
,
DOCUMENT RESUME

ED 118 108 IR 003 010

AUTHOR Grighetti, Mario C.; And Others,
TITLE NLS- SCHOLAR: Modifications and Field Testing.
INSTITUTION Bolt, Beranek and Neuman, Inc., Cambridge,,Mass.
SPONS AGENCY Advanced Research Projects Agency (DOD) , Washington,

D.C.; kir Force Systems Command, L.G. Hanscom Field,
Mass. Electronic Systems Div.

REPORT NO ESD-TR-75-358
PUB DATE Nov 75
NOTE 81p.

,EDRS .PRICE MF-$0.83 HC-$4.67 Plus Postage
DESCRIPTORS *Computer Assisted Instruction; Computer Programs;

*Individualized Programs; Instructional Technology;
On Line Systems; Semantics; Tutoring

IDENTIFIERS Natural Language Processing; *NLS SCHOLAR

.4 ABSTRACT
NIS-S$ HOLAR is a prototype system that uses

artificial intelligence techniques to teach computer-naive people how
to use a powerful and complex editor. This new kind of computer
assisted instruction system integrates systematic teaching with
actual practice, keeping the user under tutorial supervision while
allowing him to try out what he learns on the editor. NLS - SCHOLAR can
be used as an on-line help system, outside the tutorial environment,
in the course,of a user's actual work. Testing on this system
revealed that the teaching component of NIS-SCHOLAR is very
effective, but the system's performance as an on-line help faOlity
needs improvement. Techniques used in NLS- SCHOLAR are general and can
be applied to the teaching of a wide variety of computer related
activities. (Author/CH)

,, ,

* Documents acquired by ERIC include many informal unpublished *

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available *

* via the ERIC, Document Reproduction ,Service (EDRSNN EDRS is not *

* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can 'be made from the original. *
,************************

ESD-TR-75-358

NLS-SCHOLAR: MODIFICATIONS AND FIELD TESTING

Boit, Beranek and Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

November 1975 U.S. DEPARTMENT OF HEALTH.
E DUCATIQRAW ELP ARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATIONORIGIN.
ATtNG IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

Approved for Public Release;
Distribution Unlimited.

Prepared for and Sponsored by

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

DEFENSE ADVANCED RESEARCH PROJECTS AGENCYi.....,
1400 WILSON BOULEVARD0 ARLINGTON, VA 22209

CO
ARPA Order No. 2984

0 2
0

.

I

,

'4

.,.

c

0

i!

.4.....ea

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency
or the U. S. Government.

LEGAL NOTICE

When U.S. Government drawings, specifications or other data are used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, fui-nished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

I.

Do not return this copy. Retain or destroy.

"This technical report has been reviewed and is approved for publication."

S 0.A. .---. N1 ott'N---
.

SYLVIA R. MAYER, GS-14
Project Scientist

FOR THE COMMANDER

P1,121,44.4 ,

FRANK J. Colonel, USAF
Director, Information Systems
-Technology Applications Office
Del:44y for Command & Management Systems

,

3

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Da). Entered)

REPORT DOCUMENTATION PAGE r. READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER

ESD-TR-75-358

2. GOVT'ACCESSION NO. ..,3. RECIPIENT'S CATALOG NUMBER

. TITLE (and Subtfile)

-NLS-SCHOLAR: MODIFICATIONS
AND-F4ELD TESTING

5. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(o)
ario C. Grignetti

iaura Gould
da enne ausmann, et al

6. CONTRACT OR GRANT NUMBER(.)

F19628-75-C-0159
ARPA Order 2984

9 P RFORMING ORGANIZATION NAME AND ADDRESS
Be t, Beranek and Newman, !nc.
50 Moulton Street
Ca bridge, MA 02138

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

62706E Prog;am Element
,-...

1

11. CO TROLLING OFFICE NAME AND A DRESS

Dep ty for Command and M nagement Systems
Elea ronic Systems Division
Hans om Air Force Base- MA 01731

12. REPORT DATE

November 1975
13. NUMBER OF PAGES

7 7

14 MONI ORING AGENCY NAME et ADDRESS(11 different from Controlling Office)

Defe e Advanced Researchi Projects Agency
1400 ilson Boulevard
Arling on, VA 22209 ,

.4.

IS. SECURITY CLASS. (of this report) .

UNCLASSIFIED
IS.. DECL ASSI FICATION/ DOWN GRADING

SCHEDULE

16. DISTRIE3 TION STATEMENT (of this Repot') -
Approv for public release; distribution unlimited.

17. DISTRIBUTI N STATEMENT (of the abstract entered in Block 20, if different from Report)

16. SUPPLEMENTA V NOTES

(.

.,..
',

.'"
.

.

19. KEY WORDS (Contin on reverse aide if necrissary and identify by block number) ,P

Artificial Int lligence, Computer Assisted Instruction, Natural Language
Processing, Semantic Grammar, Semantic Network, Tutorial Supervision,
On-Line Assistance, Question Answering

I

\

20. ABSTRACT (Continuo or* reverse side if neceesery and identify by block number)

NLS-SCHOLAR is a prototype system that uses Artificial Intelligence techniques
to teach computer-maive,people how to use a powerful and complex editor. It

represents a new kind of Oomputer Assisted Instruction (CAI) system that
integrates systematic teaching with actual practice, i.e., one which can keep
the user under tutorial supervision while allowing him to try out what he
learns on the systeM he 'is learning about. \,:,

\ , -, 4
(over)

DD I JAN 73 1473 EDITION OF 1 NOV 65 IS OpSOLe.TE
Unclas

SECURITY CLA
ied
/CATION OF THIS PAGE (When Data Entered)

6

Unclassified
SECURITY CLASSIFICATION 'OF THIS PAGE(Whon Dat Entered)

20. (cont)

NLS-SCHOLAR can also be used as an on-line help system outside the tutorial
environment, in the oqurse of a user's actual work. This'capability of -

combining on-line a_sistance with training is an extension of the traditional
notion of CAI

The system is now operational. Limited but realistic testing revealed that
the teachings of NLS-SCHOLAR are very effective, and that the system's
performance as an on-line help facility needs improvement. Most of the
problems encountered are very easy to fix.

The techniques used in NLS-SCHOLAR are general and can be applied to the
teaching of a wide variety of computer related attivities.

1'

5

SECURITY CLASSIFICATION OF THIS PAGE(Whin Data Entered)

TABLE OF CONTENTS

Page
SECTION I INTRODUCTION 3

Overall Approach 3
Objectives 5
Outline . 5

SECTION II - DEVELOPMENTAL WORK 7

Overview 7
The Control Structure 12
Tutorial Material 16

New Text 16
Branching 17
Tasks 18
Questions 18
Answers 19

English Front End 19
The Parsing Process 20
Fuzziness 26
Instantiation of Variaples 27
Further usekof LISP-NIS to, answer questions . 29

Human Engineering Features 30
Stop and Resume 30
Getting help from an expert 31
Question mark 32
Efficiency 33

SECTION III - OPERATIONAL TESTING AND RESULTS . . . 35

General Results 36
Overview 38
The "easy problems" 39

Spelling errors 39
Unanticipated synonyms 40
Common but unanticipated syntax 41
,Lack of knowledge 41
Poor answers

r 42
Unanticipated environments 43

44
46
48
50
54
57

SECTION IV - RECOMMENDATIONS AND CONCLUSIONS 62

Epilogue 65
re.

APPENDIX 67

Review of NLS-SCHOLAR by ISI 67
74

The Harder Problems
First scenario
Second scenario
Third scenario
Fourth scenario
Fifth scenario . . . ,

Comments on the review

REFERENCES 77

SECTION I - INTRODUCTION

This is the Final Report on a six-month effort to

improve and fiel'd test NLS-SCHOLAR[Grignetti 1975], a CAI

system that empLusArtificial Intelligence techniques to

teach people how to use the BASE subsystem of NLS.*

This Report documents the granges made to the August

1974 versiqn,of NLS-SCHOLAR to prepare it for trting in the

field, and documents the results and conclusions obtained

from this testing. Since NLS-SCHOLAR was developed under a

previous contract, this rei,ort is conceived as an

"incremental" one that should be read in conjunction with

the Final Report [Grignetti 1974] on our previous effort.

Overall Approach

NLS-SCHOLAR is oriented towards teaching NLS to naive

users, such as secretaries, who have very limited experience

with computer-based text editing systems. Therefore, its

tutorial material is written assuming practically no

knowledge of computer usage on the student's part; the

necessary conceptual framework is built up from the most.

*BASE is the powerful editor of the oN-Line System (N S), an
increasingly used text manipulation system deve ped by
Douglas Engelbart and his co- workers at the Augmentation
Research Center of Stanford Research Institute.

7

.3.

primitive notions, such as striking a key on a terminal

keyboard.

The two basic pillars on which the system's approach ls

founded are: a) interactiveness and mixed- initiative, and b)

supervised practice of the procedural knowledge being

taught.

Interactiveness and mixed-initiative are necessary so

that the student doesn t feel "caught" in a situation over

which he has no control. The system is designed so that any

time it is the student's turn to type, he can ask questions

himself (instead of just answering the questions posed by

the system), or direct the system to perform certain actions

for him (like, executing NLS commands expressed in English).

Supervised practice is absolutely fundamental. Little

knowledge about "how to do" things can be taught by mere

descriptions; many procedures can only be taught by

demonstr;ation, and practice is essential. A supervised

"hands on" environment is crucial to impressing newly

acquired procedural knowledge in the student's mind.

NLS-SCHOLAR provides such an environment by requesting

students to perform NLS editing tasks using (what appears to

them to be) the very system they are being taught about, by

remaining "aware" of what they are doing, and by commenting

on their performance.

8
4

Objectives

Our ultimate goal is to develop NLS-SCHOLAR so that it

can be used as an operational tool over the ARPA network, in

support of the National Software Works (NSW) user's. The

specific objectives of the work dncribed in this document

were:

a) Expand and modify the NLS- SCHOLAR system as it existed at

the end of its first year of development, incorporate

features we perceived as needed, and correct known

limitations

b) Test the newly developed system in a limited but

realistic operational environment
)

c) Use the feedback and experienCe obtained in the field to

evaluate the system and to -formulate plans for the next

stage of modification and expansion

These objectives have been achieved.

Outline

In Section II of the body of this report, we describe

in detail the defelopmental work performed to achieve our

objectives; -in Section III we de--c e the results obtained

during field testing of the present version of-Un.,,-SCHOLAR.

9

5

Finally, in Sectt 'IV we present our conclusions

recommendations for fur her work,

"

SECTION II- ELOPMENTAL WORK

thie'Sv7arion we describe the "work accomplished to

bring NLS61DLAR to a state sufficiently stable and i,otust

s4k that testing it 'operationally would yield meaningful

results.

ve.r vi

/

Our initial aim was to -xpand and imp, rove NLS-SdHOLAR '
-... ,,
N

S that its tutorial material ould coy
N

subsystem Of NL This, 'entailed

qUe's-t__* n-answering ab

e BASE

ring the 111-4-8.,

'

evaluation

LISP-NLS'

yOtem of

dules, aads g functio

s ste (our own LISP implementat

NLS).

