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Hai DOES ;ATiG.:!:ATICS LEAnNI,4; TAKE PLACE? *

Joseph Scandura
University of Pennsylvania

Ho, doe.; learning take place? This is a question that has puzzled genera-

tions in mathematics education and goes back to antiquity. Indeed, the question

persists today. At a recent structural learning conference sponsored by the

I:RC,E Research Institute in Philadelphia, a number of world education leaders

discussed this very issue. There were on the panel leading representatives from

artificial intelligence, computer science, experimental and mathematical psychology,

developmental psychology, mathematics education, educational technology, educational

psychology, mathematical logic and philosophy. I am sure that most readers will be

happy to know that not one person defended the old behaviorist point of view -- no

one seriously proposed that people have bodies for responding but no mind to tell

the body what to do.

3eyond that point of agreement, however, there were major differences. Those

with a computer orientation tended to view knowledge as consisting of programs, or

equivalently, as rules or procedures. In this view, learning consists of some form

of modifying or adding new procedures. The developmental psychologists, given their

concern with changes in behavior over long periods of time, tended to question the

very notion of learning in the usual short-term sense. The mathematics educators,

in part, tended toward general descriptions of the stages children seem to go through

while learning, but said little about the more basic question of why and how this

takes place.

* This paper is based on an invited talk given at an NCTM General Session,

Friday, June 14, 1974, Bozeman, Montana.
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inDse who have been most closely asso,iated with the laboratory study of learning,

the experimental psychologists, oddly enough, had the least to say.

Amon.; those with some conviction on the subject, the general consensus seemed

to lean toward the rule-oriented view of knowledge, with cautions to the effect

that one must insure -hat long term effects are included in the picture.

Having been one of the more optimistic members of the panel, let me tell you

a little about my views. I should like to begin, however, with twocaveats : (1)

What I shall have to say is just one small part of what by now is a rather compre-

hensive theory of complex human functioning. This theory takes into account not

only the learner but the teacher as well. (Those of you who may be interested in

learning more about the theory can write me at the University of Pennsylvania.)

(2) Although I have very definite ideas as to how learning takes place, and although

I have stated these views in my book (Scandura, 1973) with considei_ble precision,

answering the question of how learning takes place in full generality is very

difficult. This question is at once the most important and most difficult question

to answer about human behavior. Furthermore, the more precisely one attempts to

answer the question, the more difficult it becomes.

Let me begin with a very simple problem, one of the simplest that we as

mathematics educators might be concerned with. We present the child with the

task of converting 5 yards into inches. If we do this, some children will succeed,

but others will fail. Why? Do those who succeed do so because they know something

that the other children don't? Or, do they succeed because they are inherently

superior individuals? Or, perhaps both factors enter to some extent. But, to

what extent, and how?

Let us consider how a subject might succeed on this simple task. one possi-

bility would be to simply know a rule for converting yards into inches. -- The rule

"multiply by 36" would do. But, is knowing this rule sufficient? Even the slowest
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c.-.:1d has during his lifetime learned a wide variety of rules. On what basis does

he decide to use this one?

Let me outline a second possibility -- that the subject does not know explicitly

a rule for converting between yards and inches. Yet, even in this type of situation,

-an. Clildren will succeed. Suppose, for example, that they have already learned,

or that we teach them, a rule for converting between yards and feet and another

rule, between feet and inches. And, then, we present the task of converting 5 yards

into inches. Will the children succeed? How many will succeed?

With these questions as background, let me describe an experiment that we have

conducted that poses a problem very much like that in converting between yards and

incnes. The students were taught how to trade objects of one kind f objects of

another kind.

