- 2p 115 457

" DOCUNENT RESUNE

CE 005 695
AUTHOR Donovan, John J.: Jacoby, Henry D.
"~ TITLE GNIS [Generalized Management Information System]: An
Experimental System for Data Management and o
; : Analysis. T .
INSTITUTION Bassachusetts Inst. of Tech., Cambridge. Energy

. SPONS AGENCY

IS

Lab. ‘
Federal Energy Administration, Washington, D.C.; New.

.England Regional Commission.

_REPORT NO BRIT-BL-75-011WP

PUB DATE Sep 715 : i

¥OTE 69p.; Por related documents, see ED 062 553; ED 068

: 646-647; ED 072 225; BD 072 228; ED 072 303-304; C
005 687-727; Raport of work carried out in :
association with the Alfred P. Sloan School of
~ Management and IBM . - -

EDRS PRICE HPr-30.76 HC-$3.32 Plus Postage 7

DESCRIPTORS *Computer Programs; *Computer Science; *Electronic
Data Processing; *Energy; *Management Information
Systeas; Programing \ ’

IDENTIFPIERS Generalized Nanagement Informatlion System; GHIS

ABSTRACT

The report presents the underlying software
architecture and rationale of the Generalized Management Information
System (GNIS), along with a sample demonstration (an energy analysis
problea) of its characteristics and a‘ summary of topics of continuing
research. The field-tested experimental system has the following
features: It allows on-line interactive data management as well as a
batch facility; allows for storgage of large gquantities of various
types of data; and allows the changing of data, addition of newv data
series, and modification of tables. It gives the user a simple and
consistent view of the way data is stored in the system, peramits

~ several users to select and access data according to many criteria,
allows for easy viewing of data, and contains facilities for
validation of data. The system provides facilities to interactively
change data protection, is able to store data about data, provides a
mechanism for assuring the integrity of the data, and provides
mechanisms for monitoring and tuning performance. The system provides
the user with an‘efgicient,»flexible ehvironment to specify,
construct, and execute statistical analyses and model studies, and to
produce the associated plots and reports. (GMIS is being exercised
for MISOE application.) (duthor/iJ) :

EXRRRERRRRRARRRRRERARERARRARBRRRR KRR KRR RARARRRARRRARRRARRERERRERRE KRR AR K
* Documents acgnired by ERIC include many informal unpublished *
* paterials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, iteas of marginal *
* reproducibility are often encountered and this affects the quality =
% of the microfiche and hardcopy reproductions ERIC makes available -*
*®
*®
*®
*®

via the PRIC Document Reproduction Service (EDRS). EDRS is not *
responsible for the quality of the original document. Reproductions *

supplied by EDRS are the best that can be made from the original, *
RARRRRERRRRRERERBRRARRERRRRARERRRRRRRRRRARAERRARRRKRRRRRAKKKRRK K KARK KK

ED115857

e 00s 95

”~

US OEPARTMENT OF HEALTH.
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EOUCATION

k]
THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN.
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE-
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR PPLICV

GMIS: AN EXPERIMENTAL SYSTEM
FOR DATA MANAGEMENT AND ANALYSIS

by
John J. Donovan and Henry D. Jacoby
H.1.T. \

“Energy Laboratory in Association with
the Alfred P. Sloan School of Management and IBM*
Working Paper No. MIT-EL-75-011WP

| September 1975

*This work is a result of an IBM/M.I.T. Joint Study.

:y@

OUTLINE

ACKNOWLEDGEMENT
1. History and Purpose of GMIS
2. Overview of the System Architecture
2.1 Structured English Query Lahguage (SEQUEL)
2.2 Multi-User Transaction Interfa;e
2.3 User Interfaces
3. Sample Application of GMIS
3.1 Data Manipulation
3.1.1 Data Definition Facility
3.1.2 BuTé Loading Facility
3.1.3 System Inquiry Facility
3.1.4 Query Facility
3.2 Modeling and Analytical Functions
.3.2.1 Validating Data

3.2.2 Reporting
3.2.3 Modeling
3.2.4 Stand-Alone Modeling Facility
4. Details of the GMIS Design
4.1 The Use of Vﬁ\ﬁn the Software Architecture
4.1.1 Communication between VM's

4.1.2 Extensions of the Architecture

PO R TR O

-y

4 1.3 Degradat1on of Var1ab1e Cost with Mu1t1p1e VM Operation

AL AE S Kaadba

4.2 Hierarchical Approach
4.3 Relational Technology .
- 4.3.1 Advantages of the Relational Approach
4.3.2 Basics of Relational Operators
5. Furthe; Research h

5.1 Computer and Management Science Research : .

5.2 Studies of the Economics of Information System Design

ACKNOWLEDGEMENT

The research reported here is being carried aut as a joint project of
the M.I;T. Energy Laboratory and the Ceﬁter for Information Systems Research
of the Alfred P. Sloan School of Management at M.I.T. The work was made
possible by support from an M.I1.T./IBM Joint Study Agreeﬁént, the New
England Regional Commission [Contract No. 10530680], the Federal Energy Adminis-
tration [Contract No. 14-01-001-2040], and M.I.T. internal funds.

Members of the IBM Cambridge ézientific Center and of the IBM Research
Laboratory of San Jose have greatly contributed to this work. Those at IBM
whom we are particularly indebted to are: Dr. Ray Fessel for his fhgenious
programming guidance, to Dr. Stuart Greenberg for his help ﬁith VM, and to
Dr. Frank King and his group for their work in implementing SEQUEL an& for
their cooperation and responsiveness in adapting this experimental system
to meet_ the operational needs of GMIS. ,

_ Atgfﬂew Englan& Regional Commission thanks are due to Robert Keating
for his instructive guidance in the application of GMIS to energy problems
facing New England.

We wish tc thank Dr. Robert Goldberg of Harvard for his comments in

reviewing this document.

We also wish to fecognize the assistance of the several M.1.T. students
who have contributed to the research. In particular, credit is due to
Louis Gutentag, who has bokne the major responsibility for the implementa-
tion of GMIS, and to Marvin Essrig, Peter DiGiammarino, and John Maglio,

who assisted in the preparation of this document,

6

(i)

GMIS: AN EXPERIMENTAL SYSTEM FOR DATA HANAGEHEN% AND ANALYSIS

John J. Donovan
Henry D. Jacoby

How many people”would climb aboard a trans-Atlantic flight if they
thought the airline lacked the éapability to process volumes of weather
and traffic data, and to plan a safe route? Not many, for most of us | .
'have come to expect that the very best information processihg services
will be applied in this circumstance. Yet public policymakers and cgrporate
executives are regularly faced with far more complex and serious problems
_ (pefhaps with risks that are less immediate and obvious), and must make
decisions without the capacity to manage and anélyze the pertinent‘infor-
‘mation. This happens for several reasons: Circumstances arise unexpectedly,
and under current technology there simply is not time to construct the
necessary software, or decisions may not occur regularly enough- to justify’
the cost of a normal information management system, particularly when its
useful life may be cut short by changing circumstances. ‘In this paper we
report on an effort to design and implement tools appropriate to this cir-
cumstance.
The system under development is called GMIS ﬁ?eneralized Management
Information System), and we present the underlying architecture of the
system and its rationale, along with a sample deﬁonstration of its ch;;-
acteristics. We begin, in Section 1, with a brief history of the effort .

. and a summary statement of what the system is designed to do. In order

to give a quick summary of how the system works, Sectign 2 is an overview o

of the software architecture; and then Section 3 uses a sample application ¢

Q - ';‘

to an energy analysis problem in order to describe ho@ the system is used
and rhat some of its more important features are. For the reader interested
in details we return in Section 4 to more discussion of the techniques and
methods used in building GMIS. Finally, since this is a report of research

in process, a summary of topics of continuing research is given in Section 5.

1. HISTORY AND PURPOSE OF GMIS

GMIS is being developed at the M.I.T. Energy Laboratory in conjunc-
tion with the Sloan School's Center for Information Systems Research and “IBM,
The project started in 1973 based on ongoing research in the Sloan School oﬁ
file systems [Madnick, 1970] and operating systems [Donovan, 1972; Madnick
and Donovan, 1974]. However, it has been the urgency of partigu1ar apb]i-
cations to energy problems that has shaped the work and quickened jts pace.

During the energy crisis of the winter of 1973/74, policymakers in
New England weré handicapped by a lack of information about the region's
energy economy. In response to this circumstance, the New England Regional
Commission (NERCOM) initiated a project to develop a New England Energy
Management Information System (NEEMIS). The initial plan was to develop a M
“crisis management" system to assist in the handling of fuel oil a]]pcation,
but over time (though the original function remains an important one) the
needs have grown and the»emphasis shifted. Probiems of the qFonomic impact
of high oil prices have taken on more importance along with policies and
programs to foster energy conservation. New issues Have arisen concerning
the location of major energy facilities, bringing a need for ana]ysis*of
associated economic and environmental issues.

Growing experience with the data also brought more demands on the
system design. The data are of varying quality; data collection procedures
are changing'over time, with series being dropped and added and definitions
being revised. The requirements for protection have proved complex, for

they vary with levels of aggregation and time. (For example, an oil éompany

may be willing to give out data on its aggregate transactions, but not on
details that may help a competitor.) Fina]]yf the need for a facility to
apply various ana]ytical'mode]s to the data has become more apparent.

In this circumstance, our approach has been to develop a general set
of téo]s for speedy construction and easy modification of management infor-
mation systems. Essentially, the need is for a software facility suitable
for situations where the problem addressed is constantly changing, or ;
where an information system is in its formulative stagés‘and users are
unable to specify exactly what they want the system to do, or precisely

‘ what the data streams will look like_in the future. ”

To meet these requirements, certdin characteristics of the system
seem essential: it needs to be multi-user and interactive; it should be
capabfe of storing, validating, and retrieving data; and 1é>ought to have
the capability to respond to changing data and data4§tructure, and to vary-
ing protection requirements. It should provide too]§ for coﬁstructing
ana]ijcaT and statistical models to be applied to the data, but a facility
to construct these models from scratch appears insufficient. Many econo-
mists and godelers have strong preferences for particular modeling faci]i-
ties such as TROLL [NBER, 1973], XSIM [Dynamics Association, 1974],
TSP [Hall, 1975], PL/I, EPLAN [Schober, 1974], and FORTRAN; large invest-
ments have been made in packages using these languages, ang access to these
facilities can save tremendous costs in retraining personnel and converting
existing Egyejs.i‘

Existing commerical data base systems -- e.g., IMS [IBM, 1968], DBTG
[Association for Computing Machinery, 1971], System 2000 [MRI Systems, 1974],

TOTAL [Cincom Systems, Inc.s 1574] etc. ~-- have proved their usefulness

10

in particular appiications. . But none has the range of desired charactersitics

outlined above. Some are lacking the statiética] ;nd modeling packages,
not all are interactive, and no; all can allow multiple users to access
the same data base. Most important, none was designed for a changing
environment. As detailed below, the GMIS system has taken a long step.in
this direction. Using this facility, it is possible to construct an infor-
mation system in a matter of days. For eiamp1e, in the course of work
on the NEEMIS System, chages in the New England energy situation made it
necessary to reconstruct the entire data base five time§ in one month
during the summer of 1975 -- once to incorporate additibna] data in existing
data series, twice for efficiency reasons, and twice because new data and g
models had to be added as new problems became ap rent.

