e

’

» -

DOCUMENT RESUME

ED 109 146 s , . T™F 004 575
AUTHOR 'Vltallano, ‘Peter Paul _///
TITLE . Small Sample Comparisons of the Cochran Q and the
T ' Minimum X sub orne squared Sta+1st1cs. .
PUB DATE [Apr 75] = ~d
NOTE 26p.; Paper presented at the.Annual Meeting of the
American Educational Research Association s
(Washington, D.C., March 30-April 3, 1975) )
. . ¢ . y

FDRS PRICE - MF-3$0.76 HC-$1.95 PLUS POSTAGE

DESCRIPTORS *Comparative ZXnalysis; Correlation; *Hypothésis‘

. Testing; Matched Groups; *Nonparametric Statistics; ]
) *Statistical Analysis; *Tests of Significance :

IDENTIFIERS *Chi Square; Cochran Q; Correlated Proportions

ABSTRACT

The Cochran Q and the Minimum X sub one squared
statistics are two ways to test a hypothesis of equlvalent correlated
proportions. This study investigated the small sample properties of Q
and X sub one squared by Monte Carlo methods. The observed )
distributions were compared for their rates of covergence to the
limiting theoretigal X sub one squared distribution, and for the

, degree to which their error rates approxihated the nominal error
rates, These latter comparisons allowed for idiosyncrasies that exist
in the Q0 test of.the correlated proportlon hypothesis.. Results show
that’ the X sub one squared statistics is more powerful than the Q0 &
statistic for testing hypotheses of equlvalent correlated
propor+1ons. (Author) .

&

‘

”

'*******L***************************************************************
* .Documents acquired by ERIC inglude many informal unpubllshed *
* paterials not available from other sounces. ER;C pakes every effort *
* to obtain the best copy available/ neventheless, 1tems of marginal =
* reproducibility are often ‘endountered and this .affects the quality =
* of the microfiche and, hardcopy reproductlons ERIC makes available *
* via the ERIC Document Reproduction Service (EDFS). is not *
* responsible for the guality of the original docnment. eproductlons *
* *
* *

supplied by EDRS are the best that can be made from the orlglnal.
***********#*****************#***************************************

1 ' . N ’




ED109146

-

.y"

5.

PPN

TM 004 57

>

e

ERIC -

P
Full Tt Provided by ERIC.
s .
A

|

€

SMALL SAMPLE COMPARISONS OF THE COCHRAN Q

- AND THE MINIMUM xi STATISTICS

-

Peter Paul-Vitaliano

rd

Syracuse University

U S DEPARTMENT OF HEALTH,
EOUCATION & WELFARE
NATIONAL{NSTITUTE OF
EDUCATION |

THIS OOCUMENT

DUCEO EXAC

THE PERSON O
ATING 1T POINTS

STATEO OO N

SENTOFFICIAL

Wy

orv

EDUCATION POSIT

HAS BEEN REPRO
as RECEIVEO FROM

R ORGANIZATION ORIGIN
OF VIEW OR OPINIONS
NECESSARILY REPRE
NATIONAL INSTITUTE OF

1ON OR POLICY

“Paper presented at the Annukl Me .
. t. eting of She -. .
Am‘erican Education. Research Association L

-
L)
v

—

.

washington, D. C.

April 2, 1975

i

<~ -




Introduction ) '3, .

. -
| ‘ S s
The purpose of this stdy was to compare the relative merits, .for
. 'Y . i

small samples, of the 'Cochran Q statistic (Cochran, 1950) and the minimum Xi

staf@stic (Neymen, 1949), These two statistics can be meaningfuliy compared —

%ince they not only represent alternative ways for testing hypotheses about

the equality of correlated proportions, but they are 1lso both asymptotically
distributed as X 2, , ’ N
Hypotheses about the equality of correlated pruportions are the result

‘of situations in which catego;ical data are obtained from either matched samples,

. lor from repeated observations omsubjects from one sample. Since it is assumed,

in Q, that observations are dichotomously scored, the two category (c=2) per

s

response situation was considered in this gtudy. Table 1 qqhtains such a situy-
i~ ' . .

ation, where i=1,...s n matched groups ( or subjects, for tHe r¢peated measures

situation); j=1,..., r matched subjects within group i (or r responses per .

subject 1); and the response Xi4 = 1l or O for a Quccess or failufe.

