of a grammar

0

consistir1 of BNF-like parsing rules (productolons) and precedence

rules, plus action statements associated with each production.

It pro e-Sa set of tables to bg interpreted by a are table

./
which is combined with locallyJsupplied' lexicalinterpreter

analysis and parsing action, routines to produce-a complete trans-

lator.

The interpr,eter uses a bottom-up LR(1) pa sing approach. The
,

lexical analyzer is called to obtain sua essive symbols from the

input stream as the interpreter-attempts to Match input with,

productions in the graMmar. 4Ihen a produotior is rnate'hed YACC

performs a reduction and executes the action statement associated

with the production. YACC has a mechanism for recovering from

fr

errors to continue parsing' input in its entirety.'

Unile the YACC parse, table ititerpreter checks the syntactic

correctness of the input commands;the action_ statements check

-for sementic consistency and correctness and pr are the commands

for further processing. Tne system catalogs are -1.1Q(1,,, to check

Ahat.relation and dwain r.,:imes: formats, anal so ion, are specified

apprbpriately.

*.For utility commands acommand indicator and the parameters for

the command are sent directly to process 3 for transmission- toL

process 4. Section,6 discusses these commands and their, imple-
,

Rentation: '

For commands, the input is translated to a tree- structured

Ant rnal form which 11 be used in the remaining analysis and

/processing. More er, the quAtfication part is converted to con -

junCtive norms form. The parse tree is now ready to undergo,

what has been termed "Auerxrhodification," to be described in

'Section 4.2 and 4.3

4.2 INTEGRITY
'73

QuereG AodificatiOn includes adding tegrity and protecting.
-0

.

____Arediaateg' to the original. cide-ry arid changing references to vir-
,

tual relations into referencet to the approprlate physi al rela-
i-`

/ions., At the present time' orgy 'a simple integri'y scheme hasI. . t / %

been implemented.

It. [STON75] algorithms of several lexels complexity are

. 46 !

presented for performikg integrity control or. updates. In the

present systed only the simplest case, involving single-variable,

aggregate-free, integrity'%assertions, has been implemented and is

described in detail in (SU075).

li,riefly, -rarity aig.ertionm are entered in the form of QUEL
-

qualific4t
e

auses to be' applied to iAeractions,updating the

relation icn the variable in the 'assertion ranges. A

parse tr- created for the qualification -and a representation

of this tree stored in the IUTEGRITX catalog together with an

indication of the relation and' specific omains involved. At

query modification time, updates are checked for any possible

integrity assertions on the.affecfed domains. Relevant asser-

tions are retrieved, re-built into tree, form and crafted onto the

update tree so as to AUD the assertions with the 'existing qualif-

ication of the interaction.

A.3 PROTECTION. AID VIEWS 0

Algorifhms'for the support of views are also given in [STOM751.
4

Basically. a view is any, nelation which could be created from

existing rerations by the use of a' RETRIEVE command. Such view

definitions will be 'tr'eated in a Manner Somewhat analogous ,t2

that used fOr integri6(_pontrol. They will be allowed it INdRES

to support 1,0410L programs written for obsolete versions of the

data paSe and for user convenience.

Prsoptection will be handled accor6ing to the algorithm described

in (ST01474b). Like integrity control this algorithm involves

-45-

47

Adding qualificatiops ea the user's; interaction. In the

remainger of this section we distinguish this protection scheme

from the one in [C-HAM15] and indicate the 'rationale behind its.

use.

Consider the following two views:

RANGE OF E IS EMPLOYEE
DEFINE RESTRICTION-1 (E:RAME; E. SALARY, _E.AGE)
WHERE E.DEPT "toy"

DEFINE RESTRICTION-2 (E.NAtE, E.DEPT, E.SALARY)
WHERE E.AGE < 50

and the following two access cOntrol statements:

RANGE OF E IS EMPLOYEE
PROTECT (E.NAME, E.SALARY, E.AGE)
WHERE E.DEPT = "toy"

PROTECT (E.NAME,E.SALARY, E.DEPT)
WHERE' E.AGE < 50

Acess control could be. based on views as suggested in (CHAM75]

and a giver. user could be authorized to use views RESTRICTION-1

and. RESTRICTION-2. To find the salary of Harding he could inter-

rogate RESTRICTION-1 as follows:

. RANGE OF R IS RESTRICTION-1
RETRIEVE (R.SALARY) WHERE
R. NAME = "Harding"

Failing to find Harding in RESTRICTION-1 he would have to then

interrogate RESTRICTION-2. . After two queries be would be re-
.

,turned the, appropriate salary if Harding was under 50 dr in' the

'f4` toy department.'

48 -46-

O

_
,

,Under-thi INGRES scheme the user cap issue
.