In the of7O-1-1--lopment work
,

veral vers ew1pandd and modifie

'----6-17-8I-4Ms, incorporat it only most

ginning, but many .others

up

roeived need

n fact, as and our eX erience

runn'i'ng e-system incr we new recihireme
N

$for boen,,th short and the long term succ our system,
.,

----'---

d weperformed work in addition't what was riginally

ified. This additional work included:

1) In, order to provide the flexibility and modularity

required to effect changes easily, we designed and

implemented a new 'control structure that uses an

implementation of the Bobrow/Wegbreit stack scheme for

multiple environments ("spaghetti stacks") that is

-pro -hided in the recently released LISP (Bobrow 1973,

INTERLISP 1975).

2) To increase the effectiveness of our tutorial material,

we developed a prototype Agenda Language that allows us

to write English-like lessons incorporating branching,

remedial loops, quizzes, etc.

3) In order to provide a useful tutoring environment in

spite of expected system limitations, we incorporated a

fall-back mode wherein a human helper comes to the

system's rescue ychenever the user requests it.

4) In order to make it practical and feasible to use systems

such as ours in operaticrial environments, we greatly
\ .

Nimproved the efficiency of NLg CHOLAR; not only is the

N's, output package 5 times faster, ba fhe, overall efficiency

twice as-great.
. .

-,N \N
,

i By,..jar;-: he most significant of these advances was the

* de gn and imp ementation -of a flexible control s,t ctur
\\

X
that uses the rece 1 released "spaghetti" LISP. e\

A

structure allows NLS-SCHOLIAR to operate on multiple

environments, making it possible for the various'modules of

the system (the English front end, the Quizzer, the Tutor

Scheduler, NLS, the Task MoriTtor, and the Evaluator) to be

handled like jobs in a time-sharing system. That is,

processes request "the floor" as need 'arises, and gain

access to the process queue with preassighable\priorities.

As a result of this improvement, the system now, has the

capability of back-tracking to abndoned,owntexts of

handling multiple.tasks,and of coroutining.

We expanded the tutorials (the Primer) from the

41
original three lessons to an introduction plus five lessons.

Thee litaterial covers usage of the legal combinations of the

following 'ULS verbs' and nouns:

a) Verbs: Load, Print, Insert, Delete, Create, Update, Jump,

Substitute, Set, Reset, Show, Copy, Move, Transpose,

OUtput, Help, and the one-character commands

--, V, and <LF>.

b) Nouns: 'Character;1 Word, Text, Statement, Branch, Group,

/

Plex,,,File and Rest.

Numerbls questions, interspersed throughout the lessons

and forming quizzes at, the end, test the students'

comprehension of the instructional material. Over 100

supef.vised tasks and "tutor''demonstrations" support-our

9

C^

claim that our users learn "by doing":

Weedeveloped a prototype Agenda Language that allows us

to write these lessons in quasi-English format. (The

lessens were all prepared using NLS and are in indented

outline format.) The lessons contain not only tasks,

demonstrations of actions, question-answering periods, and

quizzes, , but also branching and remedial loops. The new

control structure allows us to design much more flexible

lessons than before, ones that exhibit truly mixed

user/system initiative. For example, one of the ways we can

handle students' mistakes is by means of "scratch actions":

when a student makes a mistake, the system takes over and

shows him what would happen if the the mistake were enacted.

This resembles what a human tutor would do ("Here let me

show you what would happen if you did what you propose") to

show the effect of the mistake while at the same time

protecting the student from the consequences of his actions.

In parallel with this work, our LISP implementation of

the NLS BASE subsystem was augmented and updated, so as to

support all the NLS commands mentioned above. We also sped

it up considerably by using block compiling techniques.

Considerable work was done also on the English 'front

end. In addition to questions, this module now handles all

inputs from the student, including his answers to the

"tutor's" questions and his "directions" to the system. The

14
10

semantic network now contains 330 entries, covering the

commands and NLS concepts which th,simulator can handle and

which the tutorials describe. The output package (the big

CPU time gobbler in the previous system) was streamlined and

speeded up by a factor of 5. In addition, the responses it

produces are mo e personal and friendly.

Finally, in addition to the above, 1) we incorporated

"stop" and "continue" facilities, so that users could

proceed with the lessons at their own pace, 2) we began to

provide users with some feedback on what went wrong when a

question could not be answered by the system and, more

importantly, 3) we offered students the help of a human user

if they so required (the system looks for one of us,

establishes a TENEX link, and allows us to come to the

student's help and to the system's rescue). Contextual

information (what the student has been up to) is preserved

in LISP's history list and is available to us.

In short, we brought up a new NLS-SCHOLAR system that

is very much better than the old one in terms of

flexibility, modularity, capability, and efficiency.

In the remainder of this section we describe in detail

the work performed in many, of the areas alluded to'above:

the system "s control structure, the tutorial material, the

English front end, the human engineering fgatures, and

overall efficiency.

15

C
11

The Control Struture----T---

The new control structure was designed with s4eral

goals in mind:

1) increasing the modularity of the system to make it more

understandable and easily modifiable

2) facilita/ting interactions by a) making the "English

unders anding" portion of tifie system (ENGLISHEXEC)-

avai able It any time by a simple interrupt mechanism,

an b) allowing the user to experiment with NLS at any .

ime without destroying context
1

/ 3) extending the capabili4es of the' tutorial material to__
permit branching /and the conditional execution of

er
arbitrary INTERLI SP functions to perform needed actions.'`

The basic idea underlying the control stfucture is

simple. The system continually evaluates the priorities of

C
)

several altePnative/goals, .which include ones specified by

,_,______,..--A---
the user_ser and

%'
set by the author of the tutorial

,>------
material.(Goals with lower priority are postponed, and the

,..,

highest priority goal ,14 executed. Some goals, such as

"presenting all the ty,torial matertaLitr.' a useful order ",

ape complex and may continue over a long period of time. To

facilitate the description of complex, long lasting goals,

goal is represented by a "process", a collection of

INTERLISP procedures which when executed will achieve the

16
12

goal .

Because the spaghetti -stack control structure of

INTERLISP permits any.',process to be interrupted at an

arbitrary point without, losing the context of the

computation, complex goals can be represented by processes

which work through a set Of sub-goals from beginning to -end

without interruption. A process representing such an

extended goal may be interrupted and ,terr orarily. suspended

to allow other goals to be met. This permits the overall

system to "stop in its tracks" and interact with the student

when the student wants help, not just when the system

decides to pay attention. In this way the control structure

makes it possible for ,us to design a truly

"mixed-initiative" system, rather than representing a

single-minded tutor, since the various goals of the tutor

may be easily interrupted and suspended to allow the student

to request actions, ask questions, and experiment with NLS.

The overall control of the system is based in a simple

"monitor" which acts much like a time-sharing monitor - it

has a set of suspended processes representing pending

priorities which must be evaluated, and it chooses the

highest priority process and permits it to run.

At any time there may be several pending goals, in the

system, represented by suspended processes. These goals are

chosen from the set:

17

13

F3'

a) listening for user commands, questions and answS- in

English (ENGLISHEXEC)'

b) deciding what tutorial material to give next

c) presenting a tutorial unit

d) presenting a question

e) waiting to evaluate the answer of a previous question

f) running a student through an NLS task

g) providing an experimentil NLS environment requested by

the user

The priority evaluation is implemented primilyby a

stack, but it is made potentially general by having the

monitor evaluate- -a priority setting process associated with

k.

each .runnable process, and using that to modify priorities.

In addition; the stack of processes is easily accessible to

'running processes, and thus process& can (°and do) add and

delete processes on the stack.

In addition, by making use of the user-defined

interrupt character facility and the features available in

the new "spaghetti sta) version, of INTERLISP, it is

\\

,

possible for the user to interruit any process, save.its

context completely, and start up a copy of the ENGLISHEXEC

which can answer general NLS factual questions, or start up

a safe NLS environment on which to experiment without

affecting the current NLS environment : This enables

,students to try out risky procedures without fearing the

18
14

(-

1

I

consequences of potentially costly-mistakes.

The spaghetti -stack features permit the entire context

and state of complicated (perhaps recursive) process to be

saved, to be run later or examined by, other programs..

has heen used to implement a "coroutine package" iIhich

This

g eatly facilitated -whiting simple, easy to under

modae-S.

tand

. Air example of this is the ,-"question posing \and

evauai ion module". This module is run having as arguments

a question to be posed to the student, and evaluation

procedures for p ible answers. It would be easy to write

if it were expecte si ply to pose a question and to

interpret tke next tudent input as an answer. However, we

wished to allow theZ7laeiit-, interact with the ENGLISHEXEC

once the question is posed, by asking questions or typing in

commands p he okesires:Thae-anaHer evaluation must be held

in abeyan e until the student actually types in an answer.

With the coroutine package this is simple - the

question-posing module calls a coroutine which puts the

question-posing-module on the stack with the evaluation

section to be run next, puts an ENGLISHEXEC process on the

top of the eack, and then cedes control tothe -monitor.
*

When the ,ENGLISHEXEC recognizes an input as answer it

removes itself from the stack and Calls the question-posipg-
i

module as a coroutine. To the question-posing module the

19
15

net result is that the student's answer is made available as

if from a subroutine. While this could have been done with

subroutines, the coroutine technique substantially

simplifies the state of the'system during the period after

the question is ,posed.'

Tutorial Material

The tutorial material has been expanded considerably

since November, 1974, and now consists of five lessons

rather than three. These lessons describe the----BASE

subsystem of the 'teletype-oriented* ver4ion of NLS as it

appeared in March, 1975; they are written specifically for

naive users with no previous knowledge of NLS and (perhaps)

no previous acquaintance with terminals or computer systems.

New Text - To facilitate the initiation of these naive users

into the mysteries of computer-assisted instruction, an

7k interactive introduction has been written which gives a

brief description of the goals of the system and explains

the use of <CR> to terminate commands, <CTRL-A> and <CTRL-X>

for line editing, <CTRL-T> to determine the state of the

job, and <CTRL-H> to get the 'attention of the "tutor"

*We use the term teletype to denote generically a hard-copy
terminal, as opposed to a display terminal.

20
16

(ENGLISHEXEC). This-- introduction supplants and surpasses

the instruction sheet handout which was used for this

purpose previously.

The five lessons differ in both content and structure

from their predecessors. Revision of the content of

original three chapters was made necessary by changes-46 the

NLS ,syntax and in a few NLS commands. The material was

extended to provide-More examples and to present commands

not previously covered. These new commands include

File, Print Rest, print the context of the CM (/), Reset

Viewspecs, and Output Sequential File for producing a text
17
file which can be listed on a line printer. A brief

description of the Help command is given at the end -of the

last lesson so that the "graduating" student will know how

to make use of this facility when he uses NLS without

tutorial supervision. A small; self-contained help data

file about viewspecs has been provided for practice-with the

use of-this command.

Branching - These changes in content, however, are of much

less significance than the increased freedom granted to the

student by the new control structure, and to the author of

the tutorial material by the introduction of branches, and

remedial loops. The ability fo use branches means that the

order And the confeTIZ7bk what is being presented t the

§tudent can be made dependent on his choices or on his

21
17

perfor4ance. The addition of these facilities transformed

the task of providing the-tutorial material from writing a

text (the Primer) to designi'rg a programmed instruction

course.,

From the students' point of view, each lesson the

introduction) is composed, as before, of short sections of

text which are printed at the terminal. At the end of such

presentations, the student is given the opportunity to

request m e text, to ask any number of questions, or to"

practice Ath NLS using any commands that he chooses.

