
DOCUMENT RESUME

ED 115 204 IR 002 489

AUTHOR Endres, Frank L.
TITLE SIMPLE: An Introduction.
INSTITUTION Texas Univ., Austin. Project C-BE.
SPOTS AGENCY National Science Foundation, Washington, D.C.
REPORT NO EP-33-10-17-74
PUB DATE 17 Oct 74
NOTE 23p.; For related documents see IP 002 463 and 464

EDRS PRICE MF-$0.76 HC-$1.58 Plus Postage
DESCRIPTORS Algebra; *College Mathematics; Computer Assisted

Instruction; *Computer Programs; Higher Education;
Mathematics Education; Matrices; Programing;
Programing Languages; Time Sharing

IDENTIFIERS Interactive Computer Languages; Project C BE;
*SIMPLE

ABSTRACT
Symbolic Interactive Matrix Processing Language

(SIMPLE) 4s a conversational matrix-oriented source language suited
to a batch or a time-sharing environment. The two modes of operation
of SIMPLE are conversational mode and programing mode. This program
uses a TAURUS time-sharing system and cathode ray terminals or
teletypes. SIMPLE performs all the standard operations on matrices,
and eigenvalues, eigenvectors, remote plotting, and inquiry commands
are also available. Self-paced instruction through TEACH commands
allows the student to proceed at his own pace while maintaining full
documentation. This paper is an introduction for the novice and a
reference guide for the casual user. The SIMPLE Reference Manual
provides a more rigorous definition for the experienced user. (CH)

Documents acquired by ERIC include many informal unpublished

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available
* via the ERIC Document Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original.

SIMPLE: AN INTRODUCTION

EP-33/10/17/74

Frank L. Endres
Department of Civil Engineering

The University of Texas at Austin

(7...

ZO

J...4

rs1

U.S. DEPARTMENT OF HEALTH,
EDUCATION L WELFARE

0
NATIONAL INSTITUTE OF

EDUCATION

C:S)

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS

STATED DO NOT NECESSARILY REPRE

SENT OFFICIAL NATIONAL
INSTITUTE OF

EDUCATION POSITION OR POLICY

*The materials contained herein were supported by PROJECT C-BE under

Grant GY-9340, "The Use of Computer-Based Teaching Techniques in Undergraduate

Science and Engineering Education," from the National Science Foundation to

The University of Texas at Austin, Drs. John J. Allan and J. J. Lagowski,

Co-Directors.

PE-F0FTIr N . - -2E THIS COPY
RIL01,TEL T;A-F N GRANTED BY

-D
1716,C1-

ERIC -ATO ERIND ORGANIZATIGN, --;FT RATING

UNDER AGREEMENTS WITH THE NATIONAL IN-

STITUTE OF EDUCATION FURTHER REPRO-
DUCTION OUTSIDE THE ERIC Sr STEM RE
qUIRES PERMISSION OF THE L-OPYRIGHT

OVVNEF

Copyright © 1974, by The University of Texas at Austin.

All rights reserved. Published in the United States of America.

No part of this book may be reproduced by any means, nor transmitted,
nor translated into a machine language without the written permission
of the publisher.

ids

TABLE OF CONTENTS

CHAPTER PAGE

Preface ii

Syntactical Overview iii

0.0 Example

1.0 Introduction

2.0 Fundamental Elements

0-1

1-1

2-1

2.1 Delimiters 2-1

2.2 Constants 2-1

2.3 Variables 2-1

2.4 Relations 2-2

2.5 Expressions 2-3

3.0 The Algebraic Class 3-1

3.1 Equations 3-1

3.2 The Calculator Mode 3-1

3.3 Output 3-1

4.0 The Command Class 4-1

5.0 The Programming Mode 5-1

5.1 Statement Numbers 5-1

5.2 Editing 5-1

5.3 Syntax (IF-THEN, GO TO, DO PART, PAUSE) 5-3

6.0 Using SIMPLE on TAURUS 6-1

Appendix A. SIMPLE Character Set A-1

Appendix B. Accessing TAURUS B-1

Appendix C. Notes C-1

PREFACE

SIMPLE (Symbolic Interactive Matrix Processing LanguagE) is a conver-

sational matrix oriented source language well suited to either a batch or a

time-sharing environment.

