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THE ROLE OF RIGOR IN THE TEACHING OF MECHANICS

RIGOR AND UNDERSTANDING. In the preface to his book, General Mechanics, Max

Planck* said: "I have frequently observed that the difficulties with which the student has

to contend when he first enters the realm of theoretical physics are more often concerned,
not with the mathematical form, but with the physical content of the ideas that are pre-
sented to him. It is not the calculations with equations that cause him the most trouble,
but the setting up of the equations, and, in particular, their interpretation. " Knowledge
of engineering mechanics implies more than the ability to derive and interpret the basic
equations of mechanics. It signifies the ability to apply the principles of mechanics to
various physical systems, and thereby to predict the mechanical behavior of the systems

correctly. Experience plays an important part in the development of such understanding,
but the first requisite is an insight into the principles of mechanics. Planck's imaginative
and deductive treatment of classical physics, illuminated by an easy style, displays math-
ematics, not as a tool, but rather as the language of physics. The role of rigor in me-
chanics is partly the cultivation of understanding and fluency in this language.

According to the dictionary, rigor means strictness or severity. Rigor, in this

sense, whether self-imposed or enforced by authorities, is essential for learning. Stu-

d e n ts like a teacher, who is a good fellow, but they are apt to learn more from one who
insists on complete explanations, clear reasoning, neatness, and accuracy.

However, in the present context, rigor is not viewed from the standpoint of the

disciplinarian, importarit though that may be. In mathematics, rigor means strict adher-

ence t011icertain principles of reasoning. It does not mean ultimate logic, for that may be

unknowable; at least, it still eludes philosophers and mathematicians. Despite misgivings
aroused by Goedel's famous demonstration that a postulational approach to a science may
enmesh us in inconsistencies and deny us access to certain truths, rigor in mathematics
generally is interpreted to imply the axiomatic method. D. Hilbert said: "I think that

everything that can be an object of scientific study at all, as soon as it is ripe for the
formation of a theory, falls into the lap of the axiomatic method and thereby indirectly
of mathematics. Under the banner of the axiomatic method, mathematics seems destined
for a leading role in science. " The axiomatic method originated in classical Greece,
but it was not understood clearly until this century.

*General Mechanics, MacMillan Co. , New York, 1932.
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Following the pattern of Euclid, Newton attempted an axiomatic development of

mechanics. Not surprisingly, his reasoning contains the same kinds of flaws that logi-
cians now perceive in Euclid's work. Von Mises* has commented on this: "There are
two new basic concepts that enter into the construction of Newtonian mechanics -- those
of force and mass. Newton explains mass in his first definition as 'quantity of matter',
One notices immediately that this definition is completely empty and in no way helps us

to gain an understanding of the phenomena of motion. All one has to do is reflect that it

would be possible to substitute the words 'quantity of matter' for the word 'mass' where-
ever it appears in a contemporary text, Newton's definition of force largely anticipates

the conteLt of the first two laws of motion: the force neither changes the location of a
body (immediately), nor determines the velocity, but rathr changes its velocity. Thus,

force is first defined as something that changes the velocity, and then the law is stated

that velocities are changed by forces. This manner of inference has been well put by

Moliere: 'The poppy seed is soporiferous; why? because it has the power of soporif-

icity. ' But scoffing here, is ill-advised, for Newton's Principia expresses one of the most
far-reaching and original discoveries ever made in physics. "

TIME AND KINEMATICS. The axiomatic method has had its most striking successes in

geometry. Characteristically, axiomatic theories deal with undefined elements. For

example, in the treatise on projective geometry by Veblen and Young, a point is unde-

fined. A line is said to be an undefined set of points, except insofar as it is defined
implicitly by certain postulates; e.g., two distinct points are on one and only one line;
there are more than two points on a line, etc. A far-reaching hierarchy of theorems
issues from such simple postulates.

