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Mathematics Education Reports

Mathematics Education Reports are being developed tc disseminat.
informaéion concerning mathematics educatién documents analyzed at
the ERIC Information Analysis Center for Science, Mathematics, ana
Environmental Education. These repérts fall into three broad
categories, ‘Resecarch reviews summarfze and analyze recent research
in specific areas of mathematics educacion: Resource guides identify
and analyze materials and references for use by mathematics teachers
at all ievels, Special bibliographies announce the availability of
documents and review the literature in selected interest areas of
mathematics educagion. Reports in each of t..ese categories may also
be targeted for specific sub-populations of the mathematics education
comunity. Priorities for the development of future Mathematics
Education Reports are established by the advisory board of the Center,
in cooperation with the Natfonal Council of Teachers of Mathematics,
the Special Interest Group for Research in Mathematics Education, the
Conference Board of the Mathematical Sciences, and other professional

groups in mathematics education. Individual comments on past Reports

and suggestions for future Reports are always welcomed by the .d.ior,

Jon L. Higgins
Editor

This publication was prepared pu.-suant to 2 contract with the
National Institute of Education, U.S. Department of Health, Education
and Welfare. Contractors undertaking such projects under Govermment
sponsorship are encouraged to express freely their judgment in

professional and technical matters. Points of view or opinfons do not,
therefore, necessarily represent official National Institute of Education

position or policy.
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Introduction

The articles k& this bock are based on lectures which were given at
a two-day sympesium, "Cognitive Psychology and the Mathematics Laboratoryp'
that was held as part of the 1973 dedication year ceremonies for North-
western University's new School of Education buflding. The symposium was
jointly sponsored by Northwestern's Mathematics Department, School of
Education, and the Center for the Teaching Professions; and (in spite of

. the worst snow fall of the year) the symposium was attended by more than

two hundred mathematics educators from throughbut. the country.

Rationale:

The rationale for the sympos{um grew out of discussinns that were
generated during a conference that was held at Columbia Universtty in 1971
(ref., M.F. Rosskopf, L.P. Steffe, and S, Taback's Piagetian Cognitive~
Development Research and Mathematical Education). Continued correspondences
between various participants in the Columbia cunference indicated a growing
concern about the following issues.

s 1) While mathematics laboratories are gaining in fad appeal, precise mean-

ing for such an instructional technique has remained only locsely and ambi-
guously defined. Llementary or junior high school teachers whc have attempted
to use such a teaching stracegy have typically been forced to rely on a Set

of "rule of thumb" slogans, none of which are valid in all learning situa-
tions. "Concrete understanding before abstract” "intui*ive understanding
before formalized"; "use activities, then symbols "use discovery rarher

than reception methods'; each of these slogans refer to distinct instructional
variables which can occosionally specify contradictory approaches to teaching
if thelr range of appropriateness is not qualified and coordinated by at

least an embryonic theory of laboratory i{nstruction.

2) Several cognitive theories (e.g., Plaget's) seem to offer at least
a framework for a theory of instruction that could be used to give direc-
tion to the laboratory movement. However, the trend ia education has
typically been to use cog"itive psycnology to help Justify preconceived
instructional biases rather than to lock at a theory in order to derive
a consistent set of implications. Consequently, when a method of instruc-
tion is not effective in certain situations, the theory may be unjustifiably
discredited (or rejected) rather tnan being modified or extended to cope with
the new difficulties.

The above two problems ar« certafnly not new to the history of curriculum
change. In fact, if the name "Piaget' is replaced by '"Dewey,'" most senior
mathematics educators will be able to point out str'king similarities between
the "activity curriculum' movement of the 1920'e and the "mathematics
laboratory'" movement of the 1970's. However, this cyclic history of curiiculum
change (i.e., enthusiastic adoption, followed by disillusionment, followed
by rejection) indicates that theory build:ng has not really been taken
seriously by mathematics educators.
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"Theory Building"-vs-"Theory Borrowing":

Perhaps it 1s unrealistic to continue to search for "outside'" theories
that can be "lifted" (without- modification) and used in mathematics education.
Perhaps the emphasis should shift from "theory borrouing" td "theory building.'
One of the main benefits to be derived from theory building is that the theory
seldom has to be completely rejected when conflicts are detected or uhen
difficulties occur.

In spite of the doctoral dissertation experiences that many mathematics
educatcrs have endured, theory building does not necessarily have to conjure
up images of dull, "ivory tower'" activities that make no real difference
anyway. For a beginning, theory building can simply involve organizing
a point of view that can form a basis for communication with other mathe-
matics educators. In this way, individuals can profit by (and build on)
the work of others. However, in order to avoid obvious errors and inconsis-
tencies, theory building inevitably attempts to destribe the range of
applicability of its major principles, and to reconcile major conflicts
within 1ts point of view. Consequently, when difficulties arise, a theory
should be more than a point of view that 1is simply accepted or rejected;
it should be an explanatory 'model" that can (and must) be gradually modi-
fied and reotganized to deal with progressively more complex situations.

While the history of science is filled with examples to illustrate the
power of theory building, many mathematics educators would point out that
mathematics education 1s more of a profession than a scientific discipline,
and that "the best practice of the best practitioners is still better than -
the best theories of the best thecrists." However, this observation does
not mean that theory building could not be helpful, it simply reemphasizes
the point that theory building in mathematics education is in a very primitive
state. Certainly no currently available psychological theories (including
Piaget's) 1s ready for wholesale adoption by mathematics educators. In fact,
it seems unlikely that a lo-=ting theory will ever become available which can
be adopted (withou. modifiéauion) by mathematics Tcs education. Even if a
particular theory seems to be especially relevant to the acquisition of
mathematical concepts, the mark ci a useful theory is measured as much
by the questions it generates as by the questions it answers. For this
reason, every theory carries with it the seeds of its own destruction which
soon require it to be modified and incorporated into a more ccmprehensive
theory. But, contindous modification in mathematics education®cannot take
place by continuously borrowing from outside mathematics education.

The recent bvom in cognitive research has produced information about
t* ¢ development of mathematical concepts which was simply not available to
cyrriculum designers even ten years ago. The gquestion 1s whether the mcdern
laboratory movement can organize this info-mation into a theoretical point
of view which will help it cope with some of the major problems that contributed
to the downfall of its "activity curriculun" prototype of the 1920's.

Q .
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The Issues: ®

The purpose of this book (and the‘symposfum on which it was based),
was to draw together a series of articles by some of the foremost authorities
concerning the relationship between mathematics laboratories and cognitive
psychology. An attempt was made to focus on igssues which, have been neglected
in'the laboratory movement. These issues and problem areas include:
applications of mathematical ideas, concrete embodiments of mathematical
ideas, computer assisted laboratory activitles, clinical diagnosis of
student errors, teacher training (using laboratory techniques), and directions
for future research.

It is the hope of the authors and editor that the articles in this
book will indicate some crucial problems and stimulate some useful ideas
which may contribute to the success of the mathematics laboratory movement
and to closer ties petween cognitive psychology and mathematics education.

% .

4 Richard Lesh
Fditor




An Overview of the Book -

Richard Lesh
Northwestern University

Chapter 1: Discovering Psychological Principlee for Mathematics

snstruction,

Author: Professor Charles Smock has been associated with the Piagetian
school of cognitive psychology, and 1is currently the director of the
"Mathemagenic Activities Program-Follow Through'" at the University of Georgia.
He has frequently worked with mathematics educators in the development of
instructional materials, and has conducted research concerning the development
of logical-mathematical concepts,

Tepic: The question‘ﬁf how children learn cannot be neglected when
considering the question of how they should be taunght, The way that a
child organizes a set of mathematical ideas may, or may not, correspond to
the way a textbook or teacher organizes them. Beginning with the two major
issues that constituted the ratiorale for Northwestern's symposium, Professor
Smcck isolates important cognitive variables having to do with the way
children organize mathematical ideas, and he links these cognitive variables
to instructional variables which are basic to a laboratory form of instruction,

Chapter 2: Two Special Aspects of Math labs and Individualization -

Papert's Projects and Plagetian TInterviews.

Author: Professor Robert Davis is best kaown to mathematics educators
as the founder and director of the Madison Project. The Madiscn Project has
produced curriculum materials emphasizing the use of disccvery exercises and
concrete materlals., Professor Davis 18 currently the director of the i
University of Illinois Curriculum Laboratories. In order to apprecilate the
perspective from which Davis' paper was wrirten, it is important to mention
that tMe curriculum laboratories are closely associated with the University
of Illinols Plato Project which emphasizes flexible and creative uses of the
computer in instruction.

Top.c: Professor Davis' paper actually considers two separate but
related issues. The first has to do with the diagnosis of student errors
through "Plagetian" clinical interviews; and the second has to do with
"computer assisted mathematics laboratories' which has been devised by
Seymore Papért at M.I,T.

One of the great possibilities created by the University of Illinois'
Plato Project was that detailed histories of formal mathematics instruction
could be stored for large numbers of individual students. Such infermation
could furnish exhaustive data about the ability of students to master a
glven ccncept depending on whether or not specific "prerequisite" concepts
had’ already been Introduced. Given this possibility, and Professor Davis'
close affiliation with the Plato Project, it becomes even more impressive

O
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to notice that he ha. become an enthusiastic supporter of the "clinical
interview" technique of diagnosing studenta' difficulties. Apparently
pavis has concluded that such clinical techniques can furnish important
information to supplement the kind of information which can be gathered
by Plato.

, To further reinforce the potential ties between computers and mathe-
matics laboratories, Davis argues by analogy: "If a persbn really wants to
learn French, going to France is hetier than taking a course; so, if a
student wants to learn math, it may be best to go to 'mathematics land’

(a place where mathematics is created and where communication takes place

in 'mathematics')." As an example of one such mathenatics land, Davis sites
Seymore Paper.'s "Turtle Lab" (a computer assisted mathematics laboratory).
The turtle lab attempts to demonstrate that a computer (or "turtle") is a
perfect playmdte to accompany the student through mathematics land since

it is a creature that only communicates in "mathematics." .

Chapter 3: The Role of Applications in Early Mathematical Learning

Author: Professor Max Bell is wgll known for his work with mathematical
. applications, mathematics laboratories, and innovative teacher training
programs. He 1s currently the Chairman of{ the Elementary Education Department
of the University of Chicago's School of Education, N

. Topic: Giving students real world experiences in order to learn

Useful mathematical concepts hag usually been one aspect of laboratory
approaches to teaching. A key problem with regard to the emphasis of mathe-
matical applications in the curriculum can be stated as follows, If it 1is
trué that one must know a mathematical concept before one can apply 1t, then
due to lack of time and training, teachers may often have to neglsct applica-
tions in order to have time to simpiy "teach' the underlying concepts. On
the other hand, learning to apply the concept may be a critical aspect 1n

the ipitial acquisition of many mathematical céncepts. Professor Bell
distinguishes between "applications" and the kind of concrete "embodiments"
that Dienes discusses, and he argues that even though éducators gre beginning
to recognize the value of concrete embodiments, applications are still largely
neglected. He gqes on to clarify the role that mathematical applications
might be able to play in motivating students and fostering the accuisition of
process objectives (organizing deta, formulat ing hypotheses, estimating
answers, etc.).

pu
Chapter 4: Abstraction and GCeneralization: Examples Using Finite
Geometries.
- -~
- Author: Professor ;olgan Dienes is director of the Psycho-Mathematics

Research Center at the University of Sherbrooke, Canads. Me has worked with
Jerome Bruner at the Center for Cognitive Studies at Karvard University, and
ho has directed major curriculum projecty in Canada and Australia, and has been
- closely affiliated with the current mathematics education movement in Englanda

-~
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Topic: Professor Dienes has formulated a theoretical pofnt pf view
which 1s a significant extension of Plaget's theory. Dienes' "ldarning
cycles" model of mathematics instruction uses concrete "embodiments" and
games to help children learn mathematical concepts., However, even though
some of*Dienes' principles of instruction (e.g., the multiple embod.ment
principle) have gained recognition and general acceptance, other ~aspects of
his theory have been largely ignored by mathematics educators.

In this book,Professor Dienes uses examples about finite geoﬁQtries
to illustrate sbme of the processes which he believes are involved in the
abstraction and generalization of mathématical ideas.

P
,

Chapter 5: An Application of Plaget-Cognitive Developmental Researsh

-

in Mathematical Eéucation Research.

Author: Professor Leslie Steffe has been one of the foremost mathematics
educators who has attempted to interpret and investigate the meaning of
Piaget's theory for mathematics instruction. Professor Steffe is asgociated
with the University of Georgia.

-~

Topic: In order to analyze the development of logical-msthematical
thkinking in children, Plaget has concentrated his efforts on children in the
5-7 and 10-12 year old age ranges. Consequently, Piaget's research has
focused on the cognitive processes used by first graders (i.e., groupings)
and sixth graders (i.,e,, INCR groups), while neglecting children at inter-
mediate grade levels. For this reason, and since Plaget lias avoided mathematicsl
ideas that are typically taught in school, it is only possible to make relatively
crude Inferences about how children's mathematical thinking gradually changes
from concrete operational mode of thinking to a formal operational mode.”

Professor Steffe argues that certain mathematical strucgfures may be
able to describe the transitional phakes through which elementary school
children must pass, and that th¥se mathematical structures may be even better
models cf children's logical-mathematical thfnking than Piaget's groupings
or INCR groups. If Steffe's hypotheses is correct, this fact could be
tremendously useful tqQ mathematics educators who would like to construct
curriculum materials which are consistent with the "natural” deveiopment of
logical thinking in child-en.

Chqptersgf Future Research in Mathematics Education: The View From

Devefopmental Psychology. //' K

Author: Professor Harry Beilin delivered one of the key addressee at
the 1971 Columbia Conference on "Piagetian Cognitive-Developmental Research
1n Mathematics Educatinn," and 18 7ne of the leading psycholegical authorities
who has attempted to interpret the relevance of developmental psychology ior
mathematics education. 4 .

.
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Presently, Professor Beilin is the editor of the Journal of Experimental
Child Paychology, and is associated with tie educational psychology and
developmental psychology programs at the City University of New York Graduate
center.

Topic: Professor Beilin was assigned the awescme task of describing
the directions that future research must take in order to further establish
the relevance of cognitive psychology (and Plaget's theory in particular)
toward the Jevelopment of mathematics laboratory experiences for children.

Those mathematics educators who have maintained an Interest in problem

solving strategies will be espccially interested in Professor Beilin's
snalysis cf current trends in cognitive research.

Additional Presentation ’

The' conference program contained an additional presentation by Professor
John LeBlanc, director of the Matbematics Education Duevelopment Center,
We regrer that it was not possible to include Professor LeBlanc's paper in
this book. For a description of his presentation, Traininggteachera/ﬁaiqg
Model Techniques, interested readers should write to: Professor John
LeBlanc, Mathematics Education Development Center, 325 South Highland Avenue,
Bibomington, Indiana 47401. ;

I
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Discoverling Psychoiogieal Principles
for Mathematics Instructienl’?

Charles 5. Smock
Univer2ity of Georgla

3

It 16 not that thev can't see the solution -- they car't
see cthe problem.
(Chesterton}

Scienze {8 not juet a cu..iection of laws, a catalogue of unrelated
iacts. It is a creation of the human mind, with ite freely favented
ideas and conuests . . . The only justification for our menzal stryctules
is whether and in what way our theorles form . « « a link with the world
of seuse impressions.

{Einstelin)
»
The drive to leac an intellsctually satisfying life is . . . a product
of long process of education . . . (and) . . . 15 an autocatalytlc aftair,
growing with the practice of 1it.
(Bridgeman)

Currently, either the name Plaget or the term mathematics laboratory
is sure to attract the interest of mathematics educators. While labora-
tories are gaining in fad appeal, precise meaning for guch an instructional
technique has remained only loosely and ambiguously defined. Tearhers who
have attempted to use such a teaching strategy have typically been torced
to rely on a set of "rule of thumb” slogans, none of which has been shown
to be valid in al? learning situations.

"Concrete understanding before abstract;" "Intuitive understanding
before formalization:" "Use activities, then pictures, then symbols;" 'Use
discovery rather than reception methods." All of these slogans refer tc
distinct inetructjonal variables which occaslonally specify contradictory
dpproaches to teaching if their range of appropriateness is not qualified
and coordinated by at least an embryonic theory of laboratory instructions.

N

IThis paper 1s not for duplication or reproduction in any form without
the permiss@on of the author,

2This report 1s based on activities supported (in part) by the
Mathemagenic Activities Program-Follow Through,- C.D. Smock, Director, under
Grant No. OLG~0-8-5224478-4617 (287) Department of .EW, U.S. Office of
Education.
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Mathematics educators appear to have little interest in theory con-
struction and have a restricted view of the role of a matheratics laboratory.
Theory 1is used to justity instructional biases and the laboratory is con-
sidered only an instructional device. Theory construction can help clarify
the different types of roies a laboratory has in mathematics education re-
search and practice. The mathematics laboratory should be a context for
regearck on problems relevant to specific aspects of the instructional pro-
cess (variation of teaching strategies and techniques) and on discovering
those conditfons criti for mathematical learning, and development of
mathematical tninkirg in childrer, as well as fun and games for child and
teacher. If educational researchers expect to accumylate knowledge relevant
to theory based instructional practices, they must have "mathematics”
laboratories.

However, in my opinion, Chesterton's remark is quite appropriate? "It

. 1s not that thep can't see the soiution -- they can't see the problem.” We
have yet to identify the fundamental dirensions of edr.cational and instruc-
tional problems racing the mathematics educator. Key psvchological principles
for zathematics instruction and constructiorn of a theory of instruction can
be realized only after this first step has been achieved: A body of knowledge
now exists in developmental-cognitive psychology that should have considerable
utility for contributing to more refined theorles of and strategies for

S instruction; i.r., for creating better school learning environments. One
approach to t¥es imrediate task, then, is to search for suggestions from
deweiopmental psy<hology that pose relevant problenms for mathematics educators
for developing thevries of mathematics instruction.

There is udo pauctry of cholces of psycholgkical models available fror
whisi t> start the search rerlyne, Bandura, Bower, Scand.ra, Skinrer,

2 -- ang of course Plager. Fach ras proposed a set of ideas (relevant
to a tneory oi ~athematics ins:ruLr-cn) requiring theoretical and empirical
study. The solection of any cne model, nopove~, brings with it ~any hidder
presuppositicns 3nd is deterrdned in nc i1telr patr by cne's own preconceived
notion regarding iuran developrent, learning and eduratinn. AS a Brour
these models represent a virtual we nderland of excitfng 1deas. Each of us
can understand Alice's dilewma tetter as we exvlore their Yantasics (Suppes,
1971).

A theory of 1n:,truc¥’fv‘ﬁ’4‘t begin .ith an adequate theory of learning
and/or cognitive development. NoO longer can We accept that statement as
"sbvious" -- and g0 about the business of geperating a rultitude of methozs
based on unorganized intuitive rules constructed on the basis of inacdejuate
knowledge of the process of cognitive developrent of children. Mathematics
educators need to retura to the bepinning and ask not "row d¢ we teach’”
but rather "how do chiidren learn’”

clent . body of knowledge for tdentifying sore of the fundarenral iss.cs,
constraints, »nd facts associated with the process of generating J thecry
of ratheratics lesrning and fnstructicn, Bur. to imply, and act Aa if,
psychology has become rrlevant to rathemat ics learrinas cnlv 82 (i.v., atter
Piaget), misses a funca~enral ;oint . ut the relation of the sctecce of

M dern developmentai psychology provides a necessary, but not suffs~
i
|
|
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psycholegy to the scuien e of educaticr, ind distorts the history of noth.
On the other hand, / de¢ not want Fiaget's theoryv cf cognitive deveiopmant
abandoned without ¢leavr understanding of why. The historica! pattern in
education ard psyciolegy seeme to be one of epthusiastic adherence to a
relatively novel theory -- with disappointmert and rejection following
close behind. The 2hsence of serious controverslal issues underlying much
of the current vesearch in cognitive developmert, and mathematics learning,
Increases my concern that much that is valuable in Plaget's theory may be
lost. This symposium, perhaps, wii: Frovide ajmere relevant set of issues
abcut which we can disagree than *ave surfa~ed Yo this point.

¥any psychologists, iacluiing myself, consider Piaget's clarificaticn
of the necessary bases of thecrv cunstructicn as irportant as his cognitive
Jdevelopmentai theory per se. Inplicitiy, and explicitiy, Plaget was greatiy
influenced by advances in thecretical physics (Bridgeman, 1929) during the
- 1920's ané 30's. The funaamentzl ispect of relativiey thesry which cannct
be igncred In psychclogi.al thea:izing 1s chat conceptual juagments are
alvays relative to the positicn of the ohserver. Araivsis of knowledge
acquisition requires a Jescripticn of the operaclonal basis of these scqui-
sitiong; 1.e., the mentzl oreraticns of the ‘ndéividual that are associated
with the constructicn and ~aintenonce »f censistent patterns {(structure) of
his contiuually traneforwing reiativns vith the physical and sccial enviren-
cents. Thus, Pidget’s emplacis vn a tonmstrusrivistic theory of knuwledge
(*laget, 1968, 1971 !s iniisgolndb'z fron his interpretation of operatiznism --
that 1s, the need for vperatiznel analveis >f the process cf knowledge acqui~
sition. "Resiity" i{s ccustructed, nut eclinent in rind, man or stimulus, end
applies tc the child anz, :2atrace tc some Interpretsticns fe.g., Stevens,
19355, theorist alike.

The form of epfstemology rvp:cal of Americen cevchulogiets fofr Misahel
1971 has beer najve teallsm, and tuar crizntation nas been quite useful.
¥e ne=c ot abardon ir completely, rur, 't should row be obvicus that cur
eristevnloglcal precenreptfons, whatever they mav te, are part of out vizw
o€ the (wild. Kessen (1768, stotes the ias;e zlearly: “"The child who is
eenfrodted by a stable realits that can be des:ribeg adequately in the lan-
guage ol contenp.rary physics, is a child very different from the one whe i
seen fa:ing phencmenal disorder from vhich he must construct a cohereat wiew
uf reality” fpp. 58-%9).

Arulysis of rogritive learning and. development, then, is always "biased"
by the ract ¢ 2 context of preconceived ideas of reality (i.e., western cul-
ture) and a parti-ular set of concepts or theory and selected data. Plaget's
dpircach td> the +naivsis of the development of childrea's conception of gpace
prrvidec us an excel:ieat axample (Plaget, J. and Inhelder, 8., 1956). The
des:gnation of a cunceprion of space toward whichk the child will develop,
i.e., that conceptior heid by the educated aault, is the critical firse step.
Otc2 the endpoint for this a~velopment nas been Stated, observations and in-
terpreratior of the child's velavior are organized around these specificattons. I

|
|
|
|

Ohget vitinas not congruent witl, and not struciurable in terms cf the speci-
f;2d eadpoint., no matter how ralishle, cannot he considered a relevant part
ot develvpment. This ls not an example of bad scfence or inapprepriate pro-
cedures st réther f1lusivates that conclusicns about the child's cognitive
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Appiratus mav be sased as muck on the construction of reality imposed on him
in the firsr 2lace 35 oa the reliability and generality of the observaticns
we make. Vhnether we ave engaged in Instructlonal practices. or instructional
cesearch, <t theory builcing, there 1s, for each of ue, a set of guiding
propositions that torstituces & “hecry of lezrning and development. These
“fagtasies ' or "frerlv Invented ideas and concepts" provide a particuiar
coheront view of the developing child and of the critical determinants of
the ledrringprocess,,

Tiaget s eristemology, and nls biclogical background, thus predispose
him toward an operatireal and structural analysis of the knowledge acquisi-
tion process 'riaget, 1967; 1968; 1970; 1971). The essentials of his posi-
tion reqQuire only trief review there. Knowledge is defined as invariance
under trarsformation (a most familiar concept to rathematicians). The con-
ctrurrion of invariances in organism-environment relations takes place
through the operation of two corplimentary biclogical adaptation procesSes,
teth of whicn are under thy contccl of the internal self-tegulating mechanism
of equilibration.

One 0f tne two procegses (assimilation) concerns the applicatirs of
eriscing cognitive opatutional systems (structures) to the processing of
enviccrnmertal {senscry) jata, External data or events are incorporated
intc esistiag structures through bcth on-going physical and mental activity.
Such events ard the products of new experlence can be incorporated into the
coga:cive siructure oniy to the extent it is gonsistent with existing
functional structures. = - ¢

Accommoaatior is tie ~omplementary process Whereby adaptation occurs by
integration of existing structures with other functional structures and/or
by differentiation of new structures under confrontation with new experience’

Activities such as play, practicai or symbolic, represent assimilative
activity: whereas memory, ir the sense of invoking past events, and imitation
are accodmodative since only existing structures are brought to bear cn
particular events or set of events. Assimilation is an active constructive
process by which the data from experience are transformed and Integrated
with an already generalized cognitive structure. Accommodative activity, on
the other hand, 15 assoclated with the process whereby application of existing
structures are brought to bear on particular new events or sets of events,
i.e., events or sets of events to which these structures have not been
applied previously.

Too often instructional theory and practice have emphasized assimilation
(i.e., "play") or accommodation (i.e., imitation) activity and neglected the
role of equilibration of these complementary processes for cognitive lesrn-
ing. Appropriate generalization of Pilaget's ideas to instructioral theory
and practice requires consideration of three additional factors assoclated
with Piagdrian theory: 'logic,” operative vs. figurative thought, and
equilibration.,

[Elz:i(:‘ AR
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Operational Structures and "Logic".

Plaget (1970) rece‘tly elaborated his pesition that human beings possess
the same biological structures and functions that, in "exchange" with the com-
mon features of the natural world, generate mental (operational) structures
and functions characteristic of each stage of development. Logical thought,
in the Plagetian sense, then 1s universal and of fundamental importance to
an understanding of development and learning. But, whereas Chomsky maintains
the human mind is “programmed” at birth with cognitive structures (i.e., mental
representation of a universal grammar), Piaget accounts for the universality
and stability of structures across cultures (Plaget, 1967; Goodnow, J., 1962:
Goodnow, J. and Béthon, G., 1966; Greenfield, 1966; Maccoby, M. and Modiano, N.,
1966) in terms of the self-regulation mechanism of equilibration, Thus, Piaget
proposes that the mind at ary point in development (i.e., life) is the unfinished
product of continual self-construction (1971); i.e,, "logical" processes
are generative and not fixed. Structures are not performed, but are self-
regulatory, transformational systems with the functional factcrs in that
construction being the processes of assimilation and accommodation.

Intelligence, the basis for knowledge acquisition, consists, then, of
two aspects: adaptation (with the complementary processes of assimilation-
arcommodation and the self-regulatory mechanism of equilibration) and organi-
zation consisting of sets of mental operations that form the basis for
maintaining invarlance under transformation (i.e., knowledge). It follows
from these considerations that there 1s an inherent logic to development;
i.e., operational systems consist of elements and laws of combiration of
those elements that form a "logical’ closed system. These mental structures
are observable im the actions of the organism in its environment and. further,’
are describable in terms of formal or logico-mathematical structures.
Genetic psychological analysis of these structures is a necessary prerequi-
site to an understanding of thought processes. "No structure without
genesis, no genesis without structure” (Piaget, 1968). During the sensori- ‘
motor period of development, action structures of the individual are re-
vealed 1In practical groups, i.e., the observable coordinated actions of the ‘
individual (Forman, 1973). During the pre-operational period, the child con-
structs representations (figurative structures) which do not have the opera- |
tional property of reversibility. Piaget was able to identify operational \
structure$ with clear mathematical system properties in children between ages |
five and seven. The discovery of a resemblance betwegn the gtructure of the
mental action system (reasoning or thought) and zathematical structures |
(i.e., mathematical groups and lattices) had a profound effect on Plaget's |
thinking. Thought, 1t would appear, has the same, or similar properties, |
as mathematical group structures, both of which are governed by the same |
internal logic.?

i

Jpiaget never has tried to find a mathematical®'wmodel™ to 'fit" the ubserved
facts of behavior; rather the mathematical aspect of ﬁiaggr'n theory is unique
in that he assumes, somewhat a reminescent of Boole's '"taws of thought,” an
identity between the inherent logic’ of thought procezsses and certain formal
mathematical systems that have become "externalized," through induitive
reascning, and gulde the action-patterns of the individual.
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The basic structuralistic approach of Plaget involves finding logical
mathematical systems that describe che thought processes of an individual.
Mathematical Sroup and lattice theory offers algebraic systems (Piaget, 1957;
Flavell, 1963) for describing operational thought and Plaget has tried to
Tuke mgximun advantage of that approach. To review the fundamentals: a -
mathematical group is a system consisting of a set of elements, together
with an operation (law of combination), which yields the following system
properties: (1) when applied to the elements of “the set, the combinatorial
operation will yield only elements of the set; no elemeuts external to the set
can be produced; (2) each set contains a neutral (or identity) element that
when combined with any other element of the set yleld® no change; (3) each
element of the set has an inverse which in combination with any element ylelds
the neutral or identity element; (4) the combinatory operatioa (and 1its inverse)
18 associatiNg; 1.e., [n +m) +p=n+ (m+ p)]. Plaget found it necessary
to generate a "grouping" model with additional properties (i.e., both group
and lattice properties) to describe the concrete operational structures. The
properties of ihese psychological groupings are not derived from the properties
of tﬁings, but from modes of acting upon things. Thus, the elements of psycho-
logical EF8Gps e, themselves, transformations that characterize the indivi-
dual's operations as he acts upon incoming sense data.

The revelationg emerging from relativity theory require a construction-
istic position with respect to the nature of knowledge; 1.e., understanding
of knowledge acquisition requires a description and characterization of the
mental cperations and operational systems applied to the data of experience.
Plaget's emphasis on structural analysis thus makes contact with the epls-
temological implications emerging from relativity theory; the biologists'
emphasis on development as the formation, differentiation and hierarchical .
integration of functional (actiun) structures; and the mathematicians' em-~ s
phasis on formalized systems that permit description of these structures.
The task cf the developmental psychologist is ta describe the nature of action
structures of the child at each point in development and, as much as possible,
to formalize those descriptions in terms of logico-mathematical terms.

The classical "conservation" tasks, if administered appropriately, form
one basis for generating observation of coordinated actions that appear to
reflect such mental operational structures. The available evidence appears
to support the possibility that such operational (mental) structures Yexist"
both in terms of replicability of developmental trends in task solution and
tralaing studies (cf: Beilin, 1971a): At the same time, neither psychologi~ .
cal nor ed:.ational researchers have yet devoted sufficient attention to the
problers of the validity (i.e., {nternal consistency) of the grouping struc-
tureg ‘Clary, 1970; Green, D:, 1971), nor to the role of such Structures in
learning (Berlyne, 1961; Bruce, 1971; Inhelder, B. and Sinclair, H., 1969),
beyond these classical situations.

Only vecently have mathematics educators become interested in Pilaget's
views of fundamental loglco-mathematical relations, such as his ideas about
the logical properties of number and space. Beilin (1971b) points out that
philosophers of science generally have emphasized the desirability of iso-
lating phiiosophical and logical systems from peycho-logical matters. Psy-
chologists, mathematicians and logiclans generally have maintained this
position with respect to Plaget. However, a significant part of his psy-
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chological theory has mathematical and logical content which cannot be
ignored (Leskow, S. and Smock, C.D., 1970; Alonzo, M., 1967) by either
psychological or mathematics learning researchers. Mathematics educators
rightly should be dfrected in part, to the analysis of the logical and mathe-
matical veracity of Plaget's system and to the correspondence between the
charac¢teristics of the psycho-logic systems to those logic structures derived
from purely mathematical analysis. Recent work from Steffe's laboratory
(e.g., Kidder, 1973; Johnson, D., 1971; Lesh, R., 1971; Johnson, H., 1671)
represents an excellent beginning in this direction.

Role of Expgrience and Equilibration -

Experience 1is not a unique factor in development according to Piaget.
Merely being exposed to partdcular experiences is conducive neither to
cognitive activity nor to developmental change. Children may or may rot
make discoveries in the course of play, and watching a laboratory experi-
ment (or conducting one) may or may not help a child acquire a particular
concept, Fquilibration (Langer, J., 1973) 1is the central factor in struc-
tural changes whether the reference is to stage or concept learning. Equili-
4 bration is the process of intrinsic (self) regulation that balances assimi-

latory and acccmmodative processes, rompensates for external and internal

disturbances and makes possible the development of more complex, hie .rchic-
ally integrated operational structures. Disequilibrium occurs as the child
assimilates data from exchanges with the eanvironment into exinting mental
structures. As cognitive structures change to accommodate to the hew in-
formation, equilibrium i8 restored. The equilibration process is one of
auto-regulation ~- both of the transformations of information based on exist-
ing cognitive structures and of changes through accommodation. 1In any case,
the child must be exposed to environmental input that "engages' the func-
tMonal structures; i.e., he must be involved in a personal striving to under=

stand or "acaept" the task as a "problem." .

A basic question for instructional theory and practice is: What are
the processes and conditions that motivate and insure engagement Qr accept-
ance of the problem task by the child? The source of "interest' that promutes
striving for problem solution 18 contingent on assimilative-accommodative
activity but the specifics remain unclarified in Piaget's theory (cf: Mischel,
1972) . What Piaget means by the "need" of structures to function 1s a
“"primitive” factor not unlike the notion of competence 'drive': suggested by
White (1969). Within a structuralist framewcrk -- 1f a structure exists, it
muet function -- cognitive structures appear to have a dimension of openness
that make probable continual sources of disequilibrium from interaction of the
irternal operational and/or figurative structures activated ss well as by
- exchanges involving novel environmental input. In any case, natural or lifelike

contexts seem to provide excellent situations in terms of promoting cognitive
change. Despite lack of specifications, Pilaget 18 quite explicit on his
position: "It 1s not necessary for us to have recourse to separate factors
of motivation in order to explain learning, not because they don't intervene...
but because they are included from the start in the concept of assimilation...
to say that the subject is interested in a certain result or object thue
means that he assimilates it or anticipates an assimilation and to say that

he needs it means that he possesses schemas requiring its utilization'

(Piaget, 1959).
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Cognitive conflict, or the awareness of a momentary disequilibrium,
represents a need to establish consistency (equilibrium) between the existing
schemas and/or novel information and is motivation for cognitive activities.
Both applying an existing schema and elaborating new ones in the course of
development stem from simply the overriding need to make "sense" of‘present
problems by fitting them coherently into schemas "learned" in the course of
solving prjor problems.

