
pcicomENT. insim

AUTHOR Brahan, J. W. ; Colpitts, . A.
TITLE NATAL-74; Towards a Commo ogramming Language for

CAL. 4

INSTITUTION National Research Council f\ Canada, Ottawa
(Ontario) .

PUB DATE Aug 7.5
NOTE 11p.; Paper presented at t e Association for the

Development of Computer-Ba ed Instructional Systels
Summer Meeting (Portland, ai e, August 5 -7, 1975)

.

_IR 002.540

EDRS'PRICE MF-$0.76 HC-$1.58 Plus Post
ESCRIPTOES Computer Assisted fnstructi ,*Computer Programs;

Curriculum Design; Program criptions; *Programing
Langu ges

IDENTIFIERS CAL P graming Languages; Canr\da; *NATAL 74

ABSTRACT
NATAL-74 is a programing langU ge designed for

Canadian computer aided learnin (CAL) programs. The language has two
fundamental elements: the UNIT rovides the interface between the
student and the subject matter, nd the PROCEDURE element embodies
'teaching strategy. Desirable fea ures of seve al programing langua44S
have been adapted to Cope with a 'wide range of display equipment. A
variety of computational capabilities, including a calculatio.I'mode,
provide flexibility in use and response processing. A major goal o
NATAL-74 is to provide an effeCtive means to exchange courseware
proOr'ame: The implementation phase has initially used, the DEC,1,0
COmputer, but is working toward a high level of machine independence.
Cooperation and continuing dialog between CAL users, ve dors and
researchers is necessary to achieve a meaningful standarrd.J or a CAL
Language. (CH)

o 1g**
Documents acquired by ERIC include many informal unpublished

* materials not availably from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy repfoductions ERIC makes available *

* via the, ERIC Document Reproduction Service (EDRS). EDRS is not
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the or final. *
** *********

cs>

NATAL -74

TOWARDS A COMMON PROGRAMMING LANGUAGE FOB' CAL

J.W. BRAHAN and B.A. COLPITTS
NATIONAL RESEARCH COUNCIL OF CANADA

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

2
4P.

Y.

Presented at
ADCIS Summer Meeting

N 5-7 August 1975
NPortland, Maine

NATAL-74 -- Towards a Compon Programmih .i.,anguage for CAL

J.W. Brahan and B.A. COlpitts
National Research CounCil of Canada

Introduction

The cost of preparation and evaluation o ter-Aided Learning
(CAL) materials is high. -If these costs are to be 'fied, the
materials must be available to large numbers of potential user
,capable of being used,et a variey of installations.

There are a nutber of CAL projects underwayt centres throughout
Canada, yet little exchange of course materials takes place. This is
due in part, to the barrier set up by the variety of programming
lan§uages currently being used by these centres. Exchange of
materials is difficult and time 5tonsuming when it necessitates
reprogramming.

:v.

Current CAL work employs variety of techniques which include:
fraqe-oriented CA'1,.adaptive- utor'al, learner-control,, simulation and
gami computer-managed ins uct on 'and techniques of artificial
intelligence Student' fermi, vary om simple typewriter-like
devices to mul -media terminals corpo ating audio-visual display
and graphic inpu capabilities. C ,ce re to meet their particular
requirements, have modified ven. ., upp L languages, developed
their owt, or have made use of 1' e rogramming languages not
specifically designed fo CAL applications. To date4.no one language
has established ,..iltself as being tationally acceptable. A given
language is eit er not p werful enough to satisfy the majority of user
needs, or it places severe restraints on either the computer or the
terminals whic can be used.

She need seems clear for a 'language which may be used effectively(
on a variety of computers, with a variety df terminals, 'and which will
provide the featUres demanded by the various CAL techniques currently
in use.

The Approach

The National -Research Council (NEC) 'makes extensive uhe of

Associate Committees to study, coordinate, and promote research on
problems of national sigtificance. The members of these committees
are experts in the different aspects and disciplines related to 'he
problem and are drawn from university, industry and government
laboratories.