Insert Figure 1

The card at the top of Figure 1, for example, denotes a rule for exchanging paper

clips for blue chips. In particular, if 2 paper clips are presented to the pupil,

he is to trade for 3 blue chips; similarly, if presented with 3 paper clips, he is

to trade for 4 blue chips. The composite card at tne bottom denotes a composite

rule in which trades are made in two steps. In the particular example shown, the

subject first trades paper clips for pencils oy adding 2 extra paper clips and then

white chips for the paper clips by adding 1 extra white chip. For discussion

purposes, compatible simple rules are denoted A-q, and :-.,C whereas corresponding

composite rules are denoted AB-*C.
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Given tasks of this type, suppose we teach a learner an A-.13 and a B-.0 rule,

and the present him with a certain number of A objects, and ask him to trade for the

appropriate number of C objects. Under these conditions: (1) How many children

will succeed on the A ?C task? If some of the children fail, what else do they

need to know in order to succeed? (3) Is there anything we can take for granted

a')out the capabilities of all children -- something which is basic, which is

innate to all children, say, of the ages of 7 and above?

In an experiment conducted with children ranging from ages 7-9, we found

that only 6 of 30 children were able to solve a new A ?C task of this type

without explicit training on an underlying A-.0 rule. Of the 24 who failed, half

were taught a higher order rule by which arbitrary pairs of compatible rules, in

which the output of one may serve as the input of the other, could be combined to

form co7posite rules. The other 12 pupils were not given this training. Then, all

of the students were presented with a new pair of compatible rules, A' B' and B' C',

rules none of the children had seen before. Finally, they were presented with the

corresponding A' ?C' task.

The results showed that all of the subjects who received training succeeded on

the A'-0C task whereas not one of the other students did so.

Several things whould be observed about this study. (1) Knowing the components

of a solution (rule) for a task is not sufficient. The subject must know how to put

the components together appropriately. (2) Integrating components is accompli:.ned

by applying higher order rules to lower order ones (e.g., component rules). Indeed,

higher order rules seem to be both a necessary and a sufficient condition for solving

pr-len-s where needed components are available. (3) Component ules and higher

order rules, although behaviorally sufficient for problem solving, are not logically

sufficient. Presumably, the learner must have some innate capability which tells

him how and when the various rules are to be used in attacking a problem.
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With regard to tne third point, let us consider an innate mechanism which

is basic to my structural learning theory (Scandura, 1973. This mechanism

tells how known rules interact in learning and performance and may be expressed

in terms of three sin.ple hypotheses. Hyp. 1 (simple performance hypothesis):

Given a goal and the availability of one or more rules, each of which generates

the desired response, then the subject will use one of them. Hyp. 2 (control shift

hypothesis): If the subject c.:es not have a rule immediately available for achiev-

ing his goal, control automatically shifts to the higher level goal of deriving

such a rule. Hyp. 3 (learning and reversion hypothesis): Orce a higher level

goal is satisfied, the newly derived rule is added to available knowledge (i.e.,

is learned) and control reverts back to the original goal.

To see how this mechanism operates, consider the task of converting A objects

into C objects, and two students, one who enters a task knowing a rule for converting

A objects into C objects and another who only knows rules for converting A objects

into B objects, B objects into C objects, andthehigher order composition rule which

operates on pairs of compatible rules and forms composite ones.

Is our postulated control mechanism sufficient for predicting the performance

of these subjects? The success of the first student (on A-- ?C) follows directly from

the simple performance hypothesis. An available rule applies in the task situation,

so he, therefore, uses it. The situation with the second student is only slightly

more involved. The subject first checks his available rules, and since none applies,

control shifts to the higher level goal of generating one. In this higher level

goal situation, the higher order composition rule applies, so it is used (i.e.,

a, plied to the A-.13 and B-C rules) to generate the composite ru..! A-BC. This

composite rule satisfies the higher level goal; therefore, the A-T-C rule is added

to the available knowledge base and control reverts to the original goal. At this

point, the newly derived rule applies, so according to the simple performance hypoth-

esis, it is used and the problem is solved.
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Could the answer to how learning takes place be all that simple? Not

quite. There is more to be said about such things as processing time, how

much information a person can keep in mind at the same time, and so on. But,

for present purposes we can ignore these factors. This simple mechanism does

account for a "whole lot." Consider, for example, discovery learning. How do

children do it? Surely, that is too complex to yield td such a simple ideal

Or, is it?