Newton was aware that an axiomatic theory necessarily contains some undefined

elements. In his Principia, he states that time, space, motion, and location do not require
definition. The public has recognized vaguely, since the popularization of Einstein's
theory, that our innate concept of time is wrong, or, at least, inappropriate for cosmology.
However, this circumstance calls for no apologia, since, insofar as an axiomatic theory
of Newtonian mechanics is concerned, the meaning of time is irrelevant. Consequently1

the burden of defining and measuring-time is transferred to philosophers and experi-

menters. For example, suppose that a position vector --"r is a function of an undefined

parameter t; i.e., --"r = r (t). This vector equation defines a curve C. Vectors

*Mathematical Postulates and Human Understanding, The World of Mathematics, vol. 3,
editet by J. R. Newman, Simon & Schuster, New York, 1956.
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and a are defined by V = dr/dt and a = cIV/dt. Then, by differential geometry, v is
tangent to curve C, and v = ds/dt, where s is arc length on C. Furtlierniore,

(IV dv ds dV d 2 dv dv
a dt ds dt = v Ts- v ws- (v0 = v ds ds

in which V = e. /v\ is the unit tangent vector of C. One of the formulas of Frenet

in the differential eometry of curves is dvA/ds = n/R, in which n is the principal unit
normal vector of C, and 1/R is the curvature of C. Consequently,

A v ,
2 dv

2
a= n v v or a A v -dv= n + v dR ds t

Accordingly, a lies in the osculating plane of curve C. The component of on on the

principal normal is v2 /R and the component of on on the tangent to C is dv/dt = d2s/dt2.

These are familiar results. The point is that the concept of time plays no role whatever

in the deductions; t could be the x-coordinate; arc length on the curve, distance from

the origin, or any other parameter.
Kinematics of a rigid body is essentially the theory of transformations of rectang-

ular coordinates, in which the direction cosines of one set of axes with respect to the other

are functions of a parameter t. If the two coordinate systems (x, y, z) anu t)
have a common origin (which is no essential restriction, since translation is easily super-

imposed), and if the table of direction cosines is

x y z

11 ml n1

11 12 n2

13 m3 n3

we obtain, by differentiating the equations of coordinate transformation,

x = 11 + 12 ri +13 y , z = , provided that the point under consideration

has constant coordinates t) . If we eliminate ( t) from these equations by

means of the equations of coordinate transformation,

= 11 x + ml y + ni z ,

and simplify the resulting equations by means of the equations,



11 11 + 12 12 + 13 13 = 0, ,

11 + 12 m2 + 13 1;13 = m
1

11 - m2 12 m3 13'

which result by differentiation of algebraic identities among the direction cosines, we

obtain
-

x = z co y coz , Y = X wz z wx , z 7-- y cox x co

where, by definition,

wx = ml n1 + m2 n2 + m3 n3

wy = n1 11 + n2 12 + n3 13

z
= 11 m1 + 12 m2 + 13 m3

(a)

(4)

In modern engineering mechanics texts, Eq. (a) usually is derived in thevector
notation v =coxr by reference to a vector diagram. However, that approach does not
provide Eq. (b), which is needed to prove that co is a vector. If we introduce new initial

coordinates (x' , y', z,;) with constant direction cosines, given by

x y z

x'

z'

a1 b1 c1

a
2

b
2

c
2

a
3

b
3

c
3

and if, by analogy to Eq. (a), we define (co' , co' , ) by
x y z

= z' co' y' co' z, y' = co'z - Z' co' x
y' co' x - co' (c)

the proof that angular velocity is a. vector is equivalent to showing that it transforms like

(dx, dy, dz); i.e. ,

co'x = al cox + bl wy + c
1 z' '

(d)

Surprisingly, Eq. (d) does not follow from Eqs. (a), (c), and the equations of coordinate

transformation, x' = al x +131 y + c1 z, These equations yield
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x' = al x+ bly +clz = al (z coy - y z) -F. b
1

(lc z z cox)

+ c1 (y cox x coy) = (a3 x +.b3 y + c3 z) co'y

I* ,

(e)

x +b2 y +c2 z) co'z ,

Equations (e) do not determine (co'x, co' y' co' z) uniquely because their determinant is zero.