..,

RANGE OF E IS EMPLOYEE
'' RETRIEVE (E.SALARY) WHERE

..E.NAMEs= "Harding"

modifted>by the, access control algorithm to

(
1 'RANGE Qi.E.IMPLOYEE

RETRIEVE (E. AL WRY) WHERE
E.NAME "Brown,

AND
(E.AGE < 50 OR i.,DEPT = "toy")-

Ir, this way the user need not manually Sequence through his views

to obtain desired data but,automatically obtains suchAata if

permitted. Note cleariy that the portion, of EMPLOYEE to which

trig user has access . (the union of 'RESTRICTION-1 and

RESTRICTION-2) is 'not a relation and hence cannot be defined as a

single view.

summarize, access control restrictions are handled autonati-
,

cally by the INGRES algorithms ,but rrusze dealt with by a user \'

sequencing through his views in a "view oriented" access co rol

scheme.

4.4 CONCURREIICY CONTROL

Ir. any .multiuser system provisions mustt be included to ensure

that.multiple concurrent updates are executd in a manner slier'

that some level of data integrity can be guaranteed. The follow-

ing two- (somewhat, facetiouS) updates Must dte the problem.

'itANGE OF E is EMPLOYEE
Ul REPLACE E(DEPT r. "toy") WHERE

E.DEPT = "candy"

-47-

49-

U2

ti

R Nq OF E.t-s EMPLOYEE
R LACE FCDEPT "candy") "WHERE

F.DEPT = "toy"

Ul and U2 are 'executed concurrently with rio controls,

some empl y end up in each department and the particular

result may not be repeatable if the data base is backed up- and

the interactions reexecuted.
r

The control which crust be provided is to guarantee that

some data base operation' is "atonic" (i.e.occurs in such a

faOion that it appears instantaneous and before or after arAy

other data base operation). This atomic unit Will be cal led a

transaction.

In INGRn there are three basic choices available for defining,a

trasaction.'

a) something smaller than one IN9ES command

b) one INGRES command

c) a collection of INGRES commands.

If a) is chosen INGRES could not guarantee t at' two concurrent

executing update commands gave the, same esult as if they were

executed
(
sequenti4lly (ii either orde4 one collection Of

,-------

INGRES processes. In fact the outcome ould fail to be repeat-

able, as noted the example above. Tni situation is clearly

undesirable.

A

Option c) 'is in the. opinion. of the murs designers impossible to

g".0
k- 8. ^

support. T e following transaction could be declared in a EOUEL

ti

prc gram.

B QIN TRANSACTION .
QUEL UPDATE. it

S .4TEM CALLS TO CREATE AND DEST410Y FILES-
SYSTE1-1 CALLS' TO F0111(- A SECOND: COLLECTION OF INGRES
PROCE.S''SgS TO WHICH Gplit.WIDS ARE PASSED

CALLS TO READ FR *I AWTERMINAL
SY.STEfl CALLS TO READ4 FROM A TAPE
SECN-11QUEL UPDATE (whose -form depends ox previou two
system -cl'alls)

. ,

END TRANSACTION

4 ,

se T1-.is the above tranSaction and runs, concurrently with a

transacti T2 involving commands of the same form*. The second

update., of each transaction may well "confl- " with the rirst

update of the other. Note that -t

T2 conflict becausethat T1 ar,

s no way to tg. apriori
...

form of the second upda is

not known advance. Hence a deadock situation, car, arise whiCh4

car, only be resolved sby aborting oneNtvansaction. (ark undesirzble2----

olicy in the eyes of ---th INGRE3 desi., ers) or 'attempting to back

out one ansaction., The

intermedia tern calls app

at . all). kestric

hence no I/0) cripples

Make deadlock resolutio

Thus
;
opor, b) was

The implementation

data -1-terns, pages, tup

by ,predicate locks.

relatively crude phys

4 tr.

ose .

r

rhead of

rs prohibitive

c ki

f i

action. to have no sys

wer of a transactionf
ossible and was ,judged undesi

ugh the

possible

lls .(and

roe to,

ble.

).

domains, elation

, be ach

' etc. RAY75] or

ved by. ph sical locks on

11117/40].. The curr t iripl ent ion is- by

ii locks (on domains a toe.) and,

,...,

. ,

51. . ,i.lk..-'

x

4-\
'a-0.06,as deadlock°by tot allowir interaction to proceed to pro--

_ .

cess"-3 an lock 'all uted\resources. Because of a

blem with' the cu ent design ertain access method calls,_

all-do in: of a relation m t currer 1.0.cked (i.e:a wnole,

lockedr to.perfo n u This.situation will

soon beTreetiri

The= choice of voiding deadlock rather than de ng an
.

ing it is made prim 1 for ;implementation simplicity. The
k

reflects a.minicomputerchoice of a crude locking

ment wnere core storage for a la c loC able is not available.

