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Part and Bipartial Canonical Correlatiori Analysis

Neil H. Timm and James E. Carlson

University of Pittsburgh

1. Introduction

The concept of simple correlation was introduced into statistics

by Sir Francis Calton in several papers published during the 1880's.

However, his ideas on correlation were generally unknown until his

book, Natural Inheritance, was published in 1889. Galton's work

stimulated Pearson (1896, 1898) to develop a precise mathematical

theory of correlatiOn which led to the development of partial and

multiple correlation (Yule, 1897, 1907). It was not until 1926 that

M.Ezekiel and B. B. Smith defined part] correlation and, although not

explicitly, the notion of bipartial correlation (Ezekiel, 1941).

Although multiple correlation coefficients enable us to investigate

associations between one variate and a set of variates, simple, partial,

part, and bipartial correlation coefficients are used as measures of

association between two variates. Generalizing the notion of correlation

between one variate and a set of variates to two sets of variates,

Hotellipg (1935, 1936) developed canonical correlation coefficients and

canonical variates to investigate linear relationships between two sets

of variates. However, it was Roy (1957, p. 26) and more recently Rao (1969)

who generalized the concept of canonical correlation to partial canonical

correlation which is no more than the canonical correlation between two

sets of variates and )S after the effect of a third set of variates is

removed.

3
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By extending the definitions of part and bipartial correlation to

sets of variates, we develop.partjand biparttal canonical correlations

and illustrate how these coefficients and their corresponding canonical

variates may be used to explore relationships which exist among sets of

normally distributed variates.

2. Canonical Correlation Analysis

Given a set of p ability variates X and a set of q personality

variates where M' = X ] is normally distributed with variance-*

covariance matrix E,

vti
Np41

(kl Ell
E

k2

=
E21

a researcher may want to assess the degree of relationship between the

two sets of variates and The method of canonical correlation analysis,

developed by Hotelling (1935, 1936) for this purpose, was to determine linear

combinations of the original variates, U = eX and V = vs, of unit variance

such tht the simple correlation between U and V was maximal. The mathe-

matical procedure for accomplishing this is to maximize

FUV Max kiEl2k

subject to the constraints that t'Ell VE22k 1. This leads to the

determinantal equation in e
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(see for example, Timm, 1975, p. 349). The s = min (p,q) nonzero positive

square roots ei of the roots fi
2

are called the canonical correlations

1 1

between the canonical-variates Ui = ,eiX and Vi = kiX, 1=1, 2, ..., s. The

oefficient vecto4sJAzi of the canonical variates Ui are the eicenvectors

o the determinantal equation; tc obtain the coefficient vectors for

each V., the relationship

-1
E22

E a
22 'di

ei
1=1, 2, ..., s

is used. The canonical variates within each set, Ui and Vi, are ci :arly

uncorrelated and have unit variance,

cov (U ) = cov (V1, V
j
) =

Furthermore, the covariance between V
i

and U' is ei for 1=1, s, and

0, otherwise:

cov (Ui, Vi) = ei i=1, s

coy vi, = 0 iij

Investigating the canonical variates further, it is of interest to

determine the correlation of each canonical variate for a set with the

individual variates within the set. These correlations represent the

contribution of each variate to the composite canonical variate and help

in the interpretation of r-nonical variates. The correlations are given

by the expressions:



-4--

corr Ui) = corr alx)

Ell 'e1/43y.

corr (X, Vi)
E22 kiiax.

Besides using correlations within a set to better understand canonical

variates, we should also examine the relationships between canonical

variates in one set and individual variates in the other. These become

corr Ui) = corr ,e1:1)

E21

=ei E22 ki/crxi

ei corr Vi)

corr (Y, Vi) =ei corr (X, Ui)

To apply the theory developed above fcr a sample

IN (k, E), the population variance-covariance matrices are replaced by

their sample counterparts Sij. Alternatively, sample correlation matrices

- -
Rij may also be used since the roots of S11

1/2
S12 5221 S21 S11

-1/2
and

-1/2 -1
R
11

R
12

R
22

R
21

R
1

i1/2
are identical. Although the vectors ki and ki

,

associated with the determinantal equation with Sij's replacing Eii's, will

have units of measurement proportional to the original variates, the units

oftLand V
i
may not be meaningful. Canonical variates obtained by using

correlation matrices have no units of measurement and should be evaluated

in terms of standardized variates.

To test the null hypothesis that the p-variates are unrelated to the

q - variates

H
o

: E
12

0

H
1

: E
12

0
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several multivariate criteria have been proposed. Bartlett (1938) outlines

a procedure for testing the hypothesis when the sample sizes are large.