Their matrix is of rank 2. Because of identities among the direction cosines, the rank

of the augmented matrix also is 2. One solution of Eq. (e) is Eq. (d).. However, there
are infinitely many solutions. We can let co'z be any function of (x, y, 4.) at pleasure,

and solve Eqs. (e) for co' x and w' Consequently, something more than Eq. (a) and

the equations of coordinate transformation from (x, y, z) to (x', y', z') is required to
verify that angular velocity is a vector. The additional information that is needed is con-

tamed in Eq. (b).
The concepts of time and motion do not enter into the preceding analysis. In fact,

the entire theory of kinematics of a rigid body may be regarded as geometry. Likewise,

the philosophic interpretation of time is irreleirant in the kinematics of fluids. This is

apparent if the displacement of a fluid is represented in the Lagrangian form, .r = f(ro, t),

in which t is any parameter, and I (To, 0) = ro. The velocity field is defined by
= 8r /8t, and the acceleration field by a = 8v /8t. This characterization may be applied

to any mechanical system, whether fluid or solid.

MASS AND THE LAWS OF DYNAMICS. It has been shown that time plays the role of an
arbitrary scalar parameter in Newtonian kinematics. Mass is another scalar that may be
defined incompletely in a postulational treatment of mechanics. Despite von Mises'
critique of Newton's argument, the concept of mass as quantity of matter properly conveys
theidea that mass is independent of gravity. On the basis of the atomic theory, quantity
of matter may be defined 'as a measure of the numbers of protons and neutrons in a system.

The mass of a system _is the sum of the masses of its parts. A mechanical system
may be conceived as a set of particles, which generally is non-enumerable. In the language

of mathematics, a configuration of the system is represented by a bounded Borel point set

B. A subset of B has mass m. If we emulate the rigor of modern mathematics, we
specify that m is a non-negative additive set function defined on all Borel subsets of B.
The function m is invariant, in the sense that it is unchanged by a displacement of the
system, i.e., m has the same value for all sets that are equivalent under the family of

mappings r =1 (r0, t).

7
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A velocity field v on t:,e point set B is defined by .r = ar/at, and the momentum

of system B is defined by

fi dm ,

in which, for inclusion of point masses in the system and other generalities, the integral

should be interpreted in the Lebesgue-Stieltjes sense. Also, the angular momentum of

the system about the origin is defined by

= 1.T x dm.

The fundamental equations of Newtonian dynamics are

dC
dt ' dt

(f)

These equations may be regarded as postulates. Since Newton's second Iaw folloWs from

T = dG/dt, the momentum principle is as broad as Newton's second law.
The practical significance of an axiomatic theory of mechanics lies in the fact that

the variables m, t, F, M, etc. have prototypes in the real world that conform closely

with the preceding equations and defirntions. For certain physical systems (e.g., mag-
netohydrodynamic systems), the angular momentum principle may be invalid, but this

circumstance does not vitiate the postulate M = dH/dt; it merely restricts applications

of this equation. The equation M = dH/dt is applicable only if the internal forces exert

no resultant moment. Thw nature of interatomic forces often is adduced as evidence that

this condition is satisfied.. Symmeetry of the stress tensor is a closely related condition.

If T = m = 0, and if the initial conditions are -C (0) = H (0) = 0, Eqs. (f) show that

G (t) = H (t) = 0 for t > 0. This is true for any boulided system, regardless of flexibility

or fluidity, provided that the equation M = di-Vdt is applicable. If the system is rigid, the

conditions G =r1= 0 signifiy that there is no motion. Thus, principles of statics issue

from the momentum principles.

