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Abamact

A class of simple.problem solving tasks requiring fast accurate

solutions is introduced. In an experiment subjects memorised A mapping rule

represented by lists of words labelled by cue, words and made true/false

decisions about conjunctions of propositions of the form, "Y is in the list

labelled by X," written "X=P--Y". Response times are analysed using a

"stage modeling" technique where problem 'solving algorithms are composed._

using a small, set of psychological operations that have real time

characteristics specified parametrically. The theoretical analysis shows

that response time performance is adequately described in .terms of the

sequential application of elementary psychological operations. Unexpectedly

it was found that the proposition "X!...4-1 and X- 3- -Z'' was verified as

quickly as the apparently simpler "X-10--Y". A case is presented for the

modeling technique as applied to memory and problem solving tasks in terms

of theoretical parsimony, statistical simplicity, and flexibility in.

investigative empirical research. Suggestions, are made as to possible

theoretical relations among fast problem solving, more complex and slower

problem solving, and research in fundamentalememory processes.
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Introduction

The dominant theoretical approach to the analysis of problem solving

has been to construct a formal model, often in the form of a computer

program, that simulates some qualitative aspects of human problem solving'

performance such as the protocol sequences observed in deriving logic

theorems (Newell & Simon, 1972). In these analyses emphasis is placed on

the integration of elementary information operations into a problem solving

algorithm while less attention is given to the elementary operations

themselves. An approach that has been relatively less well explored is to

specify the processing time implications of proposed algorithms and. to

determine whether observed human response times (RT's) are consistent with

the predicted pattern. From a statistical paint of view, problems that

require several minutes to solve or involve extensive searching for a

solution (e.g., looking for the best move in a chess position, de Groot,

1965) might be expected to have large RT variances even for an individual

subject such that it becomes impractical to model the fine details of RT.

However, for simple problems where human subjects are easily able to respond
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correctly in a matter of.a few seconds, it should be possible to verify the

processing time predictions of specific problem solving algorithms.

One method for deriving RT predictions is to describe problem

solving algorithms in terms of the sequential application of a set of basic

psychological operations (procedures, subroutines, or "stages") each of

which requires real processing time and has some probability of producing an

error. Leaving the details for later discussion, the theoretical RT. for an

algorithm applied to a particular problem can be described as the sum of the

processing times of the operations applied and the error rate is roughly

t?
1 minus the product of the correct probabilities of these operations. An

alternative technique for making RT predictions is to assign computational

complexity measures to t4e basic operations and to derive the complexity of

an algorithm as the sum
1
of the complexities of its component operations;

linearly related to
computational complexity is then directly interpreted as/ theoretical mean

RT. This complexity assignment method yields the same description of mean

RT's as does the corresponding stage model although -it does not describe

higher RT moments. Note that both methods are easily generalized

to take account of the possibility of mixed'(randomized) strategies for

applying available algorithms.

On a general theoretical, level, the RT analysis of fast accurate

problem solving can be a valuable source of evidence in deciding on a set of

basic psychological operations used in human problem solving. The 'case is

similar to that for chronometric studies of linguistic comprehension (Chase

& Clark, 1972) where alternatii.re representations of propositions can

sometimes be discriminated by constructing RT models for processing

2



propositions to make true/false decisions. For problem solving theories it

is desirable to build algorithms working with a set of elementary operations

which have some preferred characteristics, such as corresponding to

procedures or subroutines that can be conveniently written as logical units

when programming in a particular language, or being general in the sense

that the same set of operations can be used in solving several types of

problems. Another preferred characteristic is that the set of operations

has "psychological validity" insofar as real time processing aspects of the

operations can be defined and verified in observed RT performance.
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Algebra step problems

To pursue these ideas m experimental task was sought where subjects

would learn a set of rules (e.g., the moves of pieces in a board game, or a

mapping of one set of objects into another) and be required to solve,

true/false problems by repeated application of these rules. It was thought

that a model for the single application of a ru,le could then be extended to

a madel_for the entire problem solving task by specifyinkthe way rules we

applied to solve a problem.

Consider a small finite set X and a rule that assigns to each

element of X a subset of X. Such a rule can be written in the form of a

transition table such as that in Figure 1 which was used in an experiment to

be described later.

Figure 1 about here

A memorised transition table, say where X is a set of cons t-vawel-,

consonant (CVC) words, might be represented as " ists" in some memo store

with "addresses" corresponding to the X. One-of the m st basic'

propositions that can be madelabout a par icular transition table is that

is mapped into a list that contains. xi , written 2tc-4--x1 as a mapping

diagram, where lc% and xi are variables standing for elements of X; this

proposition is either true or false. A subject who has memorised a

transition table can be presented with the proposition xc-4--xi and he

required to make a true/false decision using his knowledge of the rule as

defined by the table. In the experiment to be described, subjects were
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Figure 1 - ASP Transition Table

x?

Xz x

x3 -- x9

X4 -- XI 9 Xs

Xs -- X6 9 X2

x Xs 9 X4

X X t X4 Xg

Xg Xs 9 X3 9 Xs

X X6 9-X7 9 XI

4a
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presented With logical "and" conjunctions of these simple propositions and

RT's for a true/false decision were measured. The propositional forms or

problem types used are listed in Figure 2 in three groups (A, B and C)

according to the geometric shapes of th map ing diagrams.

Figure 2 about

A problem is true if and only if all sit

arrows or links are true; if just one link is false then the problem is

false. For example, P(---) in Figure 2 is true only if xc-4xl and

xj-4.-xu. and x14-3xA ; it is false if any one of these propositions is

false. Similarly P(- ) is true only if .- and and

xi---xl; and P(>-) on f xc}-xl, and and te)--,x1.