He defines

A = II (1-r42 )

i=1

where r
i

2
is the sample estimator ofe and uses a chi-square approximation

for the distribution of A. The hypothesis of independence is rejected if

2
X
2

= - [(N-1) - (p + q + 1)/2] log A > Xa (pq)

where x
a

2
(pq) is the upper a.percentile of a chi-squared distribution with:

pq degrees of freedom.

If the null hypothesis of no relationship (or independence) can be

rejected, the contribution of the first root of A may beremoved and the

significance of the remaining roots evaluated (see Bartlett, 1951, or Rao,

1952, p. 370). In general, with s'<s = min (p, q) roots removed, we define

A = fl (1-r
2
)

i=s'+1

Partitioning Bartlett's chi-square statistic,

X
2

= [(N-1) = (p + q + 1)/2] log A
*

2
we find that X

B
has an approximate chi-square distribution with (p-s')(q-s')

degrees of freedom and may be used to test the significance of the roots

s' + 1 through s. The tests for significant canonical correlations, other

than the first, are very conservative unless the correlations removed are

close to 1 (see Williams, 1967).
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An alternative to Bartlett's procedure has been developed by Roy (1953)

and is called Roy's largest root criterion. To test the significance of

each root using Roy's procedure, the parameters

s = min (p-i+1, q -i +l)

m
2

1 p-q 1-1

n =
2

N- p q /2

are defined for Heck's (1960) charts and the characteristic roots r
i

are

compared to a critical value Oa(s,m,n), found in the appropriate chart.

The hypothesis of independence for two sets of random variates reduces

to some familiar univariate results. If the number of variates in the p

set is one, the hypothesis reduces to

Ho: gl2 =

Hl: g12 # e

or

2

e o(1, q)
0

2

e 2, q) 0 0

and is tested using F = (R2/q)/[(1-R
2
)/(N-q-1)] where R

2
is the square of

the sample multiple correlation coefficient. For p = q = 1, the hypothesis

reduces to

H
o

: Q =0

H
1

: e# 0

11)

and is test d using t = r 5-7/ F.-7 where r is the sample correlation coefficient

(Fisher, 1915).
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3. Partial Canonical Correlation Analysis

Extending Hotelling's development of canonical analysis to three sets

of variates, Rao (1969)-using some results given in Anderson (1958, p. 33)

developed the notion of partial canonical correlation analysis which may

be used to assess_ the partial independence of two sets of variates given

a third set of variates.

Given a set of p variateS X, a set of q variates k and a set of r

variates Z, where J' = [ X, V is normally distributed,

z

N
p +r

kl

k2

k3

E =

/Ell

E
21

E31

E12

E
22

E32

E13

E
23

E33
/

we may be interested in assessing the degree of the relationship between

X and )S after removing the linear effect of the variates in the set.

That is) we want- to find from the variates ky = z - X and Rx ;s where

kg and areare the resOuil vectors(obtained from regressing on Z and

X on V linear combinations, U = eky and V = b'kx, of unit variance such

that the simple correlation between-+) and V is maximal. Mathematically,

this is equivalent to maximizing

FUV = max e
E12.3 k

subject to the constraints e E11.3 k' E22.3 k m 1. The matrices

E
ij.3

are the elements of the variance-covariance matrix of the residual

vectors ky and Rx,



E
3

(

11.3 E 12.3)
=

E
21.3 E.22.3

Eft £13

E
21

-E
23(

£3.3-1

-1EE
33

£31

31

£12 £13

E E
22 23

E33-33
1

E
33

-32

E
32

the variance-covariance matrix of the conditional distribution of X and

.Z, given Z.

Maximizing Fuv, as shown by Rao (1969), leads to the determinantal

equation in

-1 2
I E 12.3 22.3 £21.3 9.3 £11.3 1 0

The s =, min (p, q) nonzero posit ve square roots e
i.3

'of the roots('
i.3

are called the partial canonical correla! ns between the partial canonical

variates = ki Ry and Vi = blikx , i=1, s. The coefficient vectors

of each U
i

are the eigenvectors of Ale determinantal equation and the relation-

ship beWeen ki and,ki is given by

-1
E E
22.3 21.3 ki

ki
. 1, 600, s

To test the hypothesis of partial independence,

H
o

: E
12.3

0

Ham: E # 0
12.3

using Roy's criterion,( the parameters are defined by

s = min (p - i + 1, q i + 1)

m= Ip q 1 -1
2

n
N- r - p - 2

=
2

10
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,

and the r i2
3

are compared to the critical value u
a

ks, m, 0' at thelevel

a found from the Heck charts. Alternatively, defining A as

A =
i23

)

-Jul

Bartlett's criterion

qt.

