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INTRODUCTION

The Principle of Mathematical Induction (Pill) provides one of the

most poverful methods of proof, not only for the research mathematician,

but also for the student.of more elementary mathematics.

.
Since a major objective of the 'secondary mathematics program for

ti

the college-capable is tcP,pr.A.vide these students with an adequate

9 foundation for undergraduate mathematics, it follows that the method of

proof by MatheMatical Induction should be included in the program. The

National Council of Teachers of MathematiCs.(NGTM),,,in its Program

Provisions for the Mathematically Gifted Students (NCi-4.957) lists the

Pill as one of the essential topics of algebra for the college-capable.

Both the School Mathematics,Study Group (SMSG, 1960). and the Universiily

of Illinoie:Committee on School Mathematics (UICS4 1960) included the

topic in their materials:

It is clear that students have not mastered this topic in the

secondary schools, or even as undergraduates. Calvin Long, in the

introduction to his number theory text notes:

The discussion of mathematical induction . . . is treated

here in copsiderable detail since students at the sophomore-

junior (college) level frequently love only the most rudimentary

knowledge of these importalp and use ideas. (Underlining

added) (Long, 1965)

Beach (1963) indicated that.many graduate students in the sciences do not

understand proof by indirection. The opinion of Johnson (1960) fs

typical. He states that although mathematicians highly recommend the

I, itis one.:,cf the most annoying and consequently avoided topics in

algebra.
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Variou textbook authors warn the reader or the teacher of the

difficulty encountered in teaching.the PMI. SMSQ (1960) cautions

teachers not to attempt the topic with a below average class. A. A. Blank

(1963) in the 28th NCTM yearbook states that the full impact of he PMI

will not be. realized until the student has reached greater mathematical

maturity. In the teacher's edition of their text, Beberman and Vaughn

(1966) caution the instructor not to expect thorough understanding of the

techniques on the first (and possibly only pre-.college) experience.

These statements are at odds with that of Poincare (see Wilder, 1965)

who felt that mathematical induction is forced on us by intuition. The'

Report of the Cambridge Conference (1963) indicates that at least an

intuitive,appreciation of the PHI is possible at the elementaryschool

level.

Most of the literatur dealing with the teaching of the PMI is

opinion, not research. One finds that some individuals advocate a

variety of approaches by the teacher. Shreve (1963) suggests using the

well-ordering principle and proving theorems by either contradiction or

contraposition. More examples, especially of "fallacious proofs" are

pioposed by Beach (1963). Koenen (1955) suggests that presentation and

motivation are enhanced by using the puzzle called the "Tower of Hanoi".

Smith and Henderson (1959) claim that students can produce proof by the

PHI by following examples, but do, not understand the Ingle of this type

of proof.

Hoer 9.922) states that the difficulty (for the student) is in making

the connection between the statement of the proposition for n and n +I.

Polya (1957) emphasizes the importance of this point when he suggest
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that the PNI:co d be "called 'proof from nto n + 1' or still simpler .

'passage to the next integer'."

Research dealing with the teaching'of the PMI is limited. Several

investigators (e.g. Wells, 1967; Nelson, 1962; Hildebrand, 1968) have

utilized the PHI as the learning task in research related to modei of

instruction. Their conclusions rightfully were drawn with respect to

the modes of instruction and not to the teaching of the PMI.

Three recent studies have dealt with the teaching of the PMI.

Ward (1971) conducted an experiment to answer thfollowing

questions':

(f) Can an indirect inductive proof technique based on the W11
Ordering Principle be effectively substituted for the method

of mathematical induction based on the Principle of Mathe-

matical Induction?

(2) If the two proof techniques are taught successively, what is

their proper pedagogical placement?

(3) What -constitute the primary sources of difficulty with

inductive proofs? In particular, is lack of confidence in

the Principle of Mathematical Induction one such source?

0

Two intact classes were treated as a single population and divided

into two groupaorcomparable ability. One group assumed the Well

Ordering Principle as an axiom; learned the indirect inductive technique,

used this method to prove the Principle,of Mathematical Induction, and,

finally, studied the method of mathematical induction. The remaining

group reversed the leirning order, beginning with the Principle of

Mathematical Induction as an axiom and concluding with the indirect

inductive method of proof. Three criterion tests, each requiring proofs

of four conjectures, were administered to each group at intervals of

varying lengths throughout a ten-day study.
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In addition to proving conjectures on the criterion tests, students

were.askedto fill out confidence scales following each of their proofs

and to complete an information retrieval test designed to identify

weakness in the learning sets requisite to understanding the method of

proof.

The analysis of data revealed: (1) students performed significantly

better using the method of mathematical induction rather.than the indirect

inductive technique, (2) those students Wh9, studied the Well Ordering

Principle followed by.the Principle of Maiit;i6tical Induction perforded
. ,

significantly better than those who reversed the order, and (3) the

essential difficulty with inductive proofs was inability to perform the
x.

necessary algebraic manipulation in the inductive step, together with /

ignorance of'the proper procedure for establishing a condipional. Lack

of confidence in an axiom or method of proof was found not to be a source

of difficulty with Proving conjectures.

alter(1972) hypothesized that students having the prerequisite

knowl dge of logic, and taught the PMI in terms of logic, would perform

better on his criterion test over the PMI than students who were not

taught the PMI in terms of logic.

The experiment was conducted - twice, using pre-calculus college

__-
students first and college. calculus students the second time. The results

both times favored the research hypothesis. However, only the proof

portion of the posttest was found to be significant at the .05 level and

--that only for the pte-calculus subjects.

A third investigator (Reeves, 1972) looked at two pedagogical aspects-

of the teaching of the PHI, viz; the introduction to the topic, and the

t)

'1)
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Method of presenting problems ,designed to induce facility with the proof

technique.

The introductions compared were the "inductive sets" approach and a

"semi- concrete" introduction, which required students to consider

hereditary situations of everyday life. Although both introductions

were demonstrated to be effective, there was no difference'in effective-

ness between the two.

"Traditional" and "guided discovery" approach to the problem later

Verified by the PM were compared. Neither was found tobe more effective

than the other. -

.Reeves (1972) fouruLno significant correlation between understanding

of the proof technique and ability to use the technique in proving

theorems.