The notion that disturbances introduced into the child's systems of
prior schemas lead to. the adoptior of a strategy for informatfon processing
¢ {s the fundamental difference between the equilibration and assoclationistic
theories of learning (Plaget, 1957b). For associationistic tpeories of
learning! "what is learned" depends on what is given from the outside (copy
theory) and the motive that facilitates iearning i8 an inner-state of some
sort of other. Equilibration theory holds, however, that learning is sub-
servient to development; i.e., what i8 learned depends on what the learner
can take from the given by means of the available cognitive structures.
Further, cognitive diséquilibrium (functional need) is what motivates learn-
,ing (i.e., questions of felt lacunae arising from attempts to apply schemas
“to a "given" situation).

. The chiid then will take interest in what generates cognitive conflict;
i.e., in what 18 conceived a8 an anomaly. If the task demands are too novel
as to be unassimilable or so obvious as to require no mental work, the
child will not be motivated.

-

After the period of sensbri—motor development, equilibration becomes a
process of compensating for "virtual" rather than actual disturbances. At
the operational level, intrusions "can be imagined and anticipated by the
subject in the form of the direct operations of the system -- the compensa-
tory activities will also consist of imagining and anticipating the trans-
formations to an inverse sense’ (Plaget, 1967). Further, there need be no
external intrusions in crder for the equilibration process to be activated.

. For example, the acquisition of conservation concepts 1s, in Piaget's view,
"not supported by anything from the point of view of possible measurement or
perception -- it 1s enforced by logical structuring much more than by exper-
ience" (Piaget, 1967). It is the "internal factors of coherence -- the de-
ductive activity of the subje.t himself" that is primary. Equilibratis we
noted earlier, is a response to internal conflict between conceptual sci.mas
rather than a direct response to the character of outside structure factors,
Equilibration is a matter of achieving "accord of thought with itself" in
the service of establishing accord of thought with things.

Unfortunately, little empirical investigation has been oriented to ques-
tions of situational determinants of curiosity (Smock, C.D. and Holt, B.G.,
1962) of children at various steges of development and with different
experiential backgrounds; i.e., what children recognize as problematic, and
. what kinds of Incongruities are sufficlent to motivate change in concepts
and/cr beliefs.

O
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Operative and Figurative Thought

A _onsiderable amoupt of confusion concerning Piagetian theory and its
lmplication for both research and instructional practice derives from a
failure tc consider the figurative and operative aspect of intellectual func-
tioning. In general terws, the distinction 18 between the selection, stor-
age and retrieval, snd the coordination and transformation of information
(Inhelder, et. al., '1966). More specifically, the development of any se-
quence of psychological stages, a lgf?iaget, congists of an interactive
process of equilibrating functional structures of the organism with the
event-structures of the environment. Figurative and operational processes
represent two types of functional structures necessary to account for
knowledge acquisition, development and learning. Figurationl are defined as
those actlon schemata that apprehend, extract and/or reproduce aspects of the
piiysigal and social enviromment. Such action schemata include components of
perception, speech, imagery, and memory. Figurations and associdfed acts are
based on physiLal. as contrasted to logico-mathematical, experience and con-
stitute the "empirical" world; i.e., empirical truth 1s no more than the "r
presentation of past events in memo.,.

Operationg, on the other hand, do not derive from abstractions from ob-
Jects and specific events; rather, operational knowledge is derived by ab-
stractions from coordinated acsdons on those events. Thus, cperations are
those action schemata that construct "logical’ transtormaticns of "states.
Such logical systems of transformations operate elther upon representa:ions
°f events, or on the cognitive system's own logical operations, i.e.,
reflexive operations.

Figurative and operative structures are two parallel streams with their
genetic or developmental origins in the same source (Plaget, 1967, 1968;
Plaget, 1970, 1971) -- the sensori-motor structures. Logical (operational)
stryctures are not generated from the figurative schemata, i.e., not from
perception, memory, etc. Reciprocally, figurative structures do not derive
from operative sc¢hemas but from the representations of past states of events
derived from sical experience. And most importantly, figurative struc-
tures do not defive from each other, but have unique bases in sensori-motor
schema, Imager§{, for example, is a derivative of deferred sensori-motor or
initation (Piaget, 1951; 1952; 1971 and not perception.

The postulation of these quite distinct functional structures 18 one .
of the cornerstones of Plaget's theory of knowledge acquisition and cogni-
tive development (cf: Furth, 1969). Both the source and function of the
structures are theoretically distinct. Operative structures derive from
abstraction from coordinated actions, figurative structures derive from
sensori-motor and perceptual activity. Operative structures produce "logd~
cal" transformations (conservation of invariants) whereas figurative strgc-
tures reproduce sensory-perceptual consequences of environmental configu
tions: The variant operative structures of the intuitive, the concrete, and
the formal levels form the discontinuous sequence of stages of cognitive
development. On the other hand, figurative structures are static and
dependent directlv upon the datas of experience (sensory-perceptual consequences
of stimulation). Thus, Plaget makes the fundamental assumption that all

O
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knowledge acquisition activity is constructive, but the construction of
figural representations is quite a distinct process from that constructive
activity at the operative level,

Logically, there are three possible relarions between the flgurative
«nd operational structures, First, they may be unrelated and, 1f so, as
mentally segregated functional si}uctures, do not set lipits on the func-
tioning and development of each other. Second, psychologlcal phenomena
might be reduced to one of the types of structures. Langer (1969) suggests
that subjective idealists, perhaps, try to reduce psychological phenomena
to assimilatory operations; and there are mauy theorists who try togweduce all
mental phenomena to accommodatory figurations while naive reslists propose
that such processes are figurative; i.e., perception is knowledge (Michotte,
1963; Garner, 1962). Third, and the one propored by Plaget, is that of
partial communication between figurative and operative structure within the
constraints of assimilation and accommodation processes. o

The relations, and the potentialgform of interaction are schematically
presented in Figure 1 below.

Figure 1

Relations of Two Invaricnt Processes
of Adaptation and_Two Types of Cognitive Stru.tures
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Langer (1969) has examined the organizational and deVelopmental (i.e.,
transitional) irpact of accommodatory figurations on assimilat®ry operations
(See B, Figure 1); i.e., how does the child mentally extract and/or represent
empirical information about physical and social objects and the consequences
of that empirical activity for the construction of logical concepts. Imita-
tion of &n observed event, comparison of one's predictions with! the outcome
of a physical deformation, comparison of observation or appearance with the
w3y things really are, represent different modes of introducing conflict and
cognitive-structural change. Generally, his findings are confirmatory, but
not definitive with respect to the Piagetian hypotheses. In any case, if
the development of each type of functional structure has implications for, -
but not direct causal effects upon, the functional structure and development
of the other, current paradigms for the study of learning mathematical con- '
cepts will require considerable modificatiog. The work of the Geneva group
mentioned earlier concerning, for example, begory (see A, Figure 1) and Langer's
(1969b) analysis of the impact of acconmodatory figurations (i.e., imitation, *
etc.) on assimilatory operations represents beginnj g8 in this direction,

Analysis of learning, in the context of Piagetian thecry, poses require-
ments for much more detailed empirical analysis than has been generally
recognized. On the one hand, researchers attempting to assimilate Piaget to
their own conceptual structures concentrate on experimental procedures whereby
the subject is required only to remember event contingencies {e.g., response~
reward associations or "a" follows "b" Zollows "c"). Such procedures certainly
produce change in "behavior" (e.g., Gellman, 1969; Mehler and Bever, 1967;
Bever and Mehler, 1968); however, failure on transfer tasks, and a lack of
persistence of task solution over time indicates that a figurative process
underlies the change in performance. On the other hand, the aCcommodatqgg
(i.e., those more favorable tcward Piaget's theory) often fail to generate
experimental paradigms that adequately differentiate between the figurative
and operational knowledge (Wallach, L. and Sprott, 1964) or assume that
"external disparity'" (appearance vs, "reality") is sufficient to establish
disequilibrium (conflict) between logical necessity (derived from the opera-
tional structures) and perceptual pregnance (cf: Bruner, 1966). For example,
situations designed tc establish disparity between the child's predictive
Judgment of the outcome of a transformation and his cbservation of the
dctual outcome may, in fact, generate little or no cognitive conflict.
Certainly, 2 most parsimonious explandfion of many negative findings in
training studies is that such disparity is external to the child's logical
operational system.

Implications for Learning and Instruction

In some form or other, the voals of American educators have always been
stated in terms of "optimizing" the intellectual, social, etc., developrent
of individual children; a vague statement, obviously, and subject to a variety
of interpretations. Whatever imperatives that goal implfes, the educational
and instructional processes must be based upor an understanding of the nature
of psychological development of children. Whether we want to produce individuals
who will strive to maintain the status quo; individuals who desire and accept
change; people content to be technologists (i.e., skilled labor); or problem
solvers; it is necessary to understand the basic processes of child develop-

O
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ment and the conditions that permit
1 may use cu rent jargon).

quality centrol of the product® (if

The issue 18 important because sclence (i.e., theory and research) can
only yield ''what 1s" and not what "ought to be."” We are fortunate, in one
sense, that the sclence of psycholcgy (and of pedagogy) 18 young and imper-
fect; the proposed medels and methods for educating young children are no
less imperfect and are influenced as strongly by current social thought and
individual philosophical biases, as by an understanding of the laws of psy-
chological deveiopment., Such a state of affairs, while producing wasted
efforts, spurious claims, more rediscoveries than discoverles, etc., can at
least provide time for the development of articulaged sets of societal
goals for education. .

The best that can be hoped for, under the current conditions of cur
knowledge, 1s development of preliminary "models” for instruction. Such
models can provide, at least, a schematic set of principles and guidelines
for constructing & learning environment consistent with the admittedly inade-
quate theories and knowledge of psychological growth. However, we should try
not to violate recent advances in theory and known laws of child development.

Piaget (1961b) has rightfully declined tc gener-lize his theory to
specifics for educational practice. He has, however, suggested a theory of
knowledge acquisition which has contributed to clarification and integration
of a particular set of propositions concerning psychological develcpment
(many of which have a long history in child psychology and education). If
we accept the fact that his theory of cognitive development is not et a
conceptually or empirically "closed system,” several dedtctions concerning
the construction of "optimur" environments can be generated.” A modest attempt
in this direction has been made at the University of Ceorgla-Fbllow Through
Program (Smock, 1969). The initial stage of that model is based on an
attempt to generate a set of instructfonal principles based on our under-
standing of Plaget's theory of cognitive development. Though many of the
basic propositions upon which the model 1s based are not inconsistent with
Piaget's thinking about knowledge acquisition, the interpretation {s that of
the modeler. It is influenced, therefore, by numerous sources of bilas,
pisynderstanding, distortions, etc., that are inevitable under conditions
where abstract theoretical concepts are not represented in unequivocal
abstract or logico-mathematical terms. ~

It now is clear the child can no longer be <.asidered 2 passfve recipient
of stimflation, nor can external reinforcement be considered a primary factor
in learning and behavicral change. The introduction of "mediation responses"
(verbal or otherwise) is not able to account fcr the complexities of cbserved
changes in behavioral organization during the course of psycholegical growth
during childhood. Many psychological theorists have adopted, in cre form or
another, the idea that human orgarisms actively respond to tHeir envircnment
and that the patterning of these responses reflects a "plan" or "set of cog-
nitive operations.” In other words, the child interprets environmental event
input, but these Interpretaticns are controlled by his capabilities for gen-
erating rule systems for coordinating and transforming the input to "match"

a scheme, plan, or a mental operational structure. Analysis of the "rule
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sysdens" characterizing cognitive development, thinking, and learning requires
speckfications of the properties of, and antecedent conditions for, acquisition
and structuralization of envircnmental events (mental representation/figurative
knowledge) and of mental actious (operative knowledge) involved in coordina-
tion and transformation of those representations. The study of the development
of rule gystens defined as such is coincident, then, with the systematic
investigation of the "inherent lcgic' of development of operational and
figurative tnought processes.

Intelligence, first of all, {s considered no more, and no l2ss, than
blological adaptation; {.e., adaptation at anv level of complexi:y reflects
"intelligent" activity. "Knowledge" consists of two types ot fuictional
atrucgures {(figurative and gperational) that :onstruct invar.ants in organism~
environment relations. These invar:ants are lerived from abstfactions
from objects (physical experience) in the fiirst case, and frem coordinated
actions (logico-mathematical experiences) In the second. Intel igence, then,
refers to both types of cognitive learning ard develcpment and is defined in
terms of functions (thus, thinking, reasoning) rather than content (1.e.,
words, verbal responses, assoclations, etc.). Analysis of corditlons for
congltive learning and development must begin with the identification of
components of behaviorajrganization (structure) that reflect particular
coordinated action-modes of the child as he {s confronted with changing
Intrinstc (maturation and prior cognitive acquisitions) and extrinsic
(physical and socloll isticP factors,

Cognitive structures of systems c¢f (vordinated (mental) actions proieed
through invariant stages of structural change with autogeneti: develoupmert,
The successive differentiation and hierarchical integration of these cegni-
tive Structures permit the individual to . re with Increasinglv co~plex
social and physical "realdties." The process of cognitive development in- -
volves the changing characteristics of transformational rule systems {virtual
and/or cognitive cperations) characterizing the child's mode of adaptation.
Neither the maturational strutture of the orgunism nor the “teachiry"
structure of the environment {s the sole source of recrganization; rather, it {s
the structure of the interaction between the child and the environment that
provides the basi. Intellectual development, i.e., cuonstruction by the (h:ild.

a) dan optimal degree o f dlscrepanc@ between envircnmental-demand structures
and the functional-psychologicdl structures -- both figurative ({.e.,
perceptudl activity, fmages, memcries) and operative; and b) scr lal-learning
conditfons that demand "spentanecus” or “constru: tive™ activity by the (hild.

Several {mpll ativns for the conStructicn of theoretirally appropriats
learning environments are 1mplied in these general prinrciples. First,
structural change, for exa~ple, depends upon erperience but nct in a way taat
tradit.cnal learning theorfsts corcelve experience; f.e., learning interpreted
as palring of spectfic oblects and responses, direct instructions, modeling,
etc. Rather, the functional genetic view holds that the cognitive capacit es
detei nire the effectiveness of training, For example, abilitv to sulve cl.ss
Inclusion protlems implies that the chilg already has the requisite single

y z ;
Uptizal conditions for structural uvrganization and reurganization reguire:
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and nultiple classification operational system for clasgses (i.e., combination,
reversibility, etc.) in addition to appropriate information selection,
storage, and retrieval abilities. At the ssme time, while experience is
necessary for developmental progress, jand appropriate enrichment of the
environment can accelerate such development, -experience cannot change the
sequence, Structurin?. or emergence of action zodes in the process of develop-
mental change. In other words, organization of experience is not provided
solely by the environment :or by the internal structures of the child.

Second, the structure of learning environment also must be considered
relative tc two.frames of reference The cognitive development of the child
firat must be analyzed in terms Of the operational systems controlling his
interpretation of environmental events. Such cperations, or “transformation
responses,'’ are expressed behaviorally iu the covrdinated actions of the child
as he 1s confronted with changes in the physical and social world. For example,
the mental operations of associativity, reversibility, etc., can be inferred
from the manner in which the child attempts to solve problems involving regular
environmentai contingencies (causality), un standing of spatial relatioans,
etc. The content of substantive areas (e.g., 8clence, mathematics) then must
be analyzed and structured in terms of their own logical sequence and inter-
lockingness with other contents. Certain concepts in the physical sciences,
language, and mathematics, for exarple, each have their own inherent sequance
and structure. Thus, certaln concepts and information are necessary precursors
to subsequent understanding of higher order concepts. Further, the inter-
locking nature of these "contents," in some cases, may be independent of the
psychological state of the child. Optimal educational conditions require,
then, thorough understanding of the psychological-cognitive capacities of the
child as well as the sequential structuring of concepts within a particular
curriculum area.

Third, the striving for equilibration between assimilatory and accomro-
dative prucesses under botl intrinsic or extrinsic pressures underlies the
adaptive process. Optimum conditions for structural recrganization (learning
in the broad sense) reguire disequilibration. This condition is met when there
18 an appropriate "mismatch" between the cognitive capacitiss of the child and
the conceptual dema~d ‘evel of the learning task. Too little or too much
"pressure” results in over-assimilation or over-accommodation tendencies
respectively, but does not promote developmental changes in cognitive structures.

_ Fourth, facilitatfor of learning requires analysis of two levels of
cognitive functiconing ~- figurative and operative processes. The first
(t.e., figurative thought) is most emphasized by those thecrists (particularly
behaviorists) recommending a direct tuition approach to instruction. The
operational theory of intellectual development does nit deny the value of
"provoked" learning (i.e., through imitation, algorithms, etc.). Rather, it
must be recognized that such learnings are considered limitéd because of lack
of generalization or transfer to new situations and because the basic (1.e.,
cperational) intellectual processes concerned with problem solving and
reasoning are not much affected.

While there is some doubt that much acceleration of structural reorgani-
zation is possit.e through environmental enrichment, early childhood education
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ahe 1d provide opportunities for utilization of relevan® cognitive operational
structures. Generalization of conceptual learning across content areas

rather than the building of specific knowledge and skilla (e.g., 8 large
vocabulary) should be emphasized since the latter cannot directly accelerate
operational system change and may, in fact, retard development of these
"deeper™ competence structures. ‘

-

In any case, the nature and variety of tae child's "exchanges" with the
environment need to be considered in educaticnal planning. The nature of
the interaction refers to the relative emphasis on autogenesis (self-directed)
as contrasted to exogenesis (environmental or teacher-directed) structure of
the learning environment, The position of the functional genetic position
can best be summarized in the old adage -- "You can lead a horse to water,
but you can't make him drink - unless you feed him salt." Thus, the task
of the teacher 18 to engineer an educational environment consisting of curri-
culum materials, smocial intcractions, and directed activities that provide
appropriate "salt" fcr each child. Sequentially structured curricula could
be designated to provide an optimum degree of environmental structure and
level of conceptual material to permit appropriate baldnce of assimilatory
and accommodatory activity.

The amsunt of interaction (i.e., enrichment) refers to the variety of
structured curriculum contents which are relevant to the child's physical,
social, and symboli: experiences. The interlocking nature of substantive
curriculun areas makes 1t possible to provide a variety of experiences rele-
vant to acquisition of the cognitive "products" that provide representation
of the environment (memoriea, vocabulary, etc.) and, at the same time, to
facilitate the development of coordinated rule systems associated with cog-
nitive operational development. For example, analysis of the yisual environ-
ment (attention or observational skills) as well as cognitive operational
structures (e.g., conservation of area) can be emphasized in sclence, social
studies, mathematics, art, etc.

The engineering of an educational or "learning environment" based on
tne preceding consideration necessarily involves some specification of:
1) the child's cognitive developmental level; 2) the physical structures,
including curriculum matezials; and 3) the social or inter-personal structures.
The organization of these "elements" ghould be such that the equilibration,
between different cognitive systems and/or Setween intrinaic functional
structures and environmental structures, fa acnieved. Thue, sequentially
Structyred sets of curriculum materials and of social interaction situations
are necessary to provide the "pressure" necessary for learning (adaptation).
A variety of specific learning environments needs to be available to maximize
the probability of each child finding activities that attract or "trap" him
into interacting with: the physical (e.g., science) and social (e.g., social
studies) environment at both the behavioral and symbolic levels (e.g., art,
role playing, music). Fipally, the physical and social environments should
be arranged so that considerable freedom of movement, within the structure .
of a variety of contents, is possible, i.e., "a modified open-8tructure
clasaroom." A’careful balance between relatively high and low structured
learning situations and betwcen group and individual learning activities
should be maintained,

»

Q

ERIC

.
Aruitoxt provided by Eic:




ERI

Aruitoxt provided by Eic: v

. 4

The Mathemagenic Activities Program, a model developed in the con-
text of enriching the :ducational environments of economically deprived
children®, is based on three expilcit principles derived from the considera-
tions discussed atove. Specifically, the MAP principles of change -- whether
the target for change is the individual organisa (child) or a complex.soclal
system (e.g., Local Education Authority) are based on the above assumptions
concerning the role of experience in learning and development. First, the
source of motivation to change 1s provided by a discrepancy (disequilibration)
between different conceptual systems (ideas) and/or between previously acquired
conceptual asystems and environmental task demands. Thus, an appropriate mis-
match (M) is necessary tc generate exploratory activities and insure the
individual has the prerequisite conceptual basis for learning higher order
concepts.

Second, since coordirated actions (practical and mental)} are the bases
for the knowledge acquisition, the learning environment must be stracturad
so that specific task demands include appropriate practical, perceprual, and
mental activity (4).

Third, the learning environment must include provisions for »ersccal,
self-regulatory {¥) constructicns. Knowledge acquiaition invclves _c1stzuction
of invariants from properties of objects (physical experience) sud fivm the
child's actions on objects (logico-mathematical experiences). Optiral .vaili-
tions for facilitating new "constructions' (concepts learringi invcl-e &
balance between tasks that are highly structured (in which thte ch:'i zere:y
"ccpies" or imitates the correct solution) and tasks that persit the ¢&1ld to
generalize and discover new applications of his concepts, Practicelily, self-
regulation implies a variety of task options available to the c¢rild, ihe number
of options may well vary with the nature of the task, leve'! 5f deval:pmenc, .
and many other factors, However, MAP proposes that opticar -- in terms of
level of task difficulty, mode of learning, and cholce ~f activity itself --
are necessary ingredients of developzental change. whethar the target be 3
child, a teacher, or an educational system.

The implied educational model requires signtfizant changes f. the
teschers' role definition and teaching strategles (as w&il a8 cactice),
The need for sensitivity to the child's capabilities, 32d ch= stzucturing of
learning situations that promote seif-regulated, “conszruosive” knovledgr
acquisition, together wiih thorough adcquaintance with sv2riable technrlogical
alds, tequire an "educational enginear” ic the best Seade of insf ters.

“Mathemagenic Activities Program: A Model for Early Childhood Fdvcectinn,
prepared by C.D, Smock (A preliminary statement of the conceptusl basis for
the Mathemagenic Activitles Program for the Follow Thrcugh Proaram appexred
in Terminal Repcort, Research and Development Center for Early Educaticnal
Stimulation, University of Georgla, August, 1970).
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Two Special Aspects of Math Labs and Individualization:

Papert's Projects and piagetian Interviews

Robert B. Davis
Director, The Madison Project
University of Illinois (Urbana)

Math labs and individualization have moved into & new era. For the
next few years, the important new emphasis will be on "Turtle Labs", PLATO
terminals, and new diagnostic proccdures.

What Is Old *

During most of the decade 1963-1972 the effort toward "math labs'
and oanipilatable materials in the United States was in the direction of
learning how to use a "lab" and "exploratory' approach in szchool mathematics.
This involved learning about appropriate physical materfals, from Cuisenaire
rods and geoboards to pebbles, bottle-caps, and string, it involved
identtfying worthwhile explcrations that students could undertake (ss in
the formula for the number of moves in the Tower of Hanoi puzzle, or in
Pick's Theorem for geoboards, etc.); it involved developing the strands
of mathematics (such as graphs and functions) that could make the lab
explorations fruitful; it involved re-consideration of classroom layout
(e.g., creation of a "math lab corner”) and a time schedule that would
facilitate a hands-on approach; and it involved developing an explicit
rationale to explain to outsiders what this was all about. The recent NCTM s
Annual Meeting in Houston, Texas, was dramatic testimony to the completicn of
one atage in this historical process- among the commercial exhibits, more
space was devoted tc manipulatable materials than to traditional textbooks,
and the major excitement was around manipulatable physical materials,
computers, self-study machines, and so on.

The "how-to-do-it" decade drew heavily upon the work already done
in Great Britain; the general impact of British programs {s well-summarized
in two books by Edith Biggs, one of the leaders of the British movement:

The Schools Council, Mathematics in Primary Schools,
Curriculum Bulletin No. 1, London, England,
Her Majesty's Stationery Office, 1966,

Edith Biggs and James MacLean, Freedom to Learn.
An _Active lLearning Approach to Mathematius.
Addison-Wesley (Carada), 1969,

Another excellent book, covering virtually every aspect of the "experience"
approach tc learning mathematics is:

E.M. Williams and Hilary Shuard, Primary Mathematics
Today, Longman, 1970,

Among observers of the American scene, Silberman has viewed this
movement with approval (Charles E. 3ilberman, Crisis in the Classcoom.
w The Remakiug of American Education. Random House, 1970. Cf. especially
pages 29€-297.), and Morris Klein has almost completely ignored it
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(Why Johnny Can't Add. The Failure of the New Math, ot. Martin's Press,

New York City, 1973). ‘

As the use and rationale for math labs developed further, many educators
were led to "open education." But -- while most of this work has not vet
been effectively implemented in most schools -- on the research level this
is now 811 "old hat", at least in the sense that excellent programs do
exist in sone places (e.g., in the Bank St: et School in New York Citv), and
excellent written discussions already exist (cf. Sections C and I} in the
bibliography). M

What s New

BuF the point is <hat we are entering & new fra, and the task vefore
«s {s no longer the light-hearted discoverv of delishtful practices in
England, but rather the job of looking beneath the surtare o 1limpse the
foundation we are building on, Consequentlv, the present note deals Jith
three specialized topics that are sucgestive of the tasks that face us
nowadays. The first of these is the FLATO project the second is Se'nmour
Papert's use of "'Turtle Labs" in elementarv school mathematics, which na
point to a wholly new approach both to curriculum and to learning experiences
and the third is an adaptation of Plagetian interview proced res b. TJack
Easley, Stanley Erlwanger, and their colleapues, which has dero st rated a
quite unprecedented capabilitv of revealing a child’'s ideas about rathematics
The children’'s ideas, as thur identified, are far different from what
anyone suspected. In fact, is discrepancy is potentiallv the most
revolutionary thing in mathematics edication today, and surelv one of the
most interesting.

PLATO

The PLATO Project at the University of Illinois in Urbana-Champaign is
the laruest educational computer system in the world. Its Director is
professor Donald Bitzer, a twentieth-centurv Thomas Edison who has person-
ally invented many new hardware and software devices that make the systen
simultaneouslv one of the most flexible, yet also the cheapest, of the
available computer systems. FEarlier versions of the system -- called
PLATO I, PLATO II, and PLATO III -- have provided computer-based instruction
at-the University of Illinois for the past twelve years. rhe greatly
improved PLATO IV system is now being phased in and -- besides continuing
to provide universitv- levei instruction -- will soon begin to offer
{nstruction in several community colleges, and in reading and mathematics
at the elementary school level. .

This is perhaps not the place for a detatled description of the uses
and potearfali{ties or PLATO, but at &8 more modest level {t i{s surely true
that a PLATO terminal in the corner of the rcom can be Che most important
item in a math lab, and a cluster of PLATO terminals can provide the best
delivery system for individialized programs that presently exist. For
information write to- Computer-based Education Research laboratory,
University of Illinois, Urbana, Tllinois 61801,
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Papert's "Turtle Labs"

An entirely 51fferent use of computers (and other technology) is
being developed by Seymour Papert and his colleagues, at the Artificial
Intelligence Laboratory at M.I.T. Papert does not use his computers to
"teach" children anything; rather, he uses the computers to provide a new
kind of environment that a child can live in. Fapert's rationale is subtle
and profound, and cannot be reduced to a few brief propositions -- but
pefhaps some brief remarks can serve to suggest Papert's analysis. ''Suppose',
Papert says, "your .daughter takes a course or-two in French., Will she
learn to speak French? "No", he answers, "probably not -~ not really.
But does this mean that she {s somehow unable to learn to speak Freuch?
Clearly not, for {f she grew up Iin France she would speak French, quite
fluently.” This, then, gives us an importan’ clue -- perhaps, instead
of taking a course in French, we should live, for a time, in France. Perhaps,
instead of taking & course in mathematics, a child should live for a while
in Mathland. But where is Mathland? It is where children can talk with
Mathematical Beinga about matters that interest children -- using, of
courae, the language Mathematics.

Well, vhere on earth is that”

Nowhera, Papert replies, unleas we-build it somewhere. He has built
it sowewhere -- specifically, in schools in Lexington and Concord, Massachu-
setts, and in Exeter, England. The Mathland that Papert has built he calls
a "Turtle Lab." 1In it there are music boxes that produce music, under -
computer control. There are elettric typewritera that type whatever the
computer tells them to type. Therdmre some electrically-operated wheeled
vehicles that role around the fioor, following orders that they recefive
from a computer, There is & televisfon tube ("CRT") that displays what-
cver the computer orders it to display. There is a marionette show where
the choreography is determined by the computer.

And who tells the computer what to do? The child, of course! But
since the computer speaks Mathematics, the child must converse with the
computer in Mathemsatics.

Notice that the child does NOT first "study" mathematics, then "apply”
it to the computer. No m ve does he first study English, then apply it to
telling his purents that . wants a bottle, or the blanket to cover him up.
He begins using English -- and, in the Turtle Lab, mathematics -- to express
hinseif. A child's initial learning of Engliah comes from using it to
puraue worthwhile goala. Similarly, in the Turtle Lab, a child aaquires
a mastery of mathematics bv using it to pursue worthwhile goals.

There is, in fact, a special version of the language Mathematies -- in
reality it is called LOGO -~ that Papert developed that allows anv child
who can read, write, and count, to tell computers what he wants them to
do. Papert has crranged for his computers to be programmed so that they
Understand the LOGO language, and hence carry out the things the children
tell them to do In a sense, Papert's LOGO-speaking computer is an infinitely
docile, perfectly obedient pet -- a kind of super-dog -- that never tires
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of carrying out the child's commands., Of course, computers are so obedient --
or, {f you prefer, so stupid -~ that you must always be careful to tell them
exactly what you mean, because they will foliow your instructions to the

word, to the letter, to the decimal point. You rust make sure you say

what you mean ..., and you must say it in the language Mathematics.

In order to permit comparisons between Papert's Turtle Lab and various
other learning settings, we ~ed to mention briefly one or *wo other aspects
of Papert's approach. "You learn", Papert argues, 'by doing, by thinking
about what you are doing, and by talking about what you are doing."
Papert's program is indiviauslized ir the same sense that wood-working
shop 1s: one child is making a bookcase, wnich he will take home,
another child i{s making a toy saf. boat, which he will take home. In the
Turtle Lab an analogous thing happens: one child is working out the
choreography for a puppet show, another child 1is programming the computer
so that one of the "turtles" will become skillful at escaping from mazes,
In this sense, the Turtle lab is individvalized, But in a rore important
sense it 18 not individualized at all. Just as the child making the sail-
boat may ask advice from the child making the bookcase, so the children in
the Turtle Lab often talk with one another to get suggestions on how to
overcome various technical problems.

To make such discussions even more fruitful, Papert has developed a
heuristic meta-language, reminiscent of Polya, to aild children in talking
about their work. They divide large problems into smalier ones, they look
for "bugs” (compute: talk for inadequacies in algorithme), theyv try simpler
analogous problems, etc, This emphasis on analyzing what you are doing 1is
a central, and major, part of Papert's learning environment.

It 1s also worth pointing out that ir tne Turtle Lab, as in woodworking
shop, chiidren work on projects, not merely assigned problems. Projects
are (mainly) chosen by the children themselves, often designed by the
children themselves, and are permanentlv stored in the computer for use
whenever desired. This makes possible a great cumulative power. At the
start of the school vear, in Septemdber, cnildren program the computer to
execute relatively simple things. These cumputer programs are called
procedures. A September procedure might be as simple as hsving the
computey draw a triangle or the CRT. But after {t {e vritten, each
procedure is named, and the computer will execute the nrocedure whenever
the name 18 used in later procedures. One fifth-grade bov extended an
early triangle-drawing procedure tco a procedure that would draw an arbitrarv
broken line -- which could cleee on itself to form a triangle, or a square,
or an octagon, ctc., hut need not do so. Using this procedure, the bov
wrote other procedures to draw fish, aquatic plants, and finally a whole
aquarium scene,

Looking at the aquarium scene one is overwhelmed uv its complexity --
to think that a 10-year-cld boy told a computer how to draw it! .- but
the important point is that it is built out of less complex pleces that
the boy assemhled all vear long. Nor did he, in September, have any ides
that he would make the aquarium scene months later Rather, he began by
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making something that looked as if it might be useful. Then he made more
things that lodked as {f they might be useful -- or might be fun to make.
As he made new things, he saw opportunities to incorporate as components
some of the things he had done earlier. Thus he came to build very
complicated things that were, in fact, made up of simpler things used as
building blocks.

This cumulative use of past work has great power, snd, emotionally,
it shows a child that the things he has been making are worthwhile. It
is the opposite of making something only to throw it away. 1In the Turtle
Lab, you make things in order to keep them, enjoy them, and use them --
‘perhaps as pleces in something even more complicated.

Information on Papert's Turtle Labs can be obtsired by writing to
him st this address: Massachusetts Institute of Technology, 545 Technology
Square, Caumbridge, Massachusetts 02139.

A Child's View of Mathematica

Until recently {t had been fashionable to say that "{dess"’ are
inacceasible, we cannot know them, and therefore we must content ourselves
with considering "behavior." A witticism summarized 5 decades or so of
American paychology by saying: ''Man, having lost his soul and hia freedom,
has now lost his mind." This was an unfortunate point of view for mathe=-
matics, because mathematical entities are ideas, they exist nowhere except
in the human mind. The study of mathematics is necessarily the atudy of
concepts, of cognltlve constructs., Deprived of a concern for ideas, one
is automatically a fortiori deprived of mathematics.

For some time there has been intellectual warfsre between two
factions of educators who espouse opposite sides of this question: the
one side emphasizing a focus on the child's idess, while the other side
advocates the svoidance of "{deas", and s focus on externally~-observable
“behavior". (Cf,, e.g. Rising, et al., 1973.) To this sbstract intellec-
tual dispute there has recently been added & lively empirical confrontation.
The "behsvior' approach, in this fight, is presently represented by s
paper-and-pencil "individualized" mathematics curriculum created sccording
to the behaviors to be developed, which was authored by some of the
leading proponents of the rmethod of focussing on observable behaviora.

The "idea" aide is represented by Professor Jack Esaley, of the

University of Illinois, and a group co-workers, notably Stanley Erlwanger,
who have adspted Piaget's clinical interview technique in order to inves-
tigate children's ideas ahout mathematics. The Easley-Erlwanger group

did not in fact plan a confrontation. What they had in mind was an
exploration of children's idess sabout mathematics., Fate provided s direct
confrontaticn of the two philosophies. By accident, many of the children
studied by the Easley-Erlwanger group have, for several years, been
students in the "individualized" curriculum created according to "behavior"
criteria. Hence -- by accident ~- the two points of view are now engaged
in direct battle on an empirical battle ground. What ideas do children
have sbout mathematics, and where do these ideas come from? But the
childrea being studied are in a school program that de-emphasizes '"ideas'
-« hence the dramatically focused confrontation.

Q .
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What Easley and Erlwsnger have bee~ finding, in pursuit ¢ children's
sathematical idess, is perhaps the most exciting thing now going on in
mathematics educstion.

