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INTRODUCTION

’ a

hine Principle of Mathematical lnduction (PlII) provides one of the
»Ah?ost powerful metheds qf proof, not only for the reseatch mathematiq;an,
.but also for the studeat‘cf more elementary mathematics.
Since a major objective of the secondary mathematics program for

the college—capable is td’ycgvide these students with an adequate o

» foundation for undergraduate mathematics, it foLlows that the method of
LN i . 3 .

proof by Matheﬁatical Induction should be included in the program. The

National Council of Teachers of Mathematics_(NCIM), in its Program

Provisioﬁa.fof the‘ﬁathematically Gifted Students (NE;§>\4957) lists the

PMI as one of the essential topics of algebra for the college—capable.

.

Eoth the Sphool Mathematics _Study Group (SMSG, 1960) and the Unlversi.y

of Illinois Committee on School Mathematics (UICSM% 1960) included the

i .
v >
. e

topic in their materials.
It is clear tnat students have not mastered this topic in the
secondary schools, or even as undergraduates. Calvin Long, in the

introduction to his number theory text notes: = ©
The discussion of mathematical induction . . . 1is treated |
here in copsiderable detail since students at the sophomore- |
- - junior (college) level frequently have only the most rudimentagv
knowledge of these impcrtant and us ideas. (Underlining
added) (Long, 1965) . . f.

Beach (1963)"indicated that .many graduate students in the sciences de not
understand proof by indirection. The 6pinion of Johnson (1960) is
: typical. He states that although mathematicians highly recommend the
”v;SPMI, it is oneﬂbt the most annoylhg and consequeetly avoided topics in
— 1

a gebra.v
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Various textbook authors warn the reader or the teacher of the o /
. difficulty encouxtered in tecaching .the PMI. SMSG (1960) cautions . .

teachers not to attempt the topic with a below average class. A./A. Blank
(1963) in the 28th NCIM yearbook states that the full impact of the PMI

will not be. realized until the student'h?s reached greater mathematical

Mo

maéurity._ In the teacher's edition of their text, Beberman and Vaughn
(1966) caution the instructor not to expect thorough understanding of the
techniques on the first (and possibly only pre-college) experience.

These statements are at odds with that of Poincaré (see Wilder, 19§§)

. LA

who felt that mathematical induction is forced on us by intuition. The'’ o

<>

Repgrt 0f the Cambridge Conference (1963) indicates that at 1east an

intuiti?e~appreciation Qf the PMI is possible at the elementary’ school
" level. ' ' . S ’
:_Most of‘the literaﬁﬁﬁe dealing with the teaching of the PM& is
.opinion, not research; One finds that some individuals advocate a
variety of approaches by the teacher. Shreve (1963) suggests using the
well-ordering pringiplé and proving theq;ems by éithai cont;gdiction br
contraposition. More examples, esp?cially of “fallacious progfs" are
‘ proposed by Beach (1963). Koenen (1955) suggests that preseqtation and
potivation are enhanced py uéing the puzzle called the "Towe; of Hanci".
Smith and Henderson (1959) Elaimvthat studenté can préduce proof by the
PMI bf following examples,'but do, not understa&i the légié of this type
of proof. . o S
Hoer (}922)vstates thgt'the diffiéulty (for the student) is in making

the connection between the statement of the proposition for n and n +1.

Polya (1957) emphasizes the importance of this point when he suggests ,
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/ that the PMIic7i d be “called 'proof from n to n + 1' or still simpler

, passage to the next integer' "

.

v  Research Qealing with the teaching'of the PMI is 1imited. Several
‘%‘ ~ investigators (e.g. Wells, 1967; Nelson, 1962; Hildebrand, 1968) have3
utilized the PMI as the learning task in research related to modes of

. . -} . .o
" instruction. Their conclusions rightfully were drawn with respect to

\ .
the modes of instructign and not to the:teaching of the PMI.
A
)/ Ehree recentfstudies have dealt with the teaching of the FMIL.
¥
. - : ‘ i : 5
" . Vard (1971) conducted an experiment to answer théf following $
\ ~ questions: 4 .
. Iy B ‘:-f .
Lo Gt) Can an indirect inductive proof technique based on the Well
§ o : Ordering Principle be effectively substituted for the method
Li of mathematical induction based on the Principle of Mathe-
i matical Induction?
{ , ’
f by
| (2) 1If the two proof techniques are taught successively, what is
f theif proper pedagogical placement?
(3) Vhat constitute the primary sources of difficulty with
g - inductive proofs? In particular, is lack of confidence in ~
' the Principle of Mathematical Induction one such source?
Two intact classes were treated as a single population and divided
into two groups of comparable ability. One group assumed the Well
r .. *
Ordering Principle as an axiom; learned the indirect inductiwe technique,
o ' used this method to prove the Principle of Mathematical Induction, and,

finally, studied the method of’ mathematical inductiOn. The remaining
group reversed the learning order, beginning with the Principie of
Mathematical Induction as an axlom and concluding with the indirect
fnductive method of proof Three criterion tests, each requiring proofs
of four conjectures, were administered to each group at intervals of’

varying lengths throughout a ten-day study.




. . " by
’In addition to proving conjectures on the criterion tests, stu&%nts
were asked to fill out confidente scales following each of thelr proofs

~and to Enmpiete an information retrieval test designed to identify

veakness in the learning sets requisite to understanding the method of

[

proof.
' ' The analysis qf data revealed: (1) students performed significantly

better using the method of mathematical induction rather than the indirect
3

inductive technique, (2) those students whq studied the Well Ordering

oQt?

Principle followed by . the Principle of Maékematical Induction performed

[

significantly better than those who reveraed the order, and (3) the

essential difficulty with inductive proofs waq inability to perform the

) ¥ ;5.39»
necessary algebraic manipulation in the inductive step, together with -

ignorance of ‘the proper procedure for establishing a conditiongl. Lack
of confidence in an axiom or method of proof was found not to be a source

of difficulty with proving conjectures.

alter (1972) hypothesized that studehts having the prerequisite
k

nowl dge of logic, and taught the PMI in terms of logic, would perform

? better on his criterion test over the PMI than students who were not

N

N taught the PMI in terms of logic.

The experiment was conducted:twice, using pre-calculus college
o
e
students first and collége calculus students the second time. The results

+

both times favored the research hypothesis. However, only the proof
portion of the posttest was found to be significant at the .05 level and w,

—-that only for the pre-calculus subjects. .

“

A third investigator Okeeves, 1972) looked at two pedagogical aspects:

of the teaching of the PMI, viz; the introduction to the topic, and the

[
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mmethod of presenting problems designed to induce facility with the proof
- technique.
The introductions compared were the "inductive sets" approach and a

"semi-concrete" introduction which required students to consider v

v

hereditary situations of everyday life. Although both introductions
wé;e demonstrated to be effective, thefe was no difference in effective~
ness between the two. ‘
"Traditional” and "gulded discovéry" approach to the problem later
Vérifiéd b} the PMI were compared. Neither was found to ‘be more effective |

than the other. -

3

Reeves (1972) found.no significant correlation between understanding

of the proof technique and ability to use the éechnique in proving

~

~ theorems.