In the sections that follow, we give a brief\overview of the architec-
ture of the GMIS system and then j1lustrate the systemharacteristics
by means of an example drawn from one of its ehergy applications. For
the reader interested in the details of software design, the discussion
goes on to cover more of the details of the System and ifs various components.
-Since the discussion cannot cover all aspects of the system, howeQer, it
is usefu] to summarize the requirements that the GMIS system has been
designed to meet. First, in the area of data management the current system
has the following features:

- it allows on-line interactive data management as well as
a batch facility;
= it allows for ftorage of large quantities of various types

Vaf data;

11

“

- it allows the changing of data, addi;ion of new data series;
" modification of tables (data structures);- N
- jt gives the user simple and consistent vie& of the way
“ data is stored in the system;
- it permits several users to select and access data according
to many criteria, as it is impossible to specify in
advance all the ways the data will be used;

- it allows for easy viewing of data, and contains facilities for

+)

validation of data;

- it provides facilities to interactively change data pro-
tectign;

- it is ab?l to store data about data (e.g., confidence
levels); '

- it provides a mechanism for assuriﬁg the integrity of the
data; and

it provides mechanisms for monitoring and tuning performance.

The modeling and analytical capabilities introduce several additional
features. Since GMIS provides access to such faciliites as APL, PL/I,
TSP, EPLAN, and FORTRAN, it provides the user with an efficient flexible

environment to specify, construct, and execute statistical analyses and

model studies, and to produce the associated plots and reports.

2. OVERVIEW OF THE SYSTEM ARCHITECTURE

N———— .

Currently GMIS is implemented on an IBM System/370 computer. It uses

L A virtual machine may be”

the Virtual Machine (VM) concept extensively.
defined as a replica of a real computer system simulated by a combination
of a Virtual Machine Monitor (VMM) software program and appropriate hard-
ware support. For example, the VM/370 system enables a single IBM System/370
to appear functionally as though it were multiple independent System/370's
(i.e., multiple "virtual machines"). Thus, a VMM can make one computer
system function as though it were mu]tip]e,$phys1ca11y isolated systems.

A configuration of virtual machines“used—in GMIS 1s depicted in
Figure 1, where each box denotes a separate virtual machine. Those vir-

tual machines across the top of the figure are executiT;{Brograms that

- provide user interfaces, whether they be analytical facylities, existing

models, or data base systems. A1l these programs can access data managed

by the general data management facility running on the virtual machine
depigted in the center of the page. A sample use of this architecture
might proceed as follows. A user activates a model, say in the APL/EPLAN
machine. That model requests data from the general data base machine
(called the Transaction Virtual Machine, or TVM), which responds by passing
back the requested data. Note that all the analytical facilities and data
base facilities may be incompatible with each other, in that they may run
under different operating systems. The communications facility between

L The VM concept is presented in several places [Pamlee%lf’/g? Madnick and
Donovan, 1974; and Goldberg, 1973], and many of its advantages are articu-
lated elsewhere [Madnick, 1969; Buzen et. al., 1973]. The concept of
"virtual machines" has Eeen developed by IBM to the point of a production
system release, YM/370 [IBM, 1972?.

13

-8-
VM(2) M3 vM(a) B w(s) ..., M(n) .
TRANSACT | | APL/EPLAN | | HIGH LEVEL TSP CUSTOMIZE Analvtical
INTERFACE | | INTERFACE | | LANGUAGE | | INTERFACE | | INTERFACE [{<§. ""9.%3.S3
INTERFACE, WRITTEN IN |} Machines
e-g-: PL/I d PL/I
FORTRAN .
]

MULTI-USER
INTERFACE

Transaction
Virtual
Machine

RELATIONAL
DATA
MANAGEMENT
LANGUAGE
. SEQUEL

&

§14 . |

virtual machines in GMIS is described:lin Section 4.1.1. Extensions to
this architecture to allow interfaces to other data base systems and cther
~.o:omput:elr' systems are discussed in Section 4.1.2.

GMIS saftﬁare has been designed Qsing a hierarchical approach [Madnick, 1975,
1970; Dijkstra, 1968; Gutentag, 1975]. Several levels of software exist;
where each level only calls the levels below it. Each higher level con-
tains increasingly more general. functions and rquires less user :sophis-
t1cat10n for use. The transaction virtual machine depicted in Figure 1
shows only two of these Tevels, the Multl-User Interface and SEQUEL)
[chamberlaln, 1974]. The data base capab111t1es of this machine are based
on the relational viéq\gt'data [Codd, 1970]. In this section, each box
will be briefly described. In Section 4 we return to describe some of
the technologies used in {mplementing these boxes. |

s
p

2.1 Structured English Query Language (SEQUEL)

‘We felt that the data management system would best be based on the

" relational model and hierarchical construction as this offered data
independence, integrity, and a framework for reducing complexity. As
part.of our research‘cn this topic, we proceeded with an impiementation'of
an M.1.T. relational system [Smith, 1974]. However, in the current ver- -
sion of GMIS the data management capability is based on an experimental

f re]ational query and data def1n1tlon language known as SEQUEL which has

.- - 7 been developed at the IBM San Jose Research Laboratory [Chamberlain, 1974].

In cooperation with the IBM Cambridge Scientific Center and the
IBM Research Laboratory at San Jose, we have extended this -

exper1menta1 system hy easing restr1ct1ons on the data types it could

15

 _10-

handle and relaxing constriants on>the hﬁmber of columns alloﬁed»in a
table, and by 1ncfeasing the allowable lengths of identifiers and charac-
ter strings. We also designed mechanisms for security and for handling
missing data, expanded the bulk loading facilities, added additiongl

- syntax, an& made several changes to improve berformance.

2.2 Multi-User Transaction Interface

" Two requirements of GMIS are that multiple users be able to access

om =R e

the same data;base‘and that differeﬁi analyf?bal and modeling facilities

~ be able to access the data base all at the same time. For example, one

\t

user may want to build an econometric model using TSP while another user
will request the system to generate a standard report. Still a third user
may want to query the data base from an APL [Iverson, 1962; Pakin, 1972] .
environment. ' These rgquirements:have been met with the deéign and imple-
mentation of;the Multi-User Transaction Interface [GuténtAQ, 1975]. Each

- GMIS user operates in his own virtual machine with a copy of the user
interface he reﬁﬂires. Each user transaction to the data base is written
into a transaction file, and that user's request for processing is sent .
to the data base machine (Transaction Virtual Machine) as indicated in
Figure 1. The Multi-User Inter%ace processes each request in a first-in/
first-out (FIEO) order, by reading the selected user's transaction file,
and writing the results to a reply file that belongs to-the user. Each
user interface readé the reply file as if the reb]y had been passed
directly from the data base management system. This procedure is discussed

at greater length in Section 4.1.1 below.

. 186

-11-

2.3 .uSer Interfaces

GMIS provides the capability for users‘té write their own interfaces
to commuhicate with the“data base system. TRANSACT is a genqral.Q§er~)
interface that is designed to process transactions froﬁﬁmo&t ﬁe]‘%ypewriters
and CRT terminals. It allows the user to direct transa?!i%ﬂgegﬁbut to any
virtual device on the. VM/370. . gﬁg““ .

Interfaces to APL, TSP, EPLAN and PL/I are operational and enable
users to communicate wifh,the Transaction Virtual Maéhine (Figure i)
simultaneously with all other users. " An interface to the TROLL econometric
modeling facility is in thefdésign stage.

— The archifecture depicted in Figure 1'qlso allows the use of any of

these queling or ahalytical facilities independent of the transaction: -
virtual machine.' Eor example, fqnctidns may be written ih APL\;g\S?erate

on data stored in the APL's work space. TSP modeling and reporting capa-
bilities can operate on data stored in TSP's data base. FORTRAN or PL/I can
operate on data stored in the virtual machine that they are running. It

should be noted, however, that not using the general data base facility seriously
inhibits flexibility and makes the algorithms dépendent on the physical

‘ organization of the data but more importantly inhibits the community of

usérs as they cannot conveniently access the common data base. .

-12-)

3. SAMPLE APPLICATION OF GMIS

To demonstrate the characteristité of the existing GMIS %ystem, <;
we use an example drawn from w0fk done for the Federal Energy Adminis- -
tration bn-the constrﬁction of indicators of domestic energy conditions
;{M.I.T. Energy. Laboratory,"1975].] The object of this particular
indicator was to give a picture of future trends in gasoline cohsumbtion.
It was proposed that-the,indicétor be depicted as a series or plot of the
average miles per gallon of éach month's new car sales. PoTicymak;rs could
note if the averagg,fuel efficiency of new cars was going down o; up, hence
reducing or 1qcreasing future demand for gasoline. .

The indicator is shown in Figure 2. Several points concerning the

figure and its derivatjon are worth noting:

(1) Théwplot covers the 15-month period from January 1978 to
March 1975. It is surprising to findkthat during the
"energy crisis" the average miles per gallon of new cars \
sold actually went down! We had initially expected that
during that time people would have purchased smaller, more

efficient cars, resulting in an increase in average miles

per gallon. Why did it go down? - . .
(2) Note that since the graph raises additional questions, it

becomes necessary, in order to resoives these questions, to

access and analyze the data in ways not originally

planned for.

LA

1 Marvin Essrig is requnsibTe for the initial construction of this example,

16 o)

- ERIC

*

(Miles Per ‘Gallon) .