J
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Inseft Table 1 about here

e oo s s 00seees a0t as a0

L]
In Table 1, the R;pothesis.of equal correlated proportions is

. H: E(‘Tl n) = E(”Te/n)' = = B(T_/n), 1y

where.T, is the number of successes in the j-th column. Thus the implication in

J
(1) is that the probability of a success is equal for all r tredtments. -

Numerous examples of the experimental situation ‘in Table.l &re cited in
stanaard statistical texts (Hays, 1963; Siegel, 1956; %?Per, 1971); One may have
"a need to test a hypothesis, as in (1), in a number of con%ent areas: in psycho-
metrics oné ﬁa;\wish to test whether the items on a test differ in difficulty.

$

" In social péychology, only one item or question may be of interest; in this

3 ‘ .




» . .
situati;n one may wish to test whether or not a Specifié group changes its
response {o this qugstion over time. In<clinical psychology, rater reliability
may be a ?oncern; one might ask - 1is thé proﬁortion'of patients rated positivel&
identical for different therapists? Final y,‘ n ;xperimenxal or comparativé
psychalqu one may wish to test whether the ppoportion 6f,positive responses;

in a particular species, is constant for different drugs (levels) or different

doses of the same drug. &

e Theoretical Development of the Qqapd xﬁ Statistics
In developing a test for (i), Cochran assumed that the uy total for any row

1 1is fixed, and that the expected value of x,y» OF the probability of a sdecers

pij’ is constant for all r columns in row i. Thus:
} '=" .
N | ) E(xij) Py = ui/r, and . (2)
1 * )
) v'(xij) = (ui/r)(l - ui/r)' . - (3) .
With u, fixed, E(u,) = u, and V(s;) = O and, since V(xij) is constant for all

r cells in row i,

V(ui)’é rV(xiJ) + %§Cov(xij,xik) o (&)
Cochran fugthe?/%dﬁ\megithat Cov(xiJ,x ) is constant for all J#k, thus frpm (W),
Cov(xij,xik) = -(ui/r (1- ui/r) . (5)' 5
: T - 1 3

The reaults in (2), (3) and (5), along with the assumption.that‘the i rows

!

are independent, allowed Cochran to obtain the: ° - - T
\ . E(TJ) = iglE(xi:i) = % ui/r - §-¢3j} ; T,--,' - (6)~,:°
() - %v(xij)'z 5:1’ (/7). - /), @)
o Cov(z,, 1) = ‘g(“i/:)(ll‘ wlr) 3‘,41;*’: ®

. -~

Given these results, Cochran defined Q as:

4
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Q= Fu)@-u/f) 7 | 9) -
r-1 :

-

where the denominator in (9) can be shown to be equivalent to (7) - (8).

" If one assumes that n is large, the TJ
ot ! ,
. multivariate nermality with common variance (7) and common covariance (8).

totals. may be EXpected to tend to

Given that (1) is true, Cochran cited Walsh (1947) as having proven that if
n is large, the ratio in Q will be distributed as kfe with r+- 1 degrees

of freedom. However, if one reviews an assumption made in deriving Q
(specifically in passing from (4) to (5)), it becomes obvious that Q doesjggt )
test (i) alone. Instead, Q simultaneously tests (1) and the hypothesis’ of
equal population covariances{ nanely:
‘ H:all r(r-1) covariances are equal, (10)

or that all velues of (8) are equal. ' ‘

It should be apparent that (1), together with (10) is & much more exacting
hypothesis than (1) alone. This “is5 .at least one problem the researche; faces

when Q is used to test (1). Another problem one faces when using Q can be

dbserved in:the denominator of (9). It should be obvious that rows where ui

+ 13 either equal to zero or to r do not contribute to the value of Q . More-
over, since, @ 1s insensitive to these rows one'can never estimatee a priori,
what power the Q test will heve since the effective sample size of q will be
less than ;. That is, whenever the probability of obtaining a ug = 0or r is / {
not equal to zero, sample size attrition will occur. It shall be shown below -

2
that Xl is affected by the original sample size. ‘

The minimum Xi statistic is anéglternative to the Q statistic for testing
(1). Neymen (1949) wrote the foundation paper which defined and theoretically
developed this statistic. Since then severel authors, na&ely Berkson (1955),
Bhapkar -(1961, 1963) and Grizzle et al (1969) have reformulated the xi statis-
tic s0 that it could‘be easily applied in a wide variety of situations.

