
DOCUMENT RESUME

ED 115 857 CB 005 695

AUTHOR Donovan, John J.; Jacoby, Henry D.
TITLE GMIS1Generalized Management Information System]: An

Experimental System for Data Management and
Analysis.

INSTITUTION Massachusetts Inst. of Tech., Cambridge. Energy
Lab.

SPOTS AGENCY. Federal Energy Administration, Washington, D.C.; New
.England Regional Commission.

REPORT JO MIT-EL-75-011UP
PUB DATE Sep 75
NOTE 69p.; For related documents, see ED 062 553;. ED 068

646-647; ED 072 225; ED 072 228; ED 072 303-304; CE
005 687-727; Report of work carried out in
association with the Alfred P. Sloan School of
Management. and IBM

!DRS PRICE 5P-$0.76 HC-$3.32 Plus Postage
DESCRIPTORS *Computer Programs; *Computer Science; *Electronic

Data Processing; *Energy; *Management Information
Systems; Programing

IDUTIPIERS Generalized Management Information System; GMIS

ABSTRACT
The report presenti the underlying software

architecture and rationale of the Generalized Management Information
System (GEIS), along with a sample demonstration (an energy analysis
problem) of its characteristics and evsummary of topics of continuing
research. The field-tested experimental system has the following
features: It allows on-line interactive data management as well as a
batch facility; allows for storgage of large quantities of various
types of data; and allows the changing of data, addition of new data
series, and modification of tables. It gives the user a simple and
consistent view of the way data is stored in the system, permits
several users to select and access data according to many criteria,
allows for easy viewing of data, and contains facilities for
validation of data. The system provides facilities to interactively
change data protection, is able to store data about data, provides a
mechanism for assuring the integrity of the data, and provides
mechanisms for monitoring and tuning performance. The system provides
the user with an efficient, flexible environment to specify,
construct, and execute statistical analyses and model studies, and to
produce the associated plots and reports. (GMIS is being exercised
for MISOE application.) (Author/1J)

***********************************************************************
Documents acquired by ERIC include many informal unpublished

* materials not available from otheF sources. ERIC makes every effort *
* to obtain the best copy available Nevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available -*

* via the ERIC Document Reproduction Service (EDRS) . !DRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by !DRS are the best that can be made from the original. *
***********************************************************************



th

L

Uf DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS SEEN REPRO.
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION oRiOtN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

GMIS: AN EXPERIMENTAL SYSTEM
FOR DATA MANAGEMENT AND ANALYSIS

by

John J. Donovan and Henry D. Jacoby

M.I.T.
Energy Laboratory in Association with

the Alfred P. Sloan School of Management and IBM*

Working Paper No. MIT-EL-75-011WP

September 1975

*This work is a result of an IBM/M.I.T. Joint Study.



OUTLINE

ACKNOWLEDGEMENT

1. History and Purpose of GMIS

2. Overview of the System Architecture

2.1 Structured English Query Language (SEQUEL)

2.2 Multi-User Transaction Interface

2.3 User Interfaces

3. Sample Application of GMIS

3.1 Data Manipulation

3.1.1 Data Definition Facility

3.1.2 Bulk Loading Facility

3.1.3 System Inquiry Facility

3.1.4 Query Facility

3.2 Modeling and Analytical Functions

3.2.1 Validating Data

3.2.2 Reporting

3.2.3 Modeling

3.2.4 Stand-Alone Modeling Facility

4. Details of the GMIS Design

4.1 The Use of Vh in the Software Architecture

4.1.1 Communication between VM's

4.1.2 Extensions of the Architecture

4.1.3 Degradation of Variable Cost with Multiple VM Operation



4.2 Hierarchical Approach

4.3 Relational Technology

4 4.3.1 Advantages of the Relational Approach

4.3.2 Basics of Relational Operators

5. Further Research

5.1 Computer and Management Science Research

5.2 Studies of the Economics of Information System Design



ACKNOWLEDGEMENT

The research reported here is being carried out as a joint project of

the M.I.T. Energy Laboratory and the Center for Information Systems Research

of the Alfred P. Sloan School of Management at M.I.T. The work was made

possible by support from an M.I.T./IBM Joint Study Agreement, the New

England Regional Commission [Contract No. 10530680], the Federal Energy Adminis-

tration [Contract No. 14-01-001-2040], and M.I.T. internal funds.

Members of the IBM Cambridge Scientific Center and of the IBM Research

Laboratory of San Jose have greatly contributed to this work. Those at IBM

whom we are particularly indebted to are: Dr. Ray Fessel for his ingenious

programming guidance, to Dr. Stuart Greenberg for his help with VM, and to

Dr. Frank King and his group for their work in implementing SEQUEL and for

their cooperation and responsiveness in adapting this experimental system

to meet the operational needs of GMIS.
the

At England Regional Commission thanks are due to Robert Keating

for his instructive guidance in the application of GMIS to energy problemt

facing New England.

We wish to thank Dr. Robert Goldberg of Harvard for his comments in

reviewing this document.

We also wish to recognize the assistance of the several M.I.T. students

who have contributed to the research. In Articular, credit is due to

Louis Gutentag, who has bot:ne the major responsibility for the implementa-

tion of GMIS, and to Marvin Essrig, Peter DiGiammarino, and John Maglio,

who assisted in the preparation of this document.



4

GMIS: AN EXPERIMENTAL SYSTEM FOR DATA MANAGEMENT AND ANALYSIS

John J. Donovan
Henry D. Jacoby

How many people would climb aboard a trans-Atlantic flight if they

thought the airline lacked the capability to process volumes of weather

and traffic data, and to plan a safe route? Not many, for most of us

have come to expect that the very best information processing services

will be applied in this circumstance. Yet public policymakers and corporate

executives are regularly faced with far more complex and serious problems

(perhaps with risks that are less immediate and obvious), and must make

decisions without the capacity to manage and analyze the pertinent infor-

mation. This happens for several reasons: Circumstances arise unexpectedly,

and under current technology there simply is not time to construct the

necessary software, or decisions may not occur regularly enoughto justify

the cost of a normal information management system, particularly when its

useful life may be cut short by changing circumstances. In this paper we

report on an effort to design and implement tools appropriate to this cir-

cumstance.

The system under development is called GMIS ipeneralized Management

Information System), and we present the underlying architecture of the

system and its rationale, along with a sample demonstration of its char-

acteristics. We begin, in Section 1, with a brief history of the effort

and a summary statement of what the system is designed to do. In order

to give a quick summary of how the system works, Section 2 is an overview

of the software architecture; and then Section 3 uses a sample application

7



-2-

to an energy analysis problem in order to describe hook the system is used

and ghat some of its more important features are. For the reader interested

in details we return in Section 4 to more discussion of the techniques and

methods used in building GMIS. Finally, since this is a report of research

in process, a summary of topics of continuing research is given in Section 5.

8



4

-3-

1. HISTORY AND PURPOSE OF GMIS

GMIS is being developed at the M.I.T. Energy Laboratory in conjunc-

tion with the Sloan School's Center for Information Systems Research and'IBM.

The project started in 1973 based on ongoing research in the Sloan School on

file systems [Madnick, 1970) and operating systems [Donovan, 1972; Madnick

and Donovan, 1974]." However, it has been the urgency of particular appli-

cations to energy problems that has shaped the work and quickened its pace.

During the energy crisis of the winter of 1973/74, policymakers in

New England were handicapped by a lack of information about the region's

energy economy. In response to this circumstance, the New England Regional

Commission (NERCOM) initiated a project to develop a New Englnd Energy

Management Information System (NEEMIS). The initial plan was to develop a

"crisis management" system to assist in the handling of fuel oil allocation,

but over time (though the original function remains an important one) the

needs have grown and the emphasis shifted. Problems of the economic impact

of high oil prices have taken on more importance along with policies and

programs to foster energy conservation. New issues have arisen concerning

the location of major energy facilities, bringing a need for analysis of

associated economic and environmental issues.

Growing experience with the data also brought more demands on the

system design. The data are of varying quality; data collection procedures

are changing over time, with series being dropped and added and definitions

being revised. The requirements for protection have proved complex, for

they vary with levels of aggregation and time. (For example, an oil company

9



may be willing to give out data on its aggregate transactions, but not on

details that may help a competitor.) Finally, the need for a facility to

apply various analytical models to the data has become more apparent.

In this circumstance, our approach has been to develop a general set

of tools for speedy construction and easy modification of management infor-

mation systems. Essentially, the need is for a software facility suitable

for situations where the problem addressed is constantly changing, or

where an information system is in its formulative stages and users are

unable to specify exactly what they want the system to do, or precisely

what the data streams will look like in the future.

To meet these requirements, certain characteristics of the system

seem essential: it needs to be multi-user and interactive; it should be

capable of storing, validating, and retrieving data; and it ought to hirve

the capability to respond to changing data and data structure, and to vary-

ing protection requirements. It should provide tools for constructing

analytical and statistical models to be applied to the data, but a facility

to construct these models from scratch appears insufficient. Many econo-

mists and modelers have strong preferences for particular modeling facili-

ties such as TROLL [NBER, 1973], XSIM [Dynamics Association, 1974],

TSP [Nall, 1975], PL/I, EPLAN [Schober, 1974], and FORTRAN; large invest-

ments have been made in packages using these languages, and access to these

facilities can save tremendous costs in retraining personnel and converting

existing mo ls.