4

1
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THE STUDY

Polya (1957), Hoer (1922), and Ward(1972)-iSntified a difficulty

as the understanding and manipulation of the inductive step. Since the

recursive definition of a function is defined or any integer in terms

of its successor, the relationship between recursive definitions and the

PMI is obvious. (Youse (1964 r evetr-Henotesr recursive definitions as

"inductive definitions "). Utiliiation of the relationship between these.

ideas was the focus of the study.

Specifically, the research hypothesis was that students who Study'

.recursive definitions prior to exposure to the PMI will have abetter .

understanding of the Pill than those/who reverse the procedure. A second

hypothesis was that they (the experimental group) would retain this

understanding longer.

Within the contexts of their classes, and without any experimental

design, two local "advanced math" teachers attempted to evaluate the

hypothesis. Both were of the opinion that the first hypothesis was

correct, i.e. "These classes learned the PNI better than previous classes

which studied recursive definitions after the pm". Efteourrd by these

results, arrangements were made to conduct a formal experiment.

The objective of the etudy was to determine the effect a unit
a

e 4,dealing with recursive definitions would'have upon students' achievement

in application of the PMT.

. The subjects in:the study were 24 advanded mathematics students at

The Ravenscroft School, Raleigh, N. C. The students were randomly

assigned to either experimental or control groups.
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Programmed units on the Pal and recursive definitions were prepared.

Students in the control group studied the'PMI program first and then the,

recursive definition program. The experimental group reversed this

procedure. Three classes (of 50 minutes each) were allotted for each

programmed unit. All of the participants, easily finished the-units in

the allotted time. On the seventh class day, the posttest was

administered. After thiee weeks, an equivalent form, the retention

test, was administered. Appropriate statistical procedures were utiliied

to evaluate the following null hypothesis:

H0 -1 There is no significant difference between the scores of the

control and experimental groups on the posttest.

E0-2 There is no significant difference between the scores of the

control and experimental group on the retention test.

H0 -3 There-is no significant difference between control and

experimental groups in the change of scores between the

posttest and the retention test.

Much of the material in the two tests was adapted from that Of

Walter (1972). A score of 80 was possible.

1

11
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RESULTS AND ANALYSIS

A 2 X 2 analysis of varianc was utilized to analyze the data.,

Analysis of the raw data revealed:

1) Posttest mean of the control group was 65.6 with a range of

56 to 78.

2) Posttest mean of the experimental group was,63.8 with a range ,

of 51 to 78.

3) Retention test mean of the control group was 64.50 with a

range of 54 to. 77 and a DECREASE in mean score of 1.08.

4) Retention test mean of the experimental grOup was 64.4 with a

range of 53 to 75 and a INCREASE in mean,score of 0.60.

5) Posttest-- Retention test coefficient of correlation was 0.67.

.Table I gives the results of the analysis of the\Posttest.

ANALYSIS OF'VARIANCE SCORES ON THE POSTTEST

SOURCE'

SECTION

METHOD '°

INTERACTION

RESIDUAL

CORRECTED TOTAL

e

D.F.

1

1

1

20

23

. S.S.

63.375

\
.18.375

'
30.375\

,

1132.833

1244.958

M.S.

63.375

18.35

30.375

,56.642

54.128

F.

1.119

0.324

0.536

.

- --

From the data abov, it is concluded that

1) There is no significant differelce (at the 0.05 level) in the

mean scores due to section.

2) There is no significant difference- (at the 0.05 level) in the

mean scores due to method.
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3) There is no significant interaction between method and section.

test.

Table II sUmmarizes the analysis of the results on-the retention.

ANALYSIS OF VARIANCE OF SCORES ON THE RETENTION TEST

.SOURCE . D.F. S.S. M.S. F.

SECTION 1 155.04 155.04 3.049

METHOD 1 0.04 0.04 .001

INTERACTION 1 92.04 92.04 1.810

RESIDUAL 20 1016.83 50.84 ---

-

CORRECTED TOTAL 23 1263.96 54.95

The -
results of the analysis indicate that there is no significant'

difference on the retention test attributable to either.section or method.

The analysis also indicates adack of interaction.

The question of retention was investigated by looking at the changes

in score between tIT two administrations of the test.

"t" tests were run to see if the-change scores differed significant].)

from zero. Results of these analysis are below.

Group

Control

Experimental

A

Summary of Change Scores

,..

Mean Standard peviation

r

x
c
= -1.08 s

c
= 2.51

x
e
= +0.58 s

e
= 1.57

13
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Hypothesis

xc 0

X =
e.

Xe =, Xc

,-10-

Summary of t-Tests

t-value d.f.

-1.49, 11

1.57 11

0.893 , 11

The t values indicate that the following null hypothesis could not

be rejected.

Hol le change in scores of the control group was not significantly

different from zero.

Ho2 The change in scores of the experimental group was not

significantly different from zero.
o

Ho3 The change in scores of the experimental group was not

significantly different from the change in scores of the,cOntrol

group.

These results were verified by a 2 X,2 repeated measures analysis of

variance performed by the North Carolina State,UniVersity Computing Center.



IMPLICATIONS AND RE NMENDATIONS

The study indicates that it makes little differ'ence whether unit

on recursive definitions precedes or follows a unit on the PMI.

The scores of the criterion tests indicate that the two units together

form an appropriate introduction to the PM1.

It is recommended that, the study be modified and replicated. The

suggested modification is that a. test on recursive definitions be

developed and given after completion of that unit. The suggested design

is given below.

P T
1

D T2 T3

T2 T
1

T3

= random assignment

P = PHI unit D = Recursive definition unit

T
1
= PMI test T

2
= R. Def.; test T

3
= Retention test covering both
PMI and RD

Figure I

Since the'siudents in the study were high ability subjects: at a

private school, and relatively few in number, it is suggested that the

study be replicated in public schools with a larger and-more-heterogeneous

population.

15
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INSTRUCTIONS

This lesson has the fpllowing pattern. Some commentary

(explanation followed byva'frame of questions. The frames. of questions

are very import , and you should try to answer.each question before

you loak at the answer. Tie answers appear immediately below the frame

of questions. The index card supplied with this instructional material

is:to be used to cover'the answers until you are ready to check them.

If you answer a question incorrectly, ke.sure that you understandwhy

you have made the error before you continue. In some instances this

might require rereading some of the material you have already covered.

CORRECT your answers befOie continuing!.

With each frame of questions there is associated a number, and

if a frame Conta in5; more than one question,. he,questions will be

designated by the frame number followed by a letter of the alphabet.

