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Abgtract .

'

A class of simpletptoblem solving tasks requiring fast accurate
solutions is introduced. In an experiment subjects memorised a mapping rule
represénted by 1lists of words labelled by cue words and made true/false
decisions about conjunctions of prOpositions of the form, "Y is in the list
labelled by X," written "X—>—Y". Response times are analysed using a
"stage modeling" technique where problem "solving algorithms are cogéngg.
using ‘a small sget of psychological operations that have real time
characteristics specified parametrically. The theoretical analysis shows
that response time performance is adequatel? described in terms of the
sequential application of elementary p8yéhologica1 operations. Unexpectedly
it was found that the proposition '??%L-Y and X—>-2" was verified as
quickly as the apparently simpler "X-%r—;". A case 1is pFesented for the
modeling techn?que as applied to memory and problem solving tasks in terms
of theoretical parsimony, stébiatical simplicity, and flexibility in.
investigative empirical research. Sugges;ions‘are made as to ﬁossible

theoretical relations among fagt problem séiving, more complex and slower
problem solving, and research in fundaﬁgﬁtalngpmory processes,
N r R
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Introduction -
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The dominant theoretical approach to the analysis of problem soiving
has been to construct a formal model, often in thé.form of a computer
ﬁrogram, that simulates some qualitativ? aspects of human problem solving'
performance such as the protocol gquehces observed in deriving logic
theorems (Newell & Simon, 1972). 1In these analyges emphasis is pl;ced on
the integration of elementary information operations into a pgoblem solving
algorithm while less attention 1s given to the elemedgary operations
themselves. An approach that has been relatively less well explored ‘ig to
specify the processing time implications of ;fop;s;d algorithms and.?o
determine whether observed human response times (RT's) are consistent with..

the predicted pattern. From a statistical point of view, problems that

/

-

. require several minutes to solve or involve extensive searching for a

solution (e.g., looking for the best move in a chess position, de Groot, .
1965) might be expected to have large RT variances even for an individual
subject such that it becomes impracticdl to model the fine details of‘RT.

1

However, for simple problems where human subjects are easily able to respond

b
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correctly in a matter of a few aecond;, it should be possible to verify the
processing time predictions of specific problem solving algorithms.

‘One method for deriving RT.Apredictions is to describe problem
solving algorithms in terms of the sequential application of a gset of basic

e 4

psychological operations (procedures, subroutines, or 'stages") each of
whish‘requirea real pro;eaaing time and has some probability of producing an
error. Leaving the details for later discussion, the theoretical RT, for an
algorithm applied to a particular problem.can be deaéribed as the sum of the
processing times of the operations applied and the error rate 1is roughly
1 minus the product of the correct prﬁ%abilitiea of.;heae operations. An
alternative technique for making RT predictions is to assign computatiqnal
complexity measures to the basic operations and to derive the complexity of
an algorithm as the sum lof the complexities of its component operations;

. linearly related to
computational complexity is then directly interpreted as; theoretical mean

RT. This complexity assignment method yields the same description ‘of mean
RT's a8 does the corresponding stage model although .it does not deseribe

+

higher RT moments. Wote that both methods are easily generalized

to take account of the possibility of mixed (randomized) st}géegiea for

applying available algorithms.

On a general theoretical level, the RT analxais of fast accurate
problem solving can be a valuable source of evidence in deciding on a set of
basic psychological operati;na uaeq in human problem solving. The -“case is
’aimilar to that for chronometric studies of linguistic comprehension (Chaseé
& Clark, 1972) ‘where alternative representations of propositions can

sometimes be discriminated by constructing RT models for processing
t
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propositions to make true/false decisions. For problem solving theories it
is desirable to build algorithms working with a set of elementary operations -
which have sgome preferteé characteristics, such as corresponding to :fr
procedures or subroutines that can be conveniently written as logical units
when programming in a particular language, or being general in the sense
- that the same set of operations can be used in solving several types of
problems. Another preferred characteristic is that the set of operatiops
has "psychological validity" insofar as real time processing aspects of the

operations can be defined and verified in observed RT performance.

.
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Algebra step problems

_To pursue these ideas in experimental task was sought where subjects
woulh learn a set of rules (e.g., the moves oé-pieces in a board game, or a
mapping of one set of objects into another) and be required to solve,
true/false problems by repeated application of thege rules. It was thought
that a model for the single application of a ru}e could then be extended to
a model for the entire problem solvi;g task by specifying\the way rules were

applied to solve a problem.
Consider a small finite set X and a rule that assigns to each
element of X a subgset of X. Such a rule can be written in the form of a

transition table such as that in Figure 1 which was used in an experiment to

’

be described later.

Figure 1 about here

.
-~

" A memorised transition table, say where X 18 a set of cons t-vowel-

congonant (CVC) words, might be represented ag l'lists" in some memoxy store

with "addresses" corresponding to the s

-

propositions that can be made‘abo%: a parficular transition table is\ that x;

is mapped into a 1list that gontainS‘ x5, written x——x; as a mapping

*

diagram, where x, and Xx; are variables standing for elements of X; this
proposition 18 either true or false. A subject who has memorised a
transition table can be ;regented with the ﬁfoposition x~»x; and be
required to make a true/false decision using his knowledge of the rule as

defined by the table. In the experiment to be described, subjects were

rd
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Figure 1 - ASP Transition Table

Aruitoxt provided by Eic:
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presented with logical "and" conjunctions of these simple propositions and
RT's for a true/false decision were measured. The propositional forms or
problem types used are 1listed in Figufe 2 1n three groups (A, B and C)

according to the geometric shapes of the mapping diagrams.

Figure 2 about\iége

A problem is true if and only if all th

arrows or links are true; if just one 1link is false then the problem is

false. For example, P(---) in Figure 2 1is true only if x——x; and

X;~>x, and XX, ; it is false if any one of these propositions is

falgse. Similarly P(-§) is true only if X%,  .and x;——x, and

Xx;~>—x,; and P(>-) only/if X~~>—x, and) x;->-x, and kﬁ—xg.%’
of ™ the form

In the experiment subjects memorised transition tables

represented in Figure 1 where the elements of X were CVC words, and were

.
v

tested with problems of the sort illustrated in Figure 2. Representing a

transition table in memory as stored lists, an individual link, x;;+—xj,

»

could be verified true or false by using the cue x; to '"access" the

appropr;ate }ist in memory and then "scanning" the probe x; against this
list for a; "matchﬁ; if a match is obtained then the link 1is true and
otherwise false. A model for the verification of the conjunctive
propositions could then be obtained oq:the assumption that verification
proceeds one 1link at a time in some spééified order. These notions are
developed in the discussion section below. Since it is possible to verify
mapping ‘diagrams by checking each link in a step by step manner, the test
items uSed in this task are referred to as algebra step problems (ASP).

for each problem type
ASP items /were selected from a computer generated listing of all

~
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Figure 2 - ASP" Problem ZFypes

- problem type mapping diagram

(a) )
P(-) X ..""*‘_;
P (""') XX J‘—;—X X

P(-~-) XXX Xy




possible 1tets given the transition table (Figure 1)“quch that within _each
- problem type there were an equal number of ‘true and false-‘items For false
problems exactly one 1link was false, and for each type the fhlse link
‘occurred with equal frequency'at each link position. In addition an effort

.

vas made to match the frequencies of Aoccurrence‘ of CVC words between true
a;xd false items within each problem type so as to avoid a po'ssible source of
response bias. The total pool of about 400 distinct items was divided into
four blocks; the same P(-) items- Eccuring in each block but otherwise there
was no overlap. Denoting Hlock.’s by B,, B,, By, B, subjects- were tested
over six sessions with one bldc—k ger day’in the order B B,B,B, B, B,, where
blocks and htrials within blocks were randomised for each subject
‘Ai,ndividually. A gset of nine CVC words was randomly assigned 'to the abstract
transition table scheme for each " subject: no two subjects ‘had identical

transition tables although all tables had the same formal structure.

