DOCUMENT RESUME

BD 118 108 ' IR 003 010

AUTHOR ‘ Grighetti, Mario C.; 2nd Others . i
TITLE NLS-SCHOLAR: Modifications and Field Testing.
INSTITUTION- Bolt, Beranek and Newman, Inc., Cambridge,.lMass. .
SPONS AGENCY Advanced Research Projects Agency (DOD), Washington, .

~ DeCs3 Air Force Systems Command, L.G. Hanscom Field,
. Mass. Blectronic Systems Div.
REPORT NO ESD-TR-75-358

PUB DATZ Nov 75
NOTE 81p. -
£DRS .PRICE MF-$0.83 HC-$4.67 Plus Postage
DESCRIPTORS *Computer Assisted Instruction; Computer Programsg;
*Individualized Programs; Instructional Technology; g
On Line Systems; Semantics; Tutoring L/
IDENTIFIERS Natural Language Processing; *NLS SCHOL2R / -
, p
ABSTRACT '

NLS-SCHOLAR is a prototype system that uses
artificial intelligence techniques to teach computer-naive people how
to use a powerful and complex editor. This new kind of computer ~
assisted instruction system integrates systematic teachirg with 1
actual practice, keeping +the user under tutorial supervision vhile
allovwing him to try out what he learns on the editor. NLS-SCHOLAR can }
be used as an on~line help system, outside the tutorial environment,
in the course .6f a user's actual work. Testing on this system
revealed that the teaching component of NLS-SCHOLAR is very
effective, but the system's performance as an on-line healp faﬁility
needs improvement. Techniques used in NLS-SCHOLAR are general and can
be applied to the teaching of a wide variety of computer related
activities. (Author/CH) _ - |

ok ook ko ook ok ok sk ok ok ok koo o ook ok ko ok ok ko ook o sk ok ok ok ok ok ok koo ok ok ok Stk ok Kok ok ok ok ok ok

* Documents acquired by ERIC include many informal unpublished *
¥ materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *
* yia the ERIC Document Reproduction,Service (EDRS}h EDRS is not *
* responsible for the quality of the original document. Reproductions *
* *
* *

supplied by EDRS are the best that can 'be made from the original.
stk ok ok ok oo ok oR ok oKk Kok ok 3ok ok ok ok ok ok sk ok ok ok ol sk ek ok ok ok Kk ok ol ak ok sk o sk ook koK ok ok ok ok o ok ook ok ok

.
T Ty

ESD-TR-75-358 ' 4

118108

5
—

NLS-SCHOLAR: MODIEICATIONS AND FIELD TESTING

Bolt, Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA 02i38

U.S. DEPARTMENTOF HEALTH, ¥
November 1975 EDUCATION A WELFARE
NATIONAL!NSTITUTEOF
EDUCATION
) THIS DOCUMENT HAS BEEN REPRO-

OUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGAN!ZATION ORIGIN.
ATING IT ROINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE.
SENT OF FICIAL NATIONAL INSTITUTE OF

_ EDUCATION POSITION OR POLICY

P
‘ Approved for Public Release; '
Distribution Unlimited.
, Prepared for and Sponsored by

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD

_ ARLINGTON, VA 22209

-t* ARPA Order No, 2984

The views and conclusions contained in this document are those of the authors .
and should not be interprefed as necessarily representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency

or the U, S. Government.

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any

purpose other than a definitely related government procurement operation, the

government thereby incurs no responsibility nor any obligation whatsoever; and

the fact that the government may have formylated, futnished, or in any way sup~-
plied the said drawings, specifications, or other data is not to be regarded by

implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented

s invention that may in any way be related thereto. /

OTHER NOTICES

N :
Do not return this copy. Retain or destroy.

"This technical repor';, has been reviewed and is approved for publication."

N S
SYLVIA R. MAYER, GS-14
. Project Scientist . |

e FOR THE COMMANDER

Colonel, USAF
Director, Information Systems
-Technology Applications Office
Depwby for Command & Management Systems

-

5 » e

> : /

e -
Unclassified ﬁ *

‘\ SECURITY CLASSIFICATION OF THIS PAGE (When Dale Enterad) * A
i | ﬁ REPORT DOCUMENTATION PAGE o BEF%%AEDCIgSgEggggNFSORM
\ ‘ REPORT NUMBER 2. GOVT'ACCESSlO_N NOJ} 3. REQIPIENT'S CAT ALOG Nl.(JMBER ‘
F ° \
\ ESD-TR-75-358 |
l.\ . TITLE (‘md Subtitte) 5. TYPE OF REPORT & PERIOD COVERED ‘
. 1"NLS-SCHOLAR: MODIFICATIONS |
ANDFIELD TESTING |

6. PERFORMING ORG. REPORT NUMBER

) A .
7. AUTHOR{O) 8. CONTRACT OR GRANT NUMBER(s)

ario C, Gdrlgneh‘t FI19628-75-C-0159
aura Goul o ARPA Order 2984

k\otherme Hausmann, et al

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. :ggi?wo%fﬁs;‘; ':JROJEECST TASK
t, Beranek and Newman, Inc. nuMa

- 50iMoulton Street) 62706E Program Element
Cambridge, MA 02138 j 3

11. CONTROLLING OFFICE NAME AND ADDRESS 112. REPORT DAYE
Deplty for Command and Mdnagement Systems November 975
Electronic Systems Division 13. HUMBER OF PAGES
Hanstom Air Force Base, MA QI73] 77 ’

14 MONITORING AGENCY NAME & ADDRESS(/f different from Controlling Olfice)

S. SECURITY CLASS. (of this report)
Defense Advanced Research! Projects Agency ')

’ 1400 Wilson Boulevard ' UNCLASSIFIED
Arlinglon, VA 22209 ‘ '5"- ?ES&&SE'E'“WK’“"°“‘°"‘°
16. DISTRIBYTION STATEMENT (of this Reporl) N 2 s

Approved for public release; distribution unfimited, = -

17. DISTRIBUTIQN STATEMENT (of the abatract entered In Block 20, if ditferent from Report)

18. SUPPLEMENTARY NOTES

&
N

Ry

19. KEY WORDS (Coml#c on revarse eide if necessery and identity by block number) R

Artificial Intllllge\nce Computer Assisted Instructlon, Natural Language
Processing, Semantic Grammar, Semantic Network, Tutorial Supervision,
On-Line Assistance, Qu\estlon Answering

\ \

\\ \
20. ABSTRACT (Continue orn reverse oldc if necassery and identity by block number)
NLS-SCHOLAR is a prototype system that uses Artificial Intelligence techniques
to teach computer-paive people how to usa a powerful and complex editor., It
represents a new klnd of Computer Assisted Instruction {(CAI) system that
integrates systematlc teachlng with actual practice, i.e., one which cin keep
the user under tutorial superv1s10n while allow1ng him to try out what he
learns on the system he 'is learning about. - *

Y
\ .
\ T 4

L]

o DD yGonws 1473 EpiTioN OF 1 NOV 65 1S OBSOLETE .
\

EMC ‘ \ , . SECURITY CLA
4

%Atlon‘m—' THIS P AGE (When Dasla Entered)

e -
A -, .

Unclassified
SECURITY CLASSIFICATION 'OF THIS PAGE(When Date Entered)

20. (cont)

NLS-SCHOLAR can also be used as an on-line help system outside the tutorial
environment, in the équrse of a user's actual work. This “capability of .
combining on-line a.sistance with training is an extension of the traditional
notion of CAI ' i

The system is now operational. Limited but realistic testing revealed that
the teachings of NLS-SCHOLAR are very effeCtive, and that the system's
performance as an on-line help facility needs improvement. Most of the
problems encountered are very easy to fix. '

©

The techniques used in NLS~SCHOLAR are geperal and can be applied to the :
teaching of a wide variety of computer related detivities.)

A
s,

ERIC | :

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

.

TABLE OF CONTENTS .

SECTION I - INTRODUCTION.

Overall Approach o . « .« . . .
Objectives
Outline.

SECTION II - DEVELOPMENTAL WORK

Overview
The Control Structure.
Tutorial Material. . . .-.

New Text « o

Branching.
Tasks. L0000
Questions. . . . (.

Answers.o,
English Front End.
The Parsing Process. o &.. . .
Fuzziness.
Instantiation of varianles
Further uses5 of LISP-NiS to answer question

“ Human Engineering Features
Stop and Resume. S
Getting help from an expert.
Question mark
Efficiency i . ..)
SECTION III - OPERATIONAL TESTING AND RESULTS N 35
General Results. . . . "°'r e e e e e e e e e 36
Overview "o . o 38
The "edsy problems"™. 39
Spelling errors. . > 39
Unanticipated synonyms o+~ 40
Common but unanticipated syntax. TV 41
Lack of knowledge. f .. 41 \\\
Poor answers boe 42 \
Unanticipated environments 43 \

The Harder Problems. 44 ;
First scenario 46
Second scenario., 48
Third scenario 50
Fourth scenario. 54
Fifth scenario 57

SECTION IV - RECOMMENDATIONS AND CONCLUSIONS. 62 .

. | .

Epilogue00 000t .. e g?

APPENDIX. o + v o o oo e e e e e, . 67
Review of NLS-SCHOLAR by ISI « o 67
Comments on the review 74

REFERENCES.+ « .« v o v v v v v v v v v o . 77

SECTION I - INTRODUCTION

This is the Final Report on a six-month effort to

improve and field test NLS-SCHOLAR-[Grignetti 1975], a CAI
/'\

system that employs Artificial 1Intelligence techniques to

P

teach people how to use the BASE sub§¥§tem of NLS.* !

This Report documents the Ehaﬂges made to the August
1974 version.of NLS-SCHOLAR to prepare it for tgsting in the
field, and documents the results and conclusions obtained
from this testingl Since NLS-SCHOLAR was developed under a
previous contract, this re;ort is conceived as an
"incremental® one that should be read in conjunction with

the Final Report [Grignetti 1974] on our previous effért.

Overall Approach

NLS-SCHOLAR is oriented towards teaching NLS to naive
users, such as secretaries, who have very limited e&perience
with computer-based text editing systems, Therefore, its
tutorial material is written‘ assuming practically no
knowledge of computer wusage on the student’s part; the

necessary conceptual framework is built up from the most
, L _ .
*BASE is the powerful editor of the oN-Line System (N S), an
inéreasingly used text manipulation system develfoped by
Douglas Engelbart and his co-wgrkers at the Augmentation

Research Center of Stanford Reséarch }nstitute.

A}

primitive notions, such as striking a key on a terminal

keyboard.

‘The two basic pillars 4n which the system’s approacg\}s

*

. £}
founded are: a) interactiveness and mixed-initiative, and b)

supervised practice of the procedu}al knowledge being
. \ .
taught, : | ~

-

Interactiveness and mixed-initiative are necessary so
that the student doesn’t feel "caught" in a situation over

~

which he has no control. The system is designed so that any

time it is the student’s turn to type, he can ask qﬁestions
himself (instead of Jjust answering the questions posed by
the system), or direct the system to perform certain actions

for him (like_executing NLS commands expressed in English).

T

Supervised practice is absolutely fundamental. Little
knowledge about "how (o do".things can be taught by mere
descriptions; many procedures can only be taught by
demonstration, and practice ié eééential. A supervised
"hands on" environment 1is crucial to impressing newly
acquired procedural knowledge in the student’s mind.
NLS—SCHOLAR provides such an environment by redﬁesting
students to perform NLS editing tasks using (what appears to
them to be) the very system they are being taught ébout, by

remaining ‘"aware" of what they are doing, and by commenting
. o . ¢

on their performance.

.Objectives

Our ultimate goal is to develop NLS-SCHOLAR so that it

can be used as an operational tool over the ARPA network, in

support of the National Software Works (NSW) users. The

specific objectives of the work déscribed in this documen£

were: |

a)‘Expand and modify the NLS-SCHOLAR system as it existed at
the end of its firsp year of development, incorporate
features we perceived as needed, and corrédt known

limitations

b) Test the newly developed system in a 1limited but

realistic operational environrnent)

3
s

c) Use the feedback and experience obtained in the field to

evaluate the system and Lo formulate pléns for the next

stage of modification and expansion

-~

These objectives have been achieved.

Qutline -

In Section II of the body of this report, we describe

in detail the deﬂ%lopmenpal work performed to achieve our

objectives; in Section III we 5g§cpih§\kgi\iifflts 6btained

during field testing of the present version of NLSw=SCHOLAR.

*

9

* Finally, in Secttgg\;iz\ we present our conclusioBs and - «‘

/

/
‘

recommendations for fur her work.
Ny “

\\ S , —

N San,

~ . SECTION II - DRFELOPMENTAL WORK

< o, iy o . ' L
In this“SéEtIon we“describe the \wprk accomplished’ to

v

~

- bring NLS- OLAR\ﬁo a state sufficiently stable and\io?ust 4

~—

sQ that testing ;?““bperationally would Yyield meaningful

results. ° . : R "

Our initial aim was to~expand and imB}ove NLS-SCHOLAR ™ .

