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Mathematics EducationReports

Mathematics Education Reports e being developed to disseminate

information concerning mathematics education documents analyzed at

the ERIC Information Analysis Center for Science, Mathematics, and

Environmental Education. These reports fall into three broad

categories. Research reviews summarize and analyze recent research

in specific areas of mathematics education. Resource guides identify

and analyze materials and references for use by mathematics teachers

at all levels. Special bibliographies announce the availability of

documents and review the literature in selected interest areas of

mathematics education. Reports in each of these categories may also

be targeted for specific Sub-popilations of,the mathematics education

community. Priorities for the development of.future Mathematics

Education Reports are established by the advisory board of the Center,

in cooperation with the National Council of Teachers of Mathematics,

the Special Interest Group for Research in Mathematics Education,

the Conference Board of the Mathematical Sciencesy and other pro-

fessional groups in mathematics education. 'Individual comments

on pa'rt Reports and suggestions for future Reports are always

welcomed by the editor.



In 1975, as in previous years, the Special Interest Group

for Research in Mathematics Education sponsored a presentatiOn at

the annual meeting of the American Educational Research Association.

This publication is based on the` resentation made by PrOfessor

Simon on 31 March*1975 at the AERA meeting in Washington, D.C.

Professor Simon describes how contemporary information

processing approaches to thinking and learning are beginning to

illuminate the rote-meaningful distinction in the way in which

students learn. He presents some concrete examples of research that

illustrate important characteristics and significant findings of the

information processing approach. He also provides some background

information on human information processing and otfcomputer simulation

that should help readers to understand the scope of the field better.

ERIC/SMEAC is pleased,to make this publication available.

Marilyn N. Suydam
Editor

This publication was prepared pursuant to a contract with the
National Institute of Education, U. t. Department of Health, Education
and Welfare. Contractors undertaking such projects under Government
sponsorship are encouraged to express freely their judgment in
professional and technical matters. Points of view or opinions .do
not, therefore, necessarily represent official National Institute of

, Education position or policy.
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,LEARNING WITH UNDERS'T'ANDING

Herbert A. Simon
Carnegie-Mellon University

Everyahe who teaches becbmes aware through his classroom experience
that there are.important differences between the student who has learned
by rote and the student who has learned with understanding, or "meaning-

fully." There are differences in what these two kinds of students baye
learned, and there are consequent differences in what they can do with
what they have learned.. The teacher becomes alert to , signals that indi-

cate which kind of learning a student is achieving,'and tries to develop

techniques for transforming rote learniiig into meaningful learning.

While the distinction between rote and meaningful learning is part

of the common-sense equipment of every teacher, it is an intxitive rather
than a formal notion that has never been provided with a solid foundation
in ther,form of a satisfactory psychological theory. Although Gestalt

psychology paid considerable attention to the distinction, it succeeded
only in .labeling it and describing some of its manifestations, without.
providing a set of mechanisms and processes that could account for it in
operational terms. Psychology in the S-R tradition, on the other hand,
tended to ignore 'the distinction (sometimes even denying the usefulness
of asking "what is learned?"), and hardly undertook to construct an
explanation for a phenomenon it did not recognize.

From many otkpr fields of human endeavor (medicine and engineering,
for example), we have learned that practical knowledge without theory can
carry us only a certain distance, even in practical affairs. Theories

that explain underlying mechanisms give us powerful new tools and methods

for use in our work. But then,'I need hardly labor that. point in a meet-

ing of the American Educational Research Association. Belief in the

relevance of theory to improved practice is one of the foundation stones

on which this'organization stands.

In my remarks today, I should like to describe how contemporary
information-processing approaches to thinking and learning are beginning
to illuminate the rote-meaningful distinction, enabling us to determine
with some precision what the student has stored in memory as a result of

a learning experience, what the consequences are of storing one thing

rather than another, and how particular kinds of learning can be encour-

aged and others discouraged. Our neV knowledge and precision in these
matters is closely linked with our growing ability to write computer
programs that describe andiksimulate in detail the processes that humans

usp to carry out complex cogditive tasks, and that describe how the

knowledge and information used in these tasks is stored in human memory.

My discussion will center around some half dozen concrete examples
of research, some carried out in our own laboratory and some done else-
where, that illustrate"important characteristics - and significant findings
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of the information processing approach to these questions. These examples
will show how a combination of standard experimental approaches, analysis
of thinking-aloud protocolg'of ongoing thought processes, and computer

.

simulation are 'twinning to give yes a clear end. .detailed picture of what
goes on in problgm solving; and the variety of methods--rote and

.meaningful--1.hat can be employed in a single, relatively simple, task.

Some of the examples that will be discussed invope the kinds of
puzzles and trick problems that psychologists like toOe as laboratory
tasks, while others involve important school subjects. In particular,
I have tried to select examples that would cast light on one of the
central skills we try to teach in the mathematics-science parts of our
curricula -the use of mathematics to model physical and other real-world
phenomena, and through modeling, to understand theM and predict their
behavior.

:he belief that mathematics slibuld be learned with understanding
rather than by rite was one of the main motivations leading to the
development arid.,fntroduction of the "r2ew math" programs into primary and
secondary schools. In the design of'these new programs, it was frequently
assumed that "understanding" mathematics was closely associated with

fPrQ.Qeeding rigorously and 'defining underlying concepts carefully. While
considerable attention was devoted to the proper treatment of mathematical
syntax, semantic considerations tended to enter mainly at the very, basic
levels (e.g., the definition of cardinal number). It is possible/that
the conception,of "understanding" that has entered into the construction
of these programs captures only part of the meaning of that term. In
particular, it may be one thing for a professional mathematician, con -
cerred mainly with the discovery and demonstrati6n of new mathematical
truths, to "understand" mathematics, and another thing for a scientist
or applied mathematician, concerned mainlx with using mathematical tools
to discover and derive generalizations about empirical phenomena, to
'understand^ it. Some of the research I nail report at least suggests,
without demonstrating conclusively, that such a dualistic conception of
mathematical understanding has a genuine psychological basis.

Before beginning an analysis of specific examples, it will be useful
to say a little more about what is involved in an information processing
approach to these matters, and how a computer can be used to simulate
oognitiVeccrocesses. The first sections of this paper constitute an
introduction to these topAcs.

