
DOCUMENT RESUME

ED 115 205 IR 002 490

AUTHOR Hamiltom, Claude Hayden, III
TITLE An Interactive Preprocessor Program with Graphics for

a Three-Dimensional Finite Element Code.
INSTITUTION Texas Univ., Austin. Project C -BE.
SPONS AGENCY National Science Foundation, Washington, D.C.
R.IPORT NO EP-34-2-27-75
PUB DATE 27 Feb 75
NOTE 95p.; For related documents see IR 002 463 and 464

EDE, PRICE MF-$0.76 HC-$4.43 Plus Postage
DESCRIPTORS *Computer Graphics; Computer Oriented Programs;

*Computer Programs; Computers; *Display Systems;
Geometric Concepts; Higher Education; Input Output
Devices; Programing

IDENTIFIERS *Interactive Preprocessor Programs; Preprocessor
Programs; Project C BE; Structural Mechanics

ABSTRACT
The development and capabilities of an interactive

preprocessor program with graphics for an existing three-dimensional
finite element code is presented. This preprocessor program, EDGAP3D,
is designed to be used in conjunction with the Texas Three
Dimensional Grain Analysis Program (TXCAP3D). The code presented in
this research is capable of the verification and modification of data
generated by TXGAP3D. The particular areas which can be handled by
the code are those of grid point location, element connectivity, and
boundary condition information as well as the addition and deletion
of elements from the generated data. The interactive graphics provide
a simple flexible visual aid and can be used with any graphics
machine capable of interpreting standard Calcomp instructions. A
user's input guide to EDGAP3D is appended along with an ex&mple
session, illustrating the use of the preprocessor program.
(Author/CH)

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available
* via the ERIC Document Reproduction Service (EDRS) . EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original.

L.,r

CD
(NI
LC1

C:11

LU

AN INTERACTIVE PREPROCESSOR

PROGRAM WITH GRAPHICS FOR A

THREE-DIMENSIONAL FINITE ELEMENT CODE

EP-34/2/27/75

U S DEPARTMENT OF HEALTH,
EDUCATION A WELFARE
NATIONAL INSTITUTE DF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROMTHE PERSON DR ORGANIZATION ORIGINATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRESENT OFFICIAL NATIONAL INSTITUTE

OF
EDUCATION POSITION OR POLICY

Claude Hayden Hamilton, III

Department of Civil Engineering
The University of Texas at Austin

()
r4 (To fulfill written requirement for Master of Science Degree,

C)
January 1975)

*The materials contained herein were supported in part by
PROJECT C-BE under Grant GY-9340, "The Use of Computer-Based
Teaching Techniques in Undergraduate Science and Engineering
Education," from the National Science Foundation to The
University of Texas at Austin, Drs. John J. Allan and J. J. Lagowski,

Co-Directors.

PERMISSION TO REPRODUCE THIS COPY-
RIGHTED MATERIAL HAS BEEN GRANTED BY

C.) 3 . 11

ra ect
TO ERIC AID ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE NATIONAL IN-
STITUTE OF EDUCATION FURTHER REPRO-
DUCTION OUTSIDE THE ERIC SYSTEM RE-
OUiRES PERMISSION OF THE COPYRIGHT
OWNER

Copyright © 1975, by The University of Texas at Austin.

All rights reserved. Published in the United States of America.

No part of this book may be reproduced by any means without the written
permission of the publisher. z

DIRECIORS:

Dr. John J. Allan ni

Dr..J. J. Log ski"

ADDRESS:

413 Engineering Lab Building
The University of.Texas at Austin
Austin, Texas 78712

(512), 471-4191

ABSTRACT

The development and capabilities of an interactive

preprocessor program with graphics is presented. This pre-

processor program is designed to be used in conjunction with

the Texas Three Dimensional Grain Analysis Program (TCGAP3D).

The code presented in this research is capable of the veri-

ficiation and modification of data generated by TXGAP3D.

The particular areas which can be handled by the code are

those of grid point location, element connectivity, and

boundary condition information as well as the addition and

deletion of elements from the generated data. The interactive

graphics provides a simple flexible visual aid and can be

used with any graphics machine capable of interpreting stan-

dard Calcomp instructions.

ii

TABLE OF CONTENTS

ABSTRACT ii

LIST OF TABLES

LIST OF FIGURES vi

CHAPTER I. INTRODUCTION

CHAPTER II. EDITING CAPABILITIES ASSOCIATED WITH
EDGAP3D PREPROCESSOR PROGRAM

1

7

Geometry 9

Connectivity 14

Boundary Conditions 19

Element Addition and Deletion 24

CHAPTER III. GRAPHICS DEVELOPMENT AND CAPABILITIES . 28

Rotation Algorithm Development 31

Scaling Algorithm Development 36

Display Feature Development 40

Illustrative Example of Graphics 47

CHAPTER IV. CONCLUSIONS 54

APPENDIX A. USER'S INPUT GUIDE TO EDGAP3D 56

Command Mode Entries 57

Editing 58

Grid Point Features 59

Element Connectivity Features 61

Element Deletion and Generation Features . 63

Boundary Condition Features 64

Graphics 66

Rotation Feature 67

Scaling Features 69

iii

1 :7

APPENDIX A. CONTINUED

Display Features 70
Termination Commands 72

APPENDIX B. EXAMPLE SESSION 74

BIBLIOGRAPHY 84

iv s

LIST OF TABLES

Table Page

1 Rotation Combinations 35

v

Figure

la.

lb.

2.

LIST OF FIGURES

TXGAP3D Program Execution Paths

EDGAP3D Preprocessor Interfacing with TXGAP3D

Grid Point Identification Schemes

Page

4

4

10

3. Grid Point Modification 13

4. Element Nodes and Face Numbers 15

S. Element Connectivity Modification 20

6. Element Addition and Deletion Using EDGAP3D 26

7. Definition of Rotation Angles 33

8a. Original Unscaled and Untranslated Region of
Element Mesh 38

8b. Untranslated Region Scaled by a Factor of Two 38

8c. Scaled Region Translated Along X-Axis 39

8d. Scaled Region Translated Along Both X and Y-Axes 39

9. Definition of Projection Angles 41

10. Display Screen Scaling Box Definition 43

11. Element Mesh in Region Specified 49

12. Element Plot 50

13. Element Highlighted in Specified Region 51

14. Element Mesh Resulting from Scaling Region 52

15. Element Mesh Resulting from Scaling and
Translating Region 53

16a. Element Mesh in Region of Interest 71

16b. Element Mesh Scaled by a Factor of Two and
Translated One Unit All X and Y-Axes 71

vi

Figure Page

17. Element Mesh 75

18. Grid Point and Connectivity Modifications 78

19. Element Addition and Deletion of Previously
Modified Mesh 81

20. Element Highlighted in Modified Region 82

21. Element Mesh Display Resulting from Scaling
and Translating Modified Region 83

vii

..Z.....4..

CHAPTER I

INTRODUCTION

The development of computer codes using the finite

element method for performing structural analysis has been

proceeding rapidly during the past decade. A majority of the

effort expended has been made in the area of the central

analysis program while little effort has been made in the

areas of data generation or visual aids.
[1] As a result,

the analyst is often burdened with the task of preparing vast

amounts of complicated input data to specify a problem. In

cases where the analyst has available some form of automated

data generation, he is often hampered by the inability to

evaluate and correct parts of these data without having to

completely regenerate the whole. These constraints become

especially undesireable in the use of three-dimensional fi-

nite element codes, in which the amount of input data is

voluminous and difficult to check. The development of pre-

processor programs which are separately running computer

programs may ease and/or improve the use of finite element

programs.
[2] The purpose of this research is the development

of an efficient, interactive, preprocessor program for an

existing three-dimensional finite element code. The particu-

lar preprocessor developed is concerned mainly with the

1

2

editing of existing data and includes interactive graphics

for visually checking this data.

There are certain data files associated with the

use of any finite element code. These files contain infor-

mation relating to the geometry of the problem to be analy-

zed, the connectivity of the elements, material properties,

and the boundary conditions applied to the elements. These

are the data which a preprocessor program handles. An

additional difficulty arises when the problem to be analyzed

is a three-dimensional one. This difficulty is that while

it is easy to visualize most arbitrary two dimensional prob-

lems, it is more difficult to work in three dimensional space

without some form of visual aid. The inclusion of flexible,

interactive graphics routines in the development of the pre-

processor was thus indicated. The particular preprocessor

code, EDGAP3D, developed in conjunction with this research

consists of basically two parts. The first, which allows the

user to check and/or modify the previously generated input

data for the proper geometry, connectivity and boundary con-

ditions, and the second part which provides a visual means

for checking both geometry and connectivity. The first part

is referred to as an editor while the second forms the graph-

ics package. These two parts or modules are linked together

by a driver routine which directs the program execution to

3

the appropriate module according to instructions issued by the

user. There is no particular required sequence of instruc-

tions and the program execution can be arbitrarily directed

back and forth between the two modules to suit the purpose of

the user.