The case of Benny is typical. Benny is s sixth grader, has been in
the individualized math program since the beginning of grade two, and was
identified by his teacher ss doing well in mathematics, being in fsct one
of the most successful students in the clsss.

Erlwanger has sudiotaped msny hours of interviews with Benny; these

tspes sre now being csrefully transcrited. I maxe use, here, of a preliminary

transcription that may have involved some minor parsphrasing of langusge,
but the actual mathematics hss been carefully checked for accuracy. It
is just ss Benny did {it.
Converting fractions to decimals:
E: How would you write 2/10 as a decimal or decimal fraction?
B: One point two (writes: 1.2}
E: And 5/107
B; (writes: 1.5)
Asked to explsin his procedure, Benny ssid (for the 5/10 example):

B: The one stands for ten then there's the decimal point;
then there's 5 -~ shows how many ones.

Other conversions made by Benny:
400/400 = §.00

9/10 « 1.9 ("The decimal means it's dividing till you can get
from one nine that wili be 19, and in that 1.9,

the decimal shows how many tens.") .
‘ ~

429/100 « 5.29
3/1000 » 1,003
1/8 = .9
1/9 =« 1.0
4/6 = 1.0
It is probably alresdy clesr that Benny has his owm methods for doing
things. They are mwethods, and he uses them very methodically -- even

thoughtfully. But, unfortunately, Benny has not icained good ways to think
about srithmetic.
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Here i{s some more of Benny's work:
E: And 4/11 7
B. 1.5

Now does it matter {f we change this (pointing to the &4/11)
and write {nstead 11/4 °

It won't change at sll; 1t will be the same thing ...

(writes: 11/4 = 1.5)
How does this work? 4/11 f{s the ssme ss 11/4 °
Yah ... because there's & ten at the top. So you have to
drop that 10 ... take away the 10, put 4t down at the
bottom . ..
{vrites: 11/4

then [I1/4

then [1/14

then 1/14.)

So, reslily, 1t will be 1/14. So you have to add these numbers
up, which will be 5 ... then 10 .., so 1.5,

For the irverse process, converting a decimal t~ = fraczion, one gets
& choice of many "correct' answers: th.i .5 can be 3/2, or 2/3, or 1/4,
or 4/1. :

Addition of decimals:

E: Like, what weuld you get {f you add .3 + .47
B- That would be ... (writes-. .3 + .4 « ,07),

E-. How do you decide where to put the point”?

B~ Becausz there's two points; st the front of the four and
the front of the three. So you have to have two numbers
after the decimal, because ... you know ... two decimals.
Now lixe {f I had .44 + .44, I have 20 have four numbers
after the decimal.

[

|

i E: How about 3/10 + 4/10

} B: (writes: 3/10 + 4/10 « 7/10)

ERIC — | '
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Further answers by Benny-
4+ 1.6=2.0
7,48 - 7 « 7.41

Ad{tion of fractions:

Answers by Benny:

2/1 +1/2 «3/3 -l »

(" 2/1 + 1/2 1s just like saying 1/2 + 1/2, because 2/1,
reverse that (writes 1/2), so {t will come out one whole
no matter which way. One {a one.")

Recall that Benny had been identified by his teacher as a very successful
student i{n mathematics, perhaps the best {n his class. Nearly every 5th or
6th grader studied by Eriwanger has had mainly wrong {deas about arithmetic --

) although many of these children were regarded as successful by their teachers.

“ Apparently the usual diagnostic procedures used in school are not adequate to
pick up the erroneous {deas many of these children have. Moreover, the
children rangé in I.Q. from 100 to well over 120, one would expect that they
shoul.) ue able to understand mathematics.

Returning to Benny's work, show. above, it {s important to note that
there is a pattern to all of this. Not only {s Benny consistent within his
own scheme, but as one looks at a large numoer of children and compares their
methods with the instructiona. program, one sees that where the students
have gone astray, their errors match up with identiffable features of the
program of instruction that they are experiencing in school. Obviously,
one cannot prove that the_{nstructional method {a responsible for the
psrticular kinds of ¢rrors that have been built into the children's
cognitive schemata, without undertaking < sizeable study of children in
different school curricula. This has not yet been done -- but Erlwvanger
and Easley do have it on their agenda for the future. Foc the moment one
can merely look at the childien's ideas, look at the cov~se of {nstruction,
and ask: {s {t reasonable or credible that this course of study should
lead children to form these ideas?

Features of the Program of Instruction

The program of 1lnstruction that senny and the other children were
pursuing {n school had, among others, the following features:

1. working alcne. It was "individualized" in the sense that each
student worked alone, by himself. This had several consequences,
rnctzd below.

2. Paper-and-pencil. The program existed on pleces of paper --
printed booklets, written answers, w-itter judgements (by the
teacher) on some of those answers (but very slertchy judgements,
mainly limited +» "right” and "wrong').

O
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Absence of physical materials. The program did not use any
"math 1zb" raterials or experiences: no measurirg cups, no
actual cooking, no meter sticks, no making maps of the schcool
yard, no Cuisenaire rods, no Dienes MAB tlocks etc.

No discussions. Because each child worked alone, he had no
opportunity to hear (or participate in) classroom discussions,
peer-group teaching, evplanations of what he thought he was
deing, etc.

N0 _heurist: -~ta-language. Obviously, then, no special way
of talking about what vou are doing was developed (quite in

contrast to Papert's very careful development of a heuristic
meta-lany .age).

No dlagnosis. No serious dlagnosis of a child's ideas was

carried cut. (The teacher was unaware, for example, that manv
of the children considered that, in

3.3

the B indicated 'the wholes"”, and the 3 indicated "the parts',
and that they therefore believed that

§.3 = 3/8.)

Seztion tests. The material was divided i~to sections (or "levels"),
ard, in order to cerplete a secticn and move On to “he next section,
a «nild had to take a section test aud get at least 80% of the
answers ripghbt. This arrangement was intended to avold cases like
cenny's. but it clearly failed to do so (Why it failed is an
interesting question!).

{necking answers. As a child worked on problems, either he would
~heck them humself against an answe~ kev, or a para-professional
wovld cherk ther.

Absence f _ounter-examples. oiven good diagnostic work and a
high level of teaching, one of the most important activities would
undoubtedly have been confronting student with contradictions

and counter exarples to thelr wrong generalizations. Gi. the
conditions of this particular curriculum, this sort of tivity
was {rpossible, and did not occur.

forpetit. and haste. The program was highly competitive, and
tne rompetition was based on speed. A race-track drawing in the
¢ lassrocm showed who was the leader (in the sense of having
‘erpleted the rost "levels" or sections), whe was nert, etc.
Every clald's standing in class was displayed for everyone to

see (Cemparisons were only on spaed; no consideration was gl
te rreativity, depth of understanding. etc.)




O
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Homogeneous probler sets. Anv #irgle prob hler set dealt with one
subject. Consequently, cate ful analysis of hnw to atrack a
probler was never invelvec; looking at a probler for clues as t2
how to proceed didn't occur. You did what was bteing covered 1n
that particular lesson.

Task and feedback. A typical task -- say, adding decirals --
wzs introduced by a ske:zched-cut instance, such as:

A student was supposed t- stare at this eva~ple, then go ané

do Likewise. what this meant was trhat he guessed at a pattern,
~hen tried tc use his pattern tO answeT similar questicns, after
which he corpared his answers with those in the key. If they
disagreed, he used this feedback -- verw different in essence
from a counter-exarple .r a sharply pirpointed contradiction --
to re-adiust his pattern, and to bulld up his own rationalizaticn
as to what was going on.

{s queszicn is so impertant t oat (U ceserves furthrer discussion.
SﬂppOSe you have 'so olved 3 -roblem -- tne subseguert discussicr
depends cn the kind cf protlem -- % - Toatso=av it was

Notize trat there dre ~anv
right receive, 3and noti-e how iTportart
are & few prssibilities-

~4back trat vou
~zes are. Here

o8
s

is the onlv
ovidedy,

Yoo are told thar ycur arswer 1s wreng ‘thi
feccback which tnis pronrat usaally §

£{7 Yo are asked t< make a ricture of a ple (>r a rectangle),
color 1/2 of 4t blue, i ? of it rez, ard see ‘ow 7,0t
toe Sy Seems t Do
{11, Sco-ecne goes over ¥Iur procedure wilt 101, one step at
“ :‘”c ard disc .sses ea.r Step.
Thinking of athemati o as Chinese CTthograpiy
Tor thnese childre , ~attemaclrs corsists of svmbols ¢on payers. Tte
tie game 15 to et tre right svwhbols In the Tight placres. (1
right take this attit. ¢ .f you asved re to copv so~e L[hinese <hara-tersa.}

“ds reveeio”t  Lledli% Soron ‘s examplew, ¢ omsitered arove.




It {s also shown by the following work of a 7th grade student (not
in Eriwanger's sample‘:

Q: Fow else might you wr:ite

A:  (by 7tn grade boy):

subtracting exporents

} tried te take € frem 3, (ouidn't,
nd ""regrouped” the numerator.

subtracting € fror 13.

¥cu couldn't make this kind of error if exponents -eant something to
you: 1f you had a clear notion of the size of various nurters, etc. You can
only make this xind of error when vou are applying rote mermorizec procedures
tn Telatively reaningless symbols.

The Small Procedures Are Correct

In tne examples above, and In nearly all we have studied, the emall
“pleces" of procedures are correct. Trey are by no means random. Irdeed,
in most cases they could be clazsifie. as regression to earlier ideas.

Cf. the example with exponents. Wren the boy found himself confronted with

62

6

since it did not have for hir a clear reanirg he had to dc soretning. What
ke did was to use the correct algorithm ¢ur this problems

)

namely, “re-group’ as follows

and subtract
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Si-ilarly, Benny's rule for placing .he decimal point in the problem

3+ .40= 07

was correct, but belonged with the problen
3 x L4,

and not with the problem in addition.

Th-oughout hundreds of examples the pattern remains clear: d(hildren
use coriect mini-procedures, but don't alwavs pick the correct one for the
actual rroblec at hand. The littie pleces are correct, but belong some-
where else.

How much practice did the school program provide in the prcblem of
selecting procedures? Very little, since most problem sets were homogeneous.
Once yo. fourd, peraaps by trial and error, some procedure that ylelded an
answer the teq her would accept, you merely used this same procedufe on
all the other problems on that page.

Confuslon of Similar Stimuli

It is especially worthwhile to compare, side-by-side, the actual
protlems children were supposed to be working on, with the probtlems fro-
which their (inappropriately chosen) mini-procedures case. Here .re a few:

.* Benny (grade €; "at the top of his class" accordirg io teacher’s
rating):

L3+ 4= 07
(That 1s to say, while Benny's addition winl-procedure to add
1 and 4, <etting 7, was correct and aporopriate, uls miri-
procedure for placing the decimal peint was not appropriate for
this problem -- but it would have been approrpriate for

B VA

Hence, in selecting a nini-procedure for locating the deciral
point, Benny confused these two stirull”

L3+ L4 vs, 3% .4

{{y Bennvy, agairn.

4 = 1.5
il
The partial procedure concerned with the digits se 4 ard 11

to get 15") {is a correct one, but Benny has ronfused the stirall

4 vs.,
11

1—
Tr— o~
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In the vast majority of these cases, the two stirul® which were con~-
fuaed were, in fact, actually quite similar. Apparently the children
haven't learned to make finer discriminations between rather similar stimuli.

But, before one adds to the curriculum some units on discriminating
rather similar stimuli, it i3 worth noting that, in curricula based on the
meanings cf the symbols, and giving priority to thinking about these meanings,
1t appears to be the case that this problem of stimulus confusion is far
less severe. Perhaps it 1s not advantageous to conceptualize these symbols
as stimull -- maybe it is better to consider them as marks that are supposed
to refer to some important idea, and to focus attentfon on these ideas.

Chilaren Make Up Their Own Rules

In this gchool's course of instruction, relatively little attention is
paid to why something is, or is not, true. There 18 also no chance at all

"for a student to explain his line of thought to a teacher. Consequently,

whatever ideas a child gets —- if they produce, for the time being, acceptable
answers -- will go unchallenged and unanalyzed.

Congider the case of Natalie, a 10-year old fifth grader, whose recorded
1.Q. is listed as 99, but whose actual I.Q: 1s almost certainly higher than
that.
Agked to add
Natalie wrote . .
G+ 3=
This was 1like one of her usyal problem sets. She wrote the answer the

teacher would expect -- hence no one discussed with Natalie how she was
thinking about this problem.

Asked ro add
| he + 3, =
Natelle wrote
4o+ 3. =7,
Agaln, what one would erpect. Again, no one discussed with Natalie how.she

was thinking about this problem. After all, she got the right answer, didn't
st.e? .
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Here {g part of Erlwanger's interview:
F: W6+ 3. 0=
N: 6+ 3. =.7,
Notice the creation of a new symbol
.7

which presumably can have no meaning to Natalie as a number. How large 1s
7.2

But Natalie has finally revealed to us something of the ~ay she 1s
thinking about those little periods that they use in mathematics. "If they're
on the left in the questicn", Natalie seeams tc think, "put them on the left
in the answer." Consequently, when -- for the first time — Natalle encountered
thewon buth left and right in the question, she decided to put them on both
the left and the right in the answer.”

Children make up their owh rules. It often pays to find out what those
rules are. It 18 not enough to know that, for the moment, those rules seem
to be producing right answers. They may still be wrong rules.

The Absence of Meaning

Perhaps this is really a restatement of the Chinese orthography theme.
Benny again provides an example:

Asked to add
3+ .4,
Benny wroie
«3+ .4 = 07

Asked, immediately thereafter, to add

3 o+ 4

10 16" .
Benny wrote

3 IR

0 * 1o 0 "

Benny was not disturbed by anv incongruity herz; yet obtwicusly for anyone to
whom the meanings of these symbols are important, the gross inequality 1in the
size of 7/10 and .07 is conspicuous, salient, and arresting -- not a matter
that one could easily overlook, by any means. Yet Benny did not see it at

O
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all (or else he didn't see the relation between

3+ 4.

The Child's Use of Feedback

We have remarked earlier that the school program provided the children
with no feedback that related to meaning -~ only feedback about right or
vrong anawers. Hence, for the children, math became a kind of gugssing game.
You tried something, and waited to see what happered. If necessary, you
adjusted things, and tried again: This use of feedback is appropriate and
inevitable -- in math, or in learning to bowl, or learning to ride a bicycle -~
but the feedback must relate to central meanings, not to peripheral details.
hath as a mearingless guessing game was revealed 1n the language used by
many children. For example, Lori, a 6th grade girl with an 1.Q. of 123, asked
to write

23

1000
as a decimal, 'said:
"I'd probably write 1000.21."

The use of the phrase "I'd probably write -.." is as significant and as
characteristic as t.c wrong answer she did write.

Benny stated this even more emphatically:

F: It (the priocess of finding answers to problems) seems to
be like « game.

g:  (Fmotionally) Yes! It's like a wild goose chase!
Ex  So you're chasing answers the teacher wants?

5; Yah! Yah!

Er Whizh answer would you like to put down?

Br  (Shcuting) ANY! As long as T know it could be the r{ t
answer.

Speaking of his teacher, and her paraprofessional alde, Benny says:

B:  They mark it wrong because they just go by the key. They
don't go by if the ansser 1s true or not. They go by the

Aruitoxt provided by Eic:



key. It's like 1f I had 2/4, they wanted to know what it
was, and I wrote down one whole rumkter, and the key said a
whole number, it would be right ... no matter if it was
really wrong.

.

What Is Mathematics? What Do the Children Think Mathematics Is?

I have argued el<ewhere tha: cne of the main goals of mathematics
instruction 1§ to end up with children who believe that mathematics is a
reasonable and sensible response to a reasonable and sensible problem.

One of Papert's Sth grade students defined mathematics by saving: "For
any challenge, there's a smart way to approach it, and a dumb way to approach
it. If you approach it the smart way, you're doing mathematics."

The children in Erlwanger's sample see mathematics very differently
from this.

We've already seen the view that mathematics 1s "a goose chase", a
kind of blind man's bluff in gearch of answers that the teacher will accept.

But Renny also had a different view of the nature of mathematics -~ a
far subtler view, that is intriguingly dualistic. Here 1is Benny's description,
as paraphrased by Erlwanger:

Benny's view about answers 1is assoriated with his understanding
of operations in mathematics. He regards crerations as merely rules;
for example, to add 2 + .8, he says: 'I look at it like this:
2+ 8 = 10; put my 10 down; put my decimal in front of the zero.'
However, rules are necessary in mathematics 'because if all we did
was to put any answer down, (we would get) 100 every time. We must
have rules to get the answer right.' FHe belleves that there are rules
for every type of problem; for example, he says: 'In fractiomns we
have 100 different kinds of rules.' These rules were 'invented by a
man or someone who was very smart.' This vas an enormous task because
'It must have took this guy a long time ... about 50 years ... because
to get the rules he had to work all of the problems out like that ...'

Hence we see Benny's view of math as arbitrary, expressed (for example)
in the 100 rules for fractions that were worked out by "someone who was
very smart." The rules serve the game- like purpose of guarzcnteeing that
there will be some winners and some iosers: ''because if all we did was to
put an answer down, (we would get) 100 every time," which Benny cbviously
considers unacceptable. In all of this we see the arbitrary, game-like,
senseless face of matheratics -- as experienced by Benny.

But Rennvy also sees an objective reality lurking there somewhere, for

he says
It must have tcok this guy a long time ... about 50 vears ...
- because to get the rules he had to work ali of the problems out
like that
O
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So, apparently, "this guy" was working against some objective criteria,
criteria obvicu8ly unknown to Benny  But Benny doesn't seem to want to know
these objective criteria -- Benny w nts to know the 100 rules that "this
guy” finally ended up with.

Both sides of this duality are expressed by Benny elsewhere in the inter-
views, as well. For example, as rcriwanger writes:

Benny also believes that the rules are universal and cannot be changed.
The following excerpt illustrates this view:

E: What about the xules. Do they change or remain the same”
B: Remain the same.

E: Do you think a rule can change as you go from ore level to
another?

B: Could, but it doesn't. Really, if you change the rule in
fractious it would come out different.

E: Would that be wrong?

B: Yes. It would be wrc-; to make our own rules; but it would
be right. It would not be right to others because if they are
not used to it and try to figure out what we meant by the
rule it wouldn't work out.

Benny's objectivity here seems, however, considerably less objective --
nct based on an underlying reality, but rather on a desire to be fair to
other peoplé by not changing the rules in the middle of the game.

.

On Eliminating Cognitive Dissonance

In Erlwanger's interviews, Benny got wrong answers nearly all the time.
(That his teacher nonetheless considered him very successful is something
of a mystery, but perhaps her own view of mathematics was that it was a kind
of Easter egg hunt, and she found Benny an avid and energetic hunter for
hidden treasures., This would contrast with my own view, which presumes the
existence of a unique reality for which we are attempting to construct
various defcriptions, and a child's job in learning mathematics 1s to build
up 1nside2§é§ own head cognitive structures that reflect this reality with
the most ound accuracy that can be attained. In this latter view, Benny
was doing very badly, since he nearly always missed the central point
~athematically, but in terms of the Easter egg view -- there being no profound
grand strategy determining the placing of the Easter eggs, and hence no
external structure to be faithfully modelled cognitively -- Benny's energetic
pursuit could be considered the ideal pattern of learning. You find Easter
eggs by scurrying around, all over the place.)
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In any event, Benny's answers in the iInterviews were mostly wreng.
From this, and from remarks he made during the interviews, it seems safe to
infer that Benny's answers in class were also mainly wrong.

Now, in this particular school program, a child checks his answers
against a key, to see whether he 1s right or wrong. This must have been
a sore trial for Benny. But a very interesting -- and in Some senses tragic --
thing occurred: Benny thought about this situation at length, and finally
succeeded in developing a personal philosophy that brought him peace of mind.
So much peace of mind, unfoitunately, that he lost all motivation to make
his answers match other peonle's. In this he resembled some psychotics:
he was s0 contented with his world view that he didn't want to change it.

What Benny did was this: he noticed that you might have an answer like,

2
A

whereas the key might have an answer like

1
5 -

From '"just looking at them" you might conclude that these answers were
different -- but there 1s a way out! There exists a rule that lets you do
something to pne of these

e 2x1 1 x1

2 x 2 7 x2

2 I
A 2

so that you obtain the other. They looked different, but once you used the
appropriate transformation rule on them, they were really the same!

Benny generalized this: if only you knew enough of these transformation
rules, you could always show that your answer really matched the answer in
the key! Benny had invented a large repertoire of such rules. Here 1S one
out of many:

E: How would you write

11
4
as a decimal?

B: (writes) 11 N
7 = 1.5

E: Now does it matter 1f we change rhis (puinting to the 4 )
11
and write instead 11 ?
4

O
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B: It won't chanmge at all; it will be the same thinz ..-
(writes: 11

T = 1.5)
E: .How does this work” _4_ 18 the same as 11 ?
11 4
B: Yah ... because there's a ten at the top. So you have tc
drop that 10 ... take away the 10: put it dowa at the bottom ...
(writes):
11
4
then 11
4
then 11
14
then 4 )
1% )

So, really, it will be _1 . So vou have to add these numbers
14
up, which will be 5 ... then 10 ... so 1.5,

These rules had one good effect on Benny =-- they let him be happy abcut
his "success' in mathematics -~ but they also had a very unfortunate effect.
It was next to impossible to convince Benny that any of his answers were
wrong. What tools could you use to convince him? Show him the correct
answer? No, he responded by ghowing you how his answer was really the same
as yours. Show him contradictions? No, his transformation rules enabled
him to reconcile any apparent contradictions. Show him that his answer
was nonsense -~ for example, much too large, or much too small? No, all

the symbols were meaningless to Benny. Considerations involving meaning
¢i1d not reach him: To Benny, all answers were nonsense, so his were exactly
as good as yours.

Implications

Adaptations of Piaget's clinical interview procedures seem to be
capable of revealing much more of what !5 in a child's mind than other
common methods can. If this potential can be developed by teachers -- and
by parents -- we can get a far deeper assessment of the successes and
failures of our school prog~ —s. And 1f, as has been the case ¥n the,
Frlwanger study, many of these programs are revealed as catastrophis fallures,
then various vigorous actions may develop in consequence.

Mearwhile, for those of us who (as I do) work on the .reation of school
programs, here 18 4 specially significant kind of handwriting on the wall.

For details, write to: Stanley Erlwanger, 1210 West Springfield Avenue,
Urbana, [llinois 6180i.
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The Role of Applicstions in
Early Mathematics Learning

Max S, BRell
Univereity of Chicego

I hope during this hour to open up for examination the role of
spplicetions of mathematics in early. muthematicsl learning, It seems to
me thet this unsolved and neglected problem warrants considersbly more
sttention than it has received up tc now, if only because the ability to
use mathematics lies st the heart of our objectives for mathematics
educstion. Indeed I would say that mathematics education has been a failure
for sny person who is unsble to comfortably and nsturslly make uge of
mathematice in a wide variety of situations. (I believe it follows from
this that mathematice education s s failure for very large numbers of
people —— perhaps the majority -- but that is a matter to be srgued elsewhere.)
It 1s possible, of course that early attention to spplication has nothing
much to do with eventual sbility to apply wrthematics; gtill, I believe
we should open up the question for investigstion and reflection,

By "spplicstions” I mesn exercises tha" link things in mathematics to
aspects of sctual resl world happenings. "applications' will be considered
to be different than "models" in the sense of paper and plascic end string
representstions, end different than invented games with mathematical content
or other "embodiments™ of mathematical things in the Dienes sense; though
these are sll unquestionably useful in lesrning mathematics. By "esrly"
learning I heve in mind sbout kindergarten through third gredes or, in
other terms, the lete preoperationsl and early concrete operstions psrts of
a child's development. By a "role" for spplications, I do not hsve in
aind any exclusive dependence on applications but merely &: end to the
nesrly zots! neglect that preveils now. I am tentatively assuming thst such
neglect is hazerdous becsuse in the same way that importent aspects of s
child's general cognitive sbility gre probably built (or mature naturslly)
during the esrly school years, important aspects of his sbility to use
amathematice sre probably slao 2cviloping. Therefore, it may be that a
poverty of early experience with applications represents a developmentsl
loss that is difficult or impossible to make up later,

In By remarks I first want to sort out various categories of mathe-
matice and real wo-1ld links, and draw a distinction between “embodiments"
as 8 link and "applications/wmathematical" models as a link. Next, and

—
-~
-
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briefly, I will try to establish that a problem exists; that applications
in early learning are neglected. The~ 1 will briefly explore several
possibly good reasons for this neglect. Then, by a series of simple-
minded examples, I will argue for the proposition that early attention

to applications could open up many of the things we really should accom~
plish in mathematics education. Along the way I will make some random
comments on possible connections between cognitive psychology and an
early concern for applications, with no claim, however, to consistency,
comprehensiveness, or expertness with respect to models of cognitive
development?

Mathematics and Real World Links

I believe that we are often unclear about what we mean by "applications.”
There are many possible cross-counections within the world of reality,
vithin the world of mathematics, and between these two worlds. To call all
such connections "applications” makes the word mean too many things. It may
clarify the matter at hand to sort out the possibilities; Figure 1 is a
rough attempt co do this.

Figure 1: A Diagram of Links Between and Within Mathematical and Real Worlds

The World of Reality The World of Mathematics

Another (possibly simpler)
real world situation

!
1
1. ~eal world situation l
| Mathematical iteml
Ancother (possibly more complex)
l mathematical item

3.  "Embodiments’ in real world Mathematical item ~
rateriais or operations on

such materials

4. Probler situaTion ——H Mathematical Model
|
|

! he "Mathematical item" might be a single thing such as a number

or equation, or a mathematical structure, or what have you.

O
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The fi-st part of the d:agram ccncerns moving betwWweer various levels of
abstraction while still within the real world, with ro explicit resort to
the world of mathematics. This would include various sorts of sizulation
and simplification within the real world. while there is no direct resort
to mathematics, the thinking processes often resexble those useful in
mathematics, and it {s my belief that activitles here may build important
and possibly crucial background for mathematical learning.

The second situation diagrammed in Figure 1 is the weil known one of
moving among various levels of abstraction strictly within the world of
mathematics. For example, cne develcops a certain plece of mathematics, then
uses 1t as a starting point for another mathematical concept or theory. As
a matter of fact, and unfortunately in many cases, the great bulx of mathematics
instruction falls here. But I believe this should not be the case with
cespect to early mathematical learning. At soTe polnt beyond early learning,
this may be che most efficlent way to learn Tathematics, but I can see no
stage where 1t snculd be the exciusive reans to wathematical Learning.:

The possibilities irdicated by the tnird sitvation dlagrarmed in
Figure 1 have be - extensively developed by Dienes, Davis, the Papws, and
wany others. Here one starts with mathematical fceas or concepts o by tauwht
and looks for links te the world of reality via "expodiments” of those
concepts in operations on real world objects. I mav well be tha: teaching
strategles exploiting possibilities in this area are tie ones that fit child
development patterns best, certainly their use ir ruch of the P:aget oriented
research is striking. I do not believe ir panaceas or sirgle dimension
solutions, but I velieve there 1s nc question absut the fruitfulness of the
ezbodizents appreoach to eariy mathematical learning, ard cuch of tre
discussion 1> this symposiur will predictably be centered on 1t.

But at least for tnis ome hour let ug cirect our attention to the
foutth area indjcated by Figure i, iHere one does not start witn mathe-
matical ideas and ther seek erbociments of these in the real werld, bet
rather starts with probleratical situations in the actual real world, and
seeks solutions by wav cf the intervention of matheratical mocels. This is

very cormon now in scnolars!.ip, comrerce, and industry, and has rcoved to g

ve very fruitful.?

2 perhaps an enphasls exclusively on tnis area {s misp'iced even in graduate
level mathematics caurses. Trn an vSs2y in the Arerjcan Matheratical Monthly,
E.T. Parker credits his success in a breakturough on a previously unsolved
conjecture of Euler te a graduate level group theory ccurse in which his

professor began elery class session by rcrerring to scre aspect of the rigid

nctions of a square as an embodiment ©1 the mathematics to be discussed {Parker).

¥ what is meant ty the phrase "mathematiral models" has been dealt with in many
places (e.g., several articies in Bell, 1947). Here 1s a neat capsule summary:
"The use of appiled mathecatics ir its relaclon tc a physical problem involves
three stages* (1) a dive from the world of reality {nto the world of mathematics;
(2) a swim in the world of mathematics; (3) a cliimb from the world of mathematics
back into the world of reality carrying a prediction in cur teeth.” ({John Synge,
quoted in the American Mathematical Monthly, 68 (Octeber, 19613, p. 799). The
"dive" {s the province of problem solving strategies ond {ts result is a mathema-
tical model. The "swim" d.prndg an ability to manipulate: transform, and extend,
the mathematlcs {tself.
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For the remainder of this discussion I will use "applications” as a
single word to indicate activity on behalf of mathematical modelling cf real
world sit ations - the fourth area dlagrammed in Figure l. There seers to
be no disagreement to the proposition that such applications can enrich
mathematical learning from at least the middle school years on. (It remains
true, however, that in aspite of endless and repeated recommendation, such
activity is not yet a viable part of mathematics Instruction at 3ny level.)
Many suggestions for the middle and later years are beginning to appear
(B21l 1972, Tanur, Mosteller, ECCP).

But ir this hour we will leave that aside in favor of a preliminary

attempt to sort out what cortribution attention to this fourth sort of link =--
applications -- might make to facilitating the early learning of mathematics.

Are Appilcaticns Neglected in Early School Mathematics?

Kaving stated a rroblem, I should show that it exists. Is this fourt®
sort of link, act.al uses of matheratics from the actual werld, in fact
neglected in grades K-3? The ansver is certain.y Yes with respect to the
textbooks that, rightly or wrongiy, dozinate the child's early learning
sathematics. Exapination of most such beovs reveals at rost a few thinl:
scattered pages of verbal problems that very seldon make Interesting connec-
ticns with genuine real world issues. The answer is ves with respect to
journals such at The Arithmetic Teacher -- locking over a recent year of that
journai I founa only three articles that gave atteantlion to some application
of martematics and ncne of these wére directed at the early elementary years.
The answer is probably yes with respect to research in mathematics education.
I have not carried out a thorough survey of all the research literature but
an informal survey plus ecamination ci several reviews of research 1in
sathemaci.al education turned up very little of interest ¢n the topic urder
consideration here. The charge of neglect is most certainly valid with
respect to the training of elementary school teacters. Again, I have not
made an exhiustive survey but I inow of just a single place glving courses
for teachers that are explicitiy directed at what might be done with
applications in the school mathematical experience of youngsters. (Tre
University ¢t Chicago offers such courses ir. Surmer sessions.) Also, if one
can judge by published textbooks for mathematics and methods courses for
elementary schocl teachers, a concern for appilcations is certainly not
a major emphasils In such courses.

On the other hand the neglect way nct be total. There has been
considerable activity on behalf of early school science by a half dozen
or more curriculum writing groups. The AAAS, Minnemast, FSs, SCLS, aud
other projects have proposed sclence oriented applications for voung
children that would most certainly be helpful in the learning of mathematics
(Hurd). However, that doesn’t let us off the hook; and in any cas 3
science educator colleague tells me that such materials are by no means
widely used in primary schools. To the extent that mathematics education
curriculum projects elsewhere - for example, the Nuffield Preject materi.
have irf! =nced United States practice, this would also lessen neglect of
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applications for they tend to give considerable attention to the interplay
between & child and his real world. If any schools have survived in the
United States that use soundly implemented John Deweyan principles, then
applications of mathematics in the sense of the fourth section of Figure 1
cannot have been neglected. (I mention this last unlikely poasibility only
to remird us of one of the roots of much of the discussion that will take
place dvring this symposium.) :

Some Possible Reasons for Neglecting Applications
in Early Mathematical Learning

Mathematics and real world links in the embodiments sense may be
catching on as a significant factor in early mathematics teaching, but
I believe that we must conclude that such links in the applitations
(mathematical wodels) sense play virtually no role at present in early
wathematics teaching in the United States. Such widespread neglect of
vhat on its face would seem to be important cannot have happened without
reasons, and 1t may be that some of these reasons would compel us to the
conclusion that neglect 18 warranted and ought to continue. I wish to
examine that possibility now.

Leaving aside bad reasons for neglect, here are some possibly good
reagsens: first, it may be that "Young students, by and large, are not
interested in applications .... They are the purest of pure mathematicians,
and somewhere during the maturation process, they become sullied and begin
demanding applications of the subject” (Beberman, p.11). Second, there
may, be dissonance and conflicts between cognitive development patterns and
the requirements of applications. Third, the disparity between the require-~
ments of applications and the meager computational skills available at
early school levels may be impossible to bridge. Fourth, even 1if the
above problems could be resolved, working on the problem of applications for
the young might still justifiably be assigned lew priority given the many
other difficult problems we face. Finally, there may be an overall and
pervasive dissonance between attention to applications and our proper
objectives and curriculum - that is, with what we think children must
accomplish in school mathematics. I will consider each of these briefly
in the next few paragraphs, and several of them at greater length in the
section that follows.

First, whether or not lack of interest of children is a barrier
to using applications seems to wme to be very much an open dquestion that
cannot be answered until we put our best inventive efforts into a fair
trial. That is, if we make 1t an objective to use applications in early
mathematical teaching, chen we are immediately thrown on the question cof
appropriate learning experiences. We must, in short, carry out feasibility
studies, using with children the best materials we can devise.

Second, we must consider the possibility of dissonance between

developmental patterns and early attention to applications. If one takes
a behaviorist view towards early mathematical learning, there should, in

O
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principle, be little dissonance for I take the behaviorist point of view

to be "if you want it, do it." That is, it is a wmatter of outlining

learning hilerarchies where, for whatever applications exercise you wish

to use, the appropriate prerequisites h?ve been attended to earlier, and

the reinforcement structure is such that .he present plece of material 1s
likely to be learned. Indeed, Robert Gajyne, who is far more in the behavior-
ist camp than in the Plagetian camp, was one of the principal architects

of the apparently successful AAAS science program for early science

learning, and it has many mathematical elements in 1it. If, on the other
hand, one takes a Plagetisn point of view, there are probably some restraints
on considering applications. For example, some applications would have

to wait for the formal operations stage. But I don't believe the restraints
are very severe. Attention to many applicaticns that are tjed to a child's
direct experience should be possible even in the late pre-operational and

in the concrete operations stages.