In the experiment subjects memorised transition tables o the form

represented in Figure 1 where the elements of X were CVC words, and were

tested with problemA of the sort illustrated in Figure 2. Representing a

transition table in memory as stored lists, an individual link, xL;-:-)--xi,

could be verified true or false by using the cue lc., to "access" the

appropriate list in memory and then "scanning" the probe xi against this

list for a. "match "; if a match is obtained then the link is true and

otherwise false. A model for the verification of the conjunctive

propositions could then be obtained on. the assumption that verification

proceeds one link at a time in some specified order. These notions are

developed in the discussion section below. Since it is possible to verify

mapping'diagrams by checking each link in a step by step manner, the test

items used in thil task are referred to as algebra step problems (ASP).
for each problem type

ASP items /were selected from a computer generated listing of all
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Figure 2 - ASP-Problem ypes

problem type mapping diagram

(A)

P ( -)

P(--)

X c-4--X
.1

' X.,74.-X:1-4.--.Xit

XL-4.--Xf,--Xlir.)...7.XR

(B)

*1)(<)

P(-<)

(C)

P ( >)

-s
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possible items given the transition table (Figure 1) uch that within each

problem type there were an equal number of true and false items. For false

problems exactly bne link was false, and for each type the false link

'occurred with equal frequency at each link position. In addition an effort

was made. to match the frequencies of occurrence of CVC words between true

and false items within each problem type so as to avoid a poaaible source of

response bias. The total pool of about 400 distinct items was divided into

four blocks; the sane P(-) items-bgcuring in each block but otherwise there

was no overlap. Denoting block's by BI, Bt, Bs, P,t, subjects- were tested

over six sessions with one block day in the order B1P,031LB4Bt, where

bIocka and trials within blocks were randomised for each subject

individually. A set of nine CVC words was randomly assigned to the abstract

,

transition table scheme, for each subject: no two subjects had identiCal

transition tables although all tables had the same formal structure.

The experiment was run using an Imlac Corporation PDS-1 cathode fay

tube (CRT) display and keyboard, interfaced with a PDP-10 computer. Six

female subjects ran for seven sessions; the first session was devoted to a

transition table learning drill (subjects did not memorise theWiransition

ifilinerg-prior to ta first session), and the remaining six sessions were used

for ASP test items. On a single trial of the drill a cue word was presented

on the CRT sad the subject was required to type the-appropriate list in

serial order (since the CVC words used had unique initial consonants, the

subject typed only the first letter of-each word and the computer completed

the words with suitable horizontal spacing). On completing her response to

a cue the subject pressed the keyboard spacebar and the correct list was

printed horizontally directly beneath the typed response, providing feedback

and an opportunity for study. Permutations of the nine cue words were run

6
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4.

and following each permutation the subject was told her percentage of

correct responses and the time taken to respond to all the "cues. Subjects

were required to participate in the drill until they could consistently

achieve perfect accuracy with a response time under 25 seconds; all subjects

met-this criterion within 30 to 50 minutes of the drill.

In the problem sessions ASP items were displayed at the center of

the CRT and subjects responded true/false using two keys On the lower row of

the keyboard. The subject initiated trials by pressing the spacebar

following a ready signal. Items were preceded by a 1 second duration

fixation cross and appeared just to the right ti the cross, remai kg on the

screen until the subject responded. Immediately after respo ing subjects

received a feedback message indicating correct /error and Teonse time.

Before the first problem session subjects were shown examples of the

seven problem types and told to respond "true" if and only if all the links

in an item were true and to respond "false" as soon as they knew that one

link was false. Subjects were informed that there were an equal number of

true and false items within each problem type on each day and that false

items had exactly one link which was equally likely to occur in any

position.- On the first day of problems subjects were

completely accurate for the initial thirty

increase their speed as they got a feeling

testing sessions subjects were instrudled'to

without making more than about one error

instructed_ to be

or forty trials and then to

for the task. For subsequent

respond as qtckly they could

in twenty trials on average. qZ

Subjects were explicitly instructed never to guess and never to "think

twice" atodt their response once they had made a decision.

7
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Experimental Results

To- eliminate early practice effects and-' to

observation of stable task strategies the data for, each subject from the

first of the six testing sessions was discarded together with ,the ,first ten

trials of the remaining five sessions, yielding on the order of 550 trials

facilitate the

per subject. Only correct RT'eexcluding outliers were analysed. Correct

RT histograms were plotted separately for each problem type, for both true

and false responses, and for each subject to identify possible outliers.

Response times falling more than 1 second above the main distribution as

determined by the mode and the contiguous tails were, eliminated; such

outliers constituted about 2X of the'correct RT data.

Table 1 about here

Due to the complex description of the ASP items it is not possible

to represent all aspects of the data simultaneously in'a single graph or

table. However, by collapsing across various subsets of the data we can

obtain a reasonable. picture of major effects lihich can then direct more

Q5

detailed modeling and statistical evaluation. Since plots of the data for

individual subjects showed subjects to be qualitatively comparable, the RT

data for ail six subjects Was pooled to simplify the presentation of

results. Table 1 presents RT and error rate data classified by problem type

and position of the false link' (if any). The notation P(---) TTF

indicates that the third link from the left was false; P(>-) FTT that the

upper link of the branch (>) was false;, P(-<) TTF that the lower link of

8
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Table 1 - Group RT Means and Errors

problem type and position of false link)
iT7

qt,
.

type false obs th obs error 'total

'link mean mean s.d. % N
(cosec) (cosec) (cosec)

.$

P(-) T 1576 1529 590 5.6 245

P(-) 17, 2041 1993 741 5.3 243

P(--) TT 4 2468 2541 905 2.3 251

P(--) FT 2101 1842 862 7.8 117

P(--) TF 3161 3187 1035 3.8 121

Pt---) TTT 3631 3584 1103 4.3 388

P(---) FTT 2137 1871 949 7.5

P(---) TFT 3374 3086 1252 6.7 125

P(---) TTF 4184 4046 1106 11.5 121 '

$

P(<) TT
,

1580 1567 532 4.5 161
: .

P(<) FT 2287 2168 8 8.3 75

P(<) TF 2152 2014 964 3.0 88

P(-<) TTT 2592W ' 2534 933 4.3 328

P(-)-- FTT 1950 18 5 994 10.2 112

P(-<) TFT 2972 001 895 5.9 '108

P(-<) TTF 2864 3000 858 6.8 112

P(>) TT 257 2610 752 5.1 121

P(>) FT

P(>) Ti'

P(>-) TTT

P(>-) FTT

P(>-) TFT

P(>-) TT$

2501 2211 835 5.0 63

3002 2876 735 3.1 61

3657 3539 1045 3.7 237

2622 2406 1146 . 4.2 78

3342 2990 1169 6.7 79

4002 4153 1060 1.7 73

oft

8a
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branch (<) was false. Observed means and variances and theoretical

means (derived from a statistical model introduced below) are averages

across subjects weighted by the numbers of correct RT's observed.

