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3 y/new, researchers in the, educational milieu ghould be ECUCAT!ON PosITIoN oR PoLicy
disposed to the idea that both causes and effects of educational
'phenomena are iﬁhgrently multiva;iate Y nature (see, for example,
Tansﬁikais recent review [1973] as well‘as older surveys of

i / -
multivariate statistical applications in education and psychology

dbntdined_in books by Cattell [1962] and Whitla [1968]). In their .
: \- : .
gtatistical applications, however,ifducatipnal researchers ha;L

apparently taken only half of this statement seri@usly. Thus,

researchers have recognized the .fact that causes of educational |

phenomena are multidimensional and have employed techniques of

multiple 1i‘n‘r regfession with increasing levels of sophistication-

‘ to investigate both the coﬁbined effects of, and Iinterrelationships
B / . . M i -
amo?g, multiple independent variables. For the most part, however,
v N v . \ r

. W ‘researchers have not investigated the "multivariateness" of educational

outcomes. Instead, the typical approach has been to study the effects
.

of a common set of independent varigbles on each of several criterion

* - o
©

‘# ’ variables separately. . . ’ )
I\‘ “ ‘This practice is not unique to education. Lana and Lubin (1963),

_/
J lf} for instance, reviewed the published artfcles in over three years

as

.

114 . . worth of three APA journals in an effort to discover the f;equency

<:> with which multiplt—cfigefia designs were used and how they were . /°
‘::) analyzed. One of their fiddings, of\interest‘here, was that about

. one-third of the studies used designs whidh involved multiple, ) -

Ei.. correlated criteria; yet only one of the studies reviewed took the

-~

) 1Paper’presented at the annual meeting of the Awerican Fducational ;
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correlakion among the criterion variables into account. Multiple

criteria were usually analyzed by applying analysis of variance
. ’ v . “ -s .
techniques to each variable separately.

Pl
£l

. - .
. In preparing for this paper, I did a quick, informal review
of~the studies published in the last three years in the American

Educational Research Journal and the Journal gﬁ Eaucational

¢

Psychology. Over 80 percent of the experimental”and comparaéive‘

I .
studies reported in these journals inyestigated effects on multiplé
- - h) - N X . ° Kl .
critepih. Although several of these studies employed multivariate”

techniques, the majority of them (approximately three-fourths)

-~

-~

employed multigle undvariate anaiyses of variance.

'

. v '
The typical.example would be a study in which several independent

variables (including pretests, démegraphic data, and tncidence of

- ~

vtfeatment measures) are examined separately for their effect on,
. ’ - P
say, measures pf motivatior!, achievement, ‘'dnd attitude toward school--

aﬁyiables that few wouldfdeny are correlated (perhaps highly) in the

éfﬁgpulation. The podsible ramifications of performing separate .

Tk, ?

<~'_l:inivariat:e analyses on correlated criteris are well-knowm (e.g.,

& '

Hummel and Sligo [1971]). If a Yype I error occurs in tests

involving one criteria, the probabilit§y is greater than o that it
+ . ‘ ’ o .

'will occur in the tests involving the other criteria also. This

’ - -

fact, by itself, should proyide sufficient motivation to the

researcher to seek multivariate techniques for the analysis of v

multiple~criteria desigfs. At\fhe very least a multivariate

technique offers the researcher a procedure for controlling
s

experiment-wise probability of a Type I error: ‘ (’

!
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' Of coursé;(gbere,are other reasons for calling for an intreased

application of multivariate methods. " For instance3‘Snow (s974) '
- . A i

has.recently argued that research designs'in education need -to !:mé:'/.‘é

-

more represefitative of possible outcomes. That’ 1is, researﬁhers need

.

"to choose samples of dependent variables which are representative of

i

. \ :
the phenomena being studied. Snow argues effectively 4hdt if the
' results of educational experiments are {p be generalizable, they must

first be representative. Part .of Snow's thesis can be interpreted
Rd .
as a call for multivariate investigationg in educational research.

Multivariate statistical procedures appropriately fit this episL .

temologfcal point of view that the "effects" in educational settings

-

¢

.are rarely, ﬁf ever, unidimensionhl and therefore ghould not be Y
studied in isolati§n The study of multiple outcomes simultaneoualy
caniafford the researcher an»opportunity to "uncover" complex

relationships among treatmegt and outcome variablef that might other-
L

‘wise go ‘undiscovered. An‘;xample might b& a situation /in which it 1is

found that two experimental ins¥ructional programs lead not only to

-

incréases in several measures of achievement aﬁﬂ motivation but also,
4 -
“under one of ‘the programs\\to increases in the correlation among the

variables. Su&ﬂ a finding might have important ‘implications for

understanding the dynamics of the instructional programs.
. N ‘ﬁ

. If the need for greater application of multivariate statistigcal

procedpres can be established so easily, ‘why then are these procedures

not used more frequently in educational research? Although 1t 1is
impodgible to answér_this question completely, there 1's no_doubt
s

that at least part of the answer lies in the fact -that multivariate

.
.
¥
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v o, - procedures are more complex, bqth_mathematically and conceptually,
- - A . . . 4 - , »
/ then univariate procedures. Until recently, researchers who sof@hd
- to use multivariate techniques haé to first develop a fairly high

‘

level of mathematical skill to be able to read the existihg text-

) y
books. Even given.the requisite mathematical ability, the -»

existing textbooks were often legs than useful to thé applied

S researcher since thfy_cOntained a paucity of examples'bﬁ anything

=y M

even bearing a passing resemblance <o the kinds of problems

? 4

encounteredjan educational research. o
N . ) : In recent years,)hbwever, a number of intermediate-level (in