In tne future we plan to experimen -lly implement a crude and

hereby low CPU overhead) version of a pred te locking scheme

previously described in [STON740]. Such an approach Ivprovide

considerable concurrency at at acceptable'Overhead in lock table,

spy and CPU time, although such a statement 16 highly specula-
,

tive.

Once the concurrency processor has assembled locks on all domains

needed by an interaction, it may proceed to process 3 for unem-
.

Cumbered execution.

To conclude this section'we briefly indicate he reasoning behind

not sorting, a p ana. its overflow pages in the "ISAM- like!'

access method. Tnis:t p is also discussed in [HELD75c).

Basically,' maintenance of the so der of these pages may re-

,

. quire the access method to lock, more than one page when it in-
,

serts a tuple. Clearly. deadlock might be possible given

-50-

concurrent, updates and locks for physical pages would be recuired

(at' least once,a more sophisticated predicate locking scheme is_

,tried such s [STON74c])* To avo both problemt these pages

remain unsorted. r41 the access metho need only be able to' read-
OP

.modify-write a single page s an atomic operation. Although such

An':atamic operation is not cur ntly in UNIX (and .not needed by-

the current primitive scheme) it i.a inor addition.

NoG

PROCESS 3

_:As noted :in Section 2 this process performs _the following two

functions which will be discussed in turn:

a) tne DECOMPOSITION of queries involving

into sequences of one-variable queriesc; Partial results, are
.

"actumUlated until tne entire query is eValuated. .This Orogram.is
0,d led DECOHP. It also turns any updates into the appropriate

an one Variable, 0

querl to isolate quralifying tuples and spools new values into a .

- specfal file for deferred ,update.

b). the processing of a. Single variable queries. The program

called the one variable query processor (OVQP).

5.1* DECOIIP

J

Because INGRES allows interactioes which are' defined on the cross

prodUct of perhaps several rela:t.ions, efficient execution of this

of crucialbinportance in order to search is small a por,

tion of the appropriate cross product s'ace as possible.,. DECOMP

:uses three techniques in processing,interactions. We describe

each technique there give the actual algorithm implemented. Fi- .

rnally, we indicate the `role of:a more so.pnfsticated decomposition

.scheme urger desie.

Tuple substltution
- /

The basic technique used by DEtOMP to reduce a query At°, feUer

54

vviables .1s vaple substitution. One variable (out or possfbly

...may
l

) in tnt ',query is selected for substitutift. Tne AMI
'0-

:,..1.anguaf;e is use to scar. the relation associated with the vari-
.

.one tiuple at a time. For each tuple, the values of 4;tias

that reIatAon are substituted into the query. In tnle result-

ing modified query, all previous references to 'the substitutet

., utriable have now been replaced by values (constants), and the,

* ou rx;'4has thus b'een reduced to one less variable. Precomposition
.5"

.

_is re_peated (reCursively) on the modified query until, only_ one
. ,.. .

J17,;riaole rec.i'ains, at wt point the OVQP,is calid to continue
, . -,T-

/
'''

/ prOcesing. 1.0

:

,b) One-Variable Detachment

,1

Ii' .the qualification. C of ne query is of the form

for

Ql(V1) Q2(V1,...,Vn)

some tuple variable VI, the followinr; two steps caf..be eXT-

ruted:'

-Issue the query'

AETRIEVs.!; IHTO W (TL[V1))
WIIERL 01[V1J

tt

. /J
, .

1 . .

/

Here TL[V1) are those dornair.s required in the remain er of the

query. ,Note that' this one variable query and may b.,: passed

directly toUVQP.

Heplace 41, the nelatinn over which V1,rae;les, by W in

, range. declaration and, Clelete

1

753-

A

a.

The query formed in 1) is called a "One-variable, detachable.

sub-query" (OVDSO) anal the techniquv-for forming and executing it

;."onir-variable detachment" '(OVD). This step has the effect of,

reducing the size of the relation over Which V1 ranges by. res-

triction and projection. Hence, it may reduce the complexity of

the processingto follow.

floreover, the opportunity exists in the process'of creating new

relations through OVD, to choose storage -structure& (and particu-

larly keys) -which will prove helpful in further processing.

c) Reformatting'

When a tuple variable is selected for substitution, a large

number of queries each with one less variable will be executed.

* It' b) .is -a possible operation after the substitution for some

',remaining variable, V1,.then the relation over which .V1 ranges,

R1, can be reformatted to nave domains used in Q1(V1) asa key.

This will expedite b) each time it is executed during tuple sub=

stitution.

e can J.ow state the complete decomposition algorithm.

4 40

a) If number of variables in query is 0 or 1 call OVOP and

sto P; else go on.

..
.

b) Find allVariableS, (V1,...Vn), for Which the query .qontains
(*

-.

a one- variable clause. Perform OVD to create new ranges for each .