2
X
B

= - [ (N-r-1) (p + q + 1) /2]h. log A 1, x2 (Pq)

may be used.

Some familiar univariate results are evident from the multivariate

procedure. If p = 1, the par ial canonical correlation coefficient becomes

the partial multiple correlat on coefficient (see Rao, 1973, p. 268).
\

Setting p = q = 1, the test of\partial independence reduces to testing

H
o

Q
12.3

= 0

H1 e12.3 # 0

which is tested using the familiar t statistic, t r
1243 147:3/ 11;12.3

*

where r
12.3

is the sample partial correlation coefficient (see Anderson,

1958, p. 84),

r
12.3

=

1. 1;:ri--
13 23

r12 -,r13 r23

FollowingFisher (1924), to test that a partial correlation coefficient

is equal to zero under normality, the t statistic for testing that a simple

-correlation coefficient is equal to zero is modified by subtracting one

degree of freedom from the degrees of freedom for error for every variate

removed and the simple correlation coefficient is replaced by a partial

-correlation -coefficient. Extending this rule to the partial canonical

11
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correlation analysis procedure, we were able ,to obtain, by_analogue, a

test for multivariate partial independence.

4.. Part and Bipartial Canonical Correlation Analysis

Following Pearson, partial correlation coefficients under normality

-- -are no more than simple correlation coefficients in conditional dis-

tributions. 'Holding several variates- constant in a multivariate normal

distribution allows one to investigate relationihips between two variates

_while controlling. nor -the other variates which directly influence the

two variates under study. Such an explanation of a partial correlation

inefficient would not satisfy most researchers. Alternatiliely we find people

.s.ay_ing-that asimple.partial-correlation coefficient represents an estimate i

of what a simple correlation would be if we were able to calculate the

correlation coefficient at any one of several levels of a third

- This. -is- .still unsatisfactory since we never check this when

we use the coefficient.

:Going back to the derivation of a partial correlation coefficient, we

is the _correlation .in residuals after linear effects due to a

common variae or set of variates is removed. Implied in this statement is

the following\Causal relationship given by the causal system:

z

X

If Z does not influence the variation in X and Y as shown above, the
-4411

interpretation of a partial correlation coefficient is unclear since by

winjr ..110

°partralling out" Z from X and I we are removing the linear effect of 2 on

both X and Y

12



Provided Z influences both X and Y, interpretation of the partial

correlation coefficient is meaningful. It would not make .anse to cal-

culate a partial correlation coefficient if Z influences X but not Y.

For this situation we would have the following diagram:

101... 4WMIr". ...111WW

'For this case the correlation between X and Y is best estimated by controlling ,

for the influence of Z on X. That is, we want the correlation between Y and

X partialfIng out Z from X and not Y. Such a correlation coefficient is

called a part correlation coefficient and for the three variate case is

represented by

Ml ,11. , W.O.O 1116411.1.0S-'01MM,11. IMMO.112 -4=t'l 13 ti.3

2

To derive e
1(2.3) following Yule, we assume a linear relationship between

X and Z, X = a + BZ, and find the simple correlation between c 22 X a - BZ

and Y.

As shown by McNemar (1969, p. 322) the test statistic for testing.

ammo.- Rano,-

Ho.
1 (2.3)

H1: )1(2.3) # o

under joint normality is t
r1(2.3).117-.3/ 1-142.3 Unfortunately,

one may not merely substitute part correlations for partial correlations in

1111".

----,
the formula for testing e

12.3 (Ito test that a part correlation coefficient_
,! a ...

. .

6- 2 '' 2- ...: , .., ... ...... . .....

is equal to zero. Since
1(2.3)

1 q
12:3 , 'as; may be seen by examining the

: -
formulasforthesetwcoefficientsjsubstitutingx.2

,1tz.1_
for r 12

2.3
in the

,

I

i

1 /t statistic for testing e1(2.) . 0 yields only an approximiii-teatpreedure
-, ---__'for testing part independence. -