Human Information Processing

When human beings are observed working on well-structured problems
that are difficult for them, their behaviors reveal certain broad charac-
teristics of the underlying information processing system that supports'
th,problem=solving prOcesses; but at the same time, the behaviors con-
ceallalmost all the detail of that system. As a result, we can describe
the system, for our purposes, in rather broad terms.

2
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The basic characteristics,of the human information processing system

(IS) that shape its problem solving efforts are these: -The system

operates mostly serially, one procesg'at a time, not in parallel fashion.
(A partial exception must be made for recognition processes, which are
probably carried out in parallel.) Its elementary processes take tens

or hundreds of miJ.1iseconds. The inputs and outputs of these processes
are held in a small short-term memory with a capacity of only a few
symbols. The system has access to a practically infinite long-term
memory, but the time required to store a symbol in that memory is of the
order of seconds or tens of seconds. Access to long-term memory is
obtained by recognizing stimuli"the recognizer serving as a sot of
"index," or by asgociating from One item in memory to another. .

fihe evidence that the human system has the operties just listed

comes partly from research on complex cognitive t sks. No problem-
solving behavior has been observed,in the laborat ry that seems inter-
pretable in terms off' simultaneous rapid search of disjoint parts of the

solver's problem space. On the contrary; the sol er always appears to
search sequentially, adding small successive accretions to his store of
information aboutthe problem and its solution.

Additional evidence for the basic properties of the IPS comes from
- 'the simpler standard laboratory tasks. The evidence fo_the 5 or 10
seconds required to store a symbol in long-term memory comes mainly from
rote memory experiments; evidence for the seven - symbol capacity of short-
term memory, from immediate recall experiments; evidence for the 200
milliseconds needed to transfer' symbols into and out of short-term
memory, from experiments requiring searches down lists or simple arith-

metic computations. (Some of this evidence is reviewed in Newell and
Simon, 1972.)

The detail of the human IPS is elusive because the system is adap-
tive. For a system to be adaptive means that it is capable of grappling
with whatever task environment confronts it. Hence, to the extent that
a system is adaptive, its behavior is determined by the demands of 'that

task environment rather -than by its own internal characteristics. Only
when the environment stresses its capacities along some dimension --

' presses its performance to the limit - -do we discover what those capac-
/ ities and limits are, and are we able to measure some of their pardmeters

(Simon, 1969, Ch. 1 and 2).

Because of the adaptivity of the human IPS, any explanation of"its
behavior in the face of a particular task must take in)o account the
strategy or "program" it employs for that task. The examples to be dis
.cussed in this paper will have a great deal to say about the nature of
these strategies and their relation to learning and understanding.

be

we wish a slightly-more formal description of the human IPS, it,

can be constructed along these lines:
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li There is a set of elements, called symbols, which are
.capable of denoting, or pointing to, objects.

2. There ane,symbol structures, consisting of organizations
of symbols "connected by a set of relations. 4,4

3. A memory is a component of an IFS capable of storing and
retaining symbol structures.

4. Ah information Process is a process that takes symbol
structures asts inputs or outputs.

5. A processor is a component df an IFS consisting of:
(a) a set-of eleMentary information processes; (b) a
short-term memory that holds the input and output struc-
tures of tne information processes; and (c) an interpreter
that selects the order in which the information processes
will be executed.

6. The symbol structures that determine for the interpreter
the order in which it will execute processes are its
program.

Everything we know, about the human information processing system
indicates that it meets these specifications ih addition to the more
specific ones mentioned earlier.,

In discussing human problem-solving behavior, it is often convenient .

to distinguish the "objective" problem situation as the experimenter, would
describe it from the situation as the problem solver represents it to
himself in attacking the problem. We will callthe former, Objective,
description 9f the problem situation the task environment, and the latter,
subjective, representation the problem space. For many purposes, problem._
solving can Ile viewed as a search through the problem space, which may be
thought of as a tree-like network or'maze. If; the problem space is in-
appropriate to the objective task environment, it may be difficult or
impossible to solve the problem. On the other hand, an especially happy
choice of problem space may greatly facilitate finding a solution.
These possibilities will be .11ustrated.by the .examples.

Computer Simulation

The modern electronic digital computer has proved to he a powerful
aid to research on human higher mental processes, and our km:re/ledge about

'these processeS has advanced greatly'since this new tool became available
about twenty years ago. The computer has made its contribution in at
least three ways'. First, as our description of the human IFS suggests,
it has served as a Valuable metaphor. It was the computer that first led
psychologists to think of human cognition in information processing
terms, a far more usefUl metaphor than the earlier picture of the central

4
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nervous system as a "switchboard." The switchboard is a passive, the

IFS a highly active, system.

Second, the computer provides us with programing languages that can
be used to construct-formal descriptions of the human U°S's strategies

or programs. In fact, the strategy, in such a formalization, literally
becomes a computer program described in some computer language. Program-

ing languages have been developed (list-processing and string-processing
languages) that are well adapted to representing the memory contents and
processes of the human IFS. Thus, computer programing languages replace
conventional mathematical notation as tools for formalizing theories of-

cognition. In describing specific examples in this monograph, we will
not actually use these formal languages, but all of the programs to be
discussed have been written in one or another of them.

. .

Third, the.computer program that describes our theories of human
strategies can actually be run on computers that have been given the
same problems given to the human subjects. The output or trace of the

computer program then simulates the sequence of problem-solving efforts

displayed by the human subject. Discrepancies between the predicted and
actual behavior can be observed, and can become the basis for new efforts
to improve the accuracy of the simulation. /