& &dealing with xecursive definitions would have upon students achievement

“6m

THE STUDY

//

Polya (1957), Hoer (1922), and Ward‘(1972)'i9éntified a difficulty
as the understanding and manipulation of the indactive step. Since the
recursive definition of a function is defined for any integer in terms

/ :
of its successor, the relationship between recursive definitions and the
. . / . v

PMI 1is obvious. (Youse (196&7wevéu;ﬂenote5urecursive definitions as *
Vinductive~definitions"). Utilization of the relationship between these
ideas was the focus of the study. . //

Specigically, the research hypotheeis was that students who study’

‘recursive definitions prior to exposute to the PMI will have a better .

&
(R

understanding of the PMI than those/who reverse the procedure. A second i
hypothesis was that they (the experimental group) would retzin this
understanding_longer. : |
.Within the contexts of their-classes, end without any experisiental

design, two local "advanced meth" tea;here ettempted to evaluate-the .-
hypothesis. Both were of the opinion that the first hypothesis Qae
correct, i.e, "These classes learned the PMI better than previous classes
o w‘flich'stu‘died recursive detinitions after the PMI". Emeousgged by these i

‘ reeélts, arrangements were made to conduct a fofmal experiment. - .

The obJective of the etudy was to determine the effect a unit

aQ

*

in application of the PMIL.
The subjects in,t@e study wereé 24 advanced mathematics students at

_The Ravenscroft Seho;i;ﬁReieigh, N. C. The students were randomly )

assigned to either expetimentai or conttol groups. " o ~

S 10
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’Programmed units on the PML and recursive definitions were prepared.
Students in the rdntrol group studied the "PMI program first and then the“;
recursive definition program. The experimental group reversed this
_procedure. Three classes (of 50 minutes each) were allotted for each
programmed unit. All of the participants,easily finished the.units in
the allotted time; On the seventh class day; the_posttest.was
administered. After three weeks, an equivalent form, the retention
test, was administered. Appropriate statistical procedures were utilized

' : " to evaluate the following null hypothesis.

HO-1 There is no signiflcant difference betireen the scores of the
ké _ - ‘ control and experimental groups on the posttest.‘
HO-2 There is no significsnt differeﬂce between the'scores of the
control‘and”experimental group on the retention test. .
H0-3_There.is no’significant difference between control and
experimental groups in‘the change of scores between the

k4

. posttest and the retention test.

~

"‘Much of the material in the two,tests'was adapted from that of

Y

' ¢
Walter (197%). A score of 80 was possible.

s . . BN

!
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RESULTS AND ANALYSIS

A 2 X 2 analysis of varianée‘was utilized to analyze the data.

Analysis of the raw data revealed:

-

1) Posttest mean of the control group was 65.6 with a range of

- “ 0

éé- to _7_8_. + N

o

2) Posttest mean of the experimental group was\§§;§_with a range .
of 51 to 78. ‘ ' .o

3) Rétentign test mean of the control groﬁp was g&#gg with a
range of 54 to 77 and a DECREASE in mean score of 1.08.

4) Retention test mean of the experimental group was 64 4 with a -
range of 53 to 75 and a INCREASE in mean, score of 0.60.

5) Posttes;-—'Retention test chfficient of correlation was 0.67.

-,
” . -

' RS
. .Table I gives the results of the analysis of the Posttest.

ANALYSIS OF 'VARIANCE SCORES ON THE POSTTEST T .

>

SOURCE" D.F. . 8. M.s. = F.
SECTION ‘1 63.375  63.375 1.119
WETHOD < 1 18 18.3%5  0.324
Ce _ - - —~

INTERACTION - 1 30.375%,  30.375 - 0.536
RESTDUAL ¢ 20 1132833 . . 56.662 -
CORRECTED TOTAL 23 1244.958" ‘:54 128 e

From the data zbove, it 1s concluded Qhat' ,

1) There is no significant differeqee (at the 0.05 level) in the - =,

mean scores due to section.

m B Co-

2) There 1is no significant differenqé-(at the 0.05 level) &n_thg

mean scores due to method.
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3) There is no significant interaction between method and sectionm.
. ‘ g,

2

’ ; L ) r Ql :
Table II summarizes the analysis of the results on-the retention
’ _ test: |

ANALYSIS OF VARIANCE OF SCORES ON- THE RETENTION TEST

SOURCE , D.F. S.S. M,S. - F.
. - SECTION 1 155.06 155.06  3.049
| METHOD | 1 0.04 . 0.04 .001
INTERAGTION 1 N 92,04 © 92.04 1.810 |
RESIDUAL .. . 20, 1016.83  50.84 —- e
.. commecTED TomAL 23 1263.96 54.95 —_ I

The .results of the analysis indicate that there is no significant'

#

b difference on the retention test attributable to either.section or method.

The analysis élso indicates a.lack of interaction.

I'd

The question of retentlon was invé;tigated by looking-at the changes

. in score between t two administrations of the test.
&

o

et ‘tests were run to see if the -change scores differed signif1cantI§

Ifrom zero. Results of these analysis are below. ' N
- . Y
& ’ Summary of Change Scores
. N .
Group : T , Mean _ Standard Deviation
@ . .
Control ¢ X = -1.08 s = 2.51
. c c :
Experiméntal ‘§; = +0.58 - s, = 1.57
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Summafy of t-Tests

7Y o

Hypothesis o t:valué - d.f.
%, =0 -1.49. . 11
xel='0 . 1.57 ' o1
o _ . Ce o
X, = X, . 0.893 11

-]

The t values indicate that the following null hypothesis could not

be rejected. L -

o
B,

Hol \Ehe change in scores of the control group was not significantly

different from zero. e . P

v

. i} Ho2 The change in scores .of thé experimental group was not -
significantly diffeieu£ from zero. |

Ho? .The change in scores of the experimental group wvas not
signiff?gﬁtly different from the change in scores of the .control
group. |

Thése fésu1ts were verified by a 2 X 2 repeated ﬁéasurés analysis of

variance performed by the North Carolina State .University Computing Center.

/ . ' . s

-
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IMPLICATIONS AND Rz%mmunumus

The study indicates that it makes little difference whether. g unit

on recursive definitions precedes or follows a wnit on the PMI.
The scores of the criterion_tests indicate that the two units together
form an appropriate introduction to the PMI.

It is recommended that the study be modified and replicated. The '

suggested modification is that a test on recursive definition3 be

- J

developed and given after completion of that unit. The suggested deéign

: : : is given below.

~ ' R = random assignment
‘ ¢

PMI unit D = Recursive definition unit

s~
f

T,= PML test T,= R. Def. test T,= Retention test covering both
. . PMI and RD

— -
Figure I - b

. >
Since the'students in the study were high ability subjects at a
- private school, and relatively few in number, it is suggested that the
w .
study be replicated in public schools with a larger and more-heterogeneous

population.

15. | .
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. . ' , RECURSIVE DEFINITION UNIT ‘
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- - INSTRUCTIONS

.v‘ ThIs leasén has the fellowing pattern. Some commeniary
(explanation f‘ lowed byﬂa'frame of questions. The frimes of questions
are very importdnt, and you should'try to answer,éach question- before
you io&k at thé answer. The answers appear iimmediately below the frame

of questions. The index card supplied with this instructional material

' is :to be used to cover ‘the answers until you are ready to check them.

