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Introduction

1.
The 'purpose of'this stty was to compare the relative merits,.for-

small samples, of the Cochran Q statistic (Cochran, 1950) and the minimum X1

statistic (Neyman, 191+9). These two statistics can be meaningfully compared

slince they not only represent alternative ways for testing hypotheses about

the equality of correlated proportions, but they are lso both asymptotically

distributed as X2 .

Hypotheses about the equality of correlated proportions are the result

of situations in which categorical data are obtained from either matched samples,

or from repeated observations on-subjects from one sample. Since it is assumed,

in Q, that observations are dichotomously scored, the two category (c=2) per

response situation was considered in this study. Table 1 contains such a situ-

ation,
;

where i=10...1 n matched groups ( or subjects, for the repeated measures

situation); j=1,..., r matched subjects within group i (or r responses per

subject i); and the response xij = 1 or 0 for a success or failure.

Insert Table r about here
a

1n Table 1, the hypothesis of equal correlated proportions is

Ho: E(T = E(fi2/n) = . . = E(Tr/n),

where.Tj is the numbei Of successes in the j-th column. Thus the implication in

(1) is that the probability of a success is equal for all r treatments.

Numerous examples of the experimental situation'in'Table.1 &re cited in

standard statistical texts (Hays, 1963; Siegel, 1956; Winer, 1971). One may have

a need to test a hypothesis, as in (1), in a number of content areas; in psycho-

metrics one way wish to test whether the items on a test differ in difficulty.

In social psychology, only one item or question may be of interest; in this

3
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situation one may wish to test whether or not .a specific group changes its

response to this question over time. In-clinical psychology, rater reliability

may be a concern; one might ask - is the proportion of patients rated positively

identical for different therapists? Final n experimental or comparative

psychology one may wish to test whether the proportion Of,positive responses,

in a particular species, is constant for different drugs (levels) or different

doSes of the same drug.

Theoretical Development of the Q and X2 'Statistics

In developing a test for (1), Cochran assumed that the ui total for any row

i is fixed, and that the expected value of xij, or the probability of a sdtcecs

Pi , is constant for all r columns in row i. Thus:

E(xij) = pij = ui/r, and (2)

14(kij) = (ui/r)(1 - ui/r). (3)

With ui fixed, E(ui) = ui and V(ui) = 0 and, since V(xii) is constant fOr all

r cells in row i,

Cochran furthet

r r
V(ui)= rV(xii) + iACov(xij,xik) = 0 (4)

ed;that Cov(xiexik) is constant for all j4, thus from (4),

cov(xij,xik) = -(ui/r)(1 - ui/r)
(5)

r - 1
7)

The results in (2), (3) and (5), along with the assumption. that the i rows

are independent, allowed Cochran to obtain the:

n
r. .

..
n r. . ._.

E(T ,j) = J1E(xij) = i ui/r = Ej Tj/r = T,

n n
V(T4) = E V(xij)= E (ui/r)(1 - yr),

Cov(T
f(u/r)(1 - ui/r)eTk) = i , j k' (8)

r - 1

and

Given these results, Cochran defined Q as:

4
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Q = f(ui)(1 - 2.

r - 1

1c
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-3-

where the denominator in (9') can be shown to be equivalent to (7) - (8).

If one assumes that n is large, the T
6

totals. may be expected to tend to

.
multivariate normality with common variance (7) and common covariance (8).

Given that (I) is true, Cochran cited Walsh (1947) as having proven that if

n is large, the ratio in Q will be distributed as N:
2

with r.- 1 degrees

of freedoM. However, if one reviews an assumpt'on made in deriving Q

(specificaily in passing from (4) to (5)), it becomes obvious that Q does,not

test (1) alone. Instead, Q simultaneously tests (1) and the hypothesis'of

equal population covariances, namely:

Ho: all r(r-1) covariances are equal, (10)

oz' that all values of (8) are equal.

It should be apparent that (1), together with (10) is a much more exacting

hypothesis than (1) alone. This-iStt least one problem the researcher faces

when Q is used to test (1). Another problem One faces when using Q can be

Observed in'the denominator of (9). It should be obvious that rows where ui

is either equal to zero or to r do not contribute to the value of Q . More-

over, since, Q is insensitive to these rows one can never estimate, a priori,

what power the Q test will have since the effective sample size of Q will be

less than n. That is, whenever the probability of obtaining a ui = 0 or r is

hot equal to zero, sample size attrition will occur. It'shall be shown below

that X
1

2
is affected by the original samplt size.