ON THE TEACHING OF KINEMATICS. A postulational development of Newtonian mechanics

seemingly provides no important generalizations, such as those which have characterized

geometry. Also, it would be too abstract for beginners. Insofar as possible, we should

make education a continuous process. Continuity demands that we build on the knowledge

that students already possess, and that we do not leap to new concepts and methods for

which they are psychologically and educationally unprepared. Geometry is a prerequisite

8
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for mechanics, but students often are muddled in mechanics because they are poorly
prepared in Euclid's theorems, algebra, trigonometry, analytic geometry, and elementary

calculus. The fact that kinematics is the branch of mechanics that causes beginners the

most difficulty is evidence of this deficiency. Students get much-needed drill in mathe-

matics if they derive linear and angular velocities and accelerations of parts of mechan-

isms by differentiating general geometric equations with respect to t. With the burgeon-

ing 'applications of computers ih kinematical design, this method has become important

in practice. It is the approach which serves for the derivation of the equations of relative
velocity and relative acceleration that have been used widely in analyses of mechanisms.
It also is the phase of kinematics that is most important for dynamics. Graphical kine-
matics and the associated principles may be curtailed, since they have little bearing on

dynamics. For example, for the slider-crank mechanism shown in the following figure:

x = r cos 6 + R cos 4, sin Q sin 4
R r

Differentiating these equations with respect to t; and eliminating 4 and Vii, we get (with

. 0 =6.) = constant)'

2
r co sin (0 + 4)) r r cost 0

x [ cos +
cos 4) cosh R cost

x
77/, T777

Courses in dynamics usually begin with kinematics of a particle that moves on a

straight axis. Accordingly, at the outset, we have the equations,

dx a = dv = v dx d2x
v dt

, dt dx dt



The equation a = v dv/dx sometimes creates the misconception that a = 0 whenever

v = 0. However, it often happens that dv/dx -co as v 0. For example, for the

slider-crank mechanism, let 4) 0, then v 0, dv/dx co, and v dv/dx- . r co
2

(+ 1 + r/R). The last equation represents the accelerations of the slider at the ends of

the stroke.
For a rotating body, there are relationships analogous to those for rectilinear

motion of a particle; namely

de) _ dco _ do d20
,dt dt c`) dB dt2

Consequently, it is natural to intrdduce the kinematics of rectinlinear motion and rotation

about a fixed axis together. This approach expands the scope of problems (particularly,

mechanisrprproblems) that can be used for illustrations and exercises. Applications of

the theory of rectilinear motion alone are quite limited, and the textbook problems in this

area are unavoidably tri or artificial.
A topic that usually is vague in the minds of students is relative motion. It is

essential to emphasize that velocities and accelerations always are measured with respect

to reference frames. Even for relative motion on a straight axis, the concept of reference

frames is important, as Einstein's special theory of relativity shows. Understanding of

relative motion will be enhanced if teachers designate reference frames explicitly. The

difference V2 v1 of the velocities of two particles customarily is called the velocity of

particle 2 relative to particle 1, but, more precisely, it is the velocity of particle 2

relative to a reference frame that translates with particle 1. The same remark applies

for the difference a2 al of two accelerations. One fault of Gibbs' vector ana17,sis is

that it does not clearly display the fact that a vector can be specified only by means of

three scalars which are associated with some reference frame. If, for example, a sur-

veyor goes out in the field and measures a certain vector, he must record three numbers.

The earth is his reference frame. It is easy fbr students to understand that, if (x, y, z)

are rectangular coordinates of a particle, the velocity and the acceleration of the particle
Se .

relative to that coordinate system are represented by (x, y, z) and (x, y, z), regardless

of the motion of the reference frame to which the axes (x, y, z) are attached. By making

vectors appear absolute, and by renouncing the mathematical definition of a vector as a

triplet of numbers that transforms like (dx, dy, dz), Gibbs' vector analysis sometimes

tends to impede understanding. On the other hand, it appeals to the imagination, and it

opens new mathematical vistas for thoughtful minds. Whether students of elementary

mechanics generally have the necessary mathematical maturity to profit from symbolic

vector analysis is debatable.
10
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A serious detriment to the learning of elementary mechanics is the tendency of

students to memorize special formulas. How often do they apply v = at or s = 2at2 in

cases for which the acceleration a is not constant? If special fc:\rmulas did not stand

out like captions in textbooks, students might be less inclined to memorize them. The

fragmentation and cataloging-of instructional material in textbooks tends to blur general

principles, rather than to bring the mind to focus on them.