Suppose we present a child with the number 1 and ask him to guess what

number goes with it. Presumably, he guesses wildly, and we tell him that the

correct response is 3. Next, we present 2 and he again guesses incorrectly. We

tell him that the correct number is 6. We do the same with the number 3, to which

the correct response is 9. At this point the child says, "I've got it." To check

him, we present the number 8 and he gives the correct response, 24. How does he

manage to do this?

According to our previous analysis, it must be that the learner has derived a

solution rule by use of some higher order rule. Indeed, this is precisely what I

believe has happened. The rule shown in Figure 2 operates on three numbered pairs

Insert Figure 2

(which may be thought of as three degenerate rules) and generates the rule "multiply

by 3." Not only is this higher order generalization rule sufficient for

generating "discoveries" (i.e., solution rules), but it seems to be highly

consisrent with human performance. In a study similar to the one I have just

described, we tested children in a remedial junior high mathematics program to see

which kinds of discoveries they were able to make without training. Then, we

presented them with higher order rules which could be used to make discoveries in
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predetermined task situations and tested them on new tasks. In every case,

tle st.:dents succeeded if and only if, either they already knew an appropriate

hig'er order rule, which applied in the given situation, or they had been

explicitly taught one. (For more details, see Scandura, 1973a)

From this study, we can conclude two things: (1) Higher order rules for

making discoveries do seem to exist. (2) The presumed control mechanism also seems

adequate in explaining discovery learning.

As simple as it is, we have hardly begun to tap the potential of this simple

learning mechar,ism. However, space will not allow us more than a brief overview

of a few additional areas of application. First, let's consider the question of the

cumulative effects of learning. Why does learning sometimes progress more efficient-

ly when information and tasks are presented in one order rather than in another?

Suppose, for example, that two children enter a learning situation with the

following available knowledge:A-% ii-C, C--D, and > (a higher order composition

rule). We then present the tasks of trading A objects for C objects (A ?C) and

A objects for D objects (A ?1)), in both possible orders.

Task Sequence A

(1) A (?D)

Failure

(2) A (?C)

Success

Rule A-- B C Learned*

Added to available rule set.

Task Sequerce B

(1) A ( ?C)

Success

Rule A-. BC Learned*

(2) A (1D)

Success

Rule A-. BCD Learned*

When t:)e A ?D task is presented first, the subject fails. The higher order rule

applies only to pairs of rules; to succee' in this case, it would 'nave to apply

to triples. But, when task A ?D is pre- ted second, as in task sequence B, the

subject succeeds. The reason for success, in this case, is that the subject has
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first learned rule A-.3C in the process of solving task

Let me now remark just brie..ly on one further matter that may be causing

tl,e reader some concern. Do I really think thEt people only learn large sets

of discrete rules?

To the contrary, the rules which bring about or enter into learning may be

rather comprehensive in scope -- and es a result of learning, they may grow to

become even more so. Indeed, even our simple trading game analysis shows how

available information may be combined to form larger units.

On the other hand, there is nothing in the model which requires that

learning be comprehensive in all cases. The theory is neutral in this regard

as are all theories in natural science. Science does not make moral judgements;

only men do so.

As an example, let as consider the learning of traditional trigonometric

Insert Figure 3

Identities. Figure 3 represents the knowledge that might be available to two

different students, A and B. You will recognize each of them immediately. Student

A has memorized the three identities and perhaps has learned to use them in solving

routine problems. Student B, on the other hand, may not only have learned the

identities but how they relate to a variety of other bits of information he or

she may have learned about trigonometry. Although certain parts of this network

may not be Immediately available to the student at all times, he always seems able

to regenerate them when needed. The identity involving COT and CSC might be one

such item.

