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ly4n614, researchers in theeducational milieu should be

disposed to the idea that both causes' and effects Of educational

phenomena are inherently multivariate In nature (see, fo'r example,

Tatsikka's recent review [1973] as well as older surveys oI

multivariate statistical applications in education and psychology

cOntajned in books by Cattell [1962] and Whitla [1968]). In their

\'
statistical applications, however,%,,fducational researchers have

aPpai.ently taken only half of this statement seriously. Thus,

researchers have recognized the fact that causes of educational
A

phenomena are multidimensional and have employed techniques of

multiple linitr regiession with increasing levels of sophistication

to investigate both the combined effects of, and interrelationships

among, multiple independent variables. For the most part, however,

researchers have not investigated the "multivariatenese of-educational

outcomes. Instead, the typical approach has been to study the effects

of a common set of independent variables on each of several criterion

variables separately.

This practice is not unique to education. Lana and Lubin (1963),

for instance, reviewed the published artfcles in over three years

worth of three APA journals in an effort to discover the frequency

with'which multiple-criteria designs were used and how they were

analyzed. One of their findings, of interest here, was that about

. 4

one-third of the studies used desIgns which involved multiple,

correlated criteria; yet only one of the studies reviewed took the

1
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correlation among the criterion variables into account. Multiple

criteria were usually analyzed by applying analysis of variance

techniques to each variable separately.

In preparing for this paper, I did a quick, informal review

of.the studies published in the last three years in the American

Educational Research-Journal and the Journal at Educational

Psychology. Over 80 percent of the experimental'and comparative

studies reported in theSe journals investigated effects on multfplt

t,

criteria. Although several of these studies employed multivarietJ''

techniques, the majority of them (approximately three-fourths)

employed multiple univariate analyses of variance.

The typical.example would be a study in which several independent

.variables (including pretests, demographic data, and incidence of

treatment measures) are examined separately for their effect on,

say, measures pf motivation, achievement,'and attitude toward school--

variables that few would deny are correlated (perhaps highly) in the
110,14,

population. Tk_po4sible ramifications of performing separate .

tinivariate analyses on correlated criteria are well-known (e.g.,

Hummel and Sligo [1971]). If a Type I error occurs An tests

involving one criteria, the probability is greater than a that it

'will occur in the tests involving the other criteria also. This

fact, by itself, should provide sufficient motivation to the

researcher to seek multivariate techniques for the analysis of

multiple-criteria desins. At\the very least a multivariate

technique offers the researcher a procedure for controlling

experiment-wise probability of a Type I error:

1
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Pf course;( there are other reasons for calling for an increased

application of multivariate methods. For instance Snow (974) '

has recently argued that research des4ns in education need to

more represefitative of possible outcomes. That is, researchers need

to choose samples of dependent variables which are representative of

the phenomena being studied. Snow argues effectively thgt if the

results of educational experimpnts are be be generalizable; they must

first be representative. Part,of Snow's thesis'can be interpreted

as a call for multiviriate investigation in educatiOnal research.

Multivariate statistical procedures appropriatel fit this episL

temological point of view that the "effects" in educational settings

T2

are rarely, 1if ever, unidimensionkl and therefore should not be

studied in isolatiln. The study of multiple outcomes simultaneoualy

can afford the researcher an opportunity to "uncover" complex

relationships among treatmemt and outcome variables that might other-
..

ts

undiscovered.'wise go ndiscovered. Andexample might b a situation/in which it is

found that two emperimental instructional programs lead not only to

increases in several measures of achievement and motivation, but also,

under one of'the programs to increases in the correlation among the

variableg. Suhfi a finding might have important Implications for

understanding the dynamics of the instructional programs.

If the need for greater application of multivariate statistical

procedures can be established so easily,'why then are these procedures

not used more frequently in educational research? Although it is

impossible to answer this question completely, there is no, doubt

that at least part of the answer lies in the fact that multivariate
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procedures are more complex, both mathematically and conceptually,

then univariate procedures. Until recently, researchers who soyshd

to use multivariate techniques had to first develop a fairly high

level of mathematical skill to be able to read the existing text-

books. Even given. the requisite mathematical ability, the

existing textbooks were often less than useful to thapplie4

researcher since they contained a paucity of examples ion anything
4.

even bearing a passing resemblance -to the kinds of problems

encountered An educational research.

In recent years,) however, a number of intermediate -level (in

(-mathematics) books on multivariate statistics have been published

(e.g., Cooley & Lohn s [19

[1967], Press [1972]; Tatsuok
. 4

Although these'books usually re

the mathematical development

than that, however, these books ptovide a'rich source of examples

Finn [1974], Harris [1975], Morrison

1971], and Van de Geer [1971]).

re some ability in matrix algebra,

d to be h.ghly tractable. More

of applications of multivariate procedures. It is likely that,lue

to these boOks alone', many more applications of multivariate

procedure

twill

appear in the published edUcational research'

literature.in the next few years.