Existing commerical data base systems -- e.g., IMS [IBM, 1968], DBTG

[Association for Computing Machinery, 1071], System 2000 [MRI Systems, 1974],

TOTAL [Cincom Systems, Inc.' 1974] etc. -- have proved their usefulness

10



-5

In particular applications. But none has the range of desired charactersitics

outlined above. Some are lacking the statistical and modeling packages, "

not all are interactive, and not all can allow multiple users to access

the same data base. Most important, none was designed for a changing

environment. As detailed below, the GMIS system has taken a long step.in

this direction. Using this facility, it is possible to construct an infor-

mation system in a matter-of days. For example, in the course of work

on the NEEMIS System, chages in the New England energy situation made it

necessary to reconstruct the entire data base five times in one month

during the summer of 1975 -- once to incorporate additional data in existing

data series, twice for efficiency reasons, and twice because new data and

models had to be added as new problems became ap rent.

In the sections that follow, we give a brie overview of the architec-

. ture of the GMIS system and then illustrate the system haracteristics

by means of an example drawn from one of its energy applications. For

the reader interested in the details of software design, the discussion

goes on to cover more of the details of the system and its various components.

Since the discussion cannot cover all aspects of the system, however, it

is useful to summarize the requirements that the GMIS system has been

designed to meet. First, in the area of data management the current system

has the following features:

- it allows on-line interactive data management as well as

a batch facility;

- it allows for storage of large quantities of various types

of data;

1\



-6-

- it allows the changing of data, addition of new data series,

modification of tables (data structures);

- it gives the user simple and consistent view of the way

data is stored in the system;

- it permits several users to select and access data according

to many criteria, as it is impossible to specify in

advance all the ways the data will be used;

- it allows for easy viewing of data, and contains facilities for

validation of data;

- it provides facilities to interactively change data pro-

tectign;

- it is abl to store data about data (e.g., confidence

levels};

- it provides a mechanism for assuring the integrity of the

data; and

- it provides mechanisms for monitoring and tuning performance.

The modeling and analytical capabilities introduce several additional

features. Since GMIS provides access to such facilities as APL, PL/I,

TSP, EPLAN, and FORTRAN, it provides the user with an efficient flexible

environment to specify, construct, and execute statistical analyses and

model studies, and to produce the associated plots and reports.

12



-7-

2. OVERVIEW OF THE SYSTEM ARCHITECTURE

Currently GMIS is implemented on an IBM System/310 computer. It uses

the Virtual Machine (VM) concept extensively) A virtual machine may be

defined as a replica of a real computer system simulated by a combination

of a Virtual Machine Monitor (VMM) software program and appropriate hard-

ware support. For example, the VM/370 system enables a single IBM System/370

to appear functionally as though it were multiple independent System/376's

(i:e., multiple "virtual machines"). Thus, a VMM can make one computer

system function as though it were multiple, physically isolated systems.

A configuration of virtual machines used in GMIS is depicted in

Figure 1, where each box denotes a separate virtual machine. Those vir-

tual machines across the top of the figure are executing p grams that

provide user interfaces, whether they be analytical fac Wes, existing

models, or data base systems. All these programs can access data managed

by the general data management facility running on the virtual machine

depicted in the center of the page. A sample use of this architecture

might proceed as follows. A user activates a model, say in the APL/EPLAN

machine. That model requests data from the general data base machine

(called the Transaction Virtual Machine, or TVM), which responds by passing

back the requested data. Note that all the analytical facilities and data

base facilities may be incompatible with each other, in that they may run

under different operating systems. The communications facility between

arattmimakia:.,
1 The VM concept is presented in several places [Parmelee, Madnick and

Donovan, 1974; and Goldberg, 1973], and many of its adv tages are articu-

lated elsewhere [Madnick, 1969; Buzen et. al., 1973]. The concept of
"virtual machines" has been developed by IBM to the point of a production
system release, VM/370 [IBM, 1972].



VM(2)

TRANSACT
INTERFACE

VM(3)

APL/tPLAN-

INTERFACE

-8-

VM(4) I VM(5)

HIGH LEVEL
LANGUAGE
INTERFACE,
e.g., PL/I
FORTRAN

TSP
INTERFACE

VM(n)

CUSTOMIZE
INTERFACE
WRITTEN IN

PL/I

Analytical
Virtual
Machines

MULTI-USER
INTERFACE

RELATIONAL
DATA

MANAGEMENT
LANGUAGE
SEQUEL

VM(1)

Transaction
Virtual
Machine

Figure 1: Overview of the Software Architecture of GMIS

14



-9-

virtual machines in GMIS is describeddin Section 4.1.1. Extensions to

..

this architecture to allow interfaces to other data base system and other

computer systems are discussed in Section 4.1.2.

GMIS software has been designed using a hierarchical approach [Madnick, 1975,

1970; Dijkstra, 1968; Gutentag, 1975]. Several levels of software exist,

where each level only calls the levels below it. Each higher level con-

tains increasingly more general functions and requires less user,sophis-

tication fo' use. The transaction virtual machine depicted in Ffgure 1

shows only two of these levels, the Multi-User Interface and SEQUEL

[Chamberlain, 1974]. The data base capabilities of this machine are based

(on the relational viciworfidita [Codd, 1970]. In this section, each box

will be briefly described. In Section 4 we return to describe some of

the technologies used in implementing these boxes.

2.1 Structured English Query Language (SEQUEL)

We felt that the data management system would best be based .on the

relational model and hierarchical construction as this offered data

independence, integrity, and a framework for reducing complexity. As

part of our research on this topic, we proceeded with an implementation of

an M.I.T. relational system [Smith, 1974]. However, in the current ver-

sion of GMIS the data management capability is based on an experimental

relational query and data definition language known as SEQUEL which has

been developed at the IBM San Jose Research Laboratory [Chamberlain, 1974].

In cooperation with the IBM Cambridge Scientific Center and the

IBM Research Laboratory at San Jose, we have extended this

experimental system by easing restrictions on the data types it could

.04



-10-

handle and relaxing constriants on the number of columns allowed in a

table, and by increasing the allowable lengths of identifiers and charac-

ter strings: We also designed mechanisms for security and for handling

missing data, expanded the bulk loading facilities, added additional

syntax, and made several changes to improve performance.

2.2 Multi-User Transaction Interface

Two requirements of GMIS are that multiple users be able to access

the same data base and that different analytical and modeling facilities

be able to access the data base all at the same time. For example, one

user may want to build an econometric model using TSP while another user

will request the system to generate a standard report. Still a third user

may want to query the data base from an APL [Iverson, 1962; Pakin, 1972]

environment. 'These requirements have been met with the design and imple-

mentation of the Multi-User Transaction Interface [Gutentag, 1975]. Each

GMIS user operates in his own virtual machine with a copy of the user

interface he requires. Each user transaction to the data base is written

into a transaction file, and that user's request for processing is sent

to the data base machine (Transaction Virtual Machine) as indicated in

Figure 1. The Multi-User Interface processes each request in a first-in/

first-out (FIFO) order, by reading the selected user's transaction file,

and writing the results to a reply file that belongs to the user. Each

user interface reads the reply file as if the reply had been passed

directly from the data base management system. This procedure is discussed

at greater length in Section 4.1.1 below.

16



2.3 User Interfaces

GMIS provides the capability for users to write their own interfaces

to communicate with the data base system. TRANSACT is a generalt'u*ser

interface that is designed to process transactions froWmobt ypewriters

and CRT terminals. It allows the user to direct transa 14#0ut to any

virtual device on the.VM/370.

Interfaces to APL, TSP, EPLAN and PL/I are operational and enable

users to communicate with the Transaction Virtual Machine (Figure 1)

simultaneously with all other users. An interface to the TROLL econometric

modeling facility is in the design stage.,

The architecture depicted in Figure l'ilso allows the use of any of

these modeling or analytical facilities independent of the transaction

virtual machine. For example, functions may be written in APLNpoperate

on data stored in the APL's work space. TSP modeling and reporting capa-

bilities can operate on data stored in TSP's data base. FORTRAN or PL/I can

operate on data stored in the virtual machine that they are running. It

should be noted, however, that, not using' the general data base facility seriously

inhibits flexibility and makes the algorithms dependent on the physical

organization of the data but more importantly inhibits the community of

users as they cannot conveniently access the common data base.

17



-12-

3. SAMPLE APPLICATION OF GM1S

To demonstrate the characteristicS of the existing GMIS System,

we use an example drawn from work done for the Federal Energy Adminis-

tration on the construction of indicators of domestic energy conditions

[M.I.T. Energy. Laboratory, 1975].1 The )object of this particular .

indicator was to give a picture of future trends in gasoline consumption.

It was proposed that-the.indicator be depicted as a series or plot of the

average miles per gallon of each month's new car sales. PoTicymakers could

note if the average fuel efficiency of new cars was going down or up, hence

reducing or increasing future demand for gasoline.

The indicator is shown in. Figure 2. Several points concerning the

figure and its derivation are worth noting:

(1) The plot covers the 15-month period from January 1974 to

March 1975. It is surprising to find that during the

"energy crisis" the average miles per gallon of new cars

sold actually went down! We had initially expected that

during that time people would have purchased smaller, more

efficient cars, resulting in an increase in average miles

per gallon. Why did it go down?

(2) Note that since the graph raises additional questions, it

becomes necessary, in order to resolves these questions, to

access and analyze the data in ways not originally

planned for.

ti

1

Marvin Essrig is responsible for the initial construction of this example.

