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the literature in selected interest areas of mathematics education.
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for the development of furture Mathematics Education Reports are estab-
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National Council of Teachers of Mathematics, the Special Interest Group

for Research in Mathematics Education, the Conference Board of the

Mathematical Sciences, and other professional groups in mathematics

education. Individual comments on past Reports and suggestions for

future Reports are always welcomed.
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Algorithmic Learning: Introduction

Marilyn N. Suydam

To many people, "algorithmic., learning" means "the learning of

algorithms". They think of algorithms for addition, subtraction,
multiplication, and division with whole numbers, such as:

/

6,
54

+37 4
11 27

80
91

86

13

183W
x7 18

774 74
602 54

6794

They think of algorithms for operations with fractions and dedimals, of

a square root algorithm, of procedures in the content of algebra and

calculus and other mathematical areas.

But algorithmic learning involves more than just the learning of

specific algorithms. It connotes having learners generalize from

specific skills to broader process applications. It is related to

learning-how-to-learn. As Simon (1975) pointed out, teaching the algo-

rithm and teaching the characteristics of an algorithmic solution are /

two different things.

The importance of algorithmic learning is being increasingly

recognized, across other content areas as well as within mathematics.

In the past few years, it has been developed as the approach in at

least one textbook. The research interest in artificial intelligence

is built on a foundation of algorithmic learning. Several Russian

psychologists, among others, have been Very much concerned with the

implications of algorithmic learning (Gerlach and Brecke, 1974; Landa,

1974).

The focus of much current writing is still on algorithms, but the

need to provide for algorithmic learning is becoming increasingly more

evident. The use of hand-held calculators at all levels from the ele-

mentary years through life has raised new questions about algorithms--

3



and emphasizes the need to explore ways in which algorithmic learning
can be .promoted, as calculators decrease the need to focus'so much of
our attention on the algorithms for calculation.

Explanation

This document is not intended to be all-inclusive (although we had
dreams of being comprehensive at one early point:). It is basically the
reiport of a year of emphasis on algorithms and algorithmic learning in a
seminar for mathematics education doctoral students at The Ohio State
University. It dogsn't include all that the seminar encompassed. But it
does present some results, both in the form ofresearch reviews and mini-
research studies. It is hoped that it will serve to have others do more
thinking.about what is known about algorithmic learning, and, even more
important, to think about what still needs to be explored and learned,

In proposing the seminar, it was noted that there is a tradition of
concern for algorithms in the computational orientation of elementary
school mathematics, but new information-processing models of learning
seem to be stimulating a new body of research problems and studies. A
more general interest is suggested, in broadly conceived algorithmic
learning non-specific to the computational needs of young children. The
relation of algorithmic learning to problem solving, logical ability,
creativity, and the like have not been explored. And they should be.
Our focus was indicated by this flow diagram for our initial discussions:

What in an algorithm?
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Thus, this document attempts to:

(1) review the status of some aspects of research related to
algorithmic learning across the mathematics curriculum,

and

(2) indicate a few of the directions which research on algo-
rithmic learning and on computational algorithms has
taken and might take.

It is not intended to be a state-of-the-art paper, but only another con-

tribution to the increasing documentation on algorithms and algorithmic

learning.

Definitions

We worked for many hours trying to find good definitions for "algo-

rithm" and "algorithmic learning". In the course of this serarch, we
found that algorithms-have been defined in two ways:,

-(1) By example, especially at the elementary school level
and in elementary school mathematics content and method
textbooks for teachers.

(2) By simple definitions, such as:

(a) "A computational proced e especially one that
involves several steps, is often called an algo-

rithm." (Bouwsma, Corle, and Clemson, 1967, p.

(b) "Each arrangement of nuibers for purposes of com-
putation was called an algorism. .Many algorisms,

or ways of ,setting down and arranging the figures,

were tried for each of the four processes before

those we now use finally prevailed." (Buckingham,

1947, p. 15)

(c) "The most natural algorism, or written record of
the children's thinking, . . ." (Clark and Eads,

1954, p. 75)

(d) "An algorism is both the procedure for carrying out
an operation and the arrangement of the numerals

and operational symbols for computation." (Hollister

and Gunderson, 1964, p. 29)

(e) "An algorithA(is a set of procedures for perform-
ing a computation . . ." (Kelley and Richert,

1970, p. 47)
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(f) ". ..J general procedure, called an algorithm,"
(Mueller, 1964, p. 71)

(g) ". . the usual term algorithm will be used to
refer to any computational device [where 'device'
is a written procedure]." (Ohmer and Aucoin,

1966, p. 89)

(h) ". . . the advocates of the Hindu-Arabic system
with its algOrithms, or procedures, for computa-
tion." (Peterson and Hashisaki; 1963, p. 18)

(i) :.-arithMetic based on the Hindu-Arabic numer-
als, more especially those that made use of the
zero, came to be called algorism as distinct from
the theoretical work with numbers which was still
called arithmetic . . . we have the word loosely
used to represent any work related to computation
by modern numerals and also as synonymous with
the fundamental operations themselves and even
with that form of arithmetic which makes use of
the\abacus." (SMith, 1925, pp. 9, 10-11)/

(j) "From a mathematical standpoint we may character-
ize an algorithm in terms of a finite alphabet -(the
digits 0.to 9 plus a few additional symbols in the
case of arithMetic), an\infinity of wods made up
of a sequence of elementary steps or rules that
are required to handle any initial work in a unique

way. The algorithm for column addition is a good
example of such a scheme. . -."(Suppes, Jerman,

and Brian, 1968, pp. 289-290)

We attempted to evolve a more inclusive definition, one not so

specific to mathematics:

algorithm: a method (e.g., for computation) consisting of
a finite number of steps, the isteps being taken

in a preassigned order and reroducible, that
is specifically adapted to the solution of prob-
lems of a particular category

And for

algorithmic learning: the process of developing and/or
applying methods or procedures, i.e., algo-
rithms, with the goal of learning-how-to-learn.



Beilin (1974) summarizes the problem in discussions and expIbra-

tions of work on algorithms and algorithmic learning;

The difficulty over the use of algorithmic methods stems

in part from the lack of differentiation between con-
ceptual algorithms and instructional algorithms. Instruc-

tional algorithms are devices, usually symb'olic, that
provide standardized ways of apprbaching the analysis or
solution of problems and are essentially pedagogical

instruments. . .

Although practical considerations are important-in con-
sidering the value of algorithms, even more'important
is the need to determine what is essential for thought
and problem solving to occur. . . .

Algorithms, thus, are not Amply arbitrary devices for
solving school problems but enter into the very nature

of the processes by which cognition develops. They may

serve as instructional devices as well, but developments

in computer simulation of thinking show that algorithms

serve 'a much more serious and necessary function in

reasoning and learning. . . . The task for mathematics

education is to develop instructional algorithms whose
structure and content will articulate most adequately
with the structure and nature of conceptual algorithms.

(pp 19-130)
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There is nothing either good or bad but thinking makes it so.

( amlet--Act 2, Scene 2, Shakespeare)

4 A

Conditions for Algorithmic Imagination

Alan R. Osborne

Computers and small electronic calculators have recently become a

part of our culture. What was/a futuristic fantasy of science fiction

(Asimov 1957) is now a portion of the reality requiring the thought and

attention of educators. There is a reasonable expectation that calcu-

lators and computers will become more accessible and common in the

immediately foreseeable future... Some would argue that this decreases

the importance of teaching computation in the schools; Others would

remark that the concern for "Why Johnny Can't Add" is misplaced and

inopportune. Although such arguMents may have more credence than they

would have had even five short years ago, they are-strawmen diverting

the attention of,designers of curricula and theoreticians of the in-

structional process-from more pressing and vital questions about the

experience of children and youth with arithmetic and mathematics.

The purpose of this paper is to-raise some questions about the

focus of mathematical experiences in the school given the fact of ready

access to calculators and computers during the adult life of children

presently in today's schools. The questions and issues-raised by the

community of scholars in mathematics education within the context of

philosophizing about or considering needed research within the domains

of computational proficiency and instruction for algorithms indicate

some profound oversights in terms of the future needs of children.

A theme pervading Pirandello's plays is that reality is determined

by the thinking and feeling of an individual. In Six Characters in

Search of an Author (Pirandello, 1922), each character constructs his

own reality. Historians of science hypothesize the same type of opera-

tional determination of reality for individuals contributing ideas to

the evolution of science. Boring (1929) defines and documents the

concept of zeitgeist operating within the field of psychology in his
A History of Experimental Psychology. The prevailing philosophical

orientation and spirit of the times, the zeitgeist, is a context that

determines the categories of ideas,to be prized and the questions and

research important for psychologists of a given era to advance the

state of knowledge. This provides limits to the imagination in'muc

.the same sense of T. S. Kuhn's concept of paradigm as explicated" his
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study of the historiography of science, The Structure of Scientific
Revolutions (1962). Kuhn extends the concept of zeitgeist with the
concept of,paradigm to encompass the model of the science held or
.believed by practitioners in the field. This paradigm determines and
is determined by what are considered legitimate questions and problems
in that field, allowable research procedures, the philosophical orien-
tation of the field, the type of apparatus used, and what is considered
to be known with a degree of certainty. For both Boring and Kuhn, the
limitations apply to the individual scholar and to the community of
scholars as a whole. For the individual, this provides the matrix of
beliefs, understandings and procedures from whence develops his sense
of appropriateness for his own act.ivitics and the delimitations of his
interests. Induced by his membership in the community of scholars in
his field, it is ;a function,of the nurture provided by that field which
yields both the Wellsprings of creativity and the limits on the imagina-
tion for an individual scholar.

Have the same sorts of factors operated within the field of
mathematics? We would argue that t'ais must be the case. Many creators
of mathematics have-demonstrated keen awareness of the legitimatizing
character of the paradigm held by the community of scholars in
mathematics. Consider Cardan's apologies in reporting his work with
complex, non-real numbers or the hesitancy evidenced by the inventors
of non-Euclidean geometry in publishing their studies. These two ex-
amples suggest a retarding effect on dissemination was operant if a
creator of mathematics was (or is) aware of the existence of a paradigm
within his discipline when his creation does not fit the paradigm. Many
other examples can be found in the history of mathematics.

Of greater interest for our purposes is the set of ideas and
approaches to mathematical problems and theories which were not created
because of the existence of a paradigm. That is to say, have paradigms
had a retarding effect (other than slowing dissemination and the spread
of ideas) on the advance of the field of mathematics? No historical
answer to this interesting question exists. One cannot provide histori-
cal evidence for the causes of a non-event; one must limit the arguments
to supposition. Some examples of such arguments do exist: For example,
Osborne (1968) argues that the Greeks' careful sense of closure con-
cerning operations with lengths, areas and volumes prohibited their
understanding and quantification of momentum even though the writings
of Aristotle indicate that momentum was an important concept to the
Greek scientists. Understanding of this rudimentary concept of science
would await Galileo in an era in which the paradigm of Greeks' careful
reasoning was relaxedand freed by the impact of the Dark Ages and the
probable non-:understanding of the niceties of Greek thought by the Arabs.

The history of modern algebra suggests the impelling force of
mathematical paradigms or traditions. emming from a Greek tradition
of geometrical algebra, it was the mid - fifteenth century before Bombelli
would fOrmulate algebraic arguments free of the hampering restriction of

14
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providing a magnitudinal base for numerical arguments. Vieta, approxi-

mately 25 years later, moved algebra somewhat in the direction of its

own notation, yet it would be the turn of the eighteenth century before
Peacock would attempt to free algebra, completely from the need to pro-

vide 'real' referents for algebraic symbols. The traditions of pro-

viding real referents for the symbols of algebra suggest a hampered
development of quaternion algebra by Hamilton and the more-generalized

description of a vector space by Grassman. Indeed, both Hamilton and

Gra$sman were concerned with the question of whether a 'real' base for

their algebras existed. One wonders what the retardation effect of the

mathematical paradigm of needing real referents was on the field of

modern algebra.

Paradigms provide limitations on the mathematical imagination and

creativity of both an individual and for the community of users and

doers of mathematics. On the one hand, it may be at' the attitudinal

level for specific individuals, forcing them into a construction of

their own form of reality in the sense of a Pirandello character. On

the other hand, it may be the more direct result of the traditions or

appearance of traditions in the sense of the mathematical paradigms

described above. In school mathematics at the elementary and secondary

levels, the traditions and perceptions of what is legitimate mathematics

is communicated through the experience of each indtvidu/al child. The

experiences of the child determine his zeitgeist or paradigm from whence

his imagination and creativity will well. The modes of thought and

processes that both limit and facilitate the child's productive use of

mathemat are imprinted in much the same sense as the imprinting of

intuition on the very young. The thesis of this paper is that if the
child's experiences within the context of his school mathematics environ-

ment extablish and determine the paradigms of his thought, then mathe-

matics educators need address the problem of whether an appropriate

paradigm for our present and future ages in mathematics is being

established.

We would argue that present school mathematics programs, and the

associated supportive research concerning their effectiveness, does not

address the problem of whether the goals and activities of the programs

build paradigms and/or a zeitgeist fitting children's futtre adult

needs in mathematics. The school mathematics program at the elementary

and secondary school levels has been oriented by a need to produce

students who are computationally proficient. Throughout our history

this has been an important goal. Imagination and creativity, and the

setting up of these attributes of individual performance, has been

directed to the necessity of performing in the traditions of the existing

mathematical thought and uses. The goal of computation has been quite

appropriate. Individuals have needed to possess computational skills
in order to participate fully in an adult life. Further, the very

nature of the scientific and mathematical world has required computational

skill. Note that by computational skill we mean much more than the

capability of working with numbers but also are including the ability

15
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to work with higher-order mathematics even through the undergraduate
level.- Computational skills have been necessary to the individual in
gafning a modicum of control over his personal environment beyond his
application of mathematics to science or to mathematics per se. The

housewife in coping with her budget, the golfer computing his score,
and the home-improvement nut constructing a new patio each need a level
of computational proficiency in order to fulfill expected roles in
their personal life. In order to maximize participation in life, chil-
dren needed to build` computational competence.

Clearly computational ibroficienby is still important. A student
of mathematics needs to know enough and be able to do enough computation
so that teachers and other individuals can communicate with him. But
it is an open question 'whether the operational proficiency of the'past
and present is sufficient to provide the zeitgeist or paradigm needed
for the future adult lif of today's children. Does the present treat-
ment of school mathemati s prepare a child for a world characterized by
ready access to electronic calculators and to computers? Is the scope
and sequence and approach' of the school mathematics program sufficient
to prepare individuals fo intelligent application of devices capable

cl".of carrying out complex omputations with the application of pressure

on some buttons? Are we limiting the sort of problems which children
can solve with the aid of machines?

,

The world of the future will be characterized by extensive use of
the computer at many levels of our society. Individuals need to under-
stand algorithmic processes if they are to take maximal advantage of
computers. Although computer,programmers are presently oeing trained
on the base of present curricular orientation and content, is the
efficiency 02 this training impaired because of a failure to stress the ,

development of algorithmic thinking? Inadvertently are curriculum
designers building limits on students' future creativity in the use
and application of computers? Are habits of thinkIng or mind sets
acquired during the early childhood experiences with mathematics that
limit or retard algorithmic learning? Are students building appropriate

intuitions?

The advent of the machine is \changing the basic nature of mathe-
matical endeavor. Algebra, number theory, and analytis are each evolving
around new processes and styles of thinking which are directly attribut-
able to the machine. Birkhoff's article, "Current Trends in Alge ra"
(1973), argues persuasively that the machine orientation of mathe tical

research in algebra is here to stay. Not only are new processes being
used in modern algebra, but also a different style or type of problem,
is being considered as significant by the algeb aist. The paradigm is

shifting.

Finally, the student entering college today often encounters the
use of the'computer as an instructional device. We do'not refer to.

computer-monitored instruction or computer- assistd instruction that.

16
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uses the power of the machine as a means of teaching the usual mathe-

matics by controlling individualization, administering drill and
practice, or the general administration of instruction. Rather-we are

speaking of the use of the Computer to exhibit and do mathematics that

an individual with a pencil and paper could not accomplish. An example

of this might be the examination of the limit of a function in a

Particular neighborhood. With rudimentary programming skill the student

has access to mathematical examples unimagined in the instructional

sense in the immediate past. An algorithmic sensibility wouldfacilitate
a student's perception of exactly what was happening in the example and
perhaps make it real to him in a sense that is not available to many of

our students-today. We would argue that this entails more than the
experience of programming; to know and be able to use a language is not

sufficient. We would question whether the desired intuitions can bc.
established through experience gained as late as junior high school and
whether they 'can be acquired simply on the base of instruction in
computers without attention to the mathematical orientation of algorithmic

thought. The modes of thought necessary to successful use of the com-

puter are essentially mathematical. A basic component of this mode of

thought is algorithmic in character.

Bronowski (1965), whose field is the foundations of mathematics,

argues persuasively that our mathematical imaginations are limited by

what we know and do in mathematics. His supposition is that we cannot

conceive readily of scientific and mathematical ideas that do not have

a basis in the real number system. McLuhan (1964) hypothesizes that
number concepts operating within the context of printing has channeled

our imagination in directions accounting for the development of our

scientific-technological society. Computational machines are gang to

have a comparable impact and influence on thinking. A new paradigm or

a different zeitgeist will be established with both limits and facili-

tates our creativity in coping with our environment.

A significant question for curricular ';;pecialists is suggested by

the shift to computational machines: Does the present-ourricular
experience of the child facilitate use cf the machine? 'That is4o say,

do present materials help establish.a machine zeitgeist and creativity

that will enchance the child's future work with computational devices?

Or do presently designed mathematical experiences 'inadvertently establish

inhibiting paradigms and modes of thought? We would argue that the

\latter is the case.

At the heart of productive use of computational devices is a

capability for algorithmic thought. Whether the devdce is a low-level,

and-held calculator or the more sophisticated, programmable computer,

e fective power in using the machines depends upon developing a paradigm

o zeitgeist facilitating rather than limiting algorithmic understanding

it and or mathematics. But our thinking and research about algorithms

ha been limited for the most part to purely computational algorithms in

to s of the elementary school arithmetic program. Even when algorithms

17



are implicit in the content ofLhe secondary mathematics sources,"the
algorithms are seldom treated as such but examined as a means to another
content goal. At the elementary level, curricular development and
related research has been limited almost exclusively to the establish-
ment of computational competency rather than encompassing an understand-
ing of algorithmic processes.

The phrases algorithmic thinking and algorithmic learning have been
used above. A word of ekplanation is in order. Textbooks at the school
level do not present algorithms as- processes constructed by people which
entail evaluative decisions. ,Within texts algorithms are defined
explicitly as having a limited capacity, of solving problems and are
seldom considered as providing mathematical problems in and of
themselves. Rather, .a mathematical context is defined to which a
specific, previously constructed algorithm applies. NOw it may be the
case that to this same contest more than one specific algorithm may
apply, but the texts, if they present an alternative algorithm, rein-
force the idea that no decisions are involved concerning the algorithm.
For example, given an addition problem 238 + 95, the_child is taught to
use the regrouping or carrying algorithm:

238

+ 95
333

The child may encounter an diternative algorithm such as

288

+ 95
200
120
13

300
30

3 -

333

But this second algorithm is used with the intent of stregthening the
.student's understanding of ,place value and of the ,initial algorithm.
The first algorithm is the favored technique for the addition problem.
At no point, be it the context of addition at the early elementary
schOol level or other computational contexts, is the learner let in on
the fact that he has a choice of algorithms to apply. He is not allowed
to make decisions concerning the efficacy and efficiency of algorithms.
We would_ argue that. choice decisions between alternative algorithms
constitute an important component of algorithmic thinking.

The example considered above does not argue that the presentation
of alternative algorithms is not an effective teaching device within
the context of current curricular practices. (It should be remarked
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that researchers have amassed little firm evidence concerning how and

when alternative algorithms should be presented or what o tcomes may

be predicted.) Rather it is to point out, through the use of an example
from elementaryschool arithmetic, a characteristic of algorithmic

thinking.. Algorithmic thinking involves more than the application of a

decision-Zree algorithm with the limited capability of only treating .a

single mathematical context. We argue that algorithmic thinking entails

selection and decisions concerning alternate algorithms 1.Lch apply to

a single problem.

The most common strategy for instruction concerning an algorithm

is a progression through three diStinct steps:

1. The necessary, prerequisite mathematics for the
conceptual base is developed carefully.

The algorithm is presented, typically with a
rationale in terms of the conceptual base.

3. Opportunity for practice is provided.

Each of these steps is developed with the learner to,establish an

algorithm which has been constructed or borrowed for the learner by the

author of the instructional materials. Students are not expected to

construct or develop an algorithm themselves even though the necessary

conceptual base has been established as the first step of the instruc-

tional strategy.

Most curricular-reform of -the -past twenty years assumed a founda-
.

tional precept of the learner needing to behave like a scientist if

he were to understand the processes of science.- The exhortation leveled

at and by mathematics teachers was, 'Mathematics is not a spectator.

sport." Students were expected to behave like mathematicians. But,

curiously, this expectation did not extend to algorithms. Students

were protected from behaving like mathemathicians with respect to

algorithms. A mathematician does construct algorithms; this is a

portion'of the task of being a mathematician. For the curricular

designers in mathematics of the late fifties and the sixties to pro

claim that mathematics is not a spectator sport and then to design

materials not allowing students to create their own algorithms is at

the least ironic.

Mathematics educators have little or no experience in either

allowing or expecting students to construct their own algorithms. The

effect of this type of constructivist orientation on student achivement

of computational proficiency is not known. The impact on attitudes and

values may only be conjectured. It is not known if or how understanding

would be extended beyound the traditional., objectives which are con-

sidered important today. Would students display the confidence and

sense of self-competence which contributes to being creative? Do



maturity and experience factors contribute to the child's being able
to construct algorithms? If younger children have limited capability
for creating and evaluating algorithms, then what are the limiting
constraints of their problem-solving ability which provide the
interference? These questions are important if we are to extend parti-
cipation in doing mathematics to algorithmic subject matter. A study
in this vein is being conducted by Hatfield (1974). Preliminary re-
sults indicate that children have a capability for constructing algorithms
as early as grade two, given an appropriate problem solving context.

Clearly some knowledge of how students cope with algorithmic
learning exists in the literature of mathematics education. Some of
this may be suggestive of questions and problems of import. Some of
is may suggest hypotheses in need of testing. Perhaps the most com-
parable learning in mathematics which a child experiences is the idea
of mathematical structure. This important unifying concept of mathe-
matics is a set of ideas.whicbtaken together possess significance far
beyond their significance taken separately. Research suggests learners ,

need...to acquire cognitive maturity and to have some experience with the
separate ideas before they.acquire the concept of a mathematical
structure. If an algorithm is a fitting together of several processes
into a complex decision network designed to solve each.of a specific
category of problems,,tben it-is very similar to the concept of
structure. Perhaps the learning of characteristics of algorithms and
the consideration of algorithmic, thinking as a process are subject to
the same order of maturity factors. We do not presently have a research.
base which suggests when and i6at first experiences in constructing
algorithms are most appropriate We suspect that algorithmic'' learning
is very similar to children acquiring a feel for mathematical structure.
The child's preliminary experience with the important unifying concept
of algorithm should be informal, intuitive and early* Formal expecta-

tions of-studentS being able to construct algorithmS probably should
follow considerable experience in construction on an informal, explora-
tory basis. The task of the teacher in the early elementary grades may
best be considered as providing foreshadowing experienbes. But the
precise nature of these early experiences has yet to be determined. It

seems reasonable to expect the child's experiences to'mirror the mathe-
matical judgments to be made concerning algorithms. That is, students
should begin early to compare algorithms as to their efficiency, to
identify the types of r oblem contexts to which they apply, to assess
their complexity, to note whether there are sub-algorithms within the
primary algorithm, and the like. These are precisely the sorts of
evaluative judgments that are needed when one shifts from one sort of
electronic calculator to another'or when one encounters a new programming
language.

Another aspect of algorithmic thinking is identified with the word
"awareness". A student should expect and be aware of the pervasiveness
of algorithmic processes, particularly in mathematics but also in other

fields. Many topics in mathematics at the secondary-school level are
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appropriately considered algorithms but are seldom treate as such in

our curriculum. For example, a student typically encount rs at least

six,different algorithms for solving simultaneous linear e uations in

the college-bound track of high school mathematics. But t ese approaches

are seldom treated as algorithms and the algorithmic charac er of the

approaches are not considered. The approaches are developed around a

limited set of mathematical principles, namely substitution and the

field properties. Students need to develop an awareness of the charac-
teristics which suggest the application of each of the particular

algorithms in order to become proficient in using each of these methods;

this is precisely one of the characteristics of algorithms which needs

to be highlighted. Indeed, one might argue that the entire set of
proCesses for solving simultaneous linear equations should be collapsed
into a single algorithm with the student making, for example, choices
of a aubroutine, of determinants or substitution, depending upon the

characteristics of the equations. This is to say, in order to make

algorithmic decisions, the student needs an expectation of finding

algorithms within the mathematics he or she is doing. An awareness of

the pervasive character of algorithms in mathematics is an important

first step to acquiring the zeitgeist facilitating creativity in using

computational devices.

In summary, we characterize algorithmic thinking as requiring

three components. First, we would expect the child to make decisions

concerning the efficacy and efficiency of different algorithms. Thus,

we expect the learner to acquire an ability and skill in evaluation of

algorithms. Second, we would expect a learner to be able to construct

algorithms. He should be able to decide whether a bit of mathematics

is an algorithm or not. Finally, the learner must acquire an expectation

of finding algorithms in the mathematics that he is doing.

Other attributes of algorithmic learning and thinking might well

be dedcribed. For other topics in mathematics, mathematics educators

are quick to label as limited and'imcomplete an instructional program

which does not address the higher-order objectives of the Bloom taxonomy.

The stress on evaluation, construction, and awareness is an attempt to

examine the teaching of algorithms in the sense of providing a complete-

ness to the set of objectives which are typically associated with

algorithms. The curricular orientation advocated above is directed

toward expanding the teaching of algorithms from the mechanistic limita-

tions of tightly designed behavioristic hierarchial strategies. The

prospect of a future characterized by ready access to machines built

around use of algorithmic processes makes dt incumbent on mathematics

educators to direct the curriculum and curricular research to the more

difficult levels of goals and objectives
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Algorithmic Processes for Cognition

Jesse D. Parete

Learning theorists contributed much to the study of strategies

used by people when solving problem tasks. Often the subjects are

unaware of the precise strategies they are applying. These strategies,/

therefore, are like internal or psychological algorithms. This paper /

reviews the literature which yields evidence that a great deal of human

behavior in problem-solving or information processing tasks can be

studied as applicationsof internal algorithms.

Such a point of/view is compatible with Piaget's theory of develop-

ment. Piaget theorizes schematic structures which originate out of

our motor actions, building a lattice type pyramid of more elaborate ---

and sophistiCated behaviors (Piaget and Inhelder, 1969). This can /r

easily be studied in terms of formulating algorithms and piecing to-

gether groups of simpler algorithms to form more sophisticated ones.

Scandura (1971) has taken such an approach in his work. He has kept

his theory much narrower than Piaget's and refers to it as a "partial

theory". Scandura attempts to explain certain behaviors in problem

solving as rule-governed behavior rom simple rules are build more

complex behaviors by development a rul or rules to act on the simple

rules. He calls such a rule a highe er rule. For example, a per-

son may have the rules for converting yards to feet and feet to inches.

The combination of these two rules would enable the person to convert

yards to inches. The combination of the two rules would be an applica-

tion of the higher-order rule, composition of rules. He theorizes that

whenever a problem requires a system of higher-order rules and associated

simple rules for solution, a subject who possesses such a structure will

apply it to the problem. To test his theory, Scandura and his associates

taught a group of subjects, ages five to eight, how to use two simple

rules comparable to those described above. Then each subject was tested

to ascertain if he would solve a problem requiring for its solution the

composite rule. Only one of the subjects was initially successful on

this type of problem. Next, Scandura taught the subjecta,*using neutral

materials, how to combine pairs of simple rules. "In short, we taught

them a decision making capability for determining whether or not they

shad achieved the higher order goals" (p. 40). The subjects were then

taught three new pairs of rules and given three corresponding problems

which required the combination of the simple rules. All subjects who

had successfully learned the skill of combining rules were successful

on'the three problems. Because the three problems were different with

respect to all attributes except that they could be solved by the com-

bination of a pair of simple rules, it could be argued that the subjects

acquired an algorithm (higher-order rule) for this type of problem task.

,Scandura claims "that it has been possible to analyze a number of other,
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more complicated problem situations in very much the same way, including

problems taken from Polya's pioneering yet atheoretical discussions of

mathematical problem-solving" (Scandura, 1971, p. 40).

Scandura's approach to studying problem solving ignores many other

facets of a very complex behavior. Most noticable is the role the

heuristics play in helping people solve problems. Miller (1960),

terming heuristics as insights which lead to plans about how to go

about solving a problem, incorporates this aspect of problem-solving

into a model which parallels Scandura's. He conceptualizes the process

in terms of plans for solutions and plans for formulating or alt6ring

existing plans. This broader scope allows for insights or heuristics

to enter a model for problem solving. The typical avenue for testing

such a theory is to program a computer to act as if it possesses dif-

ferent types of insights associated with the observed human behavior.

Miller encourages research in this area.

Johnson-Laird and Wason (1970a) present the floW-chart for the

solutions to a reasoning task involving the conditional,"rule which

incorporates insights such as Miller'recommends that lead to solutions

actually attained by individuals. The problem task was developed by

Wason (1968). Subjects were presented with a set of four (or more)

cards with a letter on one side and a whole number on the other. The

task was to choose cards they wished to investigate (see what was on

the face -down side) to determine whether the rule, "If there is a D on

one side then there is a 3 on the other side", correctly described the

lettering and enumeration of the cards. Showing would be a D, K, 3

and a 7. The correct choice was the D card and the 7 card. For ease

of interpretation, think of the rule as "If P then Q ",. with D on the

face of a card a p, and a 3 as Q. Any letter other than D, such as K,

will be termed P (not P) and any number other than 3 will be termed

(not Q). Thus, the correct choices are P and Subjects' choices in

order of percenL choosing it are, (1) P and Q, (2) just P, (3) P, Q

and Q, and (4) P and Q. The preference for the P and Q choice is

attributed to a preference for searching for information to verify over

searching for information to falsify. (The only way to verify this

rule is to check all possible falsifying cases - P and q.) The

choice of only P results if a subject does not assume Lhe converse of

the rule. The model to account for these choices is given in Figure 1

and incorporates three levels of.insight. It also accounts for changes

of insight which were observed by Wason (1969) attempting remedial

procedures with subjects:

All Ss Will begin by placing- either p and q (0,1,2)

or only p (0,1,3) on their list of items to be tested.

There are then three possible levels of insight. (In

explaining the model, the numbers in parentheses refer

to the different elements in the flow disgram and enable

the reader to keep track of the behavior of a hypothetical

subject.)
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rule
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alone

EXIT
t'1 ule

false"

Remove from list.
._____..-

31.1

Card "irrelevant"

Figure 1. Insight to a reasoning task (Johnson-Laird
and Wason; 1970, p. 143)
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NO insight. Ss without any insight will select only
these values because they alone could verify the rule (4,

5,6,7,10). They will test no further cards (4,13,14,16).
Partial insight.. Ss with partial insight will go on

to place the remaining cards on the'list of items to be

tested (4,13,14,15). Regardless of the initial selection,
will be considered irrelevant because it could neither

verify not falsify (4,5,6,7,8,9,10). An S, who did not
initially place q on the list, will do so now and select
it because it could verify. Thus an S with partial in-
sight will ultimately select p, q, and q.

Complete insight. Ss with complete insight will
select p and Zi and reject -q because it could not falsify

(4,5,6,7,8,12). Since the question of complete insight
arises when S encounters a card which verifies the rule
it can accur in two main ways. It may be gained during

the initial tests. But if S initially rejected the
converse, it may be gained after partial insight when S

is testing q for the very first time. However, an S who
initially accepts the converse and selects both p and q
should be much less likely to gain complete insight after

gaining partial insight. He would have no occasion to

retest q and hence could not take the appropriate path in
the flow diagram (from 6 to 7). (Johnson -Laird and Wason

1970a; p. 144)

As mentioned earlier the aspects of the model discussed in the last

few pentences above compare favorably with the empirical_ data.

The subjects in the above study were college students assumed to be

of high intelligence and well into the formal stages of cognitive

development. This fact led Johnson-Laird and Wason to investigate the

nature of their subjects' behavior further. They carried out an experi-

ment (\Johnson -Laird and Wason, 1970b) to test whether the bias for

positi e confirmation (verification of the rule) could be overcome by

an instruction to falsify the rule as opposed to an instruction to

verifyHit. This procedure was successful in bringing the group who

were aAed to falsify the rule, to the proper insight needed for solution.

The instruction to falsify the rule apparently triggers a focus on the

information value, of the negated consequent.

If the subjects' behavior in the above experiment were interpreted

as deliberate and conscious, it would seem that the discussion had

strayed' from the theme of "internal algorithmic processes." But Wason

and Shapiro (1971) presented a similar sample of subjects with the same

task using thematic rather than abstract materials. The rule was stated,

"If I gib to Manchester, then I travel by car." Cards were prepared with

destinations on one side and modes of travel on the-other. In this case

subjects had little trouble realizing which cards to choose to verify

the rule. Wason (1969, 1971) speculates that the subjects working with



the abstract ihaterial exhibit behaviors characteristic of earlier stages
of development. The'implication is that the subjects rotely call upon
old strategies (in this case inadequate ones) to deal with a problem
they are unable to consciously and logically solve. Wason expands on
this notion, "regression in reasoning", in his 1969 paper:

The concept of cognitive regression is speculative.
It is important to be clear about what it is intended to
mean in the present context. It does not necessarily imply
that the subject 'goes back in time' to a mode of thinking
characteristic of an earlier stage of development. It

implies only that certain salient features of earlier modes
of functioning are still available, and are substituted for
more sophisticated modes of functioning to cope with an
unfamiliar problem (p. 480).

This inappropriate and regressive mode was maintained by the subjects
as a reasonable strategy even in the face of contradicting evidence.
These subjects were apparently applying an algorithm in a very rote
manner.