It cannot be'emphasized too strongly that in this application of the
computer it is not being used as a super-fast "number cruncher," nor is
it competing in speed or accuracy with the human subject. The computer

is being used, as its very general capabilities enable it.'to be, as a
general purposeinformation processor. It is programed to imitate

as closely as possible the actual processes,used by humans, including
their foibles, and it avoids, entirely taking advantage of its powerful
arithmetic capabilities, which are patently unlike those of a human. If

the computer programed for simulation solves a proW.em either more skill -
fulIy or less skillfully than do the human subjects, then the program is
a poor simulation--a poor theory of the human processes. The same may

be said if it makes more errors or fewer errors than the human subjects,
or searches quite different parts of the problem space, or searches with

greater or less selectivity than the human subjects. A computer simula-

///

tion makes. extremely detailed predictions about the problem-solving
behavior. Hence, it is. highly desirable to be able to match these pre -
dictions against a dense stream of observations of the human behavior.
The standard experimental paradigms in which subjects respond only at
intervals of several seconds are not very powerful for testing these
kind of theories. For many problem-solving tasksbit is possible to
induce subjects to "think aloud" (not to introspect or retrospect) about
what they are doing while they are solving the problem. Thinking-aloud
protocols, sometimes supplemented by eye-movement recordings, provide
us with data of the highest temporal density that we are usually able to

obtain.. Such data have een invaluable in discovering and testing infor-
.mation processing they s of complex human cognitive behavior. Some

progress has now been the e-41T-ICURRITTIng and automating-the difficult-,
task Of analysing thinki g-aloud protocol data.
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An important development of the past five years or so has been the
achievement of sufficient understanding, of natural language to permit
computer programs to be written that can process and understand, in
several senses of that word, natural language text. Programs for process-
ing natural language are useful not only for analyzing problem-solving
protocols, but also for simulating human language processing, e.g., under-
standing written problem instructions. We shall examine an example of
such an application later. Since language is a fundamental component
of human cognition, a theory that ignored it would be very incomplete.
-It is no longer necessary to abstract from natural language in simula-
tion programS.

As a simple example of how problem-solving tasks may be represented
in computer programs, consider the Tower of Hanoi task, which appears
later as one of our examples. The task involves three pegs,and some
disks of various sizes that can be impaled on the pegs. Symbols would
be stored in memory to represent the three pegs: PEGA, PEGB, and PEGC,
say. Another set of symbols would represent the disks: DISK]., DISK2,
DISK3, DISK4, and so on. A relation, Symbolized as ON, would be defined
to connect a peg with the disks impaled on it, e.g., PEGA: -ON, DISK2,
DISK4 (read: "On PEGA are DISK2 and DISK4"). Each disk would have 4

associat94 -with it a symbol indicating its size: e.g., DISKA: SIZE, 2.
A procesis would be defined for moving disks from one, peg to another:
MDIVE(DISKx,PEGy,PEGz). The program for executing the move would remove
DISKx from the On-list of PEGy, and add it to the On-list for PEGz.
Thus, the symbol manipulating processes of the IFS would mirror ,exactly
the problem situation outside.

A strategy would be a program for determining a sequence of moves.
It might include component instructions like: Detect the largest disk

3
that is not yet on the goal peg and store its name in short-term memory;
store in short-term memory the goal of moving DISKx rto PEGy; detect the
largest 'disk that is blocking the,move of DISKx and store its name in
short-term memory. Instructions'like these are readily written in
appropriate programing languages.

With these introductory explanations out of ple way, wean now
proceed to the examples.

Match-Stick Problems

My first example, which predates computer simulation techniques,
refers to the important work, in the Gestalt tradition, of George Katona
(1940). Here is one form of the task he used: Sixteen matches are laid
Out in five squares, as shown in Figure 1. By moving exactly three
matches, reduce tire number of squares from five to four. All the matches
must be used, and all the squares must be of the same size.

Katona taught three different solutions, or solution hints, to
three different,grollpsof qubjegts. To one group_ of subjects)_ he taught

fa "rote" solution: move Match 4 to V, 9 to W, and 2 to AA.
i
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To a seconds group, he taught a "logical" solution: since there are
16 matches, if there are to be four squares, each match must belong to
only one square. In the starting situation, four matches (6, 7; 85 13)
perform a dOuble function, for each belongs to two squares. To solve
the probld0, you must get rid of :the double - function matches.

To a third group, he taught an "intuitive" solution: the figure is.

veRy compact, with the squares all jammed together. To solve the problem,

you must open, the- figure up.

Katona measured (1) the time it required subjects to learn the
solution, (2) how well they retained it if they were asked to perform
the same task again some weeks later, and (3) how well they were able to
transfer their skill to other problems of the same kind, but with dif-
ferent initial configurations of the matches. In general, he found that
the intuitive and logical solutions were learned more quickly than the
rote solution, but especially, that they were retained better and pro-
duced a greater amount of transfer. Further, the intuitive solution was
a little better in.these respects than the logical solution.

Katona himself did not provide an information-processing explanation
of these findings. Clearly the solution I have called "intuitive" is
the one that accords most closely with Gestalt principles, but it would
be hard to give a formal demonsti'ation of that fact, or a formal expli-
cation of just what it means. Let me hazard an explanation along
information-processing lines.

First, the rote solution is the only explicit one, but it requires
six, facts to be learned (which three matches are to be moved, and the
three target locations for them): If any one of these facts is lost,

the solution Cannot be carried out by rote. The solution will not work

at all fOr different configurations of the matches. Thus, there is much

to be learned by this method; a little forgetting will cause failure;
.and thereis no basis for transfer to variant tasks.

The logical solution is, of course, incomplete. It merely states
one necessary conditioh that must be satisfied by any solution. However,
it requires 'only a single "idea" to be learned, and it is applicable to
all, forms of the matchstick problem. But notice that the hint is stated
in terms of a characteristic of the problem solution, and not in terms
of actions needed to bring the solution about. Moreover, the hint calls
attention to the double-function matches, which are not the matches that
need to be moved in order to achieve the solution.

The intuitive solution is also incomplete, and vague as well. It

has a perceptual, rather than a cognitive, flavor. Again, only one idea
must be learned, and it is applicable to all forms of the prcblem. This

hint, unlike the hint for the logical solution, is stated in terms of*an
action--something to 40. It could e\asily be made more complete and

explicit by being rephrased: Open the figLire by breaking up t,o

squares, then make one -new one.

8
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-In summary, the.Katona matchstick experimerit illustrates several

fundamental points. As a ?esult of different explanations, students can
induced to learn quite different things about the same task.' These

fferent kinds of learning are superficially similar, in that they all
low the task to be peformed successfUlly. They are quite different,

however, with respect to the important criteria of efficien.y inlearn-

4
ing, retention over time, and traft&fer'to other tasks. Most of us would
say that the students who learned the logieca/ or intuitive solutions
"understood" the problem at some level, while those who only learned the
rote solution did not. But the experiment warns us also that "under-
standing" is not necessarily a unitary thing. It may have a cognitive
flavor or a perceptual flavot; it may largely involye explaining why
something works, or it may in/dIVe explaining how to make it work.