S
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Grizzle's approach is mpst appealing for a number of reasons: first ,

" . t.
categorical data are expressed in terms of familiar linear models. Second, /tpe “

pa.rameters of these models are then es:timated and hypotheses about them are .

tested using the well known method of weighted least. squares.. Finally, beca.use

the 1inear model approach can be a.pplied in so many situ’ations, Grizzle's method
’, represents a p.nified approach, both conceptually and computationally,- for

applying the le statistic to categorica]: data., Because of these advantages,
" Grizzle's approach for testing (1) is the one which is cited in this p%per.
Grizzle begins his discussion By referring to & general eategoricas.l'si‘tua-‘
tion; ‘this scheme his depicted in Table 2a, where the rows represent s ®Murti--
nomial populations and the o)lumns represent c¢ categories of a Qresponse.
Table 2b contains. definitions of the nota.tion that is employed in the develop-

ment of the X2 statistic.

1 - .- ¢
e Insert ‘Table 2a-b about here . C '
Given this notation, Grizzle defines a function- _ o
] f (x) a x , where f (Jr) 1s assumed to be any function of the elements
. . 1xc8 csxl
of X that has partial derivatives up to the second order with respect to “i,j

K f
and m = 1,2,...,usv = s(c-1). For all u functions, one can write the general

linear model as:

. A
F(x) = A x ., ' (11)
- -ouxl uxcs csxl
) where A is a matrix of desired weights, with rank equal to u, so that one obtains
A} .
u linearly independent f(x)'s.
.Given (11), S 1is then defined as the sample estimate of the covariance
s ) N ! L .
a matrix of F "A' -, with th g . It.
p): u ux'gs cégcs BT ¥ e rank of“ 8 equal to u. It

5

\/ should be mentloned that if any frequency (ni;j) is zero, S will be singular;
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] . » ' ’ . .
in this case Berkson (1955) has recommended tnat ni,j be replaced by 1/c, so

« ‘that Pyy sl/(cn) C .. .

Grizzle assumes further that the £ (x)'s in (ll) can be deacribed in terms
of & matrix X and a vector of unknown parameters f : ’ °

o Fx) = A x_=X B , ¢ O )

uxl uxecs csxl  wxw wxl N
where X is a type of design matrix-of rank w '5, u. Ba.sed on (12), one can write

—

the sum of squared deviations , of observed versus expﬂc‘ted— linear functions , 882

. ‘ (F@p) - X8 )-8 (Fp) - X B). (13)

’

Given (13), Grizzle then cites Neyman (1949, Theorem 4) as hdving proven that

if an expression as in (13) is minimized with respect to B, the -result:

b= xstx) s lF(R) o _ -

- =
. o

_will contain B.A.N. estimates of the parameters in B, where B AN, éstimates are
/ asymptotically normal, efficiént and consistent. Furthermore , the minimum
value of (13). thst is obtained will, accordding to Bhapkar (1961, Theorem 3), be

the minimum xﬁ test statistic for the fit,of the model in (12), namely:.

the SS(due to the H: F(x) =X B) = F(R)'S F(R) --b'(X's lx)b . (1&)
Finally, since (1&) is the minimum xi statlstic it will, according to Neyman
(1949, lemme 12), be d.symptoticd.l_l:,r distributed as X2 with u-w degrees of freedom,

if (12) is true. - ‘ . ‘ .
Once a model is defiqed and tested for adequate fit to the data (as in (1k4)),

’ N

a test of a general linear hypothesis:

~ . * N '
- - « tC B . : (15)
" AU .Eo v oy - d"l ; }
can be’ obtained by the same weighted least squares method. In (15)3 C(dxw) 13‘.
. .
- . of full row ra.nk dSw, Thus (15) represents restric,tions on the origina'l para-

¥

meters in (12). Using the samé ratiobale as in (13) e.nd (1)4), one_ obta.ins a

1 ° y

. P ¢ :
~ . 5 P
) ! = v 8

@




minimum xi' test statistic.for (15) as:
" . <

LS8(Cp = 0 = brer(e(x's™x)) Her) Tey,

with d de#rees of freedom, if (15) is true.