This document is not intended to be an instructional text nor a pro-

grammer's reference manual, but rather an introduction for the novice and

a quick reference guide for the casual user. It does not attempt to tell

the whole story and in some instances overstates constraints for the sake of

simplicity and clarity.

Chapter 0 would normally be appendix A in most texts, but has been

included initially in the hope of capturing the reader's interest and

demonstrating SIMPLE's versatility.

The description of SIMPLE presented herein is basically non-technical

and an informal approach is taken in hopes of enhancing initial comprehension.

A forthcoming edition (SIMPLE - a Reference Manual) will provide a more

rigorous definition for the experienced user. And SIMPLE - an Applications

Manual will demonstrate the use of SIMPLE over a wide range of applications.

The author would like to express his gratitude for support received

from the Department of Civil Engineering and NSF Grant GY-9340, project

Computer Based Education (C-BE) of the National Science Foundation.

ii

(PRO
G

R
A

M
G

E
N

E
R

A
T

IO
N

#:
1

a
§2

a.
..

}
{s

}{
sc

E
D

P
ro

gr
om

m
in

g
M

od
e

C
on

ve
rs

at
io

na
l

M
od

e

PC
S

(1
;. G

O
 T

O
 e

D
O

 P
A

R
T

 N
 F

O
R

 8
=

C
 T

O
 D

 B
Y

 E
P

A
U

S
E

 c
C

un
ar

y
4

bu
no

ry

C
A

LG
E

B
R

A
IC

E
Q

U
A

T
IO

N
E

X
P

R
E

S
S

IO
N

v=
 e

(C
al

cu
la

to
r

M
od

e)
E

1
a

E
2

E
n

fu
nc

tio
ns

A
B

S
S

IN
S

Q
R

C
O

S
S

G
N

A
T

N
IN

T
E

X
P

R
N

D
LO

G

P
 L

T

M
IN

LD
U

M
A

X
D

E
T

C
P

L
S

U
M

P
R

D J
op

er
at

or
s

+ *4
=

[1

st
rin

gs

C
O

M
M

A
N

D

m
oy

 b
e

o
co

ns
to

nt
or

 a
 v

ar
ia

bl
e

C
o

H
E

LP
P

O
O

P
T

E
A

C
H

S
T

O
P

E
JE

C
T

T
IM

E
LI

S
T

C
LE

A
R

S
W

IT
C

H
IN

C
F

L

R
E

M
O

T
E

 L
O

A
D

D
E

LE
T

E
 ID

E
N

T
C

O
N

S
T

M
A

S
K

D
IG

IT
S

R
M

V
S

M

A
D

D
S

M
S

T
O

S
M

P
LO

T
S

C
A

LE
C

O
N

T
O

U
R

R
E

D
U

C
E

 E
1G

E
N

D
IV

ID
E

E
IG

IT
S

O
R

T

C
P

R
E

A
D

S
A

V
E

S
H

O
W

K
IL

L
R

U
N

R
E

S
U

M
E

0.0 Example

TAURUS. - 18 :EP 74 10.17.07
=CEAB123/NANCY/ABC
JOBNAME: CEAB123-20
CHARGE'S YEAR-TO-DATE: TIME 143.48 SUPPLIES 1.7.79

CC:
EXECPF 2450 EA3IER
GO:
END EASIER

CC:
?SIMPLE
'GO:
FILE ALREADY ASSIGNED.
END DFN
17 SEP 74 INTRODUCTORY MANUAL NOW AVALABLE
10 SEP 74 **A** SIMPLE VERSION 3.4 PUT ON LINE
15 JUL 74 LATEST UPDATE TO TEACH DR POOP

HELLO, THI: IS SIMPLE(3.4)
TYPE HELP, FOP MORE INFORMATION
THE TIME 12 :EP 74 10.17.42.