13
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To extend-Ihm.notion of part correlation to the multivariate case,

we again assume that

M N
p+q+r

k

k2

\43

E
11

E
21

\,E31

E
12

E
22

E32

E
13

E23

E33/

Now however, we are interested in assessing the degree of relationship

between v and X after removing the linear effect of the variates in the

set fromqS,and not X. That is, we want to find linear combinations of

--tha.variates=kx and X, U = k'X and V = b'kx, of unit variance such that the

correlation between U and V is maximal. This is equivalent to maximizing

FUV
a,b

'2 max le E1(2.3)

subject to the constraints e Ell
e

1 and v E22.3 k - 1 where the

matrix E1(2.3) ig defined by

E11 E12.3)
E1(2.3) (E

21.3
E
22.3

This again leads us to finding the roots and vectors of a determinantal

equation,

-1 2n
1 E 12.3

E
22.3 E21.3 3.(2.3) E11 I

In addition to-part and partial correlation coefficients, other

simple correlations are also i ortant to the understanding of linear

relationships among variates; for example, suppose two variates Z and

W are highly correlated and that the causal relationship among four

vafiates is as follows:.

14
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>Y

W ) X

)

To determine the correlation between Y and X in this case the linear

influence of Z on Y and of W on X is controlled by removing the influence

of Z on Y and of W on X. This leads us to the bipartial correlation

oefficient_ /NW,

(112 213 e23 21.4 224 + e13 e34 224

(1.3)(2.4)
,(1 -P13

'4 24

which reduces to a part correlation coefficient if either 213 or 224 equals zero.

Alternatively if the relationship among the variates were given by the system

Y

W ) X

the partial correlation coefficient

212.3 T14.3 4.3

el2.34

.3
1 -

P14.3 e 22414.3

_The- causal_ relationships among variates .:nfluences

the researcher's selection of a correlation coefficient and hence the

an
ia

lysis of a set of data.

. - T.a a3c,tarid -tha..-taaa-of adliparstial correlation caa f f igien four

sets of variates we assume that

and letting

Z ,t 1

;S i;

Z

N Np+
q+ t

k3
1

Je t 34
\-

15

E-- +MI6 t
21 22 423 24

E
31

E
32

E
33

E
34

E
41

E
42

E
43

E
44
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-1 -1
= -E

E33
-E E

E42 -E33
E E

12 '12 13 33 32 14 44 42 13 -33 34 44 42

we form the matrix

E

*E
11.3 E12

(
(1.3)(2.4) *

E
21 E22.9

which is the variance- cov4riance matrix of the residuals e- = Y - Y and
rvy

,tx = X - X where Y is found by regressing X on and X is found by regressing

on It, Notice that if the third set of variates_are not in our model

that E
(1.3) (2.4)

reduces to El(2.4) which is analogous to the univariate

case.

To assess the degree of relationship between and kx we again want

to maximize the correlation between U = eky and V = k'kx. This leads to

the solution of the determinantal equation

-1 * 2
IE E22 ;4 E21

p
E

= 0
I12 22;4 21 .(1.3)(2.4) 11.3

The s = min (p, 'ci) nonzero positive square roots e
1(1.3)(2.4)

are the

bipartial canonical correlations between the bipartial canonical variates

U1 = ky and Vi = ki, i=1, s. The relationship between the

coefficients is given by

ki

-1
E
*

a
E22.4 21 ,41.

e1(1.3) (2.'.4)

i = 1, s.

To test the hypothesis of bipartial independence

*
H
o

: E
12

= 0

H
1

: E
12

*
i 0

16
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we have for this test only an approximate procedure in the multivariate

case. The parameters using Roy's criterion are given by

s = min (p - i + 1, i + 1)

m= IP-ql- 1
2

=
N sax (r, t) p - 3 - 2

ef .n .6. -raw 2

and the bipartial canonical correlations are compared to the critical

values found in the appropriate Heck chart.

Defining A as

2
A = R (1 - r i(1.3)(2.0

1=1

Bartlett's criterion defined by

2
= - ((N - max (r, t) 1) - (p + q + 1)/4 log A ,u x

2
(pq)

might also be used.

The approximate test of part independence for the case of multivariate

partcancuticaLanalysiik fallows_.a similar procedure with r replacing

max (r, t) in the formulas and E12.4 replacing E12 in the hypothesis.

.Example.- 1: Canonical Correlation Analysis

Suppose a researcher was interested in investigating the relationship

between three achievement variables A
l'

A2, and A
3

and two personality

.,,vaxiables P1 and-P2 where. the correlation matrix among the variates

Y = (P1, P.2?5 and X = LA1, A2, A is

17
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ll

R
21

R12)

R
22

1.0000

.7951

.2617

.6720

.3390

1.0000

.3341

.5876

.3404

1.0000

_ .3703

.2114

1.0000

.3548

Solving the determinantal equation

-1
1 R

12
R
22

R
21 e.