The,d4.tinction betweenVhat I have been calling the logical and
intuitive solutions can be looked at in a slightly different way. Th
former refers to a'state space--a space of matchstick configurations.
The latter refers to a space of operations -,=Of actions to change the

configuration. Since problem solving involves finding sequences of
operations that bring abdat-a desired change in state, problem solutions
imply relations between these two spaces: mappings of operation. sequences

upon state-space differences. The difference between understanding
properties of the solution in the state space and understanding properties
of the operator sequencespis analogous to the difference between"proving
the existence of something by reductio ad absurdum and provingeit con-
structively by means bf an algorithm. I would Conjecture that the applied
mathematician most often requires the actual algorithm for his under-
standiu. Understanding of the other kind doe not meet his needs (tfo,

know "what to do next"), and he may even be indiffere,to it.

The Tower gf Hanoi
,

The Tower of Hanoi puzzle will be familiar to many of you as a
wooden toy. There are three vertical pegs, call them A, B, and C. On

Peg A is impaled a pyramid ,of disks (say 5 of them) of graduated sizes.
The task'is to {dove the pyramid to Peg C, under the conditions that only
one disk may be moved at a time and that t larger disk way never be placed
on top or a smaller disk. With n disks, the solution requires a minimum
of 2n-i moves (e.g., 31 moves for 5 disks). t

.

,During the past year, we }lave been constructing in our laboratory a
taxonomy of solutions of the TdWer of Hanoi problem preparatory to doing
experiments on learning, retention, and transfer (Simon, 1975). Each

solution Is embodied in a computer ogram (written in the SNOBq string-
processing language) that is capable of using the method it emboties to
solve the problem. Thus each program constitutes a theory of the knowl-
edge and 4ills ,possessed by any human being who can apply that method

to the problem. By comparing the programs, we 'can see what differences
they imply in the demands made upon memory or processing capabilities.
By.small "parameter" chTiges in the programs, we/can construct innumerable

9
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. variants of the basic methods
of several of them.

4 '

as well as hybrids that combine elements

We have found four types of solutions of the Tower of Hanoi problem,
each with quite distinct characteristics in the demands they make upon
long-term memory, short-term memory, and perception. The computer pro-
grams express in a mathematical language our theories of the processes
being used to perform the tasks. Formalizing the process theories in
this way guarantees their completeness in a certain sense: computer
programs lgcking essential comporients don't run properly. The formal
expression of each program also allows us to make exact estimates of the
memory and perceptual requirements of the method that the program de-
scribes. Finally, the programs can be used with actual Tower of Hanoi
prOlems to simulatehuman performance in the task, so that the simula-
tion& can be compared with human data.

The first of the four methods 17e have programed is a rote method.
The Tower of Hanoi problem for five disks can be.solved by making, in
proper sequence, the 31 moves that have been learned by rote. As in the
case of the rote solution/of the matchstick problems, this solution is
burdensome to learn, is easily forgotten, and offers no help t9 solving
the problem with an arbitrary number of disks, or the problem with a
change in starting situation (e.g., two smallest disks on Peg C, largest
on Peg B, and remainder on Peg A).

*The second method, which,we call "goal recursion," has the greatest
mathematical elegance. To move a pyramid of n disks froril Peg X to
Peg Y, first move the pyramid of n-1 smallest disks from Peg X to Peg Z;
next move the largest disk from X to Y; and finally, move the pyramid of
n-1 smallest from Z to Y. Of course moving a pyramid is not a legal
move, but it constitutes a Tower of Hanoi problem with one less disk than
the original problem. Hence, if we know how to solve the one-disk prob-
lem,- then, by mathematical induction, we can solve the n-disk problem
for arbitrary n.

Acquiring the goal recursion method involves less learning than the
rote method, provided that the learner understands the concept of recur-
sion or of mathematical induction. Again, we would expect good retention,
and the solution transfers to problems with any numbers of disks, but not
to arbitrary starting configurations-unless the algorithm is amplified.
The method illustrates how understanding may be relatively easy if cer-
tain other understandings (in this case induction) have been acquired
previously, but may be relatively difficult otherwise.

The goal recursion method illustrates another impo t point also.
To execute it requires holding each goal in short-te memory while
executing the goal at the next lower recursive level, and holding the
latter goal, in turn, while the next lolXr is executed. The stack of
pending goals in memory reaches a maximum of n-1 in an ri -disk problem.
Hence, we would expect a human subject to encounter real difficulty in
executing the method, even if he understands it, when the recursion

10
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depth exceeds short -term Memory limits (four of five disks). There is a

va/iant if the method, however, that requires regenerating the goals
instead of remembering them. It should be slower of execution than the
"pure" method; and requires perception of the urrent situation to choose

the next goal.

This brings us to the thipl, method, which maybe called "perceptual."
The, goal recursionenrethod could be applied without sight of the actual
ToWer,of.Hanoi apparatus, for all the information used in applying it is
stored in memory. In the perceptual, method, each move is-chosen by look-
ing at the characteristics of the current problem situation, which re-
quires looking at the actual apparatus (or retaining a visual image of
it). 'In its most sophisticated form, it works like this: Find the
largest disk not yet on the target peg; if it can be moved to that peg,
move it; if not, find the largest disk (either above it or on its target
peg) that is blocking its move, and st up the goal of moving that disk;
repeat the process until a disk is found that can be moved, and move it.
This process is also recursive, using the recursion to find the largest
removable batrier to,a desired move.

The perceptual method is relatively easy to learn (providing the
perceptual recursion is understood),, requiring mainly the acquisition of
the perceptual predicate."largest blocking disk." It can be transferred
to problems of all sizes;Alkd it works for any,startiv situation,
whether on the optimal solMion path or not. What this solution'teaches
us is that understanding a problem may involve learning to see the right
perceptual chunks in the stimulus display--in this case learning to per-
ceive the largest blocking disk for any given disk.

Finally, the Tower of Hanoi problem can be solve by executing a
sequential Pattern of moves. Number the disks from dmallest to largest.
Then, they should be moved in the following sequence (for the four-disk
problem): 1-2-1-3-1-2-1-4-1-2-1-3-1-2-1. It is easy to see how this
pattern/can be,extended to five or more disks. Since the smallest disk
can always move to either of two pegs, an additional simple rule is
needed to specify the direction of movement of thaf,

c

The pattern solution can be simplified even further, because we
know that the smallest disk is only moved on the odd-numbered moves and
there always exists only a single move on the even-numbered moves. The

sequential pattern solution is easier to learn than the rote solution;:
it is more-or-less transferable to problems of any number of disks; it
is usable only along tlip optimal solution path, and it makes few demands
on either perception or memory (other than keeping track of the parity of
the move).