Hans Furth and his associates (Furth, Youniss and Ross, 1970)
demonstrate this very same phenomenon wibh young children in their
experiments. In their initial experiment they analyzed school children's
responses to,six concepts; the children were in grades 1 to 6. The

six concepts formed ". . . can be designated SC, 7C, ffd and SvC,
ffVU; where S and C stand for affirmation of the two attribute classes
shape and color, respectively; . negation; conjunction; v dis-

junction" (p. The testing procedure consisted of the presentation

of one concept together with a pictorial representation of the four
possible instances; the instances depicted the presence or absence Of
the ,two attributes "shape" and "color",

On the basis of the children's. 1espohses, Furth. was able to define
three distinct behavior patterns. One group of subjects consistently
answered "true" to cases where both attributes' positive values were
present in the pictorial instance pattern and false when both were
absent whether or hot they were exemplars or nonexemplars of the concept
being tested; they answered randomly with the other cases. This "level
1" group's behavior is dominated by an "attribute present factor."

The second group, "level 2", showed a consistent type behavior
which implied that they dealt with a relation of logical truth. But in
the cases where the attributes' truth values relative to the instance
pattern and the concept were true-false (present-absent) or false-true
(absent-present), these subjects answered randomly. Level 2 is much like
a transitional stage; it leads to the total capacity to combine instance-
presence or absence with a truth value consistent with the concept
represented. Level 3 subjects exhibited this ability.
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Furth's next experiment was performed with the same children and two

new concepts, negation of conjunction (S70) and negation of disjunction

(SvC). The results revealed a dramatic regression in performance..

Subjects at level 3 now consistently performed at a level 2 type behavior

and subjects previously at level 2 regressed to a level 1 style of he

behavior. Thus Wason's speculation is once again demonstrated.

It is also quite interesting that the subjects could be sorted

into three levels of behavior. These could quite easily be taken as a

hierachy of the processes a subject must perform in dealing with such

a task. Level 1 subjects can handle only the primative first level of

this hierarchy while level 2 subjects are able to handle the next step

in certain cases. If this were the case, manifested is a concise
developmental pattern for the acquisition of a 'psychological algorithm'.

The "rule learning" experiments conducted by Bourne and his col-

leagues supports the above analysis of Turth's experimental results

(Dodd, Kinsman, Klipp and Bourne; 1971; Bourne, 1970; Bourne and Guy,
1968a and 1968b; Haygood and Bourne, 1965). The four primary logical

connectives, conjunction, disjunction, conditional and biconditional,
form the rules in these experiments.

Bourne (1970) found sizable general positive intrarule and inter-

rule transfer effects in .subjects exposed to sequences of rule learning

tasks. To explain these transfer effects Bourne presents the following

analysis of the subjects' behavior:

Relevant Truth

Stimulus Attribute Table Conceptual

Patterns Combinations Classes Category

S,

Sn

Ai

A2

An

TT V4.

TF
>FT

FF

Figure 2. An analysis of the acquisition of a truth
table strategy (Bourne, 1970, p. 552)

"In the course of multiple-rule learning, Ss acquire a mode of responding

which is best described as an intuitive version of the logical truth

table" (p. 552). The steps to achieving the the truth table strategy

are identical to the levels Furth defined in his study. Bourne theorizes

it is this model (Figure 2) which accounts for the intrarule learning
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transfer. The first step seems trivial; it is from stimulus patterns
to recognition of the relevant attributes combination. In the Furth
study, this step dominates the ultimate behavior of. the level 1 children.
Bower and King (1967) also demonstrate that this process cannot be taken
for granted even with adult subjects.

The following model is presented to explain the additional,interrule
transfer effects found in 'Bourne's study (1970).

S \, SYSTEM.LEVEL (s)
(PROPOSITIONAL CALCULUS,)

Ri _16 RULE LEVEL (R)

(DISJUNCTION)

CLASS CONCEPT
LEVEL (C)

OBJECT OR
'EXEMPIAR-LEVEL

ATTRIBUTE LEVEL (a)

Figure 3. A structural, hierarchical model of
concepts (Bourne, 1970, p. 555)

In this model, Bourne breaks down the structural heirarchy to which an
individual in the rule learning task must react. The "System Level" is
one step beyond the apparent mode of responding given in Figure 2.
Given in Table 1 are the sixteen unique bidimensional partitions of a
stimulus population forming the calculus of propositions and the basis
for the "System Level".
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Table 1. Sixteen unique bidimensional partitions of a stimulus

population forming the Calculus of Propositions
(Bourne, 1970, p. 554)

Truth-table partitions

class ABCDPFGHIJKLMNO P
TT + + + - + + + - - -

TF
FT
FF

+ + - + + - - + - + -
+ + - + + - + - - + -
+ - + + + - - - + - - - - +

The source of interrule transfer can be traced in part

to the acquisition of the general strategy, the truth table,

which is recoghized (despite its simplicity) as-a powerful

deductive problem solving device for problems.baSed on the

primary bidimensional rules. Rut the truth table is more.

general than that.- As seen in Table 1, it can be applied

with equal utility to all 16 rules within the'calculus of

propositions. It yields a solution in the same number of

steps and on the-basis of the same information - one instance

of each truth-table class - in all cases.
This suggests that ip some sense S has learned not

just,the four primary rules (if he has learned them at all

as specific individual cases), but 'the full conceptual

system of rules - the entire calculus. He knows how to

solve problems based on any rule within the system. He

has encountered and solved a series of problems exemplifying

a small.set of rules, and froth that experience he has learned

a more general conceptual system. Just as the objects are

positive instances of aoclass concept and class concepts are

positive instances of.a rule, the rules can be said to be

positive, instances of the system. (Bourne, 1970, p. 554)

The data Bourne has collected (Bourne, 1970 and Bourne and Guy,

1968a) support this theory. Performance on a new rule is a direct

function of the number of different rules encountered.during earlier

tasks. The implication is that subjects acquire the simple yet.powerful

problem-solving strategy outlined above. The concise hierarchical

structure of this strategy suggestS that a large portion of this behav-

ior is algorithmic. Subjects do not consciously formulate the calculus

of propositions. It must be acquired-through the acquisitions of the

behaviors learned in accordance with the hierarchy model,

Much of the work in the. rule learning stems from Bruner's study

of concept attainment (Bruner, Goodnow and Austin, 1956). Bruner's

experimental task allowed subjects to choose attribute cards to dis-

cover what attributes were used to form a specified conjunctive or

disjunctive rule. He classified the subjects' behaviors into "focusing"
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type strategies for locating the relevant attributes. He also demon-

strated that by manipulating variables such as time for solution,

cognitive load and subject matter content, he could get the subjects

to shift strategies depending on the situations. In his work there is

abundant evidence for the contention that reasoning or problem-solving

involves algorithmic strategies.

Laughlin and Jordan (1967) further studied the focusing strategy
phenomenon discovered by Bruner.Ay varying the number of relevant

attributes (2 or 4) in conjunctive; disjunctive, and biconditional
concept-attainment problems, they were able to discern systematic shifts
in'strategies by the subjects. This then is additional evidence that
these strategies exist as part of human psychological and mental processes.

The literature thus far concerns cognitive structures referred to

as psychological algorithms which influence thought behaviors. The

rest of this discussion will review that literature which gives evidence

that there is a separate language processing mechanism which equally
influences those behaviors in problem,eolving tasks., Itiwas Vygotsky

(1962) who first proposed that two separate yet dependent systems of
language and logical reasoning are developed-in people. The recent work

of the psycholinguists Chomsky (1965), Gough(1965), Clark (1969), and

Sherman (1973) tend to support Vygotsky's theory.

It is with the negative operator that researchers have found con-

siderable language-cognition interplay between development and use of

negation. Eiffermann (1961) noted that the English word "not" has both

a connotation of prohibition and denotation of negation: she took

advantage of a double formulation of "not" in the Hebrew language. In

Hebrew there are two forms of "not": (1) "lo", which is used in all

contexts as the English "not" is used; and (2) "egno", which is restricted

to use in all contexts except to express prohibition. One form, "lo",

carries the full connotative and denotative impact of the English "not"

while "egno" is similar to the negation operation. Eiffermann's study

demonstrates that subjects processed information from sentences using
"egno" more correctly than with sentences using,"lo" to express negation.

The processing of "lo" appears to be more complicated than that of "egno".
One Tossible explanation is that the affirmative information in the

sentences is processed separately from the negative operator (Gough,

1965) in both cases; however, in the "lo" case an additional process
must take place to match the connotative or denotative interpretation

to the context of the sentence. The point is that a language variable

has added to the difficulty of using the negative operator.

Wason and Jones (1963) add support for the above analysis. Two

groups of subjects were given the task of interpreting sentences using

negation. The first group used sentences constructed with.ordinary
English using "not" for negation. The second group was trained to use

two neutral signs (MED and DAX) which stand for assertion and denial

of events. During a practice trial of the task the correct use of the
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symbols was taught by feedback, ("That's correct/incorrect."), to con-

trol any transference of connotations attached to "not" that might have

resulted from verbal instruction.

The results'were the'.4ame as :those obtained by Eiffermann. The

evidence supports intuitive claimers that linguistic usage influences

the application of a logircal operation; but, more importantly, the
evidence can support the idea that there are structures which deter-
mine human reasoning behavior.

It has been that negation with or without extraneous
influenceS is a difficult o eration.(Bruner, 1956; Wason, 1959 and
1961; Wason and Jones, 1963, and Furth, Youniss and Ross, 1970).
Sherman.(1973) describes how this difficult-to-manage" operation has
influended the development language; he also gives additional evidence
for the theory of a linguistic processing mechanism separate from the

logic structures. His study deals with the negative prefix "un", as

in "unmanageable". Consider the following sentences: (1) He was not

certain that she was not happy, and (2) He was uncertain that she was

unhappy. The second sentence communicates the negative information
with less strain than does the first. Sherman's results verify such

a prediction. Reasons for the difference can be formulated by the
linguistic theories presented by Gough 1965) and Chomsky (1965). The

first and most easily interpreted semantic. meaning processed by a

"hearer" is the "base string" of the sentence. A base string is made

of the syntactic variables of subject, verb, and object. There are two

base strings in the first sentence: "he was certain" and "she was

happy". A transformation must be effected to obtain the full semantic

meaning. In the second sentence the negation is tied to the words of

the base string: "uncertain" and "Unhappy". The first -sentence re-

quires a transformation which reverses the meaning of a sentence,, while

the second sentence involves a word reversal meaning accomplished by

the negative prefix "un". "The reversal of work meaning (caused by un-)
is psychologically less complex than the reversal of sentence meaning

(caused by not)" (p. 82). He speculates that the use of "un" was in-

vented in language to deal with the cognitive strain of negation. This

points up again the interrelationship of language and cognition. He

also points out that "the results support the view that the language-

comprehension mechanism is not a neutral device, responding with equal

facility to all inputs, but, rather, that it is 'pre-set' to process

certain inputs more quickly and accurately than others" (p. 81). Gough

.

andThomsky's theoretical formulations of this phenomenon were partially

-explored above. Other researchers involved with various other aspects
of negation which lead to similar conclusions are Wason (1965), Green

(1970), and Johnson-Laird and Tridgell (1972).

In an application of Chomsky's linguistic theory, Clark (1969,

1970) applies the "base. string" information-processing idea to give
insight into children's management of problems which involve the transi-

tive relation. He sights Piaget's discussion of children's reactions to
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the following problem! "Edith is fairer than Suzanne, .and Edith is
darker than Lili." Responding to the question of which is the darkest,
children ages 8 to 10 answered "Lill". P.iaget's intuition helped him
analyze the situation to come to the same conclusion as Clark using the
linguistic theory to guide him. Both conclude that the children pro-
cessed the base strings consisting of "Edith and Suzanne are fair" and
"Edith and Lill are dark". Therefore, the children arrived at the
solution that Suzanne is fair, Lili is dark and Edith is between the
other two. Piaget (1928) states that, rather than tackle "the matter
by means of judgments of relation, i.e., by making use of such ex-
pressions as 'fairer than' etc., the child deals simply in judgments
of membership, and tries to find out with regard to the three girls
whether they are fair or dark (speaking absolutely) ." (p. 87). From
this Piaget inferred that the children were deficient in relational
thinking. The point is not whether they are deficient or not, for cer-
tainly the did not solve thra problem successfully. But, rather, the
question remains whether the children failed because of a lacking cogni-
tive structure or because of the domination of a linguistic processing
mechanism. Clark and other psycholinguists, as mentioned earlier, hold
the opinion that the base string information is the easiest and the
quickest semantic information processed by the brain (Clark, 1969;
Gough, 1965; Chomsky, 1965). Perhaps the principal causes of the
children's use of only the class membership information was the linguistic
processing mechanism coupled with an over-load of their memory facility
which inhabited further processing.

The theme throughout this discussion has been to demonstrate that
there are systems of cognitive processes that act without the conscious
deliberation of the individual. The last sections present research
which shows that these systems interact with each other.. This fact
complicates the study of any one of these systems. Further work is
certainly needed in investigating these systems, but there is even a
greaier need to investigate the consistent mappings from one system to
the other. This latter approach may also yield valuable information
about the individual systems which have been referred to as algorithmic
processes.
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Algorithmic Learning and Hierarchies

Paul H. Wozniak

Introduction

Algorithmic learning may be thought of as hierarchical in nature
in many aspects. In a report of a study on a mathematical topic, Gagne,
(1962), perhaps the leading proponent of a "hierarchy of learning",
refers to algorithmic learning as an ordered collection of specified
intellectual capabilities. Subordinate skills are prerequitites for

the final task. More specifically, some of the assumptions of his
theory are given in an earlier article (Gagne, 1967b):

(1) Any human task may be analyzed into a set of component asks

which are quite distinct from each other in terms of the experimen al
operations needed to produce them.

(2). The task components are mediators of the final task perform-

ance, i.e., their presence insures positive transfer to a final perform-

ance and their absence reduces such transfer to near zero.

(3) The basic principle of design consists of (a) identifying the
component tasks of .a final performance, (b) insuring that each of these
component tasks is fully achieved, and (c) arranging the total learning
situation in a sequence which will insure optimal mediational effects
from one component to another.

The learning of algorithms has been criticized for its dependence

on memory and rote practice. In his theory, however, Gagne.clearly
makes the distinction between memory and mastery of subordinate
competencies. Briggs (1968), in a.review of the literature on hier-
archies, gives an'example of memorizing the Spanish equivalent of 100

different Englith words. He points out that the order in which the

student memorizes the list may not matter. Whatever the sequence, the

student will need several trials to master.this task. In this case,

it is not order of presentation which is important; learning depends

on amount of practice (whole and partial list) and feedback. But if a

student is to, say, solve linear equations, presentation and sequencing

of instruction is different. Hopefully, when the student is to*learn

to solve linear equations (or many other kinds of algorithms), he is

not merely presented with a number of completed equations to be mastered

in the hope that he will learn how to solve them. Put another way, the

student is not to memorize these equations and their solutions. Rather,

he is to master first all the subordinate competencies it takes to be .

able to solve any equation of this type.
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Gagne and Paradise (1961) looked at just this problem and concluded
that subordinate competencies, unlike the memorizing example above, must

be taught in a particular sequence (with options within layers of the

hierarchical structure). They are taught not necessarily by direct pre-
sentation of parts of specific equations, but by supplying certain

instructional events, materials, and exercises which lead to mastery of

subordinate skills. This kind of learning is called by Gagne and

Paradise "productive" learning to distinguish it from "reproductive"

learning like the example of memorization.

Attempts at building hierarchies in different subject areas were

the focus of much research. But as Briggs, (1968,. p. 12) points out,

in order to look at hierarchical structures we need to have objectives

stated in behavioral form, not content form. Hence mathematics and

science lend themselves to hierarchies, while subjects such as history

and sociology do not.

From this it is clear that many of the important studies on hier-

archical learning have led naturally into the study of algorithmic

learning in mathematics. We will presently look at some of the factors

involved with building hierarchies, with variations of the process, and

with the efforts to substantiate their hierarchical nature.

Generating, Hierarchies

The generating of the hierarchy to achieve a final task can take

different forms: teacher-generated, pupil-generated, or combinations

of these. A common pattern is suggested by Mechner (1967):

(1) specification of behavioral objectives

(2) analysis of the subject matter in terms of component
descrimination and generalization

(3) sequencing of those components for effective learning

The last two steps combine to form a procedure known as task analysis..

According to Walbesser and Eisenberg (1972, p. 22), one of the best

known forms of task analysis is one described by Smith (1964). To

begin,ethe designer asks, "What must the learner by able to do if he

has been told to perform a task, but has been given no specific training

in the task?" This kind of questioning organizes the given task into

components that resemble the folloWing:
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First
Level
Components

Second
Level
Components

FINAL
TASK

In effect then, the analysis starts at the "top" of the pyramid to
determine what skill(s) are needed to perform the final task. These

are the first-level components and are considered to be the final sub-

ordinate skills needed for attainment of the final task. The designer

of the hierarchy must ask about these first-order components to ascertain
what prerequisites are needed for their attainment. These prerequisites

form the second-level components. This process continues until a point
is reached at which the student may begin with his present skills.

As Walbesser and Eisenberg observe (1972, p. 23), the application
of a task analysis procedure does not guarantee an "effective" sequence;
it merely produces an hypothesized sequence that may succeed. Each task

analysis generates a "best guess" sequence with respect to the author's

experience. The extent to which learners are able to perform the final
task after the sequence is one measure of the validity of the hierarchy.

To Smith (1964), an acquisition level of. 85 per cent for the final

task is considered desirable. In the work of Gagne and his associates,

a 90 per cent acquisition level is usually sought.

The task analyses described above are developed by the instructor

of the sequence. An alternative method which has been researched is

in the area of student-generated hierarchies. This approach can lead

to alternative algorithms appropriate for varied types of learners.
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Mager (1961) wanted to see if student-generated hierarchies would

be similar to instructor-generated sequences, and, if not, how would

they differ. The experiment dealt with the learning of certain aspects

of electronics. To generate the hierarchy the instructor only responded

to those questions that the students asked. He did not initiate any

instruction. The sample consisted of six adults. Two of the findings

from the experiment were:

(1) learners start out asking questions on different topics

than those followed in a general text.

(2) initial interest is on the concrete (how) rather than

on the theoretical (why).

The results tended to indicate that the sequence generated by the student

himself is more meaningful than the sequence given by the instructor or

the text.

The findings of Mager were substantiated by a study by Kaplan (1964).

The design was similar to Mager's. The subject matter was "vectors".

The teacher again only responded to pupil-generated questions. Kaplan

found that students moved from the concrete to the abstract, there was

greater commonality of questions at the outset of instruction, and all

students had some knowledge of the subject area regardless of how naive

they claimed to be.

A fundamental question may be asked then: Do teachers, following

textbooks, provide a sequence of instruction most meaningful to the

student? As Briggs (1968, p. 30) points out, the experiments such as

those cited above have something to say about motivation, interest,

self-direction, and the importance of the student organizing information

for himself. Hence in an algorithmic learning situation it may be more

beneficial for the students to become more involved with the actual

building of a hierarchical stcture for a topic, be it a specific algo-

rithm or other concept. 'In terms of a specific algorithm, the teacher

may be better off to ask questiOns like "What would we need to know to

do ?"--instead of, 'Thi,s is what to do."

Another study in this area wasNone by Campbell (1964) using pro-

grammed instruction. He wanted to compare the effectiveness of programmed

instruction (developed by-the instructor) with student self-direction.

He hypotheSized that student self-direction was superior to programmed

instruction. Two factors were stressed: (1) meaningfulness of materials

to the learner and (2) motivation. CauTbell believed that when problem-

solving techniques are needed for highly structured material, small-step,

fixed-sequence programs could interrupt the students line of thought.

Also, he thought, the student is his own best judge of when an idea has

been grasped, and this judgment is more easily exercised under self-

direction than under programmed instruction.
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Of several subject-matter areas sampled in a series'of experiments,
the only significant differences favoring self-direction over programmed
instruction was for mathematics and that difference occurred only after
coached practice in self-direction. The self-directed group was provided

the following materials: (1) a short basic text, (2) supplementary
examples and explanations, (3) self-testing questions, and (4) a two-
page outline of the entire lesson. The programmed group used a linear

program, self-paced. According to Briggs (1968, p. 29), since students
benefited from coaching in the use of self-directing mateirials, it is
possible that more prolonged use of self-direction methods without
coaching would be needed for the superiority of the method to appear.
Those who used self-direction with most benefit tended to be the better
achievers among the students.

Parker (1973) also looked at, as part of a study, the problem of
teacher-generated versus learner-generated task analyses in mathematics
and science in terms of terminal objectives, . Four programmed texts were
developed from two different hierarchical arrangements of the subject
matter: (1) a Gagne hierarchy and (2)a, pupil hierarchy. These two
hierarchies were then developed into two other texts which randomized
the sequence of instructional units for the Gagne and child texts. Upon

completion of the learning materials, subjects received an immediate
Posttest and weeks later a delayed posttest. The results showed no

significant differential effects in learning final terminal objectives
with different generation of hierarchies and sequencing of subordinate
tasks.

Shriner (1970) and Seidl (1971) investigated the question of whether
students of different ability levels would generate different learning

sequences. The subjects for both studies were 24 early childhood
elementary majors at the University of Maryland. Twelve high- and 12

low-ability students were determined by quality point average and rank.
They were asked to build a hierarchy on the study-of 2 x 2 matrices.

One of the conclusions was that there were no significant differences

between the learning sequences generated by high-and low-ability

students.

The basic hypothesis using a hierarchical scheme of instruction is

that subordinate skills are prerequisites for the attainment of the

terminal task. According to Briggs (1968, p. 41-42), in one of his
earlier works on this subject, Gagne (1967) theorized that lower-order
skills serve as mediators of positive_transfer from lower-level com-
petencies and effects of instruction. At the very bottom of such

hierarchies maybe found either the entering relevant competencies

brought to the course from prior learning, or very basic abilities
identified as such.

,In reference to the abilities at the bottom of such hierarchies,

Gagne theorized that if learning programs were of perfect effectiveness,

everyone would pass all the component tests in the hierarchy, the

144

4



variance would be zero, and all correlations of tests on the various

competencies with basic abilities would also be zero. But if learning

programs are not perfectly effective, the probability that a person will
acquire each competency,will be increased to the extent of his score

on a test of basic ability. To this critical hypothesis we now turn.

Subordinate and Final Tasks

A /number of studies pertaining to the construction and testing of

behavioral hierarchies-have been conducted by the University of Maryland

Mathematics Project in conjunction with Gagne. In one of these studies,

Gagne and Paradise (1961) analyzed a final behavior represented by con-

structing solutions to linear algebraic equations. First a learning

hierarchy was constructed by a task analysis procedure. The procedure

identified three immediate subordinate behaviors.. The analysis was then

repeated on each of the three subordinate behaviors and yielded a col-

lection of sUbordinate behaviors to each of the three successive itera-

tions,'producing a learning hierarchy of twenty-two behaviors subordinate
to the terminal behavior and arranged in five levels. The study was

designed to test the hypothesis that the acquisition of a terminal

behavior depends upon the attainment of a hierarchy of subordinate

behaviors which mediate positive transfer from one behavior to the next

in the learning hierarchy and eventually to the terminal behavior.

A learning program was then constructed to teach. students how to

solve linear equations. The program was divided into eight booklets;
students were given onehoeklet each day for eight days. Three per-

formance measures were administered upon completion of the program:

(1) 10. equations similar to those in the program, (2) 10 transfer type

problems, and (3) attainment of each of the 22 behaviors in the hierarchy.

There were a total of 118 subjects in four seventh-grade classes from

two schools. The results'showed validity estimates for the hierarchy

ranging from .91 to 1.00, which supported the hypothesis that there was

positive transfer to each behaiiior from relevant subordinate behaviors.

Briggs (1968; p. 44) points out that the authors recognized that

other persons, especially proponents of "modern mathematics", might

derive quite different hierarchies. It-is not, however, a matter of

there being only one "right" analysis; rather, the pUrpose if to find

empirical "validation" for the method in terms of the hypothesis to be

tested.

Gagne, Mayor, Garstein, and Paradise (1962) built a hierarchy
around the addition algorithm and extended the previous study to look

at another variable besides the one on acquisition of subordinate skills.

Specifically, the purposes were (1) to find out if a final behavior

(adding integers) depended upon the attainment of a hierarchy of sub-

ordinate behaviors, and (2) to investigate the variable of recallability

of relevant subordinate behaviors and the integration of these behaviors

into the solution of a new and different task.
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The integration Variable was studied by systematically varying the
amount.of guidance provided to the learner in leading his from one
behavior to another. Repetitioof previously developed behaviors was
used to study the effects of the recallability of subordinate behaviors.

. There were two, tasks prescribed:. (1) the addition of integers
themselves and (2) formulating a definition of the addition of integers
for specific numbers using the necessary properties. Analysis of the
two tasks yielded a hierarchy of fourteen behaviors at six levels.

The study was conducted with 132 students in four seventh-grade
classes from two schools. High- and low-ability students were identified
by previous grades of the school year. Four combinations of instruction
were formed:, high guidance - high repetition, high guidance - low
repetition, low guidance - high repetition, and low guidance- low
repetition.

The instructional period was four days. There was a performance
test on the addition of integers and a transfer test on subordinate
skills of two questions on each skill. In order to pass on a particlilsr
skill, both questions had to be answered correctly.

Validity estimates ranged from .97 to 1.00 providing support for
the initial hypothesis that acquisition of each behavior is dependent
upon mastery of subordinate behaviors.

On the second purpose, there was no overall significance on the
four combinations of high-low, guidance-repetition. The only signifi-
cant difference was shown on the superiority of high guidance-high ,

repetition over low guidance-low repetition on the task of stating a
definition for the addition of integers, However, no significant
difference was found for'the task of adding the integers themselves.
Commenting on this particular experiment, Briggs (1968, p. 45) suggested
that these results may imply that if moderately good instruction is
provided in the proper sequence, as compared to instruction not so
ordered, the effects of this may overshadow other qualitative features
in how material is programmed. This, he says, may account for the
frequency of "no significant differences" findings in research designed
to isolate "style" aspects of programming.

Still another task in mathematics was analyzed into a hierarchy
by Gagne and the staff of the University of Maryland Mathematics
Project (1965). The task in elementary geometry consisted of "specifying
sets, intersection of sets, and separation of sets, using points, lines,
and curves." In this study, the importance of sequencing of topic order
was again noted in terms of the number of instances confirmed of higher
competency acquisition dependent upon the cquisition of those lower in

the hierarchy. According to Briggs (1968 p. 45), however, the variables
of (1) variety of examples during learni and (2) passage of time be-
tween stages of learning, had no effect pon the learning effectiveness

of the program.
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Despite the above negative findings in regard to programming style

variations (e.g. , variety of examples)-and their effect6 upon task

acquisition, it was thought desirable to measure retention of knowledge

of the same students. In a follow-up study, Gagne and_Bassler (1963)

measured 4e retention of students both on total task and on each com-

ponent subskill nine weeks after the. learning. .
The retention for the

entire task as very high except for one group which had previously

received a na row variety of examples in the learn!-,'g program. The

level of retention, overall, fanged from 108 percent to 128 percent.

In contrast, the level of retention for. subordinate competencies ranged

from 60 percent to 88 percent indicating that individual skills are

much more susceptible to forgetting than the perfoAance,on a task as

a whole. According to Briggs (1968, p. 45), this difference in retention

of the part-skills need not have been learned in the pr6dess of learning

the whole skill, because'the contrary was shown to bathe case it the

Original acquisition data.
.

. .

From the practical point of view of maintaining ability to perform

this terminal task, the forgetting of the subskills which originally

aided in mastery of this task is of no importance, as these learners

retained (or even gained) competency on the task as a whole. But if

some of these same subskills are:needed for new tasks to be learned

later, this loss in retention of subskills in important and deserves

efforts to prevent it. Hence remedial work on the subskills could im-

prove learning of related tasks later.

3

Not all of. the research findings. are in agreement with Gagfte's

point of view. Studies by Anderson (1967),. Merrill (1965), and Campbell

(1963).are some that have challenged his contentions. Anderson stated

that the notion of hierarchies as dealt with by Gagne and his associates

cannot yet be said to be definitely tested. ,He cited two reasons for

his statement:

(1) that the correlational type of analysis employed by

Gagne is not sufficient evidence of the hierarchy
notion, and

(2) an experiment by Merrill (1965) had resulted in

findings contrary to Gagne's hypothesis concerning

hierarchies.

Merrill tested the basic hypothesis that learning and retention of

a hierarchical task are facilitated by mastering each successive com-

ponents of the hierarchy before continuing in the instructional program.

Merrill insured mastery by channeling a student who erred on any partic-

ular component into a two-stage correction/review procedure.-~ The

results of his study seem to indicate that it is not necessary to master

one level before proceding to the next.

,Despite studies such as Merrill's, most of the research supports

Gagne's initial hypothesis on hierarchies.
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There is also some question abo t'§equencing order. .According to
Heimer (1969, p. 502), the research 1 terature contains a number of
studies about the effects of scramblin "ordered" sequences, but the
purposes of these studies have, not alwa s been clear and their overall
results have not been conclusive.

Roe, Case, and Roe (1962) reported a 9mparative study in which a
71-item program on elementary probability was presented to two groups;
one group received the program in its normal .rdered form, and one
received a scrambled version of it. A criterion test was administered
to each student immediately upon completion of he program. There were
no significant differences reported on time required for learning,
error score during learning, criterion test score, or time required for
criterion test. However,-in a subsequent study, R.e (1962) reported
contrary results with an extended version of the prosability program
mentioned above, in which a random-sequence group per ormed significahtly
worse on learning time, errors made during learning, aid on post learning
test scores. Roe (1962, p. 409) concluded that "caref sequencing of
items has a significant effect on student performance, a least for
programs of some length and complexity."

Payne, Krathwohl, and Gordon (1967) hypothesized s-amewlat the same
thing, i.e., the larger the size of the unit, the more detrimental
scrambling will be. They further hypothesized that the more internal
logical development a particular sequence had, the more detrimental a
scrambled sequence would be. Their experiment consisted of three pro-
grams which varied in logical interrelatedness Tram low'to fairly high.
Both immediate and delayed retention tests were administered. The
hypothesis was not confirmed by the results.

Fyatte (1969) argued that the lack of more information about the
effects of sequence changes on variables such as achievement, retention,
and transfer could be attributed in part to a neglect of clear specifi-
cation of what an ordered sequence of materials is to be. This lack
makes it impossible to decide whether a sequence purported to be ordered
does meet this condition, and whether a scranibled version of the sequence
fails to meet it. In an attempt to follow up on this idea, Pyatte (1969)
conducted a study in/which he defined an ordered sequence as structured

or hierarchical. Assuming that in the hierarchy each level provides
positive transfer to the next level, as Heimer argues (1969, p. 503),
Pyatte considered the extent to which positive transfer was acting
within a program as a measure of the extent to which the program was
hierarchical, and hence ordered. His study was designed to provide a
check on the effectiveness of the instructional materials, to provide a
check on the ordered (structured) materials by examining the differences
between these and unordered (unstructured) materials, and finally to
test the hypothesis that no differences in achievement or transfer
would be found between students taking the structured materials and
those taking the unstructured materials,:
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Pyatte reported that both versions of the instructional unit were

judged effective - the structured unit was judged to have the defined

structure, not; and the constructured unit was judged not to have it, No

significant differences were found between-the means on achievement or

transfer for students taking the structured or unstructured unit.

According.to Helmer (1969, p. 504), among the statistically significant

findings of the study was evidence that students of high basic ability

reach higher levels of achievement and transfer knowledge than students

of low basic ability, regardless of mode of program.

In concluding his analysis of the study, Pyatte (1969) stated that:

the effects of sequence on learning measures should at

this time be abandoned in favor of attempts to write pro-
grams which conform to a defined pattern and to develop

the appropriate tools for testing these programs. . . .

Having batteries of such well-defined programs; one would

then be equipped with the requisite tools for answering
questions about the type of program and its effects on
such measures as achievement, retention, and transfer.

(p. 260)

Alternative Hierarchy. and Teacher Strategies.

The University of Maryland Elementary Mathematics Inservice

Program (1967, 1969) continued the series of hierarchy investigations

with the analysis of an extensive learning hierarchy on arithmetic

operations. Conventional task analysis was not employed in generating

the hierarchy, according to Walbess'er and Eisenberg (1972, p. 43).

Rather, an ordering of clusters of three hypothesis of learning depen-

dency were structured by number systems moving downward from rational

numbers, to integers, then finally to-whole numbers. Diagramatically

it would look like:

49

li

ti



3)

Constructing an explanation of
algorithms with field proper-
ties for a given operation and
.number system.

Constructing an explanation
of the algorithm with field
properties fora given oper-
ation and number system dif-
ferent from the one named in
the terminal behavior.

2)

Demonstrating the algorithms
named in the terminal
behavior.

Constructing an explanation of
the algorithm with physical
situatiotsTor a given oper-
ation and number system.

Constructing an explanation
of the algorithm with a
physical situation different
from the other behavior.

1)

Demonstrating the algorithms
named in the terminal w
behavior.

Demonstrating an algorithm for
a given operation and number
system.

Demonstrating an algorithm for
a given number system different
from the terminal objective,

The Demonstration Phase Report (1967, p. 4) suggests that the
terminal task of the algorithm hierarchy ig actually a triple of be-
,lviors that the teacher will be able to exhibit after being exposed
to the algorithm's instructional sequence. The three behaviors which
constitute this terminal task represent the desired instructional out-
put of the_slabordinate sequence.

As seen in the diagram, the first part of this triple (lower
portion) describes a similar activity of elementary teachers--the
literal demonstration of the procedures of an algorithm with no ex-
planation of how or why it works. Unfortunately, as is well known,
some instruction in algorithms at the elementary or even secondary

level never proceeds beyond this mechanical level.

The second part of the triple (middleportion), describes the
activity explaining how an algorithm works by relating the explanation
of each procedure to observations of physical situations. This is
another familiar activity of the elementary teacher when teaching an
algorithm, according to the Report.
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The third behavior (top portion); explaining the procedures of an

algorithm by means of the rules of. some "convincing game", represents
those behaviors more characteristic of a contemporary mathematics
curriculum with its appeal,to the field properties and mathematical

structure. This third behavior is one which the elementary teacher has
most likely not acquired and yet, in many ways, it is the most critical

to successful instruction in elementary Mathematics today if learning

is to go beyond rote memory of the algorithm presented.

The subordinate behaviors in the algorithm's hierarchy, as shown
in the diagram, reflect this same triple of constructing and demon-

strating behaviors, but are associated with a particular operation within

a specified number system. The final task .differs from the subordinate

ones in that any algorithm could be presented to the teacher and he or

she would be expected to be able to exhibit the specified behaviors

without instruction.