Another development of recent years that is likely to lead

to a greater use of multivariate procedures ig,the increade in the

C
1

number of computer programs that have become available. Maly of the
.

books listed above (especially in Harris [19751, Press [ 972],

and Cooley & Lohne's [1971]) provide references to existing computer

programs. The Arilability of these programs has further le6sened the



demand on applied researchers for glitheqatical sophistication.

Of course, the researcher still needs a conceptual un4er8tanding

q

of, the particular procedures he intends to use. Providing the

researcher h4lika clear understanding of what he wants
.

to do
..--,

statistically, as well as a conceptual, understanding of the'

statistical techniques he intends to employ, theta given a computer

program for the statistical procedure, a multivariate analysis 0.

is reldtively straight-forward. This is especially true for most

applications of the multivariate general linear hypothesis (MGLH),

the subject-of this paper to which we now turn.

The MGLH is the most general of all parathetric linear

statistical, procedures. In fact, all linear statistical tests

t

(uhivariate and multivariate) can be developed as special subclasses t

of -MGLH theory. This inclucks among other-procedures, factor

analysis, discrithinant analysis, prediction (or regression) analysis,

and the analysis of variance and covariance. Although the mathe-

matical dev'elopment of MGLH theory is complex, its conceptualization,

at least insofar as the most common applied situations are-concerned4

is not particularly difficult. It does require an elementary

facility for matrix algebra, however.i simple statement of the
\

theory is that if a set of dependtt variables, Y (where the tilde

uhderscore denotes a matrix), is linearly related to a set of

independent variables, X, by the equation,

Y X$ + E,

where $ is a set of unknown parameters of interest, then any

hypothesis of the form

: A$C"-. D

5

fi
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is testable. In this equation, the matrices A and C are used to select

particular elements from among rows and columns of a. The matrix, D,

is a matrix of constants spiecIfied by the. investigator. Usually D

is set equal to 0, a matrix of zero's.

In the next section a brief introduction to the theory of the

MGLH is provide*. ReaderNwho wish to pursue this development in

:Of
greater depth are encouraged to consult the appropriate chapters in

Kempthorne,(1952), Kulbach (1968), Mendenhall.(1968)., and Seal 41964).

Early pApers by Smith, Gnanadesikan, and Hughes (1962) and Bock (1963b)

develop the MGLH in a way-that is useful to those who may wish t o

program the computations. Thorough, but highly mathematical,

presenTions of the MGLH have been given by Anderson (1958), Rao (1965),

and Seber (1966).

In the third section of this paper, several gene,xal algebraic

examples of typical applications have been provided. Other examples

of applicationsof the MGLH, using real data, can be found in Bock

(19,63a) Bock and Haggard (1968), Jones (1966), and Finn (19744).

***

'61,6

er.



1

2. Introduction to the Theory of the !cm!

In this paper, interest is primarily focused upon the analysis

of variance-and the analysis of covariance. Repeated measures (or

profile) analyses of variance and covariance are, also covered

but are treated as spe al instances of multivariate analyses or4

variance and covariance. Before proceeding to illustrative applications

of the MGLH, however, it is s first necessary to lay some of the

mathematical ground work.

Definition of the Model.

We-begin by rewriting the general equation for a multivariate

linear model,'

Y xa + E [24]'

where the component matrices are described in the paragraphs which

follow.

Y is an N x p matrix consisting of 1 x p response row Vbctors-

for each of N subjects.. An element en teal as Y iz) would con-
.

j '

stitute the t'th response measure taken on the i'th tndividual in

gioup j.

Yc is an N x q matrix of predictor and/or design variables. In

multiple linear prediction, X would contain ,the 1 x q vectors of

predictor scores for each of the N subjects. In analysis bf variance,

X would be a matrix tf design variables. In the analysis of covariance,

X would contain h combination of predictor scores and design va0.ables.

8 is a q x p matrix of unknown parameteet, the elements 9X-which

are of interest in tests of MGM's. Depending upon the choice of X,

7
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the elements of g may represent subgroup. an (expected,values)',,

contrasts among subgroup means, population regression coefficients,

etc.

4IP

E is an N x p matrix whose columns, E
(i)

, art error vectors for

the p response measures. Stated differently, for.each row vector of

response observatls, Yi, there i8 a corresponding row vector,

E'ij , of disturbances usually due to errors of measurement and lack

of linear fit tothe model.

Assmotions

The assumptions applicable o the model defined above, for

purposes of testing hypotheses, are the following:

1. The model is linear in terms of the parameters,

B.

2 . N > p + q.

3. X is of full rank, q.

1

.

4. Each row vector, E"
ij'

in E, is independently

sampled and distributed multivatiate normally (MVN) with

expected value, 0' and covariance matrix E
O -ijr

The first assumplion i8 rarely limiting in eduptional research and

evaluation. Many models which appear non-linear on first sight

are actually intrinsically linear. In these situations, suitable

linear mc?dels can be written following acceptable trans' -,

formations'of the original measures (see Draper and Smith, 1968;

ch. 5, for a discussion of the types of models). Assumption

8
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number 2 is required to ensure the availability of a sufficient

NL

number of observations to estimate. the pq elements in B.