The Associate Comtittee on Instructional Technolpgy held its

inaugural meeting in 1970. %he members of -- come from
across Canada atd are 'experts in the various discipl/nes related to

instrmctional technology. Very early in its deliberations, the
comOttee notedthe problems .being created by the lack of a uniform
programming lancuage for CAL -applications. To investigate a solution,

3

the .Committee formed a Working Panel on CAL Languages whose members

came from centres throughout Canada where they were actively engaged
in CAL projects.

The Working Panel was assigned the task of defining the

characteristics of a programming language for computer-aided learning
applications,, with particular emphasis being placed, on satisfying
requirements peculiar to Canada. In their deliberations, the panel
members dew on their personal experience with a variety of languages
in a number of applicatiOn areas. In addition, the panel relied /
heavily on the 1969 EDQCOM report of Zinn, using his "aspects" for

comparing programm languages as the basis for the definition of
language requiremen s. he report of the Panel was presented in 1972

in the form of a fu ctio al specification(

The ,Thase of t e* operation entailed the preparation of a

detailed ,,specification to define the fine structure of the language.
A Subcommittee on CAL Programming Languages was formed to carry out

this task. Early in 1973 the Subcommittee issued a call for tenders
for the definition of a programming language to meet the requirements
as stated in the functional specification. Prospective bidders were
invited to attend a briefing at which presentations were given ,by
Subcommittee members. describing the CAL activities at their centres.
The intent of the' briefing was to provide each bidder with an

indication of the extdnsive range of CAL applications and,the milieu
in which the CAL language would be used, as an aid in interpreting the

functional specification. It was emphasized that the detailed
specification should be based in.whole, or in part, on a currently
existing language if that language satisfied many of the requirements
stated.in the ,functional specification.

Late in 1973, a contract was &Warded to IBM Canada Ltd. for the

development of the fdetailed specification. This contract was

completed in. 19-74 and an Author Gwide and a Specification Manual ,for
NATAL-74 have been published in both English and French.

r

The Language

The language defines two iundamental structural elements - the

UNIT and the PROCEDURE, The UNIT, the immediate interface between the,

student and the subject matter, includes extensive features for

accepting and processing user input and for controlling .the
.pre entation of information. It may be thought of as', accomplishing

on complete instructional transaction. - The PROCEDURE embodies,

to ching strategy; it assembles information required by the. UNIT,

ev lnates information generated by 'a student response, and controls
th sequence of instruction. The selection and invocation of UNITS is
u der 'PROCEDURE control. One PROCEDURE may call other PROCEDURES,
a lowing a powerful hierarchy/to be constructed. In addition- to the

t o basic structural elements, a' variety of function types are

d fined. These functions' provide a means of standardizing and

a taining ready access to 'operations which support the execution of
U ITS and PROCEDURES.

-

4

ENTRY
PROCEDURE

ROCEDURE A

/ PROCEDURE 8

FLOW OF CONTROL

[

±

FIG. 1 NATAL-74 CONTROL STRUCTURE
,

. \.
,

UNIT D

-J

UNIT E

Desireable features have been adapted from a .number olf

programming languages. The dynamic variable types of APL are combin
with the power of the control structures of PL/1. Organization of

statements around nItural language keywords supports clarity and
readability; A brieflOescription of some of tWe features of . the
ranguage may impart some of its character.

The UNIT incorporates facilitieS for coping with a wide range of

display equipment, satisfying a spectrum of needs from straightforward
presentation of text to sophisticated graphic displays. Equally
powerful are the facilities for handlingluser input. Within the UNIT
a response is accepted, edited and categorized. Input conditions such
as restrictions on elapsed time of the number of characters to be
accepted may be set. The language provides a varied list of edit
functions, which the user may supplement with his own. Categorization
functions allow comparisons, to be made on several bases. They include
algebraic, phonetic, and keyletter comparisons and may be added to by
-the user.

In addition to the extensive ,input- output features, good
computational capabilities are 'provided in the language.
System-supplied functions include, in addition to standard fitnctions

such as square root, absolute value, and trigonometric fun Lions, a
range of string manipulation functions to provide flexibility in

processing student responses.