Subordinate to the algorithm hierarchy behaviors are the convincing

game rule behaviors. According to the Report, the behaviors associated
with the identification and naming of the field properties are developed

in the context of game rules for two reasons. First, games. provide a

vehicle for identifying the properties in a setting which promotes in-

dividual investigation and immediate application of the identified rules.

And second, the t.noarture from's: formal mathematics presentation to a

game presentation reduces the anxiety which frequently accompanies math-

ematics instruction for the elementary teacher.

Summary and Concluding Remarks

It is evident that much research and study has been done on hier-

archies and their implications. In an algorithmic learning situation,
hierarchies have been looked at, first of all, from the point of view of

how best to construct the hierarchy. Does the task analysis that an
instructor may construct differ from student-generated hierarchies?

If it does, in what ways,?

Second,, what of the "validity" of such hierarchies? The basic

tenant is that learning of lower level subskills will have a positive

transfer effect on the learning of the terminal task. Sequencing of

such sub-levels is also of interest and research on this has produced

some conflicting conclusions. Studies on retention and transfer have
also been researched from the point of view of the final task versus

subordinate behaviors.

A hierarchy for teachers in the elementary school who deal with

the teaching of algorithms, has been of interest. It has resulted in

a slightly different hierarchical structure to describe different levels

of teaching approaches in the classroom in regard to these basic

algorithms.
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The constructing of hierarchies for the teaching of algorithms, or
for that matter, a larger class of algorithmic learning in general, has
implications for what is happening in our schools. If they are con-
structed and used in a rote learning situation, they defeat the purpose
and work of Gagne and others. If they are constructed carefully and
used wisely, they can be of great value to both teachers and students
alike.
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Investigations of Conceptual Bases
Underlying. the Learning of Algorithms

Diane Thomas

For the learning of a computational algorithm to be meaningful,
there are prerequisite concepts that.must have been mastered in order
for the student to understand the rationale behind the algorithm. *The-

algorithm will deal with some type of number--whole numbers, integers,
rational nuMbers, irrationals, complex numbers--and the conceptual bases

dealing with that particular type of number must have been developed

beforehand. The algorithm will include at least one type of operation,
-probably more, and conceptual bases underlying the particular view of
the operations used must have been established in relation' o the type

of number under concern. Properties such as distributivity ofamultipli-
cation over addition, commutativity of addition and of multiplication
but not of subtraction nor of division, and the role of the multipli-
cative and the additive identities should have been discussed previously
if they are to be incorporated into the rationale for the.algorithm.
Further, concepts underlying the notation used in representing a number
(both place value notation, e.g., 35 standing for 3 tens + 5 ones, and
symbolism, e.g., 32/14 representing a fraction) will beinvolved in
understanding a particular algorithm and these need to be provided for

earlier in the child's learning process.

Defining "pure concepts" to be those dealing with numbers as such,
'with the.properties of numbers, and with operations that can be performed

on numbers, Dienes (1960) discusses the relationship between pure con-

cepts and notational concepts:

A child may have grasped the concept that to add two
numbers you. Piave to count on from the first number by as

many steps as the second number. Yet he may be nowhere near
realizing the complicated structure of the task 27 + 35 in
which grouping and regrouping in tens must be achieved to
perform the task economically. In other words, mathematical
concepts and processes have to be learnt first in the pure
form, followed by the same concepts and processes in the
notational form, i.e., with the structure of the decimal
system superimposed on them. (pp. 39-40)'

Thus, if we are concerned with investigating and comparing the.
conceptual bases which underlie the learning of algorithms, it seems to

follow that our c ncern must center around student learning of pure

number concepts, f notational concepts, and of the tie-in between the

two which leads t the understanding of computational algorithms.
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Concept Learning

Looking first to educational psychology to provide some guidance in
the general area of concept learning, it is apparent that much of the

research of the educational psychologists has been in areas not directly

applicable to our goal. Bruner has defined a concept to be "...a way
of grouping an array of objects or events in terms of those character-

istics that distinguish this array from other objects or events in the

universe" (Bruner, -Goodnow, and Austin, 1956, p.275); this idea of
categorization has been used by many other psychologists as well in
their investigations into concept learning. Much of this research, as

a result, has been aimed at identifying optimal information processing
strategies for concept attainment through manipulating task variables
such as stimulus similarity, prompting procedures, sequence, and dif-

ficulty (TennYson, 1972, p. 1).. Another related approach is the one
taken by Klausmeier, who postulated four stages involved in the attain-
ment of the same concept at successively higher levels of inclusiveness
and abstractness: concrete, identity; rudimentary classificatory, and

formal. However, he restricted his model to those concepts "of the kind

for which there are actual perceptible instances" and then noted that

"not all concepts have perceptible instances; for example,...signed
numbers" (Klausmeier, 1971, pp. 1-2).

.
Turning from this narrow view of concept learning, we approach the

theories of mathematical concept learning as espoused by Skemp and by

Dienes. According to Fehr. (1966):

For Skemp, the fundamental related ideas (concepts) are

learned through intuitive methods through the use of well-
chosen sensory activity situations, in proper sequence of

presentation. in this way the fundamental concepts build up
a schemata, which, acquired by the age when reflective activ-

ity of the mind has developed (age 12 years on), enable the

child to awreciate and construct formal mathematical systems.

'Thus Skemp rejected, so far as the elementary school is con-

cerned, any formal reflective procedures for the formation

of basic mathematical concepts. He did accept perceptory-

intuitive generalizations froth sensory activity situations

as the means of building the basic mathematical concepts.

(p. 224).

Dienes has a similar theory of mathematical learning. In An Experimental

Study of Mathematics Learning (1963) he described two of the principles

he.said should be followed in helping students attain a mathematical

concept:

The perceptual variability principle stated that to

abstract a mathematical structure effectively, one must

meet it in a number of different situations to perceive its

purely structural properties. The mathematical variability
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principle stated that as every mathematical concept involved
essential variables, all these mathematical variables need
to be varied if the full generality of. the mathematical con-
cept is to be achieved. The application of the perceptual
variability principle ensures efficient abstraction; the
application of the mathematical variability principle en-
sures efficient generalization. (p. 158)

These principles form the basis for the "multiple embodiment" approach
to mathematics instruction, which demands that a variety of perceptually
different materials be used by the teacher in helping students to
develop a mathematical concept. However, based on reviews by Beougher,
Kieren, and Suydam and Weaver that are summarized in general by Reys in
the October 1972, issue of the Arithmetic Teacher, the research on
multiple embodiments is reported to reveal inconclusive results. Reys
found a wide range in the quality of the research, but concluded:

Nevertheless, it is clear that the research does not con-
sistently support or refute._a multiple-embodiment approach
to teaching mathematics. In fact, the one common thread
among these studies is that learning mathematics depends more
on the teacher than on the embodiment used. (p. 490)

Two research studies by Reys' students further confirm Reys' conclusions;
however, the subjects used in both studies were preservice elementary
school teachers and not youngsters at the elementary school level. Turek's
study (1973) compared two instructional approaches; one based on Dienes'
two principles and the other using a lecture approach, for teaching
concepts about finite mathematical systems. The study was repeated
twice--the first time significant differences were found favoring the
Dienes-based approach, the second time no significant differences were
found. Similarly, a study by Skipper (1973) compared three instructional
methods for teaching concepts of positional numeration systems; one
method used Dienes' Multibase Arithmetic Blocks along with variable base
abaci, a second method made use of only the Multibase Blocks, and the
third method was the lecture method. Two replications of the study
yielded different results. In one of the replications there were no
significant differences in performance by the three groups asImaasured
by scores on an investigator-developed test. In the other replication,
the students in the lecture method performed as well or better than
those having materials presented through Dienes' approach, and those
exposed to a variety of perceptual embodiments performed as well or
better than those using only one embodiment.

The idea of meaningful learning must also be taken into account
for a theory of mathematical concept learning. Brownell (1947) defined
this aspect of instruction: "'Meaningful' arithmetic...refers to
instruction which is deliberately planned to teach arithmetic meanings
and to make arithmetic sensible to children through its mathematical
relationships. Not all possible meanings are taught, nor are all
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meanings taught in the same degree of completeness" (p. 257). Brownell

then suggested four categories under which the meanings of arithmetic

can be roughly grouped:

.1. One group consists of a large list of basic concepts.

Here, for example, are the meanings of whole numbers,

of common fractions, of decimal fractions, of percent,

and...of ratio and proportion....Here, too, are the

technical terms of arithmetic--addend, divisor, common
denominator, and the 1?Ike....

2. A second group of arithmetical meanings includes

understanding of the fundamental operations. Children

must know when to add, when to subtract, when to

multiply, and whento divide. They must possess this

knowledge, and they must also know what happens to the

numbers used when a given operation is employed....

3. A third group of meanings is composed of the more

important principles, relationships, and generalizations

of arithmetic, of which the following are typical: When

0 is added to a number, the value of that number is

unchanged. The product of two abstract factors remains

the same regardless of which factor is used as multiplier.

The numerator and denominator of a fraction may be divided

by the same number without changing the value of the

fraction.

4. A fourth group of meanings relates to the underStanding

of our decimal number system and its use in rationaliting

our computational procedures and our algorisms. (pp. 257-258)

Besides meaningful learning, there are other dimensions to the

teaching-learning situation that will affect student learning of pure

and of'notational number concepts. Weaver and Suydam (1972, p. 4)

point out that the rote-meaningful dimension, the reception-discovery

dimension, and the concrete-symbolic dimension may interact with each

other in an instructional situation. Fennema (1969) was concerned

primarily with the interaction between rote-meaningful instruction with

material presented in a concrete-symbolic mode. Her study was an

attempt to determine the relative effectiveness of a meaningful concrete

model (Cuisenaire rods) and a meaningful Symbolic' model (a symbolic

statement of repeated addition) in facilitating the learning of a

mathematical principle (multiplication). Results showed that there

were.no significant differences between methods in the overall learning

of the mathematical principle: "Second grade children were able to

learn a mathematical principle by using only a symbolic or a concrete

model when that model was related to knowledge the children had. This

provides evidence that making the teaching of mathematical principles--

meaningful is as important as are the materials used to demonstrate

that principle" (Fennema, 1969, p. xiii).
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Pure Number Concepts

Some of the investigations centering around student learning of
pure number concepts can be classified generally as studies looking at
the different ideas incorporated in a specific operation on one type of
number (usually whole numbers), perhaps also concerned with the
symbolic-concrete mode of presentation, sometimes mentioning the
meaningful-rote dimension, and not too often specifying whether the
approach was inductive or deductive. The following five studies are
some of those that fit the above criteria:

1. Gibb (1956) studied subtraction with whole numbers,
identifying three types of applications for
subtraction--take-away, additive-subtraction, and
comparative-subtraction--at three levels of
abstraction (abstract, semiconcrete, and concrete).
Her results showed that second graders attained
highest on take-away problems and lowest on
comparative, that additive problems' took a longer
time, and that performance was better on problems
in a semiconcrete mode than in a concrete mode and
lowest in the abstract mode.

2. Van Engen and Steffe (1966) investigated first-grade
children's concept of addition of natural numbers,
when addition was defined in terms of the union of
two sets, When student responses on a test of
conservation of numerousness and on a paper-and-
pencil test of addition facts were compared, findings
showed that the student's ability to respond correctly
to an addition combination seemed to have little or no
relation to his ability to conserve numerousness. The

authors concluded that the children had not abstracted
the concept of the sum of two whole numbers from
physical situations but rather had just memorized the
addition combinations.

3. Hervey (1966) looked at multiplication of whole
numbers represented by equal additions in contrast
with multiplication as a Cartesian product, finding
that equal additions multiplication ,problems were
less difficult to solve and conceptualize for
second-grade students than were Cartesian product
problems.

Tietze (1969) compared two methods of interpreting
multiplication of whole numbers--the repeated-addition
approach using an array as a physical referent and the
ratio-to-one method using a coordinate system and
ordered pairs of numbers as the physical referent;
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lessons covered the basic facts from 1 x 1 through 9 x 9.

No significant relationship was found between the method

used and the acquisition, retention, and understanding
of multiplication for the total group of fourth-grade
subjects, but use of arrays with the repeated-addition
method seemed better for average and low students.

4. Investigating the differences in difficulty between
partitive and measurement division problems with whole
numbers, Zweng (1964) found that partitive division
problems were significantly mote difficult than the

measurement problems for second-grade students.

One study which investigated basic concepts about a type of number,

rather than about an operation, was Sension's:(1971). He compared three

representations for introducing rational number concepts--through area,
set-subset, and a combination of the two. Findings showed that all

\ /

approaches seemed to be equally effective for second-grade students,

when measured by student performance on a test using two types of

pictorial models.

Since the rationale for an algorithm often is based on mathematical

principles, we need to be concerned with how well students understand

these principles, and will include "principles" as part of our look at

pure number "concepts", even though authors often separate the two (see

Higgins, 1973; p. 192). In a study comparing the use of the distributive

property in understanding basic multiplication facts to the use of

repeated additions and arrays, Gray (1965) found that instruction in

the distributive property resulted in higher achievement for third-grade

students. Knowledge of the distributive property appeared to help

children proceed independently in the solution of untaught multiplication

combinations; however, the children appeared not to develop an under-

standing of the distributive property unless it was specifically taught.

Weaver (1973) reported a study on student performance on examples

involving the distributive idea. Students 'in grades four through seven

participated; findings showed that pupil performance level on an 8-item

test was low--at each grade level at least 90% of the students gave .

criterion responses (applying distributivity without any computational

error) on fewer than 3 of the 8 items. Flournoy (1964) gave seventh

graders an 18-item test measuring ability to apply basic laws of

arithmetic in each operation with whole numbers; an error rate of 30

percent or greater was found on 15 items and 50 percent or greater on

ten items. The items most frequently missed were those related to the

distributive property. Crawford (1965) found that the order of dif-

ficulty of field axioms (from easiest to most difficult) was commutativ-

.
ity, inverse, closure, identity, associativity, and distributivity, for

students in traditional-content ninth- and tenth-grade classes.



Notational Concepts

Flournoy, Brandt, and McGregor (1963) found that on tests measuring
understanding of our numeration system, students in grades four through
seven very frequently missed items related to: (1) the additive prin-

ciple (672 means 600 + 70 + 2); (2) making "relative" interpretations,

which use varied ways of grouping rather than by individual places--for
example, 2346 can be interpreted as 23 hundreds, 46 ones, or as 234
tens, 6 ones; (3) meaning of 1000 as 100 tens or 10 hundreds, and so on;
(4) expressing powers of ten; and (5) the 10 to 1 relationship of each

_ place in a numeral going to the left from the ones place, and the 1 to
10 or 1/10 relationship to the previous place in going to the right in

the numeral.

Rathmell (1973) attempted to determine the effects of type of
grouping (multibase or base ten) and the time that base representations
were introduced (initially, or after counting and reading and writing

numerals) on achievement. in numeration in grade one. Results showed no

significant differences between the multibase and the base-ten7only
approach; however, low ability students achieved better in the base ten

method. The group who had base representations introduced after counting
and working with numerals had consistently higher means and adjusted
means for the posttest and also had significantly more students with

mastery on the retention test.

According to Diedrich and Glennon (1970); the evidence of previous
studies (Brownell, 1964; Jackson, 1965; and Schlinsog, 1965) was not

conclusive in showing that a study of nondecimal systems is more effective

in enhancing student understanding of the decimal system than.is a study

of base ten alone. They further noted that the evidence didnot tell
which method is more effective in promoting increased understanding of

the rationale of computation, in promoting increased understanding of

a place value system In general, or in promoting retention of these

understandings. In their own investigation, Diedrich and Glennon com-
pared fourth-grade students studying five place value. systems (bases 3,

5, 6, 10, and 12) with a group studying three different bases -(3, 5,

and 10), a group studying base ten only, and a control group receiving

no instruction in numeration. Results showed that a study of the decimal

'system alone was just as effective as a'corresponding study of nondecimal
numeration in-promoting understanding of the decimal syStem as shown on

the posttest but that no single study was more effective than the others

in promoting retention of achieved understandings. No differences among

treatments were observed with respect to understanding computation with
decimals on either the posttest or the retention test. With respect to

understanding a place value, system in general, a study of bases 3, 5,
and 10 was as effective as a study of bases 3, 4, 6, 10, and 12; also,

a study of nondecimal numeration was more effective than a study of the

decimal system alone, as shown on the posttest. However, none.of the

studies was found to be more effective than the others in promoting

retention. In discussing the implications of their findings, the authors

stated:

62



If one wishes to foster, at the fourth-grade level,

understanding of the decimal system, the available evi-
dence suggests that only the decimal system need be

taught. Also, if one wishes to fostier\understanding of
both decimal and nondecimal systems, the implication is

that both decimal and nondecimal systems should be
taught. (p. 171)

Understanding Computational Algorithms

Studies concerned with student understanding of 'computational

algorithms for the most part seem to deal with comparing one algorithm

with others, where different conceptual bases underlie each rationale.

For example, the relative effectiveness of two algorithms for subtracting

whole numbers was investigated by Brownell and Moser (1949). They cam-

pared the achievement of third graders taught to use the decomposition

algorithm (which depends heavily on concepts of place value,-grouping,

and regrouping) to those taught to subtract using-the equal additions

algorithm (which is based onthe concept, sometimes labeled as the "Law

of Compensation", that increasing or decreasing each of two by

the same amount does not change the. difference between them Buckingham,

1953, p. 141)). Half of each group-was taught meaningfully and half

learnedthe procedure mechanically. Among the conclusions were that

the equal additions algorithm appeared satisfactory for children with a

background of meaningful arithmetic, but for children with a limited

background the decomposition algorithm, taught with meaning, was

better regardless of the criteria employed; that the equal additions

algorithm was difficult to rationalize; and that some proficiency can

be produced by mechanical instruction with either of the algorithms.

Like subtraction, division has more than one meaning. According

to Buckingham (1953), there are essentially two kinds of division:

"measurement, if you are to find the number of equal groups, knowing

the size of each; partition, if you are to find the size of the equal

groups, knowing how many groups there are" (p. 76). The following

studies investigate the effectiveness of algorithms based on different

meanings of division:

1. Van Engen and Gibb (1956) compared the use of the

distributive algorithm for division to the subtractive

form of the algorithm. Results showed that fourth -

grade. students taught the suotractive form had a better

understanding of the process or idea of division than

did thoSe taught the distributive method, that use of

the subtractive algorithm was especially effective with

students of low,ability, and that high ability students

used the two methods with equal effectiveness. Use of

the subtractive method was more effective in enabling -

children to transfer to unfamiliar but similar situations.
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Children who used the distributive algorithm had greater
success with partition situations, while those who used
the subtractive algorithm had greater success with
measurement situations.

. Dilley (1970) also looked at the same two methods of
teaching long division to fourth graders. The
distributive algorithm was developed as a method of
keeping records of a manipulation of bundles of sticks
and the successive subtractions method wax developed in
a manner "closely paralleling the treatments given in
popular elementary textbooks." Results showed
significant differences on only two of the seven tests
given to students. On the applications test the
difference favored the method of successive subtractions.
On the retention power test the difference favored the
distributive method. It was concluded that there was
little, if any, overall differente between the two
methods of teaching long division.

In a similar study, also with fourth-grade students,
Kratzer (1972) compared the Greenwood algorithm--the
method of repetitive subtraction--to the distributive
algorithm, both taught with the use of a manipulative
aid (bundles of sticks again). No significant
difference was found between methods on a test of
familiar problems; however, the distributive group
scored better on both immediate and retention tests
of unfamiliar problems.

4. Rousseau (1972) defined four possible foundations of
the division algorithm as (1) mathematical, based on
the distributive law of division over addition; (2) real
world, based on the physical act of partitioning;
(3) real world, based on the physical act of quotitioning
(measurement); and (4) rote, based upon the memorization
of routines. Four different division algorithms were
synthesized on these foundations and each taught to a
different group of fourth graders. No significant dif-
ferences were found for retention of the algorithm. For

extensions of the algorithm to cases of slightly greater
difficulty, the rote algorithm was found superior; as
the degree of difficulty increased the ordering of
quotitive (actually, the repeated subtraction algorithm),
distributive, rote, and partitive (the conventional
distributive' algorithm) was established.

Algorithms for division of fractions, based on different underlying
concepts, were of concern in the following studies:



1. Bidwell (1968), investigating three meaningful approaches
to division of fractions taught to sixth-grade students,
found that the inverse operation procedure was most
effective, followed by the complex fraction method and

the common denominator procedure. The complex fraction

method was better for retention, while the common
denominator method was poorest.

2. Comparing the same three approaches, also with sixth
grades, Bergen (1966) found that there were no significant

differences between complex fraction and inverse operation
algorithms; but that each was significantly superior to
the common denominator method.

3. In a study comparing the common denominator and the

inversion methods, Capps (1963) found that sixth-grade
students did not differ significantly in ability to
divide fractions. The group taught by the inversion
method scored significantly higher in ability to
multiply fractions on the immediate posttest, but not
on the retention test; analysis of gain or loss from
posttest to retention test showed that the common
denominator group gained significantly on multiplination

of fractions.

Stenger (1972) compared two methods of teaching addition and sub-

traction of fractions to fifth graders: (1) a subset-ratio procedure

based on the formal definitions of addition and subtraction of rational

numbers, taught in a semiconcrete mode; and (2) the "traditional"

approach based on the use of equivalence classes to find the least com-

mon denominator, taught in a symbolic mode. Results showed that the

group taught with the subset-ratio approach did significantly better on

both immediate and retention tests, but that the "traditional" group

wrote significantly more correct answers in loweFt terms.

Algorithms for operations on integers were investigated by

Sherzer and by Sawyer. Sherzer (1973) studied the effects of two

different methods of presenting instruction in adding integers to

students in grades 3 through 6. One was the number line method, the

other used the correspondence method which required matching positive

and negative ones in the addends, then counting the unmatched numbers

to get the answer (Sherzer, 1969, pp. 360-362). The following con-

clusions were reached: (1) students in grades as low as three could

be successfully taught integer addition skills by the correspondence

method, (2) the correspondence method was more effective than the number

line approach overall for both proficiency skills and concept formation,

(3) the correpsondence method appeared to work equally well with low

and high achievement groups, (4) neither method appeared to be effective

in imparting verbal skills (concept formation) to third graders, and
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(5) the number line method appeared to be workab e, although less
effective, in the upper grades but not effective as low as grade three.

Sawyer (1973) compared achievement of seventh-grade students
taught subtraction of integers by three methods: (1) complement method- -

a method of subtraction by adding the same number to both the minuend
and the subtrahend, taught in a symbolic mode; (2) related number facts
method, involving the relationship between subtraction and addition,
introduced through the use of a number line; and (3) systems method,
where a modular system is examined to show that x - y = x (-y) and
then this result is generalized to the,integers; introduction was in a
semiconcrete mode: Results showed no consistent superiority of one
method over another.

All of the studies discussed above deal with student understanding
of computational algorithms by comparing, one algorithm with others,
where each of the algorithms in question springs from different con-
ceptual bases. Another way that might be used to approach the problem
would be to focus on just one particular computational algorithm and
to determine the various conceptual bases underlying that algorithm.
One way to de4ne different conceptual bases for the same algorithm
might be to consider the interaction of the concrete-symbolic dimension
with the pure and notational concepts needed for understanding the
algorithm. In this view, Wheeler's (1972) descriptive study could be
classified as pertaining to appropriate and inappropriate conceptual
bases. Wheeler analyzed the relationship of a child's performance in
solving multi - digit addition and subtraction problems using concrete
embodiments compared to his performance in the symbolic mode. It was

found that second-grade children proficient in regrouping addition and
subtraction examples on three or four embodiments scored significantly
higher on the written tests of addition and subtraction than those
children not proficient in using concrete materials, and significant
correlations were found between the number of embodiments children were
able to regroup and their performances on the written test. In an
experimental study, care must be taken that all approaches are taught
with the same degree of meaning. For example, Fennema (1969, pp. 21-24)

cited a study by Ekman (1966) on teaching third-grade children addition
and subtraction algorithms through symbolic, semiconcrete, and concrete
modes; results showed that on a retention test, significant differences
were found in favor of students taught using concrete materials.

However, Fennema felt that the results of the study were confounded by
the concrete approach being taught meaningfully while the symbolic
approach .as taught through a rote procedure.

A second possibility for defining different conceptual bases for
the same algorithm would be to look at the different interpretations
for the type of number involved, at different views of the operation
involved, or at the various combinations that can be made between the

two. For example, in Carney's (1973) study, fourth-grade students were
expected to add and subtract rational numbers by changing each of the
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two given fractions to equivalent fractions both having the same Aenomi-

nator, combining the fractions, and then reducing when appropriate.

Results from one group taught through the use of field properties (the

identity element for multiplication, the commutative and associ ive

principles, and the distributive law) were compared to those obt ined

by students taught by a standard method emphasizing equivalence lasses

and using objects (rods), number lines, and unit regions. Resul s

showed the field property course to be more effective than the s andard

method; within each treatment group there were significant differ nces

among mean gain performance of student subgroups based on achiev ent.

Other studies that can be categorized as considering one algorithm and

then looking at component parts are those by Green, Trafton, and
I

Weinstein:

1. Green (1970) compared two approaches of teaching
multiplication of fractional-nuMbers, along with two
types of instructional materials for each approach.
One method was based on the area of a rectangular

region and the other on finding a fractional part of
a region or set; the instructional materials were
diagrams and cardboard strips (called "materials").
Results showed that with fifth grade students, the
area approach was more effective than the fractional- ..

part-of approach; diagrams and materials seemed to be

equally effective. The area/diagram combination was
the most 'successful, followed by the part-or/materials
approach, with part-or/diagram ranking last.

2. Trafton (1971) looked at two approaches to two-digit
subtraction; one approach consisted of a prolonged
development of the conventional decomposition algorithm,

and the second was a more general method based on work

with concepts of subtraction and use ofthe number line

before the decomposition algorithm was taught. The more

extensive development of the decomposition algorithm was
found to be more effective than the second approach when

used with third-grade classes.

3. Weinstein (1973) compared the teaching of a mathematical

algorithm by four types of justification methods: a

ppttern justification based on an analog to two-dimensional

physical actions, an algebraic justification based on the
algebraic principles for rational numbers as well as on the

rules of logic, a pattern-algebraic sequence, and an

algebraic-pattern sequence. Differences in performance

among treatment groups were examined for each of four

algorithms: multiplication of a fraction and aiMixed
number, comparison of fractions using the cross-product

rule, conversion of a fraction to a decimal, and calcula-
tion of the square root of a fraction. The results showed
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that, for fifth-grade classes, there were no significant

differences between students taught by a strictly pattern

approach and those taught by a strictly algebraic'approach.

However, evidence indicated that students taught by an

algebraic approach, as a group, tended to do better on ex-

tension tests *tan their pattern-taught counterparts, and

that students taught by a pattern method, as a group,

tended to do better on simple algorithm computation tests

than their algebraically-taught counterparts.

Summary

Studies which attempt to investigate and compare conceptual bases
underlying the learning of algorithms have taken a varie-4' of approaches.

In the area of concept learning in general, the questions of using

multiple embodiments and of attending to rote-meaningful, reception-

discovery, and concrete-symbolic dimensions have been raised. The

learning of pure number concepts has been the concern of seVeral research-

studies which usually concentrated either on the different ideas incor-

porated in a specific operation on one type of number, or onistudent

understanding of number properties such as the distributive law.

Investigations of notational:concepts generally have centered around
comparing the study of decimal and nondecimal systems on student achieve-

ment in numeration and computation.

Research into student understanding of computational algorithms

has been conducted along two lines. The majority of the studies re-

viewed deal with the comparison of two or more algorithms, Where each

of the algorithms under consideration stems from a different conceptual

base. The second method used in setting up studies involves the selec-

tion of just one computational algorithm and the investigation of the

various conceptual bases underlying that algorithm. The /diagram below

illustrates the difference between the two approaches:

Method 1:

Method 2.:

Conceptual Conceptual
Base 1 Base 2

vs.

Algorithm 1 Algorithm 2
VS. . .vs.

Conceptual
Base n

Algorithm n

Conceptual Conceptual Conceptual
vs. vs. .vs.

Base 1. Base 2 Base n

'4*."''......ib.. I ,,,k...r..
Algorithm

Relatively feW studies have been done which use Method 2 as a scheme for

analyzing student understanding of computational algorithms; it would

appear that more of the future research into learning algorithms might

be profitably extended into.this'area.
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Algorithms: Interference,
Facilitation, and Comparisons

Brady Shafer

Interference in the Laboratory: Retroactive and Proactive

Psychologists' interest in memory continues undiminished after

ninety years. Serving as his own subject, Ebbinghaus (1913) performed

a series of experiments in which he memorized and then attempted to

recall strings of nonsense syllables. He found that the number of

syllables remembered, after varying lengths of time, formed a decreasing

function, with nearly all forgetting taking place in the first three

hours.

Other investigators soon found that more was involved than mere

passage of time. Equally important in determining, forgetting rate was

what the subject did during the time. Jenkins and Dallenbach (1924)

found that when subjects slept during the retention interval, retention

was better than when they were awake and going about their daily routines.

Willer and Pilzecker (1900) noted that when subjects learned several

lists of words, recall on the earlier lists was decreased; it was as if

the later learnings dislodged or "interfered with" earlier learnings.

The phenomenon has been replicated in widely varying contexts and is

known as retroactive inhibition or retroactive interference.

A converse phenomenon has also been noted. Prior' learning some-

times makes the learning of new material more difficult. This is called
.

proactive
/nhibition or proactive interference. For example, anyone

attempting to learn the twenty-six letters of the alphabet in a new

sequenc would find the familiar a, b, c, ... intruding and making the

new mexiiory task more difficult than if he had not known the alphabet at

all.

In a masterful bit of scientific detective work, Underwood (1957)

showed that many researchers had inadvertently ballooned forgetting

rates by keeping the same subjects for 6, 8, 16, and 20 lists; the larger

the number of previous lists the higher the forgetting rate. Proactive

interference had been, unnoticed, at work; the nth list had been more

difficult for a subject precisely because of the n-1 previous ones.

But frequently, one bit of learning aids in acquiring another. One

always hopes that a child's first school experience with "two plus two" .

will aid in every future meeting. Proactive facilitation turns out to

be the familiar transfer of training; review, formal or otherwise, is

retroactive facilitation; and proactive interference amounts to negative

transfer.



Retroactive and Proactive Interference in the Mathematics Classroom

In the typical retroactive/proactive interference study, the
datum of interest is the number of items recalled. The subject.is
tested on memory alone. But in mathematics education two large dif-
ferences appear. First, in most laboratory studies of PI and RI, the
material is to be remembered over minutes or hours, whereas a mathe-
matics item may be needed on a final exam after a lapse of months.
Second, in mathematics class simply recalling the formula is usually
not enough. One must cap the recall by using the formula to produce
a correct solution. May retroactive and proactive interference be
detected in this larger context? One obvious place to seek such inter-
ference is in a place where the student sees two or more methods for
doing a given kind of 'calculation.

Often there is a single "best" algorithm. How many really different
ways are there to differentiate a polynomial function? But there are
at least five points in the school mathematics curriculum at which (a)
two or more algorithms are widely taught and (b) research has attempted
to measure the relative strengths and weaknesses of each. The five
areas are:

Division of fractions
Long division (distributive vs. subtractive or Greenwood
algorithm)
Estimating quotient digits in long division
Finding the loweSt common denominator
Placing the decimal point in, division of decimals.1

The present paper brings together studies which involve the teaching
of two alternate computation algorithm to students. Originally that last
sentence ended, "to the same students." But one fascinating, frustrating
result was noted again and again.. Brownell (1938) hoped nearly forty
years ago that "perhaps in teaching for understanding we shall some day
depart from the well-nigh universal custom of offering children but one
of several alternative forms for computation." This hope has not been
realized in many mathematics curricula.

1 One topic in school mathematics distinguished by the fact that
several algorithms are routinely presented to a given class is the
solution of simultaneous linear equations. No study exists at present,
however, which compares their effectiveness or which looks for retro-
active/proactive phenomena. The writer 'is now at work on such a study.
At this writing no data have been analyzed.

In a different but related area, Spencer (1968) attempted to teach
addition and subtraction simultaneously, looking specifically for
interference and facilitation.
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To the present day the majority of studies comparing algorithms do

so by presenting two or. more groups of children with one algorithm each.
The relative effectiveness of. the algorithms is then inferred from a
comparison of test scores, or gains, for the groups. This precludes the

study of proactive and retroactive interference, as well as proactive

and retroactive facilitation. Neither is observed, since neither has a

chance to happen. The student does not learn two algorithms, so inter-
ference and facilitation are alike impossible.

In a small minority of experiments, however, students were taught.

more than one algorithm. These studies are noted in the review which

follows. Of interest also from the interference point of.itiew is that
several experimenters, whose studies consisted of teaching the algorithms
to different groups, nevertheless conclude by recommending the teaching
of more than one algorithm to each child.

Studies on Division of Fractions

Bergen (1966) compared the complex fraction (reciprocal) method,

the common denominator method, and the inversion method, on eight types

of division problems involving mixed numbers, whole numbers, and simple

fractidni. On the first of four tests, the reciprocal method was found
better than the inversion method (p < .05), while on all four tests the
common-denominator method was found inferior to the other two methods

(P < .05)t
ne'

Bergen concluded by recommending that pupils begin their study of

division of fractions by using the reciprocal method, since it is

stronger at the outset. However, since this method is more involved
than the inversion method, pupils should be taught the inversion method

later as a shortcut.

Bidwell (1968), comparing the merits of the same three methods,

came up with this ranking: inverse operation method best, followed by

complex- fraction method and common-denominator method. He agrees with

Bergen that the common-denominator method compares poorly with the

others, but disagreed with her about the first-place finish. 'The dif-

ference may be that Bidwell included tests for four things which Bergen

did not include: transfer between related concepts, integration of
concepts, attainment of concepts, and the correlation between concept

attainment and computational skill. He reported the inverse-operation
method showed the lowest transfer error rate and the highest concept-

attainment percent.

Another discrepancy. .appeared in the results obtained by Krich (1964)

and Sluser (1963). In Krich's study, experimental-group pupils were
given explanations of principles and were allowed, but not specifically

asked, to develop the inversion algorithms for themselves. The control

group was given rote learning and drill. For average students, a dif-

ference in favor of the experimental group developed on a two-month
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delayed test (though not at the end of the instruction). Comparing
delayed test scores with pretest scores, Krich noted the control group
actually lost ground, while the experimental group made a small gain
(not significant at .05).

