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: REFACE AND ACKNOWLEDGMENTS‘

( The integration of subject-matter and method has long baen a puz-
foblem in'teacher training, This study is designed to give a teacher
of prospechve teacher a mastery of the subject-matter of geometry and

simultaneously to train him in the met_hod of: teaching -demonstrative.

-geometry-in-the high school: By first setting up the objectives of such
an integrated course, then estabhshmg the pattern of teaching which is
s0 peculiarly : fitted to demonstrative geometry, the integration is eﬁected
by usmg the technique advocated in presenting-the “‘gssential -theorems”
of geometry. - ~
A careful study of the materials included or outlined in Chapters II;

11, IV and-sections II and V. of Chapter V should, in the opinion of the
author, constitute a mmlmum of material and method to be'mastered by
every teacher of geometry. "The- remainder of Chapter V and Chapter VI
should not be omitted if the very best training is desxred Furthermore,
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complete treatment of topics in which the reader may | "have special interest.
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CHAPTER I
INTRODUCTIQN

-

_ I Tm: DermmoN OF THE PROBLEM TO BE. SOLVED

Present Trammg of Geometry Teachers. The academxc mathemaucal
training of the high-school teacher of mathematics, in-addition to- high-
school - algebra and geometry, consists at best of college algebra, trigo-
nometry, analytic geometry, calculus, and perhaps dxfferentxal equations,

' advanced algebra, surveying, ‘mechanics, or astronomy. To this there

is often added a special methods course in mathematics of two or three

semester hours. The teacher. is then supposedly trained to go into a

high. school and teach algebra and demonstrative geometry. .
Th§ weaknoss of this program of training.for geometry teachers -is

- apparent The student is well trained in algebra because. of his wide

expenence with its symbolxsm throughout his college course, but his
training in geometry consists of very little more, if any, than hxs .high-
school course. Trigonometry -makes use of sxmlla,r trlangles analytic
geometry deals- with lines and circles, -and calculus treats in part of
areas and volume; but nowhere in the college course is the emphasxs
put on the proving or demonstrating of relationships in the way that is
$0'widely emphasized in, high-school-geometry, nor are the relatlonshxps
which ‘are_studied i#f high-school geometry widely used. The reason for
this inadequacy in-the training of high-school teachers lies in the fact
that colleges of education have merely accepted ‘he academic mathe-
matics courses without modification or adequate adjustment to the needs
of prospective high-school teachers of mathematics and have usually
supplemented them with a brief “methods” course.

Needed' Training of Geometry Teachers. Professor Bagley contends
that “The_high-school teacher of mathematics should surely undertake
mathematics studies well'in advance.of those that he proposes to teach,
and it is quite possible that the content of these advanced courses
should be modified by the fact that he is to teach high-school mathe-
matics. But in any case he needs courses in elementary algebra and plane
geometry, which will not onIy refresh his mind with regard to elementary
principles and processes, but also give him a much deeper and broader -

1
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conception of those prmcxples and a much mote facile mastery of those
processes than h‘s elementary course could possibly give him. Such
courses should empbhasize the historical development of these elementary
processes, and they should lay stress particularly-upon the possibilities
and methods of illuminating instruction by the applications of elementary.
mathematics t6.a variety of scxentlﬁc, technical and mdustrlal prob-

lems.'?

Engineering schools have taken the academu: courses in mathematics
and have: professlonallzed ‘them, to make them better- suited to their

‘uses, A corresponding professxonahzahon is necessary in the courses

for prospective teachers, if they are to prepare adequately. for high-
school teachmg Such a modification is emmently necessary for teachers
of high-school geometry. PR \l [ S )

Textbooks in geometry have already en’written ostens;bly for the
purposé of solving this problém. Altsclyller-(‘.‘ourt’s College Geometry
is advanced Euclidean geometry and is a\pioneer effort in the direction_
of professuonahzauon 2 Johnson's Modern Geometry is a similar text’
Both of these books, along with Durell’s, Godfrey and Siddon’s, and'
others, -are still qmte academic in- their- point of view. They, are really
advanced geometry bised on a thorough elementary course.

The Problem to be Solved. There remains then the problem of secur-
ing still further professionalization of subject-matter with more emphasns
on the fundamental pattern of teachmg geometry as well as on the
foundations of geometry, more actual contact with high-school geometry,
and more attention to the system of formulated reasoning and its applica:
tion to non-geometric as well as geometric situations. Such is the prob-

lem whose solution is herewith attempted. The method of solution has
" been first to state the problem in terms of the specxﬁc objectives to be

realized, and then to select the subject-matter which will _best enable
the student-to attain those objectives. The subject-matter selected is of
two types: The first is somewhat general and includes a presentation of
problems concerning the function of geometry in the high-school, a
discussion of some specific problems which the high-school teacher has
to meet, and fisially the establishment of a-philosophy of teaching and-a
technique of presentation recommended for high-school use; second,

‘this philosophy and technique are applied to a few high-school geometry

3 Bagley, W. C. The Professional Prepasction of Teachers for American Public Schools.
The Carnegie Foundation for the Advancement of Teaching. Bulletin No. 14, p. 152,
’Al(schlllerCourt, N. College Geometry. Johnson Pubhshmg Co., Rlchmond Virginia,

1925. ,\1
- 8 Johnson, R. A. Modern Gtomttry Houghton Mifin 929,




.

\ Introdyptiort : 3¢

theorems and college geometry theorems, and ,rovision is made for an
abundance of- original exercises for practical application. Chapters I )
11, and IILpresent the first type of material which is largely professxonal
in. nature, and Chapters IV, V, and VI present the second- type of ma-
terial which-a phes the- professxonal ideas to matenal that is largely

. mathemahcsd/p

1

II. THE OBJECT..VES OF THIS S'rumz

‘The purpose of this study in the. professionalization of geometry for
teachers’ colleges is to suggest mathematical .and professional training
for praspective-teachers of high-school geometry. This general objective
is broken up into the following specific objectives.

. A. The Mathematical Objectives of the Course

1.. To insure-a thorough mastery of the subject-matter of the hlgh
school -geometry which. the student is-preparing to teach..

2. To-develop an appreuatxon of the system-of reasoning presented

. through the simple relationships of geometry by emphasxzmg the
following facts:

a. The foundation. for building the structure called geometry is

" composed.of undefined terms, definitions, axioms, and postu-
lates. !

b. The structure itself is composed of conclusxons which- are
‘reached by a process of reasoning based upon certain hypothe-
ses.and the foundations previously accepted.

" ¢. Sequence is therefore of paramount importance.

3. To develop and to extend the student’s ability to discover and
analyze space relationships, by the mastery of theorems and ex-
ercises of modern geometry more difficult than those used in high--
school - texts,

4, To develop ‘an apprecxatxon of the functxonal relatlonshxps in
geometry.

5. To show the- hxstoncai development of geometry and emphasize
its early and continually prominent place in civilization as a uni-
versal language of tﬁought . :

- B. The,I’rofessxonal ijecuvqs of the Course

1. To give a new view of and, if necessary, to develop the abilities
and. concepts included in hlgh-school geometry, with the convic-
tion that “no one can teach what he does not know.”

2. To present, to illustrate, and to use metkods of teaching which
correspond to those recommended by thxs study for ‘high-school
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‘ Jteachmg with the idea that “most teachers teach very largely as
— they have been or are taught rather- than as they are told to
" teach.”
3. To provide the student with problems in geometry relatlvely as
o dlfﬁcult for him to solve as-those in high school are for a high-
i ! school student in order that he may apprecxate anew the learner’s
e {  point of view, and i in order that he may be taught in the way
. that'he’is supposed to teach.
4 To emphasize the two-fold nature and purpose of' a theorem in
.geometry, | namely, to.serve as_a general law or prmcnple used to
vae “ongi\als” and other theorems, and to serve as.a reasoning
pattern for solving geometric “ongmals” or for proving any con-
clusions which seem to be:i?pendent upon given premises,
5. To teach, test, and diagnose; then Sif necessary, to teach, test,
_ and dlagnose again to the point of mastery
6. To emphasize the. principle that Jearning takes place only durmg
pupil activity or, more traditionally expressed, t \hat “we learn
o do by-doing.”

C The Professional Assumptjons upon Which the Course is Bmlt
L “The student will have had a course in the introduction to teaching,
emphasizing professnonal ideals and rospons:blhtles, and also stich
"y routines as care of light, heat, ventilation of the class room,- at-
A, tendance, daily and term reports, marking systems, lesson® plan-
- ning, a.nd the like. L
2. The student will have had a course in educational psychology,
and will understand and appreciate the laws of learning and the
* psychology of-drill. é

3. The student will have.had a course in the pringiples of education
which will stimulate him to adopt a philosophyof education and to
-apprecxate the promment place of education in the?progress of
civilization and in-the future of democracy.

4. The student will have practlce teaching after takmg this course.

D. The Specific Mathematlcal and Professional Ob;ectlves of the Course.
A mastery of the subject-matter-in the detailed units as-presented
on the following pages and in the manner mdlcated including a large
(77)  portion of the original exercises, will be the specnﬁc, detailed objec-
a tives of the course. These details should not be emphasized so as to,
G overshadow or minimize the general objectives, but so as to con-
) tribute to the realization of those general objectives.

-0

¢




Introduction S

IIL. ‘THE SELECTION OF THE “ESSENTIAL” THEOREMS
’ or .HiGH-SCHOOL GEOMETRY

e The Technique of Selecting the-Essential Theorems. Table I, which
’ . follows, shows the technique used for the selection-of the “Essential
.\ Theorems of High-School Geometry.” It.shows-an -analysis- of all the
N - -theorems and- constructions in-the Repo “0f the National Committeé
© ofi the Reorganization of Mathematies* The analysis indicates that even
: ‘in-this short list of theorems there are many that .’q.;ré\ never used in the:
. proof of later.theéorems: In the case of‘some that are used; the theorems
in which they are uséd are often not referred to later, or a slight change
‘iri the proof of a later-theorem'may rénder a prévious theorern-useless.
For ‘iristance, theorem number 1a*, ii Table I, “Two- triangles are
congruent if two sides and the in¢luded angle etc.—,” uses in-its proof.
only postulates 8. (p8), “Any figure may be moved from one place, to
another without changing its. shape or size,” and (p1), “Only .one
straight line can be drawn betweén two-points.” However, théorem 1a is,
itself used inthe proof of a large number of theorems:. 1c, 2, 38, 4; 9b,’
. etc.-Again, theorem 7, “The 5um of the angles of a trianleAequalg 180
) degrees,” uses in its proof, in addition to a definition-and an axiom, con-
: struction § (cS), “Through a given:point draw a line pa allel to a given.
line,” ahd theorem 6a; “When a transversal cuts two aralle] lines, the
alternate interior -angles are ‘equal;® while it is used-jn the proof of
theorems numbered 2; 5, c17, s4b, 55, s6, s8a, s14a, s18, s19, cel, ce4,
Théoreins such as 93, 9b, 11c, 13c, 14, given below are never used again “\
in the proof of later theorems: _ i
: 9a. “Any quadrilateral is-a parallélogram (a) if its opposite sides are
s« -equal;(b) if two sidesare equal and parallel.”
, 11c. “The area of a trapezoid etc. —.”
13c. “Two triangles are similar if ‘heir sides are respectively propor/-
tional.” . :
14, “If two chords of a circle i}fxtersect, the product of the segments-of:
.one.is equal to the product of ‘the segments of the 9th"gr.”
These -thegrems and, others like them, since they are no¥~neé&sary for
, the proof “pf\other propositions, are xe?xlly not. essential theorems in the
sense that “essential” has been defined, but rather applications of the
esseqt}al‘theoregls. ' .\\

: ¢ National Committee on Math tisal -Requir: ts. The Reorgonizction o\f Meatheo

i matics in Secondary Education. Houghton Miffin Co., 1927 i

: ® These numbers refer to the theorems listed in the National Committee's) report.
- ‘ . A

A
. : \
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‘used_in the prooi of several theorems. Theorem s7a, “In any- parallelo-

.such postulation is given later.

1is included in Chapter IV of this study A thorough ‘mastery of

6 ) :Geonietrjv *Professionalized for Teachers

Theorem ‘number 8, “A parallelogram is dmded into” congruent tri- _
angles by elther dragonal ” is used in the proof of s7a, which in turn is

gram the opposite sides are equal,” can be proved without .theorem 8
by mcludmg the proof of theorem 8.in jits proof. Therefort.\ltheorem s7a -
is an essential. theorem and theorem 8 is accordingly omitted, from the
list of "essential theorems Theorems la, 1b, 1c, are the three-¢ ‘conveps
tional ‘congruence theorems, and they are postulated The. defense for

It is evrdent that a defensxble minimum st of theorems could-be made
from these essential theorems Such a list would be a perfectiy
system and would be composed of only the most important théotems
of geometry. All others could be given-a minor place or perhaps li
as exercises to be solved by-the-student. Such a-choice. has beén made
and the selection mdrcated by double asterisks in Table 1. The proving
of ‘these theorems and ;fhe providing for:applications of them make up
the proposed dxrect‘contact with the field of high-school geometry %uch

theorems and some. of thelr app' cations is designed to provide, conﬁdence\
with -the content of ‘high-school geometry and experience. with the N
technique of teachmg geometry. The*followmg list constitutes the theo-
rems selected. In some cases the usual wording has been slightly changed.

It should be made clear, however, that the “Essentral Constructions .

and Theorems” which are selected on the later-usage criferion are essen-
tial in a professional sense rather than in o mathematical sense. Their
purpose is “to refresh” the readers “mind with regard to elementary
principles and processes,” and to establish a pattern of teaching, but not /
to serve as a new list of the “fundamental theorems” of. geometry. 'I‘hey

‘are important theorems for a prospective teacher of Euclidean geometry

to know, and- fundamental in a proféssional. sense only. They are de-
signed to give the prospective teacher “a broader and a-more accurate
knowledge of\the materials to be taught; . . . an appreciation of the teach.
ing difficulties involved: and an ability to apply- the guiding principles
of psychology and methodology to those difficulties; and. . . a richer cul- .

" tural background of illuminating information and apprecratron which

will enliven and color the work of the teacher, me \

® Evenden, E. S. | The Critic Teacher and the Professional Treztment of Sub)eet \
Matter: A Chzllengc," Educational Administration: and Sup:rvman, 15:373.82,

A)
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s Previous theorems, consiruc Propo- Later theorems and constriic- :
: um,aud\ postulates-needed sitions. . tions whick seed this theorem- .
v CT in-the proof. | proved -/ in their proof. .
L. — — - i
ot S #$p8,p1 - 1a 16, '2;73a; 4;-9b;-13b;723b; €15 €3y — e
: ST - ¢c6b, 16, 581, 89, ceS i Y
R 1b 31:1; :5, 6b, 8,.10, 13a,:29,-c6c,.87¢, "
. i oo e
: et 1c” .4, 9a, 11b, 11d, 13c,- 23, -24b;-¢1;~
L T €2, 3, c68, 086 .

Y 5, 118, 243, 26a, 26b, 813, ce3
33 1¢, 2, 17,-27; €17, 8148, s14by,-ceS

3b 17 7
**4 8, ¢9, sl
. %5 ) 812 . LT

*6a 7,8, 9b, 10, 17, sia; s2b, s7¢, 817
#36b— gl,) 7; 98, 9b, c5, sla, s4a, s1b, s8a,

P on page 169.

*¢ Selected for the minfmum list of essential theorems.

v <, . I .
¢S, 68, **7 2; 5,.c17, s4h; 55, 36, s3a, sl4s, 818, |
C 819, cel, ce4 ' ) .
6a,:1b 8 s7a, s7b \
& 1e6b ) % . S
./ . 6a,1a;6b . - .9 ‘
S, €5,37a, D15, Ga, 828, 1a. **10 123 .
. o €3,p13,878,2,p16 11a 821
p2, p13, 87, 1c, p16. *#11b 11¢, 11d, 18, c15, s21
P 11b o 11c
./ “1ib,1e 11d-« 31 '
-¢5;10 s **123 12b, 12¢, 13a, 17, c12 o \
o eS1m - #12b  13b;:13¢, 89 ‘ U
€St t2a T R . , .
4, 1b, 81 7;*12a **13a 13b, 13c, 14, 18, 19, 14,9, 820, v
} h 2 A ) N ' P
1a,12b, 1. . 13b 16b . ! /
.12b;s2a,1 ., 1¢c -° 13¢ . K ‘
p12; 28, 27,232 R - PR . \ S
. axiom. , 15 30 N ) "y
v, axiom. i 16e v . :
axiom and 13b. 16b
™. . p2,c5, 128,68, s2a, 3b 17 A\
: €4, ¢3,'13s, 11b ’ 18 ' N ‘
P // ¢ All pumbers refer to the theorems.inothe list given by the Report of the National
. Com»,tiuu on the Reorganization of Mathematics in Secondary Education, 1927, Houghton
¥ : Miffin Co.,-New York. c12 means constryction number 12, 812 mcans subsidiary theorem
3 number 12, pages 7891, ce8 means theorem 8 of the additional Collegre Entun_ce theorems
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_ & in-the proof proved irs thrir proof
7. ' ' ss 21 . .
g o so\ * ce7 ; o
8 **s7a\ 10, 11a, 11b, 12¢, s¥c, s10 Ty
8 L ¢ shic ) . 3
s7a; 6a, 1b : s7c | - :
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TasLe I (Continued)

.

! SoLip GEOMETRY - N
B 1Previous thearems needed Theorem Later theorems depending \
7. . n proof : proved on this theorem .
6 . . L
7 3
1 **8 13, 15, 17a, 17h . -
*%9 13, 15, 176
- N 10
A 11
N : 12
, 8,9 “ 13 14
: 13, 4 L2 ) l?a, 27a
- 89 - 15 7
: 14 - 16 27
. - 8 **17a .
g 8,9 **17b
: : **17c 18
27,17¢ 18 202
b 19 25
; 20 23
21a N
‘‘‘‘‘ ; . - 21b L~
© 51b 22a 7 ¢
818 . 22b
20 23
Y 24 .
19 - : 25 31
. *%26
14, 16 **27a 27b, 292 : - |
27a **27b .
) *%283 28b
282 : **28b .
18, 27 **202 29b, 32 .
0 **20b
i 30 32
25 31
292,30 *%32
. B B t Only solid geometry theorems are listed herc although only the double starred theorems
Lo ' of the previous part of this tatle were used.

The Essential Constructions and Theorems of Geometry.
A. Constructions’ .
1. Construct a circle with a given radius and & given center.
2. Construct a triangle congruent to a given triengle using only
the lengths of the three sides.
3. Construct an angle equal to a given angle.
. Bisect a given angle. N
5. Construct a perpendicular to a_line at a point on the line.

e

<+
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8.
9.

10.

Introduction ' 11 ‘

. Construct a tnangle congruent to a given, tnangle usirg only

two sides and their included angle.

one side and the two adjacent angles.
Construct a perpendicular bisector of aigiven line segment.

‘Construct a perpendicular to-a line from a point not on the

line.
Construct a line parallel to a given line through a given point.

B. Theorems on Straight Line Figures
The. angles opposite the equal sides of an isosceles tnangle are

N

~

~

1.
2.

3.

4.

5.

6.

7.

8.

9.

10.

11

equal. ’ :

If two lines cut a third so that the altemate interior angles
are equal, the lines are parallel.

The converse of 2. If two parallel lines cut a third line, the
. -alterriate interior angles are equal.

The sum of the angles of any triangle is 180°.

Two right triangles are congruent.if the hypotenuse and a side
of one are equal respectively to the hypotenuse and a sxde of
the other.

The opposite sides and angles of a parallelogram are equal
If three or. more parallel lines cut off equal segments on- one
transversal, they cut off equal segments on any transversal.

If a straight line is drawn through'two sides of a triangle .

parallel to the third side, it divides these sides proportionally.
“Converse of 8. If a straxght line divides two sides of a triangle
proportionally, it is parallel to the third side.

Two triangles are similar if two angles of one are equal re-
spectively to two angles of the other. T

In any right triangle the square on the hypotenuse is equal to
the sum of the squares on the other two sides.

\ Corollary 1. In any right triangle if a perpendicular be

~

dropped from the vertex of the right angle to the

hypotenuse,

(a) the two right triangles formed are similar
to the given triangle and to ‘each other,

(b) either leg of the given right triangle is a
mean proportional between the whole hy-
potenuse and the adjacent segment, .

.

(c) the perpendicular is the mean proportional °

between the segments of the hypotenuse.

. Construct a triangle congruent to a given triangle using only

-
- ~

x
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12. The area of a triangle is equal to half the product of the base t
times the altitude.

13. The locus of a point equally distant from two pomts is the £
perpendicular bisector of the line segment joining them. -

14. The locus of a point equally distant from two intersecting lines
is the pair of lines which bisect the angles formed by the lmes

C. Theorems Concermng Circles
15. A diameter perpendicular to a chord bxsects the chord and the
arcs-of ‘the chord.. .
16. An angle mscnbed in a circle.is.equal to half the-central angle <
having the ‘same arc. ‘ \
17. ‘A line perpendicular to a radius at its outer extremity is
tangent to the circle at that point. -
'18. If the number of sidés of a regular inscribed’ polygon is in-
- «_ . definitely mcreased ‘its perimeter and area will both increase,.
-\whlle the- penmeter and area ‘of the circumscribed polygon,
formed by- drawing_tangents to the circle,-at the vertices of
the inscribed polygon, will-both decrease. The perimeters and
areas of both polygons will each- approach a-limit.
. The ratio of- any cgrcquerqnce to its radius is constant and is
B equal to 2 pl
20. The-area-of a circle is equal to p1 times the square of the
ragius.

D. Thedgekﬁ of Solid Geometry
21. If two planes intersect, their intersection is a straight Jine.
22. If two parallel planes cut_a third plane, the lines.of inter-
section are parallel.
23 If two angles not in the same plane have, their sides. parallel

.in the'same sense, the angles are equal.

24. Tlie lateral area of a prism is the product of a lateral edge by.
the perimeter of a right section.

25. The volume of any prism equals the product of its base by its
altitude.

*a. An oblique prism is equal to a nght prism whose base 1s a
right section of the oblique prism and whole altitude is a-
lateral edge of the oblique prism.

*b. The velume of any parallelopiped equals _the base times
the altitude.

——
'
S~ . o
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%A dxagonal plane divides a parallelopiped into two equal

26.

triangular prisms. .
*d. The volume of any triangular prism equals the product-of.
the Kase and altitude.
‘€. The volume of any: prism is the product of its base-and
-altitude.
The lateral area of a regular pyr: 1d equals %5 the product of

. its slant helghhand the perimeter of the base.

27.

28.
- sof its base (&) by its height. ‘

29.

30.

31.

'32

-Jf-a pyramid:is cut by 3 plane parall2l to the base and a dis-

tance (d) from the vertex,
(a) The lateral edges. a.nd ltitude (%) are divided propor-
< tionally,

(b) The section is.similar to\ the base the “ratlo of simili-
tude” being.d/k,

(c) The ratio of the area of .the section to the area of the base
isd?/h2. ]

The volume of a pyramxd equals 15 the product of the area

*2. Two pyramlds with equal bases and altitudes are equal.
*b. The volume of a triangular nyramxd equals 14 dh.

c. The volume of any pyramid equals 14 bi:
The lateral area of a cylinder equals the product of an element
by the circumference of a right section, and its volume equals
the. product of its base and altltude
The lateral area of a right cxrcular;cone equals ¥ the product

.of the slant height by the circumference of the base, and the

volume of any cone equals 14 the product of the area of the

base by the altitude.

The area of a sphere equals 4 pi times the radius squared.

*3. The area of the frustrum of a cone of revolution equals
% the slant height times the circumference of a circle half
way between the bases. /

*b. The area of a surface of revolutlon formed by revolvmg a
regular polygon about a ;ixameter is 2 pitimes the apothem
times the diameter.

c: The area of a sphere equals 4 pi times the radius squared

.The volume of a sphere equals 44 pi times the radius cubed.

* These propositions are usually given as theorems, but their only use is to lead up
to the theorem just preceding. They are therefore given here as part of the theorem in
the proof of which they serve.

o
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The Use made of the Essentzal Theorems. In this study the theorems
just. given are ‘used for a dual purpose. First, to provide a rapid review
of hlgh-school geometry and yet one that covers items .of fundamental '

\ 1mportance It is impossible to emphasize each of 200 theorems in such
. . a brief review, yet it is quite possible to emphasize each of 20 theorems
and to use each one as a “mountain peak” from which the surrounding
territory can be surveyed. Second, the theorems and constructions pro-
vide additional illustrations of the apphcatlon of the heuristic pattern
of teaching, which it is the purpose of this study to present. Two or three ;
illustrations in a short chapter presenting the plan, phxlosophy, and
purpose of heuristic teaching are entirely inadequate for a full develop-
ment of such an important idea. In order that prospective teachers may.
. be thoroughly indoctrinated with the philosophy of the “discovery and
"-analysis” technique, they should be prov1ded thh many and varied
;illustrations of its application. L
: While it is not intended that hxgh-school teachers shall actually use |
: the same-list of 10 constructions and 20 theorems in their teaching of
* plane geometry, yet it is evident that there are decided possibilities in
the use of the same list of “essential theorems” i m a high-school course.
“It is the greatest triumph of philosophy to refer. many varied phe-
nomena to one or a very few simple principles.” So there is also a dis-
tinct advantage in having in a high-school geometry course a few large,

. . important, useful theorems upon which all geometry depends. The pos-
sibilities are much greater for better teaching of theorems arid for more
applications of the techniques mastered, to real problems. Such a
geometry has possibilities also for placing the major empkasis where it
belongs, that is, upon the solution of “originals.” Every theorem in
geometry should serve two purposes. First, each theorem is a-general
truth, or principle, or law which is useful in sci-ing problems. Second,
each theorem illustrates a method of solution, since, before it was
proved, the theorem was itself a problem. In other words, each theorem
is not only a statement of a useful fact, but also a reasoning pattern to .
be used and followed in proving that a given conclusion follows from
given premises.

& Davies, Charles. The Nature and Uhm_y of Mathrma!w: A. S Barnes & Co., 1875,
p. 73.

‘ o
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CHAPTER II\ S o

~—

HISTOI’Y FUNCTION AND. PROB'LEMS OF
'GEOMETRY ‘

L]

/,

I. A Brier HisTorY. OF GEOMETRY /

Ex!ent and Origin. When -we realize that United States Govemment
asa school _subject covers only. the short span of years since 1/ 776, that.
American history begins with 1492, affording for. study-a: penod of less
than 450 years, and.that even the English’ language itself was somewhat

- embryonic at the time of Chaucer, less than 600 years /ago we'may
begin to have.some respect. for a subject that has been a challenge to-
human thought and mgenmty,smce its earliest records in Egypt in 2300
B.C., a period-of over 4000 years. Egypt, Babylonia, G/reece Rome, and
medleval and modern nat)ons have all used'and contnbuted to geometry. - ‘
It séems to be.a universal language of thought and culture dlsregard'ng E

: time and geographical or political bouridaries. Men, naticns, and even :

.. languages seem to come and go, but the 1deas of geometry remain,

: _grow, and become more and more lndxspensable

The word “geometry” is derived from two Greek words meaning
“‘earth measure.” In Egypt, where this sc1ence "of measurement was be-
_gun, it was'used largely to measure land in the ‘Nile valley. Such measure-
ment was.a frequent task because of the semx-annual over-flow of the

: banks-of the River lee .i0ur present knowledge of Egyptian geometry

: . comes _from a- papyrus, “held in the Bn(nsh Museum, and written by

- . Ahmes, who lived about 1600 B.c. This papyrus is Jargely a copy of an

.older document datmg back to 2300 B,C. .
Egyptian Geometry Egyptlan geometry was intuitive in nature and
largely alist of rules and formulas' Some of - these were inaccurate, as, ]
for instance, the rule that the area’ of an isosceles tnangle is equal to the R
product of the base-by one of the equal sides. Ahmes used (d-1/9 d)* ‘ §
in computing for -the area of a circle, making 3. 1605 as the value of
pi® 7 While these formulas are shghtly inaccurate, we marvel that they
were even so accurate-at such an early age.

* ¢ Smith, D. E. History of Mathematics, Ginn and Co., 1925, Vol. 11, p. 270.
'Sanford, Vera. A Short Ht:fory “of Mathematics, Houghton Ml.‘ﬁm Co., 1930, p. 231,

- g e,
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The-Contribution of Greece. (xeometry was carried to Greece by
Thales of Miletus (640-550 B.C.). After a career in commerce, which
bmught him in contact with the Egyptian ideas, he founded a school in
‘Miletus for the teaching and study of mathematics. It seems natural
' ‘that the. Greeks, who were so superior mentally, would -be entirely dis-
satisfied with the inaccurate and intuitive rules and computations of the
Egyptians. The challenge to them to prove that these rules were true
and to perfect the science as a system of reasoning is apparent.

It was Thales in 60C B.c. who first logically demonstrated a theorem
in geometry. In all lie proved only five theorems,® but he is credited with
being the first to organize geometry as a science and to prove his con-
clusions. While knowledge of many of the facts of geometry dates back
o at least 2300 n.c. in Egypt, the demonstration portion of geometry
comes from. Greece and began in about 600 B.c.

Pythagoras (580-500 B.c.) was a student at Miletus and later founded
a school of his own at Crotona, Italy. This school became a communistic
brotherhood whose members were bound by an 2ath not “to-reveal the
teachings or secrets of the schiool.” The Greek.government, fearing its
political influence, finally ordered it to disband; and Pythagoras, with

many of his foliowers, was killed. Because of the secret nature of the'

society little is known of the work it did in mathematics; although the
Pythagoreans are often credited with the proof of the right triangle
theorem ‘which is now usually known as the Pythagorean theorem. The
facts of this theorem were known intuitively by the Egyptians for cer-
tain triangles. They used a loop of string 12 units long with knots sepa-
rating it into three segments, 3, 4, and § units long, to lay off a right
angle. There is evidence that the right angles of the pyramids were made
this way, before 3000 B.c.® It remained for Pythagords, however, to
demonstrate that for all right triangles the square on the -hypotenuse is
equal to the sum of the squates on the-other two sides?®

Plato (429-347 B.c.) was the next great mathematician, and his-in-
fluence in making geometry a science of reasoning is often credited to
Euclid. While Plato was not a student under Pythagoras, he no doubt
learned 'much about the unwritten and secret work of the Pythagoreans
He founded a famous school, “The Academy,” at Athens, over the en-
trance to which he placed these words: “Let none ignorant of geometry
enter my door.” Plato did much-to systematize the thinking in geometry.

§ Stamper, Alva W. “History of Teaching of Geometry,” Teachers College, Columbia
University, New York. Contribution to Education, No. 23, 1909, p. 11. -

* Ibid., p. 5. ERGH S ) - ]
”}b)d, p. 12. - .J.-\-..
/
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i
1t is due to his influence that later mathematicians began the subject
with a carefully worded series of .definitions, postulates, and axioms. It
.was he who limited geometricians to the use of the straight edge and
compasses, and his influence has kept curves other than the circles out
of plane geometry.

Before. the time of Plato the Greeks used. the method of analysis in,
‘the solution-of problems. They also used the idea of locus, the indirect " °

or “reductio ad absurdum” proof, and the method of exhaustion for some
problems.?

Euclid (300 B.c.) is one of the best known of the early contributors
to geometry. Lit.Jle is ‘known about his life, but there is reason to believe
that he studied at Athens before he became a teacher of mathematics
. at Alexandria, Egypt. Eucléd collected -all the mathematical knowledge

of his time and organized it into a logical sequence. 12 “No doubt there

were many propositions that were original with Euclid; but the feature
which made-his treatise famous, and which accounts for the fact that it
is the-oldest scientific. textbook still in use, i5 found in its simple-but
logical sequence of -theorems and problems. ms, 14 Over 1000 editions of
this book have been pubhshed since it was first printed in 1482. His

“Elements” was arranged in books,-originally in scrolls: .X Congruence,

II Identities, IT1. Circles, XV Inscribed and Circumscribed Regular Poly-

gons, V Proportion, VI Sxmllanty, VII-IX Arithmetic, X Incommensu-

rables, XI-XIII .Solid Geometry.’® Euclid’s influence on our present
geometry is evident from the above list, and it seems almost uncanny
to realize hoW little his geometry. ‘has changed in 2200 years.
Some of the features of Euclid’s Eleme:us are: (1) the omission of all
practical-work, (2) no original exercises, every proposition fully proved
- out, (3) hypotheucal constructions not permitted (hence Euclid began
- shis geometry with constructions), (4) a general plan for the proof° of
all propositions, (5) all constructions by means of the compasses, and
straight edge only (thereby barring all conic sections except the cnrcle
from plane geometry).

Contributions to Geomelry after 300 B.C. Since the time of Euchd

much has been discovered in geometry. Very little of this, however, has
been put into high-school courses. Apollonius, &bout 200 b.c., did his

1 Allman, George J. Greek Geometry from Thales to Euchd Longmans, Green 2nd Co.,
London, 1889, p. 111.

1 Stamper. op. cit,, p. 23.

13 Sanford, Vera. op. i, p. 269.

“Smnh D. E. History of Mathematics. Ginn and Co 1925. Vol. I, pp. 103-506. *

14 Allman. op. ¢it., p. 211; Stamper. op. cit., p. 27. . :

¥ Smith. op. cit,, p. 106,

—
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great work on conic sections and named them the parabola hyperbola,
and ellipse. He showed how- th&e can be produced .from sections of a
cone. His contribution was much like that of Euclid in being a com-
pilation of previous work with some original contribution.’® Many of
thesé contributions were originated by Archimedes. Euclid and Apol-
‘lonius dominated geometry for nearly 2000 years. No other outstanding

’ accomplxshmcnt was made until the time of Dascartes.

In 1637 Descartes published his’ La Geometne mt;‘oducmg to -the
world the next:-great geometry achievement. Tlus was.the use of a co-
ordinate system. in-geometry to express algebraxc relations:. “The real
idea of furictionality as shown- by the uSe.of coordinates was first clearly
and publicly .expressed by Descartes.”? '

This discovery tended to-widen the scope of geometry by associating
many parts of it with algebraic symbols It was the great forward step
in modern mathematics. which made possible the-discovery of the cal:
culus.by Newton and Léibniz and opened vast fields of quantitative
functional relationships. The influence on modem hlgh -school geometry .
is still Jargély unfelt. .

" Mention should be made of the bnlhant mathematician, Pascal. He
made no new phenomenal dxscow:ry comparablé to that of Descartes,
but he wrote on conics, made some discoveries in physics, and discovered
a famous theorem beanng his name that the opposite sides of a hexagon
inscribed in- a-conic intersect in- points that are collinear. From. this

rem he deduced over 400 corollarjes.!®
/Since some trigonometry-is being included now in many high-school

‘geometry texts, a brief account will be given of its development. Ahmes
used a relation equivalent to:the co-tangent of an angle in his shadow
reckoning. Astronomers found that for a given angle in a circle of given
radius the chord 3 was constant. They made a table of chords (140 B.C.)
and of half chords (510 A..) which would correspond closely to our
sine.’® As late as 1560 one writer- uses perpendzculum for sine. Chord
and half-chord were used with sine for many years, giving both a geo-
‘metric and algebraic meaning to the function. The tangent ongxnated as
the result of shadow reckening.

Trigonometry more than any other branch of mathematxcs seems-to
be the product of many men, no one of whom made any such outstand-
ing contribution as did Euclid or Descartes for geometry Although its

10 Smith.’ 0p. it.; Vol. I, p. 116f.
¥ Ibid., p. 376.

»Ibid,, p. 382,

2 Ibid., Vol. 11, p. 614,
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origin dates back to Ahmes in 2300 B.c., trigonometry did not assume
- its present-form until algebraic symbolism was perfected in the seven-
"téenth century. It has been incidental to geometry because it depended
on tables and consequently needed more than ruler anq compasﬁes for its
use, ..

‘Other outstanding discoveries in the field of mathematics have accom-

panied’ geometry but have had less effect on it even than did. trigd-
nometry, although geometry has been indispensable to-them. The con-
tributions of Newton, Leibniz, Euler, Lagrange, Gauss, Laplace, ]
gendre, dating from 1680 to 1800, with their development of calculus,
theory of numbers, least squares; and elliptic functions, mark bright
spots in the progress of mathematics, without which our present civiliza-
tion would not be possxble Theiwork of these men would likewise have
been xrnpossxble without the foundation work of Thales, Pythagom
Plato, Euclid, Descartes, and other pioneers. - - e

The-brevity of this historical ‘treatment may have left the impre.sion:

that Euclid’s Elements was handed down unmodified or unimproved'
from hlS time to the present. Such is far from the truth, as any study of
the “Elements” will soon disclose. Many modifications were made by
able mathematxc:ans, mostly from France Germany, and England.®
Some of these were slight and some radical. Mention will be made here
of only one of the most outstanding, that by A. M. Legendre in 1794,
Legendre, although he abandoned to some extent the sequence of Euclid,
.was ‘logically sound and so maintained the respect of mathematicians.
He differed from Euclid in several other respects. He referred to arith-
metic and ‘algebra for the treatment of proportion and assumed the
.correspondence between line segment. and number. Euclid insisted that
all constructions as well as theorems be proved before they could be
used; Legendre permitted “hypothetical constructions.” In general, his
modifications made the work. simpler without sacrifice of rigor.

" Non-Euclidean Geometry. Even a brief history 'of geometry is incom-
plete without some mention of the “non-Euclidean” as well as the
.modern algebraic and Euclidean geometries. Non-Euclidean geometry
originated out of attempts to prove Euclid’s parallel postulate. As stated
by Euclid, his postulate was essentially this: “If a straight line falling
on two straight lines makes the interior angles on the same side less than
two right angles, the two straight lines, if produced mdeﬁmtely, meet
on that side on which the angles are less than two right ang\le; 721 The

» Stamper. op. cit., pp. 55:103. l
2 Heath, T. L. The Thirteen Books of Euclid’s Elements. Cambridge University Press,
London, 1926, Second Edition. Vol. I, p. 202 ~
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. modém form, which is known as Playiau's postulate of parallels is
) essengally this: “Through a given point ohly one parallel can be drawn
to a given strai~"t line.””* 2 In the effortto prove the parallel postu- )
late by an inasrect proof, the opposite was assumed-to be true, that more .
than one line can be drawn through a point parallel to a given line. No
contradiction could be found, however, but the technique-succeeded in
building up.another geometry and in showing that Euclid’s postulate of
paralléls was independent of ali others and consequently could not be
- proved by using them. This werk probably originated with Causs but
was brought to a definite conclusion by two men \vorki!ig independently,
Bolyai and Lobatchevsky (1823). They showed, for instance, that with-
the above assumption the sum of the angles of a triangle would be less
than two right angles.?* Analysis of their theorems shows them to be
concerned. with ﬁgures on a surface of negative curvature; and, conse- -
quently,"dmpb@metry has been called hyperbolic geometry. - 7"
In 1854 Riemann suggested a similar geometry based on the assump-
tion that not even one parallel to a given line can be drawn through a
given point. This resulted in a surface of opposite curvature and in a
geometry called elliptic geometry, ThlS leaves Euclid’s geometry between
them on a flat surface, and it-is sometimes called parabolic geometry 24
: ) In a stlmplatmg article .in the Mathematics Teacher, December
L 1922, Professor W. H. Bussey of the Umversnty of Minnesota gives.an
I excellent surnmary ‘of non-Euclidean geometries. He quotes some of
|
l
|
|
|
l
l
|
|
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the theorems wkich-can be proved:—Lobatschevsky: (1) The sum of _
the angles-of a triangle is less than two right angles; (2) Ina trirectangu-~
lar quadrilateral the fourth angle is acute; Riemann: (1) The sum,of
the angles-of a triangle is greater than two right .angles; (2) In a
trirectangular quadrilateral the fourth angle is obtuse; (3) “There are
no similar figures”; (4) “A straight line is the limit approached by a
circle where the length of the radius approaches onehalf of. a line-
length ”26
Ttis easy to see that on a curved surface such as a sphere on whlch a
straxght line is a great circle, that not even one Iine could be drawn
through a point which would be parallel to a given line. Although.we are
' living on the spherical surface of the world, and Einstein has presented
evidence to prove that space also is curved, yet what we see is=so ap-
parently flat that the Euclidean geome?ry is the accepted form. The

2 Spith. 2. cit, Vol. 11, p. 283,

2 Heathlep. cit,, p. 220.

3 Smith, op. cit., Vol. H. p. 388. LN

= Bussey, W. H. ’lon Euclidean Geometry.” Mathematics Teacher, Dec. 1922, p. 445.
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others- are mterestmg largely for. their emphasrs upon the necessity for
accepting certarﬁpostulates without proof-in order to build a system of

.loglc based upon them.? They emphasize furt.ber the arbitrary nature oy

of- thosg postulates so far as the logic.of the system is concerned.

. Geometry has had a long - and vigorous history. Probably the out—
standmg feature of .it is the manner in which the ideas of. Plato and’
Euclrd have . dominated pldne demonstrative geometry for over 2000
years, bamng most varjations. As' geometry teachers and students we
Have been blind. followers of Euclid, unaware: of other -geometry ma-
terials - equally. valuable and other ledders.-equally -challenging. .-

Gw/rng&yx&a&hmt A brief history of geometry as a school

- subJect should be a ﬁttmg close -to -this section. The study of Euclid
was ‘prescribed . :-Oxford in the thirteenth- century: By the latter half
.of.the fourteenth century candidates for the master S- degree were study-
ing, at most, the first six books of the ‘hlements’ For the bachelor’s” -
degree little: ofno. Euclid was requrred When Harvard was founded- in
1636, anthmetrc'and geometry were taught one d'ay a week for three-
fourths of"g :yeay in the last-year of the course. In 1726 prmted texts
began to ap?e‘?;r and Euclid was taught at Harvard and Yale in the -
fourth year. It was.placed in the second year-at Yale in 1744 and at
Harvard in'1787, but not until. 1818 was'it-a first year subject. In 1844

,

tions, In 1887 all of plane geometry was requlred/ for entrance to Har-

.vard As early-as 1818 Phillips Exeter Academy /Affered geometry in- the
fourth- class of the classical college preparatory course. Geometry has
constantly..crept downwatd until now much of it is taught before stu-

" dents enter-the senior high, school.2”

Thé-early textbooks used, following Euclrd’s own comprlatron in 300
B.C., began. with many translations and copies before printing was in- i
vented first with that of Theon of Alexandria in 400.4.0. The first edi-
"tion-of- Euclid to be prmted in Latin was from the. Adelard- -Campanus
translation from Arabic by Eunest, Ratdolt at Venice in 1482.2" The first
,%Englrsh translatron was by Henry Billingsley in 1570.% One of the
most wrdely used Englrsh translations was by Isaac Barrow in 1655.%
In 1795 the first course in plane and solid geometry was compiled in
Playfair’s: Euclid, but the first radical d;g}uuﬁ from Euclid was by '
. Légendre, who abandoned somewhat EugHd’s sequence, in 1794. This

* % Hassler and Smith. The Teachmg of Sccondary Mathcmatu:: The Macmillan Co,,
1930, pp. 89-10L. -
7 Stamper. op. cit., pp. 52, 96fL.
» 3 Sanford. op. cit., p. 275,
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was followed by texts by Davies in 1840 and Chauvenet in 1870 and
Todhunter in 1889. Since then many geometry texts have been pub-

hshed differing in sequence, form, and applications, but only slightly %

in actual content from Euclid’s Elemerits.
The method. of teaching geometry has also a history. “The early

_Greeks used the Socratic method, while in the early universities the

puplls learned ‘by copying from_dictation or lectute. During_the seven-
teenth century in Germany demonstrative work began to be emphasized
and’in the elghteenth century the custom of students’ explammg proposi-
tions was- comnion. Although the nineteenth century saw the dogmatic
method generally discredited, yet traces of it remained especxally in
England and’the United States.”s°

It is c6ﬁ1parat1vely recent that the possxbllmes of geometric originals
have been realized :and. that the apphcatxons of geometry have been
pointed out as a pattern of reasoning. which may apply to other than
_geometric facts. Schultze claims that “a course in ometry should be

“principally a course in the methods of attacking ongmal exercises; the

regular_book demoristrations should follow as by-products of such a
coursé.”t As indications of the applications of the patterri of geometric
reasonmg to sotial situations and consequently of geometry as training

in analytic thinking, Keyser, Thinking About Thinking* Keyser, Pas- .

tures o/ Wonder,?* and Upton, The Indirect Proo/ in Geometry and in
Life* are excellent illustrations.

-~

II. THE FuNcTtioN oF HiGH-SCHOOL GEOMETRY

Comparison of Intuitive and Demonstrative Geometry. The purpose~

of teachmg demonstrative geometry in the senior high school is not
pnmanly to glve the student information concerning the facts of space
relatlonsths He does not study demonstrative geometry merely to learn
that the sum of the angles of a triangle equals 180°, that two right
tnangles are similar under certain conditions, that the area of a circle
equals =%, or that the volume of a cone equals 14zr*h. Many of these
.facts are included in the ordinary seventh, eighth, and ninth grade

"Stamper op. cst., 9. 33,

”Stampcr op. cit., p. 102, :

3 Schultze, Arthur. The Teaching of Mathematics in Secondary Schools. The Mac
millan Co., 1914, p, 99

”Kcyscr, C. J. Thinking about Thinking, E. P. Dutton :md Co., 1922,

8 Keyser, C. J. Pastures of Wonder. Columbia Umvcmty Press, 1930,

R Upton, C, B. The Indirect Proof in Geometry and in Life. Fifth Yearbook of the
National Council of Teachers of Mathematics. Bureau of ' ‘Publications, Teachers College,
Columbia University, New York, 1930, pp. 102.133.
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caurses Table II shows the results of a comparative study of six sets of
Junior high-school textbooks toget.her with three typical seniqr high-
school geometry-textbooks, .

Table I1, Part A, shows tiie geometry vocabulary found to be used in
)umor ‘high-school “textbooks: in' mathematics. The terms are classified
as’ follows terms used in connection:with (1) Lines, Points, and- Seg-
-ments;, (2) Angles, (3) Triangles; (4) Polygons; (5) Circes; (6)
‘Solids; (7) TIrstruments; (8) General Terms. The table indicates the -~

T.wu: 10

Vombulary, Abnlmes, and Theorems of Geometry Used in at Least One-half of the

Junior High-School Courses as Found fro.n an Analysis of Six Sets of Modern Junior,

High-School Mathematics Textbooks, 2nd Additional Terms, Abilities, and Theorems
Used by Two, out of Thres Typical Senior High-School Geometry Textbooks.

In_Junios Additional .
Hizk School in Sr. H.S. . s

A, Vombulary The number of terms in connecticn with

1. Lines, points, and segments :
2. Angles: 31 12 . :
~ 3. Triengles ’ ~ 1 5
4. Polygons 14 16
. S. Circles 6, 8- -
6. Solids 10 0 .
7. Instruinents - ~ 1 H
8. Geaeral terms 25 25
B. Abilities. Number of different abilities involving .
‘1. Direct measurement or compttation from ’ N
. direci measurement . 21 2 -
.2, Manipulation of measures L7 o 2
3. Use of instruments 10 0 -
4. Indirect measurement 8 1 .
S. Making constructions ¥ 18 .30 ¢
6. Drawing designs based on geometric figures 4 0
7. Constructinggraphs  ~ 3 0
8. ellaneous abilities 3 2

C. Gcometnc principles used.

1.'Axiome and postulates used 9 20 b
2. Theorems mentioned 38 106

3. Theorems Proved S 139 (226)

. List of t..xts analyzed

1. Wentworth-Smith-Brown: Jusior High School Mathematics. Ginn and Co. 1926.
2. Gugle, Marie: Modern Junior Mathematics. Gregg Publishing Co. 1920.