For, example:

15

°Vino

61:

61a. The "product of -3 and -2 is

61b.g. If 3a = o, then a is equal to

ANSWERS: 61a. 6 61b. o

When you have completed this unit, a test will be administered to

determine whether or not you have acquired the knowledge this unitintends

to impart. Proceed at your own rate. There are no rewards.for finishing

first, however, you should keep moving along without unnecessary waste of

time.

19



RECURSIVE DEFINITIONS

Mathematicians sometimes usie three dots to indicate missing parts of an

expression. For example, look at the definition of x
n

x
n= xxx...x where there are n x's.

Usually, this is fairly clear, but a more exact definition is found by

using a recursive formula like this:

1:A=x and for all n>1,'21-xn -1*

Using this definition, let's find x5.

5 4
x =x-x

=x-(xtx
4-1)=xx-x3

-3-1xx) Orx )=xxx.x
2

=(xxx)(xx2-1)=xxxxx

which is what you expected.
./

Now let's look at n!.

Recursively, we define n! as follows

11=1 and for n>l, n!=n(n-4)!

, Now apply the definition to find 5! \\

la 5t=5(

lb' :=5'( ( )!

lc =5( ) ( ) )!

ld

le

Answers:la. 4!. lb. 4(3)!. lc. 4-3(z)! ld. 5-4-3-2(1)!

le. 5.43.2-1=N0.

The interesting thing about recursive definitions is that after an

initial definition is made, all other values depend upon the value of the

preceeding value.

The Ancient Greeks discovered some interesting properties about the

positive integers by looking at "figurate numbers"--called that because

20



they can be geometrically arranged. Consider the following arrangements, and

particularly nate the shaded dots,.

0
o eo

o eo etelo0 g®o @eo eeeo
T(1) T(2) T(3) T(4),

These are called the first four trianglelar numbers.

T(1)=1 total number of dots in the triangle.

T(2)=3=T(1) + 2. . I

2a.T(3)=6=T(2) +

2b.T(4)=10= +

J

Answers: 2a. TO+ 3 2b. T(3) + 4

1

O

Using the pattern above as a guide, what is T(5)?"

Z.T(5)=

Answer: 3. T(5)=T(4)45=10+5=1

4a. rf we know T(n) for some n, how- can we define T(n+1)?
.

T(n+1)=

4b.If T(20)=210, what is T(21)? "la

Answers: 4a. T(n+1)=T(n)+n+1 4b0 T(1)=T(20). + 21=231.

Wh'at is a recursive definition of T(n)?

. .

Answer: 5. 14)=1 and for n>1,T(n)=T(n-1)+n.

2

At this point, we recognize that T(n) is the sum of the integers from 1 to n.

We can express this as indicated: 1

T(n)=

* i=1
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Let's try to get an idea of how to calculate T(n) for any n. Complete

the following chart.

T(n) 2-T(n)

1
2

/

1 2

2 3 3 (6a)

3 4 ' 6 (6b)

4 5 (6c) (6d)

5 6 (6e) (6f)

Answers: 6a. 6 6b. 12 6c. 10 6d. 20 '6e.5 6f. 30

We see that, each entry in the last columri is the product of the two

entries in the first two columns in the corresponding row. For example:

2T(3)=3.4=12 so T(3)=3.4
2

If the pattern holds, the row for integer k looks like:

7a. k k+1 . T(k) 2T(4=

7b.and T(k)=
0

Answers: 7a. k(k+1). 7b. k(k +l)

Later, we shall prove that

11 (n) (n+1)

i=1 2

If the sum of the integers from 1 to k is
(k) (k+1)

2

8a.what is the sum of, the integers from lto (k+1)?

Answer: 8a. put (k+1) in the place of k. We get (k+1) itk+1)-1-11

2
or (k+1) (k+2)

2

In a similar fashion, the Greeks answered the question "What is the

sum of the first n odd numbers?" by looking at the geomeric figures on

the next phge.
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00
e0

SS1) S(2)

O 00
e oo
e e o

S(3)

O 006
o @ooaeeo
e a ) 0

S (4)

Complete the statement by looking at the figures.

S(1) indicates the number of dots in the first figure,'S(2), the second, etc.

9. S(1)=1',. S(2)=4=.1+3=S(1)+2(12) -1

'°9a. S(3)=9=4+5+S(2)+2(

9b. S(4)=16=9+ = +

ANSWERS: 9a. S(2)+2(3)-1 9b. 9+7=S(3) + 2(4-1)

If,S(20) = 400, how do we find S(21)?

10. S(21)= S(20) +

ANSWER: 10. S(21)=S(20)+2(21)-1 = 400+42-1 = 44-1

e

11. How do we define S(n) in terms of S(n-1)?

ANSWER: 11. S(n) = S(n-1) + 2n-1

12. By looking at the chart, can you guess a short way of calculating S(n)?

ANSWER: 12. S(n) = n2

Suppose that R(n) is defined recursively as follows: R(1) = 3 and for
7-

n > 1, R(n) = R(n-1) + 3.

Write the first four values of R(n).

13a. R(1) =

13b. R(2) =

13c. R(3) :=

13d. R(4) =

23



Answers: 13a. 3 13b. 6 13c. 9 13d. 12

14 if R(13) =3 whatsis R(14)=

Answer: 14. R(14)= R(13) + 3 = 39 + 3 = 42.

15 if R(n) = 3n what pis R(n+1) =

Anst'er: 15. R(n+1) R(n) + 3 = 3n + 3(n+1).

In,frame 15, we see that R(n) = 3n is an explicit formulation. -By this we

1i an a

1 \

formula which tells us how to find- the value of R(4 for any value cE

n. Loa at the explicit formulas below and write the expression for n+1 esLed

-for.

16 G(n) = n2-+ n G(n+1)=(1+1)2 + (n+1)=n2-1-2n + 1 +n+ 1 = n2',+ 3n +2

.16e H(n) = n2-n
2 H(n+1)=

16b K(n)'= n2 + n + 3

n

]6c L(n) = (n) (n+1) (n+2)

6

k(r14-1)=

L(n+1)=

Answers:16a. H(n+1)=(n+1),
2

- (n+1) = n
2
+ 2n +1 - (n + 1) = n

2
+ n

n+1 .

n+1 n+1

16b. K(u+1)=(111)
2
- (n+1)+3= n

2
+ 2n +1 + n + 1 + 3 = n

2
+ 3n + 5

.5
2 2 2

-.