. @

In many cases there is only one population, as in Table 1, end the objective

of the analysis is to study the relationships among ways of classification of

.

This fits into Grizzle's general model (12) by setting X = O , the null matrix.’

The test statistic for (16) is then:

" §s(F(x) = 0) = F(p)'S'lF(g),

- *

;o

‘ the sample units. Many situations of this kind can be described by the model: -
F(x) =0 . (16)
uxl ?

’
[

.oan

which is asymptotically ):2 with u degrees of freedom, -if (16) is true.

Since the situation in Table 1 ks a one population problem, the expfession

in (17) can be used as the minimum - X2 test for the hypothesis in (l This

”

can be presented through the use of an example. Table 3 contains & reproduction

A
of the repeated measures data presented in crizzle's Table L

(1969) Forty-six

subjects were each given drugs A, B, and C. Some had a favorable response to

-

one, some to two and some to all three drugs.

’ Insert Table 3 about here

seessscssccsseeboesecscccoe

Before the x2 method for handling this situation is discussed one should
/ .

1
note the differences between the situations in Tables 2a and

3: the former Table

Y

contains s populations, 1 response per subject and c categories per response, _

while the latter table contains 1 population, 'r  ‘responses

-

per subject and 2

. categories per regponse. However, although this latter gituation has two cete-

gories it is still multinomial if one regards the possible response patterns

for any one subject as the experiment's mutually exclusive categories. .Thht is,
. @ '

’ N

. o o)

" for each of the three responses in Table 3 there_aﬁg'two possible categories,



- ) . . :

therefore, there are a total of cr(= 23 - 8) possible responsé patterns. Since

any one subject can have one and only one response pattern his response vector
' [

‘.

contains eight elements, one of which is'equal.to one and seven of which are ,

equal to zero. o
hd )

¢ Given this configuration the hypothesis to be tested in Table 3 is that the

.

mdrginal proportions are equal:

o Hy t E(T/N) = E(T,/N) = E(1,/N) or C .8 (18)
gO:E(T)=E(T)=E(T), ‘ T |

where (18) is identical to (1), for three responses.

This hypothesis may be written so that it is ammenable to Grizzle's approach. ‘

Given Table 3, one can see that (18) 1mplies the hypothesis: .

.EO: nl+n2+n3+n5 = 1 +n +“h+“6 =x +1t3+1t)4 ﬁ? . .

Yet this hypothesis can be rewritten as:-

fa

- . . : . N . / .
. gp. “nl + n2 + n3 + “5 . ﬂl + n2 + “h + ﬂ6
- i . -ﬂl‘ - 0, = ﬂu - 1 , -ﬂl"" 1(1 - ﬂu r N
. n2 - nu + “5 - n7 = 0, n2 - n3‘+ “6 - n7 = 0, or
H: nt.-1n +n_ -x_=0 ) ’
=2 b 5T ' (19)

1(2-1(34'<1(6-1t7=0 ' f

- . ~

This hypothesis can be readily adapted to that in (16) by choosing A such that

aforo110a 0f :
. .+ lo.1-1 0 0 1-1 0}, '

. and (19) then becomes

Hi: F() =Azx =0 . " (20)
" From (20), the estimated covariance matrix of F(p) is A V(p)A', and the test s

|
|
1
%
]
%
|
i
|
1:
i
|
|
1
i
"
1
|

4

of the £it of the model in (20) is given by:
' £ = p'a(AV(R)A") hp | (21)
"where if (20) hdlds, (21) is asymptotically distributed as X% with two degrees



'
w . . - -8-
,

of freedom. Table k4 provides the computatiens which are necessary for obtaining ‘

‘Q (in (9)) and x2 (in

.\"‘

(21)) for those data in @pble 3.