\ Ty, RS ,
so ~that its tutorial material oET;M::;N~Q§§§txoi;: e BASE
W 2 N . B ""\:'” v

~
o,
~ Seven,,, <

N~ \\ \\\\\‘ « \ ’
subsystem of NLS™(ThisTentailed b stg:ing the 8l 8,
~ - EA NN T e
\\\Eﬁégtggg:i:fwering ab T\\<:;§§3§q1n ej%a§k evaluation\§f~\ﬂ_
- h , .. "\

dules, ard ad g functio \iig%%LISP-NLS -

3
/

———

N ~ \\\
In the ogﬁ;:\fEEV%lopment work : up ~
< \‘\‘\ . \
several versi ~ ' axpanded and modifie R
~ N <l N
t only most ,gj%\ he t \

th&beginning, 'but many .others\s

4 - RS
progress and our eXxperience
’ ~N ¥ N \

N . . N
e eNsystem incr \éd, we

1::t§\\\fd;‘bo€h\th

we - performed work in additiod\t what was™ariginally
ified. This additional work inélud:;?\\\\;\‘J \

short and the long ternm succ “oup system,

1) In order to provide "the flexibility and modularity
‘ required to effect changes easily, we designed and N
implemented a new \gontrol structure that uses an
implementation 6? the Bobrow/Wegbreit stack scheme for
multiple eﬂvironménts ("spaghetti stacks"f that (is
AHWf—u~-~pp§vided in the recently released LISP., _[Bobrow 1973, _

INTERLISP 1975].
2) To increase the effgctiveness of our tutorial material,
we developed a prototype Agenda Language that allows us

to write English-like lessons incorporating branching,

remedial loops, quizzes, etc,

3) In order to brovide a useful tutoring' environment in
spite of expected system limitations, we incorporated a
fall-back mode wherein a human helper comes ‘to the

system’s rescue uwhenever the user requests it.

4) In order to make it préétical and feasible to use systemns
AN

N\

such as ours in operatiqdal environments, we greatly

HOLAR; not only 1is the

\\\iﬁproved the efficiency of NLS<

\\\\\:;zutput package 5 times faster, bu the overall efficiency

‘ﬁ\kz}ce as- great, .
N | N
j By far {he most significant of these advance§\\3:z the

desdgn and implementation .of a flexible control st cturé
\
e

\ - AN
that uses the recently ' released "spagheﬁti"‘ LISP. T

Y ’ N
\1\ \ ~
\ : .
. ~ |
~ \\ \\\ \ - \

structure *“allows NLéiSCHOLAR to operate on nultiple
environments, making it poésible‘for the various'modules of
the system (the English front end, thé‘QuizZer, the Tutor
Scheduler, NLS, the Task MoniItor, and the Evaluator) to be
handled 1like jobs in a time-sharing system. That is,
processes reduest "the floor" as need "arises, and gain
access to the procéss queue with preassighablé\priorities.
As a result of tLhis improvement,' the system no&i has the

capability of Back-tracking to abéndoned‘lggntexts, of

. *, handling multiple. tasks, 'and of coroutining. ﬁx

We expanded the tutorials (the Primer) from the -t
original three lessons Lo an introduction plus five lessons.
The' flaterial covers usage of the legal combinations of the

f .
following LS verbs and nouns: ‘ e,

) \\?
. a) Verbs: Load, Print, Insert, Delete, Create, Update, Jump, '

Substitute, Set, Reset, Show, Copy, Mo&%, Transpose,

Output, Help, and the one-character commands R A

T, '\, and <LF>.

b) Nouns:‘Character7/WOnd, Text, Statement, Branch, Group,

Plex, File and Rest.

Nunerdus questions, interspersed throughout the lessons
. and formning quizzes at , the end, test the students’
comprehension of the instructional material. Over 100

supgﬁviéed tasks and '"tutor '~ demonstrations" support our

» !

claim that our users learn "by doing".

.

Wewdeveloped a brotqtype Agenda Language that allows us

- to write)these lessons in quasi-English format. (The
lessons were allerepared using ﬁLS and are in indented
outline format.) The 1lessons contain not only tasks,
demofistrations of actions, question-answer%ng periods, and
quizzes, - but also branching and remedia} ioops. The new
control structure allows us to desién muéﬁ more flexible
lessons than before, ~ones thap exhibit truly mixed
user/system initiative. For example, one of the ways we can
handle students' mistakes is by means of "scratch actions":
when a student makes a miétake, the system takes over and
shows him what would happen if the the m;stake were enacted.
This resembles what a human tutor would do ("Here let me
show you what wouid happén if you did what you propose") to
show the effect of the mistake while at the same time

protecting'the student from the consequences of his actions.

In parallel with this work, our LISP implementation of

Is

the NLS BASE subsystem was augmented and updated, so as to
support all the NLS commands ﬁentioned above. We also sped

) it up considerably by using block compiling techniques.

€
/

Considerablq’hork was done also on the English " front
I

end. In addition to questions, this module now handles all
inputs from the student, including his a&answers to the

"tutor ‘s" questions and his "directions" to the system. The

’ - .) {

14

10 ' ")

semantic netwé}k now contains 330 entries, covering the
command§ and NLS concepts which the, simulator éan handle and
which the tutorials describe. The output package (the big
CPU time gobbler in the previous system) was étreamlined and
speeded up by a factor of 5. In addition, the responses it

produces are more personal and friendly.

.

Einal;y, in- addition to the above, 1) we incorporated
"stop" and ‘'"continue" facilities, so that wusers c¢ould
prbceed with the lessons at their own pace, 2) we began to
provide users with some'feedback on what went wrong when a
question could not be answered- by the system and, more
importantly, 3) we offered students the help of a human usér
if they so required (the system looks for one of us,
establishes a TENEX 1link, and alléws us to come to the
student “s help and 'to the system’s \resque). antextual
information fwhat the student has been up to) is preserved

in LISP’s history list and is available to us.

In short, we brought up a new NLS~SCHOLAR system that
is very much better than the o0ld one in terms of

flexibility, modularity; capabilit&, and efficiency.

In the remainder of this section we aeggribe in detail

// the work performed in many of the areas alluded to above:

D the system’s control structure, the tutorial maté}ial, the

English front end, the human engineering features, and
TR

overall efficiency. K

¢) 15

/ //
- -/\ ¢ ¢ 11

The Control»Sgﬁgghuneow*”:““””“““‘”;;7

The new control structure &as_ designed with s§4éral

goals in mind: !

1) increasing the modularity of the system to make it more

understandable and easily modifiable

- 2) faéilit@ﬁing interactions by a) making the "English
/ -

/ : .
undersfanding" portion of tHe system (ENGLISHEXEC)-

availgble Bt any time by a simple interrupt mechanisnm,
b) allowing the wuser to experiment with NLS at any

ime without deétroying context
) /

§ s
L e

7 3) extendlng the cap ;és of the " tutorial material to
.J\// ° I // o .
: permit branchlng ,an the conditional execution of
N s .
arbitrary INTERLL%P fupctions to perfg%m needed actions.?
. '// | .
‘ The basic‘iqéé underlying the control stfucture is
/ T
simple, The systen cpntinualiy evaluates the priorities of

Ve -
several alternative/gqals,.which include ones specified by
/! e

S
the wuser ang//iﬁss//gét by the author of the tutorial

material. (/Goals with lower pPlOPlLy are postponed and fhe
highest priority goal /ié/ executed, Some goals, such as
"presenting all the t forial maggglalfénlla useful order",
are complex and may continue/;;;r a long period of time. To
facilitate the description of compléx, long lasting goals,

a goal 1is represented by a "process", a collection of

INTERLISP procedures which when executed will achieve the

16

et
o 3
.‘}'

goal, \

Because the spaghetti—stack control structure of
INTERLISP permits ady;‘process to be interrupted at an
arbitrary po;nt withbué;iloging the context of the
computation, complex gqgls can be reﬁresentﬁd by processes

N L4
which work through a set of sub-goals from beginning to " end

, without interruption. A process 'qepresenting such an

extended goal may be interrupted and kpeﬁporarily. suspended
to allow oﬁher goals to be met. This permits the overall
system to "stop in its tracks" and interact with the student
when the student wants ﬁelp, not Jjust when the system
decides to pay attention. In this way the control structure
makes it possible for s to design a truly
"mixed—initiati&e" system, rather than representing a
single-minded tutor, siéce the various goals of the tutor

may be easily interrupted and suspended to allow the student

to request actions, ask questions, and experiment with NLS.

The overall control of the system is based in a simple

"monitor" which acts much like a time-sharing monitor - it
TN

has a set of suspended processes representing pending

priorities which must be evaluateq,; and it chooses the

el

highest priority process and permits it to run.

" At any time there may be several pending goals, in the

. System, repﬁeSented by suspended processes. The§e goals are
) X X

chosen‘from the set:
17 e

13 ‘ .

v

a)

b)

"".‘-‘"z \ "\\
N oy
listening for user commands, questions and answé@éﬁ i
S

% 0N
English (ENGLISHEXEC) R

g
deciding what tutorial material to give next \ o
| SR

c) prese51ing a tutorial unit 21

d) presenting a questiog | i

e) waiting to evaluate the answer of a previous question }%;
f) running a student through an NLS task . E
g) providing an experiment%} NLS environment reéuested by %‘

the user *

The priority evaluation is implemented primapily .. by a
stack, but it is made potentially general by having the
monitor evaluate™ a priority setting process associated with

P = 3 ©

,yo
each - runnable process, and using that to modify priorities.
%

In addition; the stack of processes is easily accessible to

~

running brocesses, and thus processes can (and do) add and

delete processes on the stack.

In addition, by making use .of " the - user-defined
interrupt character facility and fhe features available in
thé(new "spaghetti s;sﬁgﬂ version2 of VINTERLISP,_ it 1is
possible for the wuser to interr%ép any process, save its
context completely, and start ué a copy of the ENGLISHEXEC
which can answer general NLS féctuai‘questions, or start up

% a safe NLS environment on which 'to’ experiment without

taf‘f‘ecting the current NLS environnment/ This enables

istudents to try out risky procedures without fearing the

1

-

&

- / consequences of potentially costly mistakes.
/ - T i

- —
- - i

1 - 1

The spaghetti stack features permit the entire context
and state of complicated (perhaps recursive) process to be
saved to be run later or examined by other programs.. iThis

/ n .

has Séen used to implement a "coroutine package" ‘hich
gpreatly facilitgted/'w?iting simple, easy to underz

tand

_modules, ; \

1 - . R .

.1 AR example of this is the -"question posing \and
eva%ua‘ion module”™. This module is run having as argumehts
anUes ion to be posed to ‘the studént, and evaluation

N procédures for ﬁ ible answers. It would be easy to write

’ {
if it w?ne expecte simply to pose a question and to

inﬁerprét tgg next Student input as an answer. However, we

wished to allow thQNEZEEEHtxgg interact with the ENGLISHEXEC
(Y

once the\question is posed, by asklng questions or typlng in

commands }f he desires <:Thas*an§ﬂ~p evaluation must be held

in abeyange until the student actually types in an answer,

~

N °

; With the coroutine péckage thié is simple -~ the
// question-posing‘ module éalls a coroutinq which puts the

// question-posing-module on the stack with the evaluation \‘
/ | section to be run next, puts an ENGLISHEXEC process on the

i
]

/ top of the éﬂack, and then cedes control to “the—monitor.

. ’ . : ’
When the ENGLISHEXEC recognizes an input(ig/aﬁ;zzg;;;‘\zzj\\\\\\. R
, - & BN pe

| removes itself from the stack and calls the question-posipg-

module as ‘a coroutine. To the question-posing module the
| N

1915-'/.) 7

3

net result is that the student s answer is made available as
’ : /

if from a subroutine. While this could have been done with

subroutines, the coroutine technique subétantially -

simplifies the state of the system during the period after

the question is posed.*

Tutorial Material +

»

The tutorial material has been expanded éonsiderably

since November, 1974, and now consists ‘Q£\££Zi\lessons
rather than three, These lessons describe thé\\\BASE -
P o ~.
subsystem of the 'teletype-orierited¥ version of NLS as it ‘\\\\\
. .

~J

appeared in March, 1975; they are written specifically for
naive users with no previous knowledge of NLS and (perhaps)

no previous acquaintance with terminals or computer systems,

New Text - To facilitate the iditiation of these naive users

: |

into the mysteries of compuier—assisted instruction, an

} interactive introduction has been written which gives a

) " brief description~ of the goa}s of the system and explains
the use of <CR> to lerminate compands, <CTRL-A> and <CTRL-X>

for 1line ediging, <CTRL-T> Lb determine the state of the

job, and <CTRL-H> to get the \attention of the "tutor"

[

¥We use the term teletype to denote generically a hard-copy
terminal, as opposed to a display terminal.,

(ENGLISHEXEC). This~introduc§ion supplants and surpasses
the instruction sheet handout which was wused for this

purpos€ previously.