Tasks - Somd,text sections are followed by tasks which the
4 .

student is aced to perform. In the course of doing a task,

the student may use <CTRL-H> to get the "tutor's" attention;

he nay then ask questions, practice with NLS to see the

effect of a command,-ask that he be allowed to restart the

task, or ask that the task be done for him. If the student

periforms the task, his work is evaluated and helpful comment

or criticism is provided. If his work is unsatisfactory he

y be asked to do the task again, either wholly or

partially.

Questions - Some text sections are followed by questions for

student--tolanswer. In the course olvtrying to answer

question he may ask---q tions himself, or practice with

NLS in an attempt to determine the-answer.

22
18

A set of questions (a quiz) has been placed at the end

of tile.--itrt-rudauttumandGZtLefirs! two lessons so that the
.

student may this add1ional method of assessing his

progress. Answe uated and appropriate responses

made. Considerable latitude is grovided in the judging of

answers so that the student is not constrained to .a

particular form. For example, the question "What is the

statement number of the origin statement" may be answered 0,

statement 0, or zero; all are equally correct. In cases in

which an answer has several parts, missing information is

often supplied in the evaluation.

Answers - The handling of students answers is made easy by

the use of answer predicates. A se,pence of these

predicates can be written by the author after each question;

the predicates are then tested one after the other until one

of them succeeds. They operate in two steps: the first one

provides for extracting expected words, for testi g t,hote
--,

words in various ways, and for filtering out irre evant

parts of the answer; the second step is some action which is

undertaken or not, depending on the outcome of the first.

These actions generally consist of some text being printed

followed by an optional branching instruction.

English Front End

23
19

The English front end handles all guage input from the

student. It therefore must/ be powerful enough to
NN .(

distinguish between 'commands,/ tart lesson "Delete

br h 2i-1); queries, ("How -do I prin he whole file?' and

replies iI711.6ngenerated questions, ("Th V.atements are

and 4B") . We decided' to use the otion-0Ts-s4bantic

grammar [Burto 1975] with two impo `ane ad .tions, namely

instantiation of variables and Case ass nments [Fillmore

1968].,./These two processes will be described la -r.

The key notion underlying the semantic grammar appr h

to parsing is the replacement of the search for syntactic

constructs by a search for semantic ones. Parsing

student's request in this way yields.its meaning directly,

i.e., it produces an executable retrieval formula rthat

prescribes a search in the system's "data base" (the

semantic network plus the user's work space). The search

can then be carried out and the results used to synthesize

an answer to the request. Notice that in such a parsing

process there are no separate syntactic and semantic phases

(as there are

P 1972))

in systems like the LUNAR parser [Woods

The Parsing Process- The parsing process begins with a

prescan of the student's input. Abbreviations are expanded,

synonyms are recognized and rewritten into a canonical form,

and compounds are collected into one word. These processes

24
20

ease the work of the parser itself by cutting down on the

,number of alternatives that must be considered:

After the input is prescanned, an attempt ia made to

pars it using an embodiment of the grammar described in BNF

in Figure 1. Each non-terminal node of the grammar is a

semantic category which takes into account alldthe predicted

ways of expressing it. Each semantic category is. embodied"

in a LISP function that tests the input ,string (or a

substring of it) to determine if it belongs to the category.

If successful, the function returns a value which condenses

the "meaning" of the string.

top level rule is <REQUEpT>, which can be realized

by s'Your semantic categories: <DIRECTIVE>, <QUESTION>,

<NL /ACTION/REQ>, and <ANSWER>. This means:.that an input

from th- user (.a request) can be either a directive, a

question, ark command expressed in English, or an answer

to a question as d previous]k by the system. Each

alternative is tried .sequ N.ally until One succeeds. If

none succeed, an error message is'typed to the student ("I

didn't understand that. Please rephrase.") A good way to

describe the parsing process is by example. We shall follow

thAparsing of the request "What command prints the next

statement?" (Ae FigUre 1).

25

21

<REQUEST>:= <DIRECTIVE>
<QUESTION>
<NLS/ACTION/REQ>
<ANSWER>

<DIRECTIVE>:= ? ! CHECK ! PLAY ! RESTAT ! GO ! HELP'! STOP

<QUETION>:= <DEFINE/REQ>
<WHATIS/REQ>
<CONTENT/REQ>
<PARTS-IN-PART/REQ>
<PARTS-IN-LEVEL/REQ>
4fROCEDURE/REQk
<TYPE/REQ>
<INSTR/REQ>
<POSITION/REQ>

<NLS/ACION/REQ>:= <ACTION/SPEC>

<ANSWER>:= <THE-ANSWaR>
<DONT-KNOW-ANSWER>
<LIST-ANSWER>

s.

<THE-ANSWER>:= tTHE THEY IT] [IS ARE]

<DONT-KNOW-ANSWER>:= TELL\ME ! I DON'T kiidr

ti

<LIST-ANSWER>:= a list that doesn't begin with a <VERB>
or a question word like Whatt,Is-, Why, etc.

,Nr

<DEFINE/REQ>:= [DEFINE DESCRIBE] <NOUN> '4'

WHAT DOES <NOUN> [DO MEAN STAND\FOR] 45,

HOW DOES <NOUN> WORK

<WHATIS/REQ>:= WHAT\IS*
[PURPOSE \OF <NOUN>
CONTENT\OF <STR+ADDR>
LEVEL\OF <STR+ADDR>
PROCEDURE\FOW <ACTION/SPEC>
ADDRESS\OF <STR+ADDR>
EXAMPLES\OP <NOUN>
EXAMPLE\OF <NOUN>
DEFINITION\OF <NOUN> V

-<CURRENT/PARW
<STR+ADDR>
<NOUN>]

*Also SHOW\ME TELL\ME GIVE\ME TELL\ME\ABOUT
WHAT\ARE

<CONTENT/REQ>:= WHAT <STRUCTURAL> CONTAINS <STRING>

Figure 1. BNF description of the grammar.

22

26

0

<PARTS-IN-PART/REQ> WHAT <STRUCTURAL> ARE IN <FILE/PART>
WHAT ARE <STRUCTURAL> IN <FILE/PART>

<PARTS-IN-LEVEL/REQ>:= WHAT <STRUCTURAL> ARE <LEVEL/PART>

<PROCEDURE/REQ>:= [HOW\DO\I SHOW\ME\HOW\TO TELL\ME\ABOUT] <ACTION/SPEC>

<TYPE /.REQ >: = WHAT CAN I TYPE AFTER [<VERB> <STRING> <PROMPT>]
WHAT CAN FOLLOW [<VERB> STRING> <pROMPT>]

<INSTR/REQ>:= WHAT (COMMAND) <ACTION/SPEC>

<POSITION/REQ>:= WHERE AM I
THERE IS/ARE <STR+ADDR>

<AC N/SPEC>:= <VERB> [<OBJ>]

<VERB>:=0 word whose part of speech is Verb

<OBJ>:= [<RELATIONAL>] [<NOUN/PHRASE>] [<OBJ>]

<RELATIONAL>:= words like NEXT\TO FROM AT TO, etc.

<NOUN/PHRASE>:= <TASK>
<STRi -ADDR>
<FILE>
<NOUN>

)b

<TASK>:= TASK <NUMBER>

<STR +ADDR >: = <FILE/PART>
THE <STRUCTURAL> < STRINg>
THE <TEXTUAL> <STRING>
<CURRENT/PART>
<STRING>

<FILE>:= (NLS\FILE) [BREAKFAST DINNER MYBREAKFAST]
o

<NOUN>: any word whose part of speech is Noun

<NUMBER>:= a number
401

<FILE/PART>.:= STATEMENT \O'
. :GROUP <ADDRESS> <ADDRESS>

[STATEMENT STATEMENT \NUMBER, BRANCH PLEX] <ADDRESS>

<ADDRESS>:= a word whose first character is a number

<STR C RAL>:= STATEMENT ! BRANCH ! GROUP ! PLEX

<STRING>: a string delineated by double quotes

Figure 1 (cont)

27
23

<TEXTUAL>:= WORD ! CHARACTER ! TEXT

<CURRENT/PART>:= CURRENT\NLS\COMMAND'
CURRENT\VIEWSPECS
CURRENT\STATEMENT
NEXT\STATEMENT
BACK\STATEMENT
CURRENT\ADDRESS
POSITION\OF\THE\CM
CURRENT\STATEMENT\NUMBER
CURRENT\FILE

*or

Figure 1 (cont)

if

2.8
24

In the prescan the words "next statement" are

recognized as a compound word or concept and are rewritten

as next\statement. Starting with the grammar rule

<REQUEST>, the first check is to see if the sentence is a

KDIRECTIVE> It fails and the next one is tried,

<QUESTION>. The first seven realizations of the rule fail;

but <INSTR/REQ> succeeds with "What" being followed

optionally by the word "command", followed by an

<ACTION/SPEC>. <ACTION/SPEC> succeeds, since "pi.int the

next\statement" is indeed an action specification.

<ACTION/SPEC> returns as its value (remember it is a LISP

function) an expression that is the "meaning" of the action

specification:

((VRB PRINT) (OBJ NEXT\STATEMENT))

This says that the action is represented by the verb "'print"

and the object of the action is "next\statement". In turn,

<INSTR/REQ> returns:

(QFIND/INSTR-((VRB PRINT) (OBJ NEXT\STATEMENT)))

which represents the "meaning" of the sentence. At this

point the parsing phase is complete.

To, find the correct answer, -this "meaning" is executed

as a LISP expression. (QFIND/INSTR is the function and VRB

and 08J are its arguments). The function QFIND/INSTR first

checks to see if there is an OBJ. If there is one,i looks

29
25

s.,

le"

OIL

under the OBJ's data base entry for a section of data base

beginning with the VRB. If that search fails, a general

reply is given by finding all instruments (commands) under

the VRB print and printing out the procedure for using each

one. In this way, most of the knowledge the data base

contains about printing would be given to the student. The

belief is that a complete description is better than a

simple "I don't know". Among all these procedures, the

student may find the one he was looking for.

In our example, the search for the VRB under the OBJ

succeeds (see figure 2).

Figure 2

NEXT\STATEMENT
(PRINT (I 2) (AGENT NIL USER)

(OBJ NIL NEXT\STATEMENT)
(INSTR NIL <LF>\COMMAND))

The English output routines take the piece of"data base and

form the English sentence:

YOU PRINT THE NEXT STATEMENT USING THE <LF> COMMAND.

Fuzziness - The panier allows for f zziness; that is, it is

able to skip over words in a controlled way in order to

achieve a parse. The hope is tat these words are noise

words or at least that the can be.skipped over and still

permit a parse that is not Tar from the real meaning of the

30
26

request, The problem is that in some cases fuzziness leads

to a completely different meaning. For example, consider

the sentence "What are the default views"pecs?". In pushing

for an object, let's say the parser doesn't recognize the

word "default". Fuzziness wduld'allow the parser to skip

over this word. It recognizes "viewspecs", and in effect

parses the sentence as "What are the viewspecs?". Applying

fuzziness techniques well is a very tricky business!

Instantiation of Variables - An effort was made to see what

it would take to build an English front end for NLS that

would allow the student to express NLS commands in English.

The added bonus from this research was the ability to answer

with greater precision questions that dealt with more

specific information than the data base explicitly contains.

