AOTHOR TITLE

INSTITOTION
Pub date
CONTRACT NOTE

EDRS PRICE DESCRIPTORS

Paller, Alan; And Others
Designing a Transportation System for a Parent Choice School District: A Transportation Supervisor's Handbook.
Applied Urbanetics, Inc.; Mashington', D.C.: National Inst, of Education (DHEG), Hashington, D.C..
Nov 75
NIE-C-74-0135
79 p .
4P-\$0.76 HC- $\$ 4.43$ plus Postage
'*Bus Transportation; Computer Proqrams; Computer science; *Delivery Systems; Education Vouchers; Pree Choice Transfer Programs; Information Processing: Open Enrollment; Scheduliñg; *School Buses; *Student Transportation; Supervisors; *Systems Approach

ABSTRACT

This study was commissioned to investigate the special transportation problems in parent-choice school districts and to prepare a handbook to assist transportation supervisors in owercoming these problems. Intended for school districts that have alternative schools, open enrollment plans, magnet schools, or other kinds of parent and student choice programs, the handbook is a summary of the information gathered on transportation planning in both parent-choice and neighborhood-centered school districts. Elements of the traditional meighborhood-school-centered transportation system and those unique to the parent-choice transportation system are described. Methods, are suggested for developing the information files and routing skills required to meet the needs of the new system. The characteristics of commercial services offering computerized transportation planning serviges are presented and wompared. The concludigg section presents "rulus of thumb" and criteria for judging what levels of automation and what service might be most valuable for, specific district., (Author/MLF)

[^0]
DESIGNING A TRANSPORTATION SYSTEM

FOR A PARENT CHOICE SCHOOL DISTRICT:
A TRANSPORTATION SUPERVISOR'S HANDBOOK

NOVEMBER, 1975

National Institute of Education
U.S. Department of Health, Education, and Welfare Washington, D. C. 20208

Prepared by:
Alan Paller, Lynette Ferrara, Eileen Manley
Applied Urbanetics, Inc.
1701 "K" Street, N.W.
Washington, D. C. 20006
Contract No. NIE-C-74-0135

The National Institute of Education, in the course of overseeing the Alum Rock Education Voucher Program in San Jose, California, has become aware of the special transportation problems that confront, school districts'operating parent choice systems. With an eye toward assisting Alum Rock in managing its voucher program and recognizing that similar types of multiple option systems were gaining currency in school districts across the nation, NIE engaged Applied Urbanetics to conduct this study.

The monograph that you have before you is, we think, unique. For, in addition to providing guidance on the level of. sophistication warranted for a transportation planning system, it contains what amounts to a consumers guide for selecting a commercial transportation planning service.

This second segment of the Applied Urbanetics report will soon go 'stale, but this as it should be as new products enter the marketplace. So while this report should have a shelf life of from 3 to 5 years, if in time local school districts evidence sufficient and widespread interest in information of this nature we would have good reason to commission a new review.

I hope this study will help school districts that have begun or are thinking of instituting alternative schools, open enrollment plans, magnet schools or other kinds of parent, and student choice programs, and i would encourage all school districts who find this or similar publications of use to forward their critical views to the. Institute.

School Finance \& Organization

1 TABLE OF COVTENTS
i
, Preface..
Int roduction. Mii $^{\text {in }}$

Chapter I: The Information Neets of the Transportation Supervisor'................ 1

Chapter II: Collection of the Fundamental
Data.. 6 .

Chapter III: Fidiy Automated Transportation Systems.............................. 14

Chapter IV: Choosing the Best Approach for Your School District.............. 33°

Bibliography
Appendix: Examples of Report Formats

PREFACE

The Educational Voucher Program staff of the National Institute of Education recognizing that transportation planning was a problem both in Alum Rock, the first voucher demon'stration site, and in local educational agencies assessing the feasibility of their own voucher programs, contracted with Applied Urbanetics, Inc., to investigate the special transportation problems in parent croice school districts and prepare a handbook to assist transportation supervisors in overcoming these. prob'ems.

Applied Urbanetics gathered information on the experiences of transporation supervisors in both parent choice and neighborhood centered school districts. Officials in Alum Rock (San Jose, California) provided much valuable information about their solutions to transportation problems in their voucher program. Special thanks go to John Williamson, Transpoftation Supervisor; Kathy McCoskey, Dispatcher; and David Bailey, Assistant to the Superintendent for their generous contribution of time and information.

This handbook is a summary of the information gathered on transportation planning in both parent choice and neighborhood centered school districts. Although the focus of. the handbook is on parent choice districts, much of the information will also be valuable to planners in other districts. For example, this handbook contains the first published comparison of commercially-available computerized transportation planning services. The comparison will be valuable td-any school district comtemplating the purchase of computerized transportation planning services.

Opinions presented in this handbook are those of the authors and should not be construed to represent the position of the National Institute of Education.

The neighborhood school system is the basic fôndation of our public school system. The superintendent who wishes to introduce a parent choice system* in a district is faced with the challenge of devising a transportation system that makes non-neighborhood schools easily accessible, thereby expanding the number of educational alternative: for each family.

To make a parent choice plan work, the'plan must have at' -least three components:

- the development of a set of clearly defined alternative, educational programs which meet the educatioial. needs of the district's chilḍren as perceived by their parents;
- a public information system to communicate the goals of the new system and to provide to parents the information and counseling they need in order to select an educational program for eac̣h of their children,** and
- a well-run school transportation system to demonstrate that children can be safely - and efficiently transported to the school of their parents' choice.

This handbook has been developed to give guidance in an area (which has not yet been explored: the design and, implementation

* Parent Choice System is used to designate a school district where parents have two or more schools to choose from for thêir children. ${ }^{\text {C }}$ Many systems regulate enrollment at a particular school through grandfather clauses which give preference to neighborhood residents or children with siblings enrolled in the school. On octasion, race or sex quotas are imposed. Commonly used terms for such systems include: voucher system, open enrollment, freedom of choice, optional assign- ment, and magnet schools.
** A vast amount of literature provides guidance in the development of \backslash a public information system. A bibliography appuars at the end of Chapter IV. The Rand documents describing the Alum Rock Voucher experiment are a particularly fich resource. However, after one year of a major public information campaign, 62 per cent of Alum Rock parents indicated that they chose their child's school primarily because of its proximity to their home.
- (Weiler, D., et al. A Public School Voucher Demonstràtion: The First Year at Alum Rock. Santa Monica, California: Rand Corporation, June 1974, prepared for the National Institute of Education, Washington, D.C., p.125).
of a transportation system responsive to the special needs of the parent. choice system. Topics to be covered include:

Chapter 1

Chapter Il
(ha ter III

1

- Chapter IV

The Information Needs or the Transportation Supervisor; Collection of Fundamental Data; Fully Automated Transportation Systems;

- Choosing the Best Approach for Your School District.
 district, it also may serve as a guide to any district contemplating the purchase of a semi-automated or automated transportation planning system.

The transportation supervisor in a parent choice system often finds his past experience provides little guidance in designing the effective, flujd $\$ y s t e m$ required for a parent choice system.