16c. L(n+1)= (n+1) (n+2) (n+3

6

Let's look at some recursive definitions and guess at (matheilaticiens say

"mice 'a conjecture about") the explicit formula determined by this definition.

First

Q(1) =1 and for n T, Q(n) = Q(n-1) +

.Q(1) =1

17a Q(2) = 1 + [8(2-1)] =

17b Q(3) =

17c Q(4)

17d Q(5) =

17e It appears that Q(n) =



O
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ANSWERS: 17a. Q(2) = 9 17b. Q(41= 25 17c. 49 17d. 81

17e. Q(n) = Square of nth odd integer or Q(n) = (2n -

1
18.. If Q(n) = (2n - 1)2 find Q(n + 1)

ANSWER: 18. Q(n+1) = [2(n+1)-1]2 = [2n+2-1]2 T [2n+i]2

V(1)

19a.

19b.

19c.

9d.

= 7 forn

V(2) =

V(3) =

V(4) =

V(5) =

>

V(1)

V(2)

1, V(n)

+ 4 = 7

+

= V(n-1) + 4

+ 4 =

O

ANSWERS: 19°a. 11 19b. V(2) + 4 = 15 19c. V(3) + 4 = 19. ,1/4

19d V(4) + 4 - 23
,4?

20. Explicitly, V(n) = + 3.

'ANSWER: 20. 4n + 3

21. If V(n) = 4n + 3, find V(n + 1)

WWER: 21. V(n + 1) = 4(n + 1) + 3 = 4n + 7

1

22. f(1) = 2; for n > 1, f( n) = [f(n-1)] n+1.
1

22a; f(2) =

25 .



22b. f(3)

'ANSWERS:

= 22c. f(4) = 22d. n) =

22a.

22d.

f(2) =

-f(n) =

1

3
1

42b.
lc

f(3) =

1

4 22c. f(4) .= 5

P(1) = 2,

23s. P(2)

23d.0 P (n)

P(n). 2ia(n-1)

= 2P(1) =

Ji

22b.' P(3) = 22c. P(4)

ANSWERS: 23a. P(2, 4

23d. P(n) := 2n

23b. P(3) = 8 731t, P(4) = 16

Our last example of a recursive definition is called the Fibonacci

numbers.

F(1) = 1 , F(2) = 1 and for all n > 2, V(n)` = F(n-1) + F(n-2)

F(3) -= F(2) + F(1) = 2

24a. F(4) = F(3) + F(2) =

24b. F(5)

24c. F(6) =

24d. F(7)

24e. F(8) =

24f. F(9) =

ANSWERS: 24a. F(4) =.3 -24b. 5 24c. 8 24d. 13 24e. 21

24f. 34

26
0
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25. If F(n) = F(n -1) + F(n-2) what is F(n+1)?

ANSWER: 25. F(n+1) = F(n) + F(n-1

26. In summary, how do we evaluate an expression explicitly defined

in termsof n for the next integer namely (e±1).

ANSWER: 26. Substitute (n+1) for n ineach place n occurs:

O

Z. a A

.451.
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We have already learned that special sets of numbers can easily,

be described by their characteristics. For example what are the

numbers described by the following-sets?

1. N = fxlx is an integer and x > 0}:

ANSWER: 1. The positive integers or natural numbers.

2. {xix ='2k where k e

ANSWER: 2. Positive even Integers

3. {xl x = 2k + 1 where k e 10.

ANSWER:. 3. Positive odd integers

4. {xlx c N and if p iS' a factor of x then p = 1 oi p = x

ANSWER: 4. Primes

O

5. Now, using set notation describe the set of positive powers of two

ANSWER: 5. {xlx = 2n where nc N}.

6. Now describe the positive multiples of nine

{xlx

29
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ANSWER: 6. {xlx = 9k where lca

Suppose that S is a subset of N and has the following properties.

le Si and
4

whenever a ntonbpr k e S then I know,

that (k + 1) also belongs to S

Symbolically S c.. I+, 1 e S, and k e S (k + 1) e S.

7. Cart you show that 2 is an element of S?

ANSWER: 7. 1 e S so (1 + 1) e S that is 2 e S

8. Does 3 belong to S? Why

ANSWER: 8. 2 e S therefore (2 + 1) c S that is 3 e S.

9. Does 817 belong to S?

ANSWER: 9. Yes, but using the above method, it would take a long

time to show it.

10. Is there any positive integer which does not belong to S?

ANSWER: 10. No, although showing that a large integer belongs to S

would take an unusually large amcunt of.time.
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Since any positive integer belongs to S, N S and we know

S N, therefore we can say that S=N or that a set,with.the given

properties is the set of positive integers.

This is the idea behind a very important mathematical tool,

THE PRINCIPLE OF MATHEMATICAL INDUCTION (or The PNI). We so marine

the PMI as follows:

Any set S which

1. is a subset of N,

2. contains 1, and

3. contains x + 1 whenever it contains x

is the set of all natural numbers (i.e. S a N).

Let'us look at at example of proof using the PMI. We want to prove

the statement that for all positive integers n, (n2 + n) is divisible

by 2. Now we could start cheCking all integers, but we would never

finish. So we use the PMI. If we let G n bceltlx2 + X is divisible

by two), we want to know if G N

First, G N by definition,

Second, we check to see if 1 C.

since 12 1=2 and 2 i- divisible by 2, then 1 eG.

Now we have establish4 the GA= 0. Hence suppose IveG. .This

means that (k2 + k) is divisible by 2 We need to check that

(k + 1)2 + (k + 1) is also in G, that is, that (k + 1)2 + (k + 1)41,s.

divisible by 2.

Now lets look at (k + ) 2 + (k + 1) - k2 + 2k2 +1+k+ 1

= (k2 + k) * (2k 4- 2)

= (k2 + k) + 2(k + 1)

O

0^



4

11. Is k2 tuo?

ANSWER: 11. Yes, since keG.

12. Is 2(k + 1) divisible by two? Why?

ANSWER: 012. Yes, because 2 is a factor.

We can now see that (k2 + Ic) + 2 (k + 1) is divisible by two

since this expression is the same as (k + 1)2 + + 1) we see that

+ 1) eG.