) \ ’ ) 7.mathematics) books on multivariate statistics have been published

”

o Finn [1974], Harris [1975], Morrison

> (e.g., Cooley & Lohnes [19
RN

[1967], Press [1972], Tatsuok
N . K ‘*

. Although thesé'books usualltgiié/}re some abili&y in matrix alggbra,

1971], and Van de Geer [1971)).
!

the mathematical development
\

»
than that, however, these books previde a‘'rich source of examples
y ’ - . \
. . -
‘ of applications of multivariate procedures. It.ls likely that,} due -

J

to these bodks alone, many more applications of multivariate

nd to be h}ghly tractable. More

A\
’ procedurei\will appear in the published educational research’

J}iterature'in the next few years. ot
’ \
Another development of receﬂk years that is likely to lead

to a greater use of multivariate procedures i§%the increade in the

o

. 1
<rnumber of computer programs that have become available. Many of the
b -~

books listed above (especially in Harris [1975], Press Eé?72],

and Cooley & Lohne's [1971]) provide references. to existing computer
ry - -
s . programs. The anilability of these programs has further lessened the

N




demand on applied researchers for mﬁthematical sophistication.

Of course, the researcher still needs a conceptual understanding

3 v -

oﬁ‘the partieular procedures he intends to use. ProViaipg the
researcher ha*a clear understanding’of what he wants to do

statistically, as well as a conceptual understanding of the\‘
. ~ )

’ - . - » 3 . N ! -
_statistical technique® he intends to employ, then given a computer
. ‘} . f

.

program for the ataEisticai procedure, a multLvafiate analysis o,

. . - - -
is reldfively straight-forward. This is especially true for most

applications of the multivariate gereral linear hfpothesis (MGLH) ,

]

the subject -0of this paper to which we now turn. )

The MGLH is the most general of all parametric linear
‘ { . .

atatiétical procedures. In fact, all linear statistical tests
. o N

(univariate and multivériate) can be developed as special subclasses

of .MGLH theory. This includta,'among other" procedures, factor T w

analysis, discriminant analysis, prediction (or regression) analysis,
an& the analysis of variance and covariance. Although the mathe-

m;tical deVelapment of MGLH theofy is complex, its conceptualization,
at least insofar as tge ﬁost common applied situations are‘conperned¢

ig not particularly difficult. It does require an elementary

facility for matrix algebra, however. (* simple statement of the
< '

. thésry 1s that if a set of dependﬁbt varlables, Y (where the tilde

uitderscore denoteg a ﬁgtrix), 1s linearly related to a set of ¢
independent variables, X, by the e&uation, . K .
Y X8 +E, | .
where g 15 a set of unknown parameters of inséress, then Eﬂi
hypothesis of the form
"H: ABC'=D’ — [1.2)

o il o .
. [-

{
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is testable. In this equatidn, tﬁe matrices A and C are used to select

+ particular elements from among rows and columns of B. The matrix, D,

is a matrix of constants speckfied by the. investigator. Usdally D

is set equal tg O, a matrix of zeros. ) . '

&

. In the next section a brief introduction to the theory of the

MGLH ts providew. Reader;\who wish fo pursue this develépment in

D . I
greater/ﬁepth are encouraged to consult the appropriate chapters in

*

)

Kempthorne (1952), Kulbach (1968), Mendenhall ,(1968), and Seal (1964)
Early papers by Smith, Gnanadesikan, and Hughes (1962) and Bock (1963b)
»

develop the MGLHriﬂ a way that 1s useful to those°Who may wish fo'

program the computations. Thorough,'but highly mathematical,

. presenggtions of the MGLH have been given by Anderson (1958), Rao (1965),

and Seber (1966). ) .
= J Ve
In the third section of this paper, several general algebraic
. . )
examples of typical applications have been provided. Other examples

\

of applications.of the MGLH, using real data, can be found in Bock

(1963a), Bock and Haggérd (1968), Jones (1966), and Finn (19723. ~

-




profile) analyses of variance and covariance are also covered

A ! : <
2. Introduction to the Theory of the MGLH

,‘ . .

In this paper, interest is primarily focused upon the analysis

of variance and the analysis of cqvariance. Repeated measures (or

-

-
but are treated as_spe al ipstances of multivariate analyses of .
. : ) |

variance and covarlance. Before proceeding to illgstrative applications

of the MGLH, however, it is first necessary to lay some of the
. ’ ) - 3,
Q

mathematical ground work.

Definition of the Model . : ' Y
We-begin by.rewriting the general equation for a mult}variate R
linear model,"* \ N | .
Y= Xg +E L ., “ o [2.17

where the component matrices are described in the paragraphs which

follow.

Y 18 an N x p matrix consisting of 1 x p response row vkctors -

(2)

An element( in !,' en.ted ag Yij

for each of N subjects.

.

, would con-
]

e
stitute the 2'th response measure taken on the 4'th 4ndividual in

floup 3.
~% 18 an N x q matrix of predictor and/or design variables! 1In

multiple linear prediction, g'would contain the 1 x q vectors bf

2 . 1
predictor scores for each of the N subjects. In analysis bf variance,

X would be a matrix of design variables. In the analysis of covariance,

X would contain A combination of predictor scores and design variables.

-~

B8 18 a ¢ x p matrix of unknown parameter®™, the elements gf.which'

are of interest in tests of MGLHs. Depending upon the choice of X,

LY




response observations, Y|

e—
. s
* N .

the elements of B may represent subgroup. ¢anb (expected.values),’

contrasts among subgroup means, population regression coefficienﬁs,

etc.