Sluser, on the other hand, reported that his experimental group
got "an explanation" of the reciprocal principle while the control
group did not. The experimental group fell behind the control group

(p < .C'). Analyzing results by IQ levels, Sluser reported that the
brighter experimental-group children could understand the principle and
were helped, but average and below-average students were confused.

As before, the discrepancy -may be due to a difference in treatments,
this time to th, very large difference between a student's passively
hearing an explanation and actively creating the explanation for himself.
Krich used programmed instruction to reduce the effect of teacher vari-
able, while Sl4ser presumably did not.

Looking at the same problem area from a \somewhat different angle,
_Capps (1962)' Looked at the possibility of retXoactive interference,
induced by t e algorithmfor dividing fractiOns,,with the algorithm for
multiplicati n taught earlier. He compared the inversion method with
the common-dnominator method, giving a posttest which contained a
multiplication-of-fractions subset. From this standpoint the inversion
method was superior (p < .01). On a deldyed test the difference was
not as sharp, butstill significant at the .05 level. It may be.eon-
cluded that either the inversion method reinforces multiplication of
fractions skillsHmore than the common-denominator method, or it inter-
feres less. The'experiment did not include a base-line control group

to determine whi h might be true.

The final study reviewed in this section, an older study, is of
interest for this report chiefly because in it the same childre were

taught two algo/rithms. The study is reported by. Brownell (1938 but

was actually done by Thelma Tew, (presumably Tew was Brownell' student;

this writer can find no report-0 the study published by Miss Teiff

herself.) Details are few. More serious is the problem that th.,,study

was not well-controlled. Indeed Brownell's article includes no data

whatever. But several observations are worthy of note.

,

Tew's sequence was: common denominator method first (since, the
inversion method is particularly difficult to explain in a meaningful
way),-_folloiged at length by inversion as a shortcut. It was found that

/

pupils learned to divide by the common denominator algorithm "more
easily and, more intelligently than ever before when she had taught by
the inverSion method....Comparisons with children taught by the inver-
sion methOd were consistently in favor of Miss Tew's group." This

finding contradicts Bidwell and Bergen. How may it be explained? The

Bergen and Bidwell studies appear to be more carefully done. This

writer's conjecture is that in the Brownell-Tew study there could have
been a Hawthorne effect strong enough to tip the scales the other way.
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Brownell continues, "Promptly the more intelligent and capable
children adopted the short-cut, while the slower children stayed with
the more familiar common denominator method, -- which is precisely what
they should have done at their stage of development." Presumably the

second method took less than one week. Implicit in Brownell's "con-
sistently" is that the children were doing at least as well as other
children taught the textbook method (inversion). Brownell's report

seems to imply that, for those children who used it, the shortcut method

enhanced this superiority. But this is not clear, since no data were

given.

What does seem clear, and germane for this report, is that (a)

introducing a second method did not cause undue confusion in children's
thinking, and (b) not all children used the second method. Brownell

comments that this is what they should have done. Still unanswered is

the larger question of whether children in similar situations will
consistently do what they "should" do.

Studies in Long Division: Distributive vs. Greenwood

(Subtractive) Algorithm

This group of studies compared the "distributive" and "subtractive"

algorithms for long division. Three studies are reviewed.

Scott's (1963) experiment, like Brownell's above, is distinguished

by the fact that in it a group, of students was given more than one

algorithm. Two groups of students were taught both methods; a third,

the sub'ractive algorithm only; and a fourth, the distributive algorithm

only. Scott's chief interest lay in comparing the two-algorithm classes

with the one-algorithm classes. Among his conclusions were:

(1) The use of two algorithms for division computation neither

confuseS nor presents undue difficulty for young children. The two-

algorithm groups proceeded at least as smoothly and efficiently as the

one-algorithm groups.

(2) Teaching two algorithms takes no more teaching time than

teaching only one.

(3) Children who use two algorithms are at least as efficient

in solving division problems as those children who use only one.

(4) The two-algorithm children have a greater understanding of

the division process than those who use only one.

Dawson and Ruddell (1955) compared the same two algorithms, using

different groups of children. They reported that use of the Subtractive

algorithm was better than use of the distributive algorithm; but because

of a design flaw (different visual dcvices, for instance, were used with
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the two groups) one cannot establish that the difference was related to

the.method.

Van Engen and Gibb (1956) noted that the distributive algorithm

emphasizes the relation of division to multiplication, while the sub-

tractive algorithm emphasizes the concept of division as repeated sub-

traction of multiples of the same divisor. Their chief interest lay in

conceptual matters, but a subset.of the study involved a comparison of
the effectiveness of the two algorithms.

They found that the subtractive group attempted more problems than

the conventional group. However, having started, the latter group has

less difficulty with the processing.

Disregarding any effects of classes, arithmetic achieve-
ment and intellectual ability, the conventional group achieved

greater success in problem solving, although they did not

attempt as many as did the subtractive group....Classes taught

the conventional method were more successful in solving problems

familiar to both groups. On the other hand, the subtractive

group did better in solving problems unfamiliar to both groups.

These findings suggest that the subtractive methods group had not

reached a high level of skill, ... yet their understanding of the

process was such that they were better able to transfer to new

situations. (Van Engen and Gibb, 1956).

Van Engen and Gibb make no explicit sequencing recommendations (or in-

deed any recommendation) based upon this difference. Notwithstanding,

fifteen years later Latzer (1971) remarks that most textbooks,

"following Van Engen and Gibb," present first the subtractive algorithm

and later the distributive.

Kratier's point is that if children are eventually to use the dis-

tributive algorithm, would it not be more efficient to begin and end

with the one method rather than duplicating children's (and teachers')

effort? He approached long division through "a partitioning distributive

approach" using stacks of popsicle sticks as a visual-manipulative aid.

He found his method at least as effective as the Greenwood method.

Estimating Quotient Digits in Long Division

An additional group of studies of division devoted attention to

several competing methods for producing a quotient digit when dividing

by a two-digit divisor.

Most of these studies were made at a time when the distributive

method for long division was the method in general use. Many studies

examine what Hartung (1957) called an "example population," cataloguing

and counting the problems themselves as the data, while other studies
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analyze children's responses to problems. Grossnickle (1932) presented

a study based on a problem population. He recommends the "always-
round-down" method, not only because it offers good probability of
giving the correct digit on first trial, but also because whenever it
yields a wrong digit, correction procedures are easier.

Osborn (1946) came to a similar conclusion, but with more vigor.
In the 1930s, Morton had published probabilities of getting the correct

digit on first trial with the use of the "always-round-down," "alWays-
rOund-up," and "round-both-ways"2 method. The probabilities were based

on a simple but lengthy count of several thouSand division problems

done by each of the three methods. Osborn chided Morton for omitting,

by Osborn's count, some 20,700 problems. Osborn conceded that the both-

ways rule gives success in 14,858 of these, but noted that his always-

down rule works in 4,980 of them. Mor.F! to Osborn's point, in the both-

ways approach the student needs to be alert to the fact that "remainder

larger than divisor" is a danger sign. In the always-down approaCh the

error cue is a subtraction which cannot be done. He concluded, "Rule 1

has to be taught inany case, and the introduction of Rule 2 results in

intolerable confuSion."

Osborn said this, however, without actually talki r to students

and examining their work. Flournoy, who did, scolded im in turn for

trying to settle the problem not on the basis of what children actually
do but by what educators (looking at division probl )'anticipate they

tight do.

Flournoy (1959a) found no evidence of "intol, able confusion."
She agreed with Osborn, though, that with slow c

1)1

ildren one rule is

probably enough. Her finding was that children se both methods

equally well; she added the interesting fact that children tend to use

both methods regardless of which was officially taught. She recommended

teaching both methods.

On the other hand, Carter (1960) recommended only one method. Her

treatments were: down, both we7S, and down followed by both ways (after

ten weeks of a twelve-week instruction period). She found the "two-

rule" students, the third group, to be below either the round-down

.
students or the both-ways students, with no significant difference be-

tween the latter two groups. On speed, an immediate posttest gave the

same ranking to the round-down and both-ways groups, while an eighteen-

week delayed test showed all three groups of equal speed. Carter noted,

as did Flournoy, that children do not always use the method taught.

2 "Round-both-ways" is a short if inaccurate tag for the following

rule: If the second digit in divisor is four or less, round the first

digit down; if five or more, round up.
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Placing the Point in Division of Decimals

Only one study has investigated the two methods for positioning
the decimal point: Flollrnoy (1959b). The two competing algorithms are:
multiplying both divisor'and dividend by the appropriate power of 10,
using a caret and making the divisor a whole number, vs. subtracting the
number of decimal places in the divisor from the number of places in the
dividend.

Her conclusions were

(1) In general, the first method gave greater accuracy -- though
with above-average pupils the second method was slightly superior.

(2) The nature of the subtractive method seemed to provide more
opportunity for error.

(3) The caret method was the method of the textbook, so it is
recognized that variations in presentation of the subtractive method
were probably more widespread than for the caret method. But there was
considerable indication what children taught the subtractive method
understood the mathematical principle underlying their method as well
as the children who were taught to use the caret method.

Flournoy remarked in summary that pupils will eventually attain a
rather mechanical, but efficient, method for placing the decimal point,,-
regardless of the method taught. Still unanswered is the question-if
whether presenting both methods to a student will produce facilftation
or interference.

Finding Least Common Denominator

Again only one study was found which explored this topic.' Bat-haee
(1969) compared the methods of (a) factoring denominators and (b)
finding LCD by inspection. The latter was the method of the adopted

textbook. He found the inspection method much superior. Students saw

only one of the two methods.

Two Operations at Once

Spencer's (1968) paper investigates a more ambitious proposal: not

merely teaching simultaneously-two algorithms for the same process, but

teaching simultaneously two processes. The processes are whole - number

addition and subtraction. He found some interference, but more facilita-
tion and on the whole a gain over the usual segregated approach.
Spencer ends by suggesting that instructional strategies may have been

a factor'in the interference.
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How Important is Algorithm-Related Research and Teaching?

How frequent are errors involving algorithm, iii comparison with

other kinds of errors? On study gives an estimate. Roberts (1968)

analyzed 148 papers of third-graders who took the computation section
of the Stanford Achievement Test in 1966. He classified four kinds of

errors: wrong operation, obvious computational error, defective algor-

ithm (defined to be "correct operation-but some other error than number-

fact error") and random response.

Distributions.of errors were analyzed from samples out of each
quartile of achievement scores, with the following result. In the

lowest quartile 29% of errors were classified as defective algorithm,
37% of the total number for students in Quartile II, 43% of errors in
Quartile III, and 39% of the errors in the upper quartile; overall,

36%. These figures may be inflated a bit since "defective algorithm"
seems to be in some measure a "none of the above" category. But there

was a separate category for what were deemed to be random responses,

so the 'ballooning" was probably moderate. It seems safe to say that
at least a fourth, and likely nearly a third, of the errors, on computa-

tion problems in the third-grade SAT that year were algorithm-related --
the student knew whether to add, subtract, or whatever, butqlad trouble

with choice and use of algorithm. It would seem, then that time spent

in identifying and correcting algorithm-related errors is time well

spent.

Summary

The majority of the research studies considered in this paper have

made "side-by-side" comparisons of alternative algorithms. We may glean

from them the following conclusions:

(1) Bergen concluded her study by recommending the use of two

methods though her study did not actually.do so.

i.2) Tew, as reported by Brownell, did use two methods, with

results judged successful.

(3) Spencer combined addition and subtraction, successfully.

(4) Scott attempted two algorithms for long division in sequence,

successfully.

(5) Flournoy recommended the teachin of two method& for esti-

mating qtotient digits, though she did not actua 1Y- do so.

(6) Kratzer indicated that the distributiv method for long

division is as good as the sequence sometimes to ght,'Greenwood method

followed by distributive method..
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(7) Carter stated that one rule is enough for estimating quotient
digits. If a second is taught, it should be delayed to avoid confusion.
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Algorithmid Problem SolVing

Richard W. Corner

One of the important goals for education
problem solving ability. An educated person
knowledge to create new ideas or to act to re
The highest order of problem solving is the s
which require, invention by the solver. In Ga

solving is the process in which two principle
"higher-order" principle. This view of the r

matics education has been well-stated by Dilw

is the development of
should be able to use his
olve practical problems.
lution of those problems
e's (1965) view, problem
are ..ombined to form a
le of problems in mathe-
rth (1966):

...problems should be formulated which present the student
with an opportunity to perceive significant mathematical'
re

n

tionships capable of leading to a variety of signifi-

ca non - obvious conclusions. (p. 83)

At the opposite end of the problem-solving spectrum is the rote applica-

tion of rules to problems. Many students attempt to solve problems by

chanting magic words over the problem. For ekaMple, instead of using

cancellation to simplify rational expressions some students will use

2.1/. 3
the "cross out" rule. Thus, the expression + x

can be simplified:

. 2. Poillya (1948) has criticized textbooks for only having
2 +

problems of the "rule-under-your-nose" variety, which encourage mindless
1

memorization.,

Memorization can lead a problem solver iiito difficulty but at

certain stages in learning it seems to be desirable. For example, for

a child at the early elementary level "7 + 9 = ?" is a problem which

the child can translate to concrete embodiments and solve. Later, as

the child matures, the problem "7 + 9 = ?", asks only for the recall

of a memorized fact; it is something the child "knows." The spirit of

mathematics education today is based on the hypothesis that meaningful

learning of facts and algorithms will result in the student being able

to better use and transfer the facts. Of necessity some facts must be

memorized.

It seems to me that there is an intermediate level of problem

solving between memorization (meaningful or otherwise) and inventive

problem solving which should be of concern to
Many students have the desire to use mathemat

(or ability) to be inventive problem solvers.
use mathematics to solve problems in other fi

mathematics educators.
ics but have no desire
These students need to

elds such as economics,

engineering, and biology. Much of the mathematics which has practical

application is ummarized by algorithms. Thus, the intelligent use of
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algorithms to solve problems seems to me to be a valid goal for mathe-
matics education.

This paper will attempt to explore some of,the facets of algorith-
mic problem solving. First the literature on problem solving will be
reviewed. tased on the literature, a model for algorithmic problem
solving will be proposed. This model points to some considerations for
the future mathematics education.

What is a Problem?

The following defines "problem" in a general sense:

A problem is a set of stimuli and a goal, set in an environment.
To solve a problem, a person must first perceive the goal. If the
stimuli elicit behavior which results in achievement of the goal in a
manner consistent with the environment, then we say that we say that
the problem has,been solved. A problem in mathematics must be solved
consistently within the mathematical and logic system in which it is
contained. Consider the following problem: Solve the quadratic equation
x2 + 4 = 0. The goal of this problem is finding the set of numbers which
make the sentence, x2 + 4 = 0, a true statement. If the environment in
which we are operating only contains the real number system, then the
set of numbers is empty. However, i we admi the complex numbers, then
we have a non-empty set of numbers, 2i, - 2i If it is claimed that

the numbers 2 and -2 are solutions t the eq tion, then we have an
inconsistency with the properties of the system in which we are operating.

A giiren problem may be classified as an inventive problem, an
algorithmic problem, or a memorization type of problem, depending on
the experience and knowledge of the problem solver. Merrill (1971) has
extended Gagne's view of learned behavior and includes this view.
Merrill classifies all learned behavior into 10 categories, including
Gagne's eight and two additional categories (see Figure 1). As in
'Gagne's theory each lower level behavior is necessary for a hi.gh-level

behavior. Furthermore, Merrill proposes that a person will display what

he calls the "Push Down Principle." Since each succeeding level in the
hierarchy increases the-cognitive demand on a person, he will act in such
a way as to reduce the cognitive load as,much as possible. That is, a

behavior acquired at one level will be pushed down to a lower level as
soon as conditions have changed sufficiently so that the learner can
respond to the stimulus situation using lower level behavior. In problem

solving, as de inedi by Gagne, the learner evolves a new principle. In

Merrill's sche e, on the seconc. e counter with the s e problem type,

the learner o ly needs analysis behavior to apply th previously evolved

principle. A ter several encounters with the same s tuation, the be-

havior requir d is reduced to the classification level. That is, the

problem solve just needs to know if the problem Is in 'the class which
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is solved by the previously evolved principle. This "Push Down

Principle" makes it possible for persons to use previous facts to

expand their knowledge.

Behavior
Class Behavior type

Emotional 1. Emotional (Signal Learning)

Psycho-
motor

2. Topographic
(Stimulus
Response)

3. Chaining 4. Complex
Skills

Memori-
zation

5. Naming 6. Serial Memory
(Verbal Asso-
elation)

7. Discrete Memory
(Multiple
Discrimination)

Complex
Cognitive

8. Classification
(Concept
Learning)

9. Analysis
(Principle
Learning)

10. Problem
Solving

Figure 1. Types and classes of behavior.

Research on Problem Solving

In his review of research, Kilpatrick (1969) concluded that little

research on problem solving was being done. He further stated that

much of the research lacks direction and is of low quality. Two theore-

tical positions seem relevant to algorithmic problem solving, the

behaviorist and the information processing theories.

1. The Behaviorist Approach

Skinner (1966) states in operant learning terms what may be con-

sidered the basic approach to the behaviorist theory of problem solving

a(see Figure 2). The problem acts as a discrimination stimulus, sped;

the response, R
p,d'

i
s
a "coding" by mediating processes into a secondary

discrimination st' ulus,
d S 113,,d

elic s the respon f selection

the appropriate rule (alpgorithm) for e problem ( L Then, the
p,d

problem.becomes the stimulas for application of the rule (S
P'r

). The

elicted response will be an S-R chain f length greater than or equal

to one; the final response is the desi ed solution (Rn).
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Sp s13_ p 1 S
, d p,r p,e no'`Rn

The problem a Mediated Problem as . Application Solution
discrimination discrimination stimulus of rule
stimulus stimulus for rule

Figure 2. The behaviorist theory of problem solving

The basic operant position'has been modified by several others.
Kendler and Kendler (Davis, 1966) view problem solving as a combination
of horizontal and vertical processes. 'The horizontal processes are

,several ongoing S-R chains. 'Problem solving then is the vertical inte-
gration of two or more of these chains. Staats (1966) sees the process
as a.highly complex sequence of Stimuli which may elicit multiple
responses and responses which require multiple stimuli for their
elicitation.

Davis (1966) summarizes the research on problem solving with the
view that problem solving behavior is essentially the result of trial-
and-error learning. If a person has prior experience with a given
problem, then he has acquired the necessary S-R. relations to apply a
previously learned rule for solution. The research tasks usually asso-
ciated with this type of problem solving are anagrams, water jug, and
"insight" (e.g., matchstick or hat rack) problems. When a person does
not associate the desire putcomes of a problem with a rule, he then
operates in a trial-and-error manner. His trial-and-error behavior
establishes the necessary S-R relations to allow the application of a
rule for solution. The research tasks associated with overt trial-and-
error are typically light-switch, classification, and probability
learning tasks.

2. The Information Processing Theory

Newell and Simon (1972) have outlined the essential ideas of an
information processing theory of problem solving. The essence of the
theory is the assumption that a human acts as an information processing
System in solving problems. The research done in this area has been
designed to support this assumption.

An information processing sys em (IPS) has capability to s lve
problems in the form of a program. The pro ram is wr4tten in symbolic

fo usually, but not nece sarily a compu e programming language.
The IFS has receptors which allow t to receive information from the
en ironment. The IFS has a prodes or which connects the receptors with
a long term memory. The long term memory of the IP is capable of
storing and retaining of symbolic structures such as programs or lists.
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The processor of an IFS has a set of elementary processes which allow

it to call from long term memory_the structures needed to process inputs.

Upon completion of the processing the results are communicated to the

environment by effectors (see figure 3). This model of an IFS Was

stimulated by and has its embodiment in the modern digital computer.

E
N
V Input Receptor

0 E

R C

0 E 0

N S R

M S

E Output.fe+-- Effector 0

N
T L

An IPS

Figure 3. Representation of an information
processing system

A simple IPS is a bimetallic thermostat. Its receptor is a bi-

metallic thermometer and its effector is a switch connected to a

furnace. The processor is the bimetallic thermometer and the long

term memory is fixed by the construction. A program might have the

following steps:

1. Measure temperature, T.
2. If T > 68°, go to 1.

If T < 68°, go to 3.
3. If T > 66°, go to 1.

If T < 66°, go to 4.
4. Switch on furnace

5. Measure T. .

6. If T > 68°, switch furnace off, go t
If t < 68°, go to 5.

Of course the IFS model is concerned with problems other that

turning furnaces on and off. Paige and Simon (1966) have tested the

theory as applied to algebra word problems. First a computer program

was written to solve problems. Next, subjects are asked to solve a

set of problems, talking aloud as they solve the problems. To test

whether the program is a valid model of the problem solving procedure,

the steps which the program executed are compared with the protocols

of the subjects' solutions. Positive results have been obtained for

algebra word problems, chess and symbolic logic problems.
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As can be seen the theory is a non-statistical and highly content-
specific at this time. Hallworth's (1969) comtents point out the
strengths and weaknesses of the theory. Because of the necessity of
writing a program, the theory must be precisely stated and points out
vagueness in other theories. He mentions that attempts to program what
happens when a child passes from nonconservation to conservation in
Piaget's theory, point to vagueness in,Piaget's theory. The IPS theory
is questionable in that its validity has been tested only in a few cases.
Since the theory of solution of a specific problem is embodied in the
computer program, the highly specific nature of a computer language
limits the usefulness of theory.

The IPS theory brings many problems not usually thought of as
algorithmic into the realm of algorithmic problem solving. If we assume
that any programmable process is an algorithm, then the work in this
area has greatly expanded the number of problems amenable to algorithmic

solution. Algebra word problems are not usually thought of as being

algorithMically solved. Certainly this area of research opens the
possibility of finding new problem-solving techniques which may be
easier to teach than those currently used.

A Model for Algorithmic Problem Solving

The model which is proposed for algorithmic problem solving is
based partially on the behaviorist and the information processing theories
of problem solving (see Figure 4). The problem provides a stimulus for
the solver which causes him to select an algorithm from the set of all
algorithms known to him. These algorithms can be thought of as stored

in the solver's long-term memory. The selection may be based on pre-

vious instruction or non-previous trial-and-error learning. The

algorithm then is tested as to its applicability to the problem. This

test may be a simple multiple-discrimination task or involve some
operating and testing (that is, there may be a testing algorithm). If

the algorithm fits the problem, then it is applied to the problem and

a solution is found. If the algorithm does not fit the problem, then
it is applied to the problem and a solution is found. If the algorithm

does not fit the problem, then another algorithm is selected and tested.

The solver may fail to generate any algorithms for testing; in this

case he then attempts to restructure the problem or to discover a new

algorithm for the problem. If he, is successful in changing the structure

of the problem, he again selects and tests algorithms. A part of dis-
covering a new algorithm would be the testing of its appropriateness.
If he is unsuccessful in restructuring the probl or finding a new

algorithm, he has failed to solve the problem. I t should be notedithat
this model is not intended as a comprehensive mo el of problem solving,

but it is intended as model of algorithmic pro lem solving.
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(:1 PROBLEM S
p,d

)

RESTRUCTURE
THE PROBLEM
(Behaviorists'
trial-and-
error
Restructure
as in the
Gestalt psy.,
or Scandura's
higher order
rules.

NO
SOLUTION

none

found

SELECT
ALGORITHM

(Rp,d)

(Sp,r)

no

SET OF
ALGORITHMS
KNOWN TO
PROBLEM
SOLVER
(Memory)

yes
p,r)

APPLY ALGO.
TO PROBLEM

( SOLUTION

( s

Figure 4. A'proposed model for algorithm problem solving

Consider the following example of how a person reacts to a
problem:

Select algorithm.

2 Restructure problem
3 Select algorithm.
4. Test algorithm.

Solve x2 - 6x + 8 =

None apply. Quadra is equations have.
form axl- bx c 0

x- - 6x+ 7 -1
Factor qua at c
Attempt to fac or:
(x-7) (x-1) - 8x + 7 x- - 6x + 7
No other s ems to apply.
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5. Select algorithm
6. Test algorithm

Apply algorithm

Quadratic Formula
Equation has form
ax- + bx = c = 0
thus quadratic formula applies

-b ART Z;
ax- + bx + c 0 => x _

2a

6 ± Nr7677. .7
- 6x + 7 = 0 x _

2 1

. 6 ± . .6 ± 2 817
2 2

8. Solution x = 3 ±

The restructuring of the problem could be thought of in several
different psychological contexts. The Gestaltists as exemplified by
Wertheimer (1959) view problem solving as restructuring. By insight
(often sudden), the problem solver "sees" the structure of the problem
and thus is able to solve the problem. The behaviorist view of this
activity would be that if a problem does not elicit the behavior neces-
sary for the solution, then trial-and-error behavior would occur. The

trial-and-error behavior results in experience. which relates the problem
to a known rule and hence the solution.

Scandura's (1974) theory of behavior relates to what may occur
during restructuring. His assumptions about problem solving are:

(1) If a person has a rule which allows achievement of the goal) then
he will apply it.

(2) If a person does not have a rule for achieving a goal, then he will
shift to a higher order goal of deriving a precedure which will
satisfy the original goal.

(3) If the higher goal is satisfied, then the person returns to the
original goal.

He feels that the ability to solve problems primarily depends on the
presence or absence of higher order capabilities which make it possible
to combine the parts of a problem into' a whole which is adequate for
solving the problem. It is necessary to have both simple rules
(algorithms) and higher order rules which make it possible to modify.
simple rules. In Scandura's (1972) theory:

... rules are t e basic building block of all
mathematical kn ledge, and that if looked at in the
right way, all athematical behavior is rule-
governed. 57 12)
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Neither the Gestaltists nor the behaviorists theories suggest.how in- ,

struction in restructuring might be done. Scandura (1972) suggests one

way this might be done.

Some Questions for Mathematics Instruction

If the above model is valid, it points to certain areas of mathe-

matics instruction which may be in need of revision. From elementary

school through college the primary emphasis of the curriculum is the

achievement of proficiency in carrying out the steps of algorithms.

The result is that we see "solutions" for problems such as this:

Problem: Solve (x+4) (x+3) > 0

Solution: (x+4) (x+3) > 0
+ 4 > 0 and/or (?) x 0- 3 > 0

The student often applies a familiar algorit
consideration of its appropriateness. We as

emphasize the importance of-considering whie
for a given problem?

indiscriminantly without
does current instruction
algorithm is appropriate

Often several algorithms are presented fdr solution of a problem.

For example, in algebra students will be taugh\b to solve quadratic

equations by factoring, completing the square,\and the quadratic formula.'

Consider the following problem:

Solve: x2 + 4x - 9 = 0

Solution 1 (by the quadratic formula):

± 11(4)`- (4) (1) (-9)
x 2(1)

-4± 1f16 36

2

-4 t 1g
2

-4 ± V77
2

-4 ± 2 1/73
2

-2 ± NriTi
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Solution 2 (by completing the square):

+ 4x . 9

x2 + 4x + 4 . 9 + 4

(x+2)2 . 13

x+ 2 =

x= -2 ± v5-

Even though the efficiency of Solution 2 as compared with Solution 1.
is obvious, when given the choice of algorithms students-wiliusually
use the one most recently s-Jaied. -A similar example can be seen in the
solution of systems of linear equations where we teach both substitution
and elimination algorithms. In calculus we teach both the quotient
rule and the product rule for differentiation; seldom, however, do we
discuss when a quotient could be transformed into a product and more
easily differentiated. How often do mathematics teachers give instruc-
tion in how to choose the_most efficient algorithm for a problem?

Computing continues to have an increasing impact/on mathematics.
A recent IBM advertisement notes that 100,000 multipiidations which
cost $1.26 on a 1952 computer now cost one cent. The daily newspaper
has advertisements for four-function hand-held electronic calculators
costing $19.95 and "electronic slide rules" costing less than $100.
These economic changes point to computing's continued growth in impor-
.tance; it will be necessary for an accompanying change Jn mathematics
instruction. The selection of the appropriate algorithm and the most
efficient algorithm is important in compUter applications. The need
for human computers will continue to decline. At the same time thp
need for problem solvers who are able intelligently to apply algorithms
will grow.
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Algorithms and Mental Computation

Raymond Zepp

There is no scarcity of journal articles which call for increased

instruction on mental computation in the elementary school. These

articles, for the most part, consist of high-minded but vague appeals

to the necessity for grocery -store arithmetic and the like. A typical

example of this kind of article is one by Koenker (1961) in the

Arithmetic Teacher. lEs conclusions are:

A ten minute daily period devoted to mental arithemtic

would prove of great value in preparing a child for his present

and adult out-of-school number experience. It would also help

the child develoTarithmetical understanding which cannot be

taught by a pencil-and-paper type of arithmetic alone. (p. 296)

It is difficult to argue with the reasonableness/of Koenker's

statements. However, before we wholeheartedly launch programs of mental

computation, we must answer precisely some specific questions. These

questions fall into, three categories as follows:

1. Is mental computation a well-defined topic? In a sense, all

'arithmetic is mental. Perhaps mental computation algorithms are
essentially the same ones used with paper and pencil and involve pre-

cisely the same mental processes; then traditional written drill would

be sufficient to increase nonwritten computational ability.

2. Can the algorithms involved in mental computation be taught at

all? Perhaps it is an ability which, similar to IQ, cannot be culti-

vated beyond certain narrow limits. In other words, time devoted to

mental computation may be totally. wasted.

3. What are the effects of instruction in mental computation on

he child's overall growth in 4rithmetic? Does know :edge of Mental

lgorithms transfer to use of written algorithms? Would a student be

more or less likely to gain the fundamental mathematical undeistanding

and insight deemed so important in elementary education?

Let us examine these questions one-by-one.

1. Is mental computation a legitimate topic?

The least one can say is that there seems to be a concensus on the

meaning of the term "mental computation" (or "mental arithmetic"). Hall

(1954) noted that the term "mental arithmetic" appears as a separate
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listing both in the Education Index and in Webster's New International
Dictionary, where it is defined as "the solution of arithmetical problems
by mental pr6cesses, unassisted by written figures." Hall elaborates
that the term should include "problems in which quick estimations are
made which either may or may not be verified by a written response."

But the question of whether the algorithms of, along with the
mental processes used in, mental computation are essentially different
from written arithmetic, is more difficult to answer. Clearly, the two
abilities will correlate highly, since many prerequisites, such as
knoWledge of multiplication tables, are common to both. There do,

however, seem tp be certain techniques in which the two differ. Flournoy
(1959) attempted to differentiate between mental and written algorithms.
For instance, to add 34 + 48, the algorithm which demands the adding of
8 + 4, carrying 1, etc. is much less amenable to mental computation than
a procedure of adding 30 + 40 and then adding l2. Flournoy used her
classification in a study which showed that many students, who were
forced to use mental computation, automatically shifted to mental
algorithms. Before and after a unit of instruction in mental computation,
150 pupils wrote explanations of the algorithms they used. For instance,
in adding 43 and 28, a pupil stated, "I added 3 and 8. This is 11. I

put down 1 and carried 1. This made 14 4 2, which is 7. I got 71

for an answer" (p. 137). This was classified as a written-type algorithm.

Before the instruction, 85 percent of the students used "paper-and
pencil" thought. After the instruction, only 23 percent did. However,
"there was very little change to the shorter or different ways of
thinking when dividing whole numbers" (p. 138);

A summary of the algorithms used is the folloing:.

After instruction in how to add without using paper and
pencil, pupils were using 11 different ways... In adding 34

and 48, the majority of pupils were using one of two methods:
a) 30 + 40 = 70; 8 + 4 . 12; 70 + 12 82.

b) 30 + 48 = 78; 78 + 4 = 82.
After instruction in how to subtract without paper and

pencil, pupils were using 10 different methods. In subtracting
24 from 62, the majority of pupils were using one method of
thinking which was: 62 - 20 = 42; 42 - 4 . 38.

After instruction on how to multiply without paper and
pencil, pupils were using about-5 different ways of arriving
at an answer. For the example, 16 x 11, the majority of pupils
were using one of two methods. Almost half of. the 150 pupils

used this method:
16 x 10 . 160; 16 x 1 . 16; 160 + 16'. 176.

And about half the pupils multiplied 1Lby one-half the multiplier;
then doubled the answer, as 8 x 11 88; 2 x 88 = 176.

After instruction on how to divide without using paper and
pencil, pupils generally used two ways of arriving at an answer
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toa divisipn example. While the majority of pupils used the

regular pericil and paper procedure for dividing 174 by 3, a

few pupils (about 10%) were using the following procedure:

150 3 = 50 24 3 = 8 50.+ 8 = 58.

(Flournoy, 1959, p. 138)

Some correlational data have. been collected on the relationship of

ability in,metal computation to other variables. Whimbey, et al. (1969)

have tried to/ demonstrate an extremely close relationship to memory span.

In two different experiments, college students took an ETS digit-span

test along with a mental arithmetic test constructed by the author. In

the first.grOup, the tests "correlated .77, which, corrected for .87

reliability/, gave .95 correlation." The precise nature of the correction

was not stated. A similar result held for the second group of students.
HoweVer, these results are only speciously convincing: if one takes a

cloSer look at the tests, one finds mostly questions:of the form "you

have 8A, B, 2C, and 5D, and you add to this 2B and 5Dhow many of

each category do you now have?", on the mental test. It seems as though

the so-called "mental arithmetic test" was constructed with the sole

purpose .of correlating with a digit-span test.

Better correlational data can be found. 'Perhaps the most far-
reaching and experimentally rigorous research in the field is a study

by Olander and Brown (1959). Seventeen-hundred students from grades

6 through 12 took a test of subtraction problems of 2 to 4 digits

administered either orally'or by flashcards. They also took a digit-

span test, and scores on intelligence tests as well. as Stanford-Achieve-
,

ment Tests were available. Olander and Brown noted:

(1) In relation to memory span--Before this study-began it was

assumed that ability in mental arithmetic was dependent to a considerable

extent on a person's memory span. However,-this expectation vas not

borne out by the results. The correlation between proficiency in mental
arithmetic and memory span was found to be only .35.

(2) In relation to general arithmetic achievement--Based upon
results in only' grades 6 through 9, the correlation between ability in

general arithmetic and mental arithmetic was .65. Compared with the

correlation of .50 between intelligence and mental arithmetic, this is

a high correlation, apparently indicating mental arithmetic is more

dependent upon general arithmetic ability than it is upon intelligence.