To summarize, GC. N.

le G and

k e G + le G so G = N:

Therefore, we conclude that for all positive integers n, n2 + n'is

divisible by two. Since n2 + n = n(n + 1) we can verbalize this fact

as follows: The product of two consecutive positive integers is an

even positive integer.

Before we proceed further, we will adopt some useful notation.

Notaricn: P(n) (read, "P of'n") will represent some statement

about positive integers, such as,'"n2 + n is divisible

by two." Then to say P(1) is true, is to say "12 + 1

is divisible bq two" is a true statement. Similarly

P(k) will mean, "k2 + k is divisible by two."

.6
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13. Let P(n) be: 13 + 23 + 33 + " n3 = n2 (n + 1)2
4 '

13a. P(1):

13b. P(2):

13c. P(5):

13d. P(k):

13e. P(k + 1):

t

ANSWERS: 13a. 13 = 12 (1 + 1)2 '13b. 13 + 23 p 22 (2 + 1)2

4 4

13c. 13 + 23 + 33 + 43 + 53 = 52 (5 + 1)2
ory

4

13d. 13 + 23 + 33 + + k3 = k2 k 4 1)2
4

13e. 11 + 23 + 33 + k3 + (k + 1) 3 = k + 1)2 (k + 2) 2

4

We now restate the PHI using our new notation.

The

Let P(n) be a statement about positive integers.

(i) P(1) is true, and 1

If
(ii) for every positive integer k, if P(k) is true,

[

,

then P(k + 1) is true,
..,

then P(n) is true for all positive integers.

In order to see that this formulation of the PHI is a consequence of
7

our first one (p. 7) we let

G = {nsITIP(n) is true)

and we suppose that both (i) and (ii) in the above formulation hold.

33
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14a. (i) tells us that G contains .

14b. (ii) tells us that if keG then
\:.

14c. Therefore, by our first formulation of the PMI we can conclude
1

6

that G

ANSWERS: 14a. 1 14b. (k +1) eG 14c. G = N, or that P(n) is true

for allpositive integers.

We will look at another proof by use of the PMI, first however, let us

review the procedure in light of our new viatation.

Suppose we are given some statement P(n) about positive fhtegers.

To prove that"P(n) is true for all positive integers we must show that

P(n) satisfies conditions (i) and (ii) of the PMI.

15:

15a. To show that condition (i) is satisfied we must show that

is true.

15b. To show that condition (ii) is satisfied we must assume that

is true, and then..show that is true.

ANSWERS: 15a. P(1) 15b. P(k), P(k + 1).

16: Consider the following particular statements

1 - 1P(1)
2

P(2) 2
2 = 1 + 3

3 - 1 + 3 + 5P(3)
2
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16a. P(4) 42 =

16b. p(s) 52 =

16c. P(10) 102 =

7

ANSWERS: 16a. 1 + 3 + 5 + 7 16b. 1 + 3+ 5 + 7 + 9

16c. 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19

We note that each of these particular statements is true. From these

particular statements one might obtain (inductively) some general

statement. Then we should ask, "How can we be certain that our

general statement is Le?"

Wewill inspect some of these particular statements more carefany.

17: P(2) says, "The sum of the first two odd positive integers is

equal to 22."

P(4) says, "The sum of the first four odd positive integers is

equal to 42."

tia. P(5) says,

17b. P(10) says,

17c. What general statement can be obtainP4 from the particular

statements given in this example? '"The sum of

ANSWERS: I7a. "The sum of the first five odd positive integers is

equal to 52." 17b. "The sum of the first ten odd positive

inteEers is equal to 102." 17c. The first k odd positive.

integers is equal to k2."
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Recall that any odd positive integer can be written as an even positive

integer, decreased by one. That is, for each positive integer n, 2n is

even, and 2n - 1 is odd.

18: Observe that the third odd positive integer is 5 = 2.3 - 1.

18a. The fourth odd positive integer is 5 + = 7 = 2'4 - 1.

18b. The fifth odd positive integer is 7 + = 2 .- 1.

she kth odd positive integer is 2k -

18c. The (k + 1)th odd positive ittreger is 2k - 1 + = 2(k + 1) - 1.

r = 2k + 1

ANSWERS: 18a. 2 18b. 2, 9, 5 18c. 2.

Therefore in mathematical symbols, our general statement becomes:

P(n): 1 + 3+ 5 + + (2n - 1) = n2

We arrived at this general statement inductive hence, we do not know .

0%,

that it is true for all positive integers n. W "do, howeveknma thgt

P(n) is true for n = 1, 2, 3, 4, 5 and 10. In order to prove that P(n)

is true.for all positiVe integers, we will appeal to the PMI. Review

the procedure for applying the PHI in the paragraph preceding and

including Frame 11.
-ea

We have our\statement P(n), about positive integers which is

P(n): 1 + 3 + 5 + -." + (2n - 1) = n2

. We must show that P(n) satisfies conditions (1) and (ii) of the PMI.

We know that P(1), P(2), P(3), P(4), P(5), and P(10) are true so

condition (1) is certainly satisfied. To show that conditidn (ii) is

also satisfied we assume that P(k) is true and we need to show that

this implies that P(k + l) is true.



19: P(2) true, means that 1 + 3 = 22

19a. P(3) true, means that 1 + 3 + 5 =

19b. P(4) true, meand that

19c. P(k) true, means that 1 + 3 + 5 + +

19d. P(k + 1) true, means that

9

ANSWERS: 19a. 32 19b. 1 + 3 + 5 + 7 = 42 19c. (2k - 1), k2

19d. 1 + 3 + 5 + + (2k - 1) + (2k + 1) = (k + 1)2

Now let us suppose that P(k) is true.

20: P(k): 1 + 3 + 5 + + (2k - 1) = k2

Now add (2k + 1), the (k + 1)th odd positive integer to both

members of P(k). (To go from k= 3 to k = 4, we added the fourth

odd number, 7, to both members.)

20a. 1 + 3 + 5 + + (2k - 1) = k2 +

20b. The left member of 20a is the sum of the first

many) odd positive s.

20c. The right member of 20a is k2 + (2k + 1) = k2 + 2k + 1 (Factor)

(how

20d. Hence, 20a becomes

1 + 3 + 5 + + (2k - 1) + (2k + 1) = (k + 1)
2 which is P(

20e. The expression in 20d says that the sum of the first (how

many) odd positive integers is equal to

ANSWERS: 20a. (2k + 1), (2k + 1) 20b. k + 1 20c. (k + 1)2

20d. (k + 1) 20e. 1, (k + 1)2.
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Hence, wp have deduced the truth of P(k + 1) after assuming that P(k)

was true. So condition (ii) of the PMI has been satisfied. Therefore,

by the PMI, P(n) is true for all positive. integers n.

