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‘ INTRODUCT BBN , .

The general problem of defining indices of categorical clusterihg in
free recall has been the focus of extensive research in recent years (for . .
instance, see Dalrymple-Alford, 1970; Frankel & Cole, 1971; Kelly, 1973; ’
Roenker, Thompson, & Brown, 1971; and Shuell, 1969). Most of these contri-
butions discuss alternative statistics that measure the degree to which a
series of responses prov1ded by a subject conforms to a hypothesized struc-
ture within the set COn91st1ng of all potential responses. Typically, a
set of words or other stimuli that are assumed to be categorized into
mutually exclusive and exhaustive classes-is given to a subject to study
in a randomized order; subsequently, the subject is asked to recall as
many items as possible from memory. An index of clustering quantifies the )
amount of correspondence between the subject's protocol and the specific
partition of the items hypothesized by the researcher. If clustering in
.recall occurs according to éxpectatiohs, then the responses of a subject
. should be grouptd more or less consisfently with respect to the a priori /
. categories that theoretirally partition the original stimulus list, and in
particular, there should be a tendency for related items to pe recalled to-
gether. - N
The intent of this paper is not to propose yet another clustering index
as a competitor to the numerous ones already “on the market" (for illus-
trations, refer to the papers cited earlier)?! Instead, we wish to provide
a novel framework within which several of the more popular clustering in-
N 4 dices may be viewed. 1In the first sections below, a graph-theoretic charac-
_ terization of the clustering problem is developed; in the later sections
certain specializations of the general framework are-discussed along with
the appropriate statistical 1nference procedures. As one firther comment,
it should be pointed outs that the material to follow is limited to the
categorical clustering problem rather than to free re all clustering in
general (cf., Pellegrino's [1971] discussion of the- subjectlve-organlzatlon
paradigm). .

ERIC - . | :
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A GRAPH-THEORETIC PARADIGM

As a convention, suppose S denotes the set of n stimuli {o;,...,0p}

that contains the items presented to a subject. To formalize the under-
lying structure of the stimulus set, it is convenient to define a grapff G
that has n nodes or points O1seee10p with an edge or line between each un- 4
ordered pair of distinct nodes. A nonnegative.weight is attached to each -
edge, that for notatlonal purposes will be referred to as qlo,,0.), where °
o3 and o. are two distinct arbltrary nodes in S and define a 31n%le edge.
The upper portion of Figure 1l illustrates the ‘type of pictorial repgzesen-
tation that may be giveﬁ for any graph G. In this example, n is 5\and the

« arbitrary weights for all ten edges are between 0.0 and 1. O, as might be
represented by various numerical association norms.

y As a special case, a graph G may be used to represent any categorl—
zation assumed for the set S defined by a partition of S into object classes
containing NiseeerNy elements, where nit...+np = n. Note that this case
encompasses object classes and their associated elements defined either in
a priori terms (experimenter-defined) or on the basis of subjects' idiosyn-
cracies (subject-defined), with the latter exemplified by subjects ,sorting
objects into subject-perceived categories (cf., Mandler, 1967). In’ the
present context, both types of categorization are considered to charac-
terize the stimulus structure graph G. For a pair of nodes within the same

- objett class of the partition, .the Weight function is defined to be 1.0;
conversely, any edge between two nedes from separate object classes is
assigned a weight of 0.0. Fo% example, the lower portion of Figure 1 shows
how the. graph G would appear if five objects (n =-5) belonged to two Classes

: (k = 2) with three objects, 01+ Oy, and o7, in oRe class’(nl = 3) and twq
objects, o4 aug Og in the other (n2 = 2). For convenience, this particular
case will be called the standard interpretation, but clearly, a categoriza-
tion defined, say, by overlapping subsets or by a more complex structure

. could be characterized -in a similar way. -
In a related manner the response sequence provided by a subject can be
A represented by a second graph R on the node set {oi,.--,o }. For the graph R. T
the weight attached to an edge is either 1.0 or 0.0, where a 1.0 signifies
that the two nodes were recalled sequentially with no intervening elements.
Without loss of generality, it is assumed that all elements of S are actually
' recalled, since otherwise the_original set S could be redefined as those :
elements listed by a subject. Thus, the graph R consists® of a single

»

1 . Y . . . .
-"We do not wish to contest here whether the proper basis for clustering 1s
the unconditional or the cenditional stimulus set (cf., Frender & Doubilet,
- 1974) . The procedures to be described can be applied in either case. .