As to the third possible reason for neglect, disparity between the
rather slow dévelopment of computational and algorithmic skills in children
and the requirements of significant applications, I believe there are at
least three possible ways to bridge the gap. In the first palce, the
requirements uf calculation can be embodied in very concrete calculating
devices, e.g., Napler bones, Papy minicomputer, Hassler Whitney's minicomputer
(Van Arsdel, Whitney). A second way to finesse this problem would be for
teachers to act as '‘consultants" or "answer machines" so that when youngsters
have formulated a problem to the point where calculation 1s called for they
can call for an answer to the particular computation required. A third
answer, and one that 1 t % may very well be forced upon us whether we
like it or not, lies in ¢ widespread use in early mathematical learning of
the small electronic calculating machines that are widely advertised these
days. These pocket-size calculators use computer chip technology and can
do any operations in any order with eight or more digits available for input
or output data. Furthermore, they give instantaneous results with the decimal
point automatically placed. Some come with memories and with built-in standard
programs. (One I have seen has a special percent key =- surely a sad comment
on how little people have learned from the mathematics education.) Hence
1 can imagine that a first grader might understand perfectly well that the
proper maneuver to get the total number of first graders in his school 1is
addition of 31, 29, 33, 27, 21, and 30, but would not have the technical
skill or the patience for drudgery that would let him get an answer, If so,
punching the numbers into such a calculator would solve the problem.

Another example: except for drudgery and lack of skill, a third grader
might very well be able to balance the family check book for a given month
with possibly considerable insight into family finance resulting from the
exercise. With such a machine as this, the drudgery and the demands on
technical skill are removed. These machines are already very cheap and very
available, and 1 think that they may well cause a r¢—olution in what is
appropriate to do in the school teaching of mathematics - a revolution we
should even now anticipate and plan for."

YRecertly one indicator of American taste, The New Yorker, had a cartoon with

four ladies finishing up a luncheon and nne saying, But according to my pocket
calculator, my share of the check including tax and tip 1s five dollars and forty-
two ceuts.'" These machines are also the subject of the cover article in the
March 1973 Popular Science.
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Now & comment on possible neglect because of Jjustifiably low priority
among many problems. I would have some sympathy for this point of view
if achieving more emphasis on applications required considerable expendi-
ture of energy and resources in isolation from our other problems. But,
on the contrary, attenticn to applications in early mathematical learning
might have considerable payoff in connection with, or as & means to, solu-
tion of many of our cther problems. For example, "disinterest," "lack of
motivation,” and "poor attitudes,” are perennial problems in mathematical
learning, and really good applications material might help overcome them.
For another example, better evaluation of what & child 1eally knows might
be promoted by setting up an interesting application, then observing how
the child attacks the problem. Similarly, shservation of children engaged
in applications might reveal interesting thinga about cognitive development
patterns, especially if the applications were highly involving of the child's
energy and attention.

The final reason for neglect that I listed was that attention to
applications may simply be out of step in fairly pervasive ways with the
school curriculum as it "Gught" to be or with what we really want as end
result of schooling in mathematics.* I cannot deal with this objection
briefly since it requires a definition of what we want from the school
mathematics experience. The next section attempts such a definition, and
also implicitly attempts a rebuttal to this and several of the other
reasons gilveh for neglecting applications in early learning.

¥hat Rele Can Applications Play in Early Learning of
the Mathematics Children Should Eventually Have in Hand?

It is my firm belief that anyone who proposes any objective for
mathematical education is obliged to also consider what learning experiences
night be attempted to test the feasibility of that proposed objective. In
my mind the great strength of the work of such people as Dienes, Davis, the
Papys, and others has been their commitment to proposing learning expe-iences
that support their announced convictions. Hence I feel obliged to give
some attention here to an indication that applications can play a role in
the early experience of children in opening up and developing irportant
mathematical outcomes. For a variety of reasons I cannot think *t appropriate
to tie such a discussion to a standard "scope and sequence” diazram nf
present schbol content. Instead, I will use an outline (shown here as
Figu~e 2) that has been more extenfively developed in another place (Bell
1973). This outline summarizes my own view of what we really want as
minimum net ‘esidue in the minds and guts of peuple after they have served
their required 8, 9, or 10 year gentence in school mathematics classrooms.

1 believe that there has been insufficlent consideration of such endpoint
objectives, but that argument belongs elsewhere. For the present, et me
indicate the spirit in which this "tentative 1ist" should be considered,
then move on to the attempt to show how applications could coatribute in the
early stages of development of some of the items in the list.

*For example, "Applications tend to give students ... the idea that mathematics
has no right to its own existence, and 8o you are shutting off potential
mathematicians.” (Beberman 1963, p.12)
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For example, consider equivalence classes (3.1 and 3.2 in the list).
Through a long series of exposures and experiences starting in kindergarten
(or before) a youngster should come to know that most mathematical things
come in many equivalent forms and that much of school mathematics deals with
conversion from one form to another. He should also realize that problem
solving both of textbook exercises and real life problems frequently involves
recognition of equivalence plus good judgment about which of a number of
posaibilitiea are appropriate for use in a particular situation. (For
example, "3 + 7" and "10" are cach sometimes useful; and in calculating
"1/2 + 1/3," "3/6" 1s & more helpful form than "1/2".) Again, "measure
functions” (see 4.1) may aeenm to be fancy vocabulary to confuse the
uninitiated but what 1a in wind 18 merely that in virtually every measurement
situation, one has a aet of real world objects (or happenings) on the one
hand, and a get 9f numbers on the other hand, with the task of assigning
numbers uniquely to objects (or happenings). Thus, measures of public
opinion and measures of length are not altogether different, and the
procesaes invalved in volume measure and length measure are very gimilar.
Through an extended and varied development over a number of years, everyman
should understand this commonelity of approach. Similar comments apply to the
other items on the l1ist. What are wanted are durable and correct intuitions
and gut feelings, friendly familiarity, and genuine competence with respect
to those mathematical things that can help individuals sort out their
increasingly complicated worlds. In no case will a single experience or
unit of work accomplish what 1s needed, and some part of nearly everything
can be worked on nearly anywtere in the school experience of youngsters.

The question for this hour 1s the contribution that applications could
make in the early learning of things such as those in my list. As I make a
number of random Suggestions I don't mean to suggest that all will actually
work nor that they exhaust the possibilities. I merely wish to suggest that
feasibility investigations are possible. If we have learned anything over
the past fifteeu years or so, it should be that the best way to find out
what kids can do 1s to try something.

For starters, numbers pervade the actual world and it should be possible
early on to call attention tc some of their many uses. Counting and
measuring are already widely attended to in schocling so let us see what
might be done with some other sorts of uses. Might a youngster be led to
notice that a roem number such as 213 really conceals a pair of numbers -
one giving the floor and the other the room number on that floor, with
the 13 also indicating where on the second floor and perhaps even on which
side v the hall? To contribute both to coordinate systems and ordering
(1.3 and 1.4 in the 14st) I wonder if a youngster might be given the assign-
ment of walking up and down the block he lives on a few times and trying
to make sense of the “nuse numbers? I don't krow ur what age a youngster
would be able to sort out all the details of the coordinate and ordering
system thus embodied but he might very well notice that all the numbers are
of the sort 5403, 5411, 5413, 5450, 5478, etc., and the "54" might take on
some aignificance. Further, the child may notice that smaller numbers come
before larger numbers on the block; that houses an equal distance apart have
addressea that jump by about the same amount; possibly that even numbers are
on one side of the street and odd numbers are cr. the other; and that 1f he
goes into the next block, all the numbers begin with 55.
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As other examples, might we not alert the youngster to the pervasive
use of numbers as identification codes (1.6); for example, license plates,
telephone numbers, zip codes, highway numbers, etc.? Might we make something
of "take a number" in bakeries and other places to impose a fair order of
aervice on 8 crowd of customers? Can we also ask where it might not be
appropriate to impose an order of service based on arrival time ~- in a
hospital emergency room, for example?

Moving on, there must be many ways of having youngsters sort
themselves into equivalence classes (3.1). For example, note how far
each lives from school and put all those the same distance away in the
same group for some activity. (Some of the Nuffield and Papy arrow graph
exercises are based on such exercises.)

With respect to measure function (4.1), we perhaps only need to
make processes more explicit in many actual measure situations; e.g.,
the school nurse lining up a class and weighing each pupil, or a teacher
returning youngster's work marked with "good," "you cap do better," etc.,
or evenéverms@. With respect to the pervasiveness of measure
(4.3) it would be interesting to find out when children can be led to
notice how many measures surround them by simply asking them tfrom time
to time for lists of as many situations as they can think of in their
everyday life where measures are assigned.

With respect to indirect measure via formulas (4.4), the Plagetian
research suggests that anything very complicated in this line may need
to wait on the formal operations stage. But some exploration of not
direct measures may be pussible by way of, for example, rubbing young
children's noses in the fact that wnen reading temperature on a ther-
mometer, they are reading a length with respect to the red line on the
thermometer; that time is judged by amount of rotation of clock hands,
and 80O on.

Let us move down the list to "order of magnitude" (5.4 on the list).
It has been pointed out that an order of magnitude change in technology
frequently changes things qualitatively and not merely quantitatively (Hamming
1963). For example, moving from horse and buggy travel at five miles an hour to
automobile travel at 50 mph changes the entire soclology and habits
of & country in very fundamental ways. Again, I'm not sure where in
children's development such ideas are accessible, but perhaps we could
draw from their experience with the world with such queations ac these:
"Suppose you had 2¢, what could you do with it? Suppose you had 2%¢,
then whst? $27 $20? $2007 $2,0007" and so on., Or: 'Where could
you get to by walking for the next couple of hours? Where to by auto-
mobile? Where i0 an an airplane?"

To consider guess and verify procedures (5.5) I believe quite simply
that we must work them in whenever possible. That is, we should watch
for opportunities based on children's experience where it is appropriate
to ask "About how much...?" and then "Why do you think so?"

.
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The use of ~ariables (7.1 to 7.5 in the list) has been explored in a
variety of exlsting materials by the use of "frames." To the extent that
functions and equations expressed using frames can be tied to children's
everyday experience with the real world, this would qualify for what 1
want done with applications in early learning. Similarly, consideration
of inputs and outputs (8.1) can be supported by a variety of classroom
and everyday activities.

. The Nuffield books have a good deal of activity centered around
representational (arrow) graphs (8.3) that could well be adapted for Amer-
ican classrooms. (Coordinate graphs related to actual applications per-
haps must be deferred beyond the early stages 1 am discussing here.)

With respect to logic (9 in the list), we all know about the Pilagetian
findings with respect to reasoning from arbitrary hypotheses but 1 believe
that 1t 1s widely agreed that much less formal reasoning based directly on
a child's experience is accessible in the concrete operation stage. For
example, youngsters at play do make up arbitrary rules for games and as
disputes arise they argue through the consequences of their rules. They
also change rules and argue from the new "axioms." 1

With respect to my category 12, informational graphs, we have many
suggestions in the early Nuffield mathematics materials and it seems clear
that the child's actual experience provides ample material to be exploited
here.

Finally in this brief sampling, it may be that flow cnarting exercises
belong beycnd the early learning that 1is my focus here, but perhaps not.
Piagetian findings indicate that one~way functions are available fairly
early and perhaps it isn't too much tc ask youngsters to sequence events
that they are directly involved in by what would amount to an informal
flow chart.

The examples I have given here are (deliberately) quite simple-minded.
My intention has been to indicate that applications from a child's real
world can play a role in the opening up of many important mathematical
concepts as well as in their further development. Two things would be
required, it seems to me, and neither of them is very common in early
schooling. First, we would need to have teachers themselves enough at
tome with such mathematical idcas as are suggested by the list displayed
as Figure 2 that their own knowledge and intuitions would alert them to
possibilities for using the children's experience in opening up and
developing these ideas. Second, even with such awareness of where
mathematics education is headed and what it would mean to arrive there,
teachers would need many suggestions with respect to things they might
actually do with youngsters. For this, we would need to go to work and
produce a large number of sample experiences and dialogues to illustrate
ways 1n which each of the things listed above could be opened up: The
first task would be to sensitize kids to notice what goes on in their
world. Next, there should be more explicit development of concepts via
applications based on children's experiences (as well as through embodiments)
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through the concrete operations stage. Finally, in the formal operations
stage, there should be a variety of problem situations firmly rooted in
the real world but not now necessarily in a child's direct experience.
These would require for their solution fairly sophisticated formulation
and exploitation of mathematicsl models. For this last many examples are
slready available, if not yet very much used. But for early mathematical
learning, accumulation of the required large number of suggestions has
barely bagun, except in the science units noted earlier.

Some Further Remarks About Applications Related
To Early Mathematical Learning

I wish now to continue with some more or less random comments and
speculations on the subject at hand.

So far I have referred to the findings of developmental psychology
research mainly to speculate on limitations that developmental patterns
might put on the use of applications in early learning. (For example,
metric proportion may not be available as a mathematical model until the
formal operations stage.) But one Wonders if observing children as they
deal with actual applications from their own direct experience might not
throw additional light on developmental patterns. For exanple, Sinclair
notes that "Until nine years of age, there is confusion in comparing two
moving objects or perscns ... going further usually implies taking more
time" (Sinclair). But suppose a teacher were to get the cooperation of
some parents and set up or find situations where John, Mary, and Jack
have actually travelled quite different distances in about the same time
(a near place by automobile and a far place by airplane; or to school on
a given morning by bicycle versus walking versus automobile, for example).
In the context of direct personal experience, how will John, Mary, and
Jack themselvea respond at different ages to the question "How can that
happen?” and to what extent will their classrates also erfgage the problec?
That is, I wonder if the medium of applications from the real world might
not be fruitfully used in developmental studies -- at some loss in
precision and replicability but perhaps with some gain in motivation and
concreteness. To be sure, standardized concrete situations with action
called for are already common in such research but I have in mind longitu-
dinal studies of what a given child's development lets him make of his own
direct world experience when explicitly alerted to some aspect of it,
eapecially with reference to appropriate mathematical models and concepts.

One way to attend early to applications of mathematics would be to
call attention to aspects of the child's experience that he may not be
able to "explain" at a given developmental ievel btut which would be
interesting in their own right and which might set the stage for later
development. For example, there is a neat and rather profound link
between the world of reality and the world of mathematics by way of biolo-
gical consequences of scaling laws thet indlcate how changes in linear
dimensions relate to changes in area and volume (Haldane). Consideration
of the complicated proportions among linear, squared and cubed measures
must wait for the middle and upper school years but direct experience
can show much earlier, fer example, that mice eat much more in relation to
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their size than do children, horses, or elephants. (This 1is, of course,
because they have more skin surface area relative to their volume and

weight so relatively more body heat is radiated.) Children can observe

that a young baby is about half as long as a first grader, but may only
weigh about an eighth as much; and that bables (with relatively more

surface area) are much more easily chilled or dehydrated than older children.
Hippopotamuses have quite different structures than gazelles, partly

because of scale effects. Such things may be observable, if not explainable,
at Plaget's concrete operations stage and would support more sophisticated
later work. To explore such possibiiities we again need to describe a

great many spiral developments where the observations and experiences at

the beginning of the spiral are clearly spelled out in terms of things that
can be drawn from a child's actual experience. Observing children's
reactions as we follow through such spirals might also considerably extend
our knowledge of developmental patterns in children.

The original suggestion of the organizer of this symposium wds that
1 try to relate Ausubel's advanced organizer notion to applications. 1
decided instead on a broader theme but do wish to comment briefly in this
area. You are no doubt familiar with Ausubel's definition of an advance
organizer as "introductory background material presented at a higher level
of abstraction, generality and inclusiventss than the material itself and
designed to serve as organizing oc¢ anchoring framework as the material is
learned” (Ausubel). 1 can imagine sitvations (probably in the formal
operations stage) where a given application is indeed inclusive enough to
provide an anchoring framewurkx for the learning of some mathematics.
For example, dan applications situation with linear programming as the
appropriate mathematical model would serve very nicely as an advance organi-
zer for systems of equations and inequalities. An application -~ say
predicting an election - calling for collection of data, then manipulation
of the data using statistical models might serve very well as a framework
in which to integrate certain statistical concepts. But in general,
and especlally in early mathematical learning, 1 believe most useful and
accessible applicatione make too few demands on the appropriate mathe-
matics to serve as advance organizers of that mathematics in the Ausubel
sense - that 1s, the applications are not general or inclusive enough.
There is ancther sense, however, in which explicit attention tc applications
in the early school experience might serve as advance crganizers; not to
give children ways of assimilating mathematical theory but rather ways
to assimilate their everyday experience. That is, 1f Ausubel is correct
in asking for integrating structures into which new data are incorporated.
it may be that explicit attention to applications of mathematics will give
a youngster structures into which he will absorb aspects of nis everyday
experience that otherwise might go unnoticed or unacknowledged. Fe might
be sensitized to the very pervasive use of numbers in his surroundings,
for example, in ways that his school instruction in arithmetic would not
cause, even if enriched with a laboratory apprcach via embodimeuts.
Similarly, he might be sensitized to the pervasiveness of measures in
his world.

O
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Finally, let me try to tie my topic more explicitly into the general
symposium themes. First, it should be clear that what . am calling
applications here are in the gBeneral spirit of a 'laboratory" approach,
especially in the sense advocated by Moure and Perry around 1900 and later
by Dewey and those of like mind. It must be recognized, however, that
mathematics laboratorles as they exist today as physical locations in
schools contain mainly materials in the ''embodiments” mode, plus a varlety
of drill and practice materials. They are not generally set up to
emphasize applications in the sense of my discussion today. To make
mathematics laboratories useful for teaching epplicatioas, the usual
"laboratory" collection would need to be augmented with a number of
workcards, etc. that sensit.;e ¢nildren to their own real world experience,
and that also direct their attention tc real world problems in ways that
invite them to engage ir. the mathematics rodelling process.® Tocls and
instruments to help them in these encounters should also te present in
the laboratory.

To turn to the second conference theme, rv remarks so far have made
several connections with cognitive psychology. There was some speculation
on limitations that might be put on an ascplications approach if Plaget-
postulated development patterns prove out. I made several suggestions to
the effect that applications might be used 1In exploration of developmental
patterns, con the assumption that the Plagetian ;esecarch does not yet tell
the whole story. I noted in passing that at least one excellent elementary
science program, which includes scrne applications in the spirit of my
remarks today, has been worked cut on behaviorist rather than Plagetian
assumptions -- ciie Robert Gagne influenced AAAS science progran I have
also remarked that much of what I am talking about, and much else
consistent with the symposium discussion, goes back to Dewer and those
of 11ke mind. Trat is, at the rmoment ! find the Fiagetian assumptions most
helpful but I believe tnat a more eclectic Selection fror various rheories
or taking an avowedly behavioristic view would lead to the same positive
conclusions about the iikely cffectiveness of applications as an aid to
early mathematical learning.

Sumrary

I have atterpted during this hour to ¢ren up for further discussion
ind investigation some possivilitles f.r using «prlicat.ons of rmathematics
trom the every day expeiience ~f voung children tc enrich and support early
mdthematical learning. 1 tried to surt out scome of the main links within
and between the world of reality and the wurld of ratheratics (Flgure 1).

I claimed that work strictly within the world of mathematics dominates

the school rathematics experience although the erploitation of “embodiments”™

of matht  _{cs concepts is making some Inroads »» til, dominance. I noted
that the applications business of starting with real worid situations and
finding ways to fit matheratical models to trem is a largely undeveloped
possibility {n early learning and exarmine! sore reasons for this neglect.

6At least one such workcard cullection sultable for =iddle and later
schiool grades has been published (¥ricbel).
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.1 offered a possibly peculiar listing of the ultimate outcomes we might
aim for in school mathematics (Figure 2) and tried to show that there
might well be in the use »f applications from the child's real world a
number of opportunities to begin spirals of experience leading to gut
level mastery of certain very important concepts., I concluded with a
series of more or less random remarks about possiocilities for exploiting
applications from the real world in exploring cognitive developmental
patterns in children and also to provide "organizers" to help a child
integrate his ever encounters with various uses of mathematics into
his developing co, re patterns. {(Our colleagues in science are probably
well ahead of ueg i1 .is area and We should look carefully at what they
are doing and the“results they have achieved.)

If Wwe are to become serious about exploiting applications in the
child's world in early mathematic* learning a good deal of work wculd have
to go into providing teachers with suggestions, sample dialogues, outlines
of spiral developmcnts, and 80 on. [ am not optimistic that such efforts
will take place verv soon, if only because mathematics education is faced
with plenty of problems already. But the fact is that a child does live
ju the real world and is surrounded by countless applications of mathe-
matics; surely this could be a potent learning resource. The ability to
use mathematics lies at the heart of our objectives for mathematics
education.; ! do not believe we can afford to neglect much longer the
potential of the use of applications tc improve the early mathematical
learning experience.
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ABSTRACTION AND GENERALIZATION
EXAMPLES USING FINITE GEOMETRIES

Zoltan P. Dienes
Director of Psychomathematics
Research Centre
Sherbrooke, Canada

i

. It is beginning to filter down into the inner circles of mathematics
education that what mathematics a child iearns is of little importance because
the specific content will for the most part be forgotten anyhow. What
matters 1s the kind of mental discipline that he acquires and the kind of
zental habits and techniques that he learns. Such interests and skills
would 1nclude the following: an interest in generalization; an appreciation
of an abstract structure; the ability tc decode a coding syster or to
transcode from one system to another syste; and the ibility to look for
necessary .or suffic:ent conditione for certain properties to hold.
Provisions for acquiring.these kinds of competences in children should be
the aim of rathematics education, instead of saturating young heads with
useless definitions and terms, however exact these may be from the point of
view of the abstract mathematician.

In this paper, I would like to show how some of these ideas can be
encouraged to grow. The field I have chosen 1s finite geometries. Naturally,
practically any other part of mathematics could have been taken and similar
kinds of arguments used. '

The Seven-Point Gecmetry. Points and Lines.

We could start with the fcllowing game. Let us say that seven children
are together and they want to play a game. This game can oniy be played by
three children, and the other four have to watch. How could we arrange the
children in groups of three so that every child plays tkree times, and so
that each child plays with every other child one time, and only one time?
There will be seven such teams of three.

If the seven children are: The teams could be:
John, Jack, Jess (John, Jack, Joan) g///"\\\\
Joan, Jasper, Joey, (John, Johanne, Jasper) {
and Jchanne (John, Jess, Joey) \
* (Jack, Jess, Jasper) }
(Jack, Johanne, Joey) ’//

(Jess, Johanne, Joan)
(Joan, Joey, Jasper)

This problem will lead to the consideration of a seven-point geometry in
whichk the children are the points, and the grcups of children are the lines..

The game can be made more concrete by using seven objects. The objects
can have two colors (red and green), two shapes (square and circle), and two
sizes (large and small). We will then have seven objects 1f we get rid of
the small green circle. And, to form sets of three objects each, we pick any
two of the remaining objects, and look at the small green circle. If we
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put the small green circle next to one of tnz objects, we will see that
they are different from each other in cert.in nays. Tne remaining object
has to differ from some other object in the same ways. This determines

the third object in the set of three objects. For example, 1f we take a
small red circle and a large green circle as our first two objects, which
is the third object? Place the small green circle rext tc the small red
circle. We see that there ‘s a difference :n color. Therefore, we must
put the large red circle next to the large green circle, so that there is
also a difference in co.or (and only in cclor) between the latter two objects.
So the small red circle, the large green circle, 2nd the large red circie
belong to the same set of objects. Of course, we could have put the srali
green circle next to the large green circle; tnen, we weuld have noticed

a difference in size; so then the large red circle wouid still have to

have been put next to the small red circle becsuse the small red circie an:
the large red circle are different 1n sizz, and in size only. Tn this wav.
we establish a binary function. Given any tws chlects, a third cnre wil.

be determined. This ccrresponds to the fact t'at, given any two polats,

a straight line 1is deter—ined.

Instead of using eight obje.*s, we zcull tav
make the sets, we cculd use foir red 25 ects, fcu t a
yellow obiects. The first prcblem 1s to construct sets of cbje:ts
these. The sets will te constr.cred sc that ther Tore ¢
of any given coler in ea.™ set. Using this rulc, seven it
te formed, if we ignore the exmpt~ set

{o0e} {oe} {oce} {o

(oo}  {e} o)

we can form:let: wee hirarv fupction in tne followirg wa:r- giver
two seus, the to.rd et raat is associete. with tie first twe I3 deter—ined
‘ B he €18t twe sets,

§-0¢ .
by saving that 1f tre-c 1re alreads two of
we rust nct put tr’'s -, T ir the thi

1n tie £irst two sets. CTer thi: o0

three sets.

only once

elivd  wr o«i”  ..re to the first prohler.
Jre 1= ¢ udent t° a mathemati_tan bu:

not so evident te a nila ! t mares & wathenatician wihat

he is; namely, the fact tha% ng . able to rel.gnize identit- of <truture.

In other words, he can thine 'a ter~- of asstractin. To | - -c abstract,
we need to practice the process ~f absiract..u. se m.ght procez! as folleows:
one group of children can play tne seven=onjecl xdme, and arot'er Rrouf

will play the seven-sets game. These t~" ganes ~an then 'e -orpared. which
set corresponds to whicn objec:” et us sa. trat object A ar: chlect B
determine object C to the ohject game, and that to obiert A -c~rresponds set X,
to object B correspor.s se® YW and to oblect  rorresperds set Z., Set X and

Tats probleT 1y -~r % Ilvl
Of course, tnls fce~ti' . oo struc
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set Y must determine set Z. If that is not 80, then either we have not
found a way to compare the object-game and the set-game, Or else this is
impossible. So, in the case of comparable or isomorphic games, children
should learn how to construct the isomorphism in question.

child game object game set game
John ———— (red)

Jeck g (yellow)

(blue)
Joan ———® (red, yellow)

-
-
Jess -
-~———————
Jasper -_——» ——— (yellow, blue)
Joey -~ ~¢——— P (red, blue)

ool eom
|

Jolianne W———m—» ~§————®» (red, blue, yellow)

Isomorphisms for the three games that have been considered so far are
shown above. To that these isomorphisms work, look at the following
dlagram. The "triads" in one game whould correspond to the "triads” in
eact of the other games.

Joan and Jasper "only play with" Joey
and @ "determine the object" E
- (red, yellow) and (yellow, blue) "determine the set” (red, blue)

Here is a useful representation of the abstraction that was just
described. Seven "lines" are shown; one of them is in the form of a
circle.
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In the case of non-isomorphic games, children should be able to
discover why the two games are not isomorphic. This will lead to arguments
leading to different conjectures. If they were the "same” game, then
certain‘things would happen; but you know that this 1is not so, and 80 the
two games are nof the same. SO the idea of sameness will acquire a kind
of "isomorphism color" instead of an "identity color'.

Take the following "seven-element-game' with these arm positions as
the operational values:

RN T %

do nothing 1 down 2 down 3 dowmn

Three children play; the first assumes a position of his choice, the second
ig the operator and the third has to show the result of the operation: We
should specify that to go "up" from the uppermost position means to assume
the lowermost one, to go ''down" from the lowermost position means to assume
the uppermost position. Here are some "additions":

Although the first and the second positions always determine a third
position, the second and the third do not determine the same first. For
example, "2 up" + "1 down" = "1 ¢p” but "1 down" + "1 up" # "2 up" so
there are no triads in the sense of the other seven-games. Therefcre, this
game cannot be isomorphic to the other seven-games.

The Fifteen-Game

Mathematicians are inveterate generalizers. At any meeting of mathe-
maticians when one talks to another about a theorem te has Just discovered,
the first thing the other one will say: '"Oh yes! That's fine, but is it
not applicable to a more general situation? And 1f not, why not"? How
can we encourage this type of inquiry? Clearly we can do so by putting
children in situations where generalizations are possiblz, and indeed even
quite obvious. In order to encourage them to do generalizations, we ghould
first show them how one game can relate to another game by one being more
general than the other.
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Points, Lines and Planes

.

Instead of taking seven objects, we can take fifteen. In other words,
ingtead of taking color, shape, and size, we can take color, shape, size,
and thicknegs. There will be thin objects and thick objects as well as
large ones and small ones, as well as circles and squares, as well as
green ones and red ones. So we single out the small thin green circle in
this case as the comparison object which is put against another object to

" make a pair. This determines another similar pair. The differences between
the testing object and the first object must determine the differences
between the second and the third object. Here are two examples:

1st object 2nd object 3rd object 4th object

Ve \ /
| s8reen red \ / red green

I [l
/

first object / \\second object third object ;

green N\ / red

2 | O

first object / \ second object third object /
/ \ /

A similar game can be played using sets of objects if we take eight red
objects, eight blue objects, eight yellow objects, and eight green objects.
Cisregarding the empty set, we should be able to make fifteen sets such that
in each one there 1is never more than one of each color. Arain we can make
the same requirement about the third set as we made in the 7-sets game. A
third set 1s determined, given any first and second sets by completing the
colors of which there is only one in the first and the second sets. We
must not put a color in the third set if it already occurs twice in the first
two sets, and we must put in a color which occurs only cnce in the first and
the second sets. In this way, we have the same binary function as before,
only we have more sets. In this game there are 35 "triads" that can be made.

There are certain novel features in the 15-game which are not present
in the 7-game. In the seven-set game, if we are given three sets which do
not belong to the same triad and try to extend by finding triads that can
be formed from these three sets, then we eventually obtain all of the seven
sets« This 1s not so in the 15-game. In the 15 game, given any three sets
which do not belong to the same triad, we can never reach more than 7 sets.
Here we have a substructure of the 15 structure which 1s isomorphic to the
geven gtructure previously studied. But this time we can go beyond it.

Such a 7 structure can be called an extension determined by our first three
sets. It 1s not desirable to call them planes because the whole game
occurs in one plane, and so this might confuse children. But if we take




ERI!

Aruitoxt provided by Eic:

any four seta that are not in the same extension, then by constructing third
seta in triada determined by pairs of sets, we can eventually reach all the
15 aets. It will be interesting to find that there are the Same number of
extensions aa there are sets (i.e. there are exactly 15 possible extensions).

Naturally, the same game can be played with objects instead of sets, and
an isomorphiam can be constructed between the set of objects and the aset of
sets. Eventually a system can be developed in which we can represent either
the objecta or the sets or any other concrete version of this 15 point
geometry. For example, here is an interesting representation which takes
the form of a triangle.

The way that the 15-game 18 more general than the 7~game is that in
the 15-game there are elements, triads, ard extensions, whereas in the 7-
game there are only elements and triads., We have not yet extended the number
of elements in a triad. But this would be another way of mmking up a more
general game than before.

Clearly our original sets (or our objects) correspond to points {n
geometry, our triusds to lines, and our extensions to planes.
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The Thirteen-Game. Four Points in a Line.

Let us think of another way that we can play a more general game.
Let there be four points in a line and four lines through a point. How
do we play such & game? We can tell the following story: there are
thirteen children who want to plsy & game in which four children at a time
can psrticipate. The way to be fair in this game is to get everybody to
play the game four times, and for everybody to play once and only once with
every other child., Furthermore, we can require that out of any two groups
of children playing, there should be one and only one in common. This is
slresdy included of course in the requirements that no child should play
with the same child twice.

Children find this game already quite difficult, and we might help by
giving them s different kind of embodiment. For example, we could take the
27 elements vector-space, with which children will play quite readily. They
can be asked to draw 27 pictures 8o that in each plcture there are either
zero, one or two trees, either zero, one or two birds, and either zero, one
or two houses. You throw away the picture on which there is nothing (which
snnoys children in any case) and so we are left with 26 plctures. An
"addition" game can easily be worked out by saying that if you put two
plctures together, there 18 a third picture always associated to the first
two by adding the number of houses, the number of birds, and the number of
trees with the proviso that if you get three trees you cut them down, 1if
you get three houses, you sell them, if you get three birds you let them
fly away. Of course, if you get four birds, you let three of them fly
sway, and keep one, and so on. In other words, the rules are for playing a
modulo three game. There are three scalars in the vector space: zero, one,
and two. The zero is somewhat trivial; multiplying a picture by zero turns
it into ' e empty set. The scalar one is also somewhat trivial; multiplying
& picture by one naturally yields the same picture. The scalar two, when
used as a multiplier, turns a two into a one, a one into a two, and leaves
8 zero unsltere.. We can ask children to find a partner for each plcture
so that for each picture there is always a definite rule that glves another
picture to go with it. They will very soon get to the point of saying:
"Yes, every time there are two trees in a picture, its partner will have one,
or 1f it has got two houses, its partner will have one, and i1f it has got
one bird, its partner will have two. If it has got none of something, its
partner will not have any of that either, and so on."
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In this case, the partner-picture and the plcture can be stuck back to
back so that instead of 26 pictures we now only have thirteen. If we play
the addition gsmes with these cards, we obtain the thirteen teams of our
initial problem in the following way. We draw the 26 pictures in pairs.
Then, if we are given any two double-pictures, only two further double-pictures
cau be obtained by modulc three addition.’ By this means, we obtain a second
pair of double-pictures. In other words, we generate sets of four pictures
in which the initial pair is included. Therefore, we have constricted a model
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of a geometry in which a "line" will contain four "points" and every "point"
will have four "lines" going through it. Very soon the children will associate
the names of;the thirteen children to one of the double-faced cards, and they
will have.an idea of how to play the game.

In this wAy we have generalized from three points in a line to four
points in a line, but of course we have neglected to generalize from
points snd lines to points and lines .nd planes. We have also neglected to
abstract, because we have not provided several embodiments. To do 80, we
would have to find some kinds of interesting isomorphisms that can be
established between a new embodiment and the one we have already established.
The search for such isomorphic embodiments should form an important part
of the stock in trade of the imaginative mathematics teacher of the future.

O O A
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Here is such s new embodiment. It is possible to take figures of
people instead of circles, squares, and triangles. When the geometrical
figures are overlapping, the people could hold hands. We would need three
kinds of people. If we want to use the children in the class, we can
make two kinds of hats. One kind of hat 1s put on some of the children,
another kind on the other children, and the remaining children would
wear no hat. For example, children that correspond to overlapping figures
of the () , [] , [3 game will hold hands, and the children that
correspond to non-overlapping figures will stand apart to make the distinction.
In this wsy, we can generate the thirteen elements of this geometry out
of real children or out of plastic figures.