The third assiimptiAm is necessary to ensure a uniqUe solution

for B. -Since this solution requires' the inverse of 4'4, it is

necessary that X'X be nonsingular; hence X must be of full rah.

More general, non-unique solutions for § exist. These solutions,

which use generalized inverses of X'X, allow X to have more columns

than its rank (i.e., they allow _X to be less than full rank). Since

full-rank design matrices are usually quite easily constructed

for most designs in educational research, the generalized inverse"

approach is rarely, if ever, needed. An way, for any design matrix

less than full rank, there always exists a transformation Matrix,

T, Such that

X* XT

is of full rank (see'Bock [1963], Graybill [1961; pp. 235-239], or

Sm/th [1972], for details on computing T).

The fqurth assumption provides the foundation for the theory

underlying tests of MGLHs. The assumption implies that the

Y' MVN(0ij , E).
-ij -

The fourth assumption may be stated in an alternative form which

will prove useful in'the development. Thus, if the columns in E

(and, correspondingly,the:columns in Y) are strung out to form the

Np x 1 vector V (and V 1 thentassumption number 4 states that
e -Y

9

10
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a

V 2-....,OVN(0, E x, I)
-e

Vy MVN(V E X. I) [2.2]

where 0 is an Np x 1 vector of zeros, V' is an Np x 1 vector

of expected values ,t V
y

, I is an N x N identity matrix, and the

symbol, x, denotes the Kronecker direct pioduct (Cornish [1957],

Searle [1966,pp. 215 -220]; Vartak [1955]). Since the parameters

in a are linear functions of Y, the variance of B and, thus, teats

of hypothesis involving B follow more or.ltss directly,

0..

. Estimation of s and E

Since the elements o? B and E are n allrknowa in

practice, they must be estimated. Two proce Available,

viz. maximum likelihocrd (ML) and Least Squares (LS). Since the

former requires the assumption Of Multivariate normality whereas;

the latter 'does not, and since the -solutions for 0, are the

same in either case., only the LS procedure will ba pursued.

The LSprocedure calls for obtaining estimates of B, B

say, such that the error sums of squares and crobsproducts.

(SSCP) are a minimum.,.In matrix terms, estimates of B (viz, B)

are obtained such that the following equation is a minimum.

g'E m cr-g.)-(y-xp. 2.31

LS procedure proceeds by differentiating the right-hand side of

Equation 2.3 with respect td'elements Oithin rows of Q and setting

the result equal to the null matrix (a comformable matrix of zeros).

0
10
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This proceAure yields a system of qp simultaneoup equations in B

which are jointly set equal to 0. Appropriate manipulation of

...r.

C,

th se equations leads to the. system of Normal Equations,

X'XB E. X'Y.

which, assuming.X-25 is nonsingular, is easily solved:

B -05 (X'X)-1X.Y.

12.4)

[2.5]

The estimates, B, have been shown. to be briblased and miramally

V
dispersed by soveral authors_ (eg.,-Andersolit [1958], Kulback'

[].968]1PreAs [1972], Rao 065)).

A sample estimate of,r, S say, is obtained--form.the error

SSCP matrix. Thus,

E'E Y'"Y -*B'X'XB

or, since B (X'X)
-

[2.6a)

'..,

4 E'E EE, Y'Y - B'X'y: y [2.6b]
Wo AO WO ow WO oo WO

'
This quantity, which we will call SS,. is than used as an estimate.

-...E.

of E,

S est(E) n (N-p). S .
[2.7]

V

Expectatie and,Ydriancly of B

From the solutio of the. normal equations, we obtained

B (x-p-lx-y. [2.5]

We note that. B represents a strairbt-forwaiod lirivar transformation

of Y vihich for the time being may be written as

B n 1."Y, where L' Q (X-X)"'X'.

11

14

[2.8]
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. Taking the expect-atiOn of B, we have
.

1

, .
. g (B) =&q-Y) = L-6(Y) '.

.
. )

'Prom Equation 2.1, however, we have /
.

Under assumption 4, the E in E are distributed
-ij

multivariately about e Hente,

g(Y) =x.

Therefore,

t (B) = LXB

-
= (X-X)

1X'XO

= 0,

which demonstrates the unbiasedness of B.

To develop the covariance matrix of B we make use of

operations on Kronecker products.

From Equation [2.8] we hove

B = L'Y.

If the columns of Y are strung out to form the Np x 1 column

vector,yy, as before, then this equation may be written as
A

V
-b

where I is p

is pq

I

J

= (I x. L')V [2 .91
-y

x p and L is q x N. The direct product, I x. L'

x_RaLthus, the overall product in Equation 2.9 is pq x 1.

