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CHAPTER I

INTRODUCTION

I. THE DEFINITION OF THE :PROBLEM -TO BE SOLVED

Present Training of Geometry Teachers. The academic mathematical
training of the high-school teacher of mathematics, in addition to high-
school algebra and geometry, consists at best of college algebra, trigo-
nometry, analytic geometry, calculus, and perhaps differential equations,
advanced algebra, surveying, Mechanics, or astronomy. To this there
is often added a special methods course in mathematics of-two or three
semester hours. The teacher. is then supposedly trained to go into a
high _school and teach algebra and demonstrative geometry.

Thf,_weakness of this progrAm of training_ for geometry teachers is
apparent. The student is well trained in algebra because of his wide
experience with its symbolism throughout his college course, but his
training in geometry consists of very little more, if any,, than his .high-
school course. Trigonometry -makes use of similar, triangles, analytic
geometry deals with lines and circles and calculus -treats in part of
areas and volume; =but nowhere in the college course is the emplia.sis
put on the proving or demonstrating of relationships in the way that is
so' widely emphasized in, high-school-geometry, nor are the relationships
which are studied id high-school .geometry widely used. The reason for
this inadequacy in -the training of high-school teachers lies in the fact
that colleges of education have merely accepted ';he academic mathe-
matics courses without modification or adequate adjustment to the needs
of prospective high-School teachers of mathematics and have usually
supplemented them with a brief "methods" course.

Needed' Training of Geometry Teachers. Professor _Bagley contends
that "The.high-school teacher of mathematics ,should surely undertake
mathematics studies wellin advance.of those that he proposes to _teach,
and it is quite possible that the content of these advanced courses
should be modified_ by the fact that he is to teach high-school mathe-
matics. But in any case he needs courses in elementary algebra and plane
geometry, which will not only refresh his mind with regard to elementary
principles and processes, bit also give him a much deeper and broader

1
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conception of those principles and a much more facile mastery of those
processes than WS elementary course could possibly give him. Such
courses Should emphasize the historical development of these elementary
proCesses, and they should lay stress particularly upon the possibilities
and methods Of illuminating instruction by the applications of elementary
mathematics to Fa variety of scientific.. technical and industrial prob-
lems."1

Engineering scheols have taken the academic courses in mathematics
and have:professionalized them, to make them better- suited to their
uses. A corresponding professionalization is necessary in the courses
for prospective teachers, if they are to prepare adequately. for high-
school teaching. Such a riiodificgion is eminently necessary for teachers
of high-school geometry. ,

Textboaki in geometry have aireadY 1-3ert!,vtritten ostensibly for the
purpose of solving this probletn. Altschiiler765urt!s College Geometry
is advanced Euclidean geometry and is a:\pioneer effort in the direction
of professionalization.2 Johnson's Modern. Geometry is a similar -texts
BOth of these books, along with Durell's, Godfrey and Siddon's, and
others, are still quite academic, in their-point of view. They, are really
advanced geometry ased on a thorough elementary course.

The Problem to be Solved. There -remains then the problem of secur-
ing still further professionalization of subject-matter with more emphasis
on the fundamental pattern of teaching geometry as well as on the
foundations of geometry,,more actual contact with high-school geometry,
and more attention to the system of formulated reasoning and its applicv
tion to non-geometric as well as geometric situations. Such is the prob-

lem whose solution is herewith attempted: The method of solution has
been first to state -the problem in terms of the specific objectives -to 'be
realized, and then to select the, subject-matter which will best enable
the - student -to attain thoSe objectives. The subject-matter selected is of
two types: The first is somewhat general and includes a presentation of
problems concerning the function of geometry in the high school, a
discussion of some specific problems which the high- school teacher has
to meet, and Clally the establishment of a philosophy of teaching anda
.technique of presentation recommended for high-school use; second,
this philosophy and technique are applied to a few high-school geometry

2 Bagley, W. C. The Professional Preparation of Teachers for American Public Schools.
The Carnegie Foundation for the Advancement of Teaching. Bulletin No. 14, p. 152.

2 Attschillekourt, N. College Geometry. Johnson Publishing Co., Richmond. Virginia,
1925.

Johnson, R. A. Modern Geometry. Houghton Mifflin Co., 929.
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theorems and college geometry theorems, and droviSion is made for an
abundance oi orienal exercises for practical appliCation. Chapters I,
_II, and IILpieSent the first type of material which is largely profession
in,nature, and .Chapters IV, V; and VI present the second- type of ma-
terial whiCh,-appiies the-professional ideas to material that is largely
mathernatiCat' 7

II. THE OBJECTIVES OF THIS STUDY

'The purpose- of thiS study in,-the,professionalization of geometry for
teachers' colleges is to Suggest mathematital .and professional training
for prospective- teachers of high- school geometry. This general objective
is broken up into the following specific objectives.

A. The Mathematical ObjeEtives of tke Course
1., To insure-a thorough mastery of the subject-matter of the high-

school geometry whith the student is-preparing -to teach.
2. To=develop an appreciation of the

of
reasoning presented

. through the simple relationships of geometry by emphasizing-the
folloWing facts:
a. The foundation for building the structure called geometry -is

.
composed.of undefined terms, definitions, axioms, and postu-
lates.

b. The structure itself is comprised of conclusions which are
reached by a process of ,reasoning based upon certain hypothe-
sesand the foundations previously accepted.

c. Sequence is therefore of paramount importance.
3. To develop and to extend the student's ability to discoVer and

analyze space relationships, by the mastery of theorems and ex-
ercises of modern geometry more difficult than thoSe used in high--
schoul texts.

4. To develop an appreciation of the functional relationshipS in
gecimetry.

5; To shovi the-historical development of geometry and emphasize
its early and continually prominent place in civilization as a uni-
versal language of thought.

B. The. Professional Objectives of the Course
1. To give a new view of and, if necessary, to develop the abilities

and concepts included in high-school geometry, with the convic-
tion' that "no one can teach what hi does not know."

2. To present, to illustrate, and to use methods of teaching which
correspond to those recommended by this study for 'high-schoOl
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'teaching with the idea that "most teachers teach very largely as
they have been or are taught rather' than as they are told to
teach."

3. TO provide the student with problems in geometry relatively as
difficult for him to solve as those in high school are for a high,
school student; in order that he may appreciate anew the learner's
point of view, and in order that he may be-taught, in the way

. that -he supposed to teach.
4. To emphasize the two -fold nature and purpose oU a theorem in

,geometry, namely, to serve as general law or principle' used to
*rove "Origirials" and other theorems,. and to,serve asi reasoning
pattern for solving geometric "originals" or kir proving any eon-
clusimis which seem to be pendent upon given premises,.

S. To teach, test, and diagnose; then,Afnecessary, to teach, test,
and diagnose again to the point of mastery,

6. To emphasize the. principle that learning takes _place only during
pupil activity or, more traditionally expressed, that "we learn
;to do by-doing."

C. The Professional Assumptions upon Which the Course is Ruilt
,1. The student will have had a course in the introduction to teaching,

emphasizing professional ideals and respimsibilities, and also s4cli
routines as care Of light, heat, ventilation of the clasS room,
tendance, daily and term reports, marking syS ems, lesson plan-
ning, and:the like.

,2. The student will Lave had a course in educa ional psychology,
and *ill understand and appreciate the laws o learning and the
psychology of-'drill.

3. The student will have had a course in the prin iples of education
Which will stimulate Min to adopt a philosophy. f education and to
appreciate the prominent place of education in thAiirogress of
civilization and the future of democracy.

4. The student will have practice teaching after taking this course.

D. The Specific Matheniatical and Professional Objectivei of the Course.
A mastery of the subject-matter in the detailed units as presented
on the following pages and in the manner indicated, including a large
portion of the original exercises, will be the specific, detailed objec-
tives of the course. These details should not be emphasized so as to,
overshadow or minimize the general objectives, bUt so as to con-
tribute to the realization of those general objectives.

.10(
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III,' THE _SELECTION OF TIE "ESSENTIAL" THEOREMS
OE .13iGil.;8CHOOL GEOMETRY. -

. ,. ,.

The'ecisrtique- of Selecting- the Essential Theo,rems: -Table I, which
-follows,. shows the technique used for the selection-4k the "Essential
Theorems of High-School .Geometry." It-, shos<s an ,analysis- of all the
theorems and constructions in-the Repor04 the-National Committee

on the Reorganization of MatheMatieS: The analysis indicates that even

in-this-short list of- thecireina_there are many that Are never used in the

proof of later. theorema. in the case of--some that-are-usek the theoreins
in whith they are used are often not referred to later,- or a slight change

'in the proof-of a later-- theoreirimaY render a previous theoreMaseless.
For :instance, theorem -number -1a*, in Table I, "Two- triangles- are

congruent if two sides and the' ineluded angle -etc.--," uses in- its- proof_

only postulates 8. (p8), "Any figure may be Moved- from one place, to
another without changing its. shape -or siie," and (p1), "Only -One

straight-line can be drawn between two-points." HoweVer, theorem la is,.

itielfased in .the proof-ofa large number of theoreins:._lc, 2, 3a, 4; 9b,'
etc.-Again, theorem 7, "The 'SUM of theangles of a- tritingle.equals '180

degrees," uses in its proof, in addition to a definition-a d an axiom, oon-
strtiction 5 (c5),- "Through a given:point draw a line allel to a given-

line," aid theorem 6a; When a transversal tuts two araliellines, the

alternate interior -angles° are -equal') while it is ttsect, n the proof of
theoreins numbered 2; 5, c17, sob, s5, s6, s8a, sl4a, s18, s19, cel, ce4.
Theoreins such as 9i, 9b, 11c, 13c, ,14, given below are-never-used again;

in the proof pi, later theorems: ,

9a. "Any quadrilateral is-a parallelogram (a) if its opposite sides are
r - equal ,-(b) if twosides are equal and parallel."

11c. "The,area of a trapezoid etc! ."
13c. "Two triangleS are similar**

\
.heir sides are respectively propoi-

tional:"
14, "If two chords of a circle intersect, the product of the segments-of

one is equal to the, product- of the segments of the`` other."
These theoreans and others like diet* since_ they are nokneeessary for

the proof 1/2if,other propositions?
are really not essential theorems in the

sense -that "essential" has been defined, but rather applicatiOh1 s of the
.

essential-theorems.

4 National CoMmittee on MathematIzal Requirements. TIM Reorganisation of biotite-

i - masks its Stcandary-Educatioi Nottibton *Jain Co., I927 t

These numbers refer to the theorems listed in the National Committee's'; report._
1
\

11



...,Mr

,

6 Geonietry-Professionalized for Teachers

Theorem 'number 8, "A parallelogram is di%ided into congruent tri-
angles by either. diagonal," is used in the proof of s7a, which in turn is
used in the proof of several theorems. Theorem s7a, "Iniany-Parallelcf
gram the opposite sides are equal," can be proved without .theorem 8
by including the proof of theorem 8,in ,its proof. ThereforeNtheorern s7a
is ail essential .theorem and theorem 8 is accordingly omittecL from the
list of essential theorems. Theorems la, lb, lc, are the three/Cony:en-
tiortal 'congruence theorems; and they are postulated. The, defense ,for
,such postulation is given later.

It is evident that a defensible minimum list of theorems could,be made
from tlese essential iiteorerns. Stith a list would be a perfectly og cal
system and would be coMposed of only the most important th ems
of geometry. All others Could be given a minor place or perhaps li ted
as exercises to be solved` by the student. Such a choice, has been made
and the, selection indicated by double asterisks in Table I. The proving
of these theorems and Ole providing for. applications of them.lnake up
the proposed directlitonact with the field of hi0-school geometry,which
is included in Chapter; IV of this study. :A thOiough Mastery of 'these
theorems and some.oftheir apprcations is designed to provide,confidenCe.

with the content Of 'high- school geometry and :experience with The
technique of teachingl geometry. The \ following list constitutes the Oleo-
reins seletted. In some eases the usual wording hasbeen slightly changed.

It should 'be mad? clear, however, dukt the "Essential Constructions
and Theorems" which 'are selected on the ater-usage criterion are essen-
tial in a professional sense rather than in a mathematical sense. Their
purpose is "to refresh" the reader's "mind with regard to elementary /
principles and processes," and to establish a pattern of teaching, but not/
to serve as a new list of the "fundamental theoremS" of. geometry. They

*are important theorems for a prospective teacher of Euclidean geometry
to know, and .,fundamental in a professional sense only. They are de-
Signed to give the prospective teacher "a broader and a more accurate
knowledge okthe materials to be taught; ... an appreciation of the teach-
ing difficulties involved, and an ability to apply the guiding principles
of psychology, and methodologY to those difficulties; and... a,richer cul-
tural background of illuminating information and appreciation whiCli
will enliven and 'Color the work of the teacher."*

Evenden, E. S. ."The Critic Teacher and the Professional Treatment of Subject-
Mattel: A Challenge," Educes:tonal dministrasion and Supervision, 15:373.82.

_
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a PLANE GEOMETRY

, TEE USE-MADE or TEMORE3iS IN THE Near or LATER 'TNEOREMS

Previous' ikOrems, ithuttitc- Propo- Lister theorems and constric-
tions,' and postilatisiseeded sitimis ., tiolis,whisis need this theOrens-

is' -true proof, : proved :,./ is their prOol,

.s. , 11 la- Te,"2;73a7-4,i--9b;--13b;23b;-cl; -,c3,-,- --..

c6b, c16; stb, 59,-ce5 /
lb eel:5, '61i, 8,_10; 13a,:, 29, -c6c,-sic,

fln i ,lc 4, 9a, 111), lld, _13c,.23a, .24b,-cl.,--
, 1

c2, c3, c6a, c66 .

P1001-477, la *4'2 5, llit, 24a, 26a, 26b, 513, ce3
/ c2; la *1,3a lc, 2, 17;-27; c17, sI4al,s1461,-ce5

/ c2, lb t 3b 17- .;

.' la, le **4 c8,,c9, sil
,/ 2; 701: ; **5 c10, 512,

,c4; 6b, p14
,..c1,.c3;=p12, lb, p13

c.5; 61

di lc, 6b,
,./ 6a, la, 6b

c5, s7a, p15, 6a, s* la
c3, p13, s7a; 2, p16

**6a / 7,, 91.), 10, 17,31a; s2b, sic, s17
116b--- 6a, 7; 9a, 9b, c5, sla, is4a, slb,-s8a,

s8b
**7 2; S,,cii, sob; s5, s6, s8a, 5144, $18,

s19, cel,,ce4

8 87a, sib
9a
9

**10 12a
.11a s21

, ;p2, p13, s7a, lc, p16 . **11b 11c, Ild, 18, c15, s21
lib Ilc
I lb, -lc 1 Id 31

.

c5,10 **I2a 12b, 12e, 13a, 17, c12

I>

c5, 12a -**12b 13b;;,13c, s9

.cS; s7a, 12:a , 12c c7

c4, lb, V.4.14 **13a 13b,, 13c, 14, 18, 19, c14,s9, s20,
s22 ,

la, 12b, 1. ''. 13b 16b
,

.12b;s2a, 1 ., is 13c
_p12; 28, 27,, l':,:. 14

--)

axiom- 1,15 30
axiora .. 16a
axiom and 13b. 16b
p2, cS, 12a;.6a, s2a, 3b' '17 ),
c4, c3,43a, llb 18

.

All numbers refer to the theorems.inahe list given by the Report of the National
Committee on the Reorganisation or Mathematics in Secoitdary Education, 1927, Houghton
Sfiefiit -Co.,-Nen York. c12, means construction number 12, 42 Means subsidiary theorem
number 12, pages 78.91, ce8 means pieorem 8 of the additional College Entrinee theorems
30 page 169. ,

" Selected for the minimum list of essential theorems.
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TABLB r (Continued)

'

f

Previous-theorems, onstruc-

1

tions, and r postidates needed
.

in the proof ...

cS, 13a I
19

.138 .. i

138
-21b

lc, 21b
21a;_la
2, 21b ad
s

PS
.0
24a, 2
-2, 24a
3a, 352..

27;22.
1 23b,,273-25a, lb
't 151

.29,114 30
,p1; le, la;

f

p1, 1c '
p1, lc, la

p1, ic
6b /

Sc
la-
lb
c5, 12C

'Propotz Later theorems and construc-
, sitio tions which need this theorem

_
proved in their proof

'f), C13

21a 23b
21b 22, 23a, 24a

' 22 28
-,...

-23a
,--

. 23b 29
....- **24a 26a,\26b;s16

i \-- 24b n/ t
*ri5a 29, 413, s16, ce3

25b clip' ce6 .
26a ce,6 i

26b
* 2" 14, 28, 29, nc11,-s15, . c16,_ s17, a-,18, "-----'

s19, s20, ce4 i

, 28
29. 31

**30 31
**31 \ ce10
**cl -30, cll, c13

**c2 .3a, 3b.
**c3 6b, 114, 1113; '18, 19, cll, c13, c16, i

$22 , -

**c4 6a, 13a, 18, c14 ti

**c5 7, 10, 12a, 12b, 4c, 17, c7: c12,-'
tc15, s17 \

**c6a .
= **c6b

**ctc --
c7

4 c8
T.4,p6 c9 ce2, ce5

1

5,p6 i . c10
c3, pl, cl, 27, 25b c11
c5, 12a c12
cl, c3,,19 ,- c13
C4, 13a c14 :,

p1, c 1 ...deli
c5, 111), i

c15
f, la, 27 c16

3a7 c17
p12,i6b sla 13a \\

! .

6b' sib
p12, 64 s2a 10, 13c, 17

'Cla gb
p15, p13, p14 $3 s16 ..

p2, 6b s4 a ;
, p12,7 s4b _
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TABLE I (Continued)

9

Previous theorems, constrsic-
lions, and postulates. needed

4. in.-the _proof

Prop- Later theorems and construc-
sitions tions which need this theorem
proved in their proof

7. 55, 27
s6\ , ce7

8 **s7a ,10, 11a, 11b, 12c, s7c, $10
8 .. sib '
s7a; 6a, lb s7c

7,.:6b s8a 1

,p12; la, 6b .s8b '
- 12b,.13a, la s9 i ft

s7a, sll s10
\ 4 sll 510\

1
,512

25a,\2 s13
- 3a, 7 '. s14a1 s14a2, s14b,, s14c1
.514as \ s14a, s14c1
-3a, s14a1 . \ ,s141% s14132, 514d1

514b1 s14h2
. -'

. ks14a1,-s14a2 s14c1 s14c2
514c1 s14ci
s14ha s14c11, s14c12

514d1 \ s14di .:.

27 sl$
,25a, a3, 24a s16 '.

c5; 6a, 27 s17 s20
7;- 27 _, s18
-7, 27 ----- s19

27,s17,43a .,, s20
11a, llb s21 _____-------7
c3; 13a s22 _----:
7, lb -cel.. , _

c9 ce2 ,---
.... -

25a, 2 ce3
7, 27 ce4
c9, 3a, is ce5 a&
c e5, , lc, 26a, 25b O6
6-:.

ce7

PS ce8
post. ce9a
post. eel)
31 . ce10

**1 6, 8
2 ¶10,12
3 5

**4 14

1.
3 5
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TABLE I (Continued)
SOLID GEOMETRY

hevious theorems needed
in proof

Tleiffern
provtd

Later theorems depending
on this theorem

1

8,9
13, 4

6
7

**9

10

11
12
13

"14

13, 15, 17a, 17b
13, 157 17b

14
15a, 27a

8, 9 15

14 * *16 / 27a
8 **17a
8, 9 **17b

**17c 18
27, 17c 18 29a

19 25
20 23
21a
21b

51b -22a

22b
20 23

24
19 25 31

* *26

14, 16 **27a 27b, 29a
27a **27b

**28a 28b
28a "28b
18, 27 **29a 29b, 32

29a4,../ * *29b
**30 32

25 31
29a, 30 * *32

t Only solid geometry theorems are listed here although only the double starred theorems
of the previous part of this table were used.

The Essential Constructions and Theorems of Geometry.
A. Constructions.

1. Construct a circle with a given radius and a given center.
2. Construct a triangle congruent to a given triangle using only

the lengths of the three sides.
3. Construct an angle equal to a given angle.
4. Bisect a given angle.
5. Construct a perpendicular to aline at a point on the line.

6
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6. Construct a triangle congruent to a given, triangle using only
two sides and their included angle.

7. Construct a triangle congruent to a given triangle using only
one -side and the two adjacent angles.

8. Construct a perpendicular bisector of al given line seginent.
9. 'Construct a perpendicular to a line from a point not on the

line.
10. Construct a line parallel to a given line through a given point.

B. Theorems on Straight Line Figures
1. The angles opposite the equal sides of an isosceles triangle are

equal. '
2. If two lines cut a third so that the alternate interior angles _

are equal, the lines are pafelel.
3. The converse of 2. If two parallel lines cut a third line, the

alternate interior angles are equal.
4. The sum of the angles of any triangle is 180°.
5. Two right triangles are congruent if the hypotenuse and a side

of one are equal respectively to the hypotenuse and a side of
the other.

6. The opposite sides and angles of a parallelogram are equal.
7. if three or more parallel lines cut off equal segments on- one

transversal, they cut off equal segments on any transversal.
8. If a straight line is drawn through:two sides of a triangle -,

_parallel to the third side, it divides these sides proportionally.
9. Converse of 8. If a straight line divides two sides of a triangle

proportionally, it is parallel to the third side.
10. Two triangles are similar if two angles of one are equal re-

sPectively to two angles of the other.
11. In any right triangle the-square on the hypotenuse is equal to

the sum of the squares on the other two sides.
Corollary 1. In any right triangle if a perpendicular be

dropped from the vertex of the right angle to the
hypotenuse,
(a) the two right triangles formed are similar

to the given triangle and to each other,
(b) either leg of the given right triangle is a

mean proportional between the whole hy-
potenuse and the adjacent segment, ,

(c) the perpendicular is the mean proportional
between the segments of the hypotenuse.
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12. The of a triangle is equal to half the product of base
times the altitude.

13. The locus of a point equally distant from two points is the
perpendicular bisector of the line,segment joining -them.

14. The locus of a point equally distant from two intersecting lines
is the pair of lines which bisect the angles formed by the lines:

C. Theorems. Concerning Circles .

1j., A diameter perpendicular to a chord bisects the chord and the
arcs-of the Chord._

16. An angle inscribed in a circle. is. equal to half the central angle
having the same arc.

17. -A line perpendicular to a, radius at its outer extremity is
tangent to the circle at that point.,

-18. If the number of sides of a regular inscribed polygon is in-
- definitely increased, its perimeter and area will both iriCreaSer\while the perimeter and area 'iSf the circumscribed polygon,

formed by drawing tangents to the circle, -_at the vertices of
the inscribed polygon, 'will both decrease. The perimeters and
areas of both polygons will each-approach a limit.

1 The ratio of any circumference to its radius is constant and is
equal - to 2 pi.

.

20. lie -area- of a circle is equal to pi times the square of the
radius.

D. Theorems of Solid deoMetry
21. If two planes intersect, their intersection is a straight-line.
22. If two parallel planes cut,a third plane, the lines of inter-

section are parallel.
23. If two angles not in the .same plane have,,their iides.parallel

,in the sense, the angles are equal.
24. The lateral area of a prism is the product of a lateral edge by

the perimeter of a right section.
25. The volume of any prism equals the product of Its base by its

altitude.
*a. An- oblique prism is equal to a right'prism whose base is a

right section of the oblique prism and whole altitude is a
lateral edge of the oblique prism.

*b. The volume of any parallelopiped equals _the base times
the altitude.
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*c. A diagonal plane divides a parallelopiped into two equal
. triangular prisms.

*d. The volume of any triangular prism equals the productof,
the ,base and altitude.

é. The volume of anYsprism is the product of its base and
'altitude.

26. The lateral area of a regular pyrarpid equals y2 the product of
its slant height and the perimeter of the base.

27. :If a pyramid.-is "cut:13Y a plane parallel to the base and a dis-
tance (d). froin the vertex, \
(a) The lateral edges and altitude (h) are divided propor-

tionally,
(b) The section is . similar to the base, the "ratio of simili-

tude",being,d/h,
(c) The ratio of the area of,th section to the area of the base

is d!/h2.
28. The volume of a.pyramid eq als % the product of the area

of its base (b) by its height.
*a. Two pyramids with equal bases and altitudes are equal.
*b. The volume of a triangular pyramid equals 1/3 bh.
c. The volume of any pyramid equals 1/3 bh.

29. The lateral area of a cylinder equals the product of an element
by the circumference of a right section, and its volume equals
the product of its base and altitude.

30. The lateral area of a right circular/cone equals 72 the product
of the slant height by the circumference of the base, and the
volume of any cone equals 1/3 the product of the area of the
base by the altitude.

31. The area of a sphere equals 4 pi/times the radius squared.
*a'. The area of the frustrum of a cone of, revolution equals

$the slant height times the circumference of a circle half
way between the bases.

*b. The area of a surface of revolution formed by revolving a
regular polygon about a cliameter is 2 pqimes the apothem
times the diameter. ,
The area of a sphere equali 4 pi times the. radius squared.

32. The Volume of a sphere equals 4/3 pi times the 'radius cubed.

These propositions are usually given as theorems, but their only use is to lead 'up

to the theorem just preceding. They are therefore given here as part of the theorem in

the proof of which they serve.
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The Ilse made of the Essential Theorems. In this study the theorems
just, given are used for a dual purpose. First, to provide a rapid review
.of high-school geometry and yet one that covers items .of fundamental
importance. It is impossible to emphasize each of 200 theorems in such
a brief review, yet it is quite possible to emphasize each of 20 theorems
and to use each one as a "mountain peak" from which the surrounding
territory can be surveyed. Second, the theorems and constructions pro-
vide additional illustrations of the application of the heuristiC pattern
of teaching, which it is the purpose of this study to present. Two or three
illustrations in a short chapter presenting the plan, philoSophy, and
purpose of heuristic teaching are entirely inadequate for a full develop-
ment of such an important idea. In order that prospective teachers may.
be thoroughly indoctrinated with the philosophy of the "disCovery and
analySis" technique, they should be provided with many and varied
;illustrations of its application.

While it is not intended that high-school teachers shall actually use
the same list of 10 constructions and 20 theorems in their teaching of

' plane geometry, yet it is evident that there are decided possibilities in
the use of the same list of "essential theorems",in a high-school course.
"It is the greatest triumph of philosophy to refer many varied phe-
nomena to one or a very few simple principles."4 So there is also a dis-
tinct advantage in having in a high-school geometry course a few large,
important, useful theorems upon Which all geometry depends. The pos-
Sibilities are much greater for better teaching of Theorems and for more
applications of the techniques mastered, to real problems. Such a
geometry has possibilities also for placing the major emphasis where it
belongs, that is, upon the solution of "originals." Every theorem in
geometry should serve two purposes. first, each theorem is a :general
truth, or principle, or law which is useful in sal-ring problems. Second,
each theorem illuitrates a method of solution, since, before it was
proved, the theorem was itself a problem. In other words, each theoreM
is not only a statement of a useful fact, but also a reasoning pattern to
be used and followed in proving that a given conclusion follows froth
given premises.

'Davies, Charles. The Nature and Utility of Afathematics. A. S. Barnes & Co.. 1875.
p. 73.



CHAPTER II -

-HISTO1W, FUNCTION, AND PROBLEMS OF
GEOMETRY

I. i_BRIEF HISTORY. OF GEOMETRY

Extent and Origin. When we _realize that United States Government
as a school subject covers only the short span of years since 1776, that
American history-begins with 1492, affording for.study-aiperiod of less
than 450 years, and,that even the Englishlanguage'it.wlf was somewhat
embrynnic at ,the time of' Chaucer, less than 600- yearbiago, we -may
begin- to'have_some respect. fora subject that, has been/a chillengilo
human thought and ingenuity,since its earliest records in Egypt in 2300

oVei 4000 years. Egypt, Babylonia, Gireece, Rome, and
medieval and modern nat)ons have all used-and, contributed to geometry.:
It seems to be.a universal language of thought and culture, disregarding
time and geographical or political boundarieS. Mein, natieas, and even

it languages .seem to come and go, but the ideaS, of ,geometry remain,
_grOw, and become more and more indispensable/

The word "geometry" is derived from two' Greek words meaning
",earth measure."-'In Egypt,, where this science of measurement was be-
gun, i(waiused largely to measure land in tie/Nile valley.,Such measure-
ment was.a: frequent task because of the semi=annual over-flow of the
banks of the River NileziOur present knOwledge of Egyptian geometry
comes from a- papyrus; held in the British Museum, and written by
Alunes, who lived about 1600 B.c. This papyrus is largely a copy of an
.older document dating back to 2300 Etc.

Egyptian deRtnetry. Egyptian geometry was intuitive in nature and
largely a list Of 'rules and formulas: Some ,of- these were inaccurate, as,
for instance, the rule that the area of an _isosceles triangle is equal to the
product of the base by one of the equal sides. Ahmes used (d -1/9 d)2
in computing for -the area of a circle, maying 3.1605 as the value of

/ While these formulas are slightly inaccurate, we marvel that they
were even so accurate at such an early age.

- Stnith,1). E. ,History of Mathematics. Ginn and Co., 1925, Vol. II, p. 270.
'Sanford, Vera. el Short History of Mathematics. Houghton Mifflin Co., 1930, p. 231.
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The Contribution of Greece. Geometry was carried to Greece by
Tha les of Miletus (640-550 B.c.). After a career in commerce, which
brOughthim in contact with the Egyptian ideas, he founded a school in
Miletus for the teaching and study of mathematics. It seems natural
tfiat the. Greeks, who were so superior mentally, would be entirely dis-
satisfied with the inaccurate and intuitive rules and computations of the
Egyptians. The challenge to them to prove that these rules were true
and

It
perfect the science as a system of reasoning is apparent.

It was Thales in 600 n.c. who first logically. demonstrated a theorem
in geometry. In all he proved only five theorems,' but he is credited with
being the first to organize geometry as a science and to prove his con-
clusions. While knowledge of many of the facts of geometry dates back
it° at least 2300 n.c. in Egypt, the demonstration portion of geometry
comes from 'Greece and began in about 600 B.C.

Pythagoras (580-800 n.c.) was a student at Miletus and later founded
a school of his own at Crotona, Italy. This school became a communistic
brotherhood whose members were bound by an oath not "to-reveal the
teachings or secrets of the school." The Greek. government, fearing its
political influence, finally oidered it to disband; and Pythagoras, with
many of his followers, was killed. Because of the secret nature of the
society little is known of the work it did in mathematics, although the
Pythagoreans are often credited with the proof of the right triangle
theorem which is now usually known as the Pythagorean theorem. The
facts of this theorem were known intuitively by the Egyptians for cer-
tain triangles. They used a loop of string 12 units long with knots sepa-
rating it into three segments, 3, 4, and 5 units long, to lay off a right
angle. There is evidence that the right angles of the pyramids were made
this way, before 3000 B.c.3 It remained for Pythagoras, however, to
demonstrate that for all right triangles the square on thehypotenuse is
equal -to the sum of the squares on the-other two sides."

Plato (429-347 n.c.) was the next .great mathematician, and his in-
fluence in making geometry a science of reasoning is often credited to
Euclid. While Plato was not a student under Pythagoras, he no doubt
learned 'much about the unwritten and secret work of the Pythagoreans.
He founded a famous school, "The Academy," it Athens, over the en-
trance to which he placed these words: "Let none ignorant of geometry
enter my door." Plato did muchto systematize the thinking in geometry.

' Stamper, Alva W. "History of Teaching of Geometry," Teachers College, Columbia
University, New York. Contribution to Education, No. 23, 1909, pt 11.

Ibid., p. S.
p. 12.

teRelf
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It is due to his influence that later mathematicians began the subject
with a carefully worded series of .definitions, postulates, and axioms. It

.was he who limited geometricians to the use of the straight edge and
compasses, and his influence has kept curves other than the circles out
of plane geometry.

Before the time of Plato the Greeks used the method of analysis in,
the solutionof problems. They also used the idea of locus, The indirect
or "reductio ad absurdum" proof, and the method of exhaustion for some
problems."

Euclid (300 n,c.) is one of the best -known of the early contributors
to geometry. Lit..le is known about his life, but there is reason*to believe
that he studied at Athens before he became a teacher of mathematics
at Alexandria, Egypt. Euclid collected all the mathematical knowledge
of his time and organized it into a logical sequence." "No doubt there
were many propositions that were original with Euclid; but the feature
Which made his treatise famous, and which accounts for the fact that it
is the-oldest scientific textbook still in use, is found in its simple-but
logical sequence of theorems and problems.""," Over 1000 editions of
this.book have been published since it was first printed in 1482. His
"Elements" was arranged in books, 'originally in scrolls: .I Congruence,
II Identities, III.Circles, IV Inscribed and Circumscribed Regular Poly-
gons, V Proportion, VI Similarity, VII-IX Arithmetic, X Incommensn-
rabies, XI-XIII Solid Geometry." Euclid's influence on our present
geometry is evident from the above list, and it seems almost uncanny
to realize hoi little his geometry has changed in 2200 years.

Some of the features of Euclid's Elements are: (1) the omission of all
practical work, (2) no original exercises, every proposition fully proved
out, 3) hypothetical constructions not permitted (hence Euclid began

'his geometry with constructions), (4) a general plan for the proof" of
all propositions, (5) all constructions by means of the compasses ,and
straight edge only (thereby barring all conic sections except the circle
from plane geometry).

Contributions to Geometry al ter 300 B.C. Since the time of Eitclid
much has been discovered in geometry. Very little of this, however, has
been- put into high-school courses. Apollonius, about 200 B.C., did his

Allman. George J. Greek Geometry from Theft, th Euclid. Longman,. Green and Co.,
London, 1889, p. 111.

u Stamper. op. cit., p. 23.
9 Sanford, Vera. op. cit., p. 269.
u Smith, D. E. History of Mathematics. Ginn and Co., 1925. Vol. I, pp. 103.106.
24 Allman. op. cit., p. 211; Stamper. op. cit., p. 27.
u Smith. op. cit., p. 106.
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great 'Work on conic sections and named them the parabola, hyperbola,
and ellipse. He showed how these can be produced .from sections of a
cone. His contribution was much like that of Euclid in being a som-
pilation of previous work with some original contribution."' Many of
these contributions were originated by Archimedes. Euclid and Apol7
lonius dominated geometry for nearly 2000 years. No other outstanding
accomplishment was made until the time of Dscartes.

In 1637 Descartes published his IA geometric inteoducing to the
world the next-great geometry achievement. This was-the use of a co-
ordinate system- in geometry to express algebraic relations: "The real
idea of functionality as shown- by _the uie,of coordinateS was first clearly
and publicly expressid by DescarteS. 1

This discovery tended to widen the scope of geometry by associating
many parts of it with algebraic syinbols. It was the great forward step
in morksern mathematics which made possible the discovery of the cal7
culus,by Newton:and Leibniz and opened vast fields of quantitative
functional relationship's. The influence on modern high-school geOmetry ..
is still largely unfelt.

Mention should be -made of the brilliant mathematician, Pascal. He
made no new, phenomenal discoVerY comparable to that of Descartes,
but-he:wrote on conies; made some discoveriesIn physics, and discovered
a famous theorem bearing his name that the opposite sides of a hexagon
inscribed iw a conic intersect- in- points that are Collinear. Prom_ this

/Since

he deduced over 400 corollaries ;8
Since some trigonometry-is being included now in many high-school

-geOmetrY texts, a: brief account will be given of its development. Ahmes
used a relation equivalent to .the co-tangent of an angle in his shadow
reckoning. Astronomers found that for a given angle in a circle of given
radius the chord was constant. They made astable of chords (140 B.c.)
and of half chords (510 Am.) which would correspond closely to our
sine." As late as 1560 one writer-uses perpendiculum for sine. Chord
and half-chord were used with sine for many years, giving both a geo-
metric and algebraic meaning to the function. The tangent originated as
the result of shadow reckoning. -

Trigonometry more than any other branch of mathematics seems-to
be the product of many men, no one Of whom made any such outstand-
ing contribution as did Euclid or Descartes for geometry. Although its

1 Smith: op. cit.; Vol. 1, p. 116f.
3* Ibid., p. 376.
"ibid., p. 382.
"Ibid.-, Vol. IL p. 614.
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origin dates back to Ahmes in 2300 B.C., trigonometry did not assume
its present form until algebraic symbolism was perfected in the seven-
teenth century. It has been incidental to geometry because it depended
on tables and consequently needed more than ruler and compasses for its
use.

'Other outstanding discoveries in the field of mathematics have accom-
panied' geometry but have had less effect on it even than did trig
nometry, although geometry has been indispensable to them. The co
tributions of Newton, Leibniz, Euler, Lagiange, Gauss, Laplace,*
gendre, dating from 1680 to 1800, with their development of calculus,
theory of numbers, least squaresr and elliptic functions, mark bright
spots in the progress' of mathematics, without which.our present civiliza-
tion would not be possible. The1work of these men would likewise have
been impossible without the foundation work of Thales, Pythagoras,
Plato, Euclid, Descartes, and ogler pioneers.

The brevity of this historical treatment may have left the imprt.Asion
that Euclid's Elements was handed down unmodified or unimproved'
from his time to the present. Such is far from the truth, as any study of
the "Elements" will soon disclose. Many modifications were made by
able Mathematicians,. mostly from France, Germany, and England,"
Some of these were slight and some radical. Mention will be made here
of only one of the most outstanding, that by A. M. Legendre in 1794.
Legendre, although he abandoned to some extent the sequence of Euclid,
was logically sound and so maintained the respect of mathematicians.
He differed:from Euclid in several other respects. He referred to arith-
metic and algebra for the treatment of proportion and assumed the
correspondence between line segment and number. Euclid insisted that
all constructions is well as theorems be proved before they could be
used; Legendre permitted "hypothetical constructions." In general, his
modifications made the work. simpler without sacrifice of rigor.

Non-Euclidean Geometry. Even a brief history' of geometry is incom-
plete without some mention of the "non-Euclidean" as well as the
modern algebraic and Euclidean geometries. Non-Euclidean geometry
originated out of attempts to prove Euclid's parallel poitulate. As stated
by Euclid, his postulate was essentially this: "If a straight line falling
on two straight lines makes the interior angles on the same side less than
two right angles, the two straight lines, if produced indefinitely, meet
on that side on which the angles are less than two right an es."21 The

*Stamper. op: tit., pp. 35.103.
n Heath. T. L. The Thirteen Books of Euclid's Elements. Cambridge University Press.

London, 1926, Second Edition. VOI. I, p. 202.
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. .

modem form, which is known as Playfair's postulate of parallels, is
essen ially this: "Through a given point only one parallel can be drawn
to a iven,strak7A line."22, 23 In the effort-to prove the parallel postu-
late by an inoirect proof, the opposite was assumed to be True, that more
than one line can be drawn through a point parallel to a given line. No
contradiction could be found, however, but the technique' succeeded in
building up. another geometry and in showing.that Euclid's postulate of
parallels was independent of all others and consequently could not be
proved by using them. This work probably originated with Gauss but
was brought _to a definite conclusion by two men working independently,
Bolyai and Lobatchevsky (1823). They showed, for instance, that with
the above assumption the sum of the angles of a triangle would be less
than two right angles." Analysis of their theOrems shows them to be
conceried,with figures on a surface of negative curvature; and, conse-
quently,Aheir-mmetry has been called hyperbolic geometry.

In 1854 Riemann suggested a similar geometry based on the assump-
tion that not even one parallel to a given line can be drawn through a
given .point. This resulted in a surface of opposite curvature and:in a
geometry called elliptic geometry. ThiseaveS Euclid's geometry between
them on a flat surface, and it-is sometimes called parabolic geonietry.24

In a stimulating article in the Mathematics Teacher, December
1922, Professor W. H. Bussey of the University of Minnesota gives an
excellent summary of non-Euclidean geometries'. He quotes some of
the theorems which ,can be proved:Lobatschevsky: (1) The sum of
the anglesf a triangle is less than two right angles; (2) In a trirectangu-
lar quadrilateral the fourth angle is acute; Riemann: (1) The sum, of
the angles. of a triangle is greater than two right angles; (2) In a
trirectangular quadrilateral the fourth angle is obtuse; (3) "There are
no similar figures"; (4) "A straight line is the limit approached by a
circle where the length of the radius approaches one -half of a line -
length "2a .

It. is easy to see that on a curved surface such as a sphere on which a
straight line is a great circle, that not even one Iine could be drawn
through a point which would be parallel to a given line. Althouge are
living. on the spherical surface of the world, and Einstein has presented
evidence to prove that space also is curved, yet what we see isfsa ap-
parently flat that the Euclidean geometry is the accepted form. The

'2 Smith. ;P. cit., Vol. 11, p. 283.
"HeathtoP. ca., p. 220.
'Smith. oP. cit., Vol. H. p. 388. .: \.
mpussey, W. H. "NonEuclidean Geometry." Mathematics Teaches, Dee. 1922, p. 445.
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others are interesting largely for their emphasis upon the necessity for
Accepting cortairlpostulates without proof in order to build a system of
_logic based upon them?. They emphasize further the arbitrary nature
orthose postulates,so far As the logic.of the systernis concerned.

Geonetry has had a long and vigorous history. Probably the out-'
tandingjeature of.it is the manner in which the ideas of. Plato and'

Euclid' have . dominated -plane demonstrative geometry for over 2000'
year, barring;most variations. As geometry teachers and students we
have been blind_ followers _of Euclid, unaware: of other geometry ma-
terials eqUally valuable and other leaders,-equally .cballenging. -

Ge_o_t_eity-a;f-a-Sclict: A brief history of geometry as a schoOl
--- subject, should be a fitting close -to -this section. The study-of Euclid

WaSprescribed Oxford in the thirteenth-century. By the latter half
.of.the_lourteenth century candidates for the maser's-degree were study-
ing, at most, :the first six books of the 'Elements.' For the bachelor's'
degree litlienrw,Euclid-was required. When Harvard-was founded-in
.1636, arithmeticand geometry were taught one lay a week for three-
;
fourths ors..yeap in the last-year of the-course. In 1726-printed texts
began-to app4-rar,. and Euclid was taught at. Harvard and Yale 'in the
fourth year. It was,placed in the second year it' Yale in 1744 and at
Harvard in 1787,but not until-1818 was:it a first year subject.'In 1844
Harvard required geometry for entrance, but o..4 the elementary no-
tirnis. In 1887 'all of plane gepmetry was required'for entrance to Hat-
:yard.. As-early-as 1818 Phillips Exeter AcademyAfferedgeometry in-the
foUrth- class of the clasSicaf college preparatory course. Geometry has
censtantly.crept. downward' until now much of it is- taught before stu-
dents enterthe ,senior high.schoo1.27

he-,early textbooks, used, following Euclid's own coinpilatiOn in 300
B.C., began- with many translations and copies before printing was in-
vented, first with that ef Theori of Alexandria in 400.A.D. The first edi-
'tion--of- Euclid' to be printed in Latin was from the- Adelard-Campanus
translation from Arabic hy Eunest,lkatdolt at Venice in 1482.27 The first

.bEnglish translation was by Henry Billingsley in 1570.27 One of the
Most widely used English translations was by Isaac Barrow in 1655.28

In 1795 the first course in plane and solid geometry was compiled in

Playfair's Euclid, but the first radical deportee from Euclid was by
Legendre, who abandoned somewhat Euikies` sequence, in 1794. This

21 Hassler and Smith. The Teaching of Secondary Mathematics. The MacMillan Ca,
.' 1930, lip. 89.101.

"n Stamper. op. cit., pp. 52, 96ff.
'U Sanford. op. c4.; p. 275.
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Was followed by texts by Davies in 1840 and Chauvenet in 1870 and
Todhunter in 1889." Since then many geometry texts have been pub-
lished ,differing in sequence, form, and applications, but only slightly
in actual content from Euclid'i Elements.

The method, of teaching geometry has also a history. "The early
Greeks used the Socratic method, while in the early universities the
pupils learned by copying 'from dictation or lecture. During the seven-
teenth century in Germany demonstrative Work began to be emphasized
anclin the eighteenth century the custom of students' explaining proposi-
tions was - common. Although the nineteenth century saw the dogmatic
method generally discredited, yet traces of It remained especially in
England and!the United States."3°

It is c6thparativeiy recent that the possibilities of geometric originals
have been realized And that the applications of geometry have been
pointed out as a pattern of reasoning. which may apply to other than
geometric facts. Schultze claims that "a course in ?geometry should be

"-Principally a course in the methods of attacking original exercises; the
regular book demonStrations should follow as by- products of such a
course.'''.; As indications of the applications of the pattern of geometric
reasoning to social situations and consequently of geometry as training
in analytic thinking, Keyser, Thinking About Thinking," Keyser, Pas-
tures of Wander," and Upton, The Indirect Proof in GeOmetry andsin
Life" are excellent illustrations.

II. THE FUNCTION OF HIGH-SCHOOL GEOMETRY

Comparison of Intuitive and Demonstrative Geometry. The purpose
of teaching demonstrative geometry in the senior high school is not
primarily-to give the student information concerning the facts of space
relationships. He does not study demonstrative geometry merely to learn
that the sum of the angles of a triangle equals 180°, that two right
triangles are similar under certain conditions, that the area of a circle
equals 17r2, or that the volume of a cone equals 1 /3nr2h. Many of these
faces are included in the ordinary seventh, eighth,. and ninth grade

";Stamper. op. cit., p. 33.
'4 Stamper. op. cit., p. 102.
Si Schultze, Arthur. The Teaching of Mathematics in Secondary Schools. The Mac.

millan Co., 1914, p. 99.
Keyser, C. J. Thinking about Thinking. E. P. Dutton and Co., 1922.