. N

/\‘z‘, - e 0000000000 ...........O. - \
;}m’ . - s . Q
&» . Insert Tabl about here
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Given the theoretical development of the Q and X2 statistics, it should

be clear thet while Q tests (1) and (10) 81multaneously, x?: only tests (1).
?
1 . Now that the foundations of these statistics have beern presented, the methodology

employed in this study shall be discussed.

Methodology

The properties of the small sample distributions of Q and Xi were in-

;> H ;vestigated (for r = 2) through the use of enumé!ation methods. Once a specific
i
#

,' parent population.was defined these two statistics were calculated on all possible

]
samples from this population so that exact distributions of Q and xﬁ could be - .

© formed. - - ‘ . X i
Given the hypothesis that Q and xi test, there are four pogsible combina-~

tions of (1) true or false and (10) truée or false. These combinations define -

four distinct population types, they are presented in Table j;) Onre should notice
. ‘» that the number of responses 1s limited in certain population types: if r =2,

then (10) can not be false and so population types B and .C only contain r>2

responses. Also, if r>2, (1) can not be simyltaneously false while (10) is

trde; therefore, t&pe D populations only contain two responses.

~

. . B
w .
000000000 0000000800000 000e° -

Ingert Teble 5 aboit here : .

L

The behavior of Q .and xﬁ in three response populations is currently
LS . w“ .
being investigated. A decision has not yet been reached as to whether or not
~ ¢
" enumeration will be poSBible'in,the three response case, Patil (1975) has

1 %

provided a:method for enumerating Q for any r; however, it is not yet clear

ERIC. 10
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whether Xi can be as easily enumerated in the r=3 situation,, If enumération

i% fouhd to be intractable, the approximate diétnibntion of Xi will be simulated

. * Y . '
through the usc of Monte Carlo methods:\ti::::_,,/ - s

It should be mentioned that Tatevand\Brown (1964, lé?p) also.studied the
effect'of differing samnle sizes on the distribution of Q. They enumerated>the
exact distribution of Q for selected values of r and n . However, since |
these authors studied Q aione, and did not relate it to any other statistics,
they did not find it'necessary to generate distributiens from populations in which
sample size deletion occurs (where the probabilities of trivial patterns'are non-
zero). Furthermore, in stud&ing .é in isolation, Tate and Brown only had to "
enumerate distributions of Q in type A populations. In the ?resent study the
distributions of. Q and X2 were generated from type A and D populations™—

1
Moreover, these populations were predetermined 8o that the probability in the

on the discrepancies in the exact powers of Q and Xi , for any sample size,

S

could be studied. : . .

e

] Results and Discussion .

_ Before any results are reported, an important relationship between Q and

_ Xi (for ¥ = 2) should be mentioned; once this'relationship was established there

was no doubt that the small sample power of x‘i would be greater than the small
¥ i . ~
sample power of Q (at least for'r = 2),

L}

. ]
The Xi statistic will now- be shown to be ‘monotonically related to Q. 1In

|
:
|
|
|
o
trivial, ﬁatterns varied. -In this way, the effect that sample size attrition has ' 1
|
i
|
|
|
!
the two response ckse there are M = o' = 2 =L possible pétterns. If these
patterns are denoted as: (ll), (10), (Ol),5 (00) and their respective frequencies
as: Ny, Moy n3,'nh, then 1t can be shown that for all nontrivial cases (n, ¢ n3), i

Xi will always be greater than Q.

‘
: >
.
)
A »
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Given the above pattern frequencies, it is well known that Q (here’

identical to the McNemar statistic., McNemar, 191»9) can be expressed as:

. 2 N
(n, ='n)" . : ‘ . .
N sl )
A 2 3 ’ . “
Furthermore, if one manipulates the expression in (21), it can be shown that ~
. ~ - )

for .r=2, (21) can be expressed as: T ‘i
o-s 2 (n “n)2 i . '( ) |
' . - - I = * . 23 - 1
H n+n 2h3) ' . ) . %
- e . ° ‘\
y - |

Given (22) and. ( one can show that:

4

‘F/) } ﬁ% ’ |
x;_ = 1 -1 , or , - ' ('214») - }
1 Q . _.—-'\]j

- . . “- . L |
xﬁ = Q(_E_ . - (25)

-,

J

!