R
11

1 = 0

2
the gample canonicial, correlationa,r, r

2
are obtained from the roots r_

1

and\r22,

r 2 = .4746
1

r2
2
= .0375

r
1

= .6889 r
2

= .1936

Rejecting the hypothesis of independence and finding that only the first

root is significantly different from zero, the researcher at first blush

might conclude that the two sets of variates are significantly related and

that the proportion of variance in common to the two standardized canonical

variates

U
1
= .7752 P

1
+-2662 -II

2

V
1
= .0520 Al +.8991 A

2
+.1831 A3

is r
1

2
= .4746. However, further investigation into the significant

canonical variates and the variates within a set would yield that the

.987

corr (Zy, U1)
Rll 21 - .883

)

(

.424

corr (2
x'

V1) = R
22 ^-

b
1

= .

.983

.513

18

1.00
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which indicates that P
1
and P

2
are equally important to U

1
, but that A 2

is more important to V1 than either Al or A2. Furthermore,

(!9 87)
2
+ (.883)2

U
2

= .876

2

of the variance of\thie first set is accounted for by U1 and only

\

2 4.424)
2
+ (.983)

2
+ (.513)

2

V
XX
.470

2

of the variance in the other set is accounted for by V1. Investigation

#

of the correlations between the variates in one set and the signifidsp.lt

canonical variates yields

(.292)corr (x; U1) = e corr (Zx, V1). 3= .677

.353

corr (Y, V1) = e
1

corr (Z
y'

U
1
) = (.680)

.608

This shows that A
2

in the achievement set is influenced most by the

personality canonical variate and that the achievement canonical variate is

influenced equally by both personality variates. More specifically, 22%

of the variance common to the achievement variates can be accounted for

by a linear combination of personality vaaables,

U2 (.292)
2
+ (.677)

2
+ \(.355) 2

Ux lu =

1 3 I

I

12 .223

whereas the proportion of variance in the personality variables accounted

for, by the achievement canonical variate is 42Z,

19
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(.680)2 + (.608)2

2

.1 .416

Ian summary, given the two sets of variates

Y = P2 and X = (A1, A2,

it appears that the proportion of variance "in common" to the two

significant canonical variates it about 47Z. However, 88% of the

variance in the set X is accounted for by U1 and only 42% of the variance

in X is accounted for by V1. Similarly, 47% of the variance in the set

It is accounted for by V1, but only 23% of the variance in k is accounted

for by the canonical variate U1.

Stewart and Love (1968) observed that

2 2 2
11,1 = v r1
Livl

ti

I

U1 A
2 2 2

u
= Vv ri

and termed these redundancy indexes since they better summarize the overlap

between two sets of variates than the square of a canonical correlation.

2For our data V
2

Y
= .416 and Uxiu = .223. That is, the redundancy inivi

I 1

given )S is .416 and the redundanc)0\in ;S given X is .226. The larger the

redundancy indexes, the larger the overlap among the variates in each domain.
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Example 2: Bipartial Canonical Correlation Analysis

Using a random sample of 502 twelfth-grade students from the project.

Talent survey (supplied by William W. Cooley at the University of

rs,Pittsisurgh), data -were collected- on- 11 tests: (1) general information

test, part I, (2) general information test,,part II, (3) English,

(4) reading comprehension, (5) creativity, (6) mechanical reasoning,

--------(7)-abatraet--reasoning,'48-)--mathernatics, (9) sociability inventory,

(101__Ohysical-sciPnePAnterest_inventoryi_lnul_al)._office_work_intere-st

inventory. Knowing that verbal ability tests (3) through (5) are highly

-correlated with the-nonverbal tests (6)through (8), the investigator

was interested in investigating the relationship between the general

information tests (1) and (2) and the interest inventory measures, tests

--All-through (11). Since-prior knowledge would indicate that the relation-

ships among the sets are of the form

highly
Z (3, 4, 53 Y [1,

correlated
ft 6,s 7, 83 ----> X - 10,

the set of data lends itself to a bipartial canonical analysis. The

correlation matrix for the sets of variates is shown in Table 1.