~ 3. Schorling and Clark: 3Modern Mathematics. World Book Co. 1927.
4. Hamilton, -Bliss and Kupfer: Essentials of Junior High School Mathematics.

American Book Co. 1927,
5. Stone, J. C.: The New Muthematics. Benj. H. Sanborn and Co. 1927,
6. Breslich, E. K.: Junior Mathematics. Macmillan Co. 1927,
7. Nyberg, Joseph A.: Plan¢ Geometry.-American Book Co. 1929. |
8. Wells and Hart: Modern Piane Geometry. D. C, Heath & Co. 1926. |
9. ?:mlthBZI;oberg, Reeve: General High School Mathematics. Book II. Ginn and . |
0. 1

EMC ‘ /. _ | ~~
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»

number of different terms used by at least half of the books analyzed.
All terms used by less than 50% of the books were 1.0t included in the
table. Table II, Part B, shows the abilities of geometry developed, or at
least taught, in the junior high school. These abilities are classxﬁed as:
(1) direct measurement or computation “from direct measurement (2)
mampula;xon of measures, (3) use of mstruments (4) indirect measure-
‘ment, (5) making constructions, (6) drawing de_signs, (7) constructing
graphs, (8) miscellaneous. Again all abilities not presented by at least
50% of the texts were not included in. the table.

Part C of Table II gives the number of axioms, postulates, and both
the theorems mentioned and those proved in the junior high-school texts.
This shows that in so far as textbooks indicate what is taught in the
junior high school, a large amount of geometry as information is in-
cluded. However, Part C, 3, indicates that very little emphasis is placed>
upon proof of this material in the junior high school. ~

‘The last column of Table 1I is a summary of a similar study for
semor high-school geometry, and indicates the number of additional
terms, ‘abilities, and theorems of plane geometry which are given in the
plane geometry course but are not included in 50% of junior high-
school texts, For instance, the 26 terms concemed with lines, points, and
segments whlch were not included in at least 50% of the junior high-
school textbooks were such terms as auxiliary lines, concurrent lines,
median of a trapezoid, common chord, common tangent, line of centers,
centroid, excenter, circumcenter, orthocenter, apothem, ‘projection, tan-
gent. Many of these were mentioned in some of the junior high-school
texts but not in half of them. It is evident from this table that some
information in the form of vocabulary used and abilities developed is

added in the senior high-school geometry course, but it is also evident . .

that the outstanding addition is the proving of theorems. Only 5 theorems
were proved in the juniot hlgh school while 139 additional ones were
proved by two out of three of the senior high-school demonstrative
geometry texts analyzed. Further study of the data ipdicates that 226
additional theorems were proved by one of the three texts analyzed, ]
While it is not contended that ‘a student of demonstrative geometry,

by demonstrating facts and pm‘.qples of .geometry with whicki:he was
previously intuitively familiar, fails to improve his mastery of those facts,

it is contended that such an increased mastery of facts is only a\by- e

product. The oustanding contribution of geometry, the element whlch
has made it interesting to thinking men for 4000 years, the part which
thrills children when it is correctly taught, is its logical structure, its
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organized reasoning with simple concepts,_ its inherent possibilities for
producing in children the satisfaction of significant achievement.’

The Chief Function of Demomtra!we Geometry. The National Com-
mittee on the Reorganization of Mathemafxcs states .that the principal
purposes of instruction in plane geometry: a;e “To-exercise further the
spatial imagination-of the student, to make him familiar with the great
basal- propositions and their apphcauons to devélop an understanding
and appreciation of a deductive proof and-the ability to use this method
of reasoning-where it is applicable, and to form habits of precise and
succinct statement, of logical organization of ideas, and of logu:al mem-
ory.”*s The second of these, “to know the great basal propositions,” is
an objective- mvolvmg largely information. The others.are all of a more
or less indirect, concomltant nature based on the system of logic rep-
resented by the SJmple concrete facts and prmaples of geometry.

Other statements of the function of demonstrative geometry could
be quoted almost indefinitely but only a few will be presented here. Smith
and Reeve,*® in a chapter on demonstrative geometry state that “the
real purpose of the subject is suggested more by the word ‘demonstra-
tive! than by the word ‘geometry.’ The chief purpose of this part of
mathematics is to lead the pupil to understand what it is to demonstrate
something, to prove a statement logically, to ‘stand upon the vantage
ground of-truth.’ ” Reeve’s statement of the purpose of geometry in the
Fifth Yearbook .of the -National Council is even more forceful.® “The
purpose, of geometry is to make clear to the pupil tke meaning of demon-
Stration, the meaning of mathematical precision, and the pleasure of dis-
covering absolute truth. 1f demonstrative geometry is not taught in order
to enable the pupil to have the satisfaction of proving something, to train
him in deductive thinking, to give him the power to prove his own state-

. ments, therit is;fot worth teaching at all.” ’

Professor Upton in the Fiftl: Yearbook claims that, “some teachers
may at first think that our purpose in teaching geometry i$ to acquaint
pupils with a certéun body of geometric facts or theorems or with the
apphcatlons of these theorems in everyday life, but on second reflection
they wxll probably agree that our great purpose in teaching geometry is to
show puplls how facts are proved . . . the purpose in teaching geometry is
not only to acquamt pupils with the methods of proving geometric facts,
‘but also to familiarize them with that rigorous kind of thinking which

7 % National Committee Report. op. cit., p. 43..

% Smith, D. E. and Reeve, W. D, The Teaching of Jumar High School Mathematics.
/(nnn and -Co., 1927, p. 229.
: 3 Reeve, W, D. “The Teaching of Geometry.” Fifth Yearbook, p. 13f.
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Prof&sor Keyser has so aptly called ‘the If-Then kind, a type of thinking
which is dlstmgulshed from all others by its characteristic form, If this
"is so, then that is so.” ... Qur great aim in the tenth vear is to teach the
nature of deductive proof and to furmsh pupils thh a model for all their
‘life thmkmg 38

Schlauch, in his chapter on the analytic method in the Fifth Yearbook,
asserts: “Geometry seems, of all school subjects the best adapted to
initiate a student into the meaning of mathemaucs as a science of neces-
sary conclusions.”*

The statement of the purpose of demonstrative geometry made by two
Harvard men, Professors Birkhoff and Beatley, is interesting. “In demon-
strative geometry the emphasis is on reasoning. This is all the more im-
portant because it deepens geometric insight. To the extent that the sub-

" ject fails to develop the power to reason and to yield an appreciation of
scientific method in reasoning, its fundamental value for purposes of in-
struction is lessened. There are, to besure, many geometric facts of
importance quite apart from its logxcal structure. The bulk of these be-

- long properly in the intuitive geometry of grades VII and VIII, and are

not the chieﬁend of our instruction in demonstrative geometry in'the
senior high school.”*® Professor W. R. Longley,** of Yale, expresses much
the same.sentiment, although he stresses also the practical value of
knowledge of the formulas, facts, relations, and methods used in
geometry. .

E. R. Breslich, of the Univer: ty of Chxcago, gives many specific ob-
jectives, not only for geometry but for the varius units of geometry.
The contributions of geometry to these various objectives include a
knowledge ‘of the facts of geometry, and also the ‘power “to analyze
geometric situations,” “to attack and solve problems of space,” “to
establish geometric facts by proof,” “to reason correctly.”?

C. H. Judd, in his Psychology of Secondary Education, in speaking
of the purpose of hlgh -school education, claims: “Higher education is
organized for the pukpose of giving pupxls insights, Ability to use ntm-
bers as necessary instruments of civilized life is usually acquired by the
time the pupil comes to the high school, at least i in sufficient measure to
meet ordinary demands. Whatever Justlﬁcatmn there may be in ele-

3 Upton, C. B. “The Use of the Indirect Proof in Geometry and Life.” pp. 131.132.

# Schlauch, W. S. “The Analytic Method in the Teaching of Geometry.” p. 134.

“ Birkhoff, G. D. and Beatler, Ralph, “A New Approach to Elementary Geometry.”
Fifth Yearbook, p. 86. '
*+ # Longley, W. R. “What Shall We Teach in Geometry."” Fifth Yearbook, p. 29.

€ Breslich, E. R. The Teaching of Mathematics in Secondary Schools. University of
Chicago Press, 1930. Vol. {, p, 203,
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‘mentary arithmetic for,a simpler type of treatment of mathematical
{ideas, there is no justification in algebra and geometry for mere mastery
of formulas and repetition of textbook demonstrations. . . . The duty of
higher education is to conserve all that has been achleved in the lower
scheol and constantly to direct the pupil’s attention to hlgher forms of

generalized or scientific thinking.’

C. J. Keyser; Ementus Professor of. Mathemat;cs at Columbia Uni-

h _ ' Vversity, contends that “mathematics may be viewed elther as an enter-

prise or as-an achievement. As an enterprise it is characterized by its
-aim, and" its aim is to think rigorously whatever is rigorously thinkable
or whatever may become ngorously thmkable in the course of the up-
ward striving and refining evolution of ideas. As a body of achievements,

matheraatiés consists of all the results . .
enterprise.”’**

. from the prosecution of the

L]

‘W. W. Hart, from the University of Wisconsin, claims that “Demon-
strative Geometry uniquely develops the habit of deduictive thinking, . . .
more_important than the ‘habit of functional thinking.” This habit .is
based upon the appreciation of it and the use of it in geometry. . .. The
training in demonstration should come from the solution of originals,
*and this must be made-the chief aim of the course.”*

From England the pen of John Perry informs us that “we pay teach-
ers to give us something that will be useful in our education and useful
. to us in life, useful to.us in understanding our position in the universe.

. One use of Mathematics is giving men mental tools as easy to use as
theu' arms or legs; enabling them to go on with their education.” Further,
he contends that mathematics should teach %a man to think things out
for.himself and so deliver him from the present dreadful yoke of au

.thority.)"e

Summary. In .review of these statements of the functlon of demon-
strative-geometry in the tenth grade, and in restatement of the point
of view represented by this study, the following orgamzatlon can be

used.

N ¢)) Practical, immediate, or direct aims. There is no question con-

~e2

=

“cerning the/practxcal value of knowing that the sides of similar triangles
are_proportional, or that an angle may be constructed equal to another

© Judd, .C. H. The Psychology of Secondary Education. Ginn and Co.. 1927, p. 111,
4 Keyser, C. J. Human IWorth of Rigoreus ‘Thinking, Columbia University Press,

1916, p. 3.

© Hart, W. W. “Purpose, Method, and Mode of Demonstrative Geometry,"” Mathe-

matics Teacher, XV1I, 1924, pp. 172:176.

4 Perry, Jobn, “Btmsh Association Report,” Teaching of Mathematics. Macmillan and

Co,, 1901, pp. 4, S.
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by a definite process. Furthermore, there is also practical value in learn-
ing to make precise statements, to appreciate the need,and value of
deﬁnmons, to feel the power and the technique of rigorous deductive
proof, to analyze a_complex situation mto simpler parts, to discover
and to prove a general truth. ; N
Then too, to know the meaning of “Pyihagorean theorem” or an
~
“inscribed regular polygto/n,/”as well-as to m\lderstand a reference to “a
pound of flesh” or “cosmic radiation,” is an indjcation of culture. To see

the beauty in the geometrical forms of nature, art, and mdustry, and to .

appreciate the power and perfectlon of log1cal reasonmg are achleve-
ments-which eeducated people like to possess.

(2) Indn-ect transcendent or concomitant values. The sxmple con-
cepts thh whlch geometry deals give it a pecullar function. Geometry
achievesits. hlgh&t possibilities if, in addition to.its direct and practical
usefulness, it can. establish a pattern of reasoning; if it can develop
the power to think clearly in geometric situations, and to use the same
discrimination in non-geometnc situations; if it can develop the powc’r
tc generalize with- caution from specific cases, and to realize the force

and all-inclusiveness of deductive statements; if it,can develop an n

appreciation of the place and function of definitions and postulates in the
proof of any conclusion, geometric or non-geometric; if it can develop an

attitudc of mind which tends always to analyze situations, to understand’

their inter-relationships, to question hasty conclusions, to express clearly;
precnsely, and accurately non-geometric as well as geometric ideas.
‘There seem to be certain ordinary, practical, direct values which
are easy to get, and also some superior, :transcendent- values which are
possible but not certain. These superior values depend greatly, perhaps
largely, -upon the way geometry is taught, and consequently are not
attained by all teachers, nor by all classes, nor perhaps completely by
any teacher or.class. They constitute an )deal and depend upon the reali-
zation that geometry is not a bag of tricks to he performed, not merely
information to be learned, nor is it a list of rules to be‘memonzed Itis
rather.a fundamenfaltsystem of logic to be understood, it is an organiza-
tion of universal truth to-be appreciated, it is a pattern of reasoning

~—t0 be emulated

I
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TII. SoME SETTLED AND SoME UNSETTLED DIFFICULTIES

1. THE FOUNDATIONS OF GEOMETRY: POSTULATES, AXIOMS, UNDEFINED .

TERL'IS, AND DEFINITIONS; THEIR-NATURE AND NUMBER

Postulates. The fallacious and inadequate conception that a postulate
or an axiom is a “self-evident truth,” is still present in many textbooks of
geometry It is a new idea even-to many geometry-teachers that postu-
lates and axioms are not necéssarily true, in fact there seems to be some
ev1dence that some of Euclid’s are false and that the world in which we
live is not-a Euclidean world. However.that may be, the important fact
about -postulates s, not that they may be true or false, but that they
are merely statements which are accepted without proof, and that as

- such, they .constitute the foundation of- -geometry.
As expressed by ﬁescartes, Pascal’s conception of “the true method”~

was “to define all-terms and to prove all proposmons ™7 In contrast to
Pascal s statement  is the statement by Veblen that “in geometry each
techmcal term is defined in terms of others. Hence at the beginning at
least one term must be undefined else there would be ng begmnmg
Similarly every proposition is based on others from which it is deduced
Therefore, first ones must be assumptions.”® Also, Aristotle stated that
“every demonstrative science must start from mdemonstrable pnncxples,
otherwise the steps of demonsttation would be endless.”*?

In other words, since there must be a beginning somewhere, there
must be some terms undefined and some relationships unproved; some
“primitive ideas” and some “primitive propositions.’® Since these first
relations cannot be proved, we'do not know that they are true, and con-
sequently ‘modérn geometry makes no such claim. Furthermore, all
theorems proved by the use of the postulates are true only provided the
postulates are true; that is, they are true only relatively.

Inﬂuenced y the idea which Pascal-has called “the true method,”
mathematical ‘geniuses have ‘constantly endeavored to reduce the number
of postulates {o as few as possible. This effort has thrown much light on
the question of the truth of postulates. The paraliel postulate_has seemed
of all postulates the most susceptible to proof. Efforts to prove it have
been previously discussed. The ‘three postulates, “Only one line can be

“ Jevons, W. S. Elementary Lessons in Lo;ic. Macmillan Co., 1900, p. 112,

4 Veblen, Oswald. “The Foundations of Geometry.” Chapter I of: Young, J. W. A,
Monographs on Modern Mathematics. Longmans, Green and Co., 1911, p, 4.

# Heath, op. cit,, p. 119,

® Russcll, B. and Whitehead, A. N. Principia Mathtmanca, Vol I. Cambridge Univer-

sity Press, 1910, p. 1.
H
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drawn through a ngen point parallel to a given lxne," “More than one
line.can be drawn through a given point parallel to a given line,” and

e,

“Not even one line can be drawn through a point parallel to a.given: .

lxne," cannot all be true. Euclidean geometry is based-on the- ﬁrst one
of these postulates,-and each.of the two non-Euclidean geometries is
based on.one of the other two; yet all three geometries have their other
postulates essentially the same: Each of these géometries is a per-
fectly:logical system - thhout contradiction; and, consequently, neither -
one can be said to_be:true and the -others false. All that we-can there-
fore say about’ these postulats or any,others is that since they are not
necessarily- true, they are merely assumptions upon which ‘the rest of-
geometry is built.

*Gedometry beécomes much ‘more meanmgful if the  postulates- are .

‘thought of as arbitrary statements, not necessarily- true, but- accepted
-a$' true, without proof. They are, in-a sense, merely the “rules of the
game.” They are the foundation pnnuples upon which the whole reason-
ing structure is built: Forder speaks-of them as: “unproved proposxtxons
_about undéfined entities,”s?

Axioms and Postulates. It has been customary in high-school geometry
-to dxstmgmsh between axioms and postulates, axioms being rather -gen-
eral;statements such as, “Equals may be.substituted for equals,” and
postulats being consxdered as geometric statements such as, “Only one
line ¢an.be drawn between two poxnts." thle this distinction still- pre-
vails-in- high-school geometries, it is no longer in accord with current
usage in modern mathematics on the higher level. “Postulate, assump-

tion,.axiom; primitive proposition, and fundamental hypothws . are ,J
{

bexng used -interchangeably according to the taste of the author. nse

Undefined Terms. The foundation®of geometry-consists, not only of
relationships called *axioms or postulats which are accepted unproved
and which Einstein-speaks of as ‘“implied -definitions,”* but -also- of
terms-which are accepteé?w:thout rigorous- deﬁnltxon, such as poxnt
line,- plane, solid, equal, greater than, less than, between, outside,. length,
dxstance, area, straight, direction, erect and draw, These -terms rnay ‘be
described or explained but really cannot ‘be satisfactorily deﬁned by.
the use of concepts more simple than themselves.

” Forder, H. G. Foxndations of "Esclidean. Geometry, Cambndge Unlversity !’ress, Lon-

don, 1927, p 4,
8 Xeyser, C. J. Mathematical Philosophy. E. P. Dutton and Co., 1922, p. 40’

London, 1922, p. 45.

# Einstein, Albest. S:d:hghn on Relativity, Methuen and Co., Ltd., 36 Ess/ex St."W. C. oy
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Area is defined in-Webster's International Dtcttonary as “the super-
ficial contents of.any figure, the surface included within any given lines.”
It would then be necessary to define “superficial contents” and “surface,”
which are more-complicated than the term area itself. In his Founda-
tions of Euclidean Geometry, Forder* gives a rigorous definition of
area. He proves first by similar right triangles that the product of the

base and altitude of a triangle is constant, and then defines one-half.

‘this product.as the “measure” or area of the triangle. 'In this case the
definition still depends on many comp,hcated terms which-may them-
selves be left undefined and this definition would consequently be use-
less in-beginning geonietry work.. There is in this study a frank ad-
mission of- the use of many-undefined technical terms whose meaning
is fairly well known. The reader must carry in kis mind any irage
~or meaning of- an.undefined term “which he can reconcile with what
~ is said, about. it:"?* The statements that a point has no dimensions, a
line has length only, a surface length and width, or a solid has three
dlmenswns ‘help to clarify the meanings, but they are not deﬁmtlons
They are explanatxons and descnpnons only. g
Definitions. The statement that many terms are used without deﬁm-
tion must .not be- erroneously carried too far. Very carefully, worded
_ definitions are needed for many terms in order that their mea.nmg may
be clear and statements made concerning them may be ' understood.
For mstance, if a trapezoid is defined as a quadrilateral with:one pair
of parallel sidgs, or if defined as a quadrilateral with one and!only one

pair of parallel sides, the meaning is quite different. Definitions are 2 -

very important.pait of geometry: they make it precxse, they make it
unambigugus, they help to make it .a sciencé, Yet it is evident that
there will of necessity be some beginning terms left undefined, and also
that definitions, like postulates, are arbitrary. That is, one author may
‘define 2 trapezoid one way and another author may define it dlfferently

yet. edch, if consistent, would have an equally rigorous geometry Fortu-
nately; the recommendations of the National Committee on common and

.unwersal ‘usage prevent s:gmﬁcant variations in the definitions of terms
« used:.

Furthermore, the second function of a definition, aside from its use
in clanfymg hoticas of common concepts, is its use as a “Symbollc con-
-venience,” or as Bertrand Russell says, “a typographical convenience.”’s
“From a strictly logical point of view a definition is the ass:gnment of

& Forder. op. cit., p. 261. ' < ®Veblen. op. cit., p. 5.
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a short name to a lengthy complex of ideas,”® Frequently the full mean-
" ing of a statement which uses a newly defined term is made clear only
by substituting the definition for the term. One needs.only to read “Prin-
cipia Mathematica” or even Ramsey's®” defense of Whitehead and Rus-
sell’s technique to realize the extensive use and great convenience of ar-
bitrary symbols which are merely the shorthand for a lengthy complex
of ideas. Béginning with the simple use.of letters in formulas. mathe-
matics makes constant use of arbitrary symbols which it defines in a cer-
tain-way in order that in using those symbols time and energy may be
saved. Even such simple devices as the use of three letters, “A.S.A,,” for
. a whole theorem concerning the congruence of triangles is a legitimate
substitution of a symbol for a “lengthy complex of ideas.” In the next
" chapter the termr“heuristic teaching” will be arbitrarily defined and used
to miean a fourfold technique of teaching. Definitions therefore have a
double function: they secure brevity and clarity. )

In this study many terms will be left undefined yet careful definitions
wnll be required for other terms. Postulates will be treated as unproved
statements of relatlonshms which are accepted and used to-prove other
relatljonshlps It is therefore evident that the proved relationships are
true-only if the postulates and definitions are true, and that the science
-of geometry consists in establishing this dependence. In other words
we are given cer'zin postulates, undefined terms, defined terms, and per-
haps certain other premises; then, assuming these without proof, other
relationships are proved. - »

Number of Postulates. Since geometry is a system of reasoning built
upon certain arbitrary definitions and postulates, it has seemed to mathe-
maticians and logicians since the time of Euclid that it would be desir-
able o have just as-few postulates as possible. Even now that is.a real .
objective for pure mathematics. Forder’s new book The Foundations
of Euclidean Geometry, is an illustration of continued effort along this

_ line. “The object of this work is to show ihat all the propositions of
Euclidean gecmetry follow logically from a small number of axioms ex-
plicitly laid down, and to discuss to some extent the relations between
these axioms.”® Forder then proceeds to discuss the “many flaws” that
have been discovered in Euclid’s treatment during the last 2000 years,
particularly his omissicn of the relations of “between,” “inside,” and “out-
side;f’ which are so important in any deductive reasoning.

® Stebbing, L. S. 4 Modern Introduction to Logic. Thomas Y. Crowell Co., New York,
1930, pp. 180, $40.

*# Ramsey, 'F. 'P. The Foundation of ‘!amcmam: and Other Logical Essays. Harcoun.

Rrace and Co., London, 1931, pp. xvii, 212:236.
® Fordér, Henry G. op. cits, p. L.
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'L‘he attempt by Euclid and many of his followers to prove the parallel
postulate is an indication of the effort to reduce the number of postu-
. lates. Euclid’ had proved several theorems by using certain postulates,
' theq‘had to add a new one to prove the parallel line relations. As worded
by Playfair, this postulate is: “One and only one line can ‘be drawn
through a given point parallel to a given line.” The effort to prove.this
true by-assuming it false led to the dxscovery of one-non-Euclidean
geometry by Bolyai and Lobatschefsky, in which all of Euclid’s axioms
and\ postulates hold except the parallel posiulate and in which all of
Euclxd’s theorems except. those based on this postulate are true. Further
-effort’ to prove._ this postulate led Riemann to-discover 8 second non-
Euclxdean geometry sometimes called elhptlcal geometry.>?

These great achievements in the history of human thought are largely
the by- products of an effort to reduce the number of axioms, and postu-
lates. Whlle that may be a desirable objective for mathematicians and

Iogu:xans, it is not a defensible objective -for high-school geometry. We- .

have, in contradiction to this historic motive, the statement by the Na-
tional Committee on the Reorgamzatlon of- Mathematxcs that, not only
.should we postulate “all right angles are equal,” but also such theorems

as “the area of a‘rectangle equals the product of the base and height, ”
and “vertical angles are equal.” Furthermore, the report says:that the
list given is not exhaustive but “should be taken as representative of the
‘type of propositions which may be assumed.”® The trend in high-school
_gcometry seems clearly to be that of postulating many relationships
which were previously proved although the very obviousness of the re-
lationship made the proof in many cases rarely undsrstood by hxgh
: ‘school pupils. This trend is desirable and_defensible in-that it makes
' ,geometry more ea’sxly grasped at the begmnmg\of the course. The train-
ing in reasoning s not less valuable: -because it increases the number of

axioms and postulates, but rather more valuable because it emphasizes °

more the nature of the postulate bai is upon which geometry is built.® ¢2

The Use of Postulation as a Teaching Techmque to Secure a Bettér
Léarning Situation. In this study there will be no attempt to limit the
number of postulates to a minimum merely for the purpose of getting ab-
solute “mdependence ” There will be two criteria used in determining
the system of postulates; (1) “Consistency” and (2) “Understandabil-
ity” or simplicity, Wherever there seems tc be some great gain through

® Heath, T. L. 0p. cit,, pp. 202.220, 280, Y
® National Committce Repory. op. cit., p. 79.

#t'Forder, ‘H. G. op..cit., pp. 4-5.

® Heath; T. L. op. cit,, pp. 117.124, 195-240,
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¢ tempo}ary or permanent postulation of a proposition, such postulation
: shall be used in this study. For instance, in the beginning of the geometry
course the principle techmque to be gained is the use of the congruence
“theorems in solving problems. Their proof by superposition is not only:
long : and difficult, but also a conflicting pattern that is-riot useful Fur-
them.are their postulatlon makes it p- _ible to begin geometry with
simple constructions.in which there is a motive for proving the construc-
; _ tion correct. Consequently, the congruence theorems will be postulated
: ) in this study. The proofiof the converse of the first principal theorem cn
Do parallels. involves .the use,of indirect proof at a -time when direct proof
has not been completely mastered. It may. be advisable to postulate this.
.conversé theorem- until the ext theorem involving indirect proof, and .
- then prove both theorems-b . the indirect proof. By this plan the stu-
-dent will get-a better. pr}tsenta on-of and experience with indirect proof
. While-this plan for using po\ulatnon as-a means of. makmg geométey
more teachable is a slight extensxon of the notion of postulates ‘as<the.
foundation of geometry, yet it is fully in-accord with the conception of
a postulate, not as a self-evndent truth, but as an unproved. proposition
which-is assumed in erder to get a begmmng somewhere, For mature
minds that beginning may well'be with a minimu list of postulates, but
for the mind of a high-school or ét')‘llege student it may make geometry
more learnable to shift the foundatjon a little by following.the recom-
mendations of the National.Committees for a greater number of postu-
lates and even going a step further by using temporary or permanent
postulation of theorems whenever there.is a possible gain in interest or
an improved leaming organization.

Systems of Postulates. It is npt the. function of this study to present
in great detail the various systems of postulates that have been devised
since Euclid submitted his incomplete list. It must suffice here merely
to list some of the more noted ones and suggest that the student who
wxshes to delve_more decply ints these systems may do so.

1. Euchd—-300 B.C. 4. Hilbert—1993 “
* 2. Pasch—1882 ° 5. Veblen—1911
3. Veronn&e—1891 . 6. Forder—1927

Of these thz most famous is the.system of 21 postulates given by Hil-

bert. His book will be interesting reading for aty ghilosophically minded:
mathematician. Practically every textbook has a slightly different sys-

‘ - tem of postulates and between Euclid and Pasch there were many changes
.. made in Euclid’s system by men like Wallis (1616}, Saccheri (1733),

£
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Lambert +(1728), Legendre’ (1752) ,Bolyal (1802),.Riemann (1826).
However, the first great extensxon of Euclid’s system of postulates was
made by Hilbert. Since then modern texts by men like Smith, Reeve,
Clark Stone, Hart Hawkes, Strader, Nyberg, Mmck Seymour, Mc-
“:Cormnick, Durell ylor, R. Smith, Hassler, and others, each have
slight modlﬁcatlon%qgthe Euclidean system, inclusions of some of Hil-
bert’s and Veblen’s™1deas,- and a phraseology and- orgamzatlon some-
what md1v1dual ThlS is also.true of definitions and of explanathns of
undeﬁned terms Consequently, since it is not. unprecedented to present
A shghtly dlfferent "system of. .postulates*and 2 new organization of theo-
rems, no lesitation is felt in submitting the following organization, which
is slightly.- different from any and all previous systems. Changes ‘have
Jbeén made. for economyand for simplicity; to shorten the list of essen-
tml theorems and to make the begmnmg more teachable by placing the
empfxams not so much upon. tradition ds upon simple proof patterns.
R e 2. SUPERPOSITION ‘
"The Rigor of Proof by Superposition Quest"ioned The proof of two

) oongruence theotems and several other theorems in Euclid’s Elements

.anu in most modern geometry textbooks is based on the postulate of
superposmon As early as 1557 (Peletier’s edition of Euclid) tﬁe rigor
of this proof was attacked. In the Mathematical Gazelie (Volume 1I,
p 165) Bertrand Russell speaks of superposition in no uncertain terms
““a tissue of nonsense.”®? - -
Essenhally, the criticisms against superposmon take' one of three
forms. First, since a triangle is formed by line segments joining by pairs
three points in space, and since a point has position but no dimension,
and the line has no dimension except length, the triangle cannot be
moved. If you move a point, it is no longer the same point, since all a
point has is position, and every point has a different position; conse-
quently every different positior is a different point. The argument is that,
rigorously speaking, since nelther a point nor a Jine can be moved, it is
unfo;tunate to base a system of reasoning about relationships in empty
Cp!ce on the fallacy that they can be moved.** / -
"The-assumption of movability clearly presupposes, accordmg to Schop-
enhauer,“‘ other than empty space; that a triangle or a sphere is com-
posed of material substance that can be moved. Then as Dodgson65

o “Z‘tachma Geometry in Schools. Report of the Mathemahgal Assocxaho;x G. Bell and
4 Sons. 19,25. p: 27, e
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points out, the reasoning is absurd. Take two oranges with equal diam-
eters and place them together so that their centers coincide, or even two
cardboard -triangles, and attempt to put them in the position of actual
coincidence, and the best you can do is to put one triangle beneath
or beside the other with their angles in paraliel plaiies and points di-
rectly opposite each other. Clearly, motion of plane spatial -figures in
empty-space is’ 1mpossnble and, strictiy speakmg, even-superposition of
equal concrete movable figures for coincidénce is equaily impossible.®¢
Why then dase our geometric reasonmg upon such a questionable-foun-
dation?:

The second .argument ‘is to the effect that the assumptlon that the
postulatlon of superposntlon makes the proof rigorous is itself fallacious
and the proof is actually not a real proof. In proving the congruence of
two tnangles having side-angle-side respectlvely equal, we superpose one
triangle- on the other so that these given parts coincide, and; conse-
quently, the rest of the triangles. In assuming that one tnangle can he
moved+about without change of size or form when we know only that
snde-angle-snde remain constant, we are really assuming that these facts
determine the rigidity of the tnangle and we have, therefore, really
poctulated congruence itself in postulating the possibility of movement
_ ‘with rigidity. The proof is, therefore, but a camouflaged proof -involving
a vicious circle of reasoning.®™ % ¢° In further support of this state-
‘ment is the interesting note by Forder: “It is a scandal that in some ex-
aminations questions still demand proofs involving this vicious method.”s8

Superposition Pedagogically Unsound. A third argument, that congru-
ence should be postulated for high-school pupils because the proof by
superposition is too long and difficult for a first proof, has some claim
for attention also. Certain it is that most classes s¢em to struggle rather
painfully -with these proofs, and consequently, iz would be a distinct
advantage pedagogically to have them postulated, Furthermore, super-
position gives -the pupil a wrong notion of demonstration at the outset,
by bringing in a new type of proof at a time whex: the pupil’s entire at-

terition should be directed to the type used in proving exercises-by the .

congruent triangle method. As the proof is traditionally presented, pupils
are compelled to unleam the method of proof by superposntlon as soon
as it is learned. g

# Heath, T. L. op. cit., pp. 225.231.

¢ The Teoching of Geometry in Schools, pp. 32-35. o
® Forder, H. G. op. cit., p. 91.

® Heath, T. L. op. cit., p. 227, '
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The- P‘ﬂsti;lalion of Congruence for Simplicity at Beginning. In this
course the zrgument will be avoided by using all three congruence theo-
rems as postulates This corresponds rather: well with Hilbert’s noted sys-
tem of: postulates in which congruence by side-angle-side is practically
assumed without proof. The.other congruence theorems are then proved
by Hilbert ' ‘using_an indirect proof.? Logncally, Hilbért's system
is supenor to the postulahon of all three congruence theorems because

his system- is- independent 'and does succeed in.avoiding superposition.

Forder and Veblen prove congruence by.the tise of axioms.on congruence
of -ordered couples.’ ™ The chief defense for complete postulation
of all three theorems, in addmon to the abandonment of superposition,
is simplicity. and, understandabxhty at the beginning of the course. For
‘those who insist on using the proof by superposition, such proof can be
brought in at a.time of review or at some appropriate later date.

This apparent reluctance to accept superposition as a postulate or as
a method of procf, with the consequent postulation of the three congru-
ence: theorems, is not to be construed as an attack on high-school text-
books-whick use superposition, nor upon high-school teachers who use
superposition. Thé sensible interpretation of the situation can be sum-
marized in a few coricise statements. The question is not so much a mat-
ter of right or wrong choice of postulates, as a matter of better or worse
choice_of postulates. Some choice of postulates must be made. Either
superposition must be postulated or at least one of the con -uence rela-
tionships. In order not only to emphasxze the better choice of postulates,
but also t6 emphasize, for prospective teachers, the necessity for a choice,
as well as to emphasrze the nature and function of postulates, the latter
course has been chosen in this study.,

Motion Different from Superposition. Furthermore, the argument
against superposmon is not to be interpreted by those versed in meta-
physics,. as a denial of motion. Perhaps a geometry could be built which
did not use any such concept, but the idea of motion is so fundamental

»
Va

that it will be used in this study as an undefined term or principle. The °

followmg brief analysis of a geometry without motion is suggestive of
its implications and difficulties. —

A compass has two points, that is, two indefinable somethmgs with
zero dimensions just beyond the smallest particle of steel, and through
those two ‘points there is a straight line. As the compass is moved about,

™ Heath, T. L. op. cit., p. 229,

1 Hilbert, David. Foundations of Geometry., Open Court Publishing Co., 1902, p. 12.
73 Forder, H. G. op. cit., pp. 97-103.

1 Veblen, O. op. cit,, pp. 27.32.
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does the: lme ithrough those points move, or does the compass merely

succeed in getting its-points on other lmes, mﬁmte in number and zero
distances apart? Perhaps- the compass does not | have points,.and. those

-zero dimensional positions-just beyond the sharp ends of steel, as- the

compass is moved, in some way jump to various ‘pomts infinite in num-
ber-and separated by infinitesimal distances. The question seems to.be-

-come one of deciding when a point is a point, or what a point- really is.

Are there points on or near the “points” of a compass? If pomts cannot
be moved, if points are merely space. positions, tthen the answer to this
quéstion must be negative.-If points cannot move, then'we must invent a
new word for the sharp end of a needle or a compass. Perhaps there

are-two kinds of points, points which move and pdints which ‘do not
- move, real pomts and mathematical points. p

It seems to be quite possible for-an automobile to move, ,even though

‘it results in dire calamity to attempt to superpose one en-or r into another

of exactly the same size and shape so thag’they both occupy the ,same
space at- the same time. Furthermore, a$ a car moves, solids /planes

lines,.and points on- that car move; oxA;/at least they do whab we ordj-
'nanly describe by the word move; they rotate, they revolye they are

translated on lines-or planes. Althowgh geometry seems 10 be, at least
partly,a study of space relationships, it is not a function of thzs study-to
settle the philosophical argument concemmg the motion‘of spatial figures.

~ Consequently, although other postulates are-chosen o be substituted for

the postulate of superposmon the motion of points, Imes and planes, by
translation. or rotation, is accepted as an undeﬁned commonly under-
stood, and fundamental principle. /

e

3. THE POSTULATION OF CONGRUENCE

Tradition. Since the Superposition.proof of congruence by sxde-angle:

side and angle-side-angle has been senously questioned by prominent
mathematicians.and logicians, and since the number of postulates need
not be kept small, at least for high-school geometry, there seems no good
reason, other than blindly following tradition, why these two theorems
cannot themselves be postvlated and the postulate of supetposition be
abandoned. At least such postulation would greatly sxmphfy the begin-
ning of geomstry and make possible many easy exercises and construc-
tions.

A Near Fallacy. Some high-school geometries have already postulated
the first two congruence theorems, but at this writing few have yet postu-

N

lated the third. Before advocating the postulation of congruence by three
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sides, it would be well to examine the present proof of this theorem. An
examination of any high-school fext will show that the proof depends
upon' the isosceles triangle theorem?and .congruence by side-angle-side.
The isosceles tnangle theorem in turn depends upon angle bisection and
congruence by side-angle-side; and finally, angle bisection, unless postu-
lated, depends for its proof upon congruence by three sides. This is an
excellent example of reasoning in a circle, or what is logically known as
petitio principii (begging the question), unless somelink in the chain
is postulated. Traditionally, this postulation has been in the hypothetical
construction of the angle bisector. The reasoning involved takes some
such form as the followmg Since every angle has a bisector, draw BD
and assume that it is the.bisector of angle ABC. The concealment of
the postulation is cleverly done in many texts; in others very crudely done
by the bare statement, “Draw BD bisecting angle ABC,” the author lit-
tle realizing that such angle bisection depends for its proof upon the very
theorem in the proof of which it is now being used.

The postulation of the possibility of angle bisection has some obstacles
to overcome also. No mathematician would think of postulating angle
trisection even though every angle may have a line cutting off one-third
of it, as well as one-half of it. The selection of angle bisection for postu-
lation is a purely arbitrary decision made by Benjamin Pierce,™ in 1872

and followed ever since. A. M. Legendre proved the: same theorem in
" 1860 by using the hypothetical bisector of the base. There is no reason ~
why either of the other two major links in- the chain of reasoning re-
ferred to above could not have been postulated instead of angle or base
bisection. If the isosceles triangle theorem, that the angles opposite the
equal sides of an isosceles triangle are equal, were postulated, then con-
gruence by three sides could be proved, and finally argle bisection. Like-
wise, if congruence by three sides were postulated, then angle bisection
could be proved and, following it, the isosceles ma{lgle theorém.™

Choice of Postulate Arbitrary. Since the decx;xon \here is entirely arbi-
trary or traditional and any one of the three postul tes makes the reason-
ing equally rigorous, there seems justification for pfs ulating congruence
by three sides along with the other two, congruence theorems. “It is to
some extent a matter of taste which are selected as a basis o the rest.”™
Such postulation makes possible 2 rigorous proof of several important
constructions which are necessary for proving later theorems, and con-

% Dodgson, C. L. op. cit., p. 222, \

3 Christofferson, H. C. “A New Beginning for Geometry,’”” Mathematics Teacher, Vol.
XX, pp. 4798, Also Vol. XXII, . 19.

1 Forder, H. G. op. cit., p. 90.
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sequently necessitates few, if any, hypothetical constructions. Probably .
‘the’ chief defense for the postulation of all three congruence theorems,

and especially of congruence by “three sides,” is nut so much any logi-
cal advantage that it may have, but rather is pe;dagogxcal superiority.”®
The use of superposition as a pattern of proof is immediately abandoned
in all.texts-as-soon as it is used. Conseque atly, its mastery has little
practical value. Furthermore, the postulation of congruence makes it
possible to begin geometry with constructions and to prove the-construc-
tions. Such a beginning gives a simple and forceful purpose for the proof
of a statement and serves to motivate demonstration and to make it an
activity that satisfies a felt need.

4. HYPOTHETICAL CONSTRUCTIONS

lee Use of Hypothetical Constyuctions in Hzgh-School Geometry. The

- hypothetical construction used in proving the isosceles triangle theorem
has already been discussed. The rigor of such a procedure is questioned
because it often involves the postulation of something which will later
‘be proved and which may follow in .Sequence. In some cases the viola-
tion of sequence is only, seeming. .

In the proof for the sum of the angles of a tnangle the usual proof
is to draw a line through one vertex parallel to the opposite side. Thep
almost invariably on a following page, often 20 or 50 pages farther on,

, the text shows how to draw 2 linc parallel to another line. For instance,
in one very carefully written book, the proof for the sum of the angles
of a triangle occurs on page 64 and the method of construction of a line
parallel to-another line on page 113. We have here a hypotheucal con-
struction where the violation of sequence is only seeming. The construc-
tion indicated depends solely on a theorem previously proved on page
58 and not on any of the material from page 59 to 113. As far as se-
quence is concerned, the construction could readily have preceded the
proof of angle sum for a triangle thus avoiding the hypothetical construc-
tion of the parallel.

There is a much more vicious and cleverly concealed hypothetical
construction in the proof of congruence by superposition. The well-known
one in the'proof of congruence by three sides has been mentioned, but.
the one concealed in congruence by side-angle-side usually escapes at-
tention. If this proof depends upon the assumption that it is possible to
construct a triangle with side-angle-side equal to side-angle-side of a

T Beatley, Ralph.. “First Year of Demonstrative Geometry in Secondary Schools,”
Mathematics Teacher, Nol. XXIV, p. 214.

A
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gwen triangle in order to prove the two congruent then it has two hypo-

thetical constructions both of which-are based on theorems which fol-

¢ low in sequence..First, the construction of two angles which are equal is

.+ a hypothetical constructxon based in reality upon congruence by three

-sides, which theorem in turn, is based upon congruence by sxde-angle-

side. Second, the construction of a line segment equal to another segment

by-means of the/ compasses is in reality based directly. upon congruence .

" by sxde-angle-sx le, where the two arms-of the-compasses and the angle ;

between. them-are the equal parts-of two triangles in which the two !

equal segmeﬁis form the third sides. These concealed hypothetical con-

structlons are clearly a double violation of sequence which ought. to be

condemned in any system of logxc .
‘If the theorem. is cleverly stated the construction of the triangle is i

concealed. For instance, “If two triangles in, which side-angle-side of one

are equal respectively to side-angle-side of the other, could be imagined :

“or should happen to exist somewhere; then they would be congruent » . .

is a statement that avoids the construction of the triangles to meet the :

given conditions.. However, it is evident that the actual construction on

the blackboard or on paper of two separate triangles in which the given

conditions are true must involve hypothetxcal constructions whxch violate

sequence. ) - ~ ;
Hypothetical Constructions not Used in This Study. It shall be the .t
aim of this course to eliminate all hypothetical constructions by the use -

of three postulates of congruence and the consequeent proving of all neces-
-sary constructions before any theorems are demonstrated. This aban-
donment of hypothetical constructions is not to be interpreted as'a de-
fense of Euclid against Legendre, nor as a desire to abandon such con-
structions in-the secondary school. It is done here in order to lay more
emphasis upon-sequence and the logical structure of geometry. In fact, :
good teaching which adjusts the difficulties to the individual abilities T
may find it necessary sometimes to use.not only hypothetical construc- :
tions but the-temporary postulatxon of theorems too difficult to prove
at an early- stage. ’
This abandonment of hypothetical constructions, of the form described.
. above in which there is violation of sequence, is not to be construed as
the-abandonment of hypothetical constructions of the more refined type
in which sequence is not involved. For instance, the theorem, that the
angles opposite the egual sides of an isosceles tnangle are equal need
. not depend upon the accurate construction of the triangle nor even upon
the existence of the triangle. Consequently, the free-hand drawing of a
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. triangle, and éven a bisector of the angle, merely to represent the pos-

sible triangle could in a sense be called a hypothetical copstruction, It is
a construction. that the hypothesis states or previous theorems. or con-
stnictions’ have shown to be possible: Such constructions, included in the
hypothesxs‘or,ashoxm to-be possible by previous proofs, are quite -differ-
ent from,the‘more érude conistructions made in the proof of a-theorem

‘which must: nsel(*be used to prove the construction. If the definition of

hypothetxcal*constmchons would limit thém-to this more refined: type,
then no objection to.them could possibly bé raised.
N - 2

s

i

e 5. S}‘QUENCE

Sequence Fuﬂdamental Smce geometry is essentially a system of rea-
soning, sequence is of the utmost importance. In proving any- theorem
only previously stated definitions and postulates -or prevnously proved,
theorems can be used. Failure to observe this without exception is fatal
to.the logic of the system. There is, however, no best and necessary se-
quence of theorems all the way through the course.” Areas-may be
taught before or after similar triangles as far as straight lme ﬁgum
are concerned except for the relationship between the areas of similar
figures. The locus theorems can be proved as soon as the congtuent 'tri-
angle. theorems are/ completed, but need not be, since it may-seem ad-
viseble to-leave them until students have had expenence th.h more
geometry relationships.

No One Best Sefjuence.The followmg statements are aJl trite, but they.

seem necessary as|a preface to the statement that there is no one demon-
strated best sequence so long as there is no violation of sequence. Nearly
every textbook Has a sequence of its own; and, consequently, it seems
justifiable to us¢ another new sequence in this study since there is a defi-
nite reason for Such a procedure. The postulation of congruence and the

abandonment of hypothetical constructions makes possible many simple.

constructions easxly made and rigorously proved Upon these construc-

tions and upon certain axioms, postulates, and undefined terms, as well

as defined terms this study presents the essentials of the entire geometry
course. |

-~

6. NUMBER OF THEOREMS

Many Theorems in Hzgh-School Ge. try.Table I1I gives the number
of theorems, corollaries, and postulates i »ix widely used or recent text-

8 Dodgson, C. L. op.‘a't., p. 101,
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books in geometry. '}' ese must be considered more or less in the nature
iples- with which the high-school student is to
solve ongmal exercises. The surprising fact about Table III is the great
-number of. relationships which the. authors deem of sut’ﬁcxent impor-
- tance. fo be classified as théorems or corollaries. Many of these, even
~ :though they have been dtgmﬁed*by thé name:of theorems, are never

- Tasie III

vt Tae-NUMBER oF. THEOREMS AND POSTULATES IN
’ Hriua-ScHoor GEOMETRY TEXTBOOKS*

. . Azioms and Constructions, Axioms and .

‘Names of',  Postulates Theorems,and  Postulates gg:g{mi:'-:;}
Authors ' of Plane Corollaries of of Solid  ory ~omet T
Geometry  Planec Geomelry  Geomelry G 4

-

Durell 38 196 1 R U T
Amold ., . -
- Nyberg | 52 198 15 127
™ otis 38 165 9. 114
Clark .