1f you answer a question incorrectly, gg.sure that you understand .why
you have made the error before you continue: In some instances this
might require rereading some of the material you have already covered.

CORRECT your answers before continuing!

- With each frame of questions there ig;iisociated achumber, and

"if a frame contains more than one question,: he,quéstions will be

L

designated by the ‘frame number followed by a letter of the alphabet.

For. example:

; »
61:
6la. The ‘product of -3 and -2 is .

61b. " If 3a = o, then a is equal to .

Q

-

ANSWERS: 6la. 6 61b. o

When you have completed this unit, a test will be administered to .
determine whether or not you have acquired the knowledge this unit intends
to iqpart. Procead at your own rate. There are no rewards for finishing

first; however, you should keep moving along without unnec#ssary waste of

time.

19




RECURSIVE DEFIN'ITILNS

i

Mathematicians sometimes use three dots to indicate missing parts of an

expression. For example, look at the definition of x°°

using a recursive formula like this: R

’

\
i " ,,
' X'= XeX*X*...'x where there are n x's.

r

' Usually, this is fairly clear, but a more exact definition Is found by

K

£L=x and for all n>1,‘3p=x-xn-l'
"Using this definition, 1e§'s £ind x°. «
x5=x-x4 ‘

4-1

=x* (x°x  T)=x'x°Xx

=(xX) (x'x3—1)=x'x'x'x2
LL2-1)=xex"xextx " P

s(xexex) (x°x )
vhich is what you expected. L S §§§ﬂ

Now let's look at n!. \
Recursively, we define n! as follows
R ) 5
1!=1 and for n>1l, ni=n°*(n-1)!

. Now apply the definition to find 5! '\ ‘ RN

,la 5t=5(C )!

1br =5t ) ()t

le  =5°C )-C ) (C N

1d
le

it
s

Apsvers:la. 41, 1b. 4 ()!.  le. 4:3-(2)!  1d. 5:43-27 (!

le. 5'4'3'2'1=]20. : ' -

" The interesting thing about reécursive definitions is that after\an
initial definition is made, all other values deﬁend upon the value of the
preceeding value. _ | . .

The Ancient Greeks discovered some interesting properties about the
positive integers by }ooking at "figurate numbers''--called that because

[N .
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* they can be geometr@célly arranged. Consider the following arrangements, and

-

particularly note the shaded dots.

o
, o @O o
o ® O @ @O0
. O *®@ O 2 @ 0 e ©® ® O
T(1) - T(2) ' S T(3) , - T(4)
) These are called the first four trianglelar. numbers/. ’

T(1)=1 t'otalt number of dots in the t;riangle.
e T(2)=3=T(1) + 2. ’ ‘ ‘ S . v
2a.7(3)=6=T(2) +___ ) ~ g «
éb.T(4)=1oa___ + ' ] , o ‘ - T

’ / .
’ Answers: 2a. T(2)'+'3 2b. T(3) + 4
< ) 5 i ] b p a
o . .
Using the pattern above as a guide, what is T{5)?-
TLT(5)= '

Answer: 3. T(5)=T(4)+5=10-F5=15.

v

4a.Tf we know T(n) for some n, how.can we define T(n+l)?
'f(n+1)= .
4b.If T(20)=210, whet is T(21)? -

-

Answers: 4a. T(n+l)=T(n)+n+l 4% T(21)=T(20). + 21=231.

.55+ What is a recursive definition of T(n)?

4

4

Answer: 5. T(;)=l and for n>1l, T(n)=T(n-1)+n.
s | \ .
. - N~ -
At -this point, we recognize that T(n) is the sum of the integers from 1 to n.

.

.We can express this as indicated:
: : n .

1

T(n)= i

Ve

[oaed

=1




~ or (k+l) (k+2)
' 2

Let's try to get an idea’of how to calculatg T(n) for any n. Complete
the following chart. .

n - n+l | T{(n) . 2-T(n)

-1 2 1 ! 2
2 3 3 - (6a)___
3 4 "6 (6b)__
4 5 (6c)__ (6d)__
5 6 |

Ge)__ (6D

-

‘Answers: 6a. 6 6b. 12 6c. 10 6d. 20 6e.5 6f. 30

We see that each entry in the last column is the product of the two

I_entries in the first two columns in the correspohding row. For exahple:_

@

2-T(3)=3-4=12 so T(3)=3;4

2
If the pattéfn holds, the row for integer k looks like: )
7a. k K+l L T(K) 2-Tﬂc;=____
. |
7b.and T(k)=__ . _ : o
Answers: 7a. ke (k+l). 7b..k(k+1) N s .
| 5: 7 ,

!
Later, we shall prove that

4
-

n
2: {= (n) (nt+l)
i=1 2

If the sum of the integers from 1 to k is (k)z(k+1) ,

8a.what is the sum of the integers from lto (k+l)? . ‘

Answer: 8a. put (k+l) in the place of k. We get (k+l) - [ {k+1)+1]
.2 ‘

- In a similar fashion, the Greeks answered the question "What is the

sum of the first n odd numbers?” by looking at the geonefric figures on

the next page.

- . . : ~



4
) - - 5000
o 000 D@0
o 00 Q@0 2® @O
@0 @@ O DD O ‘
5(1) 5@ . 5(3) _ 3(4)

‘Complete the statement by looking at the figures.
S(l) 1ndicates the number of dots in the first figure, “S(2), the second etc.
9. sQ)=1, = S(2)=4=lt+3=5(1)+2(2)~1 _ R '

"t 9a. s(3)==9=4+5+s(2)+2( ) -1,
gb. S(4)=16=0+ = + .

~

ANSWERS: 9a. S(2)42(3)-1 ’ 9b.' 9+7=S(3) + 2(4-1) .
~ If S(20) = 400, how do we find S(21)? - '<
“ 10. $(21)= $(20) + S . | '
. = + - _ ‘ ) \ ) <

ANSVER: 10. S(21)=§(20)42(21)-1 = 400¥42-1 = &&=l
. A ‘. 2 v ’

11. How do we define S(n) in terms of S(n-1)?

ANSWER: 11. S(n) = S{n-1) + 2n-l

12. By looking at the chsrt, can you guess a short way of calculating S(n)?
. h

v

2

n ~

ANSWER: 12. S(n)

Suppose that R(n) is defined recursively as follous: ﬁ(l) = 3 and for &ll
n > 1, R(n) = R(n-1) + 3. ~
Write the first four values of R(n).
"13a. RQ)
13b. R(2)
/ 13c. R{3) ;
13d. R(4)

i

|

23
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. - . - q

Answers: 13a.| 3 1i3b. 6 13c. - 9 13d.- 12
14 if R(13)=39 what is R(14)=_ - 7 '

Answer: 1l4. R(14)= R(13) + 3 = 39 + 3 = 42.

[
)
4

% 15 4f R(n) = 3n what is R(ntl) = 7

. . N

Anster: 15. R(n+l)= R(n) + 3 = 3n + 3 =-3(n+l).