An example is the sentence "How do I delete a structure

unit" versus the more specific request "How do I delete plex

2?" This ability was achieved by adding to the data base a

new construct: instantiation variables that may get set

during parsing and, if so, will be used in place of the

general term -- otherwise the more general term ilused.

For example, in the data base entry for DELETE\COMMAND, the

string $INS appears 3 times'. Each time it is followed by a

variable name, (XOBJ, XOBJSTR, or XADDSTR) and then followed

by a regular piece of SCHOLAR data base (see Figure 3).

31 4

27

Figure 3

DELETE\COMMAND
c [PURPOSE (I 2) (DELETE NIL

(AGENT NIL USER)
(OBJ NIL ($INS XOBJ ($EOR (NAME NIL (OF NIL STRUCTURE\UNIT))

(NAME NIL (OF NIL STRING\UNIT)))))
(INSTR NIL DELETE\COMMAND)
(PROCEDURE NIL (TYPE NIL

(AGENT NIL USER)
(OBJ NIL ($SEQ "DELETE "

[$INS XOBJSTR
($EOR (NAME NIL (OF NIL STRUCTURE\UNIT))

(NAVE NIL (OF NIL STRING\UNIT]
(1INS XADDST ADDRESS)
<ICR> <CR>]

In processing "How do I delete a structure unit" none of the

instantiation variables is set and so a general response is

given:

YOU DELETE A STRUCTURE UNIT OR A STRING UNIT USING THE
DELETE COMMAND.
PROCEDURE: YOU TYPE 'DELETE ', FOLLOWED BY THE NAME OF A

STRUCTURE -UNIT OR THE NAME OF A STRING UNIT, THE ADDRESS,
<CR>, AND <CR>.

In processing "How do I delete plex 2", all' of the variables

are set during parsing so a very specific reply can be

given:

YOU DELETE PLEX 2 USING THE DELETE COMMAND.;,
PROCEDURE: YOU TYPE 'DELETE FOLLOWED BY 'PLEX
<CR>, AND <CR>.

Now, not only can the question be answered, but it can

be turned into a command to NLS to perform the action

"Delete plex 2" on a copy of the user's file. It parses as

32
28

an <NLS/ACTION/REQ>. Th form returned from the parse is

(QDO/PROCE6URE (VRB DELETE)
(OBJ PLEX (ADDR 2))

ODO/PROCEDURE is a function which first retrieves the

appropriate piece of data base and checks to see if ;1r the

instantiation variables in this piece are filled in: It

then calls LISP-NLS, handing down to)ite-legal command

sequence. (If all the instantiation variables were not set

during the parse, a reply is ,generated telling ,udent

what is missing.) Using a copy of the student's current

file, LISP-NLS executes the command sequence:

BASE C: Delete C: Plex (at) A: 2;
OK: ;

Further uses of LISP-NLS to answer questions - We have just

described ne use of LISP-NLS: responding to an English

request to have NLS per or. 'command. A second use is to

respond to queries like am I now" and "What is the

address of the statement csaLa4A.14;PRIME"?" These kinds of

requests imply that at least one NLS command be performed.

In the first case the answer can be found by performing the

It It command; in the second by performing a series of

commands - Jump Address 0, Jump Address "PRIME", then "." to

get the current address.

33

29

Human Engineering -atures

In . .er to mace NLS-SCHOLAR and easy pleasant

we strived to endow it with a number-of humansystem t

engineering feature a will be described nelc,t_.

Stop and resume. - Sessions with NL _miggif AR have natural

breaking points, such as lesson bounda les,or arge topic

changes, at which it is convenient and even desirable for a

user to quit. Having

system-provided breaks, th

stopped at one of these

user can resume the lesson at a

later time by asking the -ystem something like *art lesson

',now, please". Often, h wever, users find the time bet

these /natural breaks

own performance has req
/*

because something

long, either because their

longer time than average, or

fdeir attention. We have

provided the syste with the necessary mechanism for

allowing those us rs to stop- the lesson at any time, in

whatever situation they may find themselves: in the middle

*of a lesson, p rforming a task, answering a question, or

even working wit NLS doing their own thing. All they have

ILO do is get the attention of the "tutor" (by typing

<CTRL-H>) and hen tell it they want to stop. The system

responds '-by asking the user to confirm his request and to

indicate if he intends to continue at a later time. If both

answers are affirmative, the system writes out a file (a

LISP SYSOUT file) in the user's directory. When the user

3430

ti

comes back, the system reminas him of the existence of a

suspended work session; if the user wart to, he can

continue exactly where he left off by simply typing RESUME

(which causes a LISP SYSIN). This feature was very sorely

needed and was used by almost all those involved in the

field testing.

Getting help from an expert. - Since we did not expect our

system to be able to comprehend all user requests and to

always provide useful answers, we endowed NLS-SCHOLAR with a

feature that allows a human expe'rtAo come smoothly to the

ystem's rescue when the system fails. This facility

operates as follows. Let's suppOse that a user is in the

middle of a task, asks a question whose answer is badly

needed, and the system either fails to understand his

-'''''question or gives him an unsatisfaCtory answer, If he asks

for help at this point, the system will seek a logged-in

human expert, establish a link, and report the failure to

the expert. If it isn't possible for the expert to provide

the answer solely on the basis of an isolated question, he

can examine a history list maintained bY- the system. This

list is a record of previous interactions between user and

system which provides the context the expert often needs to

ansmezwa question appropriately.

The main reason for the incorporation Of this facility

was to allow our .students to utilize lesson time more

,t3 5
31

effectively; we wanted their experience using NLS-SCHOLAR to

be a profitable one in spite of the system's limitations,

and we hoped the facility would minimize frustration and

unnecessary breaks. In spite of our hopes, the facility was

hardly used at all: only one of our users ever attempted to

take advantage of it, but unfortunately no expert was

logged-in at the time help was sought.
,

Question mark. - Given the great flexibility of the control

structure, the student may well be confused as to what to do

when he gets the "tutor's" attention. A question mark

facility was implemented to help users' remember what they

could request the system to do for then. When the student

types a "?", the systeM responds with a list of one-word

commapds which may be used to initiate actions, such as

starting a lesson, restarting a task, stopping a lesson,

resuming it, summoning help, calling NLS, etc. These

actions are not necessarily invoked speelfically by their

associated command; rather, it is the combination of command

and situation that decides which action will be undertaken.

Thus, if a user types "continue", several things may happen:.

a) if he 'was in the middle of a lesson, the lesson

continues; b) if he was performing a task, he gobs back to

the task's environment; c) if he just entered NLS-SCHOLAR

and +Awe i,s a stopped lesson under his name, the lesson is

resume *1 d) if he was working with NLS doing his own thing,

36
32

he is returned where he left off.

Efficiency - The newly brought up NLS-SCHOLAR system is

remarkably more efficient, in terms of CPU utilization, than

its predecessor: it takes about 3 minutes of CPU time, on

the average, per lesson hour. This efficiency measure

applies to a lightly loaded TENEX system; under

circumstances the lesson proceeds at a good fast clip.

these

'iqs relatively good efficiency is due to three

Inprovements made to NLS-SCHOLAR. The first improvement

to redesign and streamline the output routines, the ones

which are responsible for producing Eng3ish sentences out of

information encoded in the semantic network. This resulted

in apackage that operates 5 times as fast as the old one.

The second improvement was to block-compile LISP-NLS.

This technique provides a way of compiling several functions

(LISP routines) into an entity called a block. Once a block

is entered, function calls within it are very fast and

variables' values are looked up directly, resulting' in

considerable execution spee&:.ups. It is not rare to see

order of magnitude improvements from judicious use of this

technique.

The 'third big improvement was to pre-compute the tasks'

vectors. Previously, when A user's performance of a task

was to be evaluated, the system used LISP-NLS to perform the

37 s;
33

I

O

correct sequence of commands and to obtain the correct image

of the work space. This was then compared with the result

of the user's commands. .In the present version of

NLS-SCHOLAR, these correct images are obtained for each task

at system generation time, and are stored away in a separate

file.

/1°

A fiA/handle is provided for each task, and is- made

accessible from the semantic network entry for the task so

that the correct image can be 'retrieved from the file.

Consequently, when a task is evaluated there is no CPU time

wasted in generating the correct image.

3-8

I

SECTION III OPERATIONAL TESTING AND RESULTS

As described at the beginning of Section II,-

"operational" testing of successive versions of NLS-SCHOLAR

started early in the course of our work. For this purpose

we used BBN personnel ranging from completely naive users,

through secretaries with experience using other

computer-based text editors, up to experienced computer and

behavioral scientists.

When our system was (reluctantly) pronounced ready, it

was used in an informal but realistic testing environment by

14 non-BBN users. Among them were DOD personnel from the

Air Force Data Services Center -- an outfit chosen by the

Contracting Agency -- whose sophistication in using NLS

ranged from very naive to experienced. In addition, the

Contracting Agency solicited an indeporKient evaluation from

qualified Technical Personnel of the Information Sciences

Institute (ISI) of the University of Southern California.

The results of this evaluation are described in a report

which is included in this document as an Appendix.

The data obtained from the operational testing is in

the form of dribble protocols recording the "dialogue"

between users and NLS-SCHOLA . Over 50 protocols were of

significant length (ranging from 20 1.o 90 minutes-of on-line

time) to be considered useful and txlwairant their analysis.

In -addition t data, an amount roughly equivalent was

35

obtained via our own internal testing using BBN's personnel.

Taking everything into ,account, protocols representing

approximately 100 hours of on-line time were,analyzed. This

amount of data is not sufficient to establish statistically
4

valid results, but it is 4nough to sustain very definite

qualitative conclusions about the system's capabilities and

limitations.

General Results

The main thrust of this section is to describe and

discuss a number of specific problems and problem areas.

identified in the course of the field testing. In order to

frame the descriptions and to focu... the discussions, we find

it necessary, at the risk of being considered unscholarly,

to present the general results of our analysis here rather

than at the end of this section. They are:

1) The tutorial set-up appears to be very effective. New

information is presented in bits and pieces of digestible ft

size and users are kept on their toes (albeit in a very *.

friendly environAen0 with dozens of questions they are

asked to answer and NLS tasks they are asked to perform.

Users do learn NLS: this is evident not only in the

progress of their work, but also ,fridm personal

communications (telephone calls, messages, and link ups).

40
36

2) Ti4 "supervised task environment", whereby the system

evaluates the results of a user's performance of an NLS

task and offers comments about it, appears to be very

valUable. The system succeeds in pointing out mist

and provides information useful for rectifying them.

However, the system is sometimes over-zealous (rejecting

outrightly the performance of a task for some trivial

discrepancy) and sometimes fails to point out some
00Az.

erroneous action underta en ; by the user. These

shortcomings 'are not/ ser /fous but they detract from the
a /

system's "intelligent"
X

pearance.

/

/
3) A substantial par*' of/ the system's "smarts" resides/ in

its English front/ end; NLS-SCHOLAR is/designed so that

the use can take the initiative anyt it is his turn

to type and formulate requests (us ly questions) to the

system. Not surprisingly, however, this feature of

NLS-SCHOLAR performed less satisfactor.ily than the rest

of the system; only about 1/3 of the requests formulated
/

were answered relevantly and usefully. This poor

performance may have,inhibited many users from asking

more questions.