(2)

m .
, ark error vectors for
L]

the p response measures. Stated differently, for each row vector of

~

E 18 an N x p matrix whose columns, E

~

there is a corresponding row vector,

..1:)'

-
Eij' of disturbances usually due to errors of measurement and lack

of linear fit tox%pe model.

- Assupptions

The assumptions applicable™o the model defined above, for

.

purposes 6f testing hypotheses, are the following: -

1. The model-is linear in terms of the parameters,

B. , -

-~

2. N2>p +gq-

3. ‘X is of full raqk, q. : v .

\ 4. Each row vector, E‘ij' iﬁ‘g, is independently

sampled and distributed multivariate normally (MVN) with

expected value, 07 and covariance matrix I

N . . ~ij' -

The first assumption is rarely limiting in edq;atioﬁal research and
evaluation. Many ﬁbdela which appear non-linear on first sight ,
are actually intringically linear. In these situations, suitable

B .

- .

linear m?dels can be written following acceptable trans- .
4 . -

formations' of the original measures (see Draper and Smith, }968;

* [
ch. 5, for a discussion of these types of models). Assumption

*

-

1




number 2 1s required to ensure the availability of a Bgfficient

\ '
number of observations to estimate the pq elements in B.

The third assmptida 1is necessary to ensure a unique solution
for 8. ~Sipce this solution requires the inverse of X°¥, it is
necessary tﬂ;t,g‘g be nonsingular; ﬁence'g must be of full rqﬁk.

More general, non-unique sélutiops for B exist. Thesemsolutions,

\

which use generalized inverses of X’X, allow X to have more columns

o~

than its rank (i.e., they allow X to be less than full rank). Since
full-rank design matrices are usually quite easily constructed
for most designs in educational research, the generalized inverseé

apprbach is rarely, if ever, needed. Anyway, for any design matrix

less than full rank, there always exists a transformation magpix, X

Y

T, such that : _ . .J
X* = XT
s of full rafk (see’Bock [1963], Graybill [1961; pp. 235-239], or ~

N
Snffth [1972]), for details on computing T).

The fourth assumption provides the foundation for the theory
{

underlying tests of MGLHs. The assumption implies that the

a

Xij -~ MVN(Eij' L

.

The fourth assumption may be stated in an alternative form which

).

will prove useful in the development. Thus, 1f the columns in I
(and, correspondingly, the: colums 1in Y) are strung out to form the

Np x 1 vector Ve (and Vy) thensaésumption number 4 states that

L]

<




R ICHE R SHEE o

V ~ MUN(V , L x- I) _ [2.2]
~y :.u -~ -~ ) )
14 : v, Lo

where 0 is an Np x 1 v%?tor of zeros, YL is an Np ¥ 1 vector

of expected values,g Vy,vI 16 an N x N identity matrix, and the

symbol, x-, denotes the Kronecker direct product (Cornish [1957],

.

Searle [1966, pp. 215-220]; Vartak [1955])). Since the paiameters

in B are linear functions of !, the variance of g and, thus, tests

-~

of hypothesis involving B follow more or. less directly.
L ) <

'

Estimation of B and L

Since the elements of B and I are nQt gen all?’khown in

practice, they must be gstimated. Two prohe e.are available,

~
‘ -

viz. maximgnl}ikelihood (ML) and Least Squares (LS). Since the

former requires the assumption of myltivariate normality whereas
»

the latter ‘does not, and since the solutions for B, are the ~

same in either case, only the LS procedure will ba pursued.

C. ’ .
The LS procedure calls for obtaining estimates of 8, B -0

)
say, such that the error sums of squares and crosgproducts®

(SSCP) are a minimum.  .In matrix terms, estimates of g (viz, §)
are obtained such that the following equation is a minimum.
g E'E = (Y-%8) " (1-XB)- B [2.3)

LS procedure proceeds by differentiating the right-hand side of
Equation 2.3 with respect to” elements within rows of B and setting
N . ;Y PR .

the result equal to the null matrix (a comformable matrix of zeros).

¥




which are jointly set equal to O. Appropriate manipulation of }

This procedure yialds a system of qp simultaneous equatiohs fg it
' i

.

t?fgé equations leads to the system of Normal EquatiOné,
X°XB = XY . - 12.4)
vhich, assuming XX 1s nonsingular, is easily solved:

;B & X'N7XY ’ a . [2.5]

o : |
The estimaxes B, have been shown to be tnbilased and mindmally
4 . 7

-

0 .
dispersed by several authors, (e.g. ,"Andersoﬂ [1958], Kulback

[1968) 7 Press [1972], Rao €¥65]). =

4

A sample estimate of 2, S say, is obtained*ferm the error

- . ot

SScP matrix.v Thus, _ )
O pEEYT-RRmL v ‘ v [
or, since B ~ (.)5'.)_();-1~ X,
E'E =YY - B'XY! ¥ [2.6b)

-

This quantity, which we will call §$., is then useéd as an estimate

E
- o

-~

Of X', i;??-‘

§ = est(D) = (v-p) 58, [2.7]
Q - -. Y
) . (" .
Expectatign ard Variance of B
. “From the solution of the.noxmal céuationn, we obtained
B0k, " 12.5]

We note that B represents a stralght-forvamd lincar transformation

-

of Y vhich for the time being may be written as

B o L°Y, whiere L° = (X"X)""

-~ -~ o~ -

X" 2.8

~

. 14
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s . . - -

‘:Taking the expectation of B, we have T

= / L E® =By = L7EW. o v

B 'From.Equation 2.1, however, we have / <. . J
N . ." [ - ~ - 2 .
C . . ’ < ) Y=X8+E.. ° : . ! ' '{ . -
N © . Under assumption 4, the Eij in E are distributed . '