It will be interesting to pose the probleh of which of these new
elements correspond to which of the pictures in the thirteen double-faced
picture game. The correspondence is very simple. We have to assoclate
squares, circles, and triangles to the three different kinds of objects .n
the pictures. For example: a tree could be & triangle, a bird could be a
circle snd s house could be a square. Now if there are the same number of
trees as birde on a card, then on the back of the card there will also be
the same number of trees 2s birds because this property is not altered by
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takingfthe additive inverse. In this case. the circle and the triangle
will be overlapping. .If there {s a2 different number of trees from birds,
the circle and the triangle will be separate. If there 1s no bird, then
there will be no circle; if there 18 no house, there will be no square,
and 82 on. Now if the children have discovered how to find the missing
two double-faced pictures, given any two double-faced pictures, then they
should be given the task of finding the rule of how to determine the other
two of the geometrical figures when any two of them are given. In Other
words, what 15 the necessary and sufficlent condition that four of these
figures should be "aligned." They will very soon find a necessary condition.
A necessary condition 18 that in the set of four there should be three of
each figure of which there are any. For example, if there are any circles
at all in the set of four figures, there must be three circles. The same
must be true for the triangles; if there are any, there must be three.
Unfortunately, this 18 not a sufficient condition.

The necessary and sufficient condition i: rather complex and can.be
expressed disjunctively as follows: given fous figures, they are aligned
i1f and only if for each one of the three possibi> pairs circle-triangle,
circle-square, triangle-square one or the other of tne following is trues

a. The palir occurs In the same way three times, and 1s missing
altogether from the fourth picture, or

b. the pair occurs in all four possible ways: That is, overlapping,
separate from each other, the first one without the second, and
the second one without the first.

occuring three times o apping and the fourth time no square and no
triangle, n¢ we may hav he square and the triangle cccuring ounce over-
lapping, once separate, once the square without the triangle and once the
triangle without the square. This i1s quite a sophisticated, disjunctive
necessary and sufficient condition. But, children of nine or ten are
able to handle this degree of complexity, particularly if they have been
brought up to consider disjunctions and conjunctions 45 part and parcel
of their logle coursc.

For example, in a\@t of four, we may have the square and the triangle

Representations

We have sketched a generalization exer.ise from the seven-game to the
thirteen-game, meaning that from three elements aligned, we now have four
elements aligned. We have also sketched an abstraction exercise of the
thirteen game by giving two different concrete models of the same abstract
structure. It 1s time to find a representation.
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13-game

Here is a representation of thirteen elements, twelve elements
placed around a center. The thirteen sets of four are arranged in four
shapes. There are three lines, three crosses, three triangles, and
four Y's. One of the Y's is in the middle and the other three Y's are
around the sides with the filled-in circle in the middle. The crosses
have t.ue filled-in circle at the base and the triangles have 1t in the
midddg of the mid~point of the base. The triangles are igosceles. In
this way, the arrangement 1s completely symretrical about the three
axes of symmetry of the figure.
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Y-shapes Z/’

Let us now go back to consider the fifteen-game, This can also be
symmetrically represented about three axes: whatever happens on one side of
an axis, happens on the other side of the same axis also. It 1s interesting
to give a certain number of requirements in this game as to where the triads
should be situated and see what kind of solution the children come up with,
while aatiafying the requirements. It will also be interesting tc glve some
requirements which fully determine the solution and others which do not,

For example, if we require that the triads should be spaced starting from the
vertices of the triangle as well as along the inner, the middle, and the outer
triangles, then the positioning of the rest of the triads is determined. But
if we require the "knight's” moves and the straight line segments from the
vertices but only those along the s.Jes, then the solution 1s not determined.
In the thirteen game also, the solution given 18 not unique but there are not
too many varfations possible.

O
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We have not generalized the 13-game to ir-7-de an extra dimension.
To do tiis, we can generalize the four elemen a line problem to a
problem of points, lines, and planes. This ca. be done by having four
shapes instead of threze. T e same rules apply for generating "four-somes'
as in the i3-game, There will be forty possible points, a line will have
four points, and a plane wi{ll have thirteen, This is an easy generalization
to make, once children have played with the three shapes, they will generalize
to four shapes. This 1s an example to show the kind of situation which we can
contrive so as to train a child's direction of thinking towards generalization
rather thar towards learning by rote what the teacher presents,

The 40-game

Aruitoxt provided by Eic:




Two Different 31-Games

There 1s another interesting 3l-element extension that could admit two
possible solutions: One of these extensions cau be derived from the one-
hundred and twenty-five element vector space, itself based on the five element
field., We can also derive one from the thirty-two element vector space that
is based on the two-element field. In this case, we remove the empty set and
we have a thirty-one element projective geometry which consists of either
thirty-c-e objects with five different attrihutes (each attribute having
two dif ferent values) or of sets of objects ma’e up out of sixteen red ones,
sixteen blue ones, sixteen yellow ones, sixteen green ones, and sixteen black
ones. Out of these we could make thirty-one sets in such a way that no more

S than one of each coler {s put in each set, not counting the empty set. The
same rules as before can apply tor making the triads. The following diagram
will act as a representation which takes account of the fact that we are
dealing with the fifth power of two. Children will readily place the singie-
element sets round the first "circle"”, the two-element sets rcund the
second "circle”, and so on. ({see diagram below)

The First 31-Game

Many triads will readily be found, such as (ab, ac, bc) or (a, abcde,
bc le). There are extensions (i.e., piage-) of seven, and "super-extensions”
(1.e., spaces) of fifteen. It will be interesting to find at least some
of these.

Suggest ions such as "'Try to make your arrangement lcok pretty'" will
encourage children to look for symmetrical solutions.
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If each letter is drawn as a flowe. of a particular kind, the above
distribution provides an interesting bouquet:

Intev~3¢ingly enough we can build a thirty-one element geometry out
of the 125-element three dimensional vector ‘space. In this case, children
need to draw 124 pictures with trees, birds, and hLouses. They are allowed tc
draw either zero, or one, or two, or three, or four of each kind of object.
So the largest number of objects on a picture will be four trees, four birds,
and four houses. Before they can build a geometry out of this, they will
have to know about multiplication modulo five. For exemple, 1f{ we take a
plcture witl, one tree, two birds,: and three houses, and "multiply by two"
we shall have two trees, four birds and cne house. If we multiply &gain by
two, We shall have four trees, three birds, and two “ouses; if we dc so
again, we should have three trees, one bird, and four houses. Of course,
if we multiply again by two we get back to one tree, two birds, and three
houses. In other words, instead of putting the pictures in pairs as we
did when we had twenty-six pictures, we will now have tc put them in sets
of four. So the pictures just described would have to be stuck on a large
plece of cardboard and be considered as one element. In this way, instead
of 124 elements, we will have again the magic number of thirty-one, and we
can play the "adding game". We will find that to each pair of four-somes
of pictures, will correspond four other four-somes and no more. This is
naturzl because to any two vectors represented on the two four-somes of
pict.res, by adding we can obtain any member of the two dimensional subspace
in the c(hree dimensional vector space. This subspace will contain twenty-
five elements 1f we include the empty set, which represents the zero vector.
So it is not surprising that we only obtain twenty-four pictures and the
empty set, repre.enting the twenty-five elements of the two-dirensional
subspace. At this point, the wathematician csa perform a slight pedagogical
cheat, because he knows in advance how the game 1s going to work out. The
mathematiclan can use his mathematical knowledge to help chi¥dren have fun
in discovering mathematics that we ourselves were probably shown ready-
nade by some teacher or professcr.

To map the path for our young clients, we must provide another embodi-
ment of & situation in which a one, two, three, & two, four, one, a four,
three, two and the three, one, four are represented by one and the same
diagram. Here 1s a suggested solution to this psychological problem:
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The problem can be put in the following way: the dlagrams are drawn on
one sice of a card and the four corresponding vectors (i.e., those that
belong to the same one dimensional vector space) are written on the other
sid:. Children have to practice telling what vectors are on the other
side of a diagram and what diagram is on the other side of a set of four
vectors. To solve this transcoding problem, they have to find out what
is constant as they go from one vector to the next on the same card. How
is one, two, three, like a two, four, one? It is not difficult to sgee.
Tvo 18 the double of one, and four 18 the double of two, and three is
aultiple of four of two, and one is nultiple of four of four, and so on.
In other words, the digits are in the same proportion to each other in
123 as in 241. This 1is something children will discover with freat

pleasure; They will probably write: 1@ 2@ 3 and 2 4@1.

Duality

Now let us come to another interesting point. There is a principle of
duality at work in these games. Take for instance the seven game or the
thirteen game or any other similar game. The problem is to find corresponding
names for the dual objects. For instance, let us draw the diagrams for the
"points” in the thirteen-game in black, and then draw the corresponding
diagrams for the "lines” in red. Therc will be thirteen red diagrams, each
diagram representing a line and thirteen black diagrams, each diagram repre-
senting a point. So each red picture corresponds to Just four black pictures.
But each black picture corresponds to exactly four red plctures. For
example, 1f we take the ptcture of the red circle by 1itself, it will be
associated with the black triangle, the black square, the black triangle-
square overlapping and the black triangle and square separate. In that case,
if we take the black circle, this black circle should be associated to
the red triangle, the red square, the red square and triangle separate, and
the red square and triangle overlapping. The problem of naming the lines
by means of red diagrams amounts to asking which set of four black ones
should be associated with which red diagram and visa-versa. The solution
to this problem in the case of the seven-game and in the case of the
thirteen will be found in the following diagrams.

O
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Duality in the 13-game

Sets of "black figures "Red" figures
(sets of "points™) ("1ines" )
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Naturally, for the other games in which there are points, lines and
planes, the problem 1s more difficult. Points have to correspond to
planes, and planes to points, and the lines correspond to lines in this
duality. So for example, in the fifteen-game each plane or extension as
we called it, should correspond to one and only one point, and the name of
that plane should be appropriately chosen so the seven points it contains
should be able to be translated into the seven planes that pass through seven
points which should have the same red names and so on. So, again the duality
can be extended from two to three dimensions, from three to four dimensions,
and so on. Here is one way of solving the "naming problem’ for the fifteen
(15) extensions.

a, b, ¢, ab, ac, be, abc D {
b, ¢, d, be, bd, cd, bed A
a, ¢, d, ac, cd, ad, acd "B
a, b, d, ab, bd, ad, abd c
¢, d, cd, ab, abc, abd, abed AB
b, d, ad, ac, abc, acd, abed AC

. b, ¢, bc, ad, abd, acd, abed AD
a, d, ad, bc, abc, bcd, abed BC
a, c, ac, bd, abd, bcd, abcd BD

. a, b, ab, cd, acd, becd, abed cb

d, bc, bed, ab, abd, ac, acd ABC
¢, ab, bd, ad, abec, bed, acd ABD
b, ac, cd, ad, abc, becd, abd ACD
a, be, cd, bd, abec, acd, abd BCD
ab, cd, bc, ad, ac, bd, abed ABCD

Further Possibilities

We can make up a 21-point geometry, 1f vector spaces based on
Galois-fields are known. Take for example the 4-element Galois-fleld
and the 64-clement three-dimensional vector-space based upon it. We
remove the neutral as usual and obtain 63 elements. These can, for exanmple,
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be "played with" by representing them as 63 houses, as shown in the following
figures. In the vector addition two similar windows yield no window.
Naturally the left, middle, and right windows have to be taken independently
of each other. For example:

Dg+an@: a o

The sc ars are: v xJ nothing changes
-0 ~0—080——08
C 0)
3) x l’ [] ———-a-l‘ —-———»-l:
o )

Houses which are "products' of each other, belong to the same village.
For example:

ogb a (= Y = O

These form one village.
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If we pick any two villages, by "adding,” we can determine three
more villages. A set of five villages so determined could be called a
town., A "town" will be a "line" and a "village' a "point." For example,
take the following two villages,

a
DDU Ca o

g o o
/____'_\
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By "adding house to house,” we obtain these three villages:
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The five villages together form a town,
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There are 21 such villages, If we denote no windcw by O,
Obyl, O by 2and @ by 3, each house will be numbered.
Here are the 21 villages:(J

001 010 100 011 101 110 120
002 020 200 022 202 220 <30
003 030 300 033 303 330 310
210 102 . 201 012 021 11l 311
320 203 302 023 032 322 122
130 301 103 031 013 133 233
121 131 112 113 123 321 111
232 212 223 221 231 132 222
313 323 331 332 312 213 333

Each village can be represented by a figrre in ordesr tc emphasize
that our new units are now villages (i.e., "pcints") and not houses
(i.e., vectors). For example, the following figures can be used,

A O O W @& @ 0O
od oA OA OA DA O OR

, ~
RO KO @A %{.\ COA ODA (g

-
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Representations can be found in many different forms. For
example:

Some of the arrows can be put in to show whev¢ the "five-somes" or
towns' are. Each village has an "emblem" and eacn town has five emtlems,
taken from {ts villages. Naturaily the inhabitants and town governments
need to be very cooperative, since every palr of towns has one village in
common, and every village pays taxes .o five overlapping towns.

* Summary
N

A number of examples have been given to illustrate some of the initial
stages of the aberrdacticn and generalization processes. In the abstraction
prucess that leads tc the eventual formation of a fcrmalized concept, there
are many stages. The first is always a somewhat groping stage. a kind of
“trial and error' activity; this is usually described as play. The restrictions
in tue play lead to rule-beund play or gares. This has been well represented
in the present paper. The next stage is the identification of many different
games possessing the same structure. Thir 18 the stage of the search for
isomorphisas. When the irrelevant features of the many games have been
iscarded, we zre readv for a representation. Such are the many "link"
diagrams suggested. It {s only when tu.: stage has been reached that it
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{8 fruitful tu use a fully symbolic language, the development of which
will be a later stage in the abstraction process.

The abstraction process should not be confused with the generalization
process. Passing from 3 points in a line to 4 points in a line, or even
more so to an infinite number of points in a ilne is generalizing. Acquiring
a deeper understanding of the concepts of point and line through comparisors
is abstracting. Bringing in another dimension is generalizing, under-
standing more deeply what is meant by dimension is abstracting.

It is hcped that through playful activities such as the ones that

have been described, these exciting processes could be made available to
more and more children.
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AN APPLICATION OF PIAGET - COGNITIVE
DEVELOPMENT RESEARCH IN MATHEMATICAL
EDUCATION RESEARCH

Leslie P. Steffc
Cniversity of ceorgia

The projems of mathematics and logic are independent {bu® uot
separate) frbm problems of the psychology of mathematica® learning. Attempts
to solve p-oblems in mathematics or logic by usiig psychological methods
(psychologism) are rejected and, reciprocally, aitempts to solve psychological
problems sclely by using logical or mathematical methods (logicism) are
rejected. Psychologists do not, however, advocaie a complete separation of
mathematics and psychology. On the contrary, a close correspondence exists
between certain basic "logical-mat. ematical' structures and the cognitivs
operations of the child, where the "logical-mathematical" structures serve
a8 models for the cognitive operations. This correspondence has been
elucidated by the Genevans in their developmental analysis of logical-
mathematical thought. Aside fror the basic empirical work by the Geneveaus
(on number, geometry, space, logical propositions, functions, probability,
time, etc.), it 1s this correspondence and its accompanying thenry which
has held the fascination of mathematics educators in the United States.

A point which needs emphdaris {s that while logical-mathematical
structures are used by the Gerevans to describe the natural thought of tte
child, these structures 'do not corresponi io anything as such in the
subject's conscivus thought (Beth & Plaget, 1966, pp. 167)." A sharp
distinction has been drawn between the protlems of psychology from a
genetic viewpoint and the problems cof Education in mathematics.

No subject, before he has learnt 1t, has a concept of what

a group, lattice, topological homeomorphism, etc. is .....

Thus 1t is not in the field of retlective thought ... that we
shall ask whether these Structures are 'natural' ... we can thus
'largely set aside the most awkward factor in the attempt to find
a genetic anslysis: namely, the factor of edu-ational and
verbal transmission (Reth & Piaget, 1966, p. 167).

In their studies, the Genevans claim not tc reduce natural thought tc iormal
structures but, instead, to use the formal structures to describe natural
thought as it develops in the child--making every effort (a) to be cog-
nizant of limitations of natural thought ard (b) to arrive at the most
rudimentary structured wholes. These ruuimentary structured wholes possess
specific laws of combinarion (e.g. reversibili:y) as well as exhibit a
generality of form across their contents (i.e., the "grouping” structure).

In contrast to these genetic stryctures are the structures of mathematics
proper. Throughout the ages, mathematiciars have given definitions of such
entities as set, number, point, and line; all objects of mathematics. In
modern pustulational developments, such entitier 2re left as undefincd objects
or are defined {n t<rms of other undefined objects. In fact, a clear
perception of the necessity of leaving certain oblects of mathematics
undefined led Courdnt and Robbins (1941) to cosmment that 'a dissubstantiatior
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of vlementary mathematical concepts has buun one of the most important...
resuits of rhe modern postulational devedopment (p.xix)." As exemplifi-
cation, consider objucts called '"vectors," The term "vector" has been
defined as a quantity which has direction and magnitude (Phillips, 1933,
p.1). This definition ts of lLittle algebraic importance because objects
ox.st which do not scemingly fit the definition but yet, alohg with certain
operations, satiasfv the'properties of a vector space. An example is {é;
set of infinite se. ~-.-- of elements taken from an arbitrary fileld< These
objects car be cons as vectors, because if an appropriate set of
scalars is chosen 4 . appropriate operations defined, irfirite sequences
satisfy the properties of a vector space. Certainly to view a vector as an
infinite sequence is different from viewing a vector as a quantity which
has direction and ragnitude. While each interpretation of "vector" has
associated reaning independent of the structure of a vector space, the
ultimate test of whether the objects are classifiable as "vectors'" depends
on the structure of which they form a part. In abstract treatments of
vector spaces, the cbjects are left undefired.

The learner 2f{ matheratics usually does not gain knowledge of vector
spaces by studving only abstract structure. The processes dnvolved in
acquisition, by the learner, of mathermatical structures are complex and,
until quite recently, have not been an oblect of research- Indeed, although
the identification of genetic structures by the Genevans is a profound
contribution to research in mathematics education, the lattrer research area
contalins elements'not directly studied b§ Piagetians: In ugphenatics edu-
cation, the student is generallv expected to become explicitly {consciously)
awvare of the mathematics being taught. As already noted, the operational
structures of intelligence identified by the Gerevans are not present in
the ~ind »¢ the child as conscious structures. while these genetic structures
mav serve as mechanisms to gulde reasoning of the child in the acquisition
of ~atheratical knowledge, the mathematical knowledge ray rot be at all
tsomorphic to existing genetic structures. In fact, certain mathematical
stractures Tay be rore parsimonious rodels of cognitive operations than are
lgentifiable genetic structures.

Piaze: (Beth ard Plaget, 1966) has been somewhat avplicit abcut

{~iiarities anc 1iffer_1ices ne perceives in mathematical and genetic
structures. umne difference is thar, while the mathematical structures are
the object nf reflection on the part of the mathematiciar, the genetic
structures are ranifested only in the cuurse of the child's behavior. A
second crucial difference is that, in the matheratical’structures; the forr
15 independent of rhe rontert; whereas, in the genetic structures (ot least
ar the concrete ~pernt. nikl stage), the form 1s inseparable from the ccntent.
Another difference is that, in che mathematical structures, the axiems ire
the starting pcint of for—al deduction; whereas, in the genetic structurcs,
the laws dre the ru.a~ wrich the child's deductions obey. Similarities
also exist. Relations (operazions) in mathematical structures® corr apend
td~operations in genelic structures and the "conditions' of the relatlons
'n mathematical strucrures correspond to the ¥laws of cembination™ =
geneti~ structures. The construction of matheratical ertities, thar.

I Hore Praget restricts himst ' to the three hasic structureg--alpt H-a°C,

relattonal ; and topological

w
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"is an enlargement of the clements of natural thought and the construction
of M (mathematical)? structures an enlargement of particular mathematical

entities (Beth and RBiaget, 1966 p. 189)." This hypothesis 1s extremely
intriguing and certainly deserves rigorous testing. If it can be shown at
the outset tnat certain mathematical structures are more parsimonius models
~€ genetic structures than are grQuping structures, the job of testing such
«n hypothesis would be aided, but not necessarily made easier. In the face
of the above stated similarities and differences between genetlc structures
and mathematical structures, Bellin (1971) has succinctly expressed the belief
that "little' effort has been expended in testing the relations between the

;conceptual systems of mathematics and the cognitive systems of the child
except in the most limited of circumstances (p. 118)." The remainder of
this paper 1s devoted to an analysis of certain mathematical and genetic
structures and a ‘discussion of selectcd series of experiment®.

Genetic Structures and Mathematics Structures

In The Child's Conception of Number, Piaget apparently had two goals.
The first waz to demonstrate stages in the development of particular concepts .
and tne sewond was to demonstrate the development of a conceptualizing ability
underlving the formation of a host of concepts, 1.e., demonstrate existence
of genetic structures. While the data presented in this book are "old," the

basic theory of the Genevans concerning the development of number in the child |

has not changed subpstantially over the last three decades (Plaget, 1970; Beth
and Piaget, 19667 Sinclair, 1971). Four main stages have been identified in
the development of this conceptualizing ability: (a) sensory-motor, preverbal
stage; (b) preoperational representation: (¢) concrete operations; and (d)
formal operaticns. Concrete operations are a part 2f the cognitive structure
of children from about 7-8 years of age to 11-12 vears of age. Fiaget (Beth
and Piaget, 1966, p. 172) postulates that such cognitive structure has the
form of what he calls "groupings" in which concrete operations are central.
While an operation is zn intericrized, reversible action always part of a
total structure (Plaget, 1964, 32ff), concrete operations are those operations
which occur in the manipulation of objects or in their representation accom-
panied by language (Beth and Plaget, 1966, p. 172). In other terms, 'concrete,
in a Piagetian sense, means that a child can think in a logically coherent
manner about objects that do exist and have real properties and about acticns
that are possible--a child in the stage of concrete operations can perform
mental operations in the immediarte absence of the objects. All of the
grouping structures known reduce to a single model where the differences

in the groupings reside in the various operations which are to be structured.

.

Grouping 1.

L 2
,In The Psychology of Intelligence, Plaget (1964b) selects special classes
for part of the elements in the first grouping discussed (in the context of
a zoological classification). These classes satisfy the following pattern=
¢$CA1CA,CA7C ... CAg where 2€ B, the index set. This chain of sets
constitutes a lattice. 3 In the latrice, the following laws of classes hold.

<

2 Added by author.

3 Sec the appendix for a discussion of mathematical terms used in the paper.
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1. XVUX = X: Idempotent Law

\
2. XUY\- YVX: Commutative Law

3. (XUY)U Z = XY(YVU2Z): Associative Law
. If X€Y, then XUY = Y: Resorption Law

This lattice structure does not constitute the first grouping. Classes of
the form Ao' = A, - A, where AgC Ay are also included. The classes Ag'
along with the elements of the lattice are the elements of this first
grouping. These elements satisfy the following laws.

1. AgVAq' = A,: Combinativity '
/2., If AU Ag" = Ay, then Ag' = Ay - Aj: Reversibility

3. (AUAG"UAy = A, U (Ac'V Ay): Associativity
]
4. AgWV¥é = Ag: General Operation of Identity N

5. (a)Ao VA, = Ay (b)Ao”Av = AY where AO(.AY:‘ Special Identities

This grouping describes essential operations involved in cognition of simple
hierarchies of classes. Proficiency with the use of the class inclusion
relation is thereby essential in the establishment of operatory classification.
A more general representation of the grouping structure than that given for
Grouping I above has been given by Piaget (Beth and Piaget, 1966, pp. 172-173).
Although this general representation is not rgproduced here, it is important

to note that the interpretation given for Grouping I satisfies the require-
ments of the more general system., .

Grouping II . -

The second grouping discussed is commonly referred to as addition of
asymmetrical relations--Piaget's Grouping V. The asymmetrical relations
referred to are interpreted as relations which are connecfed, asymmetrical,
and transitive (connected strict partial ordering If A is a set and "<"

a connected strict partial ordering defined in A (which well orders A) then
the elements of A form a chain, which implies that the ordered set A is a
Lattice. If a; 1is the first element of A, ap the second, a3 the third, a,
the fourth, ag the fifth, etc., then it is true that a; <ajp, a;<asy,

a; < a4, 8, <ag, etc. If these instances of < are denoted by a, b, ¢, d, etc.,
dllen the diagram in Figure 1 is possible. Combinativity relies on the
transitive property of the order relation involved. That is, if ay<a, and
aj< a,, then a, <a,,
2°5 173 a a' b'+ ' a'

< < <a, < < o
81 a a dlb 35 a6<

Figure 1

O
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The special notation a + a' = b is also used to represent the same property
(Beth and Plaget, 1966, p. 177). The notation of this latter representation
seems to be more suggestive of a grouping structure as the following
contiguous compositions are highlighted. '

1. a+a'=>b .- ’ B

2. b+b'

c M
’ 3. c+c'=d v

hy d+d' = e, etc.
A reason for Introducing the notation a, b, ¢, d, etc.; a', b', ¢', d', etc.,
other than its being suggestive of a grouping structure, is that it allows
the following comparisons-- aba{c, etc. Here, "' denotes an ordering of

*

instances of the relation "<'" --a hyperordinal relation (a relation between
relations) has been defined where “'a" depotes a 'smaller" difference than
dOes "bll' .

Compositions such as a'+ b', b' + c', etc., are ; sible also by virtye
of the transitive property, but not a'+ ¢'v Elements of the grouping then,
are instances of the relation "<" (e.g. ay<a., which is just b'+ c').
Assoclativity holds naturally because of the transitive property of the
relation, but 1t Is a restricted associativity due to the restricted possible
compositions An exanmple 1s (a + a ' b'=a+ (a'+ b')sor in other terms,.

, [(a; <az, and (ap< 33)] and (a <a;) is equivalent to (al< az) and [(32< 83)
and (ay<ay)] 1n the sense that they both imply aj<a,. Other grouping
propetties, however, appear to be rather artificially imposed by the grouping
structure. Of the three remaining, reversibility is most viable. Reversi-
bility is distinguished at two levels. The first level of reversibility
consists of permuting the terms of an instance of the relation, permuting the
relation, or both. 1In symbols, R(a <a,) = aycaj; R'(a; < ay ) = a,>a;; and
R"(ag <ay) = ay >ay (Beth and Piaget, i966 p. 177). e second eve
reversibility involves operations concerned with these relations. Piaget
(1966, p. 177) corbines an instance of a relation with 1ts reciprocal
(with R,R', and R") in the following three ways. The first is only. possible

1. (ai‘ aj) + (aj< ai) z (ay = aj)
2. (ai< aJ) + (ay> aj) = (a1 = aj)
3. (ag< aj) + (dji ai) T (ag < d3)

if the relation is antisymmetric. The second, logicilly, 1is just a
restatement of the first. The third 1s certainly lomically valid regardless
of the properties of the relaticn. So, (1)-(3) are not taken to express
reversibility of asymmetric transitive relations at the second level. The
second level of reversibility assoclated with asymmetrical transitive re-
lations involves instanhces of the relation a4 <a, and its reciprocal R".
Piaget (1966, p. 178) defines reversibility at tge second level by the
folTowing two statements. .

’
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1. .(81<a3) + (83>82) - (;111<82)

2. (a3 <az) + (82> al) = (a1 = al)

The second statement 15 interpreted ab a suppression of a difference which
leads to a relation of equivalence (Bet: and Piaget, 1966, p. 178). In the
first statement, 8) <8, must be known a priori because it is not possible to
conclude that aj <8, based on how a; 1s related to a, and how aj 1s related
to a, (one could also say that a; = 8) needs to be krown a priori). If a;>a,
représents a ""diffefence' which 1s "suppressed,” then aj <a, is "left."

Now it 1s apparent that an operation which is distinct from that.made possible
by virtue of the transitive property has been identified. In effect, the
operations exemplified by (1) and (2) directly abpve assume that the series
a)<a,<ay <. has been already produced (or constructed) and 1is at best

a model o? how a child, once he has already constructed a series may, for
example, start at a, and proceed to a; and then back to ay, the starting
point. Because the operations associated with reversibility~§t the second
level are distinct from the operations made possible by virtue of transitivity
and assume that a series has already heen constructed, they are not v.ewed

by me as germane to a model which describes mental operations involving
production of a series by a child. It this sense, composition of an instance
of a connected, asymmetrical, transitive relation with its reciprocal (RS
seems to be a result of an imposition of a general structure. From this
position, it 1s a long way to a wholesale rejection of reversibility by
reciprocity. Plaget gives , in at least three different sources (Inhelder
and Plaget, 1969, p. 292; Piaget, 1970, p. 29; Plaget, 1964a, p. 130), a
discussion of reversibility by reciprocity as it pertains to a seriation of
sticks task. Children who display operatjonal seriation find the very
shortest stlck, then look through the remaining sticks for the shortest

one left, etc., until the complete series of sticks 1is built (assuming no

two sticks are of equal length). The reversibility displayed in this task

is described as follows: 'When the child looks for the smallest stick of

all those that remain, he understands at one and the same time that this
stick 1s bigger than all the ones he has taken so far and smaller than all
the ones he will take later (Plaget, 1270, p. 29)." Symbolically, if P

is the set of sticks taken and Q the set of sticks that remain, then the

set of all sticks S = P + Q. Moreover, P is a segment of S and is well-
ordered by '"shorter than," Because "shorter than' well orders S (assuming

no two sticks of S are of the same length) there exists a y €Q where, 1if
x€P, x 1s shorter than ¥y and i1f z 18 any other element of Q not equal to

¥, y 1s shorter than 2. This is the structure (mathematical) that allows

the child to operate as he does. Piaget's reversibility in this context

is an understanding by the child that y 18 longer than any x in P and

shorter than any other z jn Q. This statement of reversibility has as a
necessary condition Plaget's reversibility at the first level of reciprocity.
The fact that x is shorter than y 18 equivalent to y 1s longer than x involves
permuting the terms of the relation as well as the relation (R"). For

the child to realize that each x in P is shorter than all y in Q does not
seem to demand a knowledge of transitivity because that was precisely how

the x's were chosen. However, in choosing the x's the child must use
transitivity and possibly reversibility at the first level of recdprocity.
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Moreover, R and R' are involved in the statement of the asymmetric property
of '"shorter than." It seems to me, then, the models of reversibility in
the seriation of strings task are given by R, R' and R" and not by models
of reversibility at the gecond level. ° )

It 1s only prudent to point out at this point that a mathematical model
exists which can be used to encompass most of the operations Pilaget wants in
Grouping V under a unique well-defined mathematical operation. This mathe-
matical model is just the realization of the integers as ordered pairs of
natural numbers. Obviously, the natural.numbers form a well-ordered set
ordered by the connécted, asymmetric, transitive relation < . In n is a
natural number, the segment determined by n ({0,1,2,...,n-1}) 1is similar to
any of Piaget's Grouping V ¥or some n, so that this discussion 18 rot super-
fluons. An ordered pair (a,b) of natural numbers is taken to represent the .
difference b-a- In such case, (a,b) ® (c,d) = (a + ¢, b + d) 1s the definition,
of addition of ,two pairs. The two ordered pairs (a,b) and (b,a) are called
inverses of one another because (a,b) @ (b,a) = (a +b, a +b), and (a + b,

a + b) 18 just (0,0), the identity element of the system. Moreover, (a,a,) ®
(a3.az) - (al,az) and (a;,a )@ (az,a ) = (a ,al), which are analogous to the
two statements of reversibifity at thé secon& lével. Also (al,a ) 6)(a7,a ) 1s
an example of a compasition not possible in Piaget's Grouping. ;he assumption
is made here that addition of natural numbers exists as well as natural numbers,
neither of which is assumed fn Grouping V. It is true, however, that

whether (a,b) represents a' difference or an order (a<b) is innocucus. -

So, a mathematical model exists for which a neat interpretation of (a<b; +
(b>a) = (a=a) 18 possible. This model, however, is more general than
Grouping V in that more than crtiguous elements are combinable and the

natural number system is assumed. It 1s the only model known to me which
encompasses most of Piaget's Grouping V operations under a unique well-defined
operation and makes precise "suppression of differences,"” but yet does not go
way beyond thz Grouping V structure.

The fact that Plaget's operations of Grouping V are so well-modelable by -
addition of integers raiges the question of whether reversibility as the second
level of reciprocity ‘ie any more than operations with integers. This interpre-
tation has sound mathematical foundations because an ordinal number is identi-

fied as a well ordered set 80 that reversibility at the second level of
reciprocity may be interpreted as the difference of ordinal numbers. .
|

Questioning the relevance of the second level of reciprocity to seriation
tasks leads directly to questioning the relevance of the general identity. The
general identity 1s taken % be'an equivalence relation (Flavell, 1963, p. 182),
that relation obtained from the second statement of the second level of
Teciprocity--(a; <a,) + (a,> a)) = (ay = a;) (in Plaget's parlance). By
substitution in the”sum (aj <ay) + (aj = ay), one obtains (through associating
terms) [(al< a;) + (py<a %] + (ag > al) - %al - 81)6 The first sum 1is
(al< a,) and tge second {8 (a, = aj) which shows the nonassociativity of
special combinations 1n‘Grouping V structure., It should be noted that this
notation introduces a relation of equivalence (a1 = a)) apart from the
set A and the order relation < .

k]
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The gpecial identities are of the form (a, <a,) + (a)<a;) = (a) <a,),
where a, <a_. Even if this statement .l taken to mean that 1f a, <aj; an
a; <a,, thea a, <aj wheneVer aj <aq, it 1is rather innocuous to the relational
structure of <. Empirical evidence is quite:scanty that special identities
model any sort of thought in the child. In fact, Flavell (1963, p. 193)
does nat even mention them in his summary statements concerning empirical
.evidence for existence of Grouping V nor does Beilin (1971) mention- them in
his review of training studies concerning logical thinking. In such training
studies, experimenters generally focus on conservation, transitivity, class
inclusion, or reversibility (Beilin, 1971). Hence, similar statements may
be made regarding the genersl identity and associativity. Pilaget apparently -
assumes, as noted by Flavell (1963), that "where reasonable evidence for one
or two components 1s found, the existence of the grouping structure as a whole
can be inferred (p. 190)." K

In view of the foregoing discussion, there seems to be little reason to
go beyond the relational structure per se in the case of connected, asymmetrical,
transitive relations for a model of intellectual operations modeled by Groupirg V.
Piaget (1964a) himself has commented, "'The criterion for the psychological
existence of relations is the ... construction of their logical transitiviey -
(or, 1f they cannot become transitive, the justification for their non-tran-
“sitivity) (p. 11)." One should not misinterpret the assertion that there seems
to be no reason to go beyond the relational structure Der se in the case of
connected, asymmetrical transitive relations to find a model of intellectual -
operations concerning those relations, to mean that the grouping cannot be a
model. The simple fact that it has been applied as a model counteracts such
an interpretation. In that application, however, one'has to be willing to
accept the conditions of the application. By not accepting all of the condi-
tions, new problems are opened in mathematics education, problems which may
be important not only in mathematics education, but also in cognitive develop-
ment theoty.

Before elaborating more on these problems, it is necessary to further
discuss Genetic Structures. Three remaining grouping structures are of central
interest: Grouping IV, VI, and VIII~-Bi-Univoeal Multiplication of Classes,
Addition of Symmetrical Relations, and Bi-Univocal Multdplication of Relations.