The minimum Xi statistic is an4alternative to the Q statistic for testing

(1). Neyman (1949) wrote the foundation paper which defined and theoretically

developed this statistic. Since then several authors, namely Berkson (1955),

Bhapkar.(19611 1965) and Grizzle et al (1969) have reformulated the 4 statis-

tic so that it could be easily applied in a wide variety of situations.

5
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Grizzle's approach is mpst appealing for a number of reasons: first,

categorical data are expressed in terms of familiar linear models. Second,,e4

parameters of these models are then estimated and hypotheses about them are

tested using the well known method of weighted least.squares.. Finally, because

AP o.

the linear model approach can be applied in so many situations, Grizzle's method

. represents a unified approach, both donceptually and computationally,for

applying the 4 statistic to categorical data. Because of these advantages,

Grizzle's approach for testing (1) is the one which is cited in this paper.

Grizzle begins his discussiop by referring to a general categorical situa-

tion; this scheme is depicted in Table 2a, where the rows represent s ulti-

nomial populations and the columns represent c categories of a response.

Table'2b contains. definitions of the notation that is employed in the develop-

ment of the
1

statistic.
OP

Insert-Table 28.:.1) about here

Given this notation, Grizzle defines'a function:

fm (n)(A) = a A , where (A) is assumed to be any function of the elements
lxa csxl

of A that has partial derivatives up to the second order with respect to nij
..*

(I--

\\-/ snouldbe mentioned that if any frequency (nij) is zero, S will be singular;

and m = 1,20.../uiv = s(c-1). For all u functions, one can write the general
.

linear model as:

F(A) = A A ) (11)

uxl uxcs csxl

where A is a matrix of deSired weights, with rank equal to u, so that one obtains

u linearly independent f(A)'s.

Given S is then defined as the sample estimate of the covariance

matrix of FA2):'u)Scu
=u1c's IrcWs cAlskicu- '

with the rank of44S equal to u. It.
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in this case Berkson.(1955) has recommended that n
ij

be replaced by 1/c, so -

that pij is 1/(c ni). \-

Grizzle assumes further that the f
m
(Ws in (11) can be described in terms

of a matrix X and a vector of unknown parameters 0

F(A) =A A.. L.TXft (12).
,UX1 UXOS CSX1 uxw wxl

where X is a type of design matrix-of rank w -.u. Based on (12), one can write

the sum of squared deviations, of Observed versus exp^cted:linear functions, as:

(F(2)- X 2. )'S-1 (F(p) 0). (13)

Given (13), Grizile then cites Neyman (1949, Theorem 4) as having proven that

if an expression as in (13) is minimized with respect to 0, the'result:

X'Sj.-X):1*X'S-1F(2)

.
will contain B.A.N. estimates of the parameters in 0, where B.A.N. estimates are

/asymptotically normal, efficient and consistent. Furthermore, the Minimum

value of (13) that is obtained will, according to Bhapkar'(1961, Theorem 3), be

the minimum Xi test statistic for the fit.Of the model in (12), namely:.

the SS(due to the H
o

F(v) = X ft) = F(2)'S - -1F(2)---b'(X'S-1X)b . (14)

Finally, since (14) is the minimum Xi statisticit will, according to Neyman

(1949, lemma 12), be asymptotically distributed as3K2 with u -w degrees of freedom,

if (12) is true.
; 4

Once a model is defined and tested for adequate fit to'the data (as in (14)),

a test of a general linear hypothesis:

ke.

AD: gm °wx1,(171

(15)

can be'obtained by the same weighted least squares method. In (15y, o(dx.w) is .

of full row rank d= w. Thus (15) represents restrictions on the original Para-
.

meters in (I2)-. Using the same rationale as in (13) and (14), one, obtains a

7 R
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minimum X2' test statistic, for _(15) as:
1

, -1 -1
.-,,SS(0 _ . 0 . b'Cl(CkX'S X)) C'),

1
Cb,_ 4P

with d degrees of freedom, if (15) is true.