, -

mu;tivariately about 07 Henkte, - =

& = xs. ’
Tberefb;e,
Co ’ . \
" £ (B) = L"X8 S
. . ~ - 1 . ’ . B .
‘ = (X’X) "X"X8 | | | y
= 8, ' (
which dembqstratesvthe unblasedness of B. ' ,{ ’
v y o o
. To develop the covariance matrix of B we make use of
. operations on Kronecker products.
From Equation [2.8] we have ,
° [
B = LY. )
\ If the columns of Y are strung out to form the Np x 1 column
R vector,Vy, as before, thén this equag}on may be written as
. = @ Oy, b | 2-9] |
where I is p x p and L” 18 q x N. The direct product, I x* E‘
is pq X\g§;§§hus, the overall product in Equation 2.§ is pq x 1.
From the rules pertaining to the var%%nce of linear transformations
.-
of random variables, we have

e




Var [(I x- L’)Vy]

= (I x+ L°)° (I x+ I) (I x+ L°) .

1" x L) Cx D (Tx L)
L m@Tew g
= I“LI x- LIL”

~ ~

R S

H

» Thus, for the distributioﬂ of B we may write

( :
. B ~ MVN[YiE'x (X X) 1. |

Through similar 1og§y it can be shown that for linear

N

A RS
. o .

transformations of B, . :

~ ¥

r Q‘ @”MVN[(} Xe é)ys; E X e é(z{»z{)_lé;] "‘."'v" . ) .

ABC ~ MVNL(C” %+ I x+ Mgy C7IC x- A(X‘X)_lA‘].

~

- These values aré useful in constructing interval estimates around

f &
hypotbesized values of tranaformations of +B.

Sums of Squares Due to Regression
From Equation 2.6 we have
S8y - Y'Y - XY |

»
. ==

ted
ted
lm
‘N

~
o
i

The right-most terms in these expressions give the SSCP due to

regression of Y on X. Typically, we let

ss, = B'X’ N [2.10]

~

and call SS.. the matrix of sscp oxplained by the hypothesis that

P

"the full modé%;féiven in Equation [2.1] holds for the data. SSp

“13 : !

-




7

is that component of the total SSCP % Y, that is left unexplained

- by the model. ) W - - ’ ’ ‘ \—:3‘

i Teats of Hypothesis Concermng B e
' e !

Another way of defining SS is to say that it 1s ‘the difference
in §SE obtained by the model given in Equation 2.1 and the model

’defined under the null hypothesis,

H

v H = Q.
¢ ? ~

il

->

" . ‘.
Usually, however, we are uot partjcularly interested in the hypothesis

that all elements In B are equal to zero; instead our interest

is usually focused upon various subhypotheses innolvingllinear . (

transformations of the B. For instance, let the q x q matrix, A, be

- B ‘) ‘ - - -
lgzi partitioned as ) \\

= J.. rd R N
A [él A 1, , _ . '
where A, 1is (r x q) and Az is [(q - r) x q]. Then the model given .
.o o~ . ~ ! ) »
‘ . . . 4 ' 4
in Equation 2.1 may be writter as ' . 2
Y = XAB + E
= XA B+ XAB+E : (2.11]

?

where the partitioning of X'is in conformance with the partitioning

of A. We now let

L o MB =B A~ §2 I

so that 1f we wished: we could-write the model &s

[X

XX

E—

Y = [4 +E, 3

-~




v

-

where we note that El and 92 95 not necessarily represeﬁg_direct partitions

»

) ) pe
of the original B. If we let X h
X [?1 5;] 1 X ' -
. ) X‘X =i = ) _.'5' .
/\ ~ o~ . - ‘» B K
1 2 . ' X 0 X . St L
NN . R %
. T ' \
.- ‘ _ then LS estimates of B, and B, are given by
&,_ \ . : ’ L. ~1‘ ~2 . [y
B, = X, IX'(Y=- XB,) | |
~1 ~11 212 22227 . . \
' . LI . . R ‘
- : ) ;-
By ™ X 152(3 - %8 , , [2.12]
<l=, > - Our_interest lies in'testing the subhypothegis that
El = Alg = 9, say. More formally, then, the hypothesis 1s
B 0
H,.: 71 =] -
0‘ 2 ~ . -
EZ 92 . ) j2.13]‘
.} ¢ . , ; .
(whére 82 is allowed to take on some (unrestriéﬁed) value under . .

‘A’;

the(hypothésis. Under H_, the wodel is}

0’ _
‘' = 1 ] ¥ * . ’ ' . "’
, \( \ g &Ez + g . . » . [8-14] i
* . ' e ’ fl#:‘/"
The LS estimate of 82 is giyven by

- 1 : !
* = Y, 2,
By = %5, %Y. . [2.15]

By steps similar to those given earlier we compute

= Y'Y - B¥'X, "X BX* ‘ o [2.16]

SSpx = Y7Y - B X, "X, Bos

where we let the last term on the right be denoted by SSH*' _

the SSCP expgined by the restricted model up&ler HO (viz, the

>

/f\.‘- -

15
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v/"’iﬁ i D ‘\‘\;

\

model in Equatiop 2,14). - . .

5

. Our interest is in the diffé&enc%;Xf

. §§HO‘= §§H - §§H* S ) ' [2.17]

’\ Q.

§

where §§H was given in Equation 2.10. This difference is glven

“by ) ' - l o
Rt N T (2.38)
SRRSO ETRNE P I '
‘ | | X Xo| BB

Before continuing, we note that from Equatifns 2.12 and 2.15

-

"1 » —1 . - »
(B, = BY) = X,, "K¥ - Xy5 X181~ %2 1523

.
-

-1
- }fzg %8

.