ERIC | &
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ﬂ Figure 1. 1Illustration of a graph G on five nodes with nonnegative weights

attached to all edges (upper portion uses a general ‘weight func-

tion; lower portion is a standard interpretation)'W
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contiguous sequence ot oedges all naving weilghts of 1.0 that passes through ’
each node once and only noe,
one possible meanure of correspondence between a subject's recall -
sequence and the hypotficsized structure 1s given by the ‘index -I': A
I n . N
Po= 2) Cyglo. ,0.)C ) o= N L . ,0. L, 0. .
i (1/2) ¢ 4(01’01)“(01’01) . .q‘ol,oJXC(ol,oJ),
1=1 1-1 1. )
whore C(ol,oJ) 15 the zero-one wpi@ht function characterizing the graph R,
q(oi,o-) is as previoasly defined for 4, and qloj,0;) = L(oy, o) = 0 for all

1. In the standard interpretation, I is merely the number of repetitions’,
1.#».,+ the number of nude pairs that are recalled sequentially and belong to
the -ame objest class within the hypothesized partition. Since the number
<f repetitions or some transform of this quantity is,the commonly used mea-
surr of clustering discussed in the literature, the [ statistic 15 4 natu-
ral generalization. Specifically, a large index [' results when the node
pairs that are recalled sequentially also have the larger associated weights
o!f. the defined edges 1n 5. Althéuqh this discussion will emphasize the in-
dex 7, an alternative measure will be broposed in a later section that in-
corporates more 1nformation from a subject's protocol than simple adjacent
responses., ’ )

The constant muttiplier of 1/2 used in the definition of I implies in
an intuitive semse that some type of correction 1s being e for counting
"the same products twice. In particular, if the originalTindex I' were stated
wlthout the consmﬂﬂﬂnudtlplier and the weight functions were not assumed to
be symmetric, then-a similar index may b& defined between two possibly asym-
metric weight functions.” The graph G would be characterized by the presence
of Eﬁg edges between each palr of nodes o; and os, where one-edge is directed
from o; to 0 and weighted by q(oi,oj) and the second edge is placed in
an opposite orientation and weighted by q(o-noi), i.e., directed fiom o4 to
o . In. a similar way the protocol graph R could be directed; for instance,
~ach edge that has a weight of 1.0 is matched with an edge between the same
two nodes but with a weight of 0.0 and is directed in the opposite way. °
seneral directed graphs of this type could prove- a useful extension if the
rrde: in which the subject provides the recalled nodes is of interest (e.g.,
oo Pellegrino, 1971), but for our purposes only symmetric weight functions
will be considered explicitly. '

. At this poirt there are two distinct problems that could be attacked:
ta) ‘normalizing the index i to provide a measure of clustering, or (b) de-
f1T.1ng o hypothesis-testing procedure for evaluating the size of an observed
. In some instances the second problem subsumes the first, since
many of tlhe more acceptable normalizations require an initial calculation
of statistics that are also needed in hypothesis testing. Nevertheless, a
number of possible normalizations will be presanted later that relate directly

to several of sthe more popular indices already used for the standard inter-
pretation,

®

o
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: - | A PERMUTATION DISTRIBUTION FOR © : ‘

One possible strategy for assessing the: correspondence between the two
.graphs R and G is to develop a statlstlcalﬁbaseklne through a randomization
or permutation distribution for the index [ (for.exampie, see Barton & -
bDavid, 1966) . Under the assumption that there is no inherent relationship
.between a sub]ect S response protocol and the underlying assumed Structure
defined by G, each p0551bIe permutation of the nodes 0j,...,0n is assumed to
have an equally likely chance of occurring a priori as the subject's response
sequence. Since there are n! p0551ble orderlngs of the n nodes, an’ index r
coudd be calculated for each. such sequence, generating what is typically
called a permutatlon dlSUrlbutlon for '. "By comparing the observed value of
' to this distrxibution, a prec1se evaluatlon may be made as to whether the
observed value of T is large enough to reject the hypothesis that the sub—
ject's protocol has no inherent relationship ‘to the researcher's theoretical’
categorization. 1In other words, witli respect to the graph G the following
questlon is raised: Is“it reasonable to infer that the subject's protocol

" was not chosen at, random from the n? possible response sequyences?

