ED 115 205

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
R.IPORT NO
PUB DATE
NOTE

EDR. PRICE
DESCRIPVORS

IDENTIFIERS

ABSTRACT

DOCUNMENT RESUME

R IR 002 490
Hamilt»on, Claude Hayden, III
An Interactive Preprocessor Program with Graphics for
a Three-Dimensional Finite Element Code.
Texas Univ., RAustin. Project C-BE.
National Science Foundation, Washington, D.C.
EP-34-2-27-75
27 Feb 75
95p.; For related documents see IR 002 463 and 464

MF-$0.76 HC-$4.43 Plus Postags :

*Computer Graphics; Computer Oriented Programs;
*Computer Programs; Computers; *Display Systems;
Geometric Concepts; Higher Education; Input Output
Devices; Programing

*Interactive Preprocessor Programs; Preprocessor
Programs; Projesct C BE; Structural Mechanics

The development and capabilities of an interactive

preprocessor program with graphics for an existing three-dimensional
finite element code is presented. This preprocessor program, EDGAP3D,
is designed to be used in conjunction with the Texas Three
Dimensional Grain Analysis Program (TXCAP3D). The code presented in
this research is capable of the verification and modification of data
geneorated by TXGAP3D. The particular areas which can be handled by
the code are those of grid point location, element connectivity, and
boundary condition information as well as the addition and deletion
of elements from the generated data. The interactive graphics provide
a simple flexible visual aid and can be used with any graphics
machine capable of interpreting standard Calcomp instructions. A
user's input gquide to EDGAP3D is appended along with an exzmple
session illustrating the use of the preprocessor progranm.

{Ruthor/CH)

3k 3 3 sfe 3 3¢ 93 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok o ok 34 ok ok 3ok Kk ok Ak Ak Ak sk e ok ok sk s s sl 3k ke S sfe ok 3% 25 ok ok ok ok ok ok ok ke e ok ok ok Kok ok Kk

Documents acquired by ERIC include many informal unpublished
materials not available from other sourcss. ERIC makes every effort
to obtain the best copy available. Nevertheless, items of marginal
reproducibility are often encountered and this affects the quality

via the ERIC Document Reproduction Service (EDRS). EDRS is not
respoasible for the quality of the original document. Reproduactions
supplied by EDRS are the best that can be made from the original.

*
*
*
*
*
* of +he microfiche and hardcopy reproductions ERIC makes available
*
*
*
*

e ke o 2 e ot s o ok 3k ok ok 3k ok ok ok ok 3K 3k ok 3K ok ok e ok ke s ok ok o ke e ok ok ok 3k e sk ok e o ok o ok 3 ek e ok ok ok ok ok ok ok e ko ok ok ok ok ok kK

ED115205

AN INTERACTIVE PREPROCESSOR
PROGRAM WITH GRAPHICS FOR A |
THREE-DIMENSIONAL FINITE ELEMENT CODE

EP-34/2/27/75

US OEPARTMENT OF HEALTH,
EOUCATIONLWELFARE
NATIONALINSTITUTEOF

EQUCATION

THIS OOCUMENT HAS BEEN REPRO
DUCEO EXACTLY Ag RECEIVEOQ FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATEO 00 NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EQUCATION POSITION OR POLICY

Claude Hayden Hamilton, III

ivi ineering
artment of Civil Engine :
ngpUniversity of Texas at Austin

o

0

TR 002

: orted in part by
' tained herein were Supp ter-Based
“The mater}gésuﬁggr Grant GY-9340, "The Use Ofaggmgﬁgineering
PROJEQT CT -hniques in Undergraduate Sc1en§etion to The .
Teaching ﬁbfrom the National Science Foun aAllan and J. J. Lagowski,
Edgcat192; of Texas at Austin, Drs. John J.
Universi

o Co-Directors.

A

PERMISSION TO REPRODUCE THIS COPY-
RIGHTED MATERIAL HAS BEEN GRANTED a8Y

S+ O Aran u
-

Vco EQ*— C'BE

TO ERIC ANA ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE NATIONAL IN-
STITUTE OF EDUCATION FURTHER REPRO-
DUCTION OUTSIDE THE ERIC SYSTEM RE-
OUIRES PERMISSION OF THE COPYRIGHT
OWNER

Copyright (@© 1975, by The University of Texas at Austin.

A1l rights reserved. Published in the United States of America.

No part of this book may be reproduced by any means without the written
o Ppermission of the publisher.
ERIC 3

Aruitoxt provided by Eic:

The code

those of
boundary
deletion

graphics

ABSTRACT

The development and capabilities of an interactive

preprocessor program with graphics is presented. This pre-
processor program is designed to be used in conjunction with

the Texas Three Dimensional Grain Analysis Program (TCGAP3D).

presented in this research is capable of the veri-

ficiation and modification of data generated by TXGAP3D.

The particular areas which can be handled by the code are

grid point location, element connectivity, and
condition information as well as the addition and
of elements from the generated data. The interactive

provides a simple flexible visual aid and can be

used with any graphics machine capable of interpreting stan-

dard Calcomp instructions.

TABLE OF CONTENTS

ABSTRACT . & v v v v v v e v e e e e e e e e e e e e ii
LIST OF TABLES+ « v v v v v v v v v o o o o o v
LIST OF FIGURES . . « « v v v v v v v o o o & o o o vi
CHAPTER I. INTRODUCTION « « « « « « o o « + & 1
CHAPTER II. EDITING CAPABILITIES ASSOCIATED WITH
EDGAP3D PREPROCESSOR PROGRAM 7
GEeOMELTY v v v v v v e e e e e e e e e e e e e 9
Connectivity . e e e e e e e e e e e e e 14
Boundary Condltlons .o e e e e e e e e 19
Element Addition and Deletlon e e e e e e e e e e 24
CHAPTER III. GRAPHICS DEVELOPMENT AND CAPABILITIES . 28
Rotation Algorithm Development 31
Scaling Algorithm Development 36
Display Feature Development 40
Illustrative Example of Graphics 47
CHAPTER IV. CONCLUSIONS« « ¢« ¢« « « o « ¢ « & 54
APPENDIX A. USER'S INPUT GUIDE TO EDGAP3D 56
Command Mode Entries« « « « « « + « ¢ . 57
Editing . . e e e e e e e e e e e e e 58
Grid Point Features . . e e e e e e e e 59
Element Connectivity Features e e e e e e 61
Element Deletion and Generation Features e e 63
Boundary Condition Features« .+ . . . 64
Graphics . . e 66
Rotation Feature e e e e e e e e e e e e e e 67

Scaling Features . . .« +« « « « o o « o o o o . 69

APPENDIX A. CONTINUED

Display Features
Termination Commands

APPENDIX B. EXAMPLE SESSION

BIBLIOGRAPHY .

iv

&

70
72

74

84

LIST OF TABLES

Table Page

1 Rotation Combinations 35

e

LIST OF FIGURES

TXGAP3D Program Execution Paths

EDGAP3D Preprocessor Interfacing with TXGAP3D
Grid Point Identification Schemes

Grid Point Modification

Element Nodes and Face Numbers

Element Connectivity Modification

Element Addition and Deletion Using EDGAP3D

Definition of Rotation Angles

Original Unscaled and Untranslated Region of
Element Mesh

Untranslated Region Scaled by a Factor of Two
Scaled Region Translated Along X-Axis

Scaled Region Translated Along Both X and Y-Axes
Definition of Projection Angles

Display Screen Scaling Box Definition

Element Mesh in Region Specified

Element Plot

Element Highlighted in Specified Region

Element Mesh Resulting from Scaling Region

Element Mesh Resulting from Scaling and
Translating Region

Element Mesh in Region of Interest

Element Mesh Scaled by a Factor of Two and
Translated One Unit All X and Y-Axes

Figure
17.
18.
19.

20.

21.

Element Mesh
Grid Point and Connectivity Modifications

Element Addition and Deletion of Previously
Modified Mesh

Element Highlighted in Modified Region

Element Mesh Display Resulting from Scaling
and Translating Modified Region

vii

Y

.o
VR

Page
75

78

81

82

83

CHAPILER I

INTRODUCTION

The development of computer codes using the finite
element method for performing structural analysis has been
proceeding rapidly during the past decade. A majority of the
effort expended has been made in the area of the centreal
analysis program while little effort has been made in the

(1]

areas of data generation or visual aids. As a result,

the analyst is often burdened with the task of preparing vast
amounts of complicated input data to specify a problem. 1In
cases where the analyst has available some form of automated
data generation, he is often hampered by the inability to
evaluate and correct parts of these data without having to
completely regenerate the whole. These constraints become
especially undesireable in the use of three-dimensional fi-
nite element codes, in which the amount of input data 1is
voluminous and difficult to check. The development of pre-
processor programs which are separately running computer
programs may ease and/or improve the use of finite element
programs.[2] The purpose of this research is the development
of an efficient, 1nteractive, preprocessor program for an

existing three-dimensional finite element code. The particu-

lar preprocessor developed is concerned mainly with the

editing of existing data and includes interactive graphics

for visually checking this data.