Clearly, a person who learns a particular one of these four solu-
tions understands quite different things about the Tower of Hanoi problem
than does a person who learns a different solution. We would probably
say that a person who learns only the rote solution doesn't understarid

the problem at all. -put what about the sequentiel pattern solution?
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It is concise, even elegant, and certqa;.w...Ahythmic. The person who
knows it does not thereby understand why it works. Is this a kind of
understanding that it is useful for our students to acquire? Is it
important for them to look for pattern in nature as well as mechanism in
nature?

I can point to at least three very. important discoveries in the
natural sciences that involved detection of pattern without knowledge of
mechanism: Kepler's discoveries of the elliptical orbits of the plants,
of'the Law of Areas, and of the relation of period to radius of orbit;
Mendeleev's discovery of'the Periodic Table of the elements; and Balmel
discovery of the formula for the Balmer lines of the hydrogen spectrum
(Simon, 1968; Banet, 1966, 1970). These discOveries provided parsimonious
descriptions, not explanations, of their respective phenomena. 'It can be
shown that some common basic pattern-detecting processes were implicated
in all of them. Whether or not we wish to call'sudh pattern detection a
form of "understanding," we may well want to help our students to acquire
this skill if it is teachable.

The goal-recWsive and perceptual solutions for the Tower of Hanoi
problem come closer than does the sequential soJut%on to our common
notions of "understanding," yet they are quite klifferen't from each other.
If by understanding we mean_being able to prove that something works,
then the gotl-recursive solution is superior, for it is the easie8t one
on which to construct such a prbof for the puzzle. A proof can to con-
structed for the perceptual solution, but it is a little more complicated.
The perceptual solution, on the other hand, goes to the heart of the
question: What feature in this situation tells me what to do next?
Thus, the solution works for any situation, whether on an optimal solu-
tion path or not, while the goal recursive solution only works along
such a path.

Let me leave the Tower of Hanoi with this demonstration of a
plurality of understandings, and Move on to another example.

Geometry Proofs

r third example is based upon the work of Scandura in teaching
students to discover proofs for theorems in geometry, and upon the
artificial intelligence research of Gelernter and Rochester, who built a
computer' program capable of finding such) proofs.

Scandura has been especially concerned with geometry problems that

'involve constructions (Scandura, \Durnin and Wulfeck, 1974). Discovering
constructions is perhaps the' most difficult skill that geometry students
have to acquire. Scandura and hi colleagues have developed procedures
for teaching students schemata (called, in their papers, "higher-order
rules") that are helpful in searching for appropriate constructions tolt
solve geometry problems.
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An example of the approach is provided by the two-locus problem:
-Given a line and a point not on the line, and a radius R, construct at
circle of radius"R which is tangent to the given line and which passes

through'the given point. This problem can be solved by drawing a circle
of radius R about the given poir4; finding the line at ,distance R from
the given line, and parallel to it; finding en intersection of these
two loci; and constructing a,glecle of radius R with that intersection

as center, By the first consteti.btion, the new circle will pass through
the,given point, and by the second construction, it will be tangent to
the given line.

Scandura et al. observe that the solution fits the general schema:
To find a locus satisfying two conditions, find the locus,'satisfying the
first, then the locus satisfying the second, then the intersection of
these two loci. This schema is, of course, a special ease of the more
general,schema of means-ends analysis used in problem-solving programs
like the General Problem Solver (GPs`) (Ernst &'Newell, 1969). Means-
ends analysis works roughly, as follows:

Given a starting situation and a goal situation, detect the differ-

ences between them. For each such difference, find an operator in memory
that has the function of removing differences of that kind and apply, the

operator. Continue until all differences have been removed. To apply

the means-ends schema, or the two-locus schema, there mast, of course,
be available in memory the operators to be applied to carry out the indi-
vidual steps. In the geometry case, this means.a set of basic one-locus
constructions, accessible from knowledge of thecenditions they satisfy.

A

It is easy to show that the effectiveness of a program for discover--

ing proofs foe theorems in geometry or solving other kinds of problems
'ty &earch processes-depends heavily upon the selectiveness of its search.
The 'number of alternative paths through the forest is usually fai .too'

large to.permit crude 'trial-and-error search. Hence, efficient search .

rests on the availability of processes, like the schemata described above,
tha# choose promising search paths and'avoid others that are not likely
to lead in the direction of the goal.

It fellows that "understanding" a subject like geometry requires
not only acquiring an adequate store of theorems, to be used as the
basic operators in carrying out proofs, but also acquiring sufficiently
powernal-schemata to guide the search "for solutions. Whereas geometry
books are always fully explicit about 'the theorems, they generally make
only sparing reference to schemata and their use.

, ,

<

A similar leSson4is taught by the Gelernter-Rochester` geometry
program,(Gelernter, 1963). That computer program (which was not designed

as a simulation of human problem-solving processes) makes use of a number
of'heuristic devices to guide its search for proofs.J'Among these, it
uses a diagram of the problem situation. Suppose that, working back-
wards, it determines that the theorem, T, could be proved if the ante-
cedents, Tl, T2, etc., could be proved. Before it undertakes to prov6
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these antecedents, it checks the diagram to see if they are empirically
true--that is, truewithin the margin of error of the diagram. If they
are not, it abandons that pipticular line of search. The usefulness of
this procedure depends, of course, on the fact that at takes far less
processing time to detect, for example, that a triangle in a diagram is
not right-angled than it does to exhaust the possibilitlet for proving
that it is.

Thus, geometry, like the tasks examined previously, teachess that
understanding is a pluralistic concept. In particular, it-teacht'eus
that we do not understand a mathematical subject when we simply under-
stand the axioms, theorems, and rules of inference. Understanding re-
quires, in addition, the acquisition of a whole host of heuristic'problem
solving capabilities, some of which are peculiar to the given subject,
but others ofwhich have a wider range of application.