48 218

~

33 162 (16) (59 -

29 231

© Average, a0 “ 195 12 131 :
- . Thxs Study 32 30 4 12 D -

* This count may be slightly in error because of the cases in which it was not clear
whether the author intendzd a statement for a definition, a postulate, or a theorem.
-Some. authors used also “principles,” “propertics,” and problems; and again it was not
N always clear whether these were intended for definitions, postulates, or thcorems.

again used in the proof of later theorems. Reference to Table I will show

. this to be a fact. Fufthermore it is often impossible to tell whether the

N author meant a statement to be a deﬁmtlon a postulate, or a theorem.
A Minimum Number oj Theorems Used in this Study. Rather than to
increase the number of theorems to discover how many it is possible to
demonstrate for a pattern of ‘thought, it is one of the purposes of this
study to discover how few really fundamental theorems are needed, upon s
which to build the entire structure 'o\j geomelry. Reference to Section III,

we oo TN

Aruitoxt provided by Eic:

-



Aow

nection with indirect proof.

.

4 Geomeh;j Professionalized for Teachexs

Chapter X and to Chapter IV, will show that in this study the entire plane .

fundamental laws in-other sciences such as physics, chermstry, an blol-

A further defense for this minimum list, as already stated, is that it - :
acquaints the _prospective teacher with the entire ﬁeld of hlgh-scho L
geometry in a short period of time. A random choice i theorems for
this purpose would be difficult to defend, and some choice is necessary
since the time available for a teacher’s course does not permit the use of
all the high-school work. .o

7. COMMENSURABLE AND INCOMMENSURABLE CASES

While it is recognized that the number of cases of incommensurable
magnitude is as infinity to one in comparison with those which are com-
mensurable, and while it is recognized that no treatment can be rigorous
which does not consider the incommensurable cases; yet, in order to be
sure not to shed a reactionary influence, the incommensurable cases will
‘be omitted at first in Chapter IV but presented near the end of Chapter
V-of this study. In all cases of measurement such as ratios, areas, and
angles, the assumption of commensurability wxll be made. This is done
to agree with the trend which seems to consider it 1mpmsnble for most
high-school students to grasp the significance of incommensurability. At
the same time the comprehensive treatment of incommensurables as a
unit gives the prospective teacher an opportunity to master its tech-
nique and significance and to be prepared to teach it if any occasion re-
quires that it be taught. ‘

A
8. INEQUALITIES
Since the theorems on inequalities are included in\onl‘y the subsidiary

list given by the National Committee and our analysis disclosed no great

fundamental need for them, they are presented Iater as a unit in con-
i

~ . i

C
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IV. ProBLEMS FOR REVIEW AND DiscussioN

. What is mednt by the “Essential Theorems” of geometry?
Compare United States history and geometry on the basis of (a) age,

(b) universality, simplicity of concepts, (c) truth of conclusions,

. (d) définiteness of ‘conclusions, (e) the use of hypothesxs and postu-

lates;:(f) applxcatlons

. What was Plato’s contribution to geometry? What in general did the
.Greeks contribute to the Egyptian beginnings? |

. How- has Descartes invention of coordmatcs aﬁ'ected the modern
‘Euclidean geometry?

. Discuss: .Geometry has evolved from a study for adu]ts toa study

for children; yet some principles governing its contents have not
been modified to meet its new function.

. Discuss: The statement that a straxght line is the shortest distance

betwéen two points.is not necessarily true.

. Discuss the following phrases from definitions of a point.

(a) An indefinitely small space

(b) That which has neither parts nor magnitude

(c) That which has posxtlon but neither length, breadth, nor thick-
ness ,

(d) The limit of a lme as it decreases. mdeﬁmtely

(e) That by the motion of which a line is generated

. Does the-refusal to use superposition in this study repudiate the

practice of constructing two triangles on paper. under the conditions

"given, cutting out the triangles, and placing one on-the other to show

equality of all parts? Is this actual coincidence, if by coincidence is
meant ‘occupying exactly the same space?

.

. Could an angle be trisected if the hypothetical construction of a Con-

choid of Nicomedes were granted? See Sanford, V. History of Mathe-
niatics,p. 262.

. What are “primitive ideas” and “primitive propositions”?
. Is analytic geometry, based on coordinates,- Euclidean or non-

Euclidean, geometry? -

. How can a person ever get the meaning of an undefined term?
. What is meant by the statement that the reasonableness and truth

of the ‘theorems proved by means of postulates prove the postulates
to be true rather than the truth of the postulates proves the theorems,
true? |

. Just what is a trapezoid? Do all texts agree that two sides of a

trapezoid-must be non-paralle]? -

B . t" .
JL \
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[5. Cana point bé moved? A line? Can two points be made to coincide?
“Two lines? Could there be two kinds of- mathematical points, fixed
and ‘moving ones, just as the “‘points”-made in a speech, the good

“points”’ about & -man’s character, or-the “points” which a given’
stock rose or fell yesterday, involve different notions of “points”? -
The moving points seem possessed with the pccuha: limitation that
‘they always coincide with some fixed point, yet do in someé way get
from one fixed pomt to another: Explain.

. Why is sequence important?

. How does reducing the number of fundamental theorems make ge- ,

ometry more simple and more like other sciences?

. Explain ‘how there can be more incommensurable .than. commensu-
rable line segments. What does commensurable mean? Incommen-

‘surable? .

. Discuss: To-begin geometry With constructions not only prowde; )

& beginning that is simple and concrete, but also provides a “felt

need” to-prove that the construction is correct; -and consequent]y,

this new" begmmng motivates demonstrative - geometry because the-

activity of demonstrating becomw purposeful.

. In this study the number of theorems is reduced to a mlmmum, yet

the number of postulates is not reduced, but rather, extended.. Dé-

fend this,
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CHAPTER III .

PRINCIPLES OF HIGH-SCHOOL GEOMETRY TEACHING

I, INnucnox AND Dr.nucnon

Dcﬁmhon of Induchon Inductlon and_deduction are two terms fre-
quently used in discussions of thought processes and in professxonal lit-
erature on methods “of “Yeaching. Carefully worded definitions should
therefore be given. In An Introduction to Reflective Thinking the Co-
lumbia Associates in Philosophy define induction, after showing how a

scientific mvestxgator is enabled to draw a general conclusion ffom one,

or :more -restricted mdmdual cases, by asserting that the “transition
from particular facts to a general knowledge about these facts is known
as the ‘process of induction:’ ™ It is a process widely used in science.
Every mveshgator must study specific-cases. From these he makes an
inference or draws a conclusion, he sets up a hypothesis or a theory, or,
in other words, he makes a generahzat:on He then often studies more
cases-in the hght of the general truth he has d.scovered If the generali-
zation is correct, ‘these cases will be much sxmphﬁed and illuminated. If
it is not correct, it must be modified in accordance with these added
cases, . . .

L. S. Stebbmg in a recent book on logic feels that iriduction has two

slightly different meanings. “In one sense ‘induction’ is used for that
process by means of which we apprehend a particular instance as
exemplifying an abstract generalization. In the second sense ‘induction’
means a form of reasoning in which we éstablish a- generalization by

-showing that it holds of every instance that is said to fall under it. In

both senses induction is concemed with particylar instances. 80 The first
of- these has sometimes been called “intuitive induction,” “perfect,”
“complete” or “summary” induction. It is the type used in mathematics.
The second sense "of the word fits the conception of induction as used in
all the other sciences, since it is essentially the scientific method for

1 Columbia Associates in Philosopby. An Introduction to Reflective Thinking. Houghton
Mifin Co., 1923, p. 74.

® Stebbing, L. S. A Modern Introduction to Logic. Thomas Y. Crowcll Co., London,
1930, pp. 243,
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handling empirical data. The second use of the word is concerned with,

“‘enumeration of particular instances.”° In this sense.of the word a gen-

eralxzatxon Is not necessarily invalidated by contradictory instances, in
“fact the theory of probability enters as part of the technique of: scien-
tific method -in all empirical sciences. Stebbing claims that “it seems
now to be. generally agreed that mductzon essentially consists. in gener-
ahzatxon from-particular instarices, and that-scientific’ methqd involves
not only induction but-deduction.° Z 9

John Stuart Mill gave the terms a b oader definition: “the operation
of discovering and proving general propositions.” Cénsequently. when
Mill and Nicod disagree on induction they are not talking about the
same idea although they use the same word. Bacon and Mill would con-
tend “induction which proceeds by simple enumeration is childish; its
conclusions are precanous and exposed to péril from a contradxctory
instance. In science it carries us but a little way. We are forced to-be-.
gin thh it; we must often rely on it provisionally. But for the accurate
study of nature we require a surer and more potent instrument,’*
namely, mductnon based on analysis of causes and conditions. Nicod-in
attacking Bacon and Mill would hold that “induction by simple enu-
meration is a fundamental mode of proof and all those who have thought
that they-can'do Wwithigiit it have done so only by thie aid of sophisms.”’®!

It js evident that even logicians carnot agree when they use the same
- word to mean somewhat different ideas. In mathematics the argument
is of .no concern because the truth of conclusions in mathematics does
not depend upon enhumeration. We may use enumeration to discover a
conclision which seems to be true, but we establish the truth or falsity
of it by deductive reasoning.

In all mathematics, and especially in geometry, one is constantly draw-
ing gﬂneral conclusxons about triangles, parallelograms, or cxrcles from
s‘tudymg one or more specific figures. Therefore induction i is inherently
an inescapably a fundamental part of geometry and of geometry teach-
ing. The following examples illustrate the process of drawing general
conclusions from specific facts, which process is called induction.

1. \Givén that 3 over 6 equals 5 over 10. It seems to be true alse that 3
over 5 equals 6. over 10. The following query at once suggests itself:
Would this always be true of any four numbers related in the same way?
Or, stated symbolically, is it true, if g over b equals ¢ over d, that a qver
¢ equals b over d?

" Nicod, Jean. Foundoticns of Geometry and Induction. Harcourt, Rrace and Co., Lon:
don, 1930, p. 201.

)
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' 2. Given that 3 over 6 equals 5 over 10, it seems to be true that (3 + 6)

over 6 equa]s (5 + 10) over 10, or that 9 over 6 equals 15 over 10. Agam
this suggests- a genera]xzatlon that if ¢ over b equals ¢ over d, then
(a + b) over b equals (¢ + d) over d.

3. Suppose a triangle is cut out of paper, its ang]es torn off and placed
together so as to show that for this triangle the sum of its angles seems
to be a straight angle. Or suppose the anglés were very carefully measured
w1th a _protractor and the sum found to be very close to one hundred
eighty degrees. Or suppose that each of the three angles of an equilateral
triangle were known, to be sixty degrees and, therefore, their sum would
be one. hundred eighty degrees. These,specxa] individual cases suggest a
general conclusion that for any triangle the sum of its angles is one hun-’
_dred exghty degrees, no matter if the triangle be equ:]atera] 1sosce\1‘es
scalene, acute, obtuse, or right, black or whlte standing up or lying down,
ia Flerida, Alaska, or New Zealand. ) o

4. By using a cone and a cylinder with the same base and altitude, it
is easy to illustrate that the volume of the cylinderseems to be exactiy
three times that of the cone. Is it then generally true that every cone is
14 of a cylinder 2ith the same base and altitude? Since the volume of a

s base times its altitude, does the volume of a cone
equal 14 the product of-its base and altitude? Again this generalization
is possible of proof and illustrates the function of a possible inductive
appreach in a deductive science.

Definition of Deduction. If geometry were exactly like other sciences,
these generalizations could never be completely proved to be true. They
‘could only be assumed to be true so long s no contradictory evidence
‘was forthcoming, or the probability that they were true might be .8.
“One of the chief glories of mathematics is that it can take its theorems -
out of the realm of inductive probability into the realm of deductive cer-
tainty,”$? as no empirical science can do. Geometry can-prove its gen-
eralizations to be true by showing their dependence upon other relation-
ships which have been previously proved, upon definitions which have
been stated, or upon certain axioms and postulates which have been
previously accepted. This whole process of proving a general truth by
showing its relation to other general statements which are accepted
as true is called deduction. As worded by the Columbia Associates in
Philosophy, deduction is “the whole process of following the network of
relations which bind truths together.”s®

® Young, J. W. A. The Teaching of Mathematics. Longmans, Green and Co., 1920, p. 57.
¥ Columbia Associates in Philosophy. op. cit., n. 98.
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i In developing further the nature of deduction the.Columbia Associates
- contend that “mathematics is concerned with that structure of things
which by its existence makes it possible to proceed from one truth to
another deductively. . . . The relations with which the nathematician
deals séem to be a part of the very foundation of the world we live in, so

is elaborated in accordanc\e with the rules of mathematics, the conclusion

true that the more highly developed a science becomes . the more its
beliefs tend to fall into mathematical form, and to adrmt of treatment
by purely mathematical methods. So true is it that a science is successful
just in so far as it is able to formulate its beliefs mathematically that
many men have naturally come to think that in mathematics is.to be
found the exemplar of all true knowlecge.’’s

it proves by means of other general relationships. An “if-then-science” is
a phrase commonly used in describing geometry. In every case, however,
both the “ii"” and the “thén” clauses are general statements. The following
examples illustrate the function and method of deductive reasoning. They
are nat to be interpreted as desirable patterns for teaching, but merely
as illustrations of deductive reasoning.

. 1. It was suggested inductively that.if ¢ over b equals ¢ over ¢, then
a aver ¢ equals b over d. Let us proceed to prove this deductively.
Broof: (1) a/b = c¢/d by hypothesis.
- . (2) a/b-bjc = ¢/d - b/c. Both terms of cquauon (1) multi-

plied by b4/c.
(3) a/c =b/d. Equals multiplied by equals make equals.
atbdb c+d

2. Ifa/b = c/d then was also suggested inductively.

Proof: (1) a/b = ¢/d by hypothesis.
(2) a/b + 1 = ¢/d + 1. Equals added to equals make equals.

+ b +d ) )
(3) ¢ °r . Both terms of equation (1) changed tc
- \improper fractions.

3. By induction it was suggested that the sum of the angles of any tri-
angle equals 180°. (Suggestion: The reader may need to draw a
figure in order to follow the proof easily.)

a0

; .. . that we have discovered that, if any proposition that holds of experience .

thereupon-reached will also hold of experience. . . . It does seern to be '

Geometry is essentially a deductive science. It deals with general truths
and relationships which may have been suggested by induction, but which
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" Proof: (1) Through any vertex, such as C, draw a line parallel to

opposite side, AB. Three angles will be formed. Call them {
%, ¥, and z, using x for the angle nearest A.

(2) x+ y 4z = 180° by definition of a straight angle.

QG)r.=4dandz = B, because if two parallel lines are cut by
a third, the alternate interior angles are equal.

(4) y =.c, because they are the same angle, .o

(5) Therefore A4 + B - C = 180°, because equals may be

o substituted for equals,

(6) Therefore the sum of the angles of any. triangle equals

180°%

longer.

T. Percy Nunn, in discussing the teaching of algebra, contends that
the “business of algebra is to disengage theessential features of an
arithmetical process of given type from the numerical setting which a
particular case presents.”s If this'is true of algebra, it is even more true
of geometry. Every proposition and exercise in geometry seeks to dis-
engage a general truth from a specific setting.

Use of If;zduction and Deduction in Geometry. The meaning and
natural _fun/btion of. induction and deduction have,lnow been concisely
stated. Th drawing of general conclusions from specific cases is induc-
tion. The /process of dealing with a general “onclusion in proving it by
means of other general relationships or of applying it to specific cases
is deduction, Induction js the naiural way of presenting.or discovering)
3 general conclusion, and deduction is the rigorous, useful,“economical,
and forceful way of Proving or applying it.

Demonstrative geometry is essentially a deductive science, involving
the proving of general conclusions which have been discovered induc- "-.
tively from specific figures. It should therefore utilize constantly the
natural relationship between the specific'and the general, between induc-

A

8 Nunn, T. Percy, The Teaching of Algebra. Longmans, Green and Co.. Londoy, 1927,
p. 2, : '




’

7 « N
L

i -
,

LY/ " Geomelry Professionalized for Teachers

tive and deductive thinking. The simultaneous use of both of these forms
therefore becomes 2 general controlling principle in the teaching of
geometryt* **

This joint use of.induction and deduction is illustrated and emphasized
with several theorems in Chapter IV and Chapter VI of this study. As
typical cases see theorems 8,9, 33, 34, 35, 36, 37, 38. Note the induc-
tive ‘“approach.” In fact the purpose of this entire study is-to provide pat-
terns- for the use of induction as vell as deduction in the teaching of

" geometry, and also to provide patterns for the use of analysis and syn-

thesis, which are to be discussed presently. Tle use and function of in-
duction and of deductien in geometry will be more completefy appre-
ciated when, in‘Section IV of this chapter, its place in the general plan
of “heuristic” teaching is indicated.

II. LABORATORY W/ORK IN GEOMETRY

Laboratory Work Essential for Induction. The preceding defense for
an inductive approach to a deductive science should give laboratory
work in geometry a prominent place. It should also put it in its right
place, that is, as a means of discovering and suggesting possible con-
clusions to be proved. : ,

Laboratory work in geometry, which is a matter of makihg drawings
by following directions given in a book, is not laboratory work at allin °
the sense here intended. It is rather mechanical drawing, 3 by-product:
of geometry, and contributes little toward the realization of the chief
function of geometry--that of discovering and proving space relation-
ships. So-called laboratory work of this kind has values that are signifi-

- cant, such as the development of the ability to handle the drawing instru-

ments, to follow Yirections, and to make neat and accurate drawings.
These are not generally conceded, however, to be the best possible aim
of geometry. Laboratory work, if not controlled and made to serve its
proper purpose, may become the end rather than the means ta an end.
_ At the other extreme is the conception of laboratory work in.geome-
try as a way for the child to discover, entirely independent of suggestion,
that the area of a circle equals pi times the radius squared and other
relationships of geometry. To expect a child to discover entirely by him-
self, in 180 hours, what it has taken brilliant mathematicians of the race
thousands of years to discover, is of course an impossibility.

s Schultze, Arthur. The I'caching of Mathematics in Secondary Schools. Macmillan
Co., 1914, pp. 37-41. 3
-~  ® Hassler, J. O. and Smith, R. R. Teaching Secondary Mothematics. Macmillan Co.,

1930, pp. 136-139.
‘- - e 4

08

2




Principles of High-School Teaching 53

If by laboratory work is meant the actual handling of concrete figures

in such a way as to discover the relationships existing, with some guid- -

ance by the text or teacher, then it performs its most useful service to
geometry. The natural way of making general conclusions is through
dealing with specific cases. The laboratory work must then be limited to
this ‘function and-must merely supplement rather than supplant, the
deductive analytic reasoning. “After a consideration of a sufficient num-
ber of cases it is a relief, a simf;liﬂcation to abstract, fo generalize.
Abstractions and generalizations are rather the crowning products than
the foundation stones.”s? “Laboratory methods form an exceedingly
valuable supplement to the teaching of -mathematics. Students doing
some work of this nature will have more interest in and understanding
of mathematics.”

An Ilustration of a Laboratory Lesson. Laboratory work in geometry
need not be individual, but may be more or less group work. The fol-
lowing is a description of a laboratory approach to a theorem, which the
author witnessed recently.

Teacher: “Draw a straight line on your paper, and on it lay off three
of four equal segments.”

The teacher also did this on the board and saw to it that all had done
likewise.

Teacher: “Now draw a line through one of these points and then a
line through each of the other points parallel to the line through the first
point. You need not construct the parallels accurately but draw them
with the ruler to get the lines straight.”

The teacher followed her own directions at the board and each mem-
ber of the class.did likewisé.

Teacher: “Look at your figure; you should have at least three parallel
lines cutting equal segments on a transversal.”

She held up several drawings in various positions for the class to see.

Teacher: “What do you think would be true of this figure?”

Responses were almost unbelievably rapid, (1) “The parallels are the
same distance apart.” (2) “If you draw another line across them, the
parts of it would be equal.” Other statements of equivalent nature were
made.

Teacher: “Suppose you try drawing another line across the parallel
lines, but don’t make it parallel to the first one nor even perpendicular
to the parallels, just any other line crossing the parallel lines.”

7 Young, J. W. A. op. cit,, p. 1051,
© Schultze, Arthur, op. cit.,, p. 49
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She did this at the board, and all did likewise at their seats. ‘
Teacher: “Now what woild be true of this ine?”

Many of the volunteers suggested, “Its segments would be equal.”
Teacher: “Why do you-think the segments would bie equal?”

Various pupils answered, mostly to the effect that they looked equal,
. or that they were equal on the first transvergal, or that they could be
_proved equal.

Teacher: “Would it always be true that if parallel lmes were drawn in
this way they'would cut equal segments on any'transversal?”’

There was general agreement. Then the teacher said, “Suppose we
prove it. Before we start to do that, will someone make a good sentence
stating the conditions and the conclusxon?”

The first attempt was, “If parallel lines cut equal segments on one
line, they cut equal segments on any line. " 'These criticisms were of-
fered: “The ‘any line’ would have to cross the parallels.” “There would
have to be at least three parallels.” Finally the statement was modified
into, “If three or more parallel lines cut off equal segments on one trans-
versal they will cut off equal segments on any other transversal.”

The teacher then proceeded with the proof, the puplls domg the
analyzing and discovering of the steps in it. They gave a new proof but
one « atirely correct. It will be giver in full in a later section.

Suminary and Conclusion. The above illustration indicates that as the
term laboratory work is used in this study it means experimentation with
specific figures for the purpose of discovering relationships. As such it .
forms an integral part of the pattern of teaching which is herewith advo-
cated. Its place in the general plan of teaching will be more apparent
after the next section on analysis and synthesis has been mastered, and
the section, “The Heuristic Method in Teaching Geometry” has indicated
the-place and functlon of each type of work in the general plan.

III ANALYSIS AND SYNTHESIS

Analysis and Syntlzes:s in Chemistry. Analysxs and synthesis are terms
commonly used in chemistry. A chemist analyzes a substance and per-
, haps discovers that it contains iron, sulphur, and oxygen. That is, he puts
a sample in a test tube, a beaker, or a retort, and subjects it to various
processes in order to break it down into sxmpler compounds or mto ele-
ments.

Synthesis in chemistry refers to the putting together of elements or
compounds by subjecting them to various processes in order to make some
new or desired product. Frequently, in fact usually, a synthetic process
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is suggested by and follows analysis. Soil is analyzed to determine what
elements it ngeds then by supplying these elements the soil is built up so
that-it can /produce more efficiently. Iron ore is analyzed to determine
how much carbon or other ingredienis must be added to make the best
steel. In other words analysis is a breaking down process used to discover
sornething, and synthesxs is a building up process based on analysis and
used to produce a desired product. ¢

Analyszs and Synthesis in Geometry. In geometry, analysi§ is a mental
process of tearing down a geometric statement to discover the relation-
slnps upon which its truth or existence depends. In geometry, analysis
is based -on- the Principle or Law of Sufficient Reason, which Leibniz
expressed by .saying that “nothmg happens without a reason why it.
should be'so rather than otherwise.”® *° Analysis is a systematic process
of discovering this sufficient reason why a statement or a relationship is
so rather than otherwise. This is done by a technique which says: “This
will be so if that is so; that will be so if something else is so, etc.” On the
other hand synthesis is the building up of sufficient reasons to estabhsh
or prove the conclusion.

Analysis Used by Plato. The analytic method is not a-new method of
teaching geometry. Plato is credited with being its originator, and Apol-
lonius and Archxmedes were very successful with its use. The method
Jnvented by Plato differs slightly from the modern method. It is based
upon the following definitions of analysis and synthesis. $Analysis is an
assumption of that which is sought.as if it were admitted-and the pas-
sage through its consequences to something admitted to be true. Syn-
“thesis is an assumption of that which is admitted and the passage through -
its consequences to the finishing or attainment of what is sought.” To
illustrate the meaning of this definition, examples can be used from the
-preceding section in which certain general conclusions were suggested as
the result of inference from particular cases. V

An Illu:tratzon of Plato’s Method of Analysis. Since 3/5 = 6/10 and

6+ 10
= , it was thought possible, in the section on induction,

that it might always be true for any proportion that, if a/5 = c/d, then
a+b_c+d -

b

* Jevons, W. Stanley. Logic. D. Appleton and Co., 1890, p. 125.

o Enriques, Federigo. The Historic Development of Lagic. Henry Holt and Co., New
York, 1929, p. 256.

1 Heath. op. cit.,, 1, p. 138.
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Hypornests: (1) a/b = ¢/d

CONCLUSION: (2) —:—b = : d .

" ANALysIs; “Assume the conclusion true; then pass through its conse-
quencos to something admitted to be true.”

£b_
It (z)ﬂ : d then (3) (a + 8)d = (c + d)b. Why?,

If (3) 1sftrue, then (4) ad +° bd be + bd. Why?
If (4) is true, then (5) ad = bc. Why?
But 5 is true from (1).

Therefore (2) is true if all steps used are reversible.

Smmnsxs (ProoF): “Assume the hypothesis and pass through its
consequences to the desired conclusion.” That is, retrace the steps dis-
covered in the analysis. [Use the prevxous hypothesxs (1) and conclu-
sion (2)] R .

(3) ad = bc. Multiplying (1) by bd.
(4) ad + bd = bc + bd. Adding bd to both terms of (3).
(5)d(a + b) = b(c + d).By factoring (4).

at+b +
(6) Therefore = :——‘-i- By dwldmg both terms of (S) by bd

d

and cancelling.

There are other possible analyses and syntheses for this same general-
ization. For example: '

Hyroruesis: (1) ¢/b = ¢/d.

a+bdb ¢+d
C 2———-——
omcwsxox« (2) 3 7
ANALYSIS:
a+b o+d a-b ¢ d
-t =t
If (2) (3)b 5dta

I (3) is true, then (4) +1= % + 1.

But (4) is true from (1) by adding equals to equals, and therefore
(2) can be proved.

SyNnTHESIS (PROOF):
(3) a/b + 1= c/d + 1. By adding 1 to both terms of (1).
(4) a/b + b/b = c/d + d/d. By changing to same denominator.

+b +d
(5) Therefore Z c

= . By adding the fractions in (4).

o
¥
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Analysis and synthesis supplement each other; the first, discovering
the steps for the proof, and the second, putting together the ideas dis-
covered by analysis so as to form a concise, rigorous proof. Analysis, as
Plato is credited with using it, is effected by assuming the conclusion
true, dlscovermg the results of this assumption, then trying to" establish
these results without using the conclusion. This method begins by say-
ing, “if the conclusion is true,” and concludes each step with, “then cer-
tain results follow.” ~ A .
. TheM odern Method of Analysis. The modern analytic method dlﬁers

rather markedly in point of view from the older method although it is
based q'pon the same fundamental notion of working from the conclusion
back to known facts. According to D. E. Smith the modern analytic
method asserts that “a proposition is true if another is ttue, and so on,
step by step, until a known truth is reached.”*? In the modern synthetic
method, according to the same author,. “known truths are put together
in order to obtain a new truth.”®s Using the analytic method, a student
will say, “I can prove this if I can prove that; I can prove that if J.can
prove . . .”; and so on until he reaches a proved or accepted proposi-
tion.* %. # Tllustrations will help to clarify this theory.

(a) HypotEsis: (1) a/b = c/d.
a+b _c+d
b d -’

ANnaLvsis: Equation (2) will be true if (3) (a + b)d = (¢ + d)b.
Equation (3) will be true if (4) ad + bd = bc + bd.
Equation (4) will be true if (5) ad = bc.
But ad = bc from (1). Therefore (2) can be proved

Again there are other alternatives than equation (3). This will usually
.be true in every analysis regardless of its form. The synthetic proof is
the same as in 'the prev:ous case. In this type of analysis the “if” comes
with the second clause in each step of the analysis, stating that the -
desired conclusion will be true if something else is true.

Comparison. The analysis used by Plato and the type designed as the
Modern Method of Analysis are essentially identical; the only difference
physically is the placement of the “if”’; and, theoretically, the difference
consists in a point of view, with less confusion in the modern method

# Spdith, D. E. Teaching Geometry. Ginn and Co., 1911,

% Smith, D. E. Essentials of Plape and Solid Geometry. Ginn and Co., 1923, pp. 93 94,
. % Beman and Smith, New Plane Geometry. Ginn and Co., 1899, p. 152.
\ ® Hassler and Smith. op, cit., pp. 131-136.

® Schlauch, V. S. Fifth Yearbook, p. 134,

Concruston: (2)
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because of less reversal of thinking. Furthermore, in the method credited
to Plato, converses are involved, and hence more care needs to be taken
to be sure that all operations are reversible. If one assumes,a conclusion
true, certain results may follow which may not themselves be adequate to
be the “sufficient reasons”’ for the conclusion. For instance, suppose the
desired conclusion is that ABCD is a square. Plato’s analysis might as-
sume that ABCD is a square, and as a consequence angle 4 is a right
angle. But, reversing the statement, that angle 4 is a right angle is not
sufficient to make ABCD a square. In the modern method the direct
form is retained by reasoning that 4BCD is a square if certain condi-
tions are true. That is, the Plato analysis begins by saying, “If the con-
clusion is true, then certain results follow.” The thought is that in revers-
ing the thinking the results will become the causes which make the
conclusion true. In the modern form the analysis begins by saying, “The .
conclusion will be true if certain other conditions are true.” Then these -
conditions will be true if still others are true, and so or until facts have
been reached which are true or accepted. It should be evident that the
modern method avoids many dangers which were inherent in the older
form.

Symbolically expressed the modern form of analysis and synthesxs is
as follows:

AnaLysis, modern form

First, Given 4, to prove B.
Second, B will be true if C is true.
C will be true if D is true.
D will be true if E is true.
Third, But E is true because of A.
Therefore B is true or at least B can be proved.

SYNTHESIS

A is true because it is the hypothesis, 2 definition, a postulate, or a
previous theorem.

E is true because of 4 or other accepted facts.

D is true because of 4, E, or other accepted facts.

C is true because of A, E, D, or other accepted facts.

‘Bistrue because of 4, E, D, C, or other accepted facts.

Therefore, if 4 is true, B is true..

Geometric Hllustration of Modern Analysis. It is desired to prove that

the sum of the angles of triangle ABC is a straight angle.

7.
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Anavrysts: (1) It is evident that't‘his could be‘done‘if one angle co d\

“be shown supplementary to the sum of the other two, or the three angles

. ‘equal-respectively-to three other angles whose sum is known to be 180°.
(2) If AB,in triangl;z ABC, is extended to D, then angle ABC is supple:

" mentary. to angle CBD, or ABD is a straight angle. Now it is desired to
prove that-angle 4 plus angle ABC plus angle C = angle ABD.

-

A P B D
(3) Clearly angle ABC (angle z) is already part of angle ABD. There-

fore angle A + angle z + angle C = angle ABD if angle A + angle
C = angle CBD. '

(4) In angle CBD it would be possible to draw an angle at B equal to
angle A. Call it x.and the rest of angle CBD call y. Call the line drawn,

BE. Since angle x -+ .angle y = angle CBD and angle 4 = angle x,

then angle 4' + angle C would equal angle CBD if angle C = angle y.

(5) Finally ahgle C would equal'angle. y if BE were parallel to AC since
the angles are alteinate interior angles.

(6) But BE is parallel io AC because of the fact that angle x was drawn
equal to angle 4. .

(7) Therefore angle A -+ angle B -+ angle C can be proved equal to a
straight angle.

Necte: What other alternatives might there be in place of step (2)?
Try taking some pomt an AB such as P, drawing lines parallel to AC
and BC, and then proving the three angles at P equal to the three angles
of the triangle. There are many ways of getting three angles equal to
angles 4, B, and C. The usual form of this proof is synthetic and because
of its familiarity will not be reproduced here, but it is clearly the reverse
of this analytic form.

We have then established by these specific illustrations an inductive
basis for a sensible conclusion, namely, that analysis and synthesis are
. supplementary methods in geometry, the one used for purposes of dis-
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covering the proof and the other used for concisely stating it. The general
principle which is here illustrated is that since geometry is essentially the
science of proving relationships, it must of necessity use both analysis and
synthesis, the analysis for discovering the proof and the synthesis for
presenting it. The analytic method of going from the unknown to the
known, furnishes a powerful instrument for reasoring, while the syn-
thetic presentation, going from the known to the unknown by short
familiar steps, is the sensible, easy, rigorous, accepted, and efficient way
of presenting the proof. A geometry devoid of either of these methods
would be unfortunately handicapped if it could exist at all.* % % ¢

Synthesis a Check on the Reversibility of Analysis. It may be thought
by a casual reader that the synthetic form of the proof is unnccessary.
This is probably often true; in fact the synthetic proof seems always to
repeat the analytic statements in reverse.order and to be merely a re-
fined way of concealing the real thinking prccess. However, the synthetic
proof has a second function which is very important although not as
applicable to the modern form of analysis as to the form inaugurated by
Plato. That function is to insure reversibility, since there are some
processes that cannot be reversed. This is shown most easily by illustra-
tions from algebra.

(a) Concrusion: +2 = —2.
ANALYSIS +2==2if (+2)*= (—2)’ or if 4 = 4.
‘ But 4 =4,
Therefore the erroneous conclusion can seemingly be
proved.
PROOP (Snythesis)
(1)4=4.

(2) & V=2 VT
3)+2=+4+20r—2=—2.
Notice that the analysis does not reverse because the process of squar-

ing two signed numbers, when reversed, will not produce the erroneous
result.

(b) HypoTHESIS: a = b.
Concrusion: 2 =1.

* The use of analysls and sy: thesis is further illustrated in Chapters 1V, V, and Vl
of this study.

v Schlauch, W. S. op. cit., pp. 134.144.

# Schultze, Arthur. op. cit., pp. 30.36, 228-244.

» Young, J. W. A. op. cit.,, pp. 262-263,
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ANALYSIS (1)2=1ifata= gorat+b=a .
@)et+d= a:f (a +b) (6—0b) =ala—0b) orif
a* —b? = g* — ab.
@B)ae—b= a“’_—-ab ifb*=aborif b =a.
(4) But b = g, therefore, if the processes used are re-
versible, 2 = 1.
In step (2) multiplying by ¢ — 5, since ¢ = b, is multiplying by zero,
and the reverse. of this, division by zero, is impossible. The synthetic form
0: these statéments quickly reveals this error.

: —cos 24
(c) Concrusio (Identity o be proved): (1) tan A4 =A /s 24
N 1+ cos 24

N 1 —cos 24
ANavrysis: ti 1) will if(2) tand = ——8
) ‘_Equa on (1) will be true if (2) tan® 4 1T cos 24
Equation (2) will be true if (3) tan® 4 =
1'— (1 —2sin? 4)
1+ (2cos?d—1) )
. . . sin* 4
Equation (3) will be true if (4) tan> 4 = .
. cos? 4
in4
But (4) is true because tan A = s .
cos A

‘
Therefore (1) can be proved.

Synthetic proof of this will show that equation (1) is true only if a
plus and a minus precede the radical sign; otherwise it is true only for
angle 4 acute, since a radical without a sign is assumed to be positive.

These illustratipns reveal that the chief function of the synthetic proof
is not merely to secure conciseness and beauty of form, but rather to
insure rigor. The chief function of analysis lies in discovering the steps
for synthetic proof, rather than in being a form of proof.

Integration of Induction, Deduction, Analysis, and Synthesis. The
function of induction and deduction, of analysis and synthesis-has been
illustrated. Induction, with laboratory work, is the natural and usual
manner for suggesting a general, deductive conclusion. Deduction is the
more inclusive and usable form for conclusions and is highly to be de-
sired. In proving a general or specific conclusion, the natural, most power-
ful technique is to analyze the desired conclusion in an effort té discover
a basis for proof in the realm of known facts or conclusions. After the
analysis has been completed the proof is most beautifully, rigorously, and
efficiently stated in the form of a synthetic development, building up from
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known facts and by permissible processes a series of steps resulting i in
the desired conclusion being inescapable. It shall now be the purpose of
the next section to show how these four processes with concomitant tech-
niques form integral parts of a technique of teaching geometry.

Before going to the next section we might well state that no attempt
has been made in this introductory. presentation of analysis to develop
in, the student the ability to analyze probl*  The objective in this
section has been merely that of explaining w.  .nalysis and synthesis
mean. The objective of the entire study is to develop the reader’s ability
to use the analytic method in teaching geometry, The illustrations in this.
section are purposely simple in order to put more emphasis on the
method than on the content. They do not, therefore, deserve the con-
demnation which some treatments of analysis so aptly merit, that

“analysis works beautifully-on simple problems whose solution is known.
Show us how to use it when the solution is unknown.” Furthermore, the
illustrations given are admittedly inadequate for a complete presentqtion,
the reason being that a complete presentation depends upon the facts
and principles of geometry given in the next chapter. All of Chapters IV
and VI is devoted to providing further “patterns” of analysis, while
Chapter V presents a more extended and complete form of the analytic
method and provides:ample experience with its application.

IV. Tue Heuristic METHOD IN TEACHING GEOMETRY

Definition and Illusiration. The term heuristic is derived from a Greek
word meaning “to find.” As used here, it will be defined as, first the
“finding,” by means of an inductive approach (perhaps through labora-
tory work), of a deductive or general conclusion, second, the “finding”
of its deductive proof by an analysis of the relationships upon which the
conclusion depends, and finally, the synthetic statement of these rela-
tionships in a deductive proof. The “finding” takes place in two parts
of this development, first, in drawing the general conclusion from the
specific cases studied, and, second, in determining the steps necessary in
the proof through an ‘analysis of the conclusion.

The heuristic method does not mean that the student must discover,
unaided, the proofs for theorems which the mathematical geriuses of the
race have discovered in a period of over 4000 years. Such an interpreta-
tion of heuristic teaching is impossible. It is intended that heuristic teach-
ing shouid mean that each pupil be given an opportunity to discover as
much as possible. Such discovery, even though small, gives a feeling
of satisfaction and of creative power that is Stimulating. A few examples
' will illustrate this meaning of heuristic teaching. -
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The examples given in the previous sections on induction and labora-
tory work illustrate the heuristic approach, or the discovery of a con-
clusion by the students. By setting up a concrete situation and making
the , possibility of drawing the conclusion not too difficult, as was done

. In the illustration of a laboratory lesson, we are oftén’ surpnsed at the
dlscovenes students will maRe. The remau&ier of that Jesson completes
an e{:cellent llustration of good heuristic teachmg The previous section
reported progress only up to the discovery of a conclusion which seemed
to be worth proving. The analysis and synthesis which followed pro-
ceeded somewhat as follows:

Teacher: “We seem to need to prove certain line segments equal. Do
we have'a way of doing that which we have used before?” [

Pupil: “If they were corresponding parts of congruent triangles, they

- would be equal; but there are no triangles here.”

Two boys seemed possessed with a stimulating idea at about the same
time.” .

Teachér: “Well, Swaford, suppose you give us your idea.”

Swaford: “If you draw lines through the upper ends of those seg-

ments parallel to the other transversal, you will have triangles which may

be proved congruent. There will be some parallelograms, and the tri-

angles will have one side equal and enough parallel lines to -show the

other angles equal.” .

This seemed to be a remarkable response, in fact so remarkable that )
one can forgive the teacher for making what seemed a mistake in han- .
dling it. ’ S

She said, “Suppose you come to the board and show us what you
mean.” \
. Swaford went to the board and completed the figure so that it looked
like the one below: )

[\
LK \__F
CJ\L AN G

BN A \
- D X H

Teacher: “Won’t you go back a little bit now and state the hypothesis
and conclusion so as to be sure we are all following you. Then tell us what
you have done and complete your proof.”

Swaford: “Hypothesis: AB = BC = CD and lines 4E, BF, CG, and
DH are parallel through 4, B, C, and D, respectively.

-
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Conclusion: “The segments on any other transversal such as EH are
equal, or EF, FG, and GH are equal.

Proof: “Through 4, B, and C draw lines parallel to EH. Then these
three triangles (pointing to them) will be congruent. These upper angles
(poiifing to, them) are equal because they are corresponding angles of
parallel lines AK, BL, and CM cut by the transversal AD, and these
lower left angles (pointing to them) will be equal because they are corre-
sponding angles of parallel lines BF, CG, and DH cut by the transversal
AD. Therefore the triangles are congruent by angle-side-angle. That
makes AK = BL = CM.Then AK = EF, BL= FG, and CM = GH,
because they are opposite sides of these three parallelograms (pointing

_to them). Therefore EF = FG = GH by substituting equals for equals.”

Teacher: ‘Very well done. What is it, Sanford?”

Sanford: “He didn’t need to draw those lines parallel to EH. He could
have drawn them parallel to AD through E, F, and G and made triangles
on the other side.”

Teacher: “That’s a fine idea. How many see Sanford’s point here?”

A dozen or more hands went up.

After a few questions here and there on the proof and suggestions by
various students of other ways to do parts of it, the teacher made her
assignment: ‘“For tomorrow I want you to write up the proof for this
theorein, and let us have it in good form and neatly done. To be sure we
all know what to do, will you tell us again just what the hypothesis and
the conclusion are, Tilly?” Tilly did so. “You may write up Swaford’s
proof or invent a new one of your own. In addition to that see if you can
prove exercises 191, 192, and 193, but you need not write them out; I
think these problems will be clear to you without any help. Now we will
use the rest of this period to begin our work so that I can help any of
you who may need it.”

The rest of the period (15 minutes) was a real study period. It should
be noted that these students did not use any textbook; so they had not
studied thi~ theorem beforehand. The proof suggested by the lad, Swa-
ford, practically proves no previous study, since most texts draw the
parallels on the other line. The teacher handed out mimeographed sheets
of originals. .

The statement was made on a previous page that this teacher made n
error in technique even though her presentation produced such unusual
results. Perhaps this cannot be proved. As the lesson was conducted, at/
Jeast two boys, but probably not over six students, had the thrill of dlSj
covering the proof or a large portion of it. Swaford told the rest of thelg/.
The lesson would have been cunducted to better advantage had tle

'3

/ Pf/o

N
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assignment been made without the complete proof being given. Then
more pupils would have had a chance to discover it. Perhaps the presence
of a visitor made it excusable to have someone show how well he was
reasoning. Faulty or not faulty, this was a rather unusual and success-
ful illustration of heuristic teaching, such as you seldom see except in
the classrooms of master teachers. -
Heuristic Teaching of Difficult Theorems and Problems. Sometimes it
may be impossible or inadvisable to have the first portion of the presenta-
_tion of a new theorem or problem heuristic; in fact it is conceivable that
for a proof such as that for the area of a sphere or volume of a pyramid
that neither part be wholly heuristic. It may be necessary for the teacher
to break up the major problem by more or less analytic methods into
smaller problems, each of which may be attacked heuristically. For
heuristic teaching to be successful, the pupils must of necessity make dis-
coveries. This can be achieved in ‘harder problems by breaking them up
. into smaller prob]ems whose solution can be more readily discovered,
or often by giving several specific examples. Some textbooks achieve
this in the exercises preceding a theorem, when these exercises are de-
signed to build up a background in special cases for the theorem.

Such a modified heuristic lesson is often necessary in studying the area
of a circle. Usually someone will know the formula from intuitive ge-
ometry, and therefore the inductive heuristic approach is valueless. It
remains to make the analysis as heuristic as possible. This can be done
by inscribing a regular polygon and drawing radii from the vertices to
the center. Then the lesson should proceed somewhat as follows:

Question: What is the area of one tnangle?

Answer: 14 ab.

Question: What is the area of » triangles?

Answer: n times 14 ¢b or 2 n gb.

Question: Suppose we change thisto 4 = (4 a) (nb).

‘What is n& on the polygon?

Answer: Perimeter.

Questions to follow: Then we can write A = % ap. Now suppose we
had a polygon of twice as many sides, would its area still be }2 ap?
Would its ¢ and p, however, be the same as before? What would then be
true if the sides were increased greatly so that the polygon would be
practically the same as the circle? What is the area of the polygon ap-
proaching as » increases? What is g approaching? p? What then is the
area of the circle?--

The problem of finding the area of a circle is broken up into many
smaller problems, all of which are, however, attacked with the idea of
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permitting the student to discover as much as possible. After getting one
proof of this type as a pattern of analysis, the student will be much more
successful in the discovery of the solution of other problems involving
the notion of limits.

If time permits, a laboratory exercise of actually cutting up a circle of
cardboard into triangular sections and then fitting them together into a
parallelogram-shaped figure whose base is half the circumference and
whose altitude is the radius, will help to discover the formula. Then after
the formula to be proved has been discovered more or less inductively
and analytically, the proof could be developed as previously shown.

Slogans. In summary of this heuristic method of teaching geometry, a
few general slogans can be presented which emphasize the general prin-
ciples involved.

% (1) “Teach, don’t tell.”

4 (2) “Construct the figure so as to indicate the hypothes:s ”

¥ (3) “Let the student discover the conclusion by expenmentmg with~
specific figures.” |

(4) “Commands to think, or questxons with yes or no for an answe}"
’ usually indicate failure on the part of the teacher.”

(5) “Lead the student to analyze the conclusion and to discover t{le

proof.” -

(6) “Each question should always be a problem whose solution iV
be discovered.”

(7) “The larger the discovery the better, but a small discovery is
better than none.”

(8) “Teachers should know their geomefry, its philosophy, its logic,
its general educationdl value, and be fearless in applying the
heuristic principle.”

(9) “Use induction for the discovery of the deduction and use analys:s
for the discovery of synthesis.”

(10) The heuristic pattern has many elements which are “identical”
with non-geometric, life situations; and consequently it should
be possible for students to “generalize” from the geometric pat-
tern of reasonmg and apply that pattern to many and varied
s:tuatlons 100, 101 A\

Summary. The “heuristic pattem,” as defined and desmbed in the
preceding pages, is the technique recommended in this study for teach-
ing high-school geometry. Note its salient features: First, it haz an in-
ductive approach to help the student discover a generalization worth
proving. This inductive approach may sometimes be omitted and when

e Young. op. cit., pp. 61, 69-80. . 101 Schultze, op. ¢it., 1p. 4445,
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present usually involves laboratory work. Second, an analysis of the con-
clusion is used to discover the relationships upon which the proof de-
pends. The student’s discoveries may be large or small, but must be real
discoveries, and the larger the better. Third, the proof is presented in
characteristic synthetic, deductive form. This final step, although im-
po! “really has little of the heuristic spirit in it, since it is merely a
summary, in logical form, of the previous discoveries. Thus the heuristic
pattern is composed of mductlon deduction, analysis, and synthesis.

Chapter 1V, immediately followmg the next short section, contains
the essential theorems of high-school geometry, some of which are com-
pletely presented so as to illustrate the heuristic pattern. For additional
exercise material reference should be made to some good modern.text in
geometry, preferably one whose author is dominated by the beuristic
ideal of teaching. A few exercises combined with careful mastery-of the
materials of Chapters IV, V, VI should provide learning experience in
the spirit of heuristic teaching which will make the principles laid down
" in this chapter a functioning part of a student’s educational philosophy
and even of his everyday thinking.

Chapter V contains a complete presentation of the method of analysis
‘and provides for the prospective teacher ample experience with problems
to be analyzed, using both direct and indirect proof.

Chapter VI contains theorems in geometry more difficult than those
used in high school. Its purpose is to impress still more firmly upon the
student’s mind the power and possibilities of the analytic method which
forms the heart of the heuristic teaching technique. Here the college
student will be confronted with new theorems and new definitions which
will be relatively as difficult for him as those of high-school geometry are
for the high-school student. He will, therefore, learn new geometry ma-
terial by a technique of teaching which is recommended for him to use in
high-school teaching. If learners are likely to teach as they are taught,
then Chapters IV, V, and VI should insure the use, by readers of this
study, of the heuristic pattern of teaching, which it has been the purpose
of this chapter to explain and defend.