There are certain data files associated with the
use of any finite element code. These files contain infor-
mation relating to the geometry of the problem to be analy-
zed, the connectivity of the clements, material properties,
and the boundary conditions applied to the elemecnts. These
are the data which a preprocessor program handles. An
additional difficulty arises when the problem to be analyzed
is a three-dimensional one. This difficulty is that while
it is easy to visualize most arbitrary two dimensional prob-
lems, it 1s more difficult to work in three dimensional space
without some form of visual aid. The inclusion of flexible,
interactive graphics routines 1n the development of the pre-
processor was thus indicated. The particular preprocessor
code, EDGAP3D, developed in conjunction with this research
consists of basically two parts. The first, which allows the
user to check and/or modify the previously generated inrut
data for the proper geometry, connectivity and boundary con-
ditions, and the second part which provides a visual means
for checking both geometry and connectivity. The first part
is referred to as an editor while the second forms the graph-
ics package. These two parts or modulcs are linked together

by a driver routine which directs the program execution to

}]
b

the appropriate module according to instructions issued by the
user. There is no particular required sequence of instruc-
tions anda the program execution can be arbitrarily directed
back and forth between the two modules to suit the purpose of
the user.

The EDGAP3D program is desiéned to be used in con-
junction with an existing three dimensional finite element
code, the Texas Three Dimensional Grain Analysis Program
(TXGAP3D). The TXGAP3D code is constructed as a series of
sequentially running subprograms. The sequence of execution
of these subprograms is user controlled and to an extent may
be arbitrarily directed, stopped, or restarted, depending on
the directions established by the user. These subprograms
are identified as SETUP, SOLVE, STRESS, REZONE, and PLOT.

The general paths of execution for these subprograms is in-
dicated in Figure la. SETUP is an automated data generation
program which performs grid point generation, mesh generation
and boundary condition application. The SOLVE program gen-
erates the element stiffnesses, forms the total stiffness
matrix and solves for the nodal point displacements usiné a
frontal solution technique. The STRESS program calculates

the element stresses. The REZONE program consists of routines

for refining the element mesh in specified regions. The

25

SETUP

i e —— ol
SOLVE
PLOT * RESTART
STRESS
—+r —— el —————

Figure la.

REZONE

RESTART

—ug— | (SAVE)
(RESET)

Figure 1lb.

e ——— ——]

TXGAP3D Program Execution Paths

EDGAP3D

PREPPOCESSOR PROGRAL

AN

EDITING
MODULE

GPAPHICS
MODULE

2

EDGAP3D Preprocessor Interfacing with TXGAP3D

PLOT program provides a rudimentary package for plotting the
element mesh.[3]
The linkage of the EDGAP3D program 1is accomplished
through the RESTART feature available in TXGAP3D. Figure la
and Figure 1lb illustrate this linkage. The RESTART feature
allows u:s2r specified stopping and restarting which saves
and resets che data required to proceed with the program
execution. The ability to stop and restart the program be-
tween the various subprograms arises from the fact that all
communication between subprograms is via low speed disk

(4}

files. EDGAP3D is designed to access, examine, and modify
these disk files. After these files have been examined and
modified, the execution of TXGAP3D may be resumed with the
corrected data. Although the preprocessing package may be
used during any RESTART sequence, it 1s most useful immedi-
ately after the initial SETUP of the problem. The REZONE
program causes extensive modification to the file containing
input data and the EDGAP3D program is not capable of modi-
fying this data, even though this capability would be a de-
sireable feature. The data may, of course, be examined and
displayed at any time.

The purpose of a preprocessor program is not only

to ease the handling of data, but also to decrease the amount

of tim: the analyst must spend preparing data. EDGAP3D has

been designed to operate in such a way as to minimize the

interaction time. On the operating system for which this

program was developed, the interaction time is a direct func-
tion of the length of a program, significant coding effort
has been to minimize the operating size of the EDGAP3D pro-
gram. This has been accomplished largely through the use of

(4] Another

modular programming similar to that of TXGAP3D.
area in which emphasis is placed in order to simplify EDGAP3D
use has been to make the command directives as similar as

possible to the TXGAP3D command directives.

CHAPTLR II
EDITING CAPABILITIES ASSOCIATED WITH
EDGAP3D PREPROCESSOR PROGRAM

The editor section of the EDGAP3D preprocessor pro-
gram allows the user to examine and modify the data he has
generated. This area of the preprocessor program specifically
allows the user to work with three of the data files common
to finite element problems. These files being those cf the
specified geometry, the element connectivity, and the boundary
conditions. In addition to these features, the capability
for the addition (and/or deletion) of elements, within certain
restrictions, to (or from) the generated data set 1s included
in the editor package.

Data manipulation is an important feature of the
EDGAP3D program. The acquisition of information and internal
handling of this information are among the primary consider-
ations in the program structure. The Texas Three Dimensional
Grain Analysis Program (TXGAP3D) generates the data for a
problem and stores this information on two low speed disk
files. One of these files contains the geometry in the form
of all the grid point coordinates that have been generated.
The second file has the information defining the element
connectivity and the boundary conditions applied to the ele-

ments. It is through these two files that the EDGAP3D program

TN
9

1s interfaced with the TXGAP3D program. The information on
these data files is that which is examined and modified.
Since these files are very large for large problems, the
routines in the editor package which access these disk files
store much of the information on relocatable high speed disk
files. At the completion of the editing session, the two low
speed disk files are regenerated containing the corrected
information.

The EDGAP3D program does not include the capability
for the editing of material property data.

There are some limitations associated with the usage
of the EDGAP3D preprocessor program which are particularly
related to the editor package. The principle limitation is
that the user is restricted to previously defined data in
both the addition of elements and the manipulation of element
connectivity. This means that in order for an element to be

added, all the points defining the connectivity and geometry

must have been defined in TXGAP3D. 1In other words, an element

can only be defined by already existing node points and the
editor package does not allow for the addition of node points.
The restriction that node points (or grid points) may not be
added is offset by the ability to move grid points. If extra
points are generated, they may be repositioned as needed
during editing to define the proper geometry for the new

element(s) .

"y

Geometry

The geometry for a problem is defined by the loca-
tion of the grid points. The coordinates for each point are
generated by an automated grid generator in TXGAP 3D and are
saved on a low speed disk file. Each point in the grid is
identified by a unique, I. J, K numbering system which defines
its location in the grid. The TXGAP 3D program has two identi-
fying schemes associated with it. One is the "external"
identifier which the user refers to. 1In this scheme, every
other node is sequentially numbered, and as far as the user
is concerned, the other nodes have no labels. The "internal"
labels are those actually used by the program for identify-
ing nodes and in this scheme every node is sequentially num-
bered. Figure 2 shows a two dimensional example of these
grid point labeling schemes. Because the user sees only the
external numbering scheme which labels only every other node,
a new scheme for identifying the unnamed nodes has been de-
vised. This scheme is also illustrated in Figure 2 and a
detailed discussion of this scheme is given in Appendix A.

The routines in the editor module of the EDGAP 3D
program provide the ability to check and change the coordi-
nate locations of every grid point established during the data
generation step in TXGAP 3D, whether the point has or has not

been used to define an element. The issuing of a command

i
Fom

e

- 0w~

el

- W -

N W N

1,2
1,-1

el

Figure

External Label
Internal Label
Special Label

N

~

w
N W N
-~ . .
BN W N

9 e
- - External Label
2,2 3,2 Internal Label
-1,-1 2,-1 Special Label
o — © B—
- 2,1 External Labcl
2,1 3,1 Internal Label
-1,1 2,1 Special Label

2. Grid Point Identification Schemes

e,
bt A

directive identifying the grid point by the special, I, J, X

labeling scheme described in Appendix A causes the program

to print both the internal label and the X, Y, 2 coordinates
of the point. This information is printed to the user in the
form of alphanumeric output., To change the location of a

grid point, the user issues the same command directive identi-

fying the grid point by its special label and includes the

additional parameters of a flag key and the new X, Y, Z loca-
tion of the point. Again, the internal label and the old
coordinate positions are output as this step is executed by
the routines. The issuing of a command to move a grid point
causes not only a modification of the list of data containing
the grid points, but also initiates a search of the element
data, replacing all the points located at the old position

by ones at the new one. Thus, if two nodal points identitied
by different labels have the same coordinates and only one

is moved, the element data list will be modified as though
both had been moved.

To illustrate the features described ébove, the
following examples are presented. Suppose it is desired to
first examine both a grid point with an external label and
one without one in a list of generated data. The following
commands and output illustrates both types of uses of the

command directive for these cases.

Ty o3
R4
ot bt

12

GRID,2,1,2"

__INTERNAL_I,J,K X,Y,%_COORD.
~T..31.3 1.200E+00 0. 1.333E+00
* GRID,-4,1,2
__INTERNAL_I,J,K X,Y,%_COORD.
8,1,3 4.200E+00 0. 1.333E+00

Now to illustrate the capability to change a nodal point lo-
cation, the same points used above will be shifted to new
locations. Note that the locations returned are the original
positions. This is done so that if an error is made (i.e.,
one moves the wrong point) the original position is readily
available for correcting the error. The resulting changes
may be seen in Figure 3a and Figure 3b which show the nodes

before and after modification

* GRID,2,1,2,MOVE,1l,-.5,.75

INTERNAL_I,J,K X,Y,Z, _COORD.
113 0. 0. 1.333E+00
* GRID,-4,1,2,MOVE,4,-.5,.75
__INTERNAL_I,J,K X,Y,Z_COORD.
- 8.1.3 4.200E+00 0. 1.333E+00

The ability to add or generate new grid points 1is

not included in the preprocessor developed in this study.