Algebra Word Problems

Among the least-formalized aspects of mathematical_ learning are the
skills of expressing in mathematical language physical or o-eher empirical '

situations described in natural language. At the core of formal arith-
metic and algebra are symbolic expressions and their maniPulati8n. Word
problems,' or story problgms,;-extend beyond these formal boundaries in
two directions:. in their use of natural language, and in th9ir reference
to the semantic denotations of the language and corresponding equations.
IV'should not be surprising, then, if ability to handle word problems
were relatively independent of skill in symbolic manipulation. I have
no systematic data on this point, but my friends who. teach mathematics
seem to see little relation between the two skills. Nor, and this is a
little more surprising, does a high lettel of verbal skill appear to. e
sufficient for proficiency in handling word problems: On the contrary
(and again anecdotally) persons with good verbal skills but without other
mathematical aptitudes appear to be relatively more disadvantaged in
doing word problems than in manipulating uninterpreted mathematical
expressions.

We are beginning to understand from an information-processing
standpoint what is involved in understanding and performing word-problem
tasks. Let me begin with an account of a computer program that was not
intended to simulate in detail how people'solve word problems, but was
constructed as a study in artificial intelligence--in how to program
computers to do clever things (Bobrow, 1968). Since the program has been
described several times in the literature, there is no need to repeat
that description here. The important thing about tht ,program for our
puipoSes is that it is primarily syntactic rather than semantic in its
methods,. Given the text of an algebra word problem; it undertakes to
translate that text into a set of algebraic equations, and then to solve
the equations. The task is approached as a-problem in automatic trans-
lation. The program (called STUDENT) has some syntactical capabilities
that enable it to parse simple English sentences of the sort found in
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word problems. In general, the system does not need to know the meanings
of the words.in the sentences, except those words that perform grammatical
functions or have specific mathematical meanings (e.g., "times,"."45,"
"half"). Hence, for this program, understanding a problem means being
able to extract enough of the structure of the input sentences to trans-
late them into equations having the'same structure.

To make this more concrete, consider the following example: "If
the number of customers Tom gets is twice the square of two-tenths times
the number of advertisements he runs, and the number of advertisements
he runs is 45, what is the number of customers ;om gets?" Here, "the
number of customers Tom gets" and "the number of advertisements he runs"
need only be recognized as noun phrases, to be.treated.as "unknowns" and
provided with algebraic names likex and y in the translation. On the
other hand, "is" must receive its appropriate semantic translation as
"=," and "twice," "square," "two-tenths," and "times" must also be inter-
preted semantically. Nothing, obviously, need be known about the world
of customers and advertisements.

Some time,after STUDENT had appeared, and had demonstrated its
abilitto solve high-school level problems, it occurred to us to ask
whether the processes it used bore any resemblance to the processes used
by students in algebra courses (Paige'and Simon, 1966). We coructed
someAproblemsiand tested them with human subjects, asking the subjects
to tank aloud as they worked the problems. We then analysed their tape-
recorded protocols to identify the sequence of processes they had used,
and the way in which they represented the problems' at various stages
during the translation. Again, let me give you one of the problems we
used: "A man has 7 times as many quarters as he has dimes. The value
of the dimes exceeds the value d'T the quarters by $2.50. iow many has
he of each coin?"

A number of our subjects proceeded just as STUDENT would, parsing
the input sentences and mapping them over to an algebraic equation like:

A

10D = 25(7D) $2.50. You can verify that this is an accurate transla-
tion into algebra of the English sentences. Other subjects, however,
wrote &Ain a similar equation, but with the "plus" replaced by "minus."
A third,'and smaller, group of subjects read theme problem statement and
said to the experimenter: "Isn't there a contradiction here?"

Of course there is no contradiction in the problem statement. There
is a contradiction only if we add to the statement some semantic knowledge
that an American student might be expected to have stored in his long-
term memory: a quarter is worth more than a dime, and the numbers of
both quarters and dimes must be non-negative integers. The difference
in the processes of the three groups of students now becomes rather
clear. The.students in the first group proceeded purely syntactically
(except for recovering from semantic memory the fact that a dime equals
ten cents and a quarter, twenty-five cents). The students in the second
group used their sehantic knowledge to infer that the total value of the .

quarters must be greater than the total value of the dimes, and that
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therefore the.$2.50 must be added to the latter or subtracted from the
fdirmer. Evidently, they never checked this inference against the syn-
tactical detail of the sentence (after all, something was to be added to
something), out used the semantic knowledge-to construct the "correct"
equation. The students of the third group processed the input sentences
both syntactically and semantically, thereby discovering the "contradic-
tion." .

This simple example illustrates sore of the alternative ways in
which the same problem may be processed. Of course the alternatives
become more numerous as the semantic context of the problem becomes
richer. For many problems of applied mathematics,'"physical intuition"
(which we can now translate as "semantic information") may go a long way
toward reducing the need for careful, detailed syntactic processing. If

we are training a stoudent in applied mathematics, we may take the posi-
tion that he does not understand what he is doing unless he is able to
evoke from memory, when he is confronted. with a problem, the rich set of
Semantic information relevant to the problem which he has stored (or
should have stored). On the other hand, there comes a point in training
a pure mathematician where we may have to discourage him actively,from
employing semantic cues instead of holding carefully to purely syritactic
processes. Unless we succeed in teaching him the distinction, ht'will
never know what mathematical rigor is- There is no reason, of course,
why a student should not earn that there are at least these two differ-
ent killds of understanding of mathematical problems, each appropriate to
certain times and circuMsta es

Understanding Problem Instructions

In handlinghandling algebra word problems, the student iS essentially given
the problem representation: the output of his translation is to beta
set of algebraic equations. In other kinds of problem situations, choice
of prob em representation becomes a key part of the solution process.
Let me kite an extreme example, which may be familiar to some of your
the "mutilated checkerboard" problem.

Given an ordinary 8 x 8 checkerboard, with each square one inch on
a side} and 32 dominoes, each 1 x 2 inches in size,...the board can be

dt4wcovered by the dominoes; with no dominoes left over. Suppose
tftlle upper-left-hand square and lower-right-hand square of the board

and no. cut off. Can the mutilated board be covered exactly with
31 dom'noes?

We can try to solve the problem by testing all coverings of the
board. Since there are only a finite number of possibilities, we will

,sooner or later find P solution or prove there is none. Of course, when
we' calculate the number of alternaW.Ves, we realize that we will find
the answer later, not sooner. Is there a better way?t
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If we recall that the squares of a checkboard are alternately black
and red, then the better way becomes evident. We do not need,' in our
representation, to keep,track of which'squares we have "Covered, but only
of the number of black squares and the ntmber of red squares covered.
It is easy to verify that both squares cut from the board had the same
color (red, say); hence the mutilated board has only 30 red, but 32 black
squares. But each domino covers exactly one black and one red square,
hence there is no way they can be arranged to cover more of one color
than of the other,.