The EDGAP3D program is designed to be used in con-

junction with an existing three dimensional finite element

code, the Texas Three Dimensional Grain Analysis Program

(TXGAP3D). The TXGAP3D code is constructed as a series of

sequentially running subprograms. The sequence of execution

of these subprograms is user controlled and to an extent may

be arbitrarily directed, stopped, or restarted, depending on

the directions established by the user. These subprograms

are identified as SETUP, SOLVE, STRESS, REZONE, and PLOT.

The general paths of execution for these subprograms is in-

dicated in Figure la. SETUP is an automated data generation

program which performs grid point generation, mesh generation

.and boundary condition application. The SOLVE program gen-

erates the element stiffnesses, forms the total stiffness

matrix and solves for the nodal point displacements using a

frontal solution technique. The STRESS program calculates

the element stresses. The REZONE program consists of routines

for refining the element mesh in specified regions. The

SETUP

PLOT

SOLVE

STRESS

4

RESTART

REZONE

Figure la. TXGAP3D Program Execution Paths

RESTART

(SAVE)

(RESET)

--- -now EDGAP3D

PREPROCESSOR PROGRAM

EDITING
MODULE

GRAPHICS
MODULE

Figure lb. EDGAP3D Preprocessor Interfacing with TXGAP3D

5

PLOT program provides a rudimentary package for plotting the

element mesh. 131

The linkage of the EDGAP3D program is accomplished

through the RESTART feature available in TXGAP3D. Figure la

and Figure lb illustrate this linkage. The RESTART feature

allows .sir specified stopping and restarting which saves

and resets the data required to proceed with the program

execution. The ability to stop and restart the program be-

tween the various subprograms arises from the fact that all

communication between subprograms is via low speed disk

files.
[4] EDGAP3D is designed to access, examine, and modify

these disk files. After these files have been examined and

modified, the execution of TXGAP3D may be resumed with the

corrected data. Although the preprocessing package may be

used during any RESTART sequence, it is most useful immedi-

ately after the initial SETUP of the problem. The REZONE

program causes extensive modification to the file containing

input data and the EDGAP3D program is not capable of modi-

fying this data, even though this capability would be a de-

sireable feature. The data may, of course, be examined and

displayed at any time.

The purpose of a preprocessor program is not only

to ease the handling of data, but also to decrease the amount

of tim., the analyst must spend preparing data. EDGAP3D has

, t.

6

been designed to operate in such a way as to minimize the

interaction time. On the operating system for which this

program was developed, the interaction time is a direct func-

tion of the length of a program, significant coding effort

has been to minimize the operating size of the EDGAP3D pro-

gram. This has been accomplished largely through the use of

modular programming similar to that of TXGAP3D.
[4] Another

area in which emphasis is placed in order to simplify EDGAP3D

use has been to make the command directives as similar as

possible to the TXGAP3D command directives.

CHAPTER II

EDITING CAPABILITIES ASSOCIATED WITH
EDGAP3D PREPROCESSOR PROGRAM

The editor section of the EDGAP3D preprocessor pro-

gram allows the user to examine and modify the data he has

generated. This area of the preprocessor program specifically

allows the user to work with three of the data files common

to finite element problems. These files being those of the

specified geometry, the element connectivity, and the boundary

conditions. In addition to these features, the capability

for the addition (and/or deletion) of elements, within certain

restrictions, to (or from) the generated data set is included

in the editor package.

Data manipulation is an important feature of the

EDGAP3D program. The acquisition of information and internal

handling of this information are among the primary consider-

ations in the program structure. The TexaS Three Dimensional

Grain Analysis Program (TXGAP3D) generates the data for a

problem and stores this information on two low speed disk

files. One of these files contains the geometry in the form

of all the grid point coordinates that have been generated.

The second file has the information defining the element

connectivity and the boundary conditions applied to the ele-

ments. It is through these two files that the EDGAP3D program

7

8

is interfaced with the TXGAP3D program. The information on

these data files is that which is examined and modified.

Since these files are very large for large problems, the

routines in the editor package which access these disk files

store much of the information on relocatable high speed disk

files. At the completion of the editing session, the two low

speed disk files are regenerated containing the corrected

information.

The EDGAP3D program does not include the capability

for the editing of material property data.

There are some limitations associated with the usage

of the EDGAP3D preprocessor program which are particularly

related to the editor package. The principle limitation is

that the user is restricted to previously defined data in

both the addition of elements and the manipulation of element

connectivity. This means that in order for an element to be

added, all the points defining the connectivity and geometry

must have been defined in TXGAP3D. In other words, an element

can only be defined by already existing node points and the

editor package does not allow for the addition of node points.

The restriction that node points (or grid points) may not be

added is offset by the ability to move grid points. If extra

points are generated, they may be repositioned as needed

during editing to define the proper geometry for the new

element(s).

Geometry

The geometry for a problem is defined by the loca-

tion of the grid points. The coordinates for each point are

generated by an automated grid generator in TXGAP 3D and are

saved on a low speed disk file. Each point in the grid is

identified by a unique, I. J, K numbering system which defines

its location in the grid. The TXGAP 3D program has two identi-

fying schemes associated with it. One is the "external"

identifier which the user refers to. In this scheme, every

other node is sequentially numbered, and as far as the user

is concerned, the other nodes have no labels. The "internal"

labels are those actually used by the program for identify-

ing nodes and in this scheme every node is sequentially num-

bered. Figure 2 shows a two dimensional example of these

grid point labeling schemes. Because the user sees only the

external numbering scheme which labels only every other node,

a new scheme for identifying the unnamed nodes has been de-

vised. This scheme is also illustrated in Figure 2 and a

detailed discussion of this scheme is given in Appendix A.

The routines in the editor module of the EDGAP 3D

program provide the ability to check and change the coordi-

nate locations of every grid point established during the data

generation step in TXGAP 3D, whether the point has or has not

been used to define an element. The issuing of a command

.;7r0

J

0 0

10

1,2 2,2 External Label
1 3 2,3 3,3 Internal Label
1,2 -1,2 2,2 Special Label

External Label
1,2 2,2 3,2 Internal Label
1,-1 -1,-1 2, -i Special Label

0 Wriffm0
1,1 2,1 External Label
1,1 2,1 3,1 Internal Label
1,1 -1,1 2,1 Special Label

Figure 2. Grid Point Identification Schemes

11

directive identifying the grid point by the special, I, J, K

labeling scheme described in Appendix A causes the program

to print both the internal label and the X, Y, Z coordinates

of the point. This information is printed to the user in the

form of alphanumeric output. To change the location of a

grid point, the user issues the same command directive identi-

fying the grid point by its special label and includes the

additional parameters of a flag key and the new X, Y, Z loca-

tion of the point. Again, the internal label and the old

coordinate positions are output as this step is executed by

the routines. The issuing of a command to move a grid point

causes not only a modification of the list of data containing

the grid points, but also initiates a search of the element

data, replacing all the points located at the old position

by ones at the new one. Thus, if two nodal points identified

by different labels have the same coordinates and only one

is moved, the element data list will be modified as though

both had been moved.

To illustrate the features described above, the

following examples are presented. Suppose it is desired to

first examine both a grid point with an external label and

one without one in a list of generated data. The following

commands and output illustrates both types of uses of the

command directive for these cases.

*

__INTERNAL_I,J,K
___3_1_3

* GRID,-4,1,2
INTERNAL I,J,K

8,1,3

12

X,Y,ZCOORD.
1.200E+00 0. 1.333E+00

X,Y,ZCOORD.
4.200E+00 0. 1.333E+00

Now to illustrate the capability to change a nodal point lo-

cation, the same points used above will be shifted to new

locations. Note that the locations returned are the original

positions. This is done so that if an error is made (i.e.,

one moves the wrong point) the original position is readily

available for correcting the error. The resulting changes

may be seen in Figure 3a and Figure 3b which show the nodes

before and after modification

* GRID,2,1,2,MOVE,1,-.5,.75
INTERNAL I,J,K

____1_1_3 0.

* GRID,-4,1,2,MOVE,4,-.5,.75
INTERNAL_I,J,K

8 1 3

X,Y,Z,_COORD.
0. 1.333E+00

X,Y,ZCOORD.
4.200E+00 0. 1.333E+00

The ability to add or generate new grid points is

not included in the preprocessor developed in this study.

Lines preceeded by an * will designate input by the user.

(7. A
0,4 k-r

(a) Original Element Mesh

(b) Element Mesh with Shifted Grid Points

Figure 3. Grid Point Modification

13

14

Connectivity

The definition of elements is accomplished through

the specification of the geometry of each particular element.