In vi of the results outlined above, the rest of

this ,ion is concentrated on a detailed discUssicn of

the periormance\of our English 'fro**, end, and on, the

ge7eral issues it raises in the area of Natural Language

4 1

37

Comprehension.

Overy ew

Two points must be consider 4A order to view this

last result in the proper perspective. In the first

place, a large majority of the requests that the system

failed' to answer or answered incorrectly could have been

handled satisfactorily with minor changes to the \system

and additions to its semantic network. Undetected

spelling errors, unanticipated synonyms, common but

anticipated sentence synftax, lack pf specifies owledge,

etc., are examples of probl of this knd which 'are
_

relatively easy to-- ectifY as each one is found. As a

whole, however, /nu time and effort must be expe

eAirely.
rr

Secondly it mu,s.e* orne in mind that the tutorial

eradicate such prob

material is very clear and complete. It leaves

/.

relatively little room for doubt -within the domain of
t

procedural and conceptua knowledge/that the question .

answering system is d gned to handle. Consequently,

the relatively few nswered re uest6 not covered in the

"easy problems" b,ed above, reflected- a,

./

subtler /doubts Ad the efforts ,Of

/
sophisticated use to 6ncoct a question to assess//the

system s,.c-apabilitie

ct

combination

These questions remaine unanswered Ather because

they were expressed in round about ways outside

the set of paraphrases the system can recognize or

convoluted sentence structures), or because they were

iMp 0- cA
0

sely formulated. The round about problem was not

important in our case. It is 'more likely to occur in

questions posed by users returning to the system after a

partially forgotten previous exposUre to its tutoria140*:

material. This situation could not del4elop within t 'he

period the system was tested,

Imprecisely Oprmulated requests' were much more,
\v

common, Within the relatively small number. of

hard-to-answer questions we are focussing on, than

precise cirdumlocutionss. Theeirelati4ly high frequenc

of imprecisely formulated requests and their i -erent

. interest justifies the more detailed desc ption and

analysis of their nature which will be f in

this section.

easy problems"

.

Some example6 of problems h .are relatively easy .

to rectify are presented next:,

Spelling errors - COnsid r example,

"What is my current statement>?"

or "What does OK/C mean?"

In the-first case, the system's spelling error correction

list ontained both the words "statement" and

"statements ", which resulted in "statement>" being

corrected to "statements". The system knowS what a

"current statement" is (both. the meaning of the concept

and how to find out its present value), but it was

hopelessly confused by "curreryt-"gliatements" Given our

current approach tha,,, emphasizes speed and expediency,

the remedy is to eliminate "statements" from the spelling

correction list. ?whetter solution, such as perforTing

morphological analysis and checking the agreement of verb

and predicate numbers, would have required a

fundamentally different approach.

z
In the second example, the system knows the meaning

of most prompt symbols, and in particular that of the

/C: prompt' (notice the colon). While the System is

prepared to accept many common abbreviations and

Misspellings of these sYmbcols, OK/C was not anticipated,

Unanticipated synonyms -.A very common group, exemplified

by,

"Please review the one-character commands"

"How do I logout?"

4
40

V

"Explain-the OK: prompt"

The system would have answered these requests correctly

if they had contained the verbs "list" or "tell me about"

or "give me" instead of "review"; "stop" or "quit"

i,nstead of "logout"; and "describe" instead of "explain".

Fixig'this may be trivially done by incorporating those

var,ba--tn-the internal synon lista of the system, or by

incorporating their d tions and usages in the

semantic network. bserve that "review" could have been

used to mean something different from "list", le.g., to

mean something like "Let's go o ,..he one-character

-commands again", after, they have been presented once. To

andle this kind of request is feasible but less trivial.

Common but unanticipated syntax

"What NLS commands are-there?"

The almost equivalent question ("What are the NLS

commands?") would have been answered correctly, but that

format'didn't occurred to this particular user. (Neither

did we anticipate the "are there" format!),

4

Lack of knowledge - A few examples are,

"How do I delete a file?"

"Tell me abOut control commands"

45
41

..-

"What is an illegal delete?"'

Deleting files was not possible from within NLS until

very recently. This negative knowledge should have been

incorporated in the semantic network, enabling the system

to generate its canonical negative answer ("YOU MAY NOT
:-.._ -J

DELETE AN NLS FILE USING AN NLS COMMAND"). This

particular question generated a rather amusing dialogue

(albeit very frustrating for the user) in which the

system told him how-to delete all sorts of things, except

-files. Also, although grouping certain commands under

the category of "control commands" is certainly,

I reasonable, the category was not anticipated and an entry

i
for it is not contained in the semantic network. The

a

same applies to "illegal delete".

PdOr answers. - In some cases the answers generated by

the .question answering system were unsatisfactory.

Examples are:

"Describe play4
,

PLAY IS THE COMMAND YOU TYPE TO THE TUTOR. TO PLAY WITH
NLS.

"What do you mean play with NLS?"

PLAY IS THE COMMAND YOU -.T.-

"What is a field?"

A FIELD IS A SEQUENCE OF CONTIGUOUS DIGITS OR. CONTIGUOUS
LETTERS WITHIN A STATEMENT NUMBER.

46
42

"What does that mean?"

PLEASE REPHRASE YOUR REQUEST.

Obviously, giving more coherent and complete responses is

something that can be taken care of. In the above case,

since "field" is' a particularly ,difficult entity to

define in a more useful way, a specific example Could be

appended to the definition (FOR EXAMPLE, THE FIELDS &
12A2 ARE 12, A, AND 2).

Unanticipated environments. - Many of our users worked

on display terminals. Since NLS-SCHOLAR'is geared for

users of hard copy terminals, many of the requests

originating i.display environments were not contemplated
.ie

in our design. .For example, users of display terminals

.would often forget what task they were supposed to

perform, or what questibn they were expected to answer.

Every time the system reminded these users about their

pending obligation, they would request a restatement of

the question or.task. Handling such requests ("What was

the task?", "Ask the question again", you want

me to do? ") is possible, but again, we did not anticipate

them.

As can be infe-FFET-rffro-nre,-Preceding descriptions, the

common, trait that unifies these classes of failures is our

incomplete aAicip'ation of what users would do in otherwise

4 743

-,,,.....iyagory.,}0114111114'1111

expected situations. An elucidating comment to forestall

our readers from reaching hasty conclusions is in order

here.

It is very easy to disregard the importance of these

"little failures" and attribute them solely to our lack of

This condescending attitude, that can perhaps be

subsumed as "How could they have forgotten X, or not taken Y

into account?" fails to perceive the real issue. It is

false to believe that incorporating X or bringing Y into the

fold will make a substantial difference. The authors of

this report did nothing elsg during the last 2 months of

their work, and still the system is plagued with *"little

problems"! The crux of the matter, what must be recognized,

is that when one ls faced with the fantastic 'variety, the

multitudinous aspects, and the changing modalities of the

behavior of a human engaged in a dialogue with a machine,

converging to a system relatively free of these "little

problems" is a very long process. All we can say at this

time is that this first round of field testing has been
,*.tt r

extremely useful in uncovering a large number of problems of

this typl., and that we expect the next round to uncover a

smaller number.

The Harder Problems

We turn our attention now to the more interesting

48
44

failures of our English front end, those involving questions

that were too imprecisely formulated for our system to

answer. The imprecision of these questions stemmed frbm.t

anaphora 'hey contained or, more seriously, from their

"situational" character; tha,t is to say, comprehendin

would have involved understanding the process of the user's

interactions with the system. These questions arose in such

a form because the user assumed that the system was aware of

the entire situation as it appeared to him; it is\ surprising

to see how large an amount of contextual .informatiom must be

taken into ccougnt before such questions can be properly

uindersfood: 1

The difficulty resides "not so much in the literal

interpretation of questionsA as if they Ore precise
\\1..

ormulations of the specific bits of knowledge '. the

questioner might seek, bu.t rather in,figuring out what each

particular person may have meant to ask, given his

background, his previous experience, his previous

performance, what he ought to know vs. what he seems to

have learned, the environment he is working on, etc. These

are very hard problems; they lie at the heart of the-Natural

Language Comprehension research area and their general

solution still eludes us. Our purpose is to explain why

these problems are so difficult, and to. show the

advisability of indirect solutions.

49
45

J

Many of these problems are rather subtle -a-6d it is easy -

to dismiss them because one stumble upon a

seemingly general solution whose reel. underlying "ad-hoc"

character is hard to perceive. Z6 appreciate the

difficulties involled, we shall see---h-brw a solution trir....77Z1°.

seems satisfactory for a particular problem fails to apply

to an apparently similar one. ,We shall proceed by analyzing

five scenarios taken from our, protocols. Each scenario

comprises a description of a particular situation, the

relevant context, and the questiOn formulated. The

scenarios are-rooked in order of increasing difficulty, in

terms_-eT-.5; mechanisms that have to be invoked in order to'

handle them.

Anaphoric reference

First scenario - The curtain rises .after. the stu e t has

been taught the purpose and usage of a fairly large number

of "viewspecs" - characters used to specify how an NLS file

is.to be printed or viewed. Before leaving the subject, the

system mentions several additional viewspecs, and then tells

--ttLCUffE-

As you can see, there are a great many viewspecs. If
you are interested in what they co f I, ycla-mai ask Me
questions about them. However, he ones -1 t have been
introduced here are _likely to be sufficient or malt
purposes.

50

46

S

At t the asks:

f do ey control?"

ThiS example-is deceivingmre it 'Would appear that

handling such 'a simple anaphoric reference is within the

state of the art [14o4s 1972]. The difficulty, however,

-. elides' in the lack of coupling between the question

-answering system and the tutorial material; in other words,

the questi n answerer does not know the details o hat 'the

tutor has just finished teaching an cannot plaa;7-111-e--..

request in-tontext.

A conceivable way to oopel4ith this probleMwould be to

have a complete internal representation (in the semantic

network) of the tutorial materiel, and then synthesize 'the

text the user reads from that internal representation.

Given the present state of our knowledge on, how to represent

information in a semantic network and how to generate

passable English from it, such an approach would fall short

of our needs and would be totally inadequate for teaching

naive users.

Another way to cope with this problem would be to

re-write the text so that such anaphora ould be inhibited

from occurring, rather tharibeing encouraged as they in

this example. The student is likely to frame his questions

in terms of the words of the text, ("I-i"-You are interest

51
'47

in what they control.), so the eliminatiom of referential

pronouns in the text might encourage him to eliminate 'them

in his questions.

But even if we could synthesize thektext =gracefully

from a semantic network or re-virite it carefully with an eye

4towards forestalling anaphoric questions, other difficul Fre

uld arise- indicated biAlte-,pext scenarios.

Elliptic structure

Second scenario - The system tells the student:

NLS FILES

In order to begin using NLS you will need to sp fty
4,thich 'file' of infoehation you want to work with.

(

Each file is sort of like a notebook orT-Oraer in

which you ca keep information. --

You may keep as many different notebooks (files) as
you like.

Files are automaticallystoreciwhen you are not using
them.

Before you can work with a Tile you must load it from
the storage into the working space- of the computer-4-

Each file has a name so you-may refer to it easily.

File names are made up of letters and digits and may
be quite long like BUDGETFORFISCAL75.

No distinction is made within file names between
upper and lower case letters,- both are treated as
the same character.

52 , \\,\

_----

T.