Consider now another puzzle-like probAm that is considerably less,
subtle than the checkerboard problem: "THAe five-handed extra-terrestrial
monsters were holding three crystal globes. Because of the quantum-
mechanical peculiarities of.their neighborhood, both monsters and globes
come in exactly three sizes with no others permitted: small, medium,
and farge. The medium-sized monster was holding the small globe; the
small monster was holding the large globe; and the largest monster was
holding the medium-sized globe. Since this situation offended their
keenly developed sense of symmetry, they proceeded to teleport globes
from'one to another so that each monster would have a globe proportionate
to his own size. Monster etiquette complicated the solution of the prob-
lem since it requires: (1) that only one globe can be transmitted at a
time; (2) that if a monster is holding two globes, he may transmit only
the larger of the two; and (3) that a globe must not be transmitted to

li'monster
who is holding a larger globe. By what sequence of teleporta-

ons could the monsters have solved this problem?

Before he can begin working on this problem, a person must find
stame way dr organizing the facts about the situation and the permissible
operations on it. This resembles the translation stage of the algebra
word problems, but it is substantially more difficult. One reason it is
difficult is that there are alternative representations to be considered
For example, he can associate with each monster the set of globes, it is
holding at a given moment; or fhe.can associate with each globe the mon-
ster who is holding it.- WV.ch representation is sele8ted haisitonsequences '
for the ease with which moves can be made and their legalityl..tested.
With the former representation, for example, moves are made hy deleting
the name of a.globe from one monster's list, and adding it to the list,
of another. With the latter representation, moves are made by changing
the name of the monster holding a particular globe

V.

The difference between these two representations is not trivial.
Subjects who adopt the former representation are able to solve the prob-
lem in abOut One-half the time,that is required by subjects who adopt
the latter representation. By a combination of laboratory experiments,
analyses of thinking-aloud protoco an computer simulation of the
understanding process, we are begi ning o get clues as to why this is
so, anti clues also as 'to why subje is adopt one representation or the
other.



The computer program, UNDERSTAND, which we have built as our
research vehicle for this task, has a gross structure not unlike the
STUDENT program. Its first task is to parse the input sentences, making
use mainly of syntactic knowledge to get at their surface structure.
Next, it makes some judgments about what is relevant in the problem
statement, primarily by identifying the sets,lists, and relations that
are discussed. Then dt is ready to synthesize a. representation for the
problem--a way of storing the problem information in list structures
(essentially, directed colored graphs) in memory. At the same time, it
'interprets the problem statements that describe legal moves, and adapts
the move processes appropriately to the representation that has been
chosen. It is now ready to begin its attempts to solve the problem'.
(The reader who is ilterested in the content of the program will fix-4 a
fuller description in Hayes and Simon, 1975.)

'The UNDERSTAND program does not in a literal sense "choose" its
representation. That is to say, it does not explicitly consider a number
of different representations and select one of them. Instead, it is
led to synthesize a particular representation by the form of the problem
statement, and a different problem statement may cause it to synthesize
a different representation. For example, in the form in which the prob-
lem is stated above, the system would in fact assign lists of globes to
monsters. If the problem statement said something like: "Globes are

owned by monsters, and the owners are"`changed until each globe has an
owner whose size corresponds to its own size,y then it is likely that
UNDERSTAND would select the representation that associates with each
globe the monster holding it. Thus representation is highly sensitive
to problem statement, and the system has no capability for seekinga
"best" representation that will facilitate solution of the problem: It

is as helpless in this respect as the typical person confronted with the
mutilated checkerboard problem.

Our reason for constructing the UNDERSTAND program in this relatively
"unintelligent" fashion is that it appears to reflect just what people
do when confronted with instructions like those for the monster problems.
That is, the deliberate search fora good problem representation, or
even a capability for generating and considering alternative representa-
tions does not seem to be a common part of the human problem-solving
repertory. Our subjects appear to be as readily trapped as is UNDERSTAND
into inefficient problem representations whenever these are the represen-
tations that follow most directly and transparently from the wording of
the problem text. If we think, therefore, that our students should
possess skills of generating and modifying problem representations, we
will probably have tO give explicit attention to those skills in their

' training.

There is very little morel can say at this time about how this
desirable result is to be attained. We are still in the early stages of
our research on these phenomena, and far from the point where we are
ready to prescribe learning processes that will enhance the capabilities
of problem solvers on this dimension. Practice does not always have to
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wait for.science,-however. I expect that if we gave more explicit
attention to the processes whereby representations are generated in our
teaching of applied mathematics, we could likely help our students
acquire better skills of choosing representations.

Chemical Thermodynamics

e environment of monster problems is still rather impoverished
from semantic standpoint. Knowledge of quantum mechanics will not
help, person formulate or solve these problems. In fact, several of
the subjects we have tested bogged themselves down hopelessly, precisely

fa filing to abstract out these irrelevancies at the very outset. The

probl domains we have discuss.pd in previous sections are also not very
rich antically: algebra word problems, the Tower of Hanoi, and
match4,ick ITioblems. .Geometry, of course, has a considerable content,
but it is not semantic, strictly speaking, unless we make use of diagrams
or other instantiatedmelels.

For my last example, I should like to use an area of science that
is probably not atypical for applied mathematics in its intermingling of
syntactic and semantic elements. This is the area of chemical thermo-
dynamics at the level of an upper-division undergraduate course. The
choice of chemical thermodynamics rather than electrical circuit theory
or engineering mechanics is a matter of chance.- For various reasons
that are irrelevant to the present discussion, we happen to have chosen
thermodynamics.as the setting for studying the scope and,organization of
students' semantic knowledge in a scientific subject.

What I can now say on this topic is even more provisional than what
I have said about the UNDERSTAND process. What I should like to share
with you is not so much our TIC usiofl as our current plans for explo-
rationy

The vehicle we have chosen for an\ initial exploration is a computeF
program that generates problems in-chemical thermodynamics, and that is
capable also of solving the problems and of offering successive hints to
students who are having difficulty solving them. The problems are of the
sort that you will find in standard textbooks on the subject. To take a

simple example: a pump takes in water at such and such a temperature
and pressure, and outputs it at some other specified temperature and
pressure; what is the horsepower of the pump if the water flow is
100 gallons per minute?