Two fundamental problems exist:

- Traditional routing methods are not readily adaptable to a system in which anychild can go to any schoól.
- The fundamental data uscd as a basis for the "where and when" of transporting the children are not readily available.
This chapter outlines these problems by describing elements of the traditional neighborhood school centered transportation system and the parent choice transportation system. The remaining chapters wugest methods for developing the information files and routing skills requilred to meet the needs of the new system.

The Neighborhood Schobl Centered Transportation System
Figure I illustrates á district with a typical neighborhood school centered transportation system. A school bus is routed up and down streets pidking, up children at selected contiguo is collection points. In selecting the routes, the transportation supervisor has two objectives:

- to minimize the number of buses used and the miles travelled in order to save costs, and
- to ensure that transportation policies of the school board are met.
In a neighborhood s"chool centered district, the routing problem can generally be reduced to a question of how to. route a bus to pick-up children at a number of bus stops and.takeathem to a single school. All children within the same gradesspan, living in a defined area, are to be delivered to the same school. The transportation supervisor in this type of district needsm to know:
- the location of each student with an indication of the school attended and grade;
- the location of cach schnol, its grades andeits attendance area boundarles;
- the capacities of the buses available for use;

NEIGHBORHOOD SCHOOL CENTERED TRANSPORTATION SYSTEM

11 Sita 1

- , the opening and closing time's at each school and the school capacity and desire to supervise carly arrivals and, late departures;
- the roads forming the street network and their characteristics which affect passability.

Using these fieces of information, the transportation planner may proceed to determing:
; the bus stops to be used to pick up land drop off children, and.

- the routes within each attendance area.

In the' neighborhood school centered district, the routes for cachs school are generally independent of the routes for other schools: This feature differentiates this type of routing from its counterpart in a parent choice district.

The parent Choice Transportation System
Figure li illustrates the typical transportation pattern in a parent choice district. Buses are routed through the district to pick. up children at defined collection points and deliver them to the chosen schools.

The complicating element in the parent choice district is the possibility of a single bus stopping at a single school and dropping children off while picking up other children who will be later dropped off at other schools.

Thus, the parent choice transportation system may use one school as a collection point for children attending another school. Furthermore the children picked up at a single collection point may be going to more than one school. In rare cases, children may even transfer from one bow to another at specificed collection poimes.

The data required to design routes for the parent choice district are the same as those needed for the neighborhood school centered district. But the routing problem faced by the transportation phanner is far more complex in the parent choice district because the routes may be required to serve:

- multiple schools, and
- multiple destinations from a single collection point.

Summarizing the Dat'a Problem
Four ćategories of controting information are required to design school bus routes:

- who the names, locations and bus stops of the children to be transported; .

Parent Choice Transportation System

11GIRE: 11

- has to go where - the location of the schools;
- when - belletimes for each child's program;
- under what constraints - district transportation policy and fiscal capacity (e.g., Aunds available to buy and operate buses, the length of time children may remain on the bus or wait at the school, distances children may walk, safety rules on walking across streets, driving on hazardous routes and maximum number of children on a bus). These policies may vary for children of differing

These categorbes are identical for parent choice and neighborhood school difstricts. However, parent choice districts require. more resources to develop and maintain this information because of the followilng factors whose impact is minimized in a neighborhood school district:

- changing"schoolschedules;
- \quad multiple schedules at a single school;
- frequent transfers of ehildren between programs.

Many urban or fast-growing neighborhood school districts which are attempting to maximize the utilization of existing physical plant capacity while reducing clask size have similar information problems. Such districts are increasingly turning to semi-automated or autonated transportation systems to manage the complex flow of information required to make such a system work.

Presented in the following chapters are the common information processing elements of transportation planning for both neighborhood and parent choice districts. Specific features relevant to parent choice districts are highlighted and assessed. The chapters include:

- Chapter II: Collecting the Fundamental Data presenting manual and semi-automated transportation planning techniques;
- Chapter III: Fully Automated Transportation Systems - presenting and comparing the characteristics of commercial services offering full automation;
- Chapter IV: Selecting the Best Approach $=$ presenting "rules of thumb" and criteria for judging what. levels of automation and what service might be most valuable for your district.

This chapter suggests methods of answering the basic questions:
"Who has to go where? When? Under what constraints?"
Two systems for translating the datà into busing routes and'child p̌ick-up time rosters are discussed below:

- manual data collection and processing--where selection of routes, assignment of children and preparation of supporting materials, including schedules, bus.tickets, pick-up o rosters, are prepared manually, and
semi-automated data collection and processing-where the computer is used to maintain student census files and prepare schedules, tickets; pick-up rosters. . Route selection is accom-. plished manually.

These methods were derived frof descriptions of transportation systems now used in parent chòice districts, with particular *. emphasis on the Alum Rock voucher program. (Fully automated transportation systems are described in Chapter III.*) .

Components of all Transportation Systems
A basic input into both. a manual and semi-automated transportation system is the transportation policy of the district. This policy expresses constraints, inclading:

- the funds available to purchase, operate and maintain equipment;
- the distance a child can be expected to walk;
- the length of time a child can spend bus or waiting in supervised play or study before or after school;

1. . the school-year. schedule;

- each school program and grade bell times;
- the number of children of various ages who may ride a single bus.
* A fully*automated transportation system is similar to a semiautomated system except for the fact that the district street network is coded into the computer and the computer assists in selection of effective routes.

These district policies are usually decided by the school
'superintendent and board officials after consultation with schoal principals, parent advisory groups and district transportation staff. Care must be taken to recondile demands for the short bus.rides and flexible schedules with the resources of the transportation, department.

A Manual Sy̌stem

The design and implementation of a manual system requires the following five tasks (shown schematically in Figure III):

- a manual searchof each.school's.enrolment records to identify the home address, grade and program of each child eligible for trans.. portation;
- manual identification of the pick-up points. for each child;
- manual identification of the bell times for each child;
- preparation of schaol-by-school lirsts of eligible children, pick-up points and bell times;
- preparation of bus routes and child pickup time rosters.

Moving from a Manual to a Semi-Automated System
Transportation automation has been a by-product of, the introduction of computers to "other aspects of education administration such as budgeting, accounting, payroll and class scheduling. As districts learned to use computers, they built data files of the names and addresses of children. Simultaneously, f growing numbers of students, changing enrollments and population mobility have caused headaches for transportation tplanners, especially when they were faced with the requirements to develop and revise routes and schedules in the two to three weeks at the start of school.

These factors - the availability of computerized"school censuses, the growth of student populations and the demand for rapid rerouting and rescheduling--have forced many districts to turn to the computer as a clerical aid in maintaining lists and printing revised schedules.
The use of computers for these functions is called, semiautomation.

FLOW CHART OF MANUAL DATA COLLECTION AÑD PROCESSING SYSTEM

A Semi-Automated System:

The design and implementation of a semi-automated system requires the following 12 tasks:

- construction of a computerizéd school census file which contains the name, address, program and grade of each child (cards or tape.);
- manual review of the file to identify each child eligible for busing;
- preparation of a revised school census file with a busing indicator (yes or no) attached to each child's record;*
- construction of an address range/bus'pick-up point dictionary (list of addresses from which children are to walk to particular bus. stops);
- translation of school program and grade bell times into computerized form (cards or tape);
- preparation of a program to merge revised school census file, bus pick-up dictionary and school bell times to prepare a school-by-school listing of child name, pick-up point and bell times (Separate listings should be prepared for pick-up and return.);
- manual preparation of bus routes' and child pickup rosters;
- conversion of routes to computerized form (cards or tape);
- preparation of a readily accessible computer file of bus routes and child pick-up rosters;
- collection of a list of required route or roster revisions;
- preparation of a computerized file of route or roster revisions;
- the design and implementation of a program to revise routes and child pick-up rosters.