System variables automatically provid'e the author with useful
information about a student's progress ii a course. For example,
latency of last response, minutes this course, and number of

unrecognized responses are a few of the data items available should
the author choose to access'. them. The potential for on-line
adaptation based on the student's progress exists. Special variables
designated "course variablei" are accessible by all students within a

course.

System PROCEDURES provide some interesting capabilities. One is

a facility for placing the systeM in, a calculator, mode, permitting the
%nil:lent to perform simple arithmetic co mputations' on variables made
available to him by the authOr. Answers are automatically returned to /.
the lesson when the student signals he has finished with the "desk',
calculator" facility. And control returns to the program./ Another
facility permits invoking external compilers and interpreters. Upon
completion of the desired operations, control again rettlerns to the /
NATAL-74 prOgram. -

,

Statemepts in the ,language are identified by natural lanua e
keywords, suggestive o ir 11,Inction such as DISPLAY (AFFIC E),
EDIT (EDITElq, and REPEAT (RE ETER* Reflecting the Canadian scene,
thekeywordt may be ip Engli hor/French as desired. Comments can be
integrated into the code to e hance its readability.,

Two examples of a UNIT have been ,provided to- indicate the

flexibility, which is possible. Even in its simplest form,a UNIT can
interact with a student in a wide vaDriety of ways, dependent on the °

studeAtIs respopses. Figure 2 illustrates the chaining feature,
whereby reprise ''statements appearing as a block, for any particular
Category are linked "together. The system "remembers" which reprise
statements within a chain have been previously executed, and does not
repeat the execution of any reprise statement unless it is the last in
the chain. I\n following through the example note that the RETRY
statement presents text and branches back to the RESPONSE statement.
The REINF statement, on the other hand, presents text and returns to

the calling PROCEDURE.

In figure 3, the problem presented to the student is now
dependent on the argument passed in calling the UNIT and' Control is
exercised over the format of the display through the use of 'additional
display sub - language, commands. The text presented to the student
includes variable values, and the student response is compared with

appropriate." variable expressions' rather than with predetermined
constants. Also, the original statement of the problem will be

maintained on the upper half of the display screen throughout the
execution of the UNIT. The student's response beginS at the point(on
the screen designated by the author. Text presented by a reNrise
statement will appear in the lower half of the screen. Whenever a

student is asked to try again, his previous answer wi1 be erased and
the cursor'repositioned so that'his new answer will app ar in the same
place as his previous answer. As well the student response may be
timed out in this example and reprise statements added for the

category OTIME.

i

F
r ,

.1.
I

;
;
F

; F
F
F

;

// !
If

Editing, categorizatj.on, and reprise statements may be combined /

n, whatever order the author wishes. In addition tq the I
stem-supplied edit and comparison functions, the &utho may invoke /

;2t4P4
h s own functions. Thus the instructional transact' n performed by/
t e UNIT can- .be highly complex or very simpfe,as rege ed. When thq
fl xibility of the UNIT is considered in relation to the proceSsinq
ca abilities of.the PROCEDURE, the language is seen to be capable Of
su,.orting very sophisticated CAL techniques.

The mplementation

he third phase of the project, implementation, commenced in 1.974
with the delivery of the detailed specification. As part of the CAL
Reseal, h Project of the NRC Laboratories, NATAL-74 is being
implem nted on a DECsystem-10 computer. The language will be
avails le to network members as soon as it is operational so that they
may p vide the feedback necessary to the testing and revisionr--
process

The major goal of the project has been to develop a language
which wi 1 be widely available and wilt provide an effective means for
the excha ge of courseware programs between centres. Thus the work 4n
the curr nt phase has two clear objectives: a working implementati n
on thODEs-ystem-10 at an early date and an implementation which c,n
be :ransf rred to other machines with minimal effort. In an attempt
to hieve high level of machine independence a number of possible
implementat on languages were examined with the following being
considered e-sirable features:

- Good control structure
- GOod data structuring capability
- A variety of data types
- Ability to control features of tios operating systems
'Flexibility in cpntrol of student/terminals !

generation of efticiemi code/
No requirement for a large run-time support system
vailable on the DECsystem-10
vailable on a variety of other computers

The languages which were considered were:
i

APL, BCPL, BLISS,
FORTRAN, PASCAL, .L/1. From these, while it does not meet all of the
requirement& perfectly, BCPL was chosen as the one which provided the
"best fit" and is be'ng used for most of the implementation.