0.1 THE CALCULATOR MODE
'7 21'2 + 5

13

? 4ATW1) 1 THI: IS PI

= 2.1415926535298
7 355/113 I THU:, IS CLOSE

= 3.1415:42:420_7.540
'7- 22.-7 1 BUT THIS WILL DO

2.1428571422571
? EXP(1) WJULD YOU BELIEVE

= 2.7182818284590
? S 0.2 SOME COMMAND: ***************************

? TIME
THE TIME 12 SEP 74 10.20.45.
7- LOAD A 2 2
LETS LOAD A iRDW-WI3E)

2 ROWS, 2 COLUMN': HOW MANY VALUES PER LINE

/4
OK, 4 PER LINE' IT

7 13 20 5 a
ALLRIGHT+ WE HAVE LOADED A
? TEACH LDU

LDU(E) DECOMPOSITION FUNCTION" L+D+AND U APE

COMPUTED SUCH THAT L.0D*U=E+
L IS A UNIT LOWER TRIANGULAR MATRIX
U IS A UNIT UPPER TRIANGULAR MATRIX
D IS A DIAGONAL MATRIX

TEACH DIVIDE

DIVIDE,A,<L>+<D>+<TP A 13 SUBDIVIDED INTO L+ D+

AND U (A=L+D+U),
L CONTAINS THE 'SUE:DIAGONAL ELEMENTS,

D THE DIAGONAL, AND U THE SUPERDIAGONAL ELEMENTS

DC = LDU(H) DECOMPOSE A AND :TORE IN DC

0-1

9

"E"

T TEACH IDENT

IDENT5A,N AN Pi BY N IDENTITY MATRIX,Ay IS

CREATED
?IDEMTI2
? DIVIDE DC Ly.DU

(L+I)*D.(I+U)

-SCALED BY 1E+01
1 2

1 1.30 2.00
.50 0

'7 1,-A

'SCALED BY 1E+00
1 2

1 2.00 -5.00
2 -1.25 3.25

DETiA,
4

7 TEACH CON:T

$ LET'S CHECK

$ A INVERSE

1 DETERMINENT OF A

CONSTIA,NRNCOS AN HR BY NC MATRIX'H'IS CREATED

EACH ELEMENT OF A = C REAL NUMBER)

CONST X 4,4 1.0 S CREATE X (ALL ONES)

$ LETS PRODUCE A TABLE OF RANDOM NUMBERS BETWEEN 0 AND 10

= RNLI(104,,X) 1 104APND(X) IS EOUIVILENT

? X
1 DISPLAY THE TABLE

SCALED BY 1E+00
1 2 3 4

1 1.20 6.04 6.32
2 .48 8.67 4.44 7.31

3 6.97 8.87 4.23 5.14

4 2.27 4.69 3.75 8.99

? SUM(X:J/16
1 CHECK THE AVERAGE

= 5.5733489806522
? TIME
THE TIME IS 18 SEP 74 10.28.23.