(3) In relation to sex--Boys excelled girls in mental arithmetic.

Girls showed superiority when paper and pencils could be used, though

the difference was not significantly different.

It seems fair to say, then, that facility in mental arithm0-dc,

although related to general arithmetic ability, is by no means the same

thing.
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2. Can proficiency in,mental arithmetic he effectively taught
in the schools?

Owing to the relatibnship between mental and general arithmetic
mentioned above, it is natural to expect. that some general arithmetic
concepts must be mastered before mental computation can occur. Pigge

(1967), in a study with 18 classes of fifth graders, compared three_
teaching methods: Method A-- 7-5% of instructional time'was devoted to
development and Meaningfurdiscussion.versus 25% drill; Method B-- 50%
development, 50% drill; and Method C-- 25% development, 75% drill. In

the pretest and posttest and later recall test of addition and sub-
traction probleks, nothing was said about the use of pencil and paper.
On the recall test one month later, pupils displayed a partial reversion
to written calculations. The conclusion was that: drill in written
arithmetic seems to cause students to begin solving problems mentally.
However, the experiment said nothing about the accuracy of the mental
solution's. Furthermore, one might ask what would have happened if the
students were asked not to use pencil and paper.

But what research has been done on the efficacy of direct instruc-
tion in mental computation? Quite convincing evidence has been submitted
by Flournoy. In one study (Flournoy, 1959), a sixth-grade class spent
10 minutes of each arithmetic class for two months on mental exercises.
A pretest and posttest in mental computation were given. The mean pre-

test score was 8.84, whereas the mean posttest score was 13.85, signifi-
cant at the .01 level.

In the same study, classes of sixth graders were given three weeks
of instruction in estimating and interpreting answers. A typical
prIblem was to estimate or give an example of a distance of 250 miles.
PrIctioe in rounding numbers was also given. As compared with a control'

gr up, scores on a,test of such problems were significantly higher.

1#0 of 18 questions, the mean was 15.0 as compared with 9.2 for the
coht-rei-group. Flournoy's conclusion was that the Skill of estimation
not only can be taught, but "has to be taught, it isn't just caught."

Flournoy's previouS study (1954) is similar, and even more striking.
Five-hundred-fifty sixth graders were given 10 to 12 minutes per day of
instruction in mental computation. Tests in both mental computation
and problem-solving were administered before and after the treatment.
All classes showed significant increases on both tests at levels from

.05 to .001. Perhaps even more important was the fact that both fast

and slow pupils showed increases. This would tend to dispel the thought
that only bright students can learn mental computation skills. Dramatic

results such as these appear to answer question 2 in the affirmative.
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3. What effect does instruction in mental computation have on a

child's groWth in arithmetic?

A number of studies show positive results. In fact, this writer

could find no studies with negative or even neutral results.

Flournoy's 1954. study cited above showed that in six of the classes

drawn randomly from the,20, pretests and posttests on written computa-

tion and written problem-solving showed differences significant at the

:01 level. Further, the Iowa Test of Basic Skills in Arithmetic problem

Solving revealed significantly more thanyaverage growth in arithmetic)

over the-two months.

'In a study by Hall (1942) 40 fifth- and sixth-grade students

brought in their own practical oral problems to be solved mentally for

15 to 20 minutes each day. Unit Scales of Attainment were administered

before and after the treatment. The results are listed on the next

page. The figures are impressive for less than one year of instruction.

Notice also that growth was relatively uniform over ability grouping.-

median
IQ

Results of Hall (1942)

Sept. 1941 Apr. 1942 Net Gain

94 4-1 5-4 1-3

1Q5 4-6 6-1 1-5

113 5-4 6-5 1-1

95 5-o 6-2 1-2

104 5-4 6-9 1-5

112 5-9 7-3 1-6

grade
V

grade
VI

A Unit Scale of Attainment score of 4-1 is to be interpreted

as a mathematical growth level of 4th grade, 1st month.
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In a study by Austin (1970), one teacher's seventh- and eighth-grade
classes set aside one class period per week for mental computation
problems made up by the'students, for example, 8 +.4 x 2 - 3 x 6, etc.
The scores of a random sample of 100 boyS and 100 girls were compared
to those of a control group on the SRA achievement test. A significant

difference at the .01 level was found. The experimenter noted that the
teacher variable was not 'Controlled and may have been a factor. Another
uncontrolled factor was the effect of a modern mathematics curriculum.
No significant interactions of groups and IQ or of groups and sex were
found. .

Rea and French (1972) administered the SRA achierement test before
and after a twenty-four-day period during which a sixth-grade class
spent approximately 15 minutes per day using Kramer's Mental Computation
Series. Although there,was'no rigorous statistical analysis, the class
(n = 13) did show an average growth of eight months over the two-month
period. Such striking results cannot be taken. lightly.

Schall (1969) gave 399 fifth graders a pretest and a posttest to
students who were'given two weeks of instruction in mental arithmetic.
The tests were in attitude, mental arithmetic and arithmetic achievement.
Attitude improved. Mental arithmetic ability improved, but not too

significantly (p > .10). No significant gains were found in paper-and-
pencil computation, but gains were found in problem-solving. Schall
concluded that pupils were able to transfer skills and concepts better

after the two weeks.

The precise reason for the increases in arithmetic growth exhibited

above is not known. Various explanations have been offered.

1) Pigge (1967) stated: It has often been stated that

reliance on paper and pencil solutions alone can lead

to automatic computation without requiring much think-

ing. On the, other hand, it is believed that the
thought processes required in mental arithmetic en-
able the children to better understand the numerical

relationships" (p. 589).

2) Flournoy (1954) appeared to concur with a statement

she attributed to Spitzer: "Mental arithmetic tends

to emphasize significant aspects of the number system"

(p. 148).

3) Rea and French (1972) imply that success was due to

increased motivation of students, i.e., fun with mental

arithmetic serves primarily as a motivational device to

get students to enjoy mathematics.
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4) Hall's 1942 article seems to emphasize the fact that

the students made up their own problems. The numbers,

therefore, acquired a personal meaning and relevance

to the students.

In only the first two of these explanations is there implication of

direct transfer of skill in using mental algorithms to skill in using

written algorithms. Whatever the reason the data are consistent and

fairly conclusive that mental computation instruction produces good re-

sults in general arithmetic growth.

Conclusions

The literature on mental computation is fairly consistent in its

proclamation of the value-of teaching mental computation. Mental arith-

metic, while closely allied with written arithmetic, is a topic in itself

which can be effectively taught to both slow and fast learners. Moreover,

instruction in mental computation has been shown to be of significant

value in enhancing students' overall growth in arithmetic.

If'there is a set of algorithms unique to mental computation, and

if knowledge of those' algorithms is useful to students in learning mathe-

matics, then it follows that research should be done as to the best

method of teaching those algorithms. There has been much research on

methods of teaching written algorithms, but almost none on methods of

teaching mental algorithms.
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Algorithmic Processes in Arithmetic and Logic

Jesse D. Parete

Introduction

This study is designed to meet two objectives. The first is to

investigate the relationship that may exist between (1) school students'

ability to formulate and use the rule-governed behaviors necessary for

success on the Furth-type task and (2) their ability teusearithmetic

algorithms. For this study, the first variable is theorized to be a

measure of the subject's innate ability to process information in an

algorithmic fashion.

The second objective is to investigate the effectiveness of teaching

division of fractions by two different algorithms. In this same context,

two strategies for teaching division of fractions will be tested. They

consist Of presenting both algorithms to the students in two different

sequential\orders. The purpose of testing these two strategies is to

find out if the learning of one algorithm influences the learning of the

other.

Related Research

Hans Furth, a psychologist interested in the development of human

intelligence, has studied students' mental behaviors as they worked with

concepts formed with the logic rules of conjunction and disjunction and

the logic operation of negation (Furth, Youniss, and Rods, 3970). His

subjects were elementary school students (grades 1-6).

The paradigm he used in his study consists of presenting subjects

with statements such as 'x and y' where x and y are values of two attri-

bute dimensions. For example, 'house and red' would be presented as

'It is a house and it is red.' Together with this statement, the subjects

would be presented a picture of some colored object. For such a pair,

the subjects, would respond to whether or not the statement and the picture

matched, i.e., whether or not the picture was a positive exemplar of the

concept being expressed. With a statement such as 'x and y'l four task

items are presented: one item for each possible truth value case (TT,

TF, FT, and FF) of a bidimensional rule.

Furth tested his subjects using the following concepts: 'x and yf,

'x and y', 'x and y', 'x or y', 'x or y', and 'x or y' (where mean.

negation.) By analyzing consistent responses on certain item types,

Furth sorted the subjects into three distinct groups.

To illustrate the item types, the four items formed from the concept

'x and y' will be analyzed (see Table 1).
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Table 1

c.

'Statement

1) Not a house.Or
it is not red match red house TT

2)
It match blue house TF

3) If match red car FT s c'

4) r

tI not a Match blue car .FF s c

Truth Picture
Correct Picture Table Instance
Res onse Instance Cases Cases

Note: The symbol s indicates that the relevant value of the shape
dimension (house in this case) is present in the picture
and, s' indicates that it is absent. Similarly for,the color
(red) c and c'.

The most primitive level of responding was fouud with responses to
items like 1 and 4 in Table 1. One group of subjects (Level 1 subjects)
consistently responds with a match for item 4 and not a match for item 1.
This type of response was caused by an attribute present (or absent)
factor and not the logical truth value of the instance or the concept
it was to exemplify. In item 1 the relevant attributes, house and red,
were absent (s' c') so the subjects in this group gave a negative re-
sponse; in item 4 they were present (s c) and a positive response was
elicited.

The second level of subjects (Level 2 subjects) demonstrated another
consistent pattern of behavior Which 'Furth interpreted as a transitional
stage in the ability to deal with the relation of logical truth. These
subjects could successfully answer item tyPesa and 4 no matter which of
the six concepts they were dealing with. Note that the truth value cases
(TT and FF) are concordant for these two items while in items 2 and 3
they are discordant (TF and FT). Furth concluded that the subjects were
beginning to deal with the relation of logical-truth and that they were
not able to apply their new skill in the discordant cases because the
memory load interfered with information processing. The third level
(Level 3 subjects) had little trouble with the task of dealing with the
relation of logical truth.

The number of students in any level was related to the grade level.
Because of this, Furth drew his conclusion that the three levels repre-
sented a developmental sequence.

These three levels also reflect the behavior of adult subjects
applying a problem-solving strategy in "rule learnihg' tasks. Bourne
(1970) analyzed this strategy as the application of three steps:
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(1) identifying the truth value of the attribute dimensions, (2) placing

the exemplar (or-nonexeMplar) instance into one of the four truth value

cases, and (3) attaching .a correct truth value to correspond to the rule.

His experiments: provide evidence for such a model by the behaviors that

subjects exhibited. - also cited studies indicating that the subjects'

application of this strate can be enhanced by pre-training the subjects

on the subtasks or steps (Haygood and Kiehibauch, 1965; Bower and King,

1967; Bourne and Guy, 1968).

Bourne (1967) interprets this behavior'as rule-governed. It may be

applied to any one of the four bidimensional rules, conjunction, dis-

junction,'biconditional, and conditional. It is like an algorithm in

arithmetic. The subjects are not conscious of the reasoning behind their

behaviors, but apply the rules to solve problems.

Capps (1963) and Bidwell (1968) report that different methods of

teaching division of fractions influenced students' achievement on multi-

plication of fractions. The common denominator method caused interfer-

ence. There does not seem to be any research on the effects of teaching`

multiple solutions for division of fractions and, thus, any research on

how one algorithm may influence learning of another.

Hypotheses

The null hypotheses to be tested in the present study are:

Hi. There are no differences among three groups of subjects

formed by analysis of responses on a Furth-type logic

test with regard to the likelihood that they will use

both algorithms taught for solving division of fractions

problems.

H2. There is no difference in achievement on a division of

fractions test between students taught the inverse

algorithm and students taught the complex fraction

algorithm.

H3. For groups of students identified at each of the three

levels of performance on the logic test, there is no

difference in achievement on a division of fractions

test between students taught the inverse algorithm and

students taught the complex fraction algorithm.

H4. There is no difference in achievement on a division of

fractions test between students taught the inverse

algorithM followed by the complex fraction algorithm

and those taught the same algorithm in reverse order.

H5. For groups of students identified at each of the three

levels of performance on the logic test, there is no
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difference in achievement on'the division of fractions
test between students taught the inverse algorithms in
reverse order.

Subjects

The subjects were 53 sixth-grade students in two classes in one
elementary school in ColumbuslOhio. Their social background was pre-

dominantly of the lower socioeconomic level. There were nearly equal
numbers of boys and girls, with ages ranging from 11.3 years to 13.2

years and IQ measures (for those available) ranging from 74 to 116.

Tests

A 24-item logic test was constructed with items similar to those

used in the Furth paradigm. The same six concepts Furth worked with

were used in the construction of items. For each concept., there were

four items, one for each of the four possible truth value cases (TT, TF,

FT, and FF). The two dimensions used Were shape and color and the rele-
vant attributes on all items were "house" for the shape and "red" for

the color. A reliability of .59 (n = 37) was obtained for this test us-
.

ing the Hoyt Anova procedure. Factor analysis was used to validate the

claim that this test could sort subjects into the three different types

of behaviors as outlined in the introduction. On each of a three-,

four-, five-, and six-factor analysis, one factor could be labeled as a

"Level 1" factor and one a "Level 2" factor based on the dominance of
item types_ associated with the given level. Since Level 3 subjects re-

spond to almost all item types correctly, no factor was expected to re-

flect their behavior; Other factors obtained reflected differences

between the conjunctive and disjunctive rules,

Two division tests were prepared to measure student achievement

after instruction. The first test (Dl) contained 15 problems all
written in the following form: a/b c/d. The second test (D2) also
contained 15 problems of which 11 were written in the same form as those

on Dl. Two problems were written in the complex fraction form and two

were written as the equation which is used in the inverse algorithm

solution. Hoyt Anova reliability coefficients for these two tests were

.88 (n = 37) and .94 (n = 37), respectively.

Experimental Design

Subjects were grouped into one of three levels of performance (L1,

L2, or L3) attained on the logic test. Within each level, subjects were

randomly assigned to one of two treatment groups (Tl and T2). To test

hypotheses H2 and H3, Tl consisted of instruction on the division of

fractions with the inverse algorithm and T2 consisted of instruction

with the complex fraction algorithm. To test hypotheses 114 and 115, Tl
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consi4sted of instruction on the division of fractions with the inverse

algorithm followed by instruction on the complex fraction algorithm,

plus the influence of test DI given immediately after the instructional

period for the first algorithm. Treatment T2 was the same except for

the order of the algorithms. Both treatment groups were taught by the

researcher. Table 2 presents the experimental design model.

Dav 1

Table 2. Experimental Design

Day 2-5 Dav 6 Day 7-10 Dav 11

Logic
Test

Instruction with
Algorithm I Test D1

/

'

Instruction with
Algorithm C Test D2

Instruction with
Algorithm C

Instruction with
Algorithm I

Algorithm I
(Inverse)

1/3 1/2[]

1/2 = .x 1/2

1/3 = [1/3 x 2/1] x 1/2

Ans. 1/3 x 2/1 = 2/3

Algorithm
(Complex

1/3

1/3

C

Fraction)

1/2 ]

2/1 2/3 2/3

1/2

1 2 2/1
i---
1

The random assignment of individuals to treatment groups was used

in order that individuals rather than classes could be used as the ex-

perimental unit. Unfortunately, it was impossible to instruct subjects
_from both .classes assigned to the same treatment group at a common time.

Instead, four instructional groups were` formed. Treatment Tl was admin-

istered twice; once to those subjects in one class assigned to Tl and

once to those subjects assigned to Tl from the second class. Similarly,

T2 was administered twice daily. The data were analyzed as if the random

assignment into treatment groups had been achieved. This liberty with

statistical assumptions was forced by the small sample size in this

experiment. It was rationalized with two factors in mind. First, the

researcher taught both classes for four weeks prior to administering

the treatments and introduced all the prerequisite concepts for division

with fractional nunbers. Second, the researcher administered each treat-

ment.

For the statistical design (see Table 3), the logic test was used i

as a blocking variable.
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Table 3. Statistical Design

T1

T2

Ll L2 L3

G11

G21

(n = 2)

= 4)

G12

G22

(n = 8)

(n = 10)

G13

G23

(n = 7)

(n = 6)

A 2x3 factorial design using analysis of variance (SOUPAC)1 was used to

analyze the effects of the two treatment variables and the three levels

Obtained from the logic test, This design was run on each of the two

division tests Dl and D2.

To test the first hypothesis H11 a Chi square test was run usin

the levels of performance on the logic test (L1, L2, and L3) as the 'ride-

pendent variable and performance on four specially prepared items pl ced

on the second division test D2 as the dependent variable. Two items 'were

wfitten in the form of the second step of the complex fraction algorithm

and two were\written in the form of the equation in the second step Of

the inverse algorithm (see Table 2). Success was considered to be ;

achieved if the subject used the intended algorithm on all fOur problems.

Results

Results from the analysis of variance for the division tests D1 and

D2 are given in table 4.

Table 4. Analysis of Variance

Source of Variation . df

Test Dl Test D2

MS F P MS F P

Treatments (T) 1 342.42 3.51 0.07 206.14 3.07 0.089

Logic Levels (L) 2 474.81 4.87 0.015 411.17 6.13 0.006 .

T x L 2 552.44 5.66 0.008 234.73 3.50 0.043

Within 31 97.55 67.05

Total 36 1467.22 919.09

In each analysis the interaction was significant beyond the .05 level and

the graph of cell means indicated that the nature of the interaction was

disordinal (see Figures 1 and 2). Therefore, only the simple effects at

each of the three leVels Ll, L2, and L3 may be interpreted.
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Critical values for differences in means at different levels of the

logic measure were computed using the Dunn procedure for post hoc analy-

ois. The critical value for the difference in means at Ll on test Dl

was 30;68 at the .05 significance level; the observed difference was

23.125. At L2 on test D1, the critical differences were 16.829 and

11.243 at the .05 and .30 significance levels, respectively; the ob-
served diffference was 7.325. At L3 the difference in means was very
small, so no statistics were computed (since it was evident that there

would be no statistical difference in the scores).

On the
were at Ll.
differences

Tables
Dl and D2.

T2

second division testl!the only means that appeared different

The Dunn critical value at the .05 significance level for

in means was 16.97; the Observed difference was 17.0.

5 and 6 contain the test statistics for the division tests

Ll

M=8,00 (n=2)

SD=7.06

1

Table 5. Stotistics for Test D1

12.

M=29.13 (n=8) M=31.29 (n=.7)

SD=10.62 SD=6.55

M=27.53 (n=17)

SD=11.12

M=31.25 (n=4) M=21.8 (n=10)

SD=14.01

M=36.33 (n=6)

sD=4.72

M=28.05 (n=20)

SD=12.08

M=23.50 (n=6) M=25.06 (n=18) M=33.62 (n=13) m=27.81 (n=37)

SD=12.82 SD=12.82 SD -6.13 SD=11.49

T1

Table'6. Statistics for Test D2

Ll

M=16.5 (n=2)

SD=0.71

L2

M=36.83 (n=8)

SD=10.32

M=33.5 (n=4) M=26.1 (n=10)

8E1=1.29 SD=11.17

M=27.83 (n=6) M=26.22 (n=18)

L3

M=37.29 (n=7) M=29.71 (n=17)

SD=4.42 sD=9.41

M=36.83 (n=6) m=30.8 (n=20)

SD=4.17 Sly=9.41

m=37.08 (n=13) M= 0.29 (n =37)

SD=8.84 sp=10.49 sD=4.13



Levine's test for homogeneity of variance was run for both sets of

data. This test indicated that the homogeneity condition was met

(13 <.05) to satisfy the analysis of variance model.

Table 7 presents the contingency table for subjects in groups Ll,

L2, and L3 who did or did not meet the criterion set for the four

special problems from division test D2, A chi square of '4.23 (df = 2,
1

Table 7. Contingency Table for Special
Problem Task on Division Test D2

Meet Criterion Failed Criterion Total

Ll 1 5 6

L2 4 14 18

-L3 7. 6 13

Total 12 25 37

p<.125) was calculated for this data. At the .125 significance level,

group L3 was different from either Ll or L2, but Ll and L2 did not

statistically differ from each other.

Discussion

The biggest difference in mean scores appeared on division test D1

between the groups at the Ll level of the logic test (see Figure 1).

These are the students who were judged to be least capable of processing

information in an algorithmic fashion. They seemed to be quite success-

ful using the complex fraction algorithm and quite unsuccessful with the

inverse, algorithm. The researcher served as the instructor throughout

this experiment and it is his feeling that the subjects.in the Ll group

taught with the complex fraction algorithm were applying it rotely. The

subjects in this level who were taught the inverse algorithmliad trouble

following the steps of this algorithm. The equation formed in the secona

step seemed to be a "trouble spot" for all students and therefore it was

not as easily applied in the rote fashion in Which the complex fraction

algorithm appeared to be applied.

If the complex fraction algorithm is easier to perform,. groups using

it at each of the three levels should out-perform those using the inverse

algorithm. While this appeared to be the case for subjects at Ll and L2,

the reverse is true for level L2 subjects. The L2 subjects are those who

were judged to be attempting to deal with the relationship of logical

truth on\the logic test. Most important is that, unlike the Ll subjects,

they were attempting a meaningful solution to items on the logic test.

It may be the case that the rationale for the inverse algorithm is
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easier to comprehend. For the inverse algorithm the subjects must under-
stand the relationship between multiplication and division, i.e., that
they are inverse operations. The complex fraction algorithm requires
the students to deal with the formation of a complex fraction; this con-
cept was new for them. There are no new concepts involved in the inverse
algorithm; its rationale is built on concepts the students have already
dealt with at one time or another.

If it can be assumed that the two algorithms differ in the manner
described above, the differences in group means for test Dl at each
level (14) reflect the Characteristic measured by the logic-test: the
abilittito perform with algorithmic processes. The,L1-Subjects were
using an algorithm on the logic test as evidenqed--by their consistent
responses to item types for which the instance patterns were sc or s'c'.

But this is a rotely applied algorithm in that it la4ed.anyexternal
meaning. The level L2 subjecti- were attempting meaningful solutions.
In so doing they became_confused on items whose truth value case was
discordant. The Ll subjects consistently answered same of,these item-
types correctly. For example, the statement, "Not a house and it is
red" paired with a picture of a black house, is one such item-type. The

truth value case for this item is TF, the pattern (picture) instance is
stc', and the correct response is "not a match." Thus those subjects
attempting the'meaningfal solution on these types of items seemed to

perform less well.

In the same fashion, subjects at level Ll using the complex fraction
algorithm out- performed both groups at level L2 on division test Dl.

The only group whose average fell after instruction with both algo-
rithms (see Figure 2) was that group at L2 receiving instruction with
the inverse followed by the complex fraction algorithms (T1). This tends

to support the interpretations stated above concerning performance with

the two algorithms. The fact that those subjects in the group Ll re-
ceiving instruction with the complex fraction algorithm followed by the
inverse algorithm (T2) also gained on test Dl tends to detract from the
interpretation of differences in the algorithm. Similarly, those in

treatment group Tl at Ll did not gain as much as might be expected.

These events as well as those Observed on the first,test may be due

to other factors such as individual differences not controlled for by

the design of this experiment. The sample sizes for the two groups at
Ll were 4 and 2, respectively a small number of students from which to

draw conclusions.

The results obtained for the special problems on test D2 were straight-
forward if not significant at the .05 level. The proportion of students

meeting the criterion of success increased from Ll to L3; the proportions
were .167, .222, and .538, respectively. These data add support to the

theory that the logic test was measuring, in some way, subjects' ability

to use algorithmic strategies.
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The results of this small study warrant expansion to a larger scale.

The use of classes as the statistical unit and IQ scores as a c variate

could greatly increase the power of the statistics necessary t analyze

data from a study of this nature. If there are strong ties be ween the

logic test results and achievement in the arithmetic algorithmic setting

studied that are accounted for by IQ, it could have significant implica-

tions for future educational practices. A construct of a higher-order

skill more specific than general intelligence could be postulated. The

construct of higher-order rules governing behavior in many domains has

already been postulated and investigated by Scandura (1971). The higher-

order skill postulated fram the theory upon which this study is based is

the facility to organize and process information in an efficient algo-

rithmic manner. Again, assuming that this is a valid construct, instruc-

tion designed to develop this skill could help students improve in both

the areas of logic and arithmetic and possibly other areas.
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A Comparison of Different Conceptual Bases

for Teaching Subtraction of Integers

Diane Thomas

Purpose

There are a number of ways to interpret the operation of subtraction.

In some situations, such as "If Kathy has 7 pieces of candy and eats 3 of

them, how many does she have left?", subtraction becomes the process.of

taking away. In "How much more than 3 is 7?", subtraction is used to

make a comparison between two numbers. Subtraction as a method of com-

plementary addition is indicated in "What must be added to 3 in order to

make 7?" When integers are considered, subtraction may be defined as an

"adding the opposite" procedure. Each of these different interpreta-

tions can be thought of as forming a separate conceptual basis for the

process of subtraction.

When students extend the number system they use from the whole

numbers to the integers', and then consider subtraction as operating on

these "new'? numbers, the subtraction algorithm that they will use will

be derived from one of these conceptual bases. The question of which

conceptual base is most appropriate for the student's first introduc-

tion to subtracting integers was investigated in this study. Three

algorithms, derived from three different conceptual bases, were compared

in an attempt to ascertain which most facilitated student skill in com-

putation.

Background

A variety of approaches are used in upper elementary-school text-

books for the first presentation of the topic of subtracting integers.

In the 1972 Houghton Mifflin series, Modern School Mathematics--

Structure and Use, subtraction of integers is introduced through the

use of number patterns, eventually leading to the principle that sub-

tracting an integer is the same as adding its opposite; the presenta-

tion is done in a completely symbolic mode. The 1968 Addison-Wesley

series, Elementary School Mathematics, approaches subtraction through

related addition facTiirnHence, in order to find a difference, we think

of finding a missing addend." p. 368), and the presentation is in only

the symbolic mode. In Modern Mathematics Through Discovery, the 1970

Silver Burdett series, the a missing addend" approach also is

used for an introduction to adding integers, bUt students are expected

to use a number line in getting their answers; subtraction is presented

in a like manner in the 1969 Ginn series, Essentials of Mathematics.

The 1972 Laidlaw series, Progress in Mathematics, considers subtraction

as adding the opposite and illustrates each problem with movement on the

number line.
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Similarly, methods texts and journal articles recommend varying
approaches for the student's first encounter with subtracting integers.
Butler and Wren, in The Teaching of Secondary Mathematics (1960),
suggest that subtraction be defined as the process of finding a missing
addend and that the number line be used as a vehicle for illustration.
As another possible method, Butler and Wren include presenting subtrac-
tion of integers through the symbolic mode where number patterns are
analyzed:

From +8 +8 +8 +8 +8 +8 +8 etc.

Subtract ±2 +2 +1 0 -1 -2 -3 etc.

Difference +5 +7 +9 +10 +11 etc.
(PP. 373-375)

Riedesel, in Guiding Discovery in Elementary School Mathematics (1967),
opts for emphasizing that subtraction involves the idea of finding
the difference between two numbers and suggests that word problems
stressing the notion of distances above and below sea level, and of tem-
peratures above and below zero, be used in conjunction with the number
line for the student's first introduction to this concept (pp. 133-135).
In the January 1973 issue of the Arithmetic Teacher, Werner discusses
possible number line models of subtraction and concludes that the model
involving finding the missing addend provides the smoothest transition'
from the system of whole numbers to the system of integers. Three sug-
gestions for introducing subtraction of integers are made by Kennedy in
his methods text, Guiding Children to Mathematical Discovery (1970):
(1) using a number line with subtraction defined as finding the missing
addend, (2) exploring the meaning of subtraction with integers by using
Postman Stories that involve a mailman delivering and picking up bills
and checks, and (3) employing David Page's method of using positive and
negative money (pp. 381-383). Finally, Kennedy also recommends approach-
ing the topic through a concrete mode by using pipe cleaner loops--a
method first described by Fremont in a 1966 article in the Arithmetic
Teacher. .Fremont's method is summarized below:

Pipe cleaners are used to represent positive and nega-
tive numbers; a pipe cleaner bent in this manner
represents +1 and one opening in the other direction
represents -1. Subtraction is thought of as a take

away process. The problem 4 - 3 would be worked as
where slashes drawn through three of the

loops indicate 3 have been taken away. In a problem
such as 2 - 3, 2 is represented by In order
for three to be taken away, a zerd is added to the 2,
and the 2 is represented by 1,D c c Now three are

taken away-- c.pleaving -1 as the result.

(pp. 571-572)

Thus,- many approaches to introducing subtraction of integers have
been suggested to teachers and used in student textbooks; however, there
has been little corresponding research into the relative merits of these

different approaches. Two studies (Coltharp, 1969; Sawyer, 1973) inves-
tigated selected semiconcrete and abstract approaches to learning
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subtraction of integers; one study (Zelechoski, 1961) attempted to corre-

late learner characteristics with gain in knowledge of integers. Coltharp

reported no significant differences in overall achievement between sixth

graders taught addition and subtraction of integers from an abstract,

algebraic approach through the use of ordered pairs of numbers and those

taught by means of a visual approach through the use of the number line.

However,\only overall achievement was measured in Coltharp's work--there

was no mention of the students' achievement in the specific area of sub-

traction. Sawyer compared achievement of seventh graders taught subtrac-

tion of integers by three different methods:

1. Complement method--method of subtraction by adding
the same number to both the minuend and the subtrahend.

Example: (+5) (-3) = ((+5) + (+3)) ((-3) + (+3))

= (+5) + (+3)
+8

2. Related number facts method--method of subtraction
--Iiivolving the relationship between subtraction and

addition.

Example: (+5) - (-3) =' N iff N + (-3) (+5);

therefore, N = (+8)
(Number lines were used at the introduction
of this method.)

3. Systems method--by examining a modular system, the
student learns that x y = x + (-y). This is

generalized to the integers.

Example: (+5) - (-3) , (+5) + (+3) = +8

Results showed no consistent superiority of one method over another.

Zelechoski found that for students in grades seven, eight, and nine,

mental age correlated most highly with gain in knowledge of signed

numbers, followed by algebra aptitude.

As pointed out by Sawyer in his study:

....There are many models for explaining subtraction of

integers (but) there seems to be no agreement as to
which model is most easily used and retained by students.

There does seem to be agreement that subtraction of.
integers is a troublesome area in mathematics as witnessed
by the number of articles written on the subject. It seems

that, because of the importance of subtraction of integers

to the further study of mathematics and the concern of the

people involved in the area, an investigation of the prob-

lem would be very important to the field of mathematics

education. (p. 16)
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Procedures

The present investigation attempted to compare three instructional
treatments based on different conceptual bases for subtraction of
integers to see how they affected student achievement on computation
problems and to test for any interaction between instructional approach
and student ability level. The three instructional treatments were de-

fined as follows:

Tl -- Number line, subtraction as "adding the opposite"

A canon algebraic definition of subtraction is
given by:

any ring R we define, for a,beR,
a - b = a (-b)

(Introduction to Abstract
Algebra, Dubisch, p. 41).

In Tl, this definition was established by first
using examples where the minuend and subtrahend
were both whole numbers. The procedure used for
adding integers on a number line served as the
means for deriving the answer; for example:

6 - 4 . 6 (-4) ( f
and 6 (-4) is represented by

so 6 - 4 . 6 (-4) 2
0 2

Then; the definition was used to obtain answers
when the minuend was negative and the subtrahend
was positive:

(-3) - 1= (-3) + (-1.) 411111111 111110,
= (-4) -4 0

Finally, the definition was used to obtain answers
When the minuend and subtrahend were any integers.
Thus, for example,

( -5) - ( -2) ( -5) + (+2)

(-3)
and

4-(-3)=44.(4.3) *1111111111110.
-7 0 7
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T2 -- Number line, subtraction as "finding the missing
addend"

The rationale for this approach to subtraction of
integers is based upon related addition facts and
the commutative law:

6 - 4 = n may be rewritten as
n + 4 = 6, or, equivalently,
4 + n = 6.

In this last form, the problem becomes one of locating
the numbers 4 and 6 on the number line and determining
the distance and the direction (the "missing addend")

between the two points, starting from the subtrahend 4.

+2

so 6 - 4 = 2

0 4 6
The problem (-4) - (-1) would be worked in the same

manner:

(-4) - (-1) = n is equivalent to
n+ (-1) =4
(-1) + n = 4

-3

-4 -10

Since (-1) + (-3) = (-4)
we get that n = (-3)

-- Number line with semiconcrete referent, subtraction

as "take away"

Positive and negative integers are represented as

follows:

= -1 +1 = :::)

c r= = -2 +2

c C C =-.3 +3 a) .7)

and the notions x + 0 = x and y + (-y) - 0 are

stressed.

Subtraction is viewed as a "take away" situation:

6 - 4 becomes --) -), take away )

or /) A A . ) ), leaving or +2, as the result.
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Whenever necessary, enough zeros are added to the
picture of the minuend in order to facilitate the
"take away "" process':,

1 - 4 means that we have D and must take away DDDD; -----

in order to do that, the 1 is represented as 1 + 0 + 0 + 0,
or DCDCD:CD. Then 1- 4 becomes /) c c c 75 leaving
DDD, or -3.

Similarly, (-3) ( -5) would be worked as

(-3) (-3) + 0 + 0 = CCCCDCD
and (-3) (-5) = D-D= 2.

Two specific hypotheses were to be tested at the .05' level:

1) 'There is no significant differences between the
three teaching approaches to subtracting integers,
and

2) There is no significant interaction between student
ability level and the instructional approach being,
used

Three intact classes of sixth graders at one elementary school in
the Columbus, Ohio public school syStem were used in the study. Students
supposedly had been randomly assigned to classes before the study began.
In'order to control for the teacher variable, the investigator taught all
three classes.