Figure 3 about here

Figures 3 and 4 are based on thecdata of Table 1; curves represent

theoretical mean RT. Figure 3 plots true and false mean RT by problem

types. A striking feature about these data are the 'following approximate

equalities of mean RT's obtaining among the problem types;

P(<) = P(-) and P(-<) =.P(--)

P(>) - P(--) and P( > -) = P( ---)

Of course these equalities hold Among averages including quite distinct

items within each problem type, but thdy do suggest that the time to verify

a raft branch configuration (<) is not substantially different from the time

fot a simple link (-). In contrast, verifying two links in the ( >)'

configuration appears to take the same time as two links in the (--)

configuration. In what follows the (<) configuration will be referred to as

-a double probe link and (-) as a single probe link.

Within each of the problem groups RT increases with the number of

links. If a sequential processing of links is assumed then the slopes of

the true curves directly reflect the average time taken to 'verify that a

link is true. Note that the three true curves, plotted in Figure 3 have

approximately the same slopes, which together with the equalities remarked

above is consistent with a sequential processing account. A way to

investigate order in sequential processing is to examine false RT's for each

17
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problem type in a group as a function of the position of the false link

aaSumi that subjects responded "falseu'as soon as they discovered a false

link. Figure 4 illustrates graphically this order of processing analysis.

Figure 4 about here

Figure 4a shows that for group A problems RI' increases as the false li4k is

moved from the first to the third position with a slope about the same as
4

the true slopes in Figure 3: this indicates a strict left/right processing

order. 'Hoare 4b shows that for P(-<) the tail link (-) is almOst always

verified before the left branch (<), while within the branch there is no

strong up/down processing order. This is interpreted as consistent with the

proposal that the double probe link is verified' in one step (i.e., not as

separate simple links) which implies that there should be no-up/down

processing order as such. Figure 4c presents A more complicated story for

group C. While link processing fOr this group tends to be up/down on the

right branch (>) and branch (>) beore tail (-) (i.e., left/right) in P(>-)
.1P

this order cannot be strict since the: RT slopes as the false link

position moves are noticeably less than, the true slopes in Figure 3. A

probabilistic order of processing is appropriate for group C problems.

Figure 5 about here
111

The verificStion of a link is in some respects similar to memory

scanning tasks (Sternberg, 1969a) that require subjects to decide whether a

probe symbol is contained in a memorised set of symbols. For an ASP

transition table the number of elements in a list labelled by a cue word Is

11
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Cue Set Size

3

Figure 5 - Mean correct RT's for problem type P(-)
plotted by cue set size .and true/false.
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referred to as the cue set size; Figure 5 plots true and false RT's for P(-)

by cue set size to illustrate set size effects analogous 'to those found in

memory scanning tasks. The true and false curves are separated by a

constant, suggesting a simple additive effect on RT of the process

differences between true and false link verifications.

Errors were infrequent under the 'Speed/accuracy instructions given

the subjects; the error rate over all conditions and subjects was 5.2

. .

percent. Group error rates broken down by problem type and position of the

false link are presented in Table, 1. While the authors recognise the

possibility of important theoretical relations between response times and

error rates as for example suggested by Pachella (1974) among others, a

rigorous analysis, relating the two was not performed for the data presented

here. This omission is partly justified by the empirical observation that

while mean RT's showed a consistent pattern across subjects, error rates did

not. Also, from purely statistical considerations when data is so finely

classified that some, classifications have twenty or fewer observations,

error rates may not be sufficiently reliable for the analysis of data from

an individual subject whereas RT's may still be meaningful in providing

insight into psychological processes.



Theoretical Analysis

Suppose that for a pareicular ASP item we have beep givqp a

description of the sequence of psychological operations used to solve it.

The stage modeling technique to be used here assigns to each operation or

stage, S , of the processing a tuple of parameters,

Ax(S), cit(S) >

corresponding to the theoretical mean and variance of processing time

associated with that stage. In cases more general than that considered here

this tuple may become a family of tuples corresponding to various states of

the cognitive system that could exist when the stage opera (i.e., stages

are specified conditionally) or tuples may contain ditional parameters

such as higher RT moments or the probability of a proce sing failure in that

stage. If stages S,, Sr,..., S,, are applied in seq nce to process the

item then the RT mean and variance for the 4.tem are sim Y,

.(RT) - 5: h.(s;) and dt(RT) 6
IM V

131

The. additivitq of 'variances follows from the assumption that stage

processing times are Stochastically independent. Now suppose that there art;

two sequences of,stages that could be applied to the Item, S4 0412. ..... Si".

and Sz1 , Stz,..., S0,1 and that these two sequences are observed with

probability p and (1-p) respectively. Let,

E i'Li.(s,i) and = t 61(So ) = 1, 2
j=t

Then the mean "ad variance of the overall RT are,

12
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AA(RT) s p)LA,' + (1 -p)./At

e(RT) p 62 + (1-p)61 + p(1 -p)()Ai

Without going into further detail, similar 'expressions can .be derived

whenever RT is assumed to arise from the probabilistic mixture of sequences

of stages....

Proceding on the basitof the observations made in the results

1

section above, a stage model was constructed using` a small number of

inclusive stages that are identifiable (i.e., in the sense of unique

parameter estimates) and that have direct theoretical interpretation. These

stages are;

stage stage description

V, verification of a single probe link
with cue set size of n

W, verification of a double probe link
with cue set size of d

K orientation, attention, perception
and miscellaneous set-up and
bookeeping processes

D decision and response processes that
differ between "true" and
"false" responses

Processes involved in the verification of single and double probe links have

been summed together in the V, and W parameters respectively. _Due to the

problem of identifying parameters it is not possible to make definitive

interpretations of the stages K and D. The K stage includes all those

operations which are in common across problem items, such as attending to

the CRT display or executing the motor components of a keyliress response; in
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addition K may be regarded as incorporating incidental processes required

for the logical completeness of the model such as recording the input and

output of stage operations. Any processing differences between true and

false responses, including handedness, are incorporated in the D stage. For

the experimental data false responses are slower than comparable true

Iresponsea; the D parameters reflect this aspect of the data.

Derivation of theoretical expressions

The derivation of expressions for thed6tical RT means and variances

will be illustrated by examples since there is insufficient space for an

exhaustive treatment. In the following let ni be the cue -set size

associated with the symbol xL.

Example 1: (T)

To solve this simplest problem the subject need only verify one link; hence

exactly the stages and K occur. Then,

/A (RT) = /A(Vp0 + 'A(K)

6t(RT) = e(VO e(K)

Example 2: (TFT)

Assuming that P( ---) has a strict left/right processing order the subject

Cy5
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r.

first verifies that x7c-:*-xj is true and then finds that x340--xlx is false;

the subject responds "false" as soon as she finds this link so that only

stages V,1, K and jj occur.