As you know, it is easy to recognize and distinguish between such students.

9
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The behavior of student A is characterized by inflexibility, even where the

student is perfectly able to deal with routine problems on which he has been

trained. Student B's behavior, on the other hand, is characterized by relatively

greater flexibility, an ability to retrieve or regenerate information as needed

in solving a broader variety of tasks.

also

I should/like to emphasize in passing that all that has been said above

applies equally to learning and performance involving concrete materials AS well

as symbol manipulation. Furthermore, the relationship between syntax and

semantics (meaning) can be analyzed in these terms as well.

So far, so good. We have found that what a child learns in a given

situation depends on what he already knows. This in itself is not new. The

whole concept of prerequisite knowledge is predicated on this idea -- and that

goes back almost two decades now. But, we have also learned that the concept

of rules which operate on other rules (which are functions defined on functions)

is a critical idea that is missing in most existing theories of learning.

We have also learned something about the basic, innate mechanisms by which

people seem to learn. While it seems clear that this mechanism has little to

do directly with such antiquated ideas as contiguity and reinforcement, the book

has not yet been closed on this subject. It is not known, for example, whether

the me(hanism is characteristic of all people from birth onward, or whether it is

only a capability that can be assumed to be available to children, say, of the

age of 7 and above. I feel reasonably confident of the latter statement, but hold

the former question open.

Now that we have this knowledge, of what value is it to the mathematics

teacher? Is it possible to do anything with it? I wish that we could dwell on

this topic for I am confident that there is a good deal that can and should be

done. Indeed, some of my associates and I have developed and tested, with

11)
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prototype materials, systematic techniques whereby given problem domains may

L)e analyzed to determine the underlying rules and higher order rules (e.g.,

see Scandura, 1972, 19730. Furthermore, once these rules have been identified,

we have shown that they can be taught in a highly efficient manner. In addition,

the inclusion of higher order rules has made it possible for our students to solve

quite novel problems without explicit training. Whereas transfer has long been

a valued goal in educational research, this is, to my knowledge, the first time

that the potential to transfer in predetermined ways to seemingly unrelated

tasks, has been purposefully, systematically, and in a replicable manner built

into instruction.

Figure 4 summarizes the steps used to identify the rules inherent in my

text, Mathematics: Concrete Behavioral Foundations ;Scandura, 1971).

Insert Figure 4

The result of this analysis was expressed in terms of a large set of tasks, rules,

and higher order rules (Ehrenpreis & Scandura, 1974). Some examples are shown in

Figure 5.

Insert Figure 5

This method has since been extended with the help of some associates to analyze

all of the compass and straight-edge problems described in Polya's Mathematical

Discovery (Scandura, Wulfeck, Durnin, & Ehrenpreis, 1974; Scandura, Durnin, Wulfeck,

1974). We have also identified the rules inherent in the old Ball State Algebra

Text, which as you know, puts great emphasis on formal proof.

Why would one bother to co this? Is it because I think schooling should

11



- 11 -

consist of teaching children a set of discrete rules? No. The answer is simply

that without such an analysis we only have our intuitions to go on as to what

one might reasonably expect a learner to acquire as a result of studying the

materials. Once we know what it is we want a child to learn as a result of our

analysis, then we will be in a better position, I think, to teach the child that

material more efficiently. In addition, for exLmple, suppose we analyze a

textbook and we find upon analysis that the underlying rules do not correspond to

what our intuition tells us should be taught. The reader might argue that "I

can tell that anyway, just by looking at the text," and you probably can. But

that misses the point. Having identified exactly what is included in the text,

the teacher, or curriculum writer, is in a far better position to change and

Improve it.