@

In frame 15, we see that R(n) = 3n is an explicit formulation. By thls we —
dean a, formula which tells us how to find the value of R(n). for any value cf

. n. Look at the explicit formulas below and write the expression for n+l gsled

-for. - .
u16 G(n) = n2-+ n G(n+l)=(h+1)2'+ (n+l)=n2+'2nb4 14+ 1 = n2i+ 3n +2
.16a H(n) = n2—n )
.2 7 H{ntb)=
16b K(n)'=n” + n + 3 ‘
. . . mn : v.K(n+l)=‘ '
16e L(n) = (@) (aHl) (n+2) , s
: o 6 . L(n+l)= . ' oL
Answers:16a. H(o+l)=(nt1)? - (a+1) =l + 20+l - (m + 1) = 02 + n
° ntl ) n+l n+l
16b. K(pD=(er)? - (1)43= n®+ 2m+14n+1+3=0+3n+5
. ) 2 2 ' .2
" 16c. L(ntl)= (n#l) (n+2) (a3) “
6

4

Let's lpok at some recursive definitions and éuess at (mathehaticians saf

"nmake ‘a conjecture about") the explicit formula determined by this défin;:ion.

First ‘
Q1Y =1 and forn I, Q(n) = Q(n—i) + [8-(n-1)i»
-Q(1) =1 N

172 Q(2) = 1 + [8(2-1)] =

176 Q(3) '

17¢ Q(4)

\ 174 Q(5)
17e It appears that (=) = ‘ .,

i

il

]

]

24
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| ANSWERS: 17a. Q(2) =9 17b. Q(3) = 25 17c. 49 17d. 8 - .-

17e. Q(n) = Square of ath o4d integer or Q(n) = (2n - 1)2.' .
18. If Q(n) = (2n - 1)? find Q(n + 1) . o

ANSWER: 18, Q(n+l} = [2(n+1)-—1]2 = [2n+2-l]2_? f2n+fW2 

IS

V(1) = 7 for.n > ;, Vi(n) = V(n-i) +4 R .' - § N ' . . g

-

V(L) +4=7+4=

. - . ‘ =

19a. V(2)

19b, V(3)

19c. V(4)

i
u

Bd. V()

- <@

ANSWERS: 19a. 11 19b. V(2) +4 =15 19¢c. V(3) + 4 = 19 .

‘19a. V(@) +4 - 23
@ .

20. Explicitly, V(n) = i _ + 3.

"ANSWER: 20. 4n + 3

Y

21. If V(n) = 4n + 3, find V(n + 1) ' .

Y

- B ) m '
ANSWER: 21. Vin+ 1) =4(n+1)+3=4n+7

. 1 \ o .
22. £(1) =2; forn>1, £f(n) = [f(n~1)] n+1. - I
1 ’ .
22a.; £(2) = 2 =
/
Y
20 .
t . ﬁﬁ"




’_
?&
|

22b. £(3) =

g O

~ 5 1
‘ANSWERS: 22a. £(2) = é%(h).= 5
_ it
22d. £(n) = Sy

" 23a. P(2) = 2P(1) = _

P(1) = 2, P(n) 7B(n-1) .
22b, P(3) =, : i? . 22c. P(4) =

»

23d.- P(n) =

]ANSWERS:‘ 23a.

F(%) =1 F(2) = 1 and for all n >'2,‘F(nir%‘f(n¥i) + F(n-2)
ﬂwsru{+ﬂn=z : ~ - . - *
2ha. F() = F(3) + F(2) = |
b, F(5) = - o | g \
2hc. F(6) = | |
24d. F(7) = |
2%e. F(8) = ]
24, F(9) = ?
ANSWERS: ééa. F(4) = 3 i24b; 5 24c. 8 éhd. 13  24e. 21 f
3_- 24f. 3% ‘ ' : | | ;

— %

Our last example-bf a recursive definition is called_the‘Fibonacéi

numbers.




25. If F(n) = F(n-1) + F(n-2) wvhat is F(at+l)?

~

— =~
ANSWER: 25. F(n+l) = F(n) + F(n-1) -

26. In summary, how do we evaluate an expression exﬁlicitly defined
, ya

’

in terms of n for the next integer namely (ntl).

a8 >
.5l

ANSW,ER:' 26. Substitute (n+l) for n in-each place n occurs..
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. _ We have already learned that special sets of numbers can easily .
be described by their characteristics. For ekample what are the
numbers described by the following sets?

1. N = {x|x is an integer and x > 0}.

ANSWER: 1. The positive integers or natural numbers.

2. {x|x =2k where k € N}.

ANSWER: 2. Positive even integers

v

3. {x]x = 2k + 1 where k € N}.

ANSWER: 3. Positive odd integers

<

.. 4. {x|xe Nand if p is' a factor of x then p = 1 oy p = x}.

T
ANSWER: 4, Primes

\

T . o
5. Now, using set notation describe the set of positive powers of two

{x|]x ‘ )

ANSWER: 5. {x|x = 2» where ne N}.

— - —~
. 6. Now describe the positive multiples of nine

{x]x A . }




)

ANSWER: 6. {x|x = 9k where ke N}

Suppose that S is a subset of N and has the following ﬁroperties.
e S, and —_
“ vwhenever a number k €S then I kaow
that (k + 1) also belongs to S
Symbolically S cIt, 1¢S, and keS = (k + 1) ¢S,

7. Can you show that 2 is an element of S?

re

b

ANSWER: 7. leS so (L + 1)eS that is 2 &S

‘8. Does 3 belong to 8?2 Why

.

ANSWER: 8. 2¢ S therefore (2 + 1) e S that is 3¢ 8.

7

9. Does 817 belong to S? )

{ s v
ANSWER: 9. -Yes, but using the above method, it would take a long

time to show it. ' ” ¢

°

'10. 1Is there any positive integer which does not bélong to S§?

ANSWER: 10. No, aithough showing that a large integer belongs to S

would tzke an unusual}y large amount of time.

-




Now lets look at (k. + 1)2 + (k + 1)

o

Since’ any positive integer belongs to S, N& S and we know
S ¢ N, therefore we can say that S=N 61- that:‘ a set ,with-?t;‘heF given
properties is the set of positive i;xtegers.
This is the idea behind a very important mathematical tool,
THE PRINCLPLE or MATHEM}TIGAL INDUCTiON (or The PMI). We summarize
the PMI as follows:
Any set S which
1. is a subset of N,
2, ' contains 1, and
3. cont:ains x + 1 whenever it contains x
is the set of all ﬁatural numhe;s (i.e. S = N).
Let'us look at an example of protof. using the PMI. We want to prove

the statement that for all pdsitive integers n, (n? + n) is divisible

by 2. Now we could start checking all int:égers , but we would never

finish. So we use the PMI. If we let G = {x eN|x? + X is divisible

by two}, we want to know if G = N
First, G = N by definition, -
Second, we check to see 1f 1eG.
since 12 + 132 and 2 15 divisible by 2, then 1 €G.
&

Now we have establis the G § ¢. Hence suppose lv €G. * This

means that (k2 + k) is divisible by 2, We need to check that g
( + 1)2 + (k + 1) is also in G, that is, that (k + 1)2 + (k + 1)'is.

divisible by 2.
" ' 2

il

K2+ 2k +1+k+1 .

- & + %) ¢ (2% +2)

]

(k2 + k) +2(k +1)

’ t




11, Is k% + & divlible‘ by two?