" The experiment was run usipg an Imlac Corporation PDS-1 cathode tay

tube (CRT) display and lteyboard, interfaced with a PDP-10 computer. Six
female subjects ran for seven sessions; the :‘.irst session was devoted to 8
transitien table learning drill (st‘xbj%:cts did not memorise theii:*transiti:rx
~ T~ '¥ables—prior to thé first session), and the remaining six sessions were used
for ASP test items On a single trial of ti:e drill a cue word was presented
on the CRT gnd the subject was required to type the appropriate 1list in
serial order (since the €VC words used had unique initial consonants, the
subject typed only the first letter of each word and the computer completed
the words with suitable horizontal spacing). On completing her response to

a cue’ the subject pressed the keyboard spacebar arid the correct 1list was

printed horizontally directly beneath the typed response, providing feedback

and an opportunity for study, Permutations of the nine cue words were run

2




and following each permutation the subject Qas told her percentage of -

]

correct responses and the :ime taken to ;espond to all tﬁe “cues. Subjects
were required to participate in the drill wmtil they could consistently
‘achieve pexrfect accuracy with a response time under 25 seconds; all subjects
.met:this criterion within 30 to 50 minutes 9f the drill. .
In fﬁe problem sessions ASP itéms were displayed ;t the center of
thg CﬁI and shbjécts regfonded true/false using two keys on the lower row of
" the keyboard. The subject initiated trials by pressing the spacebar
‘following a ready eignal. Items were precgged by a 1 sgecond duration‘.
fixation cross and appeared just to the right.&fifie cross, remainigg on the .
screen until the subject responded. 'Immediately after respgﬁgfig subjects
received a feedback megs;ge indicating correct/error‘énd ‘esponse time.

Before the first problem session subjects were shown examples of the

seven problem types and told to respond "true" if and only if all the links

| |
N N N oy N am A m A e
.
* .

A

in an item were true and to respond "false'" as soon as they knew that one

link was false. Subjects were informed that there were an equal number of

" true and false items within each problem type on each day and that false

items had exactly one link which was equally 1likely to occur in any

; position.' On the first day Iof pré?lemg subjects were instructfd, to be
completely accurate for the initial fﬁirty or forty trials and then to

increase their sgpeed as they got a feeliné for the task. For subsequént

testing sessions subjecfh were instruéifd‘to respond és qé&ckly they could

. R .
without making more than about one error in twenty trials on average. 4

B

Subjects were explicitly instructed never to guess and never to "think

.
¥ .

"twice" about their response once they had made a decision.

)
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outliers constituted about 2% of the’ correct RT data.

~ ”'

_ Experimental Results

'

To - eliminate early practice effects and’ to facilitate the
. ) /g
observation of stable task strategies the data for. each subject from the
: /

first of the six testing sessions was discarded together withithe _first ten
. . ~

. trials of the remaining five sessions, yielding on the order of 550 trials

rd

per subject: Only éorrect RI's'éxcluding outliers were analysed. Correct
RT histograms were plottgd separately for each problem type, fgr both true
and false reépoases, and for each subjec;' to identify possible outliers.
Réaponse timegs falling more than 1 second above the main distribution as

determined by the mode and the coptiguous tails were eliminated; such

’

.

TabIE 1 about here

Due to the complex description of the ASP items 1t is not possible

to represent all aspects of the data simultaneously in‘a single graph or

table. However, by collapsing across various subsets of the data we can

obtain a reasonable picture of mgjof effecté‘gpich can then direct more
detailed modeling asz statistical evaluation. Since plots of the data for
individual‘subjects showed subjects to be qualitatively comparable, the RT
data ‘for all six subjects Wwas p?oled to ;implify the presentatiop of
results. Iable 1 presents RT_énd error r?te data cléssified by problem type

and position of the false 1link (if any). The notation P(~—) TTF

‘fndicates that the third link from the left was falsej P(>-) FIT that the

upper link of the branch (>) was false;, P(—<) FIF that the lower 1link of

4 c . -




i X
' J Table 1 - Group RT Means and Errors
) /O)v problem type and position of false link)
l type false obs th ots error." - ‘total
) ‘link mean mean s.d. 4 N
I (msec) (msec) (msec)
. P(-) T 1576 1529 © 590 5.6 245
P(-) P 2041 1993 744 5.3 . 23”7
. P(-=) TT % 2468 . 2541 905 - 2.3 251
' P(—) FT 2101 1842 862 7.8 117
' P(--) TP . 3161 3187 1035 5.8 121
l \ Pt--) TIT 3631 358 1103 4.3 ° 388 ‘
P(-—) FIT 2137 1871 949 7.5
l ) ~ BG-—) TFT ., 3374 3086 - 1252 6.7 / 125
' P(-—)_ TIF ' 4184 4046 1106 121
I P(<) TT 1580 1567 532 4.5 161
' © ey 2287 2bes 8.3 715
ey TP 212 2014 3.0 . 88 4
' ' ‘ P(-<) TTT 2592 ¢ 2534 933 4.3 328 .
_ ' P(-s)~ FIT (1950 994 10.2 112 '
. , P(—<) \TFT /2972 001 895 5.9 108
P(-<)  TTF 2864 3000 858 6.8 112 L
l P(>)  TIT 257 2610 752 5.1 121 -
. P()  FT 2501 2211 835 5.0 63 : y
P(>) TF 3062 2876 735 3.1 61
. P(>-) = TIT 3657 3539 1045 3.7 237
P(>-) FIT 2622 2406 1146 . 4.2 78
l P(>-) TFT 3342 2990 1169 6.7 79
7 l P(>-)  TIE 4002 4153 1060 1.7 73
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fﬂ;//;;anch (<) was false. Observed means and variances and'theoretical
means (derived from a statistical model introduced below) are averages

across subjects weighted by the numbers of correct RT's observed.

.