The implementation has been divided into five main components: a

Course Builder, ;/a reprocessor, an Interpreter, an.Executive and a
Terminal Handler.

The Course,-Builde provides the interface between the author, and
the Pregtocesst6x,It al (Ais him to assemble modules (PROCEDURES, UNITS
and FUNCTIONS) into courses, to add modules to courses, and to replace
existing modules. In addition, the Course Builder carries out the
function of linking the arious inodu1e4 in a courss and provides the

file, management associa ed with the manipula ion of source and

processed files.

A

The Preprocessor checks "the syntax.of the NATAL-74 source code,

allocates storage and generates an intermediate language code which
can be more.efficientli interpreted at run-time than the. source ,code.

The Preprocessor is in essence a compiler which carries out/all
ptocessing which can possibly be done prior to execution. The- COurSe

Builder and Preprocessor play their role dpring course preparation
while the remaining three elements make up the run-time system.

,

The Interpreter executes intermediat4" language code,
communicating with the student through the Terminal Handles. Access-to
shareable resources such as files and course variables is through th

Executive. Memory management operations required to provide on-li
continuity for the user from one transaction to the next are Alan d

by the Interpreter.

The Executive manages the shareable resources available o the

user. Space is allocated .for course materials and access is p ovided
to course variables and files so as to eliminate possibilit es. o
conflict' between Users. The Executive also controls student ac ess t
the system and courses. ,

The final,.but by no means least important, component ,f the

implementation is the Terminal aandler. This component processes
display sub-language command-strings and adapts the output to the

parameters of the particular student terminal. -It ,dontrols timing of
display and inp t operations and q mnsfors input ifito "normal form,'

so that proce sing is, insofar as possible, ind endent of terminal
characteristics. /

Machine independence is a characteristic 'of the implementation
design which is given priority. The' odegree to which it can be
achieved, however, is limited by practical considerations . such as

d run-time efficiency. The Preprocessor and
large extent machine independent and it
la them to another machine with only
Course Builder exploits the file handling

system of the host ,computer and thus would require.somewhat more
ffort to transfer. Similarly, the Terminal Handler relies on the

communication facilities' of the host' and incorporates a number of
machine-dependent routines. Techniques used to describe terminal:-
characteristics for example are aboat fifty percent,machine dependent.
Finally, the Executive is almost entirely machine-dependent. Because

of itts close ties to the host operating system, it has been written

in assembly language.

While complete machine- independence .has not been attained and is

in fact not a pradtical goal, a level has been achieved which will
rat transfer of the initial NATAL-74 implementation without major,
nges in the overall design and with a large proportion of the code

tact.

implementation effort
the. Interpreter are to a
should. be possible to
minor modifications. Th

Summary

onsiderable progress has been made since. he first meeting of

'the Working,, Panel on CAL Languages bin' 1971. A functional
cificaotion for a' CAL. language and an initial detailed specification
been completed and published. Work on the implementation is well

vanced with the first elements of the language expected to be
operational by November,.and 11 major elements by March 1976. Much
remains to bed6ne, however, b fore .a useful. standard is achieved.

The speification of NATAL-74 at the present time must be
considered as preliminary and subject to revision. It is anticipated
that implementation and application testing by potential users will
result in 'changes. Only when a lanquage is available to users and has
been.demonstirated to meet their CAL requirements can it be considered
as a possible standard.

Empha4s haS been placed on co-operation among CAL Users.
throughout tthe development .of NATAL-74. The project could not have
reached itslpresent stage without the active partidipation of the
members of the Working Panel and the Subcommittee on CAL Programming
Languages. he project has also benefited from the comments and
suggestion of CAL experts from a number of centres in the United
States and lsewhere.