V. GeEnERAL TECHNIQUES, PHILOSOPHY, AND PRINCIPLES

It is not the purpose of this section to emphasize the importance of
classroom ventilation and temperature; of dispatch in taking attendance,
in collecting or distributing papers, and in beginning the lesson; of
seating arrangement; of general co-operative, friendly, and yet business-
like attitude; or even of marking systems, averages, and the normal
curve; however important these items may be. These items constitute
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subject-matter rather for the general course in principles or methods of
teaching, or perhaps supplementary material to be given by the teacher .
of this course. {

It is the purpose of this section, however, to indicate a general plan )
of procedure which can of course be modified to conform with varying :
situations or with a teacher’s individual preferences. Every mathematics
teacher should be guided by the following general principles:

A. A teacher should have a general plan for every unit of work.
(1) The new material must be presented and work assigned for pupils
to master. (2) Pupils should study during part of the class time under
the direction of the teacher who can then give skillful help to meet in-
dividual needs. (3) The teacher will need to check, in somé way, the
pupils’ mastery of the unit before beginning the next unit. If a unit of
work is completed in one day, then step (3) would probably come on the
next day before new work is begun. If the unit lasts for several days,
step (2) may last for more than one day. In any case, the three major
divisions should be present, and the second one, study under the direc-
tion of the teacher, should not be minimized.

B. Every teacher should have a testing program that is designed more
for helping the teacher to discover and reteach what the child does not
know than for the purpose, of giving marks on a report card. Perhaps
every teacher should adopt some such teachmg and testmg slogan as:
“Teach, test, diagnose; then, if necessary, teach test, and diagnose again
to the point of mastery.””1%?

C. Every teacher should have a philosophy of education which realizes
first, the function of mathematics as a whole, and of each portion of
mathematics in contributing to that whole; second, the importance of
using the laws of learning, and'of having the child interested, happy,
and successful; third, the truth of the Comenian axiom, “We learn to do
by doing,” and the force of the statement that successful teaching is
measured, not so much by “teacher activity,” as by the resulting “pupil
activity.”

. In acquiring a philosophy of education let the teacher ponder over
the following suggestive quotations. Bacon: “No one truly and funda-
mentally possesses any knowledge that he has not, so to speak, created
for himself”; Comenius: “Let the main object of our art of teaching be
to seek and to find a method of teaching by which teachers may teach
less, but learners learn more”; M. A. Jullien: A child is not “an empty
vessel to be filled to over-flowing so as to make him appear rich in

13 Morrison, H., C. The Practice of Teaching in the High School. University of Chi
cago Press, 1926, p. 79.
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borrowed plumage”;° Rousseau: “In order to make his (the child’s)
curiosity grow, do not be in a hurry to satisfy it. Put problems before
_him, and let him work them out. Let him know nothing because you have
told it to him, but because he has learned it for himself. Let him not be
taught science, but discover it”;°* “It is not so much a matter of teach-
ing him the truth as of showing him how he must go about so as always
to find truth”;** and Horace Mann: “Unfortunately education amongst
us at present consists too much in telling, not in training. . . . Never tell a
- child what he can be led to discover for-himself.” ..

V1. Summary oF Cuapters I-111

. The purpose of the first three chapters of this study has been largely
three-fold. First, there has been presented a philosophy of teaching
geometry which makes geometry primarily a course in analytic reasoning

with many opportiinities for students to analyze relationships and to dis-
cover proofs, and secondarily a course providing useful information.

Second, Chapter II attempted to give a brief history of geometry and
a summary of the problems confronting the teacher of geometry. This in-
cluded a statement of the primary function of the subject, based upon its
peculiar nature and organization, and a discussion of some unsettled
difficulties which were at least disposed of, if not always settled.

Third, Chapter I began with the statement of the problem which this
study seeks to solve and a statement of the method of solution. Based
upon the postulate that a teacher of geometry should know the subject-
matter of geometry and be thoroughly conversant with its possibilities
as a school subject before attempting to teach it, this study has selected
a minimum list of theorems covering the whole field of geometry, and
in Chapter IV, follm/ving, will present some of them as patterns of teach-
ing and patterns f{of teaching. This use of the actual subject-matter of
geometry as a pattern for teaching geometry is based upon the theory
that teachers are more apt to teach geometry as they were or are taught
geometry than as they are told to teach it. The subject-matter following,
therefore, has a double function: to insure mastery of the content of high-
school geometry and to establish a philosophy and technique of teaching
geometry through the use of that philosophy and technique in the actual
presentation of subject-matter. This double use of subject-matter
namely, to insure mastery and to establish a pattem for teaching, is
what has been defined for this study as professionalized subject-matter.

108 Rerriere, A. The Activity School. The John Day Co., New York, 1928, p. 34.

104.1%4d., p. 18.
1% Ibid., p. 19.




CHAPTER 1V

GEOMETRY MATERIALS FOR THE APPLICATION
OF THE.PATTERN OF TEACHING

The Need for Mastery of High-School Materials. It is the contention

of this study that the subject-matter for a professional course should
be determined by the needs of the student preparing to teach rather than
by traditional subject-matter standards in academic mathematics courses:
In support of this contention, which has really been postulated in this
study, there has already been quoted the statement by Professor Bagley
that, in addition to other needs, the high-school teacher “needs courses
in elementary algebra and plane geometry, which will not only refresh
his mind with regard to elementary principles and processes, but also
. give him a much deeper and broader conception of those principles and a
much more facile mastery of processes than his elementary course could
possibly give him.” R. B. Buckingham states that “it is a tragic mistake
on the part of the academic professor . . . to suppose that the moment the
bare knowledge of a fact is attained it qualifies him to teach it to
others.”2¢ There would be little difficulty in presenting overwhelming ob-
_jective evidence to the effect that the college junior or senior has as a
rule much too “bare a knowledge” of high-school geometry to teach it
to others with confidence. Such evidence has been considerad unnecessary
and is therefore omitted. However, since it is conceded to be a bit
difficult to teach what one does not know, the prospective teacher should
not feel embarrassed if he has to spend much time with the essentials of
high-school geometry which are outlined on the followmg pages of this
chapter.

In case the teacher in a teachers’ college is tempted to slight the high-
school material, perhaps the testimony of Dean Emeritus James E. Rus-
sell, of Teachers College, Columbia University, will help to bolster up
this emphasis on subject-matter. In speaking of professionalized subject-
matter, Dean Emeritus James E. Russell says that such materials “can-
not_be judged by academic standards. The needs of the practitioner”

10% Journal of Educational Research. Vol. 16, p. 214,
. 70
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in his practice are the sole standards for determining what shall be
taught.”2% Dean William F. Russell in the Teackers College Report of
the Dean, 1929, discasses “The Professional School Ideal,” which forms
“the basis for university work on which the professionally minded pro-
fessor arranges. his program of studies. It matters little to him whether
the work be easy or hard, graduate or undergraduate, two-point or five-
pomt resident or extra-mural His test is whether or not the work given

.prepares 'the student to practu:e his profession. . . . If taxidermy or black-
-smithing be necessary, it is just as good as anthropology or Sanskrit to

him. . . . His teaching depends upon research, he respects it, and he may
even be a-skilled investigator himself; but he has no faith in an aca-
demic tradition that forces his students to'spend a major portion of their
time painfully acquiring techniques that they will never use. 1107 14 is the
plan of this chapter to present in outliné'form the essential theorems of

" high-school geometry because students preparlng to teach need this ma-

terial. ’ L S

* The Plan Used for Presenting High-School Materials. While it is rec-
ommended in this,study that the essentials of high-school geometry be
thoroughly mastered by the prospective teacher of high-school geometry,
it is, nevertheless, recognized that in 2 2 dissertation which is not a text-
book it would probably be-difficult tc defend the inclusion of any great
amount of high-school geometry material. Liberal reference will there-
fore be made.to good high-school texts. The postulation of the three
congruence theorems, which has been advocated and defended in Chapter
11, makes possible a much more simple and direct organization of ma-
terials than is found in most high-school texts, and consequently it has
been thought advisable to outline in rather detaﬂed form this very brief
section on the fundamentals of high-school geometry.

The outline following will give a list of the most important undefined
terms, definiti ons, and postulates used for the first two constructions.
For the others thestudent will make his own lists. For the actual wording
of the definitions and the actual making and proving of the constructions
the student is referred to any high-school text. It is recommended, how-
ever, that the prospective teacher master very thoroughly this material
in the order in which it is outlined. The material is purposely given in an
order slightly different from the usual order so that it may be a challenge
worthy of the ability of a college student, and so that it may provide

101 Russell, Dean William F. Teachers College Report of the Dean, 1929.
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experience with sequence. Care must be taken that no theorem or con-
struction be used in any proof until that theorem or construction has
itself been proved. . ' .

Furthermore, in order to emphasize the pattern of teaching geometry
which this study advocates, some of the constructions and theorems are
fully developed in the heuristic pattern. In getting others from high-
school texts, usually only a synthetic proof will be found. The contrast,
when considering the possibilities of each method for developing in the
student the ability to reason things out for himself and really to under-
stand what he is doing rather than to memorize the results of the thinking
of other people, should make more emphatic than mere words could ever
do the power and educational value of geometry taught by the heuristic
method.

The list of constructions and theorems depexnds for its order upon the
postulation of each of the three congruence theorems. If this postulation
fails to meet the approval of any one using this outline, then it is entirely
possible to prove each of the theorems by means of its traditional ptoof
at or before the point in the sequence at which it is postufated Further-
more, some readers may be ir.erested in a different proof that is not
traditional. If in place of postulate 9* the following postulate is accepted
the proof of “comruence by three sides” can be rather satisfactorily

established. X

The Construction Postulate, a Substitute for Superposition. If, at a
given position on a given base line, only one triangle can be constructed
by using a given set of conditions, then all triangles which have been
constructed from, or which conform to, the given set of condltlons are
congruent.

It should be evident that “congruence by three sides” can be readily
proyed by means of this postulate and postulates 2 and 8. Then, follow-
ing the construction of an angle equal to a given angle, the other two
congruence theorems—‘“side-angle-side” and_‘“angle-side-angle”—can
be established by the use of this new postulate and postulates 2, 4, and
10. There seem to be three ways of handling the congruence theorems,
(a) postulating them, (b) proving them by the postulation of both super-
position and angle-bisection, and (c) establishing their reasonableness by
this new “Construction Postulate,” or by means of a somewhat different
set of postulates such as those of Veblen or Forder.

* Postulates given on the following pages.

P
4
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I. ConsTrUCTION 1 |

. Undefined terms used in the definitions, postulates, construction, and

in the simple applications of construction 1: point, line, straight
line, curved line, measure, length, distance, equal, compass, describe a
circle, rigid, ruler, lay off or cut off, definition, center, given, prob-
lem, procedure, proof, intersecting, greater than and less than and

the symbols for these ideas, sum, difference, plane, straight edge,

draw.

. Technical terms needing definition: construct, circle, line segment,

radius, diameter, postulate, axiom.

Postulates:

1. With a given center and radius one and only one circle can be
drawn’in a given plane.

2. By means of the compasses a length may be measured off equal to
any given line segment. Or, a circle cuts its radius at one and
only one.point. _

3. Line segments may be added or subtracted by the use of the com-
passes.

4. Only one straight line can be drawn between two points.

. Construction 1: Construct a circle with a given center and a given

radius.
Note: The construction is too simple for comment, yet a funda-
mental one. Notice how the definitions and postulates form a basis
for the construction and for its applications.

11, Consrgucnon 2

. Undefined terms wsed: the notations “line a” and “angle A,” inter-

secting in a point, “equal respectively,” corresponding parts, sides of
a triangle, angles of a triangle, side opposite, direction, plane figure,
end points, coincide, point or line in common, shape, size.

. Terms needing careful definition: triangle, congruent triangles, angle,

isosceles triangle, equilateral triangle, arc, vertex of an angle and of
a triangle.

. Postulates:
S. A straight line is the shortest distance between two points, and the

shortest distance between two points is a straight line.
6. A line segment may be extended indefinitely in either direction.
7. Two circles can intersect in not more than two points.

N §
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8. If the distance between the centers of two circles is less than the
sum of their radii and yet greater than the difference between their
radii, the circles or arcs of the circles will intersect in twp points,
one on each side of the line joining their centers.

9. If two triangles have three sides of one equal respectively to three
sides of another the triangles are congruent. (Abbreviation “35”)

D. Construction 2: Construct a triangle congruent to a given triangle,

measuring only the lengths of its three sides.

Note: See any high-school text, and use postulate 9 above in the
proof. Notice that the postulates form a basis for the construction
and proof. Postulates 7 and 8 are frequently used yet rarely men-
tioned in high-school texts. This omission is not to be condemned
but rather approved since too great a refinement in a system of
postulates would make geometry much too difficult for high-school
students. | .

ITI. CoNSTRUCTIONS 3-7
1

The first three of the following constructions can now not only be
made, but very readily proved to be correct on the basis of the given
postulates and the two previous constructions. For constructions 6 and 7,
three new postulates will be needed in the proof. They are given below.
The reader should make his own list of the undefined and defined terms
needed. These constructions should all be rigorously proved to be what
is claimed for them. This can easily be done by using postulates 1-12.

Postulate 10. Two straight lines can intersect at only one point.

Postulate 11. If two triangles have two sides and the included angle
of one equal respectively to two sides and the included angle of the other,
the triangles are congruent. (Abbreviation “S.A.S.”)

Postulate 12. If two triangles have two angles and the included side
of one equal respectively to two angles and the included side of the other,
the triangles are congruent. (Abbreviation “A.S.A.”)

“Construction 3. Construct an angle equal to a given angle.

Construction 4. Bisect a given angle.

Construction 5. Construct a perpendicular to a line at a point on the

line. '

Construction 6. Construct a triangle congruent to a given triangle,

measuring only two sides and their included angle.

Construction 7. Construct a triangle congruent to a given triangle,
measuring only two angles and their included side.

&
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IV. CoNSTRUCTION 8

The following construction is the first one in which the proof is at all
difficult and therefore it will be given in full. A second reason for giving
this proof in full is to have it serve as a pattern for the proof of all con-
struction problems. Since the technique of making this construction has
probably been leamned in the junjor high school, no analysis of it will be
given. However, the proof is not easily discovered; therefore, an analysis
of the proof wiil be given to show how a proof may be discovered.

ProBLEM: To construct a perpendicular bisector of a line segment.

\

A—T

F
| i\

S

M

’,

\}(,
Q

*ProceEpURE {CoNSTRUCTION): (1) Take any line segment A423.
(2) With4 aqd B as centers and with a radius more than half of 4B
" cut arcs above and below line 4B intersecting at points P and Q.
(3) Draw line PQ. It is the required perpendicular bicector.

Anavysis: (Usually not written out, but entered here as a pattexln for
thinking out the solution of the exercises.)

(1) PQ would-be perpendicular to 4B and AM = BM if triangle
APM were congruent to triangle BPM.

(2) Triangles APM and BPM have AP = BP by construction and
PM = PM by identity, and therefore they would be congruent if
angle g equals angle &, or if AM = BM.

(3) Angle g would equal angle / if they were corresponding parts of a
pair of congruent triangles other than APM and BPM.

(4) Angles g and /% are corresponding parts of triangles APQ and
BP@ and would therefore be equal if these triangles could be
shown to be congruent.

(5) But triangles APQ and BPQ have AP = BP and AQ = BQ by
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construction, and PQ cormn\to each. They are therefore con-
gruent by “three sides,” Postulate 9.
(6) Therefore PQ can be proved to be tlg: perpendicular bisector of

AB.
*PROOF: B
(1) Connect points 4 and B to P and Q thus forming two triangles
APQ and BPQ.

(2) Triangle APQ == triangle BPQ. “3 S” (Postulate 9).
(3) Consequently angle g = angle 4. “Cp.cte.” (Corresponding
parts of congruent triangles are equal.)
(4) Then in triangles APM and BPM,
AP = BP by construction (Postulate 2).
PM = PM by identity.
Angle g = angle /. See (3) above.
(5) Therefore triangle APM == triangle BPM.“S.A.S.” (Postulate 11).
(6) Therefore AM = BM and angle r = angle s. C.p.c.te.
(7) Since angle r + angle s = 180°, each must be 90°. Each is half
/
of 180°, /
(8) PQ is therefore/the perpendicular bisector of line AB. /
* The headings, “Prob_)ém," “Procedure,” and “Proof”—the “Analysis” will usually

be mental, not written/y—are used because they seem more meaningful than the tra-
ditional headings for the corresponding parts of a construction problem.

V. CoNsTRUCTIONS 9 AND 10

Construction 9 below can be readily made, and is proved muchas
construction 8 was proved. Construction 10 must be made by-using only
perpendiculars, or any other of the first nine constructions, until after the
theorems on parallel lines in the next chapter have been proved. Needed
definitions and postulates are to be stated by the reader. If it is postu-

" lated that “only one perpendicular to a given line can be drawn in a

given plane and through a given point,” then it will be evident that two
lines in the same plane each perpendicular to a third line cannot meet
and must therefore be parailel by the usual definition of parallel.
Construction 9: Construct a perpendicular to a line from a given point
not on the line,
Construction 10: Through a given point construct a line parallel to a
given line, . )
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VI. THEOREMS 1-7 "

o

Thé first seven of the twenty “essential” theorems of plane geometry
are stated below. Reference is made to any high- school geo-netry’fbr
their proofs ‘Theorems 2 and 3 are proved in various’ ways. £ imulat-
ing paper cot‘ﬂd -be written on the different ways of Drovmg these two
theorems on parallel lines. Whichevel one is proved first, the second is
usually proved indirectly. Consequently it is re.comnenu\.d for this
study that the second one be temporarily postulated, and that its proof
be taken up at t\he same time that an indirect proof is given for theo-
rem 9.

Suggestlons for the proof of theorem 4 have been given in Chapter
II1. Next to theorem 10, theorem 4 is probably the most important
theorem in plane geometry. It provides information which makes pos-
. " sible the solution of many problers. The applications of this important

-theorem merit caveful study. Numerous corollaries, that is, numerous
generalizations which are very readily deduced from this main theorem,
could. easily be added. A few suggestive ones are given. It is probably
stretching the meaning of corollary a bit to include numbers 4 and 5, yet
the suggestion given makes the conclusion very sxmply deduced from the
main theorem.

Theorem 5 is not easy to prove, but theorem 6 is very simple. Any
good textbook will give these proofs for a reader or student who has
difficulty in recalling them or in discovering them anew. Theorem 7 is
really the beginning of similariiy. Its proof has been given in full in
Chapter III, where it was used as an illustration of heuristic teaching.

Theorem 1. The angles opposite the equal sides of an isosceles tnangle '
are equal.
Theorem 2. If two lines cut a third line so that the alternate interior
angles are equal, the lines are parallel.
Theorem 3. The converse of theorem 2. If two parallel lines cut a thlrd
line, the alternate interior anglés are equal.
Theorem 4. The sum of the angles of any triangle is 180°.
Comllaries:
(1) The acute angles of a right tnangle are complementary.
(2) Each angle of an equilateral triangle is 60°,
(3) An exterior angle of a triangle equalsthe sum of the two non-
adjacent interior angles.
(4) The sum of the interior angles of a polygon of # sidesis (1 — 2)

4 o
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straight angles. (Suggestion for the proof: draw lines to the
vertices of the polygon from any point within if,)

(5) The sum of the exterior angles of any polygon is four “right
angles.

{6) .Two right triangles are congruent by any side and an acute
angle of one being equal respectively to the corresponding parts
of the other.

(7) Two isosceles triangles are congruent by “any side and one
angle.”

(8) Any two triangles are congruent by “one side and any two
angles.”

(9) No triangle can have more than on. righf-angle or obtuse angle.

(10) Two isosceles right triangles are congruent if any side of one
¢ equals the corresponding side of the other.

Theorem 5. Two right triangles are congruent if the hypotenuse and a
side of one are equal respectively to the hypotenuse and a side of the
other.

Theorem 6. The opposite sides and angles of a parallelogram are equal.
Theorem 7. If three or more parallel lines cut off equal segments on one

" transversal, they cut off equal segments on any transversal,

3

VII. THEOREMS 8 AND 9
1

These two theorems are presented here in detail. They involve some
new concepts in proportion and therefore furnish excellent examples of
an inductive approach to a relatively new idea. They are consequently
included as patterns for teaching 2 new portion of geometry. Theorem 9
?;/ol_ves an indirect proof and it is given as a sample of indirect proof.

e indirect proof for theorem 3 should be taken up along with that of

eorem 9 for additional experience with indirect proof. The work on
;?ropomon is probably the most difficult, yet the most interesting, and
without doubt the most important part of geometry. It is the basis for
trigonometry, for surveying, for map drawing, for all types of similar
figures, and for all proportions in geometry. Its great and varied applica-
tions cannot be over empbasized, and consequently if any pattern theo-
rems are to be presented it is well to present these because of their diffi-
culty and also because »f their importance. !

In the proofs which .ollow it is assumed that the previous theorems
and constructions have been proved and that all the definitions and

,g«.)
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R

postulates which were neceséary have been given. A few new terms will
be necessary, however.

A

Definitions of new terms needed for theorems 8 and 9.

1. A ratio between quantities is the result of dividing one by the

- other, such as a/b or 2/3.

2. A proportion is a statement of equality betwéen two ‘cr more
ratios, such as a/b = ¢/d or a:b = c¢:d or 2/3 = 10/15, some-
times read “g is to 4 as ¢ is to d,” but usually “g over b equals
¢ over d.” Four quantities are required for a proportion.

3. Two segments of one lige are proportional to those of another if
the ratios between the segments are equal. Thus if a line six

. _inches long has segments two inches and four inches, and another

line nine inches long has two segments three inches and six inches,

the segments.are proportional because 2/4 = 3/6, or 2/6 = 3/9.

Two\hnes with their segments proportional are often said to be

divided proportionally.

4. Of the four terms of a proportion, the first and the last are often
called the extremes, and the second and the third, the meagns. In
the proportion, a/b = c/d, a and d are extremes, b and ¢ are
means. )

5. If the second and third terms of a proportion are the same, such as
a/b = b/c, 3/6 = 6/12, then that term is called the mean pro-

tween a and ¢, and 6 is between 3 and 12.

\ portiong! between the other two. b is the mean proportional be-

ROACH (for theorem 8):

Rl) If a line bisects one side of a triangle and is parallel to a2 second
side, what does it do with the third side? Use theorem 7.

(2) Draw a triangle and cut off one-third of one side. Construct a line
through this point of trisection parallel to the second side. It will
cut off what part of the third side?

(3) Try (2) again, using one-fourth instead of one-third.

(4) Try constructing a triangle with two sides 8 and 16 inches or units
long. “Three inches from one end of the 8-inch side draw a line
cutting the 16-inch side arid parallel to the third side. What will
be the segments on the 4 6-inch side? Will their ratio equal 3/5
as with those on the 8:inch sxde?

(5) Suppose in any tna.ngle a line is drawn parallel to one side cutting
the other two; what-is true of the four segments formed?

(6) State this as a theorem.
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*THEOREM: If a straight line is drawn through two sides of a ﬁriangle
parallel to the third side it divides the two sides proportionally.

’ |

*HyrotHesis: Triangle ABC with DE cutting AC and BC, and parallel
to AB.

AD BE AC BC
*CONCLUSION: —— = e OF e = e
DC EC DC EC

*ANALYSIS:

(1) First let us analyse the specific case given in the approach under
(4) to discover a method of analyzing the general case.
(2) In (4) the line corresponding to 4D is 3 inches and to DC, §

. . A 3
inches and the ratio of -Blg = 3 We need now to discover the

E
ratio of Z?CT with DE parallel to AB.

(3) BE is clearly not 3 inches long nor is EC 5 inches long, buy if
they could be shown to contain some other unit of measure 3 and
5 times respectively, then their ratio would be 3 to 5.

(4) If we lay off the 3 and 5 units on AC and through the points of

division draw lines parallel to the base, these lines will cut equal j
segments on CB by theorem 7. There will be the same number of /
segments on BE as on AD and the same number on CE as on /

-CD because the same parallels cut both lines. Therefore the ratio

of BE/EC = 3/5, and therefore AD/DC = BE/EC since both |

equal 3/5. :
(5) Now for the general case in which any line DE/AS parallel to the -

base and cuts the side ‘AC in any point D, AD and DC would

probably not have exactly 1 inch as a common unit of measure.

However, they might have 1/4 inch, or 1/10 inch, or even
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1/1,000,000 inch as a common unit which would be contained in
each a whole number of times without a remainder.

(6) If AD and DC have a common unit of measure, no matter how
small, the plan above of drawing parallel lines through the points
of division of AC would always cut segments on BC which would
be equal to each other. Also the number of segments on BE and
EC would be the same number as on 4D and DC since the same
system of parallels ¢uts both sides of the triangles.

AD m . BE m _AD- BE
7Y 1f the ratio o = ™ then —— = 2 and 2= = ——.
(7) 1f the ratio 77 = —then o= = —- 80056 ~EC

(8) Org—g— = —Z—g- by adding 1 to each side of equation (7).
*Proor: y
(1) Assume that)AD and DC have a common unit of measure such
as AX which will be contained in AD and DC an integral number
of times mt\hout remainders. (See note below.)
(2) Then that unit will be contained in AD some whole number of
_ times, such as , and in DC’a whole number of times, such as 7,
AD m(AX) m ~
and —=———=—.
DC  n(AX) n N
(3) If parallels to AB be drawn through the points of division of AC,
these parallels will cut/m segments on BE and n segments on EC,
all of which will be equal. See theorem 7.
(4) One of "these segmeits say BY, can now be used as a unit of

BE\ m(BY ) .~
measure, and — i
EC n(BY)- -n_
. AD 'BE m
‘(5) Th — = — i : —.
(5) Therefore 6 EC since both ratios equal "
AD BE AC BC
{6) Also DC+ 1= e +1 orFC- = ¥ , adding 1 to each side of

(5) and simplifying.

*Various names are used in various texts for these portions of the demonstra-
tion. Since the headings used here are at least all nouns they have some advantage
over such headings as “Given” and “To prove.” However, this is merely a matter
of form, and a teacher should use any he prefers, but probably those used in what-
ever text he is using. P

Note: This assumption excludes incommensurable segments. The prob-
lem of incommensurables is discussed fully in Chapter V. It is omitted

-~

-~
’:\“
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here because it is no longer considered suitable subject-matter for
high-school courses. (Sec National Committee's Report, p. 49.) 1t
should be pointed out, however, that the number of cases of incom-
mensurability in comparison to the number of commensurable cases is as
infinity to one. For instance, if you draw two line segments and say
that one is 3% inches long and the other 83, inches long, these seg-
ments would have 14 inch as a common unit of measure. However, the
3%¢”inches is merely a crude approximation to the actual length, and
merely indicates that its real length is perhaps closer to 354 inches than
to 31155, but we have no assurance that it is not 3.31246 inches long.
The diagonal of a square and its side make a good illustration of in-
commensurability because the diagonal can be computed to a thousand
or more decimal places if necessary, but will naver be exactly determined
in terms of the same unit which measures the side.

The assumption of commensurability is, however, a very fundamental
one, in fact it is the assumption upon which all our measurements are
based. We say a certain field is 20 rods long, a certain trip took 2%
hours, a certain person weights 15314 pounds, or a certain angle is 76°
38.6”. In each case we are giving merely a crude approximation based
on the assumption of commensurability. If we did not make this assump-
tion, all our measurements, except a very few, would be endless decimals.
In Euclid’s time, without our marvelous number system, the problem of
incommensurable magnitudes was a major one. Now approximations to
three or four decimal places satisfy all practical purposes and make in-
commensurability much less significant.

VIII. Exercicxs ForLowiNG THEOREM 8

Direcrions: Theorem 8 should be used, not so much as a pattern, but

as information for proving the following exercises. Whenever line seg-

ments are to be proved proportional, try to get them parts of two sides

of a triangie cut by a line parallel to the third side.

- 1. The corresponding segments cut off on two transversals by a series
of parallels are proportional.

2. A line parallel to the.one side of a tnang]e cuts the other two sides
so that either side has the same ratio to either segment as the other
side has to its corresponding segment.

3. If two parallel lines cut two intersecting lines, the two segments on'
one line, formed by the parallels and the point of intersection, will

TN
P
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be proportional to the two cofresponding segments of the other line.

4. If a line is drawn from vertex A of the parallelogram ABCD, cutting
BC in F and CD produced in G, then AF/DC = FG/CG.

5. In theorem 8 prove that since CD/DA = CE/EB then CA/DA =
CB/EB 3and also that CA/CD = CB/CE.

6. Divide any line segment into parts proportional to two or more given
segments. )

7. Construct a “fourth proportional” to three given line segments.

8. What is the “mean proportional” between 4 and 25? 3 and 75?
7 and 28?

9. The base of a triangle is 20 feet. The other sides are 16 feet and 10
feet. A line parallel to the base cuts off 2 feet from the lower end of
the shorter side. Find the segments of the other side.

10. The base of an isosceles triangle is 12 inches and the equal sides are
each 16 inches. A line parallel to the base cuts off 3 inches on one
of the equal sides. How much does it cut off on the other? A line
parallel to one of the equal sides cuts off 3 inches on the other. How
much does it cut off on the base?

IX. THEOREM 9

ArproacH: (1) Draw a triangle, trisect two of its sides, and connect a
pair of corresponding points. What seems to be true of that line and
the base?

(2) Divide two sides of another tnangle into segments having some
other ratio and connect the points of division. Is the line still
parallel to-the-base?

(3) State the theorem. How is it related to theorem 8?

Tueorem: If a line divides two sides of a tnaﬁgle proportionally it is
parallel to the third side. (Converse of theorem 8.)

o CD _CE
YPOTIHESIS: -EJ = E—B—

ConcLusION: DE is parallel to AB.
AnaAvysis: (1) Converses are usually proved by the indirect method,
therefore, we can start by statmg that DE is either parallel to AB

or it is not parallel.
(2) Let us assume DE not parallel to 4B and see whether that as-
sumption leads to an absurd or impossible situation which would
make the assumption itself impossible.
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A ’ B

\
(3) |If DE is not parallel to 4B, it would be possible to draw DE'
‘parallel to AB cutting BC in E’. )
A 3 BE' 4D BE BE'_ BE

4) Then — = —— = —,
AN EC DC EC'CEC EC

(5) From (4) we note that both E and E’ divide BC into segments
which measured in the same direction have the same ratio. But
this is no more possible than for a line to have two middle points
or two different points which cut off one-third of it from the same
end.

(6) Therefore, the assumption that DE is not paralle) to AB is un-
tenable and consequently DE is parallel to 4B. |/

(7) Or, instead of (3) and (4), if DE is not parallelto 4B, it would
be possible to construct 4B’ parallel to DE cutting CB or CB

S— extended in B’. Then CE/EB’ = CE/EB which is impossible.

- Proor: Left to the student to obtain from the analysis, with the sug-

gestion that he look up this proof in some good geometry text for a
different form making more .use of the ratios.

X. Exercises ForLrowinGe THEOREM 9

Dmecrions: The following exercises can be proved indirectly as was
done with theorem 9. However, if the information gained in theorem 9
is used, the exercises can all be proved directly, using theorem 9.
11 The base BC of the triangle ABC is divided into five equal parts and
- each division point connected with 4. Line DE is drawn through the
middle points of 4B and 4C. What is true of DE and the four lines
drawn?

/

s
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Prove that:

If aline is drawn through the midpoints of two sides of a triangle, it
is parallel to the base and equal to half of it.

Prove that: ]

If the middle points of the sides of an isosceles triangle are joined
to the middle point of the base, a rhombus is formed.

By the use of Exercise 12 find a way of measuring the distance
across .a lake. Note: Let the unknown distance be the base of the
tnangle .

In the rectangle, ABCD let M and N trisect AB; O and P trisect
BC; R and S trisect CD; and X and ¥ trisect DA. What is true of
the lines NO, MP, AC, YR, and XS? Prove it.

If Eis the r"hiapoint of side AB of the isosceles triangle ABC, and
EF is perpendicular to the base BC, show that BF is 14 BC. Note:
Draw EG to G, the midpoint of BC.

1 G and H are the midpoints of DC and 4B respectlvely of paral-
lelogram ABCD, prove that DB is trisected by AG and CH at
points M and N. Suggestions: Show that AG is parallel to CH, that
AG bisects DN, and that CH bisects MB.

Prove that:

The median of a trapezoid is parallel to the bases and equal to one-
half their sum. Note: Extend the lower base DC to G so that
CG = AB. Connect AC and BG; forming a parallelogram ABGC.
Why will the diagonal 4G go through the midpoint of BC? Then
can you show that the median EF = }4 the sum of AB and DC?
Prove theorem 3 using an indirect proof.

Make up a problem, geometric or non-geometric, which can be
solved or proved indirectly.

XI1. TueoreMs 10-14

The treatment of the following theorems in any good high-school text
is usually very adequate, except of course that the inductive approach
and the analysis are omitted.-Two other theorems ase usually givén
following soon after theorem 10. These involve the other conditions for
similarity and are important. They are, however, really more or less of
the nature of corollaries of theorem 10 and are not themselves theorems
of outstanding importance. Theorem 10 is without doubt the most im-
portant theorem in geometry. Theorem 11 has a very interesting history,
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many simple applications, and has over 200 different proofs.2®® All
theorems on areas depend on theorem 12, the area of a triangle, which
in turn depends upon the postulate that the area of a rectangle equals
the product of its base and altitude. The postulation of this relation for
the area of a rectangle is recommended by the National Committee.
‘Theorems 13 and 14 are fundamental theorems on locus. In connection
with these two theorems and their application the double-headed, mean-
ing of the word locus needs to be carefully appreciated. Notice How one
of these meanings is the converse of the other. See any good high-school
text, and Chapter V, section IV Converses, of this study.

Theorem 10: Two triangles are similar if two angles of one are equal
respectively to two angles of the other.
Corollaries:

1. Two triangles are similar if the sides of one are (a) parallel to
the sides of the other, or (b) perpendicular to the sides of the
other.

2. Two right triangles are similar if an acute angle of one equals
an acute angle of the other.

3. Two isosceles triangles are similar if an angle of oné equals the
corresponding angle of the other.

4.. All isosceles right triangles are similar.

5. All equilateral triangles are similer.

6. Two triangles are similar if an angle of one equals an angle of
the other and the including sides are proportional.

7. Two triangles are similar if the sides of one are proportional to
the sides of the other.

8. In any right triangle ABC with given acute angles 4 and B the
ratios a/b, a/c, and b/c, are constant. (They are respectively the
tangent, sine, and cosine of angle 4.)

Theorem 11: In any right triangle the square on the hypotenuse is equal
to the sum of the squares on the other two sides.
Corollary:
1. In any right triangle if a perpendicular be dropped from the vrr-
tex of the right angle to the hypotenuse,
(a) the two right triangles formed are similar to the given tui-
angle and to each other,
1% Loomis, E. S. The Pythagorean Theorem. Masters and Wardens ‘:\ssociation of 22nd

Masonic District of the M. W. Grand Lodge F. & A.M., Ohio, 1110 Webster Ave., S.E.,
Cleveland, Ohio, 1927. Price $2.00.

~
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(b) either leg of the given right triangle is a mean proportional
between the whole hypotenuse and the adjacent segment,
(c) the perpendicular is the mear proportiorial between the seg-
ments of the hypotenuse. )
Theorem 12: The area of a triangle is equal to half the product of the
base times the altitude.
.~ Note: Corollaries concerning the area of a parallelogram and a
trapezoid could be readily proved by means of theorem 12.
Theorem 13: The locus of a point equally distant from two points is the
perpendicular bisector of the line segment joining them.
Theorem 14: The locus of a point equally distant from two intersecting
lines is the pair of lines which bisect the angles formed by the given
lines.

>

XII. TueoreMms oN CIRCLES, 15-20

The following six theorems are usually considered very easy and are
well treated in most texts, except again for the heuristic trend. Several
new definitions and postulates will be necessary. Theorems 15 and 17
each have two important converses, all four of which are very easily
proved indirectly. The student should attempt to prove these theorems
and make his own list of definitions and postulates, then finally com-
pare with the proofs and lists of definitions and postulates given in some
high-school text. An abundance of easy original exercises can also be
found in almost any text. Most textbooks present the first three of these
theorems before similar triangles. The proof of these three depends in
no way upon similar triangles, nor do any of the proofs for the theorems
7 to 14 depend upon these three theorems. Consequently, their place-
ment is purely arbitrary. They are probably easier than the theorems
involving proportions and therefore are usually placed early. In this
study, they are placed last so as to, have all theorems on straight-line
figures together and the six theorems on- circles together. The last three
theorems are concerned with the measurement of the circle. For these
theorems the circumference and area of a circle are defined respectively
as the limits described in theorem 18.

Theorem 15: A diameter perpendicular to a chord bisects the chord and
the arcs of the chord.
Corollaries: / .
1) A/(jihmeter which bisects a chord is perpendicular to the chord.
7

5
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(2) A line which is the perpendicular bisector of a chord passes
through the center of the circle.
Theorem 16: An angle inscribéd in a circle is equal to half the central
angle having the same arc.
Corollaries: /
(1) An angle inscribed in a semi-circle is a right angle.
(2) An angle between a tangent and a chord is equal to half the
central angle having the same arc.

Note: Corollaries, readily proved by a slight extension of the main
theorem, such as the measurement of the angle between two chords,
secants, or tangents, could probably be legitimately ‘added. There
might be some question concerning the use of the term corollary for
classifying them. They are probably rather in the nature of sub-
theorems or exercises which depend almost entirely upon theorem 16
for their proof. .

Theorem 17: A line perpendicular to a radius at its outer extremity is
tangent to the circle at that point.

;adms of a cnrcle drawn to the point of contact of a tangent

ig'perpendicular to the tangent.

(2) /A perpendicular to a tangent at its point of contact with the
circle passes through the center of the circie.

3) Problem: To construct a tangent to a circle (¢) at a point on
the circle, (5) from a point outside the circle.

Theorem 18: If the number of sides of a regular mscnbe,d polygon is
indefinitely increased, its perimeter and area will both increase, while
the perimeter and area of the circumscribed polygon, formed by draw-
ing tangents to the circle, at the vertices of the inscribed polygon, will
both decrease. The perimeters and areas of both polygons will each
approach a limit.

Theorem 19: The ratio of any circumference to its radius is constant
and is equal to 2 pi.

Theorem 20: The area of a circle is equal to pl times the square of the

radius.

Definitions and postulate needed for theorems 18,)19, and 20.

In order to provide a pattern proof for theorems using the idea of ap-
proaching a limit, and to present rigorously the new terms used in theo-
rems 18, 19, and 20, the proof for theorem 19 is given in full. Theorem

oy
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18 is easily proved, its proof depending upon the postulate that a straight
line is the shortest distance between two points and the following reason-
ing. The perimeter of the circumscribed polygon, P, is always greater
than that of the inscribed polygon, Pi, therefore if Pc decreases and Pi
increases because of increasing the number of sides and yet Pc always
remains larger than Pi, then both Pc and Pi must approach a limit be-
yond which neither can go.

. Variable and Constant. The term variable is used in mathematics with
two meanings. Broadly speaking, any quantity which varies, changes
in value, is a vaiable. In theorem 18, Pc and Pi are variables, yet
neither one depends upon the other, although both of them depend
upon the radius of the circle and the number of sides of the inscribed
polygon.

The second meaning of variable takes into consideration two related
quantities. When two quantities are so related that changes in the value
of one of them causes changes in the value of the other, the first is called
an independent variable and the second a dependent variable; e.g. the
radius and the circumference of a circle are two such variables, changes
in the radius being accompanied inevitably by changes in the circumfer-
ence and area. The two proofs for theorem 19, which follow will illus-
trate these two uses of the term variable, one meaning commonly used
in geometry, the other more commonly used in algebra. In contrast to a
variable is a constant, a quantity which does not change, such as the
number 2. (Reference: Any good geometry and college algebra text-
book.)

Approach a limit: When a variable approaches a constant in such a
way that the difference between it and the constant becomes and remains
less than any given positive quantity, however small, the variable is said
to approach the constant as a limit.

curved line forming the circle. However, since length as measured by the
| compasses or by any unit of measure is always on a straight line and
there are no curved units of length, it is necessary to have a more pre-
cise definition.
The circumference of a circle is the limit approached by the perimeter
of its regular inscribed polygon as the number of sides is indefinitely in-
creased.

/' The circumference of a circle (crudely defined) is the length of the

The area of a circle, since it is impossible to fit square or triangular
units into a curved surface, is defined as the limit approached by the
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area of the inscribed regular polygon as the number of sndes is indefi-,
nitely increased. 4

The apothem of a polygon is the radius of its inscribed circle. (Needet{
in theorem 20.)

Pi (=) is the ratio between the circumference of a circle and its diam-

eter. Therefore.c/d = =, ¢ = =d, or ¢ = 2=zr. Pi is the first letter of
the Greek word meaning circumference. The purpose of theorem 19. is
to show that = is constant, no matter how large or small the circle.
Postulate of Limits. If two variables are always equal and each‘ap-
proaches a limit, the limits are equal.
Theorem 19: The ratio between the circumference and the radius of a
circle is constant and is equal to 2.

HyrotHESIS: A circle with radius r.

CONCLUSION: $=1= orE = z, which is a constant.
e r d
Proor (A):
(1) Draw 2 second circle with any radius * and inscribe regular poly-
gons of # sides in both circles.
(2) Draw radii from a pair of adjacent vertices, thu formmg two
~riangles, ABO and 4'B'0". /

(3) These triangles are similar. Why? y

(4) Then L=22 or-; = —, Why? (? means/f)enmetcr)

’ '

(5) Therefore ? = ;— Multiplying (4) by ;

(6) Equation (5) is true regardless of the number of sides providing
the inscribed polygons are regular, and each has the same num-
ber of sides (n). -

(7) Let the number of sides (») increase indefinitely. Then ? will ap-
RS /

Sk, «




‘7 : . .

o 3

T AN NS

\
l \\ (8) Therefore

\

' Geonietry M ateridls -

c
r

’

’

’

’

proach:; and —% will approach ';’—’('r and 7 being constant).
- \ A

¢ .
-= o because -1-’ and — are two variables which .
r r

are always equal as they approach certain. lumts
. Therefore the limits-are equal by the postulate of limits.

’

c
(9) To say. that - = ;— merely means that regardless of the size of

o - the cu'cle the ratio between its clrcumference and radius is conK
stant This constant is vsually written as. 2%, therefore

\ (10) ;’-7—' 2% or ¢ = 2xr,also ¢ = =d.
< - e
"1

: ProoF (B):

- . (1) Inscribe a regular polygon of # sides in the given circle, draw radii
to two adjacent vertices| forming triangle AOB, and draw OM -per-
pendicular to 4B.

(2) Then ‘OM bisects AB (s) and angle AOB.

I3

180°
“3). Angle AOM =

~-»/

1
4 _=r 1
(,),2 rsin

. Why?

(]

80 .
. By definition of sine.
n v

/

(]

! - 180
(5) Tllen p = 2 nrsin, . Why?

-/ - (6) Orp

\2 r, and 180° are constants As n varies, p will vary, but wxll al-
ways be evaluated by the formula expressed in (6). It remains tol
]

show that # sin approaches a constant It is not possxble to

prove this by the methods of elementary mathematics, yet the\
following table should establish it beyond any reasonable doubt,

because it is evident that as n increases beyond even 100, there
o /
which seems to approach a_

’

is very little increase in 7 sin
definite constant as a limit. Shanks in 1873 computed toT’;,(’)? deci- |

’ f
)
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mal places the value\)f this constant. To 50 places it is 3.141, 592
653,589,793,238,462,643,383,279,502,884,197,169,399,375,1.
A ) -

-

. 180°
n . {8 (sin )*
, n -
] 3.000000 N
12 3.105827 ‘ '
‘- 24 3.132628
50 © 3139527
100 3.141075 o
200° 3.141463 :
) ) 500 3.141571
1000 3.141587
. 2000 | . '3.141591
: -10,000 3:141592

*Computed by means of
seven-place logarithm tables. -

1" X1 Tm:onms 21 AND 22 (Sciip GEOMETRY)

These theorems require for their proof additional definitions and pos-
tulates. The student should write these as- needed.

Theoggn 21: If two planes mtersect their intersection is a straight line.
Theorem 22: 1f two parallel planes cut a third plane, the lmes of inter-
section are parallel.
. S

XIV. THEoREM, 23

1

Theorem 23 illustrates beautifully the dependence of solid geometry
upon plane geometry and also the difficulty of representing solid- ﬁgures
on.a flat .surface. It Serves admirably as a “solid pattern” for proving
theorems.

Trieoren: If two angles not in the same plane have their sides parallel

“in the same sense, the anglesiare equal
HvroruEsts: Angles ABC and 4’B'C’ with 4B parallel to A’B’ and

BC parallel to B'C”. .

{f
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Proor: (l) Lay off AB = A’B’ and BC.= B’C'.

" (2) Draw AC, 4°C’, AA’,-BB', CC'. -
(3) BB'A*4isa parallelogram Two sides equal ‘and parallel.
(4) BB’C’C is a parallelogram. Why? .
‘(5) ‘A4’ = BB’ = CC’ and A4’ is parallel to BB’ and CC’
. Why?
(6) Therefore ACC’A’ is a parallelogram Why?

7 (7) Therefore AC = A’C’. Why?

/ (8. Therefore triangle ABC == triangle. 4’B’C’. 3S
9 Therefore ang)e ABC = angle A’B’C’. Why?

XV THEOREMS 24-28

Theorem 24 The lateral area of a prism is the product of a lateral edge
by the penmeter of a right section.
Theorem 25: The volume of any prism equals the product of its base by

‘its altitude,

a. An obhque prism is equal to a right prism whose base is a right sec-
tion of the oblique prism and whose altitude is a lateral edge of the
oblique prism.

‘b. “The volume of any parallelopiped equals the base times the altx—

. tude:

- c. A diagonal plane divides a parallelopiped into two equal triangular

- prisms.

: _d. The volume of any tr'a.ngular prism equals the product of the base
and altitude.

e. The volume of any prism is the product of its base and altitude.
Note: Theorem 25 is outlined as traditionally proved and the proof

is long and difficult. Some modern texts shorten the proof very greatly

by the postulation of -Cavalieri’s Theorem or its equivalent: “If two
solids have equal altitudes and if sections of one made by planes paral-
lel to the base are equal respectively to the correspondmg sections

<
.
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. of .the other, then the solids are equal in volume.” The use of this —
P " theorem &s a postulate to simplify the proof of theorem 25 is highly
-commended. Theorem 25 depends.upon yet a second theorem which,
can be postulated’if the recommendations of the National Commit-
tee are to be accepted: “The volume of a rectangular solid is the. -prod-
uct of its three:dimensions-(V = lwh) 2 Since for any prism a right .3
\ pnsm with a rectangular base equal to the base of the*first can be con- !
" structed, it'is evident that the use of Cavalieri’s theorem makes theo-
.rem 25 easily. proved omitting g, b, c, d, and e.