/...(RT) = tA(Vnt) + /A(Vm4) ).n (D)

ciL(RT) = (k(Vnd + 6 t(Vm1) + (11(D)

Example 3: (TFT)

It is assumed that the double probe link (<) is verified in a single

operation, W,i, and that the tail (-) is checked before the branch (<), so

that-the stages are V,i, Wmi';,K and D.

"..t(RT) = )J.(Vm,) ).A(Wmi) + j-.(K) + ),,(D)

e(R) = e(v i) + + 61-00 + d(D)

-4Exaqple 4:

A probabilistic order of processing was suggested for types P(>) and P(>-).

This order Will be, defined by two probability parameters. Let q be the

probability that within a right branch (>) the upper link is checked before

the lower link, and let r be the probability that for P(>-) the branch (>)

is checked 'before the tail (-). In Example 4 the parameter r is not

involved. With probability q the stages are V. , K and D, and with

probability (1-q) the stages are V,`, Vt., K and D, with the result that,

i5



AA(u) );(v,`) + (1-q) p4(V,,,) + + JA(6)

6i(RT) 67"(V ) + (1-q) ) +, e (K) + a (D)

+ q(1-q)[
I, i

The expression for e(RT) is that for the probability mixture of two

sequences of stages. e

Xxample 5: (TFT)

In Example 5, With probability 'rq the *stages are V,;., Vsai , R and j); with .

probOilityr(1-0,17,R and D; with probability (1-0q, V: , Vk; , Vt.
.i,

R and D; and with probability (1-r)(1-q), V,,,., Vni, ;It and D. Hence,

/.4.(RT) = q ) + ) + (1-r) al.A.

+ (R) + tA(D)

q ci7"(Vni ) . + d (Vni ) + (1-r) eorn,..)

,,t(K) di-o) q(1-q)[ Cir

+ r(1-r) [ /4.A. (irni..) 11

The expression fOr e(RT) is an,algebraic simplification of a general
.

expression.

\

Example 6:

Since all links are trme the same stages must occur whatever the order ofs

procesaing. Consequently,

1



r. (RT) "1 1.-,(V,,.,) 43 ,j,d-(V,,i) + +

d'" (RT) = CNV,1) ith(V si) + + 4:37(K)

These examples should convey the gist of the statistical model.

Note that for every ASP item t$ theoretical RT mean and a variance can-be

expressed in the following canonical form,

.411P

A...(RT) = ) + az ),...(17z) + as' i...(1/3)

Aftt(ws) aslA(W3)

+ a` ...(K) a; (D)

61-(RT) = a, <kV, + a. 61-00 113 criKv3)

+ 114 etik) + as 6-.(143)

+ ac.c?"(K) + a76 (D) A- bt

where the at's (i=1,...,7) can be interpreted as the average number of

times the corresponding stage occurs, and b is the "mixture variance"

(i.e, the variance added by mixing processing strategies where strategies

may require differing amounts of time). Writing the row vectors,

e = < ), JA(V3), /A(WL.), /-03), j(1(), /gin>

v < e(ir, ), e(V2.), d%(;), ciL(Wd, 6(W1), (iL.(D)>

a = < a, ,
4;, as, a4, as,,a, al >

the canonical ford's become,

il(RT) = g a vT +.1;4

17
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where e is the transpose of e and vT the transpose of v.

true items and for false items in groups A and B, each aL is an integer

and liL.0; for false items in group C the at's may be functions of q and

r, and b >0 is a function of e , q and r. Note that ASP items can be

For all

classified according to their coefficient vectors, a , and mixing variances;

b ; under the model this classification is a full specification of the

items. For the items used in the experiment forty-six such classification

categories occurred.

Statistical Evaluation

A discussion of parameter estimation and statistical techniques is

presented in the appendix. Best estimates of parameters were obtained for

each subject by numerical methods using a quadratic loss function, and the

fit of the model to the RT data was primarily evaluated by constructing

minimum simultaneous confidence regions containing allthe RT means and

variances predicted by the model. Parameter estimates are given in Tables 2

and 3; statistics are listed in Tables 4 and 5.

Tables 2 and 3 about here

For the mean RT data the statistics in Table 4a show that while the

model does account for a substantial percentage of the between and total

variances (PBV and PTV columns), the maximum modulus t test applied to the

group suggests that the model is probably not a complete account of the data

for every subject in the experiment (g* for the group is .004 which is the

probability of observing a t* value of 4.44 or greater).

18 Cp9
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Table 2 - Parameter Valdes, Averaged.Eatimates

single probe (-) verification:

cue set size 1

cue set size 2

. -

cue set size 3

N.%
double probe Wverification:

cue set size 2

cue set size 3

..A
,

set-up processes

true/false difference

k..

0,

A'''.

(cosec)

d

(cosec)

I

VI 676 241 le-

V2 1169 446

V3 1146 563

W2

t

924 3'65

W3, 1206 412

K 446 210

D 466 200

' probability of up before down on (>), q = 0.85

probability of (>) before (-) on (>-), r = 0.89

18a

t ki \;,........,



Table 3 - Parameter Values) Individual Subjects

V1

V2

V3

W2

W3

D

q

r

Subject 1 Subject 2 Subject 3

d A. .4

ea
878 566 -449 3 571 0

1545 676 867 293 1001 450

15,7 720 913 593 775 446

94 575 789 399 748 398

1144 442 986 421 768 284

475' 1 545 '1 - 394 0

729 1 346 489 452 0

0.79 1.00 0.78

0.88 0.48 1.00

Subject 4 Subject 5 Subject 6

A4 e

=Dam moorml

iv. d ..-A-
6

V1 956 0 594 259 607 532

V2 1375 671 1430 635 798 230

V3 ' 1348 729 1271 646 980 636

W2 1156 689 1045 31 838 78

W3 1582 720. 1455' 485 1301 88

K 292 -1 462 307 5156 414.

D 459 1 302 ? 506 1

q 0.61 0.92 1.00

r 1.00 0.99 1.00

11
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Table 4 about here

In Table 4a two of six subjects have g* > .10 indicating a good fit of the

model for these individual _data, and in Table 4b g* > .10 for three

subjects. The third column of Table 4 gives the number of points lying

outside a .90 simultaneous confidente interval; any such point implies that.

,33* < .10
.