Lines preceeded by an * will designate input by the user.

14

Connectivity

The definition of elements is accomplished through
the specification of the geometry of each particular element.
The most common method used to accomplish this is by speci-
fying the grid points which define the extremities of an
element. An element is then considered to be "connected" to
these nodal points. The number of points required to specify
the connectivity of an element is dependent on the particular
type of element. The element library in TXGAP3D consists of
elements belonging to the isoparametric family having quad-
ratic interpolations. These elements require the specifica-
tion of the node points at each corner of the element and a
midside node between each corner in order to define their
connectivity. The particular elements available have the
general geometric shapes of bricks, prisms, and tetrahedrons
(see Figure 4). The specification of the connectivity of
these elements assumes a preferrential order and requires only
the specification of the corner nodes in order to define the
elements (each midside node is determined by the program).
The preferrential ordering of the nodal points is indicated
by the element nodal point numbers in Figure 4. Each corner
node of the element is identified by the proper, external,

I, J, K label associated with the grid point to which it is

connected. For the purpose of element identification, an

L@ i
pk

15

®

Element Nodes and Face Numbers

Figure 4.

.t
(9 4

Cd

16

element name is given each element. This name is the exter-
nal I, J, K label of the first node defining the elements
connectivity.

The routines developed in the editor module of
EDGAP3D have the capability of examining the connectivity
associated with either elements or nodal points. For ele-
ments, the user specifies either the element name (T, J, K)
or the element number. The element number represents the
number which corresponds to the position in which an element
appears on the element data file. This element number 1is
most easily obtained from the graphical displays which will
be discussed in the next chapter. For nodal points, the user
would identify that grid point by its external name. When
the connectivity of an element has been specified, there is for
each element (corner) node number, an external I, J, K
grid point label associated with it. If the element name is
used as the identifier, every element by that name is located

and the connectivity listed.* In cases in which the connec-

’

While it is not often desireable to do so, it is possible

to generate in the TXGAP3D program several elecments which
have the same name. This situation has been considered in
the development of the preprocessor so that when this does
occur, elements by the same name are processed sequentially.
This allows the user to correct with a minimum of effort any
errors that may have been caused by identical names.

Gt of

17

tivity of a grid point is requested, the output lists each

element name and the associated element node number connected
to that grid point.

The capability to modify an element's connectivity
available in this module of the EDGAP3D program. In the use
of this feature, the element name or element number whose
connectivity is to be modified is identified. This causes
the existing connectivity to be listed. Then the individual
element node's connectivity is changed in a random seguence.
As noted previously, the connectivity can only be changed to
previously existing, extcrnally labeled grid points. If an
attempt is made to change the element's connectivity to an
undefined grid point, a warning message is issued and the
input command for the change is ignored. When the connectivi-
ty of an element is modified, the geometry is also changed.
Routines are included to perform internally the required
modification of the element's geometry list whenever the
connectivity list is changed.

To illustrate the various features associated with
the verification and modification of element connectivity,
the following examples are provided. Examples a) and b)
illustrate element connectivity by specification of element
name and element number respectively. Example c¢) shows the

ability to determine which elements are connected to a

3

18

specified grid point. Example d4) illustrates the modifica-

tion of an element's connectivity.

a) | * CONNECT,ELEMENT,2,1,2
_CONNECTIVITY FOR ELEMENT 2,_1,_2
_NODE_______ I__ J K
1 2 1777 2
2 4 1 2
3 4 2 2
4 2 z 2
5 2 1 3
6 4 1 3
7 4 2 3
8 2 2 3
b) * CONMNECT ,ELEMENT, 6
_CONNECTIVITY FOE ELEMENT NO. 6
NODE I J K
1 2 2 2
2 3 3 2
3 2 4 2
4 2 2 3
5 3 3 3
6 2 4 3
c) * CONNECT,NODE, 3, 3,3
CONNECTIVITY FOR NODE - 3,.3,.3
. LOCATED AT COORD. 2.400E+00,3.000E+00,2667E+0
ELEMENT ELEMENT LOCAL
“NUMBER I J K NODE
5 2 2 2 6
6 2 2 2 5
8 3 3 2 4
11 4 4 2 6

.

£

il

19

a) * CONNECT, MODIFY, 4,1,2
_ CONNECTIVITY FOR ELEMENT 4, 1, 2
__ NODE I J K
1 4 1 2
2 5 1 2
3 5 1 2
4 4 2 2
5 4 1 3
6 5 1 3
7 5 2 3
8 4 2 3
*6,6,1,3
*2,6,1,2
*2,6,1,1
*FINISH

The modification of element 4,1,2 results in the
element nodes 6 and 2 being changed to grid points (6,1,3)
and (6,1,1) respectively. The results of this modification
may be seen in Figure 5b, which indicates the changes made

frem Figure 5a.

Bounu. >y Conditions

In the TXGAP 3D program, the application of boundary
ccnditions is performed on an element basis. Depending on
the type of boundary condition, this application is consid-
ered to be acting on d@ther a nodal point or on a face of the
element. As with the numbering of the element's nodal points,
there is a specific pattern in the numbering of the element
faces. This pattern is indicated by the numbering of the ele-

ment faces as indicated in Figure 4. The specification of

s
LY

21

boundary conditions in TXGAP3D requires the identification
of the boundary condition type, the element by its element
name, the node or face on which the boundary condition acts,
and the value of the boundary condition. The routines in
EDGAP3D associated with boundary condition information are
capable of finding, adding, and deleting boundary conditions
from the element data. All the boundary condition types in
the TXGAP3D program are applicable in EDGAP3D with the excep-
tion of the CLAMPed type boundary condition. The lack of
this boundary condition type arises from the manner in which
this type of boundary condition is treated in the TXGAP3D
program. A complete list of the boundary condition types
applicable in EDGAP3D is to be found in Appendix A.

The preprocessor program allows the user two methods
for verifying boundary conditions. These methods are by
boundary condition type and by element. In the first method,
it is possible to obtain, for a specified boundary condition
‘type; all the elements, the location on the elements, and the
value at that location to which that type of boundary con-
dition has been applied. The second method outputs all the
boundary conditions, their positions, and their values that
have been specified on the requested element. 1In this method,

either the element name or element number may be used to re-

quest this information.

£
iy

22

The modification of boundary conditions is carried
out on an element by element basis by adding and deleting the
appropriate boundary conditions. If only the value of a
boundary condition needs to be changed, it is unnecessary to
delete the originally specified condition first. However,
if the type or location is to be changed, the incorrect
boundary condition must be deleted. When the addition or
deletion mode is entered, the program is designed to first
print all the existing boundary conditions on the specified
element. The input specifying the boundary condition type,
location, and value to be added (or deleted) is then required
by the program. It should be noted that the program allows
the addition (or deletion) of only one boundary condition at
a time. There is no looping feature for multiple additions
or deletions. If the element name is used to specify the

element, the program will search for any other elements by

that name before terminating the addition or deletion sequence.

in the deletion mode, it is unnecessary to specify the value
of the boundary condition being deleted.

The following examples illustrate the verification
and modification of boundary condition information in the
EDGAP3D program. Example a) illustrates the use of the
feature which locates all the elements on which the specified

boundary condition has been applied. Example b) is one in

UL

23

which all the boundary conditions applied on the specified
element are located and listed. Examples c) and d) show the

use of the addition and deletion modes.

a) * BC,UX
___X-DISPLACEMENT BOUNDARY CONDITION
___ELEMENT NODE VALUE
4., 2 3 0.

]
S]]

o e

MU NDN e
S N mom v nnoam owow~
P T - - SR SN Y |
MDD NN
NN 00~ w00~
[oNeoNoloNoNoNoNloNoNeNe)

- - - A - . - - - - -

L N T T WS N S N

b) * BC,ELEMENT,1,4,2
___BC FOR ELEMENT (S)
_BC_TYPE NCODE

'
o]
[l
(<3 I
|
K=Y
<1

c
&3]

OOOOOOOOOOEN

o

0.
-7.500E+00
-7.500E+00
-7.500E+00
=7.500E+00

uZ

PRESSURE
PRESSURE
PRESSURE
PRESSURE

C
<
BB BB WNNOWNNO W NN

¢)

24

c) * BC,ADD,4,1,2
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
__ENTER BC INFO. TO BE ADDED OR DELETED
PRESSURE, 3, 100.
d) * BC,DELETE,4,1,?2
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 3 1.000E+02
PRESSURE 3 1.000E+02
PRESSURE 3 1.000E+02
PRESSURE 3 1.000E+02
ENTER BC INFO. TO BE ADDED OR DELETED

* PRESSURE, 5

Element Addition and Deletion

The addition of elements in the EDGAﬁgﬁ code 1is

accomplished in the same manner as in the TXGAP3D program.
The command directives for this feature are identical in both
programs. The directives consist of the specification of the
element type, its material property type, and the connectivi-
ty of the corner nodes defining the element. The only diff-
erence between the two codes in these commands directives is
that the optional features available in TXGAP3D are not
applicable in the preprocessor program. This means that
every corner node must be specified in the proper sequence

when defining any of the element types. Since an element is

£
p
(ST Y

25

defined by specifying the I,J,K (external) label of the

grid points it is connected to, it is a necessary requirement
that all of these grid points exist. Issuing of the command
directive to generate a new element in the data list also
causes the routines to build a geometry list of the nodal
point coordinates for the element. If one of the specified
grid points does not exist, a warning to the user is issued
and the command directive to add the element is ignored.