The five lessons differ in both content and structure o

'

from their predecessors, Revision of the content of 'the

—

original three chapters was made necessary by changes—in;phe

~ N

NLS syntax and in a few NLS commands. The ﬁateriél was

extended to provide~moré examples and to present commands

~

not previously covered. These new commands include Pringyﬁ,,rye

File, Print Rest, print the context of the CM (/), Reset
Viewspecs, and Output Sequential File for producing a text

file which can be 1listed on a 1line prinfer. 4 brief

description of the Help comnand is given at the end.of the

"

last lesson so £héf the "graduating".studené will know how
to make use of this facility when he uses NLS without
tutorial supéfvision. A small, self-contained help data
file about viewspecs has been prov}ded for practice-with the

use of this lcommand. -

;
~

— 4

Branching - These changes in content, however, are of much \

less significance than the increased freedom granted to the
— - i~

student by the new control structure, and to .the author . of

«

the tutorial material by the introduction of branches and
remedial loops. The ability to use branches means that the

order and the conﬁgg;7‘b£%\what is being presented to;the

gtudent can be made dependent on his choices or on his

i 21

17

o,
o,
e,

Y

-
mw»"""’”‘

perforhance. The addition of these facilities transformed
the task of prov1d1ng the tutorlal material from writing a

.,
o,

text %Lhe Primer) to des1gnfhgh a programmed instruction

|4 .
course.: : ““mm\\:\
. From the students’ point of view, each legzgﬁ\ﬁagg\ the

~~ e

—

introduction) is composed, as before, of short sections of
text which are printéawéiﬁfhézferminal. At the end of such
B ‘ , e,
" presentations, the student is given the opportunity to
i . ,
request m&ye text, to ask any number of questions, or to%
] . [

praqtice-w%th NLS using any commands that he chooses,

3
¢

Tasks 2 §oméktext sections are fq}lowed%by tasks which the

studentcis adked to pérfd;hj In the course of doing a task,
) the student may use <CTRL-H> to get the "tutor s" attention;
hg nay then ask questions, practice with NLS to see the
effect of a command;;ask that he be allowed to restart the
task, or ask that the task be’done for him. If the student
penforms the task, his work is evaluated and helpful comment
or criticism is provided. If his work is unsatisfactory he

‘,//////mgiﬂbe asked to do the task again, either ~wholly or
' partially. . .

g

Questionsf— Some text sections are followed by questions for
he student\\tg;\iifwer In the courséloﬁ'trying Lo answer
€ question he may ;;E\dUesgig?s himself, or practice with

»

\ES in an attempt to determine the- -answer.

22
1

A set of questions (a quiz) has been placed at the end

of t heo—i he first two lessons so that Lhe .

student may this add?fional method of assessing his

progress, Answe uated and appropriate responses
made. Considerable latitude ié provided in the Jjudging of
answers so that the student 18 not constrnained to . a
particular form. For example, the question "What is the
statement number of the origin statement™" may be answeredeo,
statement 0, or zero; all are equally correct. In cases 1in
‘6 . which an answer has seveéal parts, missing information is
.gé often supplied in the evaluation.
Ty o "
Answers - The handling of students’ answers is made easy by
the use of answer predicates. A - seguence of these
predicates can be written by the author after each question;
the predicates ;re then tested one aféér the other until one
of them succeeds. fhey operate in two steps: the fir;t one
provides for extracting expected words, for testi g gpe§é‘
words in various ways, and for filtering out i;iZ?E;ant
parts of the answer; the secona step is some action whichqié
undértaken or not, depending on the outcome of the first.
§ These actions generally consist of some text being printed
followed by an optional branching instruction.

‘\
English Front End

R

S 23 | N

19 s

o The English front end handles ;II\}§ guage input from the
~student, It ngre?ore musy// be powerful enough to

dlstlnguish between commands, *s\?rp lesson §&", “"Delete

ch 2"); queries, ("How -do I prin

replies t Eafbrfgénggétéd questions,("THE~§§aﬁemehts are
AN

\x
and 4B"). We deecided -to wuse §Q§,>£gfi;:‘Gf”a‘s€Mantic
N)
grammar [Burton-1975] with two impo ant\,J additions, namely
A

instantiatiﬂﬁ/ of wvariables and Case assi

s
L

1968].. These two processes will be described 1a

nments [Fillmore

4/// The key notion underlying the semantic grammar appr
to parsing is the replacement of the search for syntactic
constrﬁcts by a search for semantic ones. Par;ing
student ‘s request in this way yields .its meaniﬁg directlx,
i.ev, it produces an executable retrieval formula lizat -
prescribes a search in the system’s "data base" (the
semantic network plus the user’s work space). TPe search
can then be carried out and the results used to synthesize
;n answer to the request. Notice that in such a- parsing
process there are no separate syntactic and semantic phases
(gs there are in systems 1like the LUNAR parser [Woods

. 19721).

The Parsing Process- The parsipg process begins with a

prescan 6f the student's input. Abbreviations are expanded,
synonyms are recognized and rewritten into a canonical form,

and compounds are collected into one word. These processes

7
»

24

20

~ ease the work of the parser itself by cutting down on the

-

«.nunber of alternatives that must be considered.-

7 After the input is prescanned, an attempt is made to

lpérs it using an embodiment of the grammar described in BNF

in Figure 1. Each non-terminal node of the . grammar is a

semantic category which takes into account allJ}He~predicted

v ways -of expressing it. Each semantic category is- embodied
:

in a LISP function that tests the input ;string (or a

substring of it) to dqtermiﬁe if it belongs to the category.

If successful, the function returns a value which condenses

the "meaning" of the string.

A

e top level rule is <REQUEST>, which can be realized
by ‘}%ur '~ semantic categories: <DIRECTIVE>, <QUESTION)>,

<NL /ACTIQN/REQ>, and <ANSWER>. This means:" that an input

from th user (a request) can be either a directive, a

v question,M
to

a question as

coﬁhand expressed in English, or an answer
d previou§£¥/ by the system. Each

\ alternative is tried sequ \Y\iélly until one succeeds. If

|) -

none Succeed, an error message is typed to the student ("I
—

didn’t understand that. Please rephrase.") A good way to

- describe thewparsing process is by example. We shall follow

thé’parsing of the request "What command prints the next

» "
.

statement?" (;ée Figure 1).

S
<REQUEST>:= <DIRECTIVE>

<QUESTION>
<NLS/ACTION/REQ>
<ANSWER> -—

<DIRECTIVE>:= ? ! CHECK ! PLAY ! RESTART ! GO ! HELP ‘! STOP

<QUESTION>:= <DEFINE/REQ>
<WHATIS/REQ>
<CONTENT/REQ>
<PARTS-IN-PART/REQ>
<PARTS-IN-LEVEL/REQ>
#PROCEDURE/REQy .

, <TYPE/REQ>

<INSTR/REQ> 4 @g
<POSITION/REQ> . .

L3

<NLS/ACTION/REQ>:= <ACTION/SPEC>) e

¢ANSWER> := <THE-ANSWBER> ’ % 4*%ﬁﬁt
: <DONT-KNOW-ANSWER> s
<LIST-ANSWER> - A

<THE-ANSWER>:= [THE THEY IT] [IS ARE] \

l yan
<DONT-KNOW- ANSWER) = TELL\ME ! I DON’T KNOW

<LIST-ANSWER>:= a list that doesn’t begin with a <VERB>

- or a guestion word like What, .I%, Why, etc.
.\W' R

[DEFINE DESCRIBE] <NOUN> o

WHAT DOES <NOUN> [DO MEAN STAND\FOR) P

HOW DOES <NOUN> WORK

<{DEFINE/REQ>:

»

<WHATIS/REQ>:= WHAT\IS*¥
"[PURPOSE\OF <NOUN>
CONTENT\OF <STR+ADDR>
LEVEL\OF <STR+ADDR>
PROCEDURE\FOR" <ACTION/SPEC>
ADDRESS\OF <STR+ADDR>
EXAMPLES\OF- <NOUN>

EXAMPLE\OF <NOUN>

1]

DEFINITION\OF <NOUN> * h

“‘¢CURRENT /PART% ,)
<STR+ADDR> : ‘
<NOUN>] !
%71so SHOW\ME TELL\ME GIVE\ME TELL\ME\ABOUT
WHAT\ARE

° <CONTENT/REQ>:= WHAT <STRUCTURAL> CONTAINS <STRING> o

v
1

Figure 1. BNF description of the grammar,
22 t

2.6

1

&

<PARTS-I‘N-PART/REQ»WHAT <STRUCTURAL> ARE IN <FILE/PART>
WHAT ARE <STRUCTURAL> IN <FILE/PART>

<PARTS-IN-LEVE¢/REQ>:: WHAT <STRUCTURAL> ARE <LEVEL/PART>
<PROCEDURE/REQ>:= [HOW\DO\I SHOW\ME\HOW\TO TELL\ME\ABOUT] <ACTION/SPEC>

<TYPE/REQ>:= WHAT CAN I TYPE AFTER [<VERB> <STRING> <PROMPT>]
WHAT CAN FOLLOW [<VERB> $STRING> <QROMPT>]

<INSTR/REQ>:= WHAT (COMMAND) <ACTION/SPEC>

<POSITION/REQ>:= WHERE AM I
#HERE IS/ARE <STR+ADDR>

<ACTION/SPEC>:= <VERB> [<0BJ>]

<VERB>:= word whose part of speech is Verb

<OBJ>:= [<RELATIONAL>] [<NOUN/PHRASE>] [<OBJ>]
<RELATIONAL>:= words like NEXT\TO FROM AT TO, etc.

<NOUN/PHRASE>-- <TASK>

<STR+ADDR>
<FILE> N
(::; <NOUN> ‘ ‘ . .

<TASK>.- TASK <NUMBER>]

<STR+ADDR> <FILE/PART>
THE <STRUCTURAL> <STRING>
THE <TEXTUAL> <STRING>
<CURRENT/PART>
-«<STRING>

. <FILE>:= (NLS\FILE) [BREAKFAST DINNER MYBREAKFAST]
4
<{NOUN>:= any word whose part of speech is Noun
{NUMBER>:= a number .
<FILE/PART>:= STATEMENT\O
: "GROUP <ADDRESS> <ADDRESS>
[STATEMENT STATEMENT\NUMBER BRANCH PLEX] <ADDRESS>
<ADDRESS>:= a word whose’ first character is a number 7/

’,<STRQ§?LRAL>:: STATEMENT ! BRANCH ! GROUP ! PLEX

e

<{STRING>:3, a string delineated by double guotes
&

& .
Figure 1 (cont)

* /
\ N . ’ ‘. 27

. 23

\

<TEXTUAL>:= WORD ! CHARACTER ! TEXT

<CURRENT/PART>:= CURRENT\NLS\COMMAND *
CURRENT\ VIEWSPECS
CURRENT\STATEMENT

\ NEXT\STATEMENT
BACK\ STATEMENT
CURRENT\ ADDRESS
POSITION\OF\THE\CM
CURRENT\ STATEMENT\NUMBER
CURRENT\FILE

Figure 1 (cont)
. r

/" 3

In the prescan the words "next statement" are
recognized as a compound word or concept and are rewritten N
as next\statement. Starting with the grammar rule

CREQUEST>, the first check is to see if the sentence is a
. fDIRECTIVEz)///;; fails and the next one is tried,
<QUESTION>, The first seven realizations of the rule fail;
but <INSTR/REQ> succeeds with "What" being followed
optionally by the word "command", foilowed by an
CACTION/SPEC>. <ACTION/SPEC> succeeds, since '"print the
next\statement" is indeed an action specification.
<ACTION/SPEC> returhs as its value (remember it is a LISP
function) an expression that iq the "meaning" of»the action
specification: . T ' /

N

((VRB PRINT) (OBJ NEXT\STATEMENT))

This says that the.action is represented by the verb "print"
and ‘the object of the action is "next\statement". In turn,

QINSTR/REQ> returns&
(QFIND/INSTR ((VRB PRINT) (0OBJ NEXT\STATEMENT)))

which represents the "meaning" of the sentence. At this

point the parsing phase is complete.

’ To find the correct answer,.this ™"meaning" is executed

as a LISP expression. (QFIND/INSTR is the function and VRB

.

and OBJ are its arguments). The function QFIND/INSTR first

P -

checks to see if there is an OBJ. If there is one,. it looks

29

25 5

<

under the OBJ s data base entry for a section of data base
beginning with the VRB. If that search fails, a geneéral
reply is given by finding al}l instruments (commands) under
the VRB print and printing out the procedure for using each
"one. In this way, most of the knowledge the data base
contains about printing would be given to the student. The
belief is that a complete description is better than a
simple "I don’t know", Among all these procedures, the

student may find the one he was looking for.

In our example, the search for the VRB under the OBJ

succeeds (see figure 2).

Figure 2

NEXT\STATEMENT
(PRINT (I 2) (AGENT NIL USER)
(OBJ NIL NEXT\STATEMENT)
(INSTR NIL <LF>\COMMAND))

The English output routines take the piece of *data base and

form the English sentence: e
@ .

YOU PRINT THE NEXT STATEMENT USING THE <LF> COMMAND.

I

Fuzziness - The panser allows for fwzziness; that {s, it 1is
able to skip over words in a/controlled way in order to
achieve a parse. The hope is tHat these words are noise
words or at least that they can be .skipped over and still

' /
permit a parse that is not,far from the real meaning of the

"

I3
/

fﬁquest. The problem is that in some cases fuzziness leads
. to a completely different meaning. For example, consider
the sentence "What are the default viewspecs?". 1In pushing

for an object, let’s say the parser doesn’t recognize the

word "default", Fuzziness would allow the parser to skip
over this woﬁa[It recognizes "viewspecs", and in effect
parses the sentence as "What are the viewspecs?". Applying

fuzziness techniques well is a very tricky business!