Table 5 about here

Table 5 presents statistics for RT variances. Due to large sampling

variability of variance estimates, the g* statistics are not very

informative since many models would be acceptable within wide limits of

variability. The third column of Table 5 compares the model to the

hypothesis that all RT variances 7 The same, in terms of the proportion of

points for which the model makes a more accurate prediction. Evaluated

using this statistic the model does no better than the, "same" hypothesis

altoogh both tre acceptable given the variance of estimators. Since the

(averaged RT variance parameters presented in Table 2 appear to, be orderly

they will be discussed although no strong conclusions should be drawn.



Table 4 - Statistical Analysis for RT Means

subject t*

points
g* outside PBV

90%
region

A. model classification (46 points)``,

1 4.44 0.000 2 79.7 42.7

2 2.78 0.182 0* 76.7 35.6

3 3.32 0.029 2 78.6 40.7

4 4.44 0.000 1 79.3 36.5

5 3. 0.007 2 57.7 28.1

6 2.84 0.157 0* 68.7 27.8

group 4.44 0.004 3 73.5 35.2'

B. type X falmliak classification (23 points)

1 3.28 0.014 85.6 41.5

2 1.74 0.697 0* 84.3 32.1

3 2.42 0.198 0* 89.5 37.3

4 3.01 0.036 483.7 35.8

5 3.44 0.008

6 2.67 0.101

group 3.44 0.049

1 64.5

0* 71.0

2 79.8

19a

26.6

24.5

33.0



Table 5 - Statisticaliiialysis for RT Variances

(model classification, 46 points)

subject t*

0.83 0.999

proportion
model
,vs

ti same"

.0.478

2 0.63 0.999 0.500

3 1.00 0.999 0.348

4 1.07 0.999 0.522

0.85 0.999 0.478

6 0.56 0.999 0,.391

19b
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Discussion

, of
Stage modeling has been coi eived/in terms of a formal processing

language description of memory operations: stages are analogous to

procedures or subroutines; perhaps probabilistic in their execution,

organised by'call sequences into memory processes. Within such a stage

modeling framework vaiious levels of detailed description are possible. For

example, one might consider macro stages such as "perception", "memory" and

"response ", or comparatively micro. stages such as "input the symbol in

position p of the stimulus array" or "compare the code for symbol X with the

code for symbol Y". No particular level of detail can regarded as

preferred: theoretical descriptions' in stage terms must be evaluated with

respect to the relevant data. However, the stage modeling framework does in

principle relate all evels of description in terms of the nesting of

procedures in call sequences, thus providing the possibility of consistently

treating the results ofsiMple, and relatively more ,complex laboratory tasks

with the same overall processing model (Atkinson & Wescourt, in press).

A stage model can be most productively regarded as a rational basis

far the construction of statistical models. Each statistical model stemming

from a stage model can be evaluated with respect to the data, suctosses and

failures yielding new information about the data possibly not apparent on

inspection or available from other analyses. In general it is not necessary

that every statistical model derived from a particular processing language

description be "successful ", but only that some are and that these provide a

useful characterisation of the data. Of course, if a stage model were taken

as a literal model of a specific real time process, say specific

14.

20



interactions among brain centers and layers of brain tissue, it would be

important to verify all the statistical models derived from the stages

theory. However, fdr the analysis of cognitive performance the authors

regard stage models as non-literal information processing descriptions from

which statistical analyses are derived that provoke a deeper and more

adequate charafterization of patterns present in the data.

The statistical models for RT means and variances developed above

may be regarded as an intermediate level of stages analysis appropriate to

the level of observable data: it does not explicitly describe either the

component processes of individual link verifications or the overall control

structure in which the problem solving algorithms are embedded. Since these

additional levels of analysis are of theoretical interest, the discussion

will turn to bridging these conceptual gaps. The following stages analysis

of single and double probe link verification is given;

4



Le, determine whether single or double
probe (s d)

L, input ,cue

LI, access memory list associated with cue

L3 input probe 1; if d then input probe-2

L reset match register 1; if d then reset
register2

Ls unpack an element from the memory list

1.4 match the element against probe 1 and
increment match register 1 by the value
of the "goodness-of-match";

if d then match against probe 2 and
increment register 2

LI if the entire list has been unpacked then
continue else.return to Ls

Li if d then add match register 2 to register 1

It if s then if the value of match register 1
exceeds a criterion cs then return true
else,return false;
if d then if the value exceeds ca. return
true else return false

Note that the analysis is essentially an "exhaustive scan" model, where

matching is not necessarily all-or-none, and where the representation of

lists in memory and the co-ordinate retrieval or unpacking process may be

more involved than reading from a list of symbol8 at a uniform rate.

Representing a list as a, cluster of symbols bound to a memory node by

associative linkages and defining retrieval processes in terms of this

representation would be one way of conceiving of an unpacking operation with

more complex characteristics, although such "built in" characteristics may

have limited conceptual and theoretical interest.

The claim is that this model of link verification is consistent with
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the stage parameter estimates in Table 2; for the sake of simplicity only

the average values of parameter estimates are discussed. The paramdter

values in Table 2 may be qualitatively summarised as folloVs;

AA(vi) < A.(vt)

< ,A(W3)

/.4(Wi.) < )64(V )

f- (W3) la M(V3) .

6107% < cit(Vz.) < 6 C73

(4.7.) < dt (W3)

ciL(WL) < cNVy)

61-(W3) < 61-(03)

This summary can be regarded as an hypothesis that, within the sampling

variability of the parameter estimates, is not disconfirmed. A problematic

aspect of this summary is that ,A(W2.) < )64(Vz) by 245 milliseconds,. yet

),...(Ws) a p4(V3). This result may be attributable in some way to the fact

that for 1.1y the number of probes is the same as the'cue set size, but in the

absence of additional controls no ad hoc explanations are offered.

If it is assumed that stages Lx, L5 and L5 account for the major

part of link verification time, then a gross simililarity "would be predicted

between single and double probe links. With suitably complex

representations of lists the mean unpacking time for lists of lengths 2 and

3 may be comparable, yielding /A(VtY = h4(y; the speed of VI could be

explained by the simplicity of the representation for a list with a single

symbol requiring, fewer unpacking-manipulations.

0



Single and double probe link verifications differ in stages Ltand

L. If the matching process is probabilistic (e.g., due to variable

imperfect coding of symbols) then the final match value in register 1 will

be distributed differently for single and double probes (e.g., double probes

will have greater mean and variance for both true and false links). This

together with the two criteria, c5 and cA, might account for decision

comp Lent differences in ways similar to signal detection models that relate

RT to criteria placements in relation to signal and noise distributions

(Thomas, 1971). The observed ci"(c) < and 6 (%) < e (Y3) are

interpreted as dUe to such differential effects in .stage Lt.