A flow. chart of the system is displayed in figure IV.

[^1]lGuri: IV

A first step in the construction of this type of system is to coordinate the efforts of the district transportation and data 'processing staffs. Often, the transportation staff has had little or no experierce with computerized information systems. Members of the staff need to be introduced to the many ways the computer can relieve them of 'tedious clerical chores of searching, sorting and listing data. Also, the data processing staff must be made aware of the information needs of the transportation staf.f. They may be able to identify existing school data files, such as school census or pick-up point dictionary, that can be adapted to the needs of the new transportation system.

- Many districts have prepared such files as components of the• traditional transportation system or as research or administrative tools. In the Alum Rock voucher program, coordination of the data processing and transportation staffs produced the semi-. automated system described above using existing files. The manual system used/the first year required six weeks of effort to locate eligible children. The computer programs necessary to integrate existing files and prepare the school-by-school listings of child pick-up points and bell times required less than one man week of effort. More importantly, the dispatcher was relieved of tof tedious retyping of bus routes during the hectic first weeks ot school. Her time was more productively focused on optimizing system effectiveness, efficiency and safety.

Special Problems that may Occur
The Alum Rock voucher program revealed a number of problems associated with parent choice. These included:

- massive late registrations which mode pre-* planned* bus routes obsolete;
- frequent school and program transfers which required, development of at channel of communication between school and transportation staff;
- lowered transportation staff morale due to new job specifications and increased work load;
- conflict between demands for school schedule. flexibility and the resources of the transportation department.

Late Registration
As many as 20 percent of the children in Alum Rock Voucher program may not register until the first day of class. This means that the transportation department will need the flexibility to cop̆e with driver reports of unexpectedly heavy or light loads. Two primary methods for providing such flexibility are:

[^2]- to equip buses with two-way radios so that they can be rerouted to pick up children appearing in unexpected places, and
- to prepare a readily accessible computer file of bus routes, and child pick-up rosters so that tedious and time-consuming retyping of routes is done by the computer rather than by the dispatcher.

An Institutionalized Transfer System

Ten percent or more of the district's children may change school or programs during the year: To ensure that each transferred child is picked up.on time by an appropriate bus, a system of communication is needed to inform the transportation system of eath transfer. The need for such a system may seem self evident. However, the complexity of the information needs of the t.ransportation system will be new to both school principals and parents accustomed to the yellow bus appearing with little or no effort on their part.. Principals and parents should be told how to report transfers and why such reports are necessary.

Lowered Transportation Staff Morale
The transportation management staff is asked to learn new methods of collecting information and designing routes. For drivers, parent choice means the new responsibility of learning where each child msut be collected or discharged at each point in the route. Care should be taken to involve the transportation staff in the early stages of the system design so that there will be a clear understanding of the reasons for the system and an identity with its goals. School principals should be encouraged to share responsibility for ensuring that children get on and off the appropriate buses. Supervision should be provided for children arriving early or leaving several minutes after class is dismissed. Principals whose schools have never had "bused" children may feel such new responsibilities are unreasonable. An understanding of the complexity of the busing system will enable them to be more responsive to the needs of the new system.
Conflict between Demands for School Schedule Flexibility and the Resources of the Transportation Department
When assuming new responsibilities for program design, principals and teachers often choose program bell times without regard for the coses of transporting children to the same school at a variety of times. Sometimes such demands may be unriailistic. (One school in Alum Rock chose ten dismissal times, five minutes apart.) This type of problem is especially important if the school does not provide supervised study or play while waiting for a school bus. The district superintondent should try to
coordinate the planning of transportat on department staff members and school officials so that schedules can be designed to preserve maximum flexibility (for example, uniform schedules may be designed for each building while schedules are staggered between buildings) without exceeding the district transportation budget or the
capacity of the transportation department to provide service.

Fully automated systems are computer assisted transportation systems in which the computer is used to select effective routes in addition to serving as a clerical aide as it does in semiautomated systems.

A number of fúlly automated systems are available from commercial companies. These companies claim to offer a range of benefits including:

- increased pupil safety where potentially hazardous bus routes are-identified and.eliminated;
- reduced requirements for new buses despite growing
enrollments;
- reduced mileage requirements for existing buses;
- reduced waiting time and time on buses for students;
automatic preparation and updating of schedules, bus tickets, pick-up lists, and magement reports.
In addition, each service provides compurterized data files and programs which can be powerful management tools as well as being useful for research and planning.

Users' and Non-Users' Disagreement
District superintendents who attempted to assess the utility of such'systems usually received contradictory reports. The reports fit into two categories:

- nearly unanimous agreement on the part of transportation managers who had never used
- a service that the services would be useless, and
- nearly unanimous agreement on the part of transportation managers in large and small districts who had used automated services that they received full value for the money and recommended it highly to their fellow transportation managers.

The apparent disagreement seems to stem from inadequacy of the historic title for these services: "school bus routing services." Actually, the services provide much more than routes and their value is most apparent in the computerized preparation of:

- detailed student census rosters;
\therefore. bus pick-up rosters for drivers;
- bus tickets for students;
- \int, bus schedules for parents;
total miles traveled for state reimbursement of transportation costs;
- master busing rosters for transportation managers.

These are the doçuments that help the transportation managers do their jobs and they are the products that the satisfied users point to as their 'school bus routing system."

The transportation manager freed from these time-consuming clerical tasks becomes a true transportation planner evaluating a wide variety of alternative routing and schedule plans compiled aby the computer. More time is available for the important tasks of driver training, design of safety programs and fleet management and maintenance.

The non-users, on the other hand, envision only the selection of routes as a product and naturally that the costs outweigh the benefits.

This chapter provides interested superintendents and transportation managers with a comparison of available authors' assessments combined with assessments by users of the services.

Criteria for Inclusion \quad I
Three criteria had to be met in order for a service to be included here:

- the ${ }^{\text {er }}$ service, or computer program, had to be
fully documented and available for acquisition by interested school transportation managers;
- the service had to include the routing services, student lists and schedules and management reports;
- the service had to have been implemented in at least two districts prior to school opening in the fall of 1974.

Companies Offering Services

The services which were found to meet these criteria included (in alphabetical order):
Boeing Computer Services. Inc.
Consultrag Division
Consulting Division
.505 Baker Boulevard
Seattle, Washington
98188

Mr. Granville E. McCormick 206-773-1141

Concord Résèarch Corporation
Information Systems Department
74 Loomis.Street
Bedford, Massachusetts 01730

Mr. Edward T. Bayliss
617-275-1565

Ecotran, Inc.
28749 Chagrin Boulevard
Cleveland, Ohio 44122
Educational Coordinates
Mathematica, Inc.
P.O. Box 2392
(
Princeton, New Jersey

Educational Testing Service
EISD Division
Princeton, New Jersey 08540

LKB Administrative Systems, Inc.
One Aerial Way
Syosset, New York 11791
Mr. Bruce L. Taylor
609-921-9000

This list is not necessarily exhaustive. Other organizations may offer simjlar services.