‘. Clearly there are many difficulties with' this formulation, since even,
in the eveht that a subject is responding independently of the assumed cate-
"gorization,.it is very unlikely that the protocol chosen can be viewed
realistically as an actual randon selection from all n! possible response

" sequences formed from the list of recalled nodes (for example, see Shuell,
1969). Nevertheless, an inference technique based upon complete randomi-
zation is justified to the extent that responsé biases, such as serial posi-
tion effects, are unrelated to the categorization being tested by the re- '

R : searcher.2 There does not appear to be any simple way of making this ob-

viously vague generalization any more precise that would, at the same time,
allow the development of a very general inference procedure.

As a very,elementary example that should provide someé clarification,
suppose that a subject recalls four words in the order °l’°2’°3’° The
researcher has assuped that a standard 1nterpretatlon holds in which the
nodes {oj,0,} form one category and {oj,04} form a second. 1In this illus-
tration, two edges are present in G with weights of 1.0 between o; and o,

i +and between o3 and o4; alternatively, in R, three edges are present with

% . weights of 1.0 defined between each pair of adjacent responses: 0] &nd 05,

o, and o3, and o3 and o4. All other:edges in both graphs have weights of
0.0. Consequently, the observed value of ' is 2.0, and the appropriate

Response biases of this kind (that act’to disturb the nominal propability

levels under the assumption of "equally likely" sequences) may be counter-

acted to some extent by the investigator, through such techniques as block
randomQZation of items representing different categories, the inclusion of

"buffer{ items in the first and last few study list positions, and the in- »
ser ntof an interpolated-activity interval between study and test. More
comp lex decision rules could also be devised, ,such as ignoring those items
in the subject'® protocol that occur in exactly the same k initial or termi-
nal serial positions as on the study list. . .

]
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. per@utation distribution is defined by calculating ' for all 4! = 24
possible response protocols, where each such protocol includes all four
of the nodes- (see Table 1).-

v : ] ~ TABLE 1

A SAMPLE PERMUTATION DISTRIBUTION FOR T

- o . I

\ L]
T
; . . 7
" , AL,\\ , Permutation I' value
1-2 (: o1 o2 o3 04; o4 o3 o2 o1 2
3-4 o1 o2 o4 03; o3 o4 02 o1 2
5-6 o1 o3 o2 04; o4 o2 03 o1 . 0
J-8 0, 03 04 0,3 0, 0, 05 0y 1
\
.. 9-10 i o o4 o2 03, o3 o2 o4 o1 0
11-12: o o1 o4 o3 02; o2 o3 o4 ol «1
", 13—14:. o2 o1 o3 04; o4 o3 o1 o2 2
15-16: = - ?2 o1 o4 03; o3 o4 o1 o2 ) 2
. 17-18: 92 o3 o1 04;( o4 o1 o3 o2 . 0
19-20: : : o2 o4 o1 03; o3 ql o4 o2 0
21-22 I
21¢22: o3 o1 o2 04, o4 02 o1 o3 1
/
23-24: : ) ‘o, 0, O, O 0o, o, O_ O * 1

7

The probaﬁility distribution based on these obtained values of T is as

follows: c .
) r ‘Probability .
N W 3 .
{4 - : . 0 . 8/24 s
-7 1 = . 8/24 . .
2 N 8/24

Within & hxpothesis—testing context, the probability of cbserving a valui///
of I' equal to 2 (or larger) is 1/3 ufider the assumption that the respons
protocol is chosen at random the 4! possible sgequences. ,A larger

Q - o ' ~ -7

. . . 1 o
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value of n would be netessary to provide attainable significance levels
in the traditional ranges of .05 to .0l, but obviously, the same pdradigm
could be used w1th a corresponding 1norease in the requlred computat10na1