-13-

30 75 7 PLQT ‘CARSSOLD'

47,78~

17.50-¢
!

37.2%-

17.00-

16.7%-

!
|
|
|
|
4
!
1
!
1
!
!
!
!
!
16,501
!
|
1
%
1
!
1
!
1

16,25+
- v
»
16,00~
. ! I | ! |
e 2. . s
Jamary 1974 -
@,

ARSCISSA s TIng SYAHTIJGﬁllon 1078 3

o = SARSEOLY .

.

H

.

mEigur‘e, 2.

/ r

19

.

-

Y

.

Average Miles per Gallon of Cars Sold in a Month

- -14-

(3) The %Fta from which }he.graph is derived comes froé'a
variety of sources, each using different terminology and
dissimilar means of presentation. .

(4) The data is both numeric and non-numeric (e.g., name
of models of cars). .)

The remainder of this section shows hoy‘GHIS was used to construcf and
analyze this indicator. Two user interfaces of GMIS will be used:

(1) TRANSACT is an interface to the data ﬁapagement ‘

level (SEQUEL), which includes a Data Definition ghguage

(DDL) and Data Manipulation Language (DML) ’Tai;.level

can be used to: ° ’ Dy

- restructure the data,
- input the data, and
- query data. ') !
(2) APL/EPLAN is the an]aytica], modeling, and statistical
level, whicﬁ‘resides above the multi-user interface
(Figure 1). EPLAN is a set of routines imbedded in APL [,/“\

\ -
for doing statistical functions and reportinq.]

3.1 Data Hanigu]ation

An example of creating a table and inserting data into it via

TRANSACT-SEQUEL will demonstrate how a user stores data in GMIS. Note
that'all data are viewed as residing in tables, as in the relational model
of data [Codd, 1972]. " The tables have columns whose entries come from sets

of elements called domajas. Figure 3 is an example of a table.

! EPLA& is now available as an IBM product under the name "APL Econo-
metric Planning Language" [IBM, 1975]. 20

-15- .

Model Date Sales MPG

Cadillac | 1/74 9,948 | 10.9 |

| vesa | /74 | 33,600 | 30.2
Pinto 1/74 35,531 28,0 | e . -

Pontiac | 1/74. |10,170 | 13.8 (€

Figure 3. Sample Table

’

-

3.1.1 Data Definition Facility

A data structure is created in TRANSACT by using SEQUEi commands]'by
first defining the desired domains, then declaring a group of columns
to be a table, and finally, inserting'data into the table.
The interactive session to create the table presented in Figure 3

is found in Fiqure 4, where the commands shaded are user inputted. 1
The first four commands establish the existence of the four domains:
(models), (vol),/(date), and (mpg). The domain 'model’ will hold information
stored as charactérs, while 'date', 'vol', and 'mpg' will consist

- &

of numeric data.

1 A complete syntax description of TRANSACT and SEQUEL commands s
available in a GMIS Primer [M.1.T. Energy Laboratory, 1975].

I

g dowdTn s | S
DOH DEFIN]TIO“ WAS SUCCESSFUL .

feroate donalh mode 1™ Tehar); &~
DOMAL L DEFINITIVLLVAS SUCLESéFUL.

..... vy -

Fcreate domalin vol{

Ny ;.
DOIIATH DEFINITION VAS SUCCESSFUL. DEFINES FOUR DOMAINS

Pcteate uoialn’ mpg TMGEEs
DONAIH DEFIhITIOh \IAS oUCCESSFUL.

READY; ©

* (data}j

. (vol)d

" (mpz il : e
TABLE DEFINI T10(T UAg sﬁccgatC)f . .
READY;
[v POy PRGN F s T amml,-) :
’ dﬁﬂﬁﬁiﬂﬂi&&iluﬁ§3“iﬁf,JIHEL

INSERTION {IAS SUCCESSFUL.

READY;

INSERTS DATA 1NTO A TABLE

MODEL DATE SALES MPG

VEGA - 7401 38455 302
READY;

gﬁ{,,g,r sal e m ‘”‘3

UPDATE VIAS succsssrUL. ‘
UPDATE DATA ALREADY PRESENT

READY; o] :
Rilat A COMIEN 416 T [N A TABLE
<t . S
MODEL DATE SALES MPG
VEGA 7401 33600 302
“READY;

Figure 4. Example of Table Creation and Data Entry

i

22

LI SR

{ A

- reflected ~in the output from the next SELECT command

-17-

The neit command creates a table called CARSALES. The first column
is labelled MODEL, and entries in this column will be classified as .-
belonging to the set (or domain) model. The other three colums
are defined in a similar fashion, where entries in the cofﬁmn sales are

the volume of cars sold during the month entered in the column date,

The INSERT statement of Figure-4' results in the fnsertion of one i
éntny into each colum of table CARSALES. The SELECT * command results y

. in the printing of a1l entries in table CARSALES. ~The UPDATE command :

.\;

resu]ts in changing one entry in the table. Note that the change is

3.1.2 Bulk Loading Facility.

Suppose that a great deal of data were to be loaded into table
CARSALES. Inputting it via the console, as in the previous example,
would be prohibitively slow and costly. .A bulk 1oading facility has
been implemented to reconcile this matter. A series of data cards and
their appropriate header cards for input into the bulk loader are
shown in Figure 5. The bulk loader will accept these cardé, define the

indicated domains, create the table, and insert tﬁe data into the appro-
" priate columns of the{;391e For a comp]ete explanation of formats and ‘

S w Ak

B

“uses of the buTk Toader, see the ~"GMIS Primer" [M.I.T. Energy Laboratory,
1975].

s

carsales data

SDRFDON
$DEFDON
$DEPDON
SDEFPDON
$DEPTAB

$PRIKTY
$LOADTAB

SENDCOL
CHEVROLET
CORVETTE
CHEVELLE
CHEVY NOV
SPORTVAN
MONTE CAR
CANARO
VEGA

) PONTIAC
GRAND PRI
PIREBIRD
YENTURA
OLDSMOBIL

$ENDLOAD
SEEDINP

-

NODEL CHAR |
YOL non
nPG nON
DATE NUM |
CARSALES -
MODEL NODEL
DATE DATE
VOLUNE VoL
NPG BPG
MODEL pDATE |
CARSALES ~
MODEL 1
DATE 1
VOLUME 1
NPG 1
12647401
1547401
1797401
A 1877401
. 1527401
L0 - 1497401
1797401
3027401
1387401
X 1037401
1797401
1217401

E . 1107401

DEFINING
THE DOMAINS

DEFINING THE TABLE
INCLUDING THE COLUMNS
AND THE PRIMARY KEYS

N
@
- eh - b
w
E -

33108
2078
21175
21468
1370 DATA
15668 _
8787
38455
10170)
4042)
36 66 o
4890 . -
10533 :

Figure 5. Example of a File Ready for Bulk Loading

FORMAT CARDS
DESCRIBING

-19-

3.1.3 System Inquiry Facility

The TRANSACT-SEQUEL 1evel has a number of "system commands" for
inquiring about tables aé opposgd to their contents. For example,
Figure 6 demonstrates some of these commands. The first command 1ists afl
tables that have been created. Note that the system created three tables
“ (INTEGRTY, DOMCAT, and CATALOG) for its own use. The next command lists
information about the table, CARSALES, where the system response lists the

name of each column, the domain from which the entries for that column are
taken, and the data type of each column (either "CHAR" or "NUM"), The next

command lists information about domains,

(' 3.1.4 Querys Facility

Figure 7 illustrates queries to the tables that haye been created.

»
A1l queries start with the word SELECT. The first two queries ask the
system to 1ist the contents of the tables CARSALES and MILEAGE. fhe rest
of the queries contain a "WHERE" clause which allows the user to select
—

only data that meet certain requirements. Note that the SELECT command .

may be used to specify querigs that require data from more than one table.

The general form and syntax of the SELECT command is found in the “GMIS

Primer" [M.I.T. Energy Laboratory, 1975],

INTEGRTY

NANE

- o -

MODEL
DATE
SALES
NPG

LIST OF DONAINS:

L]

DOMCAT

CATALOG

NA NE

- - -

RELNANE
CNANE
COLNANE
DONNANE
SYSCHAR
SYSNUR
DATE
NODEL
YOL

L) 4~
BAKE
nrG

Command to list all tables

List all domains defined by user

Response:
List of

LIST OF TABLES :
~ tablcs

CARSALRS MNILEAGE ‘Cglblrl

Command to describe
table named CARSALES

A

DESCRIPTION OF TABLE CAESALES
DOMAIR

- e -

TYPE

CHAR)
NUNM :
L1}
L) |

TYPE ; ~

- o

CHAR

CHAR

CHAR

CHAR

CHAR

yon

NUN

CHAR

nU N
LT
CHAR
CHAR

Figure 6. Examples of Inquiries about Tables

A

; » -21-

mODEL DATF SALES MPG

- ok - - - - propp—.

VEGA . 7401 313600 30.2,

CHEVROLET 7401 33103 :gz .

CORVETTE 7401 207 J ,

CHEVILLF 7401 21175 179 E:E?leéA;gALES

CHEVY NOVA 740> 21464 187 '

SPORTV AN 'mgi.;,t 1370 152,

NONTE CARLO 74017 15668 - 149

CAMARO’ : 7401 <y, 8787 179 -
—. PONTIAC 7401 % 10170 . 138

GRAND PRIX 7401 ° - 4042 103

L3 .
: ;
W
: N

MODEL YEA* MPGCITY . MPGHNY MPGAVG

GREMLIN | 1975 : 19 24 210
HORNET 1975 18 24 203
MATADOR 1975 14 19 159
APOLLO 1975 16 21 179
SKYHANK 1975 19 25 213
CENTURY 1975 16 24 188
LESABRE 1975 12 16 135 .
ELECTRA 1975 4 1 . 128

.