&

ANSWER: 11. Yes, since k e€G.

12, 1Is 2(k + 1) divisible by two? Why?

2

0] — ; .
© - ‘27

ANSWER: ,12. Yes, because 2 is a factor; ' .

We can now see that (k2 + k) + 2 (k + 1) is divisible by two

since this expression is the same as (k‘+ 1)2 + (k + 1) we see that

(k + 1) eG.

To summarize, G < N.
le G and
' keﬂcmzk+lecso'G=N2‘
Therefore, we concludev that for all positive integers n, n? + n'is
divisible by two. Since n?' 4+ n=n(n+1) we can verb'alize this fact
as foilows: The prod;lct of two consecutive positivé integeré is an
even pésitive integer. ' .
Before we proceed further, we will adopt some useful ndtatiqn.
"~ Notaticn: P(n) (read, "P of n'") will represent some statement
~about positive integers, such as, '"n? + n is divisit;le
by two." Then to say P(l) is trué, is to say "2 4 .1
is divisible b§ two" is va true statemeton:. Similarly

P(k) will mean, " + Kk is divisib-lg by two."

4




D 13, tetPm be:r 134234334+ +ndcen? @+n? |

4 -

13a. P(1): to

13b. P(2):

13c. "P(5): . °°

13d. P(k):

13e. P(k + 1): s

P e

=
w
i

ANSWERS: 13a. 13 =12 (1 + 12 -13. 13+ 23 = 22 (2 + 12
. ' 4 ‘4 . - ~
‘ 13c. 13+ 23+33 443 +53=252 (+12
. : A .

13d. 13 +23+33 4 «-- + sz 12 (ke +.0)2

©

4

L

-3

13e. 13422 +33 4+ - F3 4 (k+1)3 = &+ 12 (k+ 2)2

‘ ' . ¢ 4
N Q
r We now restate the PMI using our new notation. -

The PMI:

o

Let P(n) be a statement about positive integers-

. , j (1) PQ) is true, and a
. If
L(ii) for every positive integer k, if P(k) 1is true,

then P(k + 1) is true,
o \ . . . .
, . then P(n) is true for all positive integers.

" In order to see that this formulation of the PMI is a consequence of
; \

our first one (p. 75 we let

G = {neN|P(n) is true}

and we suppose that both (i) and (ii) in the .above qumulation hold.

¥




9

»

o

’

14:

1l4a,
14b.
%ﬁc.

A

that G

A

(1) tells ps tkat G contains

[
(11) tells us ‘that if k € G then \x ‘

-

Thierefore, by our first formulation of the PMI we can conclude

a

)

review the procedure in light of our new motation.

Ll

ANSWERS: 1l%4a. 1 14b. (k #1)eG l4c. G =N, or that P(n) is true

for all -positive integers.

We 'will look at another proof by use of the PMI, first howévér, let us

-

o

%

~

Suppose wé are given some statement P(n) about positive fntegers.

To prdve'that'P(n) is true for all positive'integers we must show that

P(n) satisfies conditions (i) and (ii) of the PMI.

L

15:
15a.
is true.

15b.

-

o

is true, and then,show that

i

*

To show that condition (1) is satisfied we must show éhat

To show that condition (115 is satisfied we must assume that

istnm.

ANSWERS: 15a. P(1) 15b. P(k), PCk + 1).

u

16: Consider the

“pq) 12
° p(2) 2%
p(3) 32

following particular statements

[}

1
1+3

1+3+5

a4



16a. P(4) 42 =

16b. P(5) 52 = -

16c. P(10) 102 =

ANSWERS: 16a. 1+ 3+5+7 16b. 1+3+5+7+9 '

16c. 1+3+5+7+9 + 11 + 13 + 15 + 17 + 19
" We néte that each of these paqticuiar statements 1s true. From these
particular statements one might obtain (inductively) some general
statement. Then we should ask, "How caﬁ'we be certainpthat our.
general statement is vrue?"

We-will inspect some of these particuiar statements more carefuilly. -

' : .~ [
17: P(2Z) says, '""The sum of the first two odd positive integers is .

‘equal to 22" .. | - .
l P(4) says, "The sum of the first four odd positive integers is
equal to 42." _ -

a. P(5) Says,

~g -
\rh

17b. P(10) says,

17c. What general statement can be obtained from the particular

statements given in this example? ™"The sum of
~.

»
3

.

v ~ ' L

ANSWERS: 17a. '"The sum of the first five odd positive integers is

r

equal to 52." 17b. "The sum of the first ten odd positive
P

_integers is equal to 102," 17c. The first k odd positive"

integers is equal to kZ."

~

* . B i
— S
.

a5
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Recall that any odd positive integer can be written as an‘eveh positivé

~

integer, decreased by one. ‘That is, for each positive integer n, 2n is

even, and 2n - 1 is odd. ' .

°

18: Observe that the third odd positive integer is 5 = 2°3 - 1. .

| '18a. The fourth odd positive integer is 5 + = 7= 2% - 1.

18b. The fifth odd positive integer is 7 + = = 2- - 1.
“The kth odd positive integer is 2k - 1,g
18c. - The (k + 1)tP odd positive 1 teger is 2k - 1 + = 2(k + 1) ~ 1.

o

! =2k + 1

-

N '

ANSWERS: 18a. -2 18. 2, 9, 5 18c. 2.

, Therefore in mathematical symbols, our general statement becomes:

P(n): L+ 3+ 5+ =+ (2n-1) =n% _ b

We arrived at this general statement inductively, hence, we do not know .
s ‘ : ‘ )

that it is true for.all positive integeéwrs n. We’do, howevé¥\know thét

°

 P(n) is true forn =1, 2, 3, 4, 5 and 10. In order to prove that P(n)

is true.for all positive integers, we will appeal to the PMI. Review
the procedure for applying the PMI in the paragraph preceding and ‘

including Frame 11.
: «

N #
We have our\statement P(n). about positive integers which is
. \ .

\

P(n): 1+ 3+5+ =+ (2n~-1) = n?
We'Tust show that P{n) satisfiles conditicns (i; and (i1) of the PMI.
We;know that P(1), P(2}, P(3), P(4), P(5), and P(lé) aré true so
condition (i) is certainly satisfi%d. 'To show that condition (11)019

also satisfied we assume that P(k) is true and we need to show that

this implies that P(k + 1) is true.

fif; ' k‘u‘wwém”mwum“@““mmnmwkm
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19:  P(2) true; means that 1 + 3 = 22
19a. P(3) true, means that 1 + 3 + 5 =

—————

19b. P(4) true, means that

19¢. P(k) true, means that 1 + 3 + 5 + °+* + =

19d. P(k + 1) true, means that

ANSWERS: 19a. 32 19b. 1+ 3+ 5+ 7 =42 19c. (2 - 1), k?
190d. 14345+ o0 + (2k = 1) + 2k +1) = (k + 1)?
Now let us suppose that P(k) is true.

-

20: P(k): 1+3+5 ; cee + (2k - 1) = K2 ”' N

| Now add (2k + 1), the (k + 1)th 044 pdsitivé integer g; both

members of P(k). (To go from k*= 3 to k = 4, we addéd the four;h

odd number, 7, t§ both members.)