N

Figure 3 about here

Figures 3 and 4 are based on the(data of Table 1; curves represent
theoretical mean RT. Figure 3 plots true and false mean RT \by problem
types. A striking feature about these data are the ‘fellowing approximate

equalities of mean RT's obtaining among the problem types;

P(<) = P(-} and P(~<) = P(=)

P(>) = P(—) and P(>-) = P(===)

Of course these equalities hold among averages including quite distinct
items within each problem type, but thdy do suggest that the time to verify
a Jeft branch configuration (<) is not substantially different from the time
fot a sgimple link (-). 1In contrast, verifying two 1links in the (>)'
configuration appears to take the sgame time as two links in the (--)

configuratibn.‘ In what follows the (<) configuration will be referred to as

- a double probe link and (~) as a single probe 1link.

Within each of the problem groups RT increases wiéh the number of
1inks. )If a sequential processing of links 18 assumed then the slopes of
the tfue curves directly reflect the average time taken to verify that a
" 1ink is true. Note that the three true curves, plotted in Figure 3 have
approximately the same slopés, which together with the equalities remarked
above 1s consistent with a sequential processing account. A way to

investigate ordef in aequentiél processing is to examine false RT's for each

e
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Figure.4 about here
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Figure 4a shows ‘that for group A problems RT‘inc?eases as the false iink is
moved from the first to the third position witp a slope about the Qsame as
the true slopes in Figure 3: this indicates a strict left/right pracessing
order. 'Eigpre 4b shows that for P(—<) the tail link (-) is almgét always
Yerifiéd before the left branch (<), while within the branch theré is nom
strong up/down prqcessing order. This is interpreted as consistent with the
proposal that the double probe link is verified in one step (i.e., not as
separate simple links) which implies that there ghould be no-up/down
processing order as such. Figure 4c presents a2 more complicated story for
group C. While link pfocessing for this grdhp ten&s to be up/down on the
righf branch ({%‘and branch (>) be(ore'tail (-) (i.e., left/right) in P(>-)
this order. cannot be strict since thef RT slopes ags the false link

position moves ‘are noticeably less than. the true slopes in Figure 3. A

probabilistic order of processing is appropriate for group € problems.

Figure 5 about here .

The verification of a link is in some ‘respects gimilar to memory .

scénning tasks (Sternberg, i969a) that require subjects to decide whether a
probe symbol is contained -in a memorised set of symbols. For an ASP

transition table the number of elements in a list labelled by a cue word ‘is

- ¥

v
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referred to as the cue set size; Figure 5 plots true and false RT's for P(-~)

by cue set size to illustrate set size effects analogous to those found in

memory scanning tasks. The true and %alse curves are separated by a

constant, suggesting a simple additive effect on RT of- the process
differences between true and false link verifications.

Errors were infrequent under the ‘Bpeed/accuracy 1nstructioﬁs given

' .the subjects; the error rate over all conditions and subjects was 5.2

percent. Group error rates broken down by problem tipé and position of the

false 1link are presented in Tablef1: While the’ authors recognise the

possibility of important theoretical relations between response times and

‘efror rates as for example suggésted by Pachella (1974) among others, a

rigorous analysis relating the two was not performed for the data presented

here. This omission is partly justified by the empirical observation that

. <
while mean RT's showed a consistent pattern across subjects, error rates did

not. Also, from purely statistical considerations when data is so finely
classified that some , classifications have twenty -or fewer obsé}vatigns,

error rates may not be sufficiently reliable for the analysis of data from
o

an individual subjéctﬁ whereas RT's may stt{l1l be meaningful in providing

N

o

_ insight into psychological processes.
-
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Theoretical Analysis

Suppose that for a particular ASP item wé have been hiygp a
description of the sequence of psychological oﬁerationS‘used to solve it.
The stage modeling technique to be used here assigns to each operation or
stage, S , of the processing a tuple of parameters,

< & (8), 61(8) > . -

corresponding to the theoretical mean and variance of processing time
asgsociated with that stage. In cases more general than that considered here

, —
this tuple may become a family of tuples corresponding to vargous states of

the cognitive system that could exist when the stage operapls ({i.e., stages

are specified conditionally) or tuﬁies may contain ditional baramefers

such as higher RT moments or the probability of a procegsing failure in that
stage. If stages S, Sz,..., S are applied in seq nce to process the
item then the RT mean and variance for the dtem are simgly, .

A

: m(RT) = Z,*(s ) and &@RI) = T &

_,:\ j:t Q

the . additiv{té of :véFiances follows from the assumption that stage

L 4

processing times are stochastically independent. Now suppose that there a{g
- two sequences of, stages that could be applied to the item, S, ’?éu."°°’ Sim,

S Smp and that these two sequences are observed with

22 2% %)

and S

T ?

probability p and (1-p) respectively. Let,

2

= L pG) amd & = T &Sy 1=1,2

35 §=t A

Then the mean ﬁpd variance of the overall RT are,




MET) = ppy+ (1-p) Mz

SR = p& + (1) + p(1-p) (a-p,)

:-,‘. -
] 'r'f'? "\’,.‘

‘Without goin@? iq;o further detail, similar ‘expressions can _be derived
whenever RT is assumed to arise fr;m the brobabiiistic nixture of sequences
of stages.,
‘ - Pro;eding on the basi;\\af the observations made in the results .
section above, a stage model v;s constructed using‘ ; _small number of
- inclusive stages that are identifiable (i.e., 1& the séﬁse of unique

parameter estimates) and that have direct theoreticai interpretation. These

stages are; - .

stage ‘ stage description

Ve

Vn verification of a single probe link
with cue set size of n

W, verification of a double probe link
with cue set size of n |,
K -orientation, attention, perception
" and miscellaneous set-up and
bookeeping processes
D decision and response proéesses that

differ between "true" and
"falge" responses

.

Processes involved in the verification of single and double probe links have
beén summed together in the V, and W, pargmeters respectively. bhe to the
problem of i?entif&ing parameters it is not possible to make definitive
interpretations of the stages K and D. i The.K stage includes all thése

operations which are in common across problem items, such as attending to

the CRT display or executing the motor components of a keypress response{ in

(3




A
addition K may be regarded as incorporating incidental proces:ses required
for the logical completeness of the model such as recording the input and
output of stage operations, Any processing differences between true and
falge responses, including handedness, are incorporated in the D stage. For
the experimental data false responses are slower than comparable true

) responses; the D parameters reflect this aspect of the data.
» i . -

W Derivation of theoretical expressions

The derivation of expressions for thedYetical RT means and variances
will be 1illustrated by examples sin& there 1s insufficient space for an
exhaustive treatment. In the following let n; be the cue -set size

agsoclated with the symbol x,.

Example 1:  x;—>—X; (T)

A

To solve this simplest problem the subject need only verify one 1ink; hence

w

exactly the stages Vn.‘ and K occur. Then,

)

MBI = u(V, ) + m(K)

§RM) = G, + &'®
S S

" .