18



-13-

30 75 7 eka7 ,CARSSOLDI

.4 7 . St. I

17.10-1

17.2S-I

1

17.00-1

I

0
r- 16.71-1

CL

r-

3E 26.20-I

i6.211

11.

26.1161

I t

I I

January 1974

. ..
.

I I I I I I

I

I

I 2 ' . 1 22 1(

. January 1975 (Months)

ASCISSA T!$ SIANTIO4 PROM 10/4 1

CANSO:4

E. I Pure' 2. Average Miles per Gallon of Cars Sold in a Month

19



-14-

(3) The d4 ata from which the graph is derived comes from a

variety of soprces, each using different terminology and

dissimilar means of presentation.

(4) The data is both numeric and non-numeric (e.g., name

of models of cars).

The remainder of this section shows how GMIS was used to construct and

analyze this indicator. Two user interfaces of GMIS will be used:

(1) TRANSACT is An interface to the data management

level (SEQUEL), which includes a Data Definition Language
x.

(DDL) and Data Manipulation Language (DMI). `This level

can be used to:

- restructure the data,

- input the data, and

- query data.

(2) APL/EPLAN is the anlaytical, modeling, and statistical

level, which resides above the multi-user interface

(Figure 1). EPLAN is a set of routines imbedded in APL

for doing statistical functions and reporting.
1

3.1 Data Manipulation

An example of creating a table and inserting data into it via

TRANSACT-SEQUEL will demonstrate how a user stores data in GMIS. Note

that'all data are viewed as residing in tables, as in the relational model

of data [Codd, 1972]. The tables have columns whose entries come from sets

of elements called domains. Figure 3 is an example of a table.

1 EPLAN is now available as an IBM product under the name "APL Econo-

metric Planning Language' [IBM, 1975].
20



-15-

i

Model Date Sales MPG

Cadillac 1/74 9,948 10,9

Vega 1/74 33,600 30.2

Pinto 1/74 35,531 28.0
Pontiac 1/74. 10,170 13.8

_ .

Figure 3. Sample Table

.71

3.1.1 Data Definition Facility

A data structure is created in TRANSACT by using SEQUEL commands] by

first defining the desired domains, then declaring a group of columns

to be a table, and finally, inserting data into the table.

The interactive session to create the table presented in Figure 3

is fOund in Figure 4, where the commands shaded are user inputted.

The first four commands establish the existence of the four domains:

(models), (vol), (date), and (mpg). The domain 'model' will hold information

stored as characters, while 'date', 'vol', and 'mpg' will consist

of numeric data.

1

A complete syntax description of TRANSACT and SEQUEL commands is
available in a GMIS Primer [M.I.T. Energy Laboratory, 1975].

21



-16-

freWINolleTtal
DOMlDEFINITION

lCCi
ESSFUL.

rc-roierratia.n.rnaae-errigir)rl<
DOMAIN DEFINITION_WAS SUCCESSFUL.

DOMAIN DEFINITIoN NAS SUCCESSFUL.

Meit*.;0400biln'mPerAhilll
DOMAIN DEFINITION 11AS SUCCESSFUL.

DEFINES FOUR DOMAINS

READY;

. tiliaTe.rtZ
ate (ciao 4.1
ates (vol),

s date)
TABLE DEFIUITIOII WA41UcCESSFUL.

EFINES A TABLE NITA 1. COLUMNS

READY;

AtWaratato.""laMeirittiZia rIVIS7 lila 7:r.gteirri ,e--)
i4oliagaillaitia1

INSERTION WAS SUCCESSFUL.
..ant0 ,An

READYisoarssiii.guaoc.4

MODEL DATE SALES

VEGA 7401 30455

READY;
liptaXiatiraVITilirrfr

Ire mop

UPDATE WAS SUCCESSFUL.

REA',
bilitt2MCRAMMEMI

MPG

3.02

INSERTS DATA INTO A TABLE

MODEL DATE SALES

VEGA 71.01 33600

READY;

UPDATE DATA ALREA11-41 PRESENT
IN A TABLE

MPG

302

Figure 4. Example of Table Creation and Data Entry

22



The nelt command creates a table called CARSALES. The first column

is labelled MODEL, and entries in this column will be classified as

belonging to the set (or domain) model. The other three columns

are defined in a similar fashion, where entries in the column sales are

the volume of cars sold during the month entered in the column date,

The INSERT statement' of Figure.4' results in the insertion of one

entry into each column of table CARSALES. The SELECT * command results

in the printing of all entries in table CARSALES. The UPDATE command

results in changing one entry in the table. Note that the change is

reflected in the output from the next SELECT command.

3.1.2 Bulk Loading Facility.

Suppose that a great deal of data were to be loaded into table

CARSALES. Inputting it via the console, as in the previous example,

would be prohibitively slow and costly. .A bulk loading facility has

been implemented to reconcile this matter. A series of data cards and

their appropriate header cardsfOr input into the bulk loader are

shown in Figure 5. The bulk loader will accept these cards, define the

indicated domains, cre to the table, and insert the data into the appro-

priate columns of the tatyf . For a complete explanation of formats and

uses of the-butk loader; see the--'IGMIS Primer" [M.I.T. Energy Laboratory,

1975].

23
4,



carsal es data

SO1110011
SDICIPDOM
$DEFDOI
SDEFDON
SDI? TA B

$PRIKFY
$LOADTAB

MODEL
VOL
MPG
DATE
CARSALES
MODEL
DATE
VOLUME
MPG
MODEL
CARSALES
MODEL
DATE
VOLUME
MPG

CUR
NU
NON
sue

MODEL
DATE
VOL
MPG
DATE

-18-

DEFINING THE TABLE
INCLUDING THE COLUMNS
AND THE PRIMARY KEYS

1 1 1 15
1 20 1 23
1 28 1 314

1 17 1 19
$ ENDCOL
CHEVROLET 1247401 33108
CORVETTE 15471401 20 78

CHEVELLE 1797401 21175
CHEVY SOYA 187740 1 21464
SPORTYAN 1527401 1370
MONTE CARLO 149740 1 15668
CAMARO 1797401 87 87

V EGA 302740 1 38455
PONTIAC 1387401 10170
GRAND PRIX 1037401 40 42

FIREBIRD 1797401 36 66

VESTURA 1217401 4890
OLDSMOBILE 1107401 10533

SINDLOAD
SENDINP

Figure 5. Example of a File Ready for Bulk Loading

24

FORMAT CARDS
DESCRIBING
DATA

A



-19-

3.1.3 System Inquiry Facility

The TRANSACT-SEQUEL level has a number of "system commands" for

inquiring about tables as opposed to their contents. For example,

Figure 6 demonstrates some of these commands. The first command lists all

tables that have been created. Note that the system created three tables

(INTEGRTY, DOMCAT, and CATALOG) for its own use. The next command lists

information about the table, CARSALES, where the system response lists the

name of each column, the domain from which the entries for that column are

taken, and the data type of each column (either "CHAR" or "NUM"), The next

command lists information about domains,

3.1.4 Query' Facility

Figure 7 illustrates queries to the tables that hav been created.

All queries start with the word SELECT. The first two queries ask the

system-to list the contents of the tables CARSALES and MILEAGE. The rest

of the queries contain a "WHERE" clause which allows the user to select

only data that meet certain requirements. Note that the SELECT command

may be used to specify queriet that require data from more than one table.

The general form and syntax of the SELECT command is found in the 'GM'S

Primer" [M.I.T. Energy Laboratory, 1975],

2



READY;

-20-

Command to list all tables

LIST OF TABLES
......

INTEGRTY DOMCAT CATALOG CARSALIS MILEAGE CAMpATA

alilimmisamonsur
DESCRIPTION OF TABLE CAPSALES

NAME DOMAIN TYPE

MODEL MODEL CHAR
DATE DATE MUM

SALES VOL MUM

MPG MPG MUM

Command to describe
table named CARSALES

List all domains defined by user

LIST OF DOMAINS: NAME TYPE
*4011.1.

MAMIE CHAR
CRAM! CHAR
COLMAN! CHAR
DORMAN! CHAR
SYSCHAR CHAR
MEER NOM
DATE NUM
MODEL CHAR
VOL MUM
MPG RUM
MAKE CHAR
MFG CHAR

Figure 6. Examples of Inquiries about Tables



-21-

Display all entries in
table named CARSALES

SALES MPG
ayo

MODEL DATE

VEGA 7401 33600 302.

CHEVROLET 7401 13108 12A

CORVFITE 7401 2078 15A

CHEMLF 7401 21175 17.9

CHEVY NOVA 21464 18.7

SPORTY AN 74 1370 152,

MONTE CARLO 7401 15668 14.9

CAMARO 7401 8787 17.4

PONTIAC 7401 10170 13S

GRAND PRIX 7401 s 4042 103

re

losair;.r...

MODEL
ale IWO OW 00 .0

YEAR'
ao.o.