At thi o asks:

"What ab special charact

(Before going on to point t thq new p ems inherent in

this example, we should mention in ssing that,

the occurrence of this question could_have en prevented by-

re-writing the text so that it specified in exact detail.-

what,characters could be used in designating file names.

provide, however, more detail than most users

really want and is the sort of informtion-that belongs more

properly in a reference manual than in a tutorial.)

Let us ignore the problem of the conjunctional form of

the question, which we are presently unable to handle, and

fy it to be

"What about blanks?"

The new problems liz,here are the -eTIii

form of t = question no a sentence) arr& the

mu

"tutor ", the an wer would

ty of 1 cally acceptafile referrents. For

=-,

last sentence, uttered by the

40 UPPER CASE
BLANKS.

EATED.THE SAME--X8r,s4a-NtERGASE

If-instead one focused Miles (rdthe than on file name

one might geneT'ate the answer

YOU MAY KEEP BLANKS (as well as
characters) IN FILES.

53
49_

special

In order to generate the answer that the student is

actually seeking, i.e.,

FILE NAMES MAY NOT CONTAIN BLANKS

we ed a crucially important new component: a model of the

----"------Strts-haT mode1

^-

would be used, perhaps unconsciously, by a
/`

human tutor in" answering this question. An experienced

tutor knows that\the rules about permissible characters in

file names vary from system \to system and might'be expecting

such an enquiry about file_06es froma non-naive student.

The fa that udent chose the term "special

charactes", nOt mentionedin the text, indicates that he

has some)revious experience. He certainly wouldn't be
)

asking whether blanks could be stored in files, or imagine

that blanks come in both upper and lower case varieties.

Thus for a system to cope,with a question like this, it

would need to have -a broader knowledge base than that

describing NLS; it would need to have knowledge about the

capabilities and expectations of the user.

Indeterminate-iieference

Third Scenario - A similar situation (but with an

interesting twist) appears next.

Anticipating students' uneasiness . and nervousness

.4
521

50

before perf8rming their first task, NLS-SC
.

rather pr'eCise instrup/tions. To wit:

*1

V.

AR gives them

.!,;:LOOING,A FILE /

/ -
I'd like to show you ,the file name DINNER so you ,can
see how an NLS file i ,structured.

Your first task load this fle so ypu .can gark-
with it. /

/

When the BASE C: appears, ype' he command

load <SP> file <SPY INNER <CR>

to that you should- terminate each word of. the
command with a space (<SP>); you should terminate
the entire command with, a carriage return (<CR>).

(You may type DINNER in her upper or lower
cAse_lett.,ers.-)

IS

As t single command comp es the task, when the
n t BASE C: appears type

quit <SP> <CR>

I'll then .check what. 'you've done and point' .oat Any
mistakes' you may have made. Please be sure you type a
<SP> after "quit", before you type the <GR>.

If you make a,typing error while &ring t s task, you
may use <CTRL-M.. to remove- -'the 1 t character or
<CTRL-X> to delete the ens e line.

These commands work in the same way ,,,whether you're
typing.to me or_to NLS.

\.;
. Do you have any question's before doing this task?

kncO'here-the user aSks:

55

. 51

"Do I type the entire command?"

'9 This is a-iituation,in 'which even a human tutor might have

difficulty figuring out what this user wants to know. Let's

consider some of the possible answbrs.'

1) Focusing on, the lidst two sentences before questions are

invited, the system codld reply'

NO. YOU DELETE THE LAST CHARACTER USING
THE <CTRL-A> COMMAND.
PROCEDURE: YOU DEPRESS THE CTRL .

KEY AND THE A KEY SIMULTANEOUSLY.

This is' NLS-SCHOLARese for "No. You don "t ave to spell

out <CTRL-A> to delete

depress the CTRL key

2) Focusing on the

tystem could

a characterr. You only have to

d the A key simultaneously."

ird and the fourth sentences, the

answer with something akin to "Yes. You

must spell out the entire command exactly as you are

told."

3) Finally; the answer could be directed to the fact that

all parts of a commqpd must be specified, and to type

only the first part of two part command leads nowhere.

The twist is that he user model in most people's mind

would not be suff ient to identify the purpose of

question.

in

clearly escribedZ

comma

d anyone ask it? Indeed, isn't the

the commands for the first task are to be typed

t it self-evident' hat all parts o a

pecified before can be executed ? / And

5 (i 2

udents already used the <C command in the

oduction?

The soluan to this riddle is that this ?particular

questioner was familiar with NLS and was accustomed to

typing just the first letter (or two) of each commend, using

NLS's expert input mode. His question aeflected his doubt

that NLS - SCHOLAR really meant im to type each and every

character of a co and wanted the system to confirm its

ins ions. This familiarity can be gleaned from watching

his performance on subsequent tasks, but not at the time t

question was asked, just before the first,task in Lesson

One!

It might be argued that the needed information could

have been obtained from a user profile .collected beforehand.

The problem of acq ring it might be handled by inserting

queskiorls * into the introducti about his previous

experiences. One could find for example, whether he

was famil with ter finals, computer systems (if so,

whether ENEX or- others), editors (if so, whether NLS or

others, and if NLS, which version), etc. If his-answers`

warranted it, certain parts of the introduction might be

skipped; a fairly detailed user profile could be generated

from this information.

A limited user profile could be easily gathered and

should be of assistance in coping with questions like the

57
53

above, but' using it in the way we have described implies

that the requisite-knowledge .about other computer systems,

terminals, characteristics of user behavior, etc. will all

-have to be wi hin the system's knowledge domain, This .

multifold exp nsion of the system's field of expertise and

its integr tiori-ino a coherent whole, would be a formidable

underta

It may be argued that the adjective "entire", appearing

the fifth sentence of the tutorial material and in the

tion, is a clue that helps to link the quest' :h with the

desired answer. As mentioned earlier another context, a

often a-dopts the same w6rds

just used by the other party. Here en, we have

person involved in a Alai

that

a possible way out: lexical clues can help disambiguate what

a student -s question is abort. But that won't help us

sufficiently as the.next scenario will show.

z
Fourth scenario - After having learned how to use the Delete

command, and after having actually practiced the command by

deleting three statements in his own working file, the user

is told:

Please print the modified D NER file so you can see
that the statements contai ing "tomato", "rhubarb", and
"strawberry shortcake", have all been deleted from the
DINNER file.

58

54

, -

After he prints what he is asked, the system continues with:

Note how the statement numbers have been changed by
NLS. You can see that many statements have bee
renumbered rpromoted'), some of them acquiring t e
'statement numbers of the deleted statements.

Although it,atements 1A, 3A1, and 3B were all
deleted, these statement numbers still exist in our
file -- but the statement contents are now
different.

Would you, like to ask any question-s? --

At this point, the user asks:

"Can I delete these modifications?"

Since many people find it hard, to understand this question,

let us /larify it with the help of a paraphrase

"Can I neltore the contents of the file to what they
were before anything was deleted?"

Several new problem elements are intro ed into the

p ure by this scenario.
AZ

.P
In the first -place, the anaphoric reference is to

previous actions undertaken by the student (or on the

student's behalf) using NLS. The reference is directed

neither to concepts explained 'earlier, nor to anything

represented in the semantic network (the question is not,

"Can I delete modifications"). This illustrates the need to

59
55

bring into focus the history of change (modifications) made

to the user s work file, which is not hard to do in our

system.

In the second place, here we have a case where

"modifications" could be misconstrued as being inspired by

"the modified DINNER file" in the tutorial material. In

reality, "modificatiOns" . for this user turns out to have a

much firmer root: experienced NLS users know about the

,"modifipation file" (a file where all the changes made to a

-working file are kept until the working file' itself is

updated) and how to manipulate them. This user is not

naive: he knows that NLS provides specific ways of

"undeleting" and he is simply and benevolently testing how

much NLS-SCHOLAR knows about them.

In the third place, we have the rather incongruous use

of the verb "delete" with the obje t "modifications ". All

that the student has learned up to this point indicates that

"deleting" is a positive action resulting in something being

eliminated from his work file, but here deletirig something

would result in the reappearance of that which was deleted

earlier! If we know what kind of "modifications" the stud

is talking about, we can make sense out of the question

without too much regard to the verb used (try, for exa le,

"restore" or "undelete", or "do something- abou).

ore, here we have a case where what the student must

/

60
56

be speaking about outweighs other interpretations stemming

from his choice of words, such as "Can I. delete (the

statements containing' these modifications"

Fifth Scenario - We begin at a point where the system has
,--

just taught the student how to.load and print a particular

file, an the.student has successfully performed two tasks

requiring him to perform these actions. The student then

has available the followini printout of the contents of the

file.

z
< TUTOR, DINNER.LNLS;1, >, 14-SEPT-75 13:43 LAC ;;;;

1 SOUPS
1A tomato
1B-vegetable
1c cream of mushroom

2 ENTREES
2A fried chicken
2B prime ribs
2C scallops

2C1 broiled
2C2 fried

2D salmon
2D1 with cream sauce

3 DESSeRTS,
3A pie

,3A 1, rhubarb,

3A2 bruebry
3B strawberry shortcake
3C ice eftam 7

3C1 blueberry
.3C2 maplenut
3C3 chocolate
3C4 coffee '

3C5 peppermint
,3C6 cherry

The system gina to describe this file as follows:

61

57

11.

THE ORIGIN STATEMENT

Let's' look at the information in the file.

Notice that there is a line at the top whiCh pives
identifying information about the file

This line is called the origin statement' and is
supplied by NLS.

First it gives you the name of the 'directory' (a place
in the memory) in which this file was stored. Then it
gives the full name of the file and the date and time
of its creation.

The file name includes an extension specifying
'what kind of file it is.

In this case it says that this is an "LNLS" file.
(LNLS stands for LISP-NLS and indicates that this
file was mad by our LISP implementation of NLS.)

The number ar4r the file name is called the

version number

The "1" here indicates that this is the first
version of the DINNER file that's been made.

Do you have any questions?

And the student asks:

"Are the brackets part of the statement?"

Here we have two-anaphoric references ("the statement" and

"the brackets") and a questioned inclusion relationship

between them.

Finding the referrents (the first line of the printout

as a realization of "the statement", and the left and right

angle brackets within it as "th.e.brackets") involves methods

of solution not required previously. "The statement" can

62
58

readily be assigned the referrent "origin statement" by

means of the
\
previously hypothesized representation of the

tutorial matett.and by focusing, but from there on we face

entirely new pro ems. In the first place, the student uses

"the brackets" o uescribe some portion of the content of a

statement. Surely we can not exert the system to be

capable, in general, of dealing semantically with the

contents of user Files`. In fact, referring to statement`' 2D

as "the fish" is possible only because of our knowledge of

zoology, which has little to do with text editkng systems or

with NLS in particular.

Secondly, although "origin statement" is a perfectly

valid referrent for "the statement", that is really meant is

"the particular realization of an origin statement that is

represented in the first line of the print out".

Presumably, quite a bit of inconclusive inferencing will

have to go on before the system quits trying to find a

connection between brackets and the concept of an origin

statement (after all,,,:square brackets can be used in file

names!)

In the third place, even after the correct referrents

have been identified, what sense does the question have? Why

shouldn't a part of the content of a statement not be a part

of ttle statement? Isn't this obvious? And if so, why would

such a question be asked? If the interpretation "upper case

59

. ,

blanks are treated the Same as slower case blanks" could De

rejected for being 'trivial why can't this orje be rejected
4

similarly?