The Comparison

The following pages present answers to six commonly as. ked questions about the workings and benefits of automated tran portation information services:-

- What services are actually provided by the contractor: (Alternatively, how much information must be. collected by the district staff)?
- How much of the work is performed by computer and how much is manual?
- What types of routes can the system handle?
- Do they work in parent choice districts?
- What kinds of reports are provided to the district?
- What benefits and costs have been experienced by users of the service and in what kinds of districts have they been implemented?
- Does the district receive a. fully documented system that can be operated by district personnel at -reasonable cost?
An additional question, what criteria are used, for determining the best routes, hos the same answer, in each case:

Each of these services and 'programs determine the feasibility of reducing the number of buses used to serve the district consistent with district-imposed policy constraints and each may also consider through appropriate data input:
safety of bus stops and routes traveled;
total miles traveled;

- maximum miles traveled;
- total time on the bus;
capacity of bus.
What. Services are Actually Provided by the Contractor?
The development of the typical automated transportation service includes the following tasks:
- preparation of computerized school census file;
- preparation of a computerized street network which identifies bus stops, school locations, distance and driving time between stops;
- design and development of a program to . estimate the number of children at each bus stop;
- design and development of a program to establish bus routes (based on available bus and district transportation policy);
- route review and revision;
preparation of final bus routes, schedules, child pick-up rosters and planning and analysis reports.
A.flow chart of the automated system is shown in figure V.

Although available, systems appeared l generally similar, the following differences were noted:

- the input data required of "the district;
- the methodology used to prepare and verify computerized school networks;
- the degree of perparation in route design and verification required of district personnel.

Table l summarizes'these differences. Please note that the major difference between systems appears to be the degree, to which the systems attempt to conserve existing bus stops and schedules. However, since all systems search for fffective, efficient bus routes within a district's specified constraints of child walking distance and school bell times, it is not certain that the described differences in routing techniques will lead to a measurable difference in the services provided, to the district. A fully automated transporration system i's an information system. In choosing a system, all aspects of the system, including the number and types of reports and information files created, must be evaluated as well as actual bus routes. The most important service the contractor offers is often the ting of district personnel to use the new information system. Chapter IV offers more detailed guidelines for reviewing and selecting - the service most appropriate for your` district.

How Much of the Work is Performed by Computer and How Much is Manual?

The 'available systems reported" that all aspects of routing were computerized including:

- address matching of children to pickup points;
- selection of an initial starting point:
-

. 25

FIGURE V

FLOW OART OF FULLY AUTOMATED SYSTEM
 available.

Degree of Participation in - eว!fidaA pue ustsad atnoy tion Required of District personnel
adjusted as

TABLE I (Continued) Degree of Participation in Methodology for Preparing - Route Design and Verification Required of District District personnel are
asked to work with Ed-
ucational Testing Service
to construct road map
used as input into com-
puter system, e.g., they
review driving time, road
condibigons andesafety
hazards.

$$
\begin{aligned}
& \text { After initial network } \\
& \text { construction, preliminary } \\
& \text { bus routes are reviewed } \\
& \text { with district transporta- } \\
& \text { tion staff. At this time, } \\
& \text { bus stops or school } \\
& \text { schedule chagges may be } \\
& \text { suggested which will in- } \\
& \text { crease safety, efficiency } \\
& \text { or economy of the busing } \\
& \text { system. }
\end{aligned}
$$

TABLE I (Continued)

- selection of alternate routes;
- estimation of the number of buses needed;
- selection of the "best routes"; \&
- preparation of bus schedules, bus tickets and child pick-up rosters.

If school census files and transportation networks do not exist, they must first be manually compiled, then translated into machine-readable form.

The transportation network is compiled (by the Contractor) by numbering each block face and, school on a map and then preparing a computer file containing the bus stops, schools, possible routes among contiguous bus stops and probable travel time along these routes.
What Types of Routing and Scheduling Can the Fully Automated Transportation Services Handle? Do They Work in Parent Choice Districts?

All available services claim experience in a variety of routing and scheduling. choices, including:

- single school routes;
- routes with transfers;
- multiple trips with single buses;
- schedules serving schools with multiple
bell times;
- routes originating at locations other than schools.

However, parent choice districts pose a unique problem: serving multiple schools on a single bus trip. Thfs requirement arises because some buses may pass one or more schools on the way to their ultimate destinatipn. For efficiency, these buses need to serve the schools they pass if they have the capacity.

None of the available services has demonstrated experience in providing full automated services for mulfi-school/single trip routing.* This type of routing appears to be possible. by computer, but more probably it would be aqumplished by a

* Nor was any district found which had used datomputer algorithm to solve the multi-school/single trip problem.
manual method (using a shuttle pattern, possibly like that shown in Figure II of Chapter I) as it was, in the Alum Rock Voucher experiment.

This multi-school/single trip requirement makes the application of fully-automated routing more difficult in parent choice-districts. In general, however, the number of children in a parent choice district who do not attend neighborhood" schools is small relative to the number of children who do attend their neighborhood school. Thus, the decision to use full automation should be based on the value of full automation (over semi-automation) for routing the children attending neighborhood schools.

The routes manually designed to serve children who do not attend their neighborhood schools cał be integrated with computer-generated routes for the other children and fed into the computer. The-integration is accomplished by preparing a file of students, bus stops and schetules in the same format as the computer-generated file and then merging the two files. The computer can then prepare comprehensive routing and management information. Alternatively, student routings can be split into multiple segments, with the segments serving as input to the system.

Transportation managers who undertake a development like. that described above should recognize that they are entering uncharted territory and should, therefore, allocate extra time and moncy to solve unanticipated problems.
What Kinds of Reports are Provided to the District?*
Each contractor offers a variety of reports at four levels: district, school, school-bus route and pupil.

District Level Reports
Distriet level reports are designed to provide the transportativn manager with an overview of fleet utilization including:

- alphabetic 1 isings of ${ }^{6}$ bus stops;
- school census lists;
- alphabetized lists of children bused, including bus stop, pick-up time, school and school program;
- alphabetized lists of children walking to school, including addresses and school programs;

- summaries of fleet utilization, including miles traveled, time spefr, numbers of children carried;
- reports evaluating alternative routing and scheduling patterns.

School Level Reports,
These reports are designed 'to: give school adminishrative persennel an overview of transportation systems serving. their school. These include:

- alphabetized lists of bus stops;
- narrative descriptions of bus routes, including , bus stops, times and pupil load at each stop;
- alphabetized lists of children bused, including bus stops and pick-up timés;
- alphabetized iists of children walking to school.

School Bus Reportso
These reports are designed to give each bus driver comprehensive descriptions of each route. They include narrative descriptions of routes specifying bus s.top, driving time and numbers and names of children to be picked up at each stop.
.Pupil Reports
These reporats are designed co inform parents and pupils of the ascigncd uus stops and pick-up times. Often, bus tickets are prepared for each child.