Element deletion is accomplished by simply flagging
those elements to be deleted with a key so that when the

“element data is regenerated on the disk file at the end of
the editing session, the flagged elements are not included
on the new file. For element deletion, either the element
name, or element number may be used to specify the element.
In cases where the element name is used, all elements with
that name are flagged to be deleted.

The following examples are typical of the use of
the addition and deletion features in the EDGAP 3D program.
The results of the issuing of these command directives are
illustratéd in Figures 6a, and 6b, which show the addition

and deletion of elements from the element mesh of Figure 5a.

(a)

Addition of elements

(b) Deletion of elements
+
X DELETE,2,2,2
___DELETED ELEMENT 2
__ DELETED ELEMENT 2
* DELETE, 3, 3,2
__DELETED ELEMENT 3

* DELETE, 1l
___DELETED ELEMENT

27

2 2
2 2%
3 3

11

This message was printed twice because there were two

elements having the same name.
from the data.

Both elements were deleted

CHAPTER III

GRAPHICS DEVELOPMENT AND CAPABILITIES

Wwhile it is fairly easy to sketch or mentally vis-
ualize one and two dimensional figures, the capability to do
this for arbitrarily shaped three dimensional figures is ex-
tremely difficult without some sort of aid. It becomes evi-
dent that the inclusion of a graphics section is a necessary
feature when attempting to do any work with three dimensional
finite elements. The purpose of the graphics section in the
EDGAP 3D preprocessor program is to provide a visual aid in
the form of a simple, flexible system that allows for both
interactive display and hard copy output. The actual graphics
features which have been included have the ability to rotate
the mesh about any or all of the figures principle axes; the
ability to "scale" the figure to increase the resolution of
complicated areas, and the choice of several types of graph-
ical output with respect to both the display device and the
type of display desired. The flexibility in display device
is limited to either interactives graphics on an IMLAC PDS-1
graphics terminal or a Calcomp ballpoint pen plotter, while
the types of displays available are for the plotting of a
region of the mesh that is of interest, of single elements,

or of single elements highlighted in the region of interest.

29

The general structure of the graphics section con-
sists of a large data block in which the information to be
displayed is stored and routines containing the algorithms
required to perform the various functions and operations.
When the graprhics section is accessed, the limits defining
the region to be displayed are established. The list of ele-
ment data is then examined and the information required to
display the elements within the defined region is stored in
the display data block (or list). The examination of the
element data file is done on an element by element basis. A
protection feature has been included to prevent exceeding the
size of the display data block. The specifications of one of
the available algorithms (rotation, scale, evc.) causes the
information in the display data block to be operated on and
in some cases to be modified.

In the development of any graphical display system,
it is soon discovered that the available equipment will im-
pose major restrictions on the display capabilities. The
graphics section associated with EDGAP 3D has certain machine
limitations related to it. The particular graphics terminals
involved in the interactive display of the input data are
IMLAC PDS-1 refresher scopes. A refresher scope is a cathode
ray tube (CRT) device coupled with a memory bank in which the

information related the display is stored. The term

30

"refresher" scope comes from the fact that the memory bank

must be cycled through several times a second (40 times) to

(5] The IMLAC

keep the display from fading from the screen.

terminal is basically a mini-computer with an 8000 word
memory. When coupled with the CDC 6000 series computer, how-
ever, the first 4000 words of storage are reserved for the
IMLAC's operating system and teletypewriter functions. This
leaves only the last 4000 words for graphics display. With
long vector hardware, this allows for the display of slighuly

more than 1300 vec.ors (both visible and invisible) at any

one time, since three words of memory are required for every
vector. A vector is defined as a line between two points.
Considering the machine limitations, the size of
the display data block in the yraphics section has been
limited to 1000 vectors. This display data block size was
selected because it provides an adequate buffer for problems
which might produce an IMLAC aisplay memory overflow. By
setting the display data block size at a 1000 vectors, it 1s
possible to retain this information in the CDC 6000 series
computer's memory without sacrificing interactive response
time or having to resort to some form of INPUT/OUTPUT oper-
ation when manipulating the display data. With the vector
display capability set at this limit, it is possible to dis-

play up to approximately 35 brick elements (which have the

Agoa

31

largest number of vectors per element), or a greater number
of prismatic and tetrahedronal elements, which have decreas-
ingly fewer vectors.

A particular features used in the development of the
graphics section code is that all the actual drawing instruc-
tions are issued by standard Calcomp plotting calls. The
interfacing of the Calcomp calls with the IMLAC graphics ter-
minals is accomplished by several undocumented routines de-
veloped on the University of Texas at Austin computer system.
These routines translate the Calcomp instructions into IMLAC
machine language which is then sent to the graphics terminal
by the use of a high speed binary Input/Output file. The
specification of the type of output device determines the

calling of these routines.

Rotation Algorithm Development

The algorithm developed to perform the rotation of
the mesh about its' axes represents the transformation of
a right-handed Cartesian coordinate system about its axes.
First considerincg a rotation about the x-coordinate axis, it
can be shown that the transformation to a new, primed refer-

ence frame is expressed in matrix form as

Ly

For

32

x! 1 0 0 X
y' = 0 cosf® sind y
z' 0 -sin® cosb z

where the angle of rotation, 8, is measured as being positive
in a clockwise direction about the x-axis when viewing the
origin from a point located on the plus x-axis (reference
Figure 7). Similarly, a rotation about only the y coordinate

axis is expressed as

) cos¢ 0 ~-sing X
Y'y - 0 1 0
z' sing O cosé z

where the rotation angle ¢ is about the y-axis (see Figure 7).

The rotation transformation for the z-coordinate axis is

x' cosy siny O
y' = -siny cosy O Y
z! 0 0 1 z

where the rotation angle y is measured about the z-axis (see
Figure 7).[5]
The approach taken in problems of rotations about

multiple axes is to consider this situation to be of a se-

gquential type in which the rotation about first one axis is

Q LEJ

2
<

Figure 7. Definition of Rotation Angles

-

34

performed, transforming the system to a new orientation about
which the next rotation is carried out. The problem that
exists with this technique is that the order in which the
sequential rotations are carried out becomes important.

That is, for example, that the coordinate transformation
about the x and then the y-coordinate axis does not produce
the same results as that about the y and then the x-coordi-
nate axis. The algorithm developed in conjunction with the
graphics section in EDGAP3D assumes that for multiple trans-
formations, the sequential ordering is an x, then y, then
z-coordinate axis transformation. This sequential transfor-

mation is expressed mathematically in matrix form as

! cosy siny O cos¢ 0 -sing
y' = -siny cosy O 0 1 0
z! 0 0 1 sing¢ O cos¢

1 0 0 b
0 cosf sinsb 3%
0 -sine cos9 z

Noting that if no rotation is desired or specified about any
of the coordinate axes, the coordinate transformation matrix

associated with that axis reduces to the identity matrix.

P—

‘[a.}

35

Therefore, this same system of equations may be used to pro-

duce any of the rotation combinations tabulated in Table 1.

TABLE 1

SEQUENTIAL POTATION COMBINATIONS

X, then y
X, then z

y., then z

X, then y, then z

1f any other ordering of the coordinate transformations 1is
desired, the same algorithm is used, but the coordinate
transformation order is changed by specifying separately, one
angle at a time, the coordinate axis rotation in the order
desired.

Rotation of the coordinates defining the mesh can
produce a shifting of data points to locations outside of the
originally defined limits of the display region. 1In order
to display the total region after the rotation of the mesh,

it is necessary to establish new limits defining the display

region. This is done by examining the transformed display

36

data list and locating the maximum and minimum values on each
coordinate axis. The various combinations of these maximum
and minimum values are then used to define the new limits of

the display region.