1 0.3 THE PROGRAMMING MODE 4.41.41.4.41.4.4.41414.1.41.4.4.4.41.4.41.4.4.4.41.***

'7 1: SOR = .5*(SOF!. + X/SOR

? 2: I = I + 1

? 3: I & SOR
X = A

7 SOP = A
'7* RUN 3 TIMES
MATRICES INCOMPATIBLE 10S 1SX3

ERROR IN LINE 2.0000 RETURNING CONTROL TO USER

= 0 $ I FORGOT TO INITIALIZE I

0-2

7' RESUME
1

$ THIS WILL RETURN CONTROL TO THE PROGRAM

SCALED BY 1E+01
1 2

1 . 7 0 1.00
2 .25 .49

2

SCALED BY 1E+00
1 t-

1 4.15 5.77
2 1.44 2.71

3

HALED BY 1E+00
1 2

1 3.17 4.26
2 1.06 2.10

? DIGIT: 9
7 RUN 3 MORE

4

SCALED BY 1E+00
1 2

1 3.0045207 4.00708604
2 1.00177191 2.00276696

:CALED BY 1E+00
1

1 3.00000363 4.00000566
2 1.00000142 2.00000221

SCALED PY 1E+00
1 2

1 3.00000000 4.00000000
2 1.00000000 2.00000000

? H '7:0R4*.OR
S LETS CK OUR RESULT

SCALED BY 1E-10
1 2

1 1.42051704 -4.51109372
2 .55479177 -1.76044068

$ NOT BAD

? KILL ALL I DELETE THE CURRENT PROGRAM

? $ LETS DO THAT AGAIN WITH A LITTLE DIFFERENT APPROACH

? 10: IF I<=LIMIT THEN I=I+1 & SOR=.5,(S0P+X/SOR) & GO TO 10

T. 20: "ITERATIONS" & I & "SW. OF X" & SQR
LIMIT = 5

? 5: I = 0 & SOP. = X I INITIALIZE

? SHOW
5.0000: I = 0 & SQR = X $ INITIALIZE

10.0000: IF I<=LIMIT THEN I=I+1 & SOR=.5.(SOR+X/SOR) & GO TO 10

20.0000: "ITERATIONS" & I & "SOP OF ," & :OP

7. RUN

VARAELE UNDEFINED
ERROR IN LINE 5.0000 RETURNING CONTROL TO USER

? 5: I= O& SCR = X I INITIALIZE
? $ THATS A 0(ZERO) NOT AN 0(OH)

RESUME
ITERATIONS

SOR OF X

SCALED BY 1E+00
1

D
L-

1 8.00000000 4.00000000
2 1.00000000 2.00000000

? LIST
NAME ROWS COLUMNS
A 2 2

Dr 2

L
L_

2

2 2

LIMIT 1 1

I 1 1

SOP. 2 2

MAX OF 137 WORDS USED OUT OF A POSSIBLE 229 LEAVING 92

7' TIME
THE TIME IS 18 SEP 74 10.41.47.

'7 STOP

REIDUETED USED
FIELD LENGTH 050000 047644 (OCTAL)

MATRIX STORAGE 229 137 (DECIMAL)

CC:
?PRINT
GO:
4.* 1 COPIES OF OUT RELEASED TO THE "TH" PRINTER **

CC:
4),L0
ACCOUNT-RUN LN-MIN LN-COST TM-EEC TM-C:T
CEAB123-20 24 $0.16 17.670 $1.27

0-4

1.0 Introduction

SIMPLE is a conversational interpretive system for performing a multi-

tude of matrix operations. Its use is made possible by the TAURUS time-

sharing system through the use of a remote CRT (Cathode-Ray terminal) or

TTY (teletype). It is an easy-to-use tool --- even for beginners who have

no experience with computers or a programming language, and only a minimal

introduction to matrix calculations.

SIMPLE is an effective mechanism to introduce students in formal classes

and others to time-sharing capabilities. Concepts involving matrix algebra

are reinforced by the ability to get quick results through direct interaction

with the computer. Self-paced instruction through SIMPLE's TEACH commands is

a unique and rewarding feature allowing the student to proceed at his own

rate, while insuring that the necessary documentation is always available

and up-to-date.

SIMPLE performs all the standard operations on matrices along with a

few not-so-standard operations. General matrix algebraic expressions are

acceptable --- including parentheticals --- providing the user with generality

and simplicity heretofore unattainable. Such things as eigenvalues and eigen-

vectors, remote plotting, and a group of inquiry commands are also available

for the more mature user.

For clarity, we will describe SIMPLE assuming we are in an interactive

environment, but SIMPLE can also be used via batch operation. There are two

modes of operation: the conversational mode and the programming mode. When

idling (waiting for your next request), SIMPLE is ready to receive one of

three types of request:

1) a Command

2) an Algebraic statement (an equation or an expression)

3) an Edit (Programming Mode)

types 1) and 2) are conversational (i.e., action is requested immediately),

while 3) is a programming mode request (the editing action is requested

immediately but the statement will not be executed until later).