N

Instantiation of Variables - An effort was made to see what

it would take to build an English front end for NLS that
would allow the student to express NLS commands in English.
The added bonus from this research was the ability to answer
with greatér precision questions that dealt with more -
specific information than the data bége e§glicitly contains.
An exampleﬁis the sentence "How do I delete a structure
unit" versué tﬁe more specific request "How do I delete plex
2?" This ability was achieved by adding to the data base a
new construct: inspantiation variables that may get se£
during parsing and, if so, will be used in place of the
ggneral term -- otherwise the more éeneral term is\ﬁsed.
For example, in the data base entry for DELETE\COMMAND, the
string $INS appears 3 times. Each time it is followed by a
variable name, (XOBJ, XOBJSTR, or XADDSTR) and then followed

by a regular piece of SCHOLAR data base (see Figure 3).

31 ' ‘

Figure 3

DELETE\ COMMAND |
« [PURPOSE (I 2) (DELETE NIL *

(AGENT NIL USER) - i

(OBJ NIL ($INS XOBJ ($EOR (NAME NIL (OF NIL STRUCTURE\UNIT))

(NAME NIL (OF NIL STRING\UNIT)))))

1

(INSTR NIL DELETE\COMMAND)
(PROCEDURE NIL (TYPE NIL .]
(AGENT NIL USER)
(OBJ NIL ($SEQ "DELETE "
[$INS XOBJSTR)
($EOR (NAME NIL (OF NIL STRUCTURE\UNIT))
(NAME NIL (OF NIL STRING\UNIT]
SéINS XADDSTR ADDRESS)
R> <CR>]

In processing "How do I delete a structure unit" none of the
instantiation wvariables is set and so a general response is
given:

-«

YOU DELETE A STRUCTURE UNIT OR A STRING UNIT USING THE
DELETE COMMAND. .
PROCEDURE: YOU TYPE °“DELETE °, FOLLOWED BY THE NAME OF A
STRUCTURE UNIT OR THE NAME OF A STRING UNIT, THE ADDRESS,

<CR>, AND <CR>.

In processing "How do I delete plex 2", all of the variables
are set during parsing so a very specific reply can'be

-

given:

YOU DELETE PLEX 2 USING THE DELETE COMMAND.: "

,

PROCEDURE: YOU TYPE 'DELETE ~ FOLLOWED ‘BY * “PLEX *, 27,
<CR>, AND <CR>. » ‘

—

Now, not only can the question be answered, but it can
be turned into a command to NLS to perform the action

"Delete plex 2" on a copy of the user’s file. It parses as

32 ‘

28

-
Mw&nmum_'
""'ﬂmn..,_m

an <NLS/ACTION/REQ>. ngf?orm returned from the parse is

L 4

(QDO/PROCEDURE (VRB DELETE) . .
~ (0BJ PLEX (ADDR 2)) ’
\

QDO/PROCEDURE: is a function which first retrieves the

appropriate piece of data base and checks to see if alIl the

instantiation variables in this piece are Tilled in. It

then calls LISP-NLS, handing down to\it/ﬁgeflegal command

sequence. (If all the instantiation varlgbles were not set

during the parse, a reply is generated telling ¥ student

what is missing.) Using a copy of the student’s current

file, LISP-NLS executes the command séhuence:

BASE C: Delete C: Plex (at) A: 2;
OK:

Further uses of LISP-HLS to answer questions - We have just

describedﬁjgné use of LISP-NLS: responding to an English

request to have NLS perform .command. A second use is to

kea

bgspond to queries 1like fﬂh%ie am I now" andﬁ"What %s the
. address of the statemeq&ﬂggﬁLﬁiﬂ&ugarPRIME"?" These kinds of
requests imply that at least one NLS commaqd be performed.
In the first case the answer can be found by performing the
n.n command; in the second by performing a series of
commands - Jump Address 0, Jump Address "PRIME", then "." to

get the current address.

s

er to make NLS-SCHOLAR a pleasant

- R ’ R R Q\‘\x N
- system to we sirived to endow it with a number-of human

.

t 59/6111 be described next. T~

= >

e

Stop @nd resume. - Sessions with NLS=S

engineering feature

LLAR have natural

breaking points, such as lesson boundaries .or

1

arge topic
changes, at which it is convenient and even desirable for a

user to quit. Having stopped at ' one of these
. ¥

- @Q

sys§em-provided breaks,ith

user can resune the lesson at a

e N

later time by asking the gystem something like Lart lesson

A

3 .now, please", Often, however, . users find the time bet

J .
these(/gatural breaks long, either because their

own performance has required longer time than average, or

because something . Ltheir attention. We have

provided the syste with the necessary mechanism for
allowing those users to stop- the leéson at any time, in
whatever situation /they may find themselves: in the middle
"of a lesson, p¢rforming a task, answering a question, or
even working with NLS doing their own thing. All they have
to do is get/ the attention of the itutor" (by typing
CCTRL-H>) and fhen tell it they wani to stop. The system

3 .
responds "~bys asking the user to confirm his request and to
indicate if/he intends to continue at a later time. If both
answers are affirmative, the system writes out a file (a

y

LISP SYSOUT file) in the user’s directory. When the user

34
30

ERIC

PAruiitex: provided by ERiC N -,

comes back, the system reminds him of the existence of a “
suspended work seséion; if the user .wants go, he can
continue exactly where he left off by simply typing RESUME
(which causes a LISP SYSIN). This feature was very sorely

A
n@%ﬂed and was used by almost all those involved in the

field testing.

- Getting help from an expert. - Since we did not expect our

system to be able to comprehend all user requests and to
always provide useful answers, we endowed NLS-SCHOLAR with a
featgre that allows a human expert 4o come smo}thly to the
system’s rescue when the system \fails. This faciiity
operates as follows. Let’s suppbsé that a user is in the
middle of a task, asks a question Qhose answer is badl&
needed, and the systém either ,fails to wunderstand his
‘\\\ngstion or gives him an unsatisfactory answer. If he asks
for help at this point, the system will seek a légged-in
human exper;, establish a link, and report the failure to
-the expert, If it isn’t possible for the expert to provide
the answer solely on the basis of an isolated questioﬁ, he
can examine a history list maigtained by the system. This
list is a record of previous interactigné between wuser and

system which provides the context the expert often needs to

answer a question appropriately. ro.

'\\‘L

The main reason for the incorporation of this facility

‘was to allow our .students to wutilize lesson time more -

3H
31

ERIC

Aruitoxt provided by Eic:

~

effectively; we wanled their experience using NLS-SCHOLAR to
be a profitable one in épite of the system'srlimitations,
and we hopea the facility would minimize frustration and -
unnecessary.breaks. In spite of our hopes, the facility was
hardly used at all: only one of our users ever attempied to
take advanpége of 1it, but unflortunately no expert was
logged-in at the time help was sought,

4

Question mark. - Given the great flexibility of the control

structure, the student may well be confused as to what to do
when he gets the Mtutor’s" attention. A question mark
facility was impleménted Lo help users:remember what they
could request the system Lo do for them., When the student
types a "?", the system responds with a list of one-word
commands which may be used Lo iqitiate actions, such as
starting a lesson, restarting a task, stopping a lesson,
rééuming it, summoning help, calling NLS, etc. These
actions abre Nnot necessarily invoked speéifically by their
associated command; rather, it is the combination of command
ggg“ situation that decides which action will be undertaken,
Thus, if a user types "continue", several'things may happen:
a) if he ’was in the middle of a lesson, the lesson

continues; b) if he was performing a task, he goes back to

the task’s environment; c¢) if he just entered NLS-SCHOLAR

N
\

and thg?é Ls“a stopped lesson under his name, the lesson is

3

'resume ;I d) if he was working with NLS doing his own thing,

n

. . 32 X

3

-

.

he is returned where he left off.

Efficiency - The newly brought up NLS-SCHOLAR system is
remarkably more efficient, in terms of CPU utilization, than
its predecessor: it takes about 3 minutes of CPU time, on
the average, per lesson hour. fhis efficiency measure
applies to a lightd} loaded TENEX §ystem; under these -

circumstances the lesson proceeds at a good fast clip.

;E%s relatively good efficiency is due to three
‘}mprovements made to NLS-SCHOLAR. The first improvement was
to redesign and streamline the output routines, the ones
which are responsible %or produciné Enggish sentqnces out of
information encoded in the semantic network, Thié. resulted

.. \ i .
in a package that operates 5 times as fast as the old one.

The second improvement was to block-compile LISé-NLS.
This tgchnique provides a way of compiling several functions
(LISP routineé) into an entiﬁy called a block. Once a block
is entered, function calls within it are very fast and
variables” values are looked up direct;y, resulting™ in
considerable execution speed-ups. It ié not rare to see
order of magniﬁhde improveﬁents from judicious use of this
tecﬁnique.

4

-

The whird big improvement was to pre-comﬁute the tasks’

vectors. Previously, when a user’s performance of a task

was to be evaluated, the system used LISP-NLS to perform‘the

N N
. L 37 »

X

correct sequence of commands and Lo obtain the correct image

of the work space. This was then compared with Lhe vresult
<

of . the user’s c¢ommands. JIn the present version of

NLS-SCHbLAR, these correct images are obtainedwfor each task

-

at system generation time, and are slored away in a separate

file. oo

~

"

A fill/handle is provided for each task, and is- made
.accessible from . the semantdic network entry for the task so
G

that the correct image can be “retrieved from the file.

Consequently, when a task is evaluated there is no CPU time

wasted in generating the correct image.

;i* \ &\" ~ M //
QO ., ... \ T LTS .
ERIC* - \\ ST T o
. TN - - - T T
e ~ ‘;\ } N \\“\f‘\- . \,\ Al \'\\

SECTION III OPERATIONAL TESTING AND RESULTS

\)« As described at the beginning of Section 11, -
"operational" testiﬁg of successive versions of NLS-~SCHOLAR
started early in the course of our work. For this purpose
we used BB& personnel ranging from completely naive users,
through secretaries with experience using other
compute}-based text editors, up to experienced computer and

.

behavioral scientists.

When our system was (reluctantly) pronounéed ready, it
was used in an informal but realistic testing gnvironment by
1% non-BBN users. Among them were DOD personnel from the
Air Force Data Services Center -- an outfit chosen by the
Contracging Agency -- whose sophistication in using “NLS
ranged from very naive %o experienced. ZPn addition, the
Contracting Agency solicited an independent evaluation from
qualified Technical Personnel of the Information Sciébces
Institute (ISI) of the Univensity of Southern California.

The results of this evaluation are described in a report

which is included in this document as an Appendix.

»

The data obtained from the operational testing is in
the form of dribble protocols recording \Qge "diEloéue"

between users and NLS-SCHOLAR. Over 50 protocols were gf\

significant length (ranging from 20 o 90 minutes ‘of on-line

time) to be considered useful and éo\wa:rant their analysis.

. In *additio;\\?g\fhi§xga€h, an amount roughly equivalent was
- \Q\\ ::;‘f ‘
. . \ 35 .

P<ta,

/

O

“riC

*

- _ .
obtained via our own internal testing using BBN s personnel,

v

Taking ever&thing into , account, protocols representing
approximaﬁely 100 hours of on-line time were .analyzed. This
amount of data is not sufficiént to establish stétisﬁically
valid results, but it is énough to sustain very défimite

;
qualitative conclusions about the system’s capabilities and

limitations, :

a

General Results

) The main Lhrust\of this section is to describe and

t

discuss a number of specific 'problems ana problem areas

identified in the course of the field testing. In order to

frame the descriptions and to focus the discussions) we find

it necessary, at the risk of being | considered unséholérly,
* -

to present the géneral results of our anaIysis here rather

than at the end of this section. They are:

1) The tutorial set-up appears to be very effective, New

. information is presented in bits and pieces of digestiblegy
N ,
size and users are kept on their toes (albeit in a very
friendl¥ environﬁenf) with dozens of questions they are
asked to answer and NLS }asks they are asked to perform,
Users do leagn NLS: this is~ evident not only in the

progress of their work, but also {bdm personal

communications (telephone calls, messages, and link ups).

. '

10

e i ’ 36

-5

v

ERIC.

Aruitoxt provided by Eic:

7

2) Th#& "supervised task environment", whereby the system
evaluates the results of a user’s performance of an NLS
‘task and offers comments about it, appears to be . very

L ’ . /
valuable. The system succeeds in pointing out mis?agsf

and provides irformation -useful for rectifying them;\

However, the system is sometimes ovgﬁ-zealous (rejecting

outrighfly }he performance of a task for some trivial

s . ~

discrepaqcy) and sometimes fails to point out some

i

&

/

P d

erronecus action, undeilﬁkén ya the user, These
shgrtcomings Tar t /serious but they detract from the

V,system's gintelllgenﬁ"/96gearance.
/ L

/’ .
///5) A substantial par* of, the sysfem S "smart§ﬂ resides in

L

/

!

its English front’ end; NLS-SCHOLAR is/éesigned so that
/ ’)

. S S . ./ . Y
the usq})can také/the initiative .anyt it is his turn

to type and formulate requests (us ly questions) to the
’ * ‘ ’ . . ° .)
system. Not surprisingly, hgﬁéver, this feature of

’

NLS~-SCHOLAR performed less satisfactorily than the rest
of the system; only abou} 1/3 of the requests formulated
o /o ' .

were - answered relevantly and usefully. This poor

performance may havefinhibiteh many users from asking
y ;

N
A ¢ 0
{

more. questions. - . . \

S , . .
RS .- / / : -
. / V2 . o

In zipw of the ré€sults outlined above, the rest of

»
o

: g . . i
“his settion is concentrated on a detailed discussion of

/ y -

:f the gerfqrmance\of our English <from end, and on the

geveral ,Lkssues it raises in the area of Natural Language

, .//_ g& 4]/,///// .. ;
S\'—/\"””f" : | 37 /' ./

-~ ! // .
Comprehension. P F\x; e

Two points must be consider d_ih order to view this

. .