From the rules pertaining to the varince of linear transformations

^

of random variables, we have

12

I
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Var [(I x. L')V ]

= (I x L')' (E x. I) (I x. L')

= (I' L) (E x. I) (I x. L' )

= (I'E x. LI) (I x. L'7).

= I'EI

= E x.

Thus, for the distribution of B, we may write

B ^s Mrs[y0E.x (X X)-1].

Through similar log4c it can be shown that for linear

transformations of B,

AB ,- MVNE(I x. A)V8'
E A(X10-16-1

-

ABC .-- MVNE(C- x- I x. A)V C'EC x. A(X10-1A-1.

These values and useful in constructing interval estimates around
4,

hypothesized values of transformations of a,

Sums of Squares Due to Regression

From Equation 2.6 we have

SS = Y'Y - B'X'Y
NI

= Y'Y - B'X'XB.

The right-most terms in these expressions give the SSCP due to

regression of Y on X. Typically, we let

SS.. = B'X'XB v [2.10]

and call SSH
the matrix of SSCP explained by the hypothesis that

the full moael,--given in Equation [2.1] holds for the data. SSE

"13
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is that component of the total SSCP, I'Y, that is left unexplained

by the model.

Tests of Hypothesis Concerning B
e /

0

Another way of defining SSH is to say that it is 'the difference

in SSE obtained by the model given in Equation 2.1 and the model

define under the null hypothesis,

H0: = 0.
0

Usually, however, we are not particularly interested in the hypothesis

that all elements In B are equal to zero; instead our interest

is usually focused upon various subhypOtheses involving linear
--\

transformations of the B. For instance, let the q x q matrix, A, be

partitioned as

A' = [A' ' A2 .]
1 ' '

where A
1

is (r x q) and A
2

is [(q - r) x q]. Then the model given

in Equation 2.1 may be writter as

Y = XAS + E

= X
1
A
1
a +.X

2
A
2
a + E--- --- -

[2.11]

where the partitioning of X is in conformance with the partitioning

of A. We now let

As--a A0= 0
1- 1' -2- 2

so that if we wished, we could write the model /6

[X
1 X2]

Y + E,

14
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we note that a
1
and B

2
de; not necessarily represek. direct partitions

of the original B. If we let

X
[

X'X =[
X
2

1,. X.21 .).C1.1 X12

X21 -
X
22

.:. ,..

,
then LS estimates of a

1
and B are given by

..- 2

B = X (Y -- X B ),
1 -11 -1 - 2

B
2

= X
22 2

(Y - X
1
B
1
).

- --
(

Our interest lies in testing the subhypotheiris thal

= A
1
a = 0, say. More formally, then, the hypothesis is

[

al °
Ho.

(where !2 is allowed to take on some (unrestri

the(hypothesis. Under H0, the ,model is)

Y = )cla* -OE*

The LS estimate of B
2

is given by

B* = X 1Y.
2 22

-2Y

By steps similar to those given earlier we compute

SS = Y'Y - B* 'X 'X B*
E* _ -2 -2 22'

where we let the last term on the right be denoted by SSI0,

the SSCP explened by the restricted model under Ho (viz, the

. .

2.12]

[2.1.3],

value under

15

[ .14]

11/i6

[2.15]

[2.16]

A



model in oquatiop 2.14). '-

Our interest is in the difference,

SS SS - SS
H --H H*
0

Is

m.

where ,SSH was given In tquation 2.10. This, difference is given

by

SS = B"X"XB B*'X'X B*-H
o

-- -2 -2-2'-2

'm [Di - Or (132 --. Bp - -11

2

[2.18]

X12
B 0
1

X 13

22 -
[

2 ' -
B*1-2

Before continuing, we note that from Equat ns 2.12 and 2.15

(B
22

- B*) = X
22
-1X"Y - X

22 -
-1X

21
B
1

- X'
22

1X"2Y
... 2- --

- X22 B
-2 -21-1

Following through with the matrix operations in Equation 2.18

leads to the result

SS = B"(X B. - X X 1X B )
.-H

o
-1 -11-1 -12-22 -21-1

= B-(X - X X
-1

)B
1 -11 -1222 -21 lr

Note, hOWever, that from matrix theory we have the important result

:that the inverse of the term in the parentheses above is equvalent to

That is to say

(X - X -1X
-11 -12-22

1

-1

16

A
1
(X-X)-1A".
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Therefore, we have

BSS
--1

. 'A , B
H 1 ,

E

_1
(X-X)

1
A
1

;

-1_
0

4 B-A "[A (X-X)lit'd]-1A B
1 1 1°

SS
H

as defined here, is the SSCP explained by the hypothesis
-

H0: A
1
B = O._- -

[2.20]

In many cases, we are interested in tests of hypothesea'

involving transformations on the columns °fie. In other words,

we are interested in hypotheses of, the form

Ho: BC 0.