We have proved the following theorem: For every positive integer

n, the sum of the first n odd positive integers is equal-to n2. We

should note that the source of this theorem was induction, the assertion
*

was found experimentally, and the proof by the'PMI was an example of

.deduction.

Let us consider a diffetent type of problem using the PMI. Recall that

1! = 1 and 2! = 2x1 and n! = nx(n - 1) x 2x1

a. What is (3!)?

b. What is 23?

c. Then 3! is >, <, or = 23 (circle correct answer)

(a. 6 b. 8 c. <)

What is the relationship of 4! and e?

24 = 4! > 24 = 16

Check 5! and. 25 and we see 5!, j J 25

120 = 5! > 25 = 32

It appears that if n > 3 then n 2n

To prove it, let P(n) be the st tement

(n + 3i! > 2 (n 3j/'

by our work above, P(1) becomes0! > 24 which is tr

21. What is P(k)?

ANSWER: 21. (k + 3)! > 2k + 3

38
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22. We need to show that if P(k) is true then P(k + 1) is true.

What is P(k + 1)?

ANSWER: 22. ek + 1) + 31! 213k + 1)+D i.e., (k + 4)1 > 2k + 4

* (k'+ 3)1 > 2k + since P(k) is true

** k + 4 > 2 since k is an integer

recall that if a > b and c > d > o then ac > bd.

Applying this fact*to equation * and ** we get

-(1(-1- 4) Ik 3)! > 2(2k + 3)

that is

(k + 4)! > 2(k +4) but this is P(k + 1)

therefore P(1) is true. P(k) true implies P(k + 1) true so P(n)

is true for all n.

Lets look at the following geometric problem. we have a

segment of length 1 given to us, can we, using a compass and a ruler,

construct a segment of length /IT for each integer n? We shall

attempt' to answer this by using the PMI.

23. What does P(n) become?

ANSWER: 23. P(n) is the statement, a segment of length 41-- can be

constructed using a compass and a ruler%

Is P(1) possible? Yes, since we are given a segment of length 1

and'Id--= 1.
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24. Suppose P(k)-is true, then what do we know?

4.

0

ANSWER: 24. A segment of length 147 can be constructed.

Now consider the following. We can construct a right triangle

with a ruler and a compass. Mark off the legs with lengths 1 and

lac as shoWn. (Remember that IK is possible since that is what P(k)

tells us.)

1

Thus a segment of length

true when P(k) is true.

Then, by the Pythagorean Theorem,

c2 (10)2 + 18

c
2 = k /+ 1

so, c = 4k-1.7r.

14-c----1-1 can be constructed so P(k + 1), is

E=1

So, P(1) and P(k + 1) is true whenever P(k) is true tells us by

applying the PMI,,that P(n) is true for all neN.

We Will conclude this lesson with one additional application of

the PMI. .114194,4,

Let P(n) be the statement

P(n): 2 + 4 + 6 + + 2n = n(n + 1)

We wish to show that P(n) is true for every positive integer n.

Recalling that the PM states that, if

25:

25a. is true, and

25b. for every positive integer k, if

tHen
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25c. -then

13

We should agree that the PHI is suited to answer our question.

ANSWERS: 25a. P(1) 25b. P(k) is true, P(k + 1) is true.
6
25c. P(n) is true for all positive integers.

26: Write out each indicated statement where we have

P(n): 2 + 4 + 6 + + 2n = n(n + 1) .

26a. P(1) :

26b. P(2):

26c. P(k):

026d. P(k + 1):

26e. Is P(1) true?

ANSWERS: 26a. 2 = 1(1 + 1) = 2 26b. 2 + 4 = 2(2 +1) = 2.3 = 6

Zfin. 2 + 4 + 6 + + 2k = k(k + 1) 26d. 2 + 4 + 6 +

+ 2k + 2(k + 1) = (k + 1) (k + 2) 26e. Yes.

274 In order to show that P(k) true implies P(k + 1) true, we assume

that P(k) is true.

27a. The left member of P(k) is the sum of (how many) terms.

27b. The left member of P(k + 1) is the sum of (how many)

terms.

27c. To show that P(k) true implies P(k + 1) true, we add

to both members of P(k) and show that we have arrived at P(k + 1).

.41
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ANSWERS: 27a. k 27b. k + 1 27c: 2(k + 1)

28: Perform the operations of 27c, thus showing that P(k) true

implies P(k + 1) true.

ANSWERS.: 28. 2 + 4 + 6 + + 2k + 2(k + 1) = k(k + 1) + 2(k +1)

k2 + k + 2k + 2

=,k2 + 3k + 2

(k.+ 1) (k + 2)

29: What is your conclusion concerning P(n)? Why?

ANSWERS: 29. P(n) is true for all positive integers because P(n)

satisfies-the conditions of the PHI.

In order to help prepare for the test over this unit, the

following questions are proposed.

1. What is the statement of the MI?

a. In terms of sets.

b. In terms of statements;

2. What is the procedure for using the PHI to prove a theorem?
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° EXERCISE I. Prove the statement that'

n
E i = n(n+1)

i=1 2

Proof by PHI

P(n) is statement I i n(n+1)
1=1 2

P(1) is true since 1 = (1) (1+1)
2

Suppose P(k) is true, then

E i (k)(kfl)
i=1 -2

J

To show P(k+1) is true,'complete the following

k+1 k
El.= E i + k+1 = (k), (k+1) + k+1
i=1 i=1

= k2 + k + 2(k+1)
2 2

ANSWERS: k2 + k + 2k + 2 k2 + 3k + 2 (k +1)(k +2)

2 2 2

P(k+1) is tru6sso by PHI, P(n) is true for ell n.

L3
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EXERCISE II

Sum of Squares of the firgt n integers is (n)(n+1)(2n+1)
6

To prove this by PMI, we first need to show P(1) is true.