MPGCITY

GREMLIN 1975 19
HORNET _1975 18
MATADOR 1975 14
APOLLO 1975 16
SKYHANK 1975 19
CENTURY 1975 16
LISASPE 1975 12
ELECTRA 1975 11

Figure 7. Sample Table Queries

2t

MPGHlit MINAVG

24
24
19
21
25
24
16

210
203
159
179
213
188
135
125



MODEL

GREMLIN
HORNET
SKYHAWK

MONZA
PrNTO
MUSTANG
STARFIRE
VALIANT
ASTRE
MUSTANG
PINTO

RICADIA_

-22-

RPGAVG

210
203
213

222
209
209
,213
200
222
247
260

THE IESULT OF YOUR QUERY IS:
155

READY;

MODEL

VEGA

List all models where
average mileage is
between 20.0 and 30.0

4

YFAR MPGAVG
END 41111, 4M, 4M,

1974

Figure 7 (cont'd). Sample Table Queries

28



-23-

3.2 Modeling and Analytic Functions

3.2.1. Validating Data. The data for this example indicator came

from many sources. Data in the table CARSALES came from "Ward's Auto-

mobile Reports" [Ward's, 1975]. The data in the table MILEAGE came from

two Environmental Protection Agency documents [EPA, 1974; EPA, 1975];

1974 data was found in the '1974 Gas Mileage Guide for New Car Buyers,"

and the 1975 data was from a similar document entitled "1975 Gas Mileage

Guide for New Car Buyers."

The data stored in the MILEAGE table was entered (using the bulk

loading facility) as it appeared in the 1974 and 1975 EPA documents.

However, inconsistencies resulted from two factors:

(1) Miles per gallon (mpg) for 1974 data was a single number averag-

ing city and highway diiving, whereas data for 1975 was two 'lim-

bers reflecting both city and highway driving.

(2) There was a 5% change in the method used by the EPA to determine

the mileage values from 1974 to 1975.

Let us demonstrate the interaction between a modeling facility and

the data base facility by normalizing the data to reflect the inconsistency

in (1) above, thus allowing fair comparison between 1974 and 1975 mpg data. We

perform the following three steps using the APL level: (The reader

should keep in mind Figure 1, depicting the relationship between the two

virtual machines, one running APL and the Transaction Virtual Machine).

(1) Extract data from the data base facility.

(2) Perform a correcting function on it.

(3) Insert the corrected data back into the data base facility.

29



-24-

Figure 8 exhi -bits the console session to perform the above three

tasks. Our strategy is to convert for each model the two 1975 numbers

(mpg in city driving, mpg on the highway) into one comparable to the one

1974 number.

(1) To extract the data (city moo, highway mpg for each model

for 1975) we use the QUERY command of Figure 8. The QUERY com-

mand is a function that has been added to APL to interface

between the two virtual machines. The APL QUERY function passes

the given SEQUEL command in quotes to the Transaction Virtual

Machine. The TVM then gets the data and passes it back to the

APL workspace and APL prints the names of the vectors passed

back, in this case MODEL, CITYMPG, and HWYMPG. The software

mechanisms for accomplishing this communication are transparent

to a user at the APL level. They are described later in Section 4.1.1.

(2) The following function was performed on city miles per gallon,

and highway miles per gallon to ,get one value that was consistent

with 1974 values.

Avg.MPG (1)

.45 .55
HWYMPG CITYMPG

In Figure 8 function (1) was envoked by typing its name, 'CHANGE'.

For the reader's information we listed the APL implementation of

function (1). Note that the APL implementation not only performed

function (1), but it also created the necessary QUERY command to

insert the new data back into the data base.

30



CITYMEG1

-25-

SELECTING

DATA FOR 1975

CONTAINING INFORMATION
MILES PER GALLON

_211011EtZ-M1111111r""--"''"""li

FUNCTION "CHANGE"
TO CORRECT

AVG MPG DATA AND
PLACE IT BACK

INTO TABLE

'CHANGE T;4401;C:D;E;

P*1
A.*'UPPATE MILEAGE SfT MPGAVC
C4' YHM MODEL
E +' -AND YEAR = 1975 ;'
L4: M.0.454/0/YMPGrn
1114-0.55tCITYMPGrf]
M+N+141
10.101
11.*vM

v.0,00.(rRumc MODEUr0)."
QUERY

-4,1rspmPGAltaV4)

511

INCREMENT COUNTER
AND GO BACK TO
STATEMENT [5][6]
UNTIL FINISHED TOILE

Figure8: Example Cleaning of Data

REQUEST LISTING
OF APL

FUNCTION CHANGE

FORMULATE
SEQUEL SYNTAX
FOR UPDATE

CONCENTRATE FULL UDPATE
SEQUEL COMMAND (COMAS

PERFORM-CONMTEXTATION) J
AND PASS QUERY TO SEQUEL )
FOR INSERTION OF COR-
RECTED VALUES BACK

1

MPLEMENTATION
OF EQUATION 1
AND MECHANL1N
TO STORE DATA
BACK INTO
DATA BASE



-26-

The reader* who is not familiar with APL can use the comments of the

listing. It is not necessary for readers of this paper to thoroughly

understand APL. For those who wish to do so, the references [Iverson, 1962;

Pakin, 1972] can be consulted.

A similar function was applied to correct the 5% difference in data

repottiligdftblabove.

3.2.2 Reporting

A GMIS user has the full reporting capabilities of any of the modeling

or analytical facilities at his disposal. Pot example, a GMIS user can

employ the APL/EPLAN facOta 4ia report generator and to produce plots.

To produce the indicatorOlogI in Figure 2, the following steps were

followed.

(1) Use the QUERY command to extract the desired data
an

(2) Execute /APL function to calculate the average miles per gallon

of all cars sold dring a given month from the data in the three

created tables using the following formula:

Voli x Mogi

Average Mpg. All Cars

(3) Convert the resulting vector into a time series.

(4) Use the ELAN plot facility to produce the PLOT of Fi/gure 2.

32



-27-

As was discussed in Section 3, this plot raises several ques lion.

Why did the average miles per,gallon of all cars sold during the months

of the energy crisis go .down? We had expected that it would go up-because

people would have bodght high mileage cars during A shortage of gasoline.

One possible explanation is that the wealthy were relatively

unaffected by the energy crisis and thus they continued to bpy large,

luxurious, lower mileage cars. This may have resulted.in a dispropor-

tionate smaller number of compact, low-mileage cars sold. Another

explanation might be that the car dealeri, seeing an end tothe popularity

of large cars, lowered prices on these models greatly, thus inducing a

larger than expected sale of these cars.- Another is that foreign-compacts

(which we did not include) encroached on the sale of American compacts.

In order to resolve these questions, it becomes 1ecessary to access

the data in a different way than we had initially expected. A plot of

the sales cif a luxury car (e.g., Cadillacs) and the sales of a compact

(e.g., Valiants) over the same period.would indicate how the sales of

these groups behaved during that period.

Again, operating on the modeling level, the following three steps

are taken (the corresponding console session is shown in Figure 9).

(1) Extract the data using QUERY commands

(2) Convert the data from a vector to a time series using the

APL DF. functionl,. e.g.,

(3) USe the EPLAN P L 0 T function to produce the desired plot,

In APL all function names, such as DF and PLOT, are underl as can be

seen in Fgiure 9. Since variable names cannot have spaced in them, under-

scores also are commonly used to clarify variable names, as has been done

with CADILLAC SALES in the figure.

33



-28-

4.'

SAin 13:45:311 05/02/75 Extract data on volume
of Cadillats sold

Lguktnciakigt1111111111211121111414141424

YOLUNC

VOLUM

k30 76 S gkgr tC.OILLAC_aALV5.PALIAW_:7ALAV

S0000

40000-

30000-

0
20000-

10000.

0-

Plot Function

I 2 r 6

31.n.141-

AD3CI347A 72!!.7 ownaa 7:20.7 1074 1

0 * 17APIWC_JAWV

is VALL111%.$AUS

I 10
1 1

1
i I

1
I Months

Jan 75

Plotting Cadillac and
Valiant sales

Figure 9. Using the Plotting Function for Deporting Data

34



-29-

Note that the plot has car sales on the vertical axis and months on

the horizontal axis. The 'o' denotes Cadillac sales, the '*' denotes

Valiant sales. Figure 9 reveals that4he sales of Valiants showed a`

definite downward trend starting from about the fifth month of 1974,

while the sale of Cadillacs remained 'relatively constant.

3.2.3 Modeling

In recent years increasing emphasis has been placed on the use

of models to aid in policy decision making. A model is roughly defined
Y.

as an incomplete representation of a system, where the purpose of the

model governs which elements of a model can be adjusted to simulate a

real world change in policy. The results of the si,plation can then

be studied and compared with other simulated courses of action before
0

a final decision to effect change in the actual system is made.

Another useful feature of a model is that it serves as,a facility

through which relationships between elements of a system can be explored.

We can illustrate this capability' by performing a simple analysis of the

data already. introduced in this example. Sdppose one wanted



-30- .

to investigate the mathematical relationship between average

miles per gallon of all cars sold in a month with that of all cars sold in

some previous month. A correlation matrix depicting the strength of the

relationship between average miles per gallon of all cars sold in a month

with that of the previous month, and with at of two and three months ago,

gives an insight into how a mathematics del of this relationship might

behave. The EPLANC 0 R and L A G functions ha;le been applied to the available

data resulting in the correlation matrix show in Figure le.

MPG
t

MP
6 t-1

MPGt_2 MPG
t-3

MPGt

MPG
t-1

MPG
t-2

MPGt
-3

1

.62

-.04

-.09

1

.54.