. .

of tnesevarAables. The new ne3ation for each. variable, Vi, is

7, ,

r-stbed as a nasty file with key,- Ki, chosen as col ows.

-t) 'For each, j select from the remainire, ctulti-variable

clauses dr. the' query tne collection, C(ij) , whicn: have

the form
.

\ .

Vi.di = Vj.dj
/ \

, wnere di,dj are domains of Vi and Vj.

2) For.: tne key Ki tb be. the concatenation of- domains
6

Vi appearing in clauses in C(ij).

3) if more than one j exists, for.which C(ij) is non emp-

1,y, one is chbsen arbitrarily- for forming the key.

If C(.ij) i-s E211pty for all jT.the relation is Stored as' an

unsorted table.
91

c) Choose the variable, "Vs, with thesmalles.t number of tuples

as the next ore for which to perform tuple substitution:

d) For each tuple variable Vj for which C(js) is non null, re-

format tne storage structure of the relation Rj_whicft it ranes-

over, if necessary, so that the key of Rjis the concatenation of

domains appearin'g i,ri C(js) . This ensures that when the

03:auses in C(jS), become one-variable after substituting for VS,

subsequent calls to OVQF to restrict further the range of Vj will

be done as* efficiently/as possible.

e) .gerfOrm tne jollowing two StepS for all tuples in the rare

of tne variable Selected in (c) :

1) sdbStitute values from tuple into query.

. -55-

.57

-2) call decomposition algorithm recursively On a copy of40,

resulting query which now has been reduced by one vari-

able.

e

The followi'rg comments on the algorithm are appropriate:

a) OVD is almost always assured" of speeding processing. Not

only -is it possible tot) wisely,choose the storage structure of a

temporary relation but also the cardinality of this relation may. ,

be much less than the 'one it replaceS as the range for a tuple

riable. It only fails if little or no reduCtio'n' takes place- -

-and---reformatingavis Unproductive.

It should be noted/that a temporary relation is created rather° .

than a list of qualifying tuple -id's. The basic tradeoff is that
-Y.

OVD must copy qualifying tuples but can remove ''duplicates created

dUring the projection. Storing tuple-id's.avoids the copy opera-

tion at the expense of reaccessing qualifying tuples and retain-
*.

ing duplicates. It is clear that cases exist where each strategy

is superior. The I1JGRES designers have chosen. OVD because it,

does not appear to offer worse performance than the' alternative,

allowe'a-more accurate choice of the variable with the smallest

Awange in step- 0) above and results cleaner code.
():

b) Tuplesubstitution is done when necessary or, the variable

associated with the smallest number f tuples. This has the
.

. effect of reducir4g the number or eventual calls or, OVQP.

Reformatting is done (if necessary)' with the knOwlge that

5 8
s;)

it will replace a collection of complete sequential scans of

relation by a collection of limited scars. This will almost

always reduce processing time.

'd) It is -believed tnat this algorithm efficiently handles a

large class of interactions. Horeover,'the algorithm does not

require excessitve CPU overhead toperform._:rhere are, however,

cases ',mere d more elaborate algorithm is needed. The following

comment applies to these cases.
/

e) Suppose that we nave two or more strat*,ies nto, nT1,

,S7n, each one Hpeing better than the previous one but also re-

quiri0 d greater overhead. Suppose we begin an interaction on

STO and min it for an amount of time equal to a fraction of the

estimated Overhead of ST1. At the end of that time, by simpl
.-e

counting the number of tuples of the first substitution vari. le

whicn have already been processed, we.c,aF get an estimate 0. the
oxf
wt

total firQc ssing time using STO. If tnilplis significant greater

than the overhead of ST1, then we switch to S71. otherwise we

stay-and copplete proCess the interaction usir STO. Obvious-

ly, the procedure can be repeated on Ti.S to call ST2 if neces-

sary, and so forth.

The algorithm detailed in this section is STO., A more sophisti-

oated algorithm L;T1 is currently under development and is dis-

-cus:sed in LWON076j.

ONE VARIAULE QUERY PROCESSOR (OVOP)

-57-
-

. Tnis program is concerned solely with the efficient accessing of

tuples from a single relation given a particular one-variable

query. The initial portion of this program, known as STRATEGY,

determines what key,(if any) may be profitably used to access the

relation,,whatthe Value(s) of tnat key will be used in calls to

'he Atli routine "find", and whether the access may ,be accom-

plished directly through the AHI,to the storage,struCture of the
.

TJ

------r-----
_relation itsell_or_if a_secondary index on the relatiOn should be

used. If apcess is to be through a secondary index then STRATEGY

must choose which ONE of possibly many indices to use.