Figure 7. Sample Table Queries

BPGAYVG
..... R - -
210 .
ggg:g;u - 203 List all models where
SKYHAWK 213 average mileage is - o R
: between 20.0 and 30.0
MONZA ' 222 R
PINTO ' 209 '
AUSTANG - 209
STARPIRE 213 “ .
. VALIANT 200 ~
ASTRE 222 ‘
MUSTANG 247 - : -
PINTO 280
* 4

AVG OF MPG
IS 15.5

THE RESULT OF YOUR QUERY IS:
155

Sclect the highest MPG

THE HIGHEST
MPG IS A VEGA

MODEL YFAR MPGAVG
VEGA 1974 30.2

3.2 Mode]iggﬁend Adalytic Functions

3.2.1. Validating Data. The data for this example indicator came
from many seurceé. Data in the table CARSALES came from "Ward's Auto-
mobile Reports" [Ward's, 1975]. The data in the table MILEAEE came from

" two Environmental Protection Agency documents [EPA, 1974; EPA, 1975];

" and the 1975 data was from a similar document entitled "1975 Gas Mileage
Guide for New Car Buyers." ‘ -

The data stored in the niLEAbE table was entered (using the bulk
Joading facility) as it appeared in the 1974 and 1975 EPA documents.
However, inconsistencies resulted from two factors:

(1) Miles per gallon (mpg) for 1974 data was a single numberlaverag-

\ ing city and highway driving, whereas da£a for 1975 was two num- -
bers reflectmng both city and highway driving.

{2) There was a 5% change in the method used by the EPA to determIne

.& _the mileage values from 1974 to 1975.

Let us aemonstrate the interaction between a modellng facility and

o {
the data base facility by normalizing the data to reflect the inconsistency

in (1) above, thus allowing fair comparison between 1974 and 1975 mpg data. We
perform the following three steps using the APL level: (The reader
l should keep in mind Figure 1, depicting the relationship between the two
virtual machines, one running APL and the Transaction Virtual Machine).
(1) Extract data from the data base facility.
(2) Performﬂa correcting function on it.

(3) Insert the corrected data back into the data base facility.

29

Figure 8 exhibits the console session to perform the above three

e tasks. Our strategy is to convert for each model the two 1975 numbers
(mpg in city driving, mpg on the highway)ﬁinto one comparable to the one

1974 number.
(1) To extract the data (city mpa, highway mpq for each model
for 1975) we use the QUERY command of Figure 8. The QUERY com-

mand is a function that has been added to APL to interface
between the two virtual machines. The APL QUERY function passes

the*given SEQUEL command in quotes to. the Transaction Yirtual

Machine. The TVM then gets the Qata ;nd passes it back to the
APL workspace and APL prints the names of the vectors passed
back, in tﬁis case MODEL, CITYMPG, and HHYHPG.J The software
mechanisms for accomplishing this communication are triﬁsﬁareét

to a user at the APL level.. They are described later in Section 4.1.1.

(2) The following function was performed on city miles per gallon,

and highway miles per gallon to get one value that was consistent

A4

with 1974 values.

.45 | + 255
“AWYMPG T CITYMPG_
In Figure 8 function (1) Qas enQbked by typing its name, 'CHANGE'.
ﬁ‘ For the reader's information we listed the APL implementation of 4
' function (1). Note that the APL- implementation not only performed
function (1), but it also created the necessary QUERY command to

! insert the new data back into the data base.

Q ’ 30

s - HoDEL - SELECTING
- . mRYNPG DATA FOR 1975 ,

/_ RETURNED-VECTORS
CONTAINING INFORMATION . ‘
MILES PER GALLON ~ -

FUNCTION "CHAMGE"
TO CORRECT
AVG MPG DATA ANKD

PLACE IT BACK

INTO TABLE
T\

REQUEST LISTING

VCHAH(‘I' I.‘:l‘C'D' H OF ”L .> .
FUNCTION CHANGE : 4
- (1] I+1
c £21 A+'UPDATE MILEAGCE SET HPGAvc }
£3) C+' WHERE NODEL = - -
(4] B+' AND YPAR = 1975;' FORMULATE \ ;
- sl LA4: N+O. uswUYHPGrI] SEQUEL SYNTAX)/ n OF EQUATION 1 $
(6] M1+0.554CITYNPGIZ] FOR UPDATE AND MECHANISN
| S SE B by « |} To sToRe DATA
“ £3d NN BACK INTO
° Rewlt :
£10] De'''*, (TRUNC NODELLI31),''"" : DATA BASE
€11) QUERY A,B,C,D,F CONCENTRATE FULL UDPATE
(12] I«I+d SEQUEL COMMAND (COMMAS -
- = - [13] ~(IspNRGAVG)/LA > PERFORM-CONCATENTATION) :

AND PASS QUERY TO SEQUEL\}
FOR INSERTION OF COR-

RECTED VALUES BACK

INCREMENT COUNTER
AND 60 BACK TO
STATEMENT [5][6]
UNTIL FINISHED TARLE

. Figure 8 : Example Cleaning of Data

The rea&er'who is not familiar with APL can use the comments of the
listing. It is not necessary for readers of this paper to thorougﬂly
» understand APL. For those who wish to do so, the references [Iverson, 1962;
Pakin, 1972] canvbe.consu]ted. - '

A similar function was applied to correct the 5% difference in data

repbrtfﬁg of (b) above.
| 3.2.2 Reporting 7 ’
A GHIS user has the full reporti&g capabilities of any of thé modeling
or ana]ytita] facilities at his disp;;al. For example, a GMIS user can
employ the APL/EPLAN fac5{§§y q§£9 report generator and to produce plots.
To produce the 1nd1cator blotteﬁ in Figure 2, the following steps were

followed.

(1) Use the QUERY command to extract the desired data
an
(2) Execute / APL function to calculate the average miles per gallon
of all cars sold d%ring a giveh’month from the data in the three

created tables using the following formula:

Vol x Mpg;

Average Mpg. All Cars =
) }%: Vol,

) (3) Convert the resulting vector into a time series.

(4) Use the EPLAN plot facility to produce the PLOT of Fjgure 2.

s

As was discussed in Section- 3, this plot raises several questions.

why did the average miles per gallon of all cars sold during the months .
of the energy crisis go-doun? ‘We had expected that it would go up because

people would have bought h)gh mileage cars during a shortage of gaso]1ne.

- «

-

One possible exp]anétfon is that the wealthy were relatively
unaffected by the energy crisis and thus they continued to bpy 1arge,_
luxurious, lower mileage cars. This may have resulted in a dispropor—
tionate smaller number of coﬁpact, low-mileage cars §old. ;599theth -
explanation might be ;hpt the car dealers, seeing an end‘to'thekpspularity
of large cars, lowered prices’on thesé$models éreat]y, thus ;hdgcjng a &
larger than eipected sale of these cars. - Another is that }orefgn'compacts
(which we did not inciude) encroached on the sale of American compacts. .
In order to resolve these questions, it becomes necessary to access
the data in a different way than we had initially expected. A p10t of
the §glgé J% a luxury car‘(e.g.,tCadillacs) and the sales of a compact
(e.g., Valiants) over tﬁe same period would indicate how the sales 6f
these groups behaved during that period.
Again, operating on %hg modeling level, the following three steps
are taken (the corresponding conso]e_sessiom is shown‘in Figure 9).
(1) Extract the data using QUERY commands
(2) Convert the data from a vector to a time series using the

APL gflfunction],,e.g.,

(3) Use the EPLAN PLOT function to produce the desired plot,

[} »

1 In APL al1 function names, such as DF and PLOT, are underl , as can be
seen in Fgiure 9. Since variable names cannot have spacesin them, under-
“scaqres also are commonly used to clarify variable names, as has been done

“with CADILLAC_SALES in the figure.
33

- =28

SAYED 13:45:58 os'l‘t-nns
EREHRER .

YOLUNE

¥ You
G Lhi’ﬁ .=] W

Similar procedure
for Valfants

- L.

o

o \ao 38 5 PLGT 'CAUILLAC_3ALXS.VALIAZY_5ALA3* -~ Plot Function

]
40000-1
|
i
]
]
4 30000-
8 |
S |
° I
20000-1 .
g T . .
~ 1 .,
° i /
g ' ’ Y,
1'°0°°= [y . ‘.
' *
I
¢ } a - P YL LT T T weetesavaccaan P Y Y]
R VUV TV 0 0 1 Months
l I ; : l ' [io 12 14
Jan. T4 . ,
»
ADSCISCA = TINR SYARDING FPol 1874 1)
0 3 CADINLAC_SALES ’ ~ fow .
o & YALINIP SALES .
. -

Figure 9. Using the Plotting Function for Reporting Data

X

34

~29-

Note that the plot has car sales on tﬂe vertical Axis and months on
the horizontal axis. The ‘o' denotes Cadillac sales, the '*' denotes
Valiant sales. hfigure 9 reveéls thatﬂthe sales of Valiants showed a~
definite downward trend staréing from about the fifth month of 1974,
while the sale of Cadillacs remained relatively constant. :

3.2.3 Modeling

In recent years increasing emphasis has been placed on the use
- of models tovaid in policy decision making; A model is rqygh]y defined
as an incomplete representation of a system, whére the purpose of the
model governs which elements of a mode]‘cap be adjusted to simulate a
;eal world change 1n‘poliqy. The results 6f the si:yﬁation can ghen
be studied and compared with other simulated courses of action b;fore
a finaf»d§CiEi;n to effect change in the actual system is made. ~

Another useful feature of a model is that it serves as-a facility
through which relationships between e]emenfs of a system can be explored.

. We can illustrate this‘capability'by performing a simple analysis of the

data already introduced in this example. Suppose one wanted

to 1nvéstigate the mnthematicpl‘relationship between average
miles per gallon of all cars sold in a month with’that of all cars sold in
som; previous month. A correlation matrix depicting the strength of the |
relationship between average miles per gallon of all cars sold in a month

' with that of the previous month, and with 7hat of two and three months ago,

gives an insight into how a mathematica}Jﬁbdel of this relationship might
behave. The EPLAN.CO R and LA G functions have been applied to the availab]e

data resulting in the corre]at1on matrix show in Figure 10.