- labor. ‘
: The cedure just descrlbed censtructs what is called a "conditional
permutatl 1but10n in the statistical 11terature, where the term
"conditidnyl” refers to the use of the subject' 's actual protocol in iden-
tlfying- .S et of nodes for the construction of' the reference distri-~

bution. .- Inference procedures based upon these ideas form the basis for

, much of nonparametrlc stat1stlcs, and in fact, some of the same problems
‘that appear in applying nonparametric techniques also cause difficulties

in thé free; recall framework as well. Specifically, since the permutation

distribution must be generated anew for each particular appllcatlon, alter-~

native approaches that bypass complete enumeration must be found. Gener- -
ally, two different solutions are attempted in the statistics literature:
the substitution. of "scores" (for instance, ranks or normal deviates) for

- the original numerical observations that will allow a tabling of the per-

mutation distribufion that suffices for all applications; or secondly,
deriving the mean and_variance formulas for the appropriate test statistic

.and relying on large sample distributions for hypothesis testing.

Unfortunately, becausé: of the great variability in the types of ‘cate-
gorization structure, the latter alternative is the only possibility that
can be entertained for the free recall problem. Consequently, the next
task  is-to derive the mean and variance parameters for I'. For’ an attempt
to obtain complete probability distri¥butions in the case._ of a standard
1nterpretablon, the reader should consult Kelly (1973). . . -

-
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"., . , MEAN_AND VARIANCE FOR T

5 . * The mean and varlancejparameters for T are eas11y derived and, sur-
* prisingly, are a special case of @ much more general set of expressions
given by Mantel (1967) in the biometrics literature. For convenience,

suppose Al, Az, and A3 are defined as follows:
‘ .”\ Q-
n n ' 9 L
AL = (L I qfo,,0,)); '
Ll e gm T
) n n o
A, = I .(Tqlog 05 )2 o :
0 l=)l j=1 - ( i .
, noon 1
'A3 = §'. I q(o ;0 )
i=1 j=1 »
Then, using thi§ notation,, N
] 4 n  n -
E(T) = &}/n) r I q(oi,oj); (1]
i i ) i=1 j=1
. . ~ 2 ¢A .
Var (') = (1/(_n(n—1)))(A1 - 2A2) - (1/n.)A‘1 + (l/n)A3. [2]
For the standard interpretation in which the assumed partition con-
" " sis f object classes of §izes ny,...,n, formulas [1] and [2] reduce
considerably to the forms given in [3] and [4], respectlvely
¥ . !
% { 2 : C : .
. : = E(T) = (1/m)( & p) - L [3]




12 " '

)

.9/’/§ar(F)

i=1

Pl n
= (2/0m-1)1( L n) .
i=1

/. n R )
+ ((n+l)/tn¢n-1))) ( I ny) /.
i=1 .

- n/(n-1).

”
)

In'this- special case, {3] is thé expected number of repetitions and
is identical to the expression derived by Bousfield and Bousfield (1966).
Furthermore, the variance term in [4] is, equivalent to a formula used by
Frankel and Cole (1971) and is equal to the variance of the number of runs
in a multiple-type object context since the number of such runs is merely
the complement of the number of repetitions. For the probability distri-~
bution given previously and using formulas [3] and [4], we find that E(I) =
1 .and var(l') = 2/3. These values can be verified numerlcally by computing .
the mean and variance of T dlrectly from .the complete” permutatlon dlstrl—
bution. ,

Because the mean and variance parameters for .l are available, it is
natural to normalize the index I' in the following ‘Jay

z = (I-E(T))//Var(T).

L

A

ghis pormalization "corrects" the observed value of ' for the amount of

.Clustering expected for the particular items recalled by the subject.