Under this hypothesis, the model in Equation [2.1] becomes

.YC = XBC + EC

and the LS ettiimate of BC is gften by

BC is (X'X)-1X'YC

from which we can obtain

SS = C'Y'YC - C'B'X'XBC
tt

[2.21]

C'SS C - C'SSH. [2.22]

where SS
H
was defined in Equation 2.10

Similarly, it could be'shown that for the MGLH,

H0: A1BC. - -

we have

SS
EC

= C'SS
T
C - C'B'A

1
'EA

1
(X'X)-1A

1
1-1ABC

--- - - - - -

C'SS C - C'SS C

0

= C'[SS
T
- SS

Ho
]C.

-- -- -

17

1a

[2.23]
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We may summarize the results obtained thus far in this ..

Section by writing H for C'SSH C, E for C'SS
EC

-C,'and A for A1, and
-

0-

noting that the most general statement of an MGI,H,may-be written

as

A$C = 0

where A is a g x r matrix of rank g whose elements, ai) (i = 1,

2,..., g; j - 1; 2,..., r). are used 4o select particular

combihations from the rows of B; C is a p x u matrix of rank 1.1, whose
...

elements, c
ij

(i = 1, 2, ..., p; j = 1, 2, u), are used

to select linear combinations among the columns of S.

Test Criteria

Multivariate test criteria are usually a function of the

characteristic roots of HE
I (or, equivalently, of the deter-

minantal equation 1H - AEI = 0). Three popular test criteria

are given in the next three paragraphs.

Trace criterion. The trace criterion is the trace of

HE
1 which is equivalent to the sum of the roots of the

determinantal equation,

AiE I = 0; i 1, u

A >A .

1 2

J

According to Anderson (1958; p. 224) the asymptotic distribution

of N x (trace HE
-1

) is the chi square distribution with gu degrees

of freedom (where g = rank of A, and u = rank of C).

18.
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Greatest characteristic rii riterion. This test statistic

uses the largest characterfstic root, Ai, of HE 1. 91pr convenience,

1
maybe converted to

; X
*1

1 + Al

for which tabled ,percentage points have been given (Heck [1960]; "z.

th4e have also been reproduced by Morrison [1967],). Parameters

for entering-the Heck tables are,

s min (g, u)

m, (11; - ul - 1)/2 "",.

n (N - r - u - 1)/2, where r rank of X.

Wilks maximum likelihood criterion. This criterion makes

use of the statistic

-1

A II (1 + X,)]

i1

where Xi (i 1, u) aro., again, the characteristic roots

of HE An equivalent form of the above expression is

E

H + E

With large N, a chi square test due to Bartlett (1951) is available.

Thus,

A-

-( - r .5(u g + I)] In A

is distributed as chi square with gu degrees of freedom. A better

approximation (Rao [1965]) is given by

OP
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0

)

C

where

1 - Alis
u,g,N-r

A
1/8
u,g,N-r

g2u
2

- 4

2 2
+ ug - 5

'St (N-r + g -u -1] - .5(gu -'2)

Under the hypothesis, F is approximately distributed as an F

statistic with gu and {S [(N-r) + g-u-1) -.5(gu-2)1 degrees of freedom.

For certainvalues of gand u, Anderson (1958, §8:5.1) gives

the appropriate exact F statistic. For example when g 1,

1 Au,, .

N-r+l-u

F
lN-r F

-

A
u,1,N-r

In the specihl case where the rank of A (or the rank of C) is

equal to one, the product HE
-1

, has only one ) non-zero character-
.

a

istic root. In this case, the largest root, the sum of the roots,

and the product of the (non-zero) roots are all the same, thus,

makin the three criteria equivalent.

3. Typical Applications

Having described the basic equations of the MGLH, we now turn

to itn algebraic exposition of some Of the more typical models found

in educational research. Examples of typical applications using

real data can be found'in many of the references cited earlier as

well as in Olson (1971). In the discussion which follows, we begin

with the model for the analysi7 of variance, move to a brief dfkussion

of the analysis of covariance, and finally ftesent a discussion on the

analysis of repeated measures designs.
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Mativariate:Malysis of Variance

Let the configuration of Figure 1 rePresent.the general design

of a 2 x 3 factorial experiment. There are nIT experimental units

in each cell, and for purposes of exposition it will b

I
assumed

that n
11

= n
12

= ...... n
23

.n, though we realize this fp not a

necessary restriction on the general linear model. Measurements

on each of p dependent measures (Y (Z?; I. = 1, 2, ..., p) have been

collected on each of the 6 x n experimental units. The notation,

Y
kij

(50
, denotes, the measurement of the k'th dependent variable for

the k'th subject in the ij'th treatment combination. It is assumed

that each of the N 6 x n vectors, Y (t)
(2, . 1, 2, ..., p), have

been independently sampled and follow the multinormal law with

expected g(Yk), and common variance-covariance matrix E.