',Keyser, C. J. Pastures of Wonder. Columbia University Press, 1930.
',Upton, C. B. The Indirect Proof in Geometry and in Life. Fifth Yearbook of the

National Council of Teachers of Mathematics. Bureau of Publications, Teachers College,
Columbia University, New York, 1930, pp. 102.133.
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courses. Table II shows the results of a comparative study of six sets of
junior high-School textbooks together with three typical senior high-
school geometry textbooks,

Table II, Part A, shows the geometry vocabulary found to be used in
junior high-school textbooks- in mathematics. The terms are classified
as-follows: terms used in connection:with (1) Lines, Points, and Seg-
ments;, (2) Angles; (3) Triangles; (4) Polygons; (5) Circles; (6)
Solids; (7) 'instruments; (8) General Terms. The table indicates the

TABLE II

Vocabulary, Abilities, and Theorems of Geometry Used in at Least One-half of the
Junior High-School Courses as Found fro.n an Analysis of Six Sets of Modern Junior,
High-School Mathematics Textbooks, and Additional Terms, Abilities, and Theorems

Used by Twi) out of Three Typical Seiior High-School Geometry Textbooks.

In. Junior Additional
High School in Sr. H.S.

A. Vocabulary. The number of terms in connection with
1. Lines, points, and segments

2. Angles- 31
.

.,'-'-,' 3. Triangles - 11

A. Polygons 14
5. Cir,cles 6 ,
6. Solids 10
7. Instruments 9
8. General terms 25

B. Abilities. Number of different abilities involving
'1. Direct measurement or computation from

direct measurement 21
, 2. Manipulation of measures . 7
3. Use of instruments 10
4. Indirect measurement 8
5. Making constructions 18
6. Drawing designs based on geometric figures 4
7. Constructing graphs ... 3
8.,M*ellaneous abilities 3

C. Geometric piinciples, used.
L'Axioms and postulates used 9
2. Theorems mentioned 38
3. Theorems Proved 5

12
5

16
8-
0

-, 1

25

2
0
0
1

30
0
0
2

20
106
139 (226)

List of texts,analyzed
1. Wentworth-Smith-Brown: Junior High School Mathematics. Ginn and Co. 1926.
2. Gugle, Marie: Modern Junior Mathematics. Gregg Publishing Co. 1920.
3. Scboriing and Clark: Modern Mathematics. World Book Co. 1927.
4.,Hamilton, -Bliss and Kupfer: Essentials of Junior High School Mathematics.

Amerkan Book Co. 1927.
5. Stone, J. C.: The New Mathematics. Benj. H. Sanborn and Co. 1927.
6. Breslich, E. R.: Junior Mathematics. Macmillan Co. 1927.
7. Nybeig, Joseph A.: Plane Geometry.. American Book Co. 1929.
8. Wells and Hart: Modern Plane Geometry. D. C. Heath & Co. 1926.
9. Smith, Foberg, Reeve: General High School Mathematics. Book II. Ginn and

Co. 1926.
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number" of different terms used by at least half of the books analyzed.
All terms used by less than 50% of the books were not included in the
table. Table H, Part B, shows the abilities of geometry developed, or at
least taught, in The junior. high school. These abilities are classified as:
(1) direct measurement or computation -from direct measurement, (2)
manipulation of measures, (3) use of instruments,- (4) indirect measure-
ment, (5) making constructions, (6) drawing designs, (7) constructing
graphs, (8) miscellaneous. Again all abilities not presented by at least
50% of the texts were not included in,the table.

Part C of Table II gives the number of axioms, postulates, and both
the theorems mentioned and those proved in the junior high-school texts.
This shows that in so far as textbooks indicate what is taught in the
junior high school, a large amount of geometry as information is in-
cluded. However, Part C, 3, indicates that very little emphasis is placed
upon proof of this material in the junior high school. 2.. -

The last column of Table II is a summary of a similar study for
senior high-school geometry, and indicates the number of additional
terms, abilities, and theorems of plane geometry which are given in the
plane geometry course but are not included in 50% of junior high-
school texts. For instance, the 26 terms concerned with lines, points, and
segments which were not included in at least 5'170 of the junior high-
school textbooks were such terms as auxiliary lines, concurrent lines,
median of a trapezoid, common chord, common tangent, line of centers,
centroid, excenter, circumcenter, orthocenter, apothem, projection, tan-
gent. Many of these were mentioned in some of the junior high-school
texts but not in half of them. It is evident from this table that some
information in the form of vocabulary used and abilities developed' is
added in the senior high-school geometry course, but it is also evident
that the outstanding addition is the proving of theorems. Only 5 ,theorems
were proved in the junior high school while 139 additional ones were A

proved by two out of three of the senior high-school demonstrative
geometry texts analyzed. Further study of the data indicates that 226
additional theorems were proved by one of the three texts analyzed.

While it is not contended that a student of demonstrative geoinetry,
by demonstrating facts and principles of geometry with which,:lie ices
previously intuitively familiar, fails to improve his mastery of those facts,
it is contended that such an increased mastery of facts is only
product. The outstanding contribution of geometry, the element whi4
has madeit interesting to thinking men for 4000 years, the part which

thrills children when it is correctly taught, is its logical structure, its
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organized reasoning with simple concepts,, its inherent possibilities for
producing in children -the satisfaction of significant achievement.'

The Chief Function of Demonstrative Geometry. The National Com-
mittee on the Reorganization of MathematiCs states that the principal,
purposes of instruction in plane geornetryafe: "To -exercise further the
spatial imagination of the student, to ranke him familiar with the great
basal propositions and their applications, to develop an understanding
and appreciation of a deductive proof and-the ability to use this method
of reasoning ,where it is applicable, and to form habits of precise and
succinct statement, of logical organization of ideas, and of logical' mem-
ory."35 The second of these, "to know the great basal propositions," is
an objective involving largely information. The others are all of a more
or less indirect, concomitant nature based on the system of logic rep-

. resented by the simple concrete facts and principles of geometry.
Other statements of the function Of demonstrative geometry could

be quoted almost indefinitely but only a few will be presented here. Smith
and Reeve," in a chapter on demonstrative geometry state that "the
real purpose of the subject is suggested more by the word 'demonstra-
tive' than by the word 'geometry.' The chief purpose of this part of
mathematics is to lead the pupil to understand what it is to demonstrate
something,_to prove a statement logically, to 'stand upon the vantage
ground of- truth.' " Reeve's statement of the purpose of geometry in the
Fifth Yearbook ,of the .National Council is even more forceful." "The
Purpose,of geometry is to make clear to the pupil the, meaning of demon-
stration, the meaning of mathematical precision, and the .pleasure of dis-
covering absolute truth. If demonstrative geometry is not taught in order
to enable the pupil to have the satisfaction of proVing something, to train,
him in deductive thinking, to give him the power to prove his own state-
ments,,thenit isinot worth teaching at all."

Professor Upton in the Fifth Yearbook claims that, "some teachers
may at first thinlyhat our purpose in teaching geometry is to acquaint
pupils with a certain body of geometric facts or theorems or with the
applications of these theorems in everyday life, but on second reflection
they will probably agree that our great purpose in teaching geometry is to
show pupils how fads are proved ... the purpose in teaching geometry is
not only to acquaint pupils with the methods of proving geometric facts,

'but also to familiarize them with that rigorous kind of Thinking which
/3' National Committee Report. op. cit., p. 43.

Smith, D. E. and Reeve, W. D. The Teaching of Junior High School Mathematics.
/ Ginn and Co., 1927, p. 229.

Reeve, W. D. The Teaching of Geometry." Fifth Yearbook, p. 13f.
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Professor Keyser has so aptly called 'de If -Then kind, a type of thinking
which is distinguished from all others by its characteristic form, If this
is so, then that is so.' ... Our great aim in the tenth year is to teach the
nature of deductive proof and to furnish pupils with a model for all their
life thinking."ae

Schlauch, in his chapter on the analytic method in the Fi fth Yearbook,
asserts: "Geometry seems, of all school subjects the best adapted to
initiate a student into the meaning of mathematics as a science of neces-
sary c0nclusionsP3°

The statement of the purpose of demonstrative geometry made by two
Harvard men, Professors Birkhoff and Beatley, is interesting. "In demon-
strative geometry the emphasis is onleasoning. This is all the more im-
portant because it deepens geometric insight. To the extent that the sub-
ject fails to develop the power to reason and to yield an appreciation of
scientific method in reasoning, its fundamental value fo'r purposes of in-
struction is lessened. There are, to be 'sure, many geometxic facts .of
importance quite apart from'its logical structure. The bulk of these be-
long properly in the intuitive geometry of grades VII and VIII, and are
not the chielnd of our instruction in demonstrative geometry in the
senior high sc ool.'"° Professor \V. R. Longley,41 of Yale, expresses much
the sameszentiment, although he stresses also the practical value of
knowledge of the formulas, facts, relations, and methods used in
geometry. , -

B. R. Breslich, of the UniverL ty of Chicago, gives many Specific ob-
jectives, not only for geometry but for the various units of geometry.
The contributions of geometry to these various objectives include a
knowledge of the facts of geometry, and also the power "to analyze
geometric situations," "to attack and solve problems of space," "to
establish-geometric facts by proof," "to reason forrectly."42

Q. H. lucid, in his Psychology of Secondary Education, in, speaking
of the purpose of high-school education, claims: "Higher education is
organized for the puipose of giving pupils insights. Ability to use num-
bers as necessary instruments of civilized life is usually acquired by the
time the pupil comes to the high school, at least in sufficient measure to
meet ordinary demands. Whatever justification there may be in ele-

is Upton, C. D. "The Use of the rndirect Proof in Geometry and Life." pp. 131.132.
" Schlauck, W. S. "The Analytic Method in the Teaching of Geometry." p. 134.

Birkhoff, G. D. and Beatle7, Ralph. "A New Approach to Elementary Geometry."
Fifth Yearbook, p. 86.

41 Longley, W. R. "What Shall We Teach in Geometry." Fifth Yearbook, p. 29.
42 Breslich, E. R. The Teaching of Mathematics in Secondary Schools. University of

Chicago Press, 1930. Vol. 1, p. 203.
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mentary arithmetic for simpler type of treatment of mathematical
ideas, there is no justification in algebra and geometry for mere mastery.
of formulas and repetition of textbook demonstrations. . . . The duty of
higher education is to conserve all that has been achieved in the lower
schoOl and constantly to direct the pupil's attention to higher forms of
generalized or scientific thinking. "9

C. J. Keyser, Emeritus Professor of. Mathematics at Columbia Unl-
. versity, contends that "mathematics may be viewed either as an enter-

prise or as an achievement. As an enterprise it is characterized by its
-aim, and its aim is to think rigorously whatever is rigorously thinkable
or whatever may become rigorously thinkable in the course of the up-
ward striving and refining evolution of ideas. As a body of achievements,
mathematiCs consists of all the results . . from the prosecution of the
enterprise. ""

W. W. Hart, from the University of Wisconsin, claims that "Demon-
strative Geometry uniquely develops the habit of deductive thinking, .. .
more important than the 'habit of functional thinking.' This habit
based upon the appreciation of it and the use of it in geometry.. .. The
training in demonstration should come from the solution of originals,

'and this must be made the chief aim of the course.""
From England ihe pen of John Perry informs us that "we pay teach-

ers to give us something that will be useful in our education and useful
to us in life, useful to. us in understanding our position in the universe.
... One use of Mathematics is giving men mental tools as easy to use as
their arms or legs; enabling them to go on with their education." Further,
he contends that mathematics should teach "a man to think things out
for himself and so deliver him from the preient dreadful yoke of au

.thority.""
Summary. In .review of these statements of the function of demon-

strativegeornetry in the tenth grade, and in restatement of the point
of view represented by this study, the following organization can be

used.
(1) Practical, immediate, or direct aims. There is no question con- ,

cerning the/practical value of knowing that the sides of similar triangles
are proporiional, or that an angle may be constructed equal to another

Judd,C. H. The Psychology of Secondary Education. Ginn and Co.,. 1927, p. 111.

"Keyser. C. J. Human Worth o/ Rigorous 'Thinking. Columbia University Piess,
1916, p. 3.

Hart, W. W. "Purpose, Method, and Mode of Demonstrative Geometry." Mathe
masks Teacher, XVII, 1924, pp. 172.176.

44 Perry, John. "British Association Report," Teaching of Mathematics. Macmillan and

Co., 1901, pp. 4, 5.
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by a definite process. Furthermore, there is also practical value in learn-
ing to make precise statements, to appreciate the needed value of
definitions, to feel the ,power and the technique of rigorous dedtietive c
proof, to analyze a_ complex situation into simpler parts, to discover
and to proite a general truth. , ,

Then too, to know the meaning
..--

of "Pythagorean theorem" or an
"inscribed regular polygopt as well'as to uiderstand a reference to "a
pound of flesh" or "cosmic radiation," is an indication of culture. To see
the_heauty in the geoMetrical forms of nature, art, and indUstry; and to
appreciate the power and perfection of logical reasoning are achieye;
ments=whickedUcated peOple like to possess. .

(2) Indirect, transcendent, or concomitant values. the simple- con-
cepts witb which, geometry deals give it a peculiar function. Geometry
achievesits.bOest possibilities if, in addition to-its direct and practical
usefulness, it caii, establish a pattern of reasoning; if it can develop.,.
Ole power to think dearly in geometric situations, and to use the same
discrimination in non-geometric situations; if it can develop the power
to generalize vvith ..aution from specific cases, and to realiie the force ti
and all-inclusiveness of deductive statements; if itztan develop an
appreciation of the place and function of definitions and postulates in the
proof of any conclusion, geometric or.nonieometric; if it can develop an
attitude of mind which tends always to analyze situations, to Understand'
their inter-relationships, to question hasty conclusions, to expresi clearly;
precisely, and accurately non-geometric as well as geometric ideas.

'There seem to be certain ordinary, practical, direct values which

I
are easy -to get, and also some superior,:transcendent-values which are
possible but not certain. These superior values depend greatly, perhaps
largely, -upon the way geometry is taught, and consequently are not
attained by all teachers, nor by all classes, nor Perhaps completely by
any teacher or_ class. They constitute an ideal, and depend upon .the reali-
zation that geometry is not a bag of tricks to he perfortned, not merely
information to be learned, nor is it a list of rules to be memorized. It is
rather ia fundamentaltsystem of logic to be understood, it is an organiza-
tion of universal truth to be appreciated, it is a pattern of reasoning

to be emulated.

r.
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SOME SETTLED AND SOME UNSETTLED DIFFICULTIES

'1. THE FOUNDATIONS OF GEOMETRY: POSTULATES, AXIOMS, UNDEFINED .

TERMS, AND DEFINITIONS; THEIR NATURE AND NUMBER

Postulates. The fallacious and inadequate conception that a postulate
or an axiom is a "self-evident truth," is still present in many 'textbooks of
geometry. It is a -new idea even to many geometry-teachers that postu-
lates and axioms are not necessarily true, in fact there seems to be some
evidence that some of Euclid's are false and that the world in which we
live is net-a Euclidean world. However that may be, the important fact
about 'postulates is, not that they may be true or false, but that they
are merely statements which are accepted without proof, and that as
such, they constitute the foundation ofgeometry..

As expressed by bescartes, Pascal's Conception of "the true method" -
was "to define all terms and to prove all propositions."" In contrast to
Pascal's statement, is the statement by Veblen that "in geometry each
technical term is defined in terms of others. Hence at the beginning at
least one term must'be undefined else there would be no beginning. . . .

Similarly every proposition is based on others from which it is deduced.
Therefore, first ones must be assumptions.'"8 Also, Aristotle stated that
"every demonstrative science must start from indemonstrable principles;
otherwise the steps of demonstration would be endless.'H9

In other words, since there must be a beginning Somewhere, there
must be some terms undefined and some relationships unproved; some
"primitive ideas" and some "primitive ,propositions."8° gince these first
relations cannot be proved, we'do not know that they are true, and con -
sequently modern geometry makes no such claim. Furthermore, all
theorems proved by the use of the postulates are true only provided the
postulates are true; that is, they are true only relatively.

Influenced by the idea which Pascal-has called "the true method,"
mathematical geniuses havelonstantly endeavored to reduce the number
of postulates to as few as possible. This effort has thrown much light on
the question of the truth of postulates. The parallel postulate has seemed
of all postulates the most susceptible to proof. Efforts to prZ1v. e it have
been previously discussed. The 'three postulates, "Only one line can be

°Jevons, W. S. Elementary Lessons in Logic. Macmillan Co., 1900, p. 112.
Veblen, Oswald. "The Foundations of Geometry." Chapter I of: Young, J. W. A.

Monographs on Modern Mathematics. Lon&mans, Green and Co., 1911, p. 4.
°Heath. op. cit., p. 119.
°Russell, B. and Whitehead, A. N. Princiria Mathematica, Vol., I. Cambridge Univer-

sity Press, 1910, p. 1.
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drawn throUgh a giVen point parallel to a given line," "More than One
line-can be drawn through a given point parallel to a given line," and
"Not even one line can be drawn through a point parallel to ti-,given,
line;" cannot all be true. Euclidean geometry is based -on the first one
of theSe postulatei, and each of the two non-Euclidean geometries is.
based on,one of the other two; yet all three geometries bave their other
postulates essentially the same: Each of these geometries is a per-
fectly,logical system- without contradiction; and, -consequently, neither
one Can be said lobntrue and the-others false. All that we - can there-
fore say about these postulates or any,others is that, since they are not
necessarily -true, they are merely assumptions upon which 'the- rest of-
geometryiis built. ,

'Geometry becoines much more meaningful if the- postulates- are
'thought of as arbitrary statements, not. necessarily- true, but accepted
-as' true:without proof. They are, in a sense, merely the "rules of the
game."-They are the foundation principles upon which the whole reason-
ing structure is built Forder speaks of them as "unproved propositions
-about undefined entities."'"

Axioms and Postulates. It has been customary in high-schooi geometry
to distinguish between axioms and postulates, axioms being rather gen-
eral Istatements -such as, "Equals may be substituted for equals," and
postulates being considered as geometric statements such as, "Only one
line ean.be draWn between two points." While this distinction Still-pre-
vail:5ln high-school gedmetries, it is no longer in accord with current
usage in modern mathematics on the higher level. "Postulate, assuni-
tionraxiom; primitive proposition, and fundamental hypothesis . . are ,i'

being used-interchangeably according to the -taste of the authoi."52 1

Undefined Terms. The foundationbf geometry consists, not only of .

relationships called'axioms or postulates which are accepted unproved',
and which Einstein speaks of as "implied definition.s,"52 but -also of
terms which are acceptectwithout rigorous definition, such as fpomt,
line,-plane, solid, equal, greater than, less than, between, outside, .length,
distance, area, straight, direction, erect and draw. These terms maybe
deScribed or explained but really cannot be satisfactorily defined by
the use of concepts more simple than themselves.

" Forder, H. G. Foxt_tdations of *Euclidean. Cambridge University Press, Lon-
don, 1927, p"..4.

as Keyser, C. J. Mathematical Philosophy. E. P. Dutton and Co., 1922, p. 401
Einstein, Albert. Sidelights ox Relativity. Methuen and Co., Ltd., 36 Essex St.. C.,

Landoll, 1922, p. 45. -t,
r.";.
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Area is defined in:Webster's International Dictionary as "the super-
ficial contents of.aiii figine, the surface,included within any given lines."
It would then be necessary to define "superficial contents" and "surface,"
which are more complicated than the term area itself. In his Founda-
tions of EuClidean Geometry, Forder" gives a rigorous definition Of
area. He proves first by similar right triangles that the product of the
base and altitude of a triangle is constant, an then defines one-half
this product:is the "measure" or area of the tr angle. In this case the
definition still depends on many complicated terms which= may them-
selves be left undefined and this definition would consequently be use-
less in-beginning geonietry work.. There is in this study a frank ad-
Mission of the use of many- undefined technical terms whose meaning
is fairly well known. The reader must carry, in his mind any image

,:or meaning of an. undefined term "which he can reconcile with what
is said, about. it;"5 The statements that a point has no dimensions, a
line has length only, a surface length and width, or a solid has three
dimensions, help to clarify the meanings, but they are not definitions.
They are explanations and descriptions only. *.

Definitions. The statement that many terms are used without defini-
tion must .not be-erroneously carried too far. Very carefully, worded
definitions are needed for many terms in order that their meaning may
be clear and statements made concerning them may be understood.
For instance, if a trapezoid is defined as a quadrilateral with,one pair
of parallel sides, or if defined as a quadrilateral with one and!only one
pair of parallel sides, the meaning is quite different. Definitions are a
very important.part of geometry: they make it precise, they make it
unambiguous, they help to make it ,a science. Yet it is evident that
there will of necessity be some beginning terms left undefined, and also
that definitions, like postulates, are arbitrary. That is, one author may
"define a trapezoid one way and another author may define it differently;
'yet, each, if consistent, would have, an equally rigorous geometry. Fortu-
nately; the recommendations of the National Committee on common and

;universal Jusage prevent significant variations in the definitiOns of terms
used..

Furthermore, the second function of a definition, aside from its use
in clarifying notions of common concepts, is its use as a "symbolic con -
venience," or as Bertrand Russell says, "a typographical convenience.""
"From -a strictly logiCal point of view a definition is the assignment of

" Fouler. op. cit., p. 261. Veblen. op. cit., p. 5.
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a short name to a lengthy complex of ideas."46 Frequently the full mean-
ing of a statement which uses a newly defined term is made clear only
by substituting the definition for the term. One needs only to read "Prin.
cipia Mathematica" or even Ramsey's" defense of Whitehead and Rus-
sell's technique to realize the extensive use and great convenience of ar-
bitrary symbols which are merely the shorthand for a lengthy complex
of ideas. Beginning with the simple' use.of letters in formulas. mathe-
matics makes constant use of arbitrary symbols which it defines in a cer-
tain way in order that in using those symbols time and energy may be
saved. Even, such simple devices as the use of three letters, "A.S.A.," for
a whole theorem concerning the congruence of triangles is a legitimate
substitution of a symbol for a "lengthy complex of ideas." In the next
chapter the terneheuristic teaching" will be arbitrarily defined and used
to mean a fourfold technique of teaching. Definitions therefore have a
double function: they secure brevity and clarity.

In this study many terms will be left undefined yet careful definitions
will; be required for other term:. Postulates will be treated as unproved
statements of relationships which are accepted and used to prove other
relaiiionships. It is therefore evident that the proved relationships are
true ?nly if the postulates and definitions are true, and that the science
of geometry consists in establishing this dependence. In other words
we are given cer':iin postulates, undefined terms, defined term's, and per-
haps certain other premises; then, assuming these without proof, other
relationships are proved.

Number of Postulates. Since geometry is a system of reasoning built
upon certain arbitrary definitions and postulates, it has seemed to mathe-
maticians and logicians since the time of Euclid that it would be desir-
able eo have just as-few postulates as possible. Even now that is :a real
objective for pure mathematics. Forder's new book The Foundations
of Euclidean Geometry, is an illustration of continued effort along this
line. "The object of this work is to show that all the propositions of
Euclidean geometry follow logically from a small number of axioms ex-.
plicitly laid down, and to discuss to some extent the relations between
these axioms."" Forder then proceeds to discuss the "many flaws" that
have been discovered in Euclid's treatment during the last 2000 years,
particularly his omission of the relations of "between," "inside," and "out-
side,:' which are so important in any deductive reasoning.

3Stebbing. L. S. A Modern Introduction to Logic. Thomas Y. Crowell Co., New York.
1930, pp. 180, 440.

"Ramsey, -F. P. The-Foundation of Mathematics and Other Logical Essay,. Harcourt.
Brae? and Co.. London. 1931, pp. xvii, 212.236.

" Fouler, Henry G. op. cit., p. 1.
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The attempt-by Euclid and many of his followers to prove the parallel
postulate is an indication of the effort to reduce the number of ,postu-
lates: Euclid 'had prcived several theorems by using ,certain postulates,
then had to add a new one to prove the parallel line relations. As worded
by ,Playfair, this postulate is: "One and only one line can be drawn
thiough a given point parallel to a given line." The ,effort to prove4his
true- by-assuming it false led t0 the discovery-0f one -non- Euclidean
ge,Opetty by Bolyai and Lobatscbefsky, in which all of Euclid's axioms
and postulates hold except the parallel postulate and in which all of
Euclid's theorems except those based on this postulate are true., Further
-effort to prove this postulate led Riemann to- discover a second non-
Euclid* geometrY sometimes called elliptical geometry."

These great achievements in the history of human thought are largely
the by- products of an effort to reduce the number of axioms, and postu-
lates. While that may be a desirable objective for mathematicians and
logicians, it is not a defensible objective -for high-school geometry. We
have, in contradiction to this historic motive, the statement by the -Na-
tional Conunittee on the Reorganization of Matkeinatics that, not only

,should we postulate "all right angles are equal," but also such theorems
as "the area of_a-rectangie equals the product of the base and height,"
and "vertical angles are equal." Furthermore, the report sayr.that the
list given is not exhaustive but "should be taken ,as representative of the
type of propositions which may be assumed./d° The trend in high-school

,geometry seems clearly to be that of poStulating many relationships
which were previously proved, although the very obviousness of the re-
lationship made the pfoof in many cases rarely understood -by high-
school pupils. This trend is desirable and defensible in that it makes
geMnetry more easily grasped at the beginning,Of the course. The train-
ing in reasoningis not less valuable4xcause it increases the number of
axioms and postulates, but rather more valualile because it emphasizes
more the nature of the postulate balls upon which geometry is built et, "

The Use of Postulation as a Teaching
will

to Secure a Better
Learning Situation. In this study there will be no attempt to limit the
number of postulates to a minimum merely for the purpose of getting ab-
solute "independence." There will be two criteria used in deterthining
the system of postulates: (1) "Consistency" and (2) "Understandabil-
ity" or simplicity. Wherever there seems to be some great gain through

"Heath. T. L. op. cit., pp. 202.220, 280.
National Committee Repoq., op. cit., p. 79.

nYorder, -H. G. op..cit., pp. 4.5.
Heath; T. L. op. cit., pp. 117.124, 195.210.

it r a,
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temporary or permanent postulation of-a proposition, such postulation
f:411 be used in this study. For instance, in the beginning of the geometry
course the principle technique to be gained is the use of the congruence
theorems in solving problems. Their proof by superposition is not only
long and difficult, but also a conflicting pattern that is- riot useful. fur-
thenudre, their postulation makes it y to begin geometry with
simple constructions-in which there is a motive for proving the construc-
tion correct. Consequently, the congruence theorems will be postulated
ir; this study. The proo of the converse of the first principal theorem .en
parallels, involves the Of indirect proof at a time when direct proof
has not been completely tered. It may be advisable to postulate this
converse theorem until the ext theorem involving indirect proof, and
then prove both theorems- b the indirect proof. By this plan the stu-
dent will get a better p4senta lon of and experience with indirect proof.

While-this plan for using pokulation as a means of making geometry
more teachable is ,a slight extension of the notion of postuliteSas4eh
foundation of geometry, yet it is fully in accOrd with the conception of
a postulate, not as a self-evidenttruth, but as an unproved propoSition
whichis assumed in order to, get a beginning somewhere. For mature
minds that beginning may well he with a minimum list of postulates, but
for the mind of a high-school or College student it may make geometry
more learnable to shift the fonndaqon a little by following the recom-
mendations of the National,,Committees for a greater number of postu-
lates and even going a step further by using temporary or permanent
postulation of theorems whenever there is a possible gain in interest or
an improved leirning organization.

Systems of Postulates. It is not the function of this study to present
in great detail the various systems of postulates that have been devised
since Euclid submitted his incomplete list. It must suffice here merely
to list some of the more noted ones and suggest that the student who
wishes to delve more deeply into these systems may do so.

1. Euclid-300 B.C. 4; Hilbert-1903 (-

2. Pasch-1882 5. Veblen-1911
3. Veronnese-1891 6. Forder-1927

Of these the =est famous is the.system of 21 postulates given by Hil-
bert. His book will be interesting reading for any philosophically minded:
mathematician. Practically every textbook has a slightly different sys-
tem of postulates and between Euclid and Pasch there were many changes
made in Euclid's system by men like Wallis (1616), Saccheri (1733),
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Lambert -(1728), Legendre° (1754,_Bolyai ((1802), ° Rieman (1826):
However,, the first great extension of Euclid's system of postulates was
made byllilbert. 'Since then modern texts by men like Smith, Reeve,
Clark;. Stone, kart Hawies 'Strader, Nyberg, Mirick, Seymour, Mc-, ..., , ? ,

w,Corinick, Duren, Illlor,. R. Smith, Hassler, and others, each have
Atli,slight modificatin ofthe Euclidean. system, inclusions of some of Hil-

wbertw'S 'anct Veblen's, eas, and a phraseology and organization some-
3,vhat individual. This is alsO true of definitions and of explanatiws of
undefined 'terms. Consequently, since it is not, unprecedented to present
waslightiY diffeien-tsystein of postulateg-wand a new organization of theo-
rems, no esitation is felt in submitting the following organization, which
is slightly different from any and all previous systems. Changes have
.been made; for econ'ornywand,for simplicity; to shorten the list of essen-
tial; theorems and to make the beginning more teachable. by placing the
emphasis mit go mucli upon tradition as upon simple proof patterns.

..,,-
, SUPERPOSITION

The Rigor of Proof by Superposition Questioned. The proof of two
congruence, theorems and several other theorems in Euclid's Elements

in in most modern geometry textbooks is hied on the postulate of
superposition. As early as 1557 (Peletier's edition of Euclid) t6 rigor
of thiS proof was attacked. In the Mathematical Gazette (Volume II,
p. 165) Bertrand Russell speaks of superposition in no uncertain terms
as "a tissue of nonsense."63 -

Essentially, the criticisms against superposition take. one of three
forms: First, sin& a triangle is formed by line segments joining by pairs
three points in space; and since a point has position but no dimension,
and the line has no dimension except length, the triangle cannot be
moved. If you move a point, it is no longer the same point; since all a
point has is position, and every point has a different position; conse-
quently every different position is a different point. The argument is that,
rigorously speaking, since neither a ,point nor a)ine can be moved, it is
unfortunate to base a system of reasoning about relationships in empty
spdce on the fallacy that they can be moved.63 .

The-assumption of movability clearly presupposes, according to Schop-
enhauer,64 other than empty* space; that a triangle or a sphere is com-
posed of material substance that can be moved. Then,, as Dodgsonsa

:e isaching Geometry in Schools. Report of the Mathematical, Associatiejt. G. Bell and
p: 27.

" eath, T. L. op. cit., p. 227.
Dodgson, C. L. Euclid and an Rivals. Macmillan and Co., 1885, p. 101.
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points out, the-reasoning:is absurd: Take two oranges with equal diam-
eters and place them together- so that their centers coincide, or even two
cardboaed,triangles, and attempt to put them in the position of actual
coiticidente, and the best you can do is to put one triangle beneath
or beside the other with their angles in parallel plaries and points di-
rectly opposite each other. Clearly, motion of plane spatial: figures 'in
empty space isimpossible; and, strictly speaking, even'superposition of
equal Concrete movable figures for coincident_ e is equally impossible."
Why Om base our geometric reasoning upon such a questionable foun-
dation?:

The second argument is to the effect that the assumption that the
postulation of superposition makes the proof rigorous is itself fallacious
and the proof is actually not a real proof. In proving the congruence of
two triangles having side-angle-side respectively equal, we superpose one
triangle- on the other so that these given parts coincide, and conse-
quently, the rest of the triangles. In assuming that one triangle can be
moved about without change of size or form when we know only that
side-angle-side remain constant, we are really assuming that these facts
determine the rigidity of the triangle; and we have, therefore, really
postulated congruence itself in postulating the possibility of movement
with rigidity. The proof is, therefore, but a camouflaged proof involving
a vicious circle of reasoning.", 68' " In further support of this state-
ment is the interesting note by Forder: "It is a scandal that in some ex-
aminations questions still demand proofs involving this vicious method."G8

Superposition Pedagogically 'Unsound. A third argument, that congru-
ence should be postulated for high-school pupils because the proof by
superposition is too long and difficult for a first proof, has some claim
for attention also. Certain it is that most classes seem to struggle rather
painfully with these proofs, -and, consequently, i;, would be a distinct
advantage pedagogically to have them postulated, Furthermore, super-
position _gives -the pupil a wrong notion of demonstration at the outset,
by .bringing in a new type of proof at a time vibe4 the pupil's entire at-
tention should be directed to the type used in proving exercises-by tbe
congruent triangle method. As the proof is traditionally presented, pupils
are compelled to unlearn the method of proof by superposition as soon
as it is learned.

" Heath, T. L. op. cit., pp. 225.231.
"The Teaching of Geometry in Schools, pp. 32.35.

Fortier, H. G. op. cit., p. 91.
Heath, T. L. op. tit., p. 227.
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The Fostidation of Congruence for Simplicity at Beginning. In this
course the ggument will be avoided by using all three congruence theo-
reMs as postulates. This corresponds rather well with Hilbert's noted sys-
tem of = postulates in which congruence by side-angle-side is practically
assumed without proof. The other congruence theorems are then proved
by Hilbert using an indirect proof."01 Logically, Hilbert's system
is, superior to the postulation of all three congruence theorems because
his system is independent and does succeed in ayoiding superposition.
Foider and Veblen prove congruence bythe use of axioms.on congruence
of ordered couples.''. 73 The chief defense for complete postulation
of all three theorems, in addition to the abandonment of superposition,
is simplicity and: understandability at the beginning of the course. For
Those who insist on using the proof by superposition, such proof can be
brought in at ktime of review or at some appropriate later date.

This apparent reluctance to accept superposition as a postulate or as
a method of proof, with the consequent postulation of the three congru-
ence:theorems, is not to be construed as an attack on high-school text-
books-which use superposition, nor upon high-school teachers who use
superposition. The sensible interpretation of the situation can be sum-
marized in a few concise statements. The question is not so much a mat-
ter of right or wrong choice of postulates, as a matter of better or worse
choice of postulates. Some choice of postulates must be made. Either
superposition must be postulated or at least one of the con -uence rela-
tionships. In order not only to emphasize the better choice of postulates,
but also to emphasize, for prospectiye teachers, the necessity for a choke,
as-well as to emphasize the nature, and function of postulates, the latter
course hai been chosen in this study.,

Motion Different from Super:Position. Furthermore, the argument
against superposition is not to be interpreted by those versed in meta-
physics, as a denial of motion. Perhaps a geometry could be built which
did not use any such concept, but the idea of motion is so fundamental
that it will be used in this study as an undefined term or principle. The
following brief analysis of a geometry without motion is suggestive of
its implications and difficulties.

A compass has two points, that is, two indefinable somethings with
zero dimensions just beyond the smallest particle of steel, and through
those two points there is a straight line. As the compass is moved about,

"Heath, T. L. op. cit., p. 229.
" Hilbert, David. Foundations of Geometry. Open Court Publishing Co., 1902, p. 12.
"Forder, H. G. op. cit., pp. 97.103.

Veblen, 0. op. cit., pp. 27.32.

tr.
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does theline -through those points move, or -does the compass merely
succeed in getting its-points On other lines, infinite in number and zero
distances apart? PerhaPs the compass does not l have points,.and -those
zero dimensional positions-just beyond the sharp ends, of steel, as- the
compass is moved, in.some way jump to variousipoints, infinite in nuin-
beiand separated by-infinitesimal distances. The question seems to.be-
come one of deciding when a point is a point, or what a pointreally is.
Are There points on or near the "points" of a compass? If, points cannot
be moved;, if points are merely space positions, 'then- the answer to thiS
question must be negative.-If pointa.cannot move, themWe must a
new word for the sharp end of a needle or a compass. Perhaps there
are -two kinds of points, points which move and pOints which 'do not
Move, real points and mathematical points.

Itseems to be quite possible for,ari automobile to move, even though
it' results in dire calamity,to attempt to superpose one on-or into another
of exactly the same size and shape so that./theY both occupy the/same
space at the same time. Furthermore, ai a car moves, solids planes,

and points on that car move; or/at least they do yihaywe ordi-
-warily' describe by the word move; they rotate, they revolye, they are
translated on lines-or planes. Although geometry seems to be, at least
Partly, a study of space relationihipS, it is not a function/ of this,studyto
settle the philosophical argument concerning the motion/of spatial figures.
Consequently,, although other postulates arechosen to be substituted for
the postulate of superposition, the motion of points, lines, and planes,.by
translation. or rotation, is accepted as an undefined, commonly under-
stood, and fundamental principle.

3. THE POSTULATION OF CONGRUENCE.

Tradition. Since the Superposition.pmof of congruence by side-angle-
side and angle-side-angle has been seriously questioned by prominent
mathematicians:and logicians, and since the number of postulates need
not be kept small, at least for high-school geometry, there seems no good
reason, other than blindly following tradition, why these two theorems
cannot themselves be postulated and the Postulite of superposition be
abandoned. At least such postulation would greatly simplify the begin-
ning of geometry and make possible many easy exercises and construc-
tions.

A Near Fallacy. Some high-school geometries have already postulated
the first two congruence theorems, but at this writing few have yet postu-
lated the third. Before advocating the postulation of congruence by three
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sides, it.would be.well to examine the present proof of this theorem. An
examination of any high-school it Xt. will show that the proof depends
upon. the isosceles triangle theorem' and .congruence by side-angle-side.
The isosceles triangle 'theorem in turn depends upon angle bisection and
congruence by side-angle-side; and finally, angle bisection, unless postu-
lated, depends for its proof upon congruence by three sides. This is an
excellent example of reasoning in a circle, or what is logically known as
pain°, principii (begging the question),,unless some link in the chain
is postulated. Traditionally, this postulation has been in the hypothetiCal
construction of the angle bisector. The reasoning involved takes some
such form as the following: Since every angle has a bisector, draw BD
and assume thit it is the bisector of angle ABC. The concealment of
the postulation is cleverly done in many texts; in others very crudely done
by the bare statement, "Draw BD bisecting angle ABC," the author lit-
tle realizing that such angle bisection depends for its proof upon the very
theorem in the proof of which it is now being used.

The postulation of the possibility of angle bisection has some obstacles
to overcome also. No mathematician would think of postulating angle
trisection even though every angle may haVe a line cutting off one-third
of it, as well as one-half of it. The selection of angle bisection for postu-
lation is a purely, arbitrary decision made by Benjamin .Pierce," in 1872
and followed ever since. A. M. Legendre proved the same theorem in
1860 by using the hypothetical bisector of the base. There is no reason
why either of the other two major links in the chain of reasoning re-
ferred to above could not have been postulated instead of angle or base
bisection. If the isosceles triangle theorem, that the angles opposite the
equal sides of an isosceles triangle are equal, were posiulatedt then con-
gruence by three sides could be proved, and finally angle bisection. Like-
wise, if congruence by three sides were postulated, then angle bisection
could be proved and, following it, the isosceles trig aegle theorem."

Choice of Postulate Arbitrary. Since the decisiorpere is entirely arbi-
trary or traditional and any one of the three postuy s makes the reason-
ing equally rigorous, there seems justification for Aos ulating congruence
by three sides along with the other two, congruenCle t wrens. "It is to
some extent a matter of taste which are selected as a bas of the rest.'"°
Such postulation makes possible a rigorous proof of several important
constructions which are necessary for proving late: theorems, and con-

" Docloon, C. L. op. cit., p. 222.
"Christofferson, H. C. "A New Beginning for Geometry," Mathematic: Teacher, Vol.

XXI, pp. 479ff. Also Vol. XXII, p. 19.
"Forder, H. G. op. cit., p. 90.
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sequently neces,sitates few, if any, hypothetical constructions. Probably
-the chief defense for the postulation of all three congruence theorems,
and especially of congruence by "three sides," is nut so much any logi-
cal advantage that it may have, but rather is pedagogical superiority."
The use of superposition as a pattern of prooLis immediately abandoned
in all..texts as soon as ft is used. Consuent4r, its mastery his little
practical value. Furthermore, the poStulation of, congruence makes it
Possible to begin geometry with construction's and to prove the construc-
tions. Such a beginning gives a simple and forceful purpose for the proof
of a statement and serves to motivate demonstration and to make it an
activity that satisfies a felt need.

4. HYPOTHETICAL CONSTRUCTIONS

The Use of HypothetiCal Conskuctions in High-School Geometry. The
hypothetiCal construction used in proving the isosceles triangle theorem
has already been discussed. The rigor of such a procedure is questioned
because it often involves the postulation of something which will later
be proved and which may follow in,sequence. In some cases the viola-
tion 9f sequence is only, seeming.

In the proof for the sum of the angles of a triangle, the usual proof,
is to draw a line through one vertex parallel to the opposite side. Then
almost invariably on a following page, often 20 or 50 pages farther on,
the text shows how to draw o line parallel to another line. For instance,
in one very carefully Written book, the proof for the sum of the angles
of a triangle occurs on page 64 and the method of construction of a line
Parallel to-another line on page 113. We have here a hypothetical con-
struction where the violation of sequence is only seeming. The construc-
tion indicated depends solely on a theorem previously proved on page
58 and not on any of the material from page 59 to 113. As far as se-
quence is concerned, the construction could readily have preceded the
proof of angle sum for a triangle thus avoiding the hypothetical construc-
tion of the parallel.

There is a much more vicious and cleverly concealed hypothetical
construction in the proof of congruence by superposition. The well-known
one in the 'proof of congruence by three sides has been mentioned, but,
the one concealed in congruence by side-angle-side usually escapes at-
tention. If this proof depends upon the assumption that it is possible to
construct a triangle with side-angle-side equal to side-angle-side of a

Reatley, Ralph., "First Year of Demonstrative Geometry in Secondary Schools,"
Mathematics Teacher, Vol. XXIV, p. 214.

4
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given triangle in order to prove the two congruent, then it has two hypo-
thetical constructions both of which-are based on theorems which fol-
low in sequence..First, the construction of two angles which are equal is
it hypothetical' construction based in reality upon congruence by three
-sides, which theorem, in turn, is based upon congruence by side- angle-
side: Second, the construction of a line segment equal to another segment
by- means 'of thq.compasses is in reality based directly, upon .congruence
by side-angle-side, where the two arms'of the-compasses and the angle
between then' are the equal parts of two triangles' in which the two
sequal seginerits form the third sides. These concealed hypothetical con-
structions are clearly a double violation of sequence which ought to.be
condemned in any system of logic.

If the theorem" is cleverly stated the construction of the triangle is
concealed: For instance, "If two triangles in, which side- angle -side of one
are equal respectively to side-angle-side of the other, could be imagined
or should happen to exist somewhere; then they would be congruent,"
is a statement that avoids the construction of the triangles to meet the
given conditions.. However, it is evident that the actual construction on
the blackboard or on paper of two separate triangles in which the given
COnditions are true must involve hypothetical constructions which violate
sequence.

Hypothetical Constructions not Used in This Study. It shall be the
aim of thiS course to eliminate all hypothetical constructions by the use
of three postulates of congruence and the consequent proving of all neces-
sary constructions before any theorems are demonstrated. This aban-
donment of hypothetical constructions is not to be interpreted as's de-
fense or-Euclid against Legendre, nor as a desire to abandon such con-
structions in the secondary school. It is done here in order to lay more
emphasis upon sequence and the logical structure of geometry. In fact,
good _teaching whiCh adjusts the difficulties to the individual abilities
May find it necessary sometimes to use .not only hypothetical construc-
tions but the temporary postulation of theorems too difficult to prove
at an early stage.

. .

This abandonment of hypothetic,al,constructions, of the form described
above In which there is violation of sequence, is not to be construed as
the'abandonment of hypothetical constructions of the more refined type
in which sequence is not involved. For instance; the theorem, that the
angles opposite the equal sides of an isosceles triangle are equal, need
not depend upon the accurate construction of the triangle nor even upon
the existence of the triangle. Consequently, the free-hand drawing of a

V
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triangle, and even a' bisector of the angle, Merely, to represent the pas-
sible_ triangle could in a sense be called a hypothetical construction. It is
a construction. that the hypothesis states or previous theorems_or con-
structions=haVe shown to be possible: Such constructions, included in the
hypotheskior;ShoWn to be possible by previous proofs,, are quite -differ-
ent from;the:iiiire:ritniie constructions 'Made in the prOof of a-theoreti
which niust:itSe'llbe-iaied--to prove-the construction., If the definition of
hkiothetiCaVconstrUcdons would limit them-to this more refine& type,
theri.niiobjection to -them could poSsibly be raised.

, 5. SEQUENCE

Sequence-Fundamental. Silica geometry is essentially a systern of rea-
soning, sequence is of the utmost importance. In proving any-theorem
only previously stated definitions and postulates -or previonily proved,
theorems can be used. Failure to observe this without' exception is fatal:
to,tiae logic of the system. There is, however, no best and necessary se-
quence of theOrems all the way through the course." Are.as-may be
taught before or after similar triangles as far as straight line:,iigUres
are concerned except for the relationship between the areas of similar
figures. The locus theorems can be proved as soon as the congruent' tri-
angle. theorems ar completed, but need not be, since it may seem ad-
visable to . leave em until students have had experience with more
geometry relations las.

No One Best Se uence..The following statements are all trite, but they.
seem necessary as a preface to the statement that there is -no one demon-
strated best sequ nce so long as there is no violation of sequence. Nearly
every. textbook as a sequence of its own; and, consequently, it seems
justifiable to us another new sequence in this study since there is a defi-
nite reason for uch a procedure. The postulation of congruence and the
abandonment of hypothetical constructions makes possible many simple,
constructions easily made and rigorously proved. Upon these construc-
tions and upon certain axioms, postulates, and undefined terms, as well-
as defined terms this study presents the essentials of the entire geometry
course.

6. NUBIBER OF THEOREMS

Many Theorems in High-School Gel try. Table III gives the number
of theorems, corollaries, and postulates in bix widely used or recent text-

u Hodgson, C. L. p. 102.
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books in geometry. I ese must be considered more or less in the nature
'of general laws or prz iples- with which the high-school student is to
solve original exercises. he surprising fact about Table III is the great
number oL relationships hich the authors deem of sufficient impor-
tance. to be classified as thiorems or corollaries. .Many of these, even
though they have been dignified-by the name! of theorems, are never

TABLE III

THE -N,UMBER OF THEOREMS AND POSTULATES IN
Hyrri-Scnoor. GEOMETRY TE24.71300XS*

.