"PGt j H;Pat_] "\th-z H‘PGt"3
. [-
. v HPGt 1
HPGt) .62 |]
. Wpst 2 "-04 059.']
4
MPG, 5 | =09 .39 .88 1

Figure 10: chrelation Matrix

Inspection of Figurgjﬁo reveals that one ought: to expect that the
average miles per gallon of a]] cars sold in a month is somehow strongly
related to the average miles per gallon of all cars sold in the previous
month, but does not appear to be highly correlated with the figures from
two or three months ago (a correlation coefficient close to +1 1s regarded
as an 1ndf§at1on of a strong relationship between two variables, whereas ' |
a va]ue of 0 indicates a weak relationship). To explore this relationship
further, an ordinary least squares regression analysis is applied to tne
two variables using the EPLAN R E G function (Figure 11). More precisely,
wé seek an equation of the form:

36

AVG MPG Of CARSSOLD, = o(j+ (' AVG MPG of ¢ARSSOLD,

-

The estimated values of the coefficients a(E) and q’] from the table in
Figure 11 are 4.928 and 0.706, with standard errors of 3.2 and 0.2, res-
_pectively. The fourth column of the figure deﬁict's the T statistic for the

estimated values of of arld L S _

L
% WITH:

COEF/VALUE/ST BRI?/T"STAT. X

1 4,92827 3.19856 1.54078
2 0.70615 0.19011 3,71443

il0 OF VARIA3BLES.eeeessss 1.,00000
N0 OF OBSERVATIONS .eees. 13.00000
SS DUE TO REGRESSION 1.235413
55 vUe TO KESIVDUALS..... 1.03177

E'-STATISTIC¢ c‘ccclccccccc 13.79701 Y
STA[’IUA‘?D ERROR. s es 0000 0-30525

‘?*2 -§TATISTICO/A.IOOOOIOI 005561‘0

R%2 CORRECTED s eevassees 0.55640
DURBIN WATSON STATISTIC. 1.10338)
CARSSOLD+ (4,928 5 L21) 2 (0.706T (1 LdZ CARGS0LD))

*

Figure 11.: Sample Regression

. of - .

Based on the results/this initial exploration, more complex formulations -
may be devised to help e)ﬁain the behavior of the sales of different car
models over this period, and all would be constructed in the’ manner shown

in Figure 11. Moreover, once underlying behavioral relations had been
estimated, it might be desirable to build a simulation model to forecast/ \

37

automobile fuel consumption in the future. Once again, all the programming
tools and higher-order simulation languages ‘could .be made

available through the system outlined in Fiéure 1, with access to all the

data and estimated relations produced in thé’course of the analysis.

4. DETAILS OF THE GMIS DESIGN
There are three basic features of the GMIS system that giVe it its
. flexibility: (1) an overall system architecture making use of the
(1argely untapped) power of VM, (2) construction of the system within a

hierarchical framework, and (3) the use of a relational representation

——

of data. Section 2 gave a brief introduction to these features, and

here we discuss the role of each in greater detail.

4

4.15~The Use of VM in the Software Architecture

. Through the use of the’VM concepts and the proposed architecture of Figure 1,
a number of the important features of GMIS become possible, or much

* easier to implement: e | . =
' ’
. (1) Multi-user coordination of access and update to a central data
base. |

. (2) An environment where several different modeling facilities can
- access the same data basﬁlkﬁ
(3) An environment where several different and potentially incompati- s
ble da;a management §ystems can all be accessed by the same user
models or facilities.

(4) Increased security and reliability [Donovan and Madnick, 1975].

VM also has disadvantages, the primary one one being the potential increase
in overhead costs associated with the synchronization and scheduling

of the yM system.

39

S .

”

7 Figure 1 dep1cts a configuration of virtual machines operat1ng on a
single real computer. At the present time PL/I, FORYRAN, EPLAN/APL. and
TSP are the only facilities interfaced with the data management system.
Work is under way to bring TROLL to this status. Some ef[these modules
operate under ‘a different operating system but are made to run on the same

physical machine using VM/370. A1l the modeling or analytic virtual mathines

may request data-from the general data management system. 'Ih”fﬁ1§‘§EEEibn

we discuss the techniques we ysed to fac11itate the ¢ unications between

these virtual machines, performance ana]ysis, and proposed extensions
to this architecture.

4.1.1 Communication between VM's h ' .

part of the IBM/MIT Joint Study a multi-user interface on the data

base machine has been imp]emented [Gutentag, 1975]. This

interface alluws severa] users (programs running on the VM's) to access the

single’ data base system. Note that for this sectjon a. distinction is made

between a human user and a "user" of the multi-user interface, which is

usually another program. N h
Essentially what is needed 1s a means of bassing commands and data

to the data base machine, returning data, and a locking and queueing

Techanism. One way to pass datd is to use virtual card readers and card

phnchers. The data base virtual machine would be ?n wait state trying. .

to read .a card from its virtual card reader, the analytical machine would

.
punch“the commands on the virtual card reader that would be read by the data
base VM. This mechanism is inefficient, however, and does not alloW flexi-

ble processing algorithms.

40 : .

fhe mechanism implemented in GMIS is as fofious (note that this
mechanism is invisible to a modeler when he envokes the APL/EPLAN Tevel)
command QUERY, as this tommand autdmaticaIIy envokes the mechanism). Each
user vintua] machine (UVM), which is accessed by logging on to a separate
account ID under VM/370, sends transactions to the Transaction Virtual
Hachine through a communications faci]ity (described below). The HuTtia

User Interface (MUI) stacks these transaction requests and processes them

one at a time. The resu]ts*of each transaction are passed back tc the
virtual machine tnat made the request through the same commhnications
facility. Replies to the transactions may be processed with an{ software
interface that is require&‘for the app]ication The APL/EPLAN 1nterface
%%écnssed earlier has been 1mp1emented in this manner, \\1

The best-way to explain how “the MUI works is to follow a user's

* virtual machine's transaction throngh each processing step. Refer to)

Figure 12 for an illustratidn of the transaction processing scheme de-
scribed below. Each user virtual machine nust have a small virtual mini-
disk attached to it that has been supplied with a mu]ti-wnite password,
1his password allows more than one virtual machine ta link to the disk
with read/write privileges (6therwise,‘VH/370 only allows -one user at a
time to link to a d¥sk with writing privileges).

When a user's virtual machine wants to send a transaction to the data
base, it writes the transaction onto its multi-write disk in a cms! file

that is reserved for transactions (steps 1 and 2 of Figure 12). The user's
’ ' ” ™

]

&

‘av~—l'CMS [1BM, 1974] is an operating system commonly run under YM/370, .

-3- @

UVM SIGNALS TVM BY PUNCHING
‘A CARD SPOOLED TO TVM'S VIRTUAL
CARD READER

£

VIRTUAL
CARD . -

VIRTUAL
: CARD
READ/PUNCH

£

@ TRANSACTION ENTERED TVM READS CARD AND
. FROM CONSOLE TO UVM GETS ID OUT OF THE
. UVM AND REPLY FILE
 FORMAT
LN USER S
" [consoLE - | VIRTUAL €¥Q¥SQETION
t NPk 'gﬁgﬂg“f of| MACHINE
. ’,” (TYM)
/
7 ®
- /
@ UVM WRITES THE s/ "TVMLINKSTO | *-
TRANSACTION TO / UVM'S TRANSACTION
A FILE ON ITS DISK AND READS -
TRANSACTION MINI-DISK FO 7 TRANSACTION
FILE TRANSACTION FILE
. AND REPLY
] - FILES
Figure 12a. Sending a Transaction Request
- | = ® TW SIGNALS UVM THAT TRANSACTION
"HAS BEEN PROCESSED ‘BY PUNCHING
, "CARD AS IN STEP (3)
- ; VIRTUAL : " VIRTUAL
CARD ~ T“ CARD
. READ/PUNCH =€ ‘ READ, PUNCH
"~ 1
- CONSOLE ‘ 1. UM p TVM
/s
.
/
T e
® UVM READS REPLY s @ TRANSACTION
’ 70 USER . TO UVM REPLY SEQUEL
FILE BY TVM
. . A /’
Lo

-37- ‘

virtual machine must then siénal to the MUI that it uahts its transaction
_to be processed This is done hy directing the VM/370 Control Program (CP)
to send all output from the user“s v1rtua1 card punch to the virtual card
reader of the TransactIQn Virtual‘HachIner(TVH). The user's virtual machine
then punches a single virtual card-containing two .items of ihfdrmation:w
the ID of his: virtual machine,iend a code indicating the type of file
format that the MUI must use when passing the trensaction reply back tof}
the user virtual machihe‘(etep 3).
| Each card punched by a user‘ts actually a‘request to the MUI to
process a transaction reeiding in the user's transaction file. These
~ cards are stacked in the card reader of the TVM, and are processed dne at
a time, where the first card stacked is the first tolbe processed (FIFO)
(step 4); ' | :
;he MUI is always running in a wait state or procegsing transactions.
When a card is received by the TVM's virtual card reader, an interrupt is
generated that activates the MUI" to begin reading‘from‘its card reader.
To read the user's transaction, the MUI must first access the user's

transaction file. This is done by first linking to the multi-write disk N

fthe viTtuaT wachine given-by the10-on-the-transactfon request card:

(The multi-write disk is always attached at the same virtual address; in

the current implementation, disk address 340 is used for all transactﬁon

files.) The disk is then aéhessed by the MUI, and its SEQSTAT SEQUEL

file is read (step 5). It should be poted that the SEQUEL software level
! _ ;

provides a file reading capability,

43

-38-

After the transaction has been processed b§ SEQUEL in the usual
manhner (step 6), ihe MUI writes this reply on the user's multi-write Qisk
in a file called SEQUEL REPLY (step 7). One of several file formats may
be used, depending on the user's software énvironment.» Three geﬁeral
formats Have been proposed that wi]f satisfy all curreﬁt]y anticipated
GMIS requirements. One format is to be read by APL brograms, another
format will be compatible with TROLL files, and a third format will be
compatible with any language that can process sequential CHS files (e.g..
PL/I, FORTRAN). The user's,transactionirequest card indicates which fi]e

format is to be used by the MUI.

The TVM then punches a virtual card to the UVM to signal completion
of transaction processing (step 8), Finally, the UVM reads its SEQUEL REPLY

file, and processes the transaction result in‘its own environment (step 9).

4.1.2 Extensions of Architecture

The following three extensions to the architecture of Figure 1 merit

further investigation.) '
Incompatible Data Systems. Figure-13 depicts an gxtension of the

architecture that would—attowdifferent-and-perhaps—incompatible-data
base syﬁtems to be accessed by the modeling facilities. The general data
base system would act as a catalog for data stored in the decentralized
‘system. The data management virtual machine acts as an 1ntérface,
ana]yzingithe data query and funneling it to the appropriate data base

management system. These mechanisms could be made invisible to the user,

who can use the system as though he had all the data in one "virtual"

data base. The implication of this extension on synchronization, data

updating, and performance must be further researched.