It is possible to write the N x p observations, given in Figure 1

as the N x p supermatrix of observations,

Y

Y(1)
n-11

(1)

n.:12

(1)

n-13

Y
(1)

n-21

(1)

n-22

(1)

Y(2) '
n-11

(2)

n-12

Y
(2)

n-13

Y
(2)

n-21

(2)

n-221

(2)

.

t

p-11

Y(P)
n-12

Y (P)
n-13

(P)

n-21

Y (P)

n-22

(P)

n-23 n-23 n-23
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c.

(1) (2) (p)
Y111 Y111 Y111

v(1) (2) (p)
'211 211 211

. . . .

v(.1) (2) . op)
"n11 n11 "n11

Y Y
(2)

Y
(p)

121 121 121

(1) (2) (p)
Y Y221 221

.

Y221

(1) (s) Y(P)
Yn21 Yn21 n21

Y112
v (2) v (p)

112 '112 '112

,(1) (2) v(-p)
'212 212 -h2

. .

(1) (2) (p)
Y . .1 . Y

Yn12 n12 ni2.

(1) (2)Y1,13 Y113

(1) (2)Y213 V213

I.
v (p)
"113

Y (P)
213

y<l) (2) y(p)
n13 1113 n13

11) (2) (p)
1 Y

112 122 122

(1) (2) (p)
Y Y'222 222 222

I .

11) (2) (p)
n22 n22 n22

(1) (2) y(p)
123 123 123

v(1) v(2) v()
'223 '223 -223

Y
(1)
n23

(2) y ( p )
n23 n23

Figure t: Diagram of a General 2x3 Factorial Experiment.
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Where n denotes the number of rows In each of the n x 1 submatrices.
to

An appropriate design matrix, describing the exPerImeptal design,

would be the N x 6 Belmert-rtype matrix, of rank 6, 1

X .

1
n-

1
n-

n-

1
n-

1
n-

1
n-

/Rama

1
. n-

1
n-

1
n-

-1
n-

-1
n-

-1
n-

1
n-

-1
n-

0
n-

1
n-

-1
n-

0
n-

1
n-

1
n-

-2
n-

1
n-

1
n-

-2
n-

1
n-

-1
n-

0
n-

-1
n-

'1
n-

0
n-

mom/

1

n-

1
n-

-2
n- .

-1
n-

-1
n-

2
n-

It can easily be shown that the solution.of theinOrmal equations

(Equation 2.4) yields the matrix of estimates, B, shown in Figure 2.

It is obviobs that the first row in B estimates the grand means ,o

the dependent variates. The second row estimates the row effect.

The third and fourth rows (considered jointly) estimate the column

effect, and the final two rows, the row x column interactionl.

In multivariate analysis of variance, hypotheses of interest

commonly involve only effects due to independent variables (i.e.,

ways of classification). Hypotheees concerning contrasts among

dependent variables ate considered under profile analysis. When

all dependent variables are to be included, the matrix C, of

Equation 2.24 is set equal. mhp I, the identity matrix. To test

hypotheses of no treatment or interaction effects, the following

A-matrices are constructed:

1
The reader should be aware that when cell frequencies are
disproportional (i.e., the design is unbalanced) estimates of
row, column, and Interaction effects will be confounded. See

Overall & Spiegl ( 1969) or Searle (1971; pp. 138-139) for
procedures-on treating unbalanced designs.
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lp

.re

KI

.06

4'
(M)

--o

A
(R)

0 0 0 0]

0 0 Oj

A
(c)

=-[0 g1
o /lb 0

0

0

A(RC)S 10
10

0°1

0 0 1

o o 011.

A

'By substituting these matrices into the general liriear hypothesis

framework and letting C I, the following.hypothesesfare tben

[3-

tested:

HOLM: A
(m)

.8 c = 0
-

H A BC 0
0,R' (R)

HO,C: C

H :' A B C 0
0,AC -(RC)

where

HUM is the null hypothesis that the overall gragram
means equal zero;

HOAR is the41,111 hypothesis of no row effect;.

I

HOC is the null hypothesis of no column effect; and

HO,RC
is the null hypothesis of no interaction."

Ar alternative

X '

n
1

[3:2)

way to have congtructed the design matrix is

n1

n
1

0

1
n

25

2 t) 0

[3.3]
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where. again n denotes the number of rows in each of the n x 1

submatrices. Using this design matrix, the solution of the normal

equations would yield

B=

-(1) -(2)

Yll
Y
11

-(1) -)
Y
12

-(2) i 12 '12...

(1) -(2) ,--(P)Y
13

Y
13

;7
21

) -(2) ...
-,1(13)

21 21

-(1)
-(2)

..

i-,(13) .

22
Y .

22 22

Y(1) i-(2)
i- V

23 23--

[ 3 . 4 ]

the group means on each dependent variable. Using B as defined

aboVe the A matrices,

A
(M)

= 1

A
(R)

1

A
(C)

= 11
1 1

' A
(RC)

[1. -1
=

1 1

, 1

1

0

-2

0

-2

1

-1

1

1

-1
-1

1

-1

-1
1

1

-1

1]

-1]

01

-2j

021

[3.5]

may then'be used to test the hypotheses given in Equation 3.2.