In many cases there is only one population, as in Table 1, 'and the objective

of the analysis is to study the relationships among ways of classification of

the sample units. Many situations of this kind can be described by the model:

F(g) = 0 .

uxl

This fits into Grizzle's general model (12). by setting X.= 0 the null matrix.'

(16)

The test statistic for (16) is then:

SS(F(g) = 0) = F(p)'S1F(2),

r

(17)

which is, asymptotically X2 with u degrees of freedom, df (16) is true.

Since the situation in Table I Is a one populatiOn problem, the expression

in (17) can be used as the minimum test for the hypothesis in (1). This

can be presented through the use of an example. Table 3 contains a feproduction

of the repeated measures data presented in Grizzle's Table 4 (1969). Forty-six

subjects were each given drugs A, B, and C. Some had a favorable response to

one, some to two and some to all three drugs.

Inert Table -3 about here

Before the X2 method for handling this situation is discussed one should
1

note the differences between the situations in Tables 2a and 3: the former Table
o

contains s populations, 1 response per subject and c categories per response,

while the latter table contains 1 population, 'r :responses, per subject and 2

. categories per response. However, although this latter situation has two cate-

fiories it is still niultinoMial if one regards the possible response patterns

1 for any one subject as the experiment' mutually exclusive categories. That is,

for each of the three responses in Table 3 there art two possible categories,

y.
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3
8)therefore, there are a total of c k= 2 = 0) possible response patterns. Since

any one subject can have one and only one response pattern his response vector

contains eight elements, one of which is equalto one and seven of which are ,

equal 'Co zero.
o

°
Given this configuration the hypothesis to be tested in Table 3 is that the

marginal proportions are equal:

Ho E(Ti/N) = E(T2/N) = E(T3/N) or

0
H : E(T

1
) = E(T

2
) = E(T

3
),

where (18) is identical to (1), for three responses.

This hypothesis may be .Wrritten so that it is ammenable to Grizzle's approach.

(18)

Given Table 3, one can see that .(18) implies the hypothesis:

H +n +n +n = +n +n +n n -1-1C+n
1 2 3 5 . 1. 2 6 1 3 q

Yet this hypothesis can be rewritten as:

1
H
0

n '+ n
2

+ n
3
+ n

5 g n
4

l 2
+

n4 n6

' n4 n7 -n14- n3 n4 r n7

n2-n4+n
5

n
7
=0 n2 - n3 + n6 - n7 = 0, or-

A

H0- n2 -n4 +n
5
-n7 =0

g2 g3 +C6 °

(19)

This hyppthesis can be readily adapted to that in (2) by choosing A such that

A =
0 1 0 -1 1 0
0, 1 -1 0 0 1 -1 0J,

[

. and (19)' then becomes
6

H : F(16) = A n = 0 . (2o)

From (20), the estimated covariance matrix of F(p) is A V(2)A'1-and the test

of the fit of the model in (20) is given by:

Ai = 2 'A' (AV(0150 )-1A2 (21)

where if (20) holds, (21) is asymptotically distributed-as )C2 with two degrees

9
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of freedom. Table 4 provides the computations which are necessary for obtaining

'Q kin (9)) and (in (21)) for those data in Table 3., Jo-
X2

, .

t'
1 \r

A

Insert Tafpli40 about here

e'
,Given the theoretical development of the Q and X! statistics, it should

be clear that while Q tests (1) and (10) simultaneously, X, only? tests (1).

Now that the foundations of these statistics have been -presented, the methodology

employed in this study shall be discussed.

Methodology

The properties of the sMall'sample distributions of Q and X were in-
1

;'vestlgated (for r = 2) through the use of enumAlation methods. Once a specific

parent population-mas defined these two statistics were calculated on all possible

y samples from' this population so that exact distributions of Q and X21. could be -

formed. L

-,

GiVen the,hYpothesis that Q and X2 test, there are four podsible combina-

tions of (1) true or false and (10) true or false. These combinations define

. A
four distinct population types; they are presented in Table One should notice

that the number of iesponaes is limited in certain population types: if r =2,

then (10) can not be false and so popUlation types B and,G only contain r>2

responses. Also, if r >2, (1) can not be simultaneously false while (10) is

true; therefore, type D populations only contain two responses.