Followi?g thfough with the matrix operations in Equation 2.18

ieads to the result v -

- o
By 7 R0k T Nt X181 R

h -1
= B T Xo¥an Kor)Byr

Note, however, that from matrix theéry we have the important result

“that the inverse of the term in the paréﬁtheses above 1s equivalent to

$- .
L 'il " r
émﬁg %) él' That 18 to say

-

-1, -1 a1
(51} - Xo%o, TXp)) o= A (XTX) TA

17
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L4
-~
-~ " +
Therefore, we have
- ‘6 ‘ - —1 - _1
§§Ho B)UIA (XK A TRy
¢ - . - —1 - —1 *
' 7 54,7 (A (CD AT A,
' | |
55, » as defined here, 1s the SSCP explained by the hypothedis
. 0 o . ’ . )
Ho: A48 =0

In many cases, we are interested in tests of hypotheses:

[2.21]

involving transformations on the columns of B. In other wdrds,
' we are interested in hypotheses of the form
} ‘ .
\
Hot BC = 0. \

Under, this hypothesis, the model in Equation [2.1] becomes

.YC = XBC + EC

~ -

0
and the LS e#timate of BC is given by

s * Bc = (x°X) " Ix°vC

~ o~

from which we can obtain

\
$Sg = CTY7XC - CTBXKIC

4

= C“S5.C - C“SS,C.

Ingiioong; v
s

where SS..was defined in Equation 2.10

»

Similarly, it could be ‘'shown that for the MGLH,

- !/
| Ho: A,8C =0 .
’ we have
hY
- - - - - _1 _1
88pc = C788;C - C7B7A, "[A) (X“X) A, ] "ABC

B = C°SS.C - C°S§,. C
s ' -~ ~~T~ ~ ~~Ho~ »

= C7[SS, - SSH ]C.

A[ - R I

17
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We may sumgmarize the results obtained thus far in this

section by writing B for C°SS, C, E for €“SS >C,‘and A for A,, and

-~ 0~ ~~ Tv~EC ~ ~1

ﬁ. » Al - -
noting that the most general statemen? of an MGLH_may~be written

N v

as i : R . Y
. . - ) ' ) \
© ABC =0 I |

L= . .
where A 1s a g x r matrix of rank g whose elements, ai& 1=1,

2,..., 8 3 =1, 2,..., r) are used 4o select particular
-~ ) . gg rd )
combinations from the rows of B; ¢ 1g a p X u matrix of rank u whose

elements, cij {14=1,2, ..., p; 3 =1,2, ..., u), are used

. ) . (
to,select linear combinations among the columns of B. .
o - ¥

Test Criteria /

Multivqriate test criteria are usually a function of the

- \
characteristic roots of gE 1 (or, equivalently, of the deter-

~

minantal equation |H - XE| = 0). Three popular test criteria

4

are given in the next three paragraphs. B
Trace criterion. The tr;ce criterion is the trace of
Eg—l which is equivalent to the sum of the roots of tﬁe
determinantal equation, -
u - xigl -0; 1iw=1, 2,0 v
. ‘3.

. APA A

According to Andgrson (1958; p. 224) the asymptotic distribution
of N x (trace HE—l) is the chi square distripution with gu degrees

of freedom (where g = rank of A, and u = rank of C). o

18,
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)3 <

Greatest characteristic riif;griterion. This test statistic

‘. uses the largest,characlerfstic root, Al, of HE . %pr cqnvenieﬁce,v
L4 . ) ‘~

-,

Ai may be converted to , e
. L . ;o
1+ Al

o

RN X =
for which pableﬁzpercentage points have been given (Heck [1960];
- P
Parameters

t¥

thé;e have also been reproduced by Morrison [1967]).

o

}or entering -the Heck tables are,

s

s = min (g, u) : " N

m= (Jg - u] - 1)/2%.
n=(N-r-u-1)/2, wvhere r = rank of X.

Wilks maximum likelihood ceriterion. This criterion makes

ugse of the statistic . 'g
] u —1 '
A= M +2)
=1 L , - AN

where Ai 1 =1, 2,..., u) argy again, the characteristic roots

of HE—l. An equivalent form of the above expression is
-~ o~ 4"
3

E
Am’:‘ﬂ
- )

With large N, a cbi aquaré test due to Bartlett (1951) is available.

ThUS, .~ \
X2 e ~[N-r> .5(u-g +*I)] in A
is distributed as chi square with gu degrees of freedom. A better

approximation (Rao [1965]) is given by o

o ™~

19
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' 1 - ﬂlls .s[(N—p) + g-u-1l] - .S(QU*Q) ,

' , . U,g,N"r . .

T 1/s | : g

u,g,N-r N .
where '
. t . o 5
: / 22 - 4 _ S : )
ls * . ' :
82 + u2 -5 '

‘Under the hypothesis, F is approximately distributed as an F
statistic with gu and {S [(N-r) + g-u-l] -.5(gu-2)} degrees of freedom.
For certaln:values of g and u, Anderson (1958, §8.5.1) gives.

.
. the approprlate exact F statistic. For example when g = 1,

1 -A N-r+l-u

u,l,N-r . F

™ u,N7r+14uh

F =

Au,l,N—r u ,

In the speclal case where the rank of A (or the rank of C) fs

) -1 «
equal to one, the product HE =, has only one 'non-zero character-— —
- 3

{stic root. In this case, the largest root, the sum of the roots,
and the product of the (non-zero) roots are all the snme, thus,

makinp\ the three criteria equivalent.