ON THE TEACHING OF DYNAMICS. The invariance of Newton's second law and of the

principles of linear and angular momentum under Galilean transformations often is by-passed

in elementary mechanics Courses, although it is a feature of mechanics that is philosophi-

cally important and useful in practice. For instance, in studies of progressive waves, a

reference frame that travels with the waves sometimes is preferable to a so-called fixed

reference frame. Also, the earth is not exactly a Galilean reference frame, and the

identification of astronomical reference frames for which Newton postulated his laws to

be valid is not only essential for an understanding of mechanics, but it is fundamentalin

celestial mechanics, space navigation,imeteorology, oceanography, and other fields.

Non-Galilean reference frames frequently are useful. For instance, I recently

was asked about pressure cycles in a liquid carried in a hollow reciprocating piston that

is filled with liquid. In such problems, the concept of inertial force is very helpful. Also,

it is valuable in vibration theory, since, for example, the differential equations for a

vibratilik structure can be derived from the differential equations of statical equilibrium

by introduction of inertial loads. This method is particularly convenient in the theories

of vibration of beams, plates, and shells.
The work that a force F performs during a time interval (to, t1) is defined as

W= 11to
T. v dt , (g)

in which TT is the velocity of the particle on which the force acts. Since v depends on

'the choice of the reference frame, W also depends on the choice of the reference frame.

Accordingly, work is a relative quantity. This observation is consistent with the law that

the total work performed on a system equals the increase of kinetic energy, for kinetic

energy also depends on the reference frame.
There is a subtlety in the definition of work if the force F does not act continually

on the same particle. In this case Eq. (g) is valid, with the understanding that v is the

velocity of the particle on which F acts, and not the velocity of the point of action of F.
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This distinction was emphasized by Osgood*. For example, if a rigid wheel rolls on a

rigid track, the force F that the track exerts on the wheel may have a tangential compo-

nent (e.g. , if brakes oare being applied). The velocity v of the particle of the wheel on

which F acts is zero, since this particle lies at the instantaneous center. Therefore,

force F performs no work on the wheel, despite the fact that the geometrical point of

action of F moves along the track with the wheel. Similarly, if a grinding wheel acts

on a fixed plate, the frictional force of the grinder performs no work on the plate since

the plate does not move. However, the frictional force of the plate performs negative

work on the grinder. The general definition of work deserves more emphasis, for there

are many cases in which a force shifts from one particle of a body to another in a contin-

uous way.
Unfortunately, the amount of important instructional material in mechanics usually

is too great for the allotted class time. Consequently, teachers must weed out irrelevant

and ancillary material. One topic that may be dropped is the coefficient of restitution.

This concept is an empiricism, and, unlike the coefficient of friction, it has little impor-

tance. Serious studies of'impact lead to considerations of elastic or inelastic deformation

and wave motion which are beyond the scope of elenientary mechanics. If the coefficient

of restitution is omitted, there is little need for the concept of impulse. Whether the mo-

mentum principle is written as D.' = d-C/dt or AC = dt is mathematically

optional, but the first form is simpler, both in fora t0 and conception. In fluid

mechanics, the Momentum principle is best expressed with reference to convection of

momentum through a control surface; is e., the resultant external force that acts on the

fluid in a given spatial region R equals the net,rate at which momentum is convected out

of the region R, plus the time rate of increase of momentum of fluid in the region R.

The principle of angular momentum in fluid mechanics may be stated similarly; we merely

replace the words "force" and "momentum" by the phrases "moment of force" and "moment

of momentum." These principles have nothing to do with special properties of fluids, and

they properly belong in a general mechanics course.