Scaling Algorithm Development

The graphical presentation of data often results
in areas which are extremely detailed and from which it is
difficult to discern meaningful information. A scaling fea-
ture helps eliminate this problem by providing the capability
of enlarging, or increasing the scale of these detailed re-
gions with respect to the display area (i.e., by blowing up
the region of interest): The approach taken in the develop-
ment of the scaling algorithms, which is.facilitated by
working with a data block of display information, is to scale
all the display information. The effect of scaling is to in-
crease (or decrease) the size of the mesh. The limits orig-
inally established to define the region of interest are used
to calculate the factors for fitting the region on the screen.
By retaining these limits when the display data is scaled
and displaying only the data still lying within these limits,
the resolution of the figure is increased (or decreased)
according to the manitude of the scale factor. The scaled

data falling outside the screen limits are not displayed.

e
A‘.J

37

It is possible after having scaled the display information
that the area in which the greater resolution is desired now
falls outside the display limits. A feature which allows the
translation of the mesh's origin along lines parallel to the
coordinate axes makes it-possible to shift these detailed
regions back into the display area. When the mesh has been
rotated from its original reference frame, the shift varia-
bles are automatically transformed to the new reference frame
before translating the origin. The shift variable transfor-
mation is based on the same alogrithms described in the ro-
tation feature development. This means that the sequential
rotation ordering is assumed, and in this particular instance
it is not possible to alter the order of the sequence from
that described in Table 1. A two dimensional rébresentation
of the scale-shifting technique is illustrated in Figures 8a
through 8d.

The particular algorithms used to perform the

scaling and origin translation are

where F is the scale factor and is always greater than zero.

The variables subscripted by t are the translation magnitudes

G

Limit of
L (0,0) | Display

Figure 8a. Original Unscaled and Untranslated Region
of Element Mesh

Figure 8b. Untranslated Region Scaled by a Factor of Two

39

figure 8c. Scaled Regicn Translated Along x-Axis

A"

Figure 8d. Scaled Region Translated Along Both x and y-Axes

o

40

along the appropriate axes, and the st subscripted variables
are the new, scaled and shifted coordinates stored in the

display memory.

Display Feature Development

The representation of a three dimensional figure
on a two dimensional surface requires the development of
several algorithms. One of these algorithms involves the
actual mapping from the three dimensional system to the two
dimensional system and the other involves the problem of de-
vising a system by which the figure is scaled and shifted with
respect to the screen in order to maximize the amount of
screen used. Another aspect of plotting figures is the
issuing of pen instructions. The graphical display of three
dimensional meshes developed here represents an isometric
projection of the mesh.

The transformation mapping from a three dimension-
al coordinate system into a two dimensional screen coordinate
system can be deduced from Figure 9 in which the screen
coordinates are determined to be the combination of the
geometric projections onto the screen coordinate axes. The

actual algorithms are expressed by

G
b

41

L
s

Figure 9.

Definition of Projection Angles

X
it

X COSa; + y COSB; + z cosy; - ¢
1)
Y. = X cosa, + y C0882 + 2z cosy2 - 02
where Xg and y, are the screen coordinates measured in inches
from the lower lefthand corner of the screen with the X
axis being horizontal and the Yg axis being vertical. The
subscripts on the angles (1 & 2) reference the angles between
the figures coordinate axes and the screen's Xg and yg coor-
dinate axes respectively. The variables cy and <, represent
the magnitude in inches which the mesh must be shifted along
the Xg and Ys axis respectively in order to maximize the
usage of the display area. These shift variables are defined
in Figure 10. The computations to be made are the determi-
nation of the cosines of the angles G Bi, and e Consider
a three dimensional reference vector set composed of {(1,0,0),
(0,1,0), (0,0,1)} where the components are (x, y, z). These
vectors can be shown to form an orthogonal basis for a three
v

dimensional space, and will be referred to as {V

r1’ Vr2' Vr3!:

Performing all the rotations on this basis set that are

carried out on the display data then results in a new basis
T] '3 1 7 [: :

set {VRl ¢ Veo's Ve3 } from which the cosine of the angles

required for the transformation from the 3-D system to the

2-D surface can be determined. This is done by introducing

(X'yyz")
max

Figure 10. Display Screen Scaling Box Definition

=
&1

a display vector basis set {le’ Vbz} which consists of

{(1,0,0), (0,1,0)}, and recalling the relationships for the

inner products of vectors.

A-B = ab cos® = a.b, + a,b

1°1 2P *

azb;

where a; and bi are the vectors components and the scalar

magnitudes are

_ 2 3,1/2 _ 2 2 3,1/2
a = (al + aj) , b = (bl + b2 + b3 }

and solving equation 2 for the cosine of the angle yields

cosb = (albl + a2b2 + a3b3)/ab 3)

An examination of the basis sets for both the reference vec-

tors, V_., and the display vectors, V

Ri ., quickly reveals that

D1

their scalar magnitudes are always equal to unity. Therefore,
relation 3 reduces to the form, when expressed in terms of

these vectors, of

1,2,3
= VRi1VDj1 1,2

4

+ 4)

Vei2Vpj2 3

45
Note that Vng is always equal ko zero and this term drops
out. By using relation 4) the cosines of the aj, Bj, Yj’

angles are determined as

- T3 - = v -
cosay = Vf'll VDl cosa, le VD2

- U .— = tYA -—
cosBl = Véz VDl cosB2 VR2 VD2

= Y .— = v! '——
cosy; = Vg3'Vp1 cosy, = Vp3'Vp2

In order to maximize the display of a mesh within the
limits of the screen while insuring that all of the mesh
be displayed, the following scheme was devised. All the
display data is examined after each transformation to deter-
mine the maximum and minimum vglues in éach of the principeal
directions, x', y', and z', where the prime denotes the
transformed coordinate system. The various combinations of
these values define a box which contains the mesh region to
be displayed (see Figure D.3). By transforming these combi-
nations into the screen coordinate system, the maximum and
minimum projections on both the screen coordinate axcs are
determined. The minimum values, <y and Cor define the trans-

lations —equired to shift the mesh enough to assure the total

image lies within the screen limits. The maximum difference

L

46

between the maximum and minimum values on either of the screen
axes (i.e., the maximum of Cqy — Cp Or cy - Cl) is used to
establish the screen scale factor by which the display data

is multiplied before plotting. The screen scale factor is

a function of the screen width and this maximum difference.

In Figure 10, the origin of the transformed coordinate system
is shown to lie within the maximum-minimum box. This is not

a requirement of the algorithms and poses no problems if it
does not occur.

The actual plotting of a mesh presents two problems
which must bc solved. One is to minimize the number of vec-
tors required to draw an element without creating extraneous
lines or pen moments in the display, and the other is to de-
sign the plotting package so that only one vector is drawn
between two nodes no matter how many elements may join these
nodes. The last problem arises from the fact that multiply
drawn lines are brighter on the graphics screen and darker
on the Calcomp plots, tending to accentuate these lines and
making it difficult to distinguish such things as the image's
depth. Both of the problems described above are associated
with the pen position during the piotting of the figure. 1In
the pen up position, an invisible vector (no line) is drawn
and with the pen down a visible vector (line) is drawn. By

using combinations of pen positions, the number of lines

47

required to draw each type of element can be determined and
stored in the program. As the element data is examined at
the beginning of a graphics session, the pen instructions
associated with the elements which are stored in the display
data list are also saved. fhis provides the drawing instruc-
tions needed to display individual elements. When multiple
elements are to be displayed, a looping feature is entered
which causes a comparison to be made between the vector about
to be drawn and all previously drawn vectors in the display
list. If the vector has already been drawn, the pen instruc-
tion for the present vector is set at up and the pen is more
to the next point without drawing the line. Invisible vec-
tors are used to reduce the amount of lines actually drawn,
but they do not decrease the amount of information required
by the graphics terminals to display the figure. This 1is
because the same number of words of memory are required to

draw both types of vectors.

Illustrative Example of Graphics

The following example illustrates the us> of the
various features available in the graphics section of EDGAP3D.

The parameters associated with the DISPLAY command indicates

-
C e
n."d

~

48

that the output file is the IMLAC graphics terminals. Of
course the figures which appear were actually generated on

the Calcomp plotter.

* pLOTS,_1,_1,_1,50,50,50
defines the plotting region as being from (_1,_1,_1)
to (50,50,50) inches

* ROTATE,
rotate the element information about the x-axis
and then about the z-axis.