.39

1

.88

Figure 10: Correlation Matrix

Inspection of Figure-10 reveals that one ought,to expect that the

average miles per gallon of all cars sold in a month is somehow strongly

related to the average miles per gallon of all cars sold in the previous

month, but does not appear to be highly correlated with the figures from

two or three months ago (a correlation coefficient close to +1 is regarded

as, an indication of a strong relationship between two variables, whereas

a value of 0 indicates a weak relationship). To explore this relationship

further, an ordinary least squares regression analysis is applied to the

two variables using the EPLAN R E G function (Figure 11). More precisely,

we seek an equation of the form:

36



-31-

AVG MPG of CARSSOLD
t
= 4- 0( AVG MPG of CARSSOLD

t-1

The estimated values of the coefficients of from the table in

Figure 11 are 4.928 and 0.706, with standard errors of 3.2 and 0.2, res-

pectively. The fourth column of the figure dePicts the T statistic for the

estimated values of civanciA

WITH:

COEe/VALVE/ST ERP/T-STAT

1 4.92827 3.19856 1.54078
2 0.70615 0.19011 3,71443

110 OF VARIA3LES
NV OF OBSERVATIORS
SS DUE TO REGRESSIO3 ,

SS DUE TO RESIDUALS
F-STATISTIC
STAlivARD ERROR
R*2 -471TArrsTIc
R*2 .COIPECTED
DURBIN WATS011 STATISTIC
UARSSOLD (4.928

1.00000
13.00000
1.29413
1.03177

1.79701
0.30,626
0.55640
0.55640
1.10338

Figure 114 Sample Regression

z 1 ) ( 0.706Z (1 12 CA33SOLD))

of
'Based on the results/this initial exploration, more complex formulations

may be devised to help eliain the behavior of the sales of different car

models over this period, and all would be constructed in the manner shown

in Figure 11. Moreover, once underlying behavidral relations had been

estimated, it might be desirable to build a simulation model to forecast/\

3



-32-

automobile fuel consumption in the future. Once again, all the programming

tools and higher-order simulation languages tould.be made

available through the system outlined in Figure 1, with access to all the

data and estimated relations produced in the course of the analysis.

38



-33-

4. DETAILS OF THE GMIS DESIGN

There are three basic features of the GMIS system that give it its

flexibility: (1) an overall system architecture making use of the

(largely untapped) power of VM, (2) construction of the system within a

hierarchical framework, and (3) the use of a relational representation

of data. Section 2 gave a brief introduction to these features, and

here we discuss the role of each in greater detail.

4.1"' The Use of VM in the Software Architecture

Through the use of therVM concepts and the proposed architecture of Figure 1,

a number of the important features of GMIS become possible, or much

easier to implement:

*or

(1) Multi -user coordination of access and update to a central data

base.

., (2) An environment where kfveral different modeling facilities can

access the same data base.

(3) An environment where several different and potentially incompati-

ble data management systems can all be accessed by the same user

models or facilities.

(4) Increased security and reliability [Donovan and Madnick, 1975].

VM also has disadvantages, the primary one one being the potential increase

in overhead costs associated with the synchronization and scheduling

of the VM system.

39



-34,

Figure 1 depicts a configuration of virtual machines operating on a

single real computer. At the present time PL/I, FORTRAN, EPLAN/APL, and

TSP are the only facilities interfaced. with the data management system.

Work is under way to bring TROLL to this status. Some of these modules

operate under'a different operating system but are made to run on the same

physical machine using VM/370. All the modeling or analytic virtual machines

may r quest data-from the general data management system. ID this section

we discuss the techniques we used to facilitate the c unications between

these virtual machines, performance analysis, and pro used extensions,

to this architecture.

4.1.1 Communication between VM's

Part of the IBM/MIT Joint Study a multi-user interface on the, data

base machine has been implemented [Gutentag, 1975]. This

interface allows several users (programs running on the VM's) to access the

single data base system. Note that for t-h4'% section a-diStinction is made

between a human user and a "user" of the multi-user interface, which is-

usually another program.

Essentially what is needed is a means of passing commands and data

to the data base machine, returning data, and a locking and queueing

mechanism. One way to pass date is to use virtual card readers and card

punchers. The data base virtual machine would be in wait state trying-

to read., card from its virtual card reader, the analytical-machine would
4

punch the commands on the virtual card reader that would be read by ?he data

base VM. This mechanisth is inefficient, however, and does 'not allow flexi-

ble processing algorithms.

4 0



-35-

The mechanism implemented in GMIS is as follows (note that this

mechanism is invisible to a modeler when he envokes the API/EFL/VI level

command QUERY, as this tommand automatically envokes the mechanism). Each

user virtual machine (UVM), which is accessed by logging on to a separate

account ID under VM/370, sends transactions to the Transactidn Virtual

Machine through a communications facility (described below). The Multi-

User Interface (MUI) stacks these transaction requests and piocesses them

one at a time. The results of each transaction are passed back to the

virtual machine that made the request through the same communications

facility. Replies to the transactions may be processed with software

interface that is requtredfor the application. The APL /EPLAN interface

ussed earlier has been implemented in this manner.

The best-way to explain how the MUI works is to follow a user's

virtual machine's transaction through each processing step. Refer to

Figure 12 for an illustratidn of the' transaction processing scheme de-

scribed below. Each user virtual machine must have a small virtual mini-

disk attached to it that has been supplied with a multi-write password.

This password allows more than one virtual machine to link to the disk

with read/write privileges (otherwise, VM/370 only allows cone user at a

time to link to a d*sk with writing privileges).

When a user's virtual machine wants to send a transaction to the data

base, it writes the transaction onto its multi-write disk in a CMS1 file

that is reserved for transactions (steps 1 and 2 of Figure 12). The user's

[IBM, 1974] is an operating system commonly run under VM/370,

41.



0 TRANSACTION ENTERED
FROM CONSOLE TO UVM

CONSOLE

UVM WRITES THE
TRANSACTION TO
A FILE ON ITS
TRANSACTION
FILE

-36- Q UVM SIGNALS TVM BY PUNCHING
A'CARD SPOOLED TO TVM'S VIRTUAL
CARD READER

/VIRTUAL
CARD .

READiUNCH

USER
VIRTUAL
MACHINE
(UVM)

Y

(
MINI-DISK FO
TRANSACTION
AND REPLY
FILES

cp TVM READS CARD AND
GETS ID OUT OF THE
UVM AND REPLY FILE
FORMAT

/
I/

-TVM,LINKS TO
,/ UVM'S TRANSACTION

DISK AND READS T
TRANSACTION

GMIS
FILE

DATA
BASE

VIRTUAL
CARD
READ/PUNCH

TRANSACTION
VIRTUAL.
MACHINE
(TVM)

Figure 12a. Sending a Transaction Request

QD
TVM SIGNALS UVM TRANSACTION

CARD AS IN STEP (3)
it VIRTUAL

CARD
READ/PUNCH 4

/VIRTUAL
CARD
READ/PUNCH

CONSOLE

1.
UVM

UVM READS REPLY
FILE, FORMATS
OUTPUT, RETURNS
TO USER

1

TRANSACTI0
MINI-DISK

Figure 12b. Returning Data

TVM

A

de,

e/
RESULT WRITTEN
TO UVM REPLY

FILE BY TVM If
i/

42'

TRANSACTION
PROCESSED BY.
TVM USING
SEQUEL

GMIS (:
DATA
BASE



-37-

virtual machine must then signal to the MUI that it wants its transaction

to be processed. This is done by directing the VM/370 Control Program (CP)

to send all output from the user''s virtual card punch to the virtual card

reader of the Transaction Virtual Machine (TVM). The user's virtual machine

then punches a single virtual card.containing two items of Information:

the ID of his virtual machine, and a code indicating the type of file

format that the MUI must use when passing the transaction reply back to

the user virtual machine (step 3).

Each card punched by a user is actually a request to the MUI to

process a transaction residing in the user's transaction file. These

cards are stacked in the card reader of the TVM, and are processed one at

a time, where the first card stacked is the first to be processed (FIFO)

(step 4).

The MUI is always running in a wait state or processing transactions.

When a card is received by the TVM's virtual card reader, an interrupt is

generated that activates the MUI" to begin reading from its card reader.

To read the user's transaction, the MUI, must first access the user's

transaction file. This is done by first linking to the multi-write disk

of the virtual machine given by the ID Dn the transaction request

(The multi-write disk is always attached at the same virtual' address; in

the current implementation, disk address 340 is used for all transaction

files.) The disk is then accessed by the MUI, and its SEQSTAT SEQUEL

file is read (step 5). It should be noted that the SEQUEL software level

provides a file reading capability.

43



-38-

After the transaction has been processed by SEQUEL in the usual

manner (step 6), the MUI writes this reply,on the user's multi-write disk

in a file called SEQUEL REPLY (step 7). One of several file formats may

be used, depending on the user's software environment. Three general

formats have been proposed that will satisfy all currently anticipated

GMIS requirements. Ole format is to be read by APL programs, another

format will be compatible with TROLL files, and a third format will be

compatible with any language that can process sequential CMS files (e.g.,

PL/I, FORTRAN). The user's transaction request card indicates which file

format is to be used by the MUI.

The TVM then punches a virtual card to the UVM to signal completion

of transaction processing (step 8). Finally, the UVM reads its SEQUEL REPLY

file, and processes the transaction result in'its own environment (step 9).

4.1.2 Extensions of Architecture

The following three extensions to the architecture of Figure 1 merit

further investigation.

Incompatible. Data Systems. Figure13 depicts an extension of the

archItetture-that would-anotirli-fferent---and-perhaps---1-itcompatible-data-

base systems to be accessed by the modeling facilities. The general data

base system would act as a catalog for data stored in the decentralized

system. The data management virtual machine acts as an interface,

analyzing the data query and funneling it to the appropriate data base

management system. These mechanisms could be made invisible to the user,

who can use the system as though he had all the data in one "virtual"

data base. The implication of this extension on synchronization, data

updating, and performance must be further researched.