FOllowing Frankel and Cole (1971), the statistic Z generalizes the type of
deviation measure that Shuell (1969) suggests for an index of clustering

in a standard interpretation.  Several other indices are suggested later.
Finally, it should be noted that it seems reasonable to. compare this Z index

to a standard normal distribution (given relatively large n) in order to pro- -

vide an approximation to the permutation distribution discussed earlier.

by .
‘

3Although in this section we discuss normalization procedufes for a single

subject under a conditional permutation model, a more use'ful extension can
be developed through an appropriate measure C(o ,0.) based on N protocols.
This 18 presented in a later section. ]

AN

. . o ) J~{3 . : -

(1/(n*(n=1))) ( I n)) ¢ [4]
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AN ALTERNATIVE INDEX @ AND SOME EXTENSIONS

~

The common measures of clustering used in the free recall .literature,
including the general measure ', depend only upon a minimal amount of in-
formation from an individual subject's protocol. Spec1flca11y, only those
node pairs that are recalled sequentially contrlbute to the measure and
all other palrs contribute nothing, even those that are separated by only
one intervening node within the recall sequence. There is ohe rather
simple scheme, however, for incorporating addltlonal information from the
subject's protocol by defining an alternative lndex 2. Suppose the sub-
ject generates the node sequence 0j,...,0p and a proximity function is
defined between any two nodes in the protocol as the number of intervening
nodes plus one. Thus, two nodes that are recalled far apart should have
a large associated proximity function. In particular, define C(o £’%s ) =
|r - s| and let

4

o'

n n
Q= (1/2) L b q(ol,oJ)C(o J)
i=1 j=1
g [ n ‘ n
= (1/2) T Ewleg,0)]i - 3] = Iqfo; o, ) (5-1).
©i=1 j=1 - ] i< 3

If clustering in recall occurs, then tyo items oj and o; within the
same category, or more generally, two items with relatively 1arge values
of q(o;,0:) . should have small associated function values C(ol,o ). Con-
sequently, the smaller the value of 1, the more clustering in free recall
occurs according to what is expected considering the weighted graph G.
Fortunately, the mean and variance parameters for { are al;o available as
special cases of the Mantel (1967) formulas:

n n
{(n+1l)/6] £ I g(0,,0.);
i=1 §=1 *

E(Q)

Var ()

[(n+1)/180][-A1+(n—4)A2+4(n—1)A3].

1o

13
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For the standard 1nterpret§t10n, these two expre551ons take on the 51mp1er

. forms given in, [7] and (8]:

H

*
. » .
. v n 2 ' : .
E(Q) = ((n+l)/6) ( I n. - n); . L, o [7]
igl : _
T 202 2T '
) var(QQ)- = ((n+l)/180)[-( £ n.)" + 4(n+ly I n - [8]
- . ‘1 . i- :
i=1 i=1 .
n z
+ (n-4) I n? -v4n2].
. i .
- i=1

As a simple numerical illustration in the case of a standard inter-
pretation, the four-node example given previously may also be used to verify
formulas [7] and [8].. In this case”, the complete set of permutation values
would be as shown in Table 2. :

“ “TABLE 2 . . :
A SAMPLE PERMUTATION DISTRIBUTION FOR {1

Permutation ’ Q Valu?
1-2 o, o? o3 04, o4 oy 0, °, 2
3-4 °, 9, 9, 03; 05 04 0, 0 2
5-? 0,.95 0, 0,; .04 °, 03 0, i 4
7-8 oi 0y 0, 0,i 0,0, o?3 °, 4
9-10 o.l °, 9, 03; 0y 0, 0, 0 4
11-12~ ?1 0,4 ©4 0,i 0, 0,4 %, ©; 4
13-14: ‘ 0, 0] 03 0,i 0, 0, oi o, 2
15-16: | "02 O) 04 947 o3 %, °; o} 2
17-18: o2 o3 o 04; o4 o1 o3 o2 4
;? 19—%0: ~ 0,09, 01'03, 04 07 94 9, 4
21—22;. . O3 0) 0, 04i 0, 0,0 O, 4
23-24: °y 9, 0, 04 94 91 0, 94 N 4
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The corresponding p&bi'l’itydistribution would be: |
. ‘ . n' - ' ¢ o ‘.
. / O - - " ‘ : J 3
L, 9] Probability . - - >
- . ‘- i ) : : ¢ . * . . * ' ~ ‘_‘.. . -
by , ' 2 - 8/24 o c
- N . ~ .
ot s 4 . . 16/24
’ - T . e, ’
Thus, cdmpgting‘ either from formulas (7] and (8] ‘ox from the actual pérmuta— ’ )
tion distribution, we find E{f) = 10/3 and Var(2) =.8/9. A normalization of
« the index  using the mean.and variance may be usefv}I for interpretation here
as well. ' y £
¥ .
7 N . ' :
V
4
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. ‘ o VI
‘ . INDICES OF CLUSTERING

, - Although hypothesis testing can be approachea through an application.

of .a randomization distribution,

a second rather distinct problem still

remains in defining "good" indices of categorical clustering.