\
last result 1in the proper perspective. In the first

4
R place, a large ma‘jority of the requests that the system
failed' to answer or answered incorrectly could have been

handled satisfactorily with minor changes to ‘the \ System
)
LY

and additions to its semantic network. Undetected

0

spelling errors, unanticipated synonyms, common but

anticipated sentence syqtax, lack of specifig

etc., are examples of probl of this ¥ind which ‘are

7
- %

relatively easy to.- ectif?lés each Oﬁé is f6und._ As a

whole, however, mu e

Secondly it mu§f’ orne in mind that the tutorial

material - is very clear and complete, It 1leaves

7
<

- ; / * - .
P . relatively little room for doubt <within ,tpé domain of
¥ : [y s

procedural and concept
! \, on

answering system is des#gned to handle. Consequently,

N -

knowledge,“that the question

i\

the relatively few nswered reguests not éover;d in the

"easy problems"

!)

’ /
aBd the efforts

above, reflected a
combination subtler Adoubls

£
- /D

e v
gbncoct a guestion to assess, the

-

sophisticated users to $

o ! <,/
system’s edpabilitieg! . . s,
[. ~ -~ t
i /“/, /
iy > /A
»’ .
\)4] ‘f‘,‘d" o "’) /,
L MC , e '

A FuiToxt Provided by ERIC

~

Swledge,

. , e

N \) .
These questions remained unanswered either because

. ™

they were expressed in round about ways {i.e., outside

the set of paraphrases the system can recognize‘J;;\\hgg
-~ "~

convoluted sentence structures), or because they were

, o ‘
iﬁp gisely formulated. The round about problem was not

Zimportant in our case. It is ‘more likely to occur in
questions' posed by users returning tp the system affer a
partially forgotten previous gxposdre to its tutorialﬁge

material. This situation could not develop within the

A 4
period the system was tested. S “\ &
. (
\ ,
Imprapisely #formulated requests’ were much more =

-

common, within fﬁg relatively sﬁall number - . of

hard-to-answer éuestiéns‘ wé‘ are focussing on, than‘/i/;/
precise circumloéocutionss. Thé@relatiyﬁly high frequen;
. of imprecisely formglated requests an& their i .eren
intereét justifies ‘the(more detailed desc
anqusis of their nature which will be

this section.

easy problems"

H

"What is my current statement>?"

or YWhat does OK/C mean?"

In the-first case, the system’s spelling erroé correction se——
list ontained both the words "statement" 'and
"statyéints", which resulted in 'statement>" 4being
corrected to ,'statements", The system knows what a
"current statement” is (both. the meaning of the concep5
and how to find out .its present_ value), but it was

/

hopelessly confused by "curre %/Ezatements", Given our

current approach that. emphasizes speed and expedie;cy,
the remedy is to éliminate "stateménts" from the spelliné
correction 1list. M better solution, such as perfoéging e
moqphological analysis and checking the agreement of ;ers

¢+ and predicate numbers{" would have yeqpired a

4

fundamentally different approach. ~ .

s . , ~

In thé:second example,'the system knows tpe meaning
of most prémpt symboisy and in particular that of the
/C: prompt (notice the colon). While the system is
= prepared to accept many common abbreviatiens and

misspellings of these symbols, OK/C was not anticipated.

. s
.

Unanticipated synonyms ~ A very common group, exemplified

by, . ?

\

"Please review the one-character commands"

M"How do I logout?")] .

Y ¥

\ _ 40 . .

"Explain-the O0K: prompt™" RN

The system would have answered these requests correctly
if they had contained the verbs "list" or "tell me about"
or "give me" instead of ‘review"; ‘'"stop" or ﬁquit"
instead of/"logout"; and "describe" instead of "expiain".
Figigg/fhis may be trivially’dong by incorporating those

vepbs—imthe internal synon

lists: of the system, or by
incorporating their de tions and wusages in the
semantic network. bserve that "review" could have been

~used to mean something different from "list", 9e.‘g., to

o e e
mean something 1like '"Let's go over—the one-character

_ e
([¢ - . B T . P .

./) commands again", after they have been presented once. To

. - e
- /hghdle this kind of request is feasible but less trivial.

P

42
' 4

Common but unanticipated syntax

"What NLS commands are there?"
¥

The almost equivalent question ("What are the NLS

commahds?") would have been answered correctly, but that

. format-didn "t occurred to this par@icular user. (Neither‘
did we anticipate the "are there" format!)

4 ’ R
- Lack of knowledge - A few examples -are,
~ S

"How do I delete a file?"

\

N J,/’
“"Tell me about control commands”
N v /

45 —

W 41
Q :

"What is an illegal delete?"

Deleting files was not possible from within NLS unti]l
very recently. This negative knowledge should have been
incorporated i; the semantic fdetwork, enébiing the system
to generate 1fs canonical negative answer ("YOU MAY NOT

DELETE AN NLS FILE USING AN NLS COMMAND"). This

particular questiqn generated a rather amusing dialogue
(albeit very frustrating for the user) in which the
system told him how -to delete all sorts of things, except
files. Also) although grouping certain commands under

the category of "control commands" is certainly.

reasonable, the category was not anticipated and an entry

-

for it is™ not <contained in the senantic network. The

£

same apblies to "illegal delete".

PN

* Pdor answers. - In some cases the answers generated by

.the .question answering system were unsatisfactory.
Examples are:

"Describe play"$¢

PLAY IS THE COMMAND YOU TYPE TO THE TUTOR , TO . PLAY WITH /f/J

NLS.
"What do you mean play with NLS?%

PLAY IS THE COMMAND YOU -r= ° / -

"What is a field?"

A FIELD IS A SEQUENCE OF CONTIGUOUS DIGITS OR. QQETTEHQQ§W

LETTERS WITHIN A STATEMENT NUMBER. ;
o . 16 |
' 42 .

-

"What does that mean?"

PLEASE REPHRASE YOUR REQUEST.

Obviously, giving more coherent and complete responses is
someﬁhing_ that can be taken care of. In the above case,
since "field" is a particularly ~difficult entity to
define‘ in a more useful way, a specific examble could be
appended to the definition (FOR EXAMPLE, THE FIELDS 6%
12A2 ARE 12, A, AND 2).

Unanticipated environments. -~ Many of our users worked

on display terminals, Since NLS-SCHOLAR-is geared for
users of hard copy Lerminals, many of the requests

originating in‘.display environments were not contemplated
c‘ K

}n our design. .For example, users of display terminals

.would often forget what task they were supposed to

perform, or what question they were expected to answer.
Every time the system reminded these users about their

pending obligation, they would request a restatement of

the question or.task. Handling such requests ("What was

J

the task?", "Ask the question again", 1ﬁhat”id you want
me to do?") is possible, but again, we did not anticipate
them.

b T P
- e ————

As can be infé??ea Trom the preceding descriptions, the

common, trait. that unifies these classes of failures is our

-

incomplete éﬁticiphtibn of what users would do in otherwise

17,,

.... s s

expected situalions, An elucidaling comment to forestall

our readers from reaching hasty conclusions is in order

here.

- »

- It is very easy to disregard the importance of these
"little failures" and attribute them solely to our lack of
foresight. This condescending attitude, that can perhaps be
subsumed as "How could they have forgotten X, or not taken Y
into account?" fails to perceive the 'req} issue. It is

false to belie;é that incorporating X or bringing Y into the

. this report did nothing else during the last 2 months of
their work, and still the system is plagued with '"little
problems"! The crux of the matter, what must be recognized,

E is that when one is faced with the fantastic "variety, the
multiiudinous aspects, and the changing modalities of the

behavior of a human engaged in a dialogue with a machine,
converging to a system relatively free of these "little

problems" is a very long process. All we can say at this

time 1is that this first round of field testing has been
= ’
extremely useful in uncovering a large number of problems of
- this typg, and that we expect! the next round to uncover a

smaller ndﬁber.

. ‘ The Harder Problenms

We turn our attention now tfo the more interesting

' 438
a

O

ERIC

Aruitoxt provided by Eic: N

v

- - fold will make a substanpiq} dif ference. The authors of.

failuree of our English front end, those involving questions
that were too imprecisely formulated for our system to
answer. The imprecision of these questions stemmed frometih
anaphor;‘fhey contained or, more seriously, from their
. "situational" character; thaf is to say,‘cg?prehendln%fﬁﬁwﬁ
would have involved understanding the process of the user’s

interactions with the system. These questions arose in such

Y

a form'because the user assumed that the system was aware of

the enfire situation as it appeared to him; it i% surprising

to see how large an amount of contextual .information. must be
taken ' into ccount Dbefore such questions can be properly
" .

understood. T

i

The difficulty resides “"‘not so much in the 1literal

\\}ormulations of the specific bits of knowledge - the

questioner might seek, but rather in figuring out what each

have 1learned, the environment he is working on, eic.' These
are very hard problems; they lie at the heart of thé- Natural

Language Comprehension research area and their general

. e
solution still eludes us. Our purpose is to explain why

*hese problemsﬂ are S0 difficult, and to. show the

advisability of indirect solutions.,

49

. . 45

particular person may’ have meant to ask, given his
background, his previous experience, ' his previous
performance, what he ought to know vs. what he seems to

.

h |

interpretation of questions,Y as if they were precise

ERIC

Aruitoxt provided by Eic:
’

"

P

. ﬂ(,,,-«""‘
Many of these problems are rather §Egglsvaﬁd it.is easy

e =TT

to dismiss them because one can—often stumble upon a ’

seemingly general solution whose real. uddeﬁlying "ad-hoc"
e ’ :
character . is hard to perceive, #;6 appreciate tLhe .
N - . : e

difficulties involved, we shall see How a solution ERgwmEmm==""

. —_— -
seems satisfactory for a particular problem fails to apply

to an apparehtly similar one, We shall proceed by analyzing

! K3 K3 { : H ™
five scenanrios taken from our, protocols. Each scenario .

3 - N "
comprises a \description of a parﬁioular situation, the)

relevant context, and the questibn formulated, The

scenarios arb“raaked‘in order of increasing difficulty, in

s

termqwféf’fﬁé mechanisms that have to be invoked in order to'

— .]
handle them. \;\\\~\\\\;\\\ - . ;

\ ~ - B

Anaphoric‘reference‘ ‘ ‘\\\\\\‘ =

|
First scenario - The curtajn rises after . the student has

been taught the purpose and usage of a fairly 1arge number

of "viewspecs" - charagters used to specify how an NLS file

is .to be printed or viewed. Before leaving the subject, the
\:‘ﬁ____‘,//f .

system menttions several additiornal viewspecs, and then tells

user:
—
b

As you can see, there are a great many viewspecs. If

you are interested in what they cont 1,;Xgu/may ask me
questions about them. However;“"the ones tha&\g%ge been
introduced here are likely to be sufficient r‘mgéﬁ
purposes.,)

At tq&i;gi%nt;~thewstudent asks:
- \w\\‘ \——\,:L\

This example 'is deceiving. .Beeause it would appear that
handling such - a si@ple gnaphoric reference is wgthin the
gtate of the art [ﬁbéAsl 1552]. The difficulty, however,
«mm%nésiq§§‘ in "the 1lack of coupling between the question

- answering system and the tutorial material; in other words,)

the questign answerer does nat know the details o
__tutor has just finished teaching anX cannot

.. e R . &
request in context. .

e s e

A conceivable way to cope ‘with tﬁisApﬁoblem;wQald be to

-

have a complete internal representation (in the semantic

.

network) of the tutorial materizl,land then synthesize ‘the
N) . - , » \\
text the wuser reads from that internal representation,

-

\ ~
Given the present state of our knowledge on how to represent

information in a semantic network and how to generate
passable English from it, such an approach would fall short
of our needs and would be totally inadequate for teaching

naive users,

.

Another way to cope with ‘phis problem would be to

re-write the tgxt so that such anaphora uld be inhibited

o

from occurring, rather than being gncouréged as.they
. \A\\-‘m o . . h
this example. The student is likely to frame his questions

in terms of the words of Lhe text, ("If you are interested —————]
- ’ \" , N

e o

o1

‘47

~ - \

in what they cong?bLﬁ), so the eliminépipn‘qf referential

pronouns in the text might .encourage him t§’ eliminaterythem
> \

in his questions, e O T
% ‘63 "o .

But even if we could syn@besiie thgiitext rgracefully
from a semantic network or re-write it carefully with an eye
towards forestalling anaphoric questions, other difficul g1e€s

',M.. \ . N -

-~\\\;:Mgglg_3£;se;a§\39dicated‘pQ“ﬁﬁgapgxt scenarios,

s e
/

S T r— -

Elliptic structure . .

+

Second scenario - The system tells the student:

=&~ . NLS FILES
\

\ -
™~ In order to6 begin using NLS you will need to sp
T which “file’ of information you want to work with.

’ Each file is sort of like a natebook or folder in
. which you can keep information., —~- -

~) You may keep as many different notebooks (files) as
- : you like. . - =
. Files are automatically stored when you are not using
SN\ them. . T ==

———

-

Before you can work with a Tile you must “load” it from
- the storage into the working space- of the computers N

- —- a

Each file has a name so you may refer to it~easily.