Grouping VI

The symmetrical relations dealt with are not necessarily reflexive or
transitive. This fact complicates Grouping VI and intrcduces special re~
strictions on combinativity. For example, 1f aRyb means that a and b are
brothers anc aRgb means that 8 and b have the same grandfather, then from
asserting that aRbb and bkgc, it can be concluded that aR,c. Thus, it is
possible to "combine" two Telations which are distinct. e general identity
of Grouping VI is analogous to the general identity of Grouping V in that it
18 denoted by a = a (a 1s in an identity relation with itself)--that is, logical
identity. Reversibility is given by the symmetric property--if aRyb then the
reciprocal bRya 1is taken to be the inverse and is analogous to R" (or R') of
Grouping V. Flavell (1963, p. 138), in his analysis of Grouping VI, identifies
reversibility at the second level of reciprocity (also analogoue to that in
Grouping V) as (aRpb) + (bRba) = (a = a). This general identity also behaves
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according to the statement (a = a) + (aRpb) = (aRyb). .Special identities are
given by tautology (aRyb) + (aRgb) » (aRpb) and what is called resorption
(aRpb) + (aRgby " (aRSb)a

Logical Identity and Grouping VI

.

At 'this point, it is necessary to draw a sharp distinction between logical
identity and equivalence relations in general. Following Tarski(1954), the
statement "x = y" 1s defined as follows; "x ®» y if and only if x and y have
every property in common (p. 55)." From this assertion, one can conclude that
(a) everything is equal to itself (x = x); (b) 1f x = Y, then y = x; (¢) 1f x = y
and y = z, then x = z (thus "=" 18 an equivalence relation); and (d) if x = z
and y = z, then x » y (two things equal to the same thing are equal to each
other) (Tarski, 1954, pp. 56-57). Logical identity, however, .far from exhausts
equivalence relations. When two planar point sets--segments, triangles,
pentagons, e:hg--are called congruent, what is meant intuitively is that one can
be made to fit exactly on the otner. While more formal definitions for con-
gruence can be glven fGans, 1969, p. 20), it 1s only necessary to note that
congruence for planar point gets is an equivalence relation. It is not,
however, an equivalence relation in the sense of logical identity. For in =
triangle whose sides are congruent, one would no“~ say that the sides are
identical. There are cases, however, where it a queation of #the logical
identity of two geometric entities. Such cases may arise as special cases
of two distinct, but overlapping general properties--the altitude and median to
a base of a triangle are logically identical in the case where the triangle
is isosceles.

Other examples of the distinction between logical identity and equivalence
relations important in this development are set equality (an example of logdcal
identity) and set equivalence (an example of an equivalence relation but not of
Togical identity). Equal sets are equivalent but it is not necessary for
equivalent sets to be equal. Equality of ordered sets and set similarity is
another example of logical identity and of an equivalence relatioen which is not
an example of logical identity. Two equal ordered sets are certainly slmilar
but two similar Sets need not be equal (to be equal, they would have to contain
the same elements). In the example above concerning congruence of planar
point sets, if two co%gruen: point gete also contain the same poings, then
the sets of points are not only congruent, but are also equal (in the sense of
set equality) and hence are logically identical as well as congruent. o~

That the general identity of the grouping structures can be interpreted
as an aspect of logical identity is no exaggeration. Not only does Plaget
hypothesize that & fundamental grouPing of equalities occurs in disguised
form as a special case in all other groupings (Flavell, 1963, p. 187), but,
in his Heinz Werner lectures (Piaget, 1969), he also analyzes the development
of identity in the child in which he included a partial discussion of how i
identity 18 related to grouping structures. In the case of Grouping I, "in
an additive classification, ... we do have A = A, B = R, etc. but only on the
condition that A ~ A = 0 and A+ 0 = A. The identity, A = A depends on a
regulator, the ''identical operation" of a grouping, that is + 0; from this
point of view, identity has become operational only because it has been inte-
grated into a system of operations (Plaget, 1969, p. 21)." 1Identity, then,
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kan ipparently be view 18 an interiorized operatiogy at the level of
congrete operations

The above quotation can be interpreted as a conditlon for psychological
existence of the reflexive property of logical identity of set equality.
Logical jdentity is transitive, however, as well as symmetric. While both of
thesa properties are deait with by Plaget (1969), the first is 1in the com-
text of an experiment dealing with the growth of a plant and the second is

~ 1in the context of an experiment dealing with beads in two states—-as a
necklace and spread out in a box. An experiment dealing with logical
identity in the context of set equality would have to deal with the three
properties of get equality. So, only an aspect (reflexive property) of
logical identity is dealt with in this first grouping, and it is very
limited in that "the child of 7-8 years may be said to understand the
operation +A -A = 0, insofar as he knows that adding A, then taking it
awey, is equivalent to doing nothing ..s (Inhelder and Plaget, 1969, p. 146)."
The null class apparedtly is a later construction developing at 10-11 years
of age due to the fact that the concrete operations assume the objects do
exist. Since Plaget (1966, p. 176) clearly states that tne general
identical element of Grouping I 1s the empty class, the relatively late
development of the empty class (10-11 years) seems to be inconsistent
with the status of Grouping I. .

“Identity" appears as a preoperational notion but is not to’be taken
as a source of the groupings. Instead, it is to be considered as an
interiorized operation--a part of the grouping. In terms of Groupings
V and VI, identity must be interpreted more broadly than set equality.

As already noted, the elements of these two groupings may be conaiderpd as
instances of the tvelations which are organized. However, the general
identity of the two groupings 1s neither an order relation in the case of
Grouping V nor an instance of the syrmmetrical relati{on being considered in
the case of Grouping VI but is identifled in each case as an identity-~and
is now interpreted as uothing more than an aspect of logical identity.

Equivalence and Grouping V1

Set equivalence, set similarity, and congruence for planar point sets are
all examples of equivalence relations (symmetrical relations) which are not
examples of logical identity. In all three cases, one need not incorporate
logical identity in a statement of Grouping VI properties. If """ denotes
any equivalence relation defined on some set A, then a statement of combina-
vivity, "If a~b and brc, then avc," 1e just a statement of transitivity.
Reversibility becomes "If-anb and b~ a, then ana'; associativity is expressed
as "[(arb and brc) and c~d] 1s equivalent te [avb and (b~ c and cnvd)],"”
because each is equivalent to and; the general operation of identity is "if
ava and a* b, then av“b.," A statement of the special identities 1s not very
interesting, but, 1f the form given by Flavell (1963, p. 183) is adhered to,
"1f a~b and a~c, then a~c" 18 a statement of special identity through
“"tautology", that is to say, the statement is always true; From the statement
of the antecedent, one can conclude that b~vc, which to me is a strcnger
conclusion that an~c. At any rate, in the statzment of the grouping properties,

O
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no recourse to logical identity is necessary. It is to be emphasized that

the reflexive property of an equivalence relation does not express the same
thing as does the reflexive property of logical identity. To say, for example,
that a set is similar to itself is different than saying a set is equal ®
itself. Similarity implies one-to-one correepondgnce and order, whereas set
equality, in the sense of ordered sets. implies only.order and element
membership--one-to-one correspondence is not necessary to set equality.

The statement of the Grouping VI properties given above in the case of
equivalence relations were made possible not ohly because of the properties
(reflexive, symmetric, and transitive) of equivalence relations, but are
also a modification of the statements given for Grouping VI in the psycho-
logical literature. That modification is more than a modification of state-
ment frrms 1s quite apparent due to the fact that the statement of the
general operation of identity does not include a statement involving logical
identity. In the case of Grouping V (that concerned with connected, asymmetri-
cal, transitive relations), it has been already pointed out that reciprocity
at the second level (and hence, the general identity) 1is viewed as not being
germane to a model which describes mental operations involved in seriation
activities by young children.. This view 1 stronger when considered in the
context of logical identity, for logical identity is quite distinct from
the order relations described.

-

Partial Orderings and Grouping VIII

Mathematically, two distinct relationAl structures have been discussed
in this section--equivalence relations and connected, asymmetrical, transitive,
order relations (connected strict partial orderings). Logical identity was
considered as a special equivalence relation. One remaining relational
structure worth mentioning is a connected partial ordering; i.e., a connected
relation "g" which is reflexive, antisymmetric, and transitive. This re-
lational structure can be thought of as being more general than those of
elther equivalence relations or connected strict partial orderings in that it
"contains" both of them as substructures. The relationships among the three
structurcs are quite simple. Consider the set of all living peaple. This
set can be partitioned into equivalence classes using the equivalence relation
"same height as." If a subset of the people is chosen in such a way that
one person is chosen from each equivalence class, this subset i8 orderable
using the comnected, strict partial ordering "shorter than" (or "taller than").
One can consider the equivalence classes as having been ordered. The ordering
>f the equivalence classes could have been accomplished not by successive
application of two relational structures, but instead,by application of the -
relation "shorter than or the same height as,'" which is a connected partial
ordering defined on the set of people. This relation not only partitions
the set of people into equivalence classes, but also orders the classes by
virtue of ordering the individuals of the classes. Special chardcteristics
Of the relation exist. One 18 that if a is shorter_than b and if a is the
same height as c, then c 18 shorter than b. In fact if A is the set of all
people the same height as a, any individual who is a rember of A may be
substituted for a in the statepent "a 1s shorter than b", the result being a
true statement. Cenerally, cthnected partial orderings are not dealt with in
ary,of the grouping structutes discussed thus far. The fact that it is a

o - .
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viable candidate for a model of active intellectual operations is strengthenéd
by consideration of the relation "fewer than or just as many asY defined on
finite aets in terms of one-to-one functions. What this relation does is to
partition finite collections into equivalence classes and then order the classes
in the same manner that the equivalence classes of people were ordered by
"shorter than or the same height as.” Any finite cullection can be considered
as representing the class to which it belongs, or as representing a cardinal
number (where the cardinal number is defined &s the class to which the finite
collection he10ngs).“ One may think that Grouping VIII (Bi-Univocal Multipli-
cation of Relations) would be general enough to encompass connected, partial
order relations but inatead, it seemg to me that this grouping assumes them
as Flavell (1963, p. ﬁeﬁj.appliee Grouping VIII im the context of asymmetrical
relations. / .

As an example of Grouping VIII, let A denote a set on which two &nnected
partial ordenings are defined. If A is taken to be a collectionm of bundles
of sticks and the two relations are taken to be ''shorter than or just as long
as" (<) and "more than or just as many as" (<") then A can be depicted
schematically as in Figure 2. If a row and column entry is considered as a

P T

AL O L A L
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Figure 2 Matrix of Stilks

.

\

AN

bundle of sticks, then < orders A by rows and <' orders A by columns.
Obviously, the bundies of sticks in Figure 2 were chosen sc all row and

®lymn positions would contain entries. This requirement is not necesaary;
that 1s, “some row and column positions could be without entries. The relation
< 1s asymmetricel if it is applied to rows’and it 1s in this serse that
Grouping VIII involvea asymmetrical relatfons. The reletion defined by
"shorter than or just as long a® and morg than or just as many as”

% Note that any setr_Jay be used as a standavd set. 1In particular, the
counting set {(1,2,...n} may be used as a standard set. Whether the counting
set or the equivalence class is considered as the cardinal number of a finite
set theoretically makes little difference. N

ERIC

Aruitoxt provided by Eic:




EE

RIC .

-97-

(deonted by [<, <']) 1is a partial ordering on bundles of sticks, but it
is not a connected ordering. If sij is a bundle of sticks in the (1,))
position (the ith row and jth column), then 1f Sj,[<, <']S kL’ it will
always b» true that 1<k and j< t. In the follow ng diacussion. if fer
some (i,j) ana (k,j), sié - ]Sk% undg if for eome (1,3) and (1,1),
Sij['- 1']511 , the shor hund notaticn 1_1[:]5kj and 511[5'1511 18 used.

Compoaitions sre really at two levela of complexity. The first is
depicted by "If Sy [<}S and skj" 1Spg» them Sy,[<, < '1Syy " This compo- .
sitfon simply meang thut if the sticks in Sy4 are ahorter but equal in numero-
sity to the sticka of S, and the sticks of gk are just as long as but more
numerous han the aticks of Sy, then the stic s of S,, are shorter but more
numerous than the aticks of Syp- Also, "If Sy }gkl and Sk1[< ]S
then Sy < ]S " denotea a poasible composi%ion at a more general level ot
complexity then fore. An interpretation is that if the aticka in Sy4 are
more numerous but shorter thsn the sticks in Sky ond the sticka in Skl are
more numerous but shorter than the sticka In Spp, then the sticks In Sjy are
mpre nuderoua but shorter than the aticka in Smn. Interpreting Fiavell (1963,
pp. 185, 186), the inverse ,operation could be depicted as follows: "If

Sygles <"1Syp lﬂd S a2 2 ]511. then S, [=, ='jS;,, where the general identity
would be Syyl=, ! which 1s not an éxpresaion of logical /ideatity but 1a
nothing more th-n fef exivity of [<, <'"]. This expreasion of reveraibility {s
analogous to the expression of reversibility of Grouping V at the second level
of reversibtility, Here, it alac seems to be sn unnecessary addition to the
structure. “ertainly, one would want & child togknow that if the sticka of

Si4 were shorter but more numerous than those o X then the sticks of skl
are longer but less numerous thsn those of bi , vh*ch is analogous o reversi-
bility at the first level of reciprocity. “ne cen give a legitimate interpre-
tation of reversibility at the aecond levsl >r Grouping VIII in terms-

of movement from position to position in the matrix, but this inter-

pretation ia different than thet given tor relations considered immediately
above, and the two should not be confused.

There exists, then, the relstional structure of [<, <'], which is s
partial ordering. This relational structure scema sufficiently rich to
encompass the behavioral analogues observed in the child, just us the rela-
tional structure of connected strict partial orderings seemed aufficieatly
rich to encompsaa the behavioral snslogues observed in the child im the
case of Grouping V, without -ecourse to all of the Grouping properties.
More discussion on this point is given after a discussion of one remaining
genetic structure--thet of Bi-Univocal Multiplication of Claasea.

Grouping IV .
4

Stsrting with an example, if a ¢laas C is partitioned into two aubclaasea,
say A) snd A2, snd two other subclasses, say By and By, then C = AjUA; =
BjuB,. Moreover, C = (ArUA,)N(B,VBy) = (A;NB )U(AlnBZ)U(AgnB v
\nzl\Bz) If C is taken to bc 8 set of marbles, then Ay couid be blue marbles,
Ay green marbles; glaas marbles, and By steel marblea. The set of marbles
then, is plrtitioneé into blue glass marblea, green glass marbles, blue steel
sarbles, snd green ateel marbles. In other words, a matrix or double entry
table of four cella has been generated with the component classes along each,

Q
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dimensicn. Rather than just 2 x 2 tables, general m x n tablss may be
generated through apsropriate partitionings. The grouping structure 1is
supposed to describe essential mental operations and interrelationships \
among wenial coperations involved in partitioning a given class into sub-
c¢lazses and in constructing simpler partitionings given a multiple
partitioning.
1]
Cozposition fs Jdescrisad as just the intersectign cf ciasses; either the

tntersection of tec classes (e.g. A;N B;) or the intersectioa of unions
{e.g. (Ay V Aa-} N{B;UB,}]. Other properties are gtraightforward except,
perhaps, ‘nr “teversibiiity. If A;AB, = E, then 2 "division” of classes 18

. introduced so that Aj = £:By and Ie to be interpreted as an abstraction of the
clase Ay from AjAABy. That is. 1f from the clazg of biue glzse rarhles the
class of glgss marbleh 1z abgtracted, sne ciaze of blue marbles remains. The
Renera! identity elument 1 taken to be the most general claps of the system
which :6, in the example, the class of marbles. If, from among the mzrbies,
the steel ones 212 sinkled cw and then if their "steelness' 1s disregarded,
they are only regarded as merhles. Svmbolically, this process is represented
bv Ry = ByAC, 80 C = By:By. This sort of reversibility is distinct from that
of Crauﬂing I 4n that In G ouping I the elements of a class were subtracted ~
rather than A property of them being abstracted. Both of these processes of
raversibility are to be considered as inversicns "which mzkes an inverse
cperazion t™4 correspond to an operation t, whicb. combined with it, ends by
aapulling it (Plaget, 196b, p..176).'

.enersl Discussion of Groupiug Structures

Not only are the genetic structures discussed to be considered as models
~t cognitive cperations essential to the cognitiorn of hierarchical classifi-
catiens, multiple classifications, seriations, 2ad multiple seriaticos, but
they are also to be considered as making quantiffcation and conservation )
possibles Although definite distinctions can, and should, be made between
mathematical and genetic siructures, there are no a priori reasons to beileve
that bome mathematical srructures could not be shown to be models of cognitive
operations {n the same sense as the grouping structures are. In fact, it has
been {rdi{cated that when the grouping structures are 8pecialized to encompass
mathematica)l structures of iInterest, certain antimonies occur which are not
resolvable on logical grounds. Such 18 the case for Grouping V, Grouping VI,
Grousing ViII, and, to a lesser :j:spx, Grouping I.

As noted, “he structure of fonnected, asymmetrical, transitive relatioms
seems sufficiently rich to encompass behavioral analogues observed in seriation
behavior of children, without recourse to reversibility at the second level of
recip vocity, the general identity, and special identities. An application of
a modei for the integers was made to series of Pilaget's Grouping V, but I feel
that ghe model for the integers 1s too general in that it in*:oduces differences,
and d.fferences are not logically essential to the relational structure
ot Loncern. The model did, however, allow for a neat interpretation of the
srouping cperation. The fact remains that as far as I can detect at this
tire, the structure of connected, asymmetrical, transitive :elations is,
as a logical model of seriation behavior, more parsimonius than Grouping v.
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However, [ do not conaider the question answered; further empirical work, in

the sp.rit of Plaget, needs %o be done whose goal 18 to ascertain which model

ia the more parsimonious one While this research should incorporate all
aspects of each model, the general identity, reversibility at the second level
of reciprocity, and the apeciai identities should be of special concern. The -«
ordered pair model for the integers should not be ignored, because if reverai-
bility at the second level of reciprocity is observed in seriation behavior, the
cbild may already be operational with "number." Bscause the general identity
has been shown to be an integral part of the grouping structures, its develop-
ment needs more explication. There ia an excellent prospect that logical
identity is a developmental phenomenon. Then developmental studies should

also be undertaken, whose goal is to trace the development of logical identity
and its relation to developmental aspects of seriation and classification
behavior.

Ege extent to Which partial orderings may be considered as a genetic -
structure also needs investigation. In such an investigation, it would be
neceasary to relate the grouping structure to partial orderings to obtain the
more parsimonious model of active intellectual operations concerned with
relationa. Moreover, the role of logical identity also needs explication here.

Because partial orderings contain equivalence relations as a substructure,
a partial ordering mav encompaas classifications. But rather than equivalence
relations being dis:ussed in the context of partlal orderings, they are being .
singled out as a special entity of concern. When Grouping VI was speclalized
te equi-ralence relations, the relationsl structure was aufficienzly rich to
imply the grouping progertiev--recourse to logical identity was not needed.
This fact suggeats that egquivalence rglations in general may have a develop-
meptul nisrory of rhelr own separate from thst of logical identity or
symmerrical relatiuna which are not egquivalence relationa. It has not been
pointed out thar the votion of contigunuz ¢lements, so central to the
grouping structures 1s quite bdlyrred in the vontox. of equivalence relations.
The notion is diatinct for seriadiona, but it 18 nov fcr equivalences. For
example, given a coliectlon of sticks which a child is %o clzxsify on the
basia of "the same iength," what sticks are td be considered as cuzriguous
or "next to each other?” Any two will do. Simply because the mcdel {eauiva-
lence relationa) doea not require step by step combinations does not rean
that children will not yeée auch combinations. If children do combine ¢lements
step by atep, d\ngd.&/ﬁ% the phenomenon should account for it. While the
grouping structures accouxt for contiguous combinations, specializing
Grouping VI to equivalence relations does not lead to any requirement that an
element occupy a unique place in a classification, as did Grouping V for a
aeriation. Because of this fact, children may operate differently with equiva-
lence relations than with order relations.

In the above example, another aspect of equivalence relations 1s brought
out--for every equivalence relation defined on a set of elements, there exisis
a partition and for every partition there exists an equivalence relation. Hence,
there 1s a one-t>-one correspondence between the equivalence relations definad
on a set and the possible partitions of the set. <o, cne Would hypothesize a
cloae relationahip between behavioral manifestations of equivalence reiations
and clasaificatory behavior of childrem This possible fundamental rezlationship
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tas not been fully investigates ard, in my estirution, is not cleariy
accounted for by PFlaget's Grovpinzs. I must be quick te vcint out that
Piaget cortends that classes and relations deve=lop syachrunously. Then
should one infer partitioniryg bzhavior from relaxional hebavier, or vice
versa?

Crouping Structures and Numbet

Evern though the relevance of the totil Grruping Structure to cognition of
reiations has been questlioaed, the Ceneva\ literatare concerning the develop-
ment of number (and reasurement® can be undzretuod oniy in the context of the
Grouping Structures. 7The Genevans view .he genetic construction of the natural
nufbars as being broughkt about through a "svnthesis” of Grouping I and V (Beth
and Plaget, 1966, p. 175). Ia fact, Grize has-gone so far as to show that,
starting fror his general presentation cf the Grouping Structure, cettain
modifications can be made which leadt te a structure which he shovs to be that
of the natural nurbers (Beth and Fiaget. 1964, op. 268-270). Showing -
logically that such a modificatiocn is pessitle dces not prove, hewever, that
the restrictions zade on the Grouping Strucrure .orrespond to any developmental
process in the child. That su:h 2 possibilisy exists <annot de ignored or
canen lightly. But rather . hun dwelling on possible research studies whbich
would shed 1ight orn a poteniial corveIgence belweer Srize's formaitzation
and tne davelcpment of number, the marner in whica froupings 1 and V are
"synthestzed" 1s outlined.

Flaget {1964, pp. 283, 184) 3aves rv~ essartist conditiens for the
"transformatic~" of classes into nurbev3. in the discussion. 1t must be assumed
come hierarchical system ¢ Ajchd)c. T LA of classes erists. each ¢ mpleren: of
which ccntains a singular element. F-1t exiv2ie, Ay cduld be a2 tead, A1’ a, cuhe,
Az' a bean, evc., shere Ay - Ay = At Ay - oap = A2'; etc Tie first ceondition
given s that all eiements rust be regardec &s eguivalent (a'l qualities of the
individual eiements are eliminatea). But, il cc~dition oo+« helds, then A2
would not be a cless of two e.ements, but Instead > only cne, for AlLJAl' =
As 1 Al' = A;--which ls to say tihat the quality ot tre elements is eliminated.
If the d.fterences of AL and Al' are teken Into acccnrc. then they sre no
longer ejuivalent to one nother except with respect to Ay. This brings the
second essersfai condirion int> focus. 1In effect, the equivalent terms must
sorehow rematn ¢istinct but that distinction no longer can have recourse to
qu.litasive 1ifferonces, Giver an object (the bead), then any other oblect
1s c:2ztingulstec from tnat object by introducing order--by being placed next
te. selecred aftes, 2ts, "These two copditions are necessary and sufficient
to give T ise *o number, “wmber lc at the same time 2 class and an asymmetrical
relaticn .. (Piaget, 1984, 1. 184)." In qualitative Tcglc, objects cannot be,
at cae and she swwe time, classifiad and seriated, since addition cf classes
is commutatize whernas seriscfo: 1s nct (Plaget. 1952, p. 184). If the
giailtier ~f the elements are adetiicted, then the two groupings (I and V) no
longer tuncilcn independentiy, hit oe~essarlly merge into & single system.

The only wog to distingaish Ay, A", A7, ... 18 to seriat.> them A+A+ A~ ...,
where «.esctes the €:-ressor reiation’ /h-th and Plaget 196&, pp. 266, 67)-
Clearly, Flagat conelders each At~ be a ¢n't-element, a: once equivalent to,
but disznet Srom, tne others, shece the eguivalence arises through the
elimirat-cn of quaiitica and the distinctiveness arises threugh the order
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In Piaget's system, the.a, number is not to beﬂfﬁi:::d to one or another
cf tne yroupings, but insteed is 2 new constrjction--a synthesis of Groupings
I and Vo Elerents, from the point of view of their qualities, are either
censidered fron the point ¢f view of their partial equlvalences and are classi-
fied, cr are cersidered frum the point ~fsview of thelr differences, 8nd are
se.lated; It i{s not possible to ac both at orce unless the qualities are
1bscracted (or eliminated), and then it is necessary that-both are done
simultanecysly-~one ciranot help 1t!

It is now $oss’ple to understand the development of one~to—one correspon-
dence. Qualitative correspondence 1s correspondence which 1s based only on the
qualities of correspondirg elements, whereas numerical correspondence is
correspenden: e in which each element 1s considered as a unit element. Intuitive
correspondence 1s correspondence based entirely on perception-and, consequently,
is not preserved ourside the actual] field of perception; but opera*ional
correspondence has as 1its distinctive characteristic the fact that it is
preserved independentlv of pe-seption (Piaget, 1964, p. 70). Qualitative
correspondence, ther, can be either intuitive or operational but numerical
correspenderce 1s essenti{ally perational. Children pass through three
stages regarding one-to-one c(orrespondence; the first 1s essentially no
correepondence (up to approximitely 5 years of age), the second 1s intuitive
qualirative correspondence, and the third 1s operational or numerical correspon-
dence. Esseutially, then, operationaL one-to-orne correspondence assumes
munber (as viewed by Plaget). * '

Set sirilarity is also a developmental phenomenon. Plaget (1964, p. 97)
differentlates between qualitative correspondence between two seriations and
numes ical correspondence between two serles. The construction of a single
series and that of finding a one-to-one correspondence between two se*ies amounts
to the same thing insofar as Plaget's behavioral analyses show. Children again
go through three stages with regard to set similarity-—no conception df the
possibility of serlation, or similarity, seriation or similarity based on
prerceptual pro- esses; and then numerical correspondence between two se?ies.

The notion of a unit 1s central in Pilaget's system and is not deducible
from the Grouplng Structures, but rather is the result of the synthesis
already alluded to. Once reversibility is achieved in seriation ard classifi-
catlon, "groupings of operations become possihle, and define the field of
the ¢hild's qualitative logic (Piaget, 1964, ,. 155)." Here, operational
seriation has as a necessary condition reversibility at the first level of
reciproci.y: "A cardinal number 1s a class whose elements are concelved as
'units' that are equivalent, and yet distinct in that they can be seriated, and
therefore ordered. Conversely, each ordinal number 1s a series whose terms,
though following one another according to the relations of order that dete.mine
their respective positions, are also units that are equivalent and can
therefore be grouped in a class. Finite numbers are therefore necessarily
at the same time cardinal and ordinal ... (Plaget, 1964, p. 157)." The
development of classes and relations does not, as it may seem from the above
gquotations, precede the development of number in Plaget's theory, but those
developments are simultaneous. Without knowledge of the quantifiers "a," "none,"
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\"some." an. 'ail,” which implicitly involve cardinal number, the child 1s not
‘capable of cognition of hierarchical classifications. A genetic circularity
tonsequently exists in the developmental theory of classes, relatioms, and

dumbers.
\

! Subtleties exist in the notion of ordered sets which sometimes are
obscured by physical embodiments. If a conmnected, asymmetrical, transitive
relation « is defined in a set A, then one may think of the elements of a as
being ordered according to a, A physical embodiment is rhe case where a
collection of sticks, no two of which are the same length, is ordered by "shorter
than.” This relation a completely determines a particular order cn A. If a
relatiqe a' distinct from a, but nevertheless a connected strict partial ordering,
1s deffned on A, an ordering of A exists distinct from the former. Such an
orderin& in the case of the eticks could be an ordering based on, say, diameter
(where, pf course, appropriate conditions on the diameters hold). If A
represents the sticks ordered by a and A' by a', then A is similar to A' but
the two gre not necessarily equal ordered sets, which would be the case if and
only if and a' ordered A in the same way. If A contained n sticks, then a
gimilari mapping could be established between the standard set {1,2,3,...,n}
and A ordered by a. Of ccurse, a similarity mapping could be established
between the standard set {1,2,...,n} and A, ignoring a.
' . - N -
In ‘his study of ordination and cardination, Plaget (1964, chap. VI)‘
employed three experimental situations, one involving seriation of sticks, one
seriationiof cards, and one seriation of hurdles -and wmats. In the seriation of
sticks experiment, the child was asked to seriate ten gticks from shortest
. to longest and thenm was given nine more sticks and was asked to insert these
into the series already formed (the -material was constructed in such a way
that o twb sticks were of the same length). He was ihen asked to count the
sticks of the series after which the sticks not counted (or sticks the child
had troublg counting) were removed, apparently along with one or two he did
not have trouble counting. The experimenter then pointed to some.stick
remaining &nd asked how many steps a doll would have climbed when it reached
that point, how many steps would be behind the doll and how many 1t would
have to climb in order to reach the top of the stairs formed by the sticks.
The series!was then disarranged and the same questions as before were put to
the jchild, who would have to reconstruct the series in order to answer the
questions. |

Thera is no question that aspects of ordinal number and cardinal number
were involved in the above experiment. Any conclusions drawn with regard to
number, however, by neceésity are a function of a capability to comstruct a
series of sticks based on a connected asymmetrical relation having iittle to
do with ordinal number. To demonstrate my concern more concretely, an eight
year old cnild was aaked by.me which, of a collection of books on a table,
would be the third one. He answered, "What do you mean, any one could be thirdt"
Piaget's experiment with the stalrcase, then, was more an experiment concerning
similarity between a set of n sticks ordered by "ghorter than' and the standard
counting set {1,2,...,n} thar'it was an experiment concerning ordination and
cardination: A similar analysis holds for the seriation of the cards experi-
ment, While no analysis of the hurdles and mats experiment 1s given, suffice
it to say tHat it too involves specific relatioms.

Q
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In the mathematical development of cardinal and- ordinal number, no
analogue of Piaget's "arithmetical uritv" exists except for elements of sets.
"Set" 18 taken as an undefined obje.t and relations, cardinal number, and ordinal
number are defined {n terms of sets. Such a procedure is logically impeccable,
altheugn Plaget (1970, p. 37) 1s of the opinion that to define cardinal number
and ordinal number in such a8 way 1is to iptroduce number into the definition of
number. This opinion 1is based on the different types of one-to-one correspon-
dence identified in developmental thecry——operbtional one-to-one correspondence
assunes number. But, as already noted, Piaget’s formulations lead to a
genetic circularity among classes, relations, and number, a circularity of
definition avoided in mathematics. Such a circularity does not inherently
invalidate the results of developmental research on cardinal and ordinal
number; but the question arises whether other theoretical analyses are possible
for the same data, and, if so, would this alternate analysis lead %o new
empirical research’

Because lugi:;ul ldentity is an equivalencé relation, there exists an
accompanying difference relation "not identical to." This symmetrical
dif ference relation seems to be quite important in class{fication, because
if objects are classified together they share common properties, but they are

“also different one from the other. even 1if this difference 18 no more than

their distinctness. Moreover, eVen 1f objects'are different one from the other,
it does not necessarily follow tha: they are orderable on the basis of those
differences. To say that two o%jects are different only implies that a symmetri-
cal relation exists between them. Surely a seal is different from a dolphin,
but who would try to order a seal and a dolphin on that basis? It appears to me,
then, that it 1s quite feasible for a child to view a class of objects as being
equivalent in some aspects but yet different in others, where no order is
necessarily implied in such a vealization of differences. "Because an excéllent
possibility exists that loglcal identity is a developmental phenomenon, and
because set equality is an example of logical identity, an excellent possibility
exists that a four year old child, say, would not maintain the invariance of
class membership under spatial transformation of the elements, thus having
formed only graphic collections; but an eight year old child, say, would main-
tain class membership under the same spatial transformation simply because the
concept of logical identity is an operational concept for the eight year old

but not yet for the four year old. Why it is necessary for 'number"” to

develop before operational classification is possible is not entirely clear.
logical identi:y being applied to the rearrangements of the members of a class
of objects is quite analogous to logical identity being applied to plant

growth., In either case it seems that recourse to number is not necessary.

It would no% oe surprising if, at some point in time, logical identity was

used by 8 child as justification for a numerical conservation. On the other
hand, it also would not be surprising if logical identity was an earlier
development than nurber, either cardinal or ordinal. That does not me n that

+«1 conaider logicai identity as a necessary and sufficicnt condition for the

psychological existence of cardinal and ordinal number. Nothing covld be
farther from the actual case. It would be rather surprising, though, if a child
had a well developed concept of both cardinal and ordinal number but not of
logical identity.
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1f one does not consider nd%ber to be necessary for operatory classifica-
tion, how 1s one to account for the development of operational one-to-one
correspondence? If a child sets up a qualitative one-to-one correspondence
between two classes and one or both of the classes is rearranged, there is no
hope that' the correspondence would be maintained without logical identity.
Following Van Engen (1970, pp. 34-52), 1f a number (e.g., four) 1is regarded
as a particular set in the member-of-a-class meaning, then logical identity 1s
surely a logical prerequisite to number, but one-to-one correspondence is not.

One-to-one correspondence is a logical prerequisite, however) to the class
meaning of ¢ardinal number where one-to-one correspondence 1s taken as an
equivalence relation. An ordinal number can also have a member-of-a-class
meaning in that it can be regarded as a particular ordered set, which implies
the eXistence of a connécted, strict, partial ordering. The class meaning, of
course, involves one-to-one correspondence in the context of set similarity.

Not only are developmental studies concerning the objects called cardinal
number and ordinal number desirable, where the developmental studies take into
consideration logical identity, classes, and relations, but such developmental
studles, concerning addition, multiplication, subtraction, and division, are
also necessary. It should be clear that the Genevan theory concerning the
developnent of ntmber is not being rejected in the absence of developmental

data concerning the foregoing conceptual framework dealing with cardinal

number, ordinal number, relations, and classes. Experiments need to be done,
however, designed so that judgments can be made concerning viable theoretical
interpretations of the data. A priori decisions are not possible.

.

Some Experiments

Up to this point the only thing of fered in this paper is &n analysis of
developmental theory as it applies to developmental phenomena concerning
relations, classes, and number and a suggestion of directions that research
can take 1in light of that analysis. A good start has been made toward the
collection of facts necessary to the construction of a theoretical position
concerning the development of mathematical concepts. These data are incomplete
as they do not answer even theb questions posed in this paper, and at times ate
directed toward answering questions other than those raised here: While no
apologles are offered for the present state of existing data, it is only prudent
to acknowledge the present state of data ccliection. With this acknowledge-
ment in mind, two restricted series of otudies are discussed below. While
considerably more data exists than ‘s presented, the two series are selected
because they give quite different perspectives on closely related phenomena.