1. What is P(1)? Is it true?

ANSWER: 1. 1 = (1)(2)(3) = 1; yes
6

2. We now suppose. that P(k) is true. What are we assuming?

It

ANATER: 2. P(k) = E 12 = (k)(k+1)(2k+1)

i=1 6

,3. How do we state P(k + 1)?

k+1
ANSWER: 3. E 12 = (k+1)(k+2)(2k+3)

6

i=1

To show P(k+1) is true, start with

k+1
E i2 = E i2 + (k+1)2 = (k)(k+1)(2k+1) + (k+1)2

A =1 6

By appropriate algebraic manipulation, it can be shown that this

expression is equal to (k +l)(k +2)(2k +3)

6

(k+1)(k+2)(2k+3) = (It2+3k+2)(2k+3) = 2k3 +9k2 +13k +6

6 6 6

and

111
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1

ht)(k+1)(2k+1) + (k+1)2 = 2k3+3k2+k + 6(k+1)2
6 6 6

= 2k3+3k2+k+6(k2+2k+1)
6

= 2k3 +9k2 +13k+6

6

Thus P(1) is- true;

P(k+l) is true whenever P(k) is true; so

P(n) is true for all n.

45
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EXAM

Problems I and 2: Refer to the Following set G.

Let G = {neNIP!n) is true}

1. Tosay-lieGshe must show that

A. P(1) is true
B. P(k) .ir true implies P(101)

C. G N

D. None of the above

2. If we know 1E.G, than G = N if we also show

A. G 4: N

B. if P(k) is true then P(k +l) is true

C. P(1), P(2), P9) are .all true

D. G is infinite.

3. Let P(n) be a statement for which P(1) is true and P(k +l) is true

whenever P(k) is true. Which of the following is (are) true?

A. There is a positive integer s such that P(k) is not true.

B. For any positive integer m, P(m) is true.

C. Both A and B
D. Neither A nor B

Let G = {nal(2n3-n) is divisible by 71 then

A. leG
B. 2tG

.3E_G

D. all of the above.

5. The set G (in Mo. 4) is not equal to N because

A. 10
B. keG doeS riot imply (k+1)eG

C. G

D. none of the above

6. Let P(n)Ube the statement n3-n is divisible by 6.

A. 0 is, divisible by 6,

B. G t 0
C. G 1:14

D. P(k) implies P(k+1)



. In Problems 7 and 8, Let P(n) be the statement about

positive integer:
4
n+1

+ 5
2n-1 is divisible by 11

7. To show P(3) is true we need to show that

A. 4
3

+ 5
3

is divisible by 11.

B
. 4

4
+ 5

5
is divisible by 11.

C. P(3) is false and cannot be shown true.

D.
3.11 4n+1 + 52n-1,

8. It is easy to show that P(1) is true. In order to show that

P(n)° is true for all positive integers n, (using the PPM), we

must show for all positive integers k,

A. P(k) is true
B. P(k +l) is true

C. P(k.+1.1 is true whenever P(k) is true

D. None of the above

9. Uhich of the following statements would be appropriate for proof

by the PMI?

A. For every ncN, if n
2 is divisible by 5, then n is divisible

by 5.
B. For every neN, if.n is odd then n1 is odd.

C. For every neN, 611+2 + 72"1 is divisible by 43.

D. None of the above.

10. Let P(n) be the } following statement about positive integers.

P(n): 2 +,4 + 6 + + 2n = n
2

+ n + 1

P(n) is NOT true for all positive integers because:

A. P(1) is not true.
B. Assuming P(k) true, it is impossible to deduce P(k +l) true.

C. P(1) is true but P(2) is false.

D. P(n) is true for all positive integers n.

11. Let P(n) be the following statement about positive integers.

P(n): 1 + 2 + 3 + + n n2 +1

P(n) is NOT true for all positive integers because:

A. P(1) is not true.

B. Assuming P(k) true, it is impossible to deduce P(k +l) true.

C. It is impossible to determine the truth value of P(n).

D. None of the above.
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12. Let P(n) be a statement about positive integers. In order to

show that if P(k) is true, then P(k+1) is also true, we take the

truth of P(k) as a premise and then deduce:

A. P(1)
B. P(k +l)

C. k + 1

D. We cannot logically accept P(k) as a premise.

The following questions are "short answer" and will require that you

fill in the blanks.

Let P(n) be the following statement about positive integers.

P(n): 2 + 2
2

+ 2
3
+ + 2

h
= 2

n + 1 -2.

We wish to shoW that P(n) is true for every positive integer n.

13. First we must show that is' true.

14. Secondly, we assume is true and deduce that

is true.

Write out each indicated statement;

15. P(1):

16. P(2):

P(Ue 2 + 2
2

+ 2
3

= 2
3

*4 - 2

17. P(k):

18. P(k + 1): 2 + 2-
2
+

3
+ + 2

k
+

19. Is P(1) true?

20. Is P(2) true?

In order to show that P(k) true implies that P(k 4. 1) is true, we

assume that P(k) is true and then show that this implies that

P(k + 1) is true.

21. The left member of P(k) is the sum of (how many) terms.

22. The left member of P(k + 1) is the sum of (how many) terms.

23. 'To show that P(k) true implies P(k + 1) true, we add

to both sldes of P(k) and show that we have arrived at P(k + 1).

24. Perform the operations of 23, thus,show that P(k) true implies

P(k + 1) true.



25. What is your. conclusion concerning P(n)? Why?

Now let P(rQ) be the following statement about positive integers.

P(n): For every positive integer n, n3 - n is'divisible by 3.

26. In order to show that :t(n) is true for all positive integers n,

we must show that

(i)

Write out each indicated statement. r-

27. P(1):

28: P(2):

29. P(k):

30. P(k + 1):

It"

31. Is P(1) true?

32. Is P(2) true?

We wish to show that P(k) true implies that P(k + 1) is true. Assume

P(k) is true and consider:

(k.+ 1)3 - (k + 1) = (k3 + 3k2 + 3k + 1) - (k + 1)

(k3 + 3(k2 + k)

33. Is k
3
- k divisible by 3? Uhy?

34. Is 3(k2 + k) divisible by 3? Why?

35. Therefore, P(k) true implies
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36. What conclusion can you make regarding P(n)? Why?

-5

37. Let P(n) be some statement about positive integers. Explain how

you would prove that P(n) is true for all positive integerstusing

the PMI. (Be Ty concise.)
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38. Prove the following by the PMI.

let P(n) be the statement,

2 + 22 + 23 + + 2n 1=, 2(211.-1).

that is
n 0-

£ 2i Ta 2(2n-1).
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RETENTION EXAM

Problems 1 and,2: Refer to the following set G.