* DISPLAY
display the region specified by PLOTS; see Figure 11

* DISPLAY,2, ,4
display element number four, see Figure 12

* DISPLAY,3,1,20
display element number four highlighted in the
region defined by PLOTS, sce Figure 13

* SCALE,1.7
scale the display information by a factor of 1.75

* DISPLAY
display the scaled display information, see
Figure 14

* SCALE, ,17,17,
translate the origin 17 inches along the x-axis,
17 inches along the y-axis, and inches along the
Z-axis

* DISPLAY
Figure 15 shows the results of the origin trans-
lation with the previously scaled display infor-
mation

* END,PLOTS
terminates the graphics module.

nt Mesh in Region Specified

50
XR="70
YR="70
/R=0
oF=1.0
XT=0.00
YT=0.00
Z1=0.00

Figure 12. Element Plot

P
S,
LU

ERIC

IToxt Provided by ERI

52
XR=770
YR=-15
/R=0
SF=1.7
XT=0.00
YT=0.00
/1=0.00

Figure 14. Element Mesh Resulting from Scaling Region

XR="70
YR=-10
/R=0
SF=1.7
XT=17.00
YyT7=17.00
21=0.00

T
NEa
NN

Figure 15. Element Mesh Resulting from Scaling and
Translating Region

ERIC

A Text provided b e > i
e’

CHAPTLER IV

CONCLUSIONS

The EDGAP3D preprocessor program developed in this
research provides a means for interactively verifying and
correcting data generated by the three dimensional finite
element code, TXGAP3D. The principle limitation of the code
is that it is restricted to handling of existing data since
it has no data generation capabilities. It is quite likely
that situations can arise where verification and correction
of data is insufficient and some form of data generation
would be desirable. This is particularly true in the areas
of geometry and element addition. Another capability which
should be included is that of handling material properties,
thus eliminating the need for complete regcneration of the
data when only the material properties of the problem have
been chaﬁéed. Another area in which this 'particular prepro-
cessor could be improved is to include the capacity to exam-
ine and modify data generated by the REZONE program of TXGAP3D.
The capability to handle this information would be very val-
uable. While the area of graphics could be improved with
such features as hidden line capability, it is felt that the
trade off in computer core requirements does not warrant the

effort. One of the best possible ways to improve the EDGAP3D

54

55

program would be to more closely couple the data generator
et

in TXGAP3D with it. For example, to run the data generator

(SETUP) and EDGAP3D linked directly together as a single

program.

APPENDIX A

USER'S INPUT GUIDE TO EDGAP3D

EDGAP3D operates in two basic command modes, de-
pending on the function to be performed. These are the
editing mode which features two levels of command entries,
and the graphics mode which has only one command level. An
attempt has been made to have the available input commands
follow the format of the commands of TXGAP3D. The following
convention and terminology is adhered to in the description

of the input entries.

i.) UPPER CASE words are actual alphanumeric
input as they appear in the entries, €.9.,
EDIT.

ii.) Lower case words are variable names whose

values appear in the entries, e.g., imax.

iii.) All entries are in the frece field format,
i.e., individual words are separated by
commas. A maximum of ten, nonblank, charac-
ters is allowed in any one data field (blanks
are ignored). The content of each kind of
entry is shown underlined.

iv.) Optional parameters will be designated by
{]. The omission of an optional parameter
within a sequence of parameters 1s indica-
ted by successive cormas. I1f the omission
is not followed by any parameters to be
specified, the commas are not required.

v.) Elements are normally identified by the 1,
j, k number of the first node that the ele-
ment is connected to, here after referred
to as the element name. In EDGAP3D, the
additional capability of identifying an

56

57

element by the order in which 1t appecars on
the element data tape, here after referred
to as the element numbher.

vi.) In the generation of the grids in the present
version of TXGAP3D, the user specifies the
i, 3, k names (numbers) of every other grid
point. This will be referred to as the ex-
ternal node name. It is these nodes which
are used to define the elements and corre-
spond to corner nodes of each element. The
gri’d points which lie betwcen the externally
named points have no external node name.

All grid points have an intcrnal node name
which is computed by I1*2-1, etc., for the
named points and I1*2, etc., for the unnamed
points.

The use of EDGAP3D is dependent on data denerated
by the SCTUP portion of TXGAP3D with a SAVE command being
issued during some portion of TXGAP3D input. The SETUP-SAVE
features causes the generation of three files containing
pertiﬁent data. These files are TAPE1l3 (number of elements),
TAPEl2 (element data), and TAPE15 (grid point coordinates).
All of these files are assumed to be in the local file area

of the user's job at the time EDGAP3D is executed.

Command Mode Entries

Command mode entries direct the calling sequence to
the specific overlay to perform the prescribed job steps in
the editing or graphics modes. The following commands are
possible: EDIT, PLOTS, END, and STOP. The issuance of the

I ';-)

Ral?

58

command EDIT, PLOTS, and END in general cavce some prelimi-

nary preparatory operations to be carried out in conjunction

with the particular command. Since there is no unique se-
quence of steps for the program, each command mode with 1its

associated features will be described separately.

Editing

This overlay allows for the verification and mod-
ification of the element data (TAPE12) and grid point data
(TAPE15) generated by the TXGAP3D program. The features
available include the ability to check and change grid point
iocations and element connectivity, as well as the addition
and deletion of elements. Boundary conditioﬁ data may also
be verified, modified, added to, or deleted. Note that the
ability to edit material properties has not been iuacluded,
althodgh an element material type specification may be changed
by first deleting the element and then adding it back with

the new material type being specified.

The issuance of the EDIT command causes the reading
of the element data file and the storage of pertinent data.

An EDIT session must be terminated by an END command which

R
Yool

59

causes the regeneration of the element data file with the
corrected data.

As element names are identified by the i, 3, k
number of the first node that the element is connected to,
it is possible to have several elements with the same name.
It is desirable to avoid a situation like this because boun-
dary conditions (in TXGAP3D) are applied to elements accor-
ding to their element name and it is thereforc possible to
apply boundary conditions on elements other than the one
intended. If this situation does arise, however, there 1is
no particular problem with EDGAP3D, since it is structured
to locate and allow the modification of elements in a se-
quential fashion, even when multiple element names occur.

In the case of multiple element names, the first element 1S
found and when modifications (if any) to it are completed,
the routines automatically proceeds to the next element with
that name. In cases where only verification information is
requested, the program is designed to provide the data by

element for all the elements with the same name.

Grid Point Features

GRID,i,j,k,[MOVE,newx,newy,newz]

60

i,j,k = external i,j,k name of the grid point.
For grid points which have no external
name, the following convention 1s used.
Specify the ncgative of the number of the
next, named, grid point in the direction
of the origin (moving along i,j, or k equal
a constant lines) from the point of inter-
est. Refer to the 2-D figure below as an
illustrative example.

J
o @)]
I,J+1 (-1,J+1) I+1,J+1
@) O O
(1,-J) (-1,-3) (I+1,-J)
® @) o —
I,J (-1,J) I+1,J I

The solid points
with external names.

indicate grid points
The circle points (O)

indicate grid points without external names.
The names in parenthesis indicates the
names to be specified to check and move

unnamed points.

ey
b e

61

MOVE causes the modification of the location of

the grid point named.

newx,newy,newz = the X,y,z location to which the
named grid point is to be moved.

When the GRID command is used with only the grid
point identifiers, the present location and the internal
name of the grid point is returned. If the MOVE option is
included, the internal grid point name and its original lo-

cation is returned, then the points location is modified.
Element Connectivity Features _ ;

CONNECT, type,i, [J,Kk]

type = NODE,ELEMENT, or MODIFY

i, [j,k] = external node number (NODE), element
name or element number (ELEMENT or MODI-
FY). Note that when type is specified
as NODE, i,j,k values must be specified
and they refer to the external node name
of the element corner nodes only.

For "type" specified as NODE, the program is de-

signed to output all the elements connected to the specified

node in terms of element names and the associated element

62

nodal point number. If "type" is specified as ELEMENT, the
program outputs the element nodal point numbers and the ex-

ternal node names associated with these for all elements with

,
(¢

the same name. When modifying an elements connectivity, the
present connectivity of the specified element is first re-
turned and then a looping call is made to the data entry,

which has the following form.

node,newi,newj, newk

node = element corner node number whose connectiv-
ity is to be modified

newi,newj,newk = the new external node name of the
corner node

The modification to the element's connectivity is
continued until the command, FINISi, is entered in place of
the data entry. The routine will then perform a search for
the next element with the same element name, if an element
name was originally with MODIFY, otherwise the 'next editing
command may be entered. If no modification is desired after
having specified "type" as MODIFY, then enter FINISH and no

changes will be made.

63

Element Deletion & Generation Features

DELETE, i, [j,k]

i, [3,k] = element number or element name

The issuance‘of this command cases the element
specified to be flagged for deletion from the element data
tape at the end of the editing session. Note that if the
element name feature is used, that all elements with this

name will be flagged for deletion.

eltype,mat,il,jl,kl,iZ, , 1N, jN, kN

eltype = BRICK,BgICKH,PRISM,PRISMH,TETRA, or TETRAH

mat = material type number

il,...., kN = the i,j,k's of the corner nodes de-
fining the element. Note that all
this information must be specified,
and N=2 for brick shaped elements,

N=6 for prismatic elements, and N=4
for tetrahedron shapc elements.

The format for the addition of elements is exactly
the same as in TXGAP3D with the exception that all the data
must be specified. This command causes the generation of a
new element without boundary conditions applied to it which

is added to the end of the element data list.

YUyl

Boundary Condition Features

v BC,0per or type, [i],13.K]

oper ELEMENT,ADD, or DELETE
type = UX,UY,UZ2,FX,FY,FZ,PRESSURE, or SLOPL
(i1, [3,k] = element number or element name and is

functional only in conjunction with an
operation.

The specification of a boundary condition type
causes the output of all boundary conditions of that type.
This is done in terms of the element name, the node or face
on which the boundary condition is applied and the boundary
condition value. When the operation, ELEMENT, is specified,
all the boundary conditions applied to the element(s) desig-
nated by the element name or element number are printed. The
output is in the form of the boundary condition type, the
node or face on which it is applied, and its value.