411

i L S e
-39-
- H -
User 1 ‘ User 2 User 3
Modeling ' Modeling | -Modeling
: facility facil[Sy . facility (I
1 2 | - 3 '
__Modeling or Analytical
Machines B)
General
. .Data Base Data
| Machine Base
, Machine
v' :
o “loatasase | | pata Base | {oatadasel 00 .
System System . System
1 2 3
- Incompatible

data base management machiries !

[}

Figure 13: External Architecture

.
e

H

L

b ?

Standardization of data basgrsystems. It may be useful to place

user interfaces that are syntactically and semantically equivalent to existing
* data management systems (e.g.’ IHS,aTOTAL) above the general data base M

system of Figure 1. This would allow data to be inputted and validated in

a data system with which a user is familiar, and then- stored in a stan-

A

dard1zedygeneral data base system.

-) Decentralized/centralized data bases. The advantages of decentra-

lized data bases. are that they are ysually maintained by. the people that
are using them. The advantage of a centralized data bese {s that many
groups of people can access it. The above architecture may be extended

but to other remote computers

|
\
to interface not only with data base and modeling systems running in' -
other virtual machines,/including non-IBM equipment.. The implication of i

this extension on data updating and networkiﬁg problema must'be dnvesti~

qated with further research. ' ' o o

-4]-

&
- »

4.1.3 Degradation of Variable Cost with Multiple WM Operation

The cons truction, of a system of communicating VM's brings great
advantages, but these come at the expense of some sacrifice in perfbrmance L
Various performance stud1es of VM's are available in the literature
{Hatfield, 1972, Go]dberg, 1974], and we are engaged in a theoret1cal
and empirical analysis of the degradation of variable cost performance

as a function of the number of model1ng machines [Donovam; 5]. The

Figure 1, where several modeting facilities, each running on a separate
virtual‘nachine, are\aécessing and updating a data base that'is managed by “
a data base management system runn1ng on its separate virtual machine. _What
s the degradat1on of performance with each additional user? What
- determines the length of time the data-base machine .takes to process a
request? Hhat is the best locking strategy?
An access or update to the data-base machine may be 1n1t1ated e1ther
by a user query, which would be passed on by ‘the modeling machine, or by
& model execut1ng on the model1ng machine. In either case, the data- base
machine while processing a request locks out (queues) all other requests.
The analysis is further complicated by the fact that as some VM's become
locked, then others get more of the real CPU's time, and therefore

generate requests faster. However, the data-base VM gets more of

! Here we are address1ng the 1ssue of variable costs. Later in Section 5.2
we address the more important issue, fixed costs, for applications 1ik
those addressed by the GMIS*system.

. R 3 .
-42. ’ T .

the CPU's time thereby 6rocessing requests faster. Fer example, if there
are ten virtual machines, each one receives one-tenth of the real CPU.
However, if.seven of the ten are in a locked state, then the remaining
three receive one-third of the CPU. Thus, these three run (in real time)
faster than they did when ten were running. '

To try ‘to amlyze this circumstance forl the uses outlined in this
paper, we have assumed that the virtuai speeds of VM's are constant and
equal. However, when some VM's (including the data-base VM) arywall‘o-
cated a larger share of CPU processing power, they become faster in real
time. We assume.that each unblocked VM receives .the same amount of

" cPU processing power and at the initial state m maehines are running

(i.e., the data base niachine is stopped if no modeling machines are

- ik A -

making requests). 'A'is the request rate of each modeling VM when there are

“m VM's running. 'p' {15 the service rata_at which the data base virtuel
maching is running when there are m-1 modeling VM and one data base WM

running. Thus, we may write the relations: ' T
- ". - : | u1 = ——?—;-T u (:i =]9. 29}-0-0‘“’)
/ m-
/ T he = A -
m A (’ - Io 20 .--cﬂ)

where i is the number of modeling W's being blocked. Using a birth/death
process model [Drake, 1967], and using a queueing analysis [Little, 19611,

_we get the following for the response time of the model: where P1 is the

steady state probability that there are i modeling machines waiting, and
'N' is the number of modeling machines.

m-1
z m-i)
' : P
T mode1 ™ i=0 1
m-]
b4 Pi (“') As
) . 1'0] -
T'overhead = constant
m ' ;
] - =
T wait-for-data N+ —151—-———
o M
') A o
T total ~ T overhead T” weit—for-data

*

Figure 14 i1lustrates the total time to execute three different models

as a function of the nwmber of modeling VH‘s. Let us consider some of the

implications of the above analysis. B B N

19

, N
, : ‘
. A = speed of model .
(- = speed of TRANSACT -
- * ,
: -~ '
~ A . e /'/‘ T total , .
 CUST L Mgl /////
total | =" 7 7 : -1
R
100.0 Mu=0.2 7,
rd
‘ 27,7 Mmoo
/// /
: -——“"” /// »
~ . / -
50.0 - e
/
p [/ 1 #,
”
- 1 _.~
‘ v r 71 LN S SN A SR AN SN 1 3)
0 5 10 15 .

Number of Modelling Machines or VMs

- * 4
Figure 14. Total Elapsed Times-for a VM Configuration

-45-
First,‘for aius= :1, a mode] executing in a configuration of one ﬁodeiing
machine takes 110 units of time to execute. When the same mode[, run in
an enviroément of‘10 modeling machines aT]'erecuting,simiIar models, takes
approximate]y 135 units of time to execute --a degradation of performance
of slightIy more than 15 percent. Intuitively, A denotes the speed of the
modeling machine, and u is the speed of the data base machine. Thps a
situation where A/u = .1 indicates that the data base machine is ten times
faster than the modeling machine. From the same figure with ratio of A/u =1,
a mode]l executing with a configuration of one modeling machine takes 20 units
of t1ﬁe whare with ten machines the same model takes approxiwately 90 units
of time -- over four times longer. o . FQ\\\\\

1f such a degradation of performance is not tollerable, there-are
several ways to improve performance. The theoretical study would indicate
that increasing u for a given configuration helps performance. Practically
this cou]d be done by changing the processor scheduling algoirthm of W
's0 that the real processor was assigned to the data base management VM
more often, thus speeding it up and increasing u.

Observing the equat1on for Ty tal above, another way of reducing

v total is t° reduce Lk waft for_data: One way to refuce T wait_for data
is to extend the VM architecture of Figure 1 to allow multiple data base

machines. In this configuration T'wait_for_gata could be reduced by locking
out all data base machines only when one modeling machine is doing a write.-
For all read requests the multiple data base machines would operate without
locking. Shared locks between machines would have to be created as well
as a mechanfsm for keeping a write request pending until all data base

_machines‘can be locked.

-46-

¢ -

1]

A uayTOf‘improving perf&rmance further woufd be to extend the single
loéking ﬁéchanism used in the above multi data base machine configqration
to hgnd]e mu]tipléhlocks. Locks Qnu]d be associated with groupingé of
data, e.g., a table. The locking policy wou]d)be to have all machines only
locked out of a portion o} the data when one machine was writing into that -
portion. Thus requests.could be‘pfocessed simu]taneausly for reads into
tables not being Qritten in and for reads to different‘tables. Thus ‘

adding another real processor to the multiple lock VM configuration could

- greatly improve performance.

There is a trade off with the multilocking scheme between increasgs
in overhead time in maintaining multiple locks versus increases in wait
time for locked data bases. We have not yet extended the theoretical
analysis to quantify this trade off.

Other theoretical extensions and analyses of this synchronization

mode] would include extending the model to cover a more common VM operating

~circumstanée -- namely, that where the GMIS system (multiple mbde]ing

machines and one data base machine) would have to share the physical

machine with other users, also executing under VM, e.g., awpayroll program

under VS2 under VM, multiple CMS users, etc.

In conclusion, we observe that there may Se a degradation in per-- '
forménce with multiple users but that there are mechanisms for ameliorating
the effects of this degradation.

»

4.2 Hierarchical Approach ’
We have used the design and implementation techniques of hierarchical

decompgsition extensively in our implementatigpn. The hierarchical approach

02

" -47-
s
has been used in operating systems [Dijkstra, 1968; Madnick and,Dooovan, 1974]
and inéfile system design [Madnick, 1970]. The essential idea of this '
approach is to decompose a system ‘into functional levels. Interfaces of
each level consist of a series of operators. Each level can only ca]]

Tevels below it.

The levels we are using for the GMIS system are the following:

a modeling level

a data def1nition and data man1pu1at1on language level

a re]at1ona1 1eve1 (operators)

a file system

the operating system

Further decompositions o% the file system level and operating system
Tevel are outlined in [Donovan and Jacoby, 1975] and of the relational
level in [Madnick, 1975].

$The key advantage of this approach is that it reduces compiexity
by decomposing the problem into a series of hanageab]e subéproblem§; As a.
consequence of this reduction in complexity, the time to 1mplement an

entire system is great1§ reduced. Another advantage {s that the efficienoy

‘of the system can be increased,’ fheseriyprovemEnts'in éfficiency come
from the- fact that a system so construcoed can be analyzed and tuned for
performance because each level can be thorough]y understood and ana]yzed
For example, as new software algorithms are invented, their place in
the hierarchy can be identified and then can be easily incorporated without
redesigning the entire system. As new hardware technologies become opera-

tional, their relevance to information systems can be assessed within the -

03

e

the framework of the hierarchy, and incorporated where applicable. '

Given inherent parallelism in information systems, the hierarchical
approach also can capitalize on new technologies fo increase theEoerformancq,
reliability, and integrity of information systems. An example of such a
technological development is the adront of low-oost‘m1croprocessors. These
devices (which are the "computers" used in hand ca]colators) aro bec0m1ng"
less expensive each year and have the oomputat1ona1 capability of many
standard oomouters. e.g., arithmetic and logical operations, memory, and
registers. To capitalize on this new technology, each level 6f the hierarchy
could be examtned for operatoro that could be executed asynchronously with
each other. These operators, as well as the control logic and synchroniza-'
tion mechanisms, could be performed by multiple microprocessors,

Figure 15 depicts an example of such 5 h1erarch1ca1*dicomoosition ‘
using microprocessors where the vertical stacks of boxes denote requests
in the form of operators, and each group of horizontal boxes denotes
microprocessors to perform the desired operation. At the top of Figure 15
a list of queries enters the system (e.g., the SELECT commands bf Figure 7),

The microprocessor of level i+2 performs the necessary syntactical ana]ysis

-

and translation to produce a 1ist of relational operators (operators on
.tables will be discussed in thé next section). This 1ist of functions com-
posed of relational operators are processed by the microprocessors at levei
i+1. They in turn generate a number of requests to read tables stored in the
main or secondary memory. Level i receives those requests and generates

the appropriate operating system functions'to fulfi1l the request. The

last group‘of microprocessoré‘performs the desired operating system func-

v

o4

(e.g., query .