'Names of '
Authors 1

. ,
, Axioms and

Postulates
of Plane
Geometry

Constructions,
Theorems, and
Corollaries of

Plane Geometry

Axioms and
Postulates
of Solid

Geometry

Theorems and
Corollaries of

Solid. Geometry

bard! 38 196 11 153
Arnold

Nyberg 52 198 15 1 127

Otis 38 165 9 . 114
Clark

Seymour 48 218

Smith
Foberg 33 162 (16) (59)
Reeve

ells_ 29 231

Hat,

Average 40 195 12 131
This Study 32 30 4 12

This count may be slightly in error because of the cases in which it was not clear
whether the author intended a statement for a definition, a postulate, or a theorem.
Some authors used also "principles," "properties," and problems; and again it was not
always clear whether these were intended for definitions, postulates, or theorems.

again used in the proof of later theorems. Reference to Table I will show
this to be a fact. Furthermore, it is often impossible to tell whether the
author meant a statement to be a definition, a postulate, or a theorem.

A Milinsufis Number of Theorems Used in this Study. Rather than to
increase the number of theorems to discover how many it is possible to
demOnstrate for a pattern &thought, it is one of the purposes of this
study to discover how few really fundamental theorems are needed, upon
which to build the entire structure of geometry. Reference to Section III,
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Chapter I and to Chapter IV will show that in this study Vie entire plane
geometry structure has been placed upon ten fundamental onstructions
and twenty theorems. To require the mastery of ten simple tructions
and twenty theorems upon-which to build a course in reasonin seems at
least an attainable objective and more in accord with the n ber of
fundamental laws in other sciences such as physics, chemistry, an biol-
ogy.

A further- defense for this minimum list, as already stated, is tha it
acquaints the prospective teacher with the entire field of high- school
geometry -in a short period of time. A random choice Of theorems for
this purpose would be difficult to defend, and some choice is necessary
since the time available for a teacher's course does not permit the use of
all the high-school work.

7. COMMENSURABLE AND INCOMMENSURABLE CASES

While it is recognized that the number of cases of incommensurable
magnitude is as infinity to one in comparison with those which are com-
mensurable, and while it is recognized that no treatment can be rigorous
which does not consider the incommensurable cases; yet, in order to be
sure not to shed a reactionary influence, the incommensurable cases will
be omitted at first in Chapter IV but presented near the end of Chapter
V'of this study. In all cases of measurement, such as ratios, areas, and
angles, the assumption of commensurability will be made. This is done
to agree with the trend which seems to consider it impossible for most
high-school students to grasp the significance of incommensurability. At
the same time the comprehensive treatment of incommensurables as a
unit gives the prospective teacher an opportunity to master its tech-
nique and significance and to be prepared to teach it if any occasion re-
quires that it be taught.

8. INEQUALITIES

Since the theorems on ineqtialities are. included in,only the subsidiary
list given by the National Committee and our analysis disclosed no great
fundamental need for them, they are presented rater as a unit in con-
nection with indirect proof.
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IV. PROBLEMS FOR REVIEW AND DISCUSSION

1. What is meant by the "Essential. Theorem" of geometry?
.4. Compare United States history and geometry on the basis of (a) age,

(b) universality, simplicity of concepts, (c) troth of conclusions,
(d) definiteness of 'conclusions, (e) the use of hypothesis and postu-
lates;: (f) applications.

3. What was Plato's contribution to geometry? What in general did the
-Greeks contribute to, the Egyptian beginnings?

4. How liits Descartes' invention of coordinates 'affected the modern
Euclidean geotrietry? ,
Discuss:, Geometry has evolved from a study tor adults to a study
for children; yet some principles governing its contents have not
been modified to meet its new function' .

6. Discuss: The statement that a straight line is the shortest distance
between two'points.ls not necessarily true.

7. Discuss the following phrases from definitions of a point.
(a) An indefinitely small spaCe
(b) That which hag neither parts nor magnitude
(c) That- which has position ILA neither length, breadth, nor thick-.
ness
(d) The limit of a line as it decreases . indefinitely
(e) That by the motion of which a line is generated

8. Does the refusal to use superposition in this study repudiate the
practice of constructing two triangles on paper, under the conditions
given, cutting out the triangles, and placing one on the other to show
equality of all parts? Is this actual coincidence, if by coincidence is
meantuccupying exactly the same space?

9. Could an angle be trisected if the hypothetical construction of a Con-
choid of Nicomedes were granted? See Sanford, V., History of Mathe-
matics, p. 262.

10. What are "primitive ideas" and "primitive propositions"?
11. Is analytic geometry, based on coordinates,- Euclidean or non-

Euclidean.gebmetry?
12. How can a person ever get the meaning of an undefined term?
13. What is meant by the statement that the reasonableness and truth

of the theorems proved by means of postulates prove the postulates
'to be true rather than the truth of the postulates proves the theorem,
true?

14. Just what is a trapezoid? Do all texts agree that two sides of a
trapezoid must be non-parallel?
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:15: Can a point be moved? A line? Can two points be made to coincide?
'Two, lines? Could there, be two kinds of -Mathematical points, flied
andInoving ones, just as the "points"-made in a. speech, _the good.
"points',! about a -man's character, or-the "points" which a- giVen
stock rose or fell yesterday, involve different notions of "points "?
The moving points seem possessed with the peculiar limitation that
-theyilways coincide with some fixed point, yet do in some way get
from one filed -point to another: Explain.

16. Why is sequence important?
17. iio* doei reduCing the.number of_ fundamental _theorems make ge-

ometry more simple and more like other sciences?
18. EXplain -how there can be more incommensurable :than- commensu-

rable line segments. What does Commensurable Mean?, indomnien-
.surable?

=19. Discuss: To begin geometry with constructions not only provide;
a- beginning that is simple and concrete, but also provides a "felt
need" to prove that the construction is correct;-and consequently,
this new beginning- motivates demonstrative -geometry because the
activity of demonstrating becomes purposeful.

20. In this study the number of theorems is reduced to a minimum, yet
the number of postulates is not reduced, but rather, extended... DO-
fend this.

.



CHAPTER III

PRINCIPLES OF HIGH-SCHOOL GEOMETRY TEACHING

I. INDUCTION AND DEDUCTION

Definition of Induction. Induction and deduction are two terms fre-
quently used in discussions of thought processes and in professional lit-
erature on methods of leaching. Carefully worded definitions should
therefore be given. In An Introduction to Reflective Thinking the Co-
lumbia Associates in Philosophy define induction, after showing how a
scientific investigator is enabled, to draw a general conclusion from one
or more restricted individual' cases, by asserting that the "transition
from particular facts to a general knowledge about these facts is known
as the 'process or induction!'" It is a process widely used in science.
Every investigator must study specific-cases. From these he makes,an
inference or draws a conclusion, he sets up a hypothesis or a theory, or,
in other words,_he makes a generalization. He then often studies more
cases-in the light of the general truth he has dIscovered. If the generali-
zation is correct, 'these cases will be much simplified and illuminated. If
it is not correct, it must be modified in accordance with these added
cases. .

L. S. Stebbing in a recent book on logic feels that induction has two
slightly different meanings, "In one sense 'induction' is used for that
process by means of which we apprehend a particular instance as
exemplifying an abstract generalization. In the second sense 'induction'
means a form of in which we establish a -generalization by
-showing that it Bolds of every instance that is said to fall under it. In
both senses induction is concemed with particular instances."" The first
of. these has sometimes been called "intuitive induction," "perfect,"
"complete" or "summary" induction. It is the type used in mathematics.
The second sense of the word fits the conceptioA of induction as used in
all the other sciences, since it is essentially the scientific method for

"Columbia Associates in Philosophy. An Introduction to Reflective Thinking. Houghton
Mifllin Co., 1923, p. 74.

"Stebbing, L. S. A Modern Introduction to Logic. Thomai Y. Crowell Co., London,
1930. pp. 243ff.
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handling empirical data. The second use of the word is concerned with
"enumeration of particular instances."a° In this sense,of the word a gen-
eralization is not necessarily invalidated by contradictory instances, in

'fact the theory of probability enters as part of the technique of- scien-
tific method -in all empirical sciences. Stebbing claims that "it seems
now to be.generally agreed that induction essentially consists in gener-
alization from partiCular instances, an that scientific method involves
not only induction but-deduction."" 9

John Stuart. Mill gave the terms a b oader definition: "the operation
of discovering and proving general propositions." Consequently when
Mill and Nicod disagree on induction they are not talking about the
sameldea although they use the same word. Bacon and- Mill would con-
tend "induction which proceeds by simple enumeration is childish; its
conclusioni are precarious, and exposed to peril from a contradictory
instance. In silence it carries us but a little way. We are forced to be-,
gin with it; we must often rely on it provisionally. hut,.for the accurate
study of nature, we require a surer and more potent instrument, ""
namely, induction based on analysiS of causes and conditions. Nicod in
attacking Bacon and Mill Would hold that "induction by simple enu-
meration is a fundamental mode of proof and all those. who have thought
that they can do With-OUCH. liave done so only bylbe aid of sophisms.""

It js, evident that even logicians cannot agree when they use the same
word to mean somewhat different ideas. In mathematics the argument
is of-no concern because the truth of conclusions in mathematics does
not depend upon enumeration. We may use enumeration to discover a
conclusion which seems to be true, but we establish the truth or falsity
of it by deductive reasoning.

In all mathematics, and especially jn geometry, one is constantly draw-
ng general conclusions about triangles, parallelograms, or circles from

Studying one or more specific figures. Therefore induction is inherently
anda

.

inescapably a fundamental part of geometry and of geometry teach-
.1
ing. The following examples illustrate the process of drawing general
conclusions from specific facts, which process is called induction.

1.Given that 3 over 6 equals S over 10. It seems to be true also that 3
over S equals 6- over 10. The following query at once suggests itself:
Would this always be true of any four numbers related in the same way?
Or, stated symbolically, is it true, if a over b equals c over d, that a over
c equals b over d?

2 Nicod, Jean. Foundatkns of Geometry and Induction. Harcourt, Brace and Co, c Lon.
don, 1930, p. 201.
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.

2. Given that 3 over 6 equals 5 over 10, it seems to be true that (3 + 6)
over 6 equals (5 10) over 10, or that 9 over 6 equals 15 over 10. Again

this suggesti a generalization that if a over b equals c over d, then
(a + b) over b equals (c +.d) over d.

3. Suppose a triangle is cut out of paper, its angles torn off and placed
7*

together so as to show that for this triangle the sum of its angles seems
to be a straight angle. Or suppose the angles were very carefully measured
with a,protractor and the sum found to be very close to one hundred
eighty degrees. Or suppose that each of the three angles of an equilateral
triangle were known, to be sixty degrees and, therefore, their sum would
be one. hundred eighty degrees. Thesespecial individual cases suggest a
general conclusion that for any triangle the sum of its angles is one hun-
dred eighty, degrees, no matter if the triangle be equilateral, isosceles,
scalene, acute, obtuse, or right, black or white, standing up or lying down,
in Florida, Alaska, or New Zealand.

4. By using a cone and a cylinder with the .same base as d altitude, it
is easy to illustrate that the volume of the cylinder-seems to be exactly
three times that of the cone. Is it then generally true that.every cone is
1/3 of a cylinder jith the same base and altitude? Since the volume of a
cylinder equals s base times its altitude, does the 'volume of a cone
equal 1/3 the product of its base and altitude? Again this generalization
is possible of proof and illustrates the function of a possible inductive

Iapproach in a deductive science.
Definition of Deduction. If geometry were exactly like other sciences,

these generalizations could never be completely proved to be true. They
could only be assumed to be true so long as no contradictory evidence
was fOrthcoming, or the probability that they were true might be .8.
"One of the chief glories of mathematics is that it can take its theorems
out of the realm of inductive probability into the realm of deductive cer-
tainty,"82 as no empirical science can do. Geometry can prove its gen-
eralizations to be true by showing their dependence upon other relation-
ships which have been previously proved, upon definitions which have
been stated, or upon certain axioms and postulates which have been
previously accepted. This whole process of proving a general truth by
showing its relation to other general statements which are accepted
as true is called deduction. As worded by the Columbia Associates in
Philosophy, deduction is "the whole process of following the network of
relations which bind truths together.""

", Young, J. W. A. The Teaching of Mathematics. Longmans, Green and Co., 1920. D. 57.
1, Columbia Associates in Philosophy. op. cit., p. 98.

ti
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In developing further the nature of deduction the Columbia Associates
contend that "mathematics is concerned with that structure of things
which by its existence makes it possible to proceed from one truth to
another deductively. . . . The relations with which the mathematician
deals seem to be a pait of the very foundation of the world we live in, so
that we have discovered that, if any proposition that holds of experience
is'elaborated in accordant' with the rules of mathematics, the conclusion
thereupon reached will also hold of experience. . . . It does seem to be
true that the more highly deyeloped a science becomes, . . the more its
beliefs tend to fall into mathematical forth, and to admit of treatment
by purely mathematical methods. So true is it that a science is successful
just in so far as it is able to formulate its beliefs mathematically that
many men have naturally come to think that in mathematics is to be
found the exemplar of all true knowledge.""

Geometry is essentially a deductive science. It deals with general truths
and relationships which may have been suggested by induction, but which
it proves by means of other general relationships. An "if-then-science" is
a phrase common1S, used in describing geometry. In every case, however,
both the "if" and the "then" clauses are general statements. The following
examples illustrate the function and method of deductive reasoning. They
are nat to be interpreted as desirable patterns for teaching, but merely
as illustrations of deductive reasoning.

1. 1t was suggested inductively that. if a over b equals c over d, then
a over c equals b over d. Let us proceed to prove this deductively.
Proof: (1) a/b = c/d by hypothesis.

(2) a/b b/c = c/d b,/c. Both terms of Equation (1) multi-
,

plied by b/c.
(3) a/c =b/d. Equals multiplied by equals make equals.

a + b c + d
2. If a/b = c/d then was also suggested inductively.

Proof : (1) a/b = c/d by hypothesis.
(2) a/b + 1 = c/d + 1. Equals added to equals make equals.

.

a+ b c + d
(3) Both terms of equation (1) changed to

'improper fractions.

3. By induction it was suggested that the sum of the angles, of any tri-
angle equals 180°. (Suggestion: The reader may need to draw a
figure in order to follow the proof easily.)
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-Proof: (1) Through any vertex, such as C, draw a line parallel toopposite side, AB. Three angles will be formed. Call themx, y, and z, using x for the angle nearest A.(2) x + y + si = 180° by definition of a straight angle.(3) x.= A and z = B, because if two parallel lines are cut bya third, the alternate interior angles are equal.(4) y =. .c.", because they are the same angle.

(3) Therefore A + B + C = 180°, because equals may be.,, substituted for equals. ------......
(6) Therefore the sum of the angles of any triangle equals18430:, .

1It should be evident that the truth of these three statements has beenestablished by means of reference to other relationships or definitionspreviously accepted. The absolute truth of the propositions dependsentirely upon the absolute truth of the secondary propositions. How-ever, in the entire process. of reasoning no use is made of the specificnature of any fact or thing. All statements are completely, general. Inci-dentally, all three illustrations are also synthetic in organization. Theycould as well have been analytic except that they would then have beenlonger.
T. Percy Nunn, in discussing the teaching of algebra, contends thatthe "business of algebra is to disengage thetessential features of anarithmetical process of given type from the numerical setting which aparticular crse presents.'84 If this'is true of algebra, it is even more trueof geometry. Every proposition and exercise in geometry seeks to dis-engage a general truth from a specific setting.

.Use of induction and Deduction in Geometry. The meaning andnatural function
/

1-
of induction and deduction have now been conciselystated. The drawing of general conclusions from specific cases is induc-tion. The /process of dealing with a general conclusion in proving it bymeans of other general relationships or of applying it to specific casesis deduction. Induction is the natural way of presenting-.or discovering\a general concluSion, and deduction is the rigorous, useful,\e onomical,and forceful way of proving or applying it.

Demonstrative geometry is essentially a deductive science, involvingthe proving of general conclusions which have been discovered induc-'-.tively from specific figures. It should therefore utilize constantly thenatural relationship between the specificnd the general, betweep induc-\M Nunn. T. Percy. The Teaching of Algebra. Longmans, Green and Co., Londop. 2.
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tive and deductive thinking. The simultaneous use of both of these forms

therefore becomes a general controlling principle in the teaching of

geometry." 86
This joint use ofanduction and deduction is illustrated and emphasized

with several theorems in Chapter IV and Chapter VI of this study. Ai

typical bases see theorems 8, 9, 33, 34, 35, 36, 37, 38. Note the induc-

tive "approach." In fact.the purpose of this entire study iso provide pat-

terns- for the use of induction as well as deduction in the teaching of

geometry, and also to provide patterns for the use of analysis and syn-

thesis, which are to be discussed presently. The use and function of in-

duction and of deduction in geometry will be more completely appre-

dated when, in'Sedion IV of this chapter, its place in the general plan

of "heuristic" teaching is indicated.

II. LABORATORY WORK IN GEOMETRY

Laboratory Work Essential for Induction. The preceding defense for

an inductive approach to a deductive science should give laboratory

work in geometry a prominent place. It should also put it in its right

place, that is, as a means of discovering and suggesting possible con-

clusions to be proved.
,

Laboratory work in geometry, which is a matter of making drawings

by following directions given in a book, is not laboratory work at all in

the sense here intended. It is rather mechanical drawing, a by-produc

of geometry, and contributes little toward the realization of the chief

function of geometry-4-that of disdovering and proving space relation-

ships. So-called laboratory work of this kind has values that are signifi-

cant, such as the development of the ability to handle the drawing instru-

ments, to follow directions, and to make neat and accurate drawings.

These are not generally conceded, however, to be the best poisible aim

of geometry. Laboratory work, if not controlled and made to serve its

proper purpose, may become the end rather than the means to an end.

At the other extreme is the conception of laboratory work in geome-

try as a way for the child to discover, entirely independent of suggestion,

that the area of a circle equals pi times the radius squared and other

relationships of geometry. To expect a child to discover entirely by him-

self, in 180 hours, what it has taken brilliant mathematicians of the race

thousands of years to discover, is of course an impossibility.

"Schultze, Arthur. The Teaching of Mathematics in Secondary Schools. Macmillan

Co., 1914, pp. 37.41.
s' Hassler, J. 0. and Smith, R. R. Teaching Secondary

Mathematics. Macmillan Co.,

1930, pp. 136139. U.



Principles of High-School Teaching 53

If by laboratory work is meant the actual handling of concrete figures
in such a way as to discover the relationships existing, with some guid-
ance by the text or teacher, then it performs its most useful service to
geometry. The natural way of making general conclusions is through
dealing with specific cases. The laboratory work must then be limited to
this function and must merely supplement, rather than supplant, the
deductive analytic reasoning. "After a consideration of a sufficient num-
ber of cases it is a relief, a simplification, to abstract, to generalize.
Abstractions and generalizations are rather the crowning products than
the foundation stones."87 "Laboratory methods form an exceedingly
valuable supplement to the teaching of -mathematics. Students doing
some work of this nature will have more interest in and understanding
of mathematics."1

An Illustration of a Laboratory Lesson. Laboratory work in geometry
need not be individual, but may be more or less group work. The fol-
lowing is a description of a laboratory approach to a theorem, which the
author witnessed recently.

Teacher: "Draw a straight line on your paper, and on it lay off three
of four equal segments."

The teacher also did this on the board and saw to it that all had done
likewise.

Teacher: "Now draw a line through one of these points and then a
line through each of the other points parallel to the line through the first
point. You need not construct the parallels accurately but draw them
with the ruler to get the lines straight."

The teacher followed her own directions at the board and each mem-
ber of the class .did

Teacher: "Look at your figure; you should have at least three parallel
lines cutting equal segments on a transversal."

She held up several drawings in various positions for the class to see.
Teacher: "What do you think would be true of this figure?"
Responses were almost unbelievably rapid, (1) "The parallels are the

same distance apart." (2) "If you draw another line across them, the
parts of it would be equal." Other statements of equivalent nature were
made.

Teacher: "Suppose you try drawing another line across the parallel
lines, but don't make it parallel to the first one nor even perpendicular
to the 'parallels, just any other line crossing the parallel lines."

" Young, J. W. A. op. cit., p. 105f.
"Schultze, Arthur. op. dr., p. 49.

r
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She did this at the board, and all did likewise at their seats.
Teacher: "Now what would be true of this line?"
Many of the volunteers suggested, "Its segments would be equal."
Teacher: "Why do you -think the segments would be equal?"
Various pupils answered, mostly to the effect that they looked equal,

or that they were equal on the first -transversal, or that they could be
proved equal.

Teacher: "Would it always be true that if parallel lines were drawn in
this way they. 'Auld cut equal segments on anyitransversal?"

There was general agreement. Then the teacher said, "Suppose we
prove it. Before we start to do that, will someone make a good sentence
stating the conditions and the conclusion?"

The first attempt was, "If parallel lines cut equal segments on one
line, they cut equal segments on any line." These criticisms were of-
fered: "The 'any line) would have to cross the parallels." "There would
have to be at least three parallels.' Finally the statetneni was modified
into, "If three or more parallel lines cut off equal segments on one trans-
versal they will cut off equal segments on any other transversal.'?

The, teacher then proceeded with the proof, the pupils doing the
analyzing and discovering of the steps in it. They gave a new proof but
one t atirely correct. It will be given' in full in a later section.

Summary and Conclusion. The above illustration indicates that as the
term laboratory work is used in this study it means experimentation with
specific figures for the purpose of discovering relationships. As such it
forms an integral part of the pattern of teaching which is herewith advo-
cited. Its place in the general plan of teaching will be more .apparent
after the next section on analysis and synthesis has 'been mastered, and
the section, "The Heuristic Method in Teaching Geometry" has indicated
theplace and function of each type of work in the general plan.

III., ANALYSIS AND SYNTHESIS

Analysis and Synthesis in Chemistry. Analysis and synthesis are terms
commonly used in chemistry. A chemist analyzes a substance and per-
haps discovers that it contains iron, sulphur, and oxygen. That is, he puts
a sample in a test tube, a beaker, or a retort, and subjects it to various
processes in order to break it down into simpler compounds or into ele-
ments.

Synthesis in chemistry refers to the putting together of elements or
compounds by subjecting them to various processes in order to make some
new or desired product. Frequently, in fact usually, a synthetic process

6t)
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is suggested by/,and follows analysis. Soil is analyzed to determine what
ele'ments it nods, then by supplying fuse elements the soil is built up so
that it can,produce more efficiently. Iron ore is analyzed to determine
how much carbon or other ingredienAs must be added to make the best
steel. in,nther words analysis is a breaking down process used to discover
something, and synthesis is a building up process based on analysis and
used to produce a desired product.

Analysis and Synthesis in Geometry. In geometry, analysii is a mental
process oLtearing down a geometric statement to discover the relation-
ships upon which its truth or existence depends. In geometry, analysis
is based on the Principle or 4w of Sufficient Reason, which .Leibniz
expressed by .saying that "nothing happens without a reason why R.
should be`so rather than otherwise."89, 9° Analysis is a systematic process
of discovering this sufficient reason why a statement or a relationship is

. so rather than otherwise. This is done by a technique which says: "This
will be so if that is so; that will be so if something else is so, etc." On the
other hand synthesis is the building up of sufficient reasons to establiih
or prove the conclusion.

Analysis Used by Plato. The analytic method is not anew method of
teaching geometry. Plato is credited with being its originator,,and Apol-
lonius and Archimedes were very successful with its use. The method_
invented by Plato differs slightly from the modern method. It is based
upon the following definitions of analysis and synthesis. "Analysis is an
assumption of that which is sought. as if it were admitted- and the pas-
sage through its consequences to something admitted to be true. Syn-
thesis is an assumption of that which is admitted and the passage through
its consequences to the finishing or attainment of what is sought."21 To
illustrate the meaning of this definition, examples can be used from the
preceding section in which certain general conclusions were suggested as
the result of inference from particular cases.

An Illustration of Plates Method of Analysis. Since 3/5 = 6/10 and
3

÷
5 6 + 10

5 10
, it was thought possible, in the section on induction,

that it might always be true for any proportion that, if a/b = c/d, then
a 4- c d

b d

"Jevons, W. Stanley. Look. D. Appleton and Co., 1890, p. 125.
"Enriques, Federigo. The Historic Development of Logic. Henry Ilolt and Co., New

York, 1929, p. 256.
el Heath. op. cit., I, p. 138.
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HYPOTHESIS: (1) a/b = c/d
a+ b c+d

CONCLUSION: (2)
b d

ANALYSIS: "Assume the conclusion true; then pass through its conse-
quences to something admitted to be true."

fl b c d"
If (2) -- +

, then (3) (a + b)d = (c + d)b. Why? ,
d

If (3) is,true, then (4) ad +'bd = bc + bd. Why?
If (4),is true, then (5) ad = bc. Why?
But 5 is true from (1).

Therefore (2-) is true if all steps used are reversible.
SYNTHESIS (PROOF): "Assume the hypothesis and pass through its

consecitiences to the desired conclusion." That is, retrace the steps dis-
covered in the analysis. [Use the previous hypothesis (1) and conclu-
sion (2)].

(3) ad = bc. Multiplying (1) by bd.
(4) ad + bd = bc + bd. Adding bdto both terms of (3).
(5) d(a b) = b(c + d). By factoring (4).

a + b + d
(6) Therefore By dividing both terms of (5). by bd

and cancelling.

There are other possible analyses and syntheses for this same general-
ization. For example:

HYPOTHESIS: (1) a/b = c/d.
a + b e+ d

CONCLUSION: (2)
b

ANALYSIS:

If (2)
a + b + d

, (34 IF =
b d

If (3) is true;then (4) + 1 = + 1.
But :(4) is true from (1) by adding equals to equals, and therefore
(2) can be proved.

SYNTHESIS (PROOF):

(3) a/b + 1 = c/d + 1. By adding 1 to both terms of (1).
(4) a/b + b/b = c/d + d/d. By changing to same denominator.

(5) Therefore
a + b c + d

By adding the fractions in (4).
b d

N
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Analisis and synthesis supplement each other; the first, discovering
the steps for the proof, and the second, putting together the ideas dis-
covered by analysis so as to form Iconcise, rigorous proof. Analysis, as
Plato is credited with using it, is effected by assuming the conclusion
true, discovering the results of this assumption, then trying to
these results without using the conclusion. This method begins by say-
ing, "if the conclusion is true," and concludes each step with, "thenscer-
tain results follow." .4'

The Modern Method of Analysis. The modern analytic method differs
rather markedly in point of view from the older method although it is
ba.sed upon the same fundamental notion of working from the conclusion
back to known facts. According to D. E. Smith the modern analytic
method asserts that "a proposition is true if another is true, and so on,
step by step, until a known truth is reached."" In the modern synthetic
method, according to the same author, "known truths are put together
in order to obtain a new truth."" Using the analytic method, a student
will say, "I can prove this if I can prove that; I can prove that if I. can
prdye . ."; and so on until he reaches a proved or accepted proposi-
tion.k ". " Illustrations will help to clarify this theory.

(a) HYPOTHESIS: (1) a/b = c/d.

a-Fb c-Fd
CoNcLustoN: (2)

b d

ANALYSIS: Equation (2) will be true if (3) (a + b)d = (c d)b.
Equation (3) will be true if (4) ad + bd = bc + bd.
Equation (4) will be true if (5) ad = bc.
But ad = bc from (1). Therefore (2) can be proved.

Again there are other alternatfv es than equation (3). This will usually
be true in every analysis regardless of its form. The synthetic proof is
the same as in the previous case. In this type of analysis the "if" comes
with the second clause in each step of the analysis, stating that the
desired conclusion will be true if something else is true.

Comparison. The analysis used by Plato and the type designed as the
Modern Method of Analysis are, essentially identical; the only difference
physically is the placement of the "if"; and, theoretically, the difference
consists in a point of view, with less confusion in the modern method

"SMith, D. E. Te.aching Geometry. Ginn and Co., 1911.
" Smith, D. E. Essentials of Plane and Solid Geometry. Ginn and Co, 1923, pp. 93 94.,
"Boma and Smith. New Plane Geometry. Ginn and Co., 1899, p. 152.

\ "Hassler and Smith. oP. cit., pp. 131.136.
"Schlauch, W. S. Fifth Yearbook, IN 134.
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because of less reversal of thinking. Furthermore, in the method credited
to Plato, converses are involved, and hence more care needs to be taken
to be sure that all operations are reversible. If one assumesca conclusion
true, certain results may follow which may not themselves be adequate to
be the "sufficient reasons" for the conclusion. For instance, suppose the
desired conclusion is that ABCD is a square. Plato's analysis might as-
sume That ABCD is a square, and as a consequence angle A is a right
angle. But, reversing the statement, that angle A is a right angle is not
sufficient to make ABCD a square. In the modern method the direct
form is retained' by reasoning that ABCD is a square if certain condi-
tions are true. That is, the Plato analysis begins by saying, "If the con-
clusion is true, then certain results follow." The thought is that in revers-
ing the thinking the results will become -the causes which make the
conclusion true. In the modern form the analysis begins by saying, "The
conclusion will be true if certain other conditions are true." Then these
conditions will be true if still others are true, and so on until facts have
been reached which are true or accepted. It should be evident that the
modern method avoids many, dangers which were inherent in the older
form.

Symbolically expressed the modern form of analysis and synthesis is
as follows:

ANALYSIS, modern form

First, Given A, to prove B.
Second, B will be true if C is true.

C will be true if D is true.
D will be true if E is true.

Third, But E is true because of A.
Therefore B is true or at least B can be proved.

SYNTHESIS

A is true because it is the hypothesis, a definition, a postulate, or a
previous theorem.

E is true because of A or other accepted facts.
D is true because of A, E, or other accepted facts.
C is true because of A, E, D, or other accepted facts.
'B is true because of A, E, D, C, or other accepted facts.
Therefore, if A is true, B is true..

Geometric Illustration of Modern Analysis. It is desired to prove that
the sum of the angles of triangle ABC is a straight angle.

Cti
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ANALYSIS: (1) It is evident that this could be done if one angle could
be shown supplementary to the sum of the other two, or the three angles
equal respectively to three other angles whose sum is known to be 180°.

(2) If AB, in triangle ABC, is extended to D, then angle ABC is supple-
nientary to angle CBD, or ABD is a straight angle. Now it is desired to
prove thatangle A plus angle ABC plus angle C = angle ABD.

G

E

A P B YD

(3) Clearly angle ABC (angle z) is already part of angle ABD. There-
fore angle A + angle z + angle C = angle ABD if angle A + angle
C = angle CBD.

(4) In angle CBD it would be possible to draw an angle at B equal to
angle A. Call_ it x.and the rest of angle CBD call y. Call the line drawn,
BE. Since angle x Angle y = angle CBD and angle A = angle x,
then angle A' + angle C would equal angle CBD if angle C = angle y.

(5) Finally angle C would equal angle y if BE were parallel to AC since
the angles are alternate interior angles.

(6) But BE is parallel to AC because of the fact that angle x was drawn
equal to angle A.

(7) Therefore angle A 4- angle B + angle C can be proved equal to a
straight angle.

Note: What other alternatives might there be lb place of step (2)?
Try taking some point nn AB such as P, drawing lines parallel to AC
and BC, and then proving the three angles at P equal to the three angles
of the triangle. There are many ways of getting three angles equal to
angles A, B, and C. The usual form of this proof is synthetic and because
of its familiarity will not be reproduced here, but it is clearly the reverse
of this analytic form.

We have then established by these specific illustrations an inductive
basis for a sensible conclusion, namely, that analysis and synthesis are
supplementary methods in geometry, the one used for purposes of dis-
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covering the proof and the other used for concisely stating it. The general
principle which is here illustrated is that since geometry is essentially the
science of proving relationships, it must of necessity use both analysis and
synthesis, the analysis for discovering the proof and the synthesis for
presenting it. The analytic method of going from the unknown tto the
known, furnishes a powerful instrument for reasoning, while the syn-
thetic presentation, going from the known to the unknown by short
familiar 'steps, is the sensible, easy, rigorous, accepted, and efficient way
of presenting the proof. A geometry devoid of either of these methods
would be unfortunately handicapped if it could exist, at all.* 97. es' "

Synthesis a Check on the Reversibility of Analysis. It may be thought
by a casual reader that the synthetic form of the proof is unnecessary.
This is probably often true; in fact the synthetic proof seems always to
repeat the analytic statements in reverse order and to be merely a re-
fined way of concealing the real thinking process. However, the synthetic
proof has a second function which is very important although not as
applicable to the modern form of analysis as to the form inaugurated by
Plato. That function is to insure reversibility, since there are some
processes that cannot be reversed. This is shown most easily by illustra-
tions from algebra.

(a) CONCLUSION: +2 = 2.
ANALYSIS: +2 = 2 if (+2)2 = (-2)2 or if 4 = 4.

But 4 = 4.
Therefore the erroneous conclusion can seemingly be

proved.

PROOF: (Snythesis)
(1) 4 = 4.
(2) =t_- 1/71 = 4.'
(3) +2 = +2 or 2 = 2.

Notice that the analysis does not reverse because the process of squar-
ing two signed numbers, when reversed, will not produce the erroneous
result.

(b) HYPOTHESIS: a = b.

CONCLUSION: 2 =1.

The use of analysis and sr thesis is further illustrated in Chapters IV, V. and VI
of this study.

"Sehlauch, W. S. op. cit., pp. 134444.
"Schultze, Arthur. op. cit., pp. 30.36, 228-244.

Young, j. IV. A. op. cit., pp. 262.263.
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ANALYSIS: (1) 2 = 1 if a + a = a or a + b = a.
(2) a + b = a if (a + b) (a b) a(a b) or if

a2 b2 = e ab.
(3)a2 b2 = a2 ab if b2 = ab or if b = a.
(4) But b = a, therefOie, if the processes used are re-

versible, 2 = I.

In step (2) multiplying by a b, since a = b, is multiplying by zero,
and thereverskof this, division by zero, is impossible. The synthetic form.
o: these statements quickly reveals this error.

1 cos 2A
(c) CoNcLusrox (Identity to be proved): (1) tan A =

1 + cos 2A

ANAI.Ysis:tEquation (1) will be true if (2) tan2 A
1 cos 2A

1 + cos 2A
Equation (2) will be true if (3) tan2 A =
1" (1 2 sin2 A)
1 (2 cost A 1).

Equation (3) will be true if (4) tan2 A
cos2 A

sin A
But (4) is true because tan A

cos A.
Therefore (1) can be proved.

Synthetic proof of this will show that equation (1) is true only if a
plus and a minus precede the radical sign; otherwise it is true only for
angle A acute, since a radical without a sign is assumed to be positive.

These illustrations reveal that the chief function of the synthetic proof
is not merely to secure conciseness and beauty of form, trut rather to
insure rigor. The chief function of analysis lies in discovering the steps
for synthetic proof, rather. than in being a form of proof.

Integratjon of Induction, Deduction, Analysis, and Synthesis. The
function of induction and deduction, of analysis and synthesis has been
illustrated. Induction, with laboratory work, is the natural and usual
manner, for suggesting a general, deductive conclusion. Deduction is the
more inclusive and ;:mble form for conclusions and -is highly to be de-
sired. In proving a general or specific conclusion, the natural, most power-
ful technique is to analyze the desired conclusion in an effort tO discover
a basis for proof in the realm of known facts or conclusions. After the
analysis has been completed the proof is most beautifully, rigorously, and
efficiently stated in the form of a synthetic development, building up from

sine A

.

r.
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known facts and by permissible processes a series of steps resulting in.
the desired conclusion being inescapable. It shall now be the purpose of
the next section to show how these four processes with concomitant tech-
niques form integral parts of a technique of teaching geometry.

Before going to the next section we might well state that no attempt
has been made in this introductory. presentation of analysis to develop
in. the student the ability to analyze probl- The objective in this
section has been merely that of explaining w. Analysis and synthesis
mean. The objective of the entire study is to develop the reader's ability
to use the analytic method in teaching geometry. The illustrations in this
section are purposely simple in order to put more emphasis on the
method than on the content. They do not, therefore, deserve the con-
demnation which some treatments of analysis so aptly merit,) that
"analysii works beautifully,on simple problems whose solution is known.
Show us how to use it when the solution is unknown." Furthermore, the
illustrations given are admittedly inadequate for a complete presentation,
the reason being that a complete presentation depends upon the facts
and principles of geometry given in the next chapter. All of Chapters IV
and VI is devoted to providing further "patterns" of analysis, while
Chapter V presents a more extended and complete form of the analytic
method and provides-.ample experience with its application.

. IV. THE HEURISTIC METHOD IN TEACHING GEOMETRY

Definition and Illustration. The term heuristic is derived from a Greek
word meaning "to find." As used here, it will be defined, as, first the
"finding," by means of an inductive approach (perhaps through labora-
tory work), of a deductive or general conclusion, second, the "finding"
of its deductive proof by an analysis of the relationships upon which the
conclusion depends, and finally, the synthetic statement of these rela-
tionships in a deductive proof. The "finding" takes place* in two parts
of this development, first, in drawing the general conclusion from the
specific cases studied, and, second, in determining the steps necessary in
the proof through an analysis of the conclusion.

The heuristic method does not mean that the student must discover,
unaided, the proofs for theorems which the mathematical geniuses of the
race have discovered in a period of over 4000 years. Such an interpreta-
tion of heuristic teaching is impossible. It is intended that heuristic teach-
ing should mean that each pupil be given an opportunity to discover as
much as possible. Such discovery, even though small, gives a feeling
of satisfaction and of creative power that is stimulating. A few examples
will illustrate this meaning of heuristic teaching.
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The examples given in the previous sections on induction and labora-
tory work illustrate the heuristic approach, or the discovery of a con-
clusion by the students. By setting up a concrete situation and making
the, possibility of drawing the conclusion not too difficult, as was done
in Pie illustration of a laboratory lesson, we are often surprised at the
discoveries students will make. The remainder of that lesson completes
an efcellent illustration of good heuristic teaching. The previous section
reported progress only up to the discovery of a conclusion which seemed
to be worth proving. The analysis and synthesis which followed pro-
ceeded somewhat as follows:

Teacher: "We seem to need to prove certain line segments, equal. Do
we have-a way of doing that which we have used before?"

Pupil: "If they were corresponding parts of congruent triangles, they
would be equal; but there are no triangles here."

Two boys seemed possessed with a stimulating idea at about the same
time.'

Teachetr:-"Well, Swaford, suppose you give us your idea." .

Swaford: "If you draw lines through the upper ends of those seg-
ments parallel to the other transversal, you will have triangles which may
be proved congruent. There will be some parallelograms- , and the tri-
angles will have one side equal and enough parallel lines to show the
other angles equal."

This seemed to be a remarkable response, in fact so remarkable that
one can forgive the teacher for making what seemed a mistake in han-
dling it. '

She said, "Suppose you come to the board and show us what you
mean."

Swaford went to the board and completed the figure so that it looked
like the one below:

A
B
C
B

Teacher: "Won't you go back a little bit now and state the hypothesis
and conclusion so as to be sure we are all following you. Then tell us what
you have done and complete your proof."

Swaford: "Hypothesis: AB = BC = CD and lines AE, BP, CG, and
DH are parallel through A, B, C, and D, respectively.

f

O
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Conclusion: "The segments on any other transversal such as EH are
equal, or EF, FG, and GH are equal.

Proof: "Through A, B, and C draw lines parallel to EH. Then these
three triangles (pointing to them) will be congruent. These upper angles
(pointing to, them) are equal because they are corresponding angles of
parallel lines AK, BL, and CM cut by the transversal AD, and these
lower left angles (pointing to them) will be equal because they are corre-
sponding angles of parallel lines BF, CG, And DH cut by the transversal
AD. Therefore the triangles are congruent by angle-side-angle. That
makes AK = BL = CM. Then AK = EF, BL -= FG, and CM = Gil,
because they are opposite sides of these three parallelograms (pointing
to them). Therefore EF = FG = GH by substituting equals for equals."

Teacher: 'Very well done. What is it, Sanford?"
Sanford: "He didn't need to draw those lines parallel to EH. He could

have drawn them parallel to AD through E, F, and d G and made triangles
on the other side."

Teacher: "That's a fine idea. How many see Sanford's point here?"
A dozen or more hands went up.
After a few questions here and there on the proof and suggestions by

various students of other ways to do parts of it, the teacher made her
assignment: "For tomorrow I want you to write up the proof for this
theorem, and let us have it in good form and neatly done. To be sure we
all know what to do, will you tell us again just what t'lle hypothesis and
the conclusion are, Tilly?" Tilly did so. "You may write 'up Swaford's
proof or invent a new one of your own. In addition to that see if you can
prove exercises 191, 192, and 193, but you need not write them out; I
think these problems will be clear to you without any help. Now we will
use the rest of this period to begin our work so that I can help any of
you who may need it."

The rest of the period (15 minutes) was a real study period. It should
be noted that these students did not use any textbook; so they had not
studied thin theorem beforehand. The proof suggested by the lad, Swa-
ford, practically proves no previous study, since most texts draw the
parallels on the other line., The teacher handed out mimeographed sheets
of originals. .

The statement was made on a previous page that this teacher madan
error in technique even though her presentation produced such unusual
results. Perhaps this cannot be proved. As the lesson was conducted, at/
least two boys, but probably not over six students, had the thrill of disl
covering the proof or a large portion of it. Swaford told the rest of the
The lesson would have been mnducted to better adyantage had t e

1-'-iVt.
i

/
/



Principles of 4h-School Teaching 65

assignment been made without the complete proof being given. Then
more pupils would have had a chance to discover it. Perhaps the presence
of a visitor made it excusable to have someone show how well he was
reasoning. Faulty or not faulty, this was a rather unusual and success-
ful illustration of heuristic teaching, such as you seldom see except in
the classrooms of master teachers.

Heuristic Teaching of Difficult Theorems and Problems. Sometimes it
may be impossible or inadvisable to have the first portion of the presenta-
tion of a new theorem or problem heuristic; in fact it is conceivable that
for a proof such as that for the area of a sphere or volume of a pyramid
that neither part be wholly heuristic. It may be necessary for the teacher
to break up the major problem by more or less analytic methods into
smaller problems, each of which may be attacked heuristically. For
heuristic teaching to be successful, the pupils must of necessity make dis-
coveries. This can be achieved in harder problems by breaking them up
into smaller problems whose solution can be more readily discovered,
or often by giving several specific examples. Some textbooks achieve
this in the exercises preceding a theorem, when these exercises are de-
signed to build up a background in special cases for the theorem.

Such modified heuristic lesson is often necessary in studying the area
of a circle. Usually someone will know the formula from intuitive ge-
ometry, and therefore the inductive heuristic approach is valueless. It
remains to make the analysis as heuristic as possible. This can be done
by inscribing a regular polygon and drawing radii from the vertices to
the center. Then the lesson should proceed somewhat as follows:

Question: What is the area of one triangle?
Answer: ab.
Question: What is the area of n triangles?
Answer: n times ab or Y2 n ab.
Question: Suppose we change this to A = (X. a) (0).

What is nb on the polygon?
Answer: Perimeter.
Questions to follow: Then we can write A = ap. Now suppose we

had a polygon of twice as many sides, would its area still be ap?
Would its a and p, however, be the same as before? 'What would then be
true if the sides were increased greatly so that the polygon would be
practically the same as the circle? What is the area of the polygon ap-
proaching as n increases? What is a, approaching? p? What then is the
area of the circle?

The problem of finding the area of a circle. is broken up into many
smaller problems, all of which are, however; attacked with the idea of
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permitting the student to discover as much as possible. After getting one
pioof of this type as a pattern of analysis, the student will be much more
successful in the discovery of the solution of other problems involving
the notion of limits.

If time permits, a laboratory exercise of actually cutting up a circle of
cardboard into triangular sections and then fitting them together into a
parallelogram-shaped figure whose base is half the circumference and
whose altitude is the radius, will help to discover the formula. Then after
the formula to be proved has been discovered more or less inductively
and analytically, the proof could be developed as previously shown.

Slogans. In summary of this heuristic method of teaching geometry, a
few general slogans can be presented which emphasize the general prin-
ciples involved.

(1) "Teach, don't tell."
-r (2) "Construct the figure so as to indicate the hypothesis."

-
(3) "Let the student discover the conclusion by experimenting with

specific figures."
(4) "Commands to think, or questions with yes or no for an answer`

usually indicate failure on the part of the teacher."
e (5) "Lead the student to analyze the conclusion and to discover the

proof."
(6) "Each question should always be a problem whose solution is to

be discovered."
(7) "The larger the discovery the better, but a small discovery is

better than none."
(8) "Teachers should know their geometry, its philosophy, its logic,

its general educational value, and be fearless in applying the
heuristic principle."

(9) "Use induction for the discovery of the deduction and use analysis
for the discovery of synthesis."

(10) The heuristic pattern has many elements which are "identical"
with non-geometric, life situations; and consequently it should
be possible for students to "generalize" from the geometric pat-
tern of reasoning and apply that pattern to many and varied
situatio1 cs. 100, 101

Summary. The "heuristic pattern," as defined and described in the
preceding pages, is the technique recommended in this study for teach-
ing high-school geometry. Note its salient features: First, it ha,: an in-
ductive approach to help the student discover a generalization worth
proving. This inductive approach may sometimes be omitted and when

ice Young. op. cit., pp. 61, 69.80. 101 Schultze. op. cit., pp.
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present usually involves laboratory work. Second, an analysis of the con-
clusion is used to discover the relationships upon which the proof de-
pends. The student's discoveries may be large or small, but must be real
discoveries, and the larger the better. Third, the proof is presented in
characteristic synthetic, deductive form. This final step, although im-
antreally has little of the heuristic spirit in it, since it is merely a
summary, in logical form, of the previous discoveries. Thus the heuristic
pattern is composed of induction, deduction, analysis, and synthesis.