‘ . Theorem 26: The'lateral area of a regular pyramid equals 1/2 -the prod-~ :
: uct of‘its slant height and-the perimeter of the base. }

‘Theorem 27:1f a pyramid is cut by a plane parallel to the base and a dis-

tance d from the vertex,

a: The lateral edges and altitude (%) are divided proportlonally

b. The section is similar to the base, the “ratio of smnlxtude” being - :
a/h. . :

¢. The ratio of the area of the section to the area of the base is d’/h2
Note: Theorem 27 is simple yet provides the solution' for many

very tricky and puzzling exercises which most textbooks have in

abundance.

Theorem-28: The volume of a pyramid equals 1 /3 the product of the i
area of its base by.its height. L
a.. Two pyramids with equal bases and altitudes are equ_al.

" b. The volume of a triangular pyramid equals 1/3 b/.
c. The volume of any pyramid equals 1/3 4. >

. . Note: Theorem 28 brings into geometry a very 1mportan}\fractlon,

{ L 173 ‘In-plane geometry-the only: fraction used anywhere in- formulas
. was 172. Now, as also in theorems 30 and 32 following, 1/3 comes into

fuse, and it is important that students appreciate fully-where it comes,
from. The proof of theorem 28 is made more simple if Cavalieri’s

/ - theorem is.used as with' theorem 25.

XVI. TueoreM 29

In order to*have another pattein proof using the postulate of limits,
which was also used for theorem 19, theorem 29 is completely proved.
Furthermore the definitions of the areas and volume of solids with curved
surfaces are not always clearly stated. Therefore, this proof with its defi-
nitions and postulate will serve a double purpose.

N / . . ‘ ) . " 2 -
200
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Definitions:

1. Acylindrical surface is a surface generated by a stralght line. mov-
-ing along a curved line.in such a way as to remain always parallel
to-sofme lirie ‘not in the plane. of the curve. A closed_ cylindrical
surface has a closed curve, suchi as-a circle or an ellipse, to direct
the generatlng hne Any smgle _position of the: generatlng line is
called an elenent..

2. ‘Accylinder is a portion of a: closed cyllnuncal stirface 1nc1uded be-

" tween two-parallé] planes cutting all the elements. What is a circu-
lar. cyllnder? A right-circular- cyhnder? A sectlon? A right section
'ofacylmder? h *

3..The terms area and volume as heretofore used have applied only. to
flat surfaces or straight line solids. The areq and volume of a cylin-
dey w111 now be defined as the limit. approached by the correspond-

_ ing area or volume of a circumscribed prism,.as the number of

. sides:is 1ndeﬁnxte]y increased. ' ‘

Trmonm ("‘he “Approach” is omitted because the formula is an old
familiar. one. )- The lateral area of a cylinder equals an element times
the circumference of a right section (L.4. = ec), and the volume of
a cylinder equals the area of the base times the altitude (V = b#).

HyroTHESIS: Any cylinder.

ConcrLusion: (a) L.4. = ec

(b) V= by

AnALYsIs: -Since the lateral area and volume of a cylinder correspond
with those of a prism, if the formulas for the Iateral area and volum
-of a prism are taken and the number of the sides of the prism indefi-
nitely. increased, the effect on the formulas of this increasing number
of sides could be found.

, Pnoor 1s: '

(a) (1) Clrcumscnbe a prism about the cyhnder, its lateral area
2) Let the number of sides of the ptrism increase indefinitely,
then its lateral area will vary. and approach the lateral area
of the cylinder as a limit, by. the definition of lateral area of-
a cylinder. Furthermore, the perimeter-of the right section
of the prism approaches the circumference of the nght sec-
tion of the cy]mder as a limit, by theorem 18.
(3) But L.A.P. =ep always regardless of the number of sides.

)
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Therefore L.4, (cylinder) = e¢ by the postulate of limits.
(b) The correspondmg proof for the volume of a cylinder is left to
the student.

XVIL. Tm-:omms 30-32 .

The proofs for these theorems are quite standard and can easily“be
found even though. theorem 31 is'rather mvolved
Theorem 30: The-lateral area- of;a- nght cn'cular cone equals- 1/2" the-
product of the slant height by the c1rcumference of ithe base, and- the
volume of any cone equals 1/3 the product of. the area of the base by

‘the altitude. s} ‘

Theorem 31: The area of a sphere equials 4 pi times the radius squared:

a. The area of the frustrum of a cone of revolution -equals 1/2 slant
height-times- the - circumferéfice of a-circle half- way between the
bases.

b. The area of a stirface of revolution forméd by revolving a regular
polygon about a diameter is 2 pi umesi the apothem times the
diameter. |

c. The area of a sphere equals 4 pi times the; radius squared

Theorem 32: The volume of a sphere equals 4/3 pi times the radius
cubed. :

L

XVIII. CoNCLUSION‘AND SUMMARY >

The purpose of this chapter has been two- fold (1) to outhne work -
for the prospective teacher in order to insure his mastery of -the essen-

tial theorems of plane and solid high-school geometry, (2) to familiarize

the readertnore fully with the heuristic .uethod of teaching and learn-
“geometry. Tlns has_been attempted through the use of. the heunstlc
method in presentmg a few of the theorems of high- schoal geometry.,
Other i important theorems were given in the outline, but, their-proof was
left to the student to get by himself or to find in some high-school text.
It is assumed that the careful student will not only master these. few
theorems but also that he will prove the corollaries and will work a _
liberal-number of “originals” found in the hxgh(\chool texts.

The following chapter will present a few features of geometry and-an
abundance of original exercises for practice, Thése exercises should serve
to strengthen and test a student’s mastery of the techmque and the con-
tent of high-school geometry.




’

CHAPTER V

SOME- FEATURES OF GEOMETRY AND EXERC1SFS FOR
ANAL\{SIS AND INDIRECT PROOF

Introductory Statement _The.purpose- of this chapter is to present:in

a fairly complete-form certain outstanding features of geometry, espe--

cially. the analytic method and the indirect proof. Students preparing
to"teach, or teachers in service, will find in this chapter not only these
vital | topics.but also ample problem material carefully selected and diffi-
cult enough to test-and to insure mastery of-the subject-matter of ge-

. ., ometry. A further furiction of this material i is that of providing an ap-
plication .for: the, methods advocated in Chapter III and illustrated -in

Chaﬁer 1V, The. material would fail to achieve its highest - functxon if it
fmled to-make possxble the use of the heuristic pattern of teaching.and
learning whichi it is the purpose of this study to present. The section on
continuity brings out a fscinating concept, and the treatment of incom-
mensurables presents briefly a problem of rapidly decreasing impoz-
tance. The discussion of the structure of geometry emphasizes the nature
of the science and its dependence upon postulates and definitions.

b

1. THE STRUCTURE OF GEOMETRY

Analysis of the Proof of an Important Theorem. The structure of ge-
ometry is well shown by a simple project consisting of the -analysis of
the proof for theorem IV: The sum of the interior angles of a triangle
is 180°, Its-proof depends upon four other relationships, namely, (1)

-the constructlon of a line through one vertex parallel to the opposite side,

2) the theorem that alternate interior angles are equal when two paral-
lel linés cut a third line, (3) the definition of a straight angle, and (4)
the axiom that equals may be substituted for equals. The construction
(1) and theorem (2) are both dependent upor: other relationships. The
definition and the axiom are arbitrarily acceptad without proof. The fol-
lowing outline and chart indicate the various interrelationships and the
fundamental dependence of one theorem upon other theorems, and
eventually the dependence of all upor arbitrary definitions aid postu-

'lat&
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Theorem to be proved: The angle-sum of a triangle is 180°.
+ 1. Construct 1 line parallel to AB.
A. Construct an angle equal to angle B.
(1) Congruence by three sides. (Postulate)
B. Theorem: If two lines cut'a third making the alternate in-
" tericr angles equal the two, lines are parallel.
-(1)_Construction of midpoint of line segment.
a. congruence by 35 (Postulate)
b.. congruence by S.A.S. (Postulate)
(2) Vertical angles are equaj (Postulate)
(3) Congruence by angle-side-angle. (Postulate)
(4) Two. lines perpendicular to the same_line are parallel.
(Postulate), -
2. Theorem: If two parallel lines cut a thu'd line the- altemate in-
terior angles are equal.
A. The construction of an angle equal to a given angle N
(1) Congruence by 3S. (Postulate) - -
B. Theorem: If the alternate interior angles are equal the lines
_ are parallel: (See B under 1 above.)
C. Postulate of parallels. -
3. Definition of a straight angle.
4, Substxtutlon of ‘equals for equals (Axiom)

Tug "ANGLE-SUM;0F A TrIANGLE EQUALS 180 DEGREES
) L 1 i :
1. Construchon 2. Theorem 3. Definition .~ 4, Postulate

B. Theorem A, C

/

2 3 4 1

[
1 .
- | *

c—— 3
e I - o

Definitions, Axioms and Postulates

This chart shows the dependence of theorems and constructions unon other
theorems and constructions, and eventually that definitions and axioms form the
foundation for the entire structure in reasoning. The letters and figures refer to the
previous outline.

» e \I
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Conclusions and Suggested Problem. It is evident from this illustration

that “demonstrative geometry” is a structure composed of (1} defini- .

- tions, (2) axioms and postulates, (3) constructions, and (4) theorems.

The theorems and constructions are based on definitions, postulates, and

previously. p;oved theorems. These theorems in turn are based upon other
definitions, postulates, and perhaps theorems, until all rest finally on an

ultimate basis of arbitrary definitions.and accepted postulates or axioms.

The elements that are of outstanding importance in this organization
are the seeing of relationships, the building of the structure by the analy-
sis of relationships, and the appreciation of the.dependence of one rela-
tlonshlp upon others. The very nature of geometry makes it necessarily”
and_fundamentally a course in reasoning, a course in discovering and
proving relationships on the ba,sxs of known facts and known relatxon-
- ships.

The student should take some important theorem such as number 8
or 10 and'make a similar analysis to show this fundamental nature of
the science he is studying. )

II. Tm: ANALYTIC METHOD APPLIED To GEOMETRIC ORIGINALS

Tke Plan for Completing the Presentation of Analyszs In Chapter
I11, analysis and synthesis were presented as essential paits of the heuris-
tic method which has been advocated in this study as efficacious in teach-
ing hlgh-school geometry. In Chapter 4, several illustrations of analysis
have been given and if these illustrations have served as patterns for the
-proof of originals, then the analytic method has been amply illustrated
with familiar material. However, the real test of the power of the analytic
method comes in the attack of difficult originals. The purpose of this
part of Chapter V is to provide that experience, but to preface it by
further illustration and discussion of analysis. First, however, in order
not to break the contmulty of thought later and also for review pur-
poses, a list is given of the methods or devices used in proving easy
originals and theorems. The coordination of;these methods into a com-
posite plan of attack will constitute the analytu: method as applied to
‘the solution of difficult problems.

Summary of Devices or Methods Available for Proving Geometm:
Statemenits.
1. Two line segments are equal if they are,
(1) equal by hypothesis, by construction, orb; identity.
(2) corresponding parts of congruent triangles.
(3) both equal to the same segment or to equal segments.

-
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) n ting a third. -
e o :,(L"’)/ Angles whose sides are respectively parallel “left to left and
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“4) sxdes ofa tnangle opposxte the two equal- angles of the tri-
angle.
(5) opposite sides ofa parallelogram
'(6) parallels_cut off by parallels. . ) ..
(7). chords having equal arcs or equal central angles. ;
(8) chords equally distant from the center of the same circle or .
of equal circles. ) .
2. Two angles aré equal if they are’
(1) equal by-hypothesis, by construction, or by identity.
~ (2) corresponding parts of congruent triangles.
.. -(3) -angles Opposxti the equal sides of .an isosceles triangle.
(4) alternate interior anglgsi)rmed by two parallel lines cuttmg

a third. ~
(5) correspondmg angles formed by. two parallel lines cuttmg a
third.

(6) -alternate exterior -angles formed by two- parallel lines cut- \

right to right.”
(8) angles. whose sides are-respectively perpendicular “left to
»-‘ % left and right to right.” '
9) opposite angles of a parallelogram. . Ly
(9) opposite angles of a parallelog (‘,’ “f-’f

(10) both equal to the same or to equal angles, — - -~ - / ‘ ’
(11) corresponding angles of similar figures. gL ,I;Zw
(12) inscribed in. the same arc or in equal arcs. ! : ol

(13) measured by the same arc or by equal arcs.
3. Two angles are supplementary if they
(1) have their sum equal to 180°, a straight angle.
(2) are so given in the hypothesis.
(3) “are interior angles on the same side formed bitwo parallel
lines.cutting a third.
(4) are exterior angles on the same side formed by two parallel
lines cutting a third.
(5) have their sides parallel “left to right and nght to left.”
(6) have their sides perpendicular “left to right and nght toleft.”
(7) are consecutive angles in a parallelogram.
4. Two angles are complementary if they
~ (1) have their sum equal to 90°.
* {2) areso given in the hypothesis.
" (3) “are the acute angles of a right triangle. \

e
.,;f.‘ﬁ‘()‘




The Analytic Method' and the Indirect Proof 101

S Two lines are perpendicular if )
(1) they are so given in the hypothesns
“(2) they are constructed perpendicular.
(3) "they meet sp as to form a right angle. ~
(4) one bisects- the straight angle formed-by the other.
\ " (5) they form equal supplementary/anﬁles

(6) each is parallel to one of -tw other lines which are perpen-
dicular, _/._/

. (7) each is perpendicular to one of two other lines which are
perpendicular.
. (8) they are sides of an angle inscribed in a semlcu'cle
6. Two lines are parallel if .
(1) they are so given in the hypothesis.
(2) they are constructed parallel.
(3)- they are everywhere equally distant.” *
(4) the alternate interior angles, formed by the two lines cutting
a tlurd are equal. - =
(5) the cortespondmg\angle's are equal.
(6) the alternate exterior angles are equal.
(7) the interior angles on the same.side are supplementary. .
(8) the exterior angles on the same side are supplementary. -
(9) they. are opposite sides of a parallelogram.
(10) they are both perpendicular to a third, or both parallel to a
third line. ot
(11) one is the base of a triangle and the other line divides the _\
other two sides of the tnangle proportionally.
7. Any two, triangles are congruent if
- (1) three sides of one equal respectively three sides of the other
(38.) -
(2) side-angle-side of one:equal respectlvely side- angle-snde of
the other. (S.A.S.)
(3) angle-side-angle of one equal respectively angle- snde-angle of
the other. (AS.A.) l
- (4)\two angles and any side of"one equal respectiv ly the corre-
'sponding parts of the other. .
8. Any'two right triangles are congruent if
(1) the hypotenuse and an acute angle of one equa.l respectively
. the hypotenuse and an acute angle of the other. (H.A.)
W (2) the hypotenuse and a 'side of one equal respectively the
" hypotenuse and a side of the other (H.S.)

v
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(3) any side and an acute angle of one equal-respectively the
PN © corresponding parts of the other.
- (4) any two sides of one equsl respectxvelj the corresponding
i sides of the other.
9 Any two, xsosceles triangles are congruent if .
(1) one-side and any angle of one equul respectxvnly the cor-
responding side and angle of the other. AR
(2) the base and altitude of.one equal respectwely the base and
altitude of- the other. X . '
(3) they are.right triangles and one sxde of one equals respec- 1
tively the oorrwpo'ndmg side of the other. . L
' (4) the base and one of the equal sides of one equal : respectively  *°
S the bise.and one of the equal sides of the other
. 10: A quadrilateral is a parailelograni if
(1) its opposite sides -are parrallel. .
(2) its oppos'ite sides are equal. . X {
(3) one Pa:r of .opposite sides is both equal and parallel
‘e {4)-its opposxte angles are equal. N
£ ) (5)- any 1130 consecutiva wugles are supplementary, . \_
11. Two segments on one line will be proportional to two _segments on®
‘another eﬂ
(1) if. thexr ‘ratios are equa\ to_the same quantity or to equal
(2) if.they are cut off by parallels /
. (3) if they are parts of two sides of a triangle cut off by a hne ;
parallel to the third side. / .
12, Any two segments will be proportional to two other segments
(1) if their ratios are equal. /
(2) if they are corresponding parts of sxmllar triangles.
(3) if two segments are two sides of a triangle and the other
two-are the segments of the third side formed by the blsector
- . - of the anglé between the first two.
- o 13. Two triangles are similar .
(1 if they satxsfv the definition of ;similar triangles. '
(2} if-they have two angles of one equal to two angls of. the

-
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- other. .
: (3) if they have one angle of one equal to one angle of the other,
and the including sides proportional.
(4) if they have the three sides of one proportional to the three‘\
sides of the‘other . \
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(S_) lf they are right triangles with an ‘acute angle of one equal
to ah acute angle of the othgr.

) . (6).if they are. 1sosceles triang)es with one a.ngle of one equal to

(7) if they*have their sides spectively parallel or- respectwely
perpendicular. .

14. The.product of two segments
(1) if one pair’is the means al

......

pals the product of two others
the otherpgur is the:extreines alof

‘a proportron . !
(2) if they are parts of similar tnangles and are so related that
/ a proportion-m&y be set up. > with one pan' the means and the
A other pair the.extremes. s
Ty (3) |if they are parts of intersecting chords .or secants. L
7 15. Two areas- -will"bg_&qual: e

(1) if they are.inclosed by trla.ngles or parallelograms with the
’ same base and altitude. y
(2) if they are measured ‘by-two pairs of products which can be

e ‘/ . shown to be equal.

/ 16. Since an angle is a right angle if inscribed in a semi-circle, a per-

L e vpendlcular can ‘be constructed by constructmg a senu-urcle with

. an-angle mscrlbed
17. The locus of a ponnt a given distance from a point or a line, or
the locus of a point equally distant from two points or two lines
_ or any combination of two points and two lines can be found .
" by the- snmple appllcatlon of the definition of locus and theorems

18. The locus of a point satisfying two or more sets of conditions may
be found by.finding first a locus for each set of oondltxons separate-
ly; ar1 then the intersection of these loci wgh satisfy all the sets of
condi “uns sxmultaneously

19. In sitv tions involving llmxts set aip an equation from a known

analagous s:tuation, then by some process make the two sides of
the equation, become variables. If these variables can then, be
shown to remain equal as they.approach their limits, these limits
will be’ equal : ‘ “

Note These nineteen statements of conclusions to be proved with the
several ways in which each may be proved are not given with the thought
thai they constitute a complete list. The conditions which make a tri-
angle isosceles, a line straight, and others, are omitted. The given list is
sugyestive rather than exhaustive.
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L) ~ »
20. Genetal deyices. !

/“ Beman and Smith. 9p. cit., p. 35.

B

(1) Often 1 not be possible to prove two triangles con-
gruent at once because the equality of needed. parts is: not
known In such-cases there may be . other. tnangles whose
congruence estabhshes the desired equality. See construc-
iops 8 and-9. \ \ .

To prove lines or angles #qual when no-triangles are avail- -
able the construction of an auxiliary line ‘often- solves the
difficulty. See constn{ctlonSS 4, 5, and theoremsl 2; 4, 5
* 6, 8, 15, and 16. This auxiliary. lme may join, crucnal points,
bisect an angle, bisect a.line, be parallel or perpendicular to
a line and through @ crucial point, or be drawn. so as to in-
“volve any known construction.
To prove.a converse theorem or statement an mdu'ect proof
is often very useful
To make a congructlon to satxsfy cex;tam conditions, assume
‘fnstructxon made and then analyze the figure to dis-
cove; e relatlons which determine the .figure from the
given- { cts and upon which the procedure depends. Note:
This technique is shown in thé illustrative construction’ prob-
-lems solved in the next section.

(5) To get similar triangles often auxiliary fines may- be drawn
at ctucial points, perhaps perpeno‘culars or parallels. See
ﬂ)a?ep .. . .. ..

(6) Make the most general figure possible, so as:to avoid ex-
- tending the hypothesis.

@ ) Construct figures accurately.

(8) State: the hypothesis and conclusion clearly.

(9) Begin by assuming the theorem true; see what follows from
that assumption; th?‘n see if this can be proved without the
assumptlon 'if so, try to reverse the process.

(10) Or begin by assuming theorem false, and endeavor to show
the absurdity of that assumption. i

(11) To secure clearer understanding follow Pascal’s adyice and
substitute the definition for the name of the thing defined;
e.g. to say that CM is a median to the base of isosceles tri-
angle ABC is the same as saying that in triangle 4BC,
AC = BC and M is taken so that 4} = BM1%° :

(12) Sometimes the proof for an exercise is apparently discovered

~
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synthetically by tryingout various possible ideas, more or
less blindly, until suddenly a combination is discovered that
_works. While this trial and error method seems to be syn-
thetic in nature, the trials are probably governed by a subtle
analytic touch. The- trial and error process with known
facts is really but the werking form of analysis trying to
link the unknown fact’ with-the known. Consequently most
trial and error attacks on exercises, unless sucdeedmg by
.chance, are probably essenually analytic in character.®
(13) Analyze the conclusion to be prov’ed in order to discover
' the-relationships upon wlilch it depends. In the analysis be
guided by the ‘methods “outlined under 1 to 19 above, and
by the “X will be true i#{-M is true” technique, which was
discussed in Chapter III and will be presented more com-
pletely on the following pages.

The Analytu, Method, Coordinating the Devices Freviously Used Into
. e.Scientific Plan for the Discovery of the Proof in Ortgmal Exercises. In
the theorems of the preceding chapter there has been occasionally a need
for analyzing the conclusion to discover the manner in which iis pioof
depended upon the hypothesis or other known facts. In many cases the
proof was evident at ‘once. Before trying some rather difficult exercises
to get experience with this much discussed and all powerful analytic meth-
od, it will be well to_summarize the theoretical basis of analysis as well as
to list the devnqes or methods a]ready available for proving geometric con-
clusions.

Analysns the presentation of whlch was introduced in Chapter III,
Section IIY, begins with the conclusion or some part oi the conclusion;
X, and then reasors that X will be true if some’ other condition, C, is
true. Then it continues, C will be true if B is true, B will ke true if 4 is
true, but 4 is true, therefore X can be proved. (See Chapter III, Section
IIL) 1

_ The method of analysis is not new. As previously stated, it was prob-
ably- invented by Plato, tut most extensively used by A.rchxmedes and
"Apolionius. In fact, Apollonius became so expert with it that his analysis
of geometry problems, without the use of algebra, has not been excelled
to the present time,*® Analysis, as a major pari of the heuristic method,
has been strongly advocated in this study as the method of discovery
in teaching geometry. This advocacy is based upon the feeling that one

16 Heath. op. cit., Vol. 111, p. 246.
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of the major contributions which geometry is able to make to the educa-
tion of an individual is the development of an analytic attitude-toward
the solution of all problems, non-geometric’as well-as geometric.!*% 11t Tiz
Synthesis begins with the hypothesis, a part of the hypothesis, .or'some
known fact or construction. Frem this it proceeds by means of other
known or accepted facts or processes to the unknown conclusion. These
steps may or may. not have ‘been- discovered by formal analysis, but if
not, they probably were discovered by an unconscious analysis. In_many
of the easy exercises of high-school geometiy following the-tliéorems al-
ready given, the proof was no doubt discovered by a more-or-less -un-
conscious, intuitive: analysis. Proofs are not often dlSCOVCl‘Cd by syn-
thesis. The analytic m_egod is the method of discovery. It begins with
the-unknown or desired concluaxon/ “and- analyzes it, breaks it up, to
discover other facts or ;elatxonshlps upon which it depends These it
analyzes further until a dependence upon known or accepted relationships
is discovered. Finally, for a concise statement of these discovered rela-
tionships the synthetic arrangement, practically reversing.the order of
the analytic results, is very desirable. Analysis is the method of discovery,
synthesis- the_rigorous and concise method of presenting the discovery.
Elementary Pattern of Analysis. In the preceding discussion of analysis
in Chapter III the general pattern presented was as follows.
HypotHrsis: 4 is true.
CoNcrusioxn: B is true.
ANALysis: B will be true if Cis true.
~C will be true if D is true.
D will be truec if E is true.
But E is true because of 4.
Therefore B is true, or at least can be proved.
Complete Pattern of Analysis with Difficult Originals.
HyrotHEsis: 4 is true. .
CoNcLusioN: B is true.
ANALYSIS:
(1) -B will be true if C is true, or if M is true, or if X is. true
a. C will be true if D is true, or if G is true, or if K is true.
But perhaps neither of thes'e can be proved.
b. Then M will be true if N is true, or if i is true, or if P is
true, or if ¥ is true.

P

2 ¥assler and Smith. op. cil., pp. 131-170.
12 Breslich, E. R. Problems in Teaching Secondary School Mathematics. University
of Chicago Press. 1931, pp. 268.323.
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But evennow' perhaps none of these can be proved.
. c.. Then finally X is true if J is true, or if R'is true.
(2) J will be true if L is true, orif Q is true, or if Z is true, etc.
(3) But Z.is true, therefore B.is true,or at-least can be proved.

In other words, in a real problem where the solution is unknown there
may .be several ways-of ‘proving-any one statement and each of these
may- have to be investigated. Many presentatxons of the analytic method
in textbooks on the teaching of mathematics,.as well as high-school text-
books, fail- to recognize this multxphmty of_possibilities. They show how

 beautifully it works on some problem whose solution they know before-
~hand. Wheén the solution is unknown there will'be:at nearly every step
several possible steps that might be taken: For: mstance the’list of “De-
. vices™ -gave fifteen different possxble-ways of proving one angle equal to
¢ . another and twelve ways of proving two tnangles congruent Whenever
there are various- possible steps'it may be necessary to exhaust several
possxbxhtxes before the right oneis found
However, if.we.accept.the principle that “nothing happens without a
sufficient reason why it.should be so rather than otherwxse ” then the
reason exists and can be found if the analysis is complete If the analytic
_method of geometry is to be apphcable to and useful for the solution of
problems whose solution is unknown, then the rather complex pattern
just given for analysis will necessarily be needed. Tilustrative problems
are given below showing the use of the analytic. method in the solutxon of
difficult originals. -~
Problems Analyzed as Patterns. The exercises immediately following
involve more- than one step. They give some opportunity for analysis and
_should be'a real challenge to a student who is anxious to become expert

JIS ;
y in geometric ; alysis. Five exercises (two constructions and three ex- :
.. ercises involving proof only) will.be analyzed to serve as patterns for |

" the analysis of the others. Notice that analysis proceeds only to the point
of dxscovery of known relatxonshxps, and then the proof can be written
. down synthcacally The headings used for the constructions are not the
traditional ones but they are suggestive and the alliteration is novel.
\ 1. Illustratwe Construction. Problem Solved by Analys:s
i PROBLEM Construct a trapezoid, given the 4 sides, ¢, b, ¢, d, with
<‘{3 b and d the paralle] sides.
- NALYS!S Assume a trapezoid, ABCD, drawn and analyze the rela-
N txonshlp between its sides.
{ l\ { The construction could be made if there were some way of

‘J
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getting the angle between any two adjacent sides such as ¢ and
S i b, or if there-were some way of getting the distance between:
ot < ™ -the parallels :

; (2). Now the angle bétween ¢ and.- b could be found if there were
¥ 'some way of getting a triangle with three sides given. With 4
: -as-a center and line ¢ as a radius, cut CD at-E. Draw. AE.

-(3) Then' trxangle ADE has two' sides known and could-be. drawn
; ‘if. DE -were*known.

(4) But ABCE. is a parallelogram, therefore EC equals-d and

L : DE= b—d: .
Lo . Therefore the- tnangle ADE can:be. constructed : "\
b - A _d B
‘ d ]

N D"E b . C

e s 0 —d bdi -
: , - E

iy PiocEDURE (Construction):

S (1\ Construct a triangle EAD with sides EA AD, and DE equal re-
| ’ trvely tog, ¢, and b—d.

. '(2)p§§tend DE to C making DC = b.

i (3) Through 4 draw a line 4B parallel to DC and make 4B = d.

(4) Conttect points Bard C. |
* (5) Then ABCD is the required trapezoid.

PROOF: ‘Left to the student. .

Possipirities: It should be evident that, unless 4, d, ¢, and d are of

such a nature that a triangle can be constructed with sides q, ¢, and “

b — d, the solution is impossible. If, for example, ¢ = 6, ¢ = 10,

and b —d =2, then no solution is possrble It is also- evidenLthat '

AB and DC must be laid off in the samie direction, but that, if both

had beer laid off in- the opposite direction from that indicated in-the

figure, the trapezoid would be reversed. -

Note: The second altemative in statement (1) of the analysis, -if
followed through, would lead to about the same result, The solution _
-above uses the technique of assuming the construction drawn. for the
purpose of analysis. Then a parallel is drawn from a crucial pomt ¢ .
Often -the connecting of crucial points or the drawing of parallels or §

e
a €

. - .
‘o S 47
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perpendxculars at crucial pomts heips in the analysis. Perpendiculars
from 4 and B to line CD wouldf have obtained about the same result.
" 2. llustrative Constructzon Problem Solved by Analys:s )

ProBLEM: Gwen two chords AB‘\and CD in a circle, to find a point X
so that X4 and XB will cuk: off on CD a given segment s.

/

ANALYs1s: Assume the construcuon done. Then parallels to F4
through G or to GB through F suggest a parallelogram FHBG. Con-
. struct such a parallelogram It is now evident that, even though
angle X is unknown, BH can'be drawn equal to s and parallel to CD.
If F of G could be deter}nmed the construction would be solved.
But angle X = angle AFH = . /z arc 4B, and therefore F can be
located by the construction for the locus of the vertex of a given
angle whose sides pass through two given pomts This then deter-
mines the parallelogram and the steps-in the analysis can be re-
versed. .
PROCEDURE: . _
(1) Draw BH parallel to CD and equal to the required line seg-
ment s. ;
(2) Constfuct a circle through 4 and H with an inscribed angle
équal to an angle measured by v arc AB.
(3) This circle will cut CD either i m two points, F and F, one point
F,orno pomts at all. . )
(4) Draw AF and extend it to cut the circle \n X. Also AF’ it
desired, cutting the circle in 5{ ’
(5) Draw XB cutting CD in G, also draw X’B cutting CD in G’
if desired.
(6) FG is the required segment. F’G’ also if desired.

Proor:
(1) Angle AFH = angle X by construction.
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(2) Therefore FH is paraliel | to BG, since the corresponding angla
- are equal.

. (3) BH is parallel to FG hy construction. ’
. ! (4) Therefore FGBH is a parallelogram because its opposite sides - |
o - are parailel. |
) L (5) Thetefore FG = BH since the opposite sides of a parallelogram :
o "are equal. Y
T "~ -(6) Therefore FG = s because both equal BH.

Possmn.nms Red

(1) The circle through 4 and H with inscribed angle equa.l fo'an
angle measured by 14 arc AB might cut CD in (a) no-points;
(b) one-point, if tangent; (c) two points, both within- the
circle; (d) two points, both on CD extended; or (e) two
points, one within and one. outside the circle. In (a) there
would be no solution possible, or in other words there is no point-
X such that AX and BX would cut on CD a segment as large
. as the one désired. In (b) only one solution would be possible
while in (c) there are clearly. two solutions. In (d) 4F would
cut the circle in X, which wotild be on the major arc of CD,and
AX and BX would intersect between the chords. There would
still be.two solutions, although the segments would be reversed
in their lettering. For (e):one segment would be reversed or a
& negative segment, and the other, positive, but still two solutions,
(2).Xf .AB and CD are parallel, perpendicular, intersect within the
circle or intersect-outside the circle as in the figure,:the selu-
ki " tions would be modified sllghtly ‘but would be essentially un:
& - changed. o
(3) If the segment s is too.large the solution becomes impossible ; a.s 'S
in 1 (a) above. If the segment s is zero, the other extreme, thenr o
. the point X becomes either.C or D. '

-3. lllustration of -an Original Exercise Solved by Analysis. The alti- .
tudes of & triangle intersect so that the product of the segments of
one equals the product of the segments of the other. '

_ HyroTHEsIS: Any triangle, -even an obtuse one such as ABC with -
\ . altitudes AD, BE, CF mtersectmg atH. '

/

\ 19 Petersen, Julius. Methods ond Theories for the Solution o( Geometrical Construc-
tions. G. E. Stechert and Co., 1923, p. 102, \

n..,‘
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Coucwsxou AH X DH-= BHX EH= CH X FH ,
| AH EH AH/

Axa 1)AH X DH = BH X EH
wysis: (1) " eH ~hH “ER DH

AH  BH
2) ‘Now FH = DH if tnangles AEH and BDH are/sxmxlar, but

AH _EH -
BH = DH if triangles AHB and EHD are sxmllar o .

(3) Tke first condition in (Z) looks easier to pro\/re The ttiangles
AEH and BDH are sumhar if any one of several conditions are
true. First, hov;ever one is likely to observe that the triangles: :
are both nght triangles and they are therbfore similiar.if an 1
* acute-angle of one equals an acute angle/of the otber. |
T (4) Itis evident, however that the angle at/ /H is common to both - 1
|
\
\
|

o

triangles, therefore the triangles can /be proved similar and .
steps (3), (Z), and (1).can be reversed for aaynthetm proof.

! Proor: Left-to the student to complete ‘

Exercise: Draw a second figure havmg the altltudes intersecting with-
‘in the tnangle and see if the same analysxs holds.

4, Illustration of an Ongmal Exerc:se Solved by Analysis. If equi-
lateral triangles are constructed upon tie sides-of any triangle, the
lines drawn' from their outer vertxces to the opposite vertices of the
given: triangle are equal /i

HyrorHESIS: Any triangle ABC ymth ABD BCE and ACF equilateral.

. ConcLusion: BF = CD = AE K .

ANavysis: ©. /
(1) BF = CD if triangles BFC and CDB are congruent, or if tri-
angles BFA and CDA are congruent or perhaps if other pau's

of. tnangles are congruent .
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(2) Triangies BFC and CDB have no parts equal by hypothesis,
except BC = BC, but triangles BF4 and CDA have AF = AC
and 4B = AD. Therefore triangles BFA and CDA will be
congruent if enther BF = CD or angles FAB and CAD are
equal.

(3) The first of these conditions is the conclusion to be proved,
. therefore we try the second one. However, a glance at these
angles reveals that the angles are each equal to a 60° angle
plus-angle CAB, and angles FAB and CAD are therefore equal.

SYNTHETIC PROOF:

(1) Angle FAC = angle BAD since both equal 60°
_ (2) Angle CAB = angle CAB by identity.
(3) Therefore angle-FAB = angle CAD by addmg (1) and (2).
(4). AF = AC by hypothesis.
(5) AB = AD by hypothesis.
(6) Triangle ABF == triangle ADC bys A.S.
(7) Therefore BF = CDby.c.p.c.t.e. i
'(8) Similarly BF = AE, and therefore AE = BF = CD.

5. Illustration of an Original Exercise Solved by Analysis.

Hypotnesis: Any triangle ABC with ABD, BCE, and ACF equilateral.
(Same as illustration 4. Use figure for 4. )

CoNcLusioN: AE, BF, and CD are concurrent and meet so as to form
six 60° angles.

4

'S

. ANALYsIS:

(1) The three lines will be concurrent if. CD passes through the
point of intersection of the other two.

s
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!

(2) If the lines are concurrent, the angles will all be 60°, pro-
viding two adjacent angles can be proved to be 60° each. .

(3) Lét O.be the point of intersection of BF and AE and draw OC
and OD, then. COD must be proved to be the straight line CD.

(4) Line COD will be a straight line if the sum of three angles on
one side at O.is 180°, or.if angle ACO = angle -ACD.

(5) Suppose we take the second alternative in (4) Angle .
ACO =-angle ACD if any one of a dozen or more-conditions
is true: both equal the same angle or parts of congruent or,
similar triangles, etc.

(6) From the previous proof (4 above) angle 1 = angle 2, angle.

= angle 4,.arigle 5 = angle ACD and angle 7 = angle
BCD. Now angle ACD will equal angle ACO or KCO if angle

: KCO = angle*s. .
(7) Angle KCO = angle § if triangle KCO is sumhar to tnangle
FKA.

(8) Smce these triangles have the angles at K equal, but nothing
yet known about the other angles, they will be similar 1f the
sides at K are proportional.,

(9) ;But triangle FKC is similar to triangle AOK because two

FK CK
al tivel _—
angles are equ respec vely and therefor T4 OK
FK _

CK”~ OK

(10) Therefore triangle OKC is similar to triangle AKF by one
angle equal and including sides proportional, and therefore
angle KCO = angle 5 = angle AC/), and therefore COD can
be proved a.straight line.

(11) The angles at O will be 60° if they can be ptoved equal tothe
angles of theequilateral triangles.

(12) But angle 9 = angle 12 and angle 11 = angle-10 froin the
similar triangles already used, therefore angles 10 and-12 are
60° and their vertical angles are also.

(13) But angle 14 equals angle 15, therefore each i is 60°

(14) Therefore all the angles at O can be proved equal to 60° and
the liies AE,"BF,and CD can be proved concurrent at O.

Proor: Left to the student.

.Summary Discussion: The analyses in the foregoing illustrative solu-
tions are given exactly as they were worked out By the writer, except

by mterchangmg the medns.

ved
P
)
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that- magy of the leads that seemed to fail were omitted to save space.

The discovery in step (9) of the last exercise really came as the result of
an abandoned attempt to follow the first suggestion in (4). A multiplicity
of suggestions is usual]y present in any problem. As various ones are car-
ried out-and abandoned, interrelationships are discovered which may help
later: ‘Every dlfﬁcult original will always have several- possibilities - at
every step: The writer worked severalihours, extendmg over odd study
" periods for more than-a week, in so]vmg the last exercise. The student

should'\not be too readily discouraged if in- tryxng to solve some of. the

fol]gwmg exercises, he finds that the solution is- elusive. 4 few . hard
_ ofiginals really worked out will teach more about analysis than can pos-
" sibly be done.in many pages of discussion. -

1
1IT. EXERCISES FOR ANALYSIS

Drecrions: The following problems are designed to provide-experi-
ence with the analytic method for constructions-and for problems to bé
proved. Tkey have been arranged in order of difficulty on the basis of the
combined welghtmg of twelve judges who-are teachers of- experience.
Enough of the exercises should be worked, both- constructions and proofs,
to make sure'that the analytic technlque had been mastered. For the con-
structions the subheadings used in the patterns are helpful and sug-
gestive: problem, ‘analysis, procedure, proof, and-possibilities. In both
construction problems and other problems the analysis may be oral and
therefore may be omitted from the written form.

A. PROBLEMS FOR CONSTRUCTION

1. Given the base, the smaller adjacent acute angle, and- the differ-
ence between the other two sides of the triangle, construct the tri-
angle.

2. Construct a line througha gwen point D within a g1ven acute angle

.  soas to form with the sides of the given ang]e an isosceles triangle.

3. Construct a trapezoid, given its bases-and its diagonals.

4. On the side AC of triangle ABC to find the point P such that the

‘ parallel to AB from P, meeting BC at D, shall have PD = AP.

: 7 5. To construct a trapezoid, givén the four sides. N
6. Given a point 4 on one side of angle 4BC, find a second pomt on
this side*whose distarices from the other side and from A shall be
equal. = -
-~ 1. Construct a square, given the sum of a side and a diagonal. /
8. F rom two given pomts to draw lines meeting a given line in a pomt
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and making equal angles with that line, the points being on (1) the )
-same side of the given line, (2)-opposite sides of the given line.
~ 9. Construct a parallelog‘am having its perimeter and area equa] re-
spectively to those of a given triangle.
10. Inscribe-a'square within a givén right - tna.ng]e having one of its
= angles coincident with the right angle of the triangle and the op-
. posite-vertex lying on the hypotenuse.
11. Eudlid’s construction for the tarigent to a circle with center M and RN
from a point 4 outside is as follows: , : _ Vo
(1) Draw the circle with center M and radius MA.
-(2) Draw M4 intersecting the given circle at B. .
(3) Draw BC. perpendxcu]ar to MAat B, meetmg the larger circle-
at C.
(4) Draw MC, mtersecung the glven circle at.D.
Conclusion: 4D is tangent to the given circle. Make the construc- .
tion and give the proof. . ‘ ’
12. With a given radius, td describe a circle havmg the center on one
side of a given angle and determining a chord of given length on
X the other side of the angle. ‘
y ~13. Through a given point to draw a line so that the two chords inter-
‘ - -cepted on it by two circles of equal radii shall be equa]
.14..Through a given point of a circle to draw a chord which shall be
-twice as long as its distance from the center.
_ 15. Construct a circle which will be tangent to each of two parallels
. and will pass through a given point lying between the parallels.
_>16. Construct a circle with a given radius which will be tangent to a
“given circle ar;d will pass through a given point inside the circle.
17. Describe two'circles of given radii r, and r,, tangent to one another
and both tangent to a given line on the same side.
18. Construct a triangle given

~ (@) b+ca A
- (b) b+ ¢, B, altitude CF
- (c) b + ¢, C, altitude BE .
(d) b + ¢, g, altitude BE or CF

19. Construct a triangle given /
~»(a) b—c¢,a,C. \
(b) b—c, 4, B.
" (c) b —c, g, altitude BE.
(d) b—og¢, 4, altitude BE.

—
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Q 20. Construct a triangle, given an angle, the bisector of the angle, and
: the ratio of the two segments into which this bisector divides the
\opposxte side. ¥

21. Construct » *rapezoid, gwen the ratjo between the parallel sides,
m:n, the iength of. both non-parallel s:des and the angle between

_ the non-parallel sides extended.

-22. Construct a parallelogram equal ta a given triangle having one of
its angles equal to a given angle,

23. Construct a parallelogram so that two given points shall constitute
one pair of its opposite vertices and the other pair of vertices shall
be on a given circle.

24. Construct a triangle given £, /g, and 4; £, is the bisector of angle
A, and /, is the altitude to side a. )

25. Construct a square which shall have two of -its vertices on a di-

améter of a given circle, and the remaining two_vertices on the—

‘semicircle constructed on this diameter.
26. Through one of two points of intersection of two circles, to draw
. aline cn which the two circles determine two chords of equal length.
27. Through one of the two points common .to two circles draw a line
50 that the two chords which the two circles determine shall sub-
tend- equal angles at the respective centers of the circles.
28. Through one of the points of intersection of two circumferences to’
draw a chord of one circle which shall be bisected by the circum-
-ferénce of the other. :

> 29. Draw a line dividing a quadrilateral into- two.equal quadrilaterals.

"30. Construct a triangle, given the base, the opposite angle, and the
sum of the two altitudes to the other two sides. (a, 4, Iy + bo). (See
Altshiller Court, op. cit., p. 27, problem 23.)

31. Construct a triangle given, (a) 4, a, &/c; (b) 4, a/c, altitude CF.

32. With ‘two given points as centers and equal radii, to describe two
circles so that one of their common tangents shall be tangent to a
given circle.

33. Hypothesis: Two circles, 0 and O, intersecting at P and line 4B
equal to the sum of two chords through P.

Construction: Draw a line throu"h P making chords whose sum

\ is equal to the required sum, 4B. '

34. Through a given point P of the didmeter AB o draw a chord CPD
so that arc BD = 3 arc AC.
. 35. To construct a polygon of # sides in a circle with diameter AB.
(1) Construct an equilateral triangle, ABC, on AB.

]

257
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-+ -one from‘&d along AB call D. -

triangle, in the point . , - ’
(4) AP is the side of a polygon of 2 sides.
Note: The arc seems to be the fractional part 2/n of the semi-
circle, and therefore 1/n of the wholg circle. Try out this construc-
tion with différent values for n. Try to prove that it is true for any
© value of-m. _—
" 36. ‘L'o- conitruct a pentagon. )

1

*im;g at O. .
(2) Bisect 4O at M and on 4B from M lay off MN equal to MC.
(3) ThenCN is o e side.of a pentagon in a cIrcle with radius 04.

the construction of a decagon.
37. Construct a triangle given the base, the angle opposite, and the
point where the bisector meets the base
38.:Construct a square so that each side shall pass through a given
pomt
39. To describe a circle with a given radius and
{a) pasamg through two points.
(b) pas.,mg through one given point and langent toa glven line.
(c) passmg -threugh a ngen point and tangent to a given circle.
(d) tangent to two given lines. /
(e) tangent to two given circles. o
(f) tangent to a given line and to a given circle.
40. Construct a circle*
(a) through three points. (P, P.P.) ~
(b) ‘tangent to tliree given lines. (L. L. L)
. () thrnugh two point- and tangent to a given line. (P. P. L.)
(d) through & given puint and tangent to two given lines. (P. L. L.)
{e) through two points and tangent to a given circle. {P. P. C.)
(f) through one given point and ‘tangent to.a given line and a
-given circle. -(P. L. C.) .
(g) through a given puint and tangent t}w( given circles. (P. QC.

) .

«©

* Note: These ten cohstructions constitute what is historically known as the prob-
lem of. Apollonius. See Altshiller-Court, N., op. cit., pp. 173-180. There are impos-
sible situations for each set of conditions. All possibilities should be presented.

(2) Divide AB mto n equal segments, and «the end of the second

(1) Draw a citcle-withtwo perpendxcular dlameters, AB and CD,

(3) Let line CD cut-the circle, on the portion opposite_ from the

Make the construcuon and prove it to be general, Compare it with

[}
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42.

45.

46.

47,

49,

J/ 50.
51.
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(h)' tangent to two given lines and one given circle. (L. L. C.)
(i) tangent to one given line and to two given circles. (L. C. C.).
(j) tangent to three giveén circles. (C. C. C.) %

"B. PROBLEMS FOR PROOF

If one side of a parallelogram is produced in one direction-and the
opposite side“is produced by. the same lerigth in the opposite di-

‘rection, then the line joining their terminal points passes-through

the pomt of ntersection of the diagonals of the given parallelogram., '
If from any point in the base of an isosceles triangje perpé%‘;]:dl ars
are- drawn to its sides, their sum equals the perpend) ar ‘from
either base angle to the opposite side. S~

. Prove that the sum of the perpendiculars drawn fr, /r/h any point

within an equilateral triangle to the sides of the tnangle is equal
to the altitude of the triangle.

. ABC is'a. triangle,'and the exterior angles at/B and C are bisected

by the straight-lines BD and CD respectlvely, meeting at D; prove

.that angle CDB + 1/2 angle A = aright angle

If the base 4B of triangle ABC is produced to X, and if the bi-
sectors of angle XBC and angle BAC meet at P, what fractional
part is angle P of angle C?

If equiangular triangles be constructed upon the sides of any tri-
angle, the lines drawn from their outer vertices to the opposite ver-
tices of the given triangle are equal and concurrent. (Prove this
without referring to the proof given on a preceding page:)

If D is the midpoint of leg BC of right triangle 4BC, prove that
the square of the hypotenuse, AB exceeds 3 times the square of CD
by the square of 4D.

. If BE and AF are the medians drawn from the extremities of the

hypotenuse AB of right triangle ABC, prove 4BE? + 44F? = 54B*
If ABC and ADC are angles inscribed in a semicircle, and 4E and
CF are drawn perpendicular to BD extended, prove (BE)z + (BF)"
= (DE)2 + (DF)’

If lines be drawn from any point P to the vertices of rectangle
ABCD, prove that (PA4)? + (PC)? = (PB)* + (PD)2.