- 4 4



User 1

Modeling
facility

1

Modeling or Analytical
Machine s

,Data Base
Machine

IData-Base
System

1

Incompatible

-39-

User 2 User 3

Modeling
facility

-7-
2

General
Data
Base

Machine

..Modeling
facility

3

0-Data BaseData Base
SystemSystem

2 3

data base managsaent machines

Figure 13: External Architecture

45



-40-

Standardization of data base systems. It may be useful to place

user interfaces that are syntactically and semantically equivalent to existing

data management systems (e.g., IMS, TOTAL) above the general data base

system of Figure 1. This would allow data to be inputted and validated in

a data system with which a user is familiar, and then-stored in a stan-

dardized general data base system.

Decentralized/centralized data bases. The advantages of decentra-

lized data bases. are that they are usually maintained by the people that

are using them. The advantage of a centralized data bawls that many

groups of people can access it. The above architecture may be extended

to interface not only with data base and modeling systems running in'
but to other remote computers

other virtual machines,/including non-IBM equipment.. The implication of

this extension on data updating and networkilig problems modbe Investi-

gated with further research.

46



-41-

4.1.3 Degradation of Variable Cost with Multiple VM Operation

The construction, of a system of communicating VM's brings great

advantages, but these come at the expenie of some sacrifice in performance.)

Various performance studies of 'VM's are available in the literature

{Hatfield, 1972, Goldberg, 1974], and we are engaged in a theoretical

and empirical analysis of the degradation of variable cost performance

as a function of the number of modeling machines [Donovan' 5]. The

direction of this work can be seen by considering a configurat as in

Figure 1, where several modeling facilities, each running on a se crate

virtual machine, are accessing and updating a data base that is oahaged by

a data base management system running on'its separate virtual machine. What4

is the degradation of performance with each additional user? What

determines the length of time the data-base machine lakes to process a

request? What is the best locking strategy?

.An access or update to the data-base machine may be initiated either

by a user query,,which would be passed on bylthe modeling machine, or by

a-model executing on the modeling machine. In either case, the data-base

machineowhile processing a request locks out (queues) all other requests.

The analysis is further complicated by the fact that as some VM's became

locked, then others get more of the real CPU's time, and therefore

generate requests faster. However, the data-base VM gets more of

1

Here we are addressing the issue of variable costs. Later in Section 5.2
we address the more important issue, fixed costs, for applications ilk
those addressed by the GMISIsystem.



L!

the CPU's time thereby processing requests faster. For example, if there

are ten virtual machines, each one receives one-tenth of the real CPU.

However, if.seven of the ten ire in a locked state, then the remaining

three receive one-third of the CPU. Thus, these three run (in real time)

faster than they did when ten were running.

To try to analyze this circumstance for the uses outlined in this

paper, we have assumed that the virtual speeds of VM's are constant and

equal. However, when some-VM's (including the data -base VM) arlrallo-

cited a lirger share of CPU processing power, they became faster in real

time. We assume. that each unblocked VM receives :the same amount of

CPU processing power and at the initial state m machines are running

(i.e the data base machine is stopped if no modeling machines are

making requests). 'axis the request rate of each modeling VM when there are

m VM's running. es' is thcieryica rata_st which the date base virtual

mathins) is running when there are m-1 modeling VM and one data base VM

running. Thus, we may write the relations:

m
14i

=
m-iT

Ai a m A
m-i+1

(1 2, ...,m)

2,



40

-43-

where i is the number of modeling VM's being blocked. Using a birth/death

process model [Drake, 1967], and Using a queueing, analysis [Little, 1963],

we get the following for the response time of the model: where P1 is the

steady state probability that there are i modeling machines waiting, and

'N' is the number of modeling machines.

T model

x tT'
overhead

constan

T'
wait-for-data

T total overhead rimodel wait-for-data

Figure 14 illustrates the total time to execute three different models

as a function of the number of modeling VM's. Let us consider some of the

implications of the above analysis.

49



A = speed'of model

p speed of TRANSACT

Ts
total

/
Ts

total ./
/

100.0
)414.2 /

dos

.1 //

50.0 //./

10 15

NuMber of Modelling Machines or ft

Figure 14. Total Elapsed Times for a VN Configuration



-45-

First, for a AN = .1, a model executing in a configuration of one modeling

machine takes 110 units of time to execute. When the same model, run in

an environment of 10 modeling machines all'executing similar models, takes

approximately 135 units of time to execute -- a degradation of performance

of slightly more than 15 percent. Intuitively, A denotes the speed of the

modeling machine, and u is the speed of the data base machine. Thus a

situation white Vu = .1 indicates that the data base machine is ten times

faster than the modeling machine. From the same figure with ratio of Vu * 1,

a model executing with a configuration of one modeling machine takes 20 units

of time where with ten machines the same model takes approxi tely 10 units,

of time -- over four times longer.

If such a degradation of performance is not tollerable, there rare

several ways to improve performance. The theoretical study would indicate

that increasing u for a given configuration helps performance. Practically

this could be done by changing the processor scheduling algoirthm of VM

so that the real processor was assigned to the data base management VM

more often, thus speeding it up and increasing u.

Observing the equation for Titotal above, another way of reducing

T' is is to reduce T'watt for data:
One way to reduce T'wait for data

is to extend the VM architecture of Figure 1 to allow multiple data base-

machines. In this configuration T 'wait for data
could be reduced by locking

out all data base machines only when one modeling machine is doing a write.

For all read requests the multiple data base machines would operate without

locking. Shared locks between machines would have to be created as well

as a mechanism for keeping a write request pending until all data base

machines can be locked.

51



0

-46-

A way of improving performance further would be to extend the single

locking mechanism used in the above multi data base machine configuration

to handle multiple locks. Locks would be associated with groupings of

data, e.g., a table. The locking policy would be to have all machines only

locked out of a portion of the data when one machine was writing into that

portion. Thut requests could be processed simultaneously for reads into

tables not being written in and for reads to different tables. Thus

adding another real processor to the multiple lock VM configuration could

greatly improve performance.

There is a trade off with the multilocking scheme between increases

in overhead time in maintaining multiple locks versus increases in wait

time for locked data bases. We have not yet extended the theoretical

analysis to quantify this trade off.

Other theoretical extensions and analyses of this synchronization

model would include extending the model to cover a more common VM operating

circumstance -- namely, that where the GMIS system (multiple modeling

machines and one data base machini) would have to share the physical

machine with other users, also executing under VM, e.g., a payroll program

under VS2 under VM, multiple CMS users, etc.

In conclusion, we observe that there may be a degradation in per-

formance with multiple users but that there are mechanisms for ameliorating

the effects of this degradation.

4.2 Hierarchical Approach

We have used the design and implementation techniques of hierarchical

decomppsition extensively in our implementati . The hierarchical approach

2



-47-

has been used in operating systems [Dijkstra, 1968; Madnick and Donovan, 1974]

and in'file system design [Madnick, 1970]. The essential idea of this

approach is to decompose a system into functional levels. Interfaces bf
r

each level consist of a series'of operators. Each level can only call

levels below it.

The levels we are using for the GMIS system are the following:

- a modeling level

- a data definition and data manipulation language level

- a relational level (operators)

- a file system

- the operating system

Further decompositions of the file system level and operating system

level are outlined in [Donovan and Jacoby, 1975] and of the relational

level in [Madnick, 1975].

The key advantage of this approach is that it reduces complexity

by decomposing the problem into a series of manageable sub. problems. As a,

consequence of this reduction in, complexity, the time to implement an

entire system is greatly reduced. Another advantage is that the efficiency

of the system can be increased: These improvements in Ifficiency come

from the-fact that a system so constructed can be analyzed and tuned for

performance because each level can be thoroughly understood and analyzed.

For example, as new software algorithms are invented, their place in

the hierarchy can be identified and then can be easily incorporated without

redesigning the entire system. As new hardware technologies become opera-

tional, their relevance to information systems can be assessed within the



-48-

the framework of the hierarchy, and incorporated where applicable.

Given inherent parallelism in information systems, the hierarchical

approach also can capitalize on new technologies to increase the' performance,

reliability, and integrity of information systems. An example of such a

technological development is the advent of low -cost microprocessors, These

devices (which are the "computers" used in hand calculators) are becoming

less expensive each year and have the computational capability of many

standard computers, e.g., arithmetic and logical operations, memory, and

registers. To capitaliae on this new technology, each level df the hierarchy

could be examined for operators that could be executed asynchronously with

each other. These operators, as well as the control logic and synchroniza-

tion mechanisms, could be performed by Multiple microprocessors,

Figure 15 depicts an example of such a hierarchicalAdecomposition

using microprocessors where the vertical stacks of boxes denote requests

in the form of operators, and each group of horizontal boxes denotes

microprocessors to perform the desired operation, At the top of Figure 15

a list of queries enters the system (e.g., the SELECT commands bf Figure 7).