. .langua
L L —) nroges?gr)

. . Level i+1 (e.g., relational
operators)

L

. .Level i (e.g., file system
) . operators) .

operating
system
functions

. .Level i-1 (e.g., operators
; o of an operating
0 . * system)

Figure 15. Hierarchical Funccion Decomposition Using
a Microprocessor Complex)

-50- .

/ r
’ tions and passes back the results to level %. The resu]ts are used by
f' : 1eve1 i to produce its results, and then passed up to level 1+1 until the
| top level gets all the information to satisfy the query. - -
One of the properties of implementation using hierarchical function
decomposition is that all processors are ahonymous'ahd act as interchange-
~able resources‘(within a function level). Thus, if a processor malfunc-

tions or must be removed:from service, the system can continue to function

without interruption After a reasonable amount of time has e]apsed,

the higher level processors that had generated requests that were being
performed by the defective processor merely need to reissue’the same : —
requests. iA]ternative]y, the reissuing of requests could be occomp]ished
automatically by the inter-level request query mechanism,

Although the detai]s are not elaborated in this paper, it can be ‘&ﬁp
. _ argued that extensive parallelism, throughput, and re]iobi]ity can be
- atteined by means of a multiple processor implementation of the hierarhical

function decompostion.

4.3 Relational Technology

" This section presents an intuitive understanding of relational
operators, of the approach, and its usefulness to information systems of
the type we address in this paper._ \

The language that a user wouié use to query, insert, and update data

is called a Data Manipulation Language (DML). The language used to define

tables, domains, and charactersitjcs of the data is called a Data Definition
Language (DDL). The user of GMIS can view ali data stored in the system - - -
. "in the simple form ofdg table (relation), as in Figure 3, This view of

data is called the relational model of data [Codd, 1970].

ERIC 56

‘\4\\\\7) | ‘-51- | | .
If ‘one were to view data as being stored in tables, then the process
of querying the data could be broken down into two functional levels. The'
first is composed of mechanisms'tq‘recognize the constructs of the qdeny
(e.g., a SELECT command), which takes place at level i+2 in Figure 15, and
. .. the second where the éppfopriate operations”are performed on the tables to
satisfy the SELECT command (level i+1 in Figure 15). |

Part of our research has been to determine the “appropriate" operations

of level i+1 needed to query, update, and definé_data. In an early imple-

mentation of GMIS we implemented twelve operators [Smith, 1975]. These

use or perforﬂigce reasons) as well as three additional operators, compaction,

difference, and ordering.

3 v

-

- 4.3.1 -Advantages of the Re]afiona] Approach

A very attractive aspect of the relational approach is its clear,
well-defined interfage that fits into the hierarchical approach and hence
permits the attainment of ai] the benefits 9f the previous section, A
distinction should be made (whjch is not often made in ihe literatuke)

_between the DDL/DML level and the relational operator level. As we shall
see, the relational model‘of data allows us to implement ﬁn*interactive
DDL/DML easily. We recognize that other data models (e.g., network,
hierarthica]l, or tree structures) could also be used at a.lower level to implement
the same DDL/DML, only not in as satisfactory a manner, and with a certain
loss of capabilities.
! " Our experience in using a relational base data management system is

/ that there is a real comparative advantage for its use in systems.where R

the logical data structure keeps changing. Its advantage is the low cost

1 Note the term hierarchical here refers to a tree structure, which is different

© |\ from the "hierarchical" approach. gy -
RN 'O I

%

¥
E
|

of adapting to changing data structures and further, in its use in GMIS,

in not having to-redo all existing modeling prognams. It has a comparative
advantage for implementing an interacttve DUL/DHL. Its comparative advan-
tage, in app]icaticns nhere the types of queries are not all defined before
1mplementation,]ies in the inherent prcperty of allowing selectiveI:ccess
to. any data in the data base, As we will discuss at the end of this
section, we recognize the present limitations of the relat{onal approach '

and do not necessari]y advocate it for all data management app]icat1ons

—taining the single tuple:™ — —

4;3.2 Basics of Relational Operators

Let us take an example and demonstrate two relational operators, x'
"restriction" and "projection“. Assume that data exists-as in Figure 5
and a queny is made,‘;SELECT the model of car that receives' 30.2 miles per
gallon". The query processor (1evel i+2 of Figure 15) would translate this
query into a series of operators on the tab{e CARSALES. Basically, once
the query is recognized there are two operations that could give the de-
sired information: (1) find all entries that have mph equal to 30, 2,
(2) 1ist the models in those entires.

Figure 16 demonstrates these two operations on<the‘table. All rela-
tional operations create new relations. The first operator used is
called "restriction", whose function can be 1ntu1tive1y defined as;
"produce a relat1on containmng a]] e]ements of a table that match par-
ticular restricting conditions." Thus,lrestricting the relation at the

top of Figure 16 by the condition MPG = 30.2 producesthe relation con-"

B S ———— . -

vega, 1/78, 37600, 30.2

08

-54-

MODEL YEAR 'VOLUME MPG
CADILLAC 1/74 9948 10.9
VEGA A 33600 | 302
PINTO 1/74 35,531 28.0
PONTIAC /74 io,no | 13.8

lm I 1/74 “33,600 30.2 1

e
3

" PROJECTED (MODEL)

N

FIGURE |6

RESTRICTION AND PROJECTION OPERATORS

59

——‘\Y ~ » . Y -
There have been severé] experimental implementations of the relational

view of data. For example, ISG [Smith, 1974}, MACAIMS [Gpldstein,‘Strnad,

1971], SEQUEL [Chamberlain, 1974], Colard [Bracchi, 1972], RIL [Fehder,

1972]. In GMIS we are using an extended version of SEQUEL discussed in
Section 2.1. A

Our experience leads to several conclusions: From a user view the
primary advantage of SEQUEL and other relational systems {is that they can

be interactive, and have a simp]é, consistent way of viewing data. From an

imp]emintor‘s view the relational implementggbn of SEQUEL fits into a
hierarchical approach, the operations are consistent, and {t provides a
framework in ;hich to examine performance. -We recognize the present
limitations of the experimental SEQUEL for real applications, ‘'We list
some ofhthose here(not as a criticism of ‘the implementors of SEQUEL, for
their purpose was to demonstrate feasibility not an operational system)
to guard against the danger that our enthusiasm for this approach will

lead to an overoptimistic picture of'SEQUEL.]

L Some of the extensions we have had to incorporate in order to make SEQUEL
more operational for our applications are the following: (1) Added a
facility for multi-user to access the same data base .?2) Added inter-
faces so that users can use a variety of terminals, l3) Modified SEQUEL
to acrept the unary + and - operators as prefixes to numeric 1{terals,
and to handle DECIMAL constants, (4) Extended SEQUEL implementation re--
strictions on maximum degree of a table, maximum length of an identifier,
and maximum size of a character string constant, .(5) Re-wrote output
formats for generality, (6) Implemented a macroprocessor capability that
allows users to write prepackaged series of queries, (7) Made changes to
increase performance, (8) Added the capability to interface modeling and
analytic facilities, (9) Enhanced the bulk loading facility, (10) Designed
mechanisms for handling null or missing data, (11) Designed backup
facilities, (12) Designed security mechanisms, (13) Designed additional
SEQUEL- operators (e.g., GROUP BY). The documentation of these changes
as well as others is found in a NEEMIS Progress Report [M.I.T. Energy
Laboratory, 1975]. :

60

We feel that an.opefational relational data management facility needs

fo\be implemented and jncorporited into a system that has aha1yt1cal capa-
bilities.” We strongly believe that such a development must be done in close
cooperation with real applications. Further, we feel that those applica-
tions;should be chosen in areas\where this technology has a clear azvan-
tage, that'is, for systems where the problems keep changing (e.g., public
policy X stems) or where the system is not well-defined (e.g., breadboarding
systems), and not to application areas that are currently being satis-

factorily met by other approaches.

61

-57-

‘5. FURTHER RESEARCH

there are several types 6f research thit need to be pursued so that
thees tools can be made available at reasonable cost, and so they can be

used in the most effective manner. Some of that further research has

been discusseu in the last section.

‘ 5.1 Computer and H.ggg?ﬁént Science'Research

Optimal “ierarchical Decomposition. To gain insights as to what would

be the bes’ hierarchical decomposition, rgsearcﬁ should be”undeftaken to
define measures that would allow the construction of proofs that a par-
ticular decomposition of a hierarchy is optimal.)

Performance. Each level of the hierarchy needs both a theoretical
S£udy and an emp1rical study. At each level the impact of new operator§
should be investigated, along with formalizations for equivalence between
sets of these operators and performance implications of new operators.
Mechanisms for reducing expressiens to equivalent but more efficient expfes-
stons should be explored. For example, at the DDL and DML, Tevel algorithms that
'neur1stically take advantage of ceffain query patterns-to make subséquent
queries more efficient must be studied. At the relational level ways
of simulating certain relational operations wheﬁ the full- operator is not

called for must be tnvestigated. Theoretical bounds on com%utation of
relational operations as function of a size of tables must be developed, ¢

Virtual Machines. On the VM interface level there is need for- -

investigation of efficient ways VM's can communicate with each other.
"~ On the VM level more knowledgeable processor schedulers need to be developed.
And, as was discussed in Section 4.1, work must be done on synchronization

and lTocking policies of multiple VM configurations,

62

-58-

New Technolggjgs. Investigation of the implications of the new

technologies ge.g., memory, networks, and microprocessors) on each level
in the hier#rchy is called for. B

B gdegz Laﬁguages. On the DML level in addition to the extensions
we have made to the SEQUEL language (e.g., multiuser interfice, security,
additional computafiona] capability, handling lirger relations, larger
‘number of entries), new query language constructs ought to be inVéstigpted.