The most common method used to accomplish this is by speci-

fying the grid points which define the extremities of an

element. An element is then considered to be "connected" to

these nodal points. The number of points required to specify

the connectivity of an element is dependent on the particular

type of element. The element library in TXGAP3D consists of

elements belonging to the isoparametric family having quad-

ratic interpolations. These elements require the specifica-

tion of the node points at each corner of the element and a

midside node between each corner in order to define their

connectivity. The particular elements available have the

general geometric shapes of bricks, prisms, and tetrahedrons

(see Figure 4). The specification of the connectivity of

these elements assumes a preferrential order and requires only

the specification of the corner nodes in order to define the

elements (each midside node is determined by the program).

The preferrential ordering of the nodal points is indicated

by the element nodal point numbers in Figure 4. Each corner

node of the element is identified by the proper, external,

I, J, K label associated with the grid point to which it is

connected. For the purpose of element identification, an

16

element name is given each element. This name is the exter-

nal I, J, K label of the first node defining the elements

connectivity.

The routines developed in the editor module of

EDGAP3D have the capability of examining the connectivity

associated with either elements or nodal points. For ele-

ments, the user specifies either the element name (I, J, K)

or the element number. The element number represents the

number which corresponds to the position in which an element

appears on the element data file. This element number is

most easily obtained from the graphical displays which will

be discussed in the next chapter. For nodal points, the user

would identify that grid point by its external name. When

the connectivity of an element has been specified, there is for

each element (corner) node number, an external I, J, K

grid point label associated with it. If the element name is

used as the identifier, every element by that name is located

and the connectivity listed.* In cases in which the connec-

While it is not often desireable to do so, it is possible
to generate in the TXGAP3D program several elements which
have the same name. This situation has been considered in
the development of the preprocessor so that when this does
occur, elements by the same name are processed sequentially.
This allows the user to correct with a minimum of effort any
errors that may have been caused by identical names.

17

tivity of a grid point is requested, the output lists each

element name and the associated element node number connected

to that grid point.

The capability to modify an element's connectivity

available in this module of the EDGAP3D program. In the use

of this feature, the element name or element number whose

connectivity is to be modified is identified. This causes

the existing connectivity to be listed. Then the individual

element node's connectivity is changed in a random sequence.

As noted previously, the connectivity can only be changed to

previously existing, externally labeled grid points. If an

attempt is made to change the element's connectivity to an

undefined grid point, a warning message is issued and the

input command for the change is ignored. When the connectivi-

ty of an element is modified, the geometry is also changed.

Routines are included to perform internally the required

modification of the element's geometry list whenever the

connectivity list is changed.

To illustrate the various features associated with

the verification and modification of element connectivity,

the following examples are provided. Examples a) and b)

illustrate element connectivity by specification of element

name and element number respectively. Example c) shows the

ability to determine which elements are connected to a

18

specified grid point. Example d) illustrates the modifica-

tion of an element's connectivity.

a) * CONNECT,ELEMENT,2,1,2
_CONNECTIVITY

NODE I

FOR ELEMENT
J

____ 2, 1, 2

K
_

1 2 1 2

2 4 1 2

3 4 2 2

4 2 2

5 2 1 3

6 4 1 3

7 4 2 3

8 2 2 3

b) * CONNECT,ELEMENT,6
CONNECTIVITY FOE ELEMENT NO. 6

NODE
1 2 2

2 3 3

3 2 4 2

4 2 2 3

5 3 3 3

6 2 4 3

c) * CONNECT,NODE,3,3,3
CONNECTIVITY FOR NODE 3,_3,_3

LOCATED AT COORD. 2.400E+00,3.000E+00,2.667E+0
ELEMENT ELEMENT LOCAL
NUMBER I J K NODE

5 2 2 2 6

6 2 2 2 5

8 3 3 2 4

11 4 4 2 6

19

d) * CONNECT, MODIFY, 4,1,2

CONNECTIVITY FOR ELEMENT

NODE

1 4 1 2

2 5 1 2

3 5 1 2

4 4 2 2

5 4 1 3

6 5 1 3

7 5 2 3

8 4 2 3

*6,6,1,3
*2,6,1,2
*2,6,1,1
*FINISH

The modification of element 4,1,2

4

results in the

element nodes 6 and 2 being changed to grid points (6,1,3)

and (6,1,1) respectively. The results of this modification

may be seen in Figure 5b, which indicates the changes made

from Figure 5a.

Bounce. -'y Conditions

In the TXGAP 3D program, the application of boundary

conditions is performed on an element basis. Depending on

the type of boundary condition, this application is consid-

ered to be acting on either a nodal point or on a face of the

element. As with the numbering of the element's nodal points,

there is a specific pattern in the numbering of the element

faces. This pattern is indicated by the numbering of the ele-

ment faces as indicated in Figure 4. The specification of

and

Element 4,1,2

(a) Original Element Mesh

(b)

20

Element 4,1,2

Figure 5. Element Connectivity Modification

21

boundary conditions. in TXGAP3D requires the identification

of the boundary condition type, the element by its element

name, the node or face on which the boundary condition acts,

and the value of the boundary condition. The routines in

EDGAP3D associated with boundary condition information are

capable of finding, adding, and deleting boundary conditions

from the element data. All the boundary condition types in

the TXGAP3D program are applicable in EDGAP3D with the excep-

tion of the CLAMPed type boundary condition. The lack of

this boundary condition type arises from the manner in which

this type of boundary condition is treated in the TXGAP3D

program. A complete list of the boundary condition types

applicable in EDGAP3D is to be found in Appendix A.

The preprocessor program allows the user two methods

for verifying boundary conditions. These methods are by

boundary condition type and by element. In the first method,

it is possible to obtain, for a specified boundary condition

type, all the elements, the location on the elements, and the

value at that location to which that type of boundary con-

dition has been applied. The second method outputs all the

boundary conditions, their positions, and their values that

have been specified on the requested element. In this method,

either the element name or element number may be used to re-

quest this information.

22

The modification of boundary conditions is carried

out on an element by element basis by adding and deleting the

appropriate boundary conditions. If only the value of a

boundary condition needs to be changed, it is unnecessary to

delete the originally specified condition first. However,

if the type or location is to be changed, the incorrect

boundary condition must be deleted. When the addition or

deletion mode is entered, the program is designed to first

print all the existing boundary conditions on the specified

element. The input specifying the boundary condition type,

location, and value to be added (or deleted) is then required

by the program. It should be noted that the program allows

the addition (or deletion) of only one boundary condition at

a time. There is no looping feature for multiple additions

or deletions. If the element name is used to specify the

element, the program will search for any other elements by

that name before terminating the addition or deletion sequence.

In the deletion mode, it is unnecessary to specify the value

of the boundary condition being deleted.

The following examples illustrate the verification

and modification of boundary condition information in the

EDGAP3D program. Example a) illustrates the use of the

feature which locates all the elements on which the specified

boundary condition has been applied. Example b) is one in

23

which all the boundary conditions applied on the specified

element are located and listed. Examples c) and d) show the

use of the addition and deletion modes.

b)

* BC,UX
X-DISPLACEMENT

___ELEMENT
BOUNDARY CONDITION

NODE VALUE
1,_4.,2 3 0.
1, 4, 2 4 -* 0.
1,L2 7 0.
1,4,2 8 0.
2,4,2 3 0.
2,4,2 4 0.
2,4,2 7 0.
2,4,2 8 0.
5,4,2 1 0.
5,4,2 2 0.
5,4,2 5 0.
5,4,2 6 0.

* BC,ELEMENT,1,4,2
___BC FOR ELEMENT(S)____1,_4, 2

BC TYPE NODE/FACE
ELEMENT(S)____1,_4,_2

UX 2 0.
UX 3 0.
UX 6 0.
UX 7 0.
UY 2 0.
UY 3 0.
UY 6 0.
UY 7 0.
UZ 2 0.
UZ 3 0.
UZ 6 0.
UZ 7 0.0
PRESSURE 4 -7.500E+00
PRESSURE 4 -7.500E+00
PRESSURE 4 -7.500E+00
PRESSURE 4 -7.500E+00

2.4

24

c) * BC,ADD,4,1,2
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00

_ENTER BC INFO. TO BE ADDED OR DELETED
PRESSURE,3,100.

d) * BC,DELETE,4,1,2
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 5 5.500E+00
PRESSURE 3 1.000E+02
PRESSURE 3 1.000E+02
PRESSURE 3 1.000E+02
PRESSURE 3 1.000E+02

__ENTER BC INFO. TO BE ADDED OR DELETED
* PRESSURE,5

Element Addition and Deletion

The addition of elements in the EDGAP3D code is

accomplished in the same manner as in the TXGAP3D program.

The command directives for this feature are identical in both

programs. The directives consist of the specification of the

element type, its material property type, and the connectivi-

ty of the corner nodes defining the element. The only diff-

erence between the two codes in these commands directives is

that the optional features available in TXGAP3D are not

applicable in the preprocessor program. This means that

every corner node must be specified in the proper sequence

when defining any of the element types. Since an element is

25

defined by specifying the I,J,K (external) label of the

grid points it is connected to, it is a necessary requirement

that all of these grid points exist. Issuing of the command

directive to generate a new element in the data list also

causes the routines to build a geometry list of the nodal

point coordinates for the element. If one of the specified

grid points does not exist, a warning to the user is issued

and the command directive to add the element is ignored.