20a. 1+ 3+ 5+ + (2k-1) + = kZ +

20b. The left mesber of 20a is the sum of the First (how '
many)vo&d positive s.

k2 + 2k + 1 (Factor)

20c. The right member of 20a is k% + (2k + 1)

20d. Hence, 20a becomes

(k + 1)2 which is P( )

1+3+5+ -+ (2k-1) + (2k +1)

20e. The expression in 20d says that the sum of the fifst (how N

e
PR

many) odd positivé integers is equal to

ANSWERS: 20a. (2k.+1), (2k +1) 20b.” k+1 20c. (k+1)?

20d. (k +1) 20e. k+1, (k+1)2.

et R
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Hence; we have deduced the.truth of P(k + 1) efter assuming that P(k)
was true. So condition (ii) of the PMI hes been satisfied. Tnepefore, -
by the PMI, P(n) is true for all positive ‘integers n. ‘
'We have proved the following theorem: For ever& positive integet
n, the sum of the first n odd positive integers is‘equaleto nz. We
should note that the source of this theorem was induction, the assertion
was found experimentally, and the proof by the PMI was an example of ‘
.deduct{on. ‘ - ‘i | ‘
Let us consiner a different type of problemiusing thekPMI. Recall that
"1t = i and 2! = 2x1 and n! = nxﬂn‘; 1) x °°°ﬂ; 2x1
a. What is (3!)? - . -
b. What is 2372 |
c.” Then 3! is >, <, or ='23 (citc;e correct answer)
(a. 6 b. 8 c. <)

What ‘is the relationship of 4! and 34?

24 = 41 > 2% = 16 -
Check'S! and. 2% and we see 5!,[:] 2°

120 = 51 > 25 = 32 s
It appears that if n > 3 then n} > 2" N

To prove it, let P(n) be the statement ) -

i
l
|
i

(m+ 351 >2 % 351

|

by our work above, P(1) becomes;A! > 2% which is tr

21. Vhat is P(k)? /

ANSWER: 21. (k + 3)! > zk}j;j¥///\\\\\\///

/38 _ |
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22. We need to show that if P(k) is true then P(k + 1) is true.

What is P&k + 1)?

'
.
%
-
-

¥

© o mwswEr: 22. [+ D + 3t > 2l D43l e., (4 a1 > 2k A

* (k'+ 3)! > ok + 3~since P(k) is true
%k K+ 4 >2 since k:is an integer
recall that if a > B and.c >d > o then ac > bd. ‘ .
Applying this factfto_equatidn * and ** we éet '
k8 ( + D> 2028 3 |
that is ‘ |
. (k + &)1 > 2(k +_4) but this is P(k + 1)

therefore P(1l) is true.  P(k) true implies P(k + 1) true so P(n).
) . . ]

is true for all n. .o

| : o e
Lets look at the following geometric problem.i%ff‘We have a
- - . '\!1’

segment of length 1 given to us, can we, using a coépéss and a ruler,
construct a segment of length vn for each integer n? . We shall ‘
attempt to answer this by using the PMI.

‘

23. What does P(n) become? .

ANSWER: 23. P(n) ié the étatement, a segment of length vVn can be

constructed using a compass and a ruler.

<
S

Is P(1) possible? Yes, since we are given a segment_of length 1

.

and V1 = 1. ¢

LRI | 39




24, Suppose P(k)-is trud, then what do we know?

-
0
T

ANSWER: 24, A segment of length vk~ can be construcéed.

Now consider the following. We can construct a right triangle
with a ruler and a compass. Mark off the legs with lengths 1 and
A . ,
VJE—TﬁslshGWn. (Remember that vk 1s possible since that is what P(k)

tells us.) _f

Then, by the Pythagorean Theorem,

c?2 = (VE—SZ +18
Y 3 c2=k>+1/
B g0, c = K+ 1
Thus a segment of length ﬁET?Tf can be const;uctgd so P(k +'1) 1is
P -

true when P(k) is ﬁrue, \ ‘
So, P(l)rand P(k + 1) is true whénévef P(k) 1is true tells us b&
applying the PMI, that P(n) is.true for all neN.
S " We will copclude this lesson with one additional>épplication of
the PMI. o g

Let P(n) be thé statement ‘

P(n): 2+ 4 +‘6 + *** 4+ 2n=n(n + 1)
We wish to show that P&n) 1s true for every positive integer n.
Recéi}ing éhat the PMI éta;es that, if |

25: ’ R

25a. ‘ s true, and

25b.  for every positive integer k, if ’

tHen

v
40
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* 25¢. “then

13

We should agree that the PMI is suited to answer our question.

4

ANSWERS: 2§5a. P(1) 25b. P(k) is true, P(k + 1) is true.

o 25¢. P(n) is true for all positive 1nt;egers.

.

. .
26: Write out each indicated statement where we have
P(n): 2+ 446+ *** +2n=n(+1). -

26a. P(1):

26b. P(2):

26c. P(k):

26d. P(k + 1):

26e. 1is P(1) true?’

ANSWERS: 26a. 2 = 1(L+ 1) =2 26b. 2+ 4 = 2(2 +1) = 2°3 = 6

Zes. 2+4+6+ - +2k=k(k+1) 26d. 2+4+6+ e

Czk+2(k+1) S (k+1) (k+2)  26e. Yes.
]

=Y

27: 1In order to show that P(k) true implies P(k + 1) true, we assume
that P(E) is true.

27a. The left member of P(k) is the sum of 2 (how many) terms.
27b. The left member of P(k + 1) is the sum of v (how many)

ta R

terms.

27c. To show that P(k) true implies P(k + 1) true, we add

to both members of P(k) and show that we have arrived at P(k + 1).
. ) .
%

. 41
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’ <
ANSWERS: 27s. k 27b. k+ 1 27c: 2(k + 1)

]
S

e

28: Perform the operations of 27c, thus showihg that P(k) true -

implies P(k + 1) true.

LS

ANSWERS: 28. 24+ 4+ 6 4 *++ + 2k + 2(k + 1) = k{k+ 1) + 2(k +1)
ok + Kk +2k+ 2
' = k? 4+ 3k +2

a (k4 1) (k+ 2)

T

29: What is yo r- conclusion concerning P(n)? Why?

ANSWERS: 29. P(n)-is frue for all positive integers because P(n)
satisfies ‘the conditions of the PMI. l
In order to heiéyprepare for the test over tﬁis unit, the
following questions are proposed.
1. What is the statement of the PMI?
a. In terms of sets.
b. In terms of statements.’
2. VWhat is the prbc;dure for using the PMI to prove a theorem?

>
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' * EXERCISE I. Prove the statement that’

n:

Zi=n(okl) »
i=1 2
v o ' -3
Proof by PMI !
. ‘ n 9
. P(n) is statement I i = n(nt+l) S o
' i=1 2 “

P(1) ié true since 1 = (1) (1+1) .
ﬂ 2

Suppose P(k) is true, then

/ . ) . 9
- k
Ei= (k) (k)
i=1 -2 ° o

To show P(k+l) is true, complete the following

15

Kk . g .
Tis Ti 4kl = (k) (kHl) + kil -
1=l 1=l T
. = k2 + k + 2(kcH)
2 2

¥
T A
ANSWERS: k% + k + 2k + 2 k2 4 3k + 2 _ (k+l) (k+2)

2 = 2 , 2

2

P(k+1l) is trué‘so'by PHI, P(n) is true for -all n.