Insert.Table'5 about here

The behavior of Q and X2 in three response populations is currently
1

*1.

being investigated. A decision has not yet been reached as to whether pr not

enumeration will be poseiblein,the three response case. Patil (1975) has

provided a method for enumerating Q for any r; however, it is not yet clear

10
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can be as easily enumerated in the r=3 situatione, If enumeration

be intractable, the approximate diitribution of X21. 11.11 be simulated

use of Monte Carlo methods: -

It should be mentioned that Tate and Brown (1964, 1970) also-studied the

0
effect of differing sample sizes on the distribution of Q. They enumerated the

exact distribution of Q for selected values of r and n . However, since

these authors studied Q alone, and did not relate it to any other statistics,

they did not find it necessary to generate distributions from populations in which

sample size deletion occurs (where the probabilities of trivial patterns'are non-

zero). Furthermore, in studying Q in isolation, Tate and Brown only had to

enumerate distributions of Q in type A populations. In the present study the

distributions of Q and X2 were generated from type A and D populations--'

Moreover, these populations were predetermined so that the probability in the

trivial patterns varied. In this way, the effect that sample size attrition has

on the discrepancies in the exact powers of Q and Xi , for any sample size,

could be studied.

Results and Discussion
se

Before any results are reported, an important relationship between Q and

22

X (for 1 = 2) should be mentioned; once this relationship was established there

was no doubt that the small sample power of 4. wdUldble greater than the small

sample power of Q (at least for'r =

The XT. statistic will now-be shownto be'monotonicaily related to Q. In

the two response case there are M = 2
r

= 2
2

= 4 possible patterns. If these

patterns are denoted as; (11), (10), (01),i (00) and their respective frequencies

as: n
1,

p2, n
3' 4

n,, then it can be shown that for all nontrivial cases (n
2

n3),

XI. will always be greater than Q.



Given the above pattern frequencies, it is well known that Q (here.

identical to the McNemar statistic; McNemar, 1940 can be expressed as:

(n
2

- n
3.?2

.S n
2

+ n
3

(22)

Furthermore, ifone manipulates the expression in (21), it can be shown that'

for ,,r=2, (21) can be expressed as::

,2
(n
2

- n
3
)2

"1
=

n
2
+n

3
- cn

2
-11

3
r"

Given (22) and_

N
,

one can show that:

(23)

or (24)

Q(4) (25)

From (24) one can observe that (for all cases where, n
2 3).

x 1 411 always

7

reJect (1) more often than Q . The results beloloare consistent'with this

finding.

The exact a levels o Q 'and

P( X2.01,1)' locia 2).051)Table 6 contains the P(Q 2.0
.01,1

), and

P(X1>X2.051 ).
These probabilities were obtained from exact sampling distribu-

tions based on three tie A populations. A total of nine sampling distributions

were generated froth these populations; these distributions ordered according

to the actual sample size used in the calculation of ci (from the smallest to

the largest N)

Insert Table 6 about here

In all eighteen comparisons'of Q and 4 the exact obability of Q is'
4..

'closer to the asymptoticnominalprobability (based on the.)C2 distribution) than:_

12' .)
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. -11-
, ,......

- 4
. L.

,

.is

.

the-exact probability of X2 Q is conservative in fifteen of th$ eighteen
I..

comparisons-(ipallnineat
, hileKi

.1-

s liberal in all eighteen
,

I.
comparisons. As N increases, tee uppeir tails of both .the Q and .4 dietri-

'

!, ,

butions converge to the upper tail of the X
2

dist.ribution, although .Q seems

to converge more rapidlY. Mbreove;,as expected from11(24),_,S N increases,the.
(

..

exact distributidhs of 4 'aifd X2 'approach one another..
_ . .,:,

1 .

Based on the results,in Table 6 one can.conelude that, for: ry.-- 2i N = 40
.....

. and (1) and (lO)'true,the distrib4tila 'Of''6t comes closer to the X
2

distri-

A .

, : .