3. Typical Applications

]

Having described the basic equations of the MGLH, we now turn d
to an algebrailc exposition of some of the more typilcal mode&é found
in educn;ionnl research. Examples of typical applications using
real data can be found in many of the references cited enrlier:ns A B

&

well as in Olson (1971). iIn the discussion which follows, we begin

with the model for the nnnlyqi? of variance, move to a brief discussion

- of the analysis of covariance, and finally p?esen: a discussion on the

analysis of repeated measures designs.

20
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Multivariate Analysis of Variance

-
.

. \ - )‘
Let the configuration of Figure 1 represent.the general design

-

of a 2 x 3 factorial experiment. There are n;} experimental units

in each cell, and for purposes of exposition it will tg_aseumed
that Ny © nlz.ﬂ o™ Dyq =M, though we realize this 1g not a
necessary reetriction on the general linear model. Measurements

N
on each of p dependent meagures (Y(i), £=1, 2, ..., p) have been

collected on each of the 6 X n experimental units. The notation,

.

éi;’ denotes, the measurement of the £'th dependent variable for

N . .
the k'th subject in the 1j'th treatment combination. It is assumed:
that each of the N = 6 x n vecﬁore, ~é ) - Q =1, 2, ..., P), have

béen independently sampled and follow the multinormal law with
expected values, g(Yk), and common variance-covariance matrix z.
It is possible to write the N x p observations, given in Figure 1

as the N X p supermatrix of observations,

L]

(D) @) (p)"'
n~11 . n~11 e p~11
Q |y (2 ¢ (®
nJlZ_ nl12 st 12
Y(1) (2) oo (P)
Y =In~13 n~13 n~13
(1) . (2) e (P) [y
) n~21 n-~ 21 n~21
7 He () ” ¢ @)
n~ 22 . n~ 221 v n~22
ey (@ et ()
n~23 n-~ 23 n~23
21
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\
4’ -
e Y
=4 ..%V
. ' " b :f':i"i\;
) ,
L), (2) @) [y (@) () [y (2) ¢ (B)
Y111 Y111 111 | Y112 Y112 112 | Y123 Y113 ~ -+ #¥113
(1) 4(2) ) | L1y (@) o) | o ) (p)
¥p11 Y211 +o¢ Yai1 | Y212 Ya2l2 ¥512 | Y213 ¥213 Y213
(1) ,(2) . (p) (L) (2) (p) (l) (2) (p)
¥h11 Yn11 0 Ynll | Y12 Y12 Yn}2 Yh13 Yn13 Ynl3
(1) (2) ) | 1) () ) |1 (2) (p)
¥121 Y121 Y1 o Y122 Y122 (Y123 Y123 oo Y123
(1) (2) ) | (1) (2) 01 | (1) () ¢ (p)
Y521 Y221 co¢ Ya21 | Ya22 Y222 222 | Y223 Y223 *** %223
- ¢
L1 @ [ ) Y(p) L (2 )
Yh21 n21 n2l | "n22 "n22 n22 n23 ‘n23 " n23
Figure"T: Diagram of a General 2x3 Factorial Experiment.
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L. . / - * ‘ v »
where n denotes the number of rows .1n each of the n X 1 submatrices.

An appropriate design matrix, describing the exﬁerimental design,

would be the N x 6 Helmertrtype matrix, of rank 6, e

n~ .n-~ n-~ n-~ n-~ n~

1 1 -1 1 -1 1 : ,
n~ n-~ n~ n~ n-~ n~ ® - -
N . 1 1 0 -2 0 -2 . i
P n-~ n~ n-~ n-~ n- n~ . . . & i .
. Sl I S N SRS SR R ‘
n-~ n~ n~ n~ n~ n-~

1 -1 -1 1 1 -1
n. n~ n~ 0~ 0~ 0~

| 1 -1 0 =2 .0
n~ n~ n-~ n-~ n-~ n-~
4 . J

It can easlly be shown that the solution.of che‘hdrmal equations
(Equation ij) ylelds the matrix of estimates, B, shown in Figure 2.
It is obviolis that the first row in B estimates the grand means of
the dependedt variates. The'second row estimates the row effect.
The third and fourth rows (considered jointly) estimate the column
effect, and the final two rows, the row * column interactionl.
In mulLivariate ané{ysis of variancé, hypothese; of interest v
- commonly involve only effects due to independént variables (i.e.,
ways of claasifiéation). Hypoehqusffgncerning contrasts among
' ‘ dependent variables ate considered under profile analysis. When
all depe;dent variableg are to be includéd, the matrix c, of
Equ‘ation 2.24 18 set equaledyp E,‘ the identity matrix. To tesgt

hypotheses of no treatment or interaction effects, the following

A-matrices are constructed:

’

1'I'he reader should be aware that when cell frequencies are |
disproportional (i.e., the design is unbalanced) estimates of
row, column, and 4nteraction effects will be confounded. See

Overall & Spilegl (1969 or Searle (1971; pp. 138-139) tor
procedures on treating unbalanced designs.

. ' .23
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Y]

}Ym)'ﬁtm 0

0 0 0]
. T A . = [oet0 0 0 0]
oo 2R " .
;} H ® "G 000 —
) . . " 3.1
. A,..=[0 D.,1 0 0 O] <;L .
=@ [o A 010 o!' - \
» - Yroy=f0 00 0 1 o] .
’ . . 000001._ L d . ‘ .
. v . -

»

" By substituting theég matrices into the general linear hyp&lhesié

7

framework and letting C

tested:

-~

1, the following,hypotheseaﬁareﬁtben

~

/ /‘ ;7’\
» . A - = Al
HO,M (M) ? c=20 A
. - \/ - ,
e ~e ot Ay BC=0 ' {3.2]
L 3
Hy ¢t 8¢y & c =0 -
Ho,ac’  Amey BE ™0
3
where
HO”M is the null hypothesis that the overall grand
’ means equal zero;
HO R is the-gtil hypothesis of no row effect;
? -~
HO C is the null hypothesis of no column-~¢ffect; and
? .
‘HOFRC is the null hypothesis of no interaction. =
Ar alternative way to have congfructed the design matrix is
[ 1 ]
n
- nl
T 0
- x- - . 1 [3~3]
n,
~ = nl
s
0 -1 '
’ . ’
- » -
25
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where again n denotes the number of rows in each of the n x 1
submatrices. Using this design matrix, the solution of the normal

equations would yield

[ - (1) -(2) = (p)
_ | Y Y] ),
NQ[ ;O 3@ 3(P)
Y12 Y99 Y2+
’ <(1) -(2) | -
Y13 Y13 “ve / ‘ )
I S ( ) 3:4]
- 1 - 2) PR p
Y91 Y1 X Y21
(1) =(2) = (p)
Y92 Y22 Y22
' (1) =(2) =(p)
| Y23 Y23 s Ya3

‘the g}oup means on each depenaent variable.

f

above the A matrices,

Using B as defined

Agy =11 1.1 1 1 1]
~ /7
Agy =1 1 1 -1 -1 -1
' [3.5]
A, =121 0 1 -1 0
@ | 1 .2 1 1 - ]
A, 0 L -1 0 -1--1 0
~(RC) = [1 1 -2 -1 -1 2]

may then be used to test the hypotheses given in Equation 3.2.

Significance tests are computed by first finding H and E and then

applying one of the test criteria given earlier.
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Analysis of Covariance

©

Suppose that, prior to experimental treatment, measurements

on the covarlates, 2

1) and Z

L (2)

e

, were collected for each experimental

unit in Figure 1. An appropriate matrix of indépendent variables
- '

. ) * ’ :
would then be constructed of both design variables and the predi¢tor

variablés, Z(l), Z(z)“
1
N~
1
n=
*
X =
-
0
| -

where the notation,

(L)
243

l -~
N~

Thus, corresponding to [3-5].

Ein
27
23
z7
.géi)
, (1)

-~

23

]
27
2%
z3)
255
22

"23_|

[3.6]

, denotes the n ¥ 1 vector of meaéurements,—'

within the 1j'th level of classification, on the 2'th covariate.

adjusted means and regression coefficients

s* (1) $*(2) s*(p)
n 1 Y
Sk(1)  S*(2) S*(p)
Y12 Y12 P
) BY =| ox(1)  o*(2) *(p)
~ Yo3 7 Ya3 123
RO ofP)
— /

—

The solution of the normal equations ylelds the 8 X p matrix of

- ¢

[3.7]




where wél); wézz,.f., wép) denote the within;class régression>
'-cpéfficients of Y(I), Y(z),..., Y(p) on Z(z).'bB? constructi;; the

A—matricés, | - . )1

L

A =11 1 1 -1 -1 -1 i 0o

- =
o} 1 5 1 10 o 0] [3'51‘?;f“
1 -1 -2 1 1 =2 0 0

.

A 1L -1 0 -1 1 0
- (RC), [1.1 2 -1 -1 2

[=Ne]
o o
[
-

and letting C = I, the hypotheses (Equation 3.2) can then be tested,

CORN ¢} )

«

this time for effects adjusted for regression on Z

If the subgroups on the covariates are computed beforehand,

then tests of unadjusted effects can be obtained easily. We note

that any element in B¥, B;;z) say, 1s the coefficlent for the regression

(2) (2)

of Y on Xi adjusted for regression on the Z . For instance, the
cell mean for group ¥,2 on the first dependent variable 1s given by
?{2(1) = YS) - wli(l) - wzi(z). It follows that the wunadjusted cell

mean for this group is
..‘/“'ap
(1) _ o5, (1) (s | (1)5(2)
le le + wl YA + w2 yA .

Thérefore the A-m;:>§§§

A=(0 1 o o0 o o:z®) 3@y

~ - 2 Y
L8
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Profile Analysis (Repeated Measures)

would yield

® 4 g0y D 4 3@y Oy

5(2)

= (1)5(1) (1),(2) (1),(1) (1),(2)
2 vl AR AR S Aat A L UNas At S Pt A
=Y$) (for L =1, 2, ..., p),

the unadjhsted»cell means. By including the overall covariate means
in the last two columns of each of the A-matrices given earlier,
unadjusted treatment effééts can be easily combuted.

»

%
Profile analysis has been aptly discussed by Marks (1968; see
also Morrison [1967; pp. 168-197]). Essentially the problem is one
of determining whether the shape of a mean vector 1s equal to that
of énother mean‘vector. 'In the two-way classificatiﬁn,'for example,

RN

the problem is to determine whether mean vectors are equal for the
different ways of classification. This is equivalent to asking
whether contrasts among selected dependent measures for one group
are equal to the same contrasts for another group. Observant
readers will notice that this 1s precisely the problem in univariate

repeated measures analysis of variance where the measures on the

multiple dependent variables are taken over time. In the example

~ situation described in Figure 1, the researcher may wish to deter-

mine whether differences among adjacent dependent variables can be
considered equal for all levels of the column factgor. That is, he

may wish to simultaneously test, s

29
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A; - - . -
e w ) -
@ _ (3 - 2 _ 3
L T 1 M2 7ML
(pjl) (p) (p-1)_ (p)
' .1 M . Moo TR
and - o - - _
@, @ @@, | Lo ,@ ]
Wy uip) - iy HEg) - B
, _ ‘
@, @, _ 3, .3, @) ()
g +u )= G +us) L ML
= 2 X
ey |
(p-1) (p-1) (p) (p) (pr-1) (p)
WP el - el e’y LU TS B

where the u(lg's represent population values. It dan;be easily shown

.o

that with either of the design matrices given earlier, its

5 . 1
corresponding solution to the normal equations, the appropriate set

£l

of A-matrices, and the p X (p-1) matrix,

s

1 0 ... 0 0
1 1 ... 0 0
0 -1 0 0 )
. A

C::

0 0 -1 1 S

0 0 0o -11 ;

then the MGLH \\(

ABC =0 :

will yield the appropriate hypotheses for tests on profiles or

repeated measures.