Table 1. Original Variate Intercorrelation Matrix

Y

1.000

Y .861 1.000

X

-.011 .062 1.000

X .573 .397 .055 1.000
-.349 -.234 .084 -.246 1.000

.492 .550 .083 .094 .109

.1- .698 .765 .021 .275 -.087
. 644 . 621 1 . 001 . 340 -. 119

.661 .519 1 -.675 _. .531 -.364

. 487 .469 1 . 007 . 202 -. 079

. 761 .6491 .030 .500 -.191

21

1.000
. 613 1.000
.418 .595 1.000

.160 .44 .522

. 456 .530 .433

. 566 .641 .556

1.000
.451 1.000
.547 .517 1.000
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Using the CANON computer program described in Section 8 we find that the

matrix of partial variances and covariances is

=

1

(Y.Z)(X.W)

s
(Y.m)1740

sX.W

.424

.263

.263

.365 .051

:133
.060 -.110

-.012
.133

-.163

.051 .987

.060 = .076
-.110 .054

.076

.635

-.041

.054
-.041
.858

-1111111.-" .111111.

and the eigenvalues of the determinantal equation

-1 1

0Is(YZ)(X ,W)SXWS(YZ)(XW) (Y.Z)(XW)SY.Z
I 4=

are .133 and .022. Using Royls criterion for_the fit tizatimlav4 .C1..

.1011P Arm

and n = 247.5 and using the Heck (1960) charts we find that this root differs

from zero at the .01 level. Similarly for the second root s = 1, m,= 0 and

n = 247.5. When s = 1 we calculate the &statistic

( n+1 ) ( r
2

m+1
/

-r2

(see, for example, Morrison, 1967, p. 166-167) and the test statistic dis-

tribution is F
2 2, 2n+2 .

For our data

(248.5) (.022
5.590

1 .978)

Referring to tables of F we find that the second root also differs from zero , \

at the .01 level.

The bipartial canonical correlation coefficients are .364 and .150. Using

Bartlett's approximate chi squared test we find that the hypothesis of bipartial

independence is rejected for. both roots (chi squared'= 81.676, df = 6, p < .0001)

and also for the second root aftqr having removed the first root (chi squared =

11.223, df = 2, p = .00367). Thus we reach the same conclusions using Bartlett's

test as we do using Roy's.

22



I

-21-

The standardized canonical variates are

U
1
= 1.674Y

1
- 0.255Y

2

U2 = -1.180Y1 + 2.205Y2

V
1

= -0.120X 1 + 0.863X 2 - 0.737X
3

V
2

= 0.919X
1
- 0.397X

2
- 0.461X

3

andthe correlation coefficients,betwemthe original and canonical variates

.00,11.

are shown in Table 2.

Table 2. Original Variate-Partial Canonical

U
1

. U
2 ,

V
1

V
2

Variate Correlations

Y1 .993 .576 .362 .017

.115 .817 .210 .122

X1 -.034 .128 -.093 .858

.260 -.031 .715 -.205

X
3

-.265 -.053 -.728 -.356

Examination .of these correlation coefficients helps to understand the relation-

ships existing among the original variates and the partial canonical variates.

The printout from the CANON program also indicates that U1 accounts for .66

of the Y-,set variance and U
2
accounts, for .34. Similarly V

1
accounts for .35

of the X-set variance and V
2
accounts for .30:

The redundancies, or proportions of variance in the Y-set and X-set that

are accounted for by the significant canonical variates derived from the opposite

sets are shown in Table 3.

Table 3. Redundancies

V1 V
2

Y -set .087: .008

ui U
2

X -set .046 .007

Overall

.095

Overall

.053

23
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.These data indicate that although there are signific nt relationships

between the information'tests and interest inventories after partialing out

verbal ability and nonverbal ability measures, respectively, the proportions

of accounted for varianze.arerather- small. Examining the correlations in

Tables 2 and 3 we see that the strongest relationship is between V1 and the

Y -set, and that X2 and X3 contribute most to V1, X1 being almost uncorrelated

-with-Vi.-,Thernext strongest relationship is between U1 and the X-set, with

Yl contributing much more to UI than does Y2.

7. The CANON Computer Program

The CANON computer program allows the researcher to analyze multivariate

data by'any of the four techniques discussed in this paper: Canonical Analysis,

Partial Canonical Analysis, Part Canonial Analysis, and Bipartial Canonical,.

Analysis.

The user may input raw data, a variance-covariance matrix, or a

correlation matrix, and specifies the type of analysis and number of variates

in each set. The first two sets of variates are referred to as the Y-set

and the X-set and are the sets whose relationship is to be studied. The third

set (Z), if used, contains the variates to be partialed out of the Y-set

and the X-set in partial canonical analysis, the Y-set or the X-set in part

canonical analysis or the Y-set in bipartial canonical analysis. The fourth

set (W) contains the variates to be partialed out of the X-set in bipartial

canonical analysis.