/
. Then, the tuples retrieved according to the access strategy

selected are processed by the SCAT portion of OVQP. This program

evaluates each tuple against the qualification part of the qUery,

creates target list' values for qu'alifying tuples, and disPo es f

the target list appropriately.

Since SCAh is relatively straightforward, we discuss only the

policy decisions made in STRATEGY.

First STRATEGY examines the qualification for clauseswhich

specify the vatud of a domain,_i.e. clauses of the form:

- / -V.domain op constant

,' where "op" is one af {F, <, <:,.>=}. ,'Such - clauses are termed

"simple" clauses and are organized into a list

Obviously a non7simple_clause may be eouivalent to a simple one.

For example

E.SALIthY/2 =10000 is equivalent to E:SALARY = 20000.

However, recognizing and conertiEg such clauses requires a ren-

ellal algetiraic symbol manipulator. This issue has been avoided

by ignorii,g al] non-simple clauses. STRATEGY must now select or.e

of two accessing strategies;

a) issuing two AHI ,find commands on the primary relation ol-

lowed by a sequential scan of ttie relation between the limits

specified

b) issuing two ma find commands on sone index relation followed

by a sequential scan of the ti,dex between the limits specified.

For each tuple_ retrieved the "pointernaomain is obtained and is

a tuple-id of -a tuple in the primary relation. This tuple is

fetched and examined.

-
Key information about the primary relation is obtained usinr the

ANT function "p-ramd". Names of indices are obtained from the

index cater or- and keying information about indice in obtained

with tne func*tiorJ "parami".

STRATEGY now checkS if d simple clause is available to limit the

scan of t'he primary relation or an index ,relatior.. If a relation

is hashed the simple clause must specify equality as the operator

inorder to be useful. ISA1 structures on the other hand allow

ranges of values and less than all keys may be specified as long

as the first or.e is present for structures with combined keys..

JTRATLLY checks for such a simple clause for a r'elation in the

following order:

-59-

, 61

a. nashed primary relation

b. nashed index

e. ISAM primary- relation

d. 'SAN index

The rationale for this ordering is related to the expected number

of page accesses required to retrieme A tuple from_ the source

relation in each case.

In case a) the key value provided locates .a desired source tuple

in one access, (ignoring overflows). In base b) the key value_

locates an, appropriate index relatiOn tuple in one access bilt an

additi?Onal access in required to trieve the proper source tu-

ple. Fgr tne ISAM schethe, the directory must be examined. The

number of accesses incurred in this look-up is at least 2.

Again, with. an index, an adaitionalaccess is ,required, making

the total at least 3 in case d).

6 2-6'

Os

6 UTILITIES IN PROCESS 4

6.1 IMPLEMENTATION OF UTILITY COMMANDS

We havg indicated in Section 1 several data base utilities avail-

able to users. We i4ill.now briefly describe their implementation

and indicate their idthir, the INGRES system.

The commands are organized into several overlay programs. Since

an overlay :nay have more than ore entry point,- it can contain

mace than, one utility command. In fact, the utilities are

grouped where possible to minimize overlaving4 The overlays all

contain a common main program known as the "-controller", which

reads pipe C and writes Completion me-ssages into Pipe D. The

processing of a utility command occurs as follows.

First, the parser recognizes a utility command in a user interac-

tion. This name is looked up in tn1- INGRES "process-table",

wnicn has an entry for each command name in the language. Each

entry has ar. "overlay-id" and a "function-id". The first indi-

cates the overlay program containing the command, and, the second

indicates the proper entry point within that overlay.

These id's are passed down pipe B to process 3 ,followed by the

parameters of the command specified. Process 3 determines from

tne "overlay-id" if tte command is a utility command intended for

proceiS 4. It' so, tne information is simply written on Pipe 'C.

At this point, some overlay is occupying -process 4, having

remained from a previous command. Its copy of the controller

-61-

. fO
ft

14

reads pipe c to obtain the overlay-id. ,a different overlay

from the preSent one is indicated, the' ontroller overlays pro-

cess 4 and control passes to the cor.trolle bf the new overlay.

Host of the utilities update or read the tern relations using

AI calls. M IFY contains a sort routine Itl ch puts tuples in

collating s'equenc ac6 rding to the concatenation of the desired,

keys (whicn need not b- V tne same data type)

tially loaded to approximat

Pages are it it

80% of capacity. The sort routine

is a recursive N-way merge -sort nere N is maximum number of

files process 4r_an-nave open at (currently 8). The index

building occurs in an obvious way. To co, ert.to hash structures
11

hODIFY must specify the number of primary pages o be allocated.

This pa.rameter, is used- by the AMI in its Pasn'\.7heme is a

standard modulo division method). This is ciOre by a rule of

thumb.