The value I.A.(D) = 466 is greater than would be expected on the basis

of handedness alonreciiiigesging genuine decision component 'differences;

again this is interpreted As a stage effect. Since successive link

veriftations are require some ASP items, in order to achieve an

acceptable error rate subjects were instructed to be accurate) it is

necessary to make a more accurate decision for each intermediate

Verification than would be needed if only a single link were verified on

each trial. Also since over all items there are more true than false links,'

stage L might be '!tuned" for a true verifiCation. The demand for increased

accuracy together with a true verfication expectancy, could account for the

observed value of /..A.(D). 'The Opparent constancy of JtA(D) over probled

types, even those where only one link is verified, is consistent with the

theoretical conception that the name link verification mechanisms are used

for all problems without modification according to problem type. From these

considerations it would be predicted that encouraging speed over accuracy,

using only single link problems, reducing the variety of ASP items used

within a single experiment, r using multi-link items with more than one

false link would all have an effect in reducing the value of i,x(D).



As an aside, it may be possible to use an empirical speed/accuracy

tradeoff to further investigate the verification mechanisms found in the ASP

task. A direct implication of the theory discussed above is that under

speed instructions each link verification will be lose accurate ass

processing is modi or cut short, with the results that errors

will tend to--ifirease atively more for items with many links compared to

ew, an that error RT's for multilink true items will decrease

rel e to co ect RT's while error RT's for multilink false items will

increase. Othe' quite different effects of speed instructions might be to

induce subjects to implement 7faster problem solvinvalgorithms, say with

some sort of simultaneous verification of links, to "prime" access to

certain algorithms and retrieval mechanisms in anticipation of the next

problem, or to adopt sophisticated guessing strategies. The issues with

regard to speed/accuracy effects in ASP problem solving are manifold and may

perhaps be most productively approached by comparing results across

experiments to determine what effects might be present.

In stage terms a stable strategy is a problem solving algorithm that

irMirrimi4Lied with use. Empirically, stable strategies would be expected

for practiced subjects who have in some sense developed optimal task

techniques, with the required amount of practice depending on the particular

task. The present experiment was designed to observe only asymptotic

performadde, making it in principle possible to-specify a single set of

algorithms or strategies governing the procesSing of ASP items. A theory as

to how these strategies are set up with practice is not developed here;

however, the authors do conceptualise an interactive feedback system where

the state space of the system consists of algorithms and the effects of

control inputs are to rebuild algorithms. It is proposed that for tasks

25
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'where alternative 'processing strategies are a genuine` theoretical

possibility, it may be more appropriate to analyse data flop, trials early is

the experiment, in terms of a mixture of strategies rather than a single
I

:

stable strategy.' For the sake of completeness of theoretical conception it

is assumed that the strategies for the various problem types are called47,a

controlling stage that on each trial identifies the problem type on the

basis of its mapping diagram configuration and Calls the corieaponding
.

problem solving algorithm.

r
IIAdditional empirical work is required to evaluate, these conceptual

analyses of control and component processes. For e
*

xample, one line of

iperimentation, would be to more thoroughly examine ASP verification

problems, with manipulations of the transition table 'and 'problem types.

Another line would be to examine ASP problets more complex than

verification, with the idea that such tasks could rev al more about the

construction of strategies, that is about how component processes are used

to build ''problem solving algorithms. Alternatively the verification of
4

isolated single and double probe links could be examined in greater

)

experimental detail. All these levels of experimental .investigation are

well integrated within the stage modeling framework, which is, again to

emphasise, one of the main theoretical motivations for using such a

framework as a, basis for data analysis.

From a theoretical standpoint a close relationship exists between,

link.verification and some memory-scanning tasks. In both cases a probe

item must in some sense be compared against a list of symbols in memory to

determi e if the probe is a member of the list. ,A point of interest is

leheth memory scanning mechanisms that have been investigated in the

aborato can.be identified as Components of relatively more complex tasks
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such*as solving ASP verification problems. The model constructed for the

ASP problems investigated in this paper can be regarded as an attempt to

tackle this issue. About the simplest relation that could obtain between

memory 'scanning and ASP problem solving would be that the scanning

mechanisms engaged by stategies to yield intermediate results have the same

characteristics as those observed with simple memory scanning tasks. Yet

this need not be-so. It is conceivable that as strategies for the more

complex storage, retrieval and decision making required by ASP problems are

constructed in the memory system (Atkinson & Wescourt, 1975) new demands

for rapid access to a larger volume of stored information, for the recording

of intermediate results which direct further processing, and for controlling

error rates when intermediate results are combined or cascade in a final

decision, demand scanning mechanisms having different characteristics. The

data from the present experiment are not in themselves conclusive, but the

parameter values of Table 2 as discussed above suggest that the inferred

scanning (link verification) mechanisms and decision processes yield

values of RT pataneters that differ from those typically found in the memory

scanning literature. There/4S the unexpected' result "ast verifying a double,

probe link is as fast as verifying a single probe link; the fact that for

single probe links verification tithes for cue set sizes two and three do not

differ from each other but are dramatically different from the verification

time for cue set size one; and the unusually large constant difference

between true.and false RT's. Each of these effects is of course subject to

further investigation and taken one at a time are not without some parallel

in the memory literature, but the authors btlieve that they provoke an

examination of the issue of how memory scanning mechanisms relate to the

larger human memory system. It is fair to say that proportionally more

27



effort has been devoted to unravelling the effects of experimental

manipulations on basic memory scanning tasks and constructing sophisticated.

and interesting models for these data (e.g. Theios, 1972; Anderson, 1973;

ghevell & Atkinson, 1974), than has been-devoted to exATTtning the possible

roles of memory scanning mechanisms in human memory systems that are

sufficient to support more involved cognitive processing.