Additional Report's
In addition to standard narrative reports, Ecotran and Educational Coordinates provide computer plotted maps of bus routes.

What Benefits and Costs Have Been Experienced by Users of the Service and in What Kinds of Districts has the Service Been Implemented?

This section lists the results of a s,arvey of users who worked with each system during the past five years. The list of districts surveyed were obtained from two sources:

- each service was asked to provide the names and addresses of two or more clients ${ }^{\text {and }}$
- each client was asked to provide the names of other known system clients.

1

\checkmark

1

为

Three basic decisions must be faced by a school district evaluating alternatives for transportation planning:

- The district must decide whether a manual, semi-automated or automated system is most appropriate.
- If automation is appropriate, the district must decide whether to use district facilities or to use an outside service.
- If the district chooses to use an outside service, it must choose the best such service for its needs.

This chapter presents rough guidelines for making each of these decisions. The guidelines are based on a combination of suggestions from both school district personnel and spokesmen for companies providing fully automated services. The guidelines are presented with the hope that they will be tested and improved upon through future experience so that later editions of this handbook can be more precise.

Manual, Semi-'Automation, or Automation
The score card below will help determine what degree of automation is appropriate for your school district.

District Busing Scorecard
Manual Vs. Automated

A district with a total of 0 to 3 dictates
a manual system.
A district with a total score of 4 or more
should lead to an evaluation of automation.
If a decision to automate is made, a second decision between semi- and full-automation is required.

Full automation costs (which include computerized route generation costs) are higher than semi-automation costs because of the tedious require ent of developing a computerized file of all street segments with distances and travel times: Therefore, full automation should be attempted only
when large savings may be realized.

Full automation appears to be most valuable in districts where many routes are possible among the selected bus stops. Thus, if there is a complicated grid of streets, automation may provide significant savings. Full automation cannot be expected to provide such saving. in districts where most stops are along a small number of main streets.

An aid to the decision would be to calculate the ratio of the projected cost of the automated routing portion of the service, including developing the network and operating the automatic routing programs* (This includes the cost of district personnel who support the profoct.), divided by the total cost of pupil transportation.
Since savings in the range of five to 15 peppent have been realized by many districts that have üsed ghtomated systems, a ratio of . 05 would mean that the cost of the service would be returned in one year. A ratio of . 10 would mean the cost of the service would be returned in one to two. years. Thus, the district policy on required pay-back periods may be used to make a decision on semi- versus full-automation. Choosing Between Using District Computer Service or Purchasing
Outside. Services for a Semi-Automated System
The single most important factor in deciding whether to use inn-house or outside services for a semi-automated system is - the existing resources the in-house facility.

A good semi-automated stem, as described in Chapter II,
requires:

- an accurate, computerized student census;
- accurate, computerized rosters of chitdren
to be bused;

If providers of auttomated routing services will not provide semi-automation, then the entire cost of their fully-automated service should be used, in this formula.

- accurate, computerized locations of bus stops;
- a-competent, willing and hard working systems analyst/programmer available for at least six weeks, or on-going support from a systems analyst throughout the year.*
/ It is the last element, the systems analyst, that should help decide the in-house versus outside services question. If the systems analyst is available and will not be pulled off the project, then an in-house development may be appropriate. If not, then the outside.

Choosing Between Using District Computer Service or Purchasing Outside Services for a Fully-Automated System

The in-house versus outside decision in full automation is more difficult than in semi automation.

In general, outside services provide more comprehensive, integrated services than can an in-house effort. This is true because of the large amount of software development that has been performed by the outside firms for previous contracts.

Integration means building the routing programs and the other programs that comprise the semi-automated system so that they all use common files. This is difficult when a district purchases or leases a routing program (like VSPX from IBM) and tries to integrate it with the other programs.

Price competition in outside services for full automation is keen, so the district often pays only for the use of the programs, and not for their development. The use cost contains only a prorated share of development costs. Thus, it is generally true that outside services are more cost effective. than in-house services for full automation.

Criteria for Selecting the "Best" Outside Service
Transportation managers may find that answers to the following questions will be especially effective in selecting a firm to provide automated busing services:

[^3]- How many districts has the proposed project manager previously managed and what percentage of his/her time is guaranteed to this project? How much time will he/she spend at the site?
- What information must the district transportation manager provide? By when?
- What penalties will the company agree to for late delivery?
- What is the total cost for the first year? For updates?
- What specific products are.included in that price?
- Are examples of report formats available for inspection?
- How many copies are provided and how much do additional copies cost?
- How close and how available are the firm's staff members for assistance in correcting problems or in rerunning the program when parents change their selection in an open enrollment situation?
- How much technical assistance is provided to instruct district transportation staff in the use of new summary reports and route information?
- Does the package include a system that can be updated by the district staff?

Written answers to these questions should be asked of each. firm proposing to offer services.

Neither cost nor excessive previous experience should outweigh availability of staff and speed of updating in a parent choice district. Parents are apt to change their minds and their flexibility must not be unduly constrained by the busing system.
When a firm, is selected to provide the service, the district can help guarantee success if it will invest a substantial amount of both the transportation manager's and the superintendent's time in learhing what the service will and will not do. Only a working partnership between the district and the outside firm can guarantee a successful contract.

Estimating Savings
Both contractors and user districts surveyed estimated that 'autompted routing systems reduce overall transportation' costs. by file to 15 percent after the first year of automation. However, generalized'estimates of savings must be viewed with caution because they reflect a variety of levels of.contractor effort in training of district personnel, building of input data files and a variety of output formats. Reliable system costs and proposed savings for an individual district are best determined ${ }^{\text {b }}$ competitive bidding procedures which ask all available firms to respond to the questions, listed on page 30.
The unique nature of parent choice systems may inflate costs more than expected, but the potential for savings may be greater because the transportation network will undoubtedly be more complex.

Bailey, D. "Management Study of Pupil Transportation Operations." August 1974. [Unpublished paper prepared for the Alum Rock Union Elementary School District, California]

Boyer, R. A. The Use: of a Computer to Design School Bus Routes. University, Miss.: Univérsity of Mississippi, 1964 .. [Prepared for the Office of Education (DHEW), Cooperative Research Program, Washington, D.C.]

Center for the Study of Public Policy. Education Vouchers. A Report on Financing. Elementary Education by Grants to Parents. Cambridge, Mass.: Author, 1970.

Educational Testing Service. Final Report for a Pilot Project to kstablish the Possible Educational, Safety, and Ecpnomical Benefits of School Bus Scheduling. Princetion, V.J.: Author, n.d. [Prepared for the New Jersty State Department of Education, Division of Field Services, Trenton, New Jersey]

Elwood, B. C. Student Transportation: Comparing Alternative Methods of Providing the Service. Ontario, Canada: Ontario Institute for Studies in Education, 1970.

Field Research Corporation. Alum Rock Elementary Educational Voucher Demonstration Code Book For Community Survey. Los Angeles, California: Author, November, 1973.
\backslash [Prepared for the Rand Corporation, Santa Monica, California]

Newton, R. M., \in Thomas, W. H. Developing a Computer Program for Bus Routing. Final Report. Albany, N.Y.: State University of New York Research Foundation, 1970. [Prepared for the Office of Education (DHEW), Bureau of Research, Washington, D.C.]