Element deletion is accomplished by simply flagging

those elements to be deleted with a key so that when the

element data is regenerated on the disk file at the end of

the editing session, the flagged elements are not included

on the new file. For element deletion, either the element

name, or element number may be used to specify the element.

In cases where the element name is used, all elements with

that name are flagged to be deleted.

The following examples are typical of the use of

the addition and deletion features in the EDGAP 3D program.

The results of the issuing of these command directives are

illustrated in Figures 6a, and 6b, which show the addition

and deletion of elements from the element mesh of Figure 5a.

(a) Element Addition

(h) Element Deletion

26

Prism

Figure 6. Element Addition and Deletion using EDGAP3D

27

(a) Addition of elements

* BRICK,1,1,4,3,2,4,3,2,5,3,1,5,3,1,4,4,2,4,4,2,5,4,1,5,4
* PRISM,1,4,2,3,5,2,3,5,2,4,4,4,3,5,4,3,5,4,4

(b) Deletion of elements

X DELETE,2,2,2
DELETED ELEMENT 2 2__ 2

* bEL_DELETED
ELEMENT 2 2 2

ETE,3,3,2
___DELETED ELEMENT 3 3 3

* DELETE,11
DELETED ELEMENT 11

This message was printed twice because there were two
elements having the same name. Both elements were deleted
from the data.

CHAPTER III

GRAPHICS DEVELOPMENT AND CAPABILITIES

While it is fairly easy to sketch or mentally vis-

ualize one and two dimensional figures, the capability to do

this for arbitrarily shaped three dimensional figures is ex-

tremely difficult without some sort of aid. It becomes evi-

dent that the inclusion of a graphics section is a necessary

feature when attempting to do any work with three dimensional

finite elements. The purpose of the graphics section in the

EDGAP 3D preprocessor program is to provide a visual aid in

the form of a simple, flexible system that allows for both

interactive display and hard copy output. The actual graphics

features which have been included have the ability to rotate

the mesh about any or all of the figures principle axP,R, the

ability to "scale" the figure to increase the resolution of

complicated areas, and the choice of several types of graph-

ical output with respect to both the display device and the

type of display desired. The flexibility in display device

is limited to either interactives graphics on an IMLAC PDS-1

graphics terminal or a Calcomp ballpoint pen plotter, while

the types of displays available are for the plotting of a

region of the mesh that is of interest, of single elements,

or of single elements highlighted in the region of interest.

28

29

The general structure of the graphics section con-

sists of a large data block in which the information to be

displayed is stored and routines containing the algorithms

required to perform the various functions and operations.

When the graphics section is accessed, the limits defining

the region to be displayed are established. The list of ele-

ment data is then examined and the information required to

display the elements within the defined region is stored in

the display data block (or list). The examination of the

element data file is done on an element by element basis. A

protection feature has been included to prevent exceeding the

size of the display data block. The specifications of one of

the available algorithms (rotation, scale, el.c.) causes the

information in the display data block to be operated on and

in some cases to be modified.

In the development of any graphical display system,

it is soon discovered that the available equipment will im-

pose major restrictions on the display capabilities. The

graphics section associated with EDGAP 3D has certain machine

limitations related to it. The particular graphics terminals

involved in the interactive display of the input data are

IMLAC PDS-1 refresher scopes. A refresher scope is a cathode

ray tube (CRT) device coupled with a memory bank in which the

information related the display is stored. The term

30

"refresher" scope comes from the fact that the memory bank

must be cycled through several times a second (40 times) to

keep the display from fading from the screen.t51 The IMLAC

terminal is basically a mini-computer with an 8000 word

memory. When coupled with the CDC 6000 series computer, how-

ever, the first 4000 words of storage are reserved for the

IMLAC's operating system and teletypewriter functions. This

leaves only the last 4000 words for graphics display. With

long vector hardware, this allows for the display of sligh,3y

more than 1300 vec,,ors (both visible and invisible) at any

one time, since three words of memory are required for every

vector. A vector is defined as a line between two points.

Considering the machine limitations, the size of

the display data block in the graphics section has been

limited to 1000 vectors. This display data block size was

selected because it provides an adequate buffer for problems

which might produce an IMLAC display memory overflow. By

setting the display data block size at a 1000 vectors, it is

possible to retain this information in the CDC 6000 series

computer's memory without sacrificing interactive response

time or having to resort to some form of INPUT/OUTPUT oper-

ation when manipulating the display data. With the vector

display capability set at this limit, it is possible to dis-

play up to approximately 35 brick elements (which have the

31

largest number of vectors per element), or a greater number

of prismatic and tetrahedronal elements, which have decreas-

ingly fewer vectors.

A particular features used in the development of the

graphics section code is that all the actual drawing instruc-

tions are issued by standard Calcomp plotting calls. The

interfacing of the Calcomp calls with the IMLAC graphics ter-

minals is accomplished by several undocumented routines de-

veloped on the University of Texas at Austin computer system.

These routines translate the Calcomp instructions into IMLAC

machine language which is then sent to the graphics terminal

by the use of a high speed binary Input/Output file. The

specification of the type of output device determines the

calling of these routines.

Rotation Algorithm Development

The algorithm developed to perform the rotation of

the mesh about its' axes represents the transformation of

a right-handed Cartesian coordinate system about its axes.

First considering a rotation about the x-coordinate axis, it

can be shown that the transformation to a new, primed refer-

ence frame is expressed in matrix form as

32

-1
1 0 0

= 0 cos° sine

z 0 -sine rose z

where the angle of rotation, A, is measured as being positive

in a clockwise direction about the x-axis when viewing the

origin from a point located on the plus x-axis (reference

Figure 7). Similarly, a rotation about only the y coordinate

axis is expressed as

cos. 0 -sin. x

(Yz
= 0 1 0 y

sin. 0 cos. z

where the rotation angle (1) is about the y-axis (see Figure 7).

The rotation transformation for the z-coordinate axis is

t
coslp sing) 0 x

= -sirup coslp 0 y

0 0

where the rotation angle 4) is measured about the z-axis (see

Figure 7). [5]

The approach taken in problems of rotations about

multiple axes is to consider this situation to be of a se-

quential type in which the rotation about first one axis is

1 lj

Figure 7. Definition of Potation Angles

34

performed, transforming the system to a new orientation about

which the next rotation is carried out. The problem that

exists with this technique is that the order in which the

sequential rotations are carried out becomes important.

That is, for example, that the coordinate transformation

about the x and then the y-coordinate axis does not produce

the same results as that about the y and then the x-coordi-

nate axis. The algorithm developed in conjunction with the

graphics section in EDGAP3D assumes that for multiple trans-

formations, the sequential ordering is an x, then y, then

z-coordinate axis transformation. This sequential transfor-

mation is expressed mathematically in matrix form as

x' cos sing) 0

z'

-sing,

0

cost:,

0

0

1
L

1 0 0

0 cose sine

0 -sine cose

cosct 0 -sin0

0 1 0

sin(I) 0 cos())

Noting that if no rotation is desired or specified about any

of the coordinate axes, the coordinate transformation matrix

associated with that axis reduces to the identity matrix.

35

Therefore, this same system of equations may be used to pro-

duce any of the rotation combinations tabulated in Table 1.

TABLE 1

SEQUENTIAL ROTATION COMBINATIONS

x

y

z

x, then y

x, then z

y, then z

x, then y, then z

If any other ordering of the coordinate transformations is

desired, the same algorithm is used, but the coordinate

transformation order is changed by specifying separately, one

angle at a time, the coordinate axis rotation in the order

desired.

Rotation of the coordinates defining the mesh can

produce a shifting of data points to locations outside of the

originally defined limits of the display region. In order

to display the total region after the rotation of the mesh,
Rt.

it is necessary to establish new limits defining the display

region. This is done by examining the transformed display

,16

36

data list and locating the maximum and minimum values on each

coordinate axis. The various combinations of these maximum

and minimum values are then used to define the new limits of

the display region.

Scaling Algorithm Development

The graphical presentation of data often results

in areas which are extremely detailed and from which it is

difficult to discern meaningful information. A scaling fea-

ture helps eliminate this problem by providing the capability

of enlarging, or increasing the scale of these detailed re-

gions with respect to the display area (i.e., by blowing up

the region of interest). The approach taken in the develop-

ment of the scaling algorithms, which is facilitated by

working with a data block of display information, is to scale

all the display information. The effect of scaling is to in-

crease (or decrease) the size of the mesh. The limits orig-

inally established to define the region of interest are used

to calculate the factors for fitting the region on the screen.

By retaining these limits when the display data is scaled

and displaying only the data still lying within these limits,

the resolution of the figure is increased (or decreased)

according to the manitude of the scale factor. The scaled

data falling outside the screen limits are not displayed.