Chapter IV, immediately following the next short section, contains
the essential theorems of high-school geometry, some of which are com-
pletely presented so as to illustrate the heuristic pattern. For additional
exercise material reference should be made to some good modern text in
geometry, preferably one whose author is dominated by the heuristic
ideal of teaching. A few exercises combined with careful mastery-of the
materials of Chapters IV, V, VI should provide learning experience in
the spirit of heuristic teaching which will make the principles laid down
in this chapter a functioning part of a student's educational philosophy
and even of his everyday thinking.

Chapter V contains a complete presentation of the method of analysis
and provides for the prospective teacher ample experience with problems
to be analyzed, using both direct and indirect proof.

Chapter VI contains theorems in geometry more difficult than those
used in high school. Its purpose is to impress still more firmly upon the
student's mind the power and possibilities of the analytic method which
forms the heart of the heuristic teaching technique. Here the college
student will be confronted with new theorems and new definitions which
will be relatively as difficult for him as those of high-school geometry are
for the high-school student. He will, therefore, learn new geometry ma-
terial by a technique of teaching which is recommended for him to use in
high-school teaching. If learners are likely to teach as they are taught,
then Chapters IV, V, and VI should insure the use, by readers of this
study, of the heuristic pattern of teaching, which it has been the purpose
of this chapter to explain and defend.

V. GENERAL TECHNIQUES, PHILOSOPHY, AND PRINCIPLES

It is not the purpose of this section to emphasize the importance of
classroom ventilation and temperature; of dispatch in taking attendance,
in collecting or distributing papers, and in beginning the lesson; of
seating arrangement; of general co-operative, friendly, and yet business-
like attitude; or even of marking systems, averages, and the normal
curve; however important these items may be. These items constitute
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subject-matter rather for the general course in principles or methods of
teaching, or perhaps supplementary material to be given by the teacher
of this course.

It is the purpose of this section, however, to indicate a general plan
of procedure which can of course be modified to conform with varying
situations or with a teacher's individual preferences. Every mathematics
teacher should be guided by the following general principles:

A. A teacher should have a general plan for every unit of work.
(1) The new material must be presented and work assigned for pupils
to master. (2) Pupils should study during part of the class time under
the direction of the teacher who can then give skillful help to meet in-
dividual needs. (3) The teacher will need to check, in some way, the
pupils' mastery of the unit before beginning the next unit. If a unit of
work is completed in one day, then step (3) would probably come on the
next day before new work is begun. If the unit lasts for several days,
step (2) may last for more than one day. In any case, the three major
divisions should be present, and the second one, study under the direc-
tion of the teacher, should not be minimized.

B. Every teacher should have a testing program that is designed more
for helping the teacher to discover and reteach what the child does not
know than for the purpose, of giving marks on a report card. Perhaps
every teacher should adopt some such teaching and testing slogan as:
"Teach, test, diagnose; then, if necessary, teach, test, and diagnose again
to the point of mastery.7"°2

C. Every teacher should have a philosophy of education which realizes
first, the function of mathematics as a whole, and of each portion of
mathematics in contributing to that whole; second, the importance of
using the laws of learning, andof having the child interested, happy,
and successful; third, the truth of the Comenian axiom, "We learn to do
by doing," and the force of the statement that successful teaching is
measured, not so much by "teacher activity," as by the resulting "pupil
activity."

In acquiring a philosophy of education let the teacher ponder over
the f011owing suggestive quotations. Bacon: "No one truly and funda-
mentally possesses any knowledge that he has not, so to speak, created
for himself"; Comenius: "Let the main object of our art of teaching be
to seek and to find a method of teaching by which teachers may teach
less, but learners learn more"; M. A. Jul lien: A child is not "an empty
vessel to be filled to over-flowing so as to make him appear rich in

"2 Morrison, H. C. Thr Practice of Teaching in the High School. University of Chi-
cago Press, 1926, p. 79.
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borrowed plumage";1" Rousseau: "In order to make his (the child's)
curiosity grow, do not be in a hurry to satisfy it. Put problems before
him, and let him work them out. Let him know nothing because you have
told it to him, but because he has learned it for himself. Let him not be
taught science, but discover it";",* "It is not so much a matter of teach-
ing him the truth as of showing him how he must go about so as always
to find truth";105 and Horace Mann: "Unfortunately education amongst
us at present consists too much in telling, not in training.... Never tell a
child what he can be, led to discover for'himself."

VI. SUMMARY OF CHAPTERS I-III

The purpose of the first three chapters of this study has been largely
three-fold. First, there has been presented a philosophy of teaching
geometry whickmakes_geometry primarily a course in analytic-reasoning
with many opportiinities for students to analyze relationships and to dis-
cover proofs, and secondarily a course providing useful information.

Second, Chapter II attempted to give a brief history of geometry and
a summary of the problems confronting the teacher of geometry. This in-
cluded a statement of the primary function of the subject, based upon its
peculiar nature and organization, and a discussion of some unsettled
difficulties which were at least disposed of, if not always settled.

Third, Chaptdr I began with the statement of the problem which this
study seeks to solve and a statement of the method of solution. Based
upon the postulate that a teacher of geometry should know the subject-
matter of geometry and be thoroughly conversant with its possibilities
as a school subject before' attempting to teach it, this study has selected
a minimum list of the,rems covering the whole field of geometry, and
in Chapter IV, following, will present some of them as patterns of teach-
ing and patterns fot teaching. This use of the actual subject-matter of
geometry as a pattern for teaching geometry is based upon the theory
that teachers are more apt to teach geometry as they were or are taught
geometry than as they are told to teach it. The subject-matter following,
therefore, has a double function: to insure mastery of the content of high-
school geometry and to establish a philosophy and technique of teaching
geometry through the use of that philosophy and technique in the actual
presentation of subject-matter. This double use of subject-matter,
namely, to insure mastery and to establish a pattern for teaching, is
what has been defined for this study as professionalized subject-matter.

Derriere, A. The Activity School. The John Day Co., New York, 1928, p. 34.
p. 18.

304 Ibid., p. 19.



CHAPTER IV

GEOMETRY MATERIALS FOR THE APPLICATION
OF THE.PATTERN OF TEACHING

The Need for Mastery of High-School Materials. It is the contention
of this study that the subject-matter for a professional course should
be determined by the needs of the student preparing to teach rather than
by traditional subject-matter standards in academic mathematics courses.
In support of this contention, which has really been postulated in this
study, there has already been quoted the statement by Professor Bagley
that, in, addition to other needs, the high-school teacher "needs courses
in elementary algebra and plane geometry, which will not only refresh
his mind with regard to elementary principles and processes, but also
give him a much deeper and broader conception of those principles and a
much more facile mastery of processes than his elementary course could
possibly give him." R. B. Buckingham states that "it is a tragic mistake
on the part of the academic professor ... to suppose that the moment the
bare knowledge of a fact is attained it qualifies him to teach it to
others."1" There would be little difficulty in presenting overwhelming ob-

jective evidence to the effect that the college junior or senior has as a
rule much too "bare a knowledge" of high-school geometry to teach it
to others with confidence. Such evidence has been considered unnecessary
and is therefore omitted. However, since it is conceded to be a bit
difficult to teach what one does not know, the prospective teacher should
not feel embarrassed if he has to spend much time with the essentials of
high-school geometry which are outlined on the following pages of this
chapter.

In case the teacher in a teachers' college is tempted to slight the high-
school material, perhaps the testimony of Dean Emeritus James E. Rus-
sell, of Teachers College, Columbia University, will help to bolster up
this emphasis on subject-matter. In speaking of professionalized subject-
matter, Dean Emeritus James E. Russell says that such materials "can-
not, be judged by academic standards. The needs of the practitioner

101 Journal of Educational Research. Vol. 16, p. 214.
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in his practice are the sole standards for determining what shall be
taught."1" Dean William F. Russell in the Teachers College Report of
the Dean, 1929, discusses "The Professional School Ideal," which forms
"the basis for university work on which the professionally minded pro-
fessor arranges.his program of studies. It matters little to him whether
the work be easy orchard, graduate or undergraduate, two-point or five-
point, resident or extra-mural. His test is whether or not the work given
.prepares the student to practice his profession.... If taxidermy or black-
smithing be necessary, it is just as good as anthropology or Sanskrit to
him.... His teaching depends upon research, he respects it, and he may
even be a skilled investigator himself; but he has no faith in an aca-
demic tradition that forces his students to.spend a major portion of their
time painfully acquiring techniques that they will never use. "107 It is the
plan of this chapter to present in outline form the essential theorems of
high-school geometry because students preparing to teach need this ma-
terial. .

The Plan Used for Presenting High-School Materials. While it is rec-
ommended in, this, study that the essentials of high-school geometry be
thoroughly mastered by the prospective teacher of high-school geometry,
it is, nevertheless, recognized that in a diisertation which is not a text-
book it would probably be difficult tc, defend the inclusion of any great
amount of high-school geometry material. Liberal reference will there-
fore be made .to good high-school texts. The postulation of the three
congruence theorems, which has been advocated and defended in Chapter
II, makes possible a much more simple and direct organization of ma-
terials than is found in most high-school texts, and consequently it has
been thought advisable to outline in rather detailed form this very brief
section on the fundamentals of high-school geometry.

The outline following will give a list of the most important undefined
terms, definitions, and postulates used for the first two constructions.
For the others the-student will make his own lists. For the actual wording
of the definitions and the actual making and proving of the constructions
the student is referred to any high-school text. It is recommended, how-
ever, that the prospective teacher master very thoroughly this material
in the order in which it is outlined. The material is purposely given in an
order slightly different from the usual order so that it may be a challenge
worthy of the ability of a college student, and so that it may provide

1" Russell, Dean William F. Teachers College Report of the Dean, 1929.

s
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experience with sequence. Care must be taken that no theorem or con-
struction be used in any proof until that theorem or construction has
itself been proved. .

Furthermore, in order to emphasize the pattern of teaching geometry
which this study advocates, some of the constructions and theorems are
fully developed in the heuristic pattern. In getting others from high-
school texts, usually only a synthetic proof will be found. The contrast,
When considering the possibilities of each method for developing in the
student the ability to reason things out for himself and really to under-
stand what he is doing rather than to memorize the results of the thinking
of other people, should make more emphatic than mere words could ever
do the power and educational value of geometry taught by the heuristic
method.

The list of constructions and theorem's depends for its order upon the
postulation of each of the three congruence theorems. If this postulation
fails to meet the approval of any one using this outline, then it is entirely
possible to prove each of the theorems by means of its traditional proof
at or before the point in the sequence at which it is postulated. Further-
more, some readers may be interested in a different proof that is not
traditional. If in place of postulate 9* the following postulate is accepted,
the proof of "congruence by three sides" can be rather satisfactorily
established.

The Construction Postulate, a Substitute for Superposition. If, at a
given position on a given base line, only one triangle can be constructed
by using a given set of conditions, then all triangles which have been
constructed from, or which conform to, the given set of conditions are
congruent.

It should be evident that "congruence by three sides" can be readily
proved by means of this postulate and postnlates 2 and 8. Then, follow-
ing the construction of an angle equal to a Oven angle, the other two
congruence theorems"side-angle-side" and\ "angle-side-angle"--can
be established by the use of this new postulate and postulates 2, 4, and
10. There seem to be three ways of handling the congruence theorems,
(a) postulating them, (b) proving them by the postulation of both super-
position and angle-bisection, and (c) establishing their reasonableness by
this new "Construction Postulate," or by means of a somewhat different
set of postulates such as those of Veblen or Forder.

Postulates given on the following pages.
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I. CONSTRUCTION 1

A. Undefined terms used in the definitions, postulates, construction, and
in the simple applications of construction 1: point, line, straight
line, curved line, measure, length, distance, equal, compass, describe a
circle, rigid, ruler, lay off or cut off, definition, center, given, prob-
lem, procedure; proof, intersecting, greater than and less than and
the symbols for these ideas, sum, difference, plane, straight edge,
draw.

B. Technical terms needing definition: construct, circle, line segment,
radius, diameter, postulate, axiom.

C. Postulates:
1. With a given center and radius one and only one circle can be

drawn'in a given plane.
2. By means of the compasses a length may be measured off equal to

any given line segment. Or, a circle cuts its radius at one and
only ohe,point.

3. Line segments may be added or subtracted by the use of the com-
passes.

4. Only one straight line can be drawn between two points.
D. Construction 1: Construct a circle with a given center and a given

radius.
Note: The construction is too simple for comment, yet a funda-
mental one. Notice how the definitions and postulates form a basis
for the construction and for its applications.

II. CONSTRUCTION 2

A. Undefined terms toed: the notations "line a" and "angle A," inter-
secting in a point, "equal respectively," corresponding parts, sides of
a triangle, angles of a triangle, side opposite, direction, plane figure,
end points, coincide, point or line in common, shape, size.

B. Terms needing careful definition: triangle, congruent triangles, angle,
isosceles triangle, equilateral triangle, arc, vertex of an angle and of
a triangle.

C. Postulates:
5. A straight line is the shortest distance between two points, and the

shortest distance between two points is a straight line.
6. A line segment may be extended indefinitely in either direction.
7. Two circles can intersect in not more than two points.
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8. If the distance between the centers of two circles is less than the
sum of their radii and yet greater than the difference between their
radii, the circles or arcs of the circles will intersect in two points,
one on each side of the line joining their centers.

9. If two triangles have three sides of one equal respectively to three
sides of another the triangles are congruent. (Abbreviation "3S")

D. Construction 2: Construct a triangle congruent to a given triangle,
measuring only the lengths of its three sides.

Note: See any high-school text, and use postulate 9 above in the
proof. Notice that the postulates form a basis for the construction
and proof. Postulates 7 and 8 are frequently used yet rarely men-
tioned in high-school texts. This omission is not to be condemned
but rather approved since too great a refinement in a system of
postulates would make geometry much too difficult for high-school
students. .

III. CONSTRUCTIONS 3-7

The first three of the following constructions can now not only be
made, but very readily proved to be correct on the basis of the given
postulates and the two previous constructions. For constructions 6 and 7,
three new postulates will be needed in the proof. They are given below.
The reader should make his own list of the undefined and defined terms
needed. These constructions should all be rigorously proved to be what
is claimed for them. This can easily be done by using postulates 1-12.

Postulate 10. Two straight lines can intersect at only one point.
Postulate 11. If two triangles have two sides and the included angle

of one equal respectively to two sides and the included angle of the other,
the triangles are congruent. (Abbreviation "S.A.S.")

Postulate 12. If two triangles have two angles and the included side
of one equal respectively to two angles and the included side of the other,
the triangles are congruent. (Abbreviation "A.S.A.")

'Construction 3. Construct an 'angle equal to a given angle.
Construction 4. Bisect a given angle.
Construction 5. Construct a perpendicular to a line at a point on the

line.
Construction 6. Construct a triangle congruent to a given triangle,

measuring only two sides and their included angle.
Construction 7. Construct a triangle congruent to a given triangle,

measuring only two angles and their included side.

C,0

e
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IV. CONSTRUCTION 8

The following construction is the first one in which the proof is at all
difficult and therefore it will be given in full. A second reason for giving
this proof in full is to have it serve as a pattern for the proof of all con-
struction problems. Since the technique of making this construction has
probably been learned in the junior ,high school, no analysis of it will be
given. However, the proof is not easily discovered; therefore, an analysis
of the proof will be given to show how a proof may be discovered.

PROBLEM: To construct a perpendicular bisector of a line segment.

A

*PROCEDURE (CONSTRUCTION) : (1) Take any line segment AB.
(2) With A and B as centers and with a radius more than half of AB

cut arcs above and below line AB intersecting at points P and Q.
(3) Draw line PQ. It is the required perpendicular bisector.

ANALYSIS: (Usually not written out, but entered here as a pattelln for
thinking out the solution of the exercises.)
(1) PQ would/be perpendicular to AB and AM = BM if triangle

APM were congruent to triangle BPM.
(2) Triangles APM and BPM have AP = BP by construction and

PM = PM by identity, and therefore they would be congruent if
angle g equals angle h, or if AM BM.

(3) Angle g would equal angle h if they were corresponding parts of a
pair of congruent triangles other than APM and BPM.

(4) Angles g and h are corresponding parts of triangles APQ and
BPQ and would therefore be equal if these triangles could be
shown to be congruent.

(5) But triangles APQ and BPQ have AP = BP and AQ = BQ by
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construction, and PQ commonlo each. They are therefore con-
gruent by "three sides," Postulate 9.

(6) Therefore PQ can be proved to be tie perpendicular bisector of
AB.

*PRooF:

(1) Connect points A and B to P and Q thus forming two triangles
APQ and BPU.

(2) Triangle APQ triangle BPQ. "3 S" (Postulate 9).
(3) Consequently angle g = angle h. "C.p.c.t.e." (Corresponding

parts of congruent triangles are equal.)
(4) Then in triangles APA1 and BPM,

AP = BP by construction (Postulate 2).
Phi = PM by identity.
Angle g = angle h. See (3) above.

(5) Therefore triangle APA1 95. triangle BPA1. "S.A.S." (Postulate 11).
(6) Therefore AM = BM and angle r = angle s. C.p.c.t.e.
(7) Since angle r angle s = 180°, each must be 90°. Each is half

of 180°.
(8) PQ is therefore/the perpendicular bisector of line AB.

* The headings, "Problem," "Procedure," and "Proof"the "Analysis" will usually
be mental, not written"are used because they seem more meaningful than the tra-
ditional headings for the corresponding parts of a construction problem.

V. CONSTRUCTIONS 9 AND 10

Construction 9 below can be readily made, and is proved much- as
construction 8 was proved. Construction 10 must be made by using only
perpendiculars, or any other of the first nine constructions, until after the
theorems on parallel lines in the next chapter have been proved. Needed
definitions and postulates are to be stated by the reader. If it is postu-
lated that "only one perpendicular to a given line can be drawn in a
given plane and through a given point," then it will be evident that two
lines in the same plane each perpendicular to a third line catinot meet
and must therefore be parallel by the usual definition of parallel.

Construction 9: Construct a perpendicular to a line from a given point
not on the line.

Construction 10: Through a given point construct a line parallel to a
given line.
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VI. 'THEOREMS 1-7

The first seven of the twenty "essential" theorems of plane geometry
are stated below. iteferenu is made to any high-school geometry for
their proofs. Theorems 2 and 3 are proved in various(ways. A.-s-dnulat-
ingpaper conld.be written on the different ways of proving these two
theorems on parallel lines. Whichever one is proved first, the second iS
usually proved indirectly. Consequently it is recommended for this
study that the

at
one be temporarily postulated, and tlhat its proof

be taken up at the same time that an indirect proof is given for theo-
rem 9.

Suggestions for the proof of theorem 4 have been given in Chapter
III: Next to theorem 10, theorem 4 is probably the most important
theorem in plane geometry. It provides information which makes pos-
sible the solution of many problenis. The applications of this important
theorem merit careful study. Numerous corollaries, that is, numerous
generalizations which are very readily deduced from this main theorem,
could, easily be added. A few suggestive ones are given. It is probably
stretching the meaning of corollary a bit to include numbers 4 and 5, yet
the suggestion given makes the conclusion very simply deduced from the
main theorem.

Theorem 5 is not easy to prove, but theorem 6 is very simple. Any
good textbook will give these proofs for a reader or student who has
difficulty in recalling them or in discovering them anew. Theorem 7 is
really the beginning of similarity. Its proof has been given in full in
Chapter III, where it was used as an illustration of heuristic teaching.

Theorem 1. The angles opposite the equal sides of an isosceles triangle
are equal.

Theorem 2. If two lines cut a third line so that the alternate interior
angles are equal, the lines are parallel.

Theorem 3. The converse of theorem 2. If two parallel lines cut a third
line, the alternate interior angles are equal.

Theorem 4. The sum of the angles of any triangle is 180°.
Corollaries:

(1) The acute angles of a right' triangle are complementary.
(2) Each angle of an equilateral triangle is 60°,
(3) An exterior angle of a triangle equals-the sum of the two non-

adjacent interior angles.
(4) The sum of the interior angles of a polygon of n sides is (it 2)

t 3



./

I

78 Giometry Piolessionalized for Teachers

straight angles. (Suggestion for the proof: draw lines to the
vertices of the polygon from any point within kt,)

(5) The sum of the exterior angles of any polygon is four right
angles.

16) .Two right triangles are congruent by any side and an acute
angle of one being equal respectively to the corresponding parts
of the other.

(7) Two isosceles triangles are congruent by "any side and one
angle."

(8) Any two triangles are congruent by "one side and any two
angles."

(9) No triangle can have more than ont. right,angle or obtuse angle.
(10) Two isosceles right triangles are congruent if any side of one

. ; equals the corresponding side of the other.
Theorem 5. Two right triangles are congruent if the hypotenuse and a

side of one are equal respectively to the hypotenuse and a side of the
other.

Theorem 6. The opposite sides and angles of a parallelogram are equal.
Theorem 7. If three or more parallel lines cut off equal segments on one

transversal, they cut off equal segments on any transversal.

VII. THEOREMS 8 AND 9

These two theorems are presented here in detail. They involve some
new concepts in proportion and therefore furnish excellent examples of
an inductive approach to a relatiVely new idea. They are consequently
included as patterns for teaching a new portion of geometry. Theoreni 9
involves an indirect proof and it is given as a sample of indirect proof.
The indirect proof for theorem 3 should be taken up along with that of
theorem 9 for additional experience with indirect proof. The work on
proportion is probably the most difficult, yet the most interesting, and
without doubt the most important part-of geometry. It is the basis for
trigonometry, for surveying, for map drawing, for all types of similar
figures, and for all proportions in geometry. Its great and varied applica-
tions cannot be over emphasized, and consequently if any pattern theo-
rems are to be presented it is well to present these because of their diffi-
culty and also because 'f their importance.

In the proofs which iollow it is assumed that the previous theorems
and constructions have been proved and that all the definitions and
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postulates which were necessary have been given. A few new terms will
be necessary, however.

A. Definitions of new terms needed for theorems 8 and 9.

1. A ratio between quantities is the result of dividing one by the
other, such as a/b or 2/3.

2. A proportion is a statement of equality between two -cr more
ratios, such as a/b = c/d or a:b = c:d or 2/3 = 101,15,, some-
times read "a is to b as c is to d," but usually "a over b equals
c over d." Four quantities are required for a proportion.

3. Two segments of one 1i9e are proportional to those of another if
the ratios between the segments are equal. Thus if a line six

,inches long has segments two inches and four inches, and another
line nine inches long has two segments three inches and six inches,
the segments-re proportional because 2/4 = 3/6, or 2/6 = 3/9.
Two ines with their segments proportional are often said to be
divided proportionally.

4. Of the four terms of a proportion, the first and the last are often
called the extremes, and the second and the third, the means. In
the proportion, a/b = c/d, a and d are extremes, b and c are
means.

5. If the second and third terms of a proportion are the same, such as
a/b = b/c, 3/6 = 6/12, tlien that term is called the mean pro-
portional between the other two. b is the mean proportional be-
tween a and c, and 6 is between 3 and 12.

*A7ROACH (foi theorem 8):
() If a line bisects one side of a triangle and is parallel to a second

side, what does it do with the third side? Use theorem 7.
(2) Draw a triangle and cut off one-third of one side. Construct a line

through this point of trisection parallel to the second side. It will
cut off what part of the third side?

(3) Try`" (2) again, using one-fourth instead of one-third.
(4) Try constructing a triangle with two sides 8 and 16 inches or units

long. Three inches from one end of the 8-inch side draw a line
cutting the 16-inch side 'rid parallel to the third side. What will
be the segments on the 46-inch side? Will their ratio equal 3/5
as with those on the 8.4nch side?

(5) Suppose in any triangle a line is drawn parallel to one side cutting
the other two; what-is true of the four segments formed?

(6) State this as a theorem.

t
0
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*THEOREM: If a straight line is drawn through two sides of a triangle
parallel to the third side it divides the two sides proportionally.

\

C

*HYPOTHESIS: Triangle ABC with DE cutting AC and BC, and parallel
to AB.

AD BE AC BC
*CONCLUSION: = - or -- =-

DC EC DC EC

*ANALYSIS:

(1) First let us analyse the specific case given in the approach under
(4) to discover a method of analyzing the general case.

(2) In (4) the line corresponding to AD is 3 inches and to DC, 5

AD 3
inches and the ratio of =

DC 5
. We need now to discover the

ratio of
BE

withDE parallel to AB.
EC

(3) BE is clearly not 3 inches long nor is EC 5 inches long, but if
they could be shown to contain some other unit of measure 3 and
5 times respectively, then their ratio would be 3 to 5.

(4) If we lay off the 3 and 5 units on AC and through the points of
division draw lines parallel to the base, these lines will cut equal
segments on CB by theorem 7. There will be the same number of
segments on BE as on AD and the same number on CE as on
-CD because the same parallels cut both lines. Therefore the ratio
of BE/EC = 3/5, and therefore AD/DC = BE /EQ since both
equal 3/5.

(5) Now for the general case in which any line DE s parallel to the
base and cuts the side AC in any point D., D and DC would
probably not have exactly 1 inch as a common unit of measure.
However, they might have 1/4 inch, or 1/10 inch, or even

/
/
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1/1,000,000 inch as a common unit which would be contained in
each a whole number of times without a remainder.

(6) If AD and DC have a common unit of measure, no matter how
small, the plan above of drawing parallel lines through the points
of division of AC would always cut segments on BC which would

be equal to each other. Also the number of segments on BE and

EC would be the same number as on AD and DC since the same
system of parallels Cuts both sides of the triangles.

AD m BE in AD- BE
(7) If the ratio = then = and =

DC n EC n DC EC
AC BC

(8) Or =
DC EC

by adding 1 to each side of equation (7).

*Nom,:
(1) Assume that AD and DC have a common unit of measure such

asAX which will be contained in AD and DC an integral number
of times without remainders. (See note below.)

(2) Then that unit will be contained in AD some whole number of

times, such as m, and in DC'a whole number of times, such as n,

AD m(AX) m 'N
and

n(AX) n

(3) If parallels to AB be drawn through the points of division of AC,

these parallels will cuton segments on BE and n segments on EC,

all of which will be equal. See theorem 7.
(4) One of 'these segments, say BY, can now* be used as a unit of

BE_m(BY).rm
measure, and

EC n(BP )

AD BE
-(5) Therefore = since both ratios equal .

DC EC
AD BE AC BC

(6) Also 1 = +
DC EC'

1 or = adding 1 to each side of
DC

(5) and simplifying.
* Various names are used in various texts for these portions of the demonstra-

tion. Since the headings used here are at least all nouns they have some advantage
over such headings as "Given" and "To prove." However, this is merely a matter
of form, and a teacher should use any he prefers, but probably those used in what-

ever text he is using.

Note: This assumption excludes incommensurable segments. The prob-

lem of incommensurables is discussed fully in Chapter V. It is omitted

k 1
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here because it is no longer considered suitable subject-matter for
high-school courses. (See National Committee's Report) p. 49.) It
should be pointed out, however, that the number of cases of incom-
mensurability in comparison to the number of commensurable cases is as
infinity to one. For instance, if you draw two line segments and say
that one is 3%6 inches long and the other 8% inches long, these seg-
ments would have 1/16 inch as a common unit of measure. However, the
3s/ieinches is merely a crude approximation to the actual length, and
merely indicates that its real length is perhaps closer to 3%6 inches than
to 311/32, but we have no assurance that it is not 3.31246 inches long.
The diagonal of a square and its side make a good illustration of in-
commensurability because the diagonal can be computed to a thousand
or more decimal places if necessary, but will never be exactly determined
in terms of the same unit which measures the side.

The assumption of commensurability is, however, a very fundamental
one, in fact it is the assumption upon which all our measurements are
based. We say a certain field is 20 rods long, a certain trip took 21/2
hours, a certain poison weights 1531/2 pounds, or a certain angle is 76°
38.6". In each case we are giving merely a crude approximations based
on the assumption of commensurability. If we did not make this assump-
tion, all our measurements, except a very few, would be endless decimals.
In Euclid's time, without our marvelous number system, the problem of
incommensurable magnitudes was a major one. Now approximations to
three or four decimal places satisfy all practical purposes and make in-
commensurability much less significant.

VIII. EXERCIEES FOLLOWING THEOREM 8

DIRECTIONS: Theorem 8 should be used, not so much as a pattern, but
as information for proving the following exercises. Whenever line seg-
ments are to be proved proportional, try to get them parts of two sides
of a triangle cut by a line parallel to the third side.

- 1. The corresponding segments cut off on two transversals by a series
of parallels are proportional.

2. A line parallel to the.one side of a triangle cuts the other two sides
so that either side has the same ratio to either segment as the other
side has to its corresponding segment.

3. If two parallel lines cut two intersecting lines, the two segments on
one line, formed by the parallels and the point of intersection, will
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be proportional to the two corresponding segments of the other line.
4. If a line is drawn from vertex A of the parallelogram ABCD, cutting

BC in F and CD produced in G, then AF/DC = FG/CG.
5. In theorem 8 prove that since CD/DA CE/EB then CA/DA =

CB/EB and also that CA/CD = CB/CE.
6. Divide any line segment into parts proportional to two or more given

segments.
7. Construct a "fonith proportional" to three given line segments.
8. What is the "mean proportional" between 4' and 25? 3 and 75?

7 and 28?
9. The base of a triangle is 20 feet. The other sides are 16 feet and 10

feet. A line parallel to the base cuts off 2 feet from the lower end of
the shorter side. Find the segments of the other side.

10. The base of an isosceles triangle is 12 inches and the equal sides are
each 16 inches. A line parallel to the base cuts off 3 inches on one
of the equal sides. How much does it cut off on the other? A line
parallel to one of the equal sides cuts off 3 inches on the other. How
much does it cut off on the base?

IX. THEOREM 9

APPROACII: (1) Draw a triangle, trisect two of its sides, and connect a
pair of corresponding points. What seems to be true of that line and
the base?
(2) Divide two sides of another triangle into segments having some

other ratio and connect the points of division. Is the line still
parallel to-the-base?

(3) State the theorem. How is it related to theorem 8?
THEOREM: If a line divides two sides of a triangle proportionally it is

parallel to the third side. (Converse of theorem 8.)
CD CE

HYPOTHESIS: - =
DA EB

CONCLUSION: DE is parallel to AB.

ANALYSIS: (1) Converses are usually proved by the indirect method,
therefore, we can start by stating,that DE is either parallel to AB
or it is not parallel.

(2) Let us assume DE not parallel to AB arid see whether that as-
sumption leads to an absurd or impossible situation which would
make the assumption itself impossible.
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C

A

(3)
IIf DE is not parallel to AB, it would be possible to draw DE'
parallel to AB cutting BC in E'.

BE' AD BE BE' BE
(4) Then = = or =

E'C DC EC' E'C EC

(5) From (4) we note that both E and E' divide BC into segments
which measured in the same direction have the same ratio. But
this is no more possible than for a line to have two middle points
or two different points which cut off one-third of it from the same
end.

(6) Therefore, the assumption that DE is not paralle to AB is un-
tenable and consequently DE is parallel to AB.

(7) Or, instead of (3) and (4), if DE is not paralle, to AB, it would
be possible to construct AB',paraller to DE cutting CB or CB
extended in B'. Then CE/EB' = CE/EB which is impossible.

PROOF: Left to the student to obtain from the analysis, with the sug-
gestion that he look up this proof in some good geometry text for a
different form making more use of the ratios.

X. EXERCISES FOLLOWING THEOREM 9

DIRECTIONS: The following exercises can be proved indirectly as was
done with theoreM 9. However, if the information gained in theorem 9
is used, the exercises can all be proved directly, using theorem 9.
11. The base BC of the triangle ABC is divided into five equal parts and
' each division point connected with A. Line DE is drawn through the

middle points of AB and AC. What is true of DE and the four lines
drawn?

e
Li
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12. Prove that:
If a line is drawn through the midpoints of two sides of a triangle, it
is parallel to the base and equal to half of it.

13. Prove that:
If the middle points of the sides of an isosceles triangle are joined
to the middle point of the base, a rhombus is formed.

14. By the use of Exercise 12 find a way of measuring the distance
across a lake. Note: Let the unknown distance be the base of the
triangle.

15. In the rectangle, ABCD, let M and N trisect AB; 0 and P trisect
BC; R and S trisect CD; and X and 17 trisect DA. What is true of
the lines NO, MP, AC, YR, and XS? Prove it.

16. If E- is the midpoint of side AB of the isosceles triangle ABC, and
EF is perpendicular to the base BC, show that BF is % BC. Note:
DrawEG to G, the midpoint of BC.

17. If G and H are the midpoints of DC and AB respectively of paral-
lelogram ABCD, prove that DB is trisected by AG and CH at
points M and N. Suggestions: Show that AG is parallel to CH, that
AG bisects DN, and that CH bisects MB.

18. Prove that:
The median of a trapezoid is parallel to the bases and equal to one-
half their sum. Note: Extend the lower base DC to G so that
CG = AB. Connect AC and BC,, forming a parallelogram ABGC.

Why will the diagonal AG gG through the midpoint of BC? Then
can you show that the median EF = Y2 the sum ofAB and DC?

19. Prove theorem 3 using an indirect proof:
20. Make up a problem, geometric or non-geometric, which can be

solved or proved indirectly.

XI. THEOREMS 10-14

The treatment of the following theorems in any good high-school text
is usually very adequate, except of course that the inductive approach
and the analysis are omitted. -Two other theorems are usually given
following soon after theorem 10. These involve the other conditions for
similarity and are important. They are, however, really more or less of
the nature of corollaries of theorem 10 and are not themselves theorems
of outstanding importance. Theorem 10 is without doubt the most im-
portant theorem in geometry. Theorem 11 has a very interesting history,
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many simple applications, and has over 200 different proofs 108 All
theorems on.areas depend on theorem 12, the area of a triangle, which
in turn depends upon the postulate that the area of a rectangle equals
the product of its base and altitude. The postulation of this relation for
the area of a rectangle is recommended by the National Committee.
Theorems 13 and 14 are fundamental theorems on locus. In connection
with these two theorems and their application the double-headed/mean-
ing of the word locus needs to be carefully appreciated. Notice how one
of these meanings is the converse of the other. See any good high-school
text, and Chapter V, section IV Converses, of this study.

Theorem 10: Two triangles are similar if two angles of one are equal
respectively to two angles of the other.
Corollaries:

1. Two triangles are similar if the sides of one are (a) parallel to
the sides of the other, or (b) perpendicular to the sides of the
other.

2. Two right triangles are similar if an acute angle of one equals
an acute angle of the other.

3. Two isosceles triangles are similar if an angle of one equals the
corresponding angle of the other.

4.. All isosceles right triangles are similar.
5. All equilateral triangles are similar.
6. Two triangles are similar if an angle of one equals an angle of

the other and the including sides are proportional.
7. Two triangles are similar if the sides of one are proportional to

the sides,bf the other.
8. In any right triangle ABC with given acute angles A and B the

ratios a/b, a/c, and b/c, are constant. (They are respectively the
tangent, sine, and cosine of angle A.)

Theorem 11: In any right triangle the square on the hypotenuse is equal
to the sum of the. squares on the other two sides.
Corollary:

1. In any right triangle if a perpendicular be dropped from the %TN.-
tex of the right angle to the hypotenuse,
(a) the two right triangles formed are similar to the given tri-
angle and to each other,

mo Loomis, E. S. The Pythagorean Theorem. Masters and Wardens Association of 22nd
Masonic District of the M. W. Grand Lodge F. & A.M., Ohio, 1110 Webster Ave., S.E.,
Cleveland, Ohio, 1927. Price $2.00.

rj
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(b) either leg of the given right triangle is a mean proportional
between the whole hypotenuse and the adjacent segment,
(c) the perpendicular is the mean proportional between the seg-
ments of the hypotenuse.

Theorem 12: The area of a triangle is equal to half the product of the
base times the altitude.

Note: Corollaries concerning the area of a parallelogram and a
trapezoid could be readily proved by means of theorem 12.

Theorem 13: The locus of a point equally distant from two points is the
perpendicular bisector of the line segment joining them.

Theorem 14: The locus of a point equally distant from two intersecting
lines is the pair of lines which bisect the angles formed by the given
lines.

XII. THEOREMS ON CIRCLES, 15-20

The following six theorems are usually considered very easy and are
well treated in most texts, except again for the heuristic trend. Several
new definitions and postulates will be necessary. Theorems 15 and 17
each have two important converses, all four of which are very easily
proved indirectly. The student should attempt to prove these theorems
and make his own list of definitions and postulates, then finally com-
pare with the proofs and lists of definitions and postulates given in some
high-school text. An abundance of easy original exercises can also be
found in almost any text. Most textbooks present the first three of these
theorems before similar triangles. The proof of these three depends in
no way upon similar triangles, nor do any of the proofs for the theorems
7 to 14 depend upon these three theorems. Consequently, their place-
ment is purely arbitrary. They are probably easier than the theorems
involving proportions and therefore are usually placed early. In this
study, they are placed last so as to have all theorems on straight-line
figures together and the six theorems on circles together. The last three
theorems are concerned with the measurement of the circle. For these
theorems the circumference and area of a circle are defined respectively
as the limits described in theoreni 18.

Theorem 15: A diameter perpendicular to a chord bisects the chord and
the arcs of the'chord.
Corollaries://

(1) A diameter which bisects a chord is perpendicular to the chord.

JO
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(2) A line which is the perpendicular bisector of a chord passes
through the center of the circle.

Theorem 16: An angle inscribed in a circle is equal to half the central
angle having the same arc.
Corollaries:

(1) An angle inscribed in a semi-circle is a right angle.
(2) An angle between a tangent and a chord is equal to half the

central angle having the same arc.

Note: Corollaries, readily proved by a slight extension of the main
theorem, such as the measurement of the angle between two chords,
secants, or tangents, could probably be legitimately 'added. There
might be some question concerning the use of the term corollary for
classifying them. They are probably rather in the nature of sub-
theorems or exercises which depend almost entirely upon theorem 16
for their proof.

Theorem .17: A line perpendicular to a radius at its outer extremity is
tangent to the circle at that point.
Coronae :

(1) 4radius of a circle drawn to the point of contact of a tangent
perpendicular to the tangent.

(2) A perpendicular to a tangent at its point of contact with the
circle passes through the center of the circle.

3) Problem: To construct a tangent to a circle (a) at a point on
the circle, (b) from a point outside the circle.

TI:eorem 18: If the number of sides of a regular inscribed/ polygon is
indefinitely increased, its perimeter and area will both increase, while
the perimeter and area of the circumscribed polygon, formed by draw-/
ing tangents to the circle, at the vertices of the inscribed polygon, will
both decrease. The perimeters and areas of both polygons will each
approach a limit.

Theorem 19: The ratio of any circumference to its radius is constant
and is equal to 2 pi.

Theorem 20: The area of a circle is equal to pi times the square of the
radius.

Definitions and postulate needed for theorems 18,19, and 20.
In order to provide a pattern proof for theorems using the idea of ap-

proaching a limit, and to present rigorously the new terms used in theo-
rems 18, 19, and 20, the proof for theorem 19 is given in full. Theorem



Geometry Materials 89

18 is easily proved, its proof depending upon the postulate that a straight
line is the shortest distance between two points and the following reason-
ing. The perimeter of the circumscribed polygon, Pc, is always greater
than that of the inscribed polygon, Pi, therefore if Pc decreases and Pi
increases because of increasing the number of sides and yet Pc always
remains larger than Pi, then both Pc and Pi must approach a limit be-
yond which neither can go.

. Variable and Constant. The term variable is used in mathematics with
two meanings. Broadly speaking, any quantity which varies, changes
in valuer is a variable. In theorem 18, Pc and Pi are variables, yet
neither one depends upon the other, although both of them depend
upon the radius of the circle and the number of sides of the inscribed
polygon.

The second meaning of variable takes into consideration two related
quantities. When two quantities are so related that changes in the value
of one of them causes changes in the value of the other, the first is called
an independent variable and the second a dependent variable; e.g. the
radius and the circumference of a circle are two such variables, changes
in the radius being accompanied inevitably by changes in the circumfer-
ence and area. The two proofs for theorem 19, which follow will Mus-

s trate these two uses of the term variable, one meaning commonly used
in geometry, the other more commonly used in algebra. In contrast to a
variable is a constant, a quantity which does not change, such as the
number 2. (Reference: Any good geometry and college algebra text-
book.)'

Approach a limit: When a variable approaches a constant in such a
way that the difference between it and the constant becomes and remains
less than any given positive quantity, however small, the variable is said
to approach the constant as a limit.

E The circumference of a circle (crudely defined) is the length of the
!curved line forming the circle. However, since length as measured by the
compasses or by any unit of measure is always on a straight line and
there are no curved units of length, it is necessary to have a more pre-
cise definition.

The circumference of a circle is the limit approached by the perimeter
of its regular inscribed polygon as the number of sides is indefinitely in-
creased.

The area of a circle, since it is impossible to fit square or triangular
units into a curved surface, is defined as the limit approached by the
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area of the inscribed regular polygon as the number of sides is indefi -,
nitely increased.

The apothem of a polygon is the radius of its inscribed circle. (Needeci
in theorem 20.)

Pi (z) is the ratio between the circumference of a circle and its diam-
eter. Therefore,c/d = r., c = Tel, or c = 21:r. Pi is the first letter of
the Greek word meaning circumference. The purpose of theorem 19 is
to show that 7. is constant, no matter how large or small the circle.

Postulate of Limits. If two variables are always equal and each tap-
proaches a limit, the limits are equal.

Theorem 19: The ratio between the circumference and the radius of a
circle is constant and is equal to 2r...

UYPOTHESIS: A circle with radius F.

CONCLUSION: - = 27: or 71= v' which is a constant.

PROOF (A):

(1) Draw a second circle with any radius r' and inscribe regtilar poly-
gons of

/
n sides in both circles.

(2) Draw radii from a pair of adjacent vertices, thu forming two
;triangles, ABO and A'B'0'.

(3) These triangles are similar. Why?

(4) Then
r

=
AB

or
p

=
r

--. Why? (p means! erimeter).
r' A'B' p' e

P '(5) Therefore = P P1
Multiplying (4) by .

r r'
(6) Equation (5) is true regardless of the number of sides providing

the inscribed polygons are regular, and each has the same num-
ber of sides (n).

(7) Let the number of sides (n) increase indefinitely. Then will ap-
i
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c p' . .e
r

proach and will approach (r and r' being constant).
r' r'

°

(8) Therefore
c

=
c'
, because P-; and

Y are two variables which
r r' r r'

are always equal as they approach certain, limits.
Therefore- the limits are equal by the postulate of limits.

c'
(9)

c
) To say,that ,-. = -- merely means that regardless of the size of

r- r'
0 - .the circle the ratio between its circumference and radius is conk

stant. This constant is usually written as 2ir,. therefore

(10).
c
= -7-- 2ic or c = 2.nr, also c = ad.

../
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PROOF (B):

(1) Inscribe a regular polygon of ti sides in the given circle, draw radii
to two adjacent vertices forming triangle AOB, and draw 0M-per-
peridicular to AB.

(2) Then OM bisects AB (s and angle AOB.
`

(3), Angle AOM
180°. Why?

n
80° .

(4) = r sin
1
. By definition of sine.

2 n
°

(5) Then p = 2 nr sin,
180.

Why?
n

180°
(6) Or p = 2r,(n sin ).. In this equation.p and n are the variables;

n
\2, r,-and 180° are constants. As n varies, p will vary, but will al-
ways-be evaluated by the formula expressed in (6). It remains to

°
show that n sin

180
approaches a constant. It is not possible. to

. n
prove this by the methods of elementary mathematics, yet the\
following table should establish it beyond any reasonable doubt,
because it is evident that as n increases beyond even 100, .here

°
is very little increase in n sin

180
which seems to approach a

definite constant as a limit. Shanks in 1873 computed to'767 deci-
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mal places the valuef ibis constant. To 50 places it is 3.141,592,
653,589,793,238,462,643,383,279,502,884,197,169,399,375,1.

180°
n (sin )*

3.000000
12 3.105827
24 3.132628
50 3.139527
100 3.141075
200 3.141463
500 3.141571
1000 3.141587
2000 '3.141591

-10,000 3.141592

* Computed by means of
seven-place logarithm tables.

XIII. THEOREMS 21 AND 22 (SOLID GEOMETRY)

These theorems require for their proof additional definitions and pos-
tulate:s. The student should write these as needed.

Thearem 21: If two planes intersect, their intersection is a straight line.
Theorem 22: If two parallel planes cut a third plane, the lines of inter-

section are parallel.

XIV. THEOREN 23

Theorem 23 illustrates beautifully the dependence of solid geometry
upon plane geometry, and also the difficulty of representing solid figures
on a flat surface. It serves adMirahly as a "solid pattern" for proving
theorems.
THEOREM: If two angles not in the same plane \have their sides parallel

in the same sense, the angles.are equal.
ilYPOTHESIS: Angles ABC and A'B'C' with AB parallel to A'B' and

BC parallel to B'C'.
Corcx.usroN: Angle ABC = Angle A'B'C'.
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PROOF: (1) Lay off AB = A'B''and BC.= B'C'.
(2) Draw AC, 'A'C', AA',BB', CC'.
(3) BB'A'A is a parallelogram. Two sides equal and parallel.
(4) BB'C'C is a 'parallelogram. Why?
(5) ,AA' = BB' = CC' and AA' is 'parallel to BB' and CC'.

. , Why?
(6)- Therefore ACC'A' is a parallelogram. Why?
(7) Therefore AC = A'C'. Why?
(8), Therefore. triangle ABC triangle A'B'C'. 3S.
(9) *Tbei'efore angje ABC = angle A'B'C'. Why?

XV. THEOREMS 24-28

Theorem 24: The lateral area of a prism is the product of a lateral edge
by the pekmeter of a right section.