File names are made up of letfers and digits and may
be quite long < like BUDGETFORFISCALT75.
— : . No distinction is made within file names between
T upper and lower case letters, - both are treated as -
the same character,

ens 1inherent in.-

this examplé, we shbqu‘mgntion in
{ -

_uéthe\?ccurrenee of this ques%igg’ggglaahgye en prevented by*\\\\\\\;\\

re4WFiEihg _the text so .that it specified in exact detail.- ™
~ N

what,characteré\ébuld be used in designating file names.

_ __This—would _provide, however, more detail than most users

- really want and is the sort of information that belongs more

properly in a reference manual than in a tutorial.) -

’
/

' Let us ignore the problem of the conjunctional form of

T
\"‘\\——.s_

. T T
"~ the question, which we are presently unable to handle, and - ~———

ify it to be = . 1 , |

\ ’ \ R ‘ o ¥
e t—Na e‘ua\gfre are théxtETTtptieaLxg;‘;«;;;m
\‘4 {7‘#?»‘ ™ () } \

question (it™s~.not- .a sentence) dnd_the - _._

\\« - RN

ically acceptab

-

ébié) referrents; For - .
c \h\ \\\Q“
_ ’ \ ‘ » \\\\ - N A_‘\\\\
——____exampl \ . last sentence. uttered by the __

a5 UPPER CASE

- . BLANKS. >~
\\ ’ " ew

. - ~

- . If instead one focused On.files (

rathe
.

- ‘one might generate pﬁe answer

YOU MAY KEEP BLANKS (as
characters) IN FILES. E

In order to generate the ans@er that the student is

actually seeking, i.e.,

~ o ’ \
FILE NAMES MAY NOT CONTAIN BLANKS A
ve ~-§Q;i crucially important new compongntr‘a model of the

.

user. \\\\\\\ o

L ~h“_;-—7:—~SU6H“§/ESEEl would be used, perhaps unconsciously, by a

A e . . .
human tutor in’ answering this question. An experienced

tutor knows that ‘the rules about permissible characters in
file names vary from system~§o system and might be expecting
such an‘gnquiry about file,ngmes E;om.a non-naive student.
The fa that this —sfudent chose the term mmspecial

characters"”, not mentioned{:in the text, indicates -that he
>~) -

<

has some \Arevious experience. He certainly wouldn't be ~

» e e

*—\\\xni#*askigg whether blanks could be stored in files, or imagine

thatwrblénké come 1in both ubpeq and lower case varieties.

®

Thus for a system to cobé‘with a question 1like this, it
would need to have .a broader knowledge base than that

describing NLS; it would need to have knowledge about the

capabilities and expectations of the user.

} 2
Indeterminate Reference '
. iy .
Third Scenario -~ A similar situation (but with an

Y

‘interesting twist) apbears next.

-

-

~ . Anticipating students® wuneasiness . and nervousness
\\\\\\ ~~— \\ y N
. e e 7T I
D T~ ¢ . B

R B " \\\\\

i

L)

<, . o N) - Y 2
N /” ya * -, 2 /// - . . : e
Lo R o J/ - R - B
. -7 1 - M

- before pérf%rming their first task, NLS-SCH

>

rather pre01se 1nstrud@10ns. To witsz

{2 LOADING, A FILE B
. A ': i) ‘/ - .
I'd like to Show you tne file namgﬁ DINNER/so you ,can
see hQW’an NLS fili/;§<structuPed. .. .
N - sy s - -

P
&

/,

é with it. /' / ‘

: / A .7 . -~
o : .

WHeq the- BASE C: égpears,’ he commané

7

load <8P> file <SPY DINNER <CR>

te that you should” términate each word of. the
command with a space (<SP>); you should terminate
the entire command with'a carriagg return (<CR>).

N L (You may type DINNER in either upper or lower
. case .letters.)- ‘ ¢

.) o -
As t single commanﬁ/comggéf' the task when the ”///
n ,

./

t BASE Cg appears [type

‘(

. quit <SP> <CR> A ///

1131 then.check what you’'ve done " and p01nﬁ/:ouf any

mistakes ' you may have made. Please be sure you type a

~ - <SP> after "quit", before you type the ;CR>

ir” you make a’. typing efbor while doing this task, you

may use <CTRL-A> . to remove “the 136t character, or
<CTRL- X> ‘to délete the ent € line. ” 7

- © s

These commands work in the same way,/whether you’re

- typing .to me or.to NLS. . -

/

: . Do you have any questiops be?%%e doing this task?

2

And®Here the user asks:
Y ‘ ’ ¢

g
L . S ; !

Your first task//f/to koad this flle so you _can yerk

-

¢ %

"Do I type ‘the entire command?"

[

' This is a'EEfﬁation&in which even a human tutor might have

~

difficulty figuring out what this user wants to know. Let's/

consider some of the possible answérs:‘ - /

1) Focusing on the Hdst two sentences before questions are

¢

invited, the system could reply*

.

NO. YOU DELETE THE LAST CHARACTER USING

THE <CTRL-A> COMMAND.
;///"%5 PROCEDURE: YOU DEPRESS THE .CTRL

/ KEY AND THE A KEY SIMULTANEOUSLY.

/ This is® NLS-SCHOLARese for "Ng. You doq;;/hﬁzg to spell

L

// out <CTRL-A> to delete a:charagte?. You only have to

depress the CTRL key &hd the A key simultaneously."

4 4

2) Focusing on the ird and the fourth sentences, the

//éystem could /answer with something akin to "Yes. You

must spell out the eﬁtire command exactly as you are
told."

3) Finally, the answer could be directed to the fact that

all parts of a Wcommahd must be specified, and to type

two part command leads nowhere,

Y/
he user model in most people’s mind

would not be suffjfient to identify the purpose of

d anyone ask it? Indeed, isn’t the r

question. WO
in ,ﬂﬁ?ﬁgﬂ the commandsy for the first task are to be typed

udents already used the <CIBb<ﬁ$//z;;;;;;’~;

oduction?

haven't

L
//

7 Thg,solutﬁgg to this riddle is that this ¢ particular
— .

4 questioner was familiar with NLS and was qccustbmed to

- -

typing just the first letter (or two) of each command, usihg "?

NLS“s expert input mode. His questioq/geflected his doubt : y
that NLS-SCHOLAR really mfignggrfﬁfa to type each and every

character of a co , and wanted the system to confirm its

i ions. This familiarity can be gleaned from watching L
his performance on subsequent tasks, but not at the timg the/”’/////ij
question was asked, just before the first task in>rLesson °

7 One!

4 7 Y

/ ' .
It might be argued that the needed information could
have been obtained from a user profile'col;ected beforehand.

The probl;m of acquiring if might be handled by inserting

quesbiqné » into the introducti about his previous

for example, whether he

experiences. R

ne coqld find

r witﬁ;/ﬁgr

ENEX op- others), editors (if so, whether NLS or

,wagr famili inals, computer systems (if so,

whether
. 6thers, and if NLS, which version),. ete. If his -answers”

. warrantéd it, certain parts of the introduction might be

skipped; a fairly detailed use} profile could be generated
« ’ . b LY
from this information.

A limited user profile could be easily gathered and

should be of assistance in coping with questions like the

’ 57 -
, : . 5

3

/

, above, but’ using it in the way we have described implies /ﬁ

-

that the ‘requisi;%”knowledge,about other computer systems, -

o

terminals, characteristics of user behavior, etec. will all

frave to be within the system’s knowledge domain. This .

multifold expansion of the system’s field of expertise and

its integr tioﬁ'inyo a coherent whole, would be a formidable

e B —_—

It may be argued that the adjective "entire", appearing
the fifth sentence of the tutorial material and in the
qugétion, is a clue that helps to link the questj h with the

desired answer. As mentioned earlier im another context, a
-7 .

' -7
person involved in a dial often adopts the same ,w6?d§ -

that were just used by the other party. /ﬁiﬁg/%ﬁég, we have

a possible way out: lexical clues can help disambiguate what

. a student’s question is ipout. But that won’'t help us
sufficiently as the.next scénario will show.‘ ‘ \

Fourth scenario - After having learned how to usg-;ﬁé Delete -

- e :
command, and after having actually practicedt;he command by

/

deleting three statements in his own workiag/file, the user

’

-

is told: s -

]

Please print the modified DINNER file so you can see
that the statements contaiming "tomato", "rhubarb", and
"strawberry skortcake", have all been deleted from the
DINNER file. Nk -

» ’q’\'.“ P

54

After he prints what he is asked, the system continues with:

T

A}

. Note how the 'statement numbers have been changed by
. NLS. You can see that many statements have bee
renumbered (“promoted’), some of them acquiring the
‘statement numbers of the deleted statements,

. Although shatements 1A, 3A1, and 3B were all
deleted, these statement numbers still exist in our
file -- but the statement contents are now
different.

]

Would you like to ask any questioms?-———
At this point, the user asks: -

.
"Can I delete these modifications?"

.- Since many people find it haﬁd,to understand this question,

let us ﬂiérify it with the help of a paraphrase

"Can I meltore the contents of the file to what they
were before anything was delete@?" .

L]

Several new problem elements are i?figguced into the
picture by this scenario. ‘
‘ ra !
" In the first "place, the .anaphoric reference 1is to

previous actions undertaken by the student .(or oh the
student’s behalf) using NLS. The reference 1is directed
neither to concepts explained \earlier, nor to anything
represented in the semantic network (the question is not
"Can I delete modifications"). This illustrates the need to

59

. 55

S
bring into focus the history of changes (modifications) made

to the user’s work file, which is not hard to do in our

systen.

3

In the second place, here we have fa case where

"modifications" could be-misconstrued as being inspired by
"?he ﬁodified DINNER file" in the tutorial material. Ié
reality, hmodificatidns" . for this Qser turns out to have a
much firmer root: experienced NLS users know about the
ﬁ"modif;pation file" (a file where all the changes made to a
. —wquing file are kept until the working 'fiie’ itself is
ﬁpdated) and how to manipulate them. This user is no£

naive: he knows that NLS provides specific ways of

) "undeleting" and he is simply and benevolently testing how

»
a

‘much NLS-SCHOLAR kno&s about them. . R

7
L4

- In the third piace, we have thg rﬁther ;ncongruous use
of the verb "delete" with the objgét'"modifications". All
- that the(student has learned up to éh%s point indiéates that
"deleting" is a positive action resulting in something being
eliminated from his ﬁork file, bﬁt here deleting something
would result ;n the reappearance of that wbich was deléted
earlier! If we‘know what kind of "modifications™ the stud nt

is talking about, we can make sense out of the quegtion

without too much regard to the verb used (try, for exa

"restore" or "undelete", or "do something abou

60

56

‘,0

hbe speaking about outweighs otper interpretations stemming
. from his choice of words, such as "Can I. delete (the

statements containing® these modifications”"

Fifth Scenario - We begin at a point where ’Ege system has

just _taught the student how to .load and print a particular

¥

v « ‘ \
file, an the.student has successfully performed two tasks
'requiring him to perform these actions. The student then

has available the following printout of the contepbs'of the

e

¥l

file..

”,

- ’ s .
< TUTOR, DINNER.LNLS;1, >, 14-SEPT-75 13:43 LAC ;;;;

s 1
1 SOUPS
1A tomato ////

— 1B. vegetable P
' 1c cream of mushroom s
2 ENTREES ' .]
2A fried ehiclken ~
2B prine ribs v
2C scallops .
2C1 broiléd < i
2C2 fried -7
; 2D salnmon .
- 2D1 with cream sauce 7
3 DESSERTS, o
3A ple S)
.3A1, rhubarb
3A2 bluebefry
3B strawberry shortcake
3C ice cfean .
. 3C1 blueberry
. - 3C2 maplenut
3C2 chocolate
3CY4 coffee
3C5 peppermint

.ﬁf\mﬁ__-" ~3C6 cherry . . S

‘The system pe?ins to deseribe this file as follows:

s

61

57

THE ORIGIN STATEMENT
Let ‘s’ look at the information in the file.

Notice that there is a line at the top which gives
identifyine informatiion about the file

This line is called the ‘origin statement’ and is
supplied by NLS.)

First it gives vou the name of the ‘directory’ (a place
in the memory) in which this file was stored. Then it
gives the full name of the file, and the date and time
of its creation.

The file name includes an ‘extension’ specifying
what kind of file it is.

In this case it says that this is an "LNLS" file.
(LNLS stands for LISP-NLS and indicates that this
file was made by our LISP implementation of NLS.)

The number after the file name 1is called the
‘version number§>\\-f')

The "1" here indicates that t@is is the first
version of the DINMER file that s been made.

Do you have any auestions?

And the student asks:
"Are the brackets part of the statement?"

Here we have two anaphoric references ("the statement" and

»

"the brackets") and a questioned inc¢lugion relationship

between themnm. oo .

Finding the referrents (the first line of the printout
as a realization of "the statement", and the left and right
anele brackets within it as "the-brackets") involves methods
of solution not required previouély. "The statement" can

62

58

readily be assigned the referrent origin statement” by

means of the\previously h&pothesized representation of the

tutorial materi@i,and by focusing, but from there on we face

entirely new Pizf%igs. In the first place, the student uses
"the brackets" ¥o uescribe some portion of the content of a
statementtu Surely we can not expect the system to be
capable, “in gengral, of dealing semantically with the
contents of user files. In fact, referr;;g t?/ipatemenE'ZD
as "the fish" is possible only beéaﬁse of our knowledge of

zooloey, which has little to do with text editipg systems or
. P - -

with NLS in particular.