" From (2h) one can observe that (for all cases vhere n, % n ) xi will always ‘ i
|

reJect (l) more often than Q . The results belogyare consistent with this J
. / ‘ |

finding. . SN

" ’

- The exact a levels o& Q ‘and Xi 3

>

Table 6 contains the P(Q < X2 .01, 1), P(X.i 2x? 01, l), P(Q,-)?.OS 1) and’
2

P(x?i"x ,05,1

tions based on three tiﬁe A populations. A total of nine sampling distributions

).' These probabilities were obtained from exact sampling distribu-

were generated from these populations; these distributions ordered according

T

to the actual sample size used in the calculation of @ " (from the smallest to

the largest N)

00 0000 5000000000000 00000

Insert Table 6 about here

.........................
7

In all eighteen comparisons of Q and xﬁ , the exact probability of Q is’ f

"closer to the asymptotic nominal probability (besed on the. X distribution) thén “ %




¥

L3

1
2 two statistics are not as great for o = .05 as for a = .01,
_" S ﬁhe exact power of Q and Xi \ ;\
TaBle T contains'thirty two‘exact diatributions which were enumerated' o

.’ ] I~ . v,r i N R . : . ' . . T . ‘ -1.1-
is the exact probability of X2 Q is conservative in fifteen of thé eighteen

comparisons (in all nine at Q= .01), whlle X? is liberal in all eighteen

M ow

comparisons. As N increases, the uppér tails of both the Q and X2 distr1-
.

butions converge to the upper tail of the X } distributiqn, although Q seems

- - -

to converge-more rapidly Mbreover,‘as expected from th),_as N increases”the;

t - I: R v
- .

T eeT -,
- R

exact distributidhs of Q and X? approach one angther. - e
AR . :
Based on the results in Table 6 one can,conclude that for: r= 2, N=b4o.

- _»

“ and (1) &nd (10) true, th. distributisf 'of Q comes closer to the x2 distri-

) bution'than does the distribution of Xﬁ; thus . in these situations, Q can be

sedd to provide a bvetter best than X2 . In general the discrepancies of these Co

from twenty-fixe different type D populations. The distributions are ordered

r

acco;ding to the magnitude (from smallest to largest) of the noncentrality parameter
( A ) in their respective parent popudations. The estimated asymptotic power in
any population is also given this was obtained by referring the appropriate A
Q andudegrEes of freedhm tostables of the noncentral x 2 distribution (Owen,
196Lk). The estimated asymptotic power in a parent population serves as a reference
.point for comparing the exact po;ers of 'Q .and x2' that is, if the asymptotic
power in a parent population were very high (say .95) it would be difficult to

~ debect differences in the exact powers of @ and X2, since these two statistics

& v
,would both be quite powerful. It was arbitrary as to whether the appfbximate

¢ ‘

asymptotic power. of Q or"xi would be used as the reference point. It‘was

.deigggp that the asymptotic power of Xi be used and so the A for a particularq
A P

population was obtained by substituting, into (23), the values of Nn2 and Nn3

. . e ‘}.

in that population.
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Inser't Table 7 about here
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As expected from (24), X?_ is consistently more powerml than Q; in

l
€11 sixty-four comparisons,, P(X2 2 Xa) is greater than P(Q 2 ) One might

* point out’'a’ fallacy in this type of comparison. That is, one might argue that

o

.’ . while Q 1is less powerful than X2 it 1s also a much more, conservative test. In

l ’

"+ this, senée, it would appear to be unfair to compare the exact powers of Q and
X2 by compa.ringl P(Q2X )' to 1'-‘()(2 2 )(2) If, on the other hand, one vere to
find -the values of Q=K and x2 L such that o = P(Q2K) = P(X2 L), then by
definItion, the exact powers of Q and X2 would also be identica], The problem
with this a.rgument is that the researcher does not know the exact distribution of

either Q or é (he cannot obtain K or L), and in using the x approximation,

he assumes: tha.t P(Q >x2) Xi e X2) = a. Given this assumed constant value
- 1. - *....4- ¥~ -~ el —"\.:\' i "'
. of xer- Ll) will be re,jected more often \\v'ith X2 than with Q’, and in this sense