ABC, DBA are two triangles with a common side 4B. If P is any
point on 4B, and PX parallel to AC, and PY parallel to 4D meet
BC and BD in X and Y respectively, iprove that triangle YBX is
similar to triangle DBC.

o
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In the triangle ABC the side BC is bisected at E, and 4B at G;

AE is prcduced to F so that EF equals AE, and CG is produced to
H so that GH equals CG. Prove that F, B, H, are in one straight line
and that FB equals BH. .

In triangle ABC, altitudés- AD and BE intersect at O, The per-

. pendicular bisectors FK and HK of AC and BC respectively, meet

54:

55,
56.

57.
N s,

59.

at XK.
(a);Prove that triangle 4BO is similar to triangle FHK
(b) Prove A0 =2 HK

BO=2FK
If one of the equal suies CB, GI an isosceles trlangTe ABC is pro-
duced -through the base, and i{ a segment BD is laid off on the
produced-side, and an equal segment AE is laid off on the other
equal side, then the line joining D and E is bisected by the base.
(Consider the case in which BD > CB, BD = CB, BD < CB. )
The sum of the three medians of a tnangle is greater than three-

- fourths of its perimeter.

\..rcle D is tangent internally at B to a larger circle whose center
iSE.Ifa line through B cuts circle D at C, and circle E at 4, prove
that.AE is. parallel to CD.

The diameters of two circles are 12 and 28, respectlvely, and the
dlstance between their centers 1s 29. Find the length oi Lhe common
1ntemal tangent.

If from the extremities of any chord perpendiculars to that chord are
drawn, they will cut off equal segments, measured from the ex-
tremities, on-any diameter.

AB is-a fixed chord of a circle, and XV is any other chord having
its midpoint P on AB. What is the greatest and what is the least

‘ length that XV can have?

60.
: parallel to-B’C”. Prove that AC’ is parallel to 4’C.
61.

62.

* 63,

64.

Given two pairs of parallel chords, 4B parallel to A’'B’, and BC

If ABCD is a quadrilateral circumscribed about a circle whose cen-

ter is O, prove that angle AOB + angle COD = 1803,

ABCD is a parallelogram: from 4 a line is drawn cutting BD in E,
BC in F, and DC produced in G, prove that AE is a mean propor-
tional between EF and EG.

In triangle ABC, CM is a medxan angles BMC and CMA are bi-
Sected by lines meeting ¢ and b in R and Q, respectively. Prove that
QR is parallel to 4B.

DEFG is a square havmg its vertu:es D and E on sides 4B and BC
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mpecnvely, of triangle ABC and its vertices Fand G on side AC

oo * “Let BH be parallel t6 AC, meeting AE extendc at H; let HK be
perpendxcular to AC and BT perpendicular to AC. Prove BHKT is
. -asquare.

S 65. The square of one of the equal sxdes of an isosceles triangle is equal
to the square of any line drawn from the vertex of the triangle to
s the base increased by the product of the segments cut off by the lme
N 66. ABC.is a triangle; AC is bisected at-M; BM is bisected at N; AN
n nmeets BC at P;- MQ is drawn parallel to AP to meet BC at Q. Prove
that BC is-trisected by Pand Q.

67. Prove that-in any triangle three-fourths the sum of the squares of
7 the sides equals the sum of the squares of the medians.

68. Two parallel chords are 10 inches and 12 inches. long and are 1

---  inchapart. Find the radius of the circle.

, : 69. If any two chords cut- each: otherﬁperpendlcularly the sum of the

. ‘.. squares of the four segmenis equals the square of the diameter.

70 If the sides BC, CA, AB, of triangle ABC are produced to X, ¥, Z,
Tespectively, so 'that CX = BC, AY = CA, BZ = AB, prove that
triangle XYZ = seven Umes triangle ABC.

71. Eis any point on diagonal AC of parallelogram ABCD. Through E
parallels to AD and AB are drawn, meeting AB and CD at F-and

: H respectively, and BC and 4D at G and K rwpecuvely Prove
. ) parallelogram FBGE = parallelogram EHDK. '
. 72. If-E is any point- inside BC of parallelogram ABCD and DE is
drawn meeting AB extended at F prove tnangle ARE equals tnangle _
) : CEF. . : =
: 73. ABCD is a quadrilateral mscnbed in a circle. If the sides. AB and:
) " DC extended intersect at E, and AD amd BC extended intersect at . -
F, prove that the blsectors of angle E and angle F are perpendlcular d

74. ABCD is a quadnlateral inscribed in a circle. Another circle is :
drawn upon AD, a chord, meeting AB and CD extended at E and
F respectively. Prove chords BC and EF parallel.

75. The sides AB and CA of a triangle are bisected in ¢’ and B’ re-
spectively; CC’ cuts BB’ at P. Prove that triangle PBC pquals
quadrilateral 4C’PB’, 7

76. A right triangle has for its hypotenuse the side of a square a‘ld lies
outside the square. Prove that the straight line drawn from the cen-

N\
N

o ter of the square to the vertex of the right angle of the nght trxangle
. ‘bisects the right angle.
71. If a circle s circumscribed about a fight triangle, and on each of the

¢
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" legs of thé'!tria_.ngle as diameters semi-circles are drawn, exterior to
the triangle, the sum of the areas of the crescents thus formed equals
, the'area of the triangle.

.78 Prove that the square inscribed i in a semi-circle is equal to two-

fifths- the square inscribed in the entire circle. Suggestion: Let R
equal the radius of the circle. Compute the areas of the two squares.

79. AB and AC are tangents to a circle from the point 4, and D is any
point in /the smaller of the arcs subtended by the chord BC. If a
tanget to a circle at D meets 4B at E and AC at F, prove that the
‘perimeter of tiiangle AEF = AB -+ AC. . -

80. If from any point P, on the diameter 4B, PX and PY are drawn to
the circurhference on the same side of 4B and making angle APX
equal to angle BPY, then triangles APX and YPB -are mutually
equiangular.

81.._Prove that the bisector of any angle of an inscribed quadrilateral
and of, the opposite exterior angle meet on the circumference. © =+

. 82. Triangle ABC is inscribed in a circle of which AD is the diameter.

A tangent to the'circle at D cuis AB extended at X and AC extended
at Y. Prove triangle ABC similar to triangle AXY.

.8.Ina parallelogram the st of the squares on the four sides equals

the sum of ihe squares of the diagonals.

34 A’ and B’ are the feet of the perpendiculars from 4 and B to a.and
'b in triangle ABC; M is the mxdpomt of AB. Prove that angle .
B'A’M = angle, A'B'M = angle C.,

85. In triangle ABC, P is any point in AB and Qissucha pomt in C4
that CQ = PB;if PQ and BC, produced if necessary, meet at X,
provethat CA : AB = PX : QX

86. A& is a tnang]e, and through D, any point on 4B, DE is drawn
--pérallel to BC tomeet AC in E; through C, CFis drawn parallel to
EB to meet AB produced in F Prove that 4B is a mean propor-
txonal’between AD and AF.

87. Prove that the lines joining the midpoints of the opposite sides of

| quadnlateral -and the line joining the midpoints of the diagonals
of the quadnlateral meet in a point.

88. If a line be extended from vertex C of isosceles triangle ABC meet-

" irigbase AB extended at D, prove (CD)2 — (CB)?> = AD X BD.

;éD. If AD and BE are the perpendiculars from vertices 4 and B, re-

spectively, of acute angled triangle ABC to the opposite sides, prove
" AC X AE + BC X.BD = (4B)*
90. The perpendiculars drawn from the vertives of a triangle to the
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,oppoéite sides are the bisectors of the angles of a triangle formed by

- joining the feet of the perpendxculars
1f D is the rmdpoxnt of side BC of triangle ABC, E the midpoint of

JAD, F of BE and G of CF, then tnangle ABC = 8-times triangle
EFG. _

. In any triangle, the product of any two sdes is equal to the product
of the segments of the third side formed by the bisector of the ex-
terior angle at the opposite vertex, minus the square of the bisector.
Prove 45X AC = BD X.CD — (4AD)>. ) .

. In any inscribed quadrilateral the product of the diagonals is equal
‘to the sum of. the products of the opposite sides.

. The feet of the three perpéndiculars- dropped’ upon the sides of a

- triangle from a pomt P in its cxrcumcxrcle -are colhnear (Thxs is.
Simpson’s Line.)’

. The Simpson Lines of two dmmetncally opposxte points are per-
‘pendicular. »

. Theé Simpson Lines of- three points form a triangle similar to the
triangle determined by the three points.

. The six segments determined by a transversal on the sides of a tri-
anglé are such that the product of three non-consecutive segments is-

equal to the product of the three others.
*Note: This is the Theorem of Menelaus.

. The-lines joining the vertices of a triangle to a given point deter-
mine on the sides of the triar 2Je six segments such that the product
of- three non-consecutive segnients is equal to the product of .the
three other segments.

Note: This is Ceva’s Theorem.

. Does Ceva’s Theorem hold if the point is outside the triangle? On
one side? On one side produced? At one vertex?

. If d is the distance from a point to the center of a circle and 7 the
rquus of the circle, write a formula-for computing the length of the

angent (t). ¢t = j(d r). If r is constant, then ¢ = f (d). Show what
happens to £ as d approaches r and finally becomes less than rand -
approaches zero. .

3

IV.. CONVERSES
A. CONVERSES AND PARTIAL CONVERSES

Definition of Converses and Partial Converses. One of the major con- .
tributions of geometry to the science of reasoning is the method of the in-

N
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direct proof. Smce one of the chief uses of indirect prcof is for converses,
it seems necessary that a full understanding of converses should precede
the use of indirect proof. The following definition of converse and the
analysis of.the fundamental relation between a direct statement and its
converse are vital to an understanding of the direct or reductio ad ab-
surduni (reduction to an absurdity) proof.

The usual deﬁmtzon, “to interchange the hypothesis and conclusion,”
often.leads to-an-absurd or impossible statement. It is only when there
is but oné simple condition in the hypothesis and one simple consequerice
in the conclusior. that such interchange is possihle. Strictly speaking, such

. interchange is never possible. At first thought the converse, according to

this definition, of “If two sides of a triangle are equal, the angles opposite
these sides are equal,” is “If two angles of a-triangle are equal, the sides
opposite these angles are equal. » Close inspection reveals, however, that:
“triangle” remains in the hypothesis for both tatements. This can be

"‘brought out by a different statement of the theorem. (1) If a polygon

has three sides and two of these are equal, then the angles opposite are
equal. The converse, according * + the usual definition, would not be less
than this;—*“If a polygon has two equal angles, then it has three sides
and two of these are equal.” This converse is 1mposs:ble to prove.

Since the usual definition of converse is sometimes impossible, clearly
a more carefully worded one must be framed. The actual and usual con-
ception of a converse is that a converse of any theorem may be stated by -
interchanging any one consequence in the conclusion with dny one con-
dition given in the hypothesis. Such a definition would permit several
converses for.some theorems. In cases where there is more than one con-
verse of a theorem each one is sometimes called a pamal converse.* The
following proposmon illustrates the definition: .

A. The direct theorem -

_ HypotHesis: (1) The curve ABCD is a circle.
(2) €D is a chord.
) (3) AB is a diameter.
b /  (4) AB is perpendicular to CD.

Concrusion: (X) ABbisects CD.

B. Cohverse by the usual deﬁmtlon (interchange of hypothesis and con-
clusion) .

HypoTHesis: (X) AB bisects CD

16 Heath, T. L. Vol. I, op. cit., p. 256,

Ay
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Concrusion: (1) ABCD is a circle.
(2) ABis a diameter. W
(3) CD is a chord. o
(4) AB isperpendicularto CD. -
_ C. Converses by the inore precise definition- * =~
(a) Interchange of (4) (x)
Hyroruesis: (1) ABCD is a circle. ’
(2) CD'is a chord. \
(3) AB s a diameter. hS ‘
(X) 4B bisects CD. : A
ConcLusioN: (4) AB is perpendicular to CD.
-(b) Interchange of (3) and (X) .. . '
Hvroruests: (1) ABCD is.acircle. ° R
(2) CD isa chord.
(X) AB bisects CD.
(4) - AB is perpendicular to CD.
CONCEUSI(_)N: (3) ABis a diameter.
(c) Interchange of (2) and (X)
~ Hyroruests: (1) ABCD is a circle.
(X) 4B bisects CD.
(3) 4B is a diameter.
(4) AB'is perpendicular to CD..
« CONCLUSION: (2) CD is achord:
(d) Interchange of (1) and (X) -
Hyrotuesis: (X) 4B bisects CD. ~ o
(2) CD is a chord. ‘ .
oo - (3) AB s a diameter.
(4) AB'is perpendicylar to CD.
Concrusion: (1) ABCD isa-citcle.
| The usual definition of converses, interpreted literally, results in an_
| absurd and utterly impossible situation as soon as there is more than one
|
|
|
|

condition in the hypothesis and only one result in the conclusion, as in
proposition 4 above. The interchange of hypothesis and conclusion, as
in B above, is an incomplete statement of the relation between a proposi-
tion and its converse. On the other hand, propositions g, b, ¢, and d, under
C above, are perfectly sensible and legitimate converses, and not only
illustrate but establish the modified definition. They can even be proved,
and this is not always true of converses, as the next section will reveal.
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B. PROBLEMS ON STATING CONVERSES

+101. Ina spherieal polygon the sim of the interior angles is greater than '

(n-2) straight angles, but less than # straight angles. With this in
mind, state -the converses of the following modified statements of
familiar- theorems ’

(a) Ifa polygon has 3 sides and these sides are stralght lines, then
. " the sum of its angles is one straight angle.
- (b)- If-a-polygon has n sides and these sides are 2ll straight lines
. : which liein the same plane then the sum of its anglesis (n-2)
straight angles. .
(c) The sum of the exterior angles of any plane polygon is two
straight angles.
102. State the converse or converses of each of the twenty “essential
theorems,” and also,of each of the-corollaries. Be careful of the con-
.verses of theorems 7,10,12,18,19,and 20.
103. State.the converse of exercise 41 of the examples for analysis. Try
- . doing the same for-each exercise from 42 to 50. In some cases the
converse is very difficult to state without practically including the
concluswn in the hypothesis; for example, number 43. Converses
often are not true.

C. THE LAW OF CONVERSE EXPRESSED IN DIFFERENT WAYS

Relation between Direct and Converse Statements for Proof. The prov-
ing of converse theorems involves-an interesting problem in logic. Con-
 verses are not always true, although in most high-schocl geometry courses
no converses are, mentioned which are not true. It will be interesting to
discover the conditions under which a converse will be.true.

Two illustrations, one geometric and’ one non-geometric, will help to
clarify thé situation: (1) If a triangle has three equal sides, it has two
equal. angles; (2). If a man is rich he can buy a two-cent stamp. It is
evident thattthe converse of-neither of these statements is true. ‘The rea-
son for-this is that the hypothesis is more generous than is necessary.
The two words necessary and sufficient, are advantageously used in ex-
'plax_nmg this situation.!s w

Three sides equal is a sufﬁclent condition for two angles being equal
but not a necessary condition, because two sides equal is all that is neces-
sary. That is, three sides equal is a more generous limitation than is

18 Garabedian, Carl A. “Necessary, Sufficient, and Necessary and Sufficient Condmons,
« Mathemalics Teacher, XXIV, pp. 345-352.

*
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necessary to- make only two angles equal. Therefore, in the converse,
which reverses the hypothesis and conclusion, its hypothesis, two-angles
equal, wxll not be a sufficient limitation to make the three sides equal.
Rxchness is a. sufficient condition. to enable a man to buy a. two-cent
stamp,.but not a necessary condition, since it is more limiting than is
necessary. Consequently, the converse is false: If a man can buy a two-
cent stamp, he is rich. For any statement to be true the hypothesis must
be sufficient to make the conclusion true. For the converse statement to
be true the hypothesis of the first, statement ‘must be necessary in order
that the hypothesis of the converse may be sufficient. For a statement and
its converse both to be true, the hypothesns must be both sufﬁcxent and

necessary.

Hypotheszs Sufficient but Not all Necessary, Conveise not True. Fur-

ther illustrations, both.geometric and non-geometric, will help to make .

clear the conditions under which a converse statement will be true. For
instance, in the following statement it is evident that the hypothesis is
more limiting than is necessary: If all points on a line are equally dis-
tant from a point within, the line is a curved line. That is, the hypothesis
is sufficient to make the conclusion true; yet not necessary. Consequently,
the converse is not true, because when the conclusion becomes-the hy-
pothesns that new hypothesis wnll not be adequate.

“ff a- quadrilateral is a square its adjacent sides are equal,” is a $tate-

ment hose converse is clearly not true. The reason is evident. While the

present:hyp_othesis is sufficient to make the conclusion true. it is not neces-
sary; that is, it is more generous and more limited than is necessary.

/I

Therefore, in the converse, the hypothesis would be madequate to make/

the conclusnon true. . w

“If a quadrilateralis a square, its‘diagonals are equal, or its diagon ls
are perpendicular bisectors of each other,” is also a statement in whlch
the hypothesis contains more limiting ¢ conditions than are nec&sary, and
consequently, although exé:er conclusion s true from the given hypothesxs,
yet in.the converse, either: hypotheSIS would be insufficient to ]ustlf& the.
conclusion. It is evident that if the diagonals of a quadrilateral are equal
the figure.could be a rectangle, and if the diagonals are perpendxcular
bisectors, the figure-might be a rhombus.

Hypothesis Sufficient and Necessary, Statement and Converse Botk

True. However, the statement that, if a quadrilateral is a square then .

the diagonals are perpendicular bnsectors of each other and are also equal,
has an hypothesis that is not merely sufficient, but just barely sufficient,
with no extras. That is, in this statement all the limitations i in‘the hypothe-
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sis are necessary, consequently, in the converse; the hypothesis will be
sufficient- for its conclusion..

If all points on alme are equally distant from a point within, the line
‘is a circle. Clearly in this statement the hypothesis is sufficient and just
‘barely sufficient, that is, it is both sufficient and necessary to make the
conclusion true. Consequently, the converse.is true.

Hypothesis Necessary, but Insufficient; Stat’ement False, but Con-

verse True. A statement in which the hypothes é is not sufficient, but is
_ necessary, has a conclusion that is false; yet the converse will be true.
. This is so because of the fact that in the converse the original conclus:on
-and hypothesis are interchanged, and the new hypothesis will therefore
be sufficient to make the new conclusion true. For example, the state-
ment that all equal angles are right angles, is false. Yet its converse, all
rxght angles are equal, is true. Similarly, it is not true that any quad-
rilateral that has its opposite sides parallel is a rectangle. Vet the con-
verse of this-statement is true. In these statements, the hypothesis is
necessary, but not sufficient for the conclusion,.and in the converse, since
the hypothesis and conclusion are interchanged, the hypothes:s is amply
sufficient.

Again, it is not true that if two sides of a-triangle are equal the tri-
angle is equiangular. The reason for this falsity is that the equality of
‘two sides is necessary but inadequate to make the conclusion true. That
is, the hypothesis is not sufficient. It is necessary, however, even though
. inadequate, and consequently the converse is true. “If a man has two
cents, he can buy an ice cream soda,” is not a true statement because the
possess:on of two cents is not a sufﬁcxent although a necessary condition,
for buying the ten-cent article. Here again the converse is true.

Hypothesis Neither Necessary Nor Suficient. Furthermiore, if the
hypothesis is neither necessary, nor sufficient, neither the direct statement
nor the converse is true: If: 2 quadnlateral is constructed- with white
chalk on a blackboard, it is a rectangle. It is evident that the white chalk
and blackboard are trivial, and, while insufficient to make the figure a
rectangle, are also unnecessary; and ‘consequently, neither form of the
statement lS true.

Summary of Relation Between any Statement and its Converse. It
should. therefore be evident that for any statement to be true the con-
ditions in the hypothesis must be sufficient, whether just barely sufficicnt
or more than sufficient; for a converse to be true the conditions in the
‘hypothesis must be necessary, yet not more than necessary, whether
. sufficient or not sufficient. Consequently, for both a statément and its

»:r;.g
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converse to be true, the hypothesis must be both. sufficient and necessary.

(1) Any statement is true if the hypethesis is sufficient.

(2) Any statement has its converse true if the ongmal hypothesns is

necessary.

(3) Any statement and its converse are both true if the hypothesxs is

both sufficient and necessary. -

(4) Any statement and;its converse are both false if the hypothesis

’ is neither sufficient nor necessaty.

A graplnc representation of thc relations between a generalization and
its converse will help to emphasize and clarify. The following four state-
ments will-be pxctured

(1) Let A represent ail.triangles with three equal sides, and B those

with two equal angles. Then all A is B, but the converse of this
is false. N

(2) Let.C represent all triangles with two equal sides, and B again

\  those with two equal angles. Then all C.is B, and the converse is
4 truet AllBis C.

3 ) Let D represent all triangles with three equal angles, and C again
those with two equal sides. Then the statement, all C is D, is
false; yet the converse is true: All D is C.

(4) ‘Let E represent all triangles made with white chalk on a black-
board, and D again, all triangles with 3 equal angles. Both the
statement that all E is D, and its converse are false.

00@®.

(l)j AllA*isB,but (2) AllCisBand (3) NotallCisD, (4) NotallEisD,
notall Bis A, al Bis C butall DisC, -and not all D
2 isE.
g

It is evident in figure (1) that all 4 is B, but that there are many B.c
that are not A’s. If we substitute the specific meanings for the symbols,
figure (1) represents that all triangles with three equal sides have two
equal angles, but that thcre are inany triangles with two equal angles
that do not have three equal sides. Being an 4 is sufficient to make a
__triangle a B, but more limiting than necessary. Therefore not all B’s are
As. !

tad
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) These letters can now be disassociated -from their spekific meanings,

.and may apply to any “if-then” statement. Even though all 4 is B, all
B is not A unless being 4 is not only sufficient, but also entirely necessary
for being B. , N .

Figure.(2) shows the condition of necessity as well as sufficiency be-
tween a conclusion and its hypothesis. It is evident that having two sides
equal (B) is not only sufficient, but entirely necessary in order that a
triangle may have -two equal angles, (C). Therefore, the converse is
true. Symbolically, if B-is both necessary and sufficicat for C, then all
Bis C, and all C is B. Again this statement may be generalized by giving
B and C any meanings which satisfy the conditions.above; that is, the
hypothesis must be both necessary and sufficient for the conclusion.

Figure (3) represents the relation where C is a necessary but not
a sufficiently limiting condition to make all C’s be D's, even though all
D’s are C's. If we substitute the specific meanings for C and D given
ahove, the application of this‘_reiationship to a specific situation is evi-
dent. However, the relationship pictured.is completely general and ap-
plies wherever C is necessary but not sufficient to make D true.

Figure (4) represents the situation in’which the hypothesis is neither
necessary nor sufficient for the conclusion and consequently in which
neither the direct statement nor the converse is'true. E and D may over-
lap, but not all E is D, and also, net 2lI Dis E.

Formulas for Determining the Truth of a Converse. This necessary and
sufficient condition upon which the truth of the converse depends can be
expressed in 2 formula.!®

If all X is ¥ and
all non-X is non-¥,
f then all ¥ is X.
(Formula 1.)
This condition for the truth of 2 converse is stated a bit more precisely
by Augustus De Morgan in his text on logic."* It is reported by C. B.
Uptont?® as follows:
_ 1f it has been proved that,
X less than ¥ makes 4 less than B,
X equal to ¥ makes 4 equal to B, and
X greater than ¥ makes 4 greater than B, )
then it follows logically that the conveises of all three of these state-

19 Heath, T. L. op. cit., Vol. I, p. 256.
11 De Morgan, Augustus, Formal Logic. Taylor and Walton, London, 1847, p. 25.
W Uoton, C. B. op. cit,, p. 117,
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ments.\are true thhout further proof. (Formula 2, the Law of Converse.)
Let us lllustrate the meaning of these two formu]as for determining the
truth of a converse statement, from. the examples previously given. We
shall apply formula 1 by first selecting cases where the converse is not
true and then cases where the converse is true. The statement that if
three sides of a triangle are equal, then two angles will be equal, is true,
but its converse is not true. Test: That .l triangles with three sides
equal have two' ang] equal js true, but the statement that all triangles
with not three sides equal have not two angles equal, is not true. It is
true that all rich men ¢ buy a postage stamp, but it is not true that
all non-rich men, all me&ho are not rich, cannot buy a postage stamp.
However, not only is the direct forra but also the converse true in_the }
following cases. All triapgles\which have two sides equal have.two angles
+ equal,,and, since all tridngles\which do not have two sides equal do not
have two angles equal, the converse is true and the equality of two angles
determines the equallty of two.sides. Furthermore, all men- with two
cents can buy a two-cent stamp;, also all men who do not have two cents
cannot buy a two-cent stamp. Naturally this statement bars the facetious
response that perhaps the postmdster would extend credit or even donate
a stamp. It is merely an illustrative statement to show the conditions
under which a converse is true. Here again the converse is true; that is,
the buying of a two-cent stamp mdlcates the possession of*two cents.
Formula 2 above can also be appﬁed For the triangle the wordmg had
best be changed somewhat. If the first three statements below can be:
proved, then the converse of all three will be true without further proof.

If a greater than b makes angle 4 greater than angle B,
a equal to'b makes angle 4 equal to angle B,
and a less than b makes angle 4 less than angle B,

then the converses of these three statements will all be true:

If 4 is greater than B, then ¢ is greater than b.
If A equals B, then a equals b.
If A is less than B, then a is less than b.

An indirect proof very readily establishes the truth of each of these con-
clusions.

Furthermore, if havmg more than mo cents makes jt possible to buy
more than one two-cent stamp, having two cents makes it possible to
buy one such stamp; and having less than two cents makes it possible

. to buy less than one such stamp, then the converse of each of these three
statements is true. That is, if one can buy more than one two-cent stamp,
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“only one stamp, or less than ong stamp, he must have respectlvely more

than two cents, two cents, or 1éss than two cents.

’ Applymg these formulas to statements whose converses are false helps -
to make clear the t,cneral nature and applicability of the formulas.
Formula2: ~ 204

If a man has mo! than 10 cents he can buy more than one two-cent

Stamp: B . TR

= If he has 10 cents, he can buy one.two- cent stamp; °

If he has less than 10 cents, he can buy less than one two-cent stamp.
If the three statements above were all true, then the converses would be
true by thé law of converse. Since not all of them are true, not all of the

- comnverses are true.

Formula I:

1 Ifa man has 10 cents, he can buy a two-cent stamp;

“If he has not 10 cents, he cannot buy a two-cent stamp.

17 the second of the two statements were true, the converse of the first
one would be true. Since the second statement is false, thé converse of
the first is false. T
"<-Opbosites and Cortverses Formula (1), “If all X is ¥ and all #on-X
is non-Y, then all' ¥ is X,” has introduced a new concept, opposites. The
statement that all non-X is non-Y is the opposite of the statement that
all X is Y. The theorem that all triangles with two equal sides have two
equal angles, has for its opposite the statement that all triangles with
‘not two” (without two) equal sides have not two equal angles. In gen-

eral, if X represgnts any hypothesxs and ¥ any conclusion, then the fol-
lowing Symbols can be used. .

“Theorem: (a) Al X is V.

Converse: (b) Al Y is X.

Opposite: (c) All non-X is non-Y.

. Converse of the Opposite or Opposite of the Converse: )

- (d)- All non-Y is non-X. ° \
"It is interesting to note that the truth of the converse makes the op-

posite true. This can readily be proved indirectly. If all ¥ is X, then
all.non-X is non-Y, because if some non-X were ¥, then not ali ¥ cauld
be X. Similarly, the truth of the statement all X is ¥ makes the con-
verse of the opposite trye, all non-Y is-sion-X, because if some non-¥

. were "X, then not all“X could be Y. In other wordsr(a) and (d) are

equivalent, as are-also statements (b) and .(c)~Therefore it should be
evident-that if a theorem its converse (b) are proved, that the




BY

F
‘r

* e

132 T Geometry Professionalized foreTéachers

opposite (c), and the converse. of the opposite (d), will be true Also,
if.(a) and (c) are proved, (b) and (d) will be true; if {9 and (d) are
proved, then (a) and (b) will be true; and if (3) and “(d) are proved,
then (a) and (¢) will be true.

a

¢ a4

If the letters, representing the above statements: (a), (b), (c), and
(d), are placed around a rectangie as in the figure above, then diago-

" nally opposite statements are equivalent, and consequently, any fwo ad-

jacent statements are sufficient to establish the truth of the remaining
statements.

Applying this theory to the illustration of triangles, we have the fol-
lowing statements, in which § stands for triangles with two sides eqqal
and non-S stands for triangles with not two sides equal, 4 stands for
triangles with two angles equal and non-4 for triangles with not- two
angles equal. ‘

(a) Theorem: All S is 4. (b) Converse: All 4 is-S.
(c) Opposite: All non-S is non-A  (d) Converse of Opposite: All non-
: A isnon-S. -
Again it is evident in the above arrangement that if any one statement is
true the diagonally opposite one can easily be established by indirect
proof; and, therefore, if any two adjacent statements are true, the re-
maining ones will also be true. This can be illustrated figuratively as be-
fore by two circles, S and A. If all of circle § is within circle 4, then
(¢) all § is 4, and (d) all non-A is non-S because if some non-A were
S, then not all S would be 4. If 4 is within S then (b) all 4 is § and _
(¢) all non-S is non-A. In order that (a) allSbe A.and (b) alld be S
or (c) all non-S be non-4, it is evident that the circles would have to co-
incide. In other words, if S be the necessary and sufficieat condition for
4, regardless of the assigned meanings of these two lotters, then (@) all
Sis Aand (b) all A is S or (¢) all non-Sis non-A,

Converse and Opposite in Locus Problems. The eguivalence of the
converse and opposite is used extensively in locus problems. In proving
a locus problem one must prove not only that ali points oa the locus
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satisfy the (’:onditions, but also either the converse or the opposite of this
statement; namely, that all points which satisfy the conditions are on the
locus, or all points not on the locus do not satisfy the conditions. In fact,
if the four statements are arranged in the form above, the proving of
any two adjacent statements, ¢ and b, ¢ and ¢, b and d, or ¢ and d,
proves the locus 119, 120

To say that the locus of a point equally distant from two points, 4
and B, is the perpendicular bisector PQ of the line segment 4B, means
that, of the following statements, either ¢ and b, @ and ¢, ¢ and-d, or
b and.d must be proved true to prove the locus, but that ¢ and d, ord

. and ¢ would not prove the locus problem ’

a. Direct Statement All pomts on PQ are equally dlstant from 4 and B.

. b. Converse: All points equally distant from 4 and B are on PQ.

¢. Opposite: All points not on PQ are not equally distant from 4 and B.

d. Converse of Opposite: All pomts not equally distant from 4 and B
are'not on PQ.

“In high-school texts statememis corresponding to a and & are most
commonly used in proving locus theorems, although the equivalent of
a and ¢ is sometimes used. It is evident that if ¢ is true, d can readily
be proved by indirect proof. If () all points on PQ are equally distant
from 4 and B, then (d) all points not equally distant from 4 and B
are not on PQ, because, if they were on PQ, they would be equally dis-
tant from 4 and B. Similarly, if d is true, a is true; if & is trne, ¢ is true;
and if ¢ is true, & is true.

Furthermore, these letters can be generahzed and interpreted as re-
ferring to general statements as well as to the parts of the particular
locus problems given. The following problems illustrate the relation be-
tween a geometric statement and its converse and also the methods of
proof which have been given.

D. PROBLEMS ON PROVING CONVERSES .

104. Write the converse, the opposite, and the converse of the opposite
for the following propositions:
a, If two lines are parallel and are cut by a third line, the cor-
responding angles are equal.
b. If a quadrilateral is a rectangle, its diagonals are equal.
c. If two triangles have three sides of one equal to three sides of
another respectively, the triangles are congruent.

18 Schultze, Arthur, op. cit., pp. 144.146.
1% Berman and Smith. op. cit., pp. 34, 39.
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d. If a'quadrilateral is a rectangle, one of its angles will be a right
. angle. . - \

-e. If-a triangle is a right triangle, the isquare on its longest side
equals the sum of the squares, on the other two sides.

A. If three or more parallel lines cut off equal segments on one
transversal, they. cut off equal segments on any transversal.
Apply the various conditions for provmg converses to each of the
six parts of exercise 104 and indicate i “’) which- cases the converses

are true. Use both formula_1 and formula 2.

Theorems 13::and 14, two fundamental locus theorems; can be
.proved in any one of four different ways Outline the proof for
both theorems and carry it out in detail for one of them,

The locus of the vertex of the right angle of a right triangle is/a.
circle with the hypotenuse for a diameter. Prove in four different
ways.

The locus of the midpoint of the/hﬁpotenuse of a right tnangle is
a circie whose center is the ver}ex of the right angle and whose
radius is one-half the hypotenyse Prove by using statements (a)
and (b), and (a) and (c).

The locus of the vertex of & given angle opposxte a given sxde of
a triangle is an arc of a ¢ z-cle cut by the given s side of the triangle
as a chord. /

The locus of a point whose coordinates satxsfy an equation of first
degree i isa straight line. -

Note: Further prachce with proving converses and detectmg their falsity will be
provxded in the exercises following the next sechon on indirext proof.

E. THE PURPOSE FOR CONSI/DERING NECESSARY
AND SUFFICIEN'I,'/(/ZONDITIONS

Indirect Proof Preferable to the Test of Necessary and Sufficient Con-
ditions. It should be evident to the careful reader that the two formulas,
given are but a concise way of expressing exactly th: same idea that was
discussed under the head of necessary and sufficient conditions. All non-X
being non-Y is a test for the necessity of X for ¥. (Formula 1). Then

too,

when the relation between'4 and B is determined by the relation

between X and ¥ .as in formula 2, then X and ¥ are not only sufficient
but also necessary for the relation between 4 and B. For some situations
one formula seems to apply more simply than the other, and in some
cases the general test for the necessity of the hypothesis is preferable.
In either case it is quite evident that it may be as difficult to discover
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whether or not these conditions are satisfied as to prove the converse
statement itself. A converse statement can often be proved rather easily
by an indirect proof.

i ’ Law of Converse Postulated. Furthermore these statements of the
conditions for the truth of a converse have not been proved in this study.
They have merely been illustrated and explained, and consequently are
really postulates taken from logic, which in turn really “grew out of the
critical work-of the mathematicians who reflected about the nature and

. structure of mathematical truths.”1#* If the conditions of being sufficient

i and necessary, or their equivalent expressed in formulas (1) or (2),

N _ are used.to establish a converse or to make any indirect-proof, these con-

ditions must be considered as logical postulates.

Applications of Ideas Involved in the Liw of Converse. However,
while it may seem incongruous to use the generalizations of logic to help
establish the generalizations of geometry, when those principles of logic
are, without doubt, deductions derived from a study of the specific
"generalizations of geometry; yet the generalizations derived do throw
3 considerable light on the relation between a statement and its converse.

Then too, if geometry is a reasoning pattern for non-geometric situations

as well as geometric situations, teachers of mathematics need to be famil-

iar with the general terminology and the general relationships. Professor

Hedrick'#® claims that a knowledge and appreciation of “the ideas of

necessary and sufficient conditions, and the difference between conditions

that are necessary and.those that, are sufficient,” are valuable contribu-
tions of mathematics to the education of an individual. “The resulting

_ confusion among those not properly trained is notorious, and this con-
fusion is certainly transferred to every field of thought, from cookery to
politics.”???

A study of the following “if-then” statements will quickly reveal the
generalized nature of the above conclu.nons concerning necessary and
sufficient conditions, formnlas 1 and Z; and the rciation between state-
ments and their converses. A

o

(1) If you would be a great man, you must bal w llmg and able to
work hard. \\ ’

(2) If you use butter in a frying pan over 2 hot wood\ﬁre, it will
fry food well. =~

PRI O

1 Enriques, Frederigo. The Historic Develcginent of Logic. Trsnslation by Jerome
Rosenthal. Henry Holt and Co., 1929, p. 4. N

112 Hedrick, E. R. “The Reahty of Mathematical Processes,”” Third Yearbook of the
National Council of Teachers of Mathemutics. Bureau of Publications, Teachers College,
Columbia University, New York City, 1528, p. 32.
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(3) If a man is a good golfer, he will buy the best clubs made.

(4) If a man is an expert caster, he must have a light, flexible, strong
rod. ” o 3

(5) If you are a great man, then you will-be so busy and do things
'S0 rapldly that you will become a poor penman.

(6) If you are a great statesman,. then you will be courteous and

~

considetate of the nghts of others, B
(7) If you use a gallon of water, then you can cook a half dozen
potatoes.

(8) If you write a dissertation, then you will work hard and be will-
-ing and able to take suggestions.
(9) If you have $1200, you can buy a.new Studebaker

(10) If you go up in the air, then you will come down.

(11) If your skin is white, then you are an honorable man.

(12) If you multiply 3 by 4, then you will get an answer of 12.

(13) Xf b and ¢ are constant and A increases, then @ w1ll increase.

(14) If a fly has six legs,-then a bear has four. .

(15) If the present market prices are below the average of the last
ten years, then the future market prices will be above the average
of the last ten years.

(16) Most of the people in Who’s Who have a college education.

(17) Three meals a day are sufficient to keep a man alive.

. (18) In China, people who drink tea and no water do not get typhoid
fever.

(\9) Four years of academic training in Mathematics through Cal-
culus, Mechanics, and Elliptic Integrals may be sufficient” for.
making a good teacher of mathematics. ’ ]

(20) If each laborer works 8 hours a day and 7 days a week that is

" sufficient to keep the factory in continuous operation.

The above statements include typical conclusions which are often
thought to be truein converse form, and in some cases the converse is true.
However, in each case the converse is clearly not true unless the condi-
tions in the hypothesis are necessary, nor is the statement itself true unless
the hypothesis is sufficient. The statements above also include some sets
of conditions which are sufficient and, consequently, thought by many
people to be necessary, when in many cases those conditions are largely
extraneous and incidental, but include within them the necessary element.
For instance, it is the boiling of the water, not the tea, that kills the
typhoid germs; it is probably the native ability which makes it possible
for a man to master Elliptic Integrals that js also largely the determinant

- I
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ofa good teacher, rather than the knowledge of the subject-matter of the
advanced course. . '
V. Tue TECHNIQUE oF THE INDIRECT PROOF

Present Attitude Toward Indirect Proof. The method of indirect proof
in geometry hasin the past been a great source of grief to most students

o and teachers. reason for this is no doubt largely the. result of its

early use in the older geometries. If a child has just begun geometry and
does not fully.realize the purpose of direct proof, and if with the second
or even the fourth theorem he is confronted with an indirect proof, there
is little reason to question the cause of his bewilderment. One widely
used text of several years ago, after ten pages of definitions, one page
of axioms, and one page of postulates, has for proposition I, which is
proved directly: “All right angles are-equal,” and for proposition II:
“At a given point in a given line not more than one perpendicular can
be drawn to that line in the same plane.” The second proposition is
proved by a full page indirect proof; that is, an indirect proof was pre-
sented before the technique of direct proof had been established. Such
flagrant violation of the fundamental principle of presenting only one
major difficulty at a time in any subject. could result in’little else than
the present disparaging attitude toward indirect proof.

In support of the contention that teachers of today fear, neglect, do
not understand, and underestimate the value of indirect proof the follow-
ing evidence is interesting. In the preparation of this study fifty exer-
cises involving indirect proof were submitted to thirty-one graduate
students at Teachers College, Columbia University. A few of these exer-
cises were ridiculous, two or three were impossible, most of them were
fairly difficult converses to which the indirect method very directly ap-
plied. The students were asked to rank them in one of the following
five élass_es.,‘

E—Easy to work by indirect proof.
M—Moderately difficult by indirect proof.
V—Very difficult by indirect proof.
_ X~—Unable to prove by the indirect proof.
D—Edasier to solve by direct proof than by indirect proof.

The first impossible exercise was marked E, M, V, and D by 6, 19,
10, and 6 percent resiectively; the rest marked it X or omitted it. A
second exercise, which ought to have been marked E, was given the
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five marks listed above by 16, 32, 7, 13, 10 percent respectively, and
22 percent failed to weigh it at all. Furthermore, less-than one-fifth of
the thirty-one students completed the entire task. Such results suggest
that even some teachers of experience dislike the indirect method, have
no confidence in its use, and do not appreciate its 1mportance and func-
tion in geometry or.in life.

The Indirect Method a Major Contribution of Geometry. If geometry

is to be taught largely because of its inherent possibilities to proyide ex-
‘periences in the science of reasoning through applying that reasoning to
the simple concepts of geometry, then surely it is a mistake to omit or .

neglect' to_emphasize the method of the indirect proof. Much of the
reasoning which we do in life is indirect; therefore much of the value
of géometry must be in its treatment of indirect proof. It shall, therefore,
be the function of this section to attempt to overcome some of the effects
of the reader’s previous unfavorable experiences with indirect proof, by
establishing, through presentation and illustration, the various forms and

the relatively simple technique and organization of indirect reasoning.

The Underlying Principles of Indirect Proof. Indirect proof is based
upon the fact that one of two opposite statements must be true and only
one can be true, or.upon the exhaustion of all possible cases except one
by pfoving all false except that one conclusion. For instance, a-certain
point P is either fon line 4B or not on it; a segment PQ either equals
QR or does not [equal QR; today is exther Sep.emb?r 30 or it is not
September 30; the prisoner either committed the crime or he did not
commit it.. Notice that each of these statements contains two contradic-
tory proposition$, both of which can neither be true at the samé time nor
false at the same time. One of two contradlctory statements must be
true, and only jone can be true. There is no middle ground Therefore,
in logic this pinciple is called the “Law of Excluded Middle.”

In interesting seeming contradiction to this statement is the contention
by Bogoslovsky that “the old reasoning is a generalization of experience
in a static umverse wheére motion is incidental, where everything is
absolute, where crossbreed forms are deformities. . . . The new reason-

. ing is based on a dynamic universe with motlon as its essence, with

ceaseless change its characteristic aspect, /a universe conceived as a
continuous succession of different phases of one process which are all
related to each other. Logic of this reasoning must have as its founda-

. tion principle and root the law, ‘4 is I' d non-B at the same time.’”

However, “Dynamic Logic of the ‘Include. Middle’ is not a flat contra-
diction of the Static Logic of the ‘Excluded Middle,’ but includes it as
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N\ f dynamic thinking where 4 is 99.9999% B and

0001% non-B correspands closely to static logic:”"#

In other . words Bog Iovskys thinking is influenced by Emstems
‘ideas on relatmty While X is true that a point P is either on line AB or
not on-it, still “on-ness” may, be in a sense ‘a relative matter if it is
corisidered that. some points.are more nearly on AB than are others.
So also, if equality is mterpreted as arelative matter, it is true that two
segments 6 mches and 5.9 inches long are more- nearly equal than dre
two segments 6 inches and 3 inches long. However in non-geometric
situations the idea of more than two alternatives, in fact a-whole series
of - gradatxons is_more' defensible than in geometric situations. For in-
stance; is it.true that a man is either honest or not honest; that a piece
of cloth.is either linen or not-linen; or that a man rises either early or
not early in the morning? Are not honesty and “linen-ness” and earli-
ness, as well as many other qualities, a matter of degree, of relativity,

' rather than of absolute fact?

Furthermore, if statements are not made in contradictory form, then
_ there are many situations. in both geometry and life where there is a
middle ground, For instance, to say that a lin€ is either curved or straight
involves a situation in whxch there is no contradiction. It is evident that

. if a line had part of it straight and part of it curved, then it would be

neither all curved nor all straight. A point is either inside, on, or out-
side a circle; one angle is either less than, equal to, or. greater than an-

. other; an angle is either acute, right, or obtuse. We- may say that a

pxece of linen is either black or white, but that may not be true since
white finen gets soiled and black linen may fade. Similarly to say that
a car is either worth $400 or $500 is equally fallacious; it may be worth
$450. To- -say that either Jones or Smith stole the money is dangerous
.because both of them together or neither of them might have stolen
it. However, linen is either white or not white even though there be de-
grees of whiteness; the car is worth either $400 or not $400, whether
$5 or $100 more or less'than $400; Jones either stole the money or he

did not steal it, whether with or without the help of Smith. Similarly,

in the geometric illustrations it is possible in each case to have but two
alternatives. That is, a point is either on a circle or not on it; two angles
are either equal or not equal an angle is either a right angle or not a
a right angle; a line is either straight or not straight. In either case one
of these possibilities will be proved true if it can be established that the

% Bogoslovsky, Boris B, The chhmquc of Controversy, Principles of Dynamic Logsc
Harcourt, Brace and Co., 1928, pp. 12, 18\
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* other possibility is false; or, if there are three or more possibilities, if
it-can be established that all but one are false.

In other words, the generahzatxons of Bogoslovsky apply only to situa-
tions in which there is no contradiction, orin which cohtradiction is
mterpreted in a relative sense. For mdn'ect proof, both ik geometric
and non-geometric situations, the Law of Excluded Middle i assumed
to be true; that is, this law is postulated Itisof little concern in indirect
reasoning that the class of “non-B" i is large and the class of “BY i3 mail,
or vice versa. It is postilated, however that two contradictory
ments in geometry cannot be both true or both false at the same time.

Tt is therefore evident that it may be possxble to prove one of t
contradictory stateménts true by-proving the other false or to prove

.a statement false by proving its contradictory true. This type of proof
is called “Indirect Proof” because the reasoning is indirect: The vahdxty
of indirect proof depends upon three postulates, usually called prin-
rcxples in Ioglc

Postulate I. A thing must either be or not be.

Postulate II. If one of two contradxctory statements is proved-to be
false, it immediately follows that the other statement must be true;
smtxlarly, if one of two contradictory statements is-proved to be
‘true, then the other must be false (the Law of Excluded Middle);
or, if there are only three possibilities, one of which must be true
and only one of which can be true, then if two of these are proved
false, the third must be true, and if one is proved true, the other
two must be false.

Postulate II1. If certain premises and a correct procass of reasoning
necessarily reach a conclusionr which is false; then at least one of
the premises must be false.

The following illustrations will help to clarify the first two of these
postulates; the first ones have but twe alternatives, the last ones each
have three possibilities, only one of which can be true:

l (1) AB either equals PQ or does not equal PQ.

(2) Line XV is either stralght or rlot straight.

(3) Point P is either on'the circle or not on the circle.

(4) AB is either greater than, ual to, or less than PQ.

(5) Line XYZ is either straight, bquen or curved.

(6) Point P is either within, on, or//outside the circle. .
These illustrations indicate the meaning of Postulates I and II above.
These two postulates do not violate the contention of Bogoslovsky for

»
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a law.of “Included Middle,” because all reasoning here is on the idealistic

Abws .in which close approximations do not count, and relativity is

neither denied nor necessary. Wherever it is necessary to prove XYZ
either strmght or-not straight, there are no degre& of straightness which
are significant. Furthermore, just as it is unknown whether or not actually
more-than one parallel:to a line can be drawn- through a given point,
yet we-accept .a_certain traditional- postulate for (Euclidean geometry,

50 also ‘the law of Excluded Middle is postulated here as a basis for
indirect proof in geometry. Therefore-if is evident'that in the first’ three
statements, if one of the contradictory. proposmons ‘could be proved false,
the other- would be.true, and vice versa. In other .words, if the ass?rmp-

tion that AB does not equal PQ could be proved' false, then its-contra-

dxctory would bé true and 4B would equal PQ without further proof.