Theorem 25: The volume of any prism equals the product of its base by
Its altitude.
a. An oblique prism is equal to a right prism whose base is a right sec-

tion of the oblique prism and whose altitude is a lateral edge of the
oblique prism.

b. The volume of any parallelopiped equals the base times the aiti-

tude:
c. A diagonal plane divides a parallelopiped into two equal triangular

prisms.
d. The volume of any iriangular prism, equals the product of the base

and altitude.
e. The volume of any prism is the product of its base and altitude.

Note: Theorem 25 is outlined as traditionally proved and the proof
is long and difficult. Some modern texts shorten the proof very greatly
by the postulation of Cavalieri's Theorem or its equivalent: "If two
solids have equal altitudes and if sections of one made by planes paral-
lel to the base are equal respectively ,to the correspodding, sections
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of the other, then the solids are equal, in volume." The use of this
theorem as a postulate to simplify the proof of theorem 25 is highly
commended. Theorem 25 depends ,upon yet a second theorein which,
can be postulated`if the recommendations of the National Commit-
tee are to be accepted: "The voluthe of a rectangular solid is the:pro&
uct of its threndiinensions- (V = twit)." Since for any prism a right
prism with a rectangular base equal to, the base of thefirst can be ,con-
strUcted,' it-is evident that, the use of Cavalieri's theorem maltei the°.
reni 25 easily, proved; omitting a, b, c, d, and e.

Theorem 26: The lateral area of a regular pyramid equals 1/2 -the prod-
uct ofits slant height andthe perimeter of thbase.

'Theorem27: If a pyramid is cut by a plane parallel to the base and a dis-
tance d from the vertex,
a. The lateral edges and altitude (h) are divided proportionally.
b. The section is similar to the base, the "ratio of being

d /1:.

c. The ratio of the area of the section to the area of the base is d2 /h2.
Note: Theorem 2,7 is simple yet provides the solution' for many

very tricky and puzzling exercises which most textbooks have in
abundance.

Theorem-28: The volume of a pyramid equals 1/3 the product of the
area of its base ,by its height.
a., ,TNio pyramids with equal bases and altitudes are equal.
b. The volume of a triangular pyramid equals 1/3 bk.
c. The volume of any pyramid equals 1/3 bh.,

Note: Theorem 28 brings into geometry a very importanfraction,
1/3: In plane geometry-the only fraction used anywhere in 'formulas
was 1/2. Now, as also in theorems 30 and 32 following, 1/3 comes into

/use' and it is important that students appreciate fully-where it comes,
from. The proof of theorem 28 is made more simple if Cavalieri's
theorem is.used as with\ theorem 25.

XVI. THEOREM 29

In order to'have another pattein proof using the postulate of limits,
which was also used for theorem 19, theorem 29 is completely proved.
Furthermore the definitions of the areas and volume of solids with curved
surfaces are not always clearly stated. Therefore, this proof with its defi-
nitions and postulate will serve a double purpose.

1.00
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Definitions:

1. cylindrical surface is a surface generated by a straight line mov-
ing along a curved linein such a way as to-reinain always parallel
to-anine .line -not in the plane. of the curve. -A closed_ cylindrical
Surface .11as n closed curve, such as-a circle or an ellipse, to direct
the generating: line. Any single ,Position of the generating -line is
called an -eletitent.-
Atcylinder is a' portion of a:closed,cylindrical surface included be-
tween two `parallel planes cutting all the elements. What is a circu-.
-kr -right circularcylinder? A, section? A right section
Of a Cylinder?'

3.-The terms area and volume as heretofore'used have applied only_ to
fiat surfaces Or straight line solids. The area and volume of a cjliri,-.
der will now be defined as the limit approached by_ the correspond-
ing area or volume of a circumscribed prism, , as the number of
sides is indefinitely increased.

THEOREM: (The "Approach" is omitted because the formula is an old
. one.). The lateral area of a cylinder equals an element times

the circumference of a right section (L.A. = ec), and the volume of
a cylinder equals the area of the base times the altitude (V = bit).

AYPOTRESIS: Any cylinder.
CONCLUSION:, (a) L.A. = ec

(b) V=bh
AN4Ysis: ,Since the lateral area and volume of a cylinder correspond

with those of a prism, if the formulas for the lateral area and volume-
-of a prism are taken and the number of the sides of the prism indefi-
nitely increased, the effect on the formulas of this increasing number
of sides could be found.

PROOF IS:

(a) (-1) Circumscribe a prism about the cylinder, its lateral area
L.A.P. ep. /

(2) Let the number of sides of the prism increase indefinitely,
then its lateral area will vary and approach the lateral area
of the cylinder as a limit, by, the definition of lateral area of-
a cylinder. Furthermore, the perimeter of the right section
of the-prism approaches the circumference of the right sec-
tion of the cylinder as a limit, by theorem 18.

(3) But L.A.P. =efi, always regardless of the number of sides.
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Therefore L.A. (cylinder) = a by the postulate, of limits.
. (b) The corresponding proof for .the volume of a cylinder is left to

the student.

XVII. THEOREMS 30=32

The proofs for these theorems are quite standard and can easily'be
found even thoiighstheorem 31 is 'rather involved.
Theorem 30: The-lateral area ofia- right circular Cone equals 1/2-- the

product-of the slan* t height by the circumference of Ithe base, and-the
volume of any cone equals 1/3 the product of the area Of 'the base by
the altitude.

Theorem 31: The area of a sphere eqUals 4 pi times the radiui squared:
a. The area of the frustrum of a cone of revolution-equals 1/2 slant

height times- the_sircumferene.e- of a eir-Cle-half way between the
bases.

b. The area of a surface of revolution formed by revolving a regular
polygon about a diameter is 2 pi times the apothem times the
diameter.

c. The area of a sphere equals 4 pi times thelradius'squared.
Theorem 32: The volume of a sphere equals 4/3 pi times the radius

cubed.

XVIII. CONCLUSIOWAND SUMMARY <

..The purpose of this chapter has been two -fold: (1) to outline-w,ork
for the prospective teacher in order to insure his mastery' of the essen-
tial theorenis of plane and solid high-school geometry, (2) to familiarize
the readerinore fully with the heuristic .nethod of teaching and learn-

----7-inr6rometry. This has_been attempted 'through the use of. the heuristic
method in presenting a few of the theorems of high-school geometry.
Other important theorems were given in the outline, but,their proof was
left to the student to get by himself or to find in some high-school text.
It assumed that the careful student will not only master these few
theorems but also that he will prove the corollaries and Will work a _

liberal-riumber of "originals" found in the high-krhool texts.
The following chapter will present a few features of geometry and an

abundance of original exercises for practice.. These exercises should serve
to strengthen and test a student's mastery of the technique and the con-
tent of high-school geometry.



CHAPTER V

SOME FEATURES OF GEOMETRY ANI),EXERCISES FOR
ANALYSIS AND INDIRECT PROOF

Introductory Statement. The purPose, of this chapter is to present:in
a fairly complete form certain outstanding features of geometry, espe-
ciallyAhe.analytic method and the indirect proof. Students - preparing
to 'teach, or teachers in service, will find in this chapter not only these
vital topics .but also ample problem material carefully selected and diffi-
cult enough. to test and to insure mastery of- the subject matter of ge-
ometry. A further function of thii material is that of providing an ap-

'plication ,for the methods advocated in Chapter. III and illustrated in
Chapter IV. The material would fail to achieve its highest function if it
failed to -make possible the use of the .heuristic pattern of teaching and
learning which it is the purpose of this study to present. The section on
continuity brings out a fascinating concept, and the treatment of incom-
mensurables presents briefly a probleni of rapidly decreasing impor-
tance. The discussion of the structure of geometry emphasizes the nature
of the science and its dependence upon postulates and definitions.

ti
I. THE STRUCTURE OF GEOMETRY

Analysis of the Proof of an Important Theorem. The structure of ge-
ometry is well shown by a simple project consisting of the analysis of
the oroof for theorem IV: The sum "of the interior Anglei of a triangle
is ISO°. Its proof depends upon four other relationships, namely, (1)
-the construction of a line through one vertex parallel to the opposite side,
(2) the theorem that alternate interior angles are equal when two paral-
lel lin'e's cut a third line, (3) the definition of a straight angle, and (4)
the axiom that equals may be substituted for equals. The construction
(1) and theorem (2) are both dependent upor, other relationships. The
definition and the axiom are arbitrarily accepted without pro6f. The fol-
lowing outline and chart indicate the various interrelationships and the
fundamental dependence of one theorem upon other theorems, and
eventually the dependence of all upon arbitrary definitions and Postu-
lates.

97
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Theorem to be proved: The angle-sum of a triangle is 180°.
1. Construct a line parallel to AB.

A. Construct an angle equal to angle B.
.(1) Congruence by three sides. (Postulate)

B. Theorem: If two lines,cutca third making the alternate in-
.

teridis angles equal the two,:lines are parallel.
(1) Construction of midpbint bf line segment.

a. congruence by 3S'' (Postulate)
b.. congruence by S.A.S.,(Postulate)

(2) Vertical angles are equal. (Postulate)
(3) Congruence by angle-side-angle. (Postulate)
(4) Two, lines perpendicular tb'the same line are parallel.

(Postulate). -
2. Theorem: If two parallel lines cut 4 third line the-alternate in-

terior angles are equal:
A. The construction of an angle equal to a given angle.;,

(1) Congruence by 3S. (Postulate)
B. Theorem: If the alternate interior angles are equal the lines

are parallel: (See B under 1 aboVe.)
C. Postulate of parallels.

3. Definition of a straight angle.
4. Substitution of equals for equals. (Axiom)

THE ANGLE-SUM; OF A TRIANGLE EQUALS 180 DEGREES

1. Construction
. I

Z. Theorem 3. Definition . 4. Postulate

B. Theorem

1 2 3 4 1

Definitions, Axioms and Postulates

This chart shows the dependence of theorems and constructions unon other
theorems and constructions, and eventually that definitions and axioms form the
foundation for the entire structure in reasoning. The letters and figures refer to the
previous outline.

i fir.
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Conclusions and Suggested Problem. It is evident from this illustration
that "demonstrative geometry" is a structure composed of (1) defini-
tions, (2) axioms and postulates, (3) constructions, and (4) theorems.
The theorems and constructions are based on definitions, postulates, and
preiiionsly p_roved theorems. These theorems in turn are based upon other
definitions, postulates, and perhaps theorems, until all rest finally on an
ultimate basis of arbitrary definitionsand accepted postulates or axioms.

The elements that are of outstanding importance in this organizatiori
are the seeing of relationships, the building of the structure by the analy-
sis of relationships, and the appreciation of the dependence of one rela-
tionship-upon others. The very nature of geometry makes it necessarily'
and, fundamentally a course in reasoning; a course in discovering and
proving relationships on the basis of known facts and known relation-
ships.

The student should take some important theorem such as number 8
or 10 and-make a similar analysis to show this fundamental nature of
the science he is studying.

II. THE ANALYTIC METHOD APPLIED TO GEOMETRIC ORIGINALS

The Plan for Completing the Presentation of Analysis. In Chapter
III, analysis and synthesis were presented as essential parts of the heuris-
tic method which has been advocated in this study as efficacious in teach-
ing high-school geometry. In Chapter 4, several illustrations of analysis
havebeeri given and if these illustrations have served as patterns for the
proof of originals, then the analytic method has been amply illustrated
with familiar material. However, the real test of the power of the analytic
method comes -in the attack of difficult originals. The purpose of this
part of Chapter V is to provide that experience, but to preface it by
further illustration and discussion of analysis. First, however, in order
not to break the continuity of thought later and also for review pur-
poses, a list is given of the methods or devices used in proving easy
originals and theorems. The coordination ofzthese methodi into a com-
posite plan of attack will constitute the analytic method as applied to
the solution of difficult problems.

,Summary of Devices or Methods Available Jpr Proving Geometric
Statements.

1. Two line segments are equal if they are
(1) equal by hypothesis, by construction, orb.; identity.
(2) corresponding parts of congruent triangles.
(3) both equal to the same segment or to equal segments.
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(4) sides of a triangle opposite the two equal angles of the tri-
angle.

(5) opposite sideS of -a parallelogram.
. (6) parallels cut off by parallels.

(7): chords having equal arcs or equal central angles'.
(8) chords equally distant from the center of the same circle or

of equal circles.
2. 'rico angles are equal-if they are

(1) equal by-hypothesis, by construction, or by identity,
(2) Corresponding parts of congruent triangles.
(3) ,angles oppositethe equal sides of.an isosceles triangle.
(4) alternate interior angles formed by two parallel lines cutting

a third.
(5) corresponding angles formed by. two parallel lines cutting a

third.
(6) alternate exterior -angles formed by is o,paralletlines cut-

ting a thiid.
zit 71 Angles whose sides are respectively parallel "left to left and

right to right."
(8), angles whose sides are respectively perpendicular "left to

,,?.t."' left and right to right."

; (11) corresponding angles of Similar figures.

(9) opposite angles of a parallelogram.
/ (10) both equal to the same or to equal angles

f 4 ; 41: xJ

(12) inscribed in- the same arc or in equal ar
(13) measured by the same arc or by equal acs.

3. Two angles are supplementary if they
(1) have their sum equal to 180°, a straight ngle.

(2.) are so given in the hypothesis.
(3) are interior angles on the same side formed btwo parallel

lines .cutting a third.
(4) are exterior angles on the same side formed by two parallel

lines cutting a third.
(5) have their sides parallel "left to right and right to left."
(6) have their sides perpendicular "left to right and right to left."
(7) are consecutive angles in a parallelogram.

4. Two angles are complementary if they
(1) have their sum equal to 90°.

"` (2) are so given in the hypothesis.
(3) are the acute angles of a right triangle.

co
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5. Two lines are perpendicular if
(1) they are so given in the hypothesis.
(2) they are constructed perpendicular.
(3) they meet so as to form a right angle.
(4) one bisects the straight angle forned,by the other.
(5) they form equal supplementary"..niles.
(6) each is parallel to one of tw othfr lines which are perpen-

dicular,
. (7) each is perpendicular to one of two other lines which are

perpendicular.
(8) they are sides of an angle inscribed in a semicircle.

6. Two lines are parallel if
(1) they are so given in the hypothesis.
(2) they are constructed parallel.
(3)- they are everywhere equally distant*
(4) the alternate interior angles, formed by the two lines cutting

a third, are equal.
(5) the corresponding\ angles are equal.
(6) the alternate exterior angles are equal.
(7) the interior angles on the sameside are supp ementary.
(8) the exterior angles on the same side are supp ementary.
(9)' they. are opposite sides of a parallelogram.

(10) they are both perpendicular to a third, or both parallel to a
third line.

(11) one is the base of a triangle and the other line divides the
other two sides of the triangle proportionally.

7. Any two triangles are congruent if
(,1) three sides of one equal respectively three sides of the other

(3S.)
(2) side-angle-side of one equal respectively side-angle-side ;oi

the other. (S.A.S.)
(3) angle-side-angle of one equal respectively angle-side-angle of

the other. (A.S.A.)
(4) Iwo angles and any side of\oene equal respictivly the corre-

sponding parts of the other.
8. Any'two right triangles are congruent if

(1)' the hypotenuse and an acute angle of one equal respectively
the hypotenuse and an acute angle of the other. (H.A.)

(2) the hypotenuse and a 'side of one equal respectively the
hypotenuse and a side of the other (H.S.)

1

3't ),v..
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(3) any side and an acute .angle of one equal! respectively the
corresponding parts of the other.

(4) any two sides of one equal respectively the correstioiiaing
sides of the other.

.9. Any twd.isosceles triangles are congruent if
(1) oneside and any angle of one equal respectively the cor-

responding side and angle of the other. -\
r

(2)-. the base and altitude of.one equal respectively the base and
altitude of the other. ; -

(3) they are right triangles and one side of one equals respec- f

tively the Correspcinding side otthe other.
(4) the base and one of the equal sides of one equal respectively

the base.and one of the,equal sides of the othei. ,

10: A quadrilateral is a parallelogram if
(1) its opposite sides -are parrallel.
(2) its oppote sides are .ecival.
(3) one air of.opposite sides is both equal and parallel. \
(4)- RS' Apposite angles are equal.
(S) any Oo consecutive ..ogles are supplementary,. .

11. Two segments on one line :will be proportional to two segments on`
another \

(1) if their ratios are equal to..the same quantity or to equal
quantityies.

(2) if.they are cut off by parallels. )I

(3) if they are parts of two sides of a friangle cut off by a line /
parallel to the third side.

12. Any two segments will be proportional to two other segments /
(1) if their ratios are equal. -
(2) if they are corresponding parts of similar triangles.
(3) if two segments are two sides of a triangle and the other

two are the segments of the third side formed by the bisector
of the angle between the first two.

13. Two triangles are similar
(1) if they satisfy the definition of r,similar triangles.
(2) if, they have two angles of one equal to two angles of. the

other.
(3) if they have one angle of one equal to one angle of the other,

and the "including sides proportional.
(4) if they har.the three sides of one proportional to the three',

sides of the other.-

5
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4

(5) if they are right triangles 'tit an'acute angle of one equal
to an acute angle of the of r. .

,. (6)..iNhey are.isosceles triang with one angle of one equtil,:to
'the corresponding angle the other. ---g- -;

(7) If they,itatie;their sides r spectively parallel; orrespeCtively
perpenditular. ..

14. Theproduct of two segments als the product of two others_'
(1) if one pairls the means the citherpgir is=theeitreines of,

-a-Proportion: :. ,

(2) if they are parts o milar>iriangles and,are so related that
a propo , i . y be set up. with one pair' the:means and the
other pair the .extremes. .

(3) if they_arepares of intersecting chords.or secants. --
',/ 15. Two areaswill-heAuali

,
,

(1) if they are incloSed'by triangles or parallelograms with the
7

,

, same base and' altitude.
1. / .. ,...... -

(2) if they are measured'by-t-wo pairs of products which can be
, .
.

shown to be equal. . .....,, ..

i 16. She an angle is a right ingle if inscribed in a semi - circle, a per-
t -pendicular can 'Ile constructed by constructing a semi-circle with

. an- angle inscribed, .,,
17. The locut of a point a' given distance from a point or a line, or

the lOcus of a point equally distant from two points or two lines
or any combination of two points and two lines can be found- , :.
by, the-simple application of the definition of lotus and, theorems

. 13.andi14.
18. The locus of a point satisfying two or more sets of conditions may

be found by,finding first a locus for each set of conditions separate-
ly; ar i then the intersection of these loci will satisfy all the sets of
condi Sons simultaneously.

19. In sitt tions involving limits, set rup an equation' from a known,
analagous situation, then by-'some process make the two sides of
the equation, become variables. If these variables can then, be
shown to remain equal as they approach their limits, these limits
will be equal.

Note: These nineteen statements of conclusions to be.proved with the
several ways in which each may be proved are not given with the thought
that they constitute a complete list. The conditions which make a tri-
angle isosceles, a line straight, and others, are omitted. The given list is
suggestive rather than exhaustive.

ri

1
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\ ,
20.'Generardev!Ces. I

(1) Often irma.ynotbe possible to prove two triangles con -
gruent at once because the equality of needed, parts is fiot
known. In such cases`there may be other. triangles whose
congruence establishes the desired equality. See construe-
ti --7---t_Ons 8 and:9. -- \ . -

(2) T4 prove lines or angles qual when no-friangles, are avail-,
able the construction of an auxiliary line -Often solves the
difficulty. See constructions 3, 4, 5, and theorems 1, 2; 4, 5,
6, 8, 15, and 16. This auxiliary line may joinsrucial points,
bisect an angle,-bisect aline, be parallel or perpendieular to
a line and through a'crucial point, or be drawn; so as to in-

'Nolve any kaolin construction.
(3) To provea converse theorem or statement an indirect proof

is often very usefu./
(4) To make a construction to satisfy certain conditions, assume

the ynstruction made and then analyze the figure to dis-/
coved tnyrelations which determine the , figure from the
given- f cts, and upon which the proCedure depends. Note:
This echnique is shown in the illustrative construction prob-

.

.le solved in the next section.
,r.(5) To get similar triangles often auxiliary lines may be drawn

at crucial points, perhaps perpendiculars or parallels. See
iligiam 10. _ ..

(6) Make the most general figure possible, so aszto avoid ex-
, tending the hypothesis.

(7) Construct figures accurately.
l't

(8) Statethe hypothesis and conclusion clearly.
(9) ,Begin by assuming the theorem true; see what follows from

that assumption; thin see if this can be proved without the
assumption;' if so, try to reverse the process.

(10) Oi begin by assuming theorem false; and endeavor to show
the absurdity of that assumption.

I

(11) To secure clearer understanding follow Pascal's adkice and
substitute the definitiOn for the name of the thing lefined;
e.g. to say that CM is a median to the base of isoscetes tri-
angle ABC is the same as saying that in triangle ABC,

7 AC = BC and M is taken so that A211,= BM.1"
(12) Sometimes the proof for an exercise is apparently discovered

is Daman and Smith. op. cit., p. 35.r..
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synthetically by tryingput various possible ideas, more or
Less blindly, until suddenly a combination is discovered that
works. While this trial and error method seems to be syn-
thetic in nature, the trialS are probably governed by a subtle
analytic touch. The' trial and error process with known
facts is really but the working form of analysis trying to
link the unknown fact w\th-the known. Consequently most
trial and error attacks on exercises, unless succeeding by
chance, are probably essentially analytic in character.

(13) Analyze the conclusion to be proved in order to discover
the-relationships upon which it depends. In the analysis be
guided by the 'methods outlined under 1 to 19 above, and
by the "X will be true WM is true" technique, which was
discussed in Chapter III and will be presented more com-
pletely on the follOwing' pages.

The Analytic Method, Coordinating the Devices Previously Used Into
aScientifia plan for the Discovery of the Proof in Original Exercises. In
the theorems'of the preceding chapter there has been occasionally a need
for analyzing the, conclusion to discovter the manner in which its proof
depended upon the hypothesis or other known facts. In many cases the
proof was evident at once. Before trying some rather difficult exercises
to get experience with this much discussed and all Powerful analytic meth-
od, it_ will be well to_summarize the theoretical basis of analysis as well as
to list the deViCes or methods already available for proving geometric con-
clusions.

Analysis, the presentation of which was introduced in Chapter III,
Section III, begins with the conclusion or some part of the conclusion;
X, and then reasons that X will be true if some other 6fiiiition, C, is
true. Then it continues, C will be true if B is true, B will be true if A is
true, but A is true, therefore X can be proved. (See Chapter III, Section
III.)

The method of analysis is not new. As previously stated, it was prob-
ably invented by Plato, but most extensively used by Archimedes and
Apollonius. In fact, Apollonius became so expert with it that his analysis
of geometry problems, without the use of algebra, has not been excelled
to the present time?'" Analysis, as a major part of the heuristic method,
has been strongly advocated in this study as the method of discovery
in teaching geometry. This advocacy is based upon the feeling that one

m Heath. op. cit., Vol. III, p. 246.
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of the major contributions which geometry is able to make to the educa-
tion of an individual is the development of an analytic attitude-to 7d
the solution of all problems, non-geometricas well as geometric."°, 1 ,

Synthesis begins with the hypothesis, a part of the hypothesis,,or sortie
known -fact or constriction. From this it proceeds by means of other
known or accepted facts or processes to the unknown conclusion. These
steps May or may not have 'been discovered by formal analysis, but if
not, they probably were -discovered by an unconscious analysis. InInany
of the easy exercises of high-school geometry folloWing the-theorems al-
ready given, th.: proof was no doubt discovered by a more or less AM-
conscious, intuitive' analysis. Proofs are not often discovered by syn-
thesis. The analytic method is the method of discovery. It begins with
the unknown or &Sired conclusion-, and analyzes it, breaks it up, to
discover other facts or relationships upon which it depends. These it
analyzes further until a dependence upon known or accepted relationships
is discovered. Finally, for a concise statement of these discovered rela-
tionships the synthetic arrangement, Practically reversing the order of
the analytic results, is very desirable. Analysis is the method of discovery,
syntheSiS the_rigorous and concise met lid of presenting the discovery.

f.lentintary Pattern of Analysis. In the preceding discussion of analysis
in Chapter III the general pattern presented was as follows.

HYPOTHESIS: A is true.
CONCLUSION: B is true.
ANALYSIS: B will be true if C is true.

C will be true if D is true.
D will be true if E is true.
But E is true because of A.
Therefore B is true, or at least can be proved.

Complete Pattern of Analysis with Difficult Originals.
HYPOTHESIS: A is true.
CoisicLustoti: B is true.
ANALYSIS:

(1) B will be true if C is true, or if M is true, or if X is .true.
a. C will be true if D is true, or if G is true, or if K is true.

But perhaps neither of theie can be proved.
b. Then M will be true if N is true, or if H N true, or if P is

true, or if 11' is true.

lu Hassler and Smith. op. di., pp. 131470.
u2 Breslich, E. R. Problems in Teaching Secondary School Mathematics. University

of Chicago Press. 1931, pp. 268.323.
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But even now perhaps none of these can be proved.
c.. Theitfinally Xis true if I is true, or if Kis true:

(2) I will be true if L is true, or, if Q is true, or if Zis true, etc.
(3) ,Bitt Zis true, therefore B is trukor at least can be proved.

In other words,,in areal problem where the solution is Unknown there
maybe several wayS of 'proving, any one statement, and each of these
mayhave to be investigated. Many Presentations of the analytic method
in textbooks on the teaching of mathematics,. as well as high - school text-.
books,,fail. to recogniie this multiplicity. of_ possibilities. They show how
beautifully it works on some problem whose solution they know before-
hand. Wheuthe solution is unknown there will beat nearly every step
several,possible steps that might be taken: For instance, theist of "De-
vices"- gave fifteen different possible ways of proving one angle equal to
anothei and twelve ways of proving two triangles congruent. Whenever
there are various- possible steps' it may be necessary to exhaust several
posSibilities before the right one is found.

However, if.we.accept,the principle that "nothing happens without a
sufficient reason why it, should be so rather, than otherwise," then the
reason exists and can be found if the analysis is complete. If the analytic
method of geometry is to be applicable to and useful for the solution of
problems whose solution is unknown, then the rather complex pattern
just given for analysis will necessarily be needed. Illustrative problems
are given below showing the use of the analytic, method in the solution of
difficult originals.

Problems Analyzed as Patterns. The exercises immediately following
involve more.than one step. They give some opportunity for analysis and
should be a real challenge to a student who is anxious to become expert
in geometric imalysis. Five exercises (two constructions and three ex-.

1

ercises involv1ing proof only) wilLbe analyzed to serve as patterns for
the analysis of the others. Notice that analysis proceeds only to the point
of'discoyeryi of known relationships, and then the proof can be written
down synthetically. The headings used for the constructions are not the
traditional ones, but they are suggestive and the alliteration is novel.

1. Illustrative Construction Problem Solved by Analysis.
PROBLEM: Construct a trapezoid, given the 4 sides, a, b, c, d, with

b and d the parallel sides.
ANALYSIS: Assume a trapezoid, ABCD, drawn and analyze the rela-

tionship between its sides.
(1); The construction could be made if there were some way of

J
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getting the angle between any two adjacent sides such as c and
.b, or if there- were some way of getting.the distance between
the Parallels.

(2). Now the angle between- c and 6 could be found if there were
some way of getting a triangle with three.sidesgi*eil. With A
.a.s.a center and line a as a radius; cut CD at,E. Dravi AE.

-(3) Theutriangle ADE has two sidestnown and could-be.drawii
if. DE ,were''- known.

(4) But AECE is a parallelogram, therefore EC equals -d and,
DE= b -4
TherefOre the-triangle ADE tani.te cO nstrUcted.

.b

c
r\c,r

PizocEoun (Construction):
(1\ COnstruct a triangle EAD with sides EA, AD, and DE equal re-

s' tively to a, C, and b d.
(2) tend DE to d nuking PC = b.
(3) T rough A draw a line AB parallel to DC and make AB '7= d.
(4) Conhect points B and C

' (S) Then ABCp-is the required irapeioid.

PR OOF: Left to the student. _

POSSIBILITIES: It should be evident that, unless a, b, c, and d are of
such a nature that a triangle can be constructed with sides a, c, and
b d, the solution is impossible. If, for example, a = 6, c = 10,
and b d = 2, then no solution is possible. It is also evident.that
AB and DC must be laid off in the same direction, but that, if both
had been laid off in the opposite direction from that indicated in the
figure, the trapezoid would be reversed.

Note: The second alternative in statement (1) of the analysis, -if
followed through, would lead to about the same result. The solution
above uses the technique of assuming the construction drawn for the
purpose of analysis. Then a parallel is drawn from a crucial point.'
Often the connecting of crucial points or the drawing of parallels or

J.

t.
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perpendiculars at crucial pOintil helps in the analysis. Perpendiculars
from A and B to line CD would have obtained about the same result.

2. Illustrative Construction Problem Solved by Analysis.

PROBLEM: Given two chords and CD in a circle, to find a point X
so that .761 and XB will cutOif on CD a given segment s.

ANALYSIS: Assume the construction done. Then parallels to FA
through G or to GB through F Suggest a parallelogram FHBG. Con-
struct such a parallelogram. It is now evident that, even though
angle Xis unknown, BH eambe drawn equal to s and parallel to CD.
If For G' could be determined; the construction would be solved.
But angle X = angle AFH = arc AB, and therefore F can ta
located by the construction -for the locus of the vertex of a given
angle whose sides pass through two given points. This then deter,
mines the parallelogram and the steps. in the analysis can be re-
versed.

PROCEDURE:

(1) Draw BH parallel to CD and equal to the required line seg-
ment s.

(2) Construct a circle through A and H with an inscribed angle
equal to an angle measured by arc AB.

(3) This circle will cut CD either in two points, F and F', one point
F, or no points at all.

(4) Draw AF and extend it to t the circle X. Also AP if
desired, cutting the circle in bcuC'.

(5) Draw XB'cutting CD in G, also draw X'B cutting CD in G'
if desired.

(6) FG is the required segment. PG' also if desired.

PROOF:

(1) Angle AFH = angle X by construction.

V
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(2) Therefore F1/ is parallel to BG, since the corresponding angleS
- are equal.
(3) BE is parallel to FG by construction.
(4) Therefore FGBIL is a parallelogram because its opposite sides

are parallel.
(5) Therefore FG = BH since the opposite sides of a parallelogram

`are equal.
(6) Therefore FG = s because both equal BH.

Possnma:rms:343

(1) The circle through A and X with inscribed angle equal town
angle measured by arc AB might cut CD in (a) nopoints;
(b) one point, if tangent; (c) two points,_ both -within the
circle; (d) two points, both on CD extended; or (e) two
points, one within and one. outside tbe. circle.. In (a) there
would be no solution possible, or in other words there is no point-
X such that AX and BX would cut on CD a segment as large-
as the one -desired. In (b) only one solution would be possible
while in (c) there are clearly. two solutions. -In (d) AF would
cut the circle in X, which would-be on the major arc of CD, and
AX and BX would_ nterSect between the chords. There mould
Still beetwo solutions, although the segments would be reversed
in their lettering. For (e); one,segment-would be reversed Or a
negative segment, and the other, positive, but still two solutions.

(2). If .AB and CD are parallel, perpendicular, interdect within the
circle or intersect outside the circle as in the figure, -the
tions would be modified slightly but would be essentially un7
changed.

(3) If the segment s is too.large the solution becomes impossible as
in 1 (a) above. If the segment s is zero, the other extreme, then,
the point X becomes eitherC or D.

-3. Illustration of an Original Exercise Solved by Analysis. The alti-
tudes of a triangle intersect so that the product of the segments of
one equals the product of the segments of the other.

HYPOTHESIS: Any triangle, even an obtuse one such as ABC with -
altitudes AD, BE, CF intersecting at H.

10 Petersen, Julius. Methods and Theories for the Solution of Geometrical Contrite-
lions. G. E. Steehert and Co., 1923, p. 102.
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CoNotukoN: All X DH= BIPX Ell= CH X FR
AH E Eg

ANALYSIS: (1) Ali X DH,= BH X EH if
H

= or
AI L

Bll DH EH DH
All BH.

(2) Now = if triangles AEH and BDH are similar, but

AH EH
=. if triangles AHB and EHD are similL

BH DH
(3) The first condition in /(2) looks easier to prove. The triangles

AFJLandBDH are similiar if any one of several conditions are
true. First, however, one is likely to observe' that the triangles;
are both right triangles and they are therefore similiar.if an
acute, angle of one equals an acute angle/of the other.

(4) It is evident, however, that the angle at//H is common to both
triangles, therefore the triangles can ,be proved similar and
Steps (3), (2), and (1). can be reversed for a synthetic proof.

PROOF: Leftto the student to complete.

EXERCISE: Draw a second figure having the altitudes intersecting with:
in the triangle, and see if the same analysis holds.

4. Illustration of an Original Ex'ercise Solved by Analysis. If equi-
lateral triangles are constructed upcin t sides of any triangle, the
lines drawn from their outer vertices to the opposite vertices of the
given- triangle are equal. A.

/ .
HYPOTHESIS: Any triangle ABC /with 4l3D, BCE and ACF equilateral.

CONCLUSION: BF = .CD = AE ;
ANALYSIS:

(1) BF = CD if triangles BFC andiCDB are congruent, or if tri-
angles BRA and CDA are congruent, or perhaps if other pairs
of. triangles are congruent.
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Triangles BFC and CDB have no parts equal by hypothesis,
except BC = BC, but triangles BFA and CDA have AF = AC
and AB = AD. Therefore triangles BFA and CDA will be
congruent if either BF = CD or angles FAB and CAD are
equal.

F A

(3) The first of these conditions is the conclusion to be proved,
therefore we try the second one. However, a glance at these
angles reveals that the angles are each equal to a -60° angle
plusngle CAB, and angles FAB and CAD are therefore equal.

SYNTHETIC PROOF:

(1) Angle FAC = angle BAD since both equal 6Q °.
(2) Angle CAB = angle CAB by identity.
(3) Therefore angle FAB = angle CAD by adding (1) and (2).
(4)- AF = AC by hypothesis.
(5) AB = AD by hypothesis.
(6) Triangle ABF c.a.1 triangle ADC by
(7) !Therefore BF = CD by.c. p. c. t. e.

.(8) Similarly BF = AE, and therefore AE = BF = CD.

5. Mustration of an Original Exercise Solved by Analysis.
HYPOTHESIS: Any triangle ABC with ABD, BCE, and ACF equilateral.

(Same as illustration 4. Use figure for 4.)
CONCLUSION: AE, BF, and. CD are concurrent and meet so as to form

six 60° angles.

ANALYSIS:

(1) The three lines will be concurrent if. CD passes through the
point of intersection of the other two.
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(2) If the lines are concurrent, the angles will all be 60°, pro-
viding two adjacent angles can be proved to be 60° each.

(3) Lit 0.be the point of intersection of BF and AE and draw OC
and OD, them COD must be proved to be the straight line CD.

(4) Line COD will be a straight line if the sum of three angles on
one side at O.is 180°, or if angle ACO = angleCD.

(5) Suppose we take the second alternative in (4). Angle
ACO angle ACD if any one of a dozen or moreconditions
is true: both equal the same angle, or parts of congruent or
similar triangles, etc.

(6) From the previoui proof (4 above) angle -1 = angle 2, angle
3 = angle 4,, angle 5 = angle ACD and angle 7 = angle
BCD. Now angle ACD will equal angle ACO or KCO if angle
KCO = anglevS.

(7) Angle KCO = angle 5 if triangle KCO is similiar to triangle
FKA.

(8). Since these triangles have the angles at K equal, but nothing
Yet known about the other angles, they will be similar if the
sides at K are proportional..

(9) ;But triangle FKC is similar to triangle AOK because two
FK CK

angles are equal respectively and therefore = or
AK OK'

FK AK
by interchanging the means

CK 'OK
(10) Therefore triangle OKC is similar to triangle AKF by one

angle equal and including sides proportional, and therefore
angle KCO = angle 5 = angle ACD, and therefore COD can
be proved a.straight line.

(11) The angles at 0 will be 60° if they can be proved equal to the
angles of the. equilateral triangles.

(12) But angle 9 = angle 12 and angle 11 = angle10 froin the
similar triangles already used, therefore angles 10 and12 are
60° and their vertical angles are also.

(13) But angle 14 equals angle 15, therefore each is 60°.
(14) Therefore all the angles at 0 can be proved equal to 60° and

the lines AE,.13F, and CD can be proved concurrent at 0.

PROOF: Left to the student.
Summary Discussion: The analyses in the foregoing illustrative solu-

tions are given exactly as they were worked out by the writer, except

4-1
e
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that -many of the leads that seemed to fail were omitted to save space.
The discovery in step (9) of .the last exercise really came as the result of
an abandoned attempt to follow the first suggestion in (4). A multiplicity
of suggestions is usually present in any problem. As various ones are car-
ried out and abandoned, interrelationships are discovered which may help
later. Every difficult original will always have several- possibilities at
every- step; The writer worked severalihours, 'extending over odd study
periods for mare than-a week, in solving the la.,t exercise. The student
should'iiot be too readily diseouraged if in trying to solve some of. the
following exercises, he finds that the solution is' elusive. A few hard
originals" really worked out will teach more aboiit andysis than can pas-
sibly be done. in many pages of discussion..

III. EXERCISES FOR ANALYSIS

DraEcTroxs: The following problems are designed to provide- experi-
ence with the analytic method for constructions and for problems to be
proved. They have been arranged in order of difficulty on thelasis of the
combined iyeighting of twelve judges who are teachers of experience.
Enough of the exercises should be worked, botbconstructions and proofs,
to make sure that the analytic technique had beeti mastered. For the con-
structions the subheadings used in the patterns are helpful and sug-
gestive: problem, °analysis, procedure, proof, and possibilities. In both
construction problems and other problems the analysis may be oral and
therefore may be omitted from the written form.

A. PROBLEMS FOR CONSTRUCTION

1. Given the base, the smaller adjacent acute angle, and the differ-
ence between the other two sides of the triangle, construct the tri-
angle.

2. Construct a line through a given point D within a given acute angle
so as, to 'form with the sides of the given angle an isosceles triangle.

3. Construct a trapezoid; given its basesand its diagonals.
4. On the side AC of triangle ABC to find the point P such that the

parallel to AB from P, meeting BC at D, shall have PD = AP.
5. To construct a trapezoid, give1 the four sides.
6. Given a point A on one side of angle ABC, find a second point on

this sidewhose distances from the other side and from A shall be
equal.

7. Construct a square, given the sum of a side and a diagonal. /
8. From two given points to draw lines meeting a given line ip a point
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and making equal angles with that line, thipoints being on (1) the
same side of the given line, (2) opposite sides of the given line.

9. Construct a parallelog.-am having its perimeter and area equal re-
giectively to those of a given triangle.

10. Inscribe a 'square within a given right triangle having one of its
angles coincident with the right angle of the triangle and the pp-
flosite vertex lying on the hypotenuse.

11. Euclid'sconstruction for the tangent to a circle with center M and
from a point A outside is as follows:
(1) Draw the circle with center III and radius MA.

- (2) Draw MA intersecting the given circle at B.
(3) Draw BC perpendicular to MA- at B, meeting the larger circle.

at C.
(4) Draw MC, intersecting the given circle at.D.
Conclusion: AD is tangent to the given circle. Make the construc-
tion and give the,proof.

12. With a given ,radius, to describe a circle having the center on one
side of a given angle and determining a chord of given length on
the other side of the angle.

.1- 13., Through a given point to draw a line so that the two chords inter-
cepted on it by two circles of equal radii shall be equal.

14..Through a given point of a circle to draw a chord which shall be
-twice as long as its distance from the center.

15. Construct a circle which will be tangent to each of two parallels
and will pass through a given point lying between the parallel.

.716. Construct a circle with a given radius which will be tangent to a
given circle and will pass through a given point inside the circle.

17. Describe twol.,circles of given radii ri and tangent to one another
and both tangent to a given line on the same side.

18. Constiuct a triangle given

(a) b + c, a, A.
(b) b + c, B, altitude CF
(C) b + c, C, altitude BE
(d) b + c, a, altitude BE or CF

19. Construct a triangle given
(a) b c, a, C.
(b) c,A, B.
(c) c, a, altitude BE.
(d) b c, A, altitude BE.
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20. Construct a triangle, given an angle, the bisector of the angle, and
Ithe ratio of the two segments into which this bisector divides the
opposite side.

21. Construct P rapezoid, given the ratio between the parallel sides,
m: n, the length of. both non-parallel sides; and the angle between
the non-parallel sides extended.

22. COnstruct a parallelogram equal to a given triangle having one of
its angles equal to a given angle.

23. Construct a parallelogram so that two given points shall constitute
one pair of its opposite vertices and the other pair of vertices shall
be on a given, circle:

24. Construct a triangle given tc, ho, and A; to is the bisector of angle
A, and ha is the altitude to side a.

25. Construct a square which shall have two of -its vertices on a di-
omelet:of a given circle, and the remaining two vertices on the-
semicircle constructed on this diameter.

26. Through one of two points of intersection of two circles, to draw
a line on which'the two circles determine two chords of equal length.

27. Through one of the two points common .to two circles draw a line
so that the two chords which the two circles determine shall sub-
iendequal angles at the respective centers of the circles.

28. Through one of the points of intersection of two circumferences to'
draw a chord of one circle which shall be bisected by the circum-
ference of the.other.

29. Draw a line dividing a quadrilateral into .two equal quadrilaterals.
'30. Construct a triangle, given the base, the oppoSite angle, and the

sum of the two altitudes to the other two sides. (a, A, hb + bo). (See
Altshiller Court, op. cit., p. 27, problem 23.)

31. Construct a triangle given, (a) A, a, b/c; (b) A, a/c, altitude CF.
32. With two given points as centers and equal radii, to describe two

circles so that one of their common tangents shall be tangent to a
given circle.

33. Hypothesis: Two circles, 0 and 0', intersecting at P and line AB
equal to the Sun: of two chords through P.
Construction: Draw a line through P making chords whose sum
is equal to the required sum, AB.

\ 34. Through a given point P of the diameter AB .to draw a chord CPD
so that arc BD = 3 arc AC.

35. To construct a polygon of n sides in a circle with diameter AB.
(1) Construct an equilateral triangle, ABC, on AB.

)



The Analytic. Method and the Indirect Proof 117
(2,

(2) Divide AB into n equal segments, and tthe end of the second
:one from along AB call I).

(3) Let line :CD cut -the circle, on the portion oppositefrom the
,

triangle, in the point' P.
(4) AP is the side of apolygon of n sides.

Note: The arc seems to be the- fractional part 2/n of the ;emi-
,circle, and therefore 1/n of the wholvircle. Try out this construc-
tion with ,different values for n. Try to prove that it is true for any

ti Value
36. TO construct a pentagon. , .

(1) Draw a circle- with-two perpendicular diameters, AB and CD,
_.. ----in ers-riiiing at 0.

(2) Bisect AO at M and on AB from M lay Off MN equal to MC.
(3) Then CN is a side.of la pentagon in a drele with radius OA.
Make the construction and prove it to be general. Compare it with
the cOnstruction of a decagon.

37. Construct a triangle given the base, the angleopposife, and the
.point Where' the bisector meets the base.

38.:Cppstruct a square so that each side shall pass through a given -
point; ,

39. TO dcstribe a circle with a given radius and,
(a) passing through two points.
(h) passing through one giyen point and tangent to a given line.
(c) passirg -through a given point and tangent to a given circle.
(d) tangent' to two given lines.
(é) tangent to two given circles.
(f) tangerit.to a given line and to a given circle.

40.- Construct a circle*
(a) through three points. (R P. P.)
(b) 'tangent' to three given lines. (L. L. L.)
(c) through two point. and tangent to agiven line. (P. P. L.)
(d) through a given point and tangent to two given lines. (P. L. L.)
(e) through two points and tangent to a given circle. °(P. P. C.)
.(f) through on giyen point and tangent to . a given line and a

'given circle. -(P. L. C.) .

(g) through a given point and tangent to given circles. (P. C.
C.)

*Note: These ten constructions constitute what is historically, known as the prob-
lem of.Apollonius.,See Altshiller-Court, N., op. cit., pp. 173480. There are impos-
sible situations for each set of conditions. All possibilities should be presented.

(
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(h) tangent.to two given lines and one given circle. (L. L. C.)
(i) tangent to one given line and to two given circles. (L. C. C.)
(j) tangent to three given circles. (C. C. C.)

-B. PROBLEMS FOR PROOF

41. If one side of a parallelogram is produced in one direction and the
opposite side 'is produced by, the same ledgth in the opposite di-
reCtion, then the line joining their terminal points paSses- through
the point of intersection of the diagonals of the given, parallelogram

42. If from any point in the base of an isosceles triangle culars
are drawn to its sides, their sum equals the perpendii6ular :from
either base angle to the opposite side.

43. Prove that the sum of the perpendiculars drawn fim any point
within an equilateral triangle to the sides of the triangle is equal
to the altitude of the triangle.

44. ABC -is's triangle,'and the exterior angles at/B and C are bisected
by the straight-lines BD and CD respectively, meeting at D; prove
that angle CDB + 1/2 angle A = a right angle.

45. If the base AB of triangle ABC is produced to X, and if the bi-
sectors of angle XBC and angle BAC meet at P, what fractional
part is angle P of angle C?-

46. If equiangular triangles be constructed upon the sides Of any tri-
angle, the lines drawn from their outer vertices to the opposite ver-
tices of the given triangle are equal and concurrent. (Prove this
without referring to the proof given on a preceding page.)

47. If D is the midpoint of leg BC of right triangle ABC, prove that
the.square of the hypotenuse, AB, exceeds 3 times the square of CD
by the square of AD.