According to the regular classroom teachers, the topic of positive
and negative numbers had not been previously discussed in their classes.
The instructional unit on integers developed by the investigator lasted
for one half-hour each day ror each class, for a total of seven days.
(See Appendix I for selected worksheets used in teaching the unit.) The
activities for the first three days were the same for all three classes.
On the first day, students were introduced to the concept of positive
and negative numbers, they located integers on the number line, and they
read coordinates of points already specified on the number line. A brief
review was held on the second day, then a pretest on adding and subtract-
ing integers was given to the students. The third day was devoted to
adding integers, both with and without the use of a number line. Each
class then was randomly assigned to one of three treatment groups for
subtracting integers and on the fourth, fifth, and sixth days studied
subtraction of integers according to the treatment specified. The choice
of examples and problems worked during the introductory period on the
fourth day by necessity was dictated by the treatment, so that students
could begin with the easiest problems for that particular method. On
the firth and sixth days, all numerical examples used by the instructor
during the class presentation, as well as all problems to be worked by
each student, were the same for all three treatments. Au attempt was
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made to teach all material meaningfUlly for the students in all of the
groups. On the seventh day after a brief review'of the subtraction pro-
cedures, students in each group were given the posttest on subtraction;
upon completion of that portion of the test, thereceived the addition
posttest.

Results of Analysis of Data

Since intact cla22es were assigned to the treatment groups, an
attempt was made to determine whether the three classes were equivalent
in ability to add and subtract integers before the treatment began. An
investigator-constructed test of 12 items on adding integers (Kuder
Richardson-20 estimate of reliability = .88) and of 12 items on subtract-
ing integers (KR-20 estimate of reliability = .89) was given to all three
classes. In analyzing the data, a blocking variable was used: student
ability level as determined by scores on the California Test of Basic
Skills--Arithmetic Level 2, given when the students were in the fifth
grade. Raw scores ranging from 70 through 89 on the Cdlifornia Test were,
considered to indicate high ability, scores from .1i6 through 69 were clas-
sified as indicating average ability, and scores from 24 through 45 were
considered to show low ability.

Table 1 shows the number of subjects per cell and per treatment
level; Tables 2 and 3 show section means (weighted and unweighted) and
standard deviations (unbiased) on the addition pretest and on the sub-
traction pretest.

W

<4

Table 1. Number of Students Participating

Tl
Add the
Opposite

T2
Missing
Addend

T3
Take Away

Totals

High 7 3 7 17

Average 8 6 9 23

Low 5 6 17

Totals 20 15 22 57
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A two -way analysis' of variance was run on the addition pretest scores'.

and on the subtraction pretest scores as a check to see if the three differ-
ent classes possibly were not equivalent at the beginning of the instruc-

tional treatments. Unweighted means were used in the calculations.
Stimmaries are given in Tables 4 and 5.

Table 4. Analysis of Variance of Addition Pretest Scores
by Teaching Approach and by Student Ability Level

Source df SS MS F Prob.

A (Teaching
Approach) 2 19.8002 9.9001 2.5647 .087

B (Ability
Level) 2 31.7968 15.8984 4.1187* .022

AB (Method X
Ability) 4 23.9085 5.8271 1.5096 .214

S/AB (Error) 48 185.2841 3.8601

Total 56 260.1896

*13 <.05

Table 5. Analysis of Variance of Subtraction Pretest Scores
by Teaching Approach and by Student Ability Level

Source df SS' MS F Prob.

A (Teaching
Approach, 2 .3272. .1636 .0730 .930

B (Ability
Level 2 1.4083 .7042 .3143 .732

AB (Method X
Ability) 4 7.7047 1.9262 .8597 .495

S/AB (EiTor) 48 107.5413 2.2404

Total 56 116.9815

As shown in Table 4, no significant main effects were faund'for the teach-

ing approach variable, nor were there any significant interaction effects.

Similarly, the ANOVA for the subtraction pretest scores revealed no signif-

icant interaction effects. Thus, we have no evidence to say that the three

treatment groups were not equivalent prior to instruction in adding and

subtracting integers.
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A two-way ANOVA then was used in analyzing student scores on the
addition posttest and on the subtraction posttest. Table 6 shows means
(weighted and unweighted) and standard deviations (unbiased) for scores
on the addition posttest; Table 7 summarizes the analysis of variance
performed on the addition posttest scores.

Table 6. Addition Posttest Section Means. and
Standard Deviations

Level Means Unweighted

Tl T2 T3 Level SDs Level Means

High Y11 = 9.14, TC.I. = 9.00 R13 = 8.56 Tell = 9.00 9.00

g = 2.35 g = 4.36 g = 2.91 o = 2.94
,

Average. X21 = 8.13 X22 = 6.33' X23 = 8.11 X21 = 7.65 ' 7.52
g = 3.56 g = 3.26 g = 3.41 a = 3.37

Low. X31 = 4.00 X32 = 5.83. R33 = 7.33 X31 -5.82 5.72

Q . 4.3o g =4.58 g = 3.67 g =4.16

Level
Means 7.1.1. = 7.45 X12 = 6.67 Te1.3 = 8.14 Tell = 7.51

SDs g = 3.94 g = 3.94 a = 3.23 g = 3.66 '

Unweighted Unweighte
(7 nn n nG P ln n 11 74 n hn......-- ...-,,OverallV CI. VICC1.1.1.

Table 7. Analysis of Variance of Addition Posttest Scores
by Teaching Approach and by Student Ability Level

Source

A (Teaching
Approach) 2 12.2441 6.1220 .4747 .625

B (Ability
Level) 2 93.5688 46.7844 3.6280* .034

AB Nethod X
Ability) 4 32.5400 8.1350 .6308 .643

s/AB (Error) 48 618.9782 12.8954

Total 56 757.3311

SS MS Pra.

*P < .05

No significant main effects for teaching approach were found, nor

were there any significant interaction effects, for the addition posttest

scores. Although the main effects of the teaching approach were not
found to be significant on the addition pretest (p < .087), because the
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probability was close to the .05 level an analysis of covariance was run

on the addition posttest, with the addition pretest scores used as the

covariate. Results of this test also showed no significant main effects

for the teaching approadh and no significant interaction effects.

Table 8 shows means and standard deviations for scores on the sub-

traction posttest, while Table 9 gives a summary of the two-way ANOVA

performed on the subtraction posttest scores (unweighted means were used

in the ANOVA calculations).

Table 8. Subtraction PosttestSection Means. and Standard

Deviations

T1 T2 T3

Level Means
Level SDs

nweighted
Level Means

High X1i = 7.57 712 = 9.67 X13 = 10.14 Rli = 9.00 9.13

o =----3.31 G. = 1.15 o = 2.12 o = 2.74

Average Teel - 5.87 722 ="9.33 733 = 8.67 5731 = 7.,137 7.96

Cr '---- 4.49 Pr = 1.21 u = 3.64 o = 3.72

Low 731 .=. 3.40 X32 = 7.33 Te = 3.67 isi = 4.88 4.80

o = 4.88 a. = 2.80 a. = 3.39 a = 3.94

Level
Means 711 = 5.85 X12 = 8.60" 571:3 = 7.77 Rli - 7.32

SDs u = 4.31 u = 2.16 u = 4.01 o = 3.85

Unweighted
Unweighted

Level Means 5.62 8.78 7.49 Overall Mean 7c30

Table 9. Analysis of Variance of Subtraptir Posttest

Scores by Teaching Approach and by Student

Ability Level

Source df , SS MS Prob.

A (Teaching
Approach) 2 87.8194 43.9097 3.8936* .027

(Ability
Level) 2 173.9838 86.9919 7.7139* .001

AB (Method X
Ability) 4 28.7223 7.1806 .6367 .639

S/AB (Error). 48 541.1313 11.2774

Total 56 831.6568

*
p
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Table 9 shows that the main effect of the teaching approach vari-
able was found to be significant at the .05 level, while the interaction
effects were not significant. Post-hoc multiple comparisons of instruc-
tional approaches were performed using the Scheffeltest to determine the
specific nature of the differences. Results showed that students study-
ing subtraction of integers by the "finding the missing addend" method
scored significantly. higher (p < .05) on the subtraction posttest than
did students using the "adding the opposite" approach; other comparisons
were not significantly different.

Limitations and Suggestions for Further Research

There were several limitations to this study. It was not possible

to randomly assign students to treatments. Since intact classes were
used, there might have been a teacher effect confounding the results,
even though all instruction for the unit on integers was handled by the

investigator. Further; it was learned that each class had been together
for longer than just the sixth grade; test records for the California

Test of Basic Skills revealed that the students had been in the same
classroom units for the fifth grade also, so that a group effect could

possibly be present. This study should be replicated using random
assignment of students to_treatments, or perhaps by randomly assigning

more than one intact class to each treatment level.

The design of this study did not permit the investigator to
ascertain the extent to which the subsequent instruction in subtraction

either facilitated or hindered student ability in adding integers. A
possibility for future studies would be to investigate the degree of

interference taking place.

A further improvement for the study might be to measure student

achievement not only on computation items; but also on items covering

concepts and applications. Finally, including a retention test in the

design of the study might yield useful information about the effective-_

ness of the various approaches to subtraction that would not be evident

when only an immediate posttest was used.

Conclusions and Implications

Analysis of scores on the subtraction computation posttest showed

that students taught to use the "finding the missing addend" method

scored higher than those using the "take away" procedure, who in turn

scored higher than those employing the "adding the opposite" approach.

The difference which was significant at the .05 level favored the

"finding the missing addend" group over the "adding the opposite" group.

There were no significant interaction effects between the three instruc,

tional treatments and student ability level.
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If replications of this study, correcting for the lack of random

assignment of subjects to groups, would confirm the present results,

implicatiOns could be made for classroom teaching. The results indi-

cate that the conceptual basis which came, from the definition of sub

traction for integers, the "adding .the opposite" approach, was more

difficult for students to understand than were the other tiro methods

which essentially extended the same procedures used when students

learned about subtracting whole numbers. It appeared that students'

previous experiences with using movement on a number line to illustrate

subtraction of whole numbers led them to view subtraction as always

meaning a motion to the left, a jump back. This prior learning, com-

bined with the new ideas of directed numbers and of opposites, seemed

to make it hard for the "adding.the opposite" group to accept the

generalized definition for subtraction of integers as being realistic.

Part of the students' difficulties also appeared to stem from the time

allotment for the study's instructional sequence. For all three treat-

ment groups only one class period (a half hour). was allowed for in-

struction and practice in adding integers, and only part of that time

was.devoted to learning how to use a number line to illustrate the

operation--too short a time for many of the students to became suffi-

ciently competent with this technique. Yet, the "adding the opposite"

algorithm depended heavily upon student ability to add integers using

the number line, while the other two treatments did not. idertainly, a

lack of mastery of this basic subskill would affect student understand-

ing ofthe "adding the opposite" procedure. Thus, a teacher wishing to

introduce subtraction of integers through the "adding the opposite"

apprOach Would be advised to be aware that its development will require

more time than the "finding the missing addend" approach, and possibly

than the "takeaway" method. Finally, if there is a 4mit on the in-

structional time'available for providing students with a first intro-

duction to the toplo of subtracting integers,'the teacher should con-

sider that the "finding the missing addend" approach has been shown

to facilitate student Skill in computation to a grea er degree than

does the "adding the oppogite" method.
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APPENDIX t
Selected Worksheets

Fifth day
T1--"adding the opposite"

Name

PART I
State the opposite:

(-7), (D 4, (3) (-1

PART II
Name the number that is being subtracted (the subtrahend):

(1) 10 - 9 (2) 6 - (3) 5 -.7

( T 1.) 2 - 8 (5) (-1) - 3 (6) (-8) -

(7) - ( -3) (-6) 6 - ( -2) (-3)-(-5)

PART III

® 9 - 6 = n

Answer: 4 - 6

(3) ( -3) -( -7) = n

Answer: 1 - (-2) =

(7) (-3) - 2 - n

4111iiilliIIIIII
0

Answer: (-3) - 2

Answer: - (-5)

® (-6) (-8) - n

Answer: (-6) - ( -8
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PART I
Write the related addition problem.

(i) 8 - 3 = n

®9 5 = n
(D 2 - 7 = n

(7) 4- (-6) = n

G) (-1) -8 =n
(-1)-(-7) = n

PART II

® 9 - 6 = n

0
Answer: 6=

,

® (-3)-(-7) = n

Name

Fifth day
T2--"find the missing

addend"

2 4 - 1 = n

L. 6 - 8 = n

- (-1) = n

® (-3) - 5 = n

(-4)-(-2) n

(-8)-(-3) = n(so

= n

Answer: 4 = --,E,
1-(-2) = n

0
Answer: 1 ( -2Answer: (-3)-(-

0
Answer: 3 - 7 =

® (-3) 2 = n

11111110 1-14

Answer: (-3) - 2 =

Answer: 4 ( -5

(5) (-6) - (-8) = n

4nswer: (-6)-(-8) =

0 6 - 4 = n

-10-4-1:1111111111)k
0

Answer: 6 - 4

(-1) - 5 n

0
Answer: (-1) - 5 =
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PART I Write the new symbols for:

Q 5 -=

(]) =

PART II

0 4 + o + o = O (-3) +o+o+o+o= 0 7+ (-1) + 1 =

CO (-8Y 4. (-1) 4.1 -1) + 1 + (-1) + 1 = (5) 6 + (-2) + 2

PART III

Name

Fifth day
T3--"take away"

D 9 0 4 - 6 = 0 (-3) - (-7) .

a. = '(-2) --- 0 3 - 7 = -, 0,

.,,

4 - (-5 ) =

D (-3) 2
0 (-6) - (-8) = 0 6 - 4 =

00 (-1) - 5 = @ ,. @
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Solving Quadratic Inequalities:
More Than One Algorithm?

Brady Shafer

To avoid the confusion that often arises in the minds
of pupils from the presentation of a variety of methods,
explanations, solutions, rules, remarks, etc., it has been
the constant aim, in the preparation of this book, to pre-
sent each subject in one form only...

--Ray's Arithmetic, 1879

Perhaps in teaching for understanding we shall one
day depart from the well-nigh universal practice of offer-
ing children but one of several alternative forms of

computation.
--W. A. Brownell, 1938

Experiments at the secondary school level which compare students' '

learning of more than one algorithm for a given kind of problem are

rare.1 Typically two methods of problem solution are compared, but the
question of whether the learning of one method facilitates or interferes

with the learning of the other is not asked.

'
In elementary-school mathematics, a number of studies and discus-

sions have examined alternative algorithms for certain arithmetic

procedures. At least three elementary research studies have been
characterized by the use of two algorithms with the same subjects.
Scott (1963) concluded that teaching two algorithms in long division

"does not confuse children, induces no undue difficulty, and takes no

additional teaching time." In a study which dealt with estimating
quotient digits, Carter (1970) found that a group given two rules
(round divisor down if second digit is less than five, up if five or
more) was both slower and less accurate than two groups which were
given only one rule each. And as early as 1938 Brownell noted the
"nearly universal practice" described at the beginning of this paper.

Brownell (1938) reported a study conducted by Tew which involved

teaching two methods for dividing fractions, one for understanding and

a second "as an efficient computation shortcut," with results he judged

to be satisfactory. (No data were presented.)

1 Suydam, Marilyn N. Annotated Compilation of Research on Secondary

School Mathematics, 1930-1970, two volumes. U. S. Office of Education

Final Report, February 1972. See also the annual research compilations

by Marilyn N. Suydam and J. Fred Weaver in the Arithmetic Teacher and,

since 1970, in Journal for Research in,Mathematics Education.
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The purpose of the research reported here was (1) to examine how
second-year algebra students reacted to instruction on two algorithms
for solving quadratic inequalities, and (2) to search for evidence of
interference or facilitation by one algorithm with the learning of the
other. Thus, in addition to comparing achievement on the two forms of
the algorithm the study also investigated some of the consequences of
presenting two algorithms in sequence. Did gains in achievement result
after seeing a second method? Did students tend to "fix" upon the
initial algorithm and ignore later ones? Did the procedure induce
student confusion?

The Algorithms

One delimitation was necessary at the outset of the study. At the

time of year when it was made (February), all students had considered
quadratic expressions which could be factored. The quadratic formula
had been introduced in some classes but not in all; therefore the study
involved no problems for which the quadratic formula was necessary.

The two methods will be contrasted by use of examples.

METHOD A: VERBAL

The first method consists of examining possible cases, as follows:

Case 1: x2 + 5x < -4

Case 2: xP + 5x + 4 < 0

Case 3: (x + 1) (x + 4) < 0

Hence a product is negative. One factor must then be negative, but not

both. There are two possible cases. (1) The first factor might be

negative, but not the second. In this case x + 1 < 0 and x + 4 > O.

Hence x < -1 and x > -4. The solution set for this sentence is the set
of real numbers between -4 and -1, both endpoints omitted. (2) A

second possibility is that the second factor might be negative but not
the first. Thus x + 1 > 0 and x + 4 < 0, implying the x > -1 and

x < -4. Since no number satisfies both statements simultaneously, the
second case gives no additional solutions. Hence the solution set for

the given inequality is (x: -4 < x < -1).

METHOD B: VISUAL

The second method also begins by making one member of the inequality
zero and factoring the polynomial which forms the other member, as in

the previously cited Case 3. It then utilizes the number line in the
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following way. To know if the values of a continuous function are posi-

tive or negative, it is useful to know the zeroes of the function. The

zeroes for the polynomial in Case 3 are of course -4 and -1. These are

indicated on a number line:

-4 -3 -2 -1 0 1 2

The line is thus divided into three regions. For a given number/X, in

any of the regions, one can easily decide whether (x + 1)(x 4) is

positive or negative.

If x is any number in the region rightof -1, for instrince, both

x+ 4 and x + 1 are positive; hence their product is positive. Thus

no number larger than -1 can be a solution as the product is required

_ to be negative. If x is between -4 and -1, one factor is negative and

one positive, hence the product negative and the inequality satisfied.

If x < -4, both factors are negative; the product is positive, and-the

inequality is not satisfied.

The x-values of -1 and -4 give 0 as a polynomial value. Hence they

must be rejected since 0 < 0 i9'a false statement. The solution set

then consists of all'real numbers between -4. and -1 with endpoints

omitted.

Method B depends heavily upon continuity properties of the functJ.m

involved. But since all polynomials are continuous, this involves no'

mathematical difficulty, nor did it seem to involve any pedagogical

difficulty%

Procedure

The study was conducted with four Algebra II classes at Brookhaven

High School, Columbus, Ohio. All classes met during morning hours.

The study covered six days of instruction and four of tests. Daily

activities are summarized as follows:

Day 1. A pretest was given to all four classes; the test was a

ten-item instrument covering. linear equations, quadratic equations, and

linear inequalities.

Day 2. A review was given of linear equations, linear inequalities,

and factoring.

Days 3 and 4. Two classes were shown Method A and the remaining two

classes were shown Method B. Students were asked not to work or discuss

homework with anyone except members of their own class.
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Day 5. Test 1 was given to all classes. This test was abbreviated
to only eight items since all class periods were shortened for an
assembly.

Day 6. All classes were shown the 4Ie thod not previously taught.
The original plan -- to spend two days teaching the secondmethod -- was
modified when students indicated they Were ready for the test and were

perhaps getting bored.

Day 7. Test 2, twelve items, was given to all classes, with in-
structions to work all problems by the new method.

Days 8 and 9. Transfer material was presented, consisting of such
problems as

x Ix + 5
(x

5

- 2) (x
1

5) > 0 and x 1 < 1.
x 5

Day 10. A twelve-item posttest was given, including four transfer
items, with students given complete freedom in choice of algorithm to
be used for all problems.

All classes were taught by the writer, to maintain some control
over teacher variable. In addition, differences in ability were measured

by the pretest, with no significant differences among classes noted in
ability to do the kinds of problems on the pretest (see Table 1). To

control the time-of-day variable (the possibility exists that early-
morning classes might be fresher and therefore do better work regardless
of treatment), the earliest and latest classes (1 and 4) were grouped
together in assignment to treatment. The activities of Day 2'were an
attempt to give a common background to the four classes through a review

of the prerequisite skills.

Table 1. Means-and Standard DeViations for the Four Tests
Administered During the Study

GROUP
Pretest Test 1 Test 2 Posttest
y s \N s 57 s

All students (N=71)x 3.86 2.10 5.79 2.12 8.24 3.43 7.45 2.68

Treatment AB: Verbal-
Visual (N..37) 4.00 2.01 4.92 2.03 8.89 3.03 7.30 2.70

Class 1 (N =17) 3.94 1.86 h.82 1.89 7.65 3.51 6.88 2.56

Class 4 (N.20) 4.05 2.13 5.00 2.14 9.95 2.01 7.65 2.76

Treatment BA: Visual-
Verbal (N.34) 3.71 2.18 6.74 1.77 7.53 3.68 7.62 2.65

Class 2 (1\k,.16) 3.88 2.42 6.00 2.12 8.00 3.72 7.75 2.86

Class 3 (N =18) 3.56 1.92 7.39 1.01 7.11 3.59 7.50 2.I3

*Data are reported only for students who took all four exams.
Actual class sizes ranged from 22 to.28.
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Results

For each of the four measures, a t-test was conducted for the

difference of means between treatment groups AB and BA. No differences

were significant at the .05 level.

The preceding comparisons do not take into account differences in

pretest scores; -To-compare gains in performance, regression analyses

were made. In three separate analyses, Test 1 scores were regressed
against pretest scores, Test 2 scores against pretest, and posttest

against pretest. Regression coefficients and correlations appear in

Table 2.

At the time of Test 1, students had seen only one algorithm. In

Test 2 (as already noted), they were asked to use the algorithm most

recently taught, but were given free choice of algorithm on the, posttest.

Thus AB group used Method A in taking Test 1 and method B in taking

Test 2. For groups using Method B (BA on Test 1, AB on Test 2) the

difference in regression coefficients is not significant. But for groups

using Method A, the difference in regression (0.37 vs. 1.22) is signifi-

cant at the .001 level. Students who have seen Method B and then Method A

achieve greater gains in performance with Method A than students who, have

seen Method A alone.

Analyses of variance and covariance were conducted using standard

scores from the four tests. The difficulty level of the posttest was

.somewhat higher than that of Test 1 and Test 2 (see Table 3). By

eliminating the two most difficult items` from the posttest, a ten-item

subtest was obtained with a mean item-difficulty level of .311, which

compares favorably with that of Tests 1 and 2. It was hoped by this

means to adjust for the difference in test length forced on the study

by school schedule. As Tables 4 and 5 show, the attempt was successful

since in both analyses the F ratio for Main effect due to tests is zero.

In the analysis of variance, which did not involve pretest scores,

no other effects were significant. But in the analysis of covariance,

in which scores are adjusted for pretest scores, three effects were

significant at the .05 level: main effect for treatments, main effect

for classes within treatments, and test-treatment interaction. These

conclusions, as well as the earlier ones involving regression, must be

qualified by noting that pretest reliability is only .65, lower than

that of the other tests (see Table 3). However, some evidence is given

to suggest that when gains in scores are considered, the sequences BA

and AB affect student performance in a different fashion.

The differences in error rate for the two treatment groups were not

significant for either problem. Both problems were of transfer type.
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Table 4. Analysis of Variance of T-Scores from Test 1,
a Ten-Item Subtest of Posttest

Test 2, and

Source

Sum of
Squares df Mean Square P less than

Treatments. 19680.934 1 19680.934 1.080 .375

Quizzes 0.006 2 0.003 .000 1.000

TxQ interaction 141688.813 2 70844.375 3.889 .147

Classes (within
treatments) 25994.785 1 25994.785 1.427 .318

CxQ interaction 6423.230 2 3211.615 0.176 .846

Residual 54649.238 3 18216.410

Table Analysis of Covariance of T-Scores from Test 1, Test 2, and
a Ten-Item Subtest of Posttest, with Pretest T-Score as

Covariate

Source

Sum of
Squares df Mean Square F P less than

Regression 2.876 1 2.876 0.004 .956

Treatments 17972.449 1 17972.449 24.382 .039

Classes (within
treatments) 25970.672 1 '25970.672 35.233 .027

Quizzes 0.005 2 0.003 0.000 1.000

CxQ interaction 6423.227 2 3211.613 4.357 .187

TxQ interaction 141688.688 2 70844.313 96.110 .010

Residual 1474.242 2 737.121
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Only on the posttest, it will be recalled, were students given a

choice of algorithm. They were asked to show enough detail in written
solutions so that the scorer could tell which method they were using.
A frequency count was made of algorithm use, by class and by problem.
Despite the instructions, 182 responses could not be judged as a con-
sistent use of ether method, while Method A was used 35 times and
Method B, 498 tim . Even if all "doubtful" responses were counted as

instances of Metht A (a highly unlikely occurrence), still Method B
would be chosen by more than two to one _over_Metho_d_A As the data
stand, the margin of choice is more fourteen to one. The difference is

significant at the .001 level. Differences between treatment groups
were not significant at the .05 level on the entire set of problems, on

those problems worked correctly, or on any individual problem.

Summary and Interpretation

No differences related to class means appeared either in analysis

by t-tests or in the analysis of variance. In the two analysgs which

took pretest scores into account, however, significant differences

occurred.

One significant difference was the difference in regression coef-

ficients between the treatment group which had seen Methods BA and the

group which had seen Method A alone. Interpreting that difference is

difficult. Informal evidence gleaned in conversations with students
suggests one possible explanation. Students in the BA group were happy

with Method B at the halfway point in the study. What may have happened --

despite a request to use Method A in Test 2 -- was that many BA students

might have verified answers by using Method B. Of course test papers

would give no evidence of the forbidden method if this were the case.

At least two earlier researchers have noted discrepancies between the

method "taught" and the method actually used by the children (Brownell,

1966; Flournoy, 1959).

There is also a second possible explanation. At the time the

experiment ended, students in:both treatment groups overwhelmingly

chose Method B. As Table 1 shows, in both Test 1 and Test 2 there was

a tendency toward better student performance with Method B, though not

a statistically significant difference. Students were not confused by

being confronted with two methods. There was some impatience manifested

with the second method (in both groups) which resulted in the elimina-

tion of a second day with the new method. This may have been detrimental

to Method A, which seems to require somewhat more time to explain. This

in turn may account for finding (Table 2) that Method A alone was as

good as BA.

3.44
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Implications

Students liked Method B, the number-li e method, and exhibited a

tendency to better work with it. If only o e method is to be taught,
and if the teacher's goal is student performs ce at the close of the

unit, it would appear that Method B is the bet er choice. Of note here

is the fact that the textbook presented only th verbal method.

Nine problems in each class, on average, wer solved by the verbal

method. Would the needs of the students who used ethod A havebeen

well served if Method B hadbeen taught alone? In is instance they

were a decided minority; but with a different pair o alternative algo-

rithms, the split might be more near1f fifty-fifty. rhaps students

should be presented both algorithms in such a case and 'hen given a

choice. The teacher can give guidance, of course, if it is evident that

a student has made an unsound choice. But is not this the whole point

of individualizing instruction?

No data were gathered to verify stability of results ov r a reten-

tion period, not did the study address the question whether s ending

more time on one algorithm might be as effective as teaching t o.
Further research is needed to answer these questions.
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A Comparison of Two Strategies for Teaching

Algorithms for Finding Linear Equations

Richard W. Corner.

An important part of teaching is the transmission of substantive

content. The professor lecturing to the gathered students is the classic

ilmage-of instruction. The lecture, still an important part -of- teaching,

particularly in college, has been supplemented with instructional tele-

vision, audio-tutorial systems, and programmed texts. The modes for the

presentation of content would all be classified as direct communication

strategies by Hough and Duncan (1970).

Fey (1969) points out that research on classroom behavior has been

mostly of the nature of comparing "name" methods; e.g., "discovery"

versus "expository" teaching. The problem with much of this research is

that it lacked specification of what was meant by the particular name,

thus leading to inconclusive or unreliable results.

To specify precisely the behavior of classroom teachers, Rosenshine

(1970) suggests the use of category systems for the observation of

classroom behavior. These systems are low inference systems; that is,

the observed behaviors are categorized by the use of precise and narrow

definitions. For example, the knowledge that a teacher responds to a

student question with a question 42 percent of the time is much more

informative than the statement, "The teacher usually asks leading

questions. ". Rosenshine notes that there have been few studies relating

teacher behavior and instructional outcome.

A number of category systems have been developed for the purpose

of classrqom observation. Among these are systems by Flanders; Smith,

Meux, et al.; Hough and Duncan; and Henderson. 'The purpose of each of

these systems is somewhat different; systems appropriate for the analysis

of direct communication are of interest here.

Category Systems for Direct Communicatiod Strategies

Henderson (1970) has formulated an instructional analysis system

which is based on classroom teaching. His purpose was to analyze con-

cept development through a taxonomy of the language used in talking

about concepts. The categories or moves of his zystem can be partitioned

into three classes. The first is connotative, talk about the concept.

The second is denotative, which primarily involves giving examples of

the concept. The final category is meta language or language about

language, as seen in formal definitions. Henderson's system has been

restricted to research on concept formation.
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Henderson's system was derived from the more general work by
Smith, Meux, et al. (1967). Smith et al. categorize behavior into
"ventures" or episodes, which are complete subunits such as solving a
problem, explaining. a concept or proving a theorem. Based on classroom
observation, Smith et al. identified seven types of ventures; each ven-
ture has a number of categories of behaviors. In a limited sample of
mathematics classrooms Smith found three types of ventures; the three
were the concept-venture, the procedural venture, and the rule venture.
The concept venture is Henderson's area of interest, previously discussed.
In the procedural venture classroom discussionweEters on the- procedure
for solving a problem. The rule venture involves the formation or
justification of a rule. Smith's system has a problem in terms of size:
there are a large number of highly specific categories in each of the
seven ventures.

A system which seems highly appropriate for the analysis of direct
communication strategies is the Content Analysis System (CAS) developed
by Hill (1969). The system was developed for general classroom analysis.
The ten categories of the system were based on the Gestalt ideas of
figure and ground (see Figure 1). Hill's system has the advantage of a
small number of categories as compared to the system of SMith et al.
CAS can be used to analyze concept development as in Henderson's work
or can be used for any other direct communication instruction. In his

observation of 36 different junior high school classrooms, Hill found
no identifiable strategies as analyzed by CAS. The categories of CAS

seem highly appropriate for the specification and analysis of direct

communication strategies.

Procedure and Results

The purpose of this study was to explore the use of CAS as a means

of specifying different instructional strategies. In this initial
endeavor the first objective,was to develop materials which were appro-
priate for the students, spedifying different strategies in terms of

CAS. The second objective was to ask the question: For this topic and

these subjects, is there any difference in the strategies?

Two different' programmed lessons were written to introduce the

algorithms for finding linear equations. The same number of examples

and the same examples were used in each treatment. The only difference

was the sequence of instruction (see Figures 2 and 3). One sequence

was deductive in nature and the other sequence was inductive in nature.

The ,subjects were 26 students in a reduced-pace pre-calculus course

at The Ohio State University. Students were randomly assigned to treat-

ments. The students were given 35 minutes to complete the programmed
lesson; all were able to complete the lesson in,the allotted time. Be-

cause only 50 minutes were available for the experiment, a six-item test

was used for evaluation. The students were given 15 minutes for the test

and all were able to complete the test.
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B - Background: Develops information or knowledge of the context or

frame of reference within which the content idea, topic, or

figure is set. May be a review of previously developed

content.

D - Defining: Determines the precise significance or meaning of the

content figure, idea or concept. Includes definition of

terms used in the concept or figure.

N - Naming: Identifies or specifies the content figure by name, symbol, -

or image. Includes questions seeking identity.

E - General Example: Presentation or development of examples of a

general or construct nature. May deal with the nature of

many specific examples or the classes of a hierarchy. Includes

derivation of formulas. Doubtful examples are classes as

general.

Ea - Abstract Example: Communication which presents specific examples

verbally or symbolically; presented in spoken or written form

only. Includes charts, schematic drawings and graphs. No

real or image form presented.

Ec - Concrete Example: Specific Examples which are presented in a real

or image form, such as pictures or drawings. Example uses an

object which represents the content figure. Includes any

drawings representing three-dimensions.

En - Negative Example: Illustrates representations negative to the

content figure. An example which is presented as a contrast

or test of the figure.

A - Amplification: Content communication by which an enlargement or

expansion of the focus of attention occurs. Two or more

things are compared, contrasted or related.

An - Digression: Content communication which expands beyond the rele-

vant content figure. Incorrect statements and accompanying

corrective feedback are categorized here.

M - Miscellaneous: Non-content communication. Class management, pro-

cedures or control. Personal communication such as non-

content opinion.

Figure 1. Categories of Hill's content analysis system.
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1. Ea: Find equation of line through given points using similar
triangles.

2. E: Find equation of line through general points using similar
triangles a two-point formula.

3. Ea: Find equation of line through given points using two-point
formula.

4. D: slope.

5. Ea: Find slope and sketch line.

6. Ea: Find slope and sketch line.

7. E: Use two-point formula to find point-slope form.

8. Ea: Find equation of line through two points. (parallel to X-axis)

9. D: line parallel to X-axis.

10. Ea: Find equation of line through two points (parallel to Y-axis).

11. D: line parallel to Y-axis.

12. E: Use point-slope form to find slope-intercept form.

13. Ea: Determine slope and Y-intercept.

14. Ea: Find equation of line through two points.

15. Ea: Find equation of line through two points.

Figure 2. Inductive sequence.
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1. : slope

2. Ea: Find slope and sketch line.

3. Ea: Find slope and sketch line.

4. Ea: Find slope,

5. D: Linear equation (y = mx b), y-intercept

Line parallel to Y-axis
Line parallel to X-axis

6. Ea: Given equation. 'Find slope and y- intercept.

7. Ea: Given 2 points. Sketch line, find slope, find y if x = 0.

8.(a) Given 2 points. Sketch line. Find equation. (parallel to

X-axis)

8.(b) Ea: Given 2 points. Sketch line. Find equation. (parallel to

Y-axis)

9. Ea: Given 2 points. Find equation.

10. E: Find equation of line through (x1,y1) and (x1

form)

11. :
Sketch equation and verify point-slope form.

12. Ea: Given slope and point. Find equation.

13. Ea: Given two points. Find equation.

Figure, 3. Deductive sequence.
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The KR-21 test reliability was .43, which makes any conclusion
about the results questionable. .A t-test for the differences of means

(H0: and an F-test for equality of variances (H : U2 = 5)
indicated no differences in the treatments (see Table 1).

I

Treatment

Inductive
Deductive

Table 1

Data Analysis

Sample
Mean

12 4.17

14 4.00

Sample
Variance

1.61
2.86

t = .09 (Not significant; t.05,24 =
7.064)

F = 1.77 (Not significant; F.05 = 2.11)

Discussion

The first objective, the development of materials using different
CAS strategies which were appropriate for the students, seems to have

been met. The students were able to complete the programmed lessons
in the allotted time and scored reasonably well on the testa Because
of the test reliability, any conclusions about the relative effectiveness
of the strategies is highly tenuous; however, the results seem to imply
that there was no difference in the student learning.-

Several areas of further research are indicated. First, it would

be interestingto include a transfer component in the evaluation of
the results. Secondly, a long-term study comparing inductive and de-
ductive strategies would be more likely to indicate differences. A,

treatment of 35 minutes duration is unlikely to reveal any difference.