The microprocessor of leiel i+2 performs the necessary syntactical analysis

and translation to produce a list of relational operators (operators on

,tables will be discussed in the next section). This list of functions com-

posed of relational operators are processed by the microprocessors at level

1+1. They in turn generate a number of requests to read tables stored in the

main or secondary memory. Level i receives those requests and generates

the appropriate operating system functions' to fulfill the request. The

last group of microprocessors performs the desired operating system func-

I

54



-49-

e.g., list
of queries

relational functions

., query
languaae
procesfor)

. . . Level i+1 (e.g., relational
operators)

.Level i (e.g., file system
operators)

. .Level i-1 (e.g., operators
of an operating
system)

Hierarchical Function Decomposition Using
a Microprocessor Complex



-50-

tions and passes back the results to level t. The results are used by

level i to produce its results, and then passed up to level 1 +1 until the

top level gets all the information to satisfy the query.

One of the properties of implementation using hierarchical function

decomposition is that all processors are anonymous and act as interchange.

able resources (within a function level). Thus, if a processor malfunc-

tions or must be removed, from service, the system can continue to function

without interruption. After a reasonable amount of time has elapsed,

the higher level processors that had generated requests that were be ng

performed by the defective processor merely need to reissue the same

requests. 'Alternatively, the reissuing of requests could be accomplished

automatically by the inter-level request query mechanism.

Although the details are not elaborated in this paper, it can be Ittr

argued that extensive parallelism, throughput, and reliability can be

attained by means of a multiple processor implementation of the hierarhical

function decompostion.

4.3 Relational Technology

This section presents an intuitive understanding of relational

operators, of the approach, and its usefulness to information systems of

the type we address in this paper.,

The language that a user. would use to query, insert, and update data

is called a Data Manipulation Language (DML). The language used to define

tables, domains, and charactersitics of the data is called a Data Definition

Language (DDL). The user of GMIS can view all data stored in the system

in the simple form ofj table (relation), as in Figure 3, This view of

data is called the relational model of data [Codd, 1970].

50



-51-

If'one were to view data as being stored in tables, then the process

of querying the data could be broken down into two functional levels. The

first is composed of mechanisms to recognize the constructs of the query

(e.g., a SELECT command), which takes place at level i+2 in Figure 15, and

the second where the appropriate operations are performed on the tables to

satisfy the SELECT command (level 1+1 in Figure 15).

Part of our)research has been to determine the "appropriate" operations

of level i+1 needed to query, update, and define data. In an early imple-

mentation of GMIS we implemented twelve operators [Smith, 1975]. These

operators included those of Codd [Codd,'1970] (in some cases modified for

use or perforntInce reasons) as well, as three additional operators, compaction,

difference, and ordering.

4.3.1 -Advantages of the Relational Approach

A very attractive aspect of the relational approach is its clear,

well-defined interface that fits into the hierarchical approach and hence

permits the attainment of all the benefits of the previous section, A

distinction should be made (which is not often made in the literatu'e)

between the DDL/DML level and the relational operator level. As we shall

see, the relational model of data allows us to implement an interactive

DDL/OML easily. We recognize that other data models (e.g., network,

hierarchical 1
, or tree structures) could also be used at a lower level to implement

the same DDL/DML, only not in as satisfactory a manner, and with a certain

loss of capabilities.

Our experience in using a relational base data management system is

that there is a real comparative advantage for its use in systems where

the logical data structure keeps changing. Its advantage is the low cost

Note the term hierarchical here refers to a tree structure, which is different
from the "hierarchical" approach.

i



-52-

of adapting to changing data structures and further, in its use in GMIS,

in not having to-redo all existing modeling programs, It has a comparative

advantage for implementing an interactive DDL /DML, Its comparative advan-

tage,in applications where the types of queries are not all defined before
alb

implementation,lies in the inherent property of allowing selective access'

to. any data in the data base. As we will discuss at the end of this

section, we recognize the present limitations of the relational approach

and do not necessarily advocate it for all data management applications.

4.3.2 Basics of Relational Operators

Let us take an example and demonstrate two relational operators,

"restriction" and "projection". Assimie that data exists.as in Figure 3

and a query is made, "SELECT the model of car that receives' 30.2 miles per

gallon". The query processor (level i+2 of Figure 15) would translate this

query into a series of operators on the table CARSALES. Basically, once

the query is recognized there are two operations that could give the de-

sired information: (1) find all entries that haVe mph equal to 30,2;

(2) list the models in those entires.

Figure 16 demonstrates these two operations on the table. All rela-

tional operations create new relations. The first operator used is

called "restriction", whose function can be intuitively defined as

"produce a relation containing all elements of a table that match par-

ticular restricting conditions.." Thus, restricting the relation at the

tor) of Figure 16 by the condition MPG = 30.2 produces'the relation cOn-

tatting the single tuple:

Vega, 1/74, 37600, 30.21



-54.-

MODEL YEAR VOLUME MPG

CADILLAC 1/74 9,941 10.9

VEGA 1/ 74 33,600 30.2

PINTO 1/ 74 35,531 28.0

,
PONTIAC 1/74 10,170

k
13.8

RESTRICTED BY (MPG- 302)

VEGJ1 1/74 33,600 I 30.2

cd(

PROJECTED (MODEL)

VEGA

FIGURE 16

RESTRICTION AND PROJECTION OPERATORS

59



-55-

There have been several experimental implementations of the relational

view of data. For example, ISG [Smith, 19741, MACAIMS [Goldstein, Strnad,

1971], SEQUEL [Chamberlain, 1974], Colard [Bracchi, 1972], RIL [Fehder,

1972]. In GMIS we are using an extended version of SEQUEL discussed in

Section 2.1.

Our experience leads to several conclusions: From a user view the

primary advantage of SEQUEL and other relational systems is that they can

be interactive, and have a simple, consistent way of viewing data. From an

implementor's view. the relational implementaion of SEQUEL fits into a

hierarchical approach, the operations are consistent, and it provides a

framework in which to examine performance. We recognize the present

limitations of the experimental SEQUEL for real applications. We list

some of those here(not as a criticism of the

their purpose was to demonstrate feasibility

implementors of SEQUEL, for

not an operational system)

to guard against the danger that our enthusiasm for this approach will

lead to an overoptimistic picture of SEQUEL.
1

1 Some of the extensions we have had to incorporate in order to make SEQUEL
more operational, for our applications are the following: (1) Added a

facility for multi-user to access the same data base .(2) Added inter.
faces so that users can use a variety of terminals% (3) Modified SEQUEL
to accept the unary + and - operators as prefixes to numeric literals,
and to handle DECIMAL constants, (4) Extended SEQUEL implementation re-
strictions on maximum degree of a table, maximum length of an identifier,
and maximum size of a character string constant, .(5) Re-wrote output
formatg for generality, (6) Implemented a macroprocessor capability that
allows users to write prepackaged series of queries, (7) Made changes to
increase performance, (8) Added the capability to interface modeling and
analytic facilities, (9) Enhanced the bulk loading facility, (10) Designed
mechanists for handling null or missing data, (11) Designed backup
facilities, (12) Designed security mechanisms, (13) Designed additional
SEQUEL operators (e.g., GROUP BY). The documentation of these changes
as well as others is found in a NEEMIS Progress Report [M.I.T. Energy
Laboratory, 1975];

GO



-56-

We feel that an operational relational data management facility needs

to ,be implemented and incorporated into a system that has analytical capa-

bilities: We strongTy, believe that such a development must be done in close

cooperation with real applications. _Further, we feel that those applica-

tions should be chosen in areas,where this technology has a clear advan-

tage, that'is, for systems where the problems keep changing (04., public

policy s stems) or where the system is not well-defined (e.g., breadboarding

systems), and not to application areas that are currently being satis-

factorily met by other approaches.

61



-57-

5. FURTHER RESEARCH

there are several types of research thet need to be pursued so that

the!J tools can be made available at reasonable cost, and so they can be

used in the most effective manner. Some of that further research has

been discusseu in the last section.

5.1 Computer and Management Science Research

Optimal Hierarchical Decomposition. To gain insights as to what would

be the best hierarchical decomposition, research should be undertaken to

define measures that would allow the construction of proofs that a par-

ticular decomposition of a hierarchy is optimal.

Performance. Each level of the hierarchy needs both a theoretical

study and an empirical study. At each level the impact of new operators

should be investigated, along with formalizations for equivalence between

sets of these operators and performance implications of new operators.

Mechanisms for reducing expressions to equivalent but more efficient expres-

sions should be explored. For example, at the DDL and DMIL, level algorithms that

heuristically take advantage of certain query patterns to make subsequent

queries more efficient must be studied. At the relational level ways

of simulating certain relational operations when the full operator is not

called for must be investigated. Theoretical bounds on co4utation of

relational operations as function of a Size of tables must be developed,

Virtual Machines. On the VM interface lever there is need for

investigation of efficient ways VM's can communicate with each other.

On the VM level more knowledgeable processor schedulers need to be developed.

And, as was discussed in Section 4,1, work must be done on synchronization

and locking policies of multiple VM configurations.

62



-58-

New Technologies. Investigation of the implications of the new

technologies (e.g., memory, networks, and microprocessors) on each level

in the hierarchy is called for.

Query Languages. On the DML level in addition to the extensions

we have made to the SEQUEL language (e.g., multiuser interface, security,

additional computational capability, handling larger relations, larger

number of entries), new query language constructs ought to be investigated.

Realistic and operational implementations of a relational query language

should be undertaken.

Syncronization and Ir4erlocks. Various interlock mechanisms must be

used in an informatiod system to coordinate various independent update

operations. It is necessary to develop interlock techniques and policies

that lend themselves to a highly decentralized implementation without.

adversely affecting performance or reliability. For example, under what

condition and for how long are the modeling machines locked out of the data

base machine? Is the data base machine just a catalogue for data stored

in the decentralized.data base machines? If so, what are the performance

implications of always accessing data stored in a remote machine? Or is

the accessed data brought up to the data base or modeling machine in which

case what are the updating policies? What sort of hardware can best

support the proposed hierarchical structure and.system structure?