48. If BE and AF are the medians drawn from the extremities of the
hypotenuse AB of right triangle ABC, prove 4BE2 4AF2 = 5AB2

49. If ABC and ADC are angles inscribed in a semicircle, and AE and
CF are drawn perpendicular to BD extended, prove (BE) 2 + (BF)2

= (DE)2.-1- (DF)2
50. If lines be drawn from any point P to the vertices of rectangle

ABCD, prove that (PA )2 + (PC)2 = (PB)2 (PD)2.
51. ABC, DBA are two triangles with a common side AB. If P is any

point on AB, and ,px parallel to AC, and PY parallel to AD meet
BC and BD in X and Y respectively, (prove that triangle Y.OX is
similar to triangle DBC.

A r
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52. In the triangle ABC the side BC is bisected at E, and AB at G;
AE is produced to F so that EF equals AE, and CG is produced to
H so that G.FI equals CG. Prove that F, B, H, are in one straight line
and, that FB equals BH.

53. In triangle ABC, altitudes AD and BE intersect at 0, The per-
pendicular bisectors FK and HK of AC and BC respectively, meet
at K.
(a)L Prove that triangle ABO is similar to triangle FHK
(b) Proile AO = 2 HK

. BO'= 2 FK
54. If one of the equal sides, CB, of an isosceles triangle ABC is pro-

duced through the base, ant! if. a ngment BD is laid off on the
produced side, and an equal segment AE is laid off on the other
equal, side, then the line joining D end E is bisected by the base.
(consider the case in tvhich BD > CB, BD = CB, BD < CB.)

55. The sum of the three medians of a Wangle is greater than three-
fourths of its perimeter.

56. Circle p is tangent internally at B to a larger circle whose center
is E. If a line through B cuts circle D at C, and circle E at A, prole
that.AE is parallel to CD.

57. The diameters of two circles are 12 and 28, respectively, and the
distance between their centers is 29. Find the length of the common
internal tangent.

,58. If from the extremities of any chord perpendiculars to that chord are
drawn, they will cut off equal segments, measured from the ex-
tremities, on'any diameter.

59. AB is a fixed chord of a circle, and XY is any other chord having
its midpoint P on AB. What is the greatest and what is the least
length that XY can have?

60. Given two pairs of parallel chords, AB parallel to A'S', and BC
parallel to.B'C'. Prove that AC' is parallel to A'C.

61. If ABC)) is a quadrilateral circumscribed about a circle whose cep-
;ter is 0, prove that angle AOB + angle COD = 180;:.

62. ABCD is a parallelogram: from A aline is drawn cutting BD in E,
-BC in F, and DC produced in G, prove that AE is a mean propor-
tional between EF and EG.

't 63. In triangle ABC, CM is a median; angles BMC and CMA are bi-
Sected by lines meeting a and b in R and Q, respectively. Prove that
QR is parallel to AB.

I

64. DEFG is a square having its vertices D and E on sides AB and BC

-4; (-4
tt ,t-
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resPeOtively, of triangle ABC and its vertices F and G on side AC.
'Let BH be parallel to AC,.meeting AE extends ' at H; let HK lie
perpendicular to AC and BT perpendicular to AC. Prove BHKT is
it square.

65. The square of one of the equal sides of an isosceles triangle is equal
to the square of any line drawn- from the vertex of the triangle to
the base increased by the product of the segments cut off by the line.

66. ABC. is a triangle; AC 1.s bisected at .3f; BM: is bisected at N; AN
meets BC at P;4fQ is drawn parallel to AP to meetBC at Q; Prove
that BC is:triSected by P and Q.

67., Prove that-in any triangle three-fourths the sum of the square; of
the sides equals the sum of the squares of the_medians.

68. Two parallel chords are 10 incheS and 12 inches - long and are 1
-- inch apart. Find the radius of the circle.
69. If any two chords cut each4other,Perpendicularly the sum of the

, squares of the four segments equal's the square of the diameter.
70. If the sides BC, CA, AB, of triangle ABC are produced to X, Y, Z,

respectively, so that CX = BC, AY = CA, BZ = AB, prove that
triangle XYZ = seven times triangle ABC.

71. E is any point on diagonal AC of Parallelogram ABCD. Through E,

parallels to AD and AB are drawn, meeting AB and CD at" and
X respectively, and BC and AD at G and K respectively. Prove
parallelogram FBGE = prallelogram EHDK.

72. If E is any ,point 'inside BC of parIllelogram ABCD and DE is
drawn meeting AB extended at F, prove triangle ARE equals triangle
CEF. t

,

73. ABCD is a quadrilateral inscribed in a circle. If the sides AB and
DC extended intersect at E, and AD and pc extended intersect at
F, proVe that the bisectors of angleE and angle F are perpendicular.

74. ABCD is a quadrilateral inscribed in a circle. Another circle is
drawn upon AD, a-chord, meeting AB and CD extended at E and
F respectively. Prove chords BC and EF parallel.

75. The sides AB and CA of a triangle are bisected in C' and B' re-
spectively; CC' cuts BB' at P. Prove that triangle PBC equals
quadrilateral AC'PB'. %

76. A right triangle has for its hypotenuse the side of a square and lies
outside the square. Prove that the straight line drawn from die\cen-
ter of the square to the vertex of the right angle of the right triangle

-bisects the right angle.
77. If 'a circle is circumscribed about a tight triangle, and on each of the
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legs of the triangle as diameters semi-circles are drawn, exterior to
the triangle, the sum of the areas of the crescents thus formed equals
the'area of the triangle.

78. Prove that the square inscribed in a semi-circle is equal to two-
fifths the square inscribed in the entire circle. Suggestion: Let R
equal the radius of the circle. Compute the areas of the two squares.

79. AB and AC are tangents to a circle from the point A, and D is any
point in Idle' smallei of the arcs subtended by the chord B.C. If a
tangast to a circle at D meets AB at g and AC at F, prove that the
perimeter of triangle AEF = AB + AC.

80. If from any point P, on the diameter AB, PX and PY are drawn to
the circumference on the same side of AB and making angle APX
equal to angle BPY , then triangles APX and YPB are mutually
equiangular.

81., Prove that the bisector of any angle of an inscribed quadrilateral
and of. the opposite exterior angle meet on the, circumference.

82. Triangle ABC is inscribed in a circle of which AD is the diameter.
A tangent to theircie at D cuts AB extended at X and AC extended
at Y: Prove triangle ABC similar to triangle AXY.

83. In a parallelogram the sum of the squares on the four sides equals
the sum of the squares of the diagonals.

84. N and B' are the feet of the perpendiculars from A and B to a.and
b in triangle ABC; M is the midpoint of AB. Prove that angle
B'A'M = angle A'B'M = angle C.,

85. In triangle ABC, P is any point in AB, and Q is such a point in CA
that CQ = P,13; if PQ and BC, produced if necessary, meet at X,
prove that CA : AB = PX : QX.

86. ABC is a triangle, and through D, any point on AB, DE is drawn
to BC to meet AC in E; through C, CF:is drawn parallel to

EB to ,meet AB produced in F. Prove that AB is a mean propor-
tionaybetween AD and AF.

87. Prove that the lines joining the midpoints of the opposite sides of ,

a/quadrilateral.and the line joining the midpoints of the diagonals
of the quadrilateral meet in a point.

88. If a line be extended from vertex C of isosceles triangle ABC meet-
hig base AB extended atD, prove (CD) 2,-- (CB)2 = AD X BD.

89. If AD and BE are the perpendiculars from vertices A and B, re-
spectively, of acute angled triangle ABC to the opposite sides, prove
AC X AE + BC X,BD = (AB) 2.

90. The perpendiculars drawn from the vertices of a triangle to the

A C )
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.opposite sides are the bisectors of the angles of a triangle formed by
- joining the feet of the perpendiculars.

9L If D is the midpoint of side BC of triangle ABC, E the midpoint of
.AD, F of BE and G of CF, then triangle ABC = 8 times triangle
EFG..

92. In any triangle, the product of any two sides is equal to the product
.of the segments of the third side formed by the bisector othe ex-
terior angle at the opposite vertex, minus the square of the bisector.
Prove AB X AC = BD X. CD

93. In any inscribed quadrilateral-the product of the diagonals is equal
to the sum of. the products of the opposite sides.

94. The feet of the three perpendiculars dropped upon the sides of a
triangle from a point P in its circumcircie are collinear. (This is
Simpson's Line :)`

95. The Simps6n Lines of two diametrically opposite points are per-
pendicular.

96. The Simpson Lines of- three ,points form a triangle similar to the
triangle determined by the three points.

97. The six segments determined by a transversal on the sides of a tri-
angle are such that the product of three non-consecutive segments is
equt...' to the product' of the:three others.
Note: This is the Theorem of Menelaus.

98. The lines joining the vertices of a triangle to a given point deter-
mine on the sides of the triar. Ile six segments such that the product
of -three non-consecutive segments is equal to the product of the
three other segments.
Note: This is Ceva's Theorem.

99. Does Ceva's Theorem hold if the point is outside the triangle? On
One side? On one side produced? At one vertex?

100. If d is the distance from,a point to the center of a circle and r the
radius of the circle, write a formula for computing the length of the
.gent (1). t = / (d, r). If r is constant, then t = / (d): Show what

happens to .t as d approaches r and finally becomes lesS than r and
approaches zero. .

IV.- CONVERSES

A. CONVERSES AND PARTIAL CONVERSES

Definition of Converses and Partial Converses. One of the major con-
tributions of geometry to the science of reasoning is the method of the in-
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direct proof. Sin& one of the chief uses of indirect proof is for converses,
it seems necessary that a full understanding of converses should precede
the use of indirect proof. The following definition of converse and the
analysis of .the fundamental relation between a direct statement and its
converse are vital to an understanding .of the direct or reductio ad ab-
surduni (reduction to an absurdity) proof.

The usual definition, "to interchange the hypothesis and conclusion,"
often-leads to an absurd or impossible statement. It is only when there
is but one simple condition in flee hypothesis and one simple consequence
in the conclusion that such interchange is possible. Strictly speaking, such
interchange is 'never possible. At first thought the converse, according to
this definition, of "If two sides of a triangle are equal, the angles opposite
these sides are equal," is "If two angles of a- triangle are equal, the sides
opposite these angles are equal." ClOse inspection reveals, however, that
"triangle" remains in the hypothesis for both 'statements. This can be
brought out by a different statement of the theorem. (1) If a polygon
has three sides and two of these are equal, then the angles opposite are
equal. The converse, according t the usual definition, would not be less
than this;"If a polygon has two equal angles, then it has three sides
and two of these are equal." This converse is impossible to prove.

Since the usual definition of converse is sometimes impossible, clearly
a more carefully worded one must be framed. The actual and usual con-
ception of a converse is that a converse of any theorem may be stated by
interchanging any one consequence in the conclusion with any one con-
dition given in the hypothesis. Such a definition would permit several
converses for.some theorems. In cases where there is more than one Con-

verse of a theorem each one is sometimes called a partial converse?" The
following proposition illustrates the definition:

A. The direct theorem
HYPOTHESIS: (1) The curve ABCD is a circle.

(2) CD is a chord.
(3) AB is a diameter.

/ (4) AB is perpendicular to CD.

CortcLustoN: (X) AB bisects CD. .

B. Converse by the usual definition (interchange of hypothesis and con-
clusion)

HYPOTHESIS: (X) AB bisects CD.

Ili Heath, T. L. Vol. I, op. cit., p. 256.
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CONCLUSION: (1) ABCD is a circle.
(2) AB is a diameter.
(3) CD is a chord.

i(4) AB is perpendicular. to CD.
C. Converses by 'the more precise definition.

(a) Interchange of (4) (X)
HYPOTHESIS: (1) ABCD is a circle.

(2) CD` is a chord.
(3) AB is a diameter.
(X) AB bisects CD.

CONCLUSION: (4) AB is perpendicular to CD.

(b) Interchange of (3) and (X)
HYPOTHESIS: (1) ABCD is.a-circle.

(2) CD is .a chord.
(X) AB biseCts CD.
(4) -AB is perpendicular to CD.

CONCLUSION: (3) AB is a diameter.

(c) interchange of (2) and (X)
HYPOTHESIS: (1) ABCD is a circle.

(X) AB bisects CD.
(3) AB is a diameter.
(4) AB'is perpendicular to CD.

ColicLusioN: (2) CD is a chord:
(d) Interchange of (1) and (X)
HYPOTHESIS: (X) AB bisects CD.

(2) CD is a chord.
(3) AB is a diameter.
(4) AB' is perpendicular- td CD.

CONCLUSION: (1) ABCD

The usual definition of converses, interpreted literally, results in an
absurd and utterly impossible situation as soon as there is more than one
condition in the hypothesis and only one result in the conclusion, as in
proposition A above. The interchange of hypothesis and conclusion, as
in B above, is an incomplete statement of the relation between a proposi-
tion and its converse. On the other hand, propositions a, b, c, and d, under
C above, are perfectly sensible and legitimate converses, and not only
illustrate but establish the modified definition. They can even be proved,
and this is not always true of converses, as the next section will reveal.

/4 r-
. -
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B. PROBLEMS ON STATING CONVERSES

, 101. In a spherical polygon the sum of the interior angles is greater than
(n-2) straight angles, but less than n straight angles. With this in
mind, state the converses of the following modified statements of
faiiiiliar theorems.

(a) If a polygon has 3 sides and these sides are straight lines, then
the sum of its angles is one straight angle.

(b)- If a polygon has n sides and these sides are all straight lines
which lie in the same plane, then the sum of its angles is (n-2)
straight angles.

(c) The sum of the exterior angles of any plane polygon is two
Straight angles.

102. State the converse or converses of each of the twenty "essential
theorems," and alskof each of the. corollaries. Be careful of the con-

,verses of theoremsrents 7; 10, 12, 18, 19, and 20.
103. State the converse of exercise 41 of the examples for analysis. Try

doing the same for each exercise from 42 to 50. In some cases the
converse is very difficult to state without practically including the

:-conclusion in the hypothesis; for example, number 43. Converses
often are not true.

C. THE LAW OF CONVERSE EXPRESSED IN DIFFERENT WAYS

Relation between Direct and Converse Statements for Proof. The prov-
ing of converse theorems involves-an interesting problem in logic. Con-
verses are not always true, although in most high-school geometry courses
no converses are, mentioned which are not true. It will be interesting to
discover the conditions under which a converse will be.true.

Two illustrations, one geometric and one non-geometric, will help to
clarify the ituation: (1) If a triangle has three equal sides, it has two
equal anglest (2) If a man is rich he can buy a two-cent stamp. It is
evident thatithe converse of-neither of these statements is true. The rea-
son for this is that the hypothesis is more generous than is necessary.
The two words, necessary and sufficient, are advantageously used in ex-
plaining this situation ."5

Three sides equal is a sufficient condition for two angles being equal
but not a necessary condition, because two sides equal is all that is neces-
sary. That is, three sides equal is a more generous limitation than is

'Garabedian, Carl A. "Necessary, Sufficient, and Necessary and Sufficient Conditions,"
Malhemalies Teacher, XXIV, pp. 345.352,
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necessary to make only two angles equal. Therefor; in the converse
which reverses the hypothesis and conclusion, its hypothesis,, two angles

niiibe a sufficient limitation to make the three sides equal.
Richness is a, sufficient condition. to enable a man to buy a- two-cent

stamp,.but not a necessary condition, since it is more limiting than is
necessary. Consequently, -the converse is false: If a man can buy a two-
cent stamp, he is rich. For any statement to be true the hypothesis must
be sufficient to make the conclusion tree. For the converse statement to
be true the hypothesis of the first statement `must be necessary in order
that the hypothesis of the converse may be sufficient. For a statement and
its converse both to be true, the hypothesis must be both sufficient and
necessary.

Hypothesis Sufficient but Not all Necessary, Converse not -True. Fur-
1

ther illustrations, both-gemnetric and non-geometric, will help to make
clear -tile- conditions under which a converse statement will be true. For
instance, in the following statement it is evident that the hypothesis is
more limiting than is necessary: If all points on a line are equally dis-
tant from a point within, the line is a curved line. That is, the hypothesis
is sufficient to make the conclusion true; yet not necessary. Consequently,
the converse is not true, because when the conclusion becomes the hy-

//

pothesis, that new hypothesis will not be adequate.
11

"If a quadrilateral is a square its adjacent sides are equal," is a state-
ment 'whose converse is clearly not true. The reason is evident. While the
present hypothesis is sufficient to make the conclusion true. it is not neces-
sary; that is, it is more generous and more limited than is necessary./
Therefore, in the converse, the hypothesis would be inadequate to make
the conclusion true.

"If a quadrilateral-is a square, diagonals are equal, or its diagon4ls
are perpendicular bisectors of each other," is also a statement in whiCh

the hypothesis contains more limiting conditions than are necessary, and
consequently, although eider conclusion is true from the given hypothesis,
yet in the converse, either. hypothesis would be insufficient to justiO the,
conclusion. It is evident that if the diagonals of a quadrilateral are iiqual,
the figure could be a rectangle, and if the diagonals, are perpendicular
bisectors, the figure might be a rhombus.

Hypothesis Sufficient and Necessary, Statement and Converse Both
True. However, the statement that, if a quadrilateral is a square, then
the diagonals are perpendicular bisectors of each other and are also equal,
has an hypothesis that is not merely sufficient, but just barely sufficient,
with no extras. That is, in this statement all the limitations in'the hypothe-
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sis are necessary, consequently, in the converse; the hypothesi(will be
sufficient- for its conclusion.

If all points on aline are equally distant from a point within, the line
is a circle. Clearly in this statement the hypothesis is sufficient and just
.barely sufficient, that is, it is both sufficient and necessary to make the
conclusion true. Consequently, the converse-is true.

Hypothesis Necessary, but Insufficient; Stakment False, but Con-
verse True. A statement in which the hypothesi is not sufficient, but is
necessary,las a conclusion that is false; yet t e converse will be true.
This is so because of the fact that in the converse the original conclusion
and hypothesis are interchanged, and the new hypothesis will therefore
be sufficient to make the new conclusion true. For example, the state-
ment that all equal angles are right angles, is false. Yet its converse, all
right angles are equal, is true. Similarly, it is not true that any quad-
rilateral that has its opposite sides parallel is a rectangle. Yet the _con-
verse of this statement is true. In these statements, the hypothesis is
necessary, but not sufficient for the conclusion,. and in the converse, since
the hypothesis and conclusion are interchanged, the hypothesis is amply
sufficient.

Again, it is not true that if two sides of a- triangle are equal, the tri-
angle is equiangular. The reason for this falsity is that the equality of
two sides is necessary but inadequate to make the conclusion true. That
is, the hypothesis is not sufficient. It is necessary, however, even though
inadequate, and consequently the converse is true. "If a man- has two
cents, he can buy an ice cream soda," is not a true statement because the

,..,
possession of two cents is not a sufficient, although a necessary condition,

for buying the ten-cent article. Here again the converse is true.
Hypotkesis Neither Necessary Nor Sufficient. Furthermore, if the

hypothesis is neither necessary, nor sufficient, neither the direct statement
nor the converse is true: IL a quadrilateral is constructed, with while
chalk on a blackboard, it is a rectangle. It is evident that the white chalk
and blackboard are trivial, and, while insufficient to make the figure a
rectangle, are also unnecessary; and consequently, neither form of the
statement is true.- .

.Summary of Relation Between -any Statement and its Converse. It
should. therefore be evident that for any statement to be true the con-
ditions in the hypothesis must be sufficient, whether just barely sufficient

or more than sufficient; for a converse to be true the conditions in the
-hypothesis must be necessary, yet not more than necessary, whether
sufficient or not sufficient. Consequently, for both a statement and its

3
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converse to be trim, the hypothesis must be both:sufficient and necessary.

(1) Any statement is true if the hypethesis is sufficient.
(2) Any statement has its converse true if the original hypothesis is

necessary.
(3) Any statement and its converse are both true if the hypothesis is

both sufficient and necessary.
(4) Any statement and ,its converse are both false if the hypothesis

' is neither sufficient nor necessaty.
A graphic repreentation_of the relations between a generalization and

its converse will help to emphasize and clarify. The following four state-
ments will be pictured.

(1) Let A represent ail,triangles with three equal sides, and B those
with two equal-angles. Then all A is B, but the converse of this
is false.

(2) Let .0 represent all triangles with two equal sides, and B again
1\ those-with two equal angles. Then all C.,is B, and -the converse is

true: All B is C.
(3) Let D represent all triangles with three equal angles, and C again

those with two equal sides. Then the statement, all C is D, is
false; yet the converse is true: All D is, C.

(4) -Let E represent all triangles made with white chalk on a black-
board, and D again, all triangles with 3 equal angles. Both the
statement that all E is D, and its converse are false.

(1)',. All A' is B, but (2) All C is B and (3) Not all C is D, (4) Not all E is D,
not all B is A. all B is C but all D is c, and not all D

is E.

It isis, evident in figure (1) that all A is B, but that there are many Ns
that are not A's. If we substitute the specific meanings for the symbols,
figure (1) represents that all triangles with three equal sides have two
equal angles, but that there are many triangles with two equal angles
that do not have three equal sides. Being an A is sufficient to make a
triangle, a Bbut more limiting than necessary. Therefore not all B's are

'
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These letters can now be disassociated from their spfic meanings,
and may apply to any "if-then" statement. Even thougli all A is B, all
B is not A unless being,A is not only sufficient, but also entirely necessary
for being B.

Figure,(2) shows the condition of necessity as well as sufficiency be-
tween a conclusion and its hypothesis. It is evident that having two sides.
equal (B) is not only sufficient, but entirely necessary in order that a
triangle may have -two equal angles, (C). Therefore, the converse is
true. Symbolicall3r, if B- is both necessary and sufficient for C, then all
B is, C, and all C is B. Again this statement may be generalized by giving

B and C any meanings which satisfy the conditions .above; that is, the
hypothesis must be both necessary and sufficient for the conclusion.

Figure (3) represents the relation where C is a necessary but not
a sufficiently limiting condition to make all C's be D's, even though' all
D's are C's. If we substitute the specific meanings for C and D given
above, the application of this relationship to a specific situation is evi-
dent. However,- the relationship pictured,is completely general and ap-
plies wherever C is necessary but not sufficient to make D true.

Figure (4) represents the situation in which The hypothesis is neither

necessary nor sufficient for the conclusion and consequently in which
neither the direct statement nor the converse is true. E and D may over-
lap, -but not all E is D, and also, not all D is E.

Fortindas for Determining the Truth of a Converse. This necessary and
sufficient condition upon which the truth of the converse depends can be

expressed in a formula 1'e
If all X is Y and

all non-X is non-Y,
then all Y is X.

(Formula 1.)
This condition for the truth of a converse is stated a bit more precisely

by Augustus De Morgan in his text on logic.'" It is reported by C. B.

Upton118 as follows:

If it has been proved that,
X less than Y makes A less than B,
X equal to Y makes A equal to B, and
X greater than Y makes A greater than B,

then it follows logically that the conveises of all three of these state-

no Heath, T. L op. cit., Vol. I. p. 256.
," De Morgan, Augustus. Formal Lock. Taylor and Walton, London, 1847, p. 25.

2111..!ptan, C. D. op. cit., p. 117.
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men6\are true without further proof. (Formula 2, the Law of Converse.)
Let us illustrate the meaning of these two formulas for determining the

truth of a converse statement, from the examples previously given. We
shall apply formula 1 by first selecting cases where the converse is not
true and then cases where the converse is true. The statement; that if
three sides of a triangle are equal, then two angles will be equal, is true,
but its converse is not true. Test: That triangles with three sides
equal have twoangle.\ equal is true, but the statement that all triangles
with not three sides equal have not two angles equal, is not true. It is
true that all rich men can buy a postage stamp, but it is not true that
all non-rich men, all menwho are not rich, cannot buy a postage stamp.
However, not only is the irect form but also the converse true in the
following cases. All triangles which have two sides equal have.two angles
equaland, since all triangles which do not have two sides equal do not
have two angles equal, the con erse is true and the equality of two angles
determines the equality of two sides: Furthermore, all men-with two
cents can buy a two-cent stamp;, also all men who do not have two cents
cannot buy a two-cent stamp. Naturally this statement bars the facetious
response that perhaps the postmaster would extend credit or even donate
a stamp. It is merely an illustrative statement to show the conditions
under which a converse is true. Here again the converse is true; that is,
the buying of a two-cent stamp indicates the possession of -two cents.

Formula 2 above can also be appned. For the triangle tie wording had
best be changed somewhat. If the first three statements below can be
proved, then the converse of all three will be true without further proof.

If a greater than b makes angle A greater than angle B,
a equal to' b makes angle equal to angle B,
and a less than b makes angle A less than angle B,

then the converses of these three statements will all be true:

If A is greater than B, then a is greater than b.
equals B, then a equals b.

If A is less than B, then a is less than b. .

An indirect proof very readily establishes the truth of each of these con-
clusions.

Furthermore, if having more than two cents makes it possible to buy
more than one two-cent stamp, having two cents makes it possible to
buy one such stamp; and having less than two cents makes it possible
to buy less than one such stamp, then the converse of each of these three
statements is true. That is, if one can buy more than one two-cent stamp,

.7.
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only one stamp, or less than one stamp; he must have respectively more'
than two-cents, two cents, or less than two cents.

Applying these formulas to statements whose converses are false helps
to make clear the general nature and applicability of the formulas.,

-Form'ula 2:
If a man has mo an 10 cents, he can buy more than one two-cent

"stamp;
If he his-i0 cents, he can buy one two-cent stamp; 0
If he has less than 10 cents, he can buy less than one two-cent stamp.

If the three,statements above were all true, then the converses would be
true by the law of converse. Since not all of them are true, not all of the
converses are true.

FOrmula 1:
If a man has 10 cents, he can buy a two-cent stamp;

'If he kas riot 10 cents, he cannot buy a two-cent stamp.
the second of the two statements were true, the converse of the first

one would be true. Since the second statement is false, the converse of
the first is false.

Opposites and Converses. Formula (1), "If all X is Y and all 7:0-X
is non-y; then all"17 is X," has introduced a new concept, opposites. The
statement that all nbn-X is non-Y is the opposite of the statement that
all X is Y. Tie theorem that all triangles with two equal sides have two
equal angles, has for its opposite the statement that all triangles with
"net two" (without two) equal sides have not two equal angles. In gen-
eral, ii-X represents any hypothesis and y any conclusion, then the fol-
lowing §yrfibols can be used.

Theorem: (a) All X is Y.
C0verse: (b) All Y is X.
Opposite: (c) All non-X is non-Y.
Converse of the Opposite or Opposite of the Converse:

(d) All non-Y is non-X.

It is interesting to note that the truth of the converse makes the op-
posite true. This can readily he proved indirectly. If all Y is X, then
all.non-,X is non-Y, because if some non-X were Y, then not all 1',could
be X. Similarly, the truth of the statement all X is Y =Ices the con-
verse of the opposite ture, all non-Y is-00-X, because if some non-Y
were° X, then not all could be Y. In other Wards- (a..) and (d) are
equivalent, as ate-also statements (b) and Yr-Tliegore it should be
evident-that if a theorem s converse (b) are proved, that the

ax
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Opposite (c), and the converse. of the opPoSe (d), will be true: Also,
,if (a) and (c) are proved, (b) and (d) will be u-ue; if (c) and (d) are
proved, then (a) and (b) will be true; and if (b) and (d) are proved,
then (a) and (c) will be true.

a

4

If the letters, zepresenting the above statements: (a), (b), (c), and
(d), are placed around a rectangle as in the figure above, then diago-
nally opposite statements are equivalent, and consequently, any two ad-
jacent statements are sufficient to establish the truth of the remaining
statements.

Applying this theory to the illustration of triangles, we have the fol-
lowing statements, in which S stands for triangles with two sides equal,
and non-S stands for triangles with not two sides equal, A stands for
friangles with two angles equal and non-A for triangles with not two
angles equal.

(a) Theorem: All S is A. (b) Converse: All A is.
(c) Opposite: All non-S is non-A (d) Converse of Opposite: All non-

-/A is non-S. -

I- Again it is evident in the above arrangement that if any one statement is
true the diagonally opposite one can easily be established by indirect
proof; and, therefore, if any two adjacent statements are true, the re-
maining ones will also be true. This can be illustrated figuratively as be-
fore by two circles, S and A. If all of circle S is within circle A, then
(a) all S is A, and (d) all non-A is non-S because if some non-A were
S, then not all S would be A. If A is within S then (b) all A is S and
(c) all non-S is non-A. In .order that (a) all S be A and (b) all A be S
or (c) all non-S be non-A, it is evident that the circlets, would have to co-
incide. In other words, if S be the necessary and sufficient condition for
A, regardless of the assigned meanings of these two Utters, then (a) all
S is A and (b) all A is S or (c) all non -S is non-A,

Converse and Opposite in Locus Problems. The equivalence of the
converse and opposite is used extensively in locus problems. In proving
a focus problem one must prove not only that all points on the locus
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satisfy' the. Conditions, but also either the converse or the opposite of this
statement; namely, that all points which satisfy the conditions are on the
locus, or all points not on the locus do not satisfy the conditions. In fact,
if the four; statements are arranged in the form above, the proving of
any two adjacent statements, a and b, a and c, b and d, or c and d,
proves the locus h19, 120

To say that the locus of a point equally distant from two points, A
and B, is the perpendicular bisector PQ of the line segment AB,,means
that, of the following statements, either a and b, a and c, c or
b and .d must be proved true to prove the locus, but that a and d, or b
and c would not prove the locus problem.

a. Direct Statement: Al pointson PQ are equally distant from A and B.

. b. Converse: All points equally distant from A and B are on PQ.
c. Opposite: All points not on PQ are not equally distant from A and B.
d. Converse of Opposite: All points not equally distant from A and B

are -not on PQ.
In high-school- texts statements corresponding to a and b are most

commonly used in proving locus theorems, although the equivalent of
a and c is sometimes used. It is evident that if a is true, d can readily
be proved by indirect proof. If (a) all points on PQ are eqiially distant
from A and B, then (d) all points not equally distant from A and B
are not on PQ, because, if they were on PQ, they would be equally dis-

tant from A and B. Similarly, if d is true, a is true; if b is tree, c is true;
and if c is true, b is true.

Furthermore, these letters can be generalized and interpreted as re-
ferring to general statements as well as to the parts of the particular
locus problems' given. The following problems illustrate the relation be-
tween a geometric statement arid its converse and also the methods of
proof which have been given.

D. PROI3LEMS ON PROVING CONVERSES t:

104. Write the converse, the opposite, and the converse of the opposite
for the following propositions:
a. If two lines are parallel and are cut by a third line, the cor-

responding angles are equal.
b. If a quadrilateral is a rectangle, its diagonals are equal.
c. If two triangles have three sides of one equal to three sides of

another respectively, the triangles are congruent.
118 Schultze, Arthur. op. cit., pp. 144.146.

Benaan and Smith. op. cit., pp. 34, 39.
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d. If &quadrilateral is a rectangle, one of its angles will be a right
. angle. -

e. If a triangle is a right triangle, the lsquare on its longest side
equals the sum of the squares, on the Other two sides.

. If three or more parallel lines cut off equal segments on one
transversal, they. cut off equal segmenr ts on any transversal.

105. Apply the various conditions for proving converses to each of the
six parts of exercise 104 and indicate hi which' cases -the converses
are true. Use both formula.1 and formula 2.

106. Theorems 13, and 14, two fundamental locus theorems; can be
.proved in any one of four different ways. dutline the proof for
both theorems and carry it out in detail for one of them.

107. The locus of the vertex of the right angle of a right triangle a
circle with the hypotenuse for a diameter. Prove in four different
ways. /-

168. The locus of the midpoint of the )4potenuse of a right t5iangle is
a circle whose center is the vertex of the right angle /and whose
radius is one-half the hypotenuse. Prove by using statements (a)
and (b), and (a) and (c).

109. The locus of the vertex of /given angle opposite' a given side of
a triangle is an arc of a crcle cut by the given /side of the triangle
as a chord.

110. The locus of a point whose coordinates satisfy an equation of first
degree is a straight line.

Note: Further practice with proving converses and detecting their falsity will be
provided in the exercises following the next section'on indirect pluof.

E. THE PURPOSE FOR CONSIDERING NECESSARY

AND SUFFICIENDCONDITIONS

Ihdirect Proof Preferable to the Test of Necessary and Sufficient Con-
ditions. It should be evident to the careful reader that the two formulas,.
given are but a concise way of expressing exactly th.1 same idea that was
discussed under the head of necessary and sufficient conditions. All non-X
being non,-:-Y is a test for the necessity of X for Y. (Formula 1). Then
too, when the relation between A and B is determined by the relation
between X and 11 as in formula 2, then X and Y are not only sufficient
but also necessary for the relation between A and B. For some situations
one formula seems to apply more simply than the other, and in some
cases the general test for the necessity of the hypothesis is preferable.
In either case it is quite evident that it may be as difficult to discover
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whether or not these conditions are satisfied as to prove the converse
statement itself. A converse statement can often be proved rather easily
by an indirect proof.

'Law of Converse Postulated. Furthermore, these statements of the
conditions for the truth of a converse have not been proved in this study.
They have merely been illustrated and explained, and consequently are
really postulates taken from logic, which in turn really "grew out of the
critical work of the mathematicians who reflected about the nature and
structure of mathematical tniths.'"21 If the, conditions of being sufficient
and necessary, or their equivalent expressed in formulas (1) or (2),
are used to establish a converse or to make any indirectproof, these con-
ditions must be considered as logical postulates.

Applications of Ideas Involved in the Lciw of Converse. However,
while it may seem incongruous to use the gener'alizations of logic to help
establish the generalizations of geometry, when those principles of logic
.are, without doubt, deductions derived from a study of the specific

generalizations of geometry; yet the generalizations derived do throw
considerable light on the relation between a statement and its converse.
Then too, if geometry is a reasoning pattern for non-geometric situations
as well as geometric situations, teachers of mathematics need to be famil-
iar with the general terminology and the general relationships. Professor
Hedrick'" claims that a knowledge and appreciation of "the ideas of
necessary and sufficient conditions, and the difference-between conditions
that are necessary and.those that, are sufficient," are valuable contribu-
tions of mathematics to the education of an individual. "The resulting
confusion among those not properly trained is notorious, and this con-
fusion is certainly transferred to every field of thought, from cookery to
politics.'""

A study of the following "if-then" statement's will quickly reveal the
generalized nature of the above conclusions concerting necessary and
sufficient conditions, formulas 1 and 2; and the relition between state-

,

ments and their converses.
(1) If you would be a great man, you must b.c.! wing and able to\

work hard.
(2) If you use butter in a frying pan over a hot wookfire, it will

fry food well.

ut Enriques, Frederlgo. The Historic Development of Logic. Translation by JerOme
Rosenthal. Henry Holt and Co., 1929, p. 4.

"Hedrick, E. R. "The Reality of Mathematical Processes," Third Yearbook of the
National Council of Teachers of Mathentuticc. Bureau of Publications, Teachers College,
Columbia University, New York City, 1928, p. 37.

4
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(3) If a man is a good golfer, he will buy the best clubs made.
(4) If a man is an expert caster, he must have a light;flexible, strong

rod. 5

(5) If you are a great man, then you will-be so busy and do things
so rapidly that you will become a poor penman;

(6) If you are a great statesman,. then you will be courteous and
considerate of the rights of others.

(7) If you use a gallon of water, then you can cook a half dozen
potatoes.

(8) If you write a dissertation, then you will work hard and be will-
Ping and able to take suggestions.

A9)
If you have $1200, you can buy a.new Studebaker.

(10) you go up in the air, then you will come down.
(11) If your skin is white, then you are an honorable man.
(12) If you multiply 3 by 4, then you will get an answer of 12.
(13) If b and c are constant and A increases, then a will increase.
(14) If a fly has six legs,' then a bear has four.
(15) If the present market prices are below the average of the last

ten years, then the future market prices will be above the average
of the last ten.years.

(16) Most of the people in Who's Who have a college education.
(17) Three meals a day are sufficient to keep a man alive.
(18) In China, people who drink tea and no water do not get typhoid

fever.
(9) Four years of academic training in Mathematics through Cal-

culus, Mechanics, and Elliptic Integrals may be sufficient for
making a good teacher of mathematics.

(20) If each laborer works 8 hours a day and 7 days a week, that is
sufficient to keep the factory in continuous operation.

The above statements include typical conclusions which are often
thought to be true in converse form, and in some cases the converse is true.
However, in each case the converse is clearly not true unless the condi-
tions in the hypothesis are necessary, nor is the statement itself true unless
the hypothesis is sufficient. The statements above also include some sets
of conditions which are sufficient and, consequently, thought by many
people to be necessary, when in many cases those conditions are.largely
extraneous and incidental, but include within them the necessary element.
For instance, it is the boiling of the water, not the tea, that kills the
typhoid germs; it is probably the native ability which makes it possible
for a man to master Elliptic Integrals that is also largely the determinant

1.0
4'Y ..



The Analytic Method and the Indirect Proof 137

of a good teacher, rather than the knowledge of the subject-matter of the
advanced course.

V. THE TECHNIQUE OF THE INDIRECT PROOF

Present Attitude Toward Indirect Proof. The method of indirect proof
in geometry h ai in the past been a great source of grief to most students
and teachers. he reason for this is no doubt largely the. result ,of its
early use in the older geometries. If a child has just begun geometry and
does not fully-realize the purpose of direct proof, and if with the second
or even the fourth theorem he is confronted with an indirect proof, there
is little reason to question the cause of his bewilderment. One widely
used text of several years ago, after ten pages of definitions; one page
of axioms, and one page of postulates, has for proposition I, which is
proved directly: All right angles are- equal," and for proposition II:
"At a given point in a given line not more than one perpendicular can
be drawn to that line in the same plane." The second proposition is
proved by a full page indirect proof; that is, an indirect proof was pte-
sented before the ,technique of direct proof had been established. Such
flagrant violation of the fundamental principle of presenting only one
major difficulty at a time in any subject, could result hi little else than
the present disparaging attitude toward indirect proof.

In support of the contention that teachers of today fear, neglect, do
not understand, and underestimate the value of indirect proof the follow-
ing evidence is interesting. In the preparation of this study fifty exer-
cises involving indirect proof were submitted to thirty-one graduate
students at Teachers College, Columbia University. A few of these exer-
cises were ridiculous, tvio or three were impossible, most of them were
fairly difficult converses to which the indirect meth6d very directly ap-
plied. :The students were asked to rank them in one of the following
five Classes,

E --Easy to work by indirect proof.
MModerately difficult by indirect proof.
V Very difficult by indirect proof.
XUnable to prove by the indirect proof.
DEasier to solve by direct proof than by indirect proof.

The first impossible exercise was marked E, M, V, and D by 6, 19,
-. 10, and 6 percent resrectively; the rest marked it X or omitted it. A

second exercise, which ought to have been marked E, was given the

iC
I I 1
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five marks liited above by 16, 32, 7, 13, 10 percent respettively, and
22 percent failed to weigh it at all. Furthermore, less than one-fifth of
the thirty-one students completed the entire task. Such results suggeit
that even some teachers -of experience dislike the indirect method; have
no confidence in its use, and do not appreciate its importance and func-
tion in geometry br,in life.

The Indirect Method a Major Contribution of Geometry. If geometry
is to be taught largely because of its inherent possibilities to provide ex-
periences in the science of reasoning through applying that reasoning to
the simple concepts of geometry, then surely it is a mistake to omit or
neglect to, emphasize the method of the indirect proof. Much of the
reasoning which we do in life is indirect; therefore much of the value
of geometry must be in its treatment of indirect proof. It shall, therefore,
be the function of this section to attempt to overcome some of the effects
of the reader's previous unfavorable experiences with indirect proof, by
establishing, through presentation and illustration, the various forms and
the relatively simple technique and organization of indirect reasoning.

The Underlying Principle's of Indirect Proof. Indirect proof is based
upon the fact that one of two opposite statements must be true and only
one can be true, or.upon the exhaustion of all possible cases except one
by proving all false except that one conclusion. For instance, a-certain
point Pis either on line AB or not on it; a segment PQ either equals
QR or does not equal QR; today is either ,September 30 or it is not
September 30; t e prisoner either committed the crime or he did not
commit itNoti that each of these statements contains two contradic-
tOry proposition , both of which can neither be true at the taint time nor
false at the s e time. One of two contradictory statements must be
true, and only ne can be true. There is no middle ground. Therefore,
in logic this p inciple is called the "Law of Excluded Middle."

In interesti g seeming contradiction to this statement is the contention
by Bogoslovsky that "the old reasoning is a generalization of experience
in a static universe, where motion is incidental, where everything is
absolute, where crossbreed forms are deformities. . . . The new reason-
ing is based on a dynamic universe with motion as its essence, with
ceaseless change its characteristic aspect, to universe conceived as a
continuous succession of different phases of one process which are all
related to each other. Logic of this reasoning must have as its founda-
tion principle and root the law, 'A is r d non-B at the same time.' "
However, "Dynamic Logic of the 'Includeu Middle' is not a flat contra-
diction of the Static Logic of the 'Excluded Middle,' but includes it as
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one pole or extreme of dynamig thinking where A is 99,9999% B and
.060170,tioa-B corresknds closely to static logic:"1"

In other words, Bog lovslcy's thinking is influenced by Einstein's
ideas on relativity., While is true that a point P is either on line AB or
not on- it, still "on-ness" y` be in a sense a relative matter if it is
considered- that. some points -are more nearly on AB than are others.
So also, if_eqUality is interpreted, as a- relative matter, it is true lhat two
Segments-6 inches and 5.9 inches long are more- nearly equal than are
two segments 6. inches and 3 inches long. However, in non-geometric
Situations the idea of more than two alternatives, in fact a whole series'
of-gradations, is, more defensible than in geometriC situations. For in-
stance; is it true that a man is either honest or not honest; that a piece
of 'clothis either linen or not-linen; or that a man rises either early or
not early in the morning? Are not honesty and ,linen-ness" and earli-
nesS, as well as many other qualities, a matter of degree, of relativity,
rather than of absolute fact?

Furthermore, if statements are not made in contradictory form, then
there are many situations. in both geometry and life where there is a
middle ground; For instance, to say that a line is either curved or straight
involves a situation in which there is no contradiction. It is evident that
if a line had part of it straight and part of it curved, then it would be
neither all curved nor all straight. A point is either inside, on, or out-
side a circle; one angle is either less than, equal to, or. greater than an-
other; an angle is either acute, right, or obtuse. We- may say that a

.\;piece of linen is either black or white, but that may not be true since
white linen gets soiled and black linen may fade. Similarly to say that
a car is either worth $400 or $500 is equally fallacious; it may be worth
$450. To -say that either Jones or Smith stole the money is dangerous

.because both of them together or neither of them mighi have stolen
it. However, linen is either white or not white even though there be de-
grees of whiteness; the car is worth either $400 or not $400, whether
$5 or $106 more or .lesslhan $400; Jones either stole the money or he
did not steal it, whether with or without the help of Smith. Similarly,,
in the geometric illustrations it is possible in each case to have but two
alternatives. That is, a point is either on a circle or not on it; two angles
are either equal or not equal; an angle is either a right angle or not a
a right angle; a line is either straight or not straight. In either case one
of these possibilities will be proved true if it can be established that the

Bogoslovsky, Boris B. The Technigne of Controversy, Principles of Dynamic Logic.
Harcourt, Brace and Co., 1928, pp. 12, 18
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other possibility is false; or, if there are three or mire possibilities, if
it can be established that all but one are false.

In other words, the generalizations of Bogoslovsky app only to situa-
tions in which there is no contradiction, or in which co tradiction is
interpreted in a relative sense. For indirect proof, both geometric
and non-geometric situations, the Law of Excluded Middle i assumed
to be true; that 4, this law is postulated. It is of little concern in *ndirect
reasoning that the class of."non-B" is large and the class of "B" is mall,
or vice versa. It is postulated, however, that two contradictory te-
ments in geometry cannot be both true or both false at the same time.

it is therefoie evident that it may be possible to prove one of t
contradictory statements true by-proving the other false or to prove
a statement false by proving its contradictory true. This type of proof
is called "Indirect Proof" because the reasoning is ,indirect The validity
of indirect proof depends upon three postulates, usually called prin.
ciples in logic:

Postulate I. A thing must either be or not be.
Postulate II. If one of two contradictory statements is proved to be

false, it immediately follows that the other statement must be true;
similarly, if one of two contradictory statements is proved to be
-true, then the other must be false (the Law of Excluded Middle) ;
.or, if there are only three possibilities, one of which must be true
and only one of which can be true,' then if two of these are proved
false, the third must be true, and if -one is proved true, the other
two must be false.

Postulate III. If certain premises and a correct procP.5s of reasoning
necessarily reach a conclusion which is false; then at least one of
the premises must be false.

The -following illustrations will help to clarify the first two of these
postulates; the first ones have but two alternatives, the last ones each
have three possibilities, only one of which can be true:
/
(1) AB either equals PQ or does not equal PQ.
(2) Line XY is either straight or not straight.
(3) Point P is either on' the circle or not on the circle.
(4) AB is either greater than, equal, to, or less than PQ.
(5) Line XYZ is either straight, broken, or curved.
(6) Point P js either within, on, or/outside the circle.

These illustrations indicate the meaning of Postulates I and II above.
These two postulates do not violate the contention of Bogoslovsky for

0 4.
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a law of "Included Middle," bediuse all reasoning here is on the idealistic
basis An which dose approaimations do not count, and relativity is
neither' denied nor necessary. Wherever it is necessary to prove XYZ
either straight or not straight, there are no degrees of straightness which
are significant. Furthermore, just as it is unknown whether or not actually
More than one parallel: to a line can be drawn through a given point,
yet we accept atertain traditional postulate for lEuclidean geometry,
so also the law of Excluded Middle is postulated here as a basis for
indirect proof in geometry. Therefore it is evident; that in the first three
statements, if one of the contradictory,propositions could be proved false,
the other would be.true, and vice versa. Ili other. mords, if the assump-
tion that /113 does not equal PQ could be proved' false, then iii;toiitra-
dictory -.would be true and AB would equal PQ without further proof.
Similarly, to prove that XY is a straight line or; to prove point P on a
circle, it, is necessary to prove only that the contradictory statement is
false. Also,,in the second group of, statements, if two of the three only
possibilitiei given in each statement could be proved false, then it must
follow that thd remaining one would be true without further proof.