If the
continuing
groups. Wi
achieving a

References

work is to reach a successful conclusion, there must be a

dialog between CAL users, equipment vendors and research
hout such co...operation, there can be little hope of
meaningful standard in any field.

t
ACIT Working Panelt1972) A Functi nal Specification for a' Programming
Language, f r Computer-Aided-, earning Applications. Report /No.
NRC-13659, A ociate Committee on Instructional% Technology, National
ReSearch Coun il, Ottawa.

,

Richards, M.(

i
69) .BCPL: A Tool far Compil r Writing and System

Programming. P oc. Spring Joint Computer Conf ence, Boston.

Westrom, M.L. (1974) National. Author Language NATAL-74 Author Guide.
Report No. NRC- 4243, Associate COmmittee on Instructional Technology,
National Research Council, Ottawa,' (Aussi disponible en francais)

/

Westrom, M.L. (19 4) National Author Language NATAL-74 Specification
Manual. Report No. NBC-14245, Associate Committee Instructional
Technology, Natio al Researdh Council, Ottawa. (Aussi disponible en

frandais)
,..,

Zinn, K.L.(1969) omparative Study of Languages for Programming
Interactive tise of \Computers id. Instruction. EDUCOM Resear0
Memorandum RM-1469. d

ga.

*PROBOO:
UNIT ;.

ta . 0

.DISPLLY 6 In how. many ways can 5 'different books be
arranged on a shelf so that two particular .

books are next. to one another? &; .

RESPONSE;,

EDIT NUMBR;. /* Extract numeric fields from answer. /*

RIGHT CN(48);
REINF- RIGHT &2L Good! Thinking of the two books as a unit,

in which either book_may be first, is the key.6;.

FO CN(24);,
RETRY FO &2L Close! Treating the two books as a single

item is thel,right idea, but the two books-may.
be placed side by side in more than one way.
Try again. &;

REINF FO &2L There are two ways of placing the two books
side by side. Thus the tOtal number of arrange_
ments is 48. 6;

Fl CN1120);
RETRY F1 &2L YOulve stated the riAmber of ways. 6:books

can be arranged on a shelf. You forgo-tthat
two particular books mUst'be,adjacent.
With that in mind' try again. &;

F2 CN(5);,, 0 -0

RETRY -F2 &2L That's just the number of books. 'ou can
give me'a better answer than that! &;

F3' CC(' ');
RETRY F3 &2L Please give a number writtenas a string

of digits for your answer... 6;

RETRY UNREC 621, I don't know how you arrived at that
4number. Break the problem down into subproblems
and give 'it another try. &;

RETRY UNREC &2L Sorry, I don't follow your reasoning. Here's
a hint. Imagine tying the two books which must
be adjacent together.Think of how many ways this
could be done. With the two books tied together,
the number of items to be arranged is reduced to
4... Now try the question. E;

REINF UNREC 62L The to books which must be adjacent can be
utied.togethefru in 2 ways. There are 4!=24
ways of placing 4 different items in a row. Thus
there are 2*24=48 ways"of arranging the 5 books
with two particular Ones next to each other; 6;

END *PROB.#10;

PIG. 2

*PROB#16:

.411.

r.

UNIT (N) ; /* Iris to be an integer between 4, and 8 /*

DISPLAY &N Suppose &V (N, 1,0) different books are to
be arranged on a shelf so that two particular
books are next to one. another.
&L The number of possible arrangements is:..&;

RESPONSE TIME=1,60,POSN=(4,4(1)

EDIT NUMBR; /* EXtract numeric fields from answer. ./*

RIGHT CN(2*FACT(H-1));
REINF RIGHT, &884&E Good! Thinking of the two books

as, a unit, in which either book may be
first, is the key. &; # 4

PO CNOACT(N-1)) ; .

RETRY . FO 613348E Close! Treating the two books ab
a single ktem-is the right idea, but the'

two books may be placed side by side in
more than one way. 8W2 Try again.
&E(4,40,1,50) &;
88348E There are two ways of placing
two books side by side. Thus the total number of
arrangements is &F(2*FACT(Nt1),6 0) . 6;

REINF FO

7

FIG.3

11