Finally, if the idea is so good, why aren't these approaches being used more

broadly? The obvious answer is that these ideas are new. They have not yet had

tine to filter down to a majority of mathematics educators and teachers. But

there is more to it than that. In this procest of filtering down, it must be made

clear at every turn that the methodology in no 1ay detracts from what mathematics

educators and teachers have learned through decades of work with children. Rather,

the method is complementary. Once a body of content has been analyzed, it is up to

the teacher and to the curriculum writer to determine how that material should best

De taught. In effect, science and technology has brought us part of the way, but

it is only part way. The teacher and tne mathematics educator who work daily on

the "firing line" must continue to fill the gap.

12
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Figure 2

1 - 3

2 6

3 - 9

Flow diagram for the higher order rule which acts on restricted rules and
generates a general rule of the form n -* an.

Look at one of the number
pairs other than the one
whose input number is 1.

Divide the output number
by the input number.

No

This procedure does

not work for this
problem.

-->

YES

Call the quotient a.
Write n an.

STOP
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Figure 3
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Figure 4

ALGORITHMIC ANALYSIS OF EXISTING TEXTUAL MATERIAL

1. FORMULATE CONTFNT PAGE BY PAGE IN TERMS OF BEHAVIORAL OBJECTIVES

(i.e., AS TASKS TO BE PERFORMED).

2. DEVISE PROCEDURES FOR SOLVING THOSE TASKS WHICH ARE CONSISTENT WITH THE

TEXTUAL CONTENT.

3. LOOK FOR PARALLELS AMONG THE PROCEDURES. IDENTIFY HIGHER ORDER RULES

WHICH REFLECT THESE PARALLELS AND ARE AT LEAST NOT INCONSISTENT WITH

THE TEXT.

4. ELIMINATE REDUNDANT RULES WHICH CAN BE GENERATED BY APPLICATION OF THE

HIGHER ORDER RULES TO OTHER RULES IN THE SET.

5. REPEAT AND REFINE TASKS AND RULES AS NECESSARY.

1(



SAMPLE LOWER AND HIGHER ORDER RULES

TASK A1: SIVEN r CERTAIN NUMBER OF YARDS, FIND THE EQUIVALENT NUMBER OF FEET.

RULE Al MULTIPL' 1 .E NJMLER OF YARDS BY THREE.

TASK A
2:

GIVEN A CERTAIN NUMBER OF FEET, FIND THE EQUIVALENT NUMBER OF INCHES.

RULE A
2

: MULTIPLY THE NUMBER OF FEET BY TWELVE.

TASK B1: GIVEN A PIPER CUB STATIONARY ON THE GROUND, GET IT UP TO A CRUISING ALTITUDE.

RULE B
1:

ALL THOSE THINGS THAT GO INTO TAKING OFF IN AN AIRPLANE.

TASK 62 : GIVEN A PIPER CUB AT CRUISING ALTITUDE, BRING IT TO A SAFE STOP ON ME GROUND.

RULE B
2:

ALL THOSE THINGS THAT GO INTO SAFELY LANDING AN AIRPLANE.

H 0 TASK: GIVEN TWO RULES SUCH THAT THE OUTPUT OF ONE SERVES AS INPUT FOR THE OTHER,

FIND THEIR COMPOSITE (IN LEARNING HIERARCHIES THIS CORRESPONDS TO A

"HIGHER ORDER" RULE -- IN ALGORITHMIC ANALYSIS IT IS THE OUTPUT OF THE

HIGHER ORDER, H 0 RULE).

H 0 RULE: PUT THE TWO RULES TOGETHER SO THAT THE OUTPUT OF ONE ACTS AS INPUT FOR

THE OTHER.

TRANSFER TASK A
3

: GIVEN A CERTAIN NUMBER OF YARDS, FIND THE EQUIVALENT NUMBER

OF INCHES.

n m

TRANSFER TASK B
3

: GIVEN A PIPER CUB STATIONARY ON THE GROUND, SOLO.
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