-‘Sumlarly, to prove that XV is a straight line or:to prove point P on a

circle, it.is'necessary to prove only that the contradictory statement is
false. Also, in- the second group of, statements, if two of the three only
possibilities given in each statement could be proved false, then it must
follow that the remaining one would be true without further proof. .

1t is therefore evident that it may sometimes be very desirable both in
geometry and in'life to prove a staement false Geometry, without in-

-direct proof, has been taken up largely with proving statements true,

not false. The technique for proving statements false is a very sxmple
one based upon Postulate III. For mstance to prove that AB = PQ, if
the-assumption that AB does not equal PQ would necessarily and in-
evitably lead-to a conclusion which is false, then the assumption upon
which the correct reasoning is based must»rtself be false. Therefore,
without further argument, AB = PQ. Similarly, to prove XV a straight
line, or point P on a given circle, if the contradictory statements lead
inevitably by correct reasoning to conclusions .which are false or im-
posslble, then the original statements must be true. This method of rea-
soning is called the-method of the Indirect ‘Proof.1*

Types of Indirect Proof. While all indirect proofs depend on the three
postulates given-above, and are, in a major senise, the same in their
outstanding features; yet, in minor charactenstxcs, there are five types
of indirect proof which may be distinguished. They are illustrated below.
The ﬁrst and simplest form is one that can be used to prove any con-
verse theorem that is true. In it there are but two possible conclusions,

- one the contradictory of the other. This type of proof has already been

1 Upton, C. B. “The, Use of the Indirect Proof in Geometry and in Life,” Fifth Year.
book of the National Council Teachers of Mathematics, 1930, pp. 102-133.
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illustrated in the proof of theorem 9 that if a hne divides two sides of
a triangle proportionally, it is ‘parallel to a third side. Indirect proof
is also used in proving theorem 3 on parallels, which should be postulated
in the early treatment of it in order to avaid'the intricacies of indirect
proof at a time when all attention is needed for mastery of direct proof.
In the proof below it is assumed that the first theorem on parallels,
theorem 2, has been proved: “If two lines cut a third so as to. make the
-alternate interior angles equal, the lines are parallel.”

\
Type!l. Proving the Opposite False. Theorem: If two parallel lines

" cut a third line, the alternate mtenor angles are equal. (Converse of

theorem.2.)
‘m P/
L

m_/x
/Q
‘HyPoTHESIS: m is parallel to m and cut by PQ.
CoNcLusioN: Angle x equals angle '
PRpOE: .
(1) Angle x either equals, or does not equal angle x”.
(2) Assume that angle x is not equal to angle . -
(3) Then at P imagine drawing a line AP so that angle AP? equals
angle x’.
(4) Sucha line AP would then be parallel to m’ by theorem 2.
(5) However, this would be impossible because there would then be
two lines through P parallel to m’. See parallel postulate.
{(6) The assumption that angle x is not equal to angle ’ leads in-
evitably to an impossible conclusion, and must be false.
(7) Therefore angle x equals angle x”.

Type 11. Using Formula 1 for Converse. This same proof can be éf-
fected more easily, although not more simply, by using the facts con-
cerning the. proof of converses from the previous section.-If, in the
direct statement in which it was proved that the equality of two angles
made certain lines parallel, it had also been proved that the “non-equality”
of those angles made the lines “non-parallel,” then the converse would
be true at once. This is true from the preceding section in which it
was shown that converses are always true if opposites are true.

-
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THzoxu-:u (Direct proof firsi, indirect proof in the last!two steps.) If
two.lines-cut a third line so as to make a pair of altem‘.te interior
anglts equal the lines are parallel. ;

AB/

u e ‘
.~ : / CD ) .2
HyroruEsis: Angle ABE equals angle DCE. '
Concrusion: AB.is parallel to CD.
PrOOF:
* * (1) Bisect BC at E. Draw ED perpendncular to CD and extend it
toABat4.

" (2) Triangle ABE is congruent to triangle DCEby ASA.

(3) Therefore AD is perpendicular to 4B. Why?

(4) Therefore AB is parallel to CD. Why?

(5) 1f angle B is not equal to angle C, then the angles at 4 and D
would .be unequal since the angles at E are equal. AD would
therefore not be perpendicular to 4B, and therefore 4B would

- not be parallel to CD.
, " (6) Therefore the hypothesis is necessary and the converse is true:
B if the lines are parallel, the alternate interior angles will be equal.
Type 111. A Proof That Begins Like an Indirect Proof but Ends ina
Direct Form. Using the figure, hypothesis, conclusion, and the first four
steps in the proof for the illustration for Type I, the rest of the proof
would then be as follows.

(5) But m is parallel 46 =’ by hypothesis.

(6) Therefore m and AP coincide by the postulate of parallels.

(7) Therefore m is parallel to m’ smcé\xt coincides with AP wkich
was drawn parallel to m’.

Stmmary of Type I, 11, 111. Note the chiracteristics of these three
types of indirect proofs.
1. In'each case there are but two alternatives one of which must be true.
2. Type I assumes the false statement true in order to prove that it
leads inevitably by correct reasoning to a faise conclusnon and that
it must therefore be false. If the first conclusion chosen cannot be
proved false, then either there is some error in reasoning or the other
conclusion must be the false one. :
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3. The first and third types use the direct form of the theorem and
other theorems to prove the supposedly false statement false.
4. In the more general form, II, using Formula 1, which was given in

o the discussion of converses, the truth of the converse is established
_— by the proof of the opposite of the original theorem.
D S. In the third type the proof culmmated in a direct proof resulting from

an attempt to reconcile the facts with the erroneous result which was
obtained by assummg the truth of the false conclusion.

. Exermes Using Indzrect Proofs of Types, 1, I, and III

111, State and’ prove the converse of theorem 8, which is theorem 9, .

’ using Type I, Type II and Type TII.

112. State the two converses for each of theorems 15 and 17 and prove.
at least one of them as abave. .

113. State and prove, if possible, the converse of theorem 7. Remember .
that not all converses are true,

114. The proof of a locus problem really involves proving a direct and
a converse statement.’Show how theorems 13 and 14 can be proved
using the technique of the types given.

Type 1V. Three Possibilities. This type of indirect proof involves a
situation where there are three,-and only three possible conclusions, one
of which must be true, and only one of which can be true. To illustrate
the indirect proof in such a case the converse of theorem: 16, and one
of the inequality theorems will be used. Theorem 16 has an interesting "
and little known convérse. The theorem that an inscribed angle has the
same measure as half its arc, has-a converse th:t would be stated and
proved in aboiit the following way. .

(a) First Ilustration of Type IV.

ProsLEM: If an angle has the same measure as one-half the concave arc

. \ cut off by its sides, then its vertex is on the circle.

. HyrorHesis: Angle ABC = ¥ arc AC. Arc AC is concave to B and cut

. off by the sides of angle ABC.
CoNcrLusioN: B is on the circle.

| A

i
LY

N




The Analytic -Method and the Indirect Proof « 145

< .
& -

'PRooF: . !
(1) Bi is exther on the circle; inside the circle, or outside the circle.
(2) If B is inside the circle then 4B and CB extended would cut the
circle in two points, P and Q. Then angle B would equal }% (arc’
AC + arc PQ). This is contrary to the hypothesxs and therefore ™
. B cannot be inside the circle.
* (3) Ii B is outside the circle then angle ABC will be an angle between
two secants cutting the circle in points 4, R, C, and S, and angle
K Bwould then bt equal t8 4 (arc AC — arc RS). This conclusion
would also be contrary to the hypothesis and consequently the
premise upon which it is based must be false. Therefore B cannot
be outside the circle.
“4) Since the assumptions that B is inside or outsnde the circie both
) lead to impossible conclusions, they are false by Postuiate III,
and B is on the circle, by Postulate II.

Conou.mw If the opposite angles of a quadnlateral are\l{:plementary, .
the quadnlateral is inscriptible. . .

(b) Second Illustrahon of Type IV.

Direct THEOREM Assumep To Have Been Provep: If a tri"ngle has
. two unequal sides, the angle opposite the greater side is the greater.

Converse THEoREM: If a triangle has two unequal angles, then the side
opposite the greater angle-is the greater.

Hyroruesis: A triangle ABC with angle A4 greater than angle B.

ConcrusioN: Side a is greater than b.

Proor:

(1) ais exther less than, equal to, or greater than b.

" (2) If a is less than b, then angle 4 is less than angle B from the
direct theorem.

(3) I a = b, then angle A= angle B from theorem I (the isosceles
triangle theorem).

(4) Both of these conr'luszcns (2) and (3), are impossible since by
hypothesis angle 4 is greater than angle B, yet both conclusions
are the inevitabie results respegtlvely of the first two assumptions. .
Therefore these assumphons are both fdlse by Postulate ITI..

{5) Consequently z is greater than b by Postulate II.

Type V. Based upon the Law oj Converse. The proof here is carried
on with the original theorem as in type IIL The original theorem for
the first illustration under type IV was that an inscribed angle B has v -
the same measure as half its arc AC. If it can be shown that
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(1) Bon the circle makes angle B = ¥ arc AC, .
,(2) B within the circle makes angle B greater than ¥4 arc AC, and
(3) B outside the circle makes angle'B less than ¥4 arc AC,

then the converse is true without further proof by the Law of Converse,
which was discussed in the preceding section.

In the second illustration for type IV, if it can be shown in the direct
theorem (If a triangle has one side greater than another, the angle op-
posite the greater side is the greater.) that

(1) @ greater than b makes angle 4 greater than angle.B,

(2) @ = b makes angle 4 = angle B, and

(3) a less than b makes angle 4.less than angle B,
theh the converse will be true by the Law of Converse. These three’
statements can easily be shown to be true from the proof of the original
theorem and consequently ti.s converse is true.

Summary of Types IV and V. Note the characteristics of these two
types of indirect proofs.

1. They involve situations in which there are three or more possibilities,
only one of which can be true and one must be true.
2. Two of these possibilities are proved false in type IV by usmg the
direct form of the theorem and other theorems.
3. In type V the hypothesis was shown to be the necessary and sufficient
condition for the conclusion to be true, and consequently the converse
. istrue without further proof by the Law of Converse,
4. Attention should be called to the fact that by a slightly different
. wording and organization type IV may be made type I, and type V
may be made type II. That is, in the first illustration, point B is either
on or not on the circle. If not on the circle, it would he either inside
or outside the circle, and consequently if neither inside nor outside
the circle then it must be on the circle. Similarly, in the second il- -
lustration g is either greater than b ornot greater than b. If not greater,
then g is either equal to or less than b, etc.

Note: An analysis of thirty modern textbooks the details of whxc.h
are not' reported in this study, shows that types I, III, and IV are used
exclusively. Types II and V are the cleverest forms and in some cases
much the shortest of them all, yet the process of evolution in geometry in
the United States has gradually left them out. Types II and V are given
h% as background material and to make the presentation reason-
ably* ete.

Furthermore, the similarities of these five types should be noted. By
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a different set ui) of conditions, types IV and V could be treated as in

type I and II. Type III is exactly like type I, except in the ending, so

that in a sense there may be but two types, one using the materials at
hand, and the other using the general solution covered by the Law of

Converse. i oo

Exercises on Converses for Types 1V and V.

115. Prove that if 2 angles of a triangle are equal, the triangle is isosceles.
Note:-If angle 4 = angle B, AC is either greater than, equal to, or
less than BC. Assume that the Mrm of the theorem given as’
the second illustration for Type IV above, precedes this exercise.
Prove it independently, both directly and indirectly, as though it

. were an exercise followiny theorem 4. .

116. State and prove indirectly the converse of theorem 6. Note: The
reader should not be discouraged if he finds it difficult to prove this
indirectly, yet easy to prove directly. Some of the exercises follow-
ing will also be of that nature and yet for most of them 'the indirect
proof is the more concise and simple if not the only possible proof.

117. If 2 triangles have 2 angles of one equal to 2 angles of the other,
but the included angle of the first greater than the included angle of
the second, the third side of the first is greater than the third side
of the second. Note: See any high-school text for proof of this.
State and prove the converse of this theorem.

118. Equal chords are equally distant from the center, and of two
ulhequal chords the greater is nearer the center. Assume this state-
ment proved, then state its converse and prove it by indirect proof,
n&)t by using exercise 117 above. '

119.- If in triangle 4BC, a* + b? = ¢?, then angle C is a right angle.

120. Given a triangle ABC with A’, B/, and C’ the midpoints of its sides
/émd D, E, and F the feet of the altitudes. A circle through 4, B,
and C’ will also pass through D, E and F. Assume this conclusion
proved, then state and prove its converse.

General Discussion and Further Ilustration. The preceding illustra-
tions have been purposely selected so as to cover the customary udes of
indirect proofs, in high-school geometry. In order to give the reader more
- .experience with indirect proof certain exercises have bcen‘:iéx‘ggd. Most
geometry texts have no exercise material whatever requtiring the use of
indirect proofs. Where such proofs might otherwise be possible, a theotem,
proved by the indirect method, precedes the conventional list, all the
exercises of which are easily proved directly by quoting the theorem
just proved. K
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- In the examples selected the student may use any of the five patterns
just illustrated. Where there are two contradictory possxbxhtxes he may
use one of the first, three forms; preferably one of the first two. Where
there are three possibilities he may use either of the last two types.
Most of the following exercises are converses of exercises given in the
‘previous section. Since that is the case one must remember that not all
_converses are true. Whenever the hypothesis is unnecessarily generous
the converse is not true. In solving the following problems the reader
may assume the direct statement to Lave been proved, whether he proved
it himself or not.

If the formmlas for converses are used, the required .atements must
be carefully proved. If the other types of proof are used, they involve,
in most cases, a construction which satisfies the conditions. If so, the
construction should be made so as to effect the least possible change in
the figure. Since the examples previously given are more or less traditional
. and the proofs therefore somewhat familiar, two additional illustrations
" of indirect proof follow. The precise delimitation of the conditions to be
proved false should be especially notired. ;

“a. Hlustrative Indirect Proof. If the sum of the perpendiculars from
any point in the base of a triangle to its two sides equals the perpendicu-
lar from the vertex of one of the base angles to the opposite side, the
triangle is isosckles. (Converse of exercise number 42.)

HyrotHEs1s: Triangle ABC with D any point in base 4B, AG and DE
are perpendicular to BC, DF to AC, and AG = DF <+ DE.
Concrusion: Triangle ABC is isosceles.

A D E BB

Proor:

(1) ABC is either isosceles or not isosceles.

(2) If ABC is not isosceles, there are several ways of making a tri-
angle that is isosceles. One way is to construct CB’ or CB”’ equal

“  to AC. However, less change in the given figure is effected by as-
suming angle 4 not equal to angle B, and constructing angle BAC’
= angle B.
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(3) Draw DF’ perpendicular to AC’, and DK perpendicular to 4G.

(4) Then.by Exercise 42 (which is assumed to have been proved),
AG = DE 4+ DF’ ot AK = DF’.

(5) But this is impossible, since DF’ does not equal DF, because other-

°  wise triangle ADF’ would-be congruent to triangle ADF and to
triangle DAK, and then angle F’/AD = angle KDA = angle B
= angled. Thns is contrary to (2). .

(6) Therefore the triangle 1slls~oscel% Postulate II.

This exercise could be easily proved by direct proof. Triangles ADK
and .DAF are congruent by H.S., and angle FAD = angle ADK =
angle ABC. The direct proof would involve at least six steps just as the
indirect proof does. Consequently, the indirect proof is equally concise
and equally desirable, since it is a useful pattern of proof. Furthermore,
any converse, even though it can be proved directly, can also be proved
indirectly.

‘The proof given above, Type 1, is really much longer than is necessary.
The concise and clever proof for an exercise of this kind is effected by
the use of formula 1, involving the opposite; that is, by the use of Type
II. The "direct proposition must be proved first; and then, by the use
of the opposite, the converse is proved in two short stdtements.

A Second Proof for (a) Using Type II. Exercise 42 is the proposition
of which illustration (a) above is the converse.

Hyroruesis: Triangle ABC with AC = BC and D any point on 4B.

Also DE and AG perpendicular to BC and DF perpendlcular to AC.

Concrusion: DE 4+ DF = AG
Proor:

(1) Draw DK perpendicular to AG. (See the figure above.)
* (2) DE = KG.Why? |

(3) DK is parallel to BC. Why?

(4) Angle KDA = angle B = angle FAD. Why?

(5) Therefore triangic ADF == triangle DAK by H. A

(6) Therefore DF = AK.

(7) Therefore DE + DF = AG by adding (2) and (6).

(8) But if ABC were not isosceles, then angle B would not equal angle
A, triangle ADF and DAK would not be congruent, and there-
fore DE + DF is not equal to 4AG.

(9) Therefore the converse of the proposition in Exercise 42 is true
since AC = BC makes DE + DF = AG and AC not equal to BC
makes DE + DF not equal to 4G.

I

A
A
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b. Illustrative Indirect Proof. However, the beauty, brevity, and power
of indirect proof comes in exercises like the following one in which direct
proof, if not impossible, is at least involved and much longer than the
indirect proof Such is the case with theorems 3 and 9 as well as some
of the converses of the inequality theorems.

" Theorem: In triangle ABC, (a) if a* + 5% = ¢?, then angle C is a
right angle; (b) if a? + 52 > ¢3, angle C is acute; and (c) if o +
b? < ¢?, angle C isobtuse. -

(a) HyroTHEsIS: @ + b2 = ¢?
Concrusion: Angle C is a right angle.

i

. A
A A
1

bfly & o Y

X a-x L a

CD B D C B C . B

Fic. 1 Fic. 2 Fic. 3

Proor:

(1) Angle C is either acute, obtuse or right.
(2) Assume angle C acute (Fig. 1) and draw y perpendlcular to
BC.
(3) Then ¢% = y* + (¢ — x)?
= y2 -+ ¢* —2ax + 2*
= b? + g* — 2ax,sincex? + y? = b2,
(4) Therefore ¢ < a? + 2. But this is contrary to the hypoth-
esis and therefore assumption (2) is false.
(5) Assume angle C obtuse (Fig. 2) and draw y perpendicular to
BC extended.
(6) Then ¢* = y* + (x + a)*
= 9% 4 &* + 2ax + a?
= b2 + g% + 2ax,since £* + y* = b2,
(7) Therefore c2 > a? + b2, which is also contrary to the hy-
pothesis and therefore assumption (5) is false.
(8) Ifangle C is neither acute nor obtuse, it must be a right angle.

(b) HyrorHEsIs: a? + b2 > ¢2
Concrusion: Angle C is acute.

Proor: Left to the reader to show, as above, that angle C can be
neither a right nor an obtuse angle and must therefore be acute.
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{c) Hmrnnsxs a+ Lt
Concx.usxon Angle C is obtuse.
ProoF: Left to the reader to follow the pattern above.
Suggostxon Try formula 2, Law of Coaverse, for proving all three con-
verses, qf ‘b, and ¢, at once.

/
7

VI. Emcxsns FOR INDIRECT PROOF

/

DIRECTIONS: The following problems_are designed to provide ex-
perience with indirect proof. They have been arranged in order of diffi-
culty according to the combined weightings of a class of twelve college
juniors who were preparing to teach mathematics. Enough of the exer-
cises should be worked to insure mastery of the technique of indirect
proof. Proofs of types I and IV should predominate, although the use
of types IT and V is often very effective.

121. If there were some way of proving theorem III without using
theorem II, or if theorcm III were postulated, show how theorem II
could be proved indirectly, using theorem IIT or the theorem that the
exterior angle of a triangle is greater than either non-adjacent in-
terior angle.

122. Theorem 7 states that if a series of parallel lines cut equal segments
on one transversal, they will cut equal segments on all transversals.

~ State and, if possible, prove its converse.
“123. If the diagonals of a trapezoid intersect in a point of trisection, then
one of the parallel sides must be twice the other.  ~

124. If the distance (¢) from a point 4 on the circle to a second point P
outside the circle is given by the formula ¢ = V/d?*—r? in which
d is the distance.from the point P to the center of the circle, then
the line AP is a tangent. (Converse of 100.)

125. In triangle ABC, side BG is trisected by points P and'Q. If QM is
drawn parallel to PA then it will bisect AC. i

126. The theorem of geometry concerned with a line bisecting two sides
of a triangle has -a second converse not often given: If a line is
parallel to the base of a triangle, equal to half the base, and has its
end points on the other two sides, it bisects these two s:des .

127. If two lines AX and BY are drawn from the two vertices of triangle
ABC to points X and ¥ on the opposite sides and intersecting in

BG 2
point G, so that Gg;( =Gy = 1 then the two lines are medians of

the triangle.
128. If in quadrilateral ABCD a line is drawn parallel to diagonal BD

¥
’“.‘3
- -~
-/
e
e
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t;utting AB and AD in X and ¥ respectively and if XP ‘parallel to
BC cuts AC in P, then PY is parallel to CD, (Converse of 51.)

. If a circle is drawn using side AB of quadrilateral ABCD as a chord

and cutting AD and BC extended, if necessary, in points E and F
r&pectwely and if EF is parallel to CD, then quadrilateral ABCD
is inscriptible. (Converse of 74.)

: If the bisector of an exterior angle of an inscribed quadrilateral is |

131.

132.

133.

tangent to the circle thé two sides adjacent to tlus vertex are equal.,
State and prove. the two converses.
CONCLUSION: (First converse) The bisector is tangent.

(Second converse) The tangent bisects the exterior angle.
If two opposite angles of a quadrilateral are right angles the bi-
sectors of the other two angles are parallel State and try to prove
the converse of this.
If the bisector of angle C of the inscribed quadrilateral ABCD cuts
the circle at E then EA bisects the exterior angle at 4. (Converse
of 81.)
If the bisector of the exterior angle at C of the inscribed quadri-
lateral ABCD cuts the circle at E then EA bisects the interior angle
atA. {Converse of 81 and of 132.) v

134._If the diagonals of a quadrilateral divide it into two pairs of similar

135.

triangles, then the quadrilateral is inscriptible.

Ti the lines PA, PB, PC and PD drawn from any point to the vertices
of & quadnlateral are of such a nature that (PA4)?+ (PC)2=
(PB)? + (PD)? then the quadrilateral is a rectangle. (Converse of
50.) Prove if possible.

. In triangle ABC, CM is a median, MR bisects angle AMC andQR -

is parallel to AB. Prove M(Q bisects angle BMC. (Converse of 63.)

. If in quadrilateral ABCD, with diagonals AC and BD, a line i

drawn parallel to BD and intersecting AB and AD in X and ¥
respectively and XP and ¥P are drawn parallel to BC and CD re-
spectively, then P is on diagonal AC. (Converse of 51 and of 128.)

. In triangle ABC a distance CE is laid off on AC extended and the

same distance is laid off on B4 toward 4 and called BF. If EF is
bisected by the base BC, then the original triangle is isosceles.
(Converse of 54.) :

. If through any point in the common chord of two circles two other

chords are drawn, one in each circle, the four extremities will lie
on a third circle.

. The bisector of the angle between two chords intersecting within

the circle bisects the arcs if and only if the bisector is a diameter.
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142.

143.

144,

145.

146.

147.
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State and prove the converse of exercise 82 using as a conclusion
the-statement that AD is a diameter.

State and prove the converse of: The orthocenter of ABC is the in-
center of the pedal triangle DEF.

In circumscribed triangle ABC, with AD perpendicular to BC and
cutting BC in D and the circle in P, if DH is laid off on DA equal
to DP, then H is the orthocenter.

If the projections of a point upon the side of a tnangle are col-
linear, the point lies ou the circumcircle of the triangle. (Converse
of 94.) -

Of all triangles with equal perimeters and the same base the 1sosceles
triahgle has the maximum area. +

If a square is drawn on side AB of scalene triangle ABC and a line
drawn from the vertex C to the center of the square bisects the
angle C, then angle C is a right angle.

If a line is drawn from the point of intersection of the medians of a
quadrilateral bisecting one of the diagonals, it will, if extended,

" bisect the other diagonal also. (Converse of 87.)

148.

149.

150.

State and prove the converse of Ptolemy’s Theorem: In any in-
scriptible quadrilateral the product of the diagonals-equals the sum
of the products of the pairs of opposite sides. ’
State and prove the converse of the following theorem: The six
segments determined by a transversal on the sides of a triangle are
such that the product of three non-consecutive segments is equal
to the product of the three others. Note: This is the Theorem of
Menelaus.

State and prove the converse of the following theorem: The lines
joining the vertices of a triangle to a given point determine on the
sides of the triangle six segments such that the product of three
non-consecutive segments is equal to the product of the three other
segments. Note: This is Ceva’s Theorem

VII. TuE ancxpmz oF CONTINUITY
A. GEOMETRIC INTERPRETATIONS

Continuity and Discontinuity in Coordinate Geometry. The principle
of continuity is an interesting, beautiful, and useful part of geometry.
The conception of continyity used in coordinate geometry is quite dif-
ferent from, although in a sense reconcilable with, the Euclidean geom-
etry COncepnon For instance, we speak of a function as being continu-
ous if there are no gaps in its graph, otherwise it is discontinuous. The
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) relationship ¥ = 1/X is discontinuous at the point X = 0. The func-
tlon ¥ = 1/(X —2) js discontinuous at the point X = 2, hecause then
. = infinity. The functions ¥ = tan X, cot X, sec X, or csc X are all
dxscontumous at periodic intervals, when for certain values of X, ¥
becomes infinitely large. Although in our mathematics courses most func-
“ tions seem to be continuous there are many discontinuous functions. The
: cost (¢) of any number of articles (#) at some price (p) is discontinuous
N unless an. unlimited fractional division of the article is permitted. The
. . cost of eggs at 5 cents apiece is discontinuous between eggs, because
:  fractional parts of an egg are not purchased. The cost of mailing a letter
” by first class postage is discontinuous at regular intervals because the
: cost jumps by 2 cents at each advance. So every cost function is in a
: sense discontinuous, since no cost can jump by less than.one cent at a
: time, and usually it Jumps by considerably largér amounts. However,
. the equation x -+ y = 5 shows y to be a continuous function of %; and-
the formula, d = r¢, shows distance traveled to be a continuous function
of rate and time® 126327

Continuity in. Euclidean Geometry. In Euclidean geometry discon-
tinuity seems to have little place and meaning, while. continuity refers
to the constancy or permanency of certain properties which have been
demonstrated to be true regardless of the change in the form.of the
R figure. As expressed by Thomas Holgate, the principle of continuity,
: “first assumed by Kepler and later by Desargues, asserts that a prop-
: erty which can be demonstrated for a particular figure will hold true if
. the figure should change its form in any manner subject to the condi-
tions under which it was first constructed.”’»28 .

In other words, subject to the limitations stated, the principle of con-
tinuity applies to every proposition in geometry. In some cases it amounts
merely to a statement that the proof of the proposition is perfectly gen-
eral, or in other words that Aristotle’s Dictum applies: “Whatever is
X predicated universally of any class of things, may be predicated, in like
. manner of anything comprehended in that class.”’?® The principle of
continuity is but an illustration in geometry of the more general prin-
ciple often called “The Permanence of Mathematical Laws.”

13 Carver, Walter B. “Functions in General, and the Function {X] in Particular,”
Mathematics Teacher, Vol. XX, pp. 429-434.

™ Lovitt, W. V. “Continuity in Mathematics and Everyday Life,” Mathematics Teach-
er, Vol. XVII, pp. 31-34,

1 Davis, E. W. and Brenke, W. C. The Caleulus. The Maémillan Co., 1923, p. 11.

1% Young, J. W. A. Monograths on Topics of Modern Mathematics. Longmans, Green
and Co., 1911, p. 60.

1% Davies, Charles. The Nature and Utility of Mathemam.r A. S. Barnes and Co.,
1875 p. 73.
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This principle .is beautifully expounded by David Eugene Srqitl}.
= “What I learned in chemistry, as a boy, seemed true at the time, but
much of it-today is known to be false. What I learned of molecular,
physics seems at the present time like children’s stories, interesting but
puerile. What - we learn-in history may‘be true in some degree, but is
certain to be false in many particulars. So we may run the gamut oj
learmng, and nowhere, save in mathematics alone, do we find that which
stands as a tangible symbol of the 1mmortahty of law, true ‘yesterday,
today, and forever.’

“We may change the symbols, . . . they are temporary expedients to
‘convey the idea; we may speak in different tongues, . . . they are local
expedients to convey thought; but it is inconceivable to us that the
relation which the formula expresses should not be true azways aud
everywhete, . . . a tangible symbol of the immortality of law. '

. %, ..all geometry is a science of invariance. We prove a law for a
genetal plane triangle and it never varies, whatever we do to the figure.

If we prove that ¢* = b% + ¢*—2b¢ cosA then, however 4 may change,
the law itself will never vary. In it the pupll comes into touch with the
unchangeable, with the absolute.

“It is the same with all other laws of geometry. In any convex poly-
, hedron, whatever its shape, the law remains that the number of faces
plus the number of vertices is equal to the number of edges increased
by two.”1%0

Illustrations. The theorem that “if two straight lines intersect, the
vertu:al angles are equal,” asserts that the equality of the vertical angles
is a property which will hold true of two intersecting lines regardless of
chg,nges in the lines so long as they intersect and are straight. Two lines
will remain parallel or perpendicular if the conditions which made them
parallel or perpendicular remain unaltered. Two angles will remain equal
or an angle will be bisected so long as the conditions for equality or for
bisection remain constant, regardless of other changes in the size or
form of the ani;l&g or sides. Clearly this is yet merely a statement to the
effect that geometry proofs are general, that they approach very near to
“absolute truth,” being, dependent only upon accepted hypotheses, defi-
nitions, and postulates. -

Extensions of the Principle of Continuity. The full nove'ty and beauty
of the principle of continuity are evident only when the principle is ap-
-plied in 2 more extended form. Let us take some of the twenty essential

8 Smith, D E. “Religio Mathexmtxca," Mathemasscs Teacher, Vol. X1V, Dec. 1921,
pp- 416417,
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-theorems given in chapter 4,'more or less in sequence, and show the
extensions possible through the application of the principle of continuity.
- That the sum of the angles of a triangle is two right angles, whether the
triangle 3 acute, obtuse, or right angled, whether the triangle is large
or small, whether represented by wood, iron, paper, or by chalk on the
blackboard, whether in the arctic regions or in the tropics, is an inter-
esting fact. But, extend the idea a little. Take any triangle and lengthen
its bage until the base angles become acute and finally very small, in fact,
approach zero, and the property still holds. Let the base shnnk the
other two sndes become equal, the angle between them approach zero,
and the property still holds. Let the base be fixed and let the vertex move
freely, above, below, tp the left, or to the right, if the definition of a
triangle is extended to include a figure with one or two angles equal to
zero and consequently sides and parts of sides coinciding, the property
demonstrated §till holds true.

All the other theorems concerning straight lines can be made more in-
teresting and the all-inclusiveness of their sweeping generalizations more
impressive, if the figures are made to change, to grow, to shrink or to
move about and still continue to exhibit the truth just demoustrated.
In order to be unhampered in the apphcatlon of the principle it would
be well to define parallel lines as lines which intersect at infinity, then
two lines will always intersect and the continuity of the relationship is
not broken by the one exception of parallels. This definition is needed
in both” projective geometry and in coordinate geometry If this defini-
tion is not accepted the property of intersecting could be thought of as
discontinuious at the point where the lines are parallel. Perhaps other
definitions will need to be made more general, as for instance, the defi-
nitions of the trigonometric functions whose meaning may thereby be
extended to angles in other quadrants than the first.

Continuity Depends upon Motion for Clarity only. It is recognized
that there is a school of thought, as indicated in a previous chapter, that
is opposed to using motion in geometry. Vet it should be pointed out
that' motion has not been used in the proof of the theorems to which
continuity has been applied. In no case does the proof of any propo-
sition depend upon the principle of continuity. Its use has been to empha-
size the general nature of the propositions proved, to reconcile apparent
conflicts between closely related propositions, to integrate various sup-
plementary propositions thereby decreasing the number of different ideas,
and to make the study of geometric relationships more interesting to
young people, who naturally are more concerned with a dynamic than
with a static geometry. Hence, the rigor of the geometry presented is

-
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unaffected by the outcome of the argument on motion. Whether each
position of the vertex of the triangle is a different point or the same
point moved; whether a secant can move and become a tangent or the
apparent mohon can be nothmg but different lines like the pictures in a
motion pxcture film; whether or not there is motion is not the issue here,
ang therefore, the rigor is unaffected by the decision. It is enough that
the use of continuity helps to clarify, to simplify, to generalize, and to,
make geometry more interesting. In fact, the analogy to motion pic-
tures'*? can well be carried a step farther. Just as figures appear to move
on wne screen, although they do not really move since they are but suc-
cessive pictures on a film; so the various apparent motions in geometry
can be thought of as successive pictuies with parts which therefore seem
to change and yet exhibit a continuance of certain properties. .
Further Nlustration and Extension of the Principle of Continuity.
, Similar tnanglés can be made to exhibit ‘continuous properties by ap-
parently pivoting at imagined joints, but retaining the conditions- for
similarity. The sides of a right triangle can be made to vary and yet the
relations expressed by the Pythagorean Theorem continue to be true.
The theorems on circles furnish the most irteresting examples of the
continuity of demonstrated propertics. In some cases the property can be
shown to be continuous through several apparently conflicting theorems.
~ An angle whose sides extended cut a circle has a certain continuous.
relation to its.arcs, regardless of the position of the vertex. Similarly,
the product of the segments formed by two intersecting lines is inde-
pendent of the position of the point of intersection.}*?

A. An angle between two lines which intersect a circle has the same
measure as h?lf the sum of the intercepted arcs, regardless of the po-
sition of the vertex of the angle. The vertex may be in any of the
following positions.

C C C A |
A D\ DAQ aD ‘

Fic. 1 Fic. 2 Fi16. 3 Fic. 4

moo?

M1 Smith, D. E. and Bakst, Aaron. The Play of Imagination in Geometry (Motion Pic.
tare), Department of Education Talking Pictures Division of Research, Electrical Research
Products, Inc., 250 West 57th Street, New York City, 21 pp.

M Reeve, W. D. General Mathematics, Book II. Ginn and Co., 1922, pp. 225, 228, 229,
240, 368.
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1. At the center, as in Figure 1.

2. Within the circle, not at the center; as in Figure 2.
3. On the circle and both'sides chords, as in Figure 3.
4. On the circle' and one side a tangent, as in Figure 4.

C ' C E CD
<

A N
AB E BE- AB
I:‘xc. 5 " FiG. 6 - Fic. 7
5. Outside the circle with both sides secants, providing the one arc
convex to the vertex is interpreted as a negative arc, as in Figure
5. This interpretation is of course not according to Euchd because
-negative numbers had not been invented at the time of Eudlid.
6. Outside the circle with one side a tangent, providing again the
smaller or concave arc is considered negative. See Figure 6. '
7. Outside the circle with both sides tangents, providing the smaller
or concave arc is considered negative. See Figure 7.

. If two lines AB andCD intersect a circle at points 4 and B, and

.C and D respectively, and the lines themselves intersect at E, then

the product of the scgments of one line equals the product of the seg-

ments of the other; that is, (AE) (BE) = (CE) (DE). This will be

* true regardless of the position of the point of intersection, even

though the lines may one or both be chords, tangents, or secants. The

various positions of E and the lines may be as follows: (The pre-
ceding figures can be used.)

1. E at the center.

2. E within the drcle, but not at the center. Chords AC and BD
would make two similar triangles.

3. E on the circle. One segment of each chord, AB and CD, is now
zero.

4. E on the circle and one line a tangent. Both segments of the
tangent cut off by the circle would be zero and the point of tan-
gency would be a triple point and, in addition, a point of inter-
section.

5. E outside and both lines secants. Then {4E) (BE) would be the
whole secant times its external segment. Chords AC and BD
would still make two similar triangles.
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6. E outside the circle, 4B a tangent and CD a secant. The tangent
can be thought of as intersecting the circle in two points, 4 and B,
which coincide, and therefore (AE) (BE) is the tangent squared.
Chords AC and BD would still complete two similar triangles.

7. Same as 6 but CD also a tangent. Then CE and DE are the same

segment ‘and (CE)*(DE) is the tangent squared. AC and BD
would now make two congruent triangles.
Note: The reader should prove these two sets of seven propositions

and show that the continuity holds in each set. Try proving each one by
drawing chords 4D and BC instead of AC and BD,

C. A secant cuts a circle in two points. ,

If a secant from P cuts-a circle in two points which are connected with
the center, an isosceles triangle is formed, such as 4,0B,, 4,0B,, . . .
A,0B,. In thesé triangles, since they are always isosceles, what angles
are equal? What happens as the angle at O decreases and approaches
zero, and the two points, 4 and B, approach coincidence? When the

.secant becomes a tangent at what angle does it meet the radius? Could
it be perpendicular to a radius at the outer extremity of the radius if
not a tangent? Could a line perpendicular to the tangent fail to pass
through the center of the circle? '

The statement that “a straight line intersects a circle in two points”
is one in which the, principle of continuity extends the meaning of in-
tersectiofi to~include the algebraic or coordinate geometry conception.
Otherwise the property would be discontinuous. If the line is a tangent
the two points of intersection with the circle can readily be thought of as
coincident, but when the line fails to touch the circle there is no geometric
representation of the intersections. In coordinate geometry the solution
and representation are simple. Given a circle, 2 + y* = 9, and a line,
x + y = 10, the simultaneous solution gives:

S

ral
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2+ (10—zx)2 =
¥—10x+455=0
x =5 -4 4.5i

« ¥ =135345i

Clearly the two points are (5 + 4.51, 5— 4.5 and (5 — 4.5i, § + 4.51),

and they are imaginary. Therefore it is evident that the principle of con-

tinuity forces the extension of the Euclidean geometry if exceptions to '

the principle are to be avoided.

The concept of the slope of a moving secant as the basis for a graphxc
presentation of the derivative in calculus is a tempting illustration which
lies beyond the scope of this study. The slope of the secant as it ap-
proaches a'tangent is always the ratio of the increment in the function
to the increment in the variable as the increment in the variable ap-
proaches the limit zero. This is an interesting application which shows
the dependence of calculus upon the principle of continuity.

The entire theory of limits with all its applications in higher mathe-
matics and with its applications to incommensurables is dependent upon
this postulate, first assumed and expressed by Kepler. The use of con-
tinuity in coordinate geometry, where functions are often spoken of as
continuous or discontinuous, can now be somewhat extended by the
statement that ¥ = 1/x becomes continuous through points at infinity;
and that even costs are continuous for integral pof(xts that is, the rela-
tion between cost and price is continuous, although there will be gaps in
the correct graph.

Conclusion. No teacher of geometry, or of any branch of mathematics
for that matter, should fail to utilize the principle of continuity. Clearly,
the wide application of the generalizations of mathematics is one of its
fundamental characteristics, as well as one of its most fascinating charms.
The conclusions of mathematics are all-inclusive, yet relative. Every con-
clusion is based upon certain fundamental assumptions and definitions.
Yet the properties demonstrated are general, or continuous, and often
penetrate realms unthought of when first presented in specific form. The
use of the principle of continuity should make geometry more interest-
ing, more alive, more general in its applications, and more powerful in its

H

pattern of ‘reasoning. /

_ B. PROBLEM MATERIAL »

151. Solve the two problems, A and B, in this section.
152, Apply the principle of continuity to the theorem that the sum of
‘the angles of any polygon is (n— 2) straight angles. Let n vary,

[ ALY
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155.
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let the polygon become concave,_lét it flatten out completely or in
parts, so that adjacent sides coincide, and yet show the property
continuous. ’

Define a quadrilateral as the figure formed by four intersecting
lines; a vertex as the point of intersection of any two sides whether
adjacent or opposite; and a diagonal as a line connecting any two
vertices. Then any quadrilateral ABCD has three diagonals, AC,
BD, and EF, which intersect in three points, P, Q, and R. Show
how ‘this can be true for a parallelogram; a trapezoid; a convex
quadrilateral with no sides parallel; a concave quadrilateral (one
angle greater than 180°); a cross quadrilateral (like ABDC in
figure given); a solid quadrilateral (one vertex not in the same
plane as the other three).

Make up further illustrations. For instance: (1) What happens to
the two tangents to a circle from a point P outside the circle as P
moves toward the circle, is on the circle, or passes inside the circle?
(2) What happens to the four tangents to two non-intersecting
circles as the centers of the circles approach each other; as the
circles become tangent externally; intersect in two points; become
tangent internally; become concentric?

Take the circles in the problem above and let them rotate about
their line of centers. What happens to the tangents for different
positions of the centers and for different radii?

Show how the principle of continuity applies to the tngonometnc
functions;_ for example, sin 4 = y/r, as the angle varies from
0° to 90° to 130° to 270° to 360°.

-
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157. Apply the principle of continuity to the Sine Law of trigonometry:
(sind _ sin B _ sin C)
a b ' ¢

158. The Cosine Law (62 = b + ¢*— 2 bc cos 4) is a most excellent
illustration of the force and beauty of the principle of continuity.
Since cos 0° = 1, cos 45° = + .7, cos 90° = 0, c0s'135° = —.7,
cos 180° = —1, cos 225° = —.7, cos 270° = 0, cos 315° =
+ .7, c05 360° = + 1, show how side a varies with angle 4. When
angle 4 is 30°, triangle 4BC is a right triangle with side a the
hypotenuse. Show how the principle of continuity makes the Pythag-
orean theorem just a special case of the Cosine Law.1% \;

159. The length of a tangent (¢) from point P to a circle with center C y
and radius r is: ¢ = \/d? — r* in which PC = d. What happensto ¢ ,,

~ ~ —as Papproaches C or as d approaches zero? Show that the imaginary,

tangent is a half-chord. A /

160. If equal arcs AC and AD are laid off on each side of one extremity
of a diameter and lines drawn from C and D to any point on, the
diameter 4B or 4B extended, the lines are equal, they make equal
angles with the diameter, and they cut off equal arcs on the/circle
measured from B; and conversely. (More than one converse.)

161. The area of an ellipse is %ab. Show that this formula is continuo
as a approaches 4.

162. The volume of an ellipsoid is 4/3 mabc. Show that this formula is
continuous as the ellipsoid approaches a sphere.

163. In the next chapter exercises 210, 218, 219, 229, 230, 235 involve
relations to which continuity applies very well. )

164. Apply the principle of continuity to the circles of Apollonius given
in problem number 40 of the exercises for analysis.

165. Find one good illustration of a relationship which is continuous
through various changes in the form of the figure. Either select it
from exercises 41-150, from some other geometry, or make it up.

-

Note: In the next section are many examples in geometry. As these
are being worked the principle of continuity should be applied. In C\hap-
ter 6 each major theorem is an excellent example of continuous proper-
ties. In Ceva’s Theorem point P, and in Menelaus’s Theorem the crucial
line DEF can be taken in various positions and yet the property demon-
strated is continuous.

133 Reeve, W. D. General Mathematics, Book IL. Ginn and Co. 1922, pp. 368-372.
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VIII. INCOMMENSURABLES

Meaning. A clear understanding of the meaning of the term incom-
mensurable is quite necessary. The derivation of the word would sug-
gest that if two segments are commensurable, they can be measured to-
wggther, that is, by means of the same unit. The favorite illustrations of

1&% imensurability are the diagonal of a square which cannot be meas-
ured with the same unit used to measure the side, and the circumferencé
and diameter of 2 circle which cannot be accurately measured by means
of the same unit of measure. Another form of expressing the idea is to
say that two segments are commensurable if they have a common di-
visor, and incommensurable, if not. The following definition and theorem
help to clarify the problem as will also the illustrations which- follow.

Definition. “Those magnitudes are said to be commensurable which
are measured by the same measure and those incommensurable which
cannot have any common measure,”t3

Theorem. “If, when the less of two unequal magnitudes is continually
subtracted from the greater, that which is left never measures the one
before it, the magnitudes will be incommensurable.”***

Discussion and Illustration. Because of our versatile common frac-
tions and decimal fractions, which provide approximate measures for all
line segments correct to any degree of accuracy desired, the problem of
commensurability and incommensurability, which loomed so large for
Euclid and Pythagoras, has faded greatly in significance. If one tries to
express the square root of two by means of Roman numerals or by means
of the awkward Greek system of numbers, the truth of this statement
becomes apparent. It is in the attempt to express the diagonal of a square
in terms of its side that incommensurable magnitudes were discovered.
If s and d represent the side and diagonal of a square respectively, it is
evident that 4> = 2s%. That is, the square on the diagonal is exactly
twice the original square, yet the ratio between d and s is not expressible
in terms of rational numbers. This would indeed be puzzling to any
thoughtful man without a number system so flexible as to be able to
account for it satisfactorily by a theory of approximations. The diagonal
of a 10 inch square is the square root of 200 or 14.14213, correct to five
decimal places; yet since 14.14213 squared is only 199.99984, to five
decimal places, it is evident that 14.14213 is not the exact length of the
diagonal. Furthermore, that length can never be expressed exactly by
using the same unit used in measuring the side.

134 Heath, T. L. op. cit., Vol. III, p. 10,
1 Euclid X, 2. (Heath, T. L. op. aif., Vol. I1L, p. 17.)
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Proof that \/2 is Incommensurable with Unity. The proof of the in-

commensurability of \/Z with unity is a relatively simple indirect proof.
It was referred to by Aristotle, s0 is not new. .

(1) Assume s and d commensurable.

(2) Thea s/d = some fraction p/q reduced to lowest terms.

"(3) But s?/d* = p*/q* = 14, Since d* = 2s%

(4) Therefore g* is divisible by 5 and g must be also.

(5) Let g = 2r, then 4 2 = 2p2

(6) Consequently 272 = 2 and p? is divisible by 2, and therefore p must
be.

(7) Butif p/q is reduced to lowest terms and g is divisible by 2, then
must be odd and yet be divisible by 2.

(8) This is impossible, therefore s and d are not commensurable.**

Similarly, any other irrational number can be proved incommensurable
with unity. Let ¢ and 2¢ be the sides of a rectangle with diagonal 5, and

prove a and b incommensurable, or the /5 incommensurable with unity.

(1) Assume ¢ and & commensurable or that ¢/b = the fraction p/q
reduced to lowest terms.

(2) b* = (20)* + a* = Saor b = aV/$

(3) Then a?/b? = p?/q2 =1/5 or ¢* = 5p2.

(4) Therefore g2 is divisible by 5 and g must be also.

(5) Let ¢ = 5r, then g% = 25r% _

(6) Then 25r* = Sp* or 5r* = p2. Therefore p? is divisible by S and
consequently p must be also.

(7) Therefore $/q can be reduced, which is contrary to the assumption
in (1). -

(8) Therefore a and b are not commensurable. That is, ¥ = ¢ V/5, and
VS is incommensurable with unity. .

It is furthermore interesting to note that the v/Z and VS are just as
incommensurable with each other as either of them is with unity. This
suggests the unlimited complexity of incommensurability.

Incommensurables to be Omitted from High School. The National
Committee recommends that “the formal theory of limits and of incom-
mensurable cases be omitted,. but that the ideas of limit and of incom-
mensurable magnitudes receive informal treatment.”*s” There are at
least two good reasons for this recommendation. First, our number sys-

14 Heath, op. cit,, Vol. I, p. 2.
™ National Committee, op. cit.,, p. 49.

—
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tem makes possible approximate measurements which satisfy all prac-
tical needs. Second, the proofs are too hard, and consequently require
more time and energy than they merit in comparison with other more
interesting and more useful material.