Repeated Measures with Covariates
Two d%stinct types of repeated measures design }nvolving covarilates
can Be identified ch., Winerl[1962, 1971]). In the first, measures ‘
‘on the covariates are collected prior to the onset of any treatment.
In the sec0nd,'covariate measures are collected concomitantly, in ;ime,
with measures on the,dependent'variable.‘ 0f course, a mixture of the
: Ewo types of designs is possible. We shall. consider each‘type of
design separatéiy.v
‘Covariates prior to the onset of treatment. The first type of

covarlate repeated measures design might be diagrammed as follows,

———————————— Time = = = = = = = = = = = = =)=
(L) (2) (h) (1) (2) (p)
L g 4 N 5] h
- /
2 (1) ,(2) 2(h) | (1) v(2) v(P)
T2 T2 "2 T2 72 "2

where the vertical line indicates the beginning of treatment; the-

‘b ’ Z§2), covariate observatiofis for group j; and the Y§E)

the dependent variables for group j. All vectors in the diagram are)@,,

, measures on

v

nj x 1, nj being the number of subjects in group j. A good design
. : @

matrix for this design would'be the (n1,+ n2) X (h + 2) matrix

n ..]: 9 Elj \
j .
X =
! 9 n;!: .Z.z
| L ] |

The (n1 + n2) X p matrix of dependent measures,~¥, would be laid
out in the usual way. The solution to the pormal equations would

yleld the (h + 2) X p matrix of estimates,




_?’i(l) RORE ;f(pf
?5(1) ?5(2) .:. . ?E(p)
’ - '
e G B0
C - ~ -
\ghere ?3(2) is"the 1'th group mean on variable £ adjusted for all

independent variablesQ This design presents no problem, and MGLHs
can be constructed and tested in.the usual manner. ’

Repeated measures with covariates measured concomitantly.k Th;
second type of repeated meésures designs iﬂvolving covarlates 1is

gsomewhat:-more difficult to handle. The design; for a two-group

clasgification, can be diagrammed as follows,

Time 1 Time 2 Time p .
(1) ( (2) ' (2) GO .
21 4 L' oh e " :
v (@ (2) (2) (p) (p)
L, 5 Z, " % L, L%

where the g(l) are the j'th-group observati&ﬂs on the covarlate at
time p; the Ygz) are the j'th-group measutres on the dependent
variable at time p. In thfls situation, the design matrix, as
constructed in the previous ituatioq.would be inappropriate
since it would lead to esﬁimates of group m?ans on each dependent

variable adjusted for all independent variables including those

-~

32

~ 34




&1

S

iy

- covarlate measures which .follow the dependent measures in time.
What is desired, however, are estimates of group means, on each
dependent variable, which are adjustqp only for those covariate

measurés which were collected at the same point in time or earlier.

4

H ) -
In other words, the patameter matrix of interest is

B : .
(1) (2) (3) o ()
Mier M1z Mz o Mzl
(1) (2) (3) ' (r)
Hou1 Ya2u12 Mae23 0 Maiaailp
Lo @ (3) (p)
“ ¥y.2 ¥y.23 e Y3l
(2) (3) (p)
B = |0 W1 Y2.13 e Y3
_ 3
. (3) (p)
0 0 ¥3.12 R Y PPN
- g
(p)
. 0 0 0 SN
where
' uig)jkl = population group mean on dependent variable £ adjusted
for Z(i), Z(k). Z(l),
» mi%;k .= within-class population regression
coefficient of Y(Q) on Z(i) adjusted for
Z(j), Z(k),
To obtain estimates of this matrix a generalized (see Press 2.

(1972; pp. 217-%27]) multivariate linear model is used. This model

3

has the form given in Figure 3.
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1) 1 0 z(‘l) 0 0 T o
Y 0 0 by - 2 - -
] ~1 -~ ~ .
"o 2) . 1 | 1 @
0 giz)... 0 ! ' 0 2 t ) =er 0

0 - 0 o g](-p) ‘]: 0 'g](.l) : ‘Z(Z) . Z(P)

? _ B
. p~1 (1) N 3k ~
!él) 9 e 9 9 -}v gz 9 e 9 R
(2) o 1 2 @) 0
o\ Y 0 - T 22 2 0
. 2 .
. (p) . | 5
0 o - L o 1 z{I 2 e
J o) 22 2 Iy
- .
Figure 3. Generalized Multivariate Linear Model ,

A

where the le), §§2)

, are nJ x 1 vectors. defiped in the diagram for

the sign, and the symbols, 1 and 0, denote conformable column vectors

of 1'% and 0's resgpectively. In the model, the matrix, 8, is the

desired matrix of parameters. 1

The least squares solution to the model in Figure 3 provides the

"appropriate matrix of estimates. Tests of the repeated measures

effects are then made by formipg MGLHs involving the first two rows

[N

of B.

~

For instance, with
A=[1-10 0 ... 0] (where A is 1 x (p + 2))

C'= (where C is (p - 1) x p)

»

0 0 0 '-- 1 —1 [

the MGLH, ABC = 0, would provide an appropriate test of the null

~ o~~~

hypothesis of equal profiles for the two groups.
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