It is therefore evident that it may sometimes be very desirable both in
geometry and -in -life to prove a statement false. Geometry, without in-
direct proof, has been taken up largely with proving statements true,
not false. The technique for proving statements false is a very simple
one based,upon Postulate III. For instance, to prove that AB =- PQ, if
the= assumption that AB does not equal PQ would necessarily and in-
evitably lead, to a Conclusion which is false, then the assumption upon
which the correct reasoning is based must itself be false. Therefore,
without further argument, AB = PQ. Similarly, to prove XY a straight
line, or point P on a giveti circle, if the contradictory statements lead
inevitably by correct reasoning to conclusions which are false or im-
possible, then the original statements must be true. This method of rea-
soning is called the method of the Indirect!Proof."4

Types of Indirect Proof. While all indirect proofs depend on the three
pOstulates ,giVen-above, and are, in a major sense, the same in their
outstanding features; yet, in minor characteristics, there are five types
of indirect proof which may be distinguished. They are illustrated below.
The fitstand simplest form is one that can be used to prove any con-
verse theorem that is true. In it there are but two possible conclusions,
one the contradictory of the other. This type of proof has already been

"Upton, C. B. "The.1.1se of;the Indirect Proof in Geometry and in Life," Fifth Year.
book of the National Council Teachers of Mathematics, 1930, pp. 102.133.
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illustrated In the proof of theorem 9 that if a line, divides two sides of
a triangle proportionally, it is 'parallel to a third side. Indirect proof
is also used in proving theorem 3 on parallels, which should be postulated
in the early treatment of it in order to avoid the intricacies of indirect
proof at a time when all attention is needed for mastery of direct proof.
In the proof below it is assumed that the first theorem on parallels,
theorem 2, has been proved: "If two lines cut a third so as to make the
alternate interior angles equal, the Jines are parallel."

Type !1. 'Proving the Opposite False. Theorem: If two parallel lines
cut a third line, the alternate interior Wangles are equal. (Converse of
theorem,2.)

'HYPOTHESIS: ni is parallel to m' and cut by PQ.

CoNcLusiorr: Angle x equals angle x'.

Blom: -
(1) Angle x either equals, or dbes not equal angle x'.
(2) Assume that angle x is not equal to angle x'.'
(3) Then at P imagine drawing a line AP so that angle APO equals

angle x'.
(4) Such a line AP would then be parallel to tn' by theorem 2.
(5) However, this would be impossible because there would then be

two lines through P parallel to in'. See parallel postulate.
(6) The assumption that angle x is not equal to angle x' leads in-

evitably to an impossible conclusion, and must .be false.
(7) Therefore angle x equals angle x'.

Type 11. Using Formula 1 for Converse. This same proof can be ef-
fected more easily, although not more simply, by using the facts con-
cerning the, proof of converses from the previous section.- If, in the
direct statement in which it was proved that the equality of two angles
made certain lines parallel, it had also been proved that the "non-equality"
of those angles made the lines "non-parallel," then the converse would
be true at once. This is true from the preceding section in which it
was shown that converses are always true if opposites are true.

4
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THE7 OREM; (Direct proof firm, indirect proof in the last:two steps.) If
two.lines cut a third line so as to make a pair of alternate interior
angles equal, the lines are parallel.

A

CD
HYPOTHESIS: Angle ABE equals angle DCE.
CorIcLuslorl: AB.is parallel to CD.
PROOF:

(1) Bisect BC at E. Draw ED perpendicular to CD and extend it
to AB at A.

(2) Triangle ABE is congruent to triangle DCE by A.S.A.
\(3) Therefore AD is perpendicular to AB. Why?

(4) Therefore AB is parallel to CD. Why?
(5) If angle B is not equal to angle C, then the angles at A and!)

would .be unequal since the angles at E are equal. AD would
therefore not be perpendicular to AB, and therefore AB would
not be parallel to CD.

(6) Therefore the hypothesis is necessary and the converse is true:
if the lines are parallel, the alternate interior angles will he equal.

Type ///. A Proof That Begins Like an Indirect Proof but Ends in a
Direct Form. Using the figure, hypothesis, conclusion, and the first four
steps in the proof for the illustration for Type I, the rest of the proof

would then be as follows.
(5) But in is parallel to m' by hypothesis.
(6) Therefore in and AP coincide by the postulate of parallels.
(7) Therefore in is parallel to m' since,it coincides with AP which

was drawn parallel to ne.

Summary of Type 1, II, III. Note the c4racteristics of these three
types of indirect 'proofs.
1. Ineach case there are but two alternatives one of which must be true.

2. Type I assumes the false statement true in order to prove that it
leads inevitably by correct reasoning to .a false conclusion and that
it must therefore be false. If the first conclusion chosen Cannot be
proved false, then either there is some error in reasoning or the other

Conclusion must be the false one.
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3. The first and third types use the direct form of the theorem and
other theorems to prove the supposedly false statement false. .

4. In the more general form, II, using Formula 1, which was given in
the discussion of converses, the truth of the converse is established
by the proof of the opposite of the original theorem.

5. In the third type the proof culminated in a direct proof resulting from
an attempt to reconcile the facts with.the erroneous result which was
obtained by assuming the truth of the false conclusion.

Exercises Using Indirect Proofs of Apes., I, II, and III.
111. State and prove the converse of theorem 8, which is theorem

using Type I, Type II, and Type'III.
112. State the two converses for each of theorems 15 and 17 and prove.

at least one of them as above.
113. State and prove, if possible, the converse of theorem 7. Remember

that not all converses are true.
114. The proof of a locus problem really involves proving a direct and

a converse statement:Show how theorems 13 and 14 can be proved
using the technique of the types given.

Type IV. Three Possibilities. This type of indirect proof involves a
situation where there are three,-and only three poisible conclusions, one
of which must be true, and only one of which can be true. To illustrate
the indirect proof in such a case the converse of theorem 16, and one
of the inequality theorems will be used. Thedrem 16 has an interesting
and little known converse. The theorem that an inscribed angle has the
same measure as half its arc, has a converse that would be stated and
proved in about the following way.

(a) First Illustration of Type IV.
PROBLEM: If an angle has the same measure as one-half the concave arc

cut off by its sides, then its vertex is on the circle.
HYPOTHESIS: Angle ABC = arc AC. Arc AC is concave to B and cut

off by the sides of angle ABC.
CoNcLusioN: B is on the circle.
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'PROOF:

(1) 13 is either oil the circle, inside the circle, or outside the circle.
(2) If B is inside the circle then AB and CB extended would cut the

circle. in two points, P and Q. Then angle B would equal y2' (arc'
AC + arc PQ). This is .contrary to the hypothesis and therefore
B cannot be inside the circle. A

(3) If B is outside the circle then angle ABC will be an angle between
two secants cutting the circle in points A, R, C, and S, and angle
B would then equal a IA (arc AC arc RS). This conclusion
would also be contrary to the hypothesis and consequently the
premise upon which it is based must be false. Therefore B cannot
be outside the circle.

(4) Since the assumptions that B is inside pr outside the circle both
lead to impossible conclusions, they are false by Postulate
and B is on the circle, by Postulate II.

COROLLARY: If the opposite angles of a quadrilateral are sipplementary,
the quadrilateral is inscriptible.
(b) Second Illustration of Type IV.

DIRECT THEOREM ASSUMED TO HAVE BEEN PROVED: if a tri-zigle bas
two unequal sides,. the angle opposite the greater side is the greater.

CONVERSE THEOREM: If a triangle has two unequal angles, then the side
opposite the greater angleis the greater.

HYPOTHESIS: A triangle ABC with angle A greater than angle B.
CoNcLusioN: Side a is greater than b.

PROOF: -
(1) a is either less than, equal to, or greater than b..
(2) If a is less than b, then angle A is less than angle B from the
' direct theorem.

(3) If a = b, then angle A '= angle B from theorem I (the isosceles
triangle theorem).

(4) Both of these conclusions, (2) and (3), are impossible since by
hypothesis, angle A is greater than angle B, yet,both conclusions
are the inevitable results respeitively of the first two assumptions.

Therefore these assumptions are both,false by Postulate III..
(5) Consequently a is greater than b by Postulate II.
Type V. Based upon the Law of Converse. The proof here is carried

on with the original theorem as in type III. The original theorem for
the first illustration under type IV was that an inscribed angle B has
the same measure as half its arc AC. If it can be shown that
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(1) B'on the circle makes angle B = yi arc AC,
(2) B within the circle makes angle B greater than arc AC, and
(3) B outside the circle makes angleB less than yi arc AC,

then the converse is true without further proof by the Law of Converse,
which was discussed in the preceding section.

In the second illustration for type IV, if it can be shown in the direct
theorem (If a triangle has one side greater than another, the. angle op:
posite the greater side is the greater.) that

(1) a greater than b makes angle A greater than angleB,
(2) a = b makes angle 'A = angle B, and
(3) a less than b makes angle A:less than angle B,

then the converse will be true by the Law of Converse. These three-
statements can easily be shown to be true from the proof of the original
theorem and consequently ti,.; converse is true.

Summary of Types IV and V. Note the characteristics of these two
types of indirect proofs.

1. They involve situations in which there are three or more possibilities,
only one of which can be true and one must be true.

2. Two of these possibilities are proved false in type IV by using the
direct form of the theorem and other theorems.

'3. In type V the hypothesis was shown to be the necessary and sufficient
condition for the conclusion to be true, and consequently the converse
is true without further proof by thee Law of Converse.

4. Attention should be called to the fact that by a slightly different
wording and organization type IV may be made type I, and type V
may be made type II. That is, in the first illustration, point B is either
on or not on the circle. If not on the circle, it would be either inside
or outside the circle, and consequently if neither inside nor outside
the circle then it must be on the circle. Similarly, in the second il-
lustration a is either greater than b or not greater than b. If not greater,
then a is either equal to or less than b, etc.

Note: An analysis of thirty modern textbooks, the details of which
are not' reported in this study, shows that types I, III, and IV are used
exclusively. Types II and V are the cleverest forms and in some cases
much the shortest of them all, yet the process of evolution in geometry in
the United States has gradually left them out. Types II and V are given
h e chiefly as background material and to make the presentation reason-
ably- ete.

Furthermore, the similarities of these five types should be noted. By

r



The Analytic Method and the Indirect. Proof 147

a different set up of conditions, types IV and V could be treated as in
type I and II. Type III is exactly like type I, except in the ending, so
that in a sense there may be but two types, one using the materials at
hand, and the other using the general solution covered by the Law of
Converse.

Exercises on Conveises far Types IV and V.
115. Prove that if 2 angles of a triangle are equal, the triangle is isosceles.

Note:-If angle A = angle B, AC is either 'greater than, equal to, or
less than BC. Assume that the airectt&rm of the theorem given as
the second illustration for Type IV above, precedes this exercise.
Prove it independently, both directly and indirectly, as though it
were an exercise following theorem 4.

116. State and prove indirectly the converse of theorem 6. Note: The
reader should not be discouraged if he finds it difficult to prove this
indirectly, yet easy to Prove directly. Some of the exercises follow-
ing will also be of that nature and yet for most of them'the indirect
proof is the more concise and simple if not the only possible proof.

117. If 2 triangles have 2 angles of one equal to 2 angles of the other,
but the included angle of the first greater than the included angle of
the second, the third side of the first is greater than the third side
of the second. Note: See any high-school texi for proof of this.
State and prove the converse of this,,theorem.

118. Equal chords are equally distant from the center, and of two
unequal chords the greater is nearer the center. Assume this state-
ment proved, then state its converse and prove it by indirect proof,
nit by using exercise 117 above. "

119.. If in triangle ABC, a2 + b2 = c2, then angle C is a right angle.
120. Given a triangle ABC with A', B', and C' the midpoints of its sides

D, E, and F the feet of the altitudes. A circle through A', 13',
and C' will also pass through D, 2 and F. Assume this conclusion
proved, then state and prove its converse.

General Discussion and Further Illustration. The preceding illustra-
tions have been purposely selected so as to cover the customary 1.!,,c of
indirect proofs, in high-school geometry. In order to give t e reader more

,experience with indirect proof certain exercises have been desi ed. Most
geometry texts have no exercise material whatever reqhiring the use of
indirect proofs. Where such proofs might otherwise be possible, a theorem,
proved by the indirect method, precedes the conventional list, all the
exercises of which are easily proved directly by quothi the theorem

just proved.
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- In the examples selected the student may use any of the five patterns
just illustrated. Where there are two contradictory possibilities he may
use one of the first three forms; preferably one of the first two. Where
there are three possibilities he may use either of the last two types.
Most of the following exercises are converses of exercises given in the
previous Section. Since that is the case one must remember that not all
converses are true. Whenever the hypothesis is unnecessarily generous
the converse is not true. In solving the following problems the reader
may assume the direct statement to have been proved, whether he proved
it himself or not.

If the formulaS for converses are used, the required .,tatements must
be carefully proved. If the other :types of proof are used, they involve,
in most cases, a construction which satisfies the conditions. If so, the
construction should be made so as to effect the least possible change in
the figure. Since the examples previously given are more or less traditional
and the proofs therefore somewhat familiar, two additional illustrations
of indirect proof follow. The precise delimitation of the conditions to be
proved false should be especially noticed.
-a. Illustrative Indirect Woof. If the sum of the perpendiculars from

any point in the base of a triangle to its two sides equals the perpendicu-
lar from the vertex of one of the base angles to the opposite side, the
triangle is isosales. (Converse of exercise number 42.)
HYPOTHESIS: Triangle ABC with D any point in base AB, AG and DE

are perpendicular to BC, DF to AC, and AG = DF + DE.
CoNcLustox: Triangle ABC is isosceles.

PROOF:

(1) ABC is either isosceles or not isosceles.
(2) If ABC is not isosceles, there are several ways of making a tri-

angle that is isosceles. One way is to construct CB' or CB" equal
to AC. However, less change in the given figure is effected by as-
suming angle A not equal to angle B, and constructing angle BAC'
= angle B.

X.
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(3) Draw DF' periiendicular to AC', and DK perpendicular to AG.
(4) Then.by Exercise 42 (which is assumed to have been. proved),

AG = DE + DF' or AK = DF'.
(5) But this is impossible, since DF' does not equal DF, because other-

wise triangle ADF' woula,be congruent to triangle ADF and to
triangle DAK, and then angle F'AD = angle KDA = angle B
= angle.4.,This is contrary to (2). .

(6) Therefore the triangle is isosceles. Postulate II.

This exercise could be easily proved by direct proof. Triangles ADK
and ,DAF are congruent by H.S., and angle FAD = angle ADK =
angle ABC..The direct proof would involve at least six steps just as the
indirect proof does. Consequently, the indirect proof is equally concise
and equally desirable, since it is a useful pattern of proof.-Furthermore,
any converse, even though it can be proved directly, can also be proved
indirectly.

The proof given above, Type I, is really much longer than is necessary.
The concise and clever proof for an exercise of this kind is effected by
the use of formula 1, involving the opposite; that is, by the use of Type
II. The 'direct proposition must be proved first; and then, by the use
of the opposite, the converse is proved in two short statements.

A Second Proof for (a) Using Type II. Exercise 42 is the proposition
of which illustration (a) above is the converse.
HYPOTHESIS: Triangle ABC with AC = pc and D any point on AB.

Also DE and AG perpendicular to BC and DF perpendicular to AC.

CONCLUSION: DE + DF = AG

PROOF:

(1) Draw DK perpendicular to AG. (See the figure above.)
(2) DE = KG. Why?
(3) DK is parallel to BC. Why?
(4) Angle KDA = angle B = angle FAD. Why?
(5) Therefore triangle ADF triangle DAK by H.A.
(6) Therefore DF = AK.
(7) Therefore DE + DF = AG by adding (2) and (6):
(8) But if ABC were not isosceles, then angle B would not equal angle

A, triangle ADF'and DAK' would not be congruent, and there-
fore DE -I- DF is not equal to AG.

(9) Therefore the converse of the proposition in Exercise 42 is true
since AC = BC makes DE + DF = AG and AC not equal to BC
makes DE DF not equal to AG.
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b. Illustrative Indirect Proof. However, the beauty, brevity, and power
of indirect proof comes in exercises like the following one in which direct
proof, if.not impossible, is at least involved and much longer than the
indirect proof. Such is the case with theorems 3 and 9 as well as some
of the converses of the inequality theorems.

Theorem: In triangle ABC, (a) if a2 + b2 = c3, then angle C is a
right angle; (b) if a2 + b2 > -2c angle C is acute. and (c) if a2 +
b2 < c2, angle C is obtuse. -

(a) HYPOTHESIS: a2 + b2 = c2

CONCLUSION: Angle C is a right angle.

z.

C D P D C
FIG. 2FIG. 1

B C .

FIG. 3

PROOF:

(1) Angle C is either acute, obtuse or right.
(2) Assume angle C acute (Fig. 1) and draw y perpendicular to

BC.
(3) Then c2 = y2 + (a x)2

= y2 + a2 2ax + x2
= b2 + a2 2ax, since x2 + y2 = b2.

(4) Therefore c2 < a2 + b2. But this is contrary to the hypoth-
esis and therefore assumption (2) is false. .

(5) Assume angle C obtuse (Fig. 2) and draw y perpendicular to
BC extended.

(6) Then c2 = y2 + (x + a)2
= y2 -I- x2 + 2ax + a2
= b2 + a2 + 2ax, since x2 + y2 = b2.

(7) Therefore c2 > a2 + b2, which is also contrary to the hy-
pothesis and therefore assumption (5) is false.

(8) If angle C is neither acute nor obtuse, it must be a right angle.
(b) HYPOTHESIS: a2 + b2 > c2

CONCLUSION: Angle C is acute.

PROOF: Left to the reader to show, as above, that angle C can be
neither a right nor an obtuse angle and must therefore be acute.

A ,
. '. r et.)

1
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(c) HYPOTHESIS: a2 b2 < c2
CoNcLiAorr: Angle C is obtuse.
PROOF: Left to'the reader to follow the pattern above.

Suggestion: Try formula 2, Law of Converge, for proving all three con-
verses,a0r, and c, at once.

VI. EXERCISES FOR INDIRECT PROOF

DIRECTIONS: The following problems, are designed to provide ex-
perience with indirect proof. They have been arranged in order of diffi-
culty according to the combined weightings of a class of twelve college
juniors who were preparing to teach mathematics. Enough of the exer-
cises should be worked to insure mastery of the technique of indirect
proof. Proofs of types I and IV should predominate, although the use
of types II and V is often very effective.

121. If there were some way of proving theorem III without using
theorem II, or if theorem III were postulated, show how theorem II
could be proved indirectly, using theorem III or the theorem that the
exterior angle of a triangle is greater than either non-adjacent in-
terior angle.

122. Theorem 7 states that if a series of parallel lines cut equal segments
on one transversal, they will cut equal segments on all transversals.

;State and, if possible, prove its converse.
123. If the diagonals of a trapezoid intersect in a point of trisection, then

one of the parallel sides must be twice the other. -7

124. If the distance (t) from a point A on the circle to a second point P
outside the circle is given by the formulkt = Vd2 r2, in which
d is the distance,from the point P to the center of the circle, then
the line AP is a tangent. (Converse of 100.)

125. In triangle ABC, side BC is trisected by points P an&Q. If QM is
drawn parallel to PA then it will bisect AC.

126. The theorem of geometry concerned with a line bisecting two sides
of a triangle has a second converse not often given: If a line is
parallel to the base of a triangle, equal to half the base, and has its
end points on the other two sides, it bisects these two sides.

127. If two lines AX and BY are drawn from the two vertices of triangle
ABC to points X and Y on the opposite sides and intersecting in

point G, so that
AG

=
BG 2

= then the two lines are medians of
GX GY 1

the triangle.
128. If in quadrilateral ABCD a line is drawn parallel to diagonal BD

e
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cutting AB and AD in X and Y respectively and if XP parallel to
BC cuts AC in P, then PY is parallel to CD. (Converse of 51.)

129. If a circle is drawn using side AB of quadrilateralABCD as a chord
and cutting AD and BC extended, if necessary, in points E and F
respectively and if EF is parallel to CD, then quadrilateral ABCD
is inscriptible. (Converse of 74.)

130: If the bisector of an exterior angle of an inscribed quadrilateral is
tangent to the circle the two sides adjacent to this vertex are equal.,
State aid prove. the two converses.
CONCLUSION: (First converse) The bisector is tangent.

(Second converse) The tangent bisects the exterior angle.
131. if two opposite angles of a quadrilateral are right angles the bi-

sectors of the other two angles are parallel. State and try to prove
the converse of this.

132. If the bisector of angle C of the inscribed quadrilateral ABCD cuts
the circle at E then EA bisects the exterior angle at A. (Converse
of 81.)

133. If the bisector of the exterior angle at C of the inscribed quadri-
lateral ABCD cuts the circle at E then EA bisects the interior angle
at A. (Converse of 81 and of 132.)

134.If the diagonals of a quadrilateral divide it into two pairs of similar
triangles, then the quadrilateral is inscriptible.

135. If the lines PA, PB, PC and PD drawn from any point to the vertices
of a quadrilateral are of such a nature that (PA)2 + (PC)2
(PB)2 + (PD)2 then the quadrilateral is a rectangle. (Converse of
SO.) Prove if possible.

136. In triangle ABC, CM is a median,MR bisects angle AMC, and QR
is parallel to AB. Prove MQ bisects angle BMC. (Colnverse of 63.)

137. If in quadrilateral ABCD, with diagonals AC and BD, a line is
drawn parallel to BD and intersecting AB and AD in X and Y
respectively and XP and YP are drawn parallel to BC and CD re-
spectively, then P is on diagonal AC. (Converse of 51 and of 128.)

138. In triangle ABC a distance CE is laid off on AC extended and the
same distance is laid off on BA toward A and called BF. If EF is

bisected by the base BC, then the original triangle is isosceles.
(Converse of 54.)

139. If through any point in the common chord of two circles two other
chords are drawn, one in each circle, the four extremities will lie
on a third circle.

140. The bisector of the angle between two chords intersecting within
the circle bisects the arcs if and only if the bisector is a diameter.



The Analytic Method and the Indirect Proof 153

141. State and prove the converse of exercise 82 using as a conclusion
thestateinent that AD Is a diameter.

142. State and prove the converse of: The orthocenter of ABC is the in-
center of the pedal triangle DEF.

143. In circumscribed triangle ABC, with AD perpendicular toBC and
'cutting BC in .0 and the circle in P, if DH is laid off on DA equal
to DP, then H is the orthocenter.

144. If the prOjections of a point upon the sidel of a triangle are col-
linear, the point lies ou thec,circumcircle of the triangle. (Converse
of 94.)

145. 010 triangles with equal perimeters and the same base the isosceles
triangle has the maximum area.

146. If a square is drawn on side AB of scalene triangle ABC and a line
drawn from the vertex C to the center of the square bisects the
angle C, then angle C is aright angle.

147. If a line is drawn from the point of intersection of the medians of a
quadrilateral bisecting one of the diagonals, it will, if extended,
bisect the other diagonal also. (Converse of 87.)

148. State and prove the converse of Ptolemy's Theorem: In any in-
scriptible quadrilateral the product of the diagonals-equals the sum
of the products of the pairs of opposite sides. .

149. State and prove the converse of the following theorem: The six
segments determined by a transversal on the sides of a triangle are
such that the product of three non-consecutive segments is equal
to the product of the three others. Note: This is the Theorem of
Menelaus.

150. State and prove the converse of the following theorem: The lines
joining the vertices of a triangle to a given point determine on the
sides of the triangle six segments such that the product of three
non- consecutive segments is equal to the product of the three other
segments. Note: This is Ceva's Theorem.

VII. THE PRINCIPLE OF CONTINUITY

A. GEOMETRIC INTERPRETATIONS

Continuity and Discontinuity in Coordinate Geometry. The principle
of continuity is an interesting, beautiful, and useful part of geometry.
The conception of continuity used in coordinate geometry is quite dif-
ferent from, although in a sense reconcilable with, the Euclidean geom-
etry Conception. For instance, we speak of a function as being continu-
ous if there are no gaps in its graph, otherwise it is discontinuous. The
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relationship Y = 1/X is discontinuous at the point X = 0. The func-
tion Y = 1/(X 2) is discontinuous at the point X = 2, because then
Y = infinity. The functions Y = tan X, cot X, sec X, or csc X are all
discontinuous at periodic intervals, when for certain values of X, Y
becomes infinitely large. Although in our mathematics courses most func-
tions seetnto be continuous there are many discontinuous furictions.The
cost (c) of any number of articles (n) at some price (p) is discontinuous
unless an-unlimited fractional division of the article is permitted. The
cost of eggs at S cents apiece is discontinuous between eggs, because
fractional parts of an egg are not purchased. The cost of mailing a letter
by first class postage is discontinuous at regular intervals because the
cost jumps by 2 cents at each advance. So every cost function is in a
Sense discontinuous, since no cost can jump by less than .ohe cent at a
time, and usually it jumps by considerably larger amounts. However,
the equation x y = 5 shows y to be a continuous function of x; and
the formula, d = rt, shows distance traveled to be a continuous function
of rate and time.125, 1241, 127

Continuity in Euclidean Geometry. In Euclidean geometry discon-
tinuity seems to have little place and meaning, while, continuity refers
to the constancy or permanency of certain properties which have been
demonstrated to be true regardless of the change in the form. of the
figure. AS expressed by Thomas Holgate, the principle of continuity,
`!first assumed by Kepler and later by Desargues, asserts that a prop-
erty which can be demonstrated for a particular figure will hold true if
the figure should change its form in any manner subject to the condi-
tions under which it was first constructed. ff128

In other words, subject to the limitations stated, the principle of con-
tinuity applies to every proposition in geometry. In some cases it amounts
merely to a statement that the proof of the proposition is perfectly gen-
eral, or in other words that Aristotle's Dictum applies: "Whatever is
predicated universally of any class of things, may be predicated, in like
manner of anything comprehended in that class."'" The principle of
continuity is but an illustration in geometry of the more general prin-
ciple often called "The Permanence of Mathematical Laws."

"'Carver, Walter B. "Functions, in General, and the Function IX] in Particular,"
Mathematics Teacher, Vol. XX, pp. 429.434.

23. Lovitt, W. V. "Continuity in Mathematics and Everyday Life," Mathematics Teach.
er, Vol. XVII, pp. 31.34.

m Davis, E. W. and Brenke, W. C. The Calculus. The MaMnillan Co., 1923, p. IL
' Young, J. W. A. Monographs on Topics of Modern Mathematics. Longmans, Green

and Co., 1911, p. 60.
"'Davies, Charles. The Nature and Utility of Mathematics. A. S. Barnes and Co.,

1875, p. 73.

Al C.. ,./
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This principle is beautifully expounded by David Eugene Striith
"What I learned in chemistry, as a boy, seemed true at the time, but
Much of it today is known to be false. What I learned of molecular.
physics seems at the present time like children's stories, interesting but
puerile. What we learn-in history maybe true in ,some degree, but is
certain to be false in many particulars. So we may run the gamut of
learning, and nowhere, save in mathematics alone, do we find that which
standS as a tangible symbol of the immortality of law, true 'yesterday,
today, and forever.'

"We may change the symbols, . . . they are temporary expedients to
convey the idea; we may speak in different tongues, . . . they are local
expedients to convey thought; but it is inconceivable to us that the
relation which the formula expresses should not be true always ;AA
everywhere, . a tangible symbol of the immortality of law.

tt . . all geometry is a science of invariance. We prove a law for a
general plane triangle and it never varies, whatever we do to the figure.
If we prove that a' = c2 2bc cos A, then, however A may cldnge,
the law itself will never vary. In it the pupil comes into touch with the
unchangeable, with the absolute.

"It is the same with all other laws of geometry. In any convex poly-
hedron, whatever its shape, the law remains that the number of faces
plus the number of vertices is equal to the number of edges increased
by two."1'0

Illustrations. The theorem that "if two straight lines intersect, the
vertical angles are equal," asserts that the equality of the vertical angles
is a property which will hold true of two intersecting lines regardless of
changes in the lines so long as they intersect and are straight. Two lines
will remain parallel or perpendicular if the conditions which made them
parallel or perpendicular remain unaltered. Two angles will remain equal
or an angle will be bisected so long as the conditions for equality or for
bisection remain constant, regardless of other Changes in the size or
form of the angles or sides. Clearly this is yet merely a statement to the
effect that geometry proofs are general, that they approach very near to
"absolute truth," being, dependent only upon accepted hypotheses, defi-
nitioris, and postulates.

Extensions of the Principle of Continuity. The full novelty and beauty
of the principle of continuity are evident only when the principle is ap-
`plied in a more extended form. Let us take some of the twenty essential

10 Smith, D. E. "Religio Mathematica," 3fathemancs.Teachtr, Vol. XIV, Dee. 1921,
pp. 4164117.
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theorems given in chapter 4, 'more or less in sequence, and show the
extensions possible through the application of the principle of continuity.
That the sum of the angles of a triangle is two right angles, whether the
triangle acute, obtuse, or right angled, whether the triangle is large
or small, whether represented by wood, iron, paper, or by chalk on the
blackboard, whether in the arctic regions or in the tropics, is an inter-
esting fact. But, extend the idea a little. Take,any triangle and lengthen
its base until the base angles become acute and finally very small, in fact,
approach zero, and the property still holds. Let the base shrink, the
other two sides become" equal: the angle between them approach zero,
and the property still holds. Let the base be fixed and let the vertex move
freely, above, below, tp the left, or to the right, if the definition of a
triangle is extended to include a figure with one or two angles equal to
zero and consequently sides and parts of sides coinciding, the property
demonstrated Still holds true.

All the other theorems concerning straight lines can be made more in-
teresting and the all-inclusiveness of their sweeping generalizations more
impressive, if the figures are made to change, to grow, to shrink or to
move about and still continue to exhibit the truth just demonstrated.
In order to be unhampered in the application of the principle it would
be well to define parallel lines as lines vf.lich intersect at infinity, then
two lines will always intersect and the continuity of the relationship is
not broken by the one exception of parallels. This definition is needed
in both projective geometry and in coordinate geometry. If this defini-
tion is not accepted the property of intersecting could be thought of as
discontintious at the point where the lines are parallel. Perhaps other
definitions will need to be made more general, as for instance, the defi-
nitions of the trigonometric functions whose meaning may thereby be
extended to angles in other quadrants than the first.

Continuity Depends upon Motion for Clarity only. It is recognized
that there is a school of thought, as indicated in a previoUs chapter, that
is opposed to using motion in geometry. Yet it should be pointed out
tliat motion has not been used in the proof of the theorems to which
continuity has been applied. In no case does the proof of any propo-
sition depend upon the principle of continuity. Its use has been to empha-
size the general nature of the propositions proved, to reconcile apparent
conflicts between closely related propositions, to integrate various sup-
plementary propositions thereby decreasing the number of different ideas,
and to make the study of geometric relationships more interesting to
young people, who naturally are more concerned with a dynamic than
with a static geometry. Hence, the rigor of the geometry presented is
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unaffected by the outcome of the argument on motion. Whether each
position of the vertex of the triangle is a different point or the same
point moved; whether a secant can move and become a tangent or the
apparent motion can be nothing but different lines like the pictures in a
motion picture film; whether or not there is motion is not the issue here,
and therefore, the rigor is unaffectgd by the decision. It is enough that
the use of continuity helps to clarify, to simplify, to generalize, and to
make geometry more interesting. In fact, the analogy to motion pic-
turepl can well be carried a step farther. Just as figures appear to move
on the screen, although they do not really move since they are but suc-
cessive pictures on,a film; so the various apparent motions in geometry
can be thought of as successive pictures with parts which therefore seem
to change and yet exhibit a continuance of certain properties.

Further Illsifiration and Extension of the Principle of Continuity.
Similar triangles can be made to exhibit 'continuous properties by ap-
parently pivoting at imagined joints, but retaining the conditions for
similarity. The sides of a right triangle can be made to vary and yet the
relations expressed by the Pythagorean Theorem continue to be true.
The theorems on circles furnish the most interesting examples of the
continuity of demonstrated properties. In some cases the property, can be
shown to be continuous through several apparently conflicting theorems.

An angle whose sides extended cut a circle has a certain continuous.
relation to its, arcs, regardless of the position of the vertex. Similarly,
the product of the segments formed by two intersecting lines is inde-
pendent of the position of the point of intersection.'"
A. An angle between two linei which intersect a circle has the same

measure as half the sum of the intercepted arcs, regardless of the po-
sition of the vertex of the angle. The vertex may be in any of the
following positions.

111Smitli, D. E. and Bakst, Aaron. The Play of Imagination in Geometry (Motion Pic.
tore). Department of Education Talking Pictures Division of Research, Electrical Research
Products, Inc., 250 West 57th Street, New York City, 21 pp.

W Reeve, W. D. Central Mathematics, Book II. Ginn and Co., 1922, pp. 225, 228, 229,
240, 368.
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1. At the center, as in Figure 1.
2. Within the circle, not at the center; as in Figure 2.
3. On the circle and both'sides chords, as in Figure 3.
4. On the circle and one side a tangent, as in Figure 4.

C 1' C E

1

CD

AB E
FIG. 5

S. Outside the circle with both sides secants, providing the one arc
convex to the vertex is interpreted as a negative arc, as in Figure
5. This interpretation is of course not according to Euclid because
negative numbers had not been invented at the time of Euclid.

6. &Aside the circle with one side a tangent, providing again the
smaller or concave arc is considered negative. See Figure 6.

7. Outside the circle with both sides tangents, providing the smaller
or concave arc is considered negative. See Figure 7.

B. If two lines AB and'CD intersect a circle at points A and B, and
C and D respectively, and the lines themselves intersect at E, then
the product of the segments of one line equals the product of the seg-
ments of The other; that is, (AE) (BE) = (CE) (DE). This will he
true regardless of the position of the point of intersection, even
though the lines may one or both be chords, tangents, or secants. The
various positions of E and the lines may be as follows: (The pre-
ceding figures can be used.)
1. E at the center. .

2. E within the circle, but not at the center. Chords AC and BD
would make two similar triangles.

3. E on the circle. One segment of each chord, AB and CD, is now
zero.

4. E on the circle and one line a tangent. Both segments of the
tangent cut off by the circle would be zero and the point of tan-
gency would be a triple point and, in addition, a point of inter-
section.

5. E outside and both lines secants. Then (AE) (BE) would be the
whole secant times its external segipent. Chords AC and BD
would still make two similar triangles.

B E AB
Fic.6 ' Fic. 7
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6. E outside the circle, AB a tangent and CD a secant. The tangent
can be thought of as intersecting the circle in two points, A and B,
which coincide, and therefore (AE) (BE) is the tangent squared.
Chords AC and BD would still complete two similar triangles.

7. Same ai 6 but CD also a tangent. Then CE and DE are the same.
segment 'and (CE) "(DE) is the tangent squared. AC and BD
would now make two congruent triangles.

Note: The reader should prove these two sets of seven propositions
and show that the continuity holds in each set. Try proving each one by
drawing chbrds AD and BC instead of AC and BD:

C. A secant cuts a circle in two points.

If a secant from P cuts a circle in two points which are connected with
the center, an isosceles triangle is formed, such as AiOB A20B2, . . .

An 0B.. In these triangles, since they are always isosceles, what angles
are equal? What happens as the angle at 0 decreases and approaches

zero, and the two points, A and B, approach coincidence? When the
secant becomes a tangent at what angle does it meet the radius? Could
it be perpendicular to a radius at the outer extremity of the radius if
not a tangent? Could a line perpendicular to the tangent fail to pass
through the center of the circle?

The statement that "a straight line intersects a circle in two points"
is one in which the, principle of continuity extends the meaning of in-
tersectiorlo-include the algebraic or coordinate geometry conception.
Otherwise the property would be discontinuous. If the line is a tangent
the two points of intersection with the circle can readily be thought of as
coincident, but when the line fails to touch the circle there is no geometric
representation of the intersections. In coordinate geometry the solution
and representation are simple. Given a circle, x2 + y2 = 9, and a line,
x y = 10, the simultaneous solution gives:

6
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x2 + (10 x) 2 = 9
x2 10 x -F 45.5 = 0
x = 5 ± 4.5i
y = 5 7- 4.5i

Clearly the two points are (5 + 4.5i, 5 4.5i and (5 4.5i, 5 + 4.5i),
and they are imaginary. Therefore it is evident that the principle of con-
tinuity forces the extension of the Euclidean geometry if exceptions to
the principle are to be avoided.

The concept of the slope of a moving secant as the basis for a graphic
presentation of the derivative in calculus is a tempting illustration which
lies beyond the scope of this study. The slope of the secant as it ap-
proaches a 'tangent is always the ratio of the increment in the function
to the increment in the variable as the increment in the variable ap-
proaches the limit zero. This is an interesting application which shows
the dependence of calculus upon the principle of continuity.

The entire theory of limits with all its applications in higher mathe-
matics and with its applications to incointnensurables is dependent upon
this postulate, first assumed and expressed by Kepler. The use of con-
tinuity' in coordinate geometry, where functions are often spoken of as
continuous or discontinuous, can now be somewhat extended by the
statement that y = 1/x becomes continuous through points at infinity;
and that even costs are continuous for integral pokts, that is, the- rela-
tion between cost and price is continuous, although there will be gaps in
the correct graph.

Conclusion. No teacher of geometry, or of any branch of mathematics
for that matter, should fail to utilize the principle of continuity. Clearly,
the wide application of the generalizations of mathematics is one of its
fundamental characteristics, as well as one of its most fascinating charms.
The conclusions of mathematics are all-inclusive, yet relative. Every con-
clusion is based upon certain fundamental assumptions and definitions.
Yet the properties demonstrated are general, or continuous, and often
penetrate nalms unthought of when first presented in specific form. The
use of the principle of continuity should make geometry more interest-
ing, more alive, more general in its applications, and more powerful in its
pattern of 'reasoning.

B. PROBLEM MATERIAL

151. Solve the two problems, A and B, in this section.
152, Apply the principle of continuity to the theorem that the su o

the angles of any polygon is (n 2) straight angles. Let n v ry,
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let the polygon become concave, let it flatten out completely or in
parts, so that adjacent sides coincide, and yet show the property
continuous.

153. Define a quadrilateral as the figure formed by four intersecting
lines; a vertex as the point of intersection of any two sides whether
adjacent or opposite; and a diagonal as a line connecting any two
vertices. Then any quadrilateral ABCD has three diagonals, AC,
BD, and EF, which intersect in three points, P, Q, and R. Show
how this can be true for a parallelogram; a trapezoid; a convex
quadrilateral with no sides parallel; a concave quadrilateral (one
angle greater than 1800); a cross quadrilateral (like ABDC in
figure given); a solid quadrilateral (one vertex not in the same
plane as the other three).

154. Make up further illustrations. For instance: (1) What happens to
the two tangents to a circle from a point P outside the circle as P
moves toward the circle, is on the circle, or passes inside the circle?
(2) What happens to the four tangents to two non-intersecting
circles as the centers of the circles approach each other; as the
circles become tangent externally; intersect in two points; become
tangent internally; become concentric?

155. Take the circles in the problem above and let them rotate about
their line of centers. 'What happens to the tangents for different
positions of the centers and for different radii?

156. Show how the principle of continuity applies to the trigonometric
functions;_ for example, sin A = y/r, as the angle varies from
0° to 90° to 130° to 270° to 360°.



162 Geometry Professionalized for Teachers

157. Apply the principle of continuity to the Sine Law of trigonometry:

(sin A sin B sin C)
a

158. The Cosine Law (a2 = b2 e2 2 be cos A) is a most excellent
illustration of the force and beauty of the principle of continuity.
Since cos 0° = 1, cos 45° = + .7, cos 90° = 0, cos 135° = .7,
cos 180° = 1, cos 225° = .7, cos 270° = 0, cos 315° =
+ .7, cos 360° = + 1, show how side a varies with angle A. When
angle A is ;00, triangle ABC is a right triangle with side a the
hypotenuse. Show how the principle of continuity makes the Pythag-
orean theorem just a special case of the Cosine Law .23a

159. The length of a tangent (t) from point P to a circle with center C
and radius r is: t = Vd2 r2 in which PC = d. What happens to t
as P approaches C or as d approaches zero? Show that the imaginary
tangent is a half-chord.

160. If equal arcs AC and AD are laid off on each side of one extremit y
of a diameter and lines drawn from C and D to any point one the
diametei AB or AB extended, the lines are equal, they make /equal
angles with the diameter, and they cut off equal arcs on the/circle
measured from B; and conversely. (More than one converse.)

161 The area of an ellipse is imb. Show that this formula is continuo
as a approaches b.

162. The volume of an ellipsoid is 4/3 7..abc. Show that this formula is
continuous as the ellipsoid approaches a sphere.

163. In the next chapter exercises 210,.218, 219, 229, 230, 235 involve
relations to which continuity applies very well.

164. Apply the principle of continuity to the circles of Apollonius given
in problem number 40 of the exercises for analysis.

165. Find one good illustration of a relationship which is continuous
through various changes in the form of the figure. Either select it
from exercises 41-150, from some other geometry, or make it up.

Note: In the next section are many examples in geometry. As these
are being worked the principle of continuity should be applied. In Chap-
ter 6 each major theorem is an excellent example of continuous proper-
ties. In Ceva's Theorem point P, and in Menelaus's Theorem the crucial
line DEF can be taken in various positions and yet the property demon-
strated is continuous.

o3 Reeve, W. D. General Mathematics, Book II. Ginn and Co 1922, pp. 368.372.
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VIII. INCOMMENSURABLES

Meaning. A clear understanding of the meaning of the term incom-
mensurable is quite necessary. The derivation Of the word would sug-
gest that if two segments are commensurable, they can be measured to-

ther, that is, by means of the same unit. The favorite illustrations of
mensurability are the diagonal of a square which cannot be meas-

ured with the same unit used to measure the side, and the circumference
and diameter of a circle which cannot be accurately measured by means
of the same unit of measure. Another form of expressing the idea is to
say that two segments are commensurable if they have a common di-
visor, and incommensurable, if not. The following definition and theorem
help to clarify the problem as will also the illustrations which. follow.

Definition. "Those magnitudes are said to be commensurable which
are measured by the same measure and those incommensurable which
cannot have any common measure."'"

Theorem. "If, when the less of two unequal magnitudes is continually
subtracted from the greater, that which is left never measures the one
before it, the magnitudes will be incommensurable.'1 -5

Discussion and Illustration. Because of our versatile common frac-
tions and decimal fractions, which provide approximate measures for all
line segments correct to any degree of accuracy desired, the problem of
commensurability and incommensurability, which loomed so large for
Euclid and Pythagoras, has faded greatly in significance. If one tries to
express the square root of two by means of Roman numerals or by means
of the awkward Greek system of numbers, the truth of this statement
becomes apparent. It is in the attempt to express the diagonal of a square
in terms of its side that incommensurable magnitudes were discovered.
If s and d represent the side and diagonal of a square respectively, it is
evident that d2 = 252. That is, the square on the diagonal is exactly
twice the original square, yet the ratio between d and s is not expressible
in terms of rational numbers. This would indeed be puzzling to any
thoughtful man without a number system so flexible as to be able to
account for it satisfactorily by a theory of approximations. The diagonal
of a 10 inch square is the square root of 200 or 14.14213, correct to five
decimal places; yet since 14.14213 squared is only 199.99984, to five
decimal places, it is evident that 14.14213 is not the exact length of the
diagonal. Furthermore, that length can never be expressed exactly by
using the same unit used in measuring the side.

is4 Heath. T. L. op. cit., Vol. III. D. 10.
116 Euclid X, 2. (Heath. T. L. op. cit., Vol. III. p. 17.)
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Proof that Nia is Incommensurable with Unity. The proof of the in-
commensurability of V2 with unity is a relatively simple indirect proof.
It was referred to by Aristotle; so is not new.

(1) Assume s and d commensurable.
(2) Then s/d = some fraction p/q reduced to lowest terms.
(3) But s2/d2 = p2/q2 = %. Since d2 = 252.
(4) Therefore q2 is divisible by 5 and q must be also.
(5) Let q= 2r, then 4 r2 = 2p2.
(6) Consequently 2r2 = p2 and p2 is divisible by 2, and therefore p must

be.
(7) But if p/q is reduced to lowest terms and q is divisible by 2, then p

must be odd and yet be divisible by 2.
(8) This is impossible, therefore s and d are not commensurable.'"

Similarly, any other irrational number can be proved incommensurable
with unity. Let a and 2a be the sides of a rectangle with diagonal b, and

prove a and b incommensurable, or the VI incommensurable with unity.

(1) Assume a and b commensurable or that a/b = the fraction p/q
reduced to lowest terms.

(2) b2 = (2a)2 a2 = 5a2 or b = aVI
(3) Then a2/b2 = p2/q2 = 1/5 or q2 =
(4) Therefore q2 is divisible by 5 and q must be also.
(5) Let q = 5r, then q2 = 25r2.
(6) Then 25r2 = 5p2 or 5r2 = p2. Therefore p2 is divisible by 5 and

consequently p must be also.
(7) Therefore p/q can be reduced, which is contrary to the assumption

in (1).
(8) Therefore a and b are not commensurable. That is, b = a 1/3, and

VI is incommensurable with unity.
,

It is furthermore interesting to note that the V2 and V5 are just as
incommensurable with each other as either of them is with unity. This
suggests the unlimited complexity of incommensurability.

lncommensurables to be Omitted from High School. The National
Committee recommends that "the formal theory of limits and of incom-
mensurable cases be omitted,. but that the ideas of limit and of incom-
mensurable magnitudes receive informal treatment.''ar There are at
least two good reasons for this recommendation. First, our number sys-

I" Heath. op. cit., vol. III, p. 2.
," National Committee. op. cit., p. 49.