Exactly

the same difficulty occurs in measuring rank correlation using the number
of rank order inversions as a criterion. Almost all of the suggested
rank correlation measures rely oh the same statistic (usually denoted by
§) to test the null hypothesis of no population association (see Hays,
1973, p. 799). Nevertheless, at least five'different normalizations of
this basic § statistic have been suggested as a way of prov1d1ng a final

measurd of rank correlation, e.g., Somers'

asymmetr1ca1 Y's, Goodman-

Kruskal's v,

tau

a

, and tau. (Somers, 1962).

Consequently,

the

basic statistic

Bor ohE

the stdndard interpretation

ee recall problem

. defined by the number of repetitions seems to be t

natural analogue of

—

the S statistic of rank correlation; moreover, the desire to find an ade-
quate index of clustering corresponds directly to the historisal search
for a good index of rank correlation. N

i : In our general framework, the indices ' and {1 play the role of basic
statistics that could be normalized in various ‘ways to provide a final
index of clustering. Several normalizations are suggested in Table 3 that
will reduce for the special case of a standard interpretation to the more

familiar measures discussed in the psychological literature.

No attempt

will be made to evaluate the merits of ‘each of these normalizations,

and

thus, the reader is urged to consult the sources that are cited for exten-
sive critiques and theoretical justifications. N P

Each of the indices given in Table 3 depends upon a number of constants :
chosen from the following list:

E(l'), E(Q), var(l), Var(Q); Max(l'), Max(Q), Min(Tl'), Max(Q).

. All of these quantities have been defined earlier except for the Min and ot

- ' Max parameters, and these latter bounds can be obtained by a simple order-’

ing operation. In particular, if the n(n-1)/2 values of g(oj,04) are

ordered from smallest to largest and the n(n-1)/2 values'of C(Oi,Oj) are .

also ordered from smallest to largest,
-mufl value of fhe index.

the pairwise products deflnegdl

e minimum index value (Gilmore, 1962).

then one-half of the sum of the pair-

wise products of the two entries in the same rank position defines the maxi-
Similarly, if the n(n-1)/2 valtes of C(oj,04) are
reordered oppositely from largest to smallest,

then one-half of the sum of

If

a fairly simple structure for t

graph G can be identified (e.g., a standard

interpretation) then a closed-form expression for the minimum and maximum

o 19
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index valuies may be obtained direc{ly. In general, however, any application

that depends on a rather complex structure’in the graph G will require a sepa- N
rate evaluation of the minimum and maximum index vaé s through this type of

ordering procedure. :

.
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VII
GROUP STATISTICS

i

The indices of clustering in free recall that have been discussed up
‘tc"th{ispoint are limited to the protocols of a single subject. However,
there \is an immediate generalization of the basic randomization paradigm
that provides a direct extension to group data, or for that matter, to
repeated trials{using the same subject. For instance, suppose the stimulus *
structure graph)G is fixed but we obtain N protocols either from.a group of
N subjects or ffom the same subjéct over N trials. Each of the N protocols
is defined by a subset of the set of nodes S that define the graph ¢, and
a proximity measure is constructed in some way between each pair of-ndes
o3 and o5 in S. As an illustration, an overall proximity function C(oji,o0j)
’ ‘ could be bbtqined by first constructing for each protocol k a proximity _ //”
) matrix Ck(Oi,Oj) between all hode pairs in S and then summing (and possibly
averaging) the N individual proximity functions. For a specific example,

the proximity function Ck(oi,oj) for protocols k could be defined as \ o
- I
1 if o, and o, are recalled consecutively )
, .
l #
Ck(oi,oj) = o in protocol k; . . ‘
- 0] otherwise. .
- /’
\' W, »
- In this case, if C(o{,o.) = ZCk(oi,oj), then the overall proximity between

‘ o; and oy is the number of protocols in which oj and oy were recalled sequen-
tially. Thus, with this interpretation, larger values of C(OirOj) correspond
to the more similar objects. As an alternative possibility, suppose that
protocol k cbntains ny recalled lpems and we define:

r
- ) Ii - j| if both o, and oj are recalled in protocol
Ck(oi'oj) = k and with |i - j| = 1 intervening nodes; e .
- )
n + 1 if either o, or oj is not present in protocol k.
\ L

Using this definition and summing over all protocols, small values of C(oi,oj)
denote the more similar object pairs. . . .