Secongly, althéugh "origin statement" is a perfeétly
valid referrent for "the statement", vhat is really meant is
"the particular realization of an origin statement that 'is
}epresenten in the first iine of the- pript ‘out".
Presumably,.quite a bit of inconclusive inferencing will
have to go on before the system quits trying to find a .

connection between brackets-and the concept of an origin

statement (after all,, ‘sguare brackets ¢can be used in file

»
N &

names!)

~

In the third place, even after the correct referrents
have been identified, what sense does the question have? Why
shouldn’t, a part of the content of a statement not be a part
of the statement? Isn’t this obvious? And if so, why would

sucﬁ a question be asked? If the interpretation "upper case
63

59

blanks are treated the 'same as “lower case blanks" could be

rejected for being ‘trivial why can’t this one be re jected

similarly?

The truth is that we don’t know why this particular
user asked the question. We can-only speculate fhat he was
" a TENEX user and was wondering if the angle brackets were
used in a fashion similar to the way directory names are
denoted in TENQX; or he may have{been promgted to ask this
guestion because of the way NLS-SCHOLAR denotes certain keys

(<CR>, <CTRK-A>, etc.

This is a ggg; place at which to stop and recapitﬁlate

the preceding analyses and discussions. We have segen how
each scenario has introduced new Drpbleﬁs, and how eacﬁ new
problem has requiped more and more complex methods'of
solution -- and 'yet, there is no indication that this

escalation of coﬁplexity has ceased.

-

Proposing those methods, we stretched available ones
and hypothesized new ones to such an extent that continuing
to do'so would have been utterly unrealistic. For example,
the user models we require would have to encompass a large
amount of "worlg knowledge" in order to cope with situations
such as the ones exemplified in our scenarigs, and yet the

theory underlying such models is in its infancy at best.

The exercise we engaged in is certainly useful and
64

60

illustrates the need for continuing research, but above all

) ig‘demonstrates the need for a pragﬁatic approach, i.e., one

based on accepting the seriousness of the difficulties and
t®

finding a wé&'around them. Rathér than exploring a large

<”“\ number of ‘plausible interpretati of a user’s request, it

'is better td either forestallithe request, or to seek its

\

elarification.

; T ‘:i\‘_\ k\/ \
‘"SECTION IV - RECOMMENDATIONS AND CONCLUSIONS

~ — e
‘\‘

In this section we summaffien\ggnclusions reache
thg/,moét spart in previous sectiongt\\ang\\zi\\i?rmula e
recommendations for further work. . Qur contention
oée more year of relatively— low. level effort can make

NLS-SCHOLAR a very useful operational system.

Our first recommendation is to.continue to improve the
English front end module to rid it of the nagging little -
problems Qescribed extensively in the opreceding Eectiod?_
This can only be done on a continuing basis, correcting the
problems as phey appear in the course of bona fide uégﬁé\\of

™~
the system by the type of users for whom it is intended>\

This process will be long, but tne result should b;\3\33§£g? N

able -to answer as many as 80% of the reauests p&sed. In \\\

parallel with this effdrt, techniques such as the

\ N .o .
sketched in the previous section for _circumventing the

.

harder problems shou{p be developed and tested, and reseérch—

efforts aimed at attacking these problems head-en should” o
. : |
stepped up.) - J

t

~.
Qur second recommendation is to improve the task

evaluation module~%n the following ways:

- 1) Make it point out more clearly what is wrongkﬁifﬁ\\ag

student s result. For example, when this module responds ™

"I wanted you to change A into B but you changed, A into qug
. ‘ - i s \ A ~
- _1it is hard to see sometimes what the difference between . B e
" -
~ and C is, —1In other ‘words, in our efforts to avoid ™~ ._

~ -

presenting - the offending text in isolétion witnout
! L)

conf@xgnal inf tion, went too much in the other

direction; we showed so muc

specifies got drowned!

. B - ~
N
N N
| | \\\

TN

AN\‘\\« ... network with a list of expected errors and specifiec wa
) S N ~ ~ : .
\x\regggb/fhem. This WGﬂld\ipermit by-passing-—-the standard
/)a . y /
) - reporting format If one of these ecific errors were found.
= " ///;jﬂl /. ,///////

ix 1t" fa01l\ty///o/'éVSI/A h

=2
: RN
/;ofiiimes}bostly consequences of the tas evainators s z

his facility Wlll hand ‘back a task env1ronment to the u;é;hg\\
.// '~ \ ,\ ,/\

- Eiifter the = system has found f‘au~
. . <
R he user to do it all over a)

h their worQ\\snd satisfy
) . requiremeqgts in their. own‘way. ™ ' w<;'“('
"‘\ \ ~ [Tk

. ~)
‘x \\ . W N ¢ - .
1 Final}y,‘ ' uld }b%iiiy make this~ \odﬁl\\
B "intelligént" ld be t give i\\phe ability. to underﬁtand) \\\\
\\ . * .. > T
: and ‘interpret the use
. \‘\,)

‘s i tentions offer\ helpful

\.

comments., ff\{s not enough to point ‘out what is wrong Q&th
N ~ \
‘\\\ ~a result; the most hQ&Pful tuation is one where the userh&\
. NG
N t r ~\}ut1niz d and crit ed."This area
. %%%g;iggxi;;\HQ%i\f e s i an} ’fgiz |
- ’/“_/" . R -
Q X ’) N \< 63 > P ”

ERIC ™~ SN o

- —_ ;;,gt.__ ® f “
. . b A “
—_ is certainly ‘one where further developmen? is needed.
e - . - & . - /
/ S~

Qur third recommendatgsﬁ\‘ addresses the tutorial

material, ‘Although it is certainly in good shape, it could
~ .

\be,fhprqved by adq;nz the capability for the wuser to

\\redirect the order of>presentation of a lesson via requests

RNy X
£ sﬁg§33§: o — _

g : N
"Let "8~go back £o DELETING BRANCHES"

"Tézi me éﬁain about KC%BL-X)"

N

We have the nqpessary‘; Qundworkklo handle these .requests

)

for revieéw,

- 3

* the new cont

fulfi}led; that 1

\"”"”"""» .
has been restored t5

regU®

‘\\\%e could alsa\hangi?

<4
"Let “s skip this task"

. L :
without too much difficulty. Here the

.

- T —n \ o ~
~ - _acqyired after the task 'had been completed, muig\ be
h;\gk“ LLLLLLL explainéd and justified. Requests of the form . ’
o - "Let s skf?ﬁglg about INSERTING" .
and . "
"Teach me about VIEWSPECS" (implying a 1arge. forwagg B
jump) 1 ’
raise.other issues as weli. Not only the problem of

\ -~
briniipg the file up to date more complex €3‘bxplain as many
1A . ‘

e 68
oS~ | | 64

‘

N
cessary changes to .

T~ the __user’s file, to bring it gé\ghe\staté\ig would have

tasgs'may be involved, but also some of ' the concepts -and

t .. .
terminology sk;pped over may be needed by the student Le
. ~) , .
order to comprehend the follow1nq material. Allowing the
. . Y

student to q'v1ew is re1at1vely easy; allow1ng him to skip

forward is oulte difficult iiven the linear development ‘of

N

tbe textual mater1a1.

Y

-~

I
Epllopue\\] Q}
N T
~_

7 It 1is easy to jump :to the conclusion that - the

unresolved problems we have ‘dealt with so extensively,

preclude systemsfsuch as NLS~SCHOLAR from becoming useful in

Ay

-

an operational /environnent. This» conclusion would be

g erroneous for several reasons J\\V* | 7 \'
.

a) The frequency of occurrence of "hard problems"l'zg“jvery

fsmall; " Most . of the users’ requests we have seen belong

to the "easy to answer" -categOry, regardless of the

actual penformance of the preéent vérsiom\of NLS-SCHOLAR.

%

As more and more o;\knf;ﬁlttle problems are irpned out,.

users will—be positively reinforcéd towards expressing
their requests ” in the kind of English the system

understands, Nand with the precigion of formuiation the-

- . /)
system requires. ~ : : ¥ N

LN ' .

As the mumber df failures'decreases and) the number of

users increases, it heedmes both feasibde and economical

-

to provide a human expert to back up the system as a kind

o

of "consultant" In a computer network environment, many

) 69")

s v

b

users from different SE,J ntare of this
immediate ,and most effédfive Notice also
4

that while hum?n experti is concentq‘ﬁed in the hands
t : o

of one expert at any one 'time; e

-

erts located in many

sites can take turns at minding t ' system;. i.e., human
&
. 4

'expertise may be concentrated buf not centralized.

of 100% stand _alone operation

couhterproductive. It is futdd

e because th

performance is probabigﬁﬁmpossible to obtain just think of
how few people can do it!). But, more impofFtantly, it is
counterproductive because widespread use of'an 80% effective

facility, for .example, would mulitiply by’§ very large factor

Py,

the consulting capacity of a human expert, enabling him to
reach more people Qan he could otﬁerﬁise and to address

himself to the relevant problems Quiqﬁly.

i

N

-

e -followitEXJ%valuation report was written n} David

Wilczynski? of the Information’ Sciences Institute of khe
University of Southern California, at the specific request

of the Contracting Agency. .

»
INTRODUCTION
/
/

This review is based on my own experience in early August

1975 with WNLS-Scholar, a mixed-initiative tutorial CAIf

system for teaching a basic subset of the text editlng
subsystem of SRI’'s NLS programming system.

NLS-Scholar, programmed in INTERLISP, was written by Mario
Grigmetti and his group at\BBN+< The system has evolved from
Jaime Carbonell’s Scholar \(which teaches South American
geography) together with substantial influence from Brown s
SOPHIE system. The system'i organized to:

a) Present textual, tutorial material to introduce the
user to a terminal and to NLS. g

b) Provide a simulated NLS system to the .usér on which to
practice # what he has learned, as well s to do
system- generated NLS tasks .

Q

c) Provide a natural language question-answering
component which responds to user queries by: 1) doing
Al-like searches in its fixed data base, or 2)
executing™ the right NLS commands on the user ‘s current
file to answer dynamic questions.) ,

d) Present various NLS tasks to the” user to test
comprehension of the material just presented.

" The course is divided "into the foliowing lessons. Each
lesson takee "about 1 hour, with’many variables determining
the exact length, load average, attention span, competence,
etc. ‘

)

Introduction - Control characters

N
71

67

Q

Lesson 1 - f

Commands: lLoad File, Print File, Delete, Update

o

Concepts: NLS files, NLS commands, NLSfﬁronpts,’structure
units (statement, branch), string units
Lesson 2 -
K)
Commands: Print Rest, Jump, one-character commands
Concepts: Control Marker, content addressing
Lesson 3 - /
. %
Commands: Insert, Create File, Substitute
Concepts: Level, level adjustment

Lesson 4 -

Comnands: Print, Transpose, Move, Copy
Concepts: Pléxes, Groups
Lesson 5

- Commands: Show Viewspecs, Set Viewspecs, Reset
Viewgpecs, Output, and Help.

-

Coficeots: Viewspecs, Text File

II. /GENERAL IMPRESSIONS

S is well suited for CAI methods; NLS concepts are short,
factual, and "nonphilosophic,"” a good method.,is avallable

for uestlnr competence (either 1nterfa01n*¢(’reotlv to LS,
or sirmulating it), and the-information is incremental and
additive rather than diffuse. jl

The main point is Scholar did teach me NLS. At the start of
the program I knew nothing about NLS other than whatkit is;
now I know the NLS terminology and how to use the . sydtem.
However, improvement 1is necessary in several area if

olar is to be a finished production program, conpetitive

#ith possible alternative teachlng methods. The following

two sections will review Scholar’s strengths and’ weaknesses
III. THE ENVIRONMENT pEFERED BY SCHOLAR

Tﬁe, Scholar CAI system is classical in that text 1is
presented to the student in prearranged frames with tests
usually following each.. The inclusion of a natural language
interpreter is an innovation which allows the student to ask

72 ,

. 68

.‘/) ST ‘

. questions during the program. It turns out that this riode
of operation has advantages for nonstudent types. Studies
have shown that people relate well to computers, suffer less

N ~anxiety, and feel freer to experiment and ask ocuestions in a
CAlqenvironment. The critical aspect of such a system 1is
its transparency. ’

machinery, he can \perform in the short term (answer
questions, do short tasks), but lacks global comprehension.
Thus the type of display and the "smoothness" of the system
become important factors for people not used to operating
such devices. Specifieally, NLS-Scholar is intended for
typewriter terminals. Having written a CAI system for such
terminals myself, .I have verlfled that all students are
acutely aware of the typing noise and slow speed. I used
NLS-Scholar on a 2400 baud video termihal and was much more

- satisfied with the results. Since there are times when
hardcopy is needed for back referrals, BBN would do wel; to
offer the appropriate hardcopy text to .the student as an
addition for the wyideo terminal. ’

If the student noticqg (or becomes preoccupied by) the CAI

A parameter of system smoothness is its responsiveness. A
high load average (virtually anything above 4) combined with
the slowness of INTERLISP made Scholar move at an unbearable °
crawl. When, the 1load average came down to 1 or léss, the)
system moved about sprightlyv. The difference here 1is more
than one of .convenience. .No user (unless he is forced or
paid) will sit through a session of -Scholar on a machine

with a high load average. If he nmust, it will turn out to .
be a painful, wasteful way to learn NLS. L]

A few of the INTERLISP features caused some unnecessary
distractions. I found the rarbage collect messares ("Excuse
K-me, while I rearrange my memory!") disconcérting since they

caused a visual break in my concgnﬁratlon I appreciate the
attempt to explain the 1npend1nv delay, but I think the
typed messase is tod visi . :

The preprocessing of all questions and responses by ‘DWIM

also caused some anrusing incidents. For example, in

answering the auestion, "What character prints the context
) “of the CM?", I responded "‘". DWIM turned the slash into a
Y “on (a common INTERLISP occurrence) and then MNLS-Scholar
told me that "‘", not "?" was the correct answer. Those
sort of bugs are not serious and easily repairable, but must
not exist in a released product.