It should oe noted that a user who creates an empty hash relation

using tne CREATE command and then -copies a large UNIX file into

it using COPY will create:a very-,inefflcient structure. This is

because a relatively small default number _of primary pages will

nave been specified by CREATE and overflow chains Will be 1onr7.
.

A better strategy is to COPY into ar. .unsorted table so that

MODIFY can subsequently make a good guess at the number of pri-

mary pages to alloc.ate.:
.1

6.2 DEFERRED UPDATE AND RECOVERY

Any updates (ARpEND, DELETE, _REPLACE) are processed by, writinq

-62-

the tuples to be added

N

hanged or nib ilied into a temporary

anen process 3 finishes it ca is process 4 to actually perform
,

N ,

the modifications requ sted as a final step in procebsinrr: De-

ferred update is done fbr to r reasons.,

a) Secondary index caniderations. Suppose the loll ing OUEL

statement is executed;

RANGE OF E IS HPLOYEE
REPLACE E(SALA Y = 1.1*E.SALARY) WHERE

E.SALARY,> 20000

N

Suppose further tnat-there is a secondary index on the salary

domain and tne primary relation is keyed on another ddmain.

OVQP in finding the empl6yees who qualify for the raise will use

tne -secondary index. If one employee (say Smith qualifies and

his tuple is modified and the secondary index updated) then the

Scan of the secondary index will find nis tuple a second time (in

fact an arbitrary number of times). Either secondary indexes

cannot be used to identify q lifying tuples when range qualifi-

cations are present (a ratnerunn
I -

indices mast be updAted in _defer
4

rat restr

mode.

on) or secondary

b) Primary relation considerations. Suppose the following OUEL

statement is executed

HUGE OF E, N IS EMPLOYEE
REPLACE E(SALARY = .9*E.Sf ARY) WHERE'

E. noR H.NAHE
AND

E.SALARY > M.SALARY

for,the following EUPLOYEE relation,

-63-

. fe;--71,; 6P

NAME SAL MANAGER
Smith 10k Jones
Jones 8k-

N Brown 9.5k -kmith

Logically Smith should .get the pay cut but Brown 'should not.

However, Jif Smith's. tuple is updated before Brown is checked for

the pay cut, Brown.will qualify. This undesirable situation. must

be avoided by deferred.up4ate.

) Functionality of updjrtes. Suppbte tne following-,QUEL state-

:meat is executed:

REPLACE E(SALARY = M.SALARY)

a

RANGE o E, ti is EMPLOYEE

Thit update attempts to assign to each employee the salary of

"everVotheremployee,-i.e.asingle data item is to be replaced
4 odel

by multiple values. Stated differently, the REPLACE statement

does not specify a function. This non-functionality can only be

checked if deferr update is performed.

d) Recovery is easier. The deferred update file provides a lorr\

of updates to bC:hade. Recovery is provided upon system crash by

the RESTORE command. In this case the deferred update routine is

requested to destroy the. temporaryfile-TT it has snot yet started

processing it. If it.has.begun processing, it reprocestes the

entire update file Which is done in such a way that the effeCt is
,

the same as if it were procetsed exactly once from,s'tart to fin-

ish.

Hence the update is "basked out" if deferred updating has riot yet

begun; Otherwite it is processed to conclusions The, software is

-64- 6

tl

designed so the update file can be optiOnally spoole nto tape

and recovered from tape% This Added- feature should soon b.

operational.

_If a user from the terminal monitor (or a C-program) wishes_to.

stop a command he can issue a "break" character. 'In this case

all processes reset execept the deferred update ..program which*

recovers 'in the same manner as above.- .

All update Commands do deferred update; however th4 INGRES utili-
.

-ties have not' yet been modified to'do likewise. When this is

completed INGRES Will recover froMsall crashes whie,,h. leave the

disk'intact. In the meantime there can be disk-intact crashes

Which cannot be recovered in this manner (if tiley happen in such

a way(that the system catalogs are left inconsistent):

The INGRES "super-user" can checkpoint a data base(S) onto tape

using the UNIX backup Scheme: -Since INGRES logs al 'interac-

tions, a consistent system can always be obtained (albeit lowly)

by *restoring the last cheCkpoint and running the log of l rac-
,

Lions (or tne tape(s) of deferred updates if-it exists),.

-65- ,..` .67

r:)

cptIcLusIoN AND F-UTUB EXTENSIONS.

The syst6m,described herein is in use at 5.installations and is

being brought up at 8 others;, It forpS the basis of an account:-

ing system.a system for managing .student -records, q geo-data

system, ,a system fbr hainiaining a wiring diagram for a large

telelphon (

e company and ,assorted other smaller applications.*
(

these applications have been runnitng for periodds of up to nine

months.

7.1 PERFORONCE

N j

At this time no detailed performance measurements have beer, made.