Lit G = {neNIP(n) is true}

1. To say ifG, we must show that

A. P(

i

1) is true
B. P(k) is true mplies-P(k+1)
C. GSN

. D. Noneof the above

2. If we know leG, then G = 4 if 'we also show

A. GSN
B. If P(k) is tru4 then P(k+1) is -true
C.: PM, P(2), P(3') are all true
D. G is infinite./

3. Let P(n) be a statement for which P(1) is true and P(101) is true
whenever P(k) is true. Which of the following is (are) true?

A. There is a positive integer s such that P(k) is not true.
B. For any positive integer m, P(m) is true.
C. Both A and B
D. Neither A nor B.

4. Let G = {neNIn2-n+13 is prime} tien

A. leG
B. 2eG
C. Neither A nor B
D. Both A and B

5. The set G (in No. 4) is not equal to N because

A. leG
B. There is a keG with
C. G =
D. None of the above

6. Let P(n) be the statement n2 - n is odd. N because

A. 14G
B. G= 0 'e

C. P(k) implies P(k+1)
D. False G =
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In Problems 7 and 8, Let P(n) be the statement about
positive integer: n4.1

4" '+ 5 " is divisible by 11

7. To show P(3) is true we need to show that

A. 43 + 53 is divisible by 11.

B. 4
4
+ 5

5
is divisible by 11.

C. P(3) is false and cannot be shown true.
3." 4n+1 52n-1

8. It is easy to show that P(1) is true. In order to show that
P(n) is true for all positive integers n, (using the PMI), we
must show for all positive integers k,

A. POO is true
B. .P(k +1) is true

C- P(k+1) is true whenever P(k) is true
D. none of the above

9. Ilhich of the following statements Would be appropriate for proof
by the PMI?

A. F every nen, if n
2

is divisible by 5, then n is divisible

Y 5
B. For every nen, if.n is odd then n

1
is odd.

-t. For every nen, 6
n+2

+ 7
2n+1

is divisible by 43.
D. None of the above.

10. Let P(n) be the following statement about positive integers.

P(n): 2 + 4 + 6 + +26 = n2 + n + 1

P(n) is NOT taue for dll positive integers because:

A. P(i) is not true.
B. Assuming P(k) true', it is impossible to deduce P(k +l) true.
C. P(1) is true but P(2) is false.
D. P(n) is true for all positive integers n.

11. Let P(n) be the following statement about positive integers.

P(n): + -

is NOT true for all positive integers because:

A. P(1) is not true.
B.' Assuming P(k) true, it is impossible to deduce P(k+l) true.

It is impossible to determine the truth value of P(n).
D. None of the above.
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12. Let P(n) be a statement about positive integers. In order to
show that if P(k) is true, then P(k+1) is also true, we take the
truth of P(k) as a premise and then deduce:

A. P(1)
B. P(k+1)
C. k + 1
D. We cannot logically accept P(k) as a premise.

The following questions are "short answer" and will require that you
fill in the blanks.

Let P(n) be the following statement about positive integers.

p(n):- 2 22 23 2n 2n + 1

We wish to show that P(n) is trut for every positive integer n.

13. First we must show that is true.

14. Secondly, we assume is true and deduce that
is true.

Write out each indicated statement.

15.

16.

P(1):

P(2):

P(3).: 2 + 22 + 23 . 23 4. 1 -2

17. P(k):

18. P(k + 1): 2 + 2
2

+ 2
3
+ + 2k +

19. Is P(1) true?

20. Ii P(2) true?

In order to show that P(k) true implies that P(k 1) is true, we
assume that P(k) is true and then show that this implies that
P(k +1) is true.

21. The left member of P(k) is the sum of (how many) terms.

22. The left member of P(k + 1) is the sum of (how many) terms.'

/4) 23. To show that P(k) true implies P(k + 1). true, we add .

to both sides of P(k) and show that we have arrived at P(k + 1).

24. Perform the operations of 23, thus show that P(k) true implies
P(k + 1) true.
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25. What is your conclusion concerning P(n)? Why?

p

Mow let P(n) be the following statement about positive integers.

P(n): For every positive integer n, n
3
o n is divisible by 3.

26. In order to show that P(n) is true for all positive integers n,
we must show that

(i)

(ii)

Write out e ch indicated statement.

27, P(1):

'28. P(2):

29. P(k):

30. P(k + 1): G

31. Is-P(1) true?

32. Is P(2) true?

We wish to show that P(k) true implies that P(K + 1) is true. Assume
P(k) is true and consider:

(k + 1)3 - (k + 1) = (k3 + 3J(2 + 3k + 1) (k + 1)

= (k3 - k) + 3(k2 + k)

33. Is k
3
- k divisible by 3? !thy?

34. Is 3(k2 + k) divisible by 3? Why?

35. Therefore, P(k) true imlies
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35. What conclusion can you make regarding P(n)? Uhy?

37. Let P(n) be some statement about Positive integers. Explain horn

you would prove that P(n) is true for all positive integerst using
the PM. (Be very concise.)

4,

a



38. Prove the following by the PM.

Let P(n) be,the statement:

n2 > 2n - 1

.
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APPENDIX E

RAW DATA FOR STUDENTS IN THE STUDY



RAW DATA FOR SUBJECTS IN THE STUDY

Column--Heading--Code

1. Student.NuMber
2. Section 1 or 2
3.' Method 1 (Recursive) or 2 (PHI) first
4. Score on Posttest
5. Score en Retention test
6. Change Score

0 1 2 3 4 5 6

01 1 2 70 61 -9
02 2 2 56 61 +5
03 2 2 61 54 -7

04 1 2 60 67 +7 *0.

05 1 2 64 75 +11

06 2 2 67 65 -2
07 2 2 58 67 +9
08 2 2 63 60 -3
09 1 2 66 62 4
10 2 2 72 53 -19

11 1 2 78 77 -1
12 1 2 72 72 0

13 1 1 51 53 +2
14

,
-, 1 52 '54 +2

15 2 1 56 60 +4

16 2 1 63 68 +5
17 1 1 65 65 0
18 1 1 58 61 +3
19 1 1 69 71 +2
20 2 1 66 70 +4

21 2 1 65 56 -9
22 1 1 73 74 +1
23 1 1 70 66 -4
24 2 1 78 75 -3
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