37

It is possible after having scaled the display information

that the area in which the greater resolution is desired now

falls outside the display limits. A feature which allows the

translation of the mesh's origin along lines parallel to the

coordinate axes makes it-possible to shift these detailed

regions back into the display area. When the mesh has been

rotated from its original reference frame, the shift varia-

bles are automatically transformed to the new reference frame

before translating the origin. The shift variable transfor-

mation is based on the same alogrithms described in the ro-

tation feature development. This means that the sequential

rotation ordering is assumed, and in this particular instance

it is not possible to alter the order of the sequence from

that described in Table 1. A two dimensional representation

of the scale-shifting technique is illustrated in Figures 8a

through 8d.

The particular algorithms used to perform the

scaling and origin translation are

x
st

= (x x
t

) F

Yst (Y Yt) F

z
st

= (z z
t

) F

where F is the scale factor and is always greater than zero.

The variables subscripted by t are the translation magnitudes

x

Limit of
Display

38

Figure 8a. Original Unscaled and Untranslated Region
of Element Mesh

Figure 8b. Untranslated Region Scaled by a Factor of Two

Figure 8c. Scaled Region Translated Along x-Axis

x

39

Figure 8d. Scaled Region Translated Along Both x and y-Axes

40

along the appropriate axes, and the st subscripted variables

are the new, scaled and shifted coordinates stored in the

display memory.

Display Feature Development

The representation of a three dimensional figure

on a two dimensional surface requires the development of

several algorithms. One of these algorithms involves the

actual mapping from the three dimensional system to the two

dimensional system and the other involves the problem of de-

vising a system by which the figure is scaled and shifted with

respect to the screen in order to maximize the amount of

screen used. Another aspect of plotting figures is the

issuing of pen instructions. The graphical display of three

dimensional meshes developed here represents an isometric

projection of the mesh.

The transformation mapping from a three dimension-

al coordinate system into a two dimensional screen coordinate

system can be deduced from Figure 9 in which the screen

coordinates are determined to be the combination of the

geometric projections onto the screen coordinate axes. The

actual algorithms are expressed by

Figure 9. Definition of Projection Angles

42

X
s

= X COSa
1

y cos61 + z COSyl C

ys = X COSa2 y cosf32 + z cosy2
c2

where x
s

and y
s

are the screen coordinates measured in inches

from the lower lefthand corner of the screen with the x
s

axis being horizontal and the ys axis being vertical. The

subscripts on the angles (1 & 2) reference the angles between

the figures coordinate axes and the screen's xs and ys coor-

dinate axes respectively. The variables cl and c2 represent

the magnitude in inches which the mesh must be shifted along

the x
s
and y

s
axis respectively in order to maximize the

usage of the display area. These shift variables are defined

in Figure 10. The computations to be made are the determi-

1)

nation y.. Consider

a three dimensional reference vector set composed of {(1,0,0),

(0,1,0), (0,0,1)} where the components are (x, y, z). These

vectors can be shown to form an orthogonal basis for a three

dimensional space, and will be referred to as {V
R1' "R2' V

R3
).

Performing all the rotations on this basis set that are

carried out on the display data then results in a new basis

set {V
R1

', V
R2 '

' V
R3 1) from which the cosine of the angles

required for the transformation from the 3-D system to the

2-D surface can be determined. This is done by introducing

C4

2

Figure 10. Display Screen Scaling Box Definition

...--.

a-e+

44

a display vector basis set {VD1' VD2} which consists of

{(1,0,0), (0,1,0)), and recalling the relationships for the

inner products of vectors.

= ab cosO = albl + a2b2 + a3b3 2)

where ai and b
i
are the vectors components and the scalar

magnitudes are

a = (a
1

2
+ a

3

3
)

1/2
, b = (b

1

2
+ b

2

2 + b
3

3
)

1/2

and solving equation 2 for the cosine of the angle yields

cosh = (albi a2b2 + a3b3)/ab 3)

An examination of the basis sets for both the reference vec-

tors, VRi, and the display vectors, VDi°
quickly reveals that

their scalar magnitudes are always equal to unity. Therefore,

relation 3 reduces to the form, when expressed in terms of

these vectors, of

i=1,2,3
cosh = VRi° -V

Dj
= vRil' vDjl + vRi2 v Dj2 j-1,2 4)

45

Note that vpi3 is always equal to zero and this term drops

out. By using relation 4) the cosines of the a., Sj, y.,

angles are determined as

cosa
1 q1.-%1

COSa2 = VI .K7
R1 D2

cos 61 V° -K7 cosfi
2
= V'

2
.-V-

1 R2 D1 R D2

cosy]. = Ri VD1
COSy

2
=

7R3
.c1D2

In order to maximize the display of a mesh within the

limits of the screen while insuring that all of the mesh

be displayed, the following scheme was devised. All the

display data is examined after each transformation to deter-

mine the maximum and minimum values in each of the principal

directions, xl, y', and z', where the prime denotes the

transformed coordinate system. The various combinations of

these values define a box which contains the mesh region to

be displayed (see Figure D.3). By transforming these combi-

nations into the screen coordinate system, the maximum and

minimum projections on both the screen coordinate axcs are

determined. The minimum values, cl and c2, define the trans-

lations required to shift the mesh enough to assure the total

image lies within the screen limits. The maximum difference

46

between the maximum and minimum values on either of the screen

axes (i.e., the maximum of c4 c2 or c3 - cl) is used to

establish the screen scale factor by which the display data

is multiplied before plotting. The screen scale factor is

a function of the screen width and this maximum difference.

In Figure 10, the origin of the transformed coordinate system

is shown to lie within the maximum-minimum box. This is not

a requirement of the algorithms and poses no problems if it

does not occur.

The actual plotting of a mesh presents two problems

which must be solved. One is to minimize the number of vec-

tors required to draw an element without creating extraneous

lines or pen moments in the display, and the other is to de-

sign the plotting package so that only one vector is drawn

between two nodes no matter how many elements may join these

nodes. The last problem arises from the fact that multiply

drawn lines are brighter on the graphics screen and darker

on the Calcomp plots, tending to accentuate these lines and

making it difficult to distinguish such things as the image's

depth. Both of the problems described above are associated

with the pen position during the piotting of the figure. In

the pen up position, an invisible vector (no line) is drawn

and with the pen down a visible vector (line) is drawn. By

using combinations of pen positions, the number of lines

47

required to draw each type of element can be determined and

stored in the program. As the element data is examined at

the beginning of a graphics session, the pen instructions

associated with the elements which are stored in the display

data list are also saved. This provides the drawing instruc-

tions needed to display individual elements. When multiple

elements are to be displayed, a looping feature is entered

which causes a comparison to be made between the vector about

to be drawn and all previously drawn vectors in the display

list. If the vector has already been drawn, the pen instruc-

tion for the present vector is set at up and the pen is more

to the next point without drawing the line. Invisible vec-

tors are used to reduce the amount of lines actually drawn,

but they do not decrease the amount of information required

by the graphics terminals to display the figure. This is

because the same number of words of memory are required to

draw both types of vectors.

Illustrative Example of Graphics

The following example illustrates the UF-_' of the

various features available in the graphics section of EDGAP3D.

The parameters associated with the DISPLAY command indicates

48

that the output file is the IMLAC graphics terminals. Of

course the figures which appear were actually generated on

the Calcomp plotter.

* PLOTS,_1,1,1,50,50,50
defines the plotting region as being from (_1,_1,_1)
to (50,50,50) inches

* ROTATE,
rotate the element information about the x-axis
and then about the z-axis.

* DISPLAY
display the region specified by PLOTS; see Figure 11

* DISPLAY,24
display element number four, see Figure 12

* DISPLAY,3,1,20
display element number four highlighted in the
region defined by PLOTS, see Figure 13

* SCALE,1.7
scale the display information by a factor of 1.75

* DISPLAY
display the scaled display information, see
Figure 14

* SCALE17,17,
translate the origin 17 inches along the x-axis,
17 inches along the y-axis, and inches along the
z-axis

* DISPLAY
Figure 15 shows the results of the origin trans-
lation with the previously scaled display infor-
mation

* END,PLOTS
terminates the graphics module.

Z:J

49

XR=70
YR=70
2R=0
5F=1.0
XT=0.00
YT=0.00
2T =0000

Figure 11. Element Mesh in Region Specified

yJ

50

XR=70
YR=70
ZR =O

SF=1.0
X T=0.00
Y T=0.00
Z T=0.00

Figure 12. Element Plot

51

XR=70
YR=70
ZR=0
5F=1 .0
X T=0 .00
Y T=0 .00
Z T=0 .00

Figure 13. Element Highlighted in Specified Region

52

XR=70
YR=-15
2R=0
SF=1.7
XT=0.00
YT=0.00
2T=0.00

Figure 14. Element Mesh Resulting from Scaling Region

Co

53

XR=70
YR.-15
7R:=0
5F =1 .7
XT=I7.00
YT=I 7.00
2-1=0.00

Figure 15. Element Mesh Resulting from Scaling and
Translating Region

CHAPTER IV

CONCLUSIONS

The EDGAP3D preprocessor program developed in this

research provides a means for interactively verifying and

correcting data generated by the three dimensional finite

element code, TXGAP3D. The principle limitation of the code

is that it is restricted to handling of existing data since

it has no data generation capabilities. It is quite likely

that situations can arise where verification and correction

of data is insufficient and some form of data generation

would be desirable. This is particularly true in the areas

of geometry and element addition. Another capability which

should be included is that of handling material properties,

thus eliminating the need for complete regeneration of the

data when only the material properties of the problem have

been changed. Another area in which this'particular prepro-

cessor could be improved is to include the capacity to exam-

ine and modify data generated by the REZONE program of TXGAP3D.