However, 06 our system (an 11/40 mainframe With 80k words or

sore) about 44.6'simultaneous INGRES users can be suppOrted with

reasonable responsd timeassuming they are doing ,interactions

'which affect a small r.unber of tuples and for w eh a fast access

\
path exists; Of course, a user has the ability to execute in-

teractior.,s in INGRES' which requirenours to Process). This

hardware configuration costs about $60,600. Larger 11/70 instal-\

lations should be able to run substantiall,Tmore'INGRES user .

-

The sizes of triesrocesses ir. INGRES are indicated below. Since

the access methods are loaded with processes 2 and 3 and with

many of the utilities their *contribution to the respective pro-
,

cess sizes has been noted separately.

access methods 11 K (bytes)

terminal monitor' K`

.

rf

,

EQUEL,

process 2

4

30 K All

- 145 All 17

proceis 3 (query processor). 14K + AM(-

utilities- (U overlalys 466 Ah Ap

'7.2 USER FEEDBACK
/

f
-s

Tn(feed,b0ek, crom internal :ano external Users has been Overwhelm-

ingly pOsitive. Jr. this ;section we' indicate f6atures that h'ave.

/

been sugAested'for future,system6.-

ay higher performaexe

E'elier versions of-IfICRES .were very

,stlouI8.alleviate-:this problem-.

recursion., "'

QUEL 'does nOt'support recursion.

, .

sloW, The current versidn

nce, recursion, must be tedi"-

ftmed in'C .thezprecompiier. This has been sug-ously progra

uArted as 'aic(esired eXtensi An

c) otne. l'Anguag extenSions

r
y 11

These inc e user defined functions (espi)cially counters) , mul--

.tiple targey.ists fort-i singt oqalificationOtatement and if-
,

then-else control structures in DUEL. These extensions are all

so a user can avoid using the precompilei-. (

d) report geiratOi,
.

-

'2>:
,

4...'.1.
:l

\

1. t.

.
PRINT is only a very.primitive report generator. The reed for.

. ,

augdented facilities ,in this area is clear: It,should be written
4*

.in

.

bulk copy

1 , r
T h e COPY routisne

140,.tv."

ari%r.:

fails to

7.3.1MTUO EXIEN IONS

handle easily all situations that haire

- . .
. ,

` Noted- 'throughout the Paper, are az'eas where. system impro'vement is
,

i *
in prqgreis, pl -ced or desired by.users. Other areas Of exten-

...

sion Include thi following

,/' , /

a) A multi-computer system version of INGRES to-operate on dis-
,.. ,

c f\A,,+
,

-i_tributed data bases

) Furtiler performance enhancements Pt

c) A higher level user language includire recursion and user

defined "functions

,Better data definirion and 'integrity features

e) data base administrator advisor. This program would rue at

idle priority and issue queries against a statistics relation to

be. kept' by INGRES. It could then offer advice to a DBA concern-
.

ing the choice of access methods and the selection, of indiceS%

'This topic is. discussed- further in CHELD75b) .

.
,

CKNOWLEDGEFIF.NT '

-68-

'REFEiltucgs'

ALLM76 Allman, E., tone akar, H. and Held, G.. "Embedding

Relational Data Sub-la6guage in apeneral Purpose- Pro-

grammir.r, Language'.", Proc. ACM ;SIGPLAN-SIGMOD-- Workshop

oar, Data, Salt Lake City, Utah, (larchf19N.-

BOTC73 Boyce, R. . al., "Specifying Queries as Relational Er=

0-e'Ssions: SQUARE", IBM Research, San Jose, Ca., RJ

. 1291, Oct. 1973.

CRA1174 Chamberlin,

r)glisn' -Query 'Langua e, PSO

-Boy:5e, R., "SEQUEL: A.Structured En-

or. Data DescrlOtion, Accest

flich.,-Nay 1974.

T57-4.-ACH-SIOFIDET Workshbp

and Control,- Arbor,

CliAN75', Chamberlin, Cray; and Trainer, Ii-11.1 "Views,
, o

'Authorization. anal Locking in a Relational Data Base Sys-
.

tem", Proc. 1975 National Computer Conference, AFIPS

Press:, flay 1975.

CODA71 Committee on Data Systems Languages, "CODASYL Data Base

Task Group Report ", A6J4, New York, 1971.

CODD70 coda, E.F., "A Relational HOdel of Data for Large Shared

Data Eanks", ,AC, Vol. 13 No. 6, pp. 377-387, June,

1910.