Piele, P. K. "Computer Applications in Class and Transportation Schedưlińg." Educational Management Review Series, No. 1 , October 1971. [Prepared for the Office, of Education (BHEW), National Center for Educational Research and Development, Washington, D.C.].

Ronchetti, T. R., Taylor, B. L., G Walton, W. W. \& Pilot Test to Improve School Bus Routes and Time Schedules. Princeton, N.J.: Educational Testing Service, 1974. [Prepared for the New. Jersey, State Department of Education, Division of Field Sexvicks, Trenton, New, Jersey]

Ross, T. A., Smith, G. D., Ross, R. D., ६. Boyer, R. A. Development of a FORTRAN Computer Program to Design School Bus Routes. Firal Report. University, Miss.: University of Mississippi, 1969. \{Prepared for the Officew, of Education (DHEW), Bureau of Research., Washington, D.C.]

Tracz, G. S. \mathcal{G} Norman, M. J. A Computerized System for
School Bus Routing. Ontario, Canada: Ontario Institute for Studies in Education, 1970 :

Verderber, W. J. "Automated Pupil Transportation." Denville, N.J.: General Research Corporation, n.d.

Weiler, D., et. al. A Public School Voucher Demonstration:
The First Year at Álum Rock. Final Report. Santa Monica,
Calif.: Rand Corporation, 1974. [Prepared for the National lnstitute of Education, Washington, D.C.]

Wells, T. L. Managing School Transportation. A Handbook.
Toronto, Canada: Ontario Department of Education, 1973.

APPENDIX

TABLE OF CONTENTS
\$
PAGE
Fleet Utilization Summary A-1
Bus Stop List A-4
Narrative Description of. Bus Route A- 7
Bus Route Summary: Stops, Times and Load A-10
School Bus Route 'Summary A-18
Pupil Levei Reports A-20

Note: Identity of individuals listed in table's has been intentionally obscured.

FLEET UTILIZATION SUMMARY
FLEET UTILIZATION SUMMARY

VEHICLE YPE	SEATING CAPACITY	MAXIMUM VEHICLE TIME		NO. OF VEHICLES	NO. OF TRIPS	$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	LOAD	MILES	TRAVEL TIME		RUN TIME		NO. OF STOPS
		HOURS	MINUTES						HOURS	MINUTES	HOURS	MINUTES	
1	60	0	35	24	20	\%			0	10	0	17	3
						2	. 37	2.9	0	8	0	13	2
						3	42	5.1	0	14	0	20	2
						4	41	2.2	0	6	0	11	3
						5	58	4.0	0	11	0	18	3
						6	59	3.7	0	10	0	18	1
	r					7	60	2.2	0	6	0	14	1
						∞	58	5.5	0	15	0	22	4
				-		9	59	2.2	0	6	0	13	2
			-			10	60	5.5	0	15	0	24	4
						11	51	1.5	0	4	0	11	1
						12	53	2.2	0	6	0	13	2
						13	55	5.1	0	14	0	22	2
		.				14	59	5.9	0	1ε	0	24	3
				-		15	55	7.3	0	20	0	27	2
						16	56	8.1	0	22	0	29	2
						17	39	3.7	0	10	0	15	1
						18	56	6.6	0	18	0	25	3
,						19	56	4.40	0	12	0	to	3
						20	54	2.9	0	8	0	16	3
TOTAL							To 05	84.7	3	51	6	11	47

- ERIC

FIGURE I.G. 5

DATE $10 / 25 / 14$ CUMPUTFR ASSISTED BUS SGIFFUULING
\qquad DAILN FLEET SUMMARY STATISTICS REPORT

\qquad ".
__ 38 RCUIES FDR THIS SCHCOL
2058 PURILS CARRICO
722 NINS.LF LIVE LOAD TIME
238.42 live luad miles travelled
55. PUPILS PER BUS (AVGI

BUS STOP LIST

ERIC

-			-®8ELLEFONTE ELEMENTARY*-				
\checkmark.							
-SOGTEO BUS STOPS BY SPREET NAMEBUS SIOPOESCRIDIION				$\begin{aligned} & \text { BUS STOP } \\ & \text { SIOE } \\ & \text { OF STREEP } \end{aligned}$			
-alconrt ro		PARK	5359				
- Almport ro	Re		5360				
-AIFPort ro	\cdots	1s	5361				
- acmajast ro	C6		1231	4			
-fenver pike	F 5	IE SH	1177				
- -evaer pime	-1	- EXXON	2049				
- Flsmin st	$1=$		5261				
- Slanchazo sp ext	96	rouse	2213				
- Elafichazo St ext	rc	;	2075				
- mlavcmaro 51	10	.	5362				
- CEMTER ST	CE		5369	-			
- Center st	GA		5271				
- CENTER ST	$8=$		5272				
-CEVTEF ST	ro GS		5368 5151 5		- .		
-cassca ave	JE	TNESS CM	5365	\%			
--lcm St	10		5367	;		1	
- -UELEESBLRG ROG RO	-		4258 3				
- -UELSESSURG ROG RO	m s	1-80	3156				
- jickscnville zo	51		2031				
- jacrsonville ro	61	IINE CENTER	2032				
-jackscurille ro	${ }_{\text {NO }}$	lit Mousel	2034				
- jackscouville so	5 sm	de mouses	2199				
- jasxscurille 80	SC	- Lane	2198		-		
-jackscnuille 20	A ${ }_{\text {c }}$		3041				
- jacrsciarille fo	F1	Eq	3086				
- jacrscurille.ad	11		3080				
- jacescurille ro	fe		3077				
- jacksciryle 20	E E	${ }^{1} \mathrm{E}$	3052		,		
- jackscivitle po	CC		3050				
- jacasciville ro	RE		$? 188$				
- jacrscurille od	CE	'E	3184				
- jackscnuille do	GE	\cdots	3183				
- Lrovsiom 20	M		2026				
- Lroustour 20	16	S -	2025				
- LYON=:CmN QD	CE	NS	2024				
-Lroviromn 20	¢ E	1	2623				
- Lrovelowi oo	L		2:-2				
WC allister St	51	tments	5144				
	41	POST OFC	4111 4050		*	\checkmark	
\therefore - 0	$5:$	- CMURCH	4266			\checkmark	\downarrow
- - \% 0	$=$		4054		-		
-ruco	$5-$		4005	,			
- Clo do	GL		4073°				

FIGURE I. G. 1
DATE , $10 / 25 / 74$ COMPUTER ASSISYED BUS SCHEUULING ALPHABFIIC STOP UESCRIPIIDIN REPURT

CAls STOVid, U.S.A.

PRIVATĖ

$$
\begin{aligned}
& \text { PRIVATE } \\
& 3 H \text { SCHOOL }
\end{aligned}
$$

$$
08 / 24 / 73 \text { FIKE } 0,00.10 .
$$

A. M. ROUTES

T-5 Starts 8:39 Grannis Rd after 35 th Ave before Bothell Way.

T-9 Starts 8:26 35th Pl after Jewell Rd to 35 th Ave to S $1.80 t h$ St to Bothell Way before 228 th St S.E.