1-1

2.0 Fundamental Elements

Every statement in SIMPLE is composed of some combination of 3 inde-

pendent parts.

<#> : <S> $ < comment>

These 3 parts (the statement number, the primary syntax, and the commenting

field) are separated by SIMPLE's 2 primary delimiters.

2.1 Delimiters

The : separates the statement number from the rest of the statement and

identifies it as a Programming Mode statement.

The $ identifies the end of the primary syntax; what f 4loos is free-

field commentary for documentation purposes.

The & has 2 purposes. It allows us to stack expressions in the Expression

form of the Algebraic class and simplifies outputting (e.g., A & B & A+ B) .

In a similar capacity, in the Programming Mode & allows us to stack primary

syntax within the same line (e.g., 1: I = I+ 1 & Ge Te I).

The ® is not a character but is used to stand for the general separator

and represents a character or group of characters as defined below. Q may be

a comma (,), any number of blanks (:?:1) , or a comma preceded or followed by

any number of blanks.

The " always occurs in pairs and is used to enclose an alphanumeric

string (see 3.3).

2.2 Constants

A numeric constant may be a signed numeral in integer or real form with

up to 10 significant digits. Constants may be expressed in scientific

notation by using "En" which stands for "x 10
n" (e.g., 1.3E5 means 1.3x 10

5
).

2.3 Variables

Variables in SIMPLE start with an alphabetic character and may be

followed with up to 9 additional alphanumeric characters. A variable may be

either a scalar or an array. Arrays may have one (a column vector) or two

dimensions (a matrix).

2-1

.

A subscripted variable (<var> [<e>] or <var> [< el >, <e2>])

is a special case of a scalar variable and is legal anywhere a

variable is allowed, e.g., AM = 3*B[x,I*(J+2)] . See Appendix C

No. 2,7.

2.4 Relations

Relations may or may not be functions. In SIMPLE there are 3 basic

relational symbols:

<

These respectively mean less than, greater than, and equal. Any paired

combination of these 3 is allowed, and "or is the implied connector

(e.g., < = means < or =, = < means = or <, >< means > or < (i.e., not equal)).

These may be used with relational expressions in a SIMPLE IF-THEN statement

(see 5.4).

Functions may be either operators or non-operators (hereafter referred

to as intrinsic functions).

Arithmetic Operators

Since variables in SIMPLE may be scalars or arrays their complete

definition is slightly more involved than normal (for the complete definition

use TEACH (see 4.0)). It should be stated, while some are primarily scalar

operators (t) and some are primarily array operators (', []), no matter

what the variable type, the operation is well-defined (assuming compatability).

See appendix C, No. 1, 10, 11. The hierarchy of operations is as follows:

(1) 1] - subscript evaluation

(2) () - innermost parentheses next

(3) ' - transposition

(4) *,/,f - multiplication, division, and exponentiation

(5) +,- - addition and subtraction (including negation)

(6) = - assignment

Intrinsic Functions

As was the case with SIMPLE operators, some functions are primarily

scalar oriented and some array oriented, but all are well-defined.

All intrinsic functions have a 3 character name combined with a parenthesis

pair enclosing any legal SIMPLE expression. A list is on page iii (use TEACH

for more information). See Appendix C, No. 7.

2.5 Expressions

Expressions in SIMPLE are somewhat analogous to algebraic expressions

in mathematics, and are defined as follows. A constant, variable, or

function is an expression. Furthermore, if x and y are expressions,

then so are:

(x) -x x4y x*y x/y x+y x-y

Examples:

3.1 x A[N] 3 2 x+3*(A-SIN(x))

SQR((x[1] - x[2]) 2 + (y[1] - y[2]) t 2)

Expressions are evaluated according to the higharchy of operations (2.4).

When equal, they are processed from left to right.

2-3

4.0 The Command Class

The command class is second only to the calculator mode in simplicity.

< command> <parameter list>

or more specifically,

<command> p1 ® p2 ® pn

where is our generalized separater (2.1) and pi represents a SIMPLE

constant or variable (n may be o , i.e., no parameter list).