The stage model developed. for the experiment described here

characterised each stage by two parameters, the mean and variance of

processing time; as remarked above this type of model can be generalised to

include more parameters such as the probability of an error in that stage or

higher moments of the processing time distributidn. Without changing the

nature of the modeling technique, stage parameters could be expressed

conditionally on the state of processing, as for example on the input to the

stage fram,previsusly operating stages. Even with these generalisations

parameter estimation and statistical procedures can be derived in a

Mathematically simple way. Granted that it is one opinion, the authors feel

that statistical methods such as those described in this paper that are

based on a formal but flexible model of psychological processing should in

many cases be both practical and more incisive than the standard linear

statistical analyses often found in the memory and ,problem solving

literature.
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COmparisoi Wtth-Rages! spy problems

Rages (1965,,1966) has reported studies using*a,problem solving task

similar to that of the ASP prbblems defined here. Subjects -in Rages'

experiments learned a list of "spy" names together with rules about which

spies could talk to. each other; the list of these "talking connexions" may

be regarded as a transition table. In the basic experiment, subjects were

giyen two spy names and,-r-equired to find a chain of spy-to-spy

communications conveying a message frowthe one spy to the other. Subjects

were instructed to "think aloud" and their protocols were analysed with

respect to the overall time taken to solve a problem, the rate at which

links in the communication chain were generated, and diversions into "blind

alley" side chains (i.e., passing the message to a spy who did not. have the

connexions to get it to the goal spy). Subjects were able to solve spy

problems in a matter of a few minutes, occasionally entering side chains and

usually achieving a solution chain longerthan*the minimal requireechain;.

the reader is referred to the original papers forliages' analysis of his

results. Id terms of the type of theory proposed here for ASP problems, the

solution of spy problems would be described by algorithms constructed using

a small set of basic psychological operations and following specific search-

nd-test methods of chain construction. Insofar as the model stated

definite algorithMs it would have the potential to account for protocols; as

stage models the algorithms would also make quantitative predictions about

the pattern of observed RT's and error rates. .0f course the particular

theory of ASP problem solving outlined in this paper is not sufficient in

itself to 'account f6r Hayes's results such as the end-acceleration
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phenomenon: in addition explicit algorithms would have to be constructed and

demonstrated by computer simulation or by inferential data analysis to

produce the observed pattern of results.

The stage modeling technique

It is worthwhile to emphasise the positive aspects of stage modeling

as a technique for the analysis of RT tasks. Interesting arguments related

to those presented here have been given by Sternberg (Sternberg, 1969b) with

respect to the so-called additive factors method. First as has been noted,

considering psychological processes as procedures or subroutines in the

sense of a formal computer language provides an easily conceived unifying

framework for theoretical analysis and a rationale for investigating memory

mechanisms as they occur both in simple and complex laboratory tasks.

Second, from a statisitical standpoint regression models for RT Moments can

be derived from a stages theory in a relatively simple manner, basically by

counting the occurrences of stages. The parameters in the regression model

have direct psychological interpretition in terms of real processing time,

and the parameters can be estimated by common analytic or numerical methods

irrespective of the number of classification categories or the number of

observations in each category. With regard to predictive power, stage

models can provide accounts for RT moments of all orders and together with

notions of processing variability'defined at specific stages can at the same

time provide an account of errors. Even though technique is

mathematically simple, the underlying process representatOn is that of a

quite general sequence of random variables (or random vectors) corresponding



to the definitiOh-Of a discrete stochastic prate ti Ofit;Thi-filitily of random

variables with a countable index se ry few restrictjons (e.g. most

of the random variables c& be as d to b finite v ued). This suggests

gib _ _ .

_ _ __. ....

that many models of memory proces es will be east formally "nearly"
- -

. -.

equivalent to some stage model as defined here. The nature of this

equivalence can be formalised in terms of the partitioning of the'event
. _ .

space of the experiment (i.e. the set of all possible data points) induced

by the inverse mapping of the goodness of fit, measure regalded as a random

variable.

Simple and complex tasks

The algebra step problems introduced in this paper are, like other

artificial memory and problem solving tasks, not advocated for their

intrinsic interest but rather as one experimental paradigm for testing our

understanding of human memory systems. Fa'st accurate problem solving has on

the one hand clear theoret cal relations, to conceptions of basic memory

mechanisms and the manner in ich these mechanisms come to play in a ger

memory system, and on the of er 'hand it is a bridge to the chronometic

analysis of more traditional problem solving tasks. While the investigation

of simple tasks is indispensible it is surely necessary to develop

theoretical constructions for more complex tasks with equal vigor: the

chronometric analysis of tasks at the level of ASP problems is intended as

one step in this direction. In philosophical perspective there is no

assurance that even a detailed understanding of the models required to

account for isolated simple memory tasks will automatically lead to an
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adequate, conception of human memory systems that are capable of supporting

such routine cognitive functions as the retrieval of' propositional

information (Anderson & Bower, 1973) or grade school arithmetic problems

(Suppes, Loftus & Jerman, 1969). The data and analysis presented in this

paper suggest tat analysis of RT's on the order of five seconds is feasible

without undue loss of precision either in the conceptual model or the

statistical treatment. Across experiments it should be possible to identify

the characteristics of memory mechani as they occur in memory systems

where processes involving alternative rategies, intermediate processing

results andiecisions about subsequent processing, and rapid access to large

amounts of stored information are operating. Such a program of research has

the potential to develop the basis for more exacting analyses of problem

solving tasks in terms of an explicit theory of human memory, to elucidate
-

the role of control and decision processes, and to qualify our understanding

of memory mechanisms discovered through research on simple tasks.
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Statistical Appendix

The coefficient vectors a <a,,...,21*> define a classification of

observations into distinct categories under the model; forty-six such

classification categories were observed in the experiment (i.e., there were

46 distinct a vectors). The notation below 4111 be used in wpat'follows.

The index /.'i" refers to the i4' subject and "j"-to the j*k classification/

category.

n n er of classification categories
un the model

s numbW-of subj is

L3 number of observations

RT sample mean

Mt, RT grand sample mean

Sid RT sample variance

T. sample ,variance of Std

(see methods in, Kendall & Stuart, 1969)

Parameter estimation

Ar7-

The approach taken to parameter, estimation was to choose a loss

function conceived of as a function of the parameters given the data, and to
7, z

find parameter values that minimised this functioi. Since function minima

were found using a numerical grid search method, computationally efficient

quadratic (least squares) loss functions were chosen. Parameters were

estimate& for each subject individually.

33

48

-,



4

Th act estimation proceded in two steps. First values of e.,

and rL were dete using the loss function,

is I

T
( LI- Atilt )

2.

Second the parameter values, IL , ,"?., , were treated as constant and 7,4

estimated with the loss function,

LS ( V.I z 1.
r;)

T1

S - ( a
..1
y + )=

1= I T.2.