An area for possible exploration wouldsbe the determination of an
optimal instructional strategy for a given algorithm. It is possible

that one algorithm may be best taught inductively while another is best
taught deductively. The degree to which instructional strategies depend
on content could be discovered.
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Some Computational Strategies of Students
'Using..,Desk Calculators

Raymond Zepp

Introduction

The calculator has recently come into prominence in American life
with the development of small electronic calculators. It has naturally

been considered as an educational aid in mathematics, particularly for
students whose computational skills are weak. It is probably fair to
say that calculators will play a tremendously increased role, both in

school and society.

Although much has been said about the possible uses for calculators
in the schools, very little has been said about the mental processes by
which students.operate the calculators. We need to examine and under-
stand these processes in order to maximize the effectiveness of the use
of calculatorS in education. Moreover, and perhaps more importantly,
an understanding of the processes may provide insights into the nature

of the learning and use of algorithms in general.

Lankford has been concerned with the nature and variety of "compu-
tational strategies" of students. He asks in, what ways a student

attacks computational problems. This question, applied to computation
with calculators, is the focus.of the present study. The study parallels

some of the ideas and techniques and discussed by Lankford (1972, 1974).

Procedure

Twenty-three students from an inner-city high school in Columbus,

Ohio were interviewed. These students, on the basis of low mathematics
achievement, had been assigned to a classroom equipped with desk

calculators. Their subject matter consisted of basic arithmetic,
fractions, and decimaJg, with numerous practical story problems; pro-
grammed learning approach was used in the classroom.

The subjects were informed that the interviewer wished to learn

how people think when they use calculators and that they were to work

some examples, explaining or stating aloud (into a microphone of a tape

recorder) all their thoughts concerning the examples. The interviews

lasted twenty to thirty minutes apiece. The problems emphasized frac-

tions, division, and combined operations.

Findings

A. Division: The greatest single difficulty in division examples

was with the sequencingof the numbers. Ten of the twenty-three students
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made at least one error in interpreting the order in which the numbers

were considered in a division example. The confusion seemed to center

around the verbalization of the problem, especially when using the Words
"divided by" and "goes into." The problem 384 = 17 was read by nine
students as "17 into 384," and by five students as "384 into 17." Of

these five students, three worked the problem incorrectly, that is, by

dividing in the wrong order. The other two, who had stated the problem

incorrectly, proceded to solve the problem correctly, that is, different
from the way they had verbalized it. More strikingly, the problem
65/6 was read by four students as "6 into 65," but by eight students as

"65 into 6." Of the eight, four worked the problem using the wrong

order. In all cases, the way in which the problem was worded when the
calculator was used was the same as when the student- was asked to work
the problem by hand, but only one student used the wrong order in
actually working the problem by hand. Other wordings of division prob

lems besides "384 divided by 17" were "384 divide 17," by, several

students (this would appear to be a direct consequence of using the

calculators), and "384 divided through 17," by one student.

When asked what factors dictated the choice of which number to
enter first in division, seven students replied that the bigger number

is always entered first, and similarly, two students remarked that you

can't divide the larger into the smaller. One student always entered

the smaller number first. One girl entered the larger number in problems
like. 384 L 17, but knew that in 65/6 the "top" number was to be entered

first, whether larger or smaller. A few had much more difficulty with
65/6 than with 384 + 17 because they had no idea that a division was

called for. Finally, one boy solved 65/6 as follows: since 65 has

one more place than 6, he wrote the problem as 65/6 x 1/10 : 1 5/60.

The only reason that could be elicited was "that takes it to one more

place."

Do students trained with calculators understand the concept of

division, or are they merely punching buttons? A very rough estimate
is that approximately one-third of the students were punching buttons.

This estimate is based on the observation that approximately one -third

could change a problem stated "384 + 17" into the form 17 )3 , but

were totally at a loss as to how to begin to work with the algorithm.

These same students seemed to have no "feeling" for the meaning of the

answer. Of course, there is nothing to indicate that these students

could have done any better had they not been trained on the calculator.

The better students did quite well.- Two even checked their answers

using multiplication.

B. The Concept of Fraction: There seem to be three separate
notions which many of the students interviewed could not connect, and

therefore confused. These are the idea of fractional parts, the decimal
representation of fractions, and the interpretation of the "-" or "/" as

"divide," as in 4/2 2. A very clear example of this confusion is the
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ease of one of the brighter girls, who had correctly divided 65/6, and

who had a recollection that 2/3 was either 6.7 or .67, but refused to

divide 2 by 3 on the Calculator because "three just won't go into two,
so it's impossible." She went on to explain that 65/& meant divide,
but 2/3 didn't, and she had no idea where the decimal representation
came frost. She knew the meaning of the fractional part 2/3, she knew
that sometimes a slash or bar meant to divide, and she would compute with
decimals, but she had no understanding of the interrelationship of the
three notions.

- Most students did understand what a fraction was and could give

such examples as "2/3 of a pie," or "8/10 would be a collection of 10

objects with 8 taken away." One case, however, indicated that the "pie"
notion may be rotely learned in school but not fully understood: one

of the slower girls insisted that 2/3 was the smaller section of the

pie,

2/3

while the larger segment was about 3/5. A slower boy thought that all
fractions, including 5/3, were less than one. On further consideration,

he stated, "There might be fractions bigger than 1, but I can't think

of-any." Two students could not give'anyexplanation for fractions
other than "2/3 is 2 divided by three;" this notion may possibly be trace-
able directly to their training on the calculators. But to reiterate,

the students, by and large, did understand what a fractional part was,
and could-compute with decimals. The confusion seems to have been in

transitions among the three notions .stated above.

The question of the size of fractions is another matter entirely.

It was here that students did poorest. They were asked which fraction

is larger, 13/17 or 11/15, and why. Six-quickly said that 13/17 was

larger because 13 > 11 and 17 > 15. Upon further questioning, with
examples such as 13/10 and 11/15, most of them were confused. One said

that in a mixture, the numerator takes precedence, hence 13/10 > 11/15.

Another said that the denominator takes precedence, hence 13/17 > 1 /15.

Other responses to the initial question were that the denominator

always takes precedence (13/17 > 11/15) and that the numerator always

takes precedence (13/17 > 11/15), while two students stated that the

denominator takes reverse precedence, since 1/2 > 1/3. Thus 1/4 > 15/16

because only the denominator counts. By far the "best" answer, which two
students arrived at separately, was that 1/17 is a smaller piece of pie

than 1/15; 13/17 is four pieces away from a whole pie, and 11/15 is

four of the larger pieces away from the whole pie; therefore 13/17 is

closer to the whole pie, and thus larger. A third student, reasoning
similarly, observed that both were 4 pieces away from a whole, so the

two fractions were equal.
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Five students immediately divided 13 by 17 and 11 by 15 using the
calculator, and nine others first explained which was larger, perhaps

incorrectly. But later, upon being asked, they were able to use the
calculator to compare the two as decimals. However, of these nine,

three reasoned incorrectly as follows: 13/17 = .76 11/15 = .73, hence.
11/15 is larger because "decimals are just fractions to begin with,

like 1/2 > 1/3." In other words, the fractional part .76, having higher

digits, is actually the smaller fraction. This kind of statement is yet

another example of the aforementioned confusion between fractions and
their decimal representations.

C. Algorithms Involving Fractions: The common algorithms involving
fractions are quite easily done on the calculator. For example 3/4 .

3/4 + 5/6'.! (3+4) + (5+6) . .75 + '.833 = 1.5683: The students could

perform these operations rather well. On the other hand, they did
extremely pOorly in working the traditional written algorithms. For

instance, only one girl of the 23 students knew that a common denomina-

tor was used in solving addition of fractions. It is impossible to say

what effect the calculators have had here. One could perhaps argue that

prolonged use of the calculators caused the students to forget the

written methods. But another might argue that the fact that these
students could not perform this kind of operation was the reason they
had been placed in this class in the first place. Both arguments are

probably correct to some extent. The lack of understanding of basic
concepts which they exhibited certainly precludes further progress in

mathematics. There was, however, some forgetting. Many students said

that they used to be able to do it," and there was evidence that

students remembered bits and pieces of algorithms. For instance, in

working with the fraction 3 2/9, three students wrote the fraction as

9 x 3 + 2, so 3 2/9 = 29. Another student said it was 3 x 2 + 9 . 15.

Still, these students may not have been able to work the problems even

if they were not enrolled in the calculator class.

The following table lists the number of pupils who solved various

.problems correctiy by calculator techniques as compared to the number who

merely used their written technique (correct or not) on the calculator.

For example, the correct calculator technique for 3/4 + 5/6 is

(3 4) + (5 6) = .75 + .833 = 1.583. An incorrect written technique

would be 3 + 5/4 + 5 = 8/10, which could be "duplicated" on the, calculator.

calculator method

written method

3/4 + 5/6 4 - 1 2/9 4 1/3 x 2 1/4 2/3 x 75

8 9 6 6

2 4 6 7
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Errors fell into two major categories as follows: 1) the misunder-
standing of the relationship between fractions and their decimal equiva-
lents, and 2) misunderstanding of placement and meaning of the decimal

point.

Into the first category fall the following errors:

a) 3/4 + 5/6 = (3+4) + (5+6) . .75 + 1.20 = 1.95

b) 3/4 + 5/6 . 3.4 + 5.6 = 9.0, and similarly, 4 - 1 2/9 = 4 - 11/9 =
4 - 11.9

c) 4 1/3 x 2 1/4 . 4.3 x 2.4 . 10.32

d) 2/3 x 75 = 2.6 x 75 = 195. The student went on to explain that she
had remembered 2/3 = 2.6 and 1/3,. 1.6.

e) One girl observed that 3 won't go into 2, so you can't do 2/3 on a

calculator. She was induced to try 2 + 3 on the calculator, but
when she obtained .6667, she decided that was impossible, and gave

up.

Into the second category fall the following errors:

a)

b)

c)

d)

3/4 + 5/6

2/3 x 75 .

1/3 + 1/4

5 - 3 2/9:

= 75 + 8333

6667 x 75 =

= 33.5 + .25

2/9 = 9 -

= 8408

499999 (two students)

= 33.75

2 = 4.50, so 3 2/9 = 34.50. 5 - 34.50 . 29.50

D. Confusion of Operations: During the first three interviews,
the students soaetimes punched X instead of +, and vice versa, into the

calcUlator. It was thought that the + written in the problem may have

resembled a X to them. In subsequent interviews, the problems viere read
carefully to the students, but the mistake persisted. Most of the

students immediately corrected their mistake, but three argued that

although the problem said +, it was necessary to punch X in the addition

of fractions. Two students also confused division with subtraction.
An explanation is difficult to find. It may be that to a calculator

user who merely punches buttons without understanding the underlying

operations, one operation is as good as another. This showed up in

statements. like "I timesed 3 with 4," or I plussed 5 by 6." This ex-

planation is unlikely, as not all operations were confused. A more

plausible explanation .is that when faced with a problem of some dif-

ficulty, the solver tries the strategy which is easiest to use or is

most familiar. Only one student could add fractions without a'calculator,

while most could multiply fractions. ;;(.) If multiplication of fractions
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is in fact easier, students might tend to substitute multiplication far

addition. If one assumes that addition seems easier to students then
division,' then the following examples lend support to the above

explanation.

The students had never encountered a problem of the form
12 + 71

15 + 83
Four different students correctly added 12 and 71, as well as 15 and 83,

.
but were puzzled over what to do with the resulting 83 and 98, so they
added them. -Upon questioning as to why they had added, none could ex.-.
plains.except by saying, "It seemed like a goad thing to, do." Another
student worked the problem 2/3 x 75 as follows 2 x 75 = 150. 3 x 75 =
225, then, after a long pause, 150 225 = 375. A final example is the
student who, in working the same problem, found that 2/3 = .667, and
then tried .6667 75. This particular student had previously stated
that he was good at dividing.

E. Reasonableness of Answers: Does the use of calculators give
students mny more insight into estimating the size of numbers? In the

classes interviewed, particular stress had been given to the estimation

of answers. A few students performed admirably. For instance, two

students reasoned in this manner: 384 + 17 = 22.528 (on the calculator).
"That's about right since 20 x 17 is three-hundred something." But by

and large, the students had no conceptions about the plausible size of

their answers. Most students did look at their answers in an attempt
to check their calculations, as was shown by frequent winces and looks

of dismay at answers on the calculator which they believed to be wrong.

But it seems that the size was a rarely-used criterion by which answers

were checked. Three or four students, for example, said that 384 + 17 =

22.528 was wrong because both 384 and 17 were whole numbers, so the

answer should be a whole number.

The calculators can be set to read answers accurate to 2, 4, or 8

decimal places. When it was set to eight places, the answer 384+ 17 =
22.52848652 was usually a big surprise, and the usual response was that

this answer was too big. Generally stated, the number of digits in the

answers was the most important criterion used to determine the reason-

ableness of answers.

Four or five students said almost all their answers were reasonable

for reasons such as, "I think I did it right," or "Machines don't lie."

These answers suggested an absolute trust in the machines. But Fore

often than not, students merely could not determine whether or liot their

answer was reasonable, Cven though they tried.

F. Attitude: The students were confident of their ability to use

the calculators (but not necessarily of their mathematical ability).

Almost all seemed to enjoy the interview, and many seemed proud to be
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explaining "math" to someone. It was thought prior to the interviews
that many students with low self-concepts would fear to venture answers
lest they manifest their "stupidity." These thoughts were not borne
out; the students, in general, gave their answers with assurance.

The students. also appeared to enjoy punching buttons and seeing
the answer light up on the screen. They appeared to have a good feeling
of having produced the number on the screen. One boy even punched the
"clear" button after working problems when he was not using the calcula-
tor at all!

Attitude toward fractions was extremely negative. Many students
uttered disparaging comments when presented with the first fraction
problem. One girl could in no way be coaxed to attempt any fraction
problems. When quizzed about their negative attitudes, most responded
that they could never do fraction problems.

Conclusions

Very few conclusions can be drawn, as the students' mathematical
achievement was very low before they used the calculators, and was still
very low at the time of the interviews. Many can solve problems with
the calculators which they would have little or no idea about how to
solve otherwise, and they seem to enjoy doing so. The calculators
have probably not added much to their mathematical understanding, but
at this age, and with their long history of failure, it is doubtful
that other methods would have any effect either. In general, only a
few students were robot-like button pushers. Most made some attempt
to understand the problem and to appreciate the numbers and issues
involved.

Use of the calculator has changed a few concepts'in some students.
For instance, to a few the fraction 2/3 had no physical embodiment other
than 2 divided by 3. Others have learned that all numbers are decimals
and hence the need for operating with fractions is obviated. Most
dangerous by far is the idea that if one punches numbers into a calcula-
tor, it will always be right. Any teacher who uses calculators must
be sure to insist that students check the reasonableness of their
answers, lest they lose contact with the feel for the size of the num-
bers which they are using.
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V. Annotated Listing of Selected Research References



Annotated Listing of Selected Research References
Related to

Computational Algorithms*

Marilyn N. Suydam

Alessi, Galen James. Effects of Hutchings' "Low Fatigue" Algorithm on
Children's Addition Scores Compared Under Varying Conditions of
Token Economy Reinforcement and Problem Difficulty. (University of

Maryland, 1974.) Dissertation Abstracts International 35A: 3502;

December 1974.

Fourth graders who had high scores on basic addition facts were
randomly assigned to two groups: one taught the "low fatigue"
algorithm and one taught the conventional addition algorithm. Tests

were at three levels of problem difficulty and administered under
three conditions of token reinforcement. The "low fatigue" algorithm
produced higher scores for both number of columns correct and columns
attempted. Significant differences among means were also found for
the difficulty level of columns correct. As the test forms increased
in difficulty, the extent of superiority for the "low fatigue"
algorithm decreased.

Bat-haee, Mohammad Ali. A Comparison of Two Methods of/Fining the
Least Common Denominator of Unlike Fractions at Fifth Grade Level.
in Relation to Sex, Arithmetric Achievement, and Intelligence.
(Southern Illinois University, 1968.) Dissertation Abstracts29A:

4365; June 1969.

Fifth graders (n - 112) were randomly selected from six classes, and
assigned to be taught to find the LCD by the inspection method used
in their textbook or by a set of six lessons on factoring of
denominators. Pupils taught by the factoring method performed sig-
nificantly better than those taught by the inspection method.

*The reports which are listed have been included to illustrate various
factors which are relevant to the study of computational algorithms.
It should not be inferred that each study referenced is necessarily
free of design flaws. An earlier version of this listing, prepared
by Marilyn N. Suydam and J. F. Weaver, was used in the Postsession on
Computational Algorithms sponsored by the Special Interest Group for
Research in Mathematics Education at the Annual Meeting of the

American Educational Research Amsociation in 1973.
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Baumann, Reemt Rikkelds. Children's Understanding of Selected Mathe-

matical ConCepts in Grades Two and Four. (The University of

Wisconsin, 1965.) Dissertation Abstracts 26: 5219-5220; March ;966.

Forty randomly selected pupils from grades 2 and 4 were interview d
to ascertain their ability to attain and use concepts of commuta-
tivity, closure, and identity. Twenty-one tasks were presented a d

pupils were rated on definitions they gave before and after each

task. It appeared that attainment of the concepts were difficult,
and pupils did not generally evidence transfer of learning from

pervious tasks. High-IQ fourth graders succeeded best, but even

their "readiness" seemed questionable.

Baxter, Marion McComb. Prediction of Error and Error Type in Computa-;

tion of Sixth Grade Mathematics Students. (The Pennsylvania State

University,.1973;) Dissertation Abstracts International 35A: 251;

July 1974.

Types of errors made by 96 sixth-grade pupils were identified and

analyzed; effects of feedback, homework, and other factors were

assessed. Algorithm errors appeared to be best predicted by mental

age.

Bergen, Patricia.M. Action Research on Division of Fractions.

Arithmetic Teacher 13: 293-295; April 1966.

Booklets were designed to teach 63 pupils in three sixth-grade
classes by the complex fraction, common denominator, or inversion

algorithms. No significant differences-were found between complex
fraction and inversion algorithmS, but each was significantly supe-
rior to the common denominator algorithm on most types of examples.

Bidwell, James King. A Comparative Study of the Learning Structures

of Three Algorithms for the Division of Fractional Numbers.

(University of Michigan, 1968.) Dissertation Abstracts 29A: 830;

September 1968.

Three meaningful approaches were taught to 21 sixth-grade classes
(n = 448) randomly assigned to treatment for eight days.: The inverse
operation procedure was most effective, followed by complex fraction

and common denominator prOcedures. The complex fraction procedure

was better for retention, while the common denominator procedure was

poorest.
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Brooke, George Milo. The Common Denominator Method in the Division of

Fractions. (State University of Iowa, 1954.) Dissertation Abstracts

14: 2290-2291; 1954.

One group had division oCfractions presented by the inversion method,

and the other group used the common denominator method. Sixth-grade

pupils in 28 classes (n = 772) were taught for four days. No signi-

ficant difference between the two groups was found.

Brownell, William A. The Effects of Practicing a Complex Arithmetical

Skill upon Proficency in Its Constituent Skills. Journal of Educa-

tional Psychology 44: 65-81; February 1953.

A test was administered to 17 fifth-grade classes (xi = 367) before

and after three weeks of instruction on division by two-place numbers.

It was found that: (1) practice in dividing by two-place numbers

(the complex skill) had no single, uniform,redictable results as

far as proficiency in sub-skills was concerned; (2) in general, the

oldest and beSt-established sub-skill (subtraction) seemed less sub-

ject to change than sub-skills recently taught, while the sUb-skill

(simple division) most like the complex skill seemed to be least

stable; (3) loss in proficiency in sub-skills may be attributed to

retroactive inhibition; (4) children 1.14.th the lowest degree of

proficiency in sub-skills made relatively little improvement on

these while working on the complex skill.

Brownell, William A. and Moser, Harold E. Meaningful vs. Mechanical

Learning: A Study in Grade III Subtraction. Duke University

Research Studies in Education, No. 8. Durham, North Cariblina:

Duke University Press, 1949. 207 P.

'In a study involving 1400 third grade pupils, half of the classes

were taught to borrow using the decomposition algorithm; the other

half using the equal additions algorithm. Each half was divided

again, so that one group learned the procedure meaningfully and the

other group, mechanically. Among the conclusions were: (1) the

equal additions algorithm appears satisfactory for children who have

a background of meaningful arithmetic, but for children with limited

background the decomposition algorithm, taught with meaning, is

better regardless of the criteria employed; (2) the equal additions

algorithm is difficult to rationalize; (3) some proficiency can be

produced by mechanical instruction with either the decomposition or

equal additions algorithm; (4) crutches were needed, but were more

helpful for the decomposition algorithm than for the equal additions

algorithm.
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Brueckner, Leo J. and Melbye, Harvey 0. Relative Difficulty of Types
of Examples in Division with Two-Figure Divisors. Journal of
Educational Research 33: 401-414; February 1940. a

Tests were administered to 474 pupils in grades 5 and 6. Long
division was found to be not a single general ability but a process
that consists of a considerable variety of skills found in combina-
tions varying widely in difficulty. Examples in which the apparent
quotient is the true quotient were much easier than those which
required correcting. The mental ages at which less than 25 per cent
error resulted ranged froiv10 to 15 years.

Burdick, Charles Philip. A Study of the Effects of Academic Accelera-
tion on Learning and on Retention of Learning Addition in the Set
of Integers. (Syracuse University, 1969.) Dissertation Abstracts
International 31A: 54-55; July 1970.

To determine the optimal grade level, a three-day unit on addition
with integers was taught to 245 pupils in grades 5 through 8, with
a tetention test administered six weeks after the end of instruction.
It appeared that grade 6 is the optimal level for teaching addition
with integers, since there was the greatest increase in learning
from instruction, attainment of group criterion, performance, and
nonsignificant loss on the retention test. However, the greatest
increase from pre- to retention test was found in grade 5.

Burkhart, Lewis Leland. A Study of Two Modern Approaches to the
Development of Understanding and Skills in Division of Whole Numbers.
(Case Western Reserve University, 1967.) Dissertation Abstracts
28A: 3877; April 1968.

Fourth graders using the multiplicative approach had significantly
greater mean achievement and retention than those using the subtrac-
tive approach, on measures of computational skills, understanding,
and applications.

Capps, Lelon R. A Comparison of the Common Denominator and Inversion
Method of Teaching Division of Fractions. Journal of Educational

Research 56: 516-522; July-August 1963. (Also see Capps, Arithmetic

Teacher 9: 10-16; January 1962.)

Sixth graders in 20 classes were randomly assigned for instruction
on two methods of division of fractions. Groups did not differ
significantly in ability to divide fractions, but the group taught
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by the inversion method scored significantly higher in ability to

multiply fractions on the immediate posttest, though not on the

retention test. Analysis of gain or loss from posttest to retention

test revealed no difference between methods for addition, subtrac-

tion, or division of fractions, but the common denominator group

gained significantly on multiplication of fractions.

Carney, Harold Francis. The Relative Effectiveness of Two Methods of

Teaching the Addition and Subtraction of Rational Numbers. (New

York University, 1973.) Dissertation Abstracts International 34A:

659-660; August 1973.

For eight fourth-grade classes, use of field postulates and other

properties of whole numbers in teaching addition and subtraction

with fractions was found to be more effective than use of objects

and the number line.

Carter, Mary Katherine. A Comparative Study of Two Methods of Estimating

Quotients When Learning to Divide by Two-Figure DiVisors. (Boston

University School of Education, 1959.) Dissertation Abstracts 20:

3317; February 1960.
-----

For 12 weeks, 22 fifth-grade classes (n = 463) were taught (a) only

the one-rule method, (b) only the two-rule method, or (c) first the

one-rule method followed by the two-rule method as anfalternative.

Those taught one rule were more accurate than those taught by the

two -rule method, and the combined method was also better than the

two -rule' method. Those taught the combined method did as well as

those taught one-rule in both speed and accuracy. After a lapse of

time, no significant differences in speed were found.

Coburn, Terrence Gordon. The Effect of. a Ratio Approch and a Region

Approach on Equivalent'Fractions and Addition/Subtraction for Pupils

in Grade Four. (The:University of Michigan, 1973.) Dissertation

Abstracts International 34A: 4688; February 1974.

Six classes of fourth graders were taught an instructional sequence

for equivalent fractions based on an initial ratio thinking model,

while six other fourth-grade classes were taught using a model which

emphasized paper-folding activities. While achievement on some con-

cepts was comparable for the two groups, students using the region

approach achieved significantly better on adding and subtracting

unlike fractions and on some retention and attitude measures.
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Coltharp, Forrest Lee. A Comparison of the Effectiveness of an
Abstract and a Concrete Approach in Teaching of Integers to Sixth
Grade Students,: (Oklahoma State University, 1968.) Dissertation
Abstracts International 30A: 923-924; September 1969.

In a study with 79 pupils in four sixth -grade classes; addition and
subtraction with integers was presented through a concrete procedure
using the number line and other visual materials or with an abstract
or algebraic procedure with ordered pairs. No significant differences

. In achievement were found.

Cosgrove, Gail Edmund. The Effect on Sixth-Grade Pupils' Skill in
Compound Subtraction When They Experience a New Procedure for Per-
forming This Skill. (Boston University School of Education, 1957.)
Dissertation Abstracts 17: 2933-2934; December 1957.

It was found that sixth grade pupils who had learned the decomposi-
tion algorithm could change to the equal additions algorithm without
significant interference effects. Hypothesized speed and accuracy
advantages for equal additions were not observed.

Cox, L. S. Diagnosing and Remediating Systematic Errors in Addition

and Subtraction Computations. Arithmetic Teacher 22: 151-157;

February 1975.

Types of errors made by children were analyzed and categorized as
systematic, random, or careless.

Coxford, Arthur Frank, Jr. The Effects of Two Instructional Approaches
on the Learning of Addition and Subtraction Concepts in Grade One.
(University of Michigan, 1965.) Dissertation Abstracts 26:
6543-6544; May 1966.

For the two higher-ability first grade classes in the control group,
subtraction was based on the removal of a subset from a set,, with
no explicit use of the relationship between addition and subtraction.

For the experimental group, which consisted of two lower- and two

higher-ability first grade classes, subtraction was based on finding
the missing part of a set when a set and one of its subsets haas
given, with extensive use of the relationship between addition and

subtraction. Symbolism on addition and subtraction concepts was
delayed six weeks in half of the 1.a.sses in each treatment.; Few

significant differences were found between the two appraoches. For
higher-ability groups, the control approach led to greater immediate
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proficiency in solving subtraction sentences, while the experimental

approach tended to facilitate solutions of application of subtraction

to a greater extent. Delayed symbolization led to greater transfer

and applicability than did immediate symbolism when the experimental

approach was used in the lower ability groups.

Crawford, Douglas Houston. An Investigation of Age-Grade Trends in

Understanding the Field Axioms. (Syracuse University, 1964.)

Dissertation Abstracts 25: 5728-5729; April 1965.

A 45-item test on field axioms was constructed and administered to

1000 non-randomly selected pupils in grades 4, 6, 8, 9, 10, and 12.

Mean scores increased significantly from one even-numbered grade to

the next. No significant differences were found for sex except

between grades 8 and 9; IQ had an increasing effect as grade level

increased. For traditional-content students in grades 9 and 10,

the order of difficulty was commutativity (easiest), inverse, closure,

identity, associativity, and distributivity.

Dawson, Dan T. and Ruddell, Arden K. An Experimental Approach to the

Division Idea. Arithmetic Teacher 2: 6-9; February 1955.

Twelve fourth-grade classes were equated on seven variables and then

taught for 22 days using the textbook approach or an approach in

which division was presented as a special case of subtraction. Use

of the subtractive concept resulted in significantly higher achieve-

ment on immediate and delayed recall tests. A greater understanding

of division and its interrelationships with other operations was

also found when the subtractive concept was used.

Crumley, Richard D. A Comparison of Different, Methods of Teaching

Subtraction in the Third Grade. (Unpublished doctoral dissertation,

University of Chicago, 1956.)

Children in third grade tended to see subtraction as a take-away

process regardless of the teaching procedure used.
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Dilley, Clyde Alan. A Comparison of Two Methods of Teaching Long
Division. (University of Illinois at Urbana-Champaign, 1970.)
Dissertation Abstracts International 31A: 2248; November 1970.

Ten schools at three socio-economic levels were randomly selected,
and one fourth grade from each school was randomly assigned to be
taught division using either the successive subtractions method or
the distributive method, taught meaningfully. On only two of seven

tests was there a significant difference between treatments: on the

application test the difference favored the successive subtractions
method, while on the retention power test the difference favored the
distributive method.

Ebeling, David George. The Ability of Sixth,Grade Students to Associate
Mathematical Terms with Related Algorithms. (Indiana University,

1973.) Dissertation Abstracts International 34A: 7514-7515; June

1974.

From this study with 1094 sixth graders, it was concluded that:
(1) the average sixth-grade student has the ability to associate
fewer than half of the algorithms for operations with whole numbers

with their mathematical terms; (2) writing an algorithm in horizontal
or vertical form makes no difference in students' ability to associate

the terms with the algorithms; (3) students are able to associate
terms with algorithms when written in normal order significantly
better than when written in inverse order.

Ellis, Leslie Clyde. A Diagnostic Study of Whole Number Computations

of Certain :Elementary Students. (The Louisiana State University and

Agricultui'al and Mechanical College, 1972.) Dissertation Abstracts

International 33A: 2234; November 1972.

A screening test on the four operations was followed by a diagnostic
test used to tabulate errors and plan instruction for 690 pupils in

grade 6. Division was found to be the most difficult operation,
followed by subtraction, with addition least difficult.

Faires, Dano Miller. Computation with Decimal Fractions in the Sequence

of Number Development. (Wayne State University, 1962.) Dissertation

Abstracts 23: 4183; May 1963.

Two equated groups of eight fifth-grade classes' were- assigned to the

two treatments. One group was introduced to decimals though a
sequence based on an orderly extension of place value, wiLh no
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reference to common fraction equivalents, while the other group was
taught fractions before decimals, as is usually done. Gains in com-

putational achievement and at least as good an understanding of

fraction concepts resulted. It was concluded that computation with
decimals is apparently more nearly like computation with whole num-
bers than with fractions; thus reinforcement of whole number compu-
tational skills is provided.

Flournoy, Frances. Children's Success with Two Methods of Estimating

the Quotient Figure. Arithmetic Teacher 6: 100-104; March 1959.

Two fifth-grade classes (n . 61) were taught the one-rule method of

rounding down and two classes (n = 63) were taught the two-rule method

of rounding both ways. On a 10-item test, some children (including

many.low achievers) taught the two-rule procedure did not use it.

However, the two-rule method appeared to result in greater accuracy.

Flournoy, Frances. A Consideration of Pupils' Success with Two Methods

for Placing the Decimal Point in the Quotient. School Science Fuld

Mathematics 59: 445-455; June 1959.

Involved in thiS study were 137 pupils in six sixth-grade classes..

Pupils taught to make.the divisor a whole number by multiplying by

a power of ten placed the decimal point in the quotient correctly

more often than did pupils taught the subtractive method. Above-

average achievers scored better with the subtractive method, but

below-average achievers found it decidedly more difficult. Failure

to place the necessary zeros in the dividend was common to those

using either method.

Flournoy, Frances. Applying Basic Mathematical Ideas in Arithmetic.

Arithmetic Teacher 11: 104-108; February 1964.

An 18-item test measuring ability to apply-basic laws of arithmetic

in each operation with whole numbers was administered to 106 students

in four seventh-grade classes. An error of 30 per cent or greater

was found on 15 items, and 50 per cent error or greater on ten times.

Items related to the distributive property were most frequently

missed.
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Fuller, Kenneth Gary. An Experimental Study of Two Methods of Long

Division. Teachers College Contributions to Education, No.. 951.

New York: Bureau of Publications, Teachers-College, Columbia
University, 1949.

Pupils in the experimental treatment were required to develop and

use a table of multiples of the divisor, d, from 1 x d to 9 x d, to

find quotient digits when working examples having two-digit divisors.

Nonsignificant differences in achievement favored the experimental
treatment over the control where pupils were taught the increase-by-

.

one or two-rule procedure.

Gaslin, William Lee. A Comparison of Achievement and Attitudes of
Students Using Conventional or Calculator Based Algorithms for
0 erations on Positive Rational Numbers in Ninth Grade General

athematics. (University of Minnesota, 1972.) Dissertation Abstracts

International 33A: 2217; November 1972.

Gaslin, William L. A Comparison of Achievement and Attitudes of Students

using Conventional or Calculator-based Algorithms for Operations on
Positive Rational Numbers in Ninth-Grade General Mathematics. Journal

for Research in Mathematics Education 6: 95-108; March 1975.

For six ninth-grade classes, use of units in which fractional

numbers were converted to decimals and examples then solved on a

c4culator was found to be a "viable alternative" to use of conven-
tional textbooks (including fractions) with or without a calculator,

for low-ability or low-achieving students.

Gibb, E. Glenadine. Children's Thinking in the Process of Subtraction.

Journal, of Experimental Education 25: 71-80; September 1956.

Thirty-six randomly-selected pupils in grade 2 were interviewed about

Problems at three levels of abstraction and with three types of

applications -- take-away, additive-subtraction, and comparative-

subtraction. There were significant differences among applications
for understanding, equation, solution, and time scores. Highest

degree of attainment was on take-away problems and lowest level on

comparative problems. Additive problems took a longer time.
Significant differences were also found among contexts, with perfor-

mance better on problems in semi-concrete context than in concrete

context, and lowest in abstract context.
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Gran, Eldon Edward. A Study to Determine Whether the Negative-Number
Subtraction Method Can Be Learned and Used by Elementary Pupils.-
(University of South Dakota, 1966.) Dissertation Abstracts 27A:

4165-4166; June 1967.

Pupils in grades 3 through 6 learned the negative-number subtraction

method with speed and accuracy superior to those taught by decomposi-

tion. Pupils demonstrated ability to apply the method to common and

decimal fractions. However, they failed to continue to use the method

as their habitual method of subtraction.

Gray, Roland F. An Experiment in the Teaching of Introductory Multi-

plication. Arithmetic Teacher 12: 199-203; March 1965.