UNITS OF MEASUREMENT. The want of a philosophical attitude is apparent, not only

among students, but also among practicing engineers, when they confuse the concepts of

weight and mass. This inability to discriminate between physical concepts that are entirely

different is aggravated by the ill-chosen units called "pounds force" and "pounds mass", or

"kilograms force" and "kilograms mass. " Conceivably, we might adopt a it of time

*W. F. Osgood, Mechanics, Chap. 7, Art. 7, The Macmillan Co. , New York, 1937.
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called the meter (as musicians do). Then, since the meter also is a unit of length, we

would have to distinguish between "meters length" and "meters time." The ambiguous

use of the pound or the kilogram as a unit of mass and a unit of force slipped innocuously

into thermodynamics because there is no dynamics in classical thermodynamics, except

the concept of work; the equation F = ma plays no role. In modern gas dynamics, where

the equation F = ma is involved, the ambiguity has been retained by means of the modi-

fied Newtonian equation F = ma/gc. This practice further muddles the concepts of weight

and mass; students are unable to decide whether gravity affects a phenoMenon or not.

Hydraulicists are consistent in their units. In the United States, they have used

the slug and the pound as units of mass and force, respectively. Bernoulli's equation,

p/w + v 2/2g + Z = C, requires that w be interpreted as specific weight. Although this

equation is correct, it is misleading because g is in the wrong place. For instance, flow

in a horizontal conduit is unaffected by gravity, but g appears in Bernoulli's equation.

Lord Rayleigh called attention to this oddity in many engineering formulas. He said,. "When

the question under consideration depends essentially upon gravity, the symbol g makes

no appearance, but, when gravity does not enter into the question at all, g obtrudes itself

conspicuously." The universal hydraulic practice of defining heads as lengths tends to

promulgate this deception. It is true that head represents energy per unit weight of fluid,

but the predominance of the concept of weight is itself misleading. In the equation of gas

dynamics, p/p + 2v2 + gz + u = C, each term represents energy per unit mass.

This is a more rational way to express specific energy. The misplaced g pervades all

applied mechanics, for mass m commonly.is represented as W/g. This practice gives

the false implication that W is invariant, and that m depends on g -- a misconception

that many students carry away from college into their work. It is more in accord with the

nature of things to write W = mg, and to specify masses of objects, ,rather than weights.

Then, if gravity has no effect on a phenomenon, g does not appear in the related equations.

r The confusion is not restricted to the English syStem, for European engineers inter-

pret the kilogram as a unit of force, as we see from the practice of expressing stresses

in the unit kg/mm2. The kilogram also is used as a unit of mass, but, when Newton's

law, F = ma, is applied, the unit of mass has been taken to be the kg sec2/m. The Sys-
.teme Internationale that is now accepted by nearly all engineering societies is' a supreme

effort to end the ambiguity, but there is a grave danger that practitioners will persist in

using the kilogram as a unit of force. Concerted efforts by textbook writers and research

workers will be needed to imbue the next generation of engineers with the idea that the

kilogram is a unit of mass, and that it never is a unit of force.

13
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CONCLUDING REMARKS. Rigo will be enhanced if numerical problems are de-emphasized

in favor of more weight on concepts, derivations, and interpretations of principles and

equations. If algebraic symbols are specified for lengths, masses, forces, vel3cities,

etc. in exercises, rather than numerical values, the solution to each problem becomes,

in itself, a minor derivation. Such general solutions to rather special problems often are

u'sed in practice.
In a broad sense, rigor means straight thinking or good reasoning. If we accept

this definition, the need for rigor in the teaching of mechanics is a truism. Perhaps the

greatest detriment to straight thinking in mechanics, and parenthetically in other branches

of physics, is the want of a philosophical attitude. Habits of contemplation which are essen-

tial for understanding of mathematics and physics are not cultivated in engineering colleges

more than in the past. Possibly teachers can do little to develop them, but educational

experiments in this direction are rare. Students in engineering seldom are required to

master deductive proofs, yet real understanding of fundamentals comes only from such

mastery. Notrting is more practical than a good theory, and the key to proper applications

of the theory is comprehension of the development of the theory.