Significance tests are computed by first finding H and E and then

applying one of the test criteria given earlier.
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Analysis of Covariance

Suppose that, prior to experimental treatment, measurements

on the covariates, Z
(1)

and Z
(1)

, were collected for each experimental

unit in Figure 1. An appropriate matrix of independent variables

would thenlbe constructed of both design variables and the predictor

variables, Z(1), Z(2)- Thus, corresponding to [3.31,

X =

I (1)
Z Z

(2)

i

1 -11 -11

1 Z
(1)

Z
(2)

n- 0 -12 -12

I

1
(1)

Z
(2)

-13 -13n-

1 Z(1) Z
(2)

n- -21

1
fin

Z
(2)

n.- -22 -22

0 I

1 '
Z
(1)

Z
(2)

-

n- 1 -23 -23

where the notation, Z
(t)

[3.6]

denotes the n4, 1 vector of measurements,

within the ij'th level of classification, on the Stith covariate.

The solution of the normal equations yields the 8 X p matrix of
9

adjusted means and regression coefficients

=

*(1)
-*(2)

Y
12

Y
12

-*(1) -*(2)
Y23 Y23

41) 42) w(P)
1

w1) w2)' 1,713)

27 *,

2

[3.7]



where w
(1)

w
(2)

. w (p) denote the within -class regression

coefficients of Y
(1

Y
(2)

Y (p) on Z(10. By constructing the

A-matrices,

A
(M)

= [1

A
(R)

=

A(C) =I1
-

A
(RC

-1

[1 1

-1
1 -1

11 -1
11 1

1

1

0

-2

0

-2

,1

-1

1

1

-1
-1

1

-1
1

1

-1

I

0
-2

0

2

0

0

0

0

0

0]

0)

0

01

01,

[3.8]

and letting C = I, the hypotheses (Equation 3.2) can then be tested,

this time for effects adjusted for regression on
(1)

and Z
(2)

.

If the subgroups on the covariates are computed beforehand,

then tests of unadjusted effects can be obtained easily. We note

that any element in B*, B* (9.)
say, is the coefficient for the regression

ij

of Y (9,) on X
i
adjusted lor regression on the Z . For instance, the

cell mean for group 2,2 on the first dependent variable is given by

(1) (1
Y*
12

= Y
12

)
- W

1
Z
(1)

- W
(2)

. It follows that the unadjusted cell

mean for this group is

(1) (1) (1)-(1) (1)-(2)
Y
12

= Y* + W 'Z + W
2

Z .

12 1

Therefore the A-matr

A = [0 0 0 0
, 2(1) 2(2)3
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would yield

Thk(12 Z) 0;(1),,
1

(1) +
7-

i(2)w
2

(1)

'` "

-(10 (1)(1) (1) (2)
= Y

12
- [W Z + W

2
Z ] + [W

(1)
Z
(1)

W
1)

Z
(2)

]

1 1

= Y (2 ) (for = 1, 2, ..., p),
1

the unadjUsted cell means. By including the overall covariate means

in the last two columns of each of the A-matrices given earlier,

unadjusted treatment effeCts can be easily computed.

Profile Analysis (Repeated Measures)

Profile analysis has been aptly discussed by Marks (1968; see

also Morrison [1967; pp. 168-197]). Essentially the problem is one

of determining whether the shape of a mean vector is Equal to that

of another mean vector. In the two -way classification, 'for example,

the problem is to determine whether mean vectors are equal for the

different ways of classification. This is equivalent to asking

whether contrasts among selected dependent measures for one group

are equal to the same contrasts for another group. Observant

readers will notice that this is precisely the problem in univariate

repeated measures analysis of variance where the measures on the

multiple dependent variables are taken over time. In the example

situation described in Figure 1, the researcher may wish to deter-

mine whether differences among adjacent dependent variables can be

considered equal for all levels of the column factgy. That is, he

may wish to simultaneously test,
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1..

and

(P-1) (p)
1-1 -1-1

.1 .1_

(P-1) (p)

11..2

.."( (1) (i) (2) (2) )

(P..1 P..2) (P..1 P..2)

al
(2)

+ P
(2)

)
(3)

+ P
(3)

).1 2 ..1 ..2

(p-1) + u (P-1)
) (u

(P)
+ u

(P)
)

...1 ...2 ..1 ..2
,,.

2 x

(1). (2)
1-1 1-1

P
(2) (3)

..3 ..3

(13-1) (13)
P P
..3 ..3

1_

where the p s represent population values. It can. be easily shown
j

that with either of the design matrices given earlier, its

corresponding solution to the normal equations, the appropriate set

of A-matrices, and the

C

p x (p-1) matrix,

0 0

0 0

0 0

0 0 04.6 -1 1

0 0 0 -1

then the MGLH

A aC 0

will yield the appropriate hypotheses for tests on profiles or

reheated measures.
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Repeated Measures with Covariates

Two distinct types of repeated measures design involving covariates

can Se identified (cf., Winer [1962, 1971]). In the first, measures

on the covariates are collected prior to the onset of any treatment.