Realistic and operational impleﬁintations ofyggrelationdlnquéry language)

should be undertaken. ‘ D

Syncroniéation and Idlgylocks. Vérious‘interlock mechanisms must be
uséd in an information syétem to coordfnatghvarious independent update
operations. It is necessary to ded@lop interlock techniques and policies
that lend theﬁselves to a highly decentralized 1mplementat16n without,
adversely affecting perfdrmance or reliability. For example, under what
condition and for how long are thé'modeling machines locked out of the data
base machine? Is the data base machine just a c&ta]ogue for data stored

in the decentf&lized.data base1nachiﬁes? If so, whaf are the performance

implications of always accessing data stored in a remote machine? Or is
the accessed data brought up to the data base or modeling machine in which
case what are the updat1ng”p011c1cs? What sort of h;rdware can best

support the proposed hierarchical structure and system structure?

5.2 Studies of the Economics of Information System Design

R

* Traditional measures of performance (e.g., throughput, system utili-

~ zation, resbonse time, turnaround time, etc.) are potentially misleading
- i

4

and may be irrelevant for the class of information systems addressed here.

63

-59-

-~

' These measures address themselves only to the variable costs of an infor-

- - mation gystem. In the development 6f an information sySfem there are

fixed costs (aﬁaIysiQ“cost, design cost, implementation cost of the soft-
ware, as well as the‘har&ware costs) as well as variable costs (costs of
queries, execution of moqe1s and analytical functions), Much more-research
is meeded on the overa11ﬁbosts of information s&stems, on more general

concepts of "performance,” and on the types of studies that should be

oo —..dORQ_in_choosing a software system appropriate to the particular task. at = -
hand. ’
“To i1lustrate the point, take the simple example of the design of an
inventory control system for a large manufacturer on the one hand, and
a system of roughly thé same character and complexity to serve as federa)
energy policy on the other. The costs of developing such systems using
e different sets of software tools are illustrated in Figure 17, The
solid 1in;s show the fixed and variable costs of constructing either
of the;g two systems using a conventional packagg. say IMS. The dashed
line Ehaws the cost of the same systems with tools such as those provided
by GMIS. .Forvthe more flexible GMIS-type system the fixed costs (and
thys the time to build the system) are much lower, but this advant;ge
o | 1

comes at the expense of increased variable costs.

|

¥

Provide& the purposes for the two systems are well known and- the

operating assuhbtions are fixed, the two systems break even at Point A,

f——e - R

V1t is Tikely that hardware will eventually be developed to support this
, ?ggglof system, and variable costs will be substantially reduced [Madnick,
64 |

- e e w m

System constructed with conventional information managehent
tools.

System constructed with GMIS-type tools.

«60-

+

'y

£

o

/ df‘ Fixed + Variable Cost
/ .

Fixed cost

v

of queries

1
" Figure 17 -
i

Fixed costs versus variable-costs.

on)
1

-61-

1f the applicatibn anticipates a large volume of querie; as the inven-

tory example might, then the conventional approach is preferred.]

-

0f course, to the é}tent that information system purposes and opérating
qudiﬂions change over time, the fixed costs ;f eaéh system are multiplied
by some factor -- a condition which breatly favors the types of tools dis-
cussed above. . i ,) ' |

The economics of these choices“are poorly und;rstood, and the develop-

ment of better {ndices of system "performance” is a high priority item in.

information’syéfEms research, When thgse'comprehensiye fndices of per-~
formance are devé10ped, however, we éxpect that systems 1ike GMIS will
receive high marks for a wide variety of applications, Already the system
is proving its worth in application to New England energy problems, and to
‘several areas of policy research in the M.I.T. Energy Labor&tory.. We hope
for continued progress on the issues and problems that remain, and look
forward to a new generation of information ﬁanagemen% and analysis systems
that are better suited to the fagx-moving pace of many corﬁorate and public

probiems.

/
3 | ’ , ’
1 A GMIS-type system may still be a useful tool (as a breadboarding system)
in the optimization of the design of the data management facility, even
with the implementation to be carried out with some other package.

66

-62~

REFERENCES

Association for Computing Hachinery, “D‘TG CODASYL; New York, 1971,

Bracchi, G. et. al.: "A Language for a Relational Data Base Management“
System," Proceedlngs of 5th Princeton Conference on Information
Science, 1972.

Buzen, J. P. .» P. Chen, and R Goldberg: "Virtual Machine Techniques
for Improving System Re]iabi]ity," Proceedings of the ACM Horkshop
on Virtual Computer Systems, March Z6-27, 1993.

Chamberlain, D. D. and R. F. Boyce: : A Structured English
Query Language," Proceedings of 1974 ACM/SIGFIDET Workshop, 1974, (;:\/\
—incer— : rsion II,

C1nc1nnatt1, Ohio, 1974

Codd, E. F.: “A Relational Mode](g;—\ata for Large Shared Data hanks,“
Communications of the ACM, vol. 13, no. 6, June 1970, pp. 377-387.

Dijkstra, E.: "T.H.E. Mu]t}programming System," Communications of theaACHi
May 1968. | >

Donoygﬁj/jf J.: Systems Programming, McGraw-Hill, New.York, 1972,

Donovan, J. J.: "Use of Virtual Machines in Infomration Systems,"
Report CISR-10, M.I.T." S1oan School of Management Hork1ng Paper No.
790-75, May 1975

Donovan, J. J. and H. D. Jacoby: "A Hierarchical Approach to Information
System Design," Report CISR-5, M.I.T. Sloan School of Management
Working Paper No. 762-75, January 1975,

Donovan, J. J. and S. E. Madnick: "Application and Analysis of the Virtual
Machine Approach to Computer System Security and Reliability," IBM Systems
Journal, May 1975.

Drake, A, H::\\Faﬁaamenggls of AppHedPrabability Theory, McGraw-Hill,
New York, 1967.°

Dynamics Association: XSIM User's Gufi ambr. , Mass., 1974,)
‘ . -
Howironmental Protection Agency, 1975§Gas M11eége.Gu1de for New Car Buyers,
- 2nd Edition, Washington, D. C., January . i

Environmental Protection Agency, 1974 Gas Mileage Guide for New Car Buyers,
~ Washington, D. C., January 1974, ,

Fehder, P. C.: "The Representation of Indepndent Language," IBM Technical
Report RJ1121, November 1972. _ {\\

A

67

ﬁ

Goldberg, R. P:: Architecture of Virtual Machines," Proceedings 1973
AFIPS National Computer Conference, vol. 42, pp. 305318, 1873.

Goldberg, R. P.: "Survey of Virtual Machine Research,” Computer, vol, 7,
no. 6, June 1974, pp. 34-35. :

Goldstein, I. and A. Strnad: "The MACAIMS Data Management System,"
M.I.T. Prdject MAC TM-24, April 1971. «

Gutentag, L. M.: "GMIS: Generalized Hinagement»lnformation System --
an Implementation Description," M.S, Thesis, M.I.T. Sloan School of
Management, June 197% 3

Hall R.: "“TSP Manual," Harvard Technical Report No. 12, Harvard Institute
of Economic Research,_ggmgrjgggirHass., April 1975, ‘

Hatfield, D. J.: “Experiments on Page Size Program Access Patterns,’
and Virtual Memory Performance,” IBM Journal of Research and Develop-
ment, vol. 16, no. 1, pp. 58-66, January 1972.

IBM: “IBM Virtual Machine Facility/370: Introduction," Form Mumber GC20-1800,
white Plains, New York, July 1972, :

1BM: "IQM‘Comman~5Language Guide for General Users," order no. GC20-1804-2,
White Plains, MNew Yark, 1974, S '

18M: "IMS,"Form Number H20-0524-1 White Plains, New York, 1968,

IBM: "APL Econometric Planning’Language,"” Form Number SH20-1620, Armonk,
New York, (Product # 5796PDW), 1975.

Iverson, K. E.: A Programming Language, John Wiley & Sons, 1962.

“ Little, J. D. C.: "A Proof of the Queueing Formula: L = \uw," Operations

Research 9, 1961, pp. 383-387. i

Madnick, S. E.: “Design Strategies for File Systems," M.I1.T. Project

Madnick, S. E.: "INFOPLEX -- Hierarchical.Decomposition of a Large
Information Management System-Using a Microprocessor Complex,"
Prpceedjygsof 1975 AFIPS National Computer Conference, 1975.

ﬂadnick, S. E.: "Time-Sharing Systems: Virtual Machine Concept vs.
Conventional Approach,” Modern Data 2, 3, March 1969, pp. 34-36.

Madnick, S. E. and J. J. Donovan: Operating Systems, McGraw-Hill,
_New York, 1974. 4

M.1.T. Energy Laboratory "Energy Indicators," Final Working Paper
submitted to the F.E.A, in connection with a study of Information
Systems to Provide Leading Indicators of Energy Sufficiency, Working
Paper No. MIT-EL-75-004WP, June 1975.

68

)

1
. - N : -%”"
M.I.T. Energy Laboratory, "MIS Primer," Working Paper No. MIT-EL-75-
September, 1975, n Tipe Nz,

M.I.T. Energy Laboratory, "Progress Repbrt on NEEHIS Task O;der4ﬂo.‘4,“ .
Working Paper No. MIT-EL-75- , September 1975. “

Morrison, J. E.: "User Program Performance in Virtual Storage Systems,"
IBM Systems Journal, vol, 12, no. 3, 1973, pp. 34-36.

_ MRI Systems: "System 2000 Referenée Manual," Austin, Texas, 1974,

National Bureau of Economic Research: TROLL Reference Manual, Technology
Square, Cambridge, Mass., 1974,)

Pakin, S.;

. “APL/360 Reference Manual," Science Research Associates,
thicago,1972; ’ - : :
_Parmelee, R. P., T. 1. Peterson, C. C. Sullivan, and D, S. Hatfield: =

"Yirtual Storage and Virtual Machine Concepts,” IBM Systems Journal, -
VO].]], no. 2,]972, ppo 99"]300 ” .

" Popek, G. J. and C. Kline: "Verifiable Secure Operaf;ng Systems
Software," Proceedings of 1975 AFIPS National Computer Conference, 1975,

Schober, F.: "EPLAN -~ An APL-Based Language for Econometric Modeling
and Forecasting," IBM Philadelphia Scientific Center, 1974,

Smith, G. M.: "Internal Intermediate Langauge, Version 2," M.I1,T,
Sloan School of Management, Management Science Group, November 1974.

Satty, T. C.: Elements of Queueing Theony. McGrtu-Hill; New Yerk, 1961,

" WARD's C&ﬁmunications, Inc.: WARD's 1975 Automotive Yearbook, 37th Edition,

|

Detroit, Michigan, 1975, '