An alternative procedure would have been to simultaneously estimate all

parameters using a combined loss function of the form,

is w Ls) + ( - w ) Ls2. , o < w < I

*

However, it was observed that the RT means showed a clearer pattern than the

RT variances, so that estimates of the mean RT parameters "uncontaminated"

by possible failures of the model fort9g11. variances were considered

appropriate.

Parameter estimates for individual subjects are listed in Table 3.

The numerical method used to estimate variance parameters excluded negative

variances with one result that some parameters were estimated to be near

zero.(the loss function, LSI , would have been reduced had negative values_

been accepted for these parameters). An inherent problem in the analysis of

RT variances is that for classification categories with small sample sizes

the variability of the sample variance, Ski , is large relative to that for

the sample mean, H:14: consequently parameter estimates will also have large
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variability. Note _that varianc0 parameter estimates averaged across

subject's are more readily interpretable as variability is reduced through

averaging.

-Goodness of fit measures

by,

Consider the statistic defined for/the i1 subject and jti" category

t.. =

/

( )

1'1
which for suitable models may be assumed to be approximately distributed as

Student's t under the hypothesis that the theoretical mean, aL12-i.t, is the

true mean of the ij RT distribution. One method of evaluating the fit of

the model to mean RT's is to construct the smallest possible uniform

simultaneous confidence region containing all the 's andto note the

probability of the complement of the region. This probability is the

minimum value of d. (the probability of a type I error) for which the

hypothesis that the model is true can be rejected; small values; indicate

that the model is probably not a full account of the mean RT data. If the

-distribution of t LI
is approximated by N(0,1) instead of by Student's t, a

conservative bias is introduced in the sense .that the value of a, is

necessarily

calculation

reduced. Since , the normal approXimation simplifies the

of a simultaneous confidence region this assumption is adopted.

For the ill' subject define,

= max I

1415n
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If the t
LI
's were independent then for any positive number, c,

Pr { tie > c} 1 - ir < c

1 - TT Pr -c < t < c
Ja

1 - [ Pr -c < z cl

where z.1(00). This is the probability that for a fixed i all the tLI's

are contained within a uniform, symmetric confidence band of width 2C. But

for each i the tip 's are correlated through the estimation procedure, and_

_____- --
with enough parameters it_ may be .possible -to- obfain all the ti 0,

rendering the preceding probability statements meaningless. Accordingly

some conservative adjustment should be made taking into account at least the

number of free parameters, p. The choice for the present analysis was to

take,

ste 1 - [Pr { -c < z < cl]
(01,6p)

in place of Pr t tt > ci above. If tt t is, observed then gt is a

statistical measure of the fit of the model for the if' subject. Similarly

for a sample of- s subjects define,

t* max 1 t* 1 max 1 t I

l4 4s Less

1.6;6 n -

then,

s (n-p)
1 - [ Pr -c < z <

,
is a goodness of fit measure 'for the sample as a whole. This procedure is a

type of multiple modulus test (Miller, 1966) referred to here as a "maximum



ti

modulus t test" with (n-p) or s(n-p) "degrees of freedom", taking some

licence with terminology.

A related procedure can be followed in evaluating theoretical versus

observed RT variances. The statistics defined by,

t =

z n7
S ( aA v + )

4.

T

can be treated in the same manner as the tLi's above although cannot be-

regarded as having Studenes't distribution and g* in this case ought to

taken as a transformation of the td 's reflecting goodness of fit rather

than aa:.an approximation to a true probability.

To obtain a firmer statement about goodness of fit a second measure

was sought. Although tha model under consideration is not linear, the total

suMrof squares can be partitioned in such a way as to yield statistics

reflecting the goddness of fit of the model to RT means in a way similar to

the percentage of between variance accounted for and the sample correlation

coefficient in linear regression. Define'for,any set of theoretical means,

1fi,11 , for the 1m subject,

MI/1: SS(between) - )7 1,1L3 ( -

- 2 ( ( fti - 1.1;.4)

3=1

PBVL = 100

, o

MVL
.....

SS(between)

1'
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MVO

PTVL = 100
SS(total)

If the 's were determined under a linear regression model then,

MVO = MVL = SS(linear regression)

The results of the maximum modulus t, PBV and PTV analyses for FT

means are presented in Table 4." Table 4a gives these statistics for the

classification categories determined by the a vectors of the model;

Table 4b represents the same analysis applied to the classification of

Table 1 (problem type X position of false link). From Table 4a it is clear

that t e model, accounts for a fair proportion of the variance (average PBV

is 73.5'and average PTV is 35.2), yet only two subjects have g* > .10 which

is a," easonable" criterion for a good fit. Additional information about

the maximum modulus t test is given by the number o1, points falling outside

the .90 confidence region; g* > .10 if and only if this number is zero. It

should be noted that points which lie outside the confidence region are not

necessarily those ch the model fails to account for since when parameters

are estimated Itaneously for all points an "exceptional" point can

adversely influen e the prediction for other "normal" points.. For the group

of six subjem_eithe maximum modulus t test indicates that the model is true

can be rejected for o. = .004. It should be noted that one bade data point

for a single subject can be sufficient to reject the model for the group

using the maximum modulus t test; the proportion of subjects for 'which the

model is not rejected is perhaps a more appropriategroup statistic. In

view of the all too common practice in the literature of presenting

3,6
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statistics for averaged group data it is difficult to make a firm statement

on this point based on the results of other comparable analyses.

The analysis presented in Table 4b indicates a slightly better fit

although it is derived from a less strict interpretation of the model. Some

impoovement is expected since more extensive averaging may cancel out

effects not accounted for by the model and estimated error variance is

increased slightly as observations with dirferent means are pooled.

However, -this second classification does correspond to an intuitively

natural division of the data.

Table 5 presents an evaluation of the model's success in accounting

for RT variances. As remarked above the variance of S- is large for small

sample sizes: for the experimental data this renders the maximum modulus t

test uninteresting because for individual subjects, the T.k4's are too large

to reject any set of ballpark estimates for the variances. -Variance

predictions under the model were compared to the the hypothesis that all the

St's are the same, using the proportion of points better accounted for by

the model (absolute differences between predicted and observed were

compared). Referring to Table 5, the model succeeds about as well as the

"same" hypothesis for four subjects and does worse for the remaining two

subjects' data. This is not strong support for the model applied to RT

variances but may be interpreted to 'mean that, compared to the "same"

II
r hypothesis, attempting to infer stage variances did not cost much in the way

of goodness of fit, while at the same time the model's predictions cannot be

rejected given the variability of the S.. estimates.
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