Example 2: x.‘—>-xi-)—x‘-_-)—xx (TFT)

' Assumihg that P(--~) has a strict left/riéhc processing order the subject




/
first verifies that x}4>—xl is true and then finds that x;:>—xk is falsge;
the subject responds "false" as soon as she finds this link so that only

stages V. , Vo , K and D oceur. °

A

MmEBT) = p (V) t V) pMR) (D)
FRD) = W, ) + &V, ) T+ SE + 4D
-
X
:ﬁ-)—xr<;:X* (TFT)

It 1is assumed that the double probe link (<) is verified in a single
X

operation, W“j, and that the tail (-) is checked before the branch (<), so

n

that- the stages are V. , W, _ ;,K and D. v
LN v 1

mET) = (V) W)+ (K) + (D)

SR = SV, ) + S, + SE® + S()

R Xy ” -
?Exagple 4: j;:>xk (FT)
X!
. ]

A probabilistic order of processing was suggeste& for types P(>) and P(>-~).
This order will be‘defingd by two probability parameters. Let q be the'
'probability that within a right branch (>) the upper link~is checked before
\thg loé;r linﬁ,‘aﬁd let r be the probability that for P(>-) the branc? )
~is checked "“before the éail (-). In Example 4 the parameter r is not
involved. With probability q the stages are V,LL , K and D, and with

probability (1-q) the stages are Vk;, ;2 K and D, with the result that,

5
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sequences of stages. . ’

+pa(R) + D)

3

. ‘ - k3
. (D[ ) ]\

- 0
2]

S
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. x-\ > -
Example 6: “ >x,-‘—-)—x,~ (TTT) - -
xX. ¢ :
- .

Since all links are true thé same stages must occur whatever the order of’
! .

processing. Consequently,

K and D; and with probability (1-r)(i-q), V. .

MEI) = AG) + (1) M (T ) + ME® + 40

SO = (V) "+ (1) &) +6® + SO

. : ’ + q(]-q)[,x(v,,,j)]?'

The expression for ¢ (RT) is that for the probability mixture of two

'In Example 5, with probability ‘rq the “tages are Voo V,lj ,» K and .D; with
_ probability r(1-q), V,‘3 » K and D; with prob-abil,i't} (1-r)q,

. ,;l'( and D. Hence,
3 o

MQRT) = q m(V,, )"+ mev, )+ (1-1')'»*(‘7",)

SR = g T, )+ SW,) + (1-1) SV,

. + &R O+ g0 + q(1—<.1)[ " (v?‘;)]L

- ) The expression for & (RT) is an, algebraic simplificationm of




-

‘o .

‘

PQRD = @) # PO+ )+ (R

FED) = F(W) + EW,) + ST + W
' ~

These examples should convey the gist of the statistical model.
Note that for every ASP item th$ theoretical RT mean and a variance canbe

expressed in the following can‘onical' form,

CORERD R 8 e + g () ey i)
¥ . .
- + oay ja(W,) + ag (W)

+ a (K + a;m(D)

&R = a &(V,) + a,_d‘(ﬂ + a; g(V,)
+ a" ﬁ‘b-(wg) + aS &(w3)
+oa d® + a,dm * ¥

-

‘ where the a;'s (i-1,...,7) can be interpreted as the average number of

z

times the corresponding stage occurs, and b is the '"mixture variance"
(i.e, the variance added by mixing prdcessing strategies where st:rat:egieé

may require differing amounts of time). Writing the Trow vectors,

g7 < plV,)y pa(T), pulTy), palWy) 5 palHy) 5 a(R), pa(D)>

<

= <&(,), %), ), Sy, sy, d®, 0>

2= <38, a, 8, 3,, 8, 3, 8, >

! ’

the canonical forms become,

ART) = ae ,°"  G(RT) =




; ¢ ' »
where g: is the transpose of e and %T the transpose of y. For all
érué item; and for false items in groups A and B, each a; is8 an integer
and B'=0; for false items in group C the a;'s may be functions of q and
r, and b'>0 is a function of g » 4 and r. Note t:hgt:- ASP items can be
classified according to their coefficient veétors, 2> and mixing varignées;
b*; under the model this classification is a full specification of the
items., Por the items wused in the expefiment forty-six such classification

categories occurred.

Statistical Evaluation

v

A dIBCUssién of parameter estimation and statistical techniques is
presented in the appendix. Best estimates of parameters were obtained for |,
each subject by numerical qethods using a quadratic loss func;ion, and the
fit of the model to the RT data was primafily evaluated by constructing
minimum simultaneous confidence fegions containing all-the RT means and
variances pfedicted by the model. Parameter estimates are given in Tables 2

and 3; statistics are listed in Tables 4 and 5.

Tables 2 and 3 about here

Por the mean RT data the statistics in Table 4a show that while the -
model does account for a substantial percentage of the between‘ and total
variances (PBV and PTV columms), the maxim&m modulus t test applied to the
grou; suggestslthat the model is probably not a complete account of the data
for every subject in the experiment (g* for the group is .004 which is the ,

probability of observing a t* value of 4.44 or greater).

18
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Table 2 - Parameter Values, Averaged Estimates
-‘ * »
LS
M
(msec)

- - ’

.

single probe (-) verification:

¥

cue set size 1

e

_cue set size 2

cue set size 3

S
[

\
“double probe (<) 'verification:

cue set size 2

cue set size 3

*y -

T
;

set-up processes

,true/false difference

' probability of up before down on (>), q =

)x‘probability of (>) before (<) on (>-), r =




Table 3 - Parameter Values, Individual Subjects

e

Subject 1 Subject 2 Subject 3

o~ < M~ < : M~ S
V1 878 566 . 449 3 571 0

V2 1545 676 867 293 . . 1001 450
V3 1587 720 913 593 775 446
w2, 988 . 575 789 399 748 398
W3 1144 442 986 421 - 768 284
K 475 1 545 '1'- 394 0
D 729 1 346 489 452 0
e 09 ., 1.00 | 0.7~

r . 0.8 0.8 . 1.00

<;“‘*-- Subject 4 Subject 5 _ Subject 6

- - s apa a e o

V1 956 0 594 259 607 332




Y

Table 4 about here

I; Table 4a two of six subjects have g* > .10 indicating a good-fit of the
model for thege individual data, and in Table 4b g* > .16 for three
subjects. The third column of Table 4 gives the number of points lying ‘
outside a .90 simultaneous confidence interval; any such point implies thaf,

.g% < .10 .

Table 5 about here

Table 5 presents statistics for RT variances. Due to large sampilng

variability of variance estimates, the g* statistics are not very

infbrmative since many models would be acceptable within wide limits of

-

variability. The third column of Table 5 compares the model to the

hypothesis that all RT variances jpe’fhe same, in terms of the proportion of

pointg for which the model makes a more accurate prediction. Evaluated
using this ‘statistic the model does no better than the, "same" hypothesis
alt ?ygh both &re acceptable given the variance of estimators. Since the
<averaged RT variance parameters presented in Table 2 appear to. be orderly

they will be discussed although no strong conclusions should be drawm.