5.2 Studies of the Economics of Information System Design

'Traditional measures of performance (e.g., throughput, system utili-

* zation, response time, turnaround time, etc.) are potentially misleading

and may be irrelevant for the class of information systems addressed here.

63



-59-

(\

These measures address themselves only to the variable costs of an infor-

mation system. In the development of an information system there are

fixed costs (analysis cost, design cost, implementation cost of the soft-

ware, as well as the hardware costs) as well as variable costs (costs of

queries, execution of models and analytical functions). Much more research

is' needed on the overall costs of information systems, on more general

concepts of "performance," and on the types of studies that should be

_doniLitv_choosiaga- software system appropriate to the particular task at

hand.

To illustrate the point, take the simple example of the design of an

inventory control system for a large manufacturer on the one hand, and

a system of roughly the same character and complexity to serve as federal

energy policy on the other. The costs of developing such systems using

different sets of software tools are illustrated in Figure 17. The

solid lines show the fixed and variable costs of constructing either

of these two systems using a conventional package, say IMS. The dashed

line shows the cost of the same systems with tools such as those provided

by GMIS. For the more flexible GMIS-type system the fixed costs (and

thus the time to build the system) are much lower, but this advantage

comes at the expense of increased variable costs.
1

Provided the purposes for the two systems are well known and-the

operating assumptions are fixed, the two systems break even at Point A.

1

It is likely that hardware will eventually be developed to support this
sort of system, and variable costs will be substantially reduced [Madnick,
1975].

64



-60-

System constructed with conventional information management

tools.

---- - - - System constructed` with GMIS-type tools.

$

is

601.....

Figure 17

.1011011.16

4
A,

Fixed costs versus variable costs.

Fixed + Variable Cost

of, queries

Fixed cost



-61-

If the applicatibn anticipates a large volume of queries as the inven-

tory example might, then the conventional approach is preferred,
1

Of course, to the extent that information system purposes and operating

conditions change over time, the fixed costs of each system are multiplied

by some factor -- a condition which lreatly favors the types of tools dis-

cussed above.

The economics of these choices are poorly understood, and-the develop-

ment of better indices of system "Performance" is a high priority item in,

information systems researc itterlese compre ens ye n ces o per-

formance are developed, however, we expect that systems like GMIS will

receive high marks for a wide. variety of applications. Already-the system

is proving its worth in application to New England energy problems, and to

several areas of policy research in the M.I.T.-Energy Laboratory.. We hope

for continued progress on the issues and problems that remain, and look

forward to a new generation of information Management and analysis systems

that are better suited to the fast-moving pace of many corporate and public

problems.

1 A GMIS-type system may still be a useful tool (as a breadboarding system)

in the optimization of the design of the data management facility, even

with the implementation to be carried out with some other package.

a

66



Association

Bracchi, G.
System,"
Science,

-62=

REFEREt10ES

for Computing Machinery, "D TG CODASYL New York, 1971.

et. al.: "A Language for a Relational Data Base Management
Proceedings of 5th Princeton Conference on Information
1972.

Buzen, J. P., P. Chen, and R. P. Goldberg: "Virtual Machine Techniques
for Improving System Reliability," Proceedings of the ACM Workshop
on Virtual Computer Systems, March 26-27, 1973.

Chamberlain, D. 0. and R. F. Boyce: CSEQUEL: A Structured English
Query Language," Proceedings of 1974 ACM/SIGFIDET Workshop, 1974.

Cincom_Systems, lir TOTAI Rpference Manual, Edition 2, Version II,

Cincianatti, Ohio, 1974.

Codd, E. F.: "A Relational Model of for Large Shared Data Banks,"
Communications of the. ACM, vol. 13, no. 6, June 1970, pp. 377-387.

Dijkstra, E.: "T.H.E. Multiprogramming System," Communications of the.. ACM,

May 196 .

Dona an, J. J.: Systems Programming, McGraw-Hill, New. York, 1972.

Donovan, J. J.: "Use of Virtual Machines in Infomration Systems,"
Report CISR:10, M.I.T.- Sloan School of Management Working Paper No.
790-75, May 1975.

Donovan, J. J. and H. D. Jacoby: "A Hierarchical Approach to Information
System Design,' Report CISR-5, M.I.T. Sloan School of Management
Working Paper No. 762-75, January 1975.

Donovan, J. J. and S. E. *nick: "Application and Analysis of the Virtual
Machine Approach to Computer System Security and Reliability," IBM Systems

Journal, May 1975.

Drake, A. W.: Fun mertals of bability Theory, McGraw-Hill,
New York, 1967.

Dynamics Association: XSIM User's Gui ambr Mass., 1974.

,Eliiironmental Protection Agency, 1975 Gas Mile e.Guide for New Car Buyers,
2nd Edition, Washington, D. C., Jan ary 19 .

Environmental Protection Agency, 1974 Gas Mileage
Washington, D. C., January 1974.

Fehder, P. C.: "The Representation of Indepndent
Report RJ1121, November 1972.

Guide for New Car Buyers,

Language," IBM Technical



Goldberg, R. P.: Architecture of Virtual Machines," Proceedin s 1973

AFIPS National Computer Conference, vol. 42, pp.

Goldberg, R. P.: "Survey of Virtual Machine Research," Computer, vol, 7,

no. 6, June 1974, pp. 34-35.

Goldstein, I. and A. Strnad: "The MACAIMS Data Management System,"

M.I.T. Prdject MAC TM-24, April 1971.
S.

Gutentag, L. M.: "GMIS: Generalized Management Information System --

an Implementation. Description,".M,S, Thesis, M.I.T. Sloan School of

Management, June 197'

Hall R.: "TSP Manual," Harvard Technical Report No, 12, Harvard Ins itute

of Economic Research, Cambridge, Mass., April 1975.

Hatfield, D. J.: "Experiments on Page. Size Program Access Patterns,'

and Virtual Memory Performance," IBM Journal of Research and Develop-

ment, vol. 16, no. 1, pp. 58-66, Januari, 1972.

IBM: "IBM Virtual Machine Facility/370: Introduction," Form Number GC20-1800,

White Plains, New York, July 1972.

IBM: "IiM Comman Language Guide for General Users," order no.. GC20- 1804 -2,

White Plains, /New York, 1974,

IBM: "IMS,"Form Number H20-0524-1P White Plains, New York, 1968,

IBM: "APL Econometric Planninglanguage," Form Number SH2O -1620, Armonk,

New York, (Product # 5796PDW), 1975.

Iverson, K. E.: A Programming Language, John Wiley & Sons, 1962.

C- Little, J. D. C.: "A Proof of the Queueing Formula: L * Aw," Operations

Research 9, 1961, pp. 383 -387.

Madnick, S. E.: "Design Strategies for File Systems,1! M.I.T. Project

MAC TR-78, October 1970.

Madnick, S. E.: "INFOPLEX Hierarchical-Decomposition of a Large

Information Management System Using a Microprocessor Complex,"

Proceedi/pgs of 1975 AFIPS National Computer Conference, 1975.

Madnick, S. E.:. "Time-Sharing Systems: Virtual Machine Concept vs.
Conventional Approach," Modern Data 2, 3, March 1969, pp. 34-36.

Madnick, S. E. and J. J. Donovan: Operating Systems, McGraw-Hill,

_New York, 1974.

M.I.T. Energy Laboratory "Energy Indicators," Final Working Paper

submitted to the F.E.A. in connection with a study of Information

Systems to Provide Leading Indicators of Energy Sufficiency, Working

Paper No. MIT-EL-75-004WP, June 1975.

68



-64-

tMY

M.I.T. Energy Laboratory, "GMIt Primer," Working Paper No. MIT-EL-75-012,
September, 1975.

M.I.T. Energy Laboratory, "Progress Report on NEEMIS Task Order. No. 4,"
Working Paper No. MIT-EL-75- , September.1975.

Morrison, J. E.: "User Program Performance in Virtual Storage Systems,"
IBM Systems Journal, vol. 12, no. 3, 1973, pp. 34-36.

MRI Systems: "System 2000 Reference Manual," Austin, Texas, 1974.

National Bureau of Economic Research: TROLL Reference Manual, Technology
Square, Cambridge, Mass., 1974.

Pakin, S. "APL/360 Reference Manual," Science Research Assbciates,

ehicdgo, 1972.

Parmelee, R. P., T. I. Peterson, C. C. Sullivan, and D. S. Hatfield: %--

"Virtual Storage and Virtual Machine Concepts," IBM Systems Journal,

vol. 11, no. 2, 1972, pp. 99-130.

Popek, G. J. and C. Kline: "Verifiable Secure Operating Systems
Software," Proceedings of 1975 AFIPS National Computer Conference, 1975.

Schober, F.: "EPLAN -- An APL-Based Language for Econometric Modeling

and Forecasting," IBM Philadelphia Scientific Center, 1974.

Smith, G. M.: "Internal Intermediate Langauge, Version 2," M.I.T.

Sloan School of Management, Management Science Group, November 1974.

Satty, T. C.: Elements of Queueing Theory, McGraw-Hill, New York, 1961.

WARD's Communications, Inc.: IWARD's 1975 Automotive Yearbook, 37th Edition,

Detroit, Michigan, 1975.