The capability to handle this information would be very val-

uable. While the area of graphics could be improved with

such features as hidden line capability, it is felt that the

trade off in computer core requirements does not warrant the

effort. One of the best possible ways to improve the EDGAP3D

54

55

program would be to more closely couple the data generator

in TXGAP3D with it. For example, to run the data generator

(SETUP) and EDGAP3D linked directly together as a single

program.

APPENDIX A

USER'S INPUT GUIDE TO EDGAP3D

EDGAP3D operates in two basic command modes, de-

pending on the function to be performed. These are the

editing mode which features two levels of command entries,

and the graphics mode which has only one command level. An

attempt has been made to have the available input commands

follow the format of the commands of TXGAP3D. The following

convention and terminology is adhered to in the description

of the input entries.

i.) UPPER CASE words are actual alphanumeric
input as they appear in the entries, e.g.,
EDIT.

ii.) Lower case words are variable names whose
values appear in the entries, e.g,, imax.

iii.) All entries are in the free field format,
i.e., individual words are separated by

commas. A maximum of ten, nonblank, charac-
ters is allowed in any one data field (blanks

are ignored). The content of each kind of

entry is shown underlined.

iv.) Optional parameters will be designated by

[]. The omission of an optional parameter
within a sequence of parameters is indica-

ted by successive commas. If the omission
is not followed by any parameters to be
specified, the commas are not required.

v.) Elements are normally identified by the i,
j, k number of the first node that the ele-

ment is connected to, here after referred
to as the element name. In EDGAP3D, the
additional capability of identifying an

56

57

element by the order in which it appears on
the element data tape, here after referred
to as the element number.

vi.) In the generation of the grids in the present
version of TXGAP3D, the user specifies the

j, k names (numbers) of every other grid
point. This will be referred to as the ex-
ternal node name. It is these nodes which
are used to define the elements and corre-
spond to corner nodes of each element. The
grjd points which lie between the externally
named points have no external node name.
All grid points have an internal node name
which is computed by I*2-1, etc., for the
named points and I*2, etc., for the unnamed
points.

The use of EDGAP3D is dependent on data generated

by the SETUP portion of TXGAP3D with a SAVE command being

issued during some portion of TXGAP3D input. The SETUP-SAVE

features causes the generation of three files containing

pertinent data. These files are TAPE13 (number of elements),

TAPE12 (element data), and TAPE15 (grid point coordinates).

All of these files are assumed to be in the local file area

of the user's job at the time EDGAP3D is executed.

Command Mode Entries

Command mode entries direct the calling sequence to

the specific overlay to perform the prescribed job steps in

the editing or graphics modes. The following commands are

possible: EDIT, PLOTS, END, and STOP. The issuance of the

58

command EDIT, PLOTS, and END in general cave some prelimi-

nary preparatory operations to be carried out in conjunction

with the particular command. Since there is no unique se-

quence of steps for the program, each common, mode with its

associated features will be described separately.

Editing

EDIT

This overlay allows for the verification and mod-

ification of the element data (TAPE12) and grid point data

(TAPE15) generated by the TXGAP3D program. The features

available include the ability to chick and change grid point

locations and element connectivity, as well as the addition

and deletion of elements. Boundary condition data may also

be verified, modified, added to, or deleted. Note that the

ability to edit material properties has not been Licluded,

although an element material type specification may be changed

by first deleting the element and then adding it back with

the new material type being specified.

The issuance of the EDIT command causes the reading

of the element data file and the storage of pertinent data.

An EDIT session must be terminated by an END command which

59

causes the regeneration of the element data file with the

corrected data.

As element names are identified by the i, j, k

number of the first node that the element is connected to,

it is possible to have several elements with the same name.

It is desirable to avoid a situation like this because boun-

dary conditions (in TXGAP3D) aie applied to elements accor-

ding to their element name and it is therefore possible to

apply boundary conditions on elements other than the one

intended. If this situation does arise, however, there is

no particular problem with EDGAP3D, since it is structured

to locate and allow the modification of elements in a se-

quential fashion, even when multiple element names occur.

In the case of multiple element names, the first element is

found and when modifications (if any) to it are completed,

the routines automatically proceeds to the next element with

that name. In cases where only verification information is

requested, the program is designed to provide the data by

element for all the elements with the same name.

Grid Point Features

GRID,i,j,k,[MOVE,newx,newy,newz]

yr

60

i,j,k = external i,j,k name of the grid point.
For grid points which have no external
name, the following convention is used.
Specify the negative of the number of the

next, named, grid point in the direction
of the origin (moving along i,j, or k equal

a constant lines) from the point of inter-
est. Refer to the 2-D figure below as an
illustrative example.

0 0
I,J+1 (-I,J+1) I+1,J+1

O 0 0
(I,-J) (-I,-J) (I +l, -J)

I ,J

0
(-I,J) I+1,J

I

The solid points () indicate grid points
with external names. The circle points (0)
indicate grid points without external names.
The names in parenthesis indicates the
names to be specified to check and move
unnamed points.

t

61

MOVE causes the modification of the location of

the grid point named.

newx,newy,newz = the x,y,z location to which the
named grid point is to be moved.

When the GRID command is used with only the grid

point identifiers, the present location and the internal

name of the grid point is returned. If the MOVE option is

included, the internal grid point name and its original lo-

cation is returned, then the points location is modified.

Element Connectivity Features

CONNECT,type,i,[j,k]

type = NODE,ELEMENT, or MODIFY

i,[j,k] = external node number (NODE), element
name or element number (ELEMENT or MODI-
FY). Note that when type is specified
as NODE, i,j,k values must be specified
and they refer to the external node name
of the element corner nodes only.

For "type" specified as NODE, the program is de-

signed to output all the elements connected to the specified

node in terms of element names and the associated element

62

nodal point number. If "type" is specified as ELEMENT, the

program outputs the element nodal point numbers and the ex-

ternal node names associated with these for all elements with

the same name. When modifying an elements connectivity, the

present connectivity of the specified element is first re-

turned and then a looping call is made to the data entry,

which has the following form.

node,newi,newj,newk

node = element corner node number whose connectiv-
ity is to be modified

newi,newj,newk = the new external node name of the
corner node

The modification to the element's connectivity is

continued until the command, FINISH, is entered in place of

the data entry. The routine will then perform a search for

the next element with the same element name, if an element

name was originally with MODIFY, otherwise the'next editing

command may be entered. If no modification is desired after

having specified "type" as MODIFY, then enter FINISH and no

changes will be made.

63

Element Deletion & Generation Features

DELETE,i,[j,k]

i,(j,k) = element number or element name

The issuance of this command cases the element

specified to be flagged for deletion from the element data

tape at the end of the editing session. Note that if the

element name feature is used, that all elements with this

name will be flagged for deletion.

eltype,mat,il,jl,kl,i2, ,iN,jN,kN

eltype = BRICK,BRICKH,PRISM,PRISMH,TETRA, or TETRAH

mat = material type number

il,....,kN = the i,j,k's of the corner nodes de-

fining the element. Note that all

this information must be specified,
and N=3 for brick shaped elements,

N=6 for prismatic elements, and N=4

for tetrahedron shape elements.

The format for the addition of elements is exactly

the same as in TXGAP3D with the exception that all the data

must be specified. This command causes the generation of a

new element without boundary conditions applied to it which

is added to the end of the element data list.

e

64

Boundary Condition Features

"r'''<-BC,oper or type,[i],[j,k]

oiler = ELEMENT,ADD, or DELETE

type = UX,UY,UZ,FX,FY,FZ,PRESSURE, or SLOPE

[i],[j,k] = element number or element name and is
functional only in conjunction with an
operation.

The specification of a boundary condition type

causes the output of all boundary conditions of that type.

This is done in terms of the element name, the node or face

on which the boundary condition is applied and the boundary

condition value. When the operation, ELEMENT, is specified,

all the boundary conditions applied to the element(s) desig-

nated by the element name or element number are printed. The

output is in the form of the boundary condition type, the

node or face on which it is applied, and its value.

The addition, deletion, and modification of boun-

dary conditions is carried out through the operation of ADD

or DELETE. The use of the ADD and DELETE features first

causes the return of the existing boundary conditions for

the element specified, followed by an extra data entry of

the form specified below.