~




" Table 4 - Statistical Analysis for RT Means

points L.
subject t* . g* outside PBV PTV”’
90% . . ‘
region
ok
A. model classification (46 points)*: ..
\ B

"1 444 0.000 2 79.7 42.7

2 2.78 0.182 0%  76.7 35.6
.3 3.32 0.029 2 78.6 40.7

4 4,44 0.000 1 79.3  36.5

5 . 3.8 0,007 20 577 28.1

6 . 2.8 0.157 0*  68.7 -’///;7,8
group  4.44 0.004 3 73.5 35.2°

. B. type X false. link classification (23 points) '

1 3,28 0.014 1 8.6  41.5

2 1.74 0.697 0%  84.3 32.1

3 2.42 0.198 0% . 89.5 37.3

4 3.01  0.03 .+ 83.7  35.8

5 3.44 0.008 1 64.5 26.6

6 2.67 0,101 0%  71.0  24.5
group  3.44  0.049 2 79.8 - 33.0

‘ 19a




Table 5 -~ Statistical'Aialysis for RT Variances

-

(model claasificatioﬁ{'46 points)

“ proportion
g*. - model
.v8
"same"

0.999 . 0.478

0.999  0.500
0.999 0.348

0.999 0.522

“a

0.999 - - 0.478

0.999 0..391

VA

+
v
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~ Discussion .

T ot e . on

’ \ of ! L
Stage modeling has ::;;/Sggggived/in terms of a formal processing

language description of ry operations: stages are analogous to

procedures or subroutines; perhaps probabilistic in their eiecution,

organised by call sequences into memory processes. Within such a stage )

modeling framework vatious levels of detailed description are poéﬁibie. For
" example, one might consider macro stages such as "perception”, “memory" and
"response", or comparatively micro. stages such as."input the symbol in
position p of the stimulus array” or “compare the code for symbol X with the
code for symbol Y. )No particular level of detail can - be regarded as
preferred: the;re;ical descriptions in stage terms must be evaluated with
resPect to the relevant data. However, the stage modeling framework does in
principle relate allAjaevels of éescription in terms of the nesting of
procedures in call sequences, thus prd%iding the poasibility’of consistently
treating the results of giﬁple and relativgly more gomplex labo;atoty tasks
with the same Sverall processing model (Atkinson & Wescourt, in press).
A stage model can be most proauctively regarded as a rational basis
for the construction of statistical models. Each statistical model stemming
from a stage model can‘be evaluated with respect to the data, suctesses and

failures yielding new information about the data possibly not apparent.on

_y_ inspection or available from other analyses. 1In general it 1is not nécessary

*
that every statistical model derived from a particular processing language

description be "successful”, but only that some are and that these provide a
useful characterisation of the data. Of courge, if a stage model were taken

as & literal model of a specific real time process, say specific
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inﬁeractions among brain centers and layers of brain tissue, it would be

important to verify all the statist;cal models derived from the stages
theory. However, fdr the analysis of cognitive performance the authors
regard éfage models‘gs non-literal information processing descriptions f;om
which statistical analyses are derlved that provoke a deeper and more
adequate characterization of patterns present in the data.

The statistical models for RT means and variances developed above
may be regarded as an intermediate level of stages analysis appropriate to
the level of observable data: it does not explicitly describe either the
component processes of individual 1link verifications or the overall control
strugture in which the problem solving algorithms are embedded. Since these
additional levels of analysis are of theoretical interest, the discussion
will tukn to bridging these conceptual'gaps. The following sgages anaiysis

[+3
of single and double probe link verification is given;




¥

L, determine whether single or double o
probe (s #& d)

L, dinput cue

L, dccess memory list associated with cue
Ly 1input probe 1; if d then input probe 2

L, reset match register 1; if d then reset
register, 2 -

Ls unpack an element from the memory list

L, match the element against probe 1 and
increment match register 1 by the value .
of the "goodness~of-matech"; . -
if d then match against probe 2 and -
increment register 2 i Sy /

i1f the entire list has been unpackedcthen
continue else .return to Lg

if d then add match register 2 to register 1 .

£ty

if 8 then if the value of match register 1
exceeds a criterion cg then return true

else return false;

4 if d then if the value exceeds cq return’
true else return false

Note that the analysis is essentlally an "exhaustive scan”" model, where
matching is not necessarily all-~or-none, and where the representation of

1ists in memory and the co-ordinate retrieval or unpacking process may be

more invol@ed than reading from a list of symbols at a uniform rate.

Representing a list as a, cluster of symbols bound to a "memory -node by
associative 1linkages and defining retrieval processes in terms of this

representation would be one way of conceiving of an unpacking operation with
5

more complex characteristics, although such "builf in" characteristics may

have limite& conceptual and ;heoretipal interest.

-

The claim 1s that this model of link verification is consistent with

;
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‘the stage parameter estimates in Table 2; for the sake of simplicity only
- the average values of paraméter estimates are ;iiscussed. The paraméter

AN ¢
values in Table 2 may be qualitatively summarised as follows;

.

M) < pmlTy) = palVy)

,u(wz) < /A(Vl) .

M (W) = (V)

43

(V) < g (V) < &%)
SM,) < &)

" (W,) < o' (V,)

- &My < &(v,)

variability of the parameter est:imates; is not disconfirmed. A problematic
aspect of this summary is that M(W,) < )A(V,_a) by 245 wmilliseconds,, yet
(W) = Mm(Vy). This result may be attributable in some way to the fact
that for W, the number of probes is the same; as the cue set size, but in the
absence of addit:iongl controls no ad hoc‘ explanations are offered.

1f it 1is asm_med that stggZas Ll, Ls and Ly account for the major
part of link verification time, then a gross simililarit;y\would be predicted
between single and double probe links. With  suitably comple:é
representations of lists the mean unpacking time for 1lists of lengths 2 and
3 may be comparable, yielding ,.A(Vz)' =M,u:(vs); the speed of V, could be
explained by the simplicity of the represens:at:ion for a 1ist with a single

symbol requiring fewer unpacking-manipulations,

I This summary can be fegarded ag an hypothesis that, within the sampling

23 &~
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Single and double probe link verifications differ in stages Lg and

Lg. If the wmatching process is probabilistié. (e.g., due to variable
imperfeét coding of symbols) then the final match value in register 1 will
be distributed differently for single and double érobes (e.g., double probes
will have greater meagiand variance for both true and false 1links). This
together with the two criteria, c¢g and ca5 might account for decision
comp&nent diﬁggrences in ways similar to signal detection models fﬁat relate
RT to criteria placements in relation to siépal\and noise distributions
(Thomas, 1971). The observed & (W,) < ~o"(V,:) and & (W) < &(Vy) are
iniefpreted as due t; such differential effects 1n‘bfage Ly.