EXERCISE II

¥
.

Sum of Squares of the first n integers is (n)(n+l) (2n+l) ‘

o ~. 6
To prove this by PMI, we first need to show P(i)vis true.

1. ,What is P(1)? Is it true?

#

ANSWER: 1. 1 = (1)(2)(3) =-1; yes ) .
6

»

y . ’

2. We now suppose. that P(k) is true. What are wé assuming?

A
9; k . !

ANSWER: 2. P(k) = I i? = (k) (k+l) (2k+l) -
i=1 . 6 L

3. How do we state P(k + 1)?

: ¢kt DN »

ANSWER: 3. I 12 = (k+1) (k+2) (2k+3)
' 6

To shiow P(k+1l) is true, start with

k+l ,‘kd )
£ i2 =T 12| + (H1)2 = (k) (kD) (2kt1) +  (k+1)2
14 =1 6

By appropriate algebraic manipulation, it can be shown that this

expression”is equal to (k+1) (k+2) (2k+3)
: ‘ 6

(k+l)(k+2)(2k+3) = (k2+3k+2)(2k+3) = 2k3+9k2+1 3k+6
6 6 6 -

and

L '

AR




(o) (k) (k1) + (k)2 = 26343K%+k +  6(kH)?
6 6 6

QS

2k 3432 +1k+6 (k2+2k+1)
6

= 2k34+9k2+13kt6
6

Thus P(l) is true; : “\\

° P(k+l) is true whenever P(k) is Efue; S0

P(n) is true for all n.
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EXAM

”»

Problems 1 and ?: Refer to the following set G.
Let G = {neN|?{a) ‘s tiuel}

1.

To say 1eG-we must show that

A. P(1) 1is true ‘

B. P(Kk) ic *rug implies P(k+1) °

C. G | -
D. None of the auove : ’

. If we know 16, then G = N if we also show

A. GEW : o
B. ifP(k) is true then P(k+1) is true
c. P(1), P(2), P!3) are all true

D. G is infinite. .
Let P{n) be a statement for which P(1) is true and P(k+1) is true
whenever P{k) is true. Uhich of the following is (are) true?

A. There is a positive integer s such that P(k) is not true.
B. For any positive integer'm, P(m) is true.

C. Both Aand B

D. Neither A nor 8

Let G = {neN|(2n3-n§ is divisible by 7} then

A. kG
B. 2e¢G
C. .36
D. all of the above.

The set G (in ilo. 4) is not egual to N because

A. 1€ - ' |
B. keG does riot imply (k+1)eG

8. keG - N -

D: none of the above

Let P(n)-be the statement n3-n is divisible by 6.

0 is divisible by 6«
G$ D

G =N
P(k) implies P(k+1)

oW
e o o o




d
© .
® +
. .
.

csp 3 o o "

In Problems 7 and 8, Let P(n) be the statement about
- positive integer: _% '
g™y 6201 s givisible by 11

i

! ‘ 7. To show P(3) is true we need to show that

A. 43+ 53 is divisible by 11.
B. 4%+ 5% is divisible by 11.
C. P(3) is false and cannot be shown true. . ) N
D 311 = 44 52001

8. It is easy to show that P(1) is true. In order to show that
P(n): is true for all positive integers n, (using the PMI), we
must show for all positive integers k, A
A. P(k) is true )

B. P{k+1) is true . .
C. P(k+l) is true whenever P(k) is true
D. Hone of the above

~

9. ‘ilhich of tﬁe following statements‘wou]d'be appropriate for proof
by the PMI? T

A. For every neN, if n? is divisible by 5, then n is divisible |
by 5. 2l

B. For every nefl, if.n is odd then.n] is odd.

C. For every nel, 672 + 72™1 is divisible by 43.

D.Y‘None of the above. .

10. Let P(n) be the .following statement about positive ibtegers.'a

2

P(N):T2+4+6+-c-+2n=n"+n+1

P(n) is HOT true for all positive integers becausé: ) ‘\

o A. P(1) is not true. . ’

» : B. Assuming P(k) true, it is impossible to deduce P(k+1) true.

' C. P(1) is true but P(2) is false. A
D. P(n) is true for all positive integers n. : ~ .

11. Let P(n) be the following statemenf about positive integers.

. 2
P(n): 1+2+3+---+n-= E——%—l- |

P(n) is NOT true for all positive ihtegers because:

. P(1) is not true. ' .

A ;
B. Assuming P(k) true, it is impossible to deduce P(k+1) true. |
C. It is impossible to determine the truth value of P(n).

D

. - None of the above. SN

% ' 48 %
!
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12, LetAP(nf be a statement about positive integers. In order to
shaw that if P(k) is true, then P(k+1) is also true, we take the
truth of P(k) as a premise and then deduce:

A, P(1)
B. P{k+1)
C. k+1

D. Me cannot logically accept P(k) as a premise.

 The following questions ére "short answer" and will require that you

fi1l in the blanks.

Let P(n) be the following statement about positive integers. .

2

Pn): 2 +2°+ PE IR RV I 0 B

We wish to show that P(n) is true for every positive integer n.

13. First we must show that

.14, Secondly, we assume
is true.

s’ true.

is true and deduce that

Write out each indicated statement.

15. P(1):
16. P(2): __.

pa 2 +22 423 =231

17. P(k):
' 2

18. Pk +1): 2+2%+2°

19. Is P(1) true?
20. Is P(2) true?

k

+oece + 20 + o=

In order to show that P(k) true implies that P(k # 1§ is true, we
assume that P(k) is true and then show that this implies that

- P(k + 1) is true.

21. The left member of P(k) is the sum of (how many) terms.

22, The left member of P(k + 1) is the sum of (how many) terms.

23, * To show that P(k) true implies P(k + 1) true, we add

to both sides of P(k) and show that we have arrived at P(k + 1).

24. Perform the operations of 23, thusbshow that P(k) true implies

P(k + 1) true.

49 | . | »



25, What is your conclusion concerning P(n)? Why?

o

- Mow let P(ﬂ) be. the following statement about positive integers.
¥ ' P(n): For every positive integer n, n3 - n is divisible by 3.

~ 26. 1In order to show that B{n) is true for all.-positive integers n, - |
we must show that - , :

. | (i) _ _
(i) |

Write out each indicated statement. -

27. P(}): _
28, "P(2): | I

29. P{k):

30. P(k +1):

31. 1s P(1) true? ' v
32. 1s P(2) true? s '

We wish to show that P(k) true 1mp11es that P(k + 1) is true. Assume
P(k) is true and con51der
k+1)3 - (k+1) = (k ¥ 3+ 3k 1) - (k+ 1)

= (k - k) + 3(k + k)

33. Is k3 - k divisible by 3? | lhy?

A

34. 1Is 3(k? + k) divisible by 3? . Why?

35. Therefore, P(k) true implies




.36.

37.

What conclusion can you make.regarding P(n)? Uhy?

Let P(n) be scme statement about positive integers. EXp1ain how
'you would prove that P(n) is true for all positive integqutusing

the PMI. (Be v%ry concise.)