' . (" ‘_v-‘

it is legitimate to say that® >§ is more powerfnl than Q..'f The logical question )

\4‘\

v’ . is then' - in which’ situa.tions would one 'statistic be preferred over the other?=

The trivial response’ is that Q,'is to be preferred when type I errors are of major

concern, while X_i is to be preferred when type II errors are of major concerns

However, ‘a more}specific set of recommendations can be offered if one is willing to

-

make a concession. X . L.

L
Suppose a researcher has a sample size of N = 20 or N 30' if he were to’

use the xi statistic to test a hypothesis, the exact type I error rate, s,t

-

. S
asymptotic a = .01, would only be partially controlled if - N were 20 (/in Table Near
ES \ ’/ . 9
6 the average error rate for-N=20 is .045); however, if n were 30, the exact’

\

/7 error rate would be controlled adequately (the average at N=30 is ,0185). Given

this scheme one might ask, if these exact error rates were tolerated in xi ’

under what conditions would the exact powers of xel and Q be most discrepantﬁ?

L]

If this qtiestion could be answered, then some valuable recommendations could be
offered to researgchers 'who were willing to tolerate .the above type I error rates.
Q Tfh,e results in Table 8 provide a part:.al answer to this question. .
o | 13 R
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Table 8 represents a- re-examination of the results obtsined for the

I

¥

twenty exact distributions (in Table T) which were generated from.samples of

N =20 or N = 30. The rows and columns in this table respectively represen

v . 4 ‘-

asymptotic powers and percent deletions in the parent popéiations of each of these A

/

twenty distributions. The cells in the body of tbe table contain‘the fpllowing

information the label of the distribution, as; in Tab.e 7, in parenth sis, the

~
/

ratio of the difference in the exact powers of X2' and Q s divided by the exact
_power of xi (hereafter this ratio'w1ll be referred to as RDPy, inally,

the sample "size usedato obtain the distribution. It\should be men oned that

*

RDP is less affected by the asymptotic power in a parent population than is a’

’

K4 PR
mere difference in the exact powers and in this sense, relative differences are

more informative than are absolutq differences. “ “"_ -

" If one. observes the RDE's in ﬁable 8 1t should beé evident that while xﬁ

Ly

. \ N
is always recommended over Q (in terms of having greater power), the use of x2

{
,. is .admost a,necessity in cewtain 51tuations.\ As RDP, approaches zero, the exact

. powers of' Xi and Q approach one another.Q Given this, it should be clear that

-

!
e under certain circumstances the use of' X? is highl}“x\commended oven-the use

\\ \
X\
of Q, Very 1arge RDP's occur;when asymptotic power is low.and the percent

[ -~ N

deletions is ;large (populations 1-3; 7 and 9); however, if asymptotic power is

..-.‘-"--(-— Ime %

"l great even large deletions'dOvnot appreciably affect the RDP (populations 29 and
&-

3 i
.

[

Given a range,of low asymptotic power (all populations whose noncentrality
x:'.“":;' yi g . "" !

:-;parameters are less than 5), ﬁh is clear that as the percent deletion increases, 3

RQPﬁincreases dramatically. ln f&ct,\populations 8 apd 12 have more than three .
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times the &symptotic power of populations 1 and 2, yet in spite of these
' .t"'

differences, the larger percentage deletion in 1 and 3 produces RDP 8 which

- are fiuch largerthan in 8 and 12. "One very.telling result is in the difference

i . in the RDP's of 8 and 9. These populations have identical asymptotic power, yet '
. . , :‘ , "

9ihas mere than twice the number of deletions as 8; simultaneously, the RDP in 9
is twice as large as in 8.