22 :
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B ' In any event, given the final proximity measure C(oi,oj), a general
~ ( index may be defined by, say, A: R LT
\\ , .
- = ] . .
’ . . n n .
\3 A= (1/2) £ I g(o.,q.)C(o.,0.)
' o j=1 i=1, N -

3 - A ‘ \\A&ta

z IZg(o,,0.)C(o, ,0 ).
. . 1 ] 1 .
1 < ) - .

\
T

Mantél's formulas immediately provide the.-randomization mean and variance

for A:
NN e 5
r Let Ak,= (Z z q(oi,o,)) ;
: j=1 i=1 ] .
~ “ /;// ‘e -
’ n n 5 '
‘ A,= I (Iqlo,00)7;
j=1 i=1 ]
n n 5 _ N
A3 = L L q(oilo.) H
j=1 i=1 ] )
n n 2 -
° B, = (L L Clo.,0.)) ;
1 \ . 13
J:l 1=1 -« -
n n 5
B,= I (L Cloj,0%;
©4=1 i=1 ]
n n 5
B3 = I L C(oi,o_) ;
j=1 +i=1 ]
‘ Then )
E(A) = [l/(2n(n—l))]VAlBl ;
. \ 5 .
. . Var(h) = -{I/(2n(n-1))] A B

11 “‘“ém

+

[l/(2n(n'l))]A3B3

o | - 25
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(. : - - - -
+ [l/(n(n.l)(n 2))][A2 AB][B&\ 83}
\, + [l/(4(n(n-—l)(n-25(n-—3))][1—\l - 4A2 + 2A3]
‘ . .
7~ . (B, - 4B, + 2B,].

- . s ) ' .

With these parameters, a normalizea~z statistic may be defined “in the
usual way: -

z = (A - E(A))//Var(h)

Once again,  this Z statistic should provide a convenient larée—sample
approximaﬁ@on to the exact permutation test that the measures q(oi,oj) and
C(oi,oj) are_unrelated, or more simply, Z could be used aira normalized
group measure of qlustering in free recall.

Although the general statistic A may be used to index clustering in
free recall for a gfoﬁp of subjects or for a single subject over'trials, a
more traditional approach to group analyses should be noted. Here the
single protocol statistics, say I or @, are calculated and used in tradi-
tional analysis of variance paradigms to assess group differences, trends,
and so on. Clearly, the use of a clustering index as a dependent variable
is a much more general technique than the simple randomiZation ‘extension

‘defined through the single index A,
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VIII

DISCUSSION

Although the inference problem discussed in this paper has been
framed completely within the free recall paradigm, in actuality the task
of comparing two graphs can be made much more general. We have indicated
earlier that in the free recall paradigm, the subject response graph, R,
is compared with the stimulus structure graph, G, with the latter defined
either by the experimenter or by the subject. In some cases, however,
the stimulus structure graph may be of interest in its own right, namely,
when an 1nvestlgator wishes to compare some a priori structure with the
subject's perception of it (see, for example, Anglin, 1970) . Suppose
the subject is asked to sort the elements of S into groups of similar
objects, as is done in the Mandler (1967) paradigm. An index of corre-
spondence between the subject's sort and the a priori structure characterized
by G can be obtained in the same way that I or 1 were defined earlier.

In summary, the problem of comparing two graphs R and G appears to
be a very general inference technique that can be identified as basic to
many experimental situations in the behavioral sciences. Given the elegance
of the associated randomization procedures, this framework is capable of’
providing an extremely general inference strategy. The necessary corre-
spondences are now being developed in detail by the authors, and hopefully,
this work will provide the applied researcher with a new set of useful and
powerful analytical tools.
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