The addition, deletion, and modification of boun-
dary conditions is carried out through the operation of ADD
or DELETE. The use of the ADD and DELETE features first
causes the return of the existing boundary conditions for
the element specified, followed by an extra data entry of

the form specified below.

65

type, node or face, value, [value,value,value]

node or face = node or face number of the element
[sce figures 7 through 9 in Ref (1)

value = the value of the boundary condition

The PRESSURE boundary condition is specified by
four values (threec for a triangular face) or pressurc at
the corner nodes of the face. The ordering is the same as
specified in TXGAP3D USER'S INPUT GUIDE, and for constant
pressures only the first value need be specified. To change
the value of a boundary condition, the ADD command is used
in conjunction with the data entry specifying the new value
of the boundary condition. TFor the deletion of boundary con-
ditions, the extra data entry neeced only specify the boundér}
condition and thc node or face. .

1f after having entered the boundary condition
modification mode (ADD or DELETE) it is desired not to carry
out the modification, or in the case of multiple elements
with the same clement name where selective modification may

pbe desired, thc command FINISH may be substituted for the

data entry in order to proceed without making changes.

"oy

66

Graphics

PLOTS, [xnin,ymin, zmin, xmax, ymax, zmax], [imin, jmin, kmin, imax,
jmax, kmax]

xmin,,zmax = the minimum and maximum X,Y,Z2
coordinates of the region to be
displayed

imin,....,kmax = the minimum and maximum i,Jj,k

numbers of the region to be dis-
played

The overlay called by the PLOTS command allows for
graphical output in the form of IMLAC displays or CALCOMP
ball point pen plots for the region specified in the call.
The informaéion required to display element mesh is read
element by element from the elemént data file with only the
elements in the specified region being retained in the dis-
play memory. Since the amount of display memory allocated
for the storage of this information is limited, a protect
feature is built in which prevents overflowing of the nenory
area. The information contained in the display memory can
be manipulated and displayed, evén if an overflow is encoun-
tered. To view information which is not contained in the
display memory because of overflow or otherwise, a new call
to PLOTS may be issued during a graphics session, specifying
a new region of interest. Note that this can be done without

having terminated the graphics session.

67

The graphics features in this overlay are limited
to three basic commands, some of which have variable para-
meters. These commands produce the rotation, scaling, and
displaying of the data in the display memory. Graphics
sessions must be terminated by an END command entry.

The IMLAC PDS-1 graphics terminals are basically
mini computers which require their own operating system to
interpret instructions issued to them. The features in EDGAP3D
have been designed for use with the "EXEC" operating system
(Version 3.8) developed by the Computer Based Education
(CB-L) research group at the University of Texas at Austin.
It is assumed that this operating system has been loaded into

the IMLAC's memory prior to executing EDGAP3D.

Rotation Feature

ROTATE, [xr], [yrl, [zr]

xr,yr,zr = the rotation in degrees about the X,Y,
or z axes [the default values are Xr=

45°, yr=-45°, zr=0]

The use of this command causes the data in the

lisplay memory to be operated on to perform the specified

soordinate rotations. The sign convention used in specifying

the degree of rotation about an axis is for positive angle

68

to represent a clockwise rotation about the axis where view-
ing the origin from a point on the plus (+) side of the axis
(reference the figure below). The rotations about the axes
may be specified individually or in any combination. The
default values are used only when no rotation angles are
specified. Note that when multiple angles are specified;, the
algorithm assumes a sequential transformation of the order
of xr, then yr, and then zr, or any combination of these as
long as it is left to right (e.g., xr then 2zr, or yr then
zr, etc.). After a rotation has been performed, the display
data is automatically rescaled to insure that the region of

interest will fall within the plotting limits.

69

This command allows the user to obtain arbitrary
views of the mesh. Initially the mesh coordinate axes are
oriented so that it's x and y-axes correspond to the screen
x and y-axes, with the mest z-coordinate axis being out of

the plane of the screen.

Scaling Features

SCALE, [sfac], [xt], [yt], [zt]
sfac = the scale factor (must be greater than zero).
Default value is one (1.0).
xt,yt,zt = X,y, Or z translation along the axis
specified in either the plus or minus

direction. Default values are zero
(0.0).

The SCALE routine allows the user to enlarge or
reduce the region to be displayed with respect to the screen.
This option provides the user with a method for obtaining a
higher resolution of various areas of the display data.

When the SCALE feature is exercised, the display data is
modified without changing the plotting limits. Since only
information totally within the plotting limits is displayed,
it may become necessary to translate the scaled data to shift
particular regions where higher resolution is desired back

into the viewing limits in order to display them. For

£

70

example, consider the steps required to increase the resolu-
tion of the detailed region in Figure l6a. Then scaling by
a factor of two and translating along the x and y-axes one
unit results in Figure 16b, where only the detailed region
lies totally within the plotting limits and is therefore the
only portion of the figure displayed. Note that an element

must lie completely within the plotting limits to be drawn.

Display Features

DISPLAY, [icodel, [idev], [elnum]

icode = 1: region defined by PLOTS (default value)
2: single element plots
3: element highlighted in the defined region
idev = 1: IMLAC terminal (CRT graphics) (default
value
2: Calcomp ballpoint pen plots
elnum = the element number to be plotted when icode

is either 2 or 3.

The DISPLAY routine is the routine which does the
actual issuing of drawing instructions to the specified out-
put device. This output device can be any type of machine
that will accept standard Calcomp plotting calls. When a
call is made to DISPLAY, the system checks the display data

element by element, checking to verify that the element lies

Limit of
Display

Figure l6a. Element Mesh in Region of Interest

Figure 16L. Elemcent Mesh Scaled by a Factor of Two
and Translated One Unit All x and y-Axes

72

within the plotting (or screen) limits. Plotting instruc-
tions are issued element by element when the element lies
totally within the plotting limits. The element number is
written in the center of the element. Also included with
each type of plot is a right-handed coordinate reference
frame showing the present orientation of the mesh XxXyz-coor-
dinate axes to the user and a data block showing the values
of the current status of the orientation from its initial
orientation. The mesh is initially oriented with its x and
y coordinate axes correspording to the screcns X and y axes
and the z axis of the mesh being out of the plane of the

screen.

Terminator Commands

END, section

section = PLOTS,EDIT

This command is required to terminate both the
graphics and the editing sections of the program. In the
case of terminating the editing section, this comma:r:d causes

th2 regeneration of the element data tape used by TXGAP3D.

Ty
Cr.

This command is used to terminate the program.

APPENDIX B

Example Session

The following is an example session illustrating
the use of the EDGAP3D Preprocessor Program. An attempt has
been made to exercise all the features available in the code.

1t is assumed that the data files generated by TXGAP3D are

‘local to the user's files. The particular data files are

TAPE12 (clement data), TAPE13 (total number of elements gen-
erated), and TAPEIS (grid point data). It is assumed that
the files are to be located by the file names indicated
above. The commands for displaying information indicate the
Imlac graphics terminal as the output device, while the

illustrations are actually Calcomp plots.

cc:

* RFL,45000./

* EDGAP3D

GO:

* PLOTS,-1,-1,-1,6,7,7 (region of interest is to be
from (-1,-1,-1) to (6,7.7)

* ROTATE, 40,30 (rotate the region of interest
40° about the x and then 30°
about the y-axes.)

* SCALE, .65 (scale the display information
by a factor oIl .65)

* DISPLAY (display the all the elements
in the region of interest)

' see Figure 17

* END,PLOTE (end the Graphics Module)

* EDIT {enter the Editing mode)

* GRID,2,1,2 {output the location of grid

point (2,1,2)

74

&5

XR=40

XT1=0.00

76

___INTERNAL_I,J,K x,y,Z_COORD.
______3_1_3 1.200E+00 0. 1.333E+00
* GRID,-4,1,2 (locate grid point (_4,1,2)
___INTERNAL_I,J,K X,y,z_COORD.
_____ 8 1_3 4.200E+00 0. 1.333E+00
* GRID,2,1,2,MOVE,1,-.5,.75 (move grid point (2,
1,2) to (1.0,-0.5,
0.75))
___INTBRNAL I,J,K X,¥Yr2 COORD.
_____3_1_3 1.200E+00 0.0 1.333E+00
* CONNECT, ELEMENT,2,1,2 (find connectivity for element
2,1,2)
__CONNECTIVITY FOR ELEMENT 2, 1,2
__NODE I J K
1 2 1 2
2 4 1 2
3 4 2 2
4 2 2 2
5 2 1 3
6 4 1 3
7 4 2 3
8 2 2 3
* CONNECT, ELEMENT, 6 (find the connectivity for the
sixth elemcnt on the data file)
___CONNECTIVITY FOR ELEMENT NO. 6
NODE I J K
1 2 2 2
2 3 3 2
3 2 4 2
4 2 2 3
5 3 3 3
6 2 4 3
* CONNECT,NODE,4,1,2 (find the elements connacted

to grid point 4,1,2)
__CONNECTIVITY FOR NODE 3, .3,.3
LOCATED AT COORD. 2.400E+00, 3.000E+00, 2.667E+00