Thé value pm(D) = 466 is greater than would bé expected on the basis
of handedness alouéf_gﬁggesging genuine decision component ‘differences;

again this 1s interpreted as a stage ‘L, effect. Since successive link

-

verif#sftions are requ:ﬁg,bz some ASP items, in order to achieve an

acceptable error rateAsubjects were instructed to ‘be éccqrate) it 1is
necessary to make a more accugaﬁe decision for each intermediate

verification than would be needed 1if only a single link were verified on

each trial. Also since over all items there are ﬁore';rue than false links,

S

stage L might be "tuned" for a true verification. The demand for increased

accuracy together with a true verfication expectancy could account for the

observed value of (D). ‘Thekﬁbparent constancy of (D) over problen

o

types, even thogse where only one link i1s verified, is consistent with the

theoretical conceﬁtion that the same link verification mechanisms are used

for all problems without modification according to problem type. From these
considerations it would be predicted that encouraging speed over accuracy,
using only single 1link problems, reducing the variety of ASP items used

within a single experiment,“br using multi-link items with more than one

false link would all have an effect in reducing the value of (D).

.
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As an aside, it'may be posgible to use an empirical speed/accuracy
tradeoff to further invest;gate the verification mechanisms found in the ASP
task. A direct implication of;the theory discussed above is that under
speed instructions each 1link verification will be .lese  accurate as’

or cut short, with the results that erro;;

more for items with many links compared to

rel . e to corfect RT's‘while\error RT's for multi-link false items will
increase. Otheh quite different effects of speed instructions might be to
induce subjects to implement 7faster problem aélving.algorithms, say witﬂ
some sort of simultaneous verification of links, to "prime" access to
certain algorithms and retrieval mechanisms in anticipation of the next
problem, or to adopt sophisticated guessing ;trétegies. The issues with‘
rééard to speed/accuracy effects in ASP problem solving are manifold and may
perhaps be most productively approacyed by cgmparing results across~
experiments to determine what effects ﬁight be present;

In stage terms a stable strategy is a problem solv;ng algorithm that
iM%t =medified with use. Empirically, stable strategies would be expected
for practiced subjects who have in some sense deveioped optim;i task
techniques, with the required amount of practice depending on the particular
task. The present éxperiment was designed to observe only a;ymptotic
performance, making it in principle possible‘ to specify a single sét‘of
algorithms or strategies governing the proce?éing of ASP items. A theo?y as
to how these strategies are set up with practice is not developed here;
however, the authors do coné;pﬁgalise an interactive feedback system where

the state space of the system consists of algorithms and the effects of

coﬁtrol inputs are to rebuild algorithms. It is proposed that for tasks




o . < .
“here alternative processing strategies are a genuine  theoretical

' v . h
possibility, it may be more appropriate to analyse dura ficr trials early in

the experiment, in tetms of a mixtu%g of stretegies rather than a single
' 1 . /

stable strategy.’ For the sake of completeness of theoretical conéeption it

[

15 assumed that the strategies for the vatious problem types are called by .a
.Gontrolling stage that on each trial identifies the probiem type on the

basis of its map%ing diagram configuration and c¢alls the coy&esponding
- -

[ 4

problem solving algorithm. : ’
Additional empirical/work i8 required to evaluate these conceptual

§

-

analyses of control and component processes. For example, one 1line of
e . : . -
‘etperimentation would be to more thoroughly examine ASP verification

3 ‘¢
problems, with manipulations of the transition table "and problem types.

b

Another 1line would be to examine ASP problefls more complex than

verificagionﬁ. with the idea that such tasks could revéal more about the
<

" eonstruction of strategies, that 18 about bowsgpﬁponeﬁt processes are used

to build'problem solving algorithms. Alternatively the verification of
L ’ .

isolated éingle and doublé probe lings could be exami?ed in greater
. ‘experimengalj detail. A%l these 1evela’ of experimental .investigation are
well integrated within the stage modeling framework, which is, again to
emphasise, one of the main theoretical motiéitione for using such a

[

framework as a basis for data analysis.

z

From a theoretical standpoint a close relationship exists between

link. verification and some memor?-acaénifg tasks. I; “both cases a probe
item must fAr some sense be compared against a 1iqt of symbols ih‘ Qemory to
determipe 1f the’probe is 2a member of Ehe list. A point of intereeF is
ﬁhet:h memory;':ecanning mechaniemx; that have been inveet:igét:ed in the

aborato cap'be identified as Eompoﬂénte of relatively more complex tasks
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" such ‘as solving ASP vergfiéation problems. The model constructed for the
Asf'problems inveétigated in this ﬁéper can be regardéd aé an attempt to
tackle this issue. About the simplest relatfon that could obtain between
memory " scanning and ASP gfoblem solv{ng would be ghat the scanning
mechanisms engaged by stategies to yield intermediate results have the same
characteristics as those observed with simple mémor;~scanning tasks. Yet
_ this need not be so. It is conceivable that as strategie; for the more
complex storage, retrieval and decigsion making required by ASP problems are
constructed in the memory system (Atkinson & Wescourt, 1975) Aew demands
for rapid access Fo a larger volume of stored information, for the ;eco;dfng
of intermediate results which direct further processing, and for controiling
error rates when intermediate results are combi;ed or cascade in a final
decision, demand scanning mechanisms having different characteristics. The
data from the present experiment‘ are not in thsmselves conclusive, but tﬁe
paramé;er values of Table 2 as discussed above ;uggest that the inferred
scanning (iink verification) mechanisms and decision processes ' yield
values of RT parameters that differ from those typically found in the memory
scanning literaFu:e. Therq/ié the unexpegted‘result'gﬁgt ve;ifying a double,
'probe link is as fast as verifying a single probe link; the fact thqt for
single probe links verification times for cue set sizes two and three do not
differ from each other but are dramatically different from the verification
time _for cue 8et sizg one; and the unusually large constant difference
_ betwreen ;rﬁe.and false RT's. Each of these effects is of course subject to
furthe? investiéation and taken one at a time are not without some parallél

in the memory Iliterature, but the authors believe that they provoke an

examination of the issue of how memory scanning mechanisms relate to the

larger human memory system. It is fair to say that proportionally more

3
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effort has been devoted to unravelling the effectsh of experimental
manipulations on basic memory scanning tasks and constructing sophisticated.
sad intereating modéls for these data (e.g. Thelos, 1972; Andersom, 1973;
Shevell & Atkinsoni 19743, than has been,devoted.to examining the possible
roles of memory scanning mechanisms in humaﬁ memory systems that are
sufficient to support more involved cognitive processing. |

The stage model developed: for the experiment described here
characte;ised each stage by two parameters, the mean and vari;nge of
processing time; as remarked above this type of model can be generaliaed to
include more parameters such as tﬁe probability of an error in that stage or
higher moments of the processing time distribution. Without changing the
ﬁ;ture of the modéling technique, stage parameters could be expressed
conditionally on the state of processiné, as for exgmple on the input to the
stage from.previeusly operating stages. ﬁven with these gengralisations
parameter estimation and statistical procedures can ée derived in a
mathematically simple way; Granted that it is one oginion, the authors feel
ﬂthat statistical methods gsuch as thoge described iﬁ this paper that are
based on a formal but flexible model of psychological processing should in
many cases be both practical and more incisive than the standard linear

statistical analyses often found in the memory and  problem éolving

literature.