38. Prove the following by the PMI.
let P(n).be the statement, |
2+ 22 4 23 4 o004 2% 22(201).
that is ) . o -
n . _

r 2L = 2(27-1).
i:l )
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- 1. To say 1€6, we must show that

RETENTION EXAH

| Pfob]ems 1 and. 2: Refer to the following set G.
Lat G = {neN|P(n) is true}

s

‘A. P(1) is true
. B. P(k) is true lmplies P(k+1)
€. GEN o -
. D. None-of the: above - ‘ ' O B

—————

2. Ifwe know 1e6, then G =4 if we aTso show

A. GEN | | )
B ~B. If P(k) is trud then P(k+1) is true’
C.. P(1), P(2), P(3) are all true - - e

D. G is infinite./

3. Let P{n) be a statement for which P{1) is true and P(k+ﬂ) is true °
_vihenever P(k) is true. Uhich of the following is- (are) true?

.A. There is a p031t1ve 1nteger s such that P(k) is not true.
B. For any positive integer m, P(m) 1s trus. '
C. Both A and B . _

B. HeitherAnorB

4. let G = {nsNInz-n+13 is prime} then

A. 1eG ¢
. 8. 2eG

C. Neither AnorB ' '

D. Both A and B : e

5. The set G (%n No. 4) is not equal,to H because

A. 1e8 &

B. - There is a keG with (k+1)4€
C. G= ¢ -

D. None of the above

6. Let P(n) be the statement n2 - n i§’odd, G N{because

1¢G o . ‘ » N
G=¢ : | :
P(k) 1m011es P{k+1)

. False G =N

Pow

o4




In Problems 7 and 8, Let P(n) be thevstatement about
positive integer: n+l. 2p-1
4" "+ 57" is divisible by 11

7. To show P{3) 4s true we need to show that

3 4+ 53 is divisible by 11.

A 4
B. 4%+ 5% is divisible by 11.

C. P(3) is false and cannot be shown true.

D. 3-11 = 41 4 5201 .
It is easy to show that P(1) is true. In order ta show that
P(n) is trues for all positive integers n, (us1ng the PMI), we
must show for all positive integers k,

A. P(k) is true

B. . P(k+1) is true

C.. P(k#1) is true whenever P(k) is true
D. Hone of the above

Jh1ch of the following statements wWould be appropriate for proof
by the PMI?

A. Fof every neN, if n? is divisible by 5, then n is divisible
y 5. '
B. For every neM, if.n is odd then n] is odd.
-C. For every nel, 6™2 + 72" 4o givisible by 43.
D. Mone of the above. '

10. Let P(n) be the following statement about positive integers.
_ ” _

P(n): 2+4+6+--+20=n+n+1 !

P(n) is HOT twue for ail positive integers bacause:

A. P(1) is not true.

B. Assuming P(k) true, it is impossible to deduce P(k+1) true.
C. P(1) is true but P(2) is false,

D. P(n) is true for all positive integers n.

11. Let P(n) be the following statement about positive integers.

2
Pln): 1+2+3++++n= 2 ; ]

P(n) is NOT true for all pos1t1ve integers becauso

A. P(]) is not true.

B.i Assuming P(k) true, it is impossible to daduce P{k+1) truc.
€, It is impossible to dntnrm1ne the truth value of P(n).

D. fHone: of the above. ~ ‘




23. To show that.P(k) true implies P(k + 1) true, we add

12. Let P(n) be a statement about positive integers. In order to

show that if P(k) is true, then P(k+1) is also true, we take the

" truth of P(k) as a premise and then deduce:

g

A. P(1)
B. P(k+1)
C. k+1

D. We cannot logically accept P(k) as a premise.

The féllowing questions are "short answer" and will require that you
fi11 in the blanks. ’

Let P(n) be the following statement about positive intduers.

. - 1 /
Pn): 2422428 4 ceaon®1 _

He wish to show that P(n) is trug Yor every positive integer n.

13; ‘First we must show that is true.

14. Secondly, we assume is true and deduce that
is true. ' . :

Write out each indicated statement,

5. P(1):, ' ,
16. P(Z):
P(3):2+22423-23%1_,"
17. P(k): .
18. P(k+1): 2422425 4 ee 4 2K -

19. Is P(1) true?

20. IS P(2) true?

-In order to show thgt P(k) true imp]ies>that P(k # 1) is true, we
assume that P(k) is true and then show that this implies that

P(k +.1) is true.

21. The left member of P(k) is the sum of _ (how many) terms.

22. The left member of P(k + 1) is the sum of —_ (how many) terms;'

..3.

to both sides of P(k) and show that we have arrived at Pk + 1).

24. Perform the operations of 23, thus show that P(k) true implies
P(k + 1) true..

P



25. that is your conclusion concerning P(n)? Uay?

)

-

o«

Mow Tet P(n) be the following statement about positive integers.
P(n): For every positive integer n, nd - n is divisible by 3.

25. 1In order to show that P(n) is true for all positive integers n,
ve must show that -

(i)
-
(i1)
lirite out each indicated statement. -
27. P(1):
.28. P(Z): o
29. P(k):
30. P(k+1): ’ @

31. 1Is"P(1) true?
32, 1s P(2) true?

He wish to show that P(k) true implies that P(k + 1) is true. Assume
- P(k) is true and consider: . : :
k+1)3 - (k+1) = (3 + 32 +3+1) - (k+1)
= (13 - k) + 3062 + k)

33. Is k3 - Kk divisible by 3? hy?

3. 1Is 3(k% + k) divisible by 3? Uhy?

35. Therefore, P(k) true implies

o7 o ”



36.

37.

waat conclusion can you make regarding P(n)? WYny?

Ve

-

Let P(n) be some statement about positive integers. Explain how
you would prove that P(n) is true for all positive 1nteqersnus1ng

‘the PMI. (Be very concise.)




33. Prove the following by the PMI. o,
Let P(n) be.the statement:

n2 >2n -1
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. _ , - RAW DATA FOR SUBJECTS IN THE STUDY

. - (
—
Colum——Heading-—Code
1.  Student Number
2. Section 1l or 2
3." Method 1 (Recursive) or 2 (PMI) first
4. Score on Posttest
5. Score oa Retention test
6. Change Score" i
o 1 2 3 4 5 3
01 1 2 70 61 -9
02 2 2 56 61 +5
’ 03 2 2 61 54 -7
04 1 2 60 - 67 +7 ..
' 05 1 2 64 75 +#11 -
: A\ . |
06 2 2 67 65 -2
07 2 2 58 67 +9
08 2 2 63 60 -3
09 1 2 66 62 =4
10 2 2 72 53 -19
ﬂ 11 1 2 78 77 -1 ‘
12 1 2 72 72 0 /
13 1 1 51 53 +2 -
12 -2 1 5 54 +2
15 2 1 56 60 44 . ’
‘ \ 6 2 1 63 68 45
- : 17 1 1 65 65 0 )
18 1 1 58 61 +3
19 1 1 69 71 +2
20 2 1 66 70 +4
21 2 1 65 56 -9
22 1 1 73 74 +1
23 1 1 70 66 -4
24 2 1 78 75 -3