T-12 Starts 8:26 31st Ave at/S 228th St to S 220th St to 35 th Ave to $S 212 t h$ St to 45 th Ave to 5228 th 5 to $315 t$ Ave.

T-37 Starts 8:26, 39th Ave after Maltby Rd before S 228 th St deadhead to, 27 th Ave (on S 228 th $S t$) to Bothell Way to $S 240 t h \mathrm{~s}$ t deadhead to $\mathrm{S} 228 t h \mathrm{St}$ at 2 nd Ave to 3 rd Ave to $S 227 t h S t$ to 4 th Ave to $S 228 t h$ St to $9 t h$ Ave to S 223 rd St .

T-47 Stãrts 8:16 Maltby Rd after Bothell Way to Jewell Rd to $43 r d$ Ave turn around to S 196th St to 5Ist Ave to S. $180 t h$ St before 35 th Ave.
1
T-62 Starts 8:17 S 212th. St after woodinville-Snohomish Rd io Little Bear Creek Rd to turn around to S 212 th St to $55 t h$ Ave to S $216 t^{\prime} \mathrm{St}$ to 57 th Ave to S 218 th St to 60th Ave turn around back to $\mathrm{S} 212 t h$ St to Maltby Rd to $43 r d$ Ave to $S 200$ th $S t$ turn around to $43 r d$ Ave to S 204 th St to Maltoy Rd deadhead past Bothell Way to 208 th 5 t to 9 th Ave before S 214th St.

T-67 Graqes $1-3$ only Starts $8: 20$ At S. 208 th St on Filbert Dr to Duchess Rd to Winesap Rd to Filbert Rd befure filbert DT.

T-67 Grades 4-6 only Starts 8:30 At S 208th St on Filbert Dr to Duchess Rd to Winesap Rd to Filbert Rd before filbert. Dr.-. 1

- T-68 Grades $1-3$ only Starts 8:20 At 198th PI SE on $10+h$ Dr SE to Grimes Rd to Filbert Dr to Filbert Rd to ${ }^{-}$S 208th - St to 9th Ave.

T-68. Grades 4-6 only Starts 8:30 At 198th PI SE on $10+h$ Dr SE ty Grimes Rd'to Filbert Dr to Filbert'Rd to S 208th St to 9th Ave.

$$
\begin{aligned}
& \text {. . . } \\
& 3> \\
& \theta \\
& \text { BUS ROUTE SUMMARY: } \\
& \text { STOPS, TIMES AND LOAD } \\
& \because
\end{aligned}
$$

 BUS STOP
OESCRIPTION

 -PARSIPPANY RO PAPSIPPANY RD $\begin{array}{ll}\text { BUS STOP } & \text { BUS STOP } \\ \text { NUMBER } & \text { PICK-UP }\end{array}$ $3: 52100 \mathrm{PM}$
3:54:10PM $3: 54: 10 P M$
$3: 54: 52 P M$
$3: 55144 P M$
$3: 56: 20 P M$
$3: 57: 41 P M$
$3: 59: 00 P M$
$4: 00: 13194$
$4: 01: 04 P M$
$4103: 59 P M$
$4: 04: 51 P M$
$4108: 101 P M$
$4108: 107 P M$
$4: 09: 24 P M$
$4: 10112 P M$
$4111: 23 P M$ 41161565M
$28=$
08
28
$0.0=$ $0.0-$ 100.00
$4.3-$

$$
3
$$

TOTAL STOPS = 17. BUS CAPACITY = 66. TOTAL STUDENTS = 62. KUNNING TIME E
$8 / 15 / 73$ JNI NVd1033 18 O3HVdJHd $-\infty-7 \angle 6[/ E L B T-\infty-$ PLAIÑ CENTEK 30vะ9－－－－－

 15
18
 そヶそ「 1 STOP IDENT．．．349－2

 STOP IOENT．．．58i－2

STOP IDENT．．．348－2
PLAIN CENTER ELEMENTARY

 PLAIN CENTER ELEUENTAGY
PLAIN CENTER ELE YEHTARY dyvintin 773 431N3J NIV7d 2－97E•••1NIOI dOLS devingnaig eging Nivid
 PLAIN CENTEH ELEMENTAZY
 STOP IOENT．．．345－2

别
mmmm m $-\rightarrow$

ω

GNMNO

71811
10
12
TIME O. $7: 11$
12
9
10
9

38400 CHAGRIN

$$
x \times a
$$

$$
4265 \text { GILES }
$$

04355 GILES STOPS, ARRIVAL TINES AND STUDEINTS SERVICED BY STOPS

[^4]a. 2
$$
\bullet
$$
\[

$$
\begin{aligned}
& 0 \\
& 0 \\
& n
\end{aligned}
$$
\]

STUP ROUTE LISTING

FIGURE I. G. 4

DATE 10/25/14
CUMPUTFR ASSISTCO BUS SC゙HFOULING
SCHOOL HUS ROUTE DESCRIPTICN
CABSTDW: ELENENTARY
\. houte io - EOLO

TOTAL PUPILS CARRIEU-6I
TOTAL LIVE MILSS - 0S...3
ICTAL रCUIT TINT - 20 vINS
AVERAGE VEHICLE SPEE[- 16.6 MPH

```
NRIVING LI_&ECTIONS -
    STOP AT MAIN ST AT CHER.<Y St
    PRCCEED VIN MiIN ST
    Stup at maly st at kvúhlfS St
    _prOCEED vIA MAIN ST
    siop at valv st at meajo!h avé
    _prCCEED vIA maIN St
    STCP AT SHLLMIRE SCHOCL
    prcceED via malN st
    TURN LEFT AT MaRIIN MILL RD
    PRCCEEL VIA MAQTIN MILL QO
    STIP AT MIRTIV NILLL RU AT CREST DR
    turn rIGHT"AT CQESt dK
    procteg jla cirest liz
    STUP AI CLFSI DRAT TULIP ST
    prICEtC vIA cirFST fir
    STOP AT CSEST UR AI STSEET RD
    TURN RGBHT *I STREtI R|
    PRUCEED VIN.ST|I:? <u
    STOP AI CAFSTIJWN, HLLM
```

RGUTE COORDINATION REPORT
CABSTOWN: U.S.A.

HUS NUNGER - 268
$\begin{aligned} \text { STOP } & \text { STUP } \\ \therefore \text { NUMBER } & \text { DESCKIPTION }\end{aligned}$
ROUTE ID. - HOOL
—30065C CANYMV RO AT SANUERS DR
300646 CORLISS IJR AT.
DE'STINATION - CABSTOWiN SHS
ROUTE 10: 1005
100034 GRCAKD RD AT TRREAT VALLEY.CIR
-100033 C?LARU $2 D$ at VALLEY OU 100032 URCAKH HU AT HKUEKSICE ST
$\ldots 100031$ URCA,RU KU AT
100030 IRCARD Ki) AT OAKIV(JION OK
100011 UAKWULJD : RD.AT 「ARA RU
10004; TARA KD AT SOUTHWCOU DR
100012 TARA 20 AT DAVIS.D?
100044 TARA F.D AT TARANKOCK DR

ROUTE IU - EOOC

DESTINATICV - CARSTUWN JHS

A.M. SChedule
CALL PUPIL ROUTE VFHICLE
IIME LUAES MILES MILES

			0.00
7.18	46	02.81	
7.22	18	1.62	04.43
7.29	64	.4 .25	7.06

7.38	03	0.00	10.69
7.39	07	0.12	10.81
7.43	08	0.75	11.6 .4
7.46	04	1.61	12.30
7.47	05	1.77	12.46
7.51	01	2.63	13.37
7.56	01	3.92	14.61
7.57	01	4.08	14.77
8.00	24	4.24	14.43
8.04	54	5.11	15.80
.		.	