The truth is that we don't know why this particular

user asked the question. We can'only speculate that he was

a TENEX user and was wondering if the angle brackets were

used in a fashion similar to the way directory names are

denoted in TENEX; or he may have prompted to ask this

puestion because of the way NLS-SCHOLAR denotes certain keys

(<CR>, <CTRY.-A>, etc.

This is a god place at which to stop and recapitulate
a

the preceding analyses and discussions. We haVe seen how

each scenario has introduced new ProbleMs, and how each new

o
problem has required more and more complex methods of

solution -- and 'yet, there is no indication that this

escalation of complexity has ceased.

Proposing those methods, we stretched available ones

and hypothesized new ones to such an extent that continuing

to do'so would have been utterly unrealistic. For example,

the user models we require would have to encompass a large

amount of "world knowledge" in order to cope with situations
...

such as the ones exemplified in our scenarios, and yet the

theory underlying such models is in its infancy at best.

The exercise we engaged in is certainly useful and

64

60

...

illustrates the need for continuing research, but above all

It demonstrates the need for a pragmatic approach, i.e., one

based on accepting the seriousness of the difficulties and

finding a way around them. Rath r than exploring a large

number of.plausible interpretati of a user's request, it

'is better to either forestall the request, or to seek its

clarification.

4k

61

'SECTION IV - RECOMMENDATIONS AND CONCLUSIONS

In this section we summarize _conclusions reache for

the most part in previous sections, d we formula e

recommendations for further work., Our contention that

one more year of relatively- low. level effort can ma

NLS-SCHOLAR a very useful operational system.

k

Our first recommendation is to continue to improve the

English front end module to rid it of the nagging little-

problems described extensively in the pveceding

This can only be done on a continuing basis, correcting the

problems as they appear in the course of bona fide us4e of

the system by the type of users for whom it is intended.

This process will be long, but tne result should be em

able to answer as many as 80% of the reauests pcised. In

parallel with this effort, techniques such as the

sketched in the previOus section for circumventing the

harder problems should be developed and tested, and research-

efforts aimed at attacking these problems head-on should

15-e.--stepped up.

Our second recommendation is to improve the task

evaluation module in the following ways:

1) Make it point out more clearly what is wron44$1.-th---,4

student's result. For example, when this module responds

60

.4

"I wanted you to change A into B but you changed\ A into

it is hard to see sometimes what the difference between B
- -

a\nd C is. --In other ',words, in our efforts to avoid-
,-

.

presenting the offending text in isolation without
11%

contextual inf = -tion, went too much in the other

direction; we showed so muc surroun d hat the

specifics got drowned!

'2) Augment the existing task -entries in the

network with a list of expected errors and specific wa

' -. repot -hem. This Votld_ permit by-passin -t e standard

reporting format one of these e ific errors were found.
J

_-

4 -,--------

3) Implement et me ix it" f\acili ____to---avoid the __
.

sometim ostfy consequences o the taS eva-luaiors's za
.

his facility Will hand back a task.environment to the use

fter the system has found faui 'th- it and has require

he user to, do it all over a .

ze what is rong_ and what ected-otnem cola).

patch their work-and satisfy the taN* evalua
\ N

require is in thetr_owm-wsay. -c-.- -,

'--,

'r e

way, u6 17s

Finally,

"intelligent"

and 'inter et the use

comments. It is not en
.N,

a result; the most helpful

r s

d ally make this's, madille_\
give it\ the ability to underband

tentions d to offer.,, helpfUl

gh to point 'out what is wrong,Nith

tuation is one where the userX,

meth ds are scrutiniz d and critigized.--This area

$;$

1

is certainly'one where further development is needed.
/

Our third recommendation addresses the tutorial

material.

be improved by adding the capability for the user to

redirect the order sentatiOn of a lesson via requests

-Although it is certainly in good shape, it could

"Let

e again bout '<CT,RL-X>"

We have the necessary oundworklo handle these .requests
.06

review. only rab4z.eT is ow to apprise the user of

the new cont t h.e i to reqUAphasbeen

back to:DEbETINg BRANCHES"

for

fulfilled; that

has been restored-to

e 1 that his file

,,,..,,,,

x

4e could alschs d e r edt s like ,_
-.----

t-

"Let's skip this task"
, qt*

without too much\difficulty. Her"e the cessary changes to,

the user's file, to bring it to thestateNAt would have

acquired after the task had been completed, must be
.,\

explained and justified. Requests of the form

"Leers skip all about INSERTING"

and

"Teach me about VIEWSPECS" (implying a large forward

jump)

raise other issues as well. Not only the problem of

bringpg the file up to date more complex to xplain as many

68
64

1

1;
tasks may be involved) but also some of the concepts and

terminology skipped over May be needed by the student it

ilk Order to comprehend the following material., Allowing the
*

student to rjview is relatively easy; allowing him to skip *17

fciri,-/-5?d is quite difficult 'iven the linear development of

the textual material.

(-2

Epilogue',

It is easy to .jump to the conclusion that the

unresolved problems we have dealt with so extensively,

preclude systems such as NLS-SCHOLAR from becoming useful in

an operational 'environment. This, conclii;ion would be

, erroneous for several reasons:

a) The frequency of ocCurrence of "hard problemsur.°2-Ivery

small. Most of the users requests we have seen belong

to the "easy to answer" -category, regardless of the

ac teal performance of the pregentversiovif N4S-SCHOLAR.

2) As more and more of he ittle pr:oblems are irpned out,.

users wil positively reinforced towards expressing

their requests in the kind of English the system

understands, 'Nand with the precision of formulation the
..6 , .

system requires. , 1.'

c) As the:humber of failures decreases and') the number of

user's increases, it haadmes both feaSib e and economical

to provide a human expert to back up the system as a kind.
o

of 4consultant"_. In a computer network environment, many
P

69
65

.

70,11.1.10M14.4.4.1967 J.16.16111.10.41,4=114.0 1-7,/, .4,1,

Airrm AP"

.

I

users from different si ake - Re of this

immediate and most eff n of, 1p. Notice also

that while humpn experti is concentrated in the hands

of one expert at any onetime, erts located in many

sites can take turns at minding t system;. i.e., human

'expertise may be concentrated bu not centralized.

Waiting until "intelligent". G I systems beco =gable

of 100% stand -alone operation oth f ile and

counterproductive. It is fug a because the
7

kind of

performance is probabi possible to obtain just think of

how few people can do itt). But, more impo tantly, it is

counterproductive because widespread use °gran 80% effective

facility, for,example, would multiply, by very large factor

the consulting capacity of a human ex pert, enabling him to

reach more people than he could otliemiise and to address

himself to the'relevant problems quicidy.

1

:70

66

rr $1,43,

DIX

w of NLS-SCHOLAR by ISI

-following evaluation report was written by David

Wilczynski, of the Information Sciences Institute of the

University of Southern California, at the specific request

of the Contracting Agency.

I. INTRODUCTION

This review is based on my own experience in early August
1975 with NLS-Scholar, a mixeekinitiative tutorial CAI
system for teaching a basic subset of the text editing
subsystem of SRI's NLS programming system.

NLS'- Scholar, programmed in INTERLISP, was written by Mario
G/ignetti and his group a BBNI The system has evolved from
Jaime Carbonell's Scholar (which teaches South American
geography) taget er with su tantial influence from Brown's
SOPHIE system. Th' system:i organized to

lk

a) Present tex ual, tutorial mated/al to introduce the
user to a terminal and to NLS.

b) Provide a simulated NLS system to the ,user on which to
-practice,* what he has learned, as' well los to do
system-generated NLS tasks.

9
. c) Provide a natural language question-answering

component which responds to user queries by: 1) doing
Al-like searches in its fixed data base, or 2)
"executing'' the right NLS cOmmands on the user a current
file to answer dynamic questions.

d) Present various NLS tasks to the' user to test
comprehensdon of the material just presented.

The course is divided *into the following lessons. Each
lesson takes. 'about 1 hour, with'many variables determining
the exact length, load average, attention span, competence,
etc.

Introduction - Control characters

67

Q

Lesson 1 -

Commands: Lond File, Print File,-Delete, Update

Concepts: ULS files, NLS commands, NLS prompts, structure
units (statement, branch), strink: units

Lesson 2 -

Commands: Print Rest, Jump, one-character commands

Concepts: Control Marker, content addressing

Lesson 3 -

Commands: Insert, Create File, Substitute

Cbncepts: Level, level adjustment

Lesson 4 -

omnan s: ri , Transpose, Move, Copy

Concepts: P -xes, Groups

Lesson 5

Comma ds: Show Viewspecs, Set Viewspecs, Reset
Viewspecs, Output, and Help.

C cepts:Viwspecs, Text File

II. GENERAL IMPRESSIONS

S is well suited for CAI methods; NLS concepts are short,
factual, and "nonphilosophic," a good m&thod,is available
for testing competence (either interfacirrowcirc,ctly to HLS,
or simulPtin7 it), and the.inforration is incremental and
additive rather than diffuse.

The main point is Scholar did teach me NLS. At the start of
it is;

em.
if

the program I knew nothing about NLS other than what
now I know the NLS terminology and how to use the , sy

However, improvement is necessary in several area
S,pholar is to be a finished production program, competitive
with possible alternative teaching methods. The following
two sections will review Scholar's strengths and weaknesses.

III. THE ENVIRONMENT ;OFFERED BY SCHOLAR

The Scholar CAI system is classical in that text is

presented to the student in prearranged frames with tests
usually following each., The inclusion of a natural language
interpreter is an innovation which allows the student to ask

72
.68

questions during the program. It turns out that this made-
of operation has. advantages for nonstudent types. Studies
have shown that people relate well to computers, suffer less
anxiety, and feel freer to experiment and ask auestions in a
CAIenvi.ronment. The critical aspect of such a system is
its transparency.

If the student notic s (or becomes preoccupied by) the CAI
machinery, he can perform in the short term (answer
questions, do short t sks), but lacks global comprehension.
Thus the type of display and the "smoothness" of the system
become important factors for people not used to operating
such devices. Specifically, NLS-Scholar is intended for
typewriter terminals. Having written a CAI system for such
terminals myself, I have verified that all students are
acutely aware of the typing noise and low speed. I used
NLS-Scholar on a 2400 baud video termi al and was much more
satisfied with the results. Since t re are times when
hardcopy is needed for back referrals, BBN would do well, to
offer the appropriate hardcopy text to the student as an
audition for the Nideo terminal.

A parameter of system smoothness is its respon4veness. A
high load avenage (virtually anything above 4)'combined with
the slowness of INTERLISP made Scholar move at an unbearable
crawl'. When. the load average carte down to 1 or less, the
system moved about sprightly. The difference here is more
than one of .convenience. .No user (unless he is forced or
paid) will sit through a session of -Scholar on a machine
with a high load average. If he must, it wil turn out to
be a Painful, wasteful way to learn NLS.

i/-

A few of the INTERLISP features caused some unnecessary
distractions. I found the garbage collect messages ("Excuse
me, while I rearrange my memory!") disconcerting since they
(.caused a visual break in my concentration. I appreciate the
attempt to explain the impending delay, but I think the
typed message is too visiEn-:

The preprocessing of all questions and responses by kDWIN
also caused some amusing incidents. For example, in
answering the auestion, "What character prints the context
of the CM?", I responded "/". DWIM turned the slash into a
"?" (a common INTERLISP occurrence) and then NLS-Scholar
told me that ,"", not "?" was the correct answer. Those
sort of bugs are not serious and easily repairable, but must
not exist in a released" product.