65

type, node or face, value, (value,value,value]

node or face = node or face number of the element
[see figures 7 through 9 in Ref [1]

value = the value of the boundary condition

The PRESSURE boundary condition is specified by

four values (three for a triangular face) or pressure at

the corner nodes of the face. The ordering is the same as

specified in TXGAP3D USER'S INPUT GUIDE, and for constant

pressures only the first value need be specified. To change

the value of a boundary condition, the ADD command is used

in conjunction with the data entry specifying the new value

of the boundary condition. For the deletion of boundary con-

ditions, the extra data entry need only specify the boundary

condition and the node or face.

If after having entered the boundary condition

modification mode (ADD or DELETE) it is desired not to carry

out the modification, or in the case of multiple elements

with the same clement name where selective modification may

be desired, the command FINISH may be substituted for the

data entry in order to proceed without making changes.

66

Graphics

PLOTS,[xmin,ymin,zmin,xmax,ymax,zmax],[imin,jmin,kmin,imax,
jmax,kmax]

xmin,....,zmax = the minimum and maximum x,y,z
coordinates of the region to be
displayed

imin,....,kmax = the minimum and maximum i,j,k
numbers of the region to be dis-
played

The overlay called by the PLOTS command allows for

graphical output in the form of IMLAC displays or CALCOMP

ball point pen plots for the region specified in the call.

The information required to display element mesh is read

element by element from the element data file with only the

elements in the specified region being retained in the dis-

play memory. Since the amount of display memory allocated

for the storage of this information is limited, a protect

feature is built in which prevents overflowing of the memory

area. The information contained in the display memory can

be manipulated and displayed, even if an overflow is encoun-

tered. To view information which is not contained in the

display memory because of overflow or otherwise, a new call

to PLOTS may be issued during a graphics session, specifying

a new region of interest. Note that this can be done without

having terminated the graphics session.

67

The graphics features in this overlay are limited

to three basic commands, some of which have variable para-

meters. These commands produce the rotation, scaling, and

displaying of the data in the display memory. Graphics

sessions must be terminated by an END command entry.

The IMLAC PDS-1 graphics terminals are basically

mini computers which require their own operating system to

interpret instructions issued to them. The features in EDGAP3D

have been designed for use with the "EXEC" operating system

(Version 3.8) developed by the Computer Based Education

(CB-E) research group at the University of Texas at Austin.

It is assumed that this operating system has been loaded into

the IMLAC's memory prior to executing EDGAP3D.

Rotation Feature

ROTATE,[xr] ,[yr],[zr]

xr,yr,zr = the rotation in degrees about the x,y,
or z axes [the default values are xr=
45°, yr=-45°, zr=0]

The use of this command causes the data in the

display memory to be operated on to perform the specified

coordinate rotations. The sign convention used in specifying

the degree of rotation about an axis is for positive angle

68

to represent a clockwise rotation about the axis where view-

ing the origin from a point on the plus (+) side of the axis

(reference the figure below). The rotations about the axes

may be specified individually or in any combination. The

default values are used only when no rotation angles are

specified. Note that when multiple angles are specified; the

algorithm assumes a sequential transformation of the order

of xr, then yr, and then zr, or any combination of these as

long as it is left to right (e.g., xr then zr, or yr then

zr, etc.). After a rotation has been performed, the display

data is automatically resealed to insure that the region of

interest will fall within the plotting limits.

7,9

69

This command allows the user to obtain arbitrary

views of the mesh. Initially the mesh coordinate axes are

oriented so that it's x and y-axes correspond to the screen

x and y-axes, with the mest z-coordinate axis being out of

the plane of the screen.

Scaling Features

SCALE,[sfac),[xtj,[yt],[ztj

sfac = the scale factor (must be greater than zero).
Default value is one (1.0).

xt,yt,zt = x,y, or z translation along the axis
specified in either the plus or minus
direction. Default values are zero
(0.0).

The SCALE routine allows the user to enlarge or

reduce the region to be displayed with respect to the screen.

This option provides the user with a method for obtaining a

higher resolution of various areas of the display data.

When the SCALE feature is exercised, the display data is

modified without changing the plotting limits. Since only

information totally within the plotting limits is displayed,

it may become necessary to translate the scaled data to shift

particular regions where higher resolution is desired back

into the viewing limits in order to display them. For

70

example, consider the steps required to increase the resolu-

tion of the detailed region in Figure 16a. Then scaling by

a factor of two and translating along the x and y-axes one

unit results in Figure 16b, where only the detailed region

lies totally within the plotting limits and is therefore the

only portion of the figure displayed. Note that an element

must lie completely within the plotting limits to be drawn.

Display Features

DISPLAY, [icode], [idev], [elnum)

icode = 1: region defined by PLOTS (default value)
2: single element plots
3: element highlighted in the defined region

idev = 1: IMLAC terminal (CRT graphics) (default
value

2: Calcomp ballpoint pen plots

elnum = the element number to be plotted when icode
is either 2 or 3.

The DISPLAY routine is the routine which does the

actual issuing of drawing instructions to the specified out-

put device. This output device can be any type of machine

that will accept standard Calcomp plotting calls. When a

call is made to DISPLAY, the system checks the display data

element by element, checking to verify that the element lies

x

71

Limit of
Display

Figure 16a. Element Mesh in Region of Interest

Figure 161. Clement !qesh Scaled by a Factor of Two
and Translated One Unit All x and y-Axes

72

within the plotting (or screen) limits. Plotting instruc-

tions are issued element by element when the element lies

totally within the plotting limits. The element number is

written in the center of the element. Also included with

each type of plot is a right-handed coordinate reference

frame showing the present orientation of the mesh xyz-coor-

dinate axes to the user and a data block showing the values

of the current status of the orientation from its initial

orientation. The mesh is initially oriented with its x and

y coordinate axes corresponding to the screens x and y axes

and the z axis of the mesh being out of the plane of the

screen.

Terminator Commands

END, section

section = PLOTS,EDIT

This command is required to terminate both the

graphics and the editing sections of the program. In the

case of terminating the editing section, this comma:d causes

th..-! regeneration of the element data tape used by TXGAP3D.

STOP

This command is used to terminate the program.

73

APPENDIX B

Example Session

The following is an example session illustrating

the use of the EDGAP3D Preprocessor Program. An attempt has

been made to exercise all the features available in the code.

It is assumed that the data files generated by TXGAP3D are

local to the user's files. The particular data files are

TAPE12 (element data), TAPE13 (total number of elements gen-

erated), and TAPE15 (grid point data). It is assumed that

the files are to be located by the file names indicated

above. The commands for displaying information indicate the

Imlac graphics terminal as the output device, while the

illustrations are actually Calcomp plots.

cc:
* RFL,45000./
* EDGAP3D
GO:

* PLOTS,-1,-1,-1,6,7,7
(region of interest is to be

from (-1,-1,-1) to (6,7,7)

* ROTATE,40,30
(rotate the region of interest
40° about the x and then 30°
about the y-axes.)

* SCALE,.65
(scale the display information
by a factor of .65)

* DISPLAY
(display the all the elements
in the region of interest)
see Figure 17

* END, PLOTS
(end the Graphics Module)

* EDIT
(enter the Editing mode)

* GRID,2,1,2
(output the location of grid

point (2,1,2)

74

XR=40
YR=30
7R-0
SF=0.6
XT=0,00
"=0.00
7 T=0.00

76

INTERNAL_I,J,K x,y,z_COORD.

3 1 3 1.200E+00 0. 1.333E+00

* GRID,-4,1,2
(locate grid point (_4,1,2)

INTERNAL_I,J,K x,y,z_COORD.

8 1 3 4.200E+00 0. 1.333E+00

* GRID,2,1,2,MOVE,1,-.5,.75
(move grid point (2,
1,2) to (1.0,-0.5,
0.75))

_INTERNAL I,J,K x,y,z COORD.