,
bution than does the distribution of thus,in these situations, Q can be

_said to provide a better test than X1 . In general the discrepancies of these

,,, two statistics are not-as great for a = .05 as for a = .01.

he exact powei of Q and
A

,: Table 7 contains' thirty twoexact diaributions which were enumerated

fromtwenty=fixe,different type D populations. The distributions are ()Hera

according_to the magnitude,(from smallest to largest) of the noncentrality parameter

( A ) ip their respective parent populations. The estimated asymptotic power in

any population is also given; this was obtained by referring the approprAte A ,

ct anOldegrees of freedom tottables of the noncentral X
2

distribution (Oven,

1964). The estimated asymptotic power.in a parent population serves as.a-reference

point for comparing the exact power of 'Q ,and X1; that is, if the asymptotic

p6wer in a parent population were very high (say .95) it would be difficult to

, detect differences in the exact powers of Q and X2 since these two statiotics
- l'

, ,'/s' ;

,would both be quite powerful. It was arbitrary as to whether the apprioximate
. .

asymptotic power, of Q or '4 would be used as the refereliCe point. It ..$61

d that the asymptotic power of be used and so the A for a paticular...

r
$

population was obtained by substituting into (23), the values of:NA2 and Nn3

. 1
. in that population.

- 13 .
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Inse2& Table 7 about here

As expected from (24), Kl is consistently more powerful than Q; in

-12-

all sixty-four comparisons0, i,(4 2)(,) is greater than p(Q.?Wa2). One might'

. point out'afallacy in this type of comparison. That is, one might argue that

!while Q is less powerful than X2
'

it is alio a much more, conservative test. In
, 1

this sen;ej it would appear to be unfair to compare the exact powers of Q and

X2 by comparing P(Q2)(2). to P(X2 a>X2)., If, on the other hand, one were to
.1 a
find ,tht values of Q =K and X2 = L such that a = P(Q

1
IK) = P(X2 L), then by

1

definition, the exact posers of Q and X21 would also be identica],. The problem

with thii argument is that the-researcher does not know the exact distribution of

either Q or (he cannot obtain K or; 01, and.in using the')(2 approximation,

,.

he assumes, that P(Q ?)e-). ,
P-(4?)!Y,. Given tiiis_assumed constant value

a
. :._...... .:,...

2, ,

,

.

of X
i,-,

.0.) will be rejected more often kth X2 than, with Itr,and in this sense
1

it Is legitimatg to say that' is more powerfUl than (14 The logical-quegtion
. _

is then - in which' situations wouldone'statistic be preferred over the other?4'

.

The trivial response is that Q is to be preferred when type I errors are of major

concern, while is to be preferred when type II errors are of major concern.

However, "a more1ispecific set of recommendations can be offered if one is willing to

make a concession. _

.

, ) , .---
. . - . .

. _

Suppose a researcher has a sample size of N = 20 or N = 30; if he were to

use the
1

X2 statisticto test a hypothesis, the exact type .1 error rate,' at

.
.

asymptotic a = .01, would only be partially controlled if 'N were 20 (in Table

A \ '

6 the average' error rate forN=20 is .045); however, if n were 30, the exact'
. .

y,
) error rate would be controlled adequately (the average at N=30 is .0185). Given

this scheme one might ask, if these exact error rates were tolerated in X2
1 '

under what conditions would the exact powers of X2 and Q be most discrepant?
1

If this question could be answered, then some valuable recommendations could be

offered to researphers who were willing to tolerate the above type. I error rates.

The results in' Table.8 provide a partial answer to this question.

14



\'
-1

r.

!rt'r
Insert Table 8:abou there;

Table 8 represents a:re-examination of the' resulthpbtained fOr.7the

;twenty exact distributions (in Thble 7) Which were generWed from.'samplesof

-13

,

N = 20 or N = 30. The rows and columns in this table resPectively' represen he

asymptotic powers and percent deletions in the parent pdalations of each of these;%
I '

twenty distributions. The cells in the body of the. table 'contain' the fcacipwing

information: ttie label of the distribution, as: ip Tab.L.e 71: in parenthisj the
/ - ..

,

P. ,

ratio 9f the difference in the exact pOwers of , x and, .Q
'

diVided by the exact
.1

.

power of 4 (hereafter this ratio will be referred'to,ai- RD1 ran 4inally,

the sample-size usedAto obtain the distribution. It'shOuld3ae Men oned that

-RDP is less affected by the asymptotic power' in a parent population than is a"
. ., . . ,

mere difference iti the exact pow44 and in this sense, relative differences are

more informative, than are abio11-4:0,fferences.
:,

. , .