Other Cases of Incommensurability. In order to establish a little more
defense for including the following treatment of incommensurables, and
also in further defense of the statement that incommensurables are in-
finitely more common than commensurable magnitudes, as well as to
avoid the common error of presenting incommensurables as though the

V7 and = were the only ones, the following examples are given as “lead
on” suggestions.

Next after /2, no doubt = is the most famous incommensurable num-
ber. In 1853 W. Shanks made himself famous by carrying out the value
of = to 707 decimal places. To 25 places = = 3.141,592,653,589,793,238,-
462,643. It is evident that this is not the exact value, although for most
practical work 3% is a close enough approximation. While the circum-
ference of a.circle with a definite radius is easily drawn, yet that cir-
cumference is incommensurable with the radius or diameter. Further-
more, if the circumference were commensurable with some unit, the
radius would then be incommensurable with the circumference. The
ratio, expressed as %, is incommensurable, even though one or the other
of the quantities may be commensurable with some arbitrary unit. All
true, in spite of the rumor that a bill was once introduced before a legis-
lative body in the United States proposing to make = commensurable
and equal to three so as to correspond with the Biblical value found in
I Kings, VII, 23.

If you draw two line segments you may accidentally get one exactly
2 inches and the other exactly 3 inches long or even 153 and 2615,
inches long respet{tively. However, the chances are infinity to one that
these would be but-close approximations to the actual lengths and that
it would be 'mpf)ssible accurately to measure even these segments. The
dimensions of a standard door, a table, the dimensions of this page, the
length of a foot rule, are all only relatively exact; that is, strictly speak-
ing they #e incommensurable in most cases.

The trigonometric ratios illustrate the problem. Sine of 0° is 0, of 30°
is 4, and of 90° is 1. In these three cases the numbers which give the
size of the angle in degrees and the ratic between the side opposite and
the hypotenuse are commensurable. For no other angle between 0° and
90° is this true. Also, for 0°, 45°, and 90° the ratio between the side
opposite and the side adjacent is commensurable with the angle. This is
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true for no other angle between 0° and 90° measured in integral degrees,
although there are an infinite number of angles in which these sides are
commensurable,

The logarithm of one is'zero, of 10 is 1, of 100 is 2, of 1000 is 3, but
for no other number between 1 and 1000 is a number commensurable
with its logarithm. In the natural system the logarithm of one is zero
and in no other case whatever is the logarithm commensurable with the
number. Furthermore, logarithms are usually incommensurable with each
other as well as with their number and.base.

These few illustrations suggest the comparative frequency of incom-
mensurability and in addition to being a defense for its treatment should
help to make the meaning clear and to suggest the nature of the problem
to be solved. However, before presenting proofs for any theorems in-
volving incommensurable magnitudes, it is interesting to note that out
of eight modern geometry textbooks for college courses in geometry, all
but one written since 1920, not one considers the problem of incommen-
surability of enough importance even to mention it. It seems to be more
or less a closed issue because any property which is true of :ommen-
surable magnitudes will also be true for incommensurable magnitudes
by means of the pattern prcof which follows. Furthermore, our very
efficient decimal system makes informal treatment of the problem amply
satisfying for all practical and most cultural purposes. In addition to
this, the recent development of complex numbers has presented a prob-
lem of such magnitude as to throw commensurable and incommensurable
quantities into one class by comparison. However, the problem has
enough historic and intrinsic importance to merit the limited treatment
which f{ollows and the limited mastery of the problem which the follow-
ing presentation makes possible.

General Plan of Attack. It is one matter to prove that the area of a
rectangle whose dimensions are commensurable, such as 3 and §, is the
product of these dimensions. It is quite a different matter if the dlmen-

sions are /3 and V/5, which might occur as fréquently. The technique
of proof for all incommensurable cases will consist of three steps: First,
take the proof for commensurable magnitudes. Second, set it up so that
it will have variables which remain equal as they approach the incom-
mensurable magnitudes as limits. Then, finally, by means of the postu-
late of limits, draw the evident conclusion.

Very little difficulty seems ever to have been recognized in adding or
subtracting incommensurables, although it seems difficult to see why

V3 — V5§ and V3 + \/3— should be less significant than V3- \/3 or
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V'3 / V/5. Probably the explanation lies in the fact that areas and pro-
portions involve multiplication and division, while addition and sub-
traction are little used in geometry. The general threefold plan of proof
would nevertheless be used for addition or subtraction of incommen-
surables as for multiplication and division.

The Postulate of Limits. If two variables are always equal as they
approach their limits the limits are equal. ‘

Note: This postulate will be needed in each of the following theoreins.
The first of these theorems was postulated in the preceding chapter. While
nothing was said about the nature of the dimensions of a rectangle, yet
all explanations naturally assumed them commensurable. The question
then arises concerning the continuity of this relationship if those dimen-
sions become incommensurable.

TueoreM A. The area of a rectangle is the product of the base times the
altitude. (Incommensurable dimensions.)

HyroTHEsIs: A rectangle of area 4 with its base and altitude, b and #,

» incommensurable.

CoxncrusioN: A = bh.
Proor: e

I 4 ,

(1) Take a convenient unit of measure and lay it off on b and & as many
times as it will go integrally leaving a remainder less than the unit
of measure in each case. The segments thus laid off, 5* and #’, will
be commensurable and will form a rectangle with area 4'.

(2) Then A’ = b’K. The area of a rectangle equals the base times the
altitude. (Commensurable case.)

(3) Now take a unit of measure one-half, one-tenth, or one-hundredth
as great and lay it off on & and % in the same manner. The new
A’, % and & will be larger than before. By continuing to use smaller
and smaller uniis of measure 4’, &', and 4’ can be made to vary and
to apptoach 4, b, and A, respectively, as limits.

(4) That is, A=K regardless of the unit of measure.

(5) But A’ approaches 4, and b'%’ approaches b/ by definition of a
limit and by the construction of 5" and #’.

(6) Therefore A = bk by the postulate of limits.

EXERCISES ON THEOREM A
171. Show that the volume (V) of a rectangular solid, whose dimensions
I, w, and & are incommensurable, is found by this formula: V =
hwh. '
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_172. Show that the area of a triangle is }4 the base times the height, even
though these quantities are incommensurable. Similarly, for the
area of- a parallelogram, a trapezoid, and a circle.

173. What is true of the volume of any prism and pyramid, or cylinder
and cone, even though their dimensions are incommensurable, in
the light of exercise 171 above? Apply the pattern proof above in
the proof of this.

THEOREM B. A line parallel to one side of a triangle divides the other

" two sides proportionally.

Hvroruesis*: A triangle 4BC with / parallel to 6 and dividing ¢ and ¢
into incommensurable segments m and n, and p and g, respectively,
with # and ¢ nearer the base.

4

m
CoNCLUSION: — = —
n' g
Proor:
(1) Take some unit of measure that will be contamed in m integrally
and lay it off on # as many times as it will go makmg a segment
n’, which is commensurzble with #z, and a remainder less than the
umt of measure. Draw a new base, ¥, parallel to & through the
’ end point of #’ and it will cut off a segment g’ on ¢ such that

4

(2) 1",— = — (Commensurable case, theorem 8.)
n q

(3) Now by the process of successively decreasing the unit of meas-
ure, #’ and ¢’ can be made to vary and to approach » and q as
limits,

(4) That is,z— —;;iregardless of the unit of measure.

. (5) ‘But m/n’ approaches m/n, and p/q’ approaches p/q by defini-
tion of a limit.

(6) Therefore—’it- = ?—b the ostulate\qf limits.
- y the p

* The student should construct his own figure.

EXERCISES FOR THEOREM B

176. Show that in any right triangle with a given acute angle (4) the
ratio of the side upposite to the side adjacent is constant even
though these sides are incommensurable, In other words show that
the tangent of 4 is constant.

~




177.
178.

179.
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Show the sin 4 constant. Cosine 4. '

Show that two triangles are similar if two angles of one equal re-
spectively two angles of the other, even though the sides are in-
commensurable.

Name other relationships involving proportions and incommen-
surable segments which theorem B completes. What effect does
theorem B have on the Pythagorean relation as proved from similar
triangles?

TreoreM C. In equal circles or in the same circle, arcs have the same
* ratio as their central angles.
Hyrotnesis:* Two arcs AB and CD in the same circle or in equal

circles, and their central angles p and g respectively.

CoNCLUSION A8
NCL P—= -
cD

»
q

PRroOF:
(1) Divide 4B into an integral number of parts and using one of

(2) Then

these as a unit of measure, lay it off on arc CD as many times as
it will go leaving a remainder less than the unit of measure, and
arc CD’ commensurable with 4B. Let ¢’ be the central angle of
arc CD'.
AB

_2?
Yo, 7 (Commensurable case)

3) Now by the process of reducing the unit of measure through b1-

(4) That is

section or some other process of dividing it integrally, arc CD’
and angle ¢’ can be made to vary and to approach arc CD and
angle ¢ as limits.

y:|
D = ﬁ, regardless of the unit of measure.
q

AB AB
(5) But —— approaches D and —e - approaches :by definition and

C I
construction.

AB
(6) Therefore i) = —Z by the postulate of limits.

Note: Because of the above correspondence between the arcs and their
central angles it is readily seen that if one of the two angles were a unit
angle and its arc correspondingly a unit arc that the second angle would

*The student should construct his own figure.

S
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have the same ratio to the unit angle that its arc has to the unit arc,
hence ‘the statement that a central angle has the same measure as its
arc and conversely.

EXERCISES FOR THEOREM C

181. Show that in equal circles or in the same circle inscribed angles
have the same ratio as their arcs, even though incommensurable.

182. State the converse of theorem C and also of exercise 181 above.

183. How does theorem C affect the other theorems which state rela-
tionships between angles and arcs?

IX. SuMMmArRY AND CONCLUSION

The outstanding portions of this chapter, from the point of view of a.
prospective teacher, are the three sections: Analysis, Indirect Proof, and
Continuity. It has been the purpose of this chapter to present these three
and other topics so as to provide a more complete experiencé for the
student, not only with the subject matter of geometry, but more par-
ticularly with the heuristic method of teaching and learning geometry.
Study of this chapter, including the solution of a liberal number of prob-
lems by means of the methods presented, should insure a comprehensive
knowledge of geometry and of the reasoning patterns which geometry so
concretely provides, as well as an unforgettable experience with the ana-
Iytic method of discovering proof and with the indirect method of proof.
The sections on the Structure of Geometry and Continuity are presen-
tations of interesting points of view with respect to geometry. The final
section on Incommensurables has been included for the sake of complete-
ness and tradition.




CHAPTER VI
MODERN EUCLIDEAN GEOMETRY

I. InTRODUCTION

The Selection of Subject-Matter. Not only should a prospective teacher
of high-school geometry be thoroughly familiar with the subject-matter
to be taught and at the same time appreciate its possibilities when cor-
rectly taught, but he should have mastered as well other more advanced
and more difficult material of a similar nature so that he may have a
background that will enrich his teaching and give him additional pro-
fessional experience with the heuristic method. There is so much splendid
material in the field of modern Euclidean geometry, algebraic geometry,
" and projective geometry available for this purpose that several years of
study could be spent on it. The material herewith presented is conse-
quently selected with no attempt at a complete presentation of modern
geometry. Two criteria for selection have been used. First, the material
was selected so as to depend upon the preceding chapters and in some
cases to complete and amplify them. Second, the material was sclected so
that it would involve some new definitions and concepts which are rela-
tively as difficult for a college student to master as those of high-school
geometry are for the high-school student.

The Professionalization of Subject-Matter. No claim is made that the
theorems and exercises presented in this chapter are the best that could
be selected. They are important ideas since they are included in all
modern geometry textbooks such as Durell, Godfrey and Siddons, John-
ston, and Altshiller-Court. Furthermore, each theorem selected serves a
definite function in the plan for this chapter. The Theorems of Ceva and
Menelaus are interesting extensions of plane geometry theorems and
serve to unify the ideas of concurrency and collinearity. The nine-point
circle and Euler’s line theorems serve to extend the ideas about crucial
points in a triangle and to show the relation between the various “cen-
ters” of a triangle. The theorem on coaxal circles serves to provide ex-
perience with entirely new concepts, new definitions, new relationships.
It really opens up the whole interesting subject of *“Inversion,” but is
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used in this chapter merely for the .purpose of having the prospective

teacher experience the difficulty of learning something entirely new to

him. The concept of “power of a point,” or “radical center” does not im-

mediately have meaning for him just as in*high-school geometry “me-

dian,” “parallelopiped,” “ratio,” “mean proportional” may be new to a
\ high-school pupil and need to be developed by éxtended contact.

In other words the material in this-chapter-is-selected, not so much
for its mathematical content and completeness, as to fulfill a professional
purpose. The two previous chapters have applied the heuristic teaching
pattern to material with which the student has had contact and with
which he is at least slightly familiar; this chapter applies the same pat-
tern to new material in order more completely to establish the power and
educational value of the inductive-deductive-analytic-synthetic processes
which, combined, we have called the heuristic method of teaching.

II. CEvA’S THEOREM AND THE THEOREM oF MENELAUS

1. cEvA’s THEOREM (33)

History. The theorems of Ceva and Menelaus, with their converses,
are fundamental for the science of projective geometry. Ceva’s Theorem
is given first here, although hlstorlcally it came later, Giovanni Ceva was
an Italian engineer ‘and mathematician, He discovered the theorem
named after him in, 1678 and published at the same time the close! y re-
lated Theorem of Menelaus, \Vthh had been little used since its discovery
by Menelaus in 100 p,c.2*

Since it has been recommended that high-school teachers use an in-
ductive approach in discovering a deductive conclusion, it will be con-
sistent to usc that pattern with this theorem and the following theorems.
It should likewise be possible to use an analytic method of discovering
the proof, which can then be presented in synthetic form.

Definitions Needed. In the extended applications of these theorems it
will be necessary to use directed line segments corresponding to the
directed numbers of algebra, positive and negative, It will also be con-
venient to use some new terms, consequently a few definitions become
necessary.

1. Negative line segments are segments taken in the opposite direction
from those considered positive. Thus 4B = —B4 for any segment
AB, also if AP and BP are both positive, P is on 4B extended, but
if one is negative, then P is between 4 and B on segment AB.

13 Johnson, Roger A. Modern Geometry. Houghton Mifflin Co., 1977, p. 148.

ERIC

Aruitoxt provided by Eic:



) &
»

Modern Euclidean Geometry 173

Jllustrate by dr.awi'ng a line segment 4B and locating P so that AP
and BP are both positive, then both negative, finally only one nega-
> tive.
2. Concurrent lines are lines which have 2 common point. -
3 Collmear points are points which he on the sdme line, - -
APPROACH 10 CEvA's THEOREM: -7

" (1) Dray a triangle with sides 6, 8, and 11 in. = ®

(2) Divide the 11 inch side jnto 2 segments % and 6 inches, and the
8 in. side into" segments 3 and 5 in., in consecutivc crder around
the tnangle. -

(3) Draw lines>from the opposite vertex to each of these points of
division. Let these lines intersect in P. Draw a liie from the re-
maining vertex through P to the 6 in. side.

{4) Measure the segments on this side, they seem to be 4 inches and

2 inches. 5

(5) Noticethat 5x3x4=6x5x2 e

(6) Notice the order of selection of the segments to be multiplied to-
gether.

(7) Use sides 9, 8, and 11 in. .ong and go through the same construc-
tion.

(8) Take any other triangle and select any point P, draw lines to the
vertices as above, extend them to the opposite sides, get the prod-
ucts corresponding to those above and“see what happens.

(9) "Can this be stated as a general theorem? Tryit.

Ceva’s THEOREM: Three concur cnt lines from the vertices of a triangle
divide the opposite sides into segments so that the product of three
non-2djacent segments equals the product of the other three.,

HyrorHEsis: Triangle ABC with any point P and lines AP, BP, and
CP cutting the opposite sides in points D, E andF. (Figure, next page.)

Concrusion: (AF) (BD) (CE) = (FB) (DC) (E4)

Anavysts: Three factors on each side of the equation suggest that divid-

ing by the tight-hand fnember would give three ratios, which in turn
- suggest the use of similar triangles.

(1) (AF) (BD) (CE) = (FB) (DC) (EA) if

AF BD CE
Q —= —='=—=1lor
FB DC EA .
AF BD CE
B — = — =1
BF CD AE
? v of L
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(4) Since the three factors in the denominator are now all negative,
their product is thus made negative. Equation (2) or (3) sug-
- gests similar triangles obtained in some way so that these ratios
can be obtained. Since AF and FB are corresponding sides it
suggests that we draw GH through A parallel to BC and extend
lines BE and CF as in the figure. '

AF CE
(5) Nowif—=K,§£ d—-——Msothat

FB DC
(K) - (L ) - (M) = 1 then the solution would be obtained.
AF AG BD HA CE BC

1 (6) But — = — — = — — = — Why?
FB BC DC AG EA HA
AG HA BC
7 And— "+ —— - — =
) BC AG HA ! _
. AF BD CE
(8) Thereforef— . §—— c—=1lor
FB CD EA
AF BD CBE_ .
UF CD AE

Proor: The syntheti. statement of this proof is now left to the student.

.

7 2. EXERCISES FOLLOWING CEVA'S THEOREM

201. State the converse of Ceva’s Theorem. It would contend that if the
sides of a triangle are divided so that the products stated would be
equal, then lines joining the points of division to the opposxte ver-
tices would be concurtent.

* Note: In proving this use the indirect method. Assume that two
of these lines meet in a point, then use this point in applying Ceva’s .
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207.
208.

209.
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Theorem, and it will divide the third side in a way that will indicate
that the third line goes through the same point. Note that this con-
verse theorem forms a basis for proving lines concurrent and con-
sequently becomes rather a fundamental theorem. The point form.d
by the intersection of three lines through the vertices of a triangle
is often referred to as the “Gergonne Point.”

Use exercise 201, the converse of Ceva’s Theorem, in proving that
the .medians- of a triangle are concurrent.

Try the converse of Ceva’s Theorem for proving concurrency of the
angle bisectors.

Note: Remember that the bisector of an angle divides the op-
posite side into segments proportional to the adjacent sides.

Try the converse of Ceva’s Theorem to prove concurrency of the
altitudes.

Note: Use similar right triangles.

Prove the theorem if point P is outside of the triangle.

Note: Be careful of direction of line segments, since lines from
this point through the vertices will intersect two of the opposite
sides externally. Take various positions of the point.

Would the converse of exercise 205 also be true for external seg-
ments?

Suppose the point P is on one of the sides; what happens?

Prove that the bisectors of two exterior angles and the other in-
terior angle are concurrent.

Lines joining opposite vertices with the points of contact of the ex-

circles of a triangle are concurrent. (This point is called Nagel’s

< Point.)

210.

Show that the relationships described in Ceva’s Theorem and its
converse are continuous. Let the point P move to any position: on
one side or at a vertex; on a median, a bisector, or an altitude;
at the incenter, an excenter, the circumcenter, the orthocenter, or
the centroid; let the triangle be equilateral, isosceles, scalene, right,
or ‘obtuse.

¢

3. THE THEOREM OF MENELAUS (34)

APPROACH:
(1) Draw a triangle AB,C/ with sides 11, 8, and 6 inches. Divide the

two longer sides 48 and BC into segments 7 and 4 inches and
1 and-7 inches at.points D and E.

(2) Draw line DE-and extend it until it meets AC extended at F.

V4
o
i

o

i-”:




N\

R
PN . vy v . [ -
1y

176 Geomelry Professionalized for Teachers

Measure #F and CF, they are 8 and 2 inches.

(3)Ntetht7X1xs 1 AD BE CF 1
otetht ————— = lor— * — + — = —
4X7X2 DB EC FA4

(4) Try it over with AC = 12 inches, instead of 6 inches. f

(5) Try it drawing any line DF across any triangle mtersectmg two
sides internally and the third externally. 1

(6) Try it intersecting all three sides externally. ‘

(7 StatQ the Theorem of Menelaus.

THE THEOREM OF MENELAUs: A transversal of a triangle dxvxdes the
sides into six segments in snch a way that the product of any three
non-adjacent segments equals the product of the other three (dis-
regarding direction).

HyrorHEsis: DF is any transversal cutting the sides of tnangle ABC
in points D, E, and F respectively.
CoNCLUSION:

(1) (4D) (BE) (CF) = (BD) (CE) (AF) or

DB EC F4 )

ANALYSIS: - /
(1) The above ratios suggest getting similar triangles. Again this can /"
be done in many ways. Suppose we draw perpendiculars to DF from /"\
4, B, and C. Call their feet G, H, and K. /o
(2) Now if the three ratios can be shown equal to other ratios whose /

product is 1 ot —1 then we have the solution. '

AD _ AG BE _ BH CF _

(4) Now—+ — - — =1
BH CK AG
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AD BE CF
5) Therefore — + = + — =1
(5) Therefore BD CE aF Why?
AD BE C(F
6) ot — * — + — = —1 Why?
DB EC F4

(7) or (AD) (BE) (CF) = (BD) (CE) (4F)
\ = — (DB) (EC) (FA) Why?
Proor: \

G, H, and K.

AD _ AG

2) — = —
, @) 55~ 3 "™?
o BE DB
CE 6k

(7 (AD) (BE) (CF)¢ (BD) (CE) (AF) from (5)
L = —(DB) (EC) (F4) from (6)

(1) Draw perpendiculars from 4, B, and C to DF. Call their feet

Therefore the Theorem of Menelaus is true for any triangle with

177
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any line cuttmg o
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4. EXERCISES FOLLOWING THE THEOREM OF MENELAUS (35)

ternally.
212. State and prove the converse of Mefelaus’ Theorem.

collinear.

Note: Use the converse of the Theorem of Menelaus.

211. Prove the Theorem of Menelaus if line DF cuts all three sides ex-
Suggestion: Apply the idea given for proving the converse of Ceva’s
Theorem. Note that this converse is fundamental for proving points

_213. The bisectors of two interior angles and the other exterxor angle B
intersect the opposite sides in points which are collinear, ~_—______—

214. The bisectors of the three exterior angles intersect the opposite
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sides in collinear points. Try one interior and two exterior angles.
Explain.

215. In triangle ABC let D, E, and F be the middle points of the sides
AB,\BC, and CA4, and P be the middle point of DF. Let BP cut
AC in Q. What is the ratio of A4Q to QF?

Note: Use triangle ADF and get the ratio of AQ to QF by Mene-

laus’s theorem.

216. Pascal’s Theorem: The opposite sides of an inscribed.hexagon inter-
sect in points that are collinear.

Note: For ABCDEF, extend AB, CD, and EF to form triangle

PQR. Now if the opposite sides intersect in points L, M, and N,
prove LMN a line across PQR by considering BC, DE, and FA
as transversals of PQR.

217. Desargnes’ Theorem: If two triangles, ABC and DEF, are so situ-
ated that lines through corresponding vertices intersect in point P
i.e., ADP, BEP, and CFP are concurrent in P, and 4B and DE
intersect in Q, BC and EF in R, and C4 and FD in §, then @, R,
and S are collinear.

218. Show how the Principle of Continuity applies in the Theorem of
Menelaus. What happens as line DEF passes through one vertex;
two vertices; bisects an angle; bisects a side; passes through A4/,

BB’, or CC’; is parallel to one side; perpendicular to ope side; -

or the tnangle is a right, obtuse, scaleue, isosceles or equllateral tri-
angle.
219. Apply the Principle of Continuity to the converse of the Theorem
of Menelaus by means of an analysis similar to the one above.
220. Make up an example using either of the last two theorems or their
converses.

IIL Nine-Point CIRCLE T:rorEM AND EULER’S LINE
1. THE NINE-POINT CIRCLE “(THEOREM 36)

Definitions Needed. Before Lakmg up the next theorem 1t will be well to
study tke standard notation for a triangle and its various points.
Notation for a triangle ABC with sides g, b, ¢, and with 47, B/, C’ the

midpoints of those sides respectively.
A4’ BB, CC’ are its medians.
A’B’C’ s the medial triangle.
AD, BE, CF are the altitudes.
DEF is the pedal triangle.

,-\
| SR
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I is the intersection of the angle bisectors or, the center of the in-
scribed circle, the incenter.

G is the intersection of the medians, known as the centroid or center
of gravity: '

H is the intersection of the altitudes, the orthocenter

O is the intersection of the perpendlcular bisectors of the sides, the
circumcenter.

N is the center of the nine-point circle.

ArproacH To THE NINE-PoiNT CIRCLE THEOREM.

(1) Draw any triangle and find the middle point of each side.

(2) Draw a circle through these three points. This circle will cut the
three sides in three other points unless the triangle is equilateral
or isosceles. Connect these points with the opposite vertices. These
lines seem to be perpendicular and therefore to be altitudes. Call
their intersection H.

(3) AH, BH and CH seem to be bisected by the circle drawn. Call
these points P, Q, and R respectively. Then it seems possible that
A', B’,C", D, E, F; P, Q, and R are nine points al! on the same
circle. .

(4) State the theorem for the nine-point circle.

Tueoren: The midpoints of the three sides, the feet of the altitudes, and
the midpoints of the segments joining the orthocenter to the vemces
all lie on the same circle.

A F C B

HyrotHesis: Any triangle ABC with points 4’, B’, (', D, E, and F as
defined and P, Q and R the midpoints of AH, BH, and CH.

ANALysis: It will be possible to draw a circle through three of these
points, then if the others can be shown to be on this circle, perhaps

Concrusion: These nine points are on the same circle. —




‘ 180 Geometry Professionalized for Teachers

even one at a time, our problem is solved. Further analysis is left to
the student.

Proor:

(1) Construct a circle through 4%, B’, and C’.
(2) In quadrilateral A’DB’C’, A’D is parallel to B’C’. Why?
(3) Also B’D = A’C’, both being 14 of AC.
! (4) Therefore A’DB’C’ is an isosceles trapezoid, its opposite angles
are supplementary and consequently it is mscnpuble
(5) Therefore D is on circle A’B’C”:
(6) Similarly E and F can be shown to be on circle A'BC,
N7) In quadrilateral A’B’PC’, B’P is parallel to CF, because in tri-
angle ACH, B’P joins the midpoints of AC and 4AH.
8) Angle 4’B’Pis a right angle because A’B’ is parallel to 4B which
is perpendicular to CF.
(9) Similarly PC’ is parallel to BE which is perpendicular to AC and
also to A’C".
(10) A’C’P is also a right angle.
(11) Therefore A’B’PC’ is an inscriptible quadrilateral and P is on
the circle 4’B’C".
(12) Similarly Q and R can be shown to be on the circle 4’B’C".
(13) Therefore all nine points are on the same circle
Note: If this is hard to follow draw three segarate figures just
) alike and use the first one for steps 1 to 5, the second for step
P 6, and third for steps 7 to 12. Then actually draw the lines to
form the quadrilateral distussed.

¢ 2. EULER’S LINE (THEOREM 37)
APPROACH:
(1) Draw several triangles of different shapes and in each locate /,
O,H,G,and N.
(2) What seems to be true of these pomts?
(3) Is I everon the line OH? Is C? Is N?

THEoREM: The arcumcenter, orthocenter, centroid, and nine-point cen-
ter all lie on the same line-segment OH which is bisected by the nine-

point center, N, and divided in the ratio of 1 to 2 by the centroid, G.
Hyporuesis: Triangle ABC thh points H, N, G, and O.
* CONCLUSION:
(1) HNGO is a straight line,
(2) OG = 1, OH, and
(3) ON = 1, 0H. s
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ANALYSIS: |
(1) If we take the straight line HG and prove that O and N are on
it then OGN H will be a straight line.
(2) Also if HG is extended 14 its length to O, and O’ shown to'be O
then OG = 14 OH.

A CF B
(3) Similarly if the middle point of OH can be shown to be the center
of the nine-point circle then it must be N, and ON = 15 OH.

Proor: :
(1) Draw HG and extend it to O’ so that 0’G = 1 HG.
(2) Draw OB’ and 0’C’ (0’ and O will be the same point; therefore
think of O as O for the present).
(3) Triangles C’0’G and CHG are similar and also
(4) Triangles B’O’G and BHG are similar, because 2 sides are pro-
. _portional and the included angles equal.
(5) Therefore angles GO’C’ and GHC are equal, also
(6) Angles GO’B’ and GHB are equal Why?
(7) Therefore O’C’ is parallel to CF which is perpendicular to 4B,
and
(8) O’B’ is parallel to BE which is perpendicular to AC.
(9) Therefore 0’ is the circumcenter and coincides with O. Why?
(10) Consequently OG = 14 GH = 14 OH.
(11) The perpendicular bisectors of lines B’E and C’F will both bisect
OH and therefore must intersect at the midpoint of OH. Why?
(12) But B’E and C’F are chords on the nine-point circle and there-
fore the midpoint of OH is the center of the nine-peint circle,
orN.
(13) Therefore (a) HNGO is a straight line,
(b) OG = 14 OH, and
(c) ON =1, OH
Note: This line, HNGO, is called Euler’s lme

->\_
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3. EXERCISES FOLLOWING THE THEOREMS ON THE NINE-POINT
CIRCLE AND EULER’S LINE

Construct a given line OH and lay off OG = 15 OH and ON = 1,

OH. Then construct the rest of the triangle having given also 04

and GA4. .

State other conditions connected with the five notable points of a

triangle which determine the triangle,

Prove triangles POR and A’B’C’ congruent. /

Prove that the nine-point circle bisects any line from the ortho-

center to any point on the circumcircle.

The Theorem of Feuerbach. The nine-point circle of a triangle is

tangent to the inscribed circle and to each of the escribed circles.
Note: This is a difficult theorem to ‘prove and is one of the

famous theorems of geometry. It was discovered by Feuerbach in

1822 and since then by Steiner and many others. There are several

proofs. See Johnston: Modern Geometry, pp. 200-205.

Draw a large scalene triangle, determine points G and O, from

them determine ¥ and H. Also determine 7 and draw the incircle,,

circumcircle, nine-point circle and the three excircles., The relation-
ships stated in exercises 223, 224, 225 should be evident.
The circumcircle bisects each of the six lines joining the points
LIL,1, I, (I, is the center of the excircle tangent to BC, etc.).
If from a point P, on the circumcircle, perpendiculars PX, PY, PZ
be drawn to the sides of triangle ABC, then X, ¥, and Z are col-
linear.

Note: The line X¥Z is called the Simson Line, named after
Robert Siinson, Glasgow, who first discovered it.,
Show that the relationships described in thie nine-point circle theo-
rem and Euler’s line are “continuous”.
Show that the relationships described in the exercise above on
“Simson’s Line” are continuous. .

IV. CoaxaL Circrzs

Definitions. While the previous theorems have involved some new terms
and relationships, they have been slightly familiar. The theorem and
the definitions of this section open up a whole new field of geometry.

. The ideas are quite new and unique to students familiar with only high-

school geometry. They furnish, therefore, excellent leammg and teach-
ing experience in geometry, and serve as a climax for the professionaliza-

A
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. tion of geometry through the application of the heuristic pattern to the
subject-matter to be learned. Several of the new terms will need to be
defined.

1. The power (p) of @ point P with respect to a circle is equal to the
square of the tangent from P io the circle. If OP is drawn from
the center O to an external point P, aud OT to the point of tan-
gency, it is evident that p = ¢2 = (OP)* —r°. .

The definition given above, while simple, is not quite complete
It holds true only for points outside of or on the circle. However,
if p be defined more completely as (OP)? — 72, then the power of ‘
p will be negative when OP is less than r, zero when OP equals 7,
and positive when OP is greater than r. Also every point P has a
power with respect to a given circle and that power is constant.

If the point P is within the cirdde (OP)? — r* is negative. A
little study of a circle will reveal that again the power may be repre-
sented by a definite line segment. If a chord CD is drawn perpen-
dicular to OP at P then r* — (OP)? = (OC)2 or OP* — r* =
—(0C)? = — (1 chord)?. Therefore if P is on the circle, its power
is zero; if P is outside of the circle, p = #; if P is within the circle,

= —(14 chord)?; but always p = (OP)? — 1%

2. The minimum chord (m) of P is a chord of a circle through an
interior point P perpendicular to a diameter through P. As its name
implies it is the shortest chord through P, and being perpendicular
to a diameter is bisected by P. The power of P within the circle
can now be stated.as P = —(m)?2, where m is the minimum
chord through P, just as the power of P outside the circle can be
stated as p = ¢?, where ¢ is the tangent to the circle from P.

3. The radical axis of two circles is the locus of a point P whose powers
with respect to the two circles are equal.

4. The radical center of three circles is the locus of a point P whose
powers with respect to the three circles are equal.

5. The common secant of two intersecting circles is a secant passing
through their points of intersection. This corresponds to the term
common chord, and of course really is a common chord extended.

1. THEOREM ON RADICAL AXIS (38)
APPROACH to some generalization concerning the locus of a point P
whose “powet”’ with respect to two circles is the same:
1. Conétruct a circlz viith center C, radius 7, and a tangent PA, and
t;le radius to the point of tangency, AC.
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2. Construct several tangents to the circle, with the same given length
k. ,

3. What is the length of PC? Is it the same for every tangent with
the given length £ and on the same circle?

4. What then is the locus of point P whose power with respect to a
given circle is constanf. Show that (CP)* = k2 4+ r2,

5. Construct a second circle of different size not intersecting the first
one. Construct the locus of point P’ whose power with respect
to, the second circle C” is equal to the constant k. Show that
(C'P)* = k2 -+ (r')2.

" 6. Suppose these loci intersect in 2 points, then each of the two

. boints of intersection h2 the same- power with respect to each
circle. Call the points P and Q, and draw-liné PQ. PQ seems to
be perpendicular to the line of centers. Is it? Prove it. Call the
point where PQ cuts CC’, 4. Find AC and AC”. *

7. Take some other point on PQ and try to prove that it has equal
powers with respect to the two circles.

8. Take any other power %’ and find its locus with respect to the
two circles. Show that if the loci intersect at all that the line
connecting their points of intersection coincides with PQ since it
is P‘erpendicular to CC’ at 4. )

9. e two intersecting circles and find the locus of a point P whose
powers with respect to the two circles are equal.

10. It seems to be the common secant.
7}1. State this apparently true fact as a theorem to be proved.
H

! 3 . . - - .
EOREM: The radical axis of two intersecting circles is their common
/ secant. / )
, .
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HvyroTHESIS: Two circles intersecting at 4 and B with a variable point
P having p = ¢2 for each circle.

ConcruslioN: The radical axis, which is the locus P, is the secant through
A and B.

ANALysIS:

(1) Every point on the secant AB must have equal powers, and

(2) Every point having equal powers with respect to the two circle.
must be on the secant 4B. _

(3) ¢t = ¢’ if they are parts of congruent triangles, or if any one of
several sets of conditions is true. However, since both tangen

" have a secant from P, that fact suggests that t* = (PA) (PB)
and ¢ = ¥ if (¢’)? also = (P4) (PB), which is clearly true.

(4) Similarly m = m’ if r* — (CP’)? = (r)* — (C'P’)? or if
m? = (AP’) (P’B) = (=)2 Cleatly this last statement is true
because AB is a common chord for both circles.

(5) Then any point P such that ¢ = ¢ will lie on 4B or AB extended
if the contradictory assumption can be shown to be false, or if
the conditions in (3) and (4) above can be shown to be neces-
sary as well as sufficient.

Proor A:

(1) Assume P to be a point on the secant outside the circles and draw \
tangents PT' and PT.

(2) (PT’)* = (PA) (PB) = (PT)* Why? ‘

(3) Therefore PT = PT". \ -

. (4) Therefore every external point of AB has the same power with \
respect to both circles. \

(S) For A and B the powers are both zero.

(6) For points between 4 and B, (Y, m)? = (P’A) (P'B) = (Y, m')?
since if two chords intersect the product of the segments of one -

, equals the product of the segments of the other.
/ (7) Therefore (Y4m)* = (Y,m’)? and every point between 4 and B

J———

has the same power with respect t6 both circles.
i (8) Therefore all points on secant 4B are on the locus,
Proor B:
(1) Using the indirect method assume that some point P’-not on /
! AB or AB extended has equal power with respect to both circles.
(2) Draw the tangents or minimum chords. P
(3) Then t2 = (P’A’) (P'B’) = (#')? for these tangents or half-
chords.

-
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(4): Then these two' circles would have a second common- secant
+ P’4’B’, which is impossible. ) ;
(5) Therefore all points of the locus are on the secant 4B. ;/

2. EXERCISES FOLLOWING: THEOREM 38

231. The radical center of three intersecting circles is the intersection
of their common secants. First take the simple case where the
centers are not collinear and where two circles do not intersect
but the third intersects both the others. Then vary the intersec-

+ tions and relative positions and see what happens to the radical
center. What if the centera are collinear? What if the circles are
‘tangent? Concentric?

. Find the radical center of three non-intersecting circles.

. The radical axis of two non-intersecting, non-concentric circles is
a straight’line perpendicular to their line of centers.

Note: Show that the perpendicularity of these lines is unaffected
as the distance between the centers increases up to r + 7, and
therefore is constant regardless of the distance between centers.

. If two lines AB and CD meet at P so that (AP) (BP) = (CP)
(DP) then 4, B, C, and D are concyclic (lie on the same circle).

. What is the radical axis of two circles tangent externally; tangent
internally; one within the other, yet not concentric; two concentric
circles? Apply the principle of Continuity to this situation. 7

", 3. PROPOSITION 39 (A CONSTRUCTION)

There are several important theorems relative to coaxa) circles, con-
jugate coaxal circles and their orthogonal relationships, Only two will
be gi.ven here, one, a construction and one, a theorem.

DEFINITIONS: Orthogonal circles are circles whlch intersect so that
‘the tangents to the two circles at the points of i tersection are per-
pendicular, /‘

Coaxal circles are circles so arranged that any pair of circles has
the same radical axis. For example, all circles with a common se-
cant form a coaxal system whose radical axis is that secant. In
other words (PC)* — r* = p = k for each circle. What would be
true of a system of circles all tangent to a line at the same point?

PropLEM: Construct a system of non-intersecting coaxal circles.
CoNSTRUCTION:
(1). Sincg the line of centers is perpendicular to the radical axis their
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: _ point of intersection, O, provxdos a value-of 2 which must be the
. 1. same for-each pair of circles..
) \(2) Draw two:perpendicular lines. .
(3) Takeaseries ‘of values for radii of circles such as g, b, ¢, d,...t00
(4) ‘Také some constant valué for p = &2, p
“(5) Compute 04, OB, OC, etc. from \
p=r= ,(OA)"-a’ = (OB)’— = (0C)—ct=....
jor
(04 =Fk + a, (OB)2 =k +b%and (OC)* =k + 2 .
(6) 04, OB, OC are the distances from O to the centers of each of |
' the coaxal circles whose ‘radii are a, b, ¢, respectively. : N
(7) What v_vqpld happenifr = O? If r = %2 If r = 2k?

‘\.

[

A |

(1) Each paigof circles has the same radical axis by construction and
‘therefore by definition-théy form a coaxal system. .

, (2) When-r- = 0, the circle is a point or sometimes called a limiting \
point, and OX = £ or in other words the tangert coincides with

the lire of centers. b

© :

4. THEOREM 40 ( h

A circle whose diameter is the line segment joining the limiting poiats
of a coaxal system of non-intersecting cxrcles is orthogonal to, each
circle of the system.* ! /
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;HYPomESIs To be stated by thé student
Concrusion: To be stated by the student.
ANALYSIS: - " \

(1) What ig necessary in order to prove circles orthogonal?
(Z) Is a tangent perp'.“lxcular to a radius drawn to the point of _
contact?.

15 (3) Referring to the figure of theorem 39 how long-is each tangent

from-O to the circles-of the coa.xal system? What is the radius
of the circle passing through- the limiting points? Will’ the circle
with radius 2 then go through the pomts of tangency?

PROOF Left to the student \

* (Use the figure of proposition 39 from which the theorem wall\y'is suggested.)

~ -

5 EXERCISES FOLLOWING THEOREM 40

241. Construct a system of coa.xal circles with a common secant for a
radxcal ax:s.

242. The same with a common tangent for a radical axis. /
~ 243..A circle orthogonal to two fixed circles is orthogonal to eachi Gircle

coaxal with them.
Note Why is its center on their radxcal axis? Why is its radius,
eaual to their- tangents from the center?
244. The circles orthogonal to two cxrclos constitute a coaxal system.
245. Two given circles determine two. coaxal systems, one is composed of
allcircles coaxal with them, the other, of all circles orthogonal to
them.
246: Show how to construct a circle orthogonal to another circle. To
. each of two given circles. To each of three given circles.

V. SUMMARY STATEMENT OF PURPOSE AND CONTENT \
OF CHAPTER vI-

The objective of this chapter has been to extend the work of Chapter
IV and to provide a hmlted experience with a few of the theorems of
modern geometry which use new concepts and relationships. This was
done’ sothat the student might encounter learning:and teaching diffi-
culties as a college student compa:able to those of high- -school geometry
for a high-school student. No attempt has been made to make this ex-
haustive from the standpoint of geometry, although the theorems have

been selected with care.
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For further work of this nature specxal reference is given to the follow-

- ing books in order of their probable usefulness.

(1), Johnson, R. A. Modern Geometry. Houghton, Mifflin Co., 1929

(2) Durell; C. V. Modern Geometry. Macmillan and Co., 1926

(3) Al(sh;lle;-Courg N. College Geometry. Johnson Pubhshmg Co.
Richmond, Virginia, 1925 )

(4) -Godfrey, C.and Siddons, A. W. Modérn Geometry. Cambndge
Uhiversity Press, 1923 )

(5)- Peterson, Julius. Methods and-Theories of Geometrical Construc-
- ‘tions. G. E. Stechert Co.,-New York, 1923

(6) Forder, H, G. Fozmdahons of Euchdean GeOmetry Cambridge
~Un1versxty Press, 1027.

&

4

.
'-hf..}.l
»
e
-~ -




PR

CHAPTER VII

SUMMARY AND CONCLUSIONS

It I{as been the purpose of this study to present-a detailed outline of

the subject-matter of high-school demonstrative geometry in"such a- “ay
as to-provide professional training - sxmultaneously with a-mastery of
mathematical contént. This has been done through presenting the sub-
Ject-matter of geometry by means-of the technique of teaching which
this study recommends, as peculiarly fitted for. geometry.

In the solution of this problem many other-problems have presented
themselves. If the function of geometry-is. merely to provide informa-
tion about space relationships and a little practice in mechanical draw-

‘ing, then its technique of teaching would be determined. If, on the other

hand, geometry.is conceded to be a course in the science of reasoning,
then the methods of teaching it would be modified to achieve this aim.
Because-of the simple and coficrete nature of -geometry -concepts, be-
cause of the clear-cut relation between its coriclusions and the preémises
upon which these conclusions are based, and because of the unique history
of the s‘ub;ect as a science of reasoning, it has been concluded. for this
study that the function of demonstrative geometry in the high school
should ‘be only secondarily informational and training in making con-
structions, and primarily a course for providing experience with the
nature, method, and power of deductive reasoning. In Chapter II, Sec-
tion II, this function of geometry has been presented and defended.

Tt geometry is to be taught as a science of reasoning in which the place
of definitions, postulates, premises, and the method of proof are to have a
conspicuous part, then this function will largely determine the philoscohy
and technique of teaching. On this basis the interrelationship between in-
ductive and deductive thinking should be kept constantly prominent, and

the analytic method of discovering the proof for a proposition as well as .

the precise synthetic proof should receive major consideration. A tech-
nique of teaching, called heuristic teaching, which gives proper recogni-
tion to these four complementary methods of reasoning has been advo-
cated in this study as the ideal for geometry teaching. In Chapter 111
this heuristic techmque of teaching has been presented.

. 190
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Since in any course for training geometry teachers the time is greatly
‘limited, it.was. deemed impossible to outhne in_an appropriate .profes-
s1onal setting t the entife two hundred or more theorems of modern plane
and solid géometry. Some selection had to be made, and. was finally made
by means of a unique plan which gave due recognition to.sequence of
-theorems and to fhe major plan of geometry as a-science of reasoning.
The theorems outlined. by the National Committee and supplemented by
the:College- Entrance. Examination Board were all proved and the use
made of theorems in the proof of later theorems noted. On the basis-of
this later usage criterion the “Essential. ‘Theorems of Plane and Solid
Geometry” were selected. This list is compnsed of ten constructxons,
twenty theorems of plane geometry, and twelve theorems of solid geome-

. try. Such-a minimum list of important theorems was considered to be

sufficient to serve the.dual purpose of providing a re-view from a pro-
fessional point of view of the-essential content of high-school geometry,
and also of providing opportunity for applying and establishing the ideal
tecnique of teaching geometry. In Chapter 1V the “Essential Theorems”
of p’ane and solid’ geometry have been outlined, and in Chapter I the
method of selectmn has been described. -

~Since merely high-school geometry materials seemed inadequate to
prov1de as complete a knowledge of geometry and its methods as a
geometry teacher should have, it was deemed necessary to provide ad-
ditiopal and more difficult problems. A more detailed presentation of the
analytic méthod with many difficult problems for its application, and
also a more detailed presentation of the powerful technique of indirect

-proof with an abundance of carefully selected problems for pract1ce in L »

its use have both been presented in Chapter V. Along with these major
ideas have.also been presented some interesting facts concerning con-
tinuity, converses, incommensurables, and the structure of geometry.

_ Finally, as a climax for this professionalized-subject-matter project,
a few important theorems from modern college geometry, involving some
new concepts and relationships, have been introduced and proved by,
means of the heuristic technique. This material in its professional set-
ting has been placed in Chapter VI, the ﬁ/nal chapter.

In Chapter IT, besides the discussion of the function of geometry, there
has been included a brief history of geometry as a science and as a school
.subject, and ‘also a presentation of “Some Settled and Some Unsettied
Difficulties”. Here has been included such topics as the foundations of
geometry, superposition, the postulation of the congruence theorems,
hypothetical constructions, and sequence. The outline of theorems pré-
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sented in Chapter IV & based on the postulation of the congruence
theorems, yet such postulation is not necessary. If these three theorems
.. are proved-in the tradmonal way they must be added to the list of “Es-
séntial Theorems” ‘given in Chapter 1V.

The statement of the problem to be solved and the objectives of-the
study have- ‘been presented in Chapter I. These abjectives determine the
content of ‘the other chapters. In general the _problem has been-to out-
line the training, both in subject-matter and- method for a high-school.
teacher of plane and solid demonstrative geometry. This outline consists
of a-pattern of teaching estabhshed ;by applying that pattern to the .
materials of a minimum list of theorems, to a liberal supply of difficult
original exercises, and to a few difficult and new theorems of- college
geometry. Some of the matetial is necessanly subjective in nature, yet
the sequential content.has been objectively determined, and even the
ongmal exercises must of necessity be objectlvelg placed in-the correct
sequence. —TTT T ‘

As-training for high-school teachers the material outlined in Chapters
11, 111, and IV should be an irreducible minimum, Chapters V and VI
add much valuable experience which should give a ‘student a 'teasonably
excellent professional preparatxon for teaching geometry in the hlgh
school.
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