In the second, covariate measures are collected concomitantly, in time,

with measures on the, dependent variable. Of course, a mixture of the

two types of designs is possible. We shall%consider each type of

design separately.

Covariates prior to the onset of treatment. The first type of

covariate repeated measures design might be diagrammed as follows,

Z(1)
1

Z(1)

-2

(2)
Z
-1

Z
(2)

-2

Time

Z
(h)

-1

Z
(h)

-2

Y
(1)

-.1

Y
(1)

7-2

(2)

-1

(2)

-2

)1'

(P)
-1

(P)

-2

where the vertical line indicates the beginning of treatment; the

Z
(t)

, covariate observatiohs for group j; and the Y (t) , measures on

the dependent variables for group j. All vectors in the diagram are'*,

nj x 1, nj being the number of subjects in group j. A good design

matrix for this design would be the (n1 + n2) x (h + 2) matrix

X O

1 0 Z1
nj-

2jz2
The (n

1
+ n

2
) x p matrix of dependent measures,'Y, would be laid

out in the usual way. The solution to the gormal equations would

yield the (h + 2) x p matrix of estimates,
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4

.1

11.M.

iii.,(1) qt(2)
;111(0...

q*(1) i*(2) 7*(P)

2
...

2 2

B=
1

(1)
W(2) ... w (P)

1 1

.
A

V(1)
W
(2) W(P)

.
. h h h

..

where qica) is the j'th group mean on variable t adjusted for all

independent variables: This design presents no problem, and.MGLlls

can be constructed and tested in the usual manner.

Repeated measures with covariates measured concomitantly. The

second type of repeated measures designs involving cowtriates is
c,

somewhatmore difficult to handle. The design, for a two-group

classification, can be diagrammed as follows,

Time 2 Time p

Z
(2) '

Y(2) Z(p)
-1 -1 -1

Z
(1)

Y
(1)

Z
(2)

Y
(2) Z(P) (P)

-2 -2 -2 -2 -2 -.2 '

where the Z (k) are the j'th -group observations on the covariate at

time p; the Y
1) are the j'th-group measures on the dependent

variable at time p. In th s situation, the design matrix, as

constructed in the previous ituation,would be inappropriate

since it would lead to estimates of group means on each dependent

variable adjusted for all independent variables including those
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4

covariate measures which follow the dependent measures in time.

What is desired, however, are estimates of group means, on each

dependent variable, which are adjusted only for those covariate

measures which were collected at the same point in time or earlier.

In other words, the patameter matrix of interest is

6

where

(1) (2) (3)
v(P)

111.1
v 1.12 111.123 1.12...p

(1) (2) (3) (P)

112.1 112.12 112.123 112.22...p

(1) (2) w(3) w(P)
wl w12 123 1.23...p

0
w(2) w(3) w(P)
2.1 2.13 2.13...p

w(3) w (P)
0 0

3.12 3.14...p

0 0 0
w(P)
p.12...p 1

11

(Z)
i jkl...

.

= population group mean on dependent variable Z adjusted

for Z
(i)

, Z
(k)

, Z
(1)

,

(Z) = within-class population regression

coefficient of Y (z) on Z
(i) adjusted for

(
Z , Z

k)
,

To obtain estimates of this matrix a generalized (see Press

[1972; pp. 217-227]) multivariate linear model is used. This model

has the foim given in Figure 3.
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Vs'

400

(1)
0 0

-1 -

(2).'
0 Y 0

-1

... Y(1)-1

(2)
0 Y2 ... 0

40 400

0 0
(P)

-2

0

1 0 Z
(1)

Z
(2)

0-1 -1

(1) (
1 0 Z

- -1 -1

0 1 Z
(1)

0
-2

(1) <2)
0 1 Z

- -2 -2
0

4.0 4. 4.0 4.4 4.4 44.

0 1 Z
(1)

Z
(2)

Z( )
-2 -2 k.1

1""

Figure 3. Generalized Multivariate Linear Model

where the Y a) , Z
a)

, are a1 vector defined in the diagram for
-J

nj

the sign, and the; symbols, 1 and 0, denote conformable column vectors

of l' and O's respectively. In the model, the matrix, a, is the
-

.

desired matrix of parameters.

The least squares solution to the model in Figure 3 provides the

appropriate matrix of estimates. Tests of the repeated measures

effects are then made by forming MGLHs involving the first two rows

of B. For instance, with

A [1 - 1 0 0 ... ,0) (where A is 1 (p + 2))

1 -1 0 ... 0 0

C

0 1 -1 ... 0 0
C is .(,13 - 1) X p)

.0 .0 00 . .

.(where

0 0 0 1 -1

the MGLH, ABC 0, would provide an appropriate test of the null
--- -

hypothesis of equal profiles for the two groups.
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