; ..

If one,'observes tf RD)is inable. 8 it should be evident that while )C2

4. -. .
1

:,,:4
s . '1, .

.

i 13 always recommended over ,Q. 4rt terms &f having greater power), the use of )C2
,e

1

- is Alamos& a: necessity in cextain, Sitnations. As RDP approaches zeroj the exact

t .

.

powers Of c r. and Q approhcb one ancither.' Gier.1 this, it should be clear that
1 s

.;.''..j _2 ,
,

.._ ,

under:certain circumstances the .Use or, 'X'''1.13 highl'7commended over the use

of Q :, very, large RDP' s ,ocean when asymptotic power is' low
;

and the -percent

,

, \

;
-;

.
. .

.
1 -I

deletions is ; large: (populat iOns 1,-.3'i 7 and 9); however, if, asymptotic Power is
t

.

. .

;.. A' .i, grehtj e,;pn large deletions -do not appreciably affect the RDP (popUlations 29 and

/1 .-.;.-;

:-'-'-':--', :;_j);',;;'; I. - ,
f

', .-, 6. ' : ,I. , ..;::' ;
; ..

- ...4, . .., .?
r / i

: : . . ; .

4
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fx

times theapymptotic power of pOpulationt 1 and.20 yet in-spite of these
. .

differences, the larger perCentage deletion:in,1 and 2 produces' RDP's which

are much larggrthah in 8 and One ve,rirtelling,reault is in the difference

in the RDP's of 8 and 9. These liopuiations have identical asymptotic power, yet

9thas more than twice the number of deletions as 8; simultaneously, the RDP in 9

As twice as large as in 8.

Based on the results in Table 8; one can mike tin, recommendation: if a

researcher is willing to tolerate the exact a levels of 4 when N = 20 or 304,
/ .

(the latter level.-is certi4niy tolerable) then' 4 should always be used in

place of. Q ; however, if the researcher obtains sample frequencies where the

non - trivial frequencies are simultaneously close in value and small, say

Jn2 - n
3

I -< -and the percent deletions is greater than .8, then the exact

power of- is so,much greater than the exact power of Q that one should
1

.; 2
certainit-use the Xi statistic.

2

4
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Table 1 : A Matched Group (or Repeated Measures) Categorical Situation
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Table 2a : General Categorical Situation for s Multinomial Populations

POPULATIONS
CATEGORIES . .OF RESPONSE .

q .j = 1 2 c TOTAL

_ =
nib = gii

12n12
A
lc

c

i Aii 1

2 A
21

_

g
22

.

A
2c

1
-4

-
.

s g
sl

o
s2

.

A
SC

.

1

Table 2b The Notation used in the Development of the'X2 Statistic1
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4

Table 5 : The Four Possible Population Types from which Distributions of

g and X can be generated.
1

(1) 110 : E()-= E(T2) = = E(Tr)

1'

TRUE. FALSE

Type. A Populations

.-
H
o'is true for Q and X..°

for r = 2 and r = 34:

1. Sampling distributions of
Q. and Xi were both compared
to the X 2 distribution and
to each o+Iler. Specific
interest was in the exact -

versus the asymptotic a level
of each test and the effect

of samp1 size on the adequacy

of the X4 approximation to
the.upper portions of the Q

and X2
1
distributions.

2; The effect of sample size
attrition was studied in Q

along wip the effects of
sample deletion on differences
in the exact typ I error

rates of Q and X'
1'

Type D Populations

H is'false for Q, and
-oforr =2
1. Th exact powers of Q
and X `were studied in relation
to asy.2totic power, sample
size and sample size deletion.

2. Specific interest was in

the degree 'to which discrepan-
cies in the exact power of Q
and 4 are affected by sample
size deletion, sample size
and asympt,ptic power.

IOW

T pe C Populations

and VhseH. s true for

.
r-= 3

The following phenOmena
are'.currently under inves-

tigation:

1. Thq effect, on the distri-
bution of Q, of the departure
of (10 from equal covariances

2. The effect of Ample size
and sample size attrition 'on
the exact power of Q.'

3. The exact a levels An the

distributions of the X'

statistic.

I TM B Populations

-6 is false for Q and Xi.

r = 3
The same comparisons, as in
Type D-populations, are
currently under investigation:
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