3 1 3 1.200E+00 0.0 1.333E+00

* CONNECT,ELEMENT,2,1,2 (find connectivity for element

CONNECTIVITY

___NODE
FOR ELEMENT

I

2,1,2)
2,1,2

J K

1 2 1 2

2 4 1 2

3 4 2 2

4 2 2 2

5 2 1 3

6 4 1 3

7 4 2 3

8 2 2 3

* CONNECT,ELEMENT,6
(find the connectivity for the
sixth element on the data file)

CONNECTIVITY FOR ELEMENT NO. 6

NODE I J K

1 2 2 2

2 3 3 2

3 2 4 2

4 2 2 3

5 3 3 3

6 2 4 3

* CONNECT,NODE,4,1,2
(find the elements connected
to grid point 4,1,2)

CONNECTIVITY FOR NODE 3, 3, 3
___ _ _

LOCATED AT COORD. 2.400E+00, 3.000E+00, 2.667E+00

ELEMENT ELEMENT LOCAL

NUMBER I J K NODE

5 2 2 2 6

6 2 2 2 5

8 3 3 2 4

11 4 4 2 6

* CONNECT,MODIFY,4,1,2
(changed the connectivity of
element 4,1,2)

CONNECTIVITY FOR ELEMENT 4,1,2

77

NODE I J K

1 4 1 2

2 5 1 2

3 5 2 2

4 4 2 2

5 4 1 3

6 5 1 3

7 5 2 3

8 4 2 3

* 6,12,1,5 (change connectivity of node
6 to 12,1,5

WARNING: COMMAND IGNORED

GRID POINT 12,1,5 IS NCNEXISTANT

* 6,6,1,3 (change connectivity of node
2 to 6,1,3)

* 2,6,1,1 (change connectivity of node
2 to 6,1,1)

* FINISH (end connectivity modifications)

* END,EDIT (end editing module)

* PLOTS,-1,-1,-1,7,7,7
* ROTATE,70
* ROTATE,,,15
* SCALE,.7
* DISPLAY,1,1 (display the elements from the

modified element data, see
Figure 18)

* END,PLOTS
* EDIT
* BC,UX (find all the x-DISPLACEMENT

x-DISPLACEMENT

_-__ ELEMENT
1,_4, 2
1,_4,_2

BOUNDARY
NODE
3

4

BOUNDARY CONDITION)
CONDITION

VALUE
0.

0.

1,-4, 2 7 0.

1, 4, 2 8 0.

2, 4, 2 3 0.

2, 4, 2 4 0.

2, 4, 2 7 0.

2, 4, 2 8 0.

5, 4, 2 1 0

5, 4, 2 2 0

5, 4, 2 5 0.

5, 4, 2 6 0.

* BC,ELEMENT,1,4,2 (find all the boundary conditions
on element(s) 1,4,2)

78

XR=70
YR=0
2R =20
5F=0.7
X T=0.00
Y T=0.00
71=0.00

Figure 18. Grid Point and Connectivity Modifications

79

BC or ELEMENT(s) 1,_4, 2

BC TYPE NODE/FACE VALUE

UX 2 0.

UX 3 0.

UX 6 0

UX 7 0

UY 2 0

UY 3 0

UY 6 0.

UY 7 0.

UZ 2 0.

UZ 3 0.

UZ 6 0.

UZ 7 0

PRESSURE 4 -7.500E+00

PRESSURE 4 -7.500E+00

PRESSURE 4 -7.500E+00

PRESSURE 4 -7.500E+00

* BC,ADD,4,1,2
(addition of boundary condition

to element. 4,1,2)

PRESSURE 5 5.500E+00

PRESSURE 5 5.500E+00

PRESSURE 5 5.500E+00

PRESSURE 5 5.500E+00

__ENTER BC INFO. TO BE ADDED OR DELETED

* PRESSURE,3,100.
(add pressure BC on face 3 of

element 4,1,2)

* BC,DELETE,4,1,2
(deletion of boundary condition

from element 4,1,2)

PRESSURE 5 5.500E+00

PRESSURE 5 5.500E+00

PRESSURE 5 5.500E+00

PRESSURE 5 5.500E+00

PRESSURE 3 1.000E+02

PRESSURE 3 1.000E+02

PRESSURE 3 1.000E+02

PRESSURE 3 1.000E+02

__ENTER BC INFO. TO BE ADDED OR DELETED

* PRESSURE,5
(delete pressure BC from face

5 of element 4,1,2)

* BRICK,1,1,4,3,2,4,3,2,5,3,1,5,3,1,4,4,2,4,4,2,5,4,1,5,4(add brick element 1,4,3 to

element data)

* PRISM,1,4,2,3,5,2,3,5,2,4,4,4,3,3,5,4,3,5,4,4
(add prismatic element 4,2,3

to element data)

* DELETE,2,2,2
(delete element(s) 2,2,2 from
element data)

'JO

DELETED ELEMENT 2

DELETED ELEMENT 2

3-5ELETE,3,3,2

DELETED ELEMENT 3

i'-i5ELETE,11

__DELETED ELEMENT 11

80

2 2

2 2

(indicates multiple elements
by same name (all deleted))

3 2

(delete element no. 11 in the
element data list)

*

*

*

*

*

END,EDIT

ROTATE,70
ROTATE,,,15
SCALE,.7

* DISPLAY (display the newly modified
element data in the specified
region. see Figure 19)

* DISPLAY,34 (display element number four
in the highlighted region, see
Figure 20)

* SCALE,1.2 (scale the display region by
a factor of 1.2)

* SCALE,,,2,1 (shift the origin two inches
along the y-axis and one inch
along the z axis)

* DISPLAY (show the results, see Figure 21)
* END,PLOTS
* STOP terminate execution of the pro-

gram

81

XR=70
YR=0
2R =20
5F=0.7
X f=0.00
Y 1=0.00
21=0.00

Figure 19. Element Addition and Deletion of Previously
Modified Mesh

XR=70
IR =O
7R=20
SF =O .7
X T=0 .00
IT=0 .00
Z T=0 .00

Figure 20. Element Highlighted in Modified Region

83

XR=70
YR =O

ZR=20
SF=) .2
X T=0.00
Y T=2.00

T=) .00

Figure 21. Element. Mesh Display Resulting
from Scaling and Translating

Modified Region

BIBLIOGRAPHY

1. Her
(11

ess, E. D. and J. L. Tocher, "Design of Pre- and
Postprocessors," Structural Mechanics Computer Programs,
Ed. W. Pilkey, K. Saczalski, H. Schaeffer; University
Press of Virginia, Charlottesville, Virginia (1974),
pp. 887-898.

2. Napolitano, L. G., R. Monti, and P. Murino, "Prepro-
cessors for General Purpose Finite Element Programs,"
Structural Mechanics Computer Programs, Ed. W. Pilkey,
K. Saczalski, H. Schaeffer; University Press of Virginia,
Charlottesville, Virginia (1974), pp. 807-823.

3. Nicolau del Roure, R. G., E. B. Becker, and R. S. Dunham,
"The Texas Three Dimensional Grain Analysis Program,"
University of Texas TICOM Report 74-2, February, 1974.

4. Dunham, R. S., E. B. Becker, and F. M. Guerra, "Organi-
zation and Functional Purpose of Finite Element Computer
Programs," ASME Conference on Pressure Vessels and
Piping, Miami, June, 1974.

5. Newman, W. M. and R. F. Sproull, Principles of Interactive
Computer Graphics. McGraw-Hill Book Company: New York,
1973.

6. Sciarra, J. J., "Vibration Analysis in 3D with Computer
Graphics," Sound and Vibration. January, 1970, pp. 10-
21.

7. User Reference Manual; Inlac PSD-1 Programmable Display
System. Imlac Corporation, 1971; Revision C.

84

)

COMPUTER-I3A5ED EDUCATION COURSES

AEROSPACE ENGINEERING
Aircraft Design-- Drs. W. T, Fowler and D. G. Hull
Structural AnalysisDr. Bic Becker:

ARCHITECTURE

Survey of Environmental Control SystemsPr, F. N. Arumi

CHEMICAL ENGINEERING
Process Analysis. and SimulationDr. D. M. Himmelblou
Optimal ControlDrs. T F. Edgar, E. H. Wissler and J. 0. Hougen

CHEMISTRY

Vector Space Theoryy, of MatterDr. F. A. Matsen
Physical Chemistry LaborataryDr. John M. White
Organic ChemistryOrs. J. C. Gilbert and G. H. Culp
Introductory ChemistryDr. J. J. Logavvslii
Principles of ChemistryDr.J. Logowski
Introduction to Chemical PracticeDr_ .1.1.,Lagowski

CIVIL ENGINEERING
Computer Methods for Civil Engineering LaboratoryDr. C. Philip Johnson et. al.

ECONOMICS

Theory of Income and EmploymentDr. James L. Weatherby

ENGLISH

English CompositionDr. Susan Wittig

HOME ECONOMICS
Child DevelopmentDr. Mary Ellen Durrett

LINGUISTICS

Language and Society.D . W. P. Lehmann

tviATHEM.kTICS
Calculus I. IIDr. John P. Alexander

MECHANICAL ENGINEERING
DynaMic Systems-SynthesisDr. L. L Hoberock
Probability and Statistics for EngineersDr. G. R. Wagner

.;Energy Systems LaboratoryDr. G. C. Vliet
Elemenf'DesignOr. John J. Allan
Nuclear Reactor Engfneering Dr; B. V. Koen
Kinematics and Dynamic Mechanical SystemsDr, W. S. Reed

PSYCHOLOGY
Introduction to Psychology-7.Self PacedDr. Jon H. Bruell
Statist-101 Methods IV PsychologyDr. James M. Swanson

PHYSICS

Computer Introduction to PhysicsDr. J. D. Gavendo

ZOOLOGY
GeneticsDr. Richard Richardson
Experimental GenetiaDr, Richard Richardson
Biophysical AnalysisDr. J. L. Fox