The number of variates i) the Y-set must be less than or equal to the

number of variates in the X-set. Also, the variates must be input in the

following order: Y-set, X-set, 2-set, W-set.

24
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The program is written FORTRAN W for a DEC -PDP10. calctrlations

are done using double precision. Conversico of the program for other com-

puter systems should not be difficult. Since the program stores,"PROBL"

-..and,P-F.INIS-',' ate two eingle-prectsion memory= locations and checks the first five

characters of the title and finish cards with the contents of these locations,

Changes will be necessary for computers that do'hot store 5 alphanumeric

. ...eharaaterer4mr a s4ngle-precision-memorrAtocatttn. Similarchanes Wrll be
necessary for some of the labels for the output...which are also, stored in

__memory via DATA statements. These changes may be the only changes required

many- computers-but the 'user -should check that the names of FORTRAN-supplied

functions used in the program correspond to those available on the available

system. Listings of th programs and card decks are available upon request

from the authors.

INPUT TO CANON

The input to the program is as follows:

(a) Title Card

The title card contains the'characters PROBL in columns 1 through 5

and any title that the user chooses in columns 6 through 80.

r

(b) Problem Card

The second card contains 9 numbers specifying the nature of the

problem and type of analysis. The first 8 numbers are integers and each

is punched in a-5-digit field, right justified. The 9th number is

significance level to be used as a criterion for defining significant

canonical relationships, according to Bartlett's test, and is a 4-digit

decimal' fraction puncheTwitha decItal paint. The nUiaberi-in this card

are:
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N = No. of observations in the sample

NP = no. of variates in the Y-set

Col. 11-15 NQ = No. of variates in the X-set (NP<NQ)

llal. 16-20

Col. 21-25

Col. 26-30

NR = No. of variates in the Z-set (punch zero or
leave blank if no Z-set)

NT = No. of variates in the W-set (punch zero or
leave blank if no W-set)

Punch 1 if Canonical Analysis
Punch 2 if Partial Canonical Analysis
Punch 3 if Part Canonical Analysis, Partialing

Z-set from Y-set
Punch 4 if Part Canonical Analysis, Partialing

Z-set from X-set
-Punch 5 if Bipartial Canonical Analysis

Col. 31-35 NRMC = No. of format cards,

Col. 36-40

Col. 41-45

(c) Format Card

Punch 0 or leave blank if raw data to be input
Punch 1 if variance-covariance or correlation

matrix to be input

PIN = significance level for retention of canonical
variates according to the Bartlett test,
Punched with decimal point. Punch 1.0
if it is desired to have all possible canonical
variates extracted.

The input format contains one-F-field for each variate that is ,/

input. The user should remember the order in which the variate sets

must be input, as specified below.

(d) Data

The data may be input in raw form (IN-zero) or in the form of a

variance-covariance or correlation matrix (IN=one).

(i) Raw Data:, The values on the variates for each observation are

input in a single record containing one or more cards. The order

of input must be:' Y-set variates, X-set variates, Z-set (if used)

variates,, W-set (if used) variates. The variates are punched

as specified on the variable format card, card c.

W.6
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.tt,t r (ii) Variance-covariance or Correlation Matrix: The complete

square symmetric matrix of variances and covariances or inter-

correlations of all variates is input. The matrix must be, in

the form:'

-
S(Y,Y) S(Y,X) S(Y,Z) S(Y,W)

S(X,Y) S(X,X) S(i,Z) S(X,W)

S(Z,Y) S(Z,X) S(Z,Z) S(Z,W)

S(W,Y) S(W,X) S(W,Z) S(W,W)

represents-ance-coveriance matrix or correlation matrix --

of'variate -set A with variate-set B. The nouber of variates in the Y-set must

be less than or equal to the timber in the X-set.

----The-values-in-each row:of the matrix are input in one record containing-

one or more cards, punched as specified in the variable format card, card c.

(e) End of Job Card

-- -- ----The-program-allows the user 'to stack jobs to be run sequential ;rr -'e..-

each job containing a ,complete set of cards a through d. Thus if a second

`job is to be run, a second title, problem, etc. card follows the data from

the'first job: The'data for the last job is followed by a end-of-job card

which contains the characters "FINIS" in columns 1 through 5.

OUTPUT FROM CANON

The'output frdm CANON includes the folluwiag (all valves are printed

in scientific notation; eg. .1234 D-01 ... .1234 x 101 Is .P1k14):

(a) Variance-covariance matrix (or correlation matrix when it is input)

of all variates.