Comparison vith Hayes! spy problems

I

H;yes.(‘l%s,‘ 1966) has reported studies using a problem solving task
similér to that " of the ASP préblems d;fined hére. ~_Subjects in Ha}es"
expérimengs learn?d a list of Ygpy" names éogether with rules about which '
spies could talk to.each other; the list of these "talking connexions" may
be regaided as a transition table. In the basic experiment, subjects were
given two ;py names and ~required to find a chain of spy-to-spy
commmications conveying a message from the one spy éo the other. Subjects

" were instructed to “think aioud" “and their protocols were _analysed with
respect to the overall time taken to solve a problem, the rate at which
links in the communication chain were generated, and diversions into "blind
alley" side chains (i.e., passing the message to § spy who did nbt‘ havg the
connexions to get it to the goal spy). éubjec;s ;ete able to solve spy
problems in a ﬁatter of a few minutes, occgsionally entering side chains and
usually achieving a polutioq chain longer:£han*the minimal required'chain;
the reader 1is referred to the original papers foriﬂa?es' analysis of his
results. In' terms of the tﬁpe of theory proposed here foé ASP problems, the
5oiution of spy problems yould be described by algorifhms con;tructed using
a small set 5f basic psychological operations and follqwing‘spgc;fic search-
anq-test methods of chain construction., Insofar as the model stated
definite algorithms it would have the potential to account for protocols; as
stage models the algorithms would also make quantitative predictions about
;he pattern of observed RT's and error rates, ‘Of course the particular
theory of ASP problem solving outlined in this paper is not sufficient in

itself to ‘account fbr Hayes's results such as the end-acceleration

. “




phenomenon: in addition explicit algorithms would have Eg_be constructed and
demonstrated by computer simulation or by inferential data analysis to
produce the observed pattern of results. . .

L4

7

The stage modeling technique

o

It is‘wortﬁvhile to em#hasise the pogitive agpects of stage ;odeling
as a technique for the analysis of RT tasks., Interesting arguments related
to those presented heFe have been given by Sternberg (Stermberg, 1969b) with
reapeét to the so-calied additive factors method. First as has been noted,
consi&ering psychological processes as procedures or subroutines in the
senge of a formal computer language provides an easily conceived unifying
framework for theoretical ana%ysis and a rationale for investigating memory
mechanisms as they occur both in simple and complex laboratory tasks.
Sgcond, from a sFatisitical standpoint’regression models for RT moments can
be derived from a stages theory in a relatively simple manner, baaical%y by
counting the occurrences of stages. The parameters in the regression model
have direct psychological interpretétion in terms of real processing time,
and the parameters can be estimated by common analytic or numerical methods
irrespective of thé number of classificagfon catego;ies or the - number of
observations in each category. With reéard to pridictive power, stage
models can provide accounts for RT moments of all orders and together with
notions of processing variability'defgned at specific stages can at the saie
time provide a; account of errors. - Even though the technique is
mathematically simpl?, the underlying process representatfbn is that of a

quite general sequence of random variables (or random vectors) corresponding

30
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* to thé deffnition of & discrete stochastic proceas (vizi"a fasily of random

variables with a countable index se very few restrictions (e.g. wost
of the random variables cz: be as inite vglued). This suggests

that many models of méﬁpfy proces#és will be

‘equivalent to some stage model as defined here. The nature of this

-

equivalence can be formaiiééd in terms of the partitioning of the event
space of the experiment (i.e. the set ofkal} péssiﬁlé data péi&fs) induced
by the inverse mapping of the goodness of fit measure regaZded as ; random

variable.

Simple and complex tasks

The algebra step problems introduced in this paper are, like other
artificial memory and problem solving tasks, not advocated for their
intrinsic interest but rather as one experimental paradigm for testing our

understanding of human memory systems. Fast accurate problem golving has on

the one hand clear theoret cal relations to conceptions of basic memory
mechanismg and the manner in which these mechanisms come to play in a rger
memory system, .and on ;he other ‘hand it is a bridge to the chronometic
. analysis of more traditional proilem solving tasks., While the investigation
of simple tasks 1s indispensible it Ais surely necessary to develop
theoretical constructions for more complex tasks with equal wvigor: the
chronometric analysis of tasks at the level of ASP problems is intendeé as
one step in thig direction. "In philosophical perspective there i1s no

assurance that even a detailed understanding of the models required to

account for isolated simple memory tasks will automatically lead to an
f/ .

)
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adequate conception of human memory systems that are capable of supporting
such routine cognitive functivns as the retrieval of ' propogitional

information (Anderson & Bower, 1973) or grade school arithmetic problems

(Suppes, Loftus & Jerman, 1969). The data and analysis presented in this

' paper guggest tg?t analysis of RT's on the order of five seconds is feasible

without undue loss of precision either in the conceptual model or the
statistical treatment. Across experiments it ghould be possible to identify

the characteristics of memory mechani(;:.ae they occur in memory systems

rategies, intermediate processing

where procésses involving alternative
results and fecisions about subsequent processing, and rapid assesg to large
amounts of stored information are operating. Sucﬂ a program of research has
the potential tg develop the basis for more exa;ting analyses of problem
solving tasks in terms)of ;n explicit theo?y of human memory, to elucidate

the role of control and decision processes, and to qualify our understanding

of memory mechanisms discovered through research on simple tasks.
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Statistical Appendix

The coefficient vectors 8 = <8,,.44,84> define a classification of
observations into distinct categories under the model; forty~-six such

classification categories were observed in the experiment (i.e., there were

46 distinct g vectors). The notation below %ill be used in what follows.

~

The index ?'i" refers to the i™ subject and "§" -to the j* classification;'

category.

er of classification categories
the model

8 numbey of subjects
N,. ' number of observations
RT sample mean

M:, RT grand sample mean

. SZ RT sample variance
% r 8
T;; sample variance of §;

(see methods in, Kendall & Stuart, 19695

Parameter estimation

- .

The approggh taken to parameter estimation was to choose a égég
function conceived of as a function of tg; parameters given the data, and to
find parameter values that minimised thisvfunction. Since function minima
were found using a numerical grid search method, computationally efficient
quadratic (le;st squares) loss functions were chosen. Parameters’were

estimated for each subject individually.

4 ’
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estimation proceded in two steps. First values of Lo

using the loss function, -

\.

: , (M- gygi)
LS, (%.‘_, qQ;y L) = N.‘»:l z
=) Sy

Second the parameter values, ;e:i_ , a;_ s ?L » were treated as constant and L

estimated with the loss functionm,

2 * 2 R
[ - Cagyut b)) .
LS
g

n
LS’_ (X,J g;: a\, ?‘) bl Z I
. i=t

An alternative procedure would have been to simultaneocusly estimate all

parameters using a combined loss function of the form,

LS = wi$ + (1 -w)lLS , O<wc<1 v
2 .
s .
W

However, it was observed that the RT means showed a clearer pattern than the

.