A
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tern makes possible approximate measurements which satisfy all prac-
tical needs. Second, the proofs are too hard, and consequently require
more time and energy than they merit in comparison with other more
interesting and more useful material.

Other Cases of Incommensurability. In order to establish a little more
defense for including the following treatment of incommensurables, and
also in further defense of the statement that incommensurables are in-
finitely more common than commensurable magnitudes, as well as to
avoid the common error of presenting incommensurables as though the

V2 and were the only ones, the following examples are given as "lead

on" suggestions.
Next after 1/2, no doubt?: is the most famous incommensurable num-

ber. In 1853 W. Shanks made himself famous by carrying out the value
of .7; to 707 decimal places. To 25 places r = 3.141,592,653,589,793,238, -
462,643. It is evident that this is not the exact value, although for most
practical work 31h is a close enough approximation. While the circum-
ference of a.circle with a definite radius is easily drawn, yet that cir-
cumference is incommensurable with the radius or diameter. Further-
more, if the circumference were commensurable with some unit, the
radius would then be incommensurable with the circumference. The
ratio, expressed as ; is incommensurable, even though one or the other
of the quantities may be commensurable with some arbitrary unit. All
true, in spite of the rumor that a bill was once introduced before a legis-

lative body in the United States proposing to make 77 commensurable
and equal, to three so as to correspond with the Biblical value found in
I Kings, VII, 23.

If you draw two line segments you may accidentally get one exactly
2 inches and the other exactly 3 inches long or even 15%4 and 26%4
inches long resp/e6ively. However, the chances are infinity to one that
these would be but-close approxithations to the actual lengths and that
it would be)mpossible accurately to measure even these segments. The
dimensions of a standard door, a table, the dimensions of this page, the
length of a foot rule, are all only relatively exact; that is, strictly speak-
ing they Re incommensurable in most cases.

The trigonometric ratios illustrate the problem. Sine of 0° is 0, of 30°
is Y2, and of 90° is 1. In these three cases the numbers which give the

size of the angle in degrees and the ratio between the side opposite and
the hypotenuse are commensurable. For no other angle between 0° and
90° is this true. Also, for 0°, 45°, and 90° the ratio between the side

opposite and the side adjacent is commensurable with the angle. This is
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true for no other angle between 0° and 90° measured in integral degrees,
although there are an infinite number of angles in which these sides are
commensurable.

The logarithm of one zero, of 10 is 1, of 100 is 2, of 1000 is 3, but
for no other number between 1 and 1000 is a number commensurable
with its logarithm. In the natural system the logarithm of one is zero
and in no other case whatever is the logarithm commensurable with the
number. Furthermore, logarithms are usually incommensurable with each
other as well as with their number and base.

These few illustrations suggest the-comparative frequency of incom-
mensurability and in addition to being a defense for its treatment should
help to make the meaning clear and to suggest the nature of the problem
to be solved. However, before presenting proofs for any theorems in-
volving incommensurable magnitudes, it is interesting to note that out
of eight modern geometry textbooks for college courses in geometry, all
but one written since 1920, not one considers the problem of incommen-
surability of enough importance even to mention it. It seems to be more
or less a closed issue because any property which is true of :ommen-
surable magnitudes will also be true for incommensurable magnitudes
by means of the pattern proof which follows. Furthermore, our very
efficient decimal system makes informal treatment of the problem amply
satisfying for all practical and most cultural purposes. In addition to
this, the recent development of complex numbers has presented a prob-
lem of such magnitude as to throw commensurable and incommensurable
quantities into one class by comparison. However, the problem has
enough historic and intrinsic importance to merit the limited treatment
which follows and the limited mastery of the problem which the follow-
ing presentation makes possible.

General Plan of Attack. It is one matter to prove that the area of a
rectangle whose dimensions are commensurable, such as 3 and 5, is the
product of these dimensions. It is quite a different matter if the dimen-
sions are VS and V3, which might occur as frequently. The technique
of proof for all incommensurable cases will consist of three steps: First,
take the proof for commensurable magnitudes. Second, set it up so that
it will have variables which remain equal as they approach the incom-
mensurable magnitudes as limits. Then, finally, by means of the postu-
late of limits, draw the evident conclusion.

Very little difficulty seems ever to have been recognized in adding or
subtracting incommensUrables, although it seems difficult to see why

V5 and \73 + V5 should be less significant than V3 V5 or
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'VI/ V5. Probably the explanation lies in the fact that areas and pro-
portions involve multiplication and division, while addition and sub-
traction are little used in geometry. The general threefold plan of proof
would nevertheless be used for addition or subtraction of incommen-
surables as for multiplication and division.

The Postulate of,Litnits. If two variables are always equal as they
approach their limits the limits are equal.

Note: This postulate will be needed in each of the following theoreins.
The first of these theorems was postulated in the preceding chapter. While
nothing was said about the nature of the dimensions of a rectangle, yet
all explanations naturally assumed them commensurable. The question
then arises concerning the continuity of this relationship if those dimen-
sions become incommensurable.

THEOREM A. The area of a rectangle is the product of the base times the
altitude. (Incommensurable dimensions.)

HYPOTHESIS: A rectangle of area A with its base and altitude, b and 1:,
incommensurable.

CONCLUSION: A = bh.

PROOF:

(1) Take a convenient unit of measure and lay it off on b and h as many
times as it will go integrally leaving a remainder less than the unit
of measure in each case. The segments thus laid off, b' and le, will
be commensurable and will form a rectangle with area A'.

(2) Then A' = b'h'. The area of a rectangle equals the base times the
altitude. (Commensurable case.)

(3) Now take a unit of measure one-half, one-tenth, or one-hundredth
as great and lay it off on b and h in the same manner. The new
A', b' and /e will be larger than before. By continuing to use smaller
and smaller units of measure A', b', and h' can be made to vary and

to approach A, b, and h, respectively, as limits.

(4) That is, regardless of the unit of measure.
(5) But A' approaches A, and b'h' approaches bh by definition of a

limit and by the construction of b' and h'.
(6) Therefore A = bh by the postulate of limits.

EXERCISES ON THEOREM A

171. Show that the volume (V) of a rectangular solid, whose dimensions
1, iv, and It are incommensurable, is found by this formula: V =
lwh.
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172. Show that the area of a triangle is TA the base times the height, even
though these quantities are incommensurable. Similarly, for the
area of a parallelogram, a trapezoid, and a circle.

173. What is true of the volume of any prism and pyramid, or cylinder
and cone, even though their dimensions are incommensurable, in
the light of exercise 171 above? Apply the pattern proof abOve in
the proof of this.

THEOREM B. A line parallel to one side of a triangle divides the other
two sides proportionally.

HYPOTHESIS*: A triangle ABC with 1 parallel to b and dividing a and c
into incommensurable segments m and n, and p and q, respectively,
with n and q nearer the base.

CpNCLUSION:
n q

PROOF:

(1) Take some unit of measure that will be contained in m integrally
and lay it off on n as many times as it will go making a segment
n', which is commensurable with m, and a remainder less than the
unit of measure. Draw a new base, b', parallel to b through the

4o- end point of n' and it will cut off a segment q' on q such that

(2)
m

=
p

' (Commensurable case, theorem 8.)
q

(3) Now by the process of successively decreasing the unit of meas-
ure, n' and q' can be made to vary and to approach n and q as
limits.

m p
(4) That is, re = q, regardless of the unit of measure.

(5) But tn/n' approaches m/n, and p/q' approaches p/q by defini-
tion of a limit.

(6) Therefore
m L= by the postulate\:f limits.
n q

* The student should construct his own figure.

EXERCISES FOR THEOREM II

176. Show that in any right triangle with a given acute angle (A) the
ratio of the side upposite to the side adjacent is constant even
though these sides are incommensurable. In other words show that
the tangent of A is constant.

."
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177. Show the sin A constant. Cosine A.
178. Show that two triangles are similar if two angles of one equal re-

spectively two angles of the other, even though the Sides are in-
commensurable.

179. Name other relationships involving proportions and incommen-
surable segments which theorem B completes. What effect does
theorem B have on the Pythagorean relation as proved from similar
triangles?

THEOREM C. In equal circles or in the same circle, arcs have the same
ratio as their central angles.

HYPOTHESIS:* Two arcs AB and CD in the same circle or in equal
circles, and their central angles p and q respectively.

AB p
CONCLUSION: =

CD q
PROOF:

(1) Divide AB into an integral number of parts and using one of
these as a unit of measure, lay it off on arc CD as many times as
it will go leaving a remainder less than the unit of measure, and
arc CD' commensurable with AB. Let q' be the central angle of
arc CD'.

AB
(2) Then = (Commensurable case)

CD'
P
q'

(3) Now by the process of reducing the unit of measure through bi-
section or some other process of dividing it integrally, arc CD'
and angle q' can be made to vary and to approach arc CD and
angle q as limits.

AB p
(4) That is = -- regardless of the unit of measure.

' CD' q'
AB AB P P by definition and
CD' CD

(5) But approaches and approaches
q

construction.
AB p

(6) Therefore = by the postulate of limits.
CD q

Note: Because of the above correspondence between the arcs and their
central angles it is readily seen that if one of the two angles were a unit
angle and its arc correspondingly a unit arc that the second angle would

* The student should construct his own figure.

A 4 ii
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have the same ratio to the unit angle that its arc has to the unit arc,
hence the statement that a central angle has the same measure as its
arc and conversely.

EXERCISES FOR THEOREM C

181. Show that in equal. circles or in the same circle inscribed angles
have the same ratio as their arcs, even though incommensurable.

182. State the converse of theorem C and also of exercise 181 above.
183. How does theorem C affect the other theorems which state rela-

tionships between angles and arcs?

IX. SUMMARY AND CONCLUSION

The outstanding portions of this chapter, from the point of view of a.
prospective teacher, are the three sections: Analysis, Indirect Proof, and
Continuity. It has been the purpose of this chapter to present these three
and other topics so as to provide a more complete experience for the
student, not only with the subject matter of geometry, but more par-
ticularly with the heuristic method of teaching and learning geometry.
Study of this chapter, including the solution of a liberal number of prob-
lems by means of the methods presented, should insure a comprehensive
knowledge of geometry and of the reasoning patterns which geometry so
concretely provides, as well as an unforgettable experience with the ana-
lytic method of discovering proof and with the indirect method of proof.
The sections on the Structure of Geometry and Continuity are presen-
tations of interesting points of view with respect to geometry. The final
section on Incommensurables has been included for the sake of complete-
ness and tradition.



CHAPTER VI

MODERN EUCLIDEAN GEOMETRY

I. INTRODUCTION

The Selection of Subject-Matter. Not only should a prospective teacher
of high-school geometry be thoroughly familiar with the subject-matter
to be taught and at the same time appreciate its possibilities when cor-
rectly taught, but he should have mastered as well other more advanced
and more difficult material of a similar nature so that he may have a
background that will enrich his teaching and give him additional pro-
fessional experience with the heuristic method. There is so much splendid
material in the field of modern Euclidean geometry, algebraic secometry,
and projective geometry available for this purpose that several years of
study could be spent on it. The material heiewith presented is conse-
quently selected with no attempt at a compleie presentation of modern
geometry. Two criteria for selection have been used. First, the material
was selected so as to depend ;upon the preceding chapters and in some
cases to complete and amplify'them. Second, the material was selected so
that it would involve some new definitions and concepts which are rela-
tively as difficult for a college student to master as those of high-school
geometry are for the high-school student.

The Professionalization of Subject-Matter. No claim is made that the
theorems and exercises presented in this chapter are the best that could
be selected. They are important ideas since they are included in all
modern geometry textbooks such as Durell, Godfrey and Siddons, John-
ston, and Altshiller-Court. Furthermore, each theorem selected serves a
definite function in the plan for this chapter. The Theorems of Ceva and
Menelaus are interesting extensions of plane geometry theorems and
serve to unify the ideas of concurrency and collinearity. The nine-point
circle and Euler's line theorems serve to extend the ideas about crucial
points in a triangle and to show the relation between the various "cen-
ters" of, a triangle. The theorem on coaxal circles serves to provide ex-
perience with entirely new concepts, new definitions, new relationships.
It really opens up the whole interesting subject of "Inversion," but is

171
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used in this chapter merely fottlie,purpose of having the prospective
teacher experience the difficulty of learning something entirely new to
him. The concept of "power of a point," or "radical center" does not im-
mediately have meaning for him just as in` high-school geometry "me-
dian," "parallelopiped," "ratio," "mean proportional" may be new to a
high-school pupil and need to be developed by extended contact.

In other words the material in this-chapter-is-selected, not so much
for its mathematicaLcontent and completeness, as to fulfill a professional
purpose. The two previous chapters have applied the heuristic teaching
pattern to material with which the student has had contact and with
which he is of least slightly familiar; this chapter applies the same pat-
tern to new material in order more completely to establish the power and
educational value of the inductive-deductive-analytic-synthetic processes
which, combined, we have called the heuristic method of teaching.

II. CEVA'S THEOREM AND THE THEOREM OF MENELAUS

1. CEVA'S THEOREM (33)

History. The theorems of Ceva and Menelaus, with their converses,
are fundamental for the science of projective geometry. Ceva's Theorem
is given first here, although historically it came later. Giovanni Ceva was
an Italian engineer, and mathematician. He discovered the theorem
named after him in 1678 and published at the same time the closely re-/
lated Theorem of Menelaus, which had been little used since its discovery
by Menelaus in 100 o.c."3

Since it has been recommended that high-school teachers use an in-
ductive approach in discovering a deductive conclusion, it will be con-,,,
sistent to use that pattern with this theorem and the following theorems.
It should likewise be possible to use an analytic method of discovering
the proof, which can then be presented in synthetic form.

Definitions Needed. In the extended applications of these theorems it
will be necessary to use directed line segments corresponding to the
directed numbers of algebra, positive and negative. It will also be con-
venient to use some new terms, consequently a few definitions become
necessary.

1. Negative line segments are segments taken in the opposite direction
from those considered positive. Thus AB = BA for any segment
AB, also if AP and BP are both positive, P is on AB extended, but
if one is negative, then P is between A and B on segment AB.

"'Johnson. Roger A. Modetm Geometry. Houghton Mifflin Co.. 1971. p. 148.
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Illustrate by drawing a line segment AB and locating P so that AP
and BP are both positive, then both negative, finally only one nega-

° five.
2. Concurrent lines are lines which have a common point.
3. Collinear points are points which He on the same line -

APPROACH TO CEVA'S THEOREM:
---

(1) Draw a triangle with sides 6, 8, and 11 in.
(2) Divide the 11 inch side Into 2 segments and 6 inches, and the

8 in. side int?segments 3 and 5 in., in consecutive =der around
the triangle.

(3) Draw lines from the opposite vertex to each of these points of
division. f.et these lines intersect in P. Draw a line from the re-
maining vertex through P to the 6 in. side.

(4) Measure the segments on this side, they seem to be 4 inches and
2 inches.

(5) Notice that 5x3x4= 6x5x2
(6) Notice the order of selection of the segments to be multiplied to-

gether.
(7) Use sides 9, 8, and 11 in..ang and go through the same construc-

tion.
(8) Take any other triangle and select any point P, draw lines to the

vertices as above, extend them to the oppositt, sides, get the prod-
ucts corresponding to those above and'see what happens.

(9) Can this be stated as a general theorem? Try it.
CEVA'S THEOREM: Three concur ent lines from the vertices of a triangle

divide the opposite sides into segments so that the product of three
non-vijacent segments equals the product of t'he other three. ,

HYPOTHESIS: Triangle ABC with any point P and lines AP, BP, and
CP cutting the opposite sides in points D, E and-F. (Figure, next page.)

CoricLuslori: (AF) (BD) (CE) (FB) (DC) (EA)
ANALYSIS: Three factors on each side of the equation suggest that divid-

ing by the tight-hand member would give three ratios, which in turn
suggest the use of similar triangles.

(1) (AF) (BD) (CE) = (FB) (DC) (EA) if

AF' BD CE
(2) FB DC EA

= 1 or

AF BIB CE
(3) BF CD. AE

c..

6

.5 5-X 4

If? x'orZ
6 10 J2
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B

(4) Since the three factors in the denominator are now all negative,
their product is thus made negative. Equation (2) or (3) sug-
gests similar triangles obtained in someway so that these ratios
can be obtained. Since AF and FB are corresponding sides it
suggests that we draw GH through A parallel to BC and extend
lines BE and CF as in the figure.

(5) Now if
AF

= K, = L, and = M so that
BD CE

FB DC EA

(K) (L) (M) = 1 then the solution would be obtained.

AF AG BD HA CE BC
' (6) But = = = ,

FB BC' DC AG' EA HA*

AG HA BC
(7) And = 1

BC AG HA

Why?

AF BD CE
(8) Therefore

EA
=

FB CD
1 or

AF BD CE.
DF CD AE

PROOF: The syntheti.: statement of this proof is now left to the student.

2. EXERCISES FOLLOWING CEVA S THEOREM

201. State the converse of Ceva's Theorem. It would contend that if the
sides of a triangle are divided so that the products stated would be
equal, then lines joining the points of division to the opposite ver-
tices would be concurrent.
Note: In provIng this use the indirect method. Assume that two

of these lines meet in a point, then use this point in applying Ceva's
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Theorem, and it will divide the third side in a way that will indicate
that the third line goes through the same point. Note that this con-
verse theorem forms a basis for proving lines concurrent and con-
sequently becomes rather a fundamental theorem. The point forma
by the intersection of three lines through the vertices of a triangle
is often referred to as the "Gergonne Point."

202. Use exercise 201, the converse of Ceva's Theorem, in proving that
the .medians of a triangle are concurrent.

203. Try the converse of Ceva's Theorem for proving concurrency of the
angle bisectors.

Note: Remember that the bisector of an angle divides the op-
posite side into segments proportional to the adjacent sides.

204. Try the converse of Ceva's Theorem to prove concurrency of the/
altitudes.

Note: Use similar right triangles.
205. Prove the theorem if point P is outside of the triangle.

Note: Be careful of direction of line segments, since lines from
this point through the vertices will intersect two of the opposite
sides externally. Take various positions of the point.

206. Would the converse of exercise 205 also be true for external seg-
ments? .

207. Suppose the point P is on one of the sides; what happens?
208. Prove that the bisectors of two exterior angles and the other in-

terior angle are concurrent.

`1

209. Lines joining opposite vertices with the points of contact of the ex-
circles of a triangle are concurrent. (This point is called Nagel's
Point.)

2 0. Show that the relationships described in Ceva's Theorem and its
converse are continuous. Let the point P move to any position: on
one side or at a vertex; on a median, a bisector, or an altitude;
at the incenter, an excenter, the circumcenter, the orthocenter, or
the centroid; let the triangle be equilateral, isosceles, scalene, right,
or 'obtuse. 4

3. THE THEOREM OF MENELAUS (34)

APPROACH:

(1) Draw a triangle ABC with sides 11, 8, and 6 inches. Divide the
two longer sides AB and BC into segments 7 and 4 inches and
1 and,7 inches at points D and E.

(2) Draw fine DE-and extend it until it meets AC extended at F.
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Measure-AP and-CF, they are 8 and 2 inches.

7 X 1 X 8 AD BE CF
(3) Note that 1 or =-- 1

4 X 7 X 2 DB EC FA

(4) Try it over with AC = 12 inches, instead of 6 inches.
(5) Try it drawing any line DF across any triangle intersecting two

sides internally and the third externally.
(6) Try it intersecting all three sides externally.
(7) Statg the Theorem of Menelaus.

THE THEOREM OF MENELAUS: A transversal of a triangle divides the
sides into six segments in sucha way that the product of any three
non-adjacent segments equals the product of the other three (dis-
regarding direction).

A'
G

HYPOTHESIS: DF is any transversal cutting the sides of triangle ABC
in points D, E, and F respectively.

CONCLUSION:

(1) (AD) (BE) (CF) = (BD) (CE) (AF) or
AD BE CF

(2) DB EC *FA -1
ANALYSIS:

(1) The above ratios suggest getting similar triangles. Again this can
be done in many ways. Suppose we draw perpendiculars to DF from
A, B, and C. Call their feet G, H, and K.
(,2) Now if the three ratios can be shown equal to other ratios whose

product is 1 or 1 then we have the solution.
AD AG BE BH CF CK

(3) = = = why?
BD BH' CE CK' AF AG

AG BH CR'
(4) Now --,-- 1

BH CK AG
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AD BE CF
(5) Therefore

CE AF
= 1 Why?

BD
AD BE CF

(6) or = 1 Why?
DB EC FA

(7) or (AD) (BE) (CF) = (BD) (CE) (AF)

= (DB) (EC) (FA) Why?
PROOF:

(1) Draw perpendiculars from A, B, and C to DF. Call their feet
G, H, and K.
AD AG

Why?
BD. BH
BE

(3) Why?
CE K
CF

(4)
AF

Why?.
AG

AD BE .CF
(5) Therefore

BD CE AF

. tions (2), (3), (4) or

AD BE CF
(6) DB. EC. FA

Why? or

(7) (AD) (BE) (CF)(= (BD) (CE) (AF) from (5)
= (DB) (EC) (FA) from (6)

Therefore the Theorem of Menelaus is true for any triangle with
any line cutting if.-

1 Multiplying together equa-

4. EXERCISES FOLLOWING THE THEOREM OF MENELAUS (35)

211. Prove the Theorem of Menelaus if line DF cuts all three sides ex-
ternally.

212. State and prove the converse of Mefielaus' Theorem.
Suggestion: Apply the idea given for proving the converse of Ceva's
Theorem. Note that this converse is fundamental for proving points
collinear.

213. The bisectors of two interior angles and the other exterior angle
intersect the opposite sides in points which are collinear. -----

Note; Use the converse of the Theorem of Menelaus.
214. The bisectors of the three exterior angles intersect the opposite
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sides in collinear points. Try one interior and two exterior angles.
Explain.

215. In triangle ABC let D, E, and F be the middle points of the sides
AB,\BC, and CA, and P be the middle point of DF. Let BP cut
AC in Q. What is the ratio of AQ to QF?

Note: Use triangle ADF and get the ratio of AQ to QF by Mene-
laus's theorem.

216. Pascal's Theorem: The opposite sides of an inscribedlexagon inter-
sect in points that are collinear.

Note: For ABCDEF, extend AB, CD, and EF to form triangle
PQR. Now if the opposite sides intersect in points L, M, and N,
prove LMN a line across PQR by considering BC, DE, and FA
as transversals of PQR.

217. Desargnes' Theorem: If two triangles, ABC and DEF, are so situ-
ated that lines through corresponding vertices intersect in point P,
i.e., ADP, BEP, and CFP are concurrent in P, and AB and DE
intersect in Q, BC and EF in R, and CA and FD in S, then Q, R,
and S are Collinear.

218. Show how the Principle of Continuity applies in the Theorem of
Menelaus. What happens as line DEF passes through one vertex;
tWo vertices; bisects an angle; bisects a side; passes through AA',
BB', or CC'; is parallel to one side; perpendicular to one side;
or the triangle is a right, obtuse, scalene, isosceles or equilateral tri-
angle.

219. Apply the Principle of Continuity to the converse of the Theorem
of Menelaus by means of an analysis similar to the one above.

220. Make up an example using either of the last two theorems or their
converses.

In. NINE-POINT CIRCLE THEOREM AND EULER'S LINE

1. THE NINE-POINT CIRCLE THEOREM 36)

Definitions Needed. Before taking up the next theorem it will be well to
study the standard notation for a triangle and its various points.
Notation for a triangle ABC with sicies a, b, c, and with A', B', C' the

midpoints of those sides respectively.
AA', BB', CC' are its medians.
A'B'C' :s the medial triangle.
AD, BE, CF are the altitudes.
DEF is the pedal triangle.
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I is the intersection of the angle bisectors or, the center of the in-
scribed circle, the incenter.

G is the intersection of the medians, known as the centroid or center
of gravity.

H is the intersection of the altitudes, the orthocenter.
O is the intersection of the perpendicular bisectOrs of the sides, the

circumcenter.
N is the center of the nine-point circle.

APPROACH TO THE NINE-POINT CIRCLE THEOREM.
(1) Draw any triangle and find the middle point of each side.
(2) Draw a circle through these three points. This circle will cut the

three sides in three other points unless the triangle is equilateral
or isosceles. Connect these points with the opposite vertices. These
lines seem to be perpendicular and therefore to be altitudes. Call
their intersection H.

(3) AH, BH and CH seem to be bisected by the circle drawn. Call
these points P, Q, and R respectively. Then it seems possible that
A', B', C', D, E, F; P, Q, and R are nine points all on the same
circle.

(4) State the theorem for the nine-point circle.
THEOREM: The midpoints of the three sides, the feet of the altitudes, and

the midpoints of the segments joining the orthocenter to the vertices,
all lie on the same circle.

C

A F C B

HYPOTHESIS: Any triangle ABC with points A', B', C', D, E, and F as
defined and P, Q and R the midpoints of AH, BH, and CH.

CONCLUSION: These nine points are on the same circle.
ANALYSIS: It will be possible to draw a circle through three of these

points, then if the others can be shown to be on this circle, perhaps
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even one at a time, our problem is solved. Further analysis is left to
the student.

PROOF:

(1) Construct a circle through A', B', and C'.
(2) In quadrilateral A'DB'C', A'D is parallel to B'C'. Why?
(3) Also B'D = A'C', both being % of AC.
(4) Therefore A'DB'C' is an isosceles trapezoid, its opposite angles

are supplementary and consequently it is inscriptible.
Therefore D is on circle A'B'C',..

Similarly E and F can be shown to be on circle A'B'C'.

In quadrilateral A'B'PC', B'P is parallel to CF, because in tri-
angle ACH, B'P joins the midpoints of AC and AH.
Angle A'B'P is a right angle because A'B' is parallel to AB which
is perpendicular to CF.
Similarly PC' is parallel to BE which is perpendicular to AC and
also to A'C'.

(10) A'C'P is also a right angle.
(11) Therefore A'B'PC' is an inscriptible quadrilateral and P is on

the circle A'B'C'.

(12) _Similarly Q and R can be shown to be on the circle A'B'C'.

(13) Therefore all nine points are on the same circle
Note: If this is hard to follow draw three se crate figures just

alike and use the first one for steps 1 to 5, t e second for step
6, and third for steps 7 to 12. Then actually draw the lines to
form the quadrilateral dis6ussed.

2. EULER'S LINE (THEOREM 37)
APPROACH:

(1) Draw several triangles of different shapes and in each locate 1,
0, H, G, and N.

(2) What seems to be true of these points?
(3) Is I ever on the line OH? Is C? Is N?

THEOREM: The circumcenter, orthocenter, centroid, and nine-point cen-
ter all lie on the same line-segment OH which is bisected by the nine-
point center, N, and divided in the ratio of 1 to 2 by the centroid, G.

HYPOTHESIS: Triangle ABC with points H, N, G, and 0.
'CONCLUSION:

(1) HNGO is a straight line,
(2) OG = %OH, and
(3) ON = % OH.

A I,
4 + f ',I



Modern Euclidean Geometry 181

ANALYSIS:

(1) If we take the straight line HG and prove that 0 and N are on
it then OGNH will be a straight line.

(2) Also if HG is extended 1/2 its length to 0', and 0' shown to be 0
then OG = 1/3 OH.

C

A t F B
(3) Similarly if the middle point of OH can be shown to be the center

of the nine-point circle then it must be N, and ON = % OH.

PROOF:

(1) Draw HG and extend it to 0' so that O'G = % HG.
(2) Draw O'B' and O'C' (0' and 0 will be the same point; therefore

think of 0 as 0' for the present).
(3) Triangles C'O'G and CHG are similar and also
(4) Triangles B'O'G and BEG are similar, because 2 sides are pro-

portional and the included angles equal.
(5) Therefore angles GO'C' and GHC are equal, also
(6) Angles GO'B' and GHB are equal. Why?
(7) Therefore O'C' is parallel to CF which is perpendicular to AB,

and
(8) O'B' is parallel to BE which is perpendicular to AC.
(9) Therefore 0' is the circumcenter and coincides with 0. Why?

(10) Consequently OG = % GH = % OH.
(11) The perpendicular bisectors of lines B'E and C'F will both bisect

OH and therefore must intersect at the midpoint of OH. Why?
(12) But B'E and C'F are chords on the nine-point circle and there-

fore the midpoint of OH is the center of the nine-point circle,
or N.

(13) Therefore (a) HNGO is a straight line,
(b) OG = 1%3 OH, and
(c) ON = 1/2 OH

t

Note: This line, HNGO, is called Euler's line.
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3. EXERCISES FOLLOWING THE THEOREMS ON THE NINE-POINT

CIRCLE AND EULER'S LINE

221. Construct a given line OH and lay off OG = 1/3 OH and ON = 1/2
OH. Then construct the rest of the triangle having given also OA
and GA.

222. State other conditions connected with the five notable points of a
triangle which determine the triangle,

223. Prove triangles PQR and A'B'C' congruent.
224. Prove that the nine-point circle bisects any line from the ortho-

center to any point on the circumcircle.
225. The Theorem,of Feuerbach. The nine-point circle of a triangle is

tangent to the inscribed circle and to each of the escribed circles.
Note: This is a difficult theorem to prove and is one of the

famous theorems of geometry. It was discovered by Feuerbach in
1E22 and since then by Steiner and many others. There are several
proofs. See Johnston: Modern Geometry, pp. 200-205.

226. Draw a large scalene triangle, determine points G and 0, from
them determine N and H. Also determine 1 and draw the incircle
circumcircle, nine-point circle and the three excircles.,The relation-
ships stated in exercises 223, 224, 225 should be evident.

227. The circumcircle bisects each of the six lines joining the points/ 13, (1, is the center of the excircle tangent to BC, etc.).
228. If from a point P, on the circumcircle, perpendiculars PX, PY, PZ

be drawn to the sides of triangle ABC, then X, Y, and Z are col-
linear.

Note: The line XYZ is called the Simson Line, named after
Robert Stinson, Glasgow, who first discovered it.,

229. Show that the relationships described in the nine-point circle theo-
rem and Euler's line are "continuous".

230. Show that the relationships described in the exercise above on
"Simson's Line" are continuous.

IV. COAXAL CIRCLES

Definitions. While the previous theorems have involved some new terms
and relationships, they have been slightly familiar. The theorem and
the definitions of this section open up a whole new field of geometry.
The ideas are quite new and unique to students familiar with only high-
school geometry. They furnish, therefore, excellent learning and teach-
ing experience in geometry, and serve as a climax for the professionaliza-
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tion of geometry through the application of the heuristic Pattern to the
subject-matter to be learned. Several of the new terms will need to be
defined.

1. The power (p) of a point P with respect to a circle is equal to the
square of the tangent from P to the circle. If OP is drawn from

the center ,0 to an external point P, and OT to the point of tan-
gency, it is evident that p = t2 = (OF)'

The definition given above, while simple, is not quite complete.
It holds true only for points outside of or on the circle. However,
if p be defined more completely as (OP)2 r2, then the power of
p will be negative when OP is less than r, zero when OP equals r,
and positive when OP is greater than r. Also every point P has a
power with respect to a given circle and that power is constant.

If the point P is within the circle (OP)2 r2 is negative. A
little study of a circle will reveal that again the power may be repre-
sented by a definite line segment. If a chord CD is drawn perpen-
dicular to OP at P then r2 (OP)2 = (0C)2 or OP' r2 =
(0C)? = (% chord)'. Therefore if P is on the circle, its power
is zero; if P is outside of the circle, p = t2; if P is within the circle,
p = (1/2 chord)2; but always p = (OP)2 r2.

2. The minimum chord (m) of P is a chord of ta circle through an
interior point P perpendicular to a diameter through P. As its name
implies it is the shortest chord through P, and being perpendicular
to a diameter is bisected by P. The power of P within the circle
can now be stated as P = (1 /2m)2, where m is the minimum
chord through P, just as the power of P outside the circle can be
stated as p = £2, where I is the tangent to the circle from P.

3. The radical axis of two circles is the locus of a point P whose powers
with respect to the two circles are equal.

4. The radical center of three circles is the locus of a point P whose
powers with respect to the three circles are equal.

5. The common secant of two intersecting circles is a secant passing
through their points of intersection. This corresponds to the term
common chord, and of course really is a common chord extended.

1. THEOREM ON RADICAL AXIS (38)

APPROACH to some generalization concerning the locus of a point P
whose "power" with respect to two circles is the same:

1. Construct a circla iith center C, radius r, and a tangent PA, and
the radius to the point of tangency, AC.
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2. Construct several tangents to the circle, with the same given length
k.

3. What is the length of PC? Is it the same for every tangent with
the given length k and on the same circle?

4. What then is the locus' of point P whose power with respect to a
given circle is constant. Show that (CP)2 = k2.-F r2.

5. Construct a second circle of different size not intersecting the first
one. Construct the locus of point P' whose power with respect
to the second circle C' is equal to the constant k. Show that
(C'P)2 = k2 + (r')2.

6. Suppose these loci intersect in 2 points, then each of the two
points of intersection 1r,, the same- power with respect to each
circle. Call the points P and Q, and draw/line PQ. PQ seems to
be perpendicular to the line of centers. Is it? Prove it. Call the
point where PQ cuts CC', A. Find AC and AC'.

7. Take some other point on PQ and try to prove that it has equal
powers with respect to the two circles.

8. Take any other power k' and find its locus with respect to the
two clicks. Show that if the loci intersect at all that the line
connecting their points of intersection coincides with PQ since it
is1perpendicular to CC' at A.

9. e two intersecting circles and find the locus of a point P whose
powers with respect to the two circles are equal.
It seems to be the common secant.

1. State this apparently true fact as a theorem to be proved.
717 HEOREM: The radical axis of two intersecting circles is their common

.secant.

A g: v
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HYPOTHESIS: Two circles intersecting at A and B with a variable point
P having p = t2 for each circle.

CONCLUSION: The radical axis, which is the locus P, is the secant through
A and B.

ANALYSIS:

(1) Every point on the secant AB must have equal powers, and
(2) Every point having equal powers with respect to the two circler

must be on the secant AB.
(3) t = t' if they are parts of congruent triangles, or if any one of

several sets of conditions is true. However, since both tangents
have a secant from P, that fact suggests that t2 = (PA) (PB)
and t = t' if (t')2 also = (PA) (PB), which is clearly true.

(4) Similarly in = m' if r2 (CP')2 = (r')2 (CJP')2 or if
m2 = (AP') (P'B) = (n')2. Clearly this last statement is true
because AB is a common chord for both circles.

(5) Then any point P such that t = t' will lie on AB or AB extended \
if the contradictory assumption can be shown to be false, or if
the conditions in (3) and (4) above can be shown to be neces-
sary as well as sufficient.

PROOF A:

(1) Assume P to be a'point on the secant outside the circles and draw
tangents PT' and PT.

(2) (PT')2 = (PA) (PB) = (PT)2 Why?
(3)' Therefore PT = PT'.

. (4) Therefore every external point of AB has the same power with
respect to both circles.

(5) For A and B the powers are both zero.
(6) For points between A and B, (%m)2 = (P'A) (P'B) = (1/2m') 2

since if two chords intersect the product of the segments of one
equals the product of the segments of the other.

(7) Therefore (1/2m)2 = (V2m')2 and every point between A and B
has the same power with respect to both circles.

(8) Therefore all points on secant AB are on the locus.

PROOF B:

(1) Using the indirect method assume that some point P' not on
AB or AB extended has equal power with respect to both circles.

(2) Draw the tangents or minimum chords.
(3) Then t2 = (P'A') (P'B') = (t')2 for these tangents or half-

chords.
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(4), Then these two' circleS would have a second common secant
P'A'B', which is impossible.

(5) Therefore all points of the locus are on the secant AB.

2. EXERCISES FOLLOWING, THEOREM 38

231. The radical center of three intersecting circles is the intersection
of their common secants. First take the simple case where the
centers are not collinear and where two circles do not intersect
but the third intersects both the others. Then vary the intersec-
tions and relative positions and see what happens to the radical
center. What if the centen are collinear? What if the circles are
tangent? Concentric?

232. Find the radical center of three non-intersecting circles.
233. The radical axis of two non-intersecting, non-concentric circles is

a straight" ine perpendicular to their line of centers.
Note: Show that the perpendicularity of these lines is unaffected

as the distance between the centers increases up to r r', and
therefore is constant regardless of the distance between centers.

234. If two lines AB and CD meet at P so that (AP) (BP) = (CP)
(DP) then A, B, C, and D are concyclic (lie on the same circle).

235. What is the radical axis of two circles tangent externally; tangent
internally; one within the other, yet not concentric; two concentric
circles? Apply the principle of Continuity to this situation. ;

/ 3. PROPOSITION 39 (A CONSTRUCTION)

There are several important theorems relative to coaxal/ circles, con-
jugate coaxal circles and their orthogonal relationships ,Only two will
be given here, one, a construction and one, a theorem.

DEFINITIONS: Orthogonal circles are circles which. intersect so that
"the tangents to the two circles at the points of7tersection are per-
pendicular.

Coaxal circles are circles so arranged that any pair of circles has
the same radical axis. For example, all circles with a common se-
cant form a coaxal system whose radical axis is that secant. In
other words (PC)2 r2 = p = k for each circle. What would be
true of a system of circles all tangent to a line at the same point?

PROBLEM: Construct a system of non-intersecting coaxal circles.
CONSTRUCTION:

(1). Since the line of centers is perpendicular, to the radical axis their
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point of intersection, d, provides a value of p which must be the
..same for each pair of circles..

ta

\(2) DiaTilwoperpendieular lines.
(3) Take a series of values for radii of circles such as a, b, c, d, to 0
'(4) Take some constant value for p = P.
(5), Compute OA, OB, OC, etc. from

p = k2 (oA)2a2 = (OB)2-7- b2 = (0C)2 c2 = .
4' or

10/1)2 = k2 a2, (OB)2 = k2 b2, and (002 = k2 c2

(6).0A; OB, OC are the distances from 0to the centers of each of
the coaxal, circles whose 'radii are a, b, c, respectively.

(7) What would'happen if r = 0? If r = k? If r = 2k?

Y

la 74 tViWf
A

PROOF: I

(1) Each paitof circles has the same radical axis by construction and
'therefore by definition-they- form a coaxal system.

-th cl is \(2) When -r-= o, the circle is a point or sometimes called a limiting ,

point, and OX = k or in other words the tangent coincides with
the line of centers.

4. THEOREM 40

A circle whose diameter is the line segment joining the limiting points
of a coaxal system of non-intersecting circles is orthogonal to7 each
circle of the system.*
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:HYPOTHESIS: To he stated by il4stUdent.
CONCLUSION: To be stated by the student.
ANApisis: .

(1) What 4 necessary in order to prove circles orthogonal?
(2) Is a tangent perp...,..iicUlar to a radius drawn to the point of

contact?.
(3) Referring to the figure of theorem 39, how long is each tangent

from -O to the circles of the coaxal System? What is the radius
of the circle passing through' the limiting points? Will the circle
With radius k then go through the points of tangency?

PROOF: Left to the student.

* (Use the figure of proposition 39 from which the theorem really is suggested.)

5. EXERCISES FOLLOWING THEOREM 40

241. Construct a system of coaxal circles with a common secant for a
radical ax;s.

242. The same with a common tangent for a radical axis.
243_A circle orthogonal to two fixed circles is orthogonal to eachcircle

coaxal with them.
Note: Why is its center on their radical axis? Why is its radius,

equal to their tangents from the center?
244. The circles orthogonal to two circles constitute a coaxal system.
245. Two,given circles determine two, coaxal systems, one is composed of

all circles coaxal with them, the other, of all circles orthogonal to,
them.

246: Show how to construct a circle orthogonal to another circle. To
each of two given circles. To each of three given circles.

V. SUMMARY STATEMENT OF PURPOSE AND CONTENT

OF CHAPTER VI

The objective of this chapter has been to extend the work of Chapter
IV and .to provide a limited experience with a few of the theorems of
modern geometry which use new concepts and relationships. This was
done so -that the student might encounter learning, and teaching diffi-
culties as a college student comparable to those of high-school geometry
for a high-school student. No attempt has been made to make this-ex-
haustive from the standpoint of geometry, although the theorems have
been selected with care.
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For further work of this nature special reference is given to the follow-
ing books in order of their probable usefulness.

(1), Johnson, R. A. Modern Geometry. Houghton, Mifflin Co., 1929
(2) Durell; C. V. Modern Geometry. Macmillan and Co., 1926
(3)- Altshiller-Court, N. College Geometry. Johnson Publishing Co.

Richthond; Virginia, 1925
(4) Godfrey, C. 'and Siddons, A. W. Modern Geometry. Cambridge

University Press; -1923'
(5) PeterSon, Julius. MethodS apdr.Theories of_Geometricai Construc-

'amis. G. E. Stechert Co.,-New York, 1923.
(6) Forder, H. G. Foundations of Euclidean Geometry. Cambridge

----UniVersity Press, 1027-



CHAPTER VII

SUMMARY AND CONCLUSIONS

;

.It" has been the purpose of this study to present a detailed outline of
the subject-matter of high-school demonstrative geotnetry in such a -way
as to -provide professional training simultaneonsly with a = mastery of
mathematical content. This has been done through presenting the sub-
ject-matter, of geometry by means 'of the technique of teaching which
this study recommends, as peculiarly fitted for, geometry.

In the solution of this problem many other-problems have presented
themselves.' If the function of geometry is _merely to provide, informa-
tion about space relationships and a little practice in mechanical draw-
ing, then its technique of teaching would be determined. If, on the other
hand, geometry-is conceded to be a course in the science of reasoning,
then the methods of teaching it would be modified to achieve thiS aim.
Because-of the simple and ccrficrete nature of geometry -concepts, be-
cause of the clear-cut relation between its conclusions and the premises
upon which these conclusions are based, and because of the unique history
of the subject as a science of reasoning, it has been concluded. for this
study that the function of demonstrative geometry in the high school
should be only secondarily informational and training in making con-
structions, and primarily a course for providing experience with the
nature, method, and power of deductive reasoning. In Chapter II, Sec-
tion II, this function of geometry has been presented and defended.

If geometry is to be taught as a science of reasoning in which the place
of definitions, postulates, premises, and the method of proofare to have a
conspicuous part: then this function will largely determine the philoscohy
4nd technique of teaching. On this basis the interrelationship between in-
ductive and deductive thinking should be kept constantly prominent, and
the analytic method of discovering the proof for a proposition as well as
the precise synthetic proof should receive major consideration. A tech-
nique of teaching, called heuristic teaching, which gives proper recogni-
tion to these four complementary methods of reasoning has been advo-
cated in this study as the ideal for geometry teaching. In Chapter III
this heuristic technique of teaching has been presented. ,

190
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Since in any y course for training geometry teachers the time is greatly
limited, it. was_deemed impossible to outline in an appropriate profes-
sionaLsetting theentire two hundred or more theorems of modern plane
and solid geometry. Some selection had to be made, and.was finally made
b'y means of a unique plan which gave due recognition to sequence of
theorems and to the major plan of geometry as a science of reasoning.
The theorems outlined by the National Committee and supplemented by
the,College- Entrance .Examination Board were all proved and the use
made of theorems in the, proof of later theorems noted. On the basis of
this later usage criterion the "EssentiatTheorems of Plane and Solid
Geometry" were selected. This list is comprised of ten constructions,
twenty theorems o1 plane geometry, and twelve theorenis of solid geome-
try. Such a minimum list of important theorems was considered to be
sufficient to serve the-dual purpose of providing a re-view from a pro-
fessional point of view of the essential content of high-school geometry,
and also of providing opportunity for applying and establishing the ideal
technique of teaching geometry. In Chapter IV the "Essential Theorems"
of plane and solid geometry have been outlined, and in Chapter I the
method of selection has been described.
`Since merely high-school geometry materials seemed inadequate to

__ provide as complete a knowledge of geometry and its methods as a
geometry teacher should have, it was deemed necessary to provide ad-
ditional and more difficult problems. A more detailed presentation of the
analytic method with many difficult problem for its application, and
also a more detailed presentation of the powerful technique of indirect
proof with an abundance of carefully selected problems for practice in L.,
its use have both been presented in Chapter V. Along with these major
ideas have, also been presented some interesting facts concerning con-
tinuity, converses, incommensurables, and the structure of geometry.

Finally, as a climax for this professionalized-subject-matter project,
a few important theorems from modern college geometry, involving some

new concepts and relationships, have been introduced and proved by,
means of the heuristic technique. This material in its professional set-
ting has been placed in Chapter VI;the final chapter.

In Chapter II, besides the discussion of the function,of geometry, there
has been included a brief history of geometry as a science and as a school
subject, and 'also a presentation of "Some Settled and Some Unsettled
Difficulties". Here has been included such topics as the foundations of
geometry, superposition, the postulation of the congruence theorems,
hypothetical constructions, and sequence. The outline of theorems pre-
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sented in Chapter IV IS baieci on the postulation of the congruence
theorems, yet such postulation is not necessary. If these three theorems
are proved-inthe traditional Nyay they mus be added to the list of "Es-
sential Theorems"'isiven in Chapter IV.

The statement of the problem to be solved and the objectives of the
study hayebeen presented in Chapter I. These objectives determine the
content of the other chapters. In general-the,prIblem has been -to out-
line the training, both in subject-matter and-method, for a high-school.
teacher of plane and solid demonstrative geometry. This outline consists
of a pattern of 'teaching establisheciO)y applying that pattern to the
materials of a minimum list of theorems, to a liberal sum* of difficult
Original eiercises, and to a few difficult and new theorems of college
geometry. Some of the material is necessarily subjective in nature, yet
the sequential content. has been objectively determined, and even the
original exercises must of necessity be objectively.placed in,the correct
sequence.

Astraining for high-school teachers the material outlined in Chapters
II, III, and IV should be an irreducible minimum, Chapters V and VI
add much valuable experience which should give a student a'reasonably
excellent professional preparation for teaching geometry in the high
school.

:4
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