The command class is composed of three groups. The most basic (HELP. .

CLEAR, see iii) are either informative (HELP, POOP, and TEACH) or general

purpose (LIST, CLEAR, STOP, TIME, EJECT). Of these only TEACH has a parameter

list.

TEACH ® p

TEACH may be the most important command, for with it, the user may

obtain information about all SIMPLE commands, functions (including operators),

and programming syntax. Because of this, the user is referred to the list of

commands on page iii, and instructed to use TEACH for more information. Note,

TEACH with no parameters will TEACH everything.

The second group of commands (C
P'

see iii) give the user the ability to

manipulate program files (READ, SAVE, SHOW), edit files (KILL), and execute

files (RUN, RESUME).

The third group contains a powerful assortment of matrix manipulation and

numerical related commands (LOAD, DELETE, SORT, EIGEN).

4-1

3.0 The Algebraic Class

The algebraic class of statements gives us the ability to manipulate

variables in a mathematical sense and evaluate equations of the form (v=e),

and multiple expressions of the form el & e2 &

3.1 Equations (v = e)

v is either a regular or subscripted variable and e is a legal SIMPLE

expression. A very general form of an equation is allowed. It may be a

matrix equation, a scalar equation, or a combination as long as compatability.

requirements are met.

3.2 The "Calculator" Mode (el)

This can be thought of as a sepcial case of v=e, where we substitute

"TTY" for v In other words, after e is evaluated it is merely outputted

(written to the output file if batch, displayed if interacting) as opposed to

being stored in v . This is really just the degenerate form of the SIMPLE

output mechanism below.

3.3 Output (The "Expression" Mode el & e2 &)

As described in 2.1 the delimiter & serves to separate expressions

and alphanumeric strings (" ") to be output.

Example: "A" & A & "B" & B & "A*B" & A*B

3-1

5.0 The Programming Mode (<#>: < s>)

This mode provides the user with the most powerful aspects of SIMPLE.

It is through the programming mode that an internal program is created and/or

modified. In connection with the program manipulation commands, it may be

retrived, saved, displayed, deleted, or executed.

A statement in SIMPLE is of the programming mode if and only if it has a

statement number followed by a colon (:). The syntax <s> which follows may

be from the Algebraic class, the Command class (excluding C , see page iii),

or the Program Control Syntax (PCS, see 5.3). Statements may be compounded

using the & .

Example: 1.3 : I =1 & x=SIN(P) & GA TO 21

A SIMPLE internal program is executed by processing the statements in

ascending order (unless diverted by a GO TO or a DO PART) until the end is

reached or a PAUSE is encountered. See Appendix C, No. 5.

5.1 Statement Numbers

Every statement number has one of the following forms:

a.b .b a. or a where,

1 s a s 9999 and 0001 s b s 9999

(i.e., 0 < # < 10000 and has at most 4 significant digits to the left or

the *right of the decimal point).

Examples: 1017.0302 .02 17. 100

5.2 Editing

Editing in SIMPLE is very straightforward. To insert a statement

between statement a and c (c>a), simply preface the new statement with

b , where a<b<c . To replace statement number b , just preface the new

statement with b .

5-1

5.3 Syntax

All program control syntactical entities (GO, TO, IF, THEN, DO,

PART, FOR, = , TO, BY, PAUSE) must be separated by blanks (a space).

PAUSE PAUSE <string>

When a PAUSE is encountered, control is returned to the user and <string>

is output. (i.e., the RUN command iniates the execution of the internal

program, and PAUSE terminates it (possible temporarily).

SIMPLE will automatically produce a PAUSE if a syntax or an execution error

is encountered. The RESUME command enables the user to resume execution

after the PAUSE.

GO TO GO TO <e>

When a GO TO is encountered <e> is evaluated and control transferred to

the smallest statement number that is greater than or equal to <e> .

IF-THEN IF < el > <,> <e
2
> THEN < S >

, represents some combination of relationals (2.4). The expressions

< el> and < e2> are computed and then the relational expression

<el> <,-> <e 2> is evaluated (either true or false). If true, <S > is

processed. If false execution resumes with the next line.