RT variances, so that estimates of the mean RT parameters "uncontaminated"

by possible failures of the model forSRP variances were considered

-

appropriate.
Parameter estimates for individual subjects are listed in Table 3.

The numerical method used to estimate variance parameters excluded negative )
variances with one result that some parameters were estimated to be near
zero (the ioas function, LS, , would have been reduced had negative values,
been accepted for these parameters). An inherent problem in the analysis of
RT variances is that for classification categories with small sample sizes
the variability of the sample variance, S; , 18 large relative to that for

the sample mean, ML3: consequently parameter estimates will also have large

(2
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variability. Note _that varianc# parameter estimates averaged across

subjects are more readily interpretable as variability is reduced through

- -

averaging.

- Goodness of fit measures ] .

, Consider the statistic defined for/the i* gubject and j"‘ category

by, ot . ,V/

(M - 358 )
t, = VN - - ’%‘

Sy
A T
. *
which for suitable models may be assumed to be approximately distributed as

Studeng's t Jnder the hypothesis that-the theoretical mean, ga;g:.’ is the
true mean of the ij™ RT distribution. One method of evaluating the fit of
the model to mean RT's is to construct the smallest 'possible urriform
simultaneous confidence region containing all the ti; 's and to note the
probab?lity of ‘the'complement of the region. This probability is the
minimum value ofl o (the probability of a type I error) forA which the
hypothesis that the model is true can be rejected; small values indicate
that the model is probably not a full account of the mean RT data. If the
“distribution of taj is approximated by N(0,1) i&stead of by Student's t, a

congservative bias is introduced in the sense .that the value of o« 1is

necessarily reduced. Since . the normal approximation simplifies the

calculation of a simultaneous confidence region this assumption is adopted.

-~

For the i™ subjeet define,




If the ty 's were independent then for any positive number, c,
, j .
Pt{f:{‘ >c} - 1-15t{ti: <c},f

-«

a3

1-T7 Pr{-c<t:-q <c}

=t

1 - [ Pr{--c<z'< cz.]n .

where z~N(0,1). This is the probability that for a fixed i all the e g

are contained within a uniform, s,ymet:ric confidence band of width 2¢. But

for each 1 the t; 's are correlated through the estimation procedure, and

with enough parameters it may be .possible to obtain all the ty; =0,

rendering the preceding probability statements meaningless. Accordingly

some conservative adjustment should be made taking into account at least the

number of free paramet:ei's, p. The choice for the present analysis was to

take,
{n=p)
% - -
gi_ 1 [Pr{c<z<c}]
in place of Pr{t# > c} above. If tf= ¢ is, observed then
statistical measure of the fit of the model for the 1™ subject.

for a sample of~s subjects define,

o= max  |ep]| = omax | gl
14i%s 1L L4S
Isjsn I
then, .
. s{n-p)
gk = 1~ [Pr{-c<z<c}]

4

*
gf 1sa

>

Similarly

"is a goodness of fit measure for the sample as a whole. This procedure is a

type of multiple modulus test (Miller, 1966) referred to here as a "maximum

’ «
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modulus t test" with (n-p) or s(n-p) "aégtees of freedom", taking some

licence with terminology. o
A related procedure can be followed in evaluating theoretical versus

observed RT variances. The statistics defined by, v

2

AT ~
y S5 = (ag¥e+ by )
t.« =

Q " Ty

can be treated in the same manner as the tiy 's above although t:/;j cannot be

tega;ded as having Student's 't distribution and g* in this case ought to bg_
taken as a ttansforma;ion of the tzj's reflecting goodness of fit rather
thah ag: an approximation to a true probability.

To obtain a firmer statemgnt about goodness of fit a second measure
was sought. \Aléhough thé model under consideration is not linear, the total
suw of squaéés can be partitioned in such a way as to yield statistics
reflecting the goddness of fit of the model to RT means in a way similar to
the percentage of bétween variance accounted for and the sample correlation
coefficient in linear regression. Define'for|any set of theoretical means,

{qu , for the i™ subject,

. ’ n ' 2
MV, = SS(between)_ - z N..tj( fi;g - M-\:‘)
3= .

n
=23 NGO - M) (- oMy |

iz

€

SS (between)




SS(total)

If fhe f“ 's were determined:-under a linear regression model theﬁ,

s

’

MV. = MV, = SS(linear regression)

t

The results of the maximum modulus t, PBV and PTV ;ﬁalyses for RT
means are presented in Table 4. Table 4a gives these statistics for éﬁe
classification categories determined by the g; vectors of the model;
Table 4b represents the same analysis applied to the classification of
Table 1 (problem type X position of false 1ink)., From Table 4a it 18 clear
that the model accounts for a fai; proportién of the variance (aver;ge PBV

vand average PTV is 35.2), yet only gwo subjects have g* > .10 which

"feasonable" _criterion for a good fit. Additional information about
the ma;ihgﬁ'mggulus t test is given by the numﬁér of points falling outsidé
the .90 confidence region; g* > .10 if and only if this aumber is zero. It
should be noted that points which lie outside the confidence region are not
necessarily those ch the model fails to account for s@nce when param;iers

are - estimated sipultaneously for all points an "exceptional" point can

adversely influente the prediction for other "normal" points. . For the group

of six subj?QEE/the maximum modulus t test indicates that the model is true

can be rejected for 4 = .004. It should be noted that one bad, data point

for a single subject can be sufficient to reject the model for the group
" using the maximum modulus t test; the proportion of subjects for ‘'which the

1

model ;s not rejected is perhaps a more appropriatetgroup statistic. In

view of tﬁe all too common practice d1n the liteiature of»preséntlng
. L

L




statistics for averaged group data it is‘difficult to make s firm statement
on this point based on ;he results of other comparable analyses, )

The analysis presented in Table 4b indicates a slightly better fit
although it is derived from.a less:strict interpretation of the model. Some

impuovement is expected since more extensive averaging may cancel out

effects not accounted for by thecmodel and estimated error variance is

increased slightly as observations with different means are pooled.
’ . . “ .
However, -this second classification does correspond to an intuitively

-

natural division of the data. ’ ¥
Table 5 presents an evaluation of the model’s success in accounting

for RT variances. As remarked above the variance of éz is large for smail
sample gizes: for tke experimental data this renders the maximum modulus t
;;st uninteresting be;ause for individual subjegté‘tﬂe T:;'s are too large
to reject any sget of ballpark estimates for the variances. - Variance

’ predictions under the model were compared to the the hypothesis that all the
S:'s are the same, using the proporinn of points better accounted for by
the model (absolute differen;;s between predicted and observed were
compared), Referring to Table 5, thermodel succeeds about as well as the
"gfme" hypothesig for four gubjects and does worse for the remaining two
subjects' data. This is not strong supporf for the‘ model applied to RT
variances but may be interpreted to ‘mean that, com?atea to the "same'
hypothesis, attempting to infer stage variancgs did not cost much in the way

of goodness of fit, while at the same time thq model's predictions canndt be

/ 2
fejected given the variabiIity of the S,; estimates.
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