NLS-Scholar offers a medium which can be started when
desired (assuming machine availability), stopping at
arbitrary points, and proceeding in' whatever pace
mfortable. If ..1-11LS-Scholar were set up to operate at

different modes .(beginner, expert, review),then the problem

73
69

a

of retraining and refreshing ,previous NLS users would be
simplified. This may not be a simple addition to make in
NLS-Scholar, but judging from discussions with users at
1". nter AFS, it would be powerful and useful.

IV. _TEACHING C MPONENTS OF NLS-SCHOLAR

The three ,main components of. NLS-Scholar are: a) the
ntutorial ,iformation, b) the natural language interpreter,

and c' the test management. first and third are CAI
standards, while the second is in the realm of Artificial
Intelligence (AI).

A-

V The text material was impressive; it was presented
concisely and accurately. At no time did I feel that I
was being either overloaded or nursed through, both
factors which led to .effective and willing comprehension
of the material. It is easy to overlook or underestimate

,auality in this area because good tutorial services are
not as visible as poor ones. Because of this phenomenon
I want to emphasize the excel ce of the tutorial

.information.

B) The natural language interpreter is more complicated
to evaluate. Most likely, it is the most complex part of
the system, yet probably the least useful in its present
form. The main problem concerns 4s robustness. Often
asked__.a---simple question like "Please-. review
/5We-character commands,",and got only a "Please rephrase
your request" reply. In this case I think the problem is
that "review" is net part of Scholar's dictionary.
However, in rephrasing the question Fto something _like
"Tell me about the one-character commands," I would just
vet a list of the without functional definitions. To
wet :hat I wanted I would have to ask for each
individually (e.r., "Tell me aftut the command."). It is
disconcerting to have the parser or retrieval mechanism
fail on a simple request, but not to know why is worst.
Just asking for a rephrase does not indicate what the
failure was; this information will surely be useful in

composing a different reouest. Whether most users would
want suck informgtion is a different question; I would
have likjd it.

It is hard to be Critical of this natural language
business, since the problem is still a major research,
not developmental issue. Still, I wonder if Scholar's
interpreter is state of the art; I am thinking of Woods'
moon rock program. Since that program is also a BBN
product, it would be interesting to get ,a comparison of
the two systems from,the DLS-Scholar group.

7 4

70

The lack of robustness of. the English, interpreter
detracts somewhat from Scholar; I found myself not using
that component. The table' look-up kind of questions it
could answerwould be better solved by just having access
to the table in some primer format. Again, the lack of
field testing may indicate that this is just a personal
reaction; but the shallow range of questions and answers

_makes the worth of 'this subsystem suspect.
Certainly, it doesn't fulfill the capabilities of a human
tutor.

C) The test management phase of Scholar is composed,of a
series of questions which are answered either by doing an
NLS task, or talking directly to the Scholar top-level.
In both cased the answers or performance are evaluated
with feedback as to correctness: The ability to check
answers is one of the more difficult tasks for a CAI
system when the domain of true-false or multiple choice
questions is not used. -Scholar does admirably here but
is far from perfect.

The top-level type questions, (e.g., "What is the
statement number of the statement that will be printed if
I now use the backslash command?") will be looked at
later. The NLS tasks,. the heart of the testing
component, will be reviewed in depth.

The basic mechanism for matching a task answer to the
'correct one seems to be:

a) If a file manipulation task is involved, (e.g.,
INSERT, DELETE), then the resulting file and the'CM
"(control marker) are checked against Scholar's
expectation.

b' If z printing task is involved, the output of the
print command is trapped-ant matched against expected
print, and the CM is'checked for positioning.

At no time does it appear that
This

looks at the
student's input sequence. This lack leads to many
unfortunate experiences. For example, one task asked
to delete two consecutive statements, expecting the
user to use the sequence, "delete statement 1B5, delete
statement 1B5," to account for the renumbering, done by
NLS. I tried, "delete statement 1B6, delete statement
135," to accomplish the same effect. Scholar told me I
did the task correctly and then the next frame
described how I could have accomplished the same task,
by deleting statement 1B6 and then deleting statement
135. Not serious, but the question of system
transparency arises.

75

71

A more serious flaw in this purely extensional iprm of
testing appeared in the task to .test the use of
'CTRL-E> for inserting a series of statements. I did
the task by inserting all the statements at the same
level (superfluously using CTRL-E after each insert)
before going back to insert substaterients. . Even though
the resulting file was correct, the CM was not where
Scholar expected it and so I was informed-of this
"error" and told to redo the entire task from scratch!
Needless to say, I didn't enjOy retyping the whole
thing. Worse, however, was the failure of -Scholar to
recognize what I did, tell me the right way to do the
task (i.e., use one CTRL-E and move up and down levels
using the L: prompt) and then let me proceed. It is,
however, easier to be critical,of this flaw than to
suggest an alternative. A deep undetstanding of the
intensional command strings represents a large (perhaps
unknown) effort. If accomplished, there is no ouestion
that the system will appear much more intelligent _then
it currently does, as well as being more useful.

Other examples of situations Where this type of problem
come up on be given, but are not necessary to this
review. Some of the techniques used to check top-level
questions (those not requirine'the NLS simulator) are
also open to improvement. For example, one question
.expected CTRL-X as the answer; I typed (CONTROL-X> and
was toLd.!I was wrong. Another time I answered a

questilii with LINE-FEED and Scholar wanted <LF>. These
two cases should not be construedas nitpicking, but as
an attempt to point out situations which make Scholar
seem less suitable as a training method than standard
teaching methods. Too many of these trivial flaws will
discourage the CAI user.

SUMMARY AND CONCLUSIONS

As I mentioned before, it is much easier to point out flaws
in a CAI system then to recognize its oualities. Experience'
with standard methods give rise to expectations which are
then used 'to judge CAI systems. .Yet, criticisms of Scholar
should be tempered by one observation, Scholar does teach
the student NLS effectively. Assuming that the lodal bugs
in Scholar are fixed (a few have been described in this
paper), a useful system exists which can be used to
potential NLS users.

Still, changes can be made which might expand its range of
use as well as improve its performance. Several have been
pointed out in this paper, for example, making the natural
language component more robust, adding analysis of the
user's input to the current extensional analysis,, endowing
Scholar with other training modes, expert, review,-etc.

7 6 72

None of these possibilities are simple; more field testing
is necessary before firm conclusions can be made one way or
the other. Yet, once Scholar is made more complete in its
coverage of NLS, it will be a viable product and should be
evaluated as such by agencies interested in NLS.

Some mrely system questions also need addressing. Can
NL-8-Scholar be a viable product as an INTERLISP program
(thus bound to TENEX)? Are there enoulph machines with enough
time slots of low load average to accommodate the potential
Scholar users? I am sure other questions of this type will
arise if research into Scholar is continued.

77

73

Comnen s,p-mthe review

I by Mario C. Grignetti

It seems to me that the review is, overall, a rather

positive one. NLS- SCUOLAR seems to be able to do its most'

important job, i.e., teach NLS.

Many of the problems that Dave points out are trivial-

to take care of: garbage collection messages, DWIM's

busy -bodiness in unwarrantedly exchanging "/" for ."?", and

more ways to represent CTRL-X or <LF> than we anticipated.

After all, the.main goal of the field testing perform

under this contract was precisely to bring up these kinds o

problems.

Dave is wrong in his assertion that "at no time does it

appear that Scholar looks at the student's input sequence":

system does look at the student's actual input when he

an rs questions. The fact that Dave's clever answer

(delete statement 1B6 and then delete statement 1.18.5) was not

handled intelligently was due to a stupid bug in one,of the

predicate functions in our answer evaluation module. Again,

this is is case in point for the usefulness of this type of

testing t e system's designers. In general, however,

Dave's criticism *is valid: when the student performs a task

using NLS, the commands he ,types are not looked at and only

their consequence are used to evaluat &what he has done.

We'd like very much to tackle the difficult problem, of

'18 74

inteirtlemeZ, ctprehension;' if solved we would have a much

smater s

Other difficulties, referred to in the review are more

serious. Indeed, we need to provide feedback as to why a

request fails to be understood. We had wanted to tackle the

problem of partia omprehension and try a few strategies

that app promising. However, the pressures arising from

limited time , resources, ancrthe purely developmental

type of work in which we have had tolliconfOe our efforts,

precluded the performance of sorely needed research work.

With respect to our use of "Woods moon rock program", this

is another thing we ve kept on the back burner for some

However, it is questionable that just a more powerful

parser would have made a lot of difference in the system's

ability to respond to student's requests. The difficulty

here resides not so much in t literal interpretation of

questions as if they were precise formulations of the

specific bits of knowledge the questioner seeks, but rather

in figuring out what each partkcular student may have meant

to ask, gi'ren where he is, his previous performance, what he

ought to know, what he seems to have learned, etc., etc. It

is surprising to see how many questions are unanswerable,

even to a human, when taken in relative isolation.

Finally, a word about. efficiency. We do not think that

3 ,CPU minuted per hour is a terribly inefficient and

79
75

unacceptable way to administer a CAI lesson. We agree

however 'and wholeheartedly!) with Dave's obser:v.ation that

when the load average in a genern1 npv.pose time2!ginf.-

system such asTENQC reaches about 4, it is better to quit

and home. This is not a problem that affects NLS-1HOLAR

alone; whe a large system such as TENEX is saturated,

nobody gets anythi ,dcine efficiently, rycluding NLS:users.

0
1

76

REFERENCES

CliGrignetti, M
1

C., Hausmann,, C. end' Gould, 1,4 "Ano.
intelligent on-line ..--...a'Sistant and tut.,c, -

NLS-SCHOLAR, Nationai Computer Conference, 1975. ..-N,,,\

,t2-1 Grignetti, A.G., FiAoasinann, C.L.,
Harris, G. and '--PassafiUme, <F:J: 'Mixed- Initiative
Tutorial System to lid Users' of the On-Line System'
(NLS),p ESD-TP-75-58,)0'4007 828, November 1974.

-[q] Bobrow, D.G. and Wegbreit, B. "A -Model and Stack
,I,Tplementation of Multiple Environments," Communications
of `the ACM, Vol. 16, No. 10, October. 197,3';

ti
[4] Teitelman, W., et al, Interlisp Reference Manua Bolt

Beranek and Newman and Xerox Corporation, 1974.

[5] Burton, R.R. "A Semantically Centered Parsing System
for Mixed-Initiative CAI Systems," paper preeented at
the Association for Computationtl Linguistics
Conference, Amherst, Massachusetts, July 1974. 1

[6] Brown, J.S. and Burton, R.R. "Multiple Repre
of KnOwledge for Tutorial Reasoning," -.res
ilnAanalandta&I Studies in Cognitive
Bobrow and A. Collins, Academic Press 19 5.

ntatiom
io an

Editors DI'

[7]---We ds, W.A., Kaplan, R. and Nash-Web B. "The LUNAR
Scie s Natural Language Inform ion System," Final
Report, 2378, June 1972.

[8] Fillmore, C.J. "The Case-far ase," in Universals in
Linguistic Theory, (eds.) B h and Harms, Holt, Rinehart
and Winston, 1968.

81

77

4

4

N

I