DO PART DO PART N 'FOR B = C TO D BY E

D9 PART is basically a subroutine call although it can be used in much

the same manner as a FORTRAN DO LOOP. B must be a variable (non-subscripted),

while N , C , D , and E may be either constants, variables (regular or

subscripted), or packed expressions (no embedded blanks). N is evaluated

and truncated and then control is transferred to the group of statements that

lie between N and NI-1 (including N). (e.g., DO PART 4 would execute the

group of statements with statement numbers from 4 to 4.9999).

Parameters may be deleted from the right giving us a total of 4 possible

forms (use TEACH DO). See Appendix C, No. 4.

5-2

O

6.0 Using SIMPLE on TAURUS

stands for
"CTRL" G
(the bell)

See App. B

type "CTRL"

Yes

type "CTRL" C

4,1.LAGIN=CE /X/--
EXECPF 2450 EASIER

Yes

Create or Fetch
<code>

SIMPLE I= <code>

PRINT

L
Yes hard

copy

No

<finished>
Yes

Le

SEQUENCE CARD
PASSWORD CARD
JABCARD
EXECPF , 2450 , S IMPLE (I , 0)

<EAR>
-TEXT-
<E9F >

interactive)

I SIMPLE
lr

Do Your
Thing!

clear screen
and disconnect

phone

6-1

ST9P

Enter SIMPLE

__Exit SIMPLE

The most general form of the SIMPLE control card macro is:

SIMPLE I = <fn> 9 = <fn> C = <fn> P= <fn> T1 = <fn> T2= < fn > FL= <#>

where I declares the input file, default = TTY

e declares the output file, default = 81T

C declares the input copy file, default = IN

P declares the program copy file, default = PROG

Ti declares the 1st data copy file, default = Ti

T2 declares the 2nd data copy file, default = T2

FL declares the field length limit, default = 53000

SIMPLE 18 is equivalent to SIMPLE I =INPUT 8 =GUTPUT which says that this

is a standard batch run.

SIMPLE I =<fnl > 8 = < fn 2 >

is the form the user may use to batch a job from a remote terminal.

6-2

APPENDIX A

SIMPLE Character Set

the English alphabet

the base ten digits

the relational symbols

the arithmetic operators

the non-arithmetic operators

the delimiters , : $ & "

A B

0 1 2

= > <

+ *

= ()

3

/

[

Z

f '

]

9

A -1

cr?

APPENDIX B

Accessing TAURUS1

The following assume the terminal is acoustically coupled. If the

terminal is hardwired the user need only LeGIN.

A. Teletype B. Datapoint/Mini-T.E.C.

1) turn on -line 1) turn coupler on

2) turn on 2) put on remote

3) push TALK 3) turn on

4) dial the number 4) dial the number

5) push DATA 5) place phone in coupler

6) hang up phone

1
As of 1 September 1974 the number is 9-474-5011.

B-1

10

APPENDIX C

Notes

1) Parentheticals may be nested up to 9 deep.

2) Subscripts may not contain subscripted variables.

3) Variables and constants have at most 10 characters.

4) You cannot depart (De - PART) to a depth >8 .

5) The maximum number of statements in an internal program is 30.

6) DELETE and CLEAR relate only to variable storage while, KILL <#>

and KILL ALL relate to the internal program buffer.

7) Embedded blanks are not permitted between a function name and its

parenthesis pair, nor between a variable and its subscript.

8) All intrinsic functions have 1 parameter and a 3 letter mnemonic.

9) All commands have 4 or more letters.

10) Beware: the hierarchy of + is identical to * and /

a+b+c = (a+b)+c , a*b+c = (a *b)4c a*(b+c)

11) Beware: the hierarchy of -(negation) is the same as -(minus)

consequently, -a+n # (-a)+ n when n is an even integer

(e.g. -3+2 = -9 = -(3+2) ¢ (-3)+2 = 9)