CODD71 Codd, E.F., "A Data Base Sublanguage Founded on the

A

lational CalcUlUS-", Proc. 1971 ACU- SIGFIDET Workshop on

, Data Description, Access and'Controi, San. Diego,-.Ca.,

1571.
4,

CODD72 ., .
Co, d, " nRelatioal,Completeness of Data 'Base Sub-

languages", Courant Computer Science Symposiu'm 6 Hay

-

CODD74 Codd, E.F. and Date, "Interactive Support for

Non-Programmers, The Relational and Networ Approaches",

.71

DA4C74

:goo, 1974 ACH-SIGFIDET dorksnop or. Data De.Soription,

:Access and-Control, .Ann Arbor, Hicn., May 1974'.
-1

Date, C.J. and 06dd, E/F., "The Relational and_ Network

Appr ach.gs: Comparisonof,the ArAication Programming In-
/

terfa 815-Proc. 1974 ACM-SIGFIDET Vorksnop or,: Data-
,

Desc iption, Access and Control, Ann Arbor,.Micn., May

.1974. f.

GRAY75 Gray, J./4., Lorie, and Putzolu, G.R. ,MOranularity

of Locks in a Snared Dl Na Base" PrOc.-International

Conference or. Very Large Data Bases, Framingham, Mass.,

September, 1975.

G075 -Go, A., Stonebraker, H., and Williams,' C. , "An Approach

to ImPlementing a Gdo-dates System",' ProC, ACH

t

SIGG3APH/SIGHOD Conference or. Data -Bases in :Interactive.A,

Design, Waterloo, Ontario, Sept. 1975.

'GOTT75 Gottlieb et. al, mA Classification or Compression

Methods and their Usefulness in a' Larne Data P

Center" Proc. 1975 National Computer -Oonfener e, AFIPS

Press, Hay, 1975.

HELD75a Held, Stonebraker, Iona;, E., 'INGRES - A

)11elational Data Base Mani:Arent System", Proc. 1975 Oa-

tional Computer Conference, AFIPS Press, 19 5
-

HELD75b Held, G.D., -"Storage Structures for Relational Data Base

Management' Systems", Ph.D. Thesis, Dept. of 'Electric21
V

, 4 xta

Engineering and,Computer'Science, Univ. of California,

Berkeley, 1975.

HELD750 and Stonebraker a., "B-:Trees Re-examined", to

appear in CACH.
A 44

113H66 -IBM Corp., "OS ISAMlogic''', IBM, 'Unite Plains, N.Y.,

GY28-66113. 4

JOHN74 'Johnson, 1.40C., ".YACC, Yet Another Compiler-Compiler",_

UNIX Programmer's Manilal, Bell ,Telephone Labs, Murray

hill, N.J., July 1974.

flCD075a McDonald, N. and Stonebraker, M., "Cupid -- The Friendly

'Query Language", Proc. ACM- Pacific -75, Sat-. Francisco,

California, April 1975.

NcD075b- ricDonald, Nancy:, "CUPID: A Graphics' Oriented Facility

for Support of flon-programmer, Interactions wi h a Data

- Base ", Ph.D. Thesis, Dept. of Electrical Engine zing and

Computer ,Science, UniViersity of Californi 'Berkeley,'

1975.

RITC74 Ritchie, D.I. and Thompson, K. "The UNIX -Sharing

Syst6m," CACTI, Vol. 17, No,. 3., March, 1974.

SCH075 Schoenberg, 'Iris, "IMplementation of Integrity Con=

straints in the Relational Data Base 'Management System.,

INGRES", M.S.,TbeSis, Dept. . of Electrical Engineering

and Computer Science, University of California, Berke-.

ley, 1975.

STON74a Stonebraker, H., "*A Functional VfeW of. Data Indepen-

dence"Proc. 1974SIGFIDET Workshop on.Data Description,

Access and Control, nn Arbor, Mich., ,:May 1974.

STON74b Stonebraker, M. and Wong, E. , "Access Control in a Rela-

tional Data Base Management System by Query Modifica-:
4

Lion", Proc. 1974 ACII National Conference, San ,Diego

Ca., Nov. 1974

STON740 Stonebrdker, H., "High Level Integrity Assurance In Re-

lational Data Base Systems ", University of California,

Electronics Research Laboratory,Memo4RL-M4730 August,

1974:

:3T01175 Stonebraker,*M., "Implementation of Interity Constrlaints

-71- 73

and Views OT Query Modification", Proc 1975 SIGHOD

workshop or. Management Of Data, San Jose, Ca., May 1975.

TSIC75 Tsicnritzis, D., "A Network Framework for-Relational Im-

plementation", ,UniversitY of Toronto, Computer Systems

Research Group Report CSRG-51, Feb. 1975

WONG76 Wong, E. and -,/o'ussefi, K. , paNcomposition-A Strategy for

Quer3 Processing" (Submitted)

Z00K75 Zook, W., YoAsefi, K., Kreps, P., Meld, G. and Ford,

J., -"INGRES - Reference Nanual", University of Califor-

nia, Electronics Research Labordtory, Memo. Mo. ERL-

M519, April; 1975.

4