TGTAL PUPILS CARRIEU - 170
TGTAL LIVE LHAD NILES - 16.6ל
TOTAL BEACHEMF. MILES - 9.49
TUTAL LIVE LONU IIMF - 14 NINS
TUTAL V'filicle rRAV-L rive - IO'SMINS

A-16
67

QATE IO/75/74 COMPUTER ASSISTED BUS SCHEDULING

REPORT OF STUDENT CENSUS BY HUS RDUIE
CABSTOW'V EL MENTARY

$>$

PUPIL' LEVEL REPORTS

 농 노 옿

JESS
JENCE

RT．	STOP	STUDENT NAME	
NUMB	NUP价		
28	2	R	IZABETH ELLEN
50	9	R	JRGE W
36	6	R ．	2RI
4	4	R	「RICIA L
28	2	R	2GINIA C
17	13	R	dNDY J
7	8	R	．LIE E
45	12	R	「 DOUGLAS S
15	14	R．	P GLEMN M
8	1	RI	jHEILA A
49	9	RI	IID P1
49	9	R！	＜CIE E
34	10	RI	3ERT A
14	13	RI	DOUGLAS D
34	3	R！	REGIIJA L
30	3	RI	IIRK
30	3	RI	IARK R
30	3	Rt	LARY JO
33	17	RI	R RUSSELL D
23	9	RI	WN E
44	4	RI	AJIE E
46	9	Rl	AREN L
15	8	Rl	ICHARD K

 Showing bus route and stop SHOWING buS Route and stop

\qquad 1

岁 O2
*

 -華 关
\square
d

\square

\qquad .

molitr arpanicfn by stop
to the parents of -
D.IANE M

HUDSON, OHIO. 44236
to the parents of -
HUOSON, OHIO 44236

TO The Parents of -
PARTICIA L

- HUDSON:ÖHIO 44236
to the parents of -
DAVIO B
HUDSON, OHIO 44236
to The Parents of -
PAULF
HUOSON, $\overline{\text { OHIO }}=-=44236$
\therefore
to the parents of -
HARK R
HUDSON. DHIO 44236

STUDENT:. DIANE M
SCHOOL....HUOSON HIGH SCHOOL
STOP LOCATION...
CRN S MAIN \& NANTUCKET
TIME... 7:22, ROUTE... 36, BUS... 20

STUDENT. BECKY J
SCHOOL...HUDSON HIGH SCHODL
STOP LOCATION...
CRN STONE \& HALE
TIME... 7:10, ROUTE... 49, BUS... 8

STUDENT.. PARTICIAL
SCHOOL....HUDSON HIGH SCHOOL
STOP LOCATION...
215 S MAIN
TIME... 7: 7:23, ROUTEゃ.. 50, BUS... 21

STUDENT.. DAVID B
SCHOOL....HUDSON HIGH SCHOOL
STOP LOCATION...
669 BARLOW RD
TIME... 7:08, ROUTE... 36, BUS... 20
(10-10)
STUDENT... P PAUL F
SCHOOL....HUDSON HIGH SCHUOL,
STOP LOCATION...
8021 VALLEY VIEW
TIME... 7:08, ROUTE... 40, BUS... 18

STUDENT.. MARK R
SCHOOL.... H HODSON HIGH SCHOOL
STOP LOCATION...
640 STREETSBORO
TIME... 7:16, ROUTE... 35, BUS... 1

ECOTRAN, INC.

FIGURE I. G. 8

CATE $10 / 25 / 74$
COMPUTER ASSISTED BUS SCHEDULING
ZEPORY UF. STUDFVI CENSLS BY SCHOUL
CABSTIJWN HIGH SCIIUC:L

A-24

FIGURE I. G. 9

DATF 10/25/14
COMPUTFR ISSISTED GUS SCHEDULING
REPORT HF WALKIV', SIUDENTS GY SCHCUL
CABSIINA HICH.SCHOOL

C A is S
FOUCATIUNAL CGURIINATES UF SUNVYVALE,
CA AND PRINCETI㳊, NJ
C $\wedge B$

FIGURE I.G. 10

DATE 10/2S/I4. COMPUTER ASSISTEC BUS SCHEDULING
SChOUL BUS INFCRMATILV PASS
CABSTOWN. U.S.A.
tu the pagfors haf
ASSIGVED SCHDUL - CABSTOWV SR HIGH
ThIJMAS C
11-…....
Cabstown, JJ Oegruo
bus StMe - GUATHILL RO AT CAS:Y CIR
bus arrival time - 7.49
BUS NUMBER - 104

C A B S FLUCATICIVAL CCUNRIVATES OF SUNNYVALE, CA ANC PRINCETCN, 'NJ O. A Y. S

。

OATE COR25/74 COMPUTEK ASSISTEO BUS SCHECULIANG
schoul bus infornation pass
to the parents if
ANVETTF R
2?n $\cdots \cdots$ …
CABSTOMA, NJ OBS40
cabstonn, U.S.A.
ASSIGMFI SCHOOL - CABSTOLN SR HIGOH
bus stc户 - dation ch at feather la
GUS ARRIVAL IINF - 7.46
GUS NUNBEK - 030

\qquad
--

DATE 10/25/74

TO THE PAREVTS IF
LEONARD K
:~-..........
CABSTAMiN, UJ CBrs 40

COMPUTER ASSISTED hUS SCHEDULIIVG

sCheiol hus ivfcrnation pass
CABSTOWN, U.S.A.
ASSIGTED SGHOOL - CARSTOWV SR HIGH
BUS STOP - VEW ST AT FARBER RD
bUS MRRIVAL TIME - 7.41
bUS NUMEER - 064

C \wedge HS
Fi:UCATIC:VAL CCCROINATES CF SUN'HVALE, CÁ ANC PZINCEIUN, vJ
C $\wedge \mathrm{H}$.

[^0]:

 * Documents acquired by ERIC include many informal unpublished * materials inot available from other sources. ERIC makes every effort * * to obtain the best copy available. Nevertheless, items of marginal , * * reproducibility arefoften encountered and this affects the quality * of the mictofiche ahd hardcopy reproductions ERIC" makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsibll for the quality of the original document. Reproductions.* * supplied by EDRS are the best that can be made'from the original. ***

[^1]: * Districts which rely on public transportation facilities can complete the processing at this point with a program to list children eligible for transportation, passes. In addition, a program may be designed to print a pass.for each eligible child.

[^2]: * This is a problem peculiar to school districts such as - Alum Rock that experience high rates of mobility.

[^3]: * If the computerized census, rosters and locations of bus stops are not available, they will have to be developed during the routing process. Costs and benefits of such files should. he included in an analysis of the feasibility of autnmated routing.

[^4]: 4109 GILES