Based on the results “in Table 8 one can make'thil recommendation: if a -
researcher is willing to tolgrate the exact (] levels of X1 when N = 20 or 39»‘

,  (the latter level 1s certainly tolerable) then Xﬁ should always be used in .

place of. Q however, Af the researcher obtains sample frequencies where the

non—trivial frequencies are simultaneously close in value and small, say

- n, - n
® { 2 3
’ power of ‘Xi

& 5
certainly ‘use the Xl statistic.

A ] o .

‘< 3,,and the percent deletions is greater than .8, then the exact

is so much greater than the exact power of Q@ that one should
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Table 1 : A Matched Group (or Repeated Measures) Categorical Situation

_a

——————
MATCHED SUBJECTS (OR REPEATED MEASURES F(R ONE SUBJECT)
‘ ‘ r
- :j = l 2 \ . . . . . T 5 le = ul
S i = l Xijr:'xll x12 . . . . . xlr ui = ul
n o7
2 K o1 Xp5 « s e. e e Xop u2
gt
% . [ ] . L] . . . L] . .
g ’,
[a] . /7 -
% n xnl xn2 . . . . . nr u_n
g
: ?xi;):T;)‘:Tl 3‘2 e e e e e T, -?sz‘fxui
-
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Table 28 :  General Categorical Situation for s Multinomial Populstions

-1
' A

L d

V.(Ri)

cXce

v(p)

cs X ¢8

V( _151)- , with -nij\\repla,ced by Py

block diagonal matrix of V(p_i) s

20

o »
L 4
| ' *  CATEGORIES OF _ RESPONS
POPULATIONS GoF ' E
) N .J = l 2 « o o C TOTAL
1= “ij = M1 . 1 : T, =1
= 12 s lc ¥ Ty
2 Moy o . Moo 1_ .
' 4 ) ' .
L] L ] L] L] L] . L] L] L] ‘. L ] L] L ]
8 Ts1 “82 . s s T 1
yi = sc o~
\. ' X \
Table 2b The Notation used in the Development of the ’ﬁ Statistic -
0‘ ° T
[] B . . ,.‘ .
, Z‘-i = ( ﬂil, “12, sss o ﬂic)
» ' lx'c
. x t ﬂ' t . 9
7t = n, X
1xcs L T e is ) - !
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° ey ._-:-:'j- ., ! =’ ’ ’ s 4 ' =‘ - {
‘Pyy= o 15% (pil’ Pips +ov s pic) o, =4 th sample size.
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Table 5 :

The Four Possible Pqp~>at10n TXP?S from which Dlstributlons of

Q éand X2 can be generated.

.
X —

s

1

,./(1)11;0

E(fy )-= E(T,)

= eee = E(Tr)

TRUE

TRUE

FA1SE

izpe. A Populations

‘By-1s true for q and Xi:”

. forr=2andr =3

1. Sampling distributions of
Q and Xi were both compared
to the yx 2 distribution and
to each o*her. Specific
interest was in the exact N
versus the asymptotic a level
of each test and the effect
of samplg size on the adequac)
of the X< approximation to
the .upper portions of the Q@
and g distributions.

2. The effect of sample size
attrition was studied in Q
along with the effects of
sample deletion on differenced
in the exact type I error
rates of @ and 1°

’ 4 -

i3

" 1. Th

Type D Populations

H 1s “false for Q and Xi

forr =2
_exact powers of Q
and X“*were studied in relation
to asy.-rtotic power, sample
size and sample size deletion.

2. Specific interest was in
the degree to which discrepan-
cies in the exact power of Q

and X2 are affected by sample

size deletion, sample size

and asymg}ptic power. .o
T

4

§o :

(10)

all cov(Tj Tk ) are equal,’] fgk

FALSE

e C Populations

H. is true for X% and ﬂélse
?8; Q..
r=73

=¢he following phengmena
are‘currently under inves-
tigatlon

1. The effect on the distri-
butloﬁ,of Q, of the departure
of (10) from equal covariancesg.

2. The &ffect of simple size
and sample size attrition ‘on
the exact power of Q.

3. The exact a le?elsxgn the
distributions of the 1
statistic. 3£

‘ Type B Populations

Ec is false for Q and Xi.

r=3
The samée comparisons, as in
Type D.populations, are
currently under investigation.

-
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