ELEMENT ELEMENT LOCAL
NUMBER 1 J K NODE
5 2 2 2 6
6 2 2 2 5
8 . 3 3 2 4
11 4 4 2 6
* CONNECT,MODIFY,4,1,2 (changed the connectivity of

element 4,1,2)
__CONNECTIVITY FOR ELEMENT 4, 1,_2

77

NODE I J K
1 4 1 2
2 5 1 2
3 5 2 2
4 4 2 2
5 4 1 3
6 5 1 3
7 5 2 3
8 4 2 3
* 6,12,1,5 (change connectivity of node
6 to 12,1,5
____WARNING: COMMAND IGNORED
_____ GRID POINT 12,1,5 IS NCNEXISTANT
* 6,6,1, (change connectivity of node
2 to 6,1,3)
* 2,6,1,1 (change connectivity of node
2 to 6,1,1)
* FINISH (end connectivity modifications)
* END,EDIT (end editing module)
* PLOTS,-1,-1,-1,7,7,7
* ROTATE, 70
* ROTATE,,,15
* SCALE, .7
* DISPLAY,1,1 (display the clements from the
modified element data, see
Figure 18)
* END,PLOTS
* EDIT
* BC,UX (find all the x-DISPLACEMENT

BOUNDARY CONDITION)
x~DISPLACEMENT BOUNDARY CONDITION

~ T ELEMENT NODE VALUE
1, 4, 2 3 0.
1, 4,2 4 0.
1,74, 2 7 0.
1, 4, 2 8 0.
2, 4, 2 3 0.
2, 4, 2 4 0.
2, 4, 2 7 0.
2, 4, 2 8 0.
5, 4, 2 1 0.
5, 4, 2 2 0.
5, 4, 2 5 0.
5, 4, 2 6 0.

* BC,ELEMENT,1,4,2 (find all the boundary conditions

on element(s) 1,4,2)

53

____BCor ELEMENT (s)
_BC TYPE NODE/FACE

UX

UXx

UX

UX

uy

Uy

uy

Uy

Uz

Uz

uz

Uz
PRESSURE
PRESSURE
PRESSURE
PRESSURE

* BC,ADD,4,1,2

.b-b-b-.b-\lmwl\)\lo\wl\)\lmwl\)

PRESSURE
PRESSURE
PRESSURE
PRESSURE

___ENTER BC INFO. TO BE ADDED

* PRESSURE, 3, 100.

oo,

* BC,DELETE,4,1,2

PRESSURE
PRESSURE
PRESSURE
PRESSURE
PRESSURE
PRESSURE
PRESSURE
PRESSURE

___ENTER BC INFO. TO BE ADDED

* PRESSURE, 5

wwwwuuyuuy

* BRICK,1,1,4,3,2,4,3,2,5,3,1,
* PRISM,1,4,2,3,5,2,3,5,2,4,4,

* DELETE,2,2,2

1, 4, 2
VA2 LUE

OOOOOOOOOOO
e« s s w s s e s & & e

0.
-7.500E+00
~7.500E+00
-7.500E+00
-7.500E+00
(addition of boundary condition
to element 4,1,2)
5.500E+00
5.500E+00
5.500E+00
5.500E+00
OR DELETED
(add pressure BC on face 3 of
element 4,1,2)
(deletion of boundary condition
from element 4,1,2)
.500E+00
.500E+00
.500E+00
.500E+00
.000E+02
.000E+02
.000E+02
.000E+02
OR DELETED
(delete pressure BC from face
5 of element 4,1,2)
513111414121414121514111514
(add brick element 1,4,3 to
element data)
4,3,3,5,4,3,5,4,4
(add prismatic element 4,2,3
to element data)
(delete element (s) 2,2,2 from
element data)

OO

* % % % % #

___DELETED ELEMENT
_ _DELETED ELEMENT
DELETE, 3, 3,2

_ _DELETED ELEMENT
DELETE, 11

__DELETED ELEMENT 11
END,EDIT
PLOTS, X, 1, 1,7,7,7
ROTATE, 70
ROTATE, ,, 15
SCALE, .7
DISPLAY

DISPLAY, 3, ,4

SCALE, 1.2

SCALE,,,2,1

DISPLAY
END, PLOTS
STOP

2
2

3

2
2
({indicates multiple elements
by same name (all deleted))
2
(delete element no.
element data list)

11 in the -

(display the newly modified
element data in the specified
region. see Figure 19)

(display element number four
in the highlighted region, see
Figure 20)

{scale the display region hy

a factor of 1.2)

(shift the origin two inches

along the y-axis and one inch
along the z axis)

{show the results, see Figure 21)
terminate
gram

execution of the pro-

0000000

RRRRRRR
XXXXXXX

)
0000000

RRRRRRR
XXXXXXX

Figure 21. Elerent Mesh Dismlay Resulting
from Scaling and Translating
Modified Region

[T
\) AJ‘&

BIBLIOGRAPHY

Her&ess, E. D. and J. L. Tocher, "Design of Pre- and
Postprocessors," Structural Mechanics Computer Programs,
Ed. W. Pilkey, K. Saczalski, H. Schaeffer; University
Press of Virginia, Charlottesville, Virginia (1974),

pp. 887-898.

Napolitano, L. G., R. Monti, and P. Murino, "Prepro-
cessors for General Purpose Finite Element Programs,"
Structural Mechanics Computer Programs, Ed. wW. Pilkey,

K. Saczalski, H. Schaeffer; University Press of Virginia,
Charlottesville, Virginia (1974), pp. 807-823.

Nicolau del Roure, R. G., E. B. Becker, and R. S. Dunham,
"The Texas Three Dimensional Grain Analysis Program,"
University of Texas TICOM Report 74-2, February, 1974.

Dunham, R. §., E. B. Becker, and F. M. Gucrra, "Organi-
zation and Functional Purpose of Finite Element Computer
Programs," ASME Confercnce on Pressure Vessels and
Piping, Miami, June, 1974.

Newman, W. M. and R. F. Sproull, Principles of Interactive

Computer Graphics. McGraw-Hill Book Company: New York,
1973.

Sciarra, J. J., "Vibration Analysis in 3D with Computer
Graphics," Sound and Vibration. January, 1970, pp. 10-
21.

User Reference Manual; Inlac PSD-1 Programmable Display
System. Imlac Corporation, 1971; Revision C.

84

COMPUTER BAf:ED EDUCATIDN counses
o ‘AEROSPACE ENGINEER!NG
O Adreraft Design—Drs, W.T, Fowler cmd D G, Hu}I

- Struetural AnQiYSiS*-—Dr Enc Becker: -

~ ARCHITECTURE o |
Survey Qf Enwronmenfcl Control Sysrems—Dr F N Arumn

Prccess Ana!ysis ond Snmulononman M. Hnmmelblou RS
. ;_;_Optzma! Ccnrrol Drs T F,Edgor E H Wxssler anol O. Hougen :

 CHEMISTRY S
. Vector Space Theory of Mcxtfeer F.A. Morsen

. Physicol Chemistry Laboratary—Dr. John M. White
- Organic Chemistry—0rs. J. C. Gilbert ond G, H. Culp

L * Introducrory Chemisiry—Dr. J.). Lagowslki -
- Principles of Chemistry=-0r. L. J-Lagowski - -~
R intmducnon tc: Chemtcal Proctlce-- r. .l) chowskt

e " CIVIL ENGINEERING T T T E S T e
,f;",Computet Mefhods fc;r Civﬂ Engmeerlng Lobarator ~Dr.C.PI o Ason ehol o

v',"j'}f;»,ECONOMiCS S
s ijTheory of incame cnd Empioymenr——Dr JomesL Weotherby
© ENGLISH - e
o "\';English Composmcn——Dr Suson ‘Mtﬁg
~"HOME ECONOMICS .
'Chﬂd Dﬂvelopmenhbr Mcry Elren Durrefr
LlNGUlSTICS T e 8
'Longucge ond Socnefy~Dr \V P Lehmafm ST

. MATHEMATICS SR
?Calcu!usl llv-—Dr Joth Alexdnder RIS

, 'MECHAdlCAL ENGINEER!NG ,

~Dynamic Sysremséynrhems——l)r L Hoberack S e

- - Probability and Statistics for En l:E;meers-«Dr G, R \Vagner Co e
ergy Systems Laboratory—Dr. et . o

- Element Design—Dr. Joha I: Allor 1 R

- Nuclear Reactor Engineerifig~Dr. B.V. Koen i

S 'Kinemcﬂcs cnd Dynom(c Méchonrco] 5ystem5—~Dr W S Reed

" PSYCHOLOGY

" iptroduction To Psycholagy-»Seif Pcced~Dr Jcm H Bruell
B Stohsﬂc:of Methods m PsycholeDgy--Dr Jarmnes M. Swonson

,PHYSICS : S
B : ,‘_-:Ccmpurer Introducﬁon fa. Physms«Dr J D Govenda .
,.‘ZOQLOGY SRR ' SRt
" Genetics—Dr. Richc:rd P.rchcrdson

L Experimental Genetics—Dr, mchcrd Ruchordson
SR BfﬂthSICGIAnofys?s«*DrJ LFox