Conservation ard Jrapfsitivity--Status Data

The first serles of experiments involves & study of transitivity across
rezational tvpes (order and equivalence relations) and relational content
(matching, length). These studies are important to mention due to the
centrality of transitivity as a criterion for psychological existence of a
relation in developmental theory and to the importance of trangitivity to
equivalence and order relations and, ultimately, to number and measurement.
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. Divers (1970) cogducted one of the first experiments in this series.
The subjects for his experiment were 49 kindergarten children, of whom 26
were bldck, and 47 first grade children, of whom 27 were black. The remain-
ing children were caucasian. The age range for the kindergarteners was 65
to 76 months with mean age 71 months, and the age range for the first graders
was 78-96 months with mean age 85 months. The relations dealt with were
"same length as,' "longer than,” and "shorter than'--t{wo order relations and

¢ an equivalence relation. The ascertainment of the influence of three contextual

situations oy transitive reasoning was of irterest. It was felt that a situa-
tien in which no apparent perceptual conflict was present but in which the
pnysical objects were actuarly present would facilitate transitive reasoning
to a greater extent than either of the two situations in which (a) the objects
were not visually present and (b) the objects presé%ted an obvious perceptual
conflict. Moreover, it was predicted that children for whom evidence was
present of conservation of the relations involved would be more likely to
engage in transitive reasoning than would children for whom little or no
evidence was present of such conservation.

On the basis of a preliminary knowledge 6f terms test, 35 per cent of
the black kindergarteners &and 7 per cent of the black first graders were
eliminated from further study and 13 per cent of the caucasian kind rgarteners
and nore of the caucasian first graders were eliminated from further study.
These coildren were eliminated to decrease the possibility of falsely
diagnosinz children as not being able to engage in transitive reasoning.

Two tests were administered to the children remaining in the study, a conserva-
tion of length relations test and a transitivity test. The conservation of
length relations test consisted of nine items, three for each relation. In

any group of three items writgten for a relation, one involved a screened
stimulus, one a conflictive stimulus, and one a neutral stimulus. In any

item, after the initial comparison and transformation took place, (that is, "
after the sticks were placed in their final position) three questions were
asked of the child--one for each relation--so that a child had to know which

\\ relation still held after transformation, as well as which ones did not, in

order to score an item correctly. A child was classified at a high level of
conservation i1f he scored at least two items correctly for each relation, as

a low conserver {f there was not mose than one relation on which he scored two
or more items correctly and a medium conserver otherwise. Table 1 contains the
number of children within each of the conservation categories by grade. The
table reflects the internal consistency reliability of .75 on the conservatio..
test in’ that substantial frequencies occurred in each category. The transitivity
of length relations teat consisted of 27 items, nine for each relation., For
each relsation three of the nine items involved a neutral stimulus, three a
conflictive stimulus, and three a screened stimulus. In case of the screened
stimulus, the experimenter compared a red and blue stiek after which the child
wss asked "Is the red stick the same length as (or longer than or shorter .
than, depending on ‘the relation) the blue stick?" The red stick was then
rcovered with an opaque cloth. The same procedure was followed with the blue
stick and a green stick after which the green stick was covered with an

opaque cloth and the blue stick removed from the experimental setting. Three
questions similar to the preceding question were then asked of the child to
which he had to respond "yes" once and "ro" twice in order to answer the

item correctly. For example, if the red and green stick were actually of
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Table 1

Number of Children by Grade and ConhervatiOn Level

. I
Conservation Level )
Grade High Medium Low
K 10 10 17
1 \ 20 14 .11 .
Total 30 24 28‘

»

the same length. the child had to respond "yes' to the question "Is the
red stick the same length as the green stick?" and "no!' o the two others
* in order to answer the item correctly. The transitivity test had a mean
acore of 42.4, a standard deviation of 6.2 and an internal consistency
reliability of .87, all cgyputed on the responses of 82 children.

The statistical design employed {s called a mixed design (Kirk, 1968)

. with two between subject variables and two within subject variables. The
ANOVA computed on 60 randomly selected subJects from the 82 completing both
tests 18 given in Table 2. Both between aubject variables wefe significant
&8 was the within subject variable "Stimulus Condition.” No significant
interactions were present. The mean scores for the between subject variables
are nresented in Table 3. Conservation level was a much atronger betwWeen
subjects variable than was grade level, although aome overall improvement was

. noted for the first graders over the kindergarteners. Because a child could
obtain a scowe of 11 .per cent based on chance responses, the meana ~eported in
Table 3 are spurious because they are not corrected for guessing. The only
significaht within subject variable was Stimulus Condition. The means for this
variable are contained in Table 4. Esaentially, no differences occurred between
the screened and conflictive stimulus, the v.-iability thus occurring between
the neutral stimulus and the two others. No differencea were observed between
the black and caucasian children on either of the conservation of relatious
test or on the tranaitivity of relations test. .

The above experiment was essentially replicated (with modification) by
Owens and Steffe (1972), using matching relations rather than length relations.
The three matching relations were defined operationally for 51 caucasian middle
class children enrolled in two denominational kindergartens in Athens, Georgia,
rather than eliminate children frcm the study on the baais of a lack of .
knowledge of terminology. Even after seven 20-30 minute instructional aessions,
16 of the 51 children were not able to display adequate knowledge of terminology.
These 16 children repeated selected activities after which aeven still did not
display knowledge of terminology and were subaequently eliminated from further
study.
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Table 2

ANOVA for Transitivity Scores

Sourca of
variation

Between Subiects

Grade Level (A)
Conservation (C)
AC

Subj. W. Groups

Within Subjects

~—

Relations (ﬁy

BXSubj. W. Groups

Stimdi (D) . 14.03%%
AD ) .28 <1
(0})] 71 1.20
ACD .06 ¢ <1
DXSubj. W. Groups

BD

ABD

BCD

ABCD

BDXSubj . W. Groups

* (p<.05)
** (pc .01)
Table 3

Mean Scores on Transitivity: Grade Level
by Conservation Level (Nearest Percent)

Conservation Levelt

Medium

44
58

51

Aruitoxt provided by Eic:
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Table 4

Mean Scores for Stimulus Condition (Nearest Percgnt)

e e e e e e ot e el A i e A v i e

Stimulus Neutral Screered Conflictive

Mean 56 43 42

"

A conservation of matching relations test was administered in conjunction
with the knowledge of terms test and was used to classifv children as high
conservers and low conservers of matching relations. Siv items were censtructed
for each relation for a total of 18 test items. All items involvad,only the
conflictive stimuli identified by Diverg (1970). The internal consistency
reliability was .94 on the test. This lad to categorizing the children into
two conservation categories-~high and low. A child was classified as a high
conserver provided he conserved the relation on four of the six items on each
relation and as a low conserver otherwise. All children had scores above the
criterion or appreciably below except one; his score was slightly below the
criterion level, This child and another child, who was of legal age to be
in grade one, were eliminated from the data analvsis; 21 boys and 21 girls were
left as subjects. Twenty-seven were high conservers and 15 were low conservers.
Only kindergarten children were used in this experiment; in Divers (1970) study
age was not a strong between subjects variable. Conservation was used as a
between subjects variable as were the three relations. Stimulus condition was
used as a within subjects variable: six transitivity items were written for
each stimulus condition. Table 5 contains the analvsis of variance. Since an
interacticr occurred between conservation level (C) and relatlons (R}, the main

Table 5

ANOVA fo. Conservation Levels and Relations

Source of Variation df MS 3
Conservation (C) 1 28,14 11,144
Relation (R) 2 18.74 8.644%
CXR 2 14.22 6.56%
Subj. W. Groups 36 2.17
Stimuli (S) 2 5.64 5.26" -
CXS 2 1.47 1.37
RXS 4 w62 €1

. CXRXS 4 1.56 1,46
CXSubj. W. Groups 72 1.0
* (p<.05) ) T
#(p < .01)

(p < .05), Conservative Test

Q
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effects of C and R cannot be discussed per se. A Newman-Kuels post hoc test
was performed on the simple effects of the CXW intéraction to determine the
source of variation. Within the high conservation levels the mean of 77% for
the relation "as many as" differed from the mean of 51% for the relation "more
than" (p <.C5) as well as from the mean of 46% for the relation "fewer than"
(p <.05)- The only relation on which high ard low conservers differed signifi-
cantly (p <.05) was the equivalence relation "as manv as.”" 1In the case of the
within subjects variable, Stimulus Condition, the means as percents were 59,
51, and 47 for the neutral, screened, and conflictive stimulus, respectively.
The neutral stimulus differed from both the screenec and conflictive, which
did not differ statistically.

As indicated by Beilin (1971, p.88), it 15 important to explicate what
constitutes the mechanism underlying conservation behavior and distinguish it
from an operational definitfon for conservation. The same" comments also
pertain to transitivity. In the spirit of Piaget (1964, p.42), who takes
conservation to be a behavioral manifestation of the existence of a grouping
structure, in the two experiments reported on {in part) above, it was assumed
that conservation of the relations involved would be a behavioral manifestation
of the presence of the relational structures defined on sets of concrete
raterial. In both studies, transitivity of three particular relations, one
equivalence relation and two connected, strict, partial order relations, was
operiitionalized and was algo tahen as psychological existence of the relational
structures of interest--at least“the existence of the par‘ .cular relational
structures. It was legitimate, then, to use conservation as a blocking
varlable, because those children who were high conservers also should have
performed quite well on transitivity of the relations of interest. It was
assumed that conservation and transitivity of the relations were just reflections
of the existence of relational structures of which trangitivity was a part.
Those children who were low conservers should Blso have done relatively poorly
on transitivity of the relation for the same reason. Perfect relationships
were not expected because, by necessity, the varigbles, conservation of
relations and transitiviry of relations, were given operational definiticns
(which were thought to be strong).

The variable Stimulus Condition was interesting because concrete cperations
are taken to mean that a child can think in a logically coherent manner ahout
objects that do exist and actions that are pos<ible either with objects or in
the immediate absence of objects. Hence, for children who were categorized as
high conservers, the screened stimulus should have presented no more diffi-
culties for the children in transitive reasoning than Would the neutral se{aglgza;
where the objects were present. In fact, the screened stimulus should have
forced the child to focus on the only information available--the two hypotheses.
It was anticipated that the conflictive stimulus would present special diffi-
culties because children would be more apt to reason using nontransitive
hypotheses.. For those children in the low category ~f conservation, Stimulus
Condition should not have been significant, for such children theoretically
should rnot be in possession of a genetic relational structure.

{

In the case of Divers (1970) data, Conservation was highly significant and
did not interact with any other variable. So, for the length relations, no
statistical contradiction was present that conservation could be considered

O

RIC




EE

. ~-110-

as a behavioral mapifestation for psychological existence of relational .
structures insofar as transitivity goes. Of course, exact relationships were
not obtulhed—-only statistical relationships. But the statistical relationships
were indeed strong and, in my judgment, were within tolerance of an operational
definition of the variables of concern. Divers (1970, p.73) constructed
contingency tables from which more exact relationships between conaervation

and transitivity could be aacertained. Only 12 of 94 responses vere categorized
as being nonconservation responses but as being also successful transitive
responses. Of these responses, only one child showed no evidence at all of
being a conserver. The others did display conservation in some cascs. There
yere children, however, who displayed no avidence of being able to engage in
transitive reasoning but were categorized as high conservers. So, conservation
of length relatioas cannot be said to be a necessary and sufficient condition
for transitivity of length relations, but only a necessary condition. It would
.seem, then, that conservation of relations can appear before symptoms of a

relational structure can be found, but once such a symptem is found (transitivity),

congervation is almost certain to follow. It is the case, ther, that & good
possibility exists that transitivity of length relations is a sufficient
condition for conservation of lengtn relations, which does not contradict the
theoretical assumption that once a relational structure becomes operational
for a child, conservation should be present. In the case of length relations,
however, conservation may appear before transitivity.

Even though Stimulus Condition was significant in faver of the neutral
stimulus, the variable was not strong enough toO warrant any scrious theore-
tical speculation; howe®er, children do engage in transitive reasoning in the
{zmediate absencg of concrete objects to the same extent that they engage ‘
{n transitive rgsoning in the presence of perceptual conflict. That slightly
greater mean scdres Were observed for the neutral stimulus than for the two
other stimulus conditions only suggests that children obtained cues from the
neutral stimuli which they did not obtain from the two other stimu'us conditions.
The evidence was against the hypothesis that children engaged in solution by
nontranaitive hypotheses in the case of the neutral stimulus; a two-by-two
contingency table constructed (using conservation by transitivity) for each B
stimulus condition didsnot contradict the hypothesis that transitivity of
length relations is sufficient for conservation of length relations for any
stimulus condition.

Horizontal differentials are well accepted for developmental data (Lovell,
1972, p.169). The above two studles suggest that development of transitivity
of order relations, in the. case of matching relationa, lags behind the analogous
development for length relationa. This expectation is in contrast to the
results reported by Sinclair (1971, p.153) that length is a later achievement
than number, lagging six months to a year in development. Conservation of
length 1ags even farther behind conservation of number--two to three years
(Sinclair, 1971, p.153)~ Sinclair rightly considered length 88 a product of
measurement so that no contradiction is necessarily present concerning
achievement of length and matching relations and of length and number, as
reported by Sinclair.

Because the samples were different in the sbove two studies, the observed
time lag was only suggestive. Data from two different studies (Steffe and

Q
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Carey, 1972; Owens, 1972) confirmed that no such lag existed in tranaitivicy
in either sn sll caucasisn, middle to upper clsse, kindergarten sample or in
an easentially all black kindergarten and first grade sample. In the case of
conservation of matching and length relationa, conservaticn of length seemed
to pracede conservation of matching, but the trend was not strong enough to
be of any consequencs. One is forced to conclude, then, for firat grade and
kindergarten childgen, length telations and matching relations develop in
sbout the same way,\but in most cases, one cennot infe¢: the presence of one
from ths presence of the other.

Althcugh the dats of the above four experiments did not shed light on a
parsimenious model for sctive intellectusl operations concerned with matching
and length relations, disparities were observed between theoretical analysis
of conservation of relations and of relationsl siructurca; cases existed where
children were classified da hijh conservers, although no evidence waa present
that they could use the transitive property. There should be no question
concerning my theoretical interpretation of the relation between conservation
and transitivity. Pilaget (1964b) has related ''without the grouping there could
bs no conservation...' (p. 42). ‘Smedslund (1963) has also found children who
psas conssrvstion tests and fail transitivity tests concerning length
relstions; 80 the phenomenon is not particular to our way of operationalizing
the constructs. The data do ralse queations concerning necessary mechanisms
underlying conservation of length and matching relations and lend some
credibility to problems brought out in earlier analyses of application of the
grouping structure to equivalence and connected strict partial order relations.

Multiple Classification and Relstions

Up to this point, the data have been status data regarding conservation
of relations and transitivity of relations acroas relational types (equiva-
lence and order) and relaticnal content (matching snd length) for kindergarten
snd first grade samples only. Three experieants have been done--esch involving
multiple classes or relations in some way. These experiments are mentioned
because of certain contrasts they present in the development of multiple
classifications and relgtions. The first expeiiment of the three waa done by
David C. Johnion (1971). He conatructed 18 items, six 3 x 3 matrix items, six
2 x 2 matrix items, and eix intersecting ring itema. These items . ontained no
special mathematicsl content. The content can be classified as perceptible in
the aanse of Clver and Hornapy (1966). In the matrix items, the child was
instructed to select, from four possible choices, the object which would go in
the one cell left empty (which was slways & corner cell). The experimenter first
focused the child's attention on the matrix by saying ''look &t all the things
here. They form & pattern.” The experimenter then pointed to the empty cell
and said, "The thing that waa sMposed to be right here was left out." The
exparimenter then pointed to the four choicea and sald, "Oune of theae things
is supposed to be here. Which one is the one left out?" Three of the 3 x 3
matrix items {nvolved multiple clssaification only (shape by color) and three
involved & relation end classification (bigger than by shape, bigger than by
color, snd more than by color). The latter three items each involved s parti
order relstion, whereas the former three involved only equivalence relatjons.’.
The aix 2 x 2 matrix items were strictly anslogous to the 3 x 3 matrix items.
In each intersecting ring item, each of the two intersecting rings contained
two objecta and the child was instructed to find which of four objects
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belonged in the intersecting region. For example, one ring contained a red
and 4 vellew c.rcelar region and the other a blue square region a-- hlue
triengelar regicn. Tv be correct, the child nad tc choose a blue circular
reglon for the intersection from the choices of a blue circular region, a red
circular region, a blue square region, and a green triangular region. Notice
each distractor pussesses scmething in cormon wiph some object in one of the
rings.

Zumpson cncse kindergarten and first grade childrean tor his study, where
tte ‘hildren had a chronological age (CA) either 1in the interval (64-76) or
{i7-49) months and an 1§ in the intervals (80-100) or (165-125) = The two
varisvles CA ant Iy were useg as classification variables; 20 children were
in eact, ot tne four defined categories. These children were randomly assigned
ro 4 treatrent or control group where the treatment consisted of expertiences
in classification. The treatment lasted 17 consecutive school days for 25
winltes per schuol day. The treatment for the control children consisted of
rogular school Instructlon. The treatment did not involve multiple classifi-
¢aticn or re.iticnal activities per se, except for an intersection activity.
fesults of tne ANOVA's run are summarized in Table 6. The mean scored for the
Tv{ interavticr are presented in Table 7. It was.apparent that while the
nigner I0 children profited more from the treatment than the low I1Q children,

N both gruups prefited. while such a result is educatiopally cignificant, its
poycnelugival significance is blurred by twe factors. First, evidence was
sresent that the controi children regarded the overlapping region of the two
rings as forming a distinct region separated fror the two original rinzs.

Table 6
F-values for ANOVA's

Vie Intersecting
virfatl e 3% 3 Magrix 2 x 2 Matrix Rings
ire cent (T §.25%% S5.11% 38.84%%
ARY L) c 1 < 1 <1
[AIES 2.28 4.45% 4.69*%
fan < <1 . 2.07
I 2,40 2.h4 6.65%
X1 [ <1 1.09
- e RO i
LL T

S
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Table 7

Medan Scores» T N I Interactinn for Intersecting Rings

i

e seccnu converrs tne tire of content of the {tems. The —ean scores fos
he ratris 1ters are preserted {n Tible §. Because direct instructicr wais
act given on ~—atrin items, it was encouraging that so wuch apparent {-sroverert

=
O
%
o
[
4
)
5-
o

27

. ) A ]

ould be attributed tc tne treat—ent, especialls due to tne wa»s5t arrav of
tctoriel data children are subjected to in ~arheratics ine*ructiosn in tne

1rst twn grazes. In anv event, tne espericen? was educationally signsfi.ape
ter tre ratrix iters. Recause Plaget “1966) makes such a distlncziep betwoen
pnysical ancwiedge ana ioglcal ~atnerastical krncwliedge, the apparent .rpr.ovement

~

eould be questivned because thre items required rainly physical knovlaspe for
thelr sclation. Conseqiertly, the cogritive sttucture of the chi)drer =a.
not nave been altered, bu.t rather thefr discririnatorv powers pertelnirys (o
paysical characteri=tics of the objects of the {tems may have been lirproveld,
Such a possibilitv was heightened by tre results of a class-inclusior test
4.50 adrninistered by D, Johnson (19°1). Mo differences were detected v
this test between the experimental group and the control group, and genoraii.
low rean s.ores were chtaired (1¢Se tran 40 per-ent wis the greatest .-ean
score optdined for any group) ’
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In light of the resulzs of the above experiment (which is only partially
reported), Martin L, Johnsor (1971) chose quite different content for an
experiment involving matrix items, He constructed six items, which in my
escimation reguired logical mathematical knowledge for sclution to a greater
extent than did D. Jonsson's. The item layouts vere deceptively simple. Two
of the ltems involved the partial ordering "shorter than or just as long as'"
and "fewer tnan or iust as many as,' discussed earlier under the auspices of
Grouping VIII, Oneg oI these items was a 2 x 2 matrix item and the other a
3 x 3 matrix item. The layouts of these items are given in Figure 3. The
child was asked, of course, to complete the wmatcices. In the remaining four
items, only siagie sticks vere placed in each cell so no recourSe to numerosity

Figure 3

__ 1ter ) Item 4

, I + Three inch sticks " P « Three inch sticks

! + Four inch sticks ! ;’i + Four inch sticks
i

i « Five inch sticks
El

or relations thereof was necessary. The o-dering was “sherter than or just
as long as"; in these cases a connected jstial ordering. The four item
layouts were as depicted in Figure L. Ths orlering proceeded from a cormer
celi with sticks on some dicgenals being uf rhe same length. The strategles
used by children to compiete the matrix 'ayouta could vary,

The subjects fo: the study were 72 chiidrin, 2¢ kindergarten, 24 f'rer
graders, aad 24 second graders. Twelve of each were randomly assigmed To an
experimental group and twelve to a control group. The children in che experi-~
mental group were given 13 instructional sessions, each abeuc 20 minutes in

Figure 4
Item 2 Item 3 Item 5 Item 6
! ! 4" ] 3" | i T " |91
| > ’ t !Sn !/d" l/‘" 3 2
6"
i ' H 1 | Pan
5" g fan [4" I3 ls" 2
T Py 1gm I
o 132 ] !5" »
t6|'
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duration, with the following activities being covered. Experiences were
provided (a) in making comparisons between objects and developing a strategy
for determining the length relation that holds between any two lir ar objects,
(b) in classifying linear objects on the basis of the equivalence :elation
"as long as", (c) in seriating linear objects from longest to shortest using
an operatiunal procedure consistent with Plaget's stage three seriation
behavior, (d) in combining classification and seriation, and (e) in multiple
seriation. The childran in the control group received instr' .tlon in the
context of the regular classroom. After the above experiences, the following
mean scores on the'six mat-ix items were obtailned. These means are quite low
and hardly exceed chance responses. The item difficulties range from .14 to
.26, the most difficult being item 1 and trne least difficult, item 4.

Table 9~
Age Exp Con
5 27 * 20
6 15 5
7 25 20

il

As already indicated, a viable hypothesis for the disparity of the data
on the matrix items of the above two studies is the type of knowledge required
for item solution. The items were structurally close enough so that one would
expect fairly consistent performance, other factors being held constant.
Because children performed so poorly on the matrix items requiring logical
mathematical knowledge for solution, an immediate question arose concerning
children's measurement behavior involving polygonal paths, because the content
of polygonai paths 1s so close to that of matrix items constructed by M.
Johnson. Not only-was there a question concerning children's measurement
behavior involving polygonal paths, but also concerning whether partial orderings
are viable candidates for models of genetic structures--especlally for length
relations and for children in the age range of 5-8 years.

It is possible for children to compare the length of two polygonal paths
Uy knowing how many segments are in each path and the relatica between any two
segments, one from esch path if the segmcnts of each path are homogeneous
with ragpect to length. Under the latter condition, four logical possibilities
exist; the aegments of one path are longer than the segments of the other but
equal in number, the segments of both paths are equal in length but unequal in
number, the segments of one path are longer than the segments of the other hut
fewer in number, and the segments of both paths are equal in length and numbes.
In the first two cases, one szgment is longer than the other, In tne third case
no comparison is possible based on the information given, and in the fourth
case, both paths are of the same length. Terry Bailey (1973} administered
four tasks, one of each of the above types to 40 first, 40 second, and 40 third
grade chlldren who were randomly selected from a larger population of lower
middle class to middle class children in April and May of 1972. Of these 120
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children, conclusive evidence was present that only four children could
establish the length relation between two polygonal paths, and these four
children were all third graders. Conservative criteria were employed to
classify a child as being able to establish a length relation between two
paths (explanaticns had to be given using both number and length relations).
Even 8o, the third graders were late eight year olds or early nine year olds,
8o that the relational structures (genetic) so necessary for golution of

the problems should have been manifested in more than 10 percent or the

third graders. The data, however. is consistent with that of M. Joanson's.
Bailey's and M. Johnson's data, coupled with that of Carpenter (1972) are
serious enough in consequence to warrant movnting a massive set of develop-
mental and experimental studies concerning measurement processes of elementary
school children.

Final Comments

Data exist other than those discussed above. This data were Collected
in etudies with two overriding purposes. The first was ascertainment of
convergence of logical thinking and the second was ascertalnmept of structural
aspects of logical thought under controlled experimental conditions--that is,
would one observe the same structural aspects of logical thinking after
intervention of planned experiences as one would observe in the absence of
such planned intervention? The results of the data obtained to this poiat
(Owens, 1972; D. Johnson, 1971; M. Johnson, 1971; Steffe and Carey, 1972y
Lesh, 1971), while not without contradictions, suggest that one can observe
radically different interrelationships after intervention of planned experiences
than would be the case without such interventivn. Theste data and future
similar data are quite important in view of similarities hypothesized by
Piaget (1966, pp 187-89) to exist between mathematical structures and
genetic structures.

O
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APPENDIX
Some Mathematical Structures
Cardinal Number 4

Hausdorff (1962), in his classic work Set Theory, commented that "this
formal explanation says what the cardinal numbers are supposed to do, not
what they are...ye must leave the determiration of the ‘essence' of .
cardinal number to philosophy (pp.28-29)." Although Hausdorff's point
of view is consistent with modern postulational develqpments in mathematics,
it does not lessen the importance of his work on cardinal (and ordinal)
number for research on acquisition of mathematical knowledge. For the
structures which characterize the mathematical knowledge the child is
asked to acquire seldom, i1f ever, correspond exactly in form to structural
aspects of the child's natural thought. It is truely the case that.Hausdorff
is not concerned with the nature of cardinal (and ordinal) number and leaves
the determination of their "essence" to philosophy, and ultimately to
psychology-as well. Not only is there & difference in the way in which
the objects called cardinal and ordinal numbers are viewed in mathematical
structures as discussed by Hausdorff and ir genetic structures as discussed
by Piaget, but there are formal differences ip the structures and thes:
differences are profound.

. In the following exposition, only "naive" set theory is dealt with.

In this theory, such constructions as "the set of all cardinal numbers'
lead to antimonies. For a theorem is provadle which leads to an unbounded
sequence of cardinal numbers--which means that for any set cardinal
numbers, there is still a greater one. Consequently, "the set of all
cardina! numbers" 1s not conckivable even though it would appear to be

so. In axiomatic treatment of set theory, these obvious contradictions
have been removed (Kelly, 1955, pp.250-81). As the theory does not

allow for unlimited construction of sets—~the object {x: x is a cardinal
number} and {x: x 18 an ordinal number} are not sets. A distinction

is made between a class and a set in that a class i{s undefined, whereas

a set is a class which is a member of another class. That is, a class x

is a set if and only if there is a class y so that x is a member of y.
Using this special restriction, cardinal and ordinz! numbers aure defined

to be sets of a special kind. Rather than follow this axiomatic treatment
of the development oi cardinal and ordinal number, the treatment of "naive"
secr theory given by Hausdorff is adhered to because of its intuitive appeal.

Ordered Systems

During subsequent discussion, occasion arises to employ general ordered
systems, the basic concept of which is that of & partially ordered set. By
definition, a relation< defined in a given set P partially orders P if 1t
is both transitive and antisymmetric. The relation< is (a) transitive in P
if whenever x, ¥, z are tn P and x<y and y<z, then x<z; and (b) anti-
symmetric in P if whenever x and y are in P and x<y and y« x, then x = y.

In the latter definition, equality is taken in the seuse of logical identity.
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A ready example of a partislly ordered set i8 the set of subsets P(X) of a
given set X ordered by the set inclusion relation "€." The set inclusion
relation has the additional property of reflexivity (for each set A, ACA)
but does not have the property of being connected in P(X) (i.e., for &ny two
sets A and B of P(X), it is not necessarily true that ASB or BCA).

If P is a partially ordered set and E a subset of P, then an element x
of P 18" called an upper bcund for E if for every e€E, & <x. An element
Xe18 the least upper bound for E if for any other upper bound y€ P, xo<y.
Analogous definitions can be givep for lower bounds and the greatest lower.
bound of E. A lattice is a partially ordered set L for which every two element
subset {x,y)} oftl_has a least upper bound and a greatest lower bound.
Examples of lattices are P(X) ordered by set inclusion and the positive "
integers ordered by "a divides b." The least upper bound of any two sets A
and B of P(X) is AUB and the greatest lower bound is AN B; and the least upper
bound of any two positive integers is their greatest common divisor and the
. greatest lower bound 18 their least common multifple.

A chain in a partially ordered set P is a subset C of P in which < is
connected (that is, a subset C where if x, y€C, x<y or y<x). Any such
subset C of P 1s partially ordered by < and is a lattice as w~1l as a chain.
The set of natural numbers ordered by < is an example of a chafu. It is
important to note that < is transitive and asymmetric (if x<y, then y#x)
Yet, it is a partial ordering because the antisymmetric property is satisfied
vacuously. [

Relations of equivalence also exist as well as relations of order. By
definition, a relation R defined in a set X is an equivalence relation if R
is reflexive, symmetric, and transitive. Set equivalence is a ready example
of an equivalence relation as are the congruence rzlation for poinc sets and
set similarity.

Cardinal Number

Hausdorff (1962) assigns objects, calleu cardinal numbers, to sets in such
a way that 1f object ¢ corresponds to set A and object b corresponds to set B,
a =b if and on if A is equivalent to B. It is important to note that the
set A to which the cardinal number a i1s assigned may or may not be an ordered
set. Two cardinal numbers may'be compared by comparing the sets to which they
are assigied. a < b means that A“~B, where Blc B. It may be that A = B} in
which case A€B., Subleties exist concerning compatison of any two cardinal
numbers in that it 1s, in fact, true that the comparability of any two cardinal
numbers relies on Zermelo's well-ordering theorem, which states that any set
can be well-ordered. This theorem is necessary (in Hausdorff's development)
to show that there do not exist two incomparable sets, i.e., that it is never
the case that there exist no A} and no B so that Aj~B and Bl-vA-:

The sum and product of cardinal numbers determine their arithmetic.
“"The sum a + b of two cardinal numbers 1s the cardinality of the set theoretic
sum AU B#*, where A and b are any two disjoint sets having the cardinalities
a and b respectively (Hausdorff p.33)." Tiuis definition is justified because

* )T has been substituted for '+,

O
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if A~C and*B“~D where D and C are disjoint, then C YD~ AUB, so that the
cardinality of CUD is equal to that of AVB.

The product of two cardinal numbers a and b is defined as follows. 'The
»  product ab of two cardinal numbers is the cardinality of the set theoretic
product A x B, where A and B are any two sets with cardinalities a and b
. respectively (Hausdorff, p.35)." The product of a and b is invariant of the
particular choice of the sets A and B just as was the sum except that in the
sum, A and B had to be disjoint. That 1s, if A~C and B~D, then A x B~C x D,
so that the cardinality of CxD is equal to that of A x B. The commutative,
associstive, and distributive laws hold for the processes just defined, and
depend directly on the commutative, associative, and distributive laws forv
get operations.
Ordinal Number ’

Just as set equivalence 18 a basic notion for cardinal number, set simiiarity
is a basic concept for ordinal numbers. For clarity, the order relations dis-
cussed below are asymmetric and transitive (strict partial orderings) as well
as being connected, which means that any two elements are related. Two ordered
sets are called similar if there Bxists a one-to-qne correspondence between
their elements that preservés order. That is, if a,b€ A and c,d€ B where
a«>c and be¥d, and if a<b, then c <'d, where < and <' are the orderings in
A and B, respectively. In symbols, "A is similar to B" 18 denoted by "A 2 B."
Set similarity is an equivalence r ation just as 1s set equivalence.

As mentioned earlier, Zerrelo's well-ordering theorem states that any set
may be well-ordered. A set A being well-ordered by a relation < means that any
subset A] of A has a first element (an element as @uch that 8, <x for any x in

Hausdor ff (1962, p.51) assigns order types to ordered sets in such a way
t%at similar sets, and only eimilac sets, have the same order type assigned.
In symbols, r = s means R # S, If a set 1s well-ordered, then its order-type
is called an ordinal number.

In general, the arithmetic of order types is not 1somorphic to the
arithmetic of cardinal numbers. For if A and b are disjoint ordered sets, then
the set theoretic sum of A and B (A + B) 18 a new ordered set such that the
order of the elements of A 1s retained, the order of the elements of B is
retained, and every a ¢A precedes every b€ B. If a is the order type of A,

b the order type of B, then a + b 1 the order type of A + B. That a + b $b+a
in general can be seen by the following example. Let A = {1,2,3,...,n} and
B={n+1, n+2,...}. The order type of A 18 n, the order type of B is

w, and of A + B 18 n + w 7T w(w 18 the otder type of the natural numbers).

But the order type of B + A 18 w + n which 18 notw because 8 + A =

{n+1, n+2,...,1,2,...,n) contains a last element (A + B does not).

So w+ n¥n+w., Because n and ware ordinal numbers and, in general, the

sum of two ordinal numbers 1s not commutative,'the arithmetic of ordinal
numbers is not isomorphic to the arithmetic of cardinal numbers. Nevertheless,
two sets with the same ordinal number necessarily possess the same cardinal
number.

O t
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As pointed out earlier, a set A which is ordered by an order relation
which is connected, asymmetric, and transitive satisfies the conditions for
a chain. In particular, if A is well-ordered by <, A i{s a chain. An
intuitive example of a chain important to subsequent discussion is as follows:
Let A be a well-ordered set. Then A has a first element, say ag; A - {aj,}
has a first element, say aj; A - {a4,ay} has a first eiement, say aj; etc., so
that A = {ao,al,a%,aa,...} . The notation used here is that the index of

every plement 1s the“ordinal number of the set of elements preceding it. For
a3, "3" is the ordinal number of {ag,aj,ap}, which is called & segment of A
determined by "a." In more general terms, each element a of A determines

some segment P where P={x€A: x<al: If Q= {x¢A: x € P}, then A =P + Q.
Note that a € P because < ig irreflexive, so a is the first element of Q. A
result of this definition is that a well-ordered set is never similar to one of
its segments, which leads to the fact that for any two ordinal numbers a and

b, either a<b, b<a, or else a = b. In particular, a<b means that A is
similar to a segment of B. Of course, if it were possible for B to be similar
to one of its segments, then it would be true that a = b as well as a<b,

As indicated above, the elements of a set A which 1s well ordered can be
indexed by successive ordinal numbers. This assertion can be shown more
definitely without difficulty. Just let O(a) = {ordinal numbers 8 such that

8 < a}, O(a) can be represented as {C,1,2,3,...,0,...} where ¢ < a (Hausdorff,

1962, p.70). Moreover, 1if A is a well-ordered set of type a, then it is
possible to represent A as {ag,a 132500058 ...} where 0 < a and a is the ordinal-~
ity of A and the index of each eiement of X is just the ordinal number of the
segment belonging to it. If A is a finite set, then A = {ao,al,az,...,an_l}
and n 18 the ordinality of A where O is the ordinality of the empty set.
Because any ordering of a finite set is a well-ordering, it is impossible to
distinguish the orderings with reference to the ordinal number of the set:
i.e., all orderings give the same ordinal number. Thereby, the ordinal and
cardinal numbers of finite sets correspond, and it is possible to find the
cardinal number of a set by a process of counting, that 1is, by indexing the
elements of the set A by the ordinal numbers {0,1,2,...,n-1} by virtue of
successive selection of single elements. (Select some ap, then some &y, etc.,
until the last one a1 is selected.) Then n is called the cardinal number

of the set. This process is often referred to as rational counting.