NLS-Scholar offers a medium which can be started when
desired ~ (assuming machine availability), stopping at
arbitrary points, and proceeding in% whatever pace is
mfortable. If »tLS-Scholar were set up .to operate at
different modes (beginner, expert, review) then the problem

i 73

B 69

T

/

-

of retraining and refreshing previous NLS users would be
simplifiied. This may not be a simple addition to make in
HLS-Scholar, but judging from discussions with users at
funter AFS, it would be powerful and useful.

IV. :TEACHING/SQHPONEﬁTS 0% NLS-SCHOLAR

The three main components of. NLS-Scholar are: a) the'

tutorial nformatioh, b) the natural languace interpreter,
and c¢) the test management. .The first and third are CAI

standards, while the second is in the realm of Artificial
Inteldigence ‘AI).

concisely and accurately. At no time did I feel that I
was being either overloaded or nursed through, both

factors which led to .effective and willins comprehension

of the material. It is easy to oveblook or underestinaté
.aquality in this area because good tutorial services are

not as visible as poor ones. Because of this phenomenon

I want _to emphasize the excel ce of the tutorial
.information. - : ,

////’ 4) The text material was impressive; it was presented

B) The natural language interpreter is more complicated
to evaluate. Most likely, it is the most complex part of
‘the system, yet probably the least useful in its present
form. The main problem concerns ifs robustness. Often I
asked _a—simple question 1like "Please: review ﬁhé

. — ®Bne-character commands,".and got only a "Please rephrase

vour request™ reply. In this case I think the problem is
that "review" is not part of Scholar’s dictionary.
However, in rephrasine the aquestion fto something .like
"Tell me about the one-character commands,”" I would just
ret a list of them without functional definitions. To
get what I wanted I would have to asx for each
individually (e.r., "Tell nme abbut the command."). It is
.disconcerting to have the parser or retrieval mechanisnm
fail on a simple request, but not to know why is worse.
Just asking for a rephrase does not indicate what the
failure was; this information will surely be useful 1in
composing a different reouest. Whether most users would
want such informd8tion is a different auestion; I would
have likpd it.

It is hard to be ‘critical of this natural language
business, since the Dproblem is still a major research,
not developmental issue. : Still,” I wonder if Scholar’s
interpreter is state of the art; I am thinking of Woeds’
moon rock program. Since that program is also a BBN
product, it would be interesting to get,a comparison of
the two systems from,K the NLS-Scholar group.

74

70 X

<
b

]

The' lack of robustness of the English, interpreter
detracts somewhat from Scholar; I found myself not using
that component. The table look- -up kind of questions it
could answer- would be better solved by Jjust having access
to the table in some primer format. Again, the 1lack of
field ‘testing may indicate that this is just a personal
reaction; but the shallow range of questions and answers

.makes the- ‘current worth of -this subsystem suspect.

Certainly, it doesn ‘t fulfill the capabilities of a human
tutor. .

+ C) The test management phase of Scholar is composed.of a

series of questions which are answered either by doing an
NLS task, or talking directly to the Scholar top-level.
In both cases the answers or performance are evaluated
with feedback as to correctness. The ability to check
answers 1is one of the more difficult tasks for a CAI
system when the domain of true-false or multiple choice
questions is not used. "Scholar does admirably here but
is far from perfect. o

The top-level type questions, (e.g., "What is the
statement number of the statement that will be printed if
I now use the backslash command?") will be looked at
later. The NLS tasks,. the heart of the testing
component, will be reviewed in depth.

The basic mechanism for matching a task answer to the

‘correct one seems to be:

a) If a file manipulation task is involved (e.g.,
INSERT, DELETE), then the resulting file and the CM
'(control marker) - are checked against Scholar’s
expeetation.

b) If @ printing task is involved, the output of the
print command 1is %rappeﬁ’aud matched against expected
print, and thé€ CM is 'checked for positioning.

At no time does it appear that _Schglar looks at " the
student’s input sequence. This 1lack leads to many
unfortunate experiences. For example, one task asked
to delete two consecutive statements, expecting the
user to use the sequence, "delete statement 1B5, delete
statement 1B5," to account for thé renumbering done by
NLS. I tried, "delete statement 1B6, delete statement
185," to accomplish the same effect. Scholar told me I
did the task correctly and then the next frame

described how I could have accomplished the same task. -

by deleting statement 1B6 and then deleting statement
< 185, Not serious, but the question of systenm
transparency arises.

~

75

71

A more serious flaw in this purely ex;ensionél rm of

¢ Cot testing appeared in the task to ,test the use of
“CTRL-E> for insertineg a series of statements. I did
the task by inserting all the statements at the same
level (superfluously using CTRL-E after each 1insert)
before going back to insert substatements. . Even though
the resulting file was correct, the CM was* not where
Scholar expected it and so I was informed-of this
"error" and told to redo the entire task from scratch!
Needless to say, I didn't enjoy retyping the whole
thing. Worse, however, was the failure of -Scholar to
recognize what I did, tell me the right way to do the
task (i.e., us€ one CTRL~E and move up and down levels
using the L: prompt) and thén let me proceed. It is,
however, easier to be critical. of this flaw than to
suggest an alternative. A deep understanding of the
intensional command strings represents a large (perhaps
unknown) effort. If accomplished, there is no auestion
that the system will appear much more intelligent _then
it currently does, as well as being more useful.

Other examples of situations where this type of problen
come up gan be given, but are not necessary to this
review. Some of the techniques used to check top-level
gquestions (those not requiring the NLS simulator) are
also open to improvement. For example, one question
.expected CTRL-X as the answer; I typed <CONTROL-X> and
was told#l was wrong. Another time I answered a
questidh with LINE-FEED and Scholar wanted <LF>. These
. two cases should not be construedsas nitpicking, but as
an attempt to point out situations which make Scholar
seem less suitable as a training method than standard
teachines methods. Too many of these trivial flaws will

/;//,-—-m discourage the CAI user.

V- SUMMARY AND CONCLUSIOHNS

in a CAI system then to recognize its aualities. Experience’
with standard methods give rise to expectations which are
then wused to judge CAI systems. .Yet, criticisms of Scholar
should be tempered by one observation, Scholar does teach
the student NLS effectively. Assuming that the lodal bugs
in Sc?olar are fixed (a2 few have been described in this
paper}, a useful system exists which can be used to
potential NLS users. Gf?qu?\
=

— Still, changes can be made which might expand its range of
use as well as improve its performance. Several have been
pointed out in this paper, for example, making the natural
languagé component more probust, adding analysis of the
user’s input to the current extensional analysis, . endowing
Scholar with other training modes, expert, review;@etc.

v _ '- 76 1

As I mentioned before, it is much easier to point out flaws

Y

None of these possibilities are simple; more field testing

is necessary before firm conclusions can be made one way or

the other. Yet, once Scholar is made more cqmplete in its

coverage of NLS, it will be a viable product and should be

evaluated as such by agencies interested in NLS.

-

Some pyrely system questions also need addressing. Can
“NLS-Scholar ‘be a viable product as an INTERLISP program

(thus bound to TENEX)? Are there enoukh machines with enough
. time slots of low load average to actommodate the potential
Scholar users? I am sure other questions of this type will
arise if research into Scholar is continued.

77

73

Comnehtswpn.the review IS
’ ¥

, by Mario C. Grignetti

It seems to me that the review is, overall, a rather

x

§6§I€ive ‘one. HLS-SCHOLAR seems to be able to do its most

important job, i.e., teach NLS.

Many of the problems that Dave points ouf are trivial-
to take care of: pgarbage collection messapes, DWIM's
busy-bodiness in unwarrantedly exchanging "/" for "2", and
more ways to represent CTRL-X or <LF> than we anticipated.;
After all, the main goal of the field testing perform
under this contract was precisely to bring up these kinds o

problemns.

Dave is wrong in his assertion thét "at no time does it
appear that Scholar looks at the student s inbut sequence':
T system does look at the student s actual input when he
a:§§ers questions. The fact <that Dave’s clever answer
(delete statement 1B6 and then deleté statement 1B5) was not
handled intelligently was due to a stupid bug in one, of the
predicate functions in our answer evaluation module. Again,
this 1is ;a case in pointifor the usefulness of this type Bf
testing té\tﬁe system’s designers. In general, however,
Dave’s criticism is gﬂiid{ when the stgdent perforns altask

ﬁ%ing NLS, the commands he types are not, looked at and only
A

their consequence are used to evaluate.what he has done.

We'd like very much to tackle the difficult problen - of

inténtionad cd@prehension;‘ if solved we would have a much
N 4
sma}terg§§;¥emiékn\ R vj

Other difficulties. referred to in the review are more
serious. Indeed, we need to provide feedback as to why a

request fails to be understood. We had wanted to tackle the

problenmn of partia omprehension and try a few stréieéies

type of work in which we have had to ’conf‘iﬁe our efforts,
precluded the performance of sorely needed research work.
With respect to our use of "Wood s moon rockvprogram", this

’

o is another thing we’ve kept on the back burner for some

e,

?Hmmaxxﬂowever, it is questionable that Jjust a more powerful

. parser woild have made a léb of difference in the system’s
ability to respond to student’s)kquests. The diffichty
here resides not so nuch i; gb§7iiteral interpretation of
Quesﬁions as 1if they were‘ precise formulations of the
specific bifs of’knowledge the qﬁestioner seeks, but rather
in figuring out what each part@cular student may have meant
to asg;,gi"en where he is, his previous performance, what he
ought to know, what he seems to have learned, etc., etc. It

is surprising to see how many questions are unanswerable,

even to a human, when taken in relative isolation.

\\\\‘*:;7 ‘Finally, a word about. efficiency. We do not think that

— A 3 .CPU minufes per hour is a terri?ly inefficient and
,/‘-

-~ ~

— 79 L

75

‘_‘

A théiﬂigpagt:gii:izing. However, the pressures arising from__
€ 1imited time and._resources, and the purely developmental

unagceptable way to administer a CAI lesson. We agree
_however fand wholeheartedly!) with Dave’s obééﬁvétion\fhat
vhen the load averacse in a genernl nL"pose timéigﬁﬁi}qs
svstem such as TEMKEX reaches about 4, ££ is better to aquit

home. This is not a problem that affects NLS-SCHOLAR

whe large system such as TEHEX is saturated,

~

nobody gets anythi \ﬁéne efficiently, including'NLSjusers.

v

\

~

% .~ REFERENCES ‘ - KM““
‘ \\ . - ‘ ‘ | e Y

o [1T7 Grignettl M C., Hausmann, C. and Gould g, "An
1nte111gent on ~-line ..——a§sistant and tutor -
NLS-SCHQLAR," National Computer Conference 1975. Y
K\ / ~ . M
\ 123 Grignetti, M\C ,\gould L. \Be\\ A. _iirﬂausmann C.L. ?
. Harris, G. and ™ Passaflume," Mixed-Initiative | '
“Tutorial System to &id Users’ of the On-~Line System\
(NLS),” ESD~TR 75-58, AD~ A007 828, November 1974.
: e
LQJ Bobrow, D. G and Wegbrelt "B, "A Model and Stack _~
= J@plementatlon of Multiple Environments," Communications °
'of‘tne ACM, Vol. 16, No. 10, October 1973?

[41,Teiteiman W., et al, Interlisp Reference Mangg Bolt \\
— " . Beranek and Newman and Xerox Corporatiomn, 1974. }\\\

\\\

(5] Burton, R.R. "A Semantlcally Centered Parsing SystZEN\ N
for Mixed-Initiative CAI Systems," paper presented af‘\\\\\\\:g
the Association for Computational Linguigtics
Conference, Amherst,; Massachusetts, July 1974.) ‘

S [6] Brown, J.S. and Burton, R.R. "Multiple Represehtations
N of Knowledge for Tutorlal Reasoning," ati ang‘K&\u

Understanding: Studies in Cognitive ¢ s
\\\\\ Bobrow and A. Collins, Academic Press 1975. ¥ - -

[7) Weods, W.A., Kaplan, R. and Nash-Weblér, B. "The LUNAR
. Sc?EheeQBBgi;ural Language £ i System," Final
Report, 2378, June 1972. , ‘
—
[8] Fillmore, C.J. "The Case for ase," in VUniyversals in
Linguistic Theory, (eds.) Bg€h and_Harms, Holt, Rinehart ~
- and Winston, 1968. y . ‘7 -