The program that generates these problems is somewhat different
from the programs generally Used today in computer-aided instruction.
The usual problem-generation m'rhod is to have a considerable number of
templates, of different problem tyTes, to choose one of the templates, and
then to fill it in with appropriate numbers. Our program contains, in-
stead, what amounts to a theory and,a body of factual information about
chemical thermodynamics. It uses its theoretical and factual knowledge
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to generate problems which it can then_solve with the same resources.
Since, when solving the problem, it must make decisions about the order
in'which to solve for the unknowns, it can record these decisions and
use them to offer advice to students about the solution process.

Let me describe the'program (which I am constructing in collabora-
tion with R. Bhaskar) a little more concretely. The program has access
to equations that express the laws of conservation of mass and of energy,
and others that represent the equations of state for the working sub-
stances that are used in thermodynamic devices. (The gas laws for ideal
gasses are a special case of these.) It has a list of devices (e.g.,
pumps, compressors, pipes, etc.), with each of which is associated infor-
ma.n.on about-the working substances it can employ, and the usual condi-
tions of it operation. It has a list of working substances, with each
of which is associated the equation of state and information about
reasonable upper and lower bounds for its temperature, pressure and other,
properties.

The program is able to examine the incidence matrix of the equations
it is using in order to choose subsets of variables to be the independent
and dependent variables, selecting these so that they will be consistent.
It can then assign values to the independent variables and ask questions
about the dependent ones. Using the same incidence matrix,.it can also
select efficient solution paths that minimize the need to solve simul-
taneous equations. ,

This brief description will provide a feel for the character of the
system: It was designed initially, as I have said, to generate problems
for students. However, as it has developed, we are more and more per-
suaded that it also provides a starting point for describing the organi-
zation of knowledge in the memory of a student who has completed a
tpermodynamics course. Accordingly, we are now beginning experimental
wbrk to see if we can obtain direct evidence about how such semantic
knowledge is stored, by observing students as they solve thermodynamics
problems. We proceed on the assumption that one of the main components
of "understanding" in this kind of task is to be able to evoke elements
from a considerable bOdy of semantic information, as and when that in-
formation' becomes relevant to the problem under attack. We wish now to
see whether the organization of knowledge that enables a person to handle,
such troblems effectively bears any resemblance to the organization we
have imposed upon our program in order to enable it both to generate and
to solve the same problems.

Conclusion

In this,entire account of "learning to understand," ranging over a
halt dozen rather dissimilar problem domains, no'attempt has been made
to define either of the key terms "learn" or "understand." The)omission
is deliberate. Neither "learning" nor "understanding" denotes a single,
simple set of human cognitive processes. Whenever a change takes place
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in the cognitive system that enables it to perform a task,better than it

could previously, we say that learning has taken place. It is extremely
doubtful tha.6 all learning involves one kin of change, or change in one
partiCular component of the system. Learning, then, is simply a port-

,
manteau terrethat denotes anysemi-permanent imProvement in peiformance.

In a similar way, we say'that a system exhibits."understanding" of
a domain when it d1monstrates that it possesses relevant knowledge of

that domain and is-able to marshal that knowledge in the pereormance of

various tasks. Understanding can be of various kinds and degrees, may
support therperformance of a variety of different kinds of tasks, and
may reside as much in the organizatiort of knowleige, and in the processes
capable of operating upon it, as in its content.

All of this sounds very indefinite. The way to make it definite,
and ultimately applicable to.problems of instruction, is to explore in
detail how knowledge and skill are stored in thePhumanmind and brain in
specific task domains of various sorts. And the machinery for dairying
out those explorations includes both the standard armamentarium of
psychological experimentation and the powerful new tools of computer

simulation of cognitive processes.

In this paper I have tried to illustrate how this exploration can

be carried out, citing six examples, more or less relevant to the enter-
prise 61' applied mathematics, of the present state of the art. We have

already reached a point where the research begins to give u0new concep-
tions of the nature of knowledge, skill, and Understanding in-applied
mathematics; and where we can begin to draw some common-sense lessons
from it that are applicable to our pedagogy.

Let me conclude by listing some of the suggestions for practice
ithat are implicit in the examples of research surveyed in this paper.

1. The kinds and degree of understanding that the student achieves
in a task domain cane have important consequences for his retention of
skill and knowledge, his ability to transfer that skill and knowledge to
similar tasks, and the speed and efficiency with Which he can acquire

additional knowledge.

2. Understanding has many facet's. It may r6quire the acquisition
of new cognitive concepts (e.g., recursion in the Tower of Hanoi prob-
lem), and ability to recognize new percepts (e.g., the "largest blocking

disk" in the same problem). It may be expressed in terms of properties
of problem situations, or properties of operator sequences, that is, in

terms of state or process.

3. Ah important component of problem-solving skill lies in being
able to recognize salient problem features rapidly, and tdLsociate
with those features promising solution steps. Much current instruction
probably gives inadequate attention to explicit training of these per-
ceptual skills, and the kind of understanding that is associated with

them.
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4. Limits of,short-term memory may prevent application of a
problem-solving method that is understood. Sometimes alternative methods
exist that permit a tradeoff of conceptual recognition for short-term
memory of goals.

54 Understanding generally requires not only storage of adequate
semantic information, but also availability of prOlem-solving schemata,
both those specific to the subject matter (e.g., the two-locus heuristic
for geometry), and those that are more general in application (e.g.,
means-ends analysis). These schemata deserve an explicit and prominent
role in instruction.

6. It is often possible to substitute syntectic for semantic
processing, and vice versa. Awareness of these alternatives, and skill
in employing both of them can enhance accuracy of understanding by
exploiting redundancies in the problem information (e.g., the redundan-
cies in the "contradictory" algebra problems).

7. Understanding processes include the processes of constructing
representations of problem situations. Most problems are capable of
beirig represented in a variety of ways, and problem difficulty may be
greatly affected by the representation chosen. The skills of searching
for effective problem retresentations are probably learnable and teach-
able skills, but they are not now generally taught in a systematic way.

8. Finally, it is becoming increasingly possible to determine in
detail wh4t is involved in understanding any specific subject matter
area to the point of writing computer programs that specify what a per-
son who understands knows, what processes he has available for solving
problems and acquiring new knowledge in that domain, and how his knowl-
edge is Organized in memory.
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