The notion of equivalence clas<- of finite sets is implicit in the above
discussion because # {s an equivale ¢ relation. This observation has led .o
the definition of an ordinal number as an equivalence class of well-ordered
sets and a cardinal number as an equivalence class of sets without regard to
order (Barres, 1963, §,194). The set {0,1,2,...,n~-1} of cardinality (and
ordinality) n can be considered as the standard set of an equivalence class
of sets each of cardinality n. I%* must be explicitly pointed out that the
arithmetics of cardinal numbers and ordinal nunbers of finite sets are, in
fact, isomorphic.

To view a cardinal number as a class of sets should be no more foreign
to mathematics educators than to view the objects of a finite field formed
by the integers modulo a prime as classes of sets. Of course, to tell a five
year old child that a number is an equivalence class of sets 18 absurd. The
identification of 2 number as a set of objects, however, is a ngtural way
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to think about cardinal and ordinal number. In the well-known "empty hat"

(Van Engen, 1970, pp.38-39) approach to cardinal number, 0" 1s defined to

be the empty set, "1" is defined to be the set containing 0 as an element,

etc. More formally, O = @; 1 = {0}; 2 = {0,1}; 3 = {0,1,2); & = {0,1,2,3}; ...}
n={0,1,2,...,n-1}. This approach relies on the representation cf 0(a) as
{0,1,2,3,... ...}, such that o<a, already discussed and made possible

through the well-ordering theor of Zermelo. Thus, "4" 1s the ordinal number
of the segment {0,1,2,3) and is identified with the segment itself. Because
cardinal and ordinal numbers are indistinguishable, it 1is also the cardinal
nulber of the set. i

Concretely, if A is a finite set to be counted, then by successive selec-
tion of elements, successive segments of set A are determined and a chain of
ordered sets is formed. ''One," in the selection of the first element has both
cardinal and ordinal characteristics in that "one" tells how many elegents
have been selected and also that the firet one has been selected. A subset
of the collection A of one element has also been determined. "Two' in the
selection of the next element also has both cardinal and ordinal characteris-—
tics in that "two" tells how many elements have been selected &nd also that the
second one has been selected. The segment corresponding to "two" 1s an ordered
set, 18 a subset of the collection A, and contains the set consisting of the
first elemeni. - It is ordered by the relation "precedes,"” which is transitive
and asymmetrical (and 1s thereby a strict parcial ordering). I1f this
counting process 1s continued uantil A 1s exhausted, then A= {a .82....,an)
has been well-ordered by the relation "'precedes.”” A chain of sets has been:
established in that if A; = {a;}, A, = (al,az), etc., then AjCAC ... CA_.

In this sense, one can say that one is included in two, twc 1s included in
three, etc. If A is counted in a different way, A = (81*.82*.83*..-..8n*)e

It must be noted that while a1* may not be the same element as ay, nevertheless
aj* 1s the ith element and also the cardinal number of Ak = {a)*,a,%,...,a *})
where 1 < n. While Ay and A1* are similar (and therefore equivalent), they
are not necessarily equal sets.
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Future Rescearch in Mathematics Education:‘ The View from
Developmental Psychology*

Harry Beflin
City University of New York/Grsduate School

Predictions of the future that go beyond extrapolstions of the present
are characteristically products of fantasy an¥ fmegination. I will confine
my prognostications to delineating features of contemporary research in
mathematics education, fndicating how some current research does not deal
adequately with the problems being addressed and will suggest alternatives
that mey be the basis for future research.

In assessing the present anc fyture of mathematics educstion I would
hold that any educational program thar fgnores svaflable knowledge of the
child's fntellectual development fs likely to be only partislly successful.
This assertion rests on the assumption that mathematicsl learning as a type
of cognitive learning is under the control of the child's developing cognitive
capacities. The source of this thesis is principally, although not exclusively,
the work of Jean Piaget, '

Piaget and Mathemstical Fducatfon

Piaget’s theory is having considerable impact upon research in mathe-
oatics educstion and will probably continue to, slthough other psychological
developments will become increasingly important even in the near future.

For the present, Piagetian research has been far from fully explored and ths
application of the theory to educational practice {s still in {ts infancy.

Piaget's views of education, and mathemstical education in oarticular
(Ptaget, 1972), sre based upon the following assumptions:

1. Learning Ils under the control of the child's development and not the
reverse., That is, experience alcne {s not sufficient for learning; it
requires an organism whose cognitive structures gre of a level of development
thst will enable the products of experience to be integrated with them.

2. Llogico-msthematical structures are spontaneously and grsdually con-
structed aa the child develops. These structures are considered by Piaget to
have a natural relation to those of modern mathematics and knowledge cf thege
relationships {s felt to be & necessary condition for the teagcher to foster
creative learning.

3. The origin of mathematical thought is in the acticns of the child
and not in his language.

Each of these assumptions will be considered in light of the research
problems thcy raise as well as nther developments {r psy-hology thst have a
bearing upon rhe same i{ssues.

lPrenented at the "Cognitive Psychology and the Mathematics Laboratory"
Symposium at The School of TNjucsation, Northwestern University, February, 1973,
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1. Mathemstical lesrning and development.

Until quite recently, the acquisition and development of mathematical
skills and concepta waa conaidered to be a problem for the paychology of
learning snd problem solying. In the view of empiricist paychologista theae
concepta were acquired through the manipulation of external sourcea of
at{mulation snd reward. The producta of such external control combine
internally in a aimple or complex sasociation under the impetua of aome
form of motivation. Geatalt peychologiata have traditionally conaidered the
asme proceases to be fundamentsl forms of resaoning and thought, acquired
according :0 the laws that organize the proceaasea of perception.

]

Both empiriciat and geatalt psychologiata have ahared the belief that
the origin of knowledge ia in perceptual and aensory proceases. Experience,
for the empiriciat, 1+ the critical element in learning. while for the
geataltiat, organization derived from the biological srepertiea of the \\
organiam accounta for change re!ulting from experience. -

With Piaget, the elements of both empiricist and gestalt viewa integrate
{n & theory based upon the sutoregulation of development, by virtue of which
active experience and internal organization provide the materials out of
which intellectuasl atructurea are constructed. The scquisiticn of knowledge
becomea, poaaible only aa the developing intellectusl ayatem enables the
active experience of the child to become sssimilated to it. Experience it~
self doea not enaure learning. The theory holds that the defined course of
development controla learning, that ia, learning doea not Occur except aa a
function of the state of the organiam. The state of the organism, in turn,
is eatablished by a relatlively fixed asequince of atages through which the
child progresaes sa he movea toward full intellectual competence.

Piaget and hia colleagues (Inhelder and Sinclair, 1969) provide evidence
for the claim that the atate of the child’a development affecta what he is
capable of acquirimg through experience, in & number of experiemnta in which
children at different cognitive levela were trained with the asme taaks.
Crest difficulty in learning ia reported for children who had not reached a
defined cognitive level, While atudiea deaigned to train children at differ-
ent sges with the same taaks have beer limited, there have been 8 number of
attempta with both Pisgetian tsaka (Beilin and Franklin, 1962), «.d non-
Piagsetian learning taaka (Gollin, 1965). The reaults of theae studiea aup-
port a developmental conception of learning.

A large number of other atudiea that aet out to establish that logical
and mathematical concepta are trainable have not cloaed the queation sa to
whether learning can occur at sgea p:ior to the development of particular
facilitating developmental atagea (Beilin, 1971). An anawer to the question
requirea an experimental procedure that unequivocally testa & particular
resaoning procesa st sn age when one could assume that some elementa of that
proceas had not been acquired apontaneously or naturally. A few experimental
atudies have been conducted with very young children (about &4 years of age)
that critically embarraaa Pisgetisn theory on this issue. The Bryant
and Trabasso (1972) atudy on early tranaitive inferenc»s {s one such instance,
but the queation appeara to be far from aettled,

Q
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a. Stages in development

S Claims for the develcopmental control of learning have been questioned
in various ways. Ore persistent source of cffficulty is the theory of
stages, which has been under attack for at least four decades. Suppes
(1972) has added nis volce to the chorus, reiterating the view that the
tdea of stages 1s to. uncritically accepted, that the concept at least as
proposed by Plaget is too imprecise, and that only detailed experimer.:tation
and quantitacive test will determine whether the existence of stages should
te accepted as fact.

Suppes defines the -entral issue as that of differentiating stages from
continuous development. Iiaget dces not deny that development is continuous:
He polnts out, in fact. that whether development 1is continuous or discontin-
uous depends uDPon the scale that one uses to measure behavior. Suppes seem~
{naly rejects Plaget's argument, but then uses it himself. He zays, "The
problem 1s to find out for the given scale at which experimentation is con-
ducted whether the process 1s all-or-none or incremental, and whether there
are microscales, foc example, at which the process is continuous even if the
data {ndiczte all-or none learning at the ordinary scale of experimentation."
Plaget couldn't agree more with that statement since it presents no problem
for stage theory, in facc, it supports the view that there may be contrasting
Jata coucerning continuity depending urou the scale:

Suppes says further, ""There 1s also no reason to think that when concept
feraation and mastery of novel conceprs are evident that learning is neces-
sarily to be characterized in terms of stages than in-rementally." Piaget
wiuld probably agree with this statement too since he differentiates between
different types of concept constructicn, some that may be acquired incremen-
t4lly and others on an ali-or-none basis depending on the process of forma-—
ti~n that 1Is 4involved.

The claim that "precise' and detailed experimentation might lead to a
test of the existence of stages 1is itself imprecise, and hopefully Suppes
tas a der!nitfon of precisfon that would not exclude most experimentation in
the social sciences. {n .uding psychology. Precise data as such are not in
tlerselves sufficient since scientific data rarely stand uninterpreted. The
sa~e data, in fact, are often integrated into theories that are incompatible.
N fven with prerise data it 1is unlikely thtat clear-cut supp. -t for either
¢ ntinuity or discontinuity theories will be readily forthcoming, since cc--
firmaticn of guch general theories often depends upon many experiments . pro-
wide s fficient data to elucidate the ramifications of a theory and to ¢ ~hle
dtfferential confirmation anong _capeting theories.

As Suppes suggests, the theory of stages requires evidence of generali-
7rrion across common sers of concepts; he holds, however, that there is
‘Iirele” evidence on this point. It is difficult to tell what is meant by
“Iittle” in this context, but the issue of the so-called horizontal decalage,
nr genreralization across concept domains has been extensively discussed in
the Plagetiar literature, and a number of studies by non-Genevans are addres-
ard tc this issue. As the data show, there 1s both generalization and varia-
oility; sovwetimes variability within a stage takes a consistent form, some~

timea not. The Issue is & difficult one for stage theory and investigations

ERIC 3

Aruitoxt provided by Eic:




[E

sympathetic and unaympatbetic to stage theory will be dealing with it
for a long time. There may not be enough data to settle this {ssue, but
the problem has been far from ignored.

In total. Suppes' claim that stage theory has been uncritically
accepted on the basis of little evidence is itself based on limited
evidence. The isaues are not new and have received both theoretical and
empirical attention., Whether the data justify far-reaching policy decisions
in education is another issue, but then again the claims for alternative
views, including Suppes', are equally open to question.

b. Cognitive structures and strategies

The stage queation does not exhaust the issues concerning learning and
development.. Until recently, Piaget has dealt very little with the nature
of learning. His conception of learning appears to be identified with the
behavioristic conceptions of Hull-Spence, Skinner, and Pavlov. Although
undoubtedly aware of recent research and theory in cognitive learning, he
uses classi_al behaviorism as a backdrop against which to contrast his equili-
bration theory of development. He characterizes behavioristic conceptions
as baaed primarily upon the respocnse tc external stimulation as the causal
deterairant of learning and development. His own conception, on the other
hand, is based upon the autoregulation of internal ana externmal behavieral
input. Modern learning theory is not as simplistic as Piaget makes it out
to be. Most contemporary concepticns of learning include some conception
of {nternal, mediating, or symbolic cognitive processes. Learning resesrcl
in turn has shifted considerably in its orientation and focus. study
of discrimination learning, for example, so long considered b: corists
a8 the cornerstone of behavioral processes, now includes analysi-
linguiatic and attentional mediation, and some neobehaviorists define tnese
mediational phenomena as symbolic. In addition, problem solving strategies
that used to be the exclusive concern of cognitive theorists are now
identifiable in discrimination learning (Levine, 1966; Gholson et al., 1972).
Parallels between the prcblem solving strategies in discrimination learning
and those in Piagetian tasks are also being studied (Gholson et al., ir
press). In a sense, the Plagetian attitude that learning is only an aspect
of the proceasea of development, and the traditional alternative that
developaent is under the control of learning are moving rapidly to an inte-
gration. The differences am=cng 8 number of contemporary neobehavioristic
snd cognitive theories are often difficult to distinguish.

In Pilagetian research, acnhasis until recently was on understanding the
development of cognitive strucwure. A shift is taking place to discover the
ways in which structures yunc:ion. The influence of both structural and
functionaliat viewa on researzh in msthematical education is not new; it was
evident, for example, in the work of Dienes and Jeeves a decade ago (Dienes,
1963, Dienea and Jeeves, 1965). while the atudy of structure has affected
research in -athematica educatisn more than the work cn strategies, the
immediate future may see a teversal in emphaais.

O
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Regearch on cognitive structures and atrategies1 is particularly
afgnificant in mathematics education for two reasons: First, in mathematical
reqsoning and problem solving, children at different levels of development
.:*Eire different waya of dcaling with the same type of problem. Secondly,
&t any stage of development quite different strategies may be utilized by
different children for the same problem, and different strategies may be
utilized by the same child for different problems. While problem solving
strategies appear to be significant to learning and development, it is
aurpriaing that so little is known of their nature and how they are acquired.

One feature of strategies receives co-~siderable attention in mathematics
education research, yet little attention among cognitive and developmental
psychologists. This concerns the use of algorithms in problem solving and
thinking. Algorithms, in essence, are a special type of strategy used in
reasozing. Their utility in mathematics is obvious, but their function in
thought was not as obvious until the development of computer models fer
simuleting intelligence.

The i{nstructional value of algorithmic methods 18 much discussed in
mathematics education. Their efficacy 1s usually contrasted with that of
“rrue concept learning,” and their use 1s often a matter of i{ssue in educa-
tional policy. The,difficulty over the use of algorithmic methods stems
in part from the lack of differentiation between conceptual algorithms
and inatructional slgorithms. Instructional algorithms are devices, usually
symbolic, that provide standardized ways of a;proaching the analysis or solu-~
tion of problems and are essentially pedagogical instruments. The most im-
portant queation about them is whether they work as well or better than other
approaches within a defined set of {nstructional objectives. While it may be
more advantageous or desirable to creaze or re-create novel personal solu-
tions to problems from an understanding of fundamental principles, it may
be more facilitating and economical, ar least in some contexts, to have
ready-made solution strategies.

Although practical considerations are important in considering the value
of algorithms, even more important is the need to determine what 18 essential
for thought and problem solving to occur. If thinking occurs naturally with
the use of conceptual algorithms, that is, standardized routines or sub-
routinea employed within a reasoning process, then they cannot be abolished
by educational edict.

Algorithms, thus, are not simply arbitrary devices for solving sclool
problems but enter into the very nature of the processes by which cognition

: Many kinda of strategies have been identified. In gener:', a strategy is

& conaistent approach taken by a subject in solving a problem. These stra-
tegiea can be defined by a rule that is independent of the content of the
problem being solved, such as an alternating strategy, in which a child
alternates from left to right and then repeats the sequence in a two choice
discrimiration problem. A cognitive structure, on the other hand, is defined
by the regularities in the behavior of the subject that saggest a rule or
logic that is intimately tied to the content of a problem or a class of
problens.

Q .
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develops. Thev may serve as iInstructional devices as well, but developmernts
in computer simulation of thinking show that algorithms serve a much more
serious and necessary function in reasoning and learning. Rather than banish
these structuces in the sometime romanticized search for creative thought,
more adequate knowledge of the role of these structures in thinking is
required. The task for mathematics educatlon is to develop instructional
algorithms whose structure and content will articulate most adequately with
the structure and nature of conceptual algorithms.

S Informaticn processing approaches to mathematical educational research

Research in learning and thinking 1s beine reinterpreted by a number of
contemporary cognitive psychologists in terms of the ways in which information
is processed. The original interest in information processing came from
recognizing that the human learner, viewed as part of a communication system,
has limited capacity to store, process and transmit information. Much has
recently been learned of the way Information 1s coded so that it 1s understood,
acted upon, and learned effectively. More 1s now known too of the components
of information Storaze and processing. Most of this research has been addres-
sed to the nature of nemory, cognition, language, and perception, and at that
to failrly limited aspects of these. Recent efforts have also been directed
to constructing information processing models of cognitive development and
mathematical reasoning. This research is concerned with the nature of mathe-
matical Teasoning and problem solving interpreted in terme of the organizatlon
of information and the systems required to process such information. Because
of the nature of the information to be processed mathematical reasonlag
lends itself most favoredly to an information processing type of analvsis.

The rciatively rapid application of cognitive psychelogy and cogritive
development theory suggests the transition Into a new perind ¢f levelopment
for research in mathematics education.

The recent Tevolution in mathenatics and mathematics education can be
characterized by three periods. First. came the striking and significant
charges in the conception of modern mathematics. These changes in the theory
of mathematics led to great pressure for concomitant change in mathematics
education. The sccial, political and economfc climate of the so-called sput-
nik era provided the occasion for rapid changes in mathematics curricula
that brought them into greater accord with the newer approach to mathematics.
I+ was accompanied by changes in the technology of mathematics instruction,
principally at the pre-elementary and elementary.levels. The result was the
widespread introduction of instructional alds (such as the Culsenaire rods,
Dienes blocks, Montessori materials, etc.) designed to foster the comprehen-
sion and learning of fundamental concepts in mathematics. We now appear to
be moving Into a third era, characterized by the psychologizing of mathema-
tics education, based upon the notion that curriculum organization shou !
be mapped onto the psychological processes of the develoring child.! The

! We have really only spiralled around. Parallel developments occrurred in
the 1920s and 1930s when {t was realized that psychology had sowetiing to
offer to education.
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Piagetian influence in this recent movement has been the most evident, but

it is clear that in the future it will only be ome force among marny, as other
developments in psychological theory and technology rapidly infuse the
thinking of mathematics educators.

2. The logical structure of mathematics and the logical structure of thought

The logicist interpretation of mathematics, by which mathematics 1is
reduced to a system of logic (Bennaceraf & Putnam, 1964), is after all only
one possible approach to mathematical theory. It appears, however, to be
the one to which Piaget relates his own psychological logicism. He argues

that contemporary mathematics with its emphasia upon logical structure, princi-
pally as characterized by the Bourbaki group, shows a "natural™ relation to

the logical structures of intelligence. Three types of iogical structure

in intelligence are said to relate to Bourbaki "mother structures.' First,

are the algebraic structures, the system of logical classes. Second, are

the order structures that characterize the system of (ordering) relations,

and finally, there are the topological structures based upon ideas of conti-
nuity, neighborhood and separation. These three "elementary' structures

later combine apd form the logical groups (e.g., the "four-group") that

enter into propositional logic and the combinatorial system.

The formal similarity of the logical system of mathematics to the
logical nature of thought suggests to Piaget that teachers should be .
critically aware of the nature of child and adolescent thought development,
even though Piaget does not specifically suggest that the course of mathematics
instruction should parallel the course of logical thought development. Piaget,
perhaps wisely, offers no program as to how mathematics curricula should be
developed. He does, however, offer scme specific suggestions (Piaget, 1972)
concerning the focus of such curricula:

1. The Piagetian developmental s<heme proposes that the structures of
intelligence arise out of the actions 5f the child. Two kinds of knowledge
are distinguished: physical knowledge and logico-mathematical knowledge.
"Physical krowiedge," derives from the phvsical experience of acting upon
objects (e.g., comparing weights, densities, etc.) in order to discover the
properties of objects themselves. 'Logico-mathematical knowledge' derivet,
from a type of experience that garners its information, not from the physi-
cal properties of objects, but from the coordination of actions on objects.
The source of logyico-mathematical knowledge 1s a particular aspect of action,
but neverthelesa from action carried out by the child himself. When infor-~
mation is give. the child by others, the child in effect has to reinvent
or recoastruct that knowledge for himself in order to achieve true
underatanding.

This leads Plaget to suggest that the teacher should always be aware
that the child and sdolescent 18 far more capable of indicating his under-
standing through "doing," and "in action" than he is in any other form of
expressing himself, including verbally. The expression of thought occurs
in action long before the child is consciously awsre of his thought and
iong before he can represent it linguistically. With sensivivity on the
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psrt of the teacher, the child may be made more aware of nia understanding
through discussion in what would be equivalent to & Socratic dialogue.
Through the organization of work with partners his own age and with a
sophisticated older child as leader, the child could also be led to
appropriate verbalization and ''awareness."

Z. For Plaget & new logical atructute comes into being in at least

two ways. TFirst, the generalized forms of action upon Objects are assimilated

to existing cognitive achemes (generalized atructures) to form new structures.

Secondly, existing schemes are integrated and compoaed into new structures

is responge to problem solving needa. Some form of internal change haa to

teke plsce in both instancea for real understanding to occur. The mathematics

tescher, however, providea the child with ready-made logico-mathematical

structures and expects the child to underatand them. The child'a ability

to repeat a notion and even to apply it in limited waya often givea ths

impression pf knowledge. True understanding of teacher-given knowleage

requires rétonatruction of the idea by the child. The test of underatanding

is the spontsneous application of the idea by active generalization. To

ensure understanding the tescher has to go beyond hia "leasons" and "organize

situations that give rise to curioaity and solution seeking (Piaget, 1972)."

Pifficulties in understanding, says Plaget, should not lead to "feedback"

procedures in which a solution or correction is given directly. Instead

the teacher should utilize an active method in which counter-suggestion

leads to new exploration so that the child is able to correct himaelf. This

involves the application of Piaget's so-called "clinical method" to

pedagogical practice. Unfortunately, it ia not the kind of application that 1

1s sagily made by & teacher who 18 charged with the instruction of a large

group.of pupila.
|
|
|

3. The early lcgical thought of the child ariszes out of a great deal

ot active experimentation with objects. Simple and complex coordinations

between perceptions and actions are made during the very first year of

1ife, prior to the symbolic representation of such coordinations. In & real

senae, formalization through symbolic representation follows sction. This

general model applies to all periods of development, and Pingat notea,

unhapPily, that mathematics teachers sre tempted all-toc-often tu reverse W

the procedure and prematiiely provide formelization prior to active experi- |

mentation. Kepresentations or models shouid correspond to the natural |

logic of the child'a levei of thought, with systemization and formsiization i
= ¢5 foilow the kind ot knowledge that "intuitively" comea through action.

Pleget srgues that muthematic ians should not eschew auch "{nruitive'" knowledge,

s.nce mathematical intuition ia essentially operational (i.e., logical), &nd

the nature of wperative thought i{s to dissociate form from content. There

is no harm. in fact {t may be necessary, to at first encounter experience

in which bo%h form aad content are intuitively grasped, before they are

formally separated.

Q
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On sn a priori basis alone it would seem that Piagetian theory
would relate well to zarly (preschool and elementary) mathematics. It
is not self-evident, however, asa to how mathematics curricula ahould be
organized or how mathematics shouid be taught, since curriculum organization
derives both from the inherent logic of the subject matter and the
intellectual competencies of the child. The relation of mathematics
to other subjecta, the experience cf the child, and the cultural context in
which teaching occura are also relevant.

One particular difficulty ia that the logical organization of a subject
may not parallel psychological development. Piaget implies that for mathe-
matica there is such congruence, as {n the logical relations among topolo-
gical, projective and euclidean geometries; but there ia relatively little
evidence, except for certain areas of mathematics, to confirm this. Inves-
tigations of school curricula in present use show critical disparities
betvesn curriculum sequences and empirically determined sequences of intel-
lectual development (see L. Beilin, 1973, for one such example). These
studies indicate that the particular curriculum sequences gtudied cannot be
Justified either in terms of *heir logical organization or their accord with
psychological development. Some mathematics curricula {p present use, parti-
cularly those more recently developed, seem to have a better logic for their
organization, but as yet very little evidence exists of their relation to
the cognitive development of the child.

Plaget's suggestions for setivity-based mathematical learning may take
& child so far into mathemecizs, although how far iz not clear. Those aress
of mathematics (gemmetry, ari*hmeric, etc.) in which learning may be accom-
panied by the active manipulation of objects ia not specified by Plaget
although he {mplies that even advanced mathematical understanding may be
fostered by such manipulation. Dienes' demonstrations in this Symposium
suggest that there may be many applications even for advanced forms of
mathemazical reasoning. Whils Plaget proposes that formslization ahould
proceed in its own time it <“ould appear that considerable experimentation
will be needed to establish such timetables.

Educaiional psychologists and srthers are eager to know how teachers can
be aided to acquire understanding uf the intuitive relation between mathema-
tics and {ntellectual development well enough to carry oun an {nstructional
dislogue with children. Even mpre, educstors are concerned with how to
orgsnize learning so that the feacher can accomplish this with large numbers
of children. Present knowledg§ is inadequate to provide the answers.

3. MHathematics ss a language

Piaget is at grest pains to declare that language {s not the critical
source of thought and knravledge. Language functions instead to represent
ard communicate though:. This is particularly relevant for mathcmatics since
it i{s commonly held thet mathematics is a language, or has properties in
common with natural 'arguage. 1In Piaget's theory, logical and mathematical
structures are said to define the nat.re of the thought process; language,
on the other hand, ia s socially-created conventional system for symbolically
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representing the products of thought. As & consequence, Plaget considers
that educators, particularly mathematics educators, have placed much too much
emphasis upon the linguistic aspect of education out of proportion to its
role in mathematical thinking and learning. For mathematics educatoss the
issue i{s important since so much of mathematics instruction is symbolically
formalized, although much effort has gone into making early mathematics
instruction less so. Again, the focal question concerns how knowledge is
acquired and how thinking occurs. If Plaget is correct that the development
of thought, particularly in {ts early manifestations, is achieved through
activity, then an educational policy may be required that places greater
emphasis upon activity and less upon linguistic forms of instruction. wWhile
Piaget recognizes that progressive linguistic formalization and model build-
ing is necessary, he emphasizes again the need to ensure that understanding
accompanies linguistic formalization.

The relation between language and thought is not as clear-cut as Plaget
proposes. The by now well-known work of the generative-transformational
linguists (Chomsky and others) has shown that at an early age (2 to 4 years)
the child acquires a relativsly small set of linguistic rules from which he
can create a vast verbal output. Considerable controversy exists ga to the
components of this linguistic rule system and how it functions, but in spite
of a number of differences there is consenaus as to the great power of that
generative system. Nevertheless, in spite of the achievements of contem-
porary linguistics, little is known of tre nsture of logic and mathematics
as special or formal languages. In addition, few investigators of language
acquisition have been concerned with whether mathematics and logic are
acquired in the same manner that natural language is acquired, or whether,
as Plaget i{cmplies, they are not acquired &as languagea at all but as systems
of thought. The distinction may not be important if langiuage acquisition
{s under the control of develcping cognitive structures. If, on the other
hand, language development is autonomous and has an internal logic that dif-
fers. from the structures of thought, then rather different practical and theo-
retical consequences ensue. The i3sue, at the moment, has relativeiy little
available research data to decide {i. What evidence there is, even from the
Genevan group, indicates that natural language acquisition cannot be accoun-
ted for solely by available knowledge of cognitive development (Sinclair,
1971). Even less is known of the acquisition of mathemacical knowledge and
its representation in formal languages.

A number of attempts have been made recently to analyze mathematics in
linguistic terms although not necessarily as a generative-rule system. Some
research studies have been concerned with the comprehension of mathematical
statements, not 80 much as logically formulated propositions, but as
mathematical propositions embedded in natural language contexts. Theee
investigations are designed to determine whether comprehensicn is fostered
or impeded by the form or complexity of the natural language contexts in
which mathematical data are presented. In other studies, the order of sen-
tence constituents is altered to determine the effects of sentence and pro-
blem order on the " :tion of problems. These studies parallel those done
by psycholinguist. ~on-mathematical contexts. While studies in psycho-
linguisrics are ordinarily addressed to theoretical guestions concerning the
comprehenslon of surface structure characteristics of the grammar, those
performed in a mathematical context have been addressed to problems of solu-
tion efficiency., Although these mathematical studies could easily illuminate
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some more general issueés they seem, for the present at least, to be much more
limited in focus.

Studies in the generative aspecta of ' inguage and cognition has led to
considerable interest in the nature of rules and rule structurea and their
place in thinking and learning. Because of the obvious relation between
rule-related thought and mathematics, a fair amount of reaesrch ia being
pursued in the learning of mathematica! ~:les. It {s not my impreasion,
however, that mathematical reasoning is being examined aa a generative syatem
to any appreciable extent. That is, study, is nct directed to the acquiaition
of mathematical rule as instruments of creative problem aolving, or for use
in the construction of mathematical ideas. Nor are the atrategiea by which
such rulea are functionally related to problems under solution being investi-
gated to any extent. Rather, it would seem as though most of the effort is
directed to atudies of success or failure in learning rules. Thia appears
to be a much more sterile enterprise than what the study of mathematics
learning could be.

A recent effort to apply the generative-transformational linguistic model

to the rule atructure of mathematics is seen in the work of Scandura (1971).
Hia poaition is that mathematicsl knowledge and mathematical ''behavior”

are "rule-governed." He distinguishes two conceptions of rule structure.,
One involves the idea of generative procedures composed of rules, and the
second, the idea of rule-governed behavior. Rule-governed behaviors are
those that are produced by a common algorithmic (generative) procedure.
Traditional conceptions of concepts and associations are said to be special
cases of such rules. Scandura goes on to detail the form such rules take
to satisfy the recursive functions of a generative theory. Decoding, -
transformation, encoding and selectional rule types are specified that

" suggests a combination of both information processing theory and generative-

transformetionsl linguistic theory.

Mathematics as such i{s not concerned with rule-governed behavior but
with the rules themselves. Mathematics educators, however, are very much
concerned with both since there is an apparent relation between rule-governed
behavior and mathematical rules. As already suggested, Plaget is also very
much concerned with rule-governed behavior and its relation to mathematical
rule structure, in fact it is part of his central thesis. There is thus
considerable cormmonality between the fundamental assumption of the structural
learaing group (represented by Scandura) and the Piagetians, although there
are some important differences between them as well.

Not all mathematicians, mathematics educators, or psychologists are
optimistic about the adequacy of generative-transformational (Chomskyan)
theory as a model for mathematical reasoning. Among mathematicians, Suppes
(1972) considers generative-transformational theory to be a very inadequate
explanation of even linguistic performance. To make the Chomskyan argument
seem absurd he suggests as an analogy the relation of first-order logic to
all current mathematical ideas. From these relations, he says, one can
enumerate the theorems of a mathemstical subject by enumerating the proofs.
The enumeration of the proofs, he holds, is equivalent to the deep structure
rules of Chomsky's graomar. But no one, says Suppes, would aeriously claim

Q "
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that knowing such proofs can provide adequate knowledge of how students dis-
cover elementsry proofs, or how mathematicians discover new and complex
proofs, which he holds s competence theory should do. 1In spite of Suppes’
srgument it i3 not clesr that the constructive process of generating
sentences is equivalent or even analogous to the discovery processes in
deductive reasoning.

Suppes' own approach to s theory of how children learn mathematical
concepts 1is through the development of models of performance in simple
mathematical tasks, such ss learning to use the (instructionsl) slgorithms
of addition. His first models were linear regression models spplied to a
small number of performance characteristics. A regression model that predicts
response probabilities, however, does not in itself postulste a specific
process by which students apply problem solving slgorithms. Subsequently
developed models were process models specifically designed to ssatisfy the
information processing requirements of slgorithmic tasks. These models were
based upon finite sutomats, slthough they were soon superceded by probabslistic
sutomata models. The probabslistic sutomata models were seen to have
limitations ae well, lacking perceptusl processing components, snd so further
developments suggested various advances over the automata models, These
involve "register machinesa" that process perceptual information through a
series of subroutines that combine different algorithms. Suppes' models
sppesr to have come closer to the ~pproach of Minsky and Papert (1972)
whose simulations of intelligence involve models derived from theories
based upon very different pasychological assumptions. The Papert position
is, in fact, much more Plagetiasn.

There are many properties of s natural lsnguage that mathematics does
not sppear to share, This is particularly so in regard to semantics, that
is, in the way meaning is treated. The terms of s mathematical system or
theory are not interpreted in the same way lexical entries in natural langusge
sre. In fact, one reason mathematica is referred to as a formal langusge
is that its terms are ostensibly content free; those of s natursl langusge
sre not. It seems dubious, however, that as a consequence mathematics is all
syntsx with no meaning. Instead, meaning sppears to take s different form,
or may be ssid to have a different significance. It is thus not enough to
say that mathematics is s system of abstract forms and urinterpreted terms
that represents the abstract relations ordinarily represented in natursl
langusge. 1In any case, it appears that the relstionas between formal
languages such 88 msthematics snd nstursl lsnguage will receive s grest
deal of attention in the years shesd from linguists, logicisns, psychologists
snd mathematics educstors for these relations may have important bearing
upon mathematicsl ressoning snd problem solving.

To sum up, I have tried to show that mathematics educstion research
gains its strength from the infusion of theories snd models from various
disciplines. 1t also carries the burdens of these cisciplines as well as
those of its own.

The era of dramatic curriculum change and technological Lnnovation

' appears to be over. A new ers concerned wit4 the psychologicsl basis for

mathematics learning and reaszoring is alresdy fully entered upon. It is
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being fed by psychological theories of very diverse origin. Mathematics
education research is now a very lively intellectual and scholarly arena
in which mathematics, philosophy, psychology, linguistic: and computer
technology are converging on the solution of some very real problems.

Q -
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