Twenty-two third-grade classes were randomly assigned to instruction

which introduced multiplication by stressing understanding of the

distributive property or which explained multiplication in terms of

repeated additions and arrays. The use of the distributive property
resulted in higher achievement, and knowledge of the property appeared

to help children proceed independently in the solution of untaught

multiplication combinations. The children appeared not to develop

an understanding of the distributive property unless it was specifi-

cally taught.

Green, Geraldine Ann. A Comparison of Two Approaches, Area and'Finding

a Part of, and Two Instructional Materials, Diagrams and Manipulative

Aids, on Multiplication of Fractional Numbers in Grade Five. (The

University of Michigan, 1969.) Dissertation Abstracts International

31A: 676-677; August 1970.

For a 12-day unit, 480 pupils in grade 5 were taught by treatments

involving two approaches -- one used on area of .a rectangular
region and one on finding a fractional part of a region or set --

and by diagrams or materials. The area approach was more effective

than the finding-a-part-of approach; diagrams and materials appeared

to be equally effective. The area/diagram combination was most

successful, with the part-of/materials approach second, and part-of/

diagram ranking poorest.

Grossnickle, Foster E. An Experiment with Two Methods of Estimation of

the Quotient. Elementary School Journal 37: 668-677; May 1937.

No significant differences were found between seven fourth-grade

classes in one school who were taught the apparent method and seven
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fourth-grade classes in another school who were taught the increase-
by-one method, on measures of accuracy, estimation scores, or mean
number of errors,

Grossnickle, Foster E. Estimating the Quotient by Two Methods in
Division with a Three-Figure Divisor. Elementary School Journal
39: 352-356; January 1939.

The result of division by the 810 three-figure divisors (which do
not contain multiples of 10) were computed. Whether the apparent
or the increase-by-one method of quotient estimation is used, in
about 99 percent of the cases the true quotient is within a range
of 2. Because of the difficulty of ascertaining what to increase,
the apparent method was recommended.

Grossnickle, Foster E. Kinds of Errors in Division of Decimals and
Their Constancy. Journal of Educational Research 37: 110-117;
October 1943.

On tests from 400 pupils in grades .6 through 9, 21 different kinds
of errors in division of decimals were found. Forty per cent of all
errors resulted from improper usage of the decimal divisor. The
average number of errors of each type was about the same at each
grade level. The only constant error resulted from dividing an
integer by a decimal.

Grouws, Douglas A. and Reys, Robert E. Division Involving Zero: An
Experimental Study and Its Implications. Arithmetic Teacher 22:
74-80; January 1975.

Presenting division sentences involving zero before multiplication
sentences involving zero was associated with significantly higher.
scores than the reverse sequence. Errors made when computation
involved zero are noted.

-Hall, Kenneth Dwight. An Experimental Study of Two Methods of Instruc-
tion for Mastering Multiplication Facts at the Third-Grade Level.
(Duke University, 1967.) Dissertation Abstracts 28A: 390-391;

August 1967.

Thirty classes (n , 701) of third graders were taught two sets of

36 lessons. No significant differences were found between groups
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taught by procedures emphasizing the commutative property and ordered

pairs; with practice on uncommuted combinations, or by emphasis on

the traditional approach, with practice on commuted combinations.

Hammond, Robert Lee. Ability with the,,MathematiCal Principles Governing

the Operations of Addition, Multiplication, Subtraction, and Division.

(University of Southern California, 1962.) Dissertation Abstracts 23:

2372-2373; January 1963.

A test was developed and administered to 300 seventh graders to ascer-

tain their understanding of mathematics principles and the relationship

of this understanding to arithmetic and mental ability. Significant

correlations were found between test scores and mental ability,

arithmetic ability, and algebra aptitude scores. Mathematical ability

factors were identified.

Hartung, Maurice L. Estimating the Quotient in Division (A Critical

Analysis of Research). Arithmetic Teacher 4: 100-111; April 1957.

A critical analysis of significant research pertaining to the estima-

tion of quotient digits when dividing by two-place divisors is pre-

sented. Advocated and defended is a preference for a one-rule

"round-up" method of estimation instead of a one-rule "round-down"

method or a two-rule "round-both-ways" method -- especially during

the early stages of instruction.

Harutunian, Harold. Validation of a Learning Hierarchy Using Classroom

Interaction. (Easton University School of Education, 1973.)

Dissertation Abstracts International 34A: 5584-5585; March 1974.

Using Gagne's task analysis procedure, a learning hierarchy of

thirteen subordinate skills was derived for adding fractional

numbers. It was validated with a sample of five fifth-grade classes.

Hegstrom, William J. Construction and Clinical Testing of Programmed
Instructional Units for Very Low Achievers in Junior High School

Mathematics. (University of Miami, 1971.) Dissertation Abstracts

International 32A: 3663-3664; January 1972.

Programmed instruction booklets on fractions and reduction of frac-

tions appeared to be feasible for low-achieving junior high school

students.
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Hervey, Margaret A. Children's Responses to Two Types of Multiplica-
tion Problems. Arithm-A-tc Teacher 13: 288-292; April 1966.

Sixty-four randomly selected second graders were administered one
of two 10-item tests; they were asked to find the answer to multi-
plication problems and then select a representation) or they first
selected a representation and then found an answer. Equal additions
multiplication problems were less difficult to solve and conceptu-
alize, and less difficult to select a "way to think about", than
were Cartesian product problems. Cartesian product problems were
more readily solved by high achievers in arithmetic than by loW
achievers, by boys than by girls, and by those with above average
intelligence.

Hightower, H. W. Effect of Instructional Procedures on Achievement in
Fundamental Operations in Arithmetic. Educational Administration
and Supervision 40: 336-348; October 1954.

A critical review of 17 research studies on addition and subtraction
led to the conclusion that additional variables and criteria must be
used in research on method.

Hill, Edwin Henry. Study of Third, Fourth, Fifth, and Si th Grade
Children's Preferences and Performances on Partition ,(nd Measurement
Division Problems. (State University of Iowa, 1952.) Dissertation
Abstracts 12: 703; Issue No.-5, 1952.

Pupils in grades 3 through 6 (n = 844) were given a test on the two
types of division problems, and asked to indicate their preference.
Both boys and girls in grades 4-6 preferred measurement problems,

. while third graders indicated.no preference for either type. Boys
in grades 3-5 and girls in grades 3-6 scored equally well on both
types of problems; boys in grade 6 scored significantly higher on
measurement problems.

Hinkelman, Emmet A. A Study of the Principles Governing Fractions Known
by the Fift nd Sixth Grade Children. Educational Administration
and Supery sio 42: 153-1614 March 1956.

Thirty-one fifth- and sixth -grade pupils were tested by means of a
20 -item true- false: "principles of fractions" test (e.g., one item
was: "Adding the same number to both the numerator and denominator
of a fraction leaves the value of the fraction the same."). All ten
principles were known to the pupils as a group, with a range of one
to eight principles known by individuals. Means were 3.1 for grade
5 and 4.1 for grade 6.

178

/



Hostetler, Robert Paul. Toward a Theory of Sequencing: Study 2-1:

An Exploration of the Effect of'Selected Sequence Variables upon
Student Choice in the Use of Algorithms. (The Pennsylvania' State

University, 1970.) Dissertation Abstracts International 31A:-

4623; March 1971.

Using a CAI program on equivalent fractions with 24 fifth graders,

evidence was found that (1) explicit instruction about the relative
scopes of applicability of two algorithms did not significantly
affect the algorithm preferences; (2) the order in which two algorithms
are learned affected the algorithm preference of a student: strong

support was obtained indicating that the preferred algorithm is the
one learned last; and (3) the order in which two algorithms are

learned exerted a significantly stronger influence on algorithm pre-
ference than did knowledge of the scope of applicability of the two
algorithms under consideration.

Howlett, Kenneth Donn. A Study of the Relationship Between Piagetian
Class Inclusion Tasks and the Ability of First Grade Children To' Do
Missing Addend Computation and Verbal Problems. (State University

of New York at Buffalo, 1973.) Dissertation Abstracts International

34A: 6259-6260; April 1974.

First-grade pupils classified as Stage III on a class-inclusion test
performed significantly better than Stage I pupils on both missing
addend computation and verbal problems.

Hughes, Frank George. A Comparison of Two Methods of Teaching Multi-

digit Multiplication. (The University of Tennessee, 1973.)

Dissertation Abstracts International 34A: 2460-2461; November 1973.

The lattice method of multiplication was used with six classes of

fourth graders, while six other.fourthz.grade classes used the dis-

tributive algorithm. Groups using the lattice method were able to
compute in significantly less time and more accurately than groups

using the distributive algorithm. No significant differences in
understanding or attitude were found.

Hutchings, Barton. Low-stress Subtraction. Arithmetic Teacher 22:

226-232; March 1975.

A "low stress" algorithm, which involves regrouping before any com-
putation is done, has been found to be effective with various types

of learners.
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Hutchings, Lloyd Benjamin. An Examination, Across a Wide Range of
Socioeconomic Circumstance, of a Format for Field Research of
Experimental Numerical Computation Algorithms, an Instrument for
Measuring Computational Power Under Any Concise Numerical Addition
Algorithm, and the Differential Effects of Short Term Instruction in
Two Experimental. Numerical Addition Algorithms and Equivalent Prac-
tice with the Conventional Addition Algoritht. (Syracuse University,

1972.) Dissertation Abstracts International 33A: 4678; March 1973.

The experimental rapid-acquisition algorithm produced "a quick,
strong increase in computational power", conventional practite re-
sulted in some improvement, non-treatment had little effect, and an
alternative experimental algorithm was debilitating, for the fifth
graders studied.

Ingersoll, Gary M. An Experimental Study of Two Methods of Presenting
the Inversion Algorithm in Division of Fractions. California Journal

of Educational Research 22: 17-25; January 1971.

In two experiments, 131 sixth-grade children from five classes were

involved. After a program used by both groups on one day, pupils
were randomly assigned to three different programs completed on the
second day. The complex fraction method appeared to be more effec-
tive than a procedure using the associative property.

Jordan, Ralph James. Effects of Sequence of Presentation of Square

Root Extraction Methods. (The University of Rochester, 1970.)
Dissertation'Abstracts International 31A: 3416; January 1971.

Over 200 eighth graders were present varied sequences of three pairs
of square root methods. Immediately after presentation, the algo-
rithm followed by the divide-and-average method was preferable to
the reverse sequence. No significant difference's were found between
sequences for retention or transfer. The algorithm appeared to be
the most preferred method.

Kansky, Robert James. An Analysis of Models Used in Australia, Canada,
Europe, and the United States to Provide an Understanding of Addition
aid Multiiplication Over the Natural Numbers._ (University

1)

of Illinoils,

i %9.) Dissertati.n Abstracts,International $0A: 1074-1 75;

:eptember 11'49.

Bases for meaning instruction and the relationship of four classes
of models of a n ber system to those bases were examined, to identify
and analyze procedures and materials used with children in teaching
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addition and multiplication. Structural models used in textbooks

were identified and classified, and the probable teaching effective-

ness of each was analyzed with respect to mathematical and pedagogical

criteria. Changes in the models now in use were suggested.

Kratzer, Richard Oren. A Comparison of Initially Teaching Division
Employing the Distributive and Greenwood Algorithm with the Aid of

a Manipulative Material. (New York University, 1971.) Dissertation

Abstracts International 32A: 5672; April 1972.

Kratzer, Richard O. and Willoughby, Stephen S. A Comparison of

Initially Teaching Division Employing, the Distributive and Greenwood

Algorithms with the Aid of a Manipulative Material. Journal for

Research in Mathematics Education 4: 197-204; November 1973.

'Six fourth-grade classes were taught division using the distributive

algorithm as a method of keeping records of manipulating bundles of

sticks; six other classes used the Greenwood algorithm, wit1 sticks.

No significant difference was found between methods on a to t of

familiar problems, but the distributive group scored better on trans-

fer problems.

Lankford, Francis G., Jr. Some Computational Strategies of Seventh'

Grade Pupils. Final Report, USOE Grant No. OEG -3 -72 -0035.
Charlottesville: .The Center for Advanced Study, University of

Virginia, October 1972. ERIC: ED 069 496.

Lankford, Francis G., Jr. What Can a Teacher Learn About a Pupil's

Thinking Through Oral Interviews? Arithmetic Teacher 21: 26-32;

January 1974.

The results of interviews with 176 pupils in grade 7 were presented.

Frequency of right and wrong answers to examples for each operation,

with whole numbers and with fractions; strategies frequently used;

the nature of wrong answers; and some characteristics of good and

poor computers were specified.

Leach, Mary Louise Moynihan. Primacy Effects Associated with Long

Ter Retention of Mathem ical 1prithms. (University of Maryland,

1973,) Dissertation Abs -acts nternational 34A: 7002-7003; May

1974.

Euclid's algorithm for the greatest common divisor of two

numbers, the traditional squire root algorithm, and the slide method
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of multiplication were arranged in six serial orders. Sixty
elementary-education majors were randomly assigned to six groups,
with each receiving one serial arrangement of the algorithms, pre-
sented via programmed booklets. No significant differences in
retention were found.

Morton, R. L. Estimating Quotient Figures When Dividing by Two-Place
Numbers. Elementary School Journal 48: 141-148; November 1947.

The results of estimating quotients by the apparent and the increase-
by-one methods (on 40,014 examples) were presented: (1) the
increase-by-one method is correct 79 percent of the time when
divisors end in 6, 7, 8, or 9; (2) the, apparent method is correct
72 per cent of the time when divisors end in 1, 2, 3, or 4; (3) for
any divisor ending in 1 through 9, the apparent method is correct 53
per cent of the time, and the increase-by-one method is correct 61
per cent of the time; (4) the apparent method is more successful
with divisors ending in 5. It was concluded that pupils should be
taught to round to the nearest multiple of tens.

O'Brien, Thomas C. An Experimental Investigation of a New Approach to

the Teaching of Decimals. (New York University, 1967.) Dissertation

Abstracts 28A: 4541-4542; May 1968.

\ Thirty-six sixth-grade classes were randomly assigned to the three

\treatments. Pupils taught decimals with an emphasis on the principles
of numeration, with no mention of fractions, scored lower on tests of
computation with decimals than those taught either (a) the relation
between decimals and fractions, with secondary emphasis on principles
of numeration, or (b) rules, with no mention of fractions or
principles of numeration. On later retention measures, the numera-
tion approach was significantly lower than use of the rules approach,
but not significantly different from the fraction-numeration approach.

Osborne, Alan Reid. The Effects of Two Instructional Approaches on the
Understanding of Subtraction by Grade Two Pupils. (The University

of Michigan, 1966.) Dissertation Abstracts 28A: 158; July 1967.

The effects of continuing in grade 2 the instructional treatments
used by Coxford (1966) in grade 1 were)studiO. The set-partitioning-
without-removal approach resulted in significantly greater understand-
ing of subtraction than did the take away approach. Evidence

concerning time for symbolism was in onclusive.
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Osburn, Worth J. Levels of 'Difficulty in Long Dcvision. Elementary

School Journal 46: 441-447; April 1946.

Forty-one levels of difficulty for division with two-digit divisors

and one-digit quotients were stated, with examples and the total

number of possible exercises. The apparent method of estimating the
quotient, with the instruction to try a quotient figure less by 1

when a subtrahend is too large, could enable the learner to handle

all but five per cent of any long division he will ever be called

upon to do.

Osburn, W. J. Division by Dichotomy as Applied to the Estimation of

Quotient Figures. Elementary School Journal 50: 326-330; February

1950.

Analysis of division examples with divisors ending in 6, 7, 8, or 9,

using a dichotomy, revealed that the apparent method is successful

in 4,800 cases where the increase-by-one method is also successful.

The apparent": method fails in 9,846 cases where the increase-by-one

method is successful, and is successful in 1,885 cases where the

increase-by-one method fails. Both methods fail in 2,099 cases.

Pang, Paul Hau-lim. A Mathematical and Pedagogical Study of Square

Root Extraction. (State University of New York at Buffalo, 1969.)

Dissertation Abstracts International 30A: 1080; September 1969.

For students in grades 8 and 9, the direct-trial method wassignifi-

cantly better than the traditional algorithm and the average-and-

divide method for finding the square root.

Phillips, Ernest Ray. Validating Learning Hierarchies for Sequencing

Mathematical Tasks. (Purdue University, 1971.) Dissertation

Abstracts International 32A: 4249; February 1972.

A hierarchy for the computational skills of adding rational numbers

with like denominators was constructed using Gagne's task analysis.

Sequence seemed to have little effect on immediate achievement and

transfer to a similar task, but longer-term retention seemed suscep-

tible to se uerce manipulation, for the fourth graders studied.
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Romberg, Thomas A. A Note on Multiplying Fractions. Arithm tc\
Teacher.15: 263-265; March 1968.

Analysis of tests from 691 sixth graders revealed tha a larger
percentage of students who had used "modern" program were failing
to cancel on problems dealing with multiplication fractions, than
were pupils who had had "traditional" programs. /

Rousseau, Leon Antonio. The Relationship Betwe.m Selected Mathematical
Concepts and Retention and Transfer Skills/with Respect to Long
Division Algorithms. (Washington State TJfiiversity, 1972.) Ditserta-
tion Abstracts International 32A: 6750 June 1972.

Twelve andomly- selected fourth-grade/classes were randomly assigned
to one of \four treatments: (1) mat7}Iematical, based on the distribu-

tive law of division over additio (2) real world; based on the
physical aLt of quotitioning; (3 real world, based on the phys cal
act of partitioning; and (4) r e, based on the memorization of
routines. No significant,dif erences were found in the retention
of the division algorithmd s nthesized from these treatments. The
rote algorithm was better fOrtransfer to slightly more difficult
problems, but for problemg of greater difficulty the quotitive and
distributive algorithms/were.better than rote and partitive algoithms.

Ruch, G. M. and Mead; "Cyrus D. A Review of Experiments on SubtractiOn.
In Report of the/Society"s_Committee,on Arithmetic. Twenty-ninth`

Yearbook, National Society for the Study of Education. Bloomington,

Illinois: Niblic-School Publishing Co., 1930. pp. 671-678.

Four methods of subtraction were presented and the experiments
related to them described.

Sawyer, Ray Corwin. Evaluation of Alternative Methods of Teaching
Subtraction of Integers in Two Junior High Schools. (University of

Idaho, 1973.) Dissertation Abstracts Internation--6958;
May 1974. (ERIC: ED 073 944)

The seventh-grade group taught the related facts method achieved
significantly higher on the concepts section of a standardized test,

than did the group taught the compleme t method, but no significant
differences were found for ach'evement on addition and subtraction ;

of integers. In another distr ct, tio retention differencls were

rioted.
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Schell, Leo,Mac. Two Aspects of Introductory Multiplication:` The

Array and the Distributive Property. (State University of Iowa,

1964.) Dissertation Abstracts 25: 5161-5162; March 1965.

Two nine-lesson sets of instructional materials were presented to

nine third-grade classes. Five classes used arrays exclusively to
illustrate multiplication; four classes used a variety of illustrations.

The distributive property was used in three lessons. The Array group

produced more correct drawings illustrating the commutative and

distributive properties and multiplication word problems; the Variety

group made more correct drawings for addition and subtraction word

problems. Pupils in neither group adapted their illustrations to the

"reality of the situation." Items dealing with the distributive
property were more difficult for all pupils, and expecially for low-

scoring pupils, than items dealing with other phases of multiplication

tested.

Schell, Leo M. and Burns, Paul C. Pupil Performance with Three Types

of Subtraction 'Situations. School Science and Mathematics 62:

208-214; March 1962.

Twenty-three pupils in grade 2 were asked to solve 36 subtraction

problems. No significant differences were found in performance on

the three problem types (take-away, how-many-more-needed, and com-

parison or difference). Take-away problems seemed to present fewest

difficulties and were considered easiest by the pupils.

Schmidt, Mary Merle. Effects of Teaching the Commutative Laws, Asso-

ciative Laws, and the Distributive Law of Arithmetic on Fundamental
Skills of FoUrth Grade Pupils. (The University of Mississippi,

1965.) Dissertation Abstracts 26: 4510-4511; February 1966.

Seven fourth-grade classes (n = 194) :formed the control group, which

used the Row-Peterson textbook during 1961-62. Seven fourth-grade

classes (n = 215), formed the experimental group in 1962-63, for

which the Row-Peterson. textbook was supplemented with instruction

on the five basic laws as applicable. At each of three ability

levels, experimental classes made greater gains on the California

Achievement Test than control classes did.
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Schrankler, William Jean. A Study of the Effectiveness of Four
.Methods for Teaching Multiplication of Whole Numbers in Grade Four.
(University of Minnesota, 1966.) Dissertation Abstracts 27A: 4055;
June 1967.

Twenty-three fourth-grade classes were randomly selected and assigned
to treatments. In a readiness phase, the 100 multiplication facts
were emphasized for one group (n = 281); the commutative, associative,
and distributive properties for multiplication were emphasized in the
other group (n = 327). Then half the classes were taught the distri-
butive algorithm using indentation, while half were taught the distri-
butive algorithm using complete partial products. The properties-
products group scored higher in understanding and problem solving,
while-the facts-indenting group was superior in computation directly
after instruction. The properties-indenting group was superior in
computation and problem solving on the retention test, While the facts-
products group excelled in computational speed.

Scott, Lloyd. Children's Concept of Scale and the Subtraction of
Fractions. Arithmetic Teacher 9: 115-118; March 1962.

Two 18-item tests were administered to 89 fifth graders after pupils
had had several months of practice with the operations involving
common fractions. Children made many more errors in subtracting
common fractions involving regrouping than in subtracting whole
numbers involving regrouping. Many regrouping errors in subtracting
common fractions were related to children's tendency to relate this
process to the decimal scale of our number system. Children involved
in a contemporary arithmetic program made a greater proportion of
total errors at the regrouping step in common fractions than did
children in Brueekner's study of several decades ago.

Scott, Lloyd. A Study of Teaching Division Through the Use of Two
Algorisms. School Science and Mathematics 63: 739-752; December
1963.

For a two-month period, four classes of third graders were taught
division using one or two algorithms. The use of two algorithms
neither confused nor presented undue difficulty; no more teaching
time was needed than for teaching pupils to use only one algorithm.
Those who used two algorithms were at least as efficient in solving
division problems as were children who used one algorithm. Use.of
two algorithm resulted in greater understanding of the divisio
operation; pu Ills were generally uperior in their ability to s t

up a proper algorithm, distinguis ing between partitive and mea ure-
ment division, and defining division as a means for solving problems.
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Sension, Donald Bruce. A Comparison of Two Conceptual Frameworks for

Teaching the Basic Concepts of Rational Numbers. (University of

Minnesota, 1971.) Dissertation Abstracts International 32A: 2408;

November 1971.

For 162 pupils in grade 2 who were randomly assigned to treatments

lasting 11-days, area, set-subset, and combination representations

of introducilz rational number concepts appeared to be equally

effective on tests using two types of pictorial models.

Sluser, Theodore F. A Comparative Study of Division of Fractions in

Which an Explanation of the Reciprocal Principle is the Experimental

Factor. (University of Pittsburgh, 1962.) Dissertation Abstracts

23: 4624-4625; June 1963.

The teaching of the common denominator and inversion algorithms with

and without expl nation of the reciprocal principle as the rationale

behind inversion were compared. A total of 299 sixth-grade pupils in

11 classes were nvolved for 20 days. The group given the explanation

scored significa tly lower on tests of division of fractions than the

group merely tau ht to invert and multiply. A large percentage of

errors occurred because pupils performed the wrong operation.

Smith, Charles Winton, Jr. A Study of Constant Errors tn Subtraction

and in the App cation of Selected Principles of the Decimal Numera-

tion System Ma e by Third and Fourth Grade Students. (Wayne State

University, 1 8.) Dissertation Abstracts International 30A: 1084;

September 1969.

From each of two randomly-selected schools at each of two achievement

levels, two third and two fourth-grade classes were selected. Errors

made by 523 pupils on a diagnostic test and a place value test were

analyzed. pUpils who correctly applied selected decimal numeration
principles made few-subtraction errors, and those proficient in

renaming had less difficulty in subtracting. Errors committed most

frequently by students who applied principles correctly were related

to: basic subtraction combinations, subtracting the minuend from the

subtrahend, and writing zero as an answer instead of borrowing.
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Steffe, Leslie P. and Parr, Robert B. The Development of the Concepts
of Ratio and Fraction in the Fourth, Fifth, and Sixth Years of the
Elementary School. Technical Report No. 49. Madison: Wisconsin
Research and Development Center for Cognitive Learning, University
of Wisconsin, March 1968.

Six tests -- 4 pictorial, 2 symbolic -- were constructed and used
to measure the performance of 4th-, 5th-, and 6th-grade pupils (in
three different ability groups) on problems classified either as
ratios or as fractions, where "reduction" to lower terms was involved
and a missing numerator or denominator was to be found. Differential
performance was observed with respect to grades, ability groups, and
test types -- with a very low observed correlation between scores on
symbolic and pictorial tests.

Stenger, Donald J. An Experimental Comparison of Two Methods of
Teaching the Addition and Subtraction of Common Fractions in Grade

Five. (University of Cincinnati, 1971.) Dissertation Abstracts

International 32A: 3676; January 1972.

Eighty-one pupils from two fifth-grade classes were randomly assigned
to two treatments for 16 days. The group taught with a subset ratio
procedure achieved significantly better than the group taught by
another (unspecified) procedure on both immediate and retention
tests.

Stephens, Lois and Dutton, Wilbur. Retention of the Skill of Division

of Fractions. Arithmetic Teacher 7: 28-31; January 1960.

For 74 sixth graders who had been taught the inversion method or
the common denominator method, no significant differences were found
on the retention test after three months.

Stocks, Sister Tina Marie. The Development of an Instructional System
Which Incorporates the Use of an Electric Desk Calculator as an Aid
to Teaching the Concept of Long Division to Educable Mentally Re-

tarded Adolescents. (Columbia University, 1972.) Dissertation

'Abstracts International 33A: 1049-1050; September 1972.

The 15 secondary EMR students improved in skills with the division,
algorithm after .nstructirn with the calculator.
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Suydam, Marilyn N. and Weaver, J. Fred. Using Research: A Key to

Elementary School Mathematics. University Park: The Pennsylvania

State University, 1970.

This review of research on elementary school mathematics includes
bulletins on addition and subtraction with whole numbers (B-1),

multiplication and division with whole numbers (B-2), and, rational
numbers -- fractions and decimals (B-3).

Tietz, Naunda Meier. A Comparison of Two Methods of Teaching Multipli-

cation: Repeated-Addition and Ratio-to-One. (Oklahoma State

University, 1968.) Dissertation Abstracts International 30A: 1060;

September 1969.

A random sample of 214 pupils in eight fourth-grade classes was
randomly assigned to one of two treatments: (1) the repeated-addition

approach using the array as the physical referent or (2) the ratio-

to-one approach using a coordinate system and ordered pairs of numbers

as the physical referent. No significant relationship was found
between the method used and the acquisition, retention, and under-
standing of multiplication for the total group. However, use of

arrays (with the repeated addition method) seemed better for average

and low groups.

Trafton, Paul Ross. The Effects of Two Initial Instructional Sequences
on the Learning of the Subtraction Algorithm in Grade Three. (The

University of Michigan, 1970.) Dissertation Abstracts International

31A: 4049-4050; February 1971.

Eight third - grade classes were randomly assigned to two approaches

to two-digit subtraction. More extensive development of the decom-
position algorithm was found to be more effective than a procedure
which included work with concepts and use of the number line before'

the algorithm was taught.

Tunis, Harry Brandriff. The Effects of Differential Rehearsal and
Presentation Treatments on the Performance of a Mathematical

Algorithm. (University of Maryland, 1973.) Dissertation Abstracts

International 34A: 4093; January 1974.

A rehearsal strategy that did not involve grouping of algorithm
steps (for finding the area of a triangle) was superior to strategiet;

in which rehearsal steps were grouped, ror 1:q) elementary-education

majors.
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Van Engen, Henry aid Gibb, E. Glenadine. General Mental Functions

Associated with Division. Educational Service Studies, No. 2.

Cedar Falls: Iowa State Teachers College, 1956.

In this'Study with 12 fourth-grade classes, the use of the conven-

tional, distributive algorithm was compared with the subtractive form.

Some advantages were reported for each: (1) Children taught the

subtractive form had a better understanding of the process or idea

of division in comparison with the distributive method. Use of this

algorithm was especially effective for children with low ability;

those with high ability used the two methods with equivalent

effectiveness. (2) Children taught the distributive algorithm

achieved higher problem solving socres. (3) Use of the subtractive
method was more effective in enabling children to transfer to un-
familiar but similar situations. (4) Children who used the distri-

butive algorithm had greater success with partition situations,

while those who used the subtractive algorithm had greater success

with measurement situations.

Vest, Floyd Russell. DevelopMent of the "Model Construct" and Its

Application to Elementary School Mathematics. (North Texas State

University, 1968.) Dissertation Abstracts 29A: 3539; April 1969.

A system of theoretical concepts to be imposed on the area of

teaching the operations with whole numbers and associated concepts

was delineated. An organized catalog of models describing 20

families of models for addition and subtraction and 20 for multi-

plication and division was presented. Functions of models were

determined and evaluated.

Weaver, J. F. and others. Some Factors Associated with Pupils' Perfor-

mance on Examples Involving Selected Variations of the Distributive

Idea. February 1973. ERIC: ED 075 199.

Weaver, J. Fred. Pupil Performance on Examples Involving Selected

Variations of the Distributive Idea. Arithmetic Teacher 20: 697-

704; December 1973.

Twelve 9-item tests, were constructed and administered to pupils in

grades 4-7 to ascertain whether there are differential achievement

effects associated with context, form, format, and number variables.,

At all grade levels, pupils exhibited very little sensitivity to use

of distributivity in solving the examples presented.

190



Weinstein, Marian Sue. An Investigation of Algorithm Justification in

Elementary School Mathematics. (The University of British Columbia,

Canada, 1973.) Dissertation Abstracts International 34A: 3045;

December 1973.

No significant achievement differences were found between fifth-grade
pupils taught fraction algorithms by a strictly pattern or a strictly
algebric approach. Some evidence was found that teaching an alge-
braic approach followed by a pattern approach might be effective.

Wheeler, Larry Eugene. The Relationship of. Multiple Embodiments of the
Regrouping Concept to Children's Performance in Solving Multi-digit
Addition and Subtraction Examples. (Indiana University, 1971.)
Dissertation Abstracts International 32A: 4260; February 1972.

Second-grade pupils proficient in regrouping two-digit addition and
subtraction examples on three or more concrete embodiments scored
significantly higher on multi-digit tests than those not'proficient
in using concrete materials. A significant correlation was found
between number of embodiments manipulated and achievement on multi-
digit examples.

Wiles, Clyde A.; Romberg, Thomas A.; and Moser, James M. The Relative
Effectiveness of Two Different Instructional Sequences Designed to
Teach the Addition and Subtraction Algorithms. Technical Report

No. 222. Madison: Wisconsin Research and Development Center for
Cognitive Learning, The University of Wisconsin, June 1972.

Wiles, Clyde Allan. Comparisons of Three Instructional Sequences for
the Addition and Subtraction Algorithms. (The University of

Wisconsin, 1973.) Dissertation Abstracts International 34A: 6375;

April 1974.

Investigated at the second grade level, a sequential and an integrated
approach to the introduction of two algorithms for addition and sub-
traction examples involving renaming found no evidence to support any
advantage of an integrated approach (introducing the two algorithms
more or less simultaneously) over a sequential approach (introducing

first the addition algorithm, then the subtraction algorithm).
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Williamson, Bruce Merle. A Comparison of a Natural Algorithm with the
.Inversion Algorithm for Teaching the Division of Rational Numbers.
(University of Minnesota, 1972.) Dissertation Abstracts International

33A: 150; July 1972.

Three classes of sixth graders used programs teaching an algorithm
using equivalent fractions or the inversion algorithm. No signifi-

cant difference was found between the two algorithms.

Willson, George Hayden. A Comparison of Decimal-Common Fraction Sequence
with Conventional Sequence for Fifth Grade Arithmetic. (University of

Arizona, 1969.) Dissertation Abstracts International 30A: 1762;

November 1969'. \

Teachers of four fifth-grade classes (n - 112) Were randomly assigned
to use the usual textbook sequence of teaching common fractions

\;

followed by decimal fractions, or a re-ordered s quence using the

same textbook. No significant differences were ound on achievement,

concept, computation, and problem solving testd-. Greater raw-score

gains were made by those using the decimal-commo fraction sequence.
1

I

\

Wilson, Jean Alice. The Effect of Teaching the Ratidnale of the
Reciprocal Principle in the Division of Fractions Through Programmed

Instruction. (University of Pittsburgh, 1967.) Dissertation

Abstracts 28A: 2926; February 1968.
\

The reciprocal principle was taught by programmed instruction, while

the mechanical process of inversion was tuaght by the teacher. Sixth

graders from one district were assigned to the inversion treatment,
while sixth graders from two other districts comprised the reciprocal
group (n - 630). Pupils using the inversion procedure scored signi-
ficantly better on a computation test on division of\fractions, while

the retention test scores favored the reciprocal program group.

Zinn, Bennie Ardist, Jr. Extending the Teaching of Multiplication Facts

at the Seventh Grade Level. (Texas A & M University, 1971.) Disser-

tation Abstracts International 32A: 4263; February 1972.

A set of nine lessons was developed which allowed students to use the

concept of structure and to develop understanding of digit placement

and expanded notation with two-digit multiplication examples. The

unit was taught to three seventh-grade olasses in threschoOls,
wlile another class in each school had the regular program. The

1 ssons appeared to be effective.
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Zweng, Marilyn J. Division Problems and the Concept of Rate. Arithmetic

Teacher 11: 547-556; December 1964.

Forty -eight second graders (randomly selected) were tested to ascer-

tain differences in difficulty between partitive and measurement

division problems and between basic and rate division problems.

Partitive division problems were significantly more difficult than

were measurement problems. Rate problems seemed to be easier than

basic problems. Partitive basic problems were significantly more

difficult than either basic measurement or rate measurement problems.
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VI Summary
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Summary

So much is not considered in this publication on algorithmic learning:

--so much exploration needs to be conducted;

--so many variables need to be researched.

--so much thinking needs to be done.

--so many implicat4ms need to be drawn -- and tested.

There are implications fcr research questions and for research design.

And even more important, there are implications for curriculum and

instruction. .
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