C
(b) Standard deviations of all variates, by set

(c) Variance-covariance matrix after partialing. Output when the analysis

is a partial, part'or bipartial canonical analysis, this matrix contains

the variances and covariances of the Y and,X sets after partialing.

27
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(4) Eigenvalues Imam thedetesminaneal equation formed for-the Malys -ft

and the values necessary for determining significance by Roy's criterion

using the Heck charts.

(a} Canonical, Partial .canonical, Part canonical or Bipartial canonical

correlation coefficients and Bartlett's test for the significance of

the coefficients.

Standardised- canonical coefficients for the Y -set variates and

correlation coefficients between the Y-set variates and canonical

variates derived from the .Y -set.

410--Standard4ved-eanonteal coefficients for the-X-servafiltesMid coT=

relation coefficients between the X-set variates and canonical variates

derived from the X-set.

(h) Proportionsof variance in-the Y-set accounted for by each

significant (Bartlett's test) canonical variate derived from the Y-set,

and the similar proportions for the X-set.

%W.

-(4) Correlation coefficients between-Y-set variates and the sigrifficanT

canonical variates derived from the X-set, along.with the redundancy

for each canonical variate and the overall redundancy.

(j)' Correlation coeffictents tetweeft-X-set-variltes Ind the significant

canonical variates derived from the Yrset, along with the redundancies

for each canonical variate and the overall redundancy.

+Ai 411

Canonical variate&-normaliaed to have unit variance -in the sample.



i
-27--

3. References

Anderson, T. W. (1958). An introduction to multivariat statistical

-. analysis. New York: John Wiley.

Bartlett (1938). Further aspects of the theory of multile regression.

Proceedin &s of the Cambridge Philosophical Society, 33-40.

Bartlett (1951). The goodness of fit of a single hypotb tical discriminant

function in the case of several groups. Annals,of Filgenics, 16, 199-214.

Ezekiel, M. (1941). Methods of Correlation Analysis, Seco.1.1 Edition,

New York: John Wiley.

Fisher, R. A. (1915). The frequency distribution of the values of the
correlation coefficient in samples from an indefinitely large
population, Biometrika, 10, 507-521.

Fisher, R. A. (1924) The distribution of the partial correlation coefficient.

Metron, 3, 329-332.

Galton,"F. *(1889). Natural Inheritance. London: Macmillan.

Heck, D. L. (1960). Charts of some upper percentage points of the distribution

of the largest characteristic root. Annals of Mathematical Statistics,

31, 625-642.

Hotelling, H. ( 935) The most predictable criterion. Journal of Educational

Psychology 26, 139-142.

Hotelling, H. (1936). Pelatidns between two sets of variates. Biometrika,

28, 321-377.

McNemar, Q. (1969). Psychological Statistics, Fourth Edition, New York:

John Wiley.

Morrison, D. F. (1967). Multivariate Statistical Methods. New'York:

McGraw Hill.

.19



7-28-

Pearson, K. (1896). Mathematical contributions to the theory of evolution
III. Regression, heredity and panmixia. Philosophical Transactions of
the Royal Society of London, Series A, 187, 253-318.

Pearson, K. (1898). Mathematical contributions to the theory of evolution V.
On the reconstruction of the stature of prehistoric races. Philosophical
Transactions of the Royal Society of London Series A, 192, 169-244.

Rao, B. R. (1969). Partial Canonical Correlacions, Trabajos de Estadistica y
de Investigacion operativa, XX, 211-219.

Rao, C. R. (1952), Advanced statistical methods in biometric research.
New York: John Wiley.

Rao, C. R. (1973). Linear Statistical Inference and its applications,
Second Edition. New York: John Wiley.

Roy, S. N. (1953). On a heuristic method of test construction and its use
in multivariate analysis. ,Annals of Mathematical Statistics, 24, 220-238.

Roy, S. N. (1957). Some Aspects of'Multivariate Analysis. New York:
John Wiley. ,

. Stewart, D. K. and W. A. Love (1968). A general canonical correlation index.
Psychological Bulletin, 70, 160-163.

Timm, N. H. (1975). Multivariate Analysis with applications in Education
and Psychology. Belmont: Brooks -

Williams, E. J. (1967). The analysis of gasociation among many variables.
Journal of the Royal Statistical Society, Series B, 29, 199-242.

Yule, G. U. (1897). On the theory of correlation. Journal of the Royal
Statistical Society, 60, 812-854.

Yule, G. U. (1907). On the theory of correlation for any number of
variables, treated by a new system of notation. Proceedings of the
Royal Society of London